-
Notifications
You must be signed in to change notification settings - Fork 8
/
predict_target_fingerprints.py
169 lines (158 loc) · 5.88 KB
/
predict_target_fingerprints.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
#Author : Lewis Mervin lhm30@cam.ac.uk
#Supervisor : Dr. A. Bender
#All rights reserved 2016
#Protein Target Prediction Tool trained on SARs from PubChem (Mined 21/06/16) and ChEMBL21
#Molecular Descriptors : 2048bit Morgan Binary Fingerprints (Rdkit) - ECFP4
#Dependencies : rdkit, sklearn, numpy
#libraries
from rdkit import Chem
from rdkit.Chem import AllChem
import cPickle
import zipfile
import glob
import os
import sys
import math
import numpy as np
from multiprocessing import Pool
import multiprocessing
from collections import Counter
multiprocessing.freeze_support()
def introMessage():
print '=============================================================================================='
print ' Author: Lewis Mervin\n Email: lhm30@cam.ac.uk\n Supervisor: Dr. A. Bender'
print ' Address: Centre For Molecular Informatics, Dept. Chemistry, Lensfield Road, Cambridge CB2 1EW'
print '==============================================================================================\n'
return
#calculate 2048bit morgan fingerprints, radius 2
def calcFingerprints(smiles):
m1 = Chem.MolFromSmiles(smiles)
fp = AllChem.GetMorganFingerprintAsBitVect(m1,2, nBits=2048)
binary = fp.ToBitString()
return list(binary)
#calculate fingerprints for chunked array of smiles
def arrayFP(inp):
outfp = []
outsmi = []
for i in inp:
try:
outfp.append(calcFingerprints(i))
outsmi.append(i)
except:
print 'SMILES Parse Error: ' + i
return outfp,outsmi
#import user query
def importQuery(in_file):
query = open(in_file).read().splitlines()
#collect IDs, if present
if len(query[0].split()) > 1:
ids = [line.split()[1] for line in query]
query = [line.split()[0] for line in query]
else:
ids = None
matrix = np.empty((len(query), 2048), dtype=np.uint8)
smiles_per_core = int(math.ceil(len(query) / N_cores)+1)
chunked_smiles = [query[x:x+smiles_per_core] for x in xrange(0, len(query), smiles_per_core)]
pool = Pool(processes=N_cores) # set up resources
jobs = pool.imap(arrayFP, chunked_smiles)
current_end = 0
processed_smi = []
for i, result in enumerate(jobs):
matrix[current_end:current_end+len(result[0]), :] = result[0]
current_end += len(result[0])
processed_smi += result[1]
pool.close()
pool.join()
#remove IDs of SMILES parsing errors
if ids:
processed_ids = []
for idx, smi in enumerate(query):
if smi in processed_smi:
processed_ids.append(ids[idx])
ids = processed_ids
#if IDs weren't present, use SMILES as IDs
else:
ids = processed_smi
return matrix[:current_end], processed_smi, ids
#get info for uniprots
def getUniprotInfo():
if os.name == 'nt': sep = '\\'
else: sep = '/'
model_info = [l.split('\t') for l in open(os.path.dirname(os.path.abspath(__file__)) + sep + 'classes_in_model.txt').read().splitlines()]
return_dict = {l[0] : l[0:7] for l in model_info}
return return_dict
#unzip a pkl model
def open_Model(mod):
if os.name == 'nt': sep = '\\'
else: sep = '/'
with zipfile.ZipFile(os.path.dirname(os.path.abspath(__file__)) + sep + 'models' + sep + mod + '.pkl.zip', 'r') as zfile:
with zfile.open(mod + '.pkl', 'r') as fid:
clf = cPickle.load(fid)
return clf
#prediction worker
def doTargetPrediction(pickled_model_name):
if os.name == 'nt': sep = '\\'
else: sep = '/'
mod = pickled_model_name.split(sep)[-1].split('.')[0]
clf = open_Model(mod)
probs = clf.predict_proba(querymatrix)[:,1]
probs = probs.round(2)
if threshold is not None: probs = np.array(probs >threshold,dtype=int)
return mod,probs
#prediction runner
def performTargetPrediction(models):
prediction_results = dict()
pool = Pool(processes=N_cores, initializer=initPool, initargs=(querymatrix,threshold)) # set up resources
jobs = pool.imap_unordered(doTargetPrediction, models)
for i, result in enumerate(jobs):
percent = (float(i)/float(len(models)))*100 + 1
sys.stdout.write(' Performing Classification on Query Molecules: %3d%%\r' % percent)
sys.stdout.flush()
prediction_results[result[0]] = result[1]
pool.close()
pool.join()
prediction_matrix = np.array([j for i,j in sorted(prediction_results.items())]).transpose()
return sorted(prediction_results.keys()), prediction_matrix
#initializer for the pool
def initPool(querymatrix_,threshold_):
global querymatrix, threshold
querymatrix = querymatrix_
threshold = threshold_
#main
if __name__ == '__main__':
if os.name == 'nt': sep = '\\'
else: sep = '/'
input_name, N_cores, = sys.argv[1], int(sys.argv[2])
try:
threshold = float(sys.argv[3])
except ValueError:
if sys.argv[3] == 'None': threshold = None
else: print 'Enter valid threshold or "None"'
introMessage()
print ' Using ' + str(N_cores) + ' Cores'
try:
desired_organism = sys.argv[4]
except IndexError:
desired_organism = None
model_info = getUniprotInfo()
models = [modelfile for modelfile in glob.glob(os.path.dirname(os.path.abspath(__file__)) + sep + 'models' + sep + '*.zip')]
if desired_organism is not None:
models = [mod for mod in models if model_info[mod.split(sep)[-1].split('.')[0]][4] == desired_organism]
print ' Predicting for organism : ' + desired_organism
out_name = input_name + '_out_target_fingerprints_' + desired_organism[:3] + '_' + str(threshold) + '.txt'
out_file = open(out_name, 'w')
else:
out_name = input_name + '_out_target_fingerprints_' + str(threshold) + '.txt'
out_file = open(out_name, 'w')
print ' Total Number of Classes : ' + str(len(models))
#perform target predictions and tp fingerprints to file
querymatrix,smiles,ids = importQuery(input_name)
print ' Total Number of Query Molecules : ' + str(len(querymatrix))
print ' Using threshold : ' + str(threshold)
sorted_targets,prediction_matrix = performTargetPrediction(models)
out_file.write('Compound\t' + '\t'.join(map(str,[i for i in sorted_targets])) + '\n')
for i, row in enumerate(prediction_matrix):
#write target prediction fp
out_file.write(ids[i] + '\t' + '\t'.join(map(str,row)) + '\n')
print '\n Wrote Results to: ' + out_name
out_file.close()