-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_inv.py
51 lines (39 loc) · 1.3 KB
/
test_inv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from __future__ import print_function
import os,sys
sys.path.append(os.getcwd())
import warnings
warnings.filterwarnings('ignore')
#warnings.filterwarnings('ignore',category=FutureWarning)
import tensorflow as tf
#from Invertible.model_inv_major import Model
from Invertible.model_inv import Model
from Invertible.configs_inv import FLAGS
from datetime import datetime
import logging
import pprint
pp = pprint.PrettyPrinter()
def run():
FLAGS.batch_size=1
mode_type = "20201101-1127" # random
#mode_type = "20211206-1901" # partial
FLAGS.log_dir = "log/"+mode_type
FLAGS.restore_epoch = 400
# FLAGS.log_dir = "log/20201019-2002" #random train bad
# FLAGS.log_dir = "log/20201018-1611"
# FLAGS.restore_epoch = 100
FLAGS.dataset = ["model40"][0]
#FLAGS.mode = "uniform"
print('checkpoints:', FLAGS.log_dir)
print('data_dir:', FLAGS.data_dir)
#mode_type = ["random", "uniform", "mix"][0]
pp.pprint(FLAGS)
model = Model(FLAGS)
model.test(mode_type=mode_type)
model.eval_PU(mode_type=mode_type)
#model.eval_DiffPoints(mode_type=mode_type)
#model.eval_large(mode_type=mode_type)
def main(unused_argv):
run()
if __name__ == '__main__':
logging.basicConfig(level=logging.INFO)
tf.app.run()