forked from QuantConnect/Lean
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAdjustedVolumeRegressionAlgorithm.cs
200 lines (177 loc) · 8.87 KB
/
AdjustedVolumeRegressionAlgorithm.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
using System.Collections.Generic;
using QuantConnect.Configuration;
using QuantConnect.Data;
using QuantConnect.Data.Auxiliary;
using QuantConnect.Interfaces;
using QuantConnect.Util;
namespace QuantConnect.Algorithm.CSharp
{
/// <summary>
/// Regression algorithm to test volume adjusted behavior
/// </summary>
public class AdjustedVolumeRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
private Symbol _aapl;
private const string Ticker = "AAPL";
private CorporateFactorProvider _factorFile;
private readonly IEnumerator<decimal> _expectedAdjustedVolume = new List<decimal> { 6164842, 3044047, 3680347, 3468303, 2169943, 2652523,
1499707, 1518215, 1655219, 1510487 }.GetEnumerator();
private readonly IEnumerator<decimal> _expectedAdjustedAskSize = new List<decimal> { 215600, 5600, 25200, 8400, 5600, 5600, 2800,
8400, 14000, 2800 }.GetEnumerator();
private readonly IEnumerator<decimal> _expectedAdjustedBidSize = new List<decimal> { 2800, 11200, 2800, 2800, 2800, 5600, 11200,
8400, 30800, 2800 }.GetEnumerator();
public override void Initialize()
{
SetStartDate(2014, 6, 5); //Set Start Date
SetEndDate(2014, 6, 5); //Set End Date
UniverseSettings.DataNormalizationMode = DataNormalizationMode.SplitAdjusted;
_aapl = AddEquity(Ticker, Resolution.Minute).Symbol;
var dataProvider =
Composer.Instance.GetExportedValueByTypeName<IDataProvider>(Config.Get("data-provider",
"DefaultDataProvider"));
var mapFileProvider = new LocalDiskMapFileProvider();
mapFileProvider.Initialize(dataProvider);
var factorFileProvider = new LocalDiskFactorFileProvider();
factorFileProvider.Initialize(mapFileProvider, dataProvider);
_factorFile = factorFileProvider.Get(_aapl) as CorporateFactorProvider;
}
/// <summary>
/// OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
/// </summary>
/// <param name="data">Slice object keyed by symbol containing the stock data</param>
public override void OnData(Slice data)
{
if (!Portfolio.Invested)
{
SetHoldings(_aapl, 1);
}
if (data.Splits.ContainsKey(_aapl))
{
Log(data.Splits[_aapl].ToString());
}
if (data.Bars.ContainsKey(_aapl))
{
var aaplData = data.Bars[_aapl];
// Assert our volume matches what we expect
if (_expectedAdjustedVolume.MoveNext() && _expectedAdjustedVolume.Current != aaplData.Volume)
{
// Our values don't match lets try and give a reason why
var dayFactor = _factorFile.GetPriceScale(aaplData.Time, DataNormalizationMode.SplitAdjusted);
var probableAdjustedVolume = aaplData.Volume / dayFactor;
if (_expectedAdjustedVolume.Current == probableAdjustedVolume)
{
throw new ArgumentException($"Volume was incorrect; but manually adjusted value is correct." +
$" Adjustment by multiplying volume by {1 / dayFactor} is not occurring.");
}
else
{
throw new ArgumentException($"Volume was incorrect; even when adjusted manually by" +
$" multiplying volume by {1 / dayFactor}. Data may have changed.");
}
}
}
if (data.QuoteBars.ContainsKey(_aapl))
{
var aaplQuoteData = data.QuoteBars[_aapl];
// Assert our askSize matches what we expect
if (_expectedAdjustedAskSize.MoveNext() && _expectedAdjustedAskSize.Current != aaplQuoteData.LastAskSize)
{
// Our values don't match lets try and give a reason why
var dayFactor = _factorFile.GetPriceScale(aaplQuoteData.Time, DataNormalizationMode.SplitAdjusted);
var probableAdjustedAskSize = aaplQuoteData.LastAskSize / dayFactor;
if (_expectedAdjustedAskSize.Current == probableAdjustedAskSize)
{
throw new ArgumentException($"Ask size was incorrect; but manually adjusted value is correct." +
$" Adjustment by multiplying size by {1 / dayFactor} is not occurring.");
}
else
{
throw new ArgumentException($"Ask size was incorrect; even when adjusted manually by" +
$" multiplying size by {1 / dayFactor}. Data may have changed.");
}
}
// Assert our bidSize matches what we expect
if (_expectedAdjustedBidSize.MoveNext() && _expectedAdjustedBidSize.Current != aaplQuoteData.LastBidSize)
{
// Our values don't match lets try and give a reason why
var dayFactor = _factorFile.GetPriceScale(aaplQuoteData.Time, DataNormalizationMode.SplitAdjusted);
var probableAdjustedBidSize = aaplQuoteData.LastBidSize / dayFactor;
if (_expectedAdjustedBidSize.Current == probableAdjustedBidSize)
{
throw new ArgumentException($"Bid size was incorrect; but manually adjusted value is correct." +
$" Adjustment by multiplying size by {1 / dayFactor} is not occurring.");
}
else
{
throw new ArgumentException($"Bid size was incorrect; even when adjusted manually by" +
$" multiplying size by {1 / dayFactor}. Data may have changed.");
}
}
}
}
/// <summary>
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
/// </summary>
public bool CanRunLocally { get; } = true;
/// <summary>
/// This is used by the regression test system to indicate which languages this algorithm is written in.
/// </summary>
public Language[] Languages { get; } = { Language.CSharp };
/// <summary>
/// Data Points count of all timeslices of algorithm
/// </summary>
public long DataPoints => 795;
/// <summary>
/// Data Points count of the algorithm history
/// </summary>
public int AlgorithmHistoryDataPoints => 0;
/// <summary>
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
/// </summary>
public Dictionary<string, string> ExpectedStatistics => new Dictionary<string, string>
{
{"Total Orders", "1"},
{"Average Win", "0%"},
{"Average Loss", "0%"},
{"Compounding Annual Return", "0%"},
{"Drawdown", "0%"},
{"Expectancy", "0"},
{"Start Equity", "100000"},
{"End Equity", "100146.57"},
{"Net Profit", "0%"},
{"Sharpe Ratio", "0"},
{"Sortino Ratio", "0"},
{"Probabilistic Sharpe Ratio", "0%"},
{"Loss Rate", "0%"},
{"Win Rate", "0%"},
{"Profit-Loss Ratio", "0"},
{"Alpha", "0"},
{"Beta", "0"},
{"Annual Standard Deviation", "0"},
{"Annual Variance", "0"},
{"Information Ratio", "0"},
{"Tracking Error", "0"},
{"Treynor Ratio", "0"},
{"Total Fees", "$21.60"},
{"Estimated Strategy Capacity", "$42000000.00"},
{"Lowest Capacity Asset", "AAPL R735QTJ8XC9X"},
{"Portfolio Turnover", "99.56%"},
{"OrderListHash", "60f03c8c589a4f814dc4e8945df23207"}
};
}
}