-
Notifications
You must be signed in to change notification settings - Fork 13.4k
/
Copy pathrpc.h
603 lines (524 loc) · 23.7 KB
/
rpc.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
//===-- Shared memory RPC client / server interface -------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a remote procedure call mechanism to communicate between
// heterogeneous devices that can share an address space atomically. We provide
// a client and a server to facilitate the remote call. The client makes request
// to the server using a shared communication channel. We use separate atomic
// signals to indicate which side, the client or the server is in ownership of
// the buffer.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIBC_SHARED_RPC_H
#define LLVM_LIBC_SHARED_RPC_H
#include "rpc_util.h"
namespace rpc {
/// Use scoped atomic variants if they are available for the target.
#if !__has_builtin(__scoped_atomic_load_n)
#define __scoped_atomic_load_n(src, ord, scp) __atomic_load_n(src, ord)
#define __scoped_atomic_store_n(dst, src, ord, scp) \
__atomic_store_n(dst, src, ord)
#define __scoped_atomic_fetch_or(src, val, ord, scp) \
__atomic_fetch_or(src, val, ord)
#define __scoped_atomic_fetch_and(src, val, ord, scp) \
__atomic_fetch_and(src, val, ord)
#endif
#if !__has_builtin(__scoped_atomic_thread_fence)
#define __scoped_atomic_thread_fence(ord, scp) __atomic_thread_fence(ord)
#endif
/// Generic codes that can be used whem implementing the server.
enum Status {
RPC_SUCCESS = 0x0,
RPC_ERROR = 0x1000,
RPC_UNHANDLED_OPCODE = 0x1001,
};
/// A fixed size channel used to communicate between the RPC client and server.
struct Buffer {
uint64_t data[8];
};
static_assert(sizeof(Buffer) == 64, "Buffer size mismatch");
/// The information associated with a packet. This indicates which operations to
/// perform and which threads are active in the slots.
struct Header {
uint64_t mask;
uint32_t opcode;
};
/// The maximum number of parallel ports that the RPC interface can support.
constexpr static uint64_t MAX_PORT_COUNT = 4096;
/// A common process used to synchronize communication between a client and a
/// server. The process contains a read-only inbox and a write-only outbox used
/// for signaling ownership of the shared buffer between both sides. We assign
/// ownership of the buffer to the client if the inbox and outbox bits match,
/// otherwise it is owned by the server.
///
/// This process is designed to allow the client and the server to exchange data
/// using a fixed size packet in a mostly arbitrary order using the 'send' and
/// 'recv' operations. The following restrictions to this scheme apply:
/// - The client will always start with a 'send' operation.
/// - The server will always start with a 'recv' operation.
/// - Every 'send' or 'recv' call is mirrored by the other process.
template <bool Invert> struct Process {
RPC_ATTRS Process() = default;
RPC_ATTRS Process(const Process &) = delete;
RPC_ATTRS Process &operator=(const Process &) = delete;
RPC_ATTRS Process(Process &&) = default;
RPC_ATTRS Process &operator=(Process &&) = default;
RPC_ATTRS ~Process() = default;
const uint32_t port_count = 0;
const uint32_t *const inbox = nullptr;
uint32_t *const outbox = nullptr;
Header *const header = nullptr;
Buffer *const packet = nullptr;
static constexpr uint64_t NUM_BITS_IN_WORD = sizeof(uint32_t) * 8;
uint32_t lock[MAX_PORT_COUNT / NUM_BITS_IN_WORD] = {0};
RPC_ATTRS Process(uint32_t port_count, void *buffer)
: port_count(port_count), inbox(reinterpret_cast<uint32_t *>(
advance(buffer, inbox_offset(port_count)))),
outbox(reinterpret_cast<uint32_t *>(
advance(buffer, outbox_offset(port_count)))),
header(reinterpret_cast<Header *>(
advance(buffer, header_offset(port_count)))),
packet(reinterpret_cast<Buffer *>(
advance(buffer, buffer_offset(port_count)))) {}
/// Allocate a memory buffer sufficient to store the following equivalent
/// representation in memory.
///
/// struct Equivalent {
/// Atomic<uint32_t> primary[port_count];
/// Atomic<uint32_t> secondary[port_count];
/// Header header[port_count];
/// Buffer packet[port_count][lane_size];
/// };
RPC_ATTRS static constexpr uint64_t allocation_size(uint32_t port_count,
uint32_t lane_size) {
return buffer_offset(port_count) + buffer_bytes(port_count, lane_size);
}
/// Retrieve the inbox state from memory shared between processes.
RPC_ATTRS uint32_t load_inbox(uint64_t lane_mask, uint32_t index) const {
return rpc::broadcast_value(
lane_mask, __scoped_atomic_load_n(&inbox[index], __ATOMIC_RELAXED,
__MEMORY_SCOPE_SYSTEM));
}
/// Retrieve the outbox state from memory shared between processes.
RPC_ATTRS uint32_t load_outbox(uint64_t lane_mask, uint32_t index) const {
return rpc::broadcast_value(
lane_mask, __scoped_atomic_load_n(&outbox[index], __ATOMIC_RELAXED,
__MEMORY_SCOPE_SYSTEM));
}
/// Signal to the other process that this one is finished with the buffer.
/// Equivalent to loading outbox followed by store of the inverted value
/// The outbox is write only by this warp and tracking the value locally is
/// cheaper than calling load_outbox to get the value to store.
RPC_ATTRS uint32_t invert_outbox(uint32_t index, uint32_t current_outbox) {
uint32_t inverted_outbox = !current_outbox;
__scoped_atomic_thread_fence(__ATOMIC_RELEASE, __MEMORY_SCOPE_SYSTEM);
__scoped_atomic_store_n(&outbox[index], inverted_outbox, __ATOMIC_RELAXED,
__MEMORY_SCOPE_SYSTEM);
return inverted_outbox;
}
// Given the current outbox and inbox values, wait until the inbox changes
// to indicate that this thread owns the buffer element.
RPC_ATTRS void wait_for_ownership(uint64_t lane_mask, uint32_t index,
uint32_t outbox, uint32_t in) {
while (buffer_unavailable(in, outbox)) {
sleep_briefly();
in = load_inbox(lane_mask, index);
}
__scoped_atomic_thread_fence(__ATOMIC_ACQUIRE, __MEMORY_SCOPE_SYSTEM);
}
/// The packet is a linearly allocated array of buffers used to communicate
/// with the other process. This function returns the appropriate slot in this
/// array such that the process can operate on an entire warp or wavefront.
RPC_ATTRS Buffer *get_packet(uint32_t index, uint32_t lane_size) {
return &packet[index * lane_size];
}
/// Determines if this process needs to wait for ownership of the buffer. We
/// invert the condition on one of the processes to indicate that if one
/// process owns the buffer then the other does not.
RPC_ATTRS static bool buffer_unavailable(uint32_t in, uint32_t out) {
bool cond = in != out;
return Invert ? !cond : cond;
}
/// Attempt to claim the lock at index. Return true on lock taken.
/// lane_mask is a bitmap of the threads in the warp that would hold the
/// single lock on success, e.g. the result of rpc::get_lane_mask()
/// The lock is held when the n-th bit of the lock bitfield is set.
RPC_ATTRS bool try_lock(uint64_t lane_mask, uint32_t index) {
// On amdgpu, test and set to the nth lock bit and a sync_lane would suffice
// On volta, need to handle differences between the threads running and
// the threads that were detected in the previous call to get_lane_mask()
//
// All threads in lane_mask try to claim the lock. At most one can succeed.
// There may be threads active which are not in lane mask which must not
// succeed in taking the lock, as otherwise it will leak. This is handled
// by making threads which are not in lane_mask or with 0, a no-op.
uint32_t id = rpc::get_lane_id();
bool id_in_lane_mask = lane_mask & (1ul << id);
// All threads in the warp call fetch_or. Possibly at the same time.
bool before = set_nth(lock, index, id_in_lane_mask);
uint64_t packed = rpc::ballot(lane_mask, before);
// If every bit set in lane_mask is also set in packed, every single thread
// in the warp failed to get the lock. Ballot returns unset for threads not
// in the lane mask.
//
// Cases, per thread:
// mask==0 -> unspecified before, discarded by ballot -> 0
// mask==1 and before==0 (success), set zero by ballot -> 0
// mask==1 and before==1 (failure), set one by ballot -> 1
//
// mask != packed implies at least one of the threads got the lock
// atomic semantics of fetch_or mean at most one of the threads for the lock
// If holding the lock then the caller can load values knowing said loads
// won't move past the lock. No such guarantee is needed if the lock acquire
// failed. This conditional branch is expected to fold in the caller after
// inlining the current function.
bool holding_lock = lane_mask != packed;
if (holding_lock)
__scoped_atomic_thread_fence(__ATOMIC_ACQUIRE, __MEMORY_SCOPE_DEVICE);
return holding_lock;
}
/// Unlock the lock at index. We need a lane sync to keep this function
/// convergent, otherwise the compiler will sink the store and deadlock.
RPC_ATTRS void unlock(uint64_t lane_mask, uint32_t index) {
// Do not move any writes past the unlock.
__scoped_atomic_thread_fence(__ATOMIC_RELEASE, __MEMORY_SCOPE_DEVICE);
// Use exactly one thread to clear the nth bit in the lock array Must
// restrict to a single thread to avoid one thread dropping the lock, then
// an unrelated warp claiming the lock, then a second thread in this warp
// dropping the lock again.
clear_nth(lock, index, rpc::is_first_lane(lane_mask));
rpc::sync_lane(lane_mask);
}
/// Number of bytes to allocate for an inbox or outbox.
RPC_ATTRS static constexpr uint64_t mailbox_bytes(uint32_t port_count) {
return port_count * sizeof(uint32_t);
}
/// Number of bytes to allocate for the buffer containing the packets.
RPC_ATTRS static constexpr uint64_t buffer_bytes(uint32_t port_count,
uint32_t lane_size) {
return port_count * lane_size * sizeof(Buffer);
}
/// Offset of the inbox in memory. This is the same as the outbox if inverted.
RPC_ATTRS static constexpr uint64_t inbox_offset(uint32_t port_count) {
return Invert ? mailbox_bytes(port_count) : 0;
}
/// Offset of the outbox in memory. This is the same as the inbox if inverted.
RPC_ATTRS static constexpr uint64_t outbox_offset(uint32_t port_count) {
return Invert ? 0 : mailbox_bytes(port_count);
}
/// Offset of the buffer containing the packets after the inbox and outbox.
RPC_ATTRS static constexpr uint64_t header_offset(uint32_t port_count) {
return align_up(2 * mailbox_bytes(port_count), alignof(Header));
}
/// Offset of the buffer containing the packets after the inbox and outbox.
RPC_ATTRS static constexpr uint64_t buffer_offset(uint32_t port_count) {
return align_up(header_offset(port_count) + port_count * sizeof(Header),
alignof(Buffer));
}
/// Conditionally set the n-th bit in the atomic bitfield.
RPC_ATTRS static constexpr uint32_t set_nth(uint32_t *bits, uint32_t index,
bool cond) {
uint32_t slot = index / NUM_BITS_IN_WORD;
uint32_t bit = index % NUM_BITS_IN_WORD;
return __scoped_atomic_fetch_or(&bits[slot],
static_cast<uint32_t>(cond) << bit,
__ATOMIC_RELAXED, __MEMORY_SCOPE_DEVICE) &
(1u << bit);
}
/// Conditionally clear the n-th bit in the atomic bitfield.
RPC_ATTRS static constexpr uint32_t clear_nth(uint32_t *bits, uint32_t index,
bool cond) {
uint32_t slot = index / NUM_BITS_IN_WORD;
uint32_t bit = index % NUM_BITS_IN_WORD;
return __scoped_atomic_fetch_and(&bits[slot],
~0u ^ (static_cast<uint32_t>(cond) << bit),
__ATOMIC_RELAXED, __MEMORY_SCOPE_DEVICE) &
(1u << bit);
}
};
/// Invokes a function accross every active buffer across the total lane size.
template <typename F>
RPC_ATTRS static void invoke_rpc(F &&fn, uint32_t lane_size, uint64_t lane_mask,
Buffer *slot) {
if constexpr (is_process_gpu()) {
fn(&slot[rpc::get_lane_id()], rpc::get_lane_id());
} else {
for (uint32_t i = 0; i < lane_size; i += rpc::get_num_lanes())
if (lane_mask & (1ul << i))
fn(&slot[i], i);
}
}
/// The port provides the interface to communicate between the multiple
/// processes. A port is conceptually an index into the memory provided by the
/// underlying process that is guarded by a lock bit.
template <bool T> struct Port {
RPC_ATTRS Port(Process<T> &process, uint64_t lane_mask, uint32_t lane_size,
uint32_t index, uint32_t out)
: process(process), lane_mask(lane_mask), lane_size(lane_size),
index(index), out(out), receive(false), owns_buffer(true) {}
RPC_ATTRS ~Port() = default;
private:
RPC_ATTRS Port(const Port &) = delete;
RPC_ATTRS Port &operator=(const Port &) = delete;
RPC_ATTRS Port(Port &&) = default;
RPC_ATTRS Port &operator=(Port &&) = default;
friend struct Client;
friend struct Server;
friend class rpc::optional<Port<T>>;
public:
template <typename U> RPC_ATTRS void recv(U use);
template <typename F> RPC_ATTRS void send(F fill);
template <typename F, typename U> RPC_ATTRS void send_and_recv(F fill, U use);
template <typename W> RPC_ATTRS void recv_and_send(W work);
RPC_ATTRS void send_n(const void *const *src, uint64_t *size);
RPC_ATTRS void send_n(const void *src, uint64_t size);
template <typename A>
RPC_ATTRS void recv_n(void **dst, uint64_t *size, A &&alloc);
RPC_ATTRS uint32_t get_opcode() const { return process.header[index].opcode; }
RPC_ATTRS uint32_t get_index() const { return index; }
RPC_ATTRS void close() {
// Wait for all lanes to finish using the port.
rpc::sync_lane(lane_mask);
// The server is passive, if it own the buffer when it closes we need to
// give ownership back to the client.
if (owns_buffer && T)
out = process.invert_outbox(index, out);
process.unlock(lane_mask, index);
}
private:
Process<T> &process;
uint64_t lane_mask;
uint32_t lane_size;
uint32_t index;
uint32_t out;
bool receive;
bool owns_buffer;
};
/// The RPC client used to make requests to the server.
struct Client {
RPC_ATTRS Client() = default;
RPC_ATTRS Client(const Client &) = delete;
RPC_ATTRS Client &operator=(const Client &) = delete;
RPC_ATTRS ~Client() = default;
RPC_ATTRS Client(uint32_t port_count, void *buffer)
: process(port_count, buffer) {}
using Port = rpc::Port<false>;
template <uint32_t opcode> RPC_ATTRS Port open();
private:
Process<false> process;
};
/// The RPC server used to respond to the client.
struct Server {
RPC_ATTRS Server() = default;
RPC_ATTRS Server(const Server &) = delete;
RPC_ATTRS Server &operator=(const Server &) = delete;
RPC_ATTRS ~Server() = default;
RPC_ATTRS Server(uint32_t port_count, void *buffer)
: process(port_count, buffer) {}
using Port = rpc::Port<true>;
RPC_ATTRS rpc::optional<Port> try_open(uint32_t lane_size,
uint32_t start = 0);
RPC_ATTRS Port open(uint32_t lane_size);
RPC_ATTRS static uint64_t allocation_size(uint32_t lane_size,
uint32_t port_count) {
return Process<true>::allocation_size(port_count, lane_size);
}
private:
Process<true> process;
};
/// Applies \p fill to the shared buffer and initiates a send operation.
template <bool T> template <typename F> RPC_ATTRS void Port<T>::send(F fill) {
uint32_t in = owns_buffer ? out ^ T : process.load_inbox(lane_mask, index);
// We need to wait until we own the buffer before sending.
process.wait_for_ownership(lane_mask, index, out, in);
// Apply the \p fill function to initialize the buffer and release the memory.
invoke_rpc(fill, lane_size, process.header[index].mask,
process.get_packet(index, lane_size));
out = process.invert_outbox(index, out);
owns_buffer = false;
receive = false;
}
/// Applies \p use to the shared buffer and acknowledges the send.
template <bool T> template <typename U> RPC_ATTRS void Port<T>::recv(U use) {
// We only exchange ownership of the buffer during a receive if we are waiting
// for a previous receive to finish.
if (receive) {
out = process.invert_outbox(index, out);
owns_buffer = false;
}
uint32_t in = owns_buffer ? out ^ T : process.load_inbox(lane_mask, index);
// We need to wait until we own the buffer before receiving.
process.wait_for_ownership(lane_mask, index, out, in);
// Apply the \p use function to read the memory out of the buffer.
invoke_rpc(use, lane_size, process.header[index].mask,
process.get_packet(index, lane_size));
receive = true;
owns_buffer = true;
}
/// Combines a send and receive into a single function.
template <bool T>
template <typename F, typename U>
RPC_ATTRS void Port<T>::send_and_recv(F fill, U use) {
send(fill);
recv(use);
}
/// Combines a receive and send operation into a single function. The \p work
/// function modifies the buffer in-place and the send is only used to initiate
/// the copy back.
template <bool T>
template <typename W>
RPC_ATTRS void Port<T>::recv_and_send(W work) {
recv(work);
send([](Buffer *, uint32_t) { /* no-op */ });
}
/// Helper routine to simplify the interface when sending from the GPU using
/// thread private pointers to the underlying value.
template <bool T>
RPC_ATTRS void Port<T>::send_n(const void *src, uint64_t size) {
const void **src_ptr = &src;
uint64_t *size_ptr = &size;
send_n(src_ptr, size_ptr);
}
/// Sends an arbitrarily sized data buffer \p src across the shared channel in
/// multiples of the packet length.
template <bool T>
RPC_ATTRS void Port<T>::send_n(const void *const *src, uint64_t *size) {
uint64_t num_sends = 0;
send([&](Buffer *buffer, uint32_t id) {
reinterpret_cast<uint64_t *>(buffer->data)[0] = lane_value(size, id);
num_sends = is_process_gpu() ? lane_value(size, id)
: rpc::max(lane_value(size, id), num_sends);
uint64_t len =
lane_value(size, id) > sizeof(Buffer::data) - sizeof(uint64_t)
? sizeof(Buffer::data) - sizeof(uint64_t)
: lane_value(size, id);
rpc_memcpy(&buffer->data[1], lane_value(src, id), len);
});
uint64_t idx = sizeof(Buffer::data) - sizeof(uint64_t);
uint64_t mask = process.header[index].mask;
while (rpc::ballot(mask, idx < num_sends)) {
send([=](Buffer *buffer, uint32_t id) {
uint64_t len = lane_value(size, id) - idx > sizeof(Buffer::data)
? sizeof(Buffer::data)
: lane_value(size, id) - idx;
if (idx < lane_value(size, id))
rpc_memcpy(buffer->data, advance(lane_value(src, id), idx), len);
});
idx += sizeof(Buffer::data);
}
}
/// Receives an arbitrarily sized data buffer across the shared channel in
/// multiples of the packet length. The \p alloc function is called with the
/// size of the data so that we can initialize the size of the \p dst buffer.
template <bool T>
template <typename A>
RPC_ATTRS void Port<T>::recv_n(void **dst, uint64_t *size, A &&alloc) {
uint64_t num_recvs = 0;
recv([&](Buffer *buffer, uint32_t id) {
lane_value(size, id) = reinterpret_cast<uint64_t *>(buffer->data)[0];
lane_value(dst, id) =
reinterpret_cast<uint8_t *>(alloc(lane_value(size, id)));
num_recvs = is_process_gpu() ? lane_value(size, id)
: rpc::max(lane_value(size, id), num_recvs);
uint64_t len =
lane_value(size, id) > sizeof(Buffer::data) - sizeof(uint64_t)
? sizeof(Buffer::data) - sizeof(uint64_t)
: lane_value(size, id);
rpc_memcpy(lane_value(dst, id), &buffer->data[1], len);
});
uint64_t idx = sizeof(Buffer::data) - sizeof(uint64_t);
uint64_t mask = process.header[index].mask;
while (rpc::ballot(mask, idx < num_recvs)) {
recv([=](Buffer *buffer, uint32_t id) {
uint64_t len = lane_value(size, id) - idx > sizeof(Buffer::data)
? sizeof(Buffer::data)
: lane_value(size, id) - idx;
if (idx < lane_value(size, id))
rpc_memcpy(advance(lane_value(dst, id), idx), buffer->data, len);
});
idx += sizeof(Buffer::data);
}
}
/// Continually attempts to open a port to use as the client. The client can
/// only open a port if we find an index that is in a valid sending state. That
/// is, there are send operations pending that haven't been serviced on this
/// port. Each port instance uses an associated \p opcode to tell the server
/// what to do. The Client interface provides the appropriate lane size to the
/// port using the platform's returned value.
template <uint32_t opcode> RPC_ATTRS Client::Port Client::open() {
// Repeatedly perform a naive linear scan for a port that can be opened to
// send data.
for (uint32_t index = 0;; ++index) {
// Start from the beginning if we run out of ports to check.
if (index >= process.port_count)
index = 0;
// Attempt to acquire the lock on this index.
uint64_t lane_mask = rpc::get_lane_mask();
if (!process.try_lock(lane_mask, index))
continue;
uint32_t in = process.load_inbox(lane_mask, index);
uint32_t out = process.load_outbox(lane_mask, index);
// Once we acquire the index we need to check if we are in a valid sending
// state.
if (process.buffer_unavailable(in, out)) {
process.unlock(lane_mask, index);
continue;
}
if (rpc::is_first_lane(lane_mask)) {
process.header[index].opcode = opcode;
process.header[index].mask = lane_mask;
}
rpc::sync_lane(lane_mask);
return Port(process, lane_mask, rpc::get_num_lanes(), index, out);
}
}
/// Attempts to open a port to use as the server. The server can only open a
/// port if it has a pending receive operation
RPC_ATTRS rpc::optional<typename Server::Port>
Server::try_open(uint32_t lane_size, uint32_t start) {
// Perform a naive linear scan for a port that has a pending request.
for (uint32_t index = start; index < process.port_count; ++index) {
uint64_t lane_mask = rpc::get_lane_mask();
uint32_t in = process.load_inbox(lane_mask, index);
uint32_t out = process.load_outbox(lane_mask, index);
// The server is passive, if there is no work pending don't bother
// opening a port.
if (process.buffer_unavailable(in, out))
continue;
// Attempt to acquire the lock on this index.
if (!process.try_lock(lane_mask, index))
continue;
in = process.load_inbox(lane_mask, index);
out = process.load_outbox(lane_mask, index);
if (process.buffer_unavailable(in, out)) {
process.unlock(lane_mask, index);
continue;
}
return Port(process, lane_mask, lane_size, index, out);
}
return rpc::nullopt;
}
RPC_ATTRS Server::Port Server::open(uint32_t lane_size) {
for (;;) {
if (rpc::optional<Server::Port> p = try_open(lane_size))
return rpc::move(p.value());
sleep_briefly();
}
}
#undef RPC_ATTRS
#if !__has_builtin(__scoped_atomic_load_n)
#undef __scoped_atomic_load_n
#undef __scoped_atomic_store_n
#undef __scoped_atomic_fetch_or
#undef __scoped_atomic_fetch_and
#endif
#if !__has_builtin(__scoped_atomic_thread_fence)
#undef __scoped_atomic_thread_fence
#endif
} // namespace rpc
#endif // LLVM_LIBC_SHARED_RPC_H