forked from dbiir/UER-py
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_cmrc.py
430 lines (346 loc) · 16 KB
/
run_cmrc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
"""
This script provides an exmaple to wrap UER-py for Chinese machine reading comprehension.
"""
import re
import argparse
import json
import random
import torch
import torch.nn as nn
from uer.layers import *
from uer.encoders import *
from uer.utils.constants import *
from uer.utils.tokenizers import *
from uer.utils.optimizers import *
from uer.utils.config import load_hyperparam
from uer.utils.seed import set_seed
from uer.model_saver import save_model
from uer.opts import finetune_opts
from run_classifier import build_optimizer, load_or_initialize_parameters
class MachineReadingComprehension(nn.Module):
def __init__(self, args):
super(MachineReadingComprehension, self).__init__()
self.embedding = str2embedding[args.embedding](args, len(args.tokenizer.vocab))
self.encoder = str2encoder[args.encoder](args)
self.output_layer = nn.Linear(args.hidden_size, 2)
def forward(self, src, seg, start_position, end_position):
# Embedding.
emb = self.embedding(src, seg)
# Encoder.
output = self.encoder(emb, seg)
# Target.
logits = self.output_layer(output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits, end_logits = start_logits.squeeze(-1), end_logits.squeeze(-1)
start_loss = nn.NLLLoss()(nn.LogSoftmax(dim=-1)(start_logits), start_position)
end_loss = nn.NLLLoss()(nn.LogSoftmax(dim=-1)(end_logits), end_position)
loss = (start_loss + end_loss) / 2
return loss, start_logits, end_logits
def read_examples(path):
# Read squad-style examples.
examples = []
with open(path, mode="r", encoding="utf-8") as f:
for article in json.load(f)["data"]:
for para in article["paragraphs"]:
context = para["context"]
for qa in para["qas"]:
question = qa["question"]
question_id = qa["id"]
answer_texts, start_positions, end_positions = [], [], []
for answer in qa["answers"]:
answer_texts.append(answer["text"])
start_positions.append(answer["answer_start"])
end_positions.append(answer["answer_start"] + len(answer["text"]) - 1)
examples.append((context, question, question_id, start_positions, end_positions, answer_texts))
return examples
def convert_examples_to_dataset(args, examples):
# Converts a list of examples into a dataset that can be directly given as input to a model.
dataset = []
print("The number of questions in the dataset:", len(examples))
for i in range(len(examples)):
context = examples[i][0]
question = examples[i][1]
question_id = examples[i][2]
# Only consider the first answer.
start_position_absolute = examples[i][3][0]
end_position_absolute = examples[i][4][0]
answers = examples[i][5]
max_context_length = args.seq_length - len(question) - 3
# Divide the context into multiple spans.
doc_spans = []
start_offset = 0
while start_offset < len(context):
length = len(context) - start_offset
if length > max_context_length:
length = max_context_length
doc_spans.append((start_offset, length))
if start_offset + length == len(context):
break
start_offset += min(length, args.doc_stride)
for doc_span_index, doc_span in enumerate(doc_spans):
start_offset = doc_span[0]
span_context = context[start_offset : start_offset + doc_span[1]]
# Convert absolute position to relative position.
start_position = start_position_absolute - start_offset + len(question) + 2
end_position = end_position_absolute - start_offset + len(question) + 2
# If span does not contain the complete answer, we use it for data augmentation.
if start_position < len(question) + 2:
start_position = len(question) + 2
if end_position > doc_span[1] + len(question) + 1:
end_position = doc_span[1] + len(question) + 1
if start_position > doc_span[1] + len(question) + 1 or end_position < len(question) + 2:
start_position, end_position = 0, 0
src_a = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN] + args.tokenizer.tokenize(question) + [SEP_TOKEN])
src_b = args.tokenizer.convert_tokens_to_ids(args.tokenizer.tokenize(span_context) + [SEP_TOKEN])
src = src_a + src_b
seg = [1] * len(src_a) + [2] * len(src_b)
while len(src) < args.seq_length:
src.append(0)
seg.append(0)
dataset.append((src, seg, start_position, end_position, answers, question_id, len(question), doc_span_index, start_offset))
return dataset
def read_dataset(args, path):
examples = read_examples(path)
dataset = convert_examples_to_dataset(args, examples)
return dataset, examples
def batch_loader(batch_size, src, seg, start_position, end_position):
instances_num = src.size()[0]
for i in range(instances_num // batch_size):
src_batch = src[i * batch_size : (i + 1) * batch_size, :]
seg_batch = seg[i * batch_size : (i + 1) * batch_size, :]
start_position_batch = start_position[i * batch_size : (i + 1) * batch_size]
end_position_batch = end_position[i * batch_size : (i + 1) * batch_size]
yield src_batch, seg_batch, start_position_batch, end_position_batch
if instances_num > instances_num // batch_size * batch_size:
src_batch = src[instances_num // batch_size * batch_size :, :]
seg_batch = seg[instances_num // batch_size * batch_size :, :]
start_position_batch = start_position[instances_num // batch_size * batch_size :]
end_position_batch = end_position[instances_num // batch_size * batch_size :]
yield src_batch, seg_batch, start_position_batch, end_position_batch
def train(args, model, optimizer, scheduler, src_batch, seg_batch, start_position_batch, end_position_batch):
model.zero_grad()
src_batch = src_batch.to(args.device)
seg_batch = seg_batch.to(args.device)
start_position_batch = start_position_batch.to(args.device)
end_position_batch = end_position_batch.to(args.device)
loss, _, _ = model(src_batch, seg_batch, start_position_batch, end_position_batch)
if torch.cuda.device_count() > 1:
loss = torch.mean(loss)
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
optimizer.step()
scheduler.step()
return loss
# Evaluation script from CMRC2018.
# We modify the tokenizer.
def mixed_segmentation(in_str, rm_punc=False):
#in_str = str(in_str).decode('utf-8').lower().strip()
n_str = str(in_str).lower().strip()
segs_out = []
temp_str = ""
sp_char = ['-',':','_','*','^','/','\\','~','`','+','=',
',','。',':','?','!','“','”',';','’','《','》','……','·','、',
'「','」','(',')','-','~','『','』']
for char in in_str:
if rm_punc and char in sp_char:
continue
#if re.search(ur'[\u4e00-\u9fa5]', char) or char in sp_char:
if re.search(r'[\u4e00-\u9fa5]', char) or char in sp_char:
if temp_str != "":
#ss = nltk.word_tokenize(temp_str)
ss = list(temp_str)
segs_out.extend(ss)
temp_str = ""
segs_out.append(char)
else:
temp_str += char
if temp_str != "":
#ss = nltk.word_tokenize(temp_str)
ss = list(temp_str)
segs_out.extend(ss)
return segs_out
def find_lcs(s1, s2):
m = [[0 for i in range(len(s2)+1)] for j in range(len(s1)+1)]
mmax = 0
p = 0
for i in range(len(s1)):
for j in range(len(s2)):
if s1[i] == s2[j]:
m[i+1][j+1] = m[i][j]+1
if m[i+1][j+1] > mmax:
mmax=m[i+1][j+1]
p=i+1
return s1[p-mmax:p], mmax
def remove_punctuation(in_str):
#in_str = str(in_str).decode('utf-8').lower().strip()
in_str = str(in_str).lower().strip()
sp_char = ['-',':','_','*','^','/','\\','~','`','+','=',
',','。',':','?','!','“','”',';','’','《','》','……','·','、',
'「','」','(',')','-','~','『','』']
out_segs = []
for char in in_str:
if char in sp_char:
continue
else:
out_segs.append(char)
return ''.join(out_segs)
def calc_f1_score(answers, prediction):
f1_scores = []
for ans in answers:
ans_segs = mixed_segmentation(ans, rm_punc=True)
prediction_segs = mixed_segmentation(prediction, rm_punc=True)
lcs, lcs_len = find_lcs(ans_segs, prediction_segs)
if lcs_len == 0:
f1_scores.append(0)
continue
precision = 1.0*lcs_len/len(prediction_segs)
recall = 1.0*lcs_len/len(ans_segs)
f1 = (2*precision*recall)/(precision+recall)
f1_scores.append(f1)
return max(f1_scores)
def calc_em_score(answers, prediction):
em = 0
for ans in answers:
ans_ = remove_punctuation(ans)
prediction_ = remove_punctuation(prediction)
if ans_ == prediction_:
em = 1
break
return em
def get_answers(dataset, start_prob_all, end_prob_all):
previous_question_id = -1
pred_answers = []
# For each predicted answer, we store its span index, start position, end position, and score.
current_answer = (-1, -1, -1, -100.0)
for i in range(len(dataset)):
question_id = dataset[i][5]
question_length = dataset[i][6]
span_index = dataset[i][7]
start_offset = dataset[i][8]
start_scores, end_scores = start_prob_all[i], end_prob_all[i]
start_pred = torch.argmax(start_scores[question_length + 2 :], dim=0) + question_length + 2
end_pred = start_pred + torch.argmax(end_scores[start_pred:], dim=0)
score = start_scores[start_pred] + end_scores[end_pred]
start_pred_absolute = start_pred + start_offset - question_length - 2
end_pred_absolute = end_pred + start_offset - question_length - 2
if question_id == previous_question_id:
if score > current_answer[3]:
current_answer = (span_index, start_pred_absolute, end_pred_absolute, score)
else:
if i > 0:
pred_answers.append(current_answer)
previous_question_id = question_id
current_answer = (span_index, start_pred_absolute, end_pred_absolute, score)
pred_answers.append(current_answer)
return pred_answers
# Evaluation function.
def evaluate(args, dataset, examples):
src = torch.LongTensor([sample[0] for sample in dataset])
seg = torch.LongTensor([sample[1] for sample in dataset])
start_position = torch.LongTensor([sample[2] for sample in dataset])
end_position = torch.LongTensor([sample[3] for sample in dataset])
batch_size = args.batch_size
instances_num = src.size()[0]
args.model.eval()
start_prob_all, end_prob_all = [], []
for i, (src_batch, seg_batch, start_position_batch, end_position_batch) in enumerate(batch_loader(batch_size, src, seg, start_position, end_position)):
src_batch = src_batch.to(args.device)
seg_batch = seg_batch.to(args.device)
start_position_batch = start_position_batch.to(args.device)
end_position_batch = end_position_batch.to(args.device)
with torch.no_grad():
loss, start_logits, end_logits = args.model(src_batch, seg_batch, start_position_batch, end_position_batch)
start_prob = nn.Softmax(dim=1)(start_logits)
end_prob = nn.Softmax(dim=1)(end_logits)
for j in range(start_prob.size()[0]):
start_prob_all.append(start_prob[j])
end_prob_all.append(end_prob[j])
pred_answers = get_answers(dataset, start_prob_all, end_prob_all)
f1, em = 0, 0
total_count, skip_count = len(examples), 0
for i in range(len(examples)):
answers = examples[i][5]
start_pred_pos = pred_answers[i][1]
end_pred_pos = pred_answers[i][2]
if end_pred_pos <= start_pred_pos:
skip_count += 1
continue
prediction = examples[i][0][start_pred_pos: end_pred_pos + 1]
f1 += calc_f1_score(answers, prediction)
em += calc_em_score(answers, prediction)
f1_score = 100.0 * f1 / total_count
em_score = 100.0 * em / total_count
avg = (f1_score + em_score) * 0.5
print("Avg: {:.4f},F1:{:.4f},EM:{:.4f},Total:{},Skip:{}".format(avg, f1_score, em_score, total_count, skip_count))
return avg
def main():
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
finetune_opts(parser)
parser.add_argument("--doc_stride", default=128, type=int,
help="When splitting up a long document into chunks, how much stride to take between chunks.")
args = parser.parse_args()
# Load the hyperparameters from the config file.
args = load_hyperparam(args)
set_seed(args.seed)
# Build tokenizer.
args.tokenizer = CharTokenizer(args)
# Build machine reading comprehension model.
model = MachineReadingComprehension(args)
# Load or initialize parameters.
load_or_initialize_parameters(args, model)
args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(args.device)
# Build tokenizer.
args.tokenizer = CharTokenizer(args)
# Training phase.
batch_size = args.batch_size
print("Batch size: ", batch_size)
trainset, _ = read_dataset(args, args.train_path)
random.shuffle(trainset)
instances_num = len(trainset)
src = torch.LongTensor([sample[0] for sample in trainset])
seg = torch.LongTensor([sample[1] for sample in trainset])
start_position = torch.LongTensor([sample[2] for sample in trainset])
end_position = torch.LongTensor([sample[3] for sample in trainset])
args.train_steps = int(instances_num * args.epochs_num / batch_size) + 1
print("The number of training instances:", instances_num)
optimizer, scheduler = build_optimizer(args, model)
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer,opt_level=args.fp16_opt_level)
if torch.cuda.device_count() > 1:
print("{} GPUs are available. Let's use them.".format(torch.cuda.device_count()))
model = torch.nn.DataParallel(model)
args.model = model
total_loss = 0.0
result = 0.0
best_result = 0.0
print("Start training.")
for epoch in range(1, args.epochs_num + 1):
model.train()
for i, (src_batch, seg_batch, start_position_batch, end_position_batch) in enumerate(batch_loader(batch_size, src, seg, start_position, end_position)):
loss = train(args, model, optimizer, scheduler, src_batch, seg_batch, start_position_batch, end_position_batch)
total_loss += loss.item()
if (i + 1) % args.report_steps == 0:
print("Epoch id: {}, Training steps: {}, Avg loss: {:.3f}".format(epoch, i+1, total_loss / args.report_steps))
total_loss = 0.0
result = evaluate(args, *read_dataset(args, args.dev_path))
if result > best_result:
best_result = result
save_model(model, args.output_model_path)
# Evaluation phase.
if args.test_path is not None:
print("Test set evaluation.")
if torch.cuda.device_count() > 1:
model.module.load_state_dict(torch.load(args.output_model_path))
else:
model.load_state_dict(torch.load(args.output_model_path))
evaluate(args, *read_dataset(args, args.test_path))
if __name__ == "__main__":
main()