-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathquadratic.py
165 lines (133 loc) · 5.94 KB
/
quadratic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import torch
import torch.nn as nn
from torch.optim import SGD
import numpy as np
import copy
import os
from sim.utils.utils import average_weights, setup_seed
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('-R', default=200, type=int, help='Number of total training rounds')
parser.add_argument('-K', default=1, type=int, help='Number of local steps')
parser.add_argument('-M', default=100, type=int, help='Number of total clients')
parser.add_argument('-P', default=100, type=int, help='Number of clients participate')
parser.add_argument('--F1', default=1, type=float, nargs='*', help='F1')
parser.add_argument('--F2', default=1, type=float, nargs='*', help='F2')
parser.add_argument('--optim', default='sgd', type=str, choices=['sgd', 'adam'], help='Optimizer')
parser.add_argument('--lr', default=0.0, type=float, help='Client/Local learning rate')
parser.add_argument('--momentum', default=0, type=float, help='Momentum of client optimizer')
parser.add_argument('--weight-decay', default=1e-4, type=float, help='Weight decay of client optimizer')
parser.add_argument('--seed', default=1234, type=int, help='seed')
parser.add_argument('--device', default=0, type=int, help='Device')
args = parser.parse_args()
device = torch.device("cuda:{}".format(args.device) if torch.cuda.is_available() else "cpu")
def record_setup(args, alg):
'''Setup format:
quadratic_PFL_F1_0.50,1.00_F2_0.50,-1.00_M2_K10_R500_sgd0.06,0.0,0.0_seed1234
'''
setup = 'quadratic_{}_F1_{:.2f},{:.2f}_F2_{:.2f},{:.2f}_M{}_K{}_R{}_sgd{},{},{}_seed{}' \
.format(alg, args.F1[0], args.F1[1], args.F2[0], args.F2[1], args.M, args.K, args.R, \
args.lr, args.momentum, args.weight_decay, args.seed)
return setup
def record_exp_result(filename, result, round):
savepath = './save/'
filepath = '{}/{}.csv'.format(savepath, filename)
if round == 0:
if (os.path.exists(filepath)):
os.remove(filepath)
with open (filepath, 'a+') as f:
f.write('{},{}\n'.format('round', 'distance'))
f.write('{},{:.4f}\n'.format(round, result))
else:
with open (filepath, 'a+') as f:
f.write('{},{:.4f}\n'.format(round, result))
class QuadraticFunc(nn.Module):
def __init__(self, in_dim=1):
super(QuadraticFunc, self).__init__()
#self.x = torch.nn.Parameter(torch.randn((in_dim))[0])
self.x = torch.nn.Parameter(torch.tensor(10, dtype=float))
def forward(self, data=[1,1,1]):
out = data[0] * self.x**2 + data[1] * self.x + data[2]
return out
def local_update(args, data, model):
global device
optimizer = SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
model.train()
data.to(device)
num_steps = args.K
step_count = 0
while(True):
local_objective = model(data)
optimizer.zero_grad()
local_objective.backward()
optimizer.step()
step_count +=1
if (step_count >= num_steps):
break
return model
def parallel_train(args, data, optim):
global device
global_model = QuadraticFunc()
global_model.to(device)
global_model.train()
datasetsize_client = [1 for _ in range(len(data))]
with torch.no_grad():
distance = float(torch.norm(global_model.x.data - optim).cpu().numpy())
record_exp_result(record_setup(args, 'PFL'), distance, 0)
for r in range(args.R):
weight_list = []
active_clients = range(2)
active_datasetsize = []
for u in active_clients:
local_model = local_update(args, data[u], model=copy.deepcopy(global_model))
weight_list.append(local_model.state_dict())
active_datasetsize.append(datasetsize_client[u])
average_weight = average_weights(weight_list, active_datasetsize) # Note: use active_datasetsize
global_model.load_state_dict(average_weight)
with torch.no_grad():
distance = float(torch.norm(global_model.x.data - optim).cpu().numpy())
record_exp_result(record_setup(args, 'PFL'), distance, r+1)
def sequential_train(args, data, optim):
global device
global_model = QuadraticFunc()
global_model.to(device)
global_model.train()
with torch.no_grad():
distance = float(torch.norm(global_model.x.data - optim).cpu().numpy())
record_exp_result(record_setup(args, 'SFL'), distance, 0)
for r in range(args.R):
local_model = copy.deepcopy(global_model)
active_clients = np.random.choice(range(2), 2, replace=False)
for u in active_clients:
local_model = local_update(args, data[u], model=local_model)
global_model.load_state_dict(local_model.state_dict())
with torch.no_grad():
distance = float(torch.norm(global_model.x.data - optim).cpu().numpy())
record_exp_result(record_setup(args, 'SFL'), distance, r+1)
def train(args, data):
setup_seed(args.seed)
optim = - 0.5 * (data[0][1] + data[1][1]) / (data[0][0] + data[1][0])
parallel_train(args, data, optim)
sequential_train(args, data, optim)
# python quadratic.py -R 500 -K 2 -M 2 -P 2 --F1 0.5 1 --F2 0.5 -1 --lr 0 --momentum 0 --weight-decay 0 --seed 0
#
def get_result():
global args
#data1 = torch.tensor([1/2, 1, 0], dtype=float)
#data2 = torch.tensor([1/2, -1, 0], dtype=float)
data1 = torch.tensor([args.F1[0], args.F1[1], 0], dtype=float)
data2 = torch.tensor([args.F2[0], args.F2[1], 0], dtype=float)
data = [data1, data2]
#lrs = [0.001, 0.003, 0.006, 0.01, 0.03, 0.06, 0.1, 0.3, 0.6]
lrs = [0.001, 0.003, 0.006, 0.01, 0.03, 0.06, 0.1, 0.3, 0.6, 1.0]
#seeds = [123, 1234, 12345]
seeds = [1, 12, 123, 1234, 12345]
for lr in lrs:
args.lr = lr
for seed in seeds:
args.seed = seed
train(args, data)
def main():
get_result()
if __name__ == '__main__':
main()