-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathatis_batch.py
340 lines (263 loc) · 10.9 KB
/
atis_batch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
# TODO: review this entire file and make it much simpler.
import copy
import snippets as snip
import sql_util
import vocabulary as vocab
class UtteranceItem():
def __init__(self, interaction, index):
self.interaction = interaction
self.utterance_index = index
def __str__(self):
return str(self.interaction.utterances[self.utterance_index])
def histories(self, maximum):
if maximum > 0:
history_seqs = []
for utterance in self.interaction.utterances[:self.utterance_index]:
history_seqs.append(utterance.input_seq_to_use)
if len(history_seqs) > maximum:
history_seqs = history_seqs[-maximum:]
return history_seqs
return []
def input_sequence(self):
return self.interaction.utterances[self.utterance_index].input_seq_to_use
def previous_query(self):
if self.utterance_index == 0:
return []
return self.interaction.utterances[self.utterance_index -
1].anonymized_gold_query
def anonymized_gold_query(self):
return self.interaction.utterances[self.utterance_index].anonymized_gold_query
def snippets(self):
return self.interaction.utterances[self.utterance_index].available_snippets
def original_gold_query(self):
return self.interaction.utterances[self.utterance_index].original_gold_query
def contained_entities(self):
return self.interaction.utterances[self.utterance_index].contained_entities
def original_gold_queries(self):
return [
q[0] for q in self.interaction.utterances[self.utterance_index].all_gold_queries]
def gold_tables(self):
return [
q[1] for q in self.interaction.utterances[self.utterance_index].all_gold_queries]
def gold_query(self):
return self.interaction.utterances[self.utterance_index].gold_query_to_use + [
vocab.EOS_TOK]
def gold_table(self):
return self.interaction.utterances[self.utterance_index].gold_sql_results
def all_snippets(self):
return self.interaction.snippets
def within_limits(self,
max_input_length=float('inf'),
max_output_length=float('inf')):
return self.interaction.utterances[self.utterance_index].length_valid(
max_input_length, max_output_length)
def expand_snippets(self, sequence):
# Remove the EOS
if sequence[-1] == vocab.EOS_TOK:
sequence = sequence[:-1]
# First remove the snippets
no_snippets_sequence = self.interaction.expand_snippets(sequence)
no_snippets_sequence = sql_util.fix_parentheses(no_snippets_sequence)
return no_snippets_sequence
def flatten_sequence(self, sequence):
# Remove the EOS
if sequence[-1] == vocab.EOS_TOK:
sequence = sequence[:-1]
# First remove the snippets
no_snippets_sequence = self.interaction.expand_snippets(sequence)
# Deanonymize
deanon_sequence = self.interaction.deanonymize(
no_snippets_sequence, "sql")
return deanon_sequence
class UtteranceBatch():
def __init__(self, items):
self.items = items
def __len__(self):
return len(self.items)
def start(self):
self.index = 0
def next(self):
item = self.items[self.index]
self.index += 1
return item
def done(self):
return self.index >= len(self.items)
class PredUtteranceItem():
def __init__(self,
input_sequence,
interaction_item,
previous_query,
index,
available_snippets):
self.input_seq_to_use = input_sequence
self.interaction_item = interaction_item
self.index = index
self.available_snippets = available_snippets
self.prev_pred_query = previous_query
def input_sequence(self):
return self.input_seq_to_use
def histories(self, maximum):
if maximum == 0:
return histories
histories = []
for utterance in self.interaction_item.processed_utterances[:self.index]:
histories.append(utterance.input_sequence())
if len(histories) > maximum:
histories = histories[-maximum:]
return histories
def snippets(self):
return self.available_snippets
def previous_query(self):
return self.prev_pred_query
def flatten_sequence(self, sequence):
return self.interaction_item.flatten_sequence(sequence)
def remove_snippets(self, sequence):
return sql_util.fix_parentheses(
self.interaction_item.expand_snippets(sequence))
def set_predicted_query(self, query):
self.anonymized_pred_query = query
# Mocks an Interaction item, but allows for the parameters to be updated during
# the process
class InteractionItem():
def __init__(self,
interaction,
max_input_length=float('inf'),
max_output_length=float('inf'),
nl_to_sql_dict={},
maximum_length=float('inf')):
if maximum_length != float('inf'):
self.interaction = copy.deepcopy(interaction)
self.interaction.utterances = self.interaction.utterances[:maximum_length]
else:
self.interaction = interaction
self.processed_utterances = []
self.snippet_bank = []
self.identifier = self.interaction.identifier
self.max_input_length = max_input_length
self.max_output_length = max_output_length
self.nl_to_sql_dict = nl_to_sql_dict
self.index = 0
def __len__(self):
return len(self.interaction)
def __str__(self):
s = "Utterances, gold queries, and predictions:\n"
for i, utterance in enumerate(self.interaction.utterances):
s += " ".join(utterance.input_seq_to_use) + "\n"
pred_utterance = self.processed_utterances[i]
s += " ".join(pred_utterance.gold_query()) + "\n"
s += " ".join(pred_utterance.anonymized_query()) + "\n"
s += "\n"
s += "Snippets:\n"
for snippet in self.snippet_bank:
s += str(snippet) + "\n"
return s
def start_interaction(self):
assert len(self.snippet_bank) == 0
assert len(self.processed_utterances) == 0
assert self.index == 0
def next_utterance(self):
utterance = self.interaction.utterances[self.index]
self.index += 1
available_snippets = self.available_snippets(snippet_keep_age=1)
return PredUtteranceItem(utterance.input_seq_to_use,
self,
self.processed_utterances[-1].anonymized_pred_query if len(self.processed_utterances) > 0 else [],
self.index - 1,
available_snippets)
def done(self):
return len(self.processed_utterances) == len(self.interaction)
def finish(self):
self.snippet_bank = []
self.processed_utterances = []
self.index = 0
def utterance_within_limits(self, utterance_item):
return utterance_item.within_limits(self.max_input_length,
self.max_output_length)
def available_snippets(self, snippet_keep_age):
return [
snippet for snippet in self.snippet_bank if snippet.index <= snippet_keep_age]
def gold_utterances(self):
utterances = []
for i, utterance in enumerate(self.interaction.utterances):
utterances.append(UtteranceItem(self.interaction, i))
return utterances
def add_utterance(
self,
utterance,
predicted_sequence,
snippets=None,
previous_snippets=[]):
if not snippets:
self.add_snippets(
predicted_sequence,
previous_snippets=previous_snippets)
else:
for snippet in snippets:
snippet.assign_id(len(self.snippet_bank))
self.snippet_bank.append(snippet)
for snippet in self.snippet_bank:
snippet.increase_age()
self.processed_utterances.append(utterance)
def add_snippets(self, sequence, previous_snippets=[]):
if sequence:
snippets = sql_util.get_subtrees(
sequence, oldsnippets=previous_snippets)
for snippet in snippets:
snippet.assign_id(len(self.snippet_bank))
self.snippet_bank.append(snippet)
for snippet in self.snippet_bank:
snippet.increase_age()
def expand_snippets(self, sequence):
return sql_util.fix_parentheses(
snip.expand_snippets(
sequence, self.snippet_bank))
def remove_snippets(self, sequence):
if sequence[-1] == vocab.EOS_TOK:
sequence = sequence[:-1]
no_snippets_sequence = self.expand_snippets(sequence)
no_snippets_sequence = sql_util.fix_parentheses(no_snippets_sequence)
return no_snippets_sequence
def flatten_sequence(self, sequence, gold_snippets=False):
if sequence[-1] == vocab.EOS_TOK:
sequence = sequence[:-1]
if gold_snippets:
no_snippets_sequence = self.interaction.expand_snippets(sequence)
else:
no_snippets_sequence = self.expand_snippets(sequence)
no_snippets_sequence = sql_util.fix_parentheses(no_snippets_sequence)
deanon_sequence = self.interaction.deanonymize(
no_snippets_sequence, "sql")
return deanon_sequence
def gold_query(self, index):
return self.interaction.utterances[index].gold_query_to_use + [
vocab.EOS_TOK]
def original_gold_query(self, index):
return self.interaction.utterances[index].original_gold_query
def gold_table(self, index):
return self.interaction.utterances[index].gold_sql_results
class InteractionBatch():
def __init__(self, items):
self.items = items
def __len__(self):
return len(self.items)
def start(self):
self.timestep = 0
self.current_interactions = []
def get_next_utterance_batch(self, snippet_keep_age, use_gold=False):
items = []
self.current_interactions = []
for interaction in self.items:
if self.timestep < len(interaction):
utterance_item = interaction.original_utterances(
snippet_keep_age, use_gold)[self.timestep]
self.current_interactions.append(interaction)
items.append(utterance_item)
self.timestep += 1
return UtteranceBatch(items)
def done(self):
finished = True
for interaction in self.items:
if self.timestep < len(interaction):
finished = False
return finished
return finished