|
1 | 1 | {
|
2 | 2 | "metadata": {
|
3 | 3 | "name": "",
|
4 |
| - "signature": "sha256:0a65e4dbd0c5d614618a27422709b43217b06c4e543ea837f53c43e8993a0cc3" |
| 4 | + "signature": "sha256:e67f934cd7d306469b4248cb5d5e4344927f9567aa21d0cc4547d520275174a2" |
5 | 5 | },
|
6 | 6 | "nbformat": 3,
|
7 | 7 | "nbformat_minor": 0,
|
|
33 | 33 | ],
|
34 | 34 | "language": "python",
|
35 | 35 | "metadata": {},
|
36 |
| - "outputs": [ |
37 |
| - { |
38 |
| - "output_type": "stream", |
39 |
| - "stream": "stdout", |
40 |
| - "text": [ |
41 |
| - "The watermark extension is already loaded. To reload it, use:\n", |
42 |
| - " %reload_ext watermark\n" |
43 |
| - ] |
44 |
| - } |
45 |
| - ], |
46 |
| - "prompt_number": 10 |
| 36 | + "outputs": [], |
| 37 | + "prompt_number": 1 |
47 | 38 | },
|
48 | 39 | {
|
49 | 40 | "cell_type": "code",
|
|
58 | 49 | "output_type": "stream",
|
59 | 50 | "stream": "stdout",
|
60 | 51 | "text": [
|
61 |
| - "Last updated: 15/07/2014 \n", |
| 52 | + "Last updated: 21/08/2014 \n", |
62 | 53 | "\n",
|
63 | 54 | "CPython 3.4.1\n",
|
64 | 55 | "IPython 2.0.0\n",
|
65 | 56 | "\n",
|
66 | 57 | "matplotlib 1.3.1\n",
|
67 |
| - "numpy 1.8.1\n" |
| 58 | + "numpy 1.8.2\n" |
68 | 59 | ]
|
69 | 60 | }
|
70 | 61 | ],
|
71 |
| - "prompt_number": 11 |
| 62 | + "prompt_number": 2 |
72 | 63 | },
|
73 | 64 | {
|
74 | 65 | "cell_type": "markdown",
|
|
86 | 77 | "language": "python",
|
87 | 78 | "metadata": {},
|
88 | 79 | "outputs": [],
|
89 |
| - "prompt_number": 12 |
| 80 | + "prompt_number": 3 |
90 | 81 | },
|
91 | 82 | {
|
92 | 83 | "cell_type": "markdown",
|
|
110 | 101 | "source": [
|
111 | 102 | "- [Simple heat maps](#Simple-heat-map)\n",
|
112 | 103 | " - [Using NumPy's histogram2d](#Using-NumPy's-histogram2d)\n",
|
113 |
| - " - [Using hist2d from matplotlib pyplot](#Using-hist2d-from-matplotlib-pyplot)\n", |
114 |
| - " - [Using pcolor from matplotlib pyplot](#Using-pcolor-from-matplotlib-pyplot)\n", |
| 104 | + " - [Using hist2d from matplotlib](#Using-hist2d-from-matplotlib)\n", |
| 105 | + " - [Using pcolor from matplotlib](#Using-pcolor-from-matplotlib)\n", |
| 106 | + " - [Using matshow from matplotlib](#Using-matshow-from-matplotlib)\n", |
115 | 107 | "- [Using different color maps](#Using-different-color-maps)\n",
|
116 | 108 | " - [Available color maps](#Available-color-maps)"
|
117 | 109 | ]
|
|
251 | 243 | "level": 3,
|
252 | 244 | "metadata": {},
|
253 | 245 | "source": [
|
254 |
| - "Using hist2d from matplotlib pyplot" |
| 246 | + "Using hist2d from matplotlib" |
255 | 247 | ]
|
256 | 248 | },
|
257 | 249 | {
|
|
322 | 314 | "level": 3,
|
323 | 315 | "metadata": {},
|
324 | 316 | "source": [
|
325 |
| - "Using pcolor from matplotlib pyplot" |
| 317 | + "Using pcolor from matplotlib" |
326 | 318 | ]
|
327 | 319 | },
|
328 | 320 | {
|
|
363 | 355 | "<br>"
|
364 | 356 | ]
|
365 | 357 | },
|
| 358 | + { |
| 359 | + "cell_type": "heading", |
| 360 | + "level": 3, |
| 361 | + "metadata": {}, |
| 362 | + "source": [ |
| 363 | + "Using matshow from matplotlib" |
| 364 | + ] |
| 365 | + }, |
| 366 | + { |
| 367 | + "cell_type": "markdown", |
| 368 | + "metadata": {}, |
| 369 | + "source": [ |
| 370 | + "[[back to top](#Sections)]" |
| 371 | + ] |
| 372 | + }, |
| 373 | + { |
| 374 | + "cell_type": "code", |
| 375 | + "collapsed": false, |
| 376 | + "input": [ |
| 377 | + "import numpy as np\n", |
| 378 | + "import matplotlib.pyplot as plt\n", |
| 379 | + "\n", |
| 380 | + "columns = ['A', 'B', 'C', 'D']\n", |
| 381 | + "rows = ['1', '2', '3', '4']\n", |
| 382 | + "\n", |
| 383 | + "data = np.random.random((4,4))\n", |
| 384 | + "\n", |
| 385 | + "fig = plt.figure()\n", |
| 386 | + "\n", |
| 387 | + "ax = fig.add_subplot(111)\n", |
| 388 | + "\n", |
| 389 | + "cax = ax.matshow(data, interpolation='nearest')\n", |
| 390 | + "fig.colorbar(cax)\n", |
| 391 | + "\n", |
| 392 | + "ax.set_xticklabels([''] + columns)\n", |
| 393 | + "ax.set_yticklabels([''] + rows)\n", |
| 394 | + "\n", |
| 395 | + "plt.show()" |
| 396 | + ], |
| 397 | + "language": "python", |
| 398 | + "metadata": {}, |
| 399 | + "outputs": [ |
| 400 | + { |
| 401 | + "metadata": {}, |
| 402 | + "output_type": "display_data", |
| 403 | + "png": "iVBORw0KGgoAAAANSUhEUgAAASUAAAD7CAYAAAAsJIKcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFbBJREFUeJzt3X1QVGW8B/Dv4cWEYEyRMsRGTK+KL7CI4xvGas1oNiGm\nTtpVk3wp00accUatOxNWl7IX06TblKPNOCbQNQN1FM1k8y2xfCMFkVQS8WUgFPAqAsvePwxykT17\nlrN7zrOc72fmzEDncPbLqL+e59lnz0+y2Ww2EBEJwkfvAERED2JRIiKhsCgRkVBYlIhIKCxKRCQU\nFiUiEopXFaWsrCz4+PigqKhI7yhu5+vrC5PJhOjoaAwZMgS//vqr3pHc6vr165g2bRp69+6N2NhY\nvPDCCyguLtY7lls0/dkNHDgQ0dHRWL16NbjTpu0kb9qn9PLLL+Pu3buIiYlBSkqK3nHcKjg4GDU1\nNQCAvXv3IjU1FRaLRd9QbmKz2TBy5EgkJSVh/vz5AID8/HxUV1cjLi5O53TqPfhnV15ejldeeQWj\nRo1qd39HteI1I6Xbt28jLy8PaWlpyMzM1DuOR1VVVaFLly56x3Cb3NxcdOjQobkgAcDgwYPbRUFq\nKTQ0FN988w3S0tL0juK1/PQOoFR2djbGjx+Pp556CqGhoThx4gRiYmL0juU2d+/ehclkQm1tLa5d\nu4b9+/frHcltzpw5gyFDhugdQzMRERGwWq0oLy9HaGio3nG8jteMlNLT0zF16lQAwNSpU5Genq5z\nIvcKCAjAyZMnUVhYiJycHMyaNUvvSG4jSZLeEciLeMVIqbKyErm5uThz5gwkSYLVaoUkSfjkk0/0\njuYRw4cPR0VFBSoqKtC1a1e946g2YMAAbN26Ve8Ymrl48SJ8fX05Smojrxgpbd26FbNmzUJJSQku\nXbqEy5cvIyIiAgcPHtQ7mkecO3cOVqsVISEhekdxi7Fjx+LevXtYv35983/Lz8/HoUOHdEzlGeXl\n5XjjjTfw1ltv6R3Fa3nFSCkjIwPLly+3+2+TJ09GRkYGRo8erVMq92paUwLuv1u1adOmdjXt+fHH\nH5GcnIxVq1ahY8eOiIiIwJo1a/SO5RZNf3b19fXw8/PDrFmzsGTJEr1jeS2v2hJARO2fV0zfiMg4\nWJSISCgsSkQkFBYlIhIKixIRCUX1loAnzb1x/ZcL7shCRC6K7w5YrrT9DfQASUKtC9d37twZlZWV\nbX49JVRvCZAkCfNt2u03+T1lN2JTntfs9b6Rumn2Wvf9L4CpGr5eoYavBQAWAGZNX9G2eKVmr5Vy\nFEgZrtnLQVoLVY9JkSQJH7hw/X9B3espwekbkcH5u3C0JicnB/369UOfPn2watWqh87fvHkTkyZN\nQlRUFIYNG4azZ8/K5mFRIjI4PxeOlqxWKxYtWoScnBwUFBQgPT0dhYX2o+/U1FTExMTg9OnT2LRp\nExYvXiybx+uKUpi5t94RPCxS7wAe1lPvAB5lDtc7gesCXDhaOnbsGHr37o2ePXvC398f06ZNQ3Z2\ntt01hYWFGDNmDACgb9++KCkpQXl5ucM8XliU+ugdwcMG6B3Aw3rqHcCjvLEoqZm+lZWVoUePHs3f\nh4eHo6yszO6aqKgobNu2DcD9IvbXX3/hypUrDvN4XVEiIvdSM31T8qHx5cuX49atWzCZTEhLS4PJ\nZIKvr69sHiIyMEcL2ABQAPn3Z7t3747S0tLm70tLSxEebj9cDA4OxsaNG5u/j4iIQK9evRzek0WJ\nyODkisDgf44mP7Y4Hxsbi+LiYpSUlCAsLAyZmZkPPRW2qqoKAQEB6NChA9avX4/4+HgEBQW1KQ8R\nGYDcSMkZPz8/pKWlYdy4cbBarZgzZw769++Pr7/+GgDw+uuvo6CgALNnz4YkSRg4cCA2bNgge0+v\n2zypNe03T2pN682T2tNy86TW3LF5crsL1yfA85snOVIiMrjW3urXE4sSkcGJVgREy0NEGlOzpuQJ\nLEpEBidaERAtDxFpjCMlIhKKaEVAtDxEpDGOlIhIKNwSQERC4UiJiIQiWhEQLQ8RaczflSrQ4LEY\nzViUiAzOT7Ci5PQhb6+99hqeeOIJDBo0yPNpiEhz/r7KDy04LUpJSUnIycnRIgsR6cDPT/mhSR5n\nF4wePRolJSUaRCEiPfg/oncCe1xTIjI6waqAYHGISHOCVQG3xPk9ZXfz12Hm3gZog0SkD8uV+4db\nqawCOTk5SE5OhtVqxdy5c7Fs2TK78xUVFZgxYwauX7+OhoYGLF26FLNnz/ZUnPtiU553x22IyAlz\nuH1vuZV5bripinfVmjrk7tu3D927d8fQoUORkJCA/v37N1/T1Fbpww8/REVFBfr27YsZM2bAz8HK\nudN336ZPn46RI0fi/Pnz6NGjB7799tu2/wZEJB4Vjd+UdMh98sknUV1dDQCorq5GSEiIw4LUFEdW\ny3YpRNTOqHj3rbUOuXl59sO3efPmYezYsQgLC0NNTQ2+//572XuyQy6R0akYKSnpkJuamoro6Ghc\nvXoVp06dwsKFC1FTUyMbh4iMTKYKWKoAS7Xj80o65B45cgTvvPMOAODpp59GREQEioqKEBsb2+o9\nOVIiMjpfx4e5C5DS89+jpQc75NbV1SEzMxMJCQl21/Tr1w/79u0DANy4cQNFRUVs201EMlRUASUd\nct9++20kJSUhKioKjY2N+Pjjj9GlSxeH92SHXCfYIdf7sUOuzM9LEmzPunD9z+yQS0SeJlgVECwO\nEWmOH8glIqEIVgUEi0NEmtPo4W1KsSgRGZ1gVUCwOESkOcGqgGBxiEhznL4RkVAEqwKCxSEizXXU\nO4A9FiUio+P0jYiEIlgVECwOEWlOsCogWBwi0hynb0QkFMGqgGBxiEhzglUBweIQkeb4lAAiEopg\nVYDP6CYyOhXdTID7HXL79euHPn36YNWqVQ+d//TTT2EymWAymTBo0CD4+fnh1q1bDuO45XG4SPHs\n4zH1ZCty3kLGm0kvtN8/uyYx/3lI7wgec0Iarf5xuGkuXL/I/nG4VqsVffv2teuQm56ebtch90E7\nd+7EmjVrmhsJtIYjJSKj83CH3Adt2bIF06dPl43DokRkdCqKUmsdcsvKylp9mTt37mDPnj2YPHmy\n0zhEZGQqNk8q6ZDbZMeOHYiLi8Njjz0mex2LEpHRyTwlwFJw/3BESYfcJhkZGU6nbgCLEhHJVAHz\n4PtHk5U/2J9/sENuWFgYMjMzkZ6e/tB9qqqqcODAAWzZskVNHCIyBBXTNyUdcgEgKysL48aNQ0BA\ngNN7ckuAE9wS4P24JcAxSZJg2+7C9QnskEtEniZYFRAsDhFpjo8uISKh8BndRCQUjpSISCiCVQHB\n4hCR5gSrAoLFISLNCVYFBItDRJrjmhIRCUWwKiBYHCLSHJ/RTURCEawKCBaHiDQnWBUQLA4RaU6w\nKiBYHCLSmo3vvhGRSKyCVQHB4hCR1kQrSk67mZSWlmLMmDEYMGAABg4ciC+++EKLXESkkXuPdFB8\naMFpUfL398fnn3+Os2fP4ujRo/jyyy9RWFioRTYi0oDV11fx0RpnHXIBwGKxwGQyYeDAgTCbzbJ5\nnA7cunXrhm7dugEAgoKC0L9/f1y9etVhB0wi8i5WFZ8zsVqtWLRokV2H3ISEBLv6cOvWLSxcuBB7\n9uxBeHg4KioqZO/pUjPKkpISnDx5EsOGDWvbb0BEwmmAr+KjJSUdcrds2YLJkyc3t17q2rWrbB7F\nS1y3b9/GlClTsHbtWgQFBdmfzE359+ueZiDCrPS2ROSCGstJ1FhOuvWeVhXvd7XWITcvL8/umuLi\nYtTX12PMmDGoqanB4sWLMXPmTIf3VJSmvr4ekydPxowZM5CYmPjwBWNSlP0GRKRKsNmEYLOp+fvr\nK79VfU810zclHXLr6+tx4sQJ/Pzzz7hz5w5GjBiB4cOHo0+fPq1e77Qo2Ww2zJkzB5GRkUhOTnY9\nNREJTa4oHbXcw1FLncPzSjrk9ujRA127dkVAQAACAgLwzDPP4PTp0w6LktM1pcOHD2Pz5s3Izc2F\nyWSCyWRCTk6Osx8jIi9xDx0cHiZzMBakhDQfLT3YIbeurg6ZmZlISEiwu2bixIk4dOgQrFYr7ty5\ng7y8PERGRjrM43SkFBcXh8bGxjb8qkTkDdSsKSnpkNuvXz+MHz8egwcPho+PD+bNmydblNgh1wl2\nyPV+7JDrmCRJOG37D8XXR0nn2SGXiDxLzUK3J7AoERlca/uP9MSiRGRwataUPEGsNESkOU7fiEgo\nddDm0/9KsSgRGRzXlIhIKFxTIiKhcE2JiITCokREQuGaEhEJpU6wvt0sSkQGx+kbEQmF0zciEgq3\nBBCRUDh9IyKhsCgRkVBEK0ou9X0jovbnHh5RfLTGWYdci8WCTp06NT/j/4MPPpDNw5ESkcF5ukMu\nAMTHx2P79u2K7smREpHBWeGr+GhJSYdcAC4915tFicjg1LTtbq1DbllZmd01kiThyJEjiIqKwoQJ\nE1BQUCCbh9M3IoOT26d0yXIZJZbLDs8r6ZAbExOD0tJSBAYGYvfu3UhMTMT58+cdXu+WotTn3dPu\nuI2QpK/beQuiWr0DeN7vlaP1juAx7pjqyK0pPWWOwFPmiObvf1l52O68kg65wcHBzV8///zzePPN\nN1FZWYkuXbq0+pqcvhEZnJo1JSUdcm/cuNG8pnTs2DHYbDaHBQng9I3I8O6peEa3kg65W7duxVdf\nfQU/Pz8EBgYiIyND9p5u6ZDbx3ZKzS2EVvx1lN4RPMsA/1tqnNR+uxz7hLj2zlZLkiQh2fah4uvX\nSCvYIZeIPEu0Hd0sSkQGx6JERELh85SISCh8nhIRCYXTNyISCtt2E5FQuKZERELhmhIRCYVrSkQk\nFBYlIhIK15SISChcUyIioXBLABEJhdM3IhIKp29EJBS++0ZEQhGtKPEZ3UQGp+YZ3YDzDrlNfvvt\nN/j5+WHbtm2yeThSIjI4R+24lVDaIddqtWLZsmUYP36808fpcqREZHBadMhdt24dpkyZgtDQUKd5\nnBal2tpaDBs2DNHR0YiMjMSKFSsU/qpE5A3UFCUlHXLLysqQnZ2NBQsWAHDewNLp9K1jx47Izc1F\nYGAgGhoaEBcXh0OHDiEuLk7RL0xEYpPbp1RrOYZayzGH55V0yE1OTsZHH30ESZJgs9mcTt8UrSkF\nBgYCAOrq6mC1WmUbyRGRd5Hbp+RvHgl/88jm76tWfml3XkmH3OPHj2PatGkAgIqKCuzevRv+/v4P\nNa1soqgoNTY2IiYmBhcuXMCCBQsQGRmp5MeIyAuo2RLwYIfcsLAwZGZmIj093e6aixcvNn+dlJSE\nF1980WFBAhQWJR8fH5w6dQpVVVUYN24cLBYLzGZz8/m/U75q/jrAHItA81ClvxMRucByCLAcdu89\n1RQlJR1yXeVyh9z3338fAQEBWLp06f0bsEOudzPAphB2yHVMkiR0undN8fVVjzzp8Q65Tt99q6io\nwK1btwAAd+/exU8//QSTyeTRUESkHWuDn+JDC05f5dq1a3j11VfR2NiIxsZGzJw5E88++6wW2YhI\nA9YGsT5m4rQoDRo0CCdOnNAiCxHpwOuKEhG1bw31LEpEJJBGq1hlQKw0RKQ9Tt+ISCi1YpUBsdIQ\nkfYa9A5gj0WJyOhYlIhIKCxKRCSUer0D2GNRIjI6q94B7LEoERkdp29EJJRavQPYY1EiMjqOlIhI\nKCxKRCQUwYoS+74RGV29C0crnHXIzc7ORlRUFEwmE4YMGYL9+/fLxuFIicjoVGwJUNIh97nnnsPE\niRMBAH/88QcmTZqEP//80+E9OVIiMroGF44WlHTIffTRR5u/vn37Nrp27SobhyMlIqNTsSWgtQ65\neXl5D12XlZWFFStW4Nq1a9i7d6/sPVmUiIxObqH7vAUotjg8raRDLgAkJiYiMTERBw8exMyZM1FU\nVOTwWhYlIqOTK0q9zPePJrtW2p1W0iH3QaNHj0ZDQwP+/vtvhISEtHoN15SIjE7FmtKDHXLr6uqQ\nmZn5UPfbCxcuNPeKa2pC4qggARwpEZGKpwQo6ZD7ww8/YNOmTfD390dQUBAyMjJk7+lyh9yHbsAO\nud7NAP9bYodcxyRJAv7bhZ9/R/J4h1y3/JUs7tGO/+EG6R3As949137/wTbxmfuu3hE8aKXzS5zh\nB3KJSCiCfcyERYnI6PjkSSISCp88SURC4fSNiITCokREQuGaEhEJ5Z7eAeyxKBEZHadvRCQUTt+I\nSCjcEkBEQuH0jYiEwqJERELhmhIRCYVbAohIKJy+EZFQBJu+8RndREZndeFohbMOud999x2ioqIw\nePBgjBo1Cvn5+bJxOFIiMjoV0zclHXJ79eqFAwcOoFOnTsjJycH8+fNx9OhRh/fkSInI6DzcIXfE\niBHo1KkTAGDYsGG4cuWKbBwWJSKjq3fhaKG1DrllZWUOX2rDhg2YMGGCbBxO34iMTm5LQK0FuGdx\neFpph1wAyM3NxcaNG3H48GHZ61iUiIxObk3Jz3z/aFLdtg65+fn5mDdvHnJyctC5c2fZOJy+ERmd\niumbkg65ly9fxksvvYTNmzejd+/eTuMoGilZrVbExsYiPDwcO3bsUPIjROQtVDwlQEmH3Pfeew83\nb97EggULAAD+/v44duyYw3sq6pC7evVqHD9+HDU1Ndi+fbv9DSQJCPdsx0xdsRml11uJ9t2MUnWH\n3GAXfr7G8x1ynU7frly5gl27dmHu3LkeD0NEOlCxJcATnE7flixZgk8++QTV1dVa5CEirQn2MRPZ\norRz5048/vjjMJlMsFgsji+sSvn360fMQEezO7IR0UNK/jncyJs+kHvkyBFs374du3btQm1tLaqr\nqzFr1ixs2rTJ/sJOKR6MSET/6vnP0eQXfWJ4kOyaUmpqKkpLS3Hp0iVkZGRg7NixDxckIiI3cmmf\nkiu7N4mI2kLxju74+HjEx8d7MgsR6UKslW5+zITI8MRa6WZRIjI8jpSISCh39Q5gh0WJyPA4UiIi\noXBNiYiEwpESEQmFIyUiEgpHSkQkFL77RkRCEWv6xmd0Exmeiod0w3mH3HPnzmHEiBHo2LEjPvvs\nM6dpOFIiMry2j5SUdMgNCQnBunXrkJWVpeieHCkRGV7bR0pKOuSGhoYiNjYW/v7+itKwKBEZXtsf\n0u1qh1wlOH0jMjy5LQFnAJx1eNYTz1hjUSIyPLktAU//czT53u6s0g65ruD0jcjw2r6mpKRDbhOl\nLdo4UiIyvLa/+6akQ+7169cxdOhQVFdXw8fHB2vXrkVBQQGCglrv9KqoQ64cdsj1buyQ6+3c0CEX\n/+PCT7ypf4dc4dRa9E7gWf9n0TuBR5XoHcDjSvQO0AZitcj1vqJ0z6J3As+6Y9E7gUeV6B3A40r0\nDtAG6nZ0uxvXlIgMT6zPvrEoERmeWE8JUL3QbTab8csv7a91MJE3iI+Ph8ViafPPu7r5sXPnzqis\nrGzz6ymhuigREbmT9y10E1G7xqJEREJhUSIiobAoEZFQWJSISCj/D1v4OTnhEhgEAAAAAElFTkSu\nQmCC\n", |
| 404 | + "text": [ |
| 405 | + "<matplotlib.figure.Figure at 0x106388710>" |
| 406 | + ] |
| 407 | + } |
| 408 | + ], |
| 409 | + "prompt_number": 4 |
| 410 | + }, |
| 411 | + { |
| 412 | + "cell_type": "markdown", |
| 413 | + "metadata": {}, |
| 414 | + "source": [ |
| 415 | + "<br>\n", |
| 416 | + "<br>" |
| 417 | + ] |
| 418 | + }, |
366 | 419 | {
|
367 | 420 | "cell_type": "heading",
|
368 | 421 | "level": 1,
|
|
0 commit comments