-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathutility.py
430 lines (362 loc) · 14 KB
/
utility.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
import os
import math
import time
import datetime
from functools import reduce
# import matplotlib
#matplotlib.use('Agg')
# import matplotlib.pyplot as plt
import numpy as np
import scipy.misc as misc
import cv2
import torch
import torch.optim as optim
import torch.optim.lr_scheduler as lrs
import torchvision.utils as vutils
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
from math import exp
import math
from PIL import Image
def tensor2im(image_tensor, imtype=np.uint8):
image_numpy = image_tensor[0].cpu().float().numpy()
# image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0
image_numpy = (np.transpose(image_numpy, (1, 2, 0)))
return image_numpy.astype(imtype)
def gaussian(window_size, sigma):
gauss = torch.Tensor([exp(-(x - window_size/2)**2/float(2*sigma**2)) for x in range(window_size)])
return gauss/gauss.sum()
def create_window(window_size, channel):
_1D_window = gaussian(window_size, 1.5).unsqueeze(1)
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
window = Variable(_2D_window.expand(channel, 1, window_size, window_size))
return window
def SSIM1(img1, img2):
(_, channel, _, _) = img1.size()
window_size = 11
pad = int(window_size/11)
window = create_window(window_size, channel).to(img1.device)
mu1 = F.conv2d(img1, window, padding = pad, groups = channel)
mu2 = F.conv2d(img2, window, padding = pad, groups = channel)
mu1_sq = mu1.pow(2)
mu2_sq = mu2.pow(2)
mu1_mu2 = mu1*mu2
sigma1_sq = F.conv2d(img1*img1, window, padding = pad, groups = channel) - mu1_sq
sigma2_sq = F.conv2d(img2*img2, window, padding = pad, groups = channel) - mu2_sq
sigma12 = F.conv2d(img1*img2, window, padding = pad, groups = channel) - mu1_mu2
C1 = 0.01**2
C2 = 0.03**2
ssim_map = ((2*mu1_mu2 + C1)*(2*sigma12 + C2))/((mu1_sq + mu2_sq + C1)*(sigma1_sq + sigma2_sq + C2))
return ssim_map.mean()
def SSIM(img1, img2, window_size=11, window=None, size_average=True, full=False, val_range=None):
# Value range can be different from 255. Other common ranges are 1 (sigmoid) and 2 (tanh).
if val_range is None:
if torch.max(img1) > 128:
max_val = 255
else:
max_val = 1
if torch.min(img1) < -0.5:
min_val = -1
else:
min_val = 0
L = max_val - min_val
else:
L = val_range
padd = 0
(_, channel, height, width) = img1.size()
if window is None:
real_size = min(window_size, height, width)
window = create_window(real_size, channel=channel).to(img1.device)
mu1 = F.conv2d(img1, window, padding=padd, groups=channel)
mu2 = F.conv2d(img2, window, padding=padd, groups=channel)
mu1_sq = mu1.pow(2)
mu2_sq = mu2.pow(2)
mu1_mu2 = mu1 * mu2
sigma1_sq = F.conv2d(img1 * img1, window, padding=padd, groups=channel) - mu1_sq
sigma2_sq = F.conv2d(img2 * img2, window, padding=padd, groups=channel) - mu2_sq
sigma12 = F.conv2d(img1 * img2, window, padding=padd, groups=channel) - mu1_mu2
C1 = (0.01 * L) ** 2
C2 = (0.03 * L) ** 2
v1 = 2.0 * sigma12 + C2
v2 = sigma1_sq + sigma2_sq + C2
cs = torch.mean(v1 / v2) # contrast sensitivity
ssim_map = ((2 * mu1_mu2 + C1) * v1) / ((mu1_sq + mu2_sq + C1) * v2)
if size_average:
ret = ssim_map.mean()
else:
ret = ssim_map.mean(1).mean(1).mean(1)
if full:
return ret, cs
return ret
def PSNR(img1, img2):
img1 = img1[0].cpu().float().numpy()
img2 = img2[0].cpu().float().numpy()
mse = np.mean((img1 - img2) ** 2)
if mse == 0:
return 100
PIXEL_MAX = 255
return 20 * math.log10(PIXEL_MAX / math.sqrt(mse))
class timer():
def __init__(self):
self.acc = 0
self.tic()
def tic(self):
self.t0 = time.time()
def toc(self):
return time.time() - self.t0
def hold(self):
self.acc += self.toc()
def release(self):
ret = self.acc
self.acc = 0
return ret
def reset(self):
self.acc = 0
class checkpoint():
def __init__(self, args):
self.args = args
self.ok = True
self.log = torch.Tensor()
now = datetime.datetime.now().strftime('%Y-%m-%d-%H:%M:%S')
if args.load == '.':
if args.save == '.': args.save = now
# self.dir = '../experiment/' + args.save
self.dir = '/media/ext2/liuye/experiment'+args.save
else:
self.dir = '../experiment/' + args.load
if not os.path.exists(self.dir):
args.load = '.'
else:
self.log = torch.load(self.dir + '/psnr_log.pt')
print('Continue from epoch {}...'.format(len(self.log)))
def _make_dir(path):
if not os.path.exists(path): os.makedirs(path)
_make_dir(self.dir)
_make_dir(self.dir + '/model')
_make_dir(self.dir + '/results/')
open_type = 'a' if os.path.exists(self.dir + '/log.txt') else 'w'
self.log_file = open(self.dir + '/log.txt', open_type)
with open(self.dir + '/config.txt', open_type) as f:
f.write(now + '\n\n')
for arg in vars(args):
f.write('{}: {}\n'.format(arg, getattr(args, arg)))
f.write('\n')
def save(self, trainer, epoch):
trainer.model.save(self.dir, epoch)
trainer.loss.save(self.dir)
# trainer.loss.plot_loss(self.dir, epoch)
# self.plot_psnr(epoch)
torch.save(self.log, os.path.join(self.dir, 'psnr_log.pt'))
torch.save(
trainer.optimizer.state_dict(),
os.path.join(self.dir, 'optimizer.pt')
)
def add_log(self, log):
self.log = torch.cat([self.log, log])
def write_log(self, log, refresh=False):
print(log)
self.log_file.write(log + '\n')
if refresh:
self.log_file.close()
self.log_file = open(self.dir + '/log.txt', 'a')
def done(self):
self.log_file.close()
def save_image(self, image_numpy, image_path):
image_pil = None
if image_numpy.shape[2] == 1:
image_numpy = np.reshape(image_numpy, (image_numpy.shape[0], image_numpy.shape[1]))
image_pil = Image.fromarray(image_numpy, 'L')
else:
image_pil = Image.fromarray(image_numpy)
image_pil.save(image_path)
def save_images(self, image_name, visuals, type):
filename = '{}/results/'.format(self.dir)
# image_name = '%s_%s.png' % (image_name, type)
image_name = '%s.png' % (image_name)
save_path = os.path.join(filename, image_name)
self.save_image(visuals, save_path)
# def save_results_misc(self, filename, save_list):
# filename = '{}/results/misc/{}'.format(self.dir, filename)
# postfix = ('dehaze', 'haze', 'gt')
# for v, p in zip(save_list, postfix):
# normalized = v[0].data.mul(255 / self.args.rgb_range)
# ndarr = normalized.byte().permute(1, 2, 0).cpu().numpy()
# misc.imsave('{}{}.png'.format(filename, p), ndarr)
#
# def save_results_vutils(self, filename, save_list):
# filename = '{}/results/vutils/{}'.format(self.dir, filename)
# postfix = ('dehaze', 'haze', 'gt')
# for v, p in zip(save_list, postfix):
# vutils.save_image(v[0].data, '{}{}.png'.format(filename, p),
# normalize=True, scale_each=False)
def quantize(img):
return img.clamp(0, 1)
def make_optimizer(args, my_model):
# if args.model == 'DRN_v1':
# if args.n_GPUs>1:
# ignore_params1 = list(map(id, my_model.model.module.layer0.parameters()))
# ignore_params2 = list(map(id, my_model.model.module.layer1.parameters()))
# ignore_params3 = list(map(id, my_model.model.module.layer2.parameters()))
# else:
# ignore_params1 = list(map(id, my_model.model.layer0.parameters()))
# ignore_params2 = list(map(id, my_model.model.layer1.parameters()))
# ignore_params3 = list(map(id, my_model.model.layer2.parameters()))
# trainable = filter(lambda p: id(p) not in ignore_params1 + ignore_params2 + ignore_params3,
# my_model.parameters())
# else:
# trainable = filter(lambda x: x.requires_grad, my_model.parameters())
trainable = filter(lambda x: x.requires_grad, my_model.parameters())
if args.optimizer == 'SGD':
optimizer_function = optim.SGD
kwargs = {'momentum': args.momentum}
elif args.optimizer == 'ADAM':
optimizer_function = optim.Adam
kwargs = {
'betas': (args.beta1, args.beta2),
'eps': args.epsilon
}
elif args.optimizer == 'RMSprop':
optimizer_function = optim.RMSprop
kwargs = {'eps': args.epsilon}
kwargs['lr'] = args.lr
kwargs['weight_decay'] = args.weight_decay
return optimizer_function(trainable, **kwargs)
# def make_dual_optimizer(opt, dual_models):
# dual_optimizers = []
#
# for dual_model in dual_models:
# for para in dual_model.parameters():
# para.requires_grad = False
# temp_dual_optim = torch.optim.Adam(
# params=dual_model.parameters(),
# lr=opt.lr,
# betas=(opt.beta1, opt.beta2),
# eps=opt.epsilon,
# weight_decay=opt.weight_decay)
# dual_optimizers.append(temp_dual_optim)
# return dual_optimizers
def make_scheduler(args, my_optimizer):
if args.decay_type == 'lambda':
def lambda_rule(epoch):
epoch = epoch + 1
lr_l = (1 - (iter / args.max_iter))**args.power
# lr_l = epoch / args.warm_up_epoch if epoch <= args.warm_up_epoch else 0.5 * \
# (math.cos((epoch - args.warm_up_epoch) / (args.epochs - args.warm_up_epoch) * math.pi) + 1)
return lr_l
scheduler = lrs.LambdaLR(my_optimizer, lr_lambda=lambda_rule)
elif args.decay_type == 'step':
scheduler = lrs.StepLR(my_optimizer, step_size=args.lr_decay, gamma=args.gamma)
elif args.decay_type == 'exponent':
scheduler = lrs.ExponentialLR(my_optimizer, gamma=0.95)
else:
raise NotImplementedError('learning rate policy [%s] is not implemented', args.lr_policy)
return scheduler
# def make_scheduler(args, my_optimizer):
# if args.decay_type == 'step':
# scheduler = lrs.StepLR(
# my_optimizer,
# step_size=args.lr_decay,
# gamma=args.gamma
# )
# elif args.decay_type.find('step') >= 0:
# milestones = args.decay_type.split('_')
# milestones.pop(0)
# milestones = list(map(lambda x: int(x), milestones))
# scheduler = lrs.MultiStepLR(
# my_optimizer,
# milestones=milestones,
# gamma=args.gamma
# )
# return scheduler
# def make_scheduler(opt, my_optimizer):
# scheduler = lrs.CosineAnnealingLR(
# my_optimizer,
# float(opt.epochs),
# eta_min=opt.eta_min
# )
#
# return scheduler
# def make_dual_scheduler(opt, dual_optimizers):
# dual_scheduler = []
# for i in range(len(dual_optimizers)):
# scheduler = lrs.CosineAnnealingLR(
# dual_optimizers[i],
# float(opt.epochs),
# eta_min=opt.eta_min
# )
# dual_scheduler.append(scheduler)
#
# return dual_scheduler
# path_haze = '/home/liuye/Desktop/RCAN-master/RCAN_TrainCode/experiment/test/results/tensor([0])haze.png'
# path_gt = '/home/liuye/Desktop/RCAN-master/RCAN_TrainCode/experiment/test/results/tensor([0])gt.png'
# haze = misc.imread(path_haze)
# gt = misc.imread(path_gt)
# haze = np.swapaxes(haze, 0, 2)
# gt = np.swapaxes(gt, 0, 2)
#
# haze = np.swapaxes(haze, 1, 2)
# gt = np.swapaxes(gt, 1, 2)
#
# haze = torch.from_numpy(haze)
# gt = torch.from_numpy(gt)
# haze, gt = prepare([haze, gt])
# print(calc_ssim(haze, gt))
def init_model(args):
if args.model.find('DRN') >= 0:
args.n_blocks = 40
args.n_feats = 32
if args.model.find('DRN_v1') >= 0:
args.n_blocks = 20
args.n_feats = 32
if args.model.find('DRND')>=0:
args.n_feats = 32
if args.model.find('DRND_v2')>=0:
args.n_feats = 32
if args.model.find('DRND_v3') >= 0:
args.n_feats = 32
if args.model.find('DRND_v4') >= 0:
args.n_feats = 32
from PIL import Image
import itertools
from torch.utils.data.sampler import Sampler
class TwoStreamBatchSampler(Sampler):
"""Iterate two sets of indices
An 'epoch' is one iteration through the primary indices.
During the epoch, the secondary indices are iterated through
as many times as needed.
"""
def __init__(self, primary_indices, secondary_indices, batch_size, secondary_batch_size):
self.primary_indices = primary_indices
self.secondary_indices = secondary_indices
self.secondary_batch_size = secondary_batch_size
self.primary_batch_size = batch_size - secondary_batch_size
# print(len(self.secondary_indices))
# print(len(self.primary_indices))
# print(self.primary_batch_size)
# print(self.secondary_batch_size)
# assert len(self.primary_indices) >= self.primary_batch_size > 0
# assert len(self.secondary_indices) >= self.secondary_batch_size > 0
def __iter__(self):
primary_iter = iterate_once(self.primary_indices)
secondary_iter = iterate_eternally(self.secondary_indices)
return (
primary_batch + secondary_batch
for (primary_batch, secondary_batch)
in zip(grouper(primary_iter, self.primary_batch_size),
grouper(secondary_iter, self.secondary_batch_size))
)
def __len__(self):
return len(self.primary_indices) // self.primary_batch_size
def iterate_once(iterable):
return np.random.permutation(iterable)
def iterate_eternally(indices):
def infinite_shuffles():
while True:
yield np.random.permutation(indices)
return itertools.chain.from_iterable(infinite_shuffles())
def grouper(iterable, n):
"Collect data into fixed-length chunks or blocks"
# grouper('ABCDEFG', 3) --> ABC DEF"
args = [iter(iterable)] * n
return zip(*args)