forked from QuantConnect/Lean
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAddAlphaModelAlgorithm.py
56 lines (47 loc) · 2.26 KB
/
AddAlphaModelAlgorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from AlgorithmImports import *
### <summary>
### Test algorithm using 'QCAlgorithm.add_alpha_model()'
### </summary>
class AddAlphaModelAlgorithm(QCAlgorithm):
def initialize(self):
''' Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.'''
self.set_start_date(2013,10,7) #Set Start Date
self.set_end_date(2013,10,11) #Set End Date
self.set_cash(100000) #Set Strategy Cash
self.universe_settings.resolution = Resolution.DAILY
spy = Symbol.create("SPY", SecurityType.EQUITY, Market.USA)
fb = Symbol.create("FB", SecurityType.EQUITY, Market.USA)
ibm = Symbol.create("IBM", SecurityType.EQUITY, Market.USA)
# set algorithm framework models
self.set_universe_selection(ManualUniverseSelectionModel([ spy, fb, ibm ]))
self.set_portfolio_construction(EqualWeightingPortfolioConstructionModel())
self.set_execution(ImmediateExecutionModel())
self.add_alpha(OneTimeAlphaModel(spy))
self.add_alpha(OneTimeAlphaModel(fb))
self.add_alpha(OneTimeAlphaModel(ibm))
class OneTimeAlphaModel(AlphaModel):
def __init__(self, symbol):
self.symbol = symbol
self.triggered = False
def update(self, algorithm, data):
insights = []
if not self.triggered:
self.triggered = True
insights.append(Insight.price(
self.symbol,
Resolution.DAILY,
1,
InsightDirection.DOWN))
return insights