forked from dbiir/UER-py
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_dbqa.py
280 lines (239 loc) · 12 KB
/
run_dbqa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
"""
This script provides an exmaple to wrap UER-py for document-based question answering.
"""
import torch
import random
import argparse
import collections
import torch.nn as nn
from uer.utils.vocab import Vocab
from uer.utils.constants import *
from uer.utils.tokenizer import *
from uer.layers.embeddings import *
from uer.encoders.bert_encoder import *
from uer.encoders.rnn_encoder import *
from uer.encoders.birnn_encoder import *
from uer.encoders.cnn_encoder import *
from uer.encoders.attn_encoder import *
from uer.encoders.gpt_encoder import *
from uer.encoders.mixed_encoder import *
from uer.utils.optimizers import *
from uer.utils.config import load_hyperparam
from uer.utils.seed import set_seed
from uer.model_saver import save_model
from run_classifier import Classifier, count_labels_num, build_optimizer, batch_loader, train_model, load_or_initialize_parameters
def read_dataset(args, path):
dataset, columns = [], {}
with open(path, mode="r", encoding="utf-8") as f:
for line_id, line in enumerate(f):
if line_id == 0:
for i, column_name in enumerate(line.strip().split("\t")):
columns[column_name] = i
continue
line = line.strip().split('\t')
qid = int(line[columns["qid"]])
tgt = int(line[columns["label"]])
text_a, text_b = line[columns["text_a"]], line[columns["text_b"]]
src_a = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN] + args.tokenizer.tokenize(text_a) + [SEP_TOKEN])
src_b = args.tokenizer.convert_tokens_to_ids(args.tokenizer.tokenize(text_b) + [SEP_TOKEN])
src = src_a + src_b
seg = [1] * len(src_a) + [2] * len(src_b)
if len(src) > args.seq_length:
src = src[:args.seq_length]
seg = seg[:args.seq_length]
while len(src) < args.seq_length:
src.append(0)
seg.append(0)
dataset.append((src, tgt, seg, qid))
return dataset
def evaluate(args, dataset):
src = torch.LongTensor([sample[0] for sample in dataset])
tgt = torch.LongTensor([sample[1] for sample in dataset])
seg = torch.LongTensor([sample[2] for sample in dataset])
batch_size = args.batch_size
instances_num = src.size()[0]
args.model.eval()
for i, (src_batch, tgt_batch, seg_batch, _) in enumerate(batch_loader(batch_size, src, tgt, seg)):
src_batch = src_batch.to(args.device)
tgt_batch = tgt_batch.to(args.device)
seg_batch = seg_batch.to(args.device)
with torch.no_grad():
loss, logits = args.model(src_batch, tgt_batch, seg_batch)
if i == 0:
logits_all = logits
if i >= 1:
logits_all = torch.cat((logits_all,logits), 0)
# To calculate MRR, the results are grouped by qid.
dataset_groupby_qid, correct_answer_orders, scores = [], [], []
for i in range(len(dataset)):
label = dataset[i][1]
if i == 0:
qid = dataset[i][3]
# Order of the current sentence in the document.
current_order = 0
scores.append(float(logits_all[i][1].item()))
if label == 1:
# Occasionally, more than one sentences in a document contain answers.
correct_answer_orders.append(current_order)
current_order += 1
continue
if qid == dataset[i][3]:
scores.append(float(logits_all[i][1].item()))
if label == 1:
correct_answer_orders.append(current_order)
current_order += 1
else:
# For each question, we record which sentences contain answers
# and the scores of all sentences in the document.
dataset_groupby_qid.append((qid, correct_answer_orders, scores))
correct_answer_orders, scores, current_order = [], [], 0
qid = dataset[i][3]
scores.append(float(logits_all[i][1].item()))
if label == 1:
correct_answer_orders.append(current_order)
current_order += 1
dataset_groupby_qid.append((qid, correct_answer_orders, scores))
reciprocal_rank = []
for qid, correct_answer_orders, scores in dataset_groupby_qid:
if len(correct_answer_orders)==1:
sorted_scores = sorted(scores, reverse=True)
for j in range(len(sorted_scores)):
if sorted_scores[j] == scores[correct_answer_orders[0]]:
reciprocal_rank.append(1 / (j + 1))
else:
current_rank = len(scores)
sorted_scores = sorted(scores, reverse=True)
for i in range(len(correct_answer_orders)):
for j in range(len(scores)):
if sorted_scores[j] == scores[correct_answer_orders[i]] and j < current_rank:
current_rank = j
reciprocal_rank.append(1 / (current_rank + 1))
MRR = sum(reciprocal_rank) / len(reciprocal_rank)
print("Mean Reciprocal Rank: {:.4f}".format(MRR))
return MRR
def main():
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
# Path options.
parser.add_argument("--pretrained_model_path", default=None, type=str,
help="Path of the pretrained model.")
parser.add_argument("--output_model_path", default="./models/dbqa_model.bin", type=str,
help="Path of the output model.")
parser.add_argument("--vocab_path", default=None, type=str,
help="Path of the vocabulary file.")
parser.add_argument("--spm_model_path", default=None, type=str,
help="Path of the sentence piece model.")
parser.add_argument("--train_path", type=str, required=True,
help="Path of the trainset.")
parser.add_argument("--dev_path", type=str, required=True,
help="Path of the devset.")
parser.add_argument("--test_path", type=str,
help="Path of the testset.")
parser.add_argument("--config_path", default="./models/bert_base_config.json", type=str,
help="Path of the config file.")
# Model options.
parser.add_argument("--batch_size", type=int, default=32,
help="Batch size.")
parser.add_argument("--seq_length", type=int, default=128,
help="Sequence length.")
parser.add_argument("--embedding", choices=["bert", "word"], default="bert",
help="Emebdding type.")
parser.add_argument("--encoder", choices=["bert", "lstm", "gru", \
"cnn", "gatedcnn", "attn", "synt", \
"rcnn", "crnn", "gpt", "bilstm"], \
default="bert", help="Encoder type.")
parser.add_argument("--bidirectional", action="store_true", help="Specific to recurrent model.")
parser.add_argument("--pooling", choices=["mean", "max", "first", "last"], default="first",
help="Pooling type.")
parser.add_argument("--factorized_embedding_parameterization", action="store_true", help="Factorized embedding parameterization.")
parser.add_argument("--parameter_sharing", action="store_true", help="Parameter sharing.")
# Tokenizer options.
parser.add_argument("--tokenizer", choices=["bert", "char", "space"], default="bert",
help="Specify the tokenizer."
"Original Google BERT uses bert tokenizer on Chinese corpus."
"Char tokenizer segments sentences into characters."
"Space tokenizer segments sentences into words according to space."
)
# Optimizer options.
parser.add_argument("--soft_targets", action='store_true',
help="Train model with logits.")
parser.add_argument("--soft_alpha", type=float, default=0.5,
help="Weight of the soft targets loss.")
parser.add_argument("--learning_rate", type=float, default=2e-5,
help="Learning rate.")
parser.add_argument("--warmup", type=float, default=0.1,
help="Warm up value.")
parser.add_argument("--fp16", action='store_true',
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
parser.add_argument("--fp16_opt_level", choices=["O0", "O1", "O2", "O3" ], default='O1',
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html")
# Training options.
parser.add_argument("--dropout", type=float, default=0.5,
help="Dropout.")
parser.add_argument("--epochs_num", type=int, default=3,
help="Number of epochs.")
parser.add_argument("--report_steps", type=int, default=100,
help="Specific steps to print prompt.")
parser.add_argument("--seed", type=int, default=7,
help="Random seed.")
args = parser.parse_args()
# Load the hyperparameters from the config file.
args = load_hyperparam(args)
set_seed(args.seed)
# Count the number of labels.
args.labels_num = count_labels_num(args.train_path)
# Build tokenizer.
args.tokenizer = globals()[args.tokenizer.capitalize() + "Tokenizer"](args)
# Build classification model.
model = Classifier(args)
# Load or initialize parameters.
load_or_initialize_parameters(args, model)
args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(args.device)
# Training phase.
trainset = read_dataset(args, args.train_path)
random.shuffle(trainset)
instances_num = len(trainset)
batch_size = args.batch_size
src = torch.LongTensor([example[0] for example in trainset])
tgt = torch.LongTensor([example[1] for example in trainset])
seg = torch.LongTensor([example[2] for example in trainset])
args.train_steps = int(instances_num * args.epochs_num / batch_size) + 1
print("Batch size: ", batch_size)
print("The number of training instances:", instances_num)
optimizer, scheduler = build_optimizer(args, model)
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer,opt_level = args.fp16_opt_level)
args.amp = amp
if torch.cuda.device_count() > 1:
print("{} GPUs are available. Let's use them.".format(torch.cuda.device_count()))
model = torch.nn.DataParallel(model)
args.model = model
total_loss, result, best_result = 0., 0., 0.
print("Start training.")
for epoch in range(1, args.epochs_num+1):
model.train()
for i, (src_batch, tgt_batch, seg_batch, _) in enumerate(batch_loader(batch_size, src, tgt, seg)):
loss = train_model(args, model, optimizer, scheduler, src_batch, tgt_batch, seg_batch)
total_loss += loss.item()
if (i + 1) % args.report_steps == 0:
print("Epoch id: {}, Training steps: {}, Avg loss: {:.3f}".format(epoch, i+1, total_loss / args.report_steps))
total_loss = 0.
result = evaluate(args, read_dataset(args, args.dev_path))
if result > best_result:
best_result = result
save_model(model, args.output_model_path)
# Evaluation phase.
if args.test_path is not None:
print("Test set evaluation.")
if torch.cuda.device_count() > 1:
model.module.load_state_dict(torch.load(args.output_model_path))
else:
model.load_state_dict(torch.load(args.output_model_path))
evaluate(args, read_dataset(args, args.test_path))
if __name__ == "__main__":
main()