SmartSplat: Feature-Smart Gaussians for Scalable Compression of Ultra-High-Resolution Images
[AAAI 2026]
Linfei Li · Lin Zhang* · Zhong Wang · Ying Shen
Table of Contents
conda create -n smartsplat python==3.12
conda activate smartsplat
# install torch
pip install torch==2.5.1 torchvision==0.20.1 --index-url https://download.pytorch.org/whl/cu124
pip install setuptools==78.0.1
pip install -r requirements.txt
cd submodules/fused-ssim
pip install -e .
# Used by GaussianImage/3DGS/SmartSplat
cd ../gsplat
pip install -e .
# Used by LIG
cd ../gsplat2d
pip install -e .The datasets used in SmartSplat can be downloaded from the links provided below, including the tested subsets and the full versions hosted on Hugging Face or Baidu Netdisk.
| Dataset | Tested | Full |
|---|---|---|
| DIV8K | SmartSplat-DIV8K | Full DIV8K |
| DIV16K | SmartSplat-DIV16K | Full DIV16K |
This codebase integrates multiple GS-based image representation methods, including GaussianImage, 3DGS, and LIG. All our experiments were conducted on the A800 cluster. The corresponding run scripts are provided in the slurm folder.
LIG
data_path="data"
base_log_path="logs"
current_cr=50
python train_lig_for_eval.py \
-d $data_path \
--data_name DIV16K \
--model_name LIG \
--compression_ratio $current_cr \
--log_dir $base_log_path \
--iterations 50000 \
--save_iter_img 10000 \
--save_imgs3DGS
data_path="data"
base_log_path="logs"
current_cr=50
python train_all_for_eval.py \
-d $data_path \
--data_name DIV8K \
--model_name 3DGS \
--compression_ratio $current_cr \
--log_dir $base_log_path \
--iterations 50000 \
--save_iter_img 10000GaussianImage (RS)
data_path="data"
base_log_path="logs"
current_cr=50
python train_all_for_eval.py \
-d $data_path \
--data_name DIV16K \
--model_name GaussianImage_RS \
--compression_ratio $current_cr \
--log_dir $base_log_path \
--iterations 50000 \
--save_iter_img 10000GaussianImage (Cholesky)
data_path="data"
base_log_path="logs"
current_cr=50
python train_all_for_eval.py \
-d $data_path \
--data_name DIV16K \
--model_name GaussianImage_Cholesky \
--compression_ratio $current_cr \
--log_dir $base_log_path \
--iterations 50000 \
--save_iter_img 10000Image-GS
The
Image-GSimplementation used in our codebase is built uponGaussianImageand does not incorporate theTop-Kstrategy, resulting in suboptimal performance. For accurate reproduction, please refer to the official implementation.
data_path="data"
base_log_path="logs"
current_cr=50
python train_all_for_eval.py \
-d $data_path \
--data_name DIV8K \
--model_name ImageGS_RS \
--compression_ratio $current_cr \
--log_dir $base_log_path \
--iterations 50000 \
--save_iter_img 10000SmartSplat
data_path="data"
base_log_path="logs"
current_cr=3000
python train_all_for_eval_smart.py \
-d $data_path \
--data_name DIV8K \
--model_name SmartSplat \
--compression_ratio $current_cr \
--log_dir $base_log_path \
--iterations 50000 \
--save_iter_img 10000We thank the authors of the following repositories for their open-source code:
If you find our paper and code useful for your research, please use the following BibTeX entry.
@misc{li2025smartsplatfeaturesmartgaussiansscalable,
title={SmartSplat: Feature-Smart Gaussians for Scalable Compression of Ultra-High-Resolution Images},
author={Linfei Li and Lin Zhang and Zhong Wang and Ying Shen},
year={2025},
eprint={2512.20377},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2512.20377},
}