-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhalton_gen.py
executable file
·256 lines (219 loc) · 9.09 KB
/
halton_gen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
#!/usr/bin/env python
# Copyright (c) 2012 Leonhard Gruenschloss (leonhard@gruenschloss.org)
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights to
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
# of the Software, and to permit persons to whom the Software is furnished to do
# so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# Generate C++ code for evaluating Halton points with Faure-permutations for different bases.
# How many components to generate.
num_dimensions = 256
# Check primality. Not optimized, since it's not performance-critical.
def is_prime(p):
for i in range(2, p):
if not p % i:
return False
return True
# Init prime number array.
primes = []
candidate = 1
for i in range(num_dimensions):
while (True):
candidate += 1
if (is_prime(candidate)):
break;
primes.append(candidate)
print '''// Copyright (c) 2012 Leonhard Gruenschloss (leonhard@gruenschloss.org)
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights to
// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
// of the Software, and to permit persons to whom the Software is furnished to do
// so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
// This file is automatically generated.
#ifndef HALTON_SAMPLER_H
#define HALTON_SAMPLER_H
#include <algorithm>
#include <vector>
// Compute points of the Halton sequence with with digit-permutations for different bases.
class Halton_sampler
{
public:
// Init the permutation arrays using Faure-permutations. Alternatively, init_random can be
// called before the sampling functionality can be used.
void init_faure();
// Init the permutation arrays using randomized permutations. Alternatively, init_faure can be
// called before the sampling functionality can be used. The client needs to specify a random
// number generator function object that can be used to generate a random sequence of integers.
// That is: if f is a random number generator and N is a positive integer, then f(N) will
// return an integer less than N and greater than or equal to 0.
template <typename Random_number_generator>
void init_random(Random_number_generator& rand);
// Return the number of supported dimensions.
static unsigned get_num_dimensions() { return %du; }
// Return the Halton sample for the given dimension (component) and index.
// The client must have called init_random or init_faure at least once before.
// dimension must be smaller than the value returned by get_num_dimensions().
float sample(unsigned dimension, unsigned index) const;
private:
static unsigned short invert(unsigned short base, unsigned short digits,
unsigned short index, const std::vector<unsigned short>& perm);
void init_tables(const std::vector<std::vector<unsigned short> >& perms);
''' % num_dimensions
for i in range(0, num_dimensions):
print ' float halton%d(unsigned index) const;' % primes[i]
# The following strings will be extended below.
perm_arrays = '' # Permutation arrays.
init_tables = '' # Loops for initializing the permutation arrays.
# Individual implementations for each dimensions.
halton_impl = '''
// Special case: radical inverse in base 2, with direct bit reversal.
inline float Halton_sampler::halton2(unsigned index) const
{
index = (index << 16) | (index >> 16);
index = ((index & 0x00ff00ff) << 8) | ((index & 0xff00ff00) >> 8);
index = ((index & 0x0f0f0f0f) << 4) | ((index & 0xf0f0f0f0) >> 4);
index = ((index & 0x33333333) << 2) | ((index & 0xcccccccc) >> 2);
index = ((index & 0x55555555) << 1) | ((index & 0xaaaaaaaa) >> 1);
union Result
{
unsigned u;
float f;
} result; // Write reversed bits directly into floating-point mantissa.
result.u = 0x3f800000u | (index >> 9);
return result.f - 1.f;
}
'''
for i in range(1, num_dimensions): # Skip base 2.
base = primes[i]
# Based on the permutation table size, we process multiple digits at once.
digits = 1
pow_base = base
while pow_base * base <= 500: # Maximum permutation table size.
pow_base *= base
digits += 1
perm_arrays += ' unsigned short m_perm%d[%d];\n' % (base, pow_base)
max_power = pow_base
while max_power * pow_base < (1 << 32): # 32-bit unsigned precision
max_power *= pow_base
power = max_power / pow_base
halton_impl += '''
inline float Halton_sampler::halton%d(const unsigned index) const
{
return (m_perm%d[index %% %du] * %du +
''' % (base, base, pow_base, power)
init_tables += ''' for (unsigned short i = 0; i < %d; ++i)
m_perm%d[i] = invert(%d, %d, i, perms[%d]);
''' % (pow_base, base, base, digits, base)
# Advance to next set of digits.
div = 1
while power / pow_base > 1:
div *= pow_base
power /= pow_base
halton_impl += ' m_perm%d[(index / %du) %% %du] * %du +\n' % (base, div, pow_base, power)
halton_impl += ''' m_perm%d[(index / %du) %% %du]) * float(0x1.fffffcp-1 / %du); // Results in [0,1).
}
''' % (base, div * pow_base, pow_base, max_power)
print '\n' + perm_arrays + '};'
print '''
inline void Halton_sampler::init_faure()
{
const unsigned max_base = %du;
std::vector<std::vector<unsigned short> > perms(max_base + 1);
for (unsigned k = 1; k <= 3; ++k) // Keep identity permutations for base 1, 2, 3.
{
perms[k].resize(k);
for (unsigned i = 0; i < k; ++i)
perms[k][i] = i;
}
for (unsigned base = 4; base <= max_base; ++base)
{
perms[base].resize(base);
const unsigned b = base / 2;
if (base & 1) // odd
{
for (unsigned i = 0; i < base - 1; ++i)
perms[base][i + (i >= b)] = perms[base - 1][i] + (perms[base - 1][i] >= b);
perms[base][b] = b;
}
else // even
{
for (unsigned i = 0; i < b; ++i)
{
perms[base][i] = 2 * perms[b][i];
perms[base][b + i] = 2 * perms[b][i] + 1;
}
}
}
init_tables(perms);
}
template <typename Random_number_generator>
void Halton_sampler::init_random(Random_number_generator& rand)
{
const unsigned max_base = %du;
std::vector<std::vector<unsigned short> > perms(max_base + 1);
for (unsigned k = 1; k <= 3; ++k) // Keep identity permutations for base 1, 2, 3.
{
perms[k].resize(k);
for (unsigned i = 0; i < k; ++i)
perms[k][i] = i;
}
for (unsigned base = 4; base <= max_base; ++base)
{
perms[base].resize(base);
for (unsigned i = 0; i < base; ++i)
perms[base][i] = i;
std::random_shuffle(perms[base].begin(), perms[base].end(), rand);
}
init_tables(perms);
}
inline float Halton_sampler::sample(const unsigned dimension, const unsigned index) const
{
switch (dimension)
{''' % (primes[-1], primes[-1])
for i in range(num_dimensions):
print ' case %d: return halton%d(index);' % (i, primes[i])
print ''' }
return 0.f;
}
inline unsigned short Halton_sampler::invert(const unsigned short base, const unsigned short digits,
unsigned short index, const std::vector<unsigned short>& perm)
{
unsigned short result = 0;
for (unsigned short i = 0; i < digits; ++i)
{
result = result * base + perm[index % base];
index /= base;
}
return result;
}
inline void Halton_sampler::init_tables(const std::vector<std::vector<unsigned short> >& perms)
{'''
print init_tables + '}'
print halton_impl
print '#endif // HALTON_SAMPLER_H\n'