Skip to content

Commit 853d05c

Browse files
zRzRzRzRzRzRzRAccelerator1996DarkLight1337mgoinyihong0618
authored andcommitted
Add GLM-4-0414 support (vllm-project#16338)
Signed-off-by: lvfei.lv <lvfei.lv@alibaba-inc.com> Signed-off-by: zRzRzRzRzRzRzR <2448370773@qq.com> Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk> Signed-off-by: yihong0618 <zouzou0208@gmail.com> Signed-off-by: Lu Fang <fanglu@fb.com> Signed-off-by: Ajay Vohra <ajayvohr@amazon.com> Signed-off-by: NickLucche <nlucches@redhat.com> Signed-off-by: Guillaume Calmettes <gcalmettes@scaleway.com> Co-authored-by: Accelerator1996 <lvfei.lv@alibaba-inc.com> Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk> Co-authored-by: Michael Goin <michael@neuralmagic.com> Co-authored-by: yihong <zouzou0208@gmail.com> Co-authored-by: Lucia Fang <116399278+luccafong@users.noreply.github.com> Co-authored-by: ajayvohra2005 <ajayvohr@amazon.com> Co-authored-by: Nicolò Lucchesi <nlucches@redhat.com> Co-authored-by: Guillaume Calmettes <gcalmettes@scaleway.com>
1 parent 3912a6a commit 853d05c

File tree

4 files changed

+324
-0
lines changed

4 files changed

+324
-0
lines changed

docs/source/models/supported_models.md

Lines changed: 5 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -303,6 +303,11 @@ See [this page](#generative-models) for more information on how to use generativ
303303
* `THUDM/glm-4-9b-chat-hf`, etc.
304304
* ✅︎
305305
* ✅︎
306+
- * `Glm4ForCausalLM`
307+
* GLM-4-0414
308+
* `THUDM/GLM-4-32B-Chat-0414`, etc.
309+
* ✅︎
310+
* ✅︎
306311
- * `GPT2LMHeadModel`
307312
* GPT-2
308313
* `gpt2`, `gpt2-xl`, etc.

tests/models/registry.py

Lines changed: 5 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -146,6 +146,11 @@ def check_available_online(
146146
"Gemma3ForCausalLM": _HfExamplesInfo("google/gemma-3-1b-it",
147147
min_transformers_version="4.50"),
148148
"GlmForCausalLM": _HfExamplesInfo("THUDM/glm-4-9b-chat-hf"),
149+
"Glm4ForCausalLM": _HfExamplesInfo(
150+
"THUDM/GLM-4-32B-Chat-0414",
151+
is_available_online=False,
152+
min_transformers_version="4.52.dev0"
153+
),
149154
"GPT2LMHeadModel": _HfExamplesInfo("gpt2"),
150155
"GPTBigCodeForCausalLM": _HfExamplesInfo("bigcode/starcoder"),
151156
"GPTJForCausalLM": _HfExamplesInfo("EleutherAI/gpt-j-6b"),

vllm/model_executor/models/glm4.py

Lines changed: 313 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,313 @@
1+
# SPDX-License-Identifier: Apache-2.0
2+
3+
# Copyright 2025 The Zhipu AI team.
4+
# Copyright 2023 The vLLM team.
5+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
6+
#
7+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
8+
# and OPT implementations in this library. It has been modified from its
9+
# original forms to accommodate minor architectural differences compared
10+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
11+
#
12+
# Licensed under the Apache License, Version 2.0 (the "License");
13+
# you may not use this file except in compliance with the License.
14+
# You may obtain a copy of the License at
15+
#
16+
# http://www.apache.org/licenses/LICENSE-2.0
17+
#
18+
# Unless required by applicable law or agreed to in writing, software
19+
# distributed under the License is distributed on an "AS IS" BASIS,
20+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
21+
# See the License for the specific language governing permissions and
22+
# limitations under the License.
23+
"""Inference-only GLM-4-0414 model compatible with HuggingFace weights."""
24+
from typing import Iterable, Optional, Set, Tuple, Union
25+
26+
import torch
27+
from torch import nn
28+
from transformers import Glm4Config
29+
30+
from vllm.attention import Attention, AttentionType
31+
from vllm.compilation.decorators import support_torch_compile
32+
from vllm.config import CacheConfig, VllmConfig
33+
from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size
34+
from vllm.model_executor.layers.layernorm import RMSNorm
35+
from vllm.model_executor.layers.linear import (QKVParallelLinear,
36+
RowParallelLinear)
37+
from vllm.model_executor.layers.logits_processor import LogitsProcessor
38+
from vllm.model_executor.layers.quantization import QuantizationConfig
39+
from vllm.model_executor.layers.rotary_embedding import get_rope
40+
from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
41+
from vllm.model_executor.layers.vocab_parallel_embedding import ParallelLMHead
42+
from vllm.model_executor.sampling_metadata import SamplingMetadata
43+
from vllm.sequence import IntermediateTensors
44+
45+
from .interfaces import SupportsLoRA, SupportsPP
46+
from .llama import LlamaMLP as Glm4MLP
47+
from .llama import LlamaModel
48+
from .utils import AutoWeightsLoader, PPMissingLayer, maybe_prefix
49+
50+
51+
class Glm4Attention(nn.Module):
52+
53+
def __init__(self,
54+
config: Glm4Config,
55+
hidden_size: int,
56+
num_heads: int,
57+
num_kv_heads: int,
58+
max_position: int = 4096 * 32,
59+
head_dim: Optional[int] = None,
60+
qkv_bias: bool = False,
61+
rope_theta: float = 10000,
62+
cache_config: Optional[CacheConfig] = None,
63+
quant_config: Optional[QuantizationConfig] = None,
64+
rope_scaling: Optional[Tuple] = None,
65+
prefix: str = "",
66+
attn_type: str = AttentionType.DECODER) -> None:
67+
super().__init__()
68+
self.hidden_size = hidden_size
69+
tp_size = get_tensor_model_parallel_world_size()
70+
self.total_num_heads = num_heads
71+
assert self.total_num_heads % tp_size == 0
72+
self.num_heads = self.total_num_heads // tp_size
73+
self.total_num_kv_heads = num_kv_heads
74+
if self.total_num_kv_heads >= tp_size:
75+
# Number of KV heads is greater than TP size, so we partition
76+
# the KV heads across multiple tensor parallel GPUs.
77+
assert self.total_num_kv_heads % tp_size == 0
78+
else:
79+
# Number of KV heads is less than TP size, so we replicate
80+
# the KV heads across multiple tensor parallel GPUs.
81+
assert tp_size % self.total_num_kv_heads == 0
82+
partial_rotary_factor = getattr(config, "partial_rotary_factor", 0.5)
83+
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
84+
self.head_dim = head_dim or hidden_size // self.total_num_heads
85+
self.rotary_dim = int(partial_rotary_factor * self.head_dim)
86+
self.q_size = self.num_heads * self.head_dim
87+
self.kv_size = self.num_kv_heads * self.head_dim
88+
self.scaling = self.head_dim**-0.5
89+
self.rope_theta = rope_theta
90+
self.qkv_proj = QKVParallelLinear(
91+
hidden_size,
92+
self.head_dim,
93+
self.total_num_heads,
94+
self.total_num_kv_heads,
95+
bias=qkv_bias,
96+
quant_config=quant_config,
97+
prefix=f"{prefix}.qkv_proj",
98+
)
99+
self.o_proj = RowParallelLinear(
100+
self.total_num_heads * self.head_dim,
101+
hidden_size,
102+
bias=False,
103+
quant_config=quant_config,
104+
prefix=f"{prefix}.o_proj",
105+
)
106+
self.rotary_emb = get_rope(
107+
self.head_dim,
108+
rotary_dim=self.rotary_dim,
109+
max_position=max_position,
110+
base=self.rope_theta,
111+
rope_scaling=rope_scaling,
112+
partial_rotary_factor=partial_rotary_factor,
113+
)
114+
self.attn = Attention(self.num_heads,
115+
self.head_dim,
116+
self.scaling,
117+
num_kv_heads=self.num_kv_heads,
118+
cache_config=cache_config,
119+
quant_config=quant_config,
120+
prefix=f"{prefix}.attn",
121+
attn_type=attn_type)
122+
123+
def forward(
124+
self,
125+
positions: torch.Tensor,
126+
hidden_states: torch.Tensor,
127+
) -> torch.Tensor:
128+
qkv, _ = self.qkv_proj(hidden_states)
129+
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
130+
q, k = self.rotary_emb(positions, q, k)
131+
attn_output = self.attn(q, k, v)
132+
output, _ = self.o_proj(attn_output)
133+
return output
134+
135+
136+
class Glm4DecoderLayer(nn.Module):
137+
138+
def __init__(
139+
self,
140+
config: Glm4Config,
141+
cache_config: Optional[CacheConfig] = None,
142+
quant_config: Optional[QuantizationConfig] = None,
143+
prefix: str = "",
144+
) -> None:
145+
super().__init__()
146+
self.hidden_size = config.hidden_size
147+
rope_theta = getattr(config, "rope_theta", 1000000)
148+
rope_scaling = getattr(config, "rope_scaling", None)
149+
150+
self.self_attn = Glm4Attention(
151+
config=config,
152+
hidden_size=self.hidden_size,
153+
num_heads=config.num_attention_heads,
154+
max_position=config.max_position_embeddings,
155+
num_kv_heads=config.num_key_value_heads,
156+
rope_theta=rope_theta,
157+
qkv_bias=getattr(config, 'attention_bias', False),
158+
head_dim=getattr(config, 'head_dim', None),
159+
cache_config=cache_config,
160+
quant_config=quant_config,
161+
rope_scaling=rope_scaling,
162+
prefix=f"{prefix}.self_attn",
163+
attn_type=AttentionType.DECODER,
164+
)
165+
self.mlp = Glm4MLP(
166+
hidden_size=self.hidden_size,
167+
intermediate_size=config.intermediate_size,
168+
hidden_act=config.hidden_act,
169+
quant_config=quant_config,
170+
prefix=f"{prefix}.mlp",
171+
)
172+
self.input_layernorm = RMSNorm(config.hidden_size,
173+
eps=config.rms_norm_eps)
174+
self.post_attention_layernorm = RMSNorm(config.hidden_size,
175+
eps=config.rms_norm_eps)
176+
self.post_self_attn_layernorm = RMSNorm(config.hidden_size,
177+
eps=config.rms_norm_eps)
178+
self.post_mlp_layernorm = RMSNorm(config.hidden_size,
179+
eps=config.rms_norm_eps)
180+
181+
def forward(
182+
self,
183+
positions: torch.Tensor,
184+
hidden_states: torch.Tensor,
185+
residual: Optional[torch.Tensor],
186+
) -> Tuple[torch.Tensor, torch.Tensor]:
187+
# Self Attention
188+
if residual is None:
189+
residual = hidden_states
190+
hidden_states = self.input_layernorm(hidden_states)
191+
else:
192+
hidden_states, residual = self.input_layernorm(
193+
hidden_states, residual)
194+
hidden_states = self.self_attn(
195+
positions=positions,
196+
hidden_states=hidden_states,
197+
)
198+
199+
hidden_states = self.post_self_attn_layernorm(hidden_states)
200+
hidden_states = residual + hidden_states
201+
202+
# Fully Connected
203+
hidden_states = self.post_attention_layernorm(hidden_states, residual)
204+
hidden_states = self.mlp(hidden_states)
205+
hidden_states = self.post_mlp_layernorm(hidden_states)
206+
hidden_states = residual + hidden_states
207+
208+
return hidden_states, residual
209+
210+
211+
ALL_DECODER_LAYER_TYPES = {
212+
"attention": Glm4DecoderLayer,
213+
}
214+
215+
216+
@support_torch_compile(
217+
dynamic_arg_dims={
218+
"input_ids": 0,
219+
"positions": -1,
220+
"intermediate_tensors": 0,
221+
"inputs_embeds": 0,
222+
})
223+
class Glm4Model(LlamaModel):
224+
225+
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
226+
super().__init__(vllm_config=vllm_config,
227+
prefix=prefix,
228+
layer_type=Glm4DecoderLayer)
229+
230+
231+
class Glm4ForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
232+
packed_modules_mapping = {
233+
"qkv_proj": [
234+
"q_proj",
235+
"k_proj",
236+
"v_proj",
237+
],
238+
"gate_up_proj": [
239+
"gate_proj",
240+
"up_proj",
241+
],
242+
}
243+
244+
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
245+
super().__init__()
246+
config = vllm_config.model_config.hf_config
247+
quant_config = vllm_config.quant_config
248+
lora_config = vllm_config.lora_config
249+
250+
self.config = config
251+
self.lora_config = lora_config
252+
253+
self.quant_config = quant_config
254+
self.model = Glm4Model(vllm_config=vllm_config,
255+
prefix=maybe_prefix(prefix, "model"))
256+
257+
if get_pp_group().is_last_rank:
258+
if config.tie_word_embeddings:
259+
self.lm_head = self.model.embed_tokens
260+
else:
261+
self.lm_head = ParallelLMHead(config.vocab_size,
262+
config.hidden_size,
263+
quant_config=quant_config,
264+
prefix=maybe_prefix(
265+
prefix, "lm_head"))
266+
else:
267+
self.lm_head = PPMissingLayer()
268+
269+
self.logits_processor = LogitsProcessor(config.vocab_size)
270+
self.sampler = get_sampler()
271+
272+
self.make_empty_intermediate_tensors = (
273+
self.model.make_empty_intermediate_tensors)
274+
275+
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
276+
return self.model.get_input_embeddings(input_ids)
277+
278+
def forward(
279+
self,
280+
input_ids: torch.Tensor,
281+
positions: torch.Tensor,
282+
intermediate_tensors: Optional[IntermediateTensors] = None,
283+
inputs_embeds: Optional[torch.Tensor] = None,
284+
) -> Union[torch.Tensor, IntermediateTensors]:
285+
hidden_states = self.model(input_ids, positions, intermediate_tensors,
286+
inputs_embeds)
287+
return hidden_states
288+
289+
def compute_logits(
290+
self,
291+
hidden_states: torch.Tensor,
292+
sampling_metadata: SamplingMetadata,
293+
) -> Optional[torch.Tensor]:
294+
logits = self.logits_processor(self.lm_head, hidden_states,
295+
sampling_metadata)
296+
return logits
297+
298+
def sample(
299+
self,
300+
logits: torch.Tensor,
301+
sampling_metadata: SamplingMetadata,
302+
) -> Optional[SamplerOutput]:
303+
next_tokens = self.sampler(logits, sampling_metadata)
304+
return next_tokens
305+
306+
def load_weights(self, weights: Iterable[Tuple[str,
307+
torch.Tensor]]) -> Set[str]:
308+
loader = AutoWeightsLoader(
309+
self,
310+
skip_prefixes=(["lm_head."]
311+
if self.config.tie_word_embeddings else None),
312+
)
313+
return loader.load_weights(weights)

vllm/model_executor/models/registry.py

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -58,6 +58,7 @@
5858
"Gemma2ForCausalLM": ("gemma2", "Gemma2ForCausalLM"),
5959
"Gemma3ForCausalLM": ("gemma3", "Gemma3ForCausalLM"),
6060
"GlmForCausalLM": ("glm", "GlmForCausalLM"),
61+
"Glm4ForCausalLM": ("glm4", "Glm4ForCausalLM"),
6162
"GPT2LMHeadModel": ("gpt2", "GPT2LMHeadModel"),
6263
"GPTBigCodeForCausalLM": ("gpt_bigcode", "GPTBigCodeForCausalLM"),
6364
"GPTJForCausalLM": ("gpt_j", "GPTJForCausalLM"),

0 commit comments

Comments
 (0)