-
Notifications
You must be signed in to change notification settings - Fork 89
/
absa_layer.py
558 lines (490 loc) · 23.9 KB
/
absa_layer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
import torch
import torch.nn as nn
from transformers import BertModel, XLNetModel
from seq_utils import *
from bert import BertPreTrainedModel, XLNetPreTrainedModel
from torch.nn import CrossEntropyLoss
class TaggerConfig:
def __init__(self):
self.hidden_dropout_prob = 0.1
self.hidden_size = 768
self.n_rnn_layers = 1 # not used if tagger is non-RNN model
self.bidirectional = True # not used if tagger is non-RNN model
class SAN(nn.Module):
def __init__(self, d_model, nhead, dropout=0.1):
super(SAN, self).__init__()
self.d_model = d_model
self.nhead = nhead
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
self.dropout = nn.Dropout(p=dropout)
self.norm = nn.LayerNorm(d_model)
def forward(self, src, src_mask=None, src_key_padding_mask=None):
"""
:param src:
:param src_mask:
:param src_key_padding_mask:
:return:
"""
src2, _ = self.self_attn(src, src, src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)
src = src + self.dropout(src2)
# apply layer normalization
src = self.norm(src)
return src
class GRU(nn.Module):
# customized GRU with layer normalization
def __init__(self, input_size, hidden_size, bidirectional=True):
"""
:param input_size:
:param hidden_size:
:param bidirectional:
"""
super(GRU, self).__init__()
self.input_size = input_size
if bidirectional:
self.hidden_size = hidden_size // 2
else:
self.hidden_size = hidden_size
self.bidirectional = bidirectional
self.Wxrz = nn.Linear(in_features=self.input_size, out_features=2*self.hidden_size, bias=True)
self.Whrz = nn.Linear(in_features=self.hidden_size, out_features=2*self.hidden_size, bias=True)
self.Wxn = nn.Linear(in_features=self.input_size, out_features=self.hidden_size, bias=True)
self.Whn = nn.Linear(in_features=self.hidden_size, out_features=self.hidden_size, bias=True)
self.LNx1 = nn.LayerNorm(2*self.hidden_size)
self.LNh1 = nn.LayerNorm(2*self.hidden_size)
self.LNx2 = nn.LayerNorm(self.hidden_size)
self.LNh2 = nn.LayerNorm(self.hidden_size)
def forward(self, x):
"""
:param x: input tensor, shape: (batch_size, seq_len, input_size)
:return:
"""
def recurrence(xt, htm1):
"""
:param xt: current input
:param htm1: previous hidden state
:return:
"""
gates_rz = torch.sigmoid(self.LNx1(self.Wxrz(xt)) + self.LNh1(self.Whrz(htm1)))
rt, zt = gates_rz.chunk(2, 1)
nt = torch.tanh(self.LNx2(self.Wxn(xt))+rt*self.LNh2(self.Whn(htm1)))
ht = (1.0-zt) * nt + zt * htm1
return ht
steps = range(x.size(1))
bs = x.size(0)
hidden = self.init_hidden(bs)
# shape: (seq_len, bsz, input_size)
input = x.transpose(0, 1)
output = []
for t in steps:
hidden = recurrence(input[t], hidden)
output.append(hidden)
# shape: (bsz, seq_len, input_size)
output = torch.stack(output, 0).transpose(0, 1)
if self.bidirectional:
output_b = []
hidden_b = self.init_hidden(bs)
for t in steps[::-1]:
hidden_b = recurrence(input[t], hidden_b)
output_b.append(hidden_b)
output_b = output_b[::-1]
output_b = torch.stack(output_b, 0).transpose(0, 1)
output = torch.cat([output, output_b], dim=-1)
return output, None
def init_hidden(self, bs):
h_0 = torch.zeros(bs, self.hidden_size).cuda()
return h_0
class CRF(nn.Module):
# borrow the code from
# https://github.com/allenai/allennlp/blob/master/allennlp/modules/conditional_random_field.py
def __init__(self, num_tags, constraints=None, include_start_end_transitions=None):
"""
:param num_tags:
:param constraints:
:param include_start_end_transitions:
"""
super(CRF, self).__init__()
self.num_tags = num_tags
self.include_start_end_transitions = include_start_end_transitions
self.transitions = nn.Parameter(torch.Tensor(self.num_tags, self.num_tags))
constraint_mask = torch.Tensor(self.num_tags+2, self.num_tags+2).fill_(1.)
if include_start_end_transitions:
self.start_transitions = nn.Parameter(torch.Tensor(num_tags))
self.end_transitions = nn.Parameter(torch.Tensor(num_tags))
# register the constraint_mask
self.constraint_mask = nn.Parameter(constraint_mask, requires_grad=False)
self.reset_parameters()
def forward(self, inputs, tags, mask=None):
"""
:param inputs: (bsz, seq_len, num_tags), logits calculated from a linear layer
:param tags: (bsz, seq_len)
:param mask: (bsz, seq_len), mask for the padding token
:return:
"""
if mask is None:
mask = torch.ones(*tags.size(), dtype=torch.long)
log_denominator = self._input_likelihood(inputs, mask)
log_numerator = self._joint_likelihood(inputs, tags, mask)
return torch.sum(log_numerator - log_denominator)
def reset_parameters(self):
"""
initialize the parameters in CRF
:return:
"""
nn.init.xavier_normal_(self.transitions)
if self.include_start_end_transitions:
nn.init.normal_(self.start_transitions)
nn.init.normal_(self.end_transitions)
def _input_likelihood(self, logits, mask):
"""
:param logits: emission score calculated by a linear layer, shape: (batch_size, seq_len, num_tags)
:param mask:
:return:
"""
bsz, seq_len, num_tags = logits.size()
# Transpose batch size and sequence dimensions
mask = mask.float().transpose(0, 1).contiguous()
logits = logits.transpose(0, 1).contiguous()
# Initial alpha is the (batch_size, num_tags) tensor of likelihoods combining the
# transitions to the initial states and the logits for the first timestep.
if self.include_start_end_transitions:
alpha = self.start_transitions.view(1, num_tags) + logits[0]
else:
alpha = logits[0]
for t in range(1, seq_len):
# iteration starts from 1
emit_scores = logits[t].view(bsz, 1, num_tags)
transition_scores = self.transitions.view(1, num_tags, num_tags)
broadcast_alpha = alpha.view(bsz, num_tags, 1)
# calculate the likelihood
inner = broadcast_alpha + emit_scores + transition_scores
# mask the padded token when met the padded token, retain the previous alpha
alpha = (logsumexp(inner, 1) * mask[t].view(bsz, 1) + alpha * (1 - mask[t]).view(bsz, 1))
# Every sequence needs to end with a transition to the stop_tag.
if self.include_start_end_transitions:
stops = alpha + self.end_transitions.view(1, num_tags)
else:
stops = alpha
# Finally we log_sum_exp along the num_tags dim, result is (batch_size,)
return logsumexp(stops)
def _joint_likelihood(self, logits, tags, mask):
"""
calculate the likelihood for the input tag sequence
:param logits:
:param tags: shape: (bsz, seq_len)
:param mask: shape: (bsz, seq_len)
:return:
"""
bsz, seq_len, _ = logits.size()
# Transpose batch size and sequence dimensions:
logits = logits.transpose(0, 1).contiguous()
mask = mask.float().transpose(0, 1).contiguous()
tags = tags.transpose(0, 1).contiguous()
# Start with the transition scores from start_tag to the first tag in each input
if self.include_start_end_transitions:
score = self.start_transitions.index_select(0, tags[0])
else:
score = 0.0
for t in range(seq_len-1):
current_tag, next_tag = tags[t], tags[t+1]
# The scores for transitioning from current_tag to next_tag
transition_score = self.transitions[current_tag.view(-1), next_tag.view(-1)]
# The score for using current_tag
emit_score = logits[t].gather(1, current_tag.view(bsz, 1)).squeeze(1)
score = score + transition_score * mask[t+1] + emit_score * mask[t]
last_tag_index = mask.sum(0).long() - 1
last_tags = tags.gather(0, last_tag_index.view(1, bsz)).squeeze(0)
# Compute score of transitioning to `stop_tag` from each "last tag".
if self.include_start_end_transitions:
last_transition_score = self.end_transitions.index_select(0, last_tags)
else:
last_transition_score = 0.0
last_inputs = logits[-1] # (batch_size, num_tags)
last_input_score = last_inputs.gather(1, last_tags.view(-1, 1)) # (batch_size, 1)
last_input_score = last_input_score.squeeze() # (batch_size,)
score = score + last_transition_score + last_input_score * mask[-1]
return score
def viterbi_tags(self, logits, mask):
"""
:param logits: (bsz, seq_len, num_tags), emission scores
:param mask:
:return:
"""
_, max_seq_len, num_tags = logits.size()
# Get the tensors out of the variables
logits, mask = logits.data, mask.data
# Augment transitions matrix with start and end transitions
start_tag = num_tags
end_tag = num_tags + 1
transitions = torch.Tensor(num_tags + 2, num_tags + 2).fill_(-10000.)
# Apply transition constraints
constrained_transitions = (
self.transitions * self.constraint_mask[:num_tags, :num_tags] +
-10000.0 * (1 - self.constraint_mask[:num_tags, :num_tags])
)
transitions[:num_tags, :num_tags] = constrained_transitions.data
if self.include_start_end_transitions:
transitions[start_tag, :num_tags] = (
self.start_transitions.detach() * self.constraint_mask[start_tag, :num_tags].data +
-10000.0 * (1 - self.constraint_mask[start_tag, :num_tags].detach())
)
transitions[:num_tags, end_tag] = (
self.end_transitions.detach() * self.constraint_mask[:num_tags, end_tag].data +
-10000.0 * (1 - self.constraint_mask[:num_tags, end_tag].detach())
)
else:
transitions[start_tag, :num_tags] = (-10000.0 *
(1 - self.constraint_mask[start_tag, :num_tags].detach()))
transitions[:num_tags, end_tag] = -10000.0 * (1 - self.constraint_mask[:num_tags, end_tag].detach())
best_paths = []
# Pad the max sequence length by 2 to account for start_tag + end_tag.
tag_sequence = torch.Tensor(max_seq_len + 2, num_tags + 2)
for prediction, prediction_mask in zip(logits, mask):
# perform viterbi decoding sample by sample
seq_len = torch.sum(prediction_mask)
# Start with everything totally unlikely
tag_sequence.fill_(-10000.)
# At timestep 0 we must have the START_TAG
tag_sequence[0, start_tag] = 0.
# At steps 1, ..., sequence_length we just use the incoming prediction
tag_sequence[1:(seq_len + 1), :num_tags] = prediction[:seq_len]
# And at the last timestep we must have the END_TAG
tag_sequence[seq_len + 1, end_tag] = 0.
viterbi_path = viterbi_decode(tag_sequence[:(seq_len + 2)], transitions)
viterbi_path = viterbi_path[1:-1]
best_paths.append(viterbi_path)
return best_paths
class LSTM(nn.Module):
# customized LSTM with layer normalization
def __init__(self, input_size, hidden_size, bidirectional=True):
"""
:param input_size:
:param hidden_size:
:param bidirectional:
"""
super(LSTM, self).__init__()
self.input_size = input_size
if bidirectional:
self.hidden_size = hidden_size // 2
else:
self.hidden_size = hidden_size
self.bidirectional = bidirectional
self.LNx = nn.LayerNorm(4*self.hidden_size)
self.LNh = nn.LayerNorm(4*self.hidden_size)
self.LNc = nn.LayerNorm(self.hidden_size)
self.Wx = nn.Linear(in_features=self.input_size, out_features=4*self.hidden_size, bias=True)
self.Wh = nn.Linear(in_features=self.hidden_size, out_features=4*self.hidden_size, bias=True)
def forward(self, x):
"""
:param x: input, shape: (batch_size, seq_len, input_size)
:return:
"""
def recurrence(xt, hidden):
"""
recurrence function enhanced with layer norm
:param input: input to the current cell
:param hidden:
:return:
"""
htm1, ctm1 = hidden
gates = self.LNx(self.Wx(xt)) + self.LNh(self.Wh(htm1))
it, ft, gt, ot = gates.chunk(4, 1)
it = torch.sigmoid(it)
ft = torch.sigmoid(ft)
gt = torch.tanh(gt)
ot = torch.sigmoid(ot)
ct = (ft * ctm1) + (it * gt)
ht = ot * torch.tanh(self.LNc(ct)) # n_b x hidden_dim
return ht, ct
output = []
# sequence_length
steps = range(x.size(1))
hidden = self.init_hidden(x.size(0))
# change to: (seq_len, bs, hidden_size)
input = x.transpose(0, 1)
for t in steps:
hidden = recurrence(input[t], hidden)
output.append(hidden[0])
# (bs, seq_len, hidden_size)
output = torch.stack(output, 0).transpose(0, 1)
if self.bidirectional:
hidden_b = self.init_hidden(x.size(0))
output_b = []
for t in steps[::-1]:
hidden_b = recurrence(input[t], hidden_b)
output_b.append(hidden_b[0])
output_b = output_b[::-1]
output_b = torch.stack(output_b, 0).transpose(0, 1)
output = torch.cat([output, output_b], dim=-1)
return output, None
def init_hidden(self, bs):
h_0 = torch.zeros(bs, self.hidden_size).cuda()
c_0 = torch.zeros(bs, self.hidden_size).cuda()
return h_0, c_0
class BertABSATagger(BertPreTrainedModel):
def __init__(self, bert_config):
"""
:param bert_config: configuration for bert model
"""
super(BertABSATagger, self).__init__(bert_config)
self.num_labels = bert_config.num_labels
self.tagger_config = TaggerConfig()
self.tagger_config.absa_type = bert_config.absa_type.lower()
if bert_config.tfm_mode == 'finetune':
# initialized with pre-trained BERT and perform finetuning
# print("Fine-tuning the pre-trained BERT...")
self.bert = BertModel(bert_config)
else:
raise Exception("Invalid transformer mode %s!!!" % bert_config.tfm_mode)
self.bert_dropout = nn.Dropout(bert_config.hidden_dropout_prob)
# fix the parameters in BERT and regard it as feature extractor
if bert_config.fix_tfm:
# fix the parameters of the (pre-trained or randomly initialized) transformers during fine-tuning
for p in self.bert.parameters():
p.requires_grad = False
self.tagger = None
if self.tagger_config.absa_type == 'linear':
# hidden size at the penultimate layer
penultimate_hidden_size = bert_config.hidden_size
else:
self.tagger_dropout = nn.Dropout(self.tagger_config.hidden_dropout_prob)
if self.tagger_config.absa_type == 'lstm':
self.tagger = LSTM(input_size=bert_config.hidden_size,
hidden_size=self.tagger_config.hidden_size,
bidirectional=self.tagger_config.bidirectional)
elif self.tagger_config.absa_type == 'gru':
self.tagger = GRU(input_size=bert_config.hidden_size,
hidden_size=self.tagger_config.hidden_size,
bidirectional=self.tagger_config.bidirectional)
elif self.tagger_config.absa_type == 'tfm':
# transformer encoder layer
self.tagger = nn.TransformerEncoderLayer(d_model=bert_config.hidden_size,
nhead=12,
dim_feedforward=4*bert_config.hidden_size,
dropout=0.1)
elif self.tagger_config.absa_type == 'san':
# vanilla self attention networks
self.tagger = SAN(d_model=bert_config.hidden_size, nhead=12, dropout=0.1)
elif self.tagger_config.absa_type == 'crf':
self.tagger = CRF(num_tags=self.num_labels)
else:
raise Exception('Unimplemented downstream tagger %s...' % self.tagger_config.absa_type)
penultimate_hidden_size = self.tagger_config.hidden_size
self.classifier = nn.Linear(penultimate_hidden_size, bert_config.num_labels)
def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None,
position_ids=None, head_mask=None):
outputs = self.bert(input_ids, position_ids=position_ids, token_type_ids=token_type_ids,
attention_mask=attention_mask, head_mask=head_mask)
# the hidden states of the last Bert Layer, shape: (bsz, seq_len, hsz)
tagger_input = outputs[0]
tagger_input = self.bert_dropout(tagger_input)
#print("tagger_input.shape:", tagger_input.shape)
if self.tagger is None or self.tagger_config.absa_type == 'crf':
# regard classifier as the tagger
logits = self.classifier(tagger_input)
else:
if self.tagger_config.absa_type == 'lstm':
# customized LSTM
classifier_input, _ = self.tagger(tagger_input)
elif self.tagger_config.absa_type == 'gru':
# customized GRU
classifier_input, _ = self.tagger(tagger_input)
elif self.tagger_config.absa_type == 'san' or self.tagger_config.absa_type == 'tfm':
# vanilla self-attention networks or transformer
# adapt the input format for the transformer or self attention networks
tagger_input = tagger_input.transpose(0, 1)
classifier_input = self.tagger(tagger_input)
classifier_input = classifier_input.transpose(0, 1)
else:
raise Exception("Unimplemented downstream tagger %s..." % self.tagger_config.absa_type)
classifier_input = self.tagger_dropout(classifier_input)
logits = self.classifier(classifier_input)
outputs = (logits,) + outputs[2:]
if labels is not None:
if self.tagger_config.absa_type != 'crf':
loss_fct = CrossEntropyLoss()
if attention_mask is not None:
active_loss = attention_mask.view(-1) == 1
active_logits = logits.view(-1, self.num_labels)[active_loss]
active_labels = labels.view(-1)[active_loss]
loss = loss_fct(active_logits, active_labels)
else:
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
outputs = (loss,) + outputs
else:
log_likelihood = self.tagger(inputs=logits, tags=labels, mask=attention_mask)
loss = -log_likelihood
outputs = (loss,) + outputs
return outputs
class XLNetABSATagger(XLNetPreTrainedModel):
# TODO
def __init__(self, xlnet_config):
super(XLNetABSATagger, self).__init__(xlnet_config)
self.num_labels = xlnet_config.num_labels
self.xlnet = XLNetModel(xlnet_config)
self.tagger_config = xlnet_config.absa_tagger_config
self.tagger = None
if self.tagger_config.tagger == '':
# hidden size at the penultimate layer
penultimate_hidden_size = xlnet_config.d_model
else:
self.tagger_dropout = nn.Dropout(self.tagger_config.hidden_dropout_prob)
if self.tagger_config.tagger in ['RNN', 'LSTM', 'GRU']:
# 2-layer bi-directional rnn decoder
self.tagger = getattr(nn, self.tagger_config.tagger)(
input_size=xlnet_config.d_model, hidden_size=self.tagger_config.hidden_size//2,
num_layers=self.tagger_config.n_rnn_layers, batch_first=True, bidirectional=True)
elif self.tagger_config.tagger in ['CRF']:
# crf tagger
raise Exception("Unimplemented now!!")
else:
raise Exception('Unimplemented tagger %s...' % self.tagger_config.tagger)
penultimate_hidden_size = self.tagger_config.hidden_size
self.tagger_dropout = nn.Dropout(self.tagger_config.hidden_dropout_prob)
self.classifier = nn.Linear(penultimate_hidden_size, xlnet_config.num_labels)
self.apply(self.init_weights)
def forward(self, input_ids, token_type_ids=None, input_mask=None, attention_mask=None, mems=None,
perm_mask=None, target_mapping=None, labels=None, head_mask=None):
"""
:param input_ids: Indices of input sequence tokens in the vocabulary
:param token_type_ids: A parallel sequence of tokens (can be used to indicate various portions of the inputs).
The embeddings from these tokens will be summed with the respective token embeddings
:param input_mask: Mask to avoid performing attention on padding token indices.
:param attention_mask: Mask to avoid performing attention on padding token indices.
:param mems: list of torch.FloatTensor (one for each layer):
that contains pre-computed hidden-states (key and values in the attention blocks)
:param perm_mask:
:param target_mapping:
:param labels:
:param head_mask:
:return:
"""
transformer_outputs = self.xlnet(input_ids, token_type_ids=token_type_ids,
input_mask=input_mask, attention_mask=attention_mask,
mems=mems, perm_mask=perm_mask, target_mapping=target_mapping,
head_mask=head_mask)
# hidden states from the last transformer layer, xlnet has done the dropout,
# no need to do the additional dropout
tagger_input = transformer_outputs[0]
if self.tagger is None:
# regard classifier as the tagger
logits = self.classifier(tagger_input)
else:
if self.tagger_config.tagger in ['RNN', 'LSTM', 'GRU']:
classifier_input, _= self.tagger(tagger_input)
else:
raise Exception("Unimplemented tagger %s..." % self.tagger_config.tagger)
classifier_input = self.tagger_dropout(classifier_input)
logits = self.classifier(classifier_input)
# transformer outputs: (last_hidden_state, mems, hidden_states, attentions)
outputs = (logits,) + transformer_outputs[1:]
if labels is not None:
loss_fct = CrossEntropyLoss()
if attention_mask is not None:
active_loss = attention_mask.view(-1) == 1
active_logits = logits.view(-1, self.num_labels)[active_loss]
active_labels = labels.view(-1)[active_loss]
loss = loss_fct(active_logits, active_labels)
else:
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
outputs = (loss,) + outputs
return outputs