forked from QuantConnect/Lean
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBasicTemplateOptionsAlgorithm.py
66 lines (55 loc) · 2.85 KB
/
BasicTemplateOptionsAlgorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from AlgorithmImports import *
### <summary>
### This example demonstrates how to add options for a given underlying equity security.
### It also shows how you can prefilter contracts easily based on strikes and expirations, and how you
### can inspect the option chain to pick a specific option contract to trade.
### </summary>
### <meta name="tag" content="using data" />
### <meta name="tag" content="options" />
### <meta name="tag" content="filter selection" />
class BasicTemplateOptionsAlgorithm(QCAlgorithm):
underlying_ticker = "GOOG"
def initialize(self):
self.set_start_date(2015, 12, 24)
self.set_end_date(2015, 12, 24)
self.set_cash(100000)
equity = self.add_equity(self.underlying_ticker)
option = self.add_option(self.underlying_ticker)
self.option_symbol = option.symbol
# set our strike/expiry filter for this option chain
option.set_filter(lambda u: (u.strikes(-2, +2)
# Expiration method accepts TimeSpan objects or integer for days.
# The following statements yield the same filtering criteria
.expiration(0, 180)))
#.expiration(TimeSpan.zero, TimeSpan.from_days(180))))
# use the underlying equity as the benchmark
self.set_benchmark(equity.symbol)
def on_data(self, slice):
if self.portfolio.invested or not self.is_market_open(self.option_symbol): return
chain = slice.option_chains.get_value(self.option_symbol)
if chain is None:
return
# we sort the contracts to find at the money (ATM) contract with farthest expiration
contracts = sorted(sorted(sorted(chain, \
key = lambda x: abs(chain.underlying.price - x.strike)), \
key = lambda x: x.expiry, reverse=True), \
key = lambda x: x.right, reverse=True)
# if found, trade it
if len(contracts) == 0: return
symbol = contracts[0].symbol
self.market_order(symbol, 1)
self.market_on_close_order(symbol, -1)
def on_order_event(self, order_event):
self.log(str(order_event))