-
Notifications
You must be signed in to change notification settings - Fork 12.4k
/
Copy pathmetrics.py
182 lines (143 loc) · 5.87 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import requests
import time
import os
from dataclasses import dataclass
import sys
import github
from github import Github
from github import Auth
GRAFANA_URL = (
"https://influx-prod-13-prod-us-east-0.grafana.net/api/v1/push/influx/write"
)
GITHUB_PROJECT = "llvm/llvm-project"
WORKFLOWS_TO_TRACK = ["Check code formatting", "LLVM Premerge Checks"]
SCRAPE_INTERVAL_SECONDS = 5 * 60
@dataclass
class JobMetrics:
job_name: str
queue_time: int
run_time: int
status: int
created_at_ns: int
workflow_id: int
def get_metrics(github_repo: github.Repository, workflows_to_track: dict[str, int]):
"""Gets the metrics for specified Github workflows.
This function takes in a list of workflows to track, and optionally the
workflow ID of the last tracked invocation. It grabs the relevant data
from Github, returning it to the caller.
Args:
github_repo: A github repo object to use to query the relevant information.
workflows_to_track: A dictionary mapping workflow names to the last
invocation ID where metrics have been collected, or None to collect the
last five results.
Returns:
Returns a list of JobMetrics objects, containing the relevant metrics about
the workflow.
"""
workflow_runs = iter(github_repo.get_workflow_runs())
workflow_metrics = []
workflows_to_include = set(workflows_to_track.keys())
while len(workflows_to_include) > 0:
workflow_run = next(workflow_runs)
if workflow_run.status != "completed":
continue
# This workflow was already sampled for this run, or is not tracked at
# all. Ignoring.
if workflow_run.name not in workflows_to_include:
continue
# There were no new workflow invocations since the previous scrape.
# The API returns a sorted list with the most recent invocations first,
# so we can stop looking for this particular workflow. Continue to grab
# information on the other workflows of interest, if present.
if workflows_to_track[workflow_run.name] == workflow_run.id:
workflows_to_include.remove(workflow_run.name)
continue
workflow_jobs = workflow_run.jobs()
if workflow_jobs.totalCount == 0:
continue
if workflow_jobs.totalCount > 1:
raise ValueError(
f"Encountered an unexpected number of jobs: {workflow_jobs.totalCount}"
)
created_at = workflow_jobs[0].created_at
started_at = workflow_jobs[0].started_at
completed_at = workflow_jobs[0].completed_at
job_result = int(workflow_jobs[0].conclusion == "success")
queue_time = started_at - created_at
run_time = completed_at - started_at
if run_time.seconds == 0:
continue
if (
workflows_to_track[workflow_run.name] is None
or workflows_to_track[workflow_run.name] == workflow_run.id
):
workflows_to_include.remove(workflow_run.name)
if (
workflows_to_track[workflow_run.name] is not None
and len(workflows_to_include) == 0
):
break
# The timestamp associated with the event is expected by Grafana to be
# in nanoseconds.
created_at_ns = int(created_at.timestamp()) * 10**9
workflow_metrics.append(
JobMetrics(
workflow_run.name,
queue_time.seconds,
run_time.seconds,
job_result,
created_at_ns,
workflow_run.id,
)
)
return workflow_metrics
def upload_metrics(workflow_metrics, metrics_userid, api_key):
"""Upload metrics to Grafana.
Takes in a list of workflow metrics and then uploads them to Grafana
through a REST request.
Args:
workflow_metrics: A list of metrics to upload to Grafana.
metrics_userid: The userid to use for the upload.
api_key: The API key to use for the upload.
"""
metrics_batch = []
for workflow_metric in workflow_metrics:
workflow_formatted_name = workflow_metric.job_name.lower().replace(" ", "_")
metrics_batch.append(
f"{workflow_formatted_name} queue_time={workflow_metric.queue_time},run_time={workflow_metric.run_time},status={workflow_metric.status} {workflow_metric.created_at_ns}"
)
request_data = "\n".join(metrics_batch)
response = requests.post(
GRAFANA_URL,
headers={"Content-Type": "text/plain"},
data=request_data,
auth=(metrics_userid, api_key),
)
if response.status_code < 200 or response.status_code >= 300:
print(
f"Failed to submit data to Grafana: {response.status_code}", file=sys.stderr
)
def main():
# Authenticate with Github
auth = Auth.Token(os.environ["GITHUB_TOKEN"])
github_object = Github(auth=auth)
github_repo = github_object.get_repo("llvm/llvm-project")
grafana_api_key = os.environ["GRAFANA_API_KEY"]
grafana_metrics_userid = os.environ["GRAFANA_METRICS_USERID"]
workflows_to_track = {}
for workflow_to_track in WORKFLOWS_TO_TRACK:
workflows_to_track[workflow_to_track] = None
# Enter the main loop. Every five minutes we wake up and dump metrics for
# the relevant jobs.
while True:
current_metrics = get_metrics(github_repo, workflows_to_track)
if len(current_metrics) == 0:
print("No metrics found to upload.", file=sys.stderr)
continue
upload_metrics(current_metrics, grafana_metrics_userid, grafana_api_key)
print(f"Uploaded {len(current_metrics)} metrics", file=sys.stderr)
for workflow_metric in reversed(current_metrics):
workflows_to_track[workflow_metric.job_name] = workflow_metric.workflow_id
time.sleep(SCRAPE_INTERVAL_SECONDS)
if __name__ == "__main__":
main()