@@ -30,6 +30,9 @@ namespace looputils {
30
30
struct InductionVariableInfo {
31
31
// / the operation allocating memory for iteration variable,
32
32
mlir::Operation *iterVarMemDef;
33
+ // / the operation(s) updating the iteration variable with the current
34
+ // / iteration number.
35
+ llvm::SetVector<mlir::Operation *> indVarUpdateOps;
33
36
};
34
37
35
38
using LoopNestToIndVarMap =
@@ -70,6 +73,47 @@ mlir::Operation *findLoopIterationVarMemDecl(fir::DoLoopOp doLoop) {
70
73
return result.getDefiningOp ();
71
74
}
72
75
76
+ // / Collects the op(s) responsible for updating a loop's iteration variable with
77
+ // / the current iteration number. For example, for the input IR:
78
+ // / ```
79
+ // / %i = fir.alloca i32 {bindc_name = "i"}
80
+ // / %i_decl:2 = hlfir.declare %i ...
81
+ // / ...
82
+ // / fir.do_loop %i_iv = %lb to %ub step %step unordered {
83
+ // / %1 = fir.convert %i_iv : (index) -> i32
84
+ // / fir.store %1 to %i_decl#1 : !fir.ref<i32>
85
+ // / ...
86
+ // / }
87
+ // / ```
88
+ // / this function would return the first 2 ops in the `fir.do_loop`'s region.
89
+ llvm::SetVector<mlir::Operation *>
90
+ extractIndVarUpdateOps (fir::DoLoopOp doLoop) {
91
+ mlir::Value indVar = doLoop.getInductionVar ();
92
+ llvm::SetVector<mlir::Operation *> indVarUpdateOps;
93
+
94
+ llvm::SmallVector<mlir::Value> toProcess;
95
+ toProcess.push_back (indVar);
96
+
97
+ llvm::DenseSet<mlir::Value> done;
98
+
99
+ while (!toProcess.empty ()) {
100
+ mlir::Value val = toProcess.back ();
101
+ toProcess.pop_back ();
102
+
103
+ if (!done.insert (val).second )
104
+ continue ;
105
+
106
+ for (mlir::Operation *user : val.getUsers ()) {
107
+ indVarUpdateOps.insert (user);
108
+
109
+ for (mlir::Value result : user->getResults ())
110
+ toProcess.push_back (result);
111
+ }
112
+ }
113
+
114
+ return std::move (indVarUpdateOps);
115
+ }
116
+
73
117
// / Loop \p innerLoop is considered perfectly-nested inside \p outerLoop iff
74
118
// / there are no operations in \p outerloop's body other than:
75
119
// /
@@ -166,7 +210,9 @@ mlir::LogicalResult collectLoopNest(fir::DoLoopOp currentLoop,
166
210
while (true ) {
167
211
loopNest.insert (
168
212
{currentLoop,
169
- InductionVariableInfo{findLoopIterationVarMemDecl (currentLoop)}});
213
+ InductionVariableInfo{
214
+ findLoopIterationVarMemDecl (currentLoop),
215
+ std::move (looputils::extractIndVarUpdateOps (currentLoop))}});
170
216
171
217
llvm::SmallVector<fir::DoLoopOp> unorderedLoops;
172
218
@@ -193,6 +239,96 @@ mlir::LogicalResult collectLoopNest(fir::DoLoopOp currentLoop,
193
239
194
240
return mlir::success ();
195
241
}
242
+
243
+ // / Prepares the `fir.do_loop` nest to be easily mapped to OpenMP. In
244
+ // / particular, this function would take this input IR:
245
+ // / ```
246
+ // / fir.do_loop %i_iv = %i_lb to %i_ub step %i_step unordered {
247
+ // / fir.store %i_iv to %i#1 : !fir.ref<i32>
248
+ // / %j_lb = arith.constant 1 : i32
249
+ // / %j_ub = arith.constant 10 : i32
250
+ // / %j_step = arith.constant 1 : index
251
+ // /
252
+ // / fir.do_loop %j_iv = %j_lb to %j_ub step %j_step unordered {
253
+ // / fir.store %j_iv to %j#1 : !fir.ref<i32>
254
+ // / ...
255
+ // / }
256
+ // / }
257
+ // / ```
258
+ // /
259
+ // / into the following form (using generic op form since the result is
260
+ // / technically an invalid `fir.do_loop` op:
261
+ // /
262
+ // / ```
263
+ // / "fir.do_loop"(%i_lb, %i_ub, %i_step) <{unordered}> ({
264
+ // / ^bb0(%i_iv: index):
265
+ // / %j_lb = "arith.constant"() <{value = 1 : i32}> : () -> i32
266
+ // / %j_ub = "arith.constant"() <{value = 10 : i32}> : () -> i32
267
+ // / %j_step = "arith.constant"() <{value = 1 : index}> : () -> index
268
+ // /
269
+ // / "fir.do_loop"(%j_lb, %j_ub, %j_step) <{unordered}> ({
270
+ // / ^bb0(%new_i_iv: index, %new_j_iv: index):
271
+ // / "fir.store"(%new_i_iv, %i#1) : (i32, !fir.ref<i32>) -> ()
272
+ // / "fir.store"(%new_j_iv, %j#1) : (i32, !fir.ref<i32>) -> ()
273
+ // / ...
274
+ // / })
275
+ // / ```
276
+ // /
277
+ // / What happened to the loop nest is the following:
278
+ // /
279
+ // / * the innermost loop's entry block was updated from having one operand to
280
+ // / having `n` operands where `n` is the number of loops in the nest,
281
+ // /
282
+ // / * the outer loop(s)' ops that update the IVs were sank inside the innermost
283
+ // / loop (see the `"fir.store"(%new_i_iv, %i#1)` op above),
284
+ // /
285
+ // / * the innermost loop's entry block's arguments were mapped in order from the
286
+ // / outermost to the innermost IV.
287
+ // /
288
+ // / With this IR change, we can directly inline the innermost loop's region into
289
+ // / the newly generated `omp.loop_nest` op.
290
+ // /
291
+ // / Note that this function has a pre-condition that \p loopNest consists of
292
+ // / perfectly nested loops; i.e. there are no in-between ops between 2 nested
293
+ // / loops except for the ops to setup the inner loop's LB, UB, and step. These
294
+ // / ops are handled/cloned by `genLoopNestClauseOps(..)`.
295
+ void sinkLoopIVArgs (mlir::ConversionPatternRewriter &rewriter,
296
+ looputils::LoopNestToIndVarMap &loopNest) {
297
+ if (loopNest.size () <= 1 )
298
+ return ;
299
+
300
+ fir::DoLoopOp innermostLoop = loopNest.back ().first ;
301
+ mlir::Operation &innermostFirstOp = innermostLoop.getRegion ().front ().front ();
302
+
303
+ llvm::SmallVector<mlir::Type> argTypes;
304
+ llvm::SmallVector<mlir::Location> argLocs;
305
+
306
+ for (auto &[doLoop, indVarInfo] : llvm::drop_end (loopNest)) {
307
+ // Sink the IV update ops to the innermost loop. We need to do for all loops
308
+ // except for the innermost one, hence the `drop_end` usage above.
309
+ for (mlir::Operation *op : indVarInfo.indVarUpdateOps )
310
+ op->moveBefore (&innermostFirstOp);
311
+
312
+ argTypes.push_back (doLoop.getInductionVar ().getType ());
313
+ argLocs.push_back (doLoop.getInductionVar ().getLoc ());
314
+ }
315
+
316
+ mlir::Region &innermmostRegion = innermostLoop.getRegion ();
317
+ // Extend the innermost entry block with arguments to represent the outer IVs.
318
+ innermmostRegion.addArguments (argTypes, argLocs);
319
+
320
+ unsigned idx = 1 ;
321
+ // In reverse, remap the IVs of the loop nest from the old values to the new
322
+ // ones. We do that in reverse since the first argument before this loop is
323
+ // the old IV for the innermost loop. Therefore, we want to replace it first
324
+ // before the old value (1st argument in the block) is remapped to be the IV
325
+ // of the outermost loop in the nest.
326
+ for (auto &[doLoop, _] : llvm::reverse (loopNest)) {
327
+ doLoop.getInductionVar ().replaceAllUsesWith (
328
+ innermmostRegion.getArgument (innermmostRegion.getNumArguments () - idx));
329
+ ++idx;
330
+ }
331
+ }
196
332
} // namespace looputils
197
333
198
334
class DoConcurrentConversion : public mlir ::OpConversionPattern<fir::DoLoopOp> {
@@ -219,6 +355,7 @@ class DoConcurrentConversion : public mlir::OpConversionPattern<fir::DoLoopOp> {
219
355
" Some `do concurent` loops are not perfectly-nested. "
220
356
" These will be serialized." );
221
357
358
+ looputils::sinkLoopIVArgs (rewriter, loopNest);
222
359
mlir::IRMapping mapper;
223
360
genParallelOp (doLoop.getLoc (), rewriter, loopNest, mapper);
224
361
mlir::omp::LoopNestOperands loopNestClauseOps;
0 commit comments