forked from nx111/oscam
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmd5.c
402 lines (342 loc) · 11.5 KB
/
md5.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
/*
* This code implements the MD5 message-digest algorithm.
* The algorithm is due to Ron Rivest. This code was
* written by Colin Plumb in 1993, no copyright is claimed.
* This code is in the public domain; do with it what you wish.
*
* ----------------------------------------------------------------------------
* The md5_crypt() function was taken from freeBSD's libcrypt and contains
* this license:
* "THE BEER-WARE LICENSE" (Revision 42):
* <phk@login.dknet.dk> wrote this file. As long as you retain this notice you
* can do whatever you want with this stuff. If we meet some day, and you think
* this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp
*
* $FreeBSD: src/lib/libcrypt/crypt.c,v 1.7.2.1 1999/08/29 14:56:33 peter Exp $
*
* ----------------------------------------------------------------------------
* On April 19th, 2001 md5_crypt() was modified to make it reentrant
* by Erik Andersen <andersen@uclibc.org>
*/
#include "../globals.h"
#include "../oscam-string.h"
#include "md5.h"
#if !defined(WITH_SSL) && !defined(WITH_LIBCRYPTO)
#if __BYTE_ORDER__==__ORDER_LITTLE_ENDIAN__
#define byteReverse(a, b)
#else
/*
* Note: This code is harmless on little-endian machines.
* The ifdefs are just a small optimization
*/
static void byteReverse(unsigned char *buf, unsigned int longs)
{
uint32_t t;
do
{
t = (uint32_t)((unsigned int)buf[3] << 8 | buf[2]) << 16 |
((unsigned int)buf[1] << 8 | buf[0]);
memcpy(buf, &t, 4);
buf += 4;
}
while(--longs);
}
#endif
/* The four core functions - F1 is optimized somewhat */
/* #define F1(x, y, z) (x & y | ~x & z) */
#define F1(x, y, z) (z ^ (x & (y ^ z)))
#define F2(x, y, z) F1(z, x, y)
#define F3(x, y, z) (x ^ y ^ z)
#define F4(x, y, z) (y ^ (x | ~z))
/* This is the central step in the MD5 algorithm. */
#define MD5STEP(f, w, x, y, z, data, s) \
( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x )
/*
* The core of the MD5 algorithm, this alters an existing MD5 hash to
* reflect the addition of 16 longwords of new data. MD5_Update blocks
* the data and converts bytes into longwords for this routine.
*/
static void MD5_Transform(uint32_t buf[4], uint32_t in[16])
{
uint32_t a = buf[0];
uint32_t b = buf[1];
uint32_t c = buf[2];
uint32_t d = buf[3];
MD5STEP(F1, a, b, c, d, in[ 0] + 0xd76aa478, 7);
MD5STEP(F1, d, a, b, c, in[ 1] + 0xe8c7b756, 12);
MD5STEP(F1, c, d, a, b, in[ 2] + 0x242070db, 17);
MD5STEP(F1, b, c, d, a, in[ 3] + 0xc1bdceee, 22);
MD5STEP(F1, a, b, c, d, in[ 4] + 0xf57c0faf, 7);
MD5STEP(F1, d, a, b, c, in[ 5] + 0x4787c62a, 12);
MD5STEP(F1, c, d, a, b, in[ 6] + 0xa8304613, 17);
MD5STEP(F1, b, c, d, a, in[ 7] + 0xfd469501, 22);
MD5STEP(F1, a, b, c, d, in[ 8] + 0x698098d8, 7);
MD5STEP(F1, d, a, b, c, in[ 9] + 0x8b44f7af, 12);
MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
MD5STEP(F2, a, b, c, d, in[ 1] + 0xf61e2562, 5);
MD5STEP(F2, d, a, b, c, in[ 6] + 0xc040b340, 9);
MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
MD5STEP(F2, b, c, d, a, in[ 0] + 0xe9b6c7aa, 20);
MD5STEP(F2, a, b, c, d, in[ 5] + 0xd62f105d, 5);
MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
MD5STEP(F2, b, c, d, a, in[ 4] + 0xe7d3fbc8, 20);
MD5STEP(F2, a, b, c, d, in[ 9] + 0x21e1cde6, 5);
MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
MD5STEP(F2, c, d, a, b, in[ 3] + 0xf4d50d87, 14);
MD5STEP(F2, b, c, d, a, in[ 8] + 0x455a14ed, 20);
MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
MD5STEP(F2, d, a, b, c, in[ 2] + 0xfcefa3f8, 9);
MD5STEP(F2, c, d, a, b, in[ 7] + 0x676f02d9, 14);
MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
MD5STEP(F3, a, b, c, d, in[ 5] + 0xfffa3942, 4);
MD5STEP(F3, d, a, b, c, in[ 8] + 0x8771f681, 11);
MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
MD5STEP(F3, a, b, c, d, in[ 1] + 0xa4beea44, 4);
MD5STEP(F3, d, a, b, c, in[ 4] + 0x4bdecfa9, 11);
MD5STEP(F3, c, d, a, b, in[ 7] + 0xf6bb4b60, 16);
MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
MD5STEP(F3, d, a, b, c, in[ 0] + 0xeaa127fa, 11);
MD5STEP(F3, c, d, a, b, in[ 3] + 0xd4ef3085, 16);
MD5STEP(F3, b, c, d, a, in[ 6] + 0x04881d05, 23);
MD5STEP(F3, a, b, c, d, in[ 9] + 0xd9d4d039, 4);
MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
MD5STEP(F3, b, c, d, a, in[ 2] + 0xc4ac5665, 23);
MD5STEP(F4, a, b, c, d, in[ 0] + 0xf4292244, 6);
MD5STEP(F4, d, a, b, c, in[ 7] + 0x432aff97, 10);
MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
MD5STEP(F4, b, c, d, a, in[ 5] + 0xfc93a039, 21);
MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
MD5STEP(F4, d, a, b, c, in[ 3] + 0x8f0ccc92, 10);
MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
MD5STEP(F4, b, c, d, a, in[ 1] + 0x85845dd1, 21);
MD5STEP(F4, a, b, c, d, in[ 8] + 0x6fa87e4f, 6);
MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
MD5STEP(F4, c, d, a, b, in[ 6] + 0xa3014314, 15);
MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
MD5STEP(F4, a, b, c, d, in[ 4] + 0xf7537e82, 6);
MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
MD5STEP(F4, c, d, a, b, in[ 2] + 0x2ad7d2bb, 15);
MD5STEP(F4, b, c, d, a, in[ 9] + 0xeb86d391, 21);
buf[0] += a;
buf[1] += b;
buf[2] += c;
buf[3] += d;
}
/*
* Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
* initialization constants.
*/
void MD5_Init(MD5_CTX *ctx)
{
ctx->buf[0] = 0x67452301;
ctx->buf[1] = 0xefcdab89;
ctx->buf[2] = 0x98badcfe;
ctx->buf[3] = 0x10325476;
ctx->bits[0] = 0;
ctx->bits[1] = 0;
}
/*
* Update context to reflect the concatenation of another buffer full
* of bytes.
*/
void MD5_Update(MD5_CTX *ctx, const unsigned char *buf, unsigned int len)
{
uint32_t t;
/* Update bitcount */
t = ctx->bits[0];
if((ctx->bits[0] = t + ((uint32_t) len << 3)) < t)
{ ctx->bits[1]++; } /* Carry from low to high */
ctx->bits[1] += len >> 29;
t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */
/* Handle any leading odd-sized chunks */
if(t)
{
unsigned char *p = ((unsigned char *)ctx->in) + t;
t = 64 - t;
if(len < t)
{
memcpy(p, buf, len);
return;
}
memcpy(p, buf, t);
byteReverse((unsigned char *)ctx->in, 16);
MD5_Transform(ctx->buf, ctx->in);
buf += t;
len -= t;
}
/* Process data in 64-byte chunks */
while(len >= 64)
{
memcpy(ctx->in, buf, 64);
byteReverse((unsigned char *)ctx->in, 16);
MD5_Transform(ctx->buf, ctx->in);
buf += 64;
len -= 64;
}
/* Handle any remaining bytes of data. */
memcpy(ctx->in, buf, len);
}
/*
* Final wrapup - pad to 64-byte boundary with the bit pattern
* 1 0* (64-bit count of bits processed, MSB-first)
*/
void MD5_Final(unsigned char digest[MD5_DIGEST_LENGTH], MD5_CTX *ctx)
{
unsigned count;
unsigned char *p;
/* Compute number of bytes mod 64 */
count = (ctx->bits[0] >> 3) & 0x3F;
/* Set the first char of padding to 0x80. This is safe since there is
always at least one byte free */
p = ((unsigned char *)ctx->in) + count;
*p++ = 0x80;
/* Bytes of padding needed to make 64 bytes */
count = 64 - 1 - count;
/* Pad out to 56 mod 64 */
if(count < 8)
{
/* Two lots of padding: Pad the first block to 64 bytes */
memset(p, 0, count);
byteReverse((unsigned char *)ctx->in, 16);
MD5_Transform(ctx->buf, ctx->in);
/* Now fill the next block with 56 bytes */
memset(ctx->in, 0, 56);
}
else
{
/* Pad block to 56 bytes */
memset(p, 0, count - 8);
}
byteReverse((unsigned char *)ctx->in, 14);
/* Append length in bits and transform */
uint32_t *c = ctx->in;
c[14] = ctx->bits[0];
c[15] = ctx->bits[1];
MD5_Transform(ctx->buf, ctx->in);
byteReverse((unsigned char *) ctx->buf, 4);
memcpy(digest, ctx->buf, 16);
memset(ctx, 0, sizeof(struct MD5Context)); /* In case it's sensitive */
}
unsigned char *MD5(const unsigned char *input, unsigned long len, unsigned char *output)
{
MD5_CTX ctx;
MD5_Init(&ctx);
MD5_Update(&ctx, input, len);
MD5_Final(output, &ctx);
memset(&ctx, 0, sizeof(ctx)); /* security consideration */
return output;
}
#endif
/* This string is magic for this algorithm. Having
it this way, we can get better later on */
static const char __md5__magic[] = "$1$";
/* 0 ... 63 => ascii - 64 */
static const unsigned char __md5_itoa64[] =
"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
static void __md5_to64(char *s, unsigned long v, int n)
{
while(--n >= 0)
{
*s++ = __md5_itoa64[v & 0x3f];
v >>= 6;
}
}
/*
* UNIX password
*
* Use MD5 for what it is best at...
*/
char *__md5_crypt(const char *pw, const char *salt, char *passwd)
{
const char *sp, *ep;
char *p;
unsigned char final[17]; /* final[16] exists only to aid in looping */
int sl, pl, i, __md5__magic_len, pw_len;
MD5_CTX ctx, ctx1;
unsigned long l;
/* Refine the Salt first */
sp = salt;
/* If it starts with the magic string, then skip that */
__md5__magic_len = cs_strlen(__md5__magic);
if(!strncmp(sp, __md5__magic, __md5__magic_len))
{ sp += __md5__magic_len; }
/* It stops at the first '$', max 8 chars */
for(ep = sp; *ep && *ep != '$' && ep < (sp + 8); ep++)
{ continue; }
/* get the length of the true salt */
sl = ep - sp;
MD5_Init(&ctx);
/* The password first, since that is what is most unknown */
pw_len = cs_strlen(pw);
MD5_Update(&ctx, (const unsigned char *)pw, pw_len);
/* Then our magic string */
MD5_Update(&ctx, (const unsigned char *)__md5__magic, __md5__magic_len);
/* Then the raw salt */
MD5_Update(&ctx, (const unsigned char *)sp, sl);
/* Then just as many characters of the MD5(pw,salt,pw) */
MD5_Init(&ctx1);
MD5_Update(&ctx1, (const unsigned char *)pw, pw_len);
MD5_Update(&ctx1, (const unsigned char *)sp, sl);
MD5_Update(&ctx1, (const unsigned char *)pw, pw_len);
MD5_Final(final, &ctx1);
for(pl = pw_len; pl > 0; pl -= 16)
{ MD5_Update(&ctx, (const unsigned char *)final, pl > 16 ? 16 : pl); }
/* Don't leave anything around in vm they could use. */
memset(final, 0, sizeof final);
/* Then something really weird... */
for(i = pw_len; i ; i >>= 1)
{
MD5_Update(&ctx, ((i & 1) ? final : (const unsigned char *) pw), 1);
}
/* Now make the output string */
strncpy(passwd, __md5__magic, 4); // This should be safe
strncat(passwd, sp, sl);
strcat(passwd, "$");
MD5_Final(final, &ctx);
/*
* and now, just to make sure things don't run too fast
* On a 60 Mhz Pentium this takes 34 msec, so you would
* need 30 seconds to build a 1000 entry dictionary...
*/
for(i = 0; i < 1000; i++)
{
MD5_Init(&ctx1);
if(i & 1)
{ MD5_Update(&ctx1, (const unsigned char *)pw, pw_len); }
else
{ MD5_Update(&ctx1, (const unsigned char *)final, 16); }
if(i % 3)
{ MD5_Update(&ctx1, (const unsigned char *)sp, sl); }
if(i % 7)
{ MD5_Update(&ctx1, (const unsigned char *)pw, pw_len); }
if(i & 1)
{ MD5_Update(&ctx1, (const unsigned char *)final, 16); }
else
{ MD5_Update(&ctx1, (const unsigned char *)pw, pw_len); }
MD5_Final(final, &ctx1);
}
p = passwd + cs_strlen(passwd);
final[16] = final[5];
for(i = 0 ; i < 5 ; i++)
{
l = (final[i] << 16) | (final[i + 6] << 8) | final[i + 12];
__md5_to64(p, l, 4);
p += 4;
}
l = final[11];
__md5_to64(p, l, 2);
p += 2;
*p = '\0';
/* Don't leave anything around in vm they could use. */
memset(final, 0, sizeof final);
return passwd;
}