This repository has been archived by the owner on Dec 13, 2017. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 29
/
index.c
352 lines (322 loc) · 8.68 KB
/
index.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
#include <stdlib.h>
#include <assert.h>
#include <stdio.h>
#include "minimap.h"
#include "kvec.h"
#include "khash.h"
#define idx_hash(a) ((a)>>1)
#define idx_eq(a, b) ((a)>>1 == (b)>>1)
KHASH_INIT(idx, uint64_t, uint64_t, 1, idx_hash, idx_eq)
typedef khash_t(idx) idxhash_t;
void kt_for(int n_threads, void (*func)(void*,long,int), void *data, long n);
mm_idx_t *mm_idx_init(int w, int k, int b)
{
mm_idx_t *mi;
if (k*2 < b) b = k * 2;
if (w < 1) w = 1;
mi = (mm_idx_t*)calloc(1, sizeof(mm_idx_t));
mi->w = w, mi->k = k, mi->b = b;
mi->max_occ = UINT32_MAX;
mi->B = (mm_idx_bucket_t*)calloc(1<<b, sizeof(mm_idx_bucket_t));
return mi;
}
void mm_idx_destroy(mm_idx_t *mi)
{
int i;
if (mi == 0) return;
for (i = 0; i < 1<<mi->b; ++i) {
free(mi->B[i].p);
free(mi->B[i].a.a);
kh_destroy(idx, (idxhash_t*)mi->B[i].h);
}
free(mi->B);
if (mi->name)
for (i = 0; i < mi->n; ++i) free(mi->name[i]);
free(mi->len); free(mi->name);
free(mi);
}
const uint64_t *mm_idx_get(const mm_idx_t *mi, uint64_t minier, int *n)
{
int mask = (1<<mi->b) - 1;
khint_t k;
mm_idx_bucket_t *b = &mi->B[minier&mask];
idxhash_t *h = (idxhash_t*)b->h;
*n = 0;
if (h == 0) return 0;
k = kh_get(idx, h, minier>>mi->b<<1);
if (k == kh_end(h)) return 0;
if (kh_key(h, k)&1) {
*n = 1;
return &kh_val(h, k);
} else {
*n = (uint32_t)kh_val(h, k);
return &b->p[kh_val(h, k)>>32];
}
}
uint32_t mm_idx_cal_max_occ(const mm_idx_t *mi, float f)
{
int i;
size_t n = 0;
uint32_t thres;
khint_t *a, k;
if (f <= 0.) return UINT32_MAX;
for (i = 0; i < 1<<mi->b; ++i)
if (mi->B[i].h) n += kh_size((idxhash_t*)mi->B[i].h);
a = (uint32_t*)malloc(n * 4);
for (i = n = 0; i < 1<<mi->b; ++i) {
idxhash_t *h = (idxhash_t*)mi->B[i].h;
if (h == 0) continue;
for (k = 0; k < kh_end(h); ++k) {
if (!kh_exist(h, k)) continue;
a[n++] = kh_key(h, k)&1? 1 : (uint32_t)kh_val(h, k);
}
}
thres = ks_ksmall_uint32_t(n, a, (uint32_t)((1. - f) * n)) + 1;
free(a);
return thres;
}
void mm_idx_set_max_occ(mm_idx_t *mi, float f)
{
mi->freq_thres = f;
mi->max_occ = mm_idx_cal_max_occ(mi, f);
}
/*********************************
* Sort and generate hash tables *
*********************************/
static void worker_post(void *g, long i, int tid)
{
int j, start_a, start_p, n, n_keys;
idxhash_t *h;
mm_idx_t *mi = (mm_idx_t*)g;
mm_idx_bucket_t *b = &mi->B[i];
if (b->a.n == 0) return;
// sort by minimizer
radix_sort_128x(b->a.a, b->a.a + b->a.n);
// count and preallocate
for (j = 1, n = 1, n_keys = 0, b->n = 0; j <= b->a.n; ++j) {
if (j == b->a.n || b->a.a[j].x != b->a.a[j-1].x) {
++n_keys;
if (n > 1) b->n += n;
n = 1;
} else ++n;
}
h = kh_init(idx);
kh_resize(idx, h, n_keys);
b->p = (uint64_t*)calloc(b->n, 8);
// create the hash table
for (j = 1, n = 1, start_a = start_p = 0; j <= b->a.n; ++j) {
if (j == b->a.n || b->a.a[j].x != b->a.a[j-1].x) {
khint_t itr;
int absent;
mm128_t *p = &b->a.a[j-1];
itr = kh_put(idx, h, p->x>>mi->b<<1, &absent);
assert(absent && j - start_a == n);
if (n == 1) {
kh_key(h, itr) |= 1;
kh_val(h, itr) = p->y;
} else {
int k;
for (k = 0; k < n; ++k)
b->p[start_p + k] = b->a.a[start_a + k].y;
kh_val(h, itr) = (uint64_t)start_p<<32 | n;
start_p += n;
}
start_a = j, n = 1;
} else ++n;
}
b->h = h;
assert(b->n == start_p);
// deallocate and clear b->a
free(b->a.a);
b->a.n = b->a.m = 0, b->a.a = 0;
}
static void mm_idx_post(mm_idx_t *mi, int n_threads)
{
kt_for(n_threads, worker_post, mi, 1<<mi->b);
}
/******************
* Generate index *
******************/
#include <string.h>
#include <zlib.h>
#include "bseq.h"
void kt_pipeline(int n_threads, void *(*func)(void*, int, void*), void *shared_data, int n_steps);
typedef struct {
int tbatch_size, n_processed, keep_name;
bseq_file_t *fp;
uint64_t ibatch_size, n_read;
mm_idx_t *mi;
} pipeline_t;
typedef struct {
int n_seq;
bseq1_t *seq;
mm128_v a;
} step_t;
static void mm_idx_add(mm_idx_t *mi, int n, const mm128_t *a)
{
int i, mask = (1<<mi->b) - 1;
for (i = 0; i < n; ++i) {
mm128_v *p = &mi->B[a[i].x&mask].a;
kv_push(mm128_t, *p, a[i]);
}
}
static void *worker_pipeline(void *shared, int step, void *in)
{
int i;
pipeline_t *p = (pipeline_t*)shared;
if (step == 0) { // step 0: read sequences
step_t *s;
if (p->n_read > p->ibatch_size) return 0;
s = (step_t*)calloc(1, sizeof(step_t));
s->seq = bseq_read(p->fp, p->tbatch_size, &s->n_seq);
if (s->seq) {
uint32_t old_m = p->mi->n, m, n;
assert((uint64_t)p->n_processed + s->n_seq <= INT32_MAX);
m = n = p->mi->n + s->n_seq;
kroundup32(m); kroundup32(old_m);
if (old_m != m) {
if (p->keep_name)
p->mi->name = (char**)realloc(p->mi->name, m * sizeof(char*));
p->mi->len = (int*)realloc(p->mi->len, m * sizeof(int));
}
for (i = 0; i < s->n_seq; ++i) {
if (p->keep_name) {
assert(strlen(s->seq[i].name) <= 254);
p->mi->name[p->mi->n] = strdup(s->seq[i].name);
}
p->mi->len[p->mi->n++] = s->seq[i].l_seq;
s->seq[i].rid = p->n_processed++;
p->n_read += s->seq[i].l_seq;
}
return s;
} else free(s);
} else if (step == 1) { // step 1: compute sketch
step_t *s = (step_t*)in;
for (i = 0; i < s->n_seq; ++i) {
bseq1_t *t = &s->seq[i];
mm_sketch(t->seq, t->l_seq, p->mi->w, p->mi->k, t->rid, &s->a);
free(t->seq); free(t->name);
}
free(s->seq); s->seq = 0;
return s;
} else if (step == 2) { // dispatch sketch to buckets
step_t *s = (step_t*)in;
mm_idx_add(p->mi, s->a.n, s->a.a);
free(s->a.a); free(s);
}
return 0;
}
mm_idx_t *mm_idx_gen(bseq_file_t *fp, int w, int k, int b, int tbatch_size, int n_threads, uint64_t ibatch_size, int keep_name)
{
pipeline_t pl;
memset(&pl, 0, sizeof(pipeline_t));
pl.tbatch_size = tbatch_size;
pl.keep_name = keep_name;
pl.ibatch_size = ibatch_size;
pl.fp = fp;
if (pl.fp == 0) return 0;
pl.mi = mm_idx_init(w, k, b);
kt_pipeline(n_threads < 3? n_threads : 3, worker_pipeline, &pl, 3);
if (mm_verbose >= 3)
fprintf(stderr, "[M::%s::%.3f*%.2f] collected minimizers\n", __func__, realtime() - mm_realtime0, cputime() / (realtime() - mm_realtime0));
mm_idx_post(pl.mi, n_threads);
if (mm_verbose >= 3)
fprintf(stderr, "[M::%s::%.3f*%.2f] sorted minimizers\n", __func__, realtime() - mm_realtime0, cputime() / (realtime() - mm_realtime0));
return pl.mi;
}
mm_idx_t *mm_idx_build(const char *fn, int w, int k, int n_threads) // a simpler interface
{
bseq_file_t *fp;
mm_idx_t *mi;
fp = bseq_open(fn);
if (fp == 0) return 0;
mi = mm_idx_gen(fp, w, k, MM_IDX_DEF_B, 1<<18, n_threads, UINT64_MAX, 1);
mm_idx_set_max_occ(mi, 0.001);
bseq_close(fp);
return mi;
}
/*************
* index I/O *
*************/
#define MM_IDX_MAGIC "MMI\1"
void mm_idx_dump(FILE *fp, const mm_idx_t *mi)
{
uint32_t x[6];
int i;
x[0] = mi->w, x[1] = mi->k, x[2] = mi->b, x[3] = mi->n, x[4] = mi->name? 1 : 0, x[5] = mi->max_occ;
fwrite(MM_IDX_MAGIC, 1, 4, fp);
fwrite(x, 4, 6, fp);
fwrite(&mi->freq_thres, sizeof(float), 1, fp);
fwrite(mi->len, 4, mi->n, fp);
if (mi->name) {
for (i = 0; i < mi->n; ++i) {
uint8_t l;
l = strlen(mi->name[i]);
fwrite(&l, 1, 1, fp);
fwrite(mi->name[i], 1, l, fp);
}
}
for (i = 0; i < 1<<mi->b; ++i) {
mm_idx_bucket_t *b = &mi->B[i];
khint_t k;
idxhash_t *h = (idxhash_t*)b->h;
uint32_t size = h? h->size : 0;
fwrite(&b->n, 4, 1, fp);
fwrite(b->p, 8, b->n, fp);
fwrite(&size, 4, 1, fp);
if (size == 0) continue;
for (k = 0; k < kh_end(h); ++k) {
uint64_t x[2];
if (!kh_exist(h, k)) continue;
x[0] = kh_key(h, k), x[1] = kh_val(h, k);
fwrite(x, 8, 2, fp);
}
}
}
mm_idx_t *mm_idx_load(FILE *fp)
{
int i;
char magic[4];
uint32_t x[6];
mm_idx_t *mi;
if (fread(magic, 1, 4, fp) != 4) return 0;
if (strncmp(magic, MM_IDX_MAGIC, 4) != 0) return 0;
if (fread(x, 4, 6, fp) != 6) return 0;
mi = mm_idx_init(x[0], x[1], x[2]);
mi->n = x[3], mi->max_occ = x[5];
fread(&mi->freq_thres, sizeof(float), 1, fp);
mi->len = (int32_t*)malloc(mi->n * 4);
fread(mi->len, 4, mi->n, fp);
if (x[4]) { // has names
mi->name = (char**)calloc(mi->n, sizeof(char*));
for (i = 0; i < mi->n; ++i) {
uint8_t l;
fread(&l, 1, 1, fp);
mi->name[i] = (char*)malloc(l + 1);
fread(mi->name[i], 1, l, fp);
mi->name[i][l] = 0;
}
}
for (i = 0; i < 1<<mi->b; ++i) {
mm_idx_bucket_t *b = &mi->B[i];
uint32_t j, size;
khint_t k;
idxhash_t *h;
fread(&b->n, 4, 1, fp);
b->p = (uint64_t*)malloc(b->n * 8);
fread(b->p, 8, b->n, fp);
fread(&size, 4, 1, fp);
if (size == 0) continue;
b->h = h = kh_init(idx);
kh_resize(idx, h, size);
for (j = 0; j < size; ++j) {
uint64_t x[2];
int absent;
fread(x, 8, 2, fp);
k = kh_put(idx, h, x[0], &absent);
assert(absent);
kh_val(h, k) = x[1];
}
}
return mi;
}