-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathschemas.py
58 lines (46 loc) · 1.9 KB
/
schemas.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from typing import Any, Literal
from pydantic import BaseModel, ConfigDict, Field, field_serializer, field_validator
from transformers import GenerationConfig
from llm_jp_eval_inference.schemas import BaseInferenceConfig
class ModelConfig(BaseModel):
pretrained_model_name_or_path: str
trust_remote_code: bool = False
device_map: str = "auto"
torch_dtype: str = "bfloat16"
load_in_8bit: bool = False
load_in_4bit: bool = False
class TokenizerConfig(BaseModel):
pretrained_model_name_or_path: str
trust_remote_code: bool = False
use_fast: bool = True
padding_side: Literal["left", "right"] = "left"
model_max_length: int = 2048
class InferenceConfig(BaseInferenceConfig):
model_config = ConfigDict(arbitrary_types_allowed=True)
# transformers specific configurations
model: ModelConfig
tokenizer: TokenizerConfig
generation_config: GenerationConfig = Field(default_factory=GenerationConfig)
pipeline_kwargs: dict = Field(default_factory=dict)
@field_validator("generation_config", mode="before")
@classmethod
def validate_generation_config(cls, value: Any) -> GenerationConfig:
if isinstance(value, dict):
return GenerationConfig(**value)
return value
@field_serializer("generation_config")
def serialize_generation_config(self, config: GenerationConfig) -> dict:
return config.to_dict()
# NOTE: Batch sizeなどをそのまま渡す際に問題になるのでparse出来そうなものはparseする
@field_validator("pipeline_kwargs")
def parse_numbers_in_dict(cls, v):
for key, value in v.items():
if isinstance(value, str):
try:
v[key] = int(value)
except ValueError:
try:
v[key] = float(value)
except ValueError:
pass
return v