-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
101 lines (76 loc) · 3.05 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
print("Running...")
print("Imports...")
import face_recognition
import cv2
import os
import numpy as np
from text_to_speech import *
import RPi.GPIO as GPIO
print("Done.")
# TODO
# TTS for multiple faces
print("Setting Up GPIO pins")
GPIO.setmode(GPIO.BCM)
#Setting GPIO pin numbers for speak and quit buttons
speak_button = 14
quit_button = 15
#Setting button GPIO pins as inputs for both buttons and enables internal pull down resistors
GPIO.setup(speak_button, GPIO.IN, pull_up_down=GPIO.PUD_DOWN)
GPIO.setup(quit_button, GPIO.IN, pull_up_down=GPIO.PUD_DOWN)
print("Done.")
print("Setting up video capture...")
video_capture = cv2.VideoCapture(0)
print("Done.")
folder_dir = "/home/pi/code/sciencefair22-23/nemo/images"
known_face_encodings = []
known_face_names = []
print("Organizing images and encoding faces - this may take a while...")
for image in os.listdir(folder_dir):
face = face_recognition.load_image_file("images/"+image)
known_face_encodings.append(face_recognition.face_encodings(face)[0])
known_face_names.append(os.path.splitext(image)[0].capitalize())
face_locations = []
face_encodings = []
face_names = []
process_this_frame = True
print("Done.")
print("Running loop - ready to go!")
while True:
speak_button_state = GPIO.input(speak_button)
quit_button_state = GPIO.input(quit_button)
ret, frame = video_capture.read()
if process_this_frame:
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
rgb_small_frame = small_frame[:, :, ::-1]
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
face_names = []
for face_encoding in face_encodings:
matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
name = "Unknown"
face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
best_match_index = np.argmin(face_distances)
if matches[best_match_index]:
name = known_face_names[best_match_index]
face_names.append(name)
#On speak_button or s key press
#TODO: Check if state needs to be 1 or 0
if ((speak_button_state==1) or (cv2.waitKey(1) & 0xFF == ord('s'))):
speak(name)
process_this_frame = not process_this_frame
for (top, right, bottom, left), name in zip(face_locations, face_names):
top *= 4
right *= 4
bottom *= 4
left *= 4
cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)
cv2.imshow('Video', frame)
#On quit_button press
if ((quit_button_state==1) or (cv2.waitKey(1) & 0xFF == ord('q'))):
break
video_capture.release()
cv2.destroyAllWindows()
GPIO.cleanup()
print("Quit.")