|
64 | 64 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
65 | 65 |
|
66 | 66 | ```python
|
67 |
| - |
| 67 | +class Solution: |
| 68 | + def catMouseGame(self, graph: List[List[int]]) -> int: |
| 69 | + @lru_cache(None) |
| 70 | + def dfs(i, j, k): |
| 71 | + # 老鼠 / 猫 / 总步数 |
| 72 | + if k >= 2 * len(graph): |
| 73 | + return 0 # 平局 |
| 74 | + if i == 0: |
| 75 | + return 1 # 老鼠获胜 |
| 76 | + if i == j: |
| 77 | + return 2 # 猫获胜 |
| 78 | + if k % 2: # 轮到猫行动 |
| 79 | + tie = False |
| 80 | + for next in graph[j]: |
| 81 | + if next == 0: |
| 82 | + continue |
| 83 | + x = dfs(i, next, k + 1) |
| 84 | + if x == 2: |
| 85 | + return 2 |
| 86 | + if x == 0: |
| 87 | + # 继续寻找是否存在获胜的方案 |
| 88 | + tie = True |
| 89 | + if tie: |
| 90 | + return 0 |
| 91 | + return 1 |
| 92 | + else: # 轮到老鼠行动 |
| 93 | + tie = False |
| 94 | + for next in graph[i]: |
| 95 | + x = dfs(next, j, k + 1) |
| 96 | + if x == 1: |
| 97 | + return 1 |
| 98 | + if x == 0: |
| 99 | + # 继续寻找是否存在获胜的方案 |
| 100 | + tie = True |
| 101 | + if tie: |
| 102 | + return 0 |
| 103 | + return 2 |
| 104 | + |
| 105 | + return dfs(1, 2, 0) |
68 | 106 | ```
|
69 | 107 |
|
70 | 108 | ### **Java**
|
71 | 109 |
|
72 | 110 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
73 | 111 |
|
74 | 112 | ```java
|
| 113 | +class Solution { |
| 114 | + private int[][][] memo; |
| 115 | + private int[][] graph; |
| 116 | + |
| 117 | + public int catMouseGame(int[][] graph) { |
| 118 | + int n = graph.length; |
| 119 | + this.graph = graph; |
| 120 | + memo = new int[n][n][2 * n + 10]; |
| 121 | + for (int i = 0; i < n; ++i) { |
| 122 | + for (int j = 0; j < n; ++j) { |
| 123 | + for (int k = 0; k < 2 * n + 10; ++k) { |
| 124 | + memo[i][j][k] = -1; |
| 125 | + } |
| 126 | + } |
| 127 | + } |
| 128 | + return dfs(1, 2, 0); |
| 129 | + } |
| 130 | + |
| 131 | + private int dfs(int i, int j, int k) { |
| 132 | + // 老鼠 / 猫 / 总步数 |
| 133 | + if (memo[i][j][k] != -1) { |
| 134 | + return memo[i][j][k]; |
| 135 | + } |
| 136 | + if (k >= 2 * graph.length) { |
| 137 | + // 平局 |
| 138 | + memo[i][j][k] = 0; |
| 139 | + } else if (i == 0) { |
| 140 | + // 老鼠获胜 |
| 141 | + memo[i][j][k] = 1; |
| 142 | + } else if (i == j) { |
| 143 | + // 猫获胜 |
| 144 | + memo[i][j][k] = 2; |
| 145 | + } else if (k % 2 == 1) { |
| 146 | + // 轮到猫行动 |
| 147 | + boolean tie = false; |
| 148 | + boolean win = false; |
| 149 | + for (int next : graph[j]) { |
| 150 | + if (next == 0) { |
| 151 | + continue; |
| 152 | + } |
| 153 | + int x = dfs(i, next, k + 1); |
| 154 | + if (x == 2) { |
| 155 | + win = true; |
| 156 | + memo[i][j][k] = 2; |
| 157 | + break; |
| 158 | + } |
| 159 | + if (x == 0) { |
| 160 | + // 继续寻找是否存在获胜的方案 |
| 161 | + tie = true; |
| 162 | + } |
| 163 | + } |
| 164 | + if (!win) { |
| 165 | + memo[i][j][k] = tie ? 0 : 1; |
| 166 | + } |
| 167 | + } else { |
| 168 | + // 轮到老鼠行动 |
| 169 | + boolean tie = false; |
| 170 | + boolean win = false; |
| 171 | + for (int next : graph[i]) { |
| 172 | + int x = dfs(next, j, k + 1); |
| 173 | + if (x == 1) { |
| 174 | + win = true; |
| 175 | + memo[i][j][k] = 1; |
| 176 | + break; |
| 177 | + } |
| 178 | + if (x == 0) { |
| 179 | + // 继续寻找是否存在获胜的方案 |
| 180 | + tie = true; |
| 181 | + } |
| 182 | + } |
| 183 | + if (!win) { |
| 184 | + memo[i][j][k] = tie ? 0 : 2; |
| 185 | + } |
| 186 | + } |
| 187 | + return memo[i][j][k]; |
| 188 | + } |
| 189 | +} |
| 190 | +``` |
| 191 | + |
| 192 | +### **C++** |
| 193 | + |
| 194 | +```cpp |
| 195 | +class Solution { |
| 196 | +public: |
| 197 | + vector<vector<vector<int>>> memo; |
| 198 | + vector<vector<int>> graph; |
| 199 | + |
| 200 | + int catMouseGame(vector<vector<int>>& graph) { |
| 201 | + int n = graph.size(); |
| 202 | + this->graph = graph; |
| 203 | + memo.resize(n, vector<vector<int>>(n, vector<int>(2 * n + 10))); |
| 204 | + for (int i = 0; i < memo.size(); ++i) |
| 205 | + for (int j = 0; j < memo[0].size(); ++j) |
| 206 | + for (int k = 0; k < memo[0][0].size(); ++k) |
| 207 | + memo[i][j][k] = -1; |
| 208 | + return dfs(1, 2, 0); |
| 209 | + } |
| 210 | + |
| 211 | + int dfs(int i, int j, int k) { |
| 212 | + if (memo[i][j][k] != -1) return memo[i][j][k]; |
| 213 | + if (k >= 2 * graph.size()) memo[i][j][k] = 0; |
| 214 | + else if (i == 0) memo[i][j][k] = 1; |
| 215 | + else if (i == j) memo[i][j][k] = 2; |
| 216 | + else if (k % 2) |
| 217 | + { |
| 218 | + bool tie = false, win = false; |
| 219 | + for (int next : graph[j]) |
| 220 | + { |
| 221 | + if (next == 0) continue; |
| 222 | + int x = dfs(i, next, k + 1); |
| 223 | + if (x == 2) |
| 224 | + { |
| 225 | + win = true; |
| 226 | + memo[i][j][k] = 2; |
| 227 | + break; |
| 228 | + } |
| 229 | + if (x == 0) tie = true; |
| 230 | + } |
| 231 | + if (!win) memo[i][j][k] = tie ? 0 : 1; |
| 232 | + } |
| 233 | + else |
| 234 | + { |
| 235 | + bool tie = false, win = false; |
| 236 | + for (int next : graph[i]) |
| 237 | + { |
| 238 | + int x = dfs(next, j, k + 1); |
| 239 | + if (x == 1) |
| 240 | + { |
| 241 | + win = true; |
| 242 | + memo[i][j][k] = 1; |
| 243 | + break; |
| 244 | + } |
| 245 | + if (x == 0) tie = true; |
| 246 | + } |
| 247 | + if (!win) memo[i][j][k] = tie ? 0 : 2; |
| 248 | + } |
| 249 | + return memo[i][j][k]; |
| 250 | + } |
| 251 | +}; |
| 252 | +``` |
75 | 253 |
|
| 254 | +### **Go** |
| 255 | +
|
| 256 | +```go |
| 257 | +func catMouseGame(graph [][]int) int { |
| 258 | + n := len(graph) |
| 259 | + memo := make([][][]int, n) |
| 260 | + for i := range memo { |
| 261 | + memo[i] = make([][]int, n) |
| 262 | + for j := range memo[i] { |
| 263 | + memo[i][j] = make([]int, 2*n+10) |
| 264 | + for k := range memo[i][j] { |
| 265 | + memo[i][j][k] = -1 |
| 266 | + } |
| 267 | + } |
| 268 | + } |
| 269 | + var dfs func(i, j, k int) int |
| 270 | + dfs = func(i, j, k int) int { |
| 271 | + if memo[i][j][k] != -1 { |
| 272 | + return memo[i][j][k] |
| 273 | + } |
| 274 | + if k >= 2*len(graph) { |
| 275 | + memo[i][j][k] = 0 |
| 276 | + } else if i == 0 { |
| 277 | + memo[i][j][k] = 1 |
| 278 | + } else if i == j { |
| 279 | + memo[i][j][k] = 2 |
| 280 | + } else if k%2 == 1 { |
| 281 | + tie, win := false, false |
| 282 | + for _, next := range graph[j] { |
| 283 | + if next == 0 { |
| 284 | + continue |
| 285 | + } |
| 286 | + x := dfs(i, next, k+1) |
| 287 | + if x == 2 { |
| 288 | + win = true |
| 289 | + memo[i][j][k] = 2 |
| 290 | + break |
| 291 | + } |
| 292 | + if x == 0 { |
| 293 | + tie = true |
| 294 | + } |
| 295 | + } |
| 296 | + if !win { |
| 297 | + if tie { |
| 298 | + memo[i][j][k] = 0 |
| 299 | + } else { |
| 300 | + memo[i][j][k] = 1 |
| 301 | + } |
| 302 | + } |
| 303 | + } else { |
| 304 | + tie, win := false, false |
| 305 | + for _, next := range graph[i] { |
| 306 | + x := dfs(next, j, k+1) |
| 307 | + if x == 1 { |
| 308 | + win = true |
| 309 | + memo[i][j][k] = 1 |
| 310 | + break |
| 311 | + } |
| 312 | + if x == 0 { |
| 313 | + tie = true |
| 314 | + } |
| 315 | + } |
| 316 | + if !win { |
| 317 | + if tie { |
| 318 | + memo[i][j][k] = 0 |
| 319 | + } else { |
| 320 | + memo[i][j][k] = 2 |
| 321 | + } |
| 322 | + } |
| 323 | + } |
| 324 | + return memo[i][j][k] |
| 325 | + } |
| 326 | + return dfs(1, 2, 0) |
| 327 | +} |
76 | 328 | ```
|
77 | 329 |
|
78 | 330 | ### **...**
|
|
0 commit comments