@@ -26,10 +26,13 @@ namespace flangomp {
26
26
namespace {
27
27
namespace looputils {
28
28
// / Stores info needed about the induction/iteration variable for each `do
29
- // / concurrent` in a loop nest. This includes only for now :
29
+ // / concurrent` in a loop nest. This includes:
30
30
// / * the operation allocating memory for iteration variable,
31
+ // / * the operation(s) updating the iteration variable with the current
32
+ // / iteration number.
31
33
struct InductionVariableInfo {
32
34
mlir::Operation *iterVarMemDef;
35
+ llvm::SetVector<mlir::Operation *> indVarUpdateOps;
33
36
};
34
37
35
38
using LoopNestToIndVarMap =
@@ -102,6 +105,47 @@ mlir::Operation *findLoopIterationVarMemDecl(fir::DoLoopOp doLoop) {
102
105
return result.getDefiningOp ();
103
106
}
104
107
108
+ // / Collects the op(s) responsible for updating a loop's iteration variable with
109
+ // / the current iteration number. For example, for the input IR:
110
+ // / ```
111
+ // / %i = fir.alloca i32 {bindc_name = "i"}
112
+ // / %i_decl:2 = hlfir.declare %i ...
113
+ // / ...
114
+ // / fir.do_loop %i_iv = %lb to %ub step %step unordered {
115
+ // / %1 = fir.convert %i_iv : (index) -> i32
116
+ // / fir.store %1 to %i_decl#1 : !fir.ref<i32>
117
+ // / ...
118
+ // / }
119
+ // / ```
120
+ // / this function would return the first 2 ops in the `fir.do_loop`'s region.
121
+ llvm::SetVector<mlir::Operation *>
122
+ extractIndVarUpdateOps (fir::DoLoopOp doLoop) {
123
+ mlir::Value indVar = doLoop.getInductionVar ();
124
+ llvm::SetVector<mlir::Operation *> indVarUpdateOps;
125
+
126
+ llvm::SmallVector<mlir::Value> toProcess;
127
+ toProcess.push_back (indVar);
128
+
129
+ llvm::DenseSet<mlir::Value> done;
130
+
131
+ while (!toProcess.empty ()) {
132
+ mlir::Value val = toProcess.back ();
133
+ toProcess.pop_back ();
134
+
135
+ if (!done.insert (val).second )
136
+ continue ;
137
+
138
+ for (mlir::Operation *user : val.getUsers ()) {
139
+ indVarUpdateOps.insert (user);
140
+
141
+ for (mlir::Value result : user->getResults ())
142
+ toProcess.push_back (result);
143
+ }
144
+ }
145
+
146
+ return std::move (indVarUpdateOps);
147
+ }
148
+
105
149
// / Loop \p innerLoop is considered perfectly-nested inside \p outerLoop iff
106
150
// / there are no operations in \p outerloop's body other than:
107
151
// /
@@ -175,7 +219,9 @@ mlir::LogicalResult collectLoopNest(fir::DoLoopOp currentLoop,
175
219
while (true ) {
176
220
loopNest.try_emplace (
177
221
currentLoop,
178
- InductionVariableInfo{findLoopIterationVarMemDecl (currentLoop)});
222
+ InductionVariableInfo{
223
+ findLoopIterationVarMemDecl (currentLoop),
224
+ std::move (looputils::extractIndVarUpdateOps (currentLoop))});
179
225
180
226
auto directlyNestedLoops = currentLoop.getRegion ().getOps <fir::DoLoopOp>();
181
227
llvm::SmallVector<fir::DoLoopOp> unorderedLoops;
@@ -200,6 +246,96 @@ mlir::LogicalResult collectLoopNest(fir::DoLoopOp currentLoop,
200
246
201
247
return mlir::success ();
202
248
}
249
+
250
+ // / Prepares the `fir.do_loop` nest to be easily mapped to OpenMP. In
251
+ // / particular, this function would take this input IR:
252
+ // / ```
253
+ // / fir.do_loop %i_iv = %i_lb to %i_ub step %i_step unordered {
254
+ // / fir.store %i_iv to %i#1 : !fir.ref<i32>
255
+ // / %j_lb = arith.constant 1 : i32
256
+ // / %j_ub = arith.constant 10 : i32
257
+ // / %j_step = arith.constant 1 : index
258
+ // /
259
+ // / fir.do_loop %j_iv = %j_lb to %j_ub step %j_step unordered {
260
+ // / fir.store %j_iv to %j#1 : !fir.ref<i32>
261
+ // / ...
262
+ // / }
263
+ // / }
264
+ // / ```
265
+ // /
266
+ // / into the following form (using generic op form since the result is
267
+ // / technically an invalid `fir.do_loop` op:
268
+ // /
269
+ // / ```
270
+ // / "fir.do_loop"(%i_lb, %i_ub, %i_step) <{unordered}> ({
271
+ // / ^bb0(%i_iv: index):
272
+ // / %j_lb = "arith.constant"() <{value = 1 : i32}> : () -> i32
273
+ // / %j_ub = "arith.constant"() <{value = 10 : i32}> : () -> i32
274
+ // / %j_step = "arith.constant"() <{value = 1 : index}> : () -> index
275
+ // /
276
+ // / "fir.do_loop"(%j_lb, %j_ub, %j_step) <{unordered}> ({
277
+ // / ^bb0(%new_i_iv: index, %new_j_iv: index):
278
+ // / "fir.store"(%new_i_iv, %i#1) : (i32, !fir.ref<i32>) -> ()
279
+ // / "fir.store"(%new_j_iv, %j#1) : (i32, !fir.ref<i32>) -> ()
280
+ // / ...
281
+ // / })
282
+ // / ```
283
+ // /
284
+ // / What happened to the loop nest is the following:
285
+ // /
286
+ // / * the innermost loop's entry block was updated from having one operand to
287
+ // / having `n` operands where `n` is the number of loops in the nest,
288
+ // /
289
+ // / * the outer loop(s)' ops that update the IVs were sank inside the innermost
290
+ // / loop (see the `"fir.store"(%new_i_iv, %i#1)` op above),
291
+ // /
292
+ // / * the innermost loop's entry block's arguments were mapped in order from the
293
+ // / outermost to the innermost IV.
294
+ // /
295
+ // / With this IR change, we can directly inline the innermost loop's region into
296
+ // / the newly generated `omp.loop_nest` op.
297
+ // /
298
+ // / Note that this function has a pre-condition that \p loopNest consists of
299
+ // / perfectly nested loops; i.e. there are no in-between ops between 2 nested
300
+ // / loops except for the ops to setup the inner loop's LB, UB, and step. These
301
+ // / ops are handled/cloned by `genLoopNestClauseOps(..)`.
302
+ void sinkLoopIVArgs (mlir::ConversionPatternRewriter &rewriter,
303
+ looputils::LoopNestToIndVarMap &loopNest) {
304
+ if (loopNest.size () <= 1 )
305
+ return ;
306
+
307
+ fir::DoLoopOp innermostLoop = loopNest.back ().first ;
308
+ mlir::Operation &innermostFirstOp = innermostLoop.getRegion ().front ().front ();
309
+
310
+ llvm::SmallVector<mlir::Type> argTypes;
311
+ llvm::SmallVector<mlir::Location> argLocs;
312
+
313
+ for (auto &[doLoop, indVarInfo] : llvm::drop_end (loopNest)) {
314
+ // Sink the IV update ops to the innermost loop. We need to do for all loops
315
+ // except for the innermost one, hence the `drop_end` usage above.
316
+ for (mlir::Operation *op : indVarInfo.indVarUpdateOps )
317
+ op->moveBefore (&innermostFirstOp);
318
+
319
+ argTypes.push_back (doLoop.getInductionVar ().getType ());
320
+ argLocs.push_back (doLoop.getInductionVar ().getLoc ());
321
+ }
322
+
323
+ mlir::Region &innermmostRegion = innermostLoop.getRegion ();
324
+ // Extend the innermost entry block with arguments to represent the outer IVs.
325
+ innermmostRegion.addArguments (argTypes, argLocs);
326
+
327
+ unsigned idx = 1 ;
328
+ // In reverse, remap the IVs of the loop nest from the old values to the new
329
+ // ones. We do that in reverse since the first argument before this loop is
330
+ // the old IV for the innermost loop. Therefore, we want to replace it first
331
+ // before the old value (1st argument in the block) is remapped to be the IV
332
+ // of the outermost loop in the nest.
333
+ for (auto &[doLoop, _] : llvm::reverse (loopNest)) {
334
+ doLoop.getInductionVar ().replaceAllUsesWith (
335
+ innermmostRegion.getArgument (innermmostRegion.getNumArguments () - idx));
336
+ ++idx;
337
+ }
338
+ }
203
339
} // namespace looputils
204
340
205
341
class DoConcurrentConversion : public mlir ::OpConversionPattern<fir::DoLoopOp> {
@@ -222,6 +358,7 @@ class DoConcurrentConversion : public mlir::OpConversionPattern<fir::DoLoopOp> {
222
358
" Some `do concurent` loops are not perfectly-nested. "
223
359
" These will be serialzied." );
224
360
361
+ looputils::sinkLoopIVArgs (rewriter, loopNest);
225
362
mlir::IRMapping mapper;
226
363
genParallelOp (doLoop.getLoc (), rewriter, loopNest, mapper);
227
364
mlir::omp::LoopNestOperands loopNestClauseOps;
0 commit comments