forked from CyC2018/CS-Notes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLeetcode 题解 - 动态规划.md
1313 lines (1036 loc) · 43.3 KB
/
Leetcode 题解 - 动态规划.md
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Leetcode 题解 - 动态规划
<!-- GFM-TOC -->
* [Leetcode 题解 - 动态规划](#leetcode-题解---动态规划)
* [斐波那契数列](#斐波那契数列)
* [1. 爬楼梯](#1-爬楼梯)
* [2. 强盗抢劫](#2-强盗抢劫)
* [3. 强盗在环形街区抢劫](#3-强盗在环形街区抢劫)
* [4. 信件错排](#4-信件错排)
* [5. 母牛生产](#5-母牛生产)
* [矩阵路径](#矩阵路径)
* [1. 矩阵的最小路径和](#1-矩阵的最小路径和)
* [2. 矩阵的总路径数](#2-矩阵的总路径数)
* [数组区间](#数组区间)
* [1. 数组区间和](#1-数组区间和)
* [2. 数组中等差递增子区间的个数](#2-数组中等差递增子区间的个数)
* [分割整数](#分割整数)
* [1. 分割整数的最大乘积](#1-分割整数的最大乘积)
* [2. 按平方数来分割整数](#2-按平方数来分割整数)
* [3. 分割整数构成字母字符串](#3-分割整数构成字母字符串)
* [最长递增子序列](#最长递增子序列)
* [1. 最长递增子序列](#1-最长递增子序列)
* [2. 一组整数对能够构成的最长链](#2-一组整数对能够构成的最长链)
* [3. 最长摆动子序列](#3-最长摆动子序列)
* [最长公共子序列](#最长公共子序列)
* [1. 最长公共子序列](#1-最长公共子序列)
* [0-1 背包](#0-1-背包)
* [1. 划分数组为和相等的两部分](#1-划分数组为和相等的两部分)
* [2. 改变一组数的正负号使得它们的和为一给定数](#2-改变一组数的正负号使得它们的和为一给定数)
* [3. 01 字符构成最多的字符串](#3-01-字符构成最多的字符串)
* [4. 找零钱的最少硬币数](#4-找零钱的最少硬币数)
* [5. 找零钱的硬币数组合](#5-找零钱的硬币数组合)
* [6. 字符串按单词列表分割](#6-字符串按单词列表分割)
* [7. 组合总和](#7-组合总和)
* [股票交易](#股票交易)
* [1. 需要冷却期的股票交易](#1-需要冷却期的股票交易)
* [2. 需要交易费用的股票交易](#2-需要交易费用的股票交易)
* [3. 只能进行两次的股票交易](#3-只能进行两次的股票交易)
* [4. 只能进行 k 次的股票交易](#4-只能进行-k-次的股票交易)
* [字符串编辑](#字符串编辑)
* [1. 删除两个字符串的字符使它们相等](#1-删除两个字符串的字符使它们相等)
* [2. 编辑距离](#2-编辑距离)
* [3. 复制粘贴字符](#3-复制粘贴字符)
<!-- GFM-TOC -->
递归和动态规划都是将原问题拆成多个子问题然后求解,他们之间最本质的区别是,动态规划保存了子问题的解,避免重复计算。
## 斐波那契数列
### 1. 爬楼梯
70\. Climbing Stairs (Easy)
[Leetcode](https://leetcode.com/problems/climbing-stairs/description/) / [力扣](https://leetcode-cn.com/problems/climbing-stairs/description/)
题目描述:有 N 阶楼梯,每次可以上一阶或者两阶,求有多少种上楼梯的方法。
定义一个数组 dp 存储上楼梯的方法数(为了方便讨论,数组下标从 1 开始),dp[i] 表示走到第 i 个楼梯的方法数目。
第 i 个楼梯可以从第 i-1 和 i-2 个楼梯再走一步到达,走到第 i 个楼梯的方法数为走到第 i-1 和第 i-2 个楼梯的方法数之和。
<!--<div align="center"><img src="https://latex.codecogs.com/gif.latex?dp[i]=dp[i-1]+dp[i-2]" class="mathjax-pic"/></div> <br>-->
<div align="center"> <img src="https://cs-notes-1256109796.cos.ap-guangzhou.myqcloud.com/14fe1e71-8518-458f-a220-116003061a83.png" width="200px"> </div><br>
考虑到 dp[i] 只与 dp[i - 1] 和 dp[i - 2] 有关,因此可以只用两个变量来存储 dp[i - 1] 和 dp[i - 2],使得原来的 O(N) 空间复杂度优化为 O(1) 复杂度。
```java
public int climbStairs(int n) {
if (n <= 2) {
return n;
}
int pre2 = 1, pre1 = 2;
for (int i = 2; i < n; i++) {
int cur = pre1 + pre2;
pre2 = pre1;
pre1 = cur;
}
return pre1;
}
```
### 2. 强盗抢劫
198\. House Robber (Easy)
[Leetcode](https://leetcode.com/problems/house-robber/description/) / [力扣](https://leetcode-cn.com/problems/house-robber/description/)
题目描述:抢劫一排住户,但是不能抢邻近的住户,求最大抢劫量。
定义 dp 数组用来存储最大的抢劫量,其中 dp[i] 表示抢到第 i 个住户时的最大抢劫量。
由于不能抢劫邻近住户,如果抢劫了第 i -1 个住户,那么就不能再抢劫第 i 个住户,所以
<!--<div align="center"><img src="https://latex.codecogs.com/gif.latex?dp[i]=max(dp[i-2]+nums[i],dp[i-1])" class="mathjax-pic"/></div> <br>-->
<div align="center"> <img src="https://cs-notes-1256109796.cos.ap-guangzhou.myqcloud.com/2de794ca-aa7b-48f3-a556-a0e2708cb976.jpg" width="350px"> </div><br>
```java
public int rob(int[] nums) {
int pre2 = 0, pre1 = 0;
for (int i = 0; i < nums.length; i++) {
int cur = Math.max(pre2 + nums[i], pre1);
pre2 = pre1;
pre1 = cur;
}
return pre1;
}
```
### 3. 强盗在环形街区抢劫
213\. House Robber II (Medium)
[Leetcode](https://leetcode.com/problems/house-robber-ii/description/) / [力扣](https://leetcode-cn.com/problems/house-robber-ii/description/)
```java
public int rob(int[] nums) {
if (nums == null || nums.length == 0) {
return 0;
}
int n = nums.length;
if (n == 1) {
return nums[0];
}
return Math.max(rob(nums, 0, n - 2), rob(nums, 1, n - 1));
}
private int rob(int[] nums, int first, int last) {
int pre2 = 0, pre1 = 0;
for (int i = first; i <= last; i++) {
int cur = Math.max(pre1, pre2 + nums[i]);
pre2 = pre1;
pre1 = cur;
}
return pre1;
}
```
### 4. 信件错排
题目描述:有 N 个 信 和 信封,它们被打乱,求错误装信方式的数量。
定义一个数组 dp 存储错误方式数量,dp[i] 表示前 i 个信和信封的错误方式数量。假设第 i 个信装到第 j 个信封里面,而第 j 个信装到第 k 个信封里面。根据 i 和 k 是否相等,有两种情况:
- i==k,交换 i 和 j 的信后,它们的信和信封在正确的位置,但是其余 i-2 封信有 dp[i-2] 种错误装信的方式。由于 j 有 i-1 种取值,因此共有 (i-1)\*dp[i-2] 种错误装信方式。
- i != k,交换 i 和 j 的信后,第 i 个信和信封在正确的位置,其余 i-1 封信有 dp[i-1] 种错误装信方式。由于 j 有 i-1 种取值,因此共有 (i-1)\*dp[i-1] 种错误装信方式。
综上所述,错误装信数量方式数量为:
<!--<div align="center"><img src="https://latex.codecogs.com/gif.latex?dp[i]=(i-1)*dp[i-2]+(i-1)*dp[i-1]" class="mathjax-pic"/></div> <br>-->
<div align="center"> <img src="https://cs-notes-1256109796.cos.ap-guangzhou.myqcloud.com/da1f96b9-fd4d-44ca-8925-fb14c5733388.png" width="350px"> </div><br>
### 5. 母牛生产
[程序员代码面试指南-P181](#)
题目描述:假设农场中成熟的母牛每年都会生 1 头小母牛,并且永远不会死。第一年有 1 只小母牛,从第二年开始,母牛开始生小母牛。每只小母牛 3 年之后成熟又可以生小母牛。给定整数 N,求 N 年后牛的数量。
第 i 年成熟的牛的数量为:
<!--<div align="center"><img src="https://latex.codecogs.com/gif.latex?dp[i]=dp[i-1]+dp[i-3]" class="mathjax-pic"/></div> <br>-->
<div align="center"> <img src="https://cs-notes-1256109796.cos.ap-guangzhou.myqcloud.com/879814ee-48b5-4bcb-86f5-dcc400cb81ad.png" width="250px"> </div><br>
## 矩阵路径
### 1. 矩阵的最小路径和
64\. Minimum Path Sum (Medium)
[Leetcode](https://leetcode.com/problems/minimum-path-sum/description/) / [力扣](https://leetcode-cn.com/problems/minimum-path-sum/description/)
```html
[[1,3,1],
[1,5,1],
[4,2,1]]
Given the above grid map, return 7. Because the path 1→3→1→1→1 minimizes the sum.
```
题目描述:求从矩阵的左上角到右下角的最小路径和,每次只能向右和向下移动。
```java
public int minPathSum(int[][] grid) {
if (grid.length == 0 || grid[0].length == 0) {
return 0;
}
int m = grid.length, n = grid[0].length;
int[] dp = new int[n];
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (j == 0) {
dp[j] = dp[j]; // 只能从上侧走到该位置
} else if (i == 0) {
dp[j] = dp[j - 1]; // 只能从左侧走到该位置
} else {
dp[j] = Math.min(dp[j - 1], dp[j]);
}
dp[j] += grid[i][j];
}
}
return dp[n - 1];
}
```
### 2. 矩阵的总路径数
62\. Unique Paths (Medium)
[Leetcode](https://leetcode.com/problems/unique-paths/description/) / [力扣](https://leetcode-cn.com/problems/unique-paths/description/)
题目描述:统计从矩阵左上角到右下角的路径总数,每次只能向右或者向下移动。
<div align="center"> <img src="https://cs-notes-1256109796.cos.ap-guangzhou.myqcloud.com/dc82f0f3-c1d4-4ac8-90ac-d5b32a9bd75a.jpg" width=""> </div><br>
```java
public int uniquePaths(int m, int n) {
int[] dp = new int[n];
Arrays.fill(dp, 1);
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
dp[j] = dp[j] + dp[j - 1];
}
}
return dp[n - 1];
}
```
也可以直接用数学公式求解,这是一个组合问题。机器人总共移动的次数 S=m+n-2,向下移动的次数 D=m-1,那么问题可以看成从 S 中取出 D 个位置的组合数量,这个问题的解为 C(S, D)。
```java
public int uniquePaths(int m, int n) {
int S = m + n - 2; // 总共的移动次数
int D = m - 1; // 向下的移动次数
long ret = 1;
for (int i = 1; i <= D; i++) {
ret = ret * (S - D + i) / i;
}
return (int) ret;
}
```
## 数组区间
### 1. 数组区间和
303\. Range Sum Query - Immutable (Easy)
[Leetcode](https://leetcode.com/problems/range-sum-query-immutable/description/) / [力扣](https://leetcode-cn.com/problems/range-sum-query-immutable/description/)
```html
Given nums = [-2, 0, 3, -5, 2, -1]
sumRange(0, 2) -> 1
sumRange(2, 5) -> -1
sumRange(0, 5) -> -3
```
求区间 i \~ j 的和,可以转换为 sum[j + 1] - sum[i],其中 sum[i] 为 0 \~ i - 1 的和。
```java
class NumArray {
private int[] sums;
public NumArray(int[] nums) {
sums = new int[nums.length + 1];
for (int i = 1; i <= nums.length; i++) {
sums[i] = sums[i - 1] + nums[i - 1];
}
}
public int sumRange(int i, int j) {
return sums[j + 1] - sums[i];
}
}
```
### 2. 数组中等差递增子区间的个数
413\. Arithmetic Slices (Medium)
[Leetcode](https://leetcode.com/problems/arithmetic-slices/description/) / [力扣](https://leetcode-cn.com/problems/arithmetic-slices/description/)
```html
A = [0, 1, 2, 3, 4]
return: 6, for 3 arithmetic slices in A:
[0, 1, 2],
[1, 2, 3],
[0, 1, 2, 3],
[0, 1, 2, 3, 4],
[ 1, 2, 3, 4],
[2, 3, 4]
```
dp[i] 表示以 A[i] 为结尾的等差递增子区间的个数。
当 A[i] - A[i-1] == A[i-1] - A[i-2],那么 [A[i-2], A[i-1], A[i]] 构成一个等差递增子区间。而且在以 A[i-1] 为结尾的递增子区间的后面再加上一个 A[i],一样可以构成新的递增子区间。
```html
dp[2] = 1
[0, 1, 2]
dp[3] = dp[2] + 1 = 2
[0, 1, 2, 3], // [0, 1, 2] 之后加一个 3
[1, 2, 3] // 新的递增子区间
dp[4] = dp[3] + 1 = 3
[0, 1, 2, 3, 4], // [0, 1, 2, 3] 之后加一个 4
[1, 2, 3, 4], // [1, 2, 3] 之后加一个 4
[2, 3, 4] // 新的递增子区间
```
综上,在 A[i] - A[i-1] == A[i-1] - A[i-2] 时,dp[i] = dp[i-1] + 1。
因为递增子区间不一定以最后一个元素为结尾,可以是任意一个元素结尾,因此需要返回 dp 数组累加的结果。
```java
public int numberOfArithmeticSlices(int[] A) {
if (A == null || A.length == 0) {
return 0;
}
int n = A.length;
int[] dp = new int[n];
for (int i = 2; i < n; i++) {
if (A[i] - A[i - 1] == A[i - 1] - A[i - 2]) {
dp[i] = dp[i - 1] + 1;
}
}
int total = 0;
for (int cnt : dp) {
total += cnt;
}
return total;
}
```
## 分割整数
### 1. 分割整数的最大乘积
343\. Integer Break (Medim)
[Leetcode](https://leetcode.com/problems/integer-break/description/) / [力扣](https://leetcode-cn.com/problems/integer-break/description/)
题目描述:For example, given n = 2, return 1 (2 = 1 + 1); given n = 10, return 36 (10 = 3 + 3 + 4).
```java
public int integerBreak(int n) {
int[] dp = new int[n + 1];
dp[1] = 1;
for (int i = 2; i <= n; i++) {
for (int j = 1; j <= i - 1; j++) {
dp[i] = Math.max(dp[i], Math.max(j * dp[i - j], j * (i - j)));
}
}
return dp[n];
}
```
### 2. 按平方数来分割整数
279\. Perfect Squares(Medium)
[Leetcode](https://leetcode.com/problems/perfect-squares/description/) / [力扣](https://leetcode-cn.com/problems/perfect-squares/description/)
题目描述:For example, given n = 12, return 3 because 12 = 4 + 4 + 4; given n = 13, return 2 because 13 = 4 + 9.
```java
public int numSquares(int n) {
List<Integer> squareList = generateSquareList(n);
int[] dp = new int[n + 1];
for (int i = 1; i <= n; i++) {
int min = Integer.MAX_VALUE;
for (int square : squareList) {
if (square > i) {
break;
}
min = Math.min(min, dp[i - square] + 1);
}
dp[i] = min;
}
return dp[n];
}
private List<Integer> generateSquareList(int n) {
List<Integer> squareList = new ArrayList<>();
int diff = 3;
int square = 1;
while (square <= n) {
squareList.add(square);
square += diff;
diff += 2;
}
return squareList;
}
```
### 3. 分割整数构成字母字符串
91\. Decode Ways (Medium)
[Leetcode](https://leetcode.com/problems/decode-ways/description/) / [力扣](https://leetcode-cn.com/problems/decode-ways/description/)
题目描述:Given encoded message "12", it could be decoded as "AB" (1 2) or "L" (12).
```java
public int numDecodings(String s) {
if (s == null || s.length() == 0) {
return 0;
}
int n = s.length();
int[] dp = new int[n + 1];
dp[0] = 1;
dp[1] = s.charAt(0) == '0' ? 0 : 1;
for (int i = 2; i <= n; i++) {
int one = Integer.valueOf(s.substring(i - 1, i));
if (one != 0) {
dp[i] += dp[i - 1];
}
if (s.charAt(i - 2) == '0') {
continue;
}
int two = Integer.valueOf(s.substring(i - 2, i));
if (two <= 26) {
dp[i] += dp[i - 2];
}
}
return dp[n];
}
```
## 最长递增子序列
已知一个序列 {S<sub>1</sub>, S<sub>2</sub>,...,S<sub>n</sub>},取出若干数组成新的序列 {S<sub>i1</sub>, S<sub>i2</sub>,..., S<sub>im</sub>},其中 i1、i2 ... im 保持递增,即新序列中各个数仍然保持原数列中的先后顺序,称新序列为原序列的一个 **子序列** 。
如果在子序列中,当下标 ix > iy 时,S<sub>ix</sub> > S<sub>iy</sub>,称子序列为原序列的一个 **递增子序列** 。
定义一个数组 dp 存储最长递增子序列的长度,dp[n] 表示以 S<sub>n</sub> 结尾的序列的最长递增子序列长度。对于一个递增子序列 {S<sub>i1</sub>, S<sub>i2</sub>,...,S<sub>im</sub>},如果 im < n 并且 S<sub>im</sub> < S<sub>n</sub>,此时 {S<sub>i1</sub>, S<sub>i2</sub>,..., S<sub>im</sub>, S<sub>n</sub>} 为一个递增子序列,递增子序列的长度增加 1。满足上述条件的递增子序列中,长度最长的那个递增子序列就是要找的,在长度最长的递增子序列上加上 S<sub>n</sub> 就构成了以 S<sub>n</sub> 为结尾的最长递增子序列。因此 dp[n] = max{ dp[i]+1 | S<sub>i</sub> < S<sub>n</sub> && i < n} 。
因为在求 dp[n] 时可能无法找到一个满足条件的递增子序列,此时 {S<sub>n</sub>} 就构成了递增子序列,需要对前面的求解方程做修改,令 dp[n] 最小为 1,即:
<!--<div align="center"><img src="https://latex.codecogs.com/gif.latex?dp[n]=max\{1,dp[i]+1|S_i<S_n\&\&i<n\}" class="mathjax-pic"/></div> <br>-->
<div align="center"> <img src="https://cs-notes-1256109796.cos.ap-guangzhou.myqcloud.com/ee994da4-0fc7-443d-ac56-c08caf00a204.jpg" width="350px"> </div><br>
对于一个长度为 N 的序列,最长递增子序列并不一定会以 S<sub>N</sub> 为结尾,因此 dp[N] 不是序列的最长递增子序列的长度,需要遍历 dp 数组找出最大值才是所要的结果,max{ dp[i] | 1 <= i <= N} 即为所求。
### 1. 最长递增子序列
300\. Longest Increasing Subsequence (Medium)
[Leetcode](https://leetcode.com/problems/longest-increasing-subsequence/description/) / [力扣](https://leetcode-cn.com/problems/longest-increasing-subsequence/description/)
```java
public int lengthOfLIS(int[] nums) {
int n = nums.length;
int[] dp = new int[n];
for (int i = 0; i < n; i++) {
int max = 1;
for (int j = 0; j < i; j++) {
if (nums[i] > nums[j]) {
max = Math.max(max, dp[j] + 1);
}
}
dp[i] = max;
}
return Arrays.stream(dp).max().orElse(0);
}
```
使用 Stream 求最大值会导致运行时间过长,可以改成以下形式:
```java
int ret = 0;
for (int i = 0; i < n; i++) {
ret = Math.max(ret, dp[i]);
}
return ret;
```
以上解法的时间复杂度为 O(N<sup>2</sup>),可以使用二分查找将时间复杂度降低为 O(NlogN)。
定义一个 tails 数组,其中 tails[i] 存储长度为 i + 1 的最长递增子序列的最后一个元素。对于一个元素 x,
- 如果它大于 tails 数组所有的值,那么把它添加到 tails 后面,表示最长递增子序列长度加 1;
- 如果 tails[i-1] \< x \<= tails[i],那么更新 tails[i] = x。
例如对于数组 [4,3,6,5],有:
```html
tails len num
[] 0 4
[4] 1 3
[3] 1 6
[3,6] 2 5
[3,5] 2 null
```
可以看出 tails 数组保持有序,因此在查找 S<sub>i</sub> 位于 tails 数组的位置时就可以使用二分查找。
```java
public int lengthOfLIS(int[] nums) {
int n = nums.length;
int[] tails = new int[n];
int len = 0;
for (int num : nums) {
int index = binarySearch(tails, len, num);
tails[index] = num;
if (index == len) {
len++;
}
}
return len;
}
private int binarySearch(int[] tails, int len, int key) {
int l = 0, h = len;
while (l < h) {
int mid = l + (h - l) / 2;
if (tails[mid] == key) {
return mid;
} else if (tails[mid] > key) {
h = mid;
} else {
l = mid + 1;
}
}
return l;
}
```
### 2. 一组整数对能够构成的最长链
646\. Maximum Length of Pair Chain (Medium)
[Leetcode](https://leetcode.com/problems/maximum-length-of-pair-chain/description/) / [力扣](https://leetcode-cn.com/problems/maximum-length-of-pair-chain/description/)
```html
Input: [[1,2], [2,3], [3,4]]
Output: 2
Explanation: The longest chain is [1,2] -> [3,4]
```
题目描述:对于 (a, b) 和 (c, d) ,如果 b \< c,则它们可以构成一条链。
```java
public int findLongestChain(int[][] pairs) {
if (pairs == null || pairs.length == 0) {
return 0;
}
Arrays.sort(pairs, (a, b) -> (a[0] - b[0]));
int n = pairs.length;
int[] dp = new int[n];
Arrays.fill(dp, 1);
for (int i = 1; i < n; i++) {
for (int j = 0; j < i; j++) {
if (pairs[j][1] < pairs[i][0]) {
dp[i] = Math.max(dp[i], dp[j] + 1);
}
}
}
return Arrays.stream(dp).max().orElse(0);
}
```
### 3. 最长摆动子序列
376\. Wiggle Subsequence (Medium)
[Leetcode](https://leetcode.com/problems/wiggle-subsequence/description/) / [力扣](https://leetcode-cn.com/problems/wiggle-subsequence/description/)
```html
Input: [1,7,4,9,2,5]
Output: 6
The entire sequence is a wiggle sequence.
Input: [1,17,5,10,13,15,10,5,16,8]
Output: 7
There are several subsequences that achieve this length. One is [1,17,10,13,10,16,8].
Input: [1,2,3,4,5,6,7,8,9]
Output: 2
```
要求:使用 O(N) 时间复杂度求解。
```java
public int wiggleMaxLength(int[] nums) {
if (nums == null || nums.length == 0) {
return 0;
}
int up = 1, down = 1;
for (int i = 1; i < nums.length; i++) {
if (nums[i] > nums[i - 1]) {
up = down + 1;
} else if (nums[i] < nums[i - 1]) {
down = up + 1;
}
}
return Math.max(up, down);
}
```
## 最长公共子序列
对于两个子序列 S1 和 S2,找出它们最长的公共子序列。
定义一个二维数组 dp 用来存储最长公共子序列的长度,其中 dp[i][j] 表示 S1 的前 i 个字符与 S2 的前 j 个字符最长公共子序列的长度。考虑 S1<sub>i</sub> 与 S2<sub>j</sub> 值是否相等,分为两种情况:
- 当 S1<sub>i</sub>==S2<sub>j</sub> 时,那么就能在 S1 的前 i-1 个字符与 S2 的前 j-1 个字符最长公共子序列的基础上再加上 S1<sub>i</sub> 这个值,最长公共子序列长度加 1,即 dp[i][j] = dp[i-1][j-1] + 1。
- 当 S1<sub>i</sub> != S2<sub>j</sub> 时,此时最长公共子序列为 S1 的前 i-1 个字符和 S2 的前 j 个字符最长公共子序列,或者 S1 的前 i 个字符和 S2 的前 j-1 个字符最长公共子序列,取它们的最大者,即 dp[i][j] = max{ dp[i-1][j], dp[i][j-1] }。
综上,最长公共子序列的状态转移方程为:
<!--<div align="center"><img src="https://latex.codecogs.com/gif.latex?dp[i][j]=\left\{\begin{array}{rcl}dp[i-1][j-1]&&{S1_i==S2_j}\\max(dp[i-1][j],dp[i][j-1])&&{S1_i<>S2_j}\end{array}\right." class="mathjax-pic"/></div> <br>-->
<div align="center"> <img src="https://cs-notes-1256109796.cos.ap-guangzhou.myqcloud.com/ecd89a22-c075-4716-8423-e0ba89230e9a.jpg" width="450px"> </div><br>
对于长度为 N 的序列 S<sub>1</sub> 和长度为 M 的序列 S<sub>2</sub>,dp[N][M] 就是序列 S<sub>1</sub> 和序列 S<sub>2</sub> 的最长公共子序列长度。
与最长递增子序列相比,最长公共子序列有以下不同点:
- 针对的是两个序列,求它们的最长公共子序列。
- 在最长递增子序列中,dp[i] 表示以 S<sub>i</sub> 为结尾的最长递增子序列长度,子序列必须包含 S<sub>i</sub> ;在最长公共子序列中,dp[i][j] 表示 S1 中前 i 个字符与 S2 中前 j 个字符的最长公共子序列长度,不一定包含 S1<sub>i</sub> 和 S2<sub>j</sub>。
- 在求最终解时,最长公共子序列中 dp[N][M] 就是最终解,而最长递增子序列中 dp[N] 不是最终解,因为以 S<sub>N</sub> 为结尾的最长递增子序列不一定是整个序列最长递增子序列,需要遍历一遍 dp 数组找到最大者。
### 1. 最长公共子序列
1143\. Longest Common Subsequence
[Leetcode](https://leetcode.com/problems/longest-common-subsequence/) / [力扣](https://leetcode-cn.com/problems/longest-common-subsequence/)
```java
public int longestCommonSubsequence(String text1, String text2) {
int n1 = text1.length(), n2 = text2.length();
int[][] dp = new int[n1 + 1][n2 + 1];
for (int i = 1; i <= n1; i++) {
for (int j = 1; j <= n2; j++) {
if (text1.charAt(i - 1) == text2.charAt(j - 1)) {
dp[i][j] = dp[i - 1][j - 1] + 1;
} else {
dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
}
}
}
return dp[n1][n2];
}
```
## 0-1 背包
有一个容量为 N 的背包,要用这个背包装下物品的价值最大,这些物品有两个属性:体积 w 和价值 v。
定义一个二维数组 dp 存储最大价值,其中 dp[i][j] 表示前 i 件物品体积不超过 j 的情况下能达到的最大价值。设第 i 件物品体积为 w,价值为 v,根据第 i 件物品是否添加到背包中,可以分两种情况讨论:
- 第 i 件物品没添加到背包,总体积不超过 j 的前 i 件物品的最大价值就是总体积不超过 j 的前 i-1 件物品的最大价值,dp[i][j] = dp[i-1][j]。
- 第 i 件物品添加到背包中,dp[i][j] = dp[i-1][j-w] + v。
第 i 件物品可添加也可以不添加,取决于哪种情况下最大价值更大。因此,0-1 背包的状态转移方程为:
<!--<div align="center"><img src="https://latex.codecogs.com/gif.latex?dp[i][j]=max(dp[i-1][j],dp[i-1][j-w]+v)" class="mathjax-pic"/></div> <br>-->
<div align="center"> <img src="https://cs-notes-1256109796.cos.ap-guangzhou.myqcloud.com/8cb2be66-3d47-41ba-b55b-319fc68940d4.png" width="400px"> </div><br>
```java
// W 为背包总体积
// N 为物品数量
// weights 数组存储 N 个物品的重量
// values 数组存储 N 个物品的价值
public int knapsack(int W, int N, int[] weights, int[] values) {
int[][] dp = new int[N + 1][W + 1];
for (int i = 1; i <= N; i++) {
int w = weights[i - 1], v = values[i - 1];
for (int j = 1; j <= W; j++) {
if (j >= w) {
dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - w] + v);
} else {
dp[i][j] = dp[i - 1][j];
}
}
}
return dp[N][W];
}
```
**空间优化**
在程序实现时可以对 0-1 背包做优化。观察状态转移方程可以知道,前 i 件物品的状态仅与前 i-1 件物品的状态有关,因此可以将 dp 定义为一维数组,其中 dp[j] 既可以表示 dp[i-1][j] 也可以表示 dp[i][j]。此时,
<!--<div align="center"><img src="https://latex.codecogs.com/gif.latex?dp[j]=max(dp[j],dp[j-w]+v)" class="mathjax-pic"/></div> <br>-->
<div align="center"> <img src="https://cs-notes-1256109796.cos.ap-guangzhou.myqcloud.com/9ae89f16-7905-4a6f-88a2-874b4cac91f4.jpg" width="300px"> </div><br>
因为 dp[j-w] 表示 dp[i-1][j-w],因此不能先求 dp[i][j-w],防止将 dp[i-1][j-w] 覆盖。也就是说要先计算 dp[i][j] 再计算 dp[i][j-w],在程序实现时需要按倒序来循环求解。
```java
public int knapsack(int W, int N, int[] weights, int[] values) {
int[] dp = new int[W + 1];
for (int i = 1; i <= N; i++) {
int w = weights[i - 1], v = values[i - 1];
for (int j = W; j >= 1; j--) {
if (j >= w) {
dp[j] = Math.max(dp[j], dp[j - w] + v);
}
}
}
return dp[W];
}
```
**无法使用贪心算法的解释**
0-1 背包问题无法使用贪心算法来求解,也就是说不能按照先添加性价比最高的物品来达到最优,这是因为这种方式可能造成背包空间的浪费,从而无法达到最优。考虑下面的物品和一个容量为 5 的背包,如果先添加物品 0 再添加物品 1,那么只能存放的价值为 16,浪费了大小为 2 的空间。最优的方式是存放物品 1 和物品 2,价值为 22.
| id | w | v | v/w |
| --- | --- | --- | --- |
| 0 | 1 | 6 | 6 |
| 1 | 2 | 10 | 5 |
| 2 | 3 | 12 | 4 |
**变种**
- 完全背包:物品数量为无限个
- 多重背包:物品数量有限制
- 多维费用背包:物品不仅有重量,还有体积,同时考虑这两种限制
- 其它:物品之间相互约束或者依赖
### 1. 划分数组为和相等的两部分
416\. Partition Equal Subset Sum (Medium)
[Leetcode](https://leetcode.com/problems/partition-equal-subset-sum/description/) / [力扣](https://leetcode-cn.com/problems/partition-equal-subset-sum/description/)
```html
Input: [1, 5, 11, 5]
Output: true
Explanation: The array can be partitioned as [1, 5, 5] and [11].
```
可以看成一个背包大小为 sum/2 的 0-1 背包问题。
```java
public boolean canPartition(int[] nums) {
int sum = computeArraySum(nums);
if (sum % 2 != 0) {
return false;
}
int W = sum / 2;
boolean[] dp = new boolean[W + 1];
dp[0] = true;
for (int num : nums) { // 0-1 背包一个物品只能用一次
for (int i = W; i >= num; i--) { // 从后往前,先计算 dp[i] 再计算 dp[i-num]
dp[i] = dp[i] || dp[i - num];
}
}
return dp[W];
}
private int computeArraySum(int[] nums) {
int sum = 0;
for (int num : nums) {
sum += num;
}
return sum;
}
```
### 2. 改变一组数的正负号使得它们的和为一给定数
494\. Target Sum (Medium)
[Leetcode](https://leetcode.com/problems/target-sum/description/) / [力扣](https://leetcode-cn.com/problems/target-sum/description/)
```html
Input: nums is [1, 1, 1, 1, 1], S is 3.
Output: 5
Explanation:
-1+1+1+1+1 = 3
+1-1+1+1+1 = 3
+1+1-1+1+1 = 3
+1+1+1-1+1 = 3
+1+1+1+1-1 = 3
There are 5 ways to assign symbols to make the sum of nums be target 3.
```
该问题可以转换为 Subset Sum 问题,从而使用 0-1 背包的方法来求解。
可以将这组数看成两部分,P 和 N,其中 P 使用正号,N 使用负号,有以下推导:
```html
sum(P) - sum(N) = target
sum(P) + sum(N) + sum(P) - sum(N) = target + sum(P) + sum(N)
2 * sum(P) = target + sum(nums)
```
因此只要找到一个子集,令它们都取正号,并且和等于 (target + sum(nums))/2,就证明存在解。
```java
public int findTargetSumWays(int[] nums, int S) {
int sum = computeArraySum(nums);
if (sum < S || (sum + S) % 2 == 1) {
return 0;
}
int W = (sum + S) / 2;
int[] dp = new int[W + 1];
dp[0] = 1;
for (int num : nums) {
for (int i = W; i >= num; i--) {
dp[i] = dp[i] + dp[i - num];
}
}
return dp[W];
}
private int computeArraySum(int[] nums) {
int sum = 0;
for (int num : nums) {
sum += num;
}
return sum;
}
```
DFS 解法:
```java
public int findTargetSumWays(int[] nums, int S) {
return findTargetSumWays(nums, 0, S);
}
private int findTargetSumWays(int[] nums, int start, int S) {
if (start == nums.length) {
return S == 0 ? 1 : 0;
}
return findTargetSumWays(nums, start + 1, S + nums[start])
+ findTargetSumWays(nums, start + 1, S - nums[start]);
}
```
### 3. 01 字符构成最多的字符串
474\. Ones and Zeroes (Medium)
[Leetcode](https://leetcode.com/problems/ones-and-zeroes/description/) / [力扣](https://leetcode-cn.com/problems/ones-and-zeroes/description/)
```html
Input: Array = {"10", "0001", "111001", "1", "0"}, m = 5, n = 3
Output: 4
Explanation: There are totally 4 strings can be formed by the using of 5 0s and 3 1s, which are "10","0001","1","0"
```
这是一个多维费用的 0-1 背包问题,有两个背包大小,0 的数量和 1 的数量。
```java
public int findMaxForm(String[] strs, int m, int n) {
if (strs == null || strs.length == 0) {
return 0;
}
int[][] dp = new int[m + 1][n + 1];
for (String s : strs) { // 每个字符串只能用一次
int ones = 0, zeros = 0;
for (char c : s.toCharArray()) {
if (c == '0') {
zeros++;
} else {
ones++;
}
}
for (int i = m; i >= zeros; i--) {
for (int j = n; j >= ones; j--) {
dp[i][j] = Math.max(dp[i][j], dp[i - zeros][j - ones] + 1);
}
}
}
return dp[m][n];
}
```
### 4. 找零钱的最少硬币数
322\. Coin Change (Medium)
[Leetcode](https://leetcode.com/problems/coin-change/description/) / [力扣](https://leetcode-cn.com/problems/coin-change/description/)
```html
Example 1:
coins = [1, 2, 5], amount = 11
return 3 (11 = 5 + 5 + 1)
Example 2:
coins = [2], amount = 3
return -1.
```
题目描述:给一些面额的硬币,要求用这些硬币来组成给定面额的钱数,并且使得硬币数量最少。硬币可以重复使用。
- 物品:硬币
- 物品大小:面额
- 物品价值:数量
因为硬币可以重复使用,因此这是一个完全背包问题。完全背包只需要将 0-1 背包的逆序遍历 dp 数组改为正序遍历即可。
```java
public int coinChange(int[] coins, int amount) {
if (amount == 0 || coins == null) return 0;
int[] dp = new int[amount + 1];
for (int coin : coins) {
for (int i = coin; i <= amount; i++) { //将逆序遍历改为正序遍历
if (i == coin) {
dp[i] = 1;
} else if (dp[i] == 0 && dp[i - coin] != 0) {
dp[i] = dp[i - coin] + 1;
} else if (dp[i - coin] != 0) {
dp[i] = Math.min(dp[i], dp[i - coin] + 1);
}
}
}
return dp[amount] == 0 ? -1 : dp[amount];
}
```
### 5. 找零钱的硬币数组合
518\. Coin Change 2 (Medium)
[Leetcode](https://leetcode.com/problems/coin-change-2/description/) / [力扣](https://leetcode-cn.com/problems/coin-change-2/description/)
```text-html-basic
Input: amount = 5, coins = [1, 2, 5]
Output: 4
Explanation: there are four ways to make up the amount:
5=5
5=2+2+1
5=2+1+1+1
5=1+1+1+1+1
```
完全背包问题,使用 dp 记录可达成目标的组合数目。
```java
public int change(int amount, int[] coins) {
if (coins == null) {
return 0;
}
int[] dp = new int[amount + 1];
dp[0] = 1;
for (int coin : coins) {
for (int i = coin; i <= amount; i++) {
dp[i] += dp[i - coin];
}
}
return dp[amount];
}
```
### 6. 字符串按单词列表分割
139\. Word Break (Medium)
[Leetcode](https://leetcode.com/problems/word-break/description/) / [力扣](https://leetcode-cn.com/problems/word-break/description/)
```html
s = "leetcode",
dict = ["leet", "code"].
Return true because "leetcode" can be segmented as "leet code".
```
dict 中的单词没有使用次数的限制,因此这是一个完全背包问题。
该问题涉及到字典中单词的使用顺序,也就是说物品必须按一定顺序放入背包中,例如下面的 dict 就不够组成字符串 "leetcode":
```html
["lee", "tc", "cod"]
```
求解顺序的完全背包问题时,对物品的迭代应该放在最里层,对背包的迭代放在外层,只有这样才能让物品按一定顺序放入背包中。
```java
public boolean wordBreak(String s, List<String> wordDict) {
int n = s.length();
boolean[] dp = new boolean[n + 1];
dp[0] = true;
for (int i = 1; i <= n; i++) {
for (String word : wordDict) { // 对物品的迭代应该放在最里层
int len = word.length();
if (len <= i && word.equals(s.substring(i - len, i))) {
dp[i] = dp[i] || dp[i - len];
}
}