forked from OpenNMT/OpenNMT-py
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLoss.py
265 lines (223 loc) · 10 KB
/
Loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
"""
This file handles the details of the loss function during training.
This includes: LossComputeBase and the standard NMTLossCompute, and
sharded loss compute stuff.
"""
from __future__ import division
import torch
import torch.nn as nn
from torch.autograd import Variable
import onmt
import onmt.io
class LossComputeBase(nn.Module):
"""
Class for managing efficient loss computation. Handles
sharding next step predictions and accumulating mutiple
loss computations
Users can implement their own loss computation strategy by making
subclass of this one. Users need to implement the _compute_loss()
and make_shard_state() methods.
Args:
generator (:obj:`nn.Module`) :
module that maps the output of the decoder to a
distribution over the target vocabulary.
tgt_vocab (:obj:`Vocab`) :
torchtext vocab object representing the target output
normalzation (str): normalize by "sents" or "tokens"
"""
def __init__(self, generator, tgt_vocab):
super(LossComputeBase, self).__init__()
self.generator = generator
self.tgt_vocab = tgt_vocab
self.padding_idx = tgt_vocab.stoi[onmt.io.PAD_WORD]
def _make_shard_state(self, batch, output, range_, attns=None):
"""
Make shard state dictionary for shards() to return iterable
shards for efficient loss computation. Subclass must define
this method to match its own _compute_loss() interface.
Args:
batch: the current batch.
output: the predict output from the model.
range_: the range of examples for computing, the whole
batch or a trunc of it?
attns: the attns dictionary returned from the model.
"""
return NotImplementedError
def _compute_loss(self, batch, output, target, **kwargs):
"""
Compute the loss. Subclass must define this method.
Args:
batch: the current batch.
output: the predict output from the model.
target: the validate target to compare output with.
**kwargs(optional): additional info for computing loss.
"""
return NotImplementedError
def monolithic_compute_loss(self, batch, output, attns):
"""
Compute the forward loss for the batch.
Args:
batch (batch): batch of labeled examples
output (:obj:`FloatTensor`):
output of decoder model `[tgt_len x batch x hidden]`
attns (dict of :obj:`FloatTensor`) :
dictionary of attention distributions
`[tgt_len x batch x src_len]`
Returns:
:obj:`onmt.Statistics`: loss statistics
"""
range_ = (0, batch.tgt.size(0))
shard_state = self._make_shard_state(batch, output, range_, attns)
_, batch_stats = self._compute_loss(batch, **shard_state)
return batch_stats
def sharded_compute_loss(self, batch, output, attns,
cur_trunc, trunc_size, shard_size,
normalization):
"""Compute the forward loss and backpropagate. Computation is done
with shards and optionally truncation for memory efficiency.
Also supports truncated BPTT for long sequences by taking a
range in the decoder output sequence to back propagate in.
Range is from `(cur_trunc, cur_trunc + trunc_size)`.
Note sharding is an exact efficiency trick to relieve memory
required for the generation buffers. Truncation is an
approximate efficiency trick to relieve the memory required
in the RNN buffers.
Args:
batch (batch) : batch of labeled examples
output (:obj:`FloatTensor`) :
output of decoder model `[tgt_len x batch x hidden]`
attns (dict) : dictionary of attention distributions
`[tgt_len x batch x src_len]`
cur_trunc (int) : starting position of truncation window
trunc_size (int) : length of truncation window
shard_size (int) : maximum number of examples in a shard
normalization (int) : Loss is divided by this number
Returns:
:obj:`onmt.Statistics`: validation loss statistics
"""
batch_stats = onmt.Statistics()
range_ = (cur_trunc, cur_trunc + trunc_size)
shard_state = self._make_shard_state(batch, output, range_, attns)
for shard in shards(shard_state, shard_size):
loss, stats = self._compute_loss(batch, **shard)
loss.div(normalization).backward()
batch_stats.update(stats)
return batch_stats
def _stats(self, loss, scores, target):
"""
Args:
loss (:obj:`FloatTensor`): the loss computed by the loss criterion.
scores (:obj:`FloatTensor`): a score for each possible output
target (:obj:`FloatTensor`): true targets
Returns:
:obj:`Statistics` : statistics for this batch.
"""
pred = scores.max(1)[1]
non_padding = target.ne(self.padding_idx)
num_correct = pred.eq(target) \
.masked_select(non_padding) \
.sum()
return onmt.Statistics(loss[0], non_padding.sum(), num_correct)
def _bottle(self, v):
return v.view(-1, v.size(2))
def _unbottle(self, v, batch_size):
return v.view(-1, batch_size, v.size(1))
class NMTLossCompute(LossComputeBase):
"""
Standard NMT Loss Computation.
"""
def __init__(self, generator, tgt_vocab, normalization="sents",
label_smoothing=0.0):
super(NMTLossCompute, self).__init__(generator, tgt_vocab)
assert (label_smoothing >= 0.0 and label_smoothing <= 1.0)
if label_smoothing > 0:
# When label smoothing is turned on,
# KL-divergence between q_{smoothed ground truth prob.}(w)
# and p_{prob. computed by model}(w) is minimized.
# If label smoothing value is set to zero, the loss
# is equivalent to NLLLoss or CrossEntropyLoss.
# All non-true labels are uniformly set to low-confidence.
self.criterion = nn.KLDivLoss(size_average=False)
one_hot = torch.randn(1, len(tgt_vocab))
one_hot.fill_(label_smoothing / (len(tgt_vocab) - 2))
one_hot[0][self.padding_idx] = 0
self.register_buffer('one_hot', one_hot)
else:
weight = torch.ones(len(tgt_vocab))
weight[self.padding_idx] = 0
self.criterion = nn.NLLLoss(weight, size_average=False)
self.confidence = 1.0 - label_smoothing
def _make_shard_state(self, batch, output, range_, attns=None):
return {
"output": output,
"target": batch.tgt[range_[0] + 1: range_[1]],
}
def _compute_loss(self, batch, output, target):
scores = self.generator(self._bottle(output))
gtruth = target.view(-1)
if self.confidence < 1:
tdata = gtruth.data
mask = torch.nonzero(tdata.eq(self.padding_idx)).squeeze()
log_likelihood = torch.gather(scores.data, 1, tdata.unsqueeze(1))
tmp_ = self.one_hot.repeat(gtruth.size(0), 1)
tmp_.scatter_(1, tdata.unsqueeze(1), self.confidence)
if mask.dim() > 0:
log_likelihood.index_fill_(0, mask, 0)
tmp_.index_fill_(0, mask, 0)
gtruth = Variable(tmp_, requires_grad=False)
loss = self.criterion(scores, gtruth)
if self.confidence < 1:
# Default: report smoothed ppl.
# loss_data = -log_likelihood.sum(0)
loss_data = loss.data.clone()
else:
loss_data = loss.data.clone()
stats = self._stats(loss_data, scores.data, target.view(-1).data)
return loss, stats
def filter_shard_state(state, requires_grad=True, volatile=False):
for k, v in state.items():
if v is not None:
if isinstance(v, Variable) and v.requires_grad:
v = Variable(v.data, requires_grad=requires_grad,
volatile=volatile)
yield k, v
def shards(state, shard_size, eval=False):
"""
Args:
state: A dictionary which corresponds to the output of
*LossCompute._make_shard_state(). The values for
those keys are Tensor-like or None.
shard_size: The maximum size of the shards yielded by the model.
eval: If True, only yield the state, nothing else.
Otherwise, yield shards.
Yields:
Each yielded shard is a dict.
Side effect:
After the last shard, this function does back-propagation.
"""
if eval:
yield filter_shard_state(state, False, True)
else:
# non_none: the subdict of the state dictionary where the values
# are not None.
non_none = dict(filter_shard_state(state))
# Now, the iteration:
# state is a dictionary of sequences of tensor-like but we
# want a sequence of dictionaries of tensors.
# First, unzip the dictionary into a sequence of keys and a
# sequence of tensor-like sequences.
keys, values = zip(*((k, torch.split(v, shard_size))
for k, v in non_none.items()))
# Now, yield a dictionary for each shard. The keys are always
# the same. values is a sequence of length #keys where each
# element is a sequence of length #shards. We want to iterate
# over the shards, not over the keys: therefore, the values need
# to be re-zipped by shard and then each shard can be paired
# with the keys.
for shard_tensors in zip(*values):
yield dict(zip(keys, shard_tensors))
# Assumed backprop'd
variables = ((state[k], v.grad.data) for k, v in non_none.items()
if isinstance(v, Variable) and v.grad is not None)
inputs, grads = zip(*variables)
torch.autograd.backward(inputs, grads)