-
Notifications
You must be signed in to change notification settings - Fork 13.3k
[mlir][vector] Linearization: push 'bit width' logic out of patterns #136581
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: main
Are you sure you want to change the base?
Conversation
✅ With the latest revision this PR passed the C/C++ code formatter. |
@llvm/pr-subscribers-mlir-vector @llvm/pr-subscribers-mlir Author: James Newling (newling) ChangesVector linearization is a collection of rewrite patterns that reduce the rank of vector operands and results of operations. In #83314 an option to ignore (legalize) operations with large inner-most dimensions was added. This current PR is a step towards making that option live outside of upstream MLIR. The motivation is to reduce non-core functionality (I would like to use this pass, but would prefer not to deal with 'targetVectorBitWidth` at all). As a follow-up to this PR, I propose that user(s) of the The approach I've used is to move the logic pertaining to Patch is 26.46 KiB, truncated to 20.00 KiB below, full version: https://github.com/llvm/llvm-project/pull/136581.diff 4 Files Affected:
diff --git a/mlir/include/mlir/Dialect/Vector/Transforms/VectorRewritePatterns.h b/mlir/include/mlir/Dialect/Vector/Transforms/VectorRewritePatterns.h
index ce97847172197..d9a0791cdea33 100644
--- a/mlir/include/mlir/Dialect/Vector/Transforms/VectorRewritePatterns.h
+++ b/mlir/include/mlir/Dialect/Vector/Transforms/VectorRewritePatterns.h
@@ -392,18 +392,24 @@ void populateVectorNarrowTypeRewritePatterns(RewritePatternSet &patterns,
void populateVectorTransposeNarrowTypeRewritePatterns(
RewritePatternSet &patterns, PatternBenefit benefit = 1);
-/// Populates patterns for ND vectors (N >= 2) linearization and sets up the
-/// provided ConversionTarget with the appropriate legality configuration for
-/// the ops to get converted properly.
-void populateVectorLinearizeTypeConversionsAndLegality(
- TypeConverter &typeConverter, RewritePatternSet &patterns,
- ConversionTarget &target, unsigned targetBitWidth);
-
-/// Populates patterns for linearizing ND (N >= 2) vector operations to 1D
-/// vector shuffle operations.
-void populateVectorLinearizeShuffleLikeOpsPatterns(
- const TypeConverter &typeConverter, RewritePatternSet &patterns,
- ConversionTarget &target, unsigned targetBitWidth);
+/// Populate `typeConverter` and `conversionTarget` with the definition of
+/// legal types and operations, for the specific case where vectors with
+/// trailing dimensions of size greater than `targetBitWidth` are legal.
+void populateVectorLinearizeBitWidthTargetAndConverter(
+ TypeConverter &typeConverter, ConversionTarget &conversionTarget,
+ unsigned targetBitWidth);
+
+/// Populates `patterns` for ND vector (N >= 2) linearization. Patterns for
+/// converting ConstantLike, Vectorizable, and vector::BitCast.
+void populateVectorLinearizeBasePatterns(const TypeConverter &,
+ RewritePatternSet &patterns,
+ const ConversionTarget &);
+
+/// Populates `patterns` for linearizing ND (N >= 2) vector operations
+/// to 1D vector shuffle operations.
+void populateVectorLinearizeShuffleLikeOpsPatterns(const TypeConverter &,
+ RewritePatternSet &patterns,
+ const ConversionTarget &);
} // namespace vector
} // namespace mlir
diff --git a/mlir/lib/Dialect/Vector/Transforms/VectorLinearize.cpp b/mlir/lib/Dialect/Vector/Transforms/VectorLinearize.cpp
index a009aa03aaf64..e24c8ee961c51 100644
--- a/mlir/lib/Dialect/Vector/Transforms/VectorLinearize.cpp
+++ b/mlir/lib/Dialect/Vector/Transforms/VectorLinearize.cpp
@@ -10,7 +10,6 @@
//
//===----------------------------------------------------------------------===//
-#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/UB/IR/UBOps.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/Dialect/Vector/Transforms/VectorRewritePatterns.h"
@@ -22,44 +21,16 @@
#include "mlir/Transforms/DialectConversion.h"
#include "llvm/ADT/ArrayRef.h"
#include <cstdint>
+#include <limits>
#include <numeric>
+#include <optional>
using namespace mlir;
-static bool isLessThanTargetBitWidth(Operation *op, unsigned targetBitWidth) {
- auto resultTypes = op->getResultTypes();
- for (auto resType : resultTypes) {
- VectorType vecType = dyn_cast<VectorType>(resType);
- // Reject index since getElementTypeBitWidth will abort for Index types.
- if (!vecType || vecType.getElementType().isIndex())
- return false;
- // There are no dimension to fold if it is a 0-D vector.
- if (vecType.getRank() == 0)
- return false;
- unsigned trailingVecDimBitWidth =
- vecType.getShape().back() * vecType.getElementTypeBitWidth();
- if (trailingVecDimBitWidth >= targetBitWidth)
- return false;
- }
- return true;
-}
-
-static bool isLessThanOrEqualTargetBitWidth(Type t, unsigned targetBitWidth) {
- VectorType vecType = dyn_cast<VectorType>(t);
- // Reject index since getElementTypeBitWidth will abort for Index types.
- if (!vecType || vecType.getElementType().isIndex())
- return false;
- // There are no dimension to fold if it is a 0-D vector.
- if (vecType.getRank() == 0)
- return false;
- unsigned trailingVecDimBitWidth =
- vecType.getShape().back() * vecType.getElementTypeBitWidth();
- return trailingVecDimBitWidth <= targetBitWidth;
-}
-
static FailureOr<Attribute>
linearizeConstAttr(Location loc, ConversionPatternRewriter &rewriter,
VectorType resType, Attribute value) {
+
if (auto dstElementsAttr = dyn_cast<DenseElementsAttr>(value)) {
if (resType.isScalable() && !isa<SplatElementsAttr>(value))
return rewriter.notifyMatchFailure(
@@ -76,16 +47,14 @@ linearizeConstAttr(Location loc, ConversionPatternRewriter &rewriter,
}
namespace {
+
struct LinearizeConstantLike final
: OpTraitConversionPattern<OpTrait::ConstantLike> {
using OpTraitConversionPattern::OpTraitConversionPattern;
- LinearizeConstantLike(
- const TypeConverter &typeConverter, MLIRContext *context,
- unsigned targetVectBitWidth = std::numeric_limits<unsigned>::max(),
- PatternBenefit benefit = 1)
- : OpTraitConversionPattern(typeConverter, context, benefit),
- targetVectorBitWidth(targetVectBitWidth) {}
+ LinearizeConstantLike(const TypeConverter &typeConverter,
+ MLIRContext *context, PatternBenefit benefit = 1)
+ : OpTraitConversionPattern(typeConverter, context, benefit) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
@@ -100,10 +69,6 @@ struct LinearizeConstantLike final
if (!resType)
return rewriter.notifyMatchFailure(loc, "can't convert return type");
- if (!isLessThanTargetBitWidth(op, targetVectorBitWidth))
- return rewriter.notifyMatchFailure(
- loc, "Can't flatten since targetBitWidth <= OpSize");
-
StringAttr attrName = rewriter.getStringAttr("value");
Attribute value = op->getAttr(attrName);
if (!value)
@@ -124,9 +89,6 @@ struct LinearizeConstantLike final
rewriter.replaceOp(op, newOp);
return success();
}
-
-private:
- unsigned targetVectorBitWidth;
};
struct LinearizeVectorizable final
@@ -134,18 +96,12 @@ struct LinearizeVectorizable final
using OpTraitConversionPattern::OpTraitConversionPattern;
public:
- LinearizeVectorizable(
- const TypeConverter &typeConverter, MLIRContext *context,
- unsigned targetVectBitWidth = std::numeric_limits<unsigned>::max(),
- PatternBenefit benefit = 1)
- : OpTraitConversionPattern(typeConverter, context, benefit),
- targetVectorBitWidth(targetVectBitWidth) {}
+ LinearizeVectorizable(const TypeConverter &typeConverter,
+ MLIRContext *context, PatternBenefit benefit = 1)
+ : OpTraitConversionPattern(typeConverter, context, benefit) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
- if (!isLessThanTargetBitWidth(op, targetVectorBitWidth))
- return rewriter.notifyMatchFailure(
- op->getLoc(), "Can't flatten since targetBitWidth <= OpSize");
FailureOr<Operation *> newOp =
convertOpResultTypes(op, operands, *getTypeConverter(), rewriter);
if (failed(newOp))
@@ -154,9 +110,6 @@ struct LinearizeVectorizable final
rewriter.replaceOp(op, (*newOp)->getResults());
return success();
}
-
-private:
- unsigned targetVectorBitWidth;
};
/// This pattern converts the ExtractStridedSliceOp into a ShuffleOp that works
@@ -173,12 +126,10 @@ struct LinearizeVectorizable final
struct LinearizeVectorExtractStridedSlice final
: public mlir::OpConversionPattern<mlir::vector::ExtractStridedSliceOp> {
using OpConversionPattern::OpConversionPattern;
- LinearizeVectorExtractStridedSlice(
- const TypeConverter &typeConverter, MLIRContext *context,
- unsigned targetVectBitWidth = std::numeric_limits<unsigned>::max(),
- PatternBenefit benefit = 1)
- : OpConversionPattern(typeConverter, context, benefit),
- targetVectorBitWidth(targetVectBitWidth) {}
+ LinearizeVectorExtractStridedSlice(const TypeConverter &typeConverter,
+ MLIRContext *context,
+ PatternBenefit benefit = 1)
+ : OpConversionPattern(typeConverter, context, benefit) {}
LogicalResult
matchAndRewrite(vector::ExtractStridedSliceOp extractOp, OpAdaptor adaptor,
@@ -189,9 +140,6 @@ struct LinearizeVectorExtractStridedSlice final
if (extractOp.getVector().getType().isScalable() || dstType.isScalable())
return rewriter.notifyMatchFailure(extractOp,
"scalable vectors are not supported.");
- if (!isLessThanTargetBitWidth(extractOp, targetVectorBitWidth))
- return rewriter.notifyMatchFailure(
- extractOp, "Can't flatten since targetBitWidth <= OpSize");
ArrayAttr offsets = extractOp.getOffsets();
ArrayAttr sizes = extractOp.getSizes();
@@ -268,9 +216,6 @@ struct LinearizeVectorExtractStridedSlice final
extractOp, dstType, srcVector, srcVector, indices);
return success();
}
-
-private:
- unsigned targetVectorBitWidth;
};
/// This pattern converts the ShuffleOp that works on nD (n > 1)
@@ -291,8 +236,7 @@ struct LinearizeVectorShuffle final
const TypeConverter &typeConverter, MLIRContext *context,
unsigned targetVectBitWidth = std::numeric_limits<unsigned>::max(),
PatternBenefit benefit = 1)
- : OpConversionPattern(typeConverter, context, benefit),
- targetVectorBitWidth(targetVectBitWidth) {}
+ : OpConversionPattern(typeConverter, context, benefit) {}
LogicalResult
matchAndRewrite(vector::ShuffleOp shuffleOp, OpAdaptor adaptor,
@@ -302,13 +246,12 @@ struct LinearizeVectorShuffle final
assert(dstType && "vector type destination expected.");
// The assert is used because vector.shuffle does not support scalable
// vectors.
- assert(!(shuffleOp.getV1VectorType().isScalable() ||
- shuffleOp.getV2VectorType().isScalable() ||
- dstType.isScalable()) &&
- "scalable vectors are not supported.");
- if (!isLessThanTargetBitWidth(shuffleOp, targetVectorBitWidth))
- return rewriter.notifyMatchFailure(
- shuffleOp, "Can't flatten since targetBitWidth <= OpSize");
+ bool scalable = shuffleOp.getV1VectorType().isScalable() ||
+ shuffleOp.getV2VectorType().isScalable() ||
+ dstType.isScalable();
+ if (scalable)
+ return rewriter.notifyMatchFailure(shuffleOp,
+ "scalable vectors are not supported.");
Value vec1 = adaptor.getV1();
Value vec2 = adaptor.getV2();
@@ -343,9 +286,6 @@ struct LinearizeVectorShuffle final
vec2, indices);
return success();
}
-
-private:
- unsigned targetVectorBitWidth;
};
/// This pattern converts the ExtractOp to a ShuffleOp that works on a
@@ -364,8 +304,7 @@ struct LinearizeVectorExtract final
const TypeConverter &typeConverter, MLIRContext *context,
unsigned targetVectBitWidth = std::numeric_limits<unsigned>::max(),
PatternBenefit benefit = 1)
- : OpConversionPattern(typeConverter, context, benefit),
- targetVectorBitWidth(targetVectBitWidth) {}
+ : OpConversionPattern(typeConverter, context, benefit) {}
LogicalResult
matchAndRewrite(vector::ExtractOp extractOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
@@ -378,9 +317,6 @@ struct LinearizeVectorExtract final
cast<VectorType>(dstTy).isScalable())
return rewriter.notifyMatchFailure(extractOp,
"scalable vectors are not supported.");
- if (!isLessThanTargetBitWidth(extractOp, targetVectorBitWidth))
- return rewriter.notifyMatchFailure(
- extractOp, "Can't flatten since targetBitWidth <= OpSize");
// Dynamic position is not supported.
if (extractOp.hasDynamicPosition())
@@ -405,9 +341,6 @@ struct LinearizeVectorExtract final
return success();
}
-
-private:
- unsigned targetVectorBitWidth;
};
/// This pattern converts the InsertOp to a ShuffleOp that works on a
@@ -427,8 +360,7 @@ struct LinearizeVectorInsert final
const TypeConverter &typeConverter, MLIRContext *context,
unsigned targetVectBitWidth = std::numeric_limits<unsigned>::max(),
PatternBenefit benefit = 1)
- : OpConversionPattern(typeConverter, context, benefit),
- targetVectorBitWidth(targetVectBitWidth) {}
+ : OpConversionPattern(typeConverter, context, benefit) {}
LogicalResult
matchAndRewrite(vector::InsertOp insertOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
@@ -439,11 +371,6 @@ struct LinearizeVectorInsert final
return rewriter.notifyMatchFailure(insertOp,
"scalable vectors are not supported.");
- if (!isLessThanOrEqualTargetBitWidth(insertOp.getValueToStoreType(),
- targetVectorBitWidth))
- return rewriter.notifyMatchFailure(
- insertOp, "Can't flatten since targetBitWidth < OpSize");
-
// dynamic position is not supported
if (insertOp.hasDynamicPosition())
return rewriter.notifyMatchFailure(insertOp,
@@ -471,11 +398,11 @@ struct LinearizeVectorInsert final
}
llvm::SmallVector<int64_t, 2> indices(dstSize);
- auto origValsUntil = indices.begin();
+ auto *origValsUntil = indices.begin();
std::advance(origValsUntil, linearizedOffset);
std::iota(indices.begin(), origValsUntil,
0); // original values that remain [0, offset)
- auto newValsUntil = origValsUntil;
+ auto *newValsUntil = origValsUntil;
std::advance(newValsUntil, srcSize);
std::iota(origValsUntil, newValsUntil,
dstSize); // new values [offset, offset+srcNumElements)
@@ -488,9 +415,6 @@ struct LinearizeVectorInsert final
return success();
}
-
-private:
- unsigned targetVectorBitWidth;
};
/// This pattern converts the BitCastOp that works on nD (n > 1)
@@ -508,8 +432,7 @@ struct LinearizeVectorBitCast final
const TypeConverter &typeConverter, MLIRContext *context,
unsigned targetVectBitWidth = std::numeric_limits<unsigned>::max(),
PatternBenefit benefit = 1)
- : OpConversionPattern(typeConverter, context, benefit),
- targetVectorBitWidth(targetVectBitWidth) {}
+ : OpConversionPattern(typeConverter, context, benefit) {}
LogicalResult
matchAndRewrite(vector::BitCastOp castOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
@@ -518,24 +441,103 @@ struct LinearizeVectorBitCast final
if (!resType)
return rewriter.notifyMatchFailure(loc, "can't convert return type.");
- if (!isLessThanTargetBitWidth(castOp, targetVectorBitWidth))
- return rewriter.notifyMatchFailure(
- loc, "Can't flatten since targetBitWidth <= OpSize");
-
rewriter.replaceOpWithNewOp<vector::BitCastOp>(castOp, resType,
adaptor.getSource());
return mlir::success();
}
-
-private:
- unsigned targetVectorBitWidth;
};
} // namespace
-void mlir::vector::populateVectorLinearizeTypeConversionsAndLegality(
- TypeConverter &typeConverter, RewritePatternSet &patterns,
- ConversionTarget &target, unsigned targetBitWidth) {
+/// If `type` is VectorType with trailing dimension of (bit) size greater than
+/// or equal to `targetBitWidth`, its defining op is considered legal.
+static bool legalBecauseOfBitwidth(Type type, unsigned targetBitWidth) {
+
+ VectorType vecType = dyn_cast<VectorType>(type);
+
+ if (!vecType)
+ return true;
+
+ // The width of the type 'index' is unbounded (and therefore potentially above
+ // the target width).
+ if (vecType.getElementType().isIndex())
+ return true;
+
+ unsigned finalDimSize =
+ vecType.getRank() == 0 ? 0 : vecType.getShape().back();
+
+ unsigned trailingVecDimBitWidth =
+ finalDimSize * vecType.getElementTypeBitWidth();
+
+ return trailingVecDimBitWidth >= targetBitWidth;
+}
+
+static SmallVector<std::pair<Type, unsigned>>
+getChecksForBitwidth(Operation *op, unsigned targetBitWidth) {
+
+ if (auto insertOp = dyn_cast<vector::InsertOp>(op)) {
+ auto w = targetBitWidth < std::numeric_limits<unsigned>::max()
+ ? targetBitWidth + 1
+ : targetBitWidth;
+ return {{insertOp.getValueToStoreType(), w}};
+ }
+ auto resultTypes = op->getResultTypes();
+ SmallVector<std::pair<Type, unsigned>> resultsWithBitWidth;
+ resultsWithBitWidth.reserve(resultTypes.size());
+ for (Type type : resultTypes) {
+ resultsWithBitWidth.push_back({type, targetBitWidth});
+ }
+ return resultsWithBitWidth;
+}
+
+/// Return true if the operation `op` does not support scalable vectors and
+/// has at least 1 scalable vector result.
+static bool legalBecauseScalable(Operation *op) {
+
+ bool scalableSupported = op->hasTrait<OpTrait::ConstantLike>() ||
+ op->hasTrait<OpTrait::Vectorizable>() ||
+ isa<vector::BitCastOp>(op);
+
+ if (scalableSupported)
+ return false;
+
+ // Check if any of the results is a scalable vector type.
+ auto types = op->getResultTypes();
+ bool containsScalableResult =
+ std::any_of(types.begin(), types.end(), [](Type type) {
+ auto vecType = dyn_cast<VectorType>(type);
+ return vecType && vecType.isScalable();
+ });
+
+ return containsScalableResult;
+}
+
+static bool dynamicallyLegal(Operation *op, unsigned targetBitWidth) {
+
+ // Only ops that are in the vector dialect, are ConstantLike, or
+ // are Vectorizable might be linearized currently, so legalize the others.
+ bool opIsVectorDialect = op->getDialect()->getNamespace() ==
+ vector::VectorDialect::getDialectNamespace();
+ if (!opIsVectorDialect && !op->hasTrait<OpTrait::ConstantLike>() &&
+ !op->hasTrait<OpTrait::Vectorizable>())
+ return true;
+
+ // Some ops will not be linearized if they have scalable vector results.
+ if (legalBecauseScalable(op))
+ return true;
+
+ // Check on bitwidths.
+ auto typesToCheck = getChecksForBitwidth(op, targetBitWidth);
+ return std::any_of(typesToCheck.begin(), typesToCheck.end(),
+ [&](std::pair<Type, unsigned> typeWidth) {
+ return legalBecauseOfBitwidth(typeWidth.first,
+ typeWidth.second);
+ });
+}
+
+void mlir::vector::populateVectorLinearizeBitWidthTargetAndConverter(
+ TypeConverter &typeConverter, ConversionTarget &target,
+ unsigned targetBitWidth) {
typeConverter.addConversion([](VectorType type) -> std::optional<Type> {
if (!isLinearizableVector(type))
@@ -550,40 +552,34 @@ void mlir::vector::populateVectorLinearizeTypeConversionsAndLegality(
if (inputs.size() != 1 || !isa<VectorType>(inputs.front().getType()) ||
!isa<VectorType>(type))
return nullptr;
-
return builder.create<vector::ShapeCastOp>(loc, type, inputs.front());
};
+
typeConverter.addSourceMaterialization(materializeCast);
typeConverter.addTargetMaterialization(materializeCast);
+
target.markUnknownOpDynamicallyLegal(
[=](Operation *op) -> std::optional<bool> {
- if ((isa<vector::BitCastOp>(op) ||
- op->hasTrait<OpTrait::ConstantLike>() ||
- op->hasTrait<OpTrait::Vectorizable>())) {
- return (isLessThanTargetBitWidth(op, targetBitWidth)
- ? typeConverter.isLegal(op)
- : true);
- }
- return std::nullopt;
+ bool isDynamicallyLegal = dynamicallyLegal(op, targetBitWidth);
+ if (isDynamicallyLegal)
+ return true;
+
+ bool shapeUnchanged = typeConverter.isLegal(op);
+ return shapeUnchanged;
});
+}
+void mlir::vector::populateVectorLinearizeBasePatterns(
+ const TypeC...
[truncated]
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
LGTM, but give it day or two for other vector folks to have a chance to chime in
Overall makes sense. In fact, this is a nice clean-up, thanks!
How are we going to "drive" the existing tests that depend on this? (through e.g. |
@@ -550,40 +552,34 @@ void mlir::vector::populateVectorLinearizeTypeConversionsAndLegality( | |||
if (inputs.size() != 1 || !isa<VectorType>(inputs.front().getType()) || | |||
!isa<VectorType>(type)) | |||
return nullptr; | |||
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
[nit] I find empty lines quite helpful 😅
bool scalableSupported = op->hasTrait<OpTrait::ConstantLike>() || | ||
op->hasTrait<OpTrait::Vectorizable>() || | ||
isa<vector::BitCastOp>(op); |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I am quite confused by this logic ... I don't see anything specific to scalable vectors here?
Also, perhaps flip the logic in this method:
/// Return true if the operation
op
does not support scalable vectors
This would make more sense to me:
/// Return true if the operation
op
supports scalable vectors
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I was just trying to do a pure NFC refactor, and these were the only ops that support scalable vectors. Flipping the logic is a good idea, will make this clearer.
Great point. I will try refactor the testing to make it an easier lift, and wait for the folks who use this to give their thoughts |
I've factorized out a bit deeper now, it's clearer to me now what the lift out of llvm-project would look like Some feedback from the users of the bit width logic (@bviyer @dcaballe @nbpatel ?) would be great! |
[NFC]
Vector linearization is a collection of rewrite patterns that reduce the rank of vector operands and results.
In #83314 an option to ignore (make 'legal') operations with large inner-most dimensions was added. This current PR is a step towards making that option live outside of upstream MLIR. The motivation is to remove non-core functionality (I would like to use this pass, but would prefer not to deal with 'targetVectorBitWidth` at all).
As a follow-up to this PR, I propose that user(s) of the
targetVectorBitWidth
move the relevant code (now in mlir/test/lib/Dialect/Vector/TestVectorTransforms.cpp) to their code bases, and then remove it from upstream. In addition the tests need to split out (I've intentionally not modified the lit tests here, to make it easier to confirm that this is a NFC). I'm very happy to help make it easier to do this final step!The approach I've used is to move the logic pertaining to
targetVectorBitWidth
out the patterns, and into the conversion target, which the end user can control outside of core MLIR.