1313#include " clang/Analysis/Analyses/PostOrderCFGView.h"
1414#include " clang/Analysis/AnalysisDeclContext.h"
1515#include " clang/Analysis/CFG.h"
16+ #include " clang/Analysis/FlowSensitive/DataflowWorklist.h"
1617#include " llvm/ADT/FoldingSet.h"
18+ #include " llvm/ADT/ImmutableMap.h"
19+ #include " llvm/ADT/ImmutableSet.h"
1720#include " llvm/ADT/PointerUnion.h"
1821#include " llvm/ADT/SmallVector.h"
1922#include " llvm/Support/Debug.h"
@@ -482,7 +485,247 @@ class FactGenerator : public ConstStmtVisitor<FactGenerator> {
482485};
483486
484487// ========================================================================= //
485- // TODO: Run dataflow analysis to propagate loans, analyse and error reporting.
488+ // The Dataflow Lattice
489+ // ========================================================================= //
490+
491+ // Using LLVM's immutable collections is efficient for dataflow analysis
492+ // as it avoids deep copies during state transitions.
493+ // TODO(opt): Consider using a bitset to represent the set of loans.
494+ using LoanSet = llvm::ImmutableSet<LoanID>;
495+ using OriginLoanMap = llvm::ImmutableMap<OriginID, LoanSet>;
496+
497+ // / An object to hold the factories for immutable collections, ensuring
498+ // / that all created states share the same underlying memory management.
499+ struct LifetimeFactory {
500+ OriginLoanMap::Factory OriginMapFact;
501+ LoanSet::Factory LoanSetFact;
502+
503+ LoanSet createLoanSet (LoanID LID) {
504+ return LoanSetFact.add (LoanSetFact.getEmptySet (), LID);
505+ }
506+ };
507+
508+ // / LifetimeLattice represents the state of our analysis at a given program
509+ // / point. It is an immutable object, and all operations produce a new
510+ // / instance rather than modifying the existing one.
511+ struct LifetimeLattice {
512+ // / The map from an origin to the set of loans it contains.
513+ // / TODO(opt): To reduce the lattice size, propagate origins of declarations,
514+ // / not expressions, because expressions are not visible across blocks.
515+ OriginLoanMap Origins = OriginLoanMap(nullptr );
516+
517+ explicit LifetimeLattice (const OriginLoanMap &S) : Origins(S) {}
518+ LifetimeLattice () = default ;
519+
520+ bool operator ==(const LifetimeLattice &Other) const {
521+ return Origins == Other.Origins ;
522+ }
523+ bool operator !=(const LifetimeLattice &Other) const {
524+ return !(*this == Other);
525+ }
526+
527+ LoanSet getLoans (OriginID OID, LifetimeFactory &Factory) const {
528+ if (auto *Loans = Origins.lookup (OID))
529+ return *Loans;
530+ return Factory.LoanSetFact .getEmptySet ();
531+ }
532+
533+ // / Computes the union of two lattices by performing a key-wise join of
534+ // / their OriginLoanMaps.
535+ // TODO(opt): This key-wise join is a performance bottleneck. A more
536+ // efficient merge could be implemented using a Patricia Trie or HAMT
537+ // instead of the current AVL-tree-based ImmutableMap.
538+ LifetimeLattice join (const LifetimeLattice &Other,
539+ LifetimeFactory &Factory) const {
540+ // / Merge the smaller map into the larger one ensuring we iterate over the
541+ // / smaller map.
542+ if (Origins.getHeight () < Other.Origins .getHeight ())
543+ return Other.join (*this , Factory);
544+
545+ OriginLoanMap JoinedState = Origins;
546+ // For each origin in the other map, union its loan set with ours.
547+ for (const auto &Entry : Other.Origins ) {
548+ OriginID OID = Entry.first ;
549+ LoanSet OtherLoanSet = Entry.second ;
550+ JoinedState = Factory.OriginMapFact .add (
551+ JoinedState, OID,
552+ join (getLoans (OID, Factory), OtherLoanSet, Factory));
553+ }
554+ return LifetimeLattice (JoinedState);
555+ }
556+
557+ LoanSet join (LoanSet a, LoanSet b, LifetimeFactory &Factory) const {
558+ // / Merge the smaller set into the larger one ensuring we iterate over the
559+ // / smaller set.
560+ if (a.getHeight () < b.getHeight ())
561+ std::swap (a, b);
562+ LoanSet Result = a;
563+ for (LoanID LID : b) {
564+ // / TODO(opt): Profiling shows that this loop is a major performance
565+ // / bottleneck. Investigate using a BitVector to represent the set of
566+ // / loans for improved join performance.
567+ Result = Factory.LoanSetFact .add (Result, LID);
568+ }
569+ return Result;
570+ }
571+
572+ void dump (llvm::raw_ostream &OS) const {
573+ OS << " LifetimeLattice State:\n " ;
574+ if (Origins.isEmpty ())
575+ OS << " <empty>\n " ;
576+ for (const auto &Entry : Origins) {
577+ if (Entry.second .isEmpty ())
578+ OS << " Origin " << Entry.first << " contains no loans\n " ;
579+ for (const LoanID &LID : Entry.second )
580+ OS << " Origin " << Entry.first << " contains Loan " << LID << " \n " ;
581+ }
582+ }
583+ };
584+
585+ // ========================================================================= //
586+ // The Transfer Function
587+ // ========================================================================= //
588+ class Transferer {
589+ FactManager &AllFacts;
590+ LifetimeFactory &Factory;
591+
592+ public:
593+ explicit Transferer (FactManager &F, LifetimeFactory &Factory)
594+ : AllFacts(F), Factory(Factory) {}
595+
596+ // / Computes the exit state of a block by applying all its facts sequentially
597+ // / to a given entry state.
598+ // / TODO: We might need to store intermediate states per-fact in the block for
599+ // / later analysis.
600+ LifetimeLattice transferBlock (const CFGBlock *Block,
601+ LifetimeLattice EntryState) {
602+ LifetimeLattice BlockState = EntryState;
603+ llvm::ArrayRef<const Fact *> Facts = AllFacts.getFacts (Block);
604+
605+ for (const Fact *F : Facts) {
606+ BlockState = transferFact (BlockState, F);
607+ }
608+ return BlockState;
609+ }
610+
611+ private:
612+ LifetimeLattice transferFact (LifetimeLattice In, const Fact *F) {
613+ switch (F->getKind ()) {
614+ case Fact::Kind::Issue:
615+ return transfer (In, *F->getAs <IssueFact>());
616+ case Fact::Kind::AssignOrigin:
617+ return transfer (In, *F->getAs <AssignOriginFact>());
618+ // Expire and ReturnOfOrigin facts don't modify the Origins and the State.
619+ case Fact::Kind::Expire:
620+ case Fact::Kind::ReturnOfOrigin:
621+ return In;
622+ }
623+ llvm_unreachable (" Unknown fact kind" );
624+ }
625+
626+ // / A new loan is issued to the origin. Old loans are erased.
627+ LifetimeLattice transfer (LifetimeLattice In, const IssueFact &F) {
628+ OriginID OID = F.getOriginID ();
629+ LoanID LID = F.getLoanID ();
630+ return LifetimeLattice (
631+ Factory.OriginMapFact .add (In.Origins , OID, Factory.createLoanSet (LID)));
632+ }
633+
634+ // / The destination origin's loan set is replaced by the source's.
635+ // / This implicitly "resets" the old loans of the destination.
636+ LifetimeLattice transfer (LifetimeLattice InState, const AssignOriginFact &F) {
637+ OriginID DestOID = F.getDestOriginID ();
638+ OriginID SrcOID = F.getSrcOriginID ();
639+ LoanSet SrcLoans = InState.getLoans (SrcOID, Factory);
640+ return LifetimeLattice (
641+ Factory.OriginMapFact .add (InState.Origins , DestOID, SrcLoans));
642+ }
643+ };
644+ // ========================================================================= //
645+ // Dataflow analysis
646+ // ========================================================================= //
647+
648+ // / Drives the intra-procedural dataflow analysis.
649+ // /
650+ // / Orchestrates the analysis by iterating over the CFG using a worklist
651+ // / algorithm. It computes a fixed point by propagating the LifetimeLattice
652+ // / state through each block until the state no longer changes.
653+ // / TODO: Maybe use the dataflow framework! The framework might need changes
654+ // / to support the current comparison done at block-entry.
655+ class LifetimeDataflow {
656+ const CFG &Cfg;
657+ AnalysisDeclContext &AC;
658+ LifetimeFactory LifetimeFact;
659+
660+ Transferer Xfer;
661+
662+ // / Stores the merged analysis state at the entry of each CFG block.
663+ llvm::DenseMap<const CFGBlock *, LifetimeLattice> BlockEntryStates;
664+ // / Stores the analysis state at the exit of each CFG block, after the
665+ // / transfer function has been applied.
666+ llvm::DenseMap<const CFGBlock *, LifetimeLattice> BlockExitStates;
667+
668+ public:
669+ LifetimeDataflow (const CFG &C, FactManager &FS, AnalysisDeclContext &AC)
670+ : Cfg(C), AC(AC), Xfer(FS, LifetimeFact) {}
671+
672+ void run () {
673+ llvm::TimeTraceScope TimeProfile (" Lifetime Dataflow" );
674+ ForwardDataflowWorklist Worklist (Cfg, AC);
675+ const CFGBlock *Entry = &Cfg.getEntry ();
676+ BlockEntryStates[Entry] = LifetimeLattice{};
677+ Worklist.enqueueBlock (Entry);
678+ while (const CFGBlock *B = Worklist.dequeue ()) {
679+ LifetimeLattice EntryState = getEntryState (B);
680+ LifetimeLattice ExitState = Xfer.transferBlock (B, EntryState);
681+ BlockExitStates[B] = ExitState;
682+
683+ for (const CFGBlock *Successor : B->succs ()) {
684+ auto SuccIt = BlockEntryStates.find (Successor);
685+ LifetimeLattice OldSuccEntryState = (SuccIt != BlockEntryStates.end ())
686+ ? SuccIt->second
687+ : LifetimeLattice{};
688+ LifetimeLattice NewSuccEntryState =
689+ OldSuccEntryState.join (ExitState, LifetimeFact);
690+ // Enqueue the successor if its entry state has changed.
691+ // TODO(opt): Consider changing 'join' to report a change if !=
692+ // comparison is found expensive.
693+ if (SuccIt == BlockEntryStates.end () ||
694+ NewSuccEntryState != OldSuccEntryState) {
695+ BlockEntryStates[Successor] = NewSuccEntryState;
696+ Worklist.enqueueBlock (Successor);
697+ }
698+ }
699+ }
700+ }
701+
702+ void dump () const {
703+ llvm::dbgs () << " ==========================================\n " ;
704+ llvm::dbgs () << " Dataflow results:\n " ;
705+ llvm::dbgs () << " ==========================================\n " ;
706+ const CFGBlock &B = Cfg.getExit ();
707+ getExitState (&B).dump (llvm::dbgs ());
708+ }
709+
710+ LifetimeLattice getEntryState (const CFGBlock *B) const {
711+ auto It = BlockEntryStates.find (B);
712+ if (It != BlockEntryStates.end ()) {
713+ return It->second ;
714+ }
715+ return LifetimeLattice{};
716+ }
717+
718+ LifetimeLattice getExitState (const CFGBlock *B) const {
719+ auto It = BlockExitStates.find (B);
720+ if (It != BlockExitStates.end ()) {
721+ return It->second ;
722+ }
723+ return LifetimeLattice{};
724+ }
725+ };
726+
727+ // ========================================================================= //
728+ // TODO: Analysing dataflow results and error reporting.
486729// ========================================================================= //
487730} // anonymous namespace
488731
@@ -495,5 +738,18 @@ void runLifetimeSafetyAnalysis(const DeclContext &DC, const CFG &Cfg,
495738 FactGenerator FactGen (FactMgr, AC);
496739 FactGen.run ();
497740 DEBUG_WITH_TYPE (" LifetimeFacts" , FactMgr.dump (Cfg, AC));
741+
742+ // / TODO(opt): Consider optimizing individual blocks before running the
743+ // / dataflow analysis.
744+ // / 1. Expression Origins: These are assigned once and read at most once,
745+ // / forming simple chains. These chains can be compressed into a single
746+ // / assignment.
747+ // / 2. Block-Local Loans: Origins of expressions are never read by other
748+ // / blocks; only Decls are visible. Therefore, loans in a block that
749+ // / never reach an Origin associated with a Decl can be safely dropped by
750+ // / the analysis.
751+ LifetimeDataflow Dataflow (Cfg, FactMgr, AC);
752+ Dataflow.run ();
753+ DEBUG_WITH_TYPE (" LifetimeDataflow" , Dataflow.dump ());
498754}
499755} // namespace clang
0 commit comments