forked from QuantConnect/Lean
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCoarseFineFundamentalComboAlgorithm.py
80 lines (62 loc) · 3.52 KB
/
CoarseFineFundamentalComboAlgorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from AlgorithmImports import *
from System.Collections.Generic import List
### <summary>
### Demonstration of using coarse and fine universe selection together to filter down a smaller universe of stocks.
### </summary>
### <meta name="tag" content="using data" />
### <meta name="tag" content="universes" />
### <meta name="tag" content="coarse universes" />
### <meta name="tag" content="fine universes" />
class CoarseFineFundamentalComboAlgorithm(QCAlgorithm):
def initialize(self):
'''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.'''
self.set_start_date(2014,1,1) #Set Start Date
self.set_end_date(2015,1,1) #Set End Date
self.set_cash(50000) #Set Strategy Cash
# what resolution should the data *added* to the universe be?
self.universe_settings.resolution = Resolution.DAILY
# this add universe method accepts two parameters:
# - coarse selection function: accepts an IEnumerable<CoarseFundamental> and returns an IEnumerable<Symbol>
# - fine selection function: accepts an IEnumerable<FineFundamental> and returns an IEnumerable<Symbol>
self.add_universe(self.coarse_selection_function, self.fine_selection_function)
self.__number_of_symbols = 5
self.__number_of_symbols_fine = 2
self._changes = None
# sort the data by daily dollar volume and take the top 'NumberOfSymbols'
def coarse_selection_function(self, coarse):
# sort descending by daily dollar volume
sorted_by_dollar_volume = sorted(coarse, key=lambda x: x.dollar_volume, reverse=True)
# return the symbol objects of the top entries from our sorted collection
return [ x.symbol for x in sorted_by_dollar_volume[:self.__number_of_symbols] ]
# sort the data by P/E ratio and take the top 'NumberOfSymbolsFine'
def fine_selection_function(self, fine):
# sort descending by P/E ratio
sorted_by_pe_ratio = sorted(fine, key=lambda x: x.valuation_ratios.pe_ratio, reverse=True)
# take the top entries from our sorted collection
return [ x.symbol for x in sorted_by_pe_ratio[:self.__number_of_symbols_fine] ]
def on_data(self, data):
# if we have no changes, do nothing
if self._changes is None: return
# liquidate removed securities
for security in self._changes.removed_securities:
if security.invested:
self.liquidate(security.symbol)
# we want 20% allocation in each security in our universe
for security in self._changes.added_securities:
self.set_holdings(security.symbol, 0.2)
self._changes = None
# this event fires whenever we have changes to our universe
def on_securities_changed(self, changes):
self._changes = changes