diff --git a/0. Preamble.ipynb b/0. Preamble.ipynb index be7e7cc..8afc8c4 100644 --- a/0. Preamble.ipynb +++ b/0. Preamble.ipynb @@ -53,44 +53,45 @@ "\n", "- **Part I**: **Introduction**\n", "\n", - " - Intro to Deep Learning and ANN\n", + " - Intro to Artificial Neural Networks\n", " - Perceptron and MLP \n", - "\t- naive pure-Python implementation\n", + " - naive pure-Python implementation\n", " - fast forward, sgd, backprop\n", " \n", - " - Intro to Tensorflow \n", - " - Model + SGD with Tensorflow\n", - " \n", - " - Introduction to Keras\n", - " - Overview and main features\n", - " - Keras Backend\n", + " - Introduction to Deep Learning Frameworks\n", + " - Intro to Theano\n", + " - Intro to Tensorflow\n", + " - Intro to Keras\n", + " - Overview and main features\n", " - Overview of the `core` layers\n", - " - Multi-Layer Perceptron and Fully Connected\n", - " - Examples with `keras.models.Sequential` and `Dense`\n", - " - HandsOn: FC with keras\n", + " - Multi-Layer Perceptron and Fully Connected\n", + " - Examples with `keras.models.Sequential` and `Dense`\n", + " - Keras Backend\n", " \n", - "- **Part II**: **Supervised Learning and Convolutional Neural Nets**\n", + "- **Part II**: **Supervised Learning **\n", " \n", - " - Intro: Focus on Image Classification\n", - "\n", - " - Intro to ConvNets\n", + " - Fully Connected Networks and Embeddings\n", + " - Intro to MNIST Dataset\n", + " - Hidden Leayer Representation and Embeddings\n", + " \n", + " - Convolutional Neural Networks\n", " - meaning of convolutional filters\n", " - examples from ImageNet \n", " - Visualising ConvNets \n", "\n", - " - Advanced CNN\n", - " - Dropout\n", - " - MaxPooling\n", - " - Batch Normalisation\n", - "\t\t\n", - " - HandsOn: MNIST Dataset\n", - " - FC and MNIST\n", - " - CNN and MNIST\n", + " - Advanced CNN\n", + " - Dropout\n", + " - MaxPooling\n", + " - Batch Normalisation\n", + "\n", + " - HandsOn: MNIST Dataset\n", + " - FC and MNIST\n", + " - CNN and MNIST\n", " \n", - " - Deep Convolutiona Neural Networks with Keras (ref: `keras.applications`)\n", - " - VGG16\n", - " - VGG19\n", - " - ResNet50\n", + " - Deep Convolutiona Neural Networks with Keras (ref: `keras.applications`)\n", + " - VGG16\n", + " - VGG19\n", + " - ResNet50\n", " - Transfer Learning and FineTuning\n", " - Hyperparameters Optimisation \n", " \n", @@ -104,12 +105,9 @@ "- **Part IV**: **Recurrent Neural Networks**\n", " - Recurrent Neural Network in Keras \n", " - `SimpleRNN`, `LSTM`, `GRU`\n", + " - LSTM for Sentence Generation\n", "\t\t\n", "- **PartV**: **Additional Materials**: \n", - " - Quick tutorial on `theano`\n", - " - Perceptron and Adaline (pure-python) implementations \n", - " - MLP and MNIST (pure-python)\n", - " - LSTM for Sentence Generation\n", " - Custom Layers in Keras \n", " - Multi modal Network Topologies with Keras" ] @@ -265,7 +263,9 @@ { "cell_type": "code", "execution_count": 3, - "metadata": {}, + "metadata": { + "collapsed": true + }, "outputs": [], "source": [ "import numpy as np\n", diff --git a/1.1 Introduction - Deep Learning and ANN.ipynb b/1. ANN/1.1 Introduction - Deep Learning and ANN.ipynb similarity index 98% rename from 1.1 Introduction - Deep Learning and ANN.ipynb rename to 1. ANN/1.1 Introduction - Deep Learning and ANN.ipynb index 19e169d..d5bb084 100644 --- a/1.1 Introduction - Deep Learning and ANN.ipynb +++ b/1. ANN/1.1 Introduction - Deep Learning and ANN.ipynb @@ -3,8 +3,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "nbpresent": { "id": "24ca50a0-b9ad-425d-a28f-6bd3ca3ac378" }, @@ -19,8 +17,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "nbpresent": { "id": "3896ecb2-47fa-4dbc-a2ff-9c76e9dfe93e" }, @@ -35,8 +31,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "nbpresent": { "id": "8c3060aa-fee9-438c-bc60-4685c0eb4750" }, @@ -51,8 +45,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "nbpresent": { "id": "6287766f-972f-4b4d-bee7-5418f0af74de" }, @@ -67,8 +59,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "nbpresent": { "id": "2f1c6299-954a-461a-b5c1-a86a1d12ad15" }, @@ -83,8 +73,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "slide" } @@ -101,8 +89,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "nbpresent": { "id": "5e13607b-3ec5-4a95-a2d8-f898f20748da" }, @@ -117,8 +103,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "nbpresent": { "id": "4fa2e86a-be32-4e78-96d9-f511a07e3908" }, @@ -133,8 +117,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "nbpresent": { "id": "df0121bc-10f1-4ace-840e-6fc89c6fdc7f" }, @@ -149,8 +131,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "nbpresent": { "id": "c25d7194-10bd-4196-9d4c-592bf6e188f9" }, @@ -165,8 +145,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "nbpresent": { "id": "15260f90-13d1-4fcc-afc6-379c507cb950" }, @@ -181,8 +159,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "nbpresent": { "id": "92d4603e-7e39-4156-818c-785df6189fe8" }, @@ -191,15 +167,13 @@ } }, "source": [ - "" + "" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true, - "deletable": true, - "editable": true, "nbpresent": { "id": "356d5ec7-3392-4daa-9671-4cc7111c5c91" }, @@ -216,8 +190,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -228,19 +200,14 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ - "" + "" ] }, { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "slide" } @@ -251,12 +218,9 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ - "\n", + "\n", "\n", "_(Source: Python Machine Learning, S. Raschka)_" ] @@ -271,8 +235,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -304,10 +266,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "In **gradient descent optimization**, we update all the **weights simultaneously** after each epoch, and we define the _partial derivative_ for each weight $w_j$ in the weight vector $w$ as follows:\n", "\n", @@ -315,7 +274,7 @@ "\\frac{\\partial}{\\partial w_j} J(w) = \\sum_{i} ( y^{(i)} - a^{(i)} ) x^{(i)}_j\n", "$$\n", "\n", - "**Note**: _The superscript $(i)$ refers to the ith sample. The subscript $j$ refers to the jth dimension/feature_\n", + "**Note**: _The superscript $(i)$ refers to the i-th sample. The subscript $j$ refers to the j-th dimension/feature_\n", "\n", "\n", "Here $y^{(i)}$ is the target class label of a particular sample $x^{(i)}$ , and $a^{(i)}$ is the **activation** of the neuron \n", @@ -359,8 +318,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "slide" } @@ -372,8 +329,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -397,7 +352,7 @@ "source": [ "### Perceptron and Adaline Models\n", "\n", - "Take a look at this notebook : Perceptron and Adaline " + "Take a look at this notebook : Perceptron and Adaline " ] }, { @@ -421,7 +376,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "\n", + "\n", "\n", "_(Source: Python Machine Learning, S. Raschka)_" ] @@ -488,7 +443,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "\n", + "\n", "\n", "_(Source: Python Machine Learning, S. Raschka)_" ] @@ -522,7 +477,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "\n", + "\n", "\n", "_(Source: Python Machine Learning, S. Raschka)_" ] @@ -531,7 +486,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "\n", + "\n", "\n", "_(Source: Python Machine Learning, S. Raschka)_" ] @@ -540,7 +495,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "\n", + "\n", "\n", "_(Source: Python Machine Learning, S. Raschka)_" ] @@ -556,8 +511,6 @@ "cell_type": "markdown", "metadata": { "collapsed": true, - "deletable": true, - "editable": true, "nbpresent": { "id": "5678486b-caf4-440b-be62-2f1286982c71" }, @@ -573,7 +526,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "\n", + "\n", "\n", "_(Source: Python Machine Learning, S. Raschka)_" ] @@ -581,8 +534,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -593,19 +544,14 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ - "" + "" ] }, { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "skip" } @@ -619,8 +565,6 @@ "execution_count": 1, "metadata": { "collapsed": true, - "deletable": true, - "editable": true, "slideshow": { "slide_type": "skip" } @@ -640,8 +584,6 @@ "execution_count": 2, "metadata": { "collapsed": true, - "deletable": true, - "editable": true, "slideshow": { "slide_type": "skip" } @@ -659,8 +601,6 @@ "execution_count": 3, "metadata": { "collapsed": true, - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -676,8 +616,6 @@ "execution_count": 4, "metadata": { "collapsed": true, - "deletable": true, - "editable": true, "slideshow": { "slide_type": "fragment" } @@ -691,9 +629,6 @@ "cell_type": "code", "execution_count": 5, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true, "slideshow": { "slide_type": "fragment" } @@ -718,9 +653,6 @@ "cell_type": "code", "execution_count": 6, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true, "slideshow": { "slide_type": "fragment" } @@ -745,9 +677,6 @@ "cell_type": "code", "execution_count": 7, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -783,8 +712,6 @@ "cell_type": "markdown", "metadata": { "collapsed": true, - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -798,8 +725,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -810,12 +735,9 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ - "" + "" ] }, { @@ -823,8 +745,6 @@ "execution_count": 8, "metadata": { "collapsed": true, - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -842,8 +762,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -859,8 +777,6 @@ "execution_count": 9, "metadata": { "collapsed": true, - "deletable": true, - "editable": true, "slideshow": { "slide_type": "fragment" } @@ -875,8 +791,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -889,9 +803,7 @@ "cell_type": "code", "execution_count": 10, "metadata": { - "collapsed": true, - "deletable": true, - "editable": true + "collapsed": true }, "outputs": [], "source": [ @@ -904,8 +816,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -920,9 +830,7 @@ "cell_type": "code", "execution_count": 11, "metadata": { - "collapsed": true, - "deletable": true, - "editable": true + "collapsed": true }, "outputs": [], "source": [ @@ -934,8 +842,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -951,8 +857,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -988,8 +892,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -1000,10 +902,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "```python\n", "def activate(self, inputs):\n", @@ -1037,8 +936,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -1049,10 +946,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "```python\n", "def backPropagate(self, targets, N, M):\n", @@ -1103,9 +997,7 @@ "cell_type": "code", "execution_count": 12, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true, + "collapsed": true, "slideshow": { "slide_type": "subslide" } @@ -1236,8 +1128,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -1249,11 +1139,7 @@ { "cell_type": "code", "execution_count": 13, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -1276,8 +1162,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -1289,11 +1173,7 @@ { "cell_type": "code", "execution_count": 14, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -1311,9 +1191,6 @@ "cell_type": "code", "execution_count": 15, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true, "slideshow": { "slide_type": "fragment" } @@ -1385,9 +1262,6 @@ "cell_type": "code", "execution_count": 16, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true, "slideshow": { "slide_type": "fragment" } @@ -1411,8 +1285,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -1426,8 +1298,6 @@ "execution_count": 17, "metadata": { "collapsed": true, - "deletable": true, - "editable": true, "slideshow": { "slide_type": "skip" } @@ -1458,11 +1328,7 @@ { "cell_type": "code", "execution_count": 18, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, + "metadata": {}, "outputs": [ { "data": { @@ -1493,8 +1359,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -1511,9 +1375,7 @@ "cell_type": "code", "execution_count": 19, "metadata": { - "collapsed": true, - "deletable": true, - "editable": true + "collapsed": true }, "outputs": [], "source": [ @@ -1525,23 +1387,19 @@ "cell_type": "code", "execution_count": 20, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true, + "collapsed": true, "slideshow": { "slide_type": "subslide" } }, "outputs": [], "source": [ - "# %load solutions/sol_111.py\n" + "# %load ../solutions/sol_111.py\n" ] }, { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -1558,9 +1416,7 @@ "cell_type": "code", "execution_count": 21, "metadata": { - "collapsed": true, - "deletable": true, - "editable": true + "collapsed": true }, "outputs": [], "source": [ @@ -1571,9 +1427,7 @@ "cell_type": "code", "execution_count": 22, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true, + "collapsed": true, "scrolled": false, "slideshow": { "slide_type": "subslide" @@ -1581,14 +1435,12 @@ }, "outputs": [], "source": [ - "# %load solutions/sol_112.py" + "# %load ../solutions/sol_112.py" ] }, { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -1596,7 +1448,7 @@ "source": [ "# Addendum\n", "\n", - "There is an additional notebook in the repo, i.e. [MLP and MNIST](extra/1.1.2 MLP and MNIST.ipynb) for a more complete (but still *naive* implementation) of **SGD** and **MLP** applied on **MNIST** dataset.\n", + "There is an additional notebook in the repo, i.e. [MLP and MNIST](1.1.2 MLP and MNIST.ipynb) for a more complete (but still *naive* implementation) of **SGD** and **MLP** applied on **MNIST** dataset.\n", "\n", "Another terrific reference to start is the online book http://neuralnetworksanddeeplearning.com/. Highly recommended! " ] @@ -1619,7 +1471,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.5.2" + "version": "3.5.3" }, "nbpresent": { "slides": { @@ -1944,5 +1796,5 @@ } }, "nbformat": 4, - "nbformat_minor": 0 + "nbformat_minor": 1 } diff --git a/additional materials/1.1.1 Perceptron and Adaline.ipynb b/1. ANN/1.1.1 Perceptron and Adaline.ipynb similarity index 98% rename from additional materials/1.1.1 Perceptron and Adaline.ipynb rename to 1. ANN/1.1.1 Perceptron and Adaline.ipynb index 91b717e..64efe96 100644 --- a/additional materials/1.1.1 Perceptron and Adaline.ipynb +++ b/1. ANN/1.1.1 Perceptron and Adaline.ipynb @@ -2,20 +2,14 @@ "cells": [ { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "##### (exceprt from Python Machine Learning Essentials, Supplementary Materials)" ] }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "### Sections\n", "\n", @@ -29,9 +23,7 @@ "cell_type": "code", "execution_count": 1, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true + "collapsed": true }, "outputs": [], "source": [ @@ -43,20 +35,14 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "## Implementing a perceptron learning algorithm in Python" ] }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "[[back to top](#Sections)]" ] @@ -65,9 +51,7 @@ "cell_type": "code", "execution_count": 2, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true + "collapsed": true }, "outputs": [], "source": [ @@ -136,10 +120,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "
\n", "
" @@ -147,30 +128,21 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "### Training a perceptron model on the Iris dataset" ] }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "[[back to top](#Sections)]" ] }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "#### Reading-in the Iris data" ] @@ -178,11 +150,7 @@ { "cell_type": "code", "execution_count": 3, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, + "metadata": {}, "outputs": [ { "data": { @@ -285,10 +253,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "
\n", "
" @@ -296,10 +261,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "#### Plotting the Iris data" ] @@ -307,11 +269,7 @@ { "cell_type": "code", "execution_count": 4, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, + "metadata": {}, "outputs": [ { "data": { @@ -350,10 +308,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "
\n", "
" @@ -361,10 +316,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "#### Training the perceptron model" ] @@ -372,11 +324,7 @@ { "cell_type": "code", "execution_count": 5, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, + "metadata": {}, "outputs": [ { "data": { @@ -404,10 +352,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "
\n", "
" @@ -415,10 +360,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "#### A function for plotting decision regions" ] @@ -427,9 +369,7 @@ "cell_type": "code", "execution_count": 6, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true + "collapsed": true }, "outputs": [], "source": [ @@ -464,11 +404,7 @@ { "cell_type": "code", "execution_count": 7, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, + "metadata": {}, "outputs": [ { "data": { @@ -493,10 +429,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "
\n", "
" @@ -504,30 +437,21 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "## Adaptive linear neurons and the convergence of learning" ] }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "[[back to top](#Sections)]" ] }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "### Implementing an adaptive linear neuron in Python" ] @@ -536,9 +460,7 @@ "cell_type": "code", "execution_count": 8, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true + "collapsed": true }, "outputs": [], "source": [ @@ -608,11 +530,7 @@ { "cell_type": "code", "execution_count": 9, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, + "metadata": {}, "outputs": [ { "data": { @@ -646,10 +564,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "
\n", "
" @@ -657,10 +572,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "#### Standardizing features and re-training adaline" ] @@ -669,9 +581,7 @@ "cell_type": "code", "execution_count": 10, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true + "collapsed": true }, "outputs": [], "source": [ @@ -684,11 +594,7 @@ { "cell_type": "code", "execution_count": 11, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, + "metadata": {}, "outputs": [ { "data": { @@ -733,10 +639,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "
\n", "
" @@ -744,20 +647,14 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "### Large scale machine learning and stochastic gradient descent" ] }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "[[back to top](#Sections)]" ] @@ -766,9 +663,7 @@ "cell_type": "code", "execution_count": 12, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true + "collapsed": true }, "outputs": [], "source": [ @@ -878,11 +773,7 @@ { "cell_type": "code", "execution_count": 13, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, + "metadata": {}, "outputs": [ { "data": { @@ -929,11 +820,7 @@ { "cell_type": "code", "execution_count": 14, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, + "metadata": {}, "outputs": [ { "data": { @@ -954,9 +841,7 @@ "cell_type": "code", "execution_count": null, "metadata": { - "collapsed": true, - "deletable": true, - "editable": true + "collapsed": true }, "outputs": [], "source": [] @@ -978,9 +863,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.5.2" + "version": "3.5.3" } }, "nbformat": 4, - "nbformat_minor": 0 + "nbformat_minor": 1 } diff --git a/additional materials/1.1.2 MLP and MNIST.ipynb b/1. ANN/1.1.2 MLP and MNIST.ipynb similarity index 97% rename from additional materials/1.1.2 MLP and MNIST.ipynb rename to 1. ANN/1.1.2 MLP and MNIST.ipynb index e1c7f0d..089ce05 100644 --- a/additional materials/1.1.2 MLP and MNIST.ipynb +++ b/1. ANN/1.1.2 MLP and MNIST.ipynb @@ -2,30 +2,21 @@ "cells": [ { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "##### (exceprt from Python Machine Learning Essentials, Supplementary Materials)" ] }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "## Sections" ] }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "- [Classifying handwritten digits](#Classifying-handwritten-digits)\n", " - [Obtaining the MNIST dataset](#Obtaining-the-MNIST-dataset)\n", @@ -36,50 +27,35 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "---" ] }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "# Classifying handwritten digits" ] }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "## Obtaining the MNIST dataset" ] }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "[[back to top](#Sections)]" ] }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "The MNIST dataset is publicly available at http://yann.lecun.com/exdb/mnist/ and consists of the following four parts:\n", "\n", @@ -118,9 +94,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "!curl http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz --output ../data/mnist/train-images-idx3-ubyte.gz" @@ -170,9 +144,7 @@ "cell_type": "code", "execution_count": 1, "metadata": { - "collapsed": true, - "deletable": true, - "editable": true + "collapsed": true }, "outputs": [], "source": [ @@ -207,11 +179,7 @@ { "cell_type": "code", "execution_count": 2, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -229,11 +197,7 @@ { "cell_type": "code", "execution_count": 3, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -250,10 +214,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "Visualize the first digit of each class:" ] @@ -261,11 +222,7 @@ { "cell_type": "code", "execution_count": 6, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, + "metadata": {}, "outputs": [ { "data": { @@ -297,10 +254,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "Visualize 25 different versions of \"7\":" ] @@ -308,11 +262,7 @@ { "cell_type": "code", "execution_count": 7, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, + "metadata": {}, "outputs": [ { "data": { @@ -341,10 +291,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "Uncomment the following lines to optionally save the data in CSV format. \n", "However, note that those CSV files will take up a substantial amount of storage space:\n", @@ -358,11 +305,7 @@ { "cell_type": "code", "execution_count": 17, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, + "metadata": {}, "outputs": [], "source": [ "#np.savetxt('train_img.csv', X_train, fmt='%i', delimiter=',')\n", @@ -379,9 +322,7 @@ { "cell_type": "markdown", "metadata": { - "collapsed": true, - "deletable": true, - "editable": true + "collapsed": true }, "source": [ "
\n", @@ -390,21 +331,14 @@ }, { "cell_type": "markdown", - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "## Implementing a multi-layer perceptron" ] }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "[[back to top](#Sections)]" ] @@ -412,11 +346,7 @@ { "cell_type": "code", "execution_count": 18, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, + "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", @@ -770,10 +700,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "
\n", "
" @@ -781,20 +708,14 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "## Training an artificial neural network" ] }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "[[back to top](#Sections)]" ] @@ -802,11 +723,7 @@ { "cell_type": "code", "execution_count": 19, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, + "metadata": {}, "outputs": [], "source": [ "nn = NeuralNetMLP(n_output=10, \n", @@ -825,11 +742,7 @@ { "cell_type": "code", "execution_count": 20, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, + "metadata": {}, "outputs": [ { "name": "stderr", @@ -856,11 +769,7 @@ { "cell_type": "code", "execution_count": 10, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, + "metadata": {}, "outputs": [ { "data": { @@ -888,11 +797,7 @@ { "cell_type": "code", "execution_count": 14, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, + "metadata": {}, "outputs": [], "source": [ "batches = np.array_split(range(len(nn.cost_)), 1000)\n", @@ -903,11 +808,7 @@ { "cell_type": "code", "execution_count": 15, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, + "metadata": {}, "outputs": [ { "data": { @@ -933,11 +834,7 @@ { "cell_type": "code", "execution_count": 16, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -956,11 +853,7 @@ { "cell_type": "code", "execution_count": 17, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -979,11 +872,7 @@ { "cell_type": "code", "execution_count": 48, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, + "metadata": {}, "outputs": [ { "data": { @@ -1018,9 +907,7 @@ { "cell_type": "markdown", "metadata": { - "collapsed": true, - "deletable": true, - "editable": true + "collapsed": true }, "source": [ "
\n", @@ -1030,9 +917,7 @@ { "cell_type": "markdown", "metadata": { - "collapsed": true, - "deletable": true, - "editable": true + "collapsed": true }, "source": [ "# Debugging neural networks with gradient checking" @@ -1040,10 +925,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "[[back to top](#Sections)]" ] @@ -1052,9 +934,7 @@ "cell_type": "code", "execution_count": 18, "metadata": { - "collapsed": true, - "deletable": true, - "editable": true + "collapsed": true }, "outputs": [], "source": [ @@ -1466,11 +1346,7 @@ { "cell_type": "code", "execution_count": 19, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, + "metadata": {}, "outputs": [], "source": [ "nn_check = MLPGradientCheck(n_output=10, \n", @@ -1489,11 +1365,7 @@ { "cell_type": "code", "execution_count": 20, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -1543,9 +1415,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.5.2" + "version": "3.5.3" } }, "nbformat": 4, - "nbformat_minor": 0 + "nbformat_minor": 1 } diff --git a/1.2 Introduction - Tensorflow.ipynb b/1.2 Introduction - Tensorflow.ipynb deleted file mode 100644 index 8629f51..0000000 --- a/1.2 Introduction - Tensorflow.ipynb +++ /dev/null @@ -1,1667 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "subslide" - } - }, - "source": [ - "# Tensorflow\n", - "\n", - ">**TensorFlow** (https://www.tensorflow.org/) is a software library, developed by Google Brain Team within Google's Machine Learning Intelligence research organization, for the purposes of conducting machine learning and deep neural network research. \n", - "\n", - ">TensorFlow combines the computational algebra of compilation optimization techniques, making easy the calculation of many mathematical expressions that would be difficult to calculate, instead.\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "subslide" - } - }, - "source": [ - "## Tensorflow Main Features" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "* Defining, optimizing, and efficiently calculating mathematical expressions involving multi-dimensional arrays (tensors).\n", - "\n", - "* Programming support of **deep neural networks** and machine learning techniques.\n", - "\n", - "* Transparent use of GPU computing, automating management and optimization of the same memory and the data used. You can write the same code and run it either on CPUs or GPUs. More specifically, TensorFlow will figure out which parts of the computation should be moved to the GPU.\n", - "\n", - "* High scalability of computation across machines and huge data sets.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "fragment" - } - }, - "source": [ - ">TensorFlow is available with Python and C++ support, but the **Python API** is better supported and much easier to learn." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "# Very Preliminary Example" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "subslide" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "11\n" - ] - } - ], - "source": [ - "# A simple calculation in Python\n", - "x = 1\n", - "y = x + 10\n", - "print(y)" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "subslide" - } - }, - "outputs": [], - "source": [ - "import tensorflow as tf" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "fragment" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Tensor(\"y/read:0\", shape=(), dtype=int32)\n" - ] - } - ], - "source": [ - "# The ~same simple calculation in Tensorflow\n", - "x = tf.constant(1, name='x')\n", - "y = tf.Variable(x+10, name='y')\n", - "print(y)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "fragment" - } - }, - "source": [ - "**Meaning**: \"When the variable `y` is computed, take the value of the constant `x` and add `10` to it\"" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "## Sessions and Models\n", - "\n", - "To actually calculate the value of the `y` variable and to evaluate expressions, we need to **initialise** the variables, and then create a **session** where the actual computation happens" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "fragment" - } - }, - "outputs": [], - "source": [ - "model = tf.global_variables_initializer() # model is used by convention" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "fragment" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "11\n" - ] - } - ], - "source": [ - "with tf.Session() as session:\n", - " session.run(model)\n", - " print(session.run(y))" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "subslide" - } - }, - "source": [ - "## Data Flow Graph" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "fragment" - } - }, - "source": [ - "* (**IDEA**) \n", - "_A Machine Learning application is the result of the repeated computation of complex mathematical expressions, thus \n", - "we could describe this computation by using a **Data Flow Graph**" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "fragment" - } - }, - "source": [ - "* **Data Flow Graph**: a graph where:\n", - " - each Node represents the _instance_ of a mathematical operation \n", - " - `multiply`, `add`, `divide`\n", - " - each Edge is a multi-dimensional data set (`tensors`) on which the operations are performed." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "subslide" - } - }, - "source": [ - "## Tensorflow Graph Model" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "* **Node**: In TensorFlow, each node represents the instantion of an operation. \n", - " - Each operation has inputs (`>= 2`) and outputs `>= 0`.\n", - " \n", - "* **Edges**: In TensorFlow, there are two types of edge:\n", - " - Data Edges: \n", - " They are carriers of data structures (`tensors`), where an output of one operation (from one node) becomes the input for another operation.\n", - " - Dependency Edges: These edges indicate a _control dependency_ between two nodes (i.e. \"happens before\" relationship). \n", - " + Let's suppose we have two nodes `A` and `B` and a dependency edge connecting `A` to `B`. This means that `B` will start its operation only when the operation in `A` ends. " - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "subslide" - } - }, - "source": [ - "## Tensorflow Graph Model (cont.)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "* **Operation**: This represents an abstract computation, such as adding or multiplying matrices. \n", - " - An operation manages tensors, and It can just be polymorphic: the same operation can manipulate different tensor element types. \n", - " + For example, the addition of two int32 tensors, the addition of two float tensors, and so on.\n", - "\n", - "* **Kernel**: This represents the concrete implementation of that operation. \n", - " - A kernel defines the implementation of the operation on a particular device. \n", - " + For example, an `add matrix` operation can have a CPU implementation and a GPU one." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "subslide" - } - }, - "source": [ - "## Tensorflow Graph Model Session" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "**Session**: When the client program has to establish communication with the TensorFlow runtime system, a session must be created. \n", - " \n", - "As soon as the session is created for a client, an initial graph is created and is empty. It has two fundamental methods:\n", - "\n", - "* `session.extend`: To be used during a computation, requesting to add more operations (nodes) and edges (data). The execution graph is then extended accordingly.\n", - "\n", - "* `session.run`: The execution graphs are executed to get the outputs (sometimes, subgraphs are executed thousands/millions of times using run invocations)." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "# Tensorboard" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "**TensorBoard** is a visualization tool, devoted to analyzing Data Flow Graph and also to better understand the machine learning models. \n", - "\n", - "It can view different types of statistics about the parameters and details of any part of a computer graph graphically. It often happens that a graph of computation can be very complex." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "subslide" - } - }, - "source": [ - "## Tensorboard Example" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "subslide" - } - }, - "source": [ - "Run the **TensorBoard** Server:" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "```shell\n", - "tensorboard --logdir=/tmp/tf_logs\n", - "```" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "fragment" - } - }, - "source": [ - "[Open TensorBoard](http://localhost:6006)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Example" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "95\n" - ] - } - ], - "source": [ - "a = tf.constant(5, name=\"a\")\n", - "b = tf.constant(45, name=\"b\")\n", - "y = tf.Variable(a+b*2, name='y')\n", - "model = tf.global_variables_initializer()\n", - "\n", - "with tf.Session() as session:\n", - " # Merge all the summaries collected in the default graph.\n", - " merged = tf.summary.merge_all() \n", - " \n", - " # Then we create `SummaryWriter`. \n", - " # It will write all the summaries (in this case the execution graph) \n", - " # obtained from the code's execution into the specified path”\n", - " writer = tf.summary.FileWriter(\"tmp/tf_logs_simple\", session.graph)\n", - " session.run(model)\n", - " print(session.run(y))" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "# Data Types (Tensors)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "subslide" - } - }, - "source": [ - "## One Dimensional Tensor (Vector)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "fragment" - } - }, - "outputs": [], - "source": [ - "import numpy as np\n", - "tensor_1d = np.array([1, 2.5, 4.6, 5.75, 9.7])\n", - "tf_tensor=tf.convert_to_tensor(tensor_1d,dtype=tf.float64)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "fragment" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[ 1. 2.5 4.6 5.75 9.7 ]\n", - "1.0\n", - "4.6\n" - ] - } - ], - "source": [ - "with tf.Session() as sess: \n", - " print(sess.run(tf_tensor))\n", - " print(sess.run(tf_tensor[0]))\n", - " print(sess.run(tf_tensor[2]))" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "subslide" - } - }, - "source": [ - "## Two Dimensional Tensor (Matrix)" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "fragment" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[[ 0 1 2 3]\n", - " [ 4 5 6 7]\n", - " [ 8 9 10 11]\n", - " [12 13 14 15]]\n", - "[[ 0. 1. 2. 3.]\n", - " [ 4. 5. 6. 7.]\n", - " [ 8. 9. 10. 11.]\n", - " [ 12. 13. 14. 15.]]\n" - ] - } - ], - "source": [ - "tensor_2d = np.arange(16).reshape(4, 4)\n", - "print(tensor_2d)\n", - "tf_tensor = tf.placeholder(tf.float32, shape=(4, 4))\n", - "with tf.Session() as sess:\n", - " print(sess.run(tf_tensor, feed_dict={tf_tensor: tensor_2d}))" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "subslide" - } - }, - "source": [ - "# Basic Operations (Examples)" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "-" - } - }, - "outputs": [], - "source": [ - "matrix1 = np.array([(2,2,2),(2,2,2),(2,2,2)],dtype='float32') \n", - "matrix2 = np.array([(1,1,1),(1,1,1),(1,1,1)],dtype='float32')" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [], - "source": [ - "tf_mat1 = tf.constant(matrix1) \n", - "tf_mat2 = tf.constant(matrix2)" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "subslide" - } - }, - "outputs": [], - "source": [ - "matrix_product = tf.matmul(tf_mat1, tf_mat2)\n", - "matrix_sum = tf.add(tf_mat1, tf_mat2)" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "fragment" - } - }, - "outputs": [], - "source": [ - "matrix_det = tf.matrix_determinant(matrix2)" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "subslide" - } - }, - "outputs": [], - "source": [ - "with tf.Session() as sess: \n", - " prod_res = sess.run(matrix_product) \n", - " sum_res = sess.run(matrix_sum) \n", - " det_res = sess.run(matrix_det)" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "fragment" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "matrix1*matrix2 : \n", - " [[ 6. 6. 6.]\n", - " [ 6. 6. 6.]\n", - " [ 6. 6. 6.]]\n", - "matrix1+matrix2 : \n", - " [[ 3. 3. 3.]\n", - " [ 3. 3. 3.]\n", - " [ 3. 3. 3.]]\n", - "det(matrix2) : \n", - " 0.0\n" - ] - } - ], - "source": [ - "print(\"matrix1*matrix2 : \\n\", prod_res)\n", - "print(\"matrix1+matrix2 : \\n\", sum_res)\n", - "print(\"det(matrix2) : \\n\", det_res)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "subslide" - } - }, - "source": [ - "# Handling Tensors" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "%matplotlib inline" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [], - "source": [ - "import matplotlib.image as mp_image\n", - "filename = \"imgs/keras-logo-small.jpg\"\n", - "input_image = mp_image.imread(filename)" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "fragment" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "input dim = 3\n", - "input shape = (300, 300, 3)\n" - ] - } - ], - "source": [ - "#dimension\n", - "print('input dim = {}'.format(input_image.ndim))\n", - "#shape\n", - "print('input shape = {}'.format(input_image.shape))" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "subslide" - } - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQ4AAAEACAYAAABCu5jVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXmcXFW1779r73OqOwMJYcgcBCJX8SkXUUFwAlEEuV54\njgw+BZwHFJwAL2JwQlQUAUElooDz8BT1giDDE1FQvIigDAYQSAiZSUjSna5z9l7vj32604Ru0tVd\n3dXdWV/oT6pOnaqz6lSdX+291tpriapiGIbRCK7VBhiGMfYw4TAMo2FMOAzDaBgTDsMwGsaEwzCM\nhjHhMAyjYYZNOETkUBG5R0T+KSKnDNdxDMMYeWQ48jhExAH/BA4GlgK3Akep6j1NP5hhGCPOcI04\n9gUWqepDqloAPwSOGKZjGYYxwgyXcMwBFve6v6TaZhjGOGC4hEP62Ga57YYxTsiG6XWXALv0uj+X\n5OvoQURMSAyjRahqXz/uA2a4Rhy3Ak8XkaeJSA04CvjlljudfsYZFBqJZSSWgRgiUUNL/8745Bkt\nt8FsGj82tcKuMnZRD4GuGNEiEkOdIgZijEQtm3KBD8uIQ1WDiLwfuIYkTt9S1bu33E9QpATduI6u\nu++kkAzf4nFIsWQJHbf8qbVGbIHZNDBGo00w8naJlKjWKL2jsx7I2yLyzP+FnzAFXHPGCsM1VUFV\nfwM846l3AnHQeedf+eehR+DqBdJiV8hjoeT+y77XUhu2xGwaGKPRJhh5u5yDqI5SIy6vAXX+7fqr\nYd+XoU3yEAybcAyEAw96KTEKodYO9ToUdbTFwvE8QGNoqQ1bYjYNjNFoE4y8XelInjYCZVmQ5210\nMpkJCjIkz8ZmWppyftDLXoHPIr6MeGA0BF5e0GoD+sBsGhij0SYYebscEFHqgGik0Ei71vuOdQ7h\nGIZhGA1hwmEYRsOYcBiG0TAmHIZhNIwJh2EYDWPCYRhGw5hwGIbRMCYchmE0jAmHYRgNY8JhGEbD\nmHAYhtEwJhyGYTSMCYdhGA1jwmEYRsOYcBiG0TAmHIZhNIwJh2EYDWPCYRhGw5hwGIbRMCYchmE0\njAmHYRgNY8JhGEbDmHAYhtEwJhyGYTSMCYdhGA1jwmEYRsMMqXesiDwIrAMiUKjqviIyDfgR8DTg\nQeCNqrpuiHYahjGKGOqIIwIHqupzVXXfatupwLWq+gzgeuC0IR7DMIxRxlCFQ/p4jSOAS6vblwJH\nDvEYhmGMMoYqHApcLSK3isjbq20zVHU5gKouA3Ye4jEMwxhlDMnHARygqstEZGfgGhG5lyQmhmGM\nY4YkHNWIAlVdKSK/APYFlovIDFVdLiIzgRX9PX/BmQtAlGLxYubHyPOHYoxhGH1ya4z8aOFC8quu\nBmnO77qoDu6FRGQi4FR1g4hMAq4BzgQOBtao6tkicgowTVVP7eP5GoOCi3T88WbuP/BgtOgawlsx\nDAOS/6HEAREPaN7G02+8gYn77Q+iOHGoqgzlGEMZccwAfi4iWr3O91T1GhH5C/BjETkBeBh4w1AM\nNAxj9DFo4VDVfwF797F9DfCKoRi1rdA91pN+7vf3nEb2H+t0v9/e73sor9N9u5vxfO6Gk6E6R40h\noiJ4VcAREBwBBbSPr7QiqGi1v6BkKCVedFy6pB1QOhAcREUQ1IFqY+9XxBE14kTx6okIUSKicdhs\nH++YcLQQIfmq0tc3UooHPDUVoOxzf6fdc1hFKPEoXvvae+wTgVwzCi0rMVWcDsa/p/hKaSIRQcg0\nYrIxeEw4WkgEoiQxqAFeAyHJST9fau15XqhURxWijtMht0ChZXLwAbl4VIWSQGxgyKFEAuAERNIJ\nsy/+0LDz10IckKkjOKGLNHR2qgS0n8y8Sh6cw0cFYjUMT7/H440IOPGoBpwImzQg4hBtLHNREXLv\nKUMEiYgA6sDGHIPGVse2EAEyFxARatHhcBTiaSMjTVqe+CcoEYdGj0MQgY4Yifk41X+BUiPee4Km\nsyACDu3z/PT3BxBDpI0MUUE9bPJqsjEExuk3bvSx2aufYgQKxKyd/A1vYN7p72NCPhWngc5MaCsd\nQfrSdCE6IQ91Hr3gYjZcfDHTN21kXVE8Keow1CjESLJlxKM7ipLLJMpXvIR/+9LpbNhuGhOKGqpK\n9N17DgyvDpxS3H0vd334NLZf9HcmoFjW0OAx4Rgh1AsSHaoZjjpBhKmv+09mfXoBsvs8cs3wKmQO\nXCwR/+SPJkUTFI3K3E+cxlIKNlxwEU4hioI6MlFKIujYEQ8Bogio4gScZpRtNSa87vXsfu6nKXac\nw/YKwUW8Ck58Q29MY0zRqFmzmbHXs1m76O/46njG4LCpygiggA8O0YhQoHgmH/tG5p77Fdxuc8nV\nkWmaijhi8uL18zolELxDdtiJ2Wd+hmknfQiItKmiLhCJlCJk5H2GdEcrpSptro0ISK1k2mGvZuZZ\nZxB2mkMWHeoET8QN4j2JKkRPNrGNqe85Hg+UY+fUjEpMOEaAFFyVFEbNHJOPegPzz/syOmMWGTle\nHYUX6l4oY0ny3vX1OgLicF2RTCJuylRmnPM5Jp58MhsmTMLjUUl5C4ECN0YcpirQhiNoF5plcMCr\nmH7JuUycsys+CNEpGmOV5eIa9gOrS69BdEx+6Ytpe96+eDUfx1Aw4RghvEREFD9/PjPPPAO2n06O\n4FV6phU+KhnZU14XWQhILVT3FKcZT/vIh9npefsQo6IquBDTkH8E3lczEByOSNHextTXH80e//e7\ntE+dQxAFr4gEPEqkutgbHS1UUZjoBMlyZpx0EuJrY2g8NvoYK9+tMY0CwSlBoTZpCvmMuQSJ9EQF\nveJCgYuavP79faUFglckRlQ9USTlj+6wA7LD9qgTnCrgaTC5sqUEFQKe7Q89nJlf+jS17XZMPhtR\niBFRoXSekgykRz4GjIgiIaYEMhwTDj6I/H89x4RjCJhwjAAKSIQaGa7swmuJ1wwXIxILQHHeo5lQ\nZtDfT6pExUdPzNpBBOeUKCDq0SgECdUzHSBpWD+K6M42kV63FcgyT37Yocz7+leZMGse6iHJhIDP\ncHjyILQBXmPDF3xdAOfIVHEqZDtuz3avOqhfX5KxdUbXN2uc4kg/nvUqMTyKS/4H5xCfI+JJWRxC\nhvTkHjz5hQTx6XHnIMPhxaEOolPyAAEQ6pRIT5r1aEFFUMl6xMM5T2ybwKQ3HsUzL/kautNsJAqB\ngKahWBIJR4r/ieBcBn2GqvvHqSNKFV2JELOM9vm7IO0Tmv0WtxlMOIwRI1clKjipERyIC0w78CBm\nfW4BYfo8fHRERxU9aR6ZBpwEgs+IXthwzz0s+9olxE2bmniUbQvL4zBGjFS4pUwJ9a6NbL8DmHX5\nRbTtMBeJjlBFT5xzBDy+SYkodXHkXQIuUNz5N5a86Ri4775+VwQZW8dGHMaIkfJLoMw9O/7nkezx\no++T7ziP0kXUB5CAFyVq8t00ixwHLrDxlpt5+Li3ER/4Z4PL5IwtsRGHMWKoCl3ADgcezPSvnIWf\nOYMoZfJZBEVEKMWlJDBiyklpwm+bSJ2ND9zLsve8j66778JpVdvEpGPQmHAYTaf7ctxy/WnmM/ID\nX8a8S76JzJpBIUpW1cbA5anWSAA8xGolbEPH1d4xmyqVPQY6/nYvD73uP6k//CDQRl0DExDCE6w1\nGsGmKkbTSb/mm1PePY6YtzP5yNfy9G9fRJw1BzTHUUIUouQpWbYnesKgoidRI1oWBCJRQWPBut/9\njqXHH03H4odABRe7qAGlqI04hoAJh9F0cpRIxLmc4CBmkWkveSlzz/ksce5uSOkoneJk83rhZuDw\nBB/xEZxEOv9xL8vf/R7W33kXWZU92i0V0Ra4DQmbqhhNJ5IqqBYaIW8jP+ClzPzBxeTT5kAUNNtc\nNxVxTVvGK1FRXyOGks5b/sLDr30t5aplZCIQ0/jCIahgK2OHiI04jKZTItQArXmmveZI9rj8Utp2\nmkfIItHF5BAlphIBKcm1KYSqJMHjN/6Oh975TsKK1QQVYkwikXwuKWrj+llIaAwMG3EYTUdwdBKY\n9qKXMfPcz5PNnAlSpoI6muqGRC8IUhUe1n5XBDeC0zqb7rmf5e9+D/X77ycjI2rKoBURymqUkbn0\ne2nTlcFjwmEMmr6jJ4LLPBMPPoTdLvkmzJxOkFSAB4l0uZy8u2aogGoASSIy8OOmxYC972sIbPjz\n/7DoDUfhli4GgegK8uhSOwSqqvIihBhp4kBnm8SmKsagSVGTnNgTPRFCXmO7I1/Lbt84jzBzNmgO\nBFRT9KQd8JIGGEIqRuwa/RoqaCyJmqInJYH1v/s9S9/xDnTZEiBVjpeY2iGAIqrVmqH+CkEbjWDn\n0Bg0OUog4l2tip4o0/Z/EXPP+Ry6y+7DFj0RFQoXIUZKAuGu+3j07e9k4z33pBXETTyW0Tc2VTEG\nzROjJ+3UXnIgs77/DfIdhjd6gkCuOTEWdP7+Zpa+6U1sWrW8SgPZnABmHozhw0YcxqB5YvTkCJ5+\nycIUPfGR6EJP9ESbHD3R6ugbf3sdS97xTjauWY1XwWvl7yBNo2wJ2/BhIw5j0HRHT7bf78XMPO9s\nsumzQQq8ZqCxj+hJbDgbtE9iJ53/eIBH3vYOipWP0B5zSkhTIu3udrc57dxoPlv9FEXkWyKyXETu\n6LVtmohcIyL3isjVIjK112PnicgiEbldRJ7Uzd4Ye/Su3JXup/KGLsuYctjh7P6Dy2mfOZvgI6gH\nAnWfEX1yfIqkVlLa4FWsaBqtpK4QadVsUWft727mHwcdzKYVj6AKJQUiUjlKUzGj7iiKMTwMRP6/\nDbxqi22nAteq6jOA64HTAETkMGC+qu4BvAv4ehNtNVpE7+hJqmgKIcvZ7sgj2fXCrxBmzQbNEEK6\nwF2eyvwNNXqSFpz0ip4UPH7ttSx/93vwj61ANWWCpja6yTpP+lL3W0XNaApb/SRV9SbgsS02HwFc\nWt2+tLrfvf2y6nl/AqaKyIzmmGq0ihQ9CWS+jeAgZMq0fV/IvK+cjT5tPlKk6AmSpiRN+6UXR10i\nLgSUkvKOe1l2wjvpXLSoat4k1YpYY6QZ7IRzuqouB1DVZcD0avscYHGv/R6pthljmEgq51ePXUje\nTvvBhzPr55eTzZxLLQqSKXlVCBjnKn9Gc46bkRM1sP7a3/LgQQdSX/YIiuJFENWepK7x2XZ79NJs\n52hfPzb9fp4LzlwAohSLFzM/Rp7fZGOM5hAQcpR6zTH1P45gly99Cb/THIKUVTmc1ItB0yqy5o04\nFKLU6bjuOpaefDIb16+jhpBVvo9uulPHzafRN7fGyI8WLiS/6mqapeqDFY7lIjJDVZeLyExgRbV9\nCTCv135zgaX9vciCTy4AF+n4483cf/n30dDfnkYrEYRNwPbP25/ZX/si2U5zRiR64rSTjX+9m6X/\n53jqj60kjx7BEavGDwqVU9SE46l4gXMc/fa3M3G//UGUT535qSG/5kA/XeGJn8svgeOq28cBV/Ta\n/hYAEXkhsLZ7SmOMDXrX0Ird97Ocqf/xGnb/yQ9o23kmwTU7esIToieqEOubWHvltdz3soOpr15Z\nCVIAwhMcn1qlkFtC0siy1RGHiHwfOBDYUUQeBj4JfB74iYicADwMvAFAVa8UkVeLyH3ARuD44TLc\naD7JT+AJRJwkn0XpM7Z/zWuYc85nCbNm46MgUqLqiD5FT3r/pIgMIp5RtZ0L0p3xGVh/5dUsO/lk\nso51KbTay+lqiV2tZ6vCoarH9PPQK/rZ//1DsshoKRGYRM4m6pArU569D/O++iXi3HlI3RHy1Je2\nmdETIXVby0NJdELnbX/n0eOOI65bayIxSrERnrEZETyBLqlDljN5/1cy55c/xM2eRx4FySMZaSSi\nzuGadFVHBE9EQ2Tdr6/koZe/hLhu3eal8NV+vdtGGq3FhMPooQqKELxj+1e8ml0Wfp222U9LjZ5d\nQCXlZKpWBTWa+O0pUdZdfQ2PfvADdHV2bfav9NpHeLKzzWgNtlbF6EE0LVybuOfeTL/4PNzseXSx\nkfY4sSd6ok56Er2aFT2R0EnxP3fzyJuPJa7fQA2h9IqEJ44wTDBGDzbi2EbRXv92tzFwPmfyK17F\n7r/+GfmsuRCVdp2AujpFFT2RIUdPYk/kJCjErk7W/vc1LDrsUFi/HhWlJOJC/0lBNlVpPSYc2yAq\noOLQqnqFB0qXMfHQw9jlwi+j83bBq6S2jBGUdmpUa0/cUCp3VUvsiRQEohas/fVVLP3AB/FrV1EC\n6JO/lL2nJzZVGR3YVGUbxGnKhpgoykYBFWXSns9h3kXnoXPn4UshZBFX/bQ3OrLoD1VXrast8VHZ\n+PtbWXr0scSi60mdXG16MrqxEcc2SERwFHRIifiMKQcdxrwrf46bPZdaBLJIppp6kHiXusY3ARGo\nS0noKlj30yt44DWHEoo6sZosmUiMHUw4tlE8gjph6sGHMeeiC2ifuwvilOhSdiYSibHyYzTpio6S\nmiZtuPIaHv7IyRQdHT2RnC0xIRnd2FRlG0RQunBMfOZeTF94AdnsXYhsJIsTqjmCELxDPPgIEME1\nYe1J6KTjxv/hX296E1lQoqb66BF5Qu/43nkbJh6jExtxjHNUuteeSE/0BN/GlEMPY/df/4LarLlA\nIIsTUKkTvCd4XxXISZf1ILoX9ERPYlW5S+udrP3Jr7jntUfiyjqlFmnNiUhVHujJr2GMXkw4xjMC\niiOQISgZUIpn4qsOYd55X4Rd5qXoiaR2jFHayQQyASfVl8N119RqhFj9n/4jlqz+79+w5MMfprZ2\n9RNHEr2Wx1v0ZOxgU5VxTIqeOCYJdAiUTpn0zOewy0Xnp5BrFT3puUCb5ctQhyPiKNBSePyPf+bR\n178RjWVzDmC0HBtxjGNS9KSkQ0rwGVNefjjzrvoFbs68XtGTWOVsNDF6AqCBsKlk1Q9+zOLXHE6I\nwaYf4wgTjnGNVNETmHLQq5jztfNon7Nl9ER7oifNytdAInjhsZ/9kkdP+xjF+g1EaaQ7rDHasanK\nuCbSJY5Jz3wOMy75WhU96XhC9CR6B02Onki5iTVXXMeytx+P60pO0EIU1c1d1oyxjY04xgOVCCSn\no/REUsTXmHLoq9ntv39BbdY8ID4peiI90ZM+cr0HcFiN3ZW7IhqV2NXFqh/8jCVvO47Y1YUSCUQk\n0mf0xBib2IhjHKCiCEJBxgQCApQ4Jrzylcw99/PovHn4KEQXUwFgl6InT2AwI41YJ5DhAgSvqAgb\nf/VLHv3wKbBuTbKt2rV3noYx9jHhGAcIIFHYzkGXKiETJj1jL3b5+gXoLvPwpSNmsQp9NtHTIA5X\nCvUM2oo6635zJYvfcDRBgg1lxzn2+Y4LHE4iGymRLGPKKw5N0ZN5qXIXWcRrxFc+jaZ1OYse8VAr\nC9b+7McsefM78VU3N2N8Y8IxDtBUJQM8bPfSQ5hz3rlMmDMXQYmu6qZaRU+k2dETKQkIXQ+vZFOx\nsSoDaPGT8Y4JxzhANFIXYeIznsvMb19ENn8PSrrwUfDB4YMjkoHPcRFcbFKxUPFARDLP1LcezcRd\nn0XdK5axMf4x4RgPSKT98Fcz/9e/IJ87Fw9k2ob6vtaeNB496fewQIg1ANqmz2Dm979M26y5ZFRV\nxSSNPNTiKeMOE45xgOQ1ph9zLLW588hUqjUmgLT1rD2RnrUnzasyrIAXTZXANGP7vfdn+ic/issn\nUUoaeZRATTLEmXiMJ0w4xgMi5JMmoKJENLVEHIHinN21OlQipYDENqa89k1MOeLVuEyI4smpsUkL\nAmpftnGEfZbjBAVUBKn+RowoRBRfdWiqTdmJqR87kYmzdiOPASHi8dDEBk5G6zHhGA+IEDU+6coc\n7tUh0t2dXgU0IJVQTNpnP3b6zH+h4il8ABGcOuvKNo4w4RgHiCoZrup1klAd/p941ZSJWoYA4lEc\nqjlIjfY3H8sO73gH4Ai+RHr6shnjAROO8YKkdSM9d0diuuIAlDbJkwFeIAMnyqRYY+eTP8CkvZ7X\n02dWK2epiiP0VOrpVZnMGDNsVThE5FsislxE7ui17ZMiskREbqv+Du312GkiskhE7haRQ4bLcKMX\nksImzrseH8dICIfDIa6qTdoduakO2xUKanvswU4fPZG29gnUHSlJzQGSan9kCpnzFm0ZgwxkxPFt\n4FV9bP+yqu5T/f0GQET2BN4I7AkcBlwoI+qpM0YDApDnqV/L617HhDcexcSYlrnVIsQYUOcpgHos\nsaX2Y4+tCoeq3gQ81sdDfQnCEcAPVbVU1QeBRcC+Q7LQGHMoSlsZcZqT5xOY9/kF+P1fDCLUfVpZ\nWWgEJ2T05IkZY4ih+DjeJyK3i8hCEZlabZsDLO61zyPVNmMbIq2FcdX/Eb/zXHb+3Bm0zZpDTTMC\nSo1ePhkbcIw5BiscFwLzVXVvYBlwTrW9vz7BxjaE4Ci9EClB65QIU/d7EZOOPopSPG0IpSgiUIjF\nWsYig6rHoaore929GPhVdXsJMK/XY3OBpf29zoIzF4AoxeLFzI+R5w/GGKNhYtV00UUBCYASNQMX\ncSoEBK/dI4eQUsobnE9kQEARydLalfZ2Zpz8Xlbf9lfkhutwCrkKdbEiP8PNrTHyo4ULya+6mifE\n7IeA6ACKJ4jIrsCvVPU51f2Zqrqsun0y8AJVPUZEngV8D9iPNEX5LbCH9nEQEdEYFFyk4483c/+B\nB6NFV1Pe1GgkLX1Xanvtxfwbf082ZTKCa8nPbSQSk4uBQiEnsvGm38GkqUx+7nMpSsjyKrGLVGHM\nydCreGiAjffexr0vPpTssZVVTmnobvtkNAlHqgAHEQ9o3sbTb7yBifvtD6I4cagOrbjCQMKx3wf+\nCPybiDwsIscDXxCRO0TkduBlwMkAqnoX8GPgLuBK4L19iYbRWiSA1wBlAUWdDT/6CfceeDhrPvMF\nutasJM8E0dCdx9684zpo23MfZn7mDNyE7dAsojiiTVbGHFudqqjqMX1s/vZT7H8WcNZQjDKGGedQ\nhQJY991vs+Ljn8BLF2tuuIa2X1/JDm8+Di8Z4kCq7ixNoSqivvPr38Cm/3cjHT/9KeqEQpXMfl7G\nFJY5ug0igKhj7S9+zKqTT4EVK9AItccfZ81JH6fjoX+CE4QA2kT/gwQKFLfDNKafchJ+4o5ojE1r\nBGWMHCYc2yBl10ZWfP87LH/j8WzqWEuZ1q9SqqLrlrPiPR9G16xB1dEVmrfGREVpQ4m+xuR9XsiU\nL38GJk7BAm9jDxOOcUwESlLXeCUV1tGii9XfuYxHP3QqQoEPoKQVrApsFCH8/jpWfvtiYlFQ8z7V\n74qaFs5FQEFDiTbo0hRxaUGeRlQdM044lqlHvR4lI1JFYlxaxyLVJMkYnZhwjGNEI76EEEpQxQVY\nfvl3WPrRTyCrlvdc9mmtWlpq1oZDNnWx6usLWf/AIiQ6ogbKqkhQt28EcY2PE2IV1q30QP0kZn30\nvUx+7r9TtmfJjhjJtarxYSORUYsJx3jHB7wXwsYuHvn2N1j9tvfiN6zuc9fk+wgUZJQPPMDKT3yK\netdGUu95JRKryuapEEfDNb0kjXyipFFQFgTdYy+mfeBE8pjTRVoIF7MczyCEyRgxTDjGNQ5Vh5aB\n1QsvZM1pZxDov6BOBIIIdRdQETb97OesPfdcNEby6PB4IoE8Jqepa/TK1pRV6hScU5wouWZs//rX\ns90JbyGKQwXKWKcQrNjgKMY+mXGMAqV41lx4Pqv/63TC6pVEtGpr8GRcVQwoRKVdHeICa8+7gPU3\n/ZF6yifCiQMCuLJxD4QAKgRAYolSgA8wcSKzv3wOE194ADVVsijkNtwY1ZhwjGc6HmflV7/Mwx8+\njXpHFx5P6UOq3NUHkQgZTALqKETP+lUrWfnFc/ArFhMdqDqiCKhvODesFEWjImREl4HLAAGJ1Nom\nsvMZp1DMmkkbjtKRpkXGqMSEYzygCjH5DUKEGKAIdR47/zxWf/osspBGB0ED7UGe0umoQUmrVwIl\nkEel44YbWHPZjwElRkE01dpodFAgVcVi13NP8OoQTZmq2734Zez0lhMoJOIEgkKoOs95IIojOou0\njAZMOMYFkUJSPwRHgQgs+tKXePhTZ6FrVlVLyJLHIDzFgjIBXNVZwSm4bgnpXM+jn/4iHbf+CXHp\nYhap5i4N4HGIF1xVKcx1N3sRQZyQTZrM7I9+kPIZz4IQaXNZyiitbCo1Imqej9GAfQbjgCipX2uh\ngWJjJ0u+dBblxxeQd3Y07RjZ+hWsOukUyuUP4pTUuyU2xxEhlER1gBB2mM78n1yCmzGbUku8q+HJ\nKUV6mmWHphzVGAomHOMAV110vnSsPP9rPHb2F8hioGhWaS2BAmHDbX9m5cXfQTu7AGnKilkAF9Lr\niCq5RrZ7xvPZ4dSPIJOm0BXrFFLiVak61VqYdhRgwjEOUJJPY9nZZ7FmwafgsXWs981bA+LwqaZG\nvWDNhZfQ8cAdSCGUzXl5gk9JZiqBKIHOTJh+9LHUXnIAHmhTxUmq3C6VgBitxYRjHKCxZNVXzmfV\ngtPRok6BMKGJP8uqgULSCtawYjGPnnQa5cZlTbyAFXGp21uIgo/gd9qReaefSjFrD6ITugSiZnhv\nsjEaMOEYDxQFm37/e3xMIVWnkRCb18dNABTqoniBzutv5KGzvoLWN6BEygBoTGtZgtK40zQlk4l4\nMvHUXHKWtr/wAOZ/7gy6XI6PgvpIDFYtbDRgwjEeEI+K9jgNU/Oj5vkCPGk6FFQRhYySjZf+mLU3\n3ABdqQFTQUQJFA4aLi4lDueqfjBOqjYxDi852x91ODuf8FYEyENoWuk7Y2iYcBhbJS2s9+RkoFA4\nyFY8xMpzz6dY/SiFpOZKMUq1YrY5Yx0JULRNZdr738eEZ+/NpsxVXeEsl6PVmHAYWyU5QZUMIYij\nLlB3Sv2GG1n2ja9RIyDRI87hS6o+sUNHfSSLMOnf9mT7D30gNdbO0njKaC0mHMZWSV+SCERKFSYE\nj48eLeus/+w5rL/uWuq+agbruyunD526BATF5Rk7v/UYdnzrcUi52SKjddgnYGwVR5UtSiAj4CsP\nSogCWuepabQQAAAVT0lEQVShj54O/7pv8+J7zZtyXE+WKhyLomTs9oVzkBe+IK2pMVqKCYexVVL1\njTRlEVJVsUDEoXT4jHDXXaxaeDGxszP5H2KAkAr+hJgCLRq14e4pXtOoQ6smCvUdpjL71NORWXMp\nyStPR5Yetz6SI4oJhzEgvG72LHQLiYiSFyVZfRNLz/sm6/5xG5AWopUuhYUFpRykT0Ji6rwiUcki\nFJTscMjL2P51/xtx6VUjJRme3LpwjCgmHMagKdQnhylKrWMtK9/3MerLl6acDDQJh5Ygoaou1miY\nNrVqipJW0k4gp94+kdn/9VHanvVsohfEAdSJTUp/NwaGCYcxaByRIGnRWd3Bpr/8mUdPO5O4qQMJ\nPtXscI4cRQfjMK1W0QanBA8Zjjw6dMZsdv/OQmoz5yIKnQ6izVRGFBMOY9BkKJkqtTzHBYd3kQ1X\n/IzHr7mG0kciQsCniuXSeFO4qCDRUSsURyqW7JyQq6O29/PZ+YPvJ6eGy9qQGC2/YwQx4TAGjZIc\noGUZ0iK0AJs2rmX1F8/DLfkn6mJVuVyQ6BteDi/OEQWiT6UGA4GQih8i3jH12DdTe/Wh5PUuoq8K\ndxgjggmHMWgiVK2NI2hKec+LyPpb/sCjZ1+AU8VpanuvhMaLG1O5OUQQl5Hhu+v+EDWSzZjFTgtO\ngUlT6W51W1VEBVKfFgvcDg8mHMag6c7h9JUztCfaoiWrv/YdVv38F6CR6FKBZNdgDVEhtUtwUq1j\nEUlNndBqO0zd5wXMvuRc2qUGQEfmaCMD53rCxzaBaT4D6VY/V0SuF5G7ROROEflAtX2aiFwjIveK\nyNUiMrXXc84TkUUicruI7D2cb8AYfaSoykZWnf5JOhbdk3wTUZs2k4gEpFoJrOKZcsRRTHnLscS8\nRl4qBQEiFOJSn5bmHNboxUBGHCXwIVV9FrA/8D4ReSZwKnCtqj4DuB44DUBEDgPmq+oewLuArw+L\n5caoJQB4CA8sYsVF38B1laiDpi1+w4NLBZUlQp61sd0H30O22+7glRytKqRLNdcxms1WhUNVl6nq\n7dXtDcDdwFzgCODSardLq/tU/15W7f8nYKqIzGiy3cYoxuMgdlcMW8jKP92EaKOdZvtH1UGMqWCy\nB3UFk/bamxmnnkgWJ6CSwsOZE6JaB9rhoCEfh4jsCuwN3ALMUNXlkMQFmF7tNgdY3Otpj1TbjG0E\nQVEVglNqZSfr3nEinQ8tal5hIVclrysETa0oM8nY+dg3k7/trdQ1pz1CEUpzcAwTAxYOEZkM/BT4\nYDXyeKoq+1ticbJtitTCIIqgAp3338PS0z+HPr4KNFBHCTGiQVENoI0FagXAOZx4PCBkaVu2HbM/\nfToTD9iPqDCx8m/Yl6/5ZAPZSUQykmhcrqpXVJuXi8gMVV0uIjOBFdX2JcC8Xk+fCyzt63UXnLkA\nRCkWL2Z+jDx/UG/BGG0UwEQyQlSilkQHG678NauufhU7v/ZocCkdve49WemImdDYetoUUdl8DxBB\nFSbPmMGcj32IB0/4J2HNCmqaU1Bs0wOPW2PkRwsXkl91ddMqqIkOYHGQiFwGrFLVD/XadjawRlXP\nFpFTge1V9VQReTXwPlU9XEReCJyrqi/s4zU1BgUX6fjjzdx/4MFo0dWUNzUaUQSHUttrL+bf+Huy\nKZMRXFOG0rGrzgNvfD0bf/mrnl/XiCOj8RWpzSAKoJ6AIyeAj7gg+H32YZef/4TJc3ellNTsKY0Z\nXFN8mEFTGny5voNHTv8Ea87/KuIcEsM2JRxpJXPKsPGA5m08/cYbmLjf/iCKE4c2XN/xycd4SkTk\nRcCxwMtF5K8icpuIHAqcDbxSRO4FDgY+D6CqVwL/EpH7gG8A7x2KgcbYwykEAt6l9asuwCandN1+\nG0tOPYPY1YWPDleGKkOrOW5TASQ4/OTJzDjjw0zcf3+yGCxZaRjY6lRFVf8A/VbCf0U/z3n/UIwy\nxj41wMeSoppCTIkZm1xB1w++y9pXHsLktxxDntVSnQ7p/wvWEAKdXmmjoH3KHOYt/AoPvPhw9LFV\nzXh1oxcmxkbT0Srns5DU+qAUpaREo6AOFn/+c4S/3ZkWsaXW0005blRoj0qIHjJom78XO5x6Ejpx\nYlNe39iMCYcxLGjVKTpqmroUKEGUKDXk/vtYfdEFlEWdKA7RAEFRTdmGGgti2XiBwAzACZlLviNX\na2PaW08g3/8FeByO9IXvynPLJh0iJhxG00kdXbTHIdm9XiRXwYU6xJKll3yXTVddlUogqxJ9SUnA\na0TEoyINO3a795fK0ypA+84zmP/FsyimTKEEHBlZEciqtS3G4DDhMEaMiMOJ4IB27eLhd32Qzn/8\nDUGQIKSF96mOh3M0vJq2WzB6RwpFhOzf92XmOWfD5KnUKcldRtSieW9sG8SEwxgxogScKl0KAaFY\nu5gVpy8gPrYqrZ4NnohP9TYG0Yuuv9QCr46d3nAM0444EvEOYkEUayU5FEw4jBEjq7qw5d4j6qjV\nYf0NN7DmJ1fQpQWF91W+C0RR4iCSO6SP59R9STZhEjt9+EQm7b57KgdgqjEkTDiMEUMROkVTzwQi\nIuDWd7D6ggth0R2gqRShUEdUGi9uTN+jjixmSKa07fXvbP/RUyiYgLNVs0PChMMYMRSt2iyk/0oF\niHTddQcPvfsTsOnxpCnkCHFQlTR6jzi6b3uELgmIOHZ885uZ9u7jEfUIWbc7lUiGer9NZZgOBRMO\nY8RI2R2JzV+8VF6w83fXsfKb38ZpnQIh4Br2QfREU6pqYZu3KbWQpW507TVmf+Jk8v2ehydQ+pRF\nUq8FXAgwiONui5hwGKMAh7iCx8+/kI1/uQWqRk5Nq1qukSgpHBw0wox57HzSSegOO5CpUDhPrdQq\n08MYCHamjJZTElF1dD50P2vO/SYSA6qOIa7D6iE6T5QSDQUeT6Y50/7zCCb9nzfhIzgCuXoKFB1M\nReVtEBMOo+Vk4hGNEJXHf/JTll2ykEID0qQl4FUbOcT7qrdLRNsnMOeM/6L27OejkVSNPc8oLNwy\nIEw4jJajGkA8qhC1zpqPfJyuW25qmq9BiWQxJ2WHRKIXMiK1abOY8fWz8PN2pS4RKQtqakXDBoIJ\nx4ihFEDuhBAdqFSthRp7jRBLtFQ0NYRHA8QYyaLS6UDJUte0LFYZEaMfBUqN5EDdQ75+Hcs++wXK\nFUvQIlAqRA0QFQ0BbbC1k0MQlxymThy+KmIsClNesD87vu0E6m2TyIEg3taxDICx8c0aB+QitONY\nD6jrIkrjQ/EYlQJHPQMk4KqGzsFB4RztQBuQK7hAw2s9WoakJrEByCOo82y64SYe++H/RTPBqSJl\nZJNLq2sb7SUpSFXwXFJ6exV1KVyB+HZ2OOa1TJ2zM50K7Wr1OwaCnaMRQIEuVbp8ZLsI7dGnVaAN\nXtcOR00F0ZCuHRFUFR+VPHraI3RRUjpHWpw6Nn47nSqTKlNVoYOAdHWw4ivns/EffwMCZebJguLK\nplW/w6sQUNbd9nfqKx/HC3SJ1SgdCCYcI0RWDY2DCkEVp1nD4b8kFmlILzgInhgzxEGZRQrAu9RS\nJBtDn2zpYD1VGwNxTIypZWTXww/xr6NPQDaswanDR6VwoE3K+nQxg8fX0/H971E8vhG7HAaOnakR\nQBCCOjKFjcuX8tiNNxBifVDjAZHk4EsqouDrrL/1D3Teew8RqGsamdSb/B6GExfBZY4aCqrUUXIF\nT0T+fjuPnvM1KDdRz0qc8zStU4oT1tx8A+uuvgqRLlRT1Q5zjm4dE44RIKIIkUIdbsVKln3kNDqu\nuIJGB8VKKsiLOjRGgivZeNP/45H3n0q8dxEZHl+5ROuud0WM0Y3gcLFy9go4yelE8BopHDz2ne/S\ncdPNKA4XtWm5nfUN61l95meResADGQWqY8Yz1FJMOEaAqkoEOZHSK+5f93Hfu07k8Z99i1JjCkOG\nSMkmQlknpjo4T/4jIhJRPOojxXXX89Drjqe88zaIkZK0bD1SMqGEsTJbVyISIwEQVVRLPEpwGT5C\nXPIgK8/6Am1hA6VUPo4G/so0kCEGJaqimkoZPn7ZRay9425yTetmRMaQQ7nFDKivijF01FVtCxXK\nCFNXr+H+kz7Nbm4y7a86nLZYAwmIRoqs7HPALMTqYnBs+MvNPHLiR3Crl1GoPOFXONWzGDvIk26n\nsZJS4oFCIo9ddz1tXzyfnT5wInVpa6idglOlFMGFlKSxyQeyB1fyyDd+SL6pg4BQutRESiSN5oyn\nxoRjBBDAxfRb1gZ0ShplTHj0EZZ/9HTyX12J8xNQF8hDSBe+SnXxbL6wogiinugyOm/5A8U9d4FX\nYpSGq2WNBbIIiEOip6aBR878AsU995K5NqJsnoh1n6Mt/938mFI6IVNHJFJ4gSUryO5bhEMIEpkA\nJL0YhydyGDDhGAEUKKWaF0aY6GCTRDaKkP1rMcUD3wMfCZoullT76slfYBGhdFAL1etJRj0UbIey\naaTf1AiwyXnqMbCdOELmybo28Pjl3yPSWEhWSJ1bvDiixlSwOAMCRAcTSOe9DqioaccAMOEYIXLS\nPDtU3+IcqKGUFOQ4QhAKSY7C0E9OqaqSB4gInoxCSyY4YYMq2Tj8sudR2Q7o0pJQwgQ8AQEtG45I\nSe4pikibeLo0kJdJyIODGJJolDWPFKFJzRrGNyYcI4SQft00pT5S+O45t1KIEqOSq1BISqd2/WRH\nllV9CVc5EGMcvx9ilEhdoRBPJpGoIbU2FJcWpQ2QTJSuym8RNeWBeCCoIupJBZIVV1jW6EAZr9+5\nUYWQvqRUvU0VkmhAyvDUWN1URDc7CPt8rS0umPHsxhOtphga0mgNBlUVrFTw1fmOBHz1WilQlYS6\nWkBrDBATjhFiy/FDf/e3FiwYS9GSodLXOWnG+x/ouTb6x0ZmhmE0zEC61c8VketF5C4RuVNETqy2\nf1JEllTd67s72Hc/5zQRWSQid4vIIcP5BgzDGHkGMlUpgQ+p6u0iMhn4HxH5bfXYl1X1y713FpE9\ngTcCewJzgWtFZA/tr1uOYRhjjq2OOFR1mareXt3eANwNzKke7muaeATwQ1UtVfVBYBGwb3PMNQxj\nNNCQj0NEdgX2Bv5UbXqfiNwuIgtFZGq1bQ6wuNfTHmGz0BiGMQ4YsHBU05SfAh+sRh4XAvNVdW9g\nGXBO9659PN2mKYYxjhhQOFZEMpJoXK6qVwCo6speu1wM/Kq6vQSY1+uxucDSvl53wZkLUgLU4sXM\nj5HnN2i8YRhb59YY+dHCheRXXd20ZBUZiM9SRC4DVqnqh3ptm6mqy6rbJwMvUNVjRORZwPeA/UhT\nlN8CT3KOiojGoOAiHX+8mfsPPBgtuprypgxjW8ZByrAl4gHN23j6jTcwcb/9QRQnDh1i05qtjjhE\n5EXAscCdIvJX0rTj48AxIrI3KbnvQeBdAKp6l4j8GLgLKID3WkTFMMYXWxUOVf0D9Lnu5zdP8Zyz\ngLOGYJdhGKMYyxw1DKNhTDgMw2gYEw7DMBrGhMMwjIYx4TAMo2FMOAzDaBgTDsMwGsaEwzCMhjHh\nMAyjYUw4DMNoGBMOwzAaxoTDMIyGMeEwDKNhTDgMw2gYEw7DMBrGhMMwjIYx4TAMo2FMOAzDaBgT\nDsMwGsaEwzCMhjHhMAyjYUw4DMNoGBMOwzAaxoTDMIyGGVDv2OEjggai1hEXCK03yDDGPKWAUwEy\nlBInDonNHSO09DoNKjj1eD+JUjMyoCS20iTDGPN4gQIh14B6iETEhaYeo6XC4VQJTimJiEDhSsR0\nwzCGRIiONiKgSISQOaIMqcf0k2ipcJReyFVoKwQXHBI9QnOV0TC2ORzUY6Qd6ATEO1zR3L7vLRWO\nPETUBWLWRayBczVUbchhGENCHJlEigjOZ4gCbWVzD6HaXCUa8IFF9Nprr+PlBx5EZ+c64j/+hoZJ\nOOotsaebG2+7jZfus09LbdgSs2lgjEabYOTtUnE4AhHFB4fmBfme/0623fYgihOHqg5p7tLSEceN\nN/6Ol7/8ICZOmgr7vpQAOJo7F2uUW66+hkP3P6ClNmyJ2TQwRqNNMIrsauIgocXRTyUSK7EQQGmx\nboBo+htNmE0DYzTaBKPKrtikqGVrhaMooKMTtIoxizZTFAdHvUA3dLTYiC0wmwbGaLQJRo1dgqBN\nEo6W+jhacmDDMIbs42iZcBiGMXaxtSqGYTSMCYdhGA3TEuEQkUNF5B4R+aeInNIKGyo7HhSRv4nI\nX0Xkz9W2aSJyjYjcKyJXi8jUEbDjWyKyXETu6LWtXztE5DwRWSQit4vI3iNo0ydFZImI3Fb9Hdrr\nsdMqm+4WkUOGyaa5InK9iNwlIneKyAeq7S07V33YdGK1vaXnathR1RH9I4nVfcDTgBy4HXjmSNtR\n2fIAMG2LbWcDH6tunwJ8fgTseDGwN3DH1uwADgP+u7q9H3DLCNr0SeBDfey7J/BXUpRu1+rzlWGw\naSawd3V7MnAv8MxWnqunsKml52q4/1ox4tgXWKSqD6lqAfwQOKIFdkDKGtnyHBwBXFrdvhQ4criN\nUNWbgMe2YscRvbZfVj3vT8BUEZkxQjZB35k2RwA/VNVSVR8EFpE+52bbtExVb69ubwDuBubSwnPV\nj01zqodbdq6Gm1YIxxxgca/7S9h8okcaBa4WkVtF5O3VthmquhzSlwLYuUW2Td/CjunV9i3P3yOM\n7Pl7XzXsX9hrSjDiNonIrqQR0S08+TNrybnqZdOfqk2j4lwNB60Qjr5UuFUx4QNU9fnAq0kf8kta\naMtAaeX5uxCYr6p7A8uAc1phk4hMBn4KfLD6le/vWCNmVx82jYpzNVy0QjiWALv0uj8XWNoCO7p/\nnVDVlcAvSEPG5d3DWRGZCaxohW1PYccSYF6v/Ubs/KnqSq0m6sDFbB5ij5hNIpKRLtDLVfWKanNL\nz1VfNo2GczWctEI4bgWeLiJPE5EacBTwy5E2QkQmVr8SiMgk4BDgzsqW46rd3gpc0ecLDINJPPHX\nqLcdx/Wy45fAWwBE5IXA2u5h+nDbVF2U3bwW+Hsvm44SkZqI7AY8HfjzMNl0CXCXqn6117ZWn6sn\n2TRKztXw0QqPLHAoyfu8CDi1RTbsRoro/JUkGKdW23cArq3s+y2w/QjY8n3Sr04X8DBwPDCtPzuA\nC0je+L8B+4ygTZcBd1Tn7Rck30L3/qdVNt0NHDJMNr0ICL0+t9uq71K/n9lwn6unsKml52q4/yzl\n3DCMhrHMUcMwGsaEwzCMhjHhMAyjYUw4DMNoGBMOwzAaxoTDMIyGMeEwDKNhTDgMw2iY/w819DdL\nuqg9fwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "plt.imshow(input_image)\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "### Slicing" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "-" - } - }, - "outputs": [], - "source": [ - "my_image = tf.placeholder(\"uint8\",[None,None,3])\n", - "slice = tf.slice(my_image,[10,0,0],[16,-1,-1])" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "fragment" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(16, 300, 3)\n" - ] - } - ], - "source": [ - "with tf.Session() as session:\n", - " result = session.run(slice,feed_dict={my_image: input_image})\n", - " print(result.shape)" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "fragment" - } - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW0AAAAyCAYAAACXroq0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAB25JREFUeJzt3WuMVGcdx/Hvb9kCtdvWrZG2FmGxtNYXNqvWS5AuICmh\nKq7aN+gLpWljoqaamKZATArSmBSiRo3RiEVSmpC+6IuCGtN6CbRVSzHlUi2XbQTrUouNlypREXb/\nvjjPlmGYGWbnsrPn8Pskk5x99sw5z5/n8N//nOecM4oIzMwsH7o63QEzM6ufk7aZWY44aZuZ5YiT\ntplZjjhpm5nliJO2mVmONJW0JS2VdFDSYUkrW9UpMzOrTI1epy2pCzgMLAZeAnYDyyPiYOu6Z2Zm\npbqbeO+HgF7gp8AIcAQYBJy0zczapJmkPQPYERG3SeoBhoBXW9MtMzOrpJmk/SrwV4CIOCHpGHBJ\n+UqSfJ+8mVkDIkLlbc0k7WFgVjq3vR+4HthWacWBmwdYuGgRKFgwbx43HjrMn+9Zxeh//93E7ieH\n7wGf7XQn2sjx5ZvjmxwEBGKELqYwwigwBRhhCt3Tp3L11zaw/7rr2fmrX4MCRoN1991XcVvNJO3d\nwFzgq8DVwCngkUorLlywgLVr14JGiZMn+duhw03s1syseBYODLDoliVZ0h4ZaX3SjogRSRuA7wOj\nZEn7skrr7ti5MyXtVGk3ulMzs4La8cQTZ1Xa1TRTaQN8A/gNsBq4GzhQaaW1997LwsWLC1lp39Tp\nDrSZ48s3x5cfba+0JX2ZbOLxHcDjZKdtBoAfl6+7Y+dOdjz5ZCEr7Xd3ugNt5vjyzfHlR72VdjM3\n12wFPgGcAKaTnVd/OiLmla0Xo/87Dd1TzlTaGx8ozESkmdn51DMRecUdd6Jp01+rtLu6L2rs6hFJ\nm4APA8cj4sbU1gu8Na1yEFgHPAy8UGkba9d9Bbq6Cllpm5m1QssqbUnzyarpLSVJez1wEvgccCnZ\nROS/gF0Rsazs/a60zeyCNqGVdkQ8JWl2WfMgsAy4Ky1/E4j0OocrbTOz2lpZaW8CPgL0RMTFqe0/\nZHdD9pBV2ZcBe4A9EfGZsve70jazC1orK+16Hs26GfhUWdsp4DbgT8Cm9PPvgX3NBGZmZrXVc8nf\n7cDHgGklbceAo2SPZL2brNoWsLHSBnx6xMystlZPRF4LbI6IrtS2HjgNvAv4APCLiLi1yvt9esTM\nLmgTOhFJdoXILYAkvQisAe4nu9TvorTvms9sWXHH7fTNeUshK+3dFOsC/3KOL98cX3607Db2iPik\npHlk1fQsAEnLyCYeLwXeBPyz1jb6ZvcV9oFRv6U4B00lji/fHF9+tPo29tdKdEkXAxvSj/PJ/t3O\nKeFL+YFRZma1tazSTrerLwampdMjG4HryK7JfgmYChyRNDci/lJpG340q5lZbfVW2nU9e0RSH/Cj\niHh7hd8dAd4ZEX+v8l5/c42ZWQMaffbIVmAh8IaxiciI2Fy6XWqcHqm0UzMza0zDT/kzM7OJV88d\nkWZmNkm0NWlLWirpoKTDkla2c18TRdJRSfsk7ZH0TGrrlfS4pEOSHpN0eaf7WS9JmyQdl7S/pK1q\nPJK+LWlI0l5J/Z3pdf2qxLdG0rCkZ9NracnvVqf4Dkha0ple10fSTEm/lPS8pOckfSG1F2L8KsR3\nV2ovxPg1LCLa8iL7g/ACMJvsJpy9wA3t2t9EvYA/AL1lbeuBe9LySuD+TvdzHPHMB/qB/eeLB7gV\n+Elafi/Zl150PIYG4lsDfKnCum8ju/+gG+hLx686HUON2K4C+tNyD3AIuKEo41cjvkKMX6Ovdlba\n7wGGIuKPEXGK7EsSBtu4v4kizv2EMgg8mJYfBD46oT1qQkQ8BZRf+VMez2BJ+5b0vl3A5ZKunIh+\nNqpKfFB58nwQeDgiTkfEUWCI7DielCLi5YjYm5ZPkH1H60wKMn5V4rsm/Tr349eodibta8ieAjhm\nmDP/4HkWwGOSdku6M7VdGRHHITvQgDd2rHetMaMsnhmpvXxMj5HfMf18OkXwQMnpg9zGly7L7Qee\n5tzjMffjVxLfrtRUqPEbj3Ym7Up/CYtwqcq8iLgJ+CDZgXMzxYirHkUZ0+8C10ZEP/Ay8PXUnsv4\nJPUAjwBfTBVptT4XJb5Cjd94tTNpDwOzSn6eSXYHZa6lyoWIeAV4lOzj1/Gxj5mSrgIq3hmaI9Xi\nGQbeXLJeLsc0Il6JdBIU+AFnPkLnLj5J3WQJ7aGI2JaaCzN+leIr0vg1op1JezcwV9JsSVOB5cD2\nNu6v7SS9Lv3VR9IlwBLgObK4VqTVPg1sq7iByUucXaWUxrOCM/FsJ30hhqT3Af8Y+xg+yZ0VX0pk\nYz4O/C4tbweWS5oqaQ4wF3hmwnrZmB8Cz0fEt0raijR+58RXsPEbvzbP/i4lm/EdAlZ1eta1BfHM\nIbsKZg9Zsl6V2q8Afp5i/Rnw+k73dRwxbSWrRk4CL5J96UVvtXiA75DNyu8je3xBx2NoIL4twP40\nlo+SnQMeW391iu8AsKTT/T9PbO8HRkqOyWfT/7mqx2Oexq9GfIUYv0ZfviPSzCxHfEekmVmOOGmb\nmeWIk7aZWY44aZuZ5YiTtplZjjhpm5nliJO2mVmOOGmbmeXI/wHpXEbejJAQCAAAAABJRU5ErkJg\ngg==\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "plt.imshow(result)\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "subslide" - } - }, - "source": [ - "## Transpose" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [], - "source": [ - "x = tf.Variable(input_image,name='x')\n", - "model = tf.global_variables_initializer()\n", - "\n", - "with tf.Session() as session:\n", - " x = tf.transpose(x, perm=[1,0,2])\n", - " session.run(model)\n", - " result=session.run(x)" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "subslide" - } - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQ4AAAEACAYAAABCu5jVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXmcHWWVv5/zvlW300kghJEkkIUlKOjoT3RQFEcNO+KC\nqDCI48aICyiLOiO4AC6jooLKvgQRFBXEBXVEEFERWRUjaJA9JCEkJJCEJL3cqvc9vz/eup0mdpab\nvr2lz8Pnhtt1t3PrVn3rvO857zmiqhiGYTSDG2oDDMMYeZhwGIbRNCYchmE0jQmHYRhNY8JhGEbT\nmHAYhtE0AyYcInKwiPxDRB4QkU8M1OcYhjH4yEDkcYiIAx4A9gMWAXcBR6rqP1r+YYZhDDoD5XG8\nHHhQVR9T1QL4AXDoAH2WYRiDzEAJx1RgQa+/F1bbDMPYAhgo4ZA+tlluu2FsIWQD9L4LgRm9/p5G\nmuvoQURMSAxjiFDVvi7um8xAeRx3AbuKyI4iUgOOBH627pM+feqpFBopi0gIkaJQooYhvZ162qlD\nboPZtOXYNCR2xTqhDNRDSQyRELqJZSTGSBnLlpzgA+JxqGoQkQ8DN5DE6VJVvW/d5zlRfABds5Ku\nv80htLXjyjgQJm0yxcKFdNx+x5DasC5m06YxHG2Cwbcrajfej6fUSFsJMauj//oixo7bGtfnLELz\nDNRQBVX9FbDbhp8DoHT9/R7uP+iNUC/xQzwVsjyUPHzFlUNqw7qYTZvGcLQJBt8ucYFSM0TABYfW\nYNffXQd7vpq+px+bZ8CEY1OY9dpXgwileFy9hKIbHWLh+DdAYxhSG9bFbNo0hqNNMPh2BdKJXbgS\niR5xNWIYT7KgNefXkArHPrMOABfxCoIOuWgAvGyoDegDs2nTGI42weDblQElEYkgBFQjju40TGmN\nw2FrVQzDaB4TDsMwmsaEwzCMpjHhMAyjaUw4DMNoGhMOwzCaxoTDMIymMeEwDKNpTDgMw2gaEw7D\nMJrGhMMwjKYx4TAMo2lMOAzDaBoTDsMwmsaEwzCMpjHhMAyjaUw4DMNoGhMOwzCaxoTDMIymMeEw\nDKNpTDgMw2gaEw7DMJrGhMMwjKYx4TAMo2lMOAzDaBoTDsMwmqZfLSBFZB6wEohAoaovF5GJwFXA\njsA84AhVXdlPOw3DGEb01+OIwCxVfYmqvrzadjJwo6ruBtwEnNLPzzAMY5jRX+GQPt7jUODy6v7l\nwJv7+RmGYQwz+iscClwvIneJyPuqbZNVdQmAqi4GtuvnZxiGMczo1xwHsLeqLhaR7YAbROR+kpgY\nhrEF0y/hqDwKVHWpiPwUeDmwREQmq+oSEZkCPLm+15/+2dNBlGLBAmbGyJ79McYwjD65K0aumj2b\n/LrrQVpzXRfVzXsjERkLOFVdLSLjgBuAzwL7AU+r6hki8glgoqqe3MfrNQYFF+m49TYenrUfWnT3\n46sYhgFp/qHEAREPaN7Grjf/lrF7vRJEceJQVenPZ/TH45gM/EREtHqfK1X1BhH5E3C1iBwNzAcO\n74+BhmEMPzZbOFT1UWCPPrY/DezfH6MMwxjeWOaoYRhNY8JhGEbTmHAYhtE0JhyGYTSNCYdhGE1j\nwmEYRtOYcBiG0TQmHIZhNI0Jh2EYTWPCYRhG05hwGIbRNCYchmE0jQmHYRhNY8JhGEbTmHAYhtE0\nJhyGYTSNCYdhGE1jwtEPdJ37cagMMQYEpfEbC/FZf6+9P1pL+ve3PcKoRAH1gg+OEsFLJDqFCJtZ\n+9kYViiZCHVN/w/qeqRDncNFpRTISR3Jgir9qvw7AjHh2AwEkJiqSNcAQZEANTLqlENsndFfCiBX\nAa8EVTICpToyFGJESa66KkTHqHQ7TDg2C0E1Awq6c4ffeSa1cVtD2UU+1KYZ/WacE1YBEyIEdax5\nchHuyaXUfWpL0laNUYKAqsONwkGqCcdmoTjqKJ5t3no4U07/DPmU6XgtiWLTRiOdEB3quhkTPUGV\n5b/7DYv/+5OMmfcwZYROiYxNDiego9HhMOHYHBQIIox/x9vY8eyvIdtMJkgEHZfcWWNEk6kQZQx1\nwGnGVm96Iy4EHv7g8Ux4ejlRoUsiOVB4wQWb4zB60ZAAqe5LdYvZGCa89U1M+9qZlNtsT46QqcfF\nCM48jpFOrLqd5QpOwPs2am87guexkodP/AJjFi+iQ4Qaiguj80JhwrERVASpxrM1dWQukB9+ONt/\n/nR0u+eQKTgFdaAExIYqIx5XXSJEGn8DCOPf9j52clvx5H9/mmzeQkqKNOkxCrXDjvINIECmaSbM\nqRKcUJecyZ86DtllGhker4BqCteZt7FF43G0H/x68le/Eq8lbTicuFE3TAETjk0g7aIaEIn4oLTX\nJpBrTqaO0gtFJoQYUBmNh9DoQWOkLbbhsnbwkUAkVuHZ0YYJxwZQICAU4tMch0aCRJxGfNXsWwEf\nFa8eRuW1Z/QQfR2lRCUQFLolDWtG469uwrERHAFIAuIUCoTOLCX+qFMk1HGqSJVbaGy5SOlwCHkI\nZBHa1BFkdIZjNyocInKpiCwRkXt6bZsoIjeIyP0icr2ITOj12Nki8qCIzBGRf+pmP5JoRFNqKj3C\nMFaFttLhYgkomc9QDyFjlF57Rg/iaxRZY42KUFaXitH4q2+Kx3EZcNA6204GblTV3YCbgFMAROR1\nwExVfS7wAeDCFto6JCiCUhKIpJyfkiAe8RkiHsHhcHgEP9TGGgOKI0XQRAWt/nM6GmVjE4RDVW8B\nlq+z+VDg8ur+5dXfje1XVK+7A5ggIpNbY6phGMOFzZ3jmKSqSwBUdTEwqdo+FVjQ63mPV9sMw9iC\naHUCWF9+23rnjk7/7OkgSrFgATNjZM8WG2MYBtwVI1fNnk1+3fUpYa0FbK5wLBGRyaq6RESmAE9W\n2xcC03s9bxqwaH1vcvppp4OLdNx6Gw9/53to2ExrDMNYLy9zjre/732M3euVIMrnPvu5fr/npg5V\nGss0GvwMeE91/z3Atb22vwtARF4BrGgMaUYq+qyvniIrAqgqURXVVJdBAeJoDMxtiSgxxp7CTKrp\np41EBE3LEGRUZpr3sFGPQ0S+B8wC/kVE5gOnAV8GfigiRwPzgcMBVPWXInKIiDwErAHeO1CGDwYK\nqCiu1xES8EQnoJoyPETIQiD4lAQ2OufYtyxCDBQ4apoKQooIUUEkVQETzSidkAelFEGsAtg/o6pH\nreeh/dfz/A/3y6JhhABelUbpBXUOiZ4s1NGo4B2uHtA84EMkZpmFZLcAXPRIBqUGctLiRYdD1YN6\novPUAsSeTJ/Rh2WObhShJK2Olah4AovPv5RyxVMQFZcrgkOlDbHU0S0DEWoxkqVLB6K1lCosgdV/\nup3OO26jFBDJUl7HUNs7BJhwbIDkqGZpniMVGkVdYNXFF7Po819AV60iqCeooxSIzpRjSyB6QDQt\nq49pWBp9oH7Tb3j8g8fTPfdvODIKTdnDoxETjo2glDgUURBxdEQY37ma1eecz9IvfBFcmYq+VM8x\nRj4uAAoalBAhSMGaP9zEQ0cejd4/F7xS14I2N3pPICvkswEE8KL4xqy6KrU8Z2VR4FRZduZX6NCS\nHT/+MbKJE3HqU9Xr4Y6mSd80QnfQsxInInmNngo21cRf437/Pzf5cFEEpy5NPscSigJk+MwOxRgJ\nLq16Flew6vZbePwjnyI+/QRRhRiFrVBWq47aE2i0fu9NR6GkMY5VfFGkIYwobQrLL7iY7E9/QiZO\nJKqgI8HtkLRojwgOxYvQLUL76w9huyPfTj6uPX3HGMhwrRvEq1KkrgNElCLUWfaNc+i65Y8MJ5c/\ni5G69+TRU/pI1z/mEu5/MM1pkaJsXUA2fEwedEw4NgMBUEe3C4zp7mTlzbegTggSyEdAEpsCBRlb\nOVhDCR7G7vYSZhxwALX2dlQVRHDOpTyGqDjff/VQSb1JCg340rPsjK+x7PRP4yMMp93W6WAMMCam\nHisRyPDWMacXJhybSSZKVFAJIIKPkYzhdQKsD0FoJ9CtSp5lbPWaA5hy2YW4adPSMIaGOFbPd61x\nOaKCo4Q1nSw+5zye/twXkOh6lqcPF9piTg2lkxLvoKiSv9wo9jDWZSSMyIclJZG6CKV4VCGQUVIb\narM2iShKFCVkwtgDDmDKhd8gmzY9FekdwNhiGsXlLLngXJ468yto6KYYhhmYKgWBEpwjRkdNM3JL\n7nsW5nFsBlr9M0YzAgUpkTTNhJQjQItFoUQY97wXs8NFFzFm6nRKuhBtQx04cZXnoagq0qJaqkEK\nHvzqVyk/eTpZDKzySrsqQaVKphoeqI+UAYiRzEE3kbqD9nJ05mz0hQnHZtDIFywISSaqS2ZAhl9D\nJmlU8K9K/hPB12jf/wBmXHQuboepRA3ksYb6bqAtzXFUz96cYUok1WdNpOgJHc/wzDnn0P3Z/yWP\nRZqMDem9M4ZXPzQpfVWmJxJiss/H0Zsl2hcmHJtJOg3TybH2FBleFa9VGuFWh6PEI3SLY+uDDmTa\nN85AZ0zHRSG6gOIIjEkHRD8vq6kaPOACilKKZ+kll/DUV7+B6+okAE7XSsVw2meQUszXRYadlUOL\nCccWjFMIOMYJdAiUThm3+4uYccE56PQZ+FIIWVybotEiP9yrI1DixSFl5Jnzv8GSj59CFiwusaUw\n/AfkxmYTERwlHVKCz9h639cz/bqf4qZOpxaBLJJpTHkV3qXmUq1AFO8dYU2dJ887myc/+WlcKO2a\nvQVhHscWjkconDJhn4OYet7ZZFNnkLI3q2ITIsSo4HuFYftJBFwUFv/g2zz9xTMInV148QQNdqXa\nQjDh2IIRlG7xjNv9RUy+9DyyqTOIdJDF9mpiQYjeId6T1ue1po2lKwqWfOcyVh7zYVLLIk/dB8YE\nIZjfsUVgF4AtBJVGtEfoKSvj29j64EPY+f9+Sm376SiRLLajUid4T/C+6gVTRQyaPBpi9Z+GSNVi\nl7JrDU9eeilPnPCp1CKRFMP0QYbZ1LHRH0w4tgCqttgEcoS08KrEMfaA/Zn+jS+j06eT0pfS8CTK\nGDKBTMBJdRC4FH1p7nOFGAECqhGN8NQ1P2TxZz6LW/1Uz9BHNOCGVcDV6C82VNkCaKydGStKh0Dh\nYNzzX8yMi86D6dPxpSNmrU/rdjEt6tMQKRBW/PT7LHnn+3EUwyyJ3Gg15nFsAaQre8maKnqyzf5V\n9GTadPIokEW8Kp4qetKqD5ZAoVBEZeUV3+Kpo4+j9CYaowHzOLYIBEeqsbH1aw9gh3O+SbbDdCAS\nXaiUpfXRE1BylNU//jFPfvIzsHolDpcWhLXk/Y3hignHFoCg1CVj3PNfxOTLLlgnepJOYfUOvMe3\nMHoSNaPjlt/wwDuOxks3CviqKjhqMxpbMnZhGGFo4yZClBRBEV9jwusOYedfbjh6IpsZPVkvLkL7\n1mz3xjfA+Am0VSmoa9e6NLwb12O3sWVgwjGCSCefJ+BBFa9KBMbssy/TvvFldFojeqL/FD2RfkRP\n1odTYfy/vZTJl57L9l//GrLVc8iAughSlQJUqcKwmTBKG7tvkZhwjCDSjxUZh0cEyswx9oV7sNOl\nFyC77kZWCtEN3rU9IBQltG07iW3fdTQ73P17sv0OZuu2GjVNa4WjQB0lL7V1Ke3GkGPCMYKIgBOl\nS+qQ5Wx7wBuZcf21yLQZ5FHQXtGT4N2A/7heIcsBSrzAVrvszswffJetP3cqxS4zKSUgCOMloxBP\nMI9ji8GEYwShgKggGYzfexZTv3kmbdtPwylEX+IkgCgxpp4gLaq/s357JNkDGeJSWUC37TZMOv4k\npv78R4x982FkUQhSJm9Dh08lc6N/mHCMIASh9Bnj/vXl7PDdi/Ezd6HOGpwovnS40qF48Dk+gsSB\nroBavb9KqlehQj0EXF5j4vP+Hzt959tM/typ1LadRLdTnGV4bDGYcAxDqlbHVccTqh7pDslrbPOm\nQ9np5z+ktv0MlMCYOBaVgthn9GRgXQ6HS5mjLgIOFU8tqyHiiC5Qax/HdqecwuSrr2abAw9B2sdX\n3VtSgzTE98zG+Oq7Vr2QrETfMGejwiEil4rIEhG5p9e200RkoYjcXd0O7vXYKSLyoIjcJyIHDpTh\nWzpCRr26RucoJcrYgw5i6tf+lzB1WhIHAYiUMgY/gNGT9RspOPE48YgITgTXKFUojlIUkYz2Wa9h\nx8vOZcppn0HGb0eNNMTxqmhq70IdCPie0G1dsDmRYcymHFmXAQf1sf0sVX1pdfsVgIg8HzgCeD7w\nOuB8aVWl21FE+lFK2nwtRSXaPNu8Ym9mXnQesvOu+Hp1pUerE3CIDV6HxkpdUNRBHkEmz2Db//kY\nu9z4U9pf8e+4Wk4QqKlLWa2kBfg1PDU8Y3V0Nzwa7mxUOFT1FmB5Hw/1JQiHAj9Q1VJV5wEPAi/v\nl4WjEK3+7dYuqLUz4fVvY+pPvw9TJpNFQfOYOrApRCfDrt+HqOCiI1OHaom4qidJcIx72d5M/dEV\nTDzlE8h2O1CXiBelTdLkaiGBTpIHMsy+ltGL/viyx4nIHBGZLSITqm1TgQW9nvN4tc1oAkXwCN7B\n2H32Y8aZX2PMc6YRxaGuxLkUPUm1eGT4zVQJlA5Kl76HaAlS4J2iouRTdmKH//4kO//6GsbN2geN\nWaqP6qDuIm1ALXV5MYYpm3vInQ/MVNU9gMXAmdX2vn5ru3BsBvUsZ6uXvYYdLz8PP2MquAKvILGK\nnqgHl6VpUB1e/eM0lmQak3eER8UhmqES8ZIW4+nYNsbtvhc7XXMlYz92IsV2O5JFIdM051EyMrri\njVY2a5Gbqi7t9eclwM+r+wuB6b0emwYsWt/7nP7Z00GUYsECZsbInptjzAgm5XgKOVqdLCki4rKc\niW9+M9O//hWybadWeRCpwWT0OQJVqT+A2HTChgLEOoiD6EEiSE+yek9quCioRnApgrLJ+LVrU5xK\n+oau8dkRUcWLo8whn7g9M//3NJbv+2qWfeMc9Pd/QIs6Qav4kCiFejwRXxUDiljUpRnuipGrZs8m\nv+76Rju9fiO6CasYRWQn4Oeq+qLq7ymquri6fxLwMlU9SkReAFwJ7EUaovwaeK728SEiojEouEjH\nrbfx8Kz90KK7JV9qpJB2Sk4gVvW7Uhf0CYe8gRnnngU7zaRW9T1xEeo+o60Vnxs1fWasGi5JCURC\nrOFFqxhwNQSq2tZJC1bTrtceInRDfdnjLL7wPFZ/8SyUgk6fkRclGUIQyFQp6GWW0ScOqo6CEQ9o\n3sauN/+WsXu9EkRx4lDt38qhTQnHfg+4FXieiMwXkfcCXxGRe0RkDvBa4CQAVZ0LXA3MBX4JHNuX\naBiJRvSk5jJUhHpbxjavfi0zL7kAt9NMfOGIUnU5U2ldlEHS5GXdCxoKylKSbDlFJX1m6SMBpTuW\nPUvzB4oQHJoL7DCNGZ/7AtN+dS3xRS8hl4ycVOA4qKJ5DuIsTDsM2CSPY0A+2DyOnqtmcEA2hm3e\neCjbn30GY6bsAJpROiXX5JyreEQd0oJzWDVSomRFnRU/+iH1hUvZ+p1vp23SpPS5QvI8NICk1Cw/\nkCerRgqUTBVRT90JPPIgyy65mEXnXkKtYyV1By64lNOmap3VNsCw8DiMgaUnevKafZhx5pm0T5pR\nRU8KvPSKntDC6ImmTNSV1/2Sxz/4URac+inm7f8mVtzzR3Dd5JrmJnwUXBj4gyRFkVLz6eDAC+S7\nzGTyZ05nl5uupfZve5FHR81Hco2NbrTGEGLCMaQI9bzG1nvvy05XXoifvgP4RvTE40qXFoa1OHqi\nRZ01P7qG+W/+D+SZp2jr6qbjH3/m8Te9k2XfuoTulUvQGFAiqgN/bZeYskajA8oIMRI0QvsYJuz5\nGnb82TVs9Z9HE7faljW5s2jLMMCEYxBorD1Zux5DiHgky5l46GFM/+6ljNl2KlFK0Awkot6jmQfp\ntfZkM6InSiQoRE19ULTs4Kmrr2bBsScQJNBd2SYBdMECnvzQySz90AmsmnM7QVLQBZSoiqoSNVb9\nUmjdkjWfWjrkeHwG3gWcZFXqutI2eQdmXPh1pl16MRP/7VWopDof0AjZup4VOiX0PJYs79VnxmgZ\nJhyDRkY3ngC0oQQC7fvtx7SvfZ44bQZIOvjRSF1yPOnHkSp9W8Q1FxIF0AgBXAxIKBCNPH3tjSw6\n/kR06RO4VLuYVFcsCUhXuYalP72aJ972blZ+/0q6pBuJUC8KugEpFVcIISZPoTU4RCTponggr/q9\nNKqIKa42nvGHHcbOV13Edh88BtFxAHgPSKxETBhLDuopSPut2qtGizHhGATScrO10ZOutoyJ++zL\nrt+6GJm+C75w6EBET3DJ/Xcloaiz7MprWPSOI2DF030+u5GEGktH92MPs+Bd72P5sSfR/fD91Lwj\n0xJ1Hs0EkZIgA9t9vvDVya+KiOKjg+m7MfXcc9jhh98m3+0FOF9DVFCnFB66RAk4MpclMZRoraAG\nABOOQSCSRKFON5q3MfENb2X771wKUybhVYh5TIMXheildXOgjVsJT1/9YxZ94qPQXaz/CqyKKtSi\nx5ERXWTp7It57Kj3svyHV1OWJeqobC0HvES+i1WhIE1L96NLhY8Fx3aHHcaOP7mKce9/P0U2Bh8h\nj4poSU5AYkkha4eHRmsx4RgkPI7MQfver2b618+iffKORPFEV5D1ip6sXS7fChSngWf+eCdLjv8I\nYdGSnuzQvp8ttEtOSZ0I+OiBQMec21lyzDE8cdxH0KVpKVIpbdUAZwCputLVvYBEMilxGlIhZgdt\nu+/Ojl/5ClNv+Cltu+5GbMzJ+NTXxSkUG/i+xuZjwjFIFHnO1q85gJ2vugQ/dXvwJV4VF31K5BiA\n6IkUXTx97S9YsN++hGdWVSeibmCyUCmkBAdBSlQjvgQfoKOjg87Zl/HwYf/J8pt/i+vuGvAT0qlS\ni9AWPahUnpsjSlqE76NDxrQx+bX7Mf36nzDuiHfgxk/ERaHLQRsZbVZafUAw4WghCsTKPXbV/YDg\nfI1tDn0LU791IWMmTquiJz55Gd6nGb7+Rk80ElNP6VRFK3Sy4sc/54kPH4/GEiGSacRF1psHIaR0\n9CxCrmlI0vi3FoWCSNdtf+DJo97DolNPo1z0GNoo2RWAGFBN6evVWd7z/5KU5t4UjVpEIjiyavgk\niGR40arOqaDiaN95d2ZecBY7XPhN/B4vIUPocgUFqSBQKm7oq/vp25onsvmYcLQcTzdZOtmqrNx8\n1iymn/l5dMZO4NIYHY10tzB6olU2ZZ2CEOqsvvlPPPShY4mLFvacII06Hxs6YRpDmbWnuBJInooD\nSqcUixez7Otnc9+7j2HNg3PSyemgS6ozPWoKKROqlXLgS3BN5or3lEGUZFgqi9yoiOjSIr2q8piI\n4Cb8C9u97R3M+PHVtB/+9qosvCKuRkRxEqlpEptCbMq0P5hwtJA0ri6pSTqou2s52x54IM+7fDZM\n27lX9CSCCnkLoydIinRk3QWd117HwwfuT9uKp1ry7pk4PBkFQh6EMpa0lXVqv7mR+/c+kKUXnU9Y\n9iRZKChwxMpLCaJEAoWUBC/oANdArYujcDB+xi4877JLmX7p5cjM3cgIVXhXU96Kd9S0dZPQoxHb\ndy2kcZUupE7wOf/yhrcw+ZILkO0nD2j0BKqhQFRWXvsL5p1wLFnQliVoBSISS5xz1AWcCJ1O6RLI\nli/lqY+dwsKPHE/XPXeTV0UAUYfEDMGTRx2UNHEflVxj6udSqzH+3UfxvO9/n4nveRddUqv60ggx\n0NoEtlGICUdLEcR5cgdjX/Eqpp79DcZM3YlSsgGNnkRANLLm5jtZcMz7qC9aTF03EHZtEk9VuCUG\nMoGoqWxhTVMGbFFfxeofXs38WW/i8dmzCXF1KlRcJYkpjUVpAyseToW694CisU7uHLWXvJhJ557H\nbld/D9luGporGYFc1A7+fmD7rqUoZV5j/L6vY6cfX4ZsP5noSjLigEZPXL2TVT/5BfMPOgBWrSGP\nVUZoq+pEq4DLUNJVPaOqTC6kTrZlytEsVi3jqRM/waIPfRQemENdAkEFdb6abhjgCIeLZCV4POJq\naFScRrJaG+2HHcaOv76WrQ58A8X48ZRqGR79wYRjM+h93VQh1YjA47IaE956OFMuPpe2bacRJRDF\nIbQyepImG2N107KTFb+6gUUnnUQsulEijphCri0qmaBAvWruFCQFULyC17WB3UJjsq9jBU/PvozH\njvoAa668Eu1eQ1RBUSKRoErUAsq0hiaoptT4FiAoMUsiRqXR6rPUsIrI+Be+mJ0vm83UM75K7QUv\n7KnGLqSFcz2NsgGV9CsF1/i9bU1ub0w4NoNUIEuoA04dXlPdg/zAA9n5zM+RTd8ppY4jZEFJy7da\nET1JolFHUQIFJWv+PJd5Rx9DXDi/IRfVUKh1h3lahJ9c+0aBMOgdfYmplkZPhkjJirl/YcH7P8j8\n//k4Rb0TUQcakqhpRnBCjGV6j1Z5IpKRU+1jcXh8sjk6xGkqWbjtJLb+wHvZ+ZpLaH/1gURy1MWq\nRkWqPxIQggg1HCFCyFyqmWL0YLtjc1FlnGtDJFJvb2OrNx/KrpddQDlpOj6mNSKx8ipaVOYRqhJ6\neSiReknHL37FvP1nkT+9lLiOdzHwMwrrpwaM7yqhu5MVF1zMY/u9jhU3XkfZ1YVWC9oc4B04DQPf\n49YJpTrURSRGvGvD7b4nu1z3AyadeQZtO+6KuirvRiM10pCsC6WGMLaM1GK0gU0vTDg2AyXlEnRr\nN0WeMeHNRzD5vLPw2+1AroJ6RTX1EinFtXz6PjphxfW/YtHxHyauXtOT1DRcDuxu5+gEGmlX4dY/\nsOC97+PJ/z0Dli+r0sqStIVBULggkKcy0ASf2i7UFFxtAtt/5FimfvcS/uWwI8jJyVC6fVpUB4qK\n0I1QiCWM9caEYzMQBKcZeQ61V+3PtHPPYuykGYAQXEBIPUQiVUi0hUs6lEDH3X9j0TvfSdfCRQhC\n7OOIHlIh0UiGQJajopQIbYueZPmXv8Rf/30/OubehQboIkvF7QbY5fCxqIZw6YfwKEgd75UyqzHm\nFa9m++84bNuFAAAVUUlEQVR9m23OPxO2msC4AJl4StdI4lN8+kZGhQnHZqAoZVuN8a97G7v8aDb5\nNs8heBBKnApOPVEzouRpwk5bs/xciy5W/eyXzN9vFvrMarKypKwWdCW71pm4bcmnNk+mQkTxZSp0\n7IAulxamufvu5bH9D+OJC88hX7qsyvsY2IwKjZ4Q02SnR1GJKDlQdcQTcL7Gc475ADv+8ie4gw4i\n1MZSU08hSg0otDSPoxcmHBuhZwdJqiwVHWR+HFu/9W1MOvsM2rfenkgg1fVyOPEgPk2WKuSAa7LC\nsKJojGndSXXT0MnK63/N4hNPJD6zklRlQpFeEV151nsMHYFqrQ7VcA1BNFKGiHcZYcnjLP3kqTx8\n9HvouPNWgoYUACrTmptuCkpSxTFCIC3CicQYN2/uJnPreH2u59b41yGMcRlbv2oWu1x+MZO/eDpu\nxo6UZNTFUUPBebR6q8Kl6e5UhX70YcKxAZTUytBLRtRUkSpGodz3Nezy9S+QV9ETL4KPlSvcGCNU\nx6ZU6efNfnBj3QlApM6qOffx6FHvpnxsXk/Nzb6GI7KBxwYL12s9jFThYamizzGW5FIjrH6G7v/7\nJfcffgyrvvtD6F5B3Uc0Qi04fIQ6geBS1/sUMZJUwrDJU9WRikKLCEgSCanC6FKtd5Eq5CUiZNtO\nZbsTT2THn11N/oJ/xWukcCAxkMX0unoMjCGS6fCZWxpMTDg2QDr/HYWW6YKlgTbveMFXP0XxnKm4\nkMJ0kZji/i2MnpQItRIouuj41a95/KCD8auXD6voSbMkLwRiTCqSAbUnHuDh/3ov80/8BF1//xta\nhiqeGsnJqmI+nlIcElJIdcAnU7O0jH/cC1/Mi269gW0/8xnapu6Mc47CQ4lnK8noBuriR8z+byUm\nHBtAScvMGyenE6EMwuqtJqbyfj4lL7kIocXRkxQBEJ753W9ZeNJJdC1f2ithaWSSVTVOAyWZKiop\nJyUrC1ZcdAlL3vFenvrB94ES1eRdSFpoi6ik5C4NA/79HQEJJUEccfwkpnz6k8z41mzGzdqfGGt4\njQTvKADfusKrIwoTjg3Qu9htLp5Ck8vcXrYRXFwbPXEpeqK+VZmaSpA6xd/+wRNH/idrHn4Eon9W\nIujaocDIEZJCHF1AowpoRPAxR73Do6ycO4d5//VuHvnAh2DFM5QSWZXViT721GENA7zCFlJSX3eW\nIVHwIVLmjny/17Dz9Vcx5fOforPWTizrtOOrxLfRhwnHRlCXcjZUJWV7upSj4TWFZKNmRM3TuL5V\nXePLOh2/+g2PHXgQ5fKnqZWxZzqvTxtb86kDjyi5pP0ZRAiqOB+RoJQi5KXSJo41s7/N3DccQsfP\nr2d8Z51QTZQ2ho4D/Y1VIzUiWYwUTsmo0RY9pZvAc048nu2OeCNZ9R2KUZqKbsKxERprQ0oCooqL\nqWhuip6kAv65NArMbEb0RLWnSpY2oid/+COLTziRziVPUNKYbAwj/sdyMa2qRUnp3wAhdZmRShik\nTK5/edttLPjQB5l/8mdwSxZRuli9rvKxNBK1WFv5rJWzPb5aveyFrNFs21Gls9fIfVuqN9KiMPtI\nZKQfiwNPdSzGaml47/BsT/RENi96IioQA3Wpp2GIFnTOfZSHDj+KjoceRFF8lbG47nVW1nN/uJOy\nRtd+n2fnnTRO/5TeXS5azFPnns0DB76BMOcvKYXfpSbUEUFiBgiiAQ2xz0S4zUHw6fd0KT3eC1VE\nJg1bI9oobJZaN7TmY0cUGz3SRWSaiNwkInNF5F4ROb7aPlFEbhCR+0XkehGZ0Os1Z4vIgyIyR0T2\nGMgvMNJRcWTBEcs6q667kXkHHEC2fAmo4mTtCteRFD1pFTkFPir1uffyyJveylNfP4viiUVITBGs\nKJGgBdEpKqPzBB4qNuUSWQIfVdUXAK8EjhOR3YGTgRtVdTfgJuAUABF5HTBTVZ8LfAC4cEAs32Jw\nlE5YfcttLDjhROpLFwHge4kGVFe8UYZWtVtFlfD4fJb9z6dZ8P5jWTXndqBM3oBmaWWrJO/DGBw2\nKhyqulhV51T3VwP3AdOAQ4HLq6ddXv1N9f8rquffAUwQkckttnuLIEVPSuI/HmLRkf9B57xHyGKe\n8kEaY/5qqBJaVFtjJKEoOTWyCN0CXRl0/OJa5r/2dTz14+9TFqnRo2qJYCnhg0lTg3IR2QnYA7gd\nmKyqSyCJCzCpetpUYEGvlz1ebTPWJQQ6bvoD817/erqWLaEWAmV1JW1MoegoFIwGqX9KnSA+1dao\n1yk8FGtW8uQR7+fJDx7HM/f+mRDT+qDRGd8YGjZZOERkPHANcELleazvV+rLXxzVv6iqEmJIha7K\nVFRYQxer7ryTJ074MGvmP9p4ZhX6XTunkYryjM5ZbK+pNQMa8DFFlfKQIliFdrP0u99h/pHvYsV3\nL4VyNdqrMlqsglVltRMbAqyqz7oZm8cmtf8UkYwkGt9R1WurzUtEZLKqLhGRKcCT1faFwPReL58G\nLOrrfU//7OkgSrFgATNjZM/N+gojAUFCpPQl6mu4WNJ1/6M8ePiR6OKFSFSyVGAQNCWT+Z5XGg0a\na1Qc0JE58qKgeOg+njj6ozx1671s/7lPM37SpJS0FxydXhkTtactQ0MoRGRUicZdMXLV7Nnk111P\nq9ZFyKbsQBG5Alimqh/tte0M4GlVPUNETga2UdWTReQQ4DhVfb2IvAL4hqq+oo/31BgUXKTj1tt4\neNZ+aNHdki/VSrQqRlMV/ccDOz3wAOOf+9xNfw9NXcx8hBgjz9z8e5Z84IN0PvwwVO/ZKPkHa1eX\nGn0TSO0dCwI5Veq65ox71SuY+omP0fba/fHjx4HUCdGTVWHVvo71piadFYrODp449liWX355dUz0\n/uWGBw4oq5VBHtC8jV1v/i1j93oliFZlEvtXr3FTwrGvAt4B7CsifxGRu0XkYOAM4AARuR/YD/gy\ngKr+EnhURB4CLgKO7Y+BWwqiqYBu551/YtHxJ9H1yCMg6/4Ajf6oxobwQOkiglAKdDqoSUHXH//A\no+/9AI+feir15Y8jRUZW5daMJg9jMNjoUEVV/8j6a1jtv57XfLg/Rm1pCOC0oPPv9zP/LW8hPvkU\nntRrpeE5prUb6Y8B7gE/4smAMkYKST5gjtClJe0I4aklPP3Nr9N91x1Mm/112ma+CJe32ZCvxZhH\nPAjEGFjx+1uY/5a3Ui5bTCkldQJE11P/qrHG0g7wjVMnCW1Nq9J+oSQT6BbFSY44R/3WP/LIq17P\nkrPPonvpEvM4WowJx0ZopJKrpF4bpQheHRojhIBqTPc1UCdQqkIsqWus8rfqdPx1LktPOp41Dz9E\no4GB71kjajRLY8FfrP4T0pyfUyi0QGJIHtzypSw9/Ys8+p9HUf/rnQSNEKEuZeqLrZLCL1W6eiS1\nu1zf71Ly7BYXAFnrirCMKEw4NkBKvEpl64KCdz4dbD6iokRSDw4VQQPksZoqc5DXBcqSNQ88wGNv\nPZSVf5+buqxHxWmq7UGv+hojaXn8cKARpl53zU61dGht2YE1a4i//j337XMIS799GeWaNdTqGR6l\nWwo0ptKGQQuC1nFBqoV0/4wnlY8sXZqLktxTH4Rl/sMRE44NIICrOhA5B2VIVanK+x6g7OwCV+Ji\niriUPi1/klBSqqd0gZW338aCw46iPn8eWUxXxMYBX1oewaChRFi5nMUnfJxFHz6eNffNodCIV0/d\np9wZFxSvHpX1lybUqLgAPgpeHLGItKqSwkjDhGMjOE1ehgBIpE7B3z92Co+/5/2s+O1vKWMXSlll\nLQpUZfTLe+ew5Ljj6f7HXKANVwmFqyInMDrXnwwVNTJYvZLl37ucJ/7jSFZcdgWuXlADIgHnc1KR\n2A0UEa3cGUWJGmkTRz5KT6HR+a03kZR0WDnEsXKBM2WbB+5lxQ+/x8L9DuTRvfel4/s/JixZRiwL\nggus+sdcHvqPd9D19zk4DZQx5acIpLkSIHPOPI5BoiPP6SaSuRo+KN33P8jCYz7C/I99nGLxYyma\nlYqhphmT9fwsAnT7QJGlE6dbA3WJo3KmapMyR0czUSKZxrSj1NGlSntVJ6MU0D/fwWPvfhf5C/8f\nWx20D2NmTmfxud+Chx7qEZ52JFXqVl27XB5T7cGiVhRkUiPGgiiKKjjpZOX5F9Jx95/Y7qQTmfjG\nQ9G2MWQa1+txBAlk85bCwqV0Z5CXjRqqow8Tjo0g2ruXRyQP0A2gqZpVBKSsU5/zJ566527cmDGE\nrq6eAUmq3ZWe3yMUmkTEBiqDgwOi1oFeI5HK24u338HiYz/MqttvYeqnPwkTpyAKhdRTeciYgRPq\nq1fxzHcu4PGLriJ78AEI6X2Das8gdTRhwrEBGgdDb1d0XS/hWX/HSOzoeFZvk8Y7jLYDa7jS+3dQ\nSrq8kC1/mo6vn8+839zFlAu/zFZ77oXXMSkwu+oZnr7tdyw77Qus+Nt95J0dqb+LT56GqIc4+nwO\nEw5j1CIIYwIUzhFcoLznTuYf+V88531HM/Htb2Hln++l8/vfY8WvfonUAxNUCQhBIu1aNZgb4PaV\nwxUTDmPUEvF01QK1ssRX9TzqCx5hwZe+xDNXXEr30mcIK1eDFKn/LRCcMgbIYiODdXR6kyYcxqhF\nvNJe19Stjwh5hpSRcV1rWPXQo/iqTaRqDhSptQPJ06gDZc3jitDCDn4jB5vYN0YtLqQCBpEqwa8s\ncCrU8YyjkZkaySSgCEFThz0QooAUI79lxeZiHocxamm0YgAgpr4pqZhSoN54QvWchlOhMT1fdHRf\ndU04jFFNX/MTro/HRuM8xoYYzaJpGMZmYsJhGEbTmHAYhtE0JhyGYTSNCYdhGE1jwmEYRtOYcBiG\n0TQmHIZhNI0Jh2EYTWPCYRhG05hwGIbRNCYchmE0jQmHYRhNsynd6qeJyE0iMldE7hWRj1TbTxOR\nhVX3+kYH+8ZrThGRB0XkPhE5cCC/gGEYg8+mLKsvgY+q6hwRGQ/8WUR+XT12lqqe1fvJIvJ84Ajg\n+cA04EYRea5aExHD2GLYqMehqotVdU51fzVwHzC1erivMgWHAj9Q1VJV5wEPAi9vjbmGYQwHmprj\nEJGdgD2AO6pNx4nIHBGZLSITqm1TgQW9XvY4a4XGMIwtgE0WjmqYcg1wQuV5nA/MVNU9gMXAmY2n\n9vFyG6YYxhbEJpUOFJGMJBrfUdVrAVR1aa+nXAL8vLq/EJje67FpwKK+3vf0z54OohQLFjAzRvZs\n0njDMDbOXTFy1ezZ5NddT6tKssumzFmKyBXAMlX9aK9tU1R1cXX/JOBlqnqUiLwAuBLYizRE+TXw\nT5OjIqIxKLhIx6238fCs/dCiuyVfyjBGMw4oUyMHPKB5G7ve/FvG7vVKEMWJQ1X7VUZ1ox6HiLwK\neAdwr4j8hTTs+CRwlIjsQWqfOg/4AICqzhWRq4G5QAEcaxEVw9iy2KhwqOofSU251+VXG3jNl4Av\n9cMuwzCGMZY5ahhG05hwGIbRNCYchmE0jQmHYRhNY8JhGEbTmHAYhtE0JhyGYTSNCYdhGE1jwmEY\nRtOYcBiG0TQmHIZhNI0Jh2EYTWPCYRhG05hwGIbRNCYchmE0jQmHYRhNY8JhGEbTmHAYhtE0JhyG\nYTSNCYdhGE1jwmEYRtOYcBiG0TQmHIZhNI0Jh2EYTbNJvWMHCkVRLcGVOAcBUzLD6C+lgBcI0aUT\nShxIXz3VNp8hFg6ImqGxjagO8JTW2N4w+oVToUBoI1KPkcwpQmjpZwypcAigIgQvlBppI1AfSoMM\nY4sgI9cAKGOAIiixxRfkIReOWoDOesDlNcqywGscSpMMY8SjlKgHF6ETcD7Dl62dBBhS4SBG1EXy\ntgjUyfM2ChMOw+gXDkeUSJk5xLvk2eet9eVFdWjmFEREb7zpN7x21iyK1c+gf59Dp45jjBZDYk+D\nm+++m9e89KVDasO6mE2bxnC0CQbfLokCLhIFfAlaK8mf/2KyrbYBUZw4VFX68xlD6nHc/Lvfs++s\nfcjGTkD3mkW7ksYvQ8jt19/Awa/ce2iNWAezadMYjjbBMLKrhU7C0EZVREEi6hwqigyxaAAgmm7D\nCbNp0xiONsGwsivSmqmAoZ3jCIGwphOvjuiAqEOfx1Ev0NUdQ23FszGbNo3haBMMG7si4GutOeWH\ndI5jSD7YMIx+z3EMmXAYhjFyGfKRgWEYIw8TDsMwmmZIhENEDhaRf4jIAyLyiaGwobJjnoj8VUT+\nIiJ3VtsmisgNInK/iFwvIhMGwY5LRWSJiNzTa9t67RCRs0XkQRGZIyJ7DKJNp4nIQhG5u7od3Oux\nUyqb7hORAwfIpmkicpOIzBWRe0Xk+Gr7kO2rPmz6SLV9SPfVgKOqg3ojidVDwI5ADswBdh9sOypb\nHgEmrrPtDOB/qvufAL48CHb8O7AHcM/G7ABeB/xfdX8v4PZBtOk04KN9PPf5wF9IUbqdqt9XBsCm\nKcAe1f3xwP3A7kO5rzZg05Duq4G+DYXH8XLgQVV9TFUL4AfAoUNgB6R0s3X3waHA5dX9y4E3D7QR\nqnoLsHwjdhzaa/sV1evuACaIyORBsgn6TtE7FPiBqpaqOg94kPQ7t9qmxao6p7q/GrgPmMYQ7qv1\n2DS1enjI9tVAMxTCMRVY0Ovvhazd0YONAteLyF0i8r5q22RVXQLpoAC2GyLbJq1jx6Rq+7r773EG\nd/8dV7n9s3sNCQbdJhHZieQR3c4//2ZDsq962XRHtWlY7KuBYCiEoy8VHqqY8N6quidwCOlHfvUQ\n2rKpDOX+Ox+Yqap7AIuBM4fCJhEZD1wDnFBd5df3WYNmVx82DYt9NVAMhXAsBGb0+nsasGgI7Ghc\nnVDVpcBPSS7jkoY7KyJTgCeHwrYN2LEQmN7reYO2/1R1qVYDdeAS1rrYg2aTiGSkE/Q7qnpttXlI\n91VfNg2HfTWQDIVw3AXsKiI7ikgNOBL42WAbISJjq6sEIjIOOBC4t7LlPdXT3g1c2+cbDIBJPPtq\n1NuO9/Sy42fAuwBE5BXAioabPtA2VSdlg7cAf+tl05EiUhORnYFdgTsHyKZvAXNV9Zu9tg31vvon\nm4bJvho4hmJGFjiYNPv8IHDyENmwMymi8xeSYJxcbd8WuLGy79fANoNgy/dIV51uYD7wXmDi+uwA\nziXNxv8VeOkg2nQFcE+1335KmltoPP+Uyqb7gAMHyKZXkUrTNn63u6tjab2/2UDvqw3YNKT7aqBv\nlnJuGEbTWOaoYRhNY8JhGEbTmHAYhtE0JhyGYTSNCYdhGE1jwmEYRtOYcBiG0TQmHIZhNM3/B7g9\nfy8nLy7LAAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "plt.imshow(result)\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "## Computing the Gradient\n", - "\n", - "- Gradients are free!" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[0.5]\n" - ] - } - ], - "source": [ - "x = tf.placeholder(tf.float32)\n", - "y = tf.log(x) \n", - "var_grad = tf.gradients(y, x)\n", - "with tf.Session() as session:\n", - " var_grad_val = session.run(var_grad, feed_dict={x:2})\n", - " print(var_grad_val)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "# Warming up: Logistic Regression" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "skip" - } - }, - "outputs": [], - "source": [ - "import tensorflow as tf\n", - "import matplotlib.pyplot as plt\n", - "%matplotlib inline" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "### Kaggle Challenge Data" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The Otto Group is one of the world’s biggest e-commerce companies, A consistent analysis of the performance of products is crucial. However, due to diverse global infrastructure, many identical products get classified differently.\n", - "For this competition, we have provided a dataset with 93 features for more than 200,000 products. The objective is to build a predictive model which is able to distinguish between our main product categories. \n", - "Each row corresponds to a single product. There are a total of 93 numerical features, which represent counts of different events. All features have been obfuscated and will not be defined any further.\n", - "\n", - "https://www.kaggle.com/c/otto-group-product-classification-challenge/data" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "##### For this section we will use the Kaggle Otto Group Challenge Data. You will find these data in \n", - "`data/kaggle_ottogroup/` folder." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "subslide" - } - }, - "source": [ - "## Logistic Regression" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "This algorithm has nothing to do with the canonical linear regression, but it is an algorithm that allows us to solve problems of classification(supervised learning). \n", - "\n", - "In fact, to estimate the dependent variable, now we make use of the so-called **logistic function** or **sigmoid**. \n", - "\n", - "It is precisely because of this feature we call this algorithm logistic regression.\n", - "\n", - "![](imgs/sigmoid.png)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Data Preparation" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Using TensorFlow backend.\n" - ] - } - ], - "source": [ - "from kaggle_data import load_data, preprocess_data, preprocess_labels" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "9 classes\n", - "93 dims\n" - ] - } - ], - "source": [ - "X_train, labels = load_data('data/kaggle_ottogroup/train.csv', train=True)\n", - "X_train, scaler = preprocess_data(X_train)\n", - "Y_train, encoder = preprocess_labels(labels)\n", - "\n", - "X_test, ids = load_data('data/kaggle_ottogroup/test.csv', train=False)\n", - "\n", - "X_test, _ = preprocess_data(X_test, scaler)\n", - "\n", - "nb_classes = Y_train.shape[1]\n", - "print(nb_classes, 'classes')\n", - "\n", - "dims = X_train.shape[1]\n", - "print(dims, 'dims')" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "data": { - "text/plain": [ - "array(['Class_1', 'Class_2', 'Class_3', 'Class_4', 'Class_5', 'Class_6',\n", - " 'Class_7', 'Class_8', 'Class_9'], dtype=object)" - ] - }, - "execution_count": 30, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.unique(labels)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "subslide" - } - }, - "source": [ - "#### Hands On - Logistic Regression" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "fragment" - } - }, - "outputs": [], - "source": [ - "# Parameters\n", - "learning_rate = 0.01\n", - "training_epochs = 25\n", - "display_step = 1" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "fragment" - } - }, - "outputs": [], - "source": [ - "# tf Graph Input\n", - "x = tf.placeholder(\"float\", [None, dims]) \n", - "y = tf.placeholder(\"float\", [None, nb_classes])" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "## The Model" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "outputs": [], - "source": [ - "# Set model weights\n", - "W = tf.Variable(tf.zeros([dims, nb_classes]))\n", - "b = tf.Variable(tf.zeros([nb_classes]))" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "fragment" - } - }, - "outputs": [], - "source": [ - "# Construct model\n", - "activation = tf.nn.softmax(tf.matmul(x, W) + b) # Softmax" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "subslide" - } - }, - "outputs": [], - "source": [ - "# Minimize error using cross entropy\n", - "cross_entropy = y*tf.log(activation)\n", - "cost = tf.reduce_mean(-tf.reduce_sum(cross_entropy,reduction_indices=1))" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "fragment" - } - }, - "outputs": [], - "source": [ - "# Set the Optimizer\n", - "optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "fragment" - } - }, - "outputs": [], - "source": [ - "# Initializing the variables\n", - "init = tf.global_variables_initializer()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "subslide" - } - }, - "source": [ - "## Learning" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "outputs": [], - "source": [ - "def training_phase(X, Y):\n", - " cost_epochs = []\n", - " # Training cycle\n", - " for epoch in range(training_epochs):\n", - " _, c = sess.run([optimizer, cost], feed_dict={x: X, y: Y})\n", - " cost_epochs.append(c)\n", - " return cost_epochs" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "subslide" - } - }, - "source": [ - "## Prediction" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "outputs": [], - "source": [ - "def testing_phase(X, Y):\n", - " # Test model\n", - " correct_prediction = tf.equal(tf.argmax(activation, 1), tf.argmax(y, 1))\n", - " # Calculate accuracy\n", - " accuracy = tf.reduce_mean(tf.cast(correct_prediction, \"float\"))\n", - " print(\"Model accuracy:\", accuracy.eval({x: X, y: Y}))" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "subslide" - } - }, - "source": [ - "## TF Session" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Training phase finished\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEPCAYAAABRHfM8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt4VNW9//H3N3JRkAQCCBowQOpDvVGtNKXKwVBaL3Aq\nLUqLBiqgntZ66fFKa4sJphyVQ+1Pe/EUxQsCamsPXipVVJr6eJCbiiIItQgRQRAjt6AQSL6/P2Yy\nTMIkmUDm/nk9Dw8ze6+999o7M/s7e6313dvcHRERkeZkJboCIiKSGhQwREQkKgoYIiISFQUMERGJ\nigKGiIhERQFDRESiEtOAYWa9zGyhma02s5Vmdn2EMpeZ2dtmtsLMXjOzAWHzLjCzNWb2TzObFMu6\niohI0yyWeRhm1hPo6e4rzOxY4A1gpLuvCSszCHjP3Xea2QVAqbsPMrMs4J/AMGAzsAwYE76siIjE\nT0yvMNx9i7uvCL6uAt4D8hqUWezuO4NvF4fNLwTed/cKd98PPAGMjGV9RUSkcXHrwzCzPsAZwJIm\nil0J/C34Og/YGDbvIxoEGxERiZ828dhIsDnqKeCnwSuNSGWGAhOAwXWTIhTTfUxERBIk5gHDzNoQ\nCBaPufszjZQZAMwALnD37cHJHwEnhhXrRaAvI9LyCiQiIi3k7pF+mDcqHk1SDwGr3f3eSDPN7ETg\nL8A4d18XNmsZ8CUzyzezdsAY4NnGN+NAFcXFpbh7xv4rKSlJeB2S4Z+Og46FjkXT/w5HTK8wzOwc\noBhYaWZvETir3wbkA+7uM4DJQC7wBzMzYL+7F7p7jZldCywgENhmuvt7TW+xI5s318Zsf0REMllM\nA4a7/x9wVDNlrgKuamTeC0D/6Le4hxNOUC6iiEgspNHZdQ8FBSWUlY1PdEUSqqioKNFVSAo6Dgfp\nWBykY3FkYpq4Fy9m5sXFpZSVjadv3/xEV0dEJOmZGd7CTu+0CRjpsB/x0KdPHyoqKhJdDRGJk/z8\nfDZs2HDIdAUMaVbwQ5LoaohInDT2nT+cgJFGfRgiIhJLccn0Tibr11cwefIjbNpUS15elvo9RESi\nlFFNUuvXV/Dtb/+WdeumAB2pG1n10kvXZUzQUJOUSGZRk9Rhmjz5kbBgAdCRdeumMHnyIwmslcTS\n3LlzueCCCw5r2dNOO41XX321lWuU/IYPH85jjz2W6Go06/zzz+fxxx9v9bKtady4cdxxxx1x326s\nZFTA2LSploPBoo6yw5NF3759WbhwYauu87LLLuOFF15ottyECRO4/fbb60179913GTJkSIu2V1FR\nQVZWFtnZ2WRnZ9OvXz/uvvvuFq0j0ebPn8+4ceNadZ3Dhw+nU6dOZGdn065dO9q3bx86Rj/5yU8O\na50vvvgil156aauXlcZlVB9GXl4WsIf6QUPZ4dA6fTvqHwowM3bu3ImZ8cYbb3DuuecycOBAhg0b\n1qrbqamp4aijmryRQtKYP39+6PWECRPo3bt3k7+8U2nfMkqib4DVSjfR8mh88MEGLyi4yaHKwR2q\nvKDgJv/ggw1RLZ8OIh2r1jgurbGOPn36+CuvvBJx3owZM/xLX/qSd+3a1UeOHOmbN28OzXvxxRe9\nf//+3rlzZ//JT37i5557rs+cOdPd3R955BEfPHhwqOx//ud/+nHHHec5OTn+la98xVetWuUzZszw\ntm3bevv27b1Tp05+0UUXHVKfmpoanzp1qhcUFHh2drYPHDjQP/roo0PquWHDBs/KyvKamprQtMLC\nQp8+fXro/ebNm/3iiy/27t27e79+/fy+++4Lzfviiy/8hz/8oXfp0sVPOeUUnzZtmvfq1aveMbr7\n7rt9wIABfvTRR3tNTU2T61u6dKkPHDjQs7OzvWfPnn7TTTe5u/vevXt97Nix3rVrV+/cubMXFhb6\nJ5984u7uRUVFoeNXW1vrZWVlnp+f7z169PDLL7/cd+7cGdpXM/NHH33UTzzxRO/evbtPnTq18T9w\n0Pjx433y5Mn1pr388svep08f/6//+i/v2bOnT5w40SsrK3348OHevXt3z83N9e985zu+adOm0DKD\nBw/2Rx991N3dH3zwQT/33HP9hhtu8M6dO3tBQYEvWLDgsMquW7fOBw8e7NnZ2X7++ef71Vdf7ePH\nj4+4L3X1vuOOO7xr167er18/f+KJJ0Lzx44d69dff71feOGF3qlTJz/77LN9w4aD34lrr73We/Xq\n5Tk5OV5YWOiLFi0KzVu8eLF/9atfDf3tbr311tC81157zQcNGuSdO3f2M88801999dVGj3dj58fg\n9Jada1u6QDL+izZguAdObMXFpT506O1eXFyaUcHCPfKHp7i4NOxE76ETfnFxadTrbY11NBYwXnnl\nFe/WrZuvWLHCq6ur/brrrvMhQ4a4u/u2bds8Ozvbn376aa+pqfF7773X27VrVy9g/Nu//Zu7BwLL\nwIEDfdeuXe7uvmbNGt+yZYu7Rz6Jhddn2rRpPmDAAH///ffd3f2dd97xzz777JC61gWMAwcOuLv7\n66+/7h07dvSnn37a3QMn4LPOOst/9atf+YEDB3z9+vX1TliTJk3yoqIi37lzp2/atMkHDBjgvXv3\nrlenM8880zdt2uR79+5tdn3f+MY3fPbs2e7uvmfPHl+yZIm7u//xj3/0iy66KLSON99803fv3u3u\n9QPGzJkz/aSTTvINGzb4nj17fNSoUT5u3LjQvpqZ/8d//Ifv27fP3377bW/fvr2vWbOmyb9zYwGj\nTZs2/stf/tL379/ve/fu9W3btvnTTz/t+/bt8927d/vFF1/so0ePDi3TMAi0a9fOH3nkEa+trfXf\n/va39Y5bS8oWFhb6z3/+c9+/f7+/+uqr3qlTJ58wYULEfamr96RJk7y6utoXLlzoHTp08HXr1rl7\nIGB0797d33zzTT9w4ID/4Ac/CB0/d/fZs2f7jh07vKamxqdNm+Z5eXleXV3t7u5f+9rXQsGnqqrK\nly5d6u7uGzdu9K5du/pLL73k7oHPdbdu3SJ+Ht0VMI4oYGS6SMeqqOj2Bif6wL+hQ2+Per2tsY7G\nAsYVV1zhkyZNCr2vqqrydu3aeUVFhc+aNcvPPvvseuV79+4dMWAsXLjQ+/fv74sXL/ba2tp6yzQX\nMPr37+/PPfdcs/tQdxLt0qWLH3PMMZ6VleW33HJLaP6SJUs8Pz+/3jJ33nmnT5w40d3d+/XrFzoR\nuAdObg0DxiOPPBL1+oYMGeKlpaX+6aef1ivz0EMP+TnnnOPvvPPOIfsQHjCGDRvm999/f2je2rVr\nvW3btl5TUxMKjuFXe4WFhf7kk082eYwaCxjHHHNMKNBGsmzZMj/uuONC7xsGgZNPPjk0b9euXW5m\nXllZGVXZrKwsr6ys9HXr1vnRRx/te/fuDc0fM2ZMkwGjffv2/sUXX4SmjRo1yu+66y53DwSMq6++\nOjTv2Wef9dNPPz3iumpra71Tp06+evVqd3c/55xzvKysLLQPdaZOnRr6+9YZNmyYz507N+J6WzNg\nqPFewvp2wrWsb6c11tGYzZs3k59/sC+kY8eO5ObmsmnTJjZv3kzv3r3rle/Vq1fE9QwdOpRrr72W\na665hp49e/LjH/+YqqqID4A8xMaNG+nXr19UZc2MyspK9uzZw/Tp0ykvL+fAgQNAoFN806ZN5Obm\nkpubS5cuXbjzzjv55JNPQvsaXv+G+9Zw/5pb30MPPcTatWv58pe/zNe//nWef/55IDB65/zzz2fM\nmDH06tWLSZMmUVNTc8i2Gh77/Px8Dhw4wNatW0PTevToEXrdoUOHqI9pQz169KjXb/H5559z5ZVX\nkp+fT+fOnRk2bBiffvppo8v37NmzXj2ARuvSsKy7U1VVxccff0zXrl1p3759aH6kv0G4rl27cvTR\nR4fe5+fns3nzwWe9NdxWeJ2mTZvGySefTJcuXcjNzeXzzz8P7ePDDz/MqlWr6N+/P4MGDeJvfws8\nvbqiooK5c+fW+5svWbKk3jZjRQEjCuvXVzB27BSGDi1h7NgprF+fXvdiKisbT0FBCQdP+C2/829r\nrKMxJ5xwQr37X+3Zs4fKykry8vI4/vjj2bhxY73yH330UaPruvbaa1m+fDmrVq1i7dq1/Pd//zcQ\nOMk3pXfv3qxbt67JMuHcHTPjhhtuoH379vzhD38Iradfv3589tlnfPbZZ2zfvp2dO3fy3HPPhfY1\nvP4ffvjhIesOr2tz6ysoKGDu3Lls27aNW2+9lUsuuYQvvviCNm3aMHnyZFatWsWiRYv461//yqxZ\nsw7ZVsNjX1FRQdu2besFidbS8G8wbdo0KioqWL58OTt27Gj1EXSRHH/88VRWVlJdXR2a1vDz1VBl\nZSX79u0Lvf/www854YQTmt3W3//+d37zm98wb948tm/fzvbt2+nYsWNdqwknnXQSjz/+ONu2bePG\nG2/k4osvprq6mt69ezNx4sR6f/Pdu3dz0003HeZeR08Boxl1yX5z5txMefkU5sy5mW9/+7dpFTT6\n9s3npZeuo7h4OkOHllBcPL3FyYytsQ6A6upq9u3bF/pXU1PDZZddxsMPP8w777zDvn37uO222xg0\naBAnnngiI0aM4N133+XZZ5+lpqaG3/3ud/V+/YZbvnw5S5cu5cCBAxxzzDEcffTRoV+0PXr04IMP\nPmi0XldeeSWTJ0/mX//6FwArV65k+/btEcvWfeHr/OxnP+Puu++murqawsJCsrOzmTZtGnv37qWm\npoZVq1axfPlyAEaPHs2dd97Jjh072LRpE7///e+bPF7NrW/OnDmhX6w5OTmYGUcddRTl5eW8++67\n1NbWcuyxx9K2bVvatDl00OSll17Kb37zGzZs2EBVVRW/+MUvGDNmDFlZWRH3tTXt3r2bDh06kJOT\nQ2VlJVOmTInZtur069eP008/nSlTprB//35ee+210FVZY2pqaigtLWX//v2Ul5fzwgsvMHr06Ga3\nVVVVRdu2bcnNzaW6upqSkhI+//zz0PzZs2dTWVkJQHZ2NllZWWRlZTFu3DjmzZvHyy+/TG1tLXv3\n7qW8vJwtW7Yc2c5HQQGjGZmS7Ne3bz6zZ5ewcOEUZs8uOazhsK2xjhEjRtChQweOOeYYOnTowJQp\nU/jmN79JWVkZo0aNIi8vj/Xr1/PEE08AgeaAP//5z9xyyy1069aNNWvWMHDgwHpNCnV27drFVVdd\nRW5uLn379qVbt27cfPPNAFxxxRWsWrWK3NxcRo0aBdT/xXvjjTfy/e9/n/POO4+cnByuvPJKvvji\ni4j70PCX8ogRI8jNzeWBBx4gKyuL5557jhUrVtC3b1+OO+44rrrqKnbt2gXA7bffTl5eHn379uW8\n885j9OjR9fal4bqbW98LL7zAqaeeSnZ2NjfccANPPvkk7dq1Y8uWLVxyySXk5ORw6qmnMnToUIqL\niw/ZxsSJExk3bhxDhgyhoKCADh06cN999zVan+au1KItA4FjvmPHDrp27crgwYMZMWJEi9YTPr8l\nZR9//HH+8Y9/0K1bN8rKyhgzZkzEz1Od3r1707FjR44//ngmTJjAzJkzQ82XTW13+PDhDBs2jJNO\nOol+/frRuXNnjj/++ND8+fPnc/LJJ5OTk8Ott97Kn/70J9q0aUN+fj7z5s2jrKyM7t2706dPH+65\n5x5qa+OQT9bSTo9k/EcMO71bozM3mcTyWCWD2tpaP+GEE7y8vDzRVWkV999/vxcVFSW6Ghnt4osv\n9l/96lcR57388svet2/fONeoZRr7zqNO79YXy85caR0LFixg586d7Nu3j6lTpwIwaNCgBNfq8GzZ\nsoVFixbh7qxdu5Zf//rXoSseiY9ly5axYcMG3J358+fz/PPPM3LkyERXKynorNeMWHbmSut4/fXX\nKSgo4LjjjuP555/nmWeeabIJIZlVV1fzox/9iOzsbL71rW/xve99j6uvvjrR1coomzdvZsiQIWRn\nZ3PTTTfx4IMPctpppyW6Wkkho+5We7jqbnmxeXMtJ5yQ2re80N1qRTJLa96tVgEjwyhgiGQW3d5c\nRETiTgFDRESiklG3N4+3ZLzdd35+ftTj4EUk9YXf2uVIqQ8jRvQ4WBFJZurDSCKZkiEuIplDASNG\n9DhYEUk3MQ0YZtbLzBaa2WozW2lm10co09/MFpnZXjO7scG8DWb2tpm9ZWZLY1nX1qYMcRFJNzHt\nwzCznkBPd19hZscCbwAj3X1NWJluQD7wXWC7u98TNu8D4Cx3j3xb0IPl1IchItICh9OHEdNRUu6+\nBdgSfF1lZu8BecCasDKfAp+a2b9HWIWRos1mdbf7njx5eliGuIKFiKSuuI2SMrM+QDlwmrsf8hgs\nMysBdke4wvgMcGCGuz/QyLqT7gpDRCSZJd0VRp1gc9RTwE8jBYsmnO3uW8ysO/CSmb3n7q/FppYi\nItKUmAcMM2tDIFg85u7PtGTZYJMW7r7NzOYBhUDEgFFaWhp6XVRURFFR0WHWWEQk/ZSXl1NeXn5E\n64h5k5SZzQI+dfcbmylXAlS5+6+D7zsAWcG+j47AAmCKuy+IsGzaNEklY3a4iKSfpLtbrZmdA7wK\nrCTQD+HAbQRGRbm7zzCzHsByoBNQC1QBpwDdgXnBZdoAc9z9rka2kxYBQyOrRCReki5gxEu6BIyx\nY6cwZ87N1E/420Nx8XRmzy5JVLVEJA3p1iApTtnhIpLMFDCSiLLDRSSZ6UyURPT8cBFJZurDSDLp\n9PxwEUle6vQWEZGoqNNbRERiRo9oTRNK+BORWFOTVBpQwp+ItJSapDKUHgcrIvGggJEGlPAnIvGg\ngJEGlPAnIvGgM0oaUMKfiMSDOr3ThBL+RKQllLgnIiJR0SgpERGJGSXuZTAl+4lIS6hJKkMp2U8k\ns6lJSqKmZD8RaSkFjAylZD8RaSkFjAylZD8RaSmdHTKUkv1EpKXU6Z3BlOwnkrmUuCciIlHRKCkR\nEYkZJe5JiyjZTyRzqUlKoqZkP5H0oSYpiSkl+4lkNgUMiZqS/UQymwKGRE3JfiKZLabfdDPrZWYL\nzWy1ma00s+sjlOlvZovMbK+Z3dhg3gVmtsbM/mlmk2JZV2mekv1EMltMO73NrCfQ091XmNmxwBvA\nSHdfE1amG5APfBfY7u73BKdnAf8EhgGbgWXAmPBlw9ahTu84UbKfSHo4nE7vmA6rdfctwJbg6yoz\new/IA9aElfkU+NTM/r3B4oXA++5eAWBmTwAjw5eV+OvbN5/Zs0sSXQ0RSYC4NT6bWR/gDGBJlIvk\nARvD3n8UnCYiIgkQl8S9YHPUU8BP3b0q2sUiTGu03am0tDT0uqioiKKiohbUUEQkvZWXl1NeXn5E\n64h54p6ZtQH+CvzN3e9tolwJsDusD2MQUOruFwTf/wxwd787wrLqw0hyyhAXSS5J14cR9BCwuqlg\nESa88suAL5lZPvAxMAa4NAb1kxiLlCG+eLEyxEVSTaxHSZ0DvAqsJNCc5MBtBEZFubvPMLMewHKg\nE1ALVAGnBDvJLwDuJdDXMtPd72pkO7rCSGJjx05hzpybqZ/0t4fi4unqQBdJkKS7wnD3/wOOaqbM\nVqB3I/NeAPrHoGoSR8oQF0kPStGVmFOGuEh60DdWYk4Z4iLpQbc3l7hQhrhIctEjWkVEJCpJ1+kt\nciSUuyGSXHSFIUlJT/cTiS09cU/Shp7uJ5J8FDAkKSl3QyT5KGBIUlLuhkjy0bdPkpJyN0SSjzq9\nJWkpd0MkdpSHISIiUdEoKRERiRkl7klaUbKfSOyoSUrShpL9RKKnJinJaEr2E4ktBQxJG0r2E4kt\nBQxJG0r2E4ktfZMkbSjZTyS21OktaUXJfiLRUeKeiIhERaOkREQkZpS4J4IS/kSioSYpyXhK+JNM\nFLMmKTMbHc00kVSkhD+R6ETbh/HzKKeJpBwl/IlEp8k+DDO7EBgO5JnZfWGzsoEDsayYSLwcTPgL\nDxpK+BNpqLlvxGZgObAXeCPs37PA+bGtmkh8KOFPJDpRdXqbWVt33x983QXo7e7vRLFcL2AW0BOo\nAR5w9/silLsPuJDAN3aCu78VnF4DvA0YUOHu321kO+r0liOihD/JNDFL3DOzcuAiAk1YbwCfAIvc\n/YZmlusJ9HT3FWZ2bHDZke6+JqzMhcC17j7CzL4O3Ovug4Lzdrl7dhT1U8AQEWmBWCbu5bj7LmAU\nMMvdvw4Ma24hd9/i7iuCr6uA94C8BsVGErgKwd2XADlm1iM4r0U7IyIisRNtwGhjZscD3wf+ejgb\nMrM+wBnAkgaz8oCNYe83cTCotDezpWa2yMxGHs52RWJl/foKxo6dwtChJYwdO4X16ysSXSWRmIo2\n0/sO4EXg/9x9mZn1A96PdiPB5qingJ8GrzTqzY6wSF370onuvsXM+gILzewdd18faRulpaWh10VF\nRRQVFUVbPZEWi5Tst3ixkv0keZWXl1NeXn5E64h5preZtSFwVfI3d783wvz/Af7u7k8G368BznX3\nrQ3KPQw85+7/G2Ed6sOQuBo7dgpz5txMw6G4xcXTmT27JFHVEolaLDO9e5nZPDP7xMy2mtlfgiOg\novEQsDpSsAh6FvhhcDuDgB3uvtXMOptZu+D0bsDZwOootykSU0r2k0wUbZPUw8BcoO52IGOD077d\n1EJmdg5QDKw0s7cINDXdBuQD7u4z3H2+mQ03s38RGFY7Prj4ycAfg0Nrs4A7w0dXiSSSkv0kE0U7\nrHaFu5/R3LREUZOUxJtuWCipLpZ5GC8DjwCPByddSiDBrtmhtfGggCGJoGQ/SWWxDBgnAr8DvkGg\nWWkRcL27f3g4FW1tChgiIi1zOAEj2j6MMuByd98e3FAuMB2Y2LIqioge1iSpKtqAMaAuWAC4+2dm\ndmaM6iSStpS/Iaks2iEdWcGbDgKhKww93lWkhfSwJkll0Z70fw0sMrOnCPRhfB+YGrNaiaQp5W9I\nKosqYLj7LDNbDnyTwK08Rrm7kuhEWkj5G5LKYn5rkHjQKClJFcrfkGQRs2G1yU4BQ1KJ8jckGShg\niIhIVGKZhyEiCaTcDUkGusIQSXLq95BYiOUjWkUkQZS7IclCAUMkySl3Q5KFAoZIkjuYuxFOuRsS\nf/rEiSS5srLxFBSUcDBoBPowysrGJ6xOkpnU6S2SApS7Ia1NeRgiIhIV5WGISIhyN6S16QpDJA0p\nd0OaozwMEQGUuyGxoYAhkoaUuyGxoIAhkoaUuyGxoE+PSBpS7obEgjq9RdKUcjekKcrDEBGRqGiU\nlIiIxIwS90SkHiX8SWNi2iRlZr2AWUBPoAZ4wN3vi1DuPuBCAj104919RXD65cAvAAemuvusRraj\nJimRVqCEv8yRjE1SB4Ab3f0U4BvANWb25fACZnYhUODuJwE/Av4nOL0LcDvwNeDrQImZ5cS4viIZ\nTQl/0pSYBgx331J3teDuVcB7QF6DYiMJXIXg7kuAHDPrAZwPLHD3ne6+A1gAXBDL+opkOiX8SVPi\n1ultZn2AM4AlDWblARvD3n8UnNZw+iYODTYi0oqU8CdNiUunt5kdCzwF/DR4pVFvdoT3HmE6wekR\nlZaWhl4XFRVRVFR0OFUVyWhlZeNZvLjkkD6MsrLrElwzOVLl5eWUl5cf0TpinodhZm2AvwJ/c/d7\nI8z/H+Dv7v5k8P0a4FxgKFDk7j+OVK7BOtTpLdJKlPCXGZIycc/MZgGfuvuNjcwfDlzj7iPMbBDw\n/9x9ULDTeznwVQJNZ8uBs4L9GQ3XoYAhkkAaipt6ku4BSmZ2DlAMrDSztwg0Kd0G5APu7jPcfb6Z\nDTezfxFoPJ1AYOZ2MysjECgcmBIpWIhIYkUairt4sYbipiPdGkREjsjYsVOYM+dm6o+u2kNx8XRm\nzy5JVLWkGcmYhyEiaU5DcTOHAoaIHBENxc0c+ouKyBHRszcyh/owROSIaShu6knKYbXxoIAhItIy\nSTesVkSkKcrfSC26whCRhNCt1BNLw2pFJGXoVuqpRwFDRBJC+RupRwFDRBJC+RupR38ZEUkI5W+k\nHnV6i0jCKH8jcZSHISIiUVEehoikPeVuJI6uMEQkZSh3o/UoD0NE0ppyNxJLAUNEUoZyNxJLAUNE\nUoZyNxJLR1lEUoZyNxJLnd4iklKUu9E6lIchIiJRUR6GiEgEyt1oHbrCEJG0ptyNyJSHISLSgHI3\nWo8ChoikNeVutB4FDBFJa8rdaD06YiKS1pS70XrU6S0iaU+5G4dKujwMM5sJ/Duw1d0HRJjfGXgI\nKAC+ACa6++rgvA3ATqAW2O/uhU1sRwFDRFpdOg/HTcaAMRioAmY1EjCmAbvdvczM+gO/d/dvBed9\nAJzl7tuj2I4Choi0qnQfjpt0w2rd/TWgqRP+KcArwbJrgT5m1j04z2JdPxGRxmg47qESfUJ+GxgF\nYGaFwIlAr+A8B140s2VmdlWC6iciGUrDcQ+V6FuD3AXca2ZvAiuBt4ADwXlnu/uW4BXHS2b2XvCK\nRUQk5g4Oxw0PGpk9HDehAcPddwMT696b2XpgfXDeluD/28xsHlAINBowSktLQ6+LioooKiqKSZ1F\nJDOUlY1n8eKSQ/owysquS3DNDk95eTnl5eVHtI6YD6s1sz7Ac+5+eoR5OcDn7r4/2Ox0jruPN7MO\nQJa7V5lZR2ABMMXdFzSyDXV6i0irS+fhuMk4SmouUAR0BbYCJUA7wN19hpkNAmYRaIZaDVzh7jvN\nrC8wj0A/Rhtgjrvf1cR2FDBEJCmkylDcpAsY8aKAISLJIJWG4ibdsFoRkUyS7kNxFTBERFpJug/F\nVcAQEWkl6X5n3PTYCxGRJJDud8ZVp7eISCtKlaG4GiUlIiJROZyAkehbg4iICKmRv6ErDBGRBEtE\n/obyMEREUlCq5G8oYIiIJFiq5G8oYIiIJFiq5G8kV21ERDJQquRvqNNbRCQJxDt/Q3kYIiIZ5EiG\n4ipgiIhkiCMdiqthtSIiGSIRQ3EVMEREUlAihuIqYIiIpKBEDMVVwBARSUGJGIqrTm8RkRR1JENx\nNUpKRESiolFSIiISMwoYIiISFQUMERGJigKGiIhERQFDRESiooAhIiJRUcAQEZGoxDRgmNlMM9tq\nZu80Mr9ffrl/AAAFqUlEQVSzmf2vmb1tZovN7JSweReY2Roz+6eZTYplPUVEpHmxvsJ4GDi/ifm3\nAW+5+1eAy4H7AMwsC/hdcNlTgUvN7MsxrmtaKC8vT3QVkoKOw0E6FgfpWByZmAYMd38N2N5EkVOA\nV4Jl1wJ9zKw7UAi87+4V7r4feAIYGcu6pgt9IQJ0HA7SsThIx+LIJLoP421gFICZFQInAr2APGBj\nWLmPgtNERCRBEh0w7gJyzexN4BrgLeAAEOn+JrpZlIhIAsX85oNmlg885+4Doii7HjgdOA0odfcL\ngtN/Bri7393IcgomIiIt1NKbD7aJVUXCGJGvGDCzHOBzd99vZlcB/3D3KjNbBnwpGGw+BsYAlza2\ngZbutIiItFxMA4aZzQWKgK5m9iFQArQjcLUwAzgZmGVmB4DVwBUEZtaY2bXAAgLNZjPd/b1Y1lVE\nRJqWFs/DEBGR2Et0p/cRUXLfQWa2IZgA+ZaZLU10feIpUoKomXUxswVmttbMXgw2f6a9Ro5FiZl9\nZGZvBv9dkMg6xouZ9TKzhWa22sxWmtn1wekZ99mIcCyuC05v0WcjZa8wgsl9/wSGAZuBZcAYd1+T\n0IoliJl9AJzl7k3lvaQlMxsMVAGz6gZXmNndQKW7Twv+mOji7j9LZD3joZFjUQLsdvd7Elq5ODOz\nnkBPd19hZscCbxDI55pAhn02mjgWP6AFn41UvsJQcl99Rmr/PQ9bIwmiI4FHg68fBb4b10olSBPJ\nshk3MMTdt7j7iuDrKuA9AnleGffZaORY1OW2Rf3ZSOUTjJL76nPgRTNbFhxxlumOc/etEPiyAN0T\nXJ9Eu8bMVpjZg5nQBNOQmfUBzgAWAz0y+bMRdiyWBCdF/dlI5YCh5L76znb3gcBwAh+AwYmukCSN\nPwAF7n4GsAXItKapY4GngJ8Gf11n7HkiwrFo0WcjlQPGRwRuJVKnF4G+jIwU/KWEu28D5hFosstk\nW82sB4Tabz9JcH0Sxt23+cHOygeAryWyPvFkZm0InCAfc/dngpMz8rMR6Vi09LORygEjlNxnZu0I\nJPc9m+A6JYSZdQj+csDMOgLnAe8mtlZx1zBB9FlgfPD15cAzDRdIY/WORfCkWGcUmfXZeAhY7e73\nhk3L1M/GIceipZ+NlB0lBYFhtcC9HEzuuyvBVUoIM+tL4KrCCSRjzsmkYxGeIApsJZAg+jTwZ6A3\n8CEw2t13JKqO8dLIsRhKoM26FtgA/KiuDT+dmdk5wKvASgLfDSfwSIWlwJ/IoM9GE8fiMlrw2Ujp\ngCEiIvGTyk1SIiISRwoYIiISFQUMERGJigKGiIhERQFDRESiooAhIiJRUcAQSSAzO9fMnkt0PUSi\noYAhknhKhpKUoIAhEgUzKzazJcGHzNxvZllmttvM7jGzd83sJTPrGix7hpm9HrwD6F/q7gBqZgXB\ncivMbHkwQx+gk5n92czeM7PHEraTIs1QwBBphpl9mcCDZs52968SuI1CMdABWOrupxG47UJJcJFH\ngVuCdwB9N2z6HOC3welnAx8Hp58BXA+cAhSY2dmx3yuRlmuT6AqIpIBhwFeBZWZmwNEE7tNUS+Ce\nRACzgb+YWTaQE3yQEQSCx5+CN4fMc/dnAdy9GiCwOpa6+8fB9yuAPsCiOOyXSIsoYIg0z4BH3f0X\n9SaaTW5QzsPKR1pHY/aFva5B30tJUmqSEmneK8AlZtYdwMy6mNmJwFHAJcEyxcBr7r4L+Cx4d1CA\nccA/3H03sNHMRgbX0c7MjonrXogcIf2SEWmGu79nZr8EFphZFlANXAvsAQqDVxpbCfRzQOAZC38M\nBoQPgAnB6eOAGWZ2R3AdoyNtLnZ7InJkdHtzkcNkZrvdvVOi6yESL2qSEjl8+rUlGUVXGCIiEhVd\nYYiISFQUMEREJCoKGCIiEhUFDBERiYoChoiIREUBQ0REovL/Abc/CXP0Kg4iAAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[1 5 5 ..., 2 1 1]\n" - ] - } - ], - "source": [ - "# Launch the graph\n", - "with tf.Session() as sess:\n", - " # Plug TensorBoard Visualisation\n", - " merged = tf.summary.merge_all() \n", - " writer = tf.summary.FileWriter(\"/tmp/logistic_logs\", session.graph)\n", - " \n", - " sess.run(init)\n", - " cost_epochs = training_phase(X_train, Y_train)\n", - " print(\"Training phase finished\")\n", - " \n", - " #plotting\n", - " plt.plot(range(len(cost_epochs)), cost_epochs, 'o', label='Logistic Regression Training phase')\n", - " plt.ylabel('cost')\n", - " plt.xlabel('epoch')\n", - " plt.legend()\n", - " plt.show()\n", - " \n", - " prediction = tf.argmax(activation, 1)\n", - " print(prediction.eval({x: X_test}))" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "fragment" - } - }, - "source": [ - "[Open TensorBoard](http://localhost:6006)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "# Why Tensorflow ?" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "On a typical system, there are multiple computing devices. \n", - "\n", - "In TensorFlow, the supported device types are **CPU** and **GPU**. \n", - "\n", - "They are represented as strings. For example:\n", - "\n", - "* `\"/cpu:0\"`: The CPU of your machine.\n", - "* `\"/gpu:0\"`: The GPU of your machine, if you have one.\n", - "* `\"/gpu:1\"`: The second GPU of your machine, etc." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "fragment" - } - }, - "source": [ - "If a TensorFlow operation has both **CPU** and **GPU** implementations, the GPU devices will be given priority when the operation is assigned to a device. \n", - "\n", - "For example, `matmul` has both CPU and GPU kernels. On a system with devices `cpu:0` and `gpu:0`, `gpu:0` will be selected to run `matmul`." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "subslide" - } - }, - "source": [ - "### Example 1. Logging Device Placement\n", - "\n", - "`tf.Session(config=tf.ConfigProto(log_device_placement=True))`" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "```python\n", - "# Creates a graph.\n", - "a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')\n", - "b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')\n", - "c = tf.matmul(a, b)\n", - "# Creates a session with log_device_placement set to True.\n", - "sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))\n", - "# Runs the op.\n", - "print(sess.run(c))\n", - "```" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "subslide" - } - }, - "source": [ - "```\n", - "Device mapping:\n", - "/job:localhost/replica:0/task:0/gpu:0 -> device: 0, name: GeForce GTX 760, pci bus\n", - "id: 0000:05:00.0\n", - "b: /job:localhost/replica:0/task:0/gpu:0\n", - "a: /job:localhost/replica:0/task:0/gpu:0\n", - "MatMul: /job:localhost/replica:0/task:0/gpu:0\n", - "[[ 22. 28.]\n", - " [ 49. 64.]]\n", - "```" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "subslide" - } - }, - "source": [ - "## Using Multiple GPUs" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "```python\n", - "# Creates a graph.\n", - "c = []\n", - "for d in ['/gpu:0', '/gpu:1']:\n", - " with tf.device(d):\n", - " a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3])\n", - " b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2])\n", - " c.append(tf.matmul(a, b))\n", - "with tf.device('/cpu:0'):\n", - " sum = tf.add_n(c)\n", - "# Creates a session with log_device_placement set to True.\n", - "sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))\n", - "# Runs the op.\n", - "print sess.run(sum)\n", - "```" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "fragment" - } - }, - "source": [ - "```\n", - "Device mapping:\n", - "/job:localhost/replica:0/task:0/gpu:0 -> device: 0, name: GeForce GTX 760, pci bus\n", - "id: 0000:02:00.0\n", - "/job:localhost/replica:0/task:0/gpu:1 -> device: 1, name: GeForce GTX 760, pci bus\n", - "id: 0000:03:00.0\n", - "Const_3: /job:localhost/replica:0/task:0/gpu:0\n", - "Const_2: /job:localhost/replica:0/task:0/gpu:0\n", - "MatMul_1: /job:localhost/replica:0/task:0/gpu:0\n", - "Const_1: /job:localhost/replica:0/task:0/gpu:1\n", - "Const: /job:localhost/replica:0/task:0/gpu:1\n", - "MatMul: /job:localhost/replica:0/task:0/gpu:1\n", - "AddN: /job:localhost/replica:0/task:0/cpu:0\n", - "[[ 44. 56.]\n", - " [ 98. 128.]]\n", - "```" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "## More on Tensorflow\n", - "\n", - "[Official Documentation](https://www.tensorflow.org/versions/r0.10/get_started/)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.5.2" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/1.3 Introduction - Keras.ipynb b/1.3 Introduction - Keras.ipynb deleted file mode 100644 index 973ab2f..0000000 --- a/1.3 Introduction - Keras.ipynb +++ /dev/null @@ -1,878 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "\n", - "\n", - "## Keras: Deep Learning library for Theano and TensorFlow" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "Keras is a minimalist, highly modular neural networks library, written in Python and capable of running on top of either TensorFlow or Theano. It was developed with a focus on enabling fast experimentation. Being able to go from idea to result with the least possible delay is key to doing good research.\n", - "ref: https://keras.io/" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "## Why this name, Keras?\n", - "\n", - "Keras (κέρας) means _horn_ in Greek. It is a reference to a literary image from ancient Greek and Latin literature, first found in the _Odyssey_, where dream spirits (_Oneiroi_, singular _Oneiros_) are divided between those who deceive men with false visions, who arrive to Earth through a gate of ivory, and those who announce a future that will come to pass, who arrive through a gate of horn. It's a play on the words κέρας (horn) / κραίνω (fulfill), and ἐλέφας (ivory) / ἐλεφαίρομαι (deceive).\n", - "\n", - "Keras was initially developed as part of the research effort of project ONEIROS (Open-ended Neuro-Electronic Intelligent Robot Operating System).\n", - "\n", - ">_\"Oneiroi are beyond our unravelling --who can be sure what tale they tell? Not all that men look for comes to pass. Two gates there are that give passage to fleeting Oneiroi; one is made of horn, one of ivory. The Oneiroi that pass through sawn ivory are deceitful, bearing a message that will not be fulfilled; those that come out through polished horn have truth behind them, to be accomplished for men who see them.\"_ Homer, Odyssey 19. 562 ff (Shewring translation)." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "### Kaggle Challenge Data (again)\n", - "\n", - "See: [Data Description](1.2 Introduction - Tensorflow.ipynb#kaggle)" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Using TensorFlow backend.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "9 classes\n", - "93 dims\n" - ] - } - ], - "source": [ - "from kaggle_data import load_data, preprocess_data, preprocess_labels\n", - "\n", - "X_train, labels = load_data('data/kaggle_ottogroup/train.csv', train=True)\n", - "X_train, scaler = preprocess_data(X_train)\n", - "Y_train, encoder = preprocess_labels(labels)\n", - "\n", - "X_test, ids = load_data('data/kaggle_ottogroup/test.csv', train=False)\n", - "\n", - "X_test, _ = preprocess_data(X_test, scaler)\n", - "\n", - "nb_classes = Y_train.shape[1]\n", - "print(nb_classes, 'classes')\n", - "\n", - "dims = X_train.shape[1]\n", - "print(dims, 'dims')" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "---" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "## Hands On - Keras Logistic Regression\n" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "from keras.models import Sequential\n", - "from keras.layers import Dense, Activation" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "93 dims\n", - "Building model...\n", - "9 classes\n", - "Epoch 1/10\n", - "61878/61878 [==============================] - 2s - loss: 1.0577 \n", - "Epoch 2/10\n", - "61878/61878 [==============================] - 3s - loss: 0.7702 \n", - "Epoch 3/10\n", - "61878/61878 [==============================] - 2s - loss: 0.7283 \n", - "Epoch 4/10\n", - "61878/61878 [==============================] - 2s - loss: 0.7075 \n", - "Epoch 5/10\n", - "61878/61878 [==============================] - 2s - loss: 0.6945 \n", - "Epoch 6/10\n", - "61878/61878 [==============================] - 2s - loss: 0.6854 \n", - "Epoch 7/10\n", - "61878/61878 [==============================] - 2s - loss: 0.6787 \n", - "Epoch 8/10\n", - "61878/61878 [==============================] - 2s - loss: 0.6735 \n", - "Epoch 9/10\n", - "61878/61878 [==============================] - 2s - loss: 0.6694 \n", - "Epoch 10/10\n", - "61878/61878 [==============================] - 2s - loss: 0.6659 \n" - ] - }, - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dims = X_train.shape[1]\n", - "print(dims, 'dims')\n", - "print(\"Building model...\")\n", - "\n", - "nb_classes = Y_train.shape[1]\n", - "print(nb_classes, 'classes')\n", - "\n", - "model = Sequential()\n", - "model.add(Dense(nb_classes, input_shape=(dims,)))\n", - "model.add(Activation('softmax'))\n", - "model.compile(optimizer='sgd', loss='categorical_crossentropy')\n", - "model.fit(X_train, Y_train)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "Simplicity is pretty impressive right? :)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "Now lets understand:\n", - "
The core data structure of Keras is a model, a way to organize layers. The main type of model is the Sequential model, a linear stack of layers.
\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "What we did here is stacking a Fully Connected (Dense) layer of trainable weights from the input to the output and an Activation layer on top of the weights layer." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "##### Dense" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "source": [ - "```python\n", - "from keras.layers.core import Dense\n", - "\n", - "Dense(units, activation=None, use_bias=True, \n", - " kernel_initializer='glorot_uniform', bias_initializer='zeros', \n", - " kernel_regularizer=None, bias_regularizer=None, \n", - " activity_regularizer=None, kernel_constraint=None, bias_constraint=None)\n", - "```" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "* `units`: int > 0.\n", - "\n", - "* `init`: name of initialization function for the weights of the layer (see initializations), or alternatively, Theano function to use for weights initialization. This parameter is only relevant if you don't pass a weights argument.\n", - "\n", - "* `activation`: name of activation function to use (see activations), or alternatively, elementwise Theano function. If you don't specify anything, no activation is applied (ie. \"linear\" activation: a(x) = x).\n", - "\n", - "* `weights`: list of Numpy arrays to set as initial weights. The list should have 2 elements, of shape (input_dim, output_dim) and (output_dim,) for weights and biases respectively.\n", - "\n", - "* `kernel_regularizer`: instance of WeightRegularizer (eg. L1 or L2 regularization), applied to the main weights matrix.\n", - "\n", - "* `bias_regularizer`: instance of WeightRegularizer, applied to the bias.\n", - "\n", - "* `activity_regularizer`: instance of ActivityRegularizer, applied to the network output.\n", - "\n", - "* `kernel_constraint`: instance of the constraints module (eg. maxnorm, nonneg), applied to the main weights matrix.\n", - "\n", - "* `bias_constraint`: instance of the constraints module, applied to the bias.\n", - "\n", - "* `use_bias`: whether to include a bias (i.e. make the layer affine rather than linear)." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "## (some) others `keras.core.layers`" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "* `keras.layers.core.Flatten()`\n", - "* `keras.layers.core.Reshape(target_shape)`\n", - "* `keras.layers.core.Permute(dims)`\n", - "\n", - "```python\n", - "model = Sequential()\n", - "model.add(Permute((2, 1), input_shape=(10, 64)))\n", - "# now: model.output_shape == (None, 64, 10)\n", - "# note: `None` is the batch dimension\n", - "```\n", - "\n", - "* `keras.layers.core.Lambda(function, output_shape=None, arguments=None)`\n", - "* `keras.layers.core.ActivityRegularization(l1=0.0, l2=0.0)`" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "\n", - "\n", - "Credits: Yam Peleg ([@Yampeleg](https://twitter.com/yampeleg))" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "##### Activation" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "source": [ - "```python\n", - "from keras.layers.core import Activation\n", - "\n", - "Activation(activation)\n", - "```" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "**Supported Activations** : [https://keras.io/activations/]\n", - "\n", - "**Advanced Activations**: [https://keras.io/layers/advanced-activations/]" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "##### Optimizer" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "If you need to, you can further configure your optimizer. A core principle of Keras is to make things reasonably simple, while allowing the user to be fully in control when they need to (the ultimate control being the easy extensibility of the source code).\n", - "Here we used SGD (stochastic gradient descent) as an optimization algorithm for our trainable weights. " - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "\n", - "\n", - "Source & Reference: http://sebastianruder.com/content/images/2016/09/saddle_point_evaluation_optimizers.gif" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "\"Data Sciencing\" this example a little bit more\n", - "=====" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "What we did here is nice, however in the real world it is not useable because of overfitting.\n", - "Lets try and solve it with cross validation." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "##### Overfitting" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "In overfitting, a statistical model describes random error or noise instead of the underlying relationship. Overfitting occurs when a model is excessively complex, such as having too many parameters relative to the number of observations. \n", - "\n", - "A model that has been overfit has poor predictive performance, as it overreacts to minor fluctuations in the training data." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "source": [ - "\n", - "" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "
To avoid overfitting, we will first split out data to training set and test set and test out model on the test set.\n",
-    "Next: we will use two of keras's callbacks EarlyStopping and ModelCheckpoint
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "---" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's see first the model we implemented" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "_________________________________________________________________\n", - "Layer (type) Output Shape Param # \n", - "=================================================================\n", - "dense_2 (Dense) (None, 9) 846 \n", - "_________________________________________________________________\n", - "activation_2 (Activation) (None, 9) 0 \n", - "=================================================================\n", - "Total params: 846.0\n", - "Trainable params: 846.0\n", - "Non-trainable params: 0.0\n", - "_________________________________________________________________\n" - ] - } - ], - "source": [ - "model.summary()" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "from sklearn.model_selection import train_test_split\n", - "from keras.callbacks import EarlyStopping, ModelCheckpoint" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Train on 52596 samples, validate on 9282 samples\n", - "Epoch 1/20\n", - "52596/52596 [==============================] - 0s - loss: 0.6634 - val_loss: 0.6561\n", - "Epoch 2/20\n", - "52596/52596 [==============================] - 0s - loss: 0.6626 - val_loss: 0.6562\n", - "Epoch 3/20\n", - "52596/52596 [==============================] - 0s - loss: 0.6619 - val_loss: 0.6562\n", - "Epoch 4/20\n", - "52596/52596 [==============================] - 0s - loss: 0.6613 - val_loss: 0.6562\n", - "Epoch 5/20\n", - "52596/52596 [==============================] - 0s - loss: 0.6607 - val_loss: 0.6561\n", - "Epoch 6/20\n", - "52596/52596 [==============================] - 0s - loss: 0.6601 - val_loss: 0.6557\n", - "Epoch 7/20\n", - "52596/52596 [==============================] - 0s - loss: 0.6596 - val_loss: 0.6554\n", - "Epoch 8/20\n", - "52596/52596 [==============================] - 0s - loss: 0.6591 - val_loss: 0.6551\n", - "Epoch 9/20\n", - "52596/52596 [==============================] - 0s - loss: 0.6586 - val_loss: 0.6550\n", - "Epoch 10/20\n", - "52596/52596 [==============================] - 0s - loss: 0.6582 - val_loss: 0.6548\n", - "Epoch 11/20\n", - "52596/52596 [==============================] - 0s - loss: 0.6577 - val_loss: 0.6545\n", - "Epoch 12/20\n", - "52596/52596 [==============================] - 0s - loss: 0.6572 - val_loss: 0.6544\n", - "Epoch 13/20\n", - "52596/52596 [==============================] - 0s - loss: 0.6568 - val_loss: 0.6541\n", - "Epoch 14/20\n", - "52596/52596 [==============================] - 1s - loss: 0.6563 - val_loss: 0.6538\n", - "Epoch 15/20\n", - "52596/52596 [==============================] - 0s - loss: 0.6559 - val_loss: 0.6534\n", - "Epoch 16/20\n", - "52596/52596 [==============================] - 1s - loss: 0.6555 - val_loss: 0.6533\n", - "Epoch 17/20\n", - "52596/52596 [==============================] - 0s - loss: 0.6551 - val_loss: 0.6534\n", - "Epoch 18/20\n", - "52596/52596 [==============================] - 0s - loss: 0.6548 - val_loss: 0.6529\n", - "Epoch 19/20\n", - "52596/52596 [==============================] - 0s - loss: 0.6544 - val_loss: 0.6525\n", - "Epoch 20/20\n", - "52596/52596 [==============================] - 0s - loss: 0.6540 - val_loss: 0.6523\n" - ] - }, - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "X_train, X_val, Y_train, Y_val = train_test_split(X_train, Y_train, test_size=0.15, random_state=42)\n", - "\n", - "fBestModel = 'best_model.h5' \n", - "early_stop = EarlyStopping(monitor='val_loss', patience=4, verbose=1) \n", - "best_model = ModelCheckpoint(fBestModel, verbose=0, save_best_only=True)\n", - "model.fit(X_train, Y_train, validation_data = (X_val, Y_val), epochs=20, \n", - " batch_size=128, verbose=True, callbacks=[best_model, early_stop]) " - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "## Multi-Layer Perceptron and Fully Connected" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "So, how hard can it be to build a Multi-Layer percepton with keras?\n", - "It is baiscly the same, just add more layers!" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "_________________________________________________________________\n", - "Layer (type) Output Shape Param # \n", - "=================================================================\n", - "dense_3 (Dense) (None, 100) 9400 \n", - "_________________________________________________________________\n", - "dense_4 (Dense) (None, 9) 909 \n", - "_________________________________________________________________\n", - "activation_3 (Activation) (None, 9) 0 \n", - "=================================================================\n", - "Total params: 10,309.0\n", - "Trainable params: 10,309.0\n", - "Non-trainable params: 0.0\n", - "_________________________________________________________________\n" - ] - } - ], - "source": [ - "model = Sequential()\n", - "model.add(Dense(100, input_shape=(dims,)))\n", - "model.add(Dense(nb_classes))\n", - "model.add(Activation('softmax'))\n", - "model.compile(optimizer='sgd', loss='categorical_crossentropy')\n", - "model.summary()" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Train on 52596 samples, validate on 9282 samples\n", - "Epoch 1/20\n", - "52596/52596 [==============================] - 1s - loss: 1.2076 - val_loss: 0.8897\n", - "Epoch 2/20\n", - "52596/52596 [==============================] - 1s - loss: 0.8247 - val_loss: 0.7779\n", - "Epoch 3/20\n", - "52596/52596 [==============================] - 0s - loss: 0.7595 - val_loss: 0.7378\n", - "Epoch 4/20\n", - "52596/52596 [==============================] - 1s - loss: 0.7289 - val_loss: 0.7153\n", - "Epoch 5/20\n", - "52596/52596 [==============================] - 1s - loss: 0.7101 - val_loss: 0.7008\n", - "Epoch 6/20\n", - "52596/52596 [==============================] - 1s - loss: 0.6973 - val_loss: 0.6903\n", - "Epoch 7/20\n", - "52596/52596 [==============================] - 1s - loss: 0.6880 - val_loss: 0.6814\n", - "Epoch 8/20\n", - "52596/52596 [==============================] - 1s - loss: 0.6809 - val_loss: 0.6760\n", - "Epoch 9/20\n", - "52596/52596 [==============================] - 1s - loss: 0.6753 - val_loss: 0.6711\n", - "Epoch 10/20\n", - "52596/52596 [==============================] - 0s - loss: 0.6705 - val_loss: 0.6678\n", - "Epoch 11/20\n", - "52596/52596 [==============================] - 1s - loss: 0.6669 - val_loss: 0.6642\n", - "Epoch 12/20\n", - "52596/52596 [==============================] - 1s - loss: 0.6636 - val_loss: 0.6607\n", - "Epoch 13/20\n", - "52596/52596 [==============================] - 1s - loss: 0.6608 - val_loss: 0.6588\n", - "Epoch 14/20\n", - "52596/52596 [==============================] - 1s - loss: 0.6584 - val_loss: 0.6565\n", - "Epoch 15/20\n", - "52596/52596 [==============================] - 0s - loss: 0.6563 - val_loss: 0.6559\n", - "Epoch 16/20\n", - "52596/52596 [==============================] - 0s - loss: 0.6545 - val_loss: 0.6547\n", - "Epoch 17/20\n", - "52596/52596 [==============================] - 0s - loss: 0.6529 - val_loss: 0.6524\n", - "Epoch 18/20\n", - "52596/52596 [==============================] - 0s - loss: 0.6513 - val_loss: 0.6503\n", - "Epoch 19/20\n", - "52596/52596 [==============================] - 0s - loss: 0.6500 - val_loss: 0.6489\n", - "Epoch 20/20\n", - "52596/52596 [==============================] - 0s - loss: 0.6487 - val_loss: 0.6481\n" - ] - }, - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "model.fit(X_train, Y_train, validation_data = (X_val, Y_val), epochs=20, \n", - " batch_size=128, verbose=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "Your Turn!" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "## Hands On - Keras Fully Connected\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "Take couple of minutes and Try and optimize the number of layers and the number of parameters in the layers to get the best results. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [], - "source": [ - "model = Sequential()\n", - "model.add(Dense(100, input_shape=(dims,)))\n", - "\n", - "# ...\n", - "# ...\n", - "# Play with it! add as much layers as you want! try and get better results.\n", - "\n", - "model.add(Dense(nb_classes))\n", - "model.add(Activation('softmax'))\n", - "model.compile(optimizer='sgd', loss='categorical_crossentropy')\n", - "model.fit(X_train, Y_train, validation_data = (X_val, Y_val), epochs=20, \n", - " batch_size=128, verbose=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "Building a question answering system, an image classification model, a Neural Turing Machine, a word2vec embedder or any other model is just as fast. The ideas behind deep learning are simple, so why should their implementation be painful?" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "#### Theoretical Motivations for depth" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - ">Much has been studied about the depth of neural nets. Is has been proven mathematically[1] and empirically that convolutional neural network benifit from depth! " - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "[1] - On the Expressive Power of Deep Learning: A Tensor Analysis - Cohen, et al 2015" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "#### Theoretical Motivations for depth" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "One much quoted theorem about neural network states that:" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - ">Universal approximation theorem states[1] that a feed-forward network with a single hidden layer containing a finite number of neurons (i.e., a multilayer perceptron), can approximate continuous functions on compact subsets of $\\mathbb{R}^n$, under mild assumptions on the activation function. The theorem thus states that simple neural networks can represent a wide variety of interesting functions when given appropriate parameters; however, it does not touch upon the algorithmic learnability of those parameters." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "[1] - Approximation Capabilities of Multilayer Feedforward Networks - Kurt Hornik 1991" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.5.2" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/1.4 Keras Backend.ipynb b/1.4 Keras Backend.ipynb deleted file mode 100644 index b70d98c..0000000 --- a/1.4 Keras Backend.ipynb +++ /dev/null @@ -1,497 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "# Linear Regression\n", - "To get familiar with automatic differentiation, we start by learning a simple linear regression model using Stochastic Gradient Descent (SGD).\n", - "\n", - "Recall that given a dataset $\\{(x_i, y_i)\\}_{i=0}^N$, with $x_i, y_i \\in \\mathbb{R}$, the objective of linear regression is to find two scalars $w$ and $b$ such that $y = w\\cdot x + b$ fits the dataset. In this tutorial we will learn $w$ and $b$ using SGD and a Mean Square Error (MSE) loss:\n", - "\n", - "$$\\mathcal{l} = \\frac{1}{N} \\sum_{i=0}^N (w\\cdot x_i + b - y_i)^2$$\n", - "\n", - "Starting from random values, parameters $w$ and $b$ will be updated at each iteration via the following rule:\n", - "\n", - "$$w_t = w_{t-1} - \\eta \\frac{\\partial \\mathcal{l}}{\\partial w}$$\n", - "
\n", - "$$b_t = b_{t-1} - \\eta \\frac{\\partial \\mathcal{l}}{\\partial b}$$\n", - "\n", - "where $\\eta$ is the learning rate.\n", - "\n", - "**NOTE:** Recall that **linear regression** is indeed a **simple neuron** with a linear activation function!!" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Placeholders and variables\n", - "To implement and run this simple model, we will use the [Keras backend module](http://keras.io/backend/), which provides an abstraction over Theano and Tensorflow, two popular tensor manipulation libraries that provide automatic differentiation.\n", - "\n", - "First of all, we define the necessary variables and placeholders for our computational graph. Variables maintain state across executions of the computational graph, while placeholders are ways to feed the graph with external data.\n", - "\n", - "For the linear regression example, we need three variables: `w`, `b`, and the learning rate for SGD, `lr`. Two placeholders `x` and `target` are created to store $x_i$ and $y_i$ values." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Using TensorFlow backend.\n" - ] - } - ], - "source": [ - "import keras.backend as K\n", - "import numpy as np\n", - "\n", - "# Placeholders and variables\n", - "x = K.placeholder()\n", - "target = K.placeholder()\n", - "lr = K.variable(0.1)\n", - "w = K.variable(np.random.rand())\n", - "b = K.variable(np.random.rand())" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "source": [ - "## Model definition\n", - "Now we can define the $y = w\\cdot x + b$ relation as well as the MSE loss in the computational graph." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "outputs": [], - "source": [ - "# Define model and loss\n", - "y = w * x + b\n", - "loss = K.mean(K.square(y-target))" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "Then, given the gradient of MSE wrt to `w` and `b`, we can define how we update the parameters via SGD:" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "outputs": [], - "source": [ - "grads = K.gradients(loss, [w,b])\n", - "updates = [(w, w-lr*grads[0]), (b, b-lr*grads[1])]" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "The whole model can be encapsulated in a `function`, which takes as input `x` and `target`, returns the current loss value and updates its parameter according to `updates`." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [], - "source": [ - "train = K.function(inputs=[x, target], outputs=[loss], updates=updates)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "## Training\n", - "Training is now just a matter of calling the `function` we have just defined. Each time `train` is called, indeed, `w` and `b` will be updated using the SGD rule.\n", - "\n", - "Having generated some random training data, we will feed the `train` function for several epochs and observe the values of `w`, `b`, and loss." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss: 0.045, w, b: [0.48, 0.38]\n", - "Loss: 0.010, w, b: [0.64, 0.41]\n", - "Loss: 0.006, w, b: [0.72, 0.37]\n", - "Loss: 0.003, w, b: [0.78, 0.34]\n", - "Loss: 0.002, w, b: [0.82, 0.31]\n", - "Loss: 0.001, w, b: [0.86, 0.30]\n", - "Loss: 0.001, w, b: [0.88, 0.28]\n", - "Loss: 0.000, w, b: [0.90, 0.27]\n", - "Loss: 0.000, w, b: [0.92, 0.26]\n", - "Loss: 0.000, w, b: [0.93, 0.26]\n" - ] - } - ], - "source": [ - "# Generate data\n", - "np_x = np.random.rand(1000)\n", - "np_target = 0.96*np_x + 0.24\n", - "\n", - "# Training\n", - "loss_history = []\n", - "for epoch in range(200):\n", - " current_loss = train([np_x, np_target])[0]\n", - " loss_history.append(current_loss)\n", - " if epoch % 20 == 0:\n", - " print(\"Loss: %.03f, w, b: [%.02f, %.02f]\" % (current_loss, K.eval(w), K.eval(b)))" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "We can also plot the loss history:" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "data": { - "text/plain": [ - "[]" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEACAYAAABYq7oeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X+4lHWd//HnC/CgIKaEZKGgCWJqpVJo1tYYrmC1e7RS\noa2lr1Rb/mi/a+2Cu7Yedq/d0uuqtK9LfSv6hmQXV7H5i/xBhrPlZnJKgjSQ0w9YEFASTQQEPLy/\nf3zuA+PMHGbO4ZyZM+e8Htd1X3PPfX/mM58Zhnmdz+ee+/4oIjAzMys0qN4NMDOzvsfhYGZmJRwO\nZmZWwuFgZmYlHA5mZlbC4WBmZiWqCgdJ0yStkbRW0uwy+5skLZLUJukRSWOL9o+VtF3StQXb1kla\nKWmFpOWH/lLMzKynVAwHSYOAW4GpwOnADEmnFhWbBWyLiAnAzcBNRfu/BNxbtG0fkIuIsyJicnca\nb2ZmvaOansNkoC0i1kfEXmAR0FxUphlYkK0vBqZ07JDUDPwOeKLoMary+c3MrMaq+XIeA2wouL8x\n21a2TES0A89LGilpGPAPwFxSGBQK4AFJrZI+3p3Gm5lZ7xhSRZniL3VIX+wHK6OszFzgyxGxU1Jx\nufMiYoukY4EfSVodEQ9X2W4zM+tF1YTDRqDwAPPxwKaiMhuAE4BNkgYDR0XEc5LOAT4g6SbgGKBd\n0q6ImBcRWwAiYqukO0jDVyXhIMkXfzIz64aIKPfHfVWqGVZqBcZLGiepCZgO3F1U5h5gZrZ+KbAs\na9g7I+L1EfF60oHqf4+IeZKGSToSQNJw4ELg8c4aEBFeemC54YYb6t6G/rT4/fT72ZeXQ1Wx5xAR\n7ZKuBpaSwmR+RKyWNBdojYglwHxgoaQ24FlSgBzMa4A7sl7BEOD2iFh6KC/EzMx6TjXDSkTE/cDE\nom03FKzvBi6rUMfcgvU/AGd2qaVmZlYz/inpAJLL5erdhH7F72fP8vvZt6gnxqZ6k6To6200M+tr\nJBG9fEDazMwGGIeDmZmVcDiYmVkJh4OZmZVwOJiZWQmHg5mZlXA4mJlZCYeDmZmVcDiYmVkJh4OZ\nmZVwOJiZWQmHg5mZlXA4mJlZCYeDmZmVqCocJE2TtEbSWkmzy+xvkrRIUpukRySNLdo/VtJ2SddW\nW6eZmdVPxXCQNAi4FZgKnA7MkHRqUbFZwLaImECaK/qmov1fAu7tYp1mZlYn1fQcJgNtEbE+IvYC\ni4DmojLNwIJsfTEwpWOHpGbgd8ATXazTzMzqpJpwGANsKLi/MdtWtkxEtAPPSxopaRjwD8BcQOXK\nH6ROMzOrkyFVlCk3zVzxvJ3FZZSVmQt8OSJ2SjpY+XJ17tfS0rJ/PZfLea5ZM7Mi+XyefD7fY/VV\nnENa0rlAS0RMy+7PASIibiwoc19W5lFJg4HNETFa0k+A47NixwDtwD8Dj1Wqs6BuzyFtZtZFhzqH\ndDU9h1ZgvKRxwGZgOjCjqMw9wEzgUeBSYBlARLyzoKE3ANsjYl4WIJXqNDOzOqkYDhHRLulqYCnp\nGMX8iFgtaS7QGhFLgPnAQkltwLOkL/su13mIr8XMzHpIxWGlevOwkplZ1x3qsJLPkDYzsxIOBzMz\nK9EQ4dDeXu8WmJkNLA0RDrt317sFZmYDi8PBzMxKOBzMzKyEw8HMzEo4HMzMrITDwczMSjgczMys\nhMPBzMxKOBzMzKxEQ4TDnj31boGZ2cDSEOHgnoOZWW05HMzMrITDwczMSlQVDpKmSVojaa2k2WX2\nN0laJKlN0iOSxmbb3yppRcFyccFj1klamW1ffrDndziYmdVWxWlCJQ0CbgWmAJuAVkl3RcSagmKz\ngG0RMUHS5cBNpKlCfw1Mioh9ko4DVkq6OyL2AfuAXEQ8V6kNDgczs9qqpucwGWiLiPURsRdYBDQX\nlWkGFmTri0lBQkS8lAUBwBGkQOigKp/f4WBmVmPVfDmPATYU3N+YbStbJiLagecljQSQNFnS48BK\n4JMFYRHAA5JaJX38YA1wOJiZ1VbFYSXSX/jFokIZdZSJiOXAGZImArdJui8i9gDnRcQWSccCP5K0\nOiIeLteABx5o2R8QuVyOXC5XRbPNzAaOfD5PPp/vsfoUUfw9X1RAOhdoiYhp2f05QETEjQVl7svK\nPCppMLA5IkaXqWsZ8NmIeKxo+w3A9oj4UpnHxJw5wec/341XZ2Y2QEkiIsr9cV+VaoaVWoHxksZJ\naiIdaL67qMw9wMxs/VJgWda4E7OwQNI44BRgnaRhko7Mtg8HLgQe76wBHlYyM6utisNKEdEu6Wpg\nKSlM5kfEaklzgdaIWALMBxZKagOeJQUIwDuAOZL2kA5Gfyoitkk6CbhDUmRtuD0ilnbWBoeDmVlt\nVRxWqjdJMWtW8M1v1rslZmaNoxbDSnXnnoOZWW05HMzMrITDwczMSjREOHg+BzOz2mqIcHDPwcys\nthwOZmZWwuFgZmYlHA5mZlbC4WBmZiUaIhx27ap3C8zMBpaGCIcdO+rdAjOzgaUhwuHFF+vdAjOz\ngaUhwiHCJ8KZmdVSQ4TDkUe692BmVksNEQ4jRjgczMxqqSHCwT0HM7PaqiocJE2TtEbSWkmzy+xv\nkrRIUpukRySNzba/VdKKguXiauss5HAwM6utiuEgaRBwKzAVOB2YIenUomKzgG0RMQG4Gbgp2/5r\nYFJEnAVcBPxfSYOqrHM/h4OZWW1V03OYDLRFxPqI2AssApqLyjQDC7L1xcAUgIh4KSL2ZduPIM0j\nXW2d+zkczMxqq5pwGANsKLi/MdtWtkxEtAPPSxoJIGmypMeBlcAns7Cops79HA5mZrU1pIoy5Sao\njgpl1FEmIpYDZ0iaCNwm6b4q69zvySdb2L4d1q6FXC5HLperotlmZgNHPp8nn8/3WH3VhMNGYGzB\n/eOBTUVlNgAnAJskDQaOiojnCgtExJOSdgBnVFnnfu96VwtjxsBnPlNFa83MBqDiP5znzp17SPVV\nM6zUCoyXNE5SEzAduLuozD3AzGz9UmAZgKQTs7BA0jjgFGBdlXXu52ElM7PaqthziIh2SVcDS0lh\nMj8iVkuaC7RGxBJgPrBQUhvwLOnLHuAdwBxJe0gHoz8VEdsAytXZWRtGjIBnnun2azQzsy5SRKdD\n/X2CpJg3L1i1Cr761Xq3xsysMUgiIsod362Kz5A2M7MSDgczMyvhcDAzsxIOBzMzK+FwMDOzEg4H\nMzMr4XAwM7MSDRMO27fXuxVmZgNHQ4TD4YfDyy/D3r31bomZ2cDQEOEgpd7Djh31bomZ2cDQEOEA\nPu5gZlZLDgczMyvhcDAzsxIOBzMzK+FwMDOzElWFg6RpktZIWitpdpn9TZIWSWqT9Iiksdn2CyT9\nQtJKSa2Szi94zENZnSskPSZp1MHa4HAwM6udijPBSRoE3ApMIc3z3CrprohYU1BsFrAtIiZIuhy4\niTQb3FbgfRGxRdLpwAOk+aI7zIiIFdU01OFgZlY71fQcJgNtEbE+IvYCi4DmojLNwIJsfTEpSIiI\nlRGxJVt/Ahgq6bAuPj/gcDAzq6VqvpzHABsK7m/MtpUtExHtwPOSRhYWkPRBYEUWMB2+lQ0pXV+p\nESNGOBzMzGqlmnAoNwdp8cTTxWVUWCYbUvo88ImCMh+KiDcDfwb8maQPH6wRvr6SmVntVDzmQOop\njC24fzzp2EOhDcAJwCZJg4GjIuI5AEnHAz8APhIR6zoeEBGbs9sdkr5LGr76TrkGtLS08MtfwlNP\nwUUX5cjlctW8NjOzASOfz5PP53usPkUUdwKKCqQv+ydJxxE2A8tJB5JXF5S5EjgjIq6UNB24OCKm\nSzoayANzI+KOojqPjohns2MQ3wV+FBFfL/P8ERHccQcsWAB33nmoL9nMrP+TRESUG/mpSsWeQ0S0\nS7oaWEoahpofEaslzQVaI2IJMB9YKKkNeJb0SyWAq4CTgc9J+mfSUNOFwE7gAUlDgMHAg8A3DtaO\nY4+FrVu78xLNzKyrKvYc6q2j57BmDTQ3w5NP1rtFZmZ936H2HBrmDGn3HMzMaqdheg779sHQobBz\nJxx2WOXHmZkNZAOm5zBoEBxzDGzbVu+WmJn1fw0TDuChJTOzWnE4mJlZiYYKh1Gj4I9/rHcrzMz6\nv4YKB/cczMxqw+FgZmYlGiocPKxkZlYbDRUO7jmYmdWGw8HMzEo0VDh4WMnMrDYaKhzcczAzq42G\nubYSwO7dabrQ3btB3b5iiJlZ/zdgrq0E6cJ7hx8OL7xQ75aYmfVvDRUO4KElM7NaqCocJE2TtEbS\nWkmzy+xvkrRIUpukRySNzbZfIOkXklZKapV0fsFjzpa0Kqvz5mobPHo0PP10taXNzKw7KoaDpEHA\nrcBU4HRghqRTi4rNArZFxATgZuCmbPtW4H0R8Wbgo8DCgsd8FfhYRJwCnCJpajUNPvFEWLeumpJm\nZtZd1fQcJgNtEbE+IvYCi4DmojLNwIJsfTEwBSAiVkbElmz9CWCopMMkHQeMiIjl2WNuAy6upsEn\nnwy/+101Jc3MrLuqCYcxwIaC+xuzbWXLREQ78LykkYUFJH0QWJEFzJisnoPVWdbrXw+//301Jc3M\nrLuqCYdyP4Uq/v1rcRkVlpF0OvB54BNdqLMsh4OZWe8bUkWZjcDYgvvHA5uKymwATgA2SRoMHBUR\nzwFIOh74AfCRiFhXUOcJFercr6WlZf/6G96Q4/e/z1XRbDOzgSOfz5PP53usvoonwWVf9k+SjiNs\nBpYDMyJidUGZK4EzIuJKSdOBiyNiuqSjgTwwNyLuKKr3UeAaoBX4IfCViLi/zPNHYRvb22H4cHju\nOTjiiO68ZDOz/q/XT4LLjiFcDSwFngAWRcRqSXMlvS8rNh8YJakN+N/AnGz7VcDJwOckrZD0mKRR\n2b4rs8etJR3wLgmGcgYPhrFj/YslM7Pe1FCXz+hw0UVw9dXw3vfWqVFmZn3cgLp8RgcflDYz610N\nGw4+18HMrPc0bDi452Bm1nsaNhzcczAz6z0NeUB65840K9y2bekS3mZm9koD8oD0sGEwcSKsXFnv\nlpiZ9U8NGQ4A55wDjz5a71aYmfVPDRsOkyfD8uWVy5mZWdc5HMzMrERDHpCGdI2lo4+G9eth5Mgy\nDzQzG8AG5AFpSNdYmjQJfvGLerfEzKz/adhwAB+UNjPrLQ0dDuefD/dXdS1XMzPrioY95gCweze8\n5jWwZg0cd1yNG2Zm1ocN2GMOAEOHwrRpcPfd9W6JmVn/0tDhAHDJJXDnnfVuhZlZ/1JVOEiaJmmN\npLWSZpfZ3yRpkaQ2SY9IGpttHylpmaTtkr5S9JiHsjqLZ4jrkosugocfhhde6M6jzcysnIrhIGkQ\ncCswFTgdmCHp1KJis4BtETEBuBm4Kdv+EnA98JlOqp8REWdFxNkR8cfuvICjjoJcDr73ve482szM\nyqmm5zCZNMfz+ojYCywCmovKNAMLsvXFwBSAiNgZET8Ddh/C81d0zTVwyy3Qx4+tm5k1jGq+nMcA\nGwrub8y2lS0TEe3A85KqOW/5W9mQ0vXVNLYzF1wA+/bBQw8dSi1mZtZhSBVlyv0Uqvhv9OIyKlOm\n2IciYrOk4cAPJH04Ir5TrmBLS8v+9VwuRy6Xe+WTCT79abj5Znj3uys8q5lZP5TP58nn8z1WX8Xz\nHCSdC7RExLTs/hwgIuLGgjL3ZWUelTQY2BwRowv2zwQmRcSnO3mOTvcf7DyHQjt3wvjxcNdd8Na3\nVixuZtav1eI8h1ZgvKRxkpqA6UDxmQX3ADOz9UuBZeXaun9FGizp1dn6YcD7gMe72PZXGDYM/uVf\n4LOf9bEHM7NDVdUZ0pKmAbeQwmR+RHxB0lygNSKWSBoKLATOAp4FpkfEuuyxfwBGAE3A88CFwP8A\nPyENaw0GHgSuLddFqLbnAOlKrWeeCf/6r3DxxVU9xMysXzrUnkNDXz6jnB//GK64Alatgle9qhcb\nZmbWhzkcyvjEJ9Lt17/eCw0yM2sADocyXngB3vhGmDcP3vveXmqYmVkfNqAvvNeZo46C22+HWbNg\nw4bK5c3M7JX6ZTgAvOMd8Hd/B5dfni7tbWZm1euXw0od9u2Dyy6DI46A225LJ8uZmQ0EHlY6iEGD\nUiisXZt+3mpmZtWp5vIZDW3YsHTW9LnnpjOoP/SherfIzKzv6/fhAGkK0SVL0nWXxoyBd72r3i0y\nM+vb+vWwUqEzzoBFi+DSS6G1td6tMTPr2wZMOEDqOcyfD3/xF/D4IV3JycysfxtQ4QApGL78ZZg6\nFdra6t0aM7O+aUAccyg2Ywa8+CJMmZKuxTRhQr1bZGbWtwzIcAD4+MfT7fnnp4CYOLG+7TEz60sG\nbDhACojDDkvHIn70IzjttHq3yMysbxjQ4QDw0Y/CkCFpiGnJEpg0qd4tMjOrvwEfDgAf/jAMHw4X\nXQTf/S5ccEG9W2RmVl9V/VpJ0jRJayStlTS7zP4mSYsktUl6RNLYbPtIScskbZf0laLHnC1pVVbn\nzT3zcrrvkktg8eJ0BvX3vlfv1piZ1VfFcJA0CLgVmAqcDsyQdGpRsVnAtoiYANwM3JRtfwm4HvhM\nmaq/CnwsIk4BTpE0tXsvoee8853w4INw7bXwH/9R79aYmdVPNT2HyUBbRKyPiL3AIqC5qEwzsCBb\nXwxMAYiInRHxM+AVF82WdBwwIiKWZ5tuA/rErM9vehP89Kdwyy3wuc9BH79orZlZr6gmHMYAhVPm\nbMy2lS0TEe3A85JGVqhzY4U66+akk+Dhh2HpUvirv4Jdu+rdIjOz2qrmgHS564EX/z1dXEZlynS1\nzv1aWlr2r+dyOXK53EGq7hmjR0M+D1dckS7Ud9dd8NrX9vrTmpl1Sz6fJ5/P91h9FSf7kXQu0BIR\n07L7c4CIiBsLytyXlXlU0mBgc0SMLtg/E5gUEZ/O7h8HPBQRb8juTwfeFRGfKvP83Z7spydEwL/9\nG3z963DnnXD22XVriplZ1Wox2U8rMF7SOElNwHTg7qIy9wAzs/VLgWXl2tqxEhFbgBckTZYk4K+B\nu7ra+FqQ4PrrD1yPafHierfIzKz3VTVNqKRpwC2kMJkfEV+QNBdojYglkoYCC4GzgGeB6RGxLnvs\nH4ARQBPwPHBhRKyRNAn4NnA4cG9E/G0nz13XnkOhFSvg4oth+vTUmxjis0TMrI861J5Dv55Dujf8\n8Y/ppLmdO9P8EK97Xb1bZGZWynNI19ioUXDvvfDnfw5veQssKzeAZmbW4NxzOAQPPggf+QhcdRVc\ndx0MHlzvFpmZJR5WqrOnnkqX3AC47TYYN66+7TEzAw8r1d2YMWlo6b3vTcNMCxf6rGoza3zuOfSg\nFSvSwerTT4evfQ1GHuwccTOzXuSeQx9y1lnwi1+kXzC9+c1wzz31bpGZWfe459BLHnoozTT3lrfA\nV76SLsdhZlYr7jn0UeefD6tWpQPUb3wjLFjgYxFm1jjcc6iBxx6DWbPg2GPTPBETJtS7RWbW37nn\n0ADOPhuWL4cLL4S3vQ3mzIEXX6x3q8zMOudwqJHDDoPPfhZ+/WvYtAlOPTXNV93gnSIz66c8rFQn\n//3fcM01MHw4fPGLMHlyvVtkZv2Jh5Ua1NvfDq2tMHMmXHIJXHYZtLXVu1VmZonDoY4GD4aPfSyF\nwplnpuMRV10FTz9d75aZ2UDncOgDhg2Df/xHWLMGmprgtNPSQeutW+vdMjMbqBwOfcioUWnGuRUr\n4E9/SgetZ892SJhZ7VUVDpKmSVojaa2k2WX2N0laJKlN0iOSxhbsuy7bvlrShQXb10laKWmFpOU9\n83L6h7Fj4atfhV/9Kv3kdeJE+Pu/T79yMjOrhYrhIGkQcCswFTgdmCHp1KJis4BtETEBuBm4KXvs\nacBlwBuAi4B52ZzRAPuAXEScFRH+rU4ZJ5yQTppbtQp274YzzoArroAnnqh3y8ysv6um5zAZaIuI\n9RGxF1gENBeVaQYWZOuLgXdn638JLIqIl7M5pduy+gBU5fMPeMcfn67P1NYGJ58MF1yQLhH+0EM+\nT8LMekc1X85jgA0F9zdm28qWiYh24E+SRpZ57FMFjw3gAUmtkj7ejbYPOK9+NfzTP8Ef/pB+/nrl\nlfCmN8G8efDCC/VunZn1J0OqKFPuJIriv1c7K3Owx54XEVskHQv8SNLqiHi4XANaWlr2r+dyOXK5\nXKU292uHH55+AjtrVuo9zJsH118Pl18On/pUCgwzG1jy+Tz5fL7H6qt4hrSkc4GWiJiW3Z8DRETc\nWFDmvqzMo5IGA5sjYnRxWUn3AzdExKNFz3EDsD0ivlTm+fvlGdI97amn4JvfhG98A048ET75SXj/\n+9PPZM1s4KnFGdKtwHhJ4yQ1AdOBu4vK3APMzNYvBZZl63cD07NfM50EjAeWSxom6cjsBQwHLgQe\n7+6LsDRd6Q03pCGna6+F73wnbbviCsjnYd++erfQzBpJVddWkjQNuIUUJvMj4guS5gKtEbFE0lBg\nIXAW8CwwPTsAjaTrSL9m2gv8bUQszYLiDtIQ0xDg9oj4QifP7Z5DN23enC7ut2BBOm/iIx9Jy8SJ\n9W6ZmfW2Q+05+MJ7A8TKlXDbbXD77eknsh/8IHzgAzB+fL1bZma9weFgXfLyy/Bf/wWLF8MPfpDm\nu/7gB9PiHoVZ/+FwsG5rb0+XDl+8GP7zP+GYY6C5Gd7zHjj33HRhQDNrTA4H6xH79sHPfw5LlsAP\nf5h+/TR1ajrZburUdI6FmTUOh4P1io0b4d57U1A89FC6dMcFF8CUKalXMXRovVtoZgfjcLBe99JL\n8NOfwo9/DMuWwerVae6JKVPg3e9Oc2R7CMqsb3E4WM0991w6qL1sWQqMjRtTb+K889IMd+ecAyNG\n1LuVZgObw8HqbutWeOSRdHD7Zz9L81FMmHAgLM47D8aNA3X7Y2pmXeVwsD5nzx547LEUFB2BsXcv\nTJqUhqAmTUrLiSc6MMx6i8PBGsKmTSkwfvnLA8uuXQfC4swz00HviRPTVKlmdmgcDtawtmw5EBir\nVsHjj8O6dXDSSSkoCpeTT/ZBb7OucDhYv/LSS/Dkk2m2u8cfP7Bs3pxC45RT0vGMwtvXvtbDU2bF\nHA42IOzcCb/9bZoNb+3aV97u2JGCYsKEdK2ok05KB8BPPDHNx3344fVuvVntORxswPvTnw6ExW9/\nC+vXp+Gp9ethwwYYOTIFRUdgjBuXljFj0rWlRo1yz8P6H4eD2UG0t6chqY7A6AiN9evTQfJNm+DF\nF9PQ1Otel5aO0ChcP+44eNWrHCLWOBwOZofopZdSgDz11IHA6Fg6tm3ZksqNGgWjR8Oxx6alY734\n9tWvTmEyqJrptMx6QU3CIZvs52YOTPZzY9H+JuA2YBLwR+DyiPifbN91wBXAy2ST/VRTZ0HdDgfr\nE3bvTif8bd0KzzzT+e0zz8C2balHMmJEutrtyJHptmMpd//oo+Goo9JjjjoqHStxT8W6q9fDQdIg\nYC0wBdhEmjZ0ekSsKSjzKeCNEXGlpMuBSyJiuqTTgNuBtwLHAw8CEwBVqrOgbodDD8nn8+RyuXo3\no9+o9H62t6fjIdu2pUuOPPdc5+sdy/btaXnhhfT4jqDouO1s/cgjYfjwNGd44VK87Ygj+m5vxp/P\nnnWo4TCkijKTgbaIWJ894SKgGSj8Im8GbsjWFwP/J1v/S2BRRLwMrJPUltWnKuq0Hub/fD2r0vs5\neHDqEYwc2b369+w5EBQHu920Kd3u3Fm67Njxyvu7dqUr6pYLko7l8MPTMnRoWsqtV9pfuN7UBIcd\n9sqlXED589m3VBMOY4ANBfc3kr7gy5aJiHZJf5I0Mtv+SEG5p7JtqqJOswGtqSkdu+jJuTQiUkB0\nFiI7dqThs9270zGWwttdu1Lvpnh/ubKF63v2pMunFC6DBh0IiiFD0u2uXfDtb5cGSTXLkCEpjMst\nB9vXE+U7lkGD0jDgoEGl6z19v9y+jqWnVBMO5Z6ueJynszKdbS/XsfXYkVkvkw70EOolIg2ZFQfG\njTfCNdekqWyL91VaXn451dnZ0rF/z56DlysuX+2yb9+BJaL8elfvd/WxHf++3/9+mh++B/6h4qAL\ncC5wf8H9OcDsojL3Aedk64OBZ8qVBe4HzqmmzoJ94cWLFy9eur5U+n4/2FJNz6EVGC9pHLAZmA7M\nKCpzDzATeBS4FFiWbb8buF3Sl0nDSeOB5aSeQ6U6Ib06/17DzKzGKoZDdgzhamApB352ulrSXKA1\nIpYA84GF2QHnZ0lf9kTEbyR9D/gNsBe4MvvpUdk6e+H1mZlZN/T5k+DMzKz2+ugvntNJcpLWSFor\naXa929OIJK2TtFLSCknLs23HSFoq6UlJD0h6Vb3b2VdJmi/paUmrCrZ1+v5J+oqkNkm/knRmfVrd\nN3XyXt4gaaOkx7JlWsG+67L3crWkC+vT6r5L0vGSlkn6jaRfS/p0tr3HPp99MhyyE+9uBaYCpwMz\nJJ1a31Y1pH1ALiLOioiOnwrPAR6MiImkY0PX1a11fd//I30GC5V9/yRdBJwcEROAvwG+VsuGNoBy\n7yXAlyLi7Gy5H0DSG4DLgDcAFwHzJJ8rXuRl4NqIOA14G3BV9h3ZY5/PPhkOFJx4FxF7gY6T5Kxr\nROm/cTOwIFtfAFxc0xY1kIh4GHiuaHPx+9dcsP227HGPAq+S9JpatLMRdPJeQvmfuzeTnTwbEeuA\njpNnLRMRWyLiV9n6i8Bq0lUoeuzz2VfDodyJd2Pq1JZGFsADklolfSzb9pqIeBrSBww4tm6ta0yj\ni96/0dn24s9sxwmfdnBXZcMc3ywYAvF72QWSTgTOBH5O6f/vbn8++2o4VHPinVV2XkS8BXgP6T/h\nn+H3sbf4M9t180hDHWcCW4AvZtv9XlZJ0pGkSxb9bdaD6Ox96vJ72lfDYSMwtuD+8aQL9FkXZH85\nEBFbgTtJXfOnO7qTko4DnqlfCxtSZ+/fRuCEgnL+zFYQEVsLrqr5DQ4MHfm9rIKkIaRgWBgRd2Wb\ne+zz2VfDYf+Jd9nlwKeTTqizKkkalv1VgaThwIXAr0nv40ezYjOBu8pWYB3EK//qKnz/PsqB9+9u\n4K8BJJ3F4w4NAAAA60lEQVQLPN/Rvbf9XvFeZl9eHd4PPJ6t3w1Ml9Qk6SQOnDxrr/Qt4DcRcUvB\nth77fPbZ8xyyn7XdwoGT5L5Q5yY1lOw/1R2kruMQ4PaI+EJ2QcTvkf6K+B/g0oh4vn4t7bskfRfI\nAa8GniZdefhO4PuUef8k3QpMA3YA/ysiHqtDs/ukTt7L80lj5fuAdcDfdHxhZfPAzCKdPLt/HhhL\nJL0d+AnpD76Oy2X8IylEy/7/7urns8+Gg5mZ1U9fHVYyM7M6cjiYmVkJh4OZmZVwOJiZWQmHg5mZ\nlXA4mJlZCYeDmZmVcDiYmVmJ/w856gDqst6XTAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Plot loss history\n", - "import matplotlib.pyplot as plt\n", - "%matplotlib inline\n", - "plt.plot(loss_history)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "## Your Turn\n", - "\n", - "Please switch to the **Theano** backend and re-run the notebook.\n", - "\n", - "You _should_ see no difference in the execution!\n", - "\n", - "**Reminder**: please keep in mind that you *can* execute shell commands from a notebook (pre-pending a `!` sign).\n", - "Thus:\n", - "\n", - "```shell\n", - " !cat ~/.keras/keras.json\n", - "```\n", - "should show you the content of your keras configuration file." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Logistic Regression" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's try to re-implement the Logistic Regression Model using the `keras.backend` APIs.\n", - "\n", - "The following code will look like very similar to what we would write in Theano or Tensorflow - with the *only difference* that it may run on both the two backends." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "from kaggle_data import load_data, preprocess_data, preprocess_labels" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "9 classes\n", - "93 dims\n" - ] - } - ], - "source": [ - "X_train, labels = load_data('data/kaggle_ottogroup/train.csv', train=True)\n", - "X_train, scaler = preprocess_data(X_train)\n", - "Y_train, encoder = preprocess_labels(labels)\n", - "\n", - "X_test, ids = load_data('data/kaggle_ottogroup/test.csv', train=False)\n", - "\n", - "X_test, _ = preprocess_data(X_test, scaler)\n", - "\n", - "nb_classes = Y_train.shape[1]\n", - "print(nb_classes, 'classes')\n", - "\n", - "dims = X_train.shape[1]\n", - "print(dims, 'dims')" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "feats = dims\n", - "training_steps = 25" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "x = K.placeholder(dtype=\"float\", shape=X_train.shape) \n", - "target = K.placeholder(dtype=\"float\", shape=Y_train.shape)\n", - "\n", - "# Set model weights\n", - "W = K.variable(np.random.rand(dims, nb_classes))\n", - "b = K.variable(np.random.rand(nb_classes))" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "# Define model and loss\n", - "y = K.dot(x, W) + b\n", - "loss = K.categorical_crossentropy(y, target)" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "activation = K.softmax(y) # Softmax" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "# Minimize error using cross entropy\n", - "cross_entropy = K.categorical_crossentropy(activation, target)\n", - "loss = K.mean(-K.sum(cross_entropy))" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "grads = K.gradients(loss, [W,b])\n", - "updates = [(W, W-lr*grads[0]), (b, b-lr*grads[1])]" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "train = K.function(inputs=[x, target], outputs=[loss], updates=updates)" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "collapsed": false, - "scrolled": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss: -218494.890625\n", - "Loss: -989694.875\n" - ] - } - ], - "source": [ - "# Training\n", - "loss_history = []\n", - "for epoch in range(training_steps):\n", - " current_loss = train([X_train, Y_train])[0]\n", - " loss_history.append(current_loss)\n", - " if epoch % 20 == 0:\n", - " print(\"Loss: {}\".format(current_loss))" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaoAAAEPCAYAAAATXoCrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcFNW9///Xe1g0YBg2QQSEEYgajLtoFnXQqIiPiNeI\nwSBBXGLikvw0RjDEMIQkXkmMRr3e3K9ixBU1XhWjUVCcLNcFjMENQYyCMIgim4Bhm/n8/uiasWl6\nNpbp0nk/H496UP2pU+ecrmn60+dUdbUiAjMzs7QqKnQHzMzM6uJEZWZmqeZEZWZmqeZEZWZmqeZE\nZWZmqeZEZWZmqZbKRCVpoqQ3JM2W9KCkdlnbrpQ0P9l+QlZ8kKS5kt6UNDor3lvS85LmSbpXUssk\n3lrSlKSu5yTtVV8bZmbW9FKZqIBpQP+IOAiYD1wJIOmLwBnAfsBJwM3KKAJuAk4E+gNnSto3qesa\n4NqI2AdYBZybxM8FVkREP+B6YGJdbezk52tmZrVIZaKKiKcioip5+DzQI1k/BZgSEZsjYgGZJDYg\nWeZHxMKI2ARMAYYk+xwLPJisTwZOTdaHJI8B/piUq6sNMzMrgFQmqhznAI8n692BRVnbKpJYbnwx\n0F1SJ2BlVtJbnJTdoq6IqARWS+pYRxtmZlYALQvVsKTpQNfsEBDA2Ih4NCkzFtgUEfdmlckV5E+4\nkZTP3af6nlG11VVb3MzMCqBgiSoijq9ru6SRwGA+mZKDzIioZ9bjHsASMsllr9x4RHwoqb2komRU\nVV0+u64lkloAxRGxUlJtbeT2z8nLzGwbRESjzvuncupP0iDgCuCUiNiQtWkqMCy5Yq8E6AvMBGYB\nfSX1ktQaGAY8kuwzAxiarI/Mik9NHpNsn1FPG1uJCC8RjBs3ruB9SMviY+Fj4WNR97ItUpmogBuB\n3YDpkl6SdDNARMwB7gfmkDlvdWFkVAIXk7la8HUyF0PMTeoaA1wm6U2gIzApiU8COkuaD/x/Sbla\n28jXybPOGs877yzcsc/czMy2ULCpv7pE5pLx2rZdDVydJ/4EsE+e+DvAEXniG8hcht7gNnLdfffl\nPP/8OKZPv4SSkl71FTczs22Q1hHVp0Rb/vWv8Vx11e2F7khBlZaWFroLqeFj8Qkfi0/4WGwfbeuc\nYXOXuZgic+wGDhzHjBnjC9wjM7P0k0Q08mKKVE79fbqsY889PTCtT+/evVm40OfzzJqLXr16sWDB\ngh1Sl0dU2ygzolpLnz4+R9UQyaeoQnfDzJpIbf/nt2VE5aHAdhg+/DdOUmZmO5lHVNtIUm1XrVse\nHlGZNS8eUZmZWbPhRGW2E9xzzz0MGjRom/bdf//9+etf/7qDe5R+gwcP5s477yx0N+p14okncu+9\n99ZfsJFld6QRI0bw85//vMnb3Vk89beNPPXXOGme+ispKWHSpEkce+yx9RfewUaNGkXPnj23+01l\n4cKFlJSUsNtuuwHQuXNnLrjgAkaPHl3Pnp9tgwcP5m9/+xuSWL9+PZLYZZddADjrrLO4+eabC9zD\nnWPEiBH069ePn/3sZwXrw46c+vPl6VZQ77yzkKuuup2Kiiq6dy9iwoSzG31xyo6o47NAEqtXr0YS\n//jHPzjmmGM47LDDOO6443ZoO5WVlbRo0WKH1rmzPP744zXrDflQ8Gl6bs2Jp/6sYN55ZyHHH38j\nd999OeXl47n77ss5/vgbG3X/xB1RR11uueUW+vXrR+fOnTn11FN57733arZNmzaNfffdlw4dOnDR\nRRdRWlrKbbfdBsDkyZM56qijaspeeumldO3alfbt23PQQQcxZ84cbrnlFu6++24mTpxIu3btGDIk\n81ufJSUlzJiRuUdyVVUVv/rVr+jbty/FxcUcfvjhVFRU1Nrf6k+whx56KP3792f27Nk129577z1O\nP/10unTpQp8+fbjxxhtrtq1fv56RI0fSsWNH+vfvz69//Wt69vzkRwRKSkqYOHEiBx54ILvtthtV\nVVV11jdr1iwOP/xwiouL6datG5dffjkAGzZsYMSIEXTu3JkOHTpwxBFHsGzZMgAGDhxYc/wigl/8\n4hf07t2bPfbYg7PPPpuPPvoIyIwei4qKuOOOO+jVqxddunThV7/6VYP/ptmefvppSkpKuPrqq+nW\nrRvf/e53WbFiBSeffDJdunShU6dOnHLKKSxZ8skPKBx11FHccccdAEyaNInS0lIuu+wyOnToQN++\nfZk+ffo2lX377bc56qijKC4uZtCgQVx44YWMGjWqzn5PmDCBzp0706dPH+67774tyixfvpzBgwfT\nrl07vvrVr27xPcZLLrmEnj170r59e4444giee+65mm0vvPAChx56aM3fLntU/n//9398+ctfpkOH\nDhxyyCH87W9/25bD3niFvpPup3XJHDprqHzHa/jwsoC1AZG1rI3hw8saXO+OqKN3797x9NNPbxV/\n+umno3PnzjF79uzYuHFjXHLJJXH00UdHRMSyZcuiXbt28fDDD0dlZWX87ne/i9atW8ekSZMiIuL2\n22+Po446KiIinnzyyTjssMPio48+ioiIuXPnxtKlSyMi4uyzz46rrrqq1v5MnDgxDjjggJg/f35E\nRLzyyiuxYsWKrfq6YMGCKCoqis2bN0dExHPPPRdt27aNhx9+OCIiqqqq4tBDD41f/OIXsXnz5njn\nnXeiT58+MW3atIiIGD16dJSWlsbq1aujoqIiDjjggOjZs+cWfTr44IOjoqIi1q9fX299X/7yl+Ou\nu+6KiIh169bFCy+8EBER//M//xOnnHJKTR0vvfRSrFmzJiIiSktLa47fpEmTol+/frFgwYJYt25d\nnHbaaTFixIia5yopvvvd78aGDRvi5Zdfjl122SXmzp1b598537F+6qmnomXLlvHTn/40Nm3aFOvX\nr49ly5bFww8/HBs2bIg1a9bEN7/5zRg6dGjNPl/72tdi8uTJERFx6623RuvWreP222+PqqqquPHG\nG7c4bo0pO2DAgLjyyitj06ZN8de//jU+//nPx6hRo/I+l+p+jx49OjZu3BgzZsyINm3axL/+9a+I\niDjrrLNi9913j5deeik2b94c3/rWt2qOX0TEXXfdFatWrYrKysqYOHFidO/ePTZu3BgREYcffnhM\nmTIlIiLWrl0bM2fOjIiIRYsWRadOnWL69OkRkXldd+7cOe/rMSL///mseKPebz2isoKpqKgC2uZE\n27JkSVW+4jutjtrcc889nHvuuRx44IG0atWKq6++mueff553332XP//5z+y///4MGTKEoqIifvCD\nH9C1a9e89bRq1Yo1a9YwZ84cIoJ99tmn1rK5Jk2axC9/+Uv69u0LwJe+9CU6dOiQt2xEsPvuu9Om\nTRu++tWvcuGFF9aM0mbNmsWHH37I2LFjadGiBb179+a8885jypQpADzwwAOMHTuWdu3aseeee/KD\nH/xgq/p/+MMfsueee7LLLrvUW1+rVq146623WL58OW3atGHAgAE18eXLl/Pmm28iiYMPPrjmvFru\nsb/sssvo1asXbdq04eqrr2bKlClUVWX+rpIoKyujdevWHHDAARx44IG8/PLLDTqmuVq1akVZWRkt\nW7Zkl112oXPnzgwZMoTWrVuz2267MWbMGP7yl7/Uun+fPn0YOXIkkhg5ciSLFy9mxYoVDSpbUVHB\nihUrePvtt3nllVcYN24cLVu25KijjuLkk0+us98tWrSgrKyMVq1aMXDgQAYNGsQDDzxQs/3000/n\n4IMPpkWLFgwfPnyL0fXw4cMpLi6mqKiIyy+/nI8++oi33noLgNatWzN//nxWrFhB27ZtOfzwwwG4\n4447GDJkCF//+tcBOOGEEzjwwAN54oknGnagt4MTlRVM9+5FwLqcaONuSbUj6qjNkiVL6NXrk3Nd\nbdu2pWPHjlRUVLBkyZItpsYAevTokbeegQMHcvHFF3PRRRexxx578L3vfY+1a9c2qA+LFi1i7733\nblBZSSxfvpx169bxm9/8hvLycjZv3gxkpssqKiro2LEjHTt2pEOHDlx99dV88MEHNc81u/+5zy33\n+dVX32233ca8efPYd999OeKII3jssceAzEn+E088kWHDhtGjRw9Gjx5NZWXlVm3lHvtevXqxefNm\n3n///ZpYdrJv06ZNg49prq5du25xXurjjz/mvPPOo1evXrRv357jjjuODz/8sNb999hjjy36AdTa\nl9yyEcHatWt577336NSpU82FHpD/b5CtU6dO7LrrrjWPe/XqtcUUZW5b2X2aOHEi++23Hx06dKBj\nx458/PHHNc/xD3/4A6+//jr77LMPRx55JH/+85+BzN/8nnvu2eJv/sILL2zR5s7iRGUFM2HC2fTp\nM45PEs06+vQZx4QJZzdpHbXZc889t5jXX7duHcuXL6d79+5069aNRYsWbVF+8eLFtdZ18cUX8+KL\nL/L6668zb948fv3rXwOZ5FKXnj178q9//avBfY4IJHHppZeyyy671FzV1rNnT/bee29WrFjBihUr\nWLlyJatXr+bRRx+tea7Z/X/33Xe3qju7r/XV16dPH+655x6WLVvGFVdcwemnn86///1vWrZsyVVX\nXcXrr7/Os88+y5/+9KeaczjZco/9woULadWqVYNHoo2R+zeYOHEiCxcu5MUXX2TVqlU15wt3pm7d\nurF8+XI2btxYE8t9feVavnw5GzZ88ruy7777LnvuuWe9bT3zzDNcd911PPTQQ6xcuZKVK1fStm3b\nmvOb/fr1495772XZsmVcdtllfPOb32Tjxo307NmTc845Z4u/+Zo1a/jRj360jc+64ZyorGBKSnox\nffolDB/+GwYOHLdNt6TaEXUAbNy4kQ0bNtQslZWVfPvb3+YPf/gDr7zyChs2bOAnP/kJRx55JHvt\ntRcnn3wyr732GlOnTqWyspKbbrppi0/72V588UVmzpzJ5s2b+dznPseuu+5a8wm+a9euvP3227X2\n67zzzuOqq66qmZZ59dVXWblyZd6y1W801caMGcM111zDxo0bGTBgAO3atWPixImsX7+eyspKXn/9\ndV588UUAhg4dytVXX82qVauoqKjgv/7rv+o8XvXVd/fdd9d8Qi8uLkYSLVq0oLy8nNdee42qqip2\n2203WrVqRcuWW198fOaZZ3LdddexYMEC1q5dy9ixYxk2bBhFRUV5n+uOtGbNGtq0aUNxcTHLly9n\n/Pid/8sIe++9N1/60pcYP348mzZt4u9//3vNKLQ2lZWVlJWVsWnTJsrLy3niiScYOnRonftAZrTX\nqlUrOnbsyMaNGxk3bhwff/xxzfa77rqL5cuXA9CuXTuKioooKipixIgRPPTQQzz11FNUVVWxfv16\nysvLWbp06fY9+QZworKCKinpxV13ZX4m5a67xm3TZeU7oo6TTz6ZNm3a8LnPfY42bdowfvx4jj32\nWCZMmMBpp51G9+7deeedd2rOwXTq1IkHHniAH//4x3Tu3Jm5c+dy2GGHbTF1U+2jjz7i/PPPp2PH\njpSUlNC5c+eaq+DOPfdcXn/9dTp27Mhpp50GbPkJ/7LLLuOMM87ghBNOoLi4mPPOO49///vfeZ9D\n7sjg5JNPpmPHjtxyyy0UFRXx6KOPMnv2bEpKSujSpQvnn39+zZV0P/vZz+jevTslJSWccMIJDB06\ndIvnklt3ffU98cQT9O/fn3bt2nHppZdy33330bp1a5YuXcrpp59OcXEx/fv3Z+DAgQwfPnyrNs45\n5xxGjBjB0UcfTZ8+fWjTpg033HBDrf2pb2Ta0DKQOearVq2iU6dOfO1rX9vqXFF99WRvb0zZe++9\nl7/85S907tyZCRMmMGzYsLyvp2o9e/akbdu2dOvWjVGjRjFp0qSaaeK62h08eDDHHXcc/fr1Y++9\n96Z9+/Z069atZvvjjz/OfvvtR3FxMVdccQX3338/LVu2pFevXjz00ENMmDCB3Xffnd69e/Pb3/62\n5rzhzuQv/G4jf+G3cdL8hd8dISLo0aMH99xzD8ccc0yhu7Pdfv/733PffffxzDPPFLorzVb1xRBj\nx47datvTTz/N+eefX+dovNB8rz+zFJg2bRqrV69mw4YN/PKXvwTgyCOPLHCvts3SpUt59tlniQjm\nzZvHtddeWzPCs6Yxa9YsFixYQETw+OOP89hjj9VctdncpTJRSfq5pJcl/VPSE5L2yNp2g6T5kmZL\nOigrPlLSm5LmSfpOVvwQSa8k267PineQNC0p/6Sk4vraMMv23HPP0adPH7p06cJjjz3GI488UudU\nTZpt3LiRCy64gHbt2vH1r3+d//iP/+D73/9+obvVrCxZsoSjjz6adu3a8aMf/Yhbb72V/fffv9Dd\nSoVUTv1J2i0i1ibrlwBfjIjvSxoMXBQRJ0s6AvhdRBwpqQPwInAIIOAfwCERsVrSC8AlETFT0uPJ\nPk9KugZYHhETJY0GOkTEGEknARfntpGnj576a4TP+tSfmW3pMz/1V52kEm2B6rN1pwB3JGVeAIol\ndQVOBKZFxOqIWAVMAwYlI7HPR8TMZP87gFOT9SHA5GR9cvK4Op6vDTMzK4DU3pRW0i+A7wCrgIFJ\nuDuQ/eWCxUksN16RFV+cpzxA14h4HyAilkrqUksb1XXlv/bYzMx2qoKNqCRNT84dVS+vJv9+AyAi\nfhoRewF3A5dU75ZbDRB54tQTr7Nr27CPmZntJAUbUUXE8Q0sei/wJ6CMzIgo+74iPYAlSbw0J/5M\nHeUBlkrqGhHvJ1OEHyTxuvbZQllZWc16aWkppaWl+YoZmdu7NPR7LGb26Vd9C6zy8nLKy8u3q660\nXkzRNyLeStYvAY6KiDNyLqY4Erg+z8UURcn6oRGxqvpiCmAW8BhwQ0Q8kVxMsSIirpE0BmifXEyR\nt408ffTFFGZmjfRZ+uHE/5T0BTIXUSwEvgcQEY9LGizpLTI3dxuVxFdKmkAmQQUwPrmoAuBC4HZg\nV+DxiKi+1e81wP2SzgHeBYbW1YaZmRVGKkdUnwYeUZmZNd5n5vJ0MzOzak5UZmaWak5UZmaWak5U\nZmaWak5UZmaWak5UZmaWak5UZmaWak5UZmaWak5UZmaWak5UZmaWak5UZmaWak5UZmaWak5UZmaW\nak5UZmaWak5UZmaWak5UZmaWak5UZmaWak5UZmaWak5UZmaWaqlOVJIul1QlqWNW7AZJ8yXNlnRQ\nVnykpDclzZP0naz4IZJeSbZdnxXvIGlaUv5JScX1tWFmZk0vtYlKUg/g68DCrNhJQJ+I6AdcAPw+\niXcAfgYcDhwBjMtKPP8NnBcRXwC+IOnEJD4GeCoi9gFmAFfW1YaZmRVGahMVcB3w45zYEOAOgIh4\nASiW1BU4EZgWEasjYhUwDRgkaQ/g8xExM9n/DuDUrLomJ+uTk8d1tWFmZgWQykQl6RvAooh4NWdT\nd2BR1uPFSSw3XpEVX5ynPEDXiHgfICKWAl1qaaMiax8zM2tiLQvVsKTpQPZIRUAAPwV+Ahyfb7c8\njyNPnHridXatofuUlZXVrJeWllJaWlpP1WZmzUt5eTnl5eXbVUfBElVE5EtESNof6A28LElAD+Al\nSQPIjIh6ZhXvASxJ4qU58WfqKA+wVFLXiHg/mSL8IInXtc8WshOVmZltLfdD/Pjx4xtdR+qm/iLi\ntYjYIyL2jogSMonj4Ij4AJgKfAdA0pHAqmT67kngeEnFyYUVxwNPJlN6H0kakCS97wCPJE1NBc5O\n1s/Oiedrw8zMCqBgI6pGqJnCi4jHJQ2W9BawDhiVxFdKmgC8mJQfn1xUAXAhcDuwK/B4RDyRxK8B\n7pd0DvAuMLSuNszMrDAUUd8pG8tHUvjYmZk1jiQiIt+1ALVK3dSfmZlZNicqMzNLNScqMzNLNScq\nMzNLNScqMzNLNScqMzNLNScqMzNLNScqMzNLNScqMzNLNScqMzNLNScqMzNLNScqMzNLNScqMzNL\nNScqMzNLNScqMzNLNScqMzNLNScqMzNLNScqMzNLNScqMzNLtVQmKknjJC2W9FKyDMradqWk+ZLe\nkHRCVnyQpLmS3pQ0OiveW9LzkuZJuldSyyTeWtKUpK7nJO1VXxtmZtb0UpmoEr+NiEOS5QkASfsB\nZwD7AScBNyujCLgJOBHoD5wpad+knmuAayNiH2AVcG4SPxdYERH9gOuBiUkbX8zXxs5/umZmlk+a\nE1W+5DAEmBIRmyNiATAfGJAs8yNiYURsAqYkZQGOBR5M1icDp2bVNTlZ/2NSDuCUWtowM7MCSHOi\nukjSbEm3SipOYt2BRVllKpJYbnwx0F1SJ2BlRFRlx3PriohKYLWkjnW0YWZmBdCyUA1Lmg50zQ4B\nAYwFbgZ+HhEh6RfAtcB55B9lBfkTbiTlc/eJrPZq2ydffCtlZWU166WlpZSWluYrZmbWbJWXl1Ne\nXr5ddRQsUUXE8Q0segvwaLK+GOiZta0HsIRMctkrNx4RH0pqL6koGVVVl8+ua4mkFkBxRKyUVFsb\nW8lOVGZmtrXcD/Hjx49vdB2pnPqTtEfWw9OA15L1qcCw5Iq9EqAvMBOYBfSV1EtSa2AY8Eiyzwxg\naLI+Mis+NXlMsn1GPW2YmVkBFGxEVY+Jkg4CqoAFwAUAETFH0v3AHGATcGFEBFAp6WJgGpnkOyki\n5iZ1jQGmSJoA/BOYlMQnAXdKmg8sJ5Pc6mrDzMwKQH4P3jaSnL/MzBpJEhHRqK/8pHLqz8zMrJoT\nlZmZpZoTlZmZpZoTlZmZpZoTlZmZpZoTlZmZpZoTlZmZpZoTlZmZpZoTlZmZpZoTlZmZpZoTlZmZ\npZoTlZmZpZoTlZmZpZoTlZmZpZoTlZmZpVqDEpWkoQ2JmZmZ7WgN+uFESS9FxCH1xZoT/3CimVnj\nbcsPJ9b5U/SSTgIGA90l3ZC1qR2wufFdNDMza5w6ExWwBHgROAX4R1Z8DXDpzuqUmZlZtTrPUUXE\nyxExGegbEZOT9anAWxGxcmd2TNIlkuZKelXSf2bFr5Q0X9Ibkk7Iig9Kyr8paXRWvLek5yXNk3Sv\npJZJvLWkKUldz0naq742zMys6TX0qr/pktpJ6gi8BNwi6bqd1SlJpcA3gP0j4kvAb5L4fsAZwH7A\nScDNyigCbgJOBPoDZ0raN6nuGuDaiNgHWAWcm8TPBVZERD/gemBi0sYX87Wxs56rmZnVraGJqjgi\nPgJOA+6IiCOA43Zet/g+8J8RsRkgIj5M4kOAKRGxOSIWAPOBAckyPyIWRsQmYEpSFuBY4MFkfTJw\nalZdk5P1PyblIDPNma8NMzMrgIYmqpaSupEZafxpJ/an2heAo5Mpu2ckHZrEuwOLsspVJLHc+GIy\nF4B0AlZGRFV2PLeuiKgEVicjxtraMDOzAqjvYopqPweeBP4vImZJ2pvMSGObSZoOdM0OAQH8NOlX\n+4g4UtLhwAPA3kmZXEH+hBtJ+dx9qq8pr62u2uJbKSsrq1kvLS2ltLQ0XzEzs2arvLyc8vLy7aqj\nQYkqIh4gkyyqH78NfHN7Go6I42vbJul7wP8m5WZJqkxGR4uBvbKK9iBzZaLyxSPiQ0ntJRUlo6rq\n8iR19QSWSGpBZnpzpaTqeG4bW8lOVGZmtrXcD/Hjx49vdB0NvTNFD0kPSfpA0vuSHpTUo9GtNdzD\nJOfAJH0BaB0Ry8lccfit5Iq9EqAvMBOYBfSV1EtSa2AY8EhS1wyg+i4aI7PiU5PHJNtnZMWH5WnD\nzMwKoKFTf38A7uGTN/yzklito6Lt9AfgNkmvAhuA7wBExBxJ9wNzgE3AhcntISolXQxMI5N8J0XE\n3KSuMcAUSROAfwKTkvgk4E5J84HlZJJbXW2YmVkBNPQWSrMj4qD6Ys2Jb6FkZtZ423ILpYZe9feh\npLMktUiWs8iMQszMzHaqhiaqc8hcmr4UeA84HRi1szplZmZWraHnqCYAI6tvm5R83+g3ZBKYmZnZ\nTtPQEdUB2ff2i4gVwME7p0tmZmafaGiiKpLUofpBMqJq6GjMzMxsmzU02VwLPCvpj2Tu0nAG8Mud\n1iszM7NEgy5Ph5q7ih9L5i4QT0fEnJ3ZsbTz5elmZo23LZenNzhR2ZacqMzMGm9nfo/KzMysIJyo\nzMws1ZyozMws1ZyozMws1ZyozMws1ZyozMws1ZyozMws1ZyozMws1ZyozMws1ZyozMws1ZyozMws\n1VKZqCRNkfRSsrwj6aWsbVdKmi/pDUknZMUHSZor6U1Jo7PivSU9L2mepHsltUzirZN25kt6TtJe\n9bVhZmZNL5WJKiKGRcQhEXEI8CDwvwCS9iPzEyP7AScBNyujCLgJOBHoD5wpad+kumuAayNiH2AV\ncG4SPxdYERH9gOuBiUkbX8zXxs5+zmZmll8qE1WOM4B7kvUhwJSI2BwRC4D5wIBkmR8RCyNiEzAl\nKQuZnyZ5MFmfDJyaVdfkZP2PSTmAU2ppw8zMCiDViUrSUcDSiHg7CXUHFmUVqUhiufHFQHdJnYCV\nEVGVHc+tKyIqgdXJLxfX1oaZmRVAwX5OXtJ0oGt2iMyvB4+NiEeT2JnAvTllcgX5E24k5XP3qf4R\nqdrqqi2+lbKyspr10tJSSktL8xUzM2u2ysvLKS8v3646CpaoIuL4urZLagGcBhySFV4M9Mx63ANY\nQia57JUbj4gPJbWXVJSMqqrLZ9e1JGmrOCJWSqqtja1kJyozM9ta7of48ePHN7qONE/9HQ+8ERHZ\nSWIqMCy5Yq8E6AvMBGYBfSX1ktQaGAY8kuwzAxiarI/Mik9NHpNsn1FPG2ZmVgAFG1E1wLfYctqP\niJgj6X5gDrAJuDD5PfhKSRcD08gk30kRMTfZbQwwRdIE4J/ApCQ+CbhT0nxgOZnkVlcbZmZWAPJ7\n8LaR5PxlZtZIkoiIRn3lJ81Tf2ZmZk5UZmaWbk5UZmaWak5UZmaWak5UZmaWak5UZmaWak5UZmaW\nak5UZmaWak5UZmaWak5UZmaWak5UZmaWak5UZmaWak5UZmaWak5UZmaWak5UZmaWak5UZmaWak5U\nZmaWak5UZmaWak5UZmaWaqlMVJIOlPScpH9Kminp8KxtN0iaL2m2pIOy4iMlvSlpnqTvZMUPkfRK\nsu36rHisIpIdAAAMQElEQVQHSdOS8k9KKq6vDTMza3qpTFTARGBcRBwMjEseI2kw0Cci+gEXAL9P\n4h2AnwGHA0cA47ISz38D50XEF4AvSDoxiY8BnoqIfYAZwJVJXSfla8PMzAojrYmqCqhONO2BimT9\nFOAOgIh4ASiW1BU4EZgWEasjYhUwDRgkaQ/g8xExM9n/DuDUZH0IMDlZn5w8ro7na8PMzAqgZaE7\nUItLgSclXQsI+EoS7w4syiq3OInlxiuy4ovzlAfoGhHvA0TEUkldammjuq73t/M5mZnZNihYopI0\nHcgeqQgIYCzwdeCHEfGwpNOB24DjkzLk2Sc3Tj3xOrvW0H3Kyspq1ktLSyktLa2najOz5qW8vJzy\n8vLtqkMR9b1vNz1JqyKife5jSb8HnomI+5L4XOAYYCBQGhHfS+K/B54B/pKU3y+JDwOOiYjvS3oj\n2ef9ZIrwmYjYr7Y2qkdfWX2KNB47M7M0k0RE5BsQ1Cqt56gqJB0DIOk4YH4Snwp8J4kfCaxKEsiT\nwPGSipMLK44HnoyIpcBHkgZIUrLvI1l1nZ2sn50Tz9eGmZkVQFrPUZ0P3CCpBbAe+C5ARDwuabCk\nt4B1wKgkvlLSBOBFMtN045OLKgAuBG4HdgUej4gnkvg1wP2SzgHeBYbW1YaZmRVGKqf+Pg089Wdm\n1nifpak/MzMzwInKzMxSzonKzMxSzYnKzMxSzYnKzMxSzYnKzMxSzYnKzMxSzYnKzMxSzYnKzMxS\nzYnKzMxSzYnKzMxSzYnKzMxSzYnKzMxSzYnKzMxSzYnKzMxSzYnKzMxSzYnKzMxSzYnKzMxSzYnK\nzMxSLZWJStIBkp6V9LKkRyTtlrXtSknzJb0h6YSs+CBJcyW9KWl0Vry3pOclzZN0r6SWSby1pClJ\nXc9J2qu+NszMrOmlMlEBtwJXRMSBwEPAFQCSvgicAewHnATcrIwi4CbgRKA/cKakfZO6rgGujYh9\ngFXAuUn8XGBFRPQDrgcm1tXGTn6+ZmZWi7Qmqi9ExN+T9aeAbybrpwBTImJzRCwA5gMDkmV+RCyM\niE3AFGBIss+xwIPJ+mTg1GR9SPIY4I9JubraMDOzAkhronpN0jeS9TOAHsl6d2BRVrmKJJYbXwx0\nl9QJWBkRVdnx3LoiohJYLaljHW2YmVkBtCxUw5KmA12zQ0AAY4FzgBsl/QyYCmzMKpMryJ9wIymf\nu0/UU1dt8a2UlZXVrJeWllJaWpqvmJlZs1VeXk55efl21VGwRBURx9dT5EQASf2Ak5PYYqBnVpke\nwBIyyWWv3HhEfCipvaSiZFRVXT67riWSWgDFEbFSUm1tbCU7UZmZ2dZyP8SPHz++0XWkcupP0u7J\nv0XAT4HfJ5umAsOSK/ZKgL7ATGAW0FdSL0mtgWHAI8k+M4ChyfrIrPjU5DHJ9hn1tGFmZgVQsBFV\nPc6UdBGZKbf/jYjbASJijqT7gTnAJuDCiAigUtLFwDQyyXdSRMxN6hoDTJE0AfgnMCmJTwLulDQf\nWE4mudXVhpmZFYD8HrxtJDl/mZk1kiQiolFf+Unl1J+ZmVk1JyozM0s1JyozM0s1JyozM0s1Jyoz\nM0s1JyozM0s1JyozM0s1JyozM0s1JyozM0s1JyozM0s1JyozM0s1JyozM0s1JyozM0s1JyozM0s1\nJyozM0s1JyozM0s1JyozM0u1tP4U/WfOO+8s5Kqrbqeiooru3YuYMOFsSkp67fB9mrKttPevKdtK\ne/+asq20968p23L/dpCIKMgCnA68BlQCh+RsuxKYD7wBnJAVHwTMBd4ERmfFewPPA/OAe4GWSbw1\nMCWp6zlgr21tI0//o6HefntB9Onzo4C1ARGwNvr0+VG8/faCHbpPU7aV9v75WPhYFLot9y+/5L2z\ncfmisTvsqAXYB+gHzMhOVMB+wD/JjPZ6A28BIjNN+RbQC2gFzAb2Tfa5DxiarP83cEGy/n3g5mT9\nW8CUZP2LjW0jT/8b9EeJiBg+vCzrjxo1f9zhw8t26D5N2daW+zyTuv75WPhYFLqttB+Lpjx+2bYl\nURXsHFVEzIuI+UmCyDaETELZHBELyIx6BiTL/IhYGBGbyIyUhiT7HAs8mKxPBk7Nqmtysv7HpBzA\nKdvQxjarqKgC2uZE27JkSdUO3acp29pyn/LU9a8p2/KxqG2f8tT1rynbSvuxaMrjt73SeDFFd2BR\n1uOKJJYbXwx0l9QJWBkRVdnx3LoiohJYLaljY9vY7ifUvQhYlxNdx5571n74t2Wfpmwr7f1ryrbS\n3r+mbCvt/WvKtty/HaixQ7DGLMB04JWs5dXk329klXmGLaf+bgK+nfX4VuA/yJzT+n9Z8bOA3wGd\nyYyCquM9gJeT9deAPbO2zQc6NLaNWp5bg4a5EemfP97+fcalrn8+Fj4WhW4r7cfC56gal8xyE9UY\ntrxQ4gngCOBI4Il85YBlQFGyfiTw5+x9k/UWwAfb2kaefocXL168eGn80tg8kZbL07PPU00F7pZ0\nHZlpt77ATDLTlH0l9QLeA4YlC2QuyBhK5qKKkcAjWXWNBF5Its/YhjbOzNfhiMg9t2ZmZjtBwRKV\npFOBG8lM3f1J0uyIOCki5ki6H5gDbAIuTIaLlZIuBqaRSSiTImJuUt0YYIqkCWSu5puUxCcBd0qa\nDywnSWyNbOONnXwozMysDkqmsczMzFIpjVf9pZ6kQZLmSnpT0uhC96eQJC2Q9LKkf0qaWej+NCVJ\nkyS9L+mVrFgHSdMkzZP0pKTiQvaxqdRyLMZJWizppWQZVMg+NhVJPSTNkDRH0quSfpDEm91rI8+x\nuCSJN+q14RFVI0kqInPXiuOAJcAsYFjWNGSzIult4NCIWFnovjQ1SV8D1gJ3RMQBSewaYHlETEw+\nxHSIiDGF7GdTqOVYjAPWRMRvC9q5JiZpD2CPiJgtaTfgH2S+jzmKZvbaqONYfItGvDY8omq8nfKl\n4E+x6jt6NDsR8XcgN0Fnf8k8+8vnn2m1HAvY+gv9n3kRsTQiZifra8ncpq0HzfC1UcuxqP5uaoNf\nG83yDWY77ZQvBX+KBfCkpFmSzi90Z1KgS0S8D5n/pMDuBe5PoV0kabakW5vDVFcuSb2Bg8jci7Rr\nc35tZB2LF5JQg18bTlSNl+9TQHOeP/1KRBwGDCbzwvtaoTtkqXEz0CciDgKWAs1tCnA3Mrdu+2Ey\nmmi27xN5jkWjXhtOVI23GNgr63EPMueqmqXkkyERsQx4iMzUaHP2vqSuUDM//0GB+1MwEbEsPjkJ\nfgtweCH705QktSTzxnxnRFR/r7NZvjbyHYvGvjacqBpvFsmXgiW1JvPdrKkF7lNBSGqTfFJCUlvg\nBDK3rWpOxNZfWD87Wc/+8nlzsMWxSN6Mq51G83pt3AbMiYjfZcWa62tjq2PR2NeGr/rbBsmllL/j\nky8F/2eBu1QQkkrIjKKCzJfH725Ox0LSPUAp0Al4HxgHPAw8APQE3iXz8zOrCtXHplLLsRhI5pxE\nFbCAzM/vvF+gLjYZSV8F/krm3qbVtw36CZm739xPM3pt1HEsvk0jXhtOVGZmlmqe+jMzs1RzojIz\ns1RzojIzs1RzojIzs1RzojIzs1RzojIzs1RzojJrhiQdI+nRQvfDrCGcqMyaL3+J0j4VnKjMUkzS\ncEkvJD8u99+SiiStkfRbSa9Jmi6pU1L2IEnPJXekfrD6jtSS+iTlZkt6MbmjCMDnJT0g6Q1Jdxbs\nSZrVw4nKLKUk7UvmB+a+EhGHkLndzHCgDTAzIvYnc3uacckuk4EfJ3ekfi0rfjdwYxL/CvBeEj8I\n+AHwRaCPpK/s/Gdl1ngtC90BM6vVccAhwCxJAnYlcx+9KjL3jAO4C3hQUjugOPkBQ8gkrfuTmwZ3\nj4ipABGxESBTHTMj4r3k8WygN/BsEzwvs0ZxojJLLwGTI2LsFkHpqpxykVU+Xx212ZC1XonfDyyl\nPPVnll5PA6dL2h1AUgdJewEtgNOTMsOBv0fER8CK5G7VACOAv0TEGmCRpCFJHa0lfa5Jn4XZdvIn\nKLOUiog3JP0UmCapCNgIXAysAwYkI6v3yZzHgsxvHP1PkojeBkYl8RHA/5P086SOofma23nPxGz7\n+Gc+zD5lJK2JiM8Xuh9mTcVTf2afPv50ac2KR1RmZpZqHlGZmVmqOVGZmVmqOVGZmVmqOVGZmVmq\nOVGZmVmqOVGZmVmq/f8TBfwcp3ZQPwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "#plotting\n", - "plt.plot(range(len(loss_history)), loss_history, 'o', label='Logistic Regression Training phase')\n", - "plt.ylabel('cost')\n", - "plt.xlabel('epoch')\n", - "plt.legend()\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.5.2" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/additional materials/1.5.1 Introduction - Theano.ipynb b/2. Deep Learning Frameworks/2.1 Introduction - Theano.ipynb similarity index 61% rename from additional materials/1.5.1 Introduction - Theano.ipynb rename to 2. Deep Learning Frameworks/2.1 Introduction - Theano.ipynb index fabb440..cb4453c 100644 --- a/additional materials/1.5.1 Introduction - Theano.ipynb +++ b/2. Deep Learning Frameworks/2.1 Introduction - Theano.ipynb @@ -27,7 +27,6 @@ "cell_type": "code", "execution_count": 1, "metadata": { - "collapsed": false, "slideshow": { "slide_type": "fragment" } @@ -61,7 +60,6 @@ "cell_type": "code", "execution_count": 2, "metadata": { - "collapsed": false, "slideshow": { "slide_type": "fragment" } @@ -75,7 +73,6 @@ "cell_type": "code", "execution_count": 3, "metadata": { - "collapsed": false, "slideshow": { "slide_type": "fragment" } @@ -111,7 +108,6 @@ "cell_type": "code", "execution_count": 4, "metadata": { - "collapsed": false, "slideshow": { "slide_type": "-" } @@ -147,7 +143,6 @@ "cell_type": "code", "execution_count": 5, "metadata": { - "collapsed": false, "slideshow": { "slide_type": "-" } @@ -195,7 +190,6 @@ "cell_type": "code", "execution_count": 6, "metadata": { - "collapsed": false, "slideshow": { "slide_type": "fragment" } @@ -217,7 +211,6 @@ "cell_type": "code", "execution_count": 7, "metadata": { - "collapsed": false, "slideshow": { "slide_type": "fragment" } @@ -242,7 +235,6 @@ "cell_type": "code", "execution_count": 8, "metadata": { - "collapsed": false, "slideshow": { "slide_type": "fragment" } @@ -283,9 +275,7 @@ { "cell_type": "code", "execution_count": 9, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [ { "data": { @@ -328,7 +318,6 @@ "cell_type": "code", "execution_count": 11, "metadata": { - "collapsed": false, "slideshow": { "slide_type": "fragment" } @@ -394,9 +383,7 @@ { "cell_type": "code", "execution_count": 13, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "x = T.scalar()\n", @@ -407,7 +394,6 @@ "cell_type": "code", "execution_count": 14, "metadata": { - "collapsed": false, "slideshow": { "slide_type": "fragment" } @@ -446,9 +432,7 @@ { "cell_type": "code", "execution_count": 15, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", @@ -458,9 +442,7 @@ { "cell_type": "code", "execution_count": 16, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [ { "data": { @@ -492,7 +474,6 @@ "cell_type": "code", "execution_count": 17, "metadata": { - "collapsed": false, "slideshow": { "slide_type": "-" } @@ -517,9 +498,7 @@ { "cell_type": "code", "execution_count": 18, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "x.set_value(values)" @@ -540,7 +519,6 @@ "cell_type": "code", "execution_count": 19, "metadata": { - "collapsed": false, "slideshow": { "slide_type": "-" } @@ -575,9 +553,7 @@ { "cell_type": "code", "execution_count": 20, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [ { "data": { @@ -598,9 +574,7 @@ { "cell_type": "code", "execution_count": 21, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [ { "data": { @@ -636,7 +610,6 @@ "cell_type": "code", "execution_count": 22, "metadata": { - "collapsed": false, "slideshow": { "slide_type": "slide" } @@ -654,7 +627,6 @@ "cell_type": "code", "execution_count": 23, "metadata": { - "collapsed": false, "slideshow": { "slide_type": "fragment" } @@ -679,7 +651,6 @@ "cell_type": "code", "execution_count": 24, "metadata": { - "collapsed": false, "slideshow": { "slide_type": "fragment" } @@ -704,7 +675,6 @@ "cell_type": "code", "execution_count": 25, "metadata": { - "collapsed": false, "slideshow": { "slide_type": "fragment" } @@ -724,245 +694,6 @@ "source": [ "f()" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Warming up! Logistic Regression" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "%matplotlib inline" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "import numpy as np\n", - "import theano\n", - "import theano.tensor as T\n", - "import matplotlib.pyplot as plt" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Kaggle Challenge Data" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The Otto Group is one of the world’s biggest e-commerce companies, A consistent analysis of the performance of products is crucial. However, due to diverse global infrastructure, many identical products get classified differently.\n", - "For this competition, we have provided a dataset with 93 features for more than 200,000 products. The objective is to build a predictive model which is able to distinguish between our main product categories. \n", - "Each row corresponds to a single product. There are a total of 93 numerical features, which represent counts of different events. All features have been obfuscated and will not be defined any further.\n", - "\n", - "https://www.kaggle.com/c/otto-group-product-classification-challenge/data" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "##### For this section we will use the Kaggle Otto Group Challenge Data. You will find these data in \n", - "`../data/kaggle_ottogroup/` folder.\n", - "\n", - "**Note** We already used this dataset in the [1.2 Introduction - Tensorflow](../1.2 Introduction - Tensorflow.ipynb) notebook, as well as [1.3 Introduction - Keras](../1.3 Introduction - Keras.ipynb) notebook." - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "import os\n", - "import sys\n", - "nb_dir = os.path.abspath('..')\n", - "if nb_dir not in sys.path:\n", - " sys.path.append(nb_dir)" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Using TensorFlow backend.\n" - ] - } - ], - "source": [ - "from kaggle_data import load_data, preprocess_data, preprocess_labels" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loading data...\n", - "[[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 3. 0. 0. 0. 3.\n", - " 2. 1. 0. 0. 0. 0. 0. 0. 0. 5. 3. 1. 1. 0.\n", - " 0. 0. 0. 0. 1. 0. 0. 1. 0. 1. 0. 1. 0. 0.\n", - " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", - " 0. 0. 0. 0. 0. 0. 0. 3. 0. 0. 0. 0. 1. 1.\n", - " 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", - " 0. 11. 1. 20. 0. 0. 0. 0. 0.]]\n", - "9 classes\n", - "93 dims\n" - ] - } - ], - "source": [ - "print(\"Loading data...\")\n", - "X, labels = load_data('../data/kaggle_ottogroup/train.csv', train=True)\n", - "X, scaler = preprocess_data(X)\n", - "Y, encoder = preprocess_labels(labels)\n", - "\n", - "\n", - "X_test, ids = load_data('../data/kaggle_ottogroup/test.csv', train=False)\n", - "X_test, ids = X_test[:1000], ids[:1000]\n", - "\n", - "#Plotting the data\n", - "print(X_test[:1])\n", - "\n", - "X_test, _ = preprocess_data(X_test, scaler)\n", - "\n", - "nb_classes = Y.shape[1]\n", - "print(nb_classes, 'classes')\n", - "\n", - "dims = X.shape[1]\n", - "print(dims, 'dims')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now lets create and train a logistic regression model." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Hands On - Logistic Regression" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1\n", - "Epoch 2\n", - "Epoch 3\n", - "Epoch 4\n", - "Epoch 5\n", - "Epoch 6\n", - "Epoch 7\n", - "Epoch 8\n", - "Epoch 9\n", - "Epoch 10\n", - "target values for Data:\n", - "[ 0. 0. 0. ..., 0. 0. 0.]\n", - "prediction on training set:\n", - "[False False True ..., False False False]\n" - ] - } - ], - "source": [ - "#Based on example from DeepLearning.net\n", - "rng = np.random\n", - "N = 400\n", - "feats = 93\n", - "training_steps = 10\n", - "\n", - "# Declare Theano symbolic variables\n", - "x = T.matrix(\"x\")\n", - "y = T.vector(\"y\")\n", - "w = theano.shared(rng.randn(feats), name=\"w\")\n", - "b = theano.shared(0., name=\"b\")\n", - "\n", - "# Construct Theano expression graph\n", - "p_1 = 1 / (1 + T.exp(-T.dot(x, w) - b)) # Probability that target = 1\n", - "prediction = p_1 > 0.5 # The prediction thresholded\n", - "xent = -y * T.log(p_1) - (1-y) * T.log(1-p_1) # Cross-entropy loss function\n", - "cost = xent.mean() + 0.01 * (w ** 2).sum()# The cost to minimize\n", - "gw, gb = T.grad(cost, [w, b]) # Compute the gradient of the cost\n", - " # (we shall return to this in a\n", - " # following sections of this tutorial\n", - " # See: Intro to tf & Keras)\n", - "\n", - "# Compile\n", - "train = theano.function(\n", - " inputs=[x,y],\n", - " outputs=[prediction, xent],\n", - " updates=((w, w - 0.1 * gw), (b, b - 0.1 * gb)),\n", - " allow_input_downcast=True)\n", - "predict = theano.function(inputs=[x], outputs=prediction, allow_input_downcast=True)\n", - "\n", - "#Transform for class1\n", - "y_class1 = []\n", - "for i in Y:\n", - " y_class1.append(i[0])\n", - "y_class1 = np.array(y_class1)\n", - "\n", - "# Train\n", - "for i in range(training_steps):\n", - " print('Epoch %s' % (i+1,))\n", - " pred, err = train(X, y_class1)\n", - "\n", - "print(\"target values for Data:\")\n", - "print(y_class1)\n", - "print(\"prediction on training set:\")\n", - "print(predict(X))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [] } ], "metadata": { @@ -981,9 +712,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.5.2" + "version": "3.5.3" } }, "nbformat": 4, - "nbformat_minor": 0 + "nbformat_minor": 1 } diff --git a/2. Deep Learning Frameworks/2.2 Introduction - Tensorflow.ipynb b/2. Deep Learning Frameworks/2.2 Introduction - Tensorflow.ipynb new file mode 100644 index 0000000..419dfce --- /dev/null +++ b/2. Deep Learning Frameworks/2.2 Introduction - Tensorflow.ipynb @@ -0,0 +1,1054 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "# Tensorflow\n", + "\n", + ">**TensorFlow** (https://www.tensorflow.org/) is a software library, developed by Google Brain Team within Google's Machine Learning Intelligence research organization, for the purposes of conducting machine learning and deep neural network research. \n", + "\n", + ">TensorFlow combines the computational algebra of compilation optimization techniques, making easy the calculation of many mathematical expressions that would be difficult to calculate, instead.\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "## Tensorflow Main Features" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* Defining, optimizing, and efficiently calculating mathematical expressions involving multi-dimensional arrays (tensors).\n", + "\n", + "* Programming support of **deep neural networks** and machine learning techniques.\n", + "\n", + "* Transparent use of GPU computing, automating management and optimization of the same memory and the data used. You can write the same code and run it either on CPUs or GPUs. More specifically, TensorFlow will figure out which parts of the computation should be moved to the GPU.\n", + "\n", + "* High scalability of computation across machines and huge data sets.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "source": [ + ">TensorFlow is available with Python and C++ support, but the **Python API** is better supported and much easier to learn." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "# Very Preliminary Example" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "11\n" + ] + } + ], + "source": [ + "# A simple calculation in Python\n", + "x = 1\n", + "y = x + 10\n", + "print(y)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": true, + "slideshow": { + "slide_type": "subslide" + } + }, + "outputs": [], + "source": [ + "import tensorflow as tf" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "# The ~same simple calculation in Tensorflow\n", + "x = tf.constant(1, name='x')\n", + "y = tf.Variable(x+10, name='y')\n", + "print(y)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "source": [ + "**Meaning**: \"When the variable `y` is computed, take the value of the constant `x` and add `10` to it\"" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "## Sessions and Models\n", + "\n", + "To actually calculate the value of the `y` variable and to evaluate expressions, we need to **initialise** the variables, and then create a **session** where the actual computation happens" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": true, + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [], + "source": [ + "model = tf.global_variables_initializer() # model is used by convention" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "11\n" + ] + } + ], + "source": [ + "with tf.Session() as session:\n", + " session.run(model)\n", + " print(session.run(y))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "## Data Flow Graph" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "source": [ + "* (**IDEA**) \n", + "_A Machine Learning application is the result of the repeated computation of complex mathematical expressions, thus \n", + "we could describe this computation by using a **Data Flow Graph**" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "source": [ + "* **Data Flow Graph**: a graph where:\n", + " - each Node represents the _instance_ of a mathematical operation \n", + " - `multiply`, `add`, `divide`\n", + " - each Edge is a multi-dimensional data set (`tensors`) on which the operations are performed." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "## Tensorflow Graph Model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* **Node**: In TensorFlow, each node represents the instantion of an operation. \n", + " - Each operation has inputs (`>= 2`) and outputs `>= 0`.\n", + " \n", + "* **Edges**: In TensorFlow, there are two types of edge:\n", + " - Data Edges: \n", + " They are carriers of data structures (`tensors`), where an output of one operation (from one node) becomes the input for another operation.\n", + " - Dependency Edges: These edges indicate a _control dependency_ between two nodes (i.e. \"happens before\" relationship). \n", + " + Let's suppose we have two nodes `A` and `B` and a dependency edge connecting `A` to `B`. This means that `B` will start its operation only when the operation in `A` ends. " + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "## Tensorflow Graph Model (cont.)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* **Operation**: This represents an abstract computation, such as adding or multiplying matrices. \n", + " - An operation manages tensors, and It can just be polymorphic: the same operation can manipulate different tensor element types. \n", + " + For example, the addition of two int32 tensors, the addition of two float tensors, and so on.\n", + "\n", + "* **Kernel**: This represents the concrete implementation of that operation. \n", + " - A kernel defines the implementation of the operation on a particular device. \n", + " + For example, an `add matrix` operation can have a CPU implementation and a GPU one." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "## Tensorflow Graph Model Session" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Session**: When the client program has to establish communication with the TensorFlow runtime system, a session must be created. \n", + " \n", + "As soon as the session is created for a client, an initial graph is created and is empty. It has two fundamental methods:\n", + "\n", + "* `session.extend`: To be used during a computation, requesting to add more operations (nodes) and edges (data). The execution graph is then extended accordingly.\n", + "\n", + "* `session.run`: The execution graphs are executed to get the outputs (sometimes, subgraphs are executed thousands/millions of times using run invocations)." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "# Tensorboard" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**TensorBoard** is a visualization tool, devoted to analyzing Data Flow Graph and also to better understand the machine learning models. \n", + "\n", + "It can view different types of statistics about the parameters and details of any part of a computer graph graphically. It often happens that a graph of computation can be very complex." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "## Tensorboard Example" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "Run the **TensorBoard** Server:" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "```shell\n", + "tensorboard --logdir=/tmp/tf_logs\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "source": [ + "[Open TensorBoard](http://localhost:6006)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "95\n" + ] + } + ], + "source": [ + "a = tf.constant(5, name=\"a\")\n", + "b = tf.constant(45, name=\"b\")\n", + "y = tf.Variable(a+b*2, name='y')\n", + "model = tf.global_variables_initializer()\n", + "\n", + "with tf.Session() as session:\n", + " # Merge all the summaries collected in the default graph.\n", + " merged = tf.summary.merge_all() \n", + " \n", + " # Then we create `SummaryWriter`. \n", + " # It will write all the summaries (in this case the execution graph) \n", + " # obtained from the code's execution into the specified path”\n", + " writer = tf.summary.FileWriter(\"tmp/tf_logs_simple\", session.graph)\n", + " session.run(model)\n", + " print(session.run(y))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "# Data Types (Tensors)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "## One Dimensional Tensor (Vector)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": true, + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "tensor_1d = np.array([1, 2.5, 4.6, 5.75, 9.7])\n", + "tf_tensor=tf.convert_to_tensor(tensor_1d,dtype=tf.float64)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[ 1. 2.5 4.6 5.75 9.7 ]\n", + "1.0\n", + "4.6\n" + ] + } + ], + "source": [ + "with tf.Session() as sess: \n", + " print(sess.run(tf_tensor))\n", + " print(sess.run(tf_tensor[0]))\n", + " print(sess.run(tf_tensor[2]))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "## Two Dimensional Tensor (Matrix)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[ 0 1 2 3]\n", + " [ 4 5 6 7]\n", + " [ 8 9 10 11]\n", + " [12 13 14 15]]\n", + "[[ 0. 1. 2. 3.]\n", + " [ 4. 5. 6. 7.]\n", + " [ 8. 9. 10. 11.]\n", + " [ 12. 13. 14. 15.]]\n" + ] + } + ], + "source": [ + "tensor_2d = np.arange(16).reshape(4, 4)\n", + "print(tensor_2d)\n", + "tf_tensor = tf.placeholder(tf.float32, shape=(4, 4))\n", + "with tf.Session() as sess:\n", + " print(sess.run(tf_tensor, feed_dict={tf_tensor: tensor_2d}))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "# Basic Operations (Examples)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": true, + "slideshow": { + "slide_type": "-" + } + }, + "outputs": [], + "source": [ + "matrix1 = np.array([(2,2,2),(2,2,2),(2,2,2)],dtype='float32') \n", + "matrix2 = np.array([(1,1,1),(1,1,1),(1,1,1)],dtype='float32')" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "tf_mat1 = tf.constant(matrix1) \n", + "tf_mat2 = tf.constant(matrix2)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": true, + "slideshow": { + "slide_type": "subslide" + } + }, + "outputs": [], + "source": [ + "matrix_product = tf.matmul(tf_mat1, tf_mat2)\n", + "matrix_sum = tf.add(tf_mat1, tf_mat2)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": true, + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [], + "source": [ + "matrix_det = tf.matrix_determinant(matrix2)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": true, + "slideshow": { + "slide_type": "subslide" + } + }, + "outputs": [], + "source": [ + "with tf.Session() as sess: \n", + " prod_res = sess.run(matrix_product) \n", + " sum_res = sess.run(matrix_sum) \n", + " det_res = sess.run(matrix_det)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "matrix1*matrix2 : \n", + " [[ 6. 6. 6.]\n", + " [ 6. 6. 6.]\n", + " [ 6. 6. 6.]]\n", + "matrix1+matrix2 : \n", + " [[ 3. 3. 3.]\n", + " [ 3. 3. 3.]\n", + " [ 3. 3. 3.]]\n", + "det(matrix2) : \n", + " 0.0\n" + ] + } + ], + "source": [ + "print(\"matrix1*matrix2 : \\n\", prod_res)\n", + "print(\"matrix1+matrix2 : \\n\", sum_res)\n", + "print(\"det(matrix2) : \\n\", det_res)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "# Handling Tensors" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "import matplotlib.image as mp_image\n", + "filename = \"../imgs/keras-logo-small.jpg\"\n", + "input_image = mp_image.imread(filename)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "input dim = 3\n", + "input shape = (300, 300, 3)\n" + ] + } + ], + "source": [ + "#dimension\n", + "print('input dim = {}'.format(input_image.ndim))\n", + "#shape\n", + "print('input shape = {}'.format(input_image.shape))" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQsAAAD8CAYAAABgtYFHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm8ZFdZ6P3fs9bau6rO6e5MnaGTdMgMGUhCaAOvODIG\neK9RX4eAV3OV1zjEK3AvKMglooKAV0ARjEbhNWgkREBFRRAjAb0fgQyEJE0S0iEJ6aTppDN1n6Fq\n77XW8/6x9+kckj7ddU7XGfrk+X4+9amqfXbtvWqfqqfWvERVMcaYfXHLnQBjzIHBgoUxZigWLIwx\nQ7FgYYwZigULY8xQLFgYY4ayaMFCRM4XkTtEZIuIvGmxzmOMWRqyGP0sRMQD3wBeAmwFrgNepapf\nH/nJjDFLYrFyFucBW1T1m6paAVcBFyzSuYwxSyAs0nGPAe6b9Xwr8Ly5dl5/6KH6jOOPQ7IHMuoE\nWaSEGbNqqTLzxckILmcQhwqQEjfefPMOVT18oYdfrGCxp+/6d5R3RORi4GKA4zZu5Pobr6OmoCAj\n6ogCfpESZ8xqk8lkdRQzG+pELh2CEEnkyUm6aw66d3/OsVjBYiuwcdbzY4EHZu+gqpcDlwNsOue5\nmima4JAcmiMhBJC8SMkzZnURrVHpMAA6ESgyGU9QKERII/gqLVawuA44RUROAO4HLgRePffuCa+Q\nE0gA+o8zGHiCWmHEmKFIBbEkdwLTkzW9dVCXBxOygnN43f98+qIEC1WNIvIrwGdpShMfVtXNc+2f\nnIPmPcFj27n1kKOoBZwNiDVmaFlKaq2QskNZDzj78UfRNQeTBfIIyvSLlbNAVT8NfHqYfb0qyYFG\nyL1xBgKFOhQrhhgzDAG8Cj0RqqqGAh5zXQ5W8AI6gnLIyujBKYIDQsj4KhEUCxTGzIMDoiSmUYRM\nqgNrcwXStCy4EbQvroxgYYxZ8SxYGGOGYsHCGDMUCxbGmKFYsDDGDMWChTFmKBYsjDFDsWBhjBmK\nBQtjzFAsWBhjhmLBwhgzFAsWxpihWLAwxgzFgoUxZigWLIwxQ7FgYYwZigULY8xQLFgYY4ZiwcIY\nMxQLFsaYoViwMMYMxYKFMWYoFiyMMUOxYGGMGYoFC2PMUCxYGGOGsl9rnYrIPcAuIAFRVTeJyKHA\nx4DjgXuAn1DVR/cvmcaY5TaKnMUPquo5qrqpff4m4BpVPQW4pn1ujDnALUYx5ALgivbxFcAPL8I5\njDFLbH+DhQL/IiI3iMjF7bYjVXUbQHt/xH6ewxizAuxXnQXwAlV9QESOAD4nIrcP+8I2uFwMcNzG\njfuZDGPMYtuvnIWqPtDePwj8LXAesF1ENgC09w/O8drLVXWTqm46fP36/UmGMWYJLDhYiMi4iKyd\neQy8FLgV+BRwUbvbRcDf728ijTHLb3+KIUcCfysiM8f5a1X9jIhcB1wtIq8BvgX8+P4n0xiz3BYc\nLFT1m8DZe9j+MPCi/UnU040CXsApCJAFskKUPf97smY8kBEKV6BEyHEpk7wktBBSUnKGDpALGAgU\n9Tw+thpQahKJLiUOYZoB5aKlevXa3wpOMwIOR9ZMpgkQSYQxdQQd7HH/UgRVpRYh5T4ByEua4qVR\n1gU1NRklAb6GcSAzfGAUl9GcCYBQkxHWIfTRxUr2qmXBYgWovBASlECpkUodQibJHPurNh/1Qkh1\n86F3q/CzP6DCA4WDQCBnmpyB1EMfQ8kkIARIqk2WbRVeq6VgwWIFGE+JCqFGyD7jUkYAp3uuf840\nf5c6Uzio0+oc5ON9gaSakKFPxAsknfu67EkuMmMZNEIOED0QC2D4gGMaFixWAA9QdCjqhCTHhINO\nDgT6e9y/ogA8qn0KgSmgWML0LpUq1YyXJVNVBDziIceach6Frrr21AodPFWs8AVMhsTY6qviWXQW\nLFaAHeURnHbzP1IyRrdf83hPGKsdtfN73D8Wjm414MvnvZhjJ3ewAXh8aZO8JPK5z+NZ7/1f7Dz+\nODoTHXJK5MK3NRjDKbInBWXHFVey7Y/+hGMndiBkK4ksgAWLJeQ9kGCaAi81TksO+Z1f4+zX/RrT\na7r0tIAaDilBqwHdsrPnA+UM4vjeiQd4+A8uY/vr38g6Kh4CChy5/TI42lzLCuecY5AzJR5PIhLQ\nTZs477prqbXDQQkIEZKA802T0bBiBB8Y/53fIN57D9Vf/xWleAY6fMAxjdVY1F2x6uSADj0SXuGg\nt7+RZ7zpUqbW9Ohk31a8ZYSMK+cuWFQIlUCi4PDX/ipHvu9/k3CsEcDnNkp4mKPpdaXRnFlbrKEk\nM+Ggd9rZnHHVn1NrBx9BfdNcPK8gMUOEnEG94+Cf/29EsECxQBYsllCHjAbhUcmsf+ulnPDmt1OH\ngrEckAgDB/3SQda9ZpRLFYocKYmklDnsV3+V8fe8B9QRckAUSImeHhgF8+ThsTTBlChrn/k8Tvz6\n9YQTz6AAUqGoRhyOynnm0WoKgLom2Ih2WPsD38/GD/wpdLuL8j5WOwsWS0jxTMU+67prGHvNz1K5\nSKHNB1pKh6fpfET2yN4KELlPdok88OTg8AIbXv1jZIFKI0GgI+U8SvbLq8hjrCkFOe25nPSvVxFi\nm4mQiNcacVDRNhfPM7Mk2lxJFRASYxf83+T+niuOzd5ZsFhCUwF6QYh1zRrtQfsFaL7UGU0VkhOI\nkvaSs6gKj6+V2Gm7emqmKsfIZLwPkKFWFpZtXwZ9rShOOJcT/+UK/NHHUwWABElw6skEVAoESHme\nTZ6iUCdSTgQKimOPtoq6BbJgsYQ6MZGi4OOAKBUFHmHmx9JR+LKpwPNC2Ms3vaSAott04nICziEJ\nooCkSMLhpWqyLCtITUn0UOKoAA1dFMjnfB/Hfv1LHHTUGUhKCE1TKd6D87tzXCVN34v56ItHC092\nFRIdNTD2vS8c9Vt7WlhZnyazqoVQUaQefcmMC1Sxjz/7XM77mz+k0AAK3nmKubquLkA3Nz04y6pH\npmkdqnd8c2THfzqxHJlZMmWEmmmK0GNnPc2Zd93EmhPPgBgINBW8hUbUB3xiJO2+fQfdPtCB+K27\nuPNHLiTf9q39P/DTkOUszJLp++bXaSpNc9Sxp9M94WwiSpJEFKUg4nJbhzOikXGlOihgcO8Wtp7/\n/9D/6vWkA6HzyQpkwcIsGaHEA71jn8mx//6PhARQUHvd3erBTHeTEeV5nQBEvvGjP8Vjt3+NXgmk\n1ThGd/FZsDBLpkgV06c9m2ffeys8YwMpQNBddDXgKJEUmiJJqpl3h4o5TG7dwe1nn8P0V7+C82vY\nWUPBHD1jzV5ZsDAjl+kQ5YlWj+QKHFCd/H9x9t9cAf1A0AKfEiprmyZeoamjKNoWj3n2Pk2xItG2\nJCdA4bFv38/jP7iJyTtvZ8x7JE3QUxiw53lCzN5ZsDAjl2VAqWNMk+kKjOeafPpZnPN3HySfcToU\nENtBctOjOmko8dPTJKlIDlQG3P09L2Hbt7YS60TOTZ9YAbyzj/1CWGuIGbkxdUwzRVH22BWn6R13\nKs/ZfAP0Ay4BDnyOIJ6xEbV6+AhVr0dQiHfexTde8mL0gXvoqKdAyKoEcahAQu1XcgHsmpmRmyBT\nCOyK0xx1zOmcce1niDlBmYgeVCtEIbbjNkZCFRJEidz2spfh73uAgUJKaXegyJqJOeMOlK6tK4zl\nLMzIBSnpa8Wz7/wqYyedg09tZ9KUCCmBFEQPQaWZm0JGEDFkCr17O998+ctI99xFpKTTDo7xzlHl\npgWkcI6Us4WLBbCchRm5oBXl6Wex9qQzUe2TPEjaiXrPlPeggqcJFLWMphlz130Pcev5r6TesgXn\nIIWKHs1gugw4EbxzRAsUC2Y5C7NgmQ5ZBowr7AK8KxAV0knP5ZyrP9i0epRCJQOcX4cAYwAz89eI\nb3tezPvEzU2a4e1ep3noe56HPPwIFVC0f59uJ/xlJkCo1VXsDwsWZsF6DNilnhw6IFN4arpHn8JJ\nd36RmkAnw5SDHq6ZYXtE561cTZlh4AX5xr1seen57HrgQRzNMgnSzn5uOYjRsmBhFkxxeBKDOEXt\nIGw8laOv+RihHwgF4KCXFXHNUgejmuOv1KLJXNx+F/e95MXErfdQiuBo1lNpgoRgc/6PlgULs2AT\nbT+KfoCjjjqdY6/9R/zxJ0BOROfxuULaYfI6z6kz9yWHmlu/+7spdz1MdBDa2cWa4o1DUdRixUhZ\nEc4sWNPqAeuOPoVnfGsz5cYTcAxAIaSEUBC9Rwltt8rRmN58O3cccTx+54MU0eOzwzkHIqgIUTNZ\nlcIKIiNlwcIs2Eyrx6mf/uTuVg/oPKXVAxhZqwfALS95OfmhB/AJKirUZ+qciaok1d2tHzbh/2jt\nM1iIyIdF5EERuXXWtkNF5HMicmd7f0i7XUTk/SKyRURuFpFzFzPxZuk4xqjwJKALVMAZt97IGZu/\nQnX6mSBdHHU709V3tnoI7exe85VrKiKaoWKaya/dws1Hn4j/9j3UgIg0M42lZp5NzxPLH6iVQUZu\nmJzFXwDnP2nbm4BrVPUU4Jr2OcDLgVPa28XAZaNJpllufQaMhw4C9AtY94xTyGc8m0QHP4BqZnrg\nEX5HB04o64RmJd20hfvOfyVh2z27x3dkCwhLap/BQlW/CDzypM0XAFe0j68AfnjW9o9o40vAwSKy\nYVSJNctnptUjlD3y0ady9DVXE/qBToJQtK0eNPOBjkqhAXwHF/rc+7KXId++j12iuweCCU3uQq1q\nYkks9D97pKpuA2jvj2i3HwPcN2u/re22pxCRi0XkehG5/qEdOxaYDLNUxgFXQDpqI8/5xh2sPf4c\nqu4A9TXqakQgJ0Xd6L65Sabp33Izm488nkcf2UGf0BRvcm46WkkzQCxZDmNJjLqCc0+flD3+J1X1\nclXdpKqbDl+/fsTJMKO2E5oOV//2sWY2Kz+gTAFJDomOKB7xRbPA0YhMX7eZb774pbgHH6QXmwFg\nUcEhiDzxUbNQsTQWGiy2zxQv2vsH2+1bgY2z9jsWeGDhyTMrxUyrx9qTznxKq0cMfnerx3wWLd6X\nb7z4FeiO7Uz45rg1NWMzPbva3ISTvS7HZEZoocHiU8BF7eOLgL+ftf1n2laR5wOPzxRXzIEhClQ4\nvIOOCBFBTn7WE60eKTyl1SPwRKuHLGQEqWYqAI0MgIn/vJ7rDj2SctcOaqBM4NugMJBm2WelafGw\nVo+ls88enCLyUeAHgPUishX4TeBdwNUi8hrgW8CPt7t/GngFsAWYAn52EdJsFlFQ6FIQ84C6VMbX\nn8ApH/8osW312N0COtLvqKOsBxA6+Fxz5ytfytpHH6M/6yQzQcGCw/LZZ7BQ1VfN8acX7WFfBS7Z\n30SZ5VN5SH5ArOCc62+hPONMKhfxQNVJ+JwQHDG40Y0VUIje0b/uem558ffS21WTneLaZg4LECuD\n9eA03yFoATWsPeIEyjPOJAuUKeCp6ZER58hJd9dRjEJyMH39Ldz7kheyZrIioLtn658dKES+s2LT\nLC0LFuY7uKx0jjiOY665muSgL7tA2N3qQR59q4evd3Lv+S9Gdu4iZaEuMtKOIIWmxDMTJCyXsXws\nWDxt+bZ7dEEtAE2xYrDhTE759l2sO/m5ZCrG0njzbfUeggcn7cjO+Z8xAaQK1WbKfuJOJv/jS9y+\n9gjSo482XbhJuBpkVn2FYJWZK4EFi6epFBIVHZSajkINDI47iXP/6U/JBCib+SFQpT+itkmfa5Iv\nGdAnCkz8n1v56svOJ8a4OzTM5CCsuLHy2HwWT1NlhI7LTGeoSuit38jJn7ya/JyzCDUQnvglGdUv\nSqLAK3gtiTrgnvNfyiH9PnEPfTMsF7HyWM7iaaovsDPUVCIcsu5oTt96D/m551CoUBWpma4foQ5u\nZB8S56ASmPjCf3J9p0sYZFIbKJzVSax4Fiyepgo6hAS99cdw7Bc+TxboZUeUtLvVI8ZMYHQ9JCtA\n4jR3n/8iRIQJnd59bGv1WPksWDxNBR3wrC/fwMkP3ks+/WR8huQeokglNQVowIcSyQmhHsk5B1/4\nP3zl4KNJcUC3VoIP39G3a+axqtrw8xXIgsWq50lhVquHdAjA5IZzkOeeRacvdAE049Ph4KGEprkU\nwLWrFc9Dgt1dt4kQyUz+279z9w98D2smH2Nm0ixJ31lbIXM8NiuDBYtVLoWEj8XuVo9SB09p9ahw\no231IEIOBGpigJAimy/4odEc3CwbCxarXBGLphhRwkCEfPixnHHvNwinfRfddnGNIkfwvnk+AlED\n5Gm8Cjv/4bPc0l1LZ+Kx0RzcLBsLFqvcQGoEqGrh0MM2cMq115AB7WSmJO1epLgWJY4o7x8ECD12\nfPZa7vih80kaFzIDp1lhLFiscgVNHcVMq0d41slPafXAM9JWj0gEqbn7R1/OuPfkZBPUrAYWLFa5\noAOmjztpd6uHwz2l1SMSRtrq8chnruHGziGEKlKmRBjhMgBm+ViwWCU0e8Q1v+AZJTnBk5nccA5n\n/d1f7271qF31lFaPAAtq9VCAmElApIbUnHvby8/HV5O4BAOaSa3iKN+sWRYWLFYJ7yqIBT1foIUi\nTjnpuhs454HriM85DzrCFEpAqEY2D92ArI4BECI8/tm/Y7N0RnVws8JYsFgllC4FNdOpRmvwhx0B\nm86l7Hu6bSlgZrr+ckQVCDLdQYpmar2pf/l7tr7yp1gzoqKMWXlsINkqUbvmSzrowPo1x3D05z8L\nZLSj1OIpZi1SHGU0/3jtZUQdSWHzf/lZHFP0nSNkq6NYjSxnsUr43BQHxg97Bic+tBX/rDMoo0Oy\nUMaESMmgXaQ45FHNwO2APuoyJ934bxSyDrwFitXKgsUqEXQX7rgTOPEfPklfUlN56R8GHP3QVFLs\nngrPjeYLLRkG0kUUDjn7LNb9+W/SsVLIqmXBYpWow0FsuPZaxs48i15u/q1ZDgXfLGQ80+rRhIsR\ndZES6NRKFEdNh2N/9r+Rf+xH2wrU0KxJCk23cuuVdcCzYLFKdA5Zx1HHH7d76rucmxW8FlMSoFA6\nZMoIXg/lWX/zV4wnqMuIUJKkgxLxluM44FmwWCUSGRVoMxXNOqCLXNGoAMkxQNHQ5FrKQUnv517N\nWOUQIqV6EtiqYauABYtVwokjpqbrU24XDXYjXNF8T0IGfDP1r+QMOaEuccyHruSYf/44bszxOFOU\nLlDZoPMDngWLVUIUChdwLH6QmJHbQR9VrFBpaihES8oEnP9yHp9K9DxEH3ELWdbQrCgWLFaLtsiR\nY1qyeSxjUMiZMS2pEdRBLCF5OEi7HHbGJooERQ21dfg+4FmwWC28AwEX/JLNX1kSmvMWUAqIe6Kz\n11Q94NRb/51D3v5bFIBoIADJN0sMOKAXSpL1Czxg7DNYiMiHReRBEbl11ra3icj9InJTe3vFrL+9\nWUS2iMgdIvKyxUq4Wbk8QNnhUTwbXvta+N7vpyLjgSIpyXvEe6Zihe5hGQCzMg2Ts/gL4Pw9bH+f\nqp7T3j4NICKnAxcCZ7Sv+WMRK6w+3eQcGdPMOIF6/CBO/KN3sBZh2jWDW5NmHssJAUJpFZ8Hin0G\nC1X9IvDIkMe7ALhKVQeqejewBThvP9JnDkDZOUiOQiFIpHPWC8ivPJ+DcgBKipxZ5zwBQSvrHn6g\n2J86i18RkZvbYsoh7bZjgPtm7bO13fYUInKxiFwvItc/tGPHfiTDrDSCo/YgOo1qpgLOfM//5sF1\nhxJTYhpIkhh4m8X7QLLQYHEZcBJwDrANeE+7fU//+z1Wzavq5aq6SVU3Hb5+/QKTYRaqooIImiEx\nSYzQBxI1fWin8G+eo/P79fdAIYDr4aSkFOCZp/G8h7fjfv4i1gKVgoi36s0DyIKChapuV9Wkqhn4\nM54oamwFNs7a9Vjggf1LolkMDoeGTI1SM870tf/Ezg/8EUqBH0RSaDpd+VwQZTTNnqJw6m+/BQGK\nBC5G69l5AFlQsBCRDbOe/ggw01LyKeBCEemIyAnAKcBX9i+JZjGEgaLVAOeEANz+0h/n/te9AffV\nzRSdgM91kydUGFlhoQB31In06dH1zUCzWsrRHNssumGaTj8K/CfwTBHZKiKvAX5PRG4RkZuBHwRe\nD6Cqm4Grga8DnwEuUVVrG1uJQkG/7PHw1X/JvdKh0GkmfcVN557JFFDHQHIRfI3XERUWUjP49OwH\nv0E6+yw6wJSNRj1g7PNToKqv2sPmD+1l/3cA79ifRJkl4GDXJ67koZ/8f4GKJHBkFej7SP+W6ymf\nvQmvGbInOW0HnO+vmikKOocfzjPe+07u/oGX0bHWkAOG9eB8mhrINNt/7DVMlxXJNc2c05LICR78\n5TcTpiYAx1SMbX/L/ZddZgzw2mHd978QinGydQM/YFiwWOUqYEDavURABTzw/32I22UMZUBZATk3\n1ROqZBy9//hXvrpuLRDo+A6ODLF5PTMZgXow77Q46bD7ADlw2g2fZsChqHjG20/ioNOlFBg4myV8\npbFgscqVuaZTe4SMqFBGeODn3zDn/gFlGigTTNa78AqSEzFktA0WFUBYwJe5jRNJAIXyzLM4/QO/\ng6gSM3gBN+gzpbCO+Qcjs7gsWKxy0RUk34fseOgjf8YNvS4uzb1IcRKYxlN1O9zRPYqpr36RynlC\ndoAjSU1JZkFDOmZXezio4sGsueSXOfOOzewSQDpk8QQPVbaP5kpj/5FVLig4utz/3rez/ed+ER8H\ne50OU1SIRUIGkTGdYuvPvZ5yehpV8ApJHKS0sFm8M6AOTwZVSprDpFOeRUcD0zKgp4laIdFb4Ds2\ni8WCxSpXK1QOdv3apajLZITo5+7bEPCkGtY4T/SQbr2RB97+XirfTJlRigeX0YV01Jr9aUsVFJm+\nS5QZuj/1U6xJzS7jGdTZpJ0rjQWLVe7R97+Lm/1aKg1oBEXppWrO/WuBNcBAMjGPU1Pw2O9eSufh\nb5F9hhqQAsnz70w1KTXUMJUdWnQgOrrqqX3FqR/+c476p6tRApO9DpLnTqNZHhYsVos6Nj/9Cgya\nksKuS3+dba9/M2WeQNtlBUPz5zmJ1s1CxzEiOolSUwP3v+MyAKoSULegX/5xCihhzLXVF+3aBD6W\nxNJRvOLHWfeL/501g0GTBg+pXUUguYJBGWwsyTKyYLFaFDUD55oWi9DMG3HHO/9wZId/6I8vZ+Jz\nn8UBURQZ4UIgOSgexxqF437316jblpGyWZ6dDKRc42McUecwsxAWLFaNHh0ykoV73n0p14vQTaPr\nad8ZPMbWl76C+3/1l/BR5j0SdW9Cik8c7uCjWHfpW3DaZRrIeBKBDtDznglnwWK5WLBYLRQijpiU\nnW97J12BKT+63pGTZBLw6AevQIBKRvjRiQXOAXUNkjn6ja8jPe/5dAVCSEQiCkzUCVmauYjNHliw\nWCUGotz3xjdy85gj1AVTDnpxdAPAg4MegQF97v0fl1Dm0XWaqkpQMjU1A6DorufML32Gqe7hFBGK\nLiiBXtmhM8IcjZkfCxarROf+b/LoH/xJs3Qg0/hM0017VLIwRaTnlUc+8GG2X/OpkR261BpFKEKX\nonYkX1HmgkNe8AI8JVMVeAKDurKptZaRBYtVoi4PgTxBH8g4CkBH+M3KomTvkRqCRr75C+9oh4Bl\nBhHIdTP1xUJaPF3RrMvqHK4ALyU4x8kfeBc7xjuMZ6iKPh11VDb/87KxYGGGox5yM1EOEjno7q/x\nyD9eBdGRAqjzxBSZLkdXTxKfeQqbJh6i+yOvQrMnk+iOam4NM28WLMxQvPN01ZNxTAdIDu77lUup\nH76broL0M8GHZuGhEQnZ4ZNy0h/+AS4kKqBSG2C2XCxYmOHkCDQzdZOgL7D23jvZ8qZLcQygCM3Y\nsv7ochZeM0XuEjeup66hHC+wgevLx4KFGUpNRqgJDg7OgbHkeQxwf3UlN2w4FdqlC3N3dOdUcVBE\nQobvun870xufwcBZMWS5WLAwQ4mh6Ukecia5xLQketKhH5X6oW9BjmStKOrRdYQQyUAgO4c78gie\n/cEPE9Vm1louFizMUHqxGUNWAVVWCgVxAxTh4Oy46fATmfz2vSRfUJFJ7ZwXGV3wNDap7fgV+sou\nGTD+wvN47rZvk7zsXkLA0xlhx3OzNxYszIJN5x5jKNNkwqP3sf2Nv010NQUZJUOugdj0/VxQhqOZ\n7g8vdLVgmsDgyMPISegHwQl4KqZG+q7MXCxYmIXTyKQ0dRWTJdRXfpypKz+G5EDQACI4hGKBncNy\nW6EaCyhwdPGgwsb3vIs10TMI0EfpddaM9G2ZPbNgYRZsnJpSBd/pUFQBDX3u+a8/Tc0klUAKgZrQ\njBRdQP+wIgc6VSIoaHuIjnoOf/0bOfH2G1hXe7TTpT+YGPl7M09lwcIsmAOmUXRQ03EKEfrjjum/\n+CilTuD1iT0XNJWNAMGDZup2no0kuSl+PPMsdlIQBn1qm4FvSViwMAs2QWBMYNJDygkEwmTm9kve\nBnfdDrnNUNQLWx2kkkx0kDRRiEdyszZqs2AzHPITr2wWYZ4e3Xsyc7NgYRasIFIrdFJTEVkrlECo\n7+drp7wQciaQSYVjbAHhosQRAO8LBIdzAcThUMoMJ330So76uyvptZP79guPw5O8IDRpMaNjwcKM\nXEig7GLnfbdBVCKRBTaH7JHLQhZQ12H8gp/g8J97DZVzFHUmo/gkRO/pj+yMBoZbGHmjiHxeRG4T\nkc0i8tp2+6Ei8jkRubO9P6TdLiLyfhHZIiI3i8i5i/0mzMpSAVIId550Jvde9sd0tAQdYW8IB1kH\nSK10c+CQD70XyYIWSiATXQZ1OGe/haM0zNWMwP9U1dOA5wOXiMjpwJuAa1T1FOCa9jnAy4FT2tvF\nwGUjT7VZ0UoCkhQXHA+94VJ2bLmVKCOcWyNlcA4KRV2N1pkjf+1iyrqLeqg8eAeSbaKcUdpnsFDV\nbap6Y/t4F3AbcAxwAXBFu9sVwA+3jy8APqKNLwEHi8iGkafcrFiBZqJxYqZXPcajv/RGQh7hrDWq\nkBIRh6oSig4b3/ob1M85j53J00nQj/UICz4G5llnISLHA88BvgwcqarboAkowBHtbscA98162dZ2\nm3m6kKY+x5FpAAARlklEQVTVogsMAuy69rOkzf/aNGFoZADk2CzWTJqc//GDJ/guAXBSNi0uvWN5\n1o1f4KTf/W18hoNw1N4myhmloYOFiKwBPgG8TlV37m3XPWx7SpAXkYtF5HoRuf6hHTuGTYY5AEwq\nlFI2K7MnEFE2v+Hd5DwBOdCpalwQpIZJPz6Sc2YHHTJHvv4XSEBFRtXm4BuloYKFiBQ0geJKVf1k\nu3n7TPGivX+w3b4V2Djr5ccCDzz5mKp6uapuUtVNh69fv9D0mxXIOdr1SgucghPQf/kC297/QQZe\noWi+zBR5ZPNTZAEP5OIwQu8IKiBYlcVIDdMaIsCHgNtU9b2z/vQp4KL28UXA38/a/jNtq8jzgcdn\niivm6aFU6FMRqfEi+Bomi8jEG97E17/7B6EuKHEQHbKg7lpP1XT+cjgPZ0zexcE//hML6tth5jZM\nzuIFwE8DLxSRm9rbK4B3AS8RkTuBl7TPAT4NfBPYAvwZ8MujT7ZZ6cp2gFl0DkXo1M2cGO4/v8C0\nTyQcMNMHY/85YKpomlT9YA3Hvu9tRJsKfKT2Oe2Qqv4Hcw8DetEe9lfgkv1MlzmAJe3iSWRqOilR\nBQeiDOqSXFTc810v4rR/+zSMB5pq0P0nGXqSkNRBu+COOY3exT/Nrss/MpLjG+vBaRaB0Ce3CzFH\nwMVMqCH7Cp97uK9+gfsvezepKOkkgBq0qQWvAKo8/wlzHIh4COzu6n3Y772fdPzRzCynXABT3S5i\nH/sFsatmlkw3OyRNs1Pgvre+r5ngN0ONMpAEqpQ0Ha7m20dCVWkytey+X7NmDc/60w9QlUU7s1ZJ\n2e/jR7n40tOIBQuzZPrqcEC3E+jlXTzytt9Ci2mKXNLRjEhqmjsDdOe5TGFTD98EChFBVfHeU/7A\nD/Hsh7eRcTxOReE7VCNcruDpxIKFWTohNpWelZIUvvVbb6f/hWtRB9QeCMT2S4/ObwX4mdzEjJmA\nEYJHugdRIawtPS4N0BEuGP10YsHCLJluBHCEnIGCwke2/PdLidu3UZWzix6ZuIBBYCKyO0jMPJ92\nFT7Dxt99G75KOMFWYl8gCxZmyfQJTIRMLUL0Nd3codp8I1876mQgI5Fmvs6shLywrtozxZAZvVRC\nyKx5829w4tduZaBrcDbTxYJYsDBLpiDSic1KY53ULEUYcqb0U/hHv81UAAauac5w8ysqzASI2YGi\n2QB9FxmPjs5ZZ7Dhst+jyBXQIQBJAm21atNRzMzJro5ZdmXqcOthpyKf+Qdip4+Kb0aWjkKs6WrJ\nIDTLExz6iz/PzkOOxzNAynVEjUio6NFhylpJ9sqChVl2U1QUOsmWX/11eORhskbII5ospygY5GYM\nSqwTEDj5/e9s6lOrCVJBM9EwA0qbLGev7OqYZZcFJjwUd97G9kv/ACSQRvQjnwS8z5AcRSgoIxz8\nXy9k/KJX0ydzsAQCBUUIVPNsrn26sWBhll1HwSfPNI6dH/x9ePge/IiaLBQIMTRNIAL9kPDAqR+6\nkqo4mLqKRF9T5WRfhn2w62OWXUTpkOkXzS/7nW95OxpGMwjMUYMHdYmaii4e0QgKR15yEQFPyhCy\no2dNqntlwWIJCTDmHJMeqpkrv4C5KadoxlDkHIEMmkkFZIXsoUdu+xIcGDNFiXdUIhxSw7SD+Kcf\n4boTTkVp3hM506fJJaR2zMmwHAXNgmiBYqbJVAKVVJzwrnfzjGs/RSnQpZmmz8zNrs4SUmCCyEFJ\nOMgHaq2JC5gpMkDz0XagJFKqyCkwrgW91M5eF/zuwVwrXsqgSkaQDIV4xu/5JjUDnELWGgEkKr6e\nX8/OuXgS2inY/vW7cbkZ8Cbe6iz2xoLFEkpO0AweIU1Mk6VD0Pn/+pdZKRWUgFDgXRefmuX9HFAJ\nVFl4cpeDlarjhALHNIoXYRd9YoCJqz9JlD7OdejU0GQRRtOhymuHweMP8+ivv4sBHSYBWzF17yxY\nLKEiN/NSTpG55xNXkWFhLftOcaJIWwqJLvPIRy5nUDZFlAJHN7uRdVVYbP2sFCTGcNQKa1UoYmLb\nT76ae1/1s0BNXdQQoB9G9ZF1fH3jiYTprWQGdDyMJxtgtjcWLJbQ4zLgIGk+kA+99V2MpZ24hXyh\nFXJUojaBIvQf4c63vpOiqulSkLwnkRA5MD78ZTtoXMm44NnVFs2mAuz82CeZ+OQnmw5TkVmLLe8n\nhXLXBBKhFyAmyDaz1l5ZsFhCaxSmNDEGHJR2sfW3/4jk5p+3qFTxIdDU3U1z/+V/wRH9XYQAkUQ3\nZno44gHSb6ASjwIDDzlGsnj6XugkofCJWy56AwdpByRTjCi7tGvbt6i8INKhitDBEf0BUsezTCxY\nLKG6CIgTph08Ckz+9m/xn521bH3H7zQzRA1oaidjU+E21805jybH/b//TjaHDTz62l9nANQREpk+\niT417gDpvuy0at5XaipvO5rwSQmqRJ/oTm3l4Ss/hPpE38ler82Tb9BcUhJtEbCGr36Drz3r2Yyn\nQGTAwENy4GWESyyuQgdGPnWVKOqECKwJjkgmZOGIapqH/tfvU/7of6HnDyalmm41Tb+EbpojlqfM\ndLfkobe8E592EbqetApXAa4CUEH0sOWSt3LcMzewoXMc/Xn8xOWs1IWjVwmTVOS1Hb7yx3/BYRMT\nVA6SQukg1ZmUs30h9sKuzRKKwUOMaK2MA4+7iuhAqdh++nMRrySv+Aoybs6JF/pBGa/Bh0ApHab7\ng1X5j5yIsN6VDFJFuXMbjzzvlWzzENLwdQui2rYSOSDjgdSBScB7WFtDrqHvBJ8PkBrhZbIaP2Mr\nlpLoIc0vWlbKDJ0MkYoenpgiA3UEHILOWedwUIQKgZjpk+l5Rz2qwRQryJFAlSvGAE8A5yhjxXxW\nMVWgKAtyFem4kn6uGRsoXiDW7J4YuBalh5BthdQ5WZ3FEvJRGZOCnBUnjuQcEVhD5nFfU9OsoiU+\nM+maMQx7uiX1ZBy5nYlBV2GgAOg7mAamx8GRiSmxq+jOeV32dCsD9LVGROnnitorPZ4YAd/8HwRS\ns5KamZvlLJaQA3ZqM11s0rx7BdgJICTaXzWlTjQf6DmO03S/alcrZ4F9NQ4AOTfT9zMJg/ZdjtVp\nXr/9KTbLAijtEgGpCUC0z5NmnNIMYbdiyF5ZLDXGDMWChTFmKBYsjDFDGWYV9Y0i8nkRuU1ENovI\na9vtbxOR+5+0WPLMa94sIltE5A4RedlivgFjzNIYpoIzAv9TVW8UkbXADSLyufZv71PV35+9s4ic\nDlwInAEcDfyriJyqOs9VY4wxK8o+cxaquk1Vb2wf7wJuA47Zy0suAK5S1YGq3g1sAc4bRWKNMctn\nXnUWInI88Bzgy+2mXxGRm0XkwyJySLvtGOC+WS/byt6DizHmADB0sBCRNcAngNep6k7gMuAk4Bxg\nG/CemV338PKnNGCLyMUicr2IXP/Qjh3zTrgxZmkNFSxEpKAJFFeq6icBVHW7qiZVzcCf8URRYyuw\ncdbLjwUeePIxVfVyVd2kqpsOX79+f96DMWYJDNMaIsCHgNtU9b2ztm+YtduPALe2jz8FXCgiHRE5\nATgF+MrokmyMWQ7DtIa8APhp4BYRuand9hvAq0TkHJoixj3ALwCo6mYRuRr4Ok1LyiXWEmLMgW+f\nwUJV/4M910N8ei+veQfwjv1IlzFmhbEenMaYoViwMMYMxYKFMWYoFiyMMUOxYGGMGYoFC2PMUCxY\nGGOGYsHCGDMUCxbGmKFYsDDGDMWChTFmKBYsjDFDsWBhjBmKBQtjzFAsWBhjhmLBwhgzFAsWxpih\nWLAwxgzFgoUxZigWLIwxQ7FgYYwZigULY8xQhlk3ZEkIGUikPI0PUEUolztRxhwgKoFSIikHEpEe\nEZf2tILHwq2IYKHAZFbGXEEZDiJFxxgdpqRe7qQZc0AY95HHIxxKpO+gn0FcNdJzrIhgIShjzlNp\nQjUSXSbLNJKXO2XGHBimouMQMkmgyM1SgFFkpF/wFREsoHlzHfVQO2oJjKeZrcaYfVEv9BN0FXYB\n9XhBqFZjMUSFokrkIuI6fUQjsQDqFZE8Y1Y8lyKhLX6kIBT9iI7rHtcdXagV8W0UMjiPy57JsQ7n\nPfIwlV9D0P5yJ82YA4TDSUUSIQwcqTMglYcubTFERLrAF4FOu//HVfU3ReQE4CrgUOBG4KdVtRKR\nDvAR4LnAw8BPquo9ezuHikPblIwDHNS8Sa/WHmLMfASAMfAzGxQQSOhojr0PA+CFqjohIgXwHyLy\nz8D/AN6nqleJyJ8ArwEua+8fVdWTReRC4N3AT+7tBAKgCREBbbp+iGbUWTcQY/ZH891SCuf3tes+\n7TNYqKoCE+3Tor0p8ELg1e32K4C30QSLC9rHAB8HPiAi0h5nz+dICSamyAIuNwFCRRlBMDTmaU0Q\nkig6MbnfxxqqSCMiHrgBOBn4IHAX8JiqzjRXbAWOaR8fA9wHoKpRRB4HDgN2POmYFwMXt08n3Lp1\nDz95n2W2HkvP3qy09MDKS9NKS88z9+fFQwULVU3AOSJyMPC3wGl72q2931MF7FPyCKp6OXD5zHMR\nuV5VNw2TnqVg6dm7lZYeWHlpWonp2Z/Xz6tSQFUfA64Fng8cLCIzweZY4IH28VZgY5u4ABwEPLI/\niTTGLL99BgsRObzNUSAiPeDFwG3A54Efa3e7CPj79vGn2ue0f/+3vdVXGGMODMMUQzYAV7T1Fg64\nWlX/UUS+DlwlIm8Hvgp8qN3/Q8BfisgWmhzFhUOm5fJ977KkLD17t9LSAysvTasqPWI/+saYYVhH\nBmPMUJY9WIjI+SJyh4hsEZE3LVMa7hGRW0TkppkaYxE5VEQ+JyJ3tveHLHIaPiwiD4rIrbO27TEN\n0nh/e81uFpFzlyg9bxOR+9vrdJOIvGLW397cpucOEXnZIqRno4h8XkRuE5HNIvLadvuyXKO9pGdZ\nrpGIdEXkKyLytTY9v9VuP0FEvtxen4+JSNlu77TPt7R/P36fJ1HVZbvR9Eq9CziRZq6brwGnL0M6\n7gHWP2nb7wFvah+/CXj3Iqfh+4BzgVv3lQbgFcA/0zRTPx/48hKl523AG/aw7+nt/64DnND+T/2I\n07MBOLd9vBb4RnveZblGe0nPslyj9n2uaR8XwJfb9301cGG7/U+AX2of/zLwJ+3jC4GP7escy52z\nOA/YoqrfVNWKZqzJBcucphkX0PRMpb3/4cU8map+kac2Mc+VhguAj2jjSzTN2BuWID1zuQC4SlUH\nqno3sIXmfzvK9GxT1Rvbx7toWuSOYZmu0V7SM5dFvUbt+5yrp/XH2+1Pvj4z1+3jwItEZK+DVJc7\nWOzu7dma3RN0KSnwLyJyQ9uzFOBIVd0GzQcDOGIZ0jVXGpbzuv1Km63/8Kyi2ZKmp80yP4fm13PZ\nr9GT0gPLdI1ExIvITcCDwOeYR09rYKan9ZyWO1gM1dtzCbxAVc8FXg5cIiLftwxpmI/lum6XAScB\n5wDbgPcsdXpEZA3wCeB1qrpzb7suRZr2kJ5lu0aqmlT1HJpOkucxgp7Wsy13sNjd27M1uyfoklHV\nB9r7B2m6s58HbJ/Jtrb3Dy51uvaShmW5bqq6vf1AZuDPeCIbvSTpkWbU8yeAK1X1k+3mZbtGe0rP\ncl+jNg2L0tN6uYPFdcApbY1tSVPR8qmlTICIjIvI2pnHwEuBW/nOnqize6gupbnS8CngZ9oa/+cD\nj89kxRfTk8r8P0JznWbSc2Fbw34CcArwlRGfW2g6/N2mqu+d9adluUZzpWe5rpEsRU/rUdYQL7AW\n9xU0Ncl3AW9ZhvOfSFNL/TVg80waaMpv1wB3tveHLnI6PkqTba1pov5r5koDTRZyZvTvLcCmJUrP\nX7bnu7n9sG2Ytf9b2vTcAbx8EdLzPTTZ5JuBm9rbK5brGu0lPctyjYCzaHpS30wToC6d9fn+Ck2F\n6t8AnXZ7t32+pf37ifs6h/XgNMYMZbmLIcaYA4QFC2PMUCxYGGOGYsHCGDMUCxbGmKFYsDDGDMWC\nhTFmKBYsjDFD+f8BGJF5iuzlt0IAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "plt.imshow(input_image)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Slicing" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "collapsed": true, + "slideshow": { + "slide_type": "-" + } + }, + "outputs": [], + "source": [ + "my_image = tf.placeholder(\"uint8\",[None,None,3])\n", + "slice = tf.slice(my_image,[10,0,0],[16,-1,-1])" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(16, 300, 3)\n" + ] + } + ], + "source": [ + "with tf.Session() as session:\n", + " result = session.run(slice,feed_dict={my_image: input_image})\n", + " print(result.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAA0CAYAAACaTMOLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAABcNJREFUeJzt3U1sFHUYx/Hvj1bwBXwtGoQK1RCNB18agiQaL0YFLtUb\nXORAwkUTPXjAePGoJnowMSYYiWgMXNTIQaOGGL0oUpRXSaEihgoBiYliNCLt42EGWZsu292dnWX+\n/j7JZmb/O9t5njybJzszO/0rIjAzs+qb0e0AzMysGG7oZmaJcEM3M0uEG7qZWSLc0M3MEuGGbmaW\niLYauqTlkkYkjUpaX1RQZmbWPLX6O3RJPcBB4EFgDNgBrI6I74oLz8zMpqudb+hLgdGIOBwRZ4At\nwFAxYZmZWbN623jvfOBozfMx4J4LvaGv77pYtGjg/MDEOAB/7t7777qZWeoC0OTljBlcducd2QYz\nes5vPD7Bzl3fnoqIuY3+bjsNXXXi/O9G0jpgHcBN/f0Mbx8mekBMMH76NAAHblzI+O+/thGKmVk1\n9ABn1EtvnGVc0Btwll5mXn4pt33+ebbN7CsJZX1y4rc/6Llqzo/T+dvtnHIZA/prni8Ajk3eKCI2\nRMSSiFgyt6+vjd2ZmdmFtNPQdwCLJQ1ImgmsArYWE5aZmTWr5VMuEXFW0hPAx2RHERsjYn9hkZmZ\nWVPaOYdORHwIfFhQLGZm1gbfKWpmlgg3dDOzRDRs6JI2SjopaV/N2LWSPpV0KF9e09kwzcyskel8\nQ38TWD5pbD2wLSIWA9vy52Zm1kUNG3pEfAH8Mml4CNiUr28CHik4LjMza1Kr59BviIjjAPny+uJC\nMjOzVnT8oqikdZKGJQ3/fOpUp3dnZva/1WpDPyFpHkC+PFlvQ9/6b2ZWjlYb+lZgTb6+BvigmHDM\nzKxV0/nZ4mbgS+BWSWOS1gLPAw9KOkQ2wcXznQ3TzMwaaXjrf0SsrvPSAwXHYmZmbfCdomZmiWh5\nTtGWdiadBkZK22H5+oCUf8rj/Kot5fxSzg1gYadnLGrFSEQsKXmfpZE07Pyqy/lVV8q5NcOnXMzM\nEuGGbmaWiLIb+oaS91c251dtzq+6Us5t2kq9KGpmZp3jUy5mZolwQzczS0RpDV3SckkjkkYlJTEh\nhqQjkvZK2iVpOB+r7GxOzcxOpcwreT33SBrsXuSN1cntOUk/5fXbJWllzWvP5LmNSHq4O1FPn6R+\nSZ9JOiBpv6Qn8/FU6lcvv2RqWIiI6PgD6AG+B24GZgK7gdvL2HeH8zoC9E0aexFYn6+vB17odpxN\n5HM/MAjsa5QPsBL4CBCwDNje7fhbyO054Okptr09/4zOAgbyz25Pt3NokN88YDBfnwMczPNIpX71\n8kumhkU8yvqGvhQYjYjDEXEG2EI261GKKjubUzQ3O9UQ8FZkvgKuPvcvlS9GdXKrZwjYEhF/RcQP\nwCjZZ/iiFRHHI+KbfP00cACYTzr1q5dfPZWrYRHKaujzgaM1z8e4cDGqIoBPJO2UtC4fS202p3r5\npFLTJ/JTDhtrTo9VOjdJi4C7ge0kWL9J+UGCNWxVWQ1dU4yl8HvJeyNiEFgBPC7p/m4HVKIUavoa\ncAtwF3AceCkfr2xukmYD7wJPRcRvF9p0irGLPscp8kuuhu0oq6GPAf01zxcAx0rad8dExLF8eRJ4\nn+yQbtqzOVVEvXwqX9OIOBER4xExAbzO+UPySuYm6RKyZvdORLyXDydTv6nyS62G7Sqroe8AFksa\nkDQTWEU261FlSbpC0pxz68BDwD7Sm82pXj5bgcfyX0ssA349d2hfFZPOGT9KVj/IclslaZakAWAx\n8HXZ8TVDkoA3gAMR8XLNS0nUr15+KdWwEGVdfSW7qn6Q7Grzs92+GlxAPjeTXUXfDew/lxNwHbAN\nOJQvr+12rE3ktJnssPVvsm84a+vlQ3ZI+2pez73Akm7H30Jub+ex7yFrAPNqtn82z20EWNHt+KeR\n331kpxT2ALvyx8qE6lcvv2RqWMTDt/6bmSXCd4qamSXCDd3MLBFu6GZmiXBDNzNLhBu6mVki3NDN\nzBLhhm5mloh/AHqAUQCff1+bAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.imshow(result)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "## Transpose" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "x = tf.Variable(input_image,name='x')\n", + "model = tf.global_variables_initializer()\n", + "\n", + "with tf.Session() as session:\n", + " x = tf.transpose(x, perm=[1,0,2])\n", + " session.run(model)\n", + " result=session.run(x)" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQsAAAD8CAYAAABgtYFHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XuYZFV56P/vu9beu6q7ZwYYBoZhGGSAQRgUBhyJeTTG\nKChgzkFPNGISNTnkx/nFyxONifEeTTQaT9QcTgwejBzBG8Fr0GAIElHjLwg43Ib7AIMMIDDAXPpS\ntfda6/39sXcPLcwMxXT1bfr9PE8/XbV7d9Xbu6veWvclqooxxjwdN9MBGGPmBksWxpieWLIwxvTE\nkoUxpieWLIwxPbFkYYzpyZQlCxE5VURuF5ENIvLuqXoeY8z0kKkYZyEiHrgDOAXYBFwDvF5Vb+n7\nkxljpsVUlSxOAjao6t2qWgIXAWdM0XMZY6ZBNkWPuxy4b8L9TcCv7OrkJYsX62GHHQZJgEh0Dq8K\nIlMUnjF7HwWEuqagKggJFYcAGiPrbrxxs6oesKePP1XJYmfv8l+q74jI2cDZACtWHMI1635KIsdr\nfWZ01vpqTK+ExEhSBp0nAHkZwXk0AzTC8Chu0aJ7J/McU5UsNgErJtw/BHhg4gmqeh5wHsDaNc/T\nihwPpAjOgQaQLE1ReMbsbSKDLqfUSEs9KQ+45AEQkbrQPklTlSyuAVaJyErgfuBM4Hd2fXoiJ0F0\nSAZseYg0MEQci1MUnjF7l5jGKLJ9UA1QOVyrw8hgiyEAdbg0+XL6lCQLVQ0i8lbgMsAD56vqzbs8\n3wmiDk0BOltZv99BdAUymxBrTE98BjE4gktUkiEaOOmxR2GfxX17jqkqWaCqlwKX9nKuAEEgyzK6\nXU8lkKtDsWqIMb0oAwzSIskYQxFCDqVfQAaIJlQm/8k7a9oQPYAkMhWcYonCmGegAEalon7bBKgy\nMu3gFcQ5+pArZk+yMMbMbpYsjDE9sWRhjOmJJQtjTE8sWRhjemLJwhjTE0sWxpieWLIwxvTEkoUx\npieWLIwxPbFkYYzpiSULY0xPLFkYY3piycIY0xNLFsaYnliyMMb0xJKFMaYnliyMMT2xZGGM6Ykl\nC2NMTyxZGGN6YsnCGNMTSxbGmJ5YsjDG9MSShTGmJ5YsjDE9mdRepyKyEdgORCCo6loRWQz8E3AY\nsBH4bVV9fHJhGmNmWj9KFr+hqmtUdW1z/93AFaq6CriiuW+MmeOmohpyBnBBc/sC4FVT8BzGmGk2\n2WShwL+JyM9E5Ozm2FJVfRCg+X7gJJ/DGDMLTKrNAnihqj4gIgcCl4vIbb3+YpNczgY4dMWKSYZh\njJlqkypZqOoDzfeHgW8BJwEPicgygOb7w7v43fNUda2qrj1gyZLJhGGMmQZ7nCxEZEhEFo7fBl4O\nrAcuAd7UnPYm4J8nG6QxZuZNphqyFPiWiIw/zldU9V9F5BrgYhE5C/g58NrJh2mMmWl7nCxU9W7g\n+J0cfxR42WSCMsbMPjaC0xjTE0sWxpieWLIwxvTEkoUxpieWLIwxPbFkYYzpiSULY0xPLFkYY3pi\nycIY0xNLFsaYnliyMMb0xJKFMaYnliyMMT2xZGGM6YklC2NMTyxZGGN6MtkFe+c976GKjhYJxTOa\nQSvEmQ7L7CGhXrI+OiFPBVulywKFKs/Iq0jIPErEB513n7SWLCYrQk5OzITR0GEAIc67l9HeY9A5\nhgloUgJdDiBjlEgeEyJACAwgDErBNi1nOtxpZcliksbIGaBiS0wsGlhAVVV4ujMdltlDmyWxTxQ8\nwiiJ7RoYBMZQFmQOrZTSQSeV8+7NM9/+3r7zUhEVDn//Bxk86w9YoAMEmV+fOHuT0sE+PiMOj7Hx\nGxfxyAc+DnE7nQSBxBAQk5KLI2qa6XCnlSWLSXJasOgjf8by93yY0gUUpY2f6bDMHmoDpVYkabHs\nPe/liHe9lU1/+b9xf/lhsiRsdSVFgjjeuDGPWLKYpP3+6l08688/SOWg0AylbiQzc5QknGQUCglA\nFrHsw+/hPz/+1xxYjhEctBKQ5lepAqzrtGd1EnBU3lMAA8BIcSDPevu7GM2EPIFK84ljX3P3C0eG\nBwEngAOP47APvpsRFqK0CTgWMP9YsuiRF1ASWYyUCGN5m2Nu/C5jC9q0k0NDQoCM+feJMx8c+L4P\nsPyWHzIYSobwbJmHNU1LFj1yTf20AEDIq0jBIAOa43CUhSMAVQwzF6SZMkUXBvy+iFcCgSLOv8qm\nJYseCRAkQ4DkE4LS7lRQASGhgAdymYcfOfNBBjFWRK+MOCHNw5YpSxY9SgJRhBKHizDsYOuAoAVQ\nQDtFJABql3SvpNAux/AltJMjn4efCfbK7lFSGEyODCEHFqaMwcqhZT0AKznQDMI8fBHNByGDTgEJ\nR0LZNs/GWEAPyUJEzheRh0Vk/YRji0XkchG5s/m+X3NcROQcEdkgIjeKyIlTGfx0CpKR6FJKpMIR\n6VA5jytagMPhmwbO+Vc8nS/a0YEogcjg/MsVPZUsvgCc+qRj7wauUNVVwBXNfYDTgFXN19nAuf0J\n0xgz0542Wajqj4DHnnT4DOCC5vYFwKsmHL9Qa1cB+4rIsn4Fa4yZOXvaZrFUVR8EaL4f2BxfDtw3\n4bxNzbGnEJGzReRaEbn2kc2b9zAMY8x06XcD584q7DsdQa+q56nqWlVde8CSJX0OwxjTb3uaLB4a\nr1403x9ujm8CVkw47xDggT0PzxgzW+xpsrgEeFNz+03AP084/samV+QFwNbx6spclzRRiOC1HvZd\nkhNyBylRJoUIVB1KqpkO1UzCKFBC3VdOAk2UqVn5LCY6mTIo1PNH5pmnnXUqIl8FXgIsEZFNwF8A\nHwcuFpGzgJ8Dr21OvxQ4HdhAfd3/YApinhEeUNUJs0o97bIL4kBAUyDlQlFFyPMZjdXsuQyIBKKA\nQ0lRKbIMjTDWLhiqoETm5Qygp00Wqvr6XfzoZTs5V4G3TDao2SghVCKQC1IlVDv89KST+bXhB4C8\nzhndgrIlzfwRMxdlKVA4UMmQAKoQgPs//TEeed/H8FkGIZFI8259BxvB2aPc5URVqiqhDvIMDhnZ\nzKN/dy65QgiO0JKm+GrmKuccio7PVoc8IYyw9d0fw5fbKaInAcV8W/kGSxY9UwIZdXWkirAt1MWy\nh97xZzzyv85BnKPQ+fki2qsopBAhQXCJrPMYvzjnXFwcodX2dLTLgJ+fb5z5VpLacymQqKeqOyAH\ntgKLKNn2jncQU2LZ77yGshhE5sBOAJo83pUobSpX4ZMj0+1U2T609ltEJOHEIUq9KpTvw9ujCpBX\nwAAodEVp3X83VbHf5B+7T2IOKWb4OMJjF57HnR/4GAd2thOB2KnfMFWcjy0Wliwm7RFggSTKd76T\nR//0nSQSYQ5MDxEHhJy86b3pAu7QlSy78koO2m8RThwhBnKXgevT56h3dBmgRSKI44E/exeP/91n\nIQ335/H7ICkMaU4EugXsW1akjLrhYp6zZDFJOY6uS2TJUWrA+ww/BxbA0QQDHsYidFswtP+zOPxb\nX2dw+cGgigp4X3cPphBxWR+6CsVRqNZTdKPy+Kf/lqEInck/ct+IB4kVBRBKKMgJIcK87P/4ZZYs\nJimRQKEikDsghjmxyVBC2e4qNMKSBcs5fNNGOhLrN7ITHJBSAidIP6ogACVIJmz8mw+y7UMfox0H\n6DBGmkXXayAmIjAmzQeBh3YQ5kDNcspZspgkBRCPpohQUAF+Duwbok1C8AcdyME/uIxKYIC65S6l\nhIjgmuqHSH/qVTED5+GR9/0VbYHtPuAT5LPoU7tU0MwTkpAlh4ZI3Upl6cKSxSQ5gCQMAFFLCmFO\nrJZVxMQRV/0M1p4IJIoA+EdJshjn3I6E0U+jH/5zbv/Y/2JAMkZ9YDD4ZimZ2dTI40mhoi31B4GX\njFGdC2XFqWfJYpI8gAZ2lCUUZlf91hOzSB5yulKR0yLTLtuXrYG1x1F0FG0pSIK0P65pmnCTaNQs\ngSJVBJeTKVQKj5/zcR78q0+QU39GtwIkYnOlZlN3cxNRE5JqsETRsOuwl4tZxIccpaKlUGiX7qFH\ncOK//J96DGIhVOJBlU6fpjsoEWKOpA7j7Zn3vvOj/XlwM2MsWezl8pAjVFBAV4R0wCEce+8dZMc8\nn3Yz0SVPJXhf3++DAg95wtPmgU99hHuco5Vss+i5zpLFXq4rFQKUlbB4/2WsuvKKutDfVkYlohoQ\ndXRF+zY+RFFUHQ9/8XM89ud/QekVtdm4c561WezlclpkdHFLlnPIlVeQHX0kLjkqVzKAIK7OEEUf\nGxkDQhHhvj98Gz4lUhIUtRfbHGcli71cpl3GDj2CIx++l7j6SByO6B4hjwUVOWhGIENSrKsrfbD5\n/36ea9v7IaGLB8TnDPXlkc1MsmSx1/DErJnoJoC0yICRZWs47ttfodUR2qpUrsTHA8A3WzFKU7x0\nnnrGS+9KSgIBulXdxaHQZYxH/vsfkscteOq+BRdLrMVi7rNksZfwRAgtWi5HcsB1OfLan7HmgWsI\nJ5wELWFM6n1Nyj71ehShwONIEhj18NA3v8ztMnsmhZn+smSxl1ByMrqMpQqthGzxIfC8NRQdT7sZ\n9jGQIoJQ9KnXQx1USUjFANsv/iKPvOa/0y2sDLG3smSxlxjv9agKntLrUTp29HoAfev1SG6E1DSQ\nDr/uD4GSIthLam9l/9m9RK6OLo72kmex8uH78auPop0cRChCRCSj8h4lI0v9meegYYjq+//CdW6Q\n7ZR0BSTNptGrpp8sWewlMhLu0JUceck36UjCJ4juEcDRaaaXy3j3qOvPGzpkMHbb3WQuMlzAIs2g\nz/NJzOxhyWIOGq9GlB6Sy4FsR6+HPO+4p/R6tGFHr0f9q/1ZfTynYvFb38bx16xjsISOD6gqCYdD\nUBHAkZGjYiuez3WWLOagpI42LbwH1Yps6cE7ej1clfW912NXKnK0G3AnHMvRqiy/7hpaLzqZxSTy\nZhRnmSe2U5GpjeCc6yxZzEEDLhHoEkoYOGAlK77/jR29HlnW/16PXWkHcK0MUkVeKoueu5ajL/sW\nj/lm9Yd2Rh48S3yBZDZ+c66z/+AclKlQFcqaa2+iOPY5RAcVJY56QRsRRwgJn+1889l+CRlkCdAc\nlwe8Jhhoc0KljFTbub19EAPapUMkxCHEFrKc06xkMQeNKORLVlIc+xySQJft5DHDB4cER4XHZwXS\np16PXZk4PNyLgnpGq0hMMOQWcvRPv4d7zon4CE5n/+phZvcsWcxB+ZHPZtWl36R0AZdgMC1kvNej\nzHzfez12xasnuJLgK1QzghNaRQvnE7iK7Pkv4qirf8Q+7/1LMpt1OudZspjFHIOU9UBu2jQb9q4+\njtV3Xk84fg2ODPUVaNzR61HQ/16PXRJHRkFGjoiQ4eqJY8ERnKdIDi2G2P+jH2D15ntZ8o53o63F\nFDgq6hGgihAFIh5cAc3PxqyCPOs8bbIQkfNF5GERWT/h2IdE5H4Rub75On3Cz94jIhtE5HYRecVU\nBT4fdOgylLUQoJPDomet4rivfZlIC9+FcnwR2dm0Kh2QsnpVzejq/UnyCGH/Q1j6qY9y2He+RCSR\nA4MpA7SexCZCnoQczxCwyJo3Zp1eShZfAE7dyfFPq+qa5utSABFZDZwJHNv8zj+IyPzbm75PPJFu\nGCUrBtBlR3HwFRcjq4+mFSHLn+j16NsmQH3ikuCDg1hRasQ5yEpHwrHglNNY+Lb/F3UDPO4iLoc8\nRgY0oFR0iQTnZtUSvqb2tK8yVf0R8FiPj3cGcJGqdlX1HmADcNIk4pvXhgCXQ1i2gjV33s7Cw9YQ\nm6qHugpxjhQVdbPsreWgzOpNigpNQBeK1HTlKod+6lzWdEc56C1/RAxtICMIjOSJyiVazd4lZnaZ\nzEfSW0XkxqaaMj4veTlw34RzNjXHnkJEzhaRa0Xk2kc2b55EGHuvbUD74FUcecU/gQf13bprNNa9\nHgGP+Lzej3Q2qbp1YggOnK9HciaHSkWGID5RZvCsv/sUB192IcMrj8UrDMR6tHiFMqKz7Y8ye5os\nzgWOANYADwKfbI7v7ONgp/91VT1PVdeq6toDlizZwzD2DokWLaDAUQJJChzwvPXrOGLjLSxcvobS\nd5HYtPp5D5mv33iwR4MpFFC6MAZKemIHA60HVIXmfgqR8pmOj8hbdUwZIA6hAAcy3uAqrl54x7VY\nespref7d17PkO1+lXLGKfSKMEGk1I1RLGaAkJwdaQGVDg2bMHiULVX1IVaOqJuBzPFHV2ASsmHDq\nIcADkwtx75eky3Y8YyTaAkFL0urjSMeuJpJBXm+lBzDWp+eUkNCqhQ6AqEO0Q9cBQfEksmYjLuc9\nRZzaNpGMxIGnnslxP72M+Pu/xz6ZkLRLiMI+OkYmFYowDAyKtXzOlD16FYjIsgl3Xw2M95RcApwp\nIi0RWQmsAq6eXIh7vyHliV6P7Km9HjtKDtoshdcHMXN08vqho0KQgkwT3bx+sq6PBGA0lvXGH1Oo\nGxyjGfgDV3LM+f/I8P4rGHPQRhgBMgVpFQzgGJ5ljbnzSS9dp18F/hN4tohsEpGzgE+IyE0iciPw\nG8A7AFT1ZuBi4BbgX4G3qKptEvk0tgMjMsqYg/0PWs2RG+8gHnMkHihbESUgKoSsHsfQD0rFYKgY\nvfTrrMsXsu2Gn+GaBXQIjgJPlhIDPqec4pJ/y1UMkHDdAKnF8x68lxeUFZ39lpMDowV0uhGc0I62\nXsZM6aU35PWqukxVc1U9RFU/r6pvUNXnqupxqvpfVfXBCed/VFWPUNVnq+r3pjb8vYN3OQUwsOIo\nDvnRd/ERRNp46jeROEhJ8X3sUMxiztZ/+xfueeWbcGmYTSeczL3nfwanj6Gu3s2QpEgU8ilua1SX\nE2JC2xnBAwLJJY64+Qrav/t7LCrbtLOApEhmnSQzxsp0s4Co7Oj18IetfEqvB2lCr0efCmrJKz9/\n5W8zyCg4R5VtY/isd3LLb/8/VG4MqohqhFQPrppKUkLwdfuqdAIVAReEwaWrWPGl8znoS5+jG2Dr\nkGPEOklmjCWLaZRoEeSpvR56xPN29Hr4FJ/S64F7otfjmY5xq1NLIDRvskDg4X+9jJvEkajYBmQp\nkTWr+Xe/9U02yCD3vPmNVHkBvmnXGP8bUiCQ6GvdsoABMjzg2xk5GeQ50SUKhP1e/3s8Jw5z7Dn/\nB20vJzYxVYBQn59LPRw+NEM0nIDWy/6YPrFkMY2SdCl08Cm9Hmu+/ZkdvR6h2ca8X70eXgPEjCyM\ngUKGsumM39rl+UXMGC1g7PyLGPvXb7HVd/AK3bLLKODEkQVHmoZPeE+TpATUDbHoD87kpJu+jY8L\nSUCeC7hASSAqLJKCViroat017Pub0uY9SxbTaFAdFaPkxQDbBY7ecB3H3/wz3BEn0EqAA59KEMdg\nn17nXcmIvoIsZ/Nl3+eawUEkjuzyfCHQKgsScP9v/Ta3yCB3PPckBgvoEijFoR5y7Vc62zUfHVml\nEEPTsLsAVq7l+HILh9+1nlAp0TmUekhH1BJF68lsCslmuvaVJYtpNEwiF9gexjho+WoGj1hD0ABF\nZNQ9sUlxcKB96vZohXpPkce+ewV3nnYKrVIZ2E0ickASwdNm22hg0Cvh5mt48KN/w37DI3W7iQTS\nNEz5SV5J9RKjJOqd1kKzcdqiQ49myTnnEN0iCupZqmMCgQovQuW9Dd/qM0sW08i7nEKf2utRurCj\n1wNPX3s9QpbIYsn9/+2/MuAdISrlbh6+IiNql2FGGXAZwdWjObe8/y+49fQzSDf+BNGM0LcRH7uL\nRejiCCg5gZxEVoW6bSWLPOutb+Ow9T+meNmpoILz9Vwap0oeE2VmL+9+sqs5jfJU0Vl9HCdsvBl3\n6MGoBx+3kdMikkPM6r3GNVL1qQjd/fefcPW+S0mhpIiJFgm/m/YGl9dpYAFAihShnuTVIWPbj3/M\nXWt+nfX/5Tcp7ri1L/HtTgsYUE+mdfGixDGaZ3gSrSah7rtqNav+7VKOv+4y/EtfBlXGthxKlCQ2\nJqOfLFlMgYoCrdsriR6SL+oNi4/8VZ578Regk5GRITGiftGOaRTjPQ8inuIZLlwTAVJFTHXjXhfY\n9sOfsOFlL6Y1vKWJqy4l7HbAdNMrUi+CpyQNeIWCwD4kui4y+C+XcdVJL0FD86DjAcSKpM32hc08\nk/ENk0f2NPkJO0awFsAgUF+tvNneoO7+8KtP4Tnf/TZL/vYj7F9BOwOpCioPXhwVGdX4xtFWQdkj\nliymgPgSFwaogFaEgVhSHfNc1nz7M6RjV09Nr0csiS7HS/3+dWGMm175m316dOj6esXNQmDMOwa2\nPcr6N59F99G76zTgYdTnOGkBqV7ST9KOV9hQOcWrdrmAcwtY8s53Mfqrv04IkPISzwBBEwWBwQAO\nR8psfsmesGQxBQajI8oYPh9gxEF16LM54ZZ1uCNOIIutKen1UFdQaQc0Uf7gJ9w2tB9DY1v68+DU\nq11Fn9FRR4wlHSL+c+dz97IjWC+DpEc20aLbTGd1ROovpE4ao1P8Yd6VDGJFSwMnXHklR4XA0HN+\nncE4RiUg7Yyu80SUbKpHme2l7KpNgWESLWC4GuPAg1dzzA+/t6PXI3impNdDASdtAhXrX/4iRrWk\nv1V2JUMZ0wTeU2Sw3dclo5avuPnUMxj54Q9BAij4SN02kgSqioEpfqXlIULhKUXqhXa855h/v5QF\nf/1BoltI6gY0RSoywhQvZLy3smQxBfKszbDCc+66nkN+fjPZISsRadeDomJE8ATvyVT6NnzbxW2U\nP/z/uG1of/aNA/hKUd+/j/NWVhBiZKGCjwlVoZB61GWIgWLdOu55ySu4odiX8uYfgdtCGYAokOdM\n9cxyyTxUjgIHweGDwlDGQe/5MCeGbSz94IcIZIivWJhaUxvMXsqSxVQIHQaOP5EFhx8LUhEy8Lod\n9Z5R70EFj6BEqj59/I9cdQvXn3460ulQ6hgDQBb79w4dDomIQOGoUHxUihBoASIFW4oCJSNWI/zs\nuFez9R++gs8BDx2Uvk2X3QWJI4zkEHDELNDNunTzAh+hqGDph97Fc6+8hGz1WkbFBmvtCUsWk+Sa\nxWWTBy+DVGSUa17Kc79+AYQMiY5AABYiNK35k+j1AECbLo/U9IJU27jv5Jewb3eYQESpezz6OdjZ\nE8hQKNOOUSCButclaUm7LBHqkZYDspWNb30b3HEbpUA7eiopSQECCrGCLpQKpD69cf0QQ9T9JJ6M\nFm1aAL6iykskDdD+9dM4+vJL0NRGPLRoEREqERxSd+D4ekRo4er7GZ4kUz+mZC6wZDFJ3ZRo5Qso\nFaQ1xqJjjuc5111GdcRzUA/Ju2bR2v4pxUHoEqgYvXod65ceRrfbJcQ6UYjM7DzuBRJpkVh39DHc\n5nLueNPvk5eOlCU8QpIcWpBLIrkpbvnUnIQHqZAyoUuXcZxu59hH7qcrGW2U5JQSR46QEiSEkBwD\ngBApbDc1wJLFpBV4tBohVygPP5Gll1/AYMzIY/3J6VNExNXjDvr1nBoga9G59gZ+fspLcI8/Djwx\nJEGbxW5najb3SIIgMCAtuj4Qv3wBj3//W3RwiDYLd5cVoezgpnhGmgoU6uqVgAtHDhTB0d3vYI66\n9KvEVcewKIJD2Z4rg5qaDZ0i2rw9pno3+rnCksUkeSJbndI++ldYffnXGVp+LJF6h7CcentBaaoM\n/dKVjKAVN538a6ThEcqmQUBEfqlUMVPli26rTUdhVAPtekkM7n/l7/DYH/0JbPlFfVLhSUWbNMXd\nmBUgoqj6HYPSyBKDXchPPYVjrrqchW/5U9ok9q1g1EEXJRdhFKWbZUzxlrFzhiWLSQpk7Pfs53HU\nLVfROvAwEvUEKFJEXUaZZfXMT9e/RrXqP6/ltiVLGdheIQk0r1/NqrqjVDGTVZGFZQcBWi7SdfWL\nrDPgGT3v09y0eBn3fuj9VMOP0QoOzaa2iF+UCYJDpF5bPCdBUiginjay31IO+vv/yVGb70H+x1kU\nKWdQ2pQoC4AYAtH2yQIsWUyarl3Lyu9cUI8p8FBoJNcMnN/REt9S8H3cNOfWV76S7PEtOBepSEhV\nP/aTE8RMVUO2S4shV6/05dMQY67Aj3UZbqonW/7yk9x08mspsy5ep7bNols4Ohl1o3Cq6gZWPIgi\nWuFTBhX4fZ7Fsz/7j4wedhhBK3JfD+AaBDIblwFYsuiZ5kJOvc6D+JwK6J74K6y55ko4/NhmJavQ\nrA3XfDXTqev7e/CmSBVdAkmhYoxt11zLtfscSGvLI3V3pApeBGnSgk7YmEdVZ6wa0kpduqnej8Qx\ngk9lvUygr1fq7tIhu/pK1g2u4PZX/Bbx9tvpkogJiAlNgNarcUUSFWHHXJPyGdbnWtQbRiMOXF6v\nx+UAMpC8nuWbA1m9Gtnz77mDVTrCii9/EQVGMshS/W/UrF5ceZBZt2PktJiHf/KeiVGpqOqFVWLF\nUFHw/E+9n0pb+ACVKElTXxsKSie0qohTiDfcyabTf5OBbY+QnpQU5goZn7eCJ3lYOPYI+v1L+c/n\nPR+lImkHkkNcAKlXMnc4EhmEWO+hPMUvWVUoUotFr3017dedSRYKnHOUBRBgiSsoge48LGxYsuhR\n3aWmOFd/yoyVgW2HHUoe60LDeK9HdP2r3+Ypq/v43Rh3vfwUZPNDjPrZ0+vxTLVDPXM0R4gBYhu2\nuJJ9RrZz33/7A/wD2yjzREqubojsKFI147lyDyQkTu2AKqeJpF0y2hzx1QtZ9fUL2d5ehlZQedia\n6rJNGprSMGYlSxY9Gh8gnJHRAcDTGm5BFlBKnECl+kw3+tutyo3RXb+e25YewbbHHqeLJ4tPbZtw\nMzyuolcdlzNGvXRfBqROxlBqU+aw9ZKLuX7VUq7zHh7eTKawvV1SZYmsrnFRSsT5qW1s7DhH5VsQ\n6pW54m+9il/dfh+HXviPpKFlFNSDvhaNzL+3zvz7i/dQqqu3pARewGeQYoQoOPWUkqGS97WdoLph\nA/ee9krk4QcZDIqnHl04seox0wOwnomQ1SWzLPd0AV94utKlqDx5jMQutAdyrv6NFzLygx+zEAii\nqDRNQJKaD9VhAAARuklEQVSjaWrL/y2gFRQEcnL2CS1IicW/90YO/f4/UgjgHeWMtQjNHEsWPepK\nfbEcAgopVKTcg/Mg/olejz4Wk+867QzSLzaxRcBJIFAxhH9qr8ccabcYKgMLkjAWlUwcruwygBIc\nFNKiAFojFQN3bOS2k18MD23BoZTN/iVowsnUvmQTFWgXSHSoqx6I0CVnWetQuh5SLBnJp3h9jlnI\nkkWP8iojAWNSkah3AVfiEw0ITa+H93vwIkpQUo1vbc7Y+tu4etlKqgfvoYPSlnrp/QyhJD2l12Ou\nCNSTyrKU8JrqVbsUXIqUzQpbXYAUyBTWLV/GTdJiy6c/RZJ6xasgrt7zfbyAEVPd+NknnhzyNmSO\nNpAL4IQM6DjIYr0I0FDV6dtzzhWWLGaDBEWAFCFIxd0vfRkDv9hYF70n9NGpgM6Z5szJK6JCpjz+\nzvcS7riRSJ0jXBKSQEhdgo8Em0U6LXrZGHmFiPxARG4VkZtF5I+b44tF5HIRubP5vl9zXETkHBHZ\nICI3isiJU/1HzHkC3UzobriL6xYfQvexB+oZjyJ1HT2lJ6oec6iNYrIi0IrKcB7YePSJXCcD3Pe6\n1wBdRCCLRT1uwtvOY9Ohl5JFAN6pqscALwDeIiKrgXcDV6jqKuCK5j7AacCq5uts4Ny+R72XiR7k\njnu575STKbY/SjsWOxoy66nsQlL9pfEV84GnRaaCr2C4lVPQoXPxN3j0O9+gSwBfrwnibFbotOhl\nF/UHVXVdc3s7cCuwHDgDuKA57QLgVc3tM4ALtXYVsK+ILOt75HsRr2Pc8/JTqTZtJKRISUB93Zjq\nmlb38bloc6mNYrIcXUZQitYCtNthdAA6wEOv+kO2n/UOgqsIVUJsvYlp8YzaLETkMOAE4KfAUlV9\nEOqEAhzYnLYcuG/Cr21qjs17MZT1gjQBqBTCCNvv2cjdhxzG9ns3EEXIEnhXr7aXUBL15LBm/6F5\npaJuNw7dYTJgYKxe3KZijI1f+AeulwF+8f53IMObINbzw8YX/VHY0Qi6Y/BaM9FuPiXcfuo5WYjI\nAuAbwNtVddvuTt3Jsaf8d0TkbBG5VkSufWTz5l7DmNuyAj82RpnVQ7m7Gx/ijlNOY8ujj+3olp04\nMtPsXCf3+KRIHtnyif/Luhf/LqMeVBIZCV/VCwmrPNFLMnE27lwamzKb9JQsRCSnThRfVtVvNocf\nGq9eNN8fbo5vAlZM+PVDgAee/Jiqep6qrlXVtQcsWbKn8c8polANeDIFfODu015BftdtpG6oGzMn\nTP6yl/OuDVb1Fo/tCsR36Fz3E7Z/7K/xncfr9TFyaGsXiU+s8zGRJeM900tviACfB25V1U9N+NEl\nwJua228C/nnC8Tc2vSIvALaOV1fmO0kgWhDuvItbVx7N2IYNpGauiagiKCKOpPOpg/SZq3xdv+g4\n2O6g7SK/eO/7WDewhPULlxJ1GNdtMT77XVV3lCjGb5tnrpeSxQuBNwAvFZHrm6/TgY8Dp4jIncAp\nzX2AS4G7gQ3A54A39z/suUkceOmy4ZSTad97Hy0KnGsmhQGK1AOOqLtNzc5lUYleEHIGNadK0MKR\nAeXYw9zzurPoPHrrjg0Tx5PE+G2zZ552kQVV/Q92XSp+2U7OV+Atk4xrr7Tlofu550WnoA9spOua\nrQ1DwdiOmQaKaj0rc751kz4TORBjxDlFQr1m5rAXVDOyBPFrF3PX177GwNlvYP9PnMOCBQvw3lup\nYpJsBGevNEOcQwVSkajEkycPIUCMqMZ6lpnGelZqSnRIjK9HO7JpM6O/9kLSfXdQqGewXqaTsWYF\nTdd81ROxLVHsTknzwk1PXKk8RooUcAQ61FsObD/vQu5as5ruFZcQyoioMEbJjqGgZT3EPlL3oqTd\nbN6cAS4p0lQRp3pR8tnIkkWPlApN9WpORbNqU8wUfEbCk8TXyyeFeuZicI52x+ESEAP3nfoSHvz5\nJkIVSc2L3Dn3S8O5Tf+1Nj7M7f/ld6EcJiYYKAuQRMeVkOd0U0IJZAGc7npeTwSq3BGBvMgZm4cF\nFHul9ig2m/dkGWiAFp7NF3wZ0hjiu3it2x2Cr8cBZCXQgu59G7jp+S9k280319WOpoqRiaNKyVrm\np1ggkJdj3LJwMdflGQ998iOMOGiHgq4kWh6ymIFTdDd7LPoIA6XUK3eVgdY83IjdkkWP2hQ4BFVI\nWV19uOt/f5a73ng2j135H5QSCHTxTijCAMlB+fO7uP+011BddzWFX0CMcUeiSM3GQ1aHnlo54CgY\nIdEu4LH3foDsxlshq1ftqqrY1AGFsJv1PdXDCCWQaLmcKd7uZFayZNEjV3dsQqrrtz6HQ4Y3U37l\nSzzwGycz+pnz0U2PAo4yqxd3vfPVZ/L4bTfQLqCThpvHqWePRiB3jjTFi7nMd1vbbcYoGfItKCMq\ncMvxL+AXnz2XioTmOUToEMnZ9bDxMSrSwhYe6KSqXudinrFk0aMxurRQMoUs5Iyqo0O9X2kC7v3T\nP+bmFctZL8J9L34Zd65eSbpuHd47yhIWaqsehuwcAcU5R0zJ/gFTbKhT0qbuPSl9s4iRK3nsj97M\nusWr2PaliwhZXa1Ed123GLzuHm7/2BfY1gJB2Wcebjw0D9t090xBsxs4ABWDoW6j6Grzqul0cNSN\n7MM//vcdvzc+4jjQred27EgQM7dU/3yi1IvsOMKEnaJLKloseHwj9/3+63nsB9/hqM9/GcgoKfFE\nvLYABwrbH/w5N7z4+ew/PMwI9bKKXauGGDM/ZHRxxSJa0TF8/le4qtiPe/7k7RRdxdGis+1R1u2z\nkPVeuPNZh3HA8BjB1dXPoP3doX6usGRh5qWuZAyX29iaJwaKjMFqC2N/9/eMXHUF95x7LjevOBE/\nNkwC8lQwKhVdTQxW9Zsmm+K1QGcjq4aYecmpo1XPdychqIdOitzz0lfiEjhaBGAggzJ0KT0UDlIz\nbqsSxc2zqsj8S4/GAEpJK7TqVqhMSSrk6mk1m8pFuhQeugEKHIPqkAo6Tuh4qOZh36klCzMvtXGM\n0MU7RycGUCUn0sWRfLPUYczw5HR8IjlPBCQpA1EY6uNG13OFVUPMvFTWO6iSUtrxJqg3I0gQ682U\nY7O/nI8A1Y7zEsp8HB5jJQtjTE8sWRhjemLJwhjTE0sWxpieWLIwxvTEkoUxpieWLIwxPbFkYYzp\niSULY0xPLFkYY3piycIY0xNLFsaYnliyMMb0xJKFMaYnveyivkJEfiAit4rIzSLyx83xD4nI/U/a\nLHn8d94jIhtE5HYRecVU/gHGmOnRy3oWAXinqq4TkYXAz0Tk8uZnn1bVv514soisBs4EjgUOBr4v\nIkep6nxc49SYvcbTlixU9UFVXdfc3g7cCizfza+cAVykql1VvQfYAJzUj2CNMTPnGbVZiMhhwAnA\nT5tDbxWRG0XkfBHZrzm2HLhvwq9tYvfJxRgzB/ScLERkAfAN4O2qug04FzgCWAM8CHxy/NSd/PpT\nVjcVkbNF5FoRufaRzZufceDGmOnVU7IQkZw6UXxZVb8JoKoPqWpU1QR8jieqGpuAFRN+/RDggSc/\npqqep6prVXXtAUuWTOZvMMZMg156QwT4PHCrqn5qwvFlE057NbC+uX0JcKaItERkJbAKuLp/IRtj\nZkIvvSEvBN4A3CQi1zfH3gu8XkTWUFcxNgL/A0BVbxaRi4FbqHtS3mI9IcbMfU+bLFT1P9h5O8Sl\nu/mdjwIfnURcxphZxkZwGmN6YsnCGNMTSxbGmJ5YsjDG9MSShTGmJ5YsjDE9sWRhjOmJJQtjTE8s\nWRhjemLJwhjTE0sWxpieWLIwxvTEkoUxpieWLIwxPbFkYYzpiSULY0xPLFkYY3piycIY0xNLFsaY\nnliyMMb0xJKFMaYnliyMMT3pZd+QaZFIiFYgJVDvPWCZzJjelAJDPjAaHOoFFwP9fgfNjmShSlKH\nSgtCQZICr0IptjeRMb0oJLA1wH4kOhEyB6754O2X2ZEsBHKgC6RWRqUlAyLEp+6nbIzZiZgyFhOI\nAm2FToIo0tc3+OxIFo1WgLGRCilalGVFZsnCmJ5EAh0HeYLtQMyErOtgsH/PMSuSRUKgipAnBhZB\nUXUhh1DNivCMmfUGCHRSvblwNZSTdwKx1cX38TlmxbvRpUQqHAlPVezL8VsfZ4trszD1t85lzN7K\nRUFcSRAhKwUdUmKxuK/P8bTJQkTawI+AVnP+11X1L0RkJXARsBhYB7xBVUsRaQEXAs8DHgVep6ob\nd/8kDkHIFLKk6IJ92VcBaU/iTzNm/hl/Q8v4ba1vy073Nt+zx96dLvBSVR0WkRz4DxH5HvAnwKdV\n9SIR+SxwFnBu8/1xVT1SRM4E/gZ43e6eQAUCkVwEnCMJeMFaLIyZLAFUiTL5d9PTJgtVVWC4uZs3\nXwq8FPid5vgFwIeok8UZzW2ArwN/LyLSPM7OxUgaGSEm8OpJHjQmXB+yoTHzWUTJnUeHRyb9WD21\nWYiIB34GHAl8BrgL2KKqoTllE7C8ub0cuA9AVYOIbAX2BzY/6THPBs5u7g63F+zz6JPPmWFLsHh2\nZ7bFA7MvptkWz7Mn88s9JQtVjcAaEdkX+BZwzM5Oa77vrDjwlFKFqp4HnDd+X0SuVdW1vcQzHSye\n3Ztt8cDsi2k2xjOZ339G40FVdQtwJfACYF8RGU82hwAPNLc3ASua4DJgH+CxyQRpjJl5T5ssROSA\npkSBiAwAJwO3Aj8AXtOc9ibgn5vblzT3aX7+77ttrzDGzAm9VEOWARc07RYOuFhVvysitwAXichH\ngOuAzzfnfx74oohsoC5RnNljLOc9/SnTyuLZvdkWD8y+mPaqeMQ+9I0xvbBZ4MaYnsx4shCRU0Xk\ndhHZICLvnqEYNorITSJy/XiLsYgsFpHLReTO5vt+UxzD+SLysIisn3BspzFI7Zzmmt0oIidOUzwf\nEpH7m+t0vYicPuFn72niuV1EXjEF8awQkR+IyK0icrOI/HFzfEau0W7imZFrJCJtEblaRG5o4vlw\nc3yliPy0uT7/JCJFc7zV3N/Q/Pywp30SVZ2xL8BTj9k4HCiAG4DVMxDHRmDJk459Anh3c/vdwN9M\ncQwvBk4E1j9dDMDpwPeou6lfAPx0muL5EPCnOzl3dfO/awErm/+p73M8y4ATm9sLgTua552Ra7Sb\neGbkGjV/54Lmdg78tPm7LwbObI5/Fvij5vabgc82t88E/unpnmOmSxYnARtU9W5VLannmpwxwzGN\nO4N6ZCrN91dN5ZOp6o94ahfzrmI4A7hQa1dRd2Mvm4Z4duUM4CJV7arqPcAG6v9tP+N5UFXXNbe3\nU/fILWeGrtFu4tmVKb1Gzd+5q5HWX2+OP/n6jF+3rwMvE5HdDpme6WSxY7RnY+JI0OmkwL+JyM+a\nkaUAS1X1QahfGMCBMxDXrmKYyev21qZYf/6Eqtm0xtMUmU+g/vSc8Wv0pHhghq6RiHgRuR54GLic\nZzDSGhgfab1LM50sehrtOQ1eqKonAqcBbxGRF89ADM/ETF23c4EjgDXAg8AnpzseEVkAfAN4u6pu\n292p0xHTTuKZsWukqlFV11APkjyJPoy0nmimk8WO0Z6NiSNBp42qPtB8f5h6OPtJwEPjxdbm+8PT\nHdduYpiR66aqDzUvyAR8jieK0dMSj9Sznr8BfFlVv9kcnrFrtLN4ZvoaNTFMyUjrmU4W1wCrmhbb\ngrqh5ZLpDEBEhkRk4fht4OXAen55JOrEEarTaVcxXAK8sWnxfwGwdbwoPpWeVOd/NfV1Go/nzKaF\nfSWwCri6z88t1AP+blXVT0340Yxco13FM1PXSKZjpHU/W4j3sBX3dOqW5LuA983A8x9O3Up9A3Dz\neAzU9bcrgDub74unOI6vUhdbK+qsf9auYqAuQo7P/r0JWDtN8Xyxeb4bmxfbsgnnv6+J53bgtCmI\n50XUxeQbgeubr9Nn6hrtJp4ZuUbAcdQjqW+kTlAfnPD6vpq6QfVrQKs53m7ub2h+fvjTPYeN4DTG\n9GSmqyHGmDnCkoUxpieWLIwxPbFkYYzpiSULY0xPLFkYY3piycIY0xNLFsaYnvz/9Dmtm/inI0cA\nAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.imshow(result)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "## Computing the Gradient\n", + "\n", + "- Gradients are free!" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.5]\n" + ] + } + ], + "source": [ + "x = tf.placeholder(tf.float32)\n", + "y = tf.log(x) \n", + "var_grad = tf.gradients(y, x)\n", + "with tf.Session() as session:\n", + " var_grad_val = session.run(var_grad, feed_dict={x:2})\n", + " print(var_grad_val)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "# Why Tensorflow ?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "On a typical system, there are multiple computing devices. \n", + "\n", + "In TensorFlow, the supported device types are **CPU** and **GPU**. \n", + "\n", + "They are represented as strings. For example:\n", + "\n", + "* `\"/cpu:0\"`: The CPU of your machine.\n", + "* `\"/gpu:0\"`: The GPU of your machine, if you have one.\n", + "* `\"/gpu:1\"`: The second GPU of your machine, etc." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "source": [ + "If a TensorFlow operation has both **CPU** and **GPU** implementations, the GPU devices will be given priority when the operation is assigned to a device. \n", + "\n", + "For example, `matmul` has both CPU and GPU kernels. On a system with devices `cpu:0` and `gpu:0`, `gpu:0` will be selected to run `matmul`." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "### Example 1. Logging Device Placement\n", + "\n", + "`tf.Session(config=tf.ConfigProto(log_device_placement=True))`" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "```python\n", + "# Creates a graph.\n", + "a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')\n", + "b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')\n", + "c = tf.matmul(a, b)\n", + "# Creates a session with log_device_placement set to True.\n", + "sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))\n", + "# Runs the op.\n", + "print(sess.run(c))\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "```\n", + "Device mapping:\n", + "/job:localhost/replica:0/task:0/gpu:0 -> device: 0, name: GeForce GTX 760, pci bus\n", + "id: 0000:05:00.0\n", + "b: /job:localhost/replica:0/task:0/gpu:0\n", + "a: /job:localhost/replica:0/task:0/gpu:0\n", + "MatMul: /job:localhost/replica:0/task:0/gpu:0\n", + "[[ 22. 28.]\n", + " [ 49. 64.]]\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "## Using Multiple GPUs" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "```python\n", + "# Creates a graph.\n", + "c = []\n", + "for d in ['/gpu:0', '/gpu:1']:\n", + " with tf.device(d):\n", + " a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3])\n", + " b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2])\n", + " c.append(tf.matmul(a, b))\n", + "with tf.device('/cpu:0'):\n", + " sum = tf.add_n(c)\n", + "# Creates a session with log_device_placement set to True.\n", + "sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))\n", + "# Runs the op.\n", + "print sess.run(sum)\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "source": [ + "```\n", + "Device mapping:\n", + "/job:localhost/replica:0/task:0/gpu:0 -> device: 0, name: GeForce GTX 760, pci bus\n", + "id: 0000:02:00.0\n", + "/job:localhost/replica:0/task:0/gpu:1 -> device: 1, name: GeForce GTX 760, pci bus\n", + "id: 0000:03:00.0\n", + "Const_3: /job:localhost/replica:0/task:0/gpu:0\n", + "Const_2: /job:localhost/replica:0/task:0/gpu:0\n", + "MatMul_1: /job:localhost/replica:0/task:0/gpu:0\n", + "Const_1: /job:localhost/replica:0/task:0/gpu:1\n", + "Const: /job:localhost/replica:0/task:0/gpu:1\n", + "MatMul: /job:localhost/replica:0/task:0/gpu:1\n", + "AddN: /job:localhost/replica:0/task:0/cpu:0\n", + "[[ 44. 56.]\n", + " [ 98. 128.]]\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## More on Tensorflow\n", + "\n", + "[Official Documentation](https://www.tensorflow.org/versions/r0.10/get_started/)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.5.3" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/2. Deep Learning Frameworks/2.3 Introduction to Keras.ipynb b/2. Deep Learning Frameworks/2.3 Introduction to Keras.ipynb new file mode 100644 index 0000000..c650fe1 --- /dev/null +++ b/2. Deep Learning Frameworks/2.3 Introduction to Keras.ipynb @@ -0,0 +1,1439 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "## Keras: Deep Learning library for Theano and TensorFlow" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + ">Keras is a minimalist, highly modular neural networks library, written in Python and capable of running on top of either TensorFlow or Theano. \n", + "\n", + ">It was developed with a focus on enabling fast experimentation. Being able to go from idea to result with the least possible delay is key to doing good research.\n", + "ref: https://keras.io/" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### Kaggle Challenge Data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + ">The Otto Group is one of the world’s biggest e-commerce companies, A consistent analysis of the performance of products is crucial. However, due to diverse global infrastructure, many identical products get classified differently.\n", + "For this competition, we have provided a dataset with 93 features for more than 200,000 products. The objective is to build a predictive model which is able to distinguish between our main product categories. \n", + "Each row corresponds to a single product. There are a total of 93 numerical features, which represent counts of different events. All features have been obfuscated and will not be defined any further.\n", + "\n", + "https://www.kaggle.com/c/otto-group-product-classification-challenge/data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### For this section we will use the Kaggle Otto Group Challenge Data. You will find these data in \n", + "`../data/kaggle_ottogroup/` folder." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Logistic Regression\n", + "\n", + "This algorithm has nothing to do with the canonical _linear regression_, but it is an algorithm that allows us to solve problems of classification (supervised learning). \n", + "\n", + "In fact, to estimate the dependent variable, now we make use of the so-called **logistic function** or **sigmoid**. \n", + "\n", + "It is precisely because of this feature we call this algorithm logistic regression.\n", + "\n", + "![](../imgs/sigmoid.png)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Data Preparation" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Using TensorFlow backend.\n" + ] + } + ], + "source": [ + "from kaggle_data import load_data, preprocess_data, preprocess_labels\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "9 classes\n", + "93 dims\n" + ] + } + ], + "source": [ + "X_train, labels = load_data('../data/kaggle_ottogroup/train.csv', train=True)\n", + "X_train, scaler = preprocess_data(X_train)\n", + "Y_train, encoder = preprocess_labels(labels)\n", + "\n", + "X_test, ids = load_data('../data/kaggle_ottogroup/test.csv', train=False)\n", + "X_test, _ = preprocess_data(X_test, scaler)\n", + "\n", + "nb_classes = Y_train.shape[1]\n", + "print(nb_classes, 'classes')\n", + "\n", + "dims = X_train.shape[1]\n", + "print(dims, 'dims')" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['Class_1', 'Class_2', 'Class_3', 'Class_4', 'Class_5', 'Class_6',\n", + " 'Class_7', 'Class_8', 'Class_9'], dtype=object)" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.unique(labels)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 0., 0., 0., ..., 0., 0., 0.],\n", + " [ 0., 0., 0., ..., 1., 0., 0.],\n", + " [ 0., 0., 0., ..., 0., 0., 0.],\n", + " ..., \n", + " [ 0., 0., 0., ..., 0., 0., 0.],\n", + " [ 0., 0., 0., ..., 0., 0., 0.],\n", + " [ 0., 0., 1., ..., 0., 0., 0.]])" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Y_train # one-hot encoding" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Using Theano" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "import theano as th\n", + "import theano.tensor as T" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1\n", + "Epoch 2\n", + "Epoch 3\n", + "Epoch 4\n", + "Epoch 5\n", + "Epoch 6\n", + "Epoch 7\n", + "Epoch 8\n", + "Epoch 9\n", + "Epoch 10\n", + "target values for Data:\n", + "[ 0. 0. 0. ..., 0. 0. 0.]\n", + "prediction on training set:\n", + "[ True True False ..., True True True]\n" + ] + } + ], + "source": [ + "#Based on example from DeepLearning.net\n", + "rng = np.random\n", + "N = 400\n", + "feats = 93\n", + "training_steps = 10\n", + "\n", + "# Declare Theano symbolic variables\n", + "x = T.matrix(\"x\")\n", + "y = T.vector(\"y\")\n", + "w = th.shared(rng.randn(feats), name=\"w\")\n", + "b = th.shared(0., name=\"b\")\n", + "\n", + "# Construct Theano expression graph\n", + "p_1 = 1 / (1 + T.exp(-T.dot(x, w) - b)) # Probability that target = 1\n", + "prediction = p_1 > 0.5 # The prediction thresholded\n", + "xent = -y * T.log(p_1) - (1-y) * T.log(1-p_1) # Cross-entropy loss function\n", + "cost = xent.mean() + 0.01 * (w ** 2).sum() # The cost to minimize\n", + "gw, gb = T.grad(cost, [w, b]) # Compute the gradient of the cost\n", + " \n", + "\n", + "# Compile\n", + "train = th.function(\n", + " inputs=[x,y],\n", + " outputs=[prediction, xent],\n", + " updates=((w, w - 0.1 * gw), (b, b - 0.1 * gb)),\n", + " allow_input_downcast=True)\n", + "predict = th.function(inputs=[x], outputs=prediction, allow_input_downcast=True)\n", + "\n", + "#Transform for class1\n", + "y_class1 = []\n", + "for i in Y_train:\n", + " y_class1.append(i[0])\n", + "y_class1 = np.array(y_class1)\n", + "\n", + "# Train\n", + "for i in range(training_steps):\n", + " print('Epoch %s' % (i+1,))\n", + " pred, err = train(X_train, y_class1)\n", + "\n", + "print(\"target values for Data:\")\n", + "print(y_class1)\n", + "print(\"prediction on training set:\")\n", + "print(predict(X_train))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Using Tensorflow" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "import tensorflow as tf" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# Parameters\n", + "learning_rate = 0.01\n", + "training_epochs = 25\n", + "display_step = 1" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# tf Graph Input\n", + "x = tf.placeholder(\"float\", [None, dims]) \n", + "y = tf.placeholder(\"float\", [None, nb_classes])" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Model (Introducing Tensorboard)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# Construct (linear) model\n", + "with tf.name_scope(\"model\") as scope:\n", + " # Set model weights\n", + " W = tf.Variable(tf.zeros([dims, nb_classes]))\n", + " b = tf.Variable(tf.zeros([nb_classes]))\n", + " activation = tf.nn.softmax(tf.matmul(x, W) + b) # Softmax\n", + "\n", + " # Add summary ops to collect data\n", + " w_h = tf.summary.histogram(\"weights_histogram\", W)\n", + " b_h = tf.summary.histogram(\"biases_histograms\", b)\n", + " tf.summary.scalar('mean_weights', tf.reduce_mean(W))\n", + " tf.summary.scalar('mean_bias', tf.reduce_mean(b))\n", + "\n", + "# Minimize error using cross entropy\n", + "# Note: More name scopes will clean up graph representation\n", + "with tf.name_scope(\"cost_function\") as scope:\n", + " cross_entropy = y*tf.log(activation)\n", + " cost = tf.reduce_mean(-tf.reduce_sum(cross_entropy,reduction_indices=1))\n", + " # Create a summary to monitor the cost function\n", + " tf.summary.scalar(\"cost_function\", cost)\n", + " tf.summary.histogram(\"cost_histogram\", cost)\n", + "\n", + "with tf.name_scope(\"train\") as scope:\n", + " # Set the Optimizer\n", + " optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Accuracy" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "with tf.name_scope('Accuracy') as scope:\n", + " correct_prediction = tf.equal(tf.argmax(activation, 1), tf.argmax(y, 1))\n", + " # Calculate accuracy\n", + " accuracy = tf.reduce_mean(tf.cast(correct_prediction, \"float\"))\n", + " # Create a summary to monitor the cost function\n", + " tf.summary.scalar(\"accuracy\", accuracy)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Learning in a TF Session" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "LOGDIR = \"/tmp/logistic_logs\"\n", + "import os, shutil\n", + "if os.path.isdir(LOGDIR):\n", + " shutil.rmtree(LOGDIR)\n", + "os.mkdir(LOGDIR)\n", + "\n", + "# Plug TensorBoard Visualisation \n", + "writer = tf.summary.FileWriter(LOGDIR, graph=tf.get_default_graph())" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "model/weights_histogram:0\n", + "model/biases_histograms:0\n", + "model/mean_weights:0\n", + "model/mean_bias:0\n", + "cost_function/cost_function:0\n", + "cost_function/cost_histogram:0\n", + "Accuracy/accuracy:0\n", + "Tensor(\"add:0\", shape=(), dtype=string)\n" + ] + } + ], + "source": [ + "for var in tf.get_collection(tf.GraphKeys.SUMMARIES):\n", + " print(var.name)\n", + " \n", + "summary_op = tf.summary.merge_all()\n", + "print('Summary Op: ' + summary_op)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "accuracy epoch 0:0.6649535894393921\n", + "accuracy epoch 1:0.665276825428009\n", + "accuracy epoch 2:0.6657131910324097\n", + "accuracy epoch 3:0.6659556031227112\n", + "accuracy epoch 4:0.6662949919700623\n", + "accuracy epoch 5:0.6666181683540344\n", + "accuracy epoch 6:0.6668121218681335\n", + "accuracy epoch 7:0.6671029925346375\n", + "accuracy epoch 8:0.6674585342407227\n", + "accuracy epoch 9:0.6678463816642761\n", + "accuracy epoch 10:0.6680726408958435\n", + "accuracy epoch 11:0.6682504415512085\n", + "accuracy epoch 12:0.6684605479240417\n", + "accuracy epoch 13:0.6687514185905457\n", + "accuracy epoch 14:0.6690422892570496\n", + "accuracy epoch 15:0.6692523956298828\n", + "accuracy epoch 16:0.6695109605789185\n", + "accuracy epoch 17:0.6697695255279541\n", + "accuracy epoch 18:0.6699796319007874\n", + "accuracy epoch 19:0.6702220439910889\n", + "accuracy epoch 20:0.6705452799797058\n", + "accuracy epoch 21:0.6708361506462097\n", + "accuracy epoch 22:0.6710785627365112\n", + "accuracy epoch 23:0.671385645866394\n", + "accuracy epoch 24:0.6716926693916321\n", + "Training phase finished\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEKCAYAAAAB0GKPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8VeW1//HPkuQKRa5ApYoBRVtHIEwRZapWRERQkOpF\nEYtWRX/KT6kFUduqtSq8pE7tr4r8Cg4VwaqAVO1lqkOpEwkEEVJlKLYBrlAgyKgE1v3jnIQQkrBP\nkn3G7/v1yotz9n72Pmtnk6zs53nW3ubuiIiIHM4RiQ5ARERSgxKGiIgEooQhIiKBKGGIiEggShgi\nIhKIEoaIiASihCEiIoEoYYiISCBKGCIiEkhWogOoT8ccc4y3adMm0WGIiKSMgoKCf7t7iyBt0yph\ntGnThvz8/ESHISKSMszsi6Bt1SUlIiKBKGGIiEggShgiIhJIaGMYZtYaeAE4DtgPTHL3Jyu1uRoY\nG327A/g/7r40uu4i4EmgAfB7dx8fVqyS/Pbu3UtxcTF79uxJdCgiKalhw4a0atWK7OzsWu8jzEHv\nUuCn7r7YzJoABWY2z91XVGjzD+Bcd99qZv2AScDZZtYA+B3QBygGFpnZ7ErbSgYpLi6mSZMmtGnT\nBjNLdDgiKcXd2bx5M8XFxZx00km13k9oCcPdNwAboq+3m1kRkAOsqNDm/QqbfAi0ir7uCqxy9zUA\nZjYdGFhx2/oya8k6Jsz5jPUluzm+aSPG9D2NQZ1y6vtjpI727NmjZCFSS2bGt7/9bTZt2lSn/cRl\nDMPM2gCdgI9qaHY98Ofo6xzgXxXWFUeXVbXvEWaWb2b5sX4zZi1Zx90zlrGuZDcOrCvZzd0zljFr\nybqY9iPxoWQhUnv18fMTesIws6OA14BR7v5VNW1+QCRhlI1nVHVkVT5L1t0nuXueu+e1aBGo9qTc\nhDmfsXvvvoOW7d67jwlzPotpPyIimSDUhGFm2USSxVR3n1FNm1zg98BAd98cXVwMtK7QrBWwvr7j\nW1+yO6blktmOOuqoOu9j/fr1XH755dWuLykp4amnngrcvrJrr72Wk046iY4dO9KhQwcWLFhQp3jr\n28SJE3nhhRfqtI9ly5bRsWNHOnbsSPPmzcuP94ILLohpP3379mX79u01tvnZz37G22+/XZdwD6tn\nz54UFhaG+hn1JcxZUgZMBorc/bFq2pwAzACucffPK6xaBJxiZicB64ArgaH1HePxTRuxrorkcHzT\nRvX9URJnyTo2dfzxx/Pqq69Wu74sYdxyyy2B2ldlwoQJXH755bz99tuMGDGClStX1ilmgNLSUrKy\n6v7r4uabb67zPtq3b1/+C/baa69lwIABVSbVw8U8Z86cw37WQw89VPtA01CYVxg9gGuA882sMPp1\nsZndbGZl/2vuBb4NPBVdnw/g7qXASGAOUAT80d2X13eAY/qeRqPsBgcta5TdgDF9T6vvj5I4iufY\n1BdffEHv3r3Jzc2ld+/e/POf/wRg9erVnHPOOZx11lnce++95Vcna9eupV27dgAsX76crl270rFj\nR3Jzc1m5ciV33XUXq1evpmPHjowZM+ag9vv27WP06NG0b9+e3Nxcfvvb39YYW7du3Vi37sAxFxQU\ncO6559KlSxf69u3Lhg0bAFi0aBG5ubl069aNMWPGlH/ec889xxVXXMEll1zChRdeCESS0VlnnUVu\nbi733XcfADt37qR///506NCBdu3a8fLLLwNw1113ceaZZ5Kbm8vo0aMBuP/++/n1r38NQGFhIeec\ncw65ublcdtllbN26FYDzzjuPsWPH0rVrV0499VT++te/Bj4f8+fP54ILLuDKK6+kU6dOAFxyySV0\n6dKFtm3b8vvf/768batWrSgpKWHVqlW0a9eO66+/nrZt29KvX7/y6dvDhg1j1qxZ5e3vv/9+OnXq\nRG5uLp9/Hvkbd+PGjfTu3ZvOnTtzyy23kJOTQ0lJyUFxlZaW0rRpU37yk5/QuXNn+vTpw+bNm8vX\nT58+na5du3Laaafx/vuRuUCrV6+mV69edOrUiS5duvDRR5Eh4HXr1tGzZ086duxIu3btytv/+c9/\nplu3bnTu3JkhQ4awc+fOwN+3wNw9bb66dOnisZq5uNi7j1vgbca+4d3HLfCZi4tj3oeEb8WKFYHb\ndh+3wE8c+8YhX93HLahTDI0bNz5k2YABA/y5555zd/fJkyf7wIED3d29f//+/tJLL7m7+9NPP12+\n7T/+8Q9v27atu7uPHDnSX3zxRXd3//rrr33Xrl0Hra/c/qmnnvLBgwf73r173d198+bNh8QzfPhw\nf+WVV9zdfebMmX7VVVe5u/s333zj3bp1840bN7q7+/Tp0/26665zd/e2bdv63/72N3d3Hzt2bPnn\nPfvss56Tk1P+OXPmzPEbb7zR9+/f7/v27fP+/fv7u+++66+++qrfcMMN5TGUlJT45s2b/dRTT/X9\n+/e7u/vWrVvd3f2+++7zCRMmuLt7+/bt/Z133nF391/84hd+++23u7v7ueee63fccYe7u7/55pve\nu3fvas7Iwcfr7j5v3jxv3Lixf/HFF+XLyuLfuXOnn3HGGb5lyxZ3d8/JyfGtW7f6ypUrPSsryz/5\n5BN3d7/ssst82rRp7u5+9dVX+8yZM8vbP/XUU+7u/uSTT/pNN93k7u433XSTP/LII+7u/qc//cmB\n8uMts3fvXgd8+vTphxxvjx49/M4773R399dff9379u1bHu/u3bvd3b2oqMi7du3q7u7jx4/38ePH\nu7t7aWmpb9++3b/88kv//ve/7zt37nR39wcffNAfeuihQ75fVf0cAfke8HdsWt18sDYGdcpJiq4K\nqT/xHJv64IMPmDEjMjx3zTXXcOedd5YvL/vLdOjQoeV/YVfUrVs3HnroIYqLixk8eDCnnHJKjZ81\nf/58br755vJulubNm1fZbsyYMdx5551s3LiRDz/8EIDPPvuMTz/9lD59+gCRq5WWLVtSUlLC9u3b\n6d69e3msb7zxRvm++vTpU/45c+fOZe7cueV/ue/YsYOVK1fSq1cvRo8ezdixYxkwYAC9evWitLSU\nhg0bcsMNN9C/f38GDBhwUIzbtm2jpKSEc889F4Dhw4dzxRVXlK8fPHgwAF26dGHt2rU1fl8q69at\nGyeccEL5+8cff5zZs2cDkXqe1atXk5eXd9A23/ve92jfvv1hP7NiXG+99RYACxcu5Gc/+xkAAwYM\noEmTJlVum5WVVX6Mw4YNY+jQA73sVR3v119/zciRI1m6dClZWVmsXr0agLPOOoubbrqJPXv2MGjQ\nIDp06MD8+fNZsWJF+Xn85ptv6NmzZ4DvVmx0axBJO9WNQcVjbCqWqYtDhw5l9uzZNGrUiL59+/KX\nv/ylxvbuHmj/EyZMYNWqVTz44IMMHz68fNu2bdtSWFhIYWEhy5YtY+7cuUT+wKxe48aND/r8u+++\nu3wfq1at4vrrr+fUU0+loKCA9u3bc/fdd/PAAw+QlZXFxx9/zA9/+ENmzZrFRRddFOA7csCRRx4J\nQIMGDSgtLY1p24oxz58/n/fee48PP/yQpUuXkpubW+XdAso+73CfWVVch/selql87iq+r2q/jz76\nKK1bt2bZsmV8/PHHfP311wCcf/75vPPOO7Rs2ZKrr76aqVOn4u5cdNFF5edmxYoVTJo0KVBcsVDC\nkLQTz7Gp7t27M336dACmTp1a/lfdOeecw2uvvQZQvr6yNWvWcPLJJ3Pbbbdx6aWX8sknn9CkSZNq\nZ+5ceOGFTJw4sfwXypYtW6qN64gjjuD2229n//79zJkzh9NOO41NmzbxwQcfAJFbrSxfvpxmzZrR\npEmT8iuR6mKFyKyiKVOmsGPHDiDSl75x40bWr1/Pt771LYYNG8bo0aNZvHgxO3bsYNu2bVx88cU8\n8cQTh8wCOvroo2nWrFn5+MQf/vCH8quN+rRt2zaaN29Oo0aNWL58OYsWLar3z+jZsyd//OMfAXjr\nrbeqPX979+4tvxp96aWXDnsFsG3bNlq2bImZ8fzzz5cnpi+++ILjjjuOESNGcO2117JkyRK6d+/O\nu+++y5o1a4DIuFJ9THaoLOO7pGKVrLNv5ICy81Hf52nXrl20atWq/P0dd9zBb37zG3784x8zYcIE\nWrRowbPPPgvAE088wbBhw3j00Ufp378/Rx999CH7e/nll3nxxRfJzs7muOOO495776V58+b06NGD\ndu3a0a9fP2699dby9jfccAOff/45ubm5ZGdnc+ONNzJy5Mhq4zUzfv7zn/PII4/Qt29fXn31VW67\n7Ta2bdtGaWkpo0aNom3btkyePJkbb7yRxo0bc95551UZK0QSVlFREd26dQMi04xffPFFVq1axZgx\nYzjiiCPIzs7m6aefZvv27QwcOJA9e/bg7jz++OOH7O/555/n5ptvZteuXZx88snl37v61L9/fyZN\nmkSHDh04/fTTOfvss+v9M375y18ydOhQpk6dyvnnn8+xxx570FVOmaOPPprFixfz8MMP07x58/LJ\nAdUZOXIkl19+OdOmTeOCCy4ovwpZsGABjz32GNnZ2eXn4Nhjj2Xy5MkMGTKEb775BoCHH374sN2c\nsbKgl1OpIC8vz8N8gFLZ7JuKxX6NshswbnB7JY2QFRUVccYZZyQ6jMB27dpFo0aNMDOmT5/OtGnT\neP311xMdVpV27NhRPotr/PjxbNiwgSeffPIwW0mZPXv2kJWVRVZWFgsXLmTUqFGHPMittLSUY445\n5pDZU/FW1c+RmRW4e141mxxEVxgxqKkyXAlDKiooKGDkyJG4O02bNmXKlCmJDqlab775JuPGjaO0\ntJQTTzyR5557LtEhpZS1a9dy1VVXsW/fPo488kieeeaZRIcUGiWMGKgyXILq1asXS5cuTXQYgQwZ\nMoQhQ4YkOoyUdfrpp7NkyZIa22RlZSX86qI+aNA7BomcfSPBZ6OIyKHq4+dHCSMGqgxPnIYNG7J5\n82YlDZFa8OjzMBo2bFin/ahLKgZhzb6Rw2vVqhXFxcV1vp+/SKYqe+JeXWiWlIhIBotllpS6pERE\nJBB1ScWBiv1EJB0oYYSscrFf2a22ASUNEUkp6pIKmR4DKyLpQgkjZCr2E5F0oYQRMhX7iUi6UMII\nmYr9RCRdaNA7ZCr2E5F0oYQRB3oMrIikA3VJiYhIIEoYIiISiLqkkpSqw0Uk2ShhJCFVh4tIMlKX\nVBJSdbiIJCMljCSk6nARSUZKGElI1eEikoxCSxhm1trM3jazIjNbbma3V9HmdDP7wMy+NrPRldat\nNbNlZlZoZhn1VCRVh4tIMgpz0LsU+Km7LzazJkCBmc1z9xUV2mwBbgMGVbOPH7j7v0OMMSmpOlxE\nklFoCcPdNwAboq+3m1kRkAOsqNBmI7DRzPqHFUeqUnW4iCSbuIxhmFkboBPwUQybOTDXzArMbEQN\n+x5hZvlmlr9p06a6BSoiItUKvQ7DzI4CXgNGuftXMWzaw93Xm9l3gHlm9nd3f69yI3efBEwCyMvL\n83oJOkWp2E9EwhTqFYaZZRNJFlPdfUYs27r7+ui/G4GZQNf6jzB9lBX7rSvZjXOg2G/WknWJDk1E\n0kSYs6QMmAwUuftjMW7bODpQjpk1Bi4EPq3/KNOHiv1EJGxhdkn1AK4BlplZYXTZPcAJAO4+0cyO\nA/KB/wT2m9ko4EzgGGBmJOeQBbzk7v8dYqwpT8V+IhK2MGdJLQTsMG3+B2hVxaqvgA5hxJWujm/a\niHVVJAcV+4lIfVGld5pQsZ+IhE13q00TKvYTkbApYaQRFfuJSJjUJSUiIoHoCiODqdBPRGKhhJGh\n9FQ/EYmVuqQylAr9RCRWShgZSoV+IhIrJYwMpaf6iUislDAylAr9RCRWGvTOUCr0E5FYKWFkMBX6\niUgs1CUlIiKB6ApDYqJiP5HMpYQhganYTySzqUtKAlOxn0hmU8KQwFTsJ5LZlDAkMBX7iWQ2JQwJ\nTMV+IplNg94SmIr9RDKbEobERMV+IplLXVIiIhKIrjAkdCr2E0kPShgSKhX7iaQPdUlJqFTsJ5I+\nlDAkVCr2E0kfShgSKhX7iaSP0BKGmbU2s7fNrMjMlpvZ7VW0Od3MPjCzr81sdKV1F5nZZ2a2yszu\nCitOCZeK/UTSR5iD3qXAT919sZk1AQrMbJ67r6jQZgtwGzCo4oZm1gD4HdAHKAYWmdnsSttKClCx\nn0j6CC1huPsGYEP09XYzKwJygBUV2mwENppZ/0qbdwVWufsaADObDgysuK2kDhX7iaSHuIxhmFkb\noBPwUcBNcoB/VXhfHF1W1b5HmFm+meVv2rSpLmGKiEgNQq/DMLOjgNeAUe7+VdDNqljmVTV090nA\nJIC8vLwq20hqUaGfSHIKNWGYWTaRZDHV3WfEsGkx0LrC+1bA+vqMTZKTCv1EkleYs6QMmAwUuftj\nMW6+CDjFzE4ys/8ArgRm13eMknxU6CeSvMK8wugBXAMsM7PC6LJ7gBMA3H2imR0H5AP/Cew3s1HA\nme7+lZmNBOYADYAp7r48xFglSajQTyR5hTlLaiFVj0VUbPM/RLqbqlr3FvBWCKFJEju+aSPWVZEc\nVOgnkniq9JakokI/keSlu9VKUlGhn0jyUsKQpKNCP5HkpIQhaUG1GyLhU8KQlKfaDZH40KC3pDzV\nbojEhxKGpDzVbojEhxKGpDw9pEkkPpQwJOWpdkMkPjToLSlPtRsi8aGEIWlBtRsi4VOXlIiIBKIr\nDMlYKvYTiY0ShmQkFfuJxE5dUpKRVOwnErtACcPMrgiyTCRVqNhPJHZBrzDuDrhMJCWo2E8kdjWO\nYZhZP+BiIMfMflNh1X8CpWEGJhKmMX1PO2gMA1TsJ3I4hxv0Xk/kmduXAgUVlm8HfhJWUCJhU7Gf\nSOzM3Q/fyCzb3fdGXzcDWrv7J2EHF6u8vDzPz89PdBgiIinDzArcPS9I26DTaueZ2aXR9oXAJjN7\n193vqG2QIqlGdRuS6YIOeh/t7l8Bg4Fn3b0LcEF4YYkkl7K6jXUlu3EO1G3MWrIu0aGJxE3QhJFl\nZi2B/wLeCDEekaSkug2R4AnjAWAOsNrdF5nZycDK8MISSS6q2xAJOIbh7q8Ar1R4vwb4YVhBiSSb\n45s2Yl0VyUF1G5JJglZ6tzKzmWa20cy+NLPXzKxV2MGJJAs9pEkkeJfUs8Bs4HggB/hTdJlIRhjU\nKYdxg9uT07QRBuQ0bcS4we01S0oyStA6jEJ373i4ZZXWtwZeAI4D9gOT3P3JSm0MeJJINfku4Fp3\nXxxdtw9YFm36T3e/9HBxqg5DRCQ2YdRh/NvMhgHTou+vAjYfZptS4KfuvtjMmgAFZjbP3VdUaNMP\nOCX6dTbwdPRfgN01JSQREYmvoAnjx8D/Ax4HHHgfuK6mDdx9A7Ah+nq7mRUR6c6qmDAGAi945DLn\nQzNramYto9uKpDwV+0k6CTqG8StguLu3cPfvEEkg9wf9EDNrA3QCPqq0Kgf4V4X3xdFlAA3NLN/M\nPjSzQTXse0S0Xf6mTZuChiQSOhX7SboJmjBy3X1r2Rt330IkARyWmR0FvAaMilaLH7S6ik3KBlVO\niParDQWeMLPvVrV/d5/k7nnunteiRYsgIYnEhYr9JN0ETRhHRG86CICZNSdAd5aZZRNJFlPdfUYV\nTYqB1hXetyJyh1zcvezfNcA7BExQIslCxX6SboImjEeB983sV2b2AJExjEdq2iA6A2oyUOTuj1XT\nbDbwI4s4B9jm7hvMrJmZHRndzzFADw4e+xBJenpIk6SboJXeL5hZPnA+kW6kwZVmO1WlB3ANsMzM\nCqPL7gFOiO5zIvAWkSm1q4hMqy0bSD8DeMbM9hNJauMDfJ5IUtFDmiTdBJ0lRfQXduBf2u6+kKrH\nKCq2ceDWKpa/D7QP+lkiyUgPaZJ0EzhhiEjsBnXKUYKQtKGEIZJkVLshyUoJQySJlNVulI17lNVu\nAEoaknBBZ0mJSByodkOSmRKGSBJR7YYkMyUMkSSi2g1JZkoYIklED2qSZKZBb5EkotoNSWZKGCJJ\nRrUbkqyUMERSnOo2JF6UMERSmOo2JJ406C2SwlS3IfGkhCGSwlS3IfGkhCGSwlS3IfGkhCGSwlS3\nIfGkQW+RFKa6DYknJQyRFKe6DYkXJQyRDKTaDakNJQyRDKPaDaktDXqLZBjVbkhtKWGIZBjVbkht\nKWGIZBjVbkhtKWGIZBjVbkhtadBbJMOodkNqSwlDJAOpdkNqQwlDRAJR7YYoYYjIYal2QyDEQW8z\na21mb5tZkZktN7Pbq2hjZvYbM1tlZp+YWecK64ab2cro1/Cw4hSRw1PthkC4VxilwE/dfbGZNQEK\nzGyeu6+o0KYfcEr062zgaeBsM2sO3AfkAR7ddra7bw0xXhGphmo3BEK8wnD3De6+OPp6O1AEVL52\nHQi84BEfAk3NrCXQF5jn7luiSWIecFFYsYpIzVS7IRCnOgwzawN0Aj6qtCoH+FeF98XRZdUtr2rf\nI8ws38zyN23aVF8hi0gFqt0QiEPCMLOjgNeAUe7+VeXVVWziNSw/dKH7JHfPc/e8Fi1a1C1YEanS\noE45jBvcnpymjTAgp2kjxg1urwHvDBPqLCkzyyaSLKa6+4wqmhQDrSu8bwWsjy4/r9Lyd8KJUkSC\niLV2Q9Nw00+Ys6QMmAwUuftj1TSbDfwoOlvqHGCbu28A5gAXmlkzM2sGXBhdJiIpoGwa7rqS3TgH\npuHOWrIu0aFJHYR5hdEDuAZYZmaF0WX3ACcAuPtE4C3gYmAVsAu4Lrpui5n9ClgU3e4Bd98SYqwi\nUo9qmoarq4zUFVrCcPeFVD0WUbGNA7dWs24KMCWE0EQkZJqGm550t1oRqXeahpuelDBEpN5pGm56\n0r2kRKTe6Rbq6UkJQ0RCoVuopx8lDBFJGqrdSG5KGCKSFHQL9eSnQW8RSQq6hXryU8IQkaSg2o3k\np4QhIklBtRvJTwlDRJKCajeSnwa9RSQpqHYj+SlhiEjSqE3thqbixo8ShoikLE3FjS+NYYhIytJU\n3PhSwhCRlKWpuPGlhCEiKUtTceNLCUNEUpam4saXBr1FJGVpKm58KWGISErTbdTjRwlDRDKK6jZq\nTwlDRDKG6jbqRoPeIpIxVLdRN0oYIpIxVLdRN0oYIpIxVLdRN0oYIpIxVLdRNxr0FpGMobqNulHC\nEJGMoluo115oXVJmNsXMNprZp9Wsb2ZmM83sEzP72MzaVVi31syWmVmhmeWHFaOIyOGUTcVdV7Ib\n58BU3FlL1iU6tLgLcwzjOeCiGtbfAxS6ey7wI+DJSut/4O4d3T0vpPhERA5LU3EPCC1huPt7wJYa\nmpwJLIi2/TvQxsyODSseEZHa0FTcAxI5S2opMBjAzLoCJwKtouscmGtmBWY2oqadmNkIM8s3s/xN\nmzaFGrCIZB5NxT0gkQljPNDMzAqB/wssAUqj63q4e2egH3CrmX2/up24+yR3z3P3vBYtWoQetIhk\nFk3FPSBhs6Tc/SvgOgAzM+Af0S/cfX30341mNhPoCryXoFBFJINpKu4BCUsYZtYU2OXu3wA3AO+5\n+1dm1hg4wt23R19fCDyQqDhFRDQVNyK0hGFm04DzgGPMrBi4D8gGcPeJwBnAC2a2D1gBXB/d9Fhg\nZuSigyzgJXf/77DiFBGpb+l6V9zQEoa7X3WY9R8Ap1SxfA3QIay4RETCVtNU3FROGLqXlIhIPUvX\nqbhKGCIi9Sxdp+IqYYiI1LN0nYqrmw+KiNSzdJ2Kq4QhIhKCWKfipsI0XCUMEZEES5VpuBrDEBFJ\nsFS5I64ShohIgqXKNFwlDBGRBEuVabhKGCIiCZYq03A16C0ikmCpMg1XCUNEJAmkwh1xlTBERFJQ\nIqbiagxDRCQFJWIqrhKGiEgKSsRUXCUMEZEUlIipuEoYIiIpKBFTcTXoLSKSghIxFVcJQ0QkRdVm\nKm5dqEtKREQCUcIQEZFAlDBERCQQJQwREQlECUNERAIxd090DPXGzDYBX9Ry82OAf9djOKkkk48d\nMvv4deyZq+z4T3T3FkE2SKuEURdmlu/ueYmOIxEy+dghs49fx56Zxw61O351SYmISCBKGCIiEogS\nxgGTEh1AAmXysUNmH7+OPXPFfPwawxARkUB0hSEiIoFkfMIws4vM7DMzW2VmdyU6nngzs7VmtszM\nCs0sP9HxhMnMppjZRjP7tMKy5mY2z8xWRv9tlsgYw1TN8d9vZuui57/QzC5OZIxhMbPWZva2mRWZ\n2XIzuz26PO3Pfw3HHvO5z+guKTNrAHwO9AGKgUXAVe6+IqGBxZGZrQXy3D3t56Ob2feBHcAL7t4u\nuuwRYIu7j4/+wdDM3ccmMs6wVHP89wM73P3XiYwtbGbWEmjp7ovNrAlQAAwCriXNz38Nx/5fxHju\nM/0Koyuwyt3XuPs3wHRgYIJjkpC4+3vAlkqLBwLPR18/T+QHKS1Vc/wZwd03uPvi6OvtQBGQQwac\n/xqOPWaZnjBygH9VeF9MLb+RKcyBuWZWYGYjEh1MAhzr7hsg8oMFfCfB8STCSDP7JNpllXZdMpWZ\nWRugE/ARGXb+Kx07xHjuMz1hWBXLMq2Proe7dwb6AbdGuy0kczwNfBfoCGwAHk1sOOEys6OA14BR\n7v5VouOJpyqOPeZzn+kJoxhoXeF9K2B9gmJJCHdfH/13IzCTSDddJvky2sdb1te7McHxxJW7f+nu\n+9x9P/D/SePzb2bZRH5hTnX3GdHFGXH+qzr22pz7TE8Yi4BTzOwkM/sP4EpgdoJjihszaxwdBMPM\nGgMXAp/WvFXamQ0Mj74eDryewFjiruyXZdRlpOn5NzMDJgNF7v5YhVVpf/6rO/banPuMniUFEJ1K\n9gTQAJji7g8lOKS4MbOTiVxVQOT57i+l8/Gb2TTgPCJ36fwSuA+YBfwROAH4J3CFu6flwHA1x38e\nkS4JB9YCN5X16acTM+sJ/BVYBuyPLr6HSF9+Wp//Go79KmI89xmfMEREJJhM75ISEZGAlDBERCQQ\nJQwREQlECUNERAJRwhARkUCUMESSgJmdZ2ZvJDoOkZooYYiISCBKGCIxMLNhZvZx9PkBz5hZAzPb\nYWaPmtkCYHTXAAABkUlEQVRiM1tgZi2ibTua2YfRm7vNLLu5m5l9z8zmm9nS6Dbfje7+KDN71cz+\nbmZToxW6IklDCUMkIDM7AxhC5IaNHYF9wNVAY2Bx9CaO7xKpoAZ4ARjr7rlEqmzLlk8FfufuHYDu\nRG78BpG7iI4CzgROBnqEflAiMchKdAAiKaQ30AVYFP3jvxGRm9XtB16OtnkRmGFmRwNN3f3d6PLn\ngVei9+7KcfeZAO6+ByC6v4/dvTj6vhBoAywM/7BEglHCEAnOgOfd/e6DFpr9olK7mu63U1M309cV\nXu9DP5+SZNQlJRLcAuByM/sOlD8P+kQiP0eXR9sMBRa6+zZgq5n1ii6/Bng3+hyCYjMbFN3HkWb2\nrbgehUgt6S8YkYDcfYWZ/ZzIEwqPAPYCtwI7gbZmVgBsIzLOAZHbZU+MJoQ1wHXR5dcAz5jZA9F9\nXBHHwxCpNd2tVqSOzGyHux+V6DhEwqYuKRERCURXGCIiEoiuMEREJBAlDBERCUQJQ0REAlHCEBGR\nQJQwREQkECUMEREJ5H8BqFoC5NsZZtAAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1 5 5 ..., 2 1 1]\n" + ] + } + ], + "source": [ + "# Launch the graph\n", + "with tf.Session() as session:\n", + " # Initializing the variables\n", + " session.run(tf.global_variables_initializer())\n", + " \n", + " cost_epochs = []\n", + " # Training cycle\n", + " for epoch in range(training_epochs):\n", + " _, summary, c = session.run(fetches=[optimizer, summary_op, cost], \n", + " feed_dict={x: X_train, y: Y_train})\n", + " cost_epochs.append(c)\n", + " writer.add_summary(summary=summary, global_step=epoch)\n", + " print(\"accuracy epoch {}:{}\".format(epoch, accuracy.eval({x: X_train, y: Y_train})))\n", + " \n", + " print(\"Training phase finished\")\n", + " \n", + " #plotting\n", + " plt.plot(range(len(cost_epochs)), cost_epochs, 'o', label='Logistic Regression Training phase')\n", + " plt.ylabel('cost')\n", + " plt.xlabel('epoch')\n", + " plt.legend()\n", + " plt.show()\n", + " \n", + " prediction = tf.argmax(activation, 1)\n", + " print(prediction.eval({x: X_test}))" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Process is terminated.\n" + ] + } + ], + "source": [ + "%%bash\n", + "python -m tensorflow.tensorboard --logdir=/tmp/logistic_logs" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Using Keras" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from keras.models import Sequential\n", + "from keras.layers import Dense, Activation" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "93 dims\n", + "Building model...\n", + "9 classes\n", + "Epoch 1/10\n", + "61878/61878 [==============================] - 3s - loss: 1.9845 \n", + "Epoch 2/10\n", + "61878/61878 [==============================] - 2s - loss: 1.8337 \n", + "Epoch 3/10\n", + "61878/61878 [==============================] - 2s - loss: 1.7779 \n", + "Epoch 4/10\n", + "61878/61878 [==============================] - 3s - loss: 1.7432 \n", + "Epoch 5/10\n", + "61878/61878 [==============================] - 2s - loss: 1.7187 \n", + "Epoch 6/10\n", + "61878/61878 [==============================] - 3s - loss: 1.7002 \n", + "Epoch 7/10\n", + "61878/61878 [==============================] - 2s - loss: 1.6857 \n", + "Epoch 8/10\n", + "61878/61878 [==============================] - 2s - loss: 1.6739 \n", + "Epoch 9/10\n", + "61878/61878 [==============================] - 2s - loss: 1.6642 \n", + "Epoch 10/10\n", + "61878/61878 [==============================] - 2s - loss: 1.6560 \n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dims = X_train.shape[1]\n", + "print(dims, 'dims')\n", + "print(\"Building model...\")\n", + "\n", + "nb_classes = Y_train.shape[1]\n", + "print(nb_classes, 'classes')\n", + "\n", + "model = Sequential()\n", + "model.add(Dense(nb_classes, input_shape=(dims,), activation='sigmoid'))\n", + "model.add(Activation('softmax'))\n", + "\n", + "model.compile(optimizer='sgd', loss='categorical_crossentropy')\n", + "model.fit(X_train, Y_train)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Simplicity is pretty impressive right? :)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Theano**:\n", + "\n", + "`shape = (channels, rows, cols)`\n", + "\n", + "**Tensorflow**:\n", + "\n", + "`shape = (rows, cols, channels)`" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`image_data_format` : `channels_last | channels_first`" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{\r\n", + "\t\"epsilon\": 1e-07,\r\n", + "\t\"backend\": \"tensorflow\",\r\n", + "\t\"floatx\": \"float32\",\r\n", + "\t\"image_data_format\": \"channels_last\"\r\n", + "}\r\n" + ] + } + ], + "source": [ + "!cat ~/.keras/keras.json" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now lets understand:\n", + "
The core data structure of Keras is a model, a way to organize layers. The main type of model is the Sequential model, a linear stack of layers.
\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "What we did here is stacking a Fully Connected (Dense) layer of trainable weights from the input to the output and an Activation layer on top of the weights layer." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### Dense" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "```python\n", + "from keras.layers.core import Dense\n", + "\n", + "Dense(units, activation=None, use_bias=True, \n", + " kernel_initializer='glorot_uniform', bias_initializer='zeros', \n", + " kernel_regularizer=None, bias_regularizer=None, \n", + " activity_regularizer=None, kernel_constraint=None, bias_constraint=None)\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* `units`: int > 0.\n", + "\n", + "* `init`: name of initialization function for the weights of the layer (see initializations), or alternatively, Theano function to use for weights initialization. This parameter is only relevant if you don't pass a weights argument.\n", + "\n", + "* `activation`: name of activation function to use (see activations), or alternatively, elementwise Theano function. If you don't specify anything, no activation is applied (ie. \"linear\" activation: a(x) = x).\n", + "\n", + "* `weights`: list of Numpy arrays to set as initial weights. The list should have 2 elements, of shape (input_dim, output_dim) and (output_dim,) for weights and biases respectively.\n", + "\n", + "* `kernel_regularizer`: instance of WeightRegularizer (eg. L1 or L2 regularization), applied to the main weights matrix.\n", + "\n", + "* `bias_regularizer`: instance of WeightRegularizer, applied to the bias.\n", + "\n", + "* `activity_regularizer`: instance of ActivityRegularizer, applied to the network output.\n", + "\n", + "* `kernel_constraint`: instance of the constraints module (eg. maxnorm, nonneg), applied to the main weights matrix.\n", + "\n", + "* `bias_constraint`: instance of the constraints module, applied to the bias.\n", + "\n", + "* `use_bias`: whether to include a bias (i.e. make the layer affine rather than linear)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## (some) others `keras.core.layers`" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* `keras.layers.core.Flatten()`\n", + "* `keras.layers.core.Reshape(target_shape)`\n", + "* `keras.layers.core.Permute(dims)`\n", + "\n", + "```python\n", + "model = Sequential()\n", + "model.add(Permute((2, 1), input_shape=(10, 64)))\n", + "# now: model.output_shape == (None, 64, 10)\n", + "# note: `None` is the batch dimension\n", + "```\n", + "\n", + "* `keras.layers.core.Lambda(function, output_shape=None, arguments=None)`\n", + "* `keras.layers.core.ActivityRegularization(l1=0.0, l2=0.0)`" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "Credits: Yam Peleg ([@Yampeleg](https://twitter.com/yampeleg))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### Activation" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "```python\n", + "from keras.layers.core import Activation\n", + "\n", + "Activation(activation)\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Supported Activations** : [https://keras.io/activations/]\n", + "\n", + "**Advanced Activations**: [https://keras.io/layers/advanced-activations/]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### Optimizer" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If you need to, you can further configure your optimizer. A core principle of Keras is to make things reasonably simple, while allowing the user to be fully in control when they need to (the ultimate control being the easy extensibility of the source code).\n", + "Here we used SGD (stochastic gradient descent) as an optimization algorithm for our trainable weights. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "Source & Reference: http://sebastianruder.com/content/images/2016/09/saddle_point_evaluation_optimizers.gif" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\"Data Sciencing\" this example a little bit more\n", + "=====" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "What we did here is nice, however in the real world it is not useable because of overfitting.\n", + "Lets try and solve it with cross validation." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### Overfitting" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In overfitting, a statistical model describes random error or noise instead of the underlying relationship. Overfitting occurs when a model is excessively complex, such as having too many parameters relative to the number of observations. \n", + "\n", + "A model that has been overfit has poor predictive performance, as it overreacts to minor fluctuations in the training data." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
To avoid overfitting, we will first split out data to training set and test set and test out model on the test set.\n",
+    "Next: we will use two of keras's callbacks EarlyStopping and ModelCheckpoint
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's see first the model we implemented" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "dense_1 (Dense) (None, 9) 846 \n", + "_________________________________________________________________\n", + "activation_1 (Activation) (None, 9) 0 \n", + "=================================================================\n", + "Total params: 846\n", + "Trainable params: 846\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n" + ] + } + ], + "source": [ + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from sklearn.model_selection import train_test_split\n", + "from keras.callbacks import EarlyStopping, ModelCheckpoint" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Train on 52596 samples, validate on 9282 samples\n", + "Epoch 1/50\n", + "52596/52596 [==============================] - 1s - loss: 1.6516 - val_loss: 1.6513\n", + "Epoch 2/50\n", + "52596/52596 [==============================] - 0s - loss: 1.6501 - val_loss: 1.6499\n", + "Epoch 3/50\n", + "52596/52596 [==============================] - 1s - loss: 1.6488 - val_loss: 1.6486\n", + "Epoch 4/50\n", + "52596/52596 [==============================] - 1s - loss: 1.6474 - val_loss: 1.6473\n", + "Epoch 5/50\n", + "52596/52596 [==============================] - 0s - loss: 1.6462 - val_loss: 1.6461\n", + "Epoch 6/50\n", + "52596/52596 [==============================] - 0s - loss: 1.6449 - val_loss: 1.6448\n", + "Epoch 7/50\n", + "52596/52596 [==============================] - 0s - loss: 1.6437 - val_loss: 1.6437\n", + "Epoch 8/50\n", + "52596/52596 [==============================] - 0s - loss: 1.6425 - val_loss: 1.6425\n", + "Epoch 9/50\n", + "52596/52596 [==============================] - 0s - loss: 1.6414 - val_loss: 1.6414\n", + "Epoch 10/50\n", + "52596/52596 [==============================] - 0s - loss: 1.6403 - val_loss: 1.6403\n", + "Epoch 11/50\n", + "52596/52596 [==============================] - 0s - loss: 1.6392 - val_loss: 1.6393\n", + "Epoch 12/50\n", + "52596/52596 [==============================] - 0s - loss: 1.6382 - val_loss: 1.6383\n", + "Epoch 13/50\n", + "52596/52596 [==============================] - 1s - loss: 1.6372 - val_loss: 1.6373\n", + "Epoch 14/50\n", + "52596/52596 [==============================] - 0s - loss: 1.6362 - val_loss: 1.6363\n", + "Epoch 15/50\n", + "52596/52596 [==============================] - 0s - loss: 1.6352 - val_loss: 1.6354\n", + "Epoch 16/50\n", + "52596/52596 [==============================] - 0s - loss: 1.6343 - val_loss: 1.6345\n", + "Epoch 17/50\n", + "52596/52596 [==============================] - 0s - loss: 1.6334 - val_loss: 1.6336\n", + "Epoch 18/50\n", + "52596/52596 [==============================] - 0s - loss: 1.6325 - val_loss: 1.6327\n", + "Epoch 19/50\n", + "52596/52596 [==============================] - 0s - loss: 1.6316 - val_loss: 1.6319\n", + "Epoch 20/50\n", + "52596/52596 [==============================] - 0s - loss: 1.6308 - val_loss: 1.6311\n", + "Epoch 21/50\n", + "52596/52596 [==============================] - 0s - loss: 1.6300 - val_loss: 1.6303\n", + "Epoch 22/50\n", + "52596/52596 [==============================] - 0s - loss: 1.6292 - val_loss: 1.6295\n", + "Epoch 23/50\n", + "52596/52596 [==============================] - 0s - loss: 1.6284 - val_loss: 1.6287\n", + "Epoch 24/50\n", + "52596/52596 [==============================] - 0s - loss: 1.6276 - val_loss: 1.6280\n", + "Epoch 25/50\n", + "52596/52596 [==============================] - 0s - loss: 1.6269 - val_loss: 1.6273\n", + "Epoch 26/50\n", + "52596/52596 [==============================] - 0s - loss: 1.6262 - val_loss: 1.6265\n", + "Epoch 27/50\n", + "52596/52596 [==============================] - 0s - loss: 1.6254 - val_loss: 1.6258\n", + "Epoch 28/50\n", + "52596/52596 [==============================] - 0s - loss: 1.6247 - val_loss: 1.6252\n", + "Epoch 29/50\n", + "52596/52596 [==============================] - 0s - loss: 1.6241 - val_loss: 1.6245\n", + "Epoch 30/50\n", + "52596/52596 [==============================] - 0s - loss: 1.6234 - val_loss: 1.6238\n", + "Epoch 31/50\n", + "52596/52596 [==============================] - 0s - loss: 1.6227 - val_loss: 1.6232\n", + "Epoch 32/50\n", + "52596/52596 [==============================] - 0s - loss: 1.6221 - val_loss: 1.6226\n", + "Epoch 33/50\n", + "52596/52596 [==============================] - 0s - loss: 1.6215 - val_loss: 1.6220\n", + "Epoch 34/50\n", + "52596/52596 [==============================] - 1s - loss: 1.6209 - val_loss: 1.6214\n", + "Epoch 35/50\n", + "52596/52596 [==============================] - 0s - loss: 1.6203 - val_loss: 1.6208\n", + "Epoch 36/50\n", + "52596/52596 [==============================] - 0s - loss: 1.6197 - val_loss: 1.6202\n", + "Epoch 37/50\n", + "52596/52596 [==============================] - 0s - loss: 1.6191 - val_loss: 1.6197\n", + "Epoch 38/50\n", + "52596/52596 [==============================] - 0s - loss: 1.6186 - val_loss: 1.6191\n", + "Epoch 39/50\n", + "52596/52596 [==============================] - 0s - loss: 1.6180 - val_loss: 1.6186\n", + "Epoch 40/50\n", + "52596/52596 [==============================] - 0s - loss: 1.6175 - val_loss: 1.6181\n", + "Epoch 41/50\n", + "52596/52596 [==============================] - 0s - loss: 1.6170 - val_loss: 1.6175\n", + "Epoch 42/50\n", + "52596/52596 [==============================] - 0s - loss: 1.6165 - val_loss: 1.6170\n", + "Epoch 43/50\n", + "52596/52596 [==============================] - 0s - loss: 1.6160 - val_loss: 1.6166\n", + "Epoch 44/50\n", + "52596/52596 [==============================] - 0s - loss: 1.6155 - val_loss: 1.6161\n", + "Epoch 45/50\n", + "52596/52596 [==============================] - 0s - loss: 1.6150 - val_loss: 1.6156\n", + "Epoch 46/50\n", + "52596/52596 [==============================] - 0s - loss: 1.6145 - val_loss: 1.6151\n", + "Epoch 47/50\n", + "52596/52596 [==============================] - 0s - loss: 1.6141 - val_loss: 1.6147\n", + "Epoch 48/50\n", + "52596/52596 [==============================] - 0s - loss: 1.6136 - val_loss: 1.6142\n", + "Epoch 49/50\n", + "52596/52596 [==============================] - 0s - loss: 1.6132 - val_loss: 1.6138\n", + "Epoch 50/50\n", + "52596/52596 [==============================] - 0s - loss: 1.6127 - val_loss: 1.6134\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X_train, X_val, Y_train, Y_val = train_test_split(X_train, Y_train, test_size=0.15, random_state=42)\n", + "\n", + "fBestModel = 'best_model.h5' \n", + "early_stop = EarlyStopping(monitor='val_loss', patience=2, verbose=1) \n", + "best_model = ModelCheckpoint(fBestModel, verbose=0, save_best_only=True)\n", + "\n", + "model.fit(X_train, Y_train, validation_data = (X_val, Y_val), epochs=50, \n", + " batch_size=128, verbose=True, callbacks=[best_model, early_stop]) " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Multi-Layer Fully Connected Networks" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Forward and Backward Propagation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Q:** _How hard can it be to build a Multi-Layer Fully-Connected Network with keras?_\n", + "\n", + "**A:** _It is basically the same, just add more layers!_" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "dense_2 (Dense) (None, 100) 9400 \n", + "_________________________________________________________________\n", + "dense_3 (Dense) (None, 9) 909 \n", + "_________________________________________________________________\n", + "activation_2 (Activation) (None, 9) 0 \n", + "=================================================================\n", + "Total params: 10,309\n", + "Trainable params: 10,309\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n" + ] + } + ], + "source": [ + "model = Sequential()\n", + "model.add(Dense(100, input_shape=(dims,)))\n", + "model.add(Dense(nb_classes))\n", + "model.add(Activation('softmax'))\n", + "model.compile(optimizer='sgd', loss='categorical_crossentropy')\n", + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Train on 52596 samples, validate on 9282 samples\n", + "Epoch 1/20\n", + "52596/52596 [==============================] - 1s - loss: 1.2113 - val_loss: 0.8824\n", + "Epoch 2/20\n", + "52596/52596 [==============================] - 0s - loss: 0.8229 - val_loss: 0.7851\n", + "Epoch 3/20\n", + "52596/52596 [==============================] - 0s - loss: 0.7623 - val_loss: 0.7470\n", + "Epoch 4/20\n", + "52596/52596 [==============================] - 1s - loss: 0.7329 - val_loss: 0.7258\n", + "Epoch 5/20\n", + "52596/52596 [==============================] - 1s - loss: 0.7143 - val_loss: 0.7107\n", + "Epoch 6/20\n", + "52596/52596 [==============================] - 0s - loss: 0.7014 - val_loss: 0.7005\n", + "Epoch 7/20\n", + "52596/52596 [==============================] - 1s - loss: 0.6918 - val_loss: 0.6922\n", + "Epoch 8/20\n", + "52596/52596 [==============================] - 0s - loss: 0.6843 - val_loss: 0.6868\n", + "Epoch 9/20\n", + "52596/52596 [==============================] - 0s - loss: 0.6784 - val_loss: 0.6817\n", + "Epoch 10/20\n", + "52596/52596 [==============================] - 0s - loss: 0.6736 - val_loss: 0.6773\n", + "Epoch 11/20\n", + "52596/52596 [==============================] - 0s - loss: 0.6695 - val_loss: 0.6739\n", + "Epoch 12/20\n", + "52596/52596 [==============================] - 1s - loss: 0.6660 - val_loss: 0.6711\n", + "Epoch 13/20\n", + "52596/52596 [==============================] - 1s - loss: 0.6631 - val_loss: 0.6688\n", + "Epoch 14/20\n", + "52596/52596 [==============================] - 1s - loss: 0.6604 - val_loss: 0.6670\n", + "Epoch 15/20\n", + "52596/52596 [==============================] - 1s - loss: 0.6582 - val_loss: 0.6649\n", + "Epoch 16/20\n", + "52596/52596 [==============================] - 1s - loss: 0.6563 - val_loss: 0.6626\n", + "Epoch 17/20\n", + "52596/52596 [==============================] - 1s - loss: 0.6545 - val_loss: 0.6611\n", + "Epoch 18/20\n", + "52596/52596 [==============================] - 1s - loss: 0.6528 - val_loss: 0.6598\n", + "Epoch 19/20\n", + "52596/52596 [==============================] - 1s - loss: 0.6514 - val_loss: 0.6578\n", + "Epoch 20/20\n", + "52596/52596 [==============================] - 1s - loss: 0.6500 - val_loss: 0.6571\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model.fit(X_train, Y_train, validation_data = (X_val, Y_val), epochs=20, \n", + " batch_size=128, verbose=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Your Turn!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Hands On - Keras Fully Connected\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Take couple of minutes and try to play with the number of layers and the number of parameters in the layers to get the best results. " + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "dense_4 (Dense) (None, 100) 9400 \n", + "_________________________________________________________________\n", + "dense_5 (Dense) (None, 9) 909 \n", + "_________________________________________________________________\n", + "activation_3 (Activation) (None, 9) 0 \n", + "=================================================================\n", + "Total params: 10,309\n", + "Trainable params: 10,309\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n" + ] + } + ], + "source": [ + "model = Sequential()\n", + "model.add(Dense(100, input_shape=(dims,)))\n", + "\n", + "# ...\n", + "# ...\n", + "# Play with it! add as much layers as you want! try and get better results.\n", + "\n", + "model.add(Dense(nb_classes))\n", + "model.add(Activation('softmax'))\n", + "model.compile(optimizer='sgd', loss='categorical_crossentropy')\n", + "\n", + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Train on 52596 samples, validate on 9282 samples\n", + "Epoch 1/20\n", + "52596/52596 [==============================] - 1s - loss: 1.2107 - val_loss: 0.8821\n", + "Epoch 2/20\n", + "52596/52596 [==============================] - 1s - loss: 0.8204 - val_loss: 0.7798\n", + "Epoch 3/20\n", + "52596/52596 [==============================] - 1s - loss: 0.7577 - val_loss: 0.7393\n", + "Epoch 4/20\n", + "52596/52596 [==============================] - 0s - loss: 0.7280 - val_loss: 0.7176\n", + "Epoch 5/20\n", + "52596/52596 [==============================] - 1s - loss: 0.7097 - val_loss: 0.7028\n", + "Epoch 6/20\n", + "52596/52596 [==============================] - 1s - loss: 0.6973 - val_loss: 0.6929\n", + "Epoch 7/20\n", + "52596/52596 [==============================] - 1s - loss: 0.6883 - val_loss: 0.6858\n", + "Epoch 8/20\n", + "52596/52596 [==============================] - 1s - loss: 0.6813 - val_loss: 0.6804\n", + "Epoch 9/20\n", + "52596/52596 [==============================] - 1s - loss: 0.6757 - val_loss: 0.6756\n", + "Epoch 10/20\n", + "52596/52596 [==============================] - 1s - loss: 0.6711 - val_loss: 0.6722\n", + "Epoch 11/20\n", + "52596/52596 [==============================] - 1s - loss: 0.6672 - val_loss: 0.6692\n", + "Epoch 12/20\n", + "52596/52596 [==============================] - 0s - loss: 0.6641 - val_loss: 0.6667\n", + "Epoch 13/20\n", + "52596/52596 [==============================] - 0s - loss: 0.6613 - val_loss: 0.6636\n", + "Epoch 14/20\n", + "52596/52596 [==============================] - 0s - loss: 0.6589 - val_loss: 0.6620\n", + "Epoch 15/20\n", + "52596/52596 [==============================] - 0s - loss: 0.6568 - val_loss: 0.6606\n", + "Epoch 16/20\n", + "52596/52596 [==============================] - 0s - loss: 0.6546 - val_loss: 0.6589\n", + "Epoch 17/20\n", + "52596/52596 [==============================] - 0s - loss: 0.6531 - val_loss: 0.6577\n", + "Epoch 18/20\n", + "52596/52596 [==============================] - 0s - loss: 0.6515 - val_loss: 0.6568\n", + "Epoch 19/20\n", + "52596/52596 [==============================] - 0s - loss: 0.6501 - val_loss: 0.6546\n", + "Epoch 20/20\n", + "52596/52596 [==============================] - 0s - loss: 0.6489 - val_loss: 0.6539\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model.fit(X_train, Y_train, validation_data = (X_val, Y_val), epochs=20, \n", + " batch_size=128, verbose=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Building a question answering system, an image classification model, a Neural Turing Machine, a word2vec embedder or any other model is just as fast. The ideas behind deep learning are simple, so why should their implementation be painful?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Theoretical Motivations for depth" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + ">Much has been studied about the depth of neural nets. Is has been proven mathematically[1] and empirically that convolutional neural network benifit from depth! " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[1] - On the Expressive Power of Deep Learning: A Tensor Analysis - Cohen, et al 2015" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Theoretical Motivations for depth" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "One much quoted theorem about neural network states that:" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + ">Universal approximation theorem states[1] that a feed-forward network with a single hidden layer containing a finite number of neurons (i.e., a multilayer perceptron), can approximate continuous functions on compact subsets of $\\mathbb{R}^n$, under mild assumptions on the activation function. The theorem thus states that simple neural networks can represent a wide variety of interesting functions when given appropriate parameters; however, it does not touch upon the algorithmic learnability of those parameters." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[1] - Approximation Capabilities of Multilayer Feedforward Networks - Kurt Hornik 1991" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Addendum\n", + "\n", + "[2.3.1 Keras Backend](2.3.1 Keras Backend.ipynb)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.5.3" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/2. Deep Learning Frameworks/2.3.1 Keras Backend.ipynb b/2. Deep Learning Frameworks/2.3.1 Keras Backend.ipynb new file mode 100644 index 0000000..5033632 --- /dev/null +++ b/2. Deep Learning Frameworks/2.3.1 Keras Backend.ipynb @@ -0,0 +1,493 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Keras Backend\n", + "\n", + "In this notebook we will be using the [Keras backend module](http://keras.io/backend/), which provides an abstraction over both Theano and Tensorflow." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's try to re-implement the Logistic Regression Model using the `keras.backend` APIs.\n", + "\n", + "The following code will look like very similar to what we would write in Theano or Tensorflow (with the *only difference* that it may run on both the two backends)." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Using TensorFlow backend.\n" + ] + } + ], + "source": [ + "import keras.backend as K\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from kaggle_data import load_data, preprocess_data, preprocess_labels" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "9 classes\n", + "93 dims\n" + ] + } + ], + "source": [ + "X_train, labels = load_data('../data/kaggle_ottogroup/train.csv', train=True)\n", + "X_train, scaler = preprocess_data(X_train)\n", + "Y_train, encoder = preprocess_labels(labels)\n", + "\n", + "X_test, ids = load_data('../data/kaggle_ottogroup/test.csv', train=False)\n", + "\n", + "X_test, _ = preprocess_data(X_test, scaler)\n", + "\n", + "nb_classes = Y_train.shape[1]\n", + "print(nb_classes, 'classes')\n", + "\n", + "dims = X_train.shape[1]\n", + "print(dims, 'dims')" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "feats = dims\n", + "training_steps = 25" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "x = K.placeholder(dtype=\"float\", shape=X_train.shape) \n", + "target = K.placeholder(dtype=\"float\", shape=Y_train.shape)\n", + "\n", + "# Set model weights\n", + "W = K.variable(np.random.rand(dims, nb_classes))\n", + "b = K.variable(np.random.rand(nb_classes))" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# Define model and loss\n", + "y = K.dot(x, W) + b\n", + "loss = K.categorical_crossentropy(y, target)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "activation = K.softmax(y) # Softmax" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "lr = K.constant(0.01)\n", + "grads = K.gradients(loss, [W,b])\n", + "updates = [(W, W-lr*grads[0]), (b, b-lr*grads[1])]" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "train = K.function(inputs=[x, target], outputs=[loss], updates=updates)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss: [ 2.13178873 1.99579716 3.72429109 ..., 2.75165343 2.29350972\n", + " 1.77051127]\n", + "Loss: [ 2.95424724 0.10998608 1.07148504 ..., 0.23925911 2.9478302\n", + " 2.90452051]\n" + ] + } + ], + "source": [ + "# Training\n", + "loss_history = []\n", + "for epoch in range(training_steps):\n", + " current_loss = train([X_train, Y_train])[0]\n", + " loss_history.append(current_loss)\n", + " if epoch % 20 == 0:\n", + " print(\"Loss: {}\".format(current_loss))" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "loss_history = [np.mean(lh) for lh in loss_history]" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEKCAYAAAAB0GKPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt4VNW9//H3V8gPUqUGNLVARNS2HAuEIJGC4NGDCCiI\nlOpRkQpVSz2Vgu0jKj/9ecFaqanK6TmnRU69YEHRUqUcq3IRrbWCkEAAgSIX0QI+hYrhgFwk+P39\nMTtxiLnsmWTPJJnP63nyMLP22nu+e4bkO2utvdY2d0dERKQux6U7ABERaRqUMEREJBQlDBERCUUJ\nQ0REQlHCEBGRUJQwREQkFCUMEREJJdKEYWbbzGytmZWaWXE1283Mfmlmm81sjZmdHbdtjJltCn7G\nRBmniIjUrWUKXuNf3P0fNWy7GPh68PMt4NfAt8ysHXA3UAg4UGJm89394xTEKyIi1UhFwqjNZcBT\nHptuvszMcsysPXABsMjd9wCY2SJgCPBMTQc6+eSTvXPnztFHLCLSjJSUlPzD3XPD1I06YTiw0Mwc\neNTdZ1TZ3hH4W9zz7UFZTeXHMLNxwDiATp06UVz8hV4vERGphZm9H7Zu1IPe/dz9bGJdTzeZ2T9X\n2W7V7OO1lB9b4D7D3QvdvTA3N1SCFBGRJEWaMNx9Z/DvLuAFoHeVKtuBU+Oe5wE7aykXEZE0iSxh\nmNnxZtam4jEwCHinSrX5wLXB1VJ9gL3u/iGwABhkZm3NrG2w74KoYhURkbpFOYZxCvCCmVW8ztPu\n/oqZ3Qjg7tOBl4BLgM3AAeB7wbY9ZnYfsCI41pSKAXDJTEeOHGH79u0cOnQo3aGINEmtW7cmLy+P\nrKyspI9hzeV+GIWFha5B7+brvffeo02bNpx00kkEX0JEJCR356OPPmLfvn2cfvrpx2wzsxJ3Lwxz\nnHRfVtvkzFu1g6IFG9lZdpAOOdlMGtyFET2/cAGXNLBDhw7RuXNnJQuRJJgZJ510Ert3767XcZQw\nEjBv1Q4mP7+Wg0eOArCj7CCTn18LoKSRAkoWIslriN8frSWVgKIFGyuTRYWDR45StGBjmiISEUkd\nJYwE7Cw7mFC5NC8nnHBCvY+xc+dOLr/88hq3l5WV8atf/Sp0/arGjh3L6aefTkFBAT169ODVV1+t\nV7wNbfr06Tz11FP1OsbatWspKCigoKCAdu3aVZ7vwIEDEzrO4MGD2bdvX6117rjjDl577bX6hFun\n/v37U1paGulrNBR1SSWgQ042O6pJDh1ystMQjdSmsY41dejQgblz59a4vSJh/PCHPwxVvzpFRUVc\nfvnlvPbaa4wbN45NmzbVK2aA8vJyWras/5+LG2+8sd7H6N69e+Uf2LFjxzJs2LBqk2pdMS9YUPeV\n+vfff3/ygTZDamEkYNLgLmRntTimLDurBZMGd0lTRFKdirGmHWUHcT4fa5q3akeDv9b777/PhRde\nSH5+PhdeeCEffPABAFu2bKFPnz6cc8453HXXXZWtk23bttGtWzcA1q1bR+/evSkoKCA/P59NmzZx\n++23s2XLFgoKCpg0adIx9Y8ePcott9xC9+7dyc/P5z/+4z9qja1v377s2PH5OZeUlHD++efTq1cv\nBg8ezIcffgjAihUryM/Pp2/fvkyaNKny9Z588kmuuOIKLr30UgYNGgTEktE555xDfn4+d999NwCf\nfPIJQ4cOpUePHnTr1o1nn30WgNtvv51vfvOb5Ofnc8sttwBwzz338Itf/AKA0tJS+vTpQ35+Pt/+\n9rf5+OPY2qIXXHABt912G7179+Yb3/gGf/7zn0N/HosXL2bgwIFcddVV9OzZE4BLL72UXr160bVr\nV37zm99U1s3Ly6OsrIzNmzfTrVs3rr/+erp27crFF19cefn26NGjmTdvXmX9e+65h549e5Kfn8+7\n774LwK5du7jwwgs5++yz+eEPf0jHjh0pKys7Jq7y8nJycnL48Y9/zNlnn81FF13ERx99VLl9zpw5\n9O7dmy5duvDWW28Bsf9D5513Hj179qRXr168/fbbAOzYsYP+/ftTUFBAt27dKuu//PLL9O3bl7PP\nPpsrr7ySTz75JPT7FpYSRgJG9OzIAyO70zEnGwM65mTzwMjujeKbq3wulWNN48eP59prr2XNmjVc\nc801TJgwAYCJEycyceJEVqxYQYcOHardd/r06UycOJHS0lKKi4vJy8tj6tSpnHnmmZSWllJUVHRM\n/RkzZvDee++xatWqyterzSuvvMKIESOA2DyWH/3oR8ydO5eSkhKuu+467rjjDgC+973vMX36dJYu\nXUqLFsd+IVq6dCkzZ85kyZIlLFy4kE2bNrF8+XJKS0spKSnhjTfe4JVXXqFDhw6sXr2ad955hyFD\nhrBnzx5eeOEF1q1bx5o1a7jzzju/EN+1117Lz3/+c9asWUP37t259957K7eVl5ezfPlypk2bdkx5\nGMuWLePBBx9k7drYBSkzZ86kpKSEFStW8PDDD1cmpngbN27k5ptvZt26dWRnZ1cmiapOOeUUVq1a\nxQ033MDDDz8MwF133cWQIUNYuXIll1xyCTt3Vr8oxd69e+nTpw8rV66kb9++3HfffZXb3J3ly5dT\nVFTElClTAGjfvj2LFi1i1apVzJ49u/L/1qxZs7j00kspLS1l9erV5Ofns2vXLqZOncqrr77KypUr\nyc/P59///d8Tet/CUJdUgkb07KgE0cilcqxp6dKlPP/88wB897vf5dZbb60sr/ijM2rUqMpv2PH6\n9u3L/fffz/bt2xk5ciRf//rXa32txYsXc+ONN1Z2s7Rr167aepMmTeLWW29l165dLFu2DIj9QXzn\nnXe46KKLgFhrpX379pSVlbFv3z7OPffcylhffPHFymNddNFFla+zcOFCFi5cWPnNff/+/WzatInz\nzjuPW265hdtuu41hw4Zx3nnnUV5eTuvWrbnhhhsYOnQow4YNOybGvXv3UlZWxvnnnw/AmDFjuOKK\nKyq3jxw5EoBevXqxbdu2Wt+Xqvr27UunTp0qnz/yyCPMnz8fgO3bt7NlyxYKC4+ddvC1r32N7t27\n1/ma8XG99NJLALz55puVyXfYsGG0adOm2n1btmxZeY6jR49m1KhR1R634rUPHz7M+PHjWb16NS1b\ntmTLli0AnHPOOfzgBz/g0KFDjBgxgh49erB48WLWr19f+Tl++umn9O/fP8S7lRi1MKTZqWlMKRVj\nTYlcujhq1Cjmz59PdnY2gwcPZsmSJbXWd/dQxy8qKmLz5s389Kc/ZcyYMZX7du3aldLSUkpLS1m7\ndi0LFy6krom7xx9//DGvP3ny5MpjbN68meuvv55vfOMblJSU0L17dyZPnsyUKVNo2bIly5cv5zvf\n+Q7z5s1jyJAhId6Rz7Vq1QqAFi1aUF5entC+8TEvXryYN954g2XLllV+G69utYCK16vrNauLK+zk\n56qfXfzz6o770EMPceqpp7J27VqWL1/O4cOHARgwYACvv/467du355prrmH27Nm4O0OGDKn8bNav\nX8+MGVUXB68/JQxpdlI51nTuuecyZ84cAGbPnl35ra5Pnz78/ve/B6jcXtXWrVs544wzmDBhAsOH\nD2fNmjW0adOmxit3Bg0axPTp0yv/oOzZU/NqOccddxwTJ07ks88+Y8GCBXTp0oXdu3ezdOlSINZF\ntW7dOtq2bUubNm0qWyI1xQqxq4oef/xx9u/fD8T60nft2sXOnTv50pe+xOjRo7nllltYuXIl+/fv\nZ+/evVxyySVMmzbtC1cBnXjiibRt27ZyfOK3v/1tZWujIe3du5d27dqRnZ3NunXrWLFiRd07Jah/\n//4899xzALz00ks1fn5HjhypbI0+/fTTdbYA9u7dS/v27TEzZs6cWZmY3n//fb761a8ybtw4xo4d\ny6pVqzj33HP505/+xNatW4HYuFJDXOxQlbqkpNmp6DJs6KukDhw4QF5eXuXzn/zkJ/zyl7/kuuuu\no6ioiNzcXJ544gkApk2bxujRo3nooYcYOnQoJ5544heO9+yzzzJr1iyysrL46le/yl133UW7du3o\n168f3bp14+KLL+amm26qrH/DDTfw7rvvkp+fT1ZWFt///vcZP358jfGaGXfeeScPPvgggwcPZu7c\nuUyYMIG9e/dSXl7OzTffTNeuXXnsscf4/ve/z/HHH88FF1xQbawQS1gbNmygb9++QOwy41mzZrF5\n82YmTZrEcccdR1ZWFr/+9a/Zt28fl112GYcOHcLdeeSRR75wvJkzZ3LjjTdy4MABzjjjjMr3riEN\nHTqUGTNm0KNHD/7pn/6Jb33rWw3+Gvfeey+jRo1i9uzZDBgwgFNOOeWYVk6FE088kZUrV/Kzn/2M\ndu3aVV4cUJPx48dz+eWX88wzzzBw4MDKVsirr77Kww8/TFZWVuVncMopp/DYY49x5ZVX8umnnwLw\ns5/9rM5uzkRpLSlpEjZs2MBZZ52V7jBCO3DgANnZ2ZgZc+bM4ZlnnuEPf/hDusOq1v79+yuv4po6\ndSoffvhhJAOmzdWhQ4do2bIlLVu25M033+Tmm2/+ws3cysvLOfnkk79w9VSqVfd7pLWkRNKspKSE\n8ePH4+7k5OTw+OOPpzukGv3xj3/kgQceoLy8nNNOO40nn3wy3SE1Kdu2bePqq6/m6NGjtGrVikcf\nfTTdIUVGLQxpEppaC0OkMapvC0OD3tJkNJcvNyLp0BC/P0oY0iS0bt2ajz76SElDJAkV98No3bp1\nvY6jMQxpEvLy8ti+fXu91/MXyVQVd9yrDyUMaRKysrK+cKcwEUmtyBOGmbUAioEd7j6syrZHgH8J\nnn4J+Iq75wTbjgJrg20fuPvwqGMVEZGapaKFMRHYAHy56gZ3/3HFYzP7EdAzbvNBdy+IPjwREQkj\n0kFvM8sDhgK/qasucDXwTJTxiIhI8qK+SmoacCvwWW2VzOw04HQgfvW11mZWbGbLzGxEhDGKiEgI\nkSUMMxsG7HL3khDVrwLmunv8TQw6BZNJRgHTzOzMal5jXJBUinX1jIhItKJsYfQDhpvZNmAOMMDM\nZtVQ9yqqdEe5+87g363A6xw7vlFRZ4a7F7p7YW5ubgOGLiIiVUWWMNx9srvnuXtnYglhibuPrlrP\nzLoAbYGlcWVtzaxV8PhkYslnfVSxiohI3VI+D8PMpgDF7j4/KLoamOPHTuE9C3jUzD4jltSmursS\nhohIGmnxQRGRDKbFB0VEpMEpYYiISChKGCIiEooShoiIhKKEISIioShhiIhIKEoYIiISihKGiIiE\nooQhIiKhKGGIiEgoShgiIhKKEoaIiISihCEiIqEoYYiISChKGCIiEooShoiIhKKEISIioShhiIhI\nKJEnDDNrYWarzOzFaraNNbPdZlYa/NwQt22MmW0KfsZEHaeIiNSuZQpeYyKwAfhyDdufdffx8QVm\n1g64GygEHCgxs/nu/nGkkTYi81btoGjBRnaWHaRDTjaTBndhRM+O6Q5LRDJYpC0MM8sDhgK/SXDX\nwcAid98TJIlFwJCGjq+xmrdqB5OfX8uOsoM4sKPsIJOfX8u8VTvSHZqIZLCou6SmAbcCn9VS5ztm\ntsbM5prZqUFZR+BvcXW2B2UZoWjBRg4eOXpM2cEjRylasDFNEYmIRJgwzGwYsMvdS2qp9j9AZ3fP\nBxYDMyt2r6auV/Ma48ys2MyKd+/eXe+YozJv1Q76TV3C6bf/kX5Tl9TZUthZdjChchGRVIiyhdEP\nGG5m24A5wAAzmxVfwd0/cvfDwdP/BnoFj7cDp8ZVzQN2Vn0Bd5/h7oXuXpibm9vQ8TeIZLqXOuRk\nJ1Re8TqJJCURkURFljDcfbK757l7Z+AqYIm7j46vY2bt454OJzY4DrAAGGRmbc2sLTAoKGtykule\nmjS4C9lZLY4py85qwaTBXaqtrzEPEUmFlM/DMLMpZjY8eDrBzNaZ2WpgAjAWwN33APcBK4KfKUFZ\nk5NM99KInh15YGR3OuZkY0DHnGweGNm9xqukNOYhIqmQistqcffXgdeDx3fFlU8GJtewz+PA4ykI\nL1IdcrLZUU1yqK17CWJJI+xltBrzEJFU0EzviCXavZSMZMY8REQSpYQRsUS7l5KRiqQkIpKSLqlM\nl0j3UrLHBzQzXEQipYTRTESdlERElDAymNarEpFEKGFkqIq5GxWX41bM3QCUNESkWhr0zlCauyEi\niVLCyFCauyEiiVLCyFCauyEiiVLCyFDJzt3QIocimUuD3hkqmbkbGigXyWxKGBks0bkbtQ2UK2GI\nNH9KGBJaMgPlmuuROL1n0lgpYUhoia68qy6sxOk9k8ZMg94SWqID5ZrrkTi9Z9KYqYUhoSU6UK65\nHonTeyaNmRKGJCSRgfJkbx6VyfSeSWOmLimJjO7TkTi9Z9KYqYUhkdF9OhKn90waM3P3aF/ArAVQ\nDOxw92FVtv0EuAEoB3YD17n7+8G2o8DaoOoH7j68ttcpLCz04uLihg5fRKRZM7MSdy8MUzcVLYyJ\nwAbgy9VsWwUUuvsBM/s34EHgymDbQXcvSEF8IiISQqRjGGaWBwwFflPddnd/zd0PBE+XAXlRxiPS\nHGl9L0mVqAe9pwG3Ap+FqHs98HLc89ZmVmxmy8xsRHU7mNm4oE7x7t27GyBckaalYqLfjrKDOJ9P\n9FPSkChEljDMbBiwy91LQtQdDRQCRXHFnYJ+tVHANDM7s+p+7j7D3QvdvTA3N7ehQhdpMjTRT1Ip\nyhZGP2C4mW0D5gADzGxW1UpmNhC4Axju7ocryt19Z/DvVuB1oGeEsYo0SZroJ6kUWcJw98nunufu\nnYGrgCXuPjq+jpn1BB4llix2xZW3NbNWweOTiSWf9VHFKtJU6UZYkkopn7hnZlPMrOIS2SLgBOB3\nZlZqZvOD8rOAYjNbDbwGTHV3JQyRKjTRT1Ip8nkYqaJ5GJKptBy61Edjm4chIhFK9EZYIslSwpBG\nR9+YRRonJQxpVHQDIZHGS6vVSqOieQUijZcShjQqmlcg0nipS0oaFd1AqPHS2JKohSGNiuYVNE5a\ns0pALQxpZHQDodRItLVQ29iSPpvMoYQhjU4y8wrUXRJeMleiaWxJQF1S0gyouyQxyVyJlsyaVbpP\nR/OjhCFNni7FTUwyrYVEx5aUxJsnJQxp8tRdkphkWgsjenbkgZHd6ZiTjQEdc7J5YGT3Gruwkk3i\napU0bqHGMMzsCnf/XV1lIumgS3ETM2lwl2PGMCDclWiJjC0lk8Q1y7/xC9vCmByyTCTldCluYhJt\nLSQjmVaMWiWNX60tDDO7GLgE6Ghmv4zb9GWgPMrARMJK5lLcTL+qKuoVbpNpxahV0vjV1SW1EygG\nhgPx9+beB/w4qqBEEpXIH0D9kYleMkk8ma5FzQ9JrVoThruvBlab2dPufgRit08FTnX3j1MRoEhD\n0x+Z1Ei0FZPKVkkmty7rI+wYxiIz+7KZtQNWA0+Y2cMRxiUSGV1V1TglM7aS6FiJLvetn7AJ40R3\n/19gJPCEu/cCBobZ0cxamNkqM3uxmm2tzOxZM9tsZm+bWee4bZOD8o1mNjhknCJ1SmZAVlJjRM+O\n/OX2Abw3dSh/uX1And/8E73gQXN26idswmhpZu2BfwW+8Ie/DhOBDTVsux742N2/BjwC/BzAzL4J\nXAV0BYYAvzKzFjUcQyQhuqqq+Ui0VZJs61JXYsWEXUtqCrAA+Iu7rzCzM4BNde1kZnnAUOB+4CfV\nVLkMuCd4PBf4TzOzoHyOux8G3jOzzUBvYGnIeEVqpAUOm5dExkqSGVjXRRKfC5Uwggl6v4t7vhX4\nTohdpwG3Am1q2N4R+FtwzHIz2wucFJQvi6u3PSgTaRBRX1YqjVMyA+vJXiTRHAfXQ3VJmVmemb1g\nZrvM7O9m9vug9VDbPsOAXe5eUlu1asq8lvKqrzHOzIrNrHj37t21noOISDID6/WZH9LcBtfDdkk9\nATwNXBE8Hx2UXVTLPv2A4WZ2CdAa+LKZzXL30XF1tgOnAtvNrCVwIrAnrrxCHrE5Icdw9xnADIDC\nwsIvJBQRkaoSbV1qfsjnwg5657r7E+5eHvw8CeTWtoO7T3b3PHfvTGwAe0mVZAEwHxgTPL48qONB\n+VXBVVSnA18HloeMVUSkwSRzkUSyrZLGPrAetoXxDzMbDTwTPL8a+CiZFzSzKUCxu88HHgN+Gwxq\n7yGWWHD3dWb2HLCe2BIkN7n70ZqOKZIKzbFPWuqWilnrTWVg3WJf6OuoZNYJ+E+gL7GxhLeACe7+\nQbThhVdYWOjFxcXpDkOaqaq/0BD7ltnQi/ZJ85Do/5d+U5dUm2A65mTzl9sHRBqrmZW4e2GYumFb\nGPcBYyqWAwlmfP8CuC65EEWalubaJy3RSLRVUp/5Ials9YZNGPnxa0e5+x4z6xlRTCKNjpYTkUQ1\nx/khYQe9jwsWHQQqWxhhk41Ik6flRCRKyQysp2OZk7AJ4yHgLTO7Lxi0fgt4MLKoRBoZLSciUUrV\n/JD6CjvT+ykzKwYGEJtUN9Ld10cWlUgjo+VEJGqpmB9SX6G7lYIEoSQhGUvLiUhjkuy92etD4xAi\nIk1QOlq9ShgiIk1Uqlu9YQe9RUQkwylhiIhIKEoYIiISisYwRCKkBQulOVHCEIlIU1mBVCQsdUmJ\nRCQdSzeIREkJQyQiWrBQmhslDJGIaMFCaW6UMEQiogULpbnRoLdIRLRgoTQ3kSUMM2sNvAG0Cl5n\nrrvfXaXOI8C/BE+/BHzF3XOCbUeBtcG2D9x9eFSxikRFCxZKcxJlC+MwMMDd95tZFvCmmb3s7ssq\nKrj7jysem9mPgPi7+B1094II4xMRkQRENobhMfuDp1nBj9eyy9XAM1HFIyIi9RPpoLeZtTCzUmAX\nsMjd366h3mnA6cCSuOLWZlZsZsvMbESUcYqISN0iTRjufjToVsoDeptZtxqqXkVsjCN+llMndy8E\nRgHTzOzMqjuZ2bggqRTv3r27weMXEZHPpeSyWncvA14HhtRQ5SqqdEe5+87g363Bvj2r7uTuM9y9\n0N0Lc3NzGzJkERGpIrKEYWa5ZlZxxVM2MBD4azX1ugBtgaVxZW3NrFXw+GSgH7o9rIhIWkV5lVR7\nYKaZtSCWmJ5z9xfNbApQ7O7zg3pXA3PcPX5A/CzgUTP7LNh3anBPcRERSRM79u9001VYWOjFxcXp\nDkNEpEkxs5JgvLhOWhpERERCUcIQEZFQlDBERCQUJQwREQlFCUNEREJRwhARkVCUMEREJBQlDBER\nCUUJQ0REQlHCEBGRUJQwREQkFCUMEREJRQlDRERCUcIQEZFQlDBERCQUJQwREQlFCUNEREJRwhAR\nkVCUMEREJJTIEoaZtTaz5Wa22szWmdm91dQZa2a7zaw0+LkhbtsYM9sU/IyJKk4REQmnZYTHPgwM\ncPf9ZpYFvGlmL7v7sir1nnX38fEFZtYOuBsoBBwoMbP57v5xhPGKiEgtImtheMz+4GlW8OMhdx8M\nLHL3PUGSWAQMiSBMEREJKdIxDDNrYWalwC5iCeDtaqp9x8zWmNlcMzs1KOsI/C2uzvagrOrxx5lZ\nsZkV7969u8HjFxGRz0WaMNz9qLsXAHlAbzPrVqXK/wCd3T0fWAzMDMqtusNVc/wZ7l7o7oW5ubkN\nGbqIiFSRkquk3L0MeJ0q3Uru/pG7Hw6e/jfQK3i8HTg1rmoesDPiMEVEpBZRXiWVa2Y5weNsYCDw\n1yp12sc9HQ5sCB4vAAaZWVszawsMCspERCRNorxKqj0w08xaEEtMz7n7i2Y2BSh29/nABDMbDpQD\ne4CxAO6+x8zuA1YEx5ri7nsijFVEROpg7mEvXGrcCgsLvbi4ON1hiIg0KWZW4u6FYepqpreIiISi\nhCEiIqEoYYiISChKGCIiEooShoiIhKKEISIioShhiIhIKEoYIiISihKGiIiEooQhIiKhKGGIiEgo\nShgiIhKKEoaIiISihCEiIqEoYYiISChKGCIiEooShoiIhKKEISIioUSWMMystZktN7PVZrbOzO6t\nps5PzGy9ma0xs1fN7LS4bUfNrDT4mR9VnCIiEk7LCI99GBjg7vvNLAt408xedvdlcXVWAYXufsDM\n/g14ELgy2HbQ3QsijE9ERBIQWQvDY/YHT7OCH69S5zV3PxA8XQbkRRWPiIjUT6RjGGbWwsxKgV3A\nInd/u5bq1wMvxz1vbWbFZrbMzEZEGaeIiNQtyi4p3P0oUGBmOcALZtbN3d+pWs/MRgOFwPlxxZ3c\nfaeZnQEsMbO17r6lyn7jgHEAnTp1iuw8REQkRVdJuXsZ8DowpOo2MxsI3AEMd/fDcfvsDP7dGuzb\ns5rjznD3QncvzM3NjSZ4EREBor1KKjdoWWBm2cBA4K9V6vQEHiWWLHbFlbc1s1bB45OBfsD6qGIV\nEZG6Rdkl1R6YaWYtiCWm59z9RTObAhS7+3ygCDgB+J2ZAXzg7sOBs4BHzeyzYN+p7q6EISKSRpEl\nDHdfQ/XdSHfFPR5Yw75vAd2jik1ERBKnmd4iIhKKEoaIiISihCEiIqEoYYiISChKGCIiEooShoiI\nhKKEISIioUS6llRTMG/VDooWbGRn2UE65GQzaXAXRvTsmO6wREQanYxOGPNW7WDy82s5eOQoADvK\nDjL5+bUAShoiIlVkdJdU0YKNlcmiwsEjRylasDFNEYmINF4ZnTB2lh1MqFxEJJNldMLokJOdULmI\nSCbL6IQxaXAXsrNaHFOWndWCSYO7pCkiEZHGK6MHvSsGtnWVlIhI3TI6YUAsaShBiIjULaO7pERE\nJDwlDBERCUUJQ0REQlHCEBGRUJQwREQkFHP3dMfQIMxsN/B+PQ5xMvCPBgqnqdG5Z65MPv9MPnf4\n/PxPc/fcMDs0m4RRX2ZW7O6F6Y4jHXTumXnukNnnn8nnDsmdv7qkREQkFCUMEREJRQnjczPSHUAa\n6dwzVyaffyafOyRx/hrDEBGRUNTCEBGRUDI+YZjZEDPbaGabzez2dMeTama2zczWmlmpmRWnO54o\nmdnjZrbLzN6JK2tnZovMbFPwb9t0xhilGs7/HjPbEXz+pWZ2STpjjIqZnWpmr5nZBjNbZ2YTg/Jm\n//nXcu67ugq8AAAD/UlEQVQJf/YZ3SVlZi2Ad4GLgO3ACuBqd1+f1sBSyMy2AYXu3uyvRzezfwb2\nA0+5e7eg7EFgj7tPDb4wtHX329IZZ1RqOP97gP3u/ot0xhY1M2sPtHf3lWbWBigBRgBjaeaffy3n\n/q8k+NlnegujN7DZ3be6+6fAHOCyNMckEXH3N4A9VYovA2YGj2cS+0Vqlmo4/4zg7h+6+8rg8T5g\nA9CRDPj8azn3hGV6wugI/C3u+XaSfCObMAcWmlmJmY1LdzBpcIq7fwixXyzgK2mOJx3Gm9maoMuq\n2XXJVGVmnYGewNtk2Odf5dwhwc8+0xOGVVOWaX10/dz9bOBi4Kag20Iyx6+BM4EC4EPgofSGEy0z\nOwH4PXCzu/9vuuNJpWrOPeHPPtMTxnbg1LjnecDONMWSFu6+M/h3F/ACsW66TPL3oI+3oq93V5rj\nSSl3/7u7H3X3z4D/phl//maWRewP5mx3fz4ozojPv7pzT+azz/SEsQL4upmdbmb/B7gKmJ/mmFLG\nzI4PBsEws+OBQcA7te/V7MwHxgSPxwB/SGMsKVfxxzLwbZrp529mBjwGbHD3h+M2NfvPv6ZzT+az\nz+irpACCS8mmAS2Ax939/jSHlDJmdgaxVgXE7u/+dHM+fzN7BriA2CqdfwfuBuYBzwGdgA+AK9y9\nWQ4M13D+FxDrknBgG/CDij795sTM+gN/BtYCnwXF/5dYX36z/vxrOferSfCzz/iEISIi4WR6l5SI\niISkhCEiIqEoYYiISChKGCIiEooShoiIhKKEIdIImNkFZvZiuuMQqY0ShoiIhKKEIZIAMxttZsuD\n+wc8amYtzGy/mT1kZivN7FUzyw3qFpjZsmBxtxcqFnczs6+Z2WIzWx3sc2Zw+BPMbK6Z/dXMZgcz\ndEUaDSUMkZDM7CzgSmILNhYAR4FrgOOBlcEijn8iNoMa4CngNnfPJzbLtqJ8NvBf7t4DOJfYwm8Q\nW0X0ZuCbwBlAv8hPSiQBLdMdgEgTciHQC1gRfPnPJrZY3WfAs0GdWcDzZnYikOPufwrKZwK/C9bu\n6ujuLwC4+yGA4HjL3X178LwU6Ay8Gf1piYSjhCESngEz3X3yMYVm/69KvdrW26mtm+lw3OOj6PdT\nGhl1SYmE9ypwuZl9BSrvB30asd+jy4M6o4A33X0v8LGZnReUfxf4U3Afgu1mNiI4Risz+1JKz0Ik\nSfoGIxKSu683szuJ3aHwOOAIcBPwCdDVzEqAvcTGOSC2XPb0ICFsBb4XlH8XeNTMpgTHuCKFpyGS\nNK1WK1JPZrbf3U9IdxwiUVOXlIiIhKIWhoiIhKIWhoiIhKKEISIioShhiIhIKEoYIiISihKGiIiE\nooQhIiKh/H/9eM3h1dqi1QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# plotting\n", + "plt.plot(range(len(loss_history)), loss_history, 'o', label='Logistic Regression Training phase')\n", + "plt.ylabel('cost')\n", + "plt.xlabel('epoch')\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Your Turn\n", + "\n", + "Please switch to the **Theano** backend and **restart** the notebook.\n", + "\n", + "You _should_ see no difference in the execution!\n", + "\n", + "**Reminder**: please keep in mind that you *can* execute shell commands from a notebook (pre-pending a `!` sign).\n", + "Thus:\n", + "\n", + "```shell\n", + " !cat ~/.keras/keras.json\n", + "```\n", + "should show you the content of your keras configuration file." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "### Moreover\n", + "\n", + "Try to play a bit with the **learning reate** parameter to see how the loss history floats... " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise: Linear Regression\n", + "To get familiar with automatic differentiation, we start by learning a simple linear regression model using Stochastic Gradient Descent (SGD).\n", + "\n", + "Recall that given a dataset $\\{(x_i, y_i)\\}_{i=0}^N$, with $x_i, y_i \\in \\mathbb{R}$, the objective of linear regression is to find two scalars $w$ and $b$ such that $y = w\\cdot x + b$ fits the dataset. In this tutorial we will learn $w$ and $b$ using SGD and a Mean Square Error (MSE) loss:\n", + "\n", + "$$\\mathcal{l} = \\frac{1}{N} \\sum_{i=0}^N (w\\cdot x_i + b - y_i)^2$$\n", + "\n", + "Starting from random values, parameters $w$ and $b$ will be updated at each iteration via the following rule:\n", + "\n", + "$$w_t = w_{t-1} - \\eta \\frac{\\partial \\mathcal{l}}{\\partial w}$$\n", + "
\n", + "$$b_t = b_{t-1} - \\eta \\frac{\\partial \\mathcal{l}}{\\partial b}$$\n", + "\n", + "where $\\eta$ is the learning rate.\n", + "\n", + "**NOTE:** Recall that **linear regression** is indeed a **simple neuron** with a linear activation function!!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Definition: Placeholders and Variables" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "First of all, we define the necessary variables and placeholders for our computational graph. Variables maintain state across executions of the computational graph, while placeholders are ways to feed the graph with external data.\n", + "\n", + "For the linear regression example, we need three variables: `w`, `b`, and the learning rate for SGD, `lr`. \n", + "\n", + "Two placeholders `x` and `target` are created to store $x_i$ and $y_i$ values." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# Placeholders and variables\n", + "x = K.placeholder()\n", + "target = K.placeholder()\n", + "w = K.variable(np.random.rand())\n", + "b = K.variable(np.random.rand())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Notes:\n", + "\n", + "In case you're wondering what's the difference between a **placeholder** and a **variable**, in short:\n", + "\n", + "* Use `K.variable()` for trainable variables such as weights (`W`) and biases (`b`) for your model.\n", + "* Use `K.placeholder()` to feed actual data (e.g. training examples)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Model definition\n", + "Now we can define the $y = w\\cdot x + b$ relation as well as the MSE loss in the computational graph." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# Define model and loss" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# %load ../solutions/sol_2311.py" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Then, given the gradient of MSE wrt to `w` and `b`, we can define how we update the parameters via SGD:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# %load ../solutions/sol_2312.py" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The whole model can be encapsulated in a `function`, which takes as input `x` and `target`, returns the current loss value and updates its parameter according to `updates`." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "train = K.function(inputs=[x, target], outputs=[loss], updates=updates)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Training\n", + "Training is now just a matter of calling the `function` we have just defined. Each time `train` is called, indeed, `w` and `b` will be updated using the SGD rule.\n", + "\n", + "Having generated some random training data, we will feed the `train` function for several epochs and observe the values of `w`, `b`, and loss." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# Generate data\n", + "np_x = np.random.rand(1000)\n", + "np_target = 0.96*np_x + 0.24" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# Training\n", + "loss_history = []\n", + "for epoch in range(200):\n", + " current_loss = train([np_x, np_target])[0]\n", + " loss_history.append(current_loss)\n", + " if epoch % 20 == 0:\n", + " print(\"Loss: %.03f, w, b: [%.02f, %.02f]\" % (current_loss, K.eval(w), K.eval(b)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can also plot the loss history:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# Plot loss history" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# %load ../solutions/sol_2313.py" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Final Note:\n", + "\n", + "Please switch back your backend to `tensorflow` before moving on. It may be useful for next notebooks !-)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.5.3" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/kaggle_data.py b/2. Deep Learning Frameworks/kaggle_data.py similarity index 100% rename from kaggle_data.py rename to 2. Deep Learning Frameworks/kaggle_data.py diff --git a/mnist_data.py b/2. Deep Learning Frameworks/mnist_data.py similarity index 100% rename from mnist_data.py rename to 2. Deep Learning Frameworks/mnist_data.py diff --git a/2.2.1 CNN HandsOn - MNIST & FC Nets.ipynb b/2.2.1 CNN HandsOn - MNIST & FC Nets.ipynb deleted file mode 100644 index feb5bc0..0000000 --- a/2.2.1 CNN HandsOn - MNIST & FC Nets.ipynb +++ /dev/null @@ -1,254 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "# Fully Connected Feed-Forward Network\n", - "\n", - "In this notebook we will play with Feed-Forward FC-NN (Fully Connected Neural Network) for a *classification task*: Image Classification on MNIST Dataset\n", - "\n", - "**RECALL**\n", - "\n", - "In the FC-NN, the output of each layer is computed using the activations from the previous one, as follows:\n", - "\n", - "$$h_{i} = \\sigma(W_i h_{i-1} + b_i)$$\n", - "\n", - "where ${h}_i$ is the activation vector from the $i$-th layer (or the input data for $i=0$), ${W}_i$ and ${b}_i$ are the weight matrix and the bias vector for the $i$-th layer, respectively. \n", - "
\n", - "$\\sigma(\\cdot)$ is the activation function. In our example, we will use the *ReLU* activation function for the hidden layers and *softmax* for the last layer.\n", - "\n", - "To regularize the model, we will also insert a Dropout layer between consecutive hidden layers. \n", - "\n", - "Dropout works by “dropping out” some unit activations in a given layer, that is setting them to zero with a given probability.\n", - "\n", - "Our loss function will be the **categorical crossentropy**." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "## Model definition\n", - "Keras supports two different kind of models: the [Sequential](http://keras.io/models/#sequential) model and the [Graph](http://keras.io/models/#graph) model. The former is used to build linear stacks of layer (so each layer has one input and one output), and the latter supports any kind of connection graph.\n", - "\n", - "In our case we build a Sequential model with three [Dense](http://keras.io/layers/core/#dense) (aka fully connected) layers, with some [Dropout](http://keras.io/layers/core/#dropout). Notice that the output layer has the softmax activation function. \n", - "\n", - "The resulting model is actually a `function` of its own inputs implemented using the Keras backend. \n", - "\n", - "We apply the binary crossentropy loss and choose SGD as the optimizer. \n", - "\n", - "Please remind that Keras supports a variety of different [optimizers](http://keras.io/optimizers/) and [loss functions](http://keras.io/objectives/), which you may want to check out. " - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Using TensorFlow backend.\n" - ] - } - ], - "source": [ - "from keras.models import Sequential\n", - "from keras.layers.core import Dense, Dropout\n", - "from keras.optimizers import SGD\n", - "\n", - "nb_classes = 10\n", - "\n", - "# FC@512+relu -> DropOut(0.2) -> FC@512+relu -> DropOut(0.2) -> FC@nb_classes+softmax\n", - "# ... your Code Here" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "outputs": [], - "source": [ - "# Decomment and Execute this cell to get the solution\n", - "# %load solutions/sol_221_1.py" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "## Data preparation (`keras.dataset`)\n", - "\n", - "We will train our model on the MNIST dataset, which consists of 60,000 28x28 grayscale images of the 10 digits, along with a test set of 10,000 images. \n", - "\n", - "![](imgs/mnist.png)\n", - "\n", - "Since this dataset is **provided** with Keras, we just ask the `keras.dataset` model for training and test data.\n", - "\n", - "We will:\n", - "\n", - "* download the data\n", - "* reshape data to be in vectorial form (original data are images)\n", - "* normalize between 0 and 1.\n", - "\n", - "The `binary_crossentropy` loss expects a **one-hot-vector** as input, therefore we apply the `to_categorical` function from `keras.utilis` to convert integer labels to **one-hot-vectors**." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [], - "source": [ - "from keras.datasets import mnist\n", - "from keras.utils import np_utils\n", - "\n", - "(X_train, y_train), (X_test, y_test) = mnist.load_data()\n", - "X_train = X_train.reshape(60000, 784)\n", - "X_test = X_test.reshape(10000, 784)\n", - "X_train = X_train.astype(\"float32\")\n", - "X_test = X_test.astype(\"float32\")\n", - "X_train /= 255\n", - "X_test /= 255\n", - "\n", - "# convert class vectors to binary class matrices\n", - "Y_train = np_utils.to_categorical(y_train, 10)\n", - "Y_test = np_utils.to_categorical(y_test, 10)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "## Training\n", - "Having defined and compiled the model, it can be trained using the `fit` function. We also specify a validation dataset to monitor validation loss and accuracy." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true, - "scrolled": true - }, - "outputs": [], - "source": [ - "network_history = model.fit(X_train, Y_train, batch_size=128, \n", - " epochs=100, verbose=1, validation_data=(X_test, Y_test))" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "### Plotting Network Performance Trend\n", - "The return value of the `fit` function is a `keras.callbacks.History` object which contains the entire history of training/validation loss and accuracy, for each epoch. We can therefore plot the behaviour of loss and accuracy during the training phase." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [], - "source": [ - "import matplotlib.pyplot as plt\n", - "%matplotlib inline\n", - "\n", - "plt.figure()\n", - "plt.xlabel('Epochs')\n", - "plt.ylabel('Loss')\n", - "plt.plot(network_history.history['loss'])\n", - "plt.plot(network_history.history['val_loss'])\n", - "plt.legend(['Training', 'Validation'])\n", - "\n", - "plt.figure()\n", - "plt.xlabel('Epochs')\n", - "plt.ylabel('Accuracy')\n", - "plt.plot(network_history.history['acc'])\n", - "plt.plot(network_history.history['val_acc'])\n", - "plt.legend(['Training', 'Validation'], loc='lower right')" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "After `100` epochs, we get a `98.8%` validation accuracy. \n", - "\n", - "If you continue training, at some point the validation loss will start to increase: that is when the model starts to **overfit**. \n", - "\n", - "It is always necessary to monitor training and validation loss during the training of any kind of Neural Network, either to detect overfitting or to evaluate the behaviour of the model **(any clue on how to do it??)**" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "# %load solutions/sol_221_2.py" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.5.2" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/2.2.2 CNN HandsOn - MNIST & CN Nets.ipynb b/2.2.2 CNN HandsOn - MNIST & CN Nets.ipynb deleted file mode 100644 index 19f4cc9..0000000 --- a/2.2.2 CNN HandsOn - MNIST & CN Nets.ipynb +++ /dev/null @@ -1,1028 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "# Convolution Nets for MNIST" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "subslide" - } - }, - "source": [ - "Deep Learning models can take quite a bit of time to run, particularly if GPU isn't used. \n", - "\n", - "In the interest of time, you could sample a subset of observations (e.g. $1000$) that are a particular number of your choice (e.g. $6$) and $1000$ observations that aren't that particular number (i.e. $\\neq 6$). \n", - "\n", - "We will build a model using that and see how it performs on the test dataset" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "subslide" - } - }, - "outputs": [], - "source": [ - "#Import the required libraries\n", - "import numpy as np\n", - "np.random.seed(1338)\n", - "\n", - "from keras.datasets import mnist" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "fragment" - } - }, - "outputs": [], - "source": [ - "from keras.models import Sequential\n", - "from keras.layers.core import Dense, Dropout, Activation, Flatten" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "fragment" - } - }, - "outputs": [], - "source": [ - "from keras.layers.convolutional import Conv2D\n", - "from keras.layers.pooling import MaxPooling2D" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "fragment" - } - }, - "outputs": [], - "source": [ - "from keras.utils import np_utils\n", - "from keras.optimizers import SGD" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "subslide" - } - }, - "source": [ - "## Loading Data" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "-" - } - }, - "outputs": [], - "source": [ - "#Load the training and testing data\n", - "(X_train, y_train), (X_test, y_test) = mnist.load_data()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "skip" - } - }, - "outputs": [], - "source": [ - "X_test_orig = X_test" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "subslide" - } - }, - "source": [ - "## Data Preparation" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [], - "source": [ - "from keras import backend as K" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Very Important: \n", - "When dealing with images & convolutions, it is paramount to handle `image_data_format` properly" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "outputs": [], - "source": [ - "img_rows, img_cols = 28, 28\n", - "\n", - "if K.image_data_format() == 'channels_first':\n", - " shape_ord = (1, img_rows, img_cols)\n", - "else: # channel_last\n", - " shape_ord = (img_rows, img_cols, 1)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Preprocess and Normalise Data" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "-" - } - }, - "outputs": [], - "source": [ - "X_train = X_train.reshape((X_train.shape[0],) + shape_ord)\n", - "X_test = X_test.reshape((X_test.shape[0],) + shape_ord)\n", - "\n", - "X_train = X_train.astype('float32')\n", - "X_test = X_test.astype('float32')\n", - "\n", - "X_train /= 255\n", - "X_test /= 255" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "subslide" - } - }, - "outputs": [], - "source": [ - "np.random.seed(1338) # for reproducibilty!!\n", - "\n", - "# Test data\n", - "X_test = X_test.copy()\n", - "Y = y_test.copy()\n", - "\n", - "# Converting the output to binary classification(Six=1,Not Six=0)\n", - "Y_test = Y == 6\n", - "Y_test = Y_test.astype(int)\n", - "\n", - "# Selecting the 5918 examples where the output is 6\n", - "X_six = X_train[y_train == 6].copy()\n", - "Y_six = y_train[y_train == 6].copy()\n", - "\n", - "# Selecting the examples where the output is not 6\n", - "X_not_six = X_train[y_train != 6].copy()\n", - "Y_not_six = y_train[y_train != 6].copy()\n", - "\n", - "# Selecting 6000 random examples from the data that \n", - "# only contains the data where the output is not 6\n", - "random_rows = np.random.randint(0,X_six.shape[0],6000)\n", - "X_not_six = X_not_six[random_rows]\n", - "Y_not_six = Y_not_six[random_rows]" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "subslide" - } - }, - "outputs": [], - "source": [ - "# Appending the data with output as 6 and data with output as <> 6\n", - "X_train = np.append(X_six,X_not_six)\n", - "\n", - "# Reshaping the appended data to appropraite form\n", - "X_train = X_train.reshape((X_six.shape[0] + X_not_six.shape[0],) + shape_ord)\n", - "\n", - "# Appending the labels and converting the labels to \n", - "# binary classification(Six=1,Not Six=0)\n", - "Y_labels = np.append(Y_six,Y_not_six)\n", - "Y_train = Y_labels == 6 \n", - "Y_train = Y_train.astype(int)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "subslide" - } - }, - "outputs": [], - "source": [ - "print(X_train.shape, Y_labels.shape, X_test.shape, Y_test.shape)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "fragment" - } - }, - "outputs": [], - "source": [ - "# Converting the classes to its binary categorical form\n", - "nb_classes = 2\n", - "Y_train = np_utils.to_categorical(Y_train, nb_classes)\n", - "Y_test = np_utils.to_categorical(Y_test, nb_classes)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "# A simple CNN" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "subslide" - } - }, - "outputs": [], - "source": [ - "# -- Initializing the values for the convolution neural network\n", - "\n", - "nb_epoch = 2 # kept very low! Please increase if you have GPU\n", - "\n", - "batch_size = 64\n", - "# number of convolutional filters to use\n", - "nb_filters = 32\n", - "# size of pooling area for max pooling\n", - "nb_pool = 2\n", - "# convolution kernel size\n", - "nb_conv = 3\n", - "\n", - "sgd = SGD(lr=0.1, decay=1e-6, momentum=0.9, nesterov=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "subslide" - } - }, - "source": [ - "#### Step 1: Model Definition" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [], - "source": [ - "model = Sequential()\n", - "\n", - "model.add(Conv2D(nb_filters, (nb_conv, nb_conv), padding='valid', \n", - " input_shape=shape_ord)) # note: the very first layer **must** always specify the input_shape\n", - "model.add(Activation('relu'))\n", - "\n", - "model.add(Flatten())\n", - "model.add(Dense(nb_classes))\n", - "model.add(Activation('softmax'))" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "subslide" - } - }, - "source": [ - "#### Step 2: Compile" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "outputs": [], - "source": [ - "model.compile(loss='categorical_crossentropy',\n", - " optimizer='sgd',\n", - " metrics=['accuracy'])" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "subslide" - } - }, - "source": [ - "#### Step 3: Fit" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [], - "source": [ - "hist = model.fit(X_train, Y_train, batch_size=batch_size, \n", - " epochs=nb_epoch, verbose=1, \n", - " validation_data=(X_test, Y_test))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "import matplotlib.pyplot as plt\n", - "%matplotlib inline\n", - "\n", - "plt.figure()\n", - "plt.xlabel('Epochs')\n", - "plt.ylabel('Loss')\n", - "plt.plot(hist.history['loss'])\n", - "plt.plot(hist.history['val_loss'])\n", - "plt.legend(['Training', 'Validation'])\n", - "\n", - "plt.figure()\n", - "plt.xlabel('Epochs')\n", - "plt.ylabel('Accuracy')\n", - "plt.plot(hist.history['acc'])\n", - "plt.plot(hist.history['val_acc'])\n", - "plt.legend(['Training', 'Validation'], loc='lower right')" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "subslide" - } - }, - "source": [ - "### Step 4: Evaluate" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "print('Available Metrics in Model: {}'.format(model.metrics_names))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [], - "source": [ - "# Evaluating the model on the test data \n", - "loss, accuracy = model.evaluate(X_test, Y_test, verbose=0)\n", - "print('Test Loss:', loss)\n", - "print('Test Accuracy:', accuracy)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "subslide" - } - }, - "source": [ - "### Let's plot our model Predictions!" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "skip" - } - }, - "outputs": [], - "source": [ - "import matplotlib.pyplot as plt\n", - "\n", - "%matplotlib inline" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "subslide" - } - }, - "outputs": [], - "source": [ - "slice = 15\n", - "predicted = model.predict(X_test[:slice]).argmax(-1)\n", - "\n", - "plt.figure(figsize=(16,8))\n", - "for i in range(slice):\n", - " plt.subplot(1, slice, i+1)\n", - " plt.imshow(X_test_orig[i], interpolation='nearest')\n", - " plt.text(0, 0, predicted[i], color='black', \n", - " bbox=dict(facecolor='white', alpha=1))\n", - " plt.axis('off')" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "# Adding more Dense Layers" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "subslide" - } - }, - "outputs": [], - "source": [ - "model = Sequential()\n", - "model.add(Conv2D(nb_filters, (nb_conv, nb_conv),\n", - " padding='valid', input_shape=shape_ord))\n", - "model.add(Activation('relu'))\n", - "\n", - "model.add(Flatten())\n", - "model.add(Dense(128))\n", - "model.add(Activation('relu'))\n", - "\n", - "model.add(Dense(nb_classes))\n", - "model.add(Activation('softmax'))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "subslide" - } - }, - "outputs": [], - "source": [ - "model.compile(loss='categorical_crossentropy',\n", - " optimizer='sgd',\n", - " metrics=['accuracy'])\n", - "\n", - "model.fit(X_train, Y_train, batch_size=batch_size, \n", - " epochs=nb_epoch,verbose=1,\n", - " validation_data=(X_test, Y_test))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "subslide" - } - }, - "outputs": [], - "source": [ - "#Evaluating the model on the test data \n", - "score, accuracy = model.evaluate(X_test, Y_test, verbose=0)\n", - "print('Test score:', score)\n", - "print('Test accuracy:', accuracy)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "# Adding Dropout" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "subslide" - } - }, - "outputs": [], - "source": [ - "model = Sequential()\n", - "\n", - "model.add(Conv2D(nb_filters, (nb_conv, nb_conv),\n", - " padding='valid',\n", - " input_shape=shape_ord))\n", - "model.add(Activation('relu'))\n", - "\n", - "model.add(Flatten())\n", - "model.add(Dense(128))\n", - "model.add(Activation('relu'))\n", - "model.add(Dropout(0.5))\n", - "model.add(Dense(nb_classes))\n", - "model.add(Activation('softmax'))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "subslide" - } - }, - "outputs": [], - "source": [ - "model.compile(loss='categorical_crossentropy',\n", - " optimizer='sgd',\n", - " metrics=['accuracy'])\n", - "\n", - "model.fit(X_train, Y_train, batch_size=batch_size, \n", - " epochs=nb_epoch,verbose=1,\n", - " validation_data=(X_test, Y_test))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "subslide" - } - }, - "outputs": [], - "source": [ - "#Evaluating the model on the test data \n", - "score, accuracy = model.evaluate(X_test, Y_test, verbose=0)\n", - "print('Test score:', score)\n", - "print('Test accuracy:', accuracy)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "# Adding more Convolution Layers" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "subslide" - } - }, - "outputs": [], - "source": [ - "model = Sequential()\n", - "model.add(Conv2D(nb_filters, (nb_conv, nb_conv),\n", - " padding='valid', input_shape=shape_ord))\n", - "model.add(Activation('relu'))\n", - "model.add(Convolution2D(nb_filters, (nb_conv, nb_conv)))\n", - "model.add(Activation('relu'))\n", - "model.add(MaxPooling2D(pool_size=(nb_pool, nb_pool)))\n", - "model.add(Dropout(0.25))\n", - " \n", - "model.add(Flatten())\n", - "model.add(Dense(128))\n", - "model.add(Activation('relu'))\n", - "model.add(Dropout(0.5))\n", - "model.add(Dense(nb_classes))\n", - "model.add(Activation('softmax'))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "subslide" - } - }, - "outputs": [], - "source": [ - "model.compile(loss='categorical_crossentropy',\n", - " optimizer='sgd',\n", - " metrics=['accuracy'])\n", - "\n", - "model.fit(X_train, Y_train, batch_size=batch_size, \n", - " epochs=nb_epoch,verbose=1,\n", - " validation_data=(X_test, Y_test))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [], - "source": [ - "#Evaluating the model on the test data \n", - "score, accuracy = model.evaluate(X_test, Y_test, verbose=0)\n", - "print('Test score:', score)\n", - "print('Test accuracy:', accuracy)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "# Exercise\n", - "\n", - "The above code has been written as a function. \n", - "\n", - "Change some of the **hyperparameters** and see what happens. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "skip" - } - }, - "outputs": [], - "source": [ - "# Function for constructing the convolution neural network\n", - "# Feel free to add parameters, if you want\n", - "\n", - "def build_model():\n", - " \"\"\"\"\"\"\n", - " model = Sequential()\n", - " model.add(Conv2D(nb_filters, (nb_conv, nb_conv), \n", - " padding='valid',\n", - " input_shape=shape_ord))\n", - " model.add(Activation('relu'))\n", - " model.add(Conv2D(nb_filters, (nb_conv, nb_conv)))\n", - " model.add(Activation('relu'))\n", - " model.add(MaxPooling2D(pool_size=(nb_pool, nb_pool)))\n", - " model.add(Dropout(0.25))\n", - " \n", - " model.add(Flatten())\n", - " model.add(Dense(128))\n", - " model.add(Activation('relu'))\n", - " model.add(Dropout(0.5))\n", - " model.add(Dense(nb_classes))\n", - " model.add(Activation('softmax'))\n", - " \n", - " model.compile(loss='categorical_crossentropy',\n", - " optimizer='sgd',\n", - " metrics=['accuracy'])\n", - "\n", - " model.fit(X_train, Y_train, batch_size=batch_size, \n", - " epochs=nb_epoch,verbose=1,\n", - " validation_data=(X_test, Y_test))\n", - " \n", - "\n", - " #Evaluating the model on the test data \n", - " score, accuracy = model.evaluate(X_test, Y_test, verbose=0)\n", - " print('Test score:', score)\n", - " print('Test accuracy:', accuracy)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [], - "source": [ - "#Timing how long it takes to build the model and test it.\n", - "%timeit -n1 -r1 build_model()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "# Batch Normalisation" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "Normalize the activations of the previous layer at each batch, i.e. applies a transformation that maintains the mean activation close to 0 and the activation standard deviation close to 1." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "subslide" - } - }, - "source": [ - "## How to BatchNorm in Keras" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "```python\n", - "from keras.layers.normalization import BatchNormalization\n", - "\n", - "BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True, \n", - " beta_initializer='zeros', gamma_initializer='ones', moving_mean_initializer='zeros',\n", - " moving_variance_initializer='ones', beta_regularizer=None, gamma_regularizer=None,\n", - " beta_constraint=None, gamma_constraint=None)\n", - "```\n", - "\n", - "#### Arguments\n", - "\n", - "
    \n", - "
  • axis: Integer, the axis that should be normalized\n", - " (typically the features axis).\n", - " For instance, after a Conv2D layer with\n", - " data_format=\"channels_first\",\n", - " set axis=1 in BatchNormalization.
  • \n", - "
  • momentum: Momentum for the moving average.
  • \n", - "
  • epsilon: Small float added to variance to avoid dividing by zero.
  • \n", - "
  • center: If True, add offset of beta to normalized tensor.\n", - " If False, beta is ignored.
  • \n", - "
  • scale: If True, multiply by gamma.\n", - " If False, gamma is not used.\n", - " When the next layer is linear (also e.g. nn.relu),\n", - " this can be disabled since the scaling\n", - " will be done by the next layer.
  • \n", - "
  • beta_initializer: Initializer for the beta weight.
  • \n", - "
  • gamma_initializer: Initializer for the gamma weight.
  • \n", - "
  • moving_mean_initializer: Initializer for the moving mean.
  • \n", - "
  • moving_variance_initializer: Initializer for the moving variance.
  • \n", - "
  • beta_regularizer: Optional regularizer for the beta weight.
  • \n", - "
  • gamma_regularizer: Optional regularizer for the gamma weight.
  • \n", - "
  • beta_constraint: Optional constraint for the beta weight.
  • \n", - "
  • gamma_constraint: Optional constraint for the gamma weight.
  • \n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Excercise" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "subslide" - } - }, - "outputs": [], - "source": [ - "# Try to add a new BatchNormalization layer to the Model \n", - "# (after the Dropout layer) - before or after the ReLU Activation" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.5.2" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/2.2.3 CNN HandsON - CIFAR10.ipynb b/2.2.3 CNN HandsON - CIFAR10.ipynb deleted file mode 100644 index 5d6fdf2..0000000 --- a/2.2.3 CNN HandsON - CIFAR10.ipynb +++ /dev/null @@ -1,378 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "# Convolutional Neural Network\n", - "\n", - "In this second exercise-notebook we will play with Convolutional Neural Network (CNN). \n", - "\n", - "As you should have seen, a CNN is a feed-forward neural network tipically composed of Convolutional, MaxPooling and Dense layers. \n", - "\n", - "If the task implemented by the CNN is a classification task, the last Dense layer should use the **Softmax** activation, and the loss should be the **categorical crossentropy**.\n", - "\n", - "Reference: [https://github.com/fchollet/keras/blob/master/examples/cifar10_cnn.py]()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Network Topology Model\n", - "\n", - "A simple CNN, with one input branch and one output branch can be defined using a [Sequential](http://keras.io/models/#sequential) model and stacking together all its layers. \n", - "\n", - "In this exercise we want to build a (_quite shallow_) network which contains two \n", - "[Convolution, Convolution, MaxPooling] stages, and two Dense layers.\n", - "\n", - "To test a different optimizer, we will use [AdaDelta](http://keras.io/optimizers/), which is a bit more complex than the simple Vanilla SGD with momentum." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Using TensorFlow backend.\n" - ] - } - ], - "source": [ - "from keras.models import Sequential\n", - "from keras.layers.core import Dense, Dropout, Flatten, Activation\n", - "from keras.layers.convolutional import Convolution2D, MaxPooling2D\n", - "from keras.optimizers import Adadelta\n", - "\n", - "input_shape = (3, 32, 32)\n", - "nb_classes = 10\n", - "\n", - "## [conv@32x3x3+relu]x2 --> MaxPool@2x2 --> DropOut@0.25 -->\n", - "## [conv@64x3x3+relu]x2 --> MaxPool@2x2 --> DropOut@0.25 -->\n", - "## Flatten--> FC@512+relu --> DropOut@0.5 --> FC@nb_classes+SoftMax\n", - "## NOTE: each couple of Conv filters must have `border_mode=\"same\"` and `\"valid\"`, respectively\n", - "\n", - "## your code here\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "# %load solutions/sol_223.py" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "### Understanding layer shapes\n", - "\n", - "An important feature of Keras layers is that each of them has an `input_shape` attribute, which you can use to visualize the shape of the input tensor, and an `output_shape` attribute, for inspecting the shape of the output tensor.\n", - "\n", - "As we can see, the input shape of the first convolutional layer corresponds to the `input_shape` attribute (which must be specified by the user). \n", - "\n", - "In this case, it is a `32x32` image with three color channels. \n", - "\n", - "Since this convolutional layer has the `border_mode` set to `same`, its output width and height will remain the same, and the number of output channel will be equal to the number of filters learned by the layer, 16. \n", - "\n", - "The following convolutional layers, instead, have the default `border_mode`, and therefore reduce width and height by $(k-1)$, where $k$ is the size of the kernel. \n", - "\n", - "MaxPooling layers, instead, reduce width and height of the input tensor, but keep the same number of channels. Activation layers, of course, don't change the shape." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Layer 0 \t (None, 3, 32, 32) \t (None, 32, 32, 32)\n", - "Layer 1 \t (None, 32, 32, 32) \t (None, 32, 32, 32)\n", - "Layer 2 \t (None, 32, 32, 32) \t (None, 32, 30, 30)\n", - "Layer 3 \t (None, 32, 30, 30) \t (None, 32, 30, 30)\n", - "Layer 4 \t (None, 32, 30, 30) \t (None, 32, 15, 15)\n", - "Layer 5 \t (None, 32, 15, 15) \t (None, 32, 15, 15)\n", - "Layer 6 \t (None, 32, 15, 15) \t (None, 64, 15, 15)\n", - "Layer 7 \t (None, 64, 15, 15) \t (None, 64, 15, 15)\n", - "Layer 8 \t (None, 64, 15, 15) \t (None, 64, 13, 13)\n", - "Layer 9 \t (None, 64, 13, 13) \t (None, 64, 13, 13)\n", - "Layer 10 \t (None, 64, 13, 13) \t (None, 64, 6, 6)\n", - "Layer 11 \t (None, 64, 6, 6) \t (None, 64, 6, 6)\n", - "Layer 12 \t (None, 64, 6, 6) \t (None, 2304)\n", - "Layer 13 \t (None, 2304) \t (None, 512)\n", - "Layer 14 \t (None, 512) \t (None, 512)\n", - "Layer 15 \t (None, 512) \t (None, 512)\n", - "Layer 16 \t (None, 512) \t (None, 10)\n", - "Layer 17 \t (None, 10) \t (None, 10)\n" - ] - } - ], - "source": [ - "for i, layer in enumerate(model.layers):\n", - " print (\"Layer\", i, \"\\t\", layer.input_shape, \"\\t\", layer.output_shape)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "### Understanding weights shape\n", - "In the same way, we can visualize the shape of the weights learned by each layer. In particular, Keras lets you inspect weights by using the `get_weights` method of a layer object. This will return a list with two elements, the first one being the weight tensor and the second one being the bias vector.\n", - "\n", - "Of course, MaxPooling layer don't have any weight tensor, since they don't have learnable parameters. Convolutional layers, instead, learn a $(n_o, n_i, k, k)$ weight tensor, where $k$ is the size of the kernel, $n_i$ is the number of channels of the input tensor, and $n_o$ is the number of filters to be learned. For each of the $n_o$ filters, a bias is also learned. Dense layers learn a $(n_i, n_o)$ weight tensor, where $n_o$ is the output size and $n_i$ is the input size of the layer. Each of the $n_o$ neurons also has a bias." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Layer 0 \t (32, 3, 3, 3) \t (32,)\n", - "Layer 2 \t (32, 32, 3, 3) \t (32,)\n", - "Layer 6 \t (64, 32, 3, 3) \t (64,)\n", - "Layer 8 \t (64, 64, 3, 3) \t (64,)\n", - "Layer 13 \t (2304, 512) \t (512,)\n", - "Layer 16 \t (512, 10) \t (10,)\n" - ] - } - ], - "source": [ - "for i, layer in enumerate(model.layers):\n", - " if len(layer.get_weights()) > 0:\n", - " print(\"Layer\", i, \"\\t\", layer.get_weights()[0].shape, \"\\t\", layer.get_weights()[1].shape)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "# Training the network\n", - "\n", - "We will train our network on the **CIFAR10** [dataset](https://www.cs.toronto.edu/~kriz/cifar.html), which contains `50,000` 32x32 color training images, labeled over 10 categories, and 10,000 test images. \n", - "\n", - "As this dataset is also included in Keras datasets, we just ask the `keras.datasets` module for the dataset.\n", - "\n", - "Training and test images are normalized to lie in the $\\left[0,1\\right]$ interval." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [], - "source": [ - "from keras.datasets import cifar10\n", - "from keras.utils import np_utils\n", - "\n", - "(X_train, y_train), (X_test, y_test) = cifar10.load_data()\n", - "Y_train = np_utils.to_categorical(y_train, nb_classes)\n", - "Y_test = np_utils.to_categorical(y_test, nb_classes)\n", - "X_train = X_train.astype(\"float32\")\n", - "X_test = X_test.astype(\"float32\")\n", - "X_train /= 255\n", - "X_test /= 255" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "To reduce the risk of overfitting, we also apply some image transformation, like rotations, shifts and flips. All these can be easily implemented using the Keras [Image Data Generator](http://keras.io/preprocessing/image/)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Warning: The following cells may be computational Intensive...." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [], - "source": [ - "from keras.preprocessing.image import ImageDataGenerator\n", - "\n", - "generated_images = ImageDataGenerator(\n", - " featurewise_center=True, # set input mean to 0 over the dataset\n", - " samplewise_center=False, # set each sample mean to 0\n", - " featurewise_std_normalization=True, # divide inputs by std of the dataset\n", - " samplewise_std_normalization=False, # divide each input by its std\n", - " zca_whitening=False, # apply ZCA whitening\n", - " rotation_range=0, # randomly rotate images in the range (degrees, 0 to 180)\n", - " width_shift_range=0.2, # randomly shift images horizontally (fraction of total width)\n", - " height_shift_range=0.2, # randomly shift images vertically (fraction of total height)\n", - " horizontal_flip=True, # randomly flip images\n", - " vertical_flip=False) # randomly flip images\n", - "\n", - "generated_images.fit(X_train)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "Now we can start training. \n", - "\n", - "At each iteration, a batch of 500 images is requested to the `ImageDataGenerator` object, and then fed to the network." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "data": { - "text/plain": [ - "(50000, 3, 32, 32)" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "X_train.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "gen = generated_images.flow(X_train, Y_train, batch_size=500, shuffle=True)\n", - "X_batch, Y_batch = next(gen)" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "data": { - "text/plain": [ - "(500, 3, 32, 32)" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "X_batch.shape" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true, - "scrolled": true - }, - "outputs": [], - "source": [ - "from keras.utils import generic_utils\n", - "\n", - "n_epochs = 2\n", - "for e in range(n_epochs):\n", - " print('Epoch', e)\n", - " print('Training...')\n", - " progbar = generic_utils.Progbar(X_train.shape[0])\n", - " \n", - " for X_batch, Y_batch in generated_images.flow(X_train, Y_train, batch_size=500, shuffle=True):\n", - " loss = model.train_on_batch(X_batch, Y_batch)\n", - " progbar.add(X_batch.shape[0], values=[('train loss', loss[0])])" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.5.2" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/2.3 Deep Convolutional Neural Networks.ipynb b/2.3 Deep Convolutional Neural Networks.ipynb deleted file mode 100644 index df7cbaa..0000000 --- a/2.3 Deep Convolutional Neural Networks.ipynb +++ /dev/null @@ -1,481 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "# Deep CNN Models" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "subslide" - } - }, - "source": [ - "Constructing and training your own ConvNet from scratch can be Hard and a long task.\n", - "\n", - "A common trick used in Deep Learning is to use a **pre-trained** model and finetune it to the specific data it will be used for. " - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "## Famous Models with Keras\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "subslide" - } - }, - "source": [ - "This notebook contains code and reference for the following Keras models (gathered from [https://github.com/fchollet/keras/tree/master/keras/applications]())\n", - "\n", - "- VGG16\n", - "- VGG19\n", - "- ResNet50\n", - "- Inception v3\n", - "- Xception\n", - "- ... more to come\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "skip" - } - }, - "source": [ - "## References\n", - "\n", - "- [Very Deep Convolutional Networks for Large-Scale Image Recognition](https://arxiv.org/abs/1409.1556) - please cite this paper if you use the VGG models in your work.\n", - "- [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) - please cite this paper if you use the ResNet model in your work.\n", - "- [Rethinking the Inception Architecture for Computer Vision](http://arxiv.org/abs/1512.00567) - please cite this paper if you use the Inception v3 model in your work.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "subslide" - } - }, - "source": [ - "All architectures are compatible with both TensorFlow and Theano, and upon instantiation the models will be built according to the image dimension ordering set in your Keras configuration file at `~/.keras/keras.json`. \n", - "\n", - "For instance, if you have set `image_data_format=\"channels_last\"`, then any model loaded from this repository will get built according to the TensorFlow dimension ordering convention, \"Width-Height-Depth\"." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "# VGG16" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# VGG19" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "source": [ - "# `keras.applications`" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "subslide" - } - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Using TensorFlow backend.\n" - ] - } - ], - "source": [ - "from keras.applications import VGG16\n", - "from keras.applications.imagenet_utils import preprocess_input, decode_predictions\n", - "import os" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [], - "source": [ - "# -- Jupyter/IPython way to see documentation\n", - "# please focus on parameters (e.g. include top)\n", - "VGG16??" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Downloading data from https://github.com/fchollet/deep-learning-models/releases/download/v0.1/vgg16_weights_tf_dim_ordering_tf_kernels.h5\n" - ] - } - ], - "source": [ - "vgg16 = VGG16(include_top=True, weights='imagenet')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "If you're wondering **where** this `HDF5` files with weights is stored, please take a look at `~/.keras/models/`" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### HandsOn VGG16 - Pre-trained Weights" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "IMAGENET_FOLDER = 'imgs/imagenet' #in the repo" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[31mapricot_565.jpeg\u001b[m\u001b[m \u001b[31mapricot_787.jpeg\u001b[m\u001b[m \u001b[31mstrawberry_1174.jpeg\u001b[m\u001b[m\r\n", - "\u001b[31mapricot_696.jpeg\u001b[m\u001b[m \u001b[31mstrawberry_1157.jpeg\u001b[m\u001b[m \u001b[31mstrawberry_1189.jpeg\u001b[m\u001b[m\r\n" - ] - } - ], - "source": [ - "!ls imgs/imagenet" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "skip" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Input image shape: (1, 224, 224, 3)\n", - "Downloading data from https://s3.amazonaws.com/deep-learning-models/image-models/imagenet_class_index.json\n", - "Predicted: [[('n07745940', 'strawberry', 0.98483676), ('n07836838', 'chocolate_sauce', 0.0073711565), ('n07614500', 'ice_cream', 0.0030998574), ('n04332243', 'strainer', 0.0025101686), ('n04476259', 'tray', 0.00060175249)]]\n" - ] - } - ], - "source": [ - "from keras.preprocessing import image\n", - "import numpy as np\n", - "\n", - "img_path = os.path.join(IMAGENET_FOLDER, 'strawberry_1157.jpeg')\n", - "img = image.load_img(img_path, target_size=(224, 224))\n", - "x = image.img_to_array(img)\n", - "x = np.expand_dims(x, axis=0)\n", - "x = preprocess_input(x)\n", - "print('Input image shape:', x.shape)\n", - "\n", - "preds = vgg16.predict(x)\n", - "print('Predicted:', decode_predictions(preds))" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Input image shape: (1, 224, 224, 3)\n", - "Predicted: [[('n07747607', 'orange', 0.87526792), ('n07749582', 'lemon', 0.03620464), ('n07717556', 'butternut_squash', 0.021843448), ('n03937543', 'pill_bottle', 0.0126132), ('n03942813', 'ping-pong_ball', 0.0054204506)]]\n" - ] - } - ], - "source": [ - "img_path = os.path.join(IMAGENET_FOLDER, 'apricot_696.jpeg')\n", - "img = image.load_img(img_path, target_size=(224, 224))\n", - "x = image.img_to_array(img)\n", - "x = np.expand_dims(x, axis=0)\n", - "x = preprocess_input(x)\n", - "print('Input image shape:', x.shape)\n", - "\n", - "preds = vgg16.predict(x)\n", - "print('Predicted:', decode_predictions(preds))" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Input image shape: (1, 224, 224, 3)\n", - "Predicted: [[('n07718472', 'cucumber', 0.29338178), ('n07716358', 'zucchini', 0.2383192), ('n04596742', 'wok', 0.042132568), ('n07716906', 'spaghetti_squash', 0.038422), ('n07711569', 'mashed_potato', 0.036552209)]]\n" - ] - } - ], - "source": [ - "img_path = os.path.join(IMAGENET_FOLDER, 'apricot_565.jpeg')\n", - "img = image.load_img(img_path, target_size=(224, 224))\n", - "x = image.img_to_array(img)\n", - "x = np.expand_dims(x, axis=0)\n", - "x = preprocess_input(x)\n", - "print('Input image shape:', x.shape)\n", - "\n", - "preds = vgg16.predict(x)\n", - "print('Predicted:', decode_predictions(preds))" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true, - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "# Hands On:\n", - "\n", - "### Try to do the same with VGG19 Model" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "outputs": [], - "source": [ - "# from keras.applications import VGG19" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Residual Networks" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## ResNet 50" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "## from keras.applications import ..." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.5.2" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/2.5 HyperParameter Tuning.ipynb b/2.5 HyperParameter Tuning.ipynb deleted file mode 100644 index 9a52493..0000000 --- a/2.5 HyperParameter Tuning.ipynb +++ /dev/null @@ -1,268 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# HyperParameter Tuning" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### `keras.wrappers.scikit_learn`\n", - "\n", - "Example adapted from: [https://github.com/fchollet/keras/blob/master/examples/mnist_sklearn_wrapper.py]()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem: \n", - "Builds simple CNN models on MNIST and uses sklearn's GridSearchCV to find best model" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "import numpy as np\n", - "np.random.seed(1337) # for reproducibility" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "from keras.datasets import mnist\n", - "from keras.models import Sequential\n", - "from keras.layers import Dense, Dropout, Activation, Flatten\n", - "from keras.layers import Conv2D, MaxPooling2D\n", - "from keras.utils import np_utils\n", - "from keras.wrappers.scikit_learn import KerasClassifier\n", - "from keras import backend as K" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "from sklearn.model_selection import GridSearchCV" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Data Preparation" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "nb_classes = 10\n", - "\n", - "# input image dimensions\n", - "img_rows, img_cols = 28, 28" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "# load training data and do basic data normalization\n", - "(X_train, y_train), (X_test, y_test) = mnist.load_data()\n", - "\n", - "if K.image_dim_ordering() == 'th':\n", - " X_train = X_train.reshape(X_train.shape[0], 1, img_rows, img_cols)\n", - " X_test = X_test.reshape(X_test.shape[0], 1, img_rows, img_cols)\n", - " input_shape = (1, img_rows, img_cols)\n", - "else:\n", - " X_train = X_train.reshape(X_train.shape[0], img_rows, img_cols, 1)\n", - " X_test = X_test.reshape(X_test.shape[0], img_rows, img_cols, 1)\n", - " input_shape = (img_rows, img_cols, 1)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "X_train = X_train.astype('float32')\n", - "X_test = X_test.astype('float32')\n", - "X_train /= 255\n", - "X_test /= 255\n", - "\n", - "# convert class vectors to binary class matrices\n", - "y_train = np_utils.to_categorical(y_train, nb_classes)\n", - "y_test = np_utils.to_categorical(y_test, nb_classes)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Build Model" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "def make_model(dense_layer_sizes, nb_filters, nb_conv, nb_pool):\n", - " '''Creates model comprised of 2 convolutional layers followed by dense layers\n", - "\n", - " dense_layer_sizes: List of layer sizes. This list has one number for each layer\n", - " nb_filters: Number of convolutional filters in each convolutional layer\n", - " nb_conv: Convolutional kernel size\n", - " nb_pool: Size of pooling area for max pooling\n", - " '''\n", - "\n", - " model = Sequential()\n", - "\n", - " model.add(Conv2D(nb_filters, (nb_conv, nb_conv),\n", - " padding='valid', input_shape=input_shape))\n", - " model.add(Activation('relu'))\n", - " model.add(Conv2D(nb_filters, (nb_conv, nb_conv)))\n", - " model.add(Activation('relu'))\n", - " model.add(MaxPooling2D(pool_size=(nb_pool, nb_pool)))\n", - " model.add(Dropout(0.25))\n", - "\n", - " model.add(Flatten())\n", - " for layer_size in dense_layer_sizes:\n", - " model.add(Dense(layer_size))\n", - " model.add(Activation('relu'))\n", - " model.add(Dropout(0.5))\n", - " model.add(Dense(nb_classes))\n", - " model.add(Activation('softmax'))\n", - "\n", - " model.compile(loss='categorical_crossentropy',\n", - " optimizer='adadelta',\n", - " metrics=['accuracy'])\n", - "\n", - " return model" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "dense_size_candidates = [[32], [64], [32, 32], [64, 64]]\n", - "my_classifier = KerasClassifier(make_model, batch_size=32)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## GridSearch HyperParameters" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false, - "scrolled": false - }, - "outputs": [], - "source": [ - "validator = GridSearchCV(my_classifier,\n", - " param_grid={'dense_layer_sizes': dense_size_candidates,\n", - " # nb_epoch is avail for tuning even when not\n", - " # an argument to model building function\n", - " 'nb_epoch': [3, 6],\n", - " 'nb_filters': [8],\n", - " 'nb_conv': [3],\n", - " 'nb_pool': [2]},\n", - " scoring='neg_log_loss',\n", - " n_jobs=1)\n", - "validator.fit(X_train, y_train)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "print('The parameters of the best model are: ')\n", - "print(validator.best_params_)\n", - "\n", - "# validator.best_estimator_ returns sklearn-wrapped version of best model.\n", - "# validator.best_estimator_.model returns the (unwrapped) keras model\n", - "best_model = validator.best_estimator_.model\n", - "metric_names = best_model.metrics_names\n", - "metric_values = best_model.evaluate(X_test, y_test)\n", - "for metric, value in zip(metric_names, metric_values):\n", - " print(metric, ': ', value)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.5.2" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/2.2 CNN HandsOn - MNIST Dataset.ipynb b/3. Fully Connected Networks and Embeddings/3.0 - MNIST Dataset.ipynb similarity index 81% rename from 2.2 CNN HandsOn - MNIST Dataset.ipynb rename to 3. Fully Connected Networks and Embeddings/3.0 - MNIST Dataset.ipynb index 4c4fbc6..d27e35e 100644 --- a/2.2 CNN HandsOn - MNIST Dataset.ipynb +++ b/3. Fully Connected Networks and Embeddings/3.0 - MNIST Dataset.ipynb @@ -3,21 +3,30 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "slide" } }, "source": [ - "# CNN HandsOn with Keras" + "# MNIST Dataset" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Also known as `digits` if you're familiar with `sklearn`:\n", + "\n", + "```python\n", + "\n", + "from sklearn.datasets import digits\n", + "\n", + "```" ] }, { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -26,14 +35,12 @@ "## Problem Definition\n", "\n", "*Recognize handwritten digits*\n", - "![](imgs/mnist.png)" + "![](../imgs/mnist.png)" ] }, { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -54,8 +61,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -72,9 +77,7 @@ "cell_type": "code", "execution_count": null, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true, + "collapsed": true, "slideshow": { "slide_type": "subslide" } @@ -91,9 +94,7 @@ "execution_count": null, "metadata": { "code_folding": [], - "collapsed": false, - "deletable": true, - "editable": true, + "collapsed": true, "slideshow": { "slide_type": "fragment" } @@ -107,8 +108,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "slide" } @@ -121,9 +120,7 @@ "cell_type": "code", "execution_count": null, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true, + "collapsed": true, "slideshow": { "slide_type": "subslide" } @@ -137,9 +134,7 @@ "cell_type": "code", "execution_count": null, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true, + "collapsed": true, "slideshow": { "slide_type": "subslide" } @@ -153,9 +148,7 @@ "cell_type": "code", "execution_count": null, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true, + "collapsed": true, "slideshow": { "slide_type": "subslide" } @@ -169,9 +162,7 @@ "cell_type": "code", "execution_count": null, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true, + "collapsed": true, "slideshow": { "slide_type": "subslide" } @@ -185,9 +176,7 @@ "cell_type": "code", "execution_count": null, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true, + "collapsed": true, "slideshow": { "slide_type": "subslide" } @@ -201,9 +190,7 @@ "cell_type": "code", "execution_count": null, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true, + "collapsed": true, "slideshow": { "slide_type": "subslide" } @@ -217,9 +204,7 @@ "cell_type": "code", "execution_count": null, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true, + "collapsed": true, "slideshow": { "slide_type": "subslide" } @@ -233,9 +218,7 @@ "cell_type": "code", "execution_count": null, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true, + "collapsed": true, "slideshow": { "slide_type": "subslide" } @@ -249,9 +232,7 @@ "cell_type": "code", "execution_count": null, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true, + "collapsed": true, "slideshow": { "slide_type": "subslide" } @@ -265,8 +246,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "slide" } @@ -284,8 +263,6 @@ "execution_count": null, "metadata": { "collapsed": true, - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -302,8 +279,6 @@ "execution_count": null, "metadata": { "collapsed": true, - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -317,9 +292,7 @@ "cell_type": "code", "execution_count": null, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true + "collapsed": true }, "outputs": [], "source": [ @@ -337,8 +310,6 @@ "execution_count": null, "metadata": { "collapsed": true, - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -352,9 +323,7 @@ "cell_type": "code", "execution_count": null, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true + "collapsed": true }, "outputs": [], "source": [] @@ -376,9 +345,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.5.2" + "version": "3.5.3" } }, "nbformat": 4, - "nbformat_minor": 0 + "nbformat_minor": 1 } diff --git a/3. Fully Connected Networks and Embeddings/3.1 Hidden Layer Representation and Embeddings.ipynb b/3. Fully Connected Networks and Embeddings/3.1 Hidden Layer Representation and Embeddings.ipynb new file mode 100644 index 0000000..7eb1514 --- /dev/null +++ b/3. Fully Connected Networks and Embeddings/3.1 Hidden Layer Representation and Embeddings.ipynb @@ -0,0 +1,1495 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Fully Connected Feed-Forward Network\n", + "\n", + "In this notebook we will play with Feed-Forward FC-NN (Fully Connected Neural Network) for a *classification task*: \n", + "\n", + "Image Classification on MNIST Dataset\n", + "\n", + "**RECALL**\n", + "\n", + "In the FC-NN, the output of each layer is computed using the activations from the previous one, as follows:\n", + "\n", + "$$h_{i} = \\sigma(W_i h_{i-1} + b_i)$$\n", + "\n", + "where ${h}_i$ is the activation vector from the $i$-th layer (or the input data for $i=0$), ${W}_i$ and ${b}_i$ are the weight matrix and the bias vector for the $i$-th layer, respectively. \n", + "
\n", + "$\\sigma(\\cdot)$ is the activation function. In our example, we will use the *ReLU* activation function for the hidden layers and *softmax* for the last layer.\n", + "\n", + "To regularize the model, we will also insert a Dropout layer between consecutive hidden layers. \n", + "\n", + "Dropout works by “dropping out” some unit activations in a given layer, that is setting them to zero with a given probability.\n", + "\n", + "Our loss function will be the **categorical crossentropy**." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Model definition\n", + "Keras supports two different kind of models: the [Sequential](http://keras.io/models/#sequential) model and the [Graph](http://keras.io/models/#graph) model. The former is used to build linear stacks of layer (so each layer has one input and one output), and the latter supports any kind of connection graph.\n", + "\n", + "In our case we build a Sequential model with three [Dense](http://keras.io/layers/core/#dense) (aka fully connected) layers, with some [Dropout](http://keras.io/layers/core/#dropout). Notice that the output layer has the softmax activation function. \n", + "\n", + "The resulting model is actually a `function` of its own inputs implemented using the Keras backend. \n", + "\n", + "We apply the binary crossentropy loss and choose SGD as the optimizer. \n", + "\n", + "Please remind that Keras supports a variety of different [optimizers](http://keras.io/optimizers/) and [loss functions](http://keras.io/objectives/), which you may want to check out. " + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Introducing ReLU" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The **ReLu** function is defined as $f(x) = \\max(0, x),$ [1]\n", + "\n", + "A smooth approximation to the rectifier is the *analytic function*: $f(x) = \\ln(1 + e^x)$\n", + "\n", + "which is called the **softplus** function.\n", + "\n", + "The derivative of softplus is $f'(x) = e^x / (e^x + 1) = 1 / (1 + e^{-x})$, i.e. the **logistic function**.\n", + "\n", + "[1] [http://www.cs.toronto.edu/~fritz/absps/reluICML.pdf]() by G. E. Hinton " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Note: Keep in mind this function as it is heavily used in CNN" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from keras.models import Sequential\n", + "from keras.layers.core import Dense\n", + "from keras.optimizers import SGD\n", + "\n", + "nb_classes = 10\n", + "\n", + "# FC@512+relu -> FC@512+relu -> FC@nb_classes+softmax\n", + "# ... your Code Here" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# %load ../solutions/sol_321.py" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from keras.models import Sequential\n", + "from keras.layers.core import Dense\n", + "from keras.optimizers import SGD\n", + "\n", + "model = Sequential()\n", + "model.add(Dense(512, activation='relu', input_shape=(784,)))\n", + "model.add(Dense(512, activation='relu'))\n", + "model.add(Dense(10, activation='softmax'))\n", + "\n", + "model.compile(loss='categorical_crossentropy', optimizer=SGD(lr=0.001), \n", + " metrics=['accuracy'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Data preparation (`keras.dataset`)\n", + "\n", + "We will train our model on the MNIST dataset, which consists of 60,000 28x28 grayscale images of the 10 digits, along with a test set of 10,000 images. \n", + "\n", + "![](../imgs/mnist.png)\n", + "\n", + "Since this dataset is **provided** with Keras, we just ask the `keras.dataset` model for training and test data.\n", + "\n", + "We will:\n", + "\n", + "* download the data\n", + "* reshape data to be in vectorial form (original data are images)\n", + "* normalize between 0 and 1.\n", + "\n", + "The `binary_crossentropy` loss expects a **one-hot-vector** as input, therefore we apply the `to_categorical` function from `keras.utilis` to convert integer labels to **one-hot-vectors**." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from keras.datasets import mnist\n", + "from keras.utils import np_utils\n", + "\n", + "(X_train, y_train), (X_test, y_test) = mnist.load_data()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(60000, 28, 28)" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X_train.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "X_train = X_train.reshape(60000, 784)\n", + "X_test = X_test.reshape(10000, 784)\n", + "X_train = X_train.astype(\"float32\")\n", + "X_test = X_test.astype(\"float32\")\n", + "\n", + "# Put everything on grayscale\n", + "X_train /= 255\n", + "X_test /= 255\n", + "\n", + "# convert class vectors to binary class matrices\n", + "Y_train = np_utils.to_categorical(y_train, 10)\n", + "Y_test = np_utils.to_categorical(y_test, 10)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Split Training and Validation Data" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from sklearn.model_selection import train_test_split\n", + "\n", + "X_train, X_val, Y_train, Y_val = train_test_split(X_train, Y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(784,)" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X_train[0].shape" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP8AAAD8CAYAAAC4nHJkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAADlBJREFUeJzt3X+M1PWdx/HXm3WBAmpB6R4nXIEeNSXcibk90MNrbait\nWhvkj1rJXY82tttL2uZMveQM5nLm7nL1Lv6ITZrGbaVga7VNrIHkiAZpE2P10NUgSKkH6lr5Icjh\ndRcqy8K+74/52tvKfj8zzHxnvrO8n49kszPf9/fH26+89jszn5n5mLsLQDwTym4AQDkIPxAU4QeC\nIvxAUIQfCIrwA0ERfiAowg8ERfiBoM5p5cEm2iSfrKmtPCQQynEd0wkfslrWbSj8Zna1pHsldUj6\nnrvfkVp/sqZqqS1v5JAAErb6lprXrfthv5l1SPq2pGskLZS0yswW1rs/AK3VyHP+JZL2uPur7n5C\n0sOSVhTTFoBmayT8F0l6Y9T9vdmy32NmPWbWZ2Z9wxpq4HAAitT0V/vdvdfdu929u1OTmn04ADVq\nJPz7JM0ZdX92tgzAONBI+J+TtMDM5pnZREk3StpYTFsAmq3uoT53P2lmX5P0uCpDfWvdfWdhnQFo\nqobG+d19k6RNBfUCoIV4ey8QFOEHgiL8QFCEHwiK8ANBEX4gKMIPBEX4gaAIPxAU4QeCIvxAUIQf\nCIrwA0ERfiAowg8ERfiBoAg/EBThB4Ii/EBQhB8IivADQRF+ICjCDwRF+IGgCD8QFOEHgiL8QFCE\nHwiK8ANBNTRLr5n1SxqUdErSSXfvLqIpjB9D1/x5sn7ivI7c2uCNA8lt3S1ZnzZ5KFn/xSU/ya11\nWPq6d8pHkvVqHj46M1l/4OI5De2/CA2FP/Nxdz9cwH4AtBAP+4GgGg2/S3rCzJ43s54iGgLQGo0+\n7L/C3feZ2QckbTazX7n7k6NXyP4o9EjSZE1p8HAAitLQld/d92W/D0l6VNKSMdbpdfdud+/u1KRG\nDgegQHWH38ymmtm5796W9ElJLxXVGIDmauRhf5ekR83s3f38yN0fK6QrAE1Xd/jd/VVJlxTYC5rg\n6GeXJuv7P5Eez/73j+ePlUvSp6Y8k6xPsYm5tQlKj+OPyJP1alL/Zf3DR5Pb/vB/T3sGe9ZhqA8I\nivADQRF+ICjCDwRF+IGgCD8QVBGf6kOTDay6LFl/e+Wx3NrGpXcnt/3QOe9L1qsNtw17/kd2JekX\nxztza1/c/KXkttNfTO/7gh3vJOsp5wwcT9ZHtv+q7n2PF1z5gaAIPxAU4QeCIvxAUIQfCIrwA0ER\nfiAoxvnbwOGey5P1x//xzmT9/AmTE9VUrXGX33Vzsv4H9zydW/uwni26nZo19sXcZweu/EBQhB8I\nivADQRF+ICjCDwRF+IGgCD8QFOP840BHla+4rvYV2Cl3v70gWf/S+TuSdf/Y2+kD3HOmHaFVuPID\nQRF+ICjCDwRF+IGgCD8QFOEHgiL8QFBVx/nNbK2k6yQdcvdF2bIZkn4saa6kfkk3uHuVAV/k6Xrk\n5WT93/52Wbre1Zdb+9wrVye3fefT6e+vn7L1RLJ+7LXzk3W0r1qu/Oskvfdf0K2Strj7AklbsvsA\nxpGq4Xf3JyUdec/iFZLWZ7fXS7q+4L4ANFm9z/m73P1AdvtNSV0F9QOgRRp+wc/dXcqf0M3Mesys\nz8z6hjXU6OEAFKTe8B80s1mSlP0+lLeiu/e6e7e7d3dqUp2HA1C0esO/UdLq7PZqSRuKaQdAq1QN\nv5k9JOkZSReb2V4zu0nSHZKuMrPdkj6R3QcwjlQd53f3VTml5QX3EtauO+cl6xu6NifrPW9cmVs7\nvvJUctuRwcFkfdN1f5asf/itnen9J6soE+/wA4Ii/EBQhB8IivADQRF+ICjCDwTFV3e3ge99dF1D\n2z+74U9ya7P/J3+K7FqcfLW/oe3RvrjyA0ERfiAowg8ERfiBoAg/EBThB4Ii/EBQjPO3wCsPXpqs\nXzn5hWR94dqvJetzv9nYWD5i4soPBEX4gaAIPxAU4QeCIvxAUIQfCIrwA0Exzt8Ci2bvL7sF4DRc\n+YGgCD8QFOEHgiL8QFCEHwiK8ANBEX4gqKrj/Ga2VtJ1kg65+6Js2e2SvizprWy1Ne6+qVlNRjf7\n8n3Jev+/Xt6iTk43b8PRZL3j8EBu7eRrrxfdDs5ALVf+dZKuHmP5Pe6+OPsh+MA4UzX87v6kpCMt\n6AVACzXynP/rZrbdzNaa2fTCOgLQEvWG/zuS5ktaLOmApLvyVjSzHjPrM7O+YQ3VeTgARasr/O5+\n0N1PufuIpO9KWpJYt9fdu929u1OT6u0TQMHqCr+ZzRp1d6Wkl4ppB0Cr1DLU95CkKyVdaGZ7Jf2T\npCvNbLEkl9Qv6StN7BFAE1QNv7uvGmPx/U3o5ay194fzk/WH/35msv7YRx5NH+AjZ9rR/5sgS9ZH\n5OkdfLH+Yy/+r79J1v/oC79O1kcGB+s/OHiHHxAV4QeCIvxAUIQfCIrwA0ERfiAoc68ylFOg82yG\nL7XlLTveeNHxx/OS9f3XzkrWm2no/en6xctfSdaXXbAnt/aN6buT2+4cPpGs3/qpv07WT72cf+yz\n1VbfogE/kh6/zXDlB4Ii/EBQhB8IivADQRF+ICjCDwRF+IGgmKK7DZza81qy3vWtdL1M7/xzuv6z\nc/8wt3bffX+Z3HbXx9KfHB+eOS1Zn/ByshweV34gKMIPBEX4gaAIPxAU4QeCIvxAUIQfCIpxfjRV\n6uu15387ve3hK95J1t+4akqy/sGn0vuPjis/EBThB4Ii/EBQhB8IivADQRF+ICjCDwRVdZzfzOZI\nekBSlySX1Ovu95rZDEk/ljRXUr+kG9z97ea1irPNwG1Hk/ULO96XrM/Z/Nsi2wmnliv/SUm3uPtC\nSZdJ+qqZLZR0q6Qt7r5A0pbsPoBxomr43f2Au7+Q3R6UtEvSRZJWSFqfrbZe0vXNahJA8c7oOb+Z\nzZV0qaStkrrc/UBWelOVpwUAxomaw29m0yQ9Iulmdx8YXfPKhH9jTvpnZj1m1mdmfcMaaqhZAMWp\nKfxm1qlK8B90959miw+a2aysPkvSobG2dfded+929+5OTSqiZwAFqBp+MzNJ90va5e53jyptlLQ6\nu71a0obi2wPQLLV8pHeZpM9L2mFm27JlayTdIeknZnaTpNcl3dCcFlvj8f3bkvU1B/80t7b5W8uS\n2874/jN19TQedMycmaz/+r4P5NZevOQHyW1veXNpsj5xz4Fk/WSyiqrhd/enJOXN97282HYAtArv\n8AOCIvxAUIQfCIrwA0ERfiAowg8EZZV35rbGeTbDl1p7jg4ee2x+sv6fix7MrXWqI7nts0OTk/Xb\ndqc/E7W//8JkvSGW/v/feX76LdnfX7IuWV8yKX//K3dfl9zW/ypvhLni5L79yXpEW32LBvxI+sRl\nuPIDQRF+ICjCDwRF+IGgCD8QFOEHgiL8QFCM89fqsvzP8++5MT1V9P2f6U3WL+4cSNarfYV1Iybk\nflq7YmDkeLL++G8vStb/Zd2q3Nrsbz6d3BZnjnF+AFURfiAowg8ERfiBoAg/EBThB4Ii/EBQjPO3\nAf+LS5L1Y7ObN87/m/npv/8ztw0n6xMfe67IdtAgxvkBVEX4gaAIPxAU4QeCIvxAUIQfCIrwA0FV\nnaLbzOZIekBSlySX1Ovu95rZ7ZK+LOmtbNU17r6pWY2ezezpF5P1aU08djP3jfZWNfySTkq6xd1f\nMLNzJT1vZpuz2j3ufmfz2gPQLFXD7+4HJB3Ibg+a2S5J6a9vAdD2zug5v5nNlXSppK3Zoq+b2XYz\nW2tm03O26TGzPjPrG1Z66icArVNz+M1smqRHJN3s7gOSviNpvqTFqjwyuGus7dy919273b27U5MK\naBlAEWoKv5l1qhL8B939p5Lk7gfd/ZS7j0j6rqQlzWsTQNGqht/MTNL9kna5+92jls8atdpKSS8V\n3x6AZqnl1f5lkj4vaYeZbcuWrZG0yswWqzL81y/pK03pEEBT1PJq/1PSmF/uzpg+MI7xDj8gKMIP\nBEX4gaAIPxAU4QeCIvxAUIQfCIrwA0ERfiAowg8ERfiBoAg/EBThB4Ii/EBQLZ2i28zekvT6qEUX\nSjrcsgbOTLv21q59SfRWryJ7+6C7z6xlxZaG/7SDm/W5e3dpDSS0a2/t2pdEb/Uqqzce9gNBEX4g\nqLLD31vy8VPatbd27Uuit3qV0lupz/kBlKfsKz+AkpQSfjO72sxeNrM9ZnZrGT3kMbN+M9thZtvM\nrK/kXtaa2SEze2nUshlmttnMdme/x5wmraTebjezfdm522Zm15bU2xwz+7mZ/dLMdprZ32XLSz13\nib5KOW8tf9hvZh2S/lvSVZL2SnpO0ip3/2VLG8lhZv2Sut299DFhM/uopKOSHnD3Rdmy/5B0xN3v\nyP5wTnf3f2iT3m6XdLTsmZuzCWVmjZ5ZWtL1kr6gEs9doq8bVMJ5K+PKv0TSHnd/1d1PSHpY0ooS\n+mh77v6kpCPvWbxC0vrs9npV/vG0XE5vbcHdD7j7C9ntQUnvzixd6rlL9FWKMsJ/kaQ3Rt3fq/aa\n8tslPWFmz5tZT9nNjKErmzZdkt6U1FVmM2OoOnNzK71nZum2OXf1zHhdNF7wO90V7r5Y0jWSvpo9\nvG1LXnnO1k7DNTXN3NwqY8ws/Ttlnrt6Z7wuWhnh3ydpzqj7s7NlbcHd92W/D0l6VO03+/DBdydJ\nzX4fKrmf32mnmZvHmllabXDu2mnG6zLC/5ykBWY2z8wmSrpR0sYS+jiNmU3NXoiRmU2V9Em13+zD\nGyWtzm6vlrShxF5+T7vM3Jw3s7RKPndtN+O1u7f8R9K1qrzi/4qk28roIaev+ZJezH52lt2bpIdU\neRg4rMprIzdJukDSFkm7JT0haUYb9fYDSTskbVclaLNK6u0KVR7Sb5e0Lfu5tuxzl+irlPPGO/yA\noHjBDwiK8ANBEX4gKMIPBEX4gaAIPxAU4QeCIvxAUP8HRnRmoP5y3QkAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.imshow(X_train[0].reshape(28, 28))" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0 1 2 3 4 5 6 7 8 9]\n", + "[0 0 0 0 0 1 0 0 0 0]\n" + ] + } + ], + "source": [ + "print(np.asarray(range(10)))\n", + "print(Y_train[0].astype('int'))" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP8AAAD8CAYAAAC4nHJkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAADf5JREFUeJzt3XuMXGUZx/Hfs2XbaluFgq5LKbRAUSpiMWsrUo0E0YIk\nLUYJjZiqxJqIRuOVVI2Nf5jGKIYoNtnahkKUW7hVgxqoysVL7RZKASsU6hJal26xlUu1l90+/rGn\nZIE970xnzsyZ7fP9JJuZOc85cx5O+PXMmXdmXnN3AYinrewGAJSD8ANBEX4gKMIPBEX4gaAIPxAU\n4QeCIvxAUIQfCOqoZu5srI3z8ZrQzF0CoezVHu33fVbNunWF38zmSbpa0hhJP3f3Zan1x2uC5th5\n9ewSQMI6X1v1ujW/7DezMZKukXSBpJmSFprZzFqfD0Bz1XPNP1vSk+6+1d33S7pR0vxi2gLQaPWE\nf4qkZ4Y93pYtewUzW2xmPWbWc0D76tgdgCI1/N1+d+929y5372rXuEbvDkCV6gn/dklThz0+IVsG\nYBSoJ/zrJc0ws+lmNlbSpZLWFNMWgEareajP3QfM7AuSfqehob5V7v5YYZ0BaKi6xvnd/S5JdxXU\nC4Am4uO9QFCEHwiK8ANBEX4gKMIPBEX4gaAIPxAU4QeCIvxAUIQfCIrwA0ERfiAowg8ERfiBoAg/\nEBThB4Ii/EBQhB8IivADQRF+ICjCDwRF+IGgCD8QFOEHgiL8QFCEHwiK8ANBEX4gKMIPBFXXLL1m\n1ivpRUmDkgbcvauIpgBJ2rnmrcn69Wdem6x/ZdrZBXZz5Kkr/Jlz3f25Ap4HQBPxsh8Iqt7wu6R7\nzGyDmS0uoiEAzVHvy/657r7dzN4s6W4z+4e73zd8hewfhcWSNF6vr3N3AIpS15nf3bdnt/2Sbpc0\ne4R1ut29y9272jWunt0BKFDN4TezCWY26dB9SR+S9GhRjQForHpe9ndIut3MDj3PL939t4V0BaDh\nag6/u2+V9M4Ce0EDPP299Fj3Kdf2JesDW3sL7OaV2iZMSNY/fcpfk/W3tacvI1/6+Jzc2sRb1iW3\njYChPiAowg8ERfiBoAg/EBThB4Ii/EBQRXyrDw121Fs6kvX+n78xt3bZiX9Ibnv/0vRwWyPZ8en/\nrs8ffX+y/rP/TE/WJ92+IbfmyS1j4MwPBEX4gaAIPxAU4QeCIvxAUIQfCIrwA0Exzj8K7DnrxGR9\n/btW5NZOu3dRctvpBx+uqaci7JybHuevZMWqjyTrnQN/ruv5j3Sc+YGgCD8QFOEHgiL8QFCEHwiK\n8ANBEX4gKMb5R4H+rvZk/Y49E3NrM76enkB5oKaOqpf6ee6jL9uW3HbD/sFk/fif5n9fX+I7+5Vw\n5geCIvxAUIQfCIrwA0ERfiAowg8ERfiBoCqO85vZKkkXSep39zOyZZMl3SRpmqReSZe4++7GtXlk\na5s1M1m/8fKrkvUlvRfn1ga2ba+pp6LYSVNya3effnNy27/uTZ+bfN++mnrCkGrO/NdKmveqZVdK\nWuvuMyStzR4DGEUqht/d75O061WL50tand1fLWlBwX0BaLBar/k73L0vu/+spPp+jwlA09X9hp+7\nuxIfozazxWbWY2Y9B8Q1GtAqag3/DjPrlKTstj9vRXfvdvcud+9q17gadwegaLWGf42kQz8Lu0jS\nncW0A6BZKobfzG6Q9BdJbzWzbWZ2uaRlks43sy2SPpg9BjCKVBznd/eFOaXzCu4lrOfOemOy/vb2\nscn67mvyf9d/ovpya82wc86xubVBP5jcdtkzF1Z49h01dIRD+IQfEBThB4Ii/EBQhB8IivADQRF+\nICh+ursJxhyXP9wlSWdf0ZOsf++5dyTrk+54KLdW9s9X75//n9zaGEufe5769SnJ+vEM9dWFMz8Q\nFOEHgiL8QFCEHwiK8ANBEX4gKMIPBMU4fxP0zz8tWf9V5zXJ+u6D/0vWD/zt7NzajX/OrxXhxBnp\nsfY/nr4yt/anveOT257ws4eT9fQXglEJZ34gKMIPBEX4gaAIPxAU4QeCIvxAUIQfCIpx/gI8/4n3\nJOvXf+dHyXrfYHrE+uYXzkzW3/76/Gm4tyxYnty20nfqdw/+N1kfrPCLAW9oe11u7bJ7Ppfc9rQ9\n65N11IczPxAU4QeCIvxAUIQfCIrwA0ERfiAowg8EVXGc38xWSbpIUr+7n5EtWyrps5J2Zqstcfe7\nGtVkq9tx7kCyfnRbehx/wbe/nt7+ur8k622TpuTWVp9xcnLbSszT4/gTfpCeAvyKKb/PrZ3+tceT\n2w4mq6hXNWf+ayXNG2H5j919VvYXNvjAaFUx/O5+n6RdTegFQBPVc83/RTPbZGarzOyYwjoC0BS1\nhn+5pJMlzZLUJyn3w+tmttjMesys54D21bg7AEWrKfzuvsPdB939oKQVkmYn1u129y5372rXuFr7\nBFCwmsJvZp3DHl4s6dFi2gHQLNUM9d0g6QOSjjOzbZK+K+kDZjZLQzNA90pKfzcTQMsxrzCOW6Q3\n2GSfY+c1bX/NMubYycm6n9CRrB98eHOR7RTK3v2OZP23d16frN+xZ2JubfmMU2vqCfnW+Vq94Lus\nmnX5hB8QFOEHgiL8QFCEHwiK8ANBEX4gKH66uwCD/67wvadK9RY2MLE9WR/09NeVv7Hho7m16dpU\nU08oBmd+ICjCDwRF+IGgCD8QFOEHgiL8QFCEHwiKcX4kbf1Yepz/iQN7k/WTlo8psh0UiDM/EBTh\nB4Ii/EBQhB8IivADQRF+ICjCDwTFOH9wR005PllfNW9Fsv67PTOT9bZ7HzrsntAcnPmBoAg/EBTh\nB4Ii/EBQhB8IivADQRF+IKiK4/xmNlXSdZI6JLmkbne/2swmS7pJ0jRJvZIucffdjWsVjbDvtLck\n6+8bP5Csf+Y3H07WZ2jdYfeE5qjmzD8g6avuPlPSeyRdYWYzJV0paa27z5C0NnsMYJSoGH5373P3\nB7P7L0raLGmKpPmSVmerrZa0oFFNAijeYV3zm9k0SWdJWiepw937stKzGrosADBKVB1+M5so6VZJ\nX3b3F4bX3N019H7ASNstNrMeM+s5oH11NQugOFWF38zaNRT8X7j7bdniHWbWmdU7JfWPtK27d7t7\nl7t3tWtcET0DKEDF8JuZSVopabO7XzWstEbSouz+Ikl3Ft8egEap5iu950j6pKRHzGxjtmyJpGWS\nbjazyyU9LemSxrSIRtq6YGyyfnDkq7mXdd5bZDdoporhd/cHJFlO+bxi2wHQLHzCDwiK8ANBEX4g\nKMIPBEX4gaAIPxAUP919pGtLT5F97pxHk/WVz5+YrE+8ha/sjlac+YGgCD8QFOEHgiL8QFCEHwiK\n8ANBEX4gKMb5j3AHzzkzWe+eujJZ/+Pe9mR9y08uSjeQOL2c/v1nkpsObP9X+rlRF878QFCEHwiK\n8ANBEX4gKMIPBEX4gaAIPxAU4/xHuLb7H0rWF/7z/GT9vcc8lay3v/l/yfqpX9qRWxt4Nr+GxuPM\nDwRF+IGgCD8QFOEHgiL8QFCEHwiK8ANBVRznN7Opkq6T1CHJJXW7+9VmtlTSZyXtzFZd4u53NapR\nNMbzc/+drP9GRyfr07QpWR847I7QLNV8yGdA0lfd/UEzmyRpg5ndndV+7O4/bFx7ABqlYvjdvU9S\nX3b/RTPbLGlKoxsD0FiHdc1vZtMknSXp0BxNXzSzTWa2ysyOydlmsZn1mFnPAe2rq1kAxak6/GY2\nUdKtkr7s7i9IWi7pZEmzNPTK4Ecjbefu3e7e5e5d7RpXQMsAilBV+M2sXUPB/4W73yZJ7r7D3Qfd\n/aCkFZJmN65NAEWrGH4zM0krJW1296uGLe8cttrFktLTvQJoKdW823+OpE9KesTMNmbLlkhaaGaz\nNDT81yvpcw3pEEBDVPNu/wOSbIQSY/rAKMYn/ICgCD8QFOEHgiL8QFCEHwiK8ANBEX4gKMIPBEX4\ngaAIPxAU4QeCIvxAUIQfCIrwA0GZuzdvZ2Y7JT09bNFxkp5rWgOHp1V7a9W+JHqrVZG9neTub6pm\nxaaG/zU7N+tx967SGkho1d5atS+J3mpVVm+87AeCIvxAUGWHv7vk/ae0am+t2pdEb7UqpbdSr/kB\nlKfsMz+AkpQSfjObZ2aPm9mTZnZlGT3kMbNeM3vEzDaaWU/Jvawys34ze3TYsslmdreZbcluR5wm\nraTelprZ9uzYbTSzC0vqbaqZ/cHM/m5mj5nZl7LlpR67RF+lHLemv+w3szGSnpB0vqRtktZLWuju\nf29qIznMrFdSl7uXPiZsZu+X9JKk69z9jGzZDyTtcvdl2T+cx7j7N1ukt6WSXip75uZsQpnO4TNL\nS1og6VMq8dgl+rpEJRy3Ms78syU96e5b3X2/pBslzS+hj5bn7vdJ2vWqxfMlrc7ur9bQ/zxNl9Nb\nS3D3Pnd/MLv/oqRDM0uXeuwSfZWijPBPkfTMsMfb1FpTfruke8xsg5ktLruZEXRk06ZL0rOSOsps\nZgQVZ25uplfNLN0yx66WGa+Lxht+rzXX3WdJukDSFdnL25bkQ9dsrTRcU9XMzc0ywszSLyvz2NU6\n43XRygj/dklThz0+IVvWEtx9e3bbL+l2td7swzsOTZKa3faX3M/LWmnm5pFmllYLHLtWmvG6jPCv\nlzTDzKab2VhJl0paU0Ifr2FmE7I3YmRmEyR9SK03+/AaSYuy+4sk3VliL6/QKjM3580srZKPXcvN\neO3uTf+TdKGG3vF/StK3yughp6+TJT2c/T1Wdm+SbtDQy8ADGnpv5HJJx0paK2mLpHskTW6h3q6X\n9IikTRoKWmdJvc3V0Ev6TZI2Zn8Xln3sEn2Vctz4hB8QFG/4AUERfiAowg8ERfiBoAg/EBThB4Ii\n/EBQhB8I6v8iFjUYtO9dHgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.imshow(X_val[0].reshape(28, 28))" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0 1 2 3 4 5 6 7 8 9]\n", + "[0 0 0 0 1 0 0 0 0 0]\n" + ] + } + ], + "source": [ + "print(np.asarray(range(10)))\n", + "print(Y_val[0].astype('int'))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Training\n", + "Having defined and compiled the model, it can be trained using the `fit` function. We also specify a validation dataset to monitor validation loss and accuracy." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Train on 45000 samples, validate on 15000 samples\n", + "Epoch 1/2\n", + "45000/45000 [==============================] - 1s - loss: 2.1743 - acc: 0.2946 - val_loss: 2.0402 - val_acc: 0.5123\n", + "Epoch 2/2\n", + "45000/45000 [==============================] - 1s - loss: 1.9111 - acc: 0.6254 - val_loss: 1.7829 - val_acc: 0.6876\n" + ] + } + ], + "source": [ + "network_history = model.fit(X_train, Y_train, batch_size=128, \n", + " epochs=2, verbose=1, validation_data=(X_val, Y_val))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Plotting Network Performance Trend\n", + "The return value of the `fit` function is a `keras.callbacks.History` object which contains the entire history of training/validation loss and accuracy, for each epoch. We can therefore plot the behaviour of loss and accuracy during the training phase." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4VGX2wPHvSQ9JSIAkdEioKXQiHZKASlHEggq2FQuC\nCjbcRX+ubdfV3UUE7OgiiwV0VRQQQQVCkRqQmlBCDzX0EiDt/f0xQzKQQAJkcjOZ83meeczceefm\nXIQ5c+8973nFGINSSikF4GF1AEoppcoPTQpKKaXyaVJQSimVT5OCUkqpfJoUlFJK5dOkoJRSKp8m\nBaWUUvk0KSillMqnSUEppVQ+L6sDuFKhoaEmIiLC6jCUUsqlrFy58pAxJqy4cS6XFCIiIkhOTrY6\nDKWUcikisrMk4/TykVJKqXyaFJRSSuXTpKCUUiqfy91TUEpVHNnZ2aSnp3P27FmrQ6kw/Pz8qFOn\nDt7e3lf1fk0KSinLpKenExQUREREBCJidTguzxjD4cOHSU9PJzIy8qr2oZePlFKWOXv2LNWqVdOE\nUEpEhGrVql3TmZcmBaWUpTQhlK5r/fN0m6Rw+NQ5/jYjhWOZWVaHopRS5ZbbJIXftx7ms9+3kzAq\nic+X7CAnN8/qkJRSFjt8+DCtWrWiVatW1KhRg9q1a+c/z8oq2RfIQYMGsWnTpsuOef/99/nyyy9L\nI2SnE2OM1TFckbi4OHO1M5o37j/Ba9NSWLLtMFE1gni5bwydGoaWcoRKqZJKTU0lOjra6jAAePXV\nVwkMDGTEiBEXbDfGYIzBw8N1vkMX9ecqIiuNMXHFvdd1jrIURNWozFePtufDe9tw8mwO93yyjKFf\nrGT3kUyrQ1NKlSNpaWnExMRw7733Ehsby759+xg8eDBxcXHExsby+uuv54/t0qULq1evJicnh5CQ\nEEaOHEnLli3p2LEjBw8eBOCll15izJgx+eNHjhxJu3btaNq0KYsXLwbg9OnT3HHHHcTExNC/f3/i\n4uJYvXp1mR+725Wkigi9m9ckMSqcTxZs44OkrczdeJDHujVgSEJDKvm43R+JUuXCa9M3kLL3RKnu\nM6ZWZV7pG3tV7924cSOTJk0iLs725fqtt96iatWq5OTkkJiYSP/+/YmJibngPcePHyc+Pp633nqL\nZ599lgkTJjBy5MhC+zbGsHz5cqZNm8brr7/OrFmzePfdd6lRowbfffcda9asoU2bNlcV97VyqzMF\nR37engzr0Zg5z8XTM7YG4+am0ePt+UxbsxdXu6SmlCp9DRs2zE8IAJMnT6ZNmza0adOG1NRUUlJS\nCr3H39+f3r17A9C2bVt27NhR5L5vv/32QmMWLVrEgAEDAGjZsiWxsVeXzK6V238trhXiz7iBrbm/\nY31enbaB4ZP/4IslO3m5bwzNagdbHZ5SbuNqv9E7S0BAQP7PW7ZsYezYsSxfvpyQkBDuu+++IucC\n+Pj45P/s6elJTk5Okfv29fUtdoxVnHamICITROSgiKy/xOv3ishaEVknIotFpKWzYimJ6yKqMu3J\nLrx5e3PSMk7R971FvPD9Og6fOmdlWEqpcuDEiRMEBQVRuXJl9u3bx+zZs0v9d3Tu3JlvvvkGgHXr\n1hV5JlIWnHmmMBF4D5h0ide3A/HGmKMi0hsYD7R3YjzF8vQQBrarR5/mNRn72xYmLdnBjLV7efr6\nJjzQsT7enm57tU0pt9amTRtiYmKIioqifv36dO7cudR/x7Bhw3jggQeIiYnJfwQHl/3VCqeWpIpI\nBDDDGNOsmHFVgPXGmNrF7fNaSlKvVNrBk7w+I5UFmzNoFB7IyzfH0K1JsQsXKaVKqDyVpFotJyeH\nnJwc/Pz82LJlCzfeeCNbtmzBy+vKv7tfS0lqebmn8DDw86VeFJHBwGCAevXqlVVMNAoP4r+DrmNO\n6kH+9lMKD0xYzvXR1fnrzdHUrxZQ/A6UUqqETp06RY8ePcjJycEYw8cff3xVCeFaWZ4URCQRW1Lo\ncqkxxpjx2C4vERcXV6alQSLC9THV6doklAmLdvDe3C3cMHoBD3eN5InERgT6Wv5HqJSqAEJCQli5\ncqXVYVhbkioiLYBPgX7GmMNWxlIcXy9PhiY0ZO6IBG5uWZMPk7bSfVQS369KJy9PS1iVUhWDZUlB\nROoB3wP3G2M2WxXHlape2Y/Rd7Vi6uOdqBniz7PfrOGOjxazevcxq0NTSqlr5syS1MnAEqCpiKSL\nyMMiMkREhtiHvAxUAz4QkdUiUjZ3j0tJ63pVmDq0E6PubEn60TPc+v7vjPjfGg6e1BWklFKuy2kX\nxI0xA4t5/RHgEWf9/rLg4SH0b1uHnrHVeW9eGhMWbWfW+v0M696IQZ0j8fHSElallGvRT61SEOTn\nzQu9o/nlmXjaR1blzZ830nPMAuZuPGB1aEqpy0hMTCw0EW3MmDEMHTr0ku8JDAwEYO/evfTv37/I\nMQkJCRRXOj9mzBgyMwuacfbp04djx6y/DK1JoRRFhgbwnwevY+Kg6xCBhyYm8+Bny9maccrq0JRS\nRRg4cCBTpky5YNuUKVMYOPCyFzoAqFWrFt9+++1V/+6Lk8LMmTMJCQm56v2VFk0KTpDQNJxZT3Xj\npZuiWbnjKD3fWcDfZ6Rw4my21aEppRz079+fn376KX9BnR07drB3715at25Njx49aNOmDc2bN+fH\nH38s9N4dO3bQrJltXu6ZM2cYMGAA0dHR3HbbbZw5cyZ/3NChQ/Nbbr/yyisAjBs3jr1795KYmEhi\nYiIAERERHDp0CIDRo0fTrFkzmjVrlt9ye8eOHURHR/Poo48SGxvLjTfeeMHvKS1aZO8kPl4ePNK1\nAbe2rs2o2Zv4z+/b+WH1Hp7v2ZQ729bFw0PXpVXqAj+PhP3rSnefNZpD77cu+XLVqlVp164dP//8\nM/369WPKlCncdddd+Pv7M3XqVCpXrsyhQ4fo0KEDt9xyyyXXP/7www+pVKkSqamprF279oK212+8\n8QZVq1YlNzeXHj16sHbtWoYPH87o0aOZN28eoaEXLvS1cuVKPvvsM5YtW4Yxhvbt2xMfH0+VKlXY\nsmULkydP5pNPPuGuu+7iu+++47777iudPys7PVNwstBAX966owXTnuhC/WoB/OW7dfR7/3dW7jxi\ndWhKKS68hHT+0pExhhdffJEWLVpw/fXXs2fPHg4cuPQ9wgULFuR/OLdo0YIWLVrkv/bNN9/Qpk0b\nWrduzYYNG4ptdLdo0SJuu+02AgICCAwM5Pbbb2fhwoUAREZG0qpVK+DyrbmvhZ4plJHmdYL5dkhH\npq3Zy5szN3LHh0u4tVUtRvaOpkawn9XhKWW9y3yjd6Z+/frxzDPPsGrVKjIzM2nbti0TJ04kIyOD\nlStX4u3tTURERJGtsouzfft2Ro0axYoVK6hSpQoPPvjgVe3nvPMtt8HWdtsZl4/0TKEMiQj9WtVm\nznPxPJnYiJnr95M4Kon35m7hbHau1eEp5ZYCAwNJTEzkoYceyr/BfPz4ccLDw/H29mbevHns3Lnz\nsvvo1q0bX331FQDr169n7dq1gK3ldkBAAMHBwRw4cICffy5o8RYUFMTJkycL7atr16788MMPZGZm\ncvr0aaZOnUrXrl1L63CLpUnBAgG+Xozo2ZTfnomnW5NQRv2ymRvemc+s9ft11TelLDBw4EDWrFmT\nnxTuvfdekpOTad68OZMmTSIqKuqy7x86dCinTp0iOjqal19+mbZt2wK2FdRat25NVFQU99xzzwUt\ntwcPHkyvXr3ybzSf16ZNGx588EHatWtH+/bteeSRR2jdunUpH/GlObV1tjOUZevssvJ72iFem76B\nzQdO0blRNV7pG0uT6kFWh6WU02nrbOe4ltbZeqZQDnRuFMrM4V157ZZY1u85Qe+xC3l12gaOZ2oJ\nq1KqbGlSKCe8PD34U6cI5o1IYGC7ukxasoOEUfP4fOlOcrULq1KqjGhSKGeqBvjw91ubM2NYV5pU\nD+KvP6znpnELWbqtXHcWV+qqudol7PLuWv88NSmUUzG1KjNlcAfev6cNJ8/mMGD8Up74chXpRzOL\nf7NSLsLPz4/Dhw9rYiglxhgOHz6Mn9/Vl7nrjWYXcCYrl48XbOWj+VsxBobEN2RIfEP8fTytDk2p\na5KdnU16evo11e6rC/n5+VGnTh28vb0v2F7SG82aFFzInmNneHNmKjPW7qN2iD8v9InipuY1Lzn1\nXimlzrO8+khEJojIQRFZf4nXo0RkiYicE5ERzoqjIqkd4s9797Th68EdqOzvzZNf/cHd45eyYe9x\nq0NTSlUQzrynMBHodZnXjwDDgVFOjKFCat+gGjOGdeGN25qx5cBJ+r67iBenruPI6SyrQ1NKuTin\nJQVjzAJsH/yXev2gMWYFoMX4V8HTQ7i3fX2SRiTyQMcIvl6xm4R/z+Oz37eTnZtndXhKKRel1Ucu\nLriSN6/eEsvPT3WlRZ0QXpueQp+xC1m05ZDVoSmlXJBLJAURGSwiySKSnJGRYXU45VKT6kF8/nA7\nxt/flnM5edz3n2UMnpTMrsNawqqUKjmXSArGmPHGmDhjTFxYWJjV4ZRbIsKNsTX45ZluPN+zKYvS\nDnH9O/P59+yNnD6XY3V4SikX4BJJQV0ZP29PnkhsxNznEripeU3en7eV7m8nMfWPdJ0kpJS6LKfN\nUxCRyUACEAocAF4BvAGMMR+JSA0gGagM5AGngBhjzInL7ded5ylcrZU7j/La9A2sTT9Om3ohvHpL\nLC3qWL9AuFKq7OjkNXWBvDzDtyvT+dfsjRw+ncWdbevwfM8owoJ8i3+zUsrlWT55TZUvHh7CXdfV\nZe6IBB7pEsn3q/bQfVQSnyzYRlaOlrAqpWw0KbiZyn7e/N9NMcx+phtxEVV4Y2YqvcYuYN6mg1aH\nppQqBzQpuKmGYYF8Nqgdnz14HRgY9NkKHpq4gm0Zp6wOTSllIU0Kbi4xKpxZT3fjxT5RLN9+hJ5j\nFvCPmamcPKsTzZVyR5oUFD5eHgzu1pC5I+K5tVVtxi/YRuKo+XyTvJs8XfVNKbeiSUHlCw/y4993\ntuTHJzpTt6o/f/52Lbd98Durdh21OjSlVBnRpKAKaVk3hO+GdOKdu1uy7/hZbv9gMc9+vZoDJ3Qh\nFKUqOk0KqkgeHsJtreswb0QCjyc0ZMbafSSOSuKDpDTO5eRaHZ5Sykk0KajLCvD14s+9ovj12W50\nbhTKv2Zt4sZ3FvDLhv3aMkOpCkiTgiqR+tUC+OSBOD5/uB3enh4M/nwlD0xYzpYDJ60OTSlVijQp\nqCvStXEYPz/VlZdvjmH17mP0GruQ16Zv4PgZLWFVqiLQpKCumLenBw91iSRpRAJ3X1eXiYt3kDgq\nia+W7SJXS1iVcmmaFNRVqxboyz9ua86MYV1oFBbIi1PXcct7i1i+/ZKrsCqlyjlNCuqaxdYK5uvH\nOvDuwNYcPZ3FXR8vYdjkP9h77IzVoSmlrpAmBVUqRIS+LWsx57kEhvdozC8b9tP97STG/raFs9la\nwqqUq9CkoEqVv48nz97QhDnPxdMjqjrv/LaZHm/PZ+a6fVrCqpQLcFpSEJEJInJQRNZf4nURkXEi\nkiYia0WkjbNiUWWvTpVKvH9vGyY/2oEgPy8e/3IVAz9ZSuq+yy6sp5SymDPPFCYCvS7zem+gsf0x\nGPjQibEoi3RsWI0Zw7rwt1ubsXH/SW4at5C//rCeo6ezrA5NKVUEpyUFY8wC4HJlKP2AScZmKRAi\nIjWdFY+yjpenB/d3qE/SiATu71Cfr5bvImFUEpOW7CAnV1d9U6o8sfKeQm1gt8PzdPs2VUGFVPLh\ntX7NmDm8K7G1KvPyjxu4adwiFqcdsjo0pZSdS9xoFpHBIpIsIskZGRlWh6OuUdMaQXz5SHs+uq8t\np7NyuOfTZQz5fCW7j2RaHZpSbs/KpLAHqOvwvI59WyHGmPHGmDhjTFxYWFiZBKecS0To1awGvz0b\nz4gbmzB/cwY9Rs/n7V82kZmVY3V4SrktK5PCNOABexVSB+C4MWafhfEoC/h5e/Jk98bMHRFP72Y1\neHduGj3ens+Pq/doCatSFnBmSepkYAnQVETSReRhERkiIkPsQ2YC24A04BPgcWfFosq/msH+jB3Q\nmm+HdKRaoA9PTVnNnR8tYf2e41aHppRbEVf7NhYXF2eSk5OtDkM5UW6e4X/Ju/n37E0cyczi7ri6\njOjZlNBAX6tDU8plichKY0xcceNc4kazci+eHsKAdvWYOyKBhztH8u3KdBJHJfHpwm1kawmrUk6l\nSUGVW8H+3rx0cwyznu5Gm3pV+PtPqfQas4D5m7UCTSln0aSgyr1G4YFMHHQd//lTHLl5hj9NWM4j\n/13BjkOnrQ5NqQpHk4JyCSJCj+jqzH6mGyN7R7Fk62FueGc+b/6cyqlzWsKqVGnRpKBciq+XJ0Pi\nGzJvRAK3tKzNx/O3kTgqiW9XppOnq74pdc00KSiXFF7Zj7fvasnUxztRK8SfEf9bw+0fLmb17mNW\nh6aUS9OkoFxa63pVmDq0E2/f2ZI9x85w6/u/89w3azh44qzVoSnlkjQpKJfn4SHc0bYO80YkMCS+\nIdPX7CVxVBIfzd/KuRxd9U2pK6FJQVUYgb5ejOwdxS/PdKNjw2q89fNGer6zgN9SDmjLDKVKSJOC\nqnAiQgP49E/X8d+H2uHpITwyKZk/fbaCtIOnrA5NqXJPk4KqsOKbhDHr6W68dFM0f+w8Sq8xC/jb\njBROnM22OjSlyi1NCqpC8/b04JGuDZj3fAJ3xtVhwu/bSfx3ElOW7yJXS1iVKkSTgnILoYG+vHl7\nC6Y/2YXI0ABGfr+Ofu8vInnH5VaMVcr9aFJQbqVZ7WD+N6QjYwe04tDJLPp/tIThk/9g3/EzVoem\nVLmgSUG5HRGhX6vazB0Rz7DujZi1YT/dR83n3TlbOJutJazKvWlSUG6rko8Xz93YlDnPxhPfJIy3\nf93M9aPnM2v9Pi1hVW7LqUlBRHqJyCYRSRORkUW8XkVEporIWhFZLiLNnBmPUkWpW7USH93flq8e\naU+AjxdDvljFvZ8uY9P+k1aHplSZc+ZynJ7A+0BvIAYYKCIxFw17EVhtjGkBPACMdVY8ShWnU6NQ\nfhrehdf7xbJh7wn6jFvIKz+u51hmltWhKVVmnHmm0A5IM8ZsM8ZkAVOAfheNiQHmAhhjNgIRIlLd\niTEpdVlenh480DGCpBEJ3NOuHp8v3UniqCQ+X7qTHF31TbkBZyaF2sBuh+fp9m2O1gC3A4hIO6A+\nUOfiHYnIYBFJFpHkjAxddUs5X5UAH/52azN+Gt6VpjWC+OsP67n53UUs2XrY6tCUciqrbzS/BYSI\nyGpgGPAHUKj8wxgz3hgTZ4yJCwsLK+sYlRuLrlmZyY924IN723DybA4DP1nK41+uJP1optWhKeUU\nXk7c9x6grsPzOvZt+YwxJ4BBACIiwHZgmxNjUuqKiQh9mteke1Q4H8/fxofz05iTepDH4hsyNL4h\n/j6eVoeoVKlx5pnCCqCxiESKiA8wAJjmOEBEQuyvATwCLLAnCqXKHT9vT566vjFznkvghpjqjJuz\nhR5vJzF9zV4tYVUVhtOSgjEmB3gSmA2kAt8YYzaIyBARGWIfFg2sF5FN2KqUnnJWPEqVltoh/rx3\nTxu+eawjIZV8GDb5D+4ev5QNe49bHZpS10xc7RtOXFycSU5OtjoMpQDIzTN8vWI3o37ZxLHMLAa0\nq8dzNzShWqCv1aEpdQERWWmMiStunNU3mpVyaZ4ewj3t6zHvuQT+1CmCr1fsJnFUEhMWbSdbS1iV\nCypRUhCRhiLia/85QUSGi0iIc0NTynUEV/Lmlb6xzHqqKy3rhvD6jBT6jF3Iwi1aQq1cS0nPFL4D\nckWkETAeW1XRV06LSikX1bh6EJMeasf4+9tyLieP+/+znEcnJbPz8GmrQ1OqREqaFPLsN45vA941\nxjwP1HReWEq5LhHhxtga/PpsN/7cqym/px3ihtEL+NesjZw+l2N1eEpdVkmTQraIDAT+BMywb/N2\nTkhKVQy+Xp48ntCIeSMSuLlFTT5I2kr3t5OY+ke6lrCqcqukSWEQ0BF4wxizXUQigc+dF5ZSFUf1\nyn6MvrsV3z/eiRqV/Xjm6zXc8eFi1uw+ZnVoShVyxSWpIlIFqGuMWeuckC5PS1KVK8vLM3y7Kp1/\nzdrEoVPnuLNtHZ7v1ZTwID+rQ1MVXKmWpIpIkohUFpGqwCrgExEZfa1BKuVuPDyEu+LqMm9EPI91\na8APq/fQfdR8xi/YSlaOlrAq65X08lGwvf3E7cAkY0x74HrnhaVUxRbk580LfaKZ/XQ32kVW5R8z\nN9JrzALmbTxodWjKzZU0KXiJSE3gLgpuNCulrlGDsEAmPHgdnw26DoBBE1cw6LPlbMs4ZXFkyl2V\nNCm8jq2H0VZjzAoRaQBscV5YSrmXxKbhzHq6G//XJ5rkHUfpOWYB/5iZysmz2VaHptyM9j5SqpzJ\nOHmOUbM38c3K3VQL8OHPPaPo37YOHh5idWjKhZX2jeY6IjJVRA7aH9+JSKEV0pRS1y4syJd/9m/B\nj090pl7VSvz5u7Xc+sHvrNx51OrQlBso6eWjz7CthVDL/phu36aUcpIWdUL4bmgnxtzdigMnznLH\nh4t55uvVHDhx1urQVAVWostHIrLaGNOquG1lQS8fKXd0+lwOHySl8cmC7Xh5Ck8kNuLhLpH4eeuq\nb6pkSrt19mERuU9EPO2P+4BiVzAXkV4isklE0kRkZBGvB4vIdBFZIyIbRGRQCeNRyq0E+HrxfM8o\nfns2ni6NQvn37E3c+M4CZm/Yry0zVKkqaVJ4CFs56n5gH9AfePBybxART+B9bCuqxQADRSTmomFP\nACnGmJZAAvC2w/KcSqmL1KtWifEPxPHFw+3x9fLgsc9X8sCE5Ww5cNLq0FQFUaKkYIzZaYy5xRgT\nZowJN8bcCtxRzNvaAWnGmG3GmCxgCtDv4l0DQSIiQCBwBNA2kkoVo0vjUH5+qiuv9o1hze5j9Bq7\nkFenbeB4ppawqmtzLSuvPVvM67WB3Q7P0+3bHL2HbZ3mvcA64CljjM71V6oEvDw9eLBzJEnPJzLg\nurpMWrKDhFHz+HLZTnLz9JKSujrXkhRKo2i6J7AaW0VTK+A9Ealc6BeJDBaRZBFJzsjQlayUclQ1\nwIc3bmvO9GFdaFw9iP+bup6+7y5i2bZib/spVci1JIXivorswbZC23l17NscDQK+NzZpwHYgqtAv\nMma8MSbOGBMXFhZ2DSErVXHF1grm68EdeO+e1hzLzOLu8Ut54qtV7Dl2xurQlAvxutyLInKSoj/8\nBfAvZt8rgMb2tRf2AAOAey4aswvoASwUkepAU2BbCeJWShVBRLi5RS16RFXno/lb+Wj+VuakHmBI\nfEOGxDfUElZVLKe2uRCRPsAYwBOYYIx5Q0SGABhjPhKRWsBEbEt7CvCWMeaLy+1T5ykoVXJ7jp3h\nHzNT+WntPmqH+PNin2j6NK+BrbZDuZOSzlPQ3kdKuYGl2w7z2vQUUvedoH1kVV69JZbomoVu36kK\nrLQnrymlXFiHBtWYMawLf7+1GZsPnOSmcQt56Yd1HDmdZXVoqpzRpKCUm/D0EO7rUJ95IxJ4oGME\nk5fvJnFUEhN/305OrlaCKxtNCkq5mZBKPrx6Sywzh3elWe3KvDo9hT7jFvJ72iGrQ1PlgCYFpdxU\n0xpBfPFwez6+vy1nsnO599NlPPZ5MruPZFodmrKQJgWl3JiI0DO2Br8+E8/zPZuyYPMheoyez6jZ\nm8jM0o4z7kiTglIKP29PnkhsxLwRCfRpVoP35qXRfdR8fvhjj3ZhdTOaFJRS+WoE+zFmQGu+G9qR\nsCBfnv56Nf0/WsK69ONWh6bKiCYFpVQhbetX5ccnOvPPO5qz8/Bpbnl/EX/5di2HTp2zOjTlZJoU\nlFJF8vAQ7r6uHnNHJPBw50i+W5VO4r+T+HThNrJytIS1otKkoJS6rMp+3rx0cwyzn+lG24gq/P2n\nVHqNXUDSpoNWh6acQJOCUqpEGoYFMnFQOyY8GIcx8OBnK3h44gq2HzptdWiqFGlSUEpdke5R1Zn9\ndDde6B3Fsu1HuPGd+bw5M5WTZ3XVt4pAk4JS6or5eHnwWHxD5o6Ip1+r2ny8YBvd357P/5J3k6er\nvrk0TQpKqasWHuTHqDtb8sMTnakd4s/z367ltg8X88euo1aHpq6SJgWl1DVrVTeE74d24u07W7L3\n2Blu+2Axz36zmoMnzlodmrpCmhSUUqXCw0O4o20d5o1IYGhCQ2as2UfiqCQ+TNrKuZxcq8NTJeTU\npCAivURkk4ikicjIIl5/XkRW2x/rRSRXRKo6MyallHMF+nrxl15R/PJMNzo2DOWfszbS850F/JZy\nQFtmuACnrbwmIp7AZuAGIB3bms0DjTEplxjfF3jGGNP9cvvVldeUci0LNmfw+owU0g6eomvjUF7p\nG0Oj8CCrw3I75WHltXZAmjFmmzEmC5gC9LvM+IHAZCfGo5SyQLcmYfz8VFf+enMMq3cfo9eYhbw+\nPYXjZ7SEtTxyZlKoDex2eJ5u31aIiFQCegHfXeL1wSKSLCLJGRkZpR6oUsq5vD09eLhLJEkjErgz\nrg6fLd5O91FJTF6+i1wtYS1XysuN5r7A78aYI0W9aIwZb4yJM8bEhYWFlXFoSqnSUi3Qlzdvb8H0\nJ7vQICyAF75fxy3vLWLFjiL/6SsLODMp7AHqOjyvY99WlAHopSOl3Eaz2sF881hHxg1szZHTWdz5\n0RKGT/6DfcfPWB2a23NmUlgBNBaRSBHxwfbBP+3iQSISDMQDPzoxFqVUOSMi3NKyFnOei2d490bM\n3rCf7qPm8+6cLZzN1hJWqzgtKRhjcoAngdlAKvCNMWaDiAwRkSEOQ28DfjHGaFctpdxQJR8vnr2x\nKb89G09C0zDe/nUz14+ez8/r9mkJqwWcVpLqLFqSqlTFtnjrIV6blsKmAyfp2KAar9wSQ1SNylaH\n5fLKQ0mqUkpdsU4NQ/lpeBf+1i+W1P0n6DN2IS//uJ5jmVlWh+YWNCkopcodL08P7u8YwbznEriv\nQ32+WLpUfIjwAAAUOElEQVSThFFJfL5kBzm5uuqbM2lSUEqVW1UCfHi9XzNmPtWV6BqV+euPG7j5\n3UUs3nrI6tAqLE0KSqlyL6pGZb56tD0f3tuGk2dzuOeTZQz9YiW7j2RaHVqFo0lBKeUSRITezWsy\n57l4nruhCUmbMrh+9HxG/7KJzKwcq8OrMDQpKKVcip+3J8N6NGbOc/H0jK3BuLlp9Hh7PtPW7NUS\n1lKgSUEp5ZJqhfgzbmBr/jekI1UDfBg++Q/u/ngp6/cctzo0l+Y+8xTSV8LCtyE8CsJjICwKQhuD\nl2/pB6mUKlO5eYZvknfz79mbOJqZxYDr6jHixiZUC9R/3+eVdJ6CV1kEUy6cOQqH02DzLDD2KfTi\nCdUaFSSK8GgIi4aqDcDTff5olHJ1nh7CwHb16NO8JmN/28KkJTuYsXYvT1/fhAc61sfbUy+KlJT7\nnCmcl3POlhwOpjo8UuDoDsD+Z+HpA6FN7cnCnijCoyGkPnjoXy6lyru0gyd5fUYqCzZn0Cg8kJdv\njqFbE/fusFzSMwX3SwqXkpUJhzZdmCwyNsJxhyUhvCtBWNOCy0/nzy4q1wKR0o9JKXXVjDHMST3I\n335KYefhTK6Prs5fb46mfrUAq0OzhCaF0nL2OGQ4JIsM+39PHSgY4xtc+KwiPBoCwjRZKGWxczm5\nTFi0g/fmbiE71/Bw10ieSGxEoK97XSLWpOBsmUcKLj2dP6s4mGK7d3FepWoOZxUOycK/inVxK+Wm\nDpw4yz9nbeT7VXsID/JlZO8obm1VGw8P9/jipknBCsbAqYMOieL8paiNkHWyYFxQzQsvP4VH2y5L\n+epi5ko526pdR3ltegprdh+jdb0QXu0bS8u6IVaH5XSaFMoTY+B4+kWJIgUyNkOOw0pTwfUuPKMI\nj4bQJuDtb13sSlVAeXmG7//Ywz9nbSTj5Dn6t63Dn3s1JTzIz+rQnKZcJAUR6QWMBTyBT40xbxUx\nJgEYA3gDh4wx8Zfbp0smhUvJy7VVPZ2/9HT+rOLQZsjLto0RD6gSeVGyiIGqDcHLx9LwlXJ1J89m\n8968NCYs2o6vlyfDujdiUOdIfLwqXpWh5UlBRDyBzcANQDq25TkHGmNSHMaEAIuBXsaYXSISbow5\neLn9VqikcCm52XBkm0OisD+ObAVjbxvs4QXVGhcxxyISPDytjV8pF7P90Gn+PiOFORsPEhkawF9v\njqZ7VHWrwypV5SEpdAReNcb0tD9/AcAY86bDmMeBWsaYl0q6X7dICpeSfRYObyk8x+LYzoIxXn62\nS0759yrs/w2uq3MslCpG0qaDvD4jhW0Zp0loGsZfb46hYVig1WGVivIwo7k24FDkTzrQ/qIxTQBv\nEUkCgoCxxphJTozJtXn7QY3mtoejc6fscywcLkPtWARrvy4Y4xNon2PhWDYbA0E1tGxWKbuEpuF0\nahjKpCU7GPvbFnq+s4AHO0Uw/PrGVPbztjq8MmF1oa4X0BboAfgDS0RkqTFms+MgERkMDAaoV69e\nmQdZ7vkGQu22toejM8fscywcqqE2z4Y/vigY4xd84eWn/DkWoWV7DEqVEz5eHjzStQH9WtXm7V82\n8Z/ft/PD6j0837Mpd7atW+FLWK2+fDQS8DfGvGJ//h9gljHmf5far1tfPiotpw8Vnox3MMU2Ue+8\ngLDCZxXhUbYkopQbWZd+nFenb2DlzqM0rx3Mq7fE0LZ+VavDumLl4Z6CF7YbzT2APdhuNN9jjNng\nMCYaeA/oCfgAy4EBxpj1l9qvJgUnMQZO7reXyl5UDZV9umBc5doOk/HsiSIsCnzcs3WAcg/GGKat\n2cubMzey/8RZbm1Vi5G9o6kR7DolrJYnBXsQfbCVm3oCE4wxb4jIEABjzEf2Mc8Dg4A8bGWrYy63\nT00KZSwvz9b/6YKzilTbZanccwXjQupfOBkvPNpWHeXtOv9olCrO6XM5fJi0lfELt+EpwhOJDXmk\nawP8vMt/xV+5SArOoEmhnMjLhSPbL0wUB1Nt1VF59qURxcM2n6LQHIsG4OkeN+1UxbTrcCZvzExh\n9oYD1K3qz//1iaFnbHWkHBdtaFJQ1sjJss2nuHiOxdHtDnMsvO1lsw6XocKioEqEzrFQLuX3tEO8\nNn0Dmw+conOjarzSN5Ym1ctnuxpNCqp8yT5jm6l9QWvyVDi2q2CMlz+ENSlcDRVcR8tmVbmVk5vH\nl8t2MfrXzZw6l8P9HerzzPVNCK5Uvs6GNSko13Du5IWtyc/f6D65r2CMT1ARrcljIDBck4UqN46c\nzmL0r5v4atkugv29ee7GpgxsVw/PclLCqklBubYzRy+cjHe+IirzcMEY/yoOZxUO7T4quV65oKo4\nUvae4LXpG1i2/QhRNYJ49ZZYOjSoZnVYmhRUBXUqo4jW5Klw7kTBmMDqhSfjhUWBX2Xr4lZuxRjD\nzHX7+cfMVPYcO8NNzWvyQp8o6lSpZFlMmhSU+zAGTuwtojX5JsjOLBgXXLfwHIvQpuBj3T9UVbGd\nycrl4wVb+Wj+VoyBIfENGRLfEH+fsi+o0KSgVF6erVlgodbkmyA3yz5IbFVPRc2x0NbkqpTsOXaG\nf8xM5ae1+6gd4s8LfaK4qXnNMi1h1aSg1KXk5thakxeaY5EGJtc2RjyhWqPCcyyqRIKn1S3DlKta\ntu0wr05PIXXfCdpHVuWVvrHE1Cqby5qaFJS6UjnnbInh4tbkR3cA9n8nnj62S04Xz7EIqa+tyVWJ\n5OYZpqzYxajZmzh+JpuB7erx3I1NqRrg3DNTTQpKlZaszMKtyTM22tp/nOddyeF+hcNN7sq1tGxW\nFel4Zjbv/LaZz5fuJMDHk2duaMJ9Herj7emcLxeaFJRytrPHL5xjcf5y1KkDBWN8gy8xxyLMurhV\nubL5wElen57CorRDNA4P5JW+sXRpXPqt6zUpKGWVzCMXTsQ7//OZowVjKlUrYo5FlG3uhXI7xhh+\nSTnA339KYfeRM9wYU52XboqhXrXSq4zTpKBUeWIMnDpYdGvyrJMF44JqFjHHoin4ls9+Oqp0nc3O\n5T+LtvP+vDRy8gyPdo3k8YRGBPhee3GDJgWlXIExcDy96NbkOWcKxoXUuzBRhEfbmgp6+1sXu3Ka\n/cfP8s9ZG5n6xx6qV/blhd7R9GtV65pKWDUpKOXK8nJtVU+F5lhshrxs2xjxsJXIOk7GC4+xldJq\na/IKYeXOo7w2fQNr04/Ttn4VXukbQ4s6IVe1L00KSlVEudm2ORYXtyY/stWhNbmXbfJdoTkWEdqa\n3AXl5Rm+XZnOv2ZvzC9fvRrlIimISC9gLLaV1z41xrx10esJwI/Advum740xr19un5oUlCpC9lnb\nAkcXtyY/uqNgjJeffR2L6AvnWATX1TkWLuDk2Wy8PDyuukVGSZOC06Zmiogn8D5wA5AOrBCRacaY\nlIuGLjTG3OysOJRyC95+UKO57eHo3KnCcyx2LIK1XxeM8Qm0V0BFFSSK8BgIqqFzLMqRIL+yuSTo\nzPn67YA0Y8w2ABGZAvQDLk4KSiln8Q2E2m1tD0dnjtnnWDh0nN08G/74omCMX0jhyXjhMRBgfRto\n5TzOTAq1AYcpn6QD7YsY10lE1gJ7gBHGmA1OjEkpBeAfAvXa2x6OTh8qPBlv/Xe2iXrnBYRdePnp\n/E1uv+CyPQblFFZ39loF1DPGnBKRPsAPQOOLB4nIYGAwQL169co2QqXcSUAoRHa1Pc4zBk7uLzzH\nYtXnkH26YFzl2oUXPAprCj4BZX8c6qo5MynsAeo6PK9j35bPGHPC4eeZIvKBiIQaYw5dNG48MB5s\nN5qdF7JSqhARqFzT9mjUo2B7Xp6t/9MFZbOpsH0h5J47/2aoUv/Cy0/hUbYb3l6+lhyOujxnJoUV\nQGMRicSWDAYA9zgOEJEawAFjjBGRdoAHcLjQnpRS5Y+Hh+0Dv0p9aNKzYHteLhzZXrg1edqvkJdj\nGyOeULVB4TkWVRvoHAuLOS0pGGNyRORJYDa2ktQJxpgNIjLE/vpHQH9gqIjkAGeAAcbVJk4opS7k\n4QmhjWyP6L4F23OybPMpHM8qDmyAjTMK5lh4+jjMsXC4DBUSoWWzZUQnrymlrJV9xjZT++I5Fsd2\nFYzx8rfdnyg0x6KOls2WkOXzFJRSqkS8/aFmS9vD0bmThVuTb0uCNZMLxvhWLnqORWC4JourpElB\nKVU++QZBnTjbw9GZo4UXPNr4E6yaVDDGv6rDHAuHy1CVqpbtMbggTQpKKdfiXwXqd7Q9HJ3KuHAy\n3sFUWPs/OOcwxyKweuE5FmFNwa9s1kl2BZoUlFIVQ2AYBMZDg/iCbcbAib0XtSZPgZUTITuzYFxw\n3cILHoU2BZ/SW+TGVWhSUEpVXCIQXNv2aHx9wfa8PDi2s3Br8m1JkJt1/s1QNbLwOhbVGoOXjxVH\nUyY0KSil3I+Hh+0Dv2okNO1dsD03B45uL9yafPMsMLn293pB1YaF51hUiQRP1/9Idf0jUEqp0uLp\nBaGNbY+YfgXbc87B4bQLE8W+NZDyI2Av6/f0dWhN7nBzO7ieS82x0KSglFLF8fKF6rG2h6OszMKt\nyXctgXXfFIzxDrhojoW962zlWuWybFaTglJKXS2fSlCrte3h6OyJwq3J036D1V8WjPENtp9RXFQN\nFRhWtsdwEU0KSilV2vwqQ93rbA9HmUcKKqAyNtp+TvnRVg11XqXQIuZYRNlKccuAJgWllCorlapC\nRGfb4zxj4NTBwq3JV0+GrJMF44JqQscnoNMwp4aoSUEppawkAkHVbY+GiQXbjYHj6RcmiqCaTg9H\nk4JSSpVHIhBS1/ZofEOZ/VrXqZNSSinldJoUlFJK5XNqUhCRXiKySUTSRGTkZcZdJyI5ItLfmfEo\npZS6PKclBRHxBN4HegMxwEARibnEuH8CvzgrFqWUUiXjzDOFdkCaMWabMSYLmAL0K2LcMOA74KAT\nY1FKKVUCzkwKtYHdDs/T7dvyiUht4DbgQyfGoZRSqoSsvtE8BviLMedX7S6aiAwWkWQRSc7IyCij\n0JRSyv04c57CHqCuw/M69m2O4oApYmsKFQr0EZEcY8wPjoOMMeOB8QBxcXHGaRErpZSbE2Oc8xkr\nIl7AZqAHtmSwArjHGLPhEuMnAjOMMd8Ws98MYOdVhhUKHLrK97oqPWb3oMfsHq7lmOsbY4rttue0\nMwVjTI6IPAnMBjyBCcaYDSIyxP76R1e536tuISgiycaYuOJHVhx6zO5Bj9k9lMUxO7XNhTFmJjDz\nom1FJgNjzIPOjEUppVTxrL7RrJRSqhxxt6Qw3uoALKDH7B70mN2D04/ZaTealVJKuR53O1NQSil1\nGRUyKRTXiE9sxtlfXysibayIszSV4JjvtR/rOhFZLCItrYizNLljw8WSHLOIJIjIahHZICLzyzrG\n0laCv9vBIjJdRNbYj3mQFXGWFhGZICIHRWT9JV537ueXMaZCPbCVv24FGgA+wBog5qIxfYCfAQE6\nAMusjrsMjrkTUMX+c293OGaHcXOxVcH1tzruMvj/HAKkAPXsz8OtjrsMjvlF4J/2n8OAI4CP1bFf\nwzF3A9oA6y/xulM/vyrimUJJGvH1AyYZm6VAiIg4f5075yn2mI0xi40xR+1Pl2KbYe7K3LHhYkmO\n+R7ge2PMLgBjjKsfd0mO2QBBYmuNEIgtKeSUbZilxxizANsxXIpTP78qYlIothFfCce4kis9noex\nfdNwZe7YcLEk/5+bAFVEJElEVorIA2UWnXOU5JjfA6KBvcA64ClTTD81F+fUzy9do9nNiEgitqTQ\nxepYykB+w0V7fy134AW0xdZexh9YIiJLjTGbrQ3LqXoCq4HuQEPgVxFZaIw5YW1YrqkiJoWSNOIr\nyRhXUqLjEZEWwKdAb2PM4TKKzVlKreGiCynJMacDh40xp4HTIrIAaImtD5krKskxDwLeMrYL7mki\nsh2IApaXTYhlzqmfXxXx8tEKoLGIRIqIDzAAmHbRmGnAA/a7+B2A48aYfWUdaCkq9phFpB7wPXB/\nBfnWWOwxG2MijTERxpgI4FvgcRdOCFCyv9s/Al1ExEtEKgHtgdQyjrM0leSYd2E7M0JEqgNNgW1l\nGmXZcurnV4U7UzAla8Q3E9sd/DQgE9s3DZdVwmN+GagGfGD/5pxjXLiZWAmPuUIpyTEbY1JFZBaw\nFsgDPjXGFFna6ApK+P/5b8BEEVmHrSLnL8YYl+2eKiKTgQQgVETSgVcAbyibzy+d0ayUUipfRbx8\npJRS6ippUlBKKZVPk4JSSql8mhSUUkrl06SglFIqnyYFpexEJNfeXfT845KdV69i3xGX6nqpVHlS\n4eYpKHUNzhhjWlkdhFJW0jMFpYohIjtE5F/2tSiWi0gj+/YIEZlr72k/xz5rHBGpLiJT7f3914hI\nJ/uuPEXkE3vP/19ExN8+friIpNj3M8Wiw1QK0KSglCP/iy4f3e3w2nFjTHNsHTnH2Le9C/zXGNMC\n+BIYZ98+DphvjGmJrS/+Bvv2xsD7xphY4Bhwh337SKC1fT9DnHVwSpWEzmhWyk5EThljAovYvgPo\nbozZJiLewH5jTDUROQTUNMZk27fvM8aEikgGUMcYc85hHxHAr8aYxvbnfwG8jTF/t7elOAX8APxg\njDnl5ENV6pL0TEGpkjGX+PlKnHP4OZeCe3o3Ae9jO6tYISJ6r09ZRpOCUiVzt8N/l9h/XoytayfA\nvcBC+89zgKEAIuIpIsGX2qmIeAB1jTHzgL8AwdhWD1PKEvqNRKkC/iKy2uH5LGPM+bLUKiKyFtu3\n/YH2bcOAz0TkeSCDgm6VTwHjReRhbGcEQ4FLtTb2BL6wJw4BxhljjpXaESl1hfSeglLFsN9TiHPl\ndsxKlZRePlJKKZVPzxSUUkrl0zMFpZRS+TQpKKWUyqdJQSmlVD5NCkoppfJpUlBKKZVPk4JSSql8\n/w/rMOoQeiTo9AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEKCAYAAAAB0GKPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd8VfX9x/HXhxBIIIs9MggzAwQJEZzIUhFBqqUKolbU\nUq2jtdVCra3gaGm1ihYrUgS1Dn5WrQUBcVHFxVIEkzBCWEnYmABJSHKTz++PewM3IcAFcnOSm8/z\n8eBBzrr5HMZ55/s93/M9oqoYY4wxp9LI6QKMMcbUDxYYxhhjfGKBYYwxxicWGMYYY3xigWGMMcYn\nFhjGGGN8YoFhjDHGJxYYxhhjfGKBYYwxxieNnS6gJrVu3Vrj4+OdLsMYY+qN1atX71PVNr7sG1CB\nER8fz6pVq5wuwxhj6g0R2ebrvtYlZYwxxicWGMYYY3xigWGMMcYnFhjGGGN8YoFhjDHGJxYYxhhj\nfGKBYYwxxicB9RyGMcYEPFUo+gHytkP+DsjbAWXFcPF9fv/WFhjGGFOXlJfBoZ3uIMjfcSwUjv6e\nDaUFlY8Ja2eBYYwxAae0yH3Rr2gh5GdXDoSDOaBllY9p1goiY6FND+g21P11VKz798hYaNayVkq3\nwDDGmJpS0V3k3SrwDoe8HVC4r/IxEgQRHd0X/k4XQGSMVyDEQWQ0NGnuzPlUYYFhjDG+Ki+DQ7u8\nAmF75RZCfjaUHK58TOPQY62B9r2PBUFUrDscwjtCUP24FNePKo0xpjaUFkF+jjsIKrUQPOFwMBfK\nXZWPCW3pvvi36gZdBh8Lh4rfm7UCEWfOp4ZZYBhjGoaj3UXZVbqMvL4u2Fv5GGnkbgFExULs+e4W\ngXcLISIamoY5cz4OsMAwxgSGo91FFYFQzU3l6rqLKkKg/TmVWwZRsRDeAYKCnTmfOsivgSEiw4Fn\ngCBgtqpOq7I9EngViPPU8qSqzvVsuw+4HVBgHTBBVY/4s15jTB1WeuRYGFR3U/lgTjXdRS3cF/9W\nXaHLIK8WQixExQVUd1Ft8FtgiEgQ8BxwGZANrBSR+aqa7rXbXUC6qo4SkTbABhF5DWgD3Askq2qR\niLwJjAVe8le9xhgHqcKRvGPPGVTXQijYU/kYaeRuAUTGQmx/zxDTGHcQVHzdgLqLaoM/Wxj9gUxV\nzQIQkXnAaMA7MBQIFxEBwoADQMWPCI2BUBEpBZoBuX6s1RjjT+XlcHhX9fcNKgKh5FDlYxqHHBti\nmjDcM8TUq4UQ0dG6i2qZPwMjGtjhtZwNDKiyzwxgPu4wCAeuV9VyIEdEngS2A0XAB6r6gR9rNcac\njdIj7i6hvO3V31TOz4Hy0srHhLZwB0CLztB5oFcLwXNTuXlr6y6qY5y+6X0FsAYYAnQFPhSRZbjv\neYwGOgN5wL9F5EZVfbXqB4jIRGAiQFxcXG3VbUzDUpRXeWqKqsNOD++ucoC4u4uiYiE6FXpe42kt\neD1/0DTckVMxZ86fgZEDxHotx3jWeZsATFNVBTJFZAuQCHQCtqjqXgAReQe4EPcN8kpUdRYwCyA1\nNVVr+iSMCXjl5e4LfrXzFnkCofhg5WOCmh5rDXS/3HPfwOsJ5Yho6y4KQP4MjJVAdxHpjDsoxgI3\nVNlnOzAUWCYi7YAEIAsQ4HwRaYa7S2oosMqPtRoTuFzFXqOLvOct8nQfHcyBspLKx4REuS/+LeIh\n/pJjrYKKFkLzNtZd1AD5LTBU1SUidwNLcHcxzVHVNBG5w7N9JvAo8JKIrMMdEpNUdR+wT0TeAr7B\nfRP8WzytCGNMFUfyTzxvUX62+2ZzJZ7uosgYiE6B5NGVJ7KLjIGQCEdOxdRt4u4NCgypqam6apU1\nREwAKS93Dyetbt6iikAozq98TEV3UdWnkiu6jCKioXETZ87H1DkislpVU33Z1+mb3sY0bK4SOJhd\n/bxFFVNdH9ddFOkJgTiIv+j4qa6bt4FG9jJNU/MsMIzxpyMHTzxvUd4Oz+gi71a+QHh794W/Y19I\nvvrYU8kVLQTrLjIOscAw5kyVl7snqzvRvEV5O6rpLmpy7MLfbViVmU1jICLGuotMnWWBYcyJuErc\nXUInaiHk57jfpeytaeSxEIi7oPK8RZEx0LytdReZGqWqHCgooVVYU79/LwsM03AVH6oyxLRKC+HQ\nLip3FwFh7d0h0OFcSBx5bN6iihZCSKQjp2Iapk27DzF1QTo5eUUs+dVAmjT27w8jFhgmMKm6u4u8\nbyBXmrJiu3s4qregJu4RRFGx0HVolZlNK0YX+f+nOGNOJb+wlKc/2si/vt5G8yZB/PqyHjSqhcdi\nLDBM/eQqgUO51TyV7DXc9LjuoohjF/+4al6GY91Fpo4rK1fmrdzOk0s2kF9Uyrj+cfzm8gRaNq+d\n+14WGKZuKj50/BBT7xbCoZ0c313Uzh0IHXpD4giv5w88IWHdRaYeW561n6kL0knfeZD+nVsyZVRP\nkjvW7og5CwxT+yq6i46bt8hrUrsjeZWPaRQMkdHui3/XwZXnLap4GC04xJnzMcaPcvOK+NOiDN5b\nu5OOkSHMuKEvV53TAXFgahYLDFPzyko9o4uqmbeo4sayq8rLE5uEH7v4xw7wCgTPTeWwdtZdZBqU\nI6VlvPBpFs9/mokq/GpYd34+sCuhTYIcq8kCw5y+4sMnnrco39NdpOWVj2ne1h0I7XpBwpXHnkqu\nCImQSJvMzhjcw2QXf7+LxxdmkJNXxFXndOB3IxKJadHM6dIsMEwVqlCw7wTzFnl+Ff1Q+ZhGjT2j\ni+Kg86WV5y2KirPuImN8lLHzIFMXpPF11gES24fzxs/O54KurZwu6ygLjIamrBQO5lY/b1F+tqe7\nqKjyMU3CjrUGYs6rPG9RVEV3kXPNZGPqux8KSnjqw428tnwbEaHBPPqjXow7L5bGQXWrG9YCI9CU\nFJz4rWh5O9xDUavrLoqMgXbJ0OOK41+GExJl3UXG+IGrrJzXV2znbx9s5HCxi5vO78R9l/Ugqlnd\nnB7GAqM+UYXC/Sd+b3LeDig6UPmYiu6iyFjofEnlp5Ij49wjj4JDnTkfYxqwLzfvY+r8dDbsPsSF\nXVvx8KieJLSv26+ttcCoS8pcXg+jVdNCyM+G0sLKxwQ3P9ZFFN3v+JlNw9tbd5ExdciOA4X8aVEG\ni7/fRUyLUGbe2I8rerZzZJjs6fJrYIjIcOAZ3G/cm62q06psj8T9nu44Ty1Pqupcz7YoYDbQC/cT\nWreq6lf+rNfvSgoq30iu+t7kg7mgZZWPad7GffFvk+h+d3LFG9EqQiK0hXUXGVMPFJa4mPm/zbzw\nWRaNRPjNZT342cAuhATXnx/o/BYYIhIEPAdcBmQDK0Vkvqqme+12F5CuqqNEpA2wQUReU9US3EHz\nvqqOEZEmgPNjyk5GFQoPVPNUstekdoX7Kx/TqDFEdHRf+Dtd5HUzOeZYK8G6i4yp11SVBWt38udF\nGezMP8LVfTryuxGJdIisf/+3/dnC6A9kqmoWgIjMA0YD3oGhQLi422JhwAHA5Wl5DARuAfAESJXX\njtWyMpf7+YITTnV9su6iGOiYcmzeoooWQngH6y4yJoB9n5PPIwvSWbH1AD07RvDsuL6cF9/S6bLO\nmD8DIxrY4bWcDQyoss8MYD6QC4QD16tquYh0BvYCc0WkD7Aa+KWqFvit2pLCKvcNqtxUrq67qFlr\n94W/TQJ0u+z4FoJ1FxnTIO0/XMyTH2xk3srttGjWhD9few7XpcYSVBtTyvqR0ze9rwDWAEOArsCH\nIrIMd10pwD2qulxEngEmA3+o+gEiMhGYCBAXF3f6FZSXw1OJnldlen9w0LGprjtdePx7kyNjoEnd\n7iUzxtSu0rJy/vXVNqZ/tJHCkjImXNiZXw7rTmRosNOl1Qh/BkYOEOu1HONZ520CME1VFcgUkS1A\nIrAdyFbV5Z793sIdGMdR1VnALIDU1FStbp+TatQI+ox1T31dMW9RZIy7uyjI6Tw1xtQXyzbt5ZEF\n6Wzac5hLurfm4VHJdGtbt4fJni5/XhFXAt093Us5wFjghir7bAeGAstEpB2QAGSp6j4R2SEiCaq6\nwbNPOv5y2SN++2hjTGDbtr+AxxZm8GH6bjq1asY/b05lWFLbejFM9nT5LTBU1SUidwNLcA+rnaOq\naSJyh2f7TOBR4CURWQcIMElV93k+4h7gNc8IqSzcrRFjjKkTCopdPLc0k9nLttA4SPjt8ARuu7gz\nTRsH7kAWcfcGBYbU1FRdtWqV02UYYwKYqvLumhymLV7P7oPFXNs3mklXJtIuon5OsCkiq1U11Zd9\nrZPeGGN8tDY7jynz0/hmex59YiJ5/sZ+pMS1cLqsWmOBYYwxp7D3UDFPLFnPv1dn06p5U/46pjdj\nUmJoVM+HyZ4uCwxjjDmBElc5L3+5lWc/3sQRVxk/u6QL9wzpRnhIYAyTPV0WGMYYU42lG/bw6Hvp\nZO0tYHBCG/4wMpkubcKcLstRFhjGGONly74CHn0vnU/W76FL6+bMveU8Bie2dbqsOsECwxhjgENH\nSpnxSSZzvthC08ZBPDgikVsu7EyTxnXrrXdOssAwxjRo5eXK299k89clG9h7qJif9IvhgeEJtA2v\nn8Nk/ckCwxjTYH27/QemLEjnux159I2LYvbNqfSJjXK6rDrLAsMY0+DsOXiEae+v551vcmgb3pSn\nruvDj86NbnDDZE+XBYYxpsEodpUx5/OtzPhkE6Vlyp2DunLX4G6ENbVLoS/sT8kYE/BUlY8z9vDY\nwnS27i9kWFI7HroqifjWzZ0urV6xwDDGBLTMPYd55L10Ptu4l25tw3jl1v4M7NHG6bLqJQsMY0xA\nOniklGc+2sTLX24ltEkQfxiZzM0XdCI4yIbJnikLDGNMQCkrV/69agdPLNnAgcISxp4Xy28uT6B1\nWFOnS6v3LDCMMQFj1dYDTFmQxvc5B0nt1IKXr+5Pr+hIp8sKGBYYxph6b2d+EdMWr+e/a3JpHxHC\nM2PP5eo+HQPyrXdO8mtgiMhw4Bncb9ybrarTqmyPBF4F4jy1PKmqc722BwGrgBxVHenPWo0x9c+R\n0jJmL8viuaWbKVPlniHduHNQV5o1sZ+F/cFvf6qei/1zwGVANrBSROarqve7ue8C0lV1lIi0ATaI\nyGuqWuLZ/ksgA4jwV53GmPpHVVmStpvHF6Wz40ARw3u25/dXJRHbspnTpQU0f8ZwfyBTVbMARGQe\nMBrwDgwFwsXdbgwDDgAuz/4xwFXA48Cv/VinMaYe2bj7EFMXpPFF5n56tAvjtdsHcFG31k6X1SD4\nMzCigR1ey9nAgCr7zADmA7lAOHC9qpZ7tk0HfutZb4xp4PILS3n6o4386+tthDVtzNSrezJ+QByN\nbZhsrXG6o+8KYA0wBOgKfCgiy4CBwB5VXS0ig072ASIyEZgIEBcX599qjTG1rqxceWPFdv72wQby\ni0q5YUAcv74sgZbNmzhdWoPjz8DIAWK9lmM867xNAKapqgKZIrIFSAQuAq4WkRFACBAhIq+q6o1V\nv4mqzgJmAaSmpmrNn4YxxinLs/YzZUE6GTsPMqBzSx4e1ZPkjnZL0yn+DIyVQHcR6Yw7KMYCN1TZ\nZzswFFgmIu2ABCBLVX8H/A7A08K4v7qwMMYEppy8Iv60KIOFa3cSHRXKczekMOKc9jZM1mF+CwxV\ndYnI3cAS3MNq56hqmojc4dk+E3gUeElE1gECTFLVff6qyRhTtx0pLWPmp5uZ+elmVOFXw7rz84Fd\nCW0S5HRpBhB3b1BgSE1N1VWrVjldhjHmNKkqi9bt4k+LMsjJK+Kq3h14cEQS0VGhTpcW8ERktaqm\n+rKv0ze9jTENXMbOg0xdkMbXWQdI6hDB367rw/ldWjldlqmGBYYxxhE/FJTwtw838Pry7USGBvPY\nj3oxrn8cQfbWuzrLAsMYU6tcZeW8tnw7T324kcPFLm6+IJ5fDetOVDMbJlvXWWAYY2rNl5n7mLog\nnQ27D3FRt1b8cWRPEtrbs7n1hQWGMcbvdhwo5PGFGbyftouYFqHMvLEfV/RsZ8Nk6xkLDGOM3xSW\nuHj+f5t54bMsgkS4//Ie3H5JF0KCbZhsfWSBYYypcarK/O9ymbZ4PTvzjzD63I5MvjKRDpE2TLY+\ns8AwxtSo73PymbogjZVbf6BXdAR/H9eX1PiWTpdlaoAFhjGmRuw/XMyTH2xk3srttGzWhGnXnsNP\nUmNtmGwAscAwxpyV0rJyXvlqG9M/2khRSRkTLuzML4d1JzI02OnSTA2zwDDGnLHPNu7lkffSydxz\nmIE92vDHkUl0a2vDZAOVBYYx5rRt21/Ao+9l8FHGbjq1asbsm1MZmtTWhskGuFMGhojcA7yqqj/U\nQj3GmDqsoNjFjKWZvLhsC8FBwqThidx6cTxNG9sw2YbAlxZGO2CliHwDzAGWaCBNcWuMOSVV5d01\nOfx50Xr2HCrm2pRoJg1PpF1EiNOlmVp0ysBQ1YdE5A/A5bjfkDdDRN4EXlTVzf4u0BjjrLXZeUyZ\nn8Y32/PoExPJzJv6kRLXwumyjAN8uoehqioiu4BdgAtoAbwlIh+q6m/9WaAxxhl7DxXzxJL1/Ht1\nNq2aN+WvY3ozJiWGRjZMtsHy5R7GL4GbgX3AbOABVS0VkUbAJuCEgSEiw4FncL9xb7aqTquyPRJ4\nFYjz1PKkqs4VkVjgFdzdYQrMUtVnzuD8jDGnqcRVzktfbuHZjzMpdpUx8ZIu3D2kG+EhNky2ofOl\nhdESuFZVt3mvVNVyERl5ooNEJAh4DrgMyMZ9H2S+qqZ77XYXkK6qo0SkDbBBRF7D3Yr5jap+IyLh\nwGpPaya96vcxxtScpev38Oh76WTtK2BIYlseuiqJLm3CnC7L1BG+BMZi4EDFgohEAEmqulxVM05y\nXH8gU1WzPMfNA0YD3hd9BcLFPRYvzPN9XKq6E9gJoKqHRCQDiK5yrDGmhmzZV8Cj76Xzyfo9dGnd\nnLkTzmNwQlunyzJ1jC+B8TyQ4rV8uJp11YkGdngtZwMDquwzA5gP5ALhwPWqWu69g4jEA32B5dV9\nExGZCEwEiIuLO0VJxhhvh46UMuOTTOZ8sYWmjYP4/YgkfnphPE0aN3K6NFMH+RIY4j2M1tMVVVMP\n/F0BrAGGAF2BD0VkmaoeBBCRMOBt4FcV66pS1VnALIDU1FQb7muMD8rLlbe/yeYv729g3+FiftIv\nhgeGJ9A23IbJmhPz5cKfJSL34m5VAPwCyPLhuBwg1ms5xrPO2wRgmieQMkVkC5AIrBCRYNxh8Zqq\nvuPD9zPG+ODb7T8wZUE63+3Io29cFC/+NJU+sVFOl2XqAV8C4w7gWeAh3PccPsbTBXQKK4HuItIZ\nd1CMBW6oss92YCiwTETaAQm4A0qAF4EMVX3KlxMxxpzc7oNH+Mvi9bzzbQ5tw5vy9PV9GN0n2obJ\nGp/58uDeHtwX+9Oiqi4RuRtYgntY7RxVTROROzzbZwKPAi+JyDpAgEmquk9ELgZuAtaJyBrPRz6o\nqotOtw5jGrpiVxkvfr6F5z7JpLRM+cWgrtw1uBvNm9pUcub0+PIcRghwG9ATONrBqaq3nupYzwV+\nUZV1M72+zsX9BHnV4z7HHSDGmDOkqnycsYdHF6azbX8hw5La8YeRSXRq1dzp0kw95cuPGP8C1uO+\nQf0IMB442XBaY4zDMvcc5pH30vls4166tQ3jlVv7M7BHG6fLMvWcL4HRTVV/IiKjVfVlEXkdWObv\nwowxpy+/qJRnP97Ey19uJbRJEH8YmczNF3QiOMiGyZqz50tglHp+zxORXrjnk7IneoypQ8rKlX+v\n2sETSzZwoLCEsefFcv/lCbQKa+p0aSaA+BIYs0SkBe5RUvNxP5H9B79WZYzx2aqtB5iyII3vcw5y\nXnwLXh7Vn17RkU6XZQLQSQPDM8HgQc/Lkz4DutRKVcaYU9qZX8S0xev575pc2keE8Oy4vozq3cHe\nemf85qSB4Xmq+7fAm7VUjzHmFI6UljF7WRbPLd1MmSr3DOnGnYO60qyJDZM1/uXLv7CPROR+4P+A\ngoqVqnrgxIcYY2qaqrIkbTePL0pnx4Eihvdsz++vSiK2ZTOnSzMNhC+Bcb3n97u81inWPWVMrdm4\n+xBTF6TxReZ+EtqF8/rtA7iwW2unyzINjC9PeneujUKMMcfLLyzl6Y828q+vtxHWtDFTr+7J+AFx\nNLZhssYBvjzpfXN161X1lZovxxgD7mGyr6/YzlMfbCC/qJQbBsTxm8sSaNG8idOlmQbMly6p87y+\nDsE9WeA3uF+haoypYcuz9jNlQToZOw8yoHNLplzdk6QOEU6XZYxPXVL3eC+LSBQwz28VGdNA5eQV\n8adFGSxcu5PoqFCeuyGFEee0t2Gyps44k3F4BYDd1zCmhhSVlPHCZ5uZ+elmAH41rDs/H9iV0CZB\nDldmTGW+3MNYgHtUFEAjIBl7LsOYs6aqLFq3iz8tyiAnr4irenfgwRFJREeFOl2aMdXypYXxpNfX\nLmCbqmb7qR5jGoSMnQeZMj+N5VsOkNQhgr9d14fzu7RyuixjTsqXwNgO7FTVIwAiEioi8aq61a+V\nGROAfigo4W8fbuD15duJDA3msR/1Ylz/OILsrXemHvBlMPe/gXKv5TLPulMSkeEiskFEMkVkcjXb\nI0VkgYh8JyJpIjLB12ONqU9cZeW8/OVWBj35P95YsYObL4hn6f2DuPH8ThYWpt7wpYXRWFVLKhZU\ntURETjkYXESCgOeAy4BsYKWIzFfVdK/d7gLSVXWUiLQBNojIa7hD6VTHGlMvfJm5j6kL0tmw+xAX\ndWvFH0f2JKF9uNNlGXPafAmMvSJytarOBxCR0cA+H47rD2SqapbnuHnAaMD7oq9AuLjHDYYBB3Df\nJxngw7HG1Gk7DhTy+MIM3k/bRWzLUGbe2I8rerazYbKm3vIlMO4AXhORGZ7lbKDap7+riAZ2eC1n\n4w4CbzNwv2MjFwgHrvfMkOvLsQCIyERgIkBcXJwPZRnjX4UlLp7/32Ze+CyLIBHuv7wHt1/ShZBg\nGyZr6jdfHtzbDJwvImGe5cM1+P2vANYAQ4CuwIciclqvf1XVWcAsgNTUVD3F7sb4jaoy/7tcpi1e\nz878I4w+tyOTr0ykQ6QNkzWBwZfnMP4E/FVV8zzLLYDfqOpDpzg0B4j1Wo7xrPM2AZimqgpkisgW\nINHHY42pM77PyWfqgjRWbv2BXtER/H1cX1LjWzpdljE1ypdRUldWhAWA5+17I3w4biXQXUQ6e26S\nj8Xd/eRtO+65qRCRdkACkOXjscY4bv/hYn73zlpGzficrL0FTLv2HP5718UWFiYg+XIPI0hEmqpq\nMbifwwBO+WZ5VXWJyN3AEiAImKOqaSJyh2f7TOBR4CURWQcIMElV93m+z3HHnv7pGeMfpWXlvPLV\nNqZ/tJGikjJuvagz9w7tTmRosNOlGeM3vgTGa8DHIjIX90X9FuBlXz5cVRcBi6qsm+n1dS5wua/H\nGlMXfLZxL4+8l07mnsMM7NGGP45MoltbGyZrAp8vN73/IiLfAcNwD4NdAnTyd2HG1DXb9hfw6HsZ\nfJSxm06tmjH75lSGJrW1YbKmwfB1ttrduMPiJ8AW4G2/VWRMHVNQ7GLG0kxeXLaF4CBh0vBEbr04\nnqaNbZisaVhOGBgi0gMY5/m1D/g/QFR1cC3VZoyjysuVd9fkMG3xevYcKubalGgmDU+kXUSI06UZ\n44iTtTDWA8uAkaqaCSAi99VKVcY47LsdeUxZkMa32/PoExPJzJv6kRLXwumyjHHUyQLjWtzDWZeK\nyPu437JnnbUmoO05dIQn3t/Av1dn0zqsKU+M6c2PU2JoZBMEGnPiwFDVd4F3RaQ57nmcfgW0FZHn\ngf+o6ge1VKMxflfiKuelL7fw7MeZFLvK+PnALtw9pBvhITZM1pgKvoySKgBeB173POX9E2ASYIFh\nAsLS9Xt49L10svYVMCSxLQ9dlUSXNmFOl2VMnXNa7/T2POV9dO4mY+qzrL2HefS9dJZu2EuX1s2Z\nO+E8Bie0dbosY+qs0woMYwLBoSOl/P2TTOZ+sYWmjYP4/YgkfnphPE0a+zJTjjENlwWGaTDKy5W3\nvsnmr+9vYH9BMT/pF8MDVyTSJvyUM90YY7DAMA3EN9t/YOr8NL7LziclLoo5t6TSOybK6bKMqVcs\nMExA233wCH9ZvJ53vs2hXURTnr6+Dz86N9qm8zDmDFhgmIBU7Crjxc+3MOOTTFxlyi8GdeWuwd1o\n3tT+yRtzpux/jwkoqspHGXt4bGE62/YXcllyOx66KolOrZo7XZox9Z4FhgkYmXsOMXVBOss27aNb\n2zD+dVt/LunexumyjAkYfg0MERkOPIP7JUizVXVale0PAOO9akkC2qjqAc+8VbfjniV3HTBBVY/4\ns15TP+UXlfLMR5t45authDYJ4o8jk7npgk4EB9kwWWNqkt8CQ0SCgOeAy4BsYKWIzFfV9Ip9VPUJ\n4AnP/qOA+zxhEQ3cCySrapGIvIl7XquX/FWvqX/KypU3V+3gySUbOFBYwtjz4rj/8h60CrNhssb4\ngz9bGP2BTFXNAhCRebjnpEo/wf7jgDeq1BYqIqVAMyDXj7Waembl1gNMmZ9GWu5Bzotvwcuj+tMr\nOtLpsowJaP4MjGhgh9dyNjCguh1FpBkwHLgbQFVzRORJYDtQBHxgkx0agJ35Rfx50Xrmf5dLh8gQ\nnh3Xl1G9O9gwWWNqQV256T0K+EJVDwB4JjkcDXQG8oB/i8iNqvpq1QNFZCIwESAuLq72Kja16khp\nGf/8LIt//G8zZarcO6QbdwzqSrMmdeWfsDGBz5//23KAWK/lGM+66oylcnfUMGCLqu4FEJF3gAuB\n4wJDVY9OhpiamqpnX7apS1SVJWm7eGxhBtk/FHFlr/Y8OCKJ2JbNnC7NmAbHn4GxEuguIp1xB8VY\n4IaqO4lIJHApcKPX6u3A+Z6uqiJgKLDKj7WaOmjDrkNMXZDGl5v3k9AunNdvH8CF3Vo7XZYxDZbf\nAkNVXSJyN7AE97DaOaqaJiJ3eLbP9Ox6De57FAVexy4XkbeAbwAX8C02pXqDkVdYwtMfbuTV5dsJ\na9qYR0byRHFAAAAV+ElEQVT35Ib+cTS2YbLGOEpUA6cXJzU1VVetsoZIfVVWrry+YjtPfbCB/KJS\nbhgQx28uS6BF8yZOl2ZMwBKR1aqa6su+dsfQ1AlfZ+1nyvw01u86xPldWvLwqJ4kdYhwuixjjBcL\nDOOo7B8K+fOi9Sxct5PoqFD+MT6FK3u1t2GyxtRBFhjGEUUlZcz8dDMzP92MCNw3rAc/v7QLIcFB\nTpdmjDkBCwxTq1SVhet28udF68nJK2Jk7w78bkQS0VGhTpdmjDkFCwxTa9JzDzJ1QRrLtxwgqUME\nT13XhwFdWjldljHGRxYYxu8OFJTwtw828MaK7USGBvPYj3oxrn8cQY3sPoUx9YkFhvEbV1k5r369\njac/2sThYhc3XxDPfcN6ENks2OnSjDFnwALD+MUXmfuYuiCNjbsPc3G31vxxVDI92oU7XZYx5ixY\nYJgateNAIY8tTGdJ2m5iW4bywk39uDy5nQ2TNSYAWGCYGlFY4uIfSzcza1kWQSI8cEUCt13c2YbJ\nGhNALDDMWVFV5n+Xy58XrWfXwSOMPrcjk69MpEOkDZM1JtBYYJgz9n1OPlPmp7Fq2w/0io5gxg19\nSY1v6XRZxhg/scAwp23f4WKeXLKB/1u1g5bNmvCXH5/DmH6xNkzWmABngWF8VlpWzstfbuWZjzdR\nVFLGbRd15t5h3YkIsWGyxjQEFhjGJ59u3MsjC9LYvLeAgT3a8MeRyXRrG+Z0WcaYWmSBYU5q674C\nHluYzkcZe+jUqhmzb05laFJbGyZrTAPk18AQkeHAM7jfuDdbVadV2f4AMN6rliSgjaoeEJEoYDbQ\nC1DgVlX9yp/1mmMOF7uY8Ukmcz7fQnCQMGl4IrdeHE/TxjZM1piGym+BISJBwHPAZUA2sFJE5qtq\nesU+qvoE8IRn/1HAfap6wLP5GeB9VR0jIk2AZv6q1RxTXq68uyaHaYvXs+dQMdemRDN5eCJtI0Kc\nLs0Y4zB/tjD6A5mqmgUgIvOA0UD6CfYfB7zh2TcSGAjcAqCqJUCJH2s1wHc78piyII1vt+fRJzaK\nF27qR9+4Fk6XZYypI/wZGNHADq/lbGBAdTuKSDNgOHC3Z1VnYC8wV0T6AKuBX6pqgf/Kbbj2HDrC\nX9/fwFurs2kT3pQnf9KHa/tG08iGyRpjvNSVm96jgC+8uqMaAynAPaq6XESeASYDf6h6oIhMBCYC\nxMXF1VK5gaHEVc7cL7bw908yKXaV8fNLu3D34G6E2zBZY0w1/BkYOUCs13KMZ111xuLpjvLIBrJV\ndbln+S3cgXEcVZ0FzAJITU3Vsym4IVm6fg+PvJfOln0FDElsy0NXJdGljQ2TNcacmD8DYyXQXUQ6\n4w6KscANVXfy3K+4FLixYp2q7hKRHSKSoKobgKGc+N6HOQ1Zew/z6HvpLN2wly6tmzN3wnkMTmjr\ndFnGmHrAb4Ghqi4RuRtYgntY7RxVTROROzzbZ3p2vQb4oJr7E/cAr3lGSGUBE/xVa0Nw6Egpf/8k\nk7lfbCGkcRC/H5HETy+Mp0njRk6XZoypJ0Q1cHpxUlNTddWqVU6XUaeUlytvrc7mr0vWs7+ghOv6\nxXL/FQm0CW/qdGnGmDpARFaraqov+9aVm97GD1Zv+4GpC9JYm51PSlwUc245j94xUU6XZYyppyww\nAtDug0f4y+L1vPNtDu0imvL09X340bnRNp2HMeasWGAEkGJXGS9+voUZn2TiKlN+Magrdw3uRvOm\n9tdsjDl7diUJAKrKRxl7eGxhOtv2F3JZcjseuiqJTq2aO12aMSaAWGDUc5l7DjF1QTrLNu2jW9sw\n/nVbfy7p3sbpsowxAcgCo57KLypl+kcbeeWrbTRrEsQfRyZz0wWdCA6yYbKm/istLSU7O5sjR444\nXUrACAkJISYmhuDgM5/JwQKjnikrV/5v5Q6e/GADPxSWMPa8OO6/vAetwmyYrAkc2dnZhIeHEx8f\nb4M1aoCqsn//frKzs+ncufMZf44FRj2ycusBpsxPIy33IOfFt+DhUf3pFR3pdFnG1LgjR45YWNQg\nEaFVq1bs3bv3rD7HAqMe2JlfxJ8XrWf+d7l0iAzh2XF9GdW7g/1nMgHN/n3XrJr487TAqMOOlJbx\nz8+y+Mf/NlOuyr1DunHHoK40a2J/bcb40/79+xk6dCgAu3btIigoiDZt3INJVqxYQZMmTU75GRMm\nTGDy5MkkJCSccJ/nnnuOqKgoxo8ff8J96hK78tRBqsqStF08tjCD7B+KuLJXex4ckURsS3vpoDG1\noVWrVqxZswaAKVOmEBYWxv33319pH1VFVWnUqPqBJnPnzj3l97nrrrvOvthaZENq6pj1uw4yfvZy\n7nj1G5o3aczrPxvA8zf2s7Awpg7IzMwkOTmZ8ePH07NnT3bu3MnEiRNJTU2lZ8+ePPLII0f3vfji\ni1mzZg0ul4uoqCgmT55Mnz59uOCCC9izZw8ADz30ENOnTz+6/+TJk+nfvz8JCQl8+eWXABQUFPDj\nH/+Y5ORkxowZQ2pq6tEwq23Wwqgj8gpLePrDjfzr622EhwTzyOie3NA/jsY2TNY0cFMXpJGee7BG\nPzO5YwQPj+p5RseuX7+eV155hdRU93x906ZNo2XLlrhcLgYPHsyYMWNITk6udEx+fj6XXnop06ZN\n49e//jVz5sxh8uTjX/GjqqxYsYL58+fzyCOP8P777/P3v/+d9u3b8/bbb/Pdd9+RkpJyRnXXBAsM\nh5WVK6+v2M5TH2wgv6iU8QM68evLetCi+an7SI0xta9r165HwwLgjTfe4MUXX8TlcpGbm0t6evpx\ngREaGsqVV14JQL9+/Vi2bFm1n33ttdce3Wfr1q0AfP7550yaNAmAPn360LPnmQVdTbDAcNDXWfuZ\nMj+N9bsOcX6Xljw8qidJHSKcLsuYOuVMWwL+0rz5sSl3Nm3axDPPPMOKFSuIiorixhtvrPZhQ++b\n5EFBQbhcrmo/u2nTpqfcx0nW3+GA7B8Kueu1bxg762sOHXHxj/EpvPGz8y0sjKlnDh48SHh4OBER\nEezcuZMlS5bU+Pe46KKLePPNNwFYt24d6enOvXzUry0MERkOPIP7jXuzVXVale0PABXjyRoDSUAb\nVT3g2R4ErAJyVHWkP2utDUUlZcz8dDMzP92MCNw3rAc/v7QLIcFBTpdmjDkDKSkpJCcnk5iYSKdO\nnbjoootq/Hvcc8893HzzzSQnJx/9FRnpzAO7fnvjnudivxG4DMjG/Y7vcapabTyKyCjgPlUd4rXu\n10AqEOFLYNTVN+6pKgvX7eRPCzPIzT/CyN4d+N2IJKKjQp0uzZg6KSMjg6SkJKfLqBNcLhcul4uQ\nkBA2bdrE5ZdfzqZNm2jc+PR/3q/uz7WuvHGvP5CpqlmeouYBo4ETtafGAW9ULIhIDHAV8Djwaz/W\n6VfpuQeZsiCNFVsOkNQhgqevP5cBXVo5XZYxpp44fPgwQ4cOxeVyoaq88MILZxQWNcGf3zUa2OG1\nnA0MqG5HEWkGDAfu9lo9HfgtEO6vAv3pQEEJf/tgA2+s2E5kaDCPX9OLsefFEdTIpjswxvguKiqK\n1atXO10GUHdGSY0CvvC6dzES2KOqq0Vk0MkOFJGJwESAuLg4f9d5Sq6ycl79ehtPfbiRgpIybr4g\nnvuG9SCy2ZlPKWyMMXWBPwMjB4j1Wo7xrKvOWLy6o4CLgKtFZAQQAkSIyKuqemPVA1V1FjAL3Pcw\naqLwM/VF5j6mLkhj4+7DXNytNX8clUyPdvWygWSMMcfxZ2CsBLqLSGfcQTEWuKHqTiISCVwKHA0D\nVf0d8DvP9kHA/dWFRV2x40Ahjy1MZ0nabmJbhvLCTf24PLmdzbZpjAkofgsMVXWJyN3AEtzDaueo\napqI3OHZPtOz6zXAB6pa4K9a/KWwxMU/lm5m1rIsgkR44IoEbru4sw2TNcYEJL8+uKeqi1S1h6p2\nVdXHPetmeoUFqvqSqo49yWf8r649g6Gq/HdNDkOe/JQZSzMZ0as9S+8fxF2Du1lYGBMABg8efNxD\neNOnT+fOO+884TFhYWEA5ObmMmbMmGr3GTRoEKca+j99+nQKCwuPLo8YMYK8vDxfS/cre9L7NH2f\nk89PZn7FL+etoU14U96+8wKmj+1L+8gQp0szxtSQcePGMW/evErr5s2bx7hx4055bMeOHXnrrbfO\n+HtXDYxFixYRFRV1xp9XkywwfLTvcDGT317LqBmfs3V/AX/58Tn8966L6NeppdOlGWNq2JgxY1i4\ncCElJSUAbN26ldzcXPr27cvQoUNJSUnhnHPO4b///e9xx27dupVevXoBUFRUxNixY0lKSuKaa66h\nqKjo6H533nnn0WnRH374YQCeffZZcnNzGTx4MIMHDwYgPj6effv2AfDUU0/Rq1cvevXqdXRa9K1b\nt5KUlMTPfvYzevbsyeWXX17p+9SkujKsts4qLSvn5S+38szHmygqKeO2izpz77DuRITYMFljasXi\nybBrXc1+Zvtz4MppJ9zcsmVL+vfvz+LFixk9ejTz5s3juuuuIzQ0lP/85z9ERESwb98+zj//fK6+\n+uoTDnB5/vnnadasGRkZGaxdu7bS1OSPP/44LVu2pKysjKFDh7J27VruvfdennrqKZYuXUrr1q0r\nfdbq1auZO3cuy5cvR1UZMGAAl156KS1atGDTpk288cYb/POf/+S6667j7bff5sYba36ckLUwTuLT\njXsZPv0zHluYQUpcC97/1UAeGplsYWFMA+DdLVXRHaWqPPjgg/Tu3Zthw4aRk5PD7t27T/gZn332\n2dELd+/evendu/fRbW+++SYpKSn07duXtLS0U04q+Pnnn3PNNdfQvHlzwsLCuPbaa49Ok965c2fO\nPfdcoPLU6DXNWhjV2LqvgMcWpvNRxh7iWzXjxZ+mMiSxrQ2TNcYJJ2kJ+NPo0aO57777+Oabbygs\nLKRfv3689NJL7N27l9WrVxMcHEx8fHy105mfypYtW3jyySdZuXIlLVq04JZbbjmjz6lQMS06uKdG\n91eXlLUwvBwudjFt8Xouf/ozvtq8n8lXJrLkvoEMTbJnKoxpaMLCwhg8eDC33nrr0Zvd+fn5tG3b\nluDgYJYuXcq2bdtO+hkDBw7k9ddfB+D7779n7dq1gHta9ObNmxMZGcnu3btZvHjx0WPCw8M5dOjQ\ncZ91ySWX8O6771JYWEhBQQH/+c9/uOSSS2rqdH1iLQygvFz5z7c5/OX99ew5VMyPU2KYNDyBthE2\n8smYhmzcuHFcc801R7umxo8fz6hRozjnnHNITU0lMTHxpMffeeedTJgwgaSkJJKSkujXrx/gfnNe\n3759SUxMJDY2ttK06BMnTmT48OF07NiRpUuXHl2fkpLCLbfcQv/+/QG4/fbb6du3r9+6n6rjt+nN\nnXAm05vnF5Xy0zkrWLMjjz6xUUwZlUzfuBZ+qtAY4wub3tw/6vL05vVCREhj4ls148bzO3Ft32ga\n2WyyxhhTrQYfGCLC9LF9nS7DGGPqPLvpbYwxxicWGMaYOimQ7q/WBTXx52mBYYypc0JCQti/f7+F\nRg1RVfbv309IyNmN/Gzw9zCMMXVPTEwM2dnZ7N271+lSAkZISAgxMTFn9RkWGMaYOic4OJjOnTs7\nXYapwrqkjDHG+MQCwxhjjE8sMIwxxvgkoKYGEZG9wMlnAzux1sC+GiynPrBzDnwN7XzBzvl0dVLV\nNr7sGFCBcTZEZJWv86kECjvnwNfQzhfsnP3JuqSMMcb4xALDGGOMTywwjpnldAEOsHMOfA3tfMHO\n2W/sHoYxxhifWAvDGGOMTxpUYIjIcBHZICKZIjK5mu0iIs96tq8VkRQn6qxJPpzzeM+5rhORL0Wk\njxN11qRTnbPXfueJiEtExtRmff7gyzmLyCARWSMiaSLyaW3XWNN8+LcdKSILROQ7zzlPcKLOmiIi\nc0Rkj4h8f4Lt/r9+qWqD+AUEAZuBLkAT4Dsguco+I4DFgADnA8udrrsWzvlCoIXn6ysbwjl77fcJ\nsAgY43TdtfD3HAWkA3Ge5bZO110L5/wg8BfP122AA0ATp2s/i3MeCKQA359gu9+vXw2phdEfyFTV\nLFUtAeYBo6vsMxp4Rd2+BqJEpENtF1qDTnnOqvqlqv7gWfwaOLvpLJ3ny98zwD3A28Ce2izOT3w5\n5xuAd1R1O4Cq1vfz9uWcFQgXEQHCcAeGq3bLrDmq+hnuczgRv1+/GlJgRAM7vJazPetOd5/65HTP\n5zbcP6HUZ6c8ZxGJBq4Bnq/FuvzJl7/nHkALEfmfiKwWkZtrrTr/8OWcZwBJQC6wDvilqpbXTnmO\n8Pv1y6Y3NwCIyGDcgXGx07XUgunAJFUtd//w2SA0BvoBQ4FQ4CsR+VpVNzpbll9dAawBhgBdgQ9F\nZJmqHnS2rPqrIQVGDhDrtRzjWXe6+9QnPp2PiPQGZgNXqur+WqrNX3w551RgnicsWgMjRMSlqu/W\nTok1zpdzzgb2q2oBUCAinwF9gPoaGL6c8wRgmro7+DNFZAuQCKyonRJrnd+vXw2pS2ol0F1EOotI\nE2AsML/KPvOBmz2jDc4H8lV1Z20XWoNOec4iEge8A9wUID9tnvKcVbWzqsarajzwFvCLehwW4Nu/\n7f8CF4tIYxFpBgwAMmq5zprkyzlvx92iQkTaAQlAVq1WWbv8fv1qMC0MVXWJyN3AEtwjLOaoapqI\n3OHZPhP3iJkRQCZQiPsnlHrLx3P+I9AK+IfnJ26X1uOJ23w854DiyzmraoaIvA+sBcqB2apa7fDM\n+sDHv+dHgZdEZB3ukUOTVLXezmIrIm8Ag4DWIpINPAwEQ+1dv+xJb2OMMT5pSF1SxhhjzoIFhjHG\nGJ9YYBhjjPGJBYYxxhifWGAYY4zxiQWGMacgImWeWV4rfp1wBtwz+Oz4E80+akxd02CewzDmLBSp\n6rlOF2GM06yFYcwZEpGtIvJXz7tEVohIN8/6eBH5xPNOgo89T9MjIu1E5D+e9zN8JyIXej4qSET+\n6XlnwwciEurZ/14RSfd8zjyHTtOYoywwjDm10CpdUtd7bctX1XNwz4w63bPu78DLqtobeA141rP+\nWeBTVe2D+70GaZ713YHnVLUnkAf82LN+MtDX8zl3+OvkjPGVPeltzCmIyGFVDatm/VZgiKpmiUgw\nsEtVW4nIPqCDqpZ61u9U1dYisheIUdVir8+IBz5U1e6e5UlAsKo+5pnK4zDwLvCuqh7286kac1LW\nwjDm7OgJvj4dxV5fl3Hs3uJVwHO4WyMrRcTuORpHWWAYc3au9/r9K8/XX+KePRVgPLDM8/XHwJ0A\nIhIkIpEn+lARaQTEqupSYBIQifutccY4xn5iMebUQkVkjdfy+6paMbS2hYisxd1KGOdZdw8wV0Qe\nAPZybNbQXwKzROQ23C2JO4ETTT8dBLzqCRUBnlXVvBo7I2POgN3DMOYMee5hpNbnKbONOR3WJWWM\nMcYn1sIwxhjjE2thGGOM8YkFhjHGGJ9YYBhjjPGJBYYxxhifWGAYY4zxiQWGMcYYn/w/rfPJe6+U\nrhgAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "\n", + "def plot_history(network_history):\n", + " plt.figure()\n", + " plt.xlabel('Epochs')\n", + " plt.ylabel('Loss')\n", + " plt.plot(network_history.history['loss'])\n", + " plt.plot(network_history.history['val_loss'])\n", + " plt.legend(['Training', 'Validation'])\n", + "\n", + " plt.figure()\n", + " plt.xlabel('Epochs')\n", + " plt.ylabel('Accuracy')\n", + " plt.plot(network_history.history['acc'])\n", + " plt.plot(network_history.history['val_acc'])\n", + " plt.legend(['Training', 'Validation'], loc='lower right')\n", + " plt.show()\n", + "\n", + "plot_history(network_history)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "After `2` epochs, we get a `~88%` validation accuracy. \n", + "\n", + "* If you increase the number of epochs, you will get definitely better results." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Quick Exercise: \n", + "\n", + "Try increasing the number of epochs (if you're hardware allows to)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Train on 45000 samples, validate on 15000 samples\n", + "Epoch 1/2\n", + "45000/45000 [==============================] - 2s - loss: 0.8966 - acc: 0.8258 - val_loss: 0.8463 - val_acc: 0.8299\n", + "Epoch 2/2\n", + "45000/45000 [==============================] - 1s - loss: 0.8005 - acc: 0.8370 - val_loss: 0.7634 - val_acc: 0.8382\n" + ] + } + ], + "source": [ + "# Your code here\n", + "model.compile(loss='categorical_crossentropy', optimizer=SGD(lr=0.001), \n", + " metrics=['accuracy'])\n", + "network_history = model.fit(X_train, Y_train, batch_size=128, \n", + " epochs=2, verbose=1, validation_data=(X_val, Y_val))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Introducing the Dropout Layer" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The **dropout layers** have the very specific function to *drop out* a random set of activations in that layers by setting them to zero in the forward pass. Simple as that. \n", + "\n", + "It allows to avoid *overfitting* but has to be used **only** at training time and **not** at test time. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "```python\n", + "\n", + "keras.layers.core.Dropout(rate, noise_shape=None, seed=None)\n", + "```\n", + "\n", + "Applies Dropout to the input.\n", + "\n", + "Dropout consists in randomly setting a fraction rate of input units to 0 at each update during training time, which helps prevent overfitting.\n", + "\n", + "Arguments\n", + "\n", + "* rate: float between 0 and 1. Fraction of the input units to drop.\n", + "* noise_shape: 1D integer tensor representing the shape of the binary dropout mask that will be multiplied with the input. For instance, if your inputs have shape (batch_size, timesteps, features) and you want the dropout mask to be the same for all timesteps, you can use noise_shape=(batch_size, 1, features).\n", + "* seed: A Python integer to use as random seed." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Note** Keras guarantess automatically that this layer is **not** used in **Inference** (i.e. Prediction) phase\n", + "(thus only used in **training** as it should be!)\n", + "\n", + "See `keras.backend.in_train_phase` function" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from keras.layers.core import Dropout\n", + "\n", + "## Pls note **where** the `K.in_train_phase` is actually called!!\n", + "Dropout??" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from keras import backend as K\n", + "\n", + "K.in_train_phase?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Exercise:\n", + "\n", + "Try modifying the previous example network adding a Dropout layer:" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from keras.layers.core import Dropout\n", + "\n", + "# FC@512+relu -> DropOut(0.2) -> FC@512+relu -> DropOut(0.2) -> FC@nb_classes+softmax\n", + "# ... your Code Here" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# %load ../solutions/sol_312.py" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Train on 45000 samples, validate on 15000 samples\n", + "Epoch 1/4\n", + "45000/45000 [==============================] - 2s - loss: 1.3746 - acc: 0.6348 - val_loss: 0.6917 - val_acc: 0.8418\n", + "Epoch 2/4\n", + "45000/45000 [==============================] - 2s - loss: 0.6235 - acc: 0.8268 - val_loss: 0.4541 - val_acc: 0.8795\n", + "Epoch 3/4\n", + "45000/45000 [==============================] - 1s - loss: 0.4827 - acc: 0.8607 - val_loss: 0.3795 - val_acc: 0.8974\n", + "Epoch 4/4\n", + "45000/45000 [==============================] - 1s - loss: 0.4218 - acc: 0.8781 - val_loss: 0.3402 - val_acc: 0.9055\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4VdW9//H3N3PIPDEPASJDmAIERHCAaq3aOqAocLWt\ntpaftlqpnehw63Bra++1ilNrrVdtb1txxGoVO2nrAMggYUYJk4Y5gYQhhEzr98c+OQZISCA52TnJ\n5/U85+EM+5zz3dmaT9Zee61lzjlEREQAIvwuQERE2g+FgoiIBCkUREQkSKEgIiJBCgUREQlSKIiI\nSJBCQUREghQKIiISpFAQEZGgKL8LOFWZmZkuOzvb7zJERMLK8uXLi51zWU1tF3ahkJ2dzbJly/wu\nQ0QkrJjZtuZsF7LTR2b2pJntMbM1TWw3zsyqzWxaqGoREZHmCWWfwtPARSfbwMwigV8AfwthHSIi\n0kwhCwXn3NvAviY2uxV4EdgTqjpERKT5fOtTMLNewFRgCjCuiW1nAbMA+vbtG/riRKRNVFVVUVRU\nREVFhd+ldBhxcXH07t2b6Ojo03q/nx3Nc4HvO+dqzeykGzrnHgceB8jPz9cCECIdRFFREUlJSWRn\nZ9PU7wFpmnOOkpISioqK6N+//2l9hp+hkA/MC/yHkAlcYmbVzrmXfaxJRNpQRUWFAqEVmRkZGRns\n3bv3tD/Dt1BwzgVjzMyeBv6iQBDpfBQIraulP89QXpL6DLAIGGxmRWb2VTO7ycxuCtV3nsyusgru\nenUtVTW1fny9iEhYCFlLwTk38xS2vT5UddQp+GQ/T723lYSYKL7zucGh/joRCQMlJSWcf/75AOza\ntYvIyEiysrxBv0uWLCEmJqbJz7jhhhuYM2cOgwc3/nvl0UcfJTU1lWuvvbZ1Cg+hsBvRfLouGt6D\nq8f25lf/KuS8wVmMy073uyQR8VlGRgYFBQUA3HnnnSQmJvKd73znmG2cczjniIho+MTKU0891eT3\nfOMb32h5sW2kU02Id8dlw+iT3oXZ8wo4UFHldzki0k4VFhaSm5vLtddey7Bhw9i5cyezZs0iPz+f\nYcOGcffddwe3PfvssykoKKC6uprU1FTmzJnDqFGjOOuss9izxxuC9eMf/5i5c+cGt58zZw7jx49n\n8ODBLFy4EIDDhw9z1VVXkZuby7Rp08jPzw8GVlvqNC0FgMTYKB6YnsfVjy3ijj+v5YHpeX6XJCIB\nd726lnU7DrTqZ+b2TOaOS4ed1ns3bNjA73//e/Lz8wG49957SU9Pp7q6milTpjBt2jRyc3OPeU9Z\nWRnnnXce9957L7fffjtPPvkkc+bMOeGznXMsWbKEV155hbvvvps33niDhx9+mO7du/Piiy+ycuVK\nxowZc1p1t1SnaikAjOmbxq2fyWH+iu28snKH3+WISDs1cODAYCAAPPPMM4wZM4YxY8awfv161q1b\nd8J74uPjufjiiwEYO3YsW7dubfCzr7zyyhO2effdd5kxYwYAo0aNYtiw0wuzlupULYU6t0zJ4e2P\n9vKj+asZ2y+NXqnxfpck0umd7l/0oZKQkBC8v3HjRh588EGWLFlCamoq1113XYOjsOt3TEdGRlJd\nXd3gZ8fGxja5jV86XUsBICoygrnTR1Nb67j92QJqajVIWkQad+DAAZKSkkhOTmbnzp389a9/bfXv\nmDRpEs899xwAq1evbrAl0hY6ZSgA9M3owp2XDeP9Lft4/O3NfpcjIu3YmDFjyM3NZciQIXzpS19i\n0qRJrf4dt956K9u3byc3N5e77rqL3NxcUlJSWv17mmLOhddfyfn5+a61FtlxzvGNP33A39ftZv7X\nJzG8V9sfAJHObP369QwdOtTvMtqF6upqqquriYuLY+PGjVx44YVs3LiRqKhTP8vf0M/VzJY75/Ib\neUtQp+xTqGNm/GzqCD7YVso3563gtVvPIT4m0u+yRKQTOnToEOeffz7V1dU45/jNb35zWoHQUp06\nFABSu8Twy2tGce0T73PP6+v46RUj/C5JRDqh1NRUli9f7ncZnbdPob5JOZl87Zz+/GHxx/xz/W6/\nyxER8Y1CIeA7nxvM0B7JfO+FVew9eNTvckREfKFQCIiNiuTBGXkcOlrN915YSbh1wIuItAaFQj2D\nuiXxg4uH8NaHe/nD4m1+lyMi0uYUCsf58sRszhuUxU9fW0/hnoN+lyMiITRlypQTBqLNnTuXm2++\nudH3JCYmArBjxw6mTZvW4DaTJ0+mqUvn586dS3l5efDxJZdcQmlpaXNLDxmFwnHMjP+5eiQJsVHc\nNq+AymotyiPSUc2cOZN58+Yd89y8efOYObPp5WB69uzJCy+8cNrffXwovP7666Smpp7257UWhUID\nuibFce+VI1i74wC//PuHfpcjIiEybdo0XnvtNSorKwHYunUrO3bsYPTo0Zx//vmMGTOGESNG8Oc/\n//mE927dupXhw4cDcOTIEWbMmMHQoUOZOnUqR44cCW538803B6fcvuOOOwB46KGH2LFjB1OmTGHK\nlCkAZGdnU1xcDMD999/P8OHDGT58eHDK7a1btzJ06FC+9rWvMWzYMC688MJjvqe1dPpxCo25cFh3\nZo7vw+Nvb2byoK6cNTDD75JEOrYFc2DX6tb9zO4j4OJ7G305PT2d8ePHs2DBAi6//HLmzZvHNddc\nQ3x8PPPnzyc5OZni4mImTJjAZZdd1uj6x7/+9a/p0qUL69evZ9WqVcdMe33PPfeQnp5OTU0N559/\nPqtWreKb3/wm999/P2+99RaZmZnHfNby5ct56qmneP/993HOceaZZ3LeeeeRlpbGxo0beeaZZ/jt\nb3/LNddcw4svvsh1113XOj+rALUUTuI/v5BLdkYC336ugLJyLcoj0hHVP4VUd+rIOccPf/hDRo4c\nyQUXXMD27dvZvbvxMUxvv/128JfzyJEjGTlyZPC15557jjFjxjB69GjWrl3b5ER37777LlOnTiUh\nIYHExESuvPJK3nnnHQD69+9PXp63DszJpuZuCbUUTqJLTBRzp+dx1a8X8uM/r+GhGXmN/qUgIi10\nkr/oQ+nyyy/nW9/6Fh988AHl5eWMHTuWp59+mr1797J8+XKio6PJzs5ucKrspmzZsoX77ruPpUuX\nkpaWxvXXX39an1Onbspt8KbdDsXpI7UUmjCqTyqzLziDV1fu4OWC7X6XIyKtLDExkSlTpvCVr3wl\n2MFcVlZG165diY6O5q233mLbtpNfon7uuefypz/9CYA1a9awatUqwJtyOyEhgZSUFHbv3s2CBQuC\n70lKSuLgwROvcDznnHN4+eWXKS8v5/Dhw8yfP59zzjmntXa3SWopNMPNk3P490d7+cnLa8nvl06f\n9C5+lyQirWjmzJlMnTo1eBrp2muv5dJLL2XEiBHk5+czZMiQk77/5ptv5oYbbmDo0KEMHTqUsWPH\nAt4KaqNHj2bIkCH06dPnmCm3Z82axUUXXUTPnj156623gs+PGTOG66+/nvHjxwNw4403Mnr06JCc\nKmpIp546+1R8sq+cSx58hyE9kpg36ywiI3QaSaSlNHV2aLRk6mydPmqmPulduPuKYSzdup9f/6vQ\n73JEREJCoXAKrsjrxaWjejL3HxtZ+Yn/Iw9FRFqbQuEUmBk/vWI4XZNimf1sAYePtq8Ft0XCUbid\nwm7vWvrzVCicopT4aO6fnsfWksP89DV/FtYW6Sji4uIoKSlRMLQS5xwlJSXExcWd9mfo6qPTMGFA\nBv/v3IE89u9NTB7clc8N6+53SSJhqXfv3hQVFbF3716/S+kw4uLi6N2792m/X6Fwmm7/7CDeLdzL\nnBdXMbpPKl2TTz+ZRTqr6Oho+vfv73cZUk/ITh+Z2ZNmtsfM1jTy+rVmtsrMVpvZQjMbFapaQiEm\nKoK500dzpKqG77ywitpaNX9FJPyFsk/haeCik7y+BTjPOTcC+C/g8RDWEhI5XRP50edzefujvfxu\n0Va/yxERabGQhYJz7m1g30leX+ic2x94uBg4/ZNgPrruzL6cP6QrP1+wgQ93aVEeEQlv7eXqo68C\nC5rcqh0yM34xbSTJcVHcNm8FR6tr/C5JROS0+R4KZjYFLxS+f5JtZpnZMjNb1h6vUshMjOV/po1i\nw66D/M8bWpRHRMKXr6FgZiOBJ4DLnXMljW3nnHvcOZfvnMvPyspquwJPwZQhXfnihH488e4W3t1Y\n7Hc5IiKnxbdQMLO+wEvAF51zH/lVR2v64SVDGZiVwLefL2D/4Uq/yxEROWWhvCT1GWARMNjMiszs\nq2Z2k5ndFNjkJ0AG8CszKzCztp/6tJXFx0Ty4IzR7DtcyQ/nr9YoTREJOyEbvOacm9nE6zcCN4bq\n+/0yvFcK375wMPcu2MDzy4u4Jr+P3yWJiDSb7x3NHdHXzhnAhAHp3PXKWraVHPa7HBGRZlMohEBk\nhPHLa/KIiDC+9WwB1TW1fpckItIsCoUQ6ZUazz1TR/DBx6U88pYW5RGR8KBQCKHLRvVk6uhePPxm\nIR98vL/pN4iI+EyhEGJ3XT6M7slxzJ5XwCEtyiMi7ZxCIcSS46KZOyOPov3l3PXKWr/LERE5KYVC\nGxiXnc7XJ+fw/PIiFqze6Xc5IiKNUii0kdsuOINRvVOY89JqdpVV+F2OiEiDFAptJDoyggem51FZ\nXcu3ny/Qojwi0i4pFNrQgKxEfnJpLu8VlvDke1v8LkdE5AQKhTY2Y1wfPpvbjf9+40PW7Tjgdzki\nIsdQKLQxM+MXV40kpUs0s59dQUWVFuURkfZDoeCD9IQY7rt6FB/tPsS9Czb4XY6ISJBCwSfnDcri\n+onZPL1wK//+qP2tJicinZNCwUdzLh7CoG6JfOf5lZQcOup3OSIiCgU/xUV7i/KUlVcx5yUtyiMi\n/lMo+Gxoj2S+d9Fg/r5uN/OWfuJ3OSLSySkU2oGvTOrP2TmZ3P3qOjbvPeR3OSLSiSkU2oGICOO+\nq0cRGx3Bt54toEqL8oiITxQK7UT3lDh+PnUEK4vKePAfG/0uR0Q6KYVCO3LxiB5cPbY3v/pXIUu3\n7vO7HBHphBQK7cwdlw2jT3oXZs8r4EBFld/liEgno1BoZxJjo3hgeh67DlRw55+1KI+ItC2FQjs0\npm8at34mh5dWbOfVlTv8LkdEOhGFQjt1y5QcRvdN5UfzV7Oj9Ijf5YhIJ6FQaKeiIiOYOz2PmlrH\n7c8VUKNFeUSkDSgU2rF+GQnccdkwFm/ex2/f2ex3OSLSCSgU2rmrx/bm4uHd+eXfPmTN9jK/yxGR\nDk6h0M6ZGT+bOoL0hBhum7eCI5ValEdEQidkoWBmT5rZHjNb08jrZmYPmVmhma0yszGhqiXcpSXE\n8Mur89i09zA/e3293+WISAcWypbC08BFJ3n9YuCMwG0W8OsQ1hL2zj4jkxvP7s//Ld7Gmxt2+12O\niHRQIQsF59zbwMnmargc+L3zLAZSzaxHqOrpCL570WCGdE/iey+soliL8ohICPjZp9ALqL+AQFHg\nOWlEbFQkD80czYGKar73wiotyiMirS4sOprNbJaZLTOzZXv3du71jAd1S+IHFw/hzQ17+MP7H/td\njoh0MH6GwnagT73HvQPPncA597hzLt85l5+VldUmxbVn10/M5txBWdzz2joK92hRHhFpPX6GwivA\nlwJXIU0AypxzO32sJ2yYGfdNG0mXmChmP7uCymotyiMirSOUl6Q+AywCBptZkZl91cxuMrObApu8\nDmwGCoHfAl8PVS0dUdfkOO69cgRrth/g/r9/5Hc5ItJBRIXqg51zM5t43QHfCNX3dwYXDuvOzPF9\n+M3bmzhvUBZnDczwuyQRCXNh0dEsjfvPL+SSnZHAt58roKxci/KISMsoFMJcl5go5k7PY8/Bo/z4\nz2t0maqItIhCoQMY1SeV2Recwasrd/ByQYMXcImINItCoYO4eXIO47LT+MnLa/lkX7nf5YhImFIo\ndBCREcb91+QBaFEeETltCoUOpE96F+6+YhhLt+7nsX9v8rscEQlDCoUO5oq8Xlw6qicP/P0jVhWV\n+l2OiIQZhUIHY2b89IrhdE2KZfa8Asorq/0uSUTCiEKhA0qJj+b+6XlsKTnMf/1Fi/KISPMpFDqo\nCQMy+H/nDuSZJR/zt7W7/C5HRMKEQqEDu/2zgxjWM5k5L61mz8EKv8sRkTCgUOjAYqIieHBGHoeP\nVvPd57Uoj4g0TaHQweV0TeLHnx/Kvz/ay+8WbvW7HBFp55oVCmY20MxiA/cnm9k3zSw1tKVJa7lu\nQj8+M6QrP1uwgY92H/S7HBFpx5rbUngRqDGzHOBxvBXT/hSyqqRVmRm/uGokSbFRfPOZFRytrvG7\nJBFpp5obCrXOuWpgKvCwc+67QI/QlSWtLSsplv+eNpINuw5y318/9LscEWmnmhsKVWY2E/gy8JfA\nc9GhKUlC5fyh3bhuQl9++84W3iss9rscEWmHmhsKNwBnAfc457aYWX/g/0JXloTKjy7JZWBWAt9+\nbiWl5ZV+lyMi7UyzQsE5t845903n3DNmlgYkOed+EeLaJATiYyJ5cMZoSg4f5YfzV+syVRE5RnOv\nPvqXmSWbWTrwAfBbM7s/tKVJqAzvlcLtnx3M66t38cLyIr/LEZF2pLmnj1KccweAK4HfO+fOBC4I\nXVkSarPOHcCZ/dO585W1bCs57Hc5ItJONDcUosysB3ANn3Y0SxiLjDDun55HRITxrWcLqK6p9bsk\nEWkHmhsKdwN/BTY555aa2QBgY+jKkrbQKzWee6aO4IOPS3nkrUK/yxGRdqC5Hc3PO+dGOuduDjze\n7Jy7KrSlSVu4bFRPpo7uxcNvFvLBx/v9LkdEfNbcjubeZjbfzPYEbi+aWe9QFydt467Lh9E9OY7Z\n8wo4dFSL8oh0Zs09ffQU8ArQM3B7NfCcdADJcdHMnZFH0f5y7n51rd/liIiPmhsKWc65p5xz1YHb\n00BWCOuSNjYuO52vT87huWVFvLFmp9/liIhPmhsKJWZ2nZlFBm7XASWhLEza3m0XnMGo3inMeWk1\nu8q0KI9IZ9TcUPgK3uWou4CdwDTg+hDVJD6Jjozggel5HK2q5TvPr6S2VqOdRTqb5l59tM05d5lz\nLss519U5dwXQ5NVHZnaRmX1oZoVmNqeB11PM7FUzW2lma83shtPYB2lFA7IS+cmlubxbWMyT723x\nuxwRaWMtWXnt9pO9aGaRwKPAxUAuMNPMco/b7BvAOufcKGAy8Eszi2lBTdIKZozrw2dzu/Hfb3zI\n+p0H/C5HRNpQS0LBmnh9PFAYGNNQCcwDLj9uGwckmZkBicA+QNdE+qxuUZ6ULtHMnldARZUW5RHp\nLFoSCk2dcO4FfFLvcVHgufoeAYYCO4DVwG3OOc230A6kJ8Rw39Wj+HD3QX7xxga/yxGRNnLSUDCz\ng2Z2oIHbQbzxCi31OaAg8Fl5wCNmltxAHbPMbJmZLdu7d28rfK00x3mDsrh+YjZPvbeVtz/Sz12k\nMzhpKDjnkpxzyQ3ckpxzUU189na8tZzr9A48V98NwEvOUwhsAYY0UMfjzrl851x+VpaGR7SlORcP\nYVC3RL79/Er2HdaiPCIdXUtOHzVlKXCGmfUPdB7PwBsVXd/HwPkAZtYNGAxsDmFNcorioiOZO300\nZeVVzHlxlRblEengQhYKzrlq4Ba82VXXA88559aa2U1mdlNgs/8CJprZauCfwPedc1o8uJ3J7ZnM\ndz83mL+t282zSz9p+g0iErYs3P7yy8/Pd8uWLfO7jE6nttbxxSff54Ntpbx+2zn0z0zwuyQROQVm\nttw5l9/UdqE8fSQdSESEcd/Vo4iJimD2vBVUaVEekQ5JoSDN1iMlnp9fOYKVRWU89E+tsSTSESkU\n5JRcMqIH08b25tG3Clm6dZ/f5YhIK1MoyCm787Jh9E7rwreeLeBARZXf5YhIK1IoyClLjI3igel5\n7Cyr4M4/a1EekY5EoSCnZWy/NG6ZksNLK7bz6sodfpcjIq1EoSCn7dbP5DC6byo/mr+aHaVH/C5H\nRFqBQkFOW1RkBHOn51FT67j9uQJqtCiPSNhTKEiL9MtI4I7LhrF48z6eeEczlIiEO4WCtNjVY3tz\n8fDu3Pe3D1mzvczvckSkBRQK0mJmxs+mjiA9IYbZzxZwpFKL8oiEK4WCtIq0hBh+eXUehXsO8fMF\n6/0uR0ROk0JBWs3ZZ2Ry49n9+f2ibby1YY/f5YjIaVAoSKv67kWDGdI9ie++sJLiQ0f9LkdETlHn\nCYXaWjhc4ncVHV5sVCQPzRzNgYpqvv+CFuURCTedJxQ2/hUeyIVXb4O9H/ldTYc2qFsSP7h4CP/c\nsIc/vv+x3+WIyCnoPKGQOQhGzYCV8+DRcfDHa2DL26C/ZEPi+onZnDsoi5++to7CPYf8LkdEmqnz\nhELGQLj0QfjWWpj8Q9i+HH53KfzmXFj5LFRrUfrWZGbcN20kXWKimP3sCiqrtSiPSDjoPKFQJyET\nJn/fC4dLH4LqozB/Fjw4Ct59AI7s97vCDqNrchw/v3IEa7Yf4IF/6JSdSDjofKFQJzoOxn4Zvr4Y\nrn0BsgbBP+6E+4fB69+DfVv8rrBD+Nyw7swY14fH/r2JxZvV0S/S3lm4XR2Sn5/vli1bFpoP37Ua\nFv0KVj8PrgaGfB7OuhX6nhma7+skDh+t5vMPvUNldS0LZp9LSny03yWJdDpmttw5l9/Udp23pdCQ\n7iNg6q9h9mqYNBu2vANPXghPXABr50NNtd8VhqWE2CjmzhjN7oNH+c+X1/hdjoichEKhIck94II7\n4PZ1cMl9cLgYnr8eHh7ttSSOHvS7wrCT1yeV2eefwSsrd/Dyiu1+lyMijVAonExMAoz/Gty6HKb/\nEZJ7w19/APfnwt9+DGVFflcYVr4+JYf8fmn858tr+GRfud/liEgDFArNEREJQ78AX1kAN74JORd4\nLYYHR8GLN8KOFX5XGBYiI4wHpufhgG8/t1KL8oi0QwqFU9V7LFz9FNxWAGfeBB++AY9Phqc+Dxte\n96bTkEb1Se/C3ZcPY8nWfTz2701+lyMix1EonK7UvvC5e+D2tXDhPVC6DebNhEfyYekTUKnTI42Z\nOroXXxjZgwf+/hGrikr9LkdE6lEotFRcCky8Bb5ZAFf9L8Qlw2vfhgeGwZs/hYO7/a6w3TEz7rli\nBF2TYpk9r4DySl3VJdJeaJxCa3MOPl4Eix6FDa9BZDSMuAbO+gZ0y/W7unZl0aYS/uOJxfRL78Lk\nwV2ZlJPJmQPSSY7TOAaR1tbccQoKhVAq2QSLfw0Ff4Sqchj4GTjrFu9fM7+raxdeXbmDF5YX8f6W\nEiqqaomMMEb1TuHsnEwm5mQyum8qsVGRfpcpEvbaRSiY2UXAg0Ak8IRz7t4GtpkMzAWigWLn3Hkn\n+8ywCoU65ftg2ZOw5HE4tBu65nothxFXQ1Ss39W1C0era1jxcSnvFRbzbmExKz8ppdZBfHQk4/un\nc3ZOJpNyMhnSPYmICAWqyKnyPRTMLBL4CPgsUAQsBWY659bV2yYVWAhc5Jz72My6OudOuo5jWIZC\nneqjsOZF79TS7jWQ0BXGz4JxX4Uu6X5X164cqKhi8aYS3iss5r1NJcHptzMSYpiYk8nZORlMHJhJ\nn/QuPlcqEh7aQyicBdzpnPtc4PEPAJxzP6+3zdeBns65Hzf3c8M6FOo4B5v/BYsegcJ/QFQ85M2E\nCd+AzBy/q2uXdpVVeAERaEnsOegt9dkvowuTcjI5OyeTswZkkJYQ43OlIu1TewiFaXgtgBsDj78I\nnOmcu6XeNnWnjYYBScCDzrnfN/BZs4BZAH379h27bdu2kNTsiz3rvZbDqmehpgoGXeRdzdRvkvod\nGuGco3DPId4tLOa9whIWby7h0NFqzGB4zxQm5mRwdk4m47LTiYtWf4QIhE8oPALkA+cD8cAi4PPO\nuUYn3+8QLYWGHNrjjW9Y+gSUl0CPPK9TetgV3hVM0qjqmlpWFpUFWxErPt5PVY0jJiqC/H5pwZbE\n8F4pRKo/Qjqp9hAKzTl9NAeId87dEXj8v8AbzrnnG/vcDhsKdaqOeEuGLnoUSjZCci848//BmC9D\nfKrf1YWFw0erWbJ1H+9t9Poj1u88AEByXBQTB2YyKSeDSTmZ9M9MwNQak06iPYRCFF5H8/nAdryO\n5v9wzq2tt81Q4BHgc0AMsASY4ZxrdH7lDh8KdWprofDvsPBh2PoOxCTC6C/ChJsgLdvv6sJK8aGj\nLNxUwnsbvZbE9tIjAPRMifNaEWdkMnFgJllJuhJMOi7fQyFQxCV4l5tGAk865+4xs5sAnHOPBbb5\nLnADUIt32erck31mpwmF+nYUwOJfeVcuuVoYepl3aqnPOL8rCzvOObaVlAf6I4pZuKmEsiNVAAzp\nnsSkHK8lMb5/BomxUT5XK9J62kUohEKnDIU6Zdu9sQ7Ln4KKMuhzpjfeYcgXvJlc5ZTV1DrW7TgQ\nDIklW/dRWV1LVIQxum9qsD9iVJ9UoiM1K4yEL4VCR3b0kDdKetGj3kR8qf1gwtdh9HUQm+h3dWGt\noqqG5dv2825hMQsLi1m1vQznICEmkgkDMgJjJDIZ1C1R/RESVhQKnUFtDWz4ixcOn7zvTc439gav\nYzq5p9/VdQil5ZUs3lwSvPx1S/FhALKSYpk0MCNwuimTnqnxPlcqcnIKhc7mk6Ww6GFY/ypYBAy/\nyut36DHS78o6lKL95Sws9EJi4aZiig9VAjAgK8Gbr2lgJmcNzCAlXpcRS/uiUOis9m+FxY/Biv+D\nykOQfQ5MvBVyPgsROifempxzfLj7IO9u9Poj3t+yj/LKGiIMRvRO5ezApa9j+qZpEJ34TqHQ2R0p\nhQ9+B+//Bg5sh8xBXr/DqBkQrVMdoVBZXUvBJ6XB/ogVn5RSU+uIi45gXHZ6sNM6t0eyJvWTNqdQ\nEE9NFax92Tu1tHMldMmAcTfCuK9BYpbf1XVoByuqWLJlX/DKpo92e5P6pXWJDgyi80Kib4Ym9ZPQ\nUyjIsZyDbe/BwkfgowUQGQsjr/H6HboO8bu6TmHPgQre21TMuxu92V93HagAoE96PJMCITFxYAYZ\niRpEJ61phj2dAAAOmElEQVRPoSCNK97oDYYr+BNUV3j9DWd9AwZM1iR8bcQ5x+biw958TRuLWbS5\nhIMV3rKkuT2SOfsMLyTGZ6cTH6P+CGk5hYI07XDJp4v/HN4D3YZ74TB8GkRpCuq2VF1Ty+rtn07q\n98G2UipraomJjGBMv1SvJXFGJiN7pRClQXRyGhQK0nxVFbDmBW+8w551kNgdxn8N8r+ixX98cqSy\nhqVb9wVDYu0Ob1K/pNgoJgzMCK5ENzBLk/pJ8ygU5NQ5B5v+6YXDpjchugvkXQsTboaMgX5X16mV\nHDrKos0lwZD4ZJ83qV/35Ljg+hGTcjLplhznc6XSXikUpGV2rw0s/vMc1FbDkM97p5b6nqV+h3bg\n45Jyr9M6cPnr/nJvUr8zuiYGr2o6c0A6SXEaRCcehYK0joO7YMlvYdn/wpH90HOMFw65V0CkZhFt\nD2prHet2Hgi2IpZu3UdFVS2REUZen9TgdByj+6YRE6X+iM5KoSCtq7IcVv4JFv0K9m2ClD5w5k0w\n5ovenEvSblRU1fDBx/uD03GsKiql1kF8dCRnDkgPnmoa3C1Jg+g6EYWChEZtLXz0Bix6xBv3EJME\nY7/sBURqH7+rkwaUHalicb3+iM17vUn9MhNjjlmJrneaBtF1ZAoFCb3tH3j9Dmvne49zL4eJt0Cv\nsf7WJSe1s+wI7xV+GhJ7Dx4FIDujS7A/Ynz/dNITYnRlUweiUJC2U1YE7z8Gy38HRw94ndFn3QKD\nL9biP+2cc46New4FJ/VbvLmEw5U1gLeGRI/UeHqkxNErNZ4eKfH0TI2jZ+C5nqnxmugvjCgUpO1V\nHIAVf4DFv4ayjyF9gDcJX95/QEyC39VJM1TV1LKqqJQVH5eyvfQIO0sr2FF2hB2lFRQfOnrC9ukJ\nMfRMjfMCIxAUPVLj6RV4rmtSrAbbtRMKBfFPTTVseNWbZ2n7MohL9QbCjZ8FyT38rk5O09HqGnaV\nVbCjtIIdpUfYWXaEHWWB+4HnDh6tPuY9kRFGt6RYeqTG0zPVC466VkbdLa1LtE5TtQGFgvjPOW9F\nuEWPwPq/QEQUjJjmXdLafYTf1UkIHKyoYmdZxaetjNIjgZbGEXaWVbCztILKmtpj3hMbFREIiECL\noy486rU4EmJ1+XNLKRSkfdm32TuttOIPUFXuTb531i2Qc4EGw3UitbWOksOVXiuj1DsttTNweqou\nPPYcPMrxv5ZS4qPrtTC8oOhVr2+jW3KcxmA0QaEg7dOR/bDsKW8SvoM7IWuIN1o6fSCk9/f6IRK7\nKSg6saqaWnYfqAgGRl2rw7vv/VsaGMFdxwyyEmMbbHF4/RxxZCbEdupxGQoFad+qK2HtS95VSztX\ngav59LXohEBABEKi/i2pp5YVFcorq+u1Mo7U6+f4tMVRUXXsaaqYyAi6B/o0egWCItjiCFxVldyB\npwVRKEj4qKmC0o9h3xbvNFP9W+k2qKn8dNvI2OPCot795N6aekMA71Lb0vIqr5VRdmyLoy48dh2o\noKb22N9/ibFRx5ym6pniXU1V1+LonhIXtpfhNjcU9H+Q+C8y2puFtaGZWGtrvDWmjwmLQHhsetNb\nJKhORDSk9YO0BloYqX21RkQnYmakJcSQlhDD8F4NT8NSU+vYc/C4q6nqhcaa7WWUHK484X2ZiTH0\nSIk/NjzqjePomhRHZBifplJLQcJXbS0c2nVi66IuOCoPfbqtRXjzNR0fFukDIC0bojXltJyooqru\nMtx6l9/WC48dpUeCg/3qREYY3ZPjgn0bPVKPG/yXEk+qD5fh6vSRdG7OweG9DZ+S2rcJKsrqbWyQ\n3Kvh01Jp/SE20bfdkPbNOceBimp2lnmnprY30OLYWXaEqppjf8/GRQcuw02p3zF+bIujS0zrnshR\nKIicTPm+RgJjM5QXH7ttYreG+zDSB2iGWGlSba2j+PBRr2O89Mhx/Rzec3sPnXgZbmqX6EBH+Kct\njjP7ZzC2X9pp1aE+BZGT6ZLu3Xo3MHlfRdmxgbF/i/d405tQsPO4z8lo+JRU+gCIT9OltUJEhNE1\nyetryOuT2uA2ldV1l+EeCU4rUtfSKNp/hCVb9nGgoppbpuScdig0V0hDwcwuAh4EIoEnnHP3NrLd\nOGARMMM590IoaxJpUlwK9MzzbserPAz7t57Yuti20FulDnfs59Sdgjo+MBK7KjAkKCYqgj7pXeiT\n3vj05YeOVp9wtVQohCwUzCwSeBT4LFAELDWzV5xz6xrY7hfA30JVi0iriUmAbsO82/GqKrxLaI8P\njB0rYN2fGxiL0cDpqPQBkNRDYzHkBIltNNVHKL9lPFDonNsMYGbzgMuBdcdtdyvwIjAuhLWIhF50\nHGQN9m7Ha2wsxp718OECqK03Qjcqrl7r4rjO75Q+mo5cQiqUodAL+KTe4yLgzPobmFkvYCowhZOE\ngpnNAmYB9O3bt9ULFQm5psZilBU1Mhbjnw2PxWioDyO1r/c9Ii3gd0fzXOD7zrnak12z65x7HHgc\nvKuP2qg2kbYRERkYdNcPBk459rWTjcXYtvC4sRiR3pKoDQZGP43FkGYJZShsB+ov2ts78Fx9+cC8\nQCBkApeYWbVz7uUQ1iUSPiIiILmnd8s++9jXgmMxGgiMVc/D0ePGYqT09gbqnRAa/bUIkgSFMhSW\nAmeYWX+8MJgB/Ef9DZxz/evum9nTwF8UCCLNZOZdxZTYFfpOOPY157wZaY8/HbVvM2x4rYGxGN2P\nDYm0bO+S3fj0T/+NSdAVU51AyELBOVdtZrcAf8W7JPVJ59xaM7sp8PpjofpukU7PrN5YjAbGKx0/\nFqPufuE/vNNVDYmMOTYkuqR5YzGOee64f+PTNElhmNGIZhE5VuVhKP0EjuzzRn6f8O/+E5+vrW78\n82JTAgHSWHikqVXSBjSiWUROT0wCdB3S/O2d8zq8mwqO8n1QXgLFG73Xjx5o/DMbbJU0ECZqlbQ6\n/QRFpGXMIDbJu6X1a/77aqoaD4/jw6V4o1olbUShICL+iIz+tKO8uZyDowe9cAgGSlu0So5rkXTg\nVknH3CsR6ZjMIC7Zu6VlN/99apU0m0JBRDq+lrZKguGx/9gQCXWrpEs6xKW2aatEoSAi0pD22CoZ\n9zWYeEuLd+1kFAoiIq0pJK2SwL+J3UJXd4BCQUTEb6fbKgkBTdouIiJBCgUREQlSKIiISJBCQURE\nghQKIiISpFAQEZEghYKIiAQpFEREJCjsFtkxs73AttN8eyZQ3ORW4UH70j51lH3pKPsB2pc6/Zxz\nWU1tFHah0BJmtqw5Kw+FA+1L+9RR9qWj7AdoX06VTh+JiEiQQkFERII6Wyg87ncBrUj70j51lH3p\nKPsB2pdT0qn6FERE5OQ6W0tBREROokOGgpldZGYfmlmhmc1p4HUzs4cCr68yszF+1NkczdiXyWZW\nZmYFgdtP/KizKWb2pJntMbM1jbweTsekqX0Jl2PSx8zeMrN1ZrbWzG5rYJuwOC7N3JdwOS5xZrbE\nzFYG9uWuBrYJ3XFxznWoGxAJbAIGADHASiD3uG0uARYABkwA3ve77hbsy2TgL37X2ox9ORcYA6xp\n5PWwOCbN3JdwOSY9gDGB+0nAR2H8/0pz9iVcjosBiYH70cD7wIS2Oi4dsaUwHih0zm12zlUC84DL\nj9vmcuD3zrMYSDWzHm1daDM0Z1/CgnPubWDfSTYJl2PSnH0JC865nc65DwL3DwLrgV7HbRYWx6WZ\n+xIWAj/rQ4GH0YHb8Z2/ITsuHTEUegGf1HtcxIn/cTRnm/aguXVODDQhF5jZsLYprdWFyzFprrA6\nJmaWDYzG+6u0vrA7LifZFwiT42JmkWZWAOwB/u6ca7PjojWaw98HQF/n3CEzuwR4GTjD55o6u7A6\nJmaWCLwIzHbOHfC7npZoYl/C5rg452qAPDNLBeab2XDnXIN9WK2tI7YUtgN96j3uHXjuVLdpD5qs\n0zl3oK6p6Zx7HYg2s8y2K7HVhMsxaVI4HRMzi8b7JfpH59xLDWwSNselqX0Jp+NSxzlXCrwFXHTc\nSyE7Lh0xFJYCZ5hZfzOLAWYArxy3zSvAlwI9+BOAMufczrYutBma3Bcz625mFrg/Hu+YlrR5pS0X\nLsekSeFyTAI1/i+w3jl3fyObhcVxac6+hNFxyQq0EDCzeOCzwIbjNgvZcelwp4+cc9VmdgvwV7yr\nd550zq01s5sCrz8GvI7Xe18IlAM3+FXvyTRzX6YBN5tZNXAEmOEClye0J2b2DN7VH5lmVgTcgdeB\nFlbHBJq1L2FxTIBJwBeB1YHz1wA/BPpC2B2X5uxLuByXHsDvzCwSL7iec879pa1+h2lEs4iIBHXE\n00ciInKaFAoiIhKkUBARkSCFgoiIBCkUREQkSKEgEmBmNfVm0CywBmalbcFnZ1sjs6qKtCcdbpyC\nSAsccc7l+V2EiJ/UUhBpgpltNbP/NrPVgXnucwLPZ5vZm4EJ1v5pZn0Dz3czs/mB+fBXmtnEwEdF\nmtlvA3Pk/y0wWhUz+6Z56wCsMrN5Pu2mCKBQEKkv/rjTR9PrvVbmnBsBPALMDTz3MPA759xI4I/A\nQ4HnHwL+7ZwbhbfuwtrA82cAjzrnhgGlwFWB5+cAowOfc1Oodk6kOTSiWSTAzA455xIbeH4r8Bnn\n3ObApGu7nHMZZlYM9HDOVQWe3+mcyzSzvUBv59zRep+RjTcF8hmBx98Hop1zPzWzN4BDeLN2vlxv\nLn2RNqeWgkjzuEbun4qj9e7X8Gmf3ueBR/FaFUvNTH194huFgkjzTK/376LA/YV4M9cCXAu8E7j/\nT+BmCC6WktLYh5pZBNDHOfcW8H0gBTihtSLSVvQXicin4uvNsAnwhnOu7rLUNDNbhffX/szAc7cC\nT5nZd4G9fDpT5W3A42b2VbwWwc1AY9MaRwJ/CASHAQ8F5tAX8YX6FESaEOhTyHfOFftdi0io6fSR\niIgEqaUgIiJBaimIiEiQQkFERIIUCiIiEqRQEBGRIIWCiIgEKRRERCTo/wMPw9hrrqZt9AAAAABJ\nRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEKCAYAAAAB0GKPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8VXed//HXhyQQICEbOyEkUCj7moa2dKPY2lZbhra2\nMDpqrWJ52F0dGccZteoMjlrb2v6s1WmrYwWxm6hdXIpdrLKVfWmhECAsZQkkQAhk+fz+OJcQQiAX\nyM25N3k/H488cs927+fkwPnc7/d7vt+vuTsiIiJNaRd2ACIikhiUMEREJCpKGCIiEhUlDBERiYoS\nhoiIREUJQ0REoqKEISIiUVHCEBGRqChhiIhIVJLDDqA5de3a1fPz88MOQ0QkYSxZsmSPu3eLZt9W\nlTDy8/NZvHhx2GGIiCQMM9sc7b6qkhIRkagoYYiISFSUMEREJCpKGCIiEhUlDBERiYoShoiIREUJ\nQ0REotKq+mGIiLQ6tTVwpBwqy+HIgXqvy6GyLPhtSXDJvTEPRQlDRCRWaqoiN/eyejf5hjf+020r\nh6MHm/6ctB6JnzDM7BrgYSAJ+Jm7z2qwPQt4EhgAVAKfcfdV0RwrIhIz7lBdWe8G3vCmXh7dturD\nTX9WckdI7QId0qFDl+B1es/IuoyTt9X9zji+nNwh9n8TYpgwzCwJeAy4CigBFpnZPHdfU2+3rwLL\n3H2KmQ2O7D8pymNFRE7mDkcPNXIDb+ymfppttVVNf1b7tBNv5B2zIKtf4zf1k278GcFycvvY/02a\nSSxLGEXABnffCGBmc4DJQP2b/lBgFoC7rzOzfDPrAfSP4lgRaW1qa+HogVPc1MuCb+1N3vAPgNc0\n8UF28jf2tJ7QdVAj3+YzTnHD7wLtklrkzxIvYpkw+gBb6y2XAOMb7LMcuBF408yKgH5AbpTHAmBm\n04HpAHl5ec0SuIichZrqExtiT7q516u6OdWN/+iBpj+nXXJws+6QfvybembeiTfyum0Nb/iRbe3T\noJ0eEj1TYTd6zwIeNrNlwEpgKdDUV4MTuPsTwBMAhYWF3uwRirRV7lCxF/YVBz/7N8P+rXC4tPEb\nf1VF0++Z1OHkKpqcASff1E/4Nt9gW0pHMIv12UsjYpkwtgF96y3nRtbVcfdy4DYAMzNgE7AR6NjU\nsSLSDI4cgH2bg2TQ2O+qQyfu3zEbOnc9fiPPyG38pn7CN/1621qocVZiI5YJYxEw0MwKCG72U4F/\nrr+DmWUCFe5+FPgs8Ia7l5tZk8eKSBSqjwSlgv3FjSeEw6Un7t8+DTL7QVY+FFweNOBm9ov8zgsS\ngLRZMUsY7l5tZncCrxI8Gvuku682szsi2x8HhgA/NzMHVgO3n+7YWMUqkrBqa+DAjsaTwb7iYBv1\namrbpUBm3yAJDB11PDlk9YPMfOiUreoeOSVzbz3V/oWFha4Z96RVqWtH2Nx4KWH/1gaPfxp06V2v\nVNDgd3qvNvdkj5yemS1x98Jo9g270VtETteOsH/LyT19O+UECaDXKBhyQ72EkB+0KaidQGJECUMk\n1qqPQtnW408aNUwKFXtP3D+l8/EkUHBZg2ojtSNIeJQwRM7V6doR9m+G8u2csh1hyPX1qo3yg9+d\nctSOIHFJCUOkKe5QUdqgDaE4unaEuhKC2hEk8SlhiAAcOXjqvgj7N5/cjtAxO7j59xxZr5SQr3YE\nadWUMKRtOKd2hEtPLiWoHUHaICUMaR1qa4N2hFOVEsq3oXYEkXOjhCGJodF2hHq/y7ZCzdF6B1jQ\nVpDVD/IvOfHRU7UjiJwVJQyJP4f2wMa/wrYl9RqXt5w8kmldO8IIGPLRE0sJmX3VjiDSzJQwJHxV\nlbD1H/D+fHj/Ndi5Ilif0ikoETTWjpCZFwxmJ9IGHTpSTcm+w5Tsq6Bk32GOVNcw/bIBMf9cJQxp\nee6wa02QHN6fD5vfDqaybJcMfcfDlV+D/ldC79GqNpI26eCRarbVSwjHfwev91WcOBtg17QOShjS\nihzYGVQzvT8fNs6Hgx8E67ueD+M+BQOuhH4ToENaqGGKtIQzTQgdktuRm9WR3KxOjMzNIDerU2Q5\nWNc1rWWmeVXCkNg4WgFb3o5UM82HXZHBhjvlQP8rggTRfyJk9AkzSpGYiEVCsDh4ak8JQ5pHbW3Q\n9rAxkiC2/D14aimpA+RdCB/6RpAkeozQ1JiS8FprQmiKEoacvbJtkQTxWlDddKzzW/dhUDQdBkyE\nvIuhfadQwxQ5UwePVAdJoLRBMtgfvN7fShNCU5QwJHpHDkLxW8eTxJ73gvVpPeC8q4IE0f8KSO8Z\nZpQiTTqXhDAqN7PVJoSmKGHIqdXWwPZlkRLEfNi6MBhkL7kj9LsYxn4qSBLdh6pXtMSVM00IqSnt\n6pLA6L71E0LwO6dz20gITVHCkBPtKz7+JNPG16Fyf7C+1yi46AtBguh7IaSkhhqmtG0HKqvYtv+w\nEkILU8Jo6yrLYNObx0sRpRuD9V36wOCPHq9m6tw1zCiljVFCiE9KGG1NTTVsW3y8FFGyGLwmGJ21\n4FIo+nzwNFPXgapmkpg5UFl1wlNFDZ80KjushBCPlDBaO/eg1HCsV3Xxm3CkHKwd9B4Dl94f9IfI\nvQCSW6bzj7R+55IQxuQpIcQrJYzWqKIUNr1+vBSxf0uwPjMPht8YJIiCy6BTdrhxSsJSQmiblDBa\ng+qjULLw+OB925cCDh26BIlhwj1Bksjur2omOWP7Dh1lUXEpCzaVsnjzPor3HDopIXRMSap7zHRs\nXtYJySA3qyPZSgitghJGInIP+kDUVTO9BVWHwJKCqqUrZgYJos84SNIlljOz60AlizbtY8GmvSzc\nVMq6ncGw8u2T2zG6byY3jOqthNBG6W6SKI7NEXGsFHFge7A+ewCMnhY0VOdfAqkZoYYpiWf7/sN1\nyWHBplI27j4EQKf2SYzrl8VHR/aiqCCHUX0z6JCs0YPbMiWMeFU3R0SkFHFsjojUzMjgfRODUkRW\nvzCjlATj7mwprWDBplIWbCxlwaa9lOw7DEB6ajIX5Gdza2FfigqyGd4ng5QkjfslxylhxAt3+GD1\n8cH76uaISDk+R8SAK6GX5oiQ6Lk77+8+WJcgFm4qZWd5JQBZnVIoKsjmMxMKKCrIZkivLiS1U7WS\nnFpME4aZXQM8DCQBP3P3WQ22ZwC/BPIisXzf3Z+KbCsGDgA1QLW7F8Yy1lDUzRERGbzv2BwR3QbD\nuE8HpQjNESFnoLbWWbfzQF0V08JNpew9FMx13i29A+MLshnfP4fxBdmc1y2NdkoQcgZiljDMLAl4\nDLgKKAEWmdk8d19Tb7cvAGvc/Xoz6wa8a2bPuPvRyPaJ7r4nVjG2uKMVQclhY8M5IrrWmyPiCs0R\nIVGrrqll9fbyExJEeWU1AH0yO3L5oG6M759NUUEO+Tmd1DAt5ySWJYwiYIO7bwQwsznAZKB+wnAg\n3YJ/xWlAKVAdw5ha1glzRLwGW/5xfI6IfhfByG8GpQjNESFROlJdw8qSsqCKaVMpS4pLOXS0BoCC\nrp25dnivSILIJjdLw8pL84plwugDbK23XAKMb7DPo8A8YDuQDtzq7rWRbQ782cxqgJ+4+xMxjLX5\nlJXUG7zvr8fniOgxPDJHxJWQd5HmiJCoHD5aw9Kt++raH97Zso8j1cF/kUE90pgytg/jC3IoKsim\nRxcNCCmxFXaj94eBZcCVwADgT2b2pruXA5e4+zYz6x5Zv87d32j4BmY2HZgOkJeX14KhR5xujoiB\nVwdPMvW/AtJ7tHxsknAOHqlmyeZ9LNgYVDEtL9lPVY1jBkN7deGfx+cxviCHC/KzyEnrEHa40sbE\nMmFsA/rWW86NrKvvNmCWuzuwwcw2AYOBhe6+DcDdd5nZCwRVXCcljEjJ4wmAwsJCb/azaOikOSIW\nQG11MEdE/oTIHBFXQvch6lUtTSqrqIr0og4SxKrt5dTUOkntjBF9MvjMhALG989mXL9sMjqmhB2u\ntHGxTBiLgIFmVkCQKKYC/9xgny3AJOBNM+sBnA9sNLPOQDt3PxB5fTXwQAxjPb1jc0S8/xpseiMy\nR4RBr5Fw8V1BKSLvQkjWNz45vT0Hj7Ao0v6wYFMp63aW4w7tk4Je1DMuH8D4/tmMzcuic4ewKwBE\nThSzf5HuXm1mdwKvEjxW+6S7rzazOyLbHwe+BTxtZisBA77i7nvMrD/wQuSJjmTgV+7+SqxiPUll\nWZAYjrVF1M0RkQtDPhqUIAqugM45LRaSJKadZZUs2LSXBZEnmDbsOggEg/GN65fFvZMGMb5/NqP7\nZpKaov41Et8sqA1qHQoLC33x4sVnfmBNFWxbcrwUsW1JMEdE+7RguI0BVwalCM0RIafh7pTsOxzp\nJLeXhcWlbN5bAUBah2QK87MoKshmfEEOI/pk0D5ZT8ZJ+MxsSbT93FTmraqEH5wfVDNZO+g9Npgj\nYsCV0KdQc0TIKbk7G/ccCsZgijRSby8LelFndAx6Uf/Lhf0YX5DDkF7pJGuYDUlwShgpqTDhbsg5\nLxgKvGNW2BFJnKqtdd7bdSCSIII2iD0HjwDQNa094wty+HxBNuP7ZzOoe7p6UUuro4QBcOkXw45A\n4lB1TS1rdxyoa4NYVFxaN5d0r4xULjkvh6KCHMb3z6Z/187qRS2tnhKGSERVTS0rSsoiw3zvZXHx\nPg4eCQYeyMvuxFVDelBUkM2F/XPIzeqoBCFtjhKGtFmVVTUs27q/LkG8s3k/h6uCYTbO657GDaN7\nM74gGGajV0bHkKMVCZ8ShrQZh45U886W48NsLNu6n6M1tZjB4J5duPWCvowvyOaCgmy6qhe1yEmU\nMKTVKjtcxZLNxxuoV20ro7rWaWcwvE8Gn7o4eIKpMD+LzE56Gk6kKUoY0mqUHjpaV720cFMpa3YE\nvahTkoxRuZlMv6w/4/vnMK5fFmnqRS1yxvS/RhLWrvLKyBAbQYJ474OgF3WH5HaMzcvi7isHMr5/\nNmP6ZtGxvXpRi5wrJQxJGCX7Kur6QCwsLmXTnkMAdG6fxLj8bCaP7sP4gmxG5GbQIVkJQqS5KWFI\n3Nq05xALN+2ta4PYtv8wAF1SkykqyGZaUV/GF+QwrHcX9aIWaQFKGBKXvv/quzw6fwMAOZ3bU1SQ\nzWcvLWB8QQ7n90wnSb2oRVqcEobEnTfe282j8zcweXRv7rryPAZ0S1MnOZE4oIQhcWXPwSPcP3c5\nA7unMevGkWqsFokjShgSN9ydL/9mOeWVVfzf7UVKFiJxRi2FEjee+lsx89/dzb9fN4QhvbqEHY6I\nNKCEIXFh1bYyZr28jg8N6c4nL+oXdjgi0gglDAldxdFq7p6zlMxOKfzPzaPUwC0Sp9SGIaF74Hdr\n2LTnEL+8fTzZnTWmk0i8UglDQvXSyh3MWbSVOy4fwITzuoYdjoichhKGhKZkXwUzn1vBqL6Z3H/V\noLDDEZEmKGFIKKprarl3zjJqHR6ZOpoUDe0hEvfUhiGh+NFrG1i8eR8/vHUU/XI6hx2OiERBX+uk\nxS3cVMqPXlvPjWP6MGVMbtjhiEiUlDCkRZVVVHHvnKX0ze7EA/80POxwROQMqEpKWoy7M/P5Few6\ncITnZlysWe9EEoxKGNJi5izaysurdvLFq89nVN/MsMMRkTOkhCEtYsOuA3zzd6u55LyufP6y/mGH\nIyJnIaYJw8yuMbN3zWyDmc1sZHuGmf3OzJab2Wozuy3aYyVxVFbVcNfsZXRqn8yDt4yinSY/EklI\nMUsYZpYEPAZcCwwFppnZ0Aa7fQFY4+6jgCuAH5hZ+yiPlQTx3VfWsXZHOd+7eSTdu6SGHY6InKVY\nljCKgA3uvtHdjwJzgMkN9nEg3YLR5tKAUqA6ymMlAby27gOe+lsxn744n0lDeoQdjoicg1gmjD7A\n1nrLJZF19T0KDAG2AyuBe9y9NspjATCz6Wa22MwW7969u7lil2awq7ySL/1mBYN7pjPz2sFhhyMi\n56jJhGFmd5lZVow+/8PAMqA3MBp41MzOaOYcd3/C3QvdvbBbt26xiFHOQm2tc//c5VQcreZH08aQ\nmqLZ80QSXTQljB7AIjObG2mIjrbFchvQt95ybmRdfbcBz3tgA7AJGBzlsRLHfvrmRt7asIf//Ogw\nBvZIDzscEWkGTSYMd/8aMBD4X+DTwHoz+y8zG9DEoYuAgWZWYGbtganAvAb7bAEmAZhZD+B8YGOU\nx0qcWr51P9979V2uGdaTaUV9mz5ARBJCVF1t3d3NbCewk6BROgt41sz+5O7/eopjqs3sTuBVIAl4\n0t1Xm9kdke2PA98CnjazlYABX3H3PQCNHXsuJyot4+CRYPa8bukdmHXTCM2eJ9KKmLuffgeze4BP\nAnuAnwEvunuVmbUD1rt7UyWNFlNYWOiLFy8OO4w27f65y3hx6TZmf+5CxvfPCTscEWmCmS1x98Jo\n9o2mhJEN3Ojum+uvdPdaM/vo2QQordNvl23j+Xe2cfekgUoWIq1QNI3eLxP0jwDAzLqY2XgAd18b\nq8AksWzZW8G/v7CKwn5Z3H3leWGHIyIxEE3C+DFwsN7ywcg6EQCqamq5a85SzOChqaNJ1ux5Iq1S\nNP+zzes1dEQ61mlcaqnzwz+9x/Kt+5l140hyszqFHY6IxEg0CWOjmd1tZimRn3sIHn0V4e0Ne/jx\n6+9za2FfPjKyV9jhiEgMRZMw7gAuJug4VwKMB6bHMihJDKWHjnLf3GUUdO3M12/Q2JAirV2TVUvu\nvoug45xIHXfnX59dzr5DVfzvpy6gU3vVUoq0dk3+LzezVOB2YBhQNza1u38mhnFJnPu/f2zmz2t3\n8bWPDGF4n4ywwxGRFhBNldT/AT0JBgp8nWBcpwOxDEri27qd5Xz7D2u54vxufGZCQdjhiEgLiSZh\nnOfu/wEccvefAx8haMeQNqiyqoa7Zy+lS2oK3/+YZs8TaUuiSRhVkd/7zWw4kAF0j11IEs++/Yc1\nvPfBQR68ZRRd0zqEHY6ItKBoWiqfiMyH8TWCEWPTgP+IaVQSl15ZtZNf/mMLn7u0gMsGae4Rkbbm\ntAkjMsBgubvvA94A+rdIVBJ3dpQdZubzKxjRJ4Mvf1iz54m0Raetkor06m50+HJpO2pqnXvnLONo\ndS2PTBtD+2QN/SHSFkXzP//PZvYlM+trZtnHfmIemcSNH/91Aws2lfLNG4ZR0LVz2OGISEiiacO4\nNfL7C/XWOaqeahOWbN7HD/+8nutH9ebmcblhhyMiIYqmp7cetG+jyiuruGfOUnplpPKdKcM1e55I\nGxdNT+9PNrbe3X/R/OFIvHB3/v2FVewoq2Tu5y+iS2pK2CGJSMiiqZK6oN7rVGAS8A6ghNGKPbuk\nhN8t386Xrh7EuH5ZYYcjInEgmiqpu+ovm1kmMCdmEUnoNu4+yNfnrebC/tnMuEKz54lI4GyejzwE\nqF2jlTpSXcPdc5bSPrkdP7x1NEka+kNEIqJpw/gdwVNRECSYocDcWAYl4fn+q++yals5P/mXcfTK\n6Bh2OCISR6Jpw/h+vdfVwGZ3L4lRPBKi19/bzU/f3MQnLszjw8N6hh2OiMSZaBLGFmCHu1cCmFlH\nM8t39+KYRiYtaveBI3xx7nIG9Ujjax/R7HkicrJo2jB+A9TWW66JrJNWorbW+dJvllNeWcUj08aQ\nmpIUdkgiEoeiSRjJ7n702ELkdfvYhSQt7cm/beL193bzHx8ZwuCeXcIOR0TiVDQJY7eZ3XBswcwm\nA3tiF5K0pFXbyvjuK+u4amgPPnFhv7DDEZE4Fk0bxh3AM2b2aGS5BGi093dDZnYN8DCQBPzM3Wc1\n2P5l4OP1YhkCdHP3UjMrJpgKtgaodvfCaD5ToldxtJq75ywlu3N7vnvTSA39ISKnFU3HvfeBC80s\nLbJ8MJo3NrMk4DHgKoIks8jM5rn7mnrv/T3ge5H9rwfuc/fSem8z0d1VmomRb85bw6Y9h3jms+PJ\n7qxaRhE5vSarpMzsv8ws090PuvtBM8sys29H8d5FwAZ33xhp95gDTD7N/tOA2dGFLefq9yu28+vF\nW5lx+QAuHtA17HBEJAFE04ZxrbvvP7YQmX3vuiiO6wNsrbdcEll3EjPrBFwDPFdvtRPMxbHEzKZH\n8XkSpa2lFfzb8ysZ3TeT+64aFHY4IpIgomnDSDKzDu5+BIJ+GECHZo7jeuBvDaqjLnH3bWbWHfiT\nma1z9zcaHhhJJtMB8vLymjms1qe6ppZ7f70Md3hk6hhSkjR7nohEJ5q7xTPAX8zsdjP7LPAn4OdR\nHLcN6FtvOTeyrjFTaVAd5e7bIr93AS8QVHGdxN2fcPdCdy/s1q1bFGG1bY+8toElm/fxnSnDycvp\nFHY4IpJAmkwY7v5d4NsETzCdD7wKRPP85SJgoJkVmFl7gqQwr+FOZpYBXA78tt66zmaWfuw1cDWw\nKorPlNNYsHEvj762nhvH9mHy6EZrB0VETimaKimADwjaFD4GbOLEtoZGuXu1md1JkGCSgCfdfbWZ\n3RHZ/nhk1ynAH939UL3DewAvRB7zTAZ+5e6vRBmrNGJ/xVHu/fUy8rI78cDk4WGHIyIJ6JQJw8wG\nETy5NI2go96vAXP3idG+ubu/BLzUYN3jDZafBp5usG4jMCraz5HTc3dmPreSPQeP8NyMi0nrEO33\nBBGR405351gHvAl81N03AJjZfS0SlTSr2Qu38srqnfzbtYMZmZsZdjgikqBO14ZxI7ADmG9mPzWz\nSYC6AieY9R8c4IHfr+bSgV353KX9ww5HRBLYKROGu7/o7lOBwcB84F6gu5n92MyubqkA5exVVtVw\n1+yldGqfzA8+Nop2mj1PRM5BNE9JHXL3X7n79QSPxi4FvhLzyOSczXp5Het2HuAHHxtF9y6pYYcj\nIgnujHptufu+SL+HSbEKSJrHX9Z+wNNvF3PbhHwmDu4edjgi0gqom28rtKu8ki8/u4Ihvbow89rB\nYYcjIq2EEkYrU1vr3Dd3GRVHq/nRtNF0SNbseSLSPPRAfivzkzc28rcNe5l14wjO654edjgi0oqo\nhNGKLNu6nx/88V2uG9GTWy/o2/QBIiJnQAmjlTh4pJp75iylR5dU/nuKZs8TkeanKqlW4j9fXMXW\n0gp+/fmLyOiUEnY4ItIKqYTRCrywtITnl27j7kkDuSA/O+xwRKSVUsJIcJv3HuJrL6zigvws7px4\nXtjhiEgrpoSRwKpqarl7zjKS2hkPTR1DsmbPE5EYUhtGAnvwT++xfOt+/t/Hx9Ins2PY4YhIK6ev\npAnqbxv28Pjr7zP1gr5cN6JX2OGISBughJGA9h48wn2/Xkb/rp35z+uHhh2OiLQRqpJKMO7OV55b\nwf6KKp6+rYhO7XUJRaRlqISRYH7x9838ee0uZl47mKG9u4Qdjoi0IUoYCWTtjnK+89JaJp7fjdsm\n5Icdjoi0MUoYCeLw0WD2vIyOKXzvY6M09IeItDhVgCeIb/1hDRt2HeT/bi+ia1qHsMMRkTZIJYwE\n8MqqHfxqwRY+f1l/Lh3YLexwRKSNUsKIc9v3H+Yrz61kZG4GX7z6/LDDEZE2TAkjjtXUOvf+ehlV\nNbU8PHUM7ZN1uUQkPGrDiGOPzd/Awk2l/OBjoyjo2jnscESkjdNX1ji1ZHMpD/9lPZNH9+bGsX3C\nDkdERAkjHpUdruLu2cvonZnKt/9puB6hFZG4ENOEYWbXmNm7ZrbBzGY2sv3LZrYs8rPKzGrMLDua\nY1srd+ffX1jJzvJKHp46hvRUzZ4nIvEhZgnDzJKAx4BrgaHANDM7YaQ8d/+eu49299HAvwGvu3tp\nNMe2Vr9ZXMLvV+zg/qsGMTYvK+xwRETqxLKEUQRscPeN7n4UmANMPs3+04DZZ3lsq/D+7oN8fd5q\nLuqfwx2XDwg7HBGRE8QyYfQBttZbLomsO4mZdQKuAZ47i2Onm9liM1u8e/fucw46LEeqa7h79lJS\nU9rxw1tHk9RO7RYiEl/ipdH7euBv7l56pge6+xPuXujuhd26JW4v6O+98i6rt5fz3ZtG0jMjNexw\nREROEsuEsQ3oW285N7KuMVM5Xh11pscmvL++u4ufvbWJT17Uj6uH9Qw7HBGRRsUyYSwCBppZgZm1\nJ0gK8xruZGYZwOXAb8/02NZg94EjfOk3yzm/RzpfvW5I2OGIiJxSzHp6u3u1md0JvAokAU+6+2oz\nuyOy/fHIrlOAP7r7oaaOjVWsYamtdb74m+UcqKzmV5+7kNSUpLBDEhE5pZgODeLuLwEvNVj3eIPl\np4Gnozm2tXnyb5t4473dfOufhjOoR3rY4YiInFa8NHq3Oau2lfHdV9Zx9dAefGJ8XtjhiIg0SQkj\nBIeOVHPX7KXkdO7Ad28aqaE/RCQhaLTaEHxj3mqK9x7iV5+9kKzO7cMOR0QkKiphtLDfLd/Ob5aU\n8IUrzuOiATlhhyMiEjUljBa0tbSCrz6/kjF5mdzzoYFhhyMickaUMFpIdU0t98xZCsAjU8eQkqQ/\nvYgkFrVhtJCH/7Ked7bs55FpY+ib3SnscEREzpi+5raAf2zcy6PzN3DzuFxuGNU77HBERM6KEkaM\n7a84yn2/XkZ+Tme+ecOwsMMRETlrqpKKIXfnK8+tYM/BIzw/YwKdO+jPLSKJSyWMGHpmwRZeXf0B\n//rhwYzIzQg7HBGRc6KEESPvfXCAb/1+DZcO7MrtlxSEHY6IyDlTwoiByqpg9rz01GR+cMso2mn2\nPBFpBVSpHgP//dJa1u08wFO3XUD3dM2eJyKtgxJGM/vzmg/4+d83c/slBUw8v3vY4YgkpKqqKkpK\nSqisrAw7lFYjNTWV3NxcUlJSzvo9lDCa0c6ySr787HKG9e7Cv15zftjhiCSskpIS0tPTyc/P12jO\nzcDd2bt3LyUlJRQUnH2bqtowmklNrXP/3GVUVtXyyLQxdEjW7HkiZ6uyspKcnBwli2ZiZuTk5Jxz\niU0ljGbykzfe5+339/Ldm0YwoFta2OGIJDwli+bVHH9PlTCawdIt+3jwj+/xkZG9uKWwb9jhiMg5\n2rt3L6NHj2b06NH07NmTPn361C0fPXo0qve47bbbePfdd0+7z2OPPcYzzzzTHCG3CJUwztGByiru\nnrOUHl2kqeRiAAAOuUlEQVRS+a8pI/StSKQVyMnJYdmyZQB84xvfIC0tjS996Usn7OPuuDvt2jX+\nvfupp55q8nO+8IUvnHuwLUgljHP0Hy+uYtu+wzw8dTQZHc/+6QMRiX8bNmxg6NChfPzjH2fYsGHs\n2LGD6dOnU1hYyLBhw3jggQfq9r3kkktYtmwZ1dXVZGZmMnPmTEaNGsVFF13Erl27APja177GQw89\nVLf/zJkzKSoq4vzzz+ftt98G4NChQ9x0000MHTqUm2++mcLCwrpk1tJUwjgHz79TwovLtnPfhwZR\nmJ8ddjgirdI3f7eaNdvLm/U9h/buwtevP7vBQNetW8cvfvELCgsLAZg1axbZ2dlUV1czceJEbr75\nZoYOHXrCMWVlZVx++eXMmjWL+++/nyeffJKZM2ee9N7uzsKFC5k3bx4PPPAAr7zyCj/60Y/o2bMn\nzz33HMuXL2fs2LFnFXdzUAnjLBXvOcR/vLiKovxs7rzyvLDDEZEWMmDAgLpkATB79mzGjh3L2LFj\nWbt2LWvWrDnpmI4dO3LttdcCMG7cOIqLixt97xtvvPGkfd566y2mTp0KwKhRoxg2LLxRr1XCOAtH\nq4PZ85KT2vHDqaNJ0tAfIjFztiWBWOncuXPd6/Xr1/Pwww+zcOFCMjMz+cQnPtHoo6vt27eve52U\nlER1dXWj792hQ4cm9wmTShhn4Qd/epflJWV896YR9MnsGHY4IhKS8vJy0tPT6dKlCzt27ODVV19t\n9s+YMGECc+fOBWDlypWNlmBaikoYZ+it9Xv4yesbmVaUxzXDe4UdjoiEaOzYsQwdOpTBgwfTr18/\nJkyY0Oyfcdddd/HJT36SoUOH1v1kZIQzXYK5eygfHAuFhYW+ePHimL3/3oNHuObhN8nomMLv7ryE\nju3Vm1skFtauXcuQIUPCDiMuVFdXU11dTWpqKuvXr+fqq69m/fr1JCef+ff9xv6uZrbE3QtPccgJ\nYlrCMLNrgIeBJOBn7j6rkX2uAB4CUoA97n55ZH0xcACoAaqjPaFYcXe+/OwKyg5X8fPbipQsRKRF\nHDx4kEmTJlFdXY2785Of/OSskkVziNmnmlkS8BhwFVACLDKzee6+pt4+mcD/A65x9y1m1nB414nu\nvidWMZ6Jn79dzGvrdvGN64cytHeXsMMRkTYiMzOTJUuWhB0GENtG7yJgg7tvdPejwBxgcoN9/hl4\n3t23ALj7rhjGc9bWbC/nv15ax6TB3fnUxflhhyMiEopYJow+wNZ6yyWRdfUNArLM7K9mtsTMPllv\nmwN/jqyfHsM4T+vw0Rrumv0OmZ1S+J+bR2roDxFps8J+SioZGAdMAjoCfzezf7j7e8Al7r4tUk31\nJzNb5+5vNHyDSDKZDpCXl9fsAT7w+zVs3HOIX94+npy0Ds3+/iIiiSKWJYxtQP2hW3Mj6+orAV51\n90ORtoo3gFEA7r4t8nsX8AJBFddJ3P0Jdy9098Ju3bo16wm8vHIHsxdu4fOXDWDCeV2b9b1FRBJN\nLBPGImCgmRWYWXtgKjCvwT6/BS4xs2Qz6wSMB9aaWWczSwcws87A1cCqGMZ6km37D/OV51YwKjeD\nL149qCU/WkRCNnHixJM64T300EPMmDHjlMekpQXz4Gzfvp2bb7650X2uuOIKmnr0/6GHHqKioqJu\n+brrrmP//v3Rhh5TMUsY7l4N3Am8CqwF5rr7ajO7w8zuiOyzFngFWAEsJHj0dhXQA3jLzJZH1v/B\n3V+JVawN1dQ6981ZRk2t88i0MaQkqUO8SFsybdo05syZc8K6OXPmMG3atCaP7d27N88+++xZf3bD\nhPHSSy+RmZl51u/XnGJ6J3T3l9x9kLsPcPfvRNY97u6P19vne+4+1N2Hu/tDkXUb3X1U5GfYsWNb\nyqOvbWBhcSnf+qfh9Mvp3PQBItKq3HzzzfzhD3+omyypuLiY7du3M2bMGCZNmsTYsWMZMWIEv/3t\nb086tri4mOHDhwNw+PBhpk6dypAhQ5gyZQqHDx+u22/GjBl1w6J//etfB+CRRx5h+/btTJw4kYkT\nJwKQn5/Pnj1B74IHH3yQ4cOHM3z48Lph0YuLixkyZAif+9znGDZsGFdfffUJn9Ocwm70jjuLi0t5\n+C/vMWVMH24cmxt2OCLy8kzYubJ537PnCLj2pH7EdbKzsykqKuLll19m8uTJzJkzh1tuuYWOHTvy\nwgsv0KVLF/bs2cOFF17IDTfccMqnJ3/84x/TqVMn1q5dy4oVK04Ymvw73/kO2dnZ1NTUMGnSJFas\nWMHdd9/Ngw8+yPz58+na9cR20yVLlvDUU0+xYMEC3J3x48dz+eWXk5WVxfr165k9ezY//elPueWW\nW3juuef4xCc+0Tx/q3pU11JP2eEq7pmzjNysTjwwOb5GyBSRllW/WupYdZS789WvfpWRI0fyoQ99\niG3btvHBBx+c8j3eeOONuhv3yJEjGTlyZN22uXPnMnbsWMaMGcPq1aubHFTwrbfeYsqUKXTu3Jm0\ntDRuvPFG3nzzTQAKCgoYPXo0cPrh08+VShgR7s5Xn1/JB+WVPDvjYtJTNXueSFw4TUkgliZPnsx9\n993HO++8Q0VFBePGjePpp59m9+7dLFmyhJSUFPLz8xsdzrwpmzZt4vvf/z6LFi0iKyuLT3/602f1\nPsccGxYdgqHRY1UlpRJGxNzFW/nDyh3cf/UgRveNjwYmEQlPWloaEydO5DOf+UxdY3dZWRndu3cn\nJSWF+fPns3nz5tO+x2WXXcavfvUrAFatWsWKFSuAYFj0zp07k5GRwQcffMDLL79cd0x6ejoHDhw4\n6b0uvfRSXnzxRSoqKjh06BAvvPACl156aXOdblRUwgA27DrIN+atYcJ5Odxx2YCwwxGRODFt2jSm\nTJlSVzX18Y9/nOuvv54RI0ZQWFjI4MGDT3v8jBkzuO222xgyZAhDhgxh3LhxQDBz3pgxYxg8eDB9\n+/Y9YVj06dOnc80119C7d2/mz59ft37s2LF8+tOfpqgo6JL22c9+ljFjxsSs+qkxbX548yPVNUx5\n7G12lB3mlXsvo0eX1BhFJyLR0vDmsRHXw5sngppaZ3DPdO6/apCShYjIabT5hNGpfTIP3jo67DBE\nROKeGr1FRCQqShgiEpdaU/tqPGiOv6cShojEndTUVPbu3auk0Uzcnb1795Kaem7ttG2+DUNE4k9u\nbi4lJSXs3r077FBajdTUVHJzz224IyUMEYk7KSkpFBQUhB2GNKAqKRERiYoShoiIREUJQ0REotKq\nhgYxs93A6UcDO7WuwJ5mDCdMreVcWst5gM4lHrWW84BzO5d+7t4tmh1bVcI4F2a2ONrxVOJdazmX\n1nIeoHOJR63lPKDlzkVVUiIiEhUlDBERiYoSxnFPhB1AM2ot59JazgN0LvGotZwHtNC5qA1DRESi\nohKGiIhEpU0lDDO7xszeNbMNZjazke1mZo9Etq8ws7FhxBmNKM7lCjMrM7NlkZ//DCPOppjZk2a2\ny8xWnWJ7Il2Tps4lUa5JXzObb2ZrzGy1md3TyD4JcV2iPJdEuS6pZrbQzJZHzuWbjewT2+vi7m3i\nB0gC3gf6A+2B5cDQBvtcB7wMGHAhsCDsuM/hXK4Afh92rFGcy2XAWGDVKbYnxDWJ8lwS5Zr0AsZG\nXqcD7yXw/5VoziVRrosBaZHXKcAC4MKWvC5tqYRRBGxw943ufhSYA0xusM9k4Bce+AeQaWa9WjrQ\nKERzLgnB3d8ASk+zS6Jck2jOJSG4+w53fyfy+gCwFujTYLeEuC5RnktCiPytD0YWUyI/DRuhY3pd\n2lLC6ANsrbdcwsn/cKLZJx5EG+fFkWLpy2Y2rGVCa3aJck2ilVDXxMzygTEE32brS7jrcppzgQS5\nLmaWZGbLgF3An9y9Ra+Lhjdvvd4B8tz9oJldB7wIDAw5prYuoa6JmaUBzwH3unt52PGciybOJWGu\ni7vXAKPNLBN4wcyGu3ujbWax0JZKGNuAvvWWcyPrznSfeNBknO5efqz46u4vASlm1rXlQmw2iXJN\nmpRI18TMUghusM+4+/ON7JIw16Wpc0mk63KMu+8H5gPXNNgU0+vSlhLGImCgmRWYWXtgKjCvwT7z\ngE9GnjS4EChz9x0tHWgUmjwXM+tpZhZ5XURwrfe2eKTnLlGuSZMS5ZpEYvxfYK27P3iK3RLiukRz\nLgl0XbpFShaYWUfgKmBdg91iel3aTJWUu1eb2Z3AqwRPGT3p7qvN7I7I9seBlwieMtgAVAC3hRXv\n6UR5LjcDM8ysGjgMTPXIYxTxxMxmEzyl0tXMSoCvEzTmJdQ1gajOJSGuCTAB+BdgZaS+HOCrQB4k\n3HWJ5lwS5br0An5uZkkESW2uu/++Je9h6uktIiJRaUtVUiIicg6UMEREJCpKGCIiEhUlDBERiYoS\nhoiIREUJQ6QJZlZTbyTTZdbI6MDn8N75dorRbUXiTZvphyFyDg67++iwgxAJm0oYImfJzIrN7H/M\nbGVknoLzIuvzzey1yGB2fzGzvMj6Hmb2QmQ+g+VmdnHkrZLM7KeROQ7+GOnFi5ndbcE8DivMbE5I\npylSRwlDpGkdG1RJ3VpvW5m7jwAeBR6KrPsR8HN3Hwk8AzwSWf8I8Lq7jyKYN2N1ZP1A4DF3Hwbs\nB26KrJ8JjIm8zx2xOjmRaKmnt0gTzOygu6c1sr4YuNLdN0YGuNvp7jlmtgfo5e5VkfU73L2rme0G\nct39SL33yCcYpnpgZPkrQIq7f9vMXgEOEoye+mK9uRBEQqEShsi58VO8PhNH6r2u4Xjb4keAxwhK\nI4vMTG2OEiolDJFzc2u933+PvH6bYARhgI8Db0Ze/wWYAXUT4WSc6k3NrB3Q193nA18BMoCTSjki\nLUnfWESa1rHeSKcAr7j7sUdrs8xsBUEpYVpk3V3AU2b2ZWA3x0cMvQd4wsxuJyhJzABONfR0EvDL\nSFIx4JHIHAgioVEbhshZirRhFLr7nrBjEWkJqpISEZGoqIQhIiJRUQlDRESiooQhIiJRUcIQEZGo\nKGGIiEhUlDBERCQqShgiIhKV/w8SDKlB5q+0vAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "network_history = model.fit(X_train, Y_train, batch_size=128, \n", + " epochs=4, verbose=1, validation_data=(X_val, Y_val))\n", + "plot_history(network_history)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* If you continue training, at some point the validation loss will start to increase: that is when the model starts to **overfit**. \n", + "\n", + "It is always necessary to monitor training and validation loss during the training of any kind of Neural Network, either to detect overfitting or to evaluate the behaviour of the model **(any clue on how to do it??)**" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# %load solutions/sol23.py\n", + "from keras.callbacks import EarlyStopping\n", + "\n", + "early_stop = EarlyStopping(monitor='val_loss', patience=4, verbose=1)\n", + "\n", + "model = Sequential()\n", + "model.add(Dense(512, activation='relu', input_shape=(784,)))\n", + "model.add(Dropout(0.2))\n", + "model.add(Dense(512, activation='relu'))\n", + "model.add(Dropout(0.2))\n", + "model.add(Dense(10, activation='softmax'))\n", + "\n", + "model.compile(loss='categorical_crossentropy', optimizer=SGD(), \n", + " metrics=['accuracy'])\n", + " \n", + "model.fit(X_train, Y_train, validation_data = (X_test, Y_test), epochs=100, \n", + " batch_size=128, verbose=True, callbacks=[early_stop]) " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Inspecting Layers" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "dense_4 (Dense) (None, 512) 401920 \n", + "_________________________________________________________________\n", + "dropout_1 (Dropout) (None, 512) 0 \n", + "_________________________________________________________________\n", + "dense_5 (Dense) (None, 512) 262656 \n", + "_________________________________________________________________\n", + "dropout_2 (Dropout) (None, 512) 0 \n", + "_________________________________________________________________\n", + "dense_6 (Dense) (None, 10) 5130 \n", + "=================================================================\n", + "Total params: 669,706\n", + "Trainable params: 669,706\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n" + ] + } + ], + "source": [ + "# We already used `summary`\n", + "model.summary()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### `model.layers` is iterable" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Model Input Tensors: Tensor(\"dense_4_input:0\", shape=(?, 784), dtype=float32)\n", + "\n", + "Layers - Network Configuration:\n", + "\n", + "dense_4 True\n", + "Layer Configuration:\n", + "{'batch_input_shape': (None, 784), 'name': 'dense_4', 'units': 512, 'bias_regularizer': None, 'bias_initializer': {'config': {}, 'class_name': 'Zeros'}, 'trainable': True, 'activation': 'relu', 'use_bias': True, 'bias_constraint': None, 'activity_regularizer': None, 'kernel_regularizer': None, 'kernel_constraint': None, 'kernel_initializer': {'config': {'seed': None, 'mode': 'fan_avg', 'scale': 1.0, 'distribution': 'uniform'}, 'class_name': 'VarianceScaling'}, 'dtype': 'float32'}\n", + "----------------------------------------\n", + "dropout_1 True\n", + "Layer Configuration:\n", + "{'name': 'dropout_1', 'rate': 0.2, 'trainable': True}\n", + "----------------------------------------\n", + "dense_5 True\n", + "Layer Configuration:\n", + "{'kernel_regularizer': None, 'units': 512, 'bias_regularizer': None, 'bias_initializer': {'config': {}, 'class_name': 'Zeros'}, 'trainable': True, 'activation': 'relu', 'bias_constraint': None, 'activity_regularizer': None, 'name': 'dense_5', 'kernel_constraint': None, 'kernel_initializer': {'config': {'seed': None, 'mode': 'fan_avg', 'scale': 1.0, 'distribution': 'uniform'}, 'class_name': 'VarianceScaling'}, 'use_bias': True}\n", + "----------------------------------------\n", + "dropout_2 True\n", + "Layer Configuration:\n", + "{'name': 'dropout_2', 'rate': 0.2, 'trainable': True}\n", + "----------------------------------------\n", + "dense_6 True\n", + "Layer Configuration:\n", + "{'kernel_regularizer': None, 'units': 10, 'bias_regularizer': None, 'bias_initializer': {'config': {}, 'class_name': 'Zeros'}, 'trainable': True, 'activation': 'softmax', 'bias_constraint': None, 'activity_regularizer': None, 'name': 'dense_6', 'kernel_constraint': None, 'kernel_initializer': {'config': {'seed': None, 'mode': 'fan_avg', 'scale': 1.0, 'distribution': 'uniform'}, 'class_name': 'VarianceScaling'}, 'use_bias': True}\n", + "----------------------------------------\n", + "Model Output Tensors: Tensor(\"dense_6/Softmax:0\", shape=(?, 10), dtype=float32)\n" + ] + } + ], + "source": [ + "print('Model Input Tensors: ', model.input, end='\\n\\n')\n", + "print('Layers - Network Configuration:', end='\\n\\n')\n", + "for layer in model.layers:\n", + " print(layer.name, layer.trainable)\n", + " print('Layer Configuration:')\n", + " print(layer.get_config(), end='\\n{}\\n'.format('----'*10))\n", + "print('Model Output Tensors: ', model.output)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Extract hidden layer representation of the given data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "One **simple** way to do it is to use the weights of your model to build a new model that's truncated at the layer you want to read. \n", + "\n", + "Then you can run the `._predict(X_batch)` method to get the activations for a batch of inputs." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "model_truncated = Sequential()\n", + "model_truncated.add(Dense(512, activation='relu', input_shape=(784,)))\n", + "model_truncated.add(Dropout(0.2))\n", + "model_truncated.add(Dense(512, activation='relu'))\n", + "\n", + "for i, layer in enumerate(model_truncated.layers):\n", + " layer.set_weights(model.layers[i].get_weights())\n", + "\n", + "model_truncated.compile(loss='categorical_crossentropy', optimizer=SGD(), \n", + " metrics=['accuracy'])" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Check\n", + "np.all(model_truncated.layers[0].get_weights()[0] == model.layers[0].get_weights()[0])" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "hidden_features = model_truncated.predict(X_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(45000, 512)" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "hidden_features.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(45000, 784)" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X_train.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Hint: Alternative Method to get activations \n", + "\n", + "(Using `keras.backend` `function` on Tensors)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "```python\n", + "def get_activations(model, layer, X_batch):\n", + " activations_f = K.function([model.layers[0].input, K.learning_phase()], [layer.output,])\n", + " activations = activations_f((X_batch, False))\n", + " return activations\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Generate the Embedding of Hidden Features" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from sklearn.manifold import TSNE\n", + "\n", + "tsne = TSNE(n_components=2)\n", + "X_tsne = tsne.fit_transform(hidden_features[:1000]) ## Reduced for computational issues" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "colors_map = np.argmax(Y_train, axis=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(1000, 2)" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X_tsne.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "10" + ] + }, + "execution_count": 49, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "nb_classes" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(array([ 1, 30, 62, 73, 86, 88, 89, 109, 112, 114, 123, 132, 134,\n", + " 137, 150, 165, 173, 175, 179, 215, 216, 217, 224, 235, 242, 248,\n", + " 250, 256, 282, 302, 303, 304, 332, 343, 352, 369, 386, 396, 397,\n", + " 434, 444, 456, 481, 493, 495, 496, 522, 524, 527, 544, 558, 571,\n", + " 595, 618, 625, 634, 646, 652, 657, 666, 672, 673, 676, 714, 720,\n", + " 727, 732, 737, 796, 812, 813, 824, 828, 837, 842, 848, 851, 854,\n", + " 867, 869, 886, 894, 903, 931, 934, 941, 950, 956, 970, 972, 974, 988]),)" + ] + }, + "execution_count": 53, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.where(colors_map==6)" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlwAAAJCCAYAAAAVwBlbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvX10W+d95/m94AskxA5dURaTSgEQNh5atuWXWE3K0xcr\nkZ04StzGSk83KaSqsR1Mo05HntmcdjY4p3ZmB5s0007NJI0TJrFWI921u+esW8eN7G3MVG7TMicr\nJ7aVRGa1yxCMXA9sUTVtmRREEnf/uLzkxcXz3PcL3At8P+foUHwAPPcBBBFf/l6+P0XTNBBCCCGE\nkOhItfsAhBBCCCGdDgUXIYQQQkjEUHARQgghhEQMBRchhBBCSMRQcBFCCCGERAwFFyGEEEJIxFBw\nEUIIIYREDAUXIYQQQkjEUHARQgghhERMb7sPYGbz5s1aPp9v9zEIIYQQQhx55plnzmmadqWb+8ZK\ncOXzeZw8ebLdxyCEEEIIcURRlIrb+zKlSAghhBASMRRchBBCCCERQ8FFCCGEEBIxsarhIoQQQkh3\nsbS0hLNnz+LixYvtPoqUDRs2YNu2bejr6/O9BwUXIYQQQtrG2bNncfnllyOfz0NRlHYfpwlN0zA3\nN4ezZ8/i7W9/u+99mFIkhBBCSNu4ePEiBgcHYym2AEBRFAwODgaOwFFwEUIIIaStxFVsGYRxPgou\nQgghhJCIoeAihBBCSNfz5JNPYmRkBO94xzvwuc99LvT9KbgIIYQQ0tWsrKzg93//9/HEE0/gJz/5\nCR5++GH85Cc/CfUaFFyEEEIISQyqCuTzQCqlf1XV4Ht+//vfxzve8Q4MDw+jv78fH/3oR/HYY48F\n39gEBRchhBBCEoGqAsUiUKkAmqZ/LRaDi64XX3wRb3vb29a+37ZtG1588cWAp22EgosQQgghiaBU\nAhYWGtcWFvT1uEPBRQghhJBEMDvrbd0tW7duxc9+9rO178+ePYutW7cG29QCBRchhBBCEkE2623d\nLb/4i7+IM2fO4Kc//SkuXbqERx55BL/+678ebFMLFFyEEEIISQTlMpDJNK5lMvp6EHp7e/GlL30J\n73//+7F9+3b81m/9Fq699tpgm1qvEepuhBBCCCERUSjoX0slPY2Yzepiy1gPwp49e7Bnz57gG0mg\n4CKEEEJIYigUwhFYrYYpRUIIIYSQiKHgIoQQQgiJGAouQgghhJCIoeAihBBCCIkYCi5CCCGEkIih\n4CLEK1FMTiWEENI27rrrLmzZsgXXXXddZNeg4CLEC1FNTiWEENI2fvd3fxdPPvlkpNeg4CLECwme\nnKqeUpF/II/UZ1LIP5CHeooikRCSPKL4WfZrv/Zr2LRpUwink0PjU0K8ENXk1IhRT6koPl7EwpIu\nFivzFRQfLwIACjsS6CBICOlKkvyzjBEuQrzgYXJqnCJKpYnS2g8og4WlBZQm4h+ZI4QQgyT/LKPg\nIsQLLienGr+FVeYr0KCt/RbWLtE1Oy+OwMnWW0GcBCkhJBnE8WeZWyi4CPFCoQCMjwO5HKAo+tfx\n8abBXnH7LSw7II7MydajJm6ClBCSDOL2s8wLFFyEeKVQAGZmgHpd/yqYohq338LKu8vI9DVG5jJ9\nGZR365G5Vkeb4iZICSHJwOlnmV8+9rGPYXR0FFNTU9i2bRu+8Y1vBNpPBIvmCYmA7EAWlfmKcL0d\nGMWkpYkSZudnkR3Iory7jMKOQkuKUNVTasO1Ra8NkIy0ACGkfdj9LAvCww8/HMbxbFE0TYv8Im7Z\nuXOndvLkyXYfgxApVuEg+49uFTGA/lvY+B3jseukyT+QFwqg3EAOM/fOBN5f9FrICOuahJDkcPr0\naWzfvr3dx3BEdE5FUZ7RNG2nm8czpUg6kihSZF7qjgo7Chi/Yxy5gRwUKMgN5GIptoDo05+i9KGI\nMNIChBASV5hSJB1HVCkyu7oj0b6FHYVYCiwrUac/3Qi33EAulLQAIYTEFUa4SMcRVkG2NUoWZt1R\nnCwRwixCPfitg+j9z71QPqOg9z/34uC3DjoKNwUKZu6dodgihHQ0FFyko1BPqaEII1H6UIbXSFDc\nLBHCSn8e/NZBPHjyQaxoKwCAFW0FD558EO/Y9I4mQWcmCe3chBASFAou0jGop1Tc9dhd0tu9fLC7\nrTvq7+n3HAmSReAOPXHI0z5hUthRwMy9M6jfV3cdbbJG6b76zFeF9zsxcwLjd4xjcONg021GJC1O\nET9CCIkCCi7SMZQmSri0ckl4mwLFkzByGw27vP9yAPAkFmR7zy3OYfPnNydCbIiidHWtLrzviraC\nwo4Czv3hORzbe6wpkgYgVhE/Qkj38bOf/Qzvec97cM011+Daa6/F2NhY6NegLQTpGFKfSUGD/P2s\n3ef+vW5Xs2Ul05fxZP/gtHdc7SPMeHl9epQeLP/xsue9aBFBSHcQB1uIl156CS+99BLe+c534vXX\nX8fNN9+Mv/7rv8Y111yzdh/aQhCyil3KMDeQ87SXqJBchtcCfadIWxIc173UwxVvLvraK4gtBVOU\nhHQwqgrk80AqpX9Vg///futb34p3vvOdAIDLL78c27dvx4svvhh4XzMUXKRjKO8uo7+nv2m9L9Xn\nuc7KWkguqj+ywxALog/+wo6C435xd1yXids39b0JPUoPAD2y9cmdn8SXP/hlX3v5LaaPW1MCISRE\nVBUoFoFKBdA0/WuxGIroMpiZmcEPf/hDvPvd7w5tT4CCi3QQhR0FPPQbDzWImcGNgzj84cO+0nPm\nQvJzf3jO02NTSgoHv3VQ+sE/9oGxRHfuyawkvnrHV7H8x8vQ7tOw/MfLjmLLbi+/Jqic00hIB1Mq\nAQuWhqaFBX09BC5cuICPfOQjeOCBB/DmN785lD0NaHxKOoowzUatY3wGNw5ibnHO1WNXtBV85eRX\nmmrKjG5EQ8AdeuJQ055JcFwPc55Z2LPR4jY4nBASIrOS/8eydQ8sLS3hIx/5CAqFAvbu3Rt4PysU\nXIQIELnV9/f0oy/Vh6X6kqs9ZAX8c4tza+mty/ovw9ziHHqUHqxoK4lyXA9T3Ia5l8w5P6Wk1lK6\nhJCEks3qaUTRegA0TcPdd9+N7du34z/+x/8YaC8ZTCmSxBJlYbQoLXVp5RJWtBUMbhyEAmWtVskP\nh544tJZuBPSImBHZshMEUT7nTik0lzU8rGgrrOUiJOmUy0DG8v87k9HXA/CP//iPOHr0KL7zne/g\nxhtvxI033ojjx48H2tMKbSFIIrFGoIBw7RTsLCaM6wBoOkNQ7KwQonzOUb+eTtc2pxP3XLUHx88c\nD5ReVE+pOPBXB9Zc783QboKQeOHZFkJV9Zqt2Vk9slUuA4XoI9dBbSEouEhiMD6Y7fyfwvowdfKZ\nMq5jPpMCxdYHzA0KFNTvExuIBvWrsgobs5BptReWl9fNr/CTiWa715gQ0nri4MPlBvpwka7A3Opv\nR1iF0U4+XMZ1jE5G7T4NR/cedeX3lenLSG0h7LoTgxSDi6wS9j+6Hwe/dTC0+ZNusf5bOolUNx2G\nonRo2HYThBAShMCCS1GUtymK8neKovxEUZQfK4pyaHV9k6Io31YU5czq158LflzSrRx64pCr1F1Y\nH6aGD5esTkt0HUN8KVCk+/YoPRi/Y1xoC+HUnRhEQIhq0jRoePDkg7bzJzdt3GS7r5+6L7dzKs3Y\nCT+Z79aeq/aEajdBCCFBCCPCtQzgf9Y07RoAvwTg9xVFuQbAfwIwoWnaVQAmVr8nxDPqKdWVHYMC\nBZX5SmgF34UdBRy584j0Q1smNuwE0Iq2shatMRurGnMF7dJmQfyq7ASLbP4kALxWe036Wro1GLW+\nTm5HApmxe01lvlvHzxz3/BoTQkhUhF7DpSjKYwC+tPpnl6ZpLymK8lYAJzRNG7F7LGu4iAg/H9Jh\nFnyLap+A5oJ5L8X0fs9nV4dlh1+hA8jruNzUfYmK8b3WuvX39OOh33hI+jxZq0VIsumWGq5QBZei\nKHkAfw/gOgCzmqZdsbquAPhX43sZFFxEhNNQahlRdqM5iQ2zMEopqbZ3y6mnVOx/dL+v11EmXOyE\nztG9Rx0bHKyPkZ1tcOOgrdM/h18Tkmy6RXCFVjSvKMplAP4vAPdqmvaa+TZNV3XCn6aKohQVRTmp\nKMrJV155JazjkA7Cb11WlM7iTgXs5rFAdU0cZWml83lhRwG/t/P3murL+lJ9wvmTZrzWjm3auMlV\ng4NxltxADkf3HpXWvp1fPG+7j2iGZn9PP2u1CCGuuXjxIt71rnfhhhtuwLXXXov77rsv9GuEIrgU\nRemDLrZUTdMeXV2urqYSsfr1ZdFjNU0b1zRtp6ZpO6+88sowjkM6DKeOQS+F7SL8FH7LislF63Hp\nlvvyB7+81klp1DQd/vBhPPQbD611V1pFj12NmOjfpS/Vh3+9+K+uiuKtES2vr5Px77bv0X1NdWhx\nsrshhMSfdDqN73znO3juuefw7LPP4sknn8T3vve9UK8RRpeiAuAbAE5rmvbfTDd9E8CB1b8fAPBY\n0GuR7sToGBRZKWT6MijeXPRdTO628DsIdsXurXZ3N0feZu6dWRupY7W2cFNkXthRwIEbDqwJXiMt\nKIvoyfDTVehkE7JUX+KwakI6FLVaRX5yEqkTJ5CfnIRarQbeU1EUXHbZZQD0mYpLS0vQ5U14hBHh\n+mUA+wG8V1GUZ1f/7AHwOQC3KYpyBsCtq98T4ovCjgLO/eE5HNt7rEkQfPmDX27oRhvcOIiNvRux\n/9H9jiJG1uHm9GEtS3OJ1g3BaD03AN9iLyqhJhJkdmc48tyRtfo0DRqW68u+ruu1q9CNtYSRsu2U\nkUWEEF1sFaemUKnVoAGo1GooTk2FIrpWVlZw4403YsuWLbjtttvw7ne/O/iBTdBpnnQUXkfU+O1w\nC6NQ2+8e7RzDY8ZL52Nfqg+KothaUHjpKnTTSGEMAo/Da0UIkeOlaD4/OYlKrda0nkunMTM6Gsp5\nXn31Vdx555344he/iOuuu872nHSaJ12L14iV3/qqIJ5YBn6d4/1G5cLGbdF/j9KDwx8+jLtvutvW\nFNZLTZvTfY1/i7i8VoSQcJgViC27dT9cccUVeM973oMnn3wytD0BCi4Sc7ymg2QioDJfET7Wr3CS\npQm9RE28FN6bCTLix0qQdJsbgZTpy+DInUdQ2FHA8TPHbQeCexGron83c9ej8W9h934ghCSPbDrt\nad0tr7zyCl599VUAwOLiIr797W/j6quvDrSnFQouElv8FLTbiQDRY4MIJy/1TmESVtdj0IYBWZfi\n4MZB4WtpJwi9ilXRv9vRvUeh3ac1/FvIXhMFCmu5CEkg5eFhZFKN0iWTSqE8PBxo35deegnvec97\ncP311+MXf/EXcdttt+FDH/pQoD2tsIaLxBY/NU6i+ia3j201fuvHwqrhCqMOzYvzfZCaNT/u+sZj\nZYavcXovENLNeDU+VatVlKanMVurIZtOozw8jMLQUIQn1Alaw9UbyakICQE/qTPjg3jfo/s8P7bV\nZAeyQgHiFKkynqNfEWIQRmrSsJVwg6yA3S6VaBWXRhTOuLbo/tbXRZbGjNN7gRDinsLQUEsEVtgw\npUhii9/UWWFHYc3I04pTfVQrkRm6Xrh0wTHdZU1nAvBci9VqQ1Y/6VsvRe+yFKnIvw1ovfEsIaS7\noeAisSVIJ6Bo3AsAvFZ7LTa1OzJD17nFOU+1VH5rscLotPSK17o3L1E4mTgD0PLnSQghVii4SGwJ\n2gkoMuGMmwN5YUcBl/Vf1rTuxbrAr/VBGJ2WUeMlCicTZ+cXz7t6njRIJYRECWu4SKzxUiNkYER8\n4jA02g1ea6msdUoyiwM3z9PP69tKvNR92dXEOT1Pr7VihBDiFUa4SKwII8rgNPYlbrU7XqI4ovSh\nzEw0bs/TD16icEFSpDRIJYREDQUXiQ1hDZK2i+zEsXZHJhT2XLWnSXyKhIEGrUl0xfF5+sWu7sss\n0EsTJRy44YCvFKmdQSrTi4R0BysrK7jppptC998yoOAisSGsKIMsstOj9MSiRskaxQPQFMU5cMMB\nHHnuSJP4lKUPNWixrsWKApFAP/LcEZR3lz2b0dpFAyvzFdz12F0UXYR0OGNjY578wLxCwUViQ1gj\na2QO6FdsuAL7H93f1oiFLIoHoCGKc/zMcaH47FF6hPsaJp6tdr0PCz+p5DDTgDKLDoNLK5dw6IlD\nnvclhIRPVa1iMj+JE6kTmMxPoqpWA+959uxZfOtb38I999wTwgnFUHCR2BCWL5S57gfQnduX6kuY\nW5wLlKoMA7ciQSYyV7SVjrM48JtKDnOmpPU9I2Jucc7zvoSQcKmqVUwVp1Cr1AANqFVqmCpOBRZd\n9957Lz7/+c8jlYpOFlFwkdgQpi9UYUdhbT+R0/jC0kJbIhZuRYJMZBrpRiPS1aP04MANBxIX0TLj\nN1IVtnGrUStGCIkv06Vp1BcaO9DrC3VMl6Z97/k3f/M32LJlC26++eagx7OFgovEhrB9oZy6FecW\n51oe5XIrEuwK6Y88dwQr2goAPeJ15Lkjts8j7v5SfiNVURm3ypzpZeuEkNZRm615WnfDP/7jP+Kb\n3/wm8vk8PvrRj+I73/kO9u0Tj4cLAgUXiRVencjtcJNaalXbvyF6RDYOIpEgE5+y2i7Z8wir8zNK\nZOOW3IxwisK4dewDY+hL9TWs9aX6MPaBsUD7EkKCk86mPa274bOf/SzOnj2LmZkZPPLII3jve9+L\nY8eO+d5PBo1PScdiZwpq0AoTVKuppmHjYHQWygZPi8w69z+6X3gN2fOwS9d5ESan1FOYKE1gfnYe\nA9kB7C7vxo7CDtePl6GeUvFa7bWm9f6efleRqiiMW8MaDk4ICZ/h8jCmilMNacVUJoXh8nAbT+UO\nCi7SsYhcyq0ENQe1ur6LPphl3llGZ6EX7NzURcgEp5MQNXNKPYXHi49jaWEJADBfmcfjxccBILDo\nKk2UsFRfalq/vP/ytgqcuDvwE9KtDBWGAOi1XLXZGtLZNIbLw2vrQdm1axd27doVyl5WmFIkHYts\nOLSBm3ofu/on9ZSKux67qyFdJ/JrCrObbs9VezyZnMpsJGTrIiZKE2tiy2BpYQkTpQnXe8iwm39I\nCCEihgpDGJ0Zxa76LozOjIYmtqKGgot0PIvLi01rgxsHHet9nOqfDj1xCJdWLjU8RuTXFLSbzhB9\nymcUfOXkVxq6LhUotl2KRnG923UR87Pznta9EHanISGExBUKLtLRyDoVL+u/zDFlJKt/OvBXB5D6\nTErqy2RdD9JNZxZ9AJosLjRoOH7muPTxMl8pO78pKwPZAU/rXoiq05AQQuIGBRfpaIKk8+zMR0Xe\nXjKCdNM5WVvYnRNwFjRuLCN2l3ejL2Pp2sv0YXd5t+P5nYiq05AQQuIGi+ZJR+O1yNzNY50Q1Yz5\nLcJ2Iwztnotdx521e9I8Zsh8VqMwPoouReNaFFiEkE6HES7S0YgiPAoUVOYrjiagTvP1RITt1+Qk\nDEXpN9FwbJG3mReH9x2FHbh35l7cV78P987cG5rYIoSQboGCi3Q0ormKRjrQyQTUmu6y6/gz0mGH\nP3w41GiNTDACEKbfvBidhtk9SQghSSefz2PHjh248cYbsXPnztD3p+AiHY/hXp8byDXVXskiOkaU\nyDAaPbr3KI7ceURYD3XkziOhOOPLzm6tcTq69yi0+zTh9bxErdghSAghjfzd3/0dnn32WZw8eTL0\nvSm4SNfgNqIjixIBcFXgHfbsQi/jjrxErdghSAhJItWqisnJPE6cSGFyMo9qNT6jyuyg4CJdg2xm\nnwatQRg5jcMxix8ADeLq4LcOep5dGKZA8xK1YocgISRpVKsqpqaKqNUqADTUahVMTRVDEV2KouDW\nW2/FzTffjPHx8eCHtcAuRULQ2KHnNRJm7vKzGpMC9rML3XYKukU0zsguasUOQUJIkpieLqFeb/yF\nuF5fwPR0CUNDwX6Wffe738XWrVvx8ssv47bbbsPVV1+NX/u1Xwu0pxlGuEjX4DQuxhBGbqNEshmJ\nIvwMl/YDo1aEkE6mVhP/LJWte2Hr1q0AgC1btuDOO+/E97///cB7mqHgIl2Dm2Lw2flZ7Llqj/A2\n67qXbj7ZtaPoFPRS80UIIUkinRb/LJWtu+WNN97A66+/vvb3v/3bv8V1110XaE8rFFyka3Djq5Ud\nyEpH5VjX3XbzKVCEIk49pSKliP8LslOQEEKaGR4uI5Vq/DmeSmUwPBys2adareJXfuVXcMMNN+Bd\n73oXPvjBD+L2228PtKcVCi7SNYg8ucwYtU5uo05ujVE1aDjy3JGGYnijdks0RJqdgoQQImZoqICR\nkXGk0zkACtLpHEZGxgPXbw0PD+O5557Dc889hx//+McolfyVddhBwUW6CiPdpt2n4ejeo8JaJ7c1\nXFYBZ4e1LstuRuKBGw4wDUgIIRKGhgoYHZ3Brl11jI7OBBZbrYKCi3QtslonL/5Uxh7H9h5zjHaZ\nI2R2NVqylCYhhJDkQsFFiAU/nX5uol3Zgeya55asmxHgaB1CCOlEKLhIV+HWZNRPp59dtCvTl8Ge\nq/asmaLawYJ5QgjpPCi4SNfgZbBzEGQRsuNnjkvrtgxYME8IIZ0JBRfpGsIwGQ0SIbNLFdKklBBC\nOhuO9iFdgyyV57ZmKugYnuxAVniG3EBubS4jIYSQ9vDqq6/innvuwY9+9CMoioKHHnoIo6Ojoe3P\nCBfpCtRTapPvloHbmqmgETIv3Y+EEEJay6FDh3D77bfjhRdewHPPPYft27eHuj8FF+kKShMlYWeg\nAsW14Ak6hsfaydij9KwJtrDryMg6qqoin88jlUohn89DVflaE5Jkovg/PT8/j7//+7/H3XffDQDo\n7+/HFVdcEXhfMxRcpCuQiSINmuuaKbeGqHYUdhTWIl2Gy3xUxftE/8FcLBZRqVSgaRoqlQqKxSJF\nFyEJJar/0z/96U9x5ZVX4uMf/zhuuukm3HPPPXjjjTdCOrUOBRfpCmSiyI1LvEFYKcEwiveJO0ql\nEhYWLK/1wkIkYzsIIdET1f/p5eVl/OAHP8AnP/lJ/PCHP8Sb3vQmfO5znwu0pxUKLtIVhCGW/Bii\nigiamiTumZ2VvNaSdUJIvInq//S2bduwbds2vPvd7wYA/OZv/iZ+8IMfBNrTCrsUSVdgiKLSRAmz\n87PIDmRR3l32LJYKOwqBbRtk3Yo0PA2fbDaLSkXwWmf5WhOSRKL6P/2Wt7wFb3vb2zA1NYWRkRFM\nTEzgmmuuCbSnFUa4SNfgxz0+Ctit2DrK5TIyGctrncmgXO6M19qtLxwhnUKU/6e/+MUvolAo4Prr\nr8ezzz6LT3/604H3NMMIFyEtJqxoG3GmUFh9rUslzM7OIpvNolwur60nmaC+cIQkkSj/T9944404\nefJk4H1kKJomH6Lbanbu3KlF+WQJIaRTyD+Qp5Eu6QhOnz4duudVFIjOqSjKM5qm7XTzeKYUCYkQ\npnxIVLD5gpBkQcFFSES0alg26U7C8IUjhLQOCi5CIoJ+WyRK2HxBSLKg4CIkIpjyIVESli+cK1QV\nyOeBVEr/Sqf+7uD5p4E/LwL379W/Pv90u0+UaNilSEhE0G+LRE0YvnCOqCpQLAKGu3elon8PAB3Q\n7UkkPP808PiDwFJN/37+Ff17ALj+lvadK8EwwkVIRDDlQzqCUmldbBksLOjrpHOZUNfFlsFSTV/v\nQKampnDjjTeu/Xnzm9+MBx54INRrMMJFSETQb4skBVVV5b5GspEpHI+ULJ5/WhdL8+eAgc3AVTcD\nZ55Z/353oTFyNX9OvI9sPeGMjIzg2WefBQCsrKxg69atuPPOO0O9BgUXIRHSkpQPIQFQVRXFYnFt\nIHClUkFxNWVYKBSAbFZPI1rheKTkIEoPnnxy/XZRunBgs75uZWBztGd1wSn1FCZKE5ifncdAdgC7\ny7uxo7AjtP0nJibwC7/wC8jlcqHtCTClSAghXU2pVFoTWwYLCwsoGSnDchmwjFJBJqOvk2QgSg9a\nWaoBT3xj/fvdBaAv3XifvrS+3kZOqafwePFxzFfmAQ2Yr8zj8eLjOKWeCu0ajzzyCD72sY+Ftp8B\nI1yk61GrVZSmpzFbqyGbTqM8PIzC0FC7j0VIS5iVpAbX1ldTi6cOfR0TczdiHgMY2NiH3bge4cUU\nSKS4TQMuvq5Hw66/ZT3SZU5DWtOObWCiNIGlhaWGtaWFJUyUJkKJcl26dAnf/OY38dnPfjbwXlYo\nuEhXo1aruOuFF3BpdcRVpVbDXS+8AAAUXaQryGazqAhShllTyvAUrsfji7dhCfoH3fzcMh4vPg4A\noaZySETI0oMijKJ4s9Dae6jtQstgfnbe07pXnnjiCbzzne/EUAQ//5lSJF3NoTNn1sSWwSVNw6Ez\nZ9p0IkJaS7lcRsaSMsxkMiibUoZ2UYUm6N0UPkFfU1F6UIZRzzX/CvSc3er3Mfl3HMgOeFr3ysMP\nPxxJOhGg4CJdztzysqd1QjqNQqGA8fFx5HI5KIqCXC6H8fHx9S5FuI8qzP/DZ7Hy138W2w/rRGIU\nvAd5Ta+/Bbjjk8DAlQAU/atMgCmpWNtB7C7vRl+mr2GtL9OH3eXdgfd+44038O1vfxt79+4NvJcI\nphQJIaTLKRQKDQLLykB2QC9SFqwbVKsqBr77NHrqGxvvZHxYxyQllTjs/LC8vKbmuiyguXMR0EWY\nrLg+JnYQRgo7ii7FN73pTZibmwu8jwwKLtLVDPb0YG5lRbhOCNHZXd6Nx4uPN6QVrVGF6ekSfql2\no3gD04d1tapierqEWm0W6XQWw8NlDA3ROkVKVH5YsqL4CTW2dhAGOwo7Elk7yJQi6WrG/s2/QZ9l\nrW91nSQbVVWRz+eRSqWQz+ehcv6fb3YUduCO8TswkBvQM1K5AdwxfkfDh16tNotaelG8weqHdbWq\nYmqqiFqtAkBDrVbB1FQR1Sr/baTIhE4YAuj6W4D/MA7c/6j+9fpbYmsH0QlQcJGupjA0hMPbtyOX\nTkMBkEuncXj7dnYoJhzDzLNSqUDTtDUzT4ou/+wo7MC9M/fivvp9uHfm3qYIQzqdxfTwj7GSaqx/\nXEmtrH1f7zzsAAAgAElEQVRYT0+XUK83en7V6wuYnuaYICmygverbm5eC2PIuKje645PMiUcAopm\n6dBqJzt37tROnjzZ7mMQQhJOPp8XWh3kcjnMzMy0/kAdijk92Nu7CcvLr2FLdQuGp69FurYRtfRF\n1H7lFgz86v8CADhxIgVA9JmjYNeuekvPnij+5quNzvCALsLMQsg6ZBzQDWrHx2M/ZPz06dPYvn17\nu4/hiOiciqI8o2naTjePZ4SLENJxOJp5ksBY04PLy3NQFAVzP38R3xv9Nr73/mcxf9f+NbEF6FEw\nEbJ1Ar24/Zm/bV63OsNzyHjsoeAihHQcWcmcP9l6K1GrVeQnJ5E6cQL5yUmo1Wq7j+QLUXpQ0y6h\nt/cy7NpVx+joTFMx/PBwGalUo+dXKpXB8DDHBAkxOgk1SfTPcIYHOGQ8AVBwEUI6Djdmnu1ArVZR\nnJpCpVaDBn2yQXFqypXoilsTQK0m/iCXrQPA0FABIyPjSKdzABSk0zmMjIyzS1GGmxmIhj+W7JeJ\noL9kdJGR7Z//+Z/j2muvxXXXXYePfexjuHjxYqj7U3ARQjoON2aeBq0UMqXpaSzUG6MVC/U6StPT\nto+LYxOA3/Tg0FABo6Mz2L79KADg9On9mJzMu+pUrFZVTE7mceJEyvVjEo0b6wfjPlEMGQ/DdDUh\nvPjii/jCF76AkydP4kc/+hFWVlbwyCOPhHoNCi5CSEdSKBQwMzODer2OmZkZqdhqpZCZrVmiFU89\nBXz0o6j88i9j8+bN2Lx5s1D4lUolLFjqcxYWFlBqY31OkPSgH3uIrrSUcGP9YNynUNAL5HM5QFH0\nr0EL5u1MV9tJRFG35eVlLC4uYnl5GQsLC/j5n//5UPY1oOAihHQtrRYy2bSpvf+pp4A//VOgWgU0\nDXNzc5ibmxMKvzg2AQRJD/qxh+hKSwmnGYhWf6xCAZiZAep1/WvQ7sSoTFeDEFHUbevWrfjUpz6F\nbDaLt771rRgYGMD73ve+cM68CgUXISTR2KUEndKFrRYy5eFhZFKrP3a//nXAGvEyYRZ+fpoArM/9\n4MGDoadOjfSgrEhehp/6Lz+PaSt2URi3ERqrJ9bGy/U/rfLHitJ01S8RRd3+9V//FY899hh++tOf\n4l/+5V/wxhtv4NixY4H2tMLRPoSQlqKqKkqlEmZnZ5HNZlEul23n+Nk9DgCKxeJalMqIDBnIbjOu\nl81mhX5dUXUzGoa6pelpVF5+2fH+hvArl8sNzwWwbwIwUqXm5/7ggw+u3S56LVpJOp1dTQ02r4f5\nmLZhnVNoRGEMZLeJxJN1BmIYZzPG+Wy8TF9bvLA+2sd8rd0F8bzFdrrORxR1e+qpp/D2t78dV155\nJQBg7969+Kd/+ifs27cv0L5mGOEihLQMvzVTsscdOnRImhJ0ky50083oFCXzWnRfGBrCzOgoci5E\nnSH8vDQBAOJUqZV21oD5qf8aHNzjaT0S3Eam7KIw7ayLsqbjFl/X/8hSc3F0nY8o6pbNZvG9730P\nCwsL0DQNExMToZux0mmeENIy/DrAb968GXNzc66voygKAED0801RFNRNnYJ2ETdrpAjQBZkhdpxu\nt0P0WCuDg4MYGxvzHIVKpVLC527F+lq0Eq9DrCcn85IIVw6jozMRnnQVa9QKaHZ7N7h/L2SO+jqS\n2+5/NJyzyvjzongwtZmBK/W5ii3Ek9O8l38Hj9x33334y7/8S/T29uKmm27C17/+daRNdZdBneYp\nuAghLcMQQqJ12Qe/qqqew/q5XA4AAo/3cRKIQUcImcXepk2bcPHiRbzxxhsN93Er4Nyc2+8540Db\nxwLJxIpIoNjdF3C3jzn1J0r3eeX5p4FHH3B334ErG68X9lkseB7tE/F5ZHC0DyEkEaiqKhVcmzZt\nkj7OLu01ODgoTQmGYX7qVFQftOjebF1x7tw5bN7cnBbxk/oTPXcRe/a0MB0XkLaPBfJSOyTqLjRq\nn+xuMxB14j36APAnv+OvG8/Yzy3m9GLYZwmD62/Rxen9j+pfEzJYm4KLENISSqWSNM31+uuvS2uf\n7MTL2NiYtLbJa92TCKfuwDBGCJlrwGRRKa9dk9bn3tPTI7zf8ePHPe3bTto+FshL7ZBd7ZObuiiZ\nw/zi6/4sENw41luxqzkLcpYuhilFQkhLcKorkqW3ZOmxwcFBnDsXrR9QlDVcsv1FBE39yV77dtZw\n+cFr3VeoRFg71IS0BmwVWZ2VLNXmtJ8Uu5ozh7N4wHNKsU0wpUgISQROUR9ZFEeWGhwbGwvtbDKc\nomRBo2huugnDmAEZ52HeXvDr+xUKrezYc+q4E6Ux7VJ/hv2Dn3P4OQsRQsFFCGkJTnVFsg9/Q9QM\nDg6urW3cuNH3OTzbODiMCCoUCiiXy8hms5idnUWpVHJtKmqXKvSbBhUR12HeiaNVtUNODvMiEWSX\n+ru0CKTEaWUAupmqXc2ZHe00QU0YFFyEkJYgEk4Gbj78FxcX1/4+Nzfna+ZhGLMTRQ7ufveUicxc\nLmc7A9IrYdSztYKuG04tw4imbby8+TaZ8ahdpGllGUhn5Pt94G77mjPR4wzaaYKaMFjDRQhpOV7d\n5oPaL4S1j6jmSlEUYX2Umz2D1oB1EsZwavO8xFQq43o+Y8fi1gLB0WNr1efLj6WCqH4NAHbeDnzo\n33p+SlbiUsM1NjaGr33ta9A0DZ/4xCdw7733NtwetIaLo30IIS3H6CJ0ix/7BZGo87qPdY8LFy40\n1VzJfml101lovAalUgmVSgU9PT0NNhDdJLrshlN3teCyjvYx3O7NggkALl2038dI/fkZFWTc306o\ntckbKyx+9KMf4Wtf+xq+//3vo7+/H7fffjs+9KEP4R3veEdo12BKkRASe7wWfctShzK/L9E+oj28\nuN1rmua6RsyosVpZWQEAX6nOpJO44dTtQFQY/9iXgL/+4uqIHhuuujnYte3q11rs1aVCRR55pJBC\nHnmoCP7/5PTp03j3u9+NTCaD3t5e3HLLLXj00XCd/ym4CCGxwK6Y3WvRt2yOovE4N/u46SA0kBm6\nuhVObuY+djptNzZNAqLC+JVloL7i/Ngzz0RzJqClXl0qVBRRRAUVaNBQQQVFFAOLruuuuw7/8A//\ngLm5OSwsLOD48eP42c9+FtKpdSi4CCEtwU5QORWzey36lqXzzp8/73oft2ajmUwGv/d7v7c2TsiK\nG+Fkl+r02lWZVNpubJoEglgw2D3W7VBuP3uHPJi7hBIWYPnlBAsoIdgvJ9u3b8cf/dEf4X3vex9u\nv/123HjjjVLDYL+waJ4QEjlOxeFhFcUbhLGfm3mEuVyuoeDfr8Gonbnr4uJi1xTVt8zYNKn1Rm6G\nT8uwM0sNaujqtmBfgpei+RRS0ARGrAoU1BGeie+nP/1pbNu2DQcPHrQ9J41PCSGxQpYyO3ToEAB5\nhKdSqfiK6IThO+XkG2aIN7PwkdWUOdVzyc4LoKtSjS0xNhXVGyVlRI3In6un195jC5BbSQDidKDX\nqJQf3zCfZCGp55Sse+Hll18GoP88evTRR/Hbv/3bgfc0Q8FFCIkcmaCam5uDqqq2jud+isfD8J3y\n4xtmJ9Ls6rlk5z1//rxwLy+zFbslJemaMARGuxC53d90q+6xZbDxct2uwa0jvpeh3LLUox/fMJ+U\nUUYGll9OkEEZwVPPH/nIR3DNNdfgjjvuwF/8xV/giiuuCLynGaYUCSGRY5eeM9JydjMFjft48e4K\nEy++YcZ9Zc/XywxIL6lR0RkBdIzPV2jpRulcQfu0VyyJMh1oTUG6vZaPdK1XHy4VKkooYRazyCKL\nMsooIPr3c9CUIgUXISRyVFXFvn37hLcZ9U129wF0oZAk4WA3rPvYsWO+h1uLnrfsfhs3bhRaWQQd\nht1q3JqiuhJlbgVGEgjjubgVUhG+bnExPnWCNVyEkNhTKBSEqTlgve6pUChIO/0MQ1Azcatlsqbu\nZJ5fAFyf221qVFYjJ/MN85KSjAN2pqgGhiir1SoANNRqFUxNFZvHA4nqjUJOe7UML+lAGdffAtzw\nHkBZlQNKSv/eGrWSFcVzeLVrKLgIIS1hbGzMsZBdVjxuGIJaiYtwENlavPbaa9L7ezm30/Bsr/sB\n8uL+uOLGFFUmyv75nw81PkhUB+UlBRcnZMXoXorUn38aeO7vAG21w0+r698b9VlGBMzrGTwSp2yb\niDDOR8FFCAkdUaG2m2iN7D6yyFdchIMowrS0tIRUSvwjdtOmTaEWssteh8HBwcDdmnHAjSmqTJSt\nrMw1R7nsXNOTRBjROqcmApmpqZ9rSdiwYQPm5uZiK7o0TcPc3Bw2bNgQaB/OUiSEhIq1nsjozgPc\nzVCU3UdUoxQX4SCLMNXr9abas/7+frz22mtr6T7z6wPAV2OAqOkgk8lgbGzM854t88LywPBwWVjD\nZTZFTaezq+nEZjpqHqO1KP2G9+gu8n49xZzSknYpw5Aig9u2bcPZs2fxyis+PcZawIYNG7Bt27ZA\ne7BonhDiG1FnnKxDz6lQ26kT0E2noJduwiCPsWLXTWjtrrxw4YKwtiqoyWkYz8NtcXo7cBKC1aqK\n06dlTRcKdu0KzxSzbYTRlWjFqRjeztR04MrkmMZGBLsUCSGRI+uMk1k72Lmtu+3GEz3OEBmbNm3C\n66+/jkuXLjnuYbZuUBSlIZXhp/vx4MGD+MpXvuJqH7vuRRGt7CicnMwLo0TpdA6jo605QxC++93N\nWF5uFrNJOb8jUXQKOok40e1mggq+hMMuRUJI5Mg642Tzx+zqrfwMb7YWqs/NzTWILdke5scBzcWw\nXrsfVVXFkSNHGvZRFAUHDhwQijavdWetbAxwU5weZ666aqyz5zGG0ZVoxamJoOF2AUkxjY0BjHAR\nQnxhF6nxGjWy20u27mbWoXEWc2TNzeOcZh+6OYcsMhVnz6w4Rbj81pLFsQYtNNrtIdZJprEhwQgX\nIUlCVYF8Hkil9K8JGb1iF6kxi6TBwUHHFJ1sL0VRmjr4jA5IN2JLtLebiJGXKJRsP9m6rBPTjW1G\n1AwPl2MRIXLtqSXAPI9xeLiM6ekSTpxIYXIy7+rxscZtV6JsBE9QwrChsCOqc8cECi5C2omqAsUi\nUKkAmqZ/LRYTIbqchjsbLC4uOt5nz549wnVN0xrSe9Z0oBMiweJGTF24cMG1VYNsP7vriLy1wpj/\nGJShoQJGRsaRTucAKEinc20pmHdjdOpEENEWW9x4iIU5nNsqgK66OTrT2CQPFXcJU4qEtJN8XhdZ\nVnI5IAGjV5zmBhrYpcVEKTYz5vSeU2Srr68Pb37zm3H+/HnbTka76xm4LZ53KvgPo3swVHzMums1\nJ06kIEtdiboNRWlE/ft4pEdbiiztuPFy4I/+u/t9ZMX0QW0ovJ475iOXmFIkJCnI0lsxcVB3wojU\nyIxJDezSeKKCeTPmSJHdPrlcDocPH8a5c+dsXdlFkSTR2CG3xfN2kSmRA32xWHQdPRMZyAYiIVEE\nN0anBrJIlsyTKykNAL6RFdAvvu7t31lmiHrmmWhMY6NoCIgZoQguRVEeUhTlZUVRfmRa26QoyrcV\nRTmz+vXnwrgWIR2FLO0UEwd1tzilF+3Sa3YiypoSlO1jRNDcRo6sKb3z5897PpvdfsY5/HRfGgQV\na0KcXMVjgptasmpVxeRkHqdP7xOmHwFxt6xMzHUMdvVUT3zD/T6tFkAbLxOvh1UfFgPCinD97wBu\nt6z9JwATmqZdBWBi9XtCiJlyGbAKlUxGX08QRpRHFClyKvy2E2NWawXZrEXR/l6iQ37qsNzgtaDe\njFex5ur5JiSK4FRL1hjVkrESiwaAlmNXT+UlyhV1gbyZ558GLglqPVM9yRwqLiEUwaVp2t8DsP6K\n+BsAjqz+/QiAD4dxLUI6ikIBGB8HzEJl48b2nScAhUIB586dw7FjxzwVfttFx44cOdIgHNwWlnuN\nDonO0NfXhwsXLgRK5wURcl7Emuvn28oP0YCYuw1HR2caCvdFRfVWDJHW7gaAlnP9LXq9lgy30cww\n5jS6ZUIFVpab19OZ2NUXBiHKGq4hTdNeWv37/wAwFOG1CFkniTYL5k6+ubnEdCqKkKXX7O4/Pj4u\nNEwVRXTc7O81OmQVcoODg1AUZW2grt90npeInBWZKEulUk0i0PXzbeWHqAQjFRjEqsGpDsuIZNmJ\nto7mA3fLb3MbzXTTERkW0rqzC+Ffq420pGhe01shhe2QiqIUFUU5qSjKyTgPriQJIYk2C6USYC0a\nX1jQ17uEQqGAlZUV4W1uLSAAZ48uu1SeWchddtllrlzrnQhi9SCL/K2srDSJQNfRsFZ+iAoIy6rB\nrg6rayJZdthFubxEM6+/RRfjA5t1UTShRtNgkaDIaxCiFFxVRVHeCgCrX18W3UnTtHFN03Zqmrbz\nyislowMIcUsSxUvCOxXDQjYSyLouq1Vy49HltiYrSO2V9Zz79+8HABw9etRzYb9ZrNlFAD2lLq+/\nJZouMxeE4a8FyIvqt28/1l2RLDuu/WXx+lU3u9+jVV2tMYi8toIoBdc3ARxY/fsBAI9FeC3SacjS\ngk7pwjDES6tTkjIRkEolKy0aEFmEy7xuV6vkZC/hxbU9aBF9WB2G5qibbNTQ7OxsoNRlKwlzVqOi\nrNc69vYOMqpl5cwz3tZFtKqrtc2R11YRli3EwwAmAYwoinJWUZS7AXwOwG2KopwBcOvq94Q4I0sL\nHjzYvL5/v75u4NdmwRBZiqLv2cqUpKhTEQBWVpKTFg0BmZeXed2uVsnJo8uLa3tQARPEDkKGnQiM\ng0u9G7z4a8kw0pIrK+tzJ+t152kGXUcYHamt7GptY+S1VYTVpfgxTdPeqmlan6Zp2zRN+4amaXOa\npu3WNO0qTdNu1TRNbHRDiBVZWnB8vHld04CvfGVdjPixWTALPGNP67WjTEkanYq5nC74FKX5PnFP\ni4aAG5Fjl+rz4tHlZKEQVMDIzlmpVHwbmTq9Pl6bFdpBGLMaw0pLtpxWzwkMoy6qS2qrWgWd5kn8\nkEUqJCknaNq6GLGKl1xO/97uw0ck8NyeKSwKBX2Uz9GjzYKvVWdoM25Ejl2Ux21Uym26L4iAsRvG\n7TfNmJQolh1hzGoMMy3ZMkS1UI8+APzNV6O7Zhh1UV1SW9UqOEuRxI/Nm3VrBCs9PXLRpSiApMbF\nkVRKLnIMWjHbUFWBAwfkzzEh8xWjxM3cwkOHDmFu9f0zODiIsbGxBlEi62K0m/cYxjkVRYHo522Y\n140T1aqKf/7nQ2upv97eQVx11VjgOqvJyXzyZiTK5gQCwN57o0ufhTE3MwGzN9uJl1mKvVEfhhDX\nqCpw6JBYbAHArl3Ad74jFkdBHMGzWfEAaYNWOL8baU2Z2AIS5z4fBeaRObJh0IsmT7O5uTkUi8WG\nx4bRgejnnH6sKpJKtari9OmPA1haW1tensMLL9wFAIFE1/BwGVNTxYa0Yuwd5O1qnibU6ATM9bcE\n3zuMPQgARrhIXDAEh11qL5cD9uzRa7bM79tMxjlt6PXaiqJfI5fThU7UaZt83l70DQ4C5+I1fiWO\nuIletSLC5fdsnYIsCgWEE4mqVlVMT5dQq80inc6umZzGFrsIFxS9UNwLSYk6Wc951c16l2Tcz+0B\nLxEu1nCReOC2jurLX9brnLzUaDkhqvsyaqlmZqIXW4B9fVYmA4yNRX+GDsBN9KpdFgpJsW4IA7t6\nqjBqrRLnIG9X8+S1AL1V3lhBEZ3z5JPRnbvVTQk+oOAirUXmceUmrRJwkLCtv5ZRtF6vt05kmZE9\nt56e4IKyi3Djn+W1+NzLEGw7OqHo3S32Ng8pX+N8Es31twA7b29e91OA3ipvrKA88Y3mc1oJ49zP\nPw38ye/oTQgxF6FMKZLWIUrd9fcDl18ur9sy6OsDDh/W/27dw01KUXTtoKnIMIn7+RKCU1F9u/fr\nFkQ1XGZSqUx3GpWGkQq8fy/Ek/J8pCaDIk0ZehnTF+DcRhRNJuwGrtQ9vSKEKUUST0Rpw0uXnMXW\n4KAutgoF/6N74j7yx4+dBWnCbRTJbdQqCgPTJOJ14PTQUAHbtx9GT8+g8PZE+GZFQRjmnnHxxrJN\nGXogyLlF0T4zURi0BoCCi7QOL91YuRxw7JheR3Xu3Lrw8Du6JwnzCtud1uwQnPyzvIzdcaoJCyvd\nGNY+UeB34PTQUAG/+qvnAAiMfOG9lsur6OtY2umNZa6T+qsvOKcMnQh6bidBFTODVgouEi3muqmU\ny7ebosgFh9/RPX4fRzoOL1Eru5qwsOYlhrVPVAR1dg9znI9X0deRWOcObrwc6O0HHh2LtljcGtHS\nfPge9qXDnZdoJ6hiaNBKwUWiwzoT0c5jyoydCPIzuifI40hktCuq48WHy66zMKx0Y9zTlm6c3e2i\nT37H+Zj3PH36QDLH+USFkZrc+X5g8XX9T9TF4k7pOyf60rrACnNeoijaB+giNIbDrym4SHS4sXqw\nRr36+oALF8SdhID/WifWSMWKdkZ13HQyGtjVhIVloNoKI9YgOEWonKJPfsb5WPcExL+sxXqcT9Q8\n/7ReM2Ulqo7FIPVQYUSzgGbrB6Ax2jdwpe7c/0f/PXZiC2CXIgkLVdUF1uysHqEql4H9+51H5gwO\nApddpj9u0ybg9df1QnqDMExNreeiyGo77TQBDavzMKznEHdDVEP8WJ3dDdEUxagdO+PUsK6ReMI2\nU/V7PWV1NJoXY1M/3ZqijkQjatZGccXRPqS1WC0NKhXg4x9fd2u34/z5dQf1fL65Y9HoJPQjkkTn\nWh3zQtHVXtoZ1XEzHsgN5XJZKNy8GpmGtU9UGJEombN7FMOk3Tw29uN8osYu4hRFsfjuQjiC5/mn\ngce+BKws69/Pv6J/D9jvY+c/FsNolgimFElwRKnDpSV3w6TNaRzZh61o5I2diandufxYQbi5FvGE\nl7ReFFg7GW/FrZjMT+JE6gQm85OoqlVXe4RhZJoEQ1Q7Z/cwiuLdP7YHbtOSHY+dqIqiWNxarG9N\nE7p1en/iG+tiy2BlWV+3QyYwY2b9YAdTiiQ4qZRzJEuENV0omyeoKPqoHeN+bk1CZedSFHdi0Mu1\niCcOHjyIBx98sGn9k5/8JL785S+39CxVtYqp4hTqC+vviVQmhZHxEQwVhlp6liTilHL0M/ewWlXx\nwgt3QdPWywsUpR9XX/1Qd4ssMzLTz523Ax/6t/E4C6ALM3PK8P475fvc/1fy22QpzRaYm9pB41PS\nWrxEJeyK1stl/TYrmrYelVJV4MABd5GrMKwgZFGyAwcY8QrA8ePHPa1HyXRpukFsAUB9oY7p0nTL\nzxIrXEYs7Irig9g5WIMBmnYJp0/vC+zB1TF+XqKI0957Wy+2APsOxrA6J9vpPxYSFFwkOCLLBRG5\nnL2xZ6Egj5TNzq5Hm2T2EtaUpJMVhJtUoSzNubKin9WoCzMem7T0Y5vOG6fOvNqs+INCtt4VeByQ\nLEs5+vXw0m8XjwUK4sHVcX5eYTjXh4FTWs/cObnxcvF9ZOsG7fIfCxEKLhIcq+XC4KA+I9GMW8+r\nXE68vmmTs82ENXJlZwVh9QizCifZniKM6JrbPeOCj/OG5Z3V7houM+mswMfHZr0rCGlAst+Ceqfb\n/XpwBTVx7XpkUU83RfqGKPvA3UCqp/G2VI++7oQhMPceApYvtcZ/LEQouEg4mMfSnDsHPPSQP8+r\ncln34rLy+uvi+i4zFy6IfbtEUTW3BfVuo3ezs/Gf12jF43nD9M6yMxT1g5MQtLt9uDyMVKbxR2Eq\nk8JwedjXWToCnwXK1nRdb+8m4f2cCurdFNz76YKMoqOya7CLesoMSM0Youz6W4AP/0FjKvTDf+At\nOhfSLwSthoKLRIPfuYCFAvDmNzevX7oE9PQ0r5uZm3MfUbLriDSn2IDGKJnsDNlsMuY1mvF43jAd\n0cPszHMSgk63DxWGMDI+gnQuDShAOpeWFsxX1arnbsZE4mNAsihdt7z8GhSlMdrtxs5B5E5vxU8X\nZBQdlV2DTOT81Rf0tF5vvzwtaK21uv4W/fuBzbqIn1C9RacS2rHILkUSP+y6HjMZZ/d6o1bMDruO\nSPO1rR2Jdl2LpZJ4TzfnaQey10By3lQq1VTIDACKoqDutuszApyMQ8MyFu2qbkYfJpMys9KenkH0\n9l7mqUsRgKm7sQJ9APb6e8/cBekFp45KYsP9e2H+NxBivEcAe2NTu/eX02OBWHUsskuRxAO/Bdmy\nOh4jNWlEm2S4iSiJUoUio1Zris2oCxscXF/buFG+Z5znNXo8b5zqrszYFeCrqioUW3aPk9FV3YxO\nnktWnn8aN50YwS0nfgO/NPk+bKluXbtpZeW81MPLjvVCfA3btx/1NBrIbk+vY4bIKm7qtMxGpHbF\n/LJo2RPfcNeskdCORQouEg1BCsjthIA5VSkrsHcjAEQF9XYdklYWF9f/bqQygWTNa/Q4XzLsuquw\nkAm+TZs2oWj8u3h4nIyu62Z02wG3Gq3YUMtAgYINtQxGpm5aE11hpOvsjFcN3No9uNmLCHBTpwW4\nS+vJ7rP4urvaLK+/EMQEphRJNHhMVzXhZgaiKL0H6NGnsTHvQsftmYM+twSjqmrgkThRnEk0Gmfj\nxo2Ys46KMt3utWZsMj+JWqVZXKVzaYzOjHo/eKcgSe9cTC/g+7/83ZZEkJgqbBHmGYiKAmiCUgI3\naT3bOZAiIpgNGRJMKZL2E7SA3E3RvSi9B3grnjfjNsUWZXF8zH28rCNxwhRbfi0nZAX458+flz7G\nT4E+uxklSKIV6drGlgke2j20CHPU885/L454zb/i7IslSwnKiu6jmA3ZBii4SDRsEreDe3J5d0Oh\nAFx2WfO6HzsGtym2MBzsRagqcNddjWnYu+6KneiKgqCWEyIhKEsZ5nI5X0KxoZsRAHrWa7jcdiuG\n5WMWKyQfhsrAlpZFl2j30AYa0noWnHyxRCnBG94jvm8CarPcQsFFwkdVdd8sK3190RSQhxlxchNZ\ni7gMCC0AACAASURBVKo4/tAh3f7CzKVL+nqHE6blhEEUNWdDhaH1SNfqwINapYap4pSj6ArTx8wL\nkY+yiUEBM+0eJLgdKO0XI+IlEl1OvlhmE9NLF4GTT64amZrYeLm32qyYZwgouEj4lErNwgHQ/bWi\nqPeJKuIkw2OxuWsk9UbS9Q5C1jFYqVR8C5Iwvb7M+O1WjEJUOtGSUTYxKGAW+Xa58fvqaDyOZwqE\nX18s44xWoWXQv8H+fWQWlP+lAPy3P471pA8KLhI+ssiSTU1NE15+U4nSjkF2DmskDAA2b9YFmKLo\nf4/Rf/S4Y9cx6CYKJEvVRVFz5rdbUS4qZyN7q7SstqnNM/1o97CKWYD81Rcid2M3fjzOvOrdKBeA\n/dBrwF6wWQXl8gLw/muA69YtSeI26YOCi4RP0IiTV0uJqCJObs9h1F6ZI1Fzc8DHP+5NdFmL/53W\nOwhR+s/AKQrU6lSd39mLclGZjewX8aTXNq2nQxWcONGLEycUaVq06+0erAJE1EEIhObGbv7x+OmJ\nAt645COt7HQWO8EmEmv9vcDuaxvXYjTpg4KLhE/QiJOfmYR+RwmFcQ5ZCnVpydtvV2NjzXMk+/r0\n9Q7HSP/JqFQq0mLzVqfq/HYrikVlBkA5sl/Ek1zb1JgOBYyiuUjSop2AU7TIIKSOP/OPx4d/dAs+\n8fgnMfPqlahrHtLKdmdxEmwysTawsfH7Nhszm6HgIuETNOIUl5mEbs9hdy5jNqOb8EWhABw+3Pi6\nHT4cX+PUkCkUCshJzGwVRZFGsOyc5qPAy+xFM+uiUk976V/HARRWzxv+WZNc2yRKhxrQ8kGAm8hV\niM0M1vfrwz+6BW8fG0fv/+ohrby7AKQE82ndFMvLxNq8yZQ6ZpM+KLhINASJOLW6CD7oOZzO5aV4\nM4pIXQxwa4cgigIpitI0w9EcwWrHyKGhwhBGZ0axq74LozOjrmcp6qJyBkAdwAwMsQVE8/ZOcm2T\nU9ozKWnRliETIEoKUTQzhPZj2jqmracX+MDdzucUdccqPcBzL8d20gcFF4kfcZlJ6PYc5TLQ32+/\nV8yKN1uJlxorUWehbBqGEcGK68ghGa1+eyextklPF9p/PPlNi0Zuk9EuZPYcd/77SJoZQnkfT6jA\nynLj2sqyu8J+UXfsnX8A/N0PY/sLK0f7kHjiZrRPu89hvm3TJqBWAy5ckO+lKPoPgi4jn88LB0jn\ncjnMuBiF5ObxcRw5ZEdc3t5xRDSmx4rfsT0dPwLIPHpnYLMuwiLsGA38Pr5/LwCRBonvKB8rXkb7\nUHAR4gfRHMe+Pt1rTOab1QWzFkWkUilplCqXyzmKJNmsxDA8tUj8mJzMmwrlm0mncxgeLvsSSLK9\n0+kcRkdnPO9HAiKbqehmHqNBi0WmFc5SJCRqRB2MS0tysRWz4s1WIqulsiuENxOVgSmJJ/LaLAW7\ndmmB0qJJt8noOIJOKWiluWsIUHAR4gcvLWXW4s2Yj58IGz+F8FaiHJpN4kWUVhbyPVKdU8uVJIJO\nKRBZYYRs7homFFyE+MFLK465eNOrqWsH4KcQPg505KDpOLPqkv5L//dN+KXJ92NLdd0xPCwrC5FN\nhs4Kvb3aRZApBX5HCrUJCi7SGQSNGnl9vKhFxw1+TF07AGuESua3lc1mYyF02jVouvkcXRIMNaWG\nFAAbahsxMvVObKluC9XKwrDJAJq9n6L09lKrVeQnJ5E6cQL5yUmoVftB58QBY4SRsOAeoZm7hg0F\nF0k+QaNGfh5vNXe1eskYvOlNjd8Luu1s18MmJp/gMiuHPXv2xELotGPQtJWuCoYKUkM99R5c8y8f\nCN3KQt9L3C1sV6zvF7VaRXFqCpVaDRqASq2G4tQURZdfGuq2BIRo7ho2FFwk+QSNGvl9vNmk9OhR\noEfgmHzpUuMnpOg+duthEqNPcFkh/PHjx9sudIDWu9eL6KpgaItTQ/JaLiX0tGJpehoLFjuYhXod\npenpUK/TNdiNMArZ3DVsKLhI8pF9CFYqzpEcVZVHl7x8uBYKwBVXNK9b5ymurIgfb16PKgol+wTf\nt68t0S5RIXwchA7QHvd6K3GZcNUSZCmgiFJDej2YKCqthZ5WnK2JxYFsPfEY6b779+pfw+4YlIpw\nJXRz17Ch4CLJx+5D0C6SY0R8/Owr4vx58br5E1JSu7S2HmUUymnmYwzyVXEQOkA83Ou9jk6JSbbY\nH0HtATyipxXF9T9hW0Rk02lP64mmFTYNLRbnYULBRZKPmwJ2US5GFPEx8OOb5eYT0mkeRpR5JCfR\nEoN8VRyEDhAP7y8vo1NilC32R1B7AB/o8yVF643/T4KOAioPDyOTavyozaRSKA8PeztwEmiFTUOL\nxXmYUHCR5GMtYJdhjfDYRXz8DD118wlpPavVoyvKPJIbYdrmfFUrhY5TN2S7vb+c3ipmOqLeK4g9\ngA9EFhFW+wljFJBeTK+hVqu4to8whNrW02/FY6kC/qeeE1AA5NJpjI+MoDDkbuB5omhFLV4bxHlY\ncLQP6TzyeXFdlnW0jtv7eSHocLEoziQ6n6xurUvGD6mqirvuKuLSpXWV0t+fwUMPJdPBPpXSI1tW\nunR8p2uqVRXT0yXUarNIp7NNI4P8jgLq+JmNMsIY1ZMwONqHdDduczGhjLu3YO5clE2rtyu2ieJM\novMdOxbtdWLOoUOlBrEFAJcuLeDQoSSFhNbxWu+VFIKm84LidxTQ9HSpafh2lD5fseGqm72tdxkU\nXCSZ2IkWt7kYLzmbMM9tV2zTqjO147nHiLk58QembD3uRK3T20GQdJ7f/U+f3o8TJ5Q1ced3zFDX\nzmw884y39ZBQT6nIP5BH6jMp5B/IQz0Vz+JFCi6SPOxEiyHE9u/X73v0qDzSBDRHpIBwWr1kgtBN\nsY2bKFkYtOo6sUT2gZnMkFDH6GeTpcDA4f8Dm1/6uYabRVEiv1EwURTK6Fw0xN3g4B4oSn/DPRSl\n33HMUJTzIGNNG0btqKdUFB8vojJfgQYNlfkKio8XYym6KLhI8pCJlkOHWu8473Ufp6L4RPf2J4fB\nwTIAawNBZnU9mbjVzypU5JFHCinkkYeKmLzHLJYCGy72Y2TqpoaZikBjlChIFMwp2lSvL6Ba/T+b\n5n66qXt2U5DfkbTBsqE0UcLCksUseWkBpYn4pW8puEjykImWubn2OM572ceu2Cbxvf3JYWysgL6+\ncQA56AaYOfT1jWNsLGkhIW+oUFFEERWsRgNQQRHFeIgu4XifXgxPX9uwZo4SBamVchNtWlmZA7Bk\nWV1y3N+Y2ahbTyihzoOMNa20bFiNhk6/eiN+qr0PH9MahfnsfPzStxRcJFmoqh798YJbq4OwLBns\n9rErtumI3v5kUCgAhw8XkMvNQFHqyOVmcPhwIXkpOI+UUMICLNEALKCEGLzHJGmndG3j2t+tUaIg\ntVKiKJRb3Ow/NFTA6OgMdu2qhz4PMra0yrLBFA1NQUEeGXwNNzWIruxA/NK3ve0+ACGuMSJAovE4\nmQywcaMe5bLitlUrmxXbJXht9bLbx/hEF1lHGHVnVjpylkv7KRQSWOMUkFlIRidJ1lvKwGahpUBt\nwxL0KFGzbUM6nZXYNjj/nzX20W0hKtAjnevpwlQqg1RqI5aXm3+mdHwtVhCuvyV6TyxBNPRN6MX/\nhmvxMF5Epi+D8u74pW8Z4SLJQeYM39OjVwiPjQVr1RJFn/r7gQsXvNVUObWMyQr1ZbUhSe/tJ7Eh\nK2kKkK23FEk6asOeP5RGiYLWSq1HoTRs3360KQV41VVj3VmLFXck0dAsNiI3kMP4HeMo7Ijfb1OM\ncJHkIIv01OuNoQo3xqN2BqXG+qZNwGuvrUfNjJoqwD40YhfFEp2jWAx3xBAhEsooo4hiQ1oxgwzK\niMF7zIiKTKj6B+rAZl2E2URLGqNUYvNStwwNFaSPC2N/EiKSaGhqYAtm7p1p/XlcQqd5khzCcmEX\niZxMprmP3ul6QV3l7a5hXMc8YzHIdQhZRYWKEkqYxSyyyKKMMgrg+6mdODnee71fInn+afdi26jh\nMqcV+9JtGfHjxWmegoskB7dCyQm3wk02LwUABgf16NeSqYPJz1mcZrKoKnDXXcClS+u39fcDDz1E\n0UVIB+B2DFBHjwvyI6C8CLQIoeAinUvQqJKqAvv2iW+zDp6ziz7J8BptcxJ/mzeLGwEGB4Fz0ZkJ\nEkLCRRadcjOvUa1WkT59Azajanu/xJLgGYycpUg6lyDu6EaETIa1OF1U/O6E145CpwJ7kdiyWyeE\nxA47g1Ynawu1WkVxagqb8LLt/RJNGxzq2wEFF+keZF2OgLg43TwvxS1eOwo7ZiYLId2Jm9FCdgat\nTmOAStPTWKjX8TK22N4v0bTBob4dUHCR7sEu+iQTOUZEzY3o8ttRaBe1GxwUP0a2TghpGW5GC+lR\nLHFpQq0262htMVvT65q+jntwEWnp/RJNKx3q2wgFF+keZNGnXM45oiTz6BocjDYyNTYG9PU1rvX1\n6euEkLbiNFrIEGQy0ums4xigbFoXIhO4FX+KT+F/YAh1KDiHoc4omAda51DfZujDRbqHclnc5egm\nKiXz1jKvGSN4whRdXjy9CCEtxan+SiTIDMzRKTsPsPLwMIpTU1io1zGBWzGBW5FJpTA+MoKhoaEQ\nnkVMaIVDfZthhIt0FxvX57JhcNBbVErkEN+KYdNBGgVIy6iqVUzmJ3EidQKT+UlU1eaOMtJZONVf\n2RW0G5EwUc2XmcLQEMZHRpBLp/Ux6+k0xkdGUOgksdUlMMJFugORh9fiYrA97YZNUxR1FVW1iqni\nFOoLuq1IrVLDVHEKADBU4AdjpzI8XBZ6YxmRK9msRwOj5guAbWqwMDREgdUBMMJFugM7ceQXWRF+\npRJ+lIvEmunS9JrYMqgv1DFdmm7TiaJFhYo88kghhTzyUJGM97ubjkLZ/URrTvVXooJ4K+ZIl5uz\nhcbzT+v+V/fv1b8+/3S01yM0PiVdgpOjux/sjFH9uM6TxHIidQIQ/ShVgF31XS0+TbSoUIXzGMcx\nHusRQUEc3YE+KIoCTbtk+1jZdQ3DU/GbZH2/lrnIx2g0TtKh8SkhVmQdil59s8zYGaMGjZ6RRNGz\nqUe4ns6mhetJpoRSg9gCgAUsoIR4v9+dOgrt7gcsNYgt2WNFDA0VMDo6g1276quRMBE9rs4WGhNq\no9gC9O8nkhGpTCoUXKQ7cHJ094NhWirDq+s8SSRVtYr664IoaR8wXB5u/YEiZhbi97VsPS44dRQ6\n3c/LnjJknlvASij7u6ZLnN3jBgUX6Q6icnQvFOSmqEGiZ06w/iI2TJemoV1qThX1vrm3IwvmsxC/\nr2Xr7cRcFyX7uLN2Gnpxbvfj8p5KrXdK9/QMmmrAwtnfFV3i7B43KLhI9xCVvUIU0TM7jPqL+VcA\naPrXRx8A/uR3KLzaQG22JlxfPr/c4pO0hjLKyKDx/Z5BBmW0x/FcVmxudYEXRZFETu3iQvc+KEq/\nZU1BrVZxXeBunGd5eX0OqqYtSq8ZqYt8lzi7xw0KLkKC0up5iKL6CwBYfF0XYhRdLUVWp9WJ9VsA\nUEAB4xhHDjkoUJBDrm0F83ajdeSmoz0QdRQaiDoPt28/jKuvfsgUiVJgFMCLxvmIOHPmkLROy6nb\nMXS6xNk9brBLkZCkcf9e2HU7YeBK4D/Y1JaRULF6cAFAKpPCyPhIR6YU48TkZF7oc5VO52y6AhXs\n2uWzM9nmmj09g/jVXxXXQFWrKk6f3ifZMdh5SHvx0qVI41NCksbA5tV0ogQWvrYUQ1RNl6ZRm60h\nnU1juDxMsRUi69YKFZijSzJqtVmp6WjQuihZIfvKytyaN5cVu27DyOq0SOxgSpGQpCGqvzDThYWv\nqqoin88jlUohn89DbbHx7FBhCKMzo9hV34XRmVGKrRBpTBsCTmIL0EVMVHVRdgJJJqzsug1F52m5\nCSppCYxwEZI0jDqLJ76h122Z6cLCV1VVUSwWsbA6SaBSqaBY1MelFGg8m3jsBkCLMESVEWkyTEcN\nEeanLqpaVXHmzKGGgncRMmHV07MJKyvNj+3pGWw6j9V4tVar4PTp/Th9eh/S6Zzv50DaD2u4CEky\nzz+tF9HPn9MjW7sLXVf4ms/nURE4/udyOcwYQ8ZJYtEtHdx8TimBRJWMalXFCy/c1WR8KiKdzmF0\ndMbl4/uwffvhprPKasQMInWgJ57xUsNFwUUISTSpVAqin2OKoqDud2wTiQ1OAgQQC51WXh9YF0LA\nelTt5+duQPbMW5C+mEYtvYjp4R/j5aEXAQC9vYP4lV9prrd0IzCjfL7EGxztQwjpGrISg1nZOkkW\nTgOgFaU/Or8quHF7X7dxALBWb7al+vP4hR9vw4aLG6BAwYZaBiNTN2FLdSsAYHn5vHA3N0X0kTnQ\nk0ih4CKEJJpyuYyMxXg2k8mgHJXxbMRU1Som85M4kTqByfwkqmq13UdqK40eVYDepajT2zuIq69+\nKNL0mp0ASqdz2LWrjtHRGQwNFRrqzYanr0VPvbFMuqfei+Hpa233dRKYTmci8YVF84SQRGMUxpdK\nJczOziKbzaJcLieyYN7q6VWr1DBVnAKAru58HBoqtK1maXi4LK3BskbWzJGndG0jRKRrG227JRuL\n/ZttMCJ1oCeRwggXISTxFAoFzMzMoF6vY2ZmJnKxpapAPg+kUvrXsFwopkvTDQaqAFBfqGO6NB3O\nBYhnhoYKuPrqh9DbO7i21tMzKCx4N0eeaulF4X61DUuORe9DQwWMjs5g1y4N27cfbZ0DPYkUFs0T\nQmKBqgKlEjA7q8/9Lpejm44UBFUFikVgweRUkMmEM83pROqEtF46nUvTWDXmmC0dtlS3YmTqpsa0\nYl+aI3Q6DBbNE0IShSFiKhVA0/SvxWJ4kaMwKZUaxRagf1+Sm4m7pue3TgAPfxSYeK/+dfdT+g2K\nnl6Etp5m7Pbarjhirjd7eehf8P9dexYrl2XAeYUEYISLEBID8nldZFnJ5QCzldb6iJdgRpZBSKV0\nUWhFUYAgLhTVqooXfvwJaClTKupiGvjTTwETtzbdP51LY3Rm1P8FSVsI+h5WoaKEEmYxiyyyKKPc\nlsHhRIcRLkJIopiVdLmb1xtHvGio1SqYmiq2fOyJzG0iqAvF9HSpUWwBwIYacM/XhfevzdaCXZC0\nnKDvYRUqiiiiggo0aKiggiKKUBHDUDBpgoKrTZxST+GB/AP4TOozeCD/AE6pp9p9JELahhsRIxrx\nUq8v2A4GlqFCRR55pJBCHnlPH1jlsl6zZSaT0deDIPVWGnpZuJzO2szTJLEk6Hu4hBIW0Pj4BSyg\nhBDy2SRyKLjawCn1FB4vPo75yjygAfOVeTxefJyii3QtIhGjKMCePevfywSJVxPIoFGCQkEvkM/l\n9DPmcuEUzMu8lXpXtiKVafxRncqkMFweDnZB0nKCvodnIb6fbJ3ECwquNjBRmsDSwlLD2tLCEiZK\nE206ESHtpVAADhzQBYyBpgFHjqwXzssEiVcTyDCiBIWCXltWr+tfw+imFBleplIZXLXjcxgZH0E6\nlwYUvXZrZHyEXYoJJOh7OAvJVAXJOokXFFxtYH523tM6Id3A8ePNxejm7j+ZIPFqAhnXKEGjo3qj\n59JQYQijM6PYVd+F0ZlRiq2EEvQ9XEYZGVimKiCDMmiEmgToNN8GBrIDejpRsE5ItyIqnN+9W8U9\n95Rw4oTe0fWWtxzA3NzxQF2KWWRRQXNLZByiBO10VCfR0+gi7/09bHQjsksxmdAWog0YNVzmtGJf\npg93jN+BHYUdbTwZIe3Dag2xe7eKT32qiA0b1tN/qVQmsNO2UcNlTitmkME4xvnBRQjxBG0hYs6O\nwg7cMX4HBnIDuh9eboBii3Q91sL5e+4pNYgtwH9XopkCChjHOHLIQYGCHHLxE1tRzQ4ihLQNRrgI\nIbHBPN5nYiIFRRH9fFKwa1cAh9G4E+XsoBCg8SYh6zDCRQhJJObuvw0bwulKTBxRzg6ywY03GY03\nCfEPBRchJJaE1ZXYEsJMAbqx3feIk5hyK6RovEmIfyi4CCGxxM4mIVaEPXk75NlBIjG1D/uwGZvX\nBJVbIRVXSw1CkgBruAghJAhuJ2+7JeQarjzyQhsMYL07cz/2Q0PzZ4ECBXWs18vJ9sohhxnMeD4b\nIUmHNVyEENIqwk4Bhjw7yC76ZESx3DqYuzXerKpVTOYncSJ1ApP5SVTVqq+zE9JJUHARQmJDIoe6\nh5wCBBDq7CAnQ9dZzLoWUm4sNapqFVPFKdQqNUADapUapopTFF2k66HgIoTEgsQOdRdN3s5k9PUY\nIBJTZrLIevImK6CAGcygjjpmMNN0n+nSNOoLjbYd9YU6pkvT4TwhQhIKBRchJBBhNegldqh7yCnA\nsDHE1CAGm27LIIM//O4fYjI/ia2prXg4/zBeUl8SCim31GZrrtarVRWTk3mcOJHC5GQe1SqtJUhn\nQ8FFiBfoAN5AmA16iR7qHmIKMAoKKOAczuEYjjVEsf7rd/8rrnv/daGm/9LZtON6tapiaqqIWq0C\nQEOtVsHUVJGii3Q0FFyEuEWkLvbtAzZv7irhZa6zevbAA/iFhcaUn1+PTtnw9siHugcU0W4MQ+OC\nNR14076bQk//DZeHkco0frSkMikMl4fXvp+eLqFeD39sEyFxhoKLELeIHMABYG4umO9SgrDWWV22\nMo878Dh2oFF0+WnQ213ejb5MX8NaX6YPu8u7gxzZnoAhOreGoXEVZW7Tf14YKgxhZHwE6VwaUIB0\nLo2R8REMFYbW96+J3yCydUI6gch9uBRFuR3AGIAeAF/XNO1zsvvSh8sfp9RTmChNYH52HgPZAewu\n7+Yg7ChIpfQPZRl+fZcSxAP5B3SxZeFVDOAB3Lv2vd+XQvZerlZVTE+XUKvNIp3OYni4HI4BakAP\nLTe+VIYoMxuLGv5XQWcQVtUqpkvTqM3WkM6m16JI1jWz2DEzmZ/U04kW0rk0RmdGA53NjsnJ/Go6\n0XLddA6jozORXZeQsPHiwxWp4FIUpQfAPwO4DcBZAP8PgI9pmvYT0f2TKLjaLXaMiIO52Lgv04c7\nxu+g6Aob2YezgaLoNTwdzGdSn4HAHxMagM/gPgDhz1k26n3MKahUKhOO67xMRLv8t0wh5WgY6tUs\nVCSiRILJsF8wpwSVfgWapgGm3oNUJtUUYTLv8aWnvoSv3fc1vJx9GVtmt+ATn/kE/t2t/04q0sIg\n0n9TQlpInIxP3wXg/9U0bVrTtEsAHgHwGxFfsyWcUk/h85s/j0f3PRpqG7tXH6LEdnYlEVH7v5kg\nvksJQVZP9UbPQGQNepHW+wT00HJjGOplHI4XDyuR/YJ2qVFsAfY1WU8VnsKffe3PUM1XoaU0VPNV\n/NnX/gxPFZ4S3j8sEjO2iZAQiVpwbQXwM9P3Z1fX1lAUpagoyklFUU6+8sorER8nHIyo0uLcYtNt\nQcSOHx+iRHd2JQ2j/X+wub0+Tr5LUSKrs/qdI7sja9Az1/VUn9qB7330Xjz93vvw9J13BvfoCuih\n5cYw1K2LO+DNw8pLnZXsviWUsNjb+HNssXexJcOoh4YKGB2dwa5ddYyOzlBskY7n/2/v/YPjOs/7\n3u+7C2IDWDJ9uRRXlRUshLkiRcey05iTe5HYY1yTc21JdWWrbSJ1xTCSaVyacS5l11Ft70xkt3dd\nj+1W5qSX0sAKFZXY2pOZ2o51LbeJmEKVYsSpkqlFOxApBQJgm9ZSBBvKEujFj33vH2cPcPbs+57z\nnl/78/vhYECcc/acdw8W2AfP832+T9tF81LKKSnlPinlvmuuuabdyzFClVVyEjbYCZOt0nZwSXSP\nU3c3USgAFy8C09Md67uUJDcXbsb7p96P7fntgAC257cnXr7OZKzApPLkzTj3pfejWnkTIAWqlTdF\nN0aN6KFlYhhq6uIOBPCwKlcC/fbWWTVwGDUhrWMg4fP/BMAvOr6+vr6tq/ELqIZ2DFni4oC6rjDZ\nqv2l/U0ars3H1TNkAKjnikq5bHUpLi1Z5aZSqecF8jpuLtzc0tfT2FgJZ89O4sU/eB9q1cGGffYf\nJJHWUyhECpYL9X9e+wErm7SEJYxgBCWUlI/JjGTUInanh1W97IiN5mvpNFxOSwYnIxhR6sv8xgER\nQoKTdIbrvwO4UQhxgxBiEMCdAL6V8DUTx8sXKLUthdWfrRqXBZ2aLZESga9nZxyGskPK/dRzxUCc\n7p4kMLlcAakffAnrr6r1c91QPvcbh2Nj5GGlKDsCANLATSdvwt5H93paMjgJkn0jhEQj0YBLSrkO\n4KMA/guAOQB/LKX8YZLXbAUqHQsADGWHkHljBhurjX966oIet2ZLbjR3O5n6EK1fWdfu64Y3pI5G\n5b8V1t3Tg3KlgtHZWaRmZjA6O4tyhcN+bZ79QhVA8D9Iug0jDyuddqtmPT5XyGF8YRwTtQmML4x7\ndhsGmaFICIlG0iVFSCmfAPBE0tdpJXb5QmUH8dnUZ5WPUQU9flowkRZ4+6G3+5ZL/M7TS29IbUHn\n4hnG3VNDuVLB5NmzWKlbESxWq5g8exYAUMgl157fLfiV1XsJO2jSYVJ2DIJfSZQQEg+JB1y9ik7H\nsn1ku9IYUhX0+GWe5IbE9x/7PkZ+fcQz6PI6T+JO3f3AyIjafytGG4jimTNYGWj8cVyp1VCcn29L\nwNVufzk3up+roexQ3+kTx0pjTf5bXjotQkhn0PYuxV7AqcNafW0VqW2Nt1UX9Jhknkw0WLrziLQI\n3UEW1A+sp4loHeBLuYyllPpHcakafsRKWMLYkySNzo7iluO3tGlF7cOk7EgI6TwYcEXE/eZ0ZfkK\nhBCWiN2nbV6nBXPjlwnTvRl98LEPhg62Ou0Nt61EtA7wpVjEyIULyl0jmXBloih0opluO+woOpFK\nuYLZ0VnMHZwDAOw9tddXp0Vaj/19mknNYHZ0VmlcS/oPlhQjonpz2ljdwOBVg7j/4v2ej3VrbG+E\nAAAAIABJREFUwURKKIXzfpkwL02ZCe7y0eprq8o33G8c+kbD9fqKiNYBniwtofTII5j8xCew8gu/\nsLl5+Oc/R2nv3mSu6UGnmum22o4iLEblWIfNyJkd78ZpHMDlS+ueP7vuUT62Cz2AWAKuMspG1hXE\nm6S/T6R7YcAVkahvTs43Ed1cRBMNVtg3o28f/TaeffjZzfl4Kp2MjdyQTb5enab16UpGRlA4bWWP\niocPY2nXLoxcuIDSN7+Jwvve1/LlBNEhkkbcP8NKLzzbZmRlBWdwMx5f/jWsYV1/fB0vF/qob+Tu\nAduLWMQkJgGAQVdAkvw+ke6GJcWI6N6Ewrw5tbpscqZ8piHYMsFZWmLpMSbqGrHC6dNYuOsu1Pbv\nx8KHPoTC+9/fluXoStRsvvDHqBzrsBk5jf1Yg9rM1Y2pC30YiihuBls2K1hpyYifXiPJ7xPpbhhw\nRSTuN6ebCzfjvoX78EDtAdy3cF+i2aLTxdOBgi0bO3vXiVqfriRpjVhAqJcKj1HG22En8vRdS3jw\npQfxmY3P4MGXHsRzdz23eXwZZYxiFCmkMIpRzHx0RnnusHYQTpakZsSPZjvRo/t+xPF9It0NS4oR\niaqfaidhNTl29q5TtT5dSZIasRB0i16q0zAqx9ZtRsp3AY9/5VtYe0O9nDh6GY9/xSonDu0cwhfw\nhYYS3xf+3Rew8bMN7P+jrT/m4rKD2PWTXahc3yzs3vWTXdZANmIMbTuIDgZcMRD1zUmlgwKSD+J0\nbw4Q1jzIK8tXlPvs9VHrQ0gjqtmmTRnvUgmYnETxcyubwZbN2hvW8Oef/3MM7RhqKvFdGbiCP/qD\nP8Kt//VWVJeqyIxkMFYai0UXdPhfHsaXpr6E6hu2yl6Z1zM4/C8PA5xgFQj7+zFfnI/9+0S6GyFl\niJpSQuzbt08+++yz7V5GS1EJ5VPbUhBCNIwI2ja8LfayjuraEMC+I/sw8usj2n23nbhN+/gk1tlW\nVEOrOygTRToP0y7F1F13QypEHUIKQABSUe8XEKhBMUcxAKpuxLHRMXz7176NRz73CC6MXMCupV04\n/OnDuO27t2F8YTzS9QjpZYQQfy2l3Gd0LAOucMTVnffl0S97dgY62Z7fjvsW7gt8DS+8nofJc+zp\nLkVHN9kmw8Nt1VfFTU9//zqcUYxiEc0TDPLIA4B23wIWQl/T3Y0IWMOqv/jMF/HW9761qbtuIDuA\nG4/fmFh2plKuMBNEuhoGXAkTZ2bns6nPmgvXBfBA7YFA5ycRGB1Vj/TJ54GFhVavJnb6IkPZweiC\nnylMAYB2XxSbBq8g73vl7+HcsXPYWN5o2JcaTsXmZL8ZYC1WrZYtV7IuzmsR0gqCBFzsUgxBnN15\nQfRO1Ea1mBYMrW4n7DJtLwUUMIUp5JGHgEAe+c2AymtfFJag6UbEEnKFHAauapb12h5SUamUK5i7\nZ25r8LaiMhrXtQjpRBhwhSDO7jyVrURqWwrpwXTDtvRgGquvrXK2YSvRDaeOcWh1O2GXafuwLR8O\n4iAA4BROYQELDQFVAQUsYAE11Jr2hWUE6teuvT2qh5TXSJtzx84Bax4PDnitTofjfYgbBlwhSNrs\n9AOPfgC3n7x9c9tQdghSSqtrkAajrSPpodVtJs7XMTHHLiUuYhESctPVvdyCdsASShhG42t6GMMo\nwXpNR/GQskfaVBergNwaaWMHGu5SpY5e8KvyuxekP2HAFYJWmJ3a2+44dQd+/vc/R22tMf/O0k9y\nlCsVjM7OIvXmN2P0T/4E5d/8zY4wJI0bOsq3h3a6uvuVKsdKY0gNN74tmHpIeY20MaVT/KpMslNe\nx8RxL0jvwYArBEGduM+Uz+DLo18OXA60Rc2qgdYASz9JUK5UMHn2LBarVUgAiwMDmDx6FOWf/tQS\nyvdIsGV3J66trEGkBQBApMVmIN8t2dPN4HhmBqOzsyhXks0guN3fw2SlvHRUrcCrVJkr5LBnag8y\n+QwggEw+Yyxi9ytHDmS9bR/T2XRHCOZNslN+x3C8D1HBLkUFcbbKR+kE87OMSMImop85Uz6D//Av\nnsAbLvwcl3dlcPrwDThzwPrln89ksDDeG35ESv81F93QrWgHxyu1rUzCcCqFqT17UMjF/6bt1VUY\nRF/l1SkYxfKh3cyOzm4J4h1k8hmML4yjUq7g+Xufh1xtfM9J2noiKLrnkc6m8a6L7zI6xu9eBIX2\nGZ0LuxQjEPdA5iidYF4ZLJZ+4sX+vl9V+TmEBN5UqeL9XzqHm5+0/mJdqvbOX6aq16SbTihZe2Wv\nypUKDs3NNQRbALBSq6E4n0zZJq5SoJ+OqlvxK0fmCjncdPKmhuzZ3um9eOfFd3ZU8KDLQm0sb/hm\nsOxjopRm3VAP1jsw4HIRd6t8mE4wu2zxmfXGgbY2Ii0SK2GGeVwvoPq+D1Zr2P/ISwCAkUz3C3lt\nTI1221mybirtVqu4e24OO595BkfPncPk2bPQSbCTCo7jKgUmZfnQbkzKkblCDuML45ioTWB8YTzx\nQCtMp6CXaN/WYPkdE6U0qzof9WC9AWcpuoi7VT7ovMGGskWqcaDt2776Nt9Sj7tcZGfoAHiWh8I+\nrlfQfX+3X6hiOJVCaaz9Qt44OFM+AwgYme22s1uxOD/flL0CgOX1dTx8/rzn8pMKjkcwoiwFOq0W\nVGNzVIGU7bXVa+QKuY7JVp07eg7nHz6/+Vq3M0MAPNc4VhrD3N1zyn12ZsvkmLjuBfVgvQMzXC7i\nbpUP2gmmKlusvWENpz932lecD4TP0PW7Cabu+/v6rl9ITBPUDk4XTxsFW+0uWXtlqbyWn2Rw7FcK\nbKfdA2mkUq7g/EPnm14sJpmhXCGnFfjbmS2TY+IiilUH6SwYcLnYX9qvNB2NYvkQpKNRV554dfTV\nTcsIL8Jm6HRlJtPyU7ejC4x/69/e2jPBFuD9OjB9jbaCMFmqNJBocOxXCmyn3QNp5Nyxc9p9Jpmh\nG4/f6KvBMjkmDuLUg5H2wpKigzPlM/jOse9gY7VRHRK1k9P21TLBpGzhRdASpo1IC6X9hG0Z0OvY\n359eH+SsfX10WMdraWysqQPRibsqmmR3ohOvUmC77R786KdONy+TVZPMkH1fvO6XyTFx0KrrkORh\nwFXHq1W+tlbD6eLpWN98ddYTJZSUreemHUz7S/uVNhR+GTqd15duey8SJDDuVsK+PlqNHTgdO3cO\nyxuNb57DqRQOXXstnlhexlK1ipFMBqWxsa1g67mngNNl4PJFYPtOYH8BeNu7E19z1D+WgmKqFwO2\nOt1s8bWpnsmPbgzisrdmjY4z0WC1SrPWSdo4Eh4GXHX8WuX9SnJBvLu8BOqFwlZ5wuQXqZuwmZrt\neX3mo1OJ0y+tX+imTF4hl0Mhl0O5UkFxfl4dXLl57ing8YeAtXrZ6PIr1tdA4kFX1D+W3HgFVG5P\nMFsvBkD5u8Kr0y3sG3lSQVwcDGQHsL68rty3/MRyi1fjz7mj53B+6jywASANXDd5HXaf2N3uZZGY\nofFpnc+mPuupxvUquQQ1N9UZmg5lh3D/xfuDLz4Gohi0toNuWy9pEQ9OWkGWm+3XAB+bSvzyQbJO\nfufxMlkNap46k5pR/34TwERtIvD6AH+j03ZSKVe0XYRRnnMSnDt6zhL4u3jT/jfhyotXuip72I/Q\n+DQEXhonv5JL0A4/XbbsyvKVwN5XXt5ZQXy1gor728mZ8hl849A3+rqrkmi4fFG5WSqCsHIZGB0F\nUinrczmGZkLd2JygI4H8BPhB9WIzH53BnS/difdsvAd3vnQnnrzrSQDROt062a4gV8ghnU0r93Va\nd9/5qeZgCwD+/vTf0+y0x2CGq45OwzWUHcItx2/xDDy02TEB3HHqjs3yzdCOIQBWYKVjKDuEwasG\nQ5Umga0sD4CezAD5jqURwAO1B1q7KNI5aDJcS5mr8fS9X9wsRZbLwOQksOKIaYaHk5lNrspWAUAW\nWRzHcWUGLIUUpOKXioBADbVAGa4yyvjw+odxZWDr907m9Qx+76O/h48e+GjorEknZ7iA5pInYHX3\ntWJeYxBt24yYMT5vp9xbskWQDBcDLgdhNUFeJcL1K+u+Y1S8CFOatHVX3dCNFhTOlyRunBqvjy7/\nHT7/w/+M4dqWfuf11AA+vGc/vjvy9s15mKOjwGJzvIJ83ppRHie64AjQz2L0C6iCzHXUnev6167H\nj676UZinBKC9AY0pSYv6VecHEOi+zAzMQDs2wY2jHNqNDQu9CAOuFqPKuqQH06it1yBr0e+vLojw\nyqwB0O5zZoC6TXjupbXrhQweCYZqgPVdlefxufnvYqT6Myxlrsanx34NX83dBAGgNjEBwCojqn71\nCQFonChCo8tW2eiyUn4BlalezC9bpsL0zbyb3vTjXqsu4BRDQmlLoctO6TRcKpyDwDs92O0XqOFq\nMW7901B2CFLKWIItAHj6159W6j+8XPFNHPPjHtTdCnTPy2++JOlNVCOAvpq7CTeM34v0xDHcMH4v\nvpq7CUCjmeqIxqlBtz0KfrYQKt2VymT1i898EWOjY5tzAQ+UDyj1YqbX123XDUs+8cyJpt9DrZ6N\nGJYgA6BN5y/qOj91HmA6bdvuE7tx3Ueus5x7ASBtCea9zE45X7E7YcAVEJ0Q/ebCzbhv4T48UHsA\ng1cNorYW7M9kkRYYyg41bX/urufw+FceV44L8RobZDJSqBvH+eie1wcf+yCDrT7EdFC1e+RPqWRp\nthqOGba2x41qJJATXeDjFOB/r/w9vPW9bw0lovYbSeRG9Wb+p7f/KT7+Kx/v2rFFugDlhWMvNGwL\nEpgFbQ7wEuvvPrEbE+sTmJATmFifwC8/+cuew687uWGB6GHAFQDTjFCYQdeyJnHL8Vuagok///yf\nY224MSiyu5W8OgtNug61Y4AWLxt1NraDbuqmJPFQrlQwOjuL1MwMRmdnUa5svfnpRgBlBwaQz2Qg\nAOQzmSYX+kLBEsjn81YZMZ9PRjAPbGWrsmg23DT16Qqa0XB2RRZRxCEc0o4kcqN6037kc4+gOty4\nvZvGFukCkfXl9YZgKsh9DtTtuA2BR/HY2cO9p/YCAOYOzm1m3LTXToGdjB0MNVwB8BKpOzVWuuNE\nSlhjghS33D6HW1P18Zc+DimC6S+iPh8n1EWRdqLSaDnH+Pjt7zTC+nQF8dEKIqhXoeo+fM/GeyBT\nyfweagW6jkqgUVsV5D6rdFQ6BrIDeOfFdwZctf4a4g0CWAPkavNiqeVqLdRwJYTpYOj9pf1IbXPV\n37el8MH/8EHcceoOz1KfszR538J9GBHB9BdBUJXn3HR6iZH0NiqN1kqthuK8lXEo5HKY2rPHM5vV\nSeh8uvzQZTRU26MO0VYNS971413KY5MaWxQ3XtklZ/YryH3OFXINZT8v1i+pXe/9UGXcAEC+Lq0/\n3hXv4HFquUz1bMQMBlwBMBGi2wghlF8HLYkF1V8Ewb0WHWFKpEAw41VCbJwlxEWNRsup3SrkclgY\nH0dtYgIL4+MdG2xFQRUEOUXUTqIO0XYHEpl8Br+/9PuJ/R5qBaZGqEHus31eu2kgk9eXGMOarXpq\nstYAXXIxDi1XED0bMYMBVwBMhOiAJUbfWG3sVNlY3djMFLmzWF7lOlW3kmlpwATnWnRzE71c+HV0\nYwckaT92iXCxWvWatKXVbvUqqiBIVzYK2pWou56z+/DoO48a/R4qo4yd2AlR/7cTOztGWL/7+G7f\nYCrIfXYzVhoDFAUDMSgC67eAuhYr5Dt0HG767ISMHwZcARkY2pr3PZQdUmanTEuPpjjLEI+XH8cr\no68kkjUyDShN6MYOSNJaVGJ4VQnRjbPj0EtQ32uYWjAklRX3K4eWUca9uBfL2BoOvYxl3IN7Agdd\nSZSyTIOpsFYXuUIOex/d25BJG8gO4KaTNwXWU9nZJT9D1HQ2HSgjFwR2QsbPgP8h/YfKDBRoHpWz\nfkVdl98+sl3tPL9jyBKqhzQZdRus2lkjALGI2u1zxGGEGnfQSXoLt9h9sVptEr+7EbAyW6WxMaVg\n3j4HgJ4sK5piB0JxDNEOQhFFrGK1afsa1lBE0fj6bqG4XcoCEFkInivkEhWT+53f1HxVp91ykhpO\nYffx3bj8F5eteYwbANLAtYeujeU5ZkYy6tFNHTaLsptgl6ILlWt8alsKckNtZKpygdc5z0spG/y5\ngnYAmnZJdgLdtFbSekZnZ7X6LBVpAOt1l3i/c+Qzmc0RPqR1eDnqB+lm7PQZjWEJ4g6v7ZYErOxc\nyDFCSa23n2GXYgRUpbDamn5EjypjoxLGD17dbIYatMTWTVmjOMuTpMt47ilriPRn7rA+P/dU0yGm\nhqU2qsqK7hxBz03UBC3reWnEdv14l3FZsFdLWXF4fGXymYZSZ5I6qyh6NqKGAZeLoMGLTlDuFsZf\nuXQl8vW0Y21SouPE6DQo7VOeewp4/CHg8iuwuiVesb52BV060bu6j8zKWrnRnaPfBPVJEKZDrYQS\nBjHYtD398zQO33/YuMMtiDVDNxEkkDTtltSec7Eai/atW0Y3dQsMuOrYFgaerVEugmRsglhK6ND5\nZskNGaoDMGnbhiDdmKRHOF0G1lxvAmtVa7uD0tgYhlONv36GUylMvOlNytPemm12adedwznCh5jh\ndKYfxSge+t5DgTMnBRRwEictR30JQAJvfOWN+OS9n8SBrx4wzrwEtWboFqJ4fOmyS15BKG0cOg8G\nXHBZGBgSdFhyHCU2O2sk0s2mWUHLk98++m18/eDXlbYN9M8iobl80Wi7zrD0xSvqTPATy8tN27rN\n9LRTcAdXR3EUk5hsmJP4+X/zeTx515NNjzUp612FqyCkQG4xh9899rs48NUDgR7fq6WsKB5fuuyS\n6pxOaOPQWVA0D+8RN0PZIaz+bLXBVyvsuBtV92OYrM9nU5/Vjp94oPaA0Tq+fvDrynMMZYewfmW9\nUccmAEirLBh2zaRPeHCyXk50sf0a4GNTvg9PzczoXtqouUTzNpVKGfPzRVSrS8hkRjA2VkIul2xH\nXicQZkyQauyPgFCK3XMLOXzthq81bPMSrqvOnXk9g098+BObQVe3C9+jYtqlGOqcmtFFALB3em/X\nB6ydCkXzBjizONrMlgDuv3g/bj95e6JapKAZpajlydPF09rS6ZXlK01NA/axNC8lvuwvANtcZY5t\nGWu7AUF1WZVKGWfPTqJaXQQgUa0u4uzZSVQqnWG2mRR2cOPMSk1i0tfvSjX2R9dZeGHkAgDgybue\nxJ0v3Yn3bLwHv/GD39BeQ3Xu6huqeORzjwBozub0+tgY1fNLQhNln9PL6Z6lxc6gLzNcKtsGFXFa\nGKiuuW14G95+6O34/mPfb9ruFdTpzmUaCGozZIbQ2oF48txTlmbr8kVg+04r2Hrbu40eGnQY9ezs\naD3YaiSTyWN8fCH0U+h0RjGKRTQ/7zzyWMCC9nFe1g1urn/tenzo0x/C5//N51F9w1b2RDcIW3du\nURP4i7G/aMjm9LrlQDuen98w7X7PLiZFkAxXXwZcXiVEm7Blw6DXFGkBuWHm7+XEXZ688dYb8cIT\nLxiVK7XPX1jmrFeW1Toa53EmpUvTtbNMSZzYjvNL1WqD0amKmZkUdPX1iQkz36duRBvc+Phd6QI1\nd1nRDqqKKBoHdkGCwF712rJp1/OrlCuYu3tOvVMAE7WJxK7dr7Ck6IOnFYOmbBhVSK67pirY8l0j\ntjoA7zh1B1ZfW8WzDz1rPLdQ2e0ogH1H9uGW47coOyGdhJmtaMMZi8SPIMOoMxm195NueydTqZQx\nOzuKmZkUZmdHPcuiYecl6sb+HMER5ZzEIIOwg4wU6lWvLZsgzy/O0mqukMNAVj1AptttNXqBvhzt\noxu9o8sqxTFSR3dNr+P98CqN2l2LqvWZjPA5XTxtrbcumLeJal7qNWORWS4SlLGxEs6enUSttqUd\nSqWGMTYWbW5gq7G1aPbzsLVoAJQNACWUmgTqJvMSg479GcGIMmulCuyCnLvXx8b4Pb8Gobvjd2zU\nMUaVcgXrrzaPnAs7QJvES19muIJaNMQxiFnnoaXCNKhRrcuJLkvmV9Lb9M+SD+COU3fE2jDQTW75\npLMpVyr43+bH8K9qH8NF5CAhkMnksWfPVNd1Kc7PFxuCRgCo1VYwP19UHn+gfAC/93//HnILOYia\nwPWvXa/UVanwG0LtxCtr5baXKKNsfO5e9dqyyd6atQIpB/bzazCVBZoq4lGsHOaL84DiLSF1daon\ntHHdTl9muIIOafYLEkw0Se5reulWTYMavyBFlSULmq27uXCz71qCaLK02cUIZUrSfzjF9Ys4gNM4\nYInrx/ZgvAt9uKpVdelOtd1+w55YmcDEH0wA2BJkxz2fWpe1AtCQYbO7JJ2P8bKtsN/847ZI6AQq\n5Qpefuzlpt/xbxx/I3KFHGZHZ30HU9tO8UHvia6UuXFJNRyLtJq+FM374Q4gVl9bVQrJbV8qXfeh\nl4g9juHOXuL/9GAat5+8vSnwiXuodNCOybAdlhTaEye9Nrg6SLdlXILsMD5eNn4CeZUnl667sdfQ\nfX8ggL2n9mLu4Jxxl3jQzkbT10ZDSTMNYMM6pleC3lZC0XwEVKLu6qtVpAcbp7zZZT9dufHZh71F\n7HE4z+8v7W9KW9sMXj2oFP3rArTLi5dDNQMELbeGmbFIoT1x02uDq8fGSkilGkt3Oi1aHILzsD5e\nNn5iepUn1wpWUIS6RNpLaL8PElYHYYB33aDlRZNSbVNJs5784iig5GHA5eI7x77TFEDU1mrYWNtK\nyQ5lhzaDBG1Zz/UXjDsIiWO4882Fm/UGpo5h2aaji4IGMmfKZ/QBnEe5M+iMxTg0dKS36LXB1blc\nAXv2TCGTyQM+WrQ4hjtHDYj8uiSDdDf2Gr7fB1V1T/OHMxAskDYZizRfnNeWNGsrNcwdmutZM9p2\nw4DLwZnyGb0HlSOwWb+y1QUSRHvkDkLiGO68Pe/vOu8nrndiGsjYQZx2XTFqsrQaugBdn6S36MXB\n1blcAePjC5iYqGF8fEEr/I9DcG4SEKlE8TZ+FhBhbSt6geytzYPWlaSxGRTtPbVX6xQ/sCOY1NrP\nzd43gNsAIJnxSgIGXA5MMybOoETnaaUibmH4mfIZrFxcadruLk0G7QA0Od4riItqHeFGe98EWFbs\nE8qVCkZnZ5GamcHo7CwA9O3g6jiGO/sFRH4lxwIKmMKU0rsLCObJ1UtsCuZNqKEhKBorjUEMNr95\nrL+6HmvQEyQTyuHX8cKAy0GQwMQ+VlUa3HdkX2R9lh9nymfwzXu+ibXXm4Oetx96e0O2TBewiLQ6\nMjQJDL3ulR2QxhUMabVq0jxIJt2L3ZG4WK1CAlisVjF51vIqMjVI7TWizuQroYRtaPwdla6mcf8z\n9wMwKzl6WUD4BWS9ile5zo078MkVckhdrXhLXoNv0BPEPFWVIfWiV8xoOwEGXA6CZKCcx7pLg7ed\nuC2yPsuP08XTqK2pf7BfeOKFhq91Av13TL4jdGDod6/iFLZ7adXo39X9HD13DgMzMxAzMxiYmcHR\nc+ca9hfn5xtmKwLASq2G4jz/8o6ES0skIPDTP/wpKuVKLBqsIH5fvYJpcKIrAevsG7zO2yCCNygF\nNmRIAau06fzsolfMaDsBBlwOVIFJejCN1LbG22QSlETRZ5mMEfIKNFRaMVUAGCUwNAnK4hS2m2jV\nSPdx9Nw5PHT+PDYA7MeTmMad+Kfnb8K3n37z5mibXulI9NJEtZoiilhLN2bH1zPr+MoDX8F8cb6v\nNVhR0AYnAtbIHZ8ScJiGCFVWza8UuJkhlROYWJ/AhJzA3sf29rQZbSfQl8anOnSGqKptSXlAmRqT\neg6ZlpbflnOdOgNTE2NTFTcXbsZ3jn3Hd9B1XBkond9ZnGVa0nqmzp8HYAVbn8CX8Auwgqg3bJzf\nHG0zkhlTem7tSGv+JO9A3L5UKqPQVqLLVF0YuYDqUjX06KB+Z6w0hrOTZxsCoCBeWrrHewU9cc2l\n7GUz2k6BGS4XqsxUHN2EpphYIJwpn8Hqz1Y9z9MKr6qkB107icNGg3QedgHlMB7ZDLZs7NE2pbEx\nqF5lP6vVUK50RwdVp/lS6TJVu5Z2Ib0jnYgGyzTDF/dxrSRqQ0OYx8dhE+K8fhRtIPGGGa4Ow2TW\n4OniaWys+o9qSHoodENGMIFB1yp3+TBu+KRzqZtcYxcuKPdXq0so5HI49sILWF5vHMq7KiWK8/Nd\nIZbvNF+qEkr40MqHUB3eCnIzr2dw+NOHIeodKoX6vzgwzfDFfVw7yBVykQKVoI8PkxUj7YEZrg5D\nlxFybg/TTRk3ts7s6we/DgC4Y/qOWAdd012+P5i87joAwAXsUu7PZKxMzCVXsGXTLTquTtNEFVDA\nJz78ic3h17mFHD7x4U/gwFcPYP2S+l5HwTTDpzvuGI41ZLOO4VhHZQzbSRw2IaQ1MMPVYZholXQD\noFUkISpX6cy+fvfXMZQdwi3Hb4klo+ZVWmUZsXc4sXs3AODk+cP4uEPDBTSOthnJZJQ6rm5xlk9a\nExVmLuJtf3EbDtxwoGm7sxQVZd6iE9MMn+645fo/AMoZjjZe+3qZqFk10hqY4eowGrRKsLyy3L5W\num5Kt69WejDdVNIz6YD0Q2d6emX5SmxZKJPSKukNTuzejT+d+H/wD/f+oXa0Tbc7yyfpSxV2LqKf\nY33UeYtOTDN8UTN+AqIjtFxRCOKpRboLIaXh2PIWsG/fPvnss8+2exlGOPVFQzuGAFjzC+PqYnRn\nkQAr02WX6dz6phtvvRF/88jfNHhzpbal8IFHP7C5Fr9zmvLZ1Gc9p91vz2+PrLXSDdqO49ykOylX\nKijOz2OpWsVIJoPS2FhX6LfiQpdtGsWoMrOTRx4LWPA8Z6Vc0XalRTmvau2qDJ876CyjjHtwD9Zg\nNopMRZj1dQq2p1bYLkfSeoQQfy2l3Gd0LAOu4KgCFydhghg3QQMOk+PjCmJ059lEAA9NldPfAAAg\nAElEQVTUHjA+n4q4gkNCegGvgOUgDkIq/gISEKjBzPVcRQqpWM9rUp4so4x7cS9W4d2F7UXU591O\nZkdnLQNTF5l8BuML421YEfEjSMDFkmII/IZBx2H4GbSkZrI9rjKdcn6kgzh0Y7SBIP2IzurAS3Se\nlCA/7vOaOM8XUVQGW3bnpAmtbkTYLAGKGcwMzGBG6EuBfuXCuDy1SGdC0XwITAKUqFojnTDeq4vR\n7/ig59RhBz0q49M4zUjDmrIS0o2orA7uxt04hmObgnE3S1jCKZxKRJDfDvNTnWheQiKPvK8ovtXm\nrE0lwLpbjz1eB9gyFHUfqzomM5JRZ7g4XqcnYIYrBCYBStQsj27+oS6YMTk+6DkBvcj+5sLNuP/i\n/bhjOj4riK6lXAZGR4FUyvpc7m7RLkkOL7NOVRYLsDr0dBmeEYwkJshvxwBqXXbK1mV5ZbrSSLd8\nQLbXsGr3eB2TETx+jQyku6GGKwSt0HDZ1wkyUsjk+CDnpI7KgHIZmJwEVhxvlMPDwNQUUOj9Yb3E\nHD/huE4zZSMgGvarROfdjt890gn5BQRO4VTL78VMasazgQgCmKhNeB/rOAbwbmQgnQdF8y0gqS7F\noEFWkrBT0IDRUWBRUebI54GFhVavhnQwfl1/uv3uY6N6YsVJXD5dpudUBWQCAkdwBCdwItJ1w6AT\nuds4xe4UxPcmDLi6lE7LKGntH2LoQuwZUilA9TMkBFDrzk4pkgx+XX+qYMJJp9kdmFo9JHHduIO8\nsKhsHGzcdg60fOhN2KXYpZgMrm4lJmOG+p4RTUeUbjvpW/y6/mzNVBbZpmNsMXgnDWxu10Buk27H\nVtEwVgewhoNCPV6HI3gIA642oRKjd5q7ehiRfd9RKlmaLSfDw9Z2QhyUUMIgBhu2DWKwoauugAIu\n4iKmMd0kVgcQm/N7HHTaQG5T4g5ac4UcxhfGMSEnMLE+gQk5gfGFcWUgtXlsTX8M6V0YcLUB3WBm\nWwvmpl0ZJXphGVAoWAL5fN4qI+bzFMwTLe6Sok4kr8ritCujpMPUp6uTsnJxjisiJCjUcLUBnRh9\nKDuE9SvrHaPhIgEpl4FiEVhaskqKpRIDL7JJ1FE5cTu/R8VEw9UunZeOOMcVEQJQw9VZKDyadCXC\nK5euMKPUrdj2EIuLloh+cdH6mp5cpE7UElxSjvJhMfHp6rSsXLeWQUlvwAxXkmg8mr489GlcXl5v\nOpx2C10M7SGID1GzK52WLTKh1Vk5vw5GZrhI3DDD1SkUi43BFgCsrGA/nqQYvddY0vyFrNtO+o4S\nShhGY4NFkFE07XB+j0rQrFwUvZeJPivq94CQKDDgShLNm+3Nl55i6bDX0NlASMlxPwRAPAFTOywR\nogRBQQKcqIJ2k/JlNwatpIeQUnbMxzve8Q7ZU+TzUlpvuY0f+Xy7V0biZnpayuFh9fcbsPZNT7d7\nlYQYMy2nZVZmJVz/huWwnJbTTcfmZV4KKWRe5hv2e+1zkpf5pmtBQuZl3mi9Qgrl44UUoe8BIX4A\neFYaxjjMcCUJPZr6B6c9hIqVFavETHqaTrJAiIKdbVrGctM+d9aojDLuwT0Nmal7cM/mczfNykUV\ntO/ADuX2djUVEOKGAVeS0KOpvygULIG8EOr91HP1NCYlsW4JyFTlOSfOIOgYjmENrgkZWMMxHAt0\nzShdmGWU8SpebdruNpYlpJ0w4Eoa+024VrM+M9jqfTjup2fxCpj8NES6gOwojnoGYc5r7qz/Szpg\n88sqOYMgVRbMa7uOKIL2IopNQR8AXI2rqc8inYNp7bEVHz2n4SL9iUrPRQ1X1zMtp+WwHG7SB31E\nfkRK6a8h0mmU3I9zaqRU1/TTU9mPM9FN6dCtFRJyUA42nE93HCRC3eMw66Z+i7QLUMNFSBthKbkn\nUWWwJCQexsMoo+xbElP5P9nncOLMivmV9lQmonGMrymhBAF1adydNVIN2/ba7oVb7wXAqATbaaaw\nhKhgwEVIEniUkhXDB0gXoCuzSUgUUVSWxADgNbyGMspIIx34WiaCcfcxcbi7F1DQznm8hEsNXx/H\nceVQ7uM4bnw9FUECR/prkW6AARchLSTpCUCqYI4BXnic+qmUx6/LJSxtejy5MzvLWMYkJrGBDePr\n2pkZkwyN+5i4xtfkoe64dV+vgAJO4mSDt9VJnIysnTqGY8aBI/21SFdgWntsxQc1XP48N/2cfDD/\noPyM+Ix8MP+gfG76uXYviQQgSWs2lXRscFDKbdsoJwuDn35K5xWl0z+lZEqrM4pTwxXVz8rr+es0\nY3EzLac973cr1kCICaCGqzc5Uz6Dxycfx+XFy4AELi9exuOTj+NM+Uy7l0Y0uLNLqnGLQDyOEapJ\nUqurwJqreYuWYGb46ads3KUrXSaphhq2oXGk1zCGcQRHtJkZd+YmW//nlcWJq7zWzqyRX/kzqCaN\nkE6Aw6u7iC+PftkKtlxw6HVnoppdLoSVZ3ITx4zrVEp9bhVCWPIyokc3eBmwym1BByQDlpD8Klyl\nfWxc+A1x7nS87r0NB06TToDDq3uUy0vNwZbXdtJeVBknKZt9UeMaPhDE5ouWYP7o9FP2G73OOd0r\nk3QJlyLNQjQ1TrW7/U7hFADgIA5G9u1qpWmriXYtqCaNkHbDgKuL2D6yPdB20l50ZUIpk3GMUE2S\nGhwEtjVWsThdypCwpbkCClpLhCg2BUHtHuKwh0jiXCboOj6d0PKBdBsMuLqI/aX92Dbc+O65bXgb\n9pf2t2lFxAtdFskuH6qGD0TpKFTZf508CTz6KC3BwhBFw3Qcx2O3KQhq9+B1vC5bpdseh9VEEJz3\nHkCTJxgtH0hXYqqub8UHuxT9YZdi9xDUcD4Og/rpaavjUQjrM7sR20dUt3c3Qd3Udcfb3Yburz8i\nP6LtSmy3k3vc95KQuECALkWK5glJkHLZ0nItLVkZr1JJn13SdTGaCupVIv3hYfOMVpC1ktZhC+B1\nQnydeFwn3k8jrfQE0223s0yqc1G4TvqdIKJ5BlyEdAi6LkPTjsIoAVvUYI0kg62d0tlTDGNYW+ZU\nPXYYw0ZWF04EBE7hlPJcNBcl/Q67FAlJmCTc23WaL9OOQp1I38TjS9VR6fbromN96/HyAvPTlOk0\naDoHed3ooRGM0MmdkDgwrT224oMaLtINxKG1SuK8UVzshVA/Voh41kbCEVY75aV50jnIe2m4CCFq\nEEDD1fYgy/nBgIt0A0mP5wkreo8SFPk9pySfcy+iC3iCir/DjOkxGckT1/rihMJ40o0w4CIkQfyy\nQa3GGaRls9ZH0IDNL1jrtOfcycSZQQozzzCuWYomzzOuAKmdcxsJiQIDLkISpJOyPXGW+ryya530\nnDsdXcCTlulQgVDQwCZpC4dpOS2zMtt0/jABkv3cdPYV6R/lWbYmHU2QgItdioQEpJM6+nSdidks\ncNVV8Vk8dNJz7nRM5gA6ERCoIb7Bljo7iDgsHPy6JoNcw+9cAICawPDVNb7OSMfCLkVCEkTl6N6u\nNwRdB+LyshWISWl9npzc6ioM023YSc+509GNnPHqAgw6p9Dr+LAjiUzw6poEgs039DuXdcKRpm5Z\nQroW01SY6gPAPwPwQwA1APtc+z4F4EUAZwG81+R8LCkSEgxdqU9X/mO3YfLo9Ej75X5l2ewt8i1N\nZUCv8lwUUXxUvNzrg+rE/M6F14Yl7pqmVpB0NGiVhgvAXgB7AMw4Ay4AbwHwfQAZADcA+DsAab/z\nMeAi/UyYDkVVAKX7sM9LLVbyqAIeL61SkOClVaL4INcOo+HSnqsGiZfym8EWX5+kkwkScEUqKUop\n56SUZxW7bgfwNSllVUr5Uj3T9atRrkVIL2NrpHRlQB2qUl82qz52ZCScOSoNT4Nhj+JZwhJGMIIS\nSiigEKjcBujLc0G3x0UZZbyG15T7ssgGNkJVlT4H14ex7d5p4IYF4KvWuYaHLQ0iIV2PaWTm9YHm\nDNe/B3C34+s/BPBPNY+dBPAsgGdHRkaSC0MJ6WCy2fgyT15lw6AZLpYgg+FV7osrw6XqEISEzMps\nS5+Xfc2odhDuTCAHsJNuAnGWFAE8CeAHio/bHceEDricHywpkn5ketq7DBj2nKo3raABFEuQwfAq\n96mCFi8LB10gEybgiqrpamcZk5BOJkjANWCQATsQInH2EwC/6Pj6+vo2QogLrw4s0zmKbgoFdQeh\nva1YNLOMiDKfsR/xKvfZ5TZnufFW3IrH8FhDt56AwBEc0ZbnLuFSoO1u+4VFLGISkwBgXAJsVxmT\nkF4iKVuIbwG4UwiREULcAOBGAH+V0LUI6Wq8gpcktCuFArCwANRq1mcva4eoA7UB9JUITGcJYW8v\noIAFLKCGGhawgBM40TQU+hRO4QROBL7GDuxQblfZL6xgBUWYey34PS9CiD+RAi4hxAeFED8GMA7g\n20KI/wIAUsofAvhjAH8L4D8D+B0p5UbUxRLSi+iCl2w2eZ8rv1ioVLJEy04CiZjDdgN0KWE8sNxB\nmF/WqYQStmFb0/af4WdK/644slOmzyuonxghfYVp7bEVH9RwkX6kXcJ00+tGEjH3oQisFUOYdTou\nlaYqLv2V3/NSadQyr2dk8Z8X5Xfz35UvT78c4RkT0pmAo30I6S7KZXNdVVzn040FyuetUmMspFJW\niOVGCKumSUKhGx+kGhOkGqEzjOHANg5+6EYK5RZy+NoNX0NqOIU9U3uQK+RiuyYh7YajfQhpE2Hl\nSkF0VSZrMKnitUQQH4sIjLgJoqkqoNCkE4s72AL0JcoLIxcAALWVGuaL87Fek5BuggEXITHRKXKl\nYrFxyDQA5Ty6lsRCkUVgREVQrVhQnVgYdEHgrqVdm/+vLlVjvy4h3QIDLkJiwjTQMSFKY59X5sp5\n3tdeAwYHG4+JPRbi1OtEaFXWKgiqIDDzegaHP3146+uRTKuXRUjHQA0XITERl1zJzpS5g7dsFjh+\n3D9W0WmzslngypXG827bBrzxjcClS/FoxzaJW5RGuoLNsUZyCbt+tAuHP3kYB75qWTlSw0V6EWq4\nCGkDcZXoVJkyAFheVpco3dmwW29VV/GA5vOurQFXXRWPdqxhQZ1QWyUtZ7N0KWr4/tPfx23fvQ0Q\nQCafYbBF+h5muAiJCVVmang4eAVNlymzcXYRqq45OGhlrl5/3frazowdPNiihsGWtD8SQkj7YYaL\nkDYQl1zJLyPm1GipsmGrq1vBFmCVEb3OG3vDIOcBEUJIEwy4CImROOwdVI19TpwBkkkMYwv3W9Yw\nSCsIQghpggEXIS3CtPPQzpRls8373AGSaQyztJR8w6D9/AqLJawIWkEQQogTBlyEtICgOvJCAbh4\nEZie9g6Q/LJhNnZgZpqBC2pL4Xx+/xEFHJZTWBJ5SNAKghBCAIrmCWkJQXXkQVwV7GNV57eZnjaP\nd8KI/6mTJ4T0IxTNE9JhBNGRh8mGLSxYwU0chDFwpU6eEEK8YcBFSAvYscN8e1jH+lLJKj2qCOJ2\n7xc8qcqN1MkTQog3DLgI8SDKiJ2w6AKexUXvdRQKev8uXSZN9dy8gidd9k1ntkqdPCGEWDDgIkRD\nnIbply6Zb/fKCvmtQ1dWdJ/T67l52Ufosm9PPMGRiYQQ4gVF84RoiFMIHuRculmKYR+rErz7rUcn\n2o9rXiQhhPQCFM0TEgNxCsGDmI66/bKCrM/Ua8vvuensI6jVIoSQcDDgIkSDLohIpYKXFYOajjoD\nHtMyoeqxOq+tsIFTy9zqCSGkx2DARYgGnanoxkY4LVfYsT9JBDlBz2kL7A8eBIaGLBd8arUIIcQc\nBlyEaLCzUul08z4Tm4a41xGnID3IOd0C++VlayD2qVPh50USQki/QdE86WtMHN37XShOF3lCCFFD\n0TwhBpjaPvS7UJwu8oQQEh0GXKRvMXV07xSheFQT1rCP7/eAkxBC4oABF+k77MBDN+xZlbkZGtr6\nfzbrrXeKw5nefZ6jR6OZsEYxce2UgJMQQroZBlykr3AGHjqcmRv7+OXlrW1Xrvif2w5q7rkH2Lkz\nWACmOs/DD4ebr2gTdj4jkIxonxBC+g2K5klf4ZXZAppd2YMIxv3ObZPNAseP6wMW0/MAVgB06hSF\n/4QQ0g4omidEg5fQW5W58RokHeTcTpaXvct5QcToO3bEJ/w/ehQYGLCCsFQKuPrq1g7tJoSQXoYB\nF+krdIGHnbFyZ4Z0xwthHtSocJbz3HqtHTv013TzP/9nPML/o0eBhx6yTF0BK3h77bXoQ7sJIYRY\nMOAifUVQAXippA50pDQLarxYWlLrtV59FRgcbF7jkSNWOdKJrhzozpL56bCmprzX2kqjV0II6UUY\ncJG+IsxMQ53M0S+oyWabAycnIyNqMfvamlXOc6/xxAngqqvMnqcq2+Y1WsjObHnhfr5xdWQSQkg/\nwICL9B1egYcqiAgyPNp57osXgZMnm7NSwFZWTafXunRJvUYTfVcYywbV+CI3qu7NsDYVhPjy3FPA\ng5PAZ+6wPj/3VLtXREgkGHARUkcXRNx6a7hBz6mUlcE6fhyYnlZn1YKaiuq2p9PRLBsmJ733u59v\nFJsJQnx57ing8YeAy68AkNbnxx9i0EW6GgZchNTRBRFPPBF+0LMdtAHqjFUYTZnq+MceU2fsTDlx\nAvjIR7YyXUJY5Uvd8+W4H5Iop8vAWrVx21rV2k5Il0IfLkLqqMTxNqY/JmEGPTsHaNsdipcu6T21\nTAZuJw0HWpNE+cwdAFQ/dAL4zNdbvRpCtNCHi5AQ6HRMJvommzCZH1v3deqU5WK/vOytiyoUrCBr\nZMQ6b7HYeu0Ux/2QRNm+M9h2QroABlyE1NF16m1smHfhRRn0bKqL6gTBOsf9kETZXwC2ZRq3bctY\n2wnpUhhwEVJH140ImAc1YTI/QYdpd4pg3avbk5BIvO3dwPs/Amy/BoCwPr//I9Z2QroUargIqWNn\njtzBjBMTjZKJxso+ZnHRyhD5/Rjm81vn4VxEQgjpDIJouAaSXgwh3YIdFNmBkAqTLrxCwTvb4w7s\nTP7mcXY7joyo1xdktBAhhJDWwpIiIQ7sMlkQs9OgqEqCJthlw64UrNPEkhDS5zDgIkRBUkFNuazP\nnpmwtNSFgnWaWBJCCAMuQlQkEdTYpUQ/hofV44CArQxbVwnWaWJJYqRcqWB0dhapmRmMzs6iXKm0\ne0mEGMGAixAN7qAGiDas2auUaJuu2oHd8ePeGbY4Bke3bPj05YvBthOioVypYPLsWSxWq5AAFqtV\nTJ49y6CLdAUMuEhfYAcXQgADA9ZnryDDHYwcPRrd+8pLcH/qlHVeO1vllWGLw4fr6FHg4MHGc9xz\nD7BzZwIBGE0sO5ZWZIvivEZxfh4rrlbclVoNxfn5qMskJHFoC0F6Hi+7h+Hh5lKh6niddUOQUTZx\njcOJep5y2Qq2/H70VfcmFLaGy1lW3Jahr1KbsbNFzgBmOJXC1J49KORyHXmN1MyMbuAPahMToddJ\nSFg42ocQB16lPJVhqOp4XXCiy1qpynVxCfGjDo4uFs2sKGIzU6WJZUfSimyR7hrHXngh1PlGMplA\n2wnpJBhwkZ7HLxBx7zcNXAC1TYSu5AfEI8SPMj4ICPb8ghzrydveDXxsyho8/LEpBlsdwFK1Gmh7\nnNdYXl8PVVosjY1hONX4tjWcSqE0NhZqfYS0EgZcpOfxC0Tc+3XH28J2G112ymv0ThzdhVEzZUG8\nxHbsMD+WdBetyBZ5nStMJq2Qy2Fqzx7kMxkIAPlMJtYSKCFJwoCL9DyqAMVGFajoApojR8yyU1FL\nfn5EtawolYDBwXjWQrqXKNkiUyG817nCZtIKuRwWxsdRm5jAwvh4rHoz2k2QJGHARXoeZ4ACAOm0\n9VkXqKiOX1kBnnjCClb8slNRS342XrYNUTJlhQJw9dVmx166ZH5e0l2EzRYFsWYo5HLI2j9wLlqt\nu/IKqGg3QVoBAy7SF9gBipTA+nqjBYPueDvTtbFhbTO1X4hDHB+H9YN9HlXQZhpIcT4jcVKuVHBo\nbi6Q2P747t2hMmlxZpz8AiqtuP/cudDXJMQNAy5CNHhpsbyIw6U+7LWdeAVtJoFUx89nJJEImtWx\nj9/QnE9XIgyTSVOt7e65Oex8+ulQgZcuoDo0N4dypaIX929sMMtFYoM+XIRoSKXU9glCWKW8Tr+2\nl19XqdTsNbZtG/DGN1rZr5ER65iOHhlEAlGuVFCcn8dStYqRTAavbWxgeX296bh8JoOF8fGm7aOz\ns1j00F3pHmdfd7FaRRrARv3Y0tiYNujyulYYHy+df5d9viEhsLyhDiV1z4sQgD5chMSCLgvk7Nxz\nlux27ozm1O48V0rzk2mvyWQsj5d4X5WFe/RR4OLFLpnPSAKhyhipgi0gnF2ErkTovC6AzeyYXzbN\n61phvMK89GIrtVpzC7LhWggJAgMuQjTouvlefdUKcNwlu+Vl6yOM5sp9LtUf23aJz1Tf5Sfe76oB\n2CQSqpKajjB2EUOagMXrul6Bk5+gPmgQpOrIdHJpfR3ZgQHlPgmwa5HEAgMu0lcEGdis6+ZbW7O0\nVF4O9kAwzZXuXOl0sw7MVN8Vl7M96X5MAxQvMbtX0LK8saHMWPldV7ffL0AK2uFo68jU/ZLW+Y7f\neKP2muxaJHHAgIv0DUE7/8plK2OlYmnJzFfL1HtLd1yt1pyBMvX5ikO8T1pPEn5QugAlm04bi9md\n4ncVqoyVX2Ck229fS5V1CussX8jl8NjevdqOyTDPj5AgUDRP+oadO9UBlGros9fAa/sxgFqU7ndu\nFUEGUsc1BJt0Hrphz4euvRZPLC9vCt69BOdBzpv0EGnVdU2vH0Zs736s6n557Qv6/AihaJ4QF37Z\nKjde5UK7LOflYO88zgTVuYSwAitn6bNctoTtYa8VpKRKWo/OvuDh8+cjmXLGPRLHVOflzho533CG\nPEqGKrG9MxPlhZ/dhdOpvjQ2huL8fFM2kUOySRIw4CI9izO4+K3f0h/nFpeXy96ZK7ss5y7ZZbPW\nR5jyndvdXogtWwi79Hn0KHDPPcDrrzc//tAh/2vFZaba95TLVrpUCOtj587YbqJO0+TOtjjLW7oS\npHs7gNhG4gQZC2QHONN79+IXHI9ZXl/XBo66wNOkpGf6WK/AjEOySRKwpEh6knLZCk7W1vyPnZ7e\nClZMSolJl+10JcN0Wt29CJiti6XIGNC9sAYHgZMnIwvk/LyunAgAp/bu1ZYgH3v55dhKiCpMSnNO\ndM8tOzCAq9LphvMcnJvT+mZN793reR3TcqBuPbbvVtDnR/qTICVFBlykJ9Hptdxks40lOl1QAlhl\nu1aIznWmp16YGKK208i1Z/B6gcQQuao0TwLNGS4Am2U60wDNfky7TDy9zEedDKdSGEqltD5hAsCR\n667Did27lfv9Aim/9VCnRYJADRfpe0yCLQA4frzxa6+uQl2w5dZFHT0aTSel88/SzAD2fIzJMZyX\nGACvF4hpS6oHKq3Vkeuu05a3gvpRtcvEs1ypGL/ZrNRqgJRaiwYJ4OHz57UaNtNyIHVapNUw4CJ9\nSzbbHEDpgo98Xh9suXVRDz0UTSel88+anLTG77gZHDQTzNOXKwa8otOYIlenqHthfBwndu/WCt6D\nBgftCCb8ZjCqWN7YwKFrr9Xul4BWz2XaIECdFmk1DLhIT5LNeu8fHm7ObgHBgxI/81PAzADVmSUr\nFi0RvNs/68QJa/yO87lls+bSIfpyxUCpFC3qDYk7CLODBz+DUCdJBhNe3mE6t/k0LB8wHY+9/LLn\nfq9Squ5+Odd6cG4OQ6kUsul0LJ2bhPhBDRfpScpl4N57gdXV5n328GZdoFEuW0HP0pL/EGdTvZWX\nTkol1G+VXoyEoFwGjh3bqltns1b03qZvltOvSoef7inq9b08vry0UirRv5PswIBWy5UGsB5QaxW3\nHxkhFM0TgmCBU1i8NNROvPTUXl2Jjz3WvOZWPC/SfXiZjALJCea9OivzmQxeW1/HsqK91tkNePfc\nnPLxuoYBGxkw4DIV1BNiCkXzhKA1w5n9zE8BK7vlVW3Saa03Npr1XyrN2L33Wl2ZNDPtHcKM97G1\nSzqSEsx7nXexWsXPajW4i7DO8mYhl9OO0xnJZLT7dNvDrLVdzQSkv2DARUgEVIalToQAjhzxDva8\ntNZu/ZdKM7a6alW3aGbaG/g5pXvhF7wEXcfOZ56BmJmBmJnBzqefVq7B77yrUuKNAwOeInadFu21\n9XXcms2GFre7A9cditmMJs+BkDhgwEX6iiRG29iZNCmBU6caRemnTllidy/8smSLi1vrNSlfmoj0\nSecSxWUdiKf7rlyp4N7nn2/QTy1vbOCeubmmoMtEuH9pfd3T5V43rHp5YwOPvfwyDl17beCxRKrA\n9dX1dQy6/ipiZyJpFdRwkb6hk8Xp5bLVmahzkrdxjvzxO45mpt1JHIacUV3S/XRZbr2Tn3DfVCMV\np8ZK62yfTuOqgQE6yJNYCKLhUudXCekxdAGNnQ1qd8BlX99rrBBgBVsmQRfNTLuXkUxGGSiMZDLK\nQAqAMriKEkR4aZpU++zr6boATTNIcWqsdI+5tLGBi+96V+DzERIVlhRJz2NntnTZI6do3S45CgEM\nDFifWyVEd/tk6ZCycWC22xaKZqbdja4keGs221Qiu/f553HP3FwovZcXXpomr32mpqNBzx1GY0Un\nedJpMOAiPY+fOamdDXJ2AAJbAVorhejOzkpbiO/Gtpio1aw5kI8+SjPTXkIXtDyxvNyk7VqVEu75\n7G69V5iOx9LYWJPWCQC21ff5rd+t1zJdQ5zu73SSJ50GNVyk5/EyJ3VquPxE6THMJg5EJ2vOSOsx\nHf4MbOm9ohh9lisVHHvhhU3hfDadxvHduwOXKoOuwUR/ZqpR8zqujDKKKGIJSxjBCEoooQD+YJFg\n0PiUEAemxqJ+rvHtEKLT5JTYeAnZ3dgi81YafeqCm7jXEIdbfBllTGISK9j6a0rQe44AAA1kSURB\nVGYYw5jCFIMuEgganxLiQDcf0e3i7ic0b4cQvRXmraQ7UJXIBoXwNBVtldGnl3dY3Gs4du5cJNsM\nACii2BBsAcAKVlAE/VRIcjDgIj2P6dBmLz8sCtFJu1Fpu07edBMe3btXK1JvlXDcyzvMaw3lSgU7\nn356y1z1mWc8NWblSkU5JggIFsAtQT3eQbedkDhgSZEQB3YJb3HRKjlubPgPuyakU2nVsOagA6qH\nUykcuvZaPHL+fJPof1AInLzpJuX6gvqD6RjFKBbRrDPII48FLBidgxCAJUVCQuN0jV9ftz6zlEe6\nlSg2DUG6G72yWF5dl+5gC7A6L3XlQa8sVpDuwxJKGEZjOltAYBGLGMUoyuBsLBI/ND4lhJAuIYyD\nfBgTVHdmzNZk2edzUxob8zQ8Va3h7rk57fV1gZXOFDY7MBDoOdrC+CKKWMQiBARkPUe3iEVMYrLh\nOELigBkuQgjpAqIMtQ7KsRde8BWmOzNgxfn5wPMO0x7X12XMdN5ax2+80fc5uSmggAUsII/8ZrBl\nQwE9SQJmuAghpAvwEqbHqccqVyoNQ6ud2JknVQbssZdfDqQN8xobqisP2ueOMifSDQX0pFUw4CKE\nkC6gVRYPXvYKduYpjuAvrysPptOe54g6J9LNCEaUAvoRcCApiReWFAkhpAtohcVDuVLxNFeN099L\nWx7cvdv4HHGgEtAPYxgl0AeGxAsDLkII6QKSng1olwl1ODNPcQR/UQddx0UBBUxhCnnkISCQR56O\n8yQR6MNFCCFdQpguRVO8PK7c3l2t8vcipNMJ4sNFDRchhHQJcemXVIGbVznQHUglIV4npNdhSZEQ\nQnqdctma4p5KoXznnZj84Q8b7CUOzs1hWAjlQ/N181I3hVwOC+PjqE1MbDq8mxqlEtKPMMNFCCG9\nTLkMTE4CK9aw5uIHPoAVlxZMAnhdSgwKgVWHzMRUIxbUKJWQfoQZLkII6WWKxc1gCwCWdu3SHnp1\nKhVKxK6ziTh27lzoZRPSazDDRQghvcxSo4HnyIULWLz2WuWhlzY2cPFd7wp+CY3+a3ljA+VKpa1Z\nrkqljPn5IqrVJWQyIxgbs+we3NtyOXYlkmRhhosQQnqZkUYDz9Ijj0C4slGbh4b09PJ6nJeRatJU\nKmWcPTuJanURgES1uogfzt2D5+buadh29uwkKhUOrCbJwoCLEEJ6mVIJGN4y9iycPo0j3/42hMsS\nKIqnl9fj4nbCD8L8fBG12krDthTWsA1rDdtqtRXMz3N2IkkWBlyEENLLFArA1BSQzwNCAPk8TvzK\nr+DUW94Sm+loIZdDdkCtUInTCT8o1ar5PMQgxxISBmq4CCGk1ykUrA/nJsTbQXj8xhuVZqhxOeGH\nIZMZqZcOzY4lJEmY4SKEEBKZThnV42RsrIRUqnFO4irSWHXlGqrIbIrpCUkKZrgIIYTEQlxO+FFx\ndiam0zswMDCE9fVLWB94M768/ttYhcRhPIJduIBXsAvbrvt9dimSxGHARQghpCswmSVpdybaYvmN\njWWkUsPYu/cUcrkCKvVz/PPqgc1z/GYHBImk9+HwakIIIR2P6cDs2dlRpW4rk8ljfHyhFUslfUSQ\n4dXUcBFCCOl4dG72bp8vXbchuxBJu2HARQghpOPR+Xm5t+u6DdmFSNoNAy5CCCEdj87Py71d1ZmY\nSg2zC5G0HQZchBBC2kK5UsHOZ56BmJmBmJnBzqefRrlSUR5bGhvDcKrxLUvl85XLFbBnzxQymTwA\ngUwmjz17ptiFSNoOAy5CCOllymVgdBRIpazP5c6YGViuVHDv889jeX19c9vyxgbunpvDzmeeaQq8\ngvh85XIFjI8vYGKihvHxBQZbpCOgLQQhhPQq5TIwOQms1OcJLi5aXwNNzvOtpjg/j1VNl/zy+jom\nz54F0OiG3yk+X4SEIVKGSwjxRSHE80KI54QQ3xBCvMmx71NCiBeFEGeFEO+NvlRCCCGBKBa3gi2b\nlRVre5vxG2qt6kAkpJuJWlL8MwBvlVK+DcA5AJ8CACHEWwDcCeCXALwPwAkhRDritQghhARhSWOF\noNveQkyGWvsFZYR0E5ECLinln0op7QL8XwK4vv7/2wF8TUpZlVK+BOBFAL8a5VqEEEICMqKxQtBt\nbyGlsTEMCuF5jElQRki3EKdo/l4A36n//80AfuTY9+P6tiaEEJNCiGeFEM++8sorMS6HEEL6nFIJ\nGG60SMDwsLW9zRRyOZy86SZkB9RSYlUHIiHdjG/AJYR4UgjxA8XH7Y5jigDWAQRuf5FSTkkp90kp\n911zzTVBH04IIURHoQBMTQH5PCCE9Xlqqu2CeZtCLoeL73wn5MQEpvfuNepAJKRb8e1SlFIe8Nov\nhPhtAP8IwH65NZjxJwB+0XHY9fVthBBCWkmh0DEBlhfsQCS9TtQuxfcBuB/AP5ZSOlthvgXgTiFE\nRghxA4AbAfxVlGsRQgghhHQrUX24/j2ADIA/E5b48S+llEeklD8UQvwxgL+FVWr8HSnlRsRrEUII\nIYR0JZECLinl/+qxrwSg/cpMQgghhJA2w9E+hBBCCCEJw4CLEEIIISRhGHARQgghhCQMAy5CCCGE\nkIRhwEUIIYQQkjAMuAghhBBCEoYBFyGEEEJIwjDgIoQQQghJGAZchBBCCCEJw4CLEEIIISRhGHAR\nQgghhCQMAy5CCCGEkIRhwEUIIYQQkjAMuAghhBBCEoYBFyGEEEJIwjDgIoQQQghJGAZchBBCCCEJ\nw4CLEEIIISRhGHARQgghhCQMAy5CCCGEkIQRUsp2r2ETIcQrABbbuISdAC628fqdQL/fg35//gDv\nAcB7APAeALwH/f78Af97kJdSXmNyoo4KuNqNEOJZKeW+dq+jnfT7Pej35w/wHgC8BwDvAcB70O/P\nH4j3HrCkSAghhBCSMAy4CCGEEEIShgFXI1PtXkAH0O/3oN+fP8B7APAeALwHAO9Bvz9/IMZ7QA0X\nIYQQQkjCMMNFCCGEEJIwfR9wCSG+KIR4XgjxnBDiG0KINzn2fUoI8aIQ4qwQ4r3tXGeSCCH+mRDi\nh0KImhBin2P7qBDiihDif9Q/Hm7nOpNEdw/q+/rideBECPEZIcRPHN/7W9u9plYghHhf/fv8ohDi\nk+1eTzsQQiwIIc7Uv+/Ptns9rUAIcVIIcUEI8QPHth1CiD8TQrxQ//y/tHONSaO5B331e0AI8YtC\niP8qhPjb+vvBsfr2WF4LfR9wAfgzAG+VUr4NwDkAnwIAIcRbANwJ4JcAvA/ACSFEum2rTJYfALgD\nwH9T7Ps7KeUv1z+OtHhdrUR5D/rsdeDmQcf3/ol2LyZp6t/X/xfALQDeAuCu+ve/H/k/6t/3frEE\n+CNYP99OPgngtJTyRgCn61/3Mn+E5nsA9NfvgXUA/0JK+RYA/zuA36n/DojltdD3AZeU8k+llOv1\nL/8SwPX1/98O4GtSyqqU8iUALwL41XasMWmklHNSyrPtXkc78bgHffM6IPhVAC9KKeellKsAvgbr\n+096HCnlfwNwybX5dgCP1f//GIAPtHRRLUZzD/oKKeVPpZR/U///zwDMAXgzYnot9H3A5eJeAN+p\n///NAH7k2Pfj+rZ+44Z6KvkpIcS72r2YNtDPr4PfrZfaT/Z6OaVOP3+vnUgATwoh/loIMdnuxbSR\nnJTyp/X/vwwg187FtJF++z0AwJLUAPiHAL6HmF4LA7GsrMMRQjwJ4FrFrqKU8k/qxxRhpRPLrVxb\nqzC5Bwp+CmBESrkshHgHgG8KIX5JSvlqYgtNkJD3oGfxuh8AHgLwr2G9+f5rAP8W1h8kpPd5p5Ty\nJ0KIXQD+TAjxfD370bdIKaUQoh9b+vvy94AQ4ioA/wnAfVLKV4UQm/uivBb6IuCSUh7w2i+E+G0A\n/wjAfrnlk/ETAL/oOOz6+rauxO8eaB5TBVCt//+vhRB/B2A3gK4U0oa5B+ix14ET0/shhPgKgP8v\n4eV0Aj37vQ6ClPIn9c8XhBDfgFVq7ceAqyKE+AdSyp8KIf4BgAvtXlCrkVJW7P/3y+8BIcQ2WMFW\nWUr59frmWF4LfV9SFEK8D8D9AP6xlHLFsetbAO4UQmSEEDcAuBHAX7Vjje1CCHGNLRAXQozBugfz\n7V1Vy+nL10H9l4rNB2E1FfQ6/x3AjUKIG4QQg7CaJb7V5jW1FCHEG4QQV9v/B/B/oj++9yq+BeBQ\n/f+HAPRjFryvfg8IK5X1hwDmpJT/zrErltdC3xufCiFeBJABsFzf9Jd2N169zHgvrFLjfVLK76jP\n0t0IIT4I4A8AXAPg7wH8Dynle4UQ/wTAvwKwBqAG4AEp5ePtW2ly6O5BfV9fvA6cCCFOAfhlWKWE\nBQD/l0PD0LPU296/DCAN4KSUstTmJbWU+h9W36h/OQDgP/bDPRBCfBXABICdACoAHgDwTQB/DGAE\nwCKA35BS9qyoXHMPJtBHvweEEO8E8DSAM7De8wDg07B0XJFfC30fcBFCCCGEJE3flxQJIYQQQpKG\nARchhBBCSMIw4CKEEEIISRgGXIQQQgghCcOAixBCCCEkYRhwEUIIIYQkDAMuQgghhJCEYcBFCCGE\nEJIw/z9ICX4F7LJYpgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "colors = np.array([x for x in 'b-g-r-c-m-y-k-purple-coral-lime'.split('-')])\n", + "colors_map = colors_map[:1000]\n", + "plt.figure(figsize=(10,10))\n", + "for cl in range(nb_classes):\n", + " indices = np.where(colors_map==cl)\n", + " plt.scatter(X_tsne[indices,0], X_tsne[indices, 1], c=colors[cl], label=cl)\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Using Bokeh (Interactive Chart)" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " Loading BokehJS ...\n", + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/javascript": [ + "\n", + "(function(global) {\n", + " function now() {\n", + " return new Date();\n", + " }\n", + "\n", + " var force = true;\n", + "\n", + " if (typeof (window._bokeh_onload_callbacks) === \"undefined\" || force === true) {\n", + " window._bokeh_onload_callbacks = [];\n", + " window._bokeh_is_loading = undefined;\n", + " }\n", + "\n", + "\n", + " \n", + " if (typeof (window._bokeh_timeout) === \"undefined\" || force === true) {\n", + " window._bokeh_timeout = Date.now() + 5000;\n", + " window._bokeh_failed_load = false;\n", + " }\n", + "\n", + " var NB_LOAD_WARNING = {'data': {'text/html':\n", + " \"
\\n\"+\n", + " \"

\\n\"+\n", + " \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n", + " \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n", + " \"

\\n\"+\n", + " \"
    \\n\"+\n", + " \"
  • re-rerun `output_notebook()` to attempt to load from CDN again, or
  • \\n\"+\n", + " \"
  • use INLINE resources instead, as so:
  • \\n\"+\n", + " \"
\\n\"+\n", + " \"\\n\"+\n", + " \"from bokeh.resources import INLINE\\n\"+\n", + " \"output_notebook(resources=INLINE)\\n\"+\n", + " \"\\n\"+\n", + " \"
\"}};\n", + "\n", + " function display_loaded() {\n", + " if (window.Bokeh !== undefined) {\n", + " var el = document.getElementById(\"0af86eff-6a55-4644-ab84-9a6f5fcbeb3e\");\n", + " el.textContent = \"BokehJS \" + Bokeh.version + \" successfully loaded.\";\n", + " } else if (Date.now() < window._bokeh_timeout) {\n", + " setTimeout(display_loaded, 100)\n", + " }\n", + " }\n", + "\n", + " function run_callbacks() {\n", + " window._bokeh_onload_callbacks.forEach(function(callback) { callback() });\n", + " delete window._bokeh_onload_callbacks\n", + " console.info(\"Bokeh: all callbacks have finished\");\n", + " }\n", + "\n", + " function load_libs(js_urls, callback) {\n", + " window._bokeh_onload_callbacks.push(callback);\n", + " if (window._bokeh_is_loading > 0) {\n", + " console.log(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n", + " return null;\n", + " }\n", + " if (js_urls == null || js_urls.length === 0) {\n", + " run_callbacks();\n", + " return null;\n", + " }\n", + " console.log(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n", + " window._bokeh_is_loading = js_urls.length;\n", + " for (var i = 0; i < js_urls.length; i++) {\n", + " var url = js_urls[i];\n", + " var s = document.createElement('script');\n", + " s.src = url;\n", + " s.async = false;\n", + " s.onreadystatechange = s.onload = function() {\n", + " window._bokeh_is_loading--;\n", + " if (window._bokeh_is_loading === 0) {\n", + " console.log(\"Bokeh: all BokehJS libraries loaded\");\n", + " run_callbacks()\n", + " }\n", + " };\n", + " s.onerror = function() {\n", + " console.warn(\"failed to load library \" + url);\n", + " };\n", + " console.log(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " document.getElementsByTagName(\"head\")[0].appendChild(s);\n", + " }\n", + " };var element = document.getElementById(\"0af86eff-6a55-4644-ab84-9a6f5fcbeb3e\");\n", + " if (element == null) {\n", + " console.log(\"Bokeh: ERROR: autoload.js configured with elementid '0af86eff-6a55-4644-ab84-9a6f5fcbeb3e' but no matching script tag was found. \")\n", + " return false;\n", + " }\n", + "\n", + " var js_urls = [\"https://cdn.pydata.org/bokeh/release/bokeh-0.12.5.min.js\", \"https://cdn.pydata.org/bokeh/release/bokeh-widgets-0.12.5.min.js\"];\n", + "\n", + " var inline_js = [\n", + " function(Bokeh) {\n", + " Bokeh.set_log_level(\"info\");\n", + " },\n", + " \n", + " function(Bokeh) {\n", + " \n", + " },\n", + " \n", + " function(Bokeh) {\n", + " \n", + " document.getElementById(\"0af86eff-6a55-4644-ab84-9a6f5fcbeb3e\").textContent = \"BokehJS is loading...\";\n", + " },\n", + " function(Bokeh) {\n", + " console.log(\"Bokeh: injecting CSS: https://cdn.pydata.org/bokeh/release/bokeh-0.12.5.min.css\");\n", + " Bokeh.embed.inject_css(\"https://cdn.pydata.org/bokeh/release/bokeh-0.12.5.min.css\");\n", + " console.log(\"Bokeh: injecting CSS: https://cdn.pydata.org/bokeh/release/bokeh-widgets-0.12.5.min.css\");\n", + " Bokeh.embed.inject_css(\"https://cdn.pydata.org/bokeh/release/bokeh-widgets-0.12.5.min.css\");\n", + " }\n", + " ];\n", + "\n", + " function run_inline_js() {\n", + " \n", + " if ((window.Bokeh !== undefined) || (force === true)) {\n", + " for (var i = 0; i < inline_js.length; i++) {\n", + " inline_js[i](window.Bokeh);\n", + " }if (force === true) {\n", + " display_loaded();\n", + " }} else if (Date.now() < window._bokeh_timeout) {\n", + " setTimeout(run_inline_js, 100);\n", + " } else if (!window._bokeh_failed_load) {\n", + " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", + " window._bokeh_failed_load = true;\n", + " } else if (force !== true) {\n", + " var cell = $(document.getElementById(\"0af86eff-6a55-4644-ab84-9a6f5fcbeb3e\")).parents('.cell').data().cell;\n", + " cell.output_area.append_execute_result(NB_LOAD_WARNING)\n", + " }\n", + "\n", + " }\n", + "\n", + " if (window._bokeh_is_loading === 0) {\n", + " console.log(\"Bokeh: BokehJS loaded, going straight to plotting\");\n", + " run_inline_js();\n", + " } else {\n", + " load_libs(js_urls, function() {\n", + " console.log(\"Bokeh: BokehJS plotting callback run at\", now());\n", + " run_inline_js();\n", + " });\n", + " }\n", + "}(this));" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from bokeh.plotting import figure, output_notebook, show\n", + "\n", + "output_notebook()" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "
\n", + "
\n", + "
\n", + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "p = figure(plot_width=600, plot_height=600)\n", + "\n", + "colors = [x for x in 'blue-green-red-cyan-magenta-yellow-black-purple-coral-lime'.split('-')]\n", + "colors_map = colors_map[:1000]\n", + "for cl in range(nb_classes):\n", + " indices = np.where(colors_map==cl)\n", + " p.circle(X_tsne[indices, 0].ravel(), X_tsne[indices, 1].ravel(), size=7, \n", + " color=colors[cl], alpha=0.4, legend=str(cl))\n", + "\n", + "# show the results\n", + "p.legend.location = 'bottom_right'\n", + "show(p)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Note: We used `default` TSNE parameters. Better results can be achieved by tuning TSNE Hyper-parameters" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 1: \n", + "\n", + "### Try with a different algorithm to create the manifold" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from sklearn.manifold import MDS" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "## Your code here" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 2: \n", + "\n", + "### Try extracting the Hidden features of the First and the Last layer of the model" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "## Your code here" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "## Try using the `get_activations` function relying on keras backend\n", + "def get_activations(model, layer, X_batch):\n", + " activations_f = K.function([model.layers[0].input, K.learning_phase()], [layer.output,])\n", + " activations = activations_f((X_batch, False))\n", + " return activations" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.5.3" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/3.1 AutoEncoders and Embeddings.ipynb b/3.1 AutoEncoders and Embeddings.ipynb deleted file mode 100644 index a14b895..0000000 --- a/3.1 AutoEncoders and Embeddings.ipynb +++ /dev/null @@ -1,2250 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Unsupervised learning" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### AutoEncoders " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "An autoencoder, is an artificial neural network used for learning efficient codings. \n", - "\n", - "The aim of an autoencoder is to learn a representation (encoding) for a set of data, typically for the purpose of dimensionality reduction. " - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": false - }, - "source": [ - "" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Unsupervised learning is a type of machine learning algorithm used to draw inferences from datasets consisting of input data without labeled responses. The most common unsupervised learning method is cluster analysis, which is used for exploratory data analysis to find hidden patterns or grouping in data." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "collapsed": false, - "scrolled": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Train on 60000 samples, validate on 10000 samples\n", - "Epoch 1/50\n", - "60000/60000 [==============================] - 20s - loss: 0.3832 - val_loss: 0.2730\n", - "Epoch 2/50\n", - "60000/60000 [==============================] - 19s - loss: 0.2660 - val_loss: 0.2557\n", - "Epoch 3/50\n", - "60000/60000 [==============================] - 18s - loss: 0.2455 - val_loss: 0.2331\n", - "Epoch 4/50\n", - "60000/60000 [==============================] - 19s - loss: 0.2254 - val_loss: 0.2152\n", - "Epoch 5/50\n", - "60000/60000 [==============================] - 19s - loss: 0.2099 - val_loss: 0.2018\n", - "Epoch 6/50\n", - "60000/60000 [==============================] - 19s - loss: 0.1982 - val_loss: 0.1917\n", - "Epoch 7/50\n", - "60000/60000 [==============================] - 19s - loss: 0.1893 - val_loss: 0.1840\n", - "Epoch 8/50\n", - "60000/60000 [==============================] - 19s - loss: 0.1824 - val_loss: 0.1778\n", - "Epoch 9/50\n", - "60000/60000 [==============================] - 19s - loss: 0.1766 - val_loss: 0.1725\n", - "Epoch 10/50\n", - "60000/60000 [==============================] - 19s - loss: 0.1715 - val_loss: 0.1676\n", - "Epoch 11/50\n", - "60000/60000 [==============================] - 18s - loss: 0.1669 - val_loss: 0.1632\n", - "Epoch 12/50\n", - "60000/60000 [==============================] - 19s - loss: 0.1626 - val_loss: 0.1593\n", - "Epoch 13/50\n", - "60000/60000 [==============================] - 19s - loss: 0.1587 - val_loss: 0.1554\n", - "Epoch 14/50\n", - "60000/60000 [==============================] - 19s - loss: 0.1551 - val_loss: 0.1520\n", - "Epoch 15/50\n", - "60000/60000 [==============================] - 19s - loss: 0.1519 - val_loss: 0.1489\n", - "Epoch 16/50\n", - "60000/60000 [==============================] - 19s - loss: 0.1489 - val_loss: 0.1461\n", - "Epoch 17/50\n", - "60000/60000 [==============================] - 19s - loss: 0.1461 - val_loss: 0.1435\n", - "Epoch 18/50\n", - "60000/60000 [==============================] - 19s - loss: 0.1435 - val_loss: 0.1408\n", - "Epoch 19/50\n", - "60000/60000 [==============================] - 19s - loss: 0.1410 - val_loss: 0.1385\n", - "Epoch 20/50\n", - "60000/60000 [==============================] - 19s - loss: 0.1387 - val_loss: 0.1362\n", - "Epoch 21/50\n", - "60000/60000 [==============================] - 19s - loss: 0.1365 - val_loss: 0.1340\n", - "Epoch 22/50\n", - "60000/60000 [==============================] - 19s - loss: 0.1344 - val_loss: 0.1320\n", - "Epoch 23/50\n", - "60000/60000 [==============================] - 19s - loss: 0.1324 - val_loss: 0.1301\n", - "Epoch 24/50\n", - "60000/60000 [==============================] - 19s - loss: 0.1305 - val_loss: 0.1282\n", - "Epoch 25/50\n", - "60000/60000 [==============================] - 18s - loss: 0.1287 - val_loss: 0.1265\n", - "Epoch 26/50\n", - "60000/60000 [==============================] - 18s - loss: 0.1270 - val_loss: 0.1248\n", - "Epoch 27/50\n", - "60000/60000 [==============================] - 18s - loss: 0.1254 - val_loss: 0.1232\n", - "Epoch 28/50\n", - "60000/60000 [==============================] - 19s - loss: 0.1238 - val_loss: 0.1217\n", - "Epoch 29/50\n", - "60000/60000 [==============================] - 19s - loss: 0.1224 - val_loss: 0.1203\n", - "Epoch 30/50\n", - "60000/60000 [==============================] - 19s - loss: 0.1210 - val_loss: 0.1189\n", - "Epoch 31/50\n", - "60000/60000 [==============================] - 19s - loss: 0.1197 - val_loss: 0.1176\n", - "Epoch 32/50\n", - "60000/60000 [==============================] - 19s - loss: 0.1184 - val_loss: 0.1163\n", - "Epoch 33/50\n", - "60000/60000 [==============================] - 19s - loss: 0.1173 - val_loss: 0.1152\n", - "Epoch 34/50\n", - "60000/60000 [==============================] - 19s - loss: 0.1161 - val_loss: 0.1141\n", - "Epoch 35/50\n", - "60000/60000 [==============================] - 19s - loss: 0.1151 - val_loss: 0.1131\n", - "Epoch 36/50\n", - "60000/60000 [==============================] - 19s - loss: 0.1141 - val_loss: 0.1122\n", - "Epoch 37/50\n", - "60000/60000 [==============================] - 19s - loss: 0.1132 - val_loss: 0.1112\n", - "Epoch 38/50\n", - "60000/60000 [==============================] - 19s - loss: 0.1123 - val_loss: 0.1104\n", - "Epoch 39/50\n", - "60000/60000 [==============================] - 19s - loss: 0.1115 - val_loss: 0.1095\n", - "Epoch 40/50\n", - "60000/60000 [==============================] - 19s - loss: 0.1107 - val_loss: 0.1088\n", - "Epoch 41/50\n", - "60000/60000 [==============================] - 19s - loss: 0.1100 - val_loss: 0.1081\n", - "Epoch 42/50\n", - "60000/60000 [==============================] - 19s - loss: 0.1093 - val_loss: 0.1074\n", - "Epoch 43/50\n", - "60000/60000 [==============================] - 19s - loss: 0.1087 - val_loss: 0.1068\n", - "Epoch 44/50\n", - "60000/60000 [==============================] - 19s - loss: 0.1081 - val_loss: 0.1062\n", - "Epoch 45/50\n", - "60000/60000 [==============================] - 19s - loss: 0.1075 - val_loss: 0.1057\n", - "Epoch 46/50\n", - "60000/60000 [==============================] - 19s - loss: 0.1070 - val_loss: 0.1052\n", - "Epoch 47/50\n", - "60000/60000 [==============================] - 20s - loss: 0.1065 - val_loss: 0.1047\n", - "Epoch 48/50\n", - "60000/60000 [==============================] - 17s - loss: 0.1061 - val_loss: 0.1043\n", - "Epoch 49/50\n", - "60000/60000 [==============================] - 29s - loss: 0.1056 - val_loss: 0.1039\n", - "Epoch 50/50\n", - "60000/60000 [==============================] - 21s - loss: 0.1052 - val_loss: 0.1034\n" - ] - }, - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# based on: https://blog.keras.io/building-autoencoders-in-keras.html\n", - "\n", - "encoding_dim = 32 \n", - "input_img = Input(shape=(784,))\n", - "encoded = Dense(encoding_dim, activation='relu')(input_img)\n", - "decoded = Dense(784, activation='sigmoid')(encoded)\n", - "autoencoder = Model(input=input_img, output=decoded)\n", - "encoder = Model(input=input_img, output=encoded)\n", - "\n", - "encoded_input = Input(shape=(encoding_dim,))\n", - "decoder_layer = autoencoder.layers[-1]\n", - "decoder = Model(input=encoded_input, output=decoder_layer(encoded_input))\n", - "\n", - "autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy')\n", - "\n", - "(x_train, _), (x_test, _) = mnist.load_data()\n", - "\n", - "x_train = x_train.astype('float32') / 255.\n", - "x_test = x_test.astype('float32') / 255.\n", - "x_train = x_train.reshape((len(x_train), np.prod(x_train.shape[1:])))\n", - "x_test = x_test.reshape((len(x_test), np.prod(x_test.shape[1:])))\n", - "\n", - "#note: x_train, x_train :) \n", - "autoencoder.fit(x_train, x_train,\n", - " nb_epoch=50,\n", - " batch_size=256,\n", - " shuffle=True,\n", - " validation_data=(x_test, x_test))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Testing the Autoencoder " - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "collapsed": false, - "scrolled": true - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABGoAAADmCAYAAACNimO2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvdd3W1l2PFzIOefIILWkTjP2+Nl/vx88y1625zetwEyA\nyDkDJPE96KutfSFSotQERYmn1rpLarVIgbi455xdu3aVbb1ew8DAwMDAwMDAwMDAwMDAwMDg28P+\nrV+AgYGBgYGBgYGBgYGBgYGBgcF7GKLGwMDAwMDAwMDAwMDAwMDA4JHAEDUGBgYGBgYGBgYGBgYG\nBgYGjwSGqDEwMDAwMDAwMDAwMDAwMDB4JDBEjYGBgYGBgYGBgYGBgYGBgcEjgfNT/9Nms5lIqG+I\n9Xptu4/vY+7jt4O5hz8GzH38/mHu4Y8Bcx+/f5h7+GPA3MfvH+Ye/hgw9/H7x2330ChqDAwMDAwM\nDAwMDAwMDAwMDB4JDFFjYGBgYGBgYGBgYGBgYGBg8EhgiBoDAwMDAwMDAwMDAwMDAwODRwJD1BgY\nGBgYGBgYGBgYGBgYGBg8EhiixsDAwMDAwMDAwMDAwMDAwOCRwBA1BgYGBgYGBgYGBgYGBgYGBo8E\nhqgxMDAwMDAwMDAwMDAwMDAweCRwfusXYPDjw+FwwOfzyWWz2eSy2+1wOp1wOBxwOp3weDxwu93w\neDyw2z/wiFdXV5jP55jP55jNZri8vMRqtcLl5SWWyyUWiwXm8zmWy+U3/EkNDAwMDAwMDAwMDAwM\nDP4cDFFjsHXY7XaEQiEkEgkkEgk4HA7Y7XbYbDa4XC54PB54vV54vV6Ew2GEw2GEQiE4nR8+nqvV\nCr1eD91uF71eD9PpFLPZDNPpFOPxGP1+H+v12hA1BgYGBgYGBgYGBgYGBt81DFFjsHU4HA4Eg0Gk\n02mUy2W4XC7Y7XbY7XZ4PB4Eg0EEAgGEQiGkUim53G63fI/5fI5qtYqLiwtcXFyg3+9jOBxiOByi\n0+lgvV5jPp9jNBp9w5/UwMDAwMDAwMDAwMDAwODPwRA1BlsBlTIejwfhcBilUgl7e3vY29uDy+US\nVY3H40EgEEAwGLQQNel02kLUzGYz+P1+BAIBBAIB9Ho99Pt99Pt9eL1erFYri7JmvV7j+vr6G74D\nBp+DHn+z2WwyGuf1emG327FcLuXimNvl5aW5r1uEzWaTX91uN9xuN1wuF1wuF5xOp5Cs19fXci0W\nC7l4f/gMGhgYGBgYGBh879Dno00Lh9vAsxAvh8Mh5ym73S61Ci/+9+afGzxdGKLGYCvw+/1CuGSz\nWZTLZblcLpfFn4ZjTxx9oo+NLvSoykkmk3A4HIhEIqKo8Xq9mM/nGAwG6HQ6uLq6wuXlpSkWHzk4\n+kYCIJ/Po1gsolAowOl0otPpoNvtotvtYjgcYjQaYTgcmk1rS9CHDofDgWg0ing8jng8bhlJ9Hg8\nWCwW4g3VarXQarXQbDYxGo2EULu6uvrWP5KBgYGBgYGBwZ8Gz0c8IzmdTvHYvA3r9VpqksvLS/j9\nfkQiEYTDYXg8HmlE6oYk/5uXOfM+bRiixmAr8Pl8yOVyeP78Ofb29qQALxaLcDgcnzQT3jQSBt77\n3AQCATgcDoRCIYzHY4zHY4xGI7hcLvT7fTQaDfh8PiwWC1kcDVHzeGGz2SxEXalUwl/+8hf8/vvv\n8Hg8OD09xdnZGU5PT9FoNLBerzGZTLBarb71S/9hwUOI0+lELBZDqVRCqVRCLpdDOp1GOp1GIBDA\nZDLBdDrFZDLB4eEh3r17JwcN/fwZGBgYGBgYGHzvsNlsUqu4XC5RHWv1/ybW67WlsRUKhaSBHQgE\nMJvNxG+TgSkMTZlOp7i+vjZn3icOQ9QY3BtIvgBAMBhELpfDixcv8MsvvyCXyyGbzSKbzd7KPmtS\nhYWelhpy9Al4PwrFYhEAarUaTk9P4fP5AADX19fGWPiRQxM1gUAAhUIBv/32G/793/8dPp8P//zn\nP+H3+3F9fY2rqytMJhO02+1v/bJ/WGjy1OVyIRqNolAo4NWrV9jb2xNFXCQSwWAwwHA4xGAwgNfr\nxWKxQLvdxmg0wnq9xuXl5bf+cZ4ENqXYgFVqve1/V8OQ4o8D+jPBX7VCVX82zD3789AjEMTmWWbz\nz74FNp/Zb/16DAweK/Szon+vCRqGoHBc/zZcX18LGWOz2RAOh5HJZLCzs4NoNCoN59FohMlkInUN\nz1Kr1Qqz2WyrP6/B44YhagzuBTabDdFoFJFIBJFIBPv7+/jpp59QLpeRyWQQiUTg9Xo/OiywCKcs\nkKwzSRaHwyEMttfrtUR3u91urNdrhEIhxGIxpNNp5PN5SYeaz+dGMviIwXvo9/sRDofh9/vhdrul\nqODnYT6fY7VaGYXUlsFukdvtljHEdDqNQqGATCaDcDgsY4u8bwAQi8WQSCSQSqUwnU7R7/dxeXmJ\n+Xz+jX+iHxc8MDqdTvj9fkSjUUSjUYRCIbRaLbTbbbTbbSwWi3v9d7V3EbuIev3mes4Ze4OHhS4g\nAoEAYrEYotEogsGgZXx0Op1KciL3WnO/7gY9/mC32xEOh+Xs43K5RFm4Wq3kPZ7NZrKH8fnYNuj9\nxhFj+o3ZbDbLOeuxEEkGBo8B2l9z86KPIi+/3y+/vw1XV1eijplOp0gkEsjlcsjn8wiFQhYFzWKx\nkP9ut9s4OTnByckJhsPhA74DBo8NhqgxuBfYbDZEIhHpuu/t7eHZs2col8tIp9Pw+/23EjU8NCwW\nC2GWx+OxpShg4UiPDBaUjP6Ox+PIZDKiuKBnjcHjhS74SdRos9rLy0vZuJbLpfgOGWwHJGpcLhe8\nXi8ikQhSqRSKxSIymQyCwaAQaS6XC36/X0akSNSMx2NcXl5iMpl86x/nhwaJa5/Ph2QyiXK5jJ2d\nHeRyObx+/Rpv3rzBaDS6d6IGeE8G0Pydsm5elGgbgvzbwOPxIBQKSdd2d3cXOzs7yGazltTEdruN\nTqcjsvr1ev2RL5zB7eB4qNPplOevXC7D5/NJQTaZTMRjrdvtCin2EEEHJGgY2uDz+RAIBOD3++Fw\nOOScpc3fDQwM3hM13N+4lrL24H+HQiF5nkjW3Ibr62tRyUynUwSDQSQSCSQSCfj9fmly6Gu1WqFa\nrcJms6Hf7+Ps7OwB3wGDxwZD1BjcC6ioKZfL+O233yy+NKlUSsy3bpLfrlYrzOdzjMdjdLtdMZG1\n2WxSjIRCIQAQFQ0PIC6XS4iadDqNbreLxWKBwWDwSSd2g28PKmp8Pp9FUaOJGipqlsul8TzZMjiK\nponRVCqFQqGAZDIpXlIk2FwuF3w+n4WoGQwGmEwm6PV63/rH+aFBoiYYDCKdTuOnn37C77//jp9+\n+glOpxOj0QjHx8db+bdJBsTjcazXaylKWRzy2TXF38PD7XYjFAohkUigXC7j999/x1//+lfs7+/j\n7du3ePPmDbxeL5xOJ66urjAejwHAkDRfAE1ou1wuJJNJ7O/v47fffkM4HMZgMMBgMEC/38fFxQUc\nDgdWq5UQIg81FqoNT71eL0KhEKLRKJxOJ2w2myh+bhrTMjB4qnC5XAgEAojH40gkEkgmk0ilUkgm\nk4jFYojH44jFYhay5i5EDS+Px4NgMIhgMAiPx2MZUdWJmYeHh+j1elvbxw2+HxiixuCrwQML1S2x\nWAzZbBa7u7solUpIJpPibM6IOZIyZJd5yJ9OpxiPxzK2tEnURCIRLBYLMRWm8kIrAAKBAEKhEHw+\nn0h8DR4vtDJDK2oA4PLyErPZDKPRCL1eD+PxGIvFwnTq7xnaX8Hr9UrSE8cIE4mEPFMaJEFJ2nDc\nwuPxyLNpsD3wMBmNRpFIJMScMJfLIR6PS+f8vmGz2YSoSSaTsNvtFuPDfr+Pfr9v/MEeEPoZJnFX\nLpfx7Nkz8ZYqlUpYLBZCoNlsNsznc3Q6HSHGDW6Hfo951uH18uVLCU0IBALodrtyBhmNRvB4PACw\ndeWKLvicTifC4bCMokciERmPBN6TrfR90yNZhqh5j833knsbx+559lwsFnKOpXrRvIePE3pckQ0p\nNpz0r5FIBIlEQhIvqX6Jx+MWe4dgMCj+NHf1qJnNZhKa4vV65ax0U8R3v98XFbPB04Yhagy+Gna7\nXTYvv9+PeDyOZDKJdDqNRCKBYDAIl8slqhlGzTUaDdRqNdRqNfR6PcsixrGn0WhkGX2KxWJYLpdy\nAKH6gow0F1+XyyVqG0PUPG5setT4fD44nU4ZpxiPx+h0OqjX6xiPx5jNZkZVc8/ggdPhcCAYDCKb\nzWJnZwc7OzvY3d1FPB6H02m2iccGt9stXb94PC7dOe1LsQ2QqAmHw0gmk/D5fBLFPpvNUKlUcH19\njdFoZJ7VB4Aeb3E4HGIA/uLFCzx//lySRex2OyKRCAqFgqhper0eKpWK7J9mBOZ28D1yOBwIBAIo\nFovY39/H3t4eSqUSisWiBCVQCcqibL1eYz6fy2jgNkkxvkav14tcLidreSQSQSgUQjAYlHPUYrGQ\nhti2X9f3Bu1D5Pf7LcW69ujq9Xq4uLhAtVqVsTajTnuc0Cq4QCBgITE53qRHnDj+RPVLMBi0jDrR\nM/NzDRGSfaxV+Dp0nWJqFYNPwZzADb4aLLS56MViMSSTSWQyGcTjcemuU+5LJc3FxQVev36N169f\no16vi78BDzP8FYCMWyQSCbhcLkQiEeRyOXkNVM5Q4ut2u+F0Ok1H/zuAVtSEQiFR1KzXayyXS1HT\nNJtNIfnMYfJ+oQ8OJGqeP3+OV69eoVAoIBaLGaLmEYI+MZRi07uLxcU2oRU14XBY/k2at49GI9Rq\nta2+BoMP0H4pJGpevnyJ/f19xONxIWrC4bB4Ss1mM5yfn8Pn8xlFzR2gzxgkan777Tf87W9/QywW\nk4JPj+uOx2M4nU5cX1/LuYbK4m2+RhI12WwWr169wl//+ldEo1ExPR2NRqKm8vv94pljisUP0MSc\n3+9HKpXCzs4OisWiFOt+vx+VSgV2ux3D4VDGfQ1J8/iwGZQQjUYlhTabzSKdTiOTySCTycDv91sM\nhLXihgb+vPgZ+Rw4bsh6Rat7DAw+hwc7gevoV/1B/VxkILs8uttz268GDwutiOD8M/0qIpGI/L3L\ny0tMp1OZ3T4/P8ebN2/w3//936hUKqK2oQSXHVo9Yz0ej1EoFNDv9zGbzUSKau7994VNSTH9h/S4\nBseexuMx+v0+Op3ON37VPw70OqwVcR6PB4lEAoVCAfv7+3j16pUUH58javShlgcYdhw3I4EfIjr6\nKYDE2kMravhv87lNJBKyFq9WK/T7fVSr1a2MXRl8DE20ejweKUBoIsx7Y7PZpBMci8VwcXEhY8mb\ncd4GH8D3RI+/xONxFItFvHr1Cn/729+kq26324Wcod/E1dUVVquVJclyW6Bnn9vtRjgcFtL9r3/9\nq5B0DocDnU4HZ2dnCIVCcLvdWCwWN/oHPjXomkSrZvS++OzZM4vKIhAIoNfr4fT0FHa7/aNaxeDx\ngOcSn88n6+Te3h52d3dRKBRQLBZRLBbh9Xo/8tT8mmdj86yzWe9+jrQ1Rt+fx+b90b9qvmHzInh/\neC9uO6d+63vwYEQNfUR0rBmNmABIZOHmm6XHYmgoyg1Qx4J+6zfyKWIzJYZyPm0oyTnoarWKSqWC\narWKg4MDnJ+fo9/vYz6fyz3cnJPWCRb5fP4jzwzOd5II6vf7aLVaGAwGJpr7kYLFPNVRyWRSJNqh\nUAjX19fodrtoNBpyHw3uD3a7XQ6Y9HTioZOH0Vwuh0gkYolL/xS0X0oqlRLlk8vlkphaPfpIrwyD\nL4O+D1wbKcfnmOlDYLVayZiqHkFlfClT+RwOhyHmtgySrXyGOeLCrjC7vptnqVarJalg+sxl8AEk\nX+x2u6xtqVRKUi0TiQTcbjcuLy8xHo8lUvfs7AxnZ2c4PT3FyckJ2u22pKFtEx6PR3xzcrkcCoUC\nEokEAoEArq+vxeutVqvh7OwM7XYbk8kE8/n8yY8+ORwOS21CP59YLIZ0Oo1SqYRSqYR8Pi9jLz6f\nD81mE4FAQJ414/PzeEEiUytCC4UCyuWy1BWsKbTS5WtIGl2b6iSnL6lV2+02hsPhVpIbfxTo5uCm\nB5H2D9INSZ5LgPdkGX1SJ5OJEOq89H38lngwosbpdCIYDMoCyJnPRCIBAHKY5weZh4d+v49er4de\nr4fJZGL5wPMDbBbHb4PNbt4mUcOirN/vo1KpSGxsrVZDvV4XdQwJuk2SjgePbDaLcrksRpnBYFCI\nIZvNhqurKwtRMxwOMZ/PzWfiEYKFBeOfk8kk8vk8dnZ2cHV1heVyiW63i2azicFgYDapewa9aJhk\nwAQDxtuXy2Vks1lEIhHpKN6FqPH7/XI/r66uxJxYF4eTyQTj8Vg2P4MvBztCLM5pdviQpoOaqOFc\nv04B0+OnpiO4XWiiJhaLIRqNismlHoWjTwrPU7oI4PnJ3KcP2FQJRqNRlEol7O3tYX9/H7u7u0LU\nzGYzDAYDdLtdaUQdHBxIaku3231QoqZYLGJnZ0eImmAwKGPE1WoVp6enqFQqQtToz8BTBb1oSHTl\n83kUCgXk83lkMhkkk0kkk0nE43EZf2GzKRAIyJoH4EkTXo8ZuqmsiZqdnR0RDnDfukl98SXQwSkc\ne6Tp/l2fM5Lpxpj/ZuhxNtafVA2yvqCJuvYZ0krvq6srtNtttNttdDod8UidTCaYzWZYLBYPmtR3\nGx5UUcP8+Gw2K1KzQqEAAOJTwvEXFu40nqVsjYyXJmnMB/nb4KYHhZJ33hcSKOfn53j9+jX+/ve/\nYzAYCIvJA8xNEZE8eBQKBezu7iKXy1mYb3a8qKjp9XpGUfPI4XA44PF4xNcolUoJUUMljVbUGKLm\nfkFFDZNhOJ/NiwfSaDR658MKiZpoNIrlcinS8UAggNFoJJfD4cDV1ZVRSf0JaKJmU1HzEEQNjeFn\nsxmGwyFisRiur6/lfpMg4IGJX/OUi8BtQn8W4vG4RVFDktVms8k4aa/XQ71el4aGTtIz98gKnQ5D\nouaXX37BTz/9JIEJVNQMBgPUajUcHx/jzZs3+OOPP/DmzRvLKPe2oceynj17JgrkQCCAwWCAXq+H\nk5MTvHv3Dufn52i32xiPx0ZRhQ9ETTweRy6Xw/Pnz/HTTz9ZDLm5vul9MRwOi6LG4XDg+vra+I48\nUmhFDZtVVNRsesb82TFANqp1g4q/3rUu0Wu0wc2gSTMVpBz99Pv9yGQycq7liHgsFpOELhIw5+fn\nOD8/R6VSQafTQa/Xs5xdvjVJAzwgUaPZfhbdvACI1IhzebzC4bDITinV5d/V2fTbfjP1HBuLDV7c\niPnanwq4GDFWu1qtWjrxjC1st9s4PDxEtVpFp9PBdDoVVdSn3i/OWqfTaYuaRit3uKDqeXASfQaP\nDyT2fD6fHH5ozNftdjGZTNBqtdBsNs0mtQU4nU5Jf3n58iWSyaQlepKJal/iMeJ2u6VDRcVOLBZD\nKpWSBLfRaIRms4mLiwsA79dTPb5q8Glo/wl2cqmECgaDAIDJZIJ+v4/BYCBKxW1Az4Hr55lKDu3Z\nYdbh7YD3wOVyIRQKIZ1OY2dnx6KG0wUjR596vR5qtRqazaalW/uUi/SboGOZ6WnBJmM2m5WUQrvd\njtlsJr4vJycnqNVqspdtGxwxdDgcCIfDSKVSKJVK2NnZQSwWg81mw2g0QqfTQaPRwMXFBS4uLuQc\ntk1z48cO7dXm8/mQSCSE5Nrd3UWpVEI2m0UikYDH45FzrUYgEJCv49o7HA4xHA4/Uogb3A+0/wjV\nExxr2Rw54qTGJlGqv55nHdYQen9jY4Lfi2cWfXbRv/L3jG2fzWZSB00mE0yn0zuTtp1OB7VaDePx\n+H7fwO8MvEf0ROW99nq9ktIVDoclhYtEDdXGbGAw3Ut7m15eXsJut4vKqt/vy/NLck1zDLx4f6fT\nqTQet/mMPxhR4/V6kUwmsbOzg5cvX0qUcyKRkI6PJmm4uMXjcWSzWYxGI8xmM4vfgWYpt33Y1wsA\nYw15zWYzGbV5SpseR454/zwej4yuOJ1Okf0Nh0Ocn5+j0WjIPbzLrCYPoUySYnKBibT7fsHCjlJT\nHXG4Wq0wGo3QarVMN2FL0BG+r169QjQatRBmXq/3i1Oe2NGnYSnXQxpCc42uVCpwOp2yjmqi2+DT\n4GGC9yqRSMioi9/vF8kuzbcnk8nWuvibKXuadN0cfbopMMDgz0F39F0uF6LRKHK5nKgoIpHIR35F\nm0QN19fVamWKyBuwmUioiVGeQ/geT6dTtFotnJ6e4vT0FO12G9Pp9EFeI59BNkIzmQyKxSJKpZJ4\nprTbbTQaDdTrddRqNYv/21O+9zotLRAISLLTzz//LEpTpundliTq8/mQSqWwv7+P1WqFi4sL1Go1\nSwP3IdRUTwmb6WYcV4tGo1gsFnL+0N4js9kMwMcNd1136vQz7luscUiycPKDyW6bl06t1Zf+f3et\nEcfjMer1Okaj0TbfzkcPqvCZdEnvqGg0ahnd59mDyV6BQED8GGmk7/P5LOdbhtYEAgEkk0n5rJBg\n00SNHuNnGi0TabdtOvygippEIiFEDbPqQ6GQZZZ902mZcYea1eSv4/FYOrbbPuyToCFBRHNcAOj3\n+8K8PsQs8mMBF7HVaoXJZILlcimdJZvNJu/HfD6XxCftSfO5DzU79alUCtlsFrFYzBA13zk2FTWa\nqLm8vBSixnjUbAdU1JRKJfz888/w+/2WuEkW4F8CKt98Pp/FGHy1WknXYTqdIhAICBk3Ho/lIGRG\noT4P3fXhAYWHFL/fL94j1WpVvCe20TTQnUgqfPShSCtqOOpm1un7B+8D1VUkanK5HKLR6J2ImtFo\n9KTOK18CEjU+n09U3SwIYrGYrJU2m02ImpOTE5ycnGA0Gj0IUQN8SKOiv0omk0GpVEK5XLaQtyRp\nqKZiMfuUQaKGo9iaqNG+FkxGu42oSafTePbsGYD355vFYiFJlSYF6v6h9x+/349EIiFhI5PJRBQR\ng8FA6hB6w/DS6hcaafPP+P1pqzAajWR/1aSNVguPRiPLiBNtPDaVPV9CjPP8RJLpqYJEjR5NzOfz\nyOVySKfTSKVSSKfTMu7Liz5Sm+fbTaVpMBiUEAx9zxaLheWe6s/VxcUFHA6HWHtse3z4wYgaHirI\navEwB3wcs60jvHW3FrDGdfOBoSxJkzxfYgZ1kz/Ker22fD1v3Hw+x2g0gtvtxvX1tXQlrq6untwD\nxdEn+lLQOLhWq4nKRi+Gd1HS6GKRRQlNp/WmqZlx7dKtR6rM5vj44HQ6xc8kFotZ0moWi4XItDud\nDsbjsSkk7gHcsBg1mk6nxSdMy0C/5HnRX0NJKs29gQ+jGdpE7/r6Wsj15XKJVquFq6srjMdj86ze\nAC3x9ng8MgaayWSQyWQQi8UQCARgt9tlxPTs7AytVmurKlN9cNJKLJKuuog1JM39Y7OjHIlEJJmG\na+om2Xp9fY3ZbIZ+v49GoyH+JGZ9tYKfWb63oVBIOvb0/yEhvVgsMB6P0el00Gw2hQSh4nubr4+v\nUXeY8/m8jGYlEgk5r7ZaLbnn9GDYTNh8imDSUyAQQDweRyqVQi6XQ6lUgt/vh8vlsvgu3vReeb1e\nJBIJrFYrOfOywGORPZ/PLQky5mz6deBeQj803jcSk+VyWXwqqSabzWYWk+fVaiVjK/1+H+12G/V6\n3VKraKXVarVCp9ORZ0crhEejkRTuw+HQQtow+VITQLRkMPf+Y+izjh5Jczgcomjk+adYLKJcLqNY\nLApJk06nReXI88dtITXAh7QorgGb94XPslbU9Pt9uTweD2azmUzVaAHJNu7vgxE13DAODw9FasiL\nUc78IVlY8CJDpv9Muzuzc8eH7fr6Wv4/D4y3Qb+p+sG6vr62fFj4kK9WKwQCAekSswBZLpdPWqJG\nskof/DYXqs/N6tpsNokMDofDKJVKSKfTlqhgLrpUWpEc4kWjYi1HM3g88Hq9YnhYLpelOzmfz2UD\nHAwGGI1GZizmnuD3+z+Klo3H4xbjPBLTd4HuEurNkEaK3AT5e871J5NJPHv2TFQAb9++FWm+eVY/\nBruGHG9hfPr+/j52dnYQiURwfX2N4XCIVquF8/NzHB4eol6vYzgcbk1yz9lwji4/ZDS4wQdVIokE\n7pf0l2LaE/DhfMOm0nA4RLvdRr/fx3Q6Neurgi4SNEmTyWQQj8clFeby8tIy+n50dIRGoyHhCNv0\nKqTSh6aoJBZKpRJ++uknlEolBINBSfkaDAZoNpvodruyp+qwjqcMj8eDaDQqJGcmkxF/J002fwoM\nSUmlUvJ3g8EgMpkMut2upH4NBgMp7ieTiey5Zt+7G7SKPhKJiKKCv/KqVqu4vLzEcDj8qFFAZY3N\nZkO9Xse7d+8AAI1GQ8jV5XJpqT+vr6+lruj3+5YxJ+0/Q68SJgXp9OJNssDgY+izDsUZVLRRPUzP\nGZ5lk8mkeM+QB+Bky+bomfaXoQI8FAohEAhYGv3cWxnTzrMs1VvkJ+bzObrdrnwmNEm3jXPXgxE1\ns9kMzWYTh4eHWC6Xlrgs7VdwfX0t3TlKOnmR2OHcGeXgfr9fiB4y13yz7xIvq+VwWrqviSEAQjiE\nQiFhyjl7OBqNnvxhlUlP/KDyfdVF3adAooZd43K5LN407HBw82SKxSbTyQfHEDWPEzcRNS6XSzY9\ndil4qDQd3z+PQCCAQqEgSRb7+/tC1GiS5ksVNXq+W8uGWShyk2P3N5VKweVyiULu+voa7XZ7iz/5\n9w0qV2hmWigU8OLFC/z222/SYVqv1x8RNZTobqMIZ8oQjUsfMnHK4D20ookETTgcRiQSka7iprx7\nk6jp9Xoizzd4D65TuliIx+PIZDIWQpJddnrSHB4eotFoiEJpm11zqhe9Xi+CwSDy+TxevHiBX375\nRVL8gsGg3G8SNZtx7Kaz/16ZoVNFM5kMwuGwxWPrLkQNU0hpqJ7NZvH8+XMxbq5Wq6jX62g2m6Ly\n2LanxY8GrbaIRCIol8v4+eefsbu7K0mViUQCADAcDlGv1y3kDgt4WjXQbmM4HOLw8NDiJcNxOI/H\nAwCiAuaQM2ZiAAAgAElEQVTzvWnBwbpT//mmisOQNJ8Gz418hqiS0YqZVCqFWCxmsU2hqTDvFWt4\nCid43zRp4/f7kc1mRU3DdOLpdCqEjFbc0AeMJI3X68VqtbI0lKkO35Y34IMqaprNJtbrNfr9vqUT\nRAkpf0iSMcFg0HIQ4RgMb6q+STqJabVaiVu/1+v9ZFyeJhNINHCEhv8Go/f4oJE55b83Go3Qbre/\n2NvhRwOLNb25fcniRFMnzgqzy0GiRsfn6YjYTUUNiTazMD4+kKihXJVGfVpRQ6LGJALdD/x+P/L5\nPH755Rf89ttv0iGmpPtrFTX6YMJ7xRlgEjQ6ppky8fV6jUwmg3a7jbdv35rxmFugjbdZULx48QL/\n8i//AgBClA2HQzSbTVQqFRwdHVnuyTagiRpdwJr19mFAokarT9lZ1OOHukC4iajh3zF4D03UUFGT\nSCSEqKGiZrVaodvt4uTkBP/4xz9wdnYmRM22Rp4IEjU0Oc7n83j58iX+7d/+DdlsVhqcPB9x1K3T\n6RiV6gZowJzP57Gzs/ORogb4fEwzG8Ls/GezWSncj4+PcXh4iEAgAJfLJWO+vV7PEGVfgM2UJxI1\nv//+O169emWpEafTKer1ulgkaLCuAyAkZrVahdvtlkbhbDYT0o0qDR2OcJOPKnHb7w0+D33WiUaj\nyOfzKJfL2NnZsainuMdR5QJ8eEY1eTadTjEYDETRphO4wuEwnE6nNLpI1AwGA7nnPp/PEppAkYAe\nk6I6juT3ZDLZWuPxwZgFvnm9Xk8MmqiU4abCMSL62OiUC+2+z0s7OdPYlmMvOvb3c0QN33gtmVqt\nVsLiZTIZIXy4YLCjrE2jzMP5Hl/yPvABpcEsN83nz5+jXC4jkUjIQ6NVT2TNa7UaTk5O0Gw2xZfB\nbIKPB3qDtdvtluc4HA7LM7Xpwm+6fn8OWg1Ih3ztsaBJ5bt092gKrhMVuPFpWSkPrZtu+1yHuamy\n2E8mkygWi5hMJvL9TUrGe5DUzGQylkLC6/ViMBiIl9PR0RGq1Sp6vZ4oGu+TqNa+GFynORbCfZgF\nrMH24XK5LL4a/ExsKgDYeOJ4sB59Mevqx/B4PGIWzCSf3d1dOYd4PB4Jseh2u2g2m7i4uBC/n4cg\nQEjSBYNBi29OIBAQI1sanVLRwddozKMh5xC73S7kSi6XQ6FQQDweh9/vF5N77Smjx1f03qpVG9qf\njemKmUxG1BaTyQSdTkf8UwBYin4DK/h+Op1OOb9Eo1G8ePEC5XIZqVRK1GP0ibm4uBA/Jtog6M88\n32vWbgAsagt6ywAfEoHYvNc1nrlnfw42m80yVcN7SzFGLpdDNptFLpcTtZQmPBlgo5uEJEHZtGfD\ndzgcWpK44vG4JEj5/X40Gg25gsEgcrkcLi8vZbScz7xOcGOKNUep1us1JpMJGo2GZYLkvj4nD0bU\nkEhZr9dYLBYWd2YeKOhRs+lNw/hBHQOqL45PaZlTMBiUOTd2dG+CXoQ1YbRarfDixQu8ePFCzPno\nV0PCgJsiVTxPfeb3a+BwOOD3+8UUjzLUn376CblcTmLXdDF/dXUlpsWHh4cyI04VhpEaPi7ouU8+\nr+yA6IX2Sz2NDG4GC2qOi24e6DcVgsDnDx4s9jiXy/Eajtiwk+HxeISEi0ajSCaTSKVSFt8MAGKE\nmU6nUS6XxeRytVoZoub/BxVIpVIJe3t7yGazCIVCcDqdmEwmuLi4wNHREQ4PD3F+fi5qwm08N5tJ\nG+FwWD5XHo9HRkIMtg+OWySTSfFwo/Rbg2cuGt6ORiMsFguzpt4CPm80Jt3d3cXu7i52dnaEjFwu\nl0KS0kC41+tJ0bBt6PS3eDyOSCQi6YlMoKLCu1qtymXM+d9DG99TMZXNZpHP5yV2naP1LO5YpPOM\nwjPMTQp6kjQkguhdw3G5arUqqjfWEQYfQ5NfLpfLosJ+9uyZEDVer1fOIaPRCCcnJ6hWq2g2m/Jc\n3vSZZ6MdwEcKVNaCVBlvKvTN+vnnYbPZEA6HxVsonU7LSHwikRADd3qDBYNBeL1eAO+VUazTNQHT\narVQq9WEmGYzkfU8n+FMJiNEdygUQrVaxcnJCU5PTyXinSSh9sQFPgg7PB4PkskkfD4fIpEIJpMJ\nWq0WfD6fnGHv8xz2YEQNPUU4O0ZWm+oUzUDp/6cvzg7z0rNqVFlwDlfPbd+FqCFZxBQpbRxcLBYR\nCAQAwKKm4QeGclJD1Hw5mAIUi8XE0ZtEDbtYlDHqcYvBYPARUTMej83G98jA8Rcd40u5figUEhUF\nFzd9AWZT/FqwY8BEEBI1NBv9UkWNTnSjlJ5mmvogy650PB6XjgMl5vrf1AfZcrks8excvw2shePe\n3p54KGii5o8//sDBwQFarRb6/f5WDpRaAnyTokaPpPLvG2wPVK0xwS0cDkuhrkE/jMFgIB4l9AE0\n+Bjsku7u7uLly5coFosoFosolUpizjufz4WwZmEwnU7FsHLb0EbH8Xgc4XBYiBoAkv5WqVTkqlar\novh5ymNPt422kaihjYJObxqPx+J5SLUiw0p8Pp+lttA+Kuv1GqFQSFTEq9UK1WrVMiZKmwBzxrkd\nmqjZ29vDr7/+inK5jEKhgGQyCY/Hg3a7LZ/509NTC1HD+7YJkjGbyibWobf9P4P7AYmaQqGAly9f\nolAoIJPJCGGjldg6Xpv3k2lbOj67Uqng8PAQh4eHqNVqllEorXIZjUZiEh+LxVCpVHBwcIDXr18j\nlUqJBQeFIVwzAMjeSeEIE1RbrRZOTk7g9XplRO4+z0EPRtRo1crXgt4HZLm0dIqSVHaNdDF4V0UN\nF2c+2IPBQKT4JHMAiJJmOByi1+thOBwayf5Xgh2icDgsrt40B4tEIrL58bPD8bZOp4NGoyFGbTQR\nNovp4wI3WpofUm7o8/lESg5AuhZm5OnrsBnbGgqFZBNhjCHNRt1u90eRo5umd3oU7erqCq1WCxcX\nF3IQ0qknuluhO1yTyQRerxexWAzL5dLin8EZ4Ww2i2fPnskzPpvNYLfbZYN9SmMamhChdD6VSsmM\ndjQaFQUq56FZiI1GI0yn060U4ZzN1koakn58PRyNozJWP8dP5f49FHRzI5FIiKmiBke5R6OR+Bd1\nOp2tfUZ+BPB9pRKQnd1IJGIZj9DxvDxv8vN+X9CHfD1qE4/HkU6nkc/npVgNhUJwu90SOVytVnF4\neIhKpYJWq4XBYID5fH5vr+17Bo1iOYIdCoUQjUYRDofl77ApwdFSjoyRqEmlUmKxoGO86ctGsoYq\nUo/Hg+FwiEwmg3w+j0ajYRnL2JYK8nuDHh1jU4DJXEw329/fRzablTE17oXNZhNHR0eWzzzXupvq\nMn3O+ZL/Z/Dl4H2l2IL1QDabFYUUz6jJZBLRaFSIGZfLJWdL+sG2Wi00m020Wi2L0XO1WsXR0RGO\njo5Qr9cttb2G3++X8xLJ2F6vJ2bftAogcc/zMglappvSI3e5XMoIOMch72JE/iX4rtxvtYnler2W\nB5ELKDseVO/QKOiuHjUkguiPsxl3SRXNcDi0dFSMrPTroY0RKePlg6HnfinjZuQhXfR11Kh5/x8f\nOIbDefBwOCydKHaVeAjadmLGjwwebnjASafT2Nvbw/Pnz7GzsyMJW0yFuYm81klOJEUnkwmm06ll\nEyQxwGJFJz+RfGPRHo/Hkc/nMZ/P5bnmOhuNRlEsFi2jcTabDc1mUw6y4/HY8vp+ZNhsNuniMJmA\nXSaOgAKQcRadkDabzbbWLXe73YhEIkilUshms8hms6Ls4V7LuMrhcChFzH0XrwbvQUIhEokgFovJ\nnqm781SAdDodnJ2d4d27d7i4uMBgMDANpTtCrzc8d9LzhyrCbe1XmninMjISiYhfFY02C4WCqMaZ\nrHpwcID/9//+Hy4uLtDr9cz9VuD5nrYIbFxoL5LVaoXz83OcnJzg5OQE3W7XUvAzlZSm/PTX4DgU\nSRvucwAQDodRLBYlNrparaJSqYjdAr//j77HfQraNJiEKX1+dnd3USwWJVzE6/VivV5jNpuh1+vh\n4uICx8fHqNfrkmhnIui/PfQ6xrF43lftAZbJZGQ0n+dA1vY6YKTdbovvVr1el9Gm2Wwm46jkBW4j\nP/kZ0wQriRW9Z/I1+P1+SSzl17IBfZNH1TbwXRE1AD4y6mFBoYsM/j+OMt01npvkjM/nQywWE6KG\nhyCyelTSkKh5SDO5Hw2cGSZRQ2KMBR0AeWBoRs3xi1arhU6ng8FgYHF0N3g84ALNmVA+X06n00K8\n8uD71A8rXwsSNVqSub+/j7/85S8oFAoy80tXexKhgFVVQ1XhYrEQx/xut4uzszMcHBzg8PAQ1WpV\nSHEeiLiGulwuSfCaz+fIZrMYDAaWKGC+1mg0KnGb3CzX6zXcbjcajYYYMOrX+CPDbrdLFHcsFrMQ\nNUzLYoOCRA0jIrc51uByuSSJYW9vD7lcDuFwWMbVmL5HokbPhJvn+f7BYpM+UDzcElxXF4sFOp0O\nzs/P8e7dO9RqNQyHQ1O43wGbSsNNomabqjFdsNpsNoRCIWQyGVEVkKgpl8tS+DidTsxmMzQaDRwc\nHOAf//iHrBGmWP0APfa0SdRcXl7K2lqpVPDPf/4T//jHP9BoNOTr7Xa7mJzyyufzWK/X0nQkQaPD\nRzjmsV6vZaxiuVyi0+lYwkie8rOpgyf8fj+SySTy+TxKpRJ2d3dlPIaGz5qoqdVqODo6skQmm/H5\nxwHeV4Yj8Jl59uyZEDWxWExsLmi2zWs4HKLRaKDZbKJareLs7Aynp6dCdJJgZWNxMpl8kkDfHOWm\ngtlms2GxWKDb7QKABBul02mLBYtWzn1qWuc+8V0RNXpDZCf+NnxN0c5xKZ/Ph0QiIfO/mqhhjBcV\nNY1GwxAFXwjNPjIKjxLUYDAomx0XYxaQk8kE3W4XtVoN9XrdQtQYPE5oRY0marjAbY5NmMLu66Dl\nwuwA7Ozs4Ndff0U6nRZTdm4yhB53ok/XfD4XA9J6vY56vS6mtezMb3oJES6XC7PZTGb76Y0xnU7l\ngMVNkr45elaf349+NSRvnoLSiocZds5J0qRSKcRiMRn75PtLRY1WHW0DbrdbiJr9/X3pfjkcDksU\nplbUbBayBn8eemyQJoYkarSihhdVTufn5zg4OJCRRFO4fxo3eTxpfzw9kqlJlc2v+dLP/WZqEK9w\nOIxMJoO9vT3s7e0JUVMqlURFabfbMZvN0Gq1cHR0hNevX//Zt+GHA/dIjmGTMGFnnEkyfGZev36N\nv//976hWqxYz9Vwuh1arJQ3a9Xotxv3stAOwjD/QOJVKkfl8jlarhePjY1H/P2WSBrAW0IFAAMlk\nEqVSSVTB+Xwe6XQaNptNCFNdE5yenkqwi/EMfRzQhAa9CguFAp49eyZrWbFYRDAYlK/hs8CmYb/f\nR71ex+npKU5OTkTZfXp6ajmH3nW91a9J+99os3ia7mezWczn8498+Pg6+eu2fYy+K6JmG9BMWTAY\nRCaTwf7+viwO8XgcLpcLy+VSmNvz83NcXFyg3++LiZw5kN4dJGU4e7q7uysPrS4CtFlzr9fDycmJ\ndPUrlYqkxBg8XvDgQjKOCjV2sBizXqlUUKvVMBgMzD39CuhDvjZN5KUVNBq6IzEcDtFsNmX+t9vt\nypw+Rw0nk8knC3Dt9cVRRcqS5/O5xN+StOHmFwqFkMvlcH19LZ0NKnp0x/FHXmM5+hSNRpHNZpFM\nJhEOh+HxeLBeryXelRJf+htsAywSuS/S7D2fz4s/AIvDbreLSqUi0nPtu2Dw58E1lBfVcZyl14oa\n7S9FAnwymch4nEmn/DrQE5FkNptzjKXXgRSz2UzSQO8Kkuw6MMPr9cLr9aJYLAoxk8/nkUqlJP2N\nozOXl5cSwX2TearBe2hiTRMpV1dXGI1GaDQaqFQqso7xLKJVVSQHAIj6PpPJYDqdiqqVIJmnmyHc\nP7Ua66mvlTabDV6vVwgvqsf29vawu7srwSL0FOE55ezsDG/fvkWr1bKM2z719/OxgAo2r9eLVCqF\nXC6HcrksXkMcodb71mKxEINoPerEq9lsSnDM5+619sfhmcbpdEoTo1arAQAymQz++te/Yr1ey9ob\nj8dFtbgJ7q38PvSy2tZIrCFqFLOmiZpff/0V2WwWsVgMLpdLig46S3P+l0SNUQLcHeFw2CLhLRQK\nKBaLEpFIWf1iscBoNBJPmpOTExweHsrCbIiax4/NLhaJGp3yU6/XcXx8bIiaPwk9K7tpvH6buZmW\nezcaDRwfH0u3gmaZ7MRrg77bNiKq3ygFJ1ETjUaFhOFhTL/mcDgsUlMAkjDFNBt+3x8ZHH3iwZ9G\noSRqptMpWq0Wzs/P0Wg0xORyW6+Fnx1GvJOoiUajQtRo1QZN/EajkSWe0uyLfx68DzQR5sVobrfb\nLX/3JqKGRSdjZw2+DHz/SXiTpAmHw5YxP5Kp9NK7K+hNxYujOcFgUHyhaKLKP+e4E9dpEjVm//w0\nbvKVuLq6EgLg5OREziKacCbBOZ1OAQDz+VzUq9wbOXqsU1/0+ByfTU3WGGLhPTwej4SK6JGn3d1d\nGVFbLpdotVo4ODjAwcGBnFWazaaloWPwOOByuSSEgMEIJGoYSkCjXioWJ5MJarUajo+PcXx8LGNP\nzWZTVLskaj51xtg0p9ZNS44F1+t1AJD1lYS52+1GKBRCNpuVUBv9fS8vL8WEmCmo4/FYyML75gOe\nPFGjRwZI1Ozt7eGXX34ReaRW1JCoqdVqFkWNOZDeHaFQCKVSCb/++iuePXsm5mypVEq6SlTUsMtf\nqVRE9vb27VvxwDCHkscNrajRRI3dbrd0sY6OjgxRcw/YlHXqcafbFDUcXanX6zg4OMD//d//4Y8/\n/pCOgZYTsyABbpb2k1DhRsWuBX2JKGnma+VrCoVC8Pl8SCaTWK/XqNVqODw8FNPAy8vLHz7KVHvU\nbBI1ACTp6ezsDM1mU7xptgEdY7upqGGHjOZ73BePjo4sSh+j3LgfcHxUGwhTTaPj0fl86MQ2ragx\nKVxfD55JGDShk/VIgF1eXkrqUrVa/SL/Asbd059K3+NEIiGJmIyrpdqNyV56FMcoam7HTYoam80m\nZxESNTcpagAIGTefzzEYDBAMBlEoFCzjvXp/vImsuYmkeerPJb0MWdBTUUOihmeP5XKJdruNw8ND\n/Nd//Rfevn0rjSStFnzK7+VjAgluJlhSUbO3t/eRJw3v73g8Rr1ex7t37/A///M/aLfbQnxPJhNL\nQizw6Xu9qTD3er1wOp3iRRMIBGTMnP5HLpdLyBqmXWrSB4AQNe12WwKFjKJmiyBzFgwGxQ+AMWF0\nhF6v15YYr06ng+FwKAlT5kD6eehNMRAIIB6Pi5ImFoshHo8jFArJ36F5cKfTQbVaxcnJicjeer2e\nhbk0eFzQMkOaRDNWVEcML5dL9Pt9MeXudruyEBv8OWweSAnKr3lI5DgnfWho0lar1aQA+ZIuvD5w\n2mw26TDT/DSZTCKXy2E+n1uiqHVsI0kbnRL1qeS+7xmbvhQcEUwkEpbIR3aaWq0Wzs7OJOJ1W6Qm\n90UenOPxOKLRKEKhkKzlJPn4DDcaDfT7fUkxMbg/sDMZiUTEO4/PiMZyuZSktm63axl5Mvg0tAdh\np9MRgnK5XIpvHtejeDwuzyuLSCpE/X6/JDXdFSxmIpHIR1c4HJYoabfbLWu3bmSdnZ2hWq2i2+1i\nsVhs8V36vsHniGsZSTfgYxPnTXBf08bt8/lc4np1gsxNX8sxtclkgtlstvXksO8N2suQ+w2TYCeT\niXjS9Pt9KZBrtZr41Zha4PFBCyH0aFswGLSEWmw2GOiVyLFO+vfpkexPecZs+nz5fD65eA5NJBJS\nnySTSWSzWSHCSczz4vfls8qR74uLC5ycnIjCeVvP85Mnaig1T6VSKBQK0sXU5nzaZJPO0lTSGHwe\n+qFhtGgoFLIcOqmy0J2G8XgshYn2PzAxzo8bDodDuu7RaFQWwWKxiHg8LhJWEp/dbhftdhuDwQCz\n2cxsuFvEer0WT5rFYoFGoyFKtZOTE/F+uo94ZRqaDgYDeDwexONx6YxEIhH5jDyUc/5jBQtAHmZY\n5OlCYj6fS+f87OxMOjjb2oO8Xq+MYOXzeSSTSQSDQbhcLhmrYRd6MBjIczydTsWIz+B+QFUiJeTB\nYPDW54YKJ87293q9L/JKecpg4+Di4gJer1c6/DQw1ca9Ho9HZPua+GbEbDKZRLlcvvO/zSLG7/dL\nF5e/9/l8koRJdeFqtRL5fqVSwcHBAU5OTtButzGbzbb4Ln2/0B5gVHDzrK+N3FOplKTYfW5voieN\nDiJhJLfG1dWVmPQPBgOMx2MpQo2vyseqwc10UDYFOOZHskt7hBo8PmwqUYjbPuv8c63E4dmRqmoq\nXnTSIb+WZArThHlxPeX4MK9gMIhkMol4PI5AIPARIa9JWz22SDWNHvnW3nz3rZB78kQNTYMKhcJH\nRA03X83wMXmDapqnvLjeFTq3ng8NDYUjkYglIlGzqptEDecTNWtp3v/HBxI17I6kUilks1kUCgXx\nJlksFhgMBuj3+0LU8LkyRM32oA899KU5OTnBH3/8gdPTU3S7XfT7fQsZ+rXPGJWIw+EQNpsN8Xgc\nnU4H/X4fo9FIfGy8Xu89/5TfDzSJrUcEI5GIpSDn4YDr4babBSRZGaWZSCQQDAbhdrtl7yN5pIka\nFpFmXb5f8LNBdQUL900wrpbGi4aouTtoElyv1yVtKZ1OYzabweVyWRSKfP85mqnTKZPJJBaLxRcp\nW0gCUZWh/5sNLp6PaNZOtWK1WsXBwQHOz8/R6XQMUfMJcF3LZrNC1NDDzev1ioKw0+nA7/d/lqjR\nZx2SC5sFJAAxSR2Px+j3+5KKaPwtP0AX5+FwWMZUAIgaaTgcClHDpgDrNIPHiU2y5jYiQ//ZJmmn\nm1kkrzfPjdoHil6IJL21/xdrTZ69OFFDNY32r9Lj+Zs+OpqoYbrptjiBJ0nU6BtARq1YLKJUKknn\nkHNsi8UC8/lcFojxeGw5JJsF9vMgW042c1PSy7EHjjyx2z8cDtFut1GtVlGpVIQkMxvb4wYPL6FQ\nSGbrSdbY7XZRpdGgtt/vi4rDbLrbxfX1NWazGfr9vnRjj4+P8e7dO1QqFZGb3seoBImayWQiY1aD\nwQCj0QjT6VSKT52MAVjlsh6PB6vV6lY5+vcOPUPN7mwgEEA4HJaDw/X1tRir0wBv26MsHo8HkUhE\n/MOYLrTZ4RyPx/IcD4fDrb6mp4q7KGr47FCSXa1WDVHzheAoEfD+/aQStNPp4OrqShSALOxJ2OgO\nrE74AfCRD8lt2Cxe9Fiohm4ajsdjSzRxrVb74rSppwZNeOrniKlDHIugYfpmYqIejdLG+DR4JtFG\n6L2NSsTFYmGJeNd/96lC1whs4HL/43vHzz7fO34dR2D0s/eU38vHhE0TbT0mynun7xXPQlrdxjAS\nr9crpuvBYFCCJ/S/RXWa3W4XYoZes/w9vb04ekgzfhI4+vvp18+z8Xw+R7vdlrRaNs62WZs+OaJm\nUxKVTqdRKBSwu7srRI3f78d6vUav10Oz2USj0cDBwQGOj48lGszMfd8dTqdTvClyuRxevnyJXC4n\nJA0POZz9Y/Fer9fFD4gzvUZt8fjhdDpFYkyvDTLZmyaXNKo1CqntQRMcl5eXaDabkppwfHyM09NT\nMUa/7/jeTXJl0z1fdyz4K6WupVJJEt9sNptshD8atAE0VYfsFk2nU0lGGwwGmM/nD/KMbHav6BcE\nQJ5fNi3Murx93FZg6sPker3GeDwWlcXFxQX6/b4p3O8Iqh4Yv3x6egqn04npdCqFI7u0OkKbRboe\nDWRhwuYSx1xuw2KxkL9nt9uRSqXEM1GvmZq01cQ3R0FM/PqnwfNlvV6Xe5ZIJKQuoGeFbiRSUaV9\n1NjRf/XqFQqFgsQMs9nI5gIvl8sl5tMMJmk2mwiFQkJ8a6P+pwgW5+l0WiYb2MBl4+/q6kqMhvv9\nvowFs4DWvnrmOfj2oPrE5XKh3W6j0+nIpRUvwIczB/1iAUi6JEed9LrLNExC74P8zOiLpLo+a2lC\nXK+zJH30Z4uvm4EOb9++RaPReBArlCdJ1LBrGQgEhKjZ29tDuVwW+eJ6vUa/38fp6Snevn0rRput\nVgvj8dhEwX0BnE4n4vE49vb28PPPP2Nvbw+5XE6US7pbTul2o9FAo9EQQ0QWaUZN8/hBHyKaCPOQ\n63a7ZUGbzWbS/dN+KIasuT/clPREoubNmzf4z//8T4k8ZEH3Z31pPvd6bnpdWhLL9IdYLIZisYjJ\nZALgPWHRbDa38rq+JW6KVKeSCIDIvWnU+1BF901EDcl0TbRSfv6UC4xt4yZFjR590rPzlGRrRY0x\nl70bSILw/SRJ02g0xEuPxT2LeI7KpNNpSTBhob5arSxjgZ9KYxoOh/L3nE4nXr58CYfDgUQiYVHV\nbI7QaKJm2+v39w56pvX7fTQaDUQiESQSCaxWqxs9UjgSMZ/PhZzx+XyIRCKi+tjf30c+n0coFBL1\nBzvw2qSYRA3XSSaZMt6dBM9TXUd16lM6nbaM2rJmIxnGZ2UymcDhcGAwGIiik2SneQ4eB6i8Xa/X\nCAQCFqKGxAZVaCRLSFT7/X4kk8mPjIH1eKiuFzaVOZujpFodp0dJKRQgdMIbzeX7/T7Oz89xdnYm\nxu21Wg2NRgPT6VRUQtuqXZ4sUUPDxk1Fjf4AkKj53//9XzFqI1FjJHZ3BxU1+/v7+Nd//VdkMhlZ\niDnPy4hEmiHyIdCKGvNefx+gooYHIW0YTVKG6QdaUWM21vvDbaTIarUSouY//uM/MJlMpMjbpqHh\nTaZyNxE26/Uabrcb8XgcxWJRNst2u/3Dmg7fFKnu9XqxXC7lZ280Gg+uqKGKg+MetylqWNwabA+3\nKWqAD0TNarWyKGpqtZqssQafB9fA5XIpjYR6vS7dfBIzVIoyOYRjUbFYDF6vV1Sj9GFrNBq4uLj4\npMuBynsAACAASURBVHcMzZ9rtZqMViWTyY+edUrwacS/SdSYM9KnQaKmXq8jFouhUChguVxaiJrL\ny0tEIhEhapbLpYWgS6fTctHbkiQC/RNZtOmx1nA4LGqAarWKRCIhih1N7j1VbCpqPB6PRVHDBiDP\njsvlEk6nE81mUxobrCMMOf04QEXNYrGAz+cTkqbb7VoaECRLqFjz+/0Wvxli81yr6/Cbzrw3ec3o\ncXONmxQ10+lUhAOHh4d4/fo1/vjjD1HSUMnIrzFEzT1Bm4Ylk0nEYjEZzaBslVKnbreLVquFer0u\nZkHG7PRuIIPpcrksPiXpdBqxWEze780Ug2aziWq1iuPjY4s5nikEvh9ogz2tprHb7bi8vMRkMpGY\n+9FoZFJi7gGMQo/FYjJj7/P5bnTbpzHfaDTaahGn587ZhWSnkg77N/ls6E6GXnd/1DVAR1NyHeSa\ntxn9yotfd1+Hg01ljyZadXcT+NAlY5FIU0yD+wPVVSS9+VxnMhnE43FpcmzGmnKEZjweYzweyxy+\nweex6S3DzzXTZWazGcbjsSTPMMabXjH1eh2BQEAK7uVyiWaziVarhWaz+cnikd+r2+3C7/djOp1K\n0U4i/erqSuK4aWJZq9UwGAzE383gdtAzjV5fVGuTaGaM73q9RiaTwbNnz+Q916kxPM8yQtrr9WK1\nWqHX68lnYzQaSWAGk2uAD4a5OmmWRSa9h54iqHLweDwyErOpsuB/c4RstVrB6/UimUyi2+3KRWUa\nm1AcKdOjaHrd1IrEzdpON1Fo6k/1BNX9psl4O0h4rNdrTCYTNBoNHB0dwW63IxaLIRaLScKlHi3V\naphNr5jbfL90sjAvHa+tcZvf4Wq1wnw+F5Kd/qjVahVHR0eoVCpoNpviqflQI3ZPkqjhITSVSolp\nGD8QnEnTi3m/3xdVhzn03A1Op1OkwmTIN8dg7Ha7EGOU+NfrdZydneHg4ACVSgXdbtew498Z9Lw3\nTb9YXC6XS4xGI7TbbTSbTQwGA0PU3AOcTqccYIrFopii08eCeEgVoJYzJ5NJpFIpWQOoCtCkA39d\nLBbo9XqoVCo4PDxEvV7HaDT6IQ9DN5E0jCHlAYOkp9/vh9frFcLkpoPln4GWF9PUMZVKyWeJxYYm\nasy+uB2Q7KaKhiRNLpdDKpWyqFG12SYJAh42TXTt10MrI0gU872dTCbo9/vw+/1oNBo4Pj5GLBYT\nHzbeDxbtw+Hwk2oJft/5fA6Px2NRN1JpvFgsxDz4+PgYb968ER8i8/zdDcvlEuPxGA6Hw5K+xEKe\nzYN8Pg+73Y5oNIr5fC6elrRNoEEp1U/svNdqNdTrddRqNeTzeZTLZazXa0QiEVlb3W63KHPK5bLl\ns/KUQZXD5igM/x8JFo7EOJ1ORKNRUXYyFbHRaMjZkk33+Xwu39flcsmzzPWSASbL5dJyPuJZloaz\nJGz1+mrW2NvB8w0AGSO12WwYDocWby82IrSRN0cNNZHG95vWI1opw/u06U2z6T/zKeg02maziZOT\nE7kajQbq9bo0QB5yvO7JETXaUZrqDrq7c0Z5OBx+xNCORiOL27jBp8HOQTweF6KG6iVGGNrtdjmg\nDIdDdDodSTA4ODhAs9k00u3vEA6HQzojoVBI7je7RptEjbm/fx6aqCmXy0ilUggEAh+56hMPQdZQ\nskxSnGQtOyjsfmzOGLMgOT8/x8HBAXq9HobD4Q95GCJxtmmyPRwOJdXA5/NJx4ljSCzk7mtcTXct\nXS6XHJ5oaEp1JPC+2GGhaoia7YBFYygUsqhp8vk8ksmk3I9NRQ0LDhYdptv7ddDPFt9fjkRtdm11\nIbdp8MxC8HOdV921j0QilgQ8Hcfd7XZxcXGBo6MjvH79GsPhUGJhDT4PEjVXV1fo9XoYj8fiscVn\njg2EWCyG3d1dXF5eWpK9dMHP+8KRw6OjI7x79w4HBwd48eIFrq+vRY3I78vmRSaTEaKIPmRPGdqj\njefFzZFpJm1xlIzPFq9arSYKiHa7LUTpeDwWI1qPx2MxiuWYIy/9nHLcihcVdUyHo7eQwc3QZPNs\nNkO9XsdwOMT5+bkY/Hq9Xjm3lkolZLNZ8YkKh8MfNSH0/qZT2HQiVCAQEJXcZoz3p7BcLmU0koIB\nPs/8HJGo0STUtvGkiBoytlpRQ+KAsjYuuLVaTSROo9FIpOim83879GKq4115uGTEq9vtlkV4M8WA\nfgy1Wg29Xu/JO+F/L9D3nnOmnOn3er0W9dRgMBA5OMdazHP15+B0OhEMBpFMJlEoFBCPx4Wo0djG\n+3zbPLDb7UYoFEIikUA+n0c2m0U8HkcoFILX6/1oJpgbnybzaNb2I48/8udiQcYRCx5cOaobi8WQ\nSCSQTqeFwP7SsaPNeFk9r81i0+PxCKkWi8UQDofl67keU/ljzIS3A3ZyaSDM0UF9P1jE65EndnpZ\nwBh8PbT6kIq3bSEQCMh+ScUxFXVcDzleVavVUK1WcX5+LsWLef4+D479Au/XsX6/LyPY3W5XEmjY\niY/FYh/tUQAs4zRU39Mc+ODgAG/fvsWbN2/gcDgQi8UkOIPnYu7ViURCzkONRuOjJLendiYiscn1\ni8Sljt8GIGRLKBQCYFXjatPveDyO4XAoI7paZaEDLbjf0nNEP0tsOPPi96Mai0QPE9dM4tTH4P2h\ncmkwGACAZZw7k8lIOMFkMpH9LhqNytrLzwbPPYvFwjLOxqZGLBbDer0WX7dPvSZab5AIarfbqNVq\nODs7w/HxMY6Pj3FycoLT01MZI/4WCqonQdToA6lOpEkmk4hEIlJIUnJfrVZxeHiIi4sLDAYD8+Dd\nETzwM8M+mUyiVCphb28PmUxGMuz1/SBRwxhaGk9RvfQUN6zvEbrj5PP5xJ+G89nr9Vruca/XQ6vV\nQqvVwnA4NKNt9wAS0FRBcHZ+k6jZBvRzr2eL/X4/stksSqUS9vf3USgUEIvFZIRGQ8tbKWvVs8g/\nKjRBxZ99Pp9jOp1Kweb1ehGNRlEsFjEejwEAvV4PvV7vi5KgSKLy0qoAkqvscj1//lySbG56zfpX\ng/uHNiHlvdLpiATHcriuUu5vCvfvC/TayGaz2N3dRTqdRiAQAADxdtC+NP1+/6O0RIPPQycrDYdD\nVKtVvH79GgCQyWSQTqeRyWTkeQOsjYjr62sZTR2NRmg0GqhUKpar0WhgPB6LMr/ZbMq91Gssmxh6\nHNjn80kx+JRUUvQwabfbOD09xXq9RjAYFCXpp0BTWSp44/E4ACAYDEozgaNPLpdLxhP1yBML/00v\nPCoyeM8mk4koK7TCglYZvMyZ9vPQz+J4PEaz2cR6vcZoNBI/KCpjSIxSNUriRjee2KQEIIbE2tSb\n2Dxz8RzV7/dRrVZxdnaG8/NzVCoV1Ot19Pt9qUe/1Vr7JIga4EMnkS7TnL+nosZms4mBMJlxzv/q\nuUWzId4OnVwSDAaRSqUsRA3HHfRDww46i3h2aLVZl8Hjhy7SOapBoobjLbzHNOlutVqyQZr7/Ofg\ncDhkXUun0xal4Lahn3tKWfkZyGazKJfL2N/fF0XNp4gadoj18/+jk7VMNtg0E16tVkJ8+nw+lEol\n2Gw2hEIh1Go18UMgefM56O/FwycVNB6PR/7c5/NhZ2dHiJpPvfc/8n35ltiMa9eeDZv753w+l0KB\no6SGqPm+4PP5kEgkUC6Xsbe3J0SNzWazmHAeHh5aDIQfUn7/I4Ad9OvrawyHQ1QqFUmjfP78uahg\n+IzxmdPnfybxtVotnJ6e4ujoSIxGGZnO8VUSNaFQSFTmVNYwrjuRSEjKlM/nk/PQUyNqptMpWq0W\nzs7O4HA4kE6nRVX4OfAe+Xw+xONxeL1eiV7nxWYSVUtaGaXJsU2PGt3Q2FTh8H73ej0cHx8DgGk+\n3hGbRsO0umg2m0Ko6fFe/n1tAK33Qxpzc2LmU0pfPc7a6/Vwfn7+0dVoNISQ/dbJtE+CqOGhhw8d\nFTUkajYVNefn53j37p0YCa9WK3MgvQO4CFIuqBU19KXY7AqSqCFTrSObzWHz+8BmUUFFDaWLVEjQ\nMJqHl1arZZ6rewIVNSRqAoEAfD7fgyhq9L2n8S2lx1TUPHv2TNQ0t6k0dLeEh+kfnaTZlOBqRQ07\nRiRPbDYbgsEgstksTk5OxFC23+/f6d9yOBzSpeQcN+X+2ryPh93bSDW+3h/5vnxr3FVRo331mJBm\nFDXfH1hYbhI1AKR4OTw8xOHhIVqtlhA1Bl8GFlpMc6pWq3L+pC/Nzs6ORVEDwELWTCYTdDod8VB7\n/fo1Xr9+jUqlYin+6bvYaDTEb2O5XFr8p5xOp/i20TAewJMiaYCPFTVc8yKRyJ2/B31KqCzeDFHg\n39n8d2/6/U3fG4BFhUObDDYeAQj5Z/B56GeRabA3eRLddl827+lkMhHCO51OS8P/pq8j6bJcLtHt\ndnF2doY//vgDp6enoqbpdDqWlKlviSdB1Hg8Hike8vk8crmcjD25XC5xXGesGy8d3WfwadDki/P0\nxWIR2WxW3mc65NNQlhfjuE9OTiThZTgcmoPmdwamk9AkT0ew66QM+j0Zp/z7hY5W1uOFDwF2MOih\nQW+TZDKJ58+fI5vNShy30+mUzVdLSXWs5uHhoSS+zedzkfj/6MTA9fW1yOmPj4/lAGOz2RCJRLBa\nreByuRCNRpHL5WTN/RJFjZ7TJ2nG32ulDVO5NhVZ6/Xa4qvA8UVTNN4vqJDjKCMVcjQH50WSptVq\noVKpoNVqYTQaPblC73sDVRX0hcpms8jn8ygUCsjlcjIyrA2JOZphmlj3g9VqhclkIs3F09NTObOE\nQiEEAgFLIiw9bk5OTnB0dITj42Ocnp6i2Wx+ZDCqlTdnZ2cfRU9zL9NejuVyGbPZDO12GwAwm81+\n+D2PWK/XGI/HqNfronDiOCc9fkKhkKjygY/PPJrI3ubZhyQ6zzFsUnU6HRmj8fv9Fg83g0/jaxo/\nmpjz+/2ydmazWaRSKYTD4RsbTTQM7vf76HQ6ePfuHY6OjnB6eireqKxRHsvz9ySIGs4tcjHM5/Ny\nI9mRIkvOh63X64m79GO5WY8ZLBpSqZSMO2hCjDI24IM53mg0EuOmo6MjHBwcSFfQHES+H3DBjMVi\nyGQyMuLCjj99FGjqZsxHfyzwuScJnslk5Eqn00in03Lg1QccbRLHA+35+bkcgEnUPBVDcXZh6/U6\nnE6nFGQ2mw2r1UrW0GAwCOA9QZZMJu98EOShVvsJbSbXaOLG4/HcaEY9n88lipaG4IaouV84nU5J\nTcxms4jFYhaihiQn40QbjQbOzs7QbDYNUfMdgGOIbG7k83kharLZrPhT6cQTKg2fAmn9ELi8vMR0\nOpX3kub7i8UCiUQCsVjMQphxVOLw8BAHBwfSWGy325IWpAtOjvKwIUWlMb1oeEUiEWQyGezs7Iji\nRhM2TwH0JqnX61itVkI+X1xcIJvNolAoyMUwEgBiZ8EU2U0/kvsGfU610oMq8m63Kz6bHo8H7XZb\nyHSD+4fNZpPJjUQigb29PZTLZRQKBbHa2AytAN6nirbbbZyfn1tMg8/OztDtdiUJ7jHZnTwpoqZY\nLGJ3dxeFQkEIBLp9U6aoI7m5OJvO/93Ah2ZnZ0eImkQigXA4bGG8darLxcWFEDXv3r0TB/WnUJj9\nSGBKAhltraihj8JgMJA4SnN/fxyQMNjd3cXu7i5KpRKKxSLy+byl8Nf+VDSIIxnearVwcnKCf/7z\nnzg9PUW9Xken05Gu4lMYtaGiplarWSJj3W437Ha7KJbY7U0mk1+8P7HQ0/Pdm6lPTJzhtYnZbIZe\nr4eLiws0Gg25hwb3BypqSNREo1ELUaOfn8FggGazaYia7wgkauiVmMvlLEQNn8vNaFptamnw50Ci\nhuuXw+HAYrFAv9+XhlMmk7EY/C4WC2kq0h6BZ1beE03UXF9fSxx4KBSScfB4PC5rbSQSQTablVGN\n+XyOdrv9ybGPHxGj0Ug8QxqNhqhz0+k0fv75Z0l14hgw9631ei2NB20svA2whmHDw+12S2IbvYnm\n87m8jruqXQ2+HBwFT6VSKJfL2N3dRblclmkOEng3ETWtVgvHx8f4448/UKlUZNyJI+ePSU0D/KBE\nDR9gXtFoFJlMRm5mJpMRlcfl5SWGw6FEQnc6HYkMNrg7qKhJJpMol8solUpIJpNioqahTZtPT09R\nrValM6HNogy+DzCKORAIIBaLSYIBi3NtGE3ptrm/3y84QkMSplAooFgsolgsCklTKpWQzWZv/R70\nZGHiG6NnOSNMUu8pFZzX19eYzWZCZtOfxG63Y7lcIplMiskwlTCb5uyf+/70wNmMO6eCg8l8gDXK\nm6D8XyefPIYZ7h8BmjjzeDwIh8OSBBSLxeD3+y2KGt7L8XiMXq+HZrOJXq+H6XRqiPBHDnpPcewl\nlUpZvEpIHtALg9G1HAU1z9ufB9ctkl88f9IolslNTI/hfnVycoJqtSrpTjyzbhZ2NMWfzWbwer1o\nNptoNBpIpVJwOp3i2cgQAI6H1+t1UfcAT8MPbL1eCxE5Ho8lpplmvdwLqV7ZTPHd9ORjDahNaW8a\nkfpS6JFyfv/1eg2Px4NYLIZUKiXK8V6vB7fbfW/vkYHV3JlJeYVCAXt7e9jZ2bGo+fW9otrt+voa\nk8kE3W4X1WoVx8fHaDQaaDabEhz0GPHDEjU0YPT7/cjn85I8sru7i2QyCa/Xi6urK4xGIzSbTZyc\nnODk5AStVgvT6fRb/wjfHShDI7uZz+dvjeIdj8eo1Wp49+6dpGuNRiMTNfkdg90FelzQjI+HDO2s\nb6Tb3zdcLhdSqZSMN5VKJZRKJRQKBSQSCYRCIRlzvA0s+JlYMxqN0O/3JWJ4Op0+KZKGYDGwXq+l\nqzqdTtFoNCTKlSa/PIDeNdmLo1W8dDHv9XqRzWali6wNhzcPm/qZfgqGzw8FHkIdDgcCgYCoLfL5\nPCKRiBA1Wk0zm83E+4sdXVPIP37QUPb/Y+9LextZkmsPSXHfd0pq9X7n3pkxDMOA//8fsAEDhj1v\n+vaqlfu+UyLfh8bJjkoVKUqiukkqDlCgFi7FysrMiBMnIkjGpVIpRKNRHBwcGLKg2+0a5TEbW/R6\nPZMOqtgcmEZI4pmEQb1eNylo/HutVkOz2TSqx2U2q1wnqSJvNBq4uroyBdvn87mjwUkmkzGqEQaS\nn5NdTDUMlUXAd9/i69evmM1maDQajtSnQCBgatfIZiVMx6eCKZVKOdJ7N6m44eex42kikVha403x\nOJDgZFfZ169f4+3bt3j//j1evHiBbDZr0p3kGHMOMq2OBaArlQra7fattuzbhr0kauQmyMKLJycn\nePv2Ld68eWOcSRYRrlQq+Pr1K759+2byTRX3h0x9Oj4+NgVEbTBq8Oeffxr5aLfbNXIzNfx3D4wu\nUGnBCAbwI83F7uaj2E2QqHn//j1+//13FAoF5HI55HI5pNNpxGKxOyNJJGoYvex2u6bNZbfbNffK\ncwJVRrw28/nc1DmIxWKmZgLTYCQpug6ur69Rr9fRaDRQr9cd1zcej+P9+/d4//49rq+vkc/nAcAQ\nQvZ5ym4IOpc3A9k9jURNoVDA4eGhGWufz2ci9dPp9BZRo4XadwMMJpKooWLq4ODAKOs6nQ7q9boh\naqTK8LmtjU8N1t66ubkxKrV6vW7mnB2RZ8rUXevffD6/le6fSCSQTqdNfRwSNQwcx+NxRCIRo9bg\n+e37Oiu/H4karnPT6RSNRgNfvnxxFBMOBAImJTiVSjkUM4lEwqRgAzAqC2mbbgqSqGGQQ4mazYOF\nvguFAorFoiFq3r17h0KhcKsuDR9lYMMmatwUxtuGvSRqyKZSVkqihjlsZKlJ1FSrVXz79g2np6do\nt9sYjUa/+ivsHHjNs9msyRGkdN4G201+/vwZnz9/xng8/qUFZiXz+hCm/TlsoqtAmSllqaFQyFHc\nTRbio8z4OV+vXwm5gbl1hlr2d4lwOIxCoYD379/j3//9301XN3bJYDRwFWQ6HEkaVuLvdruP/6I7\nCBI1dMKGwyEajQaA7wYKC4/KjiSsA7UOptMpyuWyOWazmflfOp1Gv9/HYrEwEvJQKIRUKuV6nrK7\nic7lzUCS3SRqmPok5y0j+7aihgSnYvvB+RWPx42iJhKJwOfzGUVNu91GtVpFvV43SkOtefE0oKJm\nk7W2JMkiFTWRSASlUsmoRtlxz+PxIJ1OI5FIIBKJIBgMPsv1lSqkm5sb0+il1Wq5PjcYDCKbzZqC\nspKoyeVypl5MNBp1kClun2n/bLd/vstPODg4cBA17HKp2Aw4folEwjQGevXqlSFrkskkfD6fqVUk\nQeKv3++j3W4boobFvrc94LQ3d5Fs08biwS9fvsSbN2/w5s0b5PN5hMNhU9iUrdNqtZrp9NTtdk0N\nAMXTgYW4WOzpIQa/7Szwb4BzEZVSSHvyyv+xdWI0GkUoFFr7HPr9Pnq9Hvr9Pmaz2bNVBEkZ97KO\nT7VaDa1WC4PBQCOCPxH2fCCJnc/nHYYpx5DSXXYHsnO6Y7EYfvvtN/zlL39BsVg0RqWtplpF9rDT\n08ePH/Hhwwf8+eefqFarWpR2CWjsU+3Jn3u93r0UNQxE2NEjWTNoNBqZwpZuUSaSCbFYzFG/Qeui\nPA6MrFPWzai6m9HZ7/fRaDRMe3TtTrlbsOsQpVIphEIhU4+q3W6jXC7jy5cvuLq6QqfTUbt0h3F9\nfW06yx4cHDiKFbPZBguIp9NplEolvHr1ytRo2eb6Gb8S9Oe63a4pKkybfj6fI5lMmuAG8CNVCvjh\nL1DBNhqNjLpiNBqZYtD0CyKRiFE23kfJqngcWJ/I7/ebmjRv377Fb7/9hpOTE5MKTluVkP5ht9vF\n5eWlKblxdXXlqK+37T7b3txpJGpYZCibzeLly5f461//ipcvXyKfzyMUCjkcx3a7baTgTL+hgap4\nPJY5alRgcAI+hNGkSgNwKlokWWO3o7XVPSw27fV6TWQrn8+7RpFt8DMZnX5uucQSNDp5DTOZjIn0\nuxE1z7X+yFPDjvgsIyel5F4af4lEwrTAPDw8hN/vN3NUvk8wGDRtt/P5PAKBgKPVM+tsrAJz/f/8\n80/853/+J6rVKmq1mhqjS0AVBeeOvNbryrhpkI7H41trlF3cmfug/TwWcAwGg8Z4JUmgRM3jwIgs\nnYtwOOxQS3EOzmYz4/TVajV0Oh0lOHcMdupTMpk0qgrulyRqyuWyqqV2HCRXuU4ydaNQKOD6+tq0\n7Zad3l6/fo3Ly0vTOUr3xtugEqrb7WI6nd4qICuJGtqoMvjA8aBqp9VqOTr/Xl9fG8UOCdVUKmX2\nXsXTgyqoSCSCbDaL4+NjvHv3Dn/88Yep28fGJSTq7PTsTqeDy8tLfPjwAR8/fnQQNdtO0gB7RtTQ\n+SdRc3Jygj/++AOFQsEYPpKBrdVqJv+Xiprn6Gg/FZa1ySN5wnz8h0wUOvq2qoawiRo351E6O6lU\nyhSdPjw8XPmdJCkUDAYxm83QarVMytwuTPxNg5tgNpt1tOam5JDzjYoaNTqfDm6EDWEraqTxl8vl\n8Ne//hV//PEHfvvtN1N4j+2h5Xvw77IwnySH7kqfoqLm06dP+K//+i/TzUSNUXdQUcP5JNe3+2BZ\nhxI3omZZdzbusSw2zJo6isdBFqNcpahhoVPKt9ml8rntObsMt2LCLJI6nU4dRA3JOJ1juwsqaqhY\nLJVKuLq6QrFYNDZoIpEwnTMPDw/R6XQMiVCr1X71V9hK0J+bTqcYDAYA4CBqSNLE43Ez17j/yWLP\ng8EA9XodV1dXuLy8NMd0OjXNEliegR0SFT8HMqUsm83i6OgIb9++xe+//27UTYFAwFG7SGZc3Nzc\noNPp4OLiAh8+fMCnT59QrVbR7/eNfbPte+feEDVsdZhMJlEsFk1BW9mKm9F9ykq/ffuGq6sr42Tr\nRvhzEIlEUCgU8O7dOwSDQVO75D7Xfzwem4N1T7gASxUNUzI4mSVI3hwcHCCdTuPFixfmnlkFuciz\n/WK/34fX6zWyyX2PcPIa+3w+47TFYjFTP4MLJ8dmOp2aWkRukXrF4yA7hTQaDdzc3MDn8yEcDjsI\nyoODAySTSRwfH+OPP/5wzLlMJoN3797h9evXODk5MUSMTdQQJAtsNdsycI6zMCCL2vJ8FcshDY+n\nfv9lZI58rv08nc+Ph9frdXTOk8an3HNGoxFarRbK5TIuLi7QbDa1rt4OQLYYzmQyph5JPB43ahrg\nh2Kq3W4bkmY0GukaucNgMJG2T6vVQqVSwdnZmUklZUHpZDKJUqlk6lB1Oh1T9FSqBBTOejY2WP+O\nhHY+n7+V9mu32mZwit0UpfJfdll0C0LxXGjnUGGveBz8fr8hMFmLiEoajhHHhLYJ68+yNMXXr19x\nenqKs7MzVCoVdDqdnQpu7DxRwwkTjUZxdHRkigv95S9/weHhoaNWBtvvVatVnJ6e4sOHDzg/P0er\n1dJI7hNgWUQ9lUrh3bt38Hq9ePv2rSnsfB9DhMUTZacLvodUysRiMROhtIuISUInGo2a1reJRGLl\nZ8vJTbJoOp3C7/ej2Wyi0Wg8C6KGDgWjFax0z5SZTbZAVKyGLIx+enqK2WwGn8+HWCzmkOj6fD7k\ncjm8e/cOoVDI4ZDHYjEUi0Vks1lTCI8EjZtizS7Ad9emR6Oz2+3i/PwcjUYDo9FoZzbL5wS3ItME\nlTf9ft+ob9SJfDzs2m3SIZDEGOvTnJ+f4+zsDI1Gw3SQUWwv/H6/ScUolUooFApIJpOm3gXX0Nls\nZgpfsuU6OwwpdhdUmDOVqVqtIhKJIBAIIJFIoFgsmmDX0dERgsGg6T51fn6O4XBoAh16L9wNBq/Y\nPY3KQ3biAmC6brFjLQkZpvZOp1McHR2Zg6ont7QnkjSTycSoX3VNfjxYV4gpaFwzZaoT4MyuGI/H\nqFaruLi4wMXFBT5+/IivX7+iWq06fMZdwU4TNVJyH4lEcHR0hL/+9a/429/+hsPDQ0PUUE46+c2V\nYAAAIABJREFUm83Q6/VQq9VwdnaGP//806RjKFGzeSxLfUqlUnj79i2y2axZOO8bLW42m6jX66jV\naiZ/l2NM5jsQCBgWNp/PmyJiBFMHWE1cFkRd57sBMCoR1mlggeF9h8/nM+lOjAyyEDMjwZtugahY\nDpuoIUlpKyMODg4MEVMsFh1zzu/3m8J5TGlyI2pI0ripaVYZJpPJBO12G5VKBRcXF8bBVGwnlqWw\nMf1qMBhgMBgsjWgq7gemb5Polmsoo4SyKOnl5SXOzs7Q7XaVqNkB0CEvlUo4OTm5RdTIbqTsdiPr\nJqpzvvugnUuiBvgeZC6VShiNRvB4PIjH40Z1RUI2kUig0+nA4/GYe0SxGlJlbBM1gFNNQ/KF6jYW\ndZ/NZqYeX6FQMIobN6JGduPTObs5BAIBxGIxo6RhGRMGg2XxaKqaSNR8/PgR//jHP3B+fo6LiwtU\nq1V0u11Hd81dwM4TNXQmYrEYSqUS3r9/j7///e+mewmLHcq87kqlgvPzc3z58sVEBXdp0LYVnCQ0\nOGQFdgnmjB4fHz/4s6rVKiqVCsrlsimmyHFmukYgEDDtTUul0lpFgvk97K5SyxzRTCaDXC5nahy1\n2+212+XuMphWE4/HkclkTItmuYnZKRLPueDyU4NETa1WQzQaNYWd2YkM+OEIsiDefdKWJCRJI/OB\n7XnC9YD3gJR7n56eKlGzo2AqIwsTKzYDKb+nMtHr9Trk3KzFwLl0dXVlouy6pm43AoGASc0/OTlB\nPp9HIpEwHUuYMsE6JsPhEP1+39imti310PVb8Wsxn88N2TqdTpFOp/Hq1Sv0ej1jv7LG3+npKQqF\nArLZrCFquA7omK8GHfZutwufz2cIbapdZKfgcDhsFPehUAjhcBixWAyz2cykKWYyGYc4wC6BwOBF\nt9tFv9/HeDzWAMYjwGvNWl4ky5gdYdcc5TgwdbRSqeDz58/4n//5H1OLttls7qTNstNEjcwfjEaj\nJs2FBA0L8bEN99XVFb59+4azszPU63UMh0OMx2NlPjcAmVpWr9cRDAbN4reOQuW+4OS9ublBNBo1\nE/T6+trRrYakEMkTO11j2XehE8K0JhrD9sL77ds3nJ+fo1qtot1uP5vW02wlmclkUCwWkUqlEIlE\n4PP5jFMxm81MdzVW1GdUQzewzeLm5gbD4RDNZhOhUAilUgm9Xs+QlzRIbJWTncL0EDBnnmQcD7aZ\n5VGr1QzBenV1haurK9MJQ7F90HH5ufD7/YjFYiYFl84a8ENWb+9JJL91rLYfJGpKpRJevHiBXC6H\naDQKj8djnAumaXDtBpzKX+lcUl1xV00pxXaB6W2sK0V13OfPn01jCx7RaBTFYhFv3741XUbZvc8O\njiicoMJlNBrB7/ebLr/lctl0XXPzTw4ODhCJRIwdKxXGhCRnWICfwf8///wTX79+NT6m4v6Q610s\nFkM+n8fLly/x8uVLZLPZW2UsAGA6nZq6NFdXV6hUKqjVamg0GrfUVLuGnSVqGB1m8T2bqGHqi8fj\nwWg0QrVaxefPn/Hp0ydD1AwGA80l3CBI1DQaDUQiESwWCxMh3DRI1Pj9fkOg0GGUtWe4GEuVi725\n2WPPjbDT6aDT6WA4HJrDTpFjlXgSNcwj3ndwM0un0ygWi0in00aOyJaJlJ3SUW82m0bKrUTNZnF9\nfY3hcIhWqwWfz4dGo4Fer2eKbS+rGbSJdY9GCyX7k8nERJfOzs7M0Wg0HMRNq9V6FmmCu4y71krF\n5iCLJqbTacRiMVMA3yZqZB0ELVq5G5C1SF68eIFsNotIJAKv14vpdIp+v49Wq2XWbtoakpyRxTN9\nPp8h7FSlultgE4rr62tD1LDt8/HxMfx+P1KplKkb9/btW2Pf9no9NJvNpR1PFd/BTomcP5KoISF2\ncHBwyz9hCjiDjlTo2+9Nm4s2LomaDx8+4PLyEq1WayfVG78aJGhk/dB8Pm+6bzH1yQaJGnbvIlHT\nbDZ3vpbezhI1wI86GeFw2Mj9SdTI3LXhcGiImg8fPuDq6soQNbvSR33bwUWRE4VFnCORyJN8HuvQ\nxGIxV/mvlCjaSgK3VCb5WqoT2u22IWC63S663e6t7hqycw2JmueiqKFT4aaomU6nGA6HhuxqtVqG\nqNGuBZsH71nguxHYbDYdRA03vqcA1TTs7MXaJe12G1++fMH//u//4v/+7/9Mdz2q1ehk6Nq7fVg1\nJrpfPg2Yi28raphCKDvnSUWNjsdugMWEWaOG6cJU1DA1n/U0WPeONoxUkLPYNABHcVTF9oOKGioy\nGo0GLi4uTDoHSZrFYoFoNIpCoWC6CPX7fVQqFfh8Ptzc3NzqvKj4ASpquD5KoobFaN3abLM+WCgU\nAuBUtMm1lvXCmIYqiZp6vW7WaMX9QZ+NtRapqDk5OTGNYmywBm21WsXl5SXK5bJR1Mj7YBexU0SN\ndLpZFDOfz6NQKOD9+/c4PDxEPB43Khrm+bIt18XFhWnHPRwOVS66YXS7XVxcXCAejxuio9/vI5vN\nmufcZVAwUuT1eo0qKhAI3JqYJF64YckaNVJdI0Fjl4aurJ1iEzXMZ6TDOxgMTN6pBLtPdbtd9Hq9\nnasmfh9I8ktGf2XeqNfrNRsY2yIyJYzXfJcXzG0FyTEabrJgerfbRSQSMYdsWb8JI288HhtCTqpl\nGo0GPn36hG/fvqFcLpsoMZUAJHgUvx5ybrsVEeY9IiO4Ooc3A15nRnej0aiZp7I9t0wvlLW+NKq+\nG5BdvWjTyGLtVE3d3NyYtO1cLue4J6gS57rNlGK+TrEbkDYQlbBXV1cIh8Mm+DUej+H1ehGPx1Es\nFtHv93F5eWkK3ko1leI2ZG0vj8eDdruNq6srxGIxQ+JIpZos4M6/AT8KuVMpTh+CY3Z1dYWLiwt8\n+vTJ1MwcjUaqdLwHpP3BJjCsC/T777/j+PjYFF6Xton04TgeX758wcePH3F1dYVOp7MXa+POETWM\nKLBrydu3b/Hu3Tu8e/cOL168MJ1Out0uarUaarUaPn78iNPTU1xeXqLRaBinUbE5kLH+9u0bptOp\naVPdbrdRKBQA3C6GZ4OTlFJDtiqMx+OuDCpBJrXT6ZiCbDykAcvn8ZCLrlxQWeyt3+9jMBiYKCbr\nGUlIhQAf95WoAX7kjgYCAUSjUaRSKeTzebOIer1eo6pg4e52u43RaKQOxROCUlxJ1Hz58gV+vx/V\nahXJZBLJZBKpVMpsgptKSRwOh6jX67i8vESlUkG1WjW1aPizrE0k62ro/bA9kJF7mSNuF1fXebw5\nyD2RRA1ru7F7HgDHtbcPHYv9wWKxgNfrNWnFR0dHSKVSyGQyplufrAF2fn5u7F21aXcTs9kM3W4X\n1WrV1JdjW/bFYmGUNt1u13TYjEQiZm3W0g3LIcmaTqeDy8tLADDOO9UZMnjFv3Ht5XzjOHW7XXQ6\nHdNhk0IA2ju0c9S+uR9IkIVCIRwdHRnf/rfffsOLFy+M+lC245Zdttgh7ePHj/jw4QMqlQp6vd5e\njMFOETVU0gQCAUQiEZRKJfz222/4t3/7N5ycnCCbzRq2tNPp4OLiAl++fDFRXaY8ScmwYjMgUTOZ\nTAxBRkVNs9l0yAeXgW3W2SI4k8kA+FGFfRlkx5tarebI45cEzGQyQb1eN4esPWOTK7xHuKDzcFPp\nSOdzn1snSkUbiZp0Om2IGhoU19fX6Pf7aDQaStT8JNgdlqrVKg4ODjCZTFCpVJDL5ZDL5VAoFHBz\nc4NAIGA6Pz0Wo9EI9Xod3759M8W1z8/PcXV15SAxpQpAjZjtg1uxUkIqOnQebw5SvcSae25EDeCc\n4zZJo+Ox25DjR6Imm81iNpuZ4sPHx8cIh8NGKc7U/V6vh3K5/AvPXvEYTKdTkxLu9/uN7TwcDo2v\nk0gk0O/3kclkDFFDAkLhDntt7HQ6WCwW6Pf7mE6npiEGOzzFYjFHN0uq3aRiv9VqmeDT+fk5Pn36\nhM+fP+Pr169mXrJordo460MGiUjU/P3vf8d//Md/oFgsmnpedtct2W3LJmq4Ru7DGOwcURMMBhGL\nxZBKpVAsFvHy5Uu8f/8epVLJMKJ0FGu1munyVC6XTRoLoIbNprFYLExtCgDGMSeTLSO0y5xDj8dj\nikJHo1FTE4aF9pah1+uZtLZyuexQt0hiZTwem0W2Wq2a830unZoeC7lISqdCFr2URRErlQouLy9N\nMa9dlx9uM+jEAd8Ni3a7DQAmBbHVahnilAW3Q6EQAoGAQ0Uhpb/SKXQjKzmXmRN8dnaGr1+/mgjT\n1dXVL7seivuB6YwszM/IIgATvWdraBZVV1n35mCnnNl7pN1VTSO2+wWmXtC+zeVyxpEsFos4Pj42\nRWaZZgrAzFOtUbO7mM1mpglFIBBAtVpFuVzG5eUlMpmMqf8nlVVsFc2CtroWu4PrI2v40TeUQWHZ\naWs6nZpOUKxR0+/3zcFUp6urK5ydneHz58/48uULvn379iu/5s5DijBisRgKhQLevHmDv/3tb4jH\n4wgGg66dt5h2L9PQGCTcp6DSThE1zNvN5/MoFoum2wzbp/n9fni9XlPYlg4jHX464/swcNsOss8H\nBwdmYVwn9UlKEOPxuFlAVxUlHo1GaDabxhmlUzGdTm+lPtHIYb0ZLWa6PmSEQjoObC1KR65cLuP8\n/NzIQmu1mrZh/sngWADfjRRuaCSrW60W6vU64vG4IUYZXaKhws5do9HoViog8IO4Ozs7w+npKS4u\nLtBoNNDv97WI3o6BhRVzuZzpSEMV42g0MrWH2KGk0+koub1BMDo4Go1Mai5Vi8CPqO5wOMRoNNqL\nvHvFD1DhOJ/PEQ6HkcvlzHpLe4jNGqrVKmq1mgmE6Fzcbcggy2AwwOXlJf7f//t/WCwWePPmDV6/\nfm0UdqlUCkdHR2g2m/D7/camVdwN1oACvqtrzs/Pzc/ZbNaojqU9tFgsHCp8Ng5pNBqo1WragntD\nYBdZZlKw0Drve1nPi1gsFuj1eri6usLp6Sm+fPmCarW6l/Vnd4qoOTg4QDweR6FQwMnJyS2ihtHg\nxWKByWRiiBoWd9J0p58HEjVMN5JqjFVgfqjMG7Xba9uYzWaOWjEy+m8XCbbrzeg9cT/IWhUkaiQp\ntlgsTHG1b9++4fT01BRj1qjPzwGJauDH3Oh0OgiFQojFYmi1WqjVaiiXy8jlcsjn88jlciZ6R7XU\nZDIxrSfZ3axWq6Hb7QL4MZfr9bpRqZGo0XoJuwUSNdls1hTuIznOGkSMVl1cXKDdbitRsAFw72F0\nfDweG6ImGo2a/YnrLPc4LSK6XwgGg0gmk8YZl8Em2Rij2WyaaP75+TlqtZoSNTsOWayWqo3FYoFO\np4PJZIJwOIzDw0MHUTMYDEzNFNuBVbiD15nXlo+Xl5coFosolUooFotIJpOmg/B8Pjdz7fz83DQN\n4UGFqeJx8Pl8CIfDSCaTyGazSCaTiMViRvXt8/lu+Y6LxQLdbheXl5f48OGDg6jh3rgvvt3OETWJ\nRML0VLeJGllkiIoatgRmjQTFzwELCrdarXvLcuXz71LhEG4tt5c9z+1RcTfsgqJSUSMNSzp0VNSQ\nEFPH4ueBHSEGg8Gtivq1Wg1XV1coFAp48eIFXr58aVrBcsMEvqcKsij7xcWFUc5I4hX4Lg22DRcl\nanYLPp/PpFy8ePECwWDQOAAkak5PT/Hx40eN4j8BWBhRKmqSyaS5xlJRw9b2up7uD9hAIZlMOmyT\nxWKBy8tLXFxcGEXk1dUVvn79is+fPxsSR+fi7oKKmpubG6OoabfbOD09RSgUwuHhIabTqSn5cHR0\nZEoKXF1dKVGzJmi3kvTudDpGxc/UwmazaQJWqVQKNzc3+PjxI/788098/PgRo9HI1KvR9NPNgYqa\nZDJpFDWxWGxlkJ71uS4vL/HPf/7T2Kb7mAq49UQNuzz5/X5ks1njXLx69QqFQsF0BHJj27Ro5a+D\nEiH7CY7naDRCuVzGP//5T+NkkLShooat8bSw2q+B2xwkeeP3+w3pNplMjNHHjlDxeNy0fqUCh6oZ\nSq255tJZoBGj0f7dA+cwC/N1Oh2jPqzVavj69aspFl2tVtHr9dQ53BBkm17W1fN6vQ6SplKpmC6K\n/X7fOAqK3cF4PEaj0cC3b98MKZrL5TCbzeDxeBzdKmURdqY5VatVEwRpNBqGENf07f0B20azxiM7\nDLEhh8fjQSKRMAVWU6kUYrGYUd1pS+j1IO1RdoOt1+sAvte8bDQapjHN+fk56vW6Se+nravXeXMI\nBoPIZDI4OTnBmzdvUCwWTXFnFg4GnNkT3W7X1KORBbj30S7ZeqLG7/ebok/ZbNZUwH/16hUymQxi\nsZijM4JCoXg6SKfi8vIS8/kc9Xrd0XGIrQu73a5GHbYMsgAbWxuSpInFYmatDYVCpmr+cDg0qhmq\nEyUxTkUVnQwajIrdwXw+N3WN2u02er0ems0mms0mqtUqLi4ucHl5adQ0vV5Px3iDYDH+arVqSBpZ\nHJwdDVutFnq9nknxVewOxuMxarUavnz5Ao/Hg+PjY4zHY0OYswMla4jxYH2oTqeDdruNZrOJdrtt\n0rf3rR7DcwYJFwAmFYpjzoYNdGBJ1MTjcVxfXxulhxII98N8PsdoNEKr1cJsNkOr1TLFaxeLhZmD\nk8lE59sTIRQKIZvNmuZAxWIR8XjcQdIAP+qMNhoNVKtV07SCKaD7qi7cGaImmUwil8s5iJpwOIxQ\nKKREjULxEyAXzOFwiIuLCzSbTXz69MmhXiMBoFHf7cN8Pjc1LuiUU7V4cHAAn89nDtl2ngSMGwlj\ntwvel0r7zwms60Y1TaVScbRZp6KqXq8rGbdByHlCoobKNAAmN1867iyEr9d/t0Cixufzmf0R+B5N\npgMiC3bzYLobVTbT6dS8XlXj+wWmQVFZ0+/3jWPKArfxeNzUEyNRw3tBi/jfHyRJ2SZddsDkNWUg\nStXhTwMSNa9evcK7d++QzWYNISnBdfLy8tKUVri6ukK9XjeB4X3cF3eKqMlkMshkMkin08hkMsah\nYAFhOgnSkJQTSyeXQvF4cPOiZFSxO2DEbh+jDoqH4/r6Gr1eD5VKBV+/fkW5XDZFFKvVqokqaoeR\npwMdBenAHxwcGIeNtWuazaYpJqrYHXB8WTjarqnI+VWv1x1EjUy3YDRfyfD9hVTE9Ho91Go1nJ6e\nwufzoVgsms6MVL9Go1FTwF/r1dwf0p5V/BocHBwgGo0inU4jl8uZltxU1HCtm0wmaLfbuLq6wpcv\nX3B1dYVms2mCF/uKnSJq2LKLKhqv12s2OxaJms1mGA6HmEwmmE6nmrepUCgUCsUKzGYz1Go1fPz4\n0aTDsQ1pp9PBcDhUQ/aJQRvG4/Gg1+uhXC5jPp+j1Wo5apZQeaEFu3cLNzc3Jm10sVjA4/GYGjQs\nJGunPjG9SSoWlaB5Puh2u4akoV9DAhf44R+FQiGMRiMlahQ7CY/HA5/PZ9Td9O8BZ7Ftdr67vLw0\n9fL6/f7e+/c7RdSwcBYXKhYa8ng8RkkzHo8dnRFkFEI3OIVCoVAonJhOp6jX65hOp6hWq4YUkAWi\nlah5Wsg2vTROu90uLi4ujAqOaaW0bxS7A7Zflx28arUaotGosV+ZZsH5x5ojtopGbdnngU6ng7Oz\nMwwGA4zHYwQCAeRyOSSTSQDf/SOWgPD7/UrUKHYSHo8HXq/3FlFD357p9yRq2PmO9fT2Md1JYuuJ\nGtm2i4qaYDDoqEtDo4abX7/fN+yznQKlUCgUCoXiB2azGer1uul8ofj5oGoC+E6c9fv9X3xGik2C\nUWFK9BuNxi8+I8W2o9frYTQaoVKpYDabIZfL4fXr1yiVSri5uYHX60UoFDLBayVqFLsIEjWyRqKd\nLcM9kUTN6empCVooUbPFkAUuW60WyuUyyuUyzs/P8eeff+L8/NxUgp5Op3svj1IoFAqFQqFQKBS7\nDSqprq+v0e128eXLF0QiEVO35uzsDJeXl6ZuldaeU+wiJpMJWq0WLi4ukM1mkc1mkclkTPdRdqBk\n/bxOp2OUvs9BhLGzRA2LYo7HY4zHY1QqFXz8+BF//vknPn/+bEgbtpPVvvcKhUKhUCgUCoVi28Fs\ngcVigW63i69fv2IymeDLly+OTnCDwWBvWxMr9h8spn55eYlkMon5fI5gMIhMJoPRaIR6vY6zszN8\n/foVlUrFEDX72uXJxs4SNcCPnN9er4dqtYpPnz7hv//7v/GPf/zDFGYbDAZao0ahUCgUCoVCoVDs\nBObzuanT0el0MB6PcXV1Bb/fb2oasbyDNk1R7CqoqLm8vEQ0GkU4HEY6ncZiscBwOES9Xse3b99u\nKWqeS0fnrSdqptMper0eGo0GotEoAoEA5vM5+v0+BoOBOT5//ozPnz/j7OwM5XLZkRa174OoUCgU\nCoVCoVAo9gf0X0jMaO0qxb6BbbcvLy9N/VkWzj8/P8fHjx/x6dMnnJ2doV6vGwHGc8HWEzVk0+bz\nOQaDAWq1Gr58+YJMJoPJZGKOarWK8/NzNJtNzGYzZZcVCoVCoVAoFAqFQqHYQkynU7RaLXg8HozH\nY3Q6HVxcXOCf//wnms0mqtUqKpUK6vU62u22Kcj+XOBZpTbxeDy/XIoSCoXMEQ6HzREKhYzcj/3V\ne70eer0ehsPhrXaGu4jFYuHZxPtswzg+V+gY7gd0HHcfOob7AR3H3YeO4X5Ax3H3oWO4H9jlcfT7\n/Q5fPxKJmGM8HpsyJqxJS4HGvmHZGG49UfOcscsTT/EdOob7AR3H3YeO4X5Ax3H3oWO4H9Bx3H3o\nGO4HdBx3H8vG0PuzT0ShUCgUCoVCoVAoFAqFQuEOJWoUCoVCoVAoFAqFQqFQKLYEK1OfFAqFQqFQ\nKBQKhUKhUCgUPw+qqFEoFAqFQqFQKBQKhUKh2BIoUaNQKBQKhUKhUCgUCoVCsSVQokahUCgUCoVC\noVAoFAqFYkugRI1CoVAoFAqFQqFQKBQKxZZAiRqFQqFQKBQKhUKhUCgUii2BEjUKhUKhUCgUCoVC\noVAoFFsCJWoUCoVCoVAoFAqFQqFQKLYEStQoFAqFQqFQKBQKhUKhUGwJlKhRKBQKhUKhUCgUCoVC\nodgSKFGjUCgUCoVCoVAoFAqFQrElUKJGoVAoFAqFQqFQKBQKhWJLoESNQqFQKBQKhUKhUCgUCsWW\nQIkahUKhUCgUCoVCoVAoFIotgRI1CoVCoVAoFAqFQqFQKBRbAiVqFAqFQqFQKBQKhUKhUCi2BErU\nKBQKhUKhUCgUCoVCoVBsCZSoUSgUCoVCoVAoFAqFQqHYEihRo1AoFAqFQqFQKBQKhUKxJVCiRqFQ\nKBQKhUKhUCgUCoViS6BEjUKhUCgUCoVCoVAoFArFlkCJGoVCoVAoFAqFQqFQKBSKLYESNQqFQqFQ\nKBQKhUKhUCgUWwIlahQKhUKhUCgUCoVCoVAotgRK1CgUCoVCoVAoFAqFQqFQbAmUqFEoFAqFQqFQ\nKBQKhUKh2BIcrPqnx+NZ/KwTUdzGYrHwbOJ9dBx/HXQM9wM6jrsPHcP9gI7j7kPHcD+g47j70DHc\nD+g47j6WjaEqahQKhUKhUCgUCoVCoVAotgRK1CgUikfB43k8kb+J91AoFAqFQqFQKBSKfYASNQqF\n4sEgwfIYomUT76FQKBQKhUKhUCgU+4KVNWoUin2ETQgsFpqSuS3weDw6HgqFQqFQKBQKheJZQ4ka\nxS+BJEue0jG3SRmp3uDnyp+VJHg4HkqyLBYLxzi53RtuaptV/1v2XIViX7BqTigUCoXiabHM9tB1\nWKFQbApK1CieFOs40W4OPl9314a3brqMJGh42OQMCQPdZB/uBK47bm7v7faZq8Z33efruCr2DXa6\n4DqEptvrn2pOPPX7KxQKxVNjXfuVj4vFYqkto2vh84DufYpNQ4kaxS+BrZqwFS73fY+7nic3U6/X\n69hUJXRxXX5d70N2PIYYWaa2WqXCWqackveWkjWKfYJc14hlpMyyefRU56VQKBS7jPuSNHepxNX+\n2H/YynAdb8UmoESN4lGQC5PP54PX64XP54PP58PBwYF59Hq9joOECQDM53Pc3NwY4uSuYz6f3/qb\nDfk3WznDc57P5+a95vP50u+oi+0P3McJewjh5ka42E6mjFitE73S8Xs6qDHya/Er7/NlY79sTioU\nCsWuYJ11zA4ArVqDdZ/cfdhKVjeiTgaB3XwUvQ8U94USNYpHg4vUwcEB/H4//H4/gsEgQqEQgsEg\nAoGA+TvJGx4AcH19jevra9zc3BjyxO2Q/7+5uTGH2ybJn+Xr7YXz5uYGHo/HPNrvIb+f/b77iLvS\njJZ997ui+svULsveZ1k6h1tNIXUIfz5Wjec+z49tgRtJeZ8U0fuO0Trph6pMVCgU+4Z11lVJ1ix7\n/qbXQw2Q/HzIsgmrDq/Xe8tnWZYWp2OoWAdK1CgeDHtxkgRNJBJBNBpFNBpFJBJBMBg0Bwkbv9+P\nxWKB2WyG6XSK2WzmIGDsQxI6s9nM/E4SBoBjsyQZIw9J3Hg8HlxfXztec1dxuH3NP13HGXtMStqy\n91j1+yon8C5DZd/GZ1uwruJJ8TRYJ9XpKT/P/p+OtUKheK5YZ/17CpKGj7r+/hzYdqmdGWD/bbFY\n4Pr62rxmWSBjX/0JxWahRI3iTrgtUh6Px6Q1US0jiZl4PG6OaDRq1DXLiBoeJGKWkTR8znQ6NYck\ncPizPLhwkpwhdHF8WtiyULmZMU3O3uAIjpetpJLqKD7PxqpxVePmNuR15zjIcXFLW5RSX1vhJsds\nHUm44vFYh0R1U6Steo91ydVVKahun6/YHNzGyK12EXA7BVjl+I/DQ9Scep33Ez+rBpgqiH8OeJ29\nXq/xVfjIDAG7pIPcA2ezGcbjMSaTCabT6a0MgHX3TIUCUKJGsQakYybrzgSDQUPORKNRJJNJJBIJ\n8yiJGnuBWyf1STp9topmMplgPB5jPB5jNBphOBxiOBw6fubrJcFjO5J2fZx9xjLjfd1YCTNyAAAg\nAElEQVQ87Pt+lhs5w/tApsPxZ/kZNzc3mE6nZqOj4oqbnrxPeI73OTe377Tv4+8G6dTRKOH85DjZ\nx8HBgWN8OQ9pmPBxMpk46j89x+u7SayjVFvnnl42n5fl3dvEnE2oSlJ11eeu8z/F3XAjZdyiu/Z4\nuZHdWj/h/lg155bNP00NfL7YVHBo2Zqt99JmIddPv99v/JhYLOb4ORgMmoCj1+t12KqDwQC9Xg/d\nbhf9ft9hy9r26zoKccXzhhI1ipWwnW061iRp0uk0MpmMecxkMshms0gkEoasiUajjgLD0nEH4Fi4\n3OrIkEyRKhkSMqPRCL1eD61WC+12G+12G16vF9fX1xgOh47XTqfTW9F++ZnyOz+XRfO+qV7rEDa2\ncycLSzMtLhKJIBwOIxQKIRwOIxwOO95/NpthMBg4CLjRaGT+x5Q1+Zn3JWvc/vZcxh1wHyc5vzlO\nHCs+BoNBx5rQ6/UcR7/fBwCTlgjA1IF6Ttd3U1g259wIFbfn2I642zjYRIw0Vu2fbaKGY8v3XWV4\n3qeujuI2bHLAVrtxn3VTKXIftIMVhI7H3Vg255YRpcBtxdnPdsxWqasUPwfrEOgPVcvoero52P5O\nMBhEMplEPp9HPp9HLpdDNptFLpdDNBo1a67H48FgMMBgMEC/30er1UK9Xke9XsfBwQGGw6Hxd1ji\nQfdCxbpQokZxJ7hw0ZGjY80FrFQqoVAooFAoIJ/Po1AoIJVKGfY5EoncivTJY5maRUZqqYzhIRfF\ndruNarWKUCjkIGkAOBQ1s9nsloHq5rDwcZ8Wz2XRcDe4OXYP/UzpPPj9foRCIUSjUSQSCcRiMXNE\no1GH4TuZTNDtdtHpdAy5x7xfSbI9dpye60ZpR4GppgkEAmZ+k2yV6rhYLIZwOOxwDlutFprNJhqN\nBg4Ovm8ps9kMk8nEEGr7Np9+Fu5D0nAcgdtzeJlqwk2d4abSsFPfCM7Bm5sbx2etMkL1PngY7DHn\nz3anRamKk8+1U4wJmaKoWA63ObeMwCTkfLBJsadeE1ft27oe/1rY1/+hNtaq91TcD5L85noaCoWQ\nSqVQKpXw4sULHB0dmSORSJjneTweEyhutVoOfwSAUSFznwRu19NUKJZhq4ia5+o0bSPkoiWj7PF4\n3Dhv6XQa2WwW+XwemUwGqVTKOODhcBiBQMAsYoQdVeLPbmSNXadE1sDgc5cRP5KgsQsJL3Nc3Da6\nZQTSrmPVd5DXwS0StK5RIQ1UN9JNRhXsKPB8PjfOhhxj+zwV94d0OKRzF4lEkEwmkUqlHEc6nTa1\npyKRCAKBAAA45uB8Psd0OsV4PMZgMDDRIx2j+8ONPJF/X0WiyFx5e865qRaXETVyPkrD1R5Xe212\nS0sE3BV6ut8/DnKsmEZK5VskEoHf73esqVKdOB6PHSmlADRF0YKcG/YckzUr5HykwsytZhf3NXmd\nNxVokD8vI/T46EYe7Vv62zoKloe8z6awyVSoVepFxXqQczgejyOdTiOdTiOXy+H4+BjHx8c4OjpC\nNps1BwPQci8OBAJm/Y3FYshkMqjX66jVauYYDAaOVHGpdFTyRuGGJyNqHrPArRP1Vzw9uPhIFU0q\nlTILFVOe0um0ceoSiQSi0aiDqLEhFyL7kFhWr0YSNbazwnvHTpVyK+S17LyWYV1yY9vwkPm0av7e\n53u6kTV2YTU6G3QOfT6fg6hZFq187LlJcPy2eRw3CdvJCwQCiMViyOVyKBaLKBQKJo0xk8kgGo2a\nYuAHBwe35tRsNsNoNMJgMDDPWRVpVtyGGxG5LHIv54p92OumHCvbWXQjauyC37IumT0f7c+Qj/y/\nfH+bHHpOc27TkEo4dlyMx+NIJpNIJpMIh8OOiG+n0zEqRY4tx4/gPQI8L9tr2RolA1a8/2V3S7tO\nxXw+d9SqoP0hYacHPvT+X0bMLFs35HNtVbEkcPZlPrqRwhJ3fcf7BIaeQjV4175pj6ubEnofxvFn\nQO578XgcR0dHePnyJY6Pj3F4eGgOqQBnCjjHgCQN199MJoNisYhWq4WzszND7HQ6HZMN4PV6MZvN\nHPvpptTiiv3BkxA1DzXM3QwEvVl/PuyNnikrsVgMqVQK+XwexWIRuVzOobCRippQKOQw7IlVJI00\n6gHcImnkIsbzdOtEw6iWTdIsK6C4ievFx227V3+1k+wW3bfHQyo76Fjc3NzccgxXqWo2Kd/fxnF8\nCkiihvM7k8ng8PAQJycnJic7n88jHA47Oh3YXddGoxH6/T663a6rkk6xGstImmVFYmWKi53uYnfL\nk+si8MOId/tMW6kj35vjL8+P89nn85nPApzqjGUS/+cwx54KNmlH8iAWiyGdTiOfzyMWi5mx83g8\nZg4T8/ncpELJe+K5jcsqkkYSNfI6yw6XkiRl2vVoNDLrJOC816UT9lCyxiZneI6r1gzbsXfrQLMP\n4++2rrl9p3W+633IGmBza9q6e6fbnN2XcfxZsOcKiZrff/8d7969Q7FYNMErNlOgWlEiEomYfXc6\nnZq6ip1Ox6SLT6dTsyYT4/HY4dcoSaOw8dNSn2xGf9XPgHv+3jo3rt7cm4O9udsGtzTo7cgNjUDW\nqHBrue0ml1/mlNMglQbRYrFwRH55jnZ6zV1Kmk1fs+d+D7pFl9xS2FhvxnbqlqkBlhWcfsz1fo5G\njZxffr8f0WgU8Xgc2WwWxWIRR0dHODk5cRQHZ+SYCjkZNe73+4as7Xa7DkUd8KPg7HO81utg1Z5o\nr7Gy3pM8JFEju9wBP1Qv9h7sFhDh3+bzuVEI2IXX5blwzSakas6NEFo29npfPAwykMLOi/l8HoeH\nh0gkEsapAOBQuJJkm0wm8Pl8P2Vv3EYsc8Rte0OmlJGkYWQd+BEomEwm5tpOp1MzV4DbpKXbuSwj\nFOzfbXLGPl8S5fLzCTln5X4rP3/X56Ntt65L1sjxt9dcrq+EtGtlke6nnEvyXpDkgh3s3OWx+5ng\n9aNCLhQKoVAomGDVycmJySBIp9Ouvg6v9cHBgRkHqo+pvJHNFvgadoK6vr42c3RdklFxN9zsqmUE\nqE10rvr/Op+56TF7EqLGlhpKx0Cmp9hRATs67haVe8hFfOhFW5fV3seJJL+7ZIgp2WPknIZiMBg0\nLXllCzpuZMyLH41G5jl8lMqXZc5IMBh0dJ4Bvl93mTID3G5B6qai2cfx2kZIp48RPNuwkQQM8EN6\nL1s8s44C6w2tai/7mPNc9vs+gust0yVI0pRKJVMsTxYDDwQCZv0mOFdZHDqVSqHf76PT6RiyhoYG\niVUla5y4i6SRh1S3sGYYW9vL/00mEzNOXFOB1ammdnSff3Oba6zLIZ0EOvuyA5Qb0e+2p+q98HCQ\nbI1EIkgkEshkMigUCjg+PkYqlXKQq1LlRkdhMBhgNBrdqin0HHAXARIIBMw8YypDJpNBMpk0ZE00\nGsVkMjE1J3q9HmazGcbj8Z3ziP9bdU723207WpK4JOV4yP/b6ZDyvPjzOoTqNmNde/2u15H0kmst\nU/9DoZCDtObY066VgUHg4ddx2VrJ83Pzp9y+yy6O488CrxVtGJZvYD0amTUQDAZdSRq+jz1enI8A\njFo5nU6jUCjg+voak8kEvV7PUYMR0PF6DFaR7nK+2M91s4numr9u5O6qc1n1XuvgyRQ1djTN3lSW\nRQUALHWy3YxLvvcqRuy+jsFdF/6x77/svbdhktpjBnw39plHORwO0ev1EAqFjJNAEoWONR0FOtjj\n8Rjdbhe9Xg/dbte0XWZRrdlsZp4ri/TJVs5c6FKplNlI6ShS2u2m3JD30VNdLz5uw/gBy+/Vhxoy\n9/1ebvPRJmskOec232n4ktCjQsBWSMnP2Jbrv82wHWg3oubw8BBHR0cmwhQKhRwpaFzb6QRSkZNM\nJtHr9RCPxw1RQ5KGzgKwHevcNmAVSWM/T651dB45NpRj26mmMvUJuJ12Kv/Gn+VzpYMnX8dzkfcD\n/27v7yRy5Gc8F6yz3j72esgClvF43BA1R0dHSKfTZo7aYzubzTAYDNBut2/Vd3sOuMuo9/l8jsKg\nuVzOrIssJMrUJ9o1nU4HwPdUhn6/75gfbnvcuucm/2YXL5UKGq4LJHClIy/3XHa/nM/nhsSz7etl\n98K2zt9V6+d934Pjz9ptJEGZ1i/HcjAYoNvtGpIa+GHvPDYoYY+FG0Ej11hbKSVfu63j9qtgj3U0\nGkU2m0WpVMLx8bHpZEs1MYmaVeSZXGNJ1NDGov9CQo8+FFPJt8l/2AXcNcfdgkXSbpHvYSuG3Ugb\ne3weQs48Zi5unKixWUW58dmyTLfoAADXDj/S2V4WAV/FiK3LcNuDuOriywF96CC4MbO/Cva5yBuZ\neeyj0QjD4RD9ft8YBHQaZFSXz2UXmGazadr4UgLY7/cxHA4dzjg3x0AgYCL1yWQS6XTaGBaRSMSR\nimEvdvKeeUqSxu36/erFdhuMbZtAlTWFlqmd+D+SMUyrkYoam9hxI28Vd0NuWqFQCMlkEoVCAaVS\nCaVSCcViEfl83jGfbfJPvgedRM51tqjsdrvGiCRhwHWd7/NccRdJI/dGuz4GiXEefr/foSzkPLIN\nS9sY4d8k5N9p+NsEGyOFbupYKnh4HvwOUq3xnMfdxkP3DHl/cK9kof98Po9SqYRMJuMYCzrrs9kM\n/X4fjUbD1FrYhn3jV8EOGNLJYiSc6+Px8TFevnyJYrFo1BXhcBjNZhMHBweYz+cYDoeO+hWrlL3L\nzsPt77a9LIlbWUya5xUKhRyvZTBsOp0aUuEu9dsuYpXdftfr5PgHg0Gj3qZSjWoqGQjsdDomtXCx\n+K6wAfBke5wbSWPvGY8liJ4D5DwKBAJIJBLI5/M4OTkxRE0ul0MqlXIEICTcrq+0ffl8NmNhN6l2\nu41wOOxouLDqPRVOuPno9too10hJaMtxlDaLHdi3A8h32U3y/YjH8AI2NkLUyAtmXyRZKV8WJHS7\nqHwfOmWS+bedbl6EZTe63BTt1y+LaridkxxY+T6yu8Wy99vVSedG2MgbjgobSn09Hg+m0yl6vR46\nnQ5isRhubm4cypl2u412u41Op2OK7ZFdlmkt8h6ZTqfGwPf7/UilUubnVQeJGzeZ4qax7ZviNhng\ntoNPUo4GL8lAqbqRaqtVRaG39fpvGzwej1Fl+P1+pNNpFItFvHz5Ei9fvkQ+n0c8Hr/l/Nv3OOfX\nYrEwudhSJXVwcIB4PI5Go4F6vY5Go2HSLDjvnyvRti5JI/dNOg6yTTqJmoODg1vGxvX19a3OM+sY\nG4StgrHHyq7dMJ/PjcNipzKueq99nb9Pse5Kw4+fIWX7lOqn02mTsiiNUam44Pzm++7b9V+FZXOO\nadwkaTKZDPL5vKn5c3h4iHw+j2Qy6ahXwlQG2jrSvuH8s7tVrjqnu85d2qlSWSfJ20AgcCvVSRIz\nwOpUyF2HbZe52fp8lOQcbUjWZrO7myaTSUdaf7PZRKVSQTweR71eR6fTQafTcSh/nyJY+NR27S7h\nPteBz6Vin4Gqo6MjvHr1Cm/fvsWLFy+QTqcRCoVc5wt/ln9z8/04/2TjBXnIIOQyIcI+zcn7Yplq\nRR4ymCgzMCRhzf3ODjpyjOSYMI1RKvo5VjaBs2rddPufHcC+Dx5N1NgbnTTe6AxQIcGDRoJkvKQz\nwJuXtU7cHDQAK51xuUC61cSQ7QllREWqfmRbUvk+NIIle+5WV2eVGmfbsWwjkNdhPB4DgJFRyxoy\njNr1+32joOl2u+h2u7c6xsjxkJ1/6Lh7vV6EQiETDbJzsZcV1XQj8p4Cm2ROnxp3nd8mr9WyOUAH\ng2sEF9jRaOQoPm0TNdLZXKWwuy92eZ7eB3JzY949HbyXL1+aAsKxWMxEhe0IhB0xWiwWprW3NHij\n0SjS6TTK5TJisRiCwSCazSY6nY4hEn624u1XYNV8ussQ4RxhpDwWiyGRSBgnnAcAY1iw3ogkapbV\ndiJWRYdksIM/2+fH59p1MOzn28btqs/fdiwzttYZ78d8X+6Hci5HIhGk02lHFDgWiyESiZjPur6+\nNiSNTdSsk46zD7hLsSKDB1y/SqUSXrx4YVSG2WwW8Xj8ln05nU4dRM1wODRp3dIRWxYgvOt3t6ix\nTM/ieNP+CgQCDhUN1ci2KuCu67ULROoyFc1dpJhUpPh8PociqVAo4OXLl2bsk8mk6WoqFTX1eh2J\nRMJc84ODA1xfX2MwGJh7ZFO2oRIzTiwLeADL9zQeUrGfy+VMO+53796hUCggk8mY9tvyPe1D7nn2\nc/l3OQ9leQhZo5Nkqv1Zzw3LbCL5s7RLSVQHg0GjfGOJDNpK8XjcwT14PD+U/exYSnJd+qm9Xg+D\nwcAc9P3dSjYAt8k7Ny7goWO6cUWNLAIraxzwYvKQRIhN1Mgb2b44/LKLxcJBqtgOuXTouFnadS5k\n/r4dUZFEk9/vd7wPC+vyc/h62VmD5+l2rbZxAi7b7OzfuUlRUUOShhsd06Emk4njhu/3+6YQ8TLi\nDYBjEnJ8GDUkUeNG0MixshU1PwPbOKbA/Z2DZeTKJs/HrrfBaOB8PjdKi2VEzabbrD8344fOHRUa\nNlFDQ18WjHWDrD3C/G2SPzLfm5ukJHZIKgDbO282gfuQNHaEV+5HnCMkatLptENZM5/P0e12MZ/P\nMR6PzRptEzX36X5nEynS8ASc7YqlukruD5K0kYboMsJmVyDHSp7/fUm5TYCph1TG5fN5B1HDtXI2\nm5n9mXWN6LS7qSp2cVxW4a6xkbYrO2hlMhkcHh7i9evXRqnESLvtaFFRw4NRWduov+u87rpP5NpA\nm4s1VCRZ4/f7jarH4/Hg+vr6lp28qT30V+K+82rZOiv3xFgshmKxiNevX+P333/H8fGxScGPx+OO\n8SyXy440FirJm83mrSDEQ2x/2y5/bvbKOrCvzaoAIQ+/3+8o8Eui5u3bt0ilUsZfXUbU2CkydldF\n+X8pPLDVNPRxbWdf4U7E2Rk7UmkslY/FYtEo4mSdIe57XJdns5mjI1ez2US9XjcqcCrkfD6fyf6Q\n5JpbzUyOvUz5fuy4PoqokQudjNRSYiujfjZRI1NcZITIliLZ8k052aTsyVZQyAkl25XapI2c1IxQ\n8JDKjZubG7M5D4dDdDodtNtteDweM4Drbnw8v3UjAD8DPB/5yOsnnTLZAYqLkxx/HkyFIkEjuz6t\niqTLPGG+vyygKSccP0sSMjLStW70eJ/x1MTLupAbJPN1k8mkg/Wez+fGsJQ1FZ6CoOE5rfrfvtwr\n0jj3+/2mhS+jhqVSCel0GrFYzBCeMvK6jOyTDg5/l5GOYDBoapaEw2Ekk0lj7DYaDQd5u+mx/dVY\n12m3jUw7WiSVNJTjZzIZh7SXxsNwOLxFjmxSuSTHm6QcC03LujXAj5Qn7r/btNdtCg/9Dm4Ez33f\nSxJlso5GIpEwXdpoE5H4XiwWRglrF2jfd2WbG2xnnQ67DB5IlQrtVtpDdjdM2SyBDth9r+26+7W0\ngalIJXlLop3jTeW3JFLvU3thW7FKUbHsuXZQmTZkOBxGLpdDLpdDPp/Hmzdv8OrVK9P9hx2+SH7y\nOo5GI6RSKaTTaUdR6UQi4WiUQV/jvvNM2uP8XT7y533aO5fBbY+U/gLnpX2dZWCf6yZrT2UyGYcK\nkbU2pS8q/UWSn0yLkQ67fH95P85mM5MCTgKg2+0aBbnco3m+zw1udpAd1LXr9FFFwyOXy6FQKKBQ\nKBhinZ28bEWNJGoYvGDtUxkY43zudrsOcm0ymZj7QK71fOT9A2ymuPiDiBpbheJWc4JRiVgsZiaA\ndLKlGsKW1nNSXF9f3/pcmRrjpqKwJ4kdnbdlaPJ5ZNV5rpJ4mM1mjkK65XLZyBz5eXbkcJ1rKD9/\nWyCZQT5ysaOhR2WLJGok4TabzRyRJZt4sz8LcBJYi8XCROltIyQUCjkiuTaxZB/PaRPjd7TngHx0\ne9193vsh58b7Qxa+pEyRzvt0Or0lTZSLn23kPGY8l0VcNvHe2wiOQSAQQCaTMdGjd+/eoVgsmhaU\nsvYCXweslpHbpA7XadYsCQaDSKfTjghHpVJBtVpFpVK5leK669f+IVFyAI69lNGiaDRqiqlLR0K2\n5R6NRuj3+7dULW7zZhNzWKZjkRQIBALmeTK1jc6sJAvXuRbENt4L9zmnZd/5MWSNJBXsQpXxeNxE\n+GVtPQAm2EQpNx1JeZ/c9/ttO1Zdfz5KAlIGG6V9Ke1KeV+Px2PTCZMGPRsk2Ao2N/XVfQN28n+S\nWHKrWzWdTh2qKUngriJr1jmPbcF9glByrO0AYDweR6lUwsnJCV69eoXj42McHx+jUCgglUo5UgZ5\n7aR9ysBTKpUySnLav16v17HHrbse28FT+Xym2tiB6X21deX+IQk2WZ7C5/O5EpG83vI1iUTCFF9n\nOiP3MKmOWSwWJqA0GAxMQ5Rms3krHUaW+pB+6mKxMDU62+02qtUqOp2OQ3Fn1zPat/FbB/ZaLO0g\nSaaQV+Cel06nkclkDCmTSqWQTCYNuRqLxRzjwc+i78h9T95LkUgEyWTSMfYkZbiHUm3T6/UcWUAe\njzO7Rs7Vh47rgxU1NjNttw6lBD4ejztyOEnUyJvadpDkZJPMqdxEyazxPeWktVtwSaOVKTs85MJG\no4fRFHmzcHD6/T7a7bYhaWQqD4kgN9gOtBtL/qthO8HyRuMCwsiAlNJKskRKrd2k924SePsz+SjT\nKSjrlVFcwLmALzNE9n3hczNW1vm+9zFy+Pz7Oil21JKGTTKZRDabNYtqIpEwHTNkFNjN4dyEMmDd\nv+3DfWMrITKZDF69eoW///3vpsMBiRo5n9d5X8A9+hEMBjGfzxEKhZBKpTCZTEy7y2w2i2QyiUAg\ngOl0ina7bRSJ3NR29brfRdKschzdriGJGkb+CoUCisWiY+3lvKKh6rYOPjRq7ubQSueQQRgWXuTe\nIOXe69bF2Lc5uA5Bdx+yxs3mko5iKpVCPB53tH3lXsooIltH0/CkA/lU++RjSf5NfPayv7vtT7KD\nkrQ1JfEl73ESNf1+/xZRs+qaLlPO3HWdpB3JuShJU2kfjUYjR8HoVfvpqgDIts+/+8wb2xnktUsk\nEigWi3j79i3++OMPx14Vi8UcvgBTGubzuckcsImaXq/nmIMATOB5neu76jlyTi8javYRth1jk6ks\nqi9V2HIPlK8hUUOVKuvoAT/8CPox3W7XdK29uLgwB+0Wkt30G21RgtfrNfU66T+2222jqLF9leeG\nVaQ5ffJYLOYIWjHIm8/nTfBK1u7jGHC8pY1KEYAM9EtCiOuBzAJhAwzyBp1OB7Vazbz3YDBwkD7c\nb6XN9Zi98NGpTzIKyAsrVTVyA5EXTk4wm6iR6gjJctmyJw4GFRZ2O1nJmEmiRlbllxfS7/cbFk4S\nNV6vF5PJxBTGjcViGI1GaLfbqNVqxuBZxprt2uSThInczOV1pJJIXme5MK6qLbQKtvNBp15GC90K\nQkmjibLuVbnhiodhXcdJzmm5PoRCISQSCWSzWeRyOdPyMhaLmUigNCrdolDA45QBm/h+uwRZ6yQe\njyOXy+H4+Bhv3741EtFIJHKrDbcNt6idnFuSaCAoT10sFohGoyYqwmKXvV4PrVbLFN9klGkfjM51\nSBq5hkplqkxpsdU0+XweABxrsr0m2pHF+6o35LnaBpSsRZRIJMw+z9xvrsU0bNxqyCm+4yHrjczP\n57XnWHBuSXUr8P1emU6npgNjr9dzVX5s+rttO9wIUtkAQypqZECK9zlV1gziMe1pVSeXx56vTeZy\n/Lm+knCXdVOk3WY31tjFtdZtbV3XLuE42mq0YrGIFy9e4M2bN8belDXWJPhZcs2WxPpgMHDUueT+\nxqi7XdJBvqf9OascPPv/8n7bpfFcBXnP+3w+k61Bh1zOU1n/RXY85B5p+58McCwW32uj9no9Uz/P\n4/FgPB6jVquZ4/T01BzNZtNB1NDP5XnJzAwpDqBCYzKZuO7R+zJud0ESNHJ87cwWij2kLUQSlURN\nLpczNqydYSNT4ni9bYKM6yVJ7nA4fKu2EOfueDxGs9k0gTH6wvP53IwpySBJ3Mjvfd8x3lgxYWls\nSmWLNBhkJAiAo+6MfJQbh1zI5GfIBVcOBA85SG5pFDK1alk002bRJTNOMocyt2VR6HU3j22enHQI\nlt10HCNZWOshiw/vDy668Xgc2WzWFIhibQZ+JidPp9NBs9lErVZDpVIxjt+q1un7BEmsbQrLjGw7\nEriOw0fnjosuC7iVSiWjpolGoyZVhkawW7ThMWN5Fwmx7fPwIaBBSqNTdi9hXRqudcsgSZllqYX2\nZ7pdaxLhmUwG0+nUUc+BUSZKgqUjwXPYNywjaeRcyWQyKBaLODo6MvVpksmkw9gYDodmf7LTWOzP\nA5xzeB3iUu7rNGZisZhRw9FZ9Hg8JnebwRBGmtaZt24qg30a92X2gVx31lmDZBFFRhrpsMh6fXLO\nsuh/q9VCpVJBvV5Hr9dz1NbbNH71mrpMtWLDTVXjdkh7UqqT6IQva8Xt9v3tKPK64y+V5VK1zhob\nPFfaZLJDqWwHvOu20Tp2yLKx5zhzjc3lco6OaTIg6GbXywKxkqgbj8fweDyIRqPI5XKIRqMmIDwY\nDByNNWy1+ap7xSZjlt0j++joc35IkkWqKmy1EwnTfr9vFBH0I/nIcet2u6jX6wBgarz1ej2jhuDe\nyvoyjUbDEDbtdhuDwcBRBw74cW8wTY5rsiy7wbn4HGuD2b4j55ct7mBqkyRpWNCbB//GIBH3OaYd\nyTXWzqrhwdpC0s/na0jQk9CVtXM9Ho+Z+/Q1ZVDKLahJ/HRFDb+QbWzKnEGbNZMRV8lm2cb9si8q\nnyflS/ZrpONhS8FtVYiM+Elj2d6o+R0kUSNbXdoS71UD4ubcbPOEldFznqt9Q97lyK3z/Rj9l8qL\nUqmEo6MjE/nnQkoFTafTQaPRMDUvWq2WyR/dVUPkvvgZJI38n5yPqz7fjsLHYlGwGQ0AACAASURB\nVDFkMhmUSiUcHh7eainKsbXbCt93HB8SzbWNoF2/b3gNpJKmVCoZWXcqlUI0GjVdm1YRzXJ+22on\n+zPlBizXf3Za4DWm+u3m5gblchler9ex0fJzf7XD91i4zZll+6JMH2ZXCs4VmX8tDT/uPzZRI6+X\n7Qza57bq3DmHbSkypf5UuErjhQazXZj6LuzqGN+FVU7jOve3vF9k/SLKvW1bRO7NtHWGwyGazSbK\n5TJqtRp6vZ7ppAg8zbX/1eN5H7LGtl/dSBpJ1LCdK5sl2EQNP9/ts+Qjf76LrOFclB2KqKRKpVLG\nNgK+O57Aj7pEUmVgEzXLznNXcF+SRhI1iUQC+XzeEDVSuS07o8nPYr1LpkXIduxerxfRaNQ457ze\n/X4fjUYDjUYDXq/X0TSBe+s6/oLbvbHqd7c1f1fG2rYd6MSn02kcHh6iVCohlUo5/Md2u41Wq+Xw\nCemcS8KGfoPH86OeZrfbRbvdxs3NjVE/sYMXa9Mwq6Lf7zuUUbwvptOp69oh/SFZYPq5pDzZ81Ha\nPZyLJGdYGJ+HJGW431FRRfLOvsY2d+DWbYvKRztlzS48zEM2JALgsHNI2ks7etm5PAQbV9TIjU6q\nX+T/udlxQ7MNe7l52BvJMqLGzcHic90cDCpq7G5RUsbIiSalVIxWMFWDAyqNo1VYZThsmzMix0PW\njnC7Ge0N56E3J536UCjkUNQcHR2ZyUSGVBZ1oqKmXC47WM5djhr9Siy7R5cRNG73rjQs5ZhSJXB4\neHirxTqJGllQ/CHKrIdiX+4T28ghUXN4eGiImnQ6bUgaN2faXodp6Nhkt/25XOflZsyoicfjMQ4l\nq+XzdVTZsMg71xx5LrsCN2fM7Tn23ihTh+25wghTLBYzElymiLopaux1z+1c5H66yjmU5ycVNeyo\nEAwGjQE8GAyM/HtZavOyz9tHrLoXHkJCuilqpC1i14zjPKWiplwuo16vG3Jh38fhLpvLvsdXKWr4\nPnTUbUWNVEisu1e5kXX2PSFtXtqnMvKcTCYRiURuEUWSqJGKGlmHY1+xbN2RZKcMYMjW9nT+bLue\neyCdPVtRQ6ImHo879s1ut2v2v5ub750Q+T5cq9f1H+TPq/aXVcGzXRl3zkup5MxkMjg8PMSrV6+Q\ny+Uc1zkUCplgOucCFRDSfmGRZ0m4tlotxGIxTKdTk8bIIuFU/LqlDdrnawdfbB9Y+qLPwTdxI2n4\nKAsGMzCVzWZRLBZRKpVQLBaRSqWMmkaSM+xsBzgJOVkgn+NEZZt9zGYzh3KHgURZm8yuf8TgpOz0\n1+/3HSnHPKdNje9GiBp5QrJuiJRdyokSCARuVbu2v5yb2saWpdrtmmnk2vVq5AAyr5iHdBITiQSA\n7xJ9Ridk0Vr7/FbV0Hjoddwm2I6adJwkUSP/f1+SxjaSstmsKZj57t07HB8fI51OOwoIX19fo9fr\noVaroVqt4uzsDNVq1RTokmz1tl3TbcEqw3XZc+4yJqTBSdi1hmSL5mg06tjEuKlybrJ+guL+kMZC\nNBpFNpvFixcv8Pr1axSLRSQSiTtTNuX6xrojsrUvDznXbSOFclYSrMTBwYFJg5rNZo6Ir9/vN4bS\ncDjcmWJ7dxGEcu10cw7tecKCeTQg6IzTeWB0jqSNdBjojC37fLdHt/WaeyDJIzohlJ8nk0mzh97c\n3JgAh03+PAeDVGKVcWrDtn+WrbG8Z2QKYS6XM3WC7FpAzJln9FiqP0iSPpf6baucWpnaJ1OK3FRK\nABw2rluL82X3utv8l7+7BRoBGGfP5/MhEomYIppMiczn80in0/D5fEalaDsk69bt2wcS1Z5L8m/S\nh6AqTSqSpLrUzZ+ZzWZotVqOgym7k8nERPqj0ahjjOkA8l7jejkajYwP9JC5eBdZ4/a8XRhb+1rJ\nWpUMMjFNTdahYaDPbp9MhRlhq2BYO6bb7ZrUKNnlVxYIt5USNmwyTQar3ALa9mv2CatsHs6TaDTq\nKAwsa9Bks1lH7Z+DgwPM53OjZpO1f2QNKLuTqCSrpa05n89NGh2DhoFAwJC1kkfgON7c3NwSZ9jr\nhFvJhsfgwe255SIE/JDGS7UKiRHKskmY+Hy+pV/IJkDsLynzyeziUPKQ6Vc2UUPDdjKZOAoTZzIZ\nU0gomUyaRV3C/p5uMlJ5ndYZoG2fpOsSNfchaCRkccRsNos3b97g/fv3ePnyJV68eGHk9fy86XSK\nXq+HarWKb9++4fT0FJVKxWyWskAiz9+GGwlxX+xSZIK4K8LPx2WEzTpkjXwPstMsskd2nESN3Pgk\nUWMXunzsd7vrdbs2jndBqhuj0Sjy+bxpyc0uT7aakOD8lbn4Msd+MBg4Cq3J2lTSwGIbTBIPMkop\nnQ6v12vej/sDoyWz2cyQeLYBtK1wmy/yf7xGMqLEyA1b19NIoTEqFSpyP7ULmtpEzbKIn30AcOzB\nNtkqU544piRq6EjOZjNT7+guI3Sbx2+TcFtHl5E1/N9d14YphJlMBvl8Hslk0kSS5WfYqlMWEJZt\nue8zDru+Tro5tXYQUBbnXZbaLm1UN9WnfG8b8vPk73Ku2K/j/GPb2Ewmg6OjI7x8+RKFQsG0kGY6\nONVTVBa7ETW2jeb28y6O9V32jfQdSDzLaL3sOgnAjDEdwdFohKurK1xdXaFcLpsUmMlkAq/Xa9bq\nTCbjcO5Yq4u/LxYLjEYjdDods1Y/1H65D1mzK5AOPffFZDJpnHkGMKLRqKNAM20GWSeNvp6E3QWY\nHUcpIrBTZGSR2HWcb3sflUGsTSotthluASH65H6/32HnMP2wWCwil8sZlUs8HncILxh8ILlGtVOn\n0zF1iUhWS9W3TFuS4gqPx2O6bwE/ygQwwGy3f7++vjZ7BcfS5j2WEfePGe9Hd30CbqtgZBSWxgN/\npzSXF81u3WwTPfL9+Jm84aU0ifJrqmukQ8AJ6VbFWXalmkwmiEQiSKVSJtfQTruwySQ7ouJ2je6a\n0NsMnp9UN5El5v8fQ9Rw86SRlMvl8PbtW/zrv/6rqctAJ09OvG6360rUsBDpqvo0ywyo+xqtD3nd\nz8CyyMm6JI3b8+9L1sh5ysiVbMVNokYy27aihpuj/Ny7zn/Z+a7zvbdtHB8Dzis6dZKooaLJriMD\nOI10GW1ii8pGo2HSk3jIzUlGkPx+PwqFgpEeM2JJZ56qxXA47Eh147ylGoDns+tjZJMjbrVpbIOU\nxCbrHtBpBGAMShqajP7J9AZeNxlRdnMUCTcy3u70xOKlmUwGiUTCPI+BDwY3bLLmuRioNuQ1tskx\nO5K+irCRxHcsFjMGriyoKFMYadSyJSxJVqbprFJWuH2HZee1a5COrRtRw0jvOnV/bMN/1f1tk7Ru\na699feW5cX0gUfP69Wujukun0w5FgCRpbKJm1TnuG0ljkxjyWkpFDddY2eGJc0OmuXW7XZTLZXz9\n+hVfv37FZDJxBB6kglVG5AeDgSMVZjweo91ur1S13gfrkjW7AknUUGmaSqWM2kLuix7Pj86+VJku\nI2p4XzOwwAKwdlkO6Wvw8S7FnHx/Caa62YTsqtfsOtxIGkm8BYNBJJNJ02nt6OgIR0dHODw8RC6X\nc7Q4B36oGGlvci5WKhVzkKwhSS2JE8lN8Hw8nu/qVKrCGdTM5XLmf3adISpqOG95bjYh9NDamsuw\nkdQnQpIYjITy5mSklBuelM5LQ9+uT2GnF7mxc7J1t+ybzokn31d+5mw2M0QNDeFcLmei+YFAwAys\nG3MmyZ918w13ZTG1F377e3ETW2aM3wW+Nx1JOvLHx8d48eKFyT/lZOU4cuFttVqmJk2lUkG73cZw\nODQOyrI0ibvIin1cNO8L24B8zD0rC4VRrso0Di6SXIDpdEpp/kNSnzYxx3b5PuAmw7WNTjWdf9Z6\nsg1EuZmRDOXRbDZN54N2u+2INsm1WxI1bMHNTfD6+hrxeNwhPWd6lIz0c/9g4T6eG6XNuzw2wG0i\nU+5fslAvo7MkP2gYsNhhr9cz5BmNFKmWkGs0P9c+j3XOlWPEmjlU0rBejowyylo5dnrzro/bY2Gv\nq+s8X44d7xc67IxIxuNxs0cSHIPhcGj2SrlH/gyl4rbCjaRxm4ckaWhnEjaRIt/Djpjb+6is3yXP\nhXNVBsS4PssUAdZuODo6wvHxsaMtt1TTcD1gdFkWOl6mptnF+Smv8SqyYtl6K1X4DChTncF1lKmD\njN6fnp7i7OwM5+fnmM/nZgzYuZItv+06l1IJcFcR/+cOGWgiUcO6aCRoZFBAkpNuBCUVE3I9JYEi\ngxZ8jp22ct86ifK5JJLc1v9dnHN3wf6OUj3M7JVIJGIaxZycnOD4+BilUgmlUslktnDdZXo35ya7\nddH/o7qt0+k4ivvadikPO/0xk8lgPp+b+43zlQQ9D8AZWJElASQPsCoN9qHj/Siixt6wgB8GNYvU\nMfogiyoBcCVqpGEnWSm7BoyM9EmJPy+ulBzSwZfv6Xawk5OMOMmNTRJQbu0OpaLGJi9WYZsdDxnh\nWXaeDzHApaMSDodRKBRMweD379/j8PDQ5N1zLFkQiptltVpFvV5Hs9lEp9Nx5JCuimg9B6xi+92u\nwV3k1X0+Q75OOnns4MVccG6wspgbpYtyc71rHt01pnedp9u9va3zcR3IeZVKpZBOp1EsFk0rS5k+\nQ/D7ylze0WiESqWCcrmMcrlsOh+02230+/1bLQ5ltEISNfJakmhhzRrObb/fj0QigclkYvaL4XBo\nCvjxb3ae+S5hlQMho0zsQCAdRd6f3KcAoN1uo1Kp4OzsDKenp6hWq6bdsptDJtUAgFM5Q0gDVUb9\nZapNqVRCNptFIpEwJBL3UDqpbHUq60xtMrq0T7CDHG6QTiYjzDKV1FYC8H0mkwk6nY65T+r1Ovr9\n/r2Is2X7xS6Oo1vwQV5XGfSTBI2bMy2VGbLOoewUsupzOFcA57zjGiojubJew/HxMV69eoXDw0Nk\ns1nz2R7P92LsLBhdq9UcdtE+E6Z3ETTyZ6lelOkLVFdQ+SJtkk6nY/Y+Nq0g8cnaXXRCeTAQJVMm\npOpfdsOzx2Pfxuc+4HjZ6gs69yQlef2krVCr1UzQwvbj3O57O5DBz5cOtq043NTY7OMYu62v0g8n\n4cYad/T7SNLQRpUNLkhycW1j18Lz83NcXl46WqdzzG3F6DKSjbYnVYpstJFMJhEOh281RALg4AFG\no5FR9sgOpvL+2RQh/iCixv4g6XjLyKcssGNHe2TNGKlSkTVrJEniJtGVxqRN2siIBI1cuxaOLP4z\nnU4Ri8VMsT2en3yNJGrsFl9ui8GqAdkVY8dtE7S/431vQBmBikQiKBQKePfuHX777TecnJwYoiYc\nDpvxpUNPB6VWqzmIGo7DMlXPsmjyLozBJrEsuu72t3VJkGXXmuNsEzWMPHEdsNucygjgfYi3h47p\nPpE0fAyFQqa1c6FQQDqdNpugW5c6rm+sadHtdnF5eYnPnz/j8+fPaDQaRuHCAr929IDOv9yYeT78\nOwkk7gcsPJtIJLBYLHBwcIDr62t0Oh3U63WEw2GzPu8K5Jp51xyypfg2UcPrw/Hh0W63US6XTepn\nrVZDt9u9ZaDwHGxC0l7XbeNCrhMkahgBy2azxpgJBoNmDyWhzvRFSs5t2bhi+Zpjr6n2WioNXpuo\nke9Bwowpwufn56jX6xgMBnfWbyPWIfB3ZTxtFY087BRE2elDGuvy/pXKDNmFRHY54xyTNqrsiCqd\nQVuWL5UemUzGKI35eHR0ZDreyNocJGrq9Tra7TYGg8HeteMmbBJaPkpI4ozOmeyQtlgsTBop62vx\nGvJoNBpoNptoNpumFthgMDB1NKRagAffX34m13n7Hlhmtz5XeDweh/KJ+yJTEjnPJFFTqVRuETXS\nRpFYdb/w//bjQ8dm1ev2ZbyX2TtyfWVRaCpB2c3yxYsXyOVyiMViJpgIOMtuMIWXXQu/ffuGr1+/\notvtotPpoNvtGhWNHaiyrzFtT54TbRtJ1DCQKNdvuV5LYrfb7Zq6jbaohHjsuvskqU8kLThJ3PJ7\nbUWNVLzIzeeuBWzVBmxfYLf3kSlMdEJkPq88Hz5XqmnsIm28DvsGe2FzW8jk4yrI6JIkav7lX/7F\nRI6YIiHrAZGoqVarqFarZvPsdrsO5ZV9HvclIJ4Dlm1Q0qh5LKSihq3WWbRPSlZHo5FpcWfPv/vW\nUHgM9mHe2oqaYrHoIGrYfckmzmmsciyazSYuLi7w8eNH/OMf/0Cj0XAUppTkDN+Dny8j/5I8D4fD\nSKfThsiXstL5fI6DgwNTr6ZWqxnVBh1/O2KzbeO1bE6tgh05lEapJGpoHFDByXXw7OwMZ2dnDqWT\n21rsRtKsE/Gxo05SUSMNZr4nz1O2LNYOfN9xl0Owag+VZAKJGtmtRo4D56Ukai4uLkzUUaZz3+dc\ndxV3ORG22sWNpLHXG0mw2of8HDuYKFUWklCVdSw8Ho9jHaCS5u3btzg5OTEFhDOZjEkX5lxjPaJG\no2Hs2XWaK+zy3FzmdLuNt62okWvWaDQy86ZWq+H8/Bzn5+col8toNBqo1WpotVqOvc/v95u9S5I0\ntqNnNz6xO+Pt8vXfFGxSWqY+UVEjU4EBmNQ07oesoUc7clWA4D779UPGxy0Ysqn33ka4zT3bHqQS\nNJfLoVAomDTOdDrtILzttZEBRBI1Z2dn/7+972puJEmSDpKggFbUqntmZ9bu1u7h/v/PuIdd2/2m\nu9lNAUFoRU18D20e9ApmFQog2IQoNysjCUIUKiszIzw8IuTr16+edDdOb3MFOvBzOHxJf9rc3NSU\n7oODA9nZ2VE72XZ8FvFmDEFR0+12PephyzVMgxyfmKhhtgubDB7HYyjka4sLcv6nLSbsImj8vqjL\nWLdRDH4ch9+Gjc3ZxXpjE4T0EdEKW6Nm3Os3T7AkDR5z/W7B1xx1GJLJpBwfH+sE4ag/VDQgxcCY\nX1xcyNnZmeYkcoqd/bxRGzc/z+/vca7FIsBGqez/Rs1JvNbWjkLRPkR/V1dXdZNtNBpSqVQ0WhWk\njOLPcP3ud+5hMM/jydFhtL7O5/MaJchkMp6ou8iLshEKwVarJVdXV3p8//5dLi4upNFoSLfb9aR6\nBhXWgxOysrLiIeO5uC1LYnntxf2CnPRMJqOpNCxBndVxcjkNNpjA9dM4is9pFyiIzwRar9fTo1wu\nq+PAtWn85mVYIxF/s2IANRfQQpOlwSIvRY1RwJHrBLjahC8qRhn+QeupC3zfcGoFHBZb7FbkxZDk\newapG+hQM2o8FomkCYLLoBd53X6bHT68DqRyNpv11Nfa3Nz0BCF5rrMCB2skbF6uzbi6uqqd8jKZ\njJycnGgdBxSPRo0xBBhRt6HZbGqE16qMce7LBEvE8Rq7srLisesZ1WpV037h/MPe5/U6m82qOmB/\nf1/y+bzWu7SOHgLUXNctImncQIAAnbm2trbUiR8Oh6qegP3YaDQ0WIH/jVpfw2Ia4zPKX5jEB5k1\nuPwtS7rBLrUqb04zxXuBK0AzC6jb2PfmecRg/98GBVOplLYB39vbk99++0329/c1+IT12dqasHPQ\nYdPVVc/WNprWujtx6hNuJt7UXCQNfuJ1+BK2IjOnJuG5o76kH0ljf/d7vyAG10YzWXqFmwWGj63y\nPOqcw7CsswR7Xf2eMwoc7c/n87K9va2pTjs7O1IoFHRBhpMHYxPO/OXlpZydnUm1WtWUJ7/iwWGd\n+beQNYsAl3PpGvNxxpjnE6IhKI4KIwmFD8GSNxoNVQWEjcD7qSzGcejndWO0YGOUFRA7OzuSTqd1\nXvH3Re5vv9+XSqUiZ2dn8tdff8nXr1+1YFuj0dAWhnZjtOsq1ktsuK52hThXPnCvPD09ee6XdDot\n/X5fyT17f87iuPkFA1z7DadDMFkDY0FEdI9st9tqlJZKJXXMut3uK6KGz2MU+ep3/jx/QdRsb2+r\nQYO9nYmam5ubwDbhszhe04RdS0ftl2GciZWVFU9HIpA0TNRgvrkifrhvYK+EJcDxt989Ms+w+z0/\nDjuViRqMJ64HWmVDAo9o6tbWlpLZ3EDDlSbFAUomzGOxmOzs7Gjxd7St3d/fl1wup8XgmWiAE8NE\njSXV+TsuEhnnUkxxsNa1zsIGQdF6kF4IDEJBU6vVtJsoxhnrYjwe15RuF1Fj6xAxUTOOjRP2+y8S\nQNRwV14okUDUPD09qfq32Wx69kKubxiE917H7N7rGivXOcx6QMrC5UOIeP0BKGpcRA2CDVbpDd+7\n0+lobSiktvH6hs+yATIcXE8sm83K4eGhnJycyKdPn+Tz58+yt7enan9bwxGAsoeJGtg8Vjls19u3\n4s2KGixAODkMClQ2fiwZF/FlKeFbv6TrRvF7H55Eo4gaW6gtDKs36trNE956zjxp4vG4tpi0ihou\n3vf4+OjpbgIJ99nZmRZ64wLCo4zP9yBrFhEuJ8PlmFv4EZ+IiiCVBYQBEzWsqAkzpkGfPc44LoqR\nYxU1iUTCqaixTgnSVJAicXZ2Jv/85z/lX//6l0YMkC4RVMme/+ZOCraDHzs8lqjBZgqiBoqaTqej\nzqh1gudtnvL3ZsfBRntZUcPdDq6vr7XLAfahXq/naW3O8CPZR10zS9Sga9vOzo6mZaBIJhMDMF5Y\nZbAsihrAZZD7raWu17qAuYGCmolE4lUtDJEXogbEGYiaVqulNYP8xsO1P/p9v0WDXRdt8wiRl3Vt\nOByqE4k1FHMvHo8r4fLw8ODpIsLFZGOxmMcGZpJgY2NDuzodHR1JoVDQAy2gMd5Q1LiIGqtSZywK\nWTPqO1hbhA8QXf1+Xx4fH9Wm7Ha70mw2lQAYDAaeIDJSPpF+CKJmb29PVcPr6+siIp5rb9NXx1Xh\nT/L95xVw7GELoF0z0mJub2+1ox03OsC+M6ulKGbpXKYNl+9tU3ZhR7gUNZz6iTXYKmq4e+GotGp8\nPhM1W1tbks1m5eDgQP72t7/J3//+d8/ctYWMea/2U9RwLT62j8fxX0bhzTVqcEEBZsQAq5KxCpqw\n9WhGnYdIuAgQ30yQFCeTSW0bbKNUMJSR/4tUAESZIwmjPzDxuJMCOtGcnJzI8fGxynnRJYYdSFRz\nRwFhtAe2udfjkjRhz33ZxjTICXYZey7YAqlcZA8GDMYXRhF3qfCr0g+MM6bLMn68GaHoXjqdlkwm\nozm3SFXh9bbf70utVtMCbefn51IqlaRSqXgk/LzG+90HuGfw/lyHgQ0n3kAtaWMJG9v9yCqC5g2W\nzOSUCK5fge8IshodfOr1ulSrVc8exAWEXZjEKeOUp0wmI+l0WgkClvVD9Yhzs23CZ9Vg/hUIs5aG\nIcy4ECNaorNEm7tjwE7BuorxQBpaWOfQT6k4j3CNA5OXth4CyEfu8In1jNu0ctQ/k8nI8/OzbG1t\nebqLcl0SVtSwGs0qajY2NrQLJhorQF24sbHhUbHDWa1UKlKtVj0t2P2UxiLTSxf+SIQhafCTCRus\ntxhLdBREG27MGzQ4uL+/97weKW/FYlF2dnakWCxKPp/XIqTYqzgAzXU5uRMR72nvdX3maVxZBcVq\nbChqETSH7YhAhasm2ixhUmJ03uali6zhlHa2TW2aEd+vPG+soIKJbya88VqRFx8Ez4V/n0wm5fDw\nUD5//iynp6dydHQkuVxO11ZbO4rnMIsGUBuVCaOgAsZvxVSIGvzkE7SLBF983hynzUDZG2VUNB1y\nLLSyxQ3Eiy3krX753hFJ4wYvulwMbG9vT9tMHh8fS6FQ0A5PMF4eHh6k0+lIvV6XUqkkFxcX2tkE\nTkCQQ+9SVVmEiTAHRUYXHUGOxah5xc42HG1OeXp+ftbWds1mU528m5sbXXTDIGjzW6axsjndcKpR\nfI87XLCisdVqSalUki9fvsi3b9/k6upKWq2WZ/Pxi8i6/g5ygkatk2xYs7oxqE3uLMMvOGAJKkSb\nbJcnrG9wyLD3oGYCAgVhru24hiLnk2Nf5JbqIi/dGKD0semLURDjBXZe8E9+DsD3COwUdHrCWNgO\nQzAmW62W1Go1qVQq6riPq/pdVLhIGyZo2JnmQ0Q8RA2TkKhXMxwOJZFIeD4PAQqW92Mts000cKyv\nr2sNhXw+r6kfXDAa5EKv15N6vS5XV1dSqVQ0HTxMoGNREPR97DxyKRnxelajYXxF5FUAIZvNys7O\njhJpKK6OtH2uF8WKKVZaYc3m6L11VsN+71E20DwRNuwzcLAGKU/wxaAC5gYwfrbKrMD6xssALtrL\nQVtbW03Ee3/aIuvoHJvP53X8b29v9XV2zEGo4v6Bfw81D7rnQaUIJQ2D94bn52eP+r9ararajgMg\n73XvTaXrE76QyIuixrJjTNTYY9pfLoxRiv/DIM3lcpLL5TzRZz5H5N5DRgyiJjJE3eCNhzv/ZLNZ\n2d3dlcPDQzk9PZXj42Mlx0DUIIoFSe/V1ZVcXl4qUcMbaViSJshIHmfs5oHhnvbGHIaksUoBLM5Y\nlJmthmHKsnw4n5CtjiLglmmzGwWOuiNiYQuO2jbPcEra7bZcXV3Jly9f5OvXrxqV5dpPQdEpO49c\nygHXWu8XRXRFTTh/eV5UNUFRfMAvQoTIIcgOEXk1V8Kqz+w5BYHnFgcwCoWCqjigyhLxEjUgBkDU\nBLWqdH3mLI/lW+DnKI0iPgHcI9wxA/ulK/oHdVOlUlGihpW/sxZp/lXwc5IsUcNKmiCihokvdK9E\noVNOZcQanEgkXhWotJ1OcY4oUpvJZFRpjEAHngc7qdvtajALdftub299ydtFUNKEget7whbl9utc\nmsFVQ4b3VgRCMpmMbG9ve4gakKd4P1x7vp+YBMSYc/rvpIoL1/f1C5jPMqzPgOvN+w63RYZykNX1\nk6bMB+Ej/dN5GLcgsLqeSWsbPHTZjCCuV1dXZXNzU7sccsqRJWJFXgLFUCGm02mt+bW7uyvFYlEK\nhYLk83nJ5XK6vrrSnXhv4HqasJN/1d46FUUNvhxfcJchMirVaZo3pd9kxFhf/QAAIABJREFUsAO7\nubkpqVRKc4BRKDEWi+libXumczGjWWZwPxrsiCQSCcnlcrKzsyP7+/sq7d3b2/MYIVywCXL6SqUi\npVLplRMQNmo0qeoiaPOb1TG333uS8wyK/oZ5Pytb5Yr9Ii+bbafTkU6nI61WS5rNphYg9VPUuIyv\noO+wDMA1gDPHHdUQUbAd7JgMhVN3dnYm379/1yhVUAchF1zP4dfbuToqCsp1BVwkzTyB55Mrwsup\nT5xagc3/6elJBoOBKtCw/9i86GmAFRzpdFqKxaInYmzbCnP+eLlc1nnM8v6wa/QizVm7hvJ3HYek\nwT2C9GzItNl54UAZp8KwomYSJ2YRYfdwa4wzScOtr9EYA2QLz004BnD8OXoMdWMymXS25IaRj3G2\nRVQTiYT+j4McqAnF9ftqtZrOvbAkzaLDrrW2Xg2ncXJEHeOAecUd1wqFguzt7an9igLCm5ub+nqo\nc6CmsQpD3DNIhXt+fn5F1ryFbJjkfWYBdu/nmk4i4qnnxB13gpSlfoES/M/1O8P1nm+9pkFkzSKR\nqUzUMOHMNWmwBnMAzqWoQUMDrgnDCkUWiayvr0sul5NsNiu5XE729/f1QEF22Me2No7Ii/3F+wGv\ntSDF54aoEXlN1uCi2+dMoxbNWwG2FgeM0YODAzk4OFCp6dramhqbt7e3ntajXOX5vQmneQUmKCRo\nhUJBjo6O5PT0VE5OTqRYLGq9Ayul5xSzdrv9Ks/eVdTURhasQ+eKZo5D0vBjfL/PGvwiuOO8btzX\ningNItRTyGazUigUNNoEuTeTcFAGuPI87fu7fl9m8D3OqjVcc8jl2QDkOYYudphfPA7jrmV2Ptjo\nGDs5eF+X8cN7CMtO53lttY4CR1D5Jxfdxx5q67vxPor3xs+3RhH53FKplBSLRY0a5/N52draEpGX\nyDM6piDVhqNMo+rSLNscDrtn8Hgyicct0m17dK73B2MSUT9OhcF5jPrcZQWCcnd3d9Lv9z2OPDsW\nIq+V4gDSoBBsYLWcrcvIUWPbHYrTcvi+QW037J+olcBd1sKkDs87SWptlVFBWb6+XDcIx+rqqtYZ\nWl9f130Q7dKhBkgkEnJyciKHh4daWxEd8Jj0Qy0VFIhGnRsUM83n81rLa2NjQ1usc2mIMHPVL3Ax\nj+PpKrKPwzYScCm2NzY2PO9p65bgc/DTFTRx2cB+AgN+znuIDBbB5rH3JwLxNzc32iHv8fHR89zh\ncPhKsQjbFqT21taW5PN5z/rM7xGLxSSVSukBIYbtMuUKSPP8hWqr1+upahF+C4Jlfqn90xy3qRA1\nIi83F5M09qafJkkzyebCizaYPSZq0F4vHo9r9JlzItGKy9WOi7/nsoOvM6L86PL0t7/9TY6OjpSo\ngcpC5GUS9/t9abVaeiDKD6JmVATSTnqXkRyWpHGRHrxhzOJ4T3pOfgbPuM4FEzVc2X11dVUjITaF\nAxEnl4HiGo9xHdSgCMa8Aw4dO3Mcdbd5+CBqQNJ0Oh0lapDOKfLaCBl1/VxGEBte9jx4fvJnMVET\nZBzNMuy14KiNJWys9B3GAl8fPO5HUoe5JkHjZwm1ZDL5iqhBeqqrbhs6MiDKFMbRWDa4iEkR/6AA\nxsJF1CDIISIeNUgQUeMaj4gAfwEcBNh7vGa52rWKvJ57rMLAXoiILBQ1TNhgTnN3EhtxtueH/RNd\nnrhOh237HGbM52E9ZfjZKH5kI6+xXNiUHfxYLCaZTEbV3zw+CDZC5YR26dvb20qaYmw5fQ4kDYrc\nwsHkWhsPDw+eDl6s0neNzbhzdJ7Glu0FJtZsfTrbrILJmiAixY+YYYKIFa1MvNkOanaOTTKPgtb/\neRo3hssHw+NYv6AGRIe8h4cH5zqH6w2iBusk0qBubm6cZB7Wa1bNQGUO5Rs3C+LxY5Xj7e2thxAH\nUVOr1TwBZltE+D3GbmpEjYj35gZ4AFyKmkm+1LhOmn0ty+rS6bQn3xQthMGQs6KGD5ad83dfdtjF\nFE47FDV//PGHFItFyeVykkwmtRYQ7hvuroWWe6jAz0SNJU6CjnHS0/wMV7uQzDpZMynGJTQsSQPj\nFPUUoO4AUcO5nqhL41LUBH2W6/GgMbAb6iKBIwgwAl2KGpdqDW0tmQi1YzApGY7fmaixqhELjmCx\nkTSv6aV2/bBKGpeqRsSbGw1YsmZcme0oh5zHan19XaNQh4eHcnh4qB1NRF4UNSBqWFFzc3Pzqs6U\nXasjjA4U2DQNJmo4PVvkpWsN6rrV63UPUXN7ezvSPrFO7jzOt0nA39OmuVs5PduvfnVFENXHmgwi\nAASKdfhwYH10KWpwnpaoQfc37KGcAuKHeSfm7DlbstoVLLD7EHffsmRNMpl8FeFHsBGpaPl8XiP0\nSOtGsVvbah2pc0zUDIdDj/ppOBxq9J4LEfP3cl0H6wxbzEtgw2UvMElj5wLmlktR46qHx/dIEEED\nhx+vYccd5BvvyzzP3uILLKJdyrABKBA1UJpBtcbjxWskiBr8zGazaqdirWQ7F2PLNQ754HQpGyzk\noAfqvV1fX0upVPIoarjz8HvV2mVMlagR8ZI11pkNImjGcc544P0MC7shsUOD9mAgaWD8oA3cysrP\nXOCbmxvtPMQboo3+z/pC+KvACymc9Uwmo4Wctre3tQ6QjQgiAoEuQNfX18pcQmLmkvWOWuAskRbG\nWA3zvvZ1y3IP8Hfl8eaNLpFISCaT0faVqG+xsrLiaXXvV7F/1LX0i5yJjG+UzPMmyesaq9e4fa/d\njDj1rFareQqjTyPXlo0hNo65La11Pvh3bHrcGnectsKzBpch7YoeYf3jegZsVPL4ptNpvRZQ3jCp\n5fp8v0gXngNFFpyR/f192dnZ8aQuco0pqB5ZkWUDGPM4Xr8arj2HDU2kW6RSKclkMp6uT+wcQomK\nlMZer6f7Zpii+0FYxHHk78RGOtYdFKpEZFVEPHuUH7GFos/2SKVSWiQcnwdnYW1tTQtlcso4E9aY\n3/1+XxVT5+fnHtWUVaROYuvM+lgH2fz8HHtY24KdfdRzs8QOq3C4CGo6nZZUKqX7K5NvHMxFeigc\nfBFRhzKbzapaQETUMWQlDpRw1uYKsn/mDXbNs7aCS4mKdRHzAvc9FNtQJmFv5PWUW7Nb5Q4OnnO2\nGDQCEciqwPhaf9CuL8sKtuVgM1xfX8vGxoamQA0GAw3kugr6MlnG6xvuF25WwvMW4431lNPveU3g\nemNoGoQAFAgaHLVaTXmA29tbPSe7vkx7zKdO1Ii8jmD7OcthI92jHOgwr8fgoUji9va27OzseIqB\nYeEdDoeaC9xsNj1yJyymy9xBIQgchQBJg3xeS4jhWrPcmAsIW4lZUGqMdUD4PhtnEi0DQeMiOid5\nPX5y5Je7k2CO2Wg80p+QV/9Wx+6tYzAvkScLa1iisj4KOHMBYZGXFAlEZK+vr7X4K69p1qB1fW6Y\n87ISZZsXDFiDGueJiOQ8EzUu8PeAMYj1L5VKqeGHa8XOQjqdllwup9cQBioMGXSJwucwYWYVPHxs\nbm5q58N8Pi/Hx8eyu7ur6/Xm5qY6FTC6ms2mpl5wOnCQIivMfbVo4zzOHLLEK0iadDqtRA3k23D8\n4UCAnOEimza4MQmRPelrZxV+wUPMRRA1CNYhnYkNeryPtSvYqUfHGvzktRhzDs/d2dmR5+dnXSvh\nPDKBhJpQaMd9dnYmlUpFOp2OJ2VmnL10Hm2YoPN1jS0TXfw4Cj8jcMvRdy5Qah15jBunsuG+wRzs\n9XqecbCKnmw2qwqB4XCoRCvWVvggdixHqWjmGWxDcpdQjCn2QbY7sZdBuQ/yBAW1WZXDcxHvz448\nE6Qg3zhghOYLSBnHvgennQk7rtG2aPvaOICCZjAYyPr6utTrdVlbW5OnpydtjNBsNjUQBHKF7RRc\nV/gJTHBjr0QQCa9zNaCwhDTGiAlVBDDr9bp2ssQBwQZqS1mf9D39iKkRNX6svL1Rx2EbXcyx3wLl\n9z6WjQVRs7OzI8fHx6+qtsP4eX5+VgYQRE2n03lF1Czj5AsCG/4gag4ODmR3d9cTncWiCMbayuiD\niBr7eS6MIgdHfQe/98P/53XcXU6y6/Fx3g/RKaQTMlGzu7urRM3Kyoo64EzU2ALRQecddJ4fRfT8\natj10KZIcB6uXXu5GGW1WvV06QmjaBpFiNv1lu8LjnpYWIMakUVsiH51c2YZYYxqjAmiS/x9EXG1\nRE0+nxeRF5IH7+HagzlCbyNObMgkEgkNXOzt7cnJyYmSrEgFZqKGU+eYqIFRNeo+CiKJ53l9dWEc\nQpyJms3NTVVQMVGTSqXUUcTYg6hBrSncS7ZmSdjz5Z/290WAK4jIRA2urf2frVdhSUnMN06xwU9O\nlVpbW9NCl+l0Wu7v7zXlMJVK6Xpu10MQNZeXl/Lt2zdVtYXZQy1sYAuPzeNYuxxiToNxpdGi3kUq\nldJOMGin7tdNRkQ8jiJ3BxsMBtrJstPpeJx/qCERuEANjWw2K8PhUAaDga6jIi8KG2u/+im55h1Y\n81wKCft/XH849iC0M5mMBjkQsOCC0VBCsUIU85PHlBUcIG1xwGkvl8uyubkpnU5HVlZWdH1YWVnR\nukMuP3hRxssPlvwGUYO1EUTY7e2tlrdAMAgFuzH2GG9ec0HKseoK6yTPaz87x54jAsc4UIvm8vJS\nSqWSXF9f68FqVShVWbAxzto7LqZC1FgD0Ur1rNPMzx31nn4/7Xu4Nhz8ZCab20Rz5XZ0pcHFv7+/\n14KnTBqgjoNfHuQyg5nMeDwuuVxO9vb25OjoyGP0MytuuwChKOX19bWmmyG6ZVVMQfeEH1HjBz/m\n1QVreM/L2Id1FsI4FvZ6sTGClLdcLieFQkFrpYi8VtTYAojTuJaTOCXzCNf1dylqRLzOBlI6Mb94\nTRv1eaMeZ+IIRhfuCSjpuJsJwNFPTj+whdvx3HmFy5BhUoqNBiZpuPPB/f295/1isZjKvR8eHvRx\nkZcoJQ4/AyaZTMr+/r4cHR3J0dGRHBwcSLFY1ELgGNfn52ePjNmmzkXpwJPDKtFQBBFtRuFoICIM\npwJOXbfbVUUNq2ki5a8bLsUF5qKIeIgZ/G5/WpUGk9QIYODg9ToWi0k2m9VjY2NDC8za90ZNB8y5\ner0u1WpVyuWydiLl9JpJ5p51IhfBqeTx5XHkdCSQNUhPY6KMo/JMzLHaAgQpOsOgS2m73dZUqa2t\nLUkmk2oDQTWA6wuntdVqSb/f13Q71G+0RKufDzSvcPlqrgLCrKjB9YNCJpVKeQIFPLYYA5DdqPHF\nRA3viXyfMFFzd3cn6XRaFaYoVou1GM8T8Xbim/fxmRSwb0S89Xzg83U6HWm1WpJKpZQgBVnDaWo8\n71xjCrsjHo97bBV73XmdZiVcv99XFVy5XJbLy0v5/v27XF1dSaPRUCUN22YIkP0qDmCq7bldf/sx\niWFJmjCRdNfr+QBBg6K2iBzu7+9LoVDQorYYNLDbV1dXUiqVpFwuq6LGtuMa9V2WBVg8wXRCUXF4\neChHR0d6nblYGiIJjUZDLi8v5fLyUn78+CHlclkLzdqW3PgsF+x4TOIw2HsH966L/HF99izAL9ri\nR8D4KYhGGWvsWHA9BeTlgzDARggnnHNTuYbCe8ynMATdLI3dOLCkCJQrLO21UQQu5sYtuUe1srSP\nuc5FxCtfRtoGikojbYNToPj8WOIPkgayYj9lwCyPnYss5nHwMwrhlLFTBwMlnU571trNzU1P3TQo\na3jv42KLfmR0PB7XwsEHBwcawOCUJ3wXkH2Q+YdVxbmuzzj7+jxjHPIbyt9kMimFQkF2d3c93fO4\nYwWIMxi+djz8HAXXnF6WsWCw0c6qNBj/7KAzgeJSaGCMUZ+RI+283rFDCmeUVY18btx9pNlsqgQf\ntpGrqcWk18H1c14QZBPy+KJQdKfTUdIbTr3fe/D4g5zBAWcT5AxH3bH/pVIpeXp6UpUc1AW4F9Ah\nc3t7W9dyzGdbfHpUgHCUvTbL48qkKe8l1s6x+1E8HncGcRG8wv4HHxAOPac9cVqwJePQRhoFoZEt\nsL297UmT4U61lnDFuS4D2AbAWigiOv+Gw5duyr1eT+1VmyKPg8kV7I14LoIY+AkiDjWk2I/h92Gb\nq9FoSK1Wk1qtpkTN1dWVVKvVVx2H/eyc9x7bqbbnFnHXv5hkE7CGRNgFyvU6GD0ocIqUDNvlCURN\nvV6Xer2uBYRA1CA3LYy0exmBCLpVLR0dHWl6GZhOLMY3NzdSr9fl4uJCvn79qte70WhIt9vVKLGf\nEzBKTeP6aV9riRlbFZ6ZU3vgfWdlE7T3f5BjG0Y55PcZ9tqBqEFkCkQNZMQwWkHUcB0Fl6E5DScu\n7HjMythNAo7As6IGhohV1FiiBooVv6id308A48SRL5wLIl1M1HB9Kp5rcEpYboxoMauuJqnD8NGw\nawZH8Lm2DM+Nfr/vUSWtrq6q6hPyYIz1zc2NvheMGU71RdRxc3NTz4fP6/n5Wba2tmR/f18ODg5k\nf39fjR4QNXz+rODAnsj1FMYZl1Hk+yIh6Lvy3gPiO5VKST6fV6KGJfuYN0zUwFHkwuBh9sxlhnXk\n8Tfk+jZ1xkbKLbEi4l0r0dHEEqRwDvE6qEutjB42UqvV0rSLoMYWfC5hxnme1tEwcO1PcMxExEPU\n5HI5veYuApvXSdvwAsQMIu7cCQYHHEgotJBmhbHB+g6iplgsKgHUbrdlY2ND7x9LRIwiafzW4lm1\ndWzAhuu8WHKT1z87t2y3KE59YgWNTQPm93DNeeyv8XhcMpmM7O7uSqPRkGq1KtVqVbLZrJTLZVlb\nW9N1hO2aZYMfkcEkDaeI2oK/PC4Mm/KG7muFQkH9ehChPM94PsAGxr6JVNKLiwspl8uedRbzkWsQ\n/ap0J8a7dH1ykTX8/7CwDrTf+7je00anmLVmRQ2M3rW1tVc5wFdXV1Iul6VcLmtlfSgAxv0uiwyO\n/MJZZ6Lm+PhYJW2Qaw+HL5HZRqMhFxcX8tdff+mmV6/XPd2AXPJtv3vCRcyEJQd5wWeihhdwZmj5\n74+Gdabfg0ByEaF27PmIx+OeBdKlqPErJvwWsmbc7zwrYzgObKTJOuVWUcNEzWAw8ChqguaXJeUA\nJml4vWVlj0tRg/WW39sSNbhHuOD0vKXVuO5nXjeYqEG0Bt+71+t5CC9EkFCUm9VrVuXJBg8/D9Fc\nSxY9PT3J5uam1qfZ3d1VGTKIGnb6LVHDqXOTjs00iNl5Bc8vzGerqCkUClqbBikUIv6KGk7Pdn2W\n39/LBiZbeA3Cvm/nK1/TUWsR39N232SC+vn52UPU8OMgalBTzCpqXKqpsMGOZZhzdnxB1GxsbEiv\n1xupqGGiBw5mt9vVFP1KpaLj0mw2PSmshUJBbdhYLKbpObjuWN/hm8C/6HQ6UqvVPApIEXcZCZvu\nFsaOmVVbxxKj/J2snWMLPMPZty3XOe3XEjt4b/7J5+IKsGSzWVVitNttKRQKksvlJJ1OK0mDADPu\nGytYWHTw92SbDfY/EDQOLj+D09+wR25vb6tPj/pOsIO5diPOC34ngoHoond5eSlfvnzRMidYYzHv\n2UcZ16+cBt6l6xPjLV8kiDUOit4xsxqLxbR4MEiDvb09LR4mImocN5tNKZVKcn5+Lufn56rsYIdy\nEeokTAuW2Ein07K7uyu7u7tycnLiKSTLqRiQ86L7TLPZ1MgER4qCSBqLSUgaFxPPsjssDJZZ5/zx\nWYKLmAn67m/5DPteiPxDTQOHAko1q5YAU436I2+9lq5xHxezasD4wRIk9h521afhdpJhiqK7NlP+\nn4h45ksqlZJisSjFYlH29vbk9PRU11s4mtzNAQcMYMhQm82mpw2iqwPGLIPnov2uHMHllIvV1VV1\nImznEaRP8N/D4c/6NPg8gCOK3FkGEVruomXXPkSqOC3Dfi92Wuy+GGE07BpqHXqQnSgkjLQnBDos\nuclzh2tOjVoTw+4B8zLnJgU7vCLyar66DrzO7/1cv1twXTcEslj6L/Kz1gWCWQgatlotVdGNOie/\ne821Lk1jD50V2DHA+EJNGovFtHDo1taWPD4+eorNcsc9ON84Go2G54D92u12dX9FcWgQBFDOIBUK\nASwQgggo2xp/3G6a6zTaItaWuAmyZWZxfO134EAGAjeDwUDrsTFBs7m5qd8bTjkra3C4gv5Ba6Al\nyGxh46enJ8nn8xq4R/Cr3W57UptBTkxC2MziWIWB9UVGBbRd4+AKELIthLWRA3qsZuLX8r11d3cn\n3W5XOp2OdnW+vr6Wer0uzWbToxJ2KWj4O/4qvGt77reoaexA+0UM/N4TTBp3Hzo5OVHHIZvNyubm\npqcWQrValaurK/nx44ecnZ3pImzrpMzr5HkPsKGfyWRkf39fPn/+LJ8+fZLd3V2Va7MzByVNt9tV\nogYH96d3SbdHRYj4p/3dnjeztHBQ4NDw/2zkG/clb5bWGJpVTIOgscbfyoo39QlEDSIfGEsuzGY7\n3OB9g+aXSzE0je/N68w8kjUgaZicdjl0NtXGtlIOirYH/c4Fa9PptHYNOjk5kU+fPsn+/r7kcjlV\ndTBRgzX19vZWI4lM1NiC0/g+8zRGfiTNysqKRtzwfViazdf54eHBY3xycT0bLeRII0u/4RRgLoq8\n7pDgV8yRvwcr4/y68U16nZYFfg60i6ixJCeCB7ifMHdYaeGnUhx1Tvb3RR8T+515jloSw1WXMOz1\nce2ZVoUKwgZzVeQnUTMYDKTZbGrNRNik4xBHTM64vnvQY/MMvj5IvUbkvV6vq8qw1+t5ijuzY397\ne+shZdDVCYpCHCDPcPBchaImk8lIOp3WewwFgznYBaKmUCioPcxBLTj+eB0HM3ltcNkysz6+vMcw\nUXNzc6NzAoEE2BzYf2CHsj0TVHsIn4fnumAfZwIPaVAiP4Mj3W5Xa0lBUQOF1SiiYtbHZRIE+fCM\nMAQOfvK+NxwO9fpaX8LV7QnzhG1NqOJYRQObM0jF/avH610VNW/9MqM2Er4B/JwHEDW7u7tyenoq\nnz590sJDW1tbugiiUNvV1ZWcn5/Lt2/fNNd0HiO6k2BcssHK0TKZjOzt7clvv/2mRA3qHPCkQRQQ\njCYiEo1GQ6MR1vj3MzYswpI0fP62Qw1aSeP/rETAOUxDBfKr8RaSBj8tSYK/uUsJK2rY4ORWljg4\nuj/pdwizEYx6v3kkayzZ6KeoscUQmagZpVhzRaHwOH4yIYA14PPnz/Lnn39qimkul1NH008VwJsn\n1AH9fv+V9HQeYR0Gu9YiasMkCf//4eHhlYzbjj0O7pjA6hrg8fFR7u7ulBDg19o8cVewhYmaSFEz\nOVx7Ge+nQUQN7iVEFbvdrtTrde1MOY06evM61yYBkzEio1U1b4WLqEFtMRTBxPmg4QJqJnLa0ySE\nmp9dvWjjjfnF5DgIaibIYf8XCgXJ5/OSz+c9e1S/39e6FdfX11pfDzX2WPHC1xGfDZI9nU4rEcT7\nJhM1uB8ymYzk83kPab+6uqrnz98NsDVdwtjCswS+560CmLsp8T4Iog3Xh6+nPUZ9dhBYTYP9Fu+J\nVJt2u61d2ZBS3uv1PMpmvMc8jMc0EOZ7hvU18ROpiiDCON0Qc5BtI67x9Pj46AlslEolnddQxdn3\nmoW18d1Tn8IiyAkMWnBcFxAFFzOZjGSzWdnZ2ZHd3V3Nv4fEFIt0q9XSas+lUkmq1arU63VdJPw6\njiw7LCGWTqelWCzKwcGB7O7uanoZR4dXVla0qj0Wtk6n8yoiYXNUebG1pNy4Ex0HR5utGoTBTol1\nfl05tYsMP+cCihomajDuWCC5vR0WQyZqwi7qy7TRjQLfz7bAnoU1Im3RNnYA7fviMX4tDhSQTqfT\ncnh4KKenp3J6eionJyeSz+cll8tJIpHwEAwwyGCM9ft9laFWq1VtVYocfyv1nkfw+VsDG2sJFzrk\n/93e3noMVL7+rKCJxWJqzMJJ4MKzaEOJGjhodbmyshJonHAUi4m/UalzEYLB6ynmhg0ccG0ae19w\n9wzMGW54gM8Y9dn28WWC3VNs9HvaBA3GGKnC+XxeC62jJhST6Sh+i6AWosfjrIdBAa5FHG8bXMLf\nKCoMNaLIz3Sofr+viohWq+XZQ6G2R4oEgok2HcmvHhRqgEE9nk6nZTgcqt3EtQ9ZVQNCB++BdRbn\nPiqQPS/gMWKShpsecN06DkIgKwIHX6fHx0dPrRqXD2Efc/kart/5/oINBbUUUui63a6u2fiOHGye\nx7GaFG/9rmyX8r0P5Sl3e+IajZjHT09P6ne0222p1+tSqVSkVCrJ9fW1tFot6Xa7gQXaPxIzQ9SI\nuOXAo57PwCCiLg2iuUh34s5DkECBpPn27Zv8+PFDKpWKtNttlVEtU4encRYQXGtuy4yIQT6f125a\nLLnHZzw8PEiv11MlDRZi/lxLxuBnGHacvwu/B7Phq6urnqK3yB1GZIslrNggsEnw+/Kk/mhMqpgJ\ngp8xYB15LJi4hlgoRV7UNDYKxTVSwp5L2EgRb4jT+M6zBL4OrrXJdf7sIHCxXxj9MBj5/TkqweMN\nJwOENxd0A1FzfHws29vbStq52nEjuoF1uFarydXVlRZmBHHLROisj40LrvFxXWsR8ZDBrFyx7USZ\nZLNFFbnWjHVS+v2+kjWYs/F4XG5ubtTgub299Yw132vzPA6zCl6n7JjaLiUiLySNLbrd7/c9adrj\nfvYyIsjmGScAFAbWBkF3zL29PSkWi5JOp5U05bWx1+tJv9/3dMCbtKHFMo633S9h09/d3SmBjbRs\nKNNY0cidngaDgZOkdhHbIBuGw6ESqbVaTWuqrKysKIEAfwOPwZbiboCwNe342WChy8GcB2KAgzeo\nSdPpdEREPHsa9j7YMvF4XFtvc/paOp3W/8XjcY8fYQNUro5DfA/Ya27nMtfL4RRG7Nc2OBNhMvA1\n39jYkFwuJ8fHx/L777/LycmJHB0dSbFYlFQqpWMCcQDqB1UqFRWnPGJeAAAgAElEQVRmXFxcaMoT\nd0ucVK34XpgpokbEe1HGjfZg8jBR89tvv8np6ans7+8rUcM91FutlpRKJTk7O5MfP35oDiq3Z5yF\ngfpVGMc4gUGJCAA6vHCECBOF3xsRDOT8MlHjGn/+PMuo4n1d1e/tOXO0MhaLaXcqEEtgwxOJhN4f\nUP/wBsGfi40+7LV7D0xqeE3jfLGhcTtmVtSIeIkazicdh+QaRSL6kRNhMUuLchiM61iwccLkKsYk\nFotptBHX2tYvYScS45xMJrUezenpqRwcHMjOzo5sb29LsVjUiBZLhUVe6gXAIGu1WnJ9fS2lUkkL\nZsIoXrQ12EbueX2EtJ0d8cFgoJE5a0hiv7OdLziKCMIZaxmcenQWSiQScn9/L5lMRra3t+Xu7k4/\nhzsmLJt68FeC51xQcWcR8SjRuMYeVKmojxB2jJZ9LCdZS8M8z/U6tkMSiYTk83nZ39+X7e1tSafT\nsrGxISKiRA3qoCDdxnbAmwTLON5sq7G9CJIGpADWTgaCdQgwMTHjCiLgJ9bwp6cn6ff70m63PUpj\nkAxQQTJ5A3Uy7NCbmxtZX1+X+/t7j9rHEuj2XOaBoBHxfg9ct36/r2krHIzgwBE6G+LI5XJ6gKyB\nwsXOv1HpwiKiP10IS9TYQNcoW3UexusjARt0fX1d8vm8HB0dyd///nc5PDyUYrEohUJBksmkx7ZC\nGhpaqpdKJbm6upLLy0stEj6qLs1HYuaIGsYkm6Ctl/L582c5OjpSRU0ikdDIBCtqzs7O5Pz83FM7\nY9xzWAZYdYtV1KBafSaT8SxUvDHa1CfIzcKSNJzzyRMKuYuuaAIrP2D8ptNpKRQKsrOzo2QNlEBM\nKnA7YXwOpyugds2yYZSihjtXuBQ1roLR0XwbH/b6uQhPNipgUGAthLNnawVxhIl/ou4XIlcnJyfy\n559/yp9//in7+/uaBpVIJJwGCgwybvOMaCNSTzH/FiHlCbDksl3jEOW1beyR6mRVbJZ85rUNBxSM\niO4iMj8YDDT1IpVKyfPzs2xvb2vHA7wX54NHJM37whVMcBE1HK23RA1sl7dGb5dxjCch+8fd912K\nGrRft0QN1kYoarB3vkd0fhnGG/sixgwkjVVq28AiP8bPdala+W+odzCn2+22zmPu8ISaiHh/1KoB\nWYdAoa1fNoqkmbcxhU0NhREKZt/f33uK3Iu8fDdcSzQCsYWe0TkLNrqLXOEUYL5+nLLEcClz2K7i\nLosYbybX5oU8m0VYJVWhUJDj42Oth4jAE2oVwUe7v79XtRwUNSjOziTsLJI0IjNO1IwDSKE2Nzcl\nm82qA44IL8tKIWVEAVsUZ+N0DJH5W+h+FVi5tLW15WkhGo/HldjgTYUXJxRKBKnTarU0r5A3OSvr\nZwbcMvDcdpjPk9lyOKeYzIj87+zsSCaTUVY+FotpesDq6qpGLjntCZvwLKfG2XPiTeet54ux4fo+\nKHyZyWQkHo97ZIcg5lCsaxaYa96AcX/O0ybK9yDuUSgmQKAinx1GBdbH/f196ff7kslkPLUPRLwO\nI0ec4DTG43HJZrNK1hweHsrR0ZFGMjhqaCNFmK+DwUAVNKVSSb59+yaVSkXvD0Qi59XoFHk930bd\nW4io2i5oT09Pr1LHLGnDaySvmXDqcaA2FJNgXEMBc5TVV1xHAeeIe4IdiGmtLcsKduBc8nmODqKm\nU61W05SMMLn1LscjghdWjeC6XkHX0O/aW8eO909OEYdMHy25G42G9Pv9uS+oPisImhsi4TsA2fXO\nkjQMDlb1ej1Px6jn52e9H1gt56qB45fmZM9h1HedRVh7nhWEbIvguZibTLjc3d1pTadGo6HB13Q6\n7fEhQKhsbW0pYZZKpUTkdSdNe1/Y6zvpnAxaXyK8gANTqVRKa87u7+/LP/7xD62FaJuYcC2pZrOp\ngowfP35ItVrVdKdx62R+BBaCqIHhyEW4CoWCDmaxWNQoPypFt9tt7Z3e6XRUZTNrRYRmFSw7TKVS\nksvlNCeUc+ptNB0qHM4nRfTdMtogV9hgxaLMGxacVDh4+JyVlRU1hEAmZLNZlUWCqNne3pZEIqGL\n83A4VJIBtYz8OunM4r0SdD7TOFcm6nB9uUYR3wciP6ODTNSgjoIrGvUr4DK4Zm0Mw8AaNlBg9Ho9\n2dra8uS9Y75ubGwoUfP09CTZbFaJGuTsW0OFC5siFxwGELpT4Egmk55OFZaoAWFwc3MjtVpNvn//\nLn/99Zd8//5dKpWKdDodJfJAWMwz/Mgav3uO0yixvrGK0BI1Ii9RJldqFO4PJvRs56/7+3uJxWJK\n1HQ6HZ3b8Xjco6jBueNe4nVxXufRLICvKZwHRGVheOL6sowbRA26o4XZk6bhHCzqWAeRq0GEjVVf\njCJrmOhk5wJEDVLDmaiByjvCZLD3vYvQcI2dy15wBXnsZzGQPoU0ViZrRESVVNgjuZGJJWtcddtG\nETTzMFex54mIpwU5umbZIC0rX7AHcYpZIpHw1J60wSYof9PptNb+4UL9TAb5na8fQWbvET9EJM1o\n8JqZSqVUQfPHH39oyj2EAhyg4rRGEDXfv3+X8/NzT12aeWhWMfdEDRurUExYRU0mk1HnAfLRTqcj\n1WpVa9KAqJlFx3vWwI4fiJp8Pq8Oup+iBhsaV+rOZrOeSt0iL4seiDcUA8MiC6IGGxZYdMiDOdqM\nBRn1c6CgAUGDY2NjQ4vEQQ7L6RmcfoBz9Kv2/5F473vXOodQbkBRw8Tb+vq6Gp6WqLGE6EeSNPz7\nPKlqsBlxwUEoapLJpBI1uG+ZqHl+/tlhCDWaQNRwxJfVGWgVzMYNDkh9uX0wNle+jkwqDQYDJWr+\n9a9/SbValVqtpooajhbOO0Y5f/YaYW1ZXV2Vx8dHj2wa8FPWcA0tvJ817nGsra1plHdtbc1D1ICY\ng5Fs1zpWWXFaTqSqGR+4Zizp9lPUsOLCT1ET5tq/haxZdAn/OIoa13OCSBp2OkCGgpDDevn4+Bgp\naqaMIDvDrs/AqPkxjsKCFTVra2seRQ3GHXOc7VAmX/kIImvmSVHD+yEHKdi24SAEF+a1RAqCh1yI\nHb4D/AvYKdz45O7uTkREA8jY01yfweftuqdczw1L2kRwwxI1h4eH8o9//EP+93//1xMkRPMEkZcu\naS6i5uLiwlOc/S2qqF+FuSZqrEOez+dlb29Pjo+P5eDgQCvpc8VvdL5oNBpSKpXUOQCzNsuDNWuw\nDoIr8ut6zfr6upI7KJL3+PioCgy8FsRbIpHQqBMrahBpAFGD93IRNaifUywWteAUFx6LxWIqk+O8\nYDaouDCqiLdl4qzcN+9pPPOGuLa2pikwxWLRU5AZOaJra2sqP+z3+9oCD4qJj1ggXUb1vG6irKjB\nNW6329pZIpVKqVqCiz5D4ru+vi7JZFJVMShUaMkajDV3SeODn2cdGFaG4Pw6nY6USiWNblxeXurj\ny7AOB0VvXaQO0o1cYOKUyXA+XAY93h+KHax5iPQmk8lXXRCYqLHpVqzgmSey86PB8wXFnaE05Vpf\nfE/c3d1Jt9uVWq0mlUpFWq2Wp8bUNNbUaPxeY5y9wk+ZYWtagKhBIAgkLZx6tIxF/YQI74Mgcs31\nt0st6ue44yfXlcJai65GmLurq6tanw21M7hLpk0Z9yNm5nXu8l7H9g3PG0vUMGzTg5ubGw9BgwOp\nVQgG4/qz7+Ca61ZBA1IN6ic0AEDaml9dt2h9DQZfe9iomUxGPn/+LL/99pt8+vRJjo+P1T/EPolx\neXx8lG63K9VqVarVqlxeXkq5XJZarSatVkvHisnBWcZcEzU8KVOplOzu7srvv/+urboKhYJsbm4q\nYw2GrdPpSK1Wk4uLC7m+vpZer+cpZjvrgzYL4EWUOyTx4mSLcTEBk06ndVFGlP/4+FiNGTyORZZV\nOojwMlHDxX/586D2QA4qV4GHWgfF3HDeNm2Li+WCMBLxEjWzhPcma5hsKxaLcnh4KNvb25LL5V45\nF5hzcNLRmSRs5Pc94BcBnbf5z444iqXVajVJpVKytbUlmUxG7u/vtTYXHGqksyDilM1mlTzje54d\nC8xFqGdwuIrl4dxEROfp4+OjNJtNuby8lMvLS/nx44d8/fpVrq6upNVqSb/ff6VonJdxGIUg6XSY\nSHzQ/y2pw89zRVr9/gfnEN1P0um0JwUNBwwbF0HPBu6ijN2vAK4d9sVisSjb29taN43TnrDfQREM\nogYqtGledzuO80poTwpLOFrF5ST3uZ+iBqlPIvLK+QvbGXHU50YYHzz2rr3REgt+9wNsS+7WBpsI\njiXUI+jyBXsWxcJt7TbXWs7nPC9wzSkuYo/n4HER8bUTeHzwHFxzXGPUZEN6FauHueuTJWzs9Yb/\nYwu7I2jMhd1n0U+YdWAcc7mcdhb9/fff5Y8//pC9vT0tvg41osjL2Nzf30uj0ZAfP37Ily9f5Nu3\nb1KtVrXDMK+p8zAuExM14xiY7wU4H2tra5JMJrUd93/9139pO24MIgYGDs319bVcXl5Ko9GQbrcb\ndXkaA7ygWpmmjcBaKb7IC1GDYsRc3JTJGK5Jw3UQWB4KY4YjDwCMX0gfQbRwmgYOmxLAaVuc4oN2\nijiHWV2A38tZchE1BwcHr4gagBVPrKh574LdLlkyY9zHZxEcWULdinq9rgWDd3Z25O7uThKJhBoe\n3HUikUioA26JM0uu2iK1/DcbM3zfcRQRBd1+/Pgh//73v+Xr169SLpelVCpJs9n0FE7EaxcBoxyk\nsJE2V9TUL2rvMuJdn2UNThDeiOKj0J5Lai/irQ2AwxLz44zjLNgUvxrsDDBRAzUwRwpFRGumocYe\nWtmjQ8p7nN8yIwxJE+YaWUfftvSFjSMirxxA7o7I5xIWyz6G04BVWvB6B7jWV6ss5cL/KHoLOxpt\nqNnRZ7IGjr9VzlmiZh7hR9bwY/w3XmOvP48R12UDwYUjkUiozcPqUCZqXCnHfK1t4Wdu5hDVPJ0c\ndp7lcjn59OmT/M///I/88ccfcnh4qN1F2VfjPfLh4UGJmn/+859SKpWkUqkoUTNrmRCjMJeKGkwe\njkjkcjnZ29uTT58+ye+//67y4fX1dZ2cHDGs1+tSLpdnIsI/j+CFihUtLNPkDQ2Ak7+6uqq5osx2\nsxNonQAGs+RceM0W3EOxPpcqhycqt9jmTZUlkXZR4CjzLN470yZrePFEe/NisSj7+/saAUaNIt4U\nUTul0+lIr9fTDey9IkC8uY5zDWZxDEcB9zB3CllbW5OdnR2tXQGiRuSFcLHRIj8n2ZI3/HyXPJiN\nGDiVMF6QI/yf//xH/vrrL2m329JqtdRY5YjZImASB8mPpHERj6PIxjDzi40brOVYx+EU2NQnnA/L\n0dlxeavqYFlgnT4QNYVCQQqFgqRSKVUE25psaDVaq9U0ZfAjIurLMr48B+3fowgbXjNtyhMOroFn\n7Q+2LyKSJhze4760ZA0eExm91loFBmyijY0Nz/9isZgSMzhA1nAqqiVnPmLuTxuu/cLOu6B9kOcI\nkzW8N2EPQ4o1bFnUW8NhA8P8WS7SDTZOv993BjrmiRSYBXBQsFAoyOnpqfz3f/+3/PHHH+rbJxIJ\nz2tgw6B5Sb1el4uLC/l//+//SbPZ9NRymzdMRNTYxf9XbdbWsEExWjBuBwcHUigUPF1nVlZW1ImB\nkqbZbEqv13O2gY0QDiAqbm5upNPpyPr6utRqNT1WVlY89WVcEQkAjDYKn8L4dxE9ABxPV/FTRhBL\nbhduLLIg8hqNhjSbTS2AOxgMXuWML8sCjLHg4rLo9mVl+lBSYBPDtePNK8w1c23QQc+1m/qigw0T\nEGK9Xk9isZjUajWNuOP/6N5k52DQem6vq4vY4XNh4vT29lbTMyqVipydncmXL1+kVCppp5r7+/uF\niAi6MI37MSzZ4YrmjoKN8HMHN+5EY9dLvjdsTSNLuE1C1izafeACrj0r07hTCaeQYq+FEQr1KBw4\nEGoi4a/dMq2T04SLMAlyHnm9RLFSkHGZTEbrKzBRw3vtqAi//dygcV02xRqPy1u+uyVmeB209b/s\n+7sIPbyOlRhQjKytrXnIcgQ+g1p0L9JY2uvl2jvG+ZsDPzZ9F6ridDrtae1s6+3ZccP7wPdpt9vS\nbDa1izCU4ywACDtOizSW44Dn5/r6uqer6Onpqezv72vwAtkQFlCV93o9KZVKUq1WpdFoeGzNeQ0E\nvklRM2qzmiasURmLxSSTycje3p7s7+/rYEIyjG4JIqJEDSJQnIIxTqeECD+BBRRtdkGa4PpeX19r\nOhHGytYysJ1hbKTWFb1g2IguPufx8dHzPDaErdPBCy8XvG00GkrUoOMCpKjoEMab5zzdO0Hz1LUp\n8rXnvHp0Acrn8zrntra2ZG1tzam04ujQuDn3oyIqrueFeb95GrcgwJG7vb3V+VSv16VarUqhUFBj\nP5lM6mv81DT8f1ek2G8scNgUmvPzc/ny5Yt8/fpVLi8vpVKpSLlclna7rUboohmbjKBo+6h72CpT\n/F7j937jkDWc3slEDdZ2vJ9fjRpbUNjve4z6vssAnnfskCNNN4ioQbFKduQ4HWKcz/f7exJHdpLX\nzRv8VDSjbGDMMQQ40JUURA1sVbZ7YNNg7WYbytZWCEvO2McXZbyC9jF+3HW9/K4Bv6drfjw9PSm5\n4qqX4kfS4/88nzm4tbq6qqnCIHH8Oj8t6r7pmlv2f36vc5ErbJvgAHGKQrWWqAlTcw9EDWwtF1HD\nihrX91jE8RsXdq5Z3/7k5ET29vZUhIHaiIzhcOip01gqlXQ82u223NzcLC9RI+IuODftm88aNtjA\n0um07O3tyefPnz2KGs5dW1lZUaat0Wi8UtT4TaQIbrDRDVYZtX9YUQPJNqS9rIAJImCAoP8xoQNi\nAIoclxFj06fw3syOQ43QarX0O4Cs6ff7Gr1EoTdM+nnaMMNc7yCHCk4FIu/pdNpXUQPyi0kaKwed\n5vlP8h6LYKyykgW1f+7v76Ver8v19bXkcjktqF0oFPR1b52DrvOAsYl50mw25eLiQv71r3/J//3f\n/2nhdqSbckRy0RE2qjvKwA96/zDPs+D1EUQNSAJW1LDBa9dWm05qC0Hy9wob/V8GsKKG1UwuooYj\n8EGKmjCfGfQ3HptkXVyE9XQU/EiZMN89FotJIpHQLntM1KBBgciLStjWBOO6ebaILSPMmh5Ens4T\nwn5X19/jvrcrMGGJkzDvj9eBqBERDWwhAIraRKz69yNq5n0M/TDJ9+LX8D0OmxQ2v4j4EjU2NdyS\nPRgfEDW1Wk3K5bJUq1Wp1+uqwsfazIFoe37LDkvSMFGzv7+vjYH29vYkn89LOp1+lWWB64hGQdfX\n13J1deVR1GAc5vWav5moee8vbgcQ7dWSyaTs7OzI7u6uHBwcyO7urmSzWYnH42rcQIKPwTs/P5fv\n37+rwzCPiohZgCVrkB+PnMDNzU3pdDraBjufz2uHpWQy+SoXlJ2FoM+0GyT/zt1J/F6Hv/GT2x+i\nOCMOqGkajYYSDMgrBlM+b/eNnxPoB7uIcn49ooBcABHGxuPjo7RaLWm321KtVpUYdRVGDHsOk5w/\nXjPJ/+YNmIsAusLA2YPMl2s2cRqUSHhHy85BLnqI2hkgxf/zn//Ijx8/pFKpqIoGqiq8VwR/hIma\n2+eGhe0+g2LpUNQgis/vb/dL3D+28xP+Zx1Zv3tsWe4De3342qOOGqsrmKTB/mMJ77A2jJ8yzu+5\n447JsoyhSHDNGgYHiRDcKBQKsrOzoy3Y4Rzi+q2trWnb4EwmI+12W+LxuJKnbOe4VATAshKhYe/z\nMPaEHWNLkIzrfPPeCadfRLTjk4hXtcE2ky3oHjn+o2HJGq715RpPXF8ed4wFVDRQ2DcaDbm6utID\nHfj8CglH4+OFnaewR7ioPte/5G6yvDfiQDvub9++eVLsF6Gg80REjZ/BNSlz7Qc2AldWfrZrxuaF\nria7u7uyu7srhUJBNz1EdrHgNZtNKZfLcnZ2JmdnZ1r9eRlY6fcCM8wiP9PL0NXl7u5OyuWy5HI5\nyeVyks/nZXt7W7a3t2VnZ0cSiYR2YcLkYymbK/LMjDhvVlzUC2ls/Hre9LgI2/Pzsxb/QptEJmfa\n7bYWOwUzDoUIHM15vG/8ztcv0s1EKStqUP/JRnqhnoGjXiqVpFarvWqLN+q6+RlQ41zvsM+dtzH0\nA5OWIGqGw6Eq20DUpNNpyWQyr+T29r38PsOur5gnrVZL6+JUKhUplUpSKpXk6urKE2FaBgWNC+Pe\nj2EUOJMA78u1adAJj4kazHF8vp9zYskaJhlcEfxp2QfzDDZMQdSg2D1fH07NhZNwc3OjxTDfg6Th\n50WOoD9c9q7L+UBAA+nCxWJRdnZ2JJfLSSKR0IAV3m99fd1TA67dbmvEn9sK2wBUEGGzqGPnuub2\n56TrqIukcakLw/oQPFZM1NjvwGQCN82wxaWjuRkOvPfAd2C/gH0HpEWJ/Bx/BKKRpg07B4Fd2Djl\nclkajYZ24OP3m0c/4b3hUqtBPbi5uSmpVEry+bwqaRKJhMdHxJjyOLbbbSmVSvLlyxf5z3/+I+Vy\nWbrd7tyTNCJvUNSENQ4mvUCuaP7GxoZuXkzSIH8tlUp5iBo41s1mU0qlkpydncnXr1+l1Wp5iJoI\nk4EZ6efnZ6nX63J7eyu1Wk1SqZRkMhmNIJ2ensrJyYk8Pj5KNpuVTCbjMUxE/POB7cZmCRtuAQwj\nBu+FoqauVrNMxrTbbel0OtqFptvtapoG2HFuxTePippJwE4YK2qQFmGL4sViMel2u9JoNKRSqcjl\n5aXU63Xpdruh6/pMIxK4DGPDsHOx2+3KcDiUfr8vIqJF8xKJhKYKomo+O9ZB74//s/z34eFBWq2W\nGisXFxdyfn4uP378kMvLS51DvV4v6oAwJt4jQs77KtdHgVI1Ho+/Sn2y0UYePz+Sxm8tX2SncRT4\nuljiG0QNZPfs/HF3EU69dQULXNc3yJEF/MZkmccrLFyEJMD7Zjwel0wmI8ViUXZ3dyWXy71S1AyH\nQ1WOw9ZtNpuSSqUkHo/reo75iN9HramLTI66yBq/+zzoPRj29Uyy2Os9bvDI2rN+Kh3YVhxoHKXo\nieAP3sNcJA2uMbCysqLpZ1Ay1mo1qVarepTLZQ1M4Tm2rlA0Rl64SBpeJ7H25fN5XSctUSMinjly\nf38v7XZbrq6u5K+//pJ///vfGoRfhGs/9fbcrkEY90K5NjowbclkUnK5nBSLRSkWi5LP5yWXy2kr\nS2ZBe72e9Pt9LfaEXuooamrrmUQYD1iAoKyAEQmZL1KdcrmcRgEfHx+lUChoi7VkMqmpNBsbG84N\nkpUCdsNyETW8UXOdFEQhcYCkQU4pHEpIG1FXhT+XD74OiwhLlnIBaJGXuiggPTEO7XZbKpWKXF1d\nSalUknq9ro76qLSniKSZHGwQoONAv9+XjY0NzcOOxWKewmqI5nJetog7ms7RKE53urq6kouLCz2+\nf/8u5+fncnl56akDtazjMi1Yh2RScPADRWw5Hc5FGPA4upSNeN+gz8R34MeW5Z7wUyly6hlfczhx\nDw8P2rJ3MBjoHou9zH6GJcPCkDQRpg8/Mi6VSkk2m9V6C5xiiLmGoCQUOMlkUuLxuM5Rno9M2DBc\nah+/5ywKLDkcpCLzI9eC5oaLrOHHR8GSMC51uCVgXIHJyPkfH3Yfu7+/l8FgIJ1ORxqNhuf6cwF9\nNKLBgWYIlUpFCwhfX19LrVZT0scWf7Zjtczj5rcfudbJTCYjuVxOCwizKkrkp/IMKtN+v69qbqSi\n8Ro575gqUeO3yIWN3vBzrZIGEQmkPiEagU4zIuJhoDmVpVwuS7PZfNWtZ9S5RAgHNg6Z5by9vdXH\n1tfX5eHhQWW8OBC5dRXxwntzZBGTjyO3TOJw6hMUNbbNIQ5OfQITjgOpPFh0rZMySTTlvTAtB27U\nZ+D7Q4YP+Sei8Tg6nY6SNMjbRdHpcaNA0/5u1pGZhfF7D2BOiIh0u125urqSlZUV6Xa7SnJvb29r\nJB+V9Ll7j4g3xZHz5nnuoNMbGy1cAyxSLk4PfvNh1PV1ka4IfiAVdWNjQ1VymOtYT0GEc10vEOOW\nPPc7b9f/FjnSHwSXEknk57zFdcZ8RJpur9eTbrf7qtWo635wkWB27fPDso3FNOCaly4yFKo1m+rm\nF5yEgpXJVE73tvU0gggavz1v3sfbflc/dRP/D3CRNH7+yrSvE2xl2LLc4Y3rLrrUPjyXl3UNHRes\npun3+1KtViWRSMjDw4PkcjnJZrOSy+U8pCkTNf1+31MeodlsSrvdlm63q0FoV3paRNL8hN8+tbKy\n4rFFQEwjaIQ1EsQlq9G4gc23b9/k+vpaBoPBwtmdUyNqRi2IIuELI9qIk21dmU6nVY3BHYWweT09\nPUmr1VIVTalU0u49MCynVSchWiR/At8fhgNSg2yKxOXlpZIzIOC4awgrN/C+vFFi8nFHBKioMDkZ\nIBbYocBPboMIKbnNB3ZFkGcxouF3Lm+5P60xwDnTTNRgjmJMu92uRhyq1aoWWJs0X3fc57sM17e8\n3zyCieh2uy0iohEhrh2FIt9wHuAcxGIxp2oNxYA7nY4eSBtEyiCIzyg/+30w6XywyjgYR6hLY4ka\nzHURedUWGn9zsUteF/FZQeQMf5dFVtfY6+8aD2vD3N3d6Tg9PT0pSdPtdlVRw066nxFsEUR8hyH7\n5nmM3ttWc11bS9RgneVUN9sKmIlUS9RsbW2p7QKH0o6LH0mHn4vkOI7jZ1ilmR0vOz/5vfz+Dgt7\nzTmoyYQtq21soMO1prq+UwQ3QIKJiBI1w+FQut2uZDIZrX0KWxcBZ5Dk/X5flfewc1CTEeuxH0mz\nSHNuErjmop8twgpC+IciL8FH2CV3d3dSq9Xkx48fcn5+Lt++fZNqtapEzSLZnlMhaoJImnHUNPwa\nu1lx60ooalKplDoXmFycr1atVuXi4sJXUfPWQXxvFcO8gbx2PmEAAA4oSURBVCcGV7QXEWm1Wp6N\nkI8w9Q0swLZyC1OcA4MjE/YnL6ZMAtkNnDfPeZ38b93E2WFnogZt0Zls6/V6ynI3m01NIfsIx31Z\njRcmLRFBqlQqnmLC6XTa83sikdB5tbGx4SEmuR0wWm/jYCUa181Yxus+q/BT1KAbGIga7KOsoBoO\nh6EVNX5pGGGI5GWaq649UOQlsHB7e6v/g/qz1+tJp9PxKGrsXjktxYwrih/2/WcR416jaXweBxqZ\npEEjBU53s+dnFTWsWL2/v3+VLuX6fGsTLRpJ44LLdvMjbFykBxMm73mt2N7kzxYRXXPD+ilRsDgc\ncE2Hw6H0ej39Wa1WPXaQiOi1t+ph3v8gCnDVGeLPdP2+TPDjB1y2CBM1VlED+4Ibl9RqNTk/P9fu\nopaoWRRMhagJitIwghxwPI7oEo5UKqUHWj1Dpob6JlhYMQnBcg4GA+n3+5rKYp3zaWJeDZj3RNAi\n5RfltUSN3+sQeURkyfVckReHldOm8JNfY40Za5gGMeSLDP6euOZsgIqIjgHGESROp9MZ2arQFbF6\nKwHK7xE0Tss0hmz0IUKB9ER0PUMEw6WowVyDE4noPmoPjdPRK8LHgddX3BdIZQQRAPKNUy1gqKIF\nZqPRUNLAFk8cl9BexjWV5xXabrfbbanVarK+vi63t7daM2h9fV3q9boe1WpV2u221qHi9Ij3vobz\nOkZh94T3+FwOcIDwHgwGutaiaDfmD+Yi18uDDesiRv1sk2UjzC354rIlRhHGfn+7XutS5bjel+1b\nC4whEzV4HStsRtlEyzLGbwGuEeYjSjOAbEFdUxus4ECUXx0aa/e47Nplh50LsDPX19clk8lIoVDQ\nzsDpdFqDhRgHqH1RcxT2CsqcdDodDRYuGqaW+hRmweKf9n88iLyBofJ9NpuV7e1tJWuy2axGgDm3\nE84HyBpItV3pTtMmVyKyJjzspjpKxu16PcYbG5rf8zh6YRfVsOz3vBo80zhnu8HxeyLiwGOHQm1c\nAd9GHYLO7S3n7GeMz+PYTRP4/ii0PhwOPZ1kEN1lkpwNfVai4XW8tkZpTrMPu65yLbHBYCDdbleN\nHlZWPT4+elJvqtWq1Ot1JWpQnNpluLocZNc9smz3DRM1t7e3srq6Ks1mUwnSTqejaoq1tTVVr7Va\nLa2PAKImSMk0zfOdd3zEd2BHA5FgBBCRuo2AB9ZRkHY2lRRkjasWBn8/u8cuwtiFhbUr+bFRdqUl\nsfGY/T0s4eenIOfXYx2AEwpAZTAcDpXE8/u+rt8juMF2EFSJmJuDwUA2Njb0ebxGMzljyyGMIkSj\ncfkJ+Peog4hAxObmpjYIQhfnbDarRA3q5EFdigLCsEnQvbfb7crt7a3vXJlnTLWYsCVrrGrCL62F\nH0fxYAxgOp2WXC4nhUJBisWik6iBo44JB4KGu/1wa1j72dMma3AtIgTDb5MJQ9TwBA77OaPImXHO\nd1lgFTVw2uGwIzLI1xb/QxRxFEE27fMNG0VbFtgxxHp4c3PjSTu0qjY7T5jwHFU0L8Lsg4kCqGVa\nrZa2DEbE6+HhwVOTiAspjqOoce21y3jPMPGNeQhnbTgcyt3dncTjcXXkV1dX1RjtdDra+QkdCcNE\ndCN8DJjkhhoR3btA0oCogTOIbjQgRkGGcsoFBz7svrrs67GLpGGEVf/b17tIoHHUNNb34XGyhcHh\n0LLixs+uWdZxHhfWDoIPgXpgIBDsa+w8c80512dEeAHPBe7ijLRrEDV7e3uyt7cnmUxGNjY2PA0N\nRORVYAmKmlarJb1eLyJqxgEvaH6kDH7HTzgKXDh4a2tLCwfn83kpFAqSy+Ukk8loO24UG2InkjsA\n2ajDOKqNCL8GkfE++3CpkmxRQ2t4cKQ32sw+HhxNWsTNLII/XI4cF65FFB9dFEHSrK2tycPDgzqN\ncCA57YnT3oLSnqJ13msbcbABkfPh8Gc9IChp4ORxKgyuuV+9vWW8rrMKm0LR7Xal0WhIMpn0pEFh\n3EHUcHeZer2upCgX8LYkuYukcZGly4Cwc8CqW/yunev9RgV5baaADYjw5zJRY0mbZSfepg2+lmwH\nTZL+Fo1JMOw1xP0PGwP1t1CbBsQNNwliJf/d3Z30+33pdDrSarWk3W5r4IIDRouGdyFqRILZZ/uT\n5fY8cIlEQokaKGkymYy25eauQTB0LHMHY4fbzmKiMpk0yYRzEVERIswzwiqU2Liwxk0UcYgQYfZg\niVRE+UVEU29ERFtD40AxW6RsDAYDVa1yKkYYR2cZo8B+tgbIMqy5qJnw+Pj4qhsQK4RdLdGX8brO\nGvxUEyBE0d4X6YSpVEqSyaSkUilPisXNzY20Wi3P0Ww2teYbp2HgM1z3gB9Zukgp+i4bPAxJbMHk\nqX2+iygJU58Gz/PzSZiIsUSNra2I3/k8FmkcZwF2PEdd2+jah4NfZg03C0JRdQ7y4jVYQ1Gfptvt\nSrPZlOvrayWwXXaIyOKM0dSJGruI2AXNKmqsHMp2eGJFDYiaVCrlkQZDImjl+8ze2f+9x/eNEGGe\nMO49y/c65Lgu5wM/F3HBjBBhWvhVabJ2T8bcZTUHjru7O62Pgv0VBhIUAFBzwGF0qWnsOuA6n2UE\n20I8DrhOLMXn+wNppEEpZst8XT8aftF4ONhQytTrdS3Oje5P8XjcQ9Tc3t56Ug1BjHLXUtwDIuOn\ndC/afRLGoQ5Davg9z++6jquoAUkTi8U8r8d78HhasobHO8xnR5gM9ppGafTTgUtdhrkAH55JGetX\nc6MgdB29vr6WVqulRM20ujnPIn6JosblELoWMUihkPrEihoUFEYb2a2tLY+UkCNT/N5M0uAIU0U9\nQoQIbrBh6BeBcDloESJE+AmeN7/K6HbNWyYB7u/vPbUzYESJvNTPQK0360S4iklHJIIbfC1w3WzR\nRH4uKxRdEf8IHwuX3QmwagopTre3t9JqtbRY9+bmpqZHIRWRU9380vijuRUeowgV17UM4yMEPcel\nIOBC/YCtQeO3vo7bcCPC2xHNrenClQoI9Sjvg7YGItZH1O9qNBpSq9Wk1Wopgb3IXUffjagR8ZI1\nk1w8v/xRl/GCIsIoMoScNVfxNcvWTUMOao3fCBGWCWGjeb8C0VyMMOuYhXvU7qWc283GkYh46r7Z\nWlV+Shp+r2WHX8AK/8P//YiaiPieXQTZj3CuuUOlyE+CjtMLQZjiedwEIyjFLbonxkfYtTdozob9\nHKtg5L9x2LWS11TbrfatPlWECB8B3K9sY9zc3GgdGtzrNzc30m63pdlsSrValVKpJCIv5GW325Vy\nuSzlclkqlYrU63XpdrsepeEiro3vStSIjLfYjVo0XZJELGKoqI+2XVwp3252fggrc/PblBfpxoiw\n+LCEZRCsYRPkdPDPj8JHf36ECKPwEfeoVbryHso1L56enjTihf9Z5cyoLhjRHPTCXg92uMIoE6Pr\nOh9wqSVEvOlQDw8PnsgyO+go0u8qGuz3ORHGw7SJcpc9hDGF4p8JcVYU8Bpq19RRxcKjeyDCLMOu\nhZzmC5KGU0Pb7bYkEgmpVquSyWQknU57/G2kj+JAi+67u7vAtXLe8e5EjYi7GJeIv1SU/x/0Xmwg\nWqImSFFj4Ue8uB7nTXfRboYIy4lRZKrfPLSpjZEjESHC/MAaUXgM5AxHfC0x41J6RA7EeHA53n7B\nouh6zgesugakJ0eUud2sa864UgrtZ0R4O8Jcx7C2UdB7cT0//I4UKPzfpnq4fJxo3CPMI3hds8oa\nJmmgLlxfX5dEIqH1u7i27N3dnbTbba3fBUL7/v5+YdOeRH4RUQNw9M6vfs3q6qpKolZWVrRNJTpP\nZLNZZdpYgg02Dj3Va7Wa1Go1T1tDlh76RbciRIjghTU+Xf93/R4hQoTZBxtS/Ld9zihyJszfEdwI\ns7ZGmA9YAhR1EVklYYt429fbmkQi/rVUIrwvcK39AlZAkCLfvoddS/2IGn5uhAjzDLYzOBWQFWYg\nMXu9nmxubsrGxoaHqHl8fNTOk4PBwLew/qLhlxE1vCAxQbOysqKbFxdMQ80ZtCoslUqSSqW0pWEi\nkfBsaHd3d1qjBgWHcGBgbWVoP7VM0Ga4qDdChOVGkDHC//d7TTQvIkSYfYxKc3QV2nc5DGEcxmhN\niLDMsI6JqxDsKFLU9X4RPgaj1DVBZKufgsrW+xpnfY0QYR6Be5pTrbnL4erqqjw+Psr9/b227cbx\n9PQkd3d3Hl9+0UkaEZGVoC+3srIy1W/uSnUSEQ9jxm268RPH5uambG1t6cELHYgeHLe3t3pwO1HO\nkXM5p36b5EdgOBxOpbT7tMcxQngs0hhOYqRM8zM/ck4u0jguKxZxDIOk967/WWeR51dQxHiWiJlF\nHMdlw6KN4SgCdNQ8Y8yTkmLRxnGa8BtnXntdChuL974HojFcDMzLONr730Vicw0nfpzVZ5xSOuvr\nZFj4jeEvT31yXVC/1tpcaAusG1oarq+v6+OcToXovm1r52LerLJnUQY7QoT3gCuiFM2ZCBE+Btb5\n85Phh93bXFJ912MRIkQIRlg1zEcEPyL8GkTpjBEivEakFhsfqx99AhEiRIgQIUKECBEiRIgQIUKE\nCBF+4pemPkUYD/MiZYvgj2gMFwPROM4/ojFcDETjOP+IxnAxEI3j/CMaw8VANI7zD78xDCRqIkSI\nECFChAgRIkSIECFChAgRIvw6RKlPESJEiBAhQoQIESJEiBAhQoQIM4KIqIkQIUKECBEiRIgQIUKE\nCBEiRJgRRERNhAgRIkSIECFChAgRIkSIECHCjCAiaiJEiBAhQoQIESJEiBAhQoQIEWYEEVETIUKE\nCBEiRIgQIUKECBEiRIgwI/j/3p++8Tt5LoQAAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "encoded_imgs = encoder.predict(x_test)\n", - "decoded_imgs = decoder.predict(encoded_imgs)\n", - "\n", - "n = 10 \n", - "plt.figure(figsize=(20, 4))\n", - "for i in range(n):\n", - " # original\n", - " ax = plt.subplot(2, n, i + 1)\n", - " plt.imshow(x_test[i].reshape(28, 28))\n", - " plt.gray()\n", - " ax.get_xaxis().set_visible(False)\n", - " ax.get_yaxis().set_visible(False)\n", - "\n", - " # reconstruction\n", - " ax = plt.subplot(2, n, i + 1 + n)\n", - " plt.imshow(decoded_imgs[i].reshape(28, 28))\n", - " plt.gray()\n", - " ax.get_xaxis().set_visible(False)\n", - " ax.get_yaxis().set_visible(False)\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Sample generation with Autoencoder " - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABGoAAABsCAYAAAAyoVQIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnUlyZNlWtbcXKlySS4qITB5Ghx59zGgwDXoMgAZDoQ8z\nYABgRocxMANadJ+9JDMK1eFy978R9h19d+m4Innv+k9hfsyuKUJyv/cUu1h77X3OnWy32zq0Qzu0\nQzu0Qzu0Qzu0Qzu0Qzu0Qzu0Qzu0//42/e/uwKEd2qEd2qEd2qEd2qEd2qEd2qEd2qEd2qF9awei\n5tAO7dAO7dAO7dAO7dAO7dAO7dAO7dAO7X9IOxA1h3Zoh3Zoh3Zoh3Zoh3Zoh3Zoh3Zoh3Zo/0Pa\ngag5tEM7tEM7tEM7tEM7tEM7tEM7tEM7tEP7H9IORM2hHdqhHdqhHdqhHdqhHdqhHdqhHdqhHdr/\nkDZ/64+TyeTwSqj/xrbdbidj3Oewjv997bCG/zfaYR3/97fDGv7faId1/N/fDmv4f6Md1vF/fzus\n4f+NdljH//1t1xq+SdRUVf3FX/xFHR0d1cnJSR0fH9d0Oq3ValVfv36t1WpVx8fHdXx8XCcnJzWd\nTmuz2dR2u63tdtt+f3x8XJvNpp6enurp6amen59rNpu16/n5ud1vu93W2dlZLRaLOj09raqqzWZT\nm82m1ut1PT8/1/Pzc63X65rP53V0dFRHR0cMcvB8rvl8XsfHx3V0dFSz2azdZ71e1+PjY7tWq1W7\nT1XVyclJ6//p6Wnr09HRUZsDLs8JfXx+fq6Tk5P23fl8XpPJpCaTyWBc9FmLVf/8z//8h6z3q/bX\nf/3X7bmTyaS2222bg/V63eb87OysTk5Oaj6ft/4+PT21OfKYq6oWi0Wbl+l0WpPJpKbTaW232zbP\n2+22ptNpu7yOVVVHR0dtLZmrxWJRVTWYS2RgvV4P5Ofp6ak+f/5cnz9/rru7u1oul+1C7h4fH2uz\n2bT1ODk5GdxvtVrV4+PjQEbp59nZWV1eXtZyuazj4+NBn5CxzWZTX79+rYeHh7q/v6+np6f613/9\n11HX8G//9m8HuvL169e6v79vzzw5OWlrcXZ2Vufn53VxcVFnZ2eDtXl8fKybm5u6vb2t+/v7wdog\n8+iz15t1OTs7a7YAeX5+fq7ValWr1apms1m7x2w2q4eHh9bH2WzWbAZ6yz3+8z//s373u9/V7373\nu9psNvXhw4d6//59XV9ftzV8enoayBPPZr0mk0nNZrP296oXfZ7NZjWfz2s2m9V2u21z+Pz8XEdH\nR61P/I37/uM//uOo6/jnf/7ngzmvGtoC2na7rdPT01oul3VxcVGnp6dNPp+entq8Pjw8NNnm8rxO\np9M29qoarFV+Dj2cz+d1fn5eZ2dndXZ2Vs/Pz3V3d1f39/f1+Pg4mFdsxXw+r/V6Xff393V3d1dP\nT08DH8B6MV7G8fXr1/bc4+PjWq1WdXt7W7e3t/Xw8DCYK2R7sVjU0dFR0+HNZjNY381m08b4/Pxc\n//Zv/zbqGv7VX/3VK3/kdn5+3vTv6Oio2RlsDf2az+dtjrGhyO/T01Ob89VqNZgH+5/NZtPWbzqd\ntmefnZ3VfD5v68Sc8D3LBj6Bdb25uambm5v68uVLzWazevfuXb1//76urq4G8mP/lT+z8bzJZDKw\nK/ho1s4+kvtx/dM//dOo6/h3f/d3r9bRY8DmLRaLAb4xJtlsNu376JRtHJ9BRqwHzCN2kzmYz+dt\nPWezWbPri8Wi+Rpsl+fL/u3x8bHZ048fPw784na7HfhxZPDs7GwwtpwbYwhkGT9oO2Af6TE+Pz/X\nP/zDP4y6hn/2Z3/2yienLUQebQuRNdZjvV4PMBzzallk7L5HYhQ+M5lMBus2m83afcBfXNyPe3KP\nqqq7u7u6vb2tu7u7Wq1W7TP+juWFZ1sHHx8f6/7+vu7v79ua07DRJycnDSNjg5iL1WrVfPDDw0N9\n/fq1Pn78OOo6/uVf/uXAxnl9wI1crIH7ajwIXsUvcLnl91NPWYPpdNp8kzF84h5iEmNn1sM6a/yG\n7/P85/j9LONw+2rLLvNjn27Z8hz/y7/8y6hr+Kd/+qcDucyY0DJfVYN1Y76raoCre/GD5cBxGraY\ntcw4cJe+2EbRj5y/2WzW5v/h4eFVHOLv2CfQT9sZ5MZ4bzKZDGJasGHOCZfbf/zHf4y6jn/zN38z\nmOe86OPx8XGdnZ3VxcVFLZfLOjk5qbu7u4ZbvAZHR0cDTOnYGz21b6SxlsYVzDXrfnJyUuv1umHK\nzWbT+kfMxvqyfg8PD/X09FSnp6fNRqNP6K/lAn19enqqqpe4FbyZFzIHHjs/Px+sn/3rer2uv//7\nv9+5Ht8las7Pz1vHEZ6jo6M6OzsbKBIP9SSimFUvILH3uel02kAN/2YB3HgeYMrO0g6qqgaBdhoO\nG4Hz8/NXII3L37NgsjCMDydGgF9Vr8bEHHnOrLxWxhTUMRrEhxUcIszPh7BCCO3A3Fecz2q1asbH\nYI81wBjZoBns0piLBIzMK0aLz/on9z07O6vVatXIhMViMSDjTO7h3Lz2PO/+/r6tO+QH5JXX8uvX\nr83Y8zdICuRgzAaxQb8xVLPZrAV5JiJw7Mgylw2OHT7gB+OL80FfGdv5+XkjcpAF7skcYPySnDw+\nPm6BTwba7969q/l8XsvlsqbTab17966ur6/r6uqqEUs3NzcDQhUHYJCV82NbYiNJX+kXdoe5xl6N\n3VLnE5R5bQjCCawYX4+QNpmN7cFeZdBR9ULYMi+Wn/l83oKM09PT9myCEd/HRCtB0sXFRT0/Pw8A\nlr+DIz06Oqqnp6dXwRN/sy1iPKmLOY/z+bzNRQYsYzXWwOvpcWL3kR+Djaoa2AsD+QTmDkpSj05O\nTtr4rEenp6dNnrEFXCZnMjnAumDrWcfj4+O6vr6u6+vrevfuXQM5VdV00T4dnbIuMmYHWKwTgIbf\n72O9drUkqxLAQ9rig0yiMJ8JpPPfeU+eyxyxdhmgGZSSLDo9PR2QApB97heytNlsarFY1A8//FAX\nFxeNODw/P2++DrLHgbkxymq1aiT7169fGwmEvwEP2iZYLzKJZp8/Vkt5nkwmg4SP/R2yhk3xetl+\nogMmARxUGrviO722XLbDBvaZBLFe2E7i3xaLRUs8JZnB/YzD7beQUxO1tqkOTIzL7E/5HRjAeGys\nBllp+e+RFuiRbUYmZ5hPB4D+DN93XGMbms/K55qQRLaM+WxXsIenp6cDsh5iJckA9zMJT+tWb27A\ntRkwWveM5cduiW2qakCQ0Q/Ggu4koZNBbxJM6B141Qn7qtekhn0MdtJxasaQuQ728cfHx82Ger0t\nJ17jJP6MKx0bWUY9BseL3J/vElOO3YxPUoZMmEB80Kenp6cBgZYFDNgo/Mx2+62gw/OXWIq5SBLc\nOPHo6Kj5PH6iVyQJadPpt4Tf9fV1ez42OuUC3U77b1xn300y1Hhru922+NMJhM1mUw8PDwPicud6\nfG/Bzs/PXzkqGypndc0w4jgcBBtg4DjMIhrAmSjIyfOEZ78wWukE06DtClosjBlMOQgmK2FDzRzY\nMVvxkhiwkJlA2kdbLBYDxU8hZw3JlntNPEepPIzl69evLSNweXnZDBKGyjLDvbiHHQtAEgLNTLsN\nbRoN2ErAEfPvLAROkXE4S41ys45UFkFKEBwiJ6w7a8ffTk5O9raGx8fH7dmMAdCc8gvI5vPWKQB6\ngkTm+OTkpBE1rC3OjDlZLBYD/bDzg6iBjLG+nZ6e1sXFRQsA3Q9khwqX6+vrVsn0yy+/1MePH+v4\n+LgeHx+75GpVtbUGlAPWua+rENBldIG5rKqmn/8/iBrr4nw+r5ubm0HmDB1hnW0Lk6GHHEFmz8/P\nB8E6csTz0iYY+EJwkUkELBo0ZN+trw5+ch5xqLZ/ti0OIBgLxF9m4DyPs9msrds+yFKax5MA3sFG\nZoMcaHncKcfWZZMfjJP5QCaQ+dVq1YJpgIdlpEdm+SfPZf3n83kDNVS3YcPx5bZ3BlrYIAcY9teb\nzaYFy4kbete+GvPrdeEyQTyZTJo9cRKpR9ZkJtFVx72xpE456N5sXipBF4vFoELU1cn4BwN4y4iT\nIM4+IjeusDEQv7u7q8+fP9f9/X1dXV3VdDpt/oH165EEGaD17MAYzSDc/gcccXt728aGXd8l+5a1\nxIu2hf6sSf78juXdOnt0dDTIKPdIP35S0cia2n/4Auvg31MvsbkkZ9DtDBCt08bvnhNswJiNQI41\nNVbDXmEr+Z0xtj+PH8ggP+MXE2i21UmypC5ykQikysg6kJUsbgSv+FP33Rd67sw785NEAn6eQBhC\nwPEWcrYPPcx1q6rBmIgJiJ/ol/2Bq/ytm9YjSGt8nLGC56KqBnrtta8a2uok5Ezg8dmq6lYG9xLZ\nYM35fP4qschnHcwjr46xjOmYgyRUe9W8Y7QksfPfxu3MMTtIjB+3222zR64kenx8HFTDpA3PeNF/\n8+WYkGQC85Pz6u9js1lP6zo2AHva4z5cFbderwdkj3kK5IMCgOvr67bbgWdQMf3mevyaBbPwOJhj\nISyIZof5nX8yWR64gX4atx6j6X/bIVpZnZX2M/M+/l4PWFtIrZxk2SADsizM1TSM3wbXwTZKwf/3\n0XiGgT/AjyoCl7InKdMLhjL76QqU2WzWtsaZwMvLYH69Xg9KzQm0ttvtKznJUvOUGy5nqVPpvb7Z\nLyo/zs/PB4RVTz7cx12OeayWzsTkpmUQXcSA0kdkl894PTGaOEEMEiScCTAMUoJG9ArSDjBUVU3m\nIGqYVwybnaC3/BBYOLPd23LCOgJKqqqt4XK5bCSky9r5PD+ZYwK2fQBS25MEBhBRdhqM1RVc2AkH\nA9YPryUgCL1mfdF7+uT19PghdMjme72r6pXdNmmTDt2BSG8sjJn+UxXggJPv9zI8tkcGRvtolhvr\nI74kgy6+k5f7a7LEfjKJOarezs/PB4Dl8fFxYK92zdN0+pLBdBDgzKuDOVfpWM6c0DAJxZpaXizn\nHndmFQ3Ukwgau6Wvw/ZzPTw8NGCKXWO+e37AY+XfR0cvW3qTiEoZ4N8Gta4MM+FhW29gaHzhoJJ1\nJLPvZ7Pm/N59sQxVvSStPBb/3ePiM/infa2lsZNxpberMDcZyDHXSZbhF1k/k8WMFwLdBEwSHzQS\nIGwdTqLGzTq7a7wOCKq+Bf8812uHvTA5j311pXXayiTfbLP30UwoQMYkLjbG6FWgJBZB9vic44ys\ndLIc25+h/1TNJFHDevN38Kz9gX0pfpFAL9fe/WdeXJXIWmVsRHO1hrGfdT7tzlitJ0c8xwSEbZaJ\nOPpt25r9ND4H3/SufJblpPcc398JJPtkr+NkMmmVIjm32BnsiPthn4t/cEWQsYztTOq7CYWxW8bL\n2S/3j74wHip587v+TFUNdtB4jnJOUl4tD0ls2gbsapBI3tLMeO1fsUWM17qciTgwNwlsrw2xy+Pj\nY9spYtzI/L3VvhuFsB/LoNzCgqHC4Dmgs9IaeCQrneSJg0EWOUmgXYGwFQ+FNmOW5APCYCYsQYf7\nYIPH4ngfW7LBu4wS/YCRT2AxdktWNwMyQARzx7xAuHAB/vJMmul0WldXV4Osvx2g55F1MUGEwWO9\nAP2An3RM3ivoMjTWx58j42HjaQNc9c1oXFxc1Gw2q8vLy0FwiMJRJg6gQGYcVHjcY7e7u7sBkLAs\nu5IiHbfXHQZ4NpsNzoLyWUOuXMDwkMWAJHt6ehoYLQyqSUc7MJ/TRKbLQbxJCAOVzeZblRNVJnZu\nyV5vt9t2nhDOy2NC15KMJDikqszk1z5AKVlwkyx2RgThzKO3+ySAd0bRAYO3viQZgiNxRYtBSZLU\n6BO6jU54HquGtjfH5mezZs5UuM3n8yZ3yBx9pMILe8G6V1XL1mGD0dd9BIee26wE8XYUkxIJ0gis\nsPmZ3PC9bWdIBvA75tPBiUl3B/w09NN+K4EQa7Vardp20O12OzhnLrco+7uuNEifD+GKv7W+0X9X\n4uwjqKh6sZvOxrKG9oXL5bLm83mr+Dw9PR1UauKv8F/WKwd92BqD/558mnChL4+Pj/Xly5dmfwny\n+D8kvM9aMJbKsmufP5LJI8vedDptW4jwE9giQKh10TbTPhH/NHbzXPK83pYU5t/ZeCd8HBTiHyFD\nTd6Z+M4kFGPks8YGzoajb71sr22YA5ueDtj3YScglmyjWc/T09O2nZTLcmB77kDXgUQPX4zRTG4x\nt+lT0o/1+ua1Ydw+M8/+3Qlh+lBVg2qblGnjKON8vmscVFVNRubzeTuLLM/ocnCZskxlrElx7DAy\nnvEKc2XC3rbOFQRjtkzkYO9cvct6VA3PuPQ62B4bF6K/Pk9zF46oei2rzIPl2oE4+m2yB7zkOaWf\n9hk9gjCJT8exEH2eLxOju7BUxlP7aI63XMSArKMbZ2dnr0gdYxVkzkQx/2bdHfNlfFr1Gje6MML9\ndUUoNpotR76m02nzmXd3dwPbzb3sU0wmuRiDsVDF7HhxF66iSuf29rb1uaq+Gy9+N5okC01zFYWB\nIpPtbK0NjoHpZrMZHExa9VKp4MDEezqZYC90gh0cnBXPTLqrQPiMn2WwbQVAUe08zaAhMABMDlK6\nu7sb9L9qyCo7k2kDsQ8wA8nihtGBqLFRYZ6n0+lgHK6mos84PH6fYK9qeCgwgg+bSWaBv6G0AAsc\ni9cmmchknrm+fv3atnSR5XCmxETNfD5vBy3ambEF5eHhYbCPmrNoDKYBXrDjY7a7u7sB6UiWknF7\nDZgvdMPbnapeqp8Iir1VKYP/4+Pjuri4GMjSdrtta4NeMqcOADebTbMJzt7ZJnivth0dZMJ8Pm+H\n2AK6d5Wh26kZ1FXVq+CQuUROmCMIKvo9diOISqKTfuIATX4R6LiMlM+iTz5ElmaA62egz8iRq+Ay\n8GKuMsjL8moTSD3n7TGjw8iygQfAABvvecLxeisjF/3GfrhseOxmcsXZNeyYiRo74e1228rk2fuM\nDDp7VFXd+zNGvmPfh+yjg87asr3F8+XPYD+yIoh5zTNpql4yjwY6XsfVatV8K7bRlaYmRBw0AaS9\n19z6PGYjaDUwpe/MK34QO8i2TewqvpW5s080yWif4EAh9abqNVFjwJnYBDvrtSaJkc938Okgk3ux\n5nwPu+2Ahj4i69hl4y3LATYMYn3slkRNVQ0qMJ1Yc9KAgBlc4PHN5/O6urqqq6urury8HOi7yQAT\nCk5akgSxL8SOZVLHWx6SqES2TFIwrx47AbADwMSXbAF20q6q2pZ9B1bph5nX9KljNpMK+Le3KkiM\n+VMenBUHR1J96PFlApefJjaRYRNo+GCvDfcxDkpsSCLJJAvzytx67Z2sZizM0+fPn+vTp09dP2c9\nduDvud4HRs3qDubSGM2ESB6kzzxXDQ9kt190dWAmTCzziTFyPTLOs+9LOeNnYsskavgO9zL561gD\nHIXOuarP9sRraSLBfd+XTXXsDA6gf9hD1sb+zDjFZKMJm9y+ZnLHRI3Hhu1M3GJ953kmVahYtN01\nSWNfneSQcVzyGYyBKjtsBjY7E2NV1fpze3tbVTU4VuKt9qsqalLJeLCNm1kynKCdmAPc9XrdToqG\nKXYQyQRwOKy3LzkYNQmSextxqAYcmQ0h2KTPdhRmSJl0O10cXx4Et1qt6ueff66ff/55UNqYRA3K\nwMJVVeuDM5RjNQMFGx87dxsEG8jn5+dWkcJcLpfLVsKbIJS18h5AbzthjGTmAMsYAtYHeeI5rAHO\nAIUxaMoMlN9UQP8Zu8En46KCx+APmeKUcPqNsbUxgHzaF1GDbjCvVS9BNwaRbUUZrDpYA4ADKLns\nVFhDjBjn9/hg5gRQ0+nLeT8QW9gD3hjjffTeq235A2ibcCMwwNBzfpBlxiWNkGw87/7+vsm+A8DZ\n7OXNVLe3t21cBBdjN9YA/cqqGpeo27ZglxxYuxpuuVy2M30SCOJw0GfkArKNNwQhxyafsadsZ5tM\nJoOyfdbQWT2TYOn8kNsM7PwsnLfXCz+Bvrmqy4A+s4sGY2M1SE5s3GQyaXuNnWHl7zQICMYwn7+c\nE+Gtf05KcP/edl6eZVkx0M83HJiANlEKIYE+mTCvqrq/v2+6a1CS5xilLTZgS0DkagxX5/FcZAqi\nax+A1LpoAgsdsa/ytk3sIUSJZSGreE2UeK2Qh8wOGpAyhxzoy1vQALlHR0ftc9vt9tWbNHrEkSs7\neJ4BNLgpt7rNZsM36mCPkUkwBL7HoHuf1cI9ogbZZj2rXqoP881x1gHm4+jo23lpHz58qA8fPjQd\nTLKFrC3zYqIGO+wEAT+TGHWgX1WD7/UICgeanmtkCj/hajoTS67oWK/XrSrDtqtHJO6bqMnn9SoL\nwOn+Gy3XhrFQleJmfO/5R0b8ljXbM+bP6+0tdswNJCGYZT7/9gaY6+vrwRtGGTs+zJjlLcL3t7/9\nba3X65ZINa73mJgH9IB53Be2cbxo8j7JDogrdLHqBdOTLIPEcXM8h93mnvhGx1vMn+chyb1eksJ9\n7pGF3L9H1FQNK2Pz/3w27Qf9ciKtl/DaB6ZxQ/+QE9utqmo2DvIzKxNtD012GDsY3zAvJtg85vSX\nTpzzXBMrs9lsEF94vpLosl55vqlMpN/+LvjEJCzjYR197EbVsKLGNrZqhIoaB6PJIDtzScdw3L3S\ncAN9EzrO3hrEsGgYFp7tZ5qcsfNiEjF2lPnjFBkDDp1n0A8Ex+DNmcle6ZWBCYLs0tLMPGMYUITn\n528HC6URGaNxzoeJDm8hgFRCqKks4HPT6fCNTFwG6g66HVjhLCaTl60MDjidKUTZqqqRepQvZ/bK\nxrHqhfjyGiZI4T5WIu6RwMTrtFgs6urqqlV4MDcEWgYQZKjGbgDh5+dvr0p2/701Bj30egMWIHFy\nDZ35zm18GMHcpuS3cVnXmWMM0Wq1qi9fvrwqz88Sxp5RZh0NFAnyeiW/NJ7vIMaZtawESECIPmZF\n4RjNlUj0lWzsLsBt52DbgU1z9ptyVEBJgjcTGwQg3Dezz9g/A0avOXqfRDtj4R7IZhIvnvO088iE\nnRoVjJCwSaZjFxyU7APUID9J+AJImFMIEoMDkhYE/ABvA3pXEbL+tmUZpGXSwkkF+x6ToraLnsf0\n2946YzLCgbzBsNc1faR9PEDImUSqIHKbqe38mI03zLkSCZtCn5Eh1hGf9vDwUJPJpG2NcVUizbYE\nv2D76jmxvfPnvIXHSSmAsNfO9s465P54Lq1r3NPyROYQYsGELAHwdrsdbCvJzK/t1j7W0JWlrJfX\n0H3BppO4wL7hP7lOTk7q8vKyJQOMG71W2GJ/n8OmkSsHibuIF69P1fC1xbv8Ys+O+u/cj3u4vybj\n0HG2JNqW5DORvX0QNSkbHnPV8M2xTkJV1aBq1wQwmOfy8rIuLy8H85X4z3bXweRms2n6jQzzGXwl\n3/O60h9eW8yWeuTLCT0T1Iwz15e5JxEGhoXo97yYjGfusDfERfvwi07ks6bGDNZP1oAx+U2Xlvu0\nVUkaEF84seBqFubOsWQSSMxXxof0OfXXMkpf/buez8rfm+AxngOLZxKavjB2Y/uxG3LpilGej064\nWjFtL3bQ842/J+53PJ+Xx+nmxEBidq+BbWDaRRNqSZDbtjLHPqDYdrdXueU4A9vAcQqWnR5Z+Fb7\nLlHj8k0Pko4ZXG0237LoGC2fD4EAAmQz+2Sj1FOudGwGnyZr0qEQAJmVdvaIxTWIMOi2wTPTXTXc\nj8/3eR5EjZXJmU7AOqCexWPb1Njt/Py8KRZOzKW/GEpvL0nCyu+Dd5BPhcfd3d0gG2ngz5x7W87j\n4+MrBUhme71etwMdrXAJ4llDB2qWA75nEslZCiufDQ/rSlWPxwfzj1Hi8/f39620bcy2WCzaWpEB\nzD2+MPQmK9frdQumvOXQWUXWh/lxlUQGg8yJiYasjuB3VdXY79TRqmFlXjq3DF5MptI3wHYGKiaR\nkA9INdY5sx88G3n5rxrTX9uyzNckjWUV+XXAbbbfATLgj2wxY8Que24dUKFnkG/MA4ClR9TwfYI0\nb7fws2xHHUxZlhinHaZtQtXwTRLIwMnJSQvmrY9JBO1rDZ2NxE8xDkq9XVFpe8LaUfWFnOITJpOX\ncnED8978OaD2T5Osnmf/rWoIfi0bXmf6al9uf2q5SMCKLNuvI++AQRN9+CDsj9c/g+8xGsFbJnt4\nLn1nLiFnPGfL5XKQgU/CisALssWZeetYBmXOCJq4glBhXb1mnvckBWyjrWtVNdAVxvr169dXhJzn\nB39ydHQ0IET90wH1PgLDqpegwgSN++m+eP4y+WQZt58k6ejAwkEvRI+xrbczeW0894l5ewGp14hx\nWJdtVzKYcxCIXXSfsGFUjJ2fnw/e4koFaq6lbfOYLQPbtPtpx9Al7OXR0VGr0HflO5WmVPSif35G\nJj58bTabVsEPRmWLg+9hH+Zs+Xa7bRXA2AfsH2vG9x0Ypr1zMsWZeRI/SdQ7buP3jqu8jXWs5oDU\n62esiH2pqjYOk5lgc2QiZQHdsT1MAsVJd8stCQKvjYmaTFIkkeCGv3efEreYRLBOu78mTTlOAfl1\n5bnnh/Xkc2M3KjXZYl5Vg0QNsb5xhHUVO+jmnTIZG2fchk30Glp2/B3HBUl8M7+5dsY42XeeiYwZ\nj6Zf9/iJvyBqvEPD8s99ab+G9P5VRE1v+w4DBUhQhuTJwUDiFCAvyD70nBaOz5NkVs6DNVHjRcYI\nETxYEV1N4PvxrMHkyFi7/NhnC9iB0x8E1a9VBHBDOhDk0zdXteyDIeX11awTQe4ukGym9vz8vJV8\nJ1EDsMHAsMUIw0JQf3l5OdjvjsL1iDiMFn0E4NrgWZlzHVORDNpMdJyenjag64C56vUboVwlAJnG\nli2THLe3t3V/f78Xso254zlkTgCZBvgmBNfrdcvmkCWkbNFnAMH+ou+usupVIHnOM7izs3t4eKib\nm5u6ubl5FViYNK16+1W3NoYGIUk+WOcNvjCggBpaAlhvG9qHLvrMhwQadvgQZgDn1WrVgghvSTAB\nzd+xf3ZncAeBAAAgAElEQVRgjNElqDzfh7B5LXcRNV5fysBdbWiylu8jL6mnXluCLuuw++OtXmzt\n4WItWVvLydgNkO2EgefPNtU+YLPZ1PX1ddPF6fTlbJ3VajXItPI75tXNQNw/c16zf7Z/JvwyYLFN\nAHAQaGTAb91z20XUIItsFyBAwX+YqLFe7iM4vLq6GmzpZCuUQXoGQKwF+IY30xHYz2azwbqQ/Ejf\nCmmH/vo5Tp6QPQTngEWwCbYFvjIo8PomsU4ShzkwvnN1QfppiF7rGoGg19x/G7uhi8YFJverXr/x\n0IkeCBreMsh62uZlxrbqxb7kmRkZVDrotK54npL8sNzTf1ovYPA9TNIkZnLgSz/wF6vVt/MVP336\nVJvN5lU1aZLDYzd8n/+fiTjsme0dsQZbi9CRHlGTW4KdsEjdceIGXzmZTBppk+tmzJE/TWw7Ecn3\nuL5+/Vr39/cNa5pQWK/XDQ/bH/gszyRpnExHBvYV3DOfHnMSGIwDPfQceM5yXm2/ejres29VNfC9\njiWz9YhsJ4szlsCfOsj35zwmMGrPFlcNKwL9k3NUSIAbF+6bqCHm9cG3l5eXTYa9FRfy0hVBXFUv\nWI6KGuJJ7mEiP8kuJ5cytvMaWI54pv9mssVEtbcju5mPSK7BhDE2AWzKOME2xGj0yUc4pI1+cz2+\nt2CZFeDmZq1domtHwCAcSOD0k+hg0AZ7uwbirEk6qQzS0xjkQptlTjbOhhZwRECSjFwGmGR9vV+b\n+dtFKNgQj90yIErnl+wmnwfMU8KZ2SefU+DAsZdBS+YZg+YMg88+wJh/zxDZeGWGuTfHvnogJ/tM\nsMI2QAIgzgtAP3jm4+PjXogaB1z0jfHTJ+THbHOWVObaGRCZ7CGwcGDni7VJ8G9gUlXt7JfPnz83\nEtOVTIzFa2U54e9pA3q6b5CcJOB0+nL2UgZgJgHQTUiSsZtJLo/J9itJKuaA7CcHmrK2i8Wi6WGS\nKg4QIMecvaEvVS9bd5KoSQDTewZzbWI/Sb20sSbhE5gzV34uoAA5ze85W+E5HLv1gEKCiwxcsafY\nE78xIeXcfgLf6nG66sEEv6vgDHIS2LGF04AxiVh01IEo5cwOZHINesCZtbQvZi622+Hrg+2feuBt\nzOb+9saTAA27arDnZIXPGWIMDpLySt+UFVEpF7Zt/hwBgefV2zt7ASRjSDuEXPNsB/Veux7ZY73n\nHmDFHuE4Rstxg7/4W/oBj5c1pKKEbTKcvdDDn/g+Lm8d9ra3qhromO1w4sWeDcmAJHFOj6ihpbzk\nXHj9ISE2m037N1iC76V87msd6TtrVTXEqA7YWAtXI/icJAgWksPgDc99+hf0JpuJBOQrSTb8s8+r\nsE3rrUtvbWyDGL9xmV960CPJ0w4b29s37cMvJjmFrqR80hhz+kYTw+lTeoRk+ofEVSZL7F8sB72k\nFM/FprEWiS/zOdl6ftH2KKswSd7ZzqBz/5UA//dtGSNZ1i2LxECsueMKnx+5Xq8H8aHJC+I8r5fn\n0wSW49jEHNzPcmB84/7vIrjdWOdcC8fGu3QYOQaPurLbdoz2BxM1VEZg/BgMv8/XU1rIyU4sl8uW\nBUbYnSG1oplN7QUynsxdTozfGdg7OPTBXxiuHojKoNRsGP83aLFxTSFh8XheZnbc/31knX755Zc2\nn+fn5zWdTtt2mXT6BLQ4cbIRl5eXA0XMM39gTAkinXnxWRisIXPWO/fA2VZIEK+9z9fJLIJ/Whn5\naTbVhj+dMXLlwHa7/bZli7GjyFmNtI+M06dPn1r/l8tlTSaTRh7d3t4OSiWn0+ngsGCCidQvy9t2\nu21vK7u9vW2H1Jn0SvDqAMfgj6vq2yHIfjOIdcxluJnp7YEQ9BLwk0GPwSffxea4b84ee92QF5zQ\nPraw4XB7QDptEXpKALhcLttlooRqNYCZgU/Vy1vNHLxVVdM/ZNkVSL3gtUfaECj679h49CDBBc9y\ngFlVzSnydz8/Axv6ju2xLjK/BlJjNr8xgGowg2iDj/Q9VCba9zF25s72zT7NwBGwlFtkklywbU/i\naNeFLeydTeOWIMWN7wNGExDxXapPZ7PZqy2c+wgm3G5vb1vfrAc01hC55Iwvgnu/nQ07hk/BTuEL\nN5vhuVn2EZm4qarWF+yVy73xA8/Pz91qGgNiLm/rSL1wwJtkGnKeVToOyLDlJpJ6ZNQ+Anz03T7Z\nQaLH52z6ZDKpd+/eDapMTXjb/hkPEOgBxlnjJLOq6tXzemS0/57Elrc89IIMXyaCbI+TIM2f/ixJ\nNu6JnWPsrGEv6P5Dm6um7bezEgtCxL6eGAMZZeuobRb3sN9I7M4zLb+pe4knPY+uak1SdNe6c3/I\nMWyN3yrqqgMTkr2Az74dW+oA11WeYzePter12YH0qbd1u3fuWa8ykHGmT+yRJjzTfcs+JsawDnm9\nLBs94smy0Ftv+9Z8pmNd+zyScNPptxey0Kf01WMnhl2xzyHcJDjBy8Y3y+Wyrq+vW1zCZbvFvBM7\nk1S2zOcap516y+4Y81TVK5lIsofxvWUbvVYZI9svmoytGq41a8gzwTW5pf2t9quIGgNrJoSMu4Ef\nwITsAkTNxcVFY7qtYCisFwaAywCSXXNLcGlAYAfkPmX5brJ16fjol4XAn1+v16/KGnuXy5udCTU7\nm4I2Zvvll18awQLYNAllpnA2m7U92mSZCA6dxTdrboGsejnE1xlIfo8cmIXN8w+YKwy4y4SRHzsw\nXw5eTORVDbftZWkmComc8z3Lz3a7HZBUBi8+BHMfa/j58+fBNgRA1Xq9rtvb20GwxuF1l5eX9f79\n+y77CzNuHYCoYXtXBldu/l0voOdZGGVnJfi+SzcdWDDnrJftgJ9JgOA5B0A7S4EjsDxBHrHXFlnF\nkezrrCGqkAwaqoavWrW8MhbW1FtKHTSh03ZUBJGutjF4cHbXeuHPJcFim9YLCgwQWTOTfJaPnh2G\nXHe1jhvrjs0hgQBJ0ws0x2739/eDNz9BkK3X387UMjA+OjoanO/lKkQa68bYXCHjAAHAgN3LLTLe\nWpNJgAz0er7Ta5WlzFkqbF3s+WkT8dgaBxYJwrBrgJkvX74MSLx9BIe3t7eviIich6pvusk5E8vl\nss7Pz18FxQSVyKztjckXz8OuLWvWs6qXt1NlsOmkV1a5OUjMz+S68ZkMAvwdbIn12ImNnq5msLuP\nJBTVYcinCXzbQpMRjOf6+rqurq4G29dIRiVRY13BHiMj9q9pK9Mfet6Nid1n9BpQn3rc01kTSOlf\n3AeeZ1vrCpDEglXDrZbow9gNH239wW7QF/s6VwhzTpT12EQ6sYV/nz5rFxmWCdXEodYHMPDFxcWb\nRFmup6tlmAfIpqyIMaHGZXthshTdtC9GB/eBUbEhPJ9n0ugn85VV+XluKa0XxPPvDMiZ33wma586\nmfrbI2pSZ9IeOMbhO36GYyz3n3Ha7ia+IRFHf7If+yJq7P+xqZvNph2PYKLm4uKifvjhh7q+vh5U\n7hoPWKe9BZGzDY0787I87CKCjN/z+46zHSd6HXK9e/fgefY3+XKQlHcw02w2a2QbMQbz9D2/+F2i\nhky3SwI9yRZYOg/g4uLtFpkdxOBYwSaTycChpzNy20XS2OAT6EA8wArmd0wseNF7xgbnwQQz7vV6\n3ZyCA04zxMybD4v0tiuDizHbp0+fWkUMZ8tkKanBGW85IttEFngXAKh6OazV5E9e3iqDM2IbAFlV\nLkiS3n2YM8CxK2l83k4ae5yAyypZXwerbq6oAbATIBpoO5O+DyDz5cuXury8bK+2Pzk5qdvb21b9\nYsVHt5bLZf3444+D+al6YZ+tb+xRh6xhr3QSPLsCOztLg9Jkoq231jmvvc/q8He4t+WuargtjMzW\n8fHLG4nW63W7F3aMsacdQ6b2tYXNwZadtcEfjQCWNYd843yTXBvm24CO+YRgtI1jPhzkZebZLQOQ\nXSSNAcwux2vQBGntihrWsUdgMX++B5VuCcAsJ2M1dKPqJZPPfmsOSefZVIxcXV3V9fX1q3VnrD0b\n560w1i0Hc85Msb2Ea5cdyoCc5sDdcmMQnaSav+d7WUYgn9gW5+Z1nEy+vfr95uamEa2W8bHb3d1d\nq+JhHT3/Bl9kFz98+FBXV1eDz1UN7RykBmPIdcbeGjg6mDKGyEDCJA3z3NPHTBb5d/SX9betSHtt\ncqOq/2Yi9yPXy0B6H9iGCtL5fN7OlrHdzwCfqhkCfIg3kzR51ozX1+Rhksz8LuctSbDUS2Nj4wkC\n916QmH2y3bYspBxUDas40HPmxbpt4ohklIPwMRt4hP4zt+hKVlrgEyHZCJh87p2DL6rPkAPrFs/3\nGvQSs3m5r6y3q1uRBxpz5znmeXkg//Hx8SsbYfni9z6LjvXmczyPvjqZsQ+MmrjBcuS5Atv7vETW\njNgImUMurI+9oB0SoPdM+rYrsdTDJkmwWVasG/hj9y3tt3H3LgLCsR/3cIWjP5O+Yux2d3fXtgxi\nU7MChj5QJfz+/fv64Ycf2hmdJHrdbC/zvCjWKuc9+QGvV+qik13pC6teYnfjUycjemvOv71Ojnnt\nK5LEAwPgs798+fJKd6lQeqv9qjNqkkCwIFrYYZe8v5AOmZn2QB0Y5ZUl2ny+10cbVwMYvoOzyYnM\nQx9toHtA1n3msnL6otl44BQpmeYsFpwLf/v3f//37y3Nf6nxPMbsIJl5ns/ng4yvq52Y3wzKM9jK\nLKHXJEFOD0Q46MyMhitlbm5uGkkBUYFx8JoiH8irFTTLwHuXv4cT3W63zTh5jFbYXYHuH9IAFw7s\n7bCQIa83DLjn3ow2ToaL1wkbsKTj6+liMtK7sg8+r8FZLf5tm8J9XIXl+6OjrmJCTngrSjLWBi2z\n2bctZEdHLwe38tnlcvld4/n7tmTfM0A30EQXXeFigLCL8WdOkQ2Tmn6W5X9XEJCAFJnhew46EzSk\nrKTTNGnEGpq0yEoDmnWTiwQBRKUPGR67GWD74PTJZDLI6EI2QQre398PgjcD0qyASX9kf8hBfPf3\n94O3EULUZPBPS1tL/wgunFyBnOfNN852pf9mPROkVA3tL2O2nPlvk8mkVeNeX183sr3nh8dqlj90\nBJmGdGFrBcQL5G4mfYwHGFsGe6nvKduWMQIAdNr2n++4si0Jmx4m4XnWvV6Cigviw/pm+4wtwP8t\nFovBId8OrvehjyQTv379OqiuQwbBpuArvwyBAN+l6zkPDqZYU9s1r2vV8FBckw/8f1fiyQkT5Agb\nbgxumeNv3BtfmYmPJIySlMDXcV/bU9t/y8/Y57dBbjhRlyS77Y/lnL4zBzQThyYt0i/1fFEPv6b+\nGgcfHR21LdMQza4KtR/zv/OcT1/ehm4cVFWD75lgNTaYTl8qNenj2dlZVQ3fXDhWI0nRI2tZD/tF\n4ozENkmyeI2zWf5zbpMss12z/phss4z4e/lv25e8Ny11NG1yNuYF+XezPzeRuQ/yO+NFnj2dTtsh\nwfR/uVw2vPXly5dmu/zSjLRfyCTJfcaVuxGS1Mor7ae3jLuBe/EF1mf0MzFJylISgo433Cfroe13\n1bf1vbi4qA8fPtTR0VHT7+/Z0u8SNTQDPoMG773PPdIIvct2HexbYXoHE9vgWkn8O0+OCRYrkg14\ngiIMa54v0iOJstEnjGTV8MBE+mvjgyKen58PHIEPYNoHmKGaiDFnxsDrxjYkB5Q4dI8tiZokacyI\n2zEiFwYRzvbwOSuT2UfODrm9va2bm5sm7FSCWI7oJ31NAsGOwJ/LDBTgnO9S7pdz6KBk7OY9+Ak4\n/HfWkOoJsv/WlSynNfhKPfBcsjZpQB3wV71k7DJQpKGvBIB5JkDeJ4mgBLk+84mD9jxGB/yQARA1\nl5eXzQZA8PitM2M3g8cEa1TozefzluH0ujN3SdIZiFa9bHtKsroX+Cc49hrZcZq8NLClD+6LWwIf\nZ3VdZWG9NJngdTM4T/tBEAagwM7sA8h4frzX2PNufZxMvmXVHh4eWsaQsUEq+7BA5iODaWTZb12w\n7CK/mbRgbXw2l8G7q7aoMPBWLWeccg6SJEyyxuDGgRFjTD9iooZKwcQDYzX7Z/TdgZLPTPDLAUzi\nEvgy56kLXsMMBN8iwXukD0SXn50+1MFhYpiULdv5BMk0kz7IcpIa4BrILGdVjS0A+WM2+yjbEmMy\nnu3t3JylRwWN5wyfY2K5Z9eQHWNPkwf5WWMir30mCtALiEHPtYmDlDUwLpUy6K2fZ7xsXGedhKjh\nGYzJ2GHsxkHl9o3GnLYlSdYwP/48a+HPWv7TJ+ac5FoZi3JZ/46OjhpJ48osjn1IHUtdRw4g3Xnj\nDjg3iRr3N4maxHtVLxXlVS+VumM3qnX8fNsrsJ630rqSwcSD8ULim8QZ1hHrPuNOctXkDvfpkTQ9\nott9y/H1bK19oTGU5TqJrN69EmsRN+8j1uAIi+32W4La65nHX1CRStzqJGOSmyZr8Gd5FpMJN+PT\nXmyW8aZ/+rlpO0wWOWZPosa4K9fG85/EKFcmTGazWTsj1on1XRwD7VdX1CQLzSTjnJ2VcIYc41NV\nA3BSNVSq3tYV7yGzYKdQO6hLJpXPo/zJ1pF957XbXvgeUWNyxmRVL2jy3PFvAgob1s1mM3jv+j7e\n+mTFc0WNgRalw1kVxVq5KsFGlLXOrJCBh40SwtlTPM+5lZyAyIfdkmlIssZrSB972VwAXI+ttSFy\nQIkT9OHC9NNlignUxmgu12VNLHeUdftAxM1m04JD79/3K2ndstwa/UiZ9Lz2sh4EPjaS1ofn5+cB\nAcHc5fxhG3rO3OuMYYQUpn9JTvAZb888Oztr8mTCEb0YuznYMlgkGGULIKWnOX98x/OfQMQ2M8Gl\ngzPseJJ+7ltm05ETbDW6YqLS97ANNQmHLbq/vx/Yh6oXIm6X48N2+OwNyvY9bvo4drMcExxh55Fr\n77eveu3/ANHevuR5sH+wDWLOTNQk0ch3cu6x2w64M4iFqHFJumUws5QO8NK+es2tS54vy5Yz+YAj\nDjbch1+kL9iFqhpUJyHbnM/GuiR4tSwwN/wtA8EkRpCHnv7Zvue8M7e5ZdFbYBzMeZ3ch/TXaW88\nTpM09NEEJXLDAejeNk/FwdjNuDGJrKpqcwJWRcY558tnuti/9Oa/Z9uso71g0P006WhdT6KG34M/\neoFDEtcmGagu8vwbN1sWXEnmJNrp6Wlbb5/z8mtK9X+fdnZ2NrAfkGWec9sgj93zU/ViX/wZ9BRi\nwzbVNpy56FU6YiesKybkfYHFqBTy1nSvfSYSSUZC+tzc3NSXL1/a9zK2qaqBD7dcOPkCdiQGMZkx\nVsMuJjb0WKnq6W0vpP8ZWCcZknpoeU6ipkfSJMnZ+yz/t/z0+tCLTdPu0mxLe89zXOmxmTxiTdHF\nfcWLrlKpqsGZfH4LJDaDM2s5loEzPe1jMg4H1xNz8DwT0vg4E8/830UdiW2tbz6+AluJrWeek6RJ\nfac6xkQ3z7HPdB/sW9AJfCRJi14FULbvEjWAX2dgE1T1Duo1m0pZvO/B5CRoWK1eDmVNosbCbSCL\n4GYWxaxotlwIAlcb7gwyHEQS+LKoJi0ygKp6HVT3WDi2YOzDgLKOCJYNDU7GWy2cSXSmyXNX9UKO\nIaCZ3aI6w3OS82XFs8Fl3txviIO8TN5YUawgPu9ms3k5EJA1cH+sXAlwaXZ8s9msKWaCi7EawHIy\nmbSgDqdscqZ35ghzmWtjOa+qATjJrJ/lFfDWq6Qj+JxOpwPixN91Jh+iN52SQY0NtY0/65H6twtU\n83lXeqU8Whf2kTkEVNmuokOWu7SlBj62TQlc/HfW3dkYAw5XRBJY5bMBDQYYPVLTpdSebxO1zhxm\nZtKBkrO81j9knr9bL/EFbCd9fHwcZC3GXsOqb/bPB8QhX5ZzPktjXAAS20n+nkSNfSPZ1jyXxoRk\nrjk65GD18vKyrq+v23V1ddWufFNc9sXBqW0EY68aVmKwvkki9gD3dDpt1VG2/TmPY62j1wO746Db\nQNHNAYLnoaoGMmoQabLNv8+1T31OW5B2lMvYDEKJ57F2Bp+9pEoGwDk262oSePajPu8Eoi3JizGa\n8YltSfbH/sr4jbW0/BmD9Oxrj/RCZrwGrszJec8g1bY2g7+s/Mi/mczh+06GWEcdBDKWDCBpEBEE\nUz6Ufh/raL/IfJos4k1rHPzsZKIz8YyXoIq5NQnAnLpyxhjWgZ59tfUF4sGXK2LPzs7q8fHxFVHT\n87GM39VoEDXgWsuMZcTrm0kc/zShtY84I+XWZDx/T+KX5s865nPgzGesA5koMKnhZ6a96v2d/+d4\nMpGMjaD1YiPbkGy7yHk/Exnlc/jw7Xb4QpN9JRPt27IPJHd61WK2c7ZPxiWZhOr93uudc838ZRLC\nc+jYzW9j6/U3yXn7gB5+th6lz+H+llnWKGOyh4eH9lbcN9fjewt2dnbWtgcB0AAHvHLbwWEyqb1s\njgU5FzYDyV1AICcyFdkOz84aw+3PA6Bccph70KuGmUEWk98n6ZAK1DMmKawWmrHbycnJK9BmYsZV\nNL78GsM0ZHYMJgGyKur5+XkgJ8yZq1ZyLy/PsTKkk+SCZKO6xp83yIYIo78cAJ1rmGfBpDG1zNoJ\nuq/7yDh9+PChjZeDS5lXqjAs3xCpi8WigUMfNmpn4SDMF3LOnDCXPJOMUYJT9CgztKyDS2C5zLpj\nawxMM/OC48jXOlpu/fkEt2R/CJadsdoX2VZV7ZDjJCpMmHgdq14fvG5b0rtsV6qGwbqzzsgHttyA\nhu+ZqLEtzi2vVHD1AgzmOUnXzEKbqMGm+Lkek0G318rBq53i2GtY9XpPdTaDPHQHmbYuch/Pu+Xf\nPjEvZ3yTiENu0DcqCZbLZTv874cffmivKeYA+Zw721sC4twWwPOSpOrJFJ81CIesMOG2WCyab6Za\nZcwGsdwjuLzNNIOfJNI8fsaQRIzl3q9eThuXwXoGW9Y72z5nqCHJAfvMr5/dy0aSbDCes1xlcOk+\nMmbeojeZfHvbHAQYZ26M3XiBAWPFztkn9XCZfbvXIPEp69nDm0miIDc81822OUl2+1haj8S0H+sF\nNh4TiSmCLi6vm+2FSTkunuU57BE6YzTbfts11nOxWDQbxRY7J0uTMAUDMeaev/TvXNloHJu217oC\nFsqEB3MPXsvg0Ikn28f1ej14mYMrx7FBxspp7002YjPoE7L1/PzcziIcu+EXbet72M3k4q6L7ztR\nwPeTDOmRIr2YMfFdjxhy/+0/8YWpZyY8UxcdQ/hzJpt8JTmRybyq/qHIY7fEzr059byZBNxsNu1t\ndf4++oA/4v8mMBPrZ2zNc5hH98m21IngzWYzeLNwVb1KVuOjvEaWqcQ1PM823/PCd42/bcuIdxz/\nvNW+i2B5hzqvsn1+fm7VMxw45ODWTioDPi8ag8SA9QJwlxFX1Suni0FyNsFg30GOjWKSRwRqLjn0\naxETRMHiU06KoHoezMD2yBkvZALFt4D/79vIMhMgbDab5lwIuPNU/cw6eS2YYwcaFvpdJ4Sb5EpA\nmADCxsrP6VXtUFVjooZqE5MLduSLxeIVUZOVAW6M3evkTGbVC0DfB1Hzww8/1JcvXxrgXa1W7S1Q\ny+VyIE+AE8574PXdDw8PTQ4S9CUh5go65hGZ4I0Zl5eXdXFxMZALqhkgPG30M7iwE0RWHFR4LtFn\nOwuTaq4ochWFbY3/jx6kke5lrMZsgLjt9iV7n+SoiegeqEviNwlFdAYSKAlI7uPybOxZBhAmOpgP\nZ1ysxwb3gO75fD7IrhgMO2uaJBPP61VT2UbyvSSO3K99raEBhu2YZRXSASLcPiaJSc+zfYJtXr7Z\nKSvLDDZdSUCg8+7du7q+vq4ff/yxfvOb39RvfvOb+uGHH9obcC4vLwfy//z83PQZ/WYd7Nv9zKzM\nSvmxfTcgdVXC6elpkxcC/rEbpCl2huDL4L5qWBHL71l34xRnXfm77aorQplHE+uQQ/hCEyPMq99i\n6dfb5jZJtsFh5yDQCdJSD7kgr9CpBMBJ2BgoM6aqYeVxVbUte2M3qjGRI/AFa8W8YQt6WXrwkNfA\nNtZY1hlm/90kkTFqz7dkEigDn/Q7yJGDHlegIGuWU9bTRA3rm3LlPpmE9bwZ2+4rOLTvh+CfTF62\ndV9eXtaHDx8G284TW6dPZFyZLGDeTTJyDIKDR3CTt5ZygSu9tYKf2Grspu1bJpRYs9Xq25s3fUHc\nGLM7MLQsscapqxA1yCqJzbEb569ZDpMMSaIm8VYG6oyPe/XW2Xg272NSOe9r/5S+qerFfhhH9PCW\n5972Adnqfc921XLoe2Yyz7HmLkJ4jJbkXw97p81yPL1eD99+metuPYdb8Br6+banKeu2n55zfsez\nvfNnu922N6XRL9vP3rhN0njO6YNlqEck+d6ORUcjarz1xSQCgKFH0HAZZLrTVTUQZmeaMhh3I5De\n5dz8OZ5lksYOygDTQBjDSsUCY3bAgFFOkJrK/5aS0nrBVn5mjJbBE8LFwcYZ5L6VfUphZN6cdXCJ\nPvPH3O0CfglQTNJkFtlMrA8Zvr+/b6ApK2oAkTzHVSW5bgnibFwZM87e4NxOZOx2fn7e3oLCHHN2\nwnK5HJBkjBvj5O85sNgVLNkAsVY2Khz2yZYJj/vp6WkA7tzoj7dKcn8ARtUL0dADRxA0lF9CrPWy\nphksJqAneLHdSmc/djNhxIVu+ADhXY457R338k8DeJM8SSRTnk2GMisL0i6lDcjAxN91gGofktUY\nJoYYg33NZrMZkFces8lJ9ksDSk3sj908V1kZlNlO/Ba6Y8I8ScIcm8GfCegs22VNTIQTEKBv5+fn\n7RXh79+/rx9//LH++I//uP7kT/6kfvzxx3bA6sXFxeD52BP0xSQ9NrDqBSzRD8tpji99iLfkGFxn\n5cjYLZMB9vUQyR5Hgnu+x5hZe8u+A3wTJElA2zelrBvD+DwhzoNxttA6end3NwiAIWogazhvxPab\n+7RAYgkAACAASURBVDCO9H+5hgbirhjIqix0ZewGEYEOGl/Qjwxwq4YZcNbdZLV1z0E7Mt/zm9yD\nZ9keJmHueTRO9d+YU/CmyRcTvMiY7WYSNUkw9EjlqhpgK14qYVu6r+Cw5zeYK4gacAfkv/FMkln2\nrfw0uY3s8HfwBgeYmxiHNHl4eBhgdhPheSgq33VlHn2DaEqfR0Waq2o4i8yylkmXrLLwTx8gbNyz\nj5eWQAaxHozRfUuf8Fa8Y1voWOotUi6Jmnx2j8DhvrvsG7Yk++t/2xfSF8eBSQ4bL/C8/Du6sFqt\nBvivl0wYu/VIr4zx04Ygw04SJrFhPUeHnXjLmD4rmhKf8h33wzGCsRd6xwtWjEnxg5Y198c20DFi\nEjo9fG+7bL9kkvet9l0E++XLl7YNyIH8ZDIZlP65tK7q5VViqWgJzqtqENyzwDamFmgOwcog0ovJ\nfjSz21w21qvVqru3FOFPJ+7A1sCZvnMopu9J8z1tVAhQEWIb7zHbzz//3AIEnK+BuYWGdbSy0cw6\nO9OaRI23Ntj5moyzEUJGHHxQIfPly5fBK7h7r6N1Zh6Z4X7MLX3uZePdvySnMiBKWXaGhgqlfZBt\nP/30U8usIM+Xl5ftYi4ZAywt64Bsemwpb4BJxmKH5m0yFxcXbZsEr7LO7Yp2UlxURWBYeeau+aKP\nHpv1aDqdNlaerW3oMeudRLEDRGTBTsdl1/tonz9/bvfmcDNXtng7ou1SVrolKeX5Yg0N1vienY4z\newb/GWga5AN67YCdBcEekzWws3JlyGbzcjZC6q3tpMmQzOji7CFlGVvPJozZqP5CpzIg9Do5ENhs\nNi04tl56/kzQYWPwE6wLFT38LUErDfIPnXXVDP9eLpd1cXHRCDt8rINUB/om4Z3pyyxcku8ZRPcI\nWoNwiALL1Njt48eP7Xkmt8ENPlSZdUSOPQ/Wqap6pUfGNZbLJPaNCXhWEq29hIqJUp7prccOHAkE\n8aGZEDMQdtYzExLYDG8/SfvKuObzeavuHLtRtWlCm2oj/0S2mV+2fiTZZNvXs4PWDZMkSdRQmWRf\nZT/oQI55xMZZh70lwIQdz7bumLyhn97ex8/0AXyu6gW7G+cYzxP4jN1cYWhSy5Uq+PXEDCaH+b+x\ne8YK/j7jc7LPRA2JWwhOY5skSnqkJZglA92snsVvg3OSVDQpB8bLANI64Gp4+uxq6H0E+HkOlbGA\ncQ1nn9GSpPZapk9jPI4tHSinToF9knjwZZvn+yd+yMTyrtYL4nvEXA/39rBAEibuwz7WEb/ul8rY\nhmJTOXLB485CC/sDn8vngoEcv/2Iv28bBzYwWcNniVfANK48xdbZBiMnjmMz7rdepdyZwPbaWEbs\nN+xLfg1G/S7yubm5GbDAZCxZTAwNAb4dm5WHDvlvCCtEh1+RnffAiHlRUmBxjiZpXPbNWRoue8rz\nLUzUMLkJRpP5x5hjGM2Wp1Lb+GR2rhc4j9V+/vnnJkhk5ADovNnD5X0AOwCsDQJrkGA1z6Xh4rMG\nrA7+MiPCvHJA8JcvX+rm5ubVAcLOTPaIGgcu/N5EXzKeOECU0GuSWUWDGAewEDX7yDj99NNP7VkE\n8QRcl5eXA3msemHqYYpN1CQJScNouSKFy29J4plsfaKkPXXFum+yC2ec67CLsMG4Pzw8DNYHfX54\neKj5fD4gajKA7ZGtDtIYZ1Z7jN0+f/7cDD62KokawAz6CBC1vTJQqxqCnaygydL/Hphh/riH1y33\nETsY8XobDKcOmtR2ltc6y09f2Ar3l+c6aPYa8p19rF9VDfb3M6d25L6Qc6oJHCA7aHMlDjJKhtKk\no0ka1nyX/pycnLTDN03UJElzfn4+ADQEgAbDyIHPc7O8pD73AGYPbFYNM1EpM/jKfRA1nz596iZ5\nuEhksAXcRJUvdM6Zw6zGsN9jnZLoN15g3SFFkgRIksY6lYdM4xdIKCVR4/UwCWGCJ0l3EgaJcazP\ngGmIGuZxzMah4Q4IeyQN2zurXqpNHOTaL1TVAMP05iTxDJVVJtJs05hbkyXGrq6U8Pcy6ck6k73e\nRTIlPrHPt630301wJMZhDPitsdvDw8OApIXMYD3xecYrtjX8rUd+Gi+YIDap6cpsV25D1EDW4C+5\nlzGS+2bCixjJdgJS2Lpj+9ojapLYBwOk73H8kSTGYrFoWHXsxnYXk1aM0wfU9w6p75ERXuMMyDNY\nZp5zTrAJaZ8sQ55jP6OXrDPplvf5NRethy97xEtvXnqx5ZgN2+gklLGniRr7ZWyQyV3H+WBrH3OQ\nY0iSBtvm5AGXP+d5gai5uLioy8vLAVFDgQnftd9Hz1mrvKeTo15PY2vrN3NpH5L+5Ne0X1VR4/Ih\nb4UCRBFAzOfztsXCYMTAwwQAHcVA7iJqzFp5UZLRxuFh1Okvhh6h4rPb7bBKyCSNjQTGMTNKTLqD\nDwuOM2F5T+YlA60ewzhG+/nnn+v8/LyBTgA6Py1cziQlc2+jmNuOepU0CCLrPp1OX1XUcL8UZk69\n//z5c93c3LzaWmWgaaImFRvgVfVy+OcuouZ7B6z585YB1gyiZh8Zp59++mlQxmeyZLlcvjKSzug4\n28d6GAAyZxlM2ThloMf/z8/P2/o58Mqgwyw49/ZauCUYS6LGoBXds2MxcDLL7gbQxXD//6qo+fTp\nU6tiI3hxMOEAw8Cz6uWMHwM8r10CegPJtEU9osZO0+fKAFhxsH69pwk539cgEX/BtrjMPNiuOFBP\ngpTEQBLKu16XzHyM3bCLDpIzm2mixjrpCkTmz36VMXgOptOX18aTIbe/8BzZB1EVgs13NY2ranil\nJgkO7DT9q6qBr3NFjf3YLqLGwDnBD3213XZAu2+ihm1EjN96aJuHPNnXuaIGkngyGWZovUUjwbmD\na3Q1fZb1u1dR5wtfmEkTfueqAW8rzaoc+zcnLxxYscZ8z7rO2LAREDUe11gN3Qf3OSBMu2r7vlqt\nunY0K2V8foF9fpJhEDUkMME2NBNdrgyBNECvE2dZZpAP5hs7ZN2BGCTY6lUCWWdN+mbw6+AIO7Qv\nooYg38Qvvo4zFI2xmR/mlou4gTGljcGe+Wwm6zLbAk2aWGe4Z1Yc9+IG1oI+mJS336VvxFD2x1VD\nvMb6GJfjcxJjZcw0m82aHuxrDY3DTNSwTRP9ZK0cdOfFXFofGI9/Wj962AY8btlxIor/m6jhfm4O\nxHukoftr/41OYw9tS/P+SUj535bhlOcxG76MuJndKMhaEjWeB9sax3nb7ba9lIgt34zZrUfSZMzt\nKmrPB9+jj7w0wbtqiENpnH/H9jLsqrGN5SnJ9KphRY3lruql+tqXyXRjtl3tu8gHJ23SI8G+DXmW\n9NCYbBucdHzer+ZqDAu9t3YAWDDkZA7TIOSrRmnT6bTu7u4GgcOuQB8HbONnR7LrSjLGIIc+4KgJ\ndvdxGrvH5t85oDNZ4vFVvTZwvWyNyR07FILNlAGcmO9vAHxzczPYp2vA6yqRlMccJ881ebFLTnvO\nwbJqOfXZBBjczOaM2bxFrMews6b034CzangyOfPHd7zWNPQeFh1CgWwSBq2qGsnqcmEO4EsDBfjJ\nIC7Hkgaae9s5GQggDzDk6UB6TtWgECOcNm3sRt8MKlgDO3+AsfuZ9sTzZBCRREdvng0w3TJoQR8p\n/c5MMnPEHFa92Ju0q+5vgpUEZPQ59Y/yamxy1YtsJ7GVczVWY208rw6ivYXUsuszLuhzfqfnLwA6\nrI9lB0LNwRb9MvniOYJM4IBXAIzXFlvsqka/Lvbu7u4VUYOtyGoF5oG1RafxfQ4u38INY7escEGG\nIVDx4fZ3uQ5UdyVYfCvwSPzjTLllI21C77uuSMVXUo3K2rF+/O7+/n5w2D/yBxlaNdxLnwSRx2pi\nycSiSYhe9nislsGqK6TTnhr4098kB/l8D1gbtxgH5HlNNCcAbAttA6uq3bdnj/0598WJsqww5l5c\nVcOss32E58e2MuXWybB9BIcmExJbQx5vNpuG/5EzEx15HxOJuRUtcUUvAYi9hvSez+dtO4VfE+7k\nHH3hfu4Ha+9+2sdXDRO4lmnrvMfO5+wTTASZyDP+2kecYRyVW9Ys2/b5jDkJCOM1J916ZLHl2vJj\nW+D7mojl38yLdYLxYAe8bpa77FfGedbhXUQEPsDzkvfY5YfGbhkTWR+pPkEnc3z2ieiAsTlVLR5L\n1bCaNDFiEh2eF+u7d9VAznv70+np6Su8RCxC35MES13MMyQzBrXNZVwQQMiMsZpJnV3tu0SNM1pv\nETV+BV2vpKcnZD2w0gui7VDsgBxAukQ5L++lTuHzHjz3NYXEoIP/m1mkDz7cL6sqcqx23oDUx8fH\nur29/d6y/JcbTgaA7gDLQJTfTSaTBtxyLhLY+O8mQ2iQCzY4BAmcacI8PD+/nEhPMOA3pBgYZXCa\ngW+CW8sXwGqXwvfImSxhdxbU+7sdjO2jeU2sN/5bkqA5P2TerNuUVDvw97ZBjDNGx1sfcvsbr5bk\n3CYuKgowVhh/VyWkLiaZ679VfSM+zs7OBjp5dnb2Sn69/gYIOA/0FvIpg8axGgEgMpOgHZlDtnoA\nxs7MeowDcdVa1curhk3OJHBKB2jZh3jjbWMOFvzsXYTpLntvQOO5TkKBe7AmEHZcPTtuB7uPZieN\nP3IllOfV1YCAbLJUDoJdKeE5M6Ftm8e/PZ8mSLxNzn2C8Lq7u2t64jMEXJFxc3NTHz9+rI8fP9bn\nz58HpE1m5wFh6/V6cCYSNseANAkjn4lmmWf8+wgsEhhXDbfpENC6OsWgEztpcG8ivWoI1Ph7+tCU\ncbAWsuBAK0kD5g8iFbIGkubTp0/1yy+/tLW7vb0dVAVlYoF/G5jiA1JOGbtJjgSt9p15Hs4YrVea\nn76EgJyx2rYm9sl1Yt7t4+x3k6hJoI9eONikT/bdtF6g6rXx2nvNnSzB5+PT6Qe40+uNP+Rvu55v\nUnMfwSH99Xp6ywL42+QH48o4wUkJy4WrRHMunSQ0UUOAZaLGZ1cRe/hsL2IiSDTb5QyCq15vsUc+\nseH4FJMLWc3JZV0w7qdvxmZjN/ywg3onzZh7Jx17xFVPvmxrjM0yQE4Z4qd9CjLPXHpbaPbHyQc3\n+zbHVcY1Sdh43RMfuT/4Qf5W9WKX+btjtbFbEkjoALEuMkd/7EMsA9bZyeTl7W2z2azpmf0pc2of\nl3Gln5UkDXIHOcNRAiZtGI/tBX302icJgy76vFsnRr1WXlMn47LS3LjxrfZdBItA94gakxcOvhJ0\n0+me8GYAzWI4aLDxcuah6luQxj40V9R4W0gvq8LE59tnPME9xs8KAnNngw0xhJFKFtxCZ+Eks7Uv\noobzLnrAxAwzBtQlXq5CMdhOI+QMRRqRXgDozA9BK+Dj9va2VdT0iBruZ2UxEdELEqte7zt3P9Px\n812UGHDr+aPv9MfZmX009yv1id/35NdOH2IQY+zsU34HI3dxcTEAwNvtS3lgZhxxeF++fGkVa1x+\nLrrIfTPj73EaFFunttttM75VLzp5cXHRXr9u4JTBFvLiN6mwxvuqqGGrYbLrSXjiHE2yOANXNTyw\n0yAFWeQ+AJVehjflKeXHFTW8EcPkpW1pZpnesqk9shd5rHoBYNZfZIBgPw+K99ww3n2QbX6GiRpk\niH46CACY0E/v/3YWEqduO8s8Z/YUktT653sZzCd59PT0VLe3t82vmax0Zvn29rY+ffpUnz59attQ\nqc4wUTOfzwf+G5+Nbbc/d0sgZhJx30SNG/01UYNtw/8Q6DnQN6lmu+bxWb94Vg/Qgwtsf5MQ8Vo7\n2Nlut41QxYd+/vy5Pn36VB8/fhwQbBmIGqCayABEgqt6GfyqYbVU1YstYu3c57HbLv3x1hH64bWx\n7TN4N97MBMPd3V0D9IzVRI2DQZOx/Mxn2J7ZFvoerAvjQE9Wq1Uj5aiQMkEPIZPbbax/6XMyCctz\nmYNe0DlWS8LNtt1BH+dBumLEfsW+MokLr3Um7myjmUvsLsFfJoEdZ1CVyL0eHh6aLEJQ9gK6XAdk\nk75zX2SNecjttYzbASvxDXpNBSVVdmM377zw2rmqh/nP5JPXbBf5YJIl8asJGgfVrL3lGrK1aviG\nUc5JouEb7dNMYBhLmajpJaGSoLP9yfX3Z7CzPLPqdSXovprHAMnCW149D46TkQFeqmK/jay6UpVd\nO8gNJI6JK3CoybKM2TKpkFtgic/T74KFei2JGj/Dvsbr7osY1XKdyUTm9a32XaLGDqNXtVA1PDRu\nV0th9M+8DIJQRAflTBYHJF5dXdVyuWws2vn5eV1eXtbV1VVdXV014GNDzuXskMHhrsb3etkmgxnu\nybwAEDJwycB7X0G+9xjaEPYCfvrJfNuApID3gq6egKYRzX6Y5AEQGXyk8auqQfBhMOj70ewYct79\n02vDPTLjkvKa6+k+jtl2yWium/XHQCsDIJoD+M1mM3CYnHHBWwK4pwN4SEbmH5KNiiiyQZYlPsu6\nIB89oJ3jYL4ta5mB8qGoXJa3BAcOUrELbwGGP6RBDPf00AGPgyeI6Z6cYdP8ecuGHURm3xzImKwl\nCGCrhN+6RrDKvDs4yD73CPC0ORnkJahJffT+ZECoS1F7oGjs5oCsl9VJEjNJ4R5BkwDXIIj90846\nsW5Vw8N4szrNc2J7BmlU9c1+ogMnJyeDc2ju7u4GlTRkY+/v75u9QJ4Yn/URQNsj93s2swdQkc2x\nWxKX6avoZwbSlm/Wgb+nvUp/wViZkyRfU8byGSa18t+Qa1ldg+76/A2+Z+LCmUMf/GkyNBMiqav8\nZC5S38duWVWQASByz7+NS2iJaZBr1sDbYrxtF9mwD2btbHPpX9q7JHQhk5Is4cqkRW57chbaZJOx\nmQNOE309H9ILxhJbjdVS9xKbGyvahhDwuSXZnz6g54csA8yHA6ne+XzEGFdXV7VYLNpaYDchy702\nSQK62faZuKI6n7FAyFu2Mk5LjN3DsvtaQ/u0tJP8tI1PX5p2hbnxHPXmqkfaeusT37fuWa+TqDG5\naplgPK5CzxjF8S3P5fu2FZZDPwvbkYSOfc2+iFPrguUWjJNkhO09vhEc1OMMql7k0cercDwJJA3j\nTjKI+cxKcScWkrDBh63X65aM4szE9FNesyRpiPMtWz6Sw9wGMsRne7G2sdOu9l2ihr2XsLg+RLGq\nXi1Aj3h5q9nYMiAroSfv+Ph4cBDi9fV1vXv3rt69e9cy6BAmEDeUFDkLkeSJJ7Jn9FAWH0rsxe/t\nic5McYJ5hIAMAVl8guOxG2Ojn4vFohkZn9SembIsDc0yZmcQDFSZL5yM9wpeXV21dTs9PW1z5L3B\nPq8ARdkVbK5Wq4FDu729bcGMHeRkMmnA02uNHGI4cIQeu2XFjsIZz6qXE8T3ERxCAvaIDIyogyM3\ns9cG6T2S1GDJmaPM5jpI8FlCDgy+fv3aAh7Wzod2eg8zsmAQjc1hOwZrQR+9F9XVcSYdPGbW0aSh\ny5oBwziQfWTxcQ6AQOwc1UjYBzs1G3dk1A6MzzjjRoCcZEAGAXz3+fl5sOXw8+fP7fIBuNvtsEIn\nHbB1NAkDB649ctgBicvULWsJfAx4+ZvJwH1st0gSKomu7O9sNhu8uYTL5EwGx0nU5LYok0AJ4JB3\nBz+sG0RM2j70BIDFZd3OQD8BjX2e9ShBaDbLo4nilJ2xGz7dNgQCBQK6qgZVQQ7m+J2DL3QBOaYZ\nxLLu2BjrpQlnk9s9+2ui1MG+QbTXx2QM9mc2mw2qBa6vr+vq6qq90c9Z+V7A63E5ODRJkMTwmM3+\nlzkw3kpiIUm2HE/O3Xa7HRAhaa+qhtssfdCmK2kcyGVVb2Zi3RJj8xl/P/WrR1RbjtxYL9ukJHv9\n7H35RdbRsYT1zRWI9CtxdupkVTVCgnnvEcKZBObMiMlk0rZWGwtBzlxfX7c4ZLFYDCoReRELc5v4\nxXbCgZr9tUm8JAAYE37SGNnjTd/7azL4v2/D5yQZj8yBdaw3zMEuG+91dRCcmNvbMnP7FVUPzCcv\nKsnEA2fU0CdXo+EXMulPSzLadjGJ4x6BncTOLt/Ks4xvx274Ftp8Pm/k/8PDw+CzGRMZR/N3yB1j\nFGJd46OstKFZNjxXrA3/dvGEd9iAV+07uUcvAeLEGv6SKtvlctm2byXZn0k5+gRvkIT6r90S/F2i\nhlc3YxQxCp5AjByLk1mDNKJ8zr8zeDA76kU5PT2tDx8+1Pv37+v9+/eDtxblm1N8qDCLCLB0AIAg\nodRZRmjHYFDnTFMyt15oCzACZQBjgIwB3xdR43JIAlOIGmdycx1NxmQgkuCQ9WQceeDaYrFoju3D\nhw81n8+7J+2bUMvAD6eEjDw/Pw/Oh4DswwAYvJlZ9VqbYa8aljObqDFJ5D6wtiYwx2689ttz4WAR\no+CzWWjIYwLO1E8DM4wLeua3e2Um9/7+vm2P8MHP2+22GeOeITVpxhgIZtGNh4eHwXr0iBoTcCY+\nnAlNUthEosln5H6fRE3VcI8z/U17WPX6TKJeJgbARnPQl5mmzF5xL84j+fnnn+uXX35p5dFfvnwZ\nlG6jg9YHAxEHLZmBpyVZsysYySCmF4R4Dj1P6PM+gEySpO5nkpjMGfPiuUpyxvLMPLC2zjDzO4ht\nnu/gJYk6iJqnp6cGiEyoHB0dtW0FCWqTqLG9d1LFQJr5x9exXtmSoEg5clZ47JaHDhoo8jYn5Jz1\nMFGa2MaBiIMJg3bLKCQNb64z3qD1sptJ1NhH9yrcrF9OfEwm36rRjKVM1JAccGDZa9zHW0y4CN7S\nBozVTHYjcwbwgGbWxfiO5gDIgNvEZ5L9vgdygj4T1BvM245lUJBra9+cBFjvHimLibcZGzbC68ZP\nbIXP9XDz/O6LqLGu256YqHHi2EGRA+Fe0It/tc1KP+kzvRzwgxuprAHDvn//vv08OzsbVNR4y5HJ\nwefn51dEjfvi83SMQU3KOTnTSyIib9hf2+j5/Ns5O5DPYzYqP5NUoLE29p2OkXpEcGIF2zRss+W2\nV1FzfHzc5pFK4Zubm8GZXVTVYLczhiABuouoSbnznJtsYb12ETXcy/fmPn6OK1LGbq5eZQ6o0ISk\n6BG5xjgmK6gmMeEIBneylPiTIzBsn2zHsHusCWtGTGCShrgJosZxhOfS+ub4HVuAXed13/bj9MvE\nMWOHGD0/P29zm4nEUYgahIzghYnz4mCUslyJfxtcuyV7CSGDYbQwn5+f148//lh//Md/XH/0R3/0\nKkgzUeOtDDgnG00mtmpYmuTg3QF5ZkqynMpVDl54f9/zNZ1OG+ClogaFSAc5RvMhS2YY1+uXPb+z\n2awx7QATGwMLsoUsHQlz6m0zBsNU1Lx//76m02l9/Phx8BYKEzUO8Hvj4QA3KycGkWwCQU5VDci1\nLCt0dsLgNwOSLOvkPhmQjd0Ym4k/E01mbxkTP30QojM7bg6+MS4maiaTSSMUM4t7f39fHz9+rN/9\n7ncDUqRnSMlQoUc+SwOQP5/PG0nD22WyQsFGOStqTNRAMDnwy22LOV+Ma19EjUlb+ou8OTBMoNIj\nwDO42Gw2A+LVhKJtS2aDvn79Wl++fKmffvqpfvvb3zYgc3NzU1Uvmb7FYjFwYs5OO8B21ZcJxey3\nbbLJA28FyEwVPzNTxf33nXFypYcddq/ijHnyliYuVxzmWwpYF+7rLDfVVz7clGc5sAQkITcQNcg1\n80TlG88wGAWg8dNBq0n9nqyCBwC1CcgdRCBfGTym/IzZjBN6FTW29QDInizT36rXoDpl1HJj8s0+\nraqa/UGvCfJ8VdVAzhNsum+94BSATJWAt4xz7kZP3zw2xmyMZPkheMsM5FjN/hefj/1JosZrY9KM\nZjLC2CYBvgMvy7WJmuVyOdCNXZnbJGtcEUUwgoyA2XwvB/AZ8FkuGVuPqLE89M5YZA73TdQ46POc\ngXOMbx4fH9t8mczaFUDZjiRxmRU1tsn2oVT1X11d1fv37+vDhw/tOj8/H2xFQz58gDwYqle5j637\nHlHjqhUTBpn4wYd6nHyOeRq7mWhkDVkDJ2SMNauGgbi/l3Jgwj9JGpKvSdSwflXVsCrY5vPnz3V7\nezs4PL/qxb9DKCAfHl/isV7fLcvYH38ndTeb7bbn1PhmH7po3IXueDstfiErKLNog7l0RQ2EqT+L\nHwKf3t/fv/IVyAc2iOQSMYPvYyx1fn4+IEa8+6NqWJ2UZLn7b6LG51FZxi2jVS8kFedmPj8/t+11\nJmm+h1G/S9RkdccuJhBj0QNsGbwDOAhKciHM1AEc5/N5XV5e1o8//lgfPnyod+/eDYIRkyYoLMLt\nzKr3IvZKuXNxWPz5fP7qzTc5F1WvDwnrgRs7ZC+UyybHbtkHA0iMB86lavgaSFdO9ECBf1dVrxyD\nWUW2qJG1oJmNpr+ZIcChTafTwboTmD48PLRsMNfR0dFAoXy4GcCOca/X6wZOrKzZFwem3MNG1g5o\nzHZ5eTkAzegJQb6dfS+T46DSa2+ZcJbAh40SsPmsA+sShywSPDj4yC0fDtaSgPAcGjjydwAK8sVz\nql5k1qw+cpNZF+aOcVlWq4Zvfhm7JcHg+WDcALwMJExA7sqweH5ms1lz5uib9dM67Nf3Ug4MEWA7\njdM10WRixiDUgQ+y4WxMTwYMYDJ7ZtDkTKeDsl42ah/N43Yg5T5kv1kD1tpjsO9iPA42PJ8O1jJo\n88V3rd9+DemuQNKgw1UavlfKHkSG7aNbyp9JGGTRGWDbsH1VmpK0cPUFgJr+5nwwBgevjKVXEcDv\nM4DebDYtYWKsg257zRyAGlv1iCLubd1h/kx0u0LYB6R6TuzHkyhznx38OZDJPuwji98j8/yTOWTO\n/FnLcWZTjdOclEAmjW2cJMnzEGzbeD7/xjb7jAMCmR4eot+Mx7Z4Op02W22ZtB3yT6+dA1vbcXBT\nj/gbu3Gmi7PsPdvKGjjphE8w6W8MZp/C2uVbnkx4ZLWAfY6rt/McDDd0yLjLdgR5St3gDTn2Xj6p\nJQAAIABJREFUzQ4s+bzJ7161vPXSMmdMP3ZzEtTYwFg1Y8Sq12Riypc/n8SxP0Oz3qNTxHzeyguG\nNSm2i9Tu2RkTwf5O9jvbrjGkfqKXFDF4zZxwHLuZsHWFYMo0a2lcZlnjXknsuOqKz5mghoRNvTEe\nmE6nrcKNI1HwXfhQCiGMQR1n+0IOql7iFxdnGGuyHhB5XnfHii6IYGcA80Wsyly8uR7fWzCXsfpm\nBowEDgb+CShYMDpIti8Dlu32pSphMpm0qozz8/O6urqqH374oZUbZmmbAzEHq5lZT4Ul6PSp0g4C\n6ZOrMQBxNqIedwZjGZCYKTdRA3E0dusRNYzTRA2GyixhBgBWsGSWbaw8dhM1ViacfwKTJES4Bxdr\nYaIGJTJR4/MWUCqDYRSZsXpcjNVVUUku2XDaEO0jOLy8vBw8G2O+3W4H+sTfbETTIaRTsZ7mWpCF\nMKg02YkuGewYzLClYFd1hasB6JsZclh2DL71jLWhnw6YWKusoDk9Pa3pdNp08PHxcQBs6P/Z2dno\na1hVXf2wA2P8Ptvje8A4A3iDDK8zGVouZ+OpnsEuYhMNXiaT12//YJ0MKliHBEteD4KKlL0kajIo\ncsbXl32OZX4fpKnHzfNtV/h7bx3s2F3R4TGh1zQHb5mV71XxGNRk0E9ZcYJI5MfZWgKiJOktd9bH\nBKo5D1XDoB19SyxhPADg+d4rLH+ftlgsBiSD/T8AqlfVBcmbYI172ZeYZPF9sDPoA3NVNTzvoIep\n0mc6CM8AyEEmfT8+Pm5bxrHP3t6Bf87Lz2W8+F2eDRjNfrgPYzbjxV24C9kyeVH1eltpVrtk9XAS\nNSZQchsjRA0yzboiY65OMVGTgarXMINAB0GeA8ZqO2g76gqS3CZiogJbb6KG/ozdbm9v21Y7ZCu3\n7IJTN5vhNm501TgtK5AyGCI4IybAz2W1ddXrQ3Jtt03MWcd9j7dIGsZm/SR26eFuE8LcN/tjH596\nYIJr7OYKaeTRc+bkdPqfJGPewjw9kqZ3P1ce3t3dDc7gc6Leeu5qI+uLrx5Zw5qANyxz3C/JJF/8\nznGyt3Nhc62Dx8fHezlvyInK5XLZ/ARnm9qemTxxRayTq0kMO/kDQYPtA5+AfzMRZaKGCpd37941\nosaYgrecmXA3OZvFGyZqZrNZq/znaJXcOQNhmiRexhOr1aq9MdVETZKwO9fjewtGYMQNERIbnul0\nOsjy9oJ4ByNVNQAV6VQtCCcnJ20hOJvm3bt3dX19PTDiLg9lErmSCNn1JgRvc8lshB1aHjyaQIqW\nrGkCgqyoscCM3dKo2LAALB8fH5vSea2ymmYXWUPrZbcgV6iosUInMWAA5H8bTNop4ahwEEnUuGIq\n14NA3WuX/0bxOMsk9aE3n/sAMldXV68CI+aQTDR/t4POCqBcpwyOMXLI6N3d3YBBBiTZ6ZmoQU94\nZb3JzZQN7gdI8t9wkBhN1trgBV0lQEjCw/rLNimqZG5ublo1kA8yq/pmqNnbOnZLR28nB9FonWMu\nWL+ernj9ekSNgR+AvGoIVvNwvbeImh5wtC3OihpnivlsBpYeW+/+2IAsSTdZxxzhQ6go2kcDfPhc\nA8bD2vSCXYPorAZNYJZ63iPOfflvJmqYF9bCc+U5M1GTSQWT6v6ewahtuu1PEgrO2FVVy2ZR+YWO\nmBDYB1Hj7aSMF5k7OjpqIJ7XhXpNbW8t14k/3Fg/AmAHBWnXvkfW2A4gb17XnO+qF5L07OysnUXD\nWSroUia7+L7nyHYVogaZ6+mbybmxW2Y0/UyCe8uxA6OcT+tOBtXWA+Z7Mpk0v9GrjgMXY/vAy9hj\nZN4vUUDmE4P2EkXgqEy6VA23Etm3/leImiS69k3UTKffsuQ9osakCwGXK+HBKLaxSZB5vR0TgAHB\nqh6/599bo0hEeb2tp98jalhf9AmdQ1d79h25w0YyltxC6+SibTl6QKwxdjNJhOwZezHPufUefWCe\nPO/GCNnS5vn3yC0XMR8XBB0VFw6YXRFkv70LwxpnoxtJWPT6nmSUsVQWH2QyEx/am5c/tIFNOI/p\n4uJikETy2B0j5XZJ2zHs1Wq1quPj41bVknYQ2ewRNfhM5shEDRU/2IrNZvOKqDEh3numyVOfpQlR\n42o1x32WCSeGneyBiEqiJndkdNfjewuWytwDnyyYG07dAN8BlEEHv2cQBvyXl5ftDU/sm+bQO4N0\nKwkKiuMzOeOTq/MtQ2YGCcotFFx5GG0vQ5Mgjd/1qlMsiPs6wJT5cB8Zm9+o42wO69YDjDm+ZIWZ\np17WAYeE3CTb7IyBjWS+nYP7JwNvtpS14//Zd5TIwWACPsaUzjHJOeSO+R67cU/PUy/jaSbb8mmw\nYMfNPQ3u0QUMkcv/IWq8bdBgIzNOrjTIbJLl30bd91ssFgNn5HtsNpumh4wjAxvWz/Jkcir3uOd3\n99F6gYGD2txuwXx47XbdlzkyIORyxRzZSezi3d3dwCaakGHOaDmftsPIDf3orUP6Ef7eI7wzsMCB\nZiY516tnh8dqvXF5bnKectwmeJxgcEbYfjLBocdn3e3Ju59tuUM2nGRJoiyJmrx6epL+3gA4A0UT\nCPahJn9ybGO3lJHFYtFwAD4zgy/PqVtPpv1Zz30mPvyct3yu7cKu5/B/g0afj8Shwe/evauzs7PB\n9xJ4eow8H9lJ3fLa+Tv7XENvdwXX9J7n4CKxkOfctjOJTwcgiU+SWEhSChtuPwjmSxLIAZtJAX7H\nZ53sc0BrvGJdc6bXJE0mPW2DPE+eo7Gb9cAYkDXLz/YwdNVL9YttCK1HyuXYTEba5xpn9vTDcp6f\n99qk30h70vMXJgD4nnHnLvkjMAajOc7Yx9ltvbk0YdzzY73vpR3b5WNy/rgX6+eqDW/XT5zjtev5\nKJN3jg8yduG7Oa6qGozLfc/fZyySY+th27Gb58E2wj7bfj6TK45DvI62072YILcl5XmaEOI+C4yL\n8+W4r20iOuBqMhM1kNC25SZpssBgFy7J9WXdsfWWlyQS32rfJWp++9vfDg65g1Fj0XJxbWBtoBgE\n/3ZW1QZ3Op0OAvLlctlKrzLo75FFDiRZcBTU256cLcZYOzC08KGwPpzK72nvsYwmRnogOQWY+duX\nE8zDVNl+dHR0VJeXl68OQEuwSf96zsYZN5SRQ2h5heH5+XlbszTKaSC5n9nKJAAc5Gw2m3aOyfPz\nc1MwtlYYeLqMuecseoFdAgHfwzKCQaCMduz2008/vSIP2TvpA3F7YNgA20YrtxqkvjrDimNzBRrA\nmLUFHPhcmqpqOub+rFarAaAw2YrzIuOeZJiJmnQU1jXLGIbZhhybRZ/QW7Iv+6hu4zk++4XA8Ojo\naKAL/D1lz+DCJI9BKs9J4I69TftIRiGBkmUhKxfzwn4YFAIkE/hbvgy4e4A4M8D0wSDIY+Yg6n1t\nJeUcAfpE/3rAqufUE4z1Aj/bxgyyMkFgENRbs14wYHn0mieRa2Iht4E40EmCIG1pgtAkB/CxfJa+\nkQG+v78ffR3v7u4G/99sNq3ijrk2RvAc95I06/V6YI+8vtgZgzQnjlJvesSY18AZ1iRrPJ+srQPw\ni4uLlgSDCN9FThtQeu2x/eg8n80gEr8DJhu73dzcvMKkrJvHjt2nvz4DLIN3kyBJSCbxwSH29l+2\nW7bRzEXv4Oeq12+P8mH5bAuyrbPt/h5R48pzY9kkZ3YRPMwbfnTs1qvIdJIiE2n8bpesgQ34G6Sx\n8bd1HExDVZ/JNn/ONpBK+Pv7+9psNgMioFcdRV/ASsiOx2p/fnx8PNjywXN7xIXnhHufnp7Ww8ND\n84mJucdud3d3bd6YZ8uQq2rpL/bFfUp/6X8noWF8gI4xR97uYsybJF/VC8nuWCPPjUMurdM9v2rC\nhj4lCQsWc5LEfrlnl3InBjI4dvMbeP2WyKyMZ76Y+15sxxirhgRrnstqWwh+Q6/Q5fl8PtiOtFwu\nWzK4J0u2t0n+eHxVL+fxmqjhGbzpyXyFbbjjG57JWnvM9rMkSUmUvtV+FVGDU8dYu2w5GSGDhASr\nFkIWPRd2Pp83coZFyLcycPE8JscO1lubIGVc5m/hMAiDPLJAOrOxa39qVokgHGlwegFQAr19BPn3\n9/eDZ63X67q6uqrj4+O2thhPP39XxiwNXFY1cR4NRI3fNJX3STbaDtmkhA1n7hWEsNlsNo1phSgz\nw40y5xx7nXCKfN7jxaG6KgSiAhKDrSNjt59++ukVWQhRc3V19Woffa6Zsykut7ahzQZYWCwWDfgC\nRFg71orAeT6fN/Y5WXMbz13l1i47NRmX4+D3mY3wmH0BxmgGUnzHToLzWsZuyJ8DmixjxY6m80nn\nYCCLbjg4yIzWbDYbZBXsKAGXCeCSkE1AnWDeAAId9LraH3A/9MqBXgadmSl0tQbri2w8Pj4OSpzH\nbhB+CeCSgOgRNR5XZs0MOj0228Feab5JHsuPwWwPUKbNM1mTpIDn11naJHroZwYECa5NcjCXOVf7\nJmp698Q3EGwYZDn47hE1jNmZvx6RDID79OlTrdfrASDtVd3uImt6gYLJPp97YcxClpCtqb3nJdhm\nLVKvkTn7a689mIygdux2c3MzwAckZJz8SyDvNU1Qn0SZM6HMby9xlFsjfNmW94It/DU2Ef/usyH8\nSmX6zPZj29UkanrVND4PyzYsZdX/5xno49gtcUDVMLAzXkgSn8YaJmnKPVnnqmHVkokatnqTQJhM\nXirEcxscMs1nvZXCb3tKAh+Z9PlOxkf2jVTCTSaTRkDRL/tq67+3G9GvHiYau93f37c+J0GMPcU+\n0l+vyVvkjMeY6+9Kj4wFffRFrzrUa9QjaqwnTgRmTLfLFpukYex50QfPidcr7b7HtQ+ixjEC5IZ9\nSWK/JLA8ZlrKXxI1rvoCg7Md0qQ45Ak7a3xuTtp3YjT01OPxVVWtQht7CFED/4EtIQ6yL3RSwP4S\necxrvV43TMPr4d9q3yVqfvrpp3p+/nZY1/n5+QAALBaLAUtpB2HQ1TMKdmgs4nb7ba8lJbnv3r0b\nCEQG6ulkzdLd3d21wzGz1MmC4cy0F8l9NFHgQx+zyigz8wa3jN+CnW3XXI3RMPB2BOv1t4NFLy4u\nBgROGhf3z/PtANBjI1B31s57Bz1Hma0ymGcNHKT1skDuz2azaXLpoNN9dyYyx5ZBR+/3DlYA4sjj\n8/Nz3d3d1efPn0dfw19++aUBONaOAH25XLbqCMubx2djb8fFHPVk0tkZggl0CMfigDGDeYPmzEQl\n+WZnztr6XCAbOetWz2laHri8jcHAKGUSJ4ENGbslmKyqlkG1XiWQccCTGVlni01aWrec/f769Ws7\n3MyHqr1VUeO13ZWBRT98vwxqM5hw8JEAJ8mLvBIYMCd2gvsI8Ferb68c5nnO5u+yLTmXWXGRBI5J\nYo+fZ/l7Bq3MnYmFHlHzFrBysJpkjUEi/hN7w3q+ZduTpGHMfC5BNEHUPgg37mkyEqLGc05lSgLr\nXUSNCW7rSmaXSSpZx5MowCfzewPGnNOUL3zu0dFRXVxcNHALyU+VRpIHztybQDK4ZZzIKs9CD0zU\n7HO7BW8LMumdldLMPevjqqDe3Fuu7UsdzHkLpitqdl1VwySeg0YHryZqOCATsgaSApljrq1r2M23\niBofyN6z50mo2h7ts6LGZJd9CXLD3NtP9MhwiAySaCYQbf9M1FRVS7aZKId0zQNQ8Z2uIMlgkH5k\nrGMZAsdl0tuEN834xz4lfYHlkwoh63L6pLHa/f39IDYzZqAKNYkaxuWWfe35DMumK1TQsaw68fpZ\nvx3H9CrOrCNp610ZlHjJMupx7bIPyGbOAfKwyw+Da8dsWXGCLFfVKyzSw3aJPy1zSdR4+5Eraki2\ncbA9unx2dlaXl5d1dXU1eMtZ1XBXDetQVYPKcRM1xrvYCfTZ256Wy+UrH7Grogb/0iMd/f18Ictb\n7btEzY8//tjABgfzEIjj+Bz4puI468PEWTkRdq58q5KdLPe7u7sbMJRV9eowXm9z6ilsCh7lU2Z3\n3a/cnvGWM06WODNpuwAy87qPtlwuBwDQ1Q4u76XZ6TEmG0YLID+dJfAaIiN8Die/3X6rEOB1wFYk\niACDPwdjNoI2siZxeoEQz02G00A918tZbJ5jQG4GlTVMkmuMRpWKjdIuwisDogwGPR84raenp4EB\nrqoBcQGBwuGTNsCWG3QN4+PsLH1jTV0tx17TBGy5fhhJN9sV+mNQY0Nq52liw8YXApN5GLN5ziD3\nvIYZIKCn/m6OxTaVaiPGZhLZ30M/cRp2Ys4SAGQIWHNLGyWcPCuDvcwwZjBvewJg8boaOHk8SbAZ\nwHBfsiRjt+Vy2YAcQQzzm6QhQbvfqAPoS9IGwA6ASLucAQbJA9/LVREO2HqkGvLHuqBrDhoAUvjT\n9KEG5T17YFnu2SJ/zskW8MZms2mHk4/dLi4uBnYUWYTsQ5Y8niQAqOJwZtENPXRCx8RqVTXg6tfG\nWo+Ojo4aue3sXTbrAP4J3OLXbyOHDsAhxJIIt22yr80sKvJWNSTbIJcghcZuPgyZuZxOpw3UI5+s\nJbrlwCEDfTfrVpLVSSKbCEdXwJ23t7eDN+tBdmELnJAkOOCwZy7joPV6PajqMbHK2ic5k1WJiZVM\nGGy321aVTmUiQeE+1pG1wdYwThP9iWHSLyYRk37Resv37feRc0hofKIDZPsf7BoEGnHI/2Pu3Zva\nyJLt7ZS4WCBudvc5cc73/3K/me62DUiAMUjvHx1P6alFCnxmShPvjqjABqlqX/KycmXuXSR6WHNe\ntoBsMl5kwMF6bomzbyQBboKqqka7DVyhk9UKqcNTN2SZcWAf7SdYJ8dMHk+S+7mWXaIjfYkDY2TK\n65tktg/uzbf72j5mH5DNqhrhmH2kTRLrfIfLY2DOsKvd2YH5rKka1Xuvr68DcemkOed/OjZmvuxP\njWWd4KZyzf7OxA0Vez6L1Id4EzOY5ESX028Zwzg53dkK7C/xCLxAt44mphwnJV6znFoPq/62GxzU\n/F77JaIG4SILC5lAgGPQbGdGprcbpBfQbJn3+3I/hGE+nw9ETZZeUkWDQzHb1WWKDMAwvAgm/cpM\nRAb++4iaqvGhehlo+u9eNIL8rrLh320XFxejsWPMMaiAP/pmo0mzYeGnDQtBlTNMVW8rCDCeAMPc\njsZPAxj6giLa0Dnwpw8u5d0XFDD/dvipWMiegZgdpJ0u83KIt5NU7d5Q4nntyKYMht6TVxy6gR8y\naBDDGCFqTk5ORnplecFoscYJgh3YObO72WyGzG8SNV4PSD/bD/5mEJvVAMyNZQVH7OAT3Sf7PHXD\n8TIHBhBJvlWN7Ue3zuiedcTkiuXWNinJFh8OneRREg7O5BKUmPQyqZrbqvAP9hH0kTHbnzgwMlle\n9VaXvZVgPp8P/mTqdnl5ObINHUg0IHaGM8kmg86q3bksBmsOHvk8a0F5r0kW1s/y4+e46gEAylrY\nPzu71SU+7DOc0UwfkjazAzt81hVtPMPk4NTraL9oogbQlcSqQR7Jnc6uel6oSjTo4x7cj2fyNjoD\n8ufn50FnTMDZJqTtSzLPW2lMejImbL313nbJ69cRNd66kaTBfD4fgsmpWxJ4zPnp6Wmdn58PNsgk\nbgaO+2SVZptlksPEZxI1JD+wf+v1enir3nq9Hp6V1S6uRr6+vh5VQh0dHY0CGlekJhFlm+kKcPrd\nVUQ62AFrc/H2FOR+6sb6PD09DXLe4TwHvFU7n45e+O9JJNoum6jOABg8TKBqm2f9Zi4gIV0JsFqt\nhjcpQszhl/xc9ANdzmor+2wnYGyT/AYq/J2JmsT49gFTtiRqjG+sY8i+4zz/PgmPJD46uXCzHfIW\nlSS+6K/1KPWE+2XRgTFU1TgB1/W5I2nSVyZR44IEJ9E6XDBl442nm81mqDq17bMuQogzrsRkyDC6\nnTFfFlY4CZtv0UuyhrlNvJ9FGa4OSn9tW0LymEqaPP8mSUPWBt/pNydzP54DYVm1O3MSP/zROv4S\nUeNqFQxJ1e7ANmeRHOjyew8ygaAZamccbYRN1CCkVprZbDYAHNhrO10b4q6k2IGMP2PB/BWSxn3m\n+XbijBslszAzn7PZ7EN27V9pl5eXg7CypxbjaIeQgDSDDhtXjAn/Zi7JfpvEMCniyie/dQtA5QwA\na58kj42d5QqA5kA/jblZajuIqvEbZli7zOT/ClFzCCeY1Vaek45hf4+k8Zy5ooJXYyKDBGrMF4CS\n1+ulTBPkmCl3n2xM5/N5XVxcjCppLi8vh+e4v9ZF2wBkxIE/emwWH5vlcTsj6gzabDYbHMEhdBFD\nbgLE2TOvKeuMDlpWGY8dRwZH1gPuxfdcUZNbQrOipmp3XhFVJDzPBzTnPm4cJoEnQNW+w7qL3uwj\nF7qKGs8Zth7baxJlyoaceg28vjT6b6LGOpigk++b/EzgiuxyT+wqf2NeTdjlcwjKkozjGQ7+DazW\n6/UokPP96btBRwLzJJHd+BzE3/39/RBwEsBO3S4uLgYA56QApEnql8dT9faMlg7IIe+8lcLEiPUS\nPbm/vx+dWYNf4UK20TXLvvtHpc9isRi20PhQWhN74ACCyX0Xc2TfW1Uj+58EOf4EPzp1Wy6Xo2di\nYyBqsrLF2NA/M2hKctTYJpN3JpGRYdYT3XHg/vj4OPquz19xuT1bx7lms1k9PDwMcpREjdfQhJLP\nJ0JuugtZAidSTbNarQayverwFTXMo7FkYmzrW9XYT+bfkO8cr4Ms42Bj0aOjo1H8YP8GSXNzczO8\nPZWA02TN4+PjqH/oCdjK899ti0MGkcMM7PAtTky4ojWJGu4zdaPiy/beOMLBu5O94HDWijWmr/zf\nviwTsTTmxskbr6+fyfeppCH+dNxnf+g+5Bokoe0x7Ou7155xMgZkhPv+pytqTFRS1Qn+8zw7ZiBW\nM/a2TbFuuMrF+vL8/DwiZPaRNIvFYvQMx/l+VhZuQC75HFrjUhM1TkrmmnqtPL6Ml5Ejtk9W7fyl\nqxrfax9qKgdZMcCq8T5bnDfGwVkW/o/yJhtpgbXCYSi5jw2ciRQrxNPT02gLjRUks9X83oADkExG\nGHCEQ7ai+bueEyspjttKjQDnArvyIBV2qoZybTabYTwEpvf394Og25AzBxkk0HcbHcCjAw6E1/Kw\n3W5HLKozeHZSAAIH3MyVFcUOk3EBfHCclOl1hjAbY8pyYROPDibT+WQmYMrGq8hNqhEoQ07SjyRr\nDAiZExOKqR8ZCJt0dKBncsaBAoGOD+NFF9Fh1oRyQ2TKe7ezxJzvOFB0RpJn5PhdAfL09FSvr6/D\nthjkNQPaQ+kidoFmso9Aoguw+az7i4OpGm+xxDHwZjrm0sRkt6ZJsvM8n8XlzOvT09NIB7KM3nuA\nuZ/XJcF39zdXtFn20p6/B96nbgbPtvFZxTKbzd4ckpm+rwOaCfasw1mhg98w+DMB4/u5IsnAOAGm\nv+egOy/PQZKAHTGcAb5lxz/T5yT5MVXrZB4/Q2Y/bYvXxcEGLe1HEhuM2cAyq31ze46faX+z7zus\nLa/ednk62zRYW1e9ATRZG35mkJJra3005rKPSJJ5qrZYLEZ4sWpc6UeQ5nXyuvkn/Ux5Q98M8E20\n5Nry01iHqh7ub4LGQchyuRyd03h1dTVU1CBz9M1ymniW+3eVAklWOLAyxk5d5P6HsKnOXJOMA1vy\nfMte9s22dJ+sdkSNx44eOQtvHZ7NZqO30vqtW58+fRoFnL5IZqT/dszjfnQBfzc2LuNU9C9JeGIb\n9ONQa+ixIKfY1Kq3r7K2TOHLcr39fxOjDnRdJZq4kM87tgMDVtUo+M9Y1DYs7XrKXfpyr193deNP\nPG6b4jU7pE0lkWa/bPvgMWWfsafGaY51IYCz0sXVX64c84tTODzY26yq6o0Oe6v2arV6U5yRF7Yn\n9Yh7o5NcrtrJ13tbx9JOWZaYQ5Iu77UPiRqACcAfpWHPLYNx0AMA8PdS4JgcZ4b4Hj8NHpg8D9IT\nx8LkAV6pEGajDXA7UJmKZyVx4G9Gjc+enJzUcrkchJ0MqQGAmXuz/YcEpDZAP378qNVq1To4zxff\npYqJdUwhJ6BGbigzY2+u14q1tQJYmQjkDd69t9ACb6Gnv1n2bHCSa+lxm2ijXDxlgPkCULjCw5mX\nqRsn6SNTEBaPj491d3c3ki3LuUEh5BXnBOHETU55zTsdcgBa9XdgwpracDL3HViHMLQtcCABEMJ5\n2n7MZrvtWozVjtpZL2SSUmrkEpKZ/nvNmTM+O3VbLpcjG+QgEEAHGLEdoq+ADOtN1U7HIb5yn20X\nIJNB4Fwl64DX6/z8vN3ylBWKSdSgB/gOk8HMc8qYf6LLBEg8O6vIGPfr6+tARjrgmLpxVhtAEZuK\n/gMkMjgyiEFmWVuTbkk4Ve3knPlgbMg5l22iEwFkMW2/aPvsqu2y/96RZLYjSax1hEiupe0mFTSW\nSYD+lK1L+mw2u+1X4Bp01GvoIJ/mebAO8z3G4SplV7HlnCags8wY/GLTk3Cn2sS2jmAK3+UDDf12\nyC6oSGLC8mO5w657nfH9UzeIJ547m/29lfX+/n6EtQhWc60zqHSw4UDYGXdjRut2BjYm0eyvCPj9\nNlN83sXFRf3222/15cuX+vLly1B1en5+PvSbfj09PY2Ifwd+ueUJot1k7dHRrpo0tyv7PgS0Xuup\nG5WaSaDY7qAH9IPPGMe7OZBGZn1xnwzycnuJq4yYL56NrTg+Ph6Imbu7u2GLG0GpCQbm1z7NFWFe\nY4K9xGBJzCVZyD2Re99ru92+Oedvimb/Y2ID3Xef0094zWxXc82MFcEkTkQZLyGn6ZfS5ruiLXFq\nh2/AQehSJmK6mIKxZDMBhY1I/2q/bbtq/Ddlc582m80b2fI8uLKTGI3+4pOQa+xM9+alrBJCThaL\nxbAVFDvYERvWR1cEcli/18ExAnYRO5kcRmIh8IG3b2GDeDtut3unS174vu+1D4kaA2GYibVcAAAg\nAElEQVQ7RIgav77MYMTZNsqz+Z0Na9VuHxd/w1EQxHRAD9DPZSacID8V3Yaalqyaqyg6YOr5sLLw\nk/sD4FnMDigjuBzg57FO3VLJMZyUl9tQpeH3d+3U7DTTURJ08rlcq+4wSs81zzHwYY79HZr7gtIZ\ncHeBqr+bBhQDsVwuhyA6S/35TpbeuSJoyoYe5bM5S8GZhQwu0N/FYjGUGjKfrF8XYHVgnTXGQDPv\nyHPVuIzZpIKBPD/T+ULUkEXkVevIDPbFBAX9xomkQ5vNZgOR6y0NZrP5nlnzQwBSH3BJcI6MkZlL\nHeRyRghdSB30WkPUdFkbSA1InU6v+DfbwHiW9cG6nSQfY2Mbhsl41qXLcPj3ZJpxgpTgOzuNDGT2\nBpmZuj0+Pg4+DxBsOWf8BpNJtuV2SvuPJK7sU15eXgZbgPyYpPMcMl8AI9+P57HODjRtj1N/kzS1\nTexAeOfDq2q0VgY22AMOSDXgmbp12WsnXby+SdJU9cA75yCxgjN+3uqbJKabZdygmbkDONpfQlhY\n32wHsDcmaThral8Q6CqQJCYsG5YFbOmhEhiuEEJOn5+f6+7ubjjHJQ9Bp/F54yInEzsbhC2zD0ns\n21VoJKkKkU62mH9fXl4OJM2XL1/q/Px8eHbK33q9HlVu2246OZOHsWfQCh7EvyJz3AO5TJJ2yuYk\nSWd3+JvJGNvbrqrCQW6ufQa7DiJN4Jqomc/nLVHDyy84h8hn03CuFzEF48NPe079zLQzOZas9vN4\nOqIGPSF4PgRGZf5pxjY/fvwYVSykX/C6JO6yvjlB4m2IHVHD/XLO7GuTgEZvM/n68+fPUWWO/Xlu\nye5iivx9yrTxXdqlJOds7w7hFztMRmPuiLPyGA3jEOyhdRr/Z5LGBLHnhGTXcrkczuvKhJQxbVch\nSvLBZC39qNqdE4Ntx2d5+3mSdt5aRfIBGcsYxYmoDl/9ij39pYoanJaZezIxgFGcYJIlXmQLlYXO\njKoNTFaZOON/cnIy2ibjoN5K5EVP4Jv/d9aE/W8dI5aAmn7zrFR6BAOCyoYEgbCydeDv321pOLbb\n8YGJZGsMBE3OoECsjdeVz2R2GIHOzJIJGwuoWfSqGubPhjODb+bbzhwHWFXDeTwZOCaoyd9jhAiq\nvbcwyUIMrPt6CEAKwPYcUxny/Pw87Oek/wmc7ah8D+6NQ88KFc9JEkGvr6+D44J0ZC1Zdxspz7vX\nKveiQjKwN5/yceuSg3Svh9fadoa5wkC70sDzk9nFqRvbvDJrQt+Y98w0VdVI57BzJqwYQ1bUONCk\nYQNMenVBqEkC+uk1tV30NsEk36p2BF4CJK9TBkG2y/gWKrV8nwQ4BthTN840AWgb0Fs2DSCrduRE\nEtv8zf9PX5Fz2gXFJgeOj/8+3NIA0mvvec6WhEyCIvuEBLxe/+7fJjw60MK6m1A6VGWUKzppDnAc\npHpuMpBIn+T58NwzFh8Im9uWGL+fxxwSmHTAF1Ic+WP9EyDSD7YGUQXAixgyqGFcrCH6iL1y3+mv\nbS/reijSFP/vgI8xPz09DckWVwR2hHSSxJZbEzXY01x35jXJRwf94OX5fD6QM5eXl8M5bZxNw7an\nz58/jypirC8k2Kzf7rerDkzS5E98dmI7kzgOhEw8TtkSs6CXSdZ4/eiziUT+zrrsI2pcAcF38G3W\nReZmNpu9Ob+NrRy8ibYjaagcd1Kqalzd5j7YpnssKZPe+oPsdbba+gyGJpCculk2bAuZK/rtuM+y\naxvCz8TqXUVN4laSRolBsJOeY+bZMu31dcIHHMOYGHNWou8jabK5H5Y3y3viWPsTZPYQLWPkfJ7H\nXVUj/2z8wd+SuE6iJv2ft3dfXFzU9fX1KMn5EVFjsob7MS731XbZvhWdTZLG5CzPSV3kM0nG2C55\nPj/SxQ+JmryBH5BArWoHRACy+Z2qPuPE//lcJ+jcH6fnoD8XOQNv3y8BcBp1lBsA4EneB159HxyI\niSn6ZBbY+5NhuVn4qZsPVGL+mIvMsBAEJjPojJgFmsvGykFLVpr4fl0mLoNF1joBJOSQS3ltzE0e\nseY2AGlc92WBvbYZeLBWzA1Kn5mFKdrd3d1oHTx+Z+kcGLsM0Ic4O8PnceZ+ds+pq65ms9kbo8vp\n8JYrbzmD5MKgXVxc1O+//17//d//Xf/zP/9Tv/322/CqunQOyAKkgY2rddLPJuijEWRwKKkNc8qd\nKxGmbrZX9BGbmFUW1o8uYOSnbQsZCB8eavt6dnY2jK177SH/t+3jOVmmCsiExEkAafk0sOZ7fD5B\ngf9v8pigifVzm83GBxfSrwyqp2i2kxB/SYYCCLxlM8nFqjH5Zll3UN2RMvajDgKss9vttk5PT9+U\n8jP/fNeEPDYfW22gaJ9oW2vQbJ0zGHafPRaPtaoGcgH7ckib6rUhiKGZXIO4SQLXhKJ1rKp/A1ji\nGO6BnvhwaK+79RJ94G+uUk0gCFmxXq9HQcnT01Pd3t7W7e3tcNipQa2DQQNz5sUVx5ls4aeTUJa3\nqRuVRJ5P44H05R1uNF6xLuHvsKV+c1XiSvTdW+BNkjEH3BtiBsImDxC+vLysy8vLUf87m8Ca0F9I\nKxM0PiA1A2QnpbI6x/KaydSpmzPf1kPLEi8nwBdZvph7j9VVvxkXbDabES5Ch5xsxrbbTplsfXh4\nqNvb28HOcngwb6b1zoIuEYHcJGbhcyaOUq7dH+akakeWWE+xA/n2xakbmJJx5Th9oXNd5YLnnDFx\n+S12vEXRuyAcUDvuoIoDQtuylTGKifR9MWYSok6QdHFy4pCOaPD9wfc8K8/hssxM3TLBWlUjWcx+\n0wcwGPPtRMDd3d1QgZLJA8vrfP73S0Zubm7qt99+q8+fP9fl5eUQ25j87sif7u1Y9D2xJTJLjESC\nw/bW3+eniddMxjAOKiC99d3bSF2R/lF12y+fUWPlSoEzCLERszNJQsAg3UqI8qYDTKbRAuEA2UYu\nCRn304bQwNXKZ+VxY3J5vhUxhdcGtmq3FxLniDM12DoE080rBrm/58HMM4yg59aGj2ayJEmMo6Oj\nN4x07tXeV62UTgh5eH5+HjlfhN2g0mQMfXKQl0QN33Ug8RFRY+PpigeTWFbaKRuHPnst2AqBYZjN\ndieau+LMr8XDWdshMn7LpJ3P0dHR6MC12Ww23HM+nw8An+a5TrIHsHt9fT0iam5ubt4laugrjvDk\n5GSQDWdreW46Qoga7udS+AQQkM0+DHmqloG75wl7mMR3BiLZZ+YFAMMFUQOYmM/nI2dGAOhAkLXP\nCjHmJMlVbJnn3odupp6wNny2A/0el0uakVEHqqzny8tuG6AJpEMAUmTQ2ZAkplg/dO3oaPeWBz6X\nJEX61w7EJXFCX7h/J8sEcNhZ1oq5Nqk5m82GREsSiQBDntMRNSZ9OmIpiam0lZmI4bOHWEdnzWzj\nE3Mwb37VvOfZVcW2WwawHoODXc8hftOEWFWNzhqxb8wAI5+DzrKliWc/Pj7W9+/f69u3b8ObNriH\n/Xj2sWqn40k2G185U+pqku5sgX+3kSAw1kz9sNxBwhP0s1b+aQLD58dQHt+RNNzbcsM8WefQfdvp\nJGogaThAmGeYbDWpZN3cbv9OmmHTTdbg07kf44R8cv+ZD2xcRw5M2fLcL57vPpDQtH1w8JQJPJ97\nY7kGI/qcCcuskzRZye3AHtmjctGvGsZXJsGStszrl/LLvGfVLN/PeCn9ZlUNhBEy7yBz6pZy4YRB\nEjfMLd9LYtvft8+0Tp6fn785XyaJV2MX1tiY6ufPv99S6s+bqMmEVcZN9vn2x+m79xHaxoL2mVW7\nOCt9J3ODzEzdiN+NO7O6jn8neeO++s1nq9XqDVFje4vvPDk5GQ5U/6//+q/BHpJwxO91hQBZqWqS\n08kY4yxkAKLGyWj7N8ZsQp81sG1M3OnkKz6FJL+J4ffaL1XUdCw3LZXPBtXMF84gg2JXQwBOukA3\nwU+SJQ7EO+a6M5QYQDs8GwSe143TlS8WUi8kTqRqB+zN/uJEqahxudbU7fHx8Q1DWjU+34MLgTT7\nzLiSbKOZKOOyLHifp+9nQ0rFhWXBJA1z9fr6WsvlcphXG0kHBsx3kjjMfQYQlkmTNXZ+gABfVbvM\nmeV76nZ3d/eGwT49PR2RN5AhbA18fn5+8yo8Ag2DcMZsmYQJ5m8GllU1nGlQ9fdeeRNk1iMA/+vr\n61DGeHFxUZ8/fx6Imv/93/8diIUu4On0E8O4Xq+HIMqfsRNBtiArkB2vr9cYYHMIoiZLKmn0D5k0\nQAVcuK+WXWSdLWN59oGz8Q7sOqKGNff5GRC9WfEHMeiAnqDTb1BwkORsVl4GQw4kGCM657fY8V3O\nCTDpa2JuymYwBvHmjJ8raqrG57IhvxkU7SNtkqjJgAMd8+f9fcgxAH0CJBMnXi9IJvvL9KOMB5sB\nQMn7d36Zln6D0nR8RgbaU7ZMtPDT82JgSGAHQW2bgbzl+jEPBF4JdDMIqXp7KKcJ1H0JEB9Yiv95\nfd29FbBqV4mxXq/r69evA1Hjqg/7QvTImVv8hYGr5ZK+OyCy/526PT09jTBqBlKWPeypbXvaf383\nq2lM1PBdN4hF5sXzZEKPhAX3fo+ocdCZ5GH6RdZns9m0JA1EjWULe8r3LL8OXDuSccr28PAwIvzd\nD2SeoMr4EZm1XeJNh0nUmAgyUeOgCZvHWC0jHj8BPhhrNpuN9NFrlrbT9/P6YZ9N6jtx67F4bkyS\nJlFJHGLsh15P3VIukC/PIZftIHbR4/SYvHZJ1LgCnOfwbGPjbruNz/biZwb83KtLPlieTNTk2vwK\nSeNkQfpX1jL95iHsaVUNMmL7bh+RMa+JE8u1z2yiyqw7t9L+g8ODb25u6vfff6/lcjnYXuMtx477\ntlM5qWjyz/OGbCCTljs3j92+m3smuQjZY7vkhCz2An/0XvuQqMnMkUFAMrssDg4uhWqfYXBA5UVP\nsJcTB0iFAHLwbMdrFrBjOAlyALz0ycY1GdIMBp2p7MC2mTxaghs/a+rG65ttDDBSPN+GzkaC4Mdz\nnJnqNDj7FMYAmGe52Rn63lXjQCKzScgB+1B9iKI/Q8Ywx4LRJ7BdLBajoIM1dH+SOMhs9tQNMGDF\n7+YvgT9zhRNiHgGRmaXBcJl44fcGnX4eJAPniLB+3nqy3W6Hig8OB6OkMYMxHKcBf5ag8jkDkPw7\nz3UWDOfrrHA6wgx6p2wY5SS3mXOAdRKPfMdEDTLsaicqlky6OJA2UUDriHAARucYDQS5v9cW55r2\n1mRwOlF8RwLbDD6TvOiAjp3uIRprZbnxHNKHTAx0n6sal9bbzhgseetolnF38o7uuCLKwDWJhAxW\n0/9x7yRf/JmO9M7qPMs9JIj9BQSWM4mHImpMfhqjoJMkbFy15M/Z/2NfrJeMzZl3Z/CRfWwRz8gA\n0cEA6w94tuy4pU47IFmv13V7e1t3d3cD0c3lrbPguA6jeO0g1JIgT6LqUGRbBnX2OSZrUwdZa/5m\nm+bLRIcravJemaxxIAdRw//BK64qT7nK6kvm26+4xV6kDufzXfVlu8Lz0hYnMZHzNHXzeTs0ghpI\nfy5jzPRHSQpbH3M+8ieXz/ayfe9I444cZz34HPiIMzec4PNn7AMycO/WOMnJfb7Tcm8SduqWulg1\nPtzY2CJtgW1YxknGrIlpuldrG0dyZbKS6lvbMn8mdx/wfNYQ0ja3PZkk9/hzrIypSxT44rv2CV7r\nQ6yjCbecT7YX5lp2xJPn0wl7rwtxE/ppUpw5RoY7+7QPq3d2jDE4lkl8y/iS0N4XC6RO+vf5M7ER\nsvLRGv4SUUPbbrcjp+MyfWcMfT7G8fHxwMbbEPnKkirvX7OBssG04/fgM0vOGGDyCE6YdCtXTpyd\nthcyM0sd8KbPSeTwb7PMnSOZuvEqdRtQl7cfHR0NQT3jJhuRVQl2VjYugAaz0QQKNH/PBBZXZ6SQ\nL1/JxGI8XcKLIpq4MNC08/TBfhcXF0NlB6SQ195GFgPDc22kpm684QGwleNJg+GDhZlbgg+ToZYJ\nwCFlgMiE5YKgxfeA6OPV0/RvuVyO1peAns8ul8tRFZeN5+vr63BguYPPrMJK3TJZk/fkpPbNZjP0\nY7PZDDqX4OEQgcXDw8NoLlkXAileCQ9RyHwnQWbQ2Tk3V4ZlJZzBmufKOgZwsQ1LWUjggg5RqurM\nVQb/znQ5a5S23PKT/fBFFggdODTZxtjtB/FfTmYw5/sIVv++qkbyjIxnxsiZ27Q1tp0+n8pl3Psy\n4p6vrr/2fZantD1J0jggZZ4MjAygIU84dLsLrqdqrFVmLZlzKg3ou7FJ6o0JFPty9NoVjt4agV20\nTleNtxIb67i6ASzhNep8wWw2G2WPHx8fh7MDqLblomISbMP8mDw2kQBJbhtjEipl/xBrmPoE8fX6\n+jr4MOams38OgmxXTWz76shX5CbBOHJkubB+mJxIMia3APF7thT4zJHUDweXDm6xo/aTyCd4iXHZ\ntoKdjfGnbPg9226w3XK5HI2DahbGbF8HbrU8MN/+2V0d0dMRb52vSvxqucBXuGp4NpsNeuM5Z128\nPp1ue21tH61zGV+QUDwkUcPcg1uqdoE/pGnGIvgEzx0tfUrqpfFHVtfbrvmMRubZtt6+0gkOywz4\n1cko5MFkjYmp9BdeP/uQqrdVtMwbJEXKFfMzdXNcht3i9/uS7/ZPxuhOMOWWJX4yh9YRYysT2Cnf\nJviSqLSMYedSLtLmutjD/qG7b9oI97Mj3pBTV87/Crb5JaImM3vn5+cjoqZqDODoRGYJ9hE1Jmcc\nhL83+TgLg0AbWzfeo+59d4zHp4a7SuT19XUYn9lDZzwZn8efTDB/wyiYQGC+OkM6dWNrCs+hEcCi\nIJvNZuR46I+Js32kGww0gNuHcaUsMFcQQV0g5vlO5fI8s0YEii8vLwP4BCza2DqI8vfYknN5eTmS\nB9bMZ03AhDNHi8WittvtYJQOERyu1+s6Ozsb5tHAIhU+SSRnDFhTZ2w81+hJ6qSBiueF5wGoPCc/\nf/5841gNqDg/xQaRvtq4J5AxQ2/bYOI3yRoO/+OV9HyOxn1sdw7hBB8eHkbZTeQmA72zs7MR2EoA\n40DYFWE+m6DLJJr0SoeSJA2VeOlcWXNntUx2Xl9f13K5HLbHmcj3WuEguZ/Bpw97Zj2qdkRGOn/L\nI2tnGZ+yPT4+DomLtIcAD4Nk282OXOVvmenJvdcASa9HgjevL+DDb7vYB/hSHui/x2a/lX/n97YT\nAGkTNQ4UGRfnOrB9DaLmEPrn5iDf/tzrgD1jbS1vzD9gn3lj7N52MJ/PB2IjK2qwBa+vr0MwbWzD\nfat2FXnYjaxCcEui5uHhYTTXHCzvikX6T9/QySQV8BXIV1br4bcT0B5iDZkPfDL2naA+8VZiN/wb\nfjUPpM1KDN/H43Myi2dzIWOJ+YyL6Ddywv25+D2HdLIltbNxnS6ig8b1ll+CeGewvWWdMRwimcgb\nXey7jSu8LZutCnw2SeHOJvnMtCRn/DNxlUlp4xf/DT+QCUZkw4QCbyGz7HLfqmpfn52kKxiB+ej0\nyp/LC3s2deOYAvpjUhfZTqImic4uhmINkzBlXiFPbDPBqPjKh4eHYZ43m82wZdKBuhPMEA7G0l5D\nKu/zLEfHn8aZmQSBqHECzvJDY746YuRQ/tHy65gRm58FC7nWPoz7I7LG8SHr6Ipw4w/LRfoTE2Cp\nvxm/d3Gm16aT29T/TPCkHc+LZ+E/TCh+1D4kapJUSfKEz2DEEaTMBjkY2JfFtTNIANsZ0zws05OV\ngBcjmvtbyWgnw0sfMIZ2aJnZNpmQwu5x2ihkoP9/WbR/pTkbYkDPfDP3BBnMu8dh5c1ACKV15jC3\nsCGcHiNrgUK5DM3zZmNn2cjslMlDB+JWDAMYGPI8MNDBlwmpVD7Wj20eyNghyDbmBIdF5sj6YZ00\n8eCxJwNupwChQXBoPcpn2ejO57sKHkgaMsYGUCZVAE/oK3qKfNhpWv+pPgGkunQ5SWU7B58K7/HY\nedM6hzlVM1HLWqR8pZ1Nu0Bw53JqlwDnVhOvt4OZDpiaEKEKiWDMsg0JmIdhUpW2XC4H+2sgYvtr\nm1O1y4bnAYFeF2/ZsvO177EPOIQudtsqbSvsu/jbeyR3zouBozN9rEWCP8uJbbKrSZ+fd6+LRIbe\nAzMJLvmOfV+ClbTFGdh0/o1xA+j8PcaTAH7KdcRfmBD1eD1u9585zsoE7C2X15gxYmNNdOOj+H/3\nBjbug0wk8ZABpf0B1Tz39/dvDk81UbNYLN4EBV7Dqt3rVg22s4GfmE9ke+qW2NQ4YZ/MsdbGcvw+\nMWdWpGRFhoMm29Tj4+NRoJK4MfGz9R6ZTELVb1FZrVaDXmfSwePIIN1ElucnfZDn8j/RFovFiPy0\n7NnX8TIDcGraVgdaVWOfYj/n9U0bZRLBZExudUnsZR31vzOh7HVHDkwI2HbQ3Le0tRnIdkGtx218\nP2WD2LDcdq0jnug3381xpK3zHOTbSiGvXJFqTMhamTj3IdDoFH0xKeY3TnVbFxPr5NVhO9sFmvFn\n4grbjkNg1Pdsf44FPEkfO+ydFSxJYFT1L6LwfHbPNXboEnXMVeIs99G2t7s3V3d2p8lvFwHkc8xx\ndBX/nf90+5CoyawWEzmbzUb793IiPXnONOHMEIDsMIEoE5z7R+0wCQwuLi5GDD9sab7pxlmsBE5k\nslFKG2dnR8mSOAgw0WACxEDMxplFIVg8Ozurnz9/1nq9Hko6p25sMfEc2rlRysp8pENL5pKxVO0I\nBM9HAlBnpWyUkqhJ0o/7bLfbgZjIvakE+xhe74PMQIM1THmy403DaUONI2LcBMyMg1LkQ6wh20mo\n/Dk/Px85daptIMtom81mtA3NDLd1k88yFtbHpJTnw2s9m82GNXEwQunoe0CIIAIChvm1gbdzhkwy\nmKTPGD3bHvfH47DDs2Fnbcn0T90gln3Ar5+PI0hnk868CyLQDeY6wYIdpQM+tkLc3t7Wt2/f6uvX\nr/Xnn3/WH3/8UX/88Uet1+shsMMmcOjb1dVV3dzc1JcvX+r6+npU2s36IJOPj4/DoXIup98XINlu\nci9nAz037C12Nod1n7olKMwz2XIMGeg7yGdckEusUVaamKixDzOw9VxBGrv6zH9zEGe7W7U7vwy7\nYVLaY3GwYGLBBwszvgTd9gWdnTGYYk2nbgn8qmrkC5A/gDvr8fDwMJIv2ycnbYxvHJAnEWbSjyAU\nAvbTp08j0Mt9kHHWMg+CJ6BElpwp7s7zSuLONtpyC5mQAHufvCOD6PzUzf4E3GbSmjfD0PckOJPQ\nQSaM+RJ7+vJY7auOj4+HuSYJ5cDFz83MruXeuvH4+Fjfvn2r29vbkU22P7QdNW7zfJmoQtaQKesG\nekp1LDJ0CHyTJCm60JH9xvdp31kzJ7ZOT0+HLX00E+kmfTKgRqasj0nWMd/+vHWfseAHU2ZtP3i7\nzadPn0ZYhrH58/Q3CRHbnBxP/jxkS1l0IjUJiyRosu/+vC/HMRnc+15UCVNVfXd3N7z57vb2tlar\n1aBT6CfrQBUNFcsZM3Ska85/VnI4TuJZ7i+/p1lvM848xLp1RG+SmvZFVbuzJTPeSF/XJX+sE/b9\nEEFO6GLzXF3oFxgl0WS9Zu5M4mXFTxc/2g9jLxmXq17pK7jK9ht8QCXrer2u9Xr9oT39JaImAbTZ\nSjtzkzMpkF4Q7pPsWgKGLgABgPB63+vr67q5uRkmgCCOxcptOPnGEsCOJxdBpZ8+E4Tx5OGHSdRk\nFsVKyGJ7LiCK/lNETRoZAIeJtS6optkRVL0l6TKjlaRXAr9URLOzZoxN1PhtNSZqkL+ULSuugZad\nbQJU5sHBjIN5QDWVHvf39wdbQ6oUIGrM6AOmTNTY2flwNBsmyz7ADUOYjtJr5kxx1ThwtYzbRiTw\n3xe4ZFDHunOZFOyYdQdQuX3EgSAOj2biBqLmEOsIwZa6yBqYaLHhz/nryoAt08xxR9YkGYCzu7u7\nq2/fvtVff/01EDX//Oc/h20zEKYQSryl5Obmpj5//jzaNujAh+AOooatQzTbwgQGBpbp5D0np6en\nQ4UV8ktF0NStI2roY9VbEs3NeoQM4w+8TqwNjtyJhw70dMAbcIou+LPMbQao6TfxYwBty6LljsDY\nRE2CTwc/rvpI38HF+pHpnLrZ5rA2mdCA0KQvbOdLG2qixuvrNe3WySCVezgR4a0NzI+zc1X15juL\nxWJEcpqkMYB2sMAzkqyxjqHL4L2q8UHL6UtZf+ZstVpNvoZ+NviArQngHvuN9C9J2lsekFOTNZZ1\nqjtor6+vb2wY2M64kN/xfFeM4YPZTmaf9vj4OLzqlsReykGuQZJtjMtEBXKQGWb0gQrZqhq9RWzK\nZvzNWEzUMDfYtI6owa45u45MnJ2djRKsTsaC8VnDfURNbit2XMR8J0nj+2DXLR+WX2wmVXR5vlg+\ny0SN17dLzqTPOARRY5l2vGdfaD3js8yNm7HLPpuZMaVtl++DDDmwT6Lm/v5+2KZtjAVRA+Z2xbKf\nmVjU896RNP67ySrbn5xT22PjqqlbkofWE/vtHBvJVicGUv72tS42eI+o8aHQ2ML0tYyjI2C9LTm3\nvUH62H6enZ0N3/nIjzBnyDVrim0g4QZR85E9/SWixqDTAQSG3JObZb0dE0qHWdw0HmlAs+yRLMn1\n9XV9+fKlvnz5UkdHRyOWjRO9s6ImX6tpYgCQtd1u3winHchmsxkOMsN4puH0fXF2Zh83m80wptPT\n0+GAq/8/EDUIW1bd4MhsfAw+0zEwp17PzMiy3hhHQK/vaeD7XkVNEgSdgWBcPjchg+UENgacSRTY\nECBbLy8vBwkOXVEDu5/7splLGxMbo66iBrDAHOPQuvlj7A7ECdoJ3JkDM+1pB5AjsqwOIiBUMlvl\nueY+JvR4nreMeBsXc5EBiO/lgAhiYepGxiwBPZeJlgzg3iNqPqqoQV6ZJ8Zo8J3z/OkAACAASURB\nVEJFzZ9//jkiajIAYc2zoma5XA7rjS3l2T4IkwOVWV+P0yQNgfJ7wW1H1KCnyPLUzQQNc54OuRtD\nEiMEb8wZPwmuqXRar9ejA3e7zxv0cXnLH8kLmgOZqvF2FgdC+CvmOMFIJlK8vxx9ykDBtha/62yW\ns11PT0+1Wq0O4hcNuJg7B2XYF5+l8xFRwzwnYHcVha+ciw7vVO3O0zGIBcgSTLN1l4NZbVPTJu5L\nkKUPzMSKySLkBx/f2TXk5+Hhob5//z75GppwgETBLl1eXo4wSQbhtvnWy6wWyooaMChVGgb/1n37\nK+QCmbYuuppts9mMtvsmhnWFnXXFa5d4hpbBLc8zPnJwhZ+pGp/1eAiiJn27+4cMsVWROUGebVvy\nsFN8FZXrDv5MIvh5OSdZ4ZaBOmvlZt9rW+BEKD/dF4jZ+Xxeq9VqFBD7mTQTNSnDHUlD3w5B1LB2\nNCdGTd4nJk9COEmP1Fl+ZnCcuM7rAPlprJNEDW9WNa7KihpvffEzjbszoDc+3ZdE9rwQ4O8bq4nf\nQxA1lmnbM+9E6HyRt2nvq9z8iHT7iKixT3OS0QRbkqyea2MNbDHJIFcwe2cJfj35CmNQx4lORCW/\nwbhM0vzbFTUIucGHA/iqnZNBcDrjkEGHFYnFspPJwCNfPUuAbraMCcjskdkyb3HKBXVWzUYj58KZ\n++7+Fk4Le9Vua5GdtjMGHJw2dcNx4egAdrnNwmuWbK+FkHlyKbbnMoNKB9RujN0ZIx+YaaLLQIn7\nI3MYrM1mM4B6Dk7M8zWyD4ylC/78bwcUlgPmi3I2+n2IhoKTVXLWEIfejcuBBIFI1S5Isw7ZkaBT\nmaUwoYcRQ67T4bgvNpJ59obJHfqMDiXASEdvY+osIzJsY8q4Db4ZE/1xNdwh1rAjNTvSMDN2XUsH\nAGHI97AtgHmTdQCVr1+/1l9//TVsdfrrr7/q+/fvQ5YJ+c/MogNy23/u7/MUHh4eRnqIPCB7GTwl\n+JrP56PxJShNQLGvomWK5oBrNpsN5excrljokhHIddoYExWAnQR9jDnJ0w58J/nhZrsMCErfhqxW\n7ex+gjfmO8mrTLJ4TdLeOjGSfsK6MnXDpqPzZK5JXmQAaLLLPsC2F9vmhMM+e2gfm42/E1xw3d3d\njV7NbKBvvGHZYv2Y6/SBGSAnWWP/b3+Pb+bfxjQOqpE9j3+qZnyKzlFhapnJ+WAsmQzKzyWBZzLM\nRA3PZ93QW2fyOSOIgJDLQQT2jTm3j3TCJatmmYsMyLuWgV8Sht0cVY0D76kbWzqxQ2lfkghxX0z4\n0+e0Z/bp9g1dMGo9n8/n7TmGfsMiyRHbfJNLtuHb7W6rhMlu7mO5cD+NX+wr92FV44Ln5+d2jqZu\nJpXAjeADJxN5vnXPcQBz4wDd6+gY0/4h1x/8//DwMGznJgH19evXgaTBnpJkMUHbJUOraq+PckyT\nZ4AZWzs29vzhf9yQW2xwJummbmAz8NrJyd/ncNJHSAwn1pkzfpeYp8MnGR8ay5j0oiWx4pgbTNXh\nKubQZJnjkIzhIcGNvbELGSNtt7tzQ+ElXD3mJIFtrc87+gjbfEjUeNLoJE6rKynqSBoTNVl9YoPD\n/Wygk6SBqPFr0ZIxRTk7sgZgzTMRvJOTkzfEhJUlDX/eM0vF7Wxw8AB6z4vJntlsVovFoq6urj5a\nlv9zy7JxADEB/kcOeh/IMfuZgN7z688lu+hyM58BgKPqqqtw2qw7z395eRkFhpA1fgPVPqXwuud4\nkTP6nwEpz2WLyCECfDJtBMDsYQZI5PphLBPEUz0F0NnH9Juo8Xput9sROMI4O1uVwQlzybPyzSNs\nhUnyheem3NlYJutNQOVgwmvJfGR2wAEy4zjEOhLEGYS4YisvZ2dtj5kLZMPVRF5r5gMbYKAPQfPn\nn38OP/k3RM3j4+PgqCkhN1mDLma24+npqe7u7uru7m4gfHCAyBcy4bVPosY2ABDQOd+s8PA1dUMX\nCeCzisD7mQ2aAWEmIS2fDuzwYZlRpO0DQr4MEDu7ZyBkQGFyBx3Gb3dEWLc9Of9tfctAEltE9ivJ\n7g7kTdEgaih5xzaenJwMb0F0JryrSnKSgrU0WE375eDcLYk8bNF8Ph8RNWTh8GeJrRKsZjC+j6hB\nBh2M+G8G38YFEDX2G+4XOl+1O6tvymY/hT5ip2wvOpzjueb/jMt/Z5yupAGPeu1MUrHG3vJ5f38/\nbF0yGW9caSKzqt5gWvvrTCol/vaYcr1TPjK46YIn9J9Ez5SNKvjEzgRItEy2mEg0CZCZ/vS7WV1u\nO4at5N5OEEPS8XpmLkjJxJpJtiMX6JpjHeaVNbP/d+P73Trmhe93BYifMWVDZj1/vJyDwDV9N31x\nXIW+GZ+a+EiixklTk2NUo97f3w/45h//+Ef98ccf9eeff9bXr1/r9vZ2RBCZALQPQ1YylsGnI7fZ\n3/TBH5EW+0gO2/iXl5c3icYpG+PB3uCXmRvrG3PC74nDWVfbj27s9o0muxwjZoWtKwuRCfptvbAd\ns1xk/JZEDevGuEl4Ou7IdaHS0tV2jAn5RgfBQOfn50Pf32u/RNRUjfdG0wEcfk7uvkVJ5p6FtHDa\nMBn8JUnjLS/0z8SJ9696EVwGz3NzT+tHbFwSQK4McDmqHbz3mRtY2JFA1ByikSlE0BAmXrWeAWln\nJExeIfw4HYykCbckxJIpNbmWyvf4+DgqK82ggGd0zhjjTEmZFdqkYtfS8aXCIwNVu3NM6D/guWPE\np2gm9mC5IWnYcpRAk3VyptUG9+TkZMhkdftJ7Uj5iRzZSXgNTHB4PmHgqZzy+jw8PLwJBj2Wjqih\nvw5OLA8OTLMs1tsA0X8CMb/y9BDr6OqLqr/1AoCWW72YE4OWDNzthFwyz7hsk20nf/z4MdreBHAh\n00RAwbZMAtg8iwRHjY8w2QpJA1HjrTQE4w5arWtdtpG5sxyYpGHMrvI4RGkw60B/5vPd9j+eacfu\nNUD/0E2DHwJN5sogPwFO+lr/riNcDJ6RuxyTfTk/7Q9zq5MBbFdRA6GX20zdT9uHk5OTUQCaY5q6\nHR0djUqoGd9yuRzNn7Oi2DfbSH5H37OKLf1Jkh4dSWObh63kIG50mOdlBZ6rX9MG4wOY2/R5WVnh\n3+/LDlbtKgX5yXhcUXMIosbBEQEMWxV+/vw5qlD0OjB+vm9Mk5+h78aiBOzWPRJ1xifIFwmku7u7\nWq1WI2IXnwXJzv222+0IW2YixPcwkb8vGKwaJ9CwP/vImqoxGfmfJmpINPz8+XPoG7KLvcgkDP4k\nAzEIPO4LhrLvYGyJeTP+MFnDz6Ojo2FLGPLu5JqxtMeQNtX2zv0y9jI26chY21qIPifXkfWpm+Mx\n/A023ue4mezldxkLmazKSumsMmWtsZ3z+bx+/PgxbHG6vb0dYZ1//vOf9ddff9W3b9/q7u7uDRnJ\nmuC78F/MH3bDuCXtkCuXLdfpw61r6KTJH/8fO2Yfewh8w3iwO8gW+A+/Sb+9Xd9ncnm93yOnkhQ2\nvs2YO48yASOBT5hH2zH7VeMy/p8kjXEXeKWriqJB1FBAwlrZH0L8mGA24f5e+9BrumLFTs3K4uDB\nLVkn7pdETQquf3ZssY0xbLHBFkE6AbsPYjR7NZuNS9RTQBwIVNXImaaw+D4Gx87se6xWdj6HgB0C\nzCQQ7AD+PoUyYEwW3/Nk2bAB83rmZ82Q5iFUVbtgImWA+6AEvoezVt53yD2zT/wugWc+O8FAAhnL\n/6GIGsYM+LWhyvnxOC13ZsJNbuzTb7IyHdHGcwyGunlF7721Lbd20PeugqqbB4ys1y37xuezP/6O\nbVwHWqduKT8el/vdEVS5lm4ma3h7FuPwurr6L7c73d7e1t3d3RAQpl3Ks6G8V5kglj3DvFkBfXSV\nox1gjjtlwKDT5E7VGOgiD11V0iGa18NBEmuBXhFcWF9MetvmGOSlb/J3DdQ7osbzan1OYJTJlS7Q\n6/QyM42uft1XUWPfb6KA9p6v7/RlinZycjL4BQKLBNm5195khW2Qx2ESx3aGAJR5tb2CZDWJx5q4\nosZZ2u12t43CNot/e84zOw8W2mw2bz7jfng9jHEYc/rBJPdNvB5CF8FLzFX2x37bfUzMwt+7ADb9\nhckRnmXdxwZ7uxM2EcLGyaecV+uik1fYY8bE9x3I0bfEtanbbu/57H3X1M24xTbKWNGNtc6Kxby8\nxkk4ety2ccavx8fHI2LGF5VVi8Wi5vP5SIfxiU5g8RwH7B0OSD+fBJp9QWIEmnWOceX2p6kbhJLx\nVJcY6GINB+O2PUl+uCIYwtokCu3p6am+ffs2XK4W9pvTTER4rpx08HZS1jV92EfxX8rbPgxoX55k\neecjD6GLXjP0xngE4tT9Y3729bEjvz1uSI1MvL9HpLynR/m7Lga2Xeywj21IZy/sLzMh033O13a7\nI9o/qor6kBHgpHRn5DabzZvSpjQqyTraWbKgVTW6J4DXoIFydwMif9dsGwHB3d3dcFDU169fhz3B\nPj/EApNOm8UxANtutyOipgNOjI/veq8xwusAOIUVBTgEQ4og8EwMEUEcfScDSOsEPQkABNngxKWq\nfm7VGAjb2BqAkiVPoMFFwMkWKVdmmKQzMcB62pFm4MTf3A8rmoMXSmRZSzI0BnBTN5wvCg7Yx3Ay\n1/n8NGqWSZ+nkORnBhkdyJvNZqN1zGyHZciMOOAYBtqBOdkMAj+vhwkrV6ek48jAwkbS7HtXxfP0\n9DSQEFO3s7OzUR+RGdtVHJ91y4DUc+91Z/1cJZUEnLdq/vXXX8P17du3oZKDANMlmi75Z52QG9bj\n5eWl1uv18EYFtj5BmpqocSBv4IPdJ/BHlr3mkD4Eqsinszyeo6mb9Qed9HhYKwhQ64PtTGZl7Gdt\nW121kYF8R3bx/6qdTie46khNz5kDtiRo3queMZFnoLvvufsAbAdwpm5nZ2ejPmAXttvtm4DAvigz\ncaw3jXVzBpt7E1xD7tmHJMnGlVUVJkQcKKZ9z0Dt9PT0DSENUYPf8uuHDT6RK/w2Mmuywjrs5yae\nmnoNPX9UCmM/TbDh27w9BbvFXBjLIoMdGdVhE96IdHt7O9jU79+/1/fv34cDS6kuRGdS/jPhYBlM\nXOVxdfeBxGYdOkK3S7Ch85YnqpPQ4anb5eXlG1KFqnnGTX8z4PP60/ckp5AFZJgErivA0FFjJbZB\nXl5e1vX19fDmzeVyOfhB+tCR5KwdzbiEz3TbReinbb8D3gwsM5bK+UL/wY2H8ItUWnFvJwMfHx/f\nTYBhb3O7In7RRI0rID3Xnr+Hh4ehSpiE1J9//jlUC1M5bfvnLWj59kLmPGNhr1WX+Dfpx/p7DtKH\nI//EGY6Xra/7SOUpmskXdNC6j1ynvWStWXsqZD1PXeGC7Rxry/zbZnt+ra8kc/GBOT9JHnk+jXEc\nJ3A/E6Q0sDEVltgAr5vXOQ8gT8zOnO1rHyKfxWIxYtQQEpcbWQATABiweFL2sVbJbJphywECGCjv\nI1sBUcNrZh0g+BkICMrnAJP7V+1KwpOooVIjK0j4rs+FgT1LAfV36MehiBqvDUIGYw1J4wAgg0Bf\nNjJ2NhA1BCh8xs3MudfX5aEAro6kMeBiTslSUUHlLU8+nNiZBa+ZQe3R0W6LDmy7S/IhQgC99Jn9\n5YckamxU7DxM1FTVG8W3bNvhI5d2/q4a2xdUus1msyGrkee9JGmTTmY2mw1lgHnOhbfXeA336Qpj\nsawTLCMrzj4ynsweIk/My9SNoCozlK+vr8MZWgbKDjQc9NEya8Xn2ULjeffa/vjxY3RGzd3d3eAs\nkRPkLM9l8Julqmp0bwIVAJGr23C4jAsZSCKCElsHYQ6O6T9renS028LiuTlU5jCzKVkBZqLGMo8N\nsqxV7chVgCO/S6KmanwAOJ8zMLRPtUw4U2nAxb0TyBismTxNooaf3pbc7e03KMsrfaJxwCGz+IvF\n4g1BAujaR9QYe0AauqqFtWH+PC5vuSQgtE9zJZVtppMZXmvuj67ap2X1h/2VbQi+1lvYfAZZyoyx\njYlD3/Po6Gh0hhW+9BBrCPFtP75YLIb5cHBgohpCGuCfOsR6MgfMlcm1JG54Q9nd3d1oGynbL0xa\nJ95kPlM3Ei/RsJve9uS/5RafJAS7/ic+cLCMjwcjTt0gahyI8TyvX5Lk/J3xWK8St6JbbAfymZKO\nTwjUZrNZffr0aUTUeMuTiViTZcicyQWaCXnbZq8heuTPeU25R9oKPpexFfYBHT8UUeOzEjPJ9/j4\nOLJHjnvAz9g/J+s9Vidq2C5vP+l/r1aroVr4jz/+GCprfPYeMQcynxgU+8U6I0OpQ44PM9lSNfZn\nGcibuLA+8j1XyGVV5yGbMSiyZx/gn1U7mwNONd42Zrd80uxX5vP5qDLXiWMwo+NQdMJYqiPJTCQl\nRjTOgazh/vYtvo8rzPk8+C15DJM/GVNPQtTk2SqpFAZ3KJUVEGNlcGkSJx0FC4zhYqFQVC+sn+st\nL66o+fbt2xB4pPKgNJ2zQvEASc7mEhDA/HXAh4DCwoPTcUbUjbk6FFGTpVcEtA4ALdysVwqW59Dz\nZwNKtjsVEoNMsGXDloHovuDD80t2gnUHBHkrFT83m91ZIAbQZlsdQP38+XPIAry+7s714fv8nv4B\nZA4V4NNXdCmdh40Pn2GMyUKjZ3w2M6YmakxsdsB8Pp+PSlBZY2cBndG3E3YFjZ0jhprMPPKATllX\nbPCwV+iaZcVybaLOxCX2BuN7KDCTgAUdgnzA8dBHdMNBazoPg560ry5Z9blKBBNfv36t1Wo1khkH\nKSZpfGCaMxjoP4HK9+/fRwRqEjXInjOYdvCsP3bXNthnQRwf/33IJ6/89hiQ2albEhj5s6uowcZ5\n24SBPUSNSRl/L7M0Xvf0XwYjgCBnKi1zgJ/M9hhoZKaxI1V9JVEDQHqPpLGvsE02WJ26cSYcz2V9\nWDvbMQNqbA8AkmAo7T7z7OTDy8vLoD9es9wS6rV0MsNzhg46EPfacWWFQZL6uYUtK2pSljxm+xOT\nl+zZn8/nwxkZh9BFnuH+2o93uMGkF/OGjKYcpn+0rnGZRIaohqShooZtoGy3SJzl5IJtd24DcCOI\nzYqu+Xw+Ot+lIy7SNyRRY//O/Vw9NXW7uLgYVcD6GQ5eGR9rDAa0fe2qGhzg4mtdUcN9HaQRNJ6f\nnw+vfM+DpDNu8GWixvY6iVhvkbV9N/mTOOXp6Wm4lwNhmgmjql2FQ+r0lA385WcYr1H5wBitQ8wT\nY06ihot1M8azzLD2d3d3w5k0//jHP4bq3tvb2yF5b6IG3JV+jjmrqtH9LXOdjbYftW9NH47spZya\nFHDSzvJ2CMKU9fGzWYvEG7S0XSYz6CcY0USNbZELPx4fHweM4aRIh4OcNLd+5/wYT9iee5ysq5OI\nGev4mSSnTKxadvkOlTeWm1zz99qHyIf3kxvQZYYrA3gm3IOez+dD4JcOvgMQBj0sohfSTGTV3weR\nEaznGQs2il60BPMOzler1RsywluwfE4N96NPWcLHwrB4PI+xdYz51M2HlHlrA4bJBE6XTbNwG/R0\nDrEjvRxEep9pR9SYBPE9HJwbEL++vo7Ov+CeXNkP5t+OygQFsur9shgalI97eM9kBptTN4JWOyUU\n3oYDIiDBidloG1n3u8tkJyhi7A7iqmooJybocBDDZaLr6OhoMGDn5+dvzrjg/iZpOP/Eb/PyelhG\nZrPZCKSyLt6aYbIBBwsJcAgwWrU7U2Gz2Qz99Bx3lRmd3HotTfxmcMJ8ZPWabSoVLNlP+nRxcVHn\n5+dDphq7jUxh61gfnw3Gsw2GcV6LxWIoJb+4uKjLy8tBFlgXX7PZbAgAkUfW2NWUvIENpzl1Mwlo\nYLUPCNv+IY/4QgfdtlcGESZS0An7z6xgA7B3QYq/l6ScKyv4mW+6MSHVbYdylsngbt9lAtE+23Nh\nEmLK5nXqCCNAdlW96ZdxUdXukHD7se6+PM+gzVl+64y3CPN/+oUOZTCHD8d+UFXx9PQ0/P7p6WmQ\nJYJb1tuHZzrpYB9MPwxGDbjtNyFvsQtTNwe/kBZgGgC8ZShxDOsIUWpyzoke20wnihykudIafMh2\n7O6AcGSaOcztAtg31qEjAi1jvleXDLC9MnlvP+lneCvC3d1dPT4+jkjgKRtvXuvIY1fkmVQFu1g3\nuTID7+B3NpuNzrmAqOMgcdvlxWIxbHnirK2q3TYHP8/y4ud3LXEt826dMgGXwbKJIPtGPksfndyw\n7B2ied4cUGfg77fgOj5gPphXvt9VeGFfrI+OOTkTygewe+y27ZkgTPuXxKbjFv/k99w/E5xJYLkl\nGVA1PpfS8mUfYSw/VbOd8xEI2Kbc1sy4rL+OKzpskbLSyTWJWCcC3FhD4mzmDFns7EJiK8ckXgPk\nj7FfXV3V9fV1XV9f19XVVV1cXLxJ6CaWR18dL6d9+hXC7cNo8v7+fjR4OuGzIxw42gD4bwwCUJ8G\nmO++R9SQkc9A/vX1dTgXgRJTv77SYM/9yMZkUqKbINHPs+Hz4qBUBg3MQRob5pW5QxgPcaK+D9uk\nf+w99N65rjzSP71W+4gas877rgS9JvSs9BloODthB8xamExLEshAOS/WgXt7T2TVLtOajicBNUYn\nDcoUjTJ9Mi30q2p86vhyuRzKze08HCA4cHS/bWQcqNsg2pjZ0OE00KF9BzgbkJyeng5lxc7IG5ix\n9s/Pz8NB4QBhwLJlhjXbR9Tkm2g6h39IMOPSbMCjgypXLFjnHOQxl9a3lHX+hq1ymbd1uKpGpaOs\nr52qCRTPmYPH7XbbEjVdeTlBFPIKWXN5eTns/TdJxXjIKkLUmHhyReVqtRqVoR6i2Sa9vLwMWS8T\nmsyLx2C5spM2EDSYxNmbHDFhxzo6MWD7aN9Fy0DLoMUgDPLXZxRlUJ+HB3PZBrov+RP5BYR2/jbn\nbaq2j6jh/8yL57qq3vgz4wnW3+DT4+ferBWXK2r8Zqfc+oIO+FBg1jazfZyjBrgmE+2qrpeX3dso\nWNM8z4KxOyBx8OX5gezGph6aqGE+HXC70og+QYwae1n+bE9sMzPwRucZt79ju4cP9HmGDhgtN0ms\n0FdwB364C8rSP3R+nPsRdO0jHS3DVTWMCVztA42nbpBAyBjyxfitm6l/Tv55S2ISAca5xkbYbWNv\nk6FdAiED9HzJiKvi3ByQmqSxTUa2WAcTFl1Aa39t7JxB/kfk0b/bwFm2eSmL2BYnGd5LKDAfmTR2\nANyR/BzivY+ocdVYVoV6+2cXh5okSbIG2c2krmMpmmU6P0fDTrxnj6ZuHicxEToDqX12dlYXFxcj\nebM96UgxY4e0W6yn5xF7hS1nHTKWs03PRIgrJ9NfO66x37Zf5Lq+vq6bm5u6vr4ecCqJS56NXDl+\nspwbr/5fSNNfqqhx5xHeT58+1XK5HBayA1/JjuNMn5+fBzD3XkYgFSQdkAXJbxn5qKKGagM3k0gu\nKXSwn47d4Jg+GTSz0BZeG17GZsPEHE/dqKhB2VEugsQkaTIzbHIsA0Ove5IxySK6dDuVErAE2EqC\nxU4HmeEeDgi7ihqMmWXMPy2bzBOyVbU7gyPJqySEzP5O3TgvqmqXzbEhJIC9uLio4+PjwTnP57sD\ng5MUdQajA3kdYWPj6AwgjovMMBUvrsrx3EASQtSwrYYzXCwz3NevqKVsGaMPKDcQMUFgoibPYbCs\nZDn01C23VhiMmqSBEEkbQbP8A8JdvcLfnal3BRJyhBNO8tJBOHvycUz0i2cxdwZHrH9XUeOD2Njz\nb6LGZFA6Zp9BhNzxXJc20w6R/Z3NdtVbBFMcTIt8O+DviArrXtXbs1tSJ531s/3Cr6Cb6Hzes7OB\n3JvL25wArJBpEDUd6O6qarAv2FbPg+fCdv3x8fFNQOb5mLoZ9Oda+e802137OQNF2ztkmL+ZqLH/\nINhAZ/ymH1d3Pj8/D1VOBI2ZJYRs8bYu7GOXiMHvcnWfQ5bs113x6LX2urKmfhPn1M26yFqgI1TU\nYOccFHfBMsD+o4oa38Ofz4oa/m17aLI8ddFZa0gl+94kgP3v7l5eI+w12NbYOAMf+0+IGipqnPSZ\nsiVRQ9+pjnI/k6AxXmPNqGCy/tmu4YOdQIBgdoCWVb8mSRzQ+pBqEwMZiHvNPA6vnX1lJq+xKf4u\na+zz2qyr/8mKGvrqxApjQb6JcSCZ0qYah/Bdz6GD8R8/fgx4yTEHVWBJkJoEok/dQfjYP5PQSQqa\noDE5ZvuQa5f+xj/dJ9tRbGlW1PwniBowI5WZxGdnZ2d1dXVVs9lssHUZAzKm1Kkkanylbu87zBg5\nsY/ld9ZRE6YdtvJa2HdvNpvBD56entbNzU3d3NzU58+fh2QiiUuPw6Q78X5H8k1aUUOz4qTzoCMd\nK9oBUwA2xjiNvo0gATsLu48IMmmTGXEW0gvSGVobQO7RObN0dJ4PjL+DKgufnVwGyA5gp242bvvW\nlb7yM9ne/Hw6nWSNbdj2zaUNu8GigwYuZxMwXDZimR3yve3IfJ6E+2qlzrJZFNDybwORQOsQjtDB\nAwbAmVAHCwbtBumZjU8H6eAcR9tl6BwYch8bVwMDnu356TK2boBKl4+b/HElk21CZrNpdhAdCez7\nQdYdqrotyWPLlecjyWHrWOqfbWJmehKk5fPYKoejchDO5coXKp5M1jhQ8dYx2xDLKk7++vq6Pn/+\nPBB1yEmOH/0zeZMOuXN4hwju6VsCMz/LPjA/az9ZNd7fTZ9tV0xwOni27TKYtH4msco9ea5tbW5d\ngjjlPAauLqjvtsqkbUmM0M2RyaS0YwD+Q7SOfHY1xnskWpeRQzY7H2ps4oRP2s2spnFSDDtuffUa\nuNLRPhObwJphM5OQt3/DpoB77AuROY83169qXPE5dbM9z+fafib+6PCQcYnJHxNprlICK7BeuXUt\nEzgOWKhUg5zmTUIEnFwESFQ9ekwO4jMYSh/n8SVGYh6N39K/8BnL1pSN14QvrQAAIABJREFUtTFJ\nZeIxE2/2bb5slwgw8Svn5+ejpAf2BplnLl296Ovk5GTQ1ZSRTA6mjUOfrFMk/xJHJjHlv6NrJpn8\nXV9ec9tTY8gpW/rgrG5DbvhcN2epuyZSE/sQG7pKis+bzKjaJYiM55lrdI/tLJB5/rx1vlvzXKcM\n2FOvksADT+2Lr/KzhyBLs6Vf9FEZYI+q8VYp2zvuUfX2TYBOemS8ZGIjfVMSPMyPYwEnHxJbZYKB\nlngFP4veX15e1tXVVV1dXY0OmXa1n++fZyhlEQGfhYh6r/3S67mTpOkIDwdNHngHOjEQKKodRNWu\neoE3eDAROakJgnIBzcIxYXweo2AF2mw2Q2Dp7QlJLKC0GAUbSIS2qt6AVgumy5VZUJNYh2oJKD1v\nyf5jODoDhKJled++kq99Rth9ShKEIMFnI9hA+N657ztBPn3ifufn56PDgVkTZMLMO81G1HORTO8h\nSJqqGsCBM4auDKn6W/by4EZnWCFjrMPWP4OfDDC8vnnAWgZiBoIAH2cteHMQ8s5bRGy4XTLOdsYE\nwBhUbFASySYb2E5jueS7Zrm5zyFImqoa7aXuQBZOh99ns/7awFtPHUDY1uR3CRjsNHyAHp8jqwiA\nob+eP4IUB3PIi4mvxWJRFxcX9eXLl/rtt9/q999/r6urq6ECwHJjXeM+BmNpQ5Az24ZD2FODgs7h\ne/6R0bR99iMJ1vlcB74t32R+0LkMtrvgLTP0/M4ANckZr33e10QNvtpBl7N+lk9fttfMDWtLxvMQ\nwDSxCb6NOUhS2IH+fD4fyA7k08kE4xAHWJ4fByn7gr3EOibWkkjLt7ElsZu+mgDWMuKGHGMfsEtg\nFj6TfsTy9+nTp6FE/vz8fPI1RAeSJPOcmkxBd1OnunkyXnt6eqr1ej3YQ7b+Q+JgA101w3pB+qEv\n8/l8IKnJ0HproSszqKQlyWc5dP99ZhTgH0xrLGe5p3/dPLDmnF9m/HqI1uFMB4f4Rftp/5+kDoTu\nbPZ3BRWVuK5SqKpRbODtgFklaOLTMu9EYYf9HNyDlZlvYhyq95P8RXd8/4yBeH4XuHv+uBdjPWQy\n0baccTGH4L3NZndOpu2rSaeUCWyl9RM7al9kDOr5caIW7Gx77+3X3mFAXNYlgdNmJ6mRCYwsSkgd\nxCYZV3g90QW+59h76masD3Zz5fPx8d87RVar1TDXrCMtiUDjQVe/pz22/f758+eoIisrvy1r6JKT\nEUkIWt+59pFgGT84eZVET3IknjuKPjgzMfEDn3uv/dLruat2CtMRNRZYOt21DC6S+aIZHCCcvm/n\nLKzQBu9J1GAMElzwXJTXZJLvn6wbhqBz8l1Wg592iHwOQToE022Ql0QN85VgkPlI4oP+ucrF994X\nxHdzafIuM5OAzyRWTNQY7BpE27E5aDeo9VsM6KMrnuwYbTwNgk0wWf4OEVSYSML5+VBcPlNVI9CB\nDplMoc/OXAECAYmeYz6XWX3W2OucpA0ynoGFDz2GGDK48aud2c6YlW7YHq8Xsg0g9pk0lkueNZuN\nD4XmfmRUpm44FOuAA2aTEek4mPMMLGzokzwxUWH7ZlIVGfHaWF+dYQQQeb2dTUYG02ERsC2Xy7q6\nuhpImt9//31EACVgcx+xVThxZ2+SkORzhwCkyAgt/SKO2YdvZgDo7wJWOtCd5IpBhNfCoHUfWeOt\nrQZG+ypqIMlN4vgZvh82Icm0rDBljRP4utnHY9sOkcVPP1FVQ5CGHBF4Z6k54881qhoTUZ5ngv4k\nY4yhTETbb1oerK+2qc52GjjyPVrKkOXDfTIRjr+YzWZtdUfKXf4fYmPqhg8hwYI9ZAzeMuBK2Y4A\ntV2t6omaqt2WWgcpPhclt9Q4Mw8BcnV1VZ8/f67ffvutlsvloG/z+Xz06uEkO5Fb1pG1y8oP5gF7\nbBzXEfbWXz5vm5qJsKlbFzAhk5YdJ4ZN1KS9hVjkTVx+xmw2GwIuB2Ld2+tsd1gPkmaJfYyhM1bg\nueDM5+fnEdZPHIA8m5jjc9y/i8nsR7KaI33y1C3nBLlH/026dPqSY/Sce3wO5G1j/BnPu+OLnBsT\nNZzvaExPEjGxrUm49L2WK0jTbp289sbktkE01swkVW5ln6p5jiA2qKq+vLwcraHtk8njXA+TP8fH\nx6Nt88T6TnRgd01421clMZf+NeNZ5omEPf4y5zgPSraPpP/Ig0mXjK2JoYlZePEQLXHde+1D5JMO\nphM4C2v+3QJoQ+SBeiL5nic8WWorSWacMqBOomY2mw2LiKLTn+y/++178136wTgtTDaOjMc/cbAG\n24zvEC3nJIE/n0Gh0hkn6DMB4uAvA7qPjIgDLGfxyfA6cDSYSJIms9ZWGrPbfrWiMw0ODOz8LKtJ\nNNEw6J6PQ2bxGZezZ4wD4GgCJpl4O3LG6meYrDApYgNpwiNJkzTczJHPPeAeAEkHdZQXc94U+4z9\nSsWsqkgCirHx6tbc6pZraMDHfZJAnqrhXNMmut92emnMu6AiHbvtMmtsfXDwlGeRXFxcDK8SNBlt\nR+rS78xysubMHWOkzP/q6qpubm7qy5cvQ0bZfqEDvZ3PyUCWsX369Gnk4A9B1OA3PK+WK+bF2808\nRq+VM9W2f52M2A77c5aRJOIcyNk+J1Fje/Le67YTLBkEsz4mHUzUGMB0diLl2D7rUIFF1dhfeI4A\nV0koMWd8PolUbJR/T+BlcJqBnYkPz0EStq5QzIoa+wPrjeWOOcXe4CP5ntfFOmYbwjgcDDkYNKg9\nOjoa+aApm4PvDkfat7hS1uSvMVvaGgclVHl7HHmmTZ6FgW7Zl5ycnAyHU1JRg64Zr2Yw6PE46M5D\n6PF1Tnoa4+QWSutwJnR8f+bxEKSpg/GqnYwi609PT2/mJdeXalhvH8PfZrBoOQUbenuvD0V3Is+B\n2kdVcIzH//Z3qXbyGjCW+Xw+8qtdrJHy6pZ2I33HR8Hhv7qGmeCzzbJfQE+M3xlXYpkuPmIO02cy\ndsesmVBIv+jD8v1dV6x0xJz/z/NNeqOPXjePy+v0nr1mXoipXl9fh7coH4Ko4Xn0yZXwZ2dnQ0IO\nYtQynrFicgdeq46E8+8tG2mLSCrYFrAjhrPc7K959vHx8YiY81x/+vRplJyynGT8b9m1DHbYHFlK\nHWQ8H9nTXzpM2IDPpVyZMTGbZnbQnbfSMTm5CA7oOLcA4YTAqaqRwU5FB3x4Ytw/HFIXqGfwY2LA\nQmFDlAuCEfH5HHYMCaQIWHH0UzezlhguGyc7l8ywZZmYwSRB8HK5fEMEZeDkQI4LJ8llgOfDSwGR\nJmvs2KwwzgryfxtNlwZ3xrHq7VtK8nMJKmDe/VaiqVsG7gAJl1YiZ7nH2s6S8RhwWr7n8/lQ/eCz\nE2yInK1Avrg6MgWQa+MNGEkCsGp3iCFv0cisiwkC1gjAbWfJ/ZNoS6LR8+HqmkOUleJEvE5JXqUx\nN9BIm+IA7vj47y2bAP5cb+sNmQUcE7aA7G5uncK2kSXwZV1zM0hZLpejk/Ovrq5G9p3P2VlX7Q4M\nNCFEf5ADSqm99nz3EPbUxIPnM/2Zy72ZvwTKCfZcIVBVo/s6cDShZ9uaJDKVF0ncuB/pew16U34M\nQm0TE8RmpaN1PStITO75Oay138A3ZcvtpNjVJB0Ys/9vosX6ut1uRxWMnnPkMbduEHBgq1i7xAzW\nWQeW/NuJCEq/M6HkLKn7z1on4LbdNHazrKV9yaQFFSmH0MVv376N5p/APoOk+Xw+2q7y+jreKmjQ\nbFzmQMFBvgljJw34HNviqt5uz4KowdbmeW18/+zsbCAb0s5vNps3VXDIqNcniWpkzJdtbp6XlDiZ\n/kzdIGKMuZ1kwOZktSeVG+ic9YiKC+bd9sg2Gn26uLioi4uL4TsZlDN2vzDB85Xb0qhEwDdZTlNn\n8PHEOmTi86yjjphkniBDsTMmRJJ8OMQagumQZVd3JSlurGCMti8O8+W/82//Lkko7J19nDEVxNxi\nsRjFedkPZC7tvmMM2x4H+W5OkCah5892xHaO+RDkN3GAsYGTs5kgs2/n9xATrLcxEHbFMst3TWig\nC8i/1wSsjF6kP2IuHRdyIDj6fnZ2Nko2edt3Vg+jh/5J8oVnIf/Yj+12OzyXsZjMZVwfkaa/RNTw\nFhacR5cZN+gzCE1HzkK7GQDhZH2h0EmQJLtqQ+Bn2uAa/GA83ScD7bzM3u8L4vm9g1gbro70MPhm\nn+3UzRkYjImFNcFLR9JAgOCItttdSSNzyRoCfjBeODVOBmfM7g9lplwoVZfF5bsAYSsOzeSfs0z0\nzTKSxi+rCZKoyTUmwOek+UO8hpQxMyYfeGaD4iyUg3rWz/JtII+BJMPgknEMa2ay0oiaQEFOAAUG\nUASXNmo2gnlIoHU+gzzrkR1GZvkT5Nhxe44BXff39/Xw8DD5Oj4/Pw/z7ADZxh05M9GY4CJl10Ek\nsm9Qy7hTx5xdwCYsFovRq0ZNlCATbHVCpgy+eKZJpsvLy+HkfIKU8/PzwRZ6nRwkdiDTskCfqAKz\nfvP3qRu+pCMFkUOTZA7KWR/fC/+TwA6bSsNuumLD/zcIcMBYtfOzvkyoW8b4vVsGFX6zkwMZE+f2\nl7ahWYWX5ARts9kMAf6hdNF+MUGpA2ODvi74TYzDWhkzMUfersHFXLoKLskadNZkTRI2rhj1Fg3u\naVLRZESS7/67cUpVvfm/P599JmiEeJ+6ffv2bXT+mRMyEKWWW8udCSWCBuaHcaY+mcT0vKF7qXfY\ngqrdFozT09O6uroaDi/NCmQTPfad9m0QggQX+HsTNfSRfhgPm4RwwoZMOW94MsFkfz51o0LAZHXV\neJseuMf6RUIUosZrg64x7txi4+AMHWJrh7GN7RtbdkzUOBFpIiiTzB6TyRqT6PZznXxZHn1hX4yl\n/JpwB66MYerGWhAXINsm3vCZtIzRPE/7iIqOuKF1/m0+n7+JKffhKnBE2nienUQNz0iixr7U+Cbv\nxbx0ZE73syONpm5OejEubJBlib44kWEMkGuRRA1yyzykbHO/JDiYd2xbxwk4Fs+3ennLsH1FvvmL\ntT06OhrhYbYtEnMa34HhmS8KTk5PT0f+HmzakenZPiRqcKx0OoXbTi6VIxWIybMx5XcOqjkNn20L\n3MuZQ5eez+fzUUWNjaCdEv/GCey7Moi3kTHwdHDI5y1wNtZVu6CLANsCDRvnfdBTtpeXlwEM+HWD\nXJnZ6wwZ47DzAtx4fCZWchtUEm026BA1PAtl8v0wqJ5/BB6lNqg18ZffSwOXQUICL8thgloTNbwm\neOqWWSCDM4/X8861z9hnhQrsL+tsgg0jlVkkgECSPsi1S3xtPNN+GPz4wN0kWDPYcUPOfF/GbYcI\n2EX2DPoAdKvVqr5//z75OlKeaZvHuln+ttvtSIZNjmewX7UjKEzWGFhYfrh4Jfbl5eWw5QmCdL1e\nD/fBPkEmsxWNsxRM2NP32Ww2cnw+PPPq6mpEoKbNtG7mtoVO95EXZMBEzaEqaqr6A9Ttz/AfrjLJ\nYKsD4SY2rLv5GeuT58cywc8EA0kAvEfUOAC3fWF93A98SY7LgUm3XYB+GoBDyvmciSnbjx8/Bt0y\nwGbeMvvrzOB7wYIb9+WMBtaKKkN0KYlI2zy2XLy8vLzx3UnUgJ2qdoF3ZiJtI7fb7UAasZZ81uOy\nbmagYLxluWIen5+fh7PGpm7fv3+v5XJZR0dHw1l2Jmss49gRrtRdJzaSdLOudwRXEgBOkOBXnHnn\nvC5INRO9Jmufnp5GRDBrNpvNRtvfTDLZNhjDGNs6yKFh5x8fH2u1Wo2SAM54H8KmMk6CeMbvBIQr\n1UwMp61hXMy7iZqsfCJpybbfy8vLoWIG/bGN9SuSTdR0FYTYE2Mik/weH/4dfc3q807OWEtn9qt2\nfg+yjbU2UXOoihrWkDjORA3rQL8tl/tIKb5ne7TP5uY9jZkyOLe/s+2irx/ZQtuE2Ww2CvjTlxp/\n5v0Yr2MS/8xYJftyKKLG5LXPakpyF7vGZ3ihBD6LOUJmsR/MOWtv39eRNJnQMd6y3nte0Jujo93r\nxJfL5Yi0sx/1Vm92IiAT6/V6sInYkuQfTNRU7WJiEgZgGNsKHzWxr31I1NgI8ZOKBgfay+VytBc2\n2UYMRCesdogZyPM5K3oXbDuA9fcNHt8DvNzDf2cMNpydkUx23M2AxWQTP121QHb6PdD3r7anp6fR\neM0CZsbT6wWY6dbODjQDYQuinZflAGe2j+l2NY1JFIPkql2miH46EM2A3etWtf/smcx8JIlj2WKe\nOEPFBM6Ubb1eD/NoErCrmkhD7jF0OodB9v1//vw5WhuAyenpaT08PNR6vR7JRedcuA9zB9BJkiYZ\nazPNybBbF1P/OnLRZ3NkNaDJEfqK0cSeTN0AyRCzzAOEWoLjXDOTLtyPnwTS/j1j43fOkli/TH5Y\nrrH9zhradqD/9JH/Hx3150wlYZtZ/KpdJYyfn5VbZAVx7swnhCmZVAiFKZv9gAmVDmB3FSWsSQey\nPC8AnCSFrRu5Tt3r0Ts/Z93J4Nq200GkA1T0pLP1GUB1OpwVQA4yGJ/Jg7ThU7T1ej0iMA0+rScQ\nbO6v5y39ka/chsOcIK/YVSclFovFaOuC5Z4thFRk+KB9g1fLSga9iYE6EtSfcWLGcrAPq5ggMol6\niDW0bfrx48cw113yziTGdrsdBWm2jZlwMvZwUGWQnliB73FPE6LOvPv+xreJhXMs/nwSEthY2xfu\nmevAWkGg+vXwxmoc5o9tP0RzkJ24zXPJfNqWERQZw6QvQ05cEYrugXP8xi22XTMPrlJxPJBrk8F1\nkt62GcQCPMv2083jMZGb+MWxBf7AY4JcOgROTbwAcVNVo/ViHviZukO8Z3xqe5t2pNMPkzXWuTzL\nyXbf90q5ycRC+rT06/sIls5/d/Jqcq2qRj4ztw5N3TwW1pBn57g8Ns8fY3P1iM+ATAzoWNTriAzz\nNlvjk6wkTnuZ829SNAna5XI52GMnqxxbgAWSS/D6V9XIB2R/qcYxyfRvEzVMIoabB1KuBBifz+cj\nYOFyQzKmDMwDMcvPYsEqU7LuycrAxeCIoNWAysQIBtwK2BEt6SRToFJBbTzSUDtghCFkoV2t4Cod\nlwVO1XiGn+9sPc1OHuGxgCejaaVgXi2YAB2yiZ4DAu3OeBooJUmzD7Awbw7C+Q59s3NIg+nG/1Go\nVES+a0dI0Hio4PDu7m503g+kFKXA+4DZZrMZBWAeCzoM22z9Neil0o0sCdseIKgMOrh/GqEuk+TL\nz3YG2GPJdUpj6P6ajDAQS4CMvXDgP5/vXoE+dQOEQMyiM5DM78mb7WgXNGUg0sk4uuItHoAR67+r\nqJBxvxmrc4gGoVU1KjWlKsGl82l7HXigU7bZlhH3ZTabDdsr7u/vBzDKOk7dEqBXjQ+IdHBrYO2g\nzEAs5y2Bm/UpAwGemWef5D0sW7ab/MwgKQmbzjd0xJ7/7wx2B8ITTLH2jMNvETuEX+T1ogniIE49\nFuwdc2m7k4GEyWD7NK+tx/n8/DwQLicnJ3V/fz86nNaydH5+PiJqvL3Aa4KMWTcZJ+NIkNuRM74y\n0DIWcnOVFf3Hxk3dbC+o8APXGFflHGTVFPqZlbj4CuZzXzV3BojWs6oayYWDROu9sZQDXttb20zG\nbhvv9ci1sf9gThzgm+w2kQg5QTL2EPjGNseVbdgckzGZYOH7rprmO7Z/+J6Hh4chcPc6sH4EhiZq\nwK3+neOZLoD175ChjBdeXl5GuMO6aHudQX0SgujabDYb1o97s+3QW5izr1M09IOtnGANJ2msi/z0\n5dgiZTrxAnOc90VWMg7pSFgKD/y8JGkYE3gj1x5bYn9rYtjjRTYtl/6d4yM3YzAwMomAqRvyZlLC\nSeGUdeaOf/N35s82mngE/+c3uXrMzJ8PcU8OwEUAXZyehIqxGOOhQpWqTGMw9wVZJpZFTjrZNUHo\nooFMqLhv77VfImqcqbMTY8IRFoAyLJoNqxWgalwybiOURA0T2jGuVlieU1VvyugQEsZjZbBDTaBj\nJjWNgBfFAC2DKxsEBAuHh/FcrVZVtSuRZhxTtoeHhzo5ORkZaQJY9kAnGHcJNmtFS6LGZIAdLvJC\nYOnyY5Maua8z93jaMNtJsQ7eZmADTADuktNkM63UNr4OngyMvL6UCa/X61GVxyHW8Pb2dpTxeX39\n+9DYi4uL1jBlcI+hMAmQ8uxD8qieYX0cqJO5enx8HBF43JNmgtREaQc67bxYAy6TjJklMbDryL48\n86rbagTIcYBPFcjUDVAFEfHy8jKw+8h2zmWSNBn48lnk37bPjtOfMVGDntAAeB1Z420tqQ+2FbPZ\nbLQf2DaQ/fHomG2pn//w8DCSZcsnhAh9YLva169f6+fP3Ws7D03U2C6ZlMw5wi505FYHPh3Q87kM\nvPBtXqMELPgyy1YG3Pavab8zs4TdcxDsvvqZJq46P9sRNQSIVEVBxB3Cpq5Wq4GszoRCbrNgjgiG\nMqA0QLPdsR/s1pa54jBYAhuvqb9zdnY2bNFgu2IGtan7NNsW5tkJK/tFy08SfSmDlikDdH4emqgx\n5pzNZsPW4C4D7KCa8XYBnZNHmUy0Pvi+xlHGDraLrqrhuYzD+oTumEzr1tHBisnWffYikzr2uQ5I\nTXzf3d2NMN4hiBr8Um4bMe6y77cdsV9L+QefsHZUsTqQ8podHx8PFS65DRu8l0QNz+ff9NlyRrMt\nZP5dAenPZtLRY3PcY0xRVSNS4enpqe7v7+v29nbw8UmsTtVc2UUf8b+2fyZfwMxJ4ndEftXbt0Jx\nT1oGzNY5y5crJ2wnHCO6Wi/PIEK2Mj7gu06aWRcti1mdkUSNxwnB+PDwMDzbfmXKZhxGHxeLxRvi\n2/PfETW5G4fvo5M/fvyo1Wo1SiyZgCRmfXp6ekOMYceT6MrEg/vH7/YRNeBT+zvGQp/8LBekZDya\nsnZ8fDxs7zTWNcm1r31I1JhIsdNFsJMd5iyKBH9V+5lTdziZTIBt3i+BLcCJhWQCLXQWogRf7zk1\ngLKfnaREFzRBQgDmCDQw9j77g3s6MzZlS+bP267YiuI5NJD0eA3GfuXq1ubo6Gi0HSbZ7S7TZKXj\nfiZTOoIIh+vMdWdkMJ5WZAcpNsbJHKdBt1xP3exkCVzMsCdATOdgQEPDYCGnVNF4+xlBg7P2s9ls\nyNSsVqtRxtfEqJ0Pv7cdSb3hOxg7Bx/cnzF0lTJee5NMJmn4HEbYjpH+m2yYukGkuIrFlRCWbTsK\nAzQHVAasnkO+Y8fp35k8MxiBkPf5Gdgp7EVXBpv2GXuWwQ7P9fgBG6y1K2osxwQv9MXNb+N4fX0d\nycPULYOq7vJnvJ4pyzQHJKyT1zqDaT5HcEVg3/kwB3r7/Au21DqU9ti+2n2wHHTg6CMg0oFkA7v3\n+v3vNEjnPG/L85HJJvrYzQ92JwlKJ2s6P7nZbEZ6/+nTp0H3AKk83/vqfeih59E+z2NBFp24wsd3\npK/750CW/fteGxPfxk4dqTlls49wxZ2TM4wfG9IFUF1wlzikI2pSL5MU6rCJfXTKvreNZDUN96RZ\nv+bz3dsYIcb8+UymMAb7hDzgGsIUwpxK2kPYVNsY48wuucMYvHbGaFThpZ654oPkJfOU+Njn5ZlQ\ntQ9MMsH9cfDaETkpUwSruTasYcYzlic/z9jCdg296EjGqZqJtQzQ0UXmwDpgXLfPh2az/en+tk8+\n8m9VYyyfFbu+jBOrepI6EyX2m4nnEgPQbBP4vwsm/MxD+EXWodO/bs6NT712EOh5/hl/cxW7sRI+\nmbiUPlTtKu9y3lLOTajl2Oyn/cYv+uexey2MCdLe0+/0HbavJtQtf/vkmPahtb25uXljEFIoMxij\nw3aenjADgs5h+t5poO1QExhyb/6PIOzbS9pdqdAsKgKSRJF/ZpAyn+/OXwHo2RFxJgWL7oWduvEa\nMgfgOHay27CcGE5XNtg5WnANKNLBu4Q2Gc4kDCwLlikrqOWD/lseDJaZZ8bM3LsZcHgsgB6U2fdF\nhu1UycSydh8FJf9q8wnlAHT6AsuOU+RNXD7o2bLpOUBnkUNA+Onp6cjwucJis9kM62vnBlkF+Kga\nVxdYXghObFvcRxs9Mt2bzd9vUfG5JyZi7BBhzJ0ZhYSybTIzzj32OaQp2mKxGOwl8jmbzYZ19OGS\nJslxEvx+HxlQNd4r7s8ZtJvMtq1D3r31wjptfe50OolTP8PEtn3Dy8vuzR0ZaDnIYc4gYQ2oCGiR\n/QTtU7asRLJd9773dPTpxwxsmCPbOT/P/iaTGgZCDmYsw/53Byy9Rq5IcwUa4+p8b47NLatXO1tv\novTk5GQ4987l0VM3HzLvUmwT4ElyQ7h0YNHzm7igI9D9WRPd2K71ej0EyU4i0G/jKBOw3Hdf0qAL\nFAz8HUA50EpSHN2sGtt5qmdIJrBd5BAHmF5cXLRBGM02abvdjraTGTv4O12gyFx4jpIkRxeRnQw0\n3T/skklzLnyricMO92ayynKUfeRvHvPJye5NkO6HD9NFF+kHfZy6QQK5OgrCM986yRYskgEfBcdc\nJhCpGMpAir/5rU7GotYJB9KJF9LGdUF9/h0749/zWSfi7BO7RPF2u6tMxCdeX1+PEu2HwKk3Nzej\nMRrXEA/hT6yv/BuZ9lqCs/e1Tuctz14vEppV4/MZjXMgJl1Rta+yjWc5WM+EhpPd7rN9SdoSnmF5\nq/qbzDw7OxvmhD4dotmuZLKms0WpG1ndkjqELGazLyZG9TiNgSxnXjtvmUeP4CWcwM0tlvbz2KL0\nBbYf4GJ8tn0ilVqOix3/vBcLZ/slosYTmM4sGUImxAEwlQBmi204LRg2Ut0kGfykkUuD7AAyjaqf\nl8GKhZHgPP+27z5ZamfAiwPhswiI9/0dqiVRQ+UOgmRiomrH8rtPXm9/piNqEuwmsE8Awf0TGOW8\nGEwS4GYGzOuEkanaEVEGMnzOjprnAAK8FYsxPzw8DIbDRM0hnaDSKisPAAAgAElEQVSJGoyNHWEa\nSROjBOWMy47Fzn8+nw/3RofQn4eHhyHTm4DXe9kBCfsynQ6AfICudS63v5kcpaydy8GDbYeJ0txa\nZyDDOKpqRGAeah0halgvxvXysttK5i1qJisht/i3QbNlPgkx6xEyDEFr+2k5cBaRdSNgzuCuI2ky\nQ5pytt1uR2cemAR1Js5g4fX1deRYkf31ej3cC6KGcR+KqGFtABTIaW4LyCDMwMxy4CAqExkOPlib\nnCdna7w2+4JF/pZJlKxIy/M0OpKGlj41Zcsko2Xa4Ie5NIniA2mnbNjtqvG2D28vxQ8lBuiwQIdn\n8jsJdk128BzGj70yDrLPs++ExEwf62DAa+NAxYFuJibQ/dfX15HdtXxst9uhAu/h4WF4JrrPdhG2\neU/ZlsvlSMYNevm/+4lfqxq/qbKqRnbfc26fUtW/6pr7+nyQlAk339eBpLdbEMwwDjBMBv3IBPd9\nfX0dVTHze8uEqw2xG6w3RA3E4HK5HGG8Q9hUnwnFdsmzs7NRQshVDyTfbO/5u32M4w3GCu7FPxCI\ne+5JSiXhlrre6Xza118hcvz7/ExVjeQY7MszbUv4HoRfVQ0YyNWX3uo8Vbu5uRkRavhoXoTB2+m8\nda1rxuJd6+KCjqhBZ03SmEShj8avJmrYGurEke1wEmy29Y5hXIFGv8EQv5LAIAlDfJPVSlM36w1y\n50pA65b7zLqZXPFlO5fbB92wAfzbFdz0z1gqiZrc4mdeIqvsu6o6Y2/sMA2ZdvLS8YrlEDL4+/fv\ndXt7+yZpUPX2bcNd+5Co+fz580go9oE8OysTHK7MyEnIlve2UqRSEhQzmR60we2vVNT4vs42WCiS\nwLED57tVu3NAuEza2FDMZrMhGGMsdhhTN/a/e88c42DfnImRVA5+R+P/dmwdQWPWtCPF+HcaKOY1\nSQeTXBz26sDQlRl+HjLpPhmwGABgdFk3V20QTBNk8Tl+5pinbJxFkGcZdUSN5yszvzYKNhy5hzeJ\np9VqNcg0BgwHsl6vB+cLWHXmAmLA5Ynug0Flng9ggsX7SjuiBp3n/q6osTFFrtgjy5qzjYDvH4I8\n5fBnZwkgajjkkAAqSSMT0s7ebrc7Rj+rTdKGuvzZtpt+JGhIXQcg73M41kXbOwcJ8/n48Hk74QRG\n3Bsg720kzNn379+H56ccHLqihv6xZnmuloMCbAafrxq/bQzdcuWKg2nm3EETOmj/y1pW9Vs+PyJq\nsqLGW3zeI34sP362f390dPTGx5kQ8BZFdJG1nrrhgx1k+0ofjywbyHbN8t7pRW6bAuBhr3NvuxMM\nzCvrxfx1GMfA2sCb77A2Btcm6bbb7VAx9vLyMnoduG3wZrOp79+/1+vr60DUuJp1Ntsd9j1144w2\n7EbiSHTy7OxstM7MH/6GoJ25tJw7qLM8o98OREyg7gsoTcDzWdurDHCMQXPtjEt9X+u0MZZlkaSF\nSVNX1NhvOiP88PAw+Tq6gheC5Pz8fETUML/MCUQN8jufz0c4O5PDrCVr40ph41h+T6Du9UtSxI2/\nZRCfBHomJT8ic1KOSfaw1sbATlA8PT0N2GixWNTPnz/r/v5+kLup283NzZsqSNaGBB8yl8Fp6obH\n78/YJvM7/0ziIMkakyjIvbd5+ydkfVc4kOtDH5JAz752/tBYyvaGe9BvsBM6YFs2dWMsTlibhEL/\nPM+ZLDZ2dYzrbcadzDN238/xqOeEuUyixgmHqrfHPCRR41jR2BvS1r9nHNgIbOlyuRz1+/X1tVar\nVf3111/1//7f/xv5T89zZ0vcfun13BbMzWYzGDUCNx+MZqBhwU5hz0yAg6jMxJOlByyYYUwjxyI7\nU85nLegoL4bB96FfCE0Kb2Yo0lky6QbQzpqiANzDgbXLmadsrhRhbpNgOz4+rvPz8zcMr8fieTK4\ncOUSBtFbJd6ba5NgfJf5MfjMLBDzZ/bdwQyO2opuhe8AHcDd22MwKDgeSoIhZhx0GxhM3dARG5jt\ndjtkfi4uLmo+nw/nIjAPGZTZIQI0f/78OYzLQUhm/FmvLgjnGTQDpAxC+D2gI4lECBkuO7P8nK+c\nd+yJddJOkFJSG1bG+CtM97/SfOArOoXDhYQk+HEmHt1xIGBg78M07Tg9tiRZ/HeTnuk4ktDpgn+a\nbR7ZSDtsiAdnjw1sGAvjcmaFc5Gc7WId/Vzr4kdO8F9p6JgJDbZm4RftzwygPZcGB9jYqt2hjPgp\nAxJ+7893SZH31g37xVrngdsmClwdlQmM92TBem8bjx+HbDJx7rfJbTa713OzxodoJuWprIBUYA66\nigvbCF8OkjabzUA8gWc8J8ZPvFzAW4YzWeI+V+1sMYGY32KDnNjup35nIJHEEg1Azv3xDX4r18vL\nS52entb19fVINox5SC5M2bAxPAefWFX19PRUNzc3g31DhvAvEPPGJegSBLir+tKfModp87jSP5nA\nTjvsRF1iZtvpxLyWj8RsJq/8Gfs2Z4Z5E+HR0e4Q9s1mMyRZ8B+HWMeOXHp+fq77+/uqGm/fdqW7\nMZftDH03NmQejbPRi+fnvw8Qvru7G5E2qetdEoKfmcxNP58kgteSsWelhXFzBvJc9qG2PYkbEsdN\n3ZwwtH5U7bZjMa8muTuSxfYu58+/57uZEM572u6iN8hG2tt8frb0fV7rjC09zm793Uz2ZpLatjqT\nfFM34qOqnS6SFDOGxBd4XNa9lH8Ti0762NYR6yf2SD8LseX42oRmJkScgDa/kPGuiw+SHPLzTLiB\nVZgzJ4IdW4N77+/vB99i3LavfYh8MrOME+QBl5eXdXV11Z5g70UClGE4bdiYSEAAje/xM7MXbn4e\nwbSdiwUOYeoMqIkaC1fVzoAmWZPVHO5HZlABDM7qYyxwAodQPM8Dzaf7e++jtw/ROuBAcMk8W5hx\nFrwSMIGs59oAnuyd5QiFIMOa97EiZXVNAiCPwbLDuiZZaGDugBpnj+PLyqFDBIcmaiAvnP2dzWbD\n73NPaee0DCgMEN1/HIYzhA4ckwRKHcrLawsY5DKA5aAvGGjfI4NIr3c6RQcttif0FbtFViKDlkOs\nY2Yj02AvFou6vLwcAVDLImuVGUYTISbCc9uSnRj6YbvE5Zbr+F6zzTQgsu12sI5c0RcH6PzbxO9q\ntar1ej34IfTWAZLX8VBEjQ+jy20iZ2dnw3walKQPQ5e8rdIgzfOdP2n4NOYziRR/jt/b9naHctuf\nowdJkleNXyO+D9hmEAXAIjPvQBi/mERk1WGIGgM7yOKqGsj5i4uL4UwsdAl920dqMjYTjlTRsf7Y\nH1cPsYVvtVqN8IsD8Qw4mDMOGDZBWFVvfCM22MFNgs6OGGRc2A7mAkxXtdtGtFgsRudbmag5xFuf\nXOZuogayBrAMAV5Vo+20DiwSiLv60POSONTEqKuJ8wD7rpoK22E86CAnk0ysBc/LIN7BAnNjAocx\nMFYqSpA5sM3Z2dkoCZeE6tSN+1tGIWp+/PgxYIGzs7MBtySZjZ1ivMwfPx38ed5ms9lwuDC4Dlte\nVW/WzWtnu2aiqCNmLFtJklqvk/Sh2Z9m4tGkDXqXCc9DB/jd1kaP1VjEa+a1cH+7+cu+JxngufT3\nE/MaF+cRGXmfHA8/O/IMOUubsS/Y972YH+ubdT3XEf81dSNGr9oReuDOp6enoSrEWNGkKZjW8+gx\nvL6+jqpIjXeQ28T4vtA920y+bx2nf4lp6B9brTMW8jp0iZL0mfj6LM7w1v7Ly8tB9tfr9Zt4/L32\nS0SNDchmsxleR7xarQbgf3V19WZ/VtVOAGF4XYqPEAAWIWrS6Dgj4EDbYKIjEAAKVtAuc+IAJ9s+\nEsfjdKnwfD7fW3Jvp0CQhPEi2DhUtsJbeugLGbyHh4c6Pz+v6+vrkUEDgGZGh8ulX0nGoNAEVAnS\nPRdWwMxQJJnjszuq/r/2zm25bSTZosnLuEWJot3z//9oixJ1p3ge+ixwYbNoa2aIme6OygiEZYkE\nUFl52bmzUBgHLxze+sNZvFdOEnQmeHyPnNvL9Rw4SfYmas6B90uIu/c89gXA4tXdX79+HTHK1ilj\nMsli30EvZspd/CZRYwBvXdpPMln5nvwYE+MxGXN1dVU3Nze1Xq9Hc5ZsuQNzdqB8PRMbnIdz2VZ8\n71PI09PTCWjwCsDb29tRAeTOn1erefmrV7exIg2dUBDzumN38V0MQ4aS1Lhm1fgNE15Vwfz7Z4MR\nzsG9E2edZA0+TGhn4UIeyQ3jiJ2cx51fd1cvKdgsgGU+nw/xlA0q0SEEPD+7UYEdVv1hf26CZD4y\nqEviJIkuE3YZ1wxcnXv9BgR3nwyOMjcR++z3tgf70TmiZr/fj/bf2u12w99Muk1F1DjekJeJ9exZ\nRXEIIQ65ZH+w3q0Td7EPh8OoU++VMBTM3sSSuJvi+A0Q5dFYF//GTV7xnIVsqzh00ekmFWLydDab\n1WazqdVqVZvNpu7v74e4Rs7hPi8tgG2PC9KB63/58qWur68HHRD/slBKgsR+ZJ911zWvTRx+f38f\n+VXmrdzjJ7vKiVFNZGADzrXoGewBiV11+rhz1bHA9Z4c5L/FYjGsNN3v94Ofmgy5tBgvEyPwlcPh\nUL///nstl8uhQDTuY+zkliQi+b8LP+vAzQ2+Rw4iv+SRhE0S2xYX8UnE2d+IJY6VxjO2CeMZE6Pg\nNPCP8Z2J2Sny4v39/UnjOkkMEzXgzMxNzidVY4IqCeQkTY03uW7GtZxvEyN5bUvmuBYJl01MX8e6\nOEfUnKs3GH8SOFPMo/EH43FDcDabjXI2+nXOo+ZEB2kH/B5bB5dTJ3iVfOYkNxqTgHR94ZrJ5ztH\n1GS9mCtaPRf208wXScSiox8/ftRut6vtdjsQel7gck5+GW3tGNwMBbq7PgCTLLSZDAA0AL3FQGeR\njEKqTg08i4B0Fk+cDYJxIP45WTOfPw9/x8bmvxuceQwGSBiFjfBckPhPxPozuWD2kACK0ZgtdPHk\nbqeXzdroktxxwLY+MgFZx+mgWfR7zjjXbDYbBUuTcEm0eZ44L86cnQo/N217zQ5G1XHl1VTCPFaN\nn4V00jbBWlUj4oak53M5AJslz31EfD0nCwtzBxh18iMIE4jdybfOALcUwgYbdGZbwMlEEuPmb1k4\nYTfMYRIHrWL5EkL8Q1e+D+aQPQIyLnKv3lzRvyMe+zGOXH1TdYxJ/puL+ozfWRQ4zhuYtECJCx+D\nMfumi1F/x3EHAh5y0qs9WwDoHGi+hLRiEveepDbXT9IwcxHxxGDe43P8TH2nTvnX8+S5dGFw7tGM\nnE+u0wKg/I3fZ5z2Zzy3CYA8ngSLUwigr0VoJxhOsG+7bxVQLh7sQ5Cy5JWXl5dhfw7+5qLLWMf3\n4k6h9xJygZfzYNtI7OJVTdnN5DyeP2PBqho2K82CDAC+XC6Hx2kuKS0smI0kVislaDfWPFcYuqjg\nes6z+JEJSH+P89FEahGerbk5FysRxwDynklY471WLMc+vaKGuIT9OLeQez9TWPw7kveJntOnzuF0\nYoRtmEcOU5/WQcajFibKJmXiBA7bAfPuuU1cDIlgm8h6gu9nkevVzvgauCAxqq83ZUzl3pzb0o7x\nTRPHmfM9Lzn/zinGT3l4nvPcKWlXSQadk5yftCUE/+ezOT7Em3Ub1zPPHMYAU+VGjyttyL6QZEo2\nMGzLWQNnLQyx6GaicxmrW/04MffmfEwM4DysxGMltLdJ8PWJOYmZM5YbGziWJAlrW2jZSiuWteSX\nRA3Oxo1yI/P5/OQVzwY9Bj9MFB1cFAnjagXkzZN8PMgEU1lM8V0z61ncJxBrgV6+l92lDA4OJiQY\nvpuTa8bORTDjdBF9SfGzhCZF3Dl/fX2t7XZb+/1+xD5m8eVzuLjMOTCYbBVxaaBJuPj7dKY8pxmw\nk3zJpMR3W3OYAcb3lJ9nnr1yi65PFl+XFAI0NsScLRaLWq/XAyu93W7r4+NjIEEgPOi4Aia5Z/sd\nZJUf5cgk8f7+PnTfKL6ZA/s6dgyxwuMD1rWLDM+pH3vi1aDMKedrPa7B/ODbBuUfH8c30DH+Fthy\nkG51s/9TObd6y7b2/Pxc379/r9fX4+aq8/l89Ahf60iAYD/KvX6IZ8yDC/fsmOb3DC5d2FeNY63j\nAzHHpE+SVBnPsUGO3KzcyR4y0deZiqhhBRJjwfdms9lJXjwcxqu3IHszqVfV4AfYKzrKxP8zOUek\nVY03C863ObXI7yTSyP2c077DfXl1AbHSRRHfA0MAsvb7/eCT5Cbnxc8Amn9ViIlVx0cvGEOu/slC\nmhiDfgzwDMTI7+ghu7fEcMBirmBMsgvA6tWIAFpjrqoauo7oDh8j9i8WiyGv5upEr0bLOTQhagLq\n7u5uWNrN4SKfR48uKQbczuf4Ic3Bh4eHms1mwwbIjkOM8ZykLyZpkE0LFxfEMK5BPLJ/GR8msdD6\nHUcS6y2Mm3jJ/seqKK8CapGK+TjpFL7IaiuPwUSD/TR153yyWPyx59bt7e1ohb7H1iK3Wpg+bZzY\n7Tnz/bpwPhezIeqxI+4Z20gf9veTjDxHYPlf43SPZ4oCPwtgH84XxEvXVUmmmBTw733fiTnsC/43\nm0+t7x8Oh9HqSDfHnEs9/9ZxqwDHz+zbrVjSIgDJDX4DoX3aOerSwjnJFbZPasmXl5fabrf1+vo6\nYHF0M5sd9wOjlnBM5G/YM9iOGGSi1fmI3/kNS/yd87kG4bi9va3b29vhrWN+JBXbg6ixL7nGsw0k\n1jbetF1AdPtYLBZ1fX09wlK/8sVfEjVJiGBMgAWCDs8Du7MNQGXSXCzYkVoAkcH7X/+MEhl8VZ04\npIGGx+NxOQDyWTuYz/UroobA0yJqqo7MHcubXRQ6YSTpcQnJJfKMD0egCGTJMhsfOQi0ApLH4Pki\nCVJ4JMBoFRtO/iQTlizzenE/3mJJdjkL1tYKLgc+kwcAAu7T18qEbqIGPTPmS4tXMrUIj+Xyj7f9\nAJb9Vo6qI1nHufzICzp0dzA7GV5e6x3xPQcu/G0DnKNqnFRd7Ps+WkSNu1ZJ0JiocdfJqwUIkozf\nz+U76TlBTkXUuItddbR3YuPLy0v9+PGjXl9fBz2wD4sTeib3jJ+c88uXL0McNlhNUJPdc99z+lAu\n987zMi6KAQMe3x+kpx8J8edsdz5y7CYO/xtEjZM514CowY5YbUDhyN9M1jCPJnSSQM0i2eCulTdT\nx/49/pnL9lu5zWCSe7AdOP+5ACAPtjppPg9EjQtV4wsXalM0MK6vr0dz2rLtqvEm5K08ZqDJfTIf\niQMcU21H9mkDfotj6mq1GkAnj6m1MBD5DLxke0sA7OZM4qEkKTzn2DqAlp/96JPv5ZKS5IQJDB45\ngqhxTncsbMWkxKWJg60TPufvYjvGdC7yjKGII7Zz5j4Lv7SNxNG2Fc5/TmeeK3fruS4rF/1739sl\nJR+Lwz7RORjWj3eil4xxV1dXQ8w11uG8GTPzZ8+1c0zavm3Bds55HKOzKMP/+awxgWOo7Ro516RJ\n/WV9wj1OSdRwn7bjVvFKzjHu4sjVDJkPkRyLdef8n0RNy2b4mbwFacPvTN7Yd5NcSR9lPK5V8Vea\nOX6E1GTA6+vrgFNtsz97zO4SYqIG33PTs6oG/O+9WVjl4rnwPTsP+P7f399Hb3dzXWAMbxxqPMM9\nmUxzXbDZbGq9XtfNzc2Apd3AdU60vULU7Ha7EVZq5WfjIds6eZA5nM/nA+74bBz91IoaHCuLLcD/\nfr8fbsIBw6zafD4flImxc6M4TGvwWfwnUeOlt+5aOijawR1gs8g0027Q6/NlQvS5EpC2AiEGyWZC\nDvDc3xTP/+azqiaimEeIGoCOE2cmN4/bCcesInOOjSSgt51YDEAganJD2fwOnze4zMKFuSQIEzyd\nRAkCFAsJ2DJxA8555pakPYW4k8Q939zcDDqiKCa4exkly/9cXBpY21+sA8+bH3MDwHk+HTj5HT87\ngKHPvJ59HYKJuXdCxDZbjz/Zhw6H0/1ssI/39/fa7XZ1d3dX2+325FWzXrlxafGY3Qng/xA1xDcD\nHm9wlkCyRdZwPcZuEoDkmbpB8hxJMH2WqCHZmRBNUgj74s1j/hx252LCqxeSsEq/n4qoQfcs2U0g\n46KLpob32DJwzAKTHJm5i8NFcEqr8PQ1W+CnFTvz+i5wAW+ZU9JGMl/bTimkDMghjh2PfI5Ly9XV\n1cnqOZpJzBWFNjnLfsa/+ehB5ir7ZKsgASRm8dkqLgC6xMecR77HfOS1TIbi946l2A336vlNgph7\nQgdeKewOIqt+pmhiMFaOqjFBD/54eHgYcBpkfys+nMN4rY63i9IsDJNk5D6SHLBujbGRjOueE7BW\n+rzv2+Pwzxy5v4nziuOu9TOFL6ZtZBwyUYOvGiuaIMPectVzi+hK8Zzg+94zpEXWcj7yKzoyNs5V\nasREz1uSrY77+CznSgyQY0p78ernVhP7EtLKCVnDmbigSG8RII4h5+ap6vQx5CRgjCX8PT6TOZK4\nCdY0YeYDP814kJ9lvPhZNjN4QcLDw8NoxQg6oF5MjEUNMEW9yHx4bOQYciZ1BhjZBKRrf+eSbCyD\nz6lHeJOn8aXxfXIHnIN44PjrGsEkDatoGY+fbLFNGLs+PT2NmmiMJ7G2v+t5f3p6Gr0NlJo789Y5\n+dSKGiaOwDE6wf87JhsH+eDGDR5QjsGZr+VExqQ7eeTAbBB2Risu/81i3wE+E3wKv7M+kin3WJzc\nAdcY8q/IhksKem45kIEdRsXYMrlxj14u72TE2BGAoMEKksDGjybN5/OhY3hzczNsNovk20laRAPJ\nzIRMAmAOinNAtkGnE30+dsL5sBf0MUWBz/P9jMOkCKts0CtzWVVDUcXvKUTW63Wt1+sR2WS7yNUk\nLZ/m//gO4JHgS6Lm81n8OVZ43iBoONzVS99B3y0ARTHLzyQWFz3WTdrJFEnQvpjdn1wxRtyYz+fD\n0swkgp30rQP7XAJ9g6hWXGc+fG8GMui8BUoMjEzsW8f4DOPNe/Y9eV+aBKQGufZpvp9L9i8p2Ief\np+ZnAKY3Ns7EnKQvwKAFTLOo5zv4HeDGIL9FrrFEOd/q5MKCGJj5DD1mns/l94hjpzfnOwe8uRcD\ndGwUe7m0OKZYb4yX/Jevk0Uciww6s8hwTEGyyEuShvlxh76qhrlzwZyEA3Zl4oRCMouic2O3PRiv\ntX52IXiucMLep5KWbo21ZrPjEvvHx8cTHeOf6APbZfVzC996XloxFLsF+3rPBd9ngv4sCE36Wq8U\nKrlqIG3V53UsyUebHVtbhE+O/ZIC/uA6SXrZJ52TGHOr4bPf70fNmtb8IdlMtA9g3xSsLhw9F94r\nCiGOuiFiHOrVG6wmSEyEtPJ15l/bCuc0qVd1uuL8UuJ4x5w4vpmgAYcZLxuPG+N6DmwXfAbMwGeI\nw8xVjtX6Rx8mtJyv0u+tQ9ehSfhknem54ufEM+jI54d0aMWZzxT5/44Yj9q2sUXnm8R11qV9paqG\nFewvLy+jJiExknkz7vQ2B3AH4A03/Xzf2Xh6e3sbYv7b29vw2DB7w5mo4buOt8635FKv1PO/53yz\n6lirMK/4/q+aiZ8ias4V976RVqGUgWg+nw9Ow0C9hBTDtYHnM3oOzHZkFJpEAP+eI2rsWMnenWO7\nWkRPqxBlUnJzQBci5+7r0uIA5+451/M9G4DjHGbgra+q4yspPfYEQO5YZmHKEjXvl8Dv/cYE5HA4\nnLCs6AzH5sBBTSZ53jlIIARKkxetjqITdxb0SVxdSiBq0sbxJfsGvkPScYH99evX+vr1a63X67q6\nuqq7u7v68ePH6FEmfDGTIjpOQAgQRRcuJs2co18XAE7ezKlJGu8nkN1q9G1SyYWBH2/KgggbIEmQ\nbBj/FIRp1emGe4yltTIFYEpScuGNrvmsi2ADoxZo529Z4FnwzywKDf4cv9G57xN7ciGUq++yIMgO\nFQQbb1NKcgvdJUnjHDOFZPzK/ZZM9qb9WhK4tWIlOZaCykSMH+tzjM8NYXPVjws85wDbBTptrSJI\nHf/s8KNB+YZAF2Mmana7XVXV6J4vLY4nJvyrjmQH+7lkzvB9E7uIfbyxirxo0O3YlTEJwaYZu22F\nnMz/bfc+p/XOowYZhylE0mexxSzks7hPki6JmrStKYka9JYYzPGUzi2xyMVC61GM19fXYfVzC6M5\ndqF7i/da8ApEz7+LG85lXzOZW3X6GHfrsM7TZ8GlfiuW5yZxMd+bkqSpOiVqIJYpVE1+469+VM9F\nj+cwsShj9L/EMT/+lYVx4h+OjLHZdMRXkxjP2iULd2MCzuGaJAtCz2PWLsYz9o9LC7nJ8SgJJOMU\nbLFlv+jF2JXzZ52ZmJ45MJFiSaKmhUeNYVu273nI3NAiTJPscV7l/8ZWfA77N5GYep1C0GFiCeNV\nxk2stE3Zh29ubkY5lp/9KBH5zqvlyHdshUBdg/7PNVKzJuc7buoyjnw0Ep+zv7vWNeHId3lT4+Pj\n44DJcvW6/fvt7W2ob1nd+TP51KNPCaRQBEpLMOqJNjHAhJMwq45AyUbnBIQSSJYGmSgxg65/bv2b\nn8OxOK+LfDOqre9kkYOhMhY6MgA3n6N1L1MSNQYKLvAwVgMzyAqKEJwluzkEmywQq46779tuDAop\nHNgQ0UvS/BgbydgG77+bRJjN/tgjgpU4dOHZ1BM5VxCb8fXeMx5DrvKyI2cxeknJV1gT1CFjDBRy\nqSufxU83m03d3NzUt2/f6u3tbdgUzEESRtx79mRCdNBGT+6AONCSbBwzeGyRFQHYgx974pEtF1Xo\nOufD9/b+/l739/fD400uVA2EmDvAms8/1Yoa/Aa7OpfYTUJh216yb+AHiKk6xh8nrIyznqMEfXyP\nIsN6xr9tK0jmCz7r+wIIEx/8XXcDuV/8crfb1Ww2G+bQY+fz7oZkgXNpMVHDUnsIG3dd8EP7KfNn\nUMtnWnEHsAHRYXKbz/FZNxwcJ304VhjQEMsdU5nj7NSa0LbeEOMAAA54SURBVAe0+Hn7bMD4lckG\ngTxihD2QK+mA0eCZyhezwHMR7eItwWXmKewAHTJnSdT4Ogb7jtXEJvBI1THemTy1f+FvjhvYC3O6\nXC6Ht+h5T51zRA1zm5sc54oa8qDt2aSXbWhqcfGdBAv+hd16/oitXvXA/gRZ8HusWXxx7aojycge\ney0C5JwNOB7yGcfl3E/IxLpjIPdlUpCV05Df6A27sx8Y001J1rgbDcajEQd28OqLqvFjvS0ymjyT\n5KHrmKoa/OH5+Xlks8Y7SYBBfnhVk+fX91Q1Jmp8r16lnY0PMBENbq/SRE9IixAhvnG4WJzCFx1P\n0Z2v5yZA1lQZT91QZo5M1OT4q8ZNYHKjCRnryr9PMrpFQLfsPn3nZ2SN7YbvJD5pYStshntKX5wC\n3xAHjDOsL4+X2GICxOTpb7/9NrzshLlLkhx/d7zjZ15EQsO2qka25Dxjffh31LdsnO5cngQweZrv\nYkv2U+MCavztdlv39/dDo/nm5uakbk0ClXzzq7ch/hL5ZGLAwTC41kobdy0M1NxhZ0K9HBFl+pzp\nCHkk42rDZwLNNLuDlOfIn5msJHl+Fuww2NZhEsoTmKTBFERNC6i35tm/xyBT39YrjOl6vR4FJwpu\nb4LqbrC7kKyaWK1WI/3ksjjr3MnODul7h3gwwIENraoRGeNVT/k7ExS+jsGZbXaqOUwbTWDI30iS\nDiwQIh8fH8Mqmtvb25rP58NrOU1YoT8TddnNYdy5tNQFwsfHxxBob25uBqBsdp7x+C0mfsNXJjdA\ndtVx1QKB1sBpv9+fMN28Rp77rDq+YQf7yoR0afH8cV3igEEI85rj5/f25QR2Bpb2W87hQtmf82Fg\nyjUtGd8hJ10QGPRYvCLHRAzPKCeAJjdwHxDPLrItCVovLX7kkvt00yEfuYK0T4CSYM6P+3gcjjXZ\n6VosFqMOoFf2ZHHJzya5W4UjRANgyEDVxW8W897HqmrcEXVcgEx2Iem8aPvjmlPMY3ZyrQvr42ed\nWccMfJEcSCfRGML6d0x1DAK8XV9fD+QPfkTchQCHoPFb/BIcurHg8XBPzLUL1ufn58EeDVBN1Pix\nKttk6qOqRn59SSF+O5amzu1n+KKbVwB29IRPGZ/ZTtxESp0aI5lUNnbMeJ/zb3//FfZ1bHe8c/73\nPUKoGt8gSTyk3bcIuEtJ5hnbb2tlAz6R/urvVh3fVOcVhJkbTaJSk3AeY9HFYrxtA4Vornwj5rXs\nwkUw8wGO4Xrct0nfw2G8qtJ5NkkGNypSx9bllGL9EgcS+3jOfH/4Fdgf/ZnsRM7ZZPqVfccxm9hn\nHWZTivGkfflI3OLGmesL43Y+x7WMr6vGL55gPM5RGcsvJdkM89ygi6yJXBdwPD8/12+//VaPj4+1\nXC6H8SeGyTqYz2ADzs3kvlbN7PnI85kbMJeRBCljtF9ls8J5ENKbld/Up9gr5yPfZw2X5HNLPkXU\nuFuUDBRJy5uZQtQYnDFhPMbChK5Wq1FnBgN1we7HpVqgk+AJsMBhcjIyOZs1Q4EGNoyd+2Wi7VQE\nAHSVgReywIW0ASnXn6q4RwB0Bud2LpNxjMVjMtFkoma5XNbt7e1JIb9arYZXorH5VK4OqKrRpoic\nw+DCAMmEH3PnIJaEH04D2WRAS/Geq50MDtCNE6Bt0IVWi/i7tGBrBGuDEfTgDqxBIX5YVfXjx48h\ngPAK6NfX14E1NtEKaeKVJlVH8OO3O3HQhSQAAUooOPxZ9Ej3jJU3XnnnQt2BlRjjN4wQq9ABhX9V\njfYYIj5wXRfWBslTCBuJMaeODZl4UohjPMqQ3fXlcjl6k03VeIO1BDP2c5MAjo2Oy7Y327vJM/yG\nYqe1vxBJnJ8dM10cAE6xNxMe2Cd5xbEjj0sLb8Wj8KMTiz6Il63Ooo8Ef/jF1dXVSSxiXrzyE7Bv\nEOKOsu2MYsRFSxJF3Edu7OzHN6xXF+sJagzGEjQ7z9rvTFSw8oN5582SlxRWpyXYRyetRpQLKeKS\nSUfyEasBXTxBwDB3jLuqRvpbLBbDqtDr6+t6fHw8WTm5Xq9rtVoN+enp6ekkx3tOub8E+Z6Tw+Ew\nerU2xSi6SYDqAhPwjM0TQ2yfUxQVxh72g8SMzCV2y1xxuDkDzmUebAPMIUfGGccBE+luNLlYAZe4\nY54EDJKFh5uJYB38MWONC0qKxhbeYj8MiuUkq/DpS4tXtnJNE0vGXyYoTBZnQ9I42/nKONxYEvxg\nezU2XiwWo6cHiMM0JC3Wq/GE74FcQaFHfcJ8ur5wUZ85jdjgeoNrcn03S6YiaUxGGVPwN+Nmk/KM\nD92abKImQf95Pa/Esb37GiZq+J514frEPye2dc3U8i/XOEk0umFlPz5HvmU94f/7/FPhm8QtXLNq\n3OCwHs8RWLvdbqijEdfD6IjzOI84bvN5cqjjWtq0dWZ+gdW61IKOAy3Sk4Mmk7cwcS0C5iNeVY3J\nmcz32JM3ZD4nnyJqKLRYvonSHKhQ2sPDwyiwvr6+jpaVPj8/nywTZ4AM3sU310aJVj4F3nK5HAo1\nlAY4NLCkUOP8vE3Ggc+OlV0Tr4wxIEXp6Xgel4sxEgLioDJVcchqlZajA+CdgDMYZRfIxs3KDIOE\n1WpVm82mvn37NrxeOUE688tqGuzj6elpYKNN1KBHliyjd2zDydtz6ns2SLm/vx8O5tu25vOx18nH\nx8foUbAEBa3C51LiZIOzE0BN1OSjKmZt0cl+v6/dbje8NcqB7/n5edjXx5uqJbvvgs96QE8EK8cP\njwE/YI8NEyfMbwZB7t2FAnPDzuyszAF8e/UNBch8Pq/NZlObzWa0oiYJiSmEhGWQ7ISc/1aNN3h2\n4e4YaAI6AUv+nXk0gDApv1wuT5b/toCuSVIXe+jQK9QM+A1qsFEnXYtjD0tNOZ+TYIugmao4XK1W\nIyCS5K5zFEQDh8fK+Pi/C0AXb+TaVu7z+exT/M0AEX21VlIxZ4fDYfQI03w+H701gcaLNwl2cWiA\nnXOeNg8QdC4ib6d9TgFIveQ4SUuDRYpGi+8bu6TD7v21/KY84hMrZeznfvQWfHJ7ezuQPY+Pj8Mq\nR4is9Xpd2+22np+f6/7+frTKJjuv5D7bJ3PuVQLb7bbu7u7q7u5uIGD8mmtjH+zA4BoduhhyM26K\nOUyS1vHP5CZxh/lyrCX3PD8/D2T6YvHHpvu2T8hwiLSMY8YBLiLSlv2GLWNKrmH7s3hOTSyScx8e\nHkav880iKzGSCxNjCz5bdfqGxiyYLyHEKxMr+FbGOObW5E3mNjeB+NfzbdyCrrM4I075UVJ0DamC\nv0Ouo+u0R+vVG9C/vLyMSCDE9uIVcfxrAsFEjWMr9+pie0qMalKXOTz3/7wH12LEfueDbLy74Qbm\na/liEjX4G/P0swaPYyX3hOQcc9/4MPHO17IOXC969b/tnPGm3pApsE1VDW8/bdkvWKRqXPd6Hjkg\nRYjBYBtI/bQN/L/VDKcGsS3YP5IMTWyTNSjbqlB/upH/+Pg4PFlg/sA8g+M6zVM3nvb7/Qh3k1Ps\nl9Q3JlFb8mmiBiUTzEjOsFskLH5vUgTWGDCH0zBhKJjCEBbKIM9BnMOdeAAoActFetWRrX1/fx9t\nUJbspwF3VY0Y9iwUDVLMuBrIZOJxwiPYuisyleRz7k58AINWkV9VI2dwkvOmr1dXVyNwv1qtar1e\n12azqdvb29G1bPzz+Xx43AVbSL1xPYP9BBCeQ7qLAF7vGM787Ha7Yf8SACkrEdyh43wAoPf392E5\nu5c0e8XCVISbC3p8xrblIFZVo1UwBCkS4cvLS93f39fV1VX9/vvv9c9//nNYJYD+6Lih1wQ81r0f\nt5jP50NwZo7wIwf8vGcTD+jQ920bMkGz2+2GfaywSQpF2zFEzffv34eYtl6vh5hm35hSII9NbhC4\n7V/oLsGMu+4UT6wMgHSzzxqUuvv0j3/8Yyi27E/MlWNZ1XifJs+dARbnMbEEWeM4SVFhMuBXvuP4\nSkfEdvWz49KCjrOji84hc/0IAfkNwX9dwGL79hX83uAlu/GQjVXjx1zdpTeJxLmsa9s/Or6/vx+A\nBRgAm+FRNXKdwYsBF3kuu48uHH1txwGTP95s9FLi1bqOSwZ4JmrySNKJmEVO+/btWz08PFTVcZ84\nHgUl3jIX7MlTVUNehBBgY2UX8vyd1TaPj4+D/jwO9Ap+gbywP9tPHx4earvd1vfv36uqRitKbON+\n3K2qhnhrW3LTYyqiBnzmGOImhZsY3B8Y1vfK3Ly9vY2aMWAnF2Ng3s1mMyKvjFkhlvNxiiymTUgy\nv8yLsQ1iHGSbpcgA27S+x+9cvCdxZZvMRtCURI1JfwS7SX0xH27u0txL8g0/yUaD86LjqHMsGMrx\nnL87V0K+OpZ4zk3QV9VgW7x5pup0f0vyhd846nN4LrAr8lGuEuA+zsX+S0mLhGk1BFp5Bz9h1SB/\n8zyBzb1C10QNPkQMQDJGo+dWPLf+sUHGRq5yHWLdgreIL1kHo4usF52nOXf6n+3XpMlU+Mar8jK3\n+z6SWMU/jAk/Pj7qy5cvtdlsaj6fj4gaz7XP5VqGcWK/LPSAV+Az1pNtzSS0G1eMgXxqAod8yv0b\nr5pY4TvWF9cxb5J1E/EF8udnMs1rTc7IlETEvyp/pnvp0uXPIJ/xian9pvtlly5/L+k+/a/J1ERx\nly5dunTp0uWvIbOfgYLZbNYRw/9QDofDRRBun8f/nfQ5/HtIn8e/vvQ5/HtIn8e/vvQ5/HtIn8e/\nvvQ5/HtIn8e/vpybw58SNV26dOnSpUuXLl26dOnSpUuXLl3+e/JfffSpS5cuXbp06dKlS5cuXbp0\n6dKly3npRE2XLl26dOnSpUuXLl26dOnSpcufRDpR06VLly5dunTp0qVLly5dunTp8ieRTtR06dKl\nS5cuXbp06dKlS5cuXbr8SaQTNV26dOnSpUuXLl26dOnSpUuXLn8S+T97gzP6gWJNGAAAAABJRU5E\nrkJggg==\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "encoded_imgs = np.random.rand(10,32)\n", - "decoded_imgs = decoder.predict(encoded_imgs)\n", - "\n", - "n = 10 \n", - "plt.figure(figsize=(20, 4))\n", - "for i in range(n):\n", - " # generation\n", - " ax = plt.subplot(2, n, i + 1 + n)\n", - " plt.imshow(decoded_imgs[i].reshape(28, 28))\n", - " plt.gray()\n", - " ax.get_xaxis().set_visible(False)\n", - " ax.get_yaxis().set_visible(False)\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Pretraining encoders " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "One of the powerful tools of auto-encoders is using the encoder to generate meaningful representation from the feature vectors." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "# Use the encoder to pretrain a classifier " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "---" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Natural Language Processing using Artificial Neural Networks" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "> “In God we trust. All others must bring data.” – W. Edwards Deming, statistician" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Word Embeddings\n", - "\n", - "### What?\n", - "Convert words to vectors in a high dimensional space. Each dimension denotes an aspect like gender, type of object / word.\n", - "\n", - "\"Word embeddings\" are a family of natural language processing techniques aiming at mapping semantic meaning into a geometric space. This is done by associating a numeric vector to every word in a dictionary, such that the distance (e.g. L2 distance or more commonly cosine distance) between any two vectors would capture part of the semantic relationship between the two associated words. The geometric space formed by these vectors is called an embedding space.\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Why?\n", - "By converting words to vectors we build relations between words. More similar the words in a dimension, more closer their scores are.\n", - "\n", - "### Example\n", - "_W(green) = (1.2, 0.98, 0.05, ...)_\n", - "\n", - "_W(red) = (1.1, 0.2, 0.5, ...)_\n", - "\n", - "Here the vector values of _green_ and _red_ are very similar in one dimension because they both are colours. The value for second dimension is very different because red might be depicting something negative in the training data while green is used for positiveness.\n", - "\n", - "By vectorizing we are indirectly building different kind of relations between words." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example of `word2vec` using gensim" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Using gpu device 0: GeForce GTX 760 (CNMeM is enabled with initial size: 90.0% of memory, cuDNN 4007)\n" - ] - } - ], - "source": [ - "from gensim.models import word2vec\n", - "from gensim.models.word2vec import Word2Vec" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Reading blog post from data directory" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "import os\n", - "import pickle" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "DATA_DIRECTORY = os.path.join(os.path.abspath(os.path.curdir), 'data', 'word_embeddings')" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "male_posts = []\n", - "female_post = []" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "with open(os.path.join(DATA_DIRECTORY,\"male_blog_list.txt\"),\"rb\") as male_file:\n", - " male_posts= pickle.load(male_file)\n", - " \n", - "with open(os.path.join(DATA_DIRECTORY,\"female_blog_list.txt\"),\"rb\") as female_file:\n", - " female_posts = pickle.load(female_file)" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2252\n", - "2611\n" - ] - } - ], - "source": [ - "print(len(female_posts))\n", - "print(len(male_posts))" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "filtered_male_posts = list(filter(lambda p: len(p) > 0, male_posts))\n", - "filtered_female_posts = list(filter(lambda p: len(p) > 0, female_posts))\n", - "posts = filtered_female_posts + filtered_male_posts" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2247 2595 4842\n" - ] - } - ], - "source": [ - "print(len(filtered_female_posts), len(filtered_male_posts), len(posts))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Word2Vec" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "w2v = Word2Vec(size=200, min_count=1)\n", - "w2v.build_vocab(map(lambda x: x.split(), posts[:100]), )" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "collapsed": false, - "scrolled": true - }, - "outputs": [ - { - "data": { - "text/plain": [ - "{'see.': ,\n", - " 'never.': ,\n", - " 'driving': ,\n", - " 'buddy': ,\n", - " 'DEFENSE': ,\n", - " 'interval': ,\n", - " 'Right': ,\n", - " 'minds,': ,\n", - " 'earth.': ,\n", - " 'pleasure': ,\n", - " 'school,': ,\n", - " 'someone': ,\n", - " 'dangit...': ,\n", - " 'one!': ,\n", - " 'hard.': ,\n", - " 'programs,': ,\n", - " 'SEEEENNNIIIOOORS!!!': ,\n", - " 'two)': ,\n", - " \"o'\": ,\n", - " '--': ,\n", - " 'this-actually': ,\n", - " 'swimming.': ,\n", - " 'people.': ,\n", - " 'turn': ,\n", - " 'happened': ,\n", - " 'clothing:': ,\n", - " 'it!': ,\n", - " 'church': ,\n", - " 'boring.': ,\n", - " 'freaky': ,\n", - " 'Democrats,': ,\n", - " '*kick': ,\n", - " '\"It': ,\n", - " 'wet': ,\n", - " 'snooze': ,\n", - " 'points': ,\n", - " 'Sen.': ,\n", - " 'although': ,\n", - " 'Charlotte': ,\n", - " 'lil...but': ,\n", - " 'oneo': ,\n", - " 'course;': ,\n", - " 'Bring': ,\n", - " '(compared': ,\n", - " 'ugh.': ,\n", - " 'sit': ,\n", - " 'dipped?': ,\n", - " 'based': ,\n", - " 'A.I.': ,\n", - " 'breathing.': ,\n", - " 'multi-millionaire': ,\n", - " 'groups': ,\n", - " 'on': ,\n", - " 'animals),': ,\n", - " 'Manners?': ,\n", - " 'you?]:': ,\n", - " 'redistribute': ,\n", - " 'omg.': ,\n", - " 'dance?:': ,\n", - " 'Canada)': ,\n", - " 'came': ,\n", - " 'poof': ,\n", - " 'brownies.': ,\n", - " 'Not': ,\n", - " 'spaces': ,\n", - " 'destroy': ,\n", - " 'maybe.': ,\n", - " 'Industrial': ,\n", - " 'boring': ,\n", - " 'is:': ,\n", - " 'question.': ,\n", - " 'long-lasting': ,\n", - " 'sun': ,\n", - " 'CrAp*': ,\n", - " 'irresistable': ,\n", - " 'dont...i': ,\n", - " 'loss.': ,\n", - " 'easy': ,\n", - " 'wanna': ,\n", - " 'Gaviota': ,\n", - " 'nose': ,\n", - " 'slept': ,\n", - " 'hahahahah': ,\n", - " 'halloween': ,\n", - " 'shes': ,\n", - " 'realize': ,\n", - " 'twice': ,\n", - " 'lift': ,\n", - " 'china,': ,\n", - " 'Standard.)': ,\n", - " 'worried': ,\n", - " 'Opposite': ,\n", - " 'chin.': ,\n", - " 'Garden': ,\n", - " 'guy': ,\n", - " 'remmeber': ,\n", - " 'fence,': ,\n", - " 'apologizing': ,\n", - " 'next.': ,\n", - " 'MATTERS': ,\n", - " 'rugs': ,\n", - " 'her...': ,\n", - " 'energy,': ,\n", - " 'recorded,': ,\n", - " 'pepsi.': ,\n", - " 'r': ,\n", - " '13': ,\n", - " 'at:': ,\n", - " 'cheaper': ,\n", - " 'children!': ,\n", - " 'tree': ,\n", - " 'met': ,\n", - " 'one,': ,\n", - " 'rejected?': ,\n", - " 'Marianne’s': ,\n", - " 'Icenhower': ,\n", - " 'day!': ,\n", - " 'leaving': ,\n", - " '2110': ,\n", - " 'kiss:': ,\n", - " 'nearest': ,\n", - " 'aimlessly': ,\n", - " 'sprint': ,\n", - " 'kids!)': ,\n", - " 'canteen': ,\n", - " 'weekend!': ,\n", - " 'him': ,\n", - " 'scariest': ,\n", - " 'this?': ,\n", - " '\"choosing': ,\n", - " 'Talk': ,\n", - " 'weeks': ,\n", - " \"You'll\": ,\n", - " 'goodnight': ,\n", - " 'skiing.': ,\n", - " 'KeEp': ,\n", - " 'week': ,\n", - " 'norwegian': ,\n", - " 'HAND:': ,\n", - " 'fact,': ,\n", - " 'thanksgiving': ,\n", - " 'me..argh...': ,\n", - " 'she': ,\n", - " 'Tree': ,\n", - " 'combat.': ,\n", - " 'mitosis': ,\n", - " 'offered': ,\n", - " 'no..': ,\n", - " '(there': ,\n", - " 'aspirations': ,\n", - " 'page': ,\n", - " 'Least': ,\n", - " 'each': ,\n", - " 'ride...': ,\n", - " 'doesn’t': ,\n", - " 'FUCK': ,\n", - " 'gona': ,\n", - " 'window': ,\n", - " 'end': ,\n", - " 'expected': ,\n", - " 'well.': ,\n", - " 'called': ,\n", - " \"needn't\": ,\n", - " 'doesnt': ,\n", - " 'venturing': ,\n", - " 'alex': ,\n", - " 'here:': ,\n", - " 'ewWw': ,\n", - " 'pole?': ,\n", - " 'melody,': ,\n", - " 'motivated': ,\n", - " 'Well,': ,\n", - " 'says:': ,\n", - " 'worm': ,\n", - " '[some': ,\n", - " 'name': ,\n", - " 'Leave\"': ,\n", - " '4th': ,\n", - " \"It's...\": ,\n", - " 'problem??': ,\n", - " 'remember': ,\n", - " 'o': ,\n", - " 'letters.': ,\n", - " 'jean': ,\n", - " 'thing.': ,\n", - " 'friend?]:': ,\n", - " 'am!': ,\n", - " 'side...': ,\n", - " 'Yet': ,\n", - " 'easier': ,\n", - " 'babies': ,\n", - " 'You?': ,\n", - " 'wedding:': ,\n", - " '2.)': ,\n", - " 'first...then': ,\n", - " 'LA:': ,\n", - " 'but,)': ,\n", - " 'not,': ,\n", - " 'possession': ,\n", - " 'its': ,\n", - " 'stop': ,\n", - " 'Thanks': ,\n", - " 'durin': ,\n", - " 'rings': ,\n", - " 'Specifics': ,\n", - " 'http://www.kingsofchaos.com/recruit.php?uniqid=jm8bja2z': ,\n", - " 'lace': ,\n", - " 'pretended': ,\n", - " 'clothes': ,\n", - " 'wong': ,\n", - " '38': ,\n", - " 'country.': ,\n", - " 'criticism': ,\n", - " 'NATIONAL': ,\n", - " \"that's\": ,\n", - " 'conclusively': ,\n", - " 'cartoons,': ,\n", - " 'chest/lungs': ,\n", - " 'whilst': ,\n", - " \"I'm,\": ,\n", - " 'Tata.': ,\n", - " 'mix': ,\n", - " 'popularity': ,\n", - " 'park)': ,\n", - " '(trampled': ,\n", - " 'reminded': ,\n", - " 'says.': ,\n", - " 'repetition,': ,\n", - " 'Size?': ,\n", - " \"hm...i'm\": ,\n", - " 'interesting,': ,\n", - " 'exams': ,\n", - " 'crusts.': ,\n", - " 'filling': ,\n", - " 'gets': ,\n", - " 'his': ,\n", - " 'Friday,': ,\n", - " 'f': ,\n", - " 'too!': ,\n", - " 'Made': ,\n", - " 'accidentally': ,\n", - " '\"New': ,\n", - " 'COURSE.': ,\n", - " '[please': ,\n", - " 'this...': ,\n", - " 'soon': ,\n", - " 'worry': ,\n", - " 'Job]:': ,\n", - " 'deal': ,\n", - " 'pounding': ,\n", - " '[Are': ,\n", - " 'begin': ,\n", - " 'isolated': ,\n", - " 'anyways': ,\n", - " 'garbage': ,\n", - " 'awww': ,\n", - " 'intelligence': ,\n", - " 'being': ,\n", - " 'married?]:': ,\n", - " 'omg': ,\n", - " '...': ,\n", - " 'highlight': ,\n", - " 'to': ,\n", - " 'AHH': ,\n", - " 'OVER!!!!!!!!!': ,\n", - " 'Cried': ,\n", - " 'SAYING?!?!?': ,\n", - " 'olivia.': ,\n", - " \"she'll\": ,\n", - " 'community,': ,\n", - " 'cold.': ,\n", - " 'not': ,\n", - " 'transcripts': ,\n", - " 'promises...i': ,\n", - " 'totem': ,\n", - " 'naked,': ,\n", - " 'hate': ,\n", - " 'gas': ,\n", - " 'beat': ,\n", - " 'Jungle': ,\n", - " 'band': ,\n", - " 'ought': ,\n", - " 'ishouldnt': ,\n", - " 'funni': ,\n", - " 'camera': ,\n", - " \"Mom's\": ,\n", - " 'invitations': ,\n", - " 'sheets,': ,\n", - " 'sony': ,\n", - " 'Could': ,\n", - " '\"goodness\"': ,\n", - " 'commentators': ,\n", - " 'learned': ,\n", - " 'quit': ,\n", - " \"mother's\": ,\n", - " 'Hussein,': ,\n", - " 'Funny,': ,\n", - " 'Actually': ,\n", - " 'upsetting.': ,\n", - " 'ring!)': ,\n", - " 'material': ,\n", - " '…': ,\n", - " 'kind': ,\n", - " 'Moon\"': ,\n", - " 'james,': ,\n", - " 'regardless': ,\n", - " 'WATCHED': ,\n", - " 'possibly': ,\n", - " 'Make': ,\n", - " 'airplanes,': ,\n", - " 'Exaggerated,': ,\n", - " 'head,': ,\n", - " 'graceful': ,\n", - " 'but': ,\n", - " 'low': ,\n", - " 'it!!!': ,\n", - " 'usual)': ,\n", - " 'doing?:': ,\n", - " \"wat's\": ,\n", - " 'disadvantages': ,\n", - " 'breaks': ,\n", - " 'partner,': ,\n", - " 'totally': ,\n", - " 'break?!': ,\n", - " 'remember,': ,\n", - " 'nose.': ,\n", - " '...gets': ,\n", - " 'circles': ,\n", - " 'list?': ,\n", - " 'babble.': ,\n", - " 'Those': ,\n", - " 'hers,': ,\n", - " 'Kucinich).': ,\n", - " 'toxic,': ,\n", - " 'mates.': ,\n", - " 'rock!': ,\n", - " 'birthday': ,\n", - " 'okay-': ,\n", - " 'Twenty-six': ,\n", - " 'Molly': ,\n", - " 'everyone.i': ,\n", - " 'brought': ,\n", - " 'rusty.': ,\n", - " \"Let's\": ,\n", - " 'soon?': ,\n", - " '19.': ,\n", - " 'shuffle': ,\n", - " \"you're\": ,\n", - " 'somehow?': ,\n", - " 'naked?]:': ,\n", - " '...i': ,\n", - " 'friend': ,\n", - " 'away;': ,\n", - " 'tending': ,\n", - " 'creates': ,\n", - " 'certitude,': ,\n", - " 'job...some': ,\n", - " 'room.': ,\n", - " '...will': ,\n", - " 'mincing': ,\n", - " 'dog/cat/bird/fish,': ,\n", - " 'way,': ,\n", - " 'nvm...': ,\n", - " 'illness,': ,\n", - " 'good.': ,\n", - " 'bother??': ,\n", - " 'curse': ,\n", - " \"daughter's\": ,\n", - " '(albeit,': ,\n", - " 'okay.': ,\n", - " 'boxers': ,\n", - " 'Calculus,': ,\n", - " 'MEAN': ,\n", - " 'rosie.': ,\n", - " 'hard': ,\n", - " 'life...think': ,\n", - " 'takes': ,\n", - " 'pretty.': ,\n", - " 'award': ,\n", - " 'their': ,\n", - " 'plainly.': ,\n", - " 'noone': ,\n", - " 'say...no': ,\n", - " 'thats': ,\n", - " 'learning': ,\n", - " 'sleep': ,\n", - " 'against': ,\n", - " 'rubbish': ,\n", - " 'years,': ,\n", - " 'theatre)': ,\n", - " '[Kissed': ,\n", - " 'love?': ,\n", - " 'Forgetting': ,\n", - " 'Whoever': ,\n", - " 'bacon': ,\n", - " 'wishing': ,\n", - " 'fantastic.': ,\n", - " 'rosalie...': ,\n", - " 'souned': ,\n", - " 'bulbous': ,\n", - " 'in-depth': ,\n", - " 'proof': ,\n", - " 'however,': ,\n", - " 'at': ,\n", - " \"you'll\": ,\n", - " 'Will': ,\n", - " 'Chotky': ,\n", - " 'o0o!': ,\n", - " 'overnight,': ,\n", - " '6.': ,\n", - " 'expensive': ,\n", - " 'employers': ,\n", - " 'especially': ,\n", - " 'lives,': ,\n", - " 'dumb': ,\n", - " 'EVERYONE!!!': ,\n", - " 'mind,': ,\n", - " 'terms': ,\n", - " 'deception': ,\n", - " 'glad.': ,\n", - " '20:': ,\n", - " 'disappeared!!!!!!!!': ,\n", - " 'candy:': ,\n", - " 'PRODUCTIVE!!': ,\n", - " 'Goals': ,\n", - " 'like,': ,\n", - " 'Carter': ,\n", - " 'So': ,\n", - " '5:': ,\n", - " 'stalled.': ,\n", - " 'fewer': ,\n", - " 'lies': ,\n", - " 'faces': ,\n", - " 'im': ,\n", - " 'kina': ,\n", - " 'Each': ,\n", - " 'know...even': ,\n", - " 'thrown': ,\n", - " \"can't\": ,\n", - " 'close-minded.': ,\n", - " 'aint': ,\n", - " 'the': ,\n", - " 'Ikea': ,\n", - " 'trying': ,\n", - " 'Coulter': ,\n", - " 'cleaner,': ,\n", - " 'Mix]\"': ,\n", - " 'surface,': ,\n", - " 'mean,': ,\n", - " 'Graham),': ,\n", - " 'Congress,': ,\n", - " 'animals': ,\n", - " 'small': ,\n", - " 'steps.': ,\n", - " '[relationship]': ,\n", - " '[Wanted': ,\n", - " 'finals...too': ,\n", - " 'definitely.': ,\n", - " 'I:': ,\n", - " 'what...even': ,\n", - " '......': ,\n", - " 'lies).': ,\n", - " 'longer': ,\n", - " 'animals.': ,\n", - " 'mindless': ,\n", - " 'disappear….': ,\n", - " 'places': ,\n", - " 'sheets.': ,\n", - " 'here.': ,\n", - " 'both,': ,\n", - " 'xela': ,\n", - " 'creeping': ,\n", - " 'dressy': ,\n", - " 'melting': ,\n", - " '30': ,\n", - " 'Questions': ,\n", - " 'indicates': ,\n", - " 'guess': ,\n", - " '37': ,\n", - " 'strong,': ,\n", - " \"I'd\": ,\n", - " 'Band': ,\n", - " 'portly.': ,\n", - " 'dere': ,\n", - " 'weeee': ,\n", - " 'reason': ,\n", - " 'az': ,\n", - " 'pond..': ,\n", - " 'anyway).': ,\n", - " 'adventurous': ,\n", - " 'supply': ,\n", - " 'Bored': ,\n", - " 'black': ,\n", - " 'cambridge?': ,\n", - " 'noise': ,\n", - " 'Winnipeg.': ,\n", - " 'There': ,\n", - " 'chat': ,\n", - " 'HERE': ,\n", - " 'choose': ,\n", - " 'morality,': ,\n", - " 'favors': ,\n", - " '[If': ,\n", - " 'nvm,': ,\n", - " 'tragedy': ,\n", - " 'japanese': ,\n", - " 'invite': ,\n", - " 'way.': ,\n", - " 'HAPPY': ,\n", - " 'fierce': ,\n", - " 'fools': ,\n", - " 'goes': ,\n", - " 'wafers': ,\n", - " ':-D': ,\n", - " 'feathers': ,\n", - " 'still...': ,\n", - " 'selene': ,\n", - " 'dinner\"': ,\n", - " 'EVERY': ,\n", - " '(2)': ,\n", - " 'hormones': ,\n", - " 'singing': ,\n", - " 'carry': ,\n", - " 'bestfriend': ,\n", - " 'AmeriCorps': ,\n", - " 'tuesday': ,\n", - " 'plants.': ,\n", - " 'Presidential': ,\n", - " 'dunno...i': ,\n", - " '[few': ,\n", - " 'exercise.': ,\n", - " 'WITH': ,\n", - " 'Figueroa': ,\n", - " 'softens': ,\n", - " 'true.': ,\n", - " 'ballpark': ,\n", - " 'sleep,': ,\n", - " 'names.': ,\n", - " 'you’re': ,\n", - " 'price': ,\n", - " 'pig': ,\n", - " 'time:': ,\n", - " 'Colella': ,\n", - " 'gift': ,\n", - " 'american': ,\n", - " 'poopie': ,\n", - " 'floor': ,\n", - " 'talked': ,\n", - " 'age': ,\n", - " 'sad.': ,\n", - " 'usually': ,\n", - " \"i'd\": ,\n", - " 'New]:': ,\n", - " 'out,': ,\n", - " 'Secondly,': ,\n", - " 'kicked': ,\n", - " 'stuff': ,\n", - " 'essences': ,\n", - " 'live': ,\n", - " 'aditi.': ,\n", - " 'prepare,': ,\n", - " 'Ave': ,\n", - " 'Given': ,\n", - " 'C\"': ,\n", - " 'touching': ,\n", - " 'Jeep),': ,\n", - " 'Los': ,\n", - " 'wide.': ,\n", - " 'though.': ,\n", - " 'sometime,': ,\n", - " 'had.': ,\n", - " 'dreams': ,\n", - " 'jobs': ,\n", - " 'bike': ,\n", - " 'waterfall': ,\n", - " 'uhh....': ,\n", - " 'strenuous': ,\n", - " 'overly-perky': ,\n", - " '....that': ,\n", - " 'fraud': ,\n", - " 'ahaha': ,\n", - " 'New': ,\n", - " 'shopping': ,\n", - " 'extra': ,\n", - " 'use.': ,\n", - " 'running--while': ,\n", - " \"won't\": ,\n", - " 'no:': ,\n", - " 'verb,': ,\n", - " 'punch': ,\n", - " 'tamar.': ,\n", - " 'summer': ,\n", - " 'got': ,\n", - " 'breath,': ,\n", - " 'answer': ,\n", - " 'selves': ,\n", - " 'everthing': ,\n", - " 'nap,': ,\n", - " 'CBC': ,\n", - " 'argument': ,\n", - " 'if': ,\n", - " 'sorts': ,\n", - " 'fields,': ,\n", - " 'canning': ,\n", - " 'worry..': ,\n", - " 'curtains!': ,\n", - " 'why…': ,\n", - " 'fainting': ,\n", - " 'ONLY': ,\n", - " 'no-one': ,\n", - " 'floating': ,\n", - " 'messy,': ,\n", - " 'third': ,\n", - " 'stood,': ,\n", - " 'fishing?': ,\n", - " 'shall': ,\n", - " 'everything': ,\n", - " 'dog': ,\n", - " 'semester!': ,\n", - " 'hurts': ,\n", - " 'blab': ,\n", - " 'Cyan425:': ,\n", - " 'kid': ,\n", - " 'Rumsfeld': ,\n", - " 'be:': ,\n", - " 'character': ,\n", - " 'too;': ,\n", - " 'cheese.': ,\n", - " 'showin': ,\n", - " 'DiFranco.': ,\n", - " 'weeks.': ,\n", - " 'authorized': ,\n", - " 'Or': ,\n", - " 'easier.': ,\n", - " 'deserve': ,\n", - " 'reads': ,\n", - " 'beautiful': ,\n", - " 'avril': ,\n", - " 'days.': ,\n", - " '\"can': ,\n", - " 'player:': ,\n", - " 'american??': ,\n", - " 'Michelle': ,\n", - " 'confusing,': ,\n", - " 'YoUr': ,\n", - " 'away...': ,\n", - " 'handed': ,\n", - " 'casual': ,\n", - " 'colorful': ,\n", - " 'lives.': ,\n", - " 'selfishness...busying': ,\n", - " 'shakes': ,\n", - " 'workouts.': ,\n", - " 'upon': ,\n", - " 'BACK': ,\n", - " 'Radio': ,\n", - " '\"Truly,': ,\n", - " 'lord': ,\n", - " 'Opening': ,\n", - " 'counts?': ,\n", - " 'sorry?': ,\n", - " 'His': ,\n", - " 'article': ,\n", - " '(Dear': ,\n", - " 'FAITH': ,\n", - " 'Girl**': ,\n", - " 'school': ,\n", - " 'hheeh.': ,\n", - " 'done,': ,\n", - " 'foot': ,\n", - " 'change...ppl': ,\n", - " 'lungs': ,\n", - " \"didn't\": ,\n", - " ']': ,\n", - " 'summer.': ,\n", - " 'side,': ,\n", - " 'this': ,\n", - " 'step': ,\n", - " 'sloth': ,\n", - " 'essences,': ,\n", - " 'spice': ,\n", - " 'Interesting:': ,\n", - " 'survive': ,\n", - " 'intelligence\"': ,\n", - " 'cliff': ,\n", - " 'dragging': ,\n", - " 'Worst': ,\n", - " '\"L\"': ,\n", - " 'columnists': ,\n", - " 'shopping.': ,\n", - " 'have...satisfied': ,\n", - " 'lie.': ,\n", - " 'flying': ,\n", - " 'perhaps': ,\n", - " 'myself..': ,\n", - " 'thing.)': ,\n", - " 'shattered': ,\n", - " 'ACL': ,\n", - " 'dressed,': ,\n", - " 'someone...and': ,\n", - " 'Random': ,\n", - " 'painful': ,\n", - " 'Florida?]:': ,\n", - " 'Gulf': ,\n", - " 'stupid': ,\n", - " 'kneecap': ,\n", - " '26th': ,\n", - " 'recently': ,\n", - " 'Eye': ,\n", - " 'Insecure:': ,\n", - " 'Organized:': ,\n", - " 'school...*sigh*': ,\n", - " 'shoulders': ,\n", - " 'MoO': ,\n", - " 'following': ,\n", - " 'on,': ,\n", - " 'pollution,': ,\n", - " 'rosalie': ,\n", - " 'law': ,\n", - " 'norway,': ,\n", - " 'have]': ,\n", - " '...cheers': ,\n", - " 'DrAmA': ,\n", - " 'searching': ,\n", - " 'people!': ,\n", - " 'fun!': ,\n", - " 'Yellowcard': ,\n", - " 'terminally': ,\n", - " 'right.': ,\n", - " 'feet': ,\n", - " 'person.': ,\n", - " \"they're\": ,\n", - " 'Opposition': ,\n", - " \"veterans'\": ,\n", - " 'Quiz': ,\n", - " 'lying,': ,\n", - " '7.': ,\n", - " 'mention': ,\n", - " 'weirdest': ,\n", - " '\"Stay': ,\n", - " 'rear': ,\n", - " 'clairol': ,\n", - " 'nvm': ,\n", - " 'minute': ,\n", - " 'getting': ,\n", - " 'prefer': ,\n", - " 'open': ,\n", - " 'feeble': ,\n", - " 'October': ,\n", - " 'LIKE': ,\n", - " 'do': ,\n", - " 'amount': ,\n", - " 'gerbils': ,\n", - " 'nasty': ,\n", - " 'Responsible:': ,\n", - " 'America.': ,\n", - " '\"I\\'d': ,\n", - " 'game': ,\n", - " 'behind\"': ,\n", - " 'Free': ,\n", - " '6:30.': ,\n", - " 'doom,': ,\n", - " 'family,': ,\n", - " 'odd': ,\n", - " 'bio': ,\n", - " 'going...': ,\n", - " 'post-its,': ,\n", - " 'teachers': ,\n", - " 'Time': ,\n", - " '11:10': ,\n", - " 'orchestra...': ,\n", - " 'jacket': ,\n", - " 'Talkative:': ,\n", - " 'left-middle': ,\n", - " 'radical': ,\n", - " 'forever.': ,\n", - " 'Guess': ,\n", - " 'them,': ,\n", - " 'normal,': ,\n", - " \"lavigne's\": ,\n", - " 'places.': ,\n", - " 'laugh': ,\n", - " 'vik': ,\n", - " 'yet...or': ,\n", - " 'night..': ,\n", - " 'states': ,\n", - " 'done)': ,\n", - " 'excuses': ,\n", - " 'treason.': ,\n", - " 'Gold': ,\n", - " 'words?': ,\n", - " 'fall': ,\n", - " 'online': ,\n", - " 'lips,': ,\n", - " 'PLEAAAASSSSSSEEEEEEE': ,\n", - " 'God': ,\n", - " 'b/c': ,\n", - " 'worst': ,\n", - " 'cancelling': ,\n", - " 'by': ,\n", - " 'BS': ,\n", - " 'bugs': ,\n", - " 'succumb': ,\n", - " 'baby...': ,\n", - " 'seems': ,\n", - " 'color(s):': ,\n", - " 'Washington-based': ,\n", - " 'support': ,\n", - " 'never)': ,\n", - " 'afternoon': ,\n", - " 'sprints.': ,\n", - " 'tank': ,\n", - " 'center': ,\n", - " 'repetition': ,\n", - " 'loneliness': ,\n", - " '\"Fast': ,\n", - " 'UNDERWORLD': ,\n", - " '(hmm,': ,\n", - " 'shoes.': ,\n", - " '(chocolate': ,\n", - " 'THE': ,\n", - " 'bakin': ,\n", - " 'those': ,\n", - " 'post...my': ,\n", - " 'about.': ,\n", - " 'helped': ,\n", - " 'hit': ,\n", - " 'unlike': ,\n", - " 'comments,': ,\n", - " 'yellow.': ,\n", - " 'youll': ,\n", - " 'Finally': ,\n", - " 'David': ,\n", - " 'cover': ,\n", - " 'Colin': ,\n", - " 'complain': ,\n", - " 'sometime': ,\n", - " 'shore,': ,\n", - " 'be?]:': ,\n", - " 'lee': ,\n", - " 'Lonely': ,\n", - " 'starred': ,\n", - " 'sumtin': ,\n", - " 'tints?': ,\n", - " 'homework': ,\n", - " 'towers': ,\n", - " 'saddest': ,\n", - " 'Garden,': ,\n", - " 'green,': ,\n", - " 'you:': ,\n", - " 'sex?': ,\n", - " 'black,': ,\n", - " 'feasible,': ,\n", - " 'YOU...': ,\n", - " 'trouble?': ,\n", - " 'me...appreciative': ,\n", - " 'learner': ,\n", - " 'hours': ,\n", - " 'feast': ,\n", - " 'again!': ,\n", - " 'tip': ,\n", - " 'You...': ,\n", - " 'KNOW': ,\n", - " 'purple': ,\n", - " 'Dreams': ,\n", - " 'here': ,\n", - " 'accused': ,\n", - " 'since': ,\n", - " 'HATE': ,\n", - " 'walk': ,\n", - " 'outta': ,\n", - " 'yet,': ,\n", - " \"other...we're\": ,\n", - " 'look': ,\n", - " ':-/': ,\n", - " 'yet': ,\n", - " 'background': ,\n", - " 'is.': ,\n", - " 'now...': ,\n", - " 'grow': ,\n", - " 'dough': ,\n", - " 'government,': ,\n", - " 'okie...that': ,\n", - " 'plan': ,\n", - " 'ummm...': ,\n", - " 'king....': ,\n", - " 'Marianne': ,\n", - " 'until': ,\n", - " 'mashed': ,\n", - " 'rain': ,\n", - " 'freshman': ,\n", - " 'calls': ,\n", - " \"us...we're\": ,\n", - " 'Soviet': ,\n", - " 'gears,': ,\n", - " 'knife': ,\n", - " 'Floods,': ,\n", - " '(and': ,\n", - " 'America': ,\n", - " 'shi,': ,\n", - " 'considering': ,\n", - " 'committed': ,\n", - " 'situation,': ,\n", - " 'stole': ,\n", - " 'brushing': ,\n", - " 'happily': ,\n", - " 'hand': ,\n", - " 'problem': ,\n", - " 'us': ,\n", - " 'color': ,\n", - " 'barely': ,\n", - " '2:': ,\n", - " 'repetition.': ,\n", - " 'ready': ,\n", - " 'everynight,': ,\n", - " 'brownies': ,\n", - " 'freaked': ,\n", - " 'medium.': ,\n", - " 'IS': ,\n", - " 'helps': ,\n", - " 'sophie?': ,\n", - " '\"Trust': ,\n", - " 'Now,': ,\n", - " 'tact': ,\n", - " 'needs': ,\n", - " 'uniter,': ,\n", - " 'He': ,\n", - " 'family)': ,\n", - " 'again...or': ,\n", - " 'hearts': ,\n", - " 'react': ,\n", - " 'Flogging': ,\n", - " 'running,': ,\n", - " 'razors': ,\n", - " 'rarely': ,\n", - " 'daunted:': ,\n", - " 'very': ,\n", - " 'around': ,\n", - " 'except': ,\n", - " 'war,\"': ,\n", - " 'become': ,\n", - " 'know,,,': ,\n", - " 'asleep': ,\n", - " 'sad...that': ,\n", - " 'of,': ,\n", - " 'week,': ,\n", - " 'SATs...fuun...sux...but': ,\n", - " '...[should': ,\n", - " 'dropped': ,\n", - " 'sure,': ,\n", - " 'cool.': ,\n", - " 'jetlag': ,\n", - " 'fit.': ,\n", - " 'Arrogant:': ,\n", - " 'now?]:': ,\n", - " 'objectives': ,\n", - " 'me...they': ,\n", - " 'call': ,\n", - " 'Today': ,\n", - " 'checking': ,\n", - " 'tried': ,\n", - " 'old,': ,\n", - " 'glasses': ,\n", - " 'bill': ,\n", - " 'fourth,': ,\n", - " 'better': ,\n", - " 'ground': ,\n", - " 'More': ,\n", - " 'gameroom': ,\n", - " 'above': ,\n", - " 'eventful.': ,\n", - " 'happen': ,\n", - " 'Lazy': ,\n", - " 'license': ,\n", - " 'bleating': ,\n", - " 'start.': ,\n", - " 'will': ,\n", - " '?': ,\n", - " 'napping': ,\n", - " 'Better?': ,\n", - " 'linoleum': ,\n", - " 'SOMETHING!': ,\n", - " 'sophie': ,\n", - " 'reacts,': ,\n", - " 'Car\"': ,\n", - " 'extinct.': ,\n", - " 'knowin': ,\n", - " 'looks': ,\n", - " 'alex!': ,\n", - " 'analyze': ,\n", - " 'internet': ,\n", - " 'am,': ,\n", - " \"I'll\": ,\n", - " 'go:': ,\n", - " 'hardest': ,\n", - " 'bed:': ,\n", - " 'tower!!': ,\n", - " '(analyze': ,\n", - " 'Rice': ,\n", - " 'bravest': ,\n", - " ...}" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "w2v.vocab" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "data": { - "text/plain": [ - "0.082851942583535218" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "w2v.similarity('I', 'My')" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "I've tried starting blog after blog and it just never feels right. Then I read today that it feels strange to most people, but the more you do it the better it gets (hmm, sounds suspiciously like something else!) so I decided to give it another try. My husband bought me a notepad at urlLink McNally (the best bookstore in Western Canada) with that title and a picture of a 50s housewife grinning desperately. Each page has something funny like \"New curtains! Hurrah!\". For some reason it struck me as absolutely hilarious and has stuck in my head ever since. What were those women thinking?\n" - ] - }, - { - "data": { - "text/plain": [ - "0.037229111896779618" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "print(posts[5])\n", - "w2v.similarity('ring', 'husband')" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "data": { - "text/plain": [ - "0.11547398696865138" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "w2v.similarity('ring', 'housewife')" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "data": { - "text/plain": [ - "-0.14627530812290576" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "w2v.similarity('women', 'housewife') # Diversity friendly" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Doc2Vec\n", - "\n", - "The same technique of word2vec is extrapolated to documents. Here, we do everything done in word2vec + we vectorize the documents too" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "import numpy as np" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "# 0 for male, 1 for female\n", - "y_posts = np.concatenate((np.zeros(len(filtered_male_posts)),\n", - " np.ones(len(filtered_female_posts))))" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "data": { - "text/plain": [ - "4842" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "len(y_posts)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Convolutional Neural Networks for Sentence Classification" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Train convolutional network for sentiment analysis. \n", - "\n", - "Based on\n", - "\"Convolutional Neural Networks for Sentence Classification\" by Yoon Kim\n", - "http://arxiv.org/pdf/1408.5882v2.pdf\n", - "\n", - "For 'CNN-non-static' gets to 82.1% after 61 epochs with following settings:\n", - "embedding_dim = 20 \n", - "filter_sizes = (3, 4)\n", - "num_filters = 3\n", - "dropout_prob = (0.7, 0.8)\n", - "hidden_dims = 100\n", - "\n", - "For 'CNN-rand' gets to 78-79% after 7-8 epochs with following settings:\n", - "embedding_dim = 20 \n", - "filter_sizes = (3, 4)\n", - "num_filters = 150\n", - "dropout_prob = (0.25, 0.5)\n", - "hidden_dims = 150\n", - "\n", - "For 'CNN-static' gets to 75.4% after 7 epochs with following settings:\n", - "embedding_dim = 100 \n", - "filter_sizes = (3, 4)\n", - "num_filters = 150\n", - "dropout_prob = (0.25, 0.5)\n", - "hidden_dims = 150\n", - "\n", - "* it turns out that such a small data set as \"Movie reviews with one\n", - "sentence per review\" (Pang and Lee, 2005) requires much smaller network\n", - "than the one introduced in the original article:\n", - "- embedding dimension is only 20 (instead of 300; 'CNN-static' still requires ~100)\n", - "- 2 filter sizes (instead of 3)\n", - "- higher dropout probabilities and\n", - "- 3 filters per filter size is enough for 'CNN-non-static' (instead of 100)\n", - "- embedding initialization does not require prebuilt Google Word2Vec data.\n", - "Training Word2Vec on the same \"Movie reviews\" data set is enough to \n", - "achieve performance reported in the article (81.6%)\n", - "\n", - "** Another distinct difference is slidind MaxPooling window of length=2\n", - "instead of MaxPooling over whole feature map as in the article" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Using gpu device 0: GeForce GTX 760 (CNMeM is enabled with initial size: 90.0% of memory, cuDNN 4007)\n", - "Using Theano backend.\n" - ] - } - ], - "source": [ - "import numpy as np\n", - "import word_embedding\n", - "from word2vec import train_word2vec\n", - "\n", - "from keras.models import Sequential, Model\n", - "from keras.layers import (Activation, Dense, Dropout, Embedding, \n", - " Flatten, Input, \n", - " Conv1D, MaxPooling1D)\n", - "from keras.layers.merge import Concatenate\n", - "\n", - "np.random.seed(2)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Parameters\n", - "\n", - "Model Variations. See Kim Yoon's Convolutional Neural Networks for \n", - "Sentence Classification, Section 3 for detail." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Model variation is CNN-rand\n" - ] - } - ], - "source": [ - "model_variation = 'CNN-rand' # CNN-rand | CNN-non-static | CNN-static\n", - "print('Model variation is %s' % model_variation)" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "# Model Hyperparameters\n", - "sequence_length = 56\n", - "embedding_dim = 20 \n", - "filter_sizes = (3, 4)\n", - "num_filters = 150\n", - "dropout_prob = (0.25, 0.5)\n", - "hidden_dims = 150" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "# Training parameters\n", - "batch_size = 32\n", - "num_epochs = 100\n", - "val_split = 0.1" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "# Word2Vec parameters, see train_word2vec\n", - "min_word_count = 1 # Minimum word count \n", - "context = 10 # Context window size " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Data Preparation " - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loading data...\n" - ] - } - ], - "source": [ - "# Load data\n", - "print(\"Loading data...\")\n", - "x, y, vocabulary, vocabulary_inv = word_embedding.load_data()\n", - "\n", - "if model_variation=='CNN-non-static' or model_variation=='CNN-static':\n", - " embedding_weights = train_word2vec(x, vocabulary_inv, \n", - " embedding_dim, min_word_count, \n", - " context)\n", - " if model_variation=='CNN-static':\n", - " x = embedding_weights[0][x]\n", - "elif model_variation=='CNN-rand':\n", - " embedding_weights = None\n", - "else:\n", - " raise ValueError('Unknown model variation') " - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "# Shuffle data\n", - "shuffle_indices = np.random.permutation(np.arange(len(y)))\n", - "x_shuffled = x[shuffle_indices]\n", - "y_shuffled = y[shuffle_indices].argmax(axis=1)" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Vocabulary Size: 18765\n" - ] - } - ], - "source": [ - "print(\"Vocabulary Size: {:d}\".format(len(vocabulary)))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Building CNN Model" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "graph_in = Input(shape=(sequence_length, embedding_dim))\n", - "convs = []\n", - "for fsz in filter_sizes:\n", - " conv = Conv1D(filters=num_filters,\n", - " filter_length=fsz,\n", - " padding='valid',\n", - " activation='relu',\n", - " strides=1)(graph_in)\n", - " pool = MaxPooling1D(pool_length=2)(conv)\n", - " flatten = Flatten()(pool)\n", - " convs.append(flatten)\n", - " \n", - "if len(filter_sizes)>1:\n", - " out = Concatenate()(convs)\n", - "else:\n", - " out = convs[0]\n", - "\n", - "graph = Model(input=graph_in, output=out)\n", - "\n", - "# main sequential model\n", - "model = Sequential()\n", - "if not model_variation=='CNN-static':\n", - " model.add(Embedding(len(vocabulary), embedding_dim, input_length=sequence_length,\n", - " weights=embedding_weights))\n", - "model.add(Dropout(dropout_prob[0], input_shape=(sequence_length, embedding_dim)))\n", - "model.add(graph)\n", - "model.add(Dense(hidden_dims))\n", - "model.add(Dropout(dropout_prob[1]))\n", - "model.add(Activation('relu'))\n", - "model.add(Dense(1))\n", - "model.add(Activation('sigmoid'))" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "collapsed": false, - "scrolled": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Train on 9595 samples, validate on 1067 samples\n", - "Epoch 1/100\n", - "1s - loss: 0.6516 - acc: 0.6005 - val_loss: 0.5692 - val_acc: 0.7151\n", - "Epoch 2/100\n", - "1s - loss: 0.4556 - acc: 0.7896 - val_loss: 0.5154 - val_acc: 0.7573\n", - "Epoch 3/100\n", - "1s - loss: 0.3556 - acc: 0.8532 - val_loss: 0.5050 - val_acc: 0.7816\n", - "Epoch 4/100\n", - "1s - loss: 0.2978 - acc: 0.8779 - val_loss: 0.5335 - val_acc: 0.7901\n", - "Epoch 5/100\n", - "1s - loss: 0.2599 - acc: 0.8972 - val_loss: 0.5592 - val_acc: 0.7769\n", - "Epoch 6/100\n", - "1s - loss: 0.2248 - acc: 0.9112 - val_loss: 0.5559 - val_acc: 0.7685\n", - "Epoch 7/100\n", - "1s - loss: 0.1994 - acc: 0.9219 - val_loss: 0.5760 - val_acc: 0.7704\n", - "Epoch 8/100\n", - "1s - loss: 0.1801 - acc: 0.9326 - val_loss: 0.6014 - val_acc: 0.7788\n", - "Epoch 9/100\n", - "1s - loss: 0.1472 - acc: 0.9449 - val_loss: 0.6637 - val_acc: 0.7751\n", - "Epoch 10/100\n", - "1s - loss: 0.1269 - acc: 0.9537 - val_loss: 0.7281 - val_acc: 0.7563\n", - "Epoch 11/100\n", - "1s - loss: 0.1123 - acc: 0.9592 - val_loss: 0.7452 - val_acc: 0.7788\n", - "Epoch 12/100\n", - "1s - loss: 0.0897 - acc: 0.9658 - val_loss: 0.8504 - val_acc: 0.7591\n", - "Epoch 13/100\n", - "1s - loss: 0.0811 - acc: 0.9723 - val_loss: 0.8935 - val_acc: 0.7573\n", - "Epoch 14/100\n", - "1s - loss: 0.0651 - acc: 0.9764 - val_loss: 0.8738 - val_acc: 0.7685\n", - "Epoch 15/100\n", - "1s - loss: 0.0540 - acc: 0.9809 - val_loss: 0.9407 - val_acc: 0.7648\n", - "Epoch 16/100\n", - "1s - loss: 0.0408 - acc: 0.9857 - val_loss: 1.1880 - val_acc: 0.7638\n", - "Epoch 17/100\n", - "1s - loss: 0.0341 - acc: 0.9886 - val_loss: 1.2878 - val_acc: 0.7638\n", - "Epoch 18/100\n", - "1s - loss: 0.0306 - acc: 0.9901 - val_loss: 1.4448 - val_acc: 0.7573\n", - "Epoch 19/100\n", - "1s - loss: 0.0276 - acc: 0.9917 - val_loss: 1.5300 - val_acc: 0.7591\n", - "Epoch 20/100\n", - "1s - loss: 0.0249 - acc: 0.9917 - val_loss: 1.4825 - val_acc: 0.7666\n", - "Epoch 21/100\n", - "1s - loss: 0.0220 - acc: 0.9937 - val_loss: 1.4357 - val_acc: 0.7601\n", - "Epoch 22/100\n", - "1s - loss: 0.0188 - acc: 0.9945 - val_loss: 1.4081 - val_acc: 0.7657\n", - "Epoch 23/100\n", - "1s - loss: 0.0182 - acc: 0.9954 - val_loss: 1.7145 - val_acc: 0.7610\n", - "Epoch 24/100\n", - "1s - loss: 0.0129 - acc: 0.9964 - val_loss: 1.7047 - val_acc: 0.7704\n", - "Epoch 25/100\n", - "1s - loss: 0.0064 - acc: 0.9981 - val_loss: 1.9119 - val_acc: 0.7629\n", - "Epoch 26/100\n", - "1s - loss: 0.0108 - acc: 0.9969 - val_loss: 1.8306 - val_acc: 0.7704\n", - "Epoch 27/100\n", - "1s - loss: 0.0105 - acc: 0.9973 - val_loss: 1.9624 - val_acc: 0.7619\n", - "Epoch 28/100\n", - "1s - loss: 0.0112 - acc: 0.9973 - val_loss: 1.8552 - val_acc: 0.7694\n", - "Epoch 29/100\n", - "1s - loss: 0.0110 - acc: 0.9968 - val_loss: 1.8585 - val_acc: 0.7657\n", - "Epoch 30/100\n", - "1s - loss: 0.0071 - acc: 0.9983 - val_loss: 2.0571 - val_acc: 0.7694\n", - "Epoch 31/100\n", - "1s - loss: 0.0089 - acc: 0.9975 - val_loss: 2.0361 - val_acc: 0.7629\n", - "Epoch 32/100\n", - "1s - loss: 0.0074 - acc: 0.9978 - val_loss: 2.0010 - val_acc: 0.7648\n", - "Epoch 33/100\n", - "1s - loss: 0.0074 - acc: 0.9981 - val_loss: 2.0995 - val_acc: 0.7498\n", - "Epoch 34/100\n", - "1s - loss: 0.0125 - acc: 0.9971 - val_loss: 2.2003 - val_acc: 0.7610\n", - "Epoch 35/100\n", - "1s - loss: 0.0074 - acc: 0.9981 - val_loss: 2.1526 - val_acc: 0.7582\n", - "Epoch 36/100\n", - "1s - loss: 0.0068 - acc: 0.9984 - val_loss: 2.1754 - val_acc: 0.7648\n", - "Epoch 37/100\n", - "1s - loss: 0.0065 - acc: 0.9979 - val_loss: 2.0810 - val_acc: 0.7498\n", - "Epoch 38/100\n", - "1s - loss: 0.0078 - acc: 0.9980 - val_loss: 2.3443 - val_acc: 0.7460\n", - "Epoch 39/100\n", - "1s - loss: 0.0038 - acc: 0.9991 - val_loss: 2.1696 - val_acc: 0.7629\n", - "Epoch 40/100\n", - "1s - loss: 0.0062 - acc: 0.9985 - val_loss: 2.2752 - val_acc: 0.7545\n", - "Epoch 41/100\n", - "1s - loss: 0.0044 - acc: 0.9985 - val_loss: 2.3457 - val_acc: 0.7535\n", - "Epoch 42/100\n", - "1s - loss: 0.0066 - acc: 0.9985 - val_loss: 2.1172 - val_acc: 0.7629\n", - "Epoch 43/100\n", - "1s - loss: 0.0052 - acc: 0.9987 - val_loss: 2.3550 - val_acc: 0.7619\n", - "Epoch 44/100\n", - "1s - loss: 0.0024 - acc: 0.9993 - val_loss: 2.3832 - val_acc: 0.7610\n", - "Epoch 45/100\n", - "1s - loss: 0.0042 - acc: 0.9989 - val_loss: 2.4242 - val_acc: 0.7648\n", - "Epoch 46/100\n", - "1s - loss: 0.0048 - acc: 0.9990 - val_loss: 2.4529 - val_acc: 0.7563\n", - "Epoch 47/100\n", - "1s - loss: 0.0036 - acc: 0.9994 - val_loss: 2.8412 - val_acc: 0.7282\n", - "Epoch 48/100\n", - "1s - loss: 0.0037 - acc: 0.9991 - val_loss: 2.4515 - val_acc: 0.7619\n", - "Epoch 49/100\n", - "1s - loss: 0.0031 - acc: 0.9991 - val_loss: 2.4849 - val_acc: 0.7676\n", - "Epoch 50/100\n", - "1s - loss: 0.0078 - acc: 0.9990 - val_loss: 2.5083 - val_acc: 0.7563\n", - "Epoch 51/100\n", - "1s - loss: 0.0105 - acc: 0.9981 - val_loss: 2.3538 - val_acc: 0.7601\n", - "Epoch 52/100\n", - "1s - loss: 0.0076 - acc: 0.9986 - val_loss: 2.4405 - val_acc: 0.7685\n", - "Epoch 53/100\n", - "1s - loss: 0.0043 - acc: 0.9991 - val_loss: 2.5753 - val_acc: 0.7591\n", - "Epoch 54/100\n", - "1s - loss: 0.0044 - acc: 0.9989 - val_loss: 2.5550 - val_acc: 0.7582\n", - "Epoch 55/100\n", - "1s - loss: 0.0034 - acc: 0.9994 - val_loss: 2.6361 - val_acc: 0.7591\n", - "Epoch 56/100\n", - "1s - loss: 0.0041 - acc: 0.9994 - val_loss: 2.6753 - val_acc: 0.7563\n", - "Epoch 57/100\n", - "1s - loss: 0.0042 - acc: 0.9990 - val_loss: 2.6464 - val_acc: 0.7601\n", - "Epoch 58/100\n", - "1s - loss: 0.0037 - acc: 0.9992 - val_loss: 2.6616 - val_acc: 0.7582\n", - "Epoch 59/100\n", - "1s - loss: 0.0060 - acc: 0.9990 - val_loss: 2.6052 - val_acc: 0.7619\n", - "Epoch 60/100\n", - "1s - loss: 0.0051 - acc: 0.9990 - val_loss: 2.7033 - val_acc: 0.7498\n", - "Epoch 61/100\n", - "1s - loss: 0.0034 - acc: 0.9994 - val_loss: 2.7142 - val_acc: 0.7526\n", - "Epoch 62/100\n", - "1s - loss: 0.0047 - acc: 0.9994 - val_loss: 2.7656 - val_acc: 0.7591\n", - "Epoch 63/100\n", - "1s - loss: 0.0083 - acc: 0.9990 - val_loss: 2.7971 - val_acc: 0.7526\n", - "Epoch 64/100\n", - "1s - loss: 0.0046 - acc: 0.9992 - val_loss: 2.6585 - val_acc: 0.7545\n", - "Epoch 65/100\n", - "1s - loss: 0.0062 - acc: 0.9989 - val_loss: 2.6194 - val_acc: 0.7535\n", - "Epoch 66/100\n", - "1s - loss: 0.0062 - acc: 0.9993 - val_loss: 2.6255 - val_acc: 0.7694\n", - "Epoch 67/100\n", - "1s - loss: 0.0036 - acc: 0.9990 - val_loss: 2.6384 - val_acc: 0.7582\n", - "Epoch 68/100\n", - "1s - loss: 0.0066 - acc: 0.9991 - val_loss: 2.6743 - val_acc: 0.7648\n", - "Epoch 69/100\n", - "1s - loss: 0.0030 - acc: 0.9995 - val_loss: 2.8236 - val_acc: 0.7535\n", - "Epoch 70/100\n", - "1s - loss: 0.0048 - acc: 0.9993 - val_loss: 2.7829 - val_acc: 0.7610\n", - "Epoch 71/100\n", - "1s - loss: 0.0062 - acc: 0.9990 - val_loss: 2.6402 - val_acc: 0.7573\n", - "Epoch 72/100\n", - "1s - loss: 0.0037 - acc: 0.9992 - val_loss: 2.9089 - val_acc: 0.7526\n", - "Epoch 73/100\n", - "1s - loss: 0.0069 - acc: 0.9985 - val_loss: 2.7071 - val_acc: 0.7535\n", - "Epoch 74/100\n", - "1s - loss: 0.0033 - acc: 0.9995 - val_loss: 2.6727 - val_acc: 0.7601\n", - "Epoch 75/100\n", - "1s - loss: 0.0069 - acc: 0.9990 - val_loss: 2.6967 - val_acc: 0.7601\n", - "Epoch 76/100\n", - "1s - loss: 0.0089 - acc: 0.9989 - val_loss: 2.7479 - val_acc: 0.7666\n", - "Epoch 77/100\n", - "1s - loss: 0.0046 - acc: 0.9994 - val_loss: 2.7192 - val_acc: 0.7629\n", - "Epoch 78/100\n", - "1s - loss: 0.0069 - acc: 0.9989 - val_loss: 2.7173 - val_acc: 0.7629\n", - "Epoch 79/100\n", - "1s - loss: 8.6550e-04 - acc: 0.9998 - val_loss: 2.7283 - val_acc: 0.7601\n", - "Epoch 80/100\n", - "1s - loss: 0.0011 - acc: 0.9995 - val_loss: 2.8405 - val_acc: 0.7629\n", - "Epoch 81/100\n", - "1s - loss: 0.0040 - acc: 0.9994 - val_loss: 2.8725 - val_acc: 0.7619\n", - "Epoch 82/100\n", - "1s - loss: 0.0055 - acc: 0.9992 - val_loss: 2.8490 - val_acc: 0.7601\n", - "Epoch 83/100\n", - "1s - loss: 0.0059 - acc: 0.9989 - val_loss: 2.7838 - val_acc: 0.7545\n", - "Epoch 84/100\n", - "1s - loss: 0.0054 - acc: 0.9994 - val_loss: 2.8706 - val_acc: 0.7526\n", - "Epoch 85/100\n", - "1s - loss: 0.0060 - acc: 0.9992 - val_loss: 2.9374 - val_acc: 0.7516\n", - "Epoch 86/100\n", - "1s - loss: 0.0087 - acc: 0.9982 - val_loss: 2.7966 - val_acc: 0.7573\n", - "Epoch 87/100\n", - "1s - loss: 0.0084 - acc: 0.9991 - val_loss: 2.8620 - val_acc: 0.7619\n", - "Epoch 88/100\n", - "1s - loss: 0.0053 - acc: 0.9990 - val_loss: 2.8450 - val_acc: 0.7601\n", - "Epoch 89/100\n", - "1s - loss: 0.0054 - acc: 0.9990 - val_loss: 2.8303 - val_acc: 0.7629\n", - "Epoch 90/100\n", - "1s - loss: 0.0073 - acc: 0.9991 - val_loss: 2.8474 - val_acc: 0.7657\n", - "Epoch 91/100\n", - "1s - loss: 0.0037 - acc: 0.9994 - val_loss: 3.0151 - val_acc: 0.7432\n", - "Epoch 92/100\n", - "1s - loss: 0.0017 - acc: 0.9999 - val_loss: 2.9555 - val_acc: 0.7582\n", - "Epoch 93/100\n", - "1s - loss: 0.0080 - acc: 0.9991 - val_loss: 2.9178 - val_acc: 0.7554\n", - "Epoch 94/100\n", - "1s - loss: 0.0078 - acc: 0.9991 - val_loss: 2.8724 - val_acc: 0.7582\n", - "Epoch 95/100\n", - "1s - loss: 0.0012 - acc: 0.9997 - val_loss: 2.9582 - val_acc: 0.7545\n", - "Epoch 96/100\n", - "1s - loss: 0.0058 - acc: 0.9989 - val_loss: 2.8944 - val_acc: 0.7479\n", - "Epoch 97/100\n", - "1s - loss: 0.0094 - acc: 0.9985 - val_loss: 2.7146 - val_acc: 0.7516\n", - "Epoch 98/100\n", - "1s - loss: 0.0044 - acc: 0.9993 - val_loss: 2.9052 - val_acc: 0.7498\n", - "Epoch 99/100\n", - "1s - loss: 0.0030 - acc: 0.9995 - val_loss: 3.1474 - val_acc: 0.7470\n", - "Epoch 100/100\n", - "1s - loss: 0.0051 - acc: 0.9990 - val_loss: 3.1746 - val_acc: 0.7451\n" - ] - }, - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "model.compile(loss='binary_crossentropy', optimizer='rmsprop', \n", - " metrics=['accuracy'])\n", - "\n", - "# Training model\n", - "# ==================================================\n", - "model.fit(x_shuffled, y_shuffled, batch_size=batch_size,\n", - " nb_epoch=num_epochs, validation_split=val_split, verbose=2)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "# Another Example\n", - "\n", - "Using Keras + [**GloVe**](http://nlp.stanford.edu/projects/glove/) - **Global Vectors for Word Representation**" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Using pre-trained word embeddings in a Keras model\n", - "\n", - "**Reference:** [https://blog.keras.io/using-pre-trained-word-embeddings-in-a-keras-model.html]()" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.5.2" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/3.2 RNN and LSTM.ipynb b/3.2 RNN and LSTM.ipynb deleted file mode 100644 index e01ec9e..0000000 --- a/3.2 RNN and LSTM.ipynb +++ /dev/null @@ -1,623 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Recurrent Neural networks\n", - "=====" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### RNN " - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": false - }, - "source": [ - "" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "A recurrent neural network (RNN) is a class of artificial neural network where connections between units form a directed cycle. This creates an internal state of the network which allows it to exhibit dynamic temporal behavior." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "```python\n", - "keras.layers.recurrent.SimpleRNN(units, activation='tanh', use_bias=True, \n", - " kernel_initializer='glorot_uniform', \n", - " recurrent_initializer='orthogonal', \n", - " bias_initializer='zeros', \n", - " kernel_regularizer=None, \n", - " recurrent_regularizer=None, \n", - " bias_regularizer=None, \n", - " activity_regularizer=None, \n", - " kernel_constraint=None, recurrent_constraint=None, \n", - " bias_constraint=None, dropout=0.0, recurrent_dropout=0.0)\n", - "```" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Arguments:\n", - "\n", - "
    \n", - "
  • units: Positive integer, dimensionality of the output space.
  • \n", - "
  • activation: Activation function to use\n", - " (see activations).\n", - " If you pass None, no activation is applied\n", - " (ie. \"linear\" activation: a(x) = x).
  • \n", - "
  • use_bias: Boolean, whether the layer uses a bias vector.
  • \n", - "
  • kernel_initializer: Initializer for the kernel weights matrix,\n", - " used for the linear transformation of the inputs.\n", - " (see initializers).
  • \n", - "
  • recurrent_initializer: Initializer for the recurrent_kernel\n", - " weights matrix,\n", - " used for the linear transformation of the recurrent state.\n", - " (see initializers).
  • \n", - "
  • bias_initializer: Initializer for the bias vector\n", - " (see initializers).
  • \n", - "
  • kernel_regularizer: Regularizer function applied to\n", - " the kernel weights matrix\n", - " (see regularizer).
  • \n", - "
  • recurrent_regularizer: Regularizer function applied to\n", - " the recurrent_kernel weights matrix\n", - " (see regularizer).
  • \n", - "
  • bias_regularizer: Regularizer function applied to the bias vector\n", - " (see regularizer).
  • \n", - "
  • activity_regularizer: Regularizer function applied to\n", - " the output of the layer (its \"activation\").\n", - " (see regularizer).
  • \n", - "
  • kernel_constraint: Constraint function applied to\n", - " the kernel weights matrix\n", - " (see constraints).
  • \n", - "
  • recurrent_constraint: Constraint function applied to\n", - " the recurrent_kernel weights matrix\n", - " (see constraints).
  • \n", - "
  • bias_constraint: Constraint function applied to the bias vector\n", - " (see constraints).
  • \n", - "
  • dropout: Float between 0 and 1.\n", - " Fraction of the units to drop for\n", - " the linear transformation of the inputs.
  • \n", - "
  • recurrent_dropout: Float between 0 and 1.\n", - " Fraction of the units to drop for\n", - " the linear transformation of the recurrent state.
  • \n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Backprop Through time " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Contrary to feed-forward neural networks, the RNN is characterized by the ability of encoding longer past information, thus very suitable for sequential models. The BPTT extends the ordinary BP algorithm to suit the recurrent neural\n", - "architecture." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": false, - "scrolled": true - }, - "source": [ - "" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Reference**: [Backpropagation through Time](http://ir.hit.edu.cn/~jguo/docs/notes/bptt.pdf)" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "%matplotlib inline" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Using TensorFlow backend.\n" - ] - } - ], - "source": [ - "import numpy as np\n", - "import pandas as pd\n", - "import theano\n", - "import theano.tensor as T\n", - "import keras \n", - "\n", - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "\n", - "from sklearn.preprocessing import LabelEncoder\n", - "from sklearn.preprocessing import StandardScaler\n", - "from sklearn.model_selection import train_test_split\n", - "# -- Keras Import\n", - "from keras.models import Sequential\n", - "from keras.layers import Dense, Activation\n", - "from keras.preprocessing import image\n", - "\n", - "from keras.datasets import imdb\n", - "from keras.datasets import mnist\n", - "\n", - "from keras.models import Sequential\n", - "from keras.layers import Dense, Dropout, Activation, Flatten\n", - "from keras.layers import Conv2D, MaxPooling2D\n", - "\n", - "from keras.utils import np_utils\n", - "from keras.preprocessing import sequence\n", - "from keras.layers.embeddings import Embedding\n", - "from keras.layers.recurrent import LSTM, GRU, SimpleRNN\n", - "\n", - "from keras.layers import Activation, TimeDistributed, RepeatVector\n", - "from keras.callbacks import EarlyStopping, ModelCheckpoint" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### IMDB sentiment classification task" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This is a dataset for binary sentiment classification containing substantially more data than previous benchmark datasets. \n", - "\n", - "IMDB provided a set of 25,000 highly polar movie reviews for training, and 25,000 for testing. \n", - "\n", - "There is additional unlabeled data for use as well. Raw text and already processed bag of words formats are provided. \n", - "\n", - "http://ai.stanford.edu/~amaas/data/sentiment/" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Data Preparation - IMDB" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loading data...\n", - "Downloading data from https://s3.amazonaws.com/text-datasets/imdb.npz\n", - "25000 train sequences\n", - "25000 test sequences\n", - "Example:\n", - "[ [1, 14, 22, 16, 43, 530, 973, 1622, 1385, 65, 458, 4468, 66, 3941, 4, 173, 36, 256, 5, 25, 100, 43, 838, 112, 50, 670, 2, 9, 35, 480, 284, 5, 150, 4, 172, 112, 167, 2, 336, 385, 39, 4, 172, 4536, 1111, 17, 546, 38, 13, 447, 4, 192, 50, 16, 6, 147, 2025, 19, 14, 22, 4, 1920, 4613, 469, 4, 22, 71, 87, 12, 16, 43, 530, 38, 76, 15, 13, 1247, 4, 22, 17, 515, 17, 12, 16, 626, 18, 19193, 5, 62, 386, 12, 8, 316, 8, 106, 5, 4, 2223, 5244, 16, 480, 66, 3785, 33, 4, 130, 12, 16, 38, 619, 5, 25, 124, 51, 36, 135, 48, 25, 1415, 33, 6, 22, 12, 215, 28, 77, 52, 5, 14, 407, 16, 82, 10311, 8, 4, 107, 117, 5952, 15, 256, 4, 2, 7, 3766, 5, 723, 36, 71, 43, 530, 476, 26, 400, 317, 46, 7, 4, 12118, 1029, 13, 104, 88, 4, 381, 15, 297, 98, 32, 2071, 56, 26, 141, 6, 194, 7486, 18, 4, 226, 22, 21, 134, 476, 26, 480, 5, 144, 30, 5535, 18, 51, 36, 28, 224, 92, 25, 104, 4, 226, 65, 16, 38, 1334, 88, 12, 16, 283, 5, 16, 4472, 113, 103, 32, 15, 16, 5345, 19, 178, 32]]\n", - "Pad sequences (samples x time)\n", - "X_train shape: (25000, 100)\n", - "X_test shape: (25000, 100)\n" - ] - } - ], - "source": [ - "max_features = 20000\n", - "maxlen = 100 # cut texts after this number of words (among top max_features most common words)\n", - "batch_size = 32\n", - "\n", - "print(\"Loading data...\")\n", - "(X_train, y_train), (X_test, y_test) = imdb.load_data(num_words=max_features)\n", - "print(len(X_train), 'train sequences')\n", - "print(len(X_test), 'test sequences')\n", - "\n", - "print('Example:')\n", - "print(X_train[:1])\n", - "\n", - "print(\"Pad sequences (samples x time)\")\n", - "X_train = sequence.pad_sequences(X_train, maxlen=maxlen)\n", - "X_test = sequence.pad_sequences(X_test, maxlen=maxlen)\n", - "print('X_train shape:', X_train.shape)\n", - "print('X_test shape:', X_test.shape)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Model building " - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Build model...\n", - "Train...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/valerio/anaconda3/envs/deep-learning-pydatait-tutorial/lib/python3.5/site-packages/keras/backend/tensorflow_backend.py:2094: UserWarning: Expected no kwargs, you passed 1\n", - "kwargs passed to function are ignored with Tensorflow backend\n", - " warnings.warn('\\n'.join(msg))\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Train on 25000 samples, validate on 25000 samples\n", - "Epoch 1/1\n", - "25000/25000 [==============================] - 104s - loss: 0.7329 - val_loss: 0.6832\n" - ] - }, - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "print('Build model...')\n", - "model = Sequential()\n", - "model.add(Embedding(max_features, 128, input_length=maxlen))\n", - "model.add(SimpleRNN(128)) \n", - "model.add(Dropout(0.5))\n", - "model.add(Dense(1))\n", - "model.add(Activation('sigmoid'))\n", - "\n", - "# try using different optimizers and different optimizer configs\n", - "model.compile(loss='binary_crossentropy', optimizer='adam')\n", - "\n", - "print(\"Train...\")\n", - "model.fit(X_train, y_train, batch_size=batch_size, epochs=1, \n", - " validation_data=(X_test, y_test))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### LSTM " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "A LSTM network is an artificial neural network that contains LSTM blocks instead of, or in addition to, regular network units. A LSTM block may be described as a \"smart\" network unit that can remember a value for an arbitrary length of time. \n", - "\n", - "Unlike traditional RNNs, an Long short-term memory network is well-suited to learn from experience to classify, process and predict time series when there are very long time lags of unknown size between important events." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": false, - "scrolled": true - }, - "source": [ - "" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "```python\n", - "keras.layers.recurrent.LSTM(units, activation='tanh', recurrent_activation='hard_sigmoid', use_bias=True, \n", - " kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', \n", - " bias_initializer='zeros', unit_forget_bias=True, kernel_regularizer=None, \n", - " recurrent_regularizer=None, bias_regularizer=None, activity_regularizer=None, \n", - " kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, \n", - " dropout=0.0, recurrent_dropout=0.0)\n", - "```" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Arguments\n", - "\n", - "
    \n", - "
  • units: Positive integer, dimensionality of the output space.
  • \n", - "
  • activation: Activation function to use\n", - " If you pass None, no activation is applied\n", - " (ie. \"linear\" activation: a(x) = x).
  • \n", - "
  • recurrent_activation: Activation function to use\n", - " for the recurrent step.
  • \n", - "
  • use_bias: Boolean, whether the layer uses a bias vector.
  • \n", - "
  • kernel_initializer: Initializer for the kernel weights matrix,\n", - " used for the linear transformation of the inputs.
  • \n", - "
  • recurrent_initializer: Initializer for the recurrent_kernel\n", - " weights matrix,\n", - " used for the linear transformation of the recurrent state.
  • \n", - "
  • bias_initializer: Initializer for the bias vector.
  • \n", - "
  • unit_forget_bias: Boolean.\n", - " If True, add 1 to the bias of the forget gate at initialization.\n", - " Setting it to true will also force bias_initializer=\"zeros\".\n", - " This is recommended in Jozefowicz et al.
  • \n", - "
  • kernel_regularizer: Regularizer function applied to\n", - " the kernel weights matrix.
  • \n", - "
  • recurrent_regularizer: Regularizer function applied to\n", - " the recurrent_kernel weights matrix.
  • \n", - "
  • bias_regularizer: Regularizer function applied to the bias vector.
  • \n", - "
  • activity_regularizer: Regularizer function applied to\n", - " the output of the layer (its \"activation\").
  • \n", - "
  • kernel_constraint: Constraint function applied to\n", - " the kernel weights matrix.
  • \n", - "
  • recurrent_constraint: Constraint function applied to\n", - " the recurrent_kernel weights matrix.
  • \n", - "
  • bias_constraint: Constraint function applied to the bias vector.
  • \n", - "
  • dropout: Float between 0 and 1.\n", - " Fraction of the units to drop for\n", - " the linear transformation of the inputs.
  • \n", - "
  • recurrent_dropout: Float between 0 and 1.\n", - " Fraction of the units to drop for\n", - " the linear transformation of the recurrent state.
  • \n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### GRU " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Gated recurrent units are a gating mechanism in recurrent neural networks. \n", - "\n", - "Much similar to the LSTMs, they have fewer parameters than LSTM, as they lack an output gate." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "```python\n", - "keras.layers.recurrent.GRU(units, activation='tanh', recurrent_activation='hard_sigmoid', use_bias=True, \n", - " kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', \n", - " bias_initializer='zeros', kernel_regularizer=None, recurrent_regularizer=None, \n", - " bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, \n", - " recurrent_constraint=None, bias_constraint=None, \n", - " dropout=0.0, recurrent_dropout=0.0)\n", - "```" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Your Turn! - Hands on Rnn" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "print('Build model...')\n", - "model = Sequential()\n", - "model.add(Embedding(max_features, 128, input_length=maxlen))\n", - "\n", - "# !!! Play with those! try and get better results!\n", - "#model.add(SimpleRNN(128)) \n", - "#model.add(GRU(128)) \n", - "#model.add(LSTM(128)) \n", - "\n", - "model.add(Dropout(0.5))\n", - "model.add(Dense(1))\n", - "model.add(Activation('sigmoid'))\n", - "\n", - "# try using different optimizers and different optimizer configs\n", - "model.compile(loss='binary_crossentropy', optimizer='adam')\n", - "\n", - "print(\"Train...\")\n", - "model.fit(X_train, y_train, batch_size=batch_size, \n", - " epochs=4, validation_data=(X_test, y_test))\n", - "score, acc = model.evaluate(X_test, y_test, batch_size=batch_size)\n", - "print('Test score:', score)\n", - "print('Test accuracy:', acc)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Sentence Generation using RNN(LSTM)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "from keras.models import Sequential\n", - "from keras.layers import Dense, Activation, Dropout\n", - "from keras.layers import LSTM\n", - "from keras.optimizers import RMSprop\n", - "from keras.utils.data_utils import get_file\n", - "\n", - "import numpy as np\n", - "import random\n", - "import sys\n", - "\n", - "path = get_file('nietzsche.txt', origin=\"https://s3.amazonaws.com/text-datasets/nietzsche.txt\")\n", - "text = open(path).read().lower()\n", - "print('corpus length:', len(text))\n", - "\n", - "chars = sorted(list(set(text)))\n", - "print('total chars:', len(chars))\n", - "char_indices = dict((c, i) for i, c in enumerate(chars))\n", - "indices_char = dict((i, c) for i, c in enumerate(chars))\n", - "\n", - "# cut the text in semi-redundant sequences of maxlen characters\n", - "maxlen = 40\n", - "step = 3\n", - "sentences = []\n", - "next_chars = []\n", - "for i in range(0, len(text) - maxlen, step):\n", - " sentences.append(text[i: i + maxlen])\n", - " next_chars.append(text[i + maxlen])\n", - "print('nb sequences:', len(sentences))\n", - "\n", - "print('Vectorization...')\n", - "X = np.zeros((len(sentences), maxlen, len(chars)), dtype=np.bool)\n", - "y = np.zeros((len(sentences), len(chars)), dtype=np.bool)\n", - "for i, sentence in enumerate(sentences):\n", - " for t, char in enumerate(sentence):\n", - " X[i, t, char_indices[char]] = 1\n", - " y[i, char_indices[next_chars[i]]] = 1\n", - "\n", - "\n", - "# build the model: a single LSTM\n", - "print('Build model...')\n", - "model = Sequential()\n", - "model.add(LSTM(128, input_shape=(maxlen, len(chars))))\n", - "model.add(Dense(len(chars)))\n", - "model.add(Activation('softmax'))\n", - "\n", - "optimizer = RMSprop(lr=0.01)\n", - "model.compile(loss='categorical_crossentropy', optimizer=optimizer)\n", - "\n", - "\n", - "def sample(preds, temperature=1.0):\n", - " # helper function to sample an index from a probability array\n", - " preds = np.asarray(preds).astype('float64')\n", - " preds = np.log(preds) / temperature\n", - " exp_preds = np.exp(preds)\n", - " preds = exp_preds / np.sum(exp_preds)\n", - " probas = np.random.multinomial(1, preds, 1)\n", - " return np.argmax(probas)\n", - "\n", - "# train the model, output generated text after each iteration\n", - "for iteration in range(1, 60):\n", - " print()\n", - " print('-' * 50)\n", - " print('Iteration', iteration)\n", - " model.fit(X, y, batch_size=128, nb_epoch=1)\n", - "\n", - " start_index = random.randint(0, len(text) - maxlen - 1)\n", - "\n", - " for diversity in [0.2, 0.5, 1.0, 1.2]:\n", - " print()\n", - " print('----- diversity:', diversity)\n", - "\n", - " generated = ''\n", - " sentence = text[start_index: start_index + maxlen]\n", - " generated += sentence\n", - " print('----- Generating with seed: \"' + sentence + '\"')\n", - " sys.stdout.write(generated)\n", - "\n", - " for i in range(400):\n", - " x = np.zeros((1, maxlen, len(chars)))\n", - " for t, char in enumerate(sentence):\n", - " x[0, t, char_indices[char]] = 1.\n", - "\n", - " preds = model.predict(x, verbose=0)[0]\n", - " next_index = sample(preds, diversity)\n", - " next_char = indices_char[next_index]\n", - "\n", - " generated += next_char\n", - " sentence = sentence[1:] + next_char\n", - "\n", - " sys.stdout.write(next_char)\n", - " sys.stdout.flush()\n", - " print()" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.5.2" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/2.1 Convolutional Neural Networks.ipynb b/4. Convolutional Neural Networks/4.1 Convolutional Neural Networks.ipynb similarity index 88% rename from 2.1 Convolutional Neural Networks.ipynb rename to 4. Convolutional Neural Networks/4.1 Convolutional Neural Networks.ipynb index bc08ba0..d96514e 100644 --- a/2.1 Convolutional Neural Networks.ipynb +++ b/4. Convolutional Neural Networks/4.1 Convolutional Neural Networks.ipynb @@ -3,8 +3,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "slide" } @@ -16,8 +14,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "skip" } @@ -31,8 +27,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -44,8 +38,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "fragment" } @@ -59,8 +51,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -73,14 +63,12 @@ "cell_type": "markdown", "metadata": { "collapsed": true, - "deletable": true, - "editable": true, "slideshow": { "slide_type": "-" } }, "source": [ - "\n", + "\n", "\n", "> source: https://flickrcode.files.wordpress.com/2014/10/conv-net2.png" ] @@ -88,8 +76,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "slide" } @@ -103,8 +89,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -118,8 +102,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -131,8 +113,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -143,12 +123,9 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ - "\n", + "\n", "\n", "source: [http://www.pawbuzz.com/wp-content/uploads/sites/551/2014/11/corgi-puppies-21.jpg]()" ] @@ -156,8 +133,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -173,8 +148,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -185,10 +158,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "What we want the computer to do is to be able to differentiate between all the images it’s given and figure out the unique features that make a dog a dog or that make a cat a cat. " ] @@ -196,8 +166,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "fragment" } @@ -211,8 +179,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -223,10 +189,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "> A more detailed overview of what CNNs do would be that you take the image, pass it through a series of convolutional, nonlinear, pooling (downsampling), and fully connected layers, and get an output. As we said earlier, the output can be a single class or a probability of classes that best describes the image. \n", "\n", @@ -236,8 +199,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "slide" } @@ -249,8 +210,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -261,20 +220,16 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ + "\n", "\n", - "" + "**Reference**: [http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html](http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html)" ] }, { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -286,10 +241,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "A Convolutional Filter much like a **kernel** in image recognition is a small matrix useful for blurring, sharpening, embossing, edge detection, and more. \n", "\n", @@ -301,8 +253,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -314,19 +264,14 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ - "" + "" ] }, { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -338,8 +283,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "fragment" } @@ -351,8 +294,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -366,8 +307,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -379,21 +318,17 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "fragment" } }, "source": [ - "" + "" ] }, { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -404,45 +339,36 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ - "" + "" ] }, { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } }, "source": [ - "" + "" ] }, { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } }, "source": [ - "" + "" ] }, { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "fragment" } @@ -454,8 +380,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "slide" } @@ -467,8 +391,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -482,8 +404,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -495,8 +415,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "fragment" } @@ -511,8 +429,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -524,8 +440,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "fragment" } @@ -537,8 +451,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -556,8 +468,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -571,8 +481,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -594,8 +502,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -607,8 +513,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "fragment" } @@ -620,8 +524,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "fragment" } @@ -633,8 +535,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -645,19 +545,14 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ - "" + "" ] }, { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "fragment" } @@ -669,8 +564,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -686,8 +579,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -701,8 +592,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -714,8 +603,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -729,8 +616,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -742,8 +627,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "fragment" } @@ -755,8 +638,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -767,12 +648,9 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ - "" + "" ] }, { @@ -801,8 +679,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "slide" } @@ -814,8 +690,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -838,8 +712,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -905,8 +777,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "fragment" } @@ -918,8 +788,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -944,8 +812,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -1023,8 +889,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -1051,8 +915,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -1064,8 +926,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "fragment" } @@ -1077,8 +937,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "fragment" } @@ -1090,8 +948,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -1111,8 +967,6 @@ { "cell_type": "markdown", "metadata": { - "deletable": true, - "editable": true, "slideshow": { "slide_type": "subslide" } @@ -1162,9 +1016,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.5.2" + "version": "3.5.3" } }, "nbformat": 4, - "nbformat_minor": 0 + "nbformat_minor": 1 } diff --git a/4. Convolutional Neural Networks/4.2. MNIST CNN.ipynb b/4. Convolutional Neural Networks/4.2. MNIST CNN.ipynb new file mode 100644 index 0000000..9aa9858 --- /dev/null +++ b/4. Convolutional Neural Networks/4.2. MNIST CNN.ipynb @@ -0,0 +1,1279 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "# Convolution Nets for MNIST" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "Deep Learning models can take quite a bit of time to run, particularly if GPU isn't used. \n", + "\n", + "In the interest of time, you could sample a subset of observations (e.g. $1000$) that are a particular number of your choice (e.g. $6$) and $1000$ observations that aren't that particular number (i.e. $\\neq 6$). \n", + "\n", + "We will build a model using that and see how it performs on the test dataset" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Using TensorFlow backend.\n" + ] + } + ], + "source": [ + "#Import the required libraries\n", + "import numpy as np\n", + "np.random.seed(1338)\n", + "\n", + "from keras.datasets import mnist" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": true, + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [], + "source": [ + "from keras.models import Sequential\n", + "from keras.layers.core import Dense, Dropout, Activation, Flatten" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": true, + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [], + "source": [ + "from keras.layers.convolutional import Conv2D\n", + "from keras.layers.pooling import MaxPooling2D" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": true, + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [], + "source": [ + "from keras.utils import np_utils\n", + "from keras.optimizers import SGD" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "## Loading Data" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": true, + "slideshow": { + "slide_type": "-" + } + }, + "outputs": [], + "source": [ + "#Load the training and testing data\n", + "(X_train, y_train), (X_test, y_test) = mnist.load_data()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": true, + "slideshow": { + "slide_type": "skip" + } + }, + "outputs": [], + "source": [ + "X_test_orig = X_test" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "## Data Preparation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Very Important: \n", + "When dealing with images & convolutions, it is paramount to handle `image_data_format` properly" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from keras import backend as K" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "img_rows, img_cols = 28, 28\n", + "\n", + "if K.image_data_format() == 'channels_first':\n", + " shape_ord = (1, img_rows, img_cols)\n", + "else: # channel_last\n", + " shape_ord = (img_rows, img_cols, 1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Preprocess and Normalise Data" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": true, + "slideshow": { + "slide_type": "-" + } + }, + "outputs": [], + "source": [ + "X_train = X_train.reshape((X_train.shape[0],) + shape_ord)\n", + "X_test = X_test.reshape((X_test.shape[0],) + shape_ord)\n", + "\n", + "X_train = X_train.astype('float32')\n", + "X_test = X_test.astype('float32')\n", + "\n", + "X_train /= 255\n", + "X_test /= 255" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": true, + "slideshow": { + "slide_type": "subslide" + } + }, + "outputs": [], + "source": [ + "np.random.seed(1338) # for reproducibilty!!\n", + "\n", + "# Test data\n", + "X_test = X_test.copy()\n", + "Y = y_test.copy()\n", + "\n", + "# Converting the output to binary classification(Six=1,Not Six=0)\n", + "Y_test = Y == 6\n", + "Y_test = Y_test.astype(int)\n", + "\n", + "# Selecting the 5918 examples where the output is 6\n", + "X_six = X_train[y_train == 6].copy()\n", + "Y_six = y_train[y_train == 6].copy()\n", + "\n", + "# Selecting the examples where the output is not 6\n", + "X_not_six = X_train[y_train != 6].copy()\n", + "Y_not_six = y_train[y_train != 6].copy()\n", + "\n", + "# Selecting 6000 random examples from the data that \n", + "# only contains the data where the output is not 6\n", + "random_rows = np.random.randint(0,X_six.shape[0],6000)\n", + "X_not_six = X_not_six[random_rows]\n", + "Y_not_six = Y_not_six[random_rows]" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": true, + "slideshow": { + "slide_type": "subslide" + } + }, + "outputs": [], + "source": [ + "# Appending the data with output as 6 and data with output as <> 6\n", + "X_train = np.append(X_six,X_not_six)\n", + "\n", + "# Reshaping the appended data to appropraite form\n", + "X_train = X_train.reshape((X_six.shape[0] + X_not_six.shape[0],) + shape_ord)\n", + "\n", + "# Appending the labels and converting the labels to \n", + "# binary classification(Six=1,Not Six=0)\n", + "Y_labels = np.append(Y_six,Y_not_six)\n", + "Y_train = Y_labels == 6 \n", + "Y_train = Y_train.astype(int)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(11918, 28, 28, 1) (11918,) (10000, 28, 28, 1) (10000,)\n" + ] + } + ], + "source": [ + "print(X_train.shape, Y_labels.shape, X_test.shape, Y_test.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": true, + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [], + "source": [ + "# Converting the classes to its binary categorical form\n", + "nb_classes = 2\n", + "Y_train = np_utils.to_categorical(Y_train, nb_classes)\n", + "Y_test = np_utils.to_categorical(Y_test, nb_classes)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "# A simple CNN" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": true, + "slideshow": { + "slide_type": "subslide" + } + }, + "outputs": [], + "source": [ + "# -- Initializing the values for the convolution neural network\n", + "\n", + "nb_epoch = 2 # kept very low! Please increase if you have GPU\n", + "\n", + "batch_size = 64\n", + "# number of convolutional filters to use\n", + "nb_filters = 32\n", + "# size of pooling area for max pooling\n", + "nb_pool = 2\n", + "# convolution kernel size\n", + "nb_conv = 3\n", + "\n", + "# Vanilla SGD\n", + "sgd = SGD(lr=0.1, decay=1e-6, momentum=0.9, nesterov=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "#### Step 1: Model Definition" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "model = Sequential()\n", + "\n", + "model.add(Conv2D(nb_filters, (nb_conv, nb_conv), padding='valid', \n", + " input_shape=shape_ord)) # note: the very first layer **must** always specify the input_shape\n", + "model.add(Activation('relu'))\n", + "\n", + "model.add(Flatten())\n", + "model.add(Dense(nb_classes))\n", + "model.add(Activation('softmax'))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "#### Step 2: Compile" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "model.compile(loss='categorical_crossentropy',\n", + " optimizer=sgd,\n", + " metrics=['accuracy'])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "#### Step 3: Fit" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Train on 11918 samples, validate on 10000 samples\n", + "Epoch 1/2\n", + "11918/11918 [==============================] - 8s - loss: 0.2321 - acc: 0.9491 - val_loss: 0.1276 - val_acc: 0.9616\n", + "Epoch 2/2\n", + "11918/11918 [==============================] - 1s - loss: 0.1065 - acc: 0.9666 - val_loss: 0.0933 - val_acc: 0.9685\n" + ] + } + ], + "source": [ + "hist = model.fit(X_train, Y_train, batch_size=batch_size, \n", + " epochs=nb_epoch, verbose=1, \n", + " validation_data=(X_test, Y_test))" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEKCAYAAAAB0GKPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4VGX2wPHvSSOkQkioARIpCaGH0KSEANJEEGUVbCsW\nhLUi7IrurrK6rv52AQFFERXUtSALFkCaSpcakB5CQg819BIgBN7fHzPCJAQYwkwmM3M+zzMPmTvv\nnZwLOmfufd9zrhhjUEoppW7Ex9UBKKWUcg+aMJRSStlFE4ZSSim7aMJQSillF00YSiml7KIJQyml\nlF00YSillLKLJgyllFJ20YShlFLKLn6uDsCRIiMjTUxMjKvDUEopt7F69erDxpgoe8Z6VMKIiYkh\nNTXV1WEopZTbEJFd9o7VS1JKKaXsoglDKaWUXTRhKKWUsotHzWEopTzDhQsXyMrK4ty5c64OxWME\nBgYSHR2Nv79/kd9DE4ZSqsTJysoiNDSUmJgYRMTV4bg9YwxHjhwhKyuL2NjYIr+PXpJSSpU4586d\no1y5cposHEREKFeu3C2fsWnCUEqVSJosHMsRf5+aMIB3f8lgze5jrg5DKaVKNK9PGCdyLvDFil3c\n8/5SBk9ex6FTOsmmlLc7cuQIjRo1olGjRlSsWJEqVapcfp6bm2vXe/Tr14/09PTrjhk7dixffvml\nI0IuFmKMcXUMDpOUlGSKUul9+nwe783L5JMl2ynl58vzHWrxx9tjCPDz+nyqlEukpaVRp04dV4cB\nwLBhwwgJCWHIkCH5thtjMMbg4+M+nxOF/b2KyGpjTJI9+7vPkTpRSCk/hnaNZ+6gZJrGlOXNmWl0\nHb2IRVuzXR2aUqoEyczMJCEhgQcffJC6deuyf/9++vfvT1JSEnXr1uX111+/PLZ169asXbuWvLw8\nypQpw9ChQ2nYsCEtW7bk0KFDAPztb39j1KhRl8cPHTqUZs2aERcXx9KlSwE4c+YM9957LwkJCfTu\n3ZukpCTWrl1b/AePLqvNJzYymIn9mvFL2kFen7GZRyaspFNCBf7ePYGqEUGuDk8pr/SP6ZvYvO+k\nQ98zoXIYr91Vt0j7btmyhc8//5ykJMuX8rfffpuIiAjy8vJISUmhd+/eJCQk5NvnxIkTJCcn8/bb\nb/Piiy8yYcIEhg4detV7G2NYuXIl06ZN4/XXX2f27Nm8++67VKxYkalTp7Ju3ToSExOLFLcj6BlG\nITrUqcDcQW35c+c4FmccpsPIhYycm87Z3IuuDk0p5WI1atS4nCwAvv76axITE0lMTCQtLY3Nmzdf\ntU/p0qXp2rUrAE2aNGHnzp2Fvvc999xz1ZglS5bQp08fABo2bEjdukVLdI6gZxjXUMrPl6dTanJP\nYhXemrmFMfMymbI6i7/emUC3+hV1yZ9SxaSoZwLOEhwcfPnnjIwMRo8ezcqVKylTpgwPPfRQobUO\nAQEBl3/29fUlLy+v0PcuVarUDce4kp5h3ECl8NKM6duYyU+1JDwogKe/WsMDH60g/cApV4emlHKx\nkydPEhoaSlhYGPv372fOnDkO/x2tWrVi8uTJAGzYsKHQM5jiomcYdmoWG8GMZ1vz1crdjJibTrcx\ni3m4RXUGdaxNeFDRe7MopdxXYmIiCQkJxMfHU716dVq1auXw3/Hss8/yyCOPkJCQcPkRHh7u8N9j\nD11WWwTHzuQy4qd0vlqxmzJBAfylcxx/SKqKr49eplLKEUrSslpXy8vLIy8vj8DAQDIyMujUqRMZ\nGRn4+d389/1bXVarZxhFUDY4gH/eXZ++zaoxbNomhn67gS9X7GZYj7o0qV7W1eEppTzI6dOn6dCh\nA3l5eRhj+PDDD4uULBxBE8YtqFs5nMlPtWTaun38a2Ya936wlHsSqzC0azzlQwNdHZ5SygOUKVOG\n1atXuzoMQCe9b5mI0LNRFeYNbsfAdjWYsW4/7YcvZPyibeTmXXJ1eEop5TCaMBwkuJQfL3WJZ86g\ntjSLjeBfM7fQZfQiFmq1uFLKQ2jCcLDYyGAmPNqUCY8mcemS4Y8TVvLk56nsPpLj6tCUUuqWODVh\niEgXEUkXkUwRuaoOXkQeFJH1IrJBRJaKSEPr9qoiMl9ENovIJhF53plxOkP7+ArMGdSWl7rE82vm\nYTq+s5ARc9PJyS15xThKKWUPpyUMEfEFxgJdgQSgr4gkFBi2A0g2xtQH3gDGW7fnAYONMQlAC+Dp\nQvYt8Ur5+TKwXQ3mDW5Ht3oVeXdeJh1HLGTG+n140nJmpTxNSkrKVUV4o0aNYuDAgdfcJyQkBIB9\n+/bRu3fvQse0a9eOGy39HzVqFDk5V65IdOvWjePHj9sbulM58wyjGZBpjNlujMkFJgE9bQcYY5Ya\nY36/c9FyINq6fb8xZo3151NAGlDFibE6VcXwQEb1acz/BrSkTFAAz3z1G30/Ws6WA45tqKaUcoy+\nffsyadKkfNsmTZpE3759b7hv5cqVmTJlSpF/d8GEMXPmTMqUKVPk93MkZyaMKsAem+dZXP9D/3Fg\nVsGNIhIDNAZWFLaTiPQXkVQRSc3OLtkTzE1jIpj+bGv+eXc9thw4RbfRi3nth42cyLng6tCUUjZ6\n9+7Njz/+ePlmSTt37mTfvn00btyYDh06kJiYSP369fnhhx+u2nfnzp3Uq1cPgLNnz9KnTx/q1KlD\nr169OHv27OVxAwcOvNwW/bXXXgNgzJgx7Nu3j5SUFFJSUgCIiYnh8OHDAIwcOZJ69epRr169y23R\nd+7cSZ06dXjyySepW7cunTp1yvd7HKlE1GGISAqWhNG6wPYQYCrwgjGm0K/jxpjxWC9lJSUllfjr\nPL4+wkMtqtO9QSVGzN3Kf5fvYtq6ffy5czz3N9VqcaWuMmsoHNjg2PesWB+6vn3NlyMiImjWrBmz\nZs2iZ8+eTJo0ifvuu4/SpUvz3XffERYWxuHDh2nRogU9evS4ZjPSDz74gKCgINLS0li/fn2+1uRv\nvvkmERERXLx4kQ4dOrB+/Xqee+45Ro4cyfz584mMjMz3XqtXr2bixImsWLECYwzNmzcnOTmZsmXL\nkpGRwddff81HH33Efffdx9SpU3nooYcc83dlw5lnGHuBqjbPo63b8hGRBsDHQE9jzBGb7f5YksWX\nxphvnRinS5QJCuCNu+sx49k21CofyivfbaDn2CWs3nXU1aEppch/Wer3y1HGGF555RUaNGhAx44d\n2bt3LwcPHrzmeyxatOjyB3eDBg1o0KDB5dcmT55MYmIijRs3ZtOmTTdsKrhkyRJ69epFcHAwISEh\n3HPPPSxevBiA2NhYGjVqBFy/ffqtcuYZxiqglojEYkkUfYAHbAeISDXgW+BhY8xWm+0CfAKkGWNG\nOjFGl0uoHMY3T7Vg+vr9/OvHNO79YBn3NLZWi4dptbhS1zsTcKaePXsyaNAg1qxZQ05ODk2aNOHT\nTz8lOzub1atX4+/vT0xMTKHtzG9kx44dDB8+nFWrVlG2bFkeffTRIr3P735viw6W1ujOuiTltDMM\nY0we8AwwB8uk9WRjzCYRGSAiA6zDXgXKAe+LyFoR+X35QCvgYaC9dftaEenmrFhdTUTo0bAyvwxO\n5umUGsxYv5+U4Qv4cKFWiyvlKiEhIaSkpPDYY49dnuw+ceIE5cuXx9/fn/nz57Nr167rvkfbtm35\n6quvANi4cSPr168HLG3Rg4ODCQ8P5+DBg8yadWX6NjQ0lFOnrr59Qps2bfj+++/JycnhzJkzfPfd\nd7Rp08ZRh2sXp85hGGNmAjMLbBtn8/MTwBOF7LcE8LqL+cGl/Phz53j+0KQq//xxM2/N2sI3q/bw\n6l0JtIsr7+rwlPI6ffv2pVevXpcvTT344IPcdddd1K9fn6SkJOLj46+7/8CBA+nXrx916tShTp06\nNGnSBLDcOa9x48bEx8dTtWrVfG3R+/fvT5cuXahcuTLz58+/vD0xMZFHH32UZs2aAfDEE0/QuHFj\np11+Koy2Ny/B5qcf4vXpm9lx+Awd65Tn790TqF4u+MY7KuXmtL25c9xqe3NtDVKCpcSVZ84LbRna\nNZ5l245wx8hF/GfOFq0WV0q5hCaMEi7Az4cByTWYN6QddzaoxNj52+gwYiHT1mm1uFKqeGnCcBMV\nwgJ55/5GTBnQkojgAJ77+jfuH7+ctP1aLa48k34hcixH/H1qwnAzSTERTHumNf/qVZ+Mg6e4c8xi\nXv1hI8dzcl0dmlIOExgYyJEjRzRpOIgxhiNHjhAYeGtL9XXS240dz8ll5E9b+WL5LsJL+zOkcxx9\nmlbTanHl9i5cuEBWVtYt1Sao/AIDA4mOjsbf3z/f9puZ9NaE4QHS9p9k2LRNrNhxlLqVw/hHj7ok\nxUS4OiyllBvQVVJepk6lMCb1b8G7fRtz9Ewuvcct44VJv3HwpH47U0o5jiYMDyEi3GWtFn8mpSYz\nNxwgZfgCPliwjfN5F10dnlLKA2jC8DBBAX4M6RzHTy+25fYakfzf7C10GbWY+emHXB2aUsrNacLw\nUNXLBfPxH5P4tF9TBOg3cRWPf7qKnYfPuDo0pZSb0oTh4drFlWf2C215uWs8y7cfodM7i/j37C2c\nOa/V4kqpm6MJwwsE+PnwVHIN5g9pR/cGlXh/gaVa/Ie1e3Wdu1LKbpowvEj5sEBG3t+IqQNbEhka\nwPOT1nL/h8vZvE+rxZVSN6YJwws1qR7BD0+35q176pOZfZru7y7mb99v4NgZrRZXSl2bJgwv5esj\n9G1WjfmD2/FIyxi+WrGblBEL+GL5Li5e0stUSqmracLwcuFB/gzrUZeZz7chvmIof/t+I3e9u4RV\nO/Xe4kqp/DRhKADiK4bx9ZMteO+BxhzLyeUP45bx/KTfOHBCq8WVUhaaMNRlIkL3BpZq8Wfb12TW\nxgO0H7GA9xdkarW4Usq5CUNEuohIuohkisjQQl5/UETWi8gGEVkqIg3t3Vc5T1CAH4M7xfHzoGRa\n1Yzk37PT6fzOIuZtOejq0JRSLuS0hCEivsBYoCuQAPQVkYQCw3YAycaY+sAbwPib2Fc5WbVyQXz0\nSBKfPdYMHx/hsU9TeezTVezQanGlvJIzzzCaAZnGmO3GmFxgEtDTdoAxZqkx5pj16XIg2t59VfFJ\nrh3F7Ofb8tdudVi54yid3lnI27O0Wlwpb+PMhFEF2GPzPMu67VoeB2YVcV/lZAF+PjzZ9jbmDU6m\nR8MqjFu4jfYjFmi1uFJepERMeotICpaE8VIR9u0vIqkikpqdne344FQ+5cMCGXFfQ6YOvJ3yoYE8\nP2kt9324jE37Trg6NKWUkzkzYewFqto8j7Zuy0dEGgAfAz2NMUduZl8AY8x4Y0ySMSYpKirKIYGr\nG2tSvSw/PN2Kt++pz7bsM9z17hL++p1WiyvlyZyZMFYBtUQkVkQCgD7ANNsBIlIN+BZ42Biz9Wb2\nVa7n4yP0sakWn7RqD+2GL+C/y3ZqtbhSHshpCcMYkwc8A8wB0oDJxphNIjJARAZYh70KlAPeF5G1\nIpJ6vX2dFau6NZerxZ9rQ0KlMP7+wya6v7uEFduP3HhnpZTbEE+asExKSjKpqamuDsOrGWOYtfEA\nb/6Yxt7jZ+nRsDIvd4unUnhpV4emlCqEiKw2xiTZM7ZETHorzyEidKtfiZ9fTOa5DrWYvekA7Ycv\nZOx8rRZXyt1pwlBOUTrAlxfvqM0vLybTplYk/5mTTqd3FvFLmlaLK+WuNGEop6oaEcT4R5L4/LFm\n+PkIj3+WSr+JK9mefdrVoSmlbpImDFUs2taOYvYLbfnbnXVYtfMYnUct4q1ZaZzWanGl3IYmDFVs\n/H19eKLNbcwbkkzPRlX4cOF22g9fwHe/ZWm1uFJuQBOGKnblQwMZ/oeGfPen26kUHsigb9bRe9wy\nNu7VanGlSjJNGMplGlcry3d/asW/723AzsNnuOu9Jbzy3QaOarW4UiWSJgzlUj4+wn1NqzJvSDv6\n3R7LN6v2kDJ8AZ8v20nexUuuDk8pZUMThioRwkv78+pdCcx6vg11K4fxqrVafLlWiytVYmjCUCVK\n7QqhfPlEcz54MJFT5/LoM345z379G/uOn3V1aEp5PU0YqsQREbpaq8Wf71CLuZsO0GHEQt6bl8G5\nC1otrpSraMJQJVbpAF8G3VGbn19MJrl2FMPnbqXTO4v4afNBXYarlAtowlAlXtWIIMY93IQvHm9u\nufPf56k8OnEV27RaXKlipQlDuY3WtSKZ9Xwb/t49gTW7jtFl1CLempnGqXMXXB2aUl5BE4ZyK/6+\nPjzeOpZ5Q9pxd6MqfLhoO+1HLOTbNVlc0ps2KeVUmjCUW4oKLcV//tCQ759uReXwQF6cvI7e45Zq\ntbhSTqQJQ7m1RlXLWKrFezdg99Ec7npvCS9/u4Ejp8+7OjSlPI4mDOX2fHyE+5Is1eKPtYplcqql\nWvzTX3dotbhSDqQJQ3mMsEB//t49gdnPt6F+dDjDpm+m+7tLWLZNq8WVcgRNGMrj1KoQyhePN2fc\nQ5Zq8b4fLefpr9ZotbhSt8ipCUNEuohIuohkisjQQl6PF5FlInJeRIYUeG2QiGwSkY0i8rWIBDoz\nVuVZRIQu9Srxy+BkBnWszc+bD9J+xALe/UWrxZUqKqclDBHxBcYCXYEEoK+IJBQYdhR4DhheYN8q\n1u1Jxph6gC/Qx1mxKs8V6O/L8x1r8cvgZFLiyjPip63c8c5C5m46oNXiSt0kZ55hNAMyjTHbjTG5\nwCSgp+0AY8whY8wqoLDKKz+gtIj4AUHAPifGqjxcdNkgPnioCV8+0ZxAP1/6/3c1f5y4isxDWi2u\nlL2cmTCqAHtsnmdZt92QMWYvlrOO3cB+4IQxZm5hY0Wkv4ikikhqdnb2LYasPF2rmpHMfL4Nr3ZP\n4Lfdlmrxf2m1uFJ2KZGT3iJSFsvZSCxQGQgWkYcKG2uMGW+MSTLGJEVFRRVnmMpN+fv68FjrWOYP\nace9idF8tNhSLT51tVaLK3U9zkwYe4GqNs+jrdvs0RHYYYzJNsZcAL4FbndwfMrLRYaU4v96N+D7\nP7WiSpnSDP6fpVp8fdZxV4emVInkzISxCqglIrEiEoBl0nqanfvuBlqISJCICNABSHNSnMrLNaxa\nhm8H3s5/rNXiPcf+ytCp67VaXKkC/Jz1xsaYPBF5BpiDZZXTBGPMJhEZYH19nIhUBFKBMOCSiLwA\nJBhjVojIFGANkAf8Box3VqxK+fgIf0iqSud6FRnzcwafLt3Jjxv28+IdtXm4RXX8fEvk1VulipV4\n0tLCpKQkk5qa6uowlAfIPHSKf0zfzOKMw9SuEMKwHnW5vUakq8NSyuFEZLUxJsmesfq1SalC1Cwf\nyuePNePDh5uQk3uRBz5awdNfrmGvVosrL6YJQ6lrEBE6163Izy8m8+Idtflly0E6jFjAGK0WV15K\nE4ZSNxDo78tzHWrx84vJdIivwMifttJx5ELmaLW48jKaMJSyU3TZIMY+mMhXTzQnKMCXp/67mkcm\nrCTz0ClXh6ZUsdCEodRNur1mJDOfa8NrdyWwds9xuoxazD9nbNZqceXxNGEoVQR+vj70axXLgiHt\n6N0kmk9+3UHK8IX8L3WPVosrj6UJQ6lbUC6kFG/f24Afnm5F1YjS/HnKeu75YCnr9mi1uPI8mjCU\ncoAG0WWYOuB2hv+hIVnHznL3+7/y0pT1HNZqceVBNGEo5SA+PkLvJtHMH5LMk21uY+qaLFKGL2DC\nkh1c0HuLKw+gCUMpBwsN9OeVbnWY/UJbGlUtw+szNnPnmMUszTzs6tCUuiV2JQwRqSEipaw/txOR\n50SkjHNDU8q91SwfwuePNWP8w004e+EiD3y8goFfrCbrWI6rQ1OqSOw9w5gKXBSRmliaAFYFvnJa\nVEp5CBGhU92K/DQomcF31GZ++iE6jFjIqJ+3arW4cjv2JoxLxpg8oBfwrjHmz0Al54WllGcJ9Pfl\n2Q61+GVwOzomVGDUzxl0GLGQ2Rv3a7W4chv2JowLItIX+CMww7rN3zkhKeW5qpQpzdgHEvn6yRaE\nlPJjwBdrePiTlWQc1GpxVfLZmzD6AS2BN40xO0QkFviv88JSyrO1rFGOH59rzbC7ElifdZyuoxfz\nxozNnNRqcVWC3fT9MKz3265qjFnvnJCKTu+HodzRkdPnGT53K5NW7aZccAB/6RJP78RofHzE1aEp\nL+Dw+2GIyAIRCRORCCx3wftIREbeSpBKKYtyIaV46576THu6NdUigvjLlPX0+mApa7VaXJUw9l6S\nCjfGnATuAT43xjQHOjovLKW8T/3ocKYMuJ2R9zVk3/Gz3D32V/4yZR3Zp7RaXJUM9iYMPxGpBNzH\nlUlvpZSD+fgI9yRGM39IO55qexvf/baX9sMX8PHi7VotrlzO3oTxOjAH2GaMWSUitwEZN9pJRLqI\nSLqIZIrI0EJejxeRZSJyXkSGFHitjIhMEZEtIpImIi3tjFUptxdSyo+XrdXijauX5Z8/ptF19GKW\nZGi1uHKdm570tvuNRXyBrcAdQBawCuhrjNlsM6Y8UB24GzhmjBlu89pnwGJjzMciEgAEGWOue1FX\nJ72VJzLG8HPaId6YsZndR3PoUrcif72zDlUjglwdmvIAzpj0jhaR70TkkPUxVUSib7BbMyDTGLPd\nGJMLTAJ62g4wxhwyxqwC8q0lFJFwoC3wiXVc7o2ShVKeSkS4I6ECcwe1ZUin2izcmk3HkQt55yet\nFlfFy95LUhOBaUBl62O6ddv1VAH22DzPsm6zRyyQDUwUkd9E5GMRCbZzX6U8UqC/L8+0r8Uvg5O5\nI6ECo3+xVIvP2qDV4qp42JswoowxE40xedbHp0CUE+PyAxKBD4wxjYEzwFVzIAAi0l9EUkUkNTs7\n24khKVUyVC5TmvceSGRS/xaEBvox8Ms1PPTJCrZqtbhyMnsTxhEReUhEfK2Ph4AjN9hnL5Ymhb+L\ntm6zRxaQZYxZYX0+BUsCuYoxZrwxJskYkxQV5cwcplTJ0uK2csx4tjWv96zLxr0n6Tp6Ma9P38yJ\ns1otrpzD3oTxGJYltQeA/UBv4NEb7LMKqCUisdZJ6z5YLmvdkDHmALBHROKsmzoAm6+zi1Jeyc/X\nh0daxjB/SDvub1qViUt30H74Ar5ZtVvvLa4crsirpETkBWPMqBuM6QaMAnyBCcaYN0VkAIAxZpyI\nVARSgTDgEnAaSDDGnBSRRsDHQACwHehnjDl2vd+nq6SUt9u49wSvTdvE6l3HaBgdzrAedWlcrayr\nw1Il2M2skrqVhLHbGFOtSDs7iSYMpSzLcL9fu5e3Zm7h0Knz9G4SzUtd4okKLeXq0FQJ5PBltdf6\nPbewr1LKSUSEXo2jmTekHU8l38YPa7VaXDnGrSQMvUCqVAkWUsqPl7vWYc4LbWkSc6VafHGGriZU\nRXPdhCEip0TkZCGPU1jqMZRSJdxtUSFMfLQpn/wxiQsXL/HwJyt56r+p7Dmq9xZXN8fvei8aY0KL\nKxCllPOICB3qVKBVzUg+WbKD9+Zl0jF9IU8l12Bgcg1KB/i6OkTlBm7lkpRSys0E+vvydEpN5g1J\npnPdioz5JYOOIxcyU6vFlR00YSjlhSqFl2ZM38Z8Y60W/9OXa3jw4xWkH9BqcXVtmjCU8mLNrdXi\nb/Ssy6Z9J+k2ZjHDpm3SanFVKE0YSnk5P18fHm4Zw4Ih7ejTtCqfLdtJyvAFTFqp1eIqP00YSikA\nygYH8Gav+kx/pjU1ooIZ+u0G7n7/V9bsvm6DBeVFNGEopfKpVyWcyU+1ZHSfRhw8eY573l/K4Mnr\nOHTqnKtDUy6mCUMpdRURoWejKvwyuB0D29Vg2rq9tB++kI8WbSc3T6vFvZUmDKXUNYWU8uOlLvHM\nHZRM05iyvDkzjS6jF7Foq1aLeyNNGEqpG4qNDGZiv2ZMeDSJS5cMj0xYyZOfp7L7iFaLexNNGEop\nu7WPr8CcQW35S5c4fs08TMd3FjJibjpnc/Xe4t5AE4ZS6qaU8vPlT+1qMm9wO7rWq8i78zLpMGIB\nM9bv02pxD6cJQylVJBXDAxndpzGTn2pJeFAAz3z1G30/Ws6WAyddHZpyEk0YSqlb0iw2wlItfnc9\nthw4xZ1jlliqxXO0WtzTaMJQSt0yXx/h4RbVmT+4HQ80q8bny3aSMmIBX6/czUWtFvcYmjCUUg5T\nNjiAN+6ux/RnW1MzKoSXv93A3WN/ZfUurRb3BJowlFIOV7dyON881YLRfRqRfeo8936wlBe/Wcuh\nk1ot7s6cmjBEpIuIpItIpogMLeT1eBFZJiLnRWRIIa/7ishvIjLDmXEqpRzvSrV4Mn9qV4MZ6/eT\nMnwBHy7cptXibsppCUNEfIGxQFcgAegrIgkFhh0FngOGX+NtngfSnBWjUsr5gkv58Zcu8cwd1JYW\nt5XjrVlb6DJ6EQu1WtztOPMMoxmQaYzZbozJBSYBPW0HGGMOGWNWAVctpxCRaOBO4GMnxqiUKiYx\nkcF88mhTJj7aFGPgjxNW8sRnWi3uTpyZMKoAe2yeZ1m32WsU8BfguueuItJfRFJFJDU7W7+xKFXS\npcSXZ/YLbXipSzxLt1mqxYfPSScnN8/VoakbKJGT3iLSHThkjFl9o7HGmPHGmCRjTFJUVFQxRKeU\nulWl/HwZ2K4G84e04876lXhvfiYdRixk+jqtFi/JnJkw9gJVbZ5HW7fZoxXQQ0R2YrmU1V5EvnBs\neEopV6sQFsg79zdiyoCWlA0K4Nmvf6PP+OWk7ddq8ZLImQljFVBLRGJFJADoA0yzZ0djzMvGmGhj\nTIx1v3nGmIecF6pSypWSYiKY/mxr3uxVj60HT3HnmMW89sNGjufkujo0ZcPPWW9sjMkTkWeAOYAv\nMMEYs0lEBlhfHyciFYFUIAy4JCIvAAnGGP16oZSX8fURHmxenTvrV2LkT1v57/JdTFu3jyGd4+jT\ntBq+PuLqEL2eeNL1wqSkJJOamurqMJRSDrB530mGTd/Eyh1HqVcljH/0qEuT6hGuDsvjiMhqY0yS\nPWNL5KS3UkolVA7jm/4tGNO3MYdP5XLvB8sY9M1aDmq1uMtowlBKlVgiQo+GlZk3JJmnU2rw4/r9\ntB++gHFs8WAyAAASgElEQVRaLe4SmjCUUiVeUIAff+4cz08vtqVljXK8PWsLXUYtYn76IVeH5lU0\nYSil3Eb1csF8/MemTOzXFIB+E1fx+Ker2Hn4jIsj8w6aMJRSbiclrjyzX2jLy13jWb79CJ3eWcR/\n5mzhzHmtFncmTRhKKbcU4OfDU8k1mDekHd0bVGLs/G10GLGQH9bu1WpxJ9GEoZRyaxXCAhlprRYv\nFxLA85PWcv/45Wzep+VcjqYJQynlEZJiIpj2TGv+1as+GQdP0f3dxfz9e60WdyRNGEopj+HrIzzQ\nvBoLhqTwcIvqfLliF+2GL+CL5bv03uIOoAlDKeVxwoP8+UfPevz4XBviKoTyt+83cte7S1i186ir\nQ3NrmjCUUh6rTqUwJvVvwXsPNOZYTi5/GLeMFyb9xoETWi1eFE5rPuhWpjwOQREQWRui4iAyDkLK\ng2izM6XcnYjQvUFl2seX54MF2/hw0Xbmbj7Is+1r8VjrGEr5+bo6RLehzQcv5sGEzpCdDrmnrmwP\nDLckjqja1j/jLAmlTHXw0RMzpdzV7iM5vPHjZn7afJDYyGBe7Z5ASnx5V4flMjfTfFATxu+MgVP7\nLYkjOx0Op0P2VsufZ2xu/epXGiJr5k8iUXEQUQP8AhxzIEopp1uQfojXZ2xme/YZ2seX59XuCcRE\nBrs6rGKnCcPRco7C4a3WRLL1SkI5vvvKGPGFiNgCZyW1LQmlVKjjY1JK3bLcvEt8unQHo3/O4MJF\nw+NtYnkmpSbBpbznar0mjOKSewYOZ+RPItlb4eg2uGTToiAsukASsZ6dBEcWX6xKqWs6dPIcb8/e\nwrdr9lIhrBSvdKtDj4aVES+Yx9SE4WoXL8DRHdYEkp7/7ORCzpVxpSPyX9b6PaGERes8iVIusHrX\nMYZN28SGvSdoGlOWYT3qUrdyuKvDcipNGCXVpUtwMuvK3IhtMjlrsz7cPxgia12dTCJiwdffdfEr\n5QUuXjL8L3UP/56TzvGcXB5oXo3Bd8RRNtgz5yg1YbijM4evnmzP3mpJML/z8YeI265euRVZGwKC\nXBe7Uh7oRM4F3vnZcm/x0EA/BneK44Fmnndv8RKTMESkCzAa8AU+Nsa8XeD1eGAikAj81Rgz3Lq9\nKvA5UAEwwHhjzOgb/T63ThjXcv6U9Sxka/5kcnQHmItXxpWpdvXKrcjalvoSpVSRbTlwkmHTNrF8\n+1HqVLLcW7xZrOf8f1UiEoaI+AJbgTuALGAV0NcYs9lmTHmgOnA3cMwmYVQCKhlj1ohIKLAauNt2\n38J4ZMK4lrzzcHT71Su3DmdAnk0Va3BUISu34iCsshYmKmUnYwwzNxzgzR83s+/EOXo0rMwr3epQ\nMTzQ1aHdsptJGM5cO9YMyDTGbLcGNQnoCVz+0DfGHAIOicidtjsaY/YD+60/nxKRNKCK7b5ez68U\nlK9jedi6dNGy3Lfgyq2NU+HciSvjAkILX7lVpjr4es+SQqXsISLc2aCStVo8k3GLtvNz2kGeTqnJ\nE21ivaZa3JmfDFWAPTbPs4DmN/smIhIDNAZWOCQqT+djrQeJiIXana9sNwZOH7p6sn3bPFj31ZVx\nvgFQrmb+y1pRcVCuFvi7/7cppW5F6QBfXuwUR+8mVfnnj5v5z5x0Jqfu4dXuCXSoU8HV4Tldif4q\nKSIhwFTgBWNMoXdDEZH+QH+AatWqFWN0bkYEQitYHrFt87927sTVK7f2r4O0aWAu/f4GULY6RMVf\nvQw40LOXHSpVULVyQYx/JIlFW7MZNn0Tj3+WSkpcFH/vnsBtUSGuDs9pnDmH0RIYZozpbH3+MoAx\n5q1Cxg4DTv8+h2Hd5g/MAOYYY0ba8zu9ag6jOFw4B0cyC6zcSrdsu2hzU5qQilev3IqKg5AKOk+i\nPF5u3iU+W7qT0b9kcD7vIo+3vo1n2tckxE2qxUvKpLcflknvDsBeLJPeDxhjNhUydhg2CUMs5ZWf\nAUeNMS/Y+zs1YRSTi3lwfFfhy4DtauBYzXLpTCkPcujUOf49O50pq7OoEFaKl7vWoWejkl8tXiIS\nhjWQbsAoLMtqJxhj3hSRAQDGmHEiUhFIBcKAS8BpIAFoACwGNli3A7xijJl5vd+nCcPFbBs4Ht4K\n2Vuu0cAx0DInUnDSvVwNy2S+Um5szW5Ltfj6rBMkVbdUi9erUnIv25aYhFHcNGGUYNrAUXmRS5cM\n/1u9h3/PTudoTi59m1VjSKc4IkpgtbgmDOU+cnPgSEb+OZLs9EIaOFa5euVWpLWBYwk/5Vfe68TZ\nC4z6eSufL9tFSCk/BneqzQPNquHnW3J6xWnCUO7vmg0cM+DCmSvjSpctfOWWNnBUJUj6gVMMm7aJ\nZduPEF8xlH/0qEvz28q5OixAE4arw1DOdOkSnNx7ZZI9e8s1GjgGWRo4Fpx0j7hNGzgqlzDGMGvj\nAd78MY29x89yV8PKvNItnkrhpV0alyYM5Z3sauDoZ7k74lUNHGtBgPfdbU0Vv7O5F/lg4TbGLdyG\nrwjPtK/J461jCfR3zcpBTRhK2Tp/yuZGV1uu3cAxvFrh7VK0gaNygj1Hc3jzxzRmbzpA9XJB/P3O\nBDrUKV/sy3A1YShlj7xcy+T6jRo4BkVa5km0gaNygsUZ2fxj+mYyD50muXYUr91VvNXimjCUuhWX\nLsGJ3TZzJDaXuAo2cCzsRldlY7SBo7opFy5aq8V/zuBc3kUeax3Ls+1rFUu1uCYMpZzhWg0cD2+1\nFCz+zjfAOk9SoFVKuZrg79oJTlWyZZ86z79nb+F/q7OICi3Fy13j6dW4ilMvU2nCUKq4nTthuZSV\nvSV/Mjm+6+oGjoW1SyldxqXhq5LlN2u1+LqsEzSpXpZ/OLFaXBOGUiVFoQ0ct1qKFfM1cKxgU0ei\nDRyVpVp8yuos/m/2Fo7m5NKnaTX+3Nnx1eKaMJQq6S5dhGM7r165VbCBY6nwQlZu1bbc6EobOHqF\nE2cvMPrnDD5btpPgAF8Gd4rjweaOqxbXhKGUu7qqgaPNn2cOXRmnDRy9TsbBUwybvolfMy3V4q/d\nVZeWNW69WlwThlKeyN4GjmVjrl65FaUNHD2BMYY5mw7wxgxLtfidDSrx1251qFym6IspNGEo5U0K\na+B4eCsc2QaXLlwZF1r56pVb2sDRLZ3NvciHi7bxwYJt+IjwdEoN+retQYDfzV+m0oShlLI0cDy2\n8+qVW4U1cCxs5VZ4VW3gWMLtOZrDv2amsS37ND8+1wb/IsxraMJQSl1bwQaOtn/mHLkyThs4uo1T\n5y4QGli0f5ObSRhajqqUt/HxgTJVLY+aHfO/VlgDx11LYcNkm/39LEmj4BxJZG1t4OgiRU0WN0sT\nhlLqiuBIyyOmVf7t509bLmkVnHRPn1WggWPVAklEGzh6Ek0YSqkbKxUCVRItD1vXauC481fIO3tl\nXFBkgcl2659hVXTC3Y1owlBKFZ1fAJSvY3nYsm3gaLtya9N3cO74lXEBIdYGjvHawNENOPVfRES6\nAKMBX+BjY8zbBV6PByYCicBfjTHD7d1XKVWC+fhYPvTLxkDtTle2X6uB4/YFsO7rK+MuN3As5EZX\n2sDRZZyWMETEFxgL3AFkAatEZJoxZrPNsKPAc8DdRdhXKeVuRCC0guUR2zb/a5cbONpMuu9fD2nT\n8zdwLFOtwP1JtIFjcXHmGUYzINMYsx1ARCYBPYHLH/rGmEPAIRG582b3VUp5mMBwiE6yPGxdq4Hj\n9gVw8fyVcSEVClm5FQehFXWexEGcmTCqAHtsnmcBzR29r4j0B/oDVKtW7eajVEqVbP6BULGe5WEr\nXwNHm8tb677RBo5O4vazSsaY8cB4sBTuuTgcpVRx8fG1NFssVwPiul7Zfq0GjhlzYe0XV8b5BVpu\nalVw5Va5mtrA8RqcmTD2AlVtnkdbtzl7X6WUNxOx3G89rDLUSMn/2tljV6/c2ptqWb2F9fumWCfs\nf58f+f0SV2QtCAwr7qMpUZyZMFYBtUQkFsuHfR/ggWLYVymlCle6LFRrbnnYulYDx8yfC2ngWPDy\nVhwER3nFPInTEoYxJk9EngHmYFkaO8EYs0lEBlhfHyciFYFUIAy4JCIvAAnGmJOF7eusWJVSXi4g\nCCo1tDxsXW7gmH4lkWSnw29f5G/gGFim8JVbHtbAUZsPKqXUzbqZBo7lal69civiNkvRYwmgzQeV\nUsqZrtvA8UiBwsQtsGsZbPifzf5+UDY2/xyJGzRw1IShlFKOFFwOgm+H6rfn334zDRwLrtyKjLO8\nr4tpwlBKqeJw3QaO2/PPkfzeVj5fA8dyBVZuFX8DR00YSinlSn4BUD7e8rB1Mw0cK9aHfrOcnjg0\nYSilVEl0vQaOZ7Lzr9zKO1csZxmaMJRSyp2IQEh5yyO2TbH+as9ZIKyUUsqpNGEopZSyiyYMpZRS\ndtGEoZRSyi6aMJRSStlFE4ZSSim7aMJQSillF00YSiml7OJR7c1FJBvYVcTdI4HDDgzHHegxez5v\nO17QY75Z1Y0xUfYM9KiEcStEJNXenvCeQo/Z83nb8YIeszPpJSmllFJ20YShlFLKLpowrhjv6gBc\nQI/Z83nb8YIes9PoHIZSSim76BmGUkopu3hVwhCRLiKSLiKZIjK0kNdFRMZYX18vIomFvY87seOY\nH7Qe6wYRWSoiDV0RpyPd6JhtxjUVkTwR6V2c8TmDPccsIu1EZK2IbBKRhcUdo6PZ8d92uIhMF5F1\n1mPu54o4HUVEJojIIRHZeI3Xnf/5ZYzxigfgC2wDbgMCgHVAQoEx3YBZgAAtgBWujrsYjvl2oKz1\n567ecMw24+YBM4Hero67GP6dywCbgWrW5+VdHXcxHPMrwP9Zf44CjgIBro79Fo65LZAIbLzG607/\n/PKmM4xmQKYxZrsxJheYBPQsMKYn8LmxWA6UEZFKxR2oA93wmI0xS40xx6xPlwPRxRyjo9nz7wzw\nLDAVOFScwTmJPcf8APCtMWY3gDHG3Y/bnmM2QKiICBCCJWHkFW+YjmOMWYTlGK7F6Z9f3pQwqgB7\nbJ5nWbfd7Bh3crPH8ziWbyju7IbHLCJVgF7AB8UYlzPZ8+9cGygrIgtEZLWIPFJs0TmHPcf8HlAH\n2AdsAJ43xlwqnvBcwumfX3pPbwWAiKRgSRitXR1LMRgFvGSMuWT58ukV/IAmQAegNLBMRJYbY7a6\nNiyn6gysBdoDNYCfRGSxMeaka8NyX96UMPYCVW2eR1u33ewYd2LX8YhIA+BjoKsx5kgxxeYs9hxz\nEjDJmiwigW4ikmeM+b54QnQ4e445CzhijDkDnBGRRUBDwF0Thj3H3A9421gu8GeKyA4gHlhZPCEW\nO6d/fnnTJalVQC0RiRWRAKAPMK3AmGnAI9bVBi2AE8aY/cUdqAPd8JhFpBrwLfCwh3zbvOExG2Ni\njTExxpgYYArwJzdOFmDff9s/AK1FxE9EgoDmQFoxx+lI9hzzbixnVIhIBSAO2F6sURYvp39+ec0Z\nhjEmT0SeAeZgWWExwRizSUQGWF8fh2XFTDcgE8jB8g3Fbdl5zK8C5YD3rd+484wbN26z85g9ij3H\nbIxJE5HZwHrgEvCxMabQ5ZnuwM5/5zeAT0VkA5aVQy8ZY9y2i62IfA20AyJFJAt4DfCH4vv80kpv\npZRSdvGmS1JKKaVugSYMpZRSdtGEoZRSyi6aMJRSStlFE4ZSSim7aMJQ6gZE5KK1y+vvj2t2wC3C\ne8dcq/uoUiWN19RhKHULzhpjGrk6CKVcTc8wlCoiEdkpIv+23ktkpYjUtG6PEZF51nsS/GKtpkdE\nKojId9b7M6wTkdutb+UrIh9Z79kwV0RKW8c/JyKbre8zyUWHqdRlmjCUurHSBS5J3W/z2gljTH0s\nnVFHWbe9C3xmjGkAfAmMsW4fAyw0xjTEcl+DTdbttYCxxpi6wHHgXuv2oUBj6/sMcNbBKWUvrfRW\n6gZE5LQxJqSQ7TuB9saY7SLiDxwwxpQTkcNAJWPMBev2/caYSBHJBqKNMedt3iMG+MkYU8v6/CXA\n3xjzT2srj9PA98D3xpjTTj5Upa5LzzCUujXmGj/fjPM2P1/kytzincBYLGcjq0RE5xyVS2nCUOrW\n3G/z5zLrz0uxdE8FeBBYbP35F2AggIj4ikj4td5URHyAqsaY+cBLQDiWu8Yp5TL6jUWpGystImtt\nns82xvy+tLasiKzHcpbQ17rtWWCiiPwZyOZK19DngfEi8jiWM4mBwLXaT/sCX1iTigBjjDHHHXZE\nShWBzmEoVUTWOYwkd26ZrdTN0EtSSiml7KJnGEoppeyiZxhKKaXsoglDKaWUXTRhKKWUsosmDKWU\nUnbRhKGUUsoumjCUUkrZ5f8B7mYrlyR2uvYAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAEKCAYAAAAvlUMdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8FeX1+PHPIexr2LcQEpAlYQ/XgBuKuOBKoVRBLQIq\nxSr6a2sr8rVfKHah1lpxqYqKta2K1n6xwQXqggWrLImGJSFICAhhDWuAELKd3x8zCTcRkkvI5OYm\n5/168cqdeWZ5HtB7MmdmniOqijHGGFPV6gW7A8YYY2onCzDGGGM8YQHGGGOMJyzAGGOM8YQFGGOM\nMZ6wAGOMMcYTFmCMMcZ4wgKMMcYYT1iAMcYY44n6we5AMLVr106joqKC3Q1jjAkpSUlJB1S1fUXb\n1ekAExUVRWJiYrC7YYwxIUVEvg1kO0uRGWOM8YQFGGOMMZ6wAGOMMcYTFmCMMcZ4wgKMMcYYT1iA\nMcYY4wkLMMYYYzxRp9+DMcaYOqUwH/auhx2roWVn6DfW09NZgDHGmNrq5BHIXAs7VsHO1bArCfJz\nnLb+4y3AGGOMCYAqHPnWCSbFAWX/JkBBwqDTAIibBN2GQeRwaNnF8y5ZgDHGmFDkn+7aucr5eXyv\n09aoJURc6FyhdBsGXYdCo+bV3kULMMYYEwrKS3eFR0L0CIgcBt2GQ4cYqBcW3P5iAcYYY2oeVTi8\n3QkkNSTdVRkWYIwxJtgK82HPejfV5QaU4/ucthqS7qoMCzDGGFPdTh6GnWtP3zvZlQQFJ5228EiI\nvrzGpbsqw9MAIyKjgflAGPCyqs4r094aWAj0BHKBqaq60W0LB14G+gPqtn0pIm8BfdxDhANHVHWw\niEQBm4DNbtsqVZ3u4fCMMaZipdJdXzoBJSuNknRX54EwdPLpgNKyc5A7XHU8CzAiEgY8B1wNZAJr\nRSRBVVP9NpsFJKvqWBHp624/ym2bDyxV1fEi0hBoCqCqt/qd44/AUb/jbVXVwV6NyRhjKlRuuqsV\ndLsQ+n/fCShdh0LDZsHtr4e8vIKJB9JVNQNARBYBYwD/ABMLzANQ1TQRiRKRjjhXMyOAyW5bHpDn\nf3AREeAW4EoPx2CMMeWrKN3V44rTN+Pb9w3ZdFdleBlgugI7/ZYzgWFltlkHjANWikg80B2IAAqB\nLOBVERkEJAEPquoJv30vA/ap6ha/ddEikoxzVfOoqq4s2ykRmQZMA4iMjDyP4Rlj6hxVOLyt9Lsn\nWZuctlqe7qqMYN/knwfMd4PCBuBrnOBSH4gDZqjqahGZD8wEfum370TgTb/lPUCkqh4UkaHAuyLS\nT1Wz/U+oqguABQA+n089GpcxpjYoyHNfZlx1OqCc2O+01bF0V2V4GWB2Ad38liPcdSXcL/8pUJLy\n2gZk4NxvyVTV1e6m7+AEGNxt6+Nc+Qz1O9Yp4JT7OUlEtgK9gcQqHZUxpvY6eRh2rvF7mfErv3RX\nd+g50i/dFQP1bEL68ngZYNYCvUQkGiewTABu89/AfVIsx73Hcjewwg062SKyU0T6qOpmnBv//vdu\nrgLSVDXT71jtgUOqWigiPYBeOMHKGGO+q7x0V7360Gkg+KacDigtOgW3vyHIswCjqgUicj+wDOcx\n5YWqmiIi0932F4AY4DURUSAFuMvvEDOA190nyDJwr3RcEyidHgPnoYC5IpIPFAHTVfWQB0MzxoSi\nCtNd8TDg+869k65DoWHT4Pa3FhDVunsbwufzaWKiZdCMqZW+k+5KgoJcp611lBNIim/Gt+9r6a5z\nICJJquqraLtg3+Q3xpjzpwqHMkrP3ZWV5rSVpLumOqmubsMs3VVNLMAYY0JPQR7sWef3MuOa0+mu\nxq0gIh4GjLd0V5BZgDHG1Hw5h9yp6t2pVnZ/VTrd1fNKS3edg+0HTlBQpFzQwdtJMy3AGGNqlorS\nXZ0Hge8uN6BYuutcnDhVwLPL03ll5TYu6tmW16bGe3o+CzDGmOD6TrprNZzIctoat3KCyIAfOPdP\nusRZuqsSVJV/Je/mdx9uYl/2KcbFdWXm6L6en9cCjDGmeuUccu6ZFD8qXCrdFQ0XXHX63ZN2fSzd\ndZ427jrK7IQUkr49zICurfjz7UMZ2r11tZzbAowxxjvF6S7/d08OuBU1vpPuGg4tOga3v7XIweOn\neOLf37Bo7Q7aNG3I778/gB8M7Ua9elJtfbAAY4ypOgV5sCf5dKrrTOmugbdYustDBYVF/H3Vtzz5\n0TecyCtk6iXRPDCqF62aNKj2vliAMcZUXtl0164kKDzltFm6q9p9kX6AXy1JZfO+Y1xyQVvm3NSP\nXh1bBK0/FmCMMYEpN93VwEl3xd/jBJRuwyzdVY0yD+fw2w828cGGvUS0bsILdwzl2n4dceYQDh4L\nMMaYMys45TzddcZ0V7gTRAbd6r7MGAcNmgS3v3VQbn4hL/xnK89/thUR+OnVvZk2ogeNG9SMomYW\nYIwxjpxDpd892fVVmXTX1advxrfrbemuIFJVlm7cy6/f38SuIye5YWBnZl0fQ9fwmhXkLcAYUxep\nwsGtpd89OfCN01Y23RU5HJp3CG5/TYlv9h1jTkIKX2w9SN9OLXjznuFc1LNtsLt1RhZgjKkLCk7B\n7uTT9052roacA05bSbprgqW7arCjOfn86eNv+Nuqb2neqD5zx/TjtvhI6ofV3CtJCzDG1EYnDrr3\nTYpfZvz6dLqrTQ/odY2lu0JEYZHyj8SdPL5sM4dz8rgtPpKfXdOHNs0aBrtrFbIAY0yoqyjd1WWw\nk+4qnqre0l0hI+nbQ8xJSGXDrqNcGNWa2TfF079rq2B3K2CeBhgRGQ3Mx6lo+bKqzivT3hpYCPQE\ncoGpqrrRbQsHXgb6A+q2fSkic4B7APdxFmap6gfuPo/gVMUsBB5Q1WVejs+YoCgv3dWktZvumui+\nzDjE0l0haF92Lr//MI3/+3oXnVo2Zv6Ewdw8qEvQHzs+V54FGBEJA54DrgYygbUikqCqqX6bzQKS\nVXWsiPR1tx/lts0HlqrqeLdssv8rv39S1SfKnC8Wp5RyP6AL8LGI9FbVQi/GZ0y1CTTdFXkRtO1l\n6a4QdqqgkFf/u51nPtlCfqHy4yt6ct/IC2jWKDSTTV72Oh5IV9UMABFZBIwB/ANMLDAPQFXTRCRK\nRDriXM2MACa7bXlAXgXnGwMsUtVTwDYRSXf78GWVjcgYr6nCwfTSLzMe3OK0WbqrVluetp+576Wy\n7cAJrorpwKM3xBLVrlmwu3VevAwwXYGdfsuZwLAy26wDxgErRSQe6A5E4KS4soBXRWQQkAQ8qKon\n3P1miMgkIBH4maoeds+3qsz5ulbtkIypYgWnnCsS/5cZcw46bcXprsG3WbqrFtt24ASPvZfKp2n7\n6dGuGa9OuZCRfWrHLw7Bvu6aB8wXkWRgA/A1TnCpD8QBM1R1tYjMB2YCvwSeBx7DuS/zGPBHYGqg\nJxSRacA0gMjIyKobiTGBKE537fjS+bn7ayh0L87b9ITeo0+/e2Lprlrt+KkCnv00nVc+z6BR/TBm\nXd+XyRdH07B+7fk39zLA7AK6+S1HuOtKqGo2MAVAnLtX24AMnPstmaq62t30HZwAg6ruK95fRF4C\n3gv0fO7+C4AFAD6fTys3NGMCUGG6awgM+5HzqHC3YdC8fXD7a6qFqvJu8i5+90Ea+4+dYvzQCH4x\nug8dWjQOdteqnJcBZi3QS0Sicb7oJwC3+W/gPimW495juRtY4QadbBHZKSJ9VHUzzo3/VHefzqq6\nxz3EWGCj+zkBeENEnsS5yd8LWOPh+IwpLT/3u1PVl0p3DYchtzs/uwyBBrXvC8WUb0PmUeYscYp/\nDYxoxQs/HEpcZPUU/woGzwKMqhaIyP3AMpzHlBeqaoqITHfbXwBigNdERIEUnEeMi80AXnefIMvA\nvdIBHheRwTgpsu3Aj9zjpYjI2ziBqAC4z54gM546caD03F2W7jJn4RT/2syitTtp07Qhj39/IOOH\nRlRr8a9gENW6myXy+XyamJgY7G6YUKAKB7b4vXuyykl/AYQ1hM6DT78Zb+ku4/Iv/pWTV8idF0cF\nrfhXVRKRJFX1VbRdsG/yG1Mz5ec6VyT+LzOePOS0NWnjBJEhd1i6y5zVF+kHmLMkhW/2HefSC9ox\n+6bYoBb/CgYLMMZA+emuthdAn+v95u7qBSH2RrWpPjsPOcW/PtzoFP968YdDuSY2+MW/gsECjKl7\nKkp3dRkCw6affpmxWbvg9teEhLLFv352dW/uqUHFv4LBAoyp/QJNd0Ve5NxLsXSXOQdli3/dOLAz\nj9TA4l/BYAHG1D4nDpR+92RPsqW7jCc27z3Gr5acLv61aNpwhveomcW/gsECjAltqs7U9MX3Tnas\ngkNbnTZLdxmPlC3+9diYfkys4cW/gsECjAktxemu4qlWdq6Gk4edtiZtnEASN8n5aekuU8UKi5S3\nE3fyB7/iXw9d04fWIVD8KxgswJia7XhW6anqS6W7ekHfG5xUV+RwJ/1l6S7jkaRvDzE7IYWNu7JD\nsvhXMFiAMTVHhemuOBh+7+mXGZtZrtt4b192LvM+TGNxiBf/CgYLMCZ48nNh91el5+4qTnc1besE\nEUt3mSA5VVDIws+388ynWygoVO4feQH3XtEzZIt/BYP9TZnqczyrdN343clQlO+0WbrL1CCfpu1j\n7pJUth/M4aqYjvzyxhi6tw3t4l/BYAHGeKOoyEl3+b/MeCjDaStOd130Y0t3mRolI+s4j72XyvLN\nWfRo34y/TLmQK2pJ8a9gsABjqkb+ye9WZiyV7hoOQye7c3cNhvqNgtpdY/yVLf71P9fHcOfFUbWq\n+FcwWIAxlVNeuqtdb+h7o/vuyXBo29PSXaZGqkvFv4LBAoypWLnprkbOy4wX/diZaiUi3tJdJiRs\nyDzK7ISNfLXjCIMiWvHiD4cypBYX/woGCzDmu/JPwq6vSs/dlXvEabN0lwlx/sW/2jZryOPjBzI+\nrvYX/woGCzAGju8v/e7JnnWl010xN1m6y4S8fL/iXyfzCrnrkmgeuKoXLRuHdvGvmszTACMio4H5\nOCWTX1bVeWXaWwMLgZ5ALjBVVTe6beHAy0B/nPLIU1X1SxH5A3ATkAdsBaao6hERiQI2AZvdw69S\n1eleji8kFae7iqda2bEKDm9z2sIaQdc4uOi+03N3NW0T3P4aUwX+m36AX7nFvy7r5RT/uqBD3Sr+\nFQyeBRgRCQOeA64GMoG1IpKgqql+m80CklV1rIj0dbcf5bbNB5aq6ngRaQg0ddd/BDyiqgUi8nvg\nEeBht22rqg72akwhqdx0VzsnkPimui8zDrJ0l6lV/It/dWvThAU/HMrVdbT4VzB4eQUTD6SragaA\niCwCxgD+ASYWmAegqmkiEiUiHXGuZkYAk922PJwrFlT13377rwLGeziG0FNuuqsPxN58+mXGNj0s\n3WVqpZN5TvGvF/5jxb+CycsA0xXY6becCQwrs806YBywUkTige5ABFAIZAGvisggIAl4UFVPlNl/\nKvCW33K0iCQDR4FHVXVl2U6JyDRgGkBkZGQlh1ZDFBXBgc2lA4qlu0wdpqp8uHEvv/Er/jXr+hi6\nWPGvoAj2Tf55wHw3KGwAvsYJLvWBOGCGqq4WkfnATOCXxTuKyP8ABcDr7qo9QKSqHhSRocC7ItJP\nVbP9T6iqC4AFAD6fTz0dXVXLyykzd9caS3cZ49q89xhzElL4MsOKf9UUXgaYXUA3v+UId10J98t/\nCoA4SdFtQAbO/ZZMVV3tbvoOToDB3XYycCMwSlXVPdYp4JT7OUlEtgK9gcSqHli1Obav9Lsne9ZB\nUYHTZukuYwAr/lWTeRlg1gK9RCQaJ7BMAG7z38B9UizHvcdyN7DCDTrZIrJTRPqo6macG/+p7j6j\ngV8Al6tqjt+x2gOHVLVQRHoAvXCCVWj4TrrrSzi83Wmr39iZu+viGe7cXfGW7jJ1XmGR8tbanfxh\nWRpHT+Zz27BIfna1Ff+qSTwLMO5TXvcDy3AeU16oqikiMt1tfwGIAV4TEQVSgLv8DjEDeN19giwD\n90oHeBZoBHzkPglS/DjyCGCuiOQDRcB0VT3k1fjO23fSXash96jT1qy9c8/kwrudgNJ5ENS3/2mM\nKZa4/RBzljjFv+Kj2jD75lj6dbHiXzWNuBmmOsnn82liYjVl0MpLd7Xv6wSU4pvxlu4y5ozKFv+a\ndUMMNw3sbI8dVzMRSVJVX0XbBfsmf+1UVARZaaUDin+6q+tQuPgBJ6BEXGjpLmMqcKbiXz8e2ZOm\nDe0rrCazf52qkJcDu5JOB5TMNZbuMqaK+Bf/ujq2I4/eYMW/QoUFmMrIPQoZnzn3T3asgr3rS6e7\nYr9n6S5jzlPZ4l+vTY3n8t7tg90tcw4swFTGgS3w9iRLdxnjgeOnCnjm0y0s/HwbjeqH8egNMUy6\nyIp/hSILMJXRaSDc/Ynz09JdxlSJoiK3+NeHaWQdO8UPhkbwcyv+FdIswFRG/YYQUeEDFMaYAK3P\nPMKchBSn+Fe3cBZY8a9awQKMMSZoDhw/xRPLNvNWohX/qo0swBhjql1+YRF/+/Jb/vSxFf+qzSzA\nGGOq1X/TDzAnIYUt+634V21nAcYYUy12HsrhN+9vYmmKFf+qKyzAGGM8dTKvkOf/s5UX/7OVeiI8\ndE1v7r7Min/VBRUGGBGZAfxdVQ9XQ3+MMbVE2eJfNw3qwiPX9bXiX3VIIFcwHYG1IvIVsBBYpnV5\nhkxjTIXS9mbzq4TUkuJfb00bzjAr/lXnVBhgVPVREfklcA3OlPnPisjbwCuqutXrDhpjQod/8a8W\njevz2Pf6M/HCblb8q44K6B6MqqqI7AX24pQpbg28IyIfqeovvOygMabmK1v86/Zh3fnp1b2t+Fcd\nF8g9mAeBScAB4GXg56qaLyL1gC041SWNMXVU4vZDzE5IIWV3NvHRbZhzUz9iu7QMdrdMDRDIdWsb\nYJyqXquq/1DVfABVLQJuLG9HERktIptFJF1EZp6hvbWILBaR9SKyRkT6+7WFi8g7IpImIptE5CJ3\nfRsR+UhEtrg/W/vt84h7rs0icm2AfwfGmErYezSX/7foa8a/8CWHTuTxzMQhvDVtuAUXUyKQFNmH\nQEnpYRFpCcSo6mpV3XS2nUQkDHgOuBrIxHlQIEFVU/02mwUkq+pYEenrbj/KbZsPLFXV8W7Z5Kbu\n+pnAJ6o6zw1aM4GHRSQWmAD0A7oAH4tIb1UtDGCMxpgAnSoo5JXPt/Hsp+kUFCkzrryAe6+w4l/m\nuwL5L+J5IM5v+fgZ1p1JPJCuqhkAIrIIGAP4B5hYYB6AqqaJSJSIdARygRHAZLctD8hz9xkDXOF+\nfg34DHjYXb9IVU8B20Qk3e3DlwGM0RgTgE827WPue6l8ezCHa2I78ugNsUS2bVrxjqZOCiTAiP9j\nyapaJCKB7NcV2Om3nAkMK7PNOmAcsFJE4oHuQARQCGQBr4rIICAJeFBVTwAdVXWPu/9enMeoi8+3\nqsz5ugbQT2NMBTKyjjP3vVQ+c4t//XVqPCOs+JepQCD3YDJE5AERaeD+eRDIqKLzzwPCRSQZmAF8\njRNc6uNcIT2vqkOAEzipsFLcwHdO7+SIyDQRSRSRxKysrPPtvzG12rHcfH73wSaufWoFidsP8+gN\nMSx9cIQFFxOQQK5EpgNPA4/ifJl/AkwLYL9dQDe/5Qh3XQlVzcZ5twZxJiTahhO8mgKZqrra3fQd\nTgeYfSLSWVX3iEhnYH+g53PPuQBYAODz+eyFUWPOoKhIWfz1LuYtteJfpvICedFyP87N83O1Fugl\nItE4X/QTgNv8NxCRcCDHvcdyN7DCDTrZIrJTRPqo6macG//F924SgDtxrn7uBP7lt/4NEXkS5yZ/\nL2BNJfptTJ22PvMIsxNS+Not/vXSJB+Du4UHu1smBAXyHkxj4C6cp7NKfn1R1anl7aeqBSJyP7AM\nCAMWqmqKiEx3218AYoDXRESBFPc8xWYAr7tPkGXgXungBJa3ReQu4FvgFvd4Ke4MA6k4L4PeZ0+Q\nGRO4A8dP8Yelm3k7aSdtmzXiD+MH8n0r/mXOg1Q0rZiI/ANIw7n6mAvcDmxS1Qe97563fD6fJiYm\nBrsbxgRV2eJfUy6JYsYoK/5lzk5EklS1wrrxgdyDuUBVfyAiY1T1NRF5A1h5/l00xgTb51sO8Ksl\n/sW/+nFBh+bB7papJQIJMPnuzyPum/Z7gQ7edckY4zX/4l+RbZry0iQfV8V0sOJfpkoFEmAWuNOx\nPIpzI7058EtPe2WM8UTZ4l8/v7YPd10abcW/jCfKDTDuhJbZbrGxFUCPaumVMaZKqSofbNjLb95P\nZffRXG4e1IVHru9L51ZW/Mt4p9wA4761/wvg7WrqjzGmiqXtzWZOQgqrMg4R07klf7p1sBX/MtUi\nkBTZxyLyEPAWzhv1AKjqobPvYowJtiM5efzpI6f4V8smDfj19/ozMT6SMHvs2FSTQALMre7P+/zW\nKZYuM6ZGKixSFq3dwRPLNnP0ZD53DHeKf4U3teJfpnoF8iZ/dHV0xBhz/vyLfw2LbsOcm/sR09nq\ns5jgCORN/klnWq+qf6367hhjKmPv0Vx+9+Em/pW8m86tGvPMxCHcOLCzPXZsgiqQFNmFfp8b48wL\n9hVgAcaYIDtVUMjLK7fx3HIr/mVqnkBSZDP8l90JKhd51iNjTIVUlU/T9lvxL1OjVebXnBOA3Zcx\nJki2Zh3nMbf4V08r/mVqsEDuwSzhdFGvejhlju29GGOq2bHcfJ79NJ2F/91G4/phPHpDDHdeHEWD\nsEDqBhpT/QK5gnnC73MB8K2qZnrUH2NMGWWLf93ii+Dn1/alfYtGwe6aMeUKJMDsAPaoai6AiDQR\nkShV3e5pz4wxrNt5hDlLnOJfg634lwkxgQSYfwAX+y0XuusuPPPmxpjzVbb41xM/GMS4IV2t+JcJ\nKYEEmPpuSWMAVDXPrTJZIREZDczHqWj5sqrOK9PeGlgI9ARygamqutFt2w4cwwloBcXFbUTkLaCP\ne4hw4IiqDhaRKGATsNltW6Wq0wPppzE1RX5hEX/98luecot/3XNZD2ZceQEtrPiXCUGBBJgsEblZ\nVRMARGQMcKCinUQkDHgOuBrIBNaKSIKqpvptNgtIVtWxItLX3X6UX/tIVS11LlUtnroGEfkjcNSv\neauqDg5gTMbUOJ9vOcCcJSmk7z/OiN7t+d8bY634lwlpgQSY6cDrIvKsu5wJnPHt/jLigXRVzQAQ\nkUXAGMA/wMQC8wBUNU1EokSko6ruq+jg4ryifAtwZQB9MabG2nkoh1+/n8qylH1EtmnKy5N8jLLi\nX6YWCORFy63AcBFp7i4fD/DYXYGdfsuZwLAy26wDxgErRSQe6A5EAPtwHo3+WEQKgRdVdUGZfS8D\n9qnqFr910SKSjHNV86iqWmlnU2OdzCvk+c/SeWFFBmFW/MvUQoG8B/Nb4HFVPeIutwZ+pqqPVsH5\n5wHz3aCwAfga554LwKWquktEOgAfiUiaqq7w23ci8Kbf8h4gUlUPishQ4F0R6aeq2WXGMw2YBhAZ\nGVkFQzDm3JQt/jVmcBdmXmfFv0ztE0iK7DpVnVW8oKqHReR6nBLK5dkFdPNbjnDXlXC//KdAScpr\nG5Dhtu1yf+4XkcU4KbcV7rb1ca58hvod6xRwyv2cJCJbgd5AYplzLgAWAPh8PsWYalS2+NdTE4YQ\nH90m2N0yxhOBBJgwEWnkfoEjIk2AQN7wWgv0EpFonMAyAbjNfwN3XrMc9ym1u4EVqpotIs2Aeqp6\nzP18DTDXb9ergDT/Fz5FpD1wSFULRaQH0As3WBkTbEdy8njyo2/4uxX/MnVIIAHmdeATEXkVEGAy\n8FpFO6lqgYjcDyzDeUx5oaqmiMh0t/0FIAZ4TUQUSAHucnfvCCx2b3LWB95Q1aV+h59A6fQYwAhg\nrojkA0XAdKu6aYLNin+ZukxUK84Sue+zXIVz4z0b6KSq95W/V83n8/k0MTGx4g2NqYS12w8x+18p\npO6x4l+mdhGRpOJ3E8sT6GzKxU91/QDnPsk/z6NvxtRqZYt/PXvbEG4YYMW/TN1z1gAjIr1xntSa\niPNi5Vs4Vzwjq6lvxoSU3PxCXvn8dPGvB668gOlW/MvUYeX9l58GrARuVNV0ABH5SbX0ypgQoqp8\nsmk/j73vFP+6tp9T/KtbGyv+Zeq28gLMOJyb6ctFZClOFUu7xjfGz9as48xdksp/vsnigg7N+dtd\n8VzWy4p/GQPlBBhVfRfnZcVmOFO8/D+gg4g8DyxW1X9XUx+NqXGO5ebzzKfpLPx8G00ahPHLG2OZ\ndFF3K/5ljJ9Apoo5AbwBvOG+xf8D4GHAAoypc4qKlP/7ehfzPkzj4IlT3DK0Gz8f3Yd2za34lzFl\nndPdR1U9jPMWfNl5wYyp9dbtPMLshBSSdzrFv16508cgK/5lzFnZ4y3GVCDr2Cn+sCyNtxMzade8\nEX/8wSDGWvEvYypkAcaYsygp/vXRN+QWFPKjET2434p/GRMwCzDGnMHKLVn8aklqSfGv2TfF0rO9\nFf8y5lxYgDHGz46DTvGvf6da8S9jzpcFGGOw4l/GeMECjKnTVJX3N+zht+9vsuJfxlQxCzCmztq0\nxyn+tXrbIWI7t2T+xCFcGGXFv4ypKhZgTJ3jX/yrVZMG/GZsfyZcaMW/jKlqFmBMnVFYpLy5ZgdP\n/Hsz2Sfz+eHw7vzEin8Z4xkLMKZOWLPtEHMSnOJfw3u0YfZNVvzLGK95OjOfiIwWkc0iki4iM8/Q\n3lpEFovIehFZIyL9/dq2i8gGEUkWkUS/9XNEZJe7PllErvdre8Q912YRudbLsZnQsOfoSR5482tu\nefFLjuTk8dxtcbx5z3ALLsZUA8+uYEQkDHgOuBrIBNaKSIKqpvptNgtIVtWxItLX3X6UX/tIVT1w\nhsP/SVWfKHO+WJzyAv2ALsDHItJbVQurblQmVBQX/3r203QKVXlgVC/uvbwnTRraY8fGVBcvU2Tx\nQLqqZgCIyCKcaf/9A0wsMA9AVdNEJEpEOqrqvkqcbwywSFVPAdtEJN3tw5fnMwgTWlSVjzft57H3\nUtlxyIpyEvrBAAAXIElEQVR/GRNMXqbIugI7/ZYz3XX+1uEUNkNE4oHuQITbpjhXIUkiMq3MfjPc\ntNpCt4RAoOcztdjWrONMfnUt9/w1kYb16/H3u4bx4g99FlyMCZJg3+SfB8wXkWRgA/A1UJzSulRV\nd4lIB+AjEUlT1RXA88BjOAHoMeCPwNRAT+gGq2kAkZGRVTYQEzylin81DON/b4zlh1b8y5ig8zLA\n7AK6+S1HuOtKqGo2MAVAnMmetgEZbtsu9+d+EVmMk+5a4Z8+E5GXgPcCPZ97vJJ6Nj6fTys/PBNs\nVvzLmJrNywCzFuglItE4X/QTgNv8NxCRcCBHVfOAu3ECSLZbprmeqh5zP18DzHX36ayqe9xDjAU2\nup8TcKpuPolzk78XsMbD8Zkg8i/+NSTSin8ZUxN5FmBUtUBE7geWAWHAQlVNEZHpbvsLQAzwmogo\nkALc5e7eEVjszmBbH3hDVZe6bY+LyGCcFNl24Efu8VJE5G2chwgKgPvsCbLax7/4V/sWVvzLmJpM\nVOtulsjn82liYmLFG5qgyy8s4rUvtjP/4y3kFhQy9ZJoK/5lTJCISJKq+iraLtg3+Y2pkH/xr8t7\nt+d/rfiXMSHBAoypsfyLf3Vv25RX7vRxZV8r/mVMqLAAY2qcnLwCnv9sKy+uyKB+PeEXo53iX43q\n21v4xoQSCzCmxlBV3lu/h99+sIk9R3P53uAuzLwuhk6tGge7a8aYSrAAY2qE1N3ZzFmSwppth+jX\npSVPW/EvY0KeBRgTVIdPOMW/Xl/tFP/67dgB3HphNyv+ZUwtYAHGBEVhkfLGmh380Yp/GVNrWYAx\n1W7NtkPMTkhhk1v8a87N/ejbyeqzGFPbWIAx1WbP0ZP87oM0Etbtpmt4E/58exzX9e9kjx0bU0tZ\ngDGe8y/+VaTKg6N6Md2KfxlT61mAMZ4pW/xrdL9O/M8NMVafxZg6wgKM8UT6/uPMfS+VFd9k0atD\nc/5+1zAu7dUu2N0yxlQjCzCmSh3LzefpT7bw6n+3W/EvY+o4CzCmShQVKf/8KpPfL93MwROnuNXX\njYeuteJfxtRlFmDMeUt2i3+tc4t/LZzsY2CEFf8ypq6zAGMqLevYKR5fmsY/kpziX0/eMojvDbbi\nX8YYh6cBRkRGA/NxKlq+rKrzyrS3BhYCPYFcYKqqbnTbtgPHgEKgoLi4jYj8AbgJyAO2AlNU9YiI\nRAGbgM3u4Vep6nQvx1dXlS3+9aPLezDjyl40b2S/rxhjTvPsG0FEwoDngKuBTGCtiCSoaqrfZrOA\nZFUdKyJ93e1H+bWPVNUDZQ79EfCIW5L598AjwMNu21ZVHezFeIxjxTdZ/GpJCluzTnBFn/b8742x\n9LDiX8aYM/DyV854IF1VMwBEZBEwBvAPMLHAPABVTRORKBHpqKr7znZQVf233+IqYHyV99x8x46D\nOTz2fiofpe4jqm1TFk72cWXfjsHuljGmBvMywHQFdvotZwLDymyzDhgHrBSReKA7EAHsAxT4WEQK\ngRdVdcEZzjEVeMtvOVpEkoGjwKOqurJKRlKH5eQV8OflW1mw0op/GWPOTbCT5vOA+W5Q2AB8jXPP\nBeBSVd0lIh2Aj0QkTVVXFO8oIv8DFACvu6v2AJGqelBEhgLvikg/Vc32P6GITAOmAURGRno5tpBm\nxb+MMefLywCzC+jmtxzhrivhfvlPARBnxsNtQIbbtsv9uV9EFuOk3Fa4204GbgRGqaq6250CTrmf\nk0RkK9AbSCxzzgXAAgCfz6dVNtpapGzxr2cmDsFnxb+MMefIywCzFuglItE4gWUCcJv/BiISDuSo\nah5wN7BCVbNFpBlQT1WPuZ+vAea6+4wGfgFcrqo5fsdqDxxS1UIR6QH0wg1WJjD+xb/Cmzbkd+MG\ncIvPin8ZYyrHswDjPuV1P7AM5zHlhaqaIiLT3fYXgBjgNRFRIAW4y929I7DYnca9PvCGqi51254F\nGuGkzeD048gjgLkikg8UAdNV9ZBX46tN/It/HcstYNJFUfzkqt60atog2F0zxoQwcTNMdZLP59PE\nxMSKN6zFVmccZM6SVDbtyeaiHm2ZfXOsFf8yxpRLRJKK300sT7Bv8psg2X3kJL/7MI0lVvzLGOMR\nCzB1TG5+IS+vzOC55Vut+JcxxlMWYOoIVeWj1H089n4qOw+d5Lr+nZh1vRX/MrVHfn4+mZmZ5Obm\nBrsrtUbjxo2JiIigQYPK3Y+1AFMHlC3+9frdw7jkAiv+ZWqXzMxMWrRoQVRUlKV6q4CqcvDgQTIz\nM4mOjq7UMSzA1GLZufk8/fEW/vKFU/xr9k2x3DHcin+Z2ik3N9eCSxUSEdq2bUtWVlalj2EBphYq\nKlLe+SqTx5emcfBEHhMu7MZD1/ShrRX/MrWcBZeqdb5/nxZgahn/4l9xkeG8OjmeARGtgt0tY2q9\ngwcPMmqUMxn83r17CQsLo3379gCsWbOGhg0bVniMKVOmMHPmTPr06XPWbZ577jnCw8O5/fbbq6bj\nHrIAU0v4F//q0KIRf7rVKf5lv9EZUz3atm1LcnIyAHPmzKF58+Y89NBDpbZRVVSVevXOnKZ+9dVX\nKzzPfffdd/6drSaWjA9xeQVFvLwygyuf+Ix3k3fxo8t78OlDVzB2SIQFF2NqgPT0dGJjY7n99tvp\n168fe/bsYdq0afh8Pvr168fcuXNLtr300ktJTk6moKCA8PBwZs6cyaBBg7jooovYv38/AI8++ihP\nPfVUyfYzZ84kPj6ePn368MUXXwBw4sQJvv/97xMbG8v48ePx+Xwlwa862RVMCPMv/jWyT3t+acW/\njAHgV0tSSN2dXfGG5yC2S0tm39SvUvumpaXx17/+FZ/Pefl93rx5tGnThoKCAkaOHMn48eOJjY0t\ntc/Ro0e5/PLLmTdvHj/96U9ZuHAhM2fO/M6xVZU1a9aQkJDA3LlzWbp0Kc888wydOnXin//8J+vW\nrSMuLq5S/T5fdgUTgnYczOGevyYyaeEaCouUhZN9vDol3oKLMTVUz549S4ILwJtvvklcXBxxcXFs\n2rSJ1NTU7+zTpEkTrrvuOgCGDh3K9u3bz3jscePGfWebzz//nAkTJgAwaNAg+vWrXGA8X3YFE0LK\nFv96eHRfpl4aZcW/jCmjslcaXmnWrFnJ5y1btjB//nzWrFlDeHg4d9xxxxlfDvV/KCAsLIyCgoIz\nHrtRo0YVbhMsdgUTAlSVhHW7GfXH//Ds8nRuGNCZ5Q9dwb1X9LTgYkyIyc7OpkWLFrRs2ZI9e/aw\nbNmyKj/HJZdcwttvvw3Ahg0bzniFVB3sCqaGS92dzZyEFNZsP0T/rlb8y5hQFxcXR2xsLH379qV7\n9+5ccsklVX6OGTNmMGnSJGJjY0v+tGpV/a8r2HT9NXS6/sMn8vjjR5t5Y/UOwps25OfX9rHiX8aU\nY9OmTcTExAS7GzVCQUEBBQUFNG7cmC1btnDNNdewZcsW6tc/92uKM/292nT9IaqwSHlj9bc88e9v\nOH7Kin8ZY87d8ePHGTVqFAUFBagqL774YqWCy/myAFODlC3+NefmfvTp1CLY3TLGhJjw8HCSkpKC\n3Q1vb/KLyGgR2Swi6SLynQe4RaS1iCwWkfUiskZE+vu1bReRDSKSLCKJfuvbiMhHIrLF/dnar+0R\n91ybReRaL8dWlXYfOcmMN7/m1gWryD6Zz/O3x/HGPcMsuBhjQppnVzAiEgY8B1wNZAJrRSRBVf0f\nZ5gFJKvqWBHp624/yq99pKoeKHPomcAnqjrPDVozgYdFJBaYAPQDugAfi0hvVS30ZIBVIDe/kJdW\nZPDnz5ziX//vql78aIQV/zLG1A5epsjigXRVzQAQkUXAGMA/wMQC8wBUNU1EokSko6ruK+e4Y4Ar\n3M+vAZ8BD7vrF6nqKWCbiKS7ffiyykZURcoW/7p+gFP8K6K1Ff8yxtQeXgaYrsBOv+VMYFiZbdYB\n44CVIhIPdAcigH2A4lyFFAIvquoCd5+OqrrH/bwX6Oh3vlVlzte1bKdEZBowDSAyMrJyIzsP6fuP\n8aslqazccoDeHZvzxt3DuNiKfxljaqFgv2g5DwgXkWRgBvA1UJzSulRVBwPXAfeJyIiyO6vzjPU5\nPWetqgtU1aeqvuKptKtDdm4+v34vldFPrXSm1L8plvcfuMyCizG1xMiRI7/z0uRTTz3Fvffee9Z9\nmjd3pnfavXs348ePP+M2V1xxBRW9TvHUU0+Rk5NTsnz99ddz5MiRQLvuGS8DzC6gm99yhLuuhKpm\nq+oUN5BMAtoDGW7bLvfnfmAxTroLYJ+IdAZwf+4P9HzBUFSkvJ24kyuf+IxX/ruNH/gi+OyhK5hy\nSbRVljSmFpk4cSKLFi0qtW7RokVMnDixwn27dOnCO++8U+lzlw0wH3zwAeHh4ZU+XlXx8htuLdBL\nRKJFpCHODfgE/w1EJNxtA7gbWKGq2SLSTERauNs0A64BNrrbJQB3up/vBP7lt36CiDQSkWigF7DG\no7EF5Osdhxn75//yi3fWE9mmKQn3Xcrvxg20ypLG1ELjx4/n/fffJy8vD4Dt27eze/duhgwZwqhR\no4iLi2PAgAH861//+s6+27dvp39/5yHakydPMmHCBGJiYhg7diwnT54s2e7ee+8tmeZ/9uzZADz9\n9NPs3r2bkSNHMnLkSACioqI4cMB5PurJJ5+kf//+9O/fv2Sa/+3btxMTE8M999xDv379uOaaa0qd\np6p4dg9GVQtE5H5gGRAGLFTVFBGZ7ra/AMQAr4mIAinAXe7uHYHFbj2T+sAbqrrUbZsHvC0idwHf\nAre4x0sRkbdxHiIoAO4L1hNk+4/l8vjSzbxjxb+MCY4PZ8LeDVV7zE4D4Lp5Z21u06YN8fHxfPjh\nh4wZM4ZFixZxyy230KRJExYvXkzLli05cOAAw4cP5+abbz7r98Hzzz9P06ZN2bRpE+vXry811f5v\nfvMb2rRpQ2FhIaNGjWL9+vU88MADPPnkkyxfvpx27Uqn3JOSknj11VdZvXo1qsqwYcO4/PLLad26\nNVu2bOHNN9/kpZde4pZbbuGf//wnd9xxR9X8Xbk8fdFSVT8APiiz7gW/z18Cvc+wXwYw6CzHPEjp\nR5n9234D/OY8unxe8gqKeO2L7cz/ZAunCgqZfnlP7r/yApo3svdZjakLitNkxQHmlVdeQVWZNWsW\nK1asoF69euzatYt9+/bRqVOnMx5jxYoVPPDAAwAMHDiQgQMHlrS9/fbbLFiwgIKCAvbs2UNqamqp\n9rI+//xzxo4dWzKb87hx41i5ciU333wz0dHRDB48GCi/HMD5sG++KvIft/hXRtYJruzbgV/eGEt0\nu2YV72iMqXrlXGl4acyYMfzkJz/hq6++Iicnh6FDh/KXv/yFrKwskpKSaNCgAVFRUWecnr8i27Zt\n44knnmDt2rW0bt2ayZMnV+o4xYqn+Qdnqn8vUmR2l/k8fXvwBHe/lsidC9egCgsn+1g4+UILLsbU\nQc2bN2fkyJFMnTq15Ob+0aNH6dChAw0aNGD58uV8++235R5jxIgRvPHGGwBs3LiR9evXA840/82a\nNaNVq1bs27ePDz/8sGSfFi1acOzYse8c67LLLuPdd98lJyeHEydOsHjxYi677LKqGm6F7AqmknLy\nCnhueTovrdhGgzBh5nV9mXKJFf8ypq6bOHEiY8eOLXmi7Pbbb+emm25iwIAB+Hw++vbtW+7+9957\nL1OmTCEmJoaYmBiGDh0KOJUphwwZQt++fenWrVupaf6nTZvG6NGj6dKlC8uXLy9ZHxcXx+TJk4mP\ndx7CvfvuuxkyZIgn6bAzsen6KzFd/7qdR/jR35LYm53LuCFdefi6vnRs2diDHhpjAmXT9XvDpuuv\nZt3bNqVXx+Y8d/sQhna34l/GGHMmFmAqIbxpQ/52V9lZb4wxxvizm/zGGGM8YQHGGFNr1OV7yl44\n379PCzDGmFqhcePGHDx40IJMFVFVDh48SOPGlX+Aye7BGGNqhYiICDIzM8nKygp2V2qNxo0bExER\nUen9LcAYY2qFBg0aEB0dHexuGD+WIjPGGOMJCzDGGGM8YQHGGGOMJ+r0VDEikoVTU6ay2gEHqqg7\noaCujRdszHWFjfncdFfVCmvO1+kAc75EJDGQ+Xhqi7o2XrAx1xU2Zm9YiswYY4wnLMAYY4zxhAWY\n87Mg2B2oZnVtvGBjritszB6wezDGGGM8YVcwxhhjPGEBpgIiMlpENotIuojMPEO7iMjTbvt6EYkL\nRj+rUgBjvt0d6wYR+UJEBgWjn1WpojH7bXehiBSIyPjq7J8XAhmziFwhIskikiIi/6nuPla1AP7b\nbiUiS0RknTvmKcHoZ1URkYUisl9ENp6l3dvvL1W1P2f5A4QBW4EeQENgHRBbZpvrgQ8BAYYDq4Pd\n72oY88VAa/fzdXVhzH7bfQp8AIwPdr+r4d85HEgFIt3lDsHudzWMeRbwe/dze+AQ0DDYfT+PMY8A\n4oCNZ2n39PvLrmDKFw+kq2qGquYBi4AxZbYZA/xVHauAcBHpXN0drUIVjllVv1DVw+7iKqDy063W\nDIH8OwPMAP4J7K/OznkkkDHfBvyfqu4AUNVQH3cgY1aghYgI0BwnwBRUbzerjqquwBnD2Xj6/WUB\npnxdgZ1+y5nuunPdJpSc63juwvkNKJRVOGYR6QqMBZ6vxn55KZB/595AaxH5TESSRGRStfXOG4GM\n+VkgBtgNbAAeVNWi6uleUHj6/WXT9ZtKE5GROAHm0mD3pRo8BTysqkXOL7d1Qn1gKDAKaAJ8KSKr\nVPWb4HbLU9cCycCVQE/gIxFZqarZwe1WaLIAU75dQDe/5Qh33bluE0oCGo+IDAReBq5T1YPV1Dev\nBDJmH7DIDS7tgOtFpEBV362eLla5QMacCRxU1RPACRFZAQwCQjXABDLmKcA8dW5QpIvINqAvsKZ6\nuljtPP3+shRZ+dYCvUQkWkQaAhOAhDLbJACT3KcxhgNHVXVPdXe0ClU4ZhGJBP4P+GEt+W22wjGr\narSqRqlqFPAO8OMQDi4Q2H/b/wIuFZH6ItIUGAZsquZ+VqVAxrwD54oNEekI9AEyqrWX1cvT7y+7\ngimHqhaIyP3AMpwnUBaqaoqITHfbX8B5ouh6IB3IwfkNKGQFOOb/BdoCf3Z/oy/QEJ4oMMAx1yqB\njFlVN4nIUmA9UAS8rKpnfNw1FAT47/wY8BcR2YDzZNXDqhqysyyLyJvAFUA7EckEZgMNoHq+v+xN\nfmOMMZ6wFJkxxhhPWIAxxhjjCQswxhhjPGEBxhhjjCcswBhjjPGEBRhjPCAihe4sxMV/zjpDcyWO\nHXW22XGNqUnsPRhjvHFSVQcHuxPGBJNdwRhTjURku4g87tbSWSMiF7jro0TkU7cmxyfubAmISEcR\nWezWJ1knIhe7hwoTkZfcmiX/FpEm7vYPiEiqe5xFQRqmMYAFGGO80qRMiuxWv7ajqjoAZ+bep9x1\nzwCvqepA4HXgaXf908B/VHUQTl2PFHd9L+A5Ve0HHAG+766fCQxxjzPdq8EZEwh7k98YD4jIcVVt\nfob124ErVTVDRBoAe1W1rYgcADqrar67fo+qthORLCBCVU/5HSMK+EhVe7nLDwMNVPXX7tQux4F3\ngXdV9bjHQzXmrOwKxpjqp2f5fC5O+X0u5PT91BuA53CudtaKiN1nNUFjAcaY6ner388v3c9f4Mzu\nC3A7sNL9/AlwL4CIhIlIq7MdVETqAd1UdTnwMNAKpyqjMUFhv90Y440mIpLst7xUVYsfVW4tIutx\nrkImuutmAK+KyM+BLE7PavsgsEBE7sK5UrkXONt06mHA390gJMDTqnqkykZkzDmyezDGVCP3Howv\nlKeANyZQliIzxhjjCbuCMcYY4wm7gjHGGOMJCzDGGGM8YQHGGGOMJyzAGGOM8YQFGGOMMZ6wAGOM\nMcYT/x9iLAkO3Wk5eQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "\n", + "plt.figure()\n", + "plt.xlabel('Epochs')\n", + "plt.ylabel('Loss')\n", + "plt.plot(hist.history['loss'])\n", + "plt.plot(hist.history['val_loss'])\n", + "plt.legend(['Training', 'Validation'])\n", + "\n", + "plt.figure()\n", + "plt.xlabel('Epochs')\n", + "plt.ylabel('Accuracy')\n", + "plt.plot(hist.history['acc'])\n", + "plt.plot(hist.history['val_acc'])\n", + "plt.legend(['Training', 'Validation'], loc='lower right')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "### Step 4: Evaluate" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Available Metrics in Model: ['loss', 'acc']\n" + ] + } + ], + "source": [ + "print('Available Metrics in Model: {}'.format(model.metrics_names))" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Test Loss: 0.0933376350194\n", + "Test Accuracy: 0.9685\n" + ] + } + ], + "source": [ + "# Evaluating the model on the test data \n", + "loss, accuracy = model.evaluate(X_test, Y_test, verbose=0)\n", + "print('Test Loss:', loss)\n", + "print('Test Accuracy:', accuracy)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "### Let's plot our model Predictions!" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "collapsed": true, + "slideshow": { + "slide_type": "skip" + } + }, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6IAAABYCAYAAADvGUplAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcTfX/wPHXnX2zjd1YZhhjLFkaREqoSCEqla8l0Upp\n1aqkVZsQKpX6tYgiJCUlosigEDPWmbHvWSbGmLlzf3+875lxxwyz3eXc+34+Hh5z59xz7nw+zrln\n+bw/n/fHYrPZUEoppZRSSimlXMXP3QVQSimllFJKKeVb9EFUKaWUUkoppZRLOf1BNDQ09IDFYrEV\n919oaOgBZ5fNGbS+3l1nX6sv6DGt9dX6mrnOvlZf0GNa66v19cX6mrXOvlbf/CzOHiNqsVhsJfkb\nFosFm81mcUKRnErrW6xtTVdnX6sv6DFdjO20vibga99hX6sv6DFdjO20viag9S3Wtqars6/VNz/t\nmquUUkoppZRSyqX0QVQppZRSSimllEu55UF04cKFNGrUiNjYWMaOHeuOIrjUkCFDqFatGs2aNXN3\nUVzG1/ax1te7+Vp9wffq7Ev11WuSd+9f8L366jHt/ftY6+ulbDabU//Jn8iTnZ1tq1+/vm3Hjh22\nzMxMW/PmzW2bNm2y5Wffzunlc3Z9bTab7bfffrOtXbvW1rRp0/Pe88b6evM+9rX6FlRnra9317eo\ndfa1+pq1ziW9Jpm1vgXV2Zv3r9ZX6H2WnqPNWmdfq2/+fy6PiCYmJhIbG0v9+vUJCgri9ttvZ968\nea4uhkt17NiRyMhIdxfDZXxtH2t9tb7extfq7Gv11WuSd+9fX6sv6DHt7ftY6+u99XX5g+jevXup\nU6dO7u+1a9dm7969ri6GciJf28daX62vt/G1OvtafX2Nr+1fX6uvL/K1faz19d76arIipZRSSiml\nlFIu5fIH0aioKHbv3p37+549e4iKinJ1MZQT+do+1vpqfb2Nr9XZ1+rra3xt//pafX2Rr+1jra8X\n19fVg3CzsrJsMTExtpSUlNwBuBs3bvSaAbj562tITU31mUH03ryPfa2+BdVZ6+vd9S1qnX2tvmat\nc0mvSWatb0F19ub9q/XNo/dZeo42Y519rb75/wU45en2AgICApg0aRLdunXDarUyZMgQmjZtWuC6\n1/r1tbm4eEX2c843lqKu269fP5YuXcqRI0eoXbs2Y8aMYejQoeet5y319YZ97Gv1haLXWevr3fWF\notfZ1+oLnltnZ1yTwDvq6w37F/ScdSF6n6XnaIOn1tnX6gtFq7PF/jTuNBaLxVaSv2GxWLjGcosT\nSlQ2CvvP1foWnSfX2dfqC3pMG7S+ReNr9bVv67F11vrm0WO6aLS+nkXrK3ztnOWt9YWiPYhqsiKl\nlFJKKaWUUi6lD6JKKaWUUkoppVzK5WNEVfGlvdweAGuIhO6rNj0MwMoWs3PXafDrnQCUSwwFoPrE\nFa4solJKKaWUKfmFhQGQsCIdgNFV1wHQNekmgq7d6bZyKeXtNCKqlFJKKaWUUsqlNCLqwY4taAjA\nxpaTCnw/65yxzZs7fwTAl61rAvD1z1cBYE3e5sQSup8lQbKILfjucwAuef8BAOq8ZO6IsH/FCgBs\nmVQ/d9+OOpQAwD/94wCwJm11T+GUUqqYAmpUB+Bsw1rnvRe4dS8AW56uD0DFJMlvEZl8BgC/5X+7\nooiqAGd6tgUg9Me/ALC1bkJqr3AAruzyDwDLf73EYZuaK60AhMxPdFUxS8yIhG6d2giAuVWnApBj\nf3/3+po0QCOiyntsf6cdO257H4BBOzsCcLD9SbeVx+kPoiEhIQctFkv14m5XPrgCnHVGiZxL61t0\nZqyzr9UX9JguKq2vOfjad9jX6gt6TBeV1tcctL5FZ8Y6+1p983P6g2hGRkYN43Wx5rox6X9sWdX3\n2IKG/NFyRoGrvn9cWo3HrbyW6HoyXnRRk28B6F9uPwCvDK4CQP0nnRsRLXF9oUz28aE25QHIRlpg\nw/Y5dzqic+sLzjumc2JqA/BPpw9yI98vV1sLQIs+lwNQx0URUWd8h62dLwXggalfA/Bew9hilyv9\ntnZUXHdEPm/L9mJvXxh3n7OOD5Ix4avGvgdAk8nDAKj7eiK27Oyy+SPnKMv6BtSrA0C1mccB+G1t\nEwDip8jv1k1bSlRG/6pVATjaXY6TSjPt0ZnMzGJ/lrvPWa7mrvqeGNAOgKPXS1TzqVYLARhU/ofz\n1v34RF0Abio3B4BKfUMc3u8RlVCsv+3u77CrlWV9/atUBsA6U/JNzGg4DoCD1kAAKvgtpW5AmONG\ndyxz+PXQgNMA7JsYxL2vPgRA5Q9XFrlYF1OW9U15tgUASZ0nAtA/pTsAR1+JAaDBwj9LXM6yosdz\nMRSxzkYPjRMdotl7rfyJ1F4SDc+yyf1kh3W3A3B4dyUAmow9QHbarmIVpyhcdV9p6NAuKff1Z/Xk\nu3tln3sBCJuzqvgfWEo6RlQppZRSSimllEvpGFEPk321tPz+2mIyIC2Q44/JmMAlt7WWlfYdAiDu\n2Br8QqTl+NVVMkbjmSoyZiO7UtlHTjzRsebScrUnWyIjlT8uu1ZXdwioI5HQmKllF+HzRDu7BQMQ\n6f9fiT/jwA1nyRoobWmRPcqkWG4VECVj5156/iOH5UnDpwDQfeKV2NLTXV6uogqoUZ0Xl0om70aB\nMsKqy1Fp6LVuKlnPDCMS2v93iYC2C5GI2fB/pPWWvzeVuLzOYESTtrwjEb5ODbex96osoGTRW7Pw\na9EYgM0PhrO863gAqvqvlveK0N49tIIRZQi54HrK+bZOkGN3S/zH9iUS/azmL79NOR7HX+myzp5T\nFR229bfI935Bo/m528wc9SYA9yVL/ga/39c5rewlcbaa473ShuWSmyNmobnvJZQjS7Dcc6SMkd5Y\nk26R6+xVoadz18myybkqxz5CeHnL6fJGS/uPykOo29cVpXUuIwp6rn0dZVx+7BxXl0YjokoppZRS\nSimlXMxjI6JH75ZxUnUHSmRo86HqnM2UCGHUV/IzbI9EU3LWJRXwCeb0X1QQIK3IRiR0aS+JdlpT\nzh9ftX1MKwCmR75tXyKtPrUXencbg62DNFEt7yHjV65a9iAAsZgzu+Ku52XcZ8J1ciy/UXN5oetG\nXC7jgnc/J9tU2SAtuqHzPD9DoSVQju8uXUrfKl7u7xBuHfobAEsqSiTZevxEqT/XXQ51qwdA17As\nh+WXrrkNgKr/eWaW5IDaUQBUmHma5kESNmn0y30ANLzjr1J9dvLL0QDcGiHjCy8d/wQAtf72rKzY\nhx6Q7+Lohz4D4IawRbnv9a7SE4DsvftcXzAXORVTDoCt3d8DQou8nZHv4MudbS64XgU8t4eIX8sm\nnKkhWWTTektU4Za2Eg3Ossn3Ycnnknm25m8nsHlYFP9ctvYtmHn5B/bf5PZwYYZERMeOvAOAcpuO\nwOF/AfA7tttxez+pb9zbMq496dZ3aRAYAUDGKMnKWWGwjM3LPnDQSbUonsAIGWSXniM/6/7svT0X\nLsTaSSKFAc8fZH6j7wAItMj+zD9msvKzcg9uSdvL0Z6SByBy7kYAcjy0186ukfZZBwZOKHSdO3de\nDcDH9X4u8P11l0+jFxc+V5lV7CPuGwvt3U8rSimllFJKKaU8jsdGRJ8YKX2zbw4/JgsanPNmJ/mR\nli19uycc7lyiv5F4SCIQ4W/LnI0Bi9eW6HPKUsXPZFzCLWsGYDkmLYjZ+9MKXf+u638BIMIv2NlF\n8yj/NpFW95r+0lobNSvQncUptQ33vgvktTxeyNIWX8oLSfbHnFMyd+y09N4E/Or+Y/hC0vtIq+vE\nKKlv47kybqghxc/UllnJxohKmwFYWk7GqGHCiKgxj123Eb8X+H7wDMnYh825GaFL6lgHyZQ7N3py\n7rLGo2Qce2lGqtvat2B7D4nOXPWPDMypM03298W/Ja7hHycXpo8ek3GRLYPkkppzzjr735NoYc17\nZbxs9v4DritgGQqoHUXyk9LzoPoKifyV/0pa0f0y5djcmnWW3dkybrBOgGRKHrxRImnHkmX8bPXV\nsm7FFbux/Se9mioc99yIZ35Gb5yU4fL79PYfkmDvCVCokdJbJePxs0w9LhGkKetlru+GQ5MByDlz\nxgmlLZ6sCkHnHMOyn0Z+MgSAOnOkF8IFv3s58q4RXWkc9AAbbpQI1G+XzAKgwzUSLa3whfsjov6x\nMWzqOA2Ah/ZJNMx/Sel6cZiFMWYyvZccz6Nfk/+Hq0JP556/jIz9+cdMXvrcYABa1PBjXrTMc9+m\novRKq/6uZ/VWsbWXG6VpQ94tdJ3mn4wAIOYl2ffx78iXe/ONkwvdRpUdj30QnfiMdAF4vrkEbSsl\n2zjWWC5+Qc3lAvdGM5my5J2achO74HQEN4QVnPwkwybdLlZlSheaTiFZYN8u9jZJfBG3uMyrUWLW\nIkzNkfZKe4ZWfMv+myR5eGy/pMwv94tc3Dzlhq2sXT1MHtjn2pMlRCyVbstmq2/gUnmINLrAXMjf\nZ+VikJYlCVz6hEv3qFsj5Kb/1s+nFnuaA1eydWjJ5NflpuSLk9IIFD9KjvOS7Lf2XTeWVdHcKvNy\neYh+udrHDstP27uKlZ/u/ukDCmJM1XL4xrwb6NZvyc1Ijd0lvxkxbhxGffl/ucv+WyAPceFHU0r8\nuc6Q/JQ0EjS/wIPIqgS5edu6UvbnTZ8/CkD9V2QYgSc8gFyIf0VpqG27IJW5VaTLXoc1DzisE/yj\ndEUdecPg3Cl6/BtL0pfILTvkZ47jNc0s6fRyrpAb9TR5fmJBB7k5bRBgdEH25+cMef1MUm8Aju+S\n69LG3nLz+9xBuS6/UWMNLUJ3AjCu7UwAnn5kMAC1X3P/Dbw1xJL7uvmKwQDUfaXk5Wo4fBXfXyPX\nuL4RRwE43usUABW+KPHHlpktL1S8+EpFkNldumum18m7pa66VgIJtrWe2RU7s5MM+fp1/CSH5Usy\nInj+ZWl8CDzt2Ph5sp7cjwfZ8/s88fg0TuTINzliv+fdfdnat8D2stwnJdhjNcZD9pz/qgEwbXAv\noldJQ5HN3pDS6JH1AHSfez8AL70v07q0DrZyzUbpevxLs3JOL7+zNJh5Hztue99h2fZ35Bzlji66\n2jVXKaWUUkoppZRLeWxENHzWKvvPvGXl863zbo1OALzcIVre/207b3SKLfDzAjKkHSR8w34AKi+b\nzSVB9qRHaebq1nl8oCRy+mPQW1Twk0joykxpkV/3siQvCj3p+YlrSsK/aSMAXq32FQAfnzRvkpqM\n3m25s+Y3QF6X3IK65jZbLIlfqi6WJr3gE7LO052kHemfvhNz193ztCRN8YTW9fyOPX2a2gHSevro\ngzcAEHis+F2JA2pKdOyTugtz062bWepNBUfTbtnW2/7KM5Pc7J4gSUi2tf0UgFGHWhL1ibT+l6Zt\nfG8n6bXSITiHZiukW2ddD+vuBeDfJI5frh5v/00iYq8flej2muMyvcXMBgtz14+zJ+r6sP97su60\nGwHISd3piuIWmzE1WOYsiYg+U+VXGn0rYcH4OQXvZyMaCmBNLtmUPZ4kZXpLvmz/IcA53W9lX/dL\nvRaA1ZtjiH9IeiBVPSX1r2pf876EawA4NEJ6gDzynj+jqi8FYHmGRArXPSBR095fyPGQvXuPcypT\nBI2ezove+a8tm4jPs6vlPNa3s/T4GN5Upo74nkpl8vml8c5lM3Nf/zFdho3U4OLnmh1fyn3WhMvk\nPuSSIBlWUd0/b4jU9iy51t046xEAGjzuGT1bjB4nr733gcPyfjuuB+Dk6DpUWlLw1DUVYmMAaPmN\n9HJoHORH/DypX9ys4g+vcbZDbcJZHS9djo1eZyfsPY1Gfy29LqNXnl9XY6qtwEVrABjwk9yDbeo5\niZGRUvcPv5JrU0y/9c4qvtPkj4a6m/nv4pRSSimllFJKmYrHRkSLwkj/HT5bflqB8FlHL7jNwbsk\nmtg0KIC3/pXoWvQnMu7ILGNWjlwq/faNaCjAHUvvAiBurndGQg17r63s8Pva9Hr2VxmuL0wJGVHd\nl8dNpXXQWWOpwzpGAqJRS26m8RP2BC0nTzqs02ibTO+T2EuOg7bBZ/jx/jcA6Boi01xEvyoRR6OF\nzx2MqZi+ueRNPjvRHIDAX0qeVCnpRRmbmGWzckeaRByshw6XspTuc0MbxxbVEzlyLGe9INMc+Hlo\nRNRmk/FkRhR/1dFo/DMOFftz/MpJ5GXLK5LEZW4vmZIph0Dq9v2nLIrqFEfaViY6QBJN3bO7IwB7\n2kmOAr9wGUSVcN+DPH731wD0Lyf/Nx3tp+35s3cBkHSDZyUx8q8kkarNL8n5ZUvjKQCszYT4F+Va\nmf9c5C38wiUav+1FGT+XfNVk/Ozn5tX2hEz950kik0ZjJAoad3yNQ3Kqc11Sbi8APwdIJGnNmwlU\nHieRo97hx+1rWQra1KX8mscD0Kniz2zNkjHLVTZkXWiTIqv0m/2AL1lOSafwLy/968L9MlmUIfu8\nxjsFR0ItgUGc7SzXrWff+wSAjiFy/TKibImZEgkdtLkvj8bI1E297OeAKb0lEjx+Wh+gaPk/nOnY\ns3J9McZMXr/5JgD8H5f/E/+/C0/WdDxBrkmjq32du6zOosLWdj+/a47mJloyEi/dmdILgOjnCo76\nFiTufrmvfveKpjwaKfdj/ZvIuPgVBJVVcX2WRkSVUkoppZRSSrmUqSOixWFkeJz0jGQIC7T4880E\niaZU3l/0lhF3OvuzRP9Wxr9tXxJCi5XST73xY9Jv3fPylpWtk00cW2nXTZKMhhUxxz4EyLGnx8+L\nhuYZsvM6ANJvk3FIcXsSC92nRsvqsE9l/MKae8dT01+2+2uojF27+Vs5Pmzrk8um8CXg1/sIALUC\ngvl4utSvdhHG4eRnRJK/uFrGtmTastg1TqI24ZmeNz6lKDKvb8OkqA8dlu2xd83w++1vN5So5H6I\nn8vQpRL22JUuEf2zH9codP0DV0oT9fWXrQPgu1pT7O/ImP0O626nEp47ztAanDfFxYYPJIIWaT8P\n5ZySzKA1317B1z0lo2a/ct/LhjZpoT+YKZFg2xn39VYoyL4BMs51Sx8Zu/jdKYmQftzjWqyHd7it\nXK5wvJc9k2hfyUbvRxiLMyR0NHaYnEtjF8lYv4LOy5YAObf7NbJP6zM3EoA3P5MM0JcEHQIkiu5v\nkTjAJav+B0DUIff93267Q7LH3h5xmCs2DASg/A+r3VYeZ0t9uBkAV4QspsmSQQDE4ni+9bePh9wy\nvDpJtzpO/bE4Q8bHD/tpMADxE+QaF7x1B5ORa9K7i+We8/t4md3htboy1jooqUyrUiypM5qzqZVE\ndfdkS2TU71n5ftv+3lDodsZUL7EPS+H97DGsO3deTagH9sILiKoFwGONfjnvvZRvJJt3dYrfi2ra\nvGt49M7NpSucOo9GRJVSSimllFJKuZTPREQ3PxIFQJtgGY+x6WwGkUmn3VmkIguoHw3AS7GSYbWS\nfWzo2kyo95K0y1qPHXNL2Vwps3sb5nWVlskXj8h8mZGzpRWvsDE6ZvHMwdYAnLxLxsBa9xQ9EhQ9\nW1pjn+vdjrE1PKcV27+q5I4cFbcgd1ntV0ue/XTzMGm1bx0sx/zkY00In23OSKjhYJvzM3b3/P5h\nABri2XWr9q5E35dMlfNR59AzfFx3CQB+9nFvOeNsBW987jo4rvNVuoxDqvxMgEd/r8vdvD/39Ylu\nEgGN/OT89Z6v9539lWO77/K/ZVxe3DHPiiikX+Y43n5C6tUAhG717mgogM0+VP+MLW/cZnqOHOcH\nLpOxYBk3tQUgtuE5+/+MfAf61pPxdcMrfg7AmrOyTYdg40gOy93mjzOyLOpl+VvuHMf/SHc5R2/N\nOkPQZCMPg/fub0vzvDHOgTtCC1zHmGN0c+fJueeh/indATj5hNxPNlwp5+iCouPbU+y9QeJLX96y\nMqhJYu6YyZ3Z9nko/rx4JHTLeMm0O6+uzKFr/H/sfLMRYR54nTp2hWQtvyViXu6ye3Z3AiDKnvG3\ntDlhmoVKduvE+l3k81LSSvmJvsvrH0Qzb5BuUX/d8o59iXyx7n/oIUJXeNYNQGEafC0JD1oFOd7I\n9Ft8H3HrPefBw9n2dAmgeZBc8O9Iky5U1U6Zt5uEkegAYMOlxs14CboiWuRGJsAvx+EzAfaNkZ81\neuffyPksYbKvuoXJ1DptVw+iBiXvIlwl+l+H379MbU0V3Jv4obSCWuU1ICWflYax+InSsODp3ewD\nfpWEHROukAvxS5dHs6erHMfbe0p6+MRMOTYHLLrvvO0bfiY33gu+meaw/I2kbgBErffMieAN6bNr\nQlN5PbiJ3IwtayMPKYdbSdc9W49/aRYo15nkLBlW0NQ+jcuc7tKo9mS7u+VDLnBD6EpfdZhqfyXX\nm1lNvgCg/bjHiPlOhhP4Ly08oYmZVZonx9w9g/oD8EX8F/QKl2P65vul67jV5tg8kmnLJtiS/1ZK\nfs97ABXZWOm0QaaNiBwu33Bbiucc5x8c7UjI9+a4LyqN+GoHC33PkiBf6jlXvGdfEkjTpfcA0HCo\nXL8sZ4o+Zcfzh+QeNGSpJF7z5MY1gzEMJvlB6U68uedkh/eX2Lsml1uR6pHXqcOXnp8AbMdYGXIQ\neqBsju8e4ZIYdVxraXCIMPmDaOwj7pteSLvmKqWUUkoppZRyKa+PiO7qLs/aERaJhBqTUIctXE/h\nncY8w7E7ZNqLMdWN5ERSB2PKisZPbPfI1ihnqdrsUG5rdMA890+GXVJb7pfuWca0F6WVdpN0pZpV\nNZEse98y47NrjZZ13NEKm/OvTE/w0mGZKPx/DdawrKYk8SjOVBVGorE/Ws6wL5HvdMafVcCkEdEz\nPSRytqbNexhT92zJqgaA1WRdII1ptMK+PUic5OXg+vsudVgnjvNboY0pI4wuui8fkQQi9R6SCLqn\nT6dV47tUtj4tEcKRlSWJx5NzJWJybnfj23bcAEDGCOmq3uerpQDcWX43ADtGyPHcwDPmu6dtsHQX\nN84hxlCQzbdNJutWWdZssUS4K6yW9/6rLfUtnwJVNpxy+LwjzWV6jOpLZfoaTz6+c9LTAQjuKj/v\nqX4TyS9EA9A1QSJaW0/I93Tn3ioA+AdZ6dVIotlv1Fhzwc9vsuQeGj0mPZyyDxZ/qqOy5l9RIl7l\n/Pa4uSSuVTtMrk1++IHF8U5w6wi5z2ocKN+DhNUDaNBfEhkV5zoaGCHnhlPZ8nk5Z86UpshlYnZq\nS0ZWluO4VbB8T6/ccH652obJibxzqLyXv96Prb8FgNoHPSeafy5rmJTY75xYW1klVTJ6nWV5+gOE\niWhEVCmllFJKKaWUS3ltRNSYJH3glb8DcDJHWnYOvVofgOBMzx5bGRBViytHyLijCL9gh/dWJsUC\nEHfMs+tQVgJiZNqatxp9w4cnJDoWOc0807XkN+rK+aXaPqBObQDSEyRF+ft3TjlvncRMiVRYzrov\nrmREFxbtlcjX8pbT2f+9tMAv/6B9odsdbyJNjRHREhlrVytNPi9fu6zFxC2SGVWkVfXcMb1PrJWJ\nxWPwjLGCzrZrtNTdiB4ueqUjABG7PSQ0eBHZ+w9wz0hJLPXJW+MAiAuU6J8xRUvsoruJf0DGseec\nkqjp2F97AjC0t4xBe721RB8+anEDOW6cZskQM1/GrG7t8f557xnH65Zr7FMOXVP0z018SiLfDyfZ\nx0j28PzeDNaDh4i7XyKXafZlQewEoKH9J8CiOU2A8yOiadky7rv3u0/INuMTsWZ7Tqx/z1AZD9m/\nnCQZ++tUdJn/jczrTzj8fjonqMz/RnHl2CQGk0MO2BzHE9asfjzvPaBJ1YMUJxWkMe3Lpo4y9r3j\nhlsBKO8ByZ9qDNhLr7l9APg+XhL5GBHSglz55IMA5PST8ZDLW04HoNqHYYVu4wmaN08Dzr9nKAtG\nTxFnfLav0oioUkoppZRSSimX8tqI6LYXpKXv+yoSLbpx280ABJtkkubkZ+owt4Zj5KzzP30BGRsK\nnp9Vs6xsu1cif+2C4e6/OgNQh43uLJJbJY2RLG2buk46773Z/8m4pfcel2MlJNn9GRArjZHo7FUv\n9GNOs08BeH104RHtNZkSdbHa28laB521v+PYcl333X9M2yaZ2ft47msjW27tj86fysUbHblHouEb\n2kkmxjT7xOqhh88Wuo2nivhGeq3cyaMA/Hur7MszJ+zjzEbuwHrKccxko6ckMnp1Q4mA/9x0NgCj\nR/sRdZPzy3wxjYbLeLhu30im0EGT5DoU5pdJjzCZBD5/du6iaBsske/fW30JQNM3R9BgpHl7thhS\nX23PX22MrPyO0b5b3pBIaK3JMm2ViTtxlEh2lwRmtDKuU/KdmPO6TAdUAc/s+VBxqPSeW7VczseT\n6s6n/euPAxA3UaLg2Xv3Fbp945myzkGrnNdCJkTa33F/RDQnPR2ulp5KXfoMA+BQgmM8qlKyjQpf\nyr45/LlkNt9sz8/w8YloAMI2ydRFnhPbd72d2XK9MuN1y9NoRFQppZRSSimllEt5XUT0xIB2AGy4\nbSIAO7Jl7rb/XpdxdcHsL3hDD7O21zsYLYiGCsMk/pN9rDgjFswvp05eVreM4yFuLIl7BS6tCcBr\nNWcXus6ney8HIGS++yOhuRJlDEqF62FgpxEAHG8YXOjqlT90jJLs/VZ6N6y97FOH5cYYVDPxj5Os\nwWvafGEs4cf/JFts4C9r3VQq1zp97X8Ov9+y7i4Aqi0x79yURmQ04hvH5QX1WjGO25NzZL8bc5G+\n3nw2U2p2AoqXVbqs2exjGI3j8av4WrnvTbxFxndaA6V3wuWPy3lmbI2i9zQyMlnWbmGOa3Fh9o2U\nc+1P/d8g1OI4Zm7CMcnjUOOTdYA55o4sS9ldEgD496FTxAfKuX7Y3g4AVJwp33N3RIeN8ZsdK/xa\n6DpGtPP1a2Ty7RazU9g4QO4nh10lPbL23yBRTutRmdv6+EDp5XHFw6t4vvofACTMkChqg4WeGfkN\nmyPnrOg5ha+zuctHQN54yMlbrgKg1u4k5xbOQ93Ve1Hu6xs/GQlA3SUr3FWcEhu0syOf1VvmsGz7\nO/Ls5I7TnEnsAAAL6UlEQVT5RDUiqpRSSimllFLKpbwqIhoQVYuHn5sJQLBFqnb7+oEAVP3RHGND\nLySrumQcDTwbVeg61sNHALBlSt9+S7C0RvpXrZK3TtWKAGx7rODsdTarhfgH7eNQT54sZalLb8pl\nX+S+jvqx+GOTPI2/RVoXzx1ndfJ/7RzWGfPix0DePF7nrp83/+j5/xe2LnvLsqhlzn+ptIZXXlr0\nbTLSJAM2lzkut3VoieWPdWVTMBc52FnmIDx3309aInMbN2SVW8rkah8kfA7AfquMp6w83rMzMDpL\n1Q8kmnhZ9/8BsCphOg89Hg1Ag8fcFxG9kPBZjsfo/BYSCRo7UK6vp21nSVh2PwD1PpJj/MgI2c95\nvQDMLatrawDmPvAGAHUD8o7fXfYsud89KeMgg0979n1H+TS5lhjZfUvLEiD3Xccfkaj/mktn8HNG\nKABbn5PQf1DWhedadSbr9lQAZhyQeZz7NFhIvSt2AeBfvrysY7/nyU5JA2BtKz86DpSePJEbZGy/\npYr0tEudJFn8N3WUcbAHrRl5kdDHPTMSWhT+TRvZX0mvCGM8ZPWJ5uiRdup56cWx5hN/WgfLMb7r\nm0sAqNu38CzBF9MmNJXETOkNEv3mesD3ejs4g1c8iBonvxbf76FvhKSZ/jJdbviqP2ek6Ta/BbOm\nXXSdy//uB8CRg3JSrVRVLgirEqYX6281GfUAAPWfcF8yiTM95WJxRYjRzdQrDlfGzpTJoG8dOj53\n2bI3JXFL3kMm9t/P3z7/OoZmi++jIebt3lgoe44iv3wdOMz2EApwJtIx4dLazLM0fl0mk/eFxA97\nnr6cDsFyjP6ZKTfw/ibuklsqOfI9rvy2/D8c+TyD5NvlPNBz+iAAbGs9c8J4Q92fpMETae8lzBJE\n8lXSiDawnjSw/BD9k31tx+/vrgORNMydFMU80nrIA3b0OQ+gRqPKoIcfAyBsgTkalcJnSzkXvtQY\ngAYhh9lWW7qMZ++5eKNmzhUtAUiVvDfc3FjOya9Wm5G7zquP3wFA6E+eM1zkzF1yfzRudnzuNCYP\nLZauw4nvS+NKxL68M/LhNnIH2WZECgBv15JpAY1r0lR7Ep9P3+pBAxNPLWdIGe0YpOj7twyfqGGS\nc7Xfb5Jwbfj4B1j95LsA/HyZTJc1uLM0KhTnupM6ozkAHULW5t5jR57y/Omn8jvdR1rzP6v3gZtL\n4ki75iqllFJKKaWUcinvCDG1kG4EL1X7PHfR5Fdl+oqK683ZOnVjUn8WN5tV7O1WtPqq0PdO26R7\nRZbNMT58/YbBAJxYl9d9N+p398dndvWScKDRzfrFI5cQMU+6ipg5DX79mdJ9OnFACG2Dz1xk7fMl\nZkr3mKkHJHHAsWEynUt86nbvnNLHvrO9YQLpavm6Tn93slVud3pf0L/fYnLsO3TomsEA1EO6SvlX\ntk9zUK0yANbkbS4vnzsYrfed/m8kSUMkIpr+ikz9UL6vdEv31MRcgWtkH7X7S6IEf16ad/35PPpn\n+ytp7860SXfGHkmS8Ch+xA5Tna+M4/Pvm4yeLHkJ1zr9Lj2IGswxRyS0MMMqpnLwe4kWrvm37kXX\nHxszFYCWQY63kmvPyp4dmDiUBr9uBjxrujnrVplKZdmNTam0QKZXeqfWcnnzxeUO6/rhV+i1p9nv\ndwIQ+6icwyP3mvN+81y29i347rIp9t/kXsOyuJL7ClQKNZf+S+suA4C8oQF7Okmd6i25+PanbpYI\n4teXSbKqlZnBRL5sju7JBYl5ItndRSiQRkSVUkoppZRSSrmUqSOi/k3iALhnxrzcZU2mDQcg+nPz\nDhQHCO2WStNXpZXVVsheKhf/b6FjP5sul5Y6267w3GX1Z9mnTUh0HKxdiW0OP93NSBrwZIcfHJZP\n/7Ej9bPN3+JoTZKxBc8/ehe7e0pL69buRe+zP2zafQDUecVIG+7d0/nkhDi2Rh+2ZrqpJCVnJA27\nsdZ6h+VHz0bkJhbzNTlWaQc99IBMg3HDXRKJmJsi0xRF3eSecrlL7NTdfN5Xejcsu0R6w1zXYggA\nfr975nhoI1Jb40GJmPSc1otnohcA0N6eJGT2f9LT5tkfbgPypgfwpAjZhfhXkro9vEqOzwiL49RT\nrx9tTMO75dpp1j4bn77VA4BDDy1jTFX7Oarq+gtsYZCbk2z73lwvna4YMFPG4cU8tdKj93N2Shpz\nO8mY2Il3ynQtp2Ikcv/TdRL57vbTw+d1wWr0kfRkil69QT7HFYV1kUNtwokJkKifEQkOOGPOPmg5\nGzYT9az0mJwzR3o0fDf4TQCuq/IoAA2H5/VisCRIQq2D7SUx6AePTQCgcZBcq+Ln30Pcn54z1rmo\nLjQ29Mrh9wIQO8d9z0waEVVKKaWUUkop5VKmjohuHmZvhQ3Lm2Kk9lJ7k5zNnC0454p55uLRvx4k\nFLwtG8q6OC6TY48QJZ2WFNzX7JV0+Q1f3eTRravFFTovkTh7ML9jP4nkBw4+CMDCpjINUdeNt5Pz\nqWSAttkTrkavOwyYJ6JQWl9c9z4AyWeldbbfp08AUBcTTSRtlb01NfkKAB6+PA2ApbtjicKzM6M6\nS3LHTwDI6Sjn6qbLJPoX+4KM2fKV49uQvXsPX/eRcd8Df5Hv/5GREnmp9rvbilUk2WkyBQZdYMQI\nSaGa3kbGucaPkvFzsTvN2UvpSK94ALqGyaAya75bix/GdCL8lLnHhkbaM72uXhbHuLlyzD1a6eI9\npOJ/k+9s0D+SQbj2a3JOjsE8PZesBw8BEDX2kMPyB5EsunGcPwWP+e8uC3emii03Ejr+3yYAVP7Q\nPPszP+umLQD833WdAfhgqtRtYY9xAHx9ZQIzpncB4KN7JMNuq2DHvg3XJclMB/HvpZu218O5Gsy8\nL7dnSpgHTBunEVGllFJKKaWUUi5lyoioMb/k4p5v25f45oTo3soYM7dFAqEEsRPw7ghJ+a/s0QJ7\n0sk+yDEeTgqQ4rCuN/8/FOTF1F4AnJoSBUDd2SaKhNrZsmUUUfRTEu1r/JpMvGhZV85tZXKHn569\niqSnZQzoylUSaYqfsA+ABgek5dp6pviZpL2FkSn4tpSuAMxv9REAQ9vZJ2r80/N7ulSfKN/P6vbf\nzT5+7ubHfwHAmi/bfOx8GasfN9v9EYWyYt2eyi/N5Jz0C5dedP36eObYZVVyA3rnpZOdNu8aAKJN\nFOEuTHZKGgDB/aoCcF+rhwAIfPIAax+UsaDx84c7bBPzrXzng5fIeTcn66wrilrmwuzZvLvNkXl/\nY/Gs3ikaEVVKKaWUUkop5VKmjIju6+APQN0Ax0jol+nVCDwpLRbe3IdfKZ9y9R4Awtnj5oKUnnV7\nKgB1+7q5IG4SMj+Rw/PltdEqa/aImTOc7iNXsFUrZJz8sUaS/bySZzVk+4QWoTL+1d8i7fZ/npE+\nKU3ekDGFevwqbzI7tSUjK/9z8RVNynpYcmwELpKfLIJetAEgjoIz4urzhHOZ8kE0v9eOyoDqld2i\nse333i+QUkop72c9chSAqXH1AajkBV3jzOrhL4cCsPnuKQAMmfYgAHVSzDdEQKmLsS2O5JnaMt1H\n9TW+NhBIuYN2zVVKKaWUUkop5VKmjIjWf0pah69/Kv9g+gOuL4xSSimlvFK90RL57DZaEn3UMdO0\nUUoVU/WJK9g4UV6HFtJVVamypBFRpZRSSimllFIuZbHZdBiuUkoppZRSSinX0YioUkoppZRSSimX\n0gdRpZRSSimllFIupQ+iSimllFJKKaVcSh9ElVJKKaWUUkq5lD6IKqWUUkoppZRyKX0QVUoppZRS\nSinlUvogqpRSSimllFLKpfRBVCmllFJKKaWUS+mDqFJKKaWUUkopl9IHUaWUUkoppZRSLqUPokop\npZRSSimlXEofRJVSSimllFJKuZQ+iCqllFJKKaWUcil9EFVKKaWUUkop5VL6IKqUUkoppZRSyqX0\nQVQppZRSSimllEvpg6hSSimllFJKKZfSB1GllFJKKaWUUi6lD6JKKaWUUkoppVxKH0SVUkoppZRS\nSrmUPogqpZRSSimllHIpfRBVSimllFJKKeVS+iCqlFJKKaWUUsql/h9ai55FX1WawwAAAABJRU5E\nrkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "slice = 15\n", + "predicted = model.predict(X_test[:slice]).argmax(-1)\n", + "\n", + "plt.figure(figsize=(16,8))\n", + "for i in range(slice):\n", + " plt.subplot(1, slice, i+1)\n", + " plt.imshow(X_test_orig[i], interpolation='nearest')\n", + " plt.text(0, 0, predicted[i], color='black', \n", + " bbox=dict(facecolor='white', alpha=1))\n", + " plt.axis('off')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "# Adding more Dense Layers" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "collapsed": true, + "slideshow": { + "slide_type": "subslide" + } + }, + "outputs": [], + "source": [ + "model = Sequential()\n", + "model.add(Conv2D(nb_filters, (nb_conv, nb_conv),\n", + " padding='valid', input_shape=shape_ord))\n", + "model.add(Activation('relu'))\n", + "\n", + "model.add(Flatten())\n", + "model.add(Dense(128))\n", + "model.add(Activation('relu'))\n", + "\n", + "model.add(Dense(nb_classes))\n", + "model.add(Activation('softmax'))" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Train on 11918 samples, validate on 10000 samples\n", + "Epoch 1/2\n", + "11918/11918 [==============================] - 2s - loss: 0.1922 - acc: 0.9503 - val_loss: 0.0864 - val_acc: 0.9721\n", + "Epoch 2/2\n", + "11918/11918 [==============================] - 1s - loss: 0.0902 - acc: 0.9705 - val_loss: 0.0898 - val_acc: 0.9676\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model.compile(loss='categorical_crossentropy',\n", + " optimizer='sgd',\n", + " metrics=['accuracy'])\n", + "\n", + "model.fit(X_train, Y_train, batch_size=batch_size, \n", + " epochs=nb_epoch,verbose=1,\n", + " validation_data=(X_test, Y_test))" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Test score: 0.0898462146357\n", + "Test accuracy: 0.9676\n" + ] + } + ], + "source": [ + "#Evaluating the model on the test data \n", + "score, accuracy = model.evaluate(X_test, Y_test, verbose=0)\n", + "print('Test score:', score)\n", + "print('Test accuracy:', accuracy)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "# Adding Dropout" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "collapsed": true, + "slideshow": { + "slide_type": "subslide" + } + }, + "outputs": [], + "source": [ + "model = Sequential()\n", + "\n", + "model.add(Conv2D(nb_filters, (nb_conv, nb_conv),\n", + " padding='valid',\n", + " input_shape=shape_ord))\n", + "model.add(Activation('relu'))\n", + "\n", + "model.add(Flatten())\n", + "model.add(Dense(128))\n", + "model.add(Activation('relu'))\n", + "model.add(Dropout(0.5))\n", + "model.add(Dense(nb_classes))\n", + "model.add(Activation('softmax'))" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Train on 11918 samples, validate on 10000 samples\n", + "Epoch 1/2\n", + "11918/11918 [==============================] - 1s - loss: 0.2394 - acc: 0.9330 - val_loss: 0.1882 - val_acc: 0.9355\n", + "Epoch 2/2\n", + "11918/11918 [==============================] - 1s - loss: 0.1038 - acc: 0.9654 - val_loss: 0.0900 - val_acc: 0.9679\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model.compile(loss='categorical_crossentropy',\n", + " optimizer='sgd',\n", + " metrics=['accuracy'])\n", + "\n", + "model.fit(X_train, Y_train, batch_size=batch_size, \n", + " epochs=nb_epoch,verbose=1,\n", + " validation_data=(X_test, Y_test))" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Test score: 0.0900323278204\n", + "Test accuracy: 0.9679\n" + ] + } + ], + "source": [ + "#Evaluating the model on the test data \n", + "score, accuracy = model.evaluate(X_test, Y_test, verbose=0)\n", + "print('Test score:', score)\n", + "print('Test accuracy:', accuracy)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "# Adding more Convolution Layers" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "collapsed": true, + "slideshow": { + "slide_type": "subslide" + } + }, + "outputs": [], + "source": [ + "model = Sequential()\n", + "model.add(Conv2D(nb_filters, (nb_conv, nb_conv),\n", + " padding='valid', input_shape=shape_ord))\n", + "model.add(Activation('relu'))\n", + "model.add(Conv2D(nb_filters, (nb_conv, nb_conv)))\n", + "model.add(Activation('relu'))\n", + "model.add(MaxPooling2D(pool_size=(nb_pool, nb_pool)))\n", + "model.add(Dropout(0.25))\n", + " \n", + "model.add(Flatten())\n", + "model.add(Dense(128))\n", + "model.add(Activation('relu'))\n", + "model.add(Dropout(0.5))\n", + "model.add(Dense(nb_classes))\n", + "model.add(Activation('softmax'))" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Train on 11918 samples, validate on 10000 samples\n", + "Epoch 1/2\n", + "11918/11918 [==============================] - 2s - loss: 0.3680 - acc: 0.8722 - val_loss: 0.1699 - val_acc: 0.9457\n", + "Epoch 2/2\n", + "11918/11918 [==============================] - 2s - loss: 0.1380 - acc: 0.9508 - val_loss: 0.0600 - val_acc: 0.9793\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model.compile(loss='categorical_crossentropy',\n", + " optimizer='sgd',\n", + " metrics=['accuracy'])\n", + "\n", + "model.fit(X_train, Y_train, batch_size=batch_size, \n", + " epochs=nb_epoch,verbose=1,\n", + " validation_data=(X_test, Y_test))" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Test score: 0.0600312609494\n", + "Test accuracy: 0.9793\n" + ] + } + ], + "source": [ + "#Evaluating the model on the test data \n", + "score, accuracy = model.evaluate(X_test, Y_test, verbose=0)\n", + "print('Test score:', score)\n", + "print('Test accuracy:', accuracy)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Exercise\n", + "\n", + "The above code has been written as a function. \n", + "\n", + "Change some of the **hyperparameters** and see what happens. " + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "collapsed": true, + "slideshow": { + "slide_type": "skip" + } + }, + "outputs": [], + "source": [ + "# Function for constructing the convolution neural network\n", + "# Feel free to add parameters, if you want\n", + "\n", + "def build_model():\n", + " \"\"\"\"\"\"\n", + " model = Sequential()\n", + " model.add(Conv2D(nb_filters, (nb_conv, nb_conv), \n", + " padding='valid',\n", + " input_shape=shape_ord))\n", + " model.add(Activation('relu'))\n", + " model.add(Conv2D(nb_filters, (nb_conv, nb_conv)))\n", + " model.add(Activation('relu'))\n", + " model.add(MaxPooling2D(pool_size=(nb_pool, nb_pool)))\n", + " model.add(Dropout(0.25))\n", + " \n", + " model.add(Flatten())\n", + " model.add(Dense(128))\n", + " model.add(Activation('relu'))\n", + " model.add(Dropout(0.5))\n", + " model.add(Dense(nb_classes))\n", + " model.add(Activation('softmax'))\n", + " \n", + " model.compile(loss='categorical_crossentropy',\n", + " optimizer='sgd',\n", + " metrics=['accuracy'])\n", + "\n", + " model.fit(X_train, Y_train, batch_size=batch_size, \n", + " epochs=nb_epoch,verbose=1,\n", + " validation_data=(X_test, Y_test))\n", + " \n", + "\n", + " #Evaluating the model on the test data \n", + " score, accuracy = model.evaluate(X_test, Y_test, verbose=0)\n", + " print('Test score:', score)\n", + " print('Test accuracy:', accuracy)" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Train on 11918 samples, validate on 10000 samples\n", + "Epoch 1/2\n", + "11918/11918 [==============================] - 2s - loss: 0.3752 - acc: 0.8672 - val_loss: 0.1512 - val_acc: 0.9505\n", + "Epoch 2/2\n", + "11918/11918 [==============================] - 2s - loss: 0.1384 - acc: 0.9528 - val_loss: 0.0672 - val_acc: 0.9775\n", + "Test score: 0.0671689324878\n", + "Test accuracy: 0.9775\n", + "5.98 s ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each)\n" + ] + } + ], + "source": [ + "#Timing how long it takes to build the model and test it.\n", + "%timeit -n1 -r1 build_model()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Understanding Convolutional Layers Structure\n", + "\n", + "In this exercise we want to build a (_quite shallow_) network which contains two \n", + "[Convolution, Convolution, MaxPooling] stages, and two Dense layers.\n", + "\n", + "To test a different optimizer, we will use [AdaDelta](http://keras.io/optimizers/), which is a bit more complex than the simple Vanilla SGD with momentum." + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from keras.optimizers import Adadelta" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "input_shape = shape_ord\n", + "nb_classes = 10\n", + "\n", + "## [conv@32x3x3+relu]x2 --> MaxPool@2x2 --> DropOut@0.25 -->\n", + "## [conv@64x3x3+relu]x2 --> MaxPool@2x2 --> DropOut@0.25 -->\n", + "## Flatten--> FC@512+relu --> DropOut@0.5 --> FC@nb_classes+SoftMax\n", + "## NOTE: each couple of Conv filters must have `border_mode=\"same\"` and `\"valid\"`, respectively" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# %load solutions/sol31.py" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Understanding layer shapes\n", + "\n", + "An important feature of Keras layers is that each of them has an `input_shape` attribute, which you can use to visualize the shape of the input tensor, and an `output_shape` attribute, for inspecting the shape of the output tensor.\n", + "\n", + "As we can see, the input shape of the first convolutional layer corresponds to the `input_shape` attribute (which must be specified by the user). \n", + "\n", + "In this case, it is a `28x28` image with three color channels. \n", + "\n", + "Since this convolutional layer has the `padding` set to `same`, its output width and height will remain the same, and the number of output channel will be equal to the number of filters learned by the layer, 16. \n", + "\n", + "The following convolutional layer, instead, have the default `padding`, and therefore reduce width and height by $(k-1)$, where $k$ is the size of the kernel. \n", + "\n", + "`MaxPooling` layers, instead, reduce width and height of the input tensor, but keep the same number of channels. \n", + "\n", + "`Activation` layers, of course, don't change the shape." + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Layer 0 \t conv2d_12 \t\t (None, 28, 28, 1) \t (None, 28, 28, 32)\n", + "Layer 1 \t activation_21 \t\t (None, 28, 28, 32) \t (None, 28, 28, 32)\n", + "Layer 2 \t conv2d_13 \t\t (None, 28, 28, 32) \t (None, 26, 26, 32)\n", + "Layer 3 \t activation_22 \t\t (None, 26, 26, 32) \t (None, 26, 26, 32)\n", + "Layer 4 \t max_pooling2d_5 \t\t (None, 26, 26, 32) \t (None, 13, 13, 32)\n", + "Layer 5 \t dropout_6 \t\t (None, 13, 13, 32) \t (None, 13, 13, 32)\n", + "Layer 6 \t conv2d_14 \t\t (None, 13, 13, 32) \t (None, 13, 13, 64)\n", + "Layer 7 \t activation_23 \t\t (None, 13, 13, 64) \t (None, 13, 13, 64)\n", + "Layer 8 \t conv2d_15 \t\t (None, 13, 13, 64) \t (None, 11, 11, 64)\n", + "Layer 9 \t activation_24 \t\t (None, 11, 11, 64) \t (None, 11, 11, 64)\n", + "Layer 10 \t max_pooling2d_6 \t\t (None, 11, 11, 64) \t (None, 5, 5, 64)\n", + "Layer 11 \t dropout_7 \t\t (None, 5, 5, 64) \t (None, 5, 5, 64)\n", + "Layer 12 \t flatten_6 \t\t (None, 5, 5, 64) \t (None, 1600)\n", + "Layer 13 \t dense_10 \t\t (None, 1600) \t (None, 512)\n", + "Layer 14 \t activation_25 \t\t (None, 512) \t (None, 512)\n", + "Layer 15 \t dropout_8 \t\t (None, 512) \t (None, 512)\n", + "Layer 16 \t dense_11 \t\t (None, 512) \t (None, 10)\n", + "Layer 17 \t activation_26 \t\t (None, 10) \t (None, 10)\n" + ] + } + ], + "source": [ + "for i, layer in enumerate(model.layers):\n", + " print (\"Layer\", i, \"\\t\", layer.name, \"\\t\\t\", layer.input_shape, \"\\t\", layer.output_shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Understanding weights shape\n", + "\n", + "In the same way, we can visualize the shape of the weights learned by each layer. \n", + "\n", + "In particular, Keras lets you inspect weights by using the `get_weights` method of a layer object. \n", + "\n", + "This will return a list with two elements, the first one being the **weight tensor** and the second one being the **bias vector**.\n", + "\n", + "In particular:\n", + "\n", + "- **MaxPooling layer** don't have any weight tensor, since they don't have learnable parameters. \n", + "\n", + "\n", + "- **Convolutional layers**, instead, learn a $(n_o, n_i, k, k)$ weight tensor, where $k$ is the size of the kernel, $n_i$ is the number of channels of the input tensor, and $n_o$ is the number of filters to be learned. \n", + "\n", + "For each of the $n_o$ filters, a bias is also learned. \n", + "\n", + "\n", + "- **Dense layers** learn a $(n_i, n_o)$ weight tensor, where $n_o$ is the output size and $n_i$ is the input size of the layer. Each of the $n_o$ neurons also has a bias." + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Layer 0 \t conv2d_12 \t\t (3, 3, 1, 32) \t (32,)\n", + "Layer 2 \t conv2d_13 \t\t (3, 3, 32, 32) \t (32,)\n", + "Layer 6 \t conv2d_14 \t\t (3, 3, 32, 64) \t (64,)\n", + "Layer 8 \t conv2d_15 \t\t (3, 3, 64, 64) \t (64,)\n", + "Layer 13 \t dense_10 \t\t (1600, 512) \t (512,)\n", + "Layer 16 \t dense_11 \t\t (512, 10) \t (10,)\n" + ] + } + ], + "source": [ + "for i, layer in enumerate(model.layers):\n", + " if len(layer.get_weights()) > 0:\n", + " W, b = layer.get_weights()\n", + " print(\"Layer\", i, \"\\t\", layer.name, \"\\t\\t\", W.shape, \"\\t\", b.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "# Batch Normalisation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Normalize the activations of the previous layer at each batch, i.e. applies a transformation that maintains the mean activation close to 0 and the activation standard deviation close to 1." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "## How to BatchNorm in Keras" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "```python\n", + "from keras.layers.normalization import BatchNormalization\n", + "\n", + "BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True, \n", + " beta_initializer='zeros', gamma_initializer='ones', moving_mean_initializer='zeros',\n", + " moving_variance_initializer='ones', beta_regularizer=None, gamma_regularizer=None,\n", + " beta_constraint=None, gamma_constraint=None)\n", + "```\n", + "\n", + "#### Arguments\n", + "\n", + "
    \n", + "
  • axis: Integer, the axis that should be normalized\n", + " (typically the features axis).\n", + " For instance, after a Conv2D layer with\n", + " data_format=\"channels_first\",\n", + " set axis=1 in BatchNormalization.
  • \n", + "
  • momentum: Momentum for the moving average.
  • \n", + "
  • epsilon: Small float added to variance to avoid dividing by zero.
  • \n", + "
  • center: If True, add offset of beta to normalized tensor.\n", + " If False, beta is ignored.
  • \n", + "
  • scale: If True, multiply by gamma.\n", + " If False, gamma is not used.\n", + " When the next layer is linear (also e.g. nn.relu),\n", + " this can be disabled since the scaling\n", + " will be done by the next layer.
  • \n", + "
  • beta_initializer: Initializer for the beta weight.
  • \n", + "
  • gamma_initializer: Initializer for the gamma weight.
  • \n", + "
  • moving_mean_initializer: Initializer for the moving mean.
  • \n", + "
  • moving_variance_initializer: Initializer for the moving variance.
  • \n", + "
  • beta_regularizer: Optional regularizer for the beta weight.
  • \n", + "
  • gamma_regularizer: Optional regularizer for the gamma weight.
  • \n", + "
  • beta_constraint: Optional constraint for the beta weight.
  • \n", + "
  • gamma_constraint: Optional constraint for the gamma weight.
  • \n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Excercise" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "collapsed": true, + "slideshow": { + "slide_type": "subslide" + } + }, + "outputs": [], + "source": [ + "# Try to add a new BatchNormalization layer to the Model \n", + "# (after the Dropout layer) - before or after the ReLU Activation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "\n", + "## Addendum:\n", + "\n", + "* [CNN on CIFAR10](4.3 CIFAR10 CNN.ipynb)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.5.3" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/4. Convolutional Neural Networks/4.3 CIFAR10 CNN.ipynb b/4. Convolutional Neural Networks/4.3 CIFAR10 CNN.ipynb new file mode 100644 index 0000000..3460767 --- /dev/null +++ b/4. Convolutional Neural Networks/4.3 CIFAR10 CNN.ipynb @@ -0,0 +1,195 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Convolutional Neural Network\n", + "\n", + "In this second exercise-notebook we will play with Convolutional Neural Network (CNN). \n", + "\n", + "As you should have seen, a CNN is a feed-forward neural network tipically composed of Convolutional, MaxPooling and Dense layers. \n", + "\n", + "If the task implemented by the CNN is a classification task, the last Dense layer should use the **Softmax** activation, and the loss should be the **categorical crossentropy**.\n", + "\n", + "Reference: [https://github.com/fchollet/keras/blob/master/examples/cifar10_cnn.py]()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Training the network\n", + "\n", + "We will train our network on the **CIFAR10** [dataset](https://www.cs.toronto.edu/~kriz/cifar.html), which contains `50,000` 32x32 color training images, labeled over 10 categories, and 10,000 test images. \n", + "\n", + "As this dataset is also included in Keras datasets, we just ask the `keras.datasets` module for the dataset.\n", + "\n", + "Training and test images are normalized to lie in the $\\left[0,1\\right]$ interval." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from keras.datasets import cifar10\n", + "from keras.utils import np_utils\n", + "\n", + "(X_train, y_train), (X_test, y_test) = cifar10.load_data()\n", + "Y_train = np_utils.to_categorical(y_train, nb_classes)\n", + "Y_test = np_utils.to_categorical(y_test, nb_classes)\n", + "X_train = X_train.astype(\"float32\")\n", + "X_test = X_test.astype(\"float32\")\n", + "X_train /= 255\n", + "X_test /= 255" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To reduce the risk of overfitting, we also apply some image transformation, like rotations, shifts and flips. All these can be easily implemented using the Keras [Image Data Generator](http://keras.io/preprocessing/image/)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Warning: The following cells may be computational Intensive...." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from keras.preprocessing.image import ImageDataGenerator\n", + "\n", + "generated_images = ImageDataGenerator(\n", + " featurewise_center=True, # set input mean to 0 over the dataset\n", + " samplewise_center=False, # set each sample mean to 0\n", + " featurewise_std_normalization=True, # divide inputs by std of the dataset\n", + " samplewise_std_normalization=False, # divide each input by its std\n", + " zca_whitening=False, # apply ZCA whitening\n", + " rotation_range=0, # randomly rotate images in the range (degrees, 0 to 180)\n", + " width_shift_range=0.2, # randomly shift images horizontally (fraction of total width)\n", + " height_shift_range=0.2, # randomly shift images vertically (fraction of total height)\n", + " horizontal_flip=True, # randomly flip images\n", + " vertical_flip=False) # randomly flip images\n", + "\n", + "generated_images.fit(X_train)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we can start training. \n", + "\n", + "At each iteration, a batch of 500 images is requested to the `ImageDataGenerator` object, and then fed to the network." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(50000, 3, 32, 32)" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X_train.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "gen = generated_images.flow(X_train, Y_train, batch_size=500, shuffle=True)\n", + "X_batch, Y_batch = next(gen)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(500, 3, 32, 32)" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X_batch.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true, + "scrolled": true + }, + "outputs": [], + "source": [ + "from keras.utils import generic_utils\n", + "\n", + "n_epochs = 2\n", + "for e in range(n_epochs):\n", + " print('Epoch', e)\n", + " print('Training...')\n", + " progbar = generic_utils.Progbar(X_train.shape[0])\n", + " \n", + " for X_batch, Y_batch in generated_images.flow(X_train, Y_train, batch_size=500, shuffle=True):\n", + " loss = model.train_on_batch(X_batch, Y_batch)\n", + " progbar.add(X_batch.shape[0], values=[('train loss', loss[0])])" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.5.3" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/4. Convolutional Neural Networks/4.4 Deep Convolutional Neural Networks.ipynb b/4. Convolutional Neural Networks/4.4 Deep Convolutional Neural Networks.ipynb new file mode 100644 index 0000000..f2efbb0 --- /dev/null +++ b/4. Convolutional Neural Networks/4.4 Deep Convolutional Neural Networks.ipynb @@ -0,0 +1,1237 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "# Deep Network Models" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "Constructing and training your own ConvNet from scratch can be Hard and a long task.\n", + "\n", + "A common trick used in Deep Learning is to use a **pre-trained** model and finetune it to the specific data it will be used for. " + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "## Famous Models with Keras\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "This notebook contains code and reference for the following Keras models (gathered from [https://github.com/fchollet/keras/tree/master/keras/applications]())\n", + "\n", + "- VGG16\n", + "- VGG19\n", + "- ResNet50\n", + "- Inception v3\n", + "- Xception\n", + "- ... more to come\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "skip" + } + }, + "source": [ + "## References\n", + "\n", + "- [Very Deep Convolutional Networks for Large-Scale Image Recognition](https://arxiv.org/abs/1409.1556) - please cite this paper if you use the VGG models in your work.\n", + "- [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) - please cite this paper if you use the ResNet model in your work.\n", + "- [Rethinking the Inception Architecture for Computer Vision](http://arxiv.org/abs/1512.00567) - please cite this paper if you use the Inception v3 model in your work.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "All architectures are compatible with both TensorFlow and Theano, and upon instantiation the models will be built according to the image dimension ordering set in your Keras configuration file at `~/.keras/keras.json`. \n", + "\n", + "For instance, if you have set `image_data_format=\"channels_last\"`, then any model loaded from this repository will get built according to the TensorFlow dimension ordering convention, \"Width-Height-Depth\"." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "# VGG16" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# VGG19" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "# `keras.applications`" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Using TensorFlow backend.\n" + ] + } + ], + "source": [ + "from keras.applications import VGG16\n", + "from keras.applications.imagenet_utils import preprocess_input, decode_predictions\n", + "import os" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "input_1 (InputLayer) (None, 224, 224, 3) 0 \n", + "_________________________________________________________________\n", + "block1_conv1 (Conv2D) (None, 224, 224, 64) 1792 \n", + "_________________________________________________________________\n", + "block1_conv2 (Conv2D) (None, 224, 224, 64) 36928 \n", + "_________________________________________________________________\n", + "block1_pool (MaxPooling2D) (None, 112, 112, 64) 0 \n", + "_________________________________________________________________\n", + "block2_conv1 (Conv2D) (None, 112, 112, 128) 73856 \n", + "_________________________________________________________________\n", + "block2_conv2 (Conv2D) (None, 112, 112, 128) 147584 \n", + "_________________________________________________________________\n", + "block2_pool (MaxPooling2D) (None, 56, 56, 128) 0 \n", + "_________________________________________________________________\n", + "block3_conv1 (Conv2D) (None, 56, 56, 256) 295168 \n", + "_________________________________________________________________\n", + "block3_conv2 (Conv2D) (None, 56, 56, 256) 590080 \n", + "_________________________________________________________________\n", + "block3_conv3 (Conv2D) (None, 56, 56, 256) 590080 \n", + "_________________________________________________________________\n", + "block3_pool (MaxPooling2D) (None, 28, 28, 256) 0 \n", + "_________________________________________________________________\n", + "block4_conv1 (Conv2D) (None, 28, 28, 512) 1180160 \n", + "_________________________________________________________________\n", + "block4_conv2 (Conv2D) (None, 28, 28, 512) 2359808 \n", + "_________________________________________________________________\n", + "block4_conv3 (Conv2D) (None, 28, 28, 512) 2359808 \n", + "_________________________________________________________________\n", + "block4_pool (MaxPooling2D) (None, 14, 14, 512) 0 \n", + "_________________________________________________________________\n", + "block5_conv1 (Conv2D) (None, 14, 14, 512) 2359808 \n", + "_________________________________________________________________\n", + "block5_conv2 (Conv2D) (None, 14, 14, 512) 2359808 \n", + "_________________________________________________________________\n", + "block5_conv3 (Conv2D) (None, 14, 14, 512) 2359808 \n", + "_________________________________________________________________\n", + "block5_pool (MaxPooling2D) (None, 7, 7, 512) 0 \n", + "_________________________________________________________________\n", + "flatten (Flatten) (None, 25088) 0 \n", + "_________________________________________________________________\n", + "fc1 (Dense) (None, 4096) 102764544 \n", + "_________________________________________________________________\n", + "fc2 (Dense) (None, 4096) 16781312 \n", + "_________________________________________________________________\n", + "predictions (Dense) (None, 1000) 4097000 \n", + "=================================================================\n", + "Total params: 138,357,544\n", + "Trainable params: 138,357,544\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n" + ] + } + ], + "source": [ + "vgg16 = VGG16(include_top=True, weights='imagenet')\n", + "vgg16.summary()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If you're wondering **where** this `HDF5` files with weights is stored, please take a look at `~/.keras/models/`" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### HandsOn VGG16 - Pre-trained Weights" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "IMAGENET_FOLDER = 'imgs/imagenet' #in the repo" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "apricot_565.jpeg apricot_787.jpeg\tstrawberry_1174.jpeg\r\n", + "apricot_696.jpeg strawberry_1157.jpeg\tstrawberry_1189.jpeg\r\n" + ] + } + ], + "source": [ + "!ls imgs/imagenet" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "slideshow": { + "slide_type": "skip" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Input image shape: (1, 224, 224, 3)\n", + "Predicted: [[('n07745940', 'strawberry', 0.98570204), ('n07836838', 'chocolate_sauce', 0.005128039), ('n04332243', 'strainer', 0.003665844), ('n07614500', 'ice_cream', 0.0021996102), ('n04476259', 'tray', 0.0011693746)]]\n" + ] + } + ], + "source": [ + "from keras.preprocessing import image\n", + "import numpy as np\n", + "\n", + "img_path = os.path.join(IMAGENET_FOLDER, 'strawberry_1157.jpeg')\n", + "img = image.load_img(img_path, target_size=(224, 224))\n", + "x = image.img_to_array(img)\n", + "x = np.expand_dims(x, axis=0)\n", + "x = preprocess_input(x)\n", + "print('Input image shape:', x.shape)\n", + "\n", + "preds = vgg16.predict(x)\n", + "print('Predicted:', decode_predictions(preds))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Input image shape: (1, 224, 224, 3)\n", + "Predicted: [[('n07747607', 'orange', 0.84150302), ('n07749582', 'lemon', 0.053847123), ('n07717556', 'butternut_squash', 0.017796788), ('n03937543', 'pill_bottle', 0.015318954), ('n07720875', 'bell_pepper', 0.0083615109)]]\n" + ] + } + ], + "source": [ + "img_path = os.path.join(IMAGENET_FOLDER, 'apricot_696.jpeg')\n", + "img = image.load_img(img_path, target_size=(224, 224))\n", + "x = image.img_to_array(img)\n", + "x = np.expand_dims(x, axis=0)\n", + "x = preprocess_input(x)\n", + "print('Input image shape:', x.shape)\n", + "\n", + "preds = vgg16.predict(x)\n", + "print('Predicted:', decode_predictions(preds))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Input image shape: (1, 224, 224, 3)\n", + "Predicted: [[('n07718472', 'cucumber', 0.37647018), ('n07716358', 'zucchini', 0.25893891), ('n07711569', 'mashed_potato', 0.049320061), ('n07716906', 'spaghetti_squash', 0.033613835), ('n12144580', 'corn', 0.031451162)]]\n" + ] + } + ], + "source": [ + "img_path = os.path.join(IMAGENET_FOLDER, 'apricot_565.jpeg')\n", + "img = image.load_img(img_path, target_size=(224, 224))\n", + "x = image.img_to_array(img)\n", + "x = np.expand_dims(x, axis=0)\n", + "x = preprocess_input(x)\n", + "print('Input image shape:', x.shape)\n", + "\n", + "preds = vgg16.predict(x)\n", + "print('Predicted:', decode_predictions(preds))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "# Hands On:\n", + "\n", + "### Try to do the same with VGG19 Model" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# from keras.applications import VGG19\n", + "\n", + "# - Visualise Summary\n", + "# - Infer classes using VGG19 predictions" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# [your code here]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Residual Networks" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## ResNet 50" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from keras.applications import ResNet50" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "A ResNet is composed by two main blocks: **Identity Block** and the **ConvBlock**.\n", + "\n", + "* IdentityBlock is the block that has no conv layer at shortcut\n", + "* ConvBlock is the block that has a conv layer at shortcut" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from keras.applications.resnet50 import identity_block, conv_block" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "identity_block??" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "conv_block??" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Visualising Convolutional Filters of a CNN" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "import time\n", + "from keras.applications import vgg16\n", + "from keras import backend as K" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from matplotlib import pyplot as plt\n", + "\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# dimensions of the generated pictures for each filter.\n", + "IMG_WIDTH = 224\n", + "IMG_HEIGHT = 224" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Model loaded.\n" + ] + } + ], + "source": [ + "from keras.applications import vgg16\n", + "\n", + "# build the VGG16 network with ImageNet weights\n", + "vgg16 = vgg16.VGG16(weights='imagenet', include_top=False)\n", + "print('Model loaded.')" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "input_2 (InputLayer) (None, None, None, 3) 0 \n", + "_________________________________________________________________\n", + "block1_conv1 (Conv2D) (None, None, None, 64) 1792 \n", + "_________________________________________________________________\n", + "block1_conv2 (Conv2D) (None, None, None, 64) 36928 \n", + "_________________________________________________________________\n", + "block1_pool (MaxPooling2D) (None, None, None, 64) 0 \n", + "_________________________________________________________________\n", + "block2_conv1 (Conv2D) (None, None, None, 128) 73856 \n", + "_________________________________________________________________\n", + "block2_conv2 (Conv2D) (None, None, None, 128) 147584 \n", + "_________________________________________________________________\n", + "block2_pool (MaxPooling2D) (None, None, None, 128) 0 \n", + "_________________________________________________________________\n", + "block3_conv1 (Conv2D) (None, None, None, 256) 295168 \n", + "_________________________________________________________________\n", + "block3_conv2 (Conv2D) (None, None, None, 256) 590080 \n", + "_________________________________________________________________\n", + "block3_conv3 (Conv2D) (None, None, None, 256) 590080 \n", + "_________________________________________________________________\n", + "block3_pool (MaxPooling2D) (None, None, None, 256) 0 \n", + "_________________________________________________________________\n", + "block4_conv1 (Conv2D) (None, None, None, 512) 1180160 \n", + "_________________________________________________________________\n", + "block4_conv2 (Conv2D) (None, None, None, 512) 2359808 \n", + "_________________________________________________________________\n", + "block4_conv3 (Conv2D) (None, None, None, 512) 2359808 \n", + "_________________________________________________________________\n", + "block4_pool (MaxPooling2D) (None, None, None, 512) 0 \n", + "_________________________________________________________________\n", + "block5_conv1 (Conv2D) (None, None, None, 512) 2359808 \n", + "_________________________________________________________________\n", + "block5_conv2 (Conv2D) (None, None, None, 512) 2359808 \n", + "_________________________________________________________________\n", + "block5_conv3 (Conv2D) (None, None, None, 512) 2359808 \n", + "_________________________________________________________________\n", + "block5_pool (MaxPooling2D) (None, None, None, 512) 0 \n", + "=================================================================\n", + "Total params: 14,714,688\n", + "Trainable params: 14,714,688\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n" + ] + } + ], + "source": [ + "vgg16.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from collections import OrderedDict\n", + "layer_dict = OrderedDict()\n", + "# get the symbolic outputs of each \"key\" layer (we gave them unique names).\n", + "for layer in vgg16.layers[1:]:\n", + " layer_dict[layer.name] = layer" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Test Image" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvVusZdt2nvW11vuYc661qmpfzvE5xz6xOTYxkRNiG2PH\nTgAFCwgIIUUWKCJcJULCC0iReMAKL4i85IGLeEAIQyKBFBSQkigoikABiQdekMVFBDCXKMTCluNb\nzmXvqlprjtFb46G13scYc61VVdt77+OKVP2ctWutOcccs49+aZe//a11cXfetXftXXvXetPf7A68\na+/au/Z2tXdC4V171961XXsnFN61d+1d27V3QuFde9fetV17JxTetXftXdu1d0LhXXvX3rVd+9yE\ngoj8IyLyf4nIXxWRn/68vudde9fetc+2yefBUxCRAvzfwD8E/ALws8AfdPf/4zP/snftXXvXPtP2\neVkKvwv4q+7+19z9DPwZ4Pd/Tt/1rr1r79pn2OrndN+vAv/f5u9fAH78sYvff3L0r3zxCTgggox3\nhHhxbe4elz1yzfbTAC7rFeLgeFwTf4Dsr9+2ca+HLslO+CNv7+6z+w7v/3/gun6/izvKxS9++Xp8\nxsf9+wX3L5Ttn6Mfvnv/nvHojt/rcR+bGGB5aBw9/tPvJ320JH7GZ9zzOh9/9vdi/iSnSfa99XzW\n/j044hKfGdf32ff9g+0GYh1xz2cVEdz657L3YuMz0p/DNz3KPq9j4dlFZzsX91f1dsh8XLGbh+0a\nuJggv1hQfvlb/vP//MI3fs3dv+ORrx7t8xIKr20i8keAPwLw5Q9v+JP/+j+GqiIiqK7dam1GVWnn\nGTOL13Cq9GvD2FFVWmvb+wPgmovEQaxPXvxbZGMoyXqf8VmPxSGbBezu46dvQ1Qws1hI7qgq7s5U\navQv7y1AawtmNjaAsX5HKQVB1/ckPuoGpRQ8n9nd4xFUdn2O8TGYG7iN/vfxKKXk745snqOPq9kS\n11u+l8Pp7iBrn3EFLXhRpOQ8TLUP/Fi/7W5BfaG5I1IRMdCC1gm0RH/MoS1YW/ClsbghojSB6XjA\n3WNccl147487dneH24wvPvqpIlhd5xJzwJB8TpG+ZbLfUqEoNMNpLMuCOLTWcj3lc/uE64xIQVVj\nvbkjUnbzrrWMsbB5oc0Ly7Lg3nKeCgWhcX/8+3zGXNj6DH0t5PptrY114u40HMvJ2sIBZrbeG/iH\n/+if+3neoH1e7sMvAt+9+fu35GujufvPuPuPuvuPvv/kCLDbfL31xb5qER+v93/7Jrzc0BAD2QcP\nUndsvifeX79Lc4If68/23urxc9m3y824vcdWqLg7yl7oXP6Oy1h02zHxXbcM91jAly3Gh7EZRGQI\nBGz92S3Qi+cf/aHEz05IttG/EJT5/Oa7PgO4KC4Kuj6TmeFmmO2/UzWuU/qzr4JVAGwVfNtnZdPn\nWDdtLPLYYLEx+7P0OVk8N5DtN6q7IFJwcdzvrwWRveJQ1bEmLvu2VWKjv9t/nfH9Y8zcEdZ7DqGN\nxfNjQ8mNOXlg7j5J+7wshZ8Fvl9EvpcQBv8k8E89erUIpUw5YLZZZA0xx1obk6yqSA7OVgh0SyEm\ntC+AvK5Zfs06+GOwiqKpgUVC9++EjHbNtBEGw+xl3Vy5CEop4KvwAYZFYdbuSfLYpIJPBRHF4oMM\nM9M9FkRaO93zETYmvW3N8Py+zaIQtbGZFdtp27F4fayttY/i4JqLsQyzGi2YCiUXeN+Mmota8kdF\nEFLQIkgpw7Lo1gptwawhZvkYCrVQiiKuSLlwGQBvC96WeBZPg3vzvJ4WgmOoOD6spgKuaPafFJAt\nlU5oYk0NmyPp0FLLVz3kfWKMiqyuwNZiFRGk2W48VdMSFM35Wa0BmoPm9SY0tyEUhxVSUpi4xDrx\nJTwJs1AsrrgIpTysVD9J+1yEgrsvIvIvA/81UIA/5e7/+2PXC1uzvWzvs/OfYvGt/tNeq5YwT4FS\n+mLNa+Ju6z2yqQtewi/s15mmYKDf+7731+9h4usG2/RZN5tlq+Uv/+3XqCqO7u7dr+v9Gu7Czi12\n3EjrJjYgvmAbSyWEyzqmYVVYDGs+3raPl9+fI5UXN1xCBmnRnQ8tKVQMR1IIq+dnS/j6WsuYZ3eH\nZquJKwyhKBqbZzfefcz7Bs6N7vkgYy2Uzdi7RWcdHENk3bxoPJEBbm34/u6b79hYSKpbrb5xoxCc\nhmoBov8l52tnoW4s2C1+Mfq6ea0gmK/rPJRWuEFm+Z7s1xgSa9bkYWv6k7TPDVNw978E/KU3uniY\nuDpMt5iYAFUuffVSlFIKWiR9q63L0BfdOtGwWQwdxBFwEYyCaABZIVH7d5WwTLrkFUezfypCaw11\nWHhYEAzBYUtoWb9vFgJUKRjEQpD18yEQY3pcF4oDblj2oQB4fGZxYygIj7FcJecdyoHmjss8zNN4\nXoa10C20/gz9+1ubEV1wn+I9rYgqXnSFzlSQltZBYnGOgCyoVKwIWgJDGNhLM0qfZ1O0OFJCQHYM\nYT+ujtuCLh6WhfsQfrEhCYEgigsUX2LDe8z3VJVmfXyVsEkd8xh9szlxh245SQqqWFNuoZC2FmgX\nqOrRx1prYpoe98YxGlKglCnvFa6fb7S3Umh+i5liTaCEgC/D1QJvpLUWuI/baplazqeIUEUwXa1Q\nM6OUssPbXtfeCkZjyMluHq1A21Za99ZBnu5vR9v6lnbPl7rnG1/4gK/CDR56zXzF4n2zmbb33vR4\naKCHWncXbPORrQBxWprIYBs3Z9vu9z8EpQKFEDqioaG6Frzn71+4Rltt4x4bDRVaTpPktRMBnEVf\nSWG7umuXfrSqjj4sbmkZ5LPKfUxo2z/Jdb3Fccb1CehKujHrXMcaMpfU7OBucU3/Md/gAPEl3VAZ\nOEH+IPv5dnd8Y+bHe5ZWiiOuKBUu1sm+GTxiKV6OwxjTUkI4b8b1ct62138Sa+E3Lfpw2XqnW2us\n0S4f0rg319hAim5MzADZ1gXXxj1Xv3q1BMIyCV9eLFFbKZQyARaDvbFQLtv6WgCFNb+3lJqmoOC6\nLu6taTpcgqLggpeafnai7B4aXES7DYqL0LwiI/BoQ4iUDsSNMQu3CBG6AjVboPmwcnofzC1xif0z\njmiEn8MtkQNNGRpfRSkeGkxFYGm4WfjmuoZ8VSvUgpYSwqI/+2IoMLshWLh7WvA6UVQvFrblmBiY\nIb4EmtLC5VCpsSk15hRrFHeaL4gr6AJeMSvhgXTfPAHWAF0NvOF2xl1T63ZcqQx8hgxJDoCyDLQI\n97A9bDEQo9mSFl1EWKTurTCzJQVMRdTwpWJYuDU7V2PzOQLbMIzmsRdI10F83fhtfC4tiE+o+t8S\nodAltObAP9w6ENh/f2jTdsneWhtWQPyAShmbp1sZQ+BIR6wft1JGHzbfqargJKjG+LFh7TzyHJ5Y\nQvfHVWJxrlflF4xl8eCYhEBYEfAIwa3hKffcQA99bvP83a/dWmnxe1nfl4gGkGFeTSDOR1dD0Kh4\nhPr6wiWvJTYi4tgGiBMRvKya7p4llJo8wMMWLoEKgoWVIYSg6G5VCpIdONknYmvtjejFqkjWFqHR\nLZ6xjlOuFYnrtnMT93MshaZLD4OW8d5DiibvzrbXY266UmFde1U0XZ/9g4ZrYcPVFpERBn/T9pYI\nhfRv6WGg/cD0CXB3St/onXZzbzIZftQ910C6L7gx/y8W4UPgzD2wMMGisUkEtGwA0otn2C6a6FOa\nfaUiA8BibOqh4cctNF4zv/e8YQXJ2AQ9uhCgVLeYdLco9qYuY6N0PGcIBCmgijmUqaZSimfuYJql\n62YdKtUKCq4FqiAJwIk41hYwx5aIKinANIUlUQrBjl/nBWs4hjVHzHBb4t7egrMgZVUSDmIL7gQy\nb552nA4uSESuAoMRy2elIZYcGDdEwlrsc6VpoofrIHjyFLah29LDQg1UWQXeELzxrDGuC9iKQ5gZ\nS2r0sOI261A3ERV3VArmAZhaW8AD5woAeg3xXs6v9wX2hu2twBTC+p3A18W79eUoD/vSl0JkhPgu\nsIKV/KI732sYziLD99y2e1hBdnb4351oVPb+3GOg4qVVEn10ZPQpLIg+wdvPbp837pEWwsUMDuvA\nfdxvfP/9oR+f2QqDdUGli1Zk+M3En+EzY3iz4cN3oliPUPTniu5qhPwyXOmaBB5RrNtCHs/oG6KU\nWWzgjq2s/eobJoROH19ndR078Bwv2HjOTlSKOZQRKvYxPWVz/wuexgObaztuWHxvHa7lRJG6cwnW\nD+4jLA9hJY9Zq91aMxxre8tji+F0sHb72uvaW2MpYOeQfM5GQtZ1M3bp7d1MvQCa3AdjT7UyIk8p\nHGqtLOLI0hlqaXJvBstsGZ/p91QUa/dJMt1tKFLwPklm6esGcLROqNPxD6eb1JrSUNNsl9VaSH08\n7mOK+4Ku0MHgbHTeAoAs4WdHX7sjs46dAxG2nejhW/dA8TsabmYBTkrE1b2UiMenFhcl4uoPWB/x\nfrAbO5Ozu0o+R+TDzGK83Km1hpuRY2kpaMKKSK1nhnkKBMKiDC6IpkVmFEnCkeeGH5bggeado6HD\nPYvN23GTMO2FhntdsZmMsojG/FD03how2uC8uBuIhDMh2Rc55JiXES3Ytv53KYXFFxChpJvR3RTM\nh+0XlkGu6yRUrWvXhkXdeTxDwLNf569rb4lQiHDT2Oidgrrxi/qmEtsP7CVaK91H3/rKw9+2MXjb\nz29Bxa2QeRShH2Eyhs85tEW3dOo29q/3vqv7q6t2kuHajKaCmCDq+BKbqUcHtvF+tT6KvfXNuhFu\nHcDLUNvWenAa6qG5ccUkqdlbn3rn5lxotAuMZfRN01VrLUKzbAXWOi7rACviDbc23AGxJV2TdC28\npIZd3cfIeVhdyWFl4bhr4jX+4Jz21oXxfs1tQb71uu19uq8PPQzu9DBmKB3fWX7jUX3lK/TQ6oNC\nNoVZ3Hed5z6XwWxkANJbQLcLE9m4WW/S3g6h4I4vS6zXDfkkzP691EMJtpj4IMu4G1oU3XhDokBH\njj3yJdShsYaVAoRpY5PXmpz1jRtigwMPbDYlgIlsrIruhxYCaPL0pxnRjG4lCAFAhVFUx4KIDbgK\nCE+mnwCmmq7LyoLsyIpKF2ItfE2x9PrD0tB0nzpuMxa09bBZWEnmgSGgitaKlDKiHJqWuA6l5cNa\nWdH/NFMTN1EptOWcml+Y7RahXxOEIFMPoedp+puxLEtEUNwRGrggJawV6QKHsCLEW2waSwxiJ4AN\n1YnwwSNvobU23otJ9HBfJDGNS5ehCzfYCQwwsDlX3BRAqhTW5eG5dj0tnbAGST5K56S4r4Kmf8eW\n1h9zGPhQuA1lCOW4NoUfYUGrh2vWhdV27b1pezuEAhk/zw2zaveNhmMdsAH0QCzqfj0egsDDjCsb\n7WtmqElO2gVW8JC/x95XlBQIce3eAuiIsrvTugtU9paKCel7swOQtv3Y/tu/f4i5Hp7caLEuOJpv\nn4jQpFtXZGh2D9/adNU6HU9IENFFsZIumqz9KUKYwBtL7T7momnWbjZVZhraRjOKJM1Y5f7zZkjZ\nbATV2HxJTK8n778tnYoWgmMQjkqaM31u+lx2TZwWY3e7uk1+YYVBbl5W7TvWBEs8WwoIkZqKJwWH\n9s2+4K7DmBrKQXq/74/nJY6wrsv7eRPbNZvkzZUY1YXNxf1e194KoeDutGWh1Ir4hj/eF2Qy4Xrm\nmptvFnoKC4QiBZHKok7VsDI683DcTwXa6ltuAZhL12JZlp2QKsSAd83R7wFb4bXyATrG4ZnY0zfI\nQ21w5zdaQ4qGy5NofSARGTYtjbSxY5MlGr5dLGFtSXI/wprqjD13YGkZIlRUA62nFLwYMoXPLiqB\nbSyGJpC2tIbUEmOZ1pKUGrwEEaRE19o8IzSMM81mVA4oBZEJtAbhSAsmhtoMbQnLot0F6KYlffsa\n/AhVlCA9+QZtjwhCXSNAiX8Ujdi/NwcvmLexJnrbukfCmr8whAAbt2+bXCeGEmZ5KRNKoUi3XMKs\ncm+Yt9T80afFw9zv86TIcPa2FsPq8oGZpMUjA0cYiioVZMcSbOMiS9FglPry2NZ7eC1+oqs/r3ax\nT9Q3m8QVWpiUnkyx1hZotsMXJglTqalRSoBAO/BFQlVXCTehS/PeImXHoYNWZhFZzxCQ9HuUjRZh\nRew7rdUhL04zds1j2SR0bbWBBcW7ay1rSagytN3nGLhEbH6g8eahMS/GcCccgGIdUwi3wm2h0QZD\n0UkSVRFqPQTdWJXauQW2YLbQ+oKz9GlFMV2zGqmZkm5O8eznEoLZjIjUqAwWo8lCyRwFAfCGZjKT\noyA1CE0qWAk/eTARe9zCa4wLBWRK4dQzG2ERA24JUjr0jNHO0iylpLDauw2X+NI8si4NsX1ful9l\nmyzMoJFP9G0Wm/MiYiZ75bRzW9JddnEs/zeEycaC7gKiJfagWscabjbfszxe194OSwEDlrGDVDw2\nB4ozx0VLEDBsboAz00aoEXEoMcAReVC0NcwtwDPSdE+/3DzZg7pxEbo53tbQ1Q6kJK4tmbRjtoB1\ntLq7JaTLU1ZhhGTRjzJGO0DP1ATdjM/HaN0PFFAyuakj14k5uNgmEiGJ2gepZ/RDQ6AtbQluPWTG\n6cJKD9f0pQnmoVZQidh3T6kWDwuBsFq6FdRbWCMVF6VouBiN2NhLa5gp7gVhomQmaNfOSiLjnt/V\nzpkLAVIrWiOrcqkRup2WBRcbIcTV9458CaRE3yTH3ABviLdkiYIn4LnFDsxlfG77XEBGNpYQdNLZ\npgGWjqQ5lVg//bMwIiZhBacFmc6QZ1Rp6wo+Fop0uCcw+u9bS3rxdIdEVsGQl49I1Ru2t0IoQEr9\nDC/RGviCUGhtxgzmu2WYfZJWQTefpBkmjk4FlfA3GwzEfOTk20pe6tjAkNg9f36jmbtp1icgtJ1t\nMtHuE5/CP3V2ZkgPT5YaYNjGzB8S3yxMw/BXwk3xpDGP1RbsuZXdtynQEb0fwNW2SIfnuNnGsnIU\nNEBO1zA15cJti2fZ8Bfy0Vws6dklSU0dtU8CkHmGcRMELKE9KSEGxubrgJgtyDJj7Q68DGEgZaJM\nNbgQBDW4eZB2OrMr+rtPfUeFtS7CEoLBnMZ+c/R+t0d4wIHZANQYe+vg3jJc3BDsupvTDk7Hs8Wg\nRSao7zb9ViA8FBUxs5FqfmkVOD4K8NzDvsYzauS8bD7/Ju0tEQo5wQR4FHRY4eXtS8zCt1/aOnCl\nCodyCO2XnG/RTGqxdeCqaPqfOTAa4Z/ut2/ZX1jf6EmJzkkvG6bi4hnksQTyOgym63d2YdABKgBx\ny3z3APS0lGGRSNZi0CKx7izyAoqxCjZr0accK9/6tr1tE3U8U5Q6CaiFmd1wtEzp3QQgK2l93NMk\nvQCLZNUib7iUYD2XKTS51rSKDKwFR8BazGMXSiUEkEsZPv8AaF2R+RZZzrTlHD66epKllFIzZu8z\nnhyHXiBmxX/S2smqVSUp7tKMxWa8hSXqFsLEqMM66vTh6I4FQLtxDx0G6761jPIkD0WkgNZwBrLG\ngbvTWp+4eD5X0jGVTYRib4GG1Se0jZW/BTZ31+d6WfMwMiBqngqkDKE4sBHao8S1h9rbgSmwhros\nQ1LzPA9gcVmipFVrLdwE4qcz5yAGpS1rynVNUpC2jZTsjLsLU227wbrm6W0rzS3j+PvIQRdoOszy\nYdZdTMWlZtii3AEkZpJU4gC++9zWKlnNyQc57b3ASbcoNs8XeQMrw7PjJJetCysynLjNFPSOIYiM\n8dh/h8cMqSRxaGUCBuq+9lNyAw9uhQg6JdchLSwTBka0+54kXO/ngxGlsd4XD9AmNk+7wHRYv3sz\n3uOdnZUWP12AlqmOEPr2c41uIezX1qVAeMgduFyTW8F/OcaXWMFWiQ2lJvddj9e137ClICLfDfyn\nwJeJef4Zd//3ROTfAP4w8Kt56R/zqK3wePPgcscCaAnoCPOyMV0zvi3uCYAJNKeUMLsjyiAIE1Ia\n5gkmFhn8BfF0JZJYJC3dhotSYLFh9r4ekMlA97nl/eYiwR2IeySIJES2HvvoxhYo6q6M+Rxayzxw\ng95zEbz5EGhbZl5Uh1oZkwBSS2LaG1ZbalUtE151hBzdPWo1bB7FLCMNxOuOgx7ifgXKFGh75AU4\nthhqhrUzWKPhoUk9NbL2WP+UvnkmINlCW27BhGaeUQaNKEUJd8TS0gn6tyV+spr+Ifk7TrGtxZHz\nK0sIHfeY5nTvxCz4GAilz6d6FnjZbCJbMD9njksHnWMt2pJU6ay90b9XN779dl1drrGtMO0C/tJi\nG/iTswsRd4ZpXw8BeQSxq4zrWoY9X7n77rVP4z4swL/q7v+TiDwF/kcR+cv53r/r7v/WG98pJ76x\n0CxAvNki0274xrXk/G+Kl2b2Wa/SbGZUbWHeD0oHOwAp/ozPtw789MuS0no5abYZ1a0kF5FRLXp8\nZrO7QuNvrtd9P9abxsT1eodIAJ/6gBFw76MpgMaYjA2+IcCI08zDp9ftosznyQSesUjNd0LPJbES\nCXZgkYQIJbkElhu32Rj34cmQLpXIbh7EifTiYel0IlQd/bP+fgciE9eQvNeg7qbF0r+xp8+HMmkY\n1mUBWytr1zwIVzuBkB9R6WHD7l5u8It+3UaLm7ChW993Ax7a+F2YxH0a4af5GGMRSzKSDCW2Cp2h\n9kKZDEIdY219WywFd/8l4Jfy949E5OeI0u6fuDVzPnrxHJEM7bW+kaJ2Y60B0JUaoNNAsEkWn0X1\nHVHDlhnVSisbTbIhQakovjRsCQ1i1rVtj1GvUn0t3ulDIPWJ2NbQo1chEqGrXIHNQuhRBr9XB3Hr\nYhQ9JcBoyeibd2bkFvSMr+vazMbiiwUWkRczo/WCpGUKjVYk6x8yrAH3dN88XAbZLDovJdyFErUN\ndbdpQxCENsoKU6yI+VwSoe+1JVTW72qGdDAusx5Fa1R67jiQR22EFR9drYRecaiI4q5DKXQ+C3Sf\nO0S/EaxIRwcJLcYvAF3XKcZGN8LLWgCcY75Wi2u74bdVkwexrihtWUa/S6mj750GPZL/NMBWJMZT\nADISZM1RMexiUw9mJmmOVoUUfmN9uNP45O0zwRRE5GvA3wX8D/nSvyIi/6uI/CkR+eB1nzdznn98\ny/PnL3nx4pa7u5m7uxVT2PqSutG8l/9uTbhL/+uej7ZJUBkLZOO3j/t1fXCh5S/NwHt+7aZtiwBv\ntUX/TugC3ShiGYo874TB1o157Hvj+of8+8gk7Gm/3U+/fJ57/e5CTyLsuM2260Iv5i8A1DnKhMT9\n2SPyIkLJ7UlboDXcFtzS2tIKpcBwjfbLeQhRnYID4HkUgO4zF/cYi62YR/IHtveL/u3rRWyrM28G\nYvx9WeHoofnZvn9Z7Xm9776fe1wrrAQgywHurZvLcV0Zstv0c7u/vt+wferog4g8Af4s8Efd/Vsi\n8h8Afzyf6o8D/zbwLzzwuXHuwwfXlV/6lW+GbyeFq2Ms3mmqHE/xcIcOcuXCb62B9hLp3b8mNZmh\ntftoMvy7/rO0JczEAuolWWseWsK3C0ZGsoqIjOIV+QQ7P3zV0vvXwjrJBcUa4uzvm4RmLj3n2LNw\nJxqm7wMC4fJ3g43WXAVJb1qOlDrhZZOsxKoQRXVEQ2Cz8FVwLWjV0OLd4gI4h6U1Wwu+vRnTdMAS\nlCzuUakJHSa/24y3ABdpMyx3iB6ph8MIjyotBIUmKGpdOER4TpnQ2jse0YmuOMwXWusuoYAvhLVQ\nUTWCx5BjonXdsCpIKfR6iOsAbzduJIjFulhfjbFe56fP11ojsaVlE+v2Yg+ku1YiamYbF1QC31hL\nCVSi4mO3xRjnghQNYRB1JCMvaFm6kFFKfbjk4GPtUwkFiYoUfxb40+7+53KQfnnz/n8E/MWHPuvu\nPwP8DMBX3z/5Nz86ByGuKnfnA1eTwjVR/tx66rNgrsjSmKaJWpU4B6ShaohngQ+CBdnEoWV1I3Oq\nCm1eMhNPkwEZB8tEmey98LAiAV72TVw0Qpo91JMaxCzBtPTdzIziYFXTsgkf0fCIgCSWURCsaZq4\nLXRHa6isZcc9waJtLr+7U8oU2tSj7FeFrBNgGQJTQFExfKpYVYqnULDALMzm1fLSzBdxo7lnbcfO\nz5AoE68lFqw7ZjOCU3r1Io0NWiTGyDS+z1VIZxltirUz0haW1lhcKZPjekCLUDLhD0ng0iMzNHCH\noDhr7aBqfo8ZWggA0hTlDkmwU1vBtSGEW9YUVAqiC/hdunUV1+NaNEbgaMIsfcw9S+Q7MCEKc8u0\nbwuMYxzEYhmdSpe0tYZYMiY92Lbk2PZQeaxeD9A3i+Woamz+3Zkc6VYMIeExLy40sRAMFcQqPi8Z\nuo21Zk2YpumN9/WniT4I8CeBn3P3f2fz+ncm3gDwU8D/9rp73Z0b/+8vfIsqwlQrN6cXPDlUnjw9\nUm8qp/nAy3nmeLyilo+pU2xorUKRiJdLUY7TCW2G1MahVHSqQfO0sAbuUmpbZqthTq0ZamMvEAL4\neQQUskCcL01GWM1GhhZfXZ4wA9d6AjHxDdGtZjea+UZDFCJXf/Wlo08+rJIeu29d25c0qynUSZml\nrHklliXTPIGrbrb2e/SYv6xWRYyPZjWhhiUWsJLJEqStobFWT2tNRfa20OZzZMNasFNLKZTpxDRN\nQeHtpee7OW0rhoDkiVIa4hSEICE4S2e7hvMf+I+DlXSdJCoduQZgF1GGKfMpKq519Fk8Ij/iDgOs\nDLdGNMZ40IgJkhaw5lMM7/RMa8akU1RT3uBJvaT9pUvbGbqimolhF+HInYXSa3rI+jmJTFPRFoSv\nxNQG8/cN26exFP4e4J8F/oqI/C/52h8D/qCI/DAxPH8d+Jded6PFnL/58cJBlamERPZlxopwIMwr\naHi7Q2uhzqBq1KkgLBQBrYJcKaVWihnLRGiyUqCFG9FaUKMdQfUy23DvGz7kv/XWzb5XtcGf6EDj\nA5fHZowiIglzPnivOKrs8T7ZSCGO4iia3PuohFQyWSlzLiLGSC9aOsgw7lnqPvCGssFQRGSUF+vV\nj9calBt6YvREAAAgAElEQVQfXAIfiAQ13z9Ni1Tn5mvEodaKlEj0wQQTW923HlYccxQujA0YZsUz\nyOcQ9hEBiMhJiOJ1LgJe7BmdGdrL+4YQ6Ju2ET5i0KwXWnztwLe2GztqjArQQ65RkmK7nhwJ0gUU\ndmvtVbjUEBy6RjFUMzU9+RddCakby8Z1rNKL0bx6vW7bp4k+/PfsvOrR3uysh007N+Pnv/GcSQqn\nWvjm3cLTo3AzN64/XjjVM9PTwnUpSB4oUqbCJFC1UKpTJ+Hm+hllqtRamY5XlBJStIgPgk6tlVIK\n9VApRRAOWVxzv+FU41zAocF9DVEuHlpOoj47nplwu+xOvawF0dDNcAsgHslQbi1DaitfvrshECEn\nkTUcG4xBTzPeoDktN7MUxbSgJXIHKFFtOiodE3kDLc3LZhtBaLhEHcZSKyRHQlXREuFRt9BAzdpA\nvyG+s2eqDiA1Vn0wVJeGzzNtfpnPpJR6wEulTDU4Kgq0FDbeEvPPehGlgtbML7BBK44MyaSetzld\nnY11oY74FNiTx3w6ZKSpjBwVJLAEFY+CMEFvDQxJDghRiLVlmLyf49gInMIz6SgyUJPx6MK0AWZ1\nAH8BDKqHpTfqVejm6AII97cFu7X5Jqzp4aqOQkTSQ7M2qop5hnd77QrVwDbetL0VNGcH7hbFxGlt\n4XSY+Hhx/OWCIyyzUWr4hF5mhEKpEhmPRTjUwjQVzG7RqVKnicMcVsLUQzU56LVWDsca31orWCRc\n7SoZ9d9b8gykJx1F69cZjKPRHpPE6SmgGS9WT63licRvsKwtSLjVHFsrga029dT2kHhGJhyVitSJ\nTjoMJRXXeh6ksjX/gQEGDqHWXRMN3ohYWFxRFLVr0K2g0k2mZmrjFvRnt6QZtyD/UIJOrCXAPi8a\nwsPboJtLjlMPH+5Hd0/M6kIteF+eJJ+StOLu/mRhlrSGVNYNGNX0Q+BEUZRuxcWa7K5Cx3XWue6R\nmEInNnWiiEhdAdssFDN6LyuDVx2a7i2FS7dhzM9wF8fwr+uxrQKhp+qr9LMq0vp5w/Z2CAWHWwqz\nRXnwcjtz7dB04sVHd1xNFXs5M5U73BuuQnXhUKCWCS3C8ThxfXVmmir1KByLcjhMuBPFMyelFOV4\nqBxr4frpNWWqnOqEqyW2UFNwTJSiTNMUGYDppwrkkV3R7zHpwn6RDVM6gMJugiJzUo8XhEMw7pKX\n7rYMg3vwIXQlQ0l/fRORWJrnl5cwhVE0owwicdahSpyM5L1ICy3TFM7I1sDXA1YLqgeQRtGIJDhR\nKKTNL9K87iZs8DS0FJoQGY+yCoYQbgslz320No+xKVqQqeK1J4PNqC0stsT9+7FzZd28awWhMiyk\nUaSVzC1xSyEdJCgwajnQKyB1RyJKPK7hSZHIvF3MLnz5fq6kxbkgGtbAkM/D1I/j3OrAn4wFGUD0\ncEnosiGszZ6DU2TFbtbzUFeOjLtD88Aakh+jSbSbqAlGwpIcl9KrYPWzQ4j8oTdtb4dQIB6+eZpt\naPj4DbwIc4vqQvOc0lCUSeCORilRP2FpRpsXtECZlMOkTFMAX1U0XIkqHKeJ65tTpPfWwstSKVWY\njnHA7aFOTEejWIBZ89J2fHJgFFkZi8OJJJ6U5qs10MPuGY4SYVT/ycmP55WRgQgb/y/R7W0Cl6dp\nK2nyOjCOqKcLo1g4hqRhkbReZ2xo1VhMXTuZFlw1C3OkFYCvLkBqzpijYDauWZWE+ttWfXZHkjjl\nee5AEKAq1Cm0WUaF8LBGooPBijQzilZGXYquQbs/72AmuLUNpuIrck+ksEf9iczO7PfZpS2HDd83\nrXhGMrr1J+xyFiDIc/1eACY9StG1fBa7bWuad9/IylqFa2sRXP59aTEMAbSh30eKve0s1W5VeabA\njzXzCdpbIRQ6Ti8SBT6qFmoN02/24NY3L4lOx+tNQWSK/IDmvGwLR5nDHBVFi1EkSDfiS+AIWjge\nKtMB3ntyQ52UqQpXhyvKoVCKcDhNHI6Fw+HA6XhFOUxMh0rJOHopE5PmuYh1GW7Jeq5hass8s2Ac\nqdbTl7E05+ZR57/Hk53GLsEnCgIwfAzPXDsNH7dMIaxmJ/3i9eTh7gJE1mVqVHfEWhxUQiUOYRYo\nGmdall5FKSImviSKbQ0jBIJLiROxSgc0Q/96d3EkowLzgsxzVlJaYgHXYyD+pcYmTYEgnsfKJ8ah\nGaHpLMduLcUQWGZj5toRpxAhViCKxkhF64FCnlEpglsvMxc+VYBzS0ruA3ivG7GkZo+FaWjWh5SI\nFMm6+batn0HhZMjalsQ/Fsx7aDrbReEc9fgcSyNqjmbBnu5qme9LBYjQRPBkjJYUPmK20tg1jgtc\nsmzdtwVo/GxbGM5FoOIUtVhw3guQpoazHuOPuH8WSMvQkNPLkzmCLqDFKXNUDKIYVWcO88R0G5XI\nDrUyqfFyWjgcKodjYTqfmA7O8bgwn4x6rNTDxFQqZTowlaglMJUKLqPYayH65uosAtpyiXQQL316\nIxFpbzhrWNNpqybqz0xYCc1shEwHgl7KkP/dtRCRrNfoa6Rgw2zzzOlHLMSVJGhVEzTtC8phHOCa\nIKp1ck0NIVJ6UdpusfS8ASNPk260ZGWO0nS9pJqkM5YhSEnztwvIxUlQUIdA2OEHHoBeYBC5iTz9\ndo8Uau2AXE8x7hZNH7MVbLm3GjsPou+jbXQlAEzZfWxYW7ZS8COUvKxrd+AF+4OPxw4Y68B37+2v\ny7BFzjeycS/NR5dkPNcl7vJm7a0QCoJwUuGgzmFyjjXMOvWsHdgarUV9wSjQvC6UMKW7+xFelhRl\n8YY2ODeP11x5yUJd4ozBr794SdEo6nLU5xwm4Xg8MlXleDxwPBWenp5Qj0I9Rv7FzenI4XBgOgSw\nebw+cjhO1DIFL0J1xKQnCS5BSPnsZ/qB6kKvlOTecQcGcSW8lJ5ZGRWOm0gArFrwWoeL4O7UzXxX\nsazfkILGE6/oad0IWmvkP0iGLSGAP00agIGN8yFJXobGKU4lxLB1cLEDlKoRTZmX4DHML7H2EuGE\nTCdcoyBLF24ahQ4iVd6S0s2SFbAmRKeobZC97r72svRSfA2TmbFHDUwLpRwRVUrNClIb/38b8pNN\nzgTe8wgAPUTOgBkuDVVoovQjZ7qbJkR9iciyDbp2z7pqbcF8wZcl3YYVXO596evXdc2d6IfpsNnA\nIkLNteVpKfajBmu6T2StiECuOjtT8Xl13T5JeyuEAhlFKBIn68SgaUBw1mjW6IksUfcfjDzwpc8F\nocmGpS1RutviYkQij2FBwlT2KOg5izJ74+DGnTsnVW7vZqZbZTkaVzdH5OUdh8MBmxeOxzOHY41o\nhwTH4FgMr4E9HDpzTMHEKWhQWDshB1YwAtimrOzj8kDrSPxqHjvhz/vFIo90502hFZUgbQ3mXPc7\ns8hMlpYOEC7JQKlr+onJAWgyYvlDAxUdfIctZyLCdJnc06LacadIi5CmrUJb8kjJbkV10tKCyAGk\n0FwiPX7ThrYTG66Vp9AbTqj7SGpzjfdjI9tYQ+4tzmI0wbN8vHsebGwlwcBNinYW1+nfb2YjPVk9\nQoY+QroZbmpBSkOURqNQo9J3LvjOB+nPNcKV7F/rtPK4b+yLIM61sCKb7Tgdo88I52Razuflnrvz\nqvZWCAUV4VSDzai1M/bCFJtNUT9w9jMnV1wtq/6Q5caF2YhYLCAlFq65JnW9oFOhmQVBxoUmjSJh\nqMd2FawceHluvKhQfEHU+YbcUWuwAsNSmDgcJqZD4fpUefbsKYdD5eo6LIjD4cDpMHE4xiYIKnZF\nDEoJsFM9/XUKzaLk3IhuaGhv2SwWa46JYC3uEQTeuik3H9cVJGol9GrCyccPkl8AnD2yQi1RKXmz\niOI+FtptyXs6cc5hiWpFqpplxHvOQPbXoS0z2IwstyxzbHrVZ1gpcCgcdBrEI/GCs0S9TTFkyTR4\nu4qcj2SsthK1JZnD7w/mouJ6Qk9H9PQEZBrg6uSVcjrEmRXqFD+Cl6x+1EDO6+aRiSo+irZaKwPs\nM7OkIRvCXby2zKgZS7uFNjPbzNJuKRPIPDPf3VI9LDu1c1DYtUYEBkDvYlKtZK2Ikqdjh88VPI+c\nC8uzPkRYiNwGQ6AKiKJFmYA2h3tiLqDBtNSpJgzlYe01i9wHPb3xfnwrhAJkkd8N3Vjz7AZL/rdK\n1vwvGpLZ40i3AIglAcj1GHunDBR9ydg8oiO1tN+7H/8uWrAGC4pRoLVA711Qc+p55u4uLIarU+V8\nd2Ax5fpUOZ8XDoeZ4/HMfKocz0fqFKy+ZVlQLUymSM1jwVgJSp5hBxVlW7lh6wum/h4FPy+lvjpx\njkK2bVhQ8vNj4yfDkc1r0YL8ggU3ZC1mEgBaCIQIdSZKt1oqS1RPaq3FuJkheoB6RT04UiOK0NqS\n2VstzO/SOFvUbjR37HBA9ICWG7RO6PEKkYJJsB6PgJ8d08J0/ZT65D0OcopQXZgitOMhIyj9CMID\nYHjW+uzPbWwIQ6WOOH9wN0KIBnNzGREUtYb5wvnuY7CZZnfhns23cHeH3X3E8vI5bZmjGE2twCGz\nNpZc1xrJb1JxGk0aU6s9vxTLUvFBhZbAxSQsXZUaCWfIKEg85lwC6xFNZbM9SU3LrkLU69pbIRRE\nUpOSdNo0Dz1EPA2nWABPlAAIY+GledViQEMDpxlr84hxq4TgEJFgipUOCtWRHDSfF8pUwROdTx+x\nNYEG1Rt3RdBz45vfOqP6gidXH3OqwmGqnK6PnI4TT64nptPE1eHIzXtXnGoNrOJYsXaIKEit4xRp\n0UNW9Vk49HqHTvrzC9ZPqE7KcqkTbknQ3PiehTCBxcPy6vTflgxCg4hKHA6UGrkGW83IbLBEkdNm\nBBtQwpSWEpyC7t/HuK5EnkUWaB/TllumNiEpfO1kQJ6A5TMuwqKKT0dcnqDHpxyu3qPq+5TDkXq6\nQqZj5LCUCTlcD05KSeS96cxiwnS4RqZjzmOMgQLqwU8A8KosSIh5WwVtgKm5STTo1Z37UcixC/9m\nrbadoGazSKpzVlRfMeZ55vb5N7h78U1+9df+Bk+efsjpeE2dYn2el1uW5Tkyv8TaLXZ7hvkFZblj\n0ReIv6TQkGVmIfgFceJTCc7FRBSenSKyUW5tuA5CCAxFE2CWFM6hCGudKPXqjffj2yEUHnitbRFm\nFNUpwlRpGndW17IsmT6dvnNuCi0dqnN63cOCQIl7b4lHktfja4HLjjaPY9IQliyLJVqYVLk7LyyL\noLcLV+eZl1Nlnk8cXlZuTwsm0A4Td7dnrq4PeDOOx4nWGlOms1aJQ12KdDR+5SQYof1Eg/U3YtSy\n+sq9dZehIwNbxDkEYxncAjJs1kNj6sE+7BhCtKy/IGVgAv11SdAzMIWFcldptwW1K5DnWDkSCbQn\nfCqYHhAOlHKi1APleEU5PuFQ32O6foLo+0wHzwNmIlQqdcLrMcaIRD8JpKm6UPSQXIv1PQArIQSj\nJV+Ajs6vBJ7+iSilr9QWG7G5B7cjhUf1DGp4AQut7dOUlsVdCiWnHAqiT/BSea9OPD0943C8plQQ\nF5Zlps13+Nxo9pL57gW+3NLOt8y3d9j8MbK8xG9fIMsLbJlJdhsqAZojTylLKDb8+R6QTJC74xRL\ntzKTd6IPRFkea2+FUNgixKHlAxmOlyMfP9za9aBR6X62VrYHi/aNogn5usvIyGuZay7WxzOtBQmy\nVBEPs86F5i3NsJYaMwRSEwMX7paZRSt+Dm0x3S5Ubjl8dIeLcX068uzXPuL6INy8d83VsfD+s6cc\nT4E9VC1cHU5Mp8bhqJDUZPqhTVIijFqPgLHoynQs1gXDBs22xiThsmwrAYWprFEkZcpMQwkCEqqh\nmc4vI8KTpvKhHDAtUfF5mmKMNPtkhc4paW3G3DjLC9pUkXKNXn8NuXmfWt/j9OwJpRyZphu0XqNX\n11m2/YCXiVJg0spSnlPtFEKIOoquLNZBwr5OjOKW4T6JE5+Kd7kfzzQEgiZJKMzwpUS+Q2+RIxHW\nKT7TamA9k6WF2i2EsmIz8YshVeKU6PkUQXFviBp4ZbpZeLZ8Ja3BYIeqFGZryGIs5lgxZE5OQluY\nlzt8AZtfsNw+j8LFt99E2sLd+QX+/FdY5oUynTn7S5yFehsp7iaetTIKc56p6bZxPw6VWgq1fBtS\npz/r1gVCFBNtYcZ5nKhcpnAXpjJt4q0RrjRbdoKgCwBSUPQSph3M6whuaMvk3i8tvreAtJlKHhCi\nE83nSCbyqHOoFnkX7nF8GhIJO2f38FnPcf+Pljtaa5yPJ26Xl9xcV2iF09WZ66sjtcaZFk/Kk3CL\npsaEQR4PFkDTFAfLotS6suhyvsdYaEYUukAIK6GNeLnoStxxD0GaQZkcC6PxEjiGKU1DS8VKRbxm\n5fOgCwdKP2HzLc0EkSccnnwFPXxAubliuvlKhm1PlOkE9YgUzTTpROc7E7JA8xMq11A8Y0U2+hRn\ngWoCwtHXsJ+ECH5EWrRlREohMi1Zcwtc82i3XBvaozFZnbmD/oHdJIV5lR2DB9BL17UUUioValge\nrUU5wEkbZod4vqIEfRqgocVRdbSl1XGIcKZPE9WOLMsZWyb0dIXOUJ9+MVzg5Q57/gX87pvI3UKZ\n71js6zw//gp+d0e1PGFsimPqmDPMKwa1Bhish8Sj3qy9HUIhJ3AmKKm9yrK7Rx2ADNHtzeWozVg2\nAEoXCJ1E0oXM+v6qbTtRKOrkZ0VjM0ydlmcENosTqZdNtSQKnJdl+LjebBTZaDjz0s9sOPPi1vhW\nPQd9elKenL7B1VXhydWJm5uJ02Hi2XtX3FxNXF0fOJ2uOV4/5XA4UQ9RO0DrWv4rLIJ0EVqPbCYG\nIZdElYjXqlTk0M9ZjHG0LNs+LUZbFqKw8hGRwqEcKIfQPAdXmghnKThHmI5wmGh3L6hPv8zTD38L\n18++zPF0TT0+w1UD/SbmqiHUHnuHdF3WnwD7YnMaJXzhDXErNn53iPaRkv77LhQHlH7atuSdOlHI\nbZfKLRfWdNWsW/Eakk/ZcgykE4kSqyhHNikV4zogK2aX+CXnR1NyRVTolG7jaRf69OWO5b3viOpS\n7Q5pjXb+mHp3h893tNuPaMsdcvtNvN0yt49o7SMmd+rpgJQDKkfWwravb2+HUCAGLxBkhhDoYbdg\n620PAIm25iSwey+Ew0R612v6qsbR3aGlG6VErBoCbIqKaFG4Qljj8h1lb2Z4pgwP60OAvhGTkupm\nUCaaKLfnO0QK5wXOdzNXdxPPnzeevihcnSbMjPP5GOG2JrgeIzVYDggF1W11Xh94gfRdEwM2FtKO\nAy/BIgR2mydCtkZr5wC9aFHRaKkcsz7gnRl39QoOT/GrJxwPH1JP14hWbmXh6vSMp0++g9PVEzhd\n4+UYCz9rDwBU6VWTesv5SYEV/YmQXGBE8fd6OvRuhYzPf5J2OS5DAz1yzSf6hkx22TMaV0H1EIuw\nM1wvX9txDDbr1WkRVfADtBNihk3XlGnGxTjPL6NM/u1z2vkj7PAt2vFbyO03sWnJvt092JfH2tsh\nFDp67MBia6KNRnWlXixllLhKLd8FRWuMiYEs3uELkOHLjI+bGTUjF6WEZlCPY+BaEdyV0iI81kOk\nLfP0O5Gk5T0i1BiTpqqowbI4i0d5N/EkzJhiHgVGXiJ8fLeAnTlMxqTwhW/c8v7Ta549veLmyS3v\nf2jcPLvh+vqaw3HhcJyilFaPzohkhCELfjwAIY104RInO+sAGDPLj4bNEWJzd+ZWaEwcbp5ye/wi\nVx9+F09uvkB5+oxTveF4uEGvIlu0iFIMOJ5oesREEiQNAWmq9ASdiBJOK2PTakxyJx4RnIU49LZn\nPO6FHNI+kZbLlcTlxntdG5HWT/ohVutla4W+bhNuC9OqeI5G/4kKSu4STFBvQbjTllhOQa+vcXeu\n7ANsce7sFp9nrmfD5jPndsbOX0fsDpYzd8+/9caP9WlrNP514CNiRhd3/1ER+RD4z4GvEZWX/oC7\nf/3190qtnr6mOFnDfhpnEkBCAtIR9oZqstJE0ueN8GSYkBYLThVrjVpkt8nX71U047oqkij13g4M\nfr3vBMQo9tFWozj0gOPnJcznohkZMZrD4nHAaZvD7/vGt26Z7xbOdwvLcoWX5wEgmXE8N9oyYccj\nUmAqcRr0pHG82o7uDYP8Ev561CxAGAU3evVGGohN3LphcsJvPmC6eo/rZ19jevoB1+99gXq6oRyv\nOJRDVj+TYc15gcWj2IhS1qP4UjiEFUXWc+goIBuBAH0Ldl9X8hof/82cip1A2KDtD2jkbdwhv5D1\nDDfbfOv+XvpKK6QDtlxs9L6B2c1Btxgu+/lQ2+alMKwU74sbPGtDagCIYf2RUag5iHAaKXdHr1gF\nq4IfCrQrOF2hfosaHG9ePPJ899tnYSn8pLv/2ubvnwb+W3f/EyLy0/n3v/aqGwhw0MKCYyoUD9cg\nBkBHpmFrLQ4jsQB65ixwWob51sYkeA+dSUNmhzoBC1Pm/0fh20ivqqUyz/OQ9OFmNMyz5iCG10B3\nyUIgVYK2Ki2k+gLD7O37wC2q6nb0KjYVLLnYFwS7hZfLwsd3z/nVj17wwfOXvP/0iqfHE+XqxIcf\nXHM4TZyOlevjNYdj5XS8DuCu5oG86jQvTHrAa/ALilaagJQAoNSFIs85L5V2+DLHp1/i+tmHHJ99\nkesPvgTTM6YpjnFXqWQV0EGvhjUSIETVq7Xd18zdmlt/z4FhL8h62xYR6QIhPrLvw7je7wsINr1Q\nOis2saPd13WFofvXHmkPbepLgfzgM23ckgEKK7SWwvGR6/vv8VzgtvYzzrIEsSjk4hYIq3gQo+Tg\nRAFbQewG7CoK8V7dPPp8l+3zcB9+P/D35+//CfDf8Rqh0FsvPdXLZEkmi0iGl4AUCOHfU/b8/23r\nsX7Rjsw3ImMu4s26KWDSazeGabZKfMnsCYgEoUEaFKPRQgl5HGMXfJFeGDYq/MQEyo6bvgRiSrMW\niLgIC8pCwRfn6x+95HxeeH6cubk5UzGO10eW6wmbnat2QmWiTueIAqDodAhtUhZgCgZbjlXUOKic\nG5znGw5PvsiTL34fVzdf4urmQ+TqKfXqJkAyXTMD++bvylA2eM+3s8V43q+T+anbJ3ZJXnGrzaZ/\nqG2F1tjs8Q4PYRyv+p5961bxI9erDcNMP8Hjflqh4MB/IxF7+Q89yrZ/2ddqzn+DOGvyXpPNuQ+n\nKpmgElVxak/LRZhKWA5b1qapjBNzdOfDrgdh9PCkaMFlGexG82A6tE6AKv0sBs+qOlE34KAl6NF5\nx0IJHnupnJc8N4KIQbe2gHqSjTzDZHksXSMSgVQpohFLdolYvYOVQOGbCcWd2+fw/KUx6czp69/i\nW7/+MdfPjjx5cs3N1YmbmyuePnvOzfUVV1dHyqRce5j6RU4R5iuN5srCESnXHJ99J4frZzy7+grv\nf/gl6vUHUI+41EGIwmuE2kY0574x/uq2aubVJH788yvkuS8JB6ulNUqybVb0o6b4A67U5bfLeOey\nXb72Zhv1UlBdbvxxd1vo47OGxnvv+nfd59o8dr/uWgtRRGY/JsnmTMzC1HdnerxJ+7RC4e91918U\nkS8Bf1lE/s/tm+7uIpfBn/HeOPfhvVMk/8ZZgt3PT6vb8tiw3NStb2L33WLZ3Hfn//VJ2A60pdaL\nBJ2L7vWySf2zqoEZaGjcuXXqrgY+kOXXaY4UHZaGZlpzlC7vKDuRqDNq6K2L0bNSsLsGwcXiyDi1\nW17YLec74/bmlvm84HbLPJ9Z5ifcXD2hacTJFyEPqb1BD9dMpy9weO9LvP/+387h9Aw5wHT1BK8n\nvNTskkbZsF4C7lO1Tw7wPdQGtVhWnsBvZnsT4BAuw93RVkCxb9bHrJ7APy6/6370JPvkXaA+sgcc\nWgKYooJt6nG+rn0qoeDuv5j//oqI/HngdwG/LHn2g4h8J/Arb3IvKxJFVkQGDTny11egSh3OreEC\nk27q3/maZrpdlD2CgZWozFuiGIf0FFfWEFAHIM2WUaoMoLlgGswxcQLD6FwIZ5CsSpJkwqMQzue7\nsAhKHALjqlgt1EzCMjNqnofYjcAoKpRWjjq+VM5uHJ4XvvX8JadvGteHW95/qty8d82H73/E1ZMr\n3i9f5PokPLn523j6wffy7Evfx+nZh5FbcLyh1DP4EZdC084jiKzAoHOv47W237h5/aabCNJFYW8x\nPNbe5J47fEFWEpO+rk8Jkl7e4036sgeu9xv+kor+KjfoIQvhoe97Xb+GO+PJbvRXAan326c5DOYG\nUI/DZW+A3wf8m8B/CfzzwJ/If//C6++VboAyNqPkJC0eR7J3rVFZ8eRHBypNK8sU1HGgCuvAFyLT\nrMeNNdOAoVdUdpCIJIxDQ9vCoUwsbkm3CbBSHVwzkQjdhZsCVArhZESpNHfJfIKo1kT2waMg46gB\nUUrhrhnCRFHn5TzTzmdw49yM893CF/SG73zyA3zxO7+fD778vZze/wLl2YfU4w0qURnK/Br0DmRK\nWhYhgaQwTFq5YN1cNO946d8C7ZMIpWiJNb3iHq+756WSWTf2xXUPfdi3UZJP0lb+yqvam8zvtn0a\nS+HLwJ/PwajAf+bu/5WI/CzwX4jIHwJ+HvgDb9SRDC2ihaMatnSSUBn+5ZIJUlOto459p/LuwB6P\nGH2t0GwGglMQQFlswHAhhNjES056HJHW3GlZnJOs5S8QmranVEvFpeHSc+KzcIv3TLwpwMSi1AQx\nS3QYwRExzkTUxR28FZbmHKqyLEucmmSgpridOZdA0G9l5vq97+ULP/h38kM/+nv4vu/+fr7wXd/D\n1fVTvAZz0YgoAt18RIDT3hQfv+q9zf6QRvu8BUIcP/vQxthHP2AL6q3IxIPNdUPlBpVlXNlDoAAu\nU7qRr48k3PuKR65bx6/7Qn4PNF1BRxtfffn5V234lcq+PzvUJUlPzUdE5/LA3le1T3MYzF8DfuiB\n18qfg0UAACAASURBVH8d+Ac+0c2ETCgBaJFDkDXoxunQuoAwwo9bPGFbDlvzEJb178AEdnHkoZ37\nBg5fvy1nFonqOLVbB1ywJTOU5JZhTw8gsftsfaL7EffbA2JUlSaBChe3KJTR+5Ylyu9eRr1Ibwue\nYdo7lA8/+BK/7Yd/nL/7J34Pv+NHfojvuPkycnqCnozm13ietNRPRFqH1j7xjt5yAH6j7bGI0GfR\nthvuVcDj/fciya5bh9tmkIza+y7Eb6TffnGfHb/lFffdusSvuu9Df3eLYETZMvVbXXdC43XtrWA0\nCpGibBmuW2ajKllzMcg/8VZkRjZWk7/nSKybb13MUVOhstU24V55+vtR6NR7IhFGYQq3wWwkW4mQ\nHIjIzuti3QiGH/huMoeL0i2EUoZUn8wx6WnbPiS4inP2xulQubUFtPL02Xv8wO/8HXztt/4gP/Lj\nv5evfs938/7TJ8jxCV4kazFeM9WRCJw/HXvfZg1+u9qrvq8v4IcX6GPa8ZLD8MAnL+7/8P0s2Qv7\nMVrdyrCpXtXHbfQglML29bXDvhE+jN9XvoZEtuXoXxt9fyPcxC+UnNluWIZA0xKVsnlYSD/W3gqh\nEK0P0D5wFIOpUUxibPzwhYMI0u75fr2FlWAP+FPrRpYktgxpbmuy1MOLdA0liZAWw/0KvIV+ht++\nX8G3iHs0j1LlcZKRc6xH7tpMuXnK9/zW7+cnfuL38v2/87ejpfKVr3yJJ0+folcnjENMnLRwYTah\nv/X5f+PC4LPS6JdtHc/XXze06efgtgRetaZYb1bbKz71ZuSmx5gHY/7XBfFGFs/u8+O8zL0SuuzL\nPqypiaf9LZoQhQSvv5SSob3+MB6S1Qktq1mlNnMBpqzl3xkaZmFpmO9j512qLu6c6gQtCnAuc1TV\nxSemLGg6m4cmz/P8TLKqjUBra/5DVDUWqhfu8pQnacatzBw5IVOlSrgYYp4aXjATlCWwBync+swX\nvvIl/pl/+g/xgz/yY3zhy1/h+uo9Sj1y9+KX+ejjX6P4E8yvMhEsQ6MPTvYnFwj3YuG/GaiiKyQl\n/M3Q8kvLoG+AT9HuuRCN7QHBoUjy230jUMTWak6QZ5RMOLcUrvj4W9/g/a9W7OsT58lxk00Ic123\n6/feVzTbEdkmX/X346e70o9HQV7Xvt225SMtH8xW0LAf9aXaU0tr/r3JIPMw4PprfdOrbhKhLsKW\ncSiM3qvDUCRCos464OLxum+wje6qLMv6eRHhLFnVx50Fp+S5CsV7NANAo5SXh9swm0W6+Knygz/2\nu/nH/7l/kd/9k7+Pr37t7+DpB9/B4XREpwOH6xuKwd3LFxS3zV747KbvMnT2ebbXLdC+SbbtTSyG\nz6zfEm5r/NqtzIfGeiOA/CIxrVdczlOq/uJf+DPgL5l9oS33H6bjTlsF9hDD582f8YJi/gnaW2Ep\nuINqxQyWJU5V8jy0RNRxU+4W43SICklxOErGYQkzXDL2P5iMRVncIK2GGJsMB7YFqZW5rScnEdkL\nEWiUpD4TtGT3oDIv1rIWou8EkFkAh2cVaHBEmYnzHkTDt7NloWqjoCw205i5On2Rf/Cn/gl+8h/9\nKb7re77K6eaaoif6OYAuUS2oHG54cnPDN379l7l++j5an/JZCoTLKPa3w0p4NMSX2nb45FuC1w5b\n6PeJq18XLrxnZm/f32ID4zVnFQwQ53RAT58aBVmAUQPCfbznzSMM7Dfctuf86f/43+e3/5jw237g\nDyPN6AfFxOckepHKqpSCLW1YLW4rRnEJYO6jbqs14WnpPvb8r2pvh6WwlY4i69FX/afoPSna2zi+\nWy/CPC0Kk5YO6g2NbWND90jEIlGMxS6q03QeQ/M457IDPLqJTLj7wDW8Hw6arlCaOTQhzonAmVnw\nqXDz7D2++j3fyw//+N/Hl7/ru3ny5H0O5UCtB0CTfhzWhlJQqdydn7PMd5/4cI9tixLwjRCCC2zq\nGq3T8XkLhdWy+yzauuAfj5hcWkL2uq/e0ipZQ9/b++2/a3/A8GXU6XB8yV/5n3+OQ53QMu/7foEJ\nbbOCX9cuIxkPuR2vimY81N4KSwHSQ1bi5GGtcTS41AQKnVojk9F8LyR62G/JwqOlRGHUIhHV6Bs7\nBEovyKL0g0yjkrLk1sgSoRtkWF0p6hiNkkd73y3zLvIxaeEOiyKfKixHZbI4TLXZmelwYF6Ur/7A\nj/IjP/ajvPfFD/nob34DmxfMP6LwESo3eDmBFLwUzv8/de8dJ8lV3nt/zzlV1XGme3LYHCVtkLSS\nEEECgYTBYBDJNtgv4MB1wDa2Xwddc6+vDeba1/Y12DhgX5wDYPvFGGwDIhghgxCsUFqFlbSrzTM7\nYSdPh6o64f3jVPX0rFbSCnhfi/P57Gdnerqru6vqnOc5v+f3/H7WEHUt2VIVMWlKe3WZnvIGLsTu\nX4siTyzFrRvCrgFemSikULkNn+xUSv7TY8YzkBD7ht/iSR53MstgO+fywjTktXGecAoGIUqkpkml\nOszYtu18/NZ/5Qd+6L+jkzpCap64MmWBKqug5VvkpwMUn6xMmW9TL7Qde6rxrFkUjE19RMQLlchs\nVVYIkNm2QuT6+H4IJbPGprWTZowXPbHOZCYcAqtNJq6SRXJ8a61flb39l9MZTpmXPrNoLLMtQieV\nc2s0Za11hnUIZOKzA2MtwnhH5VAqEIo4SRgcHOc7XvMGrrryAEGkmJuZ5vjRh5g9e4rZkTGK1R4i\nVQD851Yy10P0GYbEd1sm7Tjrk8hZcE/0gXiq4TEb/GudBKdxtoUTJY/ZiOibvpbfquFv+CcHHbuz\ny/z3i63vP9Nxsa/PqwT+XvAqXzhFWJbQ3ICNT+FcH+dfMn/8rjKjb25YlyE/1Wc7P4POgXvnPEj/\nTMazZlEQeA/GKAy8LFnmdCSE8vszPKOxg9jKTIEo6x/wj+fRzU97i79ASoW47tc6kZmPCrQBmXkc\ndCO6zvkGJ2+/nvrrLNfTpXM5uNQaZBiQOkckFFIJRBjQMzrIVS++icv3H0AGkg3jWxkaHqNc7WXD\n8GZ27NjGwTs+wwN3fYH20jRbd+2jOrgJJ4o4tzbZJYKEmDhusLK0wKCe93tX4ZWWTaYRGAReidrZ\nwNvK5ZEfMhZlVyqMZ2SCxy9IZkhTjY3KqGgoO/eQ06+/9VuKPHo9BdPO5bI1Fx5rn+kiJ6z0fS82\njVFCIlSE1g0CWVy3x8+e7SfnOm3Hi/jM+B2Htd4RLG7Bb/3yzzJxZoZlG/Pe3/kVfvyn/5GQIoaW\nv0bCrvsK68qxWYk8CALPpu3atj4ZvtD5W+ZVAd+m24dcetwKPBCjstJiVgrMXY2TJKVYjJDyiful\nPAKuXzXXC2zkpZr8NeqCGobr93TdPhH53zpVCGuQQUCcGC9SYp1vr7YxN7/xrVz+nOvo6+snaa8w\nefII1Z4CUVkRhkWKss6mbTt4vL3C9JkTFAoRWytlwtIAiCLeg9v5bMZ5t6nVlQXaKysIaTtpvje2\nDTPxFkMYVRBBGQjBKVwQZRZ7XVsLl/PhJeTitWoFk6z6xSDszxam/DX/CSXKrnP9zT43j7jGGgwC\nJR1Gt3E2RNu4cx883bjQ8S/EZ1FKIC3IQol//+wnKPU7qkM93H/PYaq1KvGq9ys5XyvifM5Nrili\nu0hITwk2XsS5eLrxrFkUct3ENNGIwE9emXs6ZIQf766Ug3xPbDHNbcB9udFnBUFWnvSVggDnnkhK\nyicWrAmurDElVaZy49N4hCc45aClsoCBspI46TBRwCXXHOCmm76bm173ehSKoFAG00aYZY7d92Wm\nqnU2bNtLfXCYLduuYKB/AycfP8SjDx9iZXGGrZddSf/wFhAVnEhxuk1zeYn5czOcm5ll4dwE1sUk\n7TiTe3dIFXoGpXTUevuoDw5TqfVTKpUoVYcIoooXhVVlMutuQOOcRgmJiXoRQZXQxOjGaQhigsoQ\nzpWgSwnpWz2ejMX4ZKNbc6F7oVp7/ZPRhyBNDSrQhKIXXIKj5cFc+fTv3Q1yd3/UJ5t8MuO4BNV+\nZianuOaKvUw+PsNyA5BNEBKvTdlVXVkX4LJ7U3qpQMP6QNUNdnd/jgsBjt+WQGMnpncAvrXJ2tlX\n4ffY1jqCQHYmbvfwW461/ZnKnJQ625DsxOSlRP+aNfOUfHHokEic9V2MOVqeB9ns/aSUuEwCTii/\nfbjhZa/gxu/6TnbvPEAQBCgZZTTUiNrIJqonjnHqxOPEFjalMcNj26n0DDO8aRftVsLUmdMExRLF\nQFHqHcM5b0c2f+4si/MLLM7P01hZ9lGvU/WwKBUgMiWqSmWGytQUtXqdSm8Pg4MbqfYPUCjXKfaM\n4GzgcQoRZuU4gSLFidDb3Jf6se1lgnQVgiBTlv72H53ycehTa2kLOLmCcJUnlGW/2aFTHy0iJQnL\nitmpWYb7R5lqTbI8f5oo2AhdFndPNhKd4lotZLF0wWwAnrigXqgC8UzGs2JRcGTRGo8RGJPgRJDJ\nm/mJF4a+i843HhVIkmSNk5BH+swTUCA9aOjIKhNJpxbdDdx0bxnyY3V7RyglManxC3r+WbtOsJSS\nNimVnjJXv+gmXvHa72HP3udQKEUEUcX3aIggE1ORFMtDbNy+h9NnTnDkwXs4e+wIV7zwxQyN7WR0\nbDf1/j4O3fZpHrrv65x+9DEGR0cwEpZnZ5icnmJ5bpnGakqSJB4/wNuZ+1vLIITz6r8ICkIRRREy\nUvT0lqn19VKr97BrzwFqg+PIQkixWEOGVWwYgIuAGEGAUsME5RDbmgOV4EpVHD08k/bbZzoulBZf\naOST93zOwsVkHEo5dFpm6ux9/Pr73sIvv/P3GOx9MVIJrIkv6nNe7AQLRJmGnef4oa8zvmMLyVyD\nlYEG5XqR333PL3LLr30YYbylm32KY0oRUB/qZXYxQbr1wSwf5wezfKzrnPx2yxTAbxesEGA11jqc\n1Ajhb/f8C+fKtefr63eqBZmOgsgMSJTwkvCIsJNx5N6U/iTlCL7/WSiJ1GuWa0iBlWTNK85nA1pn\n8u/Q0jF92zZz4ytfw403voqNm7dQLkdA1BFLyb+bEBYnIkrVCvWeKitzKywttzj16GNUoiLR4BYK\nhT5q45uxZ05yamaGuXMLSClpNZssriyTNBNaaYputzFhscPNsMphMzl7idd3iGWKTBKiKCJJNCvL\nTebPLRBrGN90jmq1yuDgRgrVAY+FFMsgilhfMAF6ERVB2pohasW4SjFrKPI6kN3JOtD1e+7AZLBE\nqC6g0pFmzxc4t9bNev7wqtPdx80XcNkxxc3r+U4qXBc79SmBSVfEqRYPP3gvhcHd/MWH38tP/sgI\nvWZbVnqSXuas6xDri3l5JeTpewms1JSdYmrxHCZtEQ6nnJuaoFrs4eCdB3HOIIXFCh/E/GKXMWel\nQVnfrEcgSNIEK1MCfIm+G0fwZDqPp+XtXNZl0oLW0/e/LTMFAUjlLcCNEd78AhDSZl2Oa+PJJNj8\nD7LTnOQEaHshuqjsikg5/TgrB7nc9NWfSEPWjOX8xNZpizCwtE1AbXgTt/zXX+KyfVfTW+8jLBXx\npKMA52RmRpN9P+EZa0IoCj1DbNq5i6mpWebPLfLog4dYWJhn/4GrGR/fSXVgA4VSRHJmjsV2jDEp\nWmuM9ma6iTNYFKn2xCMpJcKIzuRLjCfGSOW/Q6PRQAlPEw+VZG5qgccOPUylUqa3r4davZ/6QD/F\nYsTQ6Cb6RzZQ6B3HqhJC1ohKETpehsYcKiqDCIB2hvnIrnPaRpD60+i8G5XvQffXz9/0IVmlDJFl\nT11WV2vny+WLTd5X4NM+53JpPX9EJwTCJb5a3HVdn2w4Y3BYar2DyHrK4mqBf/7ke3nLqz/QuX9E\nJ51/MmOYCy8IT0jtpabZFpw7dRYdhZhGi+WlgGJoiBMwqSMMJdaIrKqlM4k1vARhoMAGJK15eoeH\nKDVW6K6PyGwhQFyYoJR36HZX7C52fDPKS5fg/R3ysR34FaAO/Agwmz3+35xzn3qqY+Wty2sRJL9x\nLqxXl73/ukzhguiryLvS1v72xJQqL2FacN61N4MyCI3nQTjpDV0iGdE0TYa3bec7X/tm9l11Db09\nXjTV+LYohBRILmzmKYRAhGV668P09tWYW1gibrY4NzXNycePUC1UaKyuErc1cZyS6NTzIYzFWoHJ\nyqHGOJBrVOsgUB78zDEGl9Fts/MTxwlaGbTyorRtrWjFbeKmprHQYnlhFRUmLM/P0VyZZ9N2Qdgz\nCIED4VCEtBsLmHSGMBzBocEJnJTkKqtOt4jjhueMyAilQqKqBlPK6NqZJqQIMtZFPuHzktn6Keiv\nmKe1C+mJZiLfMqxD69eEd59u5KDdyMgQrCRomfDgyRPeQ8Nr/q891x+869XdzUqCp8MCIECGCc2l\nmOVmi7GBOqYucGKZqNSbcWmSLJBluBT5VjYg0YZW3GZ8fB+thVPoPOI7ELkHxAWAye7/82P+/5Yp\nOOceBa4EEH6zOQH8M/BDwO86537n4o+WC60BIqc3r0XYvPzXmdCZ83M3DnB+OdE6n0xJGWT1Xr9N\nyLODta1EFsmERAp881N2MhOfk3mmpRZcet2LeNUb38Jley9noLcXojKOyBs4A3lLt/esfOK3lCgI\neqgN7eKSPfPMz85wcnaBxmqbxfkFjjxyP0VVZHJijuWkgbKCNE07F98KhzCGSEq0DylI6dWgpPdL\nB2fBZix+m2dCPsvAKeyKRgcBDSFYVg2iQKLOKgpRhWNHJumtPsyGDfczMLaBwQ3j1GrDlIr9LC7O\nc/bMQ778GYQ0lxYAL+mWpilJHNNY8S5EKihSKhfYsHWc/uEtVHoHiAo9hOVenIhwspQJxWocAdYJ\nlHziJHNklSebRTrhFbNyINk5v7zkjD2Je8qpmncQD/QNkkQpBVdmsXEKRQUrVummG+c4FxecUE9P\nBnIuJU0cU1OTFGTI/MJZomINY6DRbPvMRsjMZDLfskqEClBW0jdc49Y/fj8/9xPv5qG5r4GpI4TG\nYXxH73kLQx4gvhXlyW/V9uEm4HHn3MlviOTi1uSklHAdTUbcGpUY1lcN/MvWdz+uI3aA36s5R2o9\nlQlnECikyzAHFE7im6Ccvzjd9mGRtcigwGLcZNPuy/j+t/04m3fupFLuxYpC5ilhcCLovJcQ6xcE\ny5okVoffUOihPjRC/1A/Z05OEbdSUmtotVdQKvQgqsuqCwK0MUSZFBxWYnJXJSG7ooYPoy4z58Wu\nVVby99XOEsqMBCMg1WBcgEwNcdsRhp4ibvVZzs0vMzs7S//wKD29o8TteWanzhKEdQrFgDPHj+F0\nis1wG5tqdOK3LkKGhFHA6uoyff3nqA8O09PXz+DAGIVyHVnoQWS8ABFWCAhwpqtU3BGusb5zFo3I\ncR0Resl0ZzIswYIsgAhxsltZ6UK3mcE4R6lYp9lepdVoIes9nfvCqxXkEz43vrlQJPZt60+3OERS\nEZUiIgJcWGN5YYkXPf+V3HrrP3v6tNNIF3lcIQuA1jnaiea33v6zfOpTf8fWHRG4AoG0WSDIgp5w\nHXzl/Lmw/js/sywBvnWLwpuAj3T9/g4hxFuBrwM/757ONi5DT4X0du+BFBjAZn6Q3RUCDEglkUFA\nor0Cc5DZwjnWWqq1hMD6aKmkQBqJw/s16E5yqoiNIVSCQBtsFKKtQAgPXMVCse851/L6N/4gl+4/\nQG2w3y8q0jtCi2ybIDpfYy2z8cCaRebRp2utdEpRGrqEPVdMc/TwMZqrS7SS2LtS2VZn1TcGz8sA\nb0YDINYkvYR1aGs6FQeyb5XfrN2LJIBQEpsarIRU+Bs+bSaESuJcihOOYNWxMu+Bx4nJWUaH5wl7\nTmCTmOXFJQqFKYIgYurMGdI0BSSx8edLa0uAJ3EJITgzOUmpVKZYCikoSbmvTL3WT63WR1gqUyqV\n2LB1N5VqL0oFOOlxGZmXj4XJ5Ow9pdy6FJ22PM5iUqRQhJUeega2IFRflq15rQqkBiuRynfZIgxO\nBoQSkH0UFgz17QWmGjEuWKYdK0JZQogA4VYRRnoZfGc8GxSHEQ6VSnQUopOUgtIIUQKb0Hbeo8TZ\nCGyMlSlGKa55/g18+KN/RLrUoF4f5NOfv5VaUSGok5plwtAhhSMlQbXK9Iz086M3v54zE3dTH6oz\nf67MzPTXGR68EqVDUhTKetcs4+w6lerz6d65cLG5SMZnPr7pRUEIEQE3A+/MHvpj4D34DOw9wHuB\nH77A6zpmMKUwSw9dzhxc4yrk2gU5zTOQAUIYrPbAjKR7/9Q1AZynB5NVIqw1SCVIjfFbCmuwzlGU\n0tcfMuNU51IiVaSpNdd9xyt47fd+P1t37aVS7UUIf7Mj1Fpt7LyxDvdAdp6TVz38p1QEqkBvbYhi\nuYgMFrGp7YrsHtz0LDtHqJTnQ+RbKScxrClOKdxaluvMuqjRDTL5DEF438xAYLQnaqWp75yUgSQ1\nFhVIhEyw2nDWTBMsFdHtFjaTwZcqpNlsYm12TOj4XTjpSUJBEKCcwtoWrVaLQAqidpOFc6uUS/OE\nhYhSqcTKaouenh5KpRIqs8OTUhKEfsFNkoQkWUUnKWmaouMEsgyib2iMweqQz/hEhglk2URnYe6W\nPKCNs0WUdBzY/yLmowdZjAOMjikVCtC2GBF7vkfYRKchSoZYGyKxOGFJw1UCWyWolklaFueWKYgi\nYRSQmAQhV5DKgSsQErNpbJTGqsLEGiWWCQsBreWUYo9GuBJLKw1C00YGRdIw5c//9x9x11dvY3hz\nASEU9aESbnmKZMghUEQWUmymNtmZS0+aITjnLnifPtX4VmQKrwDucc5NZx9iOv+DEOJPgX+70Itc\nlxlMvRy6Tgs0+TZOdCZet7CKUh5s0SYlkBKc73DUdm2lFEJ0xE0wWdlHOLQVKBVkmIJCCS8SG4gQ\nFQU4DO3EMr5pJ9/z1rdx3cteSVgqe6EM51Cq8KQn4UKrtS/PZTz5XN9R+rKdkAGV4c1s3L6TxYUV\n2rpBnCa+1dpmabPwTlXGmc5qn6sM+gyKjiJVfvfbrs8RZCl6TqU1xpAGgsgKtNYUUGidCYE4i0l9\nL38jTlHaS9i3Vxv+MgQKshRfSIdJvSBsp73cGK+zmV2rODUEaYAQaSeLEcttlGoSyEV/TRWcOnmc\nQlCgVCxTrpQIigXqQxsZHt1IoaeSqWxFoC3SSkq9vRSigGqlRs/wFgqFGiL0Ed6T1yRevZvMgzE7\n/04iKCKlJkkkb33dLXzwcz/JlduGSfUMgdyFDRXLR+7ixNz9hLUymze8gN7qDpxoedTLaGKtOHTn\nPzIz8xhRuY8bXvfjNFZTKjQJdAmpAFFBqBZORmy+dIjV6WnCnirWQZqmqOIgf/rGm0naIVe84qVM\nn3iAl77lh/mJn7qFc0vTlEaKrKzGXH79CFuU5cTUlxjZ8lqEjQmDCJVYktxacW2urW2zRZ4x5VvH\n9Zjb041vxaLwfXRtHURmBJP9+jrgwYs5yLrUh7V6gTE+HU2ymru1Gms0UigfOaVvAvO+EF3Hyw5g\nRdcxMywhP1FOAoEC40ikRUvYse9q3vQDP8Ll1zyXYrHsIysC5DM8VULg0mWETfykUgWcjHD4hcU6\nhQvK9PeNEEVFoOEzBcM6JF4IgTA+48nBJfAItBQyA97WvCrzc5j/bLqcgZzzzWDOOaQFm0Ucj9us\nAbY2V5lCEIUBzlp0lskohE+phcLaTIfCWjA+pbXGZAQ0g7Veql5k5rpkpTebq2Zl/0ehox0LmnFC\npadMqd9SLPdRHxhHhJZIBbg09kK5hQISQVgoElRqWFfAWeWb2sicrmyAMRGCpFPJ8l4bGmlCojAG\nN0hzzkF5mo9/+n1sH9mBUgXCdpHYzDFx/FFYFuy7so6QAxgjsUGLmanHqJTLyN4yK7MHOXRXicuv\negdudRXK8xjTQyRi2s0UjEFVA5oNQbmsSWxAUZVYbq1y7N/uYv/+ndz9v/+UpFHio0d+m8OPHaE2\nWgEp6e0psWmkxCVX3MDJ8Cu8UCi0CGkZi7oQin3eXLJdiubPFOf7Zq3oK8B3AD/W9fBvCyGuxM/r\nE+f97cLHYW0fFOTSauQRH1zGMjTGZCUp3wVoDJ2bsluSbT344m9g7wAVeul056sSFplpJ1o27LmS\nN775bVx73UsIS2WCKEK6ECdyjb6LO7F5k5K1KbNHDzI/O0krbhMWSmzaup2e/i2oQi+KiCRZQipH\nFAXIDKNwLl5XZk3TNPs9RGZRz+QWc53ut7zFuJuzkSlUObwEfXYOVWrQEopINF7Tz7HWKq61Rkrl\n7e4stFJLKCRpBvjmzWHe1i6LQEp2JO4DGZBgMl6YPxfGmmwBsGjybZHFOEidQztJoVIhJWB+fp5W\n+iCKmCv7bqKvNkZQDEBG2fWVCBngDBinUcrgoSPjNRKtwJhzSJki1JDPCvHpvLSaf//873Ly9ENs\n370VfWyR57/qZv7ozz7AxC7L/Q+eQS1N8tvv/DF6Svs5c+ITHLrvH7CmQLW4jdFNW7jm2jfz0NSt\njO3cSGNknKn5e5m47ae5/JKbGa+8kObCHOH4BhanH+LWD/09f/eB32HHjhpzbU0UlVlpxtSjAtcP\nDzN/+BjRpZcxOzrGh/7jdkw9ZHpeUzQhvdvaHD94gp/70T/hLz99J+2bqhRWG4hGisZ0VJWecP9J\nnz3kmZhzruNHcrHjm7WNawAD5z32lm/kWOsbTrqqCsLbancivvVtpInRWd3bi644e96KaKyPrjJX\naFa+jKny0qb0E945ZCHkjW/5IQ5ceR1RVCRUAVhIpcjIUxdIv7owhfP5EwACw7nJM5w5M0EctxGB\nIm40Gd/SoDaykULUQ9yaY2FumiRtZ6CqbwID25Gnd66LlZYJm3pc4/xzt+4adJ1HP5FyRmjgBEaA\ndKKjL+GkZ3NaveZdkddvrLUY4RcLxVrXXv5+1mmc8SUX6bKsLVukAhVgTI6Se3KV17XIFjBrdlBv\nrAAAIABJREFUM8q2RLoAKYooaZFpyNmTJ+gfPoQQjp6+AcKib3WW0oJOcdb3kFobI0SAEQYpIqRM\niPRGfvO9N3LLLR+nI8nvHNq0OPiVO4njFidPTDIUOuZmHyQK2uzYsZ2JY4dZPCOYfPgEIzeMUC5f\nzdHDD7A8Mc3pQ7dz72cnOf3Ve7j6tddSqg+ThouM155HOerh4cOfZqBnjOLQNv721/4HH3rf7yOb\nbeoCVG+J1YKmudpCBwEyloiRCpMrFldQSHmKjVdezrGjj1BUDlVqUa9FjI6X+cQtv0HlNQFn3/9n\nbHz1cylv2slqI4ZkfQa4lhG4jpua7ZpHz2RREN9IyeJbPfoqobthdx2cXN+Q1JUO5+PJ+snXMoRu\nF2nr3XKM9hRmKbEmRckC0jrSULJr/1W88c0/yIEXvIRSqYQLCj4aPQkB6fxxPpYAFus0ZukUn/3Y\n37K0tEij1fYgKaAKBaq9PfRUqqzGLSYeP8X8coO4rTFao3BoBxqBchrrFFJ0lRaBwCms09m5WKPl\n5kClc15T0uRZkRO4wOMIEu+CZTOjEKtNx1My34fme9K83NnNA8n/z/khnj9BBzdIhKWAIhSSBppI\nhh1MQ0mvQaEyuNU6hxWWQqGEDBS9tTqlagWZYUalsmJgoJ/h0Q0Mjo8zODCMKhRQgcx0TFRHDStf\ncIJCLzJM0I2Ia5+7nY995g+phOM8cuQg9eI2PvYvH2Fm4jhTMyfprw4ytqFO1cDA2ABlV2Pxjru4\n4YYDJFE/dnkV7rkfXdQM3fLrrMQtjh25i/LQCje+4hc5cvIUpVAxceoIQ5u2sro4wdc/ey+3/cFn\nMKllbMcwE3MzCKd4INUIkyAKAUOFAi80ipHVNqsjQ6jd43zhsdNMTy0SBAl99TLPH1vmnX/453zi\n2p9h4hbD9/x1FVlvEYztZuSnfpbZ3XuoOWg4SdHEJFnGfP5cyRcLYwxb9l53t3Pumqe7p58VNOe1\nvoT1jMN8CCGy/oPsxgUytHDt7+QTdC2l9kCMQwUB2lqv26hCIiUxssTzXnQ9N77sFey/6jlE5Qoo\nlSk+PTP5qvOzCOcsabpCoVSiJiVhoU2r1WJlaZ603aaxssI5J9DGsbLSIEkSOv0B1r9eOIt1md14\nFrezsO8FYa1n1Xmi1pp+5PlRQeT0zGz4LuFsIdPW8+NZn12I7DmdgkbX32ANp+hUNqwlVY7QQJRL\n8udbQWMQUmRclPyaeGWqDn9CaySOleUldJISRCHGapKWxTRT2qst5s9NszhSR1VqBDJrzBIBUkIg\nQ4RQhGFIT22QsJJSElvZu2c3P/YjP0+1ElOIeti66XIeuv8ORuujbOzbzhU7ruWxx77G4cPn2LIl\n5dEH7+alLbjn3tuo7Azo3/IKNvVcipi+l/77H+bSt/48Y1sOcO9dH6ChZxkd20DcbrN91z5iIWlP\nzPFT7/xRjn/uNMeOPs7E7DRCweriMkGlTCLKFGyD1SSkbSSPrC6z5dorOTkzSSEskKYpg2N9NObm\nMaOa+bjExijhkTb0qhYFDcGjj3DqvX/A2Cf/ganphLpZpqkDFGu6j93X/j+Tp/BND+l8+c45z2mH\nLqn1ri1FFhv9iy4AonQQ2Cz9DXBIFxKRQiBZbbYZ27Ob//abv8fw0BjFcgUZFUBF2SJz8afkQifc\n4xWKQm0jz3vZGzA6xaWWZmOZg1+7jeMPPcL80gqpNp1Oz9hqVLZNsS6TuJcOmYJQLnOydgRCejBP\nG5zIpOyNV9dxrEWGoEvZ2hjja9Wp8RORbEkwttOhJ7qqO1qfr0BEp7qQX4duYRqX1cKF8RyTHLtI\nAkchcRglUEisc6TCX0OdvZfMhG2ttZjYQGow7cQvepk+RNKIWVpaQIQRJ46GyEBl3BTVMemVCoTz\nylNhtURPbZSHHn0vr3vZazn8+DRf+upHmG3Akfvu4rrLtrKwnPCOX/gVbrv140wvzjNy5V5OPHiS\nRJQ5HKywoRwwwwj3fvFf2LwKmzcNs+Oe+xGNX2TjW36MB6JrWZ67jfGh72ViNeXMqSn6BwcYqI1w\n221fYsu1O7nzK3cwHpVJnEMqyQuvOcCtt3+ZytAAZSOZTFe47MBlHDr9KC///u/l5LKmfM/dnD3+\nECNjAduu28/Mj/06l/QlfKlQpyXbDLRgsWgYPtci3bWJjZ/5JCt2I1HUwpiMDHbe9vvJ7tOnGs8O\nNWfWRzkhxDrdxfOfA3Q6BNentd1fJ1tQUKS2jZWWlThhdPt23vDmtzM6Ok5QKXp3Zhl57MB9Y6fj\n/M8pUIiwRrl3hGr/GD1DGxnesIMt23ZTqVSw1hLrFIPwlGh8x6Dfy2dRmDUPjO738Pt2jdUGk+qO\nj4SnTa2VonwUZ91ENsYgbNboRZe7lnOeGt1Fk+0mv+TcB7J/nW2Dtais4Ulmyk4oiVYQaEcjcBkJ\ny3QykDwTNM56hWwhOsIpWmt0GoN1mCQljmNW2y1W2zFJYllaillZWWFpYZHlhUUWFxZYnF9hcW6F\npaVVFucWaDUsc3PHSVYDmq0FLr1shP379lCvBwwMlBgZ2c6rXv4mJo8/xP133kH7nKW90CRJ/EI1\nK8qcqtQ4eWaBGQ2xgolTczz0ya9y9P7jnP7on3Ldjd/DmWPHcPEyuJQ9e/awOHOORrLKxMw8b/3p\n19NXH8LGbRwxxUqR17zquVx51bWoZIXp+RZqrMrRM9PMxE2uOHAlJ44dobk6z2C1BxdKrt+1h2h1\nirldW7FJQmgMqkdSbaX0XvM8CmmB5Ff/gHLRYlXpKe/LZ7ooPCsyBYeXPAMQznsrmK4swOZbBSGQ\n1mIz0pLt2jb4G7WrSQqBNRYtBMgI1TvI933fD/OS7/puhgd7CKtFQsq4vFsP7zXxTIo3Fyr15JoD\nQgSIsEqOcSiVMj62ld5amZkpEKmf3DJrAMtLpWSNPzltOd/jS+Fl6x2gpCTVes0Q5zzsRXZlCs7h\nFbGN99NQQtI0CYFbX60JhFfEllJ6TMH6bEXrhEgFpF1ZQC6OK4Tvzci3AlIIlFnzTigkHqR0xiKy\nCO8/oF+YtHPIosjKnA6DJ1clsbfdk1JisCgtiGODUgLaQUZ5FhktORPqtYCQtFLNzLk5+noHWFlY\nYqx/GDEruWbbZaQtzfOvfQn/8x3/g/5SQLEQ0NSaw5OPEQQRsrVMWygaJzRxMWZI9DFjFxmxlpl2\nwuI/HuTBrz7CK+0QaX+J5W0nIKgxORUzPjzI4uIK1z/vZh4/dS9/fOtv8bs/+W6UrXPirge59WMf\n4Uf/y8/xwfdN0hyqcPP3fx//63f+F331Ed72jrfxsz/1Tj73hTlGB7Zz/I77GD+5yvxYlXfOP079\naBW7EtMs9VLuC5g7+M+U73k/4s0fpPELP0n7fb9HscvKoDOvvgGQEZ5FmYLHChzIAKtdRyXZbydy\nPr/t+DnE8VrpDrqpnX5CWYyXQrM+im3YvoOt27dRKWikSPzCQ9JVLQCREaD9HjsnvbBuT56PpzvR\nvszqFX2ti3GuSTtexcSGtrWgs3Q8kKisOpBPJ/86uy7C5+VV3xKe04p1VvLz0TjI5OgUglxhzNrs\nGNkiERtDkEnd5aUrDxoab1hrLKF2KLe2fetE+mwRELm8vbWd5/n38gtY/nkknj2ZZy9aa2yqPcfC\n0Xmt0Rlo6tbo29YajNFonZBog9aa1PhqRWq0p2sbjbCC1XYbIxxRIWTqzATVSo1S4pATU3zyb/+B\nY4ePUqSHxYVV3v+rv01fUWGtZuO+S5FSUkwMenkZilWU8eBnKQ1Zbi/QTCWNQJKsWqYiycz0Emdm\nV4ibfbgiNJtFKEhSEyDEKitLE/SPbOHQoaNc+8bn0belyIard2DPzLGwPE3vUI0dGwd54auvYqnZ\nJA5TnCvy9Ts/T18pYnG1QYygkkZ8tLFAsbdE0tCMDFaIdAFTKlMpFUhe8wHSsaspfvleBphDGYFB\nYIRGmbhjYizVtzGmALJj3ILwclbGeUk14fBNTUIiVegbewolPOHGZ7XGOK+DIAzG+QhsraYwPEK5\nPkSz2eCTH/0QD3ztNrbs3MqLX/od9NQGUZUaDoU1gZ8oIsUThyWW9BsCHvPv45xG6SZpPM/02ePc\nc/ALTE/NohGewGMMGEsqhafS2hRnfOai8BM2TWPPYcgWSJtqpACT9RsYrVEqcy2SoKxAO4MIM2s7\nQKc62wZ4UFAEDpeVdPOMInaZG5fxzUEhHtE3AhwG6STSWFS2SOR4znpOSIZtCBBSkJq1hc44h7K+\npJmmqdfMEMKT0pQnSNksYwpZM+KRDt94lZ0PEQTgHAkCI716thMerDy3NEu9WITTxzlz8iyVwQ3M\nnJxh187d7L58P/ff/XVUGqMlOCOYPD1Jq5UgQoVSsLwA9XJEnKR+W2fhWI/jRNMyFgYUhWFehWwL\nQz767r+kdMmbueaqt7OwqDl0+LNs3TjAZ794K3UsYaXEHUcPsfPyDdz8oy/hwz/xm3ztri8yc3aK\nq14covoWed9f3MKDD53kI3/x/3DHnV9Hi4DVcylbegv8/mc/z8eby2xqBKQFTXPTBuzwy6ne/QlE\n7zLVuQXE3adob+vBvvVnWPrrj9CbhkijaYSKyDlCiiwHBtL2M7xznyUjdy5yzmCdRkhHqMT6DkOZ\n6x1kbLgukwshA4zNuPnS6wZUB0eoDYyj8SrQK8tLHDv+GIfuuYvbP/cpDt//NWYnjmCb51BohEsw\nTvh+f7Emkf6NfR9PZ3ZmmaXZk0yceIzpsxMkrQSt19B7rXxnnugQTKT/ztZ1UH5ntI/8uZ6CXksJ\nC4VCh6uRvfOaOpGjE6n9Z+rCCuT6PWeOaZABgMYYDyJa74uZMxBzVuU6Wm1XKUxK2ckE6MrkhF1r\nf8+BS2MMThsSozu/dzCIvMTW9XznHC7LKjolUWux2tButgiEpJE0WFyKUdUhppbmKfQW2XdgLzu2\nbmJ5Yo62TglVQGId7XZCFIW+SqKhGOoOoJrfR6FRBEHEOWtoFsvsf/5+bOjYOLiDL/z57cy1TjA5\nfYrdGy/jyONH2bRpE0FUYHZmin07rmbi8ONEdpWRwSGS5gn2XbOf3vGAu+4+yBe//K/I8By7LtlG\nra+HvVftoRhJrr76Cj54Zob+VUltfJBiPSE806L+Z++HK1+OKypWaxY5uplCkhKljkjEFNopqyJC\nipBFK4ijBoWm7lzjix3PDp5COXQ3XFIH6KS9OOsFTpyfnLmZjhCZP6OTaCM870A4UgcF6V2kZFRk\nYMsuDA5jE4wm0/kPCEOJkpa+3hKVcpH+Wp3hsVF2XraXLVu3M7RpJ6pYQxMQiEIXSWhNceeJ3IQL\nDYtdOc3U6Qd4+NC9HD96ksnpedxqyhIpkcncf6QgJUVoC6iutD+jHWfAYuIc5cBHX2fWV13CMGsA\n6uIopM5jCMJYkoyvAIBxiEjgEtvpp3DOgdGIIGvPzr6nzLcQDl9FyD+boLNI5J+zg2/kpVG5nt8g\nnWcvygyvyI+B8DaBkeuyC5Q509R1KiTdC5jHPQRCCSKnSKVFCUkByf7tl/HQV+/gsaNH6C0P0zM+\nwN49u4ja8IlPfBKcJA0UQaR8o5YTREgcKbEVRIUAZxUm1ZSVxWmIQ8tofz+XPP9qvvClL9I8l1J1\nkstftZvv/N4XsvuaN3Dw/kPsu2QHJ46fYjk5zezCMo/cfhSpQu498RW2DYaEfascuPE6Ng4P87zn\nvZ75+Ta/9HM/h1IFpNbs2reLq3Y9j7GxMWbut/zG3/0mO6sNPvwLbyf5pQ9S+ZWfZGXBUfiTPyfq\nrxIXDaEWuLFB1M2v5+ErX8GOSCHLAe+55Rd43etfS33ndQjrKfTbL3/RRfEUnhWZQqdOni0C2Asv\nVOtKk9aDbznxRoksXQ4L1AZH/E1pdCeyGeft63XcJk0di8stps8tMTE1x2NHHue+u7/KvXd9mRMP\nf510eYKAJrgYXF7/XVNoWmOPPfWIV88xcewE0xNTrCw30dqR2kwjUigsMrN0zCZOVhrsTDTfDI6U\nQSf7sVajtcc+giBAKeWf5ei0yaY5qu8cRqxfvHS2t0etv/T5+ZfON5mJbLKKQCELISrLIJ5M2quz\nfZD+dfn1yv9mcJ0OSOccRucqUr4iop3PEIz20V9o16FqdxaEnIqdZ1XWYw0uK0du3ryZyePHOHHy\nCOVKD8vxKi+46UV89XOf5vbPf54gCABJahJM6oFpI/1niA04EdGKU9raEhvnKd5BQNkWODs1T+I0\n7373r9I3VoKKpS3b/PtHv8DC8jRX7NnHiZMTVCpDxEmTTUMDzK60ODZ5Pzv27KZySYHx3ZdhiysU\n+3rBVrj7/oM41yBJV1GR4+yZx+gZCFlqL7D3xivZLMco76oz+ct/xepYgcabXkd70uBChQsELgFn\niphWDB/9ODt29DE9eYbfuOUdXPeC57Nx5xXrMruLHc+KTKFeDtwNu+sd7YGciJNmUjn+S62JieSp\npHKQOg3SEQlBUN9IbWCIZtxai6aZJbjAc+Oz4OQjjrJICVEU0VMqUy2U6K2V2LB5lI2bN7PvqusZ\nHB1DlPpwsgqZI7V1CUp4LUb/edeopT6zsDib8tVP/h8ePnQvc3MtGo0WrWaCk5m1XGeBE5hUI2RE\nIFJ/gbHYQBIIRzNwJLZFf6tI1DuAXV2iUKzTroS4mSWCkmHOxUROUNCWJAiIdUoURRBb3x/gPN1Z\nkZIaf3NoYzpVA+G7sDrbJoPJ2KB0thJBxp/II7wQAisFQeqf160F2E128pdQIEXeV5FlW5Z1mQbC\nNzT565KR1IwgCNek2oQQpM56qjQOnaSEpQKBNlx96RXMnzzFwa/eRa3cx+TCDJEKeM4LnoNbNRw7\nOUnQWMBteTFnH/gX2i7AKgikJDUGYwWhc8gQCCu0E00kNKXEsSJSbvrO61luxRx75ChhA1Zlm7n5\nGIHl7b/wQi59yXcR9F3GzMJxbHWFOz77ZXZuv5z7HvsQr3ztNfT1bObMyRkWmsfYfckVFNRGRFzn\nf/z3/5vIloiqoCLHq1/zesbHtrNl26Xcd+9pLusbo3Dzj1ArBwxdVkcuO9T4MGiLbU3DpduQ9S38\n1hdv5wvHZhB9If/6yX9hIi4hrCCxELkIQ8yOy1/8bcRo7LAPRQdVv1CKnvcsSBlgTEpqBSosekZg\nEFIbGCRJva6hypSfnbMeeRdZ5DEWmUWyXKeh3U6wscGWDO20SWo0iwvLWGfYtH0nW3ZfSaFH4igg\nRJABohInUt/EJDy70HW4hxaRrjJzdoqV5RY68RFQKUVq84YpP4nSOEUGisA0aaoAwgi0wWaqSqUw\nor5Uoi0cEzQYHI3o27KR8ZbmjjPHKOseqkayHDVoqzK1OCEqhujE4YIUdAnhWoAjNZ7QZa3tEJzO\nHx4szBZU5z0lunEdKYUvh8JF+786a9DnbQE8OLymCeEp6FkJFk+Jdk6itV0X6bz+Q0ooFQECJSy9\nssrZhw7hRC/1/j7mZpb8uesv8Oij99Jb3sbK2SmcSdl8WcKslAjry9sYgxGZoI2SPpNLU3p768zN\nnMUFcO0NV1OMQk4ePkqht801b7iJZpIyNDLIrR/+LF/+1OMk4rNsfpkELYgXYzbv2sDk3EPs3b+H\nao8n4I5vrDP/sEI4R2u1xfFHZxABpO0WMg5BpTz26P1YMc/W3Tt52fOv56F3v5+okFLWKW46IOnr\nI4gKBD1tZG2ULxYDPnPHJ3l4NmVg7zibB1qs2hGEaOGMIVASozVOfZtlCn3lwF2/o56BYx7syk1V\nYT3N2RmvxuSJLw6so1wbxNYHfRTShijMfCGEb/ox1oFwHcl3Pyk1CIsiq59bD+qp0DcdBVJRKfRQ\nKofU6lWGxwa5bM/lbL10P+M7dlMoD2BMASkcwmkcbazViLSBaSxxbu4sn/6nf2J2ZjET4dRIZ0lT\nT1pKtQbnaOkVatTo7SlxprVItLzE7u27WWkuEXzpPq54/auZ+IfPoMQ4l+1v4kYrrHzqEJEoMjSx\niN07Rj2sUi2WOL1tP2dv2sfdd/4HZ2JB+9SjlMq7cHIeIR1p7AFLKTKGogzW1bLz87KONp5vlYTq\nVAQApFkjkeUZRHfPSo5HOOdt2i6YRbg1IRjpIMnwi1BILJrEAkogM4k5pRSFMCROU8LQMx431uuE\niWbz5q186K8/gnJQ6u1laOMI+563lySp8sW/+Xuc0IhSjURY0lWvbtUWWTZkfK9Jx9bCWISAcqXI\nW972Azx8/GHuO3mcAy/ey9BIlYH+IcbHBxmsjTMwvh0XxRz56p3c+6nD3D75GZ732quoBXUufQ5s\nGLucYlhHyYjDxz7FeO0lyDBk8lTC3/3NX3Dm6HFqlQqDI1U276ly+d6bOfnAP3PTa17PSriXIpJ3\nPfcHqZctEUWKxTbGgUnLHFNNRgeGqG5sMz+7wk8duIYrRq8nuPGNLBUsiTXEzqKFpaAtOw+89Nsv\nU1jvzuTLWpBhCfkzRd7dB9oq+ur9VAdGWBIBgUtRoSJJvVW8wJe4pBI441tI16HmxouydgRCodOq\nTAht20S3A8yixZiUUClWW00shi3bLyWoDGBdCKKAExIrUl+vKAt6ZUD/8CjNlka0E4KCoNFY8CKk\n2naYgVVRZlY7to72snrfFDe95IV8/g/+lufu2c39JxY58uFbUZMTDO4bYkPTsvToaebbUJUN9KYy\ntbajnwZLL9jFUNhi/JO3c0dfkeFWzMKGnbSahxFxPyprNvO4jc2ozbmPQT66+kuyvfwaMcp47cwc\nSBQZEJlP9Bxv0MazxbPsae2a+Z8vZFritwom41j4zCLrkV+rouDfN0kSEIJEpxSUpH94hMAl3Hbr\nF+nvrdBabVGulujv72f6kePMtywukDgDjeYKsRFUoxCdpviLJcA4EB5jwFnCIMQRcGahyfCeTUyX\nW/xf3/1SyhK27BhlobFCvegYGd3I/Pw5RASXXv9c6pu30fqbFvZcm2Ppaa694UZ0y9LfO85Se5V6\nz2Y2b7qaoycOMj15lrjVolwoEgYRbbNEuTqENgmxkkyunGCodzftQpmTcUi1WiawllJQYZEGxaJg\n51APx+faDM9axodLvOCSq0jPLTNZUBSNr+AJBCUrsfNzFz0b1bve9a6LfvL/V+O3fv0979o6sGaL\n5bVPVKek5ZxDGy+fZpFYKZFRidEt27GlCk0ESAhd1qsXuKwNONvj2+7SWx6lspvAegzeSolFZXiG\nwGqL0QKTQrudsNpYZXlxmekzZzjz+COcfOQBCsSUKkWiKABClIhwqoKMelGlfgq0aDVaVOo9bNq6\nDWtSGs0mWmfkHgnlUoA6ssDmepUr9+7n4K/8PhjH/kt2U52boRZJkmaT6Nwsp89O0zzTptTSDGwb\nobqSkrQXQdVJmlMUN4cEd32JF0w4rnvZd7JSj4gHL8NMT5Im2kMizmHdWrkzp22R4QhrdPHsnEGn\n8cy5TOLOWqz04jM5KSpXfJJdWYAQOWgqkJlBcJ6p+cP6CkPeqemE8CVGJdEa76CUOScLBM4YdK4b\noQ2VsECtBZ/+p88wsmmE+alz2JLihTe/khOHDjP12GNMTccING0MwiqCgkGmghRfbg0MJMpvi4Rz\nCKmQQUhhuMxPvOftLGC48+BXODE3xcSjJ0mUozY4RP/wCKEs0W6HlFLBqgYbxDTGDdMTU7zghaOM\nDx6gv76JqeWDDFTHGazt4PTpI9z6ub+kKmrs2rKXjeNXUy3VODt3nN5SPw9//W4qvSXsyjwbd1zG\nQLiLjZsu4aF7/o1oWNIODcXIoftBhIKVaUO0pczvbLgC8++n0KtLBK99Oa4VoGONSRNu+8IXSM6c\n4sOf/8rZd73rXR98uvn4tNUHIcRfCCFmhBAPdj3WL4T4nBDiSPZ/X9ff3imEOCqEeFQI8fKnO34+\n1tXMCdF4UNGR1axxiMBhpEVZydD4FlpRiBEQCkcBX2tHCIRVmRmG7aCvuTmG6IpgUuZdhBlN1vqG\nK+McLpCYJEbrBG1TktSyvJIyvxIzeXaeU8fPcu9dB3ngzttZOPs41iwDBpzA4bcqKlQUSxVGRrYw\nPLyZ2mA/tcA3JZXCEovtBpsbEBSaPHLXwzxw+HHK1V4a7YQHbv8PNpTLnsGpHWeDIsRgI0Flt2D8\n+/diBDTbhjiyuCPTlBYV4fgGlrcMYrdcyvdtGeAnxyKml5bpK9YITJswLEDo1nUp5mIp3sBGkutJ\nrpfI8wKjNgN2MS7zo3QYk57HeRCdxSUHDnP+gcjk5nA+QnssKci8NQw229pYq5HKYsxar4RXnzLe\n38Km9IqQg3fcSTlSyLBMC0PvyDAnjh5l88YNxCsgw4DEhmA9mY1UkqCz7YrDqayc63yXbjPVrLaa\nXLpzA3/83t/jy1+8jWJQps8KRsdHcI0mUQDNhVWStMno0CiF4T42bBmnUKuxvbqDK/e8mMdPnkEQ\nY1SNajjCxNRJ5mZW+NgnPkzSniVNF/neN7yeq669jgcffBC7bHnwvkdZnVvhkYdP004Sn62aGVQ0\nhAsqLC1DaymluQqNuEWhIhk90Ed05xLIPnQFVCmiODtHaJdpqpQTjx1h1+go80cmLnYqXtT24a+A\nPwT+puuxXwL+3Tn3m0KIX8p+/69CiD14Zee9wDjweSHEbtfhDF94dN9QnpJrvEQ5IIgyLkIABmwK\nY/v20U41oVHYbLJ76cb1oqW5wEaHsCPW186dcxgLTnpZ+TVufwIJBGGYKSn7va5OGsRpm1ZTsrCw\nwPTsDI888gj33/d1tuzYyd4rr2HTpdfgbIQG5s7NMLb7UkZGx0jaMbOzJzjX14uMV6gNRISfXuFs\ncRG93GBlucnGx08w3FvmimKN0aFRzhUsGwpVKpUKpcVpGucCiksJl7zpOzi+OEKxpjCJBGWolSo0\nv3KU3kqR4QceITzyX9BqgNLrns+Hpxb5x72j/O2RhDEZo2yEESnKOWTHVmytHKpUgNbT4mqhAAAg\nAElEQVRJp6Oyww3ISjdrxj2+10NkrFPcerzAZwUKbbwLlMydwJXCmoyDAL587PBuSZnGvlLKt7tn\nFQdrPZtSW4cMJIELmD0zh9SGeqXE7OmT9JaLnD06gWobprVGDpe5/jkHuP32L5EsG6JSSGxs9h0M\nLgxoW+31GYzFKEG1p0qzHXPkKw8xUK3yxhtfx5998AO0Bi39Q4qGkzT1IKWRUU4dP4HmQbaO7+Ps\nqUn6evw99NGP/R/e9EPXcnrqQa7aVIfSZlZak/zun/4qLk147K6YHbUmv/aOV/OWn9hLsjRDuxVj\nVYHVZJmoJ+DY0DSXnHqE0Y3b2bBX02y06akOIGwb1R9TLZe4pK/OS664mUt+sEzyP/+K6PL9qIem\nWfzFd3D29z7Mn/zMOzigFAc/fScb6sWLmOp+PG2m4Jz7D2D+vIdfA/x19vNfA6/tevzvnXOxc+44\ncBS49mI/TDfomU9crzXgQArasWZ8y3bamTV3IDNtAekj81rvwHrwNI9cF6rV+qaq9Y1VPklW6I53\nQi7foNDakiSaZjtmZbXBuXPznDlxnBOHH+H+/5e6Nw+X6yrPfH9rrT3VfOZJRzoabdky8uzYxmAD\nNnaYCWGGEJopIYGEBO6FXNIhCTQkJN0hNx3IDB0SaAJppmAMhrYxtrGN50mWZEnWcHTmoea99xr6\nj11VpySToKdv337c63n0qE7tqjp19l57re97v/d737t/yOJTj0NrDU/EWCMYGZpkZHiC4eFhPJGg\n8bGpZZecYGlxkTSBizdvZmh+lUIgWG+sUEsS1mcXKBUHmXvyKM3FVepNzc7nPZtWOeCxL9/J3Kf/\nnummJGoKAlWkbQQjuRKysYj7/TcRDzu8JCW67ces7iryqsUJXjd+DugU32jwNxbLjfPV9SV0vSgh\ns2l/+jTpnsqnA5UbuE1/pNHPbKS7+xuDthktPZPL6wDNnUUgU4q2dC1erLV4MqtO2ThFpIaW1mzZ\ntYvlVpU0NeRyPoOVAZr1BrIQces3bmb7zDQiUr15BBmM4KRABB5pR7DWOEtiU6574TU4JfEKRbZv\nnaZ+cJbGA7McvfEhjn7vXp668U4O3nQ77bkFhv0C+YGQ7ZeezVrcZHDA5/0feA+XXfSzjI2NYWNo\ntgQTI3uoLpdYPJ7SXhfcfMs9uLzkzjtOkCYCXzvihia2krjpmDvZYml+gVp1mX2PNQjUQHY+CjHl\nIOZNL72Kn9+9mZ3v+hT2K/uhnCNeOkFzagDzod9iuJhyUZTjx9+5k+GJkESeOdX5jKoPQoitwDed\nc+d1fl5zzg10Hgtg1Tk3IIT4M+BHzrnPd479DXCjc+7L/9bnD+Q8d9WOCpDpKmSqQ53uQJcx6KLK\nEENjk6wbQ+iFBLJfsFT2Woh7zTkmc4Tqbwc+1UGn8xiV+TNwqiCFIvPhyyTIMkHV3qLSqcX5HnhC\nEvoevgoYGq4wOT3M2Ng4k5u3MDy+ne17ryRXKuNMzI9v+SI/vuMhDj10lOZt32fm0ks49MjDbJlf\nJSiO0E5WOaeQJz84zWprnvWldbCONDZMlcpErk0uV8Jvtii02iSRYLo8Ts5rIVRINJInkCF26K3Y\n52+Ff3gteTcNzzqf9uHbUbuv5ENHTlJzKcp5ONkvvyb7AEbTQRoU1iUb6k99Xajd921YtmUUaKTo\nGbv0bO66VQtj8VUmx2ZlprhrOhGFVBsVC8j6I7pwZE/G34Eg021QtRZ6qcFgZYDF2hrnX3ohD//g\nHloFwZ6zdyMExLUmswePUtg0zMJsFUOKQ2GcwypBYizS95Bak6QWoQRpMcdkocBznv9sFk8usHD4\nKWrHl0GnWGUYCn3GCvDSF7+Yb331qxgXUWskHEssP3PtJbzx47/OCf8BnBphsfVfef6ejyO8Ydab\nt1JdGOST//7/5uCDqzTWApZaLbZNRwwOBJj5GrnpEVqiTqXo00x9xqcDLrrq2TQfSXlhboHtExXc\nkWPk/TKP3jdPvJRQ2rRO/CvvpfxPf8v0Rc8jeM5Hif/ThTxw5Hx+eOBBwvwwyeGjpInmg47/PdUH\n55wTZ2Lkd9oQp/k+ZM8pnM3abT2RgV+JsVgn2TyxhbY15EO/w4cH2DA5ld6GKGvn80/5v4uYC5k5\nS2vXCV07ki3Z+8QGOOZcVgbt1POtyEA6yBqzAIRRICFJLFq2WV6xaBtTXasye2KOq66bwOok+72e\nwo8Eb37Pr/Hpl7+M4PLLSFfm2bRUZ10JitVF0mFB2ohZo87RRpXN42OcWFrg7GufTfuWeyiVimi/\nQJDGiMIwg8kSjbajEFbJmQAT+7ipvQQXRaxcX2HkK2djlmdh/jgiKrOWVPmda2/gt+7+HtQMqbEd\n1N2hFFhrwGUcBqM7+IzIQL6M5djtnJQZYavXV7FRnuybF73Hnsi8OK3rX0g6DkwiM/NxtnscINPi\nVFJmfTCInoiMtZbQj5CuTSosg6ODzC8usXDyJFrA0Mgw+x98nGIlz/DwCCbwe9UKT3WATk91OCqK\nNEmzTlKhEEJy9Suu58jNt3PBxT/D+3/jQww4mCoWGd08wZHFY8RtgyuHfPO/fQtNSNW1aSmfmXPH\neNFvvIF6fJRcrkhLlCgUZvACgRGzlItjtFYWKISSfFTA+g5fC6RU+FIRjQ7RoIURsFRLSGPJ0vIS\npepdvOBZW7CzSzxy8igPtxo8eOhRHjkUQC5hfKVE/T0f47xLPEr3fYU91SeYsiFu7xY2RfDErfcz\nHmu8goLGv5nFb1yvM7+NTxnzoiPlLoSYBBY6z58ANve9brrz3NOG6/N9qOQ8B5CaBJBExscQY5VA\nFPJs3XoOLdsiUGXwsvKXMF0EP6M3a2eQp4Fd/TiCtbYnMNZdBLxuH7+1HdpvRm7qD3+N0733QEeC\nrBP+JsJhjcPzspukVdM0m5nlu5AhLfdNanaNC85/DuWBCl/40N+x7eK7efCxgwzoAwxIqLcNM35A\nFFoq7TxroUczXmJkbIzFp2aZjHya37ydbZU81XqT0sQIaSMll8YoUWDXJz6I/cc/xB1p48UpjeYs\nYet2RhbmsUELW/KQ7RXCge2E51UoHvwOLxYhX4zbBKFAuhipvIxe3Dlv2mSWbdalgECKLv08u8E7\nYEJ2ro1FepksvHCQCpdNKpc5KvX3cnT/zyjVFmdPLRN3BXrTVCM7nJIUQyiynN9aILW0XYuonXDW\nRRfz+L0PgIXxyQEWm4bVY/PkfKjGCVEaE7uURCiCUHW+q8R3AhN4WG07Fn8SUKTO0D54hKRd53d/\n70O87TUv4nu3fgfrJTx++Agj+TyONnPGoq2hPOIxtrvI817zqxSHoTXeQo4NIVol1tfmKVTO5pZ7\nvs6umSmwikAqJirTPHjkYTyZMlWOyDtHayUmHDDkBgbwbYppwHJrnciv8PhjK9SbS4hBRVFonJ3g\nSHUNMRAiXEgiEyZGc5SKFRrFNvuXD/Dcl/w6Q3/6BW677QBDQz6lRLE0MwCPnVlZ8n+29+HrwFs6\nj98CfK3v+dcJIUIhxDZgF3D3T/swAR33J5/ACzM/AuWjhc+mbdtRoSKXK6BUVkXoR867k82XG3JU\nPwk76Oa3/TtV92elVE+GrF/sMuvCOzWtOP24EJk8Gmmmm6i1pd1OWW81qC4scs+td/LoD75Lsj7P\nWz/2Yb759//IQCpJ247ltmD3s86FQshaW3PM1InXVinnC9QPLzBQ9AkdjA3mWUlbbFUCv7HIRHmQ\nPDmiQsiP3v5rVH2JTRMS00Yce4qWN8nyIydpCfBNikjaaJvi11rU82tcs3crV521Fb/dxuFD7DqA\n4UZXaD9Y2z0HXf5B/3nvRWpdohkbUUK3Oapb/uy/Lj2+Qy+1c6TGoPVGybJ7rrW1HUxHgDBgfJQw\nrK83MGkKIRw8Vidpx5lRDYqpLZMZ9mAcQmedlMZCnGoSa3pl6u4cSE2CMY5Dxw/ywpe/jO3TM9xy\nyy0MFAt4QhJFkJpm9ncnmtALaSYW2iEpD+PGA4ZGZ1BqlNSkCL3C8jHYNPwsXDLN7LGDHJo9RDgi\nccUUqz0CDwLdpOxAewKV1Kk16hjVwIskudU2tqrxywEDkWUt8jhSPU5uOIfCEChNrW2IpeBo0saz\njsvHdzPywBpmqMBALkfUNsTOoGutn3YbbtwrP+0FQogvAHcCZwshjgsh3gZ8ArhOCHEAuLbzM865\nR4EvAY8B3wZ+5adVHnpfRHpZBSFNaEmNGBzjZW9+F698w1s5/6I9FHMDRKUAT0j8ztfuCrHIPlGR\n3iTrM/+UMgsNsSDIevKFkOjOjhdbjfK9U9pmT5n0TmY3hhWZt0BHayDLm7Nc2SaABqMFiQYRa9bW\nmrhEcOcDR/nCJ/6Ej97wYkrrKcsOwokp4nKF/U88hh0sEHsBlV17EcpRWF9lseIopBI5NMBA4nP1\nR3+D1XqLohN4UkBocLmUK37trxjcNwueQ+UGCaVF3fxFhj5zI9KmkBtF2jz1kZDcHUfwtlrc1+7k\nDSM5xGgR1QKUh7Myc1RyGTaQLQIKbEb8ynAHcwo1ubs4WN3HTjQZhdm6bFHoms3oDm8kozFDanSn\nSS27Ybvn1xowqe5R3UXW94R12TErPTzbRiSCam0JJFSGhxkYnSKfK+MUNJ1hdX4eYQyegPnZhSwy\nDAJELqQhHE7bLK3p9HgIP8BEkuX1GtPnn0PRC1lbSpg/sk59VSNNpjERhD66ZWitN7F1D5MfZs+1\n78W4cVYXW6iWY6wwxZV7XsF05Vz2PXiYb3zrv/HVf76HBx/YTzRa4Pe++j6e9cppckMKJwao2iZW\nGVSYw08TvKlN3FCAgZEIO5LDtjWPzwo8aymVIwqlkJLnEJFADEhKEbwvN8RHy6/l8s/vo33j1/GO\nGkwlJDSW0YEBpleSM7kNszn/017gnHu9c27SOec756adc3/jnFt2zr3AObfLOXetc26l7/Ufc87t\ncM6d7Zy78Uy+RFbNMsRxCzyBF4zystf+Ms+79ga2b93G5OhohyB0aiWhH/XuHut/TddHsjuEEKeQ\na7rPdenPp5cr+3fEXi9A3w2hOz0AzmUUWeN01qjjLEJ55HIlfnTPj3j1z17AULHIQHEYEzoCI0iW\n1rnmgovJeT5LT84xPlBm5LxtlAFtDUtFgcgVKLVibKA4eqwFUQ4X14ibMXlVoFAZ4Oi3P0VKjsTz\nkInBiYCg5tB+Qk5btE1BQOGxQxhXwz1aJpdbx0xO8JqFFpHv4bTpgLYZ01J2ms8yqZeNcbqGY/85\n79c46J6fnyg53n19VzdiY970XU/Vu76Yje5I4cCmjrjdxqSGVr2GFlnLfGvhKFLESBlw6aUXYBoJ\nS7NrdKqh0AE4nXOEob/x/TpbVrdZ60XXXc/4yCgnTswThcUMP9ESX2RKUcJZ8HyUEAwOBLz43a/C\n5i0j5S0Iz9Fqa0Ynxqi3LLVWk5PHUr70xW8zf/wJTsweIsxpZhee5MrrL2biojI7rhnighvOY3Ss\nzLY92xnZMsxLXnEt7YkCY42UVt6QKsvOiTKxB2a1iVleo+AMl5ZSXj7j88tbd3LuSoXGkSpcP0n7\nzZ+kNeEzUI8ZFCGN+hpB8nRB3n9tPENozoDVRLkSDeXxu5/6OMPj45SjHJFXYGVuiDAUJNrDyVOF\nMLoUWWttj+CShf0d3UfreoKmp0qbOcCR2qzCIJFYb6NWL0+jXZtOV2H/whGoAG10h1xlQYCHQBqB\nSTTHZ0+yxx8mTHby/S9+mOr6MsWcojI8Re3ELI/ffhuhMGhPUp1fofyNW9l02cXMPvQIF8/GOH8Z\nozxqecexv/5zhnwYjvPkinnmq/NsPprH84/RcBUGbIl1mpSmRklqVYJcSKoM/tZRzPwJWkNjlI5H\npPM5+LWv4n/qPZy3BfavWB71Bmk1az3KsgKsNljVuTG75Ueb4S5SSnSfRNupC2jHrcpm5CahNoxq\ndKcZLIu4RM/hqheZOdfhRXUWgc7UUE4Qa02SaoQBz4UYpXEtzeDkKEmjyep8A+MsI6ObOPzUEsZJ\nrOgSnropjMUIi+y4YtOVqnMW37NESO6+/TbGR6coD25BqGXW16r4NgXr0AKcAadAS8fg8zex+cqL\nyesSerBNtD5NkDc02yH16hL3P3gfg8Mev/zWN7Hv5i8xtGkSLxhmZnQ7+S2ToOo4IkbGhjm5UKMU\nFSlf/xwGZ2aYmdnM2UfmmPqrf0YkVVxjHBEW0baKnBlA/s7raBzcjPzU7+DtP0G661IKr3kljbkX\nkC/eSrC2CuUIL8wzNb+AkBbSMwManxF6CpApCCXa8Zxrrufscy5jemI3Q0NDtNM2qbaZixAbPf39\no3836tXXe1FDx2T1tF1LiE5EoWRP+nxDcjQb1ulTIoPsfRs7Yze6QGb6ktlEE1jtSD3B73/0Izz+\ng7v4xEfeQru6TiCLtNqOhw4fZtvmzYxOD5E3ECrJEo6JXbt4/McPo3TKxGCI7ysCkUMhGG4VCbyQ\nRKTEpIyPjdCWjqARUjYt4rIjCD3kShO/XEG36/gyRzw0RqoU4cXnYEVMIZ6nefvnUEmV4p69vP2S\nC3uKzM6SMTLdqRGXVN2/P+OC9PtTnn5unKBXkuwe64+4TjvBvdd0FxdhT0tN+ngP1lqUC0h1C20E\nEkOj3qLWSkgAlQbMzZ/ASUFiBTLsAJgik4Tv6jlorTGdxc12FrdYZ4xH38vzyAP389a3v4WlhYWs\nHm5kh6nqZz0f1uHlFVe/+ueI0nGUF9Gq1fHR2FhwdP8RbvrG1xFoZmbGedlLXs5ItIWCHKeYn2Rx\n3dFKLF5ZsO2szeRz4+w4ezebt+1Ba03SSjAyoLl7M0srGWbi9lxFvJQiGwJX9UjX9hNddg4yWcWl\nAvfEA5gDB8n/6Nv4P1ilXRgmXVjHHJ9DiIzWfabjGbEoCAHWH+WX/sMneO8HfodSMSLK+wT5USZn\n9nDxpZeTLygCv//rbtBphZI4kakrYTe6K1UHOd+YxBml11qDszKrNDhBYrP2aqHtKZO3C7CdAiza\nDeEP7WxWRjXgGUmaGupoaj7khcevPe+VXH3BOTTm2qw1WxjbJsjlGPOgvrbMyuFFMJI4dcR5xT33\n3EVxoshYZZKkasgNTTK5dZLqusYrQqmtUTKC1JG26gzmcjSKEStDQ/h1jWg42pHBra+QegXMyDre\nySN4yw3Cr3yH1toibswjd+83MTu2kv74EI39j2PmjzIaDCMCjTKZTqTtiNZoY0gTkzUsYXrYjSAL\np1OTOVt1kENERxvBOoOzJlsgjEOSgbnGGIxNcTbpSa5Za3uEJt2RhTMZsogD2t28P01oyxisopnG\ntDXQbOFaCZ4TxCqL2nSjjnYQW0HkR2gpsVbQSlN8IdAdXKrlIFaSBIVPgBcY6tUGa8dn+fAH3s8l\nV1wEqetEoo4gn6OpwEY+Wy/bxpbdZ2fKWf4KA4MRaQIfed8HufHrn2BmbIWXbB7l8Y9/kY/tejX+\n9BgHHz7E6uE5IjVDYcBnYGQ79z58hNLUTsqFLXjBKAtzBt8o0uU8N33zc/h7pmmfdBy74/uE7z4X\nzr8As34M+/7vYV7yUsI0jyzmCIpl0i/9I2mjibABka+Y2baVYmBoWU3inZoK/lvjGbEoWAcveNXr\n2LP3UoIos/9CBljpYbVHlCuQLxbwvOBplYXuDau6HPbOcSMzboB1p5qXwAZi3stbe0M8LaI49Ti9\nnadrk9arZDgIhCLCIzTQThMuzhdYWF1gbHqacj5PGloa9QYhHvlKiXqS4DzwlcBraHaNTjFWGaCt\nMo2FUsHjycUl1OgoA2MFDAZfWcaCgJL2aK+sMT6+mdAZZOKIrESut3BhQJh3qPkm7iW/iofC5XIU\nBwrYcDu1q95BML8fr7ZO+NzreOdll1BtNwnahrZLMXKjwiI4tcmpH1fogrxZSkDH3aoPd+metP5u\n177Iq7856nQ26imf4zIGm1A+Qm2UiS2gLZkQqxOIjhKV1prEGLZu3kIcx5lWhuu0d3f0MVMsaSfS\ns9YS08b3cgwOlpg/vsBAGGTRqZWEnqDtYMuWLUTCI5Sw/fJzqOSGO9qZHn5Y4c//42cgbVEuJHjz\nLb73H7/Owi372dpKyY1sp5wbZXVtCeUsXrvOJn+QTSPTiERSq7cI/BFq1TZRMMhN//RlnG6gnj1G\nkBaYbqwRu1Xkn/wqyVJMaAV+uQC5oGMIpAkDja3PwnqDRMXsOXsHDp8wn0OLM0sd4BmyKExOb+e1\n73gD04PDRMMRqBxCeJ1csEFQKDE2NoEnYgLf64WBWaSgeilCFwMQQCS9Hoq+gQNkPoqnA5NKqYzu\nrGRvAemXNe8H0IQQdHTbe6Gu1tkOlXYESHWSIo1jeVjjxqd48gd3kcYpom0Z9T0GrKU0Nsnw9BDO\naAaxnJfP89DiLLMPHGLSJpTKOWrVBa749TfhLy/C0UWGdYGUhGa8RqHs4xdCgtl5Sq6OHY/g+XtQ\nxiGcJZ2HZGoXSf4YxG3ciqPllUiufC6FfZ/CNhK8oZ2Ir/0j55y7i2v0SYTIoayP7lYbut2L2pxy\nHqy1OG1IrTllseiWDTNOyIYNYOZp4VDdRcSRqTF5KktHnN2Q1u/869dfcC4TezGdfgg8RSpAY0m0\noS0zrYeW1RhraTabBEpx9PARjJBEno92GikFeT9EWUNqN64/nbmULyjGJ0YJyz6pSpg9chTha8Z2\n5ykUFIf2PwFtTXMt5g3v/AC+KJMvZJvR33zmL5lbPMCm7TmeM/NSvvvbX2PxiSNEnmNJGQ4cnMVp\ny56957A8Kzk530CvxkxsyrOy0iSYy2e/zwV8+J2/yfFbf4RXS3lwVCMsmMTgf/Qe4o/9KbnAwe5h\nmi6G4TyhkuiiwIQhMlmG5jxqpEhQLDOoUuJqg8HkzPmFz4hFIcoF5FWBoBRhE9m7SEoKkBYbx/jK\nI5fbaOroTjhrNVJmpa+e1BeQtuNsR5eyo81H7yaGjV1LcWolo3tM9AGN3R2ze7yrKL0hJivQ1uBH\nIbFNmZjZxMRZk7ROpjx43xEGt41RrbWI8gWagWLw+Zdw2113IRothBZ4TtJKEyYqBc4plXGjQ5i1\nNfwEqt+9g7Mu205hIE+QT5kpj6C1xmcMAk1zbBzTvAB56eWs7ymSJlXkqoaiRc7VCb/yL6TkaXmQ\nqwvct/4C1chnsulhDRUGuHXLDeftoRKnzCmN1Fk4319JOKWK4DZC/I0FIAMWraP38+mLan/Q1TtO\nxp48PYrolUTpWxwyYmUPx1F+2GNFptYQ5SOU8ntqTdljQ9qRw++CzcKB7Jrdqm5PRlY2XZ5rMrNj\nDBVJVpdWKQ0G+MpiYnC+IadgbNcwLa+KsQltE2PSkLu+fy/L6yu84MJL+NZnP48VBqcTUuEQMwUq\nkeXw0WXKKsfy6nEWjh7GPHEMGwhEK0fdJDzx2JN87XNfYszPUfMdTREwv3AI60lsq4lbLhH+19tQ\nwuEiBaFEmywN88IcmDoq1DTPHoeFNj5rtPOw40VXUS4Wzvh+fEZUHzzPI1+MsFKAzHc0D7PJJrwS\ncXONxLZJcKgOdpBFCIYgCEjTBGmzcLA3uTrKxP123N2JoU3H28Fl0mPWdheALHcEev4GTwt5bebj\naBwoz8cY07OATdstfAslL2Tu2/cydfnLGfYNC7d8neFCEU84JtJxXvXr7yd32+sYKAzj6WWiUJJf\niykbQ72RsH1bniE9QmNtnaSxgPfYUbyhEqIwiWqvMbDlbMSuVSo/rIB3Ep58iPrZmwgvhag0gQ4U\nrDbwllaJjxfxgxxeYZB04Tjehz6He8trSMjhPR6w3DrEcPCPmE038M6hKn/UWGNNNVHWg648mdgo\nC5pujU9b8DNauuvu/sL1bsgNhSvboSvbvogtY0XajuCL73lZ8uBcR/5CIET3enTUpDsYkjUGPwgx\nzTTrmJQSE6d4xVx2bdspTkKMw09cJv2PQTlH0zoCm2ZgIRnu4UmJlYIcgqmxLZx86gCrJzx27N7K\n0rEjtFcth2oKbyBPrmYISwqv1eA7H/8MA3sG+P53v8/P/sL7uPrl1zJ6fI5//uQXOas8wJADEQta\nJahfNsLzLtzDciK54/7HKI3u5NYf3seWdIahRUf7ht18/N9/luUnDuANwkkWKCifgwcXkBRZu3aA\n4Vu2kXiPYGyZYFQRHz9JvlBAFCIoga62EV4DfdklRL/xdtwr34i44YPkvn437gd3U/D/D4sUAAQe\n0nmojo6gcFmvgeckfm6IQhTheUEW6tvMJ0H2ZMRlZi6iZKenrouGid4uL4TAKYnteEZILL5UPfNW\nY0wW0p4mG9aNGBwZcNnbEZXY6AJ0qtO8ZSmNVYjX68w8bw/5eI6QRVCCuNnC1RrUW8c5+0WvoGot\nan2ZoN1CtjQ6BzkvZUppVlpr1E+uEfkBB5aPUq74+MS4oEZjrUhw3igrjxylWRTEdZ/43irFqEF8\nfwNqNRgZBk9ht2zDHxhASocSdWQupP5zv8jJuRYrx9fRW59FXoSkwkcdrzOxZxtPNY6Txhpls2sS\n2Exi3fSlULhOB6TpiyTURgPU6eN0wpNzfVhCX7dlT8WJrCnLdX+PUFiZ+Xd5TmUenB0Gq3YgOtfe\n1Fu9a5haR1sZjLQ9TwxjoB6nOKtQNpORN9oQFiMKpVwmQ68GGNs5zdad52AakkSA0Aqls3Zz02pR\nnU344d/cyJd+958oLK2yY6zIB657NQsP34l3uM3843P4fkBgHTsu3cXJw8tUJgeZ3rSN6mqVXBCT\nNhzxWovom3dwxx/+OdV9+/EKKc1mDb9qaNdaCC9kda3O90c9zOyTeM+aQYUhrm1QLZ/ExVinSazE\nSI2wIe7Bx4jX5lnbeTHhZAJpjdTXGMIzvhefEYtCj2+A7JFbOkeyHUL67Ny1m+GhEkiHCFQ2EYTo\n0JOzSkK38uA6zkTdmzt2hjRNMjRcd9SH6cqtZ2mFJwTSuM7jLtU3+2dMFvpqm7b4jswAACAASURB\nVEmYS+FhtSGJ0060ocFoms4jTjWHbr+L5259Fvfcexc/c9lFzAxW2O4LZioeQ8AfyALnhWUuetFF\nbJ6YoqhjfGloez479oywVpMUhCF0hunnb8H5BSp+hQGnCBaO0fjR7cTtCoVEIIMU8/MV3Hs/TfH4\nOguqRvv4SWgKlg4/ha02aTYT1hfqnFhvcbKwjeO2TLtgefiu73GfCTj4wxWO3f0tDq01+NrmLRRr\ngkQBpkkr1kCmk+gsOCkxQJL91b1F1WpzisArPB00VMrPnKLlBpEoixoyhqjMVG8679lI64zTWchs\n7IY3hIPEJOg0I4q1Gq1O5JFxU3LCI3DZ61Is1lOUI4/Az/QfErKKkwJso02SJAyUK+zeOcbMzl3Y\npsY4TeBgcMs4QSsl0mCsRvqWJDaINcvynW3++Ip387vbr8DcfIzNnscmDaNRwmgY0Pj2Aa46fzft\nlQVM0uCaF93A0ORWtm/ZS+Xl56APLnLd9++nqOqMlgOmvJB2IyKXK1Gf17RqOdLBZfQvPhf5cxOk\nz74K6xK8QoBs+cicBOWhL3wjjJbxFnPwmc8T2XHiP/0vtEdGkIWBTBznDMczYlGAjR3j9CE9hVIh\nhcoQ5UqeKAx7iknZnMrER0VfRaE7umxGT0iEoidZ3v861dcZ2Q17sxzYPS2ndqKf1y8Rso/JJyCQ\nApVaxqe2cfNXvgkW5g48RrXWYFaDaoAUlnwkaNQb1As5njg2SxwIZJRnYvtZxH7Kalqj1gRRt9Ru\nPobIt1AFj/ZSESLLarVFxfdoDPsgBbEKEO94GfV6nhyDtJxmSa+iZMi8rlNN28wvLLFaq7Py5KOk\nwrFmI5YX9rFpxwUkukF9UVJfUvDQw6jdExS0l5VePZnZvPUulOvd/D0M5rTI9OnVm4warruOV12s\noQ+T6X/96RWmLrYTqADnTNa6LjpYj8rwnKx5zfU2g9Rs6HC4TuWhW5r2fIkREi0yZqW1kMvlOXjw\nIA8/+DiP3nEPOE2ug2HUF45hkypNk1KQHlaHXHPDs0jaFuckQ56PHfPRiSGKNSUPci2PgDbPGSxS\nWGtQb9UZGS7jBx7DlWFmRjcx5EegLW1X4ZpAMqpDBosRQRyTH5C004R6o8pqUsJby+GOLpK88DxU\n4iNqDfyiR9zUyMEpogf/Ejm3imYPPPYE4uHv4knIrbUZ2LSJKPJ/8g32E8YzZlH414ZzFic8hsZm\nGJsYo1LKEapskvTMUITo2aA5t2E60s9X8KTqaDEKhO4QWoTEkOW23bTEUxv13H48IZuoWZ9l1ryl\nMCbNdjankDIg0JYrJrfzhne/j0dPnMCWfe77xg84O9VcuPcsmqGgik+Eohoa6n//Q/b86isYSovk\nFhoce/gA+WKRJw+vEjnB6Kc+ws4LLsE9KZGySBoe5uTHf5+p732eartGcFSTrLVoB4Lq4E5y7iFW\na2BagoYqsygcayvrPLhY5alUcsL6rHkpx5o1jjUEbc/y3X+5i/re67jJWZ5K6jw8uYft1TWaVmMJ\nQadE0uvxB4S2mZJzZ3HwDD1Dno1r1gFkTyMsndJEZjOjYMepEQVk/JDTy8XdUqMSWcu79WSmAeEp\nUFnKZ5XAuOwaGwmppKfpqHWGF2mdpSVa2ayCoSypMDSaTWq1GjlbJKmt8Pj3b2GgkiPyJIW0QM3C\nyGiBIPAoyJR7/uVhztuxiZIz+GFCSWtKYcCll5/DVCHHkNZs9SRbXn0lE41Vil6JkeECOklxgSM/\nUiQ5dILBPROcW1nnfW/+Fa6ZbGJEDSqSxmqNEVEmWQt4QfNc6rfejf2bY/i//zHiNM5StbamVQxR\nfp7kVRcT/9lnST/zV0TeLlq7zyfJh0xedhHt4yeIRjZzpuMZsyj07OI4NfTsDj8MGRgYwI8CfE/2\nZMR6bDg20hDnOoIcp/Dys3o7fXmv65bC+nQAbF8tfgM172sIojvhHbITpSAyx6O2gxtvvInp83ZS\nd5ZXXn8tpAoROEoPHKCtQhKhOySpgINGc9+ffZVayaMZwLptsXZimZG2opZX/MFNN+F/7N0U/v2b\nWdcrhNE0hS/9BWniCNKEZblMPY1JG4Zjqkp894O09uRojg7gjYyBjliLIcl8bFmzmhVrqWrBatyk\nFgUUck1qOy/lqvf8BUduv4/69q28eupctK8R7RRhLc0k3cBSOtFSf09Jf+mw/znglDSu+3xWsTC9\nio4TfQxIeeqi3JsfskNbZqOBqdvbonwvwxQ6tGohBKEfZNfcUx3xWdmZA1m1w7cC34GP7CwWGqcd\nsU6RoSTRGTkraVvidgMloTg4TNy0eMJS8CR6doW8D7vOPxtdc4TC4+gD+1Fxiu9DoCz2gf1M1i0D\n5UFKpRyB87O/BUdueQ5TX0XuCkmvuIrn5caYWk+o4FPQgsV6TD1tclb5LCrFdVKTI6wnyN2TuGIJ\nHVkiUySd3Y9fGkJu205pJk9aP0rl3PNRfp71yGK8InNLx878XjzjV/7/PjYMUk8lrXRKYDJg8+Yd\nlEoFvDBAKS/LL6UDYUmd69iq2R6w1e1XEAIcKmO7KAldTn9fG7YGnMrQ9Awfzybk6TZpwrqOXLzr\nNBK5zMBeWYqDJcqbd/D9r/4DV1zzUh6+9S4GCpoAwVgZGmt1ymXFiokZJGH7QMCQUhxPaywbMDbg\nvqMtZoI8y6nhhb/1i8x5Hi/61t9x2394G/JtlzPuFXny2rcR1yVVp6jXLbVYUTVtnrj8VbSOWW55\n7l4eeOxxHjp+kqM2YkV6LFm4nxSZL7JoHCcdLDTb7PMVj/3d73LTn78VX6Y8cPgoN/3gVsLFNbQP\naaCw0vRMbzcEZ7LFVrvMkzLTYe0uptn1zEBYiXUC1VE6EtaQJBrpO2JfEOqUUNbx/RqeAh0nCNWx\nhrMeVoCWPtZIonwuI1YZi1YSWpnZbKOZtQVLl/UmNLXBphapFIGUtGxGTXaAFVn64VlJXmRNbsIJ\nQuEzH6fgGUzTY8WTiGaCVXDuz4xQLsOJ/ccoB5IoUPgCknYbUnji9v3kkahGg9A48kawdWqEgoL6\noSPsOrxAO5WEYQ6PVaJEsWUkYvLRYwyPCwr/7qVQbRGdPMoffuY6/uhjv8WYL9hb0vzt//MryO/e\nTIIHww4GZ/D3L6FLJbzCHkSSy8rQX7mP5KOvof1/vQ21ajE3/h1B7ixqjz5MsrqMt/6/sHX6f/c4\nPULYIBp5eEGBYi6PpwRSZc0z0nXSgw5PQcqMgPQ0zkHnJu+Wtp5WF+805Pwkhl2Px2A3mrB63PnO\n+4yWVDzLpt0XENoGE5vO5eTCEtYpmp2zfOXlFzO7rknzAQkS22yRjwxRbMGCkZblFGabNWotS76U\n5+EH7mdiejN/8um/5OgvPptjjROMC40SHsXRIdoWjjZimtbnyESeo4fnCKaGaVdyJDZgXbepO0NN\nWIYJ8ItFYk+SKslaJmUDfsSQTTlSaHLkjkcwU1sZdwFxHCOUItdhi55+PvqvUVYt2sBssmpCBgRL\n4bDa4akALWFmZjNxy0O1mxg5yGzVcvJkStoW5EplknaNXBCilMQJi2cNXhigE4NE4ctOQ1OYRWpe\nJ31wAqQnyAWSxGlSB9VWwlSphMRhlCBOITYgFFg8Eu1w0hEb2LVjgnaqiW2KSy0rLQMeaJkwNrYD\nIx2JTpHCIXVmaiusRzGvKErB+OYKUkryLqW5uErZeJR8gWcF2ATnSYJiBWPWmGzWyLdSpNPwgheT\n+/RfIya3QW2dLS98Hr+/d5LfvmwrufO3k+64gqBp8dMmMk1oeXnU5XtZ2z5KaCsUQoGpG4I7D8L8\nj1jzLWr8SuppTCGQpEbT1v8HAo3/+ujIiFsfPxpkYmKCSrmAh8zYszbLb+krj/Xk3CUbfgSdY7Yv\nEulvnIJsgdGZadpGKbJvocjaaDtGuCIT/1RSIgzYKCVebDPilph7fJHAP8gIEFuPFevzmHM8cv+9\n/MXctxloaPJepk68pRKwJXVMOImvLHVgtQ1L0Qh+LqJWnWNi+wyllSYfeP+HyN37DzSrMK8d9fUG\nJ1qOVgxHqgknFmO+vanC9x7cx12LDZaVYkFmzVaLniNoWY4cnUcnljoKR0BQdZwwLQ74CrNgqBc8\nLv/56whSTb4Q4tKMNdhLH/rSgf6frbV9ZC/XIxRlC3THBs9LkanHeqPJzrPO5j//1R/z+msu4iPX\nvZjffuNb+MAvv4PnnrudzZv24oxlpbpE4AYyV20Bs0tVlBcRa41zgtSXPQPdJNFoIVG5EC1B+D5K\nGspBxEq1Rktl4qhSgRaSNLU00hSlwFjFuudorM8xNKnQ1nHeuSVaBYVLBQfvT9lUsoyHAUoa/Jal\nHCgKUjM8UMRPHAvC8IiL8XMRlXLEttFhisU8vnKk5UFa3gJWCsJCiF6NOevoSTwlybcrxF/4J5L4\nCcp6CfOZg8Tvei15VSA9UUeePEbrjb9A4xcGEOUp0JowNMTfPYJ64/8LYhUrFPaa11PnWprNgCA4\nhvpPv4d55Ee01gRNFWM3nbma8zOCvPSTR8ZXcK5TpRIW5XsUyiWiKMrs3qTpGbuKrvsRXYJNx0Ck\nx8Df6MmHU/GG3m90mQisy6yPTsmVuwuJkrInROo6dnSeVJRigTh8nJv3HWDXebv48ufuYG8Q4ruY\neiKojE0ycvI4Dxx5lHg6oHC8TTWyhNUEhiPEUpucEfhhgGlq0mKBQjVhcnSY//7t20lLHs5G/PDJ\nH3BuEXSimFut0/IC1pM2TQn3acMjBZ/ktnu5qJRH1BJSk1nhaW2phrCcZhwBmaTUPRjxAhSGQavR\nfpbrfvaPPoOq1Qg3D5HECVY6pFU9lqFxHeGavqpMt3lJii4mk8nlZ8K7AisE0kKqYGJujde99+3M\n3nk/C5/9AtXQo5iPuD2WXPPuNzE1LThwcJBGmHDzd29BtzUiF5EbqBCnuoMfOZTvoTvSbYgMN0ri\nFhaIhKKqcnhWUhkoEoWKIU8QYVj3Aw4fbRL54GyMlYC1tNuQakMUBCSmSSmXI/EspSDi4L4T+Gkm\n5hP5oMIAapp60iDnArzNMP6zz0Z8/nYGowLarpIKCUMRQb7EyPIsKtpNVTU5mRhYSKAdInIWvvZD\noIAxDlUDx2KmMjYisPcfIvcH78L/vVHaF42S3nkTRbmJ3DteRzNdhE1lWjMRhcW7SK/+TaInPoxs\nTlFbXmV+eZ1BPciqrFM9eeZqzj91URBC/C3wEmDBbag5fxJ4KZAATwJvdc6tCSG2Ao8DT3Te/iPn\n3C/99K/RrU1ZxCnCHq5zLGOmeVGJ8entDB85zLHDczTrbaQUGY9AbABenueRpKZDklE4BFaCMgJB\n5lPYDyB2PQ10R2QE6OXNcCqaHveRmoRQIAxK+kwMRsweWmJEO9zqKmUsm6bHccsLeEmbE08dZ9SX\n/OU7P85Vn/slKj9eYfEj/4WIgHaSUBkIiWsxq3nJig1ZbK0QTlXYI/Zy9Lf/jO3bJli8v8GnPv/X\nfGBwlPSpJZbDgLjZog7sG/LZt20TrUaKFHX8pMUR5xC+RBtLXvo8nqZMqyDzUQjAINlnU0LhGHAe\nqdY0PcvokkEC8WqLJFB4XSUmsrTqX/OFzDCc7vkhM3tRAmcEvidRc+s8a6TEc3Zu5tF3fYCzXnc1\n5Zxjx6ZxFg+e5LWvvp4v/vGneTS2KBtSG5Ccu2knucinMjTMlx95gGHh0fKyiEQGPkanNGMNODzn\nkSofjKUwNsRLr7iEUiGhsrRAaX4dOR2xeVOF4tAAjx1f5cBswsF9s9Q9xYH5OsqAF6eIQHPwsGaq\nEDAsLcFKTChTWs4RWIHvS461WwQBjIkCzjQo7h6jeuPN7DSKVtJCDESM/ck/89gbXkTpMsPkP32b\n+961B2/5GGtzCe1bbkUUQvzhIYLjCamnUKaAvXgb6uhJ2lOO8Ngq8v4aSXgCsRTg/8J78e68G+2t\noF78HvJ/9g3SXEJ05RXYT36F4LPXEb/9Y4jhsyj/5ptYnl1ntVyjEJUJWk2onhmucCbpw2eBG057\n7rvAec65vcB+4EN9x550zl3Q+XcGC0I2TscS+p/PJpkE51EZGKJYKaK8TJZd9YBAdwq9th8glH0f\n3S+ecooVOqemHqcTb3pphJK99zmdvcbzPKRRFAoFRE4RJZBI2PfUMZRxjAeS0UhyXDmcaTLcKvCN\nhXs458NvohUIVAorSUwQ+ox4PkmS0GjUyPkeXhiQHxxkaNMWWhWB2CdZPNvHpI64aahKOObB0kQF\nm9ZB1lCVEG0dsQdtK0k9QSoEeIpGmlBFk2BpJgmJcRSspG0tVV8hU1gaCHCRT1ptYKxFi43zePpC\n0CULdQFbKb3eeZMiYzlKKYkbLS7fsZUtUYGHbrmbXDXlyVse4vkffCdfnhDUrr+Au75zK4MTQ1x1\nzXYKvmVYeXi1RUS1hV8p4glJ2m6hRMY/0K5TC1L0mKtF33DW5CA/97JruPSKCxira5Inl5k7sYY5\nUGfhiRorR1aZWW/wos3jvOWys/iFS87i5/ZMsS3S+CqmZTUDA6MY2yZptTGuQawFDS1xnqPZ8vCL\nitHhiDht4wKQcw22LfhESpDPKYbW24RjPoMXeuz8vY8xeTBg/MBDzFUNw8MpftEnTAPs/BqJFIhi\nAENDuLUGNh/h5mvEQZnGvsdh9xT23sdw99+LxeGnBazSqMO34B8+jqrNkk5onISCrxAj48T72oiJ\nLXgGtIEoVzzTW/F/zgzGOfcd53oUqR+RqTb/fxqi4+2XuTxttC9nNe1s4hkh8Yoj7Nq+i0K5RBDK\nnheA6LgP+X52UyWpRkgfZzu7PoDKIgKH6IGRXWCsS2xJ07RnWJJas0HD7WAWXW8CH4kVGqEd1aTK\n2iP7mLnkWkIky2urvOT6q5kUApXGRDmPcLLAsO9jFhIeeuog5+w8l6/bowSvv5pcLLj0LT9PUfrM\nhAnKStpO0aDAD+/bR6OVMjq5m/W5FvUnPcZ+/nqOO8kRmXACeOSCMVYjSVKvU/Hy5I2P1ZKqhqYE\nLTxWTEIhNawFEANN5eELwWBxFC58DliFSAwpkkY7ZV8iaa62KJQ8gswNL2tH7yy8WZmvU0YUoI1B\nSYnGZQ7OQiA9QaByXHbBBVyzdy/77n2YfY/ux1rLfgsHTyzx2Q/+JdX7qvzJ/XOcNTbD5mNVLjln\nLznnCLQm38hxbKHN1W++iEozJcpJ0sU2oXMgNIEXoo1j9+6zuOTCrVy2cwsvvfhcJkJYuu12nrzl\nHlZsg8JkkWKxSFE7Kvc+RXDoJOMPPsK26iGuHqnynivH+c/v2smbXvMsppqKWmuR2BWwOUmxLJAF\nyeazQIqAuk3ZPFZhrZaw+5rdlGMYfrRB2VpyoSIvPJLI59ArXsbW119Ea+JqnFVc9r0HkY8+wGvm\nBzBxiN17Dl4sCJWHf/11tC+8llo4g63Nk0sV7TRCGYOf97D7Bkk/9ikCZ1jZNkjy3xepHv4arDka\nf3uclDHCQ02aawuEB/YjpsocjGIiL0RMT9KMzhwp+F8BNP47oF+LcZsQ4gEhxK1CiOf8a28SQrxT\nCPFjIcSPF5eWsuewp+zq/cFDN1owBiqDYxSiEN8Lezt7T4VYbEivna7SZE/b/buf2/1l3R4JpTIe\nhBCi10XZXUR6IFunVyJJU6QVFAfyTO7cSsMITrQ0V57/M4y4gBELmzxJqAKabU2xati8YzuxsZRG\ni0x88pc4dPkMJ+9+gMgDIVN8UtCG2fll7rvzflpNzd0//AEuErTbTe64/zFaCIyGeimAKERjcVFI\n6gyimaCNJVbQSDWxy5D3xIEVEickOrUspo6l6iLx+go1aTIreOPwrceLf+kd1FttlHEdfsCpo3cO\nO5GXgB4hKYsoBC5QVPIBw7kiX/nKTR25PI9l6TINhMSRmxjiLO2oiZhf945z7lXP5tjffZVrdgxT\nTjSFwWmSxjrTm0dJix5N2WSqWKGApBgWcNpx5d6z2eRLtgiPbbu20KxXke2E2moVbzRABTBy0V7s\nSJ6CTImEJe8bpFzDW22inlgmmF3GKwhe/+oL/wd1bx5s2XXX937WsKcz3vl29211Sy21RluSLVkO\nAsvGA3Z4fmZyAfWcEB6PAH/gUOEBgaIIIUBSwRCTFzKUixBDYiCBBxgcUsZ27Mi2bFmD7das7lbP\nw53PvIc1vT/2ObdvywQEr4qyV1VX39r33n323eestdfv+/sO/MPXwutDk6tVn6GRhDyis9Zg0q/1\nNlJK1s/tkExiznz6GbK0bmkK6/CiTsOOjWRhPqOfdCk//ruksiAdTHiPWKN6/kViV8F4QEgdthmR\nf/5F0rd9O3N33Eq0cDv50mHm/tG/JTzwA5hmTDo3T7Iwx0TmLEhN+o0HSO95F5PQQyaC9G//ANsf\n+2PSCGReMdGBY2vHGI9yxk89y6r8G1oUhBA/DVjgQ9NDV4AjIYR7gR8FflsI0fnzfjeE8IEQwv0h\nhPuXlxbrY8AMEPxfvB4iymgv38TC8gJRrIi1JIpqCuf+UmDGV5hlQ1xHnX0ZyWaGQ8ywAmPMHpg4\nO4f17rrrCNS7BydBjnMuXx1x10O3M7d6lCOLx/j19/0S26HAxDF4w7mLQ/ooLuYBREoZGjgbMX5u\nk2/6f99P+r+/gURPKEQD3YA2sHX2NCee+CK9vGQ00ngkY2v51MMvcFoYTi1pNm+aZ1wWjMuCdrvJ\neDhikRgZxeQeDIIJMAqBcSxwQlCq+phoxqiW5tzpp9g1nomAcSQZhZI//rf/mvlME65OKNW1+7n/\nngHXLOmEwEtBOQ3XKYOjszHhylOn+b0P/Q4H51IuKcVjlDwZC05Giu0ycCUvuWoGZNLSKpa5//mH\nsTce5l0/9hZ+/Bc/wPjk5+mYIWsrS+jYYJpL7PY2EEmXO2+7ie//3m/m2771bRw+vkznzjVkVdDb\n2OTSU0+xPBdzIEpYM5pOYTm+ukR3vEW2EtHqGPS7b6X5/h8i+G0YbRMePY/MPa9526387Hc2+f07\n58mGlnHwrF8ckEQdilChhYUC/FyDVqVZmZ9DYMhWWijhmVQlXkco4yl/5RHMz/wMkZSEu9+EfPEU\nPP88XpXIUy/hOiv4UY6//3VMfvI7qf7Hh/ADgb71jYzmFuDMJ3GXRpQLApkpkuN/i+HlDSbf+UvE\nT/4nUtvChgl+7W10Hv4T/Pd+C27zMk3fJj97kiiNaDcUZ878DZCXhBDfSw1AvidMPyGhzpDcnn79\nBDUIeetf9dxyb2H4Spxh5gi8uLxEM0v3TFGmr7kHDmp5zYjFh5psdK21uK8m9vvaj7NaQck9/sOM\n9zBj8u35CkpBJCRJI2O520XrhExFZB2D6b1EphLaAjrtNpdHAh0MBIdoC7RKybpzHL/jXjaqbZ6/\neJKVn/petlbmGAdPv1SIGB7/2GfZ3BiRWIXHEKzHOIXSnhwQrZQyVZiZWMjYmsNhPIWrg1wMMDIW\ny9Q+3daZWFJKlKkQThIjEFLhpCQoSVJBiCIqwE16zExsmLFFX9bKRVyzxE+iCBFqefvVc+vcfedd\n9PPAJAdTOXAKayTrztHXko3BGHJJaj1PD85y38FjvL8/YGftCJsP/xGHBXR0hPLwqtfdg3YG1xDc\n+fq3ce/tNzPnKp7+6MPEueW2uQOUL1xAntvAnbrAxomnaGwOWRhWLG8NGH3xWeJYM5YVw2aDotPC\n7XpEGkNSkWQeTpxFRRK9Ms/Br1vkHUsNNqpanenHFumZOkgLTH8HUTnGgyFEYLwhrzSZgKIq6fXH\ndOZrI5Z8boUgPK1+QXT3GlJLTHDo224lThcRf/Kn6CxGqRZm8jzqxltJfuInydbP01w7SnLgKGG5\nixqsk958J63d36Z8yzcgVzvkpx4l/5kfRbTPIL/x23B9h2gKfG+XMCiYSM+h2478FebfX2MIId4B\n/ATwrhDCZN/xZTH9BAkhjlGHwbz0l5+xnsy1tVVgKlPZ0xvsXxwkAickx2+9nfnFRm39HgQhuH3W\nYB6pBMHXVNo9OzBqXwAhBHJadswASWuvGXF4J6Y0Zrm3W9j7G6fJVFYEYhcw3hLygtbyKn/4a/+S\nwzesUogYEyStJuyub3No5QBxmtC2gVYOV09f4IalLqdOn+X8M2c4ff4Cj//JH7H42d/hxSrHxGA1\nPPkfP4weRGTzCbZyTHxJJCSFkciDHTY6mp6tqMpAlDUZWIOQGpvnTAggNWNVT3grJTZRFJGqfQm9\nZVLByHliH1HgsF4wLj0jGaMqyzBYqr7G+/SaL8X+d20GOnqPlhE4WdudNTW9sxeZu3GNTzz2JItC\nEkxFjEQ5gfGBKIkZCM8kitiZ63K0X7EYLXLh8llUY4kH/977aF98hFvXmmQHIp7bPM37/s0vcuw1\n97N09BhufQhnr/C5D/4Zu8+eYyXp0K9y7PoVTOzR3rJgLUdbCfM3tphcOI3rb1PuDpibBFYue9of\nOUF84jS2neLabUK3DX4X17KEAw143VH+7vcf4jdfm5C3M7bLCcEFsiDRTnLMCToHGuAd80sdyknJ\n6k/+fSIHZWlYEA3M2U2agxj3jjvQt7wVbhigf/UPYJQR2Zz1y+cJP/VP0cc3Ef/43fjhldoL5NIZ\n9F2buDffDKefYNy7QnnLffh3vofqLe+iageSWwr4wAdZOXiMrn6CwaiP/PgHGN0CVzc9rqhIDszh\nx7B9+pVH0f91w2B+jXqH+7EpfvDvpz/+EHBCCPEl4PeBHwr7MiH+wrGfT+9rR+GaIAOzvMMZABms\npNFZoDnfJYqpAb/AdWWC89d0DTNKrpt2HHDX8iOVFnv4wYyEg9hPxJm2H6cCIDu7Y85jpGIxazBc\n32JtbRE1Lji0cJQyqnv7GwOFVIK5tWXk0GCyQMMFhNW0uvNIkTB/cIV21GCgY1548UWiO47SNI60\nHZMOHFJ5vBEUkwGxiklbLWRVcKkpEFGMKavaLi0SUFlEDFpqjJT4un1PchIlXAAAIABJREFUKSR9\n7xmPLcIrqCqClWhRE3pyWSGiGIvDazChqk1jvGZiKiJX1l2efV6Lgil4O10YrDcEVRGEx5aGGw4d\n5uxLl8iE2DNeHREIHiJbU9Kdkozx7O72aWZLRK5Cq5Td8WWWk5v4fwZ9ntUTIt1i6UCX9cEuP/Le\n/4O4q0i2n+bEJx9GNzTqQIOeHDO6dJVUasbaoGJBO3i0Kzna6NAsBnScISosftxHSIcaa9xjTyFb\noBoKCFgVkFhYPIifP4Rda5E8sMB7VjRLnQgRSeIgaKQOJyTVICfWgTB0NB/ocuQf/Ci7bY9otDHt\ng7XAak7QOHEJ/sF7GY8bBL1IsFvY7hLposZ96QJxPCQ/FpGLlChbhfNXCX6C+ub/jcpZmgfvIrnx\nMPLI69DrW9jRkHx7m5G8TGh0MD3LQuMA+W5g3o4Zn9kkiJTeRg+nPV79+d29P3fO/69agX+T4/77\n7g2PPfIJ2BPDTBVwewBirZSsBUwOLSp2r5znuae+wCP/8xEuXd1ikhsmk3yvfHBTkw7vaujcOVcv\nPLMn/2zLOz02SyTaq5fdNWwCH7BTdt51YSdIWuOceGsHvbCAvNLjsq148MF7GD9zjmzQ48F3v4VH\nP/IomcsphEcfOMi55Zi/88s/zFAWPPfks6wdXGUwGaOD5r6vvw//zGn+y//1z9hxki8dalJiiWTE\nxOSkWZs5M2GQxGgVURQFSZbW9yyviFNN48Q2mFoujg/sZBK9kFKmoBLNJFiOXKoIY0ca10pIIoWb\nmClno/YFLCJJp9kguW0JxhYnZoau14xwZ6Iwb3OSKOP8yfPMN7r0+iO8cCSoWrEYPK3lFmGnQBQB\nIaa0YywZAoxgpALriwmF0DR0jPGO101yDmaKL1aGn/yNX+S5P/yfiJNnqcipBjlWOpZCgjlziRWp\nyI7MkVWezmiHpU5M54Y5IgFmNaUlJfqJC7Rjj4wkYamNXJpDZmPMzTegb34dYniVcnKOWAZEtgKH\nNPbu96DOXcV8+E/52V97DJuPawA6CqyYwC1poBElHLx3jksn1vmG1S47uWduZHBzkgaCsqUp/u//\nwOKv/xzWncX3ElQcId71JsbPXcKpm5n7zk340U/CD/4Y9uhr2f7X/5zF33wj/lc/TXziJYgzrByi\nb7qH/Pw6mRkxap4l+b2A+JFb4dkCf/QQ5WU4cW6b5PJZpIZtZ1GdjLecz19R6vRXFc057CkYPYLZ\n5JsaoYS6pFDBYCY9zpx6hnNnztZuvbYmOdU2bfvkzvvOvd/4Y4aWz8YMjHx5D76+lKkcexYxNsUt\navsxTzvJMMbScAIjHYtZhiorkv6AOxuaT37sE+zmE/pSYKygHIwZbw9odjpMioJRf4ALkv5wTKfT\nYbO/y9zX38Z2ClZ4LII4iKmpbISQoXYdcjXQGccxYSoE86E2mREekiimcp5KQd5NsCspPq4Q0iKC\nIx4bFII8zymtxVgLUmBc3WnWCJyAKAhisR+5rr0R9mcyKKXI0phECBKt6O30ITgSLbES3HRt3+4P\nmVSGQjnG2k1J0oLcB6SSSBdoFJbUB8a7Q2RZkR65iYFTtLM2pz/3DPmlC3hj8UWFDBM6TjO4sokh\nMAkWZQWR8egAWkFZBkbWU7YFZdMTpxEiiZCdFloFpA14YZGRgqyDT+dRS8cImlpdJbqIZhOxchvx\n3Uf4uoUuUcgoS8fiwQZWBZSMaAjLxmPrHBZdRksZOtVUKXSWF5E+kGbzZH/4n8HkiKsTJAZVgvns\nl2nu7pC+798R/uwxbGeByfY6Um6x/HX/FP3wAHEZ/FqGXxU4q2Gnh7AbjOYdauEBtAD93u+jLALM\naeRyBrsjdBxhjQUvqba/RgVR+1mG4CHMzD2mX7uCwdYZnvjMJ3jic5/j7JlL5KWD6dNcz9qQWtUJ\nRLPsyFnbbH8p4AMqTL0RtK61+jOrt+kHfTZm3IT9u6oQAso6Oo0MpzSra0fQQnMyz6mu7uDmIzaF\nRg8177x7kRsWlwiRZ2c8QF7oM9QRC5XkhRdOIbyg8paXXjrN5MoWDz/yGe54z9+i3xLEaFSSIpQk\nFgqsJQ81ZuJ9nX7sjMNbh4wksY2onGKXisFKyuDwHHGnSTEuKaaOR42JRnmJ1pJ2t4PUkqpyjJ1D\nNDOkiigjhao8phUjRtNF1tez27troTzeW5wz7O4MOPncOYqJI1USDTSsxrlAsAHlBYnRIKBqRtg4\nxsQxDoF1gg1hySNoThwigu5yE5HBFzYvc96WLHUl5sTziMtjepe2MDs51cUBxbNXSAYlc2kD2Wgi\nLm/DaELmFcpBE7BbY/zJLcTZHq2WRrY1Li1BC5wbIL1GbJ2HrWfwx9fwD74Lv/pqTOxgvUSdeo6w\n8Sj2Bs27/s95Vo9LimXFpMjxTrIzNFTG0+7GlNmA4VMblMWEQkp2tzYY4BnnW+gTH2US9ZHNBVxT\n490IdekKgyuXiJ56mqo3z+jIAo1nH8X93A8i/9nbGP/8k0QP3Ye4fZHw738K4yqGcymVgpZokjUl\n7p23Uaic8NoHUF9e5/ITp3G9TXIroBLcsbrI4eRrLPcBrtfOw/Vtr2vHHJsbV9jZ2aEqQx3mWtr6\nacm1QNhaOl2z6/ar9mZDypr0NNs1zBaGl6cR7bd1f7mJSAiBdrPFS2dOoeOUlZuPUVnLj3z/3+Hs\n+jopKUeEoeMsJ84NObvVo6IWpWgLF89dpNvqooTk+VMnefILj7Ny4wHU6hwqSVhvBNIkwUtBKjXG\nmNoBSQRcqANwhBbISNfMTqVq4lWoPQ3HDYVbaJALz9Dm6BARygjpJGNjCV5ig2dSFlSmtpsLgmve\nCZEklZqqMBDr6xieSmlql+W6pEIGev0xC0vLiCCYKNBRTMjSOq8h1F4GJkDQkjJSXAiWflSfdxxJ\n4iTFO0hkTGNQMc77dGXCRAairMHa3Byy4Vh/6SVcFtGem0cCTkFQ0Gg1STstkgDCWoJxFMNAsTsi\nymFumJANam6JFx6dxARd284bVyGGFXb7LNoLrBYYuYjsNEA2cBdeJKx/GbGZw7LnrptXSJxn0HNg\nNT7AxGv6ZUXYqaX8iVR1cBAebTyN7QptAo2+RriKpC+oVmLCjW1aPqL8oe/BrVe02g3Go4uEAxHj\nX3gf6vvehr+4gRhcRdHGuCaN3NGaBMJOn/z8FfyRLumn/wi7+QTnt7Y4f3kdoyRFXuFV4OrVLSbl\n11juA9MnsWRaJoRZYrGqywhfs+6dL5jvHuL48VezfHCOVjeh3W0hopgsyaYAWCCOJELUBqGzssDv\nc2a2wWPllOm4P18AkCFMg16uBaDOjFVmLclZmdGrCjIdoyL4zCOfIjrS5vc/+J+J0FweDDnp4WDW\n5sqowtiSuDA0qoBraL78oT/jme0riCjl5Ivnue/u+/jd//J7PPOlRwBQqsIeSGhkgV1viOMYl0Cz\n3ULpQFUVEAS+dOhI4TxEUcTWmUuYoy3cWpOiKKhsiXKevKqIEYy9Zs0llDhsVYOCIgBakgRBHEUU\nBPJJhU0kIi/IyxFOgBceKQFVIbEolWDKCXZsyQaefHsXqQV9POfiit1iTKWgwk6NXm2dxTgoaSUJ\nAyo2E0meKiaRJEQRfWfQuSfrS8ZBsdboMkeA3THPfvRJTEszHo/Q0uBKQUglo6TmjcSCWmotPIUG\nbwxmJ2c+CrSMoRs3oZWgVztw5DDi+O2EWw7hu8uIROEvXcCf/Azy6c8j+s/UkzoMUOU23m4R3EU4\nepA3//h3cfv3vYEVp7DCkUcwCRI1iRl1OhStBipRVNJRxQb/HW9i5AQmAIlkJAImVSQPGtS/+WWc\n2SbqXqUxSqi2dkm+/TjxpqX52fehPv67yG2DWXsv/Mnvoc0F1OIq8ud/gUm3rCXcL1yh+pgn8Qkn\nn+4xKisu6MCuDFgjyb3Eyq8xO7avgDr3TP+mGIPwEDRKt1g8cCPH73oNx26/lQMHVmlkEa1mhFJ1\np8FNw03hGiV373Vmu4UwKyW4zkNBhdqI1E6TjmaBJfvTq/cLr6RWNBopQcA9r3ktt979KhpzHRqd\neQ4fP47JBS8WExaOrdJUGpE6nBTEJrB14jQ3HbyBYd9x1823cvLMWRbm5wFLsxGxuTlmoyixLgfq\nfItYy9oXQNT3RipBHGtsWYHwZFFatxljGJmypnVPS6LgBcY6DJ5iMKIiUBEw0w5PMRWV2alUWkrJ\nOK+YTCoaOr1+J+cDSiYgDHMLq2xeWsdMb05ZeRyw2JnH2FkHSFHZ2pylNksVhEmtTiwI9E3FTjFB\ndRqQRKBjogAaz5pssKwU5XAIWjKOQLYk/a1dfAQmUUwSyajM0cYQKU1MbZqjIonWgLe005QQXM33\naETQbeATT5hrEt24RkWDWCvkpUtEZ79ANNlFTCaEsIuPBojGHDIN2ChBbPVIOzCaOEyQ6LTLeFIy\nySvMbsmoX2AmFUMr0cuSzvt+dW9XlltwMqEoKkQzxx66F+MdLoB5w+tpLCbw+oMYr2A3R/kew4MG\n+9D9DH7hs7Tnbmb7yycpX/8QzS1NUgSC0oS5BtmoydApHAnOBcYVdWRecHj/Nein8PJ6PXBNsRiC\nnRp1SrwWuKjF/d/wrXzrd34Xb/jGh7jjtmOsrXRpZQlJnILQX1F6CCVwbvrEkjPikryu9y4R2Ok2\nOghR5wQa8xWU6FmYrDUVwjiUEnziw/+dJz78GdYOHmIj32Tz8mV2heVV83NwfofFRoQq4OhNN2Cw\n2Gev8pH/9N8oi00+/fknWb1lGSU8u7u7fPyjH2H90hjdamKbGmEnOF+BMIyLPiEWRFGEMWX9hmtF\nFDxbp64yd+QApbM0rILKIQ14JzDGERzMjQKq8PhIE5TCS1lv99OYcQhU1uG1xnjPysEDOFGzE2ed\nhr33Z9oy/uJjT+NtxNDDbmWYb8VkBsSlIUZPOzsuYGKJF7r+kApInUAohRXT1qpKuDQesiUMk6Yk\nXu1yW6o5bnu0bFXHwGtPFmnkYAhbOVpBH4M1nokZo7OCgbSEQxmt1x/CL6UkUYQOUIyGRBKCr1md\nPgLZ7uATKB/8BuLX3oeINKa3jlo/Txj1cf0rSJcjQ47KUpi/Eb14E+Uty7yxtcim0PSc4Olen/kf\nuJ8vPZDyuZtLdl59iDO7JTsjwyYx9J5kZDxCpVAWyHtvwS1GjB9dQT7/j2nKCJGmmP/+EfylS9hy\ng+FYE2KH3LKEDz9C9gM/TPblK1SvepBFu4168deonME2QBdD+OJFLiRdFr/lIUZVyaEASwlU3pMH\nSW5feZfxq2pR+AocYabOA6DW6AsikLXTcDq3wu13389Nx2/jwIEVmg2FVqAjtQfEXddNkGIaDuv3\nug9iZsk1U/Qh6tKDaZjJdGdwfYT99HqdxZUWLySdVCNExNWTZ0BDiCUH05S+2ebGeQ/Csbbc5vLl\ny/jgyZOYC595mqWFNuUkpzQFB1YW2dkaMOpXFOOcpJWSyhitNcF5TGlQRHWc2/Q6AYx3xFIhlcJH\n9bUZ7whKoiK9BwqKEBCDvDaxNRbhPMF7FIqqnOYzhlCnbinJ+StX8dPuwSyJeobDGFPSyLp4A2Nj\nSGUEWhIZW+vxZSARCuF8Lae21yz4MY5EaaQDJSOUnzpsq6jeVeCJvWVBCKyqQAry0ZhGnKJtIPGK\norAgap/F1AWWk5RkoYlogz2oKQ9Ca7GNoHZ+SqZuxtIbQl4hK4sdb6PMFiFSEMUgFVIWeAwIA0nN\n8ER4vBUEDVUWIeUBbnrVnUhhCUnEwusSrnTOUyylbB3OGCw22ZQJeSU5fbpg57d/h7KS9ArP1a1t\nNj7yGPbiJsWr34r/5f9GqEDmJdGCx8UZqYhYiDS2DECLZpSQH9GMv/W7UV96AZd69O+dQCfzhNgR\nDh4hyiQPP/k4j3/4YWIkWoCYdu6QAfFXmOlfJYvCtYl2nVFqCODqN18EjRCa4C2KWj8QXJvm4o3c\n/+Z38o53v5s77jzGjUeXydLahCOaAWT+Gl1ZSglB1QuDrMHEWdfBS4FmmpRKnREZq2nknBB7ZQnU\nXYuyyjF5ycQ5EJaJsFyhQpLx0nafc6FgfrlFYyR5499+Ox/ZHBFKz7G0Bd6x/fRlrG7jIkOTmJtu\nPIwrE04/dZF2I2U8HuPGfcLEI3OwI8HOpRGMA+PBuKY2B0c3zhj2B4iFOYyvUNNFwAWPnhKHjCmJ\nBKQl9IJlN4Jc147HJvi6s7BnIFO7Sr35LW+tTVq83nM3EkJgracohzz9xdNkaUQsFZPYo4NiiCeK\nI0rnMD4wCEAGqIDRgRxHqaHvK4pBTuntnuOyDJIoSghCc/OBJTIJRa7JK0Ems7q1VziSIUQJxB5W\nS8maixB5zlyzjpEbO8t83KEqB3QjRaebETJPkBV4i84rwrmL6PVdwoUNoqc/i338C4SyRIVVfJyh\ncSgUam4F17oNKXqoYoiSCerYmygfeg/v+ta3MPaGO39mEXnPhPLGRWTU4vN/8AIXtg3rhcVdiHj6\nxz7OVs9walhx5Ypgd2I5txnIhjD+0JgrVaAsBkRugeFAMxz/EqQ5Ws9j31FhkiHZzpju8BGM7yMm\nLco3/BPsSpPo1iMMz1/l1HObzN/+KiaRY1N4diaB0kkq7yldoPgr0JG+ShaFurPw53Ug6slYA0gA\nYhrSJqmfvgSJ8ymLN9zFba96LfMrC3S6bbIkxdoCIT1C1m7LM3GTkLXUWohrnQmlanhxyorYu4bK\n7avFZL1zsKEWQvlhyUgLjDc05zu0lUS5gMbRiAS7ueCRCyPcQ3fwqaUeb/u5N9C7t81mMaKx2uLg\nDUfJnz/HkZWjXHjuEtvjCcONTdK4yebOLm3RZDJgyhiUpF7TjWLKScA4jfcSa6u6xJkmclsHZVkS\nvETLhNxOiVeJIpp44k5KCJAYAQ7MFD+ZeVcG4XFC4YTnkYc/UVvnK7cnGtvTOGQtyspgXaDC0Uxr\nXkNhFWM8saxVr2kMZQWVD4SpylU6AQZiBzpJiWQd7qNSTRQc3STlWKdNcJa5hVWytENQEaIS2Nzh\nPFS+DufxShA5oIQzX9qGEvS6pXjiDNl6TpRIaAXKRgvRaSOSDK9ELWDo92GSoE+eR+f92gQ4E3Wb\nJJeUUU61OIfqtKjUHSBvR7gKVaQkPnDvN97FwBrah+eRRpKsl3TKBdqpZqg9BZoejh3r6UdQaRh2\nBcFqlE858Zu/w2YCZSXY3fD0Rxt0naP95vswlccUI+TXJcQmUM5rRq5Fetur8Wqb5P3/kuC78J7b\nyL/tAR65XLLz2DMcESlKQhkLTJCga6XvevXKVZJfNXZs9YfNXyd1BvDTDoLwdZsx6GuLA4CQosYG\nXMzrHnonx++4k4/+yX/l4Z0volwDU5Q4Z+sJ76YtyKmJpQzXgkZmjEa4HqDUQuJ8vWBVvmZF6iDA\neaLuHMsdzebGVSZVzNg4pIDENXjO9fjAi++n3WxxpT/kaJjn2XMXecuDD7H+9Jd56skvsSQSnv2t\nczRGE8bdDoUv2B2UmFITjObs1jpLcYqbeLojS+FqK7JmFeg1BFYqKmHIg0fJiOBrunccxzjvKc0E\npKQZFKpfoCaevq9DYFcPLLO1uTMtlerA1tw6mAauxl4SRTFGlrXMGabS8vq+D/o5h48c5uL5i6Ch\nymuhmkoTosJQKUclNdo5Eqlw3mGwRJHG+YAUDhVADQpUmuCDRWvNkUbCUS1JiwoxMIxNj0Y7oSUz\nNjdHCBsI0iFSaJUCqxw6VjSimCyOSUaGxYFmIbckStBcWyA/uEjzwEFwFfaFL6JdgMIStERojR1F\nRHGMbwTkZA7d3aFIJGkvgVaLIG8ifs33YXc28P0PoqrPI1hj9e3z3H9PQtCerHkA88yE3edPsuwl\nIwE4Qyzq7lVLai42Fa3gccGhbUVkBLveo0OCTyyTl4Z09Rh1a4Pl5WXC/CrVx54nXpvDzT1E8ztW\n2frdj7C0cJjJQUHjzIj8pdez+Mf/igtSIXJD03liB0XsUBWQKoLwSGX/IgHydeOrZqcwG8FzXd2+\n///rj9Vtw5my0QuwXtHuLnL06A1kjQQtJGqmctwXQjLbMeyXAs8IS/uVlC93LZZTf4U91yYBKo7I\nVMRwPKLRaSA7DU5Nerz/z36bYMC6irZscGi5yy1rKzz2qc+QtdbYNU3Gy8u8+73fwmQ3565bjnD1\n/IDbj99J8Jb+9g6tVotqWKAqQxRFtLIGUgiSLEWH2ncximIAqsrW6PqUEOCcQ6mobqEOSuJJHeIS\nKUGWZeRFgXG25mhEUe1eLahzGl39VC+NQ8cRVVVcpzYlSHZ2ely9epV2t0knTTClxwaHySdMnKlT\nwKeishlXQQlJmLWfpUQIUMZjjUFrTSQ8q0qyFAm2rq5jeiOK3i4Mh4SiQIW6cxEphdaKpNGknWUQ\nzXZwlrgdE8eaIDxJo0lY6BAfuhG/tIRtNdA2qmPkXAnS1a5JGYS0jYgz7L3/EHSXRE13DZVG6Ihi\nVKIbR4npIFyJ1E1svMTd37REGRwZi7z49EVyBH1vqYRkrCSTAGMBPR/YqgyTsaGqPNYEJt7h0Awn\ngU3rMVIyGDtGcwu4NMblOcVwlcF5TZF22XnsDEv3v4HeQoPGLtjhDtH6aVyIaQmHdyW7oiJENYCc\nNyJ86ZgLiqXslbckvyp2CtcmuptKGb+yjJh1H0SYfl9Iar7itBsgAxCj1Dy33nk/B5e/gJkU9MtA\n6Wq24sut2jyBMF0Y6lp5Crb5a+EkJnikktN06RqM9EpQhvpnXrx4iQUhkYlgNC54/RvfyHf84N/l\n0P0tdsaW3Bc0sozd3hYXLp7izrtu41d+6T8wl81Rji2f3T5LdmCNT334UW6+Z4XHP/84raRDIg2h\nKtGlpJFqnJdo52gExaCs8NLj8oANgSRJMN7jRQ2g5h6UhTi3+ElJ5OuJfujoEYb9AVu9HhOTI6SA\nIMitRQuQUmOcQxIwodYIJ7qB5vqkLGMryirgjKWsLBEgkwifKYZNgd7IgYDHIYSmEh5U7b8pZqI0\nAVorTAhEWKLC8UBjgQPe1gpIERNisA3HwE0YW0scBD6RjLRnPmkgOvOM1i+x0mlSbAzoRjEYR6Pb\noqEjVGYRhw+DjhGuRN9+C9X5Z4kumLp0VGlt8Ksq/JE1VGuV8Xf8Pdr/8SlM+iRJ2MBfPQVdTyj+\nAHvwFohuQZltMNvo9j3c947Xc9Kd5/LFOTyCsQxA7XepNMwJwQRBNwh0HkjR9HG0hITgWReWkQzM\nRTH9hqG9ehgO3cOZ809jq4uM06Nc2L1E5zd/heOtBucXLavf9QBXfu1ThEXJ8p9+nkmoeOcPvJ1P\nfPBTMNdgY6dPo/T0g2d5IaPs5yzKV/78/6raKVx7Ks9Sh69nYYWpZZvwjnovNP0n/BRlCPigSFvz\ntOebJLFG6JmcWlzzS5guDDNjldmonZau10kErnds2j8q48haTZzWpCqBSPKxhz/JT/70T/PsF66i\nXU0N7g16CJ0wGYx56YVTPPjW13Pra4+xsTUg9D1nNi9xw80rXL66gfeB8SgHoaCCSCeYIJg4UxOB\nZJh2I0BMWZtVXhFcwPnakFZ4hzCGKi8JFooQMJHi/PoVtgc9pI5qHcX+v1OqPd0Dqq4XQgjEaYr1\nfq/74Kjxl9m91EoQdC2imkwKiu287jBIiRK63h2IujzxU+xGTc12MR4dK5pSs9JMaAdL7h2Ftzhj\n8bFiWFVsTyagI6wEqx3jCArrED6QBI2bVCRIBr0RyjuUAFPW7sUhaeGLgmo4wDIh6sxPm1qzpHJV\n368QYedvol2CbeTEagBaQ3+DKr9MHDZRvocKempNZ3HNhPbiGjLyPHf6ApMoYmQ9A+HJFRRpxJDA\nCGqLeQEWzzDUYrMyBKpY0koEy1mET1tsbIx49LHP8+Xnz8FQsjgyvOmhb6e73KXMPL6aI5wekK0c\nJuwU5Kcu0SBn9e7DdNoZWRAE63GxZCWOuDrJESJlVF7/oP2LxlfFTgHYt72312kV9ouURADrxggh\n0ELhqPEGKQSCOijEU9FoLHHzLbdz5eIVdgZ1Tz/Pi3qLPEtTBwgBKTRuqrGo8QU3ZUYqvLNIHdWJ\nyig8HjcVRxlr6uuNFL4y+KqC4JGRQKz3+PG3/zC//tIHacsm3QXDpAx84tOfIyblkU89jooapCFj\nNBmT6Yyt0S5p0sQ6BcEyKSe0bR2e4q1DaoExcuo0EYiEoPICrAJjiVKJC/WCloiAbKXYRq3kdOOC\noKYlQhEQxoIJNFxtmxUQ+MogZpF9wk9dryFpNQCHEhLrDVKBijNQinja+lRKoDws6pjgYIRDWkEl\nLMGCAoKeajWmP5sqgdURK5FksSnpeknf75LojDTKsOMSGysiIubxyLx+bScFuRJUNiAmBVFucaXH\nxIKWAI2l2FgnW0lJCocY9lDBEV29TGgpyhcuk4aK0IynbegCihFqvAoqYD/3fuTtKZw8CINLyLBF\nEiXQyRADcPEaKgicEagE5NqdsHmeP/3tP0I2NXKUIL3FKEFUGpQQqADbwtG2gV2AKCCVo9WALNIs\nHVhlUAxICsFW0+FaGd3GClvlkMblHsXuR1lOJa3ubaT9XTZe7NG9/UbmwhAdaa5cucDBPzvJW9Zu\n4LlMMxQ9kqJJNR5yu5QUuiBUX4M7hf1tyJe7Be+VF6Km8u7sbOOc2cMIRABnLMFbQqiR6aXlA8Rp\nitbx3jn/XH0Fbk/8FEINwgX2KSbd9UKo/QuV97NMg5qpt7C0TCNJKcY5S4mne9AyyXK2+ufZ3dxi\nbXmRiJiELtrETHqD2s7MOmIdYYzBWovWCdbU/IPRJEcIhbcB6+vSxfpQg6bTv1tG8RRTCBRliQme\nyhomRUVRWgoVGAfLODgqLRg3NaGbMVxMKNv1ky8oUZdT01vkg8cTiNOIaPo9pSIImmBrzELEuuYx\neI9ztfy88hXOO5zwJFm0B1w652uMx7ma7iwUOpYcmW+wjCIyFhVDu8t+AAAgAElEQVQllKWlpGY6\n6qBoyARJzauQru6YxJWvvSNtjaM4ARPr97QVFijGBSIE2N1FDke43gj3yS+gRn18NN1pxh7VyFC5\nxO1sErYuoDo7BNlCqIyaU2mh7OHHW1D0EOUmeFnLzYMG0caKQH9Us0FdsJjgUDYgXV3alnis8+Qi\nUFA/kKz1WCcpnGd4dYdxaak8NFoZraU5EIqAYjTcwfSGMCywOsNPPP78NqGTMShijG2hyy72qVM0\nRpd49WCLN3/9g8y/+gDbHsaVhziiiF4hysgrM1n5DSHEhhDi6X3H/okQ4tLUYOVLQohv3ve9nxJC\nnBJCvCCEePsrvRAhrk28vXj3adrQzGzF+oDzmm6zweb6eTCOYAxmPKK3eYkLL57gytmTjPu7LK+u\nsbh0AKXENLr+2rn3A4i1cYvftzuJrtmPUacdSwTqZZJqIQQ6KAo0VimMD6yvbxDHMVJK+sbyPc2/\nz2/9wm/QPXADVud0ssATj34epSqK8ZiynJrDCIEpPabylJOS3u4Aaz1xI8MCBk1lazF5ZTx9DzKV\naAK+qsHCRNdAUhRFVD5ggkSqOsw0EYpYQCZqnkYWxRjp8YBUiiIS2BAI09BeqWMQEhsFvHdU03bu\n7N45W+c0ehFwShKkREYaJyW5hERITPAUhcGJqQu0EhTB12xTFWG94dBSh6hhscLhygLlI7rza7Tn\nb6Bz8GaylaM0u4eQThKcR3pJYgILOSSFYdzfxUYwTGAnlmwqSchSLAIXJLnX5M+cJpw8h7w6hn6B\n0hpUitAGHytCsgjdBWS5SXj6ccTGaaLBFXBXIBnjSBASRF7hNi4hd87ixqdQ5LXnR+MIKksoS5BT\njY6XAivqayiDYAz0gUJLrBYksabSinKhSS9YNsyYFzbGPLU55vTJdcZXB5SDEaocceODN5JNRvX7\nlxTw1ntIk4TJicdZvv116K97F4e+56dp3vAm1NKtpO2MW8+e4ZuXFrjn7W+g7wXj0jDFo1/ReCXl\nwwepnZZ+62XH3x9C+OX9B4QQdwLfDdwFHAI+LoS4NbwcHHj5COHaPzFtM06/DrJ2XKofYQGBQuuY\nMydPIn1MFAvyyZBz50+ycfEyKEmWtdFSMOhNsN5dJ3veH2QyvebrjuP2dzqmoYPsl3ULHLV3QXCB\nIMGJ2q8x1+CTenKKVEFR8qF/9QjDK9t8+098NzZqkyQRWz2LdR7dVIwHJUIEEiRJHKGlQ4kIl1R4\nX3sqbA/7eA+LjQyEolIWJUWNjQSBFnJadtV3SIq4xgSmZrNW1oufEhInBEWR1yi+E7jCEtn69vpQ\n7z6CrdO1kzTFOY8SMV5YlAgEDL2RqYNxrJ2mQknKKYWcUHtbeqX3FtwgIPhAFNeOWlVpufu2m1hs\nwsgasrIknusQkiaucnjhiJQi9p4wLiisRc3eAyFIpgCzEHXsfBk8BlDUUfO1erKetnHlsb6qF984\nBu+QcYJpLiNe/RDejNDmHGwO0GZA2LyCmUiicoI3EikSfLoAjWWUAOsGaJOAKGtNjtPo0CJC402o\nF2pff1YVUABCKYJ3rAhFJhzCW8qWJrYFSQVXRV1iVcEwH8Bd2CBuRDS1Im43EZEGJcmvbtL9Rz+L\nOfMM6ePn8auBtHkQtzSPu/d+5JmE5OQnYfkgmZYcePYCL0T1Z1SLdHo1f/n4SxeFEMLDQogbX9HZ\n4FuA3w0hlMAZIcQp4AFqO7e/7HX2tA77bdD2JrSvAChMzmS4y/bVczz+yCM1MckZBsNdJoMSLzwq\nwCQvGeeGsrSEcK0V5oNDCrVHbw7hetl2pOvL8FJi6xTSmtvgzbUQmCnvP4iAcJ6RDywsdJjLLf3L\nW6hIoyqLE5I7ZMn5Pz7Bj/7XL6MiCKmimSZU3mPyiEwrgtIIYDzKaWUCM12YRvmEOI2m0eiS9XyM\nNdCYS7De4pwlKEnpXB3G6mp/Bal0vb3nmpRcEGGDQyBpBI0cVWRKI2TEBEMcZG0TL0C7gI8EB9aW\n6oVGgAiqDtUVin6/V/tgBqYR8HXnwnlLIhQ2TP0qkLgQ8FLUPgqyyXwc+KaH7uGeO2/kif/xOVRf\nYBzYyuFshZwUSJtTOUfz0CJCVahpoMxsIZCuVtNGClI/2+EF5oSmQb04zIx381zgtaUZKaQvIY1x\nczG91349zcXjZLFAxB2cFHD5RVjfRbU7gMUEg27PIVZvxa/cjC8GSDcGGXD5NiK7ivAp2CW8jAh4\nrHaEIIl8wDqoqMOL21LQUIZWLFlstuibksnYsWmgITOkMhw6mKF3J8S5oSvq0uTMo2e44+abcGcv\nUhU9hv/iX7Dca+Df9BbGT30Ufcv9+DyB9cuk84epVo8Q37YLFx2vPxA47A7yxari0xu7r3AK///D\nFN4rhDgxLS/mp8fWgP1e0henx75iiH25D1vbO1+JH7yM8uxshbMVZTVmff0KWxtX2N1eZ/PqFbbW\nN9jZ2KU/zNnZHbK9M6A3GFFVBcFOyxDUV3APvPdIoZFCo5QiiqLrug8zHsN1Xo37ft+KehfihESn\nMevFiGxxDh0Ezsf4oBipBusBltOYbkjJxlBt5ohhRVSO8cZS5QWT0XiPJxFFGXGc0mi0pjmNAS0k\nIVIUAnxZ1sf11LFaRTjnsSGAVASmW32pqEy9DTDO413AOIsqLDECQs0RUELgQ/0UNtQTPcCU5Wnr\nuhrwri6lR4M9r94avIymOZNB1AItMQWNuaYxCQI6seX4coslb+md28EXmp31XQpX8z9Mb4TJx5TB\nIeOILMummNE1TGiWUqWBRCg0gSxAB0WjsjXjMFKkOsVXJc4GTOXqVHEhcDpCpAntkSRLzoJLKecS\nVLeLbcdgSkQYgYAo6aCiFkKniGgOmS4hkwUcTQK7BNfDV7uoWFGGikrUcEMZHGNZq1AlghhJJuvo\nPOM8k6KkzC2DMtQ6GZuTR4HSG3zcoAqKWEmM8oy2cphrYyuHdpLG5QFpGpPd+wBWDPGXTlE+81mi\n05+Fi18kakN+bAWOZeA6dBPL6+bmiMMrxxT+ut2Hfwf8PDVm8vPAr1CHwrziEUL4APABgNfc+6rg\nvZ36/U3dRgFrA0J7XOnY3tlg+/Jlzp87zf9H3ZvG2pam912/5x3WWns4+wx3rrmqu3pwu+1223gI\ntrHbBhJhCROiICOQQIFghIKIIgEfiCIhWyKRyCcSKbESPvDBMjbCxMgmso1jHJKoR7vbXVVd1dU1\n3rrTmfbZ01rrHR4+vGvvc6rt0FftCBWrdFX3nLvP2Xuvvd53Pc//+Q9333ybN959m806EbqenDN9\nSqQYLs1RVHYBJTlnlG0eoiFpRFRALCENHgFRGU8apnt7tG3LZr0ukWmxjNNKAlUi6XCHViWEgFOL\ns5bj9YLv+O6P8crvf60IuRTUOpIJaEeJB3cQxODGNStJdINAy1iDyZacE0pdnqPPhLzCe09aR0gL\nJs7jq4yolFBdbwcmZsRZS8q6k0mLCqHrC6+AoWoAJm1xI44a6YOWDSBnvDPIYF3R5swLL9wum3Eu\nhqZJMiDFKJeCg6hAL4oNgToLKlrCZ22pFjRnjLHUI0/fKR9qlPFixcv/6Es0kwmTZ59hbAxd39IF\nwSRBjLJpYGPAPDorSk8LHnDOMB03hdAVM31IeF+qhQnKyMNYLc3MMGoy0gkpbrAUNyonGRt60vyC\n6ux3CF98Aj/9p9g7PwANELQAjOKJanB2AuqhP8Pkhrx3o+BL67dRfUjq36XtOq4f3eQv/3d/jr//\nX/0K2QjBKFU0RBKVMRzaxG3v6dpIKxBTJgxU+4ywbjLtBOK9ludc4Nonn2cdI/LWXW4djDh56x41\nkVgF1ov3uGmus/7d32Y2/RDxD3+NiUnkSYYTgVVF/pm/yvzv/G3q689QO8+0P+E/+shNfu6rDx9r\nbX5blYKqPlDVpMVU8RcoLQLAXeDpKw99avje4/zOHUlpBzRqZH52xqMH73H3G1/nlS//Pm+99hrH\nx8esVz2hC/R9+RO6vlivxzhYhKX3AZZbJmO581zlJujOo7FrAyklZrMZe3t7RVgkWmbx6ZKKva0W\nCgknozEQLLz95ls4b6AyQwp2IrY96orQKKaE2xuzJrHSTE8eNpsB08Cy6Tr6vi8WcRRjjl4ySc2O\nfKVqdx/d1fCbGCN5QLzTANyKlruVTYrpE9Imwi65eTtJKdOB7WdgxWCdGzhiZuchUT4os3PCVlUk\nDYlQg9Mz1pQe2LldG2PrCiuGsVo2ZwvsCHwlEAM5RpwozhusLRZ6aoSEEmJHHmL8UkgFxxHBebNL\nAjNaMiY0Z7y3IIWUtsotp75nM3akPpBjjyZDajO2AxaGarMu1c38HH14vwxKck/KK5Ri/0dakx5M\nies3y8i7mYDfQ6XGmUhQxZk9/tRP/gQ0SsyldQk5ES0ISlOV9qh8UCANjCrwOIyWzW7UZcbOElLC\n7e9z+tYjbIZKPOH+McZ6quSovBBix7RL1HaE9Qbx5To2JpHPL5j8b59ldLbBW4XDD6EHhzzx9ONn\nSX5blYKI3FHVe8OX/xawnUz8A0oq1N+kAI0vAp/9lr9Qt+1CLOM3VYRMu7zg3luv8dKX/5BvvPEO\nq8WaTdez3mwIXdjRdFUHMgygagYH5oRewSXkCt25PLCw6rYbwtajcT6fE2Nk1DQcHR2xXC4JoQd6\niMPPGwXMjuxT/Bkcy5SpvUPWHcEKLsEIwzonosLqqKbvV2RncDiaJAQZGJXGkKMMzkZSALdcgLOQ\nlAh45wipJ2XBBDBGSsJ2ioRkAFc2vBhL4IuCx2C7hAkZE4cIDCljTdVi+Ra6jigl68LaEqKqZFKf\nMOIHD4qy8bRdRrwj5gL+VcaUDcUW8EGTEtYdMIT5imN5vuCOU8wZOC+kiWdRRcx7b+CGMXNEGU8q\n2kXErpXsMpUzpJjAGdYjoU2RmWaIBWPwBqxRTE5UFqwooXbYVWC1X3P0Yx9n9iiSf/urWJNBPdbU\n6CJg9AQmG9gEqgen5NSiY4fs9UiY4L2QQo/9qb9LuPYx9Iu/g5m8hJgj1B1g6EAf0E8ctr7NnY/d\n5Yf//HfzhV/9KqHP+DGM+8TTleOpG5724YqsMBlV3PnENc5fOqOlxU0aRtEibYvLQo5w9/Nf5iNR\nOHMRfzbn5thQVU253tKaiinp7F2WzjC1CaWnSz3NxiO1o/vl/4Xwo5/A/el93F9/iQf3X+XmRx4/\n7vXbzX34GyLyFRH5MvDjwF8uC1K/CvzPwEvA/wH8Z99y8vBNx/bhqspqec7dt9/m/nvvcXq2YLXu\nWK03xJjouq441qCkb2IclvZx0EQM+Q/vqxyu6hkGIA5KuGxKiRgCbdsyHo+ZzWbYgWtfSFMGu3Vq\nMlBckTKaSkx9r4n9yaQoCgVaMo0KNGVMV8Rdg45guLtuw2vLuE8uQ3EHHoKVomLsQyBpmchs31uW\nYhyy3RhFFZehziXTQfqI6xImKkYKDyNvpeoCXQh4f2lKE1Pm5s3rhbA1jGmHK4GMEpXiRrX7vLRQ\nzXNCc9kIvHO4guLgnGPiLYd1hVpXzFKdYZkTDjCVZxMibYwYZzACFYapHyNDeldWpSeDGXgZWRF0\n2EAvsz6csWQZgGBr2FSCNJ5q1OBHNZhIYA2ucBzysoNVJl8EZCPEtUIqZjvUmTwdE4/uELLAep+w\neA/p1uWm4CtghLV7aKppqiO+90e/m9D2OJPQHJkCtWbWiw1ZDd54ek0s1x1KSR2b3rzGedfiVXBd\nwjaW8SrQ5p4mWTAW78sG3xhThG4aSEBVJZJYxNbEFlKM2K6lOg9Mb36S+Uc+Rjq+YLw/IZnxY6/B\nx5k+/Mwf8+2/9//y+J8Hfv6xXwHs+v2rAOBqOeetr7/KSy+/zP1797lYdoQ+A0rfdeWyTqV3Z2A7\n6pCGbIcRnRlGdNuLe6dpMJYYSiuwrR4uCUmpeBv2PePxiP3ZIdevX+fk5CHzsxM2y0BPj2qHipAR\nogASUGPACm1K2JTYBGXUVERJ9OOCA6gBm8qkpY8BO0xCiu4ikrIlhIQj4pJALpyAqmTYYF0BCNOw\naYQ+k4IFBpwhJ2xbNgebIefCPzCiJC5F4TqcOhEh9NsRJzSVZzpyJCl4R8wR5wWngrXC+XJFG3rq\nDN47QoiMRg2pL6G2arWkhJsBe7CZg5nhWnON+fFD9kMmrDt8p4Al+lRo0obikwgYWzapbhNADc4K\ndYSpy+SQyDFjKkuvCZugdh5NAWJkjCXXBr9qqX/vVU7vrnk+VUijmPEUs+/LxuFHmBxI2WK7nl4N\ntWnQekLYq/FPPInRTP/GfUbXa6T9Bey9e+RGMOMnSfYAtTAJynlas9Izrj8v+GSoaqHJyswoVS3Q\nV2Rp0aDIWJkfn1OvyySle7RkHMD5iKsh7gvrWx59BKnNrE2m9Ya9F19AXn0ZL460WDG9s0fQRNVv\nSE/v093PzNcbZn3LXjfh4pd/k/4//K9xf+evsPzP/xoP/vArj70ePzCMxq2zEUC3aWmXc44fndCt\nNoRwuWnEmAa7NUPOQqa4EusuZs4MrDxD1m0+weACvxtvKtZeThKcscP3M8hlYEzX9bjKczjb5+mn\nn2XvYI+qFpy3WLEYU/wbJUWcOESUPmT2b94AoBk7lqmnbRrWKtTiyANwmVKiupoELIaeIpIhCxJ8\nKfGtK+pDzfjKUlcWX3sqV95/MYy59JnsBLRxhZ2ohQ49ICFkw2UaFuXvefBOjHnwfvSmLOqBgSgy\neFHkXOL0gmKzIYqU825g3ba4UU1i4CgISFbamLE+Y0dKkp46lgnHJAv7djslUXoLa02QipArbHps\nTtRJSppXzJBhhIU+YwSSybTWs1LIJmIrW5SHm4TRTD1PuDdapuLpp4Oblg1w+wAODlBrEV/tVJyV\ncWQEEQdOwU/Ik2cZbf4B8vpvoOY16OaY+aOStlTvkewtjK2JdoWkSOCUIB6bLHWCg5tj9vcPyall\nnATrDZaaTTVUIi3053Nql8hYeluxuBHJP1LRhkAaKZsUeLC0vHUyJ4qlianQpJOnoqe/U2OeuY6O\nLXPtybHmnib27t7Drk5oP/whzp57htuT/cdeix+MTWHgEKQQ6TYt87OHfPaf/WNe/tqrnM5XbNpI\n38UBRGS3aEvZngrdN5a2YEtWysaSxIAUMtF24Wwrhi22kFIi6ZCfIMXoKcaCVazXazabFc1kzEe/\n4zv46X/7z/I93/8pjq7v0UwqrLVUVUXVjHBqqcRDPeLrD+4xunbAKiU212oe+YA6WKRiLRZC4TyE\nlIq4JiUkZZoearWMAjRdJkWhC0qKJT6+j5mYMzFkYpbSYySw3pUYtlTIVQsLy8bRjR1LFGcMScoI\nr89KjCV8pWw6RTPhKrczUYnDuW1DAW9DirvWilzEahnFNTWm8ihC3wVms+mVWPpShu4hjKMwq2tS\nPSR8x9JuOBW8Cr5N7GWDDZnaG0aVgRjRAeRtfMW0HmFpynjSFG3Kmy5wKsOkwnqyGGIH/SoRg6CU\nVs84g+yN0Bt7pOtPobenyMeeJz53qwi9vBQlpRg0rJHcgm4KpbmKWPOPioeGXaHrR+hmiY2O2j6H\nsyOc2ye6Ex69M2fajBhpxhvwUVg/Oi56kUbAJWxOXNeK0fMHTMYWXwvdHkzujLnRRyat4ZmPfwLN\n0LcVORpWpx33v3qX1xYb7raRs2XPRXtcDFSeqsnf+yzXVJk0wnx/nzBPPKgc/MrvcnxrxuRv/jec\nf/93PfZy/GBsCpS7d86ZEHse3H+Ps5NT5hcX9DGRBlBsF9k2KPSuaiSKa5DZfT/GSEgR5aq3onkf\nk/Gq0/PWsVm1JFHnVDaH5XLJxWJR0qVv3+HZ55/j2s1rNJMK7/0lbdoW+7OcM4lBObjX0HSZvWVP\ns0n4VRwWloIoxpndcwNY6/Eho0nZmExIGc1DUnSCmIrASVUIffGfMsaWHnpL4lFTRnsi4C1SCTKQ\nodqcB9FUwTGqgTlqffFdEGUnMf/m8Jut8My5S3u6vu+LXX4uuoeUM8VWW0gUBeXEWmp1VN4yMhZN\npZogg6YyGfEKE1sR+jJCdSiVkZKgPXx2lTFoCiUCbiAElfxQdt4NMDAzE2gcOBli8N6Xz6PxWEbk\nvQr73B3cE9cw3heeBRZJm4KEdAu4OCXnOXSJ1F+QQjd8dh1Gu9J/RYOYCsRjXcPmAlQ3xcrNKpvz\nNU7r3YQhJkAtcZOQkPCa8QIjX2Fc4ctMjzPt//p1koUxkaoWtFLQQFxn2qBsorJoM6YP9NfH2L0x\nOUVmTcV4dgNt9rAmc373G6Rlh5oJ+l2PH/7+gVBJFnZxMfZsV0veeO0V3n37Hut1T9eGwhVgu2Ah\n5TAAklvhUlmQW1pvSkU+6weD0W3eoeRLBuN27LfbVJTdhZaHINu+iywuLlguFuWxWXjxI9+BiLBp\n18RN8TJYbtYkKfhADkptLe9eXGDbyL5UbBLQBbKvSKsCjsZYaMLmyjnIObB0kBpb7uzDndsYSx6C\nRTRBHspwDbHY0w0ZnHmLi6QEXljmgB85jMnUfXGeGDUVbd+XSiElEB0AyuJy9ezN26gG1Ah+SwGH\nMiEazq0W+KFgH8ZijODHNf3AE0kpI6acfxcidapYXiyoIyWzMmW8Fpl6TIlxBFcJ3bKlcaX0Njmj\n3mI1YnJC1xdYEZy1oJlKLC92wsgpMwTpO6wDtZaS9wFmSA7RlDHVGDfdh/mcOGpL/sPaoaIYLMm3\n6OwmxtzC5goePcJ1x+SYkdEM425Ceg9NGckrNHeIVTRaTN3j8g1Wi8yeVSQqUwzdrQwHHYePDKYv\no9/1JpB6wFkWT3n8Kez1EfdoQW4ct/oK8+U5ewk4sozVcqYJE4RV29Oh2BxoH0X6Xnnqsydw8Fn0\npz7D/q/9Q16f36d67iZ3H77KnX/6Fmev/x6To+8h/vt/Gv6LX3is9fgBqRTYVQnr9Zp79+4R+kTo\nYmGicVnuI38MBXo43qdmVEqUnPF/xEHpn6vEzJcsym0lkVJidbHg4cOHqArL5ZrYJ0ZVjfeW8XjM\n3t4ezhbijRlGd04cbDKrnAiiSFUcqENIOGupszDNQhXA5ULdNVZIVQnXJSghKCkbui5ixA1VQ5Fv\nx5jIV7gK20pq9/pzeQ9dDKxMJtjLKYcK4IXx0bRME4xB7DCiVUWded/vu8rsDNvqanBmLgE+xcim\nT7GIqgZqtA4cicoIsevpjBLIOCnyaRuLtV0jjrzpSkrloADdJk9hwWpiZDySlCzFIk9ipsmJkSoG\nLSYxlJtLHjgMORZg2mBALFENKi1VTPh1QE4uyH2xKXOSkd6gn/xzcPQiqTlAQ4VpQbuW1CeSuuFa\nbEELglLg266Avtpi1WAtZGNZCHDY0Bx4sia8DDOcnOnXCWaOtc/ECF1SrKvQymFswk8947ajFqUW\nIWza4tBsLGotvXUsk2XxcAV3l7g/8yPQ9+wfWtZxjkuZGHu4+3X8WBj9i5w+/H9xqCqxD7Src958\n/WVOTzcsVy0xFDJSiAEYQK9U+mq7FUhdETRtF4RVQa0MMmRHaMvcXId4tT52pYQeTEnscHfJWpiP\nDhmmGhA75fj4mN//3BfQmHAWNm1kuncLXx+DGp588klq5zg9PWOeFrjKo/2G28/e5vi9+9TqSS4V\nLwZnICspJowrHPmUQCth0YC1heOPCEETdTYQBZMC2ZRpAs6hITJU4eQ2MvKeC0l4GcJrVDFJMbFM\nLBY+4sXQd92QRm0IlTB7cp/+vTlJ4ea1A4iJTLnLp5QuF/lwMfvKknNRRFtrySScEbou0jgLKeGN\noN4WLCNF2i6Q+4jOKtymZaKDoYsXjIWscWgPykZfOcdF7plli60duo70faDKJU28qoTGCH5UMbYV\nbrOkaYSsgsuKN0JKQmUUjZkYA/a8x71zn3x7DzndkF76baxzmAypFmztcNceEX/yZ+G3fh6Wd7Ft\ngOUSYYOwR3Q94kZIXKPGI4yRvMFQ48TyyR/8Pj7XfZmRMYxy4PocZm9tsBPPjefG6CaxOO3JSyUv\nI/71DCFxA8M0wLhasodwWMFspMjEkdw+7ckJz3i4MIYUMisFmwIXawe55fzXH/KhT38BGGP7Fb7u\nMNcgWDh4+hr5wNE/nhaqrKV/gWv72z62d/GLiwtOHh3Ttu1uGtHHvpBbroCMhsu7/faOfrVq2CLv\nV+/6xVAjl2yHK9ZUzrndc22rhy3QGIc2IsbIxcUFi/kFp6enHD98hGRlOp0VIC4EptMpk8mE8Xhc\naNpGWHctag2hMoSQqSltDpS+XhR6C1pbUuOGUvzytYkt9nPFl9CVtGspiHzZyMp7dEYG9pstG05K\nuK3Rv5NCqDCg1vBDf+rTGGvxAn3fEyqDPZjgrWCdKzZsXFWFXsniGM5hXfuiizCXQb0yUJ7VmqLB\nYPhcUKRXTFZCV1o2jOAri8cUsHF4b1A2miBKcFIYn4NOLjlYNUKohD4rfcqAofaOyaQu7YIxbAS6\nvK0iy3VirUViJs436PkKli3SazHe6DImA1rzqD/CKaTYIk6hqcl7DSY2SAy40Rhxe2Q7QswYZIrJ\n08JrEGVvPCIPzk8Avq4BmPlxGQ2PDJODBl9X+JBpuozNijsYYzQzdhVGLK42+Fnk+o//NIcf/g5m\npvAUnFGMZNxgUDMnsUmGi0Xi+G//OrEpGy0WphPB7AlydB3BY///FhuHQNevWc7POXnwgLbt6HKk\nj325s/f9rhKAYRMxxXRkFyOf3n8R67Bw3hczb81uOrETOH1TloMxxaZLTRnb9SmyXq9ZnJ3zlS//\nAW9+/XWO799jfnIMQNM0dJslapSDa4d4b2gqj/eei37DwcFByXP0As4NVmSp2JqnjE3Qjg2tHd5b\nGgRc1uKMw3QFa6Erbkllul8ueufcLssit4Gqz4zE4q0rtu7WYq2/9J40jr/0V/8DRA1d7KmzZbPZ\nYA/GVDcOyIO5Z5civaYhA6K0VX2KtCRcVZUNM5fWqpmMScfrRVMAACAASURBVLXDWYPtlRBLAG7X\nB/qkiFg2uRizHohnaqtCuOgTTjOjkEt0fDaFKJoTySpSGaIU05fkgKr4O4j3zGYz7nzsRcbZQLuh\n8VCPPFGUB9ZwItAPxrAKhLYndy0ugDm+wCxazDKj8wirWEaeB2P2f+Avkf7xl7H1qxh/C52MMDGQ\n3RPk2Qipn4C952DyDOpqst0HN8PjqPUGT9+6hZqIkwIgauyY7DeEe3Pe3U8sTjaM9i0H00xjwKty\nKxlmWXHOsF631HWNuBq/BveDP8HDGxW3f/AHsHXNRBL7jXBt6ggu4GaQxso6W169e8z6dIGbCDf3\nPdxUlreUPPsQIcRCv3/M4wOxKagqXdexWM7fVyWoUnj65pJZt1NN6qWT0pYiffX3Xa0cthVAzvGP\nPK6PmZQLm3HL6b9aOZRpgtK2LYvzOavVagA+M9aANZmqMjTjEc88V1ykDcUcJqnSO8v16ZQYS9Vz\nlaAlItjKks2Win15TnIuEnAZWIKhH5SHQ79e3nsmhLhjRjoxu00FZwfbtkIj1lTeY19D3wc6pDgX\nhTJB6EeOXkrrJN7uzts3/9mel6apiAlWqzW5D6SUya5MPsobKMlSSUqMQoyRsbU0apAu47MBFG8H\nWnsur1Wk2JeNItRDFegy+KiMxFJZx3i2T27qonlIA+akEe8tIachY2I4RzL4Qtph8jQwJIsRBpAF\nHViC1k3JJ18jaSLXgsiIZNcYMsY+ATqDeh8xFmxHwoMEUu4Qijitp4DWXqCyFpVIRKGu6S10JiHT\niuwKH8TmjA0FcK6GadQiCrh9THXO9euG/OEXsUN0ngNmI0vtPcZDOhxhHFTGsmzLRsqeJ00tciSI\nq1HNlHLo8Y4PxKYAENsNxw8fcbFel1YhFF4CxhXQMZSJgw524ZLyLhYrD7P6HXg4LByDkEKZsUMp\n1/3AltuBcwzchsGtuSj7ygUU+uLhEGNJMdr0PWenF2w2m9L7Vo7pdMqoaZjNDvjUpz7F/nTCeNTs\nSv2H6xWdKKNpg8uD2Mg7ohbK8XJWGHbOmUJucaaIenLGrkMJVRHFimViK2x6f2tU1xXJZIwDSZE6\nZQ6tx4eIaKZLkS6WqsHXnvWq48Xv/hDjDH0bsMYTcmLdbjhpl7RWIReruZQK6FccrzKk0u+ThXXX\n45vCfOytoa6rEtBrIBgtfIysHIfiHJWyoTtbszleYnqoVHDAShIPK+W8SjgrWNUymQgJL0KdHeMo\n+E4ZI4yamvVmw9F4Rt+3hC7QbWKZM6SeG1mYAXZw06qcxVa+xKtNFJ2NkYMJuTEl90EEUagvEnz5\nlxH3G9j1C0gIpE3HurlO/qG/Qbv/FIxmiLuBCSs0rfE6J+b7tOJYm5a7dx8gjWXkS2ybN4KYTH1n\nxOGrC67vj9kPNfVoH+uEm1VNc73B3Dqks+VzXq2X+KamGzXI659F3ngTszhlb+aoG8u0NkyJPKWe\n61ox7xMPZ4ZNnTm1nvOLDrlxnfzMPv3Th4T+FHF5l8L1OMcHYlPYouU5F++6Le9/W/7vZuPbSl/L\nsGm7eN9HYb7yO69WClfVhNtjy3YsdxJLjpe8hZKbYHeldxywg6iZruto25atbVtd10wmE+bzOVDu\n2N57VIUql/JZAdvYovhLCaQE2Ep6f3SdbsNcrUC8YlpLQeYtgpVLrsBWOQllTGiSQh+ZiseLITtK\n+nQGa4WXf/9lHl2cMVHFxnKOQtthU2kRkhV0iIcDdp6NVwFdybrr4XMuOZExJYIplYH4y9fXhUxr\nhDYnYg9oGa9GTZAhGENsHHlUovy8LUCsHzlcXWFjSeOytmAQHkN3seSVf/J56CIpQU5K7AI5wjjD\nSAxmsKUvhKyEVAZtLOZgikwbxBgYFmIpESNJvoEDdPM6sn4b6e9jvv/n0FvP04x/lNiMi5Q6txh1\nkB+S04IsYzZJWC/XpdIRQxQGkZ0gI4sbOcZ+Qt/BYnWOFUO/7kgkclTWTom+XM+2jTREjn/n8zz4\nv17i3q/+Bl5kOOfgncGNwbpMqz337zgkKUG6QnS7fkA+GBNNxnTL8jlx2SZ/q+ODMX3ImfP5MW+9\n9QabtkdjIuZYsgy2DMacC/JOJmvGipJDmdenHDBaxkPbhaKqhDz4DGgEU3weVcvFL1mpnUdyLLNo\nEfAGhjGcRdAYsQhxwBr6vkS0hbamnzRMJxMO9/cxoxHjcUMX1jz15B1CV0rGVdeTh5jxloztE3vj\nmvO2wzqL9BlJCddlUlPYmT4qkwCNZrIYkgpeErUz5FASqtpRJgwjwYggsahLKy/F+SgGxHiuG8dp\n6NC2wzkLsed/+Ov/I70fMTlssJsS2LvJkSiKyXB3Puep0Qz6RLaKR7C5oPjjnHE58uknjvjoE0eY\ntuPhu3dxEW6Pa2585GnWOF565S5fXJ6y2ihL7+jXgVQb6i3pSIrqcpoze0FoTMRReBGSizFLo568\nDkRNNFL6b7vp6bozfBYkJZIVKoXUKn0qPpATCxUwUjCqZI3Y7NHxDPvkIVo38OEZ0ffYL9xFVycg\nHSpT7FLR83vkeIZt7yBHN5lc/24UaN/4derbLTm+g7Gfhuqc6N9jsf4afvICZ3rB53/jZY76SN6z\nzG9b8kq4to5ok0h7U05fOSO1EZNhf8/i7ji6eWZ1ep+ZWLRL9JWw6VrenQcmFy21qdkbRWKG/WZM\nrAJ7k2scfPg6/Zsn3FwteZUVawP7E89GO947P0Oefw7brFicvMbete+k7jePvR4/EJUCFCQcCj02\nar4Eubi861+98wv28mtVGLIo/0jFIOxm7Vf1FWZAx43IcKFeVhOXHAZ2X18FOXMujkXtekPoe6x3\n7B8c8cTTz1A3Y5rxCOf8btYuWhx5jBsqGi3PL7aMTv1kAiHh+0IBLnLk0v9aa3FiMFaZjMYYLb22\nk8E+bUDX7QBIdOsO5zyLizWzyZRu3WG9wTU1fU64WiC1RS9QW0YDKLl1OOpTmZww4DgSMy5l3HLN\neLNhFhJjK6S+g5QwMdJ0mYNl4Hqf+XDT88NT+NcUTAHfiWrp1O7aumyF1irdALa5CA0GK4WzUQnQ\nBmzMMNjQR1HUQTVs+qGyLFzRTUTKhKLwJgRDadPK0BpAEO/YuKJMlfEIlZIJ0g+Bwpp6JGXYJBjf\nJE2nJFuTXv59+je+iG8eovkEgysVhl4g6XiYZgkjLGdvPCxjToQqKDZlooI6x8R48qbQ01UM602i\nD2m4LZd2LWRKmxUiZrpHsoaYoR5XjCYNlXeMjKWqavLZmsbVuNmMfR0j2ZRYw31Dtmv61BeiWLuk\nT/1lAvVjHB+MSkGVxfyCrgvD6HEYJ+XLkSPwvkUfU/++tkFzJA8g19UWIXQl78EMiD1ShDVtDjsH\noe14T6ToEi79Gy8j7LcApIgQNbLeRM6NIYvj2lPP8olPfpqQN5hqRKRoIkTKRWptiVfPtWMTE5O6\n2Lmrd9QpU1mYtLKTcUfJ2NoiYjg6OOD+w4dY4zldLKiswS57Kmu4MKWH7zVzWNXEfoMBujZQGcNb\n995jPLFMbMN8uaI2hoAnm0SXBD+CvcpwP2Z8VLIYjClqSJME00ds13EwmdAlhdSDB73InC5XjOuG\ng8kBTNY0UtEvFlzjgKOR8omnp7zw5ppfcZkTY3mUAocU12hHxtaOvi3ktDoLuSuAYr29dkPxi/RG\nSq6HNXhNEMrIr7NKmFjCspC4NGcaNUzqjJUimqpcTQhKF9f4lTJyM+h7wuvvYCN0D+/RuHGpNDsQ\n9mH8PJgKW61LqO17P0cY72Ov3ST7RBaLcXvAktjPmTIlG+HV33uZ1377Va7XHpMjoxNlMgYdH2Fz\nh5pA7zNkg1PL3MPFhfL0TQfzjpVNRDHYZFh6pVu0sFqz7z0aYXRQQegZyYqHq/tMVo7VjSnT6U2e\nW1WMtOc4brAjId4ek9lg3ZR0fh/bL4kyeuz1+IGoFAR2uAF6OWW4SkiS4Q9cThU0xYHWW5hsopdV\nxRZAKmBT0SgYEbytiHoJJm7v/H9ctuT2uLrJqF6OQvvB12F5sWJ1seCN179B27YFC6G8/p33gtqS\ncEQh9uQMtw4PGBtLf7FC3SWy7ykpPzEEjFBEPZQRm0EYWU8VM4fJUUeITjg8PGR/PMV7R8EKM5IL\nFbnvOkbO76YTtkgv2PQdXQzkUCYpicKnj6sVutng2x6fB3c5WxHFs+kiq9CRQ48jQWo5jIaxrWh8\nxfJ0DqMZI4GP7Vt+WDP7o9IGbtQQclFauk1GhlFKDoJEkFRcjW0qYLnkYhIjQ/WYtWywVmGUilOz\nG6YiGEHI1E6pa/CVJeWeEBMxgwkZ7p1CH5E37mO+dpc6W6IUgpZkW0xm3Qhri4w9+wr8Pm52A21u\nYvQAlWqgTq6xpobkUeCL/+fnOBztoUPVcGBgur+HrQodDmvwtYdUquAs0PcDaxSwxpAl04VAM9tn\nebYidcJ83nHvUcvpJvJw0bI0lnjeFjepLtCuTvE3DtBnP079/HP4vT2S3SCVoc/lZsnq4RW3zG99\nfMtKQUT+PvBTwENV/c7he78EfHR4yAFwrqqfEpHngJeBrw3/9s9U9We/1XNoVhaLi9Kz5yKhFSwh\nhp2K0A1cBGtLilNOuYwq1WAGxTHDxb79o4CzljiAhjlD23clxmzgJ+QtiGcMOUSSlkXDkFCVUHJ6\nf0uCJPqkrDYD6/Lll7h39x0Orx9xfjan7YrdWeUc6xywuZzmLApO6Ixg92pO7x0zdeUiH0+nrNsV\nORhaIqYvJJX27AIPdMu2vD9TDFeSCHVQXMoc1lPuL04YzTuawz36swXOlLL6qJoxX1yAL2h/2WAo\nBChjaLVMXeihiolbs4ZJD9L1XGsmpFFmcXZOaiOVt1hjsSly2FTU647RasOBh5ujhkmIVALd/VPW\nJlPXyne5MTf7llet4beSQUhEa/DJ4HJiicPlwASLN4laLJgipR5rca3SxnBqM9oLMzJeDBoz+2uh\nsgZIOF8oyKa2TA88adOR1koVMyoVcSWYexeYBy3G9ohL6MgXNyoH5IQ1FdiKrj3BXr+Dm47RVY+L\n0O49i3cH5MWXsN09eq9U9hbz8Ba9Jv73/+k3mbaBaw6yM3T7llFSuLtGe4VnpkyODA878F1pWfbG\n0M6V5qBh3AdcVeG7iHU1pzZzszOcC6SFcu+dBZ2D695zYwHSJmbmlPAvf5IP/8f/KTevHXDH7hHb\nUy5O3+LB6at4N8dUyslbn+P2R659q2W4O76t3AdV/Xd260Pkv6dkXWyP11X1U4/9Ctgi3PK+dOgU\nSxVQdtAhTXnrVKS6c//JaSAwWXbJydtyf5sTcOk0JBhX0G8dKNJmaElyzmANZnBb28mz5XJefxXX\nUC0qPGMMi9WSLkfWocUzTDFUiby/4gDwxhM1EhHG+1PCYokTIcaeWg3z1KNSRqw5J0IXQIQR4EYV\nMQfWfWTfGlot/+ZSR1x1jMcj+hg52J9xfn7BdDamsoZRU9GnOGAUjtx3ZeMTIeWIQ3FemOG5ro7a\nexprcTkxbUZUajmLc4y1GBIOS1M5CB3GwMjUWBFit8ItFxzsHXCxWoMarlc1B7VhKvCV5YY2QBBh\nheK1JC17Y0r6VS4+CREh2GJNVokhGIMxZSpVuBuKrSwai/DJWVNGyrWhrmtwllBHuObZvNPR5EiO\nCbd0UAVyncFmckpFJYkjSsLGQN60VHUq6kfjaSXi3Bj/9L+CPVFS80p539MnyUzR/iFkODkOjK1H\nCUVPYj3taaCad3QN2HXPqPHMXEL7zO3DA5SefLImNdB4BxTX7sXFnPGBh/eKMW0Qg+kNps+ER5H5\nGnyjmCyMn71FfPFZqKckaZDYUB80HDWCbzJeWlbdMZvNyWOvxz9R7oOUK/7PA5957Gf8458Day2b\ntkekXCDbIw0W5MpAvU3F/XiXIEUZJyp5ICaZbxJLZS7Bxy2x5lJN2F1hPBYX6MIf2BKFdq9j8G3A\nbLEJ2eEfXehxbV/YgQjZ2B03AgziinKuyIDL8yWUeQrUByP2jUOXLeIsP/1v/Dhf+cKXCDgePDhm\nVDu0D2SnpD5QGWFalfl7N3Kca2Ti4aBqCEGxEab7E8be8vD8jN61GN1Sni3GOyQWcU5MkcZ7prXl\nMFqkFkK7oZFcJh7WUHWWJZl6XNOMR8h6RdMGVssNY5TR3phVBfdCwC4ih7bCNp4bB4e0rz3CXxOy\nazjSxE+v1nxeK45VSLGjtcU9ySH0ppiyNiKoN6yJ1Ap7WfAxcsMazADSMrSWkHG2GKB60iA2ElYC\nqxs1B5/5OEf/9wUXL72B6S2pscWWrgZ8cdVmCsE7PAKbM+zqAWH9CD/ZJ7PPaGmJn/oLRPMUMn1E\ndXZMaI5w0x9EUE6+8mXeW73KJDdsTAI1qIfxUggXLRfPWHxfMkvjFMZPTMhvXzCtKh7NF+w1Y1zc\nIFkZVYYUInXjuPOxp3n46C0ihmnKxY/UOPpFRK3FzaDtE8+/eIcwuVkUrJqQqsbIk8TDjBsJwTgO\n3Dmr7vyx1+OfFFP4EeCBqr525XvPS4mS+10R+ZHH+SWaixOxKGi8nLtvFz16iS1skfK0xQ1Mof1t\nUf2tOnIX/SYFZCQrOQZyDJcbAEVfsOUBuGHTSOj7cARgh1GYHVfiSsUQAn3bsVmXHr0LPTGlIrPd\ncgi2yk4p49RtcnYHnPcdh7dvczCe8Nrnvsg4Rhor3JodkaOWQJqgOAw3bt5kE5U+JsKqZ77OnIXA\nKiU6B83hiPVqznp5Tq1gxJFF6EXIA2U8DEKwkfWFRNQXk5d6XJfZftticiKcbginS0wslOr1Zjls\nbEIIiaSWCMhsSpsT667jZB246ALH8yXV/hR3lrHzNULgqRE8S2KWMxZYIkNuZMmBXFpKEE6Mha/g\ni7uTy+D6TC0GS5FzFAepgjMZGRy5oGzaCVzlcZUHozibwXRICCWpGynmMOMK9hzmzgi9PkJtQC/e\nQbqWdPEAE5aEF/4Mpn6CbCF96degdgS/h9h9NAZS0/PS519hZBQ7+IJYA+IMvQEJiZUpHX2MkTEG\n65TFo3NYJLplixEtsv+YqV3BUap1Cb0+GjHYxwnGZoKA2pKBKkCUiJMyzq0oBLbcRbo2sGkjEcsq\nC/V09jhLEfiTTx9+BvjFK1/fA55R1RMR+V7gV0XkE6p68c0/KCJ/EfiLADeuHbJcrgl9T46JEBLb\nbMle0y5vcVtRFD5+3gZIDwCdRcyl/mHXMuRL8HFbESQtpaOIwHZ6MbQDuzbBFCdhKa+1/OzONn0Y\nTQqQEuJsuSh7JfYlS3B7N0tpC2omLLaoNkOg9r4oM7OSnOO1k0dYk/mJj38n7738CvrgEc3NET/2\nr38fL33lJW499QKb9Yp+tULHNaFNHEUlN5azlFlr5iInHrYd16WicoYqKn1IaFMXM1UB0cREhGti\nMV3mhh8R84YqKN17JzTWg0uMu8S0gXkIuLNIh+AdOGMwsZCxUkwsYkLWkZuVMJrWjFJm/s4xrXP0\ntybc3p/QP8rcGAcOXnyWGy+9ycdWyrsH8A/XkdNguIPF2RKfvg6Zw6gcOMHkQlzzZIwq3ppBMzLw\nTygUbokB5yxxa1piLP2jjPmt97j/1btcE+irisZk0sgRRwY79eQnPoQ3Hfaje8SYCV9/h9HJu8hB\njbgAZo39/r9CsBn3pXfw05fpDz/DGKBfoptvMPvo0/zSv/u3MKlnlIpHhFNLmoFTT3sWOXCKP7Ck\nVWLhIs20IpyCOEeIkdlehZwHrPVMZg1TGvzDU567XUaZ7fUJ7cMzQogYNfTZgjNUR7D+3MssPvMW\n49lTaCpt92YtxLaj2rtNlg11c5NRdeuxF/W3XSmIiAP+LPBL2++paqeqJ8PfvwC8Dvyxli+q+ndV\n9ftU9fumkzHdZtA8cJUzYAojbbhzi0ixMNuNB8vC++Z8SCUPSkelZCRccg+2fIht0rQZ7v5ZFWMv\nH7t9zFZzsXWBTrlsN1tDky2fIknBNEp5WyLVYr6cDV8qOrXcwYbTbwVqwKAYNXzulZeJNw758A9+\nH9/zvT/EeO+IG0dPUKHsjSr2ZiOavRGjcUNVWw6buli7acYYR8ZynCOpblh7Q3ZmB9bmWBh+pTqI\njMWyPD0nx8wmRcQPbU+fcd4QDMRaUM1UmOJ/kGFcuQIGa8k4qHPApcwLH/ko124/g0eYkDmqJ2w2\nlmgv2Bz9MM/9hZ/huqu4sWf4rgpeyIYTMicmFWOWODhDZYtNhe6sUcvfo1KrKaxOMaAJpxC7wjhN\nmlGxbJYraFvssmf9yptMbIkLYDcFMvgoSD2iOryB+BlqJlj15cYTIpJbJAS6iwXxG8fw0jfQe/8J\n6dp1nN5AUyCtj4lhTvZjlg+XJbgoZjKGrgsQEkwzMw/jgzFhucZsIlUWkgfterJkxo0t4/XB8MfX\nNZt2RVyec21asfepT9DUnlz1GAdNznhVfF8qj/7r7xH6BTF35OG/qB2uqYlhRRs7rDisNo+9tv8k\nlcJPAq+o6rtXLvwbwKmqJhF5gZL78I1v9YvWmw2ni5awE9PEYfxYJhGO0m/mnAc78XL3zUK5429F\nRloWF4Az5WJm8AHQKz9HKheJANkMeodhGhFVSwbDFUHVbkS5bVm4rFy2G1gBLFPpbEOGIUgm5YQx\nxbHZAvUg2skiVGqojEesYV/KxaEYHiwueOPee1jjePHZDzHNAb1/zEW3YXp4i+Rr7EiYuEHRGVqM\nM2hO2L7M9x/EFbPJGBdKsKyltEqj0DNRy83bh9BF5ufnpJzQlAi9cjgbsz+2XFxswDrWCZIRxiRm\nTqhNcYm+MDA2pmgzjOCN4EYT5NY15NWvszd19KfnkDMj9Tz6wkMmPxSpc8cz04qRVuzVPf/lGh4l\npQYO+szGCvOUOQoGa0o8nAuKqQVbgesNyUbMOmGdFAFUVS5k2yprk0mxpXFlMmFiMX/wOWOcK7hT\nZzFrh2LQeox86S6dbWnagEqLjJ8sAHM4xv3BvweTCfn6v4SVKSmdkJPD2Te50GPUfJSp1kDE+RL4\nEwOEeY97osI+5dk3U07/4AF1pcxcRZpUrExPrcqoL5ycxgQmFYh5Blhze2/CNPd0/+aPcvSFv8XH\n/9VPc9GOees3/0m5EfqIC2Pi6/eIb76NHDwJrsLKEZU7Zb7aID6yZzwhronVHynW/7nH44wkfxH4\nMeC6iLwL/DVV/XuUdOlf/KaH/yjw34pIoPh//Kyqnn6r5wh9z5tvv1WMQmPc9fxbSbRQFutV9nbp\nJ6HEyF/mEAyWP4QUyjRBLzUC5d8vF/Lu/1y2A9vJQwHnL6cdV7kLkhUzVAk7UPN976gAiSU56TKX\nYPvY2nkS/w91bxprSXre9/3erZaz3LW7b2+zc4bD4YSbzEWUZFGLRVGWKMlBYiewYTuGgQBKjBiB\njUjwpwBygsAwICvwBsjaQFkWLNmWqGW0RFIsUyTFIcVl9q2np3u6+3bf7axV9S5PPrx17r09kclO\nPpEFNPreOnXqLLfep57lvwiVcQwKixBx6KwtqEDjWKsMVpc8+/LzjIYDtGRfxLq5xTJm2TOS0Iqg\nCjJhiR6JKFlBqelaRmWN9VkVWhnQy4CKWYJMFRkZmhusiqqylENHUZfMJnNEVG8Dly8US9ZOcMMx\noqd4n5ibxMgUGGN5+bnnaILnnM04jQGKLgx5x4c+SvPYI3zx5/4FZwrLJgWp7BhvQD3XHBlhmoSx\nqIxJ0NmYtZQ8bQCwGqwIRgSURkvMmeDQ0m0mqrKgu94RE5kPofP41UnP/NQWpLfcixAO56i9AwyC\nHC0oXQNBwA4J0eHqYb42Go0a1iTTQCqRMMfQInFOI7D72hEqpuw5kTpsmfkJWYvSMNzaZnl1imCQ\n4DmcTqlGGzijKMuKoltSFzBWI1SMbA0LZnuKzke88sTPfJkmLFgfbhPalkJlK8WjlHDtgsEI/LPP\nwRPvBVejk8ZEYW1tjZmeUagKCERZcK/b/1/fB0Tkb/wZ+34Z+OV7fvWT5zGfziEmRPLcGVYpe+84\nHPMCDKwWeeiJQatFl7LBx6mAkmJC8ijheGGbHjX4VoKUUqsSo+dYqEyxNX15cmLZlgMCSTjpanAM\nlT7elMpgoyQ9VyNrIq76E4OiZGNrkw9/+7fijMW3SyBhywIJkbquaZqOG6+8yLUrV5gdBfbmU+Y+\n0YTeO15lC9eNZDlKXaYqS+oTIUWXIgeLGZfGG6gYUEvPIGlCobh9sA8hYjLIE1UKw82a/dkRhAHK\n6OyYjFBKokYzEkWpLTp02MogPQYjqsQ8NuhmQe0MqhC6pCicZu3SRXxcoh854GJxm1Rapj5QtZ4H\nhyO+hxmfj4o5hkmGKGBSokWxhhCJFKXBEDGSTWHaKGxog1KRZIX1xy+iJnPctY4QoMCgVaKSSLHu\nKIwlGd+v1oCYAjsPhC89B5VDbENygjYQ3rGBXTcsugMGqiC0C0yqsUYRJ69jyj1iMUXCjHT+UX79\n/3yK1HqwjoG1OJft+ToxjJNh2XrCrQl+23O7tAxuBR4+swCjqEeOctoyLkAxp3YFt199nuHAEjoh\nuAHhk3/A28fb7H3608xvt5wbWxbDCq07akkcrWkmv/QrPPiRjzJVGl0MKNc1Sa8xjzPEBLR2LJf3\n7jr9dQFzTpLoug6nXb5bnpoFilJ50sDdOgmqN1GR2I9ipIfeISgNWmW+/moKqftFvuI/vFW05a14\nAqCXKs/HnO5bSP/YaX2BY82G1WlWDU9FLlf67k12m7LUdc361iZbOxc4s72ZZ/VKqKqKFHpPTG3Z\n2NhgffsMLz//LHq/Y37UcZsi4/QxBBQ2KcgIWnzIdXOSDPSKkhufLgomZB9JXfUswZSPwUDnW7z3\nXN7Zobt9dMz1F1FYNKXk31USIi1DYxiIwvay89FprAUbMoMyGkUzX9LuX6N4YJP2N6cUIqhZZOwK\njBHWn3iSR3Y/zZWJJhFZJEWtFA0Kr1TvuL3KzKCz6ItqOAAAIABJREFUiklIJKUYqQxIU03ALRUb\nwy2O4gFOIBEzuc0p9MAhCNSJZBxqCeIUSisQDzGhlaDLBKVBbQrx4hrFmwJ4jFcZeRkMKrXQNOCX\nhNTSdJE3XnwFyS+V69euz/pCQHzA+YTygbIqidOW2ll0aei6RNsuGSLoVFDXlhBbXB1JSZOUwSdD\nlwImNAw7RTUqOCSwub3BcnlA6Bastx4i7F97g2Jtk6KCKAbRHi1ZVEhCxNlvMJYkkoU4YpJMTukJ\nIkopCp09G1eNPAxYLDEIYlrS6soJ2UosIxNAUs+YTLmncKyq1G8hhGPZ8jz67he8Opk23O0cle7a\nr7Q6pnJryfLsXexFVHSvjmTzbN30ZjOrgLHCWKytr3P54bcxKApsabBWU9gyZzIRgp+zNhxx+ZG3\n8873/Xl2965y5eWX+NLTX2Z6cAQpMWuarONYj7i9nFHqgi55ClsQe8Wj+XzO0CgKJVTjNbzpkEVH\n6AJeg1OaslzHN569q7fZjAnnHE2IoAyl1gxVoHZCIcIUzVanqY3nrHaoRhj330XlNG0RWVto5jpR\n7Xe8+TufoxgKI5NVqVLRoOIIvukxnvj0n7AT4cWl5jcQDiTR9GXDjgVbwBTBRUXoApM6m+BspoRO\nMasmf+pN9lOkqhzaZO3LpHNT1ZqCbl1RPHkWHn2I8AtfyD2o5LBdzoWS0Sg7QD9wHt7xAXQ5QvzL\nxNvXMGGKtIdIt0DXG0irMctnmI0KXPrzfOqpT3HBGGz0aA2laEa1wrWJbr6kHq0zetdlFrdus2Nr\nah1objXUhWFzMMQsD1kuIvd/9G9z8Ml/gYwLkhkyPTggtB1r59YZjxQekBgZhQGVHhJGHVcPGqq/\n/OO0n/hRrv36zzNcfIydD34nepybssXCEaMmFQGt750Q9XXBfYCs9qtZLd6et68UXhKBrLWQ9QT6\n/oFEYqcw5Mahtuakrk8nLk+rDEPpLPd9+u5+2hTmtBIycFeJEcKJvkDsrenequzkfds7KvU6j3K3\nCvJbtR1823DjtSvsvnoFQvaaiD4rNjnnssELgtIJbaCqNTvnL/HQY+/g0Xc8wJmzaxROMSxLrAkM\nVWJc5Gal00Kk6+Hf+btNy4B4IZVFX/pkyXHXB9+yUgxHFbWzDF2+izocEhNDHzE+URibg0jMkOhB\nhNJoLr/vfbSSWMcwSIk6OHbrDr2zzTC21CagJRGTBpsYp3WqrmX2SmBno2KriDy8ZjgvAkbRWcsM\n6JIDY5lXwtxAHYSxVQxsxNveW9EnkoroAkgrMl1ASQY3YTXKevzlS0xchYjCdJ4YG1AgVmWxXA1+\nBJ1ojGyTTI0JJUGFzCEhEeMAz4DYzXFJkPkMmZ9gV0zSGJt9O7S32GhY4Nm8cJli7KjKCAsF04iy\nisXeIaIUZ2PAF1OmSbPz7sd54D1PoAqbr3UvxJCVp1RdMx6vs5gtoXO8/fEPcP9f+qvYUrO49iyz\nVz/F8s0rNItAbXNWWheOIgnFNxohCqB0BSlECutyE1GdkJ90EjS5ox+kF1VF0Nb1GYU5DgSrxbda\niCskYoYUxAwqOsWAXGUPqyzgdFNw9dhqfCkix4Kop0uOIBncs2o8ap0droteiNWYXOqsmpgpJbqm\nZW9vj1/7N/+aX/7Ez/Lsn36J4BVB8kShGlqGwyEWISyPmC+PmE4OMBruf/hR3vutH+Y93/5hHnnf\nOxle2mRjNODBtS3OlTVJWVQqQLJc+INbW6wbjQkJHzu0tlmiXas8LRHFcDhkVJbQhuyToQvmKTtb\naRJVAVELCzEcdpnUMyot5+4/z+T+M6TRiCWRQwem7Pi+v/tXeedP/hiLUmF1xHR5nBlizZFLrP3c\n32f6+PfSkqjWhjy8s8FfXB/xQBBUFKYKDsWjEpwRi1Eai2JjEtnpLKMEUUWq0qElS7hVVmeJNmVp\nQmThDUEtcanGXVkyftNguzZ7dOgGryI6ahhoWmdwk8Dwg/+EUP4liuUClgdQDWB4jpLzqPf+D6jz\n34VdbnKwWOf3PvFrrJVV5pGoLM23WRYsJdGMAjJLDDzc3r1BORHitcD8Wke3dKRFxGFwSZjrAUc/\n/zuEIqA2hnz52VeYkzhaeNpGaHXJcmcdd+EBGmnphi3LW3fYnxdc//6HmQzupyhHFNe+zIuf/FGO\nnv510u5t1O4+ad4hDcT23uWcv26CwqqRF6M/xYg8SfNXW2ZMnvgc5N/hzzK3fitn4S7h11PnWx17\net/pAHN6O3386Z9Pu02d3n9aGPZ0wIGsmTibTbj6+hWe/vR/4pnPP43q5da6JlPD1za2WNvcoq5r\nLEI3mzHf32c2XeC048L5yzzy6DvZOHuWstJc3Kmz951W+BhwOrExGFEVJV7DbLmgLMt+WgFKa9oQ\n6JqW6DPacxk98+gJSpPIUnFRQyuRxih078OpBJrQcOn9j3JwFIkh+1n4OED/Fx/gzNkPUHUFyxgx\nOqHKgGWJW9+B/Q3WPv8s0gklBVUUzo8Sbxu6PLUQWAC+i9hWsD5/r06gCIINgi0KdFVQDurcq9EK\n7frAGzXBZxIYc2H+0pvEP3oW5Rwd5H6KyqVgGxaUpiHtzZkVieXeM3C0IHRz7PYlKDdIsSPs7RL2\n92nbmjuzjldfukoX8jjbpkzAKxB8Ce12QYNgfaI8nNLuNyyO+omaDyile38LTTleMnxgytxGXvu9\n51i8dpOUEuNhnbkUrae472GmR0tu3dljgkcFxe4zX+TmHcvIH1AXGywoKcuag2uf542XPouSOevV\nCCuKpj1NT/rq29dHTwG5S9Pg9PiwKgq6rq/V+/0hRZRWpBSyWAlyfJHfteDTyno+kWJOf9vQncif\nw13B4q3NxtMNyePJgza5DhU5tS+jHVfNx2OYdjxRjb4rsMWeqBUTk+WSpmtZTg+5fe0NXn/pOb7p\nQx/mgUcfpRpWFKMhUtSUm9tsty2TvV3keSG9cZX9O3scHi1wg7M89uR7GAwdhwd7aPM0z795A20c\nl8oCnSLUBWEOw7LgcG9CsbKHi5HCKtrpjK7IzdS211e0RlM4QwpCqhzRaRbzQGeEAcJ+SoSDQ679\nw3/GfARvzh3nxHO+TDz9I3+P+WFL4bIgqU6JqjzH+UcucuX2kvInf5n9668zUiVL5VCied+7H+SR\ntTPwq5/lxXmgU5Y9HyljpErQVuAgT0y0RRUD1NqAWiDt30ZUxA2EEB2NtExCYOOgoNSB+qhFFdNs\n1DuqkEKhC4WvE267Js4Lgl0i/+AfUOunoJqjjILBOdr5AhPmmN/5OxT1kDB6P6+/8BSLa4egMmgK\nKwySsCyFWsAe9u95OocAR01CGYsfRjotrM8yYa4RjbEbTA/32YglqVvgRgVWKfa7DucNYg3B1Hzp\nj7/EvoWNsqSaLwmpwRew4BFGekBcu067XnPp3R9Abz9JNzhPrMeomSa132AiK3CyOK3TSDyhPq96\nDGDomjbLqqm++9+PzNTphOfUdCCdmhasGJhZ81HfFQBO38FPB5XT/Ye3vte3PvfPOs/pQABkTkbv\nxCTS1zQh9x9IHmcW7N16kxeef5bB2jrnLl4AldP9shhTliXOObTJMufV66/BtRtMJnvcuj5hvLnF\n9pkdvum972HWLImdwi2XzGYLmuhxShGDR4KQekl5eh6B6YOxVWCCoiJjAmzff0jBgtMYEUoFEqBz\nBlDMXQbsmNKgY+SwibjK0q1ZWhvYmCTc+oD7nnyU3fAmZy89RLd4hc3phHldUY2y98PhYYcvA29b\nq9idNyyIdD2D0pNxErY3AUrOUm1tEyXQhgasImqDNZFGB2SzYDxcp7l1hDKR0goSwY1KcOBLjVuz\nUArRmCz3phPl0S/DtkGaCWZUQNNiFvugbuPDLvGxv8nR5/YYTspsyENWUg6hy5oFEUwHhERVCkUX\ncKagtInpIjEqChazDqWkZ+saQjhEWs2ybAkW6hbaqs7ye9Zwa7Gk/ZPnCbbAh47ptX06nzE4SwfD\ncACLQxq/YHz5fYRz72K8cQGkYrY8AJ0w5u5r+KttXx9BQfUiGUr3as3gVe4lHCstpYgYjU6Rojdw\nSbHnF6RMVTYmC2WEFLNwJxw3H2OPOixthhifFjxdPZ6MwpLp2iEEnHPHDtECxyhKrU7Gk1pn/IGl\nt2BHcEoTVMZcqJDNRX2f0iuVQ1nSGu8jWmciWFQgE8WyucKNmzd54Utf4L5Hn+DbvvN72Dm3jR0M\nEFGMBmuMLq9x9r77eeJ9H2J2MOGFZz7D9avXubN7h6sv3wI34L3vfDe7L11h2iW6BDrZLArS5mZm\n8grpsxibYNl2aKWyu1HIn9VEwZOt95h3aG/YEIVHMTTCRohMWsUwDHGqYeg6lIOYSpi0MKphkfs/\n3gd2b1zl3GMPcvvVa/jbcw7KSJUWVGaLgXHYtz9MN9ri/ed2ifuH/GabgUdThGQNoxQJFsbJ0KyP\naGct3cFtbKmpNZgoNHNFuaU5821P0t5Z4K81VEmRopBKja4UfgPM+R283MA9/AQyvkj7+5+iZEkq\nhqjZAakYYlIJt64heg8KQ3Xxu0mPf4Af+fYf5P0fG/HaG4dZSFcCNoG3IE3CRhghrA9KdBBYZP+S\nmkg46FhDUZ5TdHuGeRvwPaQ7ddmbY6GFSdeSEgxFoF2wbF7Hx8SGGNp5xLiEFIrRhsHf2GU28Oz8\ntb+N/eYfwFCDOHSEtllQFg5n790M5usjKJwq3VfgoIwqPtW1FzllxnrKaXqV/vfjxyRy3F0/fdwK\ndXi6EXmXG9PqLn/qmFVJcnr/6czhrc+3q2wkCaINDgOpywKzksuXsBp7Qh+9V+Erl0XiIyzz7+bV\nF3ju/CVEP8nZs4ayLntgUkJFsK5gvDXmsSfez+bW/bz+6ivcuP4GN2/scXh4yJ3bB/hFR7W5ho9d\nnqKQUClljRnhuGxzZU2hQRYLrAF0RjNm0mJAG4UNkSSKQbJURnHYddy3c4b9g1s5e1BAqaiXAa+g\nPVxSlKD62r3wwt5LV+gOlhSiqF2JCYl2tmDzzBC/s0VtxzQDzaXSUPhEl4QJWaatVoqYYKEiFZrF\nfIb3gRgixbgi5Psu253G73nO3/8Y0z+6yrxdYp3FVTpPI+oBXRFYPvIxQmU5Uw2xw40MiJOEdDY3\nY5uWOFsgaxWFW4e1S6RnXuXKcsnwmuub1j08Rqk83eqZjkUBRgJ48DESQ75WNLnx7JuIxIBVGpsE\nevRoJJIWgnYq93F6abkYEzYISRmczhqXtjLZe6SL2IcuUj3yZEZveiG5TC4stOC0I/INVz70Goor\ncBG5HjfGwCmsAEBSEEM4yQREegnzlHsNSXIqfFqTIZ6Iuq5k21d2cUrrY+izlhOug+4X+OnpxAlR\n6+7SwjmHszmVXrlZB5UoUkI5jbJZozFosP4EUWl1BmaJZLn3pDMQK7XZXHbR3mT225/k2c9/hoce\nfZSHHn2cy/c9gBsqfv6nfpGnn3+dSxfP8MM/9DGSsaxdusy5+y+x8eKL/MFv/C6LRYM2Q+rhgOWy\nJYSENQJaYci6ESJCGxPr4xEmdKTlHKUVcxGCKJLSVAhrGjZKzZESZm2k8IkP/42P87nXDrk02GT3\nd5/DJstwEXARzv/gR9Bf/DLcOMAYRRTFdHZEMdRoAk2XKIoKHxM2CQfTCfWXX0EE1qvE/Rc2efLl\nO3xOCTcBZRPbCpZWKEVIh4cY7QhJ2LeKrmk5r4S3bY44iguqp77M7fA8ZuTZ8bAc6xwEY8SKQy58\nL6MLH8S7gPrDn8YMDmGmQQWUK0hFA1FQjVAYj2y/nVSNaD/zAktX8dqVGXWdfR0kQGOFqnD4FCht\nYl1pDo4Sy2WGbhsDaEuMgUo0cQrbg5Iitpiks86F8bROUBPQwVJKxIfcP6uigdLSxcjAWEoXcYMh\nqp2hy8T93/Nf0l18D1WCqQRS0zAoz1MXLUlaZu2JCdLX2r5OgsLJXRg4lmI/Pd+nd/2BfoFySkil\n5yFoAW2ytwKrDOPUuVcIxRWoKWOb836EY0Vkel6FJafYb0Uxrt7vKmBopeiCzz6APeDKRs/YB6KP\nFLGkDZHFQBFtSR/6Mxhrxb3osRj0pZOVSGg7jg73iaFjsZywv7fHrTdvcOltl3jmuRf47NPPgEQ+\n95+eQRcOH1o2hiMun9+g8Y6dCxey5V7fj0kpZQlMWX2POciqBEYLVWEJWrNIiqVoQi+lf8wZkNwc\nkxJGFLSFcOkvfDM7B8+w/xsvUhQGDAw3znEwEAa2oEEhkuHXi64lDQyoPCaWFNDWYNFEqxhcuUUa\nZ60DMxzy7vvhi1fucFsp1vvuUdKGBRGnEwOJVMYRjMdryRJ+0RKSJaoOP/TUShEcOJ/QBZkgNY+4\nWyXyg+9E/8q/o7n5MpUzsIj4Jwa4wRpp8ibSelwcIw6UqpkcvsFv/OwnSTpL6BEz4lZrRdQRH0MW\n6InZSGfeCG1vCVfEPLLUiax2ZV3GglgoRONLD5vCmUfOsnetxbyyoAwZBBejoK2CGCi0Qo8sQsC2\nEVyFMnPS9iZ6GYnGUcQJbbTYwYBFN+OEinRv29dNUND0d98e3mpFZyFNnXsLou62jU+nswfJASHF\ndHew4GTx+hjyCGqVHeh+KUruaCqlT5UXQooR2xOtJJ/orqwBTsxqVvtiCpyrK/RsTpo3XPSZR6EL\nlcEvdzqWo0hXFsyMokNo0bneTQlJoE3OgLwkrO+YBMusDdjDA+7s7vHic88x+uw6+7eusDGIdMAs\nXCe2ORtqvKaZWR7cvsD6eI2jvTvs3rxB0zQ4k3My7TIFvRCNjwntFNOjI3RZ4aPQSSLERKkUzoBT\nlrmKpKDwRcHuJLFWdXzpX/82r00/hdZ7XHaa7dTRGKGMHUPjeP3OEbXqBWGjEKaCGFBeENFsXbjA\npEn4OwdsjNZJMdHOD2h2hf2h5ty3PcnHJp/jnx7M+FJ03JcCZ52lrQ2x7UhJIU1gZ6xxEUiRW7cP\noYLaGQyJgRf8wBLLwFDVhKVHHxwhL/8zur/3C9S1Rx9pQrnEDsB9919Bwjrqj34VK7ukLU04+y7s\nwVXWf/eAf/T6TTppWeKgiSSn0G2ijlCHDGdXxtCYiKApB4muVrRHilGK2cmsSJSFhs5TOkMRhfas\nIX3HGuOPfz87//5Vbr/0h0QL68MSWo8beKrRkP2Y2FNzeGzEfV+coU1NcWaDI3WOjYVmZidoOwAa\nFu0NWr9kbbwJenrPa/HrJiisFnuMMTfkUsoQ5WPhlHxXW0mpISeS6/2o4cRRSmnSqTv66b6C7b0L\nV3dNJdl16XSmosjqSxFB9SjI072Gt3InVmxOqw1boxF+0TBrI8EASmikIyGMUqJedCzJFuveWe5I\npn8bnYerkXAMiU6ZOAEkAo6mySxAZRU7Z9folHD15owl4VhxalBphm4I3nDzzV1mR0eIFmxhIJ4o\nB8fUS6Or3HhEO5rOZ73DENFGVgbGOUNIMI+ShVQlsDCG7eR42O4xtxVlbOmMpUqebnnI9HeeJjpH\napfY/m7qpGBx0FBZgx1X+Kpg48w2sR6Qzg7R3tG8uE+NZehbNhhxPXVsWccXouaOEga+ZR2LJTd7\nXZEXZWGhcgWlCmgnjNeGRL9gUEZkp8C2HWrQwbJELweEuqFSt5FQI+LBDmBg8ZwHU2C1Bm3QsSY5\nj77+Gv/8968yDpvM1ZS4DLQFBHLWUAqZNCWCV4pB1ChlSDrzR1Zu53n6ZYAs0RZDIo4rNmrDIMCZ\nuePVz73Iti2Z6A6nEuuDivWziuqDj7Omx8xf/ALFe+9jeO1F0qTl7PveR3PpQTQPk9Ir+FIRl54U\nFlTlCN8ptD7FJP4a29dFUDjNPXDOEb3Hp5QvWFkt7l5ujTzfT/Sd/xR78hPHFm+dxBO3aVaAJ46b\nkZDv7EZpYgrHgrCZTGXIEm6aYzYVuexY9SFWBi2dBJTO5xwXFRWK2ieCEoLOEmFDq6lQHPqWsVFU\nRUJPD3Gp5kDVOBSHtWNhFLaF6DMhxugEpleBlqzLoNqE9555s8QqzX2bmwyU5YWbB7mvEhMOw7jQ\nLOa3ubN7hDaWwdDRJqELgq2gtAqbDDEKhXVYImGxQCWgJ1gNVK7dK6AOEW80ogUlkdKCaiKTYokX\nRycNFCUuRoqgOBgKlilHW0JZl7Q3G7S2PPjnHudo0nFw5QaSSurxGD3dJfqOtO+RNqJtwVTD+vgc\nyz95mgtnBrxfGj4bE89MDSKRRxaBcWVYI9LqAlKHeMWs7PDAyBa0MTDCUH/HI/hiztFywebHfwj1\nk78F8xnsCjLeIPmIrIMeAptj9FOfJoXriAuoBuapoH7jT/jMf5zyb6+vsbSHKFOyiAFaoZPI3Gnq\nZKAfo++1uTTUBroWDJGtOrtyTwQGMUvvL0QYKY0cLhhR0fzqkhuf+JeMC4U2mg3nSIXj0toQ/Zgm\nfei9nCk3+fYzHlncIY4d5h2P0L7r45QP/kWq1HHjC7+GvnCG1HrWz2xhCRzOrhGrb7CgsKrVQ0pI\nCLkzrxRJKSTEY9WcvGVMu1a5b2+1OXZ68m8BIR2Lu/YqzXCCXdB9Rzw7RKnsLNwzMgU5TuWPx5ZK\nISoj0AynyFAaCmVQUdhcGzHd3+NwuqBDKMTgGk9VQVlaRjHj8t24oFJCNWtoq5JEh9dDQmyJug8A\naKQPbAFBiaJLmSxmBTqjicuOsipwAktJFDqPVJFEkkhMgM2sRaVUljLreSXogEqZELaCLGhOsiGj\nNC7lEqIaGVKraclqV7XN47/pIrJhFSNgo4FDFxj0LljzIMigpmk9Q5V9PXavv8GsjYwHFaFyLA9n\n1GlBc3hIuTEmHi7RHuqNbaIxYA3WK3bKko35jKtK4Qs45zUOKLQi+q732UhIlx2m2nnHMkUabSnH\nSwbuAoVcw6gp3awj6AkDUyKtQ2qFG2qSCOGwwc6fhjWHHDm8EYbzlrg35H/77C3mg4gnoJWmDWRH\nK6VoSXQpYziUtfgUabSmEIPoxLiwVAnmC491Dq0Mne/QKDyBZGG+DKgUGRvDUgt4hS2HRJMdzwey\nSXPlEFMcUV6fIDeXpLWKuP0Idm1EaqeIGcONp/HyDoLWhLFh0gW6corOInL3tN2LyMp9ZHn3HXIg\n/Jci8hNKqS2yFNuDwBXgvxaRg/45Pwr8LXLu+3dE5Kmv9hq5ESXH6ZWSviEoqY++p/gMMcNTo/jc\nS+gxBdba4/HaChp9GoloJJcEcgpnsAI6CRHR9FZjfROTeEx/zp8pXwSiNZHsdGREUxtLnTTDqmBg\nFY02aGMpykTpA9qCIzEuHKMm0a3UltrA0EIMCy6bdb505wZXokFVDodGY/Gm536spO117jfoKLxw\n+yatUayVBVubQ6aLhhaQLlG6muW8BWuJEqmGNa0XFqGjiBZrXYY3pwXWFjnIpYhShigJp3OArgvD\nfRd28APD4Stv0AYYDwrWUqA2wkBlCbEyaPQw8eAc2jpncnppUG94mjZTiX2IxLM7XDIFN198ERcL\nDm8tCGlK8Iq4Nyfbw5eEowUbD12kXhvg7+zysO9457LjD12kaQp+qur4lmj45rLgwvkW6RzzWceg\nNei1DMKaaOHCMDB8RljsPctgbUg4eBVrOopQEqwlDVoK3xLTBcxshsyXsG4gGMy3PoiqHoFf+zQ/\n8HMv8eaaw6SWqgVcNrRZhkSt6YVxDQ5PTJ5iWHK07DCdZ6QN7TTrfEQU+MTce2LURBKVhnOFxSIU\nWyVBAhsLMOuGhe0Y6RrvNN1XJgxeego/rBFToYoBzpzDvzmnmR5Qvpa4/om/j27/HUeXP838wg7t\nzp+nUhcJ/ixHu8/fc1C4F+5DAP5nEXkC+BDwI0qpJ4D/Bfg9EXkU+L3+d/rH/grwTuB7gX+q7pJG\n+jM2dcIefCtC8DR3Qa9YjupEoLXrOpTRd3EP/nM8BukxDABJThqEK9dppbIPhFbZq3G1f0Vqksyr\nzmNR8hC/0pbaGCwRYzRt24KP2GXIUmylIRnL1vnzdFojkpl4bVGxdn6H8WDAKAYuahi2DWrWEQ9m\nqFlL0XOtV0QqnWshRHJHOxjDtAl4iRQuX1hIpKqH1IM1yrKmqorjEejxOVZ8jMSx0pXtMychT3Ks\nABLZGip83OewVkhlaRYdSKIGFiFAjBROk6Ye9dBFaqUQbejaiJpGZCEknTEYsyuvMX/zDQoj+K6h\nXSyxrkApk4fSSmFiJPiG/du7ECJVVTF2hsspUWjDvBaiL3g+Ge4g3P+Bc1z+4AOUkrBlYGOrxFYJ\nu2W4M1LsvfJmlqSb3IEXniH6KcmArUq0S4RzNenjH6WtxmiT+SixDMT7345+/CF+5rde5vUhDBaO\nYCKdEkyMJNtL8qExKeMLMlal/2qTgNbZXDjAIkLSjhgjy5B5HVHni78NiuQ0tSvYUgXGQldr7NKT\ndKRYW4MoRG+xlRCrTcLA0JTXMbMDimtXaX7mH1K8+AcsuhaJh5RnNsCcIamKrrmF1fc+ffiaQUFE\nbojI5/ufp2QHqEvADwI/2x/2s8AP9T//IPCLkkVcXwNeBj7wNV6FJAHdqydFyRLuK0PS/C1nUJPR\n2WzUGpdl2Y3J40NjUDFrJ5wWRFkRd0IeMaw+03FKrVXm7pukjhuONvSmsD2MVeuT4ERMmCiUSTGq\nCjarmgd2zrI9GueGoUDlA8NF5vUPTEnnE2xsMxlafBeJi4TXBYdrJbELmBLO6zHnq4LNakghiuV0\ngpl3BJ0brEJmY6KyR8KZ0ZjKZ2/FvVngyLdsFyVDpTiaHtKlyKOPPcYjj15kaAtSm7BG08WOmFqU\nVdlyrZ/s5AZuFmURk5GbUVmuPH8DlmtMkqVNAWNgLSjWNyoeePx+OgOLEHn4Bz6CWy+wH3kXqsnY\ni2HI0wtjFBrDJLS8Ho7o6oQPDdsbF5i6MjswNSAdqMowUIG0e4uD116nnUw5Oyr5m9/xPjqTv/uF\n63itjvyro47LH/tu3vbD30USWK8dF+7bYuNTH0HfAAAgAElEQVRtZyg/cD/xQw9zZx653gjTZkAK\nHtdW6O0h6e017Z97GPu+x3BPfguydRE5W+G6Ibgh5isv8Kf/7U/wr/SYUgqacoFLOTOKveBqEqEj\nT2e8ztMjZyx+0WIlk7EmZWKJplWGZejoBGbasG8SIQraK5SPVMnj2wnlhoX3rLH1P34XsRDUbEa7\nd0Ax0JiNCjXewNw3RD5i4L/7DvTRDex//E2s32Xv4GkaNeDo7Y/gH/gg86Oa5ZEniWW8fumeAgL8\nf2RJKqUeBN4LfAbYEZEb/UM3yeUF5IDxxqmnXev3fdVtRVLKvATB6lMNwtR3+/tUXq/KixX5SLJg\n5iq9Pj0mPP6gKxq01ogoFBZhRaJaNRxyzwFnEJudik/TqUXy+xQlWW1HFGVSfWMRlncOUUrQBIwr\nSF2i6VpwjmdfeZ3l0ue7RjunkJardzwTP0dag60SgxLM0KGdoTOaZrak6BIm5J6J7v3xRAmF1eAF\nZcq+v6H7DMLil5HUeJbLA8pynem8Of5LW2WzsGhoCagsRw8ErUgkWt2XWaXCqEgsFLfeuMHQCF5r\nlIHoBHt2jeligi+gFWH+yiuos2vsmHM0UTMXiErjpccGkGg7YVyN8FGjjaPFU82nLKKj0hWtHdCl\nSEwtthzii6wi1QwGqKEwWkawGsFikoba8LufvsPLv/88FosYjYQla4MS0zkuum20IZvS+oRTA+bn\nhG6gkK11hvWIOEm0n/8UWhboRjMdLbA3If7bN/mxV6/jZwe5xpZsP4jJ18EyBopSE0QIEjBJ4Y2m\n8QHNykoAjHKAohXBJ4W3hqQiRYK6sgSTSFETKVgrIUqHvjwkfuSD6MZjCkdVF9nsojuEIhBu38J9\n8F2U7/oI7XSOUpH5tZsctImji1uce+D7WJczhNjgnOC6fdzaua+1BE/W4r0eqJQakfUX/ycRmbwl\nRRe1Mmq49/Md+z5Uhct3w1M1PAApsx9XZKbjMqDfF1cpsdbElAh9Y24VLE6rLR3jGyArI1mDjqCO\n0ZArclWPgDS5VBA4zj6UUmAtKgQq4zDe08iEeVwwWzZwMKFoPJVoprGjNJpuqWAI+/MZoxaiUmyU\nMJ9MefDSE+wdXsfPp6iR5QGleGV6C4dmXTSdDjRHCygq3HrPItUmq0lrzXhzwMG0I0pgpC3aZ2mu\n5fQQ6WB3uuDw+h1mfoFWWecyqZ5R2glRK5w16N6ARwFOQKWE0RVz3+DLiHIKlgEVoACqsmByfY8w\nGBKNhlpz4/XrbKXA7199jrlE6qixGrZcwaLt0Je3SLdus/v6IaXWjMqCam3A6K//I4avPc3uU7/I\n9tZF/CIQm1tsfv93oqcd+5/5MuNJxD35Tfzlqx0//8WvYLQiCbRa8Xd/6v/m26vEh5NmftDCi4dU\nhaW0E25Nn2dQKGxM7KYFa/WA7VlBJwn9kkA9xc+nVC//AdIeEmaJkQ/8k+de5p8vLJvFFstldlbS\nOqdsAqR+AqaURmuhTYkKTQdMUiZuobIbuEqRIBGjc1aqYmRgDffp7GORWpi5wGXj0E/ehzu7xWI4\nY+1TN6FQaB+pUCQr6J11mv/qL2AHDyLlLcJXrlGuj/DuDJOrn6V99w6P/zc/ykFxkVdf/AIDFxk1\ncDRah/be7//3dKRSypEDwidE5Ff63beUUhf6xy8Au/3+68B9p55+ud931yanfB8KZ9BRjj0Y7nqD\npyzd3spWzBgFlcFI3M1OPA1RPg40OgOjsiN01mBQolB9PXtaVCUDJVesx5OvqQuZIJUlYzME0RhD\naBtS57P2fwIpFCEKLkSK4CmlI1aA0bRNYlAWNAc30V1EYkdqW3TTsaUMhSjObW5TDEZYrQldi4R4\n/Dk0Gaq9VlWoGEBlOrGOComJ2OY+Qdu2NE2TL2bJuIskPesxglLS4xTyeFapLFZigehbtDbEpCAK\ndVCsJ4XRiqWCcqk4PJgwKxW2smjjmLxyiw5YWsMC6LpA6BLnzl1El2MK5bCi0VGjtOWw6eiaV9CD\nAZ6CQynoomZcPET0QtqdcFREyqrCHbZs0B6TylZ/Kxc7Xood+0tPs9BMJsLNo443myxumxBUpdgs\nC4pKWDy5g/notyCHt2muX6W43ZDuHBEw2K0tfuKPW35+WXBfGNI0+zn7lBNtzygqw9LVakxtWEh2\nIsfkBlwQyYGDTJOPqh8r9+WsSbkkbL0nKNgsyiysUwwJ1ycUXzng4H/9aQYt2RypXeYy2lZUZ+4j\n2S3kT98g/fQnYGmZNUsO7YLhD3wnrniE1u+yNV6nAwbbZ0jlFkoNv9oSv2u7l+mDAn4KeE5E/vGp\nh34V+OvA/97//x9O7f8FpdQ/Bi6SvR8++9VeQxQ0KpG0ZJHOdOLytOoLrKYMK/MXHwL0IB/kRGkp\nS6P5uwJDzhpyIDBWU7oSY/OYrGvCMRpBKQW9jfzp/oPqM4YQPE4bjCQ214dM5kec27lEIQbNlE61\niHS0KtEMS458Q1061knsdJC0RpPt5dvUUs+uoLXNAiSTSBoVPNgEDJZiPOL85oM88/wXSF1HO4HR\n9gatRCRFtNGMBB4+c5ZX925TJEgh66uU2hFVImih0x11MDQq92nsymBXFI5cbrAKOCIYUVjdS6mH\nSCkGbSMqKcRkYM6iC1xPiYWDWhfsth2dF0qtmKhEowTRCReAEFiULaPhmKMuYI0QFDS+Y3veceOL\nr6Ibw5llTf3xd3Ek0P3u/0X52T9ELRKuEfwjlwivvIh99Q2a2FJp26sdWXCOXRK/X3geT4rpNLBe\natRkyaDQDJPFlYbpGcO5Ry+y8fHvxJiHWP7sH0LhWWgIa5rxuQf4fHuZnxu8hlkk7mjBBE2jIs4a\ngl+Nu/PihswLkehprcFHqELEkxXXqoybR6Ki1TC2hhRDf01F5kGzHjXOJmLXEmLF9aeeZ7A+ppvN\nEOfQZUERwQ2HEJaEOzPsL/02+pkJkUPKckg7bgi7E9wPP8793/ffM98PDMIaQU3YrM9wdWZZcoiZ\nzb/WUj/e7qV8+BbgrwFfVkr9ab/vx8jB4JeUUn8LeJ1sNIuIPKOU+iXgWXLg/BH5s2SRTm2nCw/R\n6lharT9fPoYTQtJKF0H3mUKQdBfU6K0KR6pH1K20HyUmbFXgvT+BS6/+5Rf9f50DMg5dukBZFXSL\nKSYKtk14IiWGybyh1CaP35oOk6BUOjs1u3xRuJHj4s559vf3IHQkL4QkbGyu07ZTxjaLoN7evYFa\nLrIYrFGkLtLMW8yoQKvM+IxkgdWRtZguZfVeEdrkUdZk5p7RuYmIWlE90DGb62gUIXgqbVE9OtT0\nvI+MnNQYiQy2aha7DUqD7xIzA1ulw0pgOV9SFCUhdkAiLAGdMQTaaYKNFIsFbid/Tp1ljxFgd/eQ\n8qmnGDuDN+DWz7P1rg+w+8nPU5xt6GZH1HGdwaUzzJoJlS5OdDaNzsA2E1noyKtNIpWK0mq2WsGV\nBfPUMZgkOh8YLgzN4UusjTfY/8xvMVJLumlg4jVP31Z00zn/x1eeIioBKyTfIpXDhFWWAHmIdnKx\nZpV9IRrwIdEqlRWrJfeZTK8oHpUmJXBaZxCegxSEDoUXaJ1hNmnYHhak2ZyhNccTNVEaKSwsAjYC\nL7+MDZAo2J+8jhttMFt4iu/9bmI3RGRGEuHW3oROdTANNLMDrly9wb1u9+L78Een1ttbt+/6zzzn\nx4Efv9c3oZWiCLleDiEQpU/JO3/MaowxQ5S7FPHB54VtLZLk2DUKMmS4fw95enHckITCFaQeNVlX\nQ7pwlEVPVlRrJVgv2URGqYxjR59Ar53l7KBmRGR6uEChuXXrNjYE4u4RyfaiMEZRzxLbVuN0wAwM\nKXgGTnP28iXCmSGbO5ssv/g8QTxpZLn84ScZ3Hqd2fUJyztLFrWhme1RGYitoGJkejhlVG7jigzq\nUtoiKXBuvWZxcw4+kozCrEoEY1CSCKYnYCWwDpQmW9KnjlJVdKGlVAYJASMKYwqU9QQvjLfWcBsw\nDxXdncOcEhewbD3WQS0FzHyvF6PZMI5laikSLE1irDSTxZLJS6/ROY0JGmPyhGmwNqAKgflcEaQj\n/dQvMFv+DONhy/JqRWdbYnXIwt+m215naEZU+gAvBisBQSPJM4oKKS2vG7hK6vXWA8Y4DIZB0uij\nBe85hO/7N19CTOTnJoYbynKHxIiOcPAGYmyWy0fABjrve50MhTIKvaKck81tjSJrFqhIUAUpebRW\nLESoEnjJvSkVE0EZ1soC0zRYYC5CMoJVBeUisFkaTNK0OmEri7QtigGiIyoKhAQ6wWwBZyxNt4W/\ndYtnD28x14H3vP+jrM0tr+8f8MYrr/DH//4p1J3XKG/uUe41hOU3GCFKRFA2NxOTUeigTvAEK2l1\n03d/gaIosqRZSmgyzNisSgruzi7oS4/jcsIYUudZdh1aNCrl+rtQmpgEtVJlUqqXTeuDT9dRdoHp\nbMlCJwTJEtxJEbuQDV0FlNMMQsJqUGXClgYkUFqHKHjztWssrlU8ft8jLFWdpbfvP8OnXnmWB6b/\nT3tnGmNbdtX339p7n3OHGt7Uo912d3vABhtiEBCQDImICeAMhA+RyCc+ZFIUMigiEhFf+BApk5JP\nEZEyIJFBIVGAhJAPKBDHhCi2Y4jxgN12u7vtHl/Xq3qv6ta995yzh5UPa59bt55pd1sMr55USyrV\nrXtv3bvP2eesvfZa//X/tzQPXOF6Vj4f1+R2xs4xMHPEYcDlwvLkmJ0buzRecJV5Kg4VX+C00sIJ\nzgVuXNtHUsftkyWZ2n/gTV4ul8HIYLqeqXOUkmlbY28+TZE974hSePXwlMeuPMILt15iNwhXFaap\nxbmBdQfXn5izfOUYFBotBHp2d25wenJISXCssNcE0jrjpJB9AQkIhdPFwDEg2rPqMyEskaaQSst0\n3Ve6+p68XCBHQus63tYrT01HUFtExFcJv0xOZRPsjfyYKpmVgLqW/xML//M0k+ct00nCZ5hmZSmm\nbJ3Vos+STXqvEVelRKooMVKxKrWLNydjg1blRJKxVqlDMWegWZk7Ye48KSdOu8zMB3yAw8EhZSCU\nnt2A6Z14x/7U0+44VpOGRUm0x9AfHDLZh/7GhDDZR/YCq/5Bnj19ij4nrv3t7+dafpKPvPwSn/qn\n/5HnP/phriwWtHdOaSdzbt3OfA0+4WIQt44BWSkmzDoKyuLOgEtj85PjTOpNnMmz4aqa0ygau1WB\nGBNSYyXCOcciWQKuxGTfXbcgYxv23XoPuR+QzqKTNGRmu1cIbWNKxTGSnTWmplJYUB1TcOxPWiTU\nWnQupC6zmii6O3Bw8BlOT08JpcALR0xWkbxY8cIzr5JOO962ENztFbPpFebTOa4UdpqAdgPgNlwI\nYxJ20IyfNoTGEbwnhJZJM2V3MsMVwanQqAAOLQ4tbIhnUrGcQtJCEiE5IQtElOyFV144YObsOymW\n3Eux4U/+3b/MzuNP8ODjDyFFSC5w9Zu+Hnn0Co+8952sgCTCqk94nEm0VwEbnXre86v/lQe++4Oo\nZHTiWXlTt+q6FYvkOfaJyfQ6tz59xOKzz+OazJNZEaIl7wTQiBJBMt7pOSDa2ECnKVOyp3fgWqOB\ndznYcQYjglWpCWZRfONNf1O3+TNA3Cj8MyZ8rXXai2PtCkuBysRGFGFwsNTCSUkkL8SmZZgnHn7v\nFXoSUye01E7U1tH5SHqw4bg4rv+Jb+LtH/h+6+cpkW5Hab/v3cTwVg5f+BJP/Y9fI5RCfHLO3g//\nED/1/j/Lh7/5exn+7S/wxFFBXl1xPChfvrWkT4FF/j2uPvx+23YuQGrWf9zrjwIqdxOtWPt0RmQr\nGbiNXOTs/9j6/PrgHN36+Ny4zGxao0MgDgO5VhyGoaNxwqSZ4hBc9nTJdCnU4Or0ATpnuZHpdGrH\nkB1Dsn3kccmc7jfccQ4treU47gz4Oz0rD7tYk1a/Tvghw2yCAo0IJWUoQlBvugY1ARqj7XlH9Skt\nEIeOkzvH3Dw4sq1WhXb3fQSsglFUGEqFeguk2mhW6t8u2E3R9RERE9sp2IU/w/H80ZLl6oTd3T2S\nFooKb33vu+l2lzz00MPsNxNrbNMzMl5VW9WjCO03vp8rb9/FD3aeYlJcM2dIDkhoaSk6cHVI9G7g\ndtswEUfLmcDv2Oo+zvVXlLWpeRQKPk8IGtiJDQUj5HEqDN76aEwrgrPKkzuj/Xf1mrm78u5g01CX\nMIcqdZEpYkm1Hsh4Vnlg1cNzX14zQZgWpQlKKI7ihbl37Exa3NUJ8couLzxz0yJhV7VUv+dHufmm\n7+C5o0SYCNGDe8/buX71W8gf/yTz0HMn9BzOWxYqSPK4EuhKIubfQ0TjH4SpwJCT3exi6EMV63oc\ndRr8plV5VG4qFj4X657UzIZZaURCbkcKY2lzGAZ2QosUJSZrWQZTeBrR2GPNvo8DkxBMIj1mHn/8\nYeZeOHzlFVzJaFcoznZgqsq6BdmbspgJJSbyfArNnONVYjlkVB1XukBzy3gkOz+QvZW32k7pF6fQ\nDVybtDy6M2UvCJN1z+rWbZpspKWi0C07czRFSaLkQUECy1VPt87GQJUzJycLut5ARLXDY+MIfUV0\nlhAYRFCxqCuOylpY+GvOAXZE2M0wBQoeP+158ae/gNw64unffo6hAcmJj/3ch9lbPMFHPvLrnLpM\nFm8w3uzoi+CC4IPQ58D/euAKn/3pnye6SNTCo+96nNU7rvHOP/adLGnxXujXjubv/y32//Sfol30\nTGctu8W+a8oEJ8Ea3J1HXHMGaMN8fHJGT49XJETIAUk9pWTbolYkK1hvC1QVMM5IfSiKy0bj7rBz\n57Ccky8WGbQ4OoEliai1n6fYuS8inGoi4lj1wq3DngmZoMKQJpzWLfLp3BG/9z24/as8+1MfRj/0\nMYZc6EKLLAvlm/8cixc/ySPdlDwoByvHzd96hX909TtZTZQT53FX30K/bOlWmVXM3JbEkRis+o3a\nhXAK40Q4taakNpk3TiiTtt1Qr1k4b7x2iCPjGEmmVM4UnsZoY8PNWFeOXMrG0YzoSOuYFNCEkA1g\nUlfgiXhSMuhyUGHS7ENQgibuHHX0LtF7w7lngamzlXqCSbPLdE4aGpbe0aWWQmHuJkyPOuTVTJuF\nNjuaZICXFmXYFSbvepidx/ZZX4fjwwMLYEKoF6VSYkKC1SCDBIZcUB0v8mwApQqNLsWEW5JY8nHg\nDB0qYJyNVXNSpPIMqqKV8q6I0vrGlJWD2zjclcJs9RscHhyzDonkHUWU3bJg9YWP0WQPTsnJvm/I\nBZfFpOIlMJXIO57cZaoDVIe9lpb5/pt45WjNTBzdJDF7+7cSF8KNv/4j3OgyXRnwSXHtBDBmqIDg\nsyKjeJBapcgXU512lWzSytyZ7JW+bo0K1oAnyuYcjKI+4+9xcVHvNlFsVkXU4OBelKjGS3HSCMk5\nugpPt2jXHMOxKgsXNlogyQXW9EQXSM0us8ExvfEIxx/9EqUL3ArGpzmsO/yph08dMP/ix5gOntsZ\nThVeeuaI3XlmnQqsoJnscPDKTUSFDsepgEqA12k/2rYLkWhkvGnHlcyJ7V3F2b6/hvipZGNP0kph\nloshD2tEF0LYgJfsY8/rQI5cCNudlDruTbGW5VZq+k5AVwMuZyQVNGee/dzTUJQYo2mjUyXSXSDE\nTFpnWtY0q4xrHEcHR7yUO3xbuJoyURpkL3B9563s7V5n//FdFk+9wOLZ57hN5l3vfJRXuzVPnR7x\nJr/HPjMW7Ro8rKaBsFbCOnLa98i6YTqdoFqMTUqxm6tuZUSwjHmo/BC54jW9kMdQstj/OAdtaCgx\n4SuAzIk5O/GOYYjMqXoL6oglk4LQOSup+XZC1kSM0KVIah3NJHBaenYH6IbCfObJodAkc1AuKs/n\nO7AP7kCJwZEPj7jz7LO0y0g7myDM2X/HFQ5+8wD9+H/mxaaj6wuhCUjJRF/BVlLLrqUgwdsqDpvF\nwQ61LhY1TzVTQZLhDWSLMGdUBw/iq2jx9mWq9fqz/MIILUeV4KwxigS9KE4d6hyJgq+J8FVR1Bd6\nLUyDQIk8cm1KWvccLdecnEYOfuyX6XeV6Toya1qOcfTJcaI93Xc9xuf3B3QNy0F4OSeO5y15MJan\nrnW88sXP0yRl5YRThXWBJkdopjC8MZ7GixEpbGWMi7DZozksiXPWvnw22ZscQ73AR6DT+L5xCwCc\nY0k697qc6TyM+8gxgkALrVp/foo9GhMpFUsu5kIcslFpiZHLSlGrza8zc/GIKnmI5kQmDhpD8e3O\n9/GzCanNPPaH3sPXf+DbWTloru8yefNVNFgW+ubhAbs4nCqzpiUNkVSidTA6T7fqiEU35Vs7hu3z\nVM9VDXW3w2p1At6QHeMq6CoM11PDaLWIYGzdds6ijoQaci8ry5Isf1EZlYtAFE9MxdqEnUMEJo0l\n/yJixCQpk2NBr+zi9iYcO6Pwv9MdsvdAC1Ml5szOjYdYvfoi0+f/H6/88i+RdqZEEdvmaQWjbYkI\n+crPud2vsj3f4xaSeok5TKF8BMqMfTabN2z9/1dcsnd9vrM+T5Ko5RBUGUqxpKpYZNaIY1rMIRW1\nUrpT0KgskrLMQp57xLcMTjhJkZ5Ih7LUGTdzpDlqWBU4Fse6QOwisS4IQ0XUDt4kA3BCStB4h/f3\nIcX7pquxGDko2GWtsMEq2N9npUrrBTiLBIQzqPN2YtK+ozqNcbKLaVNSeR2tmmGnQ0Rw2Vagru9x\nWRlKtFWyi2jrabxjp2kJXvEpVei0Y+o8RaFTxa96Wi3ER1qGHEkhcDp0XMOhy46P/9Ln+L6/+AFO\nrv0nyrVE+cQzNDd79uYNk2bCKvXseEc6HbiicAoQjJ8we88kZiZTV1Ww7Nx4q5fhxBB1RRWf7Zym\niliUCg4TZ9uiFofmVPfW9l7nTLrNoczEMd2bEKNwul5TFBocp6XgMmifmbQG3+1UmWlgtexoMojz\nhL1d3F5g9dIhZGhtX0P/7BGTCtKJEkg3rnIUOnLrcCtH4yLXv+1xnvnX/402rjm4mTnRQk8xUZhi\nF48Ppo2Z9axP5iva5znP6ykYOEs5g9AbfQ/4mrcaIw6LBqzEXVQZdVWUMZJwBn8mk5zQZ1Mlb4ox\neGURJq0nrXu8d6QMPcJ+cByedExm8Lk0cCUJN/KCB3EEUXal5SQmchcZYsdaPEkjBxF0DqssSLJL\neVUSqwbInhwTzkFSmHjhypvfwtPPfekN344XwylwxhcgW/HamEfQEcwU4xnqsJrt/8/YlLafHz9X\n5StDovH1cfUY+yc2IKhuIAwFEY9qIrtas/b1Z/zspOSixmUoVXtChFas+Owd+FVhUryFb6vCzVsH\nNOuB0+6Ajz7acGPyIKu8RDQZcCVDdImAR3ymCYKsCz6YGA5YiTXGSJjUFcAYzDc/47FZF2lBvRhl\neb34N/tlQLLlY7zaihopUKD1gaJGYBNjj7RzdBBC8KR1wjWOGZY3SIPiPTTiSSXRBE9T6/3X3vwI\naUc4fOUQihDFcAZhIQRROueYSaJbdoQp9BH8IlGuNax+/TOIZtYqzGY7SL+wJLJ3gHXUlppsHreP\nm/mVs+sHqOQ8pXJ1us3xmyit3d++2N5Ltj7H0KObC3WzLTGWS7dhH3citFgkFqm9PKWQxJxAdM7U\nt8XRSWElAsHzKpmjmafvHZIiEzy+ddxeR04aT4wGKkvF9DRwMJRCj6EkU8msp45YFF+/16j8bOHL\nta/ojdqFcQrOGc1Z7Ac8kLxNuHUsjmSiZ6uAc46Bgs8Vs6CWbDzjgTdKNWuTrhONwVIVB64Srajt\nu6M3VGVBmeZI7I5Jg2PIrlJrN6xLovGeLELjAkPX06HsiHEyOIRFztDUsF+FKwK6MM/tvOP45JD+\nxpT9K8Lk9pr1U5+D9R2uvqLkiVJSYndnyuzdj3N8eMjkKBFTJsTVZiVqiqPXzKrrmcwm1pdfG3Ca\nWjfXktFUaKdTUsyE2uTV+IAjUpnbKaUQSyGMWXpAEyhjjV44HQbm7Q5Hx0uaieOUzF7dWuQiBCem\n8YhSXMI3IEmJTolFWbaO49MTcgv9DcHdVprO0U7Bhwn94hSZOdyB2B58mdm9dpWS9zh6eM7ymVdY\nB2F/ruTFwpwdShEx/1wdgOazFX/MQ42LeXBiEGMHTQh2s2ej4BMwTgnAa8YHawSziHO83qwkGfDE\nGnW6UqHjFAKGyA0oBNsOSSMmZFvAdaVSDFrr/p0Mvc+EBryfs9AIQ0SzcCyJPXXcAY76xBWx7lTv\nPAU1Kt+dPcrRMZ0WjgOcIEy8ME2FfmKAqi4pIbS89NyXLSp+gzTvFyOnwBlmYHu/D1+5nxsdwghg\nOve8nN9bw5mM/GjbwCbvQhWcOatEND4gCVvRdLtrMtP6QNu2tCKIZnJWY0R2Aq2n2Z2Qp8K6KQwU\nC+GcMvOeSRtsHz1t6CRzGjKxhYPnn8eveogDkwYmj+5zOnPMwpQ1C1ZluamNe+9M1TnIBgauxQRO\ntyMjYw62i7rrOtQZjbwXayoraryUm/cXSyqO4C4ROSvH1br7ydIaajTD1AWC8ybxV/EdSQoSHG0F\nD4FFLE1w9HcWPHrtIYZdIe96YiustHBaMl9Yn/K+v/dXePSPfi8MS6brCG2LI3B6OnD0whHN3jVk\nPkWnDZLO3/zb18rduYRtSv7xmmgqU5JmA8pJUShjuVHOsCp6lmPYTlZv2zYzl6uo0A2lYD2HxTnw\nDnW+4hYsEvNNIEZjdF4PkWaVIEPnhA5lkQu9OE4a6Gyi6DXTa2EohePFki7Z5+E8MRj4LBYl5Moe\njTD0a8OzuPNj/2p2YSIFqwhYdaCkbOGbyKYcOeoephhtn+89LY4sxU6AnilBOecsUkDJOW6ALmeJ\nxC0h2bp1GNmah+MFcw10UVhqZkcdk/09YzvG0UxapMs2RiesSmISQIuzcqE3Qg3fCiQ11WW1RKh3\noF1kLjC7PqOUNe/+nu/g5c8+RQxLdND8b44AAA3BSURBVMchD+9ynAaefulZ9PaEVhM3l2skCJ3L\nuOxZlGQXN55hGIgUQy2KIQgbDIg0lh4Nb5A3jWftSOCKdY9G8YhmXMpGba+2MiUxXYigyiQEQlE0\nZisvKjQZfOMM3uyEqEorDWvtUWDA0ZXE8OJNnn/5Ju6JOXfymnbuKadKG4Xv+tG/wEf+9ye5sTej\n1wldicy0Ra9dJT1zh723PkS6MuHwpTWnhyd4J7TOQFdNEyjFMurncgi1+YtsN8ZYArTXbLVsvCeX\nWo3aiBYXnHgjyhUhOGdErNkWBB1zBdiWNY2LmBrvpw+VL7Q29UWMyzNmZebE+CzIZHEc5sTUO5Zd\nxKfq5F2hA1Zi6NPkhGn0LCTT+y1HLpB6Y8iKxjDMg2sh5sLawiRQyE4tKbtVoXsjdmEiBVc96rlV\nivMotfHGFhHEnSUbgU2Pw/b/bGMVznv7snnf5vsVu4hqyTEpuOCQOtHiGjJG6R3VaORTqhz+zrL9\nw3qgicKuNPjB+hB8ZrOyW9ehYzZAPulQhS+88CxX3/ImegqLQZm7CfNJSwyZwIqwWtMSDKTUeqIz\nZehU8Qf9EM+fJ4wEBGdcArmMkUPYIBVT3Vfbgdv7xlWs6FaVomawRSq4rBRMYsqUwadtw6xt8C2k\n5O2iTJHH3vV2shcWpbBOQhcTOWeWBz1hmKK9kEU41czh51/kPX/ke3jn1z1GHixJukqJRT9w+/Yd\nFsdLXnzpJVaGwqI4oegAQI7DV1ScRpwKbK329SbHGTqwVMDYdjSqanKFZ/kHgzOrZsKYd7o7UhB7\nX3DO3l/L4WO1ByfW4Wo+Ah3Lo7UMHjEUKE5Ya6IXA5gNRRkoDClZ5GAkW/Si9KJEYUNZmASm0yld\nI/T1PmgwaYMokDznjuuNmHwtb/79sv29mf7h9z5hNO0p4bZCNqhU7clSPanYihdzxDm/6YtwtZJg\n1RmHUsjJ/j9UlqZRLMY5VxNVtlqqKtlBvn3KbjMhrhekLMz3djm5c0jQlmFIhImDDEuXmapwxQXE\nF9qUmXRKCMJQQ/GpE/YbaLyVNXdwTPdbWhw4RYfEsBq4+p5HOb51ym4fWbQtsyGzTEtDy609B7Fw\nOyk3xXMQCiV7jmNiKBCLMJsH+j7TbGjarW7eMN4oHjDFJ19JZmbOKO2D85tzHDDl46CCK2rU7l6Y\naWFalKnzm8azVpW5tz3s/kNXKGtYnB5TkvL4k2/lpf6Aq27Kcy/fJsTCLjZP6kwpqqn6lNPGIU3D\nehG5gkCT0CT0jcM7IypJfWE+bVilgds+8MzUsZoGDlcRfNgkocctS0q1t0HLuQhxvI42CFc9LwdA\ndaiqal2yW9FFLoXi/FmeQs+chAGizkPmR+c7gqEMESk0UnNaChNk0+6v1OYrMeJaJ2p5COeQAtEr\n02xao2NWwItQisH8m+mEYRg2kQSY9GBqnC1Yg5VGP5Tyb6jqt77e/XgxIgVloxx9d/33biz7yKfg\nnNuseHevFtsisCKyEYkZwUsjpmEUpR3r8WD9DtP5BFQpMUNt58bpptowVJLTUtIG8jp1joCV/6ZV\na1ClCkj3SoqZBMwfukq5PkPmE8LE88LBTUJowQkNnqQgK2hX1gY+OMtQazbSEpesI9KPcNyUINuq\nMV6MChYBbPFSOL9VXqvnJudMqhf/6CTH8NrAQNsLhvVFDCnTqeVMpjeu8OC7nmTvwUfIIRGdcLxa\n877v+Dae/Lp3MAC9V07rKphQcIFUhAGIKYNk9veUYy8sEiwQ1lk5SoVFyqwbuNUPLBX6kki+0Kd4\nLge1fb1sK4HfDV4TMVVoX4yrk1oxEKA4wTtnN+QmW1UBTd6DlDNm763r9O781SbHIQrlrPpVxCIU\ni4aNfDh5SA5wjmXOLHIiilgzFUac2zvLM6zFooVIIWI3eVYoOPou0helF+i10AdwLliSU7+2KAEu\nSk5BrbdBciEgJLF24+1Q0OGrHmQglsEmtNaNjT/PyFNdHqnczybNh2BoSKysA1WQdvz+omiM9F3H\n7b63DL1zHJwe2yqUM8VZckobYeq90XrnQuqMtj02zoAjQVilzH5rK8sArKbwiAYe2LvCuvU8eP3N\nHOtNUir0beGoWzA7TcBgF7EIu48/SD4+pBsKk+s32H/+DuvObuKpKp2acnROpr9ppTXZ5GKSKr6x\nElwj4ErN0NctgZV7naH2ALIxK2kSIyfNSlQjDZmEQNMWTldAa/DepIEbjz3Omhnl4cjJy4GZh5sv\nH/LF//AhioPOQ1BIxSGuMMmQaotxn63C1OTEQhwxRGa9q3J5xonQeFtlsxc0W6NZWhXWE0/2fkO4\nArYCixS7oUOw7YBazsTXFdejuCbgSwRaXGhJaQA8Igl8OANuuUrwK8JQMt7VcqcYUIktVfICG+fj\naou6quDdFit5MKg3lf+jpX5+sa3bUHtR1igtFinlkqxEXAxLE5wjFXMkvuZxspimSRFTti4ERNVy\nObMWP0Sozoz0xuToL0akcFctGaebbOkmI+5GWna1MlDFJJztG80Kumm5to8+ixwsEnGb8udYb/bO\nbuhRhCYP0aKDWt4DCM4RnGfqG+bNhMZ5yNDHTCowUJjMAhFl7W3/F50SZ4E+QPZilQCE5778JdZD\nZDX0uFtrpktrr16pkXzKNHArrth96EGm8xmrNCCl7v291JqzbioDZ8dez1k9Tq2t0ujZNPsK9/UV\nbOFEtlZGt+lK3WgPCoRJS4LaM1C7QTXz25/+DN/4jnfR18aw05zoUqZxrqo22eqWREk4a07y3j5L\nLKu+yMIaITaBJYW1UBmJhF6E3tl3JqhKXrVbsc6tUzaNYmGrGtA4b8lQp0woTEjsergxgxu7E8Cc\nfBMCwVsX5FjVOJdrwPoonFbAFOejLb9VBfmdbqZzCVCpLfbUfA9qYT5n2AdruapgM1Git2tdBVOi\ncnZdZYFBbHHLAsXZOc2uNhSqUIJtd1XzOUTv69nFiBTQDX495YQLDk1VkDMZoYmWsam3ZmpTbWQZ\nk0CAU0WyUkJdEYtu9tQOObdN2C41ZQp53SPFPG8jjvl8Tlot0T5aJtttkZvChqJrrTAXmMRCc21K\nUiH1mYQgTYvOPFM/YXnnlCvA8cEBuSRWMTOJhXkSco70wbEUYfrAFU4PT+j7xLA4piwGjnVNiI7B\nQ2o9ZbB6e9KCdwFHquIjIBVuOyYdAVNsCrZtcmKY/yTW/DUKzKSi4NWk0gX6XGixG/fOaoVz0EXB\nNcqyIiin0fEzP/UvaRuhT5CnDZ1EJkiF+Rp+AzX6tyiFhjFbb1iCoYOmsoy4SkySneHD5mqlwqRG\ncdarmtSdc7SMeYSKFRBFPMyK3QhOM5CYp4Er6rm+E2gR3EOOvLePX7U896WX6VEGDUTvGUohZtk4\nG1VbhVMtu2YpiCoSCoViyEe1voesaqXfUqw3py4+DuuiHPt6srfIggKNKqGel4kYiVCqlG3qLIqQ\nZBFPctCjpEaMt7FAkarVQV38YrEowoEEz9ANtM4hjdy1FfzqdiESjSJyACyBW/d6LL8Le4D7e/xw\n/x/D/T5++P09hsdV9cHXe9OFcAoAIvLxN5IZvah2v48f7v9juN/HDxfjGC5GTuHSLu3SLoxdOoVL\nu7RLO2cXySn883s9gN+l3e/jh/v/GO738cMFOIYLk1O4tEu7tIthFylSuLRLu7QLYPfcKYjI94vI\nUyLytIj8+L0ezxs1EXlORD4lIp8QkY/X566LyH8XkS/U39fu9ThHE5GfFpFXReTTW8+95nhF5O/U\nOXlKRL7v3oz6vL3GMfykiLxY5+ETIvLBrdcu1DGIyFtE5EMi8tsi8hkR+Rv1+Ys1D3d3If5B/mAY\nlS8Cb8O6dX8L+IZ7OaavYezPAQ/c9dw/BH68Pv5x4B/c63Fuje27gW8BPv164wW+oc7FBHiyzpG/\noMfwk8CP/Q7vvXDHADwKfEt9vAd8vo7zQs3DvY4Uvh14WlWfUdUB+FngB+/xmH439oPAz9THPwP8\nmXs4lnOmqr8GHN319GuN9weBn1XVXlWfBZ7G5uqe2mscw2vZhTsGVX1ZVX+zPl4AnwXezAWbh3vt\nFN4MPL/19wv1ufvBFPgVEfkNEflL9bmHVXWU930FePjeDO0N22uN936bl78mIp+s24sx9L7QxyAi\nTwDfDHyUCzYP99op3M/2flV9H/ADwF8Vke/eflEt/rtvSjv323i37J9h28/3AS8D//jeDuf1TUR2\ngZ8D/qaqnmy/dhHm4V47hReBt2z9/Vh97sKbqr5Yf78K/AIW1t0UkUcB6u9X790I35C91njvm3lR\n1ZuqmlW1AP+Cs/D6Qh6DiDSYQ/h3qvrz9ekLNQ/32in8X+CdIvKkiLTADwO/eI/H9LomIjsisjc+\nBv448Gls7D9S3/YjwH+5NyN8w/Za4/1F4IdFZCIiTwLvBD52D8b3ujbeTNV+CJsHuIDHINYb/a+A\nz6rqP9l66WLNwwXIKH8Qy8J+EfiJez2eNzjmt2FZ4d8CPjOOG7gB/CrwBeBXgOv3eqxbY/73WHgd\nsb3pn/9q4wV+os7JU8AP3Ovxf5Vj+DfAp4BPYjfRoxf1GID3Y1uDTwKfqD8fvGjzcIlovLRLu7Rz\ndq+3D5d2aZd2wezSKVzapV3aObt0Cpd2aZd2zi6dwqVd2qWds0uncGmXdmnn7NIpXNqlXdo5u3QK\nl3Zpl3bOLp3CpV3apZ2z/w+TF4tAXBAvsQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "img_path = os.path.join(IMAGENET_FOLDER, 'strawberry_1157.jpeg')\n", + "img = image.load_img(img_path, target_size=(IMG_WIDTH, IMG_HEIGHT))\n", + "plt.imshow(img)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvU2sbVt23/UbY661z7n3vveqyp/YxCJpBImGRSxZoQEN\nEALRQLJII0pACImP0AAkJBpYaQHppMFnC+GQSEQEASJYIGQREhQiUGKrHMuxYxvHjr/LripXvY97\n7zln77XmHIPGGHOutfc598vvvfJFurPqvHvO3muvPdf8GB//8R9jirvzrr1r79q71pv+fnfgXXvX\n3rW3q70TCu/au/aunbV3QuFde9fetbP2Tii8a+/au3bW3gmFd+1de9fO2juh8K69a+/aWfvchIKI\n/HMi8osi8ssi8sOf1/e8a+/au/bZNvk8eAoiUoC/B/wzwG8BXwb+pLv//Gf+Ze/au/aufabt87IU\n/ijwy+7+K+6+AP898EOf03e9a+/au/YZtulzuu8/CPzm7u/fAv6xF108X7/v1+9/Z/7leP47/hEZ\n14oIsr2bV2/vc2H59GvHZ0TyGhl3eKg5/qK33rjds8byGR6+bv90ozPnrz3QdceIu8rZeN27zf4X\n2f7xfY/k7J+8n1y87fHjOZy+zcj5DaT/P78jP+C+jUv2V3q/xxxtz+77v/v9ROIz/Xv23+J9Ffl4\nT8Z1u/sCMtbcbn05iO6f2wkdunvOF1jZ+/mO/gmyu4/jCHK2Lvu7MnrTx2T3lflpuZigy7/Hd1+8\n/vRrf/8b7v6dvKJ9XkLhlU1E/hTwpwCu3vt2/sgf+w8xM9wdszquK2XGzCiHGdUwbApC9X6tAcQ1\npYzP9YkRc8TBBVz7goh/m9vWId/uMz4rgufi3b/Wf8ZGMkdVcXdEBDNDRFhbjf7lvR0oZUJVxwZQ\ntu9orcXm7u95fFQUWmtIPrOIxCOYn/U5xkdhLiA6+t/Ho7WWv8vYUCIyxlV1ius13ytjrsB1t2kN\nrCHN8JbzsNY+8GMNl6sJk4kignvFXcEaVlewFv1RgTKhZUKmwiSKu1Ec1tOCiMS45LoQto2mV1eI\nzsi0CRVzR+s2l6gAiudzuvedk/32Cs2gKEJhmiZcoJSS6ymfW1bEZtwbZhbrTQT3djbvVtsYC50n\nyjwxTRMiJeep0XAK98e/z2fMhW7P0NdCrt9SylgnIkJB0JysMUd5j3Fv4K/853/s13mN9nm5D18B\nvm/39x/I10Zz9x9x9x909x+crz/or93Tqn2x94ft/+4Xe9+ElxsaYiD74EHqt933xPvbd1lO8Iv6\ns7+3Sfxc9u1yM15qjv2PcS50Ln9HfCy6/ZjIWbeUgHHuT2eMD2MzuPumYXX7OVugF8+/ad0WP2dC\nsoz+haDM51c56zOAuCFuYNszqSqiiur5d5rFdUZ/9k2wOoBugm//rOz6HOum0EV/bLDYmP1Z+pxM\nkhtIzzeqiOPeEBdE7q8F93PFYWZjTVz2ba/ERn/3/wrj+8eYieBs9xxCG43nR4eSG3PywNy9Sfu8\nLIUvA39YRP4QIQz+BPAvvvhyp7U1B0x3i6zgKmgpY5LNDM/B2QuBbinEhPYFkNeVmOD94I/Baoal\nBnYP3X8mZKxrpp0wGGYv2+bKRdBaA9mETzxdan4t9yR5bFJH1oa7ocMU97HBTBjWDt3qYWeS6rkZ\n7sjZ5nDTsZkNPdO2Y/HKWFtbH11ALBdjC9PWHayh5rRc4H0zWi5qzx/zMJXNPYzi1oZl0a0VyoRq\nwVXzMQxqozXDxfC2LfTepExImeJZJA3u3fNKWgiCYi7IsJoaiGHZf1JAllQ6oYktNWyOpEBJLV9t\nyfvEGDXfDP29xerueNGz8TRLS9At52ezBigClterU0SHUBxWSEthIh7rRCZwENVQLGKIO609rFTf\npH0uQsHdq4j828BfAQrwF9z95154PXuzvY3X+8Ld3TcX6vb3Jm1bmKdAa32x5jVxt+0e2UwcaR4b\nIq9TS8Ew/NgLR213D3XZNtiuz7bbLHstf/lvv8bMEOzs3v263q/hLuy64wiipHUTGxCZ0J2lEsJl\nG9OwKnTzVfPZLy2w835aXlwQDxlkzYZPHYIt+qgInkLYJD/bBBcP09o2F4iim4nrDKHoFpvnbLz7\nmPcNnBtd8kHGWmi7sReNzgoIivu2ebENJRAtyNDuu+/YWUhme62+c6NwhIJZA6L/LefrzELdWbB7\n/GL0dfdaw1HZ1nkorXCDVPM9P19jeKxZ9Yet6Tdpnxum4O4/BvzYa16cJq4N0y0mxiEnZ++rt2a0\n1rDm6VvtXYa+6LaJht1iyJ0gDuKO0nBzfEju/l0tLJMueV2w7J+5U0rBJAbwIUEwBIdOoWXlvlkI\nUL2hEAvBt8+HQAzfVGyiCSCKZh8agMRnJlGGgpAYy01yXmEsFBHE52GexvMyrIVuofVn6N9fyozb\nhMga71nFzZBmG3Rmjpe0DhKLExx8wryizbEWGMLAXorS+jyrYU3wFgKyYwjn4yqITtgkYVmIDOEX\nG5IQCG6IQ5MpNrzEfK/VKNrH1wibVFCJ0VedE3folpOnoIo1JRoKaW+BdoFqEn2stSamKXFvBKXg\nDVpb817h+slOexuNIteoGlocWgj4NlwtkEJaa4H7iG6WqeZ8ujvVHbXNClVVWmtneNur2lvBaAw5\n2c2jDWjbS+veOsjT/e1oe99S7/lS93zjCx/wZbjBQ6+pbFiy7DbT/t67Hg8N9FDr7oLuPrIXIEJJ\nExl05+bs2/3+h6A0oBFCxy00VNeC9/z9C9dor21EYqNhTslp8rx2JYCz6CspbDd37dKPNrPRh0k0\nLYN8Vr+PCe3757mu9zjOuD4BXU83ZpvrWEMqnpodRDSu6T8qOxwgvqQbKgMnyB/8fL5FBNmZ+fGe\nppUiuBhGhYt1ct4UXmApXo7DGNPWQjjvxvVy3vbXv4m18PsWfbhsvdOlFEY0Ml2Fs4Gy2ECG7UzM\nANm2BVfGPTe/erMEwjIJX941UVtvtLYCGoO9s1Au2/ZaAIU1v7e1mqagI7Yt7r1pOlyCZiCOtJp+\ndqLsEhrc3boNirhTpI5gFugQIq0DcWPMwi3Cna5AVScoMqyc3gcV3cKYuzaiEXIIt8QXijE0vrnR\nJDSYucNUENXwzS1Dai4RRaoNay2ERX/2STFgFsXRcPesIXWlmV0sbM0xUVDFZQo0pYTLYV5jU1rM\nKVpoIhSZcDGwCaSi2sID6b55AqwBuipIQfSAiKXW7bhSG/gMHutnAJRtoEWIhO2hk4IrRae06CLC\n4vXcClOdUsBU3BSZKoqGW3Pmauw+R2AbilIk9gLpOrhsG7+Mz6UFsQuyvU57S4RCl9CWA/9w60Bg\n//2hTdsleyllWAHxA+ZtbJ5uZQyB4x2xfrGVMvqw+04zAyFBNcaPDmvnBc8hiSV0f9w8Fud2VX7B\nBW/jooVA2BDwCMFt4SmR3EAPfW73/N2v3Vtp8Xvb3veIBpBhXksgTkZXQ9CYS4T6+sIlryU2Ii7o\nDohzd6Rtmu6eJZSaPMDDEi6BOY6GleGEoOhuVQqSM3CyT8Te2hvRi02RbC1Co3s8YxunXCse1+3n\nJu4naApN8R4GbeO9hxRN3p19r8fcdKXCtvaqW7o+5w8aroUOV9vdRxj8ddtbIhQ80d4eBjofmD4B\nIkLrG32QO+77St2PuucaePcFd+b/xSJ8CJy5BxYmWDQ2iYO1HUB68Qz7RRN9SrOvVXwAWIxNPTT8\nuIXFayr3njesIB+boEcXApTqFpOdLYpzU5exUTqeMwSCNzBDBdpaUynFM3cwTdN10w6VWgUDsQbV\n8QTg3AUtE6igU0SVDGBdw5JoDfcLkFkLgqJFcFVEp7i3lOAseNuUhIDrhAiBzKukHWeDCxKRq8Bg\nXPNZKbgmB0YU97AW+1xZmujhOjiSPIV96Lb1sFABMzaBNwRvPGuM6wS64RCqypQaPay43Tq0XURF\nBPOGSgCmWiaQwLkCgN5CvJfzK32BvWZ7KzCFGNIVZFu8e1+O9rAvfSlERojvAivYyC925nsNw9l9\n+J77dg8riA9u/ncnGrVzf+5FoOKlVRJ9FHz0KSyIPsH7z+6fN+6RFsKFaTisA5Fxv/H990Z++8xe\nGGwLKl205sNvJv4MnxlFig4fvhPFeoSiP1d01yLkl+FKsSTwuKHdFpJ4RtkRpVRjA3dsZetX3zAh\ndPr4Cpvr2IHneEHHc3aiUsyhj1CxjOlpu/tf8DQe2Fz7cUPje+twLVea1zOXYPvgeYTlIazkRdZq\nt9YUQcu55bHHcDpYu3/tVe3tsBREQA8h+YSdhKzbZuzSW7qZegE0iQzGnlllRJ5SONRamVzwqTPU\n0uTeDZbqND7T72kYWu6TZLrb0LwhfZJU09cN4GibUKHjH0I3qS2e2y3Ndt+shdTH4z5qiEzYBh0M\nzkbnLQD4FH529LU7MtvYCRBh25UevhUJFL+j4aoa4KRHXF1ai3h8anE3Iq7+gPUR7we7sTM5u6sk\nc0Q+VDXGS4Raa7gZOZaagiasiNR6qqikQCDwluCCWFpkSvMkHElu+GEJLhTpHA0b7lls3o6bhGnv\nFETqhs1klMUt5odm99aAUgbnRUTBPZwJz774kmPeRrRg3/rfrTUmmcCdlm5Gd1NQGbZfWAa5rpNQ\nta1dHRZ15/EMAc/5On9VezuEAhFuGhu9U1B3flHfVK7nA3uJ1nr30fe+8vC3dQze/vN7UHEvZF6I\n0I8wGcPnHNqiWzp1H/u3e9/V/dVNO/lwbUYzx9VxE2SKzdSjA/t4v2kfxd76Zt0Jtw7gZahtbz0I\nBZPQ3IihntTsvU995uZcaLQLjGX0zdJVKyVCs+wF1jYu2wAbLgXRMtwB1yldk3QtpKWG3dxHQdLv\nPqf6Bs5gidfIg3PaWxfG52tuD/Jt1+3v03196GFwoYcxQ+nImeU3HlU2vkIPrT4oZFOYxX23ee5z\nGcxGBiC9B3S7MPGdm/U67e0QCiLINMV63ZFPwuw/l3oYwRZzGWQZEcWaYezMMQM6ciyRL2EChS2s\nFCBMGZu81uSs79wQHRx4YLcpAdR9Z1V0P7QRQJOkP82IZnQrwQkAKoyiOhZEbMBNQEgy/RxQs3Rd\nNhZkR1bMuxAr4Wu6ptcfloal+9Rxm7GgtYfNwkpSCQwBM6xWvLUR5bC0xG0oLRnWyob+p5mauIl5\no0yH1PzOrNc4/ZogBKlJCD1J01+VaZoigiKCU0Acb2GteBc4hBXhUmLTaGIQZwJYMVsJHzzyFkop\n472YRAn3xRPTuHQZunCDM4EBCjrnilsDSPXGtjwk166kpRPWIMlH6ZwUkU3Q9O/Y0/pjDgMfCreh\nDaEc16bwIyxok3DNurDar73XbW+HUCDj57lhNu2+03BsAzaAHohF3a9HQhBImHFtp31VFVPPSbvA\nCh7y9zj3FT0FQlx7bgF0RFlEKN0FaueWijrpe3MGIO37sf+3f/8Qcz08udNiXXAU2T8RoUn3rsjQ\n7BK+tdqmdTqekCCiuKEtXTTf+tOcMIF3ltp9zMXSrN1tqsw01J1mdE+asfn9582QsuoIqrH7kphe\nSd5/mToVLQTHIBy1NGf63PS57Jo4LcbudnWb/MIKg9y8bNp3rAmmeLYUEO41FU8KDuubfULEhjE1\nlIP3ft8fz0scYVuX9/Mm9ms2yZsbMaoLm4v7vaq9FUJBRCjTRKsVlx1/vC/IZML1zDVR2S30FBY4\nzRvulcmEamFldObhuJ85lM233AMwl67FNE1nQqoRA941R78H7IXXxgfoGIdkYk/fIA+1wZ3faQ1v\nFi5PovWBRGTYtBXSxo5Nlmj4frGEteXJ/QhrqjP2RICpZIjQMAu0ntaQpvgaPrubB7YxKZZA2lQK\nXluMZVpL3mrwEtzxFl0r84xTUA4UnTFfMBruK1gNwpE11BXTGcoUlkW5CtDNWvr2NfgRZhhBepId\n2h4RhLpFgBL/aBaxfykC0lApY030tnePnC1/YQgBdm7fPrnOFSPM8tZWjEbzbrmEWSVSUCmp+aNP\nk4S53+fJ8OHs7S2GzeUDVU+LxweOMBRVKsiOJejORfZmwSiVN9vmb0X04bKZ7DaJGJQwKSWZYqVM\nUPQMX1g9TKViSmsBAp2BLx6qunq4CV2a9xYpOwIdtFKNyHqGgLzfo+20CBti32mtAnlxmrFbHssu\noWuvDTQo3l1raUlClWLlPsdAPGLzA41XCY15IWvOhAPQtGMK4VaIThTKYCgKSaJqTq1L0I3NqJ1b\noBOqE6UvOE2f1g21LauRminpKjTJfk4hmFWJSI35YDGqT7TMUXAAKVgmMwkGXoPQZI628JMHE7HH\nLaTGuNDA1xROPbMRJlfgmq4De8ZoZ2m21lJYnbsNl/jSPLIuFdfzvnS/SndZmEEjX+kaPjbnRcTM\nz5XTmduS7rK4oPm/IUx2FnQXECWxB7M61nDR+Z7l8ar2llgKCkxjB5lLbA4MYY6LpiBg6FwAYaaM\nUCMu0GKAI/JgWCmoaIBnpOmefrlKsgdt5yJ0c7xsoaszkJK4tmXSjuoE2tHq7paQLk/bhBEB/rg3\nGCUHPPgIZgNo7FmQpfuBDkYmN3XkOjEHcd1FIjxR+yD1jH5YCLSpTMGth8w4ndjo4Za+NME8tArm\nEfvuKdUuYSEQVku3gnoLa6QibjQLF6MQG3sqBVVDpOGstMwE7drZSGRc8rvKIXMhwGvFamRVTjVC\nt+s0Ia4jhLj53pEvgbfom+eYKyAFl5IsUZAEPPfYgYqPz+2fC8jIxhSCzjvbNMDSkTRnHuunfxZG\nxCSs4LQg0xmSjCrtXcEXhSIF7gmM/vvekp4k3SH3TTDk5SNS9ZrtrRAKCb/gGV6iFJAJp1HKjCrM\nV9Mw+zytgm4+eVHUBVsb5uFvFhiI+cjJ14281LGBIbF7/vxOM3fTrE9AaDvdZaLdJz6FfyqcmSE9\nPNlqgGE7M39IfNUwDcNfCTdFksY8Vluw5zZ2365AR/R+AFf7Ih2S46Y7y0owsAA5xcLU9Au3LZ5l\nx1/IRxPXpGe3JDV11D4JQCoZxk0QsIX2pIUYGJuvA2I64dOMliuQNoSBt5W21uBCENTgIkHa6cyu\n6O956jvmbHURphAMKhTON0fvd3kBDzgwG4AaY68d3JuGixuC3c7mtIPT8WwxaJEJKmebfi8QHoqK\nqOpINb+0CgQZBXjuYV/jGS1yXnaff532VgiF3l0nwKOgwzqPrh+hGr79VLaBa9VZ2hLaLznfbpnU\notvAVbf0P3NgLMI/3W/fs7/QvtGTEp2T3nZMxUkyyKMJ5HUYzLbv7MKgA1QALpr57gHoWWvDIvGs\nxWDNY91p5AU0ZRNsWqJPOVqy92172yfqSKYodRJQCTO7IFhb07sJQNbT+rinSXoBFs+qRVIQb8F6\nbmtocqtpFSloCY6AlpjHLpRaCCDxNnz+AdCK4fM1Ph0o0yF8dJMkSxmtZsxeZiQ5Dr1AzIb/pLWT\nVataUty9KJPOSCFcEQ1hotRhHXX6cHRHA6DduYcCg3VfSkZ5kofi3sBqOANZ40BEKKVPXDyfGOmY\n+i5CcW6BhtXnlJ2Vvwc2z67P9bLlYWRAVCUVSBtCcWAjlBcS1x5qbw2m0ENdmiGpeZ4HsDhNUdKq\nlBJuAvHTmXMQg1KmLeW6JinIyk5Kdsbdham232Bd8/S2l+aacfzzyEF+Lpy/s/u2i6m41Ax7lDuA\nxEySShxAzj63t0o2c/JBTnsvcNItit3zRd7AxvDsOMll68KKDCfuMwWlYwjuYzzOv0NihsyTOLQx\nAQN13/rpuYHHUnTH1uQ6pIWlzsCIzr4nCdfn88GI0mjviwRoE5unXGA6cLkN9u+N7FXvfdysjbbW\nEULff67QLYTztXUpEB5yBy7X5F7wX47xJVawV2JDqfl91+NV7fdsKYjI9wF/EfhuQin+iLv/FyLy\nHwD/BvC7eemf9qit8LKboWXKBVAS0HHmaWe6ZnzbRRIAcyhCa2F2R5TBcVa8FVQSTGw++Asu6Uok\nschLug0XpcBiw5z7ekAmA93nlvebuwd3IO6RIJIT2XqcRzf2QFF3ZVTm0FoqgRv0nrsjRYZA2zPz\nojrUxpgE8NoS096x2lKrWluRaiPkKCJRq2H3KKoZaSBeFwRsifs1aGug7ZEXIOikmCpaDqCFgoQm\nldTI1mP9a/rmmYCkE2W6BnWKSkYZLKIULdwRTUsn6N+a+Mlm+ofk7zjFvhZHzq9PIXREYprTvXPV\n4GPgtD6fJlngZbeJdELlkDkuHXSOtahTUqWz9kb/Xtv59vt1dbnG9sK0C/hLi23gT8JZiLgzTPt6\nCMgjiF1tXFcy7PnS3XevfRr3oQL/nrv/lIi8D/xtEfmr+d5/5u7/8evfKia+MFE0QLxZI9Nu+Ma1\n5fzvipdm9lkkA8WCqFbCvB+UDs4ApPgzPl868NMvS0rr5aTpblT3ktzdO0Fw+8xud4XG311v5/3Y\nbhoT1+sd4gF82mvYcV0AjTEZG3xHgHGhqIRPb/tFmc+TCTxjkaqcCT3xxEo82IHNEyL05BJobtyi\nY9yHJ0O6VO5n8+BCpBcPS6cToeron/b3OxCZuIbnvQZ1Ny2W/o09fT6USUHRLgvYW1lnTYJwdSYQ\n8iPmPWzY3csdftGv22lxdXZ06/tuwEMbvwuTuE8h/DQZY+yuSUbyocQ2oTPUXiiTQahjrK1viaXg\n7r8D/E7+/kxEfoEo7f7GrRTh/cdPcM/QXukbKWo31hoAXasBOg0Em2TxaVTfcVN0mjGrlLbTJDsS\nlLkhU0Gn0CCqXdv2GPUm1bfinTIEUp+IfQ09ehUid7rKddgthB5lkHt1EPcuRrNjAoyajL75zIzc\ng5457mRHx+KLBRaRF1Wl9IKkbQ2N1jzrHzKsAZF03yRcBt8tOmkt3IUWtQ3tbNOGIAhtlBWm2BDz\nuSVC32tLmG/fVRTvYFxmPbrVqPTccSCJ2ggbPrpZCb3iUHNDxIZS6HwW6D53iH4lWJGCDRJajF8A\numJrjI3thJeWADjHfG0W137D76smD2JdM8o0jX63VkffOw16JP9ZgK14jKcDZCRIi2Cu6MWmHsxM\n0hytBin8xvoQofDm7TPBFETkDwI/APxEvvTviMjPiMhfEJEvvbITKjx575onTx7x+PE1V1czV1cb\nprD3JW2neS//3Ztwl/7XPR9tl6AyFsjObx/36/rgQstfmoH3/Nr9+Pj9z9nO5IUu0JXmmqHIw5kw\n2LsxL/reuP4h/z4yCXvab/fTL5/nXr+70PMIO+6z7brQi/kLAHWOMiFxf84ReXen5fakTFAKohOi\naW1ZhdZguEbny3kIUVuDAyB5FICdZy6eYyy6YR7JH9jfL/p3Xi9iX515NxDj78sKRw/Nz/79y2rP\n233P+3mOa4WVAGQ5wHPr5nJcN4bsPv1c76/v12yfOvogIu8Bfxn4d939qYj8l8CfIdbNnwH+E+Bf\nfeBz49yH97/je/me7/pC+HbeuDvF4l3XyukYD7d0kCsXfikFrJdI7/41qckUq91H8+Hf9Z+pTGEm\nNjBpyVqT0BKyXzA+klXcfRSviOZnfvimpc9fC+skFxRbiLO/rx6aufWcY8nCnViYvg8IhMvfFXZa\ncxMkvVk70eqKtF2yEptCdLMRDYHdwjdHrGHVQot3iwvgEJbWrCX49qqs64ImKNlEolITNkx+0Rkp\nAS5SZpiucDtRl2WER40SgsISFNUuHCI8Z6xY7R2P6ERXHCoTpXSX0EEmwlqomCnBY8gxsbptWHO8\nNXo9xG2A9xs3EsRiXZyt47NQb5+vrUZiScsm1u2+be5ai6iZ7lxQD3xjKyVQiYqP3RZjnAvSLIRB\n1JGMvKBp6kLGaPXhkoMvap9KKIjITAiEv+Tu/3M+6Nd27/854H976LPu/iPAjwB87x/+fv/C+4cg\nxFXj6rBwtxrcEuXPtac+OyqGT4V1XanViHNACmaKSxb4IFiQxQVKVjdSoZpT5ikz8SwZkHGwTJTJ\nPhce2jzAy76Jm0VIs4d6UoOoJpiWvpuq0gS0Wlo24SMqEhGQxDIajhZLE7eE7igF863suCRYtM/l\nFxFaW0ObSpT9qpB1AjRDYAYY5oqsFa1GkxQKGpiF6rxZXpb5IqIUkazt2PkZHmXircWCFUF1xhFa\nr15ksUGbxxipxfeJOeksY8XQcsDLxFQKkxhtFcQWrDktE/7wBC4lMkMDdwiKs9UOqub3qGKNACDV\nMK7wBDutNMQKTrhlxcC84TaBXKVbVxE7bUVjHE7qzN7HXLJEvgArbjCXTPvWwDjGQSya0al0SUsp\nuCZjUoJtS45tD5XH6pUAfbNYjpnF5j87kyPdiiEkJOZFnOIagqGCa0XmKUO3sda0OOu6vva+/jTR\nBwH+PPAL7v6f7l7/nsQbAP4F4O++6l5Xc+EP/YEPqO6stXJzfMzzpfL82Yl6UznOC4/mmdPpjtre\no66xoa06zSNe7s04rUesKF4LS6vYWoPmqWENXKXU1sxWQ4VaM9TGuUAI4OcFoJAG4nxpMubz9wsB\nkqzbpXT4fb2eQEx8wW2v2ZWistMQjcjV33zp6JMMq6TH7kvX9i3Nahp1NWZvW16JZsk0SeCqm639\nHj3m75tVEeNjWU2ooIkFbGSyBGlraKzN09pSkaVMlPkQ2bAa7NTWGm09sq5rUHh76fluTuuGIeB5\nopSFOAUnSAjC1Nmu4fwH/iOgLV0nj0pHYgHYRZRhzXyKilgdfXaJyI+LwAArw61xizEeNGKCpAVs\n+RTDOz1QirLaGtWUd3hSL2l/6dJ2hq6bZWLYRTjyzELpNT18+5xHpqlbCcJXYmqD+fua7dNYCv84\n8C8DPysiP52v/WngT4rIHyGM618D/s1XdqII3/bexGLG2kIiyzSjzVkI8woKUq6w2qgzmCl1bTgT\nzcGq43dGq5WmyrQSmqw1KOFGlBLUaMExu8w2PPcNH/Lfeutm38va4E90oPGBy2MzRhGRhDkfvFcc\nVfbiPulIIY7iKJbc+6iE1DJZKXMuIsZIL1o6yDAiWeo+8Ia2w1DcfZQX69WPtxqUOx/cAx+IBDU5\nf5oSqc5htnMKAAAgAElEQVRFtohDrRVvkeiDOuq6uW89rDjmKFwYHTDMhmeQz+GcRwQgIichire5\nCHixZ3RmaC/vG0Kgb9pCLOOgWU+U+NqBb+03dtQYdaCHXKMkxX49CR6kC2icrbWX4VJDcNgWxTDL\n1PTkX3QlZKJMO9exei9G8/L1um+fJvrw/8C9OYDXPeth1w6q/ENffMLqjWNtfOFq4tnJuZkLt+9N\nHOuB9VnjtjU8DxRpa2N1qNZoVairc3P7lLZWaq2spztaCynaXAZBp9ZKa426VFpznCWLa55vOLM4\nF3BocNlClJOElvOoz45kJtxZdqdd1oIoWE9+oAdFIhlKtGRIbePLdzckxjpCZeP+ZP2Ajh0UoeRm\n9maoNaxF7gAtqk1HpWMib6CkeVl0JwgV8ajD2GqF5EiYGdYiPCoaGqhoGeg3xHf2TNUBpMaqD4bq\nVJB5psyP8pmMVhekVdpag6NiQElhIyUx/6wX0SpYzfwCHbTiyJBM6nmZ09XZWRcmuKyBPUnMp0BG\nmtrIUcEDSzCXKAgT9NbAkHzBiUKsJcPk/RzHQuAUkklHkYGajEdx1h0wawP4C2DQJCy9Ua/CdkcX\nQLi/JditRXZhTQlXdRQi8h6a1VFVTDK822tXmAW28brt7aA5C1xNhrpQysRxWXlvEuTRhOBMs9Jq\n+ITSZpxGqx4Zj81ZamNdG6rX2Fqp68oyh5Ww9lBNDnqtleVUAYFaQSPh6qySUf+9JM/Ae9JRtH6d\nwjga7UWSOD0FLOPFJqm1JJH4HZa1Bwn3mmNvJbDXppLaPscw0OdIY/a60kmHoaTiWsmDVPbmPzDA\nwCHUumtiwRtxDYsriqJ2DboXVLbL1ExtXIL+LJo04xLkH1rQia0F2CfNQnhIGXRzz3Hq4cPz0T0n\nZnWhFrwvSZJPS1pxd3+yMEtaQ+bbBoxq+iFwoihKt+JiTXZXoeM621z3SEyjE5s6UcS9boBtFooZ\nvfeNwWsCxc4thUu3YczPcBfH8G/rsWwCoafqm/ezKtL6ec321giFaxqzRnnwdj1zK1Bs5fH7V9yt\nFX00s7YrRApiThVnaVDbijXndFq5vTuwrpV6ck7NWJYVEaJ45mq0ZpyWyqk2bp/d0tbKsa6IaWIL\nNQXHSmvGuq6RAZh+qkMe2RX9HpPunC+yYUoHUNhNUHxO6vGEswTjLnnpotMwuAcfwjYylPfXdxGJ\nqUh+eQtTGMMyyuAeZx2ax8lI0ou0UDJN4YDvDXxb0NowW8ALzSKSIEShkDI/TvO6m7DB07DWKE5k\nPPomGEK4TbQ891HLPMamWcPXitSeDDZjOjHpFPfvx861bfNuFYTasJBGkVYyt0Q0hXSQoECpbaFX\nQOqORJR43MKT7pF5O6le+PL9XEmNc0EsrIEhn4epH8e51YE/KRM+gOjhktBlQ1ibPQen+YbdbOeh\nbhwZEYEigTUkP8aSaLdSE4yEKTkurVfB6meHEPlDr9veDqFAPHyRNNuw8PELSHPmEtWF5jmloRur\nwxWF1qJ+wlSUMk9Yg7Yay2qsawBf1S1cieqc1pXbm2Ok99bGo1Zp1VlPccDtUlfWk9I0wKx5Kmd8\ncmAUWRmLQ4gknpTmmzXQw+4ZjnJnVP/JyY/n9ZGBCDv/L9HtfQKXpGnrafIKMI6opwujWDiKp2GR\ntF5hbGizWExdO6k1xCwLc6QVgGwuQGrOmKNgNm5ZlYT621d9FsGTOCV57kAQoCrUNbRZRoWQsEai\ng8GKVFWaVUZdiq5Buz8voOqIlh2mIhtyT6SwR/2JzM7s9zlLWw4bvm9al4xkdOvPOctZgCDP9XsB\nqPcoRdfyWey2bGnefSMbWxWuvUVw+felxTAE0I5+Hyn2emapdqtKMgV+rJk3aG+FUIjnDZO51oVq\njVrD9JsluPVFWqLT8XoxcF8jP6AIj8rEyecwR92wpjQP0o3LFDiCNU5LZV3gk+c31NVYq3O33NGW\nRmvOclxZTo1lWTie7mjLyrpUWsbRW1tZLc9FrNNwS7ZzDVNb5pkF40i1nr6Mpjk3jzr/PZ4sFM4S\nfKIgAMPHkMy1s/Bx2xrCahbSL95OHu4uQGRdpkYVwbXEQSVU4hBmh2ZxpmXrVZQiYiJTothaUEIg\niLc4Eat1QDP0r3QXxzMqME/4PGclpSkWcD0F4t9qbNIUCC55rHxiHJYRms5y7NZSDIFmNmZfO0Ij\nQqxAFI3xitWFRp5R6Y5oLzMXPlWAc1NK7gWk142YUrMTASos60N6RIp823z71s+gEDJkrVPiHxMq\nPTSd7aJwjkl8jqkQNUezYE93tVTOSwW4U9yRZIy2FD6uutHYLY4LnLJs3bcEaPxMWyK5zaEiNNNY\ncNILkKaG0x7jj7h/FkjL0JDQy5MJjk1gTWhzVAyiKdVmlnllvY5KZEutrKY8WieWpbKcGuvhyLoI\np9PEfFTqqVKXlbVV2rqwtqglsLYK4qPYayP6JiZMDlZyiXQQL316JRFpKQhbWFMomybqz0xYCUV1\nhEwHgt7akP/dtXD3rNcoW6Rgx2yTzOnHNcSVJ2hVEzTtC0pgHOCaIKp2ck0NIdJ6UdpusfS8ASVP\nky6UZGWO0nS9pJqnM5YhSE/ztwvISUhQ0IZAOMMPJAC9wCByE0n67RIp1NYBuZ5i3C2aPmYb2HJv\nOXYeRN9H++hKAJh+9rFhbelGwY9Q8rSt3YEXnB98vG2Bvg7k7L3z6zJskfON79xLldElH891ibu8\nXnsrhIK7czRnMWFZhVMNs84kaweWQilRXzAKNG8LJUzp7n6El+XNmKRgBQ5F4jUxHjFRpzhj8EuP\nH9Esirqc7AnL6pxOJ9ZqnE4Lp2Pj2fE59eTUU+Rf3BxPLMvCugSwebo9sZxWaluDF2E2YtKrB5cg\npHz2M/1AE6dXShLpuAODuBJeSs+sjArHxT0AVmtIrcNFEBHqbr6ra9ZvSEEjiVf0tG4cqzXyHzzD\nlhDAnyUNQEHH+ZAkL8PiFKcWYlg7uNgBSrOIpsxT8BjmR2h5hHPE1yNiUZClCzeLQgeRKq9J6WbK\nClgrbmvUNshed197mnopvoL6zNijCmqN1k64Ga1mBamd/78P+fkuZwLpeQSALZEzoIp4wQyKG/3I\nme6mOVFfIrJsg67ds65KmVCZkGlKt2EDl3tf+voV23In+mE67Dawu1NzbUlaiv2owZruE1krIpCr\nzs40ZN5ctzdpb4VQgIgiNI+TdWLQLCA4LRQt9ESWqPsPSh740ueC0GTD0vYo3a1xMe6RxzDhYSpL\nFPSc3ZilsIhyJcLRjOurmfXamE7K3c0Jf3TFsizoPHE6HVhONaIdHhyDU1OkBvawdOaYgbrQsKCw\ndkIObGAEsE9ZOY/LA6Uj8Zt5LIQ/LxeLPNKdd4VWzIO0NZhz3e/MIjNZWjpAuCQDpa7pJyYHoMmI\n5Q8N1GzwHfaciQjTZXJPiWrHnSLtTpq2BmXKIyW7FdVJSxPuC3ijiEd6/K4Nbec6XCtJodd3fzBO\nUytbvB8bWccaEilxFqM6kuXjRfJgY20JBu5StLO4Tv9+VR3pySYRMpQR0s1wUwlSGm4UCo0alb7j\nrnQ+SH+uEa7k/LVOK4/7xr4I4lwJK7LoGadj9BnnkEzL+TDdc3de1t4KoWDuHGuwGa12xl6YYrMa\nJgsHOXAUQ0yz6g9ZbtyZlYjFAt5i4apYUtcbtjaKahBkxCleaB6GemxXR9vCo0PhcYUmE27CF/2K\nWoMVGJbCyrKsrEvj9lh5+vQZy1K5uw0LYlkWjsvKcopNEFTsiiu0FmCnSfrrNIpGybkR3bDQ3r5b\nLFoEdUdL3CMIvHVXbj6ua3jUSujVhJOPHyS/ADh7ZIXaolLybhHFfTS025T3FOKcwxbViswsy4j3\nnIHsr0CZZtAZn66Z5tj0Zk/R1mBpLLYO4pFLQ5ii3qYrPmUavN5FzkcyVkuL2pLM4fcHc9EQO2LH\nE3Z8Dr4OcHWVSjsucWaFCU1OIC2rHxXww7Z5fKW6jKKtWtoA+1Q1aciKcxWvTTOmylSuoczMOjOV\na9oKPs/MV9dUCcvO9BAUdqsRgQGwq5hUbVkrouXp2OFzBc8j50LzrA93JiK3QXGoDm5YM1agzLF9\nVRwsmJa21oShJKy9opH7YMfX3o9vhVDoeMqebmx5doMm/9s8a/43C8kscaRbAMSeAOR2jL3QBoo+\nZWwet5Fa2u/dj393a2iBCUNpUEqg9+KYCvUwc3UVFsPdsXK4WpjUuD1WDoeJZZk5nQ7Mx8rpcKKu\nweqbpgmzxqqG1zwWjI2gJBl2MDf2lRv2vmDq71Hw81LqmxDnKPTx3EUxPD8/Nn4yHNm9Fi3IL2hw\nQ7ZiJgGghUCIUGeidJulMkX1pFJKjJsqbgvUO+oieI0oQilTZm+VML9b4aBRu1FF0GXBbcHaDVZX\n7HSHe0M9WI8nQA6CWmO9fUZ9/gmLHyNUF6YI5bRkBKUfQbgAimStz/7cyo4w1OqI8wd3I4RoMDen\nEUExLahMHK7eA50pehXu2XwNV1fo1ftMj55QpjmK0dQKLJm1MeW6tkh+84pQKF5YS+35pWiWig8q\ntAcu5mHpmtdIOMNHQeIx5x5Yj1sqm/1JatbOKkS9qr0VQgFPTUrSadM8lBDxFISmATzRAiCMhZfm\nVYkBDQ2cZqzOI8ZtHoLD3YMp1jooVEdy0HyYaGsFSXQ+fcRSHApUKVw1xw6FL3xwwOwxz+/e41id\nZa0cb08cTyvPb1fW48rdcuLmkzuOtQZWcapoWSIKUus4Rdptyao+E0uvdyikPz+h/YTqpCy3uiKa\nBM2d79kIE9glLK9O/y3JIFSIqMSy0GrkGuw1I7PCFEVOixJsQA9T2ltwCrp/H+O6EXkmn6C8R5mu\nWcuKp/DVowJ5ApbMiDuTGbKeEH+OnZ6x3H1CtY9py4l6vMPXU+SwtBVfbgcnpSXyXmxmUmddbvH1\nlPMYY2CASfATAKQaEx5iXjdBG2BqbhILenXnfjRy7MK/2aptJ6hZNJLqhA3VN5R5nrl+8kWuHn+B\n7/yOf4Dnzz7keLqlrrE+D9M10/QEnx+h5Rq9PsD8mDZdMdljXB7RKPg0MxH8gjjxqQXnYiUKz64R\n2WjXOlwHJwSGYQkwewrnUIS1rrR699rb8a0QCg+5O2WPMGOYrRGmStO4s7qmacr06fSdc1NY61Cd\n0OseNhxa3HtPPPK8HtkKXHa0eRyThjNlWSy3xmrG1WFimhy7nrg7zDxaK/N8ZHlUuT5OqENZVq6u\nD9zdLkhRTqeVUgprprNWj0Ndmnc0fuMkKKH93IL1N2LUvvnKvXWXoSMDe8Q5BGMb3AIybNZDYybB\nPuwYQrSsv+BtYAL9dU/QMzCFiXZVKdcN0zvwJ2g7EUe6H5G1obbgLLR2pNWFdrqjnZ6z1E9Yb5/j\n9jHrInnATIRKva5IPcUYkegngTRVcZotybXY3gPQFkIwWvIF6Oj8ttz7J6KUvlFLbMQiEtyOFB5V\nMqghDTS0tqxrWhZXKZSEtjTcniOt8kldeXZ8ynK6pVVwcaZppsxXyFwo+oj56jEyXVMO18zXV+j8\nHj49Qq4f49NjdJpJdhvmAZrjz2hTKDbkyTkgmSB3xymmbmUm78QeiLK8qL0VQqG3rnmKBjIczxf5\n+OHWbgeNevezrbI/WLRvFEvIV8RHRl7JXHPXPp5pLXiQpZpLmHXiFClphpXUmCGQiiuIczXNTFaR\nQ2iL9Xqics3y/hXiyu3xxNPveJ/bxbn55Ja7U+Pjp884HQN7qNa4W46sx8JyMkhqMv3QJm8RRq0n\nQJlsYzo27YJhh2ZrYfVwWfaVgMJUtiiSsmamoQcBCbPQTIdHEeFJU3lpC2otKj6va4yRZZ+00Tkl\npcyoKAd/TFkr3m6x21/Dbz6m1k84Pn1OayfW9Qart9jdbZZtX5C20hqsVpnaE6oeQwhRR9GVSTtI\n2BeI0kQz3Odx4lOTLvfjmYZAsCQJhRk+tch36C1yJMI6RWZKDaxn1bRQu4XQNmwmflG8epwSPR8j\nKC4FNwWprDcTT6evpjUY7FDzxqwFn5RJBW2Kz8lJKBPzdIVMoPNjpusnUbj4+gt4mbg6PEaefBfT\nPNHWAwd5hDBRryPFXV2yVkZjzjM1RXfux1KprVHbtyB1+rNuXSBEMdESZpzEicptDXdhbesu3hrh\nStXpTBB0AUAKil7CtIN5HcENbZnc+6nE9zbwMlPJA0JspcgcyUQSdQ5NI+9CJI5PwyNh5yASPush\n7v/+dEUphcPpyPX0iJvbCqVxvDtwe3ei1jjT4nl7Hm7RWlhRyOPBAmha42BZjFo3Fl3O9xgLy4hC\nFwhhJZQRL3fbiDsiIUgzKJNjoRQeAacwpSlYq2iruNSsfB504UDpV3S+pqjj/pzl+Vex5SPazR3r\nzVczbHukrUeoJ7xZpkknOt+ZkA2KHDG/hSYZK9LRpzgL1BIQjr6G/eRE8CPSojUjUgaRacmWWyCW\nR7vl2rAejcnqzB30D+wmKcyb7Bg8gF66rqSQMq9QY/uUEuUAVyuoLvF8zQj6NEDBmmAmWEmrY4lw\npqwrVU9M0wGdVux4h81Qn30jXODpCn3yTeTqC/jVRJuvmPRLPDl9F3J1RdU8YWyNY+qYM8zrCrUG\nGGxL4lGv194KodCBsZmgpPYqyyISdQAyRHduLkdtxrYDULpA6CSSLmS29zdt24lCUSc/KxqroiaU\nPCOwaJxIPe2qJdHgME3Dx5Wio8hGQZinfmbDgcfXygf1EPTp1Xh+/CJ3d43nd0dublaOy8rTT+64\nuVu5u104Hm853T5jWY7UJWoHWN3Kf4VFkC5C6W5XYhB+SVSJeK15xZd+zmKMo2bZ9nVSyjQRhZVP\nuDeWttCW0DyLGMWdgzeEE6wnWFbK1WPqs6/x7MPf4vbp1zgdb6mnp4hZoN/EXBWc2mPvkK7L9hNg\nX2xOpYUvvCNuxcbvDtF5pKT/fhaKA1o/bdvzTp0oJHqWyu0X1nS1rFvxCpJP23MMvBOJEqtoJ3Yp\nFeM6ICtmt/gl58dSckVU6Jhu4/Es9CnTFdMnvxvVpcoVXgrl8B716gqZryjX71OmK/z6C0i5Zi7v\nU8r7rCLU44K3BfMTW2HbV7e3Qih0HzgQZIYQ6GG3YOvtDwCJtuUkcPZeCIe133lLX7U4uju0dKG1\niFVDgE1RES0KVzhbXL6j7EUVyZThYX040DdiUlJFFdpKceP6cIV74zDB4Wrm7mrlyZPCs8eNu+OK\nqnI4nCLcVhyxU6QG+4LTMNtX55UxVt53TQzYWEhnHHgPFiFwtnkiZKuUcgjQixIVjabKKesDXqly\nVe9geYbcPee0fEg93uJWufaJu+NTnj3/XY53z+F4i7RTLPysPQBQvVdN6i3nJwVW9CdCcoERxd/b\n6dCXq+T1Y+3jUxfjwgO+9f6aN/qGTHY5ZzRuguohFmFnuF6+dsYx2K1XoURUQRYoR1wVXW9p64y4\ncpgfRZn86yeUw/vo8gHl9AF+/QV0nbJvVw/25UXtrRAKfSZMgEm3RBuL6kq9WMoocZVavguKUhgT\nA1m8QyYgw5cZH1dVakYuWgvNYBLHwJXmiBitRHish0hL5ul3IknJe0SoMSbNzDCFaRImifJuLkmY\nUUMlCow8wnnvagI9sKzKavDNL17z8bNbnj674+b5NR9/qNw8veH29pblNLGc1iil1aMz7hlhyIIf\nD0BII124xcnONgDGzPKjoHOE2ESEuTQKK8vNM65P3+Duw9/m+c03ac+ecqw3nJYb7C6yRZsbTYHT\nkWIn1D1B0hCQakZP0Iko4boxNrXGJHfiEcFZiENve8bjuZDDe62JN2m9rMrrtxFpfdMPsVkveyv0\nVZtwX5jWXHI0+k9UUBLxYIJKCcKdlcRyGnZ7i4hwpx+hk3Cl18g8czsrOh84lAN6+BKuVzAduHry\nwWs/1qet0fhrwDPCUqvu/oMi8m3A/wD8QaLy0h93949eda/QLnmyUR5lHjXs13EmASQk4N26KJgl\nK809fd4IT4YJqbHgzNBSqM3PNvn2vYZlXNfcE6U+twODXy9nAmIU+yibURx6QJDDFOZzs4yMKEVg\nkjjgtMzh933xg2vmq4nD1cQ03SHtSQBIqpwOhTKt6OmEN1hbnAa9Whyvdkb3hkF+CX89ahbgjIIb\nvXojBVxXrkVRPyI3H7HefcLt019jffYRt598k3q8oZ3uWNqS1c98WHPSYJIoNmK07Si+FA5hRZH1\nHDoKyE4gQN+C3df1vEbGfzOn4kwg7ND2BzTyPu6QX8h2hpvuvvX8XvZSK6QDtlxs9L6BOZuDbjFc\n9vOhts9LYVgp0hc3SNaGtAAQw/ojo1BzEOEsUu5OUtEKWh1ZGpQ7ON5hco0pnG4ev+D57rfPwlL4\np9z9G7u/fxj4P939z4rID+ff//7LbuDAYo0JQc1pEq5BDICNTMNSShxGogH0zFngtA3zrYxJkB46\n84LPAnUFJtbM/4/Ct5FeVVtlnuch6cPNKKhkzUEUqYHukoVAqgdt1UtI9QmG2dv3gWhU1e3oVWwq\nmHKxTzh6DY+mifeunvCd7z/moyeP+PjZHc9OR9rdkQ8/umU5rhxPldvTLcupcjzdBnBX80BeE4o0\nVluQGvyCZpXi4C0AKBOn+RMOU6UsX+P07OvcPv2Q09NvcPvR12F9yrrGMe7mlawCOujVsEUCnKh6\ntbX7mrlbc9vvOTCcC7Le9kVEukCIj5z3YVwv9wUEu14YnRWb2NHZ13WFYeevvaA9tKkvBfKDz7Rz\nSwYobHHOyS4E9uDnN4EHols/4yxLcI1CLqKBsLoEMcoXIQrYOq43oHdRiPfu5oXPd9k+D/fhh4B/\nMn//b4D/i1cIhd566aleJsszWcQzvASkQAj/nnbO/9+3Hut368h8ITLmIt5suwImvXZjmGabxPfM\nnoBIEBqkQVcKJZSQxDF2wRfphWGjwk9MoJ9x06dATClaAhF3Z8KYaMgkfOn9RxwOE09OMzc3ByrK\n6fbEdLuis3BXjpiv1PUQUQAMW5fQJm0C1mCw5VhFjYPKocBhvmF5/g2ef+NXuLv5Onc3H+J3z6h3\nNwGS2ZYZ2Dd/V4a+w3u+lS3G836dzE/d3tglecmtdpv+obYXWmOzxzs8hHG87HvOW7eKX3C96TDM\n7A0e99MKBQf+mog04L/yKNv+3b5Vc/4qcdbkvSa7cx++63u/LxNUoipO7Wm5OGsLy2HP2lTzcWKO\nnfmw20EYPTzp1hCfBrtRJZgOpROgWj+LQbKqTtQNWKwFPTrv2GjBY2+Vw5TnRhAx6FImMEmykWSY\nLI+lK0QikBnNLWLJ4hGrF9AWKHxRp4lw/QSePFJWmzl+6QM++Pb3uH164vnzW27ujtzc3PHs6RNu\nbu+4uzvRVuNWwtRvfowwXysUMSZOeLvl9PR3WG6f8vTuq3z84deptx9BPSFeByEKqRFqG9Gc+8b4\ny9ummTeT+MWf3yDP85JwsFlaoyTbbkW/0BR/wJW6/HYf71y2y9deb6NeCqrLjT/urhN9fLbQeO9d\n/677XJsX3a+71k4UkTkfk2RzJmahJmdnerxO+7RC4Z9w96+IyHcBf1VE/t/9m+7ucnkCxvbeOPfh\nH/7+H3BIoKb7oaTVrXlsWG7q0jexyNli6W0AXBeI8n6gNbVeJOhcDFYvm9Q/axaYgYXGnUun7lrg\nA1l+nSJ4s2FpWKY1R+nyjrITiTqjht62GCUrBYtYEFw0jowzveaxXnO4Uq5vrpkPE6LXzPOBaX7O\nzd1zikWcfHLykNobbLllPX6T5ZOv8/HHf5/l+BRfYL17jtQj0mp2yaJsWC8B96namwN8D7VBLXaG\nNff72V4HOITLcHe0DVDsm/VFVk/gH5ffdT96kn2SLlBfsAcESgKYbo7u6nG+qn0qoeDuX8l/vy4i\nPwr8UeBrkmc/iMj3AF9/nXtp8yiy4j5oyJG/vgFVJnAoBXFYbVf/TrY00/2i7BEMtEVl3hbFOLyn\nuLKFgDoAqTqNUmUARRy1YI65EBhG50IIg2TVkiQTHoVzOFyFRdDiEBgxQ2ujZhKWqlLzPMRuBEZR\nobRyTJCpchBledL44Mkjjl9QbpdrPn5m3Hxyy4cfv8/d8zs+bt/g9ug8v/l1nn30qzz9+q9wfPph\n5Bacbmj1AHJCvFGs8wgiKzDo3Nt4be33bl6/7iaCdFE4txhe1F7nnmf4gm8kJntVnxIkvbzH6/Tl\nHLg+3/DnAuLlbtBDFsJD3/eqfg13RpLdKC8DUu+3T3MYzBNAPQ6XfQL8s8B/BPyvwL8C/Nn89395\n1b28I+TG2IyekzRJHMnetUZlw5NfOFBpWmmmoI4DVdgGvhGZZj1ubJkGDL2icsSoFBmuCGViaSuT\naNJtAqw0AbFMJMLOwk0BKoVwUqJUmohnPkFUayL7IFGQkV4DorXGVVGclWbCo3mmHA4gyqEoh6uJ\nb9oNv/P8F/jG7/wSH33tVzl+/E3a0w+ppxvMozKUyi3YFfiatCxCAnljmLR+wbq5N9/wkvX8VrU3\nEUrREmt6yT1edc9LJbNt7IvrHvqw7KMkb9I2/srL2uvM7759Gkvhu4EfzQ5NwH/n7v+7iHwZ+B9F\n5F8Dfh34469zs5qhRaxxMkWnThJqw7+cMkFqrXXUse9U3jOwRyJGXysUnYHgFARQFhswXAgnNvGU\nkx5HpBURShbnJGv5O4Sm7SnVXhEviPec+CzcIj0Tbw0wsRk1QcwWHcYR3JUDEXURASmNqQhLNaZp\nilOTFEwN0QOHFgj6tc/cfvKrfPNn/i5/5yf/Jr/ym7/EN3/7N7i7fYbUYC4qEUWgm484cDw3xcev\ndm+zP6TRPm+BEMfPPrQxzqMfsAf1NmTiwSa2o3KD+TSu9J1XK76mG/nqSMK9r3jBddv4dV9I7oGm\nG+io46svP/+yDb9R2c/PDhVP0lOREdG5PLD3Ze3THAbzK8A/+sDr3wT+6Te7GZlQAlAihyBr0I3T\noZNOCxwAACAASURBVG0CZ4Qf93jCvhy25SEs29+BCZzFkYd27hs4fP0yHZg8quPUbh1wwZbMUJJo\nhj0lgMTus/WJ7kfc7w+IMTOKByrcRKNQRu9blii/ehT1IqVMSIZprzA+/Ojr/OJP/wR/+8f/Jj/3\nU3+H3735Gn58jh2VIrdInrTUT0TahlbfeEfvOQC/1/aiiNBn0fYb7mXA4/33IsmuW4f7ppCM2vsu\nxO+l33JxnzN+y0vuu3eJX3bfh/7uFsGIsmXqt4mdCY1XtbeC0ehEirJmuG6alWpkzcUg/8RbkRlZ\n2Ez+niOxbb5tMUdNhcpe24R7JenvR6FT6YlEKI013AbVkWzlTnIgIjuvi3UlGH4gZ5M5XJRuIbQ2\npPqqgnpP25Yhwc2FgxSOS+VaJ7DKs6ef8As/+3P82i//DD/1E3+Dr/zGb/Lxs+f46TnSPGsx3rLW\nkQicPx1732cNfqvay76vL+CHF+iLtOMlh+GBT17c/+H7abIXzsdocyvDpnpZH/fRg1AK+9e3DstO\n+DB+3/gaHtmWo39l9P21cBO5UHKqZ8MyBJq1qJTNw0L6Re2tEArR+gCdB45iMC2KSYyNH75wEEHK\nPd+vt7AS9AF/atvInsSWIc11S5Z6eJFuoSR30mK4X4G30c/wO+9X8C3iHkWiVHmcZCSc6omrMtNu\nnvEbv/xL/PiP/w1+6Wd/HmuVr3716zx/9gy7O6IscQCdl3BhdqG/7fl/78Lgs9Lol20bz1dfN7Tp\n5+C2BF61pVjvVttLPvV65KZNZTzwnTDO4MT3/JpXYyCeVnOIrXMldNmX87CmJZ72/7OEKMiB9eD1\nt9YytNcfRkKyCqFlLavUZi7AmrX8O0NDNSwNlfPYeZeqkwjHukKJApzTHFV1kZU1C5rOKqHJ8zw/\n9axq41DKlv8QVY2dKo2rPOXJi3LtMyeO+FqpHi6Gq6SGd1QdYwrswRvXMvPNr36d//Yv/Xl+5qe+\nzDe/9lVu7z6h1RNXj7+b99/7Dpo8R+UuE8EyNPrgZL+5QLgXC//9QBXFICnhr4eWX1oGfQN8inbP\nhSjsDwgORZLfLjuB4rpVc4I8o2RFuKZxx3sffJGPv1LRL60cVkHUdyHMbd1u33tf0exHZJ981d+P\nn+5KvzgK8qr26YPKn2ET3UDDftSXWU8trfn3LoNMwoDrr/VNb7ZLhLoIW8ahMHavDkPzCIkK24C7\nxOuywza6qzJN2+fdnYOnfBVhQmh5rkKTHs0AsCjlJeE2zKqRLn6s/MyX/xZ/+S/+1/ytv/5/8JVf\n+3s8++h3WY4nbF1Ybm9oClePHtNEd3vhs3MNLkNnn2d71QLtm2TfXsdi+Mz67eG2xq/dynxorHfb\nRy4S03rF5Tyl6p//oT8B8ohZJsp0/2E67rRXYJfp3fAmz3hBMX+D9lZYCrHRKqowTXGqkuShJW6C\nqHE1KcclKiTF4SgZhyXMcM/Y/2AyNmMShbQaYmwyHFgmvFbmsp2cFEMRqAKe1GeCliwSVOZJS9ZC\nlDMBpBrA4cEcCpwwZuK8B7fw7XSaqFZoGJPOFGbujt/gr/3o/8Rf/7Ef5bd/4yscb25pdqSfAyge\n1YLacsPzmxu++O3fze2zj7H6jM9SIFxGsb8VVsILQ3ypbYdPvid4nWEL/T5x9avChffM7P37e2xg\nvCZsggHinA7o6VOjIAswakCIjPekSISB5Ybr8oR/6V//t/j5Lzu/+At/Di9KPygmPufRi1RWrTV0\nKsNqEd0wiksA8zzqtlkTkpbui57/Ze2tsBTOpKP7dvRV/2l2T4r2No7vtoswT4nCpK2DekNj69jQ\nPRIxeRRj0YvqNJ3HUCTOuewAj+0iEyIycA3ph4OmK5RmDsWJcyIQZiZkbdw8/YSv/Mav8tM/8X/z\ntd/+TZ4//5ilLdS6AJb047A2jIZ55erwhGm+euPDPfYtSsAXQghOsKtrtJ+Pz7dtlt1n0bYF/+KI\nyaUlpK/66j2tki30vb/f+XedHzB8GXVaTo/4/h/4R1jqirX5vO8XmNA+K/hV7TKS8ZDb8bJoxkPt\n7bAUSA/ZiJOHrcbR4F4TKBRqjUxGlXMh0cN+UxYebS0KozaPqEbf2CFQekEWox9kGpWUPbdGlgjd\nIcMmRjNBKbQ82vtqms8iH6s1rtAo8mnOdDJWjcNUix5Yl4V5Mr7yCz/JT335J/nkGx/y/rd9EZ0n\nVN6n8T7mN0g7gjekNQ5aWHbGgLUjZZ65fu8Dnt1+hYfY/ZsWuR+KO2uuG+CVRSG99WP4bERKvvWR\ni4v2BiXE/j/q3jvOkqu88/6eUFU3dN/OYbona2YURhrlQUJgSUQBr01YXtuAccA2tvGyYPAa8O6a\n9drvwgrMaxtnrwPhNWBMxrDGSCQJgZA0CjMKk2Pn3DdW1Tln/zhVt2+PRtII8LvifD7zme6bum5V\nnXOe5/f8nt/v+/4TT/C48BAStn0uz01DXhtnCaegcK5BoErUqjNMHjvKK275cT70d/8POlzCWc3j\nV6Zso8oqaHmK/FSA4hOVKfM09Vzp2JONZ8SiAFn5MMPstRDYbFU2OLBZWuFyfXw/nLFZY9PaSVPK\ni55IoTITDofUKhNXyXZyfGutX5W9/ZfQGU6Zlz6z3dhmKUI7lBNrNGWtdYZ1OGzoowMlJU55R+XE\nGnCGKAyZm5vgXz/3Ke67fx9pbBgYHmHbjt0MbdjM0PQkzeoqsWkB/riNzfUQfYRh8d2WYSHK+iRy\nFtzjfSCebHjMBv9eYUFohCwiXMNjNi7+ga/lD2v4G/6JQcfO6DL//Xzr+093nO/78yqBvxe8yhfC\nkNQtlM4go80IscjZl8x/fkeZ0Tc3rIuQn+zYzo6gc+BeCA/SP53xjFgUfEblPRjjJPWyZJnTkXPG\n52d4RmMbsbWZAlHWP+Afz3c3P+0l/gIZkyA63ytcZj7q0Aps5nHQiegK4RucvP164K+zXU+XzuXg\nAqmwSUogBLEzWONwScrq1Bz3ff02HnxoHza1nJk4zuzMJPXqCmdmTnLkyDH23vBiLrv2eRR6Rjh+\naD/VuVMI10SItclucYRERFGZ7p4+5nS/z12dV1pWmUZgmnolaiFTbyuX7/yQsSg7QmE8IxM8fkE4\nTBBoZFzHxLPZuYecfv3DTyny3etJmHYil60591g7pvOcsNb3vcggwjiLMzFal0ltc12On73aT851\n2o7nccz4jENK7wgWFeEdv/+HjG8cpiIj3v6b/42/+OOfJKGJouivkZPrvsK6cmxWIk/T1LNpO9LW\nJ8IX2s9lXhXwI5o+5NLj0uGBGJOVFrNSYO5qHIYBzWaMtY/Pl/IdcP2quV5gIy/V5O8x59QwXJ/T\ndfpE5M+1qxBSYdOUKFRepEQK314tIz7/iQ/z4PfuZHFxgbDQzdiWnVRXW8R1Q5I0adolTh07wgWF\nbkY2bqXVijleq5M05sE18R7cwkczwrtNdXX3UejuxlnZDvO9sW2SibcokriGS+tAAsIg0jiz2OtI\nLUTOh7eQi9eablTY5ReDZCFbmPL3/B8oUXac6x/0tfmOq6RC4TBWoHQBIRO0jNr3wVONc33+ufgs\nxjisBNtq8PwXvZzGgqA6u8rlV11MdblK1OX9Ss7Wijibc5NrisgOEtKTgo3ncS6eajwjFoU8jzfG\neDPM1E9em3s6ZIQf766Ug3yPbzHNbcB9udFHBWlWnvSVghQhHk9KyicWrAmurDElTaZy48N4nCc4\n5aClkYCCurEIK1BxymP37OO22/6J2z7zaQyGtFUHVcCpCtuveA6j1SXOHDvA0twMJ449wPzCGbZc\nsIcLL9lDd+8wxx+5n4WZE+BqCBcgdIFSpYf+wWEGh4foGxxHioiwEGVy7wJrEs+gtILllUWW5mao\nLS/QaDRoVGdJ45oXhTV1MutuQCOExjiLildwaZVERejyJkgj0tosQjTwu+a/0bU/x4R6stGpudC5\nUK29/4noQxAECpNqErcCIkRQ9GCufeq/3Qlydx7qE00+m3Fc0uoCw2Oj3PPAAcYuGKZSBmwJnMVr\nU3ZUV9ZtcNm9ab1UoGL9RtUJdncex7kAxx9JoDG/49YAvrXJ2s6r8Dm2lII0te2J2zl8yrGWn5nM\nSamdhmQnJi8l+vesmafki0ObRCKk72LM0fJ8k83+nrUWkUnAOePTh2985cvc/s//i4OH95GmKcbG\nGQ01Znn6FNWt29m89QIiCaeCiJnJo9RWZ5g5dYhCMWR04ybSZoNmamisTCKEtyPrH9xAb38fvf39\nlLsrftdrVz0kxqS4TImqVhumNjrK8tIStZVV5uZOU12Yp1Vfork6jZCpxylckpXjHIYA4RJvc99Y\nQBYqpEEXpGmmLP2jP9rl48SH1la2ELYbJ2qPK8v+oEMHfreIjSWpG4ZG55lZmGK0OEalfxNxeho6\nLO6eaIQ6QBSL2GbjnNEAPH5BPVcF4mkd+9N69b/RyFdgi8cIlAoRLs3kzfzESxLfRecbj1qEYbjG\nSch3+swT0GE9aCjIKhNhuxbdCdx0pgz5Z3V6RxhjUYHyC3rHsebDWkuBgNpqnXu/eRtf/uwnefjA\n92g1YtK45ns0XJqJqVia9VlOH32YTRu3svPSq9iwfScPfOvrzE4eZmryIEsLi+y5+SXsvuIaNl24\ni7mpaZSFytAwYyOjVAYqlLsCwjD0+AHeztzfWgrnhFf/xdFyhjiOsbFhdaXO8uIKy0urHHp4H8tz\nE9hWQrO5jE2qyCQFEQMRjhRjZkjrCbI4ACZENKoIVnk67bdPd5wrLD7XyCfv2ZyF84k4jBHooM7o\nhiv4T2/7CL//nrcyt/J1rHFIFZ3XcZ7vBEtdnbLsZ9uea5g4coJwoEz3fJn6UpPf+C/v49bfeS1O\neUs3+SSfaV3K0uwKQ70hVqzfzPJx9maWj3Wdkz9qkYInZmQSa1IjpUBYjXP+ds+/cK5ce7a+frta\nkOkouMyAxDgvCY9L2hFH7k3pT1KO4PufnbFYvWa5hnVIS9a8Inw0oHUm/w5FHbF47CS3f+lz3H77\nFzl98gT1egzEbbEUsu/mnES4mEa1xtJqle6BbnoqRTZfuIta3CSeO0GrtcjyxEnkxi1sHh5mYLAP\nay3FUone7gphKaQYBOhCAZU029wMaQQyk7O3eH2HyAbYMCSOY8JQ010p0T/YR6Rh4tQg1WqVubnT\ntKrzHgtp1sE1kb5gAqzgao6gOExcjBC1ZtZQ5HUgO4N1oOP33IFJIYkxHUClIMhe7xBirZv17OFV\npzs/N1/AbdsUN6/nC2sQHezUJwUmRRNhilxy6ZW05g7yhte+nT/962lW1LGs9GS9zFnHR6wv5uWV\nkKfuJZBWUxeG0d5BVFAkmQkYHB2n2lxl7/V7EeJCrJNI5zcxv9hlzFmrMNI365E6wiBE2oAUX6Lv\nxBE8mc7jaXk7lxSZtKD09P0fyUgBB9Z4C3ClnDe/AJyVWZfj2ngiCTb/g203JwkHWp6LLmo7dqSc\nfpyVg0Ru+upPpCJrxhJ+YuugSJJKCipleeYUt/6P9/LI/ntZWVokaTTxpKMUIWxmRpN9PefrK84Z\nWquznDp8iNHRIfoHe7nw0j309fXz0L57mZg4THX+DK1GTLhxgN5ChFIBWmuU9ma6oVBIDIH2xCNr\nLU659uQLlSfGWOO/Q7lcxjhPE0+MZWC0j117LqFWq7OyuMry0gJL8ws0mzGzU6dYmD5Da2UCaRo4\nu0zciNFRBcoDmLgOLgUKGeZjO85pAUfgT6Mw2UUFUn/9/E2fkFXKcFn01GF1tXa+RL7Y5H0FPuwT\nIpfW858onMOJ0FeLO67rEw2hFALJ8socdimgt6vFK1/2dj7yhTe17x/XDuefyBjm3AvC40J7qykV\nHIObN6DjBFUuUulJaSaKKAQVCJLEIpXLqlo6k1jDSxCmBmRKWOxnZWaWRrl73WS12UKAOzdBKe/Q\n7azYne/4QZSXLsT7O+RjO/A7QC/wy8Bs9vhvO+e+9OSfRQd4aLKb5vFh5NkhU2ekcE701eVdaWvP\nPT6kykuYEoR37c2gDBLleRDCekOX2MaUVImZY0f5X5/9KPvvu4eVVS+aqnxbFM46LOc283TO4ZI6\nK0szrCwuM9DXQ1QqMjg6wpYLdlJt1Sh3dREVNFEUEOrA8yGUREqHysqhSgmwa1TrNDUe/MwxBpHR\nbbPzE0Uh2ii08aK0BW0oRgWikqbcV6TS14VJQir9A5S6+zl11JGszkEqwAkMCYVyHyoYJkmmEWgQ\nDmEtucqq0EWiqOw5IzbGmIS4qkE1Mrp2pgnp0ox1kU/4vGS2fgr6K+Zp7c56opnLU4Z1aP2a8O5T\njRy0m56ehe4QbUMu3bLVe2h4zf+11/oP73h3Z7OS46mwAEixSUipJ6JSKjI5v4RacghXIW6sYO01\nSBFmG1mGS5GnsimhVhSjAhMT+yn2bUbnO74Al3tAnAOY7Pw//8z/3yIF59xjwBXZASjgDPAZ4BeA\n/9c59/6n9Xmk+QdnE31th83Lf+0JnTk/d+IAZ5cTpfDBlLVpVu/1aUIeHaylEtlO5izW4ZufspMZ\n+pjMMy2149E7v8kXP/ERHjnwIPMrKxDXEcTewBnIW7q9Z+Xjv6PFQLrK8uwhHnu4n/6hYbYM9VHu\nKtDb38fOiy6naZqMjQ9QCcsY6QiCoH3xpRM4pYitRfstBWu9GpT1fukgJMiMxS/zSMhHGQiD7Nbo\nNKXsHBVTJk4tZoOhFdfYvnOMleolnDlzOfOTZ5g7M8Hy8gyN5gK9vf1s2Ljblz/ThFJPH+Al3YIg\nIIwiyt3ehcikTRr1FmeOT7Awc4Layjxxa5WkvoJwMcI2MqFYjSBFCoexj59kgqzyJLOdznnFrBxI\nFsIvLzljzyKedKrmHcTzi3OEcUBL1Oktb8ZQQ7ouOunGghzoPteEemoykBABQSgYHR2jZRP6+zYQ\nN5dRCsqlgo9snM1MJvOU1eJMipGWxZllbvm1t/CBP3s3u20vqCWc0wiU7+g9a2HIN4gfRnnyh5U+\nPB844pw78f3WRvMJb5xoazIi1qjE+WvOlvtu51Yd1Yh8p3RZSBlIT2VCKBwGKzLMAYOw+CYo4S9O\np31YLCU2bdEblTh18BH+4W/+gpOHD1OrryBdK/OUUAiXtv+Wc+sXBMmaJFab39BaZWl2moXZBTZu\nGSUqBgRSUSx0Y0ziQVSRVRccaKWIMyk4pEXlrkrOduwafhsVmTkvcq2ykv9dLSSJzUgwDgINSqTY\nQBEVBEniKeJSb2Cwv8LQ0BALM1OsrkwRFfoZGt1AmizRaqZs3LYdoQNkhtvIQKNDn7o4m5DEKV1d\nFRYXBlmam2F1cYG5+Ula9SVsaxWX8QJcUiMlRaiOUnFbuEb6zlk0Lsd1XOIl04XKsAQJtgUuQdhO\nZaXHDyEUSggazSVKhS6K5SJ2abV9X3i1gnzC58Y359qJfdv6Uy0OsTXEjZiYFJEsU+nr4Zt3fYlb\nbnkl1u0EobEi9rhCtgFKISiEmnf8+R/y0pf+DMff/i541l5SK7ONINv0nGjjK2fPhfXf+enPxx/W\novDTwMc6fn+zEOJngXuAt7vzsI3zwq3e7j21DgXIzA+ys0KAAmssNk0JtVdgTq23hROstVRrC6n0\nu6WxDqssAu/XoNvBqSFSisQ4Uq2QcYKWDuc8cBU5w/7v3c2nP/H3PPrQPpbnFvyiYr0jtMvShHwR\n6YxsPLAmsfnu0xEdC2NozD7Gww+MsOPi7ZS6eiiGkXelksX2qq8UnpcB3owGwK1Jejkp0FK1Kw7Z\nmSS/WTsXSQBnLDJQSAuB8zd8UApJjEWIAOEEaZegu98Dj+NjQ0zN9JOsbkWGEZXeHlqtUdI0ZnTj\nRoIgACyR8udLa0mKJ3E559g4NkajUafZSGgZS32xztLyAsvLiySNOo1GgzPHD1KrrmBMirAel7F5\n+dipTM7eU8qlCNBB0eMsKsA6Q1JbZXX+BM4sZtGa16rAapAWa3yXLU4hbEpiAbtIq0+xdLTFaDlC\npBUKkSGxDZxLcaILp6yXwRfKs0ERKCcwgUXHCToMaBmNcw2QIQXhPUqEjEFGSBugjOGeu77Ba1/9\n6wQ9ZZaW5njJC25huWlwjBKoCkkisE4QEGKKdVanF/irz3+ajeNXszS7RP9gneGRa5iZux+jEwIM\nRnrXLCXkOpXqs+neuXCxOk/GZz5+4EVBCBECPwG8K3voz4Hfw0+D3wP+AHjDOd7XNoMZ2rAxy5dy\n5uAaVyHXLshpnqlNcU4htQdmLJ35U8cEEJ4eTFaJkFJhjSNQyqcUUiGFoGmtrz9kxqlCBMSmSUlr\n7vzXL/PZf/wHjh86QK26gnP+ZseZtdrY479X+2eHbb8mr3r4ozSkpsXK8izNehOb9iID2bGze3DT\ns+wEiTGeD5GnUsKiWFOcMoi1KFeodbtGJ8jkIwTnfTNTh9KeqBUEvnPSppZASUxqcTZEasUGNULa\n00QXishMBt+ahFKphJTZZ0Lb70JYTxJK0xQjDFIWKRaLpNYRF0r0DXZRb/STtGIajQbdXUVWV1dp\nNBqYzA7PWkua+AU3DEPCsAsdBgRBgI5CyCKIxdlJ5qqzPuJzGSaQRRPthblT8oACQjYxVrDvoW/S\nH19Kb5SidESj1YKCRLnI8z2SEjpIMDZBygSLRDhJkHSRyipptU5YlAhRoeWaJHFKqEKc7cYaAaJF\nQsSpySnKXQYVaYyrkLRSipWA5qrGiQY93WUSVcCmTYIk4Bf/469z7XU3M3OyhXOGpdkGojJKOCtw\nGGIJATJTm8zus3OkB+sim6dJwPhhRAovAe5zzk1nBzjdcWB/DXzxXG9yHWYwO3df4dot0ORpnGtP\nvE5hFWM82KJVQGotCN/hqOXaSumca4uboLKyjxNo6TAmzTAFg3FeJDZ1CSZOESgKoWTi1GE++eG/\n4c6vfImkUfdCGUJgTOsJT8K5Vmtfnst48rm+o/VlO2dTajMnOX30ML193RR0mSgIfau1zMJm552q\nlFDt1d62ke9MhTlTpMrvftlxHGkWoudUWqUUQeqIpUNrTQuD1pkQiJCowPfyl6MAo72EfaGr7C9D\naiAL8Z0VqMALwrbby5XyOpvZtYoCRRqkOBe0oxhXKWBMidT2+mtqYPOWbbTSFo1mnXqtQdpssTR7\nmpmp07RWa5nKVgxaYqWlsbJCK06p1pZZnTlBq7WMS/wO78lrFq/eTebBmJ1/YXE0sVYThpYPf+ZW\n3vjCP+X+YzMEepjUHkImhsrOa9k6cDnJcp2TZ77NSvUIwhU9jKw0kTbsuf4nGR7eRVxf5Buf+QvK\nXQE1SqS6gTWAq+FMEWFjTj46S9fICMlqFSkgCAJMc45f/sTnCQsJD3z5q4xsvYyvfuRv+bM/uZXB\nnhEa0026uyIevGOaE0aydfS5TJ/4LE5GJGmMCSVhbq24Np/W0myXR0x56rgec3uq8cNYFF5DR+og\nMiOY7NdXAvuf6gN8makj9GGtXqCUD0fDrOYupUYqjXXG75zWN4F5X4iOz8w+QLqOz8ywhPxECQuk\nBpQgtBJt4cj+e/n4h/6aB+/5Ls1m3e+sOLDrS6NPOZxDBBWcDP2kMi2EjRH4hUUKg0jrLCxOE8dN\noOwjBcU6JN45h1M+4snBJfAItHU2A97WvCrzc5j/rDqcgYTwzWBCCKwEme04HrdZA2xlrjKFI05S\nhJToLJIxOB9SO4OUmQ6FlKB8SCuVyghoCim9VL3LzHXJSm8yV83K/o8TQSFylKKQ2mqdxoKkWV9k\naX4Cl0hikyKCyAvltlpYHEmrSVpbRooWQhrf1EbmdCVTlIpxhO1Klvfa0FiVECcRiDlKAwLqI7zi\nJW/j6PQRjGmRFJpEaoDxbRdCxbH//iWcnUcpi0yLDI/uolavY1fqdA/tZc+1DR6874OIri6o96PU\nKrGLKJQCUApTTSmVHfV6i1CmNE2DSrGL7f/XtTz00GGu/o+/TFhu8Oqdv8XFu3ayPFUDa1lZbXBq\nusFjD3yDLcmz+ZYzaJdQVBJzLhR73a2XdVmedS+c7/hBrejLwAuBX+l4+FYhxBX4OXr8rOfOPTpQ\n1DSXViPf8UFkLEOlVFaS8l2AStG+KTsl2daDL/4G9g5QiZdOF5nSEzbTTpScefh+PvHRv+HuO79G\n0qiTxjFWJAiXa/Sd34nNm5SkDBjasZf+oTGKUYGk1eDU8aOsLpzAtFYwxIRhD9YI4jjFZhiFENG6\nMmsQBNnvCTbb9VRuMdfufstbjDs5G5lClcBL0Gfn0AQKbaGJReM1/QRrreJaa6w1SLw5aTGQJM4S\nZIBv3hzmbe2yHcjYtsR9alNCVMYL8+dCSZUtABJNnhZJlIBACLSwtGo1AlL6+/spBpdiiLh/8TYW\nlydJmynYOLu+FmdThAIlNMYoPHSkvEaidCg1iLUBzsz6qBAfzlupef4LfoMtm3Zz9OBx9PZe7vri\n5/n1X3oT44ckl1+6EdMzxm+95y9ZbTzExq0vZ88VP4VULarNY0ydOsE9d3+U3aO3MHn4NOXpCUb7\nr2T85j/mwcc+z0TtW5T6BkgmztA7sptbXvfT/MybfpMjR5YZKGjiuE53KWIpbnHHzFH6L95K/Ogj\nDE1N8rofuxG1lDDSr2mqhJVjBbbt3coH/upX+YWXXE/htiqtrjKuHKBRbVWlx91/1kcPeSQmhGj7\nkZzv+EFt42rAwFmPvf77/Ky1PLCzquC8rXZ7x5e+jTRUOqt7e9EVIc9aEZX0u6vNFZqNL2OavLRp\n/YQXAttK+MRH/o59999JHDdJTAoSAusy8tQ5wq8OTOFs/gSAQzE4tpGNG8eJogIuNUTlEhMnyixP\nn6YVrxIVB+gbGCEMChmo6pvAQLbl6YXoYKVlwqYe1zj73HUc2rrz6CdSzghNhUM5sMK19SWE9WxO\nqde8K/L6jZQS5fxiYVjr2sv/nhQaoXzJxYosassWqdSkKJWj5J5c5XUtsgVMyoyybbEixbomSm6y\ndgAAIABJREFUxkpskLBhy1YWZvbgnGB1cZ6k6VudrZWgA4T0PaRSRjiXopzCuhhrQ2J9mne+/XZu\nvfUVtCX5hUCrInuffT1RVGTL1jFmE8HA0KXEaYEjR44yvv1iejc6xi7ZyvQ3pqnX72XHxZdRGR9h\n054bufJFY2y67iru/ezdNJZmCJJeJpa/Qz1e5ZKLX8L86iTN2WO8/nd+j9e97T9gSwWW3G9hVibp\namlKXUV0mmIji5uuMdYtEa0HsXYzp+9/kO07LqJpBKZRZGk5Zmqizstv/W1qn0vZ8JZf4vQXvkv9\n1GG6yhGE6yPAtYhAtN3UZMc8ejqLgni6ocW/xdhxyRXuAx+7DYRd35DUEQ7n44n6ydcihE4Xaend\ncpT2FGZrkSrA2BZWCoLEcuih+/jER/+efd/+Go1GA5G2/G70BASks8fZWAJIpNCons286FWvp6en\nl3Kx4EFSwLRaVFdWWa1V6YqKjF+wmf5KmaigUVpjEGgBGocRGikM1nWUFoFUGKTQ2blYo+XmQKUQ\nXlNS5VGRcIjU4wgW74IlM6MQqVXbUzLPQ/OcNC93dvJA8v9zfojnT9DGDUInaWFInKWMJrZJG9Mw\n1mtQmAxulUIgnaTVamBTw8ryEo1qDZthRo26YX5+gZmpM8xNTDA3P4NptTCpzXRMTFsNK19w0tYK\nNgnR5Zi7v3uUV73431NLJrho516Wmsd41U+8huHxbYwOb2GhOsfkmSWqCuYn56mLZXpvuJZvfGMf\nYbyArHTBVZejm5rZW/8T3VGR7TuvpT7bze1ffh87t2ymkRjGN+9k9tRxunrHueZFV3Lzm1+MCiST\nR2YYHxjGCcNlgcapENdKmW21+JYyTHcV6JqexRyc4Hm7NjEy2kuahiwu1blrssJ7/v0v8vK7/4jx\nWxWf/LkqdqlIOnmQ6T/5Q4YOPsyygLKwNFVEmEXMZ8+VfLFQSnHiwJ33Oueueap7+plBc2ZttzuX\n/qBzLus/yG5cIEML154nn6BrIbUHYgQmTdFSet1GkxAbi7INvvPNO7j9K1/mofu+R1yvgTGZ4tPT\nk686e2EVQhIE3bQaDZatJWkVKBaLdPf0ExQKlLu7GRQOrQTd3WXCMKTdHyD9+52QSJHZjWf7drbt\ne0FY6Vl1nqi1ph959q7gcnpmNnyXcLaQaen58ayPLlz2mnZBo+M5WMMp2pUNKQmMIFEQ55L8eSqo\nFM56EpCU+TXxylRt/oTWWATdlR50GJDGCUpqwqJElQIKXUX6B0fonV7C1JZJbdaY5VKshdQmOGdI\nkoTV5TmSWkDDHefAwwf5y7/eQrUW0Yo/xPFTD7L78huYWpri9OJRHjjyVXbtehYXXzzIiRMBF156\nNV8twlVX3kztcMrCiS9zavVR3MiVLFx+CY9++A+YPLGPK699E2U9xNTkGaJCgaOH9hM5S2F8gD95\nz1+x7YWb2L7jAsaHRnAGunorpLU6oavTkmW6woSCslzUVeHE3d9ky/AYraRFEATMTS5SHuhHTWn6\nowan45CLCrBiirQ0pBdexOa3v5nJl/0UoyMhS6pCSacY1nQfO6/9/0mewg88rPDlOyE8px06pNY7\nUopsb/RvOgeI0kZgs/A3RWBFQkwAqaWrVGDy4YP893e+lZnZSZr1GjZugYmzReb8AcVznXCPVxha\ny6f5zlc+hdIBIpCUyhX2Putmtu2+iP6ebgKt2p2ekdSYLE2RIpO4twIbgDMic7IWpM56ME8rhMuk\n7JVX1xGs7Qxph7K1UsrXqgPlJyLZkqBku0PPdVR3tH78LZFXF/Lr0ClMI7JauFOeY5JjF2EqaIUC\nZRwGixSCwPlrqLO/ZTNhWyklKlIQKFQh9Itepg8RliN6evpwSczWHQk2NRk3xbRNeq0BJ7zyVFJt\nsLo8xe4L385nvvJZLr5ghOdeFzNUbrHzimu585Hj9FUsH3z/f+PmW17BSG8/0/cfYOulWwhdnYvT\nbs7UU4aZ5sqbfoKTXXDy1AxHrrocV34fpz/yl1wW301l4GYmZv+R8a6AjZtHWZibZ355mptvfi4n\n7j7M9c++gYm4TigE1li+dc8+brnxOdRm56kry1jQzSP7HmHPpn7+5R/+kS0VTf2qq9mwbTfTkynH\n7nyI4b/8Tzy2GPLc1hJFW2C+CL1NxcxgkeDQKU6/+GV0y9PEcRGlMjLYWen3E92nTzaeEWrOnLXL\nOefW6S62X9b5mF0fJfj/O3f4bEHBEMgC0kq6o5Cpo0f51Ef/nKmpCdJa07sz29hjB+LpRQidx9U5\nHAaXLFNfmaa6MMnq7GlmzhzhxLGD1Go1pJREOkDhPCUa3zHoc/lsF2bNA6Pzb/i8XSO1QgW67SPh\naVNrpSi/i7NuIiulcDJr9KLDXUsIT43uoMl2kl9y7gPZv3baICUma3iymbITxqINpFpQTkVGwlLt\nCCSPBJWQXiHbubZwitYaHUQgBSoMiKKIrkKRrkJEGEp6eiK6u7vp6eul0tdLb18fvf3d9A5009PT\nRe9AH8WyZGBgG2FXSqnYx6OPTPPQ/odZWkqZn28wPX2UL/7LxxnbtpvLr7+BwqCk0FciDP1CNeTq\nbK4ts2VjH8MaIgPjmwfY/bLr2HH5Nja9+pe58/ZPsnH7dkRUARHw8MMP0zs8SDnsYny4nw//8adZ\nXJpFRgUEEc1ak8998bvcf9/dmLCbkf4iZrLKjo0jDEclHth3P1u376TU1c9cdRWRWO449DBx1ygD\nh44jw5BEKcyqpVoMWLnnO7SCFuHvvpl6UyJN40nvy6e7KDwjIgWBlzwDcMJ7K6iOKEDmqYJzWCmR\nGWlJdqQN/kbtaJLCIZVEOwc2xqzM8bGP/S1f++d/YmZulaTaJKGOyLv18F4TTwdhORcek2sOOJfi\nkio5xmFMwMTkcVaW6wyPggv85LZZA1heKiVr/Mlpy3mOb52XrReAsZZA6zVDnLOwF9sRKQiBV8RW\n3k/DOEtJhaRifbUmdV4R21rrMQXpoxWtQ2KTEnREAbk4rnO+NyNPBaxzGLXmndAKPUgplMRlO7w/\nQL8waSGwTZeVOQUKT64KI2+7Z61FITHaEUUKYxwU0ozy7DJacibUKwFnKQaa4cEBFlfm6e7rYXJh\nBjdkuefYIwRFzV13f43//MHfY6GR0myllLTm4rFdpGmMLVYoOEN5qyZqRsy6RYZlL9MShgshvT+5\nl0uvu4gvyVmChQaVY1shXWZsNGJiZo7e3m7u+M7nuWDzlfzaLe/gN/703Ri5xNZrL+WWV72Gv/qf\nH+CNbxujNFvj8//wMd71m+9icWmav/ng3/CHf7KDFz5vgKn5o2y74QomtnTRP1nlPf0XsLSjiuyO\nKDVWqC+mDOx9JfWr3oL76Bspv/9PKbztrTQ7rAza8+r7ABnhGRIptHc4BNgUqUVbJdmnEzmfX7b9\nHKJorXQHndROP6EkykuhSb+LnTl6hONHj1FraawL/cJD2FEtAJcRoH2OnZNeWJeT5+OpTrRnV3pF\nXykihChRiLpQkaIgJegsHE8tJqsO5NPJv0+u2+Hz8qpvCc9pxTor+fndOM3k6AyOXGFMyuwzskUi\nUoo0k7rLS1ceNFTesFZJEi0wYi19a+/02SLgcnl7Kduv83/LL2D58Vg8ezKPXrTWyEB7joWg/V6l\nM9BUrNG3pVQopdE6JNQKrTWB8tWKQGlP11YaJx1dhQLKCeJWwujGcaq1ZRqhwI6P8rLX/xTbL95B\nk1V6+7p4y+/+FotNg5Sa0/sfxVpLM1ToSgWaVYzy4GcjSKgU+igFlnJqCbsko7FleKSHjUPdRKVF\nRBNKpSa0LIFKca6L7p5xFqZPsGfPDu7+xHdYPNHkzL1HkBsH6KuMsDK7zJHTc3zrC/fRUyoRJQFC\nNLnm+hew2Ijp7SoT4agFMa8u99FcaRCWNdNzNWLdQjXq1Botws+9iWDyXprPuZJ5BjDKoXAopzEq\napsYW/P0MYVnxKKQc/V8Xu2FRHUgUcrLt9u8209YrGmhcCStRpbrioxuKzIUXaFECNJf+GR2lsXD\nj1IqlXnZq1/Ha37lrbz4la+jd3QnsjgIlBAUUCoAkeIIsqYYiyTIqLPfz7fy/glGVxClEUa2XcFV\ne5/HyOgQGtcm8KAkgRNIkXhsQCvvcSn8hA2CCK8wn2k8BBokKK19CqA1NifoWF8F0EJBYtHSu17p\nIBM3yUBBZwVC+SAxjygiJIGVhCIgyqnS0qFxRHifCKGzKC5TFfa+nGuphJTSLwgIpHUESDTeRi/I\nzHTzhUVmC00Yhkgh0EoRKk2U+XcEUhHpAKEFMgrQxQhdLnivjMirTxXCKANpPVg5ODxENW7Cpm1s\nvP65bNw+yPD2YQ6dOcjBBx+if8MIJojQ1ld3xjaNUSyGhEiMgUofCBMTKUmoJVLB9lXBXqm4KDEM\nOslFJuGCJOEN7/55Lt51DcdPnWSxdood2/YQtywvuukWnvfj/47+YAM37dhD/OAqn3/XpwlKJZ51\n7U0Mbxhl8XgZs9jL295wK1/+3J0UgpAbrr+GG6+7iue99AbK3b38hxe9gFeUKxRGJD2jAaVT03R/\n7wvIfnC2QrV3K0tX/9+kx1YRH/4jepoQu4SGtESJIXGCGk102nra0cIzYlEAvzPn/6TQOCtIjFvf\nYWhzvYOMDddhcuFsipIZN9963YDq3DTL8xNovAp0d6WH7dt2seeqa7nxhS/l4sufxdD4TmRpEIPG\niRAlnO/3d2sS6d/f9/F0ZqEq9AxtYXzrLkY2jBMWQ7ReQ++18Z15rk0wsf47S9FG+YXSfufP9RT0\n2kVutVptrkb2l9fUiQTtndofUwdWYNfnnDmmQQYAKqU8iCi9L6YHUG2bVbmOVttRCrPWtiMBOiI5\nJ9fa33PgUimF0H4xyH9vYxB5ia3j9UIIRBZVtEuiUiK1olAqkjpLOSzT2xNhqrOM9vTTWmmyf98B\njhw/RWV8gIIOSExKKAWFQkgcJ75KoqGZ6Dagmt9HiTKkacygVJSadR666yFkIjg9d4Tn/eKNDBS3\nMjaymYOnH2HnBTs4deoUadxiaHiU/UfuZfziC4hlF9Nzs4Slrey/5yFWJlKuvXovNz3nx7HJIIce\nO8by4ioH7nuYZmy5994HeOPGYRa6LMsTczSXQpKNRZZ+6S1w/78gmoauZYmdOkkrDIgDQewiWoWA\nLhdjXUKvdERxmVZJt6/x+Y5nBKbgHG1FXZuTgoT2AifC4fK8W3gdQpv1PwjpkEpjnEAKaKW+rGPj\nJrNHDqEQlKIulAbhLGUlCANLV/c4lf5+rrr+2SwsLzEzOcXhRw5w4vhRZk8dxjWX0aSkrtURJawp\n7pzPCXZOIrs2MLrpMi7ZcyXbdmxhZKQXUQhQKOI8VHaOwEkcXu/AQVscRiqJEw4klHSBeuoyJuFa\nSB5FEUmS+ErMOo6Cl8d3SG+2m2M2ztfzRZiL0mYVE61wqWk3OOHACJcdA2ByyTvaE7VzkrfLmVph\nhUCwRpt2kLEilY9qOqolOE90ioUnmjmXRVHapxG4NZ2AXFvC4x4OZxxWCJSVXl0Kx0PH9rF75AZ2\nbd7JSn2G1Yl5uit9XPuK52PVB0CkdElHWq0x0FMkFY4Yi7OgZIRLUoRLKQSauoGwqIgSydTcAifv\nupeXPPcmSi+8iqqwPHj8IDtf+CIO3vMp9l6+h/2PfIut2zYj5wNim3DRjTuw5jDv+Z1f4NhMQpL0\ncfgOzemZk3z3e9/h0JH7ee8HPkDSaDF/Jub4oTqf/tIfMTk5ybcvfye//TNNVns28Nr3/zHhe4dw\nr3kfhe+t0vrVkOWFFSI3QrLSwky2OP3sW7jk/i9zJDXYesqv3Pp+PvPpz7J0+E6cfHrT/JkRKeQ7\nW7YIIM896daVJqUH33LijXGZE3TSYnlu2lN7lW7vbEp4+3odFQgCQW+lyMhgD+OjA+zaeQFXXH0d\nV177HLZecg1BZZyUEogIRF7/XVNoWmOPPfmIugYZ376VkfFRuisltBYEMtOIdAaJzSwd/WflVO18\nF/TKfd5+Lo9+pNRo7bGPNE0xxvhXCdptskGO6guBagOYfugst8esj4Dy82+FbzLzkZnDpQbbSjBZ\nBPFE0l5tUMv69+XXK39OIdodkEIIlM5VpHxFRAsfISjtd3+nRZuq3Y5ocip2HlVJjzWIrBx58uRJ\nxrZtZ+uWndRrq1SiLr592ze57oUv4cYXvIA09elpoEJU4IFpZf0xRAqEiylGAQUtiZTwFO80pS5b\nbBjtJxSad7/7d1mcbEBNUrAFnv/q59FXGeGBh/ezdcs4tdosUVji1Ow8Q91Fto9dzpGHD1J7rMXE\nwUeQzW6aiysga1x9+V6EKBMGXZhYsGHjLlbnE3oKfRy4/X5O2knqh5YY+/2fp2uyRfnjn6EwphCJ\nQaQOEYJQTVQxgle/giNHFhkZ28hv3/pB7vz2XZw+/MC6yO58xzMiUlijyXRo/kmRyY+tGZL472VQ\n2qcZRigUXjgjdo507jTL87OUoiK6WPAnwiaA8orKPoVHyoAgElgjKZfLxL0xfQM9bLlwI5fvvZIz\nJ6c4ffIk+++7g7mpSVxjEWGrkDlSCxcCXosRfI08p5b6yEIiZMAV19zAJXuuZGCgSLlcJCqFfqJp\niXKekiScQwYCZ5tYEfgLjESkFucExUQTyiILxSbxyjyyq4fW6hKFWoIY7iFtKAZEROwcLe9TRkEH\nxLHvLFS5fZ6zGAKk8aWOUHdUDYSXivK6iw6BytigfqEKdUAqjPfPcGtkJo0gVdnPUp4zcvCX0GEd\n6CDMuAm+ycw66yMBnbU849WYZLYoSeVIkzWpNuccgfRt2UooomJA0miRhooDRx+hf8tmrr7uWpbr\nk4z1lYhNyrY9uzl0+B62bxljzvUhHvs6Gy77CQpRijBetalkFEqmJFJgEwNJjTDUhC6mFAq6Xcht\nX76Dnt6I3/ovb6dRbqKSBs96RYRDcvD93+LRr/0z87OPMNy3jaWTZ7jhRc/hq5/5Jlfs2sSXPnuK\nxdU72bhlmL7SdlpN2D52NYdPHqQYhcSyQZiWUJFgpGsjE5NHcbODfPy/fphHFicpveKvSfpS4q98\nkmZFYE6eBi2JiyPw6Czx0gnecdONPO/0Y7jF/fz4y36C8ahBSQo0XcQyRnJ+atXwDFkUXJt96Nqo\n+uPpwznKnRm3qoBAOkzS9GBTmrA8P0cYeF1Dkyk/C+HBL+uynUdJbLaT5ToNhUKIjBSyoSgEJQKl\n6e2rIIXi1NHDnDh4P61Vi6CFc2nmZG0RLvBNTM6zC0WbeyhxQRfDG0bprhTRod8BjTEEMm+Y8pMo\niAJsakhViZJJIYlBK2SmqtRIYpZ6GhScYJwyc1MxiydOM1HU3LBxO3W9SlVZKnGZgqmzHIXEzQQd\nCkQagG7gRBEQBMrnZlLKNsHp7OG5ElkkJLynRCeuY63z5VA4b/9XIRX6LDKNEB08CbIqiMoASzwl\nWgiL1nLdTuf1HwISa0hxGCdZsVU27N6DcCssLSwyMNzjz91CiwsvvJKV+jG6N4wiVMDJR0KGrMVJ\ng/UINcplgjbGpzgEDVZWlhgY3oBI4e5v3EszXmHLxTtorRS451O3UQoDZn93jlteO8tzkoTQvYiT\nX7GgHVFvxMlDZxgb2M2Bhx6muuoJuBOnl+i/xOCEoNhVZNuFw7gUgkIRGyVgAnZdeADp+jl+8DBf\nuesOdr/7LcStgLoGMbJKuLhIGrdIVwvY5Sluaqa8+IaXcclQwPyBCU7OV+mS0zhXRChFaixKa4T5\nEYsUwINnWmhcBnZJl4mk5M1IMlOZUSEejJOkRoAOWVycQy7NUQ4i0IpWkvlCuKzpR2aqOc53BUrp\nXaRwEpS/2YsypFgsYhLLhqEhUmvYfdl2GvWE5aUqM5NzPPLwgxx/9CEmjhykVZ9HqBbOaZzQCApI\nqXFBGVXuYXBgAwNDg0QFT9KRzmKMREqRkZYkUiki0c1ysMzK6gpdxV7icg8Hjx6ku9RD+twreODT\nX2D8x16McRM88lAJUa/R/etvIHZNvjneizwwyVJSpdpssOnYcTbctp+rr/8xNkaOwuYLadQPIW0J\nZwUyACskqROoIMzEZjzvwxOdhP8O+UKckZWs8xGQwi8S1jmsyijldo0bkgOjed+EkF4CT7Legctz\nDNYLwaAEWvoFKJEeOwklYBw2k5gzxtBKEl+BSLw2xpnmEkmoOXlkP6/7uddgBDRWVjhz9Aj7v3OA\nMKxy08/+NMJp3OoyOy+9gUBZUgcFh1foUhaMw5MCU9CScu8IC4t1PvKHH+KSbVWeu+UC9n1mH7PT\nVeYXZpmYmGNueYLP/d2HEHHEzuuu58qfup4bx17Mdz57H8vpEnd+xXJm8m6ayRLGxly8/aXceddn\nsUnC2OaQ517/KmTBsFyrMTc9y8mHD/Lggc+z5bJXoou72ZXA6ns/z399pWWpLokLAc2+zah+UEGd\n7abE1Pws1dOGZlriz/fdwwNTd5BWIuIWhA5CpdFW0grOHyl4xiwKOdq75s6E58xnz4mO1/nuPtDS\nsLi0QHV+mh6XkooAkxjCwFvF56CdNQ6hfAvpOtRceVHWtkAotFuVSaAgS+hCiuqVKBWQGENXsYRE\nceLoo6S1eV9KdC2Es0gX+HpF3bFiUxZmpigVNa4QkrYc5XKfFyHVss0MrLo6Q1pwfGqFritGue1r\n3+IFb3493334IJdv7WXna2/BjI0zt38fZ0qSngs30V+Aqi2jT9VZLggWKNPz7UPMJkUmXnYjNyw2\nmSlG9J05TLF0MS5awGTNZh63kRm12Stor42O/pIcTGzjAsprZ+bsU5exK7OJ7XK8QSuf5mXR09o1\n8z+fy7TEpwoq41j4yCLrkV+rokC7hInz6U/LWBZmpklFyM233MTCSo1iV5F6dZaFhQVGLtpGf9Gn\nYkJBudRNpBzVOEEHAf5iOVACnMcYEJIkTRCkbOwrMfOG32akXuT/+6evUrdw4sgUfeVulpqC6anT\n9PcP4mJ49I7vsnTyGMWfLSIHC2wPNnH3N25HFyULKxP0FLpYWj3JyVP3smPrXkbGNhAVi9RbTZI0\npqB6qFdn0SokMpax7q3Mrhyk0KqzJUqoVhdJZYtGOk8vZZpNw+HZVbYNwMyQZGKmwbcf+wjBYIWx\nlqGpfAXP4WhIi+xf18z8pOMZtSi0Q0kyVl72nBB+FyF7VliLTVtMnDlJJBw9ArASm9lwmdh5Ln1G\n5hFqrbNyPTfcpypYhzA+Jcj19IOCRAYKY6BQ7qZSqVCpdLFtx1Z2XHo509NT3HPXHZx57AFqyzNg\n6ySuiUzq2GSBZl3y0H13I2RKQYWsriyyefsuxsc3oFWOokOzlbJ0aR+12WW+etedPOu//watxhuZ\nra/w4HwTYwL6U4e4yHDDBZqqSmhoycojU9SHuokKw1Q4TbhnD7XvHsfseBYfEIcxH/s4Lw9H2KUP\n0nPldRSiABLfICazEp/NDFByiFKpnAXZkbKJ9SXNXJRFGZf97D9HnTXpOyskMitH4rLmpw7tC5dR\nmte1ZRuLCsBJh7W6zW+QgSbMcA6kJE6ahJsGeekLb+LwgSP0DQ0jG4bv/cvXuPTmZ9O9YTM9chnr\noGDBakuzqSFMPPCpBVY7CqlnY3qqrAGT0pqr8z/e/AdsSmKuvHgP6cBmqgXHge8e4Ohjh2guzBEI\ni2SVeiGkd0BiG4YzX3iUnXuv4FvfOE41Oc7S8hKb+69jYvF+Dp7+Bpu3XMkLX/hzTNTu40tf/zI9\nvTH9QxvZveX5VEbh5qv+HRPHVth0xUVM3f4dpswR/uCdv8PL3/xe4sUGA0rTAIJViUsdaVlROV7j\n7ZOPEPz01aiZJst/LwgGW4hCEWTI82+8iQkVcvi2T57XXHzKmEII8bdCiBkhxP6Ox/qFEP8qhDiU\n/d/X8dy7hBCHhRCPCSFefF5HwVk1cxI0XqFYkNWsEbg0Kz9Jy+zECYpxgnKQOEELX2vHOZw0mRmG\nbKOvuTmG69jBclKQV40GpG+4UkIgUosKI7QO0TIgDCSV7oD+7oixDf1s3raBK6/dy2XX30jfhguQ\nqgIoED40Ns5iEkOzUWN6+gQzMydZnltgOfUlukbSoLdQ5mQZ0laJi669hMsuvoB6dYVyIeSyG3+M\nM/W6D9e1YEPahAhk7KgddEz8wwGUg1JBEcUSsXOERq8hmThD5cQc8sSjfOzEPH86GTPSU2GxuUyq\nCiRJCxKxrksxF0vxBjaedEVGM163IDjhdR+sACUyP0qByha59vVrn+eMhm1yIVqFyxcQ4XdojyWl\nmbeGQjrRVm2yRqLUWq+EV59S3t9CBqy4hL03XE89NtikThHFyvQMW3fs4OTpM0TdYJOUUCZtMhuB\nJcTzPkIpECbTcxS+S7cUaLqKJR49fIZfe/tbec5NN9NM6yxKx9TENKJcIk6h1NdFGJSYmp2iNbPI\nmRMTtJaXOVo9wv0Pf50LtmzEEaHMMtVkmvHRLQwMd/Oql7+WsDBEEPTyj5/6NPfdfSeXXnopsiK5\n9IoL6Rro5qJLNlEIQx+tqmFMPItIa/RUoNgTUOqCclSkVbNM7Vskvr4H7CK6BqYR0xwaIJEVSiZg\n666dHJqaon/n+PlOxfOKFP4e+BPgwx2PvRO4zTn3XiHEO7Pf3yGEuASv7LwbGAO+KoTY5Z7ChLDz\nhvKUXOUlygFH7DUQXAoKZACT+/dTCDSJMshssnvqwnrR0lxgo03Yceu1AYQQKAnCeln5NW5/CCGk\nSZIpKftcV4dloqBAsWTp6+tjZGiYiy66iMuvuIYTRw5z4P57OPXoPQgZo4GBwWEmDz7K9NQkYSFi\naGgrg4sr2Kib5fmY5CXdbGj2oitluislTl+wlZmVOg80l5maPcpgS3KmVaVWO0GjV1MeTGn2aB77\ny39lW+80zWWDCi2YKZYbNUrP3sFKrcnMZReR7PyfaDNP4zN38drRXn7ywBSv3xkyaSPbtBKYAAAg\nAElEQVSMjFEuwAjhqw0ZaQry3D1F67DdUdnmBog13oAP7X2vh3NZu/VZkZjHDwxaeRcomzuBG4NU\nfmHyRFXn1ZOUyxZ2Dyhq6SXegkwqzjiHlgKbWlKRMrRxAKsVS7UGQ5u2sFJvsmFHAVOYYkRr7Eyd\nO773bW688bmEFUXcSIh8jdanoElKQQqvz6B89FNdrVIqROx8tmC+WuUTt3+GX3rjmyjOSRZmDWVh\nKek5GtNTbN62Fc2lHJ/Yz4bNYyyu+nvo1a/6FT7+d3ezafRS7ju1BI2TdBfH+I1f/l1EELLr2ogj\nyyV+54Nf4CN/doCwZ5hCMUKaFl1hhXg1ZfvsCI9tvoip00c5c0BTKhdYrc7jZAGzEFGtN3hscZav\nPfB5Hvv7OuF//nniBx/C7B6h930fZMNbX8uv/tEH2WcMe19yPWc++D74xfOY7ZzHouCc+6YQYutZ\nD78cuCn7+UPA14F3ZI9/3DnXAo4JIQ4De4G7zudgOuvf+c3l24vBGUuhGHD62EEKmTV3K6PSOgdG\nGkKhs4rD+jr6+k7K9UO6NWeefPHIVZe1pO1c7QSkqUFndfQgc0bSMkAHESLU6LBAs1FjbvYEab2B\nVI7phUnm5qeICl2kLkT/b+reO86yq7rz/e5wzrm5clV3dVB3q1tq5YQkEAhpQJgcbGwMHmbACYPt\nZxzGY/PAxuk9mAc2Bjy2ScZkA8ZkLCEBEgghK6eWOqljdeV044l77/nj3Hvrdss2/ZmXNPvzqU/d\ne84NVefsvfZav/Vbv0WK9CSH7DzPn/gPrC6scv/Jk1z4vGfSXu0wVB4lcRHh9CTNRw+xbe+5SM+j\n4mkOfO+HTDcSLkwThnSFO9dX2F5yJKZFQRWYD5vo8jTqDz5G8JO/TDzp4a5/BiOHWnxpYh5vockN\nEztJhUCnAuEPkpqgt9D74J/oxtrqqazODSyy9xkbZKbB3/mLBu6BFF1mZg5Mqt7n9ERhu9kP2VWK\nzm3VBnMysw5fa6yncJ6lqDX7Dz3IdRdfQdumhGHKWv1JzjnnHNL1kBtefhNHHn2SC6O8r0NP61IJ\nEJHDZgYvCIjTFF9ofOlx67dv58rn30DWbnHk2AyV3dPorZLtYx7RoqI9WWTk5CIrjXUWTh6ksx6z\ncug4Oy+7jLX1lPe+54PMnlhlbHg3MoCCcswv76M21qRQ20RhyHHTFVcjOpZnXbeFWDhSLagVNMZY\nRMmxaXOR8alJ2o0x9l6oSMw6SilMO6CRBHz+67dxpFBi7UNvRf7Nl6AREoxvgdll1Effx0rL44Eo\n5OqX3sDKfIxvzz4leVbKS12j8A3n3MXd5+vOueHuYwGsOeeGhRB/BdztnPt099zHgH92zv3jv/f5\ney663L3/i98Dcl2FXHWoWx0och3GqL7K6uIcQ0oRZzGJHRQstf0S4n5xjso7Qg2WA5/eQaf7GIPo\nCpgOGpO8hkB2Y91cULV/rbq5uDSDzFniNCM1CasrdeZmVlhcXGDu5AlWFo5w5JG7CJsNhAp4xo2v\n5RnXXcquS7dTuv55HL/3PnZdfAknpkZIWssU/BGeaHforM0wUpxiaHwIpMALFLPNBpEoEIZN0lKR\ndrGAHzlmGguEWRFnYqLlDomNkasfR373GPzHz9MRM/DowxR2Phuz/y7etWMzVeFhRIawg/JrdgBg\nVN0CMYMU/ob600AVau99Gy3bbDcmd/0F3m9z1xO+UZLU5HJssosLqB6+YVy3LDw3GJ7nsYEibdC2\nHblug6kW0eNl1urrTFSHefjeB7nkuVdTbDv2HdiPcxBUS0zv3k771AqT0zUUHoIu38I4fCWxaYbV\nGt+TOOPwWiFz7TY/+O4Pmdg8yeTOc6huHQPtIY1iNU5ZbMPXv/lNXvKqV6FERLXss82X/Mtt9/GZ\nt/0lW9LLEWaZieLP8t19b8NlKwyVbqA2ucbv/sl/Y/dlI5SHE8aLRY7ORKytJ6ipKuHMMkVXod5K\nKXkpCzMJD9z5Q0oXe3w7nOTIfB2xYxudtMFFV04RjPs0Tw0R/PcP0PiZX2Dmge+R/OAdBL/1IJfv\neJjn7LmMuLOCv3M7nq95t+D/G+Ul55wTZ6tqOjDEGX0f8s8yCJmX22YuB798JZHCcnL+BAWp6MRp\nl2YLDKS6bLYhytr9u0773UPMnc07S2vRdV27ki35+/J2dVLmBUBIievm86XLSUpATroBnDJgwfcl\n2hYYG5VoGVAbrjG9ZRN33jqP1H7+vZkhjRyf+uD7ectXv0Zy9z14o1OcGq8wZByt2gTeisMrBwxT\nYXu5xsmFRbaMT3Lgth9SuLFAs9lCp20SL8C1V1jzxykXBO24RqgSVJAiZh8heSBi9JY6y68+gBqb\nhqmtuKjBsF/jj2+7mf/zmudDVeEp2UXdBcaAlApEzmFQuovPuBzBzlmOvcpJm+/o/bqKrjG1G9Ng\n0MBmLu/FKcWgIel2YHJ5M5/B1CjkxVjG2rwOBtenRUspidMIKwp4TrK2tMbUxDiTm2fQDlaXVzjv\nsgto1TusrCyjkrSfrchMNyWamS5HxeD5Xl5J6gzOZNzxlVvYcdOzeej+f+G9f/Eu1gXMtlosnZxn\nx4QhKAhEI+ZlP/kSNDE1EVA0Kccfn+db/+X/ohJsJwxbFF2Tdvs4WeJQbppGa5Hi6CTt2NKJ2shU\nkGqHtR1Sa4iWVilTRDkYr/p4gWV8bJxm7Vq+8+gJ5PQ4F2/eziXFMpftuoiLdyUQ+iyMNql88O08\ndt/v0bzy1eyrnc+sjBGPnOBUBOffcAULgSZrG/py9z9m/M8ahQXRlXIXQmwGFrvHTwHbBl63tXvs\nKcMN9n24+AoH4HU5CJFKUQRI43DtDseOPUFRFklMA7I8/eWU7CPoWmu0yDn3sAF2DeIIUm5w/XtG\nIOvV8UvZpf3m5KZe6JJTi3X/PdCVIOuCX74TSCXIsnyRFKuaUilv+e5sTFG8jKoc5qGHf0Bjvc7r\n3vXzHL3/Gi67cDfreg/rFioFxfE0IYoz6oUmw3FGKRhneXGRiXOmmYtSSi97NkfrHWqVEs35Zbyy\nR+gFGNfm0O+/G/lz/xWxo0AWeJRL08TFZ7M8OYVMishmhi2MEq8fIX6sTmv3T/BNF/PaoEASO6wI\nsCbL6cU9pqLKW7ZJ4QEO63r083yBd8GE/Foric1yWXgnwHMi164SOTdko4R7o7w6p1RLhDw9TdwT\n6PU8je22o/NQxC6P+aUEPElBFIkKPgcfuJ8LrrocJCzMrTNRmmNk2yhhCrXAJ/ICAuHhO0MSm+7f\nakmFQyV5iX6+p+QNcD2hKOzegV+o8M4/fBcf+8K3eP78TyDXLRfs3MFyp4OgwCYl0VLRWM5Y3N/i\ne1/4c1orUFwoYhdXccUmQ8NTtOsHuPHqV3Do+CxIQ2IN8/UZLttxCZn1mG1EdISgOBoQryvC9XVS\n6aHKMFYcIkrrXHDhKJXSOG7N0HIaIefZUQO3HuNEE9/6zC+FNFvLlFsFzhvbw/e/8Zes/sbruP76\nPayupjQTw/jh9bNe3P+ztQ9fA97QffwG4KsDx18rhAiEEDuBPcA9P/bTusSXzKYkWZz3IzAp2qWc\nOnoEExvCsI0xeRZhEDnvTbbUbshR/WshUQ9JH9ypes+NMX0ZsjPTaUKeHlaced65XB4NL9dN1FpS\nKHgMFcvUJie4+oZncdFzX4A/NMXH3/5nvOw//RzrnsUrCMYKjv2PPg7tmOGCZpuqEAyP0Oi0qeyc\nZL2VEgtYXOsw6hU5ZhxpeYL5xhodQqJ2zDM/+n5qqUV6Pr4q4LadQzGbY+zizRQdpMrD+QW09Eir\nRSqdYW5/5Bh3HjxGWiggSCEQXcBwoyp0EKztXYMe/2Dwuvc9ta7ZHMR0etWag6Sm3ujzHfqhncBT\nCt3VmRi81lrmBsE5B06BSjFOMTRURnkexLB7WwW/EOSNajDMnpjL9RuUwOm8klJJCDyNL1W/vqY3\nBzzlo5Rg19bdfPurX+PIzHFuvPFG1lttMmeJIvBUKf+/fU2cxZR8CYUYj0sQCwmrS8cxZglPeTg9\nytg2OLXyKMKfYXrbbnZN7yJetoiWh9QZSQaJLtEQoDOH8StUyxWUKZNFlnCkgKxp0kbCeiQZjjJ2\n1LYSroQYFInRVAuKwDq2+wUyKbh7YT/Llw+jVtushyFRQREIha4Wf+wy7M/xH/cCIcTnyIHC84UQ\nM0KIXwTeDbxACHEIuKn7HOfcPuALwOPAzcCv/bjMQ29Ym+UZBM+naDVubZGvfepDfPmzH+fhB/bR\nCteJmgmZs6TdidsTYrEDoiL9STbwr1lrcM6CBIfFZRnOWXR3xwukxqTZaWWzp016YfOFIV3eW4A8\nl5/HzXmsLH1Ag9IOX4MLNMPDJYTveNbl23nd7/8m77j5mzSHPMYExPOzBI06551/IXKtTZAl1A89\ngjOC9tAIE3VB27PY1XXW/ZQ73vEXjFSKtIQjsw5ihQg9fvT+X2Zt7zRkAhOuEVuJuem1rL75xVjp\nQbiElR0qyzHhdTvIjknEK5/FZ5dD3FILUwRMhpA276gkcmwgNwIGZE78ynEHdRo1uWccpB5gJ6oc\nmJUiNwo9XkNeLt712gBP6W6RWr5ge9dXKlCe7lPdXV73hBT5OWkzMlnA+Y5adRws1FdWWF+apRM2\nEAZKQjEyNYVTiszB1PRk7hkmCS6MKTuB0HkVaa/Gw6UJKrKMDVWZefgJWlnM8LjP1I4hKiMaqwwp\nliRO0UVFcaiErGSozgr7bvsASiwwMlHEFAWL7Vnu2vcVZuqPs/eynbz8JT/Jq37qai67/DyipTZ/\n+Kr38eiXZwhXDcKtU5MlpFGYOCT1fLLZU9zchvXlCLkcIguaC6YdmZQ0GxHtZkwzE7jI4dYtzQje\nF67yjsbnufv1eym8+BVk2xWqHhMrydL6OjOj/tksQ+AsjIJz7nXOuc3OOc85t9U59zHn3Ipz7vnO\nuT3OuZucc6sDr/8/nHPnOufOd87989n8EfmEUgRBETJHlizxtc//Dd+77WaOHDvK3NISSZL1Pv+0\nXX4Q+Br8nRdDbej/9Y7bgff1jple5+Qz0pWDO2K/FmBgQehuDYAQDmfy5iSSvOLPmYwwbPLMq5/J\nF//5IVZbLdZbK6hYkCiHPz7E7Q/dT5iljJ+7iYX1BsuPHaUBaKkYbzlc2KZZDJCJYfu2IkQhIqgS\nlAI6pk27vs72F70VjxA/y7C+QriEpCrQqU+oJVp64KB94S6UqCIuahCGQ6i5eb4wWSRKM4RWXdBW\ndmnNomtsT7fnZ2o4Dl7zQY2D3vX5VyXHe6/v6UacNgc2jFGfzKY2qiOdAOkJgkIB5SmKlSraQWwz\nipPbsS7A2oR7730IVfYZnx6mmw2FLsAphCCO042/rxtm90hV37r1FhaWl9iyZYoobuX4ibakLleK\nckJClmKcY2094Zt//SVkR7LcOIHLBMWCZml+kUpRUi2W2LzN4zWvfRFTW89ny/Qu4lAzPXkud91y\nP/MPNHjy9lUeuvkxlhYbHN13hOUTK3zjK7dRmG+zWPYodhSekRyebxBkoEZKqLFh2kJxb9Pjq8dT\n/ubYYR4frVPeUYNb5ih86ncpzqesVwLWXEy5Mkzinz1S8LRhNCI1UdikbDLe+da3sbKwQCMKibI2\no5tWiWOHrzOEPV0Io0eRlVL2CS6529/VfZSiL/d2urRZnkbzZJ5hsFhktpGrt2fQrpVS3VqKDcOR\nmAStdJdclWsNZDiscihfs3V6M/vSFWL/MM977Z9RGxqjFRrqK7NUt0xzwbOvJ3YKnVlqChovv4FT\n99zP9KUJ908HiBSUyah2BNt+6VdZTX+VlaBD2OowVZvi5PYOWbqNsqizLpsMUaI5u4RfrZGEMZ5R\npMeWUFNbKK4u0twa4U2F8P5Xkb71gzx2As4blVyUrVEsVfuUZQNIrZCmuzB7aUOZ4y7WWvSARNvp\nBrTbrUrm5CZnNhrV6G4xWO5xbdQ/9D0zIbq8qK4R6E4NIxyB1viexinIRIwyGlHUrM0t4ZcLjEyV\nUUKyvHSKneeMo4RFOrmRglQKkCgnsd2u2MicD6EEpJkkIuKaZ1/PwtIsjbUTODPG0HCNVHogBdqB\nUCCMQVvB2ncf5+Rd99PRTfRagWhohqSjKBViKrVxrrjsStZWMv7m459m702vYfXUHFmywvGlI3RO\nzIGpIIhYXlxh82SVZtSiccsPWDt+nOPHT3JgxyZmf/mncH4NUV7AxS20rGGPH8D+8bso7z6Jfesf\nk523Be/QvbS/8GXKm75Dp3UDyfAINCKyuMPsVIqzkrMFGp8eegrkCkK+Fvzg9ls48MQ9zMzvZ3V1\nlYJXwNMy7yLERk3/4BjcjXrYwYbX0G2yesau5VzXozC2L32+ITmaDyn0aZ5B/r6NnbHnXWBzfcl8\nojmkFniZ4w/e8Udc8Nxr+f0/+gSF2hCJbVEsCC7duZOjJ0+yNLNKR0FsLOMI5g8d4oJnXILRHvNr\nMWlqSFyIwbFSbJFkMb7zCPBYWFymYAVJOaahigQNQRJn2NESaaOOLlRIbUiwuohnDPH9TyBdQDuY\novTsN2D8Gq19j/DR+x7sKzILSc7IFKd7XNb0/n+LZAMjOPP6O5d7Zr2UZO/coMd1xgXuv6ZnXJw8\nIzSRG0CklBIjEjxdRCuHRVGuFKkWfXzAeAmbprYgrMOXDht3AUyXS8L39By01qger6Jr3ALdle/L\nOlx8+RV8/KOfYHxyMs+HK9tlqqZ5zYcUZB3DHV/8JyJvAZNFFKsVUjQycGw/bwcvfPkrcGiOH1/g\na9/4KsvRCdp2gVZnjokhQdGXZA3H0YMn6YQLPHlgPyeP7kNrjV/0UTahtP8k46M5ZiL23Ukw7mHL\nDlHL8IbPI7rnCaw/gvAc4vzLUXt203nmi0ifO0KhvYI3OYTaugnncj7P2Y6nhVFwDmS6xN/+77/P\nB97zxzRbEVEnJeksMXd8H/ffezedtiFJB43BBp3WGYtw5CXNUvRBL9NFzjcmca9KUiFkrk7khMOX\neXm10/K0ydsD2E4DFuWG8IcWMk+jqrzSzvMUFTTVFDou4/3f+zJ3PPQE5U0FhktFlCyQhCGLGVSG\nxxjdOQHKEniCoGO4+uprac23WKzP4dcU4eocc8fmqA1pshY0CxpjI/AEXrHCWhhSbkWMrq6SVjSu\nLChECjE0ipe1UctDZJt3kI2ViV/9ExSHJxCLGeFVL0M9eQzvGbson3cBamo7S8kKLtEY5eVxfle0\nRiuF56u8YAnVx24cuTvtqbyzVRc5xMlcG0EKhZAqNxBKYMnBXKUUSnoI6fcl16SUudAFoLuycEp2\nVZmAQi/u93wKNgBpKHkBBQ2UioiiTyYcgcm9Nl2uoAUE0hGlEdpapHQUPY/UOXQXlyoKCIzFx5CS\nkCWKSq3M8NZp/uw97+W+Hz0Anuh6ooKkE1IyIKOUY/cc5cT+Awjr8NJR1tciPB/+6H3v5sWv+H2O\nL47yjZNLXPC21/L2Q18knVlk9yW7GNm5icgcp72esr58hKsu2UFz9jCN9gmyZInJTYpUGbyxDi98\n2RtI981Q2CzYdt3ziP/6cXj4IdTQNuR7n4/6xteJvQ62FZK0Gniv+Tm8cgknE6LUcPzoMVqJoig1\nfnZW0B7wNDEKUsB3vvQP7HvkXpIolwvDJkibIXVGFLbptNpkWfKUzEJvwZoeh717XtmcGyDF6c1L\ngNMKck5nP7qneBRnsiN7O0+vTVo/kyEgcYaIjFhBwfO5v9NmcmSSxZkZGp0OXiwpV8rEZHTqTSq+\nj8ggNY6srDm0NMtifZ2CyTUWmu2McyfGMUtLrC+2UShSI1lMEpo6ozA6zMLCSWKhsL4gkhY7VETE\nCXFHYKZKiG/8FRkGEYa01tvI+AjVOz9CMnUeWXWI+Pu38uF77qNWKJEUFAXhoexGhsXBaTjMIK7Q\nA3nzkIBud6sB3KV30QarXQc8r14YCBte2uD507w06XAmxZmNNLEEtMzLn4VwuK4SldYaXymOnTxB\nEAS5Vobodsju6mN6SLwBAdqAAmkWsrbWZGrrJOtxknun0hJnjoKAEydOELmM2MKRu5+gHq50tTMz\n0rjOr/72m8Er0mj7ZFNFnv/br2DyxvM4VvQIl4/QCJcYGR7HCElWqHAqXePU8gzOt1QrRZJ0mWqt\nQJSs8cKf+WmELmN+uEjitZkpDxOIEexv/hX+eEAsHWmjDWHSbQikiRONrEzDUBnfBOw78CSClLgT\not3ZhQ696/r/+5ibOcLnP/JZZtZWiFYiMCHOZd1YsEzSbrK4OE/mApI067uBuadg+iFCDwNwQGSz\nPoq+gQPkfRTPBCaNMXkPCWP7BmRQ1nwQQHPOdeWbNlxdrfMdyusKkGrfwyrB2IpGLMxy7nOvxQs8\nXEGylGasS0lzcY6VmVWE0qwheazT4dKJaaYv38Wc9Gk2Qqq1SX70l58mHZuA7ROs6DYePqVgmHYj\nJW3HJNNTNEUFuRDBd/dhlMAJiTcF/uwh/M42CAqIUUExa+Lf9X3ae9+KLPtkq4dxr/w5nnj8ELfr\nzTgXYmSK7mUbun0mhVanXQcpJUIrPKlOMxa9tGHOCdloA5j3tBCYnhER5OpLmcnDESE3pPW7Pz3Z\ntv6PkqhuPQSZwXOgkfhaUbAGhaAoNUpKSqUSiTFs37kD5SxRlqKFxlpHJ40xUuHJjftPdy512oaF\n+SXiRopnfKZ3bMelmsX9Hdptw67zzoeCpjQc8NkPv4fUNei0883oF9/8JjZN7OHUkZAfHP86L/jT\nVzJx/g6iTDBuFHt2TyO0ZN8jTzA2bdk8VUaPBMyf6jA6WiLZ1Mm/TyT82Yf/nK03PJOs6nHZks5l\nP3xF+o6rCd7+G4SJgP0rlEQAKx1iY9Eth4pjrD8GpSnMcouk1WDNeAS1Mmv+6ZvbvzeeFkYhChM6\npk3SjJC+7d8kYx1YiQwCUpMRhlH/Pb0JJ6XG2jz11fMABOAVgnxHt7arzUd/EcPGrmU4PZPRO+cG\ngMbejtk731OUlm7js7RUpFFMID3mj59i/uAcxc0el125g7Wji9SqRaJOm1JiWPvufVx/7bW4chGn\nHZmwFD2f+XqbJ5oNxNIqaniY1IfaC67j4D1HaK93SDoexxvLaK1JWYREU1pcQJUewt57N0P7Wnh+\nDTuioSWxmyrEr34pHh2KGYQVh3jJr2DKHYT2kHEVEyeIIcnNj+2jHnhsMhqrc3d+MJNwWhZBbLj4\nGwYgBxaloP/8TKM66HT1z5OzJ8/0IvopUQaMQ06s7OM4Jo37rEhPKqJOhDFpX60pf6zwlO7fU2NM\nrs/Qa3ZrejUZedp0bFOJ408uYiLLyPgIzbWE1EhUACJVhAYWD61QzGoo6VNQAcqLufZ5VzE2NMp3\nHryPl7zx9UinENrHcwJ3vE09kuzcPkbDhIyNbGVy+07U+duQicMVQyrK5/wLz+WVb3gNi2lINRWU\nXMLU5C5kZpHFEmKsSfyz1+f1OJGB2KJVHoZlcQiqgok1pQMLMFkgZZhCB5781p00Wu2zXo9Pi+xD\nlmV0WhHSOrCdruZhPtlc1iQoDePLAj4C08UOcg9BkSQJnudjZe4O9idXT5n4tFRXV+5NedCVLc+L\nb3oGII8dAUyXUPUUl1fmfRyVAJOleZFKV4bNKxRJJTSzmE0vuorZu7/KSqqYvPEVrLRbZBnMewt8\n6S/fS3i9Zb09S6bHiGJLZzigoRSVss+Rox1W9TLlYQ+/PEl24Xay1SauPYcpDLN+4gDu0Aj159Qh\n2wznXkrlwCnieyFqzqMTAyNlsvERgq0t0iQka6/hTW4le9cbEJ/4Aj4h2QUJY8VdrCQ/hzp1Mx9e\nrfFfysMMmxJGZtCTJ3MbaUHVy/FpCWlOSxe93d+J/oLsXbtcGq9Lc+57bDkrUnYFX9Isy4MHkWeK\nco3G3v3IK1RVF0OSSpEmMark5RWT1qICSdYKc+5JwUNYCBCkvsil/x0YIShJSGQXLCSv5cisRVpH\naB2zjx5g8zl7GNmS8eT+Y4xv20FhRLKrasjWO4RVRdxskhU9fuJtb2Z93zrPe8Hz+OdPvo87vnob\nS1s38VO/+1oONtZZFeACR7EJlXuW+d6D+xjzLdddcSHNpcPc8JwrOeEdZ3VCULh5P2/7kzcydv4e\nsjXYzCRtk7J79ySWFsO3rbNy41H87GKUbJAsGYKtm+m027h2BE3QtQIuK6PvuY/oLz6K+PJncDe/\nm/AVTcRzA9rp/2KeAoAjw4oM09URdCKvNciEJQ1XaUcRWZbkrr7M+yRY20sRWjAWZ3J0vJ9F6AGR\ndD0DY5HdnhEWSWpNv3lrXpHnTnNbBz0GQQ5c9ndE4zb0BoTpFm9Jmot1gqEKx7+3j06wiZgJMI6g\nVERUy1SKWznwra9QkxIzNEZSKGKLGh1CmHnMGs1ocZjK5mGiNGHP2HYa9ZSUAJFUKQ+3SB5bYvTi\n7ZRajqCSElxVoxWVCa4oQ7UKyyuQGeSJo6Tr61grMK6CDWMq//T3bN5UZHTrEPrYo3RcjOdSzNYK\n8/uOck55K16gMTK/J4nMm9CqgRAKkV9DNyBeI8xGAdSZ40zCUy7V38USBqot+ypO5EVZovc9ziBt\nVyhWmFzOrstg1SKvoHXGoirF/j30pKBgFMrKfk8MpaASeAhpMNIirENpRdyKaDdDrADPrLN4eIZj\nh59AlS2+A6cNRufl5qpYpDbt85xffDGveefP0B4f4cnFFu+59YtMXvIssp0Fpi7YRJomJFLw5L2H\n2LxzjPrcGjOnjlIbqREmAV5ZEAwXiV52Hdf911+ltvc8srZHqVQlrSkK1SIuixkZrvC8pQw1fS7Z\no8cxcYwoKEwxxRcBUmh8aVFW42SMuOxCguEphg/fTzzng1fFSzWK+KzX4tPCKPT5Btg+uaV7Jt8h\nbMrhQ/tZWW2CFbjE5BPBdZWTyDMJvcyDUHkLtt7iDoTC8/wcDdd5jKvpya3nYVZPxDsAACAASURB\nVEXmct3B/HGP6pv/KJW7vlrmmoTWZUit8AOv621oUJqSyAg8za5nX8v3jz3K1Vddy7/c8wDH1+oc\nSR3H6xmrwO/ZNo/FDR741gOcnJ+lpQNSqyhkKU/uW2a4amk7RSwUM989gUjb1NM668KQTG6j/Mxn\nExTqtH2HTTzUP9YRH3gLra1DTJoqha2boeQY33kOslaiVPIZmqywZajI5vZRtsoGhbbkkmufz5Uq\nYfdzRtl2zUvYNVzmlSdP0Ko6fAOoEsVAA7lOopAgrEUBfv5f942q1Oo0gVd4KmhoTJp3irYbRKLc\na+gpSduNmgqxEdYpkff2EErmathdYNdXPtrLiWLFcrHreeTclNBlJCJ/nYdEZoZGlJGkuf6DT55x\nMoAsF/B9n/VGnf2HFzl++BCypFFCkwhYO7FAUvSINCipsanEDxRuWDL2rAK/86O/5p1HfoS6aRsn\ns4xTGpYin6U4ofyiPdz58H4Ko5Mov8zt37qZ1bljHDnxCPWvPoHePcGtz7uClqmw1EiYzWIK5Ygw\nbFKZ0hSrId7aGPrvv4/9p3m8H96JFD5ZO8EWU2xowWToBz8DSw2yiRDe/HoiuUDwG/+ZwvIytr2e\ni+Oc5XhaGAXY2DHOHDYzGBPTrq/SqHeI4nigjRpgs3x3Gcgo9EaPzZg5izP0JcsHX2cGKiN7bm9P\nQuzMmFq4QV5/3kCkD745SKzDeJKF2aPc9OqXgYRNey6kVi0zrcGUwTpJJ3KUK2Uq7ZDzt00TJA4b\ndZg/cpAg9RjxqlRL4CqS6k3bcJ0ipp1RGG9BJBmpFamnGeWVFKwjMAnuI1+jUukQskZRaMb1CMbG\nTOkKNa/A1OQ4I9UKo+dehOcEwzJibHIvp558CF+XqUxYKuMGLr0Es3+ets7y1Gtm8Tyvf03pFj71\nrgtwGjNx8PjG45warnsdr3pYwwAmM/j6MzNMPWwnMQlCqLx03XWxHpPjOXnxmuhvBp7K28nRFZGR\njn5qOkstylm0y5mVUkIYdti9ezeXXHYBF113NQhN2MUwKpPbkH6NkvJo2wypY26/+VH8gkQIy2qW\nIhdTtK+IAk0zg7CYkVDgB2st2sNlKsUKyysN0iRjpb7C8aVTrKYRaElB1Lk9sSzpmLVWRBIEdNYt\nBc+nUq4x4jfJhkPE9gn8bz+G8VNctUzayghKGrs2S3TZm7CbRtDsgwvPx13yAjIL4XCB9VOniKL0\nX19g/8p42hiFf2sIIREuY3XxOIvzi9SbIbHJJ0m/GYpz/TZoQmw0HRnkK2Q2b5oircPpLqHF2bzv\nYbcJa0/6vDcG8YR8ouZ1lnnxlsn7T3bDB2sTEi350dwRPvvX7+OiLVuQjZQrX/5cDniaBx85SCl2\n1EiJMNRiReU/PYd9f/UVVr0W4WSZbZfsodNqce7OESLhWHrrH3H4ofsQ51qsbeHFO9n8tj9g9vmv\np1aokmzX+MNFComjtnaYUFzKSBVU0VE2DSacYHh0iMsmapzjWbbIlOHMY1upyrayo5BJXvDSa6k8\ncisvFJJz/AqXzO3jSG2YktRIYtAekc36/AGnZa7k3DUOmaLfkGfjnnUB2TMIS6cVkcm8UbDgdI8C\ncn7ImeniXqrRuLzkXWY214DIDJg85JPGoUR+j5UFz+aNYwC0zvEirfOwRBuZZzCMxHOKcqlEtVol\nlC386igXPO9G1ushUWZpe22qEpaX2iRJRtt6XP3SS3jsyVM0hSKNfZpa04wT7r37CWbbIatacyyz\nnPjiXcyXR2hlTZZX2mjfQySCznILf9cW1vbN83h9iPd96r9z+1wJ5apQt5RHqiy7Bv5wwndKj1O5\n4RrkL24j/YO3E3hBHqoVNMVWjEk7+F+6n+DX34j35l8myg5R3P8wfidm7p4HKGzdQrR88qzX3NPG\nKNj+/T/d9eyNNI5ZX18njRLSzPZlxPpsODbCECG6ghyn8fLzfDsDca/opcIGdADkQC5+AzUfKAjq\nqwCJXCJdCHB5x6OCgBe/+IXMPHaYipB8+ZbbwDO4RNC8fA8FE+M73SVJJexWmit//VVUmxmlBIZk\nkeEtYywXDNWO4fde+ELSt/817T/5FEN6lDiaof2aX8HzBYnnM2bHqHgBXlmxzdQIrrmM4r6Q0tI6\n2fIi6IjhAPy8Zy3DUjMqJTXtGAlKVKOEdliievhe7vzgr7Dj2VdSOXKML84+jk41ruDhpKTkextY\nStdbGqwpGUwdDh4DTgvjesfzjIXqZ3SEG2BA2tONcn9+2C5tmY0Cpl5ti0mzHFPo0qqdc8Rpkt/z\nLN8McLY7B/JsRyodqYAU2zUWGqEFgfawscXXOTnLL0iCQhljobW2QlCSZE7Szix6epROCocePoCu\nCmKXsf3y8zCBR5pCYiTy8vOYq0jWG2s0myGJSPP/BUE4tglVGcEeivF+dCffCxeZHfKpk9LWjolK\nQMUrcbBxkHprCE+FxBUfu38O0WqiI0mkWnjT55E2V7FHj9A83sGrbKf++MOYtMNQJFFZi03jg4oG\n//44K+Wl/7eHkNpJXcyLZLp8gtPOY3GixtCWC3jRS1/Crh1bGBuv4CudK/RIiac10u9y1Hst2rv1\nCkpplMwbuQqb5917WYa+AehN6G6/Qkfepq3XbDU3PBohXV9XQAqVZ0wAZwWtdh01EfCDO+7nnPOH\nKF34LOrlUQ5JwYk046U1j9W1jGRYM5fBQrPD8FDAUNMRVjShTWhan2a7ScUrU7/mF2majPd9/O/4\nwH97H7ddtIvOT1/OJedsZ0VrSlEHWyhSyDKqnkc6JMmOzXLlV+5i/S0/hfYlKovw0QgFF8Wax8MG\n0yM1RAaJNVQSWC9LRrOQxSgm3TeDO2cr18RQrNdRTqCUJnXZUwDYwfCKLL9Oxm1UkILMqxtlrlJV\n9CSpUPgK0lASkBIWPbKkkLdv0yGloiZJMnwlcSpDOR9FlsuvJZZCUEFom9/PyRoytWgliZO0yw9x\n+AiiLEMjCBPDeMGnJXKg0mV5uCOkwRmJFlBQsJpljHgei0lGKA0FJzmYSjZ5igcfWGbP+eOImmMu\njMF5JFoglSW1GjzHsnFEUhKmloXUMHOqTlAdpyNhpQ3P+O0/JGyGyOIW4uYBdG2aB3/rl3CuQvNj\nt1DkK/i//THqf/B9tldu57ff+U5WVgx/8e6/o/365+BvHUciSWhjq8MUDs0TxbMEoogu7SBstSke\naWNqj5Ne+Ux0p0Yy+89c/uKfJCxqlBfw2LA+K+Wlp42n0BtneggbRKOMLGnTCjtkxmFNXjxjRTc8\n6PIUrM0JSE/hHHQNTS+19ZS8eLcg519j2PV5DHKjCKvPne++T2lLPZOc2v8QsSwzf+pxNk+OI4Wh\n1GVn33X3/UwPabxOgo9Flop0IkUUSJCgrGTMg+lSlWpR0ml2uOTyK5ifOclvvuVNbP/7H7KtvIUF\npzEuo7W0SkHC9nJASabsmO+wfecmktkVCvUQXyYM6QIVoag6yQoJaatFkFk8YxnOpWwgjViVHjva\nJXZcdzFq9hgLIiEIApwxhF226JnXY/Ae5dmiDcwmN7Q5EGydQGpBZhK0hePHTxIUM0yhhLJrTNck\nmzd7eAVH2GzgF6qESZzrFTpJJhVZnKB9hcWQ2m5BU5wbqqwbPggHNnOEicUXGk9Aregz22xiESjj\nCDwIFDgDkgxfC4QVBAoOPTlPwdME0kN4ktGiynvDWJ/FxSdRVnTb7QmszpvaOpnR6hha1rFwso61\nlo7wKE2M0FAZzdSRSQfSR2SWpFVHqWHmSlU6RQ8rNHznm4Rv+SXc3FGoDnHi29/jDx6Z40/vOUb4\n8BG8J39EUpKkXgnr+RSzDubuRxg+skQs67Rjh6ookmfthqlnMpxKzMJdVLyAdmLxlKag/xcEGv/t\n0ZURlylptMb8/Dz1RpsMm7NnZR7fMpAe68u5W/oeQE/nr+fOwlMFWazIsxKCgVTkgKHIy2i7jXBd\n3kPEWItTICOPYKLAshhn0wUTJOluloFAZozKlAuF4OIrruJXNr2I9bKmk+XqxCfqCSc8wbywpEZS\nAUYKMB4tk4YR1dom5o8cpzla4j3vfRfhVf+RUg2mtKAyVGZLUVAMYEfNZ8tEwItO1Xn+ZXu5dqLM\nmDFM2rzYaiITJEXJju1TaF9SwSBISGqCLarIntSgJhWVdsbd/3griafptGOEl7MG++HDQDgw+HxQ\nsNV1S689qboGutsGL/OwXsZQucThgwf4tV/+HT53+wP80a3f5E8/8wne8zcf4fuPH+HkqUcQSjJa\nGycR66Rpzi2YHq9hsohAa4RweKntN9D1fY12FhPGaAsuTTFW0UgiRmtViiYXR7UGtLN4nqTseRgD\nShqGMkF5aBOrcwYtBY893qTYNgjPsfsKj1NNyUKcYKwiLUoaiaFtNSvrLVJfMOkUF4uANIyoNyKO\nLq3QanVIjcBrrFHMJpHWEbdj9EjAwe2byYylU6gTvO5n8IPzaehx1Jt3E3zo83RMG29LBbt5G8XP\nfJLyJ9dxjVnQmjhWBC/YgfnM/wZuBOkM8vbPUeE2SqWEJNmG+a0/RF38TIrDjpIJkKciznY8jY1C\nb2fqPnUSk2a0G02iKMJgcNZ2KbQul2jr1T2ovMOQc24AGt+oyQee4i3k35WLwPZaoQ1iC72FYO3p\n53uLoRlkuJ1buemlN7G1MskvveEnKSYxvgioBAqxOs+ygMt3XEQwk9AuQk1Ihms+rMQ4KwmVII0T\nnLB4rTbtms/c0gpb9+zCa2Zo2eE55z4XvwUaw6aRCsUsYUhBycKVWnFtO+UZ11/FcLODEx6ezsMv\nrQW1GKasopI5lO9REX7O/cCwJjVxarHAG//LmxkaHyXO0rwE2uYZhDwsyEuNsRtKTcJZcKYv/tq7\nNj2VLKzLwywJnoH5TcN88tNfY/pZVzD5xtex66dfzcjPvp6b3vZWHj58gNvuup/7nniYO753J5PD\n29myZZrJ0THC9TqBp7v4kcCkWZ+XgMvDFD8oIqUkEuCZkEwY6ustZpcbHJhZ5965JvuOr5GZiCgK\nc25LloeRhQKUS4ooSfFViWYYkrZCmo2Q3Xu3IDyH1RClYOKETBsqfhlEQnYyZPard+KEYi1qo+UI\nngsIViNEs8ny2DRREWpeiWk/gEkfCjHOGHjlc7rzVmCqYCYnMJsqpMIhr9hF+I0P0V5ewn/gcart\nGi5pEX7kH8CbgFMNij88Qjx6LekdH6LRaNPuzFIdG2FqbIg1vUakEgqbC2e98n6sTyGE+DvgZcCi\n21Bzfg/wciABngR+3jm3LoTYATwBHOi+/W7n3Jt//J/Ry01J3GnCHqJ7LmemZVGThZkjrOzYybad\nmyhVCljrch6B2wC8sizD91SXJJNLe0sLRjkcFol+ykKXIq967FkhOWBPBtH0YCCmds6AUxibMr8W\nMb1rnGUtEMeXaCA5NXMCMTZJ5hfYcg4spZY3fXiVO9/wt9R/75NMuP9MRELB19TXY4KqYKQTMRrF\nTESjxLN19rlH2P6nv86Ro/NMXFHmra//Jd6ztoR3zjhjcUJQKlIB9q6m7L33KMUswboKqV9khxC4\nbszdsSkXeJoZk+AJg0wyFJa90iN2gnWR4WlNKZMsjefGIRgp4ieGrKfERB5WnUnw6j3OMZze9SFv\n9mIcQjnSzGI2DfHocpMfHD7JRR96Dwf/4Q4aoeDJUzNM7N7M5794C6/9nbdwUSAxMqa6bnn81GHC\n6FHqq3fz0xdfzorLKGZdCfkkRWmPUqABQSZSPBODkrQXV/n6j+6j2fapj0/SnBrCzkScPFWntbrO\nhVtH2DPts3vvNJXMsGeqglFNssDDJZLdOzWz7RYrVpKMBsTWoygEiXSkqWVbQZEksOjaCFWmtX+R\n2otv4rAyFP0ibj1i8Td/igs/+y2a98ww9zMv4soP7SMb28bwJp/CjTfg2jHpyirJVh8vMxjVRt5/\nFLN9M4VZQbxtBHtFFT/eghtPSD/5AbJnXYPORjHf/CCdX385XugT3fUj5O++muSNtxJ89O24lYM0\n/vzTjE0PMdKo0o4aJMUQODtJtrPxFP4eeNEZx24FLnbOXQocBN42cO5J59zl3Z+zMAj5OBNLGDye\nTzILIqO+vkqr3sJkuSy76U7QXil1DxS0/eODmQ1OE0/p/R4EzHqhx5nEm34YYexGazSdvybLMqwy\ntNttXGiIfPAt7D1nG0YJFhLLUmTZagRClVgptnn55NU88Wefppg4jAejfkASpyxnKb7vUy5XCdOM\nLE7orK2xeuoExbrD7bVMHEhRniAoKWoWtmUwPl9HehWwVUw9RktBkEFBWrzM4TkHmaHs+dTQ+EhK\nvo+vBG1pKUhJLTVYD8bXE0SU4tXKKCnRbuM6nmkIemShflt7m/Wvm3WuD9YG5SJ3P3mME1GbS2+8\nhrDmce6Nl/Ldd3+Yn553VG95iGt/4gbW5le58/YjtFPJisnIqhO4WpG03iJzFq9QxLicf6BFNxdk\n6DNXW6ni4Nwa//S127n3Rw+xWNH4546xacswak+FyfOrjO4Y4fhQmW+dXOAT9xzkk/cd5J/2zXI0\n0qQmoCg16+tLKFnALxZQokygHWVtEZmgVMxIW4allYjAKyASsJvKHJ1MiYyjExpWhwrEiylrD2Yc\n/sO3M7c7YWHPpWyqKVZWPNJWSuwlyKlhfOtwrQRWVxHDZWQnQkxVCZIG5b0XwP5Z5FUXIq64Cokg\n9dpIozE7byTduRVTncab1wgL7dTglhcI9hZw8yfIFGgFUdg626V4VnJs3wdWzzj2bedc1n16N7lq\n8/+t4ci1CvIuTxvlyznKnU885SxZa5lDRw7RbjRJYtvvBeC63YfSNF9UvqdxNkXI7q4PYHKPQOD6\nYORgN2ToNpjtYhSeVBs03C5m0etNkGKRTuO0oObXGL54L8fvu40Yy9jwCN+45Q7mnMN4AVGYEc+1\nWUlT1KTPpefs5onDj/MKuZ3kc3cQBo57P/GPtGzK8djHSEtBGMq0ec6VeykXPZbm9jO0qUjl3IzF\nf7yFrcKyw/psAS5+aJGRyOJXKtSzDh2VIrWlpvOwQruMUeXT9hTDCQRAyWSkzrHWWoIHfwDS4HyF\nh6Vc8NjrW0ojRdrNjCTvhpeXo3cNb57m66YRHWilMNaiEegeJpM5EhNyz0MPcfsjj7D3qkvYe9F5\nSCk5T8LuLeO88d1vonZljd+8YhMHF49zcluN+554hFAIEq3plEO2TRa441MPUC95RKHFmygQCwFO\nk2QxWgn27z/IfQ8e457DJ/j6/Y8zH8P49c/m3BuvZlSWac+1aLVatLSgftU5JLs2s3DZxRyt7eKO\n5RofvGuBX/vQYT79hUeZLRmqxQkC0UaGllbDYduWkwfBuoSK9Di5WGe46rP/9v00Ali5qExDSsLY\n0HEZfpSy6ytf49jnHqA4fwdCGu55/mXYiy7nC1PrqCBGPvIEWeCITUZ6y60UHryNanwcWZ0i9AwF\nL8IoRdrJkHvX8N7+VhKhGD26hv8fJqjtfCUMC8q/sBWPReJdJUrDk8R7zsPNNtgdBURZjJuZoxRl\nnO34fwJT+AVgUItxpxDiISHEHUKI6/+tNwkh3iSEuE8IcV9vcjnkabv6oPPQ8xaUgvraIu0oJs3i\n/s7eVyF2G9JrZ6o0yTN2/97n9r6sVyNhTM6DcM71qyh7RqQPsnVrJXzPw0pHa73D3OFjlJVjS1Fz\n18P/wrJIWJZwKrPEJqFU0LRqipNPHiFQkuZSi/nf/Vt23X2czddcTpSBsx4pHmjF9NQYVz7rCool\nzTXPeS4ichQKJa674kKKOJSGSjOBKEYjEVGMJxSu5KOVJDBQ9jSByJF3X4B0OQagPcmEJxivTRAM\njVK1Cl/mgiipzPjm336ESrGAUaLLD3jK/etyNFy/w3ePkJR7FA6RGOqdhJWwxatf/cKuXF7GmBW5\nBoIvCOdXOagFVRfwl9lWHr/zh2z7+Vdx+5MrNHxNe20GvzzEzMklvFZGyZaYbdVpY2nFbYQW3PXI\nAU6llhMu4+ihE5QqNWzBpzpSI1tKMAksP/AIcrlD23pETtJJFdYOk42UMOePkUyPkbUdn/vig7zv\nAfgX0WaTP0TVs4hiSuNUh9JQXm9jrWXqnFHiUsLO6y/if1D35sGa3Wd95+e3neVd7357X9Rq7ZJt\nLV5kI+wY44QxGJgQFieDEwiVSSDBgEkFSID4D0ggpAhMDTGMh3jiFLjM5jjExshgGYvIlowkW7vU\n6m717dt3f/ez/Zb547zv7dsyEA2TStmnqqtvnffe95733HN+53m+z3fJ8kARKoJWyFCnYZfGs7uX\n0S36xF/3HeQ+Ie80+FBYI7rpBkoVQbODyBV6XJG+/gbyT/42vaeepdp9mnT7Er1/9Q8Rn3s/ZlyS\n9/Yodns0fMqut+R/dIX8sY/SEHP4IpD/1/ez+LZvIq/ApxENKzi3do5mK6V5+y1s+P9Ji4IQ4scB\nC3xoumsdOBFCeDXwQ8B/EkJ0/ryfDSG8P4Rwdwjh7hmhaEZ3+Yu2EAKhyhhuvcju1i5V6Sitp6pq\nCufBVmBmlzbLhriGj/EycHGGQ8ywAmPMfqrR7D20VNcch6CuHpQH30w5cqjFEw88TW/jAhd3zvG9\n7/1RFkWCKUuQhpPH2nRxHEsFhJxYTFC6onnzMn/wv76H/D9/hsI2SMIEO4EhsHTqDHfc9Rrm0phW\nyyLxNLXmzffdyJlguH7bsvziHs04oRknDIdjmu0WO5T4qiSVYAg0gJYQNMuACoHY1fvCuMSNLCfP\n3M68kTQCNCtPS8R80z/8AfYyizjUIHZXz+fBcwZctaQLNZgYT8N1YqEYrDQ4fPsZvu1d38l6L+eo\nc9xDzJ1l4GzlWIwFh9OYQ6ZD5jWjZIuHb7oPff4SH/35+/m5H/8+mmdfz8C0WdvcxpYGM95mfm6F\nUPR58pkX+bVf/31+53c/yaXnthg8uYaPEuZWljl6++1s9UquVAVrxjJINM9tbNNvLpFtVowGBvuR\nZxm/51cQchFai4jXncCnkj/75LP89IfH/M0n98jamqaQrB7rUFQDEhFhg4YEZG/CKLJs7vUIGLLN\nES5IGlGMtBXOSOIfvhfzvvdReY94/I/xN1wPN92EdDH++utQg01kK0U+/HkaP/thor/2LmQnYJ/9\nNK3eLpx+C+poi3g34DNH8dx/o31khcaHf5Tyzr9Drkdo0UCufZLBfd+I/PXfQy0fYSyHpKfOUuUV\nw4nj9OlXTl76Ky8KQoh3UwOQ7wrTOy6EUIQQdqZfP0INQt7w//W9/dUQ+i97beYIvLO1zTjL901R\npse0Dw5af9WIRU7JSVdHiwd6Ynlg/DjrFZzf5z/MeA8zJt++r6APVMFTTDK2+n2sLchcRTYwmLnr\nyFzBMMBgOORIK2CFAaEIw4B1OVm/x3NPPcpKtMhNx86y+TO/ztJmj6aQdGNHKOHut72R5ZUWhXZI\nDEJLjHI4K0mBMMqJc4eZiYWMrjkcRpKoOsjFAC2j0Uzt03WdieW9x5mIoDwlgeAdynuE8xQRiKoi\nAlRjjn2X/hlb9GWjXA4QmYqqIoha3n7o5CqPP/kE3VTQSMFECpRDG8+qUnStZ6XThNSTa8ltnVM8\nsn6O93Q7LKxdZPm+b+ZSgIGtcBK+9PnHsMqgJoEnH/okjz79Aj0Vcdvb76NMNc/0rhDfeBx/cgV1\n/XFW7ridyXKb3XbE1lKH1mtuoSwtTR/RHk9IBiPUvCTkJRQRRSbhjlO4ymM391j/0x0+vj1hJarV\nmbKp8ZKpg3TAdBcIkaLZaUMFRhrSyJIFSKKYuW6TwV5txJL2NhFBMuomVI+v4a3HCIV95lnKfIfw\njd+AzUqcG2EaN+HOP0vxr3+WbPUE47ULFFcuILb6uM4q+QtPMpr/LuL7/wS/MSC9/nWk7/sFwvA0\n/o9+B9VVhHFAzs0jOgkNL7n8zMVXfP/9lRYFIcRfB34U+KYQwuTA/mVR55gjhLiOOgzm3Ct5zzAt\nO+unuMQzo74KDi4OnoAKnueefZq9nUlt/S4CQqgD1mAS7wJC1lTafTswal+AEAJ+2nbMAMkZC7LW\n7IcpjdnvVwv7xzlNptJBUCqBkRqRJoy2NviW7/8hLr20QRJKjPCMxjC/usjlzSuUecFQC0YpHDpz\nnJe2+1x/5hQnbj3NmRPHufsbv5mdN34nN0QppgRt4c6/+05spyLbK9CRoiFjquBJjMevD1gZWOZ0\nRBQLqmxMRxuCt+g0pYEAb2m6+obX3qMLR1K52pdQahoRtJSklBUJCi0DzVjS8iUu0rSFJupapMyv\n+lJcex3sn2/rK1C+tjsbW+ZOHaN3fo233nMnO8EjTESJx6mAkfXotRMkjapiodfnQjdip9rh+JFT\nuMk2D/6H9zI8di/Pro3JrlTcvHyG9/6jH+fcnz3M9oVzqNU2nDrMG9799czfcpLNYkA3StGrhzGl\nxErNrtZcGBXsnR/ROH4G1V0knu/Qawg2j0iG77iD8o4z6GGOGg4R/SHIedRII65M4PMX+H9+7TLf\n/YWCdJixGDcQSpAJj1WecyowuDIBqdjbHhA3YjZ+9lepFMSxYTdMMKeWGXdK1Mefwj7/h/BSB/uD\n3wqtjEqnrB45gfiZf4F9bpnwLz+CbB+uvUCOnsY+sYz61Atw5i6ac4eJn38E+bEPEd3/UaKhoHg+\nge97N5vr5+jbu+i0uviv+z5az8OhZYlKIoorPWQTFs+88ij6v2oYzC8DbeCTU/zgV6bffh/wuBDi\nUeAjwD8IBzIh/pLfAgf59LJ2FK4JMjDLO5wBkEJ7JoNdxnt9qpIa8BNc0yYoeVXXEKbgoJpOHFBX\n8yOdDfv4wWy+TjhIxJmOH6cCID2DKJTEeMdONqG9usTa2g6umXB59wJxFSG9YKXj8C7QW9vCtw0m\nE0yUIGjLqL+HDwV765sMqwkdW3LjDTdQPXWBsVHkw5K8o/BOIk0gaXQoF45DcQAAIABJREFUXUk+\nGuGjhKPjQKhKTBzVdmlVgEgTSrDeYrxH+lpQGAdPV0qaTU2QDqIIoT021ISe1EeEqkSjkBaMiGrT\nGGlpmIhKxfWU54DX4j4ZfbowaGkQLkIEiY4NL12+xKnrjpKFsG+82kIgJFS6tmBTztNEMj/fZZxt\nU6kI63Lmm0fYKl7kH3e63GIbVHbE9pU+q515fvGX/hNl31Es3sYdb7kPO7G4KxPmfJPW0UPk3tK0\nBlcGhkJiVcyFyYBx0mGgDFWikc0uwStc06LuuR0/AjdxgEA7gUfDzjpy7zJ6bUTxuV0+tGnZHlSE\nylOKwCRXqOCJOimlFYi2Yvy5Phf/3S8wP5SEyRAzXK8FVr3A5I6j8O9+iWZzgrA7CL2E7m+T71jU\nq49Tlm3ScxVpyKmyDThxCCEbuN//L0RKM15/guL8JfzFz2NXl9CtNuniIi1/BDEZYOY0u5MrpPOC\nPd2keXoZEXLmVuZQViLdnz/d+3Pvxq8M7YMJMp6DfTGM3yfC1ABirZSsBUwKGyLmD5/g5ttfy71f\ney9HDy3RSA2NRrrfPqipSYdUNXSulKoXntmTf1byTvfNEon2+2V1FZtACvSUnXdN2AmeUTOlXFrA\n7u7iD89xREc8+OBjNG89SdaZ48GP3M/r3vE6MpWSBIm9ss7JrZL/+CO/TNsn3HznLaytb9BpNLHC\n8shnH0HeeoZv/79+jAXlefXlMTGaylc0TEqeDemZBp2ixLqKJEkosrw+Z2lEmVsmdyyCqeXiSMFC\n5rG7OXEOrrA0hObi0QjRVORlrYSkcqiGmXI2al/ApPIMxhOKZ7ahqVFhZuh61Qh3JgqTOqWoMk6c\nPcHepM9ct4UMigJXKxaFZLQ1QiwkhEQQwpR2jCYjgAm0nGB1pyAJloktMVLx+UbKeuZ4TWT42b/3\n49z8LV9LOHuKiJSok6K9YlsUmNNH2fSO7GKPLJIMWgtsD0oGL/WoApiNnJH32LuOMywlvvKI7SF+\nu4fPmpgXXsK+8HlC+xBx4ySlF4RsEy5b9OMfwp08hHnnN/DT338POm3WAHQl2DSC53PBpCpYf7TH\n0TtW+ZONPguppNcyqJ5nQiAeWZJ/8z3sfO9PotUp5FyBKyvCR/+Y5s1HUe4Feh9ehl94C/z7n0df\n+AKLP/DP2PnuTyN/8Gso77gOygzt29gXHyM9sUpmWrTGpyi+TRB+8Vm4JUFeuEx8BO44uUhx5BTe\nwqLSuEHG/SfSrz7tg9hXMEoCs5tvaoQi6pbCCYNpzHH6+ls5efpU7dara5JTbdN2QO584L0PGn/M\n0PLZNgMjXz6Drw9lKseeRYxNcYvafkwyLDKM0UxUwHjFTpbh4oii2+HJieUtb3sr82mDrg8YHYg7\nTZqLHcaDAY0kodXtoISn224yGAxY7s7T++wzLOagg0QTKEWYmspWBC9q1yFVA51lWSKmVmdS1CYz\nQUJRlURKEjlI+wV6M0eWEcFrglCUTYMjkKYpsdYYrcEHjKr5bJaAClCJQBkOIte1N8LBTAbnHFle\nUoRAYR1zC10QisJ6tAc1XdsXu20akSFxiqZVU5J0IJUC7zxeCSaJJpeC5nwbH0fkF1+koxzDbMiZ\nN9xKevQ40mhkEuFFg4GydA4vYxA0hMbpQGUkVoB1EMeClpbEw0A8lpR5RSgq/GCEdQKvBTJofOUg\nGyDzPdz2OYQFhILQJ4zHhM1nKB+/yJ/u9qlERhwrdtYnaCdwvmISNCv3rHIp9GltZ9jcEuUw2NrB\nS0Ge7ZF9y98GkxIONfAYXAzmja9iPL9A/t7/HfH196AHuzQWV/F+ia0//RfY+zqEIyDXMuRGQGkL\nC3MEvUJrT+F2P4cNYH/pA8SJgJ7Fb2Uw38KWFdpokJ5o8X9gluT/zO0gyxAkiJm5x/RrldBZOs1d\nb3ord73hDZw6fZQ0VjB9mtvZGNK6OoFIUmdHhqvWafutgBQ4MfVGsLbW6s+s3qYX+mybcRNeTol2\nWjGYZChn2Vi7iA2Ws2lKdGgBtVexHCy2bfnY4zu8tLONqCQLzQ7+eJe2rdiNPDfeeD1BBiKpue66\nMzQOL3HfvW/iqQ/9N7qjQInFFTnBecrgQGtSUWMmUtbpx8oopFb4ylPqikg55onobOZ0LvUoB2OS\nZkwydTyaNCxOeqz1DPsDvPVEkaKpFGGc4V1FXDlcJDGjktCaLrKyvruluhrKI6VGKcP8QoezN58k\naShy57HARFuUEggtcDJQGAsBonGFLktMWaIIaBVYCZq0gnFDESrob40JGbx2+QgndMx232PuuIlw\npMnc0SXMQkp0rENyy2GKTkwvn+AnY8KRRWg1yKTDKRgDeqmJPLtEODXHaGTxQ4vKY7ABpTp4aQlL\nJ2DpVuRza8gHP4rc+CKmVLAa466/GbHyOvRLlo/+33tsPOdJthyNJEUqz0LbEBnJsF8SZx3at68Q\nJw0S75lfWqGDpJkuYe94O42qix/vosYWqVq4o4fpHD5KdfttRHN7tC7uMrnldaif/Pf4H/skzX9+\nJ9UDjxCe3kH8g5/BqIh2LydyMApjsrFHfewZEpcivvA53KtWOXLXGdTcMqkOEAWe2tjhUvFVlvsA\n12rn4dqx19V9iuWVwywsLBDFog5zjXX9tJx+lJnUubb3steo9mab9zXpaVY1zBaGl6cRHbR1f7mJ\niBCC4XjEdaevx5Y5my+cI9KaX/y1/8ip1VVyci4Gw0Bp7jjZ5tTSHBG1KMVqOHbyGP1RHxc8N11/\nljtfezeb56/gNnq4omB1IsiLAukDubcYY2oHpCBQog7ACTbgK1szO52riVei9jRsThxqd0IaJG2d\nYkWFiCu88jSNRkiPFpJGnBCZ2m5OBK56J1Se3FuixEBpr2F4OmeptRB1S4UXzHWb7G5vEUSg4cBW\nJSLL67wGUXsZGAHCeuLKcVxoulX9vs3KUxY5UkHhSyadiGbape8LGl5QZRPWej38RLF63XWorGLY\n28MDyoFwMBmNyQcjCgFBa4RRJG1BMt+iSqHXLsg6NbdEBoktSoStbeeNigjtCL14CisD2gaM38EP\nJuAnqOM3IFZfRVhOYUvyxAubFErSmVOgLVJAQ1q6cYRYEBAkhXd1cBASaySTxQhrBJOuJaiIohuI\nNkvE+SEjWRH/ygdRqxGj4YRm6xjiSkXzJ96L+8AnkcdWCJ1DOIYYNWaSKkYNgVjokp44jLzYJ/+a\nb0Yv38WJpSVOHFnFOE+SRkgnOHRoiUb8VZb7wPRJ7Jm2CWKWWOzqNkLWrHslE/b6l3nuuS+ytd5j\n1C8Y9keEqiQrsikAJigrTwi1QeisLZAHnJm1kGg/ZToezBcAvBDToJerAagzY5XZSHLWZsxFCZkt\ncRW86d43U10c8jff/bepsBzptDkrYT0bcrgVYXRMmRgmkUBNLK9619dz6+JhQpVz9oYTPPL4I3zH\nt38bt776XgCci9BXCiaZYF4ayrJEFTAejnBWEEUJiICMFbZyKAlVVbF0+ijmwgi1NiZJEiId45Qk\njSJKAk1pWVMFMQod1aBgEID1FCJQVhUJgrQRoQtPSBPSuIUKIIPEe8BFeDTOFZi4gW5qso4kXZzH\n20AXyckyYj5pEjmI0FOj19rXQXRiRkVBh4jlwpPmjkblEVVFVxlsKsm6nqZwrE369BAw3+SWt9+J\nGVmazRbWG1QcELmnVdS8kTJQS62DJLEgjcEspOxVgpEx9MsxjArsxgAuXiI89zTi+cvI/hahcMij\nx5Fn34S/7fWE7q31TS06uHgRqZcQ6hhcWOdTP/ebPP2Bz7CpHDoo0goawuMaJa3BgGQ0wRWOyCui\n0iB/649pqYARQOFpBYHJHcWDBvePfgRlFqn6h5i0CqKleYrffo5yWTN+43txX/cd+EWDWfsl+MZv\nw5rjuJ0N/D//CRr9uJZw33iY6G2SQhacvW2OVhxx3ArmvUAbTyo92n+V2bF9GS76MmUjQYKwODti\n58p5nnvizzj39LNcubLBJKsYjSucqycNahpuClcpufu/Z1YtiFkrwTUeCk7URqR6mnQ0Cyw5mF59\nUHjlrWMyyREBHvuzL/Ds419i0hswGexx6bnnMGnghqTB7rkNxs4ScoXygdIIlu44w4vrL9HuKp54\n4VnOnj7F7t4eoBlPKpaXm6wkMVqlQJ1vUVpf+wKE+tx4FyhLi44jCJKsyusxYwktE9e07mlLJGTA\naIVBknRaRAgiBGY64UmmojI9lUp772mmEY1GxMTm11ZyUuB8bTbS291g+egqZnpy4kiigJ3BHkbP\nJkCOSNc+lrVZakA0YqSHBEHXRCwkDdxgAkUFtqQSYJGs+QlbzhG322A9zQr8yNNdmkdWYApHo/C0\n4hRrDJWzlAQ01HwDC0jNMM8RQtV8j0kF/QmykIjemOr8GhETSuvwR49SnXotVWOe0GggxDyy6hAm\nPXwu0FVBWJojH0CroTDCY/M+zUZMI40w8zGtboJpRLS1x255Bu/9wf2qLNWgfEGSRIRxir78KEYq\nlADzmYeY7BTw0DpGOphPcXKO9rpBP/AwnZ94I8PeCyy+6izxQw8wXrIUiUA4i+hNyFpj2sqhKFBK\n0IyoI/OEQsqvQj+Fl/frgquKRSH01KjTI21AVSMe/pPf5Xc//Jt85o8e4KlnzrG22WeUFRRlDsF+\nWesRXO3A5L0n+BlxyV8ze/cE9LSMFiHUOYFTJyY4YO82FV9pExGMwrnAW9/5N7jrnW9ibf0yK+ky\ny0eOMB80X9rrwYkFdiYVLoELL76EQaNvOcQ7/s7/Qpws8zWvv5ON57dwQTI/P8/Xvf0drB5tYkdj\n9NgSdAMlIwiGZtJFlIGqqjAmrv/g1lEJydL1h+hdvEKsNBPtIFJ4A1IFjFEIBb2WwCUSWVmEc0jv\n63I/L2kKQaQV0lqMlGyuX0GFmp04mzTs/32mI+PX3HMbUle0JcxHhr1RSWYgHG1j7HSyowSm9Mhg\n64s0QK4CwTl0mI5WXcHRZpulYGiMPeVGn2dyy3N6jpGO6hh4K8kqi++0YSnFOuhi0EbSME1sltDx\nGnE5Y/TQZeR2TlFVWAFJq03lQcia1Skr8MMBsoD4wT+h/MIjhMpi5lZxqycQrS6qexivUrxIcVkO\ne+exOy8SP7/Fp0c7LAfLnArcNtdl7/0P8+rP5bzhhZiFL17m9HzMQsuwTAlzd9IykuByiBP8o8+j\ndiqar9vE3/QvGfuKkOeYv/EO5NGj6HiFdtMiSoVf0oh33kv2/l8me9Vhoi89yI5exN3w/UTKoCdg\nkza85hjHiz47v/cArSjmsoDtAiIpSYUn1a98JPkVEQYD1y4K+0+lmToPaqRaSEIoaptxmZD3Nnn6\n8YfxeKJGykKng9YaWTmMDigtr50m+FAHl4opT2H2u6bVgpoSoGpehMQHP81zuJp7eI16UmlUrJG5\nZZBbRBw4VHioQJSedZXTNQnn9ypWYljbGnJdK0UKSVrkHH/2NrYfH3LiRJPYJFzZ3GFhqUuSRiTN\nlGKUYdqgrUZridaGIhuidIT3bl+TYKRi7Eq8c8hqC5FM7eudxzmLmE4UghCEToL1Dm1qspZE4Lwj\nikU9/BWinuE7zwklyVw9PZglUc+UpCaKGQ/6SANNYRj7isgrKlfz3vGCIjiUqvUCaDnFeQLKKIqy\nwCtwvgI1dcRyFQJJhKQnNbvBol2M9YG01WIyzoi0pJCOJFHYwlMJKJRgK8sodseoBuh1S7wOu80h\nobmCD55i6mbspUGnET7SaLmIG7eJKgdVCd7hSZB4CAaKHOFqsofUAZFBlFV4dYUXv6Tx4VsQxZid\nxwsOf6pPsp3T6WV08ovEviBLPGfOJKx/138hjjxzUiKWFpHvsPRHCvXAB6l+5FvxEfg0xu8KVDkm\nDxV5ZTGxpmLEuJKkFy3x7/4Gw+Q0KpfYb7sDWeyhyhSxfpFqcZn77rybwydTLrmag6Kkqu8eL15m\ncPiXb18xlQKwD/BdyxfQEAJBWEKwCKlx1PoBoYaMd87z8Kc+xsc/8hGeevIc5y9skeW1CUc1A8jk\nVbqy9x6EqxcYL/fNQKSUSB+w1IsG1BmRpZtGzoWw35ZAPbWIoxSTxjSUgqBpBM1hIjwZ1y12OSkS\n9rZGTFqeT//XT/CO5RYilpzLRyAVi7cdQdshqjKMKXnx/CVUXHDm9mMMJznNZhPV7CIaEp+CbgUW\njragKWh2mjW1WSj6ZUa72yHs9jAywk0nA0pI7JQ4ZExMFSCPYU5o5itIbe14bISsJwveTzUftavU\np+7/Q4wCJ+2+u1EIAa0lSdzmttecIcsrSu9olBIrHG0kVVkRK4WRgo4AMsAJjBWkKGILXRmRdFJi\nqfcdl73wVFWBCJYXrmyTeUhSSxoFMp/Vo71EUbShKqCUsBF71lRFSFN64zpGrqk0e+WAKO7QrxyD\nfobIJMJHIDU2jRAnj2FX5xHHV6hueyP67tci4hgnNpBlhkXhcLjeJmr0DD7M4ZI2zhe4c39M/MCH\n+Ojv3k9TGp583w7+sQbx+R18NeL133ojxxcNq4lGHa+47ee/jqU5w/XtiMOHA/MNzcllQdaG5rua\nHI4EcdKhUru0O5Z280chT7F2D/3xCFO0yRaa9Nv3YmSX0BgRf+an0Jtjqmcv0j5xiOtvXmbv6S/R\nqBTLQbLQEMTKE0lJrATJKy8UvnIWhYOpQVf3Tft9WQNIAGEa0uaREBQIj5I5Oy89wTNf+gJ7m7sM\n+kOyIkfrhOAlwdduyzNxU/C11DqEq5MJ52p4ccqK2D+GSB0opnydVaBFLYSS7ZiWDRhpGO8NGDqP\nUwKLYlIF5tPAvcdbqAee4s3bc3zyJz/D3KNDlpMWk40R6y9dIL3pJBc3L3D85qMsNhu0V5bJyzHL\nC/MMw5hGhylj0JNLS78qiRsCoyxSerSO6hZnmsitFcRxjJAe6wtSPSVeFY6qISkHOUJAYQIoMFP8\nZOZdKYJEBYcKknvve2ttne/UvmhsX+OQjYgjg1aCCMU4r3kNiXY0kZS+Vr3mJcQRRFIgpipXrwIY\nKBXYIqfydbiPyy2VUPSLnHODIUJpersbZPkA4SpCFNCpQkmIZB3OI12gUkAMp1+9CDHYVU1y12my\n1ZSq8DASxJMRYTAkFBnShVrA0O1Co8CePYFNuwQvIAv1mCT1xFVKtNPDDUZE7inwTxNUhEtyCil4\n9I+eoKMNw0t7eOMpVmMG8S7D3NK2kgTLHIoFLelWEFlo9wNCW5zMueO7v5PlAuIoML8i6bZW6CvF\n8FOPYCKJSVr4Py0ojSDes7TUiPyZLyLdIsV7fggh+/ChZ0h/53PceyRm4Z5buRhynIe4DBjhwdZK\n39Xolaskv0Lah1nwirxG6gwgpxOEIOsxo7BXFweA4EONDaiSzz/wMZ576kne/o1/i/sWXoNTE0wS\no5Sub3g1HUFOTSy9uBo0MmM0wrUApQ0eJesFK5I1K9KKAEpS9XtsDSzLK4doRCVNo/ABCjXhZjXH\n993wHobjv8/h7ge5IPa45eQx7n/wAVZv+8/cfueI7VBwy/92kskTY5r9AYlMmO/EmNgijOXU0irb\nZY5qSPotTaJqK7JxJJibBLR3RMGQConzFULWdO+yLFFSEpsGeM9YOFw3wTUkXVmHwG5c2WIpLEyd\nqSRUnlQqcPXkpZT1U9v4gPbn9z2wZmzGTjfl0sVLHIs0WIjSWqjm8oIqMfXUwVusUhTeoWTAIKgq\ni5IeHxROgOskuLxACo21louTggvWkycRoWNomjkmw4KRz1hebhG0QHgIOYzigHYKW5ZMqpKszCha\nlp1OyW6qKVxgvLZBur7D+Mo6qAh942uwSkCiEdYTrEW3KqqyRE4EvtHD9hdICk8+V8BohPAvUv7Z\nB9ALK8juu3HR6wmssfGJPR5+rEBYSTa+grm1wfxNZ9mSnlYAlKEMoAiMvOXY2DESDiUUVkdUJjAv\nJVZkyELTuK5N3zZxz07Y2tpC7G0Qve0myrUeqvcA49/aYOk73sH27iUa64HJ6RbpdQ+x803/hOM/\n4whFxVhJSgVJqXARkDtEkHj3VQg0zjYhuaZvP/j/tfvqi3embJQBtHQM+ztcuPAS2aTABo+bqRwP\nhJDMKoaDUuAZYemgkvLlHo5+6q+w79oUwJUVmatoN1tMBhP8YML1jTne8/XfhTCgVcTQT7i81ef5\ntU3uefObyEZrzJsxza0tPvJLv0djPuWJ5y9y6ESHp597EiE13cUFRqMRUTvBRYaqqhhlE3wIFFmO\nFR6tJVVVAhBFukbXp4QApRTO1R6LohNTNuoQl8oFsiwjTRKM0jVHo6pq9+rpBSxV/VSPjcKWFVGU\nXKM2RXgWFuY4dOgQw/6YQV5gYokWCpM2aChTp4BPRWUzrkJt/87++QsBnJFoY7DWUgXJhvNsV4Gl\nQ6uYuRbJ3Dy024gkwYl6clE5h7WOYjJmmGVQzSo4TTksKUuLCJJiMkbsDigvn0dub6NHE6yu6hg5\nFYNXtWtSBiIfEsoM/ei/BduncNOqIbIEW5G0YuzkAiUDgorxdowut3n8D7aJhSJjhxtuO0ZKoCs1\nUfA0nachoBlgTgqWIkOjaYgiiTaChlQoLO2GYFlLjPd0mopWbxeVl6g0JWlv0DlhSfI+C/ecZvvh\nzzC3O2EyD7q9QLV6BiVKRkEhVcx8iBBVDSCnkwoZK3rCsZ298pHkV0SlcPVGV1Mp45e3EbPpQxDT\n14On5itOpwFeACXO7fHskw+zvvVaTCOhGwtiVbMVX27VJhGI6cJQ98r16biajlz3295NMw2oR57S\nBWJRf88Nx46yGzy+CLSaCQ99+tP81rf/PS5/fJuFpiaVCZMsY35uiePHrufJJ57hh3/0e+hlPeKm\n5o2Lp8iurPHmd76OFx7b5O7X382oGFD4DBGBjT2TvH66WqWYCEcnjpBeolKPFoKiKDBSIkMNoKYS\nnIYy1chGTCXrG/3yhYu0R32W5uZo2LrKQgRSBzaA9xajBB5Rz9R1oLATLNcmZRkdEUcCZWoXpwrw\nRYUcOdrjgF1JYUonC8ESBQmu9t8MM1FaAGsdxkFVaapE8bnJLlekrhWQoUSUoCeKjmrQ1JpSBGTh\naVnJXjEhDPZorR5lczAmWenQr0ZgFJP+iImtcJkmXLoEtiSoGPv080QnbqE6burW0eW1wa+LkBfX\ncKMNmr/1Hxj+3dsx+Z0UYgV56HroS0Tyrej156F6HmcWwSxih4/xyMcf4qw6wZFjPSSBpg+AxWiJ\ns9ALgUYI9EXAOkGOpYtiFDyIwGoQtLyjV5V0J4bhxiW4/CinT9yGjo7RzC9wfP4og+/+YZ4bTTix\no9n4zc9x+PvfjNjxbH3D62mIiI+9/xO89d0l9PZYWRBMYklXwNZuRtzV7LysAv/Ltq+IRWG21U9s\nADmbRhIO8O4FU0AMhXCOq4avIHD14iAc+WiP4d6Y4rAl2Jmcuv4X/NQtaFoJvLxt8EIgD/otcK1j\n08EtMorxaIyKDbnwNCrD2+57C/ecWOdnd3+SS0/nBBGY68zRHw9odJpcd+P1PPiHD6FTwy13nkZ0\nHKc7hzn/wiZHDq3QH45ptlII9UixsgVG1P4IhfNEvu7thYEgall0lEYI6VBB4/E1jdtoolTjNCRB\nUFaOE84jI4O3U16HqPM4hahn3TqqPRhwtZJUCEG5voOWsnbPDjX24JybVmgC6wIiBKQXNBoGlcCA\nAD7gptVBFMy+rV5NHxdEqg6ktaVlEgK9iWUoNKmUNZgsPbJ0tKOIhoLNYoz2BmkVcRXItKInBYWw\nqEbEGE9nTtaclQAmTsgyiyhGyCRBywjHHtVgjyDm64eK87WbslQEUaH3XmQYg56klKEDWOiuEJU5\n5WgHL7dBVAgP0mvIC4Y7a3h/ipvPHKdRVQQVoYIHDzaraDdrBKx0gWqKR7VFnWcZIoUrPCM8W1mF\nyQtWVlocnns9k/lFntgasNMyvPDAb3Pma/vESGzUQ5zpkG1eorl8Hen1R5lkko3HLzEYZhgREFqi\nCs9m6TjsDbshpxW/8vnDV8yicLW819doFQ6KlIIArZqEELDBoajxBh8CgTooRBIxmWzzwvNPc/jY\nYRY69Uw/TZO6RJ42TAJACHywqKnGosYX1JQZ6ZBK421VJyrjkEjUVBxl9PRCrxwyMsgoAiHxVSCs\n5vzcJ36Z773u3Qz9mP6uoREL3vo1b6Ak5943342rJuQio9VoktmMpdY8eTFGKwdC04gbDHUdniK1\nwtuAMX7qNCGoQiCSDrQDo6lyjxL1wlYEgR/l6MkYiUc1E4Qr6s+fWIJRYAQTVV8AwgVkZAizyL4g\np67XUIzWgDr5SUuDd+DKDJyj9A4jBM55nIQdWyIUtPB4HYiCRmhw1PRmKSXaBZyE3AW0rdisPDtj\nT196unKewmbkVYZuxujSUVGxh8SnDu9A+UDqApEWhEZClWpULDFlYBTAoklWVsk2c4pEEdpzOKGo\nDh1BjBzxjUfIRYQYl9MxdAJJC9fcACfQb3gP/ukczq5D5yheLFFUBQwyQgdUuYYTAWUCrgC/9iQs\nn+Abvuub8WOLbxV4GTAuUMU1jdqJwGJQDLVgHqCqBWCjCWSVZfvKBp2kQ5EElsYKNcroTzZZig2T\nI3Mk829nK/eM+s+Qd+dZuWGO/tPn6Yk2trIcPnyc9a8/y/1rL3FzZmlveopiTNRs87T3JFYiolde\nKXzFYAoHx5Avdwveby9CTeVdWFhEqdnTRxIEKKMRUiNEjUxvb12hzHOsLfff88/VV6D2xU9C1CCc\n4IBiUl0rhDq4UEkJMoR9pt7u9haTIidppmwXkv66ppGlLHVPML+8xNrWDhUlBX2sKWnMdWo7M60o\nbYUxBq011hZoU/MPWo2UEBxSC7SsWxctRQ2aTj+3r8oppiBI4hgjJJE2NJKIJNYkTtAUmqZQRDbQ\nHFtEP6O9UxAPbU3WcjVnYda5SSGRCMq8opq+5lwFwiL0lLdRWqQAlgQXAAAgAElEQVSvP7tStfw8\nkhFKKlSQFFk1BS5BKVljPErVdOfgsKXn4t6ELRyV0biqII41MTXT0QrHxBd4HMLoemqhoIxk7R2p\naxxFBWhoua+t0EDSTAhCwPw8vt1CzbVQb3ktrtVFVgqQUErcJMOlHrWwjFg6jhssIPyI4DJqTqWG\neA7ZXIJkjhAvg/S13FxYCEN0EHRbNRtUCY0RCqcFXtWtbYxEK0kaBAn1A0lriVaeREnahxZoxppI\nwmSUMdruTXM0HK32AmauDe0EbTNkQyJPLCIGGZ2kxOgRNu6jb7+eSesoX+ws8anPPsjeF6+wKKEZ\nSSgrkuqV3+p/1dyHnwL+PrA1/bYfCyH8/vS1fwZ8D/UD4h+HED7xSg4khBm+zTVCJOemJe6s/AyW\n/njC8uoJNjcvIoTCJCmd9gKtuTl8WTIa7rC1scbO9hWOHV+eRtdzVWMxM1BhJte+askmRV3eiump\ncc7VtN4QULNFa3psVngSfE0akoLVVch2+sTe0zWSD44LHvo/Psuv/tSvciQ9ziATvPV1r8e5gmZH\nY2KNq+oINBPL2ngkitGNmqxUDgckaQODRWqJD2CMpCvB5p5AIIoUylsKWwNoVVURGYX3Dj9tsSrp\nprlXDulrVqDR9aTCOkdSSYpI4nzNxfC2hKDRViCfvVCb00wnNfX0RtafOQiU8wQ5FaLhSQUUwmOE\nxCTgQqinBT6QKCi9RbgKLQ0XtjeoygRtFMQJrhgz2tum1AUMJLJ0OCVh9QRCSby3FEaTRVBgaCbz\nFBXEJSjqaPlLWYZuxCgRSKUl3HqGPCvxUYTyEjexddtgI2TpCMUOIS/w8TLqtrvxI0E1HIE6DEUT\nlRRUHkIaoVaO4sYN1HgOl+/Unh+Ti7isII6hn9UaHemngccyECMws6vJeiobGBSWKAji3pi40yY2\ncKgNpS8Jq/Ps6jWyTouJaHHps88T3Xcd5bggKxL4w8fI3/IGGnfczebT96MvPMPl4Q7+ta+lkVxH\nzgLPnjrN+YuXqD7xGW7+628iKwT98pXchfX2StqHX6d2Wvrgy/b/2xDCzx/cIYS4BfgO4FbgCPCH\nQogbwr7J31+0CabNLYTpmHH6tfC141L9CKsvbGtLTp89i5clVRlIG21OnjjLyrEj4DxZNsT6QGeu\ngZbqGtnzwSATuMqe3M+JUAcnHdPQQQ7KugOK2rtAqHo8pkLt15hakEVtNBVyB4niXf8kp/3hRX77\nX/8GuhpSFBVLcxqtJHbsaHZiQhAUeIqywnqFCxWqqBXhOkgW212khJ1JBsEROV3fwCHgRcCGatp2\n1WfIh7I+pVOzWe3rxc8FjwqBJElrFF8FVKKpdH16pairD1HV6dpFnqPUFi6UyKBxQSAwzLXqUN9Y\n1yNSHzzxlEKOqL0tpZua4oi6+hBSUJW1o1YUax5/5kV2xhNa2pDFMWVvgCjGqEghg6JyjlJKRDMh\n0Ro3+xuEQFEL4utqzQdiITBTBovW+VQ96UgRlJFEy6h25ipLkApfFpjxFuGLDyBNC2tOwnIHazqI\n5cOYhqeKG0jj8aFA5rsw2cIF0KqDNQWEuNbkKIsVIyos0oBFIKd4iyOQAME5hFdsWkcWFEFq4pGl\n1AlFBIdC/QSNhGFPgDq+QjmpGFtHOfwSoaoXsvTQMv1/9dOY07eS330CuSHIx+uo7T3Uow/jTxcU\nZ98CW+tk1nPlluPcWAmEBRty4JWlRP13F4UQwgNCiFOv6N3gncBvhBAK4EUhxPPAa6nt3P7STcwW\nBa7iC7P2oGYlRgAkJqXRnmfx0EnuvvfempikDJ32PI1OjAwSJ6CRxjRTQxxrhLg6CpNC4YPbpzcL\nca1su7L1YUjv0XUKaf0UlOZqCMyU9y+CIChJSwp2dwf0Uk33yBKusrhIo4LnKS84Ud7BL/ytV+H+\nFETuGOcFkZSYtCKzDuEsAWi2UkZZwEwXplbaoMwrfJERac9qmqINTHoFWmqU0gjniVVNSxaq9lfw\nztblPVel5IEKLRQBz0RYfCsic5bgKxoYSuFrm/gANghkFbiytl0vNAGCcHWobnB0u3O1D6ZgGgFf\nTy6UlBTBocXUrwKPEtPIuACRH7FXCv7ggcd47Mnz3PXX3oDrBowCHamavt1I8DolUorx5R2Ci3DT\nQBlPXfF5VatpKwe59PvjzV6wTLA4xL7xbpoGpNWMK4eXMeQlqlcy94XPMt55jqwMhHKA8gGO3ACr\n87jhANAYYbDDHmHjWeTmC8ikg1dN8AKVLhKyQwSZg95G+grhJdqCEJ5KevQ0AVtIydAHJk4wKj07\n4xFdE2g0FcsGJj7DO8Pl9RF23lGmin7IIAw5/brTPPXCi6hTx4iSOdr/9J+yNTdB/vH9NG9/O/b5\nh5FpAatHyPcuEW1cpHxmHo4pHroiuKTWeU0U8TUr0Su8hf//YQo/IIR4XAjxASHE/HTfUeClA99z\nabrvyzZxIPchhGszFaavX0N5VjpC6Yg4arK6epillcPML66yfOgwS6srLKzM022nLMy3WVzoMNdp\nEUUJQk8dgnBfxj2QUuKDxQeLc46qqnBcXSRmPIZrvBoP/LwOdRWigsfmJatJi2ynhxUBJUukcLTc\nhFUBW3lJX+RkTYiWU0I7ooqbSKOJ0oRGq7nPk6iqjLLMmUxGdYEUBDZ4ROVIAsg4rvfbqWO1q1BK\nooUA7xDUxxW8IzJ1GWCURCqBURqXaEoCiJoj4EJAivopbKhvdAFTlqeu+2pAqrqVbnUaBy4gAZWb\nAsGhFmiFKWg8tXuHemEZlJrntkZsS83cyQVkYllYnSdRNf/DzLUwaZNYKHxZkWXZFDO6ignNUqos\nUASHRZAJGOCYRLpmHFaO3ObIKEZpgYlUnSoeAspWhLxg2PJkxSlQOXGvwPX76GEJJiaIFgSoigGu\nGhFsTqh6+HwbX+yiGCOYR6g5ZDSPKx2xiIhCDTfEQtH0tQrVEyjxZL6OzjNK0khi4lTTiQVYEDol\nrQSxNMhyQiQcpfMYJ2ktpdAboiOFVZ7JkQ55XpI9+jl0aCOPXk986xupzrwRjr2GagjpuU04l4Ea\n0C80n+/1KMX/QEzhL9j+T+B91CDA+4B/Qx0K8/8y96Yxtq3pfdfveYe11h6qdp2qOvMd+/a9vvfa\nbvdoEYgTO7YV2cKQgE2UD3wACQfFfIEPGIlICEIkiGSQyAfAwSISCCtRQAYFxQmxkzjGbhu73e12\nj7dv3/meqU4Nu/bea3iHhw/v2lV124Y+aiN011FJVftU7XG973qe5z898aGqPw/8PIDzEzXGjX5/\no9so4Jyg0WBry8H+DQ7u3OGZZ1/g7nPP8PxTzzCZWnxdYYyhshbr/KU5iuhFQIkxBmE7D8hYcago\naMLb0SPACZt1x+r8nKZpmEynJTLNGcgliEbEYmW8QovgvSdKIqbE4XSHL3/hq7z88UURcglIitjs\nkZoSDx7BayY+7pkte+qsWJOKFZkZxufZl8eoDN7MCCFgpw7sDusYCIMWKJKMhjRCqo6YEtbIhUxa\nRfF1VeYVjFUDsG6KG7ETR+XHDcAIIZYZhVGlMco3v3m/bMamzFisltlLGMqVJGuRk1cqJA+9UUQF\nK5BTqRbEGHJO9G2gqoXXO2GzM+OVH/wE3XrN+q232eRMXTXUXsm2QMaTDiYZ8vVrRemZChcixsxq\n0xVCl1MqL4RQqoU1QhtgI4lumWk7g9aKdRMSxY0qqiH5CrvYZbj2Q/hPvk9Y/QnSvd+CDvBSBowa\ncJKJaQ0SoLpGNh3m/FExtJk+g8gNbPUUTV1zdPyQ//I/+Lv8m//5T2J6xWdhcBmHZciJk2S5HwJ1\n42gUnDX4kWpvyEw7Q7MGd7vhzZh4/MU3mDqHPnuXB6ctB8/epsfhBs905w4P8xHTP/3DLFev477n\nJ1hni1kbOFCYDZhf/Kss/tJfpj96mz4GVtUB/93XHwI3nmhtfkeVgqo+UNWkRTzwNyktAsB7wNXU\niafG277tcVElqLlYyEYci2vXuH7zDnc/8lFe/tjHefbFFzk8PGQ6q/C1p6rKl6+rYr3u3GgRZi/v\nZ/za3qZXyFGqcuHRWDceay3L5ZLz8/MiLNIRi7fbAeil8rKQcAziPD7BM889SwwZhlxSsI3FNRUS\ni9DIWUs83zDFMpOiBtSR5ZdzRkhM6pqqqopFHMWYo1KDlXxFqVnSnuFyKLulaptx4m1HhalKuVol\nK+TKoo3FXyQ3b5GUgg5sP4OkmRTjyBHLFx4S5YPKF07YIoLaMRFqdHom5dIDx3jRxqR+IGlmI4nJ\ntR1SC2FQcB7jHFGFGHIZKptyXxbBuxozxvhZb8scR5UYLtPGs5SMCTGGEBJoIaXNTMN+qJhsIrby\nGFchNmMbQ6qBncwwmZbqZrGH3LhVgBJTYc0Modj/YafYmyvc9LkCeXdrCOeI9sTs8CLEfM5v/KNf\ngU5wprQu3lhcAkXohtIelQ+qULTbAQKRLGWza2vDJia8tcSzM/afvU4yMGjA3zokp8BgI0NQvKtZ\n1ZY+taSQ0VDO45wtZm+X9b/8/bTXJoQkcPI6cnrC++88eZbkd1QpiMhtVb03/vjngT8Yv//fKKlQ\n/wVl0Pgi8NtPeJ/jsCwV+S6GZr7L7Wdf5NWPfQ8fef5pZjtTJnXFdDLB1/6CpitSkqfL/eTRgdki\nV+YSeoXuXH6xsOq2G8LWo3GxWOCco+06jo+Pmc/neF8BFbjx78do9q3JafFniMytoQ8Rndb4pEQL\nLZmpMTiB2XFPVc0wMROJdFbxOjIqc8Y4HZ2NtAzcjOCcxdsyvQ4x4m1VqgsPOWtJ2LYObzMQy4bn\nXAl8EQhkUm3J3pDdGIGhBdYUEbqux9fgLshFGYmKYLCVJWsYPSjKxtPUBg0Rp2X4N+RcNpRUhg9i\nwU9rYAzz1ch8z3IvCvkaxKDYdWBnyOQ7zxNHmNkBm/VAswNpKpiYGWLGOgsxM22VxlqWsgFXZgwh\nUzZuIwwJkgq+j6SZZ3bWc/xPvsLyusP8MKRsQAIp98iOJ8sBrCcw8Qw39zG2QTYRPa9QvyYExfqK\n9Pd+Gv/4q8gnf4i8fhXNx0g8JVOD3KRaR1J/n3tfvcuv/50v8Kk/N+ArQ9jAprK8MwTefbSmuWEw\nAut24N6XHrL3akdDRVx3tC6hTUM0inFw99Mf4+tOuRYd4dqCh5vMMHTlfLNTBlbYa08xj5lVsggV\nta3oJgHtI/VP/av4X/sS8ZfPiD/7KjdvvcTDr7/7xOv7O819+Osi8kUR+X3gh4B/F0BVvwT8HeDL\nwC8DP/PtkQe4ar20dW8WEWbzPe4+8wy37txh/9oOs2nNbDrBOUtd18WxBsF+C+OwtI+X8KbAByuH\nq3qGcRAHJVzWWovznqZp2Gw2LJdL0si1L6SpTNo6NeXyFhpjEFti6iuxnK3XRVGo0GDoRKErMF0R\nd406gvHqug2vVVWs08tQ3JGHkEYmYeU9Vgois31tRilszXFjVBGiKeV8cIJWjlhbshOyFh6G2drL\nKdTeE8KlKY2zhocPjwpha4Rpy1G4Ck4oblSX50ehmhuLmLIRhBiJZYpDjJF1SJz0A5JiMUuNmbmx\nRCAPgYl3NM6RYyYrDGRWYYOO6V1GhAoDeeRlGEGRcQO9zPqIo8eEiCIpMxkU7QJD2xHaHrLDM4VY\nOA5mXsPMYHY9OlHcVMAWsx16g1ltcMf38EZheobfuYPW03JRCAPQktI5Ynu64Zjf/bUv4JuKmC1i\nHCugF8N0Z4KRTMiBSizzaV0YuAqrh4/ZqxuCKLG2pC6xmXkaU9HZBDkRQtngu5yL0E08FhgGi9WE\nph7XgHWOVDcMe57Vwy+y+PpXsYe7bM7W2HyR2fRtjydBH/7iH3HzL/y//P5fA/7aEz+D8bg6ZDTG\nMJsvePajL/HqK69w6/Ytduc1vjKAUNV1Oa1t6d0Z2Y4ypiEXO3ZHHiG6Cw7CVtOQE86XVmBbPVwS\nkmzxNqwqNpuWs+UJR0dHHBzcYHHtgMncU1EhUhfuBIpTQD2SM6RyRUvWMvFC2w24PlNtFKVg9skW\npKVynjQiIUV34bAm4b0l4ohWwRROwFCYx6SYQQx23DR8BdYXPoKiqLGkprRIyYAxgmQlq2C5FIXL\n+NZpVHw1QpwZuiGweusRVoshjTOOGJQohTOyN5/R+IreQAgR74W27bBVhbOCJAokl8fZQzKcLjOP\nu8csDm9w5g1+Wth+kHDBFrZjTmi/Gv+mbFL1xINkYlJ6B6uoGJ8LZ2NIVGJJFvoYEOvBKRsSps+E\nWUP/Ay+xf3fKG3ZAOyFvVuSzUDaO0JKNx5pEqisqyfS5Q/o1/rwnvP8eWQzV87doj3q0+bdIt29j\nOiVv3sOmUyTB2gt7dspMrnH0hhJsZugzncksMwy9QjVgtEG8ohthcZjppwVJqa/P2XiIwRF7cI8j\n0wcBuQ62EabZ0ITM+WvfRF96haARuzNjde8cL5ahmmDfOaO+ZVhMJyyrhvN6ze5P/SjVf/+fEf/S\nzzH/r/5jbn7P9/L1J1yLHwpGoyBjG1A2hXrS0MwXHF4/oJ5N8P4SmXDOjnZrGWMUQ3EllouYuTyy\n8jJGtvkEowv8BbwppHSJJMScxtsN6GVgTF1XxCFwsjzjnXfe4vz0nKFXYkgkTeRc/BvVOqJGVIXK\nG84eFk5Xt4nMbUXTdUxF6bWQkMhFmj1cTQLWTEVZ8BhFfSglfopFfSiGMCT6IRH6wBDL6y+GMZc+\nk7WCdLGwE6XQocdJCCZzmYZF+d6M3onOjN6PIWOMwMhAVB29KIwpcXpeSCbjVMv7nmHaNMS2xzJy\nFBTUCI0zpGBIrWC1oncF4Vgb5SxtURKhSjAVC7YIufykIhlLb7WkeTkDBloSVIXEZbOhSYGZFB1C\nGlJRHk4sWQz9whKfb1hpoFopqoIkD/dP4fQUSQkNw4WKc8gRgxatTRQIa8z6LdrJv4S+8GNIfhHq\nBXlxvaQt9efY9ICcelyaodbh2cdrINlEb+H04YazsxOMbdhYJYVMomcyjJVIA9Xegj5aDIkqDew8\ncph/NtB4j22FifXcnCeePVjgNNE5W2jSNjBQUd3ryW8fIZvEQiqM67ktlvO7t0mzA5pvvM61N9/m\n/vrsidfjh2JT2DINrXfUk4bFtRt8/z/3J3nlu15ifzFj0jiq2o1DRC4WbSnbbaH7utIWbMlKJqci\nTNEiGd0unG3FsJ0tWGuxMuYnaDF6cq7MKqbTKZPJjG694Wtf/jK/9D//L/zeb3+e46NzuvVASolh\nGBi6liiJQQP0LR+9eZv28Skza5k87rkePBJhx1YlcMUXzoO3FhnnGmoNXQW9JFoPXW2wTqm9YF2J\nj6+cwRmD8wZntPQYFlKIhQ1pC7lqJ8G8i9SbyBwh5ozVAuFVRnCucO/LplM0E3GIFyYqbnxvG1+G\nt966i9YKU9yeDELsevIQEJSq9iyXqyux9MWW7Rxl45Rl32P7MeHblXYjihJECY3l3GSSN/Qh0w4Z\nnEPGIW8XBlZ9S6Ir8GQu2pTnomdfR6QiBYxmXA3VzOK8IpRWL8eMnrfIo3Ps0bvI/RX61Tdwbz5A\nRCFoUVJqRvwUNQ3IpFCaB0fKP1g8NNIMmV5HJnOSi/TpTWJqifEMFw+4/vSCVdfSiiFkCE6ZXj8s\nepFOIVqSsRzJQPvGKetNIvRKfQ7rexseVY51k3n7K19CDFTNgHGZ2X7Nre++y4s7E+42jmvzit3m\nsBiovNtjfvctHouw7pTF2Rl+Ybk5RPjJP83hgyXrf+8/Ze+3f/+Jl+OHY1MAGOE07ypu3rrDtYN9\nFru7VM5ix6HYRWTb6KFwVSNRXIPyxe3OObx1CPZKa5I/wGS86vS8dWwWKUnUxpbNYT6fs7uzU9Kl\n79/jrTfe5PHDx3TrgRDCZVZEKvZnxhgsWkri846uNpzPK7qJJczcuLAEVMgxXzw2QEqB4A1ihUk2\neGsQMyZFW3C2RNWJKL4q6rucU+mhR8s5lVygPVUICR0UHclQjTGjaKrMMYaROZpC8V1Q4UJi/q3h\nN1vhWYyX9nRVVRW7fFN0D9YYivxSsUBMyjoleokMIdHmhNhSTWBAbEFGgsA6DfiqQKgRYchaErTH\nz27IGbG+RMCNhKCSH8qFdwOMzEwL4kZOhmZCCOXz6AKJFnM+kN68R3z/MTmEwrMgoXZSJiH1Duzu\nY8wCaoutdrG+Hj+7mix16b9cRvMAGkixY7ILIpNi5ZaEyd6UKP0FwuAsIAk3sai3BDEEhTYM5Fj4\nMqtDQ/PnP4pNsMEx9IoMAuJxU0PjhYkTdhpDrjzV0YZ0vsFYx7Ib2CwfId05KRv27n4EO6+RvEZ+\n/0mbhw+JSlKQC2v2Zjbn+Rdf5qlnbjOdVtSNL1wBtgsWrPHjQHIrXCoLckvrtdaSFELOeF9f5B2q\nuWQwbmG/i01FuDjRzEjPrWrHzu4u852d8rtGee3rX0ZVmTRT3KR4GcwnU6yW+YDxQp8ST+3ukhrH\nmQ5MbIDaYMKAnRW4zblCE96O8bbdyzyC7VK5ssdISb8u2gqLKdDoWIaLd4XcO2Zwmu1cxFoIytx4\nQhvJ2dBXxXmi7XoarcixeDEUBIbxdcNbD99BxCNZCVsKePmQLga2UgiKZfaREzkrYdMXJ2hjysAz\nQ0iZ6B29HZjv7tA7SmalNQQp3lnOChsHcVDqeUMXS+mdjUFCIglkY5HpLkmVmBKIYdDIa3WijcIS\nRauaFEFSGiFeyJRyXawhDxvi6gwWC1zblPyHaURUyCRsaJDlQ3J+QDIDXL9OrA8xzqDtkhwfgr2D\nWIOaGWJqNAniErmviOYRsx3DeRLUCSsy9QMDp5mT65lclUiB6cRjKyAmdt4NhH04rxzx+g6mizyo\nBvLHLOcWOE5sJHFNLNkrs6aiRkgGmutKVQnvfv8RnH4/8vd+lbOf+LO8sLjF8OZD7t54iXt/4lmu\nvfADrI9/D/c//PITr8cPR6Uwtg/eVUynU27fvo2vLL52hYnGZbmP/hEU6O3dXFUzCmCEmMMfclD6\nf1RimksW5baSsNYy293hxo0biCjz+RRXWdqhJ4TEZrPh/PycmArxJo/QXdQIE8PMWLwKOhQasPeW\nmBK9UVZGGTxEU6i7OSl2KOG6eMF7wZpMXTuyxrFqKPJt52xxHeZyVnJB1Bo3QFWldp5ZNvh0iXKI\nAkHZHK8KmpAzmkaIVgSJ+QP3d5XZ6bfVlSlX+RLgU4xsKuuQbcWlW2RCGbLi6oo6Cx5D1DIETa5Y\n23UaMZO6pFSOCtBt8hQJkljaHFArGC0WeeoMnbG0UkxhYpltlmpt5DAYVwbTmQyacJIRbRicJUw9\nerCLqRwYiGrQKiNf/Ltw/Bq2O0X8QG5A6gZbWazE8VxsQMoEpYxv6zL0laZ4SCQwObGjwElHdxow\nYgk6YjjGUE0tLCPTYHAOaiukOCBDJCdLWAU2TU2vQq+KnzREBc0JSYkqReY2sXNjBnfnxL//z6Cq\nODtJTN2CaA3OVXD3o4SN0v5/iT78/3GICK7yNLM9nnvhFfb3J8xnRT3nnMM7D4xDL1v66rQVSF0R\nNG0XRBJFko4y5IhvCm4uY7xa5epSQht34eYsYkuFgBCLawsIuFo4PDzk45/5FOIsMcGkcazOHxD6\nQ5DMe++9Rx8j+/vXWNgd4hCQasL9t+5zaD29BGy0xYsh5jJodJYcM0FHEGVQdjpIqXD8UcWLpTcZ\nXGH7mVzQBGJEfBFEGcA0jjYEdtUSdAyvESFbITtIUdkJjtBnqsqMadQDflCW751R3SltxcPHp+Ba\nDKXKstZeLvLxZA5DwpiiiE4pYbDErNS10MUE1hKyIiERc8RaR1N7TOWQ5UCcNKwlFsw9KDmBETe2\nB4UrMcTIrnEsTSL1EZk6qsozmJImPgxKl5XQDmzSmjiZ03WKESUaCFmxVhkyyGiNn/Yq4tO3MPfP\n0f0J9tUfJsVINmB7JfWR+Pg67h/9N/Aj/yHM75IaD/M5ygTlHBcrNLaomyI5oGxQMyHTEzXxxc/+\nDp+pP0abM60xHC1g+eyEtA48enODTCw7+xVmLpi5I7xgwFsekVl52AxzzlFOBli2gq4jNh7RHBzw\ndoDdnLHeMBNI1rM7jWAa9n78Bq9/7lPAhlTNCH1Nfgw+wek7jzGnkerJtFDAh6RS2F7Fd3d3Obh+\nSNM0F2hE5apCbrkyZMxcXu23V/SrVcN28n71ql8MNYo8+ao5bIzx4rG21cN20OjGNsI5x+7uLjuL\nXfb39zm8cR01wmq1LIM471mtVqzXazabTaFpZ2VaN0jK+CHjvaGntDlQ+noVqBJIn7BdHEvxy+em\nqdjPFV/CWNKutUzky0ZWXmPMOrLfiszbWksc5ytELYSKDJIyv/kbnyOnRFCoqgo/ZNLpmpCUFCNe\nLhmS36pHYXwP+z4UXUS+DOrVkfIsaWxLGD8XBK2EbARfl5aNrIQhEchl2Di+NigbjVfBRy2Mz1En\nZyPMOsUPSmWEyhog04fIet2XdiFnJgq12VaR5TxJKaHO4BYTZG8G8watpBhv1IZsAOm5Xh0TBaxr\n0CjQ9Zjzjuw61Hliu0HjOSa1aN6ArshmNWaFCOebFmPs1kKC0PcALMOmQMNtZn3aEfqB4A1dbUhG\niKcbshg2cSBrKnkWS8fRP/4lTr7xZZa58BRiFrIa4mhQs8AysZndHcvhX/5xXFc2WhKs1ko+V/T4\nCCWUfI0nPD4UmwIKdTVlvtjj4OZNmqamNo7KVeXKXlUXlQCMm0gupiMXMfL2gyexjAvnAzHzKV+g\nExcCp2/Jcsi52HTJqImvrGM6nbJzbY/v/dj38dxHX+Dw1m0WB4cAdF1HPZkjWTh9fEIImW4IhBDY\nrSacnp6WPMegECNphCNDTqg1JAvNJtOk8bXZUcCVypU212XWQu3AF3u4rXlsjPEiy8I0nqEytJoI\nKRZb95RIKVx6T+bI3/irfwuVTO0qepOYTCak0w3Do1PMaHvoxSEAACAASURBVO5ZW0cldsyAKG1V\nZR0NxTnZWlvQGmvp1htsH4kpkyrBuxKAW1eeygqqiYkpxqynGliloRAuKksUQ+tNiY43uRBFjcUm\nQYeM0yK7thEYMi4IGgLL5ZJ7X32NjcnQTOgC9G3AqXAzZQ4UqlE5KYBvKkzdED3kw13yTkOeG2Th\nYOYK5Hm64ey3/gb2T36M1L9EDg+QdUt2HhPfxyxbtH8fzt+E9dtI7DHpDOKSQKSXR7zz4AGSHVHL\nAFFczfqsw99e8NSZZedgQnuWOF0ZugxBhAc2szRCjJnptKHvezT2hCnEz/4KNx4N3P/sb5H6nrVa\nzjrl8SrioycuwW6EqUm8dPeQ6f4Oca08PAvwUJg/EMzydbx3hX7/hMeHY1OQklWwM198oEoQofD0\n8yWz7kI1KZdOSluK9MXdXakS4BKlMMb9od+rnMGawmbccvqvVg4FTRCapmFnb8FsNhsHn4aUC312\nGDLdpuXtN4uLdMaUVkeEKiaOViucK1XPVYKWqpKGhMlbKvblW2JMkYDryBL01ag8HPv18toN3rsL\nZmTUfLGpENNo21ZoxGLLa6x6qCpPjRbnIl8QhKotxh8RRUO6eN++9Wv7vnTdgLMwm00xlcdag4kF\n+SgvoCRLWS0xCs45NinRSUZrQzAl9yukkdZuynNVVZJA66Afq8BoIDih1cSQIpvlGabri+bBjjMn\ncYSQ8MaOGRPje6Qybo4j8jQyJIsRBmAUGVmCKa4wB9+FFYvpFdUWm6ZkDDm9D7KE/gzNCVKNJYB6\nrKlRijitogytg8KQEqIOh0DfUyWos0VXAyYWPkgyhuTLwHkY0agdpxDPyMMeR0cZ843XSGN0XgSW\nbaIPgRzAnrTkCENOzJuykXIesKuEHisae0QMpRx6suNDsSkIgmsmHN64zu50WloFX3gJ5FiGjr4g\nDjLahas16EiJNiNWfzE8HBdORrG+YOxQyvUwsuUuhnOM3IbRrbko+8oJ5KuiQXeupBhNqopr+7tM\nJhOMMQxDZLVa0XYdy+Upn//85zlbrdm03UWpf2M6o1ahXXVEM4qNQsRJoRzPl4VhF2Mu5JaYi6jH\nGNLUl1AVFZIm1mkg2Q+2Rn0/YLMhR1Dr6K3hJAWCd6gYauuoXakaQh+Yzmpe+8LrbAxUjSflgDeW\naTPhoJnTJAFTrOasLUM/Z6TAjdYwxAhGmdYVoYtYVaqU6fuhBPRm8FkKH8MIhx48xY26vjZlcjgn\nVzCIEoGZWm4Mwt5giUlJIgWZ8JagSm8iG1cYkBuUtuuZTiYcb5ZUVYOvPfXElYRyW/HIKEsgjW7b\nQ0ykISCDRdaCLDfo6RrT5ZL7oIoK9LsWPvZTaPwx0vSbqPfYSc20O8L85r9Pc/YutEs0PiL7GWKn\nBFngzC0ajUxzw927N9Eu0YZcNB1Z0Wzo77WcvLTD0dmGM9/Tt2ekqDwcerqjjvzghDqVz3k2nRO6\nnrrt0Be+H33+OfLOPufLSN8lVn1mheNdCRzJwKKy3FhmJr1hPwX2dmv00RHm7TOqd07w1T4azUUK\n15McH45NYbxSGFO867a8/235f4GNbyt9KWDTdvF+gMJ85T6vVgpX1YTbY8t2LFeShHGXvIWSm5Au\nSm83zg6cGOq6pmkatrKOvu9Zr9csFgugXLFDCIgogynlswCpS0XxZy1oCbBV+8HoOtmGuSYFd8W0\nljKZTyhJL7kCW+UkFJgwW4HKsdJA0IyJlPRpAykpr3z8Fa7vXmMtQnLlPfJNTbKlRbBJkTEeDrjw\nbLw60FUjFz28MVL6dWvxuVQGGi6fX+0NTVYaY3EVIAVedWLBgM8Z10VMW6L8QspghNBGYj+QXEnj\nSqnMIAKZenfOy//8p6F2WAvGCq72GAcbA61m8mhLXwhZFh0y0iXy6QpddWjOMC7EUiI6rH6ECMjk\nBXT6DFrdIv/2X0EevEG3+TVctylSatOQJYK5gbE7GN0wscp0Pi2VjhZruCKyU7RNxDayCWuqGnZm\ne8XlelpjsRgnTKPgQjmfU+PocBz+0Ke5+ade5faf+zGC6vieQ4iZuIEUDY1U3LoXUSt4rQvR7egU\nc7rBZUOu5+Vzuiow+jbHhwN9MMLe4pBnn32eSVMhzuKMK1kGWwajMWXyjsGIIalgfMHrrfFkKfDQ\ndqGICN6MPgPiIJccApFy8qsR+hhQ4woWrQohwwjDJRRxjoTixllDVZWINt/0VOuO1XrNydkZuW3Z\nbDpqP+Xd9+7h61IyzuoKM8aMNxhSZTnf9Ow1NSkmtDKotcTaYLuIWEtwwtpDJ4rRjJWCUPQxY3xJ\nqGpagzdCpsir1RV16RCUXgec82gOHOXIvq+RpibGBK7i3/nZf4MqtKxPOtLEoAQmxuFUyAbuLha8\n2y6hspgkBJRkBHGGjTFE4/jc+8d87f2vkZv3ufFUIDq4v2l59PV3mBJ59eW7fHK+z2wC8xCpph7b\nZ3oKz0S1qC5XxnDulS47IoUXoaZsgJ30mKnHiaVTCJJJk4q6zgSjqLXYpAxSNAKVBU3KOsEAtFKC\ngY30JBOQzZL03gnSd/CNJS5UpE/dRWYHoDWiK9JckL3bGHeN1NxDjx+yPvoCAjTP/zj9/Qbjnian\nz8Gwhwt32Jl+F2H9Ta7JLp/+sVc4rhzmPLG4nzAz5fHUIV2LPV+x//I1bOPIBs7OE/FepF4Is/1b\nLDUhtaUalEkdeWrhWe829LnnvHU4A2fdBjd4ztePOf3GEdVzBzyczXmJGdMMZ+vARDx39t5A33iT\n1M3YOXiR88d/QF9NyhvzBMeHolIAoRpLdWPGrEYur/TfOgXfWrBf/CwCYxblH6oYlAus/aq+Io/T\n8aylZbhaTVxyGLj4+eqQ05jiWNRMJ/iqIoXI2ekx77/zNn23odu0xBgusHaV4siTR5tzlfL4mgp0\nGtZr8JZQFQpwkSOX/jelRNRMTsK63ZCl9NpRR/u0cbqexoFEPa2JMbCzO2W5XlFPa1LIxK6nMpbY\nK9im6AX6RDsOJbcOR5UtyAnjHEedIVpDnE/ZTCYsvWWTFFvVYC3ZObracDr3HFWGb3QVv76CfyiQ\ny/AdJ4la0kVbZ5LSJKEeh23RQUcmaeFsDAo0nuQMjDb0TovX4DBu+n5I7MSim3AUhCKP3o2Z0qYV\n0BpA0RCZxKJM1U2LaMkEqcZAYbEVag1MLGweYlcrbOqxr3yc6vlPErobiDkgE0uFIbuoPRzRLKUl\nce35GwXmRBm8kGyRzEuMrHPATAo9XTQznVgqb8eI7tKueUNps7wjr86xKeMM9JuBdt0xhEibE8PQ\nY65N6WJPXC45kw1qcok1PMuYNKWyVSGKNXMqW1202k9yfDgqBRF2FrvUtR+hxxFOMpeQI/CBRe9s\n9YG2QYzDjEOuqy2Cr0veQx4n9mgR1jTGXzgIbeE91aJLuPRvvIyw3w4gVRUnjunEsZczRiOP332L\nL33xc3gzIQ8tjqKJUC0naUqJCoPpIxNnWfehDFBDpLeGIcG6UXIu7ZJTQ+pL6Orx6Sm3btwg5Z79\nnR2GlEnziiFldnPp4SsxnAw9rpqQgbrxDDnzLIbNOrFOLYv5jD5nPAGTLbVVQgvnQ+aWMwQnGM3k\nXNSQ2Sq5cqS65nS9prYCtoIwILuG/fmMTd9xuj6F9ZROB6qdHR5zynErfOmdFd98bspPRjjIievW\nc4LipAwzUx+pGkWM0BvF1KPke3vu+uIXGfIY3JMSQcrUMinUSfDrhJ+P1G9j6CSz7g1Ji2hqiD3e\nC7WbEmZCG5dQVfgXniY5qG/cpoubUmnWoJzB5g3IA2mYllDbO38FvzkjPX6ICRajiRzPgTmuWrBi\nhcnKSz/wCi/+8Esc9YFsHO2BsN6AbI5JxiDZUwUDJhMlsQiZ3V1452GERc0sgdNMsol5EOqdBmZT\nzkJAHLSnA/iKVmfcmG1YzyKzRytWq4e8ORtopeLQTUit4u5vMExIcYXdu0Wq5jhtn3g9figqBYWL\nuQFyiTJcJSTp+AWXqIJYN9J6C5NN5bKq2A6QyrCpaBSyKiENOLkcJm6v/H9UtuT2uLrJiFxCodXo\n6zDfnTHb3eH5Fz5C0zRlFkJ5/hfeC5JwGRyF2GMMPDg5ZZMT1e6sGJuMjxsoKT/Oe7IWm/RMgdgy\nSpsCgzOc2EjvwEXl5OSEs82KECJlVmhQU6jIVV3TxnCBTqQivWBS1dTOY3xBUiyFT+9mM2QyITQV\nwYzucmnAaWBSO2a+xviKiAXbcOIymzTQhYH5/gLaJa3CV88Svy6Gs7a0gRPJeFOUlnEypn2JYryi\nDtQWV+Nky7BcTTGJ0bF6NFI22CTQ2uLUHEdUhKwohj4KfQ9hSFhT4Z3FGcjewO19qBz6/C3yd92l\nNwmnhaClJmFFMLElpSJjN2GAcEZcPkK6h2Q5RXQYqZNTUu7BBgT45J/5DCftOTJWDacZVmfnpKHQ\n4UiZ0AewpQo2ClU1skYpZjFGDbX3dMsz5tdm2FpZLGpuX2/Ynzhu7DTMc8LtNcVNqvY0s33Co1Pk\nra/Qv/Em4fwcmybokKlMuVgyu3HFLfPbH99p7sPfBr5r/JU94FRVPy4izwFfAb42/t9nVfXffoLH\nYGdnt/TspkholYR3/kJFGEcuQkolxclYU6BKyeRRccx4sm+/hJJr4MahoTHQVHWJtR/5CWY7xMsZ\n4x1WyqJhTKiyCMZ+sCVBLZUVZpORdfnKq9y++zQnR8fsXVvQ1MXubIiRqfEkUzY8owJRqbOSznv2\nb9esYjnJN6sV02aG8ZkGR64KSaW51hOAet6U1xeK4YpVpfeRaA0n/YpbOwe0i5ru5Jzq2g4xlw/3\neFiy2Cmklsh2g6EQoHKmkYK6UGUGZ3mw7FhXoHXF426NbQ071/awjWMIiZQTyTpOuoF+WtPOJpwG\neNiesPaOQaG+tc80G/pe+P244WElvJQyP2ITisWlTLCJaCxzItF41iRCtvSaIBcp9UaKa5V0mf1k\nkEpZYgiaESecTZUhZcASQ6Eg5z6xOm2xE8FOhcEpogNupuTbu+SbDTlVaLRIG4obVQSMJeUB0kDd\nHJCO7hFXG2RWER00528R4ilm5xOk+jZVEIb0gIV/lkos/+K//qOsGs/jCCZm6rNEa1u4O0UqgbdX\nrI8zN2oIdWlZzjfQLITutGNTKXEYCLUjxYfsJ8PDOrKnYHeE209DHeEoBB7tgDaWZd7H/59f5Bt/\n87/m4eNT7qVzXLPP7v6z3Nx/iRAX5EE4ePYz3P/642+3DC+O7yj3QVX/wpUF/XPAVbH266r68Sd+\nBlz2fVfToa0rVUDZQcc05a1TkciF+4+xI4EpcZGcvC33tzkBl05DSo5l+i0jRTqPLYkxBlImGy4c\ng621Fzz6q1qJ7XPwY9bBzmxObRxT3xAYUQwRHB+sOABCDjhxOJTN2Qq/Y4mqONfRS2ZhK0QLxGoA\nX3tQpQVi2+MyTCvHWco0Uv4v2ho3q9lsWioHp2dL9vZ2WS03DHGg7QYqdJxRRExVl41PFWscESGG\nyJLAkfT0IdClsmhXXcsgiWtuQU6JjCWS6IYIviZnaHNP0jWunhHnO5yen7I7m4Jkjoae0z6zUvje\n+YQmg0/KDCGIwedIyEXGbUzxSXCU2DXjlEEzPpeN3ygjd0NIQ0JcEYvFlDFWSH2m73uICd87eNwz\neVroTPlM4jzC4DG9gWQw1haVJBGnluQ8ZtIw9LaoH3OgUUeMG8I7/5R0INju5fK6V+9hWCHVDTBw\ncOjZpIDgi54kBZp9z7CoqTtI0xVtF1jGiFRw/+QUocIcOGwX6UIEimv3zu6CzWmAO4YQitlvrjK5\nMvjrwmIKoROyUTZvPcC99hb0K6x2qOvoTzuOOyV0hqANs/qQyeTgidfjHyv3QcoK+deAP/PEj/hH\n3w8pJSZNhWrGXSnX7WhBLozUW1tSoLcLWSlwomBGYlL+FrGUuTJ83BJrLtWE9RXGY3GBLvyBLVHo\n4nmMvg3k7WxCL+Yfta+ITVXYgSgmpwtuBGQ0FuVckQHbMU1JWFhPf9pyllfIvEFj4pf+93/M937q\nE3hOuXnzkLbvkcpjomArz5CV1aAMMVK3A3uirAOcDh3eF5OS1dmazaMTbkymVDGTZUt5TuQQURdL\n2Km1dKFj1XecuB7tFd9M6NQQ1NKnzFAn5hj6TU+3adHpjK7xzOYTNgjt+YbZkLjtPWnHcZIGUhd4\ndHpC8+J1wmPFxI5jsfzSbMqnZeBQItbVNClRiSGiVLmYsnZZkZCZ4uhFOTdKcI5HqXgxltRxIecA\nKDFlApGAHcVGykxh9qjn9Fe/wvG/8DV2X03kKmG7VGzpeiBk4qaHFfgQCShMrpFmN/HT64T1GYYz\n2nnCff4XcPlddHWd4dohvjsmrj6LIhx878e4M3uJtemYZEAyEmAzV/xuw+7biVAJWZe4FWzeX2Oe\n2WU1DFxf7HDebYjOokZoh4z1jr7ruPfVd7hx/VkcmZU1xY80R6odh6REXCaaSnjjtb+FXz8sClax\n6NCT9T3ciSG2is+R07jHrN574vX4x50p/ADwQFVfu3Lb8yLyeRH5pyLyA09yJ2KKE7EKiLvE3beL\nHrmcLWwn5XY7N8iF9red6m/VkRfWkFqGjBjBOI9x/nIDoOgLtjyAOG4aFvnAHAG4mFHkC67ElYrB\ne6qmZjItPXrtK5y1RWa75RBslZ1a4FQ1Jc+wBvaqmpP79zndrHnxM59k4xxdUh4sjzFOwED2QiTz\n6OFDJk6onMXPKhZTwzXvmVlLHaE7aZnOFkzne/QCWSNGlUoVM1LG/SgEa1MoJKKqmLz0m75g+01D\nNha/P8Hvz8muUKqnk/m4sSneW6wkHKDLFY2xTOuag6lnt/YcLuYMZyviNUNaTFE877bwFpalMSRg\njo65kSUHcp4oQTjOFb5CKO5O0UCsDL1mEkXOURykypwp6+jIBWXTthCHQBwCZCEmA7lGvUdlRCiG\ngGwGOI/key1y1CLJI7tPo3WD3b1J9nP8N/8+uX8fk8B+4iegj/hwjqYzxHlsV/Hqp1+mzUKiUMJT\nBo2ZKoN6yyyXjt45x4ZMisLO9T3YsdTzhqxSZP/O0McyRxmmECMct4z2cUpOBq8gqWSgKuDUEbXA\nuQOFwGZqR914Jo3DkZgZpV8tn2QpAn989OEvAr945ed7wDOq+lhEPgX8koh8t6r+oWckIj8N/DTA\nZLbDfD7FVxXGWby3hVQCVFIiy/NYvm+RAsYBzXhfqCY0X+ofLloGczl83FYEVkrpqKqwRS/GduCi\nTcjFSVgpCzrnjFzYpo/QpALWojGVk7ISXFWyBBkfz9rtUNOSSEW16T19CIgUOzIbIy8eXCdlw698\n5Q+488rLyM3rdA9b/sk/+B1efftVHrz7OSZffJ1qNkM2Pb7JHDvFdIlrFqZi2DWWG03NkQ4MMTO4\nTOUV6fpipqqgYlmr8liLruJRaHFmwuCF+s4BXQoQLZvasupgYT3xmqNGCRFizmRXyFjWJXacRaeO\nh4PSrnpaa1g8fUgTI9WDNffP1lTXDY82ntPX3uLRq8/x1Znw1Cn82eTY95l7RGIy2CEx9YYTB6dR\nyaYQ1wKGLIUSHXIo9nepw1Io3Oo8MSbcSC9uc6K6bsg/codb332XxwrVMNBlg20jrs2kVcC8/zoh\n16SvneOcwX/0adqDp9DTHo0e8pT02z+HT4b4iacJq1eoTn6VDUA1RyYfYfm1d/gL/9PPkG1Fa4tH\nRJSEXUKUQHPNcRqFcJqwM8tOdHSrAb8PGiPeGZbnA7rnSalnvVyzoiXc2OfN+wXKbI4e0NwoiFWW\nXNLGY2Q4hulnvsDOrz7LZvkuYkvbPZkqrqkZzu9jdELfPaQdHjzxov6OKwURccC/Avzt7W2q2qvq\n4/H73wVeB176o/5eVX9eVT+tqp+eTGfUk1HzwFXOQC6MtPHKrarFwuwCHpSL0NMP9PuYUekolIyE\nS+7Blg+xTZrO49XfiIyBrJfsva3YCEb240iiKsWIXAwiRYq/oWFb3pZINWfs1dc7wqtSrmDl0UkK\nPZARsmQ+8/IruEcnfOOzv8Pv/e5vsjk/5tHx+wwI5+3A+bKlO29pNx1Dnzjp+mLtJiWA1ZA4NA7b\nd0xDxsR8Maw1rjD8SnXg2Ghivr+HcYaJdWgY257KEEPGZ3C9ImIYyMX/wMBmiGUYLCXjoDeeaA3f\n/PrXeHz/bQLKGsNxv2YySbi0y+T413nzF36Rozjw6Dzz+wN802QOMBxkW4xZ3OgMZRLJFrqzOCnf\nO6GX0kIkzSCWKODqcl2zYhBNTOYzaBrSvGL68nOsU4kL4AIFygSnaN8ynDxCwxLJa5KEcuHxDjUN\n6j317g7uI4fw6keQ2/8t9vERUR4h1mOnhzi/wIQN8xvzElzkDIZMXXvwFlaGZYDN6QY/n5InjsEo\nNoDUFUYNmy4VeH00/Al9z6SZ4eZ7PF4NnH/+S3R9wAwVOUJnDEGEUJXKo/roHXy1gzM1ZvznpCZ2\nPc7PaFxN0kiS7onX9h+nUvgR4KuqemEoLyLXgWNVTSLyEUruwze/3R1NJhP2dxr8hZjGjfBjQSIi\nMqZOm9FOfEyOVsoVfysykrK4AGIuJzOjD4Bc+TtsOUkUSkKwMRd2Xk6kZDBcEVRdQJTbloXLymW7\ngZWBpS2drTcwBslYUxKgVctVpB9FO0aVQTJDDmjKnGk5OYTMzZ1dnr99h5Qjr731OivjkVuH7NYT\nVicPsKEntco6jopO35BjRowlVQXfv+lmLNcboi/BsonSKrW+Yi2Jh/dPoHYs9vawxiLW4ivhZLnh\nbJPY3VVIkanN2JzYICyj0ufi/LObYZNz0WZkJWQltmv0wWP0pY9yvopU+3tgDK0Ern/qy6x/09Gb\nmrdXA60MnPeGvz6F61bogdNsmCRlYQ3HPpOyEElEL+ReSUMgVhmbHHlqSbHoK6qhcIBSk5jm4m3Z\nxYJMZAckJRhDjrHMnepEnkaEjPQb9BN3qVND13hEG3TzXhkw+0Pi9/2PsF5jjv4vkq6w9gBjIzE9\nx64cIvlrrKQHHDEIzhqcB7+oiO8PpHcDZ3nF/vfdpB+EZRyw64FZhl6EtiqcnC571gNofg2Ycv98\nzco46v/11zj+1M/wlf/jc+w2v8GzP5rJOZKDI/oN7oUp7rmfRU/fgziQ9Jgh7rOYTdDgOM8B76a4\nYfeJF/aTQJK/CPwgcCgi7wL/kar+AiVd+he/5df/FPCf/N/UvWmsZdl5nvd8a9h7n/FOVbe6uqqr\nq0f2wEFkUyRF25EUSW4NlCxbhiyL0GQCsRxHUpAYgSUE+WU7gQ3YSBwHQYTEEeI4tgNLFmWLoiZS\nE8XBag5qNpvd7LmmW1V3PMMe1pQfa597b7Upsp1frQ0U6tY+555z76m91l7r+973eUXEkbu5P5lS\n2vt671EUBZcv3ZtBocYc7/lXluhEHqyn1dt5PwkiijuiJTLyB6tt7ibI63iMpwby8d+cbAdWnYdc\nnD/pdpzWLiQlxH6VcFzUvOM3yoXEnJx0kkuwem7rHRqhCY5l5xE0jpjZggkijqMm4GPLYw8+wnyx\nJErORayrcwx0jsdDCaUIqSMbluiViJLBLVVRMm9rvM1U6BQgDgxJZwRZ6rIyNBdYE03jaPeXdHXL\neDpCJPUxcHnQeTI7wS1mSAxYK4yCYh46QvA8+OijVMZy02edxpJEYRZ86ZMfpXruBd7xo3+d291/\nxT4Nqi2YHUA9iqwFYaKEGSlrEiIUCK3kbgOAj+BFCCKQIlF0XgkuPMW+omk7iguCVhkvp2Juv7pe\nLJWiB8no+6TBrI9IWxsEBFkb0roKjIBfYLTD1Yt8bVSRtKhRoQLVImZEoET0iEpg+741klY5c0IV\n+Db7EzKLMrDY22VwaYIQEGNZn0Sa+QEuJNq2oStyWtQszUlas7d4kfFWorAamyz6vW+jMkMOF7+B\nKUu6lKMU15TClbCcg33sUXjms+BqoooELRwdHTGOY7rUAAYtw+M6+9c7/v/mPpBS+vGvcu5fA//6\njb31ySEijCYj0AqR3HeG1ZK9TxzWeQAaVoPc9Mag1aBTOeDj1ISitEJyK+F4YIeeKPR6g1RKqy1G\n77HoLbah356cRLblCQElqFO7r5VU+tSHkcVGSnqvRsTok4CVZddysLfPJ37n93HBY8sBoPBthxhN\nXddUVcH5Bz7Gxcs7jNcMW6MJI6uoTJ8dn3KE64HyrKkiW5VF9QuhDCPZGMLV2QFJG9LAslQR0yXO\nbmyC0YQs8iS1wmK/ZnO8BmZJCjEnJiO0oqiJzCXRRk80Bb4JSK/B0AlGuiJWQ2oXSJ1QqETnIkdX\nr2H1gPjCBte6s6jWM7GGprS8vJjz6yjepRMjAtMQM/lYEiXZ7ajRdG0gRCGIp0BRauGgX30pHzl8\n9hppOsJdLDAGOgIxKRrRdIeOLnhUsP1oNUjo8CODefuj0DjEVygnxADmSwf4w8Cw2GCZOkw5JKga\nHxJ6ei+h3UJ3E8SMUTee53v+iydRpQXvWHqPczmer5DATAUGpcWcm2J3LWdbz/Kc4sXbDYREPXe0\nk8isg4RQu46z9z/CYukxhWDcEvOBb+HLs1223lcwOltyc+YZLhpibKlFsXYUmf5gy8sf/yiTFInd\nkvYwouIRIz1GgiFGx2CwAYs3Nh7fFDJn1e/1XXT5bnmqFygp5U4Dd3ISUh+iIrpvxUgvvUNIEWLK\nfv3V7Bj7Qb7yP7we2vJ6PQHQo8rzc07XLaR/7DRf4JjZsHqZVcEzkbcrfVcwp0156rrmcG+fvZ3r\n3N7dz736JDRNgzJ9Jmb0HBwccLh7mwcfeYy4WTBaKzhLl3X6BAwJrxJkBS3W5H2zkhwBpyUXPp0W\ngsk5krHpXYIqi8EIUNgSa2uu7OxQnFXHXn+RhCfSSv53UhFNySIElpLwPXZeu4j34E12UOqQqEYD\nys2LdK/sU37XhE6ENI7MXEcIwuEzn+SFI7g8jSg0qs3KSAAAIABJREFUQ5WoU6IiYVPqE7dXKzMo\nfGJqFCol5ikL0lJlcIPXOFjssaY3cAIKnc1tLhGXNYJArVDBkQYgLpFiArGgFTEJsVXQBtK+oK8d\n0d0tgCXYlJWXJpBUCVUFdoBRJVWhuefhB5D8Vnn/WvSrPiOINTirSNbQNi16YqidJ7YtRaEoS8cC\nIaqOuvYYXeJqjVIOlQJWBQplCKZiUSSaecc6hv3dAwaDDUwx5LC0oFs2L95Dd7RP14CWgERLlAwV\nEqNx/k+ZSxIRrIBWks0pvUEkpUQXc2bjqpBHAI9HG0FCiVpdOSZHiWVlAojqHZMq1xSOqUr9YYw5\nxpbn1nc/4NNJt+HO5Ch1x/kU07GVO0rGsxe6h6jEno7kI1EpQh82s5owVhqLo8NDrrz4FZZdh28D\n3kc63+aVjAZjRxwt5lx54ct88anfZXvrEpcffIi3P/E2JhtroBTjqsocx3rO2cGYNnYUSuh8h1a5\nsDgaRRYh0SWhmR1liOuwwBQGG8GlSNseYqvE1qWz7GuFc46qD95pY2SRDLWDToQJkb0iUAfLrehI\nVWLW5l+ucZGy0xwNI6OoaDYL7v6Od9MthHnIVCrVVSQ9hz/6RZ55X2BnAQ8PIt+dYEMUVf5vZseD\n72CC4HTCFDCtI0pF9pUiKp2pye9PbCpN0zhi0FmgFvPv7kNHcZjonr4Fz7+E+eF35hqUcvgir4VU\niCS/JL5yA770aWI7R+yD6LMXCWaClOtIMSTWB0gZCYPHGc87nPpd3v/k+7keAl5rYoRWIvM64UpF\nMUrU80PmX7jC8NxZdnxNHRPVuYq6C+wvZ4TBOoOh59WP/jwbH/jryKxDhTmTjQ1MGTm6echsnrCA\naM3cLGniAjMvuLRR0fzLn6X8YMnF7/ljFsOPsPOp3ybOclG2Gzq0jqjOEOMbN0S9KbwPpEz7jawG\nb+/bTwkrCkNWu2WeQF8/EI0uEoFcOIw+nOzr1UnK02qFkWIkcCc96HQozGkSMnDHFsOYE76A7qPp\nXk92srbsE5V6zqPcSUF+PdvBlhXn77vM9v2XweSsCW0zsck5lwNeEFJUxABNHdm5cZWXnvsSz3/p\nFW7fOqJziUXb4oNhkRSzLhcrXRQ0RS//zp+tGhjECqrt+q1PTpt2/eTbNonFvKF2noXLd1GHQ7Ri\nYTXBKrrg8ySioTOapYY2RK489RSlKA4JLJWiNo7tuiDu7LLQJXUwRFFoFcErZuqQpigZP2DYOWjY\n6zQvHgVuiEBIFN4zBgrlIHhGjTAKUBth5hNLr7G+z1a0CpU0sQPUykxnSJKR9vhI8hZ75SpT1yCS\nCIVF6woSiE8ZlhvBzqGQSJBdVKgJpsUkkz0kKLReYlmiixFOCTIaI6MT7UpQkeBzbke0Hq8DQyz7\n16/QzRxNq2GYYKJJPjHcWkdS4pY22G7CREV2Pv8sr3zuGVLn87VuBW0yeSrVNbPZIcPxAArHl5/9\nNK/+4j/Dt5HhxccY3/9+Bndfphoaap9XpXXn6JTQ/WkzRCHQug5lNJ13uYiYTsxPUQmRXNE30kNV\nEaJ3/YoiHE8Eq8G3GogrJWKWFOgsKpKT565WD6tVwOmi4OqxVftSRI6BqKe3HEayuGdVeIx9wnXX\ng1hDyFudVRFTKUVRlWxtbfG9f+Wv8gMf/DEe+4a3Y2zCSO4oNAvPYrHAI5jBGqPBGpPpBiHCqy8+\nz2d//xN87nc+wQtPfZHF1X0O5ktePtrjZlujkiepDiTjwl/e2+MwRIJRWF0Qo8+I9phyt0QSi8WC\nedtCaXJORuwYqZxsFVE0HegoDCWwXmRTz7z13Hz1BtNXb6PmcwZo1h2EtuBX/9E/44s/9fcYtgkf\nNaHI7Uyja9ac4uhH/z6TZ3+NEkVztODFnQP+3eGcV4yQtDBJsC6WpOC2eEKKeBIHU81O4Zkr0EnT\ntI4oGeHW+JgRbclTGc3QBkwa4FSNuzxgdnfAF2XO6IgVNmmijrCMlC7gpobFp34a0/4i3WAIgw1o\nlrC4ScsN0mf/Z9KN38IP9tkYHvJtH/xejtom+0hSRvPttx0DUVRzg4wVSwtnt8/TTgV90TC6WFAM\nHGqocQScEkZxydqPfAemM6SDBW977AFGKNaGlrISytgy2DnEXX+FSkqKRcng3Bk2Rx0X/u2LTJev\n0rVzuotv4+EP/PesPfE9qO2zpO1N1KhAKtDlG8c5vzkmBTgu5GltTzkiT5b5qyM7Jk9yDvK/Qb6K\nX/z1noU7wK+nXm/13NPnTk8wp4/Tzz/99em0qdPnT4NhT084kJmJ4/GUS/de5on3/Rkef9cTpB63\nVlTZGn50sMfR/h51XeMRivGY0eYm48kQFx3Xb1zhhee/yMGtW7RN5NpOnbPvYsJqg4uKg+Wcpmux\nEcaDIW3b9t0KSDFSGkNRlWib1Z4DbRlpi0kRRUbF6QilaKqQiH0OZxKoTMXVzzzPxppGm5xnYfWS\n+Mef5vatT9MUHQOtCVGRWoNngDvcgc0Djt71GFIILR2NFm7MFV9ZuNy1EBgCttD4UvA2f65OoDOC\nN4LvOmLT0S7rXKuJiej6iVdHjM0mMEbC6KG70X/2MZJzFJDrKSlvBUszpA0VamvEuFMMth6HtSGm\nGOF3r0J7gNIFZmsbs7lJWdacGRfc/9AlCpPb2V5lD0+HYFsodzsqBG8V7fqEcrNiuNZ31Kwhpdjn\nW0Ta2YDFKxNGXnPftz3K8L67UEoxW9TZS1FautdeZLI24NyZLaZYkklsP/4O7jrjmdsN6u6AIS1t\nW7Nx8V3c89B7SDLisJnjJVGVa19vCB4fb46aAtzBNDjdPmy6jqLo9+r9eaM0KSaUMhlWghxf5HcM\neLWKnlconZe/pSlO8Odwx2Tx+mLj6YLkcechhrwPFTl1LqsdV8XHY5m2PqFG3zGx6d6opRXTwYCq\nKBlM1jl78R7ufehR/uiTn+CV55+nWTR08wXS1bT7u+yWJdOtbeQRQd1zic0zW6yvDXHLWzz39OdY\nLhzrG1vEcJ1H7i6JwXG1XRDVAdQdZgSLtmN9a0oXAlrnOLrOJ8pJS9HlYmrZ8xV9CHQuoIygGod2\nkeFIUQRhCWwqMBstF3/ubzCaw90jx02x3GgVT/yTf8BovaRzIzqfjWZNe5MbL3yRy2cHtD/1A2xe\nuJd5ahkkR5LIU59/mReObsP3vYeHgSJ5tiy0UdMoKBtwkDsm0ZO6OeloSS2gNs8iSeOWgtGOSkqm\nBg42OtpoqNdKUjfJQb3zBukSsUvYWuF2a/Sow/gB8nf+DnV8EpoRKSRY3qQcDQlmRPiO/4muXmDm\nn+HetzzJ8OI6pCyawgtLJQzaQC3g1/ufeTICA2uVIgWPXQhFFA7HEYNQSST4AybrmxzoFlUIbt7h\nU2KzMDgbEB8woebt3/R2Nj0ctHs0owFGJWwHQ15gHpfoowuUhzVXP/9p4u7TFMsb6HpGGkdU+acM\nsgIng9O7iOgT6/OqxgCBoiozVi311f++ZZaIp1/ouDugTnULVg7MzHyMd0wAp+/gpyeV0/WH1/+s\nr//er/Y6pycCIHsy+iQmkX5PY3L9AWVxYcjWubt5yyOPsTw65Oa165Dycr/tZrRti3OOGDLmvLn3\nPrh4nul0i3MXpsz299i9vcMfffZzjKsDdDHHDQaMx0MqbXEpoY1HjKB6pDy9jyD0k7FPEEyiAYII\nvq8/KNOBiwQR2gRioHABcIycxlgIbUfUmvUKXOMpjjylNxxMFe5wyWtPP8+2uZtbV1+iGD7A/mTK\nqG5o5jn7YX29wLaGrxw1bANDNEWM+eIn6yR8X1hWztPs7aLFUJoKfELHgA+aKhpkv2O2OKQ6Bylo\nWi+IBjdvwYFtI+7IQyvoEHAihKho134AdgNSTQnzDqqSMNyEdBZrttHP/VPW3r3FYtoiNg+fLgaM\nKTKzQEMoAKNoWqErAi50tF4xGcK86xiOs84mu3U7jFlHygxfNR7qEsqmzvg933FuOKD8xkcwvsOa\ngsnFTQobiZIYOFiYDRiuU9khsytPYW5+gdnBdZCG8WADoiKEO6/hr3W8OSaF3u6cUuxpzWBTriUc\nk5aURkIkKk3XB7go3fsLVLYqh5BBGUbpDO6E4+Kj7lWHrc8S49PA09XjKqRMBYoRYwzOueOEaIFj\nFWVMJ+3JGLP+wNNHsCO4FDEpay6SyeGitl/Sp5SnMhUj1mpizEYwnUCmiUF1mfN33cVb3v5OXnv+\nGX7vt3+dnZu7+OUSkcR8ecT8yhG3XnuVZ576JOONKW95/L1cuHSBM9tnuPTgOXBLPvvFz7P90GUm\nhaJQEJXPUJAyFzOVzViwlHJLc1AWxJRyupHJv2vQgiVH7zGyRBs4kIQlsQjCgdFMS8/CLHCpYuE0\nyYFWLUwNzGsYJgyCtYbt85e4+dzLnL3/IvbsiI1W06ghTdhjGRz+yy9SzPf4zM1tdAvfpQSPZ4Kg\nfGAewXiYqUB1OKcclxQbZ/FtpI4QtFCNEu1e5PbvPU15Zoi9WNGohNKCaiOxSdgDCDd2sHIe9+Iz\nyOwa5be+n5YBqluQxhuobkFQLZy7iMQt6ALNtd9EPftp/snv/DKf+cic++5ZzyBdMXgF1oNUCq9h\njnC4bIkmwDDnl9RozEbBEYn2ZqLY8oxKhe0l3arI2RzDKEyLXFxfiEA5ZFDdi9WKAwmUI01wCukS\n84OAPb/NeGnZ+b9+Hv+Hv0KgBnFEDWU1pO0czv9pC4M5dby+73+sJhQ5FcZ6Kml6VVugH9iSnWqn\nE45e/1qn6xGvrymsuhXA8Zbk9PnTnYQ70pxSDj9NKeaUbAIOj1cKZQ2iFa4PxF0RkkNIWW+RUxQx\nKhOjB4MBGxsb3H3/W3j0sce568wm5aAkpYBWPVVJg3cds70Zzz3zGZ7+3B/y0leeYff2DezQcvbu\nc5w5u8F4UhI7h0q5PqPF9C5TdUeNxbcNXdO7JEMW8uiYlZG5rpPojKY1ikPraaRjvYSd3duYbkjb\nqQzNahN1YbAC5fqgJ1LnLVhnha2HLlOc2cRJonYtPnnK8TCngO3sUR/OCMvI1TbQxUSBMAWMhrqP\nhRsmTUdkOBozsIb10QBNJMftanYLsFuWG68+R1Ka0XCCKnNACz6S6jlFZxg/8xHOHrwAi9v4xQE6\ndURRUHii8VCV6PE5BI9zB3B0FfX4/VweDHjsYtkXrbNhj5Ryd8so2gBdDUEMyebitjb9NUPMXZwq\nk8N8Aq+yE1YLGDTVUKOKrM4sRWFTn/plMsHKxUQVchAxEUKh8S9do3nhaZqeD6mkQJkBXRRcdDkl\n7A0eb46VgmTM2LG4iLwfDyHAKa0AZNCGNuZkJSDSI8xVrjUoyUvh00wGfQJ1XWHbV3FxKcZj6XOU\nE69D7Lcbp7sTJ0atO7cWzjmcD8BJmrVJik4pkosknxmNJoK3J4pKH7MwSyTj3lXMQixV5nDZYXkX\n4z//AR5713t56fnneen5Z7ny2iu4ReJHPvRDPPHIvVy9dptf+jcfQQXP0dUr3Hz1KgcPP8y3fPe3\nMxxWxLCgXiwZDEqMUfggEBOBzI0QEUqtOJztEEyBGoxIMTESwUhCpUBD4ijCQRtYS4lxqems4hP/\n54d5933PcXW5z/a3P4pXnsVQcDpw45c/TnzH2+D8BiEktCQm4zW6RSRiqApF1zVYrfBK2JhMqd/2\nACJw2Chevb7P0w+e4d0pcheQvGI3wcBn+bNaz1FoRgmbPlFUcCMJX9mfs6Y1zZNv46xxhLllx8Jg\n1oJA0BovDrn+a8yvfwrrDOmbf4KwXIdxhGRIrkN1FWghVUIXLLL7ZVQzp3zvWxj8bsN9+wV1nXMd\nxEDlc/3LqkjrFYcpsrEmDAZZuh0CED1aKxrx6AnsLls6rQgqZs5FSJROSMtseW8lYk3WxDQ6QNtQ\n6MgyeFrnccsFqRwTW8Wrv/6PKa59jkbBRAyqqli2N6i7EiUl4/KND/U3x6QAd9y1Ff/hXRl1cofN\npqRTIJXehxAFYsjZCqxWAKdee6VQXImasrY5n0c4JiLT+yo8KUe+v07FuPp5VxNGTInC2JwD2Auu\nvLbMrEFbTadbSqMZLhPat5kg1ecssvJe9FoM+q2TF40pC9bWN9GmYDiYsrm1xbm7z3P1K1d5/NG3\n8J4nHgfRvPv2K8TOYU3JwWLOlRsHVNaxc/16jtzr6zFK9XdzWX2OeZJNCkIUms5jYmSoIgOJmB6l\nf+wZkEyTkhbmdJTdR7n6G3/IzsbjbH53oOs8BM/iYIeNpbD0HRUJkSy/HhYlahkg5TaxKEP0AU9E\n+8Ty8jnULLMOwmLB51+9zTsuK86mxGFfPVIxMETjomIpmiY4TLDYKBnhp2eYXnptF5Y6JYwDZz2x\ng2gUjDTuXIv88heJf+kvUt31II0LMNTYZ5a45RFqejdSWpyeIQ5Sqpmu38N3/9gHUDEj9NA9zSum\nHIKjTQb06BykM6qEUuXtY6dzyzIqMu3Ku6wF8dBJxLYW9oXbL9xi62JJeEBoTRbBaZ3b72hDFxNx\n7hEMvtTgGlIAtbtPHGh0cHR6Sqk9frlkWIxJyfIfsyl400wKkf7u28tbvcQM0oy5tiDpdcv/06sH\nyROC0urOyYKTwWu1yS2o1eog9kNRckUzpXiy8kBQWuN7o5XkF7pj1QAnYTWrc1oZbtYNcTxCjSqu\n2SwXjl3K4pczBYO5pmg7xiEvjUsySkwphagcRy+AFYW3BVPjGZcGv77Bme0tHn70UebvOWTz3GUO\nlppiAWN3AV3m1VBlI9XY8/LudQ5nR6xtnWH7rvNUVYULIESiyxb0TiJWK6JLTNY6YttgtVCIwuhE\nmxIugEueUQJlErZr2Z4qjhrL2/9qy32T9xPjFld+JrIrBVUQWn2bRXDce2aNOvVAWC2YSUQCJCuI\nRPauX2daKeyZDQ7mhyitKEcbVNvC5iJy8/ee5iPTOf/5hvB27XhNwa1FJk7pUqOURyrDziziNKA0\n584CDdQuEFAsrWCXHt0aFqnGDCxxYw158G9Q/IMfpq4tcS1i2gF+Ce43/wViDkl/9vvwso3ai5hb\nX8BvXOLw2zf4W/feRSElAxxUGuUSsVTUGmqT5ewpBKogCJF2qSjqRLmWmCudk8w6Rds5KCytC3Qa\nylsB9bE9Zh/+ZXa+/37OPvTNaA+HixbKiFsqmvmCTa3YSiN4bs5r7xgTQ013+4C19N9yMIyM/ZTo\nl0DFsDxPaQcczfYhTt7wWHzTTAqrwa61zgU5pbJE+Ricku9qK5QacoJc71sNJ4lSKaK+isNRKYXv\nswtXd80kOXXpjvoCmb6kEVKvgjxda3i9d2Ll5vQxsDefY4cV41JjApCESgoUwlwp6mHBgByxbp3n\njGT7d4i5uaoxx5JolY0TgMLgqKoim518YufWEUWacemuMYMVx0HBsvEs3AJs4K67txmvrSFR8F0A\nnQ1UIcZcmyD2sm6BOKcqbOYdGohBcCnbvZMI+QYrDJVGxDAMgV1V86LfYuQbWi0UwdMoKAbrTL7j\nCbRzqHKA71uyTjqGGxWND/hZg206Dm7vousl6taCaB3Vw5vUeBa25IA5F1TBnne8U0fOJGHp4BCP\nJyKScF0ilkLnoXEdbTJEJ8yOZmg7ZNkmZKfGlwVpWcCgJQ6WmLqiSWcRUyNiwS9h6bHcgNDhY4QY\niLpGOUu8cB8/+a2XmJl9RmmCHkDZgSGvGtpANk0h2JRY6khKARUhu03VsbHO+wAIMWW5vp41HNSB\npYHbI8f9736YXd8yjQUueQ6XDYe3FjSfepajOGP08CHdZ19mcbFDTQ23nnqK6urLRF5EqQewbUIP\nLMoMado5tsjxAW/0eFNMCsLJCsA5h7YWqxSS8rIVeou0kFcCWuUsh5iLc7Ff9q8i3grRJ2nTrARP\n5G3GqZpASBGtzDEQNpupAhnhFjntNV2lPK/i5HyKFGJIMb/mrGtoSNRWYZJgYkaELXykIbFuS2Yh\n0XSKOFnHqZqNVONIrNeOYUj4ErTVKBUJUUHoKdCSuQypVFhrGVUDfIq8tr/PMnneche5rqIVjsCs\niwxHZzmzvUYMnuXCUSqhMIJvEq1PeBXQGjrv8GjMMG8j6A1WyyS0IjTksFcbIhKFJJrWQ6o00y5g\nxVGIha7FaU1nEhuLiGfC2p7Q1i3lXRUxel7+98+yNn2GjctHiGqpZzPiZBttC9SmRUpN9B2TCIez\nmwy+8Qmu317yGal4j1Y8PgmI07wwNMyawBGaMnagQGxi3AoWmPuOUhvmBOqPvYDtRqwNhux/+N+Q\nfuo7YTSGbUFmByirkUOIC2B/RnzyfShzAXGGVMFIddT3fCPv/XMT/vKFIwZ+nRRahtpAmVdVIxep\ne2ygENgq++szRIoSApq9OqdyTwWWOqP3hyLMU0TWh8xpqL5vwPkP/mfMukQMkQPnUJ3j6tGC+FxE\nffKz3G73+Z3bFhmeQc8c4UsvUH7hw7Qv/zsaVXD+nd9LvH4bVVoOb+/hMayPL6KbwM4bVDq/KSaF\n1d3YKIUYQyJ74VVKiNHH1Jx8ZE17TLk46fsAlZgS9nUipGO4a09phhPtQuwr4jkhKuVk4d6RKcjx\nUv64bZkSkrICLXDKDBWhS4Gkhf2jOZPNLdYnQwqETgKusjSNp209c50QMbhZR5OEZlxRNi2KAhsX\nGF2iYz8BEJF+YjMISRKFymYxL1CEiB4UtE2HExiIoosJTwuiUKLRCuiyazGlhIuB1FvBiYaksiFs\nJVmInKyGQoo4pWi7RDMPqNJTkmlXtU8ELUyGmgPvmQMHFaw7w7JPwRoZQZY1VWlZpJzrsX3hHsal\nZrZsMI1jsD6mVkOq9XXagxl6fUC0UB/sokMAH/A2sdO2HIzGXEoJu4SbNuLqRBcT2vYrRECKnDBV\njgoGKlBFTzsbsHTX6eQiIU0oxgUmTlmGFikdUifcIrtKzXqFHz0BRw5Zc9ggLEYlemvBz77nHKOl\nxmKIKVIacqJVSpQIhcoajuQ9VmmqGOkkIBFmXV5BjYYW7xwxBQpbEElYDMrDaGBISjMLgUFMYBO+\nXaBDTjxfyj7V5XVCt0Z7YYrcNUAdNejdF/BHc1Q5QcIMzj+BlS9hYsTMAtPCULQTYobIvaHjjUBW\n7iHj3c+Rb53/W0rpfxSRTTKK7TLwMvCDKaX9/nt+FvgQ2ez20ymlj37N9yDHth9zC6QvCErWjq7w\nKiuac0gRLTbXEnpNgff+WBW5kkafViIGyVsCOaUzWAmdBI1E+qixvoiJPrY/Q56XQsrQFE1OOgoS\nqYOnVpFF07H0iSoGYvB0raK1hujBoZh1jnmlKFa0pdKw8KDNkCvhkLefOc9lHUiNwxGJeGzovR8r\ntH3M9YaohbecvYsyJI7ajr39BZNhRUlECkXragajErxHJ0WzqCmtMDQFnfZ477K8WQ3xvsuTnNK5\n5SkKF/MEXXeB165fxy4D6w/cQ2lgtuw4UoY6wDJlhFhrInEReHkEZZ1XcnEQSPckqjJbia0J6Fs7\nXA0ddz38ME53rJ8bYtQEYxN6a0SOh28xa0MOXrpGfbTEntnmRVvwxUHBNztNVXV8qFH8gQr8Ydtx\n/QZI4RiNC5alJx5lEdY0wvWFYfG4MNx6jOXRArNxPz4UdKbFeI9alnS2RKvrhPEYGQ3gMIAJhN9/\nmdS8AN/7Pn7lRx/i7r/kCLGkKQGXA20GRlFHejCuxyWLTtAtWtYGQigs8xgoJz3KjwQ2MrIWrSMa\nRRPhZufxCN1eixHDwRDCYWDoC+axxrpI8dYpy4eexC5qJDSkbokLN7F3j6gmG7T3KS588O8Ty7/I\n2pX3Mbq+Q7nzuzTpGsbeYm37EZ45/Orj7/XHGylJeuC/Tik9BrwP+Jsi8hjwt4HfSik9BPxW/2/6\nx34IeBz4TuB/ka9mTDh1rKr6r8+BfL1eIa5cjulEY1AUBSnEO7wHf5KPQXoNA4CSkwLhKnU6pZwD\nEVPOalydX5maJG/Ac1sUAS000VOHgEcTQqQsS7AaPzAZxdYGVPDs3bhBESMi2YlXdg1HN3aYLZfM\nteFahEVZkcYFemNMGpd0vdd6ZaSKeS+UtQQ+YkJgUhmsaDqXLyxE09QL6uURbVvTNN1xC/T4NVZ+\nDMUx6cr3Kych74u9AKLZWySs3mS9TkjjqYYFiKIGhsaA1nQuoiaW9NI16pSQGChKTZpoZCiomKXp\n48v3Mbr7Hrog2KKiHA7wriOlgPSwnKA1xlZsnt0Go2mahpkLXFGKLgZGtaBtxyMqcAbh1U/f5Mqn\nXqEVhW8NB3stvlH4vcCZeWLrgbszkm56Bt7yONpOUAF80xKdwtysUR/+KGUzI4bsR9GtQb/6ZeKz\nL/Hj3/kg9y5gOXSYoCmSELRG+R7JRySoDIPJWpX+o1UCMWYCloGhBhUdWmsGJvs6dMxXf2kSykVq\n17GXOoKHoo74gUVFTXd0BFrQ1uMbQTf7mGWgai8Qxht0Fy9R/fjP0T38LQyLEtHrtLcPINxGpYai\nOoePb7z78HWfmVK6nlJ6qv96Rk6AugD8BeAX+qf9AvD9/dd/AfgXKUNcXwK+Arzna71Hvk4Nsacn\nackI91Ugaf5JM/EoxBw26oPLWPYQcvswBJLO7ITTQJSVccfkFkN+PzlZUseUkV9BpeOCozd9KGwv\nY43xZHJCK4LO+YfzpmO/qXll5xa781kuGAo01rAYaqKPLENLYRUc7DJdeGyh0UOFjR3rRy26MIQW\nbsQZN5qO/WZBJ4nBZEoYFZg+BEXIbkxSzki4PZ/RWA1WszU2rNmS3a5lkRJrk3UKpXn+ued44flr\nLHyHKhU+RApdoFVJ8ilHrvWdnVzAzVAWCVm5qZPn8iPnYXDEVHlKZQgBjkzi8KDhlWdfpQgwNJoX\nf+XjuMMO//EvkKqsvViY3L0IIREJTE3JvWaNolZYU7F7cJ2Ja3MCU5WX/6kJLJNBbZ9j4757KacT\nbs1b/unHnqII+bMfuoL7as1fWyu48pHf5CsVNI5AAAAgAElEQVS/9FsogcPacf21PQ6+cpv206+i\nP/kiZ0aaC5UwqZYoY3FlQ9xdoL5cU/77F/FPPYd7+g+QvWvIrQZXLMAtCG99C9/wz3+GvxZntNJR\ntUOcyisj3QNXlQgFuTtjY+4eueCxwxIv2Yw1bRUDImUKDExBITCOgc2gMFqINpGsplEWW05pDzx8\n7oi9f/xb6E5I4zHl1gbdMhIOGtLsgPDaAvl4gP/jY8S18/g/9114u83WxhNUacnal1/AvvIpRms1\ngzWLEs/s8OobmxH4j1Q0ishl4J3Ap4BzKaXr/UM3yNsLyBPGa6e+7Up/7mseK5NS9iUIPp4qEKq+\n2r9SEq62FyvzkUhWl/XL69NtwtVxbIOOuWqd8AgrRd+q4JBrDriA+JxUfNpOLZJ/TkmSaTuSaFXq\nC4swOLNOSkLEEFyHKhRVUYJzPPbAvQwGNt81yhGdlFw6Y5naEVIGfKNYthAWjugCRYhU4wFdoQgm\n10xin48nSeh8BCuk0Pb1jdivIDx2oFGVZTDYoG0PmYyqY/KTTz6DRU2JIWUcPWBiQqEoY7/NahMh\naXSXOHfPeRZBsDGSAmgn+FtHTIZTbAelCKMHHiDdOmIn3KTSkZGAThErvTYARVkIs2aO1ZEYHCWW\nZjRhqB1NbCj9kkJptCrx7QLbZYpUtVySFsJ8oMFHBE9QEerAt7/vDA9+6yN4PBIiYgYcLVtC4bjm\ndokB6HkQLi0Z3RSKZUL2DlnUc/RUUb7r/UQZEqvIZD7E3wX6L9/N37v/Ana8kZ2WkuMHCfk6GGhD\n10aMCEYMQSVsiFTWEFlFCUBIObSmFMGqhPUBlTSdgrrxmKBQOqLpOGpBS0G8skB//FPEyhI6R1N3\nOeyiWIfOYM6ew33qC7Rf+DjlZERKmtHFu9goFWvX9rj5yq9yKLcxusI5wRWbuKObX28IHh9vuNAo\nImMyf/G/TCkdvc4UlEQk/Ynf/NVf7zj3Yfvc+Xw3PLWHB0Bl9+PKzHS8DejP6dWSOEa0Upi+MLea\nLE7Tlo71DZCloT4QNaRjNeTKXNUrIEPeKggcrz5SSuA9yRia4AjWUsmUkR4yHlSwMaWrLI1EJrqg\nDZFiEGEBm6Mx8xJ0Shy0MJpOePnqM2ytX8COJqS555WUeGByDkfkUCJFNFRrDroGd9i7SGPIVpEY\nme0v2ZhotBjm0ROtBQ2DyTpSwPZkyPqFM4ztkJgy51Kl3lFaCDomnA/EPoAnkSe6pIQQG0a2wraQ\nXIIoJAMd0LQd0wsas1ygQ4Q6cv5exZ4yfOulRxmJptYRH2HPdQxLIV65hTp3lu17oY2RedvRHC2Z\n/8LfYnHfE2w/+UPs7l3DDg26Osf+v/1t4qRg871vYzbVuKf/iH95qeBH3vFWQkwogTIm/tGH/hN+\np1F8QkVGGyU87Gg6T+unnJs8wrJLeB3ZVkOO6iW7445CFPEhgXqCHU1oHvwWpFzHjBVza/jpRx/k\nJ4ee/W6PwaCE/vNG9UllfQcspUiMQqkUDZECmKps3CLlNPDUBoxoQsyr0oRm6QOvRcEFjyph7AxX\ngiM+/Rru1pcZLsYcvf8u6BLRdjQklBfiziHV//sb+OXLSHsO89aLtIdzrLvN9NJ7KD+/w7P/z99m\no7vG/Q+/k6XTzCtYmx9CGd8wo/ENrRRExJInhP87pfSL/ekdETnfP34eWE1FV4F7Tn37xf7cHUc6\nlfsw3dgkajnOYDh9nI50e71bMWsUUhYjcac78bRE+XiiiVkYlROh6XXridTvZ09DVbJQcuV6PNGN\nFyYbpDIyNksQQwiYskIVNrP/FUiXMFpwRtMZSysFugFCpKwUy7aj2riLWGhEF6iyJFYFeynQSeLm\n/i7dco6PEVOUiNEnnguyVPuoaUjaQMp24qgTohW6zHWCsiypqipfzJJ1F0p616PO+gRJ6rg9m1KG\nlXhA25IYA1ol0EJtEocqEWJikKAdJNY3pozbhG88MTimD5yjAAY+MASKwmAKxc2b14jtjC45vESi\njqToWa8KiuoB4nKJpWNdOgodmXUvoa2gtqesdZq2aXDrJQeUx6ay1f+V0wUP6YLNgaUaRqZT4a61\ngrurDLdVCKlJ7LcdXSMMn94hfPQPkPWzVBcu0Z2tUGfWMAT83h4/800lPzLoeM0sqKrNvPqUE7an\nlpRl6WnVpg4MJSeRE/Jd1ojkiYNsk9epbyv329mg8pawtBaTYL9rM1inW2AuTOneusHGf/cTLEty\nOFI5yNto39Dcfg3l95BvuAf1Ex+EgWdcDVj3Qxa/8tu47gVKu83e7JACWO7eRrV7pPQGZwTeWPdB\ngP8d+FJK6R+eeujDwI8B/0P/9y+fOv/PReQfAneTsx8+/TXfI0GVFCpKhnSqk5SnVV1g1WVYhb9Y\nY6AX+SAnpKWMRrN3TAx51ZAnguAjrWsJPrfJisocqxFSStDHyJ+uP6R+xWCMxcVAEMX+4YLpaI2b\nO1fpJBCZUKQSkYIyKapFy5qtqFvHIYqdAlSMRHK8fKlK6vFlYvQZQDLVqHnHy5Uh4Olmc27sv8zj\nj7wTVRSU04757gGlaERpYojMBV68fYv7t87SKVAm81Xa6NAJjBOKCLUJVCnXafwqYFcSjrzdYDXh\niBAk4WO2TWOglUD0kFRCQhbmDAvDBaUYOqhjx3ZZUFihjYlpUlRJkKhwBjCGYbvLfDFjrTD4IJgU\nqWzB7qjg/DvuJ1aB24Oa+sNfYE2g+Pb/lPY930waKlwl2BeuYh54GH//PVS6pIm+px15cI5tWr61\nSzyrEpOJ4bCNpOmAZRdZKIdrPZPbgZvPX+Pgw79NCC8x+LFvhs4yjGCOIrObr/Cu8go/uryPMFSc\niUIwkSopnA8Yu2p358ENCZUioi2lD9gQaURjycS1JuvmEZVTxmc+oPrhJqIZmcihjjif0IVgdMOF\nJx9heTijGI8R54htR6fBLRZgBpgzY/wP/nni41M067TtgnJWYbanuF96lld/9X9ltGlYmiNMmrJf\n3+bS2DNgnTAewf7Hvt5wB97Y9uHPAD8C/LGIfK4/93PkyeBficiHgFfIQbOklL4oIv8KeIZ80/mb\n6Y5ghq99SEzHaLX8Aa5UhieGpBUXIfYrBSPqDqnR6wlHqdenr9iPohW+6bDWnsilV3/ym/4HrwFZ\nhy6FoW06iuGEoAVfKiyalsB0VNHGgDUaXeWqdJtiTmp2AaUNbu64tnODzc0aTIGyglHCwf4hZWmY\neWEmGeGVBsMMgw0JVUSqUUmYd8TUu0LJgNW594RCZXqvZL198iE790LMRcSVMlPyNkJSJJIwxtJE\nT+rVoaH3fWTlZCSIYrlXM9zOlGxbKMYB9lqHF8NgJHRdi9EFoDADIJI1+i5ivKYbDnE7+feMbuX0\n6NjeXqd98klmLmADuMMb7H3h02x/4F10tyqK8Rq1PmR59TbjakoT+/ZpyvWDJAmCZhg191cK1SZa\nH9krBdd2jJRiOYXCJhbDQLX+EEezz7D53u9kngYUE8PU1jxxNlFMRvw3b30SnQS8oCxI4wgm9Ulj\nkC/jk6VspuxnHoM1ijKlTKyWXGcKPVFcp9i7G/vcUgfKCAUpu0ldYDzV7C461Niw8OG4oyYpIp2H\nocFr4MEH8QYUHZvTe3HzA8ZDS/drv4kuFoiMUSKc25pSpAImhmq8weVL5/nM0z//hsbgG8l9+P07\nPok7j2/7E77n7wJ/9w39BGQRUmfyfjnbe/sleWGPXY1aZ4lyoTTW2DywvUeUHKdGQZYMQ19DSBzn\nMaQEnetQvWqybhYUZi1DT3qQiCTB2+y6jCllHTvxRHrtPLeWNXM0k/Uhici5c2fxxqC311C+h8KE\nRD0Wdn3ExURYBpSxLF3k1pWrmNsL9nf2GbzjEYxY1Nxz5ROfYnnuXsYXpgzODBjWgWq8RRNAl0LS\nMFmPzNtdXJdFXSl6RBluHtYM7xqB1aiQCKstQggkUZjQG7AUeBdIkRxJrwra1FCYkjYFxBiCJILr\nSN5iLMz2jnAHjpFpKM6s5yVxB4PS4h3U0sHY9LyYyEFwDFRJp2AQFLMUmQ4V04cchYsEEwghG6SW\nR0saYxiNEkYK1Id+mPHgx5ktSgaXGgpfopt1hvYsxe4hizCniRtYCXgxCBFRNovCWs+9IXAJ1fPW\nDSE4AoGlqolrQz63Dr/6V96OBM2PTgPnU8MZhDkFZuMeJPiMy6cDbyis6jkZiRRSn+EBkMNtQyIz\nC5LGpA6lLDEmhlFoBGzItamkFSYFjtqOUOU75UgyRdqnjnZo2G8DQTnKmG9YUpYklkjUJC1gFEQF\n4yHc9lTFHvbcOR5bP8coGj73me/gaOS5d3ODex54gG/6/idJZ+6jvWuLdqvCDFS+jb+B402haBTy\nnU31oJNo0omeYIVWD331F+i6LiPNlCKSZcZhtaXgztUF/dbjeDsRAqqwDIqCKJGk8v676zkIaUVl\nSqnHpvWTT1HQFobJeMAwKgTBlAVHKv1/7Z1rjGXZddd/a+99HvdWVVd3dff0PG3P+DF+JCEPyzFg\nbAJSQkIgCSCSDyj5AOJDCAIhEInCh3zllQ8oUgQBpAihREIQEQFKZBMgiSAvEsf2YE88Y3vsGc+z\nX1XV93HO3mvxYe1z61Y7Y4+JSFdLtaRWVd976t59ztln7/X4r/+f2CYXdBWwUVkkI6thayGvC0hi\nnUfECg8//ijzR1d86gvPMrOlU29//jX+2FvfzXN7A+Nrt7kRhXc0M+Kw5M7+AEulaVs0BnYuDNy5\nfsxYDK3MU01b8QUqDkXGUB25fvMQSz2XLuwQcW9pLAUJEEPrZDC9sFIlhMgwjEhWdmPDUVEaCzxw\neZfnb7/Eo1ce5jgbtwRWOqDaMuvhxucW7Dy4DwKjBDJwfOc6uxeEkGB/MI7GTJoF1AKxAJYxArt7\nLfuASce8i+S8wsZACgOrWVfp6jvizh52YAza85lOeHI1gdoazEqV8IvEFDbO3sSPKRaZG4gO/NEm\n8Cd3IS4GVutEibCKwo65snUU9z5DdOm90ao3IlWUGKtYldrFG3E2aBEumHMjFHFovRVDorBQY6GZ\nFCO7BsuSKRkut4qpf+9xxj+ruDLYcGdkvh7ZC4lhH7qrl1kfQnd9TV4fYkeZefcqj+8+SRcTN//x\nL3Az/hDvf+hhvvaH/jKPffOHuL23x3Bxl2G94MqlyOyrqDOeCZKVTct0cGHWSVAWPQEuTc1PyonU\nm6nLs6FVzWkSjd2qQEwJqakSoarsJU/AhSa5C1RDkKkN+269h9i1WO/eSWojy+Pb5GF0peKmIapf\nyBQCe1PcmJXD9YDlWouOgdRH5mtBjluuXn0Pu7u75BDg0QPW84a4N+fRJx4g7fZ8Zs/QS3OWq9ss\nVgs0BO6MGelbQDdcCFMStpVIWY3kUcmlkPPAelxxvF6iwVAxRjFAkaBIYENOk4LnFJIEkhlJzVuP\nEWIxHnz0Kkv17yR4ci81I//pH/xz7jz3OV597hUsGEkztz72SezF27z0iU8zB5IZ8y5RUJdorwI2\nsio89af/HK/98n9BLCLrwry4ulXfz9lLhf2SWK9ucOVrDth712PoGPlsFAxHDno+qUFowKKrSG0B\n0aYGOkmREAudgg5OMqMx+3lmJ4IVqwlmE8pYXH9TtvkzwHQiAJoSvt46XUyZaWDHoDKx0ZjRKuxI\n4EJIpGI040C7SLz8idt0JFZqDNRO1EHpS0N6dWQ/KDf+88d49iO/4P08oaG/Iwy/+Cma/HkuP/pm\nnvxTHySHQPPZBUc/+3P84K/+Oz70Ox+m/Svfw+cOAvbAnP1WeNOVHbqU2YtvnGTlTCwK2/G71az/\nFOtPAip3E614+3TEbCsZuI1c5OTv7v4e7DTd+vQaW+MAKDnTtC2xVhzatmdUYz2uUAyNhT65LoUI\nNAZdhl49N7JarfwcotImjyP3Q2T3cOSiKhIGz3FcbCkXO+YFjvEmrW6WKG2E5RoBRjNCihCMLMV1\nDWoCtGkiIifqUxKgaXsuXNzn2tUDD7UqtLvrGsArGEFcWk7w+DjVRrNQ/6/ZH4q+azBzsZ2AT/wl\nymMHO+zML3B8fESSQBDj85/4FP3xDq+88jKH49ob2+SEjFfEd/XGjOHjv8rtZ48prV+nJgk6LmiT\nAgkJA0FabrWJTlsuDSNrUwZOBH6nVvfpXn9JWRsw8UpRiWuyZO40IwEn5FEx2uIhrGtFcFJ50hPa\nf61zZloQJlPYNNQlfEG1uskEc1e8AyKFeWyZd/CWN81YY6yCMGYhByUUY1GUO+sBvbWmuX3Mo09c\nc09Yq5bqL/0E1774a7zlIJHXRlNAn3qWG7d+m/jer2OROy7mjsuLgT0xLBU0ZPqQaOJ9xqcgQBvT\nJvZP4nXemJJrKtR230mePoSEilRVZ0/sSMQ1G4vj98EnznaZUkRo2pY7ecCC0CZvWRZc4SlUlpNp\nUeialnXOhL4lBuG5515m/5FLXH7wQRaLgvSBMHgno4gwG8COVuzNjdU8ERevQC/sz/cYB7hjhdt9\npr8ykDTSl8iyGJJg6IUu7DKIcvN4oARltzd2Zq9x9colF3gxxUTod3qG9ZrkevDEVsAyO3MPtXL1\nuC5c2HNBkdrEFWuLdRCpLeRGLJlWKsekOAXYYIWIu79iRslwxwxNsDIIFMoq8sjq11ndPOBtD+7S\njLBqE+/7ix/i+guf5v3v+gBHmhml0CVjxOjMWORMMaOLmT/x2m2KBbI6rf9zT3+GK2Pk0699nCc/\n+A3cLkY3Uw7/zo9z+L63MXzvX2C1HDgOPfuSWNmSaA1CLT/LyS7uGwUkdfVvVcGsgZix2BFzqJ2w\nfm3Ae1ui2CntUMDBc+L9M0mdCSlEI1QF7tZgQOkNdkisxBi1RsCmKMKuCCtTQiekUblJJIvRpoHd\nEjDL7C6M5YefQt//II//4Ic4vGS0S+jzkvVOQ/idn2Hvke/npX7FY23HlaTs/5EH+Xu3/he310Ja\nF/TWF+h2Bvp5RFXYN+ixr+pBPxueAu7yq3hT0lD57BLCehg21GvuzidHP5pWXj43sROFp8nbmNz/\naeeIIZBSIsW4QUd6x6SBJIzoAJO6A6+tkJJDl7MY6/EQspAlcfGgp9NEVxznHg1W6jv1Gpdmt9WC\n1I7sFKVPA4HAQtesDnrsgcgQjSEqY3LAy4DQHhvrp1/mzvOHzG7A/uWr7sDkTA6gCKFJWPYaZLZM\nGwPiqyKE6AClCo0OwYVbknnyseUEHWqA4V2kUSpeAWdYkkp5F0wYyujKylk30PO5wHL+TVy+us8s\nJ1JRggnHYY/529/HGAuoEJN/XxsDGs2l4i2zsoZnPnvMSlqoC/bMBhaHX+TBgxlLU/p1Yvnsb9Hs\nGdf/2U9zvY/0oaUkQYc14MxQGe/aNE76OwpGCa46rdH7VLzMHYlF6GpoFPAGPBM212AS9Zl+TmGo\nFN14sVEEE4eDFxMacULcC6ORVOkrPN29Xef32BdhT/NGCyRpZkZHo5k0HrNsldX1l9j/5jcT+syV\nHLAQaGc9ZbfA115l8db3sWoLlyLsCjz8xAHHi8gsBZjDuL7D1QevYWL0KLsGYhneeAHwrHgK9aGt\nuISg5rGrqcf91cVPITp7klQKsxgceVg9upzzxiuAk7BiQ8FWuRC2Oyllik3xluXBavrOQOYtGiOW\nAhIjj7/zbRCEpmlcG50qka6Z3ETSLDJQGOcRHZWDqwc8HHvKELiVCo2N2FHmxp3Pc3T82xw+9z/Z\ne/JR9h5XLhF4+tMv8kB/zJO7B3yxHHHIkr3BoMB8lckzIc+U3U6x2chqtUYkOJuU4A8Xk/vryS4d\n/OHUWPGaxYiTKxn8b1SdVyE03geinqYhVEr6tg0sqHoLojQhkNZGr5lGoAxrohhNA31qSIMyrjO7\noeO4hb6FxbIQc2BMvkBpIzwWL8Ih6FWhyUq8fMDFxx9n2GkYlmuMBYfP3ObqN15F3vvdPDL29F0g\njxkLRlMq2Mpq2TUELBe07vzT5uCnWjeLmqdaimHJ8Qa2RZgzqYNnK1W0eGueitT5VzAVJmg5ImRV\nSo0XOhNUFKlt76UmwudBkBLoJLDKnsB86eaKVCIHOzMu7DZc/SffRncsrGYNy3FgH6VLIxeko/+V\n53nHYYvMYKc1HoqJ/cVAbCOC0g+FB9/6DsYkzNXYFZgFGGMD4+oNP49nwlOYrvwmh1BjNMWTOCft\nyyc3e5NjqBN8AjpNx02wXeAUS9Kp9+1E52GKIycPAgkM4v35qemQJpFS8ORiDDRtdCotc3JZC+K1\n+VlkYQUTIbaNLyJrhdFRfMeLQ8pyTRoiz//uU3zyI7/BXGG8ccz6hVtIBinKtctXOUZRcYny1Dak\n0HgHoxb6eU8TZFO+9XPYvk71Wimb7tJND4daZfc92QW1wnAL7kYj7hFMrduq7nUkxJF7UdgJyfMX\nTSKmSDBozGv2EQNVzGA9evKvwZyYJEViE5Dbx+jRmn11Cv+L/WWOXhtgJTQxcuf6K8wfeITVY9/A\ng9/2naQ7KxpzBmykgtG2RIRK5efc7lfZvt9TCEmdYopjLyZyjKnPZnPA1t9/yYy96/PV+zxJJp5D\nEKENwZOq5p7ZaMoq+IIUxEvpKiCNsJeEnWjERcHKQKvGhdTQ0dAj7MiSa7FhPBiZB9g3ZRag6Rua\nuiG0FVHbFpcMQI2UYCxKKW+c4v1MeApsMS9ZcHJQ8Gnt8b5jFSbYC2whGPXEEzBOoM7biUn/irpo\nTDc7BGdIqbyOXs3w/ICZodF3oL7r0Ci0ofFdsm+QoTAW5c44kItQUqrQaWWlmSBGL0KZK4MEmpcG\n2tiQcma37bmJIjs97/3Od/KLP/URLtz8S4SbifD1TzBe6zhajKzHNfPUcacoaVe4LbALkAuxa4ml\nsG4i65VWFSy/NsXrZX6apVZlol/TVBGLFioYRyFLZkCRmGps7cequnSbIixNWR2taI6NXfVa/Yiy\nGwSNIB2sB4fv9mIsJTPfSYwRTAv56Bg9yswfvgwRBo9r6B7PrCtIp7FMun6Tg9wTB0XnyqgNN37z\nOZ74/j/L0My4ei1yQQIdo4vCBJ87Jbs2ZpSTPpkvaZ/nNK+n4eAs4QRC7/Q9UKjl67qwujfgJe4g\njk/wb548CXX4M5GkRhc97zAGZ/CKZqyHQpp1lKKkCB3GYVYuX4isl/DO1HI7GdfjHq+iZBOObeBC\nk4h9Q9v0zKyQpOFqA7KAeTQs+VSeh8R8BGIhNglVSALrYtx+4fO87S1vfsNP4xlZFE74AmzLX5vy\nCDKBmZrmBHVYzeP/Ezal7denzxXbNAl+yfvT7jH1T2xAUH1LbgNmBZFEVPWdpNR/02cnT3aW+pkx\nBIIZg/lELQplHliHAm2CeeDalauMs5bd/irf/OLI9fWrzOMOJom8ykg0Gk1kClYiYzZsFijZxXDA\nS6xN05DXdQdQv14nufiT0iwSkGIQp11tK17GW85DCL5gmJPMEmAomSAeljVNhw0LpDVyLo47GJUl\nnjdIrVAqyWsKiTEXxhgQU26+8BLpjnH5QSAYTV3t856RTehVWVqi3zkir6BroOwlws2R+Qfeg0lk\nJsZyeQfrKpKweJLQlZacqm8KHzf3107mD1DJeULl6tTNRuKitP58l+Cxl219jqNHNxN1E5ZEPFk5\nsY+rGQPuiTXUXp6gJPNFoFF19W1z+PTcMuTCA0QOloWuy1iCNYUyZC7NIhfGQtM4qCyF5NdOoQ2B\nDkdJpgCzldIEoeC5OYYMBFCXB7y7p+jL2ZlZFFQ9C9x0LQVIxW+4dywqIcWNFsPkCrYESqyYBfFk\n4wkPvFOqeZt0vdE4LFVQ0Eq0IobmQlMcVRkQVrGh6fdJrdJGrdTaI7OQGEshmjFqpu07eoQ7VmNx\njL0YYaxuvxi3zZA9d3W1KPsXLtNdX3F421hfmjF78p0wu8itB4W4FkJKHN9ZsfzUc+xfvsz6INGk\nSG4KQiCpMQalk8i8H1gv196XXxtwRjOKFSREJAWG1YrURHIpiChjySgNlbmdEAJNCGRVplK2JBCs\nEscau62wGO5wsL/DuFZ2iRzV0CIGI6u6xiPOvl1GsCQ0KjRB2RmU/d0LxAG664ZeEsZeGVaFktd0\ne7vYUtGrxyQCZSdyfPMWIR5x8PKCnSceZJaNw4UQ9+pihxDMiWWpC4DEkx1/ykNNm3lWQyRgCmPO\n/rBHp+AzcE4JoEikZG8Ec49zmm9ekswUmup1apjC1EDGEbkZgWykgHeXBq9QaD9RDHrr/sUI3RDJ\nI5SyYE8U2gaJxr7BkSgXgYMucdu8O7Vo8SQyEO4cEg726cXYz3ABY12MVQp0a6Og9EnIeeDht7zJ\nveI3mC04IzmFE8zAdrwPXxrPTQvCBGA69bqdjq3hREZ+sm1gU9FcBWdOKhFj8dWaYDSy3TUZGUpm\nGAYGM0yiC7SiHqMPhfF4TVwZszHQEtyFU2FZCushexy9GuktspsjzQBXH3uMMu+gaVmPsH7xkN2l\nsswrZuwxDzubMlsp6qrO2TYwcAkucLrtGTlzsE/qvu8RdRr5Yt5UFsQbdTbHB08qTuAuMzsht6l1\n9ws7O358hJVmshaX+Kv4jmQBy8pQwUPgHsuYle7iHi/efIX22IjHhWYw5hLYDZG3z3b56I/8JC/+\n9w9Du8Nq1sAwoGR2d1sOHj1gPLqJLVbIasTS6Yd/e67cnUvYpuSf5sRYmZIketnWgkBVjVa2sCpy\nkmPYTlZv2zYzl1ZU6HY5U8yb4CiKaKm4BffEyphpGmd0nrUN4zxBhF6NHmEvBjpTLozQ+42ik0gn\ngTYE9vd26JN/HlposoPPmiDkWNmjMdpu5ngWPT32L2dnw1OoicOUvDoQUnT3rbq6Dq6poJCm8Ti/\nFAaUaC6BpnKiBKWq7ikgxNhsgC4nicQtIdkaOkxsze3+HgvJ9I2xI5E7oqwPj0hz73UY1wPWRx+j\nGvOQWGeQ4PXoUIxOoAyeiR5Gj6EDHhZaK7AAAA3qSURBVEpI37AwWN5YEsKMT/3Sr/HQu56kyTvI\nHcVePmY/tbzt4ceRS2sGSVzbmWHZ6DWisbAXkk9uCm3b0hActWiOIBxxIJJWFKLjDeKGbHbQsklA\nxig0lh3gk6JT24vvTMmKKziJsM6ZHARpAm30BNkYoYzq8GY1GjEGG5lJ59gTlD4E2kdGHnvoGvq5\nBRfjjGFRCMUYRuVXfuJf8v4//i6uHy3pZE0fGpYyIDdvkZ64yNHnXyHdXnP54Rm7ly9Q1Bh0pA3C\nOGZC8Cl8KoeA412I/mBMJUB/z/fBsRRiqNWojWhxQK04Ua65B2Q5u0ZGyb4YqWMuBG+XngB3akrJ\n2flCa1Nfg3N5NlFYqjmfBU4+czkmVkXZ6QMl1UVelR6Ym6NPkxqrprBnka4YMuU4DFLnCenGGYZ5\ndWY0MTBzNwnE6d7MSiUXfeOP49nwFKyu6uWuXYrTKLXpwTYzTE+Sjf4ZJ5Dmu4+dVvmT1T5sjptM\nBZ9EteSYBDQrln13NR2JCK1EGnEa+ZQqh7+6m93OWsbGOLaR0nqDVYlsdnbvOlSWLcQLPSLw9kcf\n59YXvkhHYK8VFrpmsR5ociQzJ89nDGSSCXEoNOrK0KniD7q2OX2dcBIQ1LkEYpg8h7xBKqYtHcnp\nuGkXC7JVpagZbDMHl4UQcIkpVwZfDSPLYaQMkJIvILPU8PzTzxKLsRcCs2T0TSLGyM7VjtyukM6I\nZuxK5PI7HuGp//FLfPr3nie2niSdp8Re13Lp0kX29nd45OGHmfcdRGeKCtICEJv2SypOE04Ftnb7\nCZBWlZxCsap3ceKNisRazp3yDw6EEonkKe90t6dgflxW9eNrOXyq9qDmHa6+RiBTebSWwRscBYoa\nM0l05pwXbRBaAm1K7jk4yRadCZ0JjbGhLEwGq9WKfjS6+hyMeGm6MUiFU+f1RuxseApUVWhVuuRo\nxc1DXNQ7HSd3V41xGGhi4xJxIlC7GCU6lt/1HmQDrc2VpWkSi3GKc685aPUa1Iz5xT2OxzVts0cp\nhaPjYy5cvEyYDbRtIq+VtBPZ0chKlcXC9f9ymqDGxhigdJFVnYCzAHnuWfzV4ZolCrpA2pG2g6Up\nT7z1TRxbppOBq+94gFnaAYV+VsgRVqlDrTiBS8mUJnmPQAjYWBc6hWCey2jkhOpeSwYN9E2gVLq6\nUU/KlSF40N14WpeMdwOOps4WVNGlRQtJnW8xizAOvtuX144Js+vsACEVbjz3HO+5co1bL11n56FC\nbrzfQZIgFyPp8pzRtDJrF77pW0Zmf/5buY3B309Icj3F8qY3ETAe/bqLLFYj89RyqWTaZeZ4taCb\ni/MViFAqsS5ASlJ7aIKrbcm0EThj16jezqyh8URk3SB0qoDhnzcldL3q3aBafB4CVh8607JZiKdF\neRO5qyd4zYyQYeapJiyAVNdexB/ABmG0QmOF3RC91Co1HArQFM/vBN0UXDy/ENx3mHXJ5585YqrB\nPUYpNbRN4VQC/yvZmfAUvELlpKR313/vxrJPfAqqutnx7t4ttkVgzWwjEjOBlyZMwyRKO9Xjwfsd\nVos1iBCaCLWdG5VNtaENk5JyolQ3fKVKxst/q6o1KAYzATohNZEELF65RbixxBZr8rrw6NVr5DyA\nGiOFJGBzGObeBt6qQS6uWp2c79BVE2tuJSWIvmtMnoCAewBbvBRatspr9drEGEnVtbaqSjy51w4G\n2t5dvC+iTZFePGeyun6bV5/+LEevvkTMiUaN/fmMj/7ab/LZ33uGFuiKsFt3wYSAZlIwWqBJESxy\neCTsF2MvwR7GLAoHKbCXIrMRrnQtOwJdSKQS6FJzKge1PV+2lcDvBq+ZuSp0Cc7VSd0MDAjqUHo1\n2cCep8ejlAIWTpi9t+bp3fmrTY7DBMJJ9SuYeyjuDTv5cCqQFFBlJ0b2YqIx82YqnDi3U88zzMy9\nhYZAg+MfokBA6fqGLgiduUp1l0E1Qwg+D78KLwHOiqdQV3uL3ueQzNuNt11BpVQ9yEwTWr+htW7s\n/HlOnqpxonI/uWklZ0dD4mUdakluM32CIE1D1/dc6jrP0KtydXffk0kxuvxXNGQ0VqVQgiMDU58R\ngWZULEGbjXkSDgffWVpgvoKXJPPa0WvMhsKrN15gX66RUqAbAgf9HsvdBLQ+ic04fu5V4v5l+lZY\n37jO4WMXmfX+EK9E6MWVo2NycIxhGxcWq7oUoxJVGA001Ay92Qb5aBNqDyA6s5Ikc3JSExpThppP\nGAdjd24wOMoxycj1559jxpLwcsOFhzLLAtceusxbv/dbCAp9gSyQgrcJryOk2mLcRa8wjVHYM6XJ\nDctOq1yecyKMxSBALN7b0iukuTFbF2IplXClej1BMAv+QOfs4YB4zqTUHbcg6JgpoQEGNA+k1AIF\nswQlnwC3tBL8mtGGSNFa7rTqJ2ypkgfYLD6K1SRvleeri4Jkh3pT+T8GFBHFgodurTraclbf87/1\nz22C7/RZlRTUPTbxikqsla9grmwdyA5xDol2OVDaBupi9kbtTHgK24m/Yuq78oRqnDLiOtGye6PL\nxJt4Eje6BWTTcg2c8hzcE9FN+XOqNxdVLIWNCE1sG/cOzDZK1FmVrIVVGVmMa0YtEKFrIilAS2C9\nzDQIs+LxX6NCs8x02Sd23/cIxlve9GZmbcO87dArM1Y73l49l0iSiK0yV5o5x6+8ymqxZJ5aLNTY\nv1itOcumMnBy7vWa1fOU2iqNnEyIUuG+pYIt1GxrZ9RNV+pGe9AgrwcS1J6B2g0qkXd/zXv4+DNP\n0/WBoJndmOhTZKzufMR3t2RCQkmqxFL8s8yz6nvRmGE0Y2aHwMyojETeQNWpf2eCquRVuxXrvVXx\nvpSJ5n/azUctngxVYU1gTeK4wPUlXD9eA16BGHMmF++CnKoap3INeB+FSnDAFKe9rbJVBfn9HrtT\nCVCrLfbUfA9CUz2oE0i2EiqALJnQFJ/rYtARaNXnVTRozTe3aBDUr2lUateuEbK6MrbEU4jer2Rn\nw1PgBL+eYkKzIqkKciYnNJEwNfXWTG2qjSxTEgg8FxGFkGuSLIhnX6kx3FaYsF1qigTirMOCEc3j\n6cViQZrvIF3jmWzdIjeFSuTp4cHCYN0ExpsLkoykLpIwbByQZWZVjtm52HCbW+xfvUoMiXkTWTeB\nRaX76rKyY8bqtdvsXr5A1yXavX3CXsu+zMiN0hZIQyG0ng9IEiiaUdJGfMTlSXQT6wKu2JQ9bFIz\nLBnJvPlrEphJQaCIS6UbdNGBOD1wscxRhb4xdBR2KoJy1Yz8wA/+NYbR6BLE1UhvgbVahfn6LoY4\n/VtjgZEpW+9YgraH8XiA4IxVEnxiF2AhXipM4p2wnYhL3akyMJU+rW4SghVYBn8QVCKQWKSW21K4\ncSczYOgrSjw6pMwH3vLmh1zyTTJNKbQh0ETbLDYitTOyll2jBUwEy4FAcOSjeN9DFPHSbwjem1M3\nH8X5Faa+nljUF+8AowjZjMaCN9/FQFJFJCDqVRNLjrVJCh1CGs15GwMEq1od+CYQGv/7omC50PYt\ngyo22l2h4Jc3+f1w3X/YJiKv4gTUr93rsfwB7Ar39/jh/j+H+3388P/3HN5sZle/0kFnYlEAEJHf\nMrP33utx/L/a/T5+uP/P4X4fP5yNczgjOYVzO7dzOyt2viic27md2yk7S4vCv7jXA/gD2v0+frj/\nz+F+Hz+cgXM4MzmFczu3czsbdpY8hXM7t3M7A3bPFwUR+TMi8rSIPCMiP3yvx/NGTUQ+JyIfF5GP\nishv1dcOROTDIvLp+vPSvR7nZCLyr0XkFRH5xNZrrzteEfmRek+eFpFvuzejPm2vcw4/JiIv1Pvw\nURH5jq33ztQ5iMhjIvLfROT/iMhTIvK36utn6z5s8xf8Yf/DCW2eBZ7A5QR+F3j3vRzTVzH2zwFX\n7nrtHwE/XH//YeAf3utxbo3tg8A3Ap/4SuMF3l3vRQc8Xu9RPKPn8GPA3/19jj1z5wA8BHxj/X0P\n+L06zjN1H+61p/A+4Bkz+4yZDcDPAt91j8f0B7HvAn66/v7TwHffw7GcMjP7ZeDGXS+/3ni/C/hZ\nM1ub2WeBZ/B7dU/tdc7h9ezMnYOZvWhmv11/PwI+CTzCGbsP93pReAT4wtb/n6+v3Q9mwEdE5H+L\nyF+vr10zsxfr7y8B1+7N0N6wvd5477f78jdF5GM1vJhc7zN9DiLyFuAbgF/njN2He70o3M/2ATP7\neuDbgb8hIh/cftPc/7tvSjv323i37Cfx8PPrgReBf3pvh/OVTUR2gX8P/G0zO9x+7yzch3u9KLwA\nPLb1/0fra2fezOyF+vMV4Odwt+5lEXkIoP585d6N8A3Z6433vrkvZvaymRXzttmf4sS9PpPnICIN\nviD8WzP7D/XlM3Uf7vWi8JvA20XkcRFpge8Dfv4ej+krmojsiMje9DvwrcAn8LH/QD3sB4D/eG9G\n+Ibt9cb788D3iUgnIo8Dbwd+4x6M7yva9DBV+x78PsAZPAfxFt1/BXzSzH58662zdR/OQEb5O/As\n7LPAj97r8bzBMT+BZ4V/F3hqGjdwGfivwKeBjwAH93qsW2P+Gdy9HvHY9K9+ufECP1rvydPAt9/r\n8X+Zc/g3wMeBj+EP0UNn9RyAD+ChwceAj9Z/33HW7sM5ovHczu3cTtm9Dh/O7dzO7YzZ+aJwbud2\nbqfsfFE4t3M7t1N2viic27md2yk7XxTO7dzO7ZSdLwrndm7ndsrOF4VzO7dzO2Xni8K5ndu5nbL/\nC9i9XSan0uBoAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "input_img_data = image.img_to_array(img)\n", + "# input_img_data /= 255\n", + "plt.imshow(input_img_data)" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Input image shape: (1, 224, 224, 3)\n" + ] + } + ], + "source": [ + "input_img_data = np.expand_dims(input_img_data, axis=0)\n", + "print('Input image shape:', input_img_data.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Visualising Image throught the layers" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "## Recall the function defined in notebook on hidden features (2.1 Hidden Layer Repr. and Embeddings)\n", + "\n", + "def get_activations(model, layer, input_img_data):\n", + " activations_f = K.function([model.layers[0].input, K.learning_phase()], [layer.output,])\n", + " activations = activations_f((input_img_data, False))\n", + " return activations" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "layer_name = 'block1_conv2'\n", + "layer = layer_dict[layer_name]\n", + "activations = get_activations(vgg16, layer, input_img_data)" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1\n" + ] + }, + { + "data": { + "text/plain": [ + "(1, 224, 224, 64)" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "print(len(activations))\n", + "activation = activations[0]\n", + "activation.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "64" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "layer.filters # no. of filters in the selected conv block" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABIQAAARiCAYAAADVzyypAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvb+vJcuWJvStiPyxzzlVt1/3e/0A9bQAo62x0JNQ4+Eg\njTESLlgYoLHGQGPxD+CB2sEaAxNhYCExAmlchDFCwgHNoGYA0byZ4f2+t+qcvTMzYmGsH7Ei9z51\nq869deqqXy6p6pyzd2ZkRGRkxoovvvUtYmYcdthhhx122GGHHXbYYYcddthhhx32+2PpS1fgsMMO\nO+ywww477LDDDjvssMMOO+yw17UDEDrssMMOO+ywww477LDDDjvssMMO+z2zAxA67LDDDjvssMMO\nO+ywww477LDDDvs9swMQOuywww477LDDDjvssMMOO+ywww77PbMDEDrssMMOO+ywww477LDDDjvs\nsMMO+z2zAxA67LDDDjvssMMOO+ywww477LDDDvs9s88GCBHR3yKif0JEf0lE/8nnus5hf73sGDeH\nvdSOsXPYS+wYN4e9xI5xc9hL7Rg7h73EjnFz2EvtGDuHfZsRM3//hRJlAP87gH8HwF8B+EcA/n1m\n/t++94sd9tfGjnFz2EvtGDuHvcSOcXPYS+wYN4e91I6xc9hL7Bg3h73UjrFz2MfY52II/ZsA/pKZ\n/ykzLwD+awD/7me61mF/fewYN4e91I6xc9hL7Bg3h73EjnFz2EvtGDuHvcSOcXPYS+0YO4d9q30u\nQOhPAPw/4e+/0s8OO+xDdoybw15qx9g57CV2jJvDXmLHuDnspXaMncNeYse4Oeyldoydw77Vhi91\nYSL6OwD+DgDkNP7sIf0IAAMMgAAQyYHs/9mZaAeZsRzP8XcOx6M/xz/S6yVqX9+6VLzOvgwr5+rD\nfYN3xVjBFDA5rnoJ0n8AKvf1hX5vleNn2mXH7SMCCe0cO75qnyUCat0fvGsA77o/9i/AW8E3+M0v\nmfmPn+2L72j7sXN/+gmI4e3mFPoHkO8AMPW/f/Aa3I6Jv1t7iaXv5VofLmdvUhb5vbhdpzDOd2PN\n2sopdfecqrU/heZrH9TQN/5shcqFz67a3j0f/XijUgEiPYY/2Nd+j/Ra8RgAeHr6FRa+fMudebl1\n44bGn929+Wn48lML05/PRdxevTs+wuLtuPXxvo7h7/34tDOlz0Mh8dHgUM3963R//bT74Fv6K47l\n7hm49T56tpAPX8MsnVd8vfx/r/bOoWH62d0f/PSD9SPAv/+2d013jp7XnRPGUjesbkxtz1q8/8/U\ne/+uYhsrYbx4GT53hGL1c6+OHc/7d+iNa+/rGetw68DdfH31ON56gPZ9CmD9za+wbI+v8s5Jw/Sz\n+V/7casW74/Vd/Su0dR15o2p176+4b9Q+IDt5uy+Y5vTnhkYtDv+qqxQhY+1D70eP/Rqpd0B/auF\nrtrffuX+mJtlXHfo/h7JlEqgx4TzP/+r1/NzkNVH7g5A14Bb8/rHXQhXnWnlWJnBp2ZmUEpwn68y\nyOZ0br/3fviNazLfvqHUlyl+qb1Mg29r39fajjG/2crfPxfP9VH8fHc81wKi1NYJsV/sHA7Xvrpm\naCMBj/SIdXn/On5OGn92z29A4Qm46gvv92eq1LU3PDxX90+L1bI59EtzU9sL2+rUHd+tL2j3nmDs\nn93dRa+vrX+38Vmv2t/OqbfvmbUVAJH2o/VJ50P359CNesTjvazOwuC58ei85toqDdPPxp9+2M/5\nfi6qP79PXzo+h7fs5jO6q8e31evbrn/rms99d6tuz53/MWXsjtl++Wts529/53wuQOj/BfCn4e+/\noZ+5MfPfB/D3AeCrt3/C/9bpb8sLPSfQMMjEMgzgZYUAJQwaR/C2td+LeKOUkzx4pQA5y09Afq8s\n5+csk5hNaloOUgYSgYYBqBVcq5yT5CVi1+gmJfuOWT6rBRhaV/p5dl2bvOza6yovqWGQOqYEfnoC\nSgWGATRPUlAp4FqlvNBuDIN8txW/Ntlnpbb6aN1omgDmVl9tC80T+HzuyuWnJ7l2PH8c27nbBuQk\n9QZa/+oLsvzyV/iH/N/8359r3NwcO3/2H4FWued1GmTxave6MGgt4DkDFaBawZPc624CLOFFzQzO\n1I4fEjgnX9RQlTLBDM4ZPIqzQIWBzcaLllUYbBOP3f8xuxNBWxUAJwEGrBDD68eJ2v1itOtqnTgn\npGVDepIxVe8nrTuD1urXpcsKngbUu7GVZZ+NGVQqqFSk8wYeM5io9RVaux3MyQTaKtI3Z9T7GfVu\nQHrapH5DkvOZ+7auBaiQe4HWP9bW/+l/+S9eMGTcPumd8wfTv8T/xp//XbmnWfq5A67ieTZMdpOG\nH7dzEH0hHY69MrtWBWirN4E0L0vr1oGP9jcBnPTvUAdiRloZVNDeO4lknDGQlgrSoVpHHXdVz6mt\nApwIdUqog9xPVL1WNqdQxwUDSEAdds5hxJdZ7ncPTvZ9wsGpprLruDBBxzre/+N/gf/+//qLV3vn\n3P/0T/lv/q3/WNoW75U98zWOjf67fVs64EzPoyrH1xyO5V1fElAzgbOeV/u+MhB3fy852XVYz9O6\nMZA2+QwEbLM+ExmgAuRVvqsDsJ2knLQCeZF3SR2AMvb3Pm3hOgXg3MY3J/nMm8OhHdzaJ2NCvi+j\nXrdYXajVeecs1eDZWL/ZPbB+A4C//K/+M7zQPnncPPzkT/nP/uI/AACUKpWxag+pOiBUaz9YiNi/\nEzzffm+fy7XIy82pIqcK0uOKfleZ/LxM/KyPmXbXSMQYqKKCUFn+2fdWbmXqfNkhxQELv7bZFtqZ\n9BqxzREYo/1LWdu71QTWsktNYCavL4Uys/5cSkZlwpgLKhO2krVurd+tv2tNKEx+LfvJDOB//gP8\n4//0772en0N/xH9+/7eBlMSfTARQAriCzxdgHEE5uY/KpYBybgvwWsUnsg2/UuScPeiSCLyqb6zH\n0mludVo38LaBpkmuB8j1c5brbZv+LnXhbRM/xs6J19OO97oW8W1oGPw8pCT+falSZ/OlxqErP7aN\nRvGreVmBWuXvUH8AoCx+f1xDAJBz3Let7punNw/yubXffXeS9lufpiS+vV3T7gezXCNn/I/Lf/fB\nwfEB+/Rx8/An/Ofbv93uay3ygCa5X+AKVh+ehlHO31b5zoySr7FsbcOlgBLJuX4Y+TgAgPr01Pyc\nQcYnb5vcZ0rSR7u1Gm8rkBLSNEpf5iz9G+op9dH66d/uI4+DjNGia6OUkXT88rqB1wUggMap1XuU\n9UC9XCAT4Y2+0eeLmcHr5tfnddEypn6NCHlu+OnJxwsNg/TdusgYmaa2ZrV7tyze59anbGtM4FXX\nVm/+6E/5b/yHf899u84PNn+E4JtCN4+54Uv7JiWa7yp/7CqzB3WCD0TVfOPr8jkDIHY/nIq+uxP7\n3+576DGyvoH7EpykHKur+xjPAEfmT9CG5n9oHdJKbUNs1xb3C9WP9z4NfeV9Vtux+765RV7gxF6v\nn//nf4GPsc8VMvaPAPwZEf3rRDQB+PcA/LfPHs2QB0NfslwEBEEpDWxQkAgAaJrkRZ6omyzIQBlK\n8s8eJAODUtKXmY0qmVjtO9juBteeNWOmi3MHeOwFNQzyWXTK9QH2icMWZXbtnGG7HLwsDQwa9HNm\n8FbkBbyuck4AnWTClgmSkr5o7bOUu7r5gnW3aMC2yT8i6V+7ju+W1B4MAhoYVMNnvjvynYfTp40b\nQB6stYCJBHyI9S8MKgXI0s8dQBF3mAoriAR9qSkYVIqCNa1dVLmBRwrkcHDEiNmBn860XF9IAwKO\njAooBTPgpE7ZyyaGgE21ShuSTIJpq6CL1LPejV4+maOzFumfMQuIZA7VKmOHtQwAAk5lEifKQCeK\nL/lYdwadBRzkMSGtFVRrAMKK1L9b8BMwpPZii59/d/vksXMFvOw+i5/LH+2ns51u3Gsvg8K/vflE\nw901nwODfPfRxugODOqvr8DOxl6+g0FoEx8xy8SnIGTaAhhEDQyySSVOSA5+hB0/B3NutZn1WG3L\nFRh0y26UcbW7dwts+zR72TunwCfk7v6ZUxEPt3sU/91yfnafR4Doalw6CNjq5D93QJCDjdH52D1z\npGOaM2GbCXVoYJOBQUzoPnfgKoBBVt9UdGz7ecGxgfRfA4Fa/Z1lRH3drtpCUj6HZ+A5Jhrvxr0B\nSt/RPn3cEK6BDvt3gx1ExEgBKHqOjCogBfk5EQwC0AE4Xu4zD44BMymUM6WCRIz6gQfWwCCzPRgU\nQRo7Pl4rHpf1XANmcqpXx1kZ8Wes876NidiPs/INPLJ7UkMf+vVDvdq/8Cy9zD597EiFGxgEyAag\nAhwAZEFtPrIuMimnBsIo8EI5qw8nC3sHjfYDzHyfyuLb6ealb576ZmlyQIeij2obrcDV57JxKfWl\naWp1gIAn3SJ53XzTiALgwAYQpdSABbP4t70LK/uc7dcrRctOXT0pa9vXVRfk+nwuS+cfAwCd5ga+\nGfCmfdwl7amsoBZeai975yhIYusFpAwaB2mjgop2/wSsSPK73fdEApbYhjN0fOm5qKUBNST+o/ep\n9bedG8GcYA7iaL/K+KjS31z9cwGWFKxZlwZIdWCmjcsswBLkvvG2+ufePeNuLOsY82fBgLIAYLZK\nt3cc67PIumal0ywAkK0LdFxxKX59vlxaX1rZz/iU34OP/KJ3jvseEdwJwIwchDamgx/jIMZubr+y\n6Neh+SLd9/Z5bcd3wJL5DAngrECI+UhJD44+PrXvvZ0R9NnVU/zk8N4PPn70VTj1f6dCXq5dN/qD\nca3Q+UGpdYIfc8PXt7bHvnL/vpL7WR9rn4UhxMwbEf1dAP8DgAzgv2Tm//X5EyDAhT10cWJSoASA\nIsCjPjQVQHYmDhmgkXL/8CZh6LC9pAww0RedT5YGqOik5i8IRXANBOKtgLlNNjQM/rkjyJdFwB19\nGaHWjmFD89TaZKCMglsG4PAmE72xifxlO44KIDVk3VlEdqz2IQ2ztJlZ2q/glxyXfOKlYZA6hJeX\ng0Pej6STWWpgEyUHvrwt38E+edxEG649NDKWzSATE9sxhQUkqlVeWMp2YaIGDFVIX2YSRwwkgIwW\nwSk1oEnZNcYGskUybcpCUvYPwHKMAS5jdqaNAVS0CigjwBV0h10mCWM6VQW+qFTQZXUmj32e1uJs\nJWKp054JhK32TJ21tokoJZQ7Gbtpqz1SXVpdkQl1Hu3mSR+PWdrjEwnLsYV9bFIVVhQVbt9vcYb5\ndHvp2LkKZ/MOoduLUm6TD4Fa/fdlhkU3PUP/TUVAGz2ogSbAjg0UGELPgEAdO2iDgEFFnaQIvjgj\nScId7ZmQxXuri7AoSFkdbUx3LKA4KaZ2rPRXdJzC3wQHmK6Yc0TXx3+M7YHuT7CXjhtjuQDBWSBC\nKtaWcMzuXrkzpY/S3omwY/yWGc4dgB0matcngPWepMBIlGMJFnZsIKB80RyoeCyTMsa0/mmTsVtG\ngDOhKmMobXKtmkl3w5pDEwEXq6vUXxgp7tgBzjqsxh6q1LE1jb0UHTEBsbWssKNmz2J0PH0nMdwT\nMqLBy4fNy8YNCwslAhhmcXPZAImcGoBi4MX+PDvevh8DELRvHhFf7QDe6obnABgASJCxZABL3bF0\ncgB++AbAEgGvW+1IuzZGVlENwNfe4rVSAHL2ltP1PMPhfuyZSBFI6r557bHTzgWRLIglhEk2A5MB\nRVesygSkChTAmDoG7ACQzR97X+zfo7UC49h8vwL3Jx1QgpbLLBuuzkjinvETQScyB0t9zWW5YjPR\nJAwOZ/Ir879FDixdPby5ClTwpiCSbeoVY7cIKIZaJRphGp31JE0hZwtRTuCakU6pRR4Y+DRNwvyo\nDIwtogGltM1sbUtwHfBdkMQXjRsCeAl+OTPABSgkbViin68vRgO6Ijvd2CwGgihoBMAZNdZvgN43\n27BWcMwjHSiBbjyHAvQoc6ZWvyfxWs4y0o1sStRdt66XVie7L9WYPuyfA3DwijmM1XHy7wXgHHV9\nOev9F1+VN2MmZWHx6PkONq1rYyn5mkzWSzRO4AK5D4AyjpKsK22tZ6BUZemrPDmA9BL7TmsrAA58\n2IRhwAnaz7g51YFItna45ecEUKebuKidHzeJeGhzfrcpZnVIjKsJkG5ct8omVfTrweqbhms7kyej\nsZr39U16XSYgtzpQRbf5zQmoo55cpMOuplgtaw88+foLaCDbrfWJ1cv8HCbUT5isPpuGEDP/AwD/\n4COPlodRJynehNVhLCADeGgae4rhsgrIYSwWoDGG7GVkABKgwEv2Y2IolwM2CpTIi0cBEEAmPWfQ\nNAolAAFbgBAmlhoYZN/bC2ee2guC2XdKHCRilusYc4eoAVI592CQgV1xx0MnLgODeCvCOtK+5E1f\nXLnzQOWzbQMmDcVzRLv6S1gb0/okIPHCxPruhLNPGzd6TgB9/AG0e2KMFAODbJwsSmUec7sfWRwq\nsnPDd8ZCEkpwADKgi5r44CvDyEEoCuUqS4ahLyljotXqoFSdQvjhVv1cYwY54LRW0GUD302op0HA\no8KgZfNwGwOdeEgCBq0BjBpzAwFLcTCnnnTCLAJOWVlUNcRtzC3sx5wn/RwVLQTOdsueW9yz6CBR\nrdL339E+dez4JFHbAsLZOGr9ToXcq0jL/NDOTQdq7FZeVPVe2TskvN09fM1CxboJr/1+85pWroFB\nYTKkIvfJQIM6UAuBtIWEgkF1TM5E2oeE+WfeZ3S18G87FdwciHBMbAODuv6x87uJ98YQ+h7YQXL9\nTxw3BDg7xtut/WgH7B0Z6Dkdw4V333XvkNvt6xh7COfsHLUYWiXn2ADSw+3aO6etjs3x6enThKJT\nWl6hYC4UsCYv8xa92kFpGzc7MMjHtJ27f6ZIx6GNi1BvA3jkuDC2gqNHoS4RXPqu4+clc5VZfob5\nY6BJTuzHMJNOJw0U2oeKSTl85QubGbBxK/QKkO7ZgzFmBjElLTWBsXHyMC0LScvEzgzaAzcRWIlh\na3vbh5VZeZHlFNlOHK5lYXDxWrE9sdxiffEMwGTlyUVuHPMdp6sXjx1j0gOy6YgNmKbmIyvo4Uye\n6K8p48UBmh2LptP/0eNJF6jMWwtv0c1VGoceUIi+OdCYDxGoqiwAlW8KhdA2mz9iOFAI7Tef2kEi\nZTi166hPbmE3xlyytg6DAkYa0mUboebvrwKW8bp5SJrUWf36ym0DtZTGsKkNbEIMm5unFmIWWFm4\nJsh8tH2Xd05XTtV+Uh/ew+D0d6QsOk7Q8C4i1MoCwNj4MWa5rtF8Ex0IAE728WDf87YizXO3ZkmD\ngooFHjblgIyVw9TAG7lw16a6tAgHCpv99XJx3y1No4CcBhaG54Dmud3HIA8CKBjpayB2ECy200Md\nd2ZjkM8XPWZ1n5grgyzUOmeZurYNGGWschUA7YoB9wJ70dgJ8+WtUKVoHbiz83NieTd/7wpC55dQ\nggAoaHVx3yqFcgg9kBL9x+hfPPfa9zJZwsyCP0ZG7LN2BT9c/ChZF9TM4BFABdIWAB+CMJdINtMs\njA1QX8xBLrsAej8Swc+J9dXzu3CyUE8A7p99jH0xUem90Tg29N0ppY1eF9FcAAIGTWPTGTJgyFFl\npasaWLKsHpJlbBkAzuwBsJtUG/MIgJxjFEmrc6Ditg+TThTUGDOGThvAo3HGDvxMqgtEIR5ZJ2Jr\nl5enL2uheUo5BDR2VFyoWTuZ2xYkywQrgmbs/c7ncw/oBG2kKA53ZYaIW39/AXPgxmnAutA2YMZf\nEupMrwo4WoiZ6gTdBINYQBAwg6ccHnBqzsqO4UDmrExDu2Y4pgudYLl+A3CSLy6pcAt7MyBJF3dp\n2ZAuKzBkDc3S0K9NgSUFwOppcIZHWhTU0rYwiawfLZvuXqA5X2Fy976LjB5nOImGkXyub+cEDT/L\nfl7PGFGmVAjF4xsMr89qJNd0/Z6iulG3wKBd3Z8DgW6Gl+m14kIcaAvqqzISdTo8Furl4Vg3ynZA\nokioWGSpNPBZxpSBQWzATgcIkLBDcghtDBOagUEAGgOEqO2qAA6KRGrvVV90De5/XoFo32b2bn1N\n00maqb8vzkYJ9ba/92AQAOm34KS4Q4LwE9dlmRZQR5vW+y8ACcsr33xTgnoWrZ72cay37IKR18nH\nUZLdNCQgrXqPdTw0LSL2NkanzLSDhB0kZVs4mbUp6gJ0z5f1UwCMbLwTGKmEvvTG9G2Mz8z3BSB+\nFzPAwwCfaBS2WC38CYDr2Bj7JQeQxEKdDAwycCaykOJjZKAI7f72Y59h6BgYFMPGOk0i9DpIEaQZ\nUr0Cg7J+tmcRRWZSBHViW2v3or19bgSF9oDQpvW+Fu++1mRipg50cg2hL2BxoUrT6HOu15mSgA3q\nj/oiP1HzrXXzlIhkflZQxW2a5FErpTFyLKzKzPR6KgvDRsN7IlvHwqc8tAjV2TKUp7ZI9jAhbiwS\nZhBX1zLyNphvq/WhaWo+tvljEQRaV2kP6T0MGkRRB8ZkKmD10TA5B5vGAcJSWRDlAwTgqN2mLGk/\n87II2yjoF2FdBYz4AuNHwsbQM1bMunduAs1zY6NkARvr5dKzrwAPpSIiB2O8TymBsq5hdN3BBigZ\naGZWlRFR2zjuxqRd47L6pj0N2T/vJC2sDja+TA9rFz7m98xCzBRcsmejFmOMcdv8z/36ykLtbGy2\nsLOglQQ4UGR6QHutpg5YGgYPP+tAqe+OB73IbgIsALqNritH5fZxN+fgna9EN65j1/bvgs/oAI8y\njOP30d9iUr9jaxu6sTz7zMCdWDcGug07ZyZl9rAsB3wCm5sK4JqbWm7aBGzqdA/dH2T3Cbs1Q21l\ndn5O7KcIjO3KvSU58Jy98irsthGjMVIMsQ2MFAcabAfDwCCjIKpZKBRKlZdaZP7k1ACfYZDQKWMg\nxboYGGSAUWQX2bn2Yim1UXDtfEOg7fsg8uygV0pS3rIKm4gIGLJOoI3JQjnJBDPIwtoFxyw2Wxfc\nDgbZd/PsVOBOGNv0mHJ2KjCX2nZ5nBZrI0l/augdACk77jpZ34SJ4rWN5+yLeapVAB8LQTKGjrE7\nDAwy5opSnWkTDRzaFMiJAJMCRv7SSOG7nVn2MT9fyzYWE88tpNFBF10I1Sk7SEWqF0TqoIjQM+T+\nFtENclBmzH5dqhXYCjhn1NOIOiioqFpCEuY1aHtYQsWIZGGbydlB3h7b2TNgKiVhj+jYSMvWhLFV\ni6mxTawPQvsMdIngHDUW0uuZAhnx+VdwoVtkGuuqPK/1042FCNrsJjCZgJqujzMewrkGutg/Y+lw\nRtPyCZOCsXOoMtLCEuJTuRPKJkYXniaCxToGt+paQ5wAHgQUiuZsIg09uwr/skW6gQI62Tk7CPB2\neN+ENltYZMcm+oBZP7q21hcwY83coiPHeHNhYd1Ad/YTOvXnx89ieSZ22IFw3n9ou0jPlO2ATQBi\nagbKRCiThG6lDR4qxhnOJDOqso/NMP6s7Cs6tTcKXscGoKO9g/08am329lPnmLr2lY7tmoOTtutX\nj/s3BzDWy8bRK1un87MDYXKqGHPxzyKosQdKOjCIJIRuz4wxkAjhJ4Xy4j+ia02fRIxMDeix60cR\naaCBQXs9oyFVJPRATSwrAkiuXUS1AVA7UMfMhlpsC4XjO0BsV3eGgFkmQn3L9jpP3t9V2/eF3jtg\n0VUxv40vFwVW1BcNIVEUfV5jmJ8vjVljfnV6xncz8CP6g85Ol7J53aRs89vNb1VRYDZwZBia76vi\nw9IebgCTAVCk4E8AX1wjxoAjZUWZnpGFmFnGMZNXAOB6nbb4JguZW5sAdseMMnFqW6gbQ0PrGRf7\nZqTlA+Ijdzo56ms6SPXapiBMOs2geUaaZwFHVGtVZC+U6Z1TW2cAsA3w9OZNE9EOY4UMTDMdIf3X\nCU5rmCDpT9cmArr+521V9pewz0QrVsFNmydqaaFsen4LTwxsMlvLmJZrEtDK9Gbrsrbvo8C1MYG0\nPR4dYRpBpkNUS7um9puEGIowtrWRRtXHUg2uKzFswIFevlxcZymWC+DLbbYHLR75IAATBJiQdANT\nwr8PmZ3vFwo+tX7Xafbsz8XuGIKiMLvv9qAVofOlfRNLr+ngiQI87jfwDd8rAEcdGFTQaUxG/4Pq\nDgwKbbKwNNtIAwN1YK+n9/l+yrL+j+Bd6NdPmat+EAwhcwzZGDCrUOacGhtevrwGMCjqB5m2SS2g\n+zvfwXBGT6CVduJotiNhiLHuqnQUylIdELEdExdwNtppyj4J2uRm2kCeBcwYJdvm4Wc0DMDdCVj0\nZWjMHJvQEoGfzk3jx0CinKUc/ZxGDYPbtc9D7kzZP4ZObZvUX9lTV/pJhu7b+UCj6xLai8vC474Y\nik26sK2gp0WEjmcVWA4Ov4eJmW5PhWccY5LP6t3oYTS+cLFQqKjlEZlHgLNioOFhxp6Rlw21kCib\nJLcqYszK2jGQRha5ykpSnR9nMgECTKwFtKzguwnbm0mEpe3fWeio9X5UeqJ8ns5bA6U0dIMuBWnZ\nJPMYN40l2jGBun4I2gMGsLE9W6bVRPrOigwqImcvOPNKAS3TcHpVs8Ussd8bYUnoQlcnBgOCevYP\nu+MhZdH1yzpMcAw0ECjqo1BLBgu9toA/TbOnWwyHesfzqKJnBg1BCJoBWiVMzBfzg7LQNKQolQZY\nlildh5A5m4iBADpcgxLoJ59ucm5gkLNF7CMKGkV7u/UxfzkgyE2dHwp16UKsdveNdZPcf9cyosZN\nzDqxv+fyWe8JdHRsRmBtQVlmQctH+9hC3Pb3t4zmsKBpABFQBnINI8kahhZSxqaZ1trhLCM0hpE9\nC03MHC0s0pq4A2eMeRV3F6/6jABLVHVr5/HWWp/puh9f2/baQKWmKzCm+3kDHNoLKdv3t3R/XCxZ\n/74CiPTnXggaABKaPpFn3tJOfw7k8XOVWRRDs24BXR9680eA50oc+0ZfXF1f/9k1agCCzLWJ9YoW\nQ8Y6MAjXPvlrmfuntmi30B8LWXFGjfpuVX1p9ReNWSQ/ZYPQGe2s/rJpEymTAl5ebXM6AANZLFRK\n6qPMHpXJWDCXAAAgAElEQVRkqBouxZdL28Q0ceXIOjLwphRn8zioMyp7/vHJWUBMBJrv5Zxta5pC\n1ifmHyvbyLOSlSK/r3IdMnaH+SiBNWQAAQABVdqs21hKUYDYNmANMFHxY9MZpWlEfTp/f4PhY4yh\nm9iT1KW2sCYChDlUAgBtm8MqAyHfJQk1JEI9n+HRCyFaomMYuYj1ouwZAybl3rsAeW5rKgCu1+OA\n37oKA23busgPH+vbthNmzp5hDuva2qkAHenYqY+P2jUZ6f6+F1i3tVxY+7HWGXW5nU1M73nUzKJh\n0KxlubHRPOSSHSzjbQUNo45LLdsiErYVvEmfYvwCS3UFfBDAjeb33MA0dr5f9GEiW6cDfuyzcGo3\nb4drcvhd/BaAB/VJLSxKj2GtuwMzdv3M7Rq1D+mKDaqDrHHTCtHkZN14GuQ72XzTdUMAriwczHWO\nTFOIqdssbfWx47hjS7fOaOV80ibELXDoI+wHAQiJ51kEmFCGCo2jx+M6YGMPawCDnJmiivYmfsY2\nuQGdqJ2/WIxuGFlCCpBwqR3rBwAs/Xr7m1uImjKO5PPagJ1JU3zby9IYPZtOMjZBbsXF6JgFLaaH\nO2E1rZtrJbnwdhDYM9FtEfWTSf1m1ghHo6tqCmkdSgnsKYv9DjpMKRxrkzmROxNAeyF+D1nGXmxU\nVTtnK6iqqdMxCOwlG7NcGaBBJCDfSSfuyh7mJGBQlZdLpIsqAGQaQQ4GAQIwBOCNmFF3mcp4zhLa\nMaQWLsUC4DhANSQHYDwcbVP205DB09Av3jfdZXtz56BPOou4omkJ1SE54yUtmy689J+179biPN5a\nBcQoCopnZaOAgMTApm8yD1+i1i4TpmQGVLdon/XoNYwHWZC1+F1qEx7xhxkoARTyiSrYnk0kIGKY\nRcPxHMtxQKBNNlfHKigEBZiEhmr1aHo+MbW4TyyuGwTXMLLsdxaqZqm8DSDzflEwiAIDSRbo3E1y\n+7p2DJWgs9N32PX5sf+e2cj/YlYNtHMQpX3nzgPp5/vxofev64sAKjn9OTgIzsRhdH0tnykVOYBR\nKQA+Dp4M8jl1wIvWc+udEdsNc0HrQJmOoVv+t5/XvLsagE2rs7Ecef8+CcCajc9bY9/6PNmYbq/O\nq2e1F2YXBy8CT/7ue0UzZlAmCe1atgxmwpAbr9tqtH9VGPhRQnp0+16aJVpDkTFjfvye9WPWhVsZ\nK+cG3LFn0kRm0q0Qr3idWyycW+fE42Md9uVam2+150MgVdE08g1Aau2PL5irTG/EqLpt3MKzrqr0\n+S2GggEKsJAI3AId09t8Ti6l4fKkosrTJAt2S+tdatjoaWFTFtpD4+BhVwB8UxWAaJ3odQBcLfLT\n3allQgubky4KbD6t+fE5+JuhTjop69/V2SoO8pgvHa9jCVWsr1CayLTZLtTIGUqRKW+/64aq19MA\nrdp87i5b2qbsKaivvpbGZHotY4CmsLm+Ll14kv9MCfz0JH+b7k+h5tOnJGnkLSW7Aj0yjrRvDLQw\ndhobA02BQxVPrsuqawtZc1jImTGIUFVvR9chbc0mYV+SuOfS0rGnDPAqfav3rm2Im35R6VlbgLCk\nFOQ04Mfbb/7XIlnXZE069WNOj6lL8VA4KUD8dgN6JCOa1rNK6JidC9Kwu/jOsWfI6hM25F/TGEAd\nGQnmi0q4UwR1OJlviytgpwNz9gXv/KFI+YyvbbZr7OuW4OCOs3mgvhN2/ne5Jd7c/KWuDnqhVPor\nOjvIfOdq2ofcmD0w/7idU41lFJnbV35K79/6FMNwoIuTajXu2+H+HbcbEK7xqdlUv9wKfmdsiG4i\nYJ5lZ0AXqRF1pyG34yjQTzVFuqWWb4yYkKHMFtV7J9AevHFsvxtjyICnENJm4Atf2s4MgEA31BdV\n5ZY5bNCHfFHdoKyMIl0oA9B613Z8qYKAJ4KJYVMMdTLtJKMVUoinZWELke0UGZ1T+yuGmQl7qfWP\ns586FkQsh32icEHvLDsKX8KEGbNJqNTdLCwfe6ETENkozkTRMCkDKHgaWihYAINazOYzHmBYsNlP\nAZ2qLz54aNRtK0sYO0CdbGeNJYTMQpSYXcvFd9yXTfR6MqHeSTiYZyDbKkhDKcv9KECRhYkZMyiI\nQZPp/igY5enqbcFkrBcIcCArDQkXszT1xoQyvSY7N7JgyELGlCERtZ1Mp8lBolc16dc6qp6OZtQy\n87CtHJgMHuoVjourt7hQj8PFnkm7cgiRMSZJ1Odxumtg4IRqOzU3bZpevqAtcp2eKiFiaa0aDiZC\n0bJIh4tLS1gQocwJPEBDzuz6QR9IgQ9LHW/U2chusbZ5CJMd6zTY3jOwMLFOLHgPnuz7Ev1C30Cw\nV7Xg6BjzBRDwxNKrgxtIJOnRqXccLHyKQpl70znegbXQR3Ec2jNdFcCJZfu44sD80XLr0J77pMCi\nZQ7bTpJ+HoCGkGmV9L5X8/VXOa+NYeyeg/AeDnX1caBtsuet6rMYHcOWZY1bGlVujpQ7qLtnM47F\neM/sX2SBvpaRgjpP64D3lwnnZVRNG/0erWv2rxazjh2kwNKetROHy60WxtTsQ6oYdBBHAWlj9xBJ\nyvmNGxD1XNr6mCo+lmd127OgbqWej+cMqWJI1cPjrD9u2XMMIQPRijJ9IuPJw9SSLejNR7y+SlJm\nV4qZbF7RuF7XyVN5K9hjIVoWXkV7ZkHY1DRJAQsnk/LCwtkYQFE42sCm6GsCTQslbBI6kyLdWGYo\nIymGXrVsZ0EmwnzjrQFYHnpmLHxlcHTZ0izrE4UsVFFgOoQiORsp+NK8LFKObkzrDWh+nCXMAHxz\nGUBjPplfb+uTePxrGgEYpyZzsW4tE5odYiBVAEx43TQzl6wbqoFF5lfH8Cn73EKuSm1hUoAAKCpg\nLVEMMn5sTeFgEKDHNOCzGx82pg2wiunoLRyL2Z8Dr1dc2xg4qWO+W+NxhWWp7jLFscpvWGhhAHRM\nF8l+j2FgLYwtbAaHsDn/3hht0a+xNSRuP/evYgQNJ2eUiVtY9sDqO0DZL70/cuXD3ap+YDPfnPDs\nO/sogCacpQ5+rPmjgYUNALQBnu04XrdK4ZxCevro0ydtVzSW4zhxC5HT881HNqCoa8/ukY8p55FC\nv/kaAxpWRsJAcl+l/d45BP4zJLsxf3vHRvoY+0EwhIhZwqJylpeXZQbTeFK+bBIqZSkqp6mleVcm\niwsvx7jOQYAP34UA0AmYZWpIcAwtsgnE4od3kw3lpGCQAi4+ufUUSsrJWUHGAsK6SBujlpBd39hG\nBhStK/iySAicltmFinEFhtkzgcX6M1O/kwP4LgpfFPXeNtA8XWspmfge7co0FlCmdkzOAkx9ITAI\nDOR3FwGDplFCpXQBJMi1TM48ZmEDKUMoMlU4Z5jArmf0mgYRaDYNogDcWap6WBhGfOCCNgtrXul9\niAKt+qIf2oS51xPiaWggjbKA0llAHB4l9XwEZixUrj7M0pbCSI+rhoglSUmvk2PaKmjZ5BoK/Bij\niDOBkJqosKWjV4YRVZZ+WYuASbUtKqVRssjytPKAjnNhWTE0XCVBQuo069lrL8xssiOilkjQ3g1+\nDLnONhmgUZTauQt5cds3I4YU7b+zicVAP2X2PJdJLLKo0qaATxCQ7hhOhZGX2iZX0wZiyHircKCo\nTAl1Ij/P6tYxkZQFFBlKVztFO3qug0G7iV6ezR0wENp4FT62Pz/alwj/0X6SMQEHUSKt18S7W+hf\n7Esg3VrcJYTdJX32uS0+bcKP1GKye6KOWTyu5jYeUgTj9Du7nmkPUQXqqEDRoOetChJanewaOn5M\n2NnTsu5w3ZixLApJ29iPTgzbd2YEZ63FcLO9eDfFMWfXte9qKHPXP1/CmAnnNaOUhKqhYgJMyPfl\nmbAvAC6EbGFiOYRLdbo8N37GcLK9CHPadZ6HeaGxkuzfPgSrO2/H1EkQIGkPCllbngv1iteJx0a/\nmQHPKGb2XOhcFKOOmdayAk17+1D42BcgsjbrGLkKjDgbPHkoDq8bOK/qn12DEJHNcpUZKaaOB5pv\na3O0sWgCuOIgUqLGCLaNtWFwiQVeVtDcGCden1JBWc9R9o+zJJal07SJIr4ms+CgV84gW2DX1i/i\n6wPg2kUQENA2Ua1PozzFsnQAmrDjr9cJzraysDr76X1KTdsJ+KQF2nc2gkQbXBZZN1wuvqaRurU1\nQppnVFvz8NrugW2u2yY8AEufLr/H8ZKu5mRZpwEG9kimstH7RdZrGW2TWbWpjHUTRJcl3CoKQdc+\nk9myNJAmNzaWZZ9zYsE0yVg3gEjLi8BiBGJsjWRAUQcEBXacZcL2TXVNABRD6pxdRGPrEwSAK2eg\nLF6mCXJ/CTPAxOZwNp8u+CVXc3kEhIxZTGHONWDHjrvRtMiQ9mtCjjVQpgODrFgOPw34MT81Pr6s\naxFudYyhXxb25YLRCaEcbcCO2RPTwYv/xb1PZH4Pgi83sDOxnREUQKxn+yj2MW6sLdDOuanD9Iz9\nMBhCNqnMFkO5gS+LK//bpObp0G1CW1dgFYAIwwCutdPm4bjTgDYRWsrIDgSyiSNRoylqxjDSSVLS\nRyoIpQAVNI28v2hygscN26RNJBTHtWU6M2DHzdg+Q5ZQs2UHBgGuVxRDxSi1rGa2Y+Nx5PHFFMO5\nTPhtnlq9U+hjQ/cNWJvnvn3WN+PY6LSlNFrqKxqVCvrmERgHCfkChC1j7Qi2TyNP51XAoDE1oMMy\njjF7GJQ5RY4u6wvRGEYtdEiOszA0zi0czJhJvigaknyvQIyxcJyZlLVs1fqhpxWoFXUeBdwBnP2U\nLhJqWU8TyiyZ0NJ5kxfWkBrwqcATXVaYUDWy1LNDyLMdyx1zx4AmD6Uz5lUUQtfQOaqSsl5C9xor\niyzLlbGVEnodote0ECploTbGVvCJxhgLO4uCzV7c7vd2X/vQsy48znfL4CySfZiMjzM7pTT2j9cl\nk+8MpE3AoJ6l0xbWyUSkSVhDHELFbCdEmBraFgOQ9iyk3e4LBaDJgYrdAr817PYt8fbsgZ7ddToB\nkNc2dzYa0GLgkAMXBoAwHCzas2Q6jSFzFrIcXwcFZgLT0c/n/qfXaedExLrICVJ2GUkzf9lYUWAn\nibg0D9KWLozMnCJzjMxZAnycSNhaY+VEJy4Zs4e0bbmVa2UbOyg+hw5aeZgXOvq2Nz/1/+y6ETjq\nHFHgKqvg5zZi4Jt3d3h8nHG5jKhVmSq746JYc/SvI3uFwnGdMPSN695i5QwkrKA9aLMXkC41Ya35\nSoD5FmATP6/cGEV2jJ8bHmav1+4zYyhFdo/5xTdDyJ5jG4W6xfINPNpnFtuDQVEzKIpvfylA0et1\nuaCeLy7qbNo43SJewSEA6tcqe0U3wmxx65udu2fBdE9okJAxT7du7B+7Tvgp/vFOHyiyZErzRTvf\n3DKVRSHraWwbqsbsAWCaKgYU0RRYPJQai9/YT4CsIaiJR3sG4n0oTpCXcAt19uxbtl4AehZWar6Q\n/16KZ3d77TmLM4HvT8quSkhvHpAe7qTOJpJtchV2r3NCmmeX7HCgRL+TkMIsGjfxnlBoLwADMjyi\nA4ClrXdQz84FZP3jYWelbXorI8fHWgh7ixv2rgEUgFPKCXSa5byoKTQMqO8f/VrgBvB0Iuu7zUpn\nwKlWUQP5uI1BC48bBjjQNIy93hTg/UeJ2lpLnzFf4zpA99oMeq1j5p4tQ+ygh72yLSyKE5RFY2sT\nm/NDgdTm8HjO3gzA6XweYgFZ4qRIXmwr36pJ8ouDPgUdM8l9NtvI3F3b+8D8DQ3bEpBo944wH9Bu\nU4JsqoV+ciAr+jD6cw/6uL+391/0+Dr09yX6hwj1eDbS4Bn7QTCEsBWkt7OAHNCHblXtIFts2sto\nXcGGulaW8DJj2sTQr7AL4ha/j+ckaro+ltYd0NSGqVFMLc6ZVavoNIvGTxBadv2h+KIwsWwLL5tG\nYQxFYCuRTEYPd6B1EwE9i/El+c5iXaUsZUxtxYXXACioFITjbDGpC09e1k5wz4APpNSowRReUFa2\ngmA98KUTr5b5RZTwTQNJs4sRgC5Vu4IPdcoCElWAqgI/4yBgEEPuaUwVbw6FhWTZzpf2lYSEyaLa\ndsWo6KqKCDwmFZVu7B+qUjfLJkYG0FimLQ7aLICfmx7FCeG7SbWHalsULhIqh3lCeTNBAKJNQ7W0\nLgpwpU3BoArUaRC2i5YHQJ4DrYf1iQtkU1vIolZgGkBLlXLMtM+cJZSTA0sAZJdIz7XjjS3lmkuv\naFSMBrtzhKMDoLsj3cLS7088p/9pYWL7eaMtbClQT9Vx27NpdgtZY6akRUPBdG6OixMRmK4O+BgI\nAGYRyCsthMZD5hKQ1jbRxwxSLTMUQthTA8Ou08zHTglt2X92yxggcA+YhfP9OQ2sqC9haWPMX6tz\nmghlbuNBQra0P2y3yV4nCqB1WQrZHCh7bq6vt2fUmMn7Az3QsXMsYqY3G2O+C+YHQUPIGnCVCrqQ\nQg/PSu2+U4WGqVEDAWM/aYiaA0cW+hocsAbikNefKmDQhoOO6uAl2zG8ce87X5WCUwgdu8p6srrW\nVx4/tDH45yfUicGnCr7bPASpVELVG5MTI+VyM0yMSMLEgNbXH9OMPTvIfo+hWDnVK22fip5V8yHR\n6oFapjEDg/YC1lamfdYBQQpOGUOpsAhAbzV1bYzZ025pIIFanax9rL9bu60+FmrHTMjJ+gP+GYe+\nsc8K0w9jK1UXvvWs7yIALga8KNNGP6c0NIBCWTjuX1uDbSEaQ4eUSePp2IkEiNFjHIDatp6pbuLN\nOQk7OF4zgFBRkJc0Rbxf3wSpjTlkZmBCZO/o53y+qFBy7cAx2gjOXuk2ZFIAmnZP0jg2wGSapP5P\nZwXEwgDI4su5ttC6NsbKauuFsa0fXtk4JeDNPXAnwIj7tJbIZlkhkhuzhrxpW5ZF/NIk6wdP065m\naegpbNg7A4iU0RdAEMsaZuUY44iMvRVYPnICdUAfDQEYUc0iy6gnm/ht/SIMngokXTfFzGlAAHwC\nEKNt4VXH4zCCTTqDKzyDgWmpephbeCca+8x0t0y+I48KenLLwMYsz6uWZyQFrtzYV6ztoqQO9OsZ\nVWD6Wu8tQQCRMG97NtkdkBEn3i7zVfShuT+382H3FTGAxpjQOx/nVr0F5Nk5TKFwB304VJeCH2t1\nslA0QgvbCswgYgArRHMoMJcFPOrrYf6Ls6WotYW03vIZXfdX7B8GoiB2vxHI7T22X5N8hP0gACGO\nLISLZDaw0DCPr2QGn8/yYBhlcJ6V2VMdtKBZHiQPg9rtJJOmcI/ZA7QSyuhRECaN/tLvMmvl3MSl\nN4lh7jJ6VfasAh6nbMwgi0eu7fqdAPXbB1Cp4PeP7SVK1LKNPZ7FCbBQNL9m9XbSOHbgGLOi30St\nnwPoBdUPwpCBx6dGMY5hcgHh93NsAaOUTzo9fPqN/x5MdsKq3PtFwarzImBMqeBBsgvky9oeFA0v\nc5aKsXqmoQc+9gyjXcp0M1qLZAODMG5qyAqGyp34dL1rQKEzmQorMKUgStg9oVXuH59G1xvyhfGy\ngR4v4NOM8pVM9vlSpB+UAVQto1RlAYMAAQCz6goRITG3kCPIwkXGlLYhobEySuubehpAhUXL6NJ2\nVDglcZgTgS6lfQa0jGkKpNF5RX17ev3FPTPGdwXllFCHAG7s5484B/uiVccA7cLG9juL3fV25bJk\n2mop5nF7ZReAAA8TMzAok4A9ygyiAmeidRpIxkLbml4PZwkV40SqQ8TheL10Nc2WBi7JMWiTtPaR\nhVB5n4SJ38u4sTvqXAgOx3cU9L7/qJvADUT5hBnve7C0FNz/n78Djxnb2xnLH06oo7BrzCKlWVhb\nCAwrAV49FMv6FgLGptKPrTg2WP92TZ/UOzRWll0rZh4z8MUAGetLYyJZDH5idCFmIo4IL880hYzV\n423WcSgHtnZ7f9jnAPLKmt2MFIDSNu8W2pFx5uUEZ6wTTLfvuAFHhNg38jNtCM7f642dtFb86J8Q\nlq8SLj9K2N5mXO4HLFMFDRU5V2T9OeaCIfdsHdMMAvpuNvsQQLQPo6raIRHMMQbMVhMKp6uQroFq\nd76fG9g2sa5Az/ypIGy6qBpSlfTyyiYy4CWGq8UwNfvb2jaoOHe8VgS4DOgxMGjPYIrlm6aQh8Jx\nrzVkZuW/9lT1SWbsCGW0eyKWrQkIe2YwAI1ZXt3Pdv1M5nZsBEDGsQFJxiIBmpZlzmDV8iRsnWh1\nS0BCDTQCGihl5RXxLWkagWVrbHvAmU+WOUt8X12wK3PHmPw0DK4jAwibvaWTb8AFbw2giOCTZeEC\nIGuSnPq+MG1NQOpauY14zUJWLxegZNCg4MlrrusrZKNyyLKhSOIv0KWA7k+yoa3tpVJ9TYOnJ9gm\npd2rerkEwenAmgpsFg+jsiiDYAa0SL0KkIbWv0X6179Pud03ZdDIRneL+jDWWr1cwKuCVwrsOIhn\na0ObD+e5q7u//xUsjMwgY0JZ2wABiaR+Gs5GFWxgI+ASGmxjNwBdUlD1bGRy2RYehzQICKfXS6dZ\njt222y/1z2xprfjq/2CUGVi+ImwPwu5FZliIN1XIzkoHtFA/Gd0gN0VAZu8buO8Uhg8nvvIN7FjH\nfczf4BYKZj47BRAH9p1e81a55lO578VwFrUxoiy0iwr5xpwwvCUMjAqQFtmIso1CjzChnkEdmdyc\nhYlU9ec+mYf331Wlpe1M0DWbfh5Arm+zHwQgBOgLZNuAdUVVBNnvU5wM0KilpLGcAFoK9TBBdWCQ\n/R7jew3RB9CE+RRIshdFEKcDoKBOEhDCGDuGIjsFMpyvTAEY24jIr+9tVnYNEzXGkbFtfLckCJCZ\nQHVwZqOGkANUjqYrkLFtIgK9Kg1TJ2ea55bJTOmJJhzoYJMygizLm7dvC5P1F9j9AOBpSVEZtG7A\n+SLPTUoS8rQ158eBwCEDK+RlVtp98wct7PADttAKb2XrWmZ9wO0tFhZ+RF3oWjXWUAgfa79XcaKM\nVeSLbbnfHOmmytxxLaKTMp1WBcW07ibOCoaCT8ZA2k3UoVmku3muJWOMqK3KNQojxss7wOMvOmr6\nSoGp5aF41NpAyu6SNj9/ez+LMTCcS39PEV7K8YXaLUY/bma+1Z4rbRzVDbqa7MOLv6eBsrMunJar\nIEATcg4Aw5Ugdljkq2C5sY6c3aFlGo02ZsLq2CWMVp79Q6hTCFHr2r0DeDx7Hlrdrla2t8ZGBJde\nMewHgDwf759AOSOnhGHKKHOSSVwBEhsrnIBk7NF4Lw2YS7vPEP4GOjDDwTDA+7gDMXXcOBjE3I2R\n6DzFkDYmCsLN6ELF4jgzx8V1q3znbHeDbjktYTx3ztb+uGg3ngNiqxMJcM2tvFi+f56vy2r9+cov\nnVJx96sKKsmfj1Iy6pxQB0YdKrZJQKFtSBiGiqRaQUSMIddnyXa3H5Hn22dsHDtunw7+VhiYHcPh\nmAj8uN5QKNcYP7eu/yHj3fX314t/W1kxpO1WWBkAD7fj3WfevgAG2Xd7y6l+8ZCxT7JawBcN6SLq\n2n4VMmXgANl7rPl6Lk1QwrzpC/zqAAwyQCog7KFggGxSeTgRNxAKaBub6nuaKC/VwY9zuYb1GlER\nnzesPHMWH918YAMXKAl4tIlPb6FlAgBU0NS0mVwDNCXxMRUY841SC/WJWjPGzLa+MSaVnfPKWjAm\nEcB3s8wBc5bNCGPwmP+2VV3gV9B5ESkKFYgGV/C794gi0b6xHY2rkFiM9WN9bvc8Z6BAQBAosGTj\nrHIDM5WV5NnP1q0JggO+RnG9q7iBGxhLpj3kgOU4CUC3bsIeUhHpLquY62H1II6vfQJAiLoTz7bn\ngnVNiNHr5P1jzCCgvwa1Z8N0g+J6RVhFH3fPvy+jwrj71YbtPmkbCGWGJmKRd2UEduSkZ343i8fu\n/bzOP9JDQ5hVV4Yd3/nH6Ot01aC+DNrXe1/Pfdl2nG+YAhH8cuZyrFdXBnXHOdt6V18vI0HHCnV9\n8qFdIAp/RzDrY+2HAQgFkET+JHjcsb6AJXNC8nhXMg0eSv4dUZWwJwNoDOSxlzugiHGIP/WXSQ1O\nAPnD6OAKJWEf2c6IMYPsWjkLW8niYy+CWPP5LCLSdq7qE1FKcsw4ifj13SyhYk9P6ISsFWjhTVHt\nxA7meN9puJfsPoTQN80s4Iyr00muPQwa2qYv3VrB5ws8/XxBe1FrdgDkloENkW0EeIgeny/f77j4\nCCPTGzHaKucm9J0TeBw0TMpYZAV0OoGeLoiZBHgK9GMFNJhSe3kHsWi9kDsSbqkthAFoCnkIU2ce\ngl6Q6rsYeKMZwOqomkKLTEDpUcZQfZhRVeeIdCc9nS+yG/VwwvZm0lAiYQfxmFVMWl4kaRMWEmqV\nsMRRd0OuwBB2kIpT8n4Qh4xaP2w2oYn4dFpKA4O4NjBAw+HqaWrfu2NUQVuV74AWOvZaVgvGXz4i\nPUwoDyPq2ECymlVo2haWEeiNxgzfL47gLANduNhusW9MnJqNxbOrmy9uNSNYYc/mJPcfLQOdC4+j\nZfEiBR/tFeHvOG3foOygDOSLZokiAGPPDrKJ0EEFy/5U++8bENWOaYLFDbCwkMjYxlgvn7xsDjSw\nyNiZ1owQVgmbK17TijjINI7IzEjLhvIwyTOumlR1FKFuB4iygC7Wv0wkO21o/QcEAAbtWDmoOQPC\nNoL31d5hiunZmx4P2r3T8eg7XkO7VioIItLwrHTM8DAyCxUrkwHoVmE0tpqD4vCxQX5f4aGKjYXU\nwtIQQCdn8qA5UUwk9bBDLDwyOGoSFknyWGp9KPSXC+S/ppWCN//0G0x/dIfx/YjlLTlDsY5AmYFy\n0h3ZueIyMpAZpAyi+bRiHIqmrmdMw+aPRQRA8g7EiAyaIQXdoMDKeY4dZOdH0CVqA9l3e7AoikoD\nuBKWfi5TmbN8IKBMPGZI14ypPVC1aZjZPhMbAWC61li6FUoX6yLHyN+VgZTqF5Muy3/8xyi/+MV3\nKq8f3V4AACAASURBVKOez/67pdE2oWWaxi5DEwBEyQRWxotsCOl7TUOiMI4a7qU+bqkSOmUbsAro\nmJaPZ5CK8+YuI5oBQxjHpjuzrOLL3t2hA2P0WjGBjGm4cKkN4LJNS/PdbHPZmEt1cOALJP483Z26\nvjDGFEEADxOfJsoijm2MKgUj0jx7qBxv26uuuuiyov78nyP94Y+QpxE8T+C7SV/owhCvqr3Jg2xW\nprsRqA/CMtCEJenhHmlZRaf13Xvx98vS9HJybiF/QAsfzAquaigaAA2JGlyjSr5rzKA0jW3z3Pp7\nq+5z05SFDabn87r4uX7vVWPKNJ9onuU+WBIfBQeTZV8rza83Vp33oYbGAYBlwONlBYMBrkinGfXx\nEYws17MNYH3WXK+WEsiE7CkFBtBFXZ4IjsqazlhKkkjplTfct4K7n79HeZiQLxPG9wnrg2kQEuoI\nsPoOPnfHjUpLC8/UwssisBJ+knQlTIPITObqHWjC4TjzaTYEfR80n8fK3gMmtrSLr31G74dlOaGl\nfodq99ix1ELaQ5ub7iFCCL44cDyw9Btp01d4+bbRC2Lpuxt+sbvB1OrbtS32b/QLP3LO+mEAQmqU\nM6rFs97dCYhiCLDG8zpqrCwJ1A28rEgPd/4CBnQySBqmoILHLsa8SwUoL5HwMAKwHQMJhzq1CWQr\nPTPI6IsGBgESksQsgI+FtSmQxOsqItXVEGoC7k6grUimNQCevczCbGoAnuKi1AAjE3bO+kLK2cEg\nQfOpe6G40HTI0oZEIh59PsvLUCnDIog3ed942nugsYNi5rPXNgbwu3fAj97KAn0r4PsT6ps7AS8K\nI00rsBXQVoSBBTjziZ+eBCA6L5K2XVk6yBmYhXkkIVDczgssF8taJseFe6M7AQa+AHBBZksJDw2t\n4iE5IGEaL+lpBaeE+mYKAEurA11W1PsTtrezAgYaKkbUAUJpKS6W7fUOYJAtlOqg6eQtvEt1Z3hI\nIFjdansOtP1J9QvqlEGrfC8vbw3DG7Mv1KSvuAFbgAt601Mf4/3ZjRn0eJanPhFoVQckAcnCreJL\nVFmDjd5KfVkKApnt2RG+FCE0MCjfAIPiaRqyZSLQpBnOYCCoTQqVO90gF4Q2wMbSjUMW3lXBIAlB\nU7bikFzU18dZmJCcHcShvN3Cv02KrV57urAv3rVc78LIFIrHc6jLPrTxtRf0ZiwZc0AEejqDzhcM\n7yQcmO09PA+opxHlYYRljiunjDqSZ/KyTF/SztYezzQHNCeK23EAHBi0MRCf5yZ235wmViCptcEc\nHGppU7f2eSyzAYvyec3o2Id27z3zmQJcEZhxwNDuuYJNQKhjAIikoFZ+fJ5Mv8gcL/++hCFljKjc\nj5e0KQBmDtlrssuYQY8XDKcB07uEvOr8ru+EMgJlJpQJqGNGnRQoOgFlZpzfTHiaKmiuyFPBNK+Y\nhuIgRd6FUUUwJQIwkcETLbKDPph+PYIyCCnmd2FfzE0PKDGwcfLwMisnAk8U6hc/v6VxtA9JS8RY\nb4S52TUiy8j89/11IzOo9VnoAyZ3D1+d0QpIhlrdDKW7OwUudHPn6Yx6vuBTsr3aQtoWzQn37csA\najiT55m06VyKLKwtHAdwoMUBF1tUG7secP0XmmdhCwPik9m1FbSgGEZfxXf3tmepP7NqQLLOTYPM\n5bwokx9QXRf1kYlc1weAb5SaLy2ZnwCU1IcYATD2EJfqm8Zk+4mUmoanCWIDICIJuXptnc1aUc9n\n8C9+KdceR8lezCJtke7vke9PDSgiXezfDaizOCfpbkRaBRSjrYLePYCeLrJWKAVMYSPY9DU1tI4D\nEOR6PR5uJX0SGTMudm0AXQSLAA+/ojGIQgP+XKAUYFLZkKh3FD/T8lynJ6WeTaZ1tExiwupZHdjz\ndZoeV5+e0HRnFWBaF7/X7OM9oS4Sdmai1BYihlrAXOV8DXmsquma4mb1axpX0HvxkaeBkJaM+Xdt\nE7MOhG0mbCdCOTX9wTrJvFsm05zUEKoKwECbb3l/ir/ZDrL5+oqZWaGsZWq+pr7gTQTagBQ3QgvH\nuvG6ZBLghgl+vmxisYTMEUSP0/yynZ8MwLWDxDcSeQhYmnpj7hQpP27uiQ/VTzIcl/0GWlHwp+J1\nU+sT33y8/dq+aT8IQMgYP/VyabS5VdFo1cOhnDRVoE4Mk2rlEAEjt9SPxviwHY9llZ+XpYE9Hfqr\nE4KlFdSJqNEMTS9IF9ubgi+WUtBM44exqlbNsrrwM4YMXJZGeWQGDLh5+yA7Ku+fOmYTAKGpni9N\nE2iIFEMSAGpdHY33tPCA9xkmmZxI2yDAkFzHUfFSQHd3XSy4i1frLpLdJweKAGDdJAsakWg/fakX\nVyLQWdNqrivo7g5ZgTsAskA7Tai2G3ASQWWqFel39tRw0yI6F2AaQecLeBoV7NMwPWc4UAuXsjeR\naUjpItu0hJKGa7lzYKFeWlYdsy60RRuGLL38vYBBtKmItII66d0FnBO2H52ATEhPm4Ax3h9JdH0q\nSxhZTHNvi0Wrqy7+kwk/xpBKAyQJSIuCO5qhxDSGaNlQ3sxyDwwgY2UZ5X68OtAACI15Fm0surQY\n79czkixvIaMaiNuikpoGjxweJyfSSa6fnfzFHl7eHiqk4VsO5BhwEqwD6QpE86c2sEkmqrSLa1Yt\nKgMTLCuaATfaLGPnWIp52mTS4qwaCrZwZnQTti1WLfwsFfgkektzydpt8dIW4hN3d4zxI2LE131g\n4WOR2WRMqZhN7YssygABP5ztqc5h0H2D6nQM44h80vS20wg+DSooL8/ndpex3acGDpGwVlp2t9DH\nBo7E8aPAkaV1BSCOhwF4FOobnSXIPa0Ed3AsqxgAZ9s4uwdAVkFyz/zF4hQB7VqcRRvINHrMIkU6\nfha1qfbAVx2ao+RsNG5llFFBghAukKr0T83qX6UGBskYpAYwviIO5EYEnlqWyCjkXjWz23DRPib2\nd0cdRbthu8/6D9juGE8PMx7ninTaMEwF87ziNG4Yc7li+NyyrIOCWTR3DMQBBHypTM4oihZBmAgG\n7UGkPZhkotN7s/Ps56YZzWJ99gDXvk5RRJqIrzSf/fsb/eDC09wEpfdMpKpgEJEIgN/SxfjcZmyc\nKPhrITN0mpEe7jVkS8EU9UPr4+NHbdbVx7bApnFqj4hmU/LsXQaw6OasMNBXkAE+qpsSQRHX6Cm4\nSnMvP6klNblZOe7LWzdh7jC3MB/rJ7uWfaYsI1QGc5OJsHT3oCRrhLOAE3R38qQ2sMV/MsFhFYy2\nlRfaGsJDxCz8zdoWdZbG4VU1hEzRyAWd3z+2dUYpAo79Vu6Z3WfKGeNXb8H3J/D9jHo3OsOdMyHd\nj8JG10y96XyR9c1l8WgN1KrjVcFE1fQiE2ePWcIgPuXVPTSWvpoz2gxwU2AnnU4NfNJQNH56asDP\nPPuYjfQ+MqkJMwuDq8VZTCICXQEaA7AjGdbALNyCeXbAz4gFEp6mItHr1thAtci6DpC1IgATgkes\nX0ptjZkzagChXs2IvK60VAyBlQsAdUqSEXVMqDNpdlRCmWTTa7vTjKKThJpFMIQYkuQBbd4nwLka\nnBjdS9x4CKRTZm1+asf6cZ9HCyRu9zgANxTOi+wjTvBU8AasREaSawNt4kO736XsIfOljPUjjgi1\ntjM6AMjBIgr9oCynOso54sffcFjCtSNViDP8HcOJQ6d8u/0gACEk8gcHhpJGOiEJQMEXCZOhcRC1\n/2lUquukE4UsmE20js8XeVEsENR6FMEx1KbR4zGoXEVIOmcBj0qVdIVG/VTAwOl/hgin1F4k+oBb\n1jAaR3mgLks7FpCXVc6gr97KOIxhbhYqNo2a2Uv/VtZPfStp6Ms8tPAeEo0WcwLqPAhAkElYGinJ\ny9t2M4KQHL97r/Rb7plUyn5yoEkRfd6KhLgti7TNMjFcLkhfvX29MWNG1FKIbuGlatpBtQKpgJZV\ndqGmEfhtBaZRJrj7E+rDDGO00OMF9HTRzAvK6yhV0pwac2scPJ28ASN1kl0sqsLUqfeTPOQGtFR4\n2BUn0QnyDF0ESSGuYVRUCur9JGFiBgZpW9P7C1Artp+8RZ0y8tMmLCAAnLOHnhnjgJiBIaFOmmmN\nhakAlmtWE11jADUJI6hUaavFO+eE6lujoiPEY0Z6XFDvpyDgrWCQp5ZPAiSRsm9st1ABs3KnIY2P\nF/D9/FmHyZURgU+zg3om8kz2Pkgkuxm3/OhEAryUG0wiagtpB4PsGFv8GjCktmfM0CaLxbTWdr6F\nMYZFbiqNGQTAQ9CcNeQaKy3FfJ1kV8RT1oewNWINTVu57eolAgojP8nfea2q3dLAoKiZBWunL7y1\nrwxgG+RnHagDAPweXIXloYFi2g8WenlLpPp1jAJd3bI7thACyyrJT2fgnb7TU0aaJ2Qi8DyCTzPG\nABBtd4OyQxr7KwIhbSfKPCc0UIMaWCNAG9qO3G4FbICKORtAA3dSEaFnNqAI6ngZMAX4LqBQtNs1\n47FRkLoOge2Edlx7TlSoV69hwFUdyMPTgNZeBlq4mdXdvlDAyNlI0fkvQF4aw09Yd2jj9DWMCOWr\nGWVubFAwQvgatc+jXYSGPr0jD9UrswJEdxnbmwHbA2N5KHh6WDHNK07TilFFqUfVIdpr8RhbZy0Z\nGydP9e4hYtSAkT1QFC0KM9uxEVCJQNEQACQTf96np19LxpAqptRWzjlVDHptrz9VJLLypJxM1UPO\ntpo8ZX0sH2gAk323B6Wy7k5nC1Nj8t/XbfwyYLSDJ5pm23w2QLJr5SQsIWNgAOIf3d0h3d/JOY9P\nqE/nFmbzjPG6gC1p0zAAkZFUimYaU5CkJNSnJyQiZ2IYYz2GbXmGW8CZRxbixYuG4jAjSkTQ6SSb\npzBWx9B+aualNM+yMak+Mg8Z9as71NOI/H5xX4QYwpZmbmFSuuFWp4x83sSfViaf+IQb+Ot3UDRQ\nXpSWSGUYxF/etiZibVEKJnfh7CYNWxunLwIm+iZfjUAMnP1i6yK+XIAkgIpJS6RxAL19A7q/Q/nJ\nV7KZ8XYSP+BHJ6TLPdLjIqFlT7KBzeezhPetm0du0DAIMLVuDpLQNMm9ttAwW8iuW1u/qzYsgCYU\nvbQwMd42Z/Ok+/smpq7fAwArOyuyhiIAet1fTXfr24wvl7bfFZ4r3oIfZP1PJG3TfjbzNup6t64a\n6mbMvE9g/n1/Rqh3Er4nmYhTJ32QBJPG8LipH0AeMs+ZUO4StjmJXzOLT2FgUR3hzGRnlwMeOkbQ\nTZHUvgskewWEDFmipjXkB8iv4q9YuDgpWNMKcza7gjuc22cW5gUFe3wjbANolc1RINTf/Kjl2rfF\niibvEG6lldlYTfK5h+ORXp8YienKn2sFtXC5m3PTR85XPwxACGiIbogD9RTutkBTBJ6XpaHESi/l\ni2rCxDhizUJQNVWk+NMsQNLlIuDARVg1Hp62bULNHacAgjSWUsfCSaRC1gk4C23VMnjRkFzYjm3i\nIwK/eycT5d2d6Nu8fwKfz6D7e9Q/eAM+DSgPI4pOYMkAH24LoPHXT5JaXEOESNlNnDOIK/JyFjDE\nMjtE1JkI5eEkLIRVdlYu/+ofIV0K8vtFQqzeP8HFpFeZLIw5RVnD3dYNuDvJdb95L31qsdavbbV6\nCJ5neIsMIaBRmVXbCQsEILqsyO+fdOGawQ8n1K+E9UTLhvT1o7COjGU1T9L2cXDmTb0bBRBBUj0d\nCTuTUGES8Wqg6Q+hLZ45kbNz6FLEWbmfWlr62hDu9P4CbAX1Rw+oJ3Fg8tMqi/27wRkvtrueNhKm\nEAtgVaaE8d2GdCnKuGjMJQ/n0nHRLerVDAjiISGdN1BhLF/NCkgl8EhIl80ZMZbOnpPu9hud+GlR\nejKQnjYdk9P3Py4+ZARJde+peBkE7lkpvm0QwA0NQwS3bDMCdCT/ndCAINjvt0JTqAeDDEiKYuPt\nWOonzrILExsbm8mykbnoM8kiuswyUeVLbYAQEVIRkIfWgnReQU+LjGcFXsSxU0fYtdPCDijQP2sh\nowxyFmB5UGd9GsH3CsRpSICJrYuGFjT7HRwUMXZQHRrg1YUSvXboGAnwwyYYb9oaWbdmIphGFnah\nO9xcgacBSen7ecjgnDBOI+r9hHIasD0M8rzOqkdkszT3P1NpGi0WpmlhaF1K2NrGFWt57ggpM4iM\ngRacEtu1SqVp9FjZpjMkCDOBLQxOM4cZKFMncbbC2r4PA9R2SOayNl4NNKIKZ1BRZeQV7lxKqKsw\nD5OBO0weu2/gGCDMG6rsQCRx++7VjAh1zh5mTD6GpQ+7EMgA+Mm9IgfMUgGGCzB9IzuZZSRs9wnL\nVwnrVwOe3sx4fCgYThtSrpjnFW9Ply6MKjuQIro7HVBiYV60ywBGTWvIzo3ft2Y+/zyuJTu4M6XN\nGUhDKp320aUM1yLVOmCiHlEDiAoSV5xyXz/7+X6dcSkD3kwXVCZcytBlIjPmTwwT26e1z6m2NPWf\nQMP/vow18xMAZ2lz5SaKa6EvlcFVMsMSkSw+1xW1yKZo+upN2xB99x71/fsPX3fbwN9803RYol+Q\nM5BrA4q2rW38EMG2/ImEq+Lsc/XVOx2hJM8mM7cQn/PZ36/p4R785h54OGF7mGSDS/2Xci8ZYrf7\njNMvLkAmbKfcQGEL32d0CTYAAGNWH2REzUkB5zdIa8X6dgAx4+7nTyj3somYzxvy+0Xm6HVD+vqd\nho+d4SLV0PkP8I1tz4r2ikaUQJNubK/97lbX9wSYyLKEL+k40zmLf/1b4Fe/Bv2zf4HhNIPevAG/\nvcf60zfYHkbgYQSVewzvbA1xlg2mb96j/vZ38DA/Y+8Yy0ujQ7gy0mQSFooKeF9m77+Wkj6Bssyv\nlm6eprsO7LSMYhYS+eqSFuE5idpdnj4+iGhbGy0EFOqD0zh8EW1Wr5f5cgwlF1BLfLO2rHK+YbQR\n0iLnDmfCqM+T+Hjih653CeUkDCKbyw0gupo5FKzhjMYYCo+Q6/uA3F9noPnT1XwjdRYTySPY8Dm/\nqLCZWMLBCjnLHQykKu0S/xkYnkR/05jNw5kxvq/I5ypZe2vb0JVNdpN9CGuuJOQNW5ttD0n6ZgbW\nB83qNkKyjhVqjGwFiaIPHEEp/5sVNPsE9/iHAQiZ82Px0dOkoVBFqFIGChl1NcQbxzSRtmMiuxfK\nrBlHKXOe5cW2rCo8Xf2BJeIWPmXMmPuTTK4GOlFLY+k0Xcs4tm6uN4TKInpm4VNbacLNRjf9l/8Y\n64/uwAOB1jcop0EWx5eC4ZsLxn/2hEkZKtjC4nzImg0sLGSNHgx4SJf+oYsVFiZPaG/+WhwAXlfw\nT/4Q468ekX79jWSzGgfJSDAkAZhUB4aKsmcqA7/7WkKqxlHZTQzMs2jvvLYRWjtzFsaSxnbbhOIi\n3iZEHkILAcjxRKB1E3aQsYDmEfWre/BPvpLF8tePMqkuqzCyNnE4EgkgYGnc653uYplWkJqEJ8kC\ngOcMC6OitQgYtEgK9noSkW5fIChzCFvB9pO32N6OvjDmnGSRlwn5IscNF3vxtJdPJsJAhLTsJkVm\nX5jbtfr+pe5Yuqh449fvwfcnpLVi+OaiIWLk5xhpv066ANqEdTR8LaGb9TTIi/aygk/jF2F73Az5\nugGEyZd6rN6TuHijRGDXdFEGzJhkwbkHgiIIFHYFiMNCu0ImLj2lml6L4bqWet4EpofGwklrbayh\n2tpJDAzvC4bHDfndBXRePSMfL4u+FxfUZbnd/u/RaBeGOkyTvE9OJ02PO8uzNwVx9Eyo4+AgkYeR\nma7EaxqhaWsA8s4BGvBj72PohsG6tIWAMohsyrPdUQDIw4B8mjHezainCfV+xPYwYLuXPiiqPwQg\nOAPSF8YcqxldWvkrFpfSnuUzAYNSCAWzhW5eoU6NYj6jgCl23fVBxmRaZTwOT3BB6hgKRRtjeCpN\nM8x2yZQNdpXpK2Q3bOFeKs5NAmrmMWF8hOsHtRA5e0alzvnCvgmb1vC8ugP4yu8c3QBwzTEAt8T9\n27HhT2fk6fnW9k3uwXBmjO8I9ReyKF4fMta3I8rE+OZtwdPbGff3F9xNKx6mBWNiZ+hEey4rmNke\nDNp/Z5+ZMPWcN5yGBVMumNKG0YAoCChTIYDUeR268reanf0j10v6/fPP+sZZMvpp+bGOFQL2bDUh\nEWPOG4Yxli/1WUvGqswiAB27yfqrMjXB1Fc0E8Ldp7EGxD9mKHNlnsXHLUXCti1DUyLVUHkMor8Z\n+Sc/lrJKRfnNb56//uWCovo7aZ7l3UYJwCoLV2aQ+bgWVpaUIWShRECfrQxwQWvAwKAR+OmP5fgs\nG53lJKxsed+LbzS8W8R3WjaMv0kK+mSkb56AUjBpmzzE3bJa2cZtyHLlDOZBN4F1g3g+jTj/K29A\na8X4y0dsf3iHOmesbx9kkTsAVH4MMDB9syJ/vSB98yi6lomAy6WFwnnms+9rRHyEERwgjOwV0cZp\nYW+NgVIb6Giao5py3fwCfrcB759Av0wYf/kWNI2oP/4K5e0J21tJbZ/eSP8N9zPS/R3w+CTrjadz\nBwCaL+5AoUmCqO+e5lnrUPu09TruTauHhuFKQ8uAoL2l0wn05kH8DUDau23AaW5ZntFAV18rWHaz\nCCzZ+ir+nQj8/rGJSs/zs3XRC90Eq9I8y1j8FjbfZ7Po+pP6M0Bj0QMytoLGlzHtwQxaGDkxqCZZ\nm2h/zkNCmRPWh4TtLmG7A7Z7DStLUO08dkCnYwlxm787/wYCCrXP+wQCrkeUJPzKmP/mK7WyCeli\ncyqQz4zpG8b82w3T7xakdwvS+yfwu0chchDJeubd+5v38JaHER//BCARYTRR9jsZm/VHb2TTtDAw\nJJT7AevDgPVNRpkgCSlm3SxMbXPLQ/JuXOtj7AcCCLHvdFimLAdowuTnVNL/n703C5IkSe/7fu4e\nEXlV1t3XdPfcx57YA7uLBbgkAC3EwwiJlADCSFEkRKNIM5mMMiMfSJpJMppRD7pMohmlB5HSCygT\ndFIgSJCgIAAEBHB3uYu9zzl2Zrp7+u66MivPiHDXgx/hEZVZXdVTM70L4DPrrsy4I9LD/fP/9//+\nH4QBLliMrsa5qI5Ci38h/TmExEwm6HluRbt8pLfdskBHUVYMJKiiLUXEKFKy2k4KmGu7vG1TkMir\nSl8mSyk2e8y2W2Cgc2eMvD9BzHPSGPgRogJ5pISWCp0jAG03mEZAENQnqEAV3fcvgj+2j9prbfOm\n8wI5mIXfQcxzmMwirQXh9JG0BYvaKaSb6BUnZrw3BN2Gfs9OMN9tM1XHLWJQI35mUAlfO0oyQBAu\n9M6BzwF3v52Y2fKbpmVT/3SvY8ExYxCHExiO8Pn7QkmbftbNAhJs2xT4CltBW6idhImBzO1kSczm\nmFZG2bUVucTcVAOjtB2C3uhQdBSyNCQTx/QpTSUaXXpWiKlAMgjPIvymvlJeeIYmgGLhuTW39cu1\nzQsx7QwSRbJn2zDGVM8f1yGZarC0tG1lGU4rLXRLoca2vZQrrccjEKztf0JWFbmABSBOIy2MCIUH\n2wYcYg9O/0cbZC4C6wVw/ZUgiN37Y7l0GQ8GebYGuAmk2984ADGAQVSTZSP9Oiv0LXPrwNm2lVsR\nyNEEMx5jZjP04xCAd1ajVQNMj+bHiyRBZpnNz2+3ML0Oqt+1744TYTeJBcBq4O67ZdLN2F3VS6CW\nPhbMMapC5Uz/u8/zKuXDgdnG5LYvGk1QiUIpRdLO0P0uJpWU3ZSipyja0lGvK2AxrhIWU5KrCnk4\nIXMq8eeQZ14BSTKvhMzBpSdl1sNQc4Mam7CdzA1y7gDIQofqiTGo4/ukUAXMj0HQYNGJuqMZLQeC\n+LucK7JBYdMVnJnEv2ciRCHDO5HH1dQ8c9LYSimPIX4BhKp+AexcYFW1v8rJs99dP+ycPuMBUmF/\nPzODZGJo7YvA2Jqvpsw3EobrLYb9nJXVCf32jHZS9QFNnaEmOygsxyCFpkDVlhdGRlFXw7n2IR2V\n14CfcWFZH4vKx8eftZFHgB//fZEeUmA+mYrVpO0MBm1kYBQpoWv3lWt1REhbCEM3zYNYdswmmpeK\nUovHWna+prMyn1ff/URaVBVnTUmYoMbmfV5T2iejD4bWJ05TCw4JiRmPbUrNouCAMeipY4C4CbsX\nCa785UhcGSo2ZemYPqVGOM1QkSS2Am6/hxACvdphvt4iGRVWf3GWk+zPbXA1L6yv7IO/viiKD9R4\nYME/EwiMEx/QrX32BVn8ZB8I4tdCIqSgOxjbwEmek95Vlu2qlA0aZimmk1F2UkwiyTfa6PMdhNki\nX1G09nKyeyN77Ydj9GC4eJb4jplw91uxUUSSUpVGJywHjvrNfrVj8YQKXCYHUsz+gQUh9w9Isgyx\n0sO0M4rtPvPNjKKXILe6qGlBsjdG3Nux5Aav++RSxSxTyGvuOIZPklbFhJSqMdlqbWtJQRvRaiHX\n1xwzywSN0RCUGQwr0EdrGAxDNggQ5nxhbuAlP/y1+4CQY8XF8iNWgyhDrtliN3TaFVtaWP1WMxod\nm7ZWYxUtC1S+wxaz1o33Xxxr24/fwjgtpWZGgbG+gASCxIAUyLJEzjXJxAVOE0HRkeRdGbSH8hVf\n4t6EIJgscP6xCMxnuyLyxUO+eKVPaZQJlcqMtsEuNbX+TwieaUN6CJ2dgtaDKWp/jBgcokdj9OFh\nePYRuegMH7Kp2vB4DLt7iDtZTQBdCkE7Sem0W4gsRXS7mJUOeqVNvpqR9xWzvmK2ISjbVBqSjil9\nUntbgJAQ4k1giM38LIwxHxNCbAL/O/A08CbwM8aY5WEHfyxPe03TUOrc5wubvEB22lUOsosS+MZp\nMBUYFC+38FsVPcE5UU5lX7ZaKCe2FkpNQlX63WiXEubyUI0hlJd3YJCfEJg8t/nE/R56rUvZTgKN\ntbUzpVjJkLlm5Utv2QHbpVAEgEapI85hpZNRm63iLqa2bX2CacK+1qGM//rOzkVr8sINftE5DLw8\n6wAAIABJREFUmlGTsrQDWqlhMoOyRHkGk5SYc5s2MnM4edjPHJ3ijNqOsECQwf1WMZAlbYqfSNMK\nFPHPLqqAceS+o86forAd23RufzO3XK+0MWtd5LRwVeBsdS45qiIBJlU2QufblXLX5Ng90gFEvuJY\nudZ2+j/GsowEqHGBbinKliQd5rQPZjYq5kEffz9NgMffT7yNN23q35f99rXn3PgubfuvDQJNpoYx\nlk3lNJi8dpWcFshJHqqNIETQQXqYnWWfUzvuMWOtH2ya2/hIBERIvB8w0aAFKgykDhRzAs0W0Rfh\noFWalzun1x2Km6c2TlelmuR7AelkXJIM56iDCcJFL8jtIFMelyv/PWq1AdKZSDOUGwzFSteKXibS\nar6dwM6s7RjwYpi1qjFeYNU4QX/tREy9NcAOO7GXIHW1zBgwJabACsceHiJdtDnptElXupT9Fvla\nxnxVUbjqHv66xALHzDNTaiLm2jpYwqVrCZffb1KBLKFo2wl1dmjo7BQkTrg+jtCH622eMzjZ0SV4\ncFxUjBgRsYDC/s0x0PdtUmAQKK/rEAdDSsuuDcCtE+j2QuhIK6YuE+uUitK+0+mkfpxldqZ9jgPv\njK8wF91uqJrml0dAH1SgWcUKiyqUCHsvwv2uxolpGgGtgaG8K8h7ktlGm9H5jMPNOb3VKb3WnHZS\n1FKjoAJIqmfgHWJBoS2TRiPop1PaqkAKQyrLALIURrI37xw5prejOkRy6fcYHPLMoeOAofpnbbvQ\nkBlswahCS6SJrk1UjKK8VLXrU1KTqpJWUlCklj10eELP+Ux9ZDchE8qV+k7SWrUr0emE9BLfB9kJ\nrvNlfdqOW29ThBInju8KO0Tl29Xmhk3Tmc4WMoeOMIYi5notXcqlvsRFPkSaYjbXMKsdtABRavL1\nNulgjrq3T2dHVmn/XhLAacXULDBK/OQ8AnXiQIFLWwuVrlRjvS9h76UpTHWtZnhog7tunSlknfEk\nBImTjxBpGlKjMzcPmF1YIe8rRLlJ586Y8o2Hz9DOrt2YempYBLiE8UeX9X7Qg0J+vdFBlzXexpRl\nqMJlJlOYTBHjsS2ocPcB6eY65UafcjWj6CaYdAXZb6OGU+RwjBmN7VwLrF8cMYC8UDMOMNQNhs0i\nACi5egXTadng6mhsgy6HIwwOSPJasNUzDgHiChgytXfEGGN1oXzwxu8XtR3hqk4L5YJ/2paXF0pi\nxpNaRotIk8pX9Oy8Mhr/y5JycMgRzaBTgEFn7SPH7KCl5yyrPloQgdCelGCo2EO4IEZuq0/KOaSj\ngpardFu2LXtoviKYrwryVYN2ihLCUI15UAeD3MXWhga3TuaCZGLHfjWD7MDQGmqSsSY5zMnevE/x\n1s2w2+NQbApmzFFGmXtvw7u7u2cJNElCK8toKUW/lWFWV9D9Nvl6m9lGwnRdUnRFNEE53s6CIfTj\nxpgH0fe/CfyaMea/EEL8Tff9bxx7BBc99R2A1WeoEGTpqoXZTltWbJ0GS0gI52S5TgSovegAppwH\ngMd3Mp7+aiZTGzEZjy2q7FLYYpApZgZZUVELBOknLzG70GW+qmjv5LRuDcjeGFnwp5WhEhXEiem0\nKqpdk5ERWZMFdFKrAT/xY/bPwK8PTnjjPHHH79d5jSVjKgaTYzXJvUEdWDm5vf224y/ZT8yMqQA3\nre0AHQ+IMd06qgLhrQYghYWmEjh3+8h5btNbum2KjS5yXlphvf2h1YxKU+i2oQ1GOhpyquxkyIFB\nXgOqWG2jW7aCjFGCZFyixoXT6SlRY0FqnK6Mj7QtYvM0bdl2byfS4J9ZE3SK/3pzy0yaVG3Hs6+c\nALiRguTBoW1TJ7ezaTc+ZSy67hj8CQONdzrd+tqAE9hXbp1n7jjWkBXIw06aMXaiLwTSsRq0y4H2\nFcH8OWpgkBsAbUWxaNIzK0kGM+RwCgdDzMGAcgHb5neLhQFxNIL7gFTIduu0gNcZjFfYMchr1YGr\nsuPGMe+FKHXUjQrjVUkodauNjeT4iHWpQTvthlJD7u5vMkUcDElbGcnGKq1ei+m5DvM1Fdgglbhy\npTvn08R85QzPItIJFCsypHylY0M61si5dkBRlZbh27kJmgKmlgJ7bJ/i+4YaWE8dHIrTBXwalYj2\nd4DHomObJalfQX/KaNSstIUW3PbJxObtnyLd8Az6HJ/a6QA6eZSlVAOJHChUp+5HTM9aP+Q284/Y\n2C+enaVmhmwE7X1Be1cw2W4zupAyWstp9+Z0WnN6WR5En5sVwzyzZl4qVtIZmy07ySq0Yu5AICns\nGNwEe5alf9nj6vC3CQrF28fbNUvPP8y0E8z2TCEPCvkrijWS/MMTDhArtESXCgMhXSxVJTo71Rh6\nJuOVF/m1qGEUHpfC+sV5HoAf26eISuKAKqgp0iTocPrULc8YMrj3VGvrD7vqvsmli9DKKN68fvTC\nHGMoAEOprR4aQAR3PLm+RnnlHLN+hpoUqIMJ8tAGLoQ2qL2R9anH02pCHIPoAYSO3lm9oM34/tSD\nQr7PjQPGyywEW9zgnS8A9BWhAlVtnZOjMAPrJ8q7AqkUotelnaXorq0Ka04+63r77cZQB8/9vMgD\ngE7PRiSJBdv8cw99TAyaOT8pTsvyv7EXqZ7PMUIi5NxWaHvrFmm/T3L5Avm5LpNLHZL1FsmwS7I7\nsvpLo7Hdz1XuEo5F48kBi1g0yZXLmHZWVRc2BnMwQN9bnpolRDRv9ISBxnqDqWcRuO1qoNEik5HI\nu1KACt/DvsZVXvPtLy8ssOjapNfAVSs9O0/Mi6C5pE/v151Jn2MLxVRDjR+ntRuHwjjt54SG+vsl\nzNG5qHvOXuTdbYYqSusGjSA7kLRbkvmqYt6XzNYFRc/6MFq5cV2LKhWsJqbjTqNxqWEWDFq9XrLy\n+hBx+wF6Z7cGKj4+vvzJzVeuq5l0Ra7mcytuvrePyQvSNKHVabPW62HWVnhzfjI/551IGfsTwI+5\nzz8H/AYnnNQDtjRiaSsHeGX6Kre0QuQDPQ8q5B7XsUGVIx03RimweadFVa3Ap4F5CqrvkFw6ldUk\nsqXrRduWuWRmQSV9cYtircV0MyMdFnSu7dN5sG+P28osiNJtBzHruGz8QjCoOblvAjZN0KbRQVWs\nILMQFPLLqooxsr7NcSDDAtHYwCzyA+3b1/J49LYTsZl89bmQ/uWYXb5su3dQwr14BF8pR3OMBjzt\n3EgPGLhqBT4fXAzHJI65ZjoZ5ty6BW7GTgxxPLM51l0LcXskXWcKMsV8zernpKOC1u4MOcmjymQL\n2kLz+7K245+HclT+h4FAHuhrnjP4nT6CUbF6FrbHRe053s7/JkTApC5g9rbaziO0G1G7ZlMfw+oW\ngUH+b6UBIqt1UkBpospiora/Oyvg0228/pMEQdBJicWjLaPBDoAy17aq3MQKP3MwRO/uUz6uHPPH\nbbo8vlLIyez0bcdgf1OXfoDTiDDGShvW0g+kIAjZeKHMcBw3eZOOhekrovgSxcoxjuzBgzYeRsMD\njRqkdOarpONOlV/u6NVBc8YBDL66hpFQdOw9JFPoPtC0dnPSwdyy9OJ+JQZ7XLsUkcZEqCYYMy/j\n6HJzWWw+TdNv5hwd4Zh0Xo/LLqQ6lrcIwA2gkndQ49+JqJ9xkyORG9Rckwx11Z+d3k7fbgRBD6zG\n2PLAj//c2KepMdSsStiMvoL97svySqNrumWtfSuK2d6VzNbbTM9lTNYLpmsT+p0ZnTQPFb58GtVK\nOqOtcpQwzMqEwbxT0xuygM4xE+3IYvDnJNpAfrt4m+PAoKpMvHH7UhOibm4nhI1UL9vGHsOmiqEl\neamsWOej26P5OSHt3bV35xsLJS2Q43QSvX8cCqBE7AOEtGx5IQP7QaTJkW29z+2r+4r5HNFuoTY2\nEN0Oxc1bR6/PAUOBEZyl0O1gLm1TrLVI7x0iJzmtnSE+MOQDvTV/3ltgTeqK5eRLmPv+1fehPnAL\ntj+Nl5elXSYkzdi/MVElw5jVUJZ2Uq6o/EHvB7h5CTIGpupAQmCRxGyj+27y++gFVR+hzxFR3yIq\n0Kfhr9UYN/F4BSFdzO5nmbHV3KS+bWAUlYBjx5Z7e8jZjNbOKun5DYp+i6KXYJI+YrNHsnOI2Nmz\nqWSOHWGKop5KLhXqPc9ZkGR/iN7bD6Xp42B0E7gJ6dylrgNA0TthXLsPBIMYBJIEcLX+WKvvtRRF\nnwbnJFCA6ryhcnb1nEBVLD/lJFG0thN8L0/Stpks5WCw8Cc+oT1anxMHY/xj9RIJ0Ta1TBbjq3qZ\nwPA1zse17cb7D25eH/nJwrj56bxEzq32UDaQpKOE2ZoVWs57IlTgMgJk4dq4cFXE/HRuBv0bJauv\nDhFv3qTcP3gsBf7OxHyxrUUZLVCxFZ12G2WJdqw97j1AyJPd+dsFhAzwq0KIEvh7xpi/D1wwxtx2\n6+8AF05yIOGqh/m8XZ+eZYynJi65VM8Wigc+zwCa5wHJDy+d0VYzqCGiG5DauFN31Fy7ncF025Rb\nK+SrGWVLkoxL2m/skL1e2DKNnQ6sdK3Qb3hCR53Ypd+XTe61PlpmecEEv5lyVittvYQ1dMSBXzbR\nB0KaVbyfNxU9/5PZmbWdADIsAKSCoHTZGATj+2v+DjggyFfKcPdtvEC4F5F1IIqYupzn2RyTJuiV\nDnQz5GBiy5aWOogiIrDMkFSQHuRk+3PkpLBizx4EehQGT9x24ns76fH8thA5RtQjc16/wg+chT7a\nKcUTygVsoQAGhYiCwSQLmBTH3Cln1G48wyF2BKt0LFELODSCD4vNaf9YZnrlRIjYYdCRoKwubTUD\nqd2EWNrqSVQAlSwMyTBHTgvUwchGwQaH6N+rINDbs7Prc8A6dKWuJgJK2X7Q6QMJBWAHciElZl5W\nEWfvPEpVFS5YJjwZMRmFj8YWBcZo5L09st0h6WqPYr1D0U2YryUUbREqhJWZIO8CAtJDmwaWHRSk\ngxw1yS1TcVkfEUXUBUBRB12ExIE7wr0zDaC6aZ4dFJ6hO7CfiB7XEzTGppBuVkZ9XIMtVANKauMh\nNp33ZGPW2fY5glpaWKXlRPU8/PYLxqZl5rWE/DEDCAaISLdMFh5ghmRso7HztYzpuYTJVove6pSt\n3phuOme7fQhYQGZcZAH0kQ5d9ODOInbPMlbQMotLyC/fxiz9fjQNrbpWiRWdPokt0k46su7kQ/TZ\n9TnGENg/ULEOfPvx1Xf9uxBPQF16QQBefBDVl/OOGfUutcVevAM1kqSq1juboVZXEat9yjt3j6Tv\nCCWRW5uUFzesft0sJ9nRiMGoYtUv9EXroEKN/ePXea1Qf29+3aIcjwC4xz5K/bPw479nE7lKkR4s\nq4FNqX1mAlFPN1MKpK6O5Vc1WPPNVKOH2NmOVVKF9K6ar98EeKB6blAHi1wFMgsCOdAt3s+vX3Bu\nM59TPthFDIak7Rbp9ibFVo98NQXZJ53MKHd26/sJQXL5CUynBYNDzI3btecedHwivz9u3zFo4/WJ\nmgyxI5kkftsGgBSvr4lfQ+2zEK7aMxUQaHIHDgVA072/2iBw76DRgAxAbfxbmOnstEVXzrTthJSx\n2HfHBx20nXsbQiEIOXcaqp7tm6paRViZL2gjTX/BzVflvAxs5daBZQzNVgVFVzDvg26BnBMqcCVT\nWLlZsvKGZQKVd+99/4JA3ty76/W2EDL0z8ARskYgu3i5EikhP1n7ebuA0KeMMTeFEOeB/1cI8Z14\npTHGiCU1SIUQfxn4ywBtuWKBF9fJe8Gw8DcSzgsgjYxEyEKFMIMx0f5pUh3P0/OVCgJ3YYCMnXRn\nemLRabnS4+DTL7L3oqR717D19RHta/uwe2A37HUs82d91RUBWQA6PMwWAUOLnN9FzJ0FdhxLKF5/\ndEXjupsgg9ZH1zfBpJPbmbWd2nUniS0T79tABOgE4CgM/FQVAwKjRlU0TwcKBTDIM6K8CDVUVd8g\n6Cwpxxgq13rsv6/P4VW7fv3VkmSsae1MkbOiSsV4VBBokTXbTvM3bJ7nYe01BoPifZadt7nMb7+o\n7UTnP0WFurNpN6pfDVjxRPYRbGmamaBejcxPXI+wKCxopKYGKW0qmdAGNc5R+2O4v4uZTCh+F6eD\nvUt2dm1HVu9YYKI2Kz4K6Zxkg/FR2XgiI4RzqqtofNA187oZ9sIs2JImLq1Mh0mQKab2mNMp6UGL\nZKWLzjYYPplStCE7sNW2Ojua1l5BOphbLaDSCdI3mYgnsNq7UmL125QCCUYLK3Af7m8BQKyxL8uj\nVqVsMPrCMzf2cwyi1D/H93ACgLeys2k3yaplBQmO9DlHUsdiFlDzyH6ZiX6LuHvWFRhUaWzWNYuE\nNkgEzF1q4MS218k2XF3fZ7M1pjCSw7x1hJ0DFWhzHHizaL+z2HaZxVXOquNW32XIqzsKHp3kmNVf\nTgMInU3boWsDo479bIyoGD+O5YOOJpN+UhyV6o5ZQIF56LdV4cG4/kxX7FfnL5m8sAL/rsKi2d2z\nwr1PXwWlmD+xSuvaLiaxgVx1/8DKChSFA84jRl6c9hVyqxe0JZ8ZEG/vwaKmEHS8Pv7c3K65TJuK\n7RNpDFn2FZCbeiUpz+r05tPSfMAnTaI5iau2lqUgPDBw9DYX2Bn5xz13HWWUZehAwDitr9rZ+Shu\nvKqxW3W0nzm6XxMMWnAeU5aI2QyZF4iXBzhpmFrKjnrhWXsN+wMr/Ly7hxdtrjFzFvhsMatnYUqY\njD4bU2em+aBExBSKf9dmyqGff8bHDYw9Pz+oVUWjzhZPfYq4e4/dvCKwmgJJwlTaWCezsxuvvIsq\nPQtYVAELU9uRWkEUUZWBD6YrxlBVKt22NwsumSNjsvWfnW88t6nf2YFkupUw70vyVVtdc+tbOe17\nE+RrN76/mUBNE8KCQbEZXc1VoU5uEREQ6ua+8TvzMHtbgJAx5qb7e08I8QvAJ4C7QohLxpjbQohL\nwL0l+/594O8DrKXnTIzym1LbgSyvQCFLravAoPDCe2TW50X7AdBHUkRUzjAg96I6bjMPGDAY5EqP\n8oUrvPzv9Fh5Q/LU3/kqejRCbW/Z1LFu21bdWgTSnA4YObktAIoWgUQxmyhEUSOAyE9Sa6DQognx\nsvtoggyLJvwPvZWzajvnTagq5q5NOAaPSFMLDkEtVQmoC0dHIFItAtEES/zfpuYSVOCTUqASTDtj\n90OrHDwHGy9r+m9OSQZT22nGeemPCkQsAlfi7812sQz0WXT+eCCMvzfflZMAQ4uuI7p+K6RqjpSA\nX2Zn1m6yC/Ub9+++f1/iV+whk8fm0Bq2NdVx60J3vh1VYJTBTqTlTJPem4aKJOVwuPzEv2+nsjNr\nO60LJjB7fNQvafQRYUc3+fDOshS2gcRaZrW0ZjcZqwEoVSBDULhUNRFKS4vEvZ+tFvsf2eb+hwXZ\nAFbf0Ky8NUPmJXJaVNUI40njSWwBZb6+HstA4Zg+yS/z7b0EIQwo3H7HgNKxLQOdWf6OVtUV3Qbl\nCe87nOKM2k37kqmlgPkhqyEKXksl83/jS14ABMVYSgwGARaoC0BUvL2dzBQdweFVQfHSmCtbB2gj\nOMxtXovV7Fmu73MSOwnzp7n9om0tEwkSWVY6QI2KZdUxjoJDcHpQqLmNFJFuxgnsrNrOqtg0gBUb\n9ZNG5yN7/Z84DcYHQQ1V8KvyeWV9suwm7EETzQn8Vsxqz5QW6OnMTvDBilg//yTjKz1Wfuc6WaJs\nEQlf8t5X+NWmDsJ48MZ/XwYG2R+gAoWgmlj7fte7azHgIxrbwtF94pRev5/UhNQvXQH9xhjrs/l7\nSd1c4gijujkBrsClGjPlBG3nbOdWjh3ktTTdWGQ0df/MM3ziPjaMWyraL/Iv/fLmHMRrEvm0qKj4\ngimKWvqTev9LzC6u0Lq2ixhNMPd3gjh67ZiiSgc70SR3AdBjWVp19k/IHmmwh+rnLfFsX3/sJvDk\ngaEYuDJK2XFOCvdORSyhwEavp7wF8wy1JhPrIXZmbadzyYRKoQ7oMalyAI7DhmTY0Y7t0TM3yDDm\nCA8G+c39qxCzrbSunhtUzKLSsopsZkXC+HzK4VVBe9dw+f+bkXzlNfRwaHXeTvyUvn/M6pE22mXM\nPmwWR1Kq8iMjFuhJ7JFHeSFETwjR95+BPwx8A/jHwM+6zX4W+MUTHdBV2gKqCEVQt5cVPTCuBuAn\nW0oGKtXRO4wQ3mWDDuCjtEJJZK/D+Ief541/ewVRwOWf+yZ6NCK5eAGx2rfVwTwdK472HzdJP85O\nuu0JGUJhW/8xBoAWTc4X7HMi5/xh6QFLL+2M247LnXcHt39LG5kS8W8T6wZBDcTy2/nIjvG/qweS\n/Asp5dHf2jOJXClSvb7C8KUNhk8J2juC/rUZydBVB2tUfDjmIZ1s3WmAvOOsRv2N763RXuJrbwKT\n77Cdebvxx13wDIOwMxxhFpxQy/TocZc8L1tOXiMnOWr3EHYP0Hv76N8Hg87Mzrbt2HGicvCjfsL3\nFf7fIvDFM4cWjEeB0Ri/T4sE+2tRIAHnt9n71JPc/YRtn2vf1fSvTUgOJsjDOWJeVGBQ7Iyexvz9\nNd/9k+zX+B60iWJHsXHc+B1caicds3T07xR2pu0mBoOiZbHZcrER4GDgFGyUhcf1x6u0lqrjzvuC\n4dMwf37C+c0Bqy1fNUy/bcZO006iE3SSbR8FyDl6LeZYHaJFxzipiLW3sx6vQsCpNiY7/R3jJlM+\nCBr5LLVJpveTvD/si7eI5gRjQXqTskFZkWWITge5vcn4yR7zFQmtzE7mR+MgEuwLxNRvYlFf9pBp\nSDNAddy+TRBo0XYxILXk3EF42JjKb4zZ0j7ddMncIjxz398uehZL7Mz9HF0enR9JVbF/wk1HjNT4\nrztG8Htrot6Lp+ChGpw7hi9Z30wvVFubALS+cQNz+x76YGCFueNxwDF5jhV1jrY9Auw85Lkbc0z7\n8uujVM2FrHkIbIwwhvtx27+HPmWvLGvLa+dyKejWB7DyKbadnsy/Puu2o+MK1EIcCdzWx5SGbyCw\nAVbVmC9JYTMC4tQ9/yibv7FPsVYC3VKML6aMLwnkHNZfnZN88eXfW37ysj6rKZeiTwciens7DKEL\nwC+4ji8Bft4Y88+FEF8A/g8hxF8ErgE/89AjxdctolxPR4eVvRbkeQQOyTBx98wghLRC0C6CAlQv\nbNwZliWiFam6+eiEkMiVHjf//HsYvDdn/Sspz/3tr6DHY0yvR/LMU+6FOMJDbNxLBBCd1BYxUZZF\nWJvrl/3oHkmPmA+WieHyP0tdE5U2iUJMbAlRfFWoRfd1TOT3FA3w7NpO01tuDCSi067Kl/rr9KCM\nT98oCqsLlLvqZEQDuq4EDw26ystsPv9Om/zSOnsvdRlfFPRuG67+6phkf8IRbaDTPasFt7zgnpv6\nPSfZz1vzehYNoD4lBizt21fNA8R4ahlWvS4mWYJGH3PPRopa2cpj7AzbDUdZT1CxgZassxds29Gx\n+kLNZ7gEDBKlRh3OEAeHmPEEPZ+jR6MTXf7v26ns7PscPwFzKRHBmhEZo12fE4XUvCMdpa+KuKxt\n2Nf1WSF9QyN0Hliu5QtXuP2pPofPlCQjwfrLsP7anGxnYlNSY0fhUUAgbzEDwTvcwRn0zno0fvlr\nb95HjaVpKvJLbbyMxlAJxjN6vOaXMZhUopXTSco90H8UcLFFAqIKfk0n9OGP5Gz7HEFN26e5rmZx\nl2Ec69ffh6hSzgJ2Em/vnhMLwCAjYHxBsvcDJZ1zQxJpWG3N2eqMSUSJ1wQ6LbNnkTVBnib7p3mO\n06WZLWcJLWMIASSiJJGacZGFqmqFlkc6cX8MbYQje5466HGmbceU2qZsTSaArJjwYJnxTQAnnhg7\nHSB3Y5Zt7/SFbEVfl/4Ss/CdOC4QJuNyfQ3Ob/LgY5t0dkt0Klj/xa+hlbLM+fjcvh88jgF07A3H\naVm4IGyU6rUsCLyIhRSOE+3TBI+EtBXEouMIX3xCWkamHo8RSYJc6VVB4abvEgLVqgIynP9pC5I8\n9M7PsN2IqN/1/aTiCPgTUsPKej8d6wLVgoaKWgUyqPaLgSYhFpeIf+oqd3/iCue+eADfvVHpo0S2\nNCXMCTAvNa8fpBZXBgt6QouOvSww2tQM8hYFV0zpdB2VsjIkbh/Z64Rlejx2zKm8AnzCBchwTENV\n/Y3Si3SfiP9ytuNVdJ9W8FmEfsWDQ1Fxxmo+KajcgcLNn5zPIEpdD5bWMg+w76ABcsvKKjsJey9k\njK5Ae0ew+a2ClS+/RXHz1u+q1LDa/ND1WyLLbIEtY2y/79v2InzB9zNxQFE33vOH2CMDQsaY14EP\nLVi+A3z61AeM2D5eDNpXA/M50EHB3lTIvPGK7qntsK26e3U8PzBZwb3U0WKlBZjywr6QUrD7pz/K\ng0/PWP+M4cW//AW7b6+Heu8LiOm8AoJi4GaRhU5Rcqo0qiORwwVO9QmtKSZ95FTNdB9jMDduwXNP\nWVBo2fU1J7UeDT4lO+Rs2449dygXX9iUCqO1/a2LaOLlwSBvWtf2C7RpT1v0FMaiAOlorx4IcaUu\nhRCUl7bZ+fAqex8wXPptzdbXR8hXrsPVS/b5NB2Gh/2mpwWMFj3/Zcc46bEXACIAR1LFjKF46yYA\n6qXn3Ta6tn5h24l1RuCoc7bAzrzPaZoUC9NJjgSGPRjkqchxXniYsFXfjSBysGSg0MrDHLk3QA+G\n6OnMllT/fXtH7EzbjsEKo/pKNL6SjBcw9eCpd45NRIv2VWtK5/C69A4/eTJROwkpB2lC0BjQ2pZ+\nv/IEtz69yeDDM9rX4MJnBb3bM7QSpAczxGyJcKu3ZprDsvc9tuPWlwYhFlQdg4f2OUe0f4z7zwA6\nAjIcyCEMTDdSJluSdGRYuT51fQrOmTRENcXrOl46mvefLOJ8tn1OjJGF9FTvRAtiZlBcNW2ZppAF\nfpacQ7gUBk+e1YbZquLBDxqSSyMuro7opjkbrTF7sy5tlVtgxNlxQtGPAhIt0yI6ybIUoHiCAAAg\nAElEQVSjx6qDQf5vXBUs/uyvfZS3uHe4wkcvvMW4yMLxpLAT97jSWBMAMg4cOqmdeduRIlQaND6g\n5dq2ns5s6pjEsVE8EOL6FZ9G5nze0GR8ufBS222EcBo4DfFeQD1xkdH7ziNnmu3P3AUpKbZ6mLzA\njMcoX3VxkSbQovE9lnFo2sIouKnSxxZpEC2yk2zn+2Ww/bbXWgqC1G5y3mrBeGyZLqW2VWaVdCm8\nBqj04ULaUMxKdykcDwOEzrbdLALlozRmPz4Z7QAsH7Tw6W4Ko0tEmhEyNsAdQ1Tb+ErNEEAO08xI\nAHb/wg/T2Svp/OIXOP9LM4QQ6NwqAod0oWifh2kGLb3r5rYexPDLF6SH+cDvEcDIL2PJvka7OWil\nCWQFo+0PPf3Y86S/+kXKH/soyWe/iUxc2lqRW4zHa0vF4K1LT/OpoMKIk7jIZ97nyHlpx0/PdjaG\nkAbmfNvY1w3PS0LQuSs1woBO/EJqfkfQ1hQCkirQapRk+FSbwVOS9q7hmX84gG+8ilCS8u0E1L8X\nrRk8c+CfeOkZDt6zzup39jHfeDWIkIvmvNuDQbH5QOIpqn+/E2XnT28C2yEllTq2z40mTW0+qc//\npSqrGXb3OdURamwp/S6KoqUFg5SsygKWGtlps/OnfgAMTLcEL/z5LwGQXLwAnTZMpuQbXdJbDiRp\nMkNi0Kbp9D5qg20et3neZeeDigHknOBlYJBnZASfSwj0dMr1n9rimf/1jmVrNBFGT3/05/ZIZAwK\nvZ0I9NsxP6nyyKn/njiHKc+r+4mFpaECCGPhaW9FCYkd8MPx/f0mCWZ7jfl6m7ufaLP1jZytr0+Q\nQ1tuvhwM0JvPoQ7nyOIYZD/+LR8BXKsd57jvi84Xn7fZ7pp9SMwA8CBXtM/8j3yMwVMpF37zfj0l\nL0SpRb3txMsel52wvdbKzBNNKCN9oHiAXLqvBrRGzXJbmW4yRR8MzqJ0+vetyX4fM5ksjCJ+z5qg\nigD6fiEWp1euXWtjZ+yB5ltVHkE5XYe5mzwE0clGPriPFiW2jLO5uMXo6T73PpogDDzxyyn9N4aI\nWY5ppYyf6JCM1NFc8Ca7x1UGEzJ6/09r0fsvjMEUGqEExh/7OFC68VmUpj5RCqBGtKmu+qnxtmT0\nE4eIb/Xp3ZZWKDs+lTFHgdzjlr/LVgODfNcagUHAUbZTk7FYUu0br/d/pD2PEYLRBcnoMqi5oHVl\nyNWNfTpJjhQ6sGQsG+Z4oKfJ7nkUYGgRK+hRbBEoZI+//Aeea8Vg0OFmf41MlTUAzJaVhwJJGQlJ\nG+rg0ONyc4AqHQWq4iqx9qELgAYGkDagrLi0Xe5ADHCRZCfW61M4wthtQEjUShsunmPnk+fp3ito\n/dMvkFy6iMlzzGRKUp6n/MH3wOe+Vokrxzo/3iK/m9wW3Ti1pxNXHnuY/lBTOPpEx/b+drRf7vpL\npRArPf7h13+Zn7ryyeqZa2MLi6RJVWnXVSIzpa4LTEt5mipjZ2RNh8Q0WD/V86nG4IpV4INUpsiX\nzm+aY3coUR/Zd/+bT3Lptw3nf/l1zHSKzjLKu/dInn0aBsPapLUJAvlUSena9CN5yI25UAz61OaT\nsjG39KD6AuaQXyeEK/QQseI8KcGUJXk/IQUOnmmx9S+NBZakCDq5VvC7rHSWaoUnZLXsMfhIwgVI\njdPNiscgE407RrrS80bUfx8pMFJBXi6s+GmDIG5MFgKdSMpOwvDJjMk5QTYwXP6NEeKzXw0ugckh\nuXI5BKJ/N9vh82vc/sk5slij97IF9CnnkGVVsa3Y4nn6I9j3BiBkQLQc5TUwftyl5XkAg4IyfFnv\nPIwpMUV9YAidlEsx0/PcKv1LCU9dZv/D6+x+QLD+bdj4uc8iWi0MlsqIUrZxu7QqpjNEy0WT/GC8\niDHkHGBRlJgsPZvJ7mnYH27dovSbepTUuOihqAFHMgdz4xZie8vqJHmm07IJQ3OAWJKD+46bi9BY\n8M/YtC8pbSftmUExENTQ5AjMICdsFphBYLctovxppdDrK+y/b439FyTP/F8PuPTbJem1+zZdcX01\n/GZqaiuJieHIHiexFGPjrw/qbQdsmfo0Wfy7n8SWMbmWfY/Ntfmlxw0Ok6jYNO5YnS++Qdl5rg4U\nxuj0EsBKlLqqoPdu2yKh7MbnRVGQZfMNE1Vq8WZLbWrbDmaFTa8bjzF5gZ7NbJv5PW5V4YDvI/P9\noxdQNQaROODH6y2Y0lYH8ZHmGC30KWQQ+hxvIqLZiyxFrK5Qbq5y/xOr7L9kaO1KercM7V1N54Er\nG69tBM5IgW4rTCutj01aIwoNEtsHCQGJtFE7YxCFbaNL3/+muYlmbMHhqwLM0cpGNEsIl+J19H3y\n6VB2bKIOJvvHf2jYu9/FnC+YryW0Hjh2ne/addTPHQmowMLqXe+0LQJ6loA/scUMogAg+d0VLCLT\nGAlFVzJdlwyeh3yj4MLVPQbjNvNZSi+dkUjNvEwotAVTCq1IZHmEWeOBomYZ+UdJK1vG/lkELp3m\n2IsYQUcrjknLgNhp8XJxkT/4nld5MF1ZcC0GKzAsF7KE7IeHXtLZmxcI9RIJXjrBVymKfbBFpbgd\nkzFknvg+JklsyvxkYgNdRYFcX0O0Mm7/5JOc+3ufo/fkOm/8WXjxn0Nx+w5gwXwxnTNfb5FBTSgY\nYSe8IsucL2VT1kQqEb0uxZ271TGCiPojpiY2WUPHAUFHqouJarmMAKagE1SlpxXXbvAHfucvcJFv\nU+7toVZXq+P6AIGoGEMCanOVyjd6tNt8NKtAdMv2icAaH2xYogMUtjGGwBpygFKoHBZv4y06nmy3\n0dMp574I6bCwQGJu21d59x7zJ9bJ5rnz391cb55XAthlac9TFBghbcpiUWBms1DN8jTMoZotYAmd\nZLswD3Xv1ZHuKUpLFEpx/8OKp34BHvxQyflfv0B5p9Jz9swgr7GEZ9f6d2GZYPm7ZCaTiMIg5o4x\n5ufEtY0ccBR8i2rMavrUthlVz9MSE2z7nFzsMNlSHF4RrNwwbLxaoKaGZDCtEwmFwHTb/F4wOTck\nb7U4vChYvXie4satej8ZEzYWaU36dSfEob83ACGodICSxL4Q7ub0dBaQsFDSr3nfvpN3+XWm1LVS\n86YEmaXIzQ2u/5knMZ88QHxW8szf/IzdPUmQq6vopy5g3riFWO0jZgV6NCLdHYfBK5wuzZC9js2Z\nbmUVgAQW5VzpIg/HdmJ/WmtGTx8GxPhNHTsoAAoNmliz2pj/HP8dP5vz5l//KE/+7c9Y5L55rphJ\nsug6H8ek3l1XSP0Kkw0BMytOJ6SsSsV7ap2PtMXUaFfSNSD1bkASiRWLzp/Y4Pof7lKsaJ76Zzkb\nv3qd8v59BDD7sY+S7k8RN+7YaBxgvvB1G11cctnqwnmru+N1nYoSvdazE7O8qICVt/lsFn5fxHYr\nyopVtexYvmJGI3Vs/PN9Bv8kIR1s0Lo9qMCi5kTQm6cHy/rfd9WWaQQ1vp+qRHUTDCo08nAC+0PI\n55STaQ0EEqkDwmOnLI7g/S43ubWBvr/z/XfPPmJnbKpFFVmP9BYCLTqKbFM5sEL7KGNVGjQ4mkIg\nOm3y9z7Jm/9Gm2K9oHUHtr8s6N7PMQKmm4rx+YyOtGlium0FMOarCUW7V12rsA5bMi5R4zli5tkE\nNn+q7GZWy2o0t2PvSUGhuC+Jl0XM06W7qgV6fPH6GPwQjWNpw8YXH/DgQ+dYfd8Ow8vbtHbyQOk3\nQli20XFsoMfhX8dDZq0vjNaZav1CPST/Wdf/VuFTMIng4JmEg/cWpOtjzm0MOZy2UFLznvN3uTHY\n4Bs3n+ADl2/RTmya2CRPOZi0WetMkcKQCI0QhtVsSiZLNIJ5WUUkM2Ung9MyJRGne2/fbol5v78F\nivRDxZ4rFpFmNM/Y+IZgttFi9QMzHrDijlk9a1+JTLsUtNIITpsu9o6YAyoCs0ApV87dtfu8qKLG\nStTTX5zUgsgyQqp8p4OZz51fbYEQudrHbKyy+9FNNr+0y8Yrc6Z//OO0f+nzvPcrW3znv/shXvgr\n/wrAirnmOenB9tFrNQbTCHjIXs9eX38F+aH3wmvX0cOhBVZOOv4v0gfyE/Ama2gRSyjSbDPlHCGT\n+vK4+lhNPNlw7W//MJ1fia7TpfRUwJwNCpjZ3DHUE4Rr56aw/txpSkCflYk0s+lJzaBLAB182ljk\nD0IFGJnIPxGCUMI+Zpg3LHnmKfRql3s/tM65n/sSqz//OfQf/AiTjz1L99UH6G4b7t7jrU936dx9\nEpMI0KBmhnRsWHlrRnrnALF3gJlMAdCjEeX9+6jVVUSvhzmFmHDQHoKKBSSrMXeZefZc7XduZKKY\nh4yXT/0tO8985v/WlNurcPN2le4pBaAQlJC2bPqlk6gAQtrZiZlu74AZN90ThWXhNp9WCFg0V2hz\npPS8cQzquPz8fL3F3kstplvQ3oULv5PTujtG3dnB9HtMn94g634QvvxtTFGgtjYptldQnffauZLL\nWBBFidk7oNzbe+cexrtseU+SHQiGz2mmz58nvXkboE5YaFo8tztlf/M9AwiJJLHOsGNreCDII6hW\naNPdpM+H9s4zhM6t9nJ6ZpFS7P1bP8D4Tx2w+T8VtP+rbwKg1tcQnY5NDzMG9WAA3S769l301HZC\nZq1NevkJykub1sEsHaBwdxczm6P39pGtFmQpor/ittGYVoaYzS04c1KwxG/X3L6ZQuaXxbRNKTB3\n7lMeHlrdo3EeBH7jkvNh93gy7I5z8dcV2bBYDPYYg0kTW36zCSQ0jvPumptc+RLzXkeoFC5qH6V0\niGhZc3CM05u0xhRlyA8vz61z+0fXmJw3XPhCSefejPTNexT376Pe9yK8dQd+88uI7W1EmoYIGkDy\n7NPMntykbCsrfmqg/a23KO7cpbxbRQrUuXPQ6yAHY0yW2vYznS1HfZc+DnOkbTz0uzGUr75ur/fK\nZYu+i7rjs2ySKAaHALx1f4Mnvz0jHczqQItPEYPFjCHPqnucPPwlVvP/T6ixEs9N5HiO2D3AjMb1\n6Ckgu10rMJjPEa0WQqS2zxECtbaKaDvhewdaGsdG0ePx7y5WkQM+xGz2OH2e05mhEmmN2axRUAAh\nIcW2GXdjptQs00Q4opvw1GWu/5vbjJ6f03tVsPU1Rf/GFK0kk/MpyVSTHWp0KhhfSGm1JXKmScZ2\nWd5XaAVGgk4EKjfIVUUyTRGFIZmUyFmJnBeoSY5OFeVKy4JC8+Lo+35awFaC0R7UWeycTM93mPcl\nsoTejcnCan81mnnDOncFwyc7dBJCWdyaKVceu4j7utPdxjtugiNl6IFKTygCesIuy+RShGC6pdj5\nILSePeCJ3oR2UtBPZ1zqDfjaW5fZHfZ46fw9WknBV69f4emLO4zmGXevb9K+lTBxx/faQ8WKptzM\n2T435HL/gJV0RmEq5kw3mTMt0hOzeWIgKGYFNfergz5H9y+M4kp3nwezXo0RdBw4VBjFrFB0ZtC5\nZ9idd+vPz4iahpA9nwWTlNToUoXtHgs05P1gx0Yxs5ll87TbGAkybYU0sWaVMRP847LSufGMaiUR\n3S7yQo/Bhy/Q//YuG1/ZRwxGtG7d5eCn30f+pz9J/3/7HC/8lR1e+28/yfN/7XMA6OkU9Y3X0YBo\ntZCdNno0WaiHF4olDAbI/QPMi08jX3mTcjCwYNGjBFBjMw3fv8k4koJyfxj6o8Dwicd2bSpWkDch\nIZO0dgTbXxtTfPoHSX7tizaALUz1F/tMve5p0IVJEgRJLfj4blr4LVzQRTgJBD/HWb6jqYHYNYBo\nSbD64M9+knRi6H9zB/3Vb7P9Vdj/dz/J1q+9SfFbX0b/5Cd4808/QeeuYesbcOXXJ6S7YxsgSBVl\nJ+Xg+Q73P9KhbHdo7V5g9XpO+809kuEIM5lQ7h/YudvaKuZwFIoxPLQkfTNtLEoVq6WNNRhBptTo\nT7wPtEEWGr7+6vHHjrS9ZK9DuW+f/52PZySTjCe+6o9bIlA2g0Ub0FYmxZQWoDNFgXHaTo/FfDRb\nCRtoUNIVgIiCpC7NK+jSanNsgZhQZh7QnYSDp9scXhX0bhqe+ZW76Deu2z7txecYfeQq3WsD2tf2\nmV5dQ/yhD9G6MyTf7FKspEzPtdCpZST5gLKaXyAdFrTuj5F3d4+QOR6HyX4fnr2CeOsu5c7u6fYt\nDJ17hvmaFfH2eqWWRWZJDcJpt5l5Tk1y4BHA5+8ZQCik7Th2hQi5mFZM0zjava805gU57Uay6tRd\nDi9Im3r2kRd57a8q1GuCp/7ktwFIrl6xOb+AGY2hnVnq/84+5cGA5PIlpNbMnzlvQYROC3XzgbtQ\n12mkKXTaqLW+VY/fP8AcjjClRm1tILqdCpDJizqrxmvKpEnFjFg08V8EsLiUsEV+lx4OufNXf4Qn\nfn1voXONMQujsmZoJ/XdezmiNOhPfRhu7lWTeadaLsZTJ6SaWiZJfI3HpSK9oyZCdEekqRMFJACB\nHggKoJC7ZmNMKEsvPBPHA0VOjNr0e+x9/Dx3fwg2v2a49JsD5NTlVHfshL381ivoH/0IyZdes9GL\nc+dQ738J3c2Ybrdhb0a6OyZzjBkjJcWT5ynefwWA7O4I/Y3vUN6/D/ft5SUXL0C/h+m2kAejql1r\nEwTWRbtl0xLjdtWM8Bx5VBE4479HoN69//BH2PrmlOzWQX0/7ywtSJP04Ff2nQ5qOuaVf6/He/7u\npDqXEJibd9DTGcmFc5hepwYM+ZSxx8IQgpozeGwAWC9mGzTFo40AOS+Re0PMwYByiXOMEKitTcqd\nXUuh3lgj2Vi3bS+NGGoAxrEmux3b35QaM51hxmOrP/RY3rszsqK0QPrB91HpUEE12Qhswgjo9I60\n15kobNR6mQMaPmuN3N7k7r9+hd1PzUluGa7+E0n3+gGiLBGlYX6uRzYsmW4okqlB5jZkpxOBKCXp\nMLdV6wptUxgdA0l3EvLVjHlfUmYSWSiSqUZNU2RhUNMSIyBfb5O4MvWB6ZPIKo3LR+SOY4V6f+S4\ndqmh6Ai6f/EWb3z7Ek/9Ukp2UL0nIerY7BcM6Jai2OqRDQ3zV3rMNu1zFzjhzQSKjqLoSJKxJhvk\n1mFtvMPNErrvttVAH8+E8tcX+hVTfTcLwCC3X9kW3P+wRD87YXNtxGZnTNuxeDyIcm5jyJ1vnedl\nzvPC+fvc0uvc+q0riAL6E1B+fiijY9+X6OstJp0W31rdIj+fs3F+yMX+0LGHCmRiXMWuEhmxheIU\nrgq0kbVrOq1pIxnmLV5/7SLfPbfFJy5fZ5i3auc7uk8FGI0O2/SnmmRq+M7OeS72h2FfDUhjtYTa\nKmd3WoFNYJeXWj42IjTaQGpZzqHaaVSV12j7e5uyRDhx4OAnyooxhGPPW52hOeLKZfJL68zXU1a/\ndBtmc1t0xR33/Gd3efkvbdC981HUb3yJ5//a57j+t36Ep/9rW4VXtDKS3gX0YGi1OdfX7Hk6bRsQ\nvfeAcr/uU+jRCL78TeQLz6L2h9b/WWIizZCddsXg8Xo/8UTZMS1qWkqU9Yl6XjD/Ix/j7r8/4epP\nf4NyMEBtbER9t67SvuLS4EYDEplDvppy/Wc0L/wa9W1K0JOpHeuFQPX7dr6SF5X4dOpkCd7l9hNS\nsh3LxxRFVQjDs4OErBfwATeW6QYTaPF7O/rpHyLbL9j8f17FzOYYrZG9Hno0Yus3bnDzp5/l0m9t\n0v6lz3N550Mkr9ygBORvfRnT74O2UGyqFOe+28Ws95lf7DO6lPHggxn6IxfIBob+jZLeKzuUr3wX\n2e0itzYrYFM6X14pW/RhMnUC4FEWgA8KhzHXjzPVelJV3ydNSL97m+LOXe79Bz/MpdtblPcfVDcf\ni0H7Nunft411cG3/mX9wnZ0fvUKthD0gt7eQQtg55Hxu3980QfgiSo8rnV5gAztSWKSgpArg+suX\ngHZaSmbBmN+oziZKS+sYXemw+5IimcLVXxnC579ez2q6vwvPbzJ6Zo3u9QHJuGBysc18bQNZGNJh\nQbZfhLmRl53QmaRoKw6fW8W8sEoyepL2vTFqZ4i+c+/hIOg7YPOPv8jrf0ay9bl1tn/uCyf+PdX6\nGmVLIAyUHYNOBDXQW0pkr4vp9xCTGWbXMqN82w16c82MnmPsewYQsvm60nag3rzKelD7h1rudAQE\neYEvb6LX5c3/9CWS9wx49qe+DriJdrcDVI6m6HZgbCPzRtl8Wr3ZR4ymZNce2M5mnlufzedc+7QZ\nKSDNEEoitzftibUFGsobt2yUvyzRZbkwqq/W1+z99LqVvswiGn0cPY71bBrr1Ooq578w5ta/tsHF\nv/Nt1PPP1O7V73OkFP3hCLW1iZ6V5KspvS9dD6wppITJlOL2HV75Hz7Be/+T79r7cjS9UE3nsU1K\nTWg7aG2dGSCkhkH1UriBIOTOeyDIp5I5oEgoyfz9V7n+R1ukB4Ln/s8x6e64umcAIcKAl94f2Ypi\n37KOjdpeR45mdPcOLSKutZ3E5zkyTZH7kCQK0+ug2wn5T/wgRglaDybIa3csqu1IRg9zm2W3i9zc\nsOCikovbhp+4lUvajvt76VfvsfvxbVbEGtmtAQst6tzjQa1z15AMZ0Crds7y5dfsbn/wI+TakNwb\n1EDEMBA/LobQCc7bTBmLP8frhDbIwQT2rFD0ceXjzWyGXO2jtjataD7Y9NMmDdt16rWJcZpAp4VY\n75PkBeQFZjyh3N9/PO/h20n30hpEwvcPPQhAWOdGSguWzGbVOxZ+P13lbccikQvM9zmzj7/IG38i\nBQznfj1j7bUxajALEVCAZJRTthXtvZL5ikJNDd3708DssdXFrBMvwAY6hEAlivS2oJMoTLfFfKvL\nfC1hvpZQZpAdKpLDElka8rUWGPsem8S2Owva2ohVMiqQ4zxcVxCe9ONL2ag2tiBYIIxhti4p5xl/\n7g/9Nr/09T/E9ldm9cjsIkdGWLAnAZKJIR0JZhtRP2Zgtp6RDQrufzhl9Q1Btj+vmL21Yz2iZskZ\nWHif48fS+Byca98VxAQIab+bBA6eSRi8J2f94gGbvTH9dHaEfSNFyYXukFvrm/DNPl8fthDDhPQQ\n1Mz+Zh7L8VXJ7DWAnEMygXQgMHcy5p0tvru6yXyz5MJTuzy7tkM7ydmZ9lDuIhOpyUvFpEjpJDlb\n7RFSGAojg5BzMwXrpCBRJ8mRKznTa306T+YBEKqOc1RoGiAvFXqcoHKDUTCZZdCv9usmc94arnP/\n1joffPHGkfN6/SApeHxEM60r8EeK6n1xRVmMMUiV2kVe6NZZqNzrxI/l5gZmbYXbP77F+f/+M/Re\nfA5zOIoE8p1//WCP7ltb3PiJFs9+sY8eDnnyP/tXiHNbVuh3MrVC8mWJmc6QXuto/8Ay8JOE5Okn\nMa0M7u3UUjo8M/k4M/mcMmK5yCw9Kkrtnofx/hYuqNxIGWvdHTO5H6XTxili8TLv30SpZ9PzcPEz\nI7JuvSKkyIs6Azj4lLrSiCmtNo7I0ofe79lapPUTa/8EnTvHjDclxqcSLypL3zS3vPj0DzJfS1j7\n7A0LaER+t+h0YDSieOsmq9cv88rPrvL8V0B89qu1yb8ejSswyhjEbAa7e2Q3W7S6HTbW+swvrTLb\nSBleUdz76AVWbpxn7U1bVfPwcoZNlRaIAjs854b2nqb/+iHqwcAG/p02kXAp3kJrC7D6YjJeQmJB\nVSazYtmE5754iOl3Q/C2lm5W03ax88NyexXesIuKm7cZPfEkGyGwquFDL3Lt06tc/i8/Q3LxAsVo\nbKu0eWaxkFaHaZ4/lpR6P44bJZBe1wmqIipxVV5jXKEKFvvV2pD3M3be32K2BRc+n9P5jW8uLKpS\n7u2RjgqmWxnTSyuI0tC+P0fmNjAm8jL4OXGgWypF4rSMdCthvpoyvtpDP72CLC/Se/MQceOO9Y86\nHQcAO13XVmbv83CKvr9jU2LP4hkmAtEq2fvxgnNfeB7zte+caD+xsY4obRplMhbIecV6NKVGXdpk\n+uw2o4sp66+MEA926iCn0w87DcPsewYQ8iUaPTrqlxlT2pxpV24TCCyhJq3P2+SPfZS9vzjk/D/Q\ndP/jbyLSDHXlkpuA1sERhAA3IRMrPZI0Je9lJHd27HnyKurinX4DDtFWMJtZsGh4aIESqRBZitxc\nR7Rb6Lv34QdeRL16Hc5vY9opuusEqvfGcPse5d37VsUfUJsb9hiu0/BMFsDm0mYpXDhXBzywk9Fy\nNiNfS5lum9ry8Ixqg1412Iksg401ZKHpXhtYxNHf92hMefcer/yPH4ccygc7JP0V14n6HGRpWU+P\nheVRTcIqcWiXoqHdvbmqFrF4a9AJ0rpiEQFsrXP7R7fYf6/myV8u6NwY1tPkvEmJvHAO/frIsoQ+\n9WHUxz/IfC1DXduzVaRc3ng4rzY2rc2DU4MR6lDQuXeA6bQw7ZTipavoDzxF+mCM/sZ3UOfOOZBp\nC/30JcpeynQrIx0UtH7bdqZHOlSpgvPXHESSK5ftgBZXkvP2YJcyO4fIH+IMeIvWp2MDr14DPhiW\ne2dv/kc/zif+8y/wtT/3nqP7n7Is4pnbQ1LBfElsXwXBqGr7oDGkDWJeIHeHmMHwSHrYIjNFgZnO\nEGt9RLfrZhkRCBSnFnnR7fj38v2DEAEgStb6lqXoNAyE0zdDSlcBRVrw6HCEPhydXZn7twPmaG2v\naQFgkly8gCkKyt39x+IMLTc36CbyKNATwNeof/QaF9JWdjSe0SjchG57k1t/7BIHH5rT/5bk3Fdm\nZA9GVgQ6GuAB5GiG7GfoTNK7M3OlXEFM81DyNlhRVpOBPA9Oqtgf0r4raTkWYr7ZYbqZMt1OyQ5K\nyrZEFjYipZMK9CzaEmEMyVSRTFLU1DlhcytYLUqNSSwobQRBa0EUBjkr7P34xyTssUst+am1L/IL\nKz9qV2gDSWPG3XgvhDbozN53MoJ8BUtnV4LZRkr/lX0efGyT8z9+k+G9J0CAUTUvhy4AACAASURB\nVLZ0by248m7P6j2+I32/4i+kvr4pHB12l9S0g2arkt0PCuSzQ55YHbHRnpBJ+3sfTcGyAMnFS3sc\nvHGB9S9l1ql3lWPqFdrqn/05ZWGgtABSNoDOnYTDa+f5/NY5yq0c5hIxF6ipJBnbyZnQoDN4dbsk\nPTfh0saA1daUbjInEbpi7zTKvRdaUhgV9Ini+ym0JElL9HyxvxEzkmrLsY45VMzsmFX0tRtXWP8X\nbeT7TE0vyR8TLCj02LKbI4Z8dGHWXxYRex5TAUR+e6915tgu6vIl7v3YJbZ//stcAtjegnsPjoKk\nQmLGEy7/5pCX/1Kb4R95H6u/8Rr6YIje3bfn9uXUnWCxL19vjMGMx/bzeGJ95pUeamsTtjcxN24d\n8V3U+hrl/oHV9ez3j+qB6BI9PflYoNbXas9P7Q4Q+QrJU1cprt2o7tGxxWtzClMlq4ospf/x+/CP\nUvRrlRC5ECKM95M/+Qk6/+jzbuc60CSUxGiX1vGuZgBFfSdU42wM0scAUFwUIaSI6Wp51H/u/ewP\ns/WVfbLPv4WOgJQAlJVlCBZ1fvHzvPTt5xZq2/oq0f7IHhgq8wIxmSJGY7K792n1evRXe4ye32Cy\nqdh7ocWFf3EXoTdovbVPsbVCcjABYPLkGrsvpew/vwZijdaeofNA07mfkwxnDlAA01IYJSl7KXJa\nkt49wOzuBd0iPy+dPrtF+tob6Eyht3qo16trR2uaKd/G2NLxcjAJ95w8fRVRECbt5R/4IMOrLQsG\nPfMU+cV15IOd6ncyGstyy6w/P3t8PlBd8861JUxVYVe7MUsKm+ItbHqdZ6KZRDJ8qsPBs5L+dcPl\nf/wWxbUbxwa8s5dvMfkDTzvARsBMh9+txk4udBAYR1fXKic5ajjFtFLKlqJYSRk+10ddWSEZl+hU\nUHQVOrH+gR3rDEatI/MLtPYLsrsj5N4APRguBYhEmoUU3oWmDWmr4NzaIWWvfzqCoLD/1FiQTDxz\nTCAvXeDw/RfYfW9C0YP+W0kF5jTn4V4O5QT2vQEI+SBH4XIoHaqlJxOkE74LItFSYHKDUIRBx5eY\nRyle/xsfIL8y5wWfHhZXDYuYET7P0SiJyFLKO/cQ73kWcXNE8vIN2widjlFdNNRGIIRSVdqaZ5jk\nBcbkFYAzm1kUcpYjej10J0PuDpF7OEFSg+m0kRfPVWjn4NBGaZSCKxdt5KWdoFPFfCNjfC5h9dqM\n1hv37X0lrkOSArnSo2hLurfsfZavWWg6ufwEpttGlJrijWtgDOr9LyEOrV6N2FijeO0Nhj/4Sdp7\nGemv/E7t53n17/4QyZ7k2b/+WeQH3gOHY2rVx3y++mPjUlMvPe+QfpEkdiIUl2X1v5cfEIMIo2T6\n/Hne/OMpa6/Ci//zGHk4dUh99DJpXTGslET2bcTMJBJ1c4/OA+zvOp0FkWqEsBpHnr3kzx8BRmIm\nEJMZYjK3bJ9Ekly5TH51mzRL0efWEYVGDeb0BvY45UdeYnq+hSwM7XtT5Os3bY6qLpGrm7C9jlEK\n00mZnm8zvJzQGhhWXx4iR1OCNpAXcD8YkK8Isu/eOaKDhDEUr1yzl7+9ZaupKRUAq50PCrb+5Tle\n+I9+hzKavOsf/Qi3PpXwz/6XH+FKsg8zau+hf54+vfKxmhQVy6ExEQ9gULwtNrIuD8awu085ODwV\nyKIPR6jVlYplF53LW63fit8vHb1zzpE1SkGikIXtr4zvF2MQvJVCp4Xc3rBA52xuacrTGWae1/QG\nrIabZWMee1/GvD2WEA78GY0tUJYXqO1N9NY6cn/4PQYGWRMq0nby5j/7SViULx9KModNHRPxI8/x\n+k+lqJHhyj9V9N48QM6LwAQA6r+zMSSHc/LVDCMFrVsDV/JWOzaiCWMUfnyKrbTXaQBxOEYMR7T2\nM7KbGbpvtcN0pkj2J1bsunSVx4zBdDKKtQ7T7YzZmoJVK2KdTAzJRAfRSZ3KUOVq1pdWJPTGBFXo\nSiwa6N7TPBi3eCoxTM8bZuds5ZB5X9HeLUgOc3Qq0YmgbCuyg9xG8HJDejBldGEVURo6dwVqkjM9\n9/9T9+bBlmR3fefnnJOZN+/69v292pfurl6qV/UiCSEB0oDECGEYYwyYwY5hGAxEAOGxYSL8h8fj\nCALPjMfjILDxYAdLyIOMAIEWtIJ671av1Uvte739vfvuljeXc+aPk5k376uqpgWiSnMiKl7de/Pm\ndk+e8zvf3/f3/ZapXu7SPDbGxnHD5uo4DZeBft5uptKtZtOlwd3u94yEVMf4hkzJDJDJdH2MELTn\nFdv3h0zO7jBe7uYW8rtt4YtNG8GY32N1TFPakqjQDPabnstuF0ULhA+fB1ggSUYG1bfMIX3ZG9pO\nRpZxZNKSg9KGwpypsV6qsVyGqK7RYxFeJcJ1E1yVkBiBTtlDZS9irr6DI/WQNby9LsO+yU1ONktU\nVZ8xT9FLXGIj8WRMkFgWRpC4jJc6BIlLmDiUnYjaSA8Z1ShtBPSvVRhd6BEkDi9dWGLii769xuk+\n/cRBpKsdKezzkhRAoduS+koXzUPJQgaL/BwAUgqS9PNssZ0OA2pqEj01SlzxmP7zS7ZcZ2W9UE6f\nLv6TBJOEFihRCnn6MuVLd9KdMoyUSgi3Z3U+M+kFY9KEaJowSZKCGUwyAIy6PXtOqxuIShlVr5Gs\nrFqX377VH1STE+mYo63xRtlHNypw7spNF2XqyEFwHXTZGouIN88Nyp8yhqaQmKDP3JE1WvfPUb5w\n6bpStiyey1/7vpVIaLVZW52jNi2IxlKQsrCdOnyA9WMOS59Ob2NWJlY4vvC826YjJJQaKlXJXwth\n59dMX0ilZbc5OzEZ/gsEH3sEGRkm//itHLzJQBHhOMiMFRXFONOTuY5LcvLMDU5MYKIQE2fg0zDo\nZJIEej10kiDaHVhXVDebVGbG0b4LW038dpf42jLK99GJRngu5bUtFs7UwVGEs3XiiqI959Ce9/Fa\nJUbO9im9fTWPc7PoMyb9zSHXCTSJxlvrYQB3o8PaY5OMuMfs6Uca78oWen0T9i4QzlRR3Rj1+lnL\n/N4YAJpGCl79pX/HwaWfxjgGowxHfsZqcV3+/gXmv7qFEXI4OSZkbrh0u9rNEhRDydJ0u6HpNcNr\nah5bRzySkmDxKx3EU6/wboqm4uUV3PYSxhGU1gLrSBYPShgzZnKRUZ8DQ9lcrwUijHFSrURvW1k3\nVtfOf06QWDF4bfKycl1yiGoOwbhDd3oUmYxaZnRX4+6EOFtdSDR6pJIDTRhD5a2VAchcaOVTq0Tr\n84zOrLE9P0VjcgJRq2IqPvrUeUwUosbGEGMjNqG8vmHjsNV1hJ5DRgZvB5KSwtm3hK6U2NlXIxiV\ndPYmuE1J4koc10Vkpb7Zb/RNrsm/PQAhKJSApVnsJESWrOp6XicNdmBNUTIdRpZe5zgk9x/h6i9G\n1P8UJn71RdTEOKJRv64ES8QJemWNpNtFlEqo6akc3cs7mDaWsZMtpsLrB/F8MM1KcbIBVusBgyi1\nrRRX1+xgeTmw51xQphdCWFo/2Ix+pYyZm8TE2magY23ZB4mhfLlP9Y0uptmCWhUU1tK85NkF+8Ym\n1U89y8jSopXRmZyg8+hB/NUePGfL5tTUFJsfPsjE1y5jSi4ijPJOHIwLRr94FhoNovsO4m52ufix\nCRa/HNNLK+JMSUFT2xK3PMMgvykU8lveMvZW5iYGw4vnLHCKC1pDcWx/E9fFlEusvXeG9YcT9n4m\noXK+mS+C8iYEoh8Sn784dGg1YW9M6eKmZUntKvfJs0xxPLQ4zOqYgZxhZeLYDmhC2EDLdXA22uA6\nVkso6FtwKxNQEwJnTdm+V/boH99Pb/IIRkFlJaJ0uYkQGhNrvK2Q8XaMs9GzYtXrm+hegFqYIz57\nPr0/MVOv9IZsZVvfcxfVTz2bX+/a//gYlVVN48snh7J3Ym8HopiV/+k99GYNk69YO87OjGT2mZjq\n19+m9cE7aLzczV3wciBoV+bptrZCtj5fGGWMh92uZP0Etd5Ebzf/WvRSE4W2xNFNaeQ5/d8uXo0U\nXKctVkT/hbBjRBGUVa7VlsrPW+R9Kv9/WlpopLRjh9YIY5Bxgmm2bOmZTjA6wUTv4kKkQjVqlnWk\nDbLsIyoVSyGPLJgvR0csM6lQwy2rVXt9rsPah5aIKoLqSkLjzS37fCQJplz6trSlN1HhxhQ0vnJ9\niywvmE0dmQZYmuwQIw2ufd8SWw/GjL6kmHqli7Pdux4IkhLtO2jPsS5iWEaOcSSJMlafIorzstSc\nKRCn9fVF3a+iFpjRmCC9p4mGboDc2kEoiRLCiuoXnWeSBOn7eBs7eOesrp4pe8RjZeKyg1EQNqwe\nEVggIPEEbs9QXouQvZik7KJ9hQwSjGcDMvVSnR+d/gQihva8QzAh6C4mjJ5wKW84aAfW7xUIDZOv\nSgtChAb/5DbySJ3p51uo1SYm6FNpjRDON+iPCMR0QBIoejMCXiMtXyvMV4Nf8lvWJ77Zdh1TKPt/\nEYDZxSKKfcn6fQJxoM2+8SZ1r08q9XkDAebUTt6onJETG4WuaKvJWDjuDdlSN7s1gpw5JLQFxVU0\nfO7ZtVgQyc4FJrI6RV4TzIok8UvE1RLdqYS9dy4zVW7nh8hAoDBxcGSCp6L0tcJXmmZShkTwqace\nwbgaXEO5EVD1Qw6OraON4PzmOKeiKe6cXWGs1EVieG1lidntCBFrxl+VvHz1Lrxtw55zESrss/KQ\nj+vFGCMoqZheeh45U0SY25b3MhmrOy3Pys1VskRpFkNrkzOgdb9vAQmlUFOTdO+ep7TWRbz0NqZe\ns7FnlhQruHYVWa4GoNtlz581WX2kkce9QgqbrC2VbDlO0Lexbeb2ly1kc51MYc87DAfaa0ohK7Yc\nx0hF0u7YhFalgg76SD8iWV1DlssIx8lNL0ScYByVgwyiH5KMVEBrZDe0z7vj2DkpkwhI55HaR1Zp\n//D00L119u0hPn8xn8fP/4vH2PerT9v5Kp2zjvzki8QffJCZJyWdv/MenI6m+tZqmpCVLP2vTw12\nmM25xlgtGBiMxbe6yV2aONl8WkzimMLcAQP3UzMcBzd/9FEmnrqGXt/M58AslpWlEsxNo+s+nT1V\nnE5C+XILFQRDwFvmejbE/DQGGLD3c+dVITDxgA1iUr1W0Wpb+Zq0BFK4nmWkRaHtZzs7iCAArfGW\nPTyjqbheDnhGRxdI5iegkPjME53bO8hyKi0S9BHjI2zdWadWux+jDVt3ghN4jJzqILfanPv7C4h4\ngcUvtXC+9CL6ffeT3HsQESVc+K46S1/YwbzwOsnpc3zPD/4ER9dWLOMoTbyHH36IsZMRwVyN0lsC\nEgoldHro3tzqVmT1DkknpDFnBqIMJVMLCfPenM/WYUX1qmH2D962YMc7Hc/1kI1aLr7s7kSEY9YF\nVaTlYnnLYh4YaNpm5wY2vi1eg7GlZlJj2ctFeYaceauR/RjVlviAcSXas6CPkeSJOHdlB7XRQjoK\nd00gmq2bClibik/1nOLszATJcUl36ghxRRBMGsZPjFO/ENAfcVk97lLagrmvriOabfTUKG47wW3F\nOF1b3h9Xx62QtgTjgHEMyb6AYLKEr+RQvJ5rCMH/z2znjX0AdDqhZA+tDqOB84A2loqaKbgrYQNr\n1yF4313wS2ssfLdlMDiLCxjfS7NeIl9gAZi2LbFRdx0hmqgi37yYd9L+fI3ydgvd3BlQXhNbdjTI\nvBTolMVylywrm1IIsxImewqpzkROtcMyV6SlkeK6dlIJQ0S3h9hpYTpdRLlsF93pYGsSjfZci+4H\nVkRKuI5daLVaiIfutvoPX3oRZ3aG/p0LJCUBz72GszDP5R/ax+jpmLHXrY6L6PWJr1xl9Wcfp3lH\nwh3/7ASiXiPeuIp3doX4ylX29vYRzo9S+eybyMMHSF48ga5WEQuziH44uAfFxcctbcai+GFoEWqt\nEel9FRkDKEnyoEkU+oNwXUyjypm/O46/Ljj6//SsBgxcD1AYMwQG9f+bh6m8cD4XQzS+B0oi2pYC\nLTw3F622b6SodjZoZqVsSTbppfb22bFD+5nAz8sW875VHODSwEq0u/hbLfyTlqbN+OhQfX6WnN49\nrWRgENjMT/lzLyMnJ9j67sMEE5Lpf/sUztwsb/3yPvx1ydJnm+iyQ3jfftRXLSB0+nfuZ/9vCMxO\ni4XPXCGeasBzryEevofGKU3zSJ2q61H5r88SU2DtZcwYrYeBjlvZdjlK5BNcod1IbFr2IuR6E721\nfcMa6Bs16fs2M9DtWTFO17vxhnnf23VgWZjEYADypP/PgaQcaEx3x67nUgwC9OwCRQpmikoZGYbv\nqH80tKsUVDe+h5wcT7MmDsaVRLV9uO0Y79JWLniX9Vd5eD/RRBXv0gZoTVSzJUSA7e+OIpq01Hyz\neC/uVoB5/eS3DzAk1XBWPWEYyIEB6K8keckYAibHOf0PZtEuLP6ZpHZue1ATv4uVpssuxpHEVYfe\ntItWAq+tcTuJdc/Knp+MyZiVaxTOY2gsy84ljgdsyWxRoI2lpRfLKPMsv7bgZfbM9kPEjsDb8XGr\nZYgTgr2jhHWF09NY5pBliiAgHi2ReJLepEN/RBJXIS5DOKo5+dQ+jGMTEuGIYfSEFXBdv0dgHEiq\nGuNpVh9SHPqkZW727ppj9MQ2IoiIL12257q2Rincizczh3uqjPQMI6c13ulrJEvTg0BRDLKb3w5N\nGAaUexgAKbuGgbAm2bxbUL97g/FKj6pzc9aeIxO2+hWWm3WCS3W0rxlf2CZKFO62GjB/smOJwn2h\ncOzd/0+/M+R6VsA/B/d2+DtCp+OotECYTBlbiQ/+muK8N4M5IBgt9ag4IVKZtPTLEGvF2a0JFkea\nNNyAJ18/TPWsi5rUiETgdBRGwcJ7V1ht1Xj2rQMoP2H/7DrdyOXk2hRB12P8L0vsu2T1rwDCEUFS\ngrgiUKEmLit6s5pky+eqFjyx7xytqMRyp3EdNnY7e84QGJSNQVrmnwmZMoKktZkXnoeYmSQZqeB9\n7nnU3Cym7A8zGLMmJMbEOHOzJPMTiH6Cft1qXpgXTzC3soAJAqvB4nnWJjvTximKLEOuaSSKQIPj\nWLZHJgORAtV2Ue+kbCaVL4Z1KueQzbGiFyBchyR7ff8xzEsnbFIzTWzuXvvo77gf+bWXMHGcO4TV\n/otlZqz848dZ+IOzxOcvknznA6w+4DP360+x71efpv3DjzL6l+eJry3j7F3CVMuoE5fwT7rEl6/Y\nezI6QnzXPgvmQw6yZPNnJlptEo3QkS3vvqWhToEBhF1XZdIKJmNNCjmohCBdu+xiBHc/8R5UoBn/\n/Cl0215bMalpjEGONDDXVjFv71A/2WD1h49x7fEJRk+NMfI7z+T7yoS3r2NsZp8X53ghLWspSez5\nZkmq4uukIIztFJa0aRmbCUPbR1UfsXeRjF1y7uMNnA8/jtuybFV/K7YOnJOWSCCfe4O3/919ABz5\nR8/gzM0S7Z/h0H9pY55/DR48xpmfnGXfrwyAQGdulvgvX0IdO8q175xg8V8+lY8Vsl63SZiNbbwL\nV/L3y2c2MFWft36hQu2eB1n6zBrJ2zZ2F447uGe3qQ3mBPPO82YWbqQiz+0ln868ZPa5APWVb/yV\nmIS89w7CySrhiIPqa/y1gHDEs6VSRTAoi3d2y7/k55EmOyW7AKTCJvHwSshKQaTXGGtQto+YSCCD\nCNWL8u9F42WimQbuass6iQd9TC+wWk/9Pmp6iuC+PTjtiPZSmc27JOF4glmvoCqG3rTEODYuWnsI\nVr9bwY7EbRq683D1Q5NUVscxCtyuRnVDC1JtdxFhhB6tYZSgtTiCiAVSJezslYxOTyKW1/JyR5Rg\nyHXsXbRvD0BI2InMWu6lWQ7IbeczpDorYcjEp6P33WNFOB3D4QwM2r93wAra1VFEoqHis/Mjj9Kd\nkYydinCFxNm3h2h+DKcdYXq9AbCTJAjPtdS/bDGesjdyi7dscsvKfzJhsvygwu7TdQcTYxaIF/9m\nx4RcZNaEIWomzWQkCfSCXKi6GNCLPfN0j4yy8rBk9tkEB0u3c5amaVzdwfg+8dIkC797imRtDTE1\nZRlRlTKyUmH6hTbT//ZVOHwAs9O2AtMTDZySh3EUnUWf+tf7iCBEHTtKPFpGvfgWYnJicM23jeUh\nBsBIuhiyt11Y9kOiB2WFuSOQwYzWCRYaXP6gR2lLMP+lzRtrBdmd5b+pMztD5/49+MtdGGsQ37MH\n1U/ojrhUTyznwE4WJJkgSG1H0+Y4VkcoAxv90oA9lJW4FUGkTHA4K0vM+knmhpa9BzYodBSiXMas\nbSCP34X2FGqznZcP7m7BRx8h8QXdKUll1TrkxcsrjJycpVbxkHffQThW5o5/cxWMIVyawH3zIsL3\niYG1n36MI//DqxaoXZxN6Zip4GOsSRoejd9/hs5HH6Ezd4iNBxPu+I02cmUTapUBsHo7WrbwLU4u\nRc0tsWtbQPQTW27XbJFsbr/riVo4jgV+08BJpsyy6wLyAng99PpGk14WjGWlbFqwG/uxxyCfDI0j\nh+qsAXDUgNUoJXJqwjJ6wsj23yywKpTIytER+4xVyuiKj6646LJDa7FEf0wSVSEcNdTPOcyseZaK\nm9ZYOwvz9JZGMAI8pSCMqF+K89JH0Q3QU6NsH7bU7fX3hUxOxfi/9SDVz7x0W4Mj2wS58CjY586k\nz2WhHwmR9qssQzw1Qe/gBBc/olBdWPxyhH+tnYJBNxh3jMFIQXe+TDBi7dmdnk7LhsDtRhbIK35X\npgG/m86luXjoMPBZLKE18XBgTyGIEtkcowrzWpa0iVNgCEAI/LMbiD3jBJMuWoHM9GkSrCaRK6hd\nCdm8p4QR4K9ZZ7TRM5rGqRbizXSMEgLdC2h88DjLj5WIZhKcVReZwNoDNaafjHC/8AJybhYzbjVC\nVKMBc9NEkzV6E5K9n9lh7YE648+uEi+voKIIvWcu3b0ZjPO3eMoqgi5FDbIhZlBC/tpIywrqTkt2\nHuwzPd1kvmaz7TezeM9KxapuyOJok2a5z8qVMYKnJpExVIJdgTKwm90zxBjaDQKZQbY4LyPLzr0I\nFO3+DNttUPaF6htKm5CUBG7bYfXKPFfLxpbkKAPSIByD40dEPRfxp+NsbGom65LWPoO/JimvGrRr\niMuC8y8uwmKPvUvrzFebXGyNMVIKCGOHOJaEdZ+kJOhPlymt96hd0XRmJdqBYMK1jMzZPoSS8UaX\nZmjHn/lak0ut0cL9LdyrW9iEUhjS510pGz+kMY1JtAVU1IBNLxwHMT+D6PXZuXea+tdOkUhl49Fi\nK7psCQl7F7j04XHChtWKCv7eY+z/dBueew3d3Bl2okrnUN0LBvF7ymw0UWxjoDDKwSFgmPkf2ZK0\nYvJX+CWb4BPSMkmERHgOpt+3jFPPRY2NkWxtYV46gTp6KDevuFFzl1u8/X88yqFfeAb3a6+g9u8l\nmh9DPPUK8//pdczCDFxbRn3lG8x9xZbIx2fPM/qkTQAu/8LjhA3Y8y+eTUs2fLhqgZ9ku8nW0QpO\nv0zjDZvYXvmH76FxIcb/zHMkW1u2HERZdgvG5L4bt6Zli+gUFNrFBLKbWDbwzZp+73FqZ1tw5lLO\nNCo6dWVzRw7MA8nODhP/4WlmlhYxrdZNwQDheimrp5CYKCbxdYLJtN8yu/v8vPXg+9l1GNsfc4aN\nkAjXtdbu/T5qdQMmRnHWdtj/6Zj2/hr9uiQYE8RlNx2fPTrzgsUnQ478o+dRx46SYB11xbVlZPpa\n9BNGToK66wgnf7XCoV+PiJVErK1jzlxg+sTbw/ex1UKduzzMlnIcVj44y/Tvv86Rn2yhjh3l/N+Z\nYu8fKvSJt3MSxNB13sq2KwFp/w4+zvSC8tdS0N7jE4zapM/ck7ZE7N20YL5OMK6IqnbiC+tV3I7G\nbSbXZ7KzWGa31MQ70Devc0Arxtoam6zIigd1ASRKWbCZa6vTCulP+AR3T+ZzoAq11UqMDDrRhHXF\nuY/bJKC7LXCbEqcjKG0bKmsJcUkQVwQiFhjpEUwK4qrBXxXI2LB1VDLzQkT5cot4rIyIDbrqk8w1\n6E16qL4hqoK/rOiVSiRzmrX3TjP1rIO4eNWCVAV297tt3x6AkMFmJzG5zXxOY01BF6MNwk1psYlm\n/R88iPn+DcY/PcHEbz2DrNeRk+MDp6ViS/VujLIL5rGXNxjvRySXrpJEIU5lCffSRq6jkQvyitQ2\nMrMwz2i5u/Ztigt10ixNsV5YSmvjmX0nc1SL40EnTYEkIwcIvlAKMiFpQE5NWKcGY8B1EMtrtN5/\nmMofPou78BD7/5kt7ckyIuKNszaTYgxqJyBZW8PZv9cez7E04uT+I3bfDx7DvHUeUatCFCN3usTn\nL6KOHBxoDYQhYlvjGAN7FqDVsedyW/VfzCBTn4EtGXiX6AFwli7GAZLpMc783QbxaMzB3+/jrnff\nGQwCkNKCjRWf8tU2nLpA0u1SEocwJYfK6s7ARaKoVyQGVpgie53qB4lM/0nroQWZSBlj+fHjOKfn\nCsexC7KYArsmZWnFsf2NPM8q1G+3EeUSplLCPHGcqObYAcu1jmbBbAX/M8/R/96HmfvjS8RXrqKP\n3wXLK8hWgNpogRBsvG+MyswcjZdX8S5vgu/nIM7Ubz5H93sfpPy5b6BaXQhD3C3P1gi/cZrog/dS\nApxewujpmP6oz9kfHGHPF0uWOXK7mEFZuxEolLYhiqw2qE4I61vQC96VcHSxmTjGpHR0Wa0ipyaG\nSy2LGTMhBvo/N5rgigCaZLBN9hjeKPOmGLynRMpCTkvIMgFkNw3ajbFjTrmEGKnl+5OpNgTCujIY\n17GCfRUX49o6ZgTI0CDKVmthqy4ob4wx0uoiUlteEwR4mwHdxQq64iM6XWqnm/b56fUx/T5JxSWY\nFJQ2DI2xLr985PP8yg/9AIvde/H+/CVuq66QMQOqcsH90v4VOVMn3zyO2N+xkwAAIABJREFU4cAi\np358hGQkZuxFwcTrAc5OcHMwKG0i0aiepiSsTbu3k1Da7CObhTFLCluuWgR5bqQ5oLNVvR7MWen1\nmEzkOt/WfpbjBEoBaVlrImymW6bzXS/Is/z+qQhvvYb2XZKqm5YpZiLQkmDCZf5rMf1RhQo1ja+e\nQnge8bXl67AZ94svstg7zpkf8hFAaVPQXjTU99aprEwR3LmAkeBzlNaRURJP2DK0vkGev0ZttpKz\nJJONTRzPI1mcKgDoN73tf2vtOiBld9vFrumPKNaPG8xkwP75daruu18UZJbwZSfC25OwsjJL5arI\nNSFMCmzkQtXpsYugTu6geCPm0O7z3t0KQFJ+3SkjKdNDkjHIxGAEqJ5dUHDVyc/NKNBuCVdBa59B\nK0Xi27KzyopGhXa/Tg9kLAi6FS5ulthYqNAoB0RaEUQ2zG3dFaICD2EM3pRD7AsqK5r+iCAYkUQ1\ngevFiCs1RvYE/Pjc0zzdPsRr2/OM+T22gjJkotK3IfdlwtCW5PoWUMnjVClyNk3RkEVOjtO8d4rG\nl96i/uW3bNlYo1bYYaETZsx7QFxbZeHzoCsuItGc+4EGwXSZ6sS4dWtKm2XzaEwc2XKh7P0s/sr+\n75phU5iMOek6BdZ2yuTAjnm5G5e0ybicYW+MZd90u9bltRdgLly2gLDrWM1OY2wcX/KIL18hefs0\nR//5Gss//RhTv/E08bkLiHM2gUyphDl3CWdhns7xBSovXMhZ0/GVq8i772Dhzzf4n//kk/zc1s8w\n8389xZlfe4yj//dCzhivrsZUv3EJk+opzv72K5i7DrD5E48x9p+etqBQo2F/r0Tf2r4jBEPuYru0\n/nJA8SbM2+aPPsr482uYa6vDiaGsaZM7xcp6HVEpI8o+puKTvHFyCCQaOiewifRMiPdG87kxDAte\ni3zbDCSyJkReeg1RDhyZCCsnIkVejSErFXu8qyu2jH1jm5GVio11srJrxz4HjYPTCNez+rIn3ib6\nnoe49CGXA//kabiyjKxWEUGfqa9exmw1qT53N+c+blj4Wkh5cuK68iF15CDJyTMk202Cjz3Cle+Q\nHPylZxCex8wfngbHsYLqb5xkf2eJzcfnGd+Ysfb2GVB7O5ox17nqQmFeSIxNbqe/TXuPT2fWJpfn\n//hSzqR7N8373PP4vo9YnKN7dBIVaNzNIBUnB5PFq/nJFBKlN1i7icQMYusiqz4zuyjyNozBFBOq\nKRBUjK8zVpGINaX1Hk7HRXuKxB+UXyclSVRSqNAw/bQVrPY6htJ2jOol1q26b8dCXSuhfZf2ko+K\nYOsuSHwoLUNvCjbvcBkpjSBjQ29c4bVL+f2PqhK3bQ013HUHd0dQ2knYPD7GuNaIa6vo3kCe4d22\nbw9ASJBnNoYGm0zUSw9bp6mJMXYOwKF/AskbTwMgx0ff2bI9R5wHNbGyWibZDjEVH9a3bTacFMmH\nAdsnE5AO42FKYrbvKBrogORlbXp4sV4Upc6+k7Ub0bpSYAghoG8GrKD0PgjfJ9lpU397iwSrKwHA\nI/egOhFqYd46nyllqZyXrtnDzo8B4LxxATE2gnPinEXR/RLGL6H3zGCefw01PWGPE0bUTjYtm25q\n3Ip6rm4RX1tG3n0HcmPbZshvm6i0GDBlspaBLGkWLR9MtQa/RH+6zMhJ8JsS78rG8KCy+xoK+zWO\ngihGhCanLJuyh9zpQi/Iy9QyQcG85j/bT+E3ttk9lbMyMtAyczXI+0kKCgghUqcyDf0kPUYBNM3K\n46KUuRbaba0QW4zcVLieBcWM62CurVLdHCcG3E5MfOUqANt3NRhfm7dxvOuA5zL2dkh/3GHtfbNM\nfmMb2exYHSsAneD0EtTsDHptHR0EhB9+iHK3S7KxSeXMptWxVYKornBbhtnnAuKyg1Pxkd100Lpd\nwgy72y7XsaKLgugG6G4P3Xl3JWI3bZnm1c0AyN2MoF1A1VBJ2M2o17vfK+4v/77BYJ2jhsrPiudR\n+L9Bg3TseOi7mFTfJqq7aFcitEGFANbWWXUkyVhMZ8ajUSunCxjrvie7ISooY3wHKYQVqg8jC3wK\naeu0WwavYwjScoi5iSZbR+eYf65xvfvM7W6ZLph0hwGeVM9j9aFR9FQfueHROB9bp5P4ZqjAoIl+\ngr/WwziScMTLRZtVFOeldfY4aea3GDBlekbFqaWYLbqZw9+u+SrXc0pBJCOlBaNcUgpLaqJgLLgo\ndySyLVGbhT5X8jBCEE+U8c6s4hyewX3hFEmrZcsqbtKc7R4i9tGOfRCTsmFnycFfmSGuKjoziqg+\nSr9hwciwLlB9LOC+65nQ7Q5GTVsAJAv2bmXLgISMYbIbZDHDQSpAUgI5GzAzvsNMuUWoFbH+qxMw\nmSuWIxMcqXFVckNWy7t2Wiuwh97p/SLwc90udGH7FBTKvisyYEqkekPZdgJkKIgr4HQECHA7Bn/L\noPoa1bdueE4AQkuimsRpS3pnGpgDgspIhBSGajmkJw39CY/ShqA/KuhNGyZfNdSuadrzCu1C0Pao\nrQv6iY3zjpUvc6I5R83tW0Bo12XfyiY8z7LHMwBlt1GGLrDGqxXiC5eoXrg0kDGrVlNXsCwJWQSA\nszjZlr+KlQ2UFOjtJjNL96GCxDJGU7FnO0YP9mFuNJdRABqEHGhapIC5SfVfcic0Yey+TerGlYJB\nwsv0bMygTK4gyaDDKNf5gQHIUVxEJ9tNJl8ZzNvy3jvQr75lY7CRBnq7SeV8nfZj+yh/enWwr2ur\nJBub/OQf/TT6/pAZLIiJEGz/+GOM/uenKf3p87lIrpoYJ9nYRPYjJv/ojQEzplBGd0ubMRZA2W1t\nlpaKGW0scLIrXtj87x8jGBcsfK0Fa5tD80bGDAKuZ532AkySoCcbw8eTu46/mw10E1MKC2QV45iU\n7px+R6RgqO0/6WdCpmWTBWHzlK2GELZvZccNAkQh4Zqdq7fWwdx1kP5MFffPX2Rnr8vhXztJgu1L\nCIFcWUeHIXJ0hOmXemwe9a2hwlgDlleIvutB3C++CED30DilVO/K/5PnmKo/ihodofvYEapvLBNf\nuGQ1smamaT44h9vV6JlxWFtP+/7tLZXPk6NpMkHcIJFrpMAJDKNnY8pXe98UGJQ1HQSI85eQ+8Yt\n2JQkA3ZOfjLi+vi5CPwIcT0b6AYxctHgIo+ps7igwKq/0TFEbFBBjAwTnK7IE8pGCnRJoV1JZc1q\nLDmdND4SIHp9KwfiKFQUI5XErzq051y0a0g8kQpY2/MJ6xKRGOIyRHUF2jJrZWznQe0JTN/Of0YK\n3K6hP9/Ab6dasfm5v7v7/+0BCBkGE41SZDWtCDGgkupUuGxpDqMk+//p0yRYMTi9toFpdxCVCqbk\n3nyBlP4ViYZuj2S7iTp2lP5sjVI26AmrTWTCMF3A2MFDeJ4dTJLEUuVTRlC+rbACe3lWP1ugF//C\nYEJUatBps7IxKfN9DQXuWVY+WwRgg1vhOuhT57n2i48z9+tPkXzgAbxXzmF6PQtw9vs2o7LTBqOt\ncF6ika+dAc/DNHcQ9TrJzCiJ7yC//jJXf+oO5p8fOJSZik80VYEPPEAC7OwrMfbbb6Kmpghmq/jG\nWMRzfRNKt5QLO3x/Mpq0sACRyEASOWDomHIJXStTfvki3uftpJ/dZTU1BaP16xHnXeiy6PRy8ASg\nt1Cl2uzYUrGMnaYTm3XIBB0LpWpDGRalLKMprafPzjNvWV9K+4/I3oMBGJT9zZw8sr5UPPdMbDtJ\n8gWjbrcxQZ/mjz7KyO8+Q//7HkYkMPL/fgOzdwHR6dntGzW8zR6IMr1xD/3Km8h9e4YW5KULm5he\nj/CJYzhfepHKWysYx8FZWiRYHKXEQUIpaM8qZr+2zvIHJtk5aBh/fYzJz54hWV3DmRkWebwlLWMF\n3SgwppAFiTSyE2BabQsG/U3ZKRl4nE1qu0CgIZv5Xe6I9j2GAZ7dlF4YBneytgsUMo6dbMzuyU+I\nFGgYlMlmx9Z1n3DUusmofkJv0rPMjMiudK2osEAFUL0sCVseKjToaikf000YITeblNNzwLHju6V4\nC4SjUL2Isbdt9qV3sc5n5+/lJ/Y8ze987D1EL+1D/uVtBIQEaeYxHminZL9ByqLKyzYqZZgYpX4l\npvZJRViH/qgCqpS2+shuaDNZu/WD0n0JEohEGuQMgH+jJCIWOQvSaD1gFiY6LctJf9isn5vhsr8M\n+Mmd5IrJkyJQlBkl7AKJSBJ7D7KyOAkksXXJzIHwdJ5s28yYfGMHc3g/pZPLxClj7p3APbHToXZx\ngtY+jYygvCqJGnDuv61TXhXsHE2gHuFcLeHuCEbOakrNBH1oiX5DUZmcyDUCdauFavWJxsqgBLJ3\ne4LsYRcvk4NDolDKaaQgKQnK65r+SxWuzftMP9hivrzDTlyiG3s3BYayUjJHJkhh2Al9zl6YprYt\ncsHP3U5iRdZSxs7JP9fcMKCUxWEwA7rMYN+7WUXCGDIjb2HShTWD7+W7kva9DFjSri0tMw7sHICJ\n16zji0lZj/a8bTBcu6IJupKkJIi6DaJHO/RDh/56GaelMCVDOCLwdqA/E7N51KV+0dA4HxOMK/xN\nj8Sz5Z53eSs809vLvuom21EZV2pcqUmM4Ju3EPibt1wfKNOAyZg02XzvWla5KJXsc/novfDMq/n3\nM10b4XrIWpUhq/Hiotpo6PctY6ffp/KZb6D2LGKUtKBvyiYyUYxIdYoyF6/Mht4US1S1HhippKVt\nWWxvjRDSJKfcpf+CyscRWS5bHZkCUyhjlwjXS01doiGgCCFQE+OWLbRnHv2NtzCP3IN46W3ExWsW\nvFlbR46OIOs1aLapP9skKWozzU6hJsc59IvPg07o/sB7qJ+D+NwF1n9+jubBxznwuyuYSgn98ht0\nHj+E/yfPcerHxjj8u5JrHzzG3L9+ChP0B4YKE9/afvHOTZA5hhqdDGIXSxG292vXwnfzJx9j606Q\nkeHiR+pMvnaY2ol1WFnPy76L5WKDuc+WC4pqhahRun5xmR5IOG6aPCgMIEWAqPiVoklMyv4ZgIK6\nIDidfV8OM4j6fUhtwYF8vstYZ5mD9W62tjm9g2w0cF+xbtUT//5pxOzM4K56Xi5Abtod5NdeYjw5\nTmfBZ+t7pph981QOBjmzM/BnzwPQ/YH3UPnDZ2n83jMkQOmzAzDRxDHx8grVT61YQ6DHDlI9W0HU\na5ggyIWWb1kzDLleCoNNYsmUYW7SMV0KjCuRvRh/tY9xrWyEm5ZefrNNHj1I4iucrVRrCmNxvnxN\nl62zdjHH0v/n5imFz4wQAwOW4iXeKBFdTBbp9EbIXROgsQLVIv0/Gsu8d9IEfqSJ6i5JReJtRKjV\npo3Tgn6OEwjPRXge/jkQyRjNwx4ysSXUSQmSiiFq2Mk4mItAGUpXvJRZK3A6dg5NfIPYFMS+QHjQ\nni8xu1ZDtDuIkmfXLO+SWHybeGg3aFlQmVLPTRQPlWcJ10HsXcRsNUlOnUXW66hGA72xZXVYZiYt\nGLTVtPbdyeDhHmrGoJdTXYFD+9m5Y9QuaFNL8BzgSQXzcF1EpTLIyGT7zMSKswAu0xAauqYCOJQt\nrLKOmukGpeeULyCyLAoMBqjsbyFgF3ccQHe7yEN7WfoDK6ZnlLDBdeZ4ZkzuFmC0oXdkGp55lbUf\nudduNzGGaXcwL7yOd36Nq7/8OCNnB1o5/e97mNYdY6ivfIPS6RWcTsTkn6R1sWMNnE5McuJtktPn\nuPITx2Ck/jftBX+9ViytcZwB+BEEOfvGVMvguchzlsKqjhxEHr8LdfiApWqurdnygvXhbMhu5lER\nDNLvu5/ylY4t60snO5PZ3INdCHnpZFQs+yqCk2mfEBlQmH2WWdMXyk9MsQ8V+k7OHBPWWaMIIJiM\nMZTRHqWE8RH7vbsPM3rSBolbh10qby6j5mds9j/t46IfIjo2kJn8zacJP/IwerSGszCf3wcRhOx8\n4DCdOQt0xBcu0Xp8P6ZRxfnyi3n/HTkXkbx5iqguqFyTjL3RJllZJfmO++net/TX+eX/Zi1F9POy\nNW2ut12ONLJl7bkREjUxjpqcsBTwv0a2TzUayJE0e1Zknyk5OBcpbQnXdYKfqW7QDf5ljgom20YO\nT3b5+4XXWZ20UcoK0CmRvrYTm3Gk/Sw7huuQlF3imsIIiGpOntEwArQSOZvK6RtKW4bxNzS1K9Zh\nSo6O2OdBa/tsbjYR3b4tP9LaBq6lEkiJ2mhRurhJf0Qh+4Inzx2grno8MXWWzTt9ex99//rM4y1p\nNsjOSyCysTvLdgNojaxWYHwEsdOh8vpVSmsBXssyNYJxRWtvhe6eBnEjLcHcDU4CCEFSKxFX3bx/\nONs9+4zag1v3xPT/udNZlmAptiy4K86JGRCVjSnFcWX3391sonTxZRd6KSBttJ1L+33INA9iO4/q\nVgt0gmh3h8bRd2p6bZ36pQS3LdAeNgiNwekKuk+0+ZUP/RE/++BXSRYDukf6bHyiy/lPwMqjDXpT\nEr13dnh/vgNKEFUddPkW58NSoGVQhmWzrbuZQtqxYJBINZhGzyTMPWk4/3uH+MKXHuD1tTkmSh0m\nSh08dWNQSwqNIzVh4vDWxVnKZz2clCAxZB+fgj03A33y0rLiZZgbvH+TbQavTf5XaINMDCqyf0VC\nPu4Kg30/ssGudiFsiHxMrl2wWWiR2NJAhECGGhVqVF/jdgylpkH1YeJ1w6UTs7hugqjFGAmVa/ZE\ndw5rFvZuENVt9nX7sMvK+xN2DkDzqGHEC1hLyuxxN3msYfVpal6fS1fH6fZvYgZwK9qusivTt1oR\nJrFl56JSJtneJml3UKcuo997HP2++4d2YaKQZGvLigMXnRHNYMwwYWgBG7B6cuub1nEpBe8x2oJB\nqRuTrFRyY5i8ZQYsWdLKpFbsWhc0j9QQ+z9n2KdrAXu+tpxHCGGPkwrt5tcTR3bfadI2a8JxSbaa\niJlJzPnLmH4f7Slk2c91OgF0q43ph5h22zqs3nOU5t9/1J7OibfRjTLJ++9D3nsH5ZWA2c/bGHLq\nBdj36SbJyTPI5Q0u/cHdlL9g9VKO/OYK4XgZf9Negw4Ca6YB1z0rf+vN2LK+vEl1w3lT+j5qaorJ\nP3idI/9hjcUvh5RXDc39Dhc/Mcvmx+5CHtyLLPtDax2RxbFSYvbMkYw3cL76MoUNLOCTiVcXgbs8\nUa4Gv93u8ihZSKhTAIluNEcZPTy/YfuH6dtS9LwyI+tjGciYGryYKEZ3OqipSbsm+M4HME8cByAp\nWMhbCZGUtNALLKvozDIjf/QyrcMJzuJCvm1WPibrdVQwGHzVsaODS6xWWf75xwfnHsdc+i7J5X94\nt5VyaH5zEgXfkiaw4E4am+buYWL4/wiBaoeo7S7uchMZJER1l61HZgk++gjy3jtyJ8F3Pp5A3XmY\nnTtGUaFGdq0bZM7kyVxU0xh1aL1dSKhmjPcsXs7i4bxlDOF3ajf7vLgOTwr/T/WFMm0+lTK7K5e7\nqOUtu84O+jnxA7DgUGSF5hNPUr0MMgKRgL9hUIGgP6bZ+/4LfOKhF/nY8VfgzhbhVEx/KqE3o+nO\nGuKqTY5kWoQiMXQONIiO7aV/5wJydOSvvvdp+/YAhLL1a2opn7OFjEamKBpH9tkazK0ta1ecJBZp\niyKbDbm2BhvbFk1tVAcduMjwMAYRhNZlbHKC9t1TNN7YhI3tXEBa9wI7ybkOouxb94NqmWSnnQsF\ni4yxkWVGbsTW0IUgOfusUDZUpNhmwnpkaHsxMIdhwCNJkONj6FfeRI2NEU1UiS9cQt15GOdLL1q7\nzm53AChIOxjrJ+7F/cILOAvzNti6+w7EThvT76MOH+Dqx/cy/2tP0fiqDX6aT+zD6SZUL3Wt7pDn\nYp5/DdGoY544jugGiKft5Dfx5BiLf3J1yNXqljaRlkpkpWMpwCZcFzwXPdawv8PV1QFgtLGFuLyC\nCCPM4hzyvjtxFuatHsb65gAUKf5OVwd1wckHHkC1Q+TGDqZvswy600WUSsOgDKA3tzG93uB9IWxg\nVABy8r8w6DuZ/lGhbMyeyCAjMywOmDFIBv1lyNreGCj7JG+eAqCzr4Z47RTqyEHmf+s1TK2SOo+k\n30/rqZOxKrJv+3FckWwdawyBZmsf2kP1Uhd/074nHrqb7cOKaLKCs7RIcvoc3udfYPuwh3n8Psor\nhqXfOwvPvcbp//1RmvtLVN4e0LRveTMMgs/Cgk32Y1SzY2meJnVCcZQVKaxWUFOTOLMzyPq7A0Kl\n7yPGRvL7ep2NfdEWPO8LxdS5uZ4KiwV1UOK6bMd1dFgGwFC+n2z9L2XqzFDQLioAS8ZVJPUScdVB\nK4F2JVFF4vRNbj+tIpNm/g1uR1NqarxmjNuOEYlGj9eRteoARChcVz65l1I9gJ51sll7CB57/wke\n2nORlzt7+fTZe+3idWbS6p3tBj1uVcuo6qkGhl3oDEATOTlun6e0FNn0Q9TZq1RfvMjYy5vUroSo\n0BDVJJ2lMsFcDe17KTiXgkNKost28SOMQfUTSlealr0XRgOQ2QzEZYWSiJFGGuiGg3OlMOdk9zrT\n1sscgIolqMWxaCjgNsNjYjrHmdi6DWWLt4GgoR2X9eZWKnbtvWswSE1NoYOA0lZEeVngNQ3age6C\n5qM//BTPPvEb/NTIMq5ImJpoMT7Z4r6FK8zv2aC9xzDzb57CvHhieJ8bLZYfKbOz10FEt77v5GBQ\nQUhaaPvMCGP13RIvBYMyECWxYpW15YSpbxjEZ8b56heO8/zyEp5M8J3ouuNIYdgIqpxcm6J01sfb\nSY+RPqsiscBarn3gCYIJQVQVuc5PxvYpMn1yoKcIbpnBv/y7FL9jhrbJ74Ox56EiY88tManuAxYo\nMli9u21DqakRsaXLR5VUqyzSqH5iryc2yFBbcFpaOn17QdI4JelcrtvjSsPOQY3zni3UTI/1nSqq\nL+z9jwyinDBy/zoLd63gqZjXgiUC4/Jqd4lnv34np5/dy/zcVn5dt7xl7K48DkhBELCsG6WGEpu6\n3cF54S2cF9/GmZ1B3Xl4yNnSxLHVwstL6k3O/JET46iDe3NTExOG+bht4oFVvUgdXpOdHTi0B+m5\n6H7fnqMaBh1yYekCy9m6lIVpItgu0m2pTyEhkrKidL+fs42k79uEAAyA6X4/F+CVvo+JQtTBvXTu\nnLKL/GNHcV8/hxgftSzdKLZ6iymQJup1e44vnWD1UcPKzz1ud//8a7jbAa3DIzhbXVrHrTh9b0qi\nyw6yUiFeXiF5s87mjzyAajRITp3F2+gy9ttP54BcfOFSGlN+S3rDu2y7DpaP68nQOC5cD1yXZG0N\n3emiz1+i9OxJZj59hrm/aFK/qAkmJFc/NEn/wUPIRn2QvE7/ybFRRBBhXjrBsE6RrdqQnjsEAg0l\n1LLzMeZ6BnbxdR7PDgCZ4cvdFVNlWqyQ9yEdplpDGTstdV7LAFD93uN5uZNWAvGkBbdy8WsYtoTX\nCeqOg8TXltFBwOGffZbLP7h3CPABkLUqa8cHYGZvqcH2jz9mj9PpMPl62n8dh/YHjnLwv/aZ+9dP\nIatV1NxwYuNWtdxK3qRxoCqMFekcoFoBarNtk8dxgru8Tfn0Oo3TbVSoaR0eof3he5DH77r+9yq2\nh++mc2gMt53grfWQYQxxgsgMnGBgJZ+YPGm5+1zROj3Xm/QNR1oA50btBoiIMOm8lAFJu0vOC+AT\ngAwiK6EQa9TyFnqnNYiRMmwgM6Sq19AlF+0JgklBb8YmTIy0ItP7j13ln+/7Y35s/Gnurl6hXulT\nneqyeGgV5gOEgfoZK8VBOl9qT7B+t8OV76iQeNK6Tr/L9m1TMkbqMmYD0AKVFRCLsySvvAlCIssl\nG1imwsxZ8GnaHZuh7fXyUik1OgJTE+lCy0CSoDe3cJYWaR+fp3aqCcvrg4C4VkMqu+BLtrYtWDI1\nRXz+IqJUQu5ZwJQ9xKUVdLuDLO/qVKl4GZCzdOyEGeVU2nwyzCiX2tJ+TdGiPLst6ee5cwM2E5Mv\n9sdG2DpaZuLrEI9VbCXD2KgVF8zApSSx5VBRgrz7Ds59fJylf/mszTZPjCPKPt3DE4y/YTMmO99x\niOqnNug3JCp06I+51NsByZunCD/yMOIrryLOXSAG4g89yJX3lwj+txj/7HM4C/PvOtj/1jXLghHZ\nAjaOh0uyqmUL+lxbtSWF3a5llNkbbLNenW4OHsmRhs0SbTdt/5m0blCiG+S6QWpsDIIYtbo1AGRc\n15aHgC1R0AY1M0WyvIpJEtTRA2jPQa5u5eVlmc5RzgISYrjsy3UHGQ1jBqBiCoAJWbDZLOoJFEqI\nTIFlJjwvH9Cd2Rm0YzNXwdEJ/JNn0GNlvGbblqOEUTrpCuKah39+g0u/+DjzX9uB106x+qMPMPWH\nIfrQIn4zQZ44S/jReygB7X1VnK6lLjrjC1QuXUYev4vGhRj37DJjT63Q+d6HWf2pA6i+Yeovl6+b\nyG9VG7KZLzCFZBBZbahixrPI3sv6m5LIkoesVkg2tm7qBCGrVUtLz4HhAUvMuA6mUiJq+EQNh+6U\nQzAukBE4PUN1OcFrRjhbA3eYPOuhGUyyxUnOmME2OUuRfBIzetfYlb2PGMqOiNS+U/sO4aiHLgmc\nNMulHZmC7uROUulOLCjUChFRgmrbumkRhFCpWHFqsLTZrAw2se58gAXj00nd25Rc646w0anwzAtH\nGX9NUF1J0KNV5NrGbeo3ZiBkn9rJo02u6SGy37nZtsFsFKcsKINJQsTWDqWtHUp+iXBxnM5CyTpz\nuRK3G+M0+/lckT2v2pGUltsWDCo0ISzDS28385KQYpPVql00Gj00/+TjRZZ4yG2Hs0s0+dx6XehU\nZL2m+xhiuKbfz8e3XsGGeWbqXWkLOIsL4Lmc//lDqDtaxCdLKdBg2H/8Cr8w8XXOxh576fBscz9h\nrHCU5n1jp3nPwmn+3uv/GGd2ZkjcUx07yqUPT9Cb1Uz/WYQMb6ztPLuCAAAgAElEQVSr87fZZDJ4\nRobcWoRI3eOEdWfL7ucuzEpGhvKmwelJeptjPHmkzpHDV5kqtwkSh1A7SAxB4rLSqtHb9qn2ycGb\nrMxLO6A9a/ueuNYRUFc0ppQgAgWJQPUFlSu2FCsr6zKicNrZpchh0Gio3Ky46DTD3yu+Jwo/hZH2\nX1QFrcDrQ1iT9KZtSaAT6AFgFRuEtGObdiWdWUXiCfqjEBwNqDV6cGEE70KJcEwzeWCTI2NrXGyN\nsbzZwG/a/fSmBCYRLNa38VTChZ0xPtV/gHPLk/ivlvENtO/s4zuxZQjdhmHHlow5AzA9BVSQAlEq\nWda3SEu4shJcz4MwJNnYQmw3kWUfMTluY5y0JVtbVkDXL9l4Qyl6x+YJxh1GXwS2WzZ2SH9LZ3YG\n3e6gWy10u2NLr9Y30K++hbzvTtTFZfTBBdRmm/jcBWS5PCjJ0SliKMVAqzMrU0tLjtAGPMeyDLM1\nQHodwLAuUamUL7ayz4TjIDwfZ2wUwojqU6cR+/fSXWrgnXgbJ3PIdG0CUVTKg5KcR+5BdUIO/+yz\nVP9iilOlx5n/tafQL79B49I4olwm8cZxFuYZORcjezGyUUd3u+z7X57m3m8I3vjqEuzs2PJ63ydx\nBg+ErNXevW7Xt6QJW6KVW73L65IoamI8/z2zZh3dYkSvh+wFjK82CPdOsvpQhfMfdSk/dJD5v+jg\nvHnebueXLNMh1ckptowRlJXMqZlpktU1C8K8737clZ3rv7dbU2j366Fyx10SCYX3cyHtbB9gE+RB\n3zLcHCeNm6RN3OgE9/VzuZREVvYl774D/fpb+TkMzZVA8sZJAFr/3aPUP/kMs//nU3DkYH5c4TrE\n15ZZ+uJUPnR4n3se830P5652/pk1rvzMI0w/36H86ecACD/yMP7VFsnb5667r7eiicSkyQuTD9Ai\nLUEX2poViV7fmloYkzqQ2uSGbAX43ZCS59CfrrBzuE5p8gHKJ64MjT9g17XdmTLaFfhroQWDwO4P\n0BUPknS9HERWkNlzcJo9koZPUnYsM73ZR/RvkOjJ3roBEDSUOC0CPWkz2iZQi3NZvi2ATBPxSpB4\nDs5WF+MqolGf0nZ7UOJY1IXFrtWjuVGahyq09giimkEFsP6Anef9O7b5scVnqMuQbV2imZTpxwpX\nJTw8eYHSdMwn9YOwUqaynpC4Au1Yvb1gNqFySVG+2BxiQ/5V7a8EhIQQ/xH4KLBqjLk7fW8c+CSw\nDzgP/LAxZiv97J8CP4Ut6vw5Y8zn39WZZM5bmaOYUsiROmZ+iuT1UzlyCgxEm1OHL5FnFGxdnvJL\n1no7ikhOncWZmwW/hKmWMVMHMJ0+lUtt4oaPOpNawpdttiGr05TVKnLvoh2oHrkHdXUT4oTk1bcA\nCD/8EP5Tb9uFfYosD2Vek2Rghe4OSoius4DbZVOfOTcI10kXEirXjjFRbMUCU+X+a98zx9RvWFFt\nZ9Xayyer6wBWe8lxrK3hDxxi8jefRh7Yx55/9RxqzwKm2UJvbiMP7KE/ohj5wkuovUtUP/Us6ugh\nEFB76Qrx5SuIvUuou47gfe55uh9/hPqLV9Hjdfy3rjFTWaT69Gl0qXQdGHSr+k7OvMmo00qCX0KP\n1hC9EDa3bUARx3n9el5SUcxSKIWeqRPds4jTjkieesUCQ1NTmJFavsDQ3S4yiElWVq19uGPBvmTF\nslzUzDRmdoLkjTN0v+84O3sc/E3N+GdPEm9sWnbW1g6i5Fn9pSK7KZvUCmVn6c0c9BOZCgFn/WlX\nGWMORiqVOwSZfghK5iyu5e8/wOS/fwawwbezbw9m2YrliX6UH7N3ZJrS1Ta64rPwpW1Lg56cYPw/\nPk3yyD3sHKpSXo0QlQr1T9r9hTXJ+Jt9Ss+fgrJP/MRx9JMvc/nHH2Vy9ABGHmD0VJfGeWUzv9rY\n7Nkt7je7mxFWXywDg0ynR65Bld73/LfI2HfZ+2UfNT+D6Vgx7euAiiSxwGXoDL6b6lqF01W2D5Ro\n7YNwKsGfaHN4eo2j9RXOdSZ48a39eKs+M8+5VC+0B/sUYthZLL+OdCGpCu8bYye6jCmWLqLs+Q9/\nP5/g0q8hrFCecdKSNmNSnSNb3iIMOVU2Yz447Qhns2MFKcPIZo2zMbygq2XanUHGMNeiEPbz1Q32\n/+eArTOLiBHBzI51a2jtcQjGakycu376uiV9J/tpM1ZfAkiNUB5ibMSyUzPgJrWIzksyhExZPRZo\nca9t0+hV6SxVaS84eG1FyVc4nRihDVHdJa4qZGSQ4xUcJZCtAjDYbg/Z2O5uutOBFIxxlhYtdblQ\n1pbbBu/qr7sD3nzbXXp4orhtwXEmG6tE2Uen56caDXSq5/NOTd15mK37Jmjul4STMaxW8ANBOKYR\nMwE/tfh1ugaWkwYvB6O8ujqHqxL6kcP5YILDpWUef+INTr58F7XLC3jXdgiWRmhNupS2DLPPBtYx\nMDUfgFs35uTsvBz9sOOvdtMkj07ZM0UWX7odWKDVaChFCW5PUF5TXDm/h9PHejy4/yITpQ69xMUR\nGmdMc8VJ2GyN47QFlRWB0ZaF1J23SbK4bDCeoTLfZqbRYqbcouqEtOISl1ujXBmboHTVpXplFzB4\nA1Dn/yPuzYPsSO77zk9mVb2qd/Z9N4DGDQxmBjODOUHSJEWKkkgdlLRLXWvtyoqQZXsdWu2hkDdW\nVjh2ZekfW2HJ1kbIXgXlXcmiDi4pSqR4iSLFuQdzYTC4726gr9fd736vjsz9I6vq1Ws0ZobkEJsR\nCLx+Z1ZVVuYvv7/v7/s1xzf4XD/DrO/4XLYNlOlGZmpKXOOE0oQFQfGWxu4qrK6KmUu6D4pLiPKS\nzriZj7rTEcVyF0toSntqNOt5dMdi33CVitNlstDg5tIYYkQTuQaMI5Csd0rUOh7+qyO06lAALB+2\njgfs27WGa4WEylgIp/29R2NH5j2zjsg4TgxDowXk5IjW1w07OYmNHauv2xM7CKpeDytmFFkH9xFO\nVgbYDzrwsWemiebGWXk0R2cuItcYQwaj5M/cQoQhqt0mXFkzrIhD+6HWMHHPkw8aQdXEYvqlTYKn\njtM5/jjlr51DtTpG7ygMQcYaj3HZh8maZ3ZhUhi2j+uaZGoCfBEnSRPNxfj4kjVFWBaqbVjaUb0O\n9TrWwX1oPyC6eh2vmAfPQ9caJj4Cc678gOYHj5D/7AvYS9U0jm1/qMbIR0Mu/KdHOfo/XzRi0YUC\npT9bQh89yPLjFuNemfIrZ1Jm/l//v0/R+Zc+h//PIazVLbRj4zz7ZrrUqkYDOxfew3GjM7bsGmLR\n5QREEa5LtLE5OP8nwEusxaM6XXSzhb22zvziJMHsCKuPFrn8iTzD5+5j6hvrhnV+N42bbHK+0zN7\nCttm6yceZeiPjJaOfOg+akcqDH/5gomftotOZ74r/V+IPjCUKRNKjzP5fOa4hG33P5IwNoREei5W\npcLWD9xH5dMvA6YKwL1eJbx6HfXmxcH+ZPq08XNPUb7p0x1zGPn6VfR9h4jevJCCXPrJ+7Gvr9F4\nbD4FegBu/tpJxk+H1B6eonjlGuG1G0z97s30u+X9R2hP2BTOtdG75wYqMO5ZjKx1uh6lTyVJ5c1O\nyp4HUvAmvQ4xG0YAuWoHq5OjO56j974FikvT2KevpG69Iu/FxA1Bb9RFlhxym4kLK6bUM1DGBCUG\ni8KyQ1BxsHxF5FpYvYhg2CPMF/FW2+azljClXXAn+yejnXmHllB23Mk7E6UDLV5/RBBhdwJU0RAO\ncrfrhumegN3JGMXsWXsHpgjKNpavcVoCuyNwmprOhKSzz+eHdp2nqxz+vHaCQFu8UZulkAsQQrPU\nHeajY69TKN5PUMrTnLYQ2phqBEWN1ZKUbyhEswOFAtw9RLzjlLxd+yTw/due+1Xgq1rrg8BX478R\nQtwH/CRwLP7M7wkh3oHIQyxOlmSKLQtZKqJ2TZusQ97r002zn4oiUlemBEyKreNVswVhiD0zjao3\niG4tI7o+1vIm0dmLZlBJgep2kaPDRNWNNHPZ+vEnTN307VWsQ/sJy8a+kk4XYdtYhw+Q++JLqEYD\nMTxkMsJZEausThD0/84wV0zGJJM9y9JpU4X8+Ji0Tv+OllewhoewxkaZ+YyZIKwDe2G1mgq+md8y\ngYCcGDdgUKFAb/co1u55w3gqGl0kdeUG7pZxcgiv3zTlYatVRv/gWXPMQtA5OGnK6oDS2Q3UxibB\nSJ5bP7qA97kXYHKsL/D32AP3eOwkx6vT8gk8l2i8gqzWYatOtizCLIZ6kFEjpBk39QZyZYP8xTVk\nJyT4yKPGLnJtzYhsJ5vkXg9CU64lcjmitbU0iLj2fzxFuH+GzlyJtX90gupRm9kvrtKZkGx9+BCt\nH38CsWzeH8wMoyvFPrKeLdPIlg1m6mMHAKyUAmn3M/ZZ4CgGi4xwtYPe2DLB05MPMvFyw7z21HED\nMmht2Boxwo9toXMO+dOLqDfO0V6oEJZy5J47i06YCC+cxupp3PUO0dpa2q2RTz6L/VWTWek8tBt/\nyNBkj/z2ImPPr1K53qMz7aGFoDVl7SQ890nuxbiJ2UFJWYQMIqxGF7nRMGCQ+X7z3iwYlP18mNEC\nkxJRKmLPz93hnKS6XVStjqrVDWIvJdFYmeaBIVYf9qi+J6Dw4CZzC+s8MGPGUsHy+a8mT/Ezjz3H\nez90mps/orj1wWEaB8po1xoMgjJNaPrC1OmTd77P9DlzTEmgk7w3ZkRFnk13LIdfksjAOBsERdln\nLyTZE202c6Z0QyFiBzmTHdGodpuo0TAlrSqu3fcDcw0cx5QltLvG0t51zPxU3WD4tSrlmyFuPSIs\nSjZOhMaKe3YC6+C+vjaDaZ/kXo2dpKxTCiNcOT1u2HWduDY81TrIsF5lDEYnJc9bdeTNVSqv3Gbs\njRZCQWvGoTvpEpQd7HaEt9rDbkU0513CoTyqnCdaWzeWym8BBm1v4c1FwwawpFmDrIzV/E5uY+mx\nZkrAsvOSinX1EpZdkt1PSqWVRsWbL8Bc+4wb0N2a2KxTXOqZ8eWauczyIbclibZyVKMST3cWeKG1\nn79ee4DRQofma2P0Xhvh0y8+ykvtvezOb7J+XNAbdVBlj8buHK0pydgfv4x4+lXk2hZcvpkFKD7J\nd3vcJCBG/Di5X5Qt0hKqRFA5LaNPaenxf8qUV8nQaOi4jYjhSxGjf+tx+iuHefHWbmTmoPJOgDPX\nwp/3CUoQ5mMtJgX+SERpX438TBOlBHPFLR4fvsqst8V7hi/zI/Ov8eEH32Tm5BL1/RB5YjBivAu7\nqi8qvQ390dzJjkjAZG2AH6EMPV9GkF9X5BqxVhAZdhWkpWVGbFSb7HGoyTXAqYPsxllYqSjkAtx8\nALYmbwXcaI1w6uxenBWHsGjAuaHLmtJFh1rHo9V2QUOuZvSF6k90eM+xi8wU6vQim+ZmgcLKwIF8\nknsw5wzodQGyXEZ1uqjNTcPCIQZnZT9uTG3dpdFviRoN1OYWemkZ5/Jtk5x6+Fj6G+HtZfRLb7Dn\nM+vMfg2cWsDWfodocgSEMPGhivC//zGoNVj94f0EH3kUnnud2v6CEbLGbPDFs69ReXGR3iMHkENl\nU55l26aPqRZSlGHoxmwg2ybRd8maKiT6RTpJtoKJlbWZf1S3l2rQ2fsWEE6O6OIVdKdj+hNFfXZ4\n/Nsi7yHGRiidMfFLktQDA5LlP/sCM1+20fMz/T4A0dmL7P1fn2XoM7FWTnw8C793DqvqIM5dQ9eb\nrH5w2sQEGUFi3Y/TP8l3fdz0z51I48R4Tq1UTF8yG9U7mtap/pDq9Yhur2CdvsLsF5bZ84WQ9rTg\n4s+N0/jJJ7GOHTbAzx1dEIhyGVXJp3ssHYYM/dFzqRaluLbE8MtroDTX/venBn7f/Hh0x3f2ncUy\n771jzomPN4nd0z1ZX4RaSGHGzsgQ5U89ZwC0Jx/EOXWR8Or1+Ht2Xh/1ex5i/NQm7vMXsHuK9Y/s\nIyq5iBPmnrIXdmO1A7qHZyh84TUu/faT3PoVU4o497U27rpPY95CvfehweMF1JnzlJZ8bv7YPM1j\n49t/+pPck/WKfikvgGWSpvZmB9nqGNJCGA2w6815NQwiEYSIro9sdHHWm5SuNiis9GjPuDQ+dNTc\nl7ZNVN2geGaF0pUG0leEJYso76TJb6vZMyVgyR5HCJRjysKEMqBV6FnYTR+7ExEVcmjXOOGmrCDF\n4BjJSCKkzmLpsWcBUvMvyxLazhgyJWAaghBZa2PVMjqPCcMqMfHwPESxYMrCPEGvIvDLELmQq2sK\nyxqr6nC9Pcqb7VkcEaG04OzyFNU3Jlh7c4JXl+a42pvEc0IjKq1NAqV5rEe0v4O7abQ9o+kRmBzl\nrpmYbe1tASGt9TeA7dDvjwB/GD/+Q+Djmef/RGvd01pfBS4Bj799N+JJPb7prKkJ1MIsOkbe0wxy\nHMSmC0S2hjX523FiN67AKPs3W4i8hzUyjFqrEi4uYU1MsPz+MeTzbxhB4aXbhqIuBPbcLJUvnyVc\nuoUcG0FdvYn91VOo9z+M2qohF3bR2TtiGETHj6JbHVR1w+g2pFl13e+XFVvWx0CRjgdkWiedlLzF\nm6Yk2BaJMHT2WoSheW5mkqi6gR4bRhYKRJeu9mtzY80gtMaam0ENlYywYLuN3QqIbprNZri4hA5D\n2h97iPzXzyAnxw1otGcMPTdF+KETqPc9jD03i3e7mS6Ul392gvCRQ1h/9zKT//4Z5PGjaf/W/slT\nRG5/nrlXYyfV0okiRKlINFJGbrXQnU7qhCPi8p4UxU7qh1MUOL52QYBuNLFur5O/uEY4UTbA0MhI\nSnNU733I0EeB6PYywnWxRkZo/+gTTD8XYZ+9gdVTlJYi5r/aoPr4BHZL05qRbB20aD21n6VfPUlQ\nso3GyOhQTKUWg7pCsS19fDL75V/bgcaMJksqPB1bxKZOEL0eUb2OeuwY4tQ5uhN5oyf18jmzOfLj\ncsdY+EznHFTRI5ozC5G2wHrxrNnUJxn/A3uRkTZCrZiMSu9jj7H0qyfZ+tmnUAd3ISJN4YJhrdUf\nnaO9fxT3epXCp59n+GIr3fBc/1cnCceL93DcbGtKIRtdRL2F7nbvGgCkLbuwJPdtCtBZiJEh7F3z\nRu8s+UgYxu5uXVQ5T2OhQPWYTeN+n6npLWxL4UcWzcCl4nQZt5ssOOs8VbrI/sIa7zlyiff/zIss\nfSykdqCA8pzB/kCqgXTHxmsnQMjKAD93AZe0JQiLNkFcHhu5hpYKpHRiGRqKq1BG58bqRihbEsyO\nEhzbjT62H3HsgBFwHx1JdS90zzcbllLROANWykbwPGcCAWwb4bqEwwW6oxbNaZvOqETEm72Nh0a4\n+fFpth7vC5zfy7GjI9Uve5gYMQ467W4MiNxZ+nyHWGYCKPV66K0a1uXbDL28wtDlLqEraM45BBVz\nb7WnHbQFKieRtVZ2U/Ett2irZkpD4nVK676pQdL6QJFON1zpY0xgna5ZSUuDQROo6ygaLKF8h+V9\nulzEPnWe+S/VmPmiw9gpi9KiYuqlABEJyrJDQ+U535xitV1m44uz5LYEuRpUztr88YVHudEZAanp\njEk27yvTnhLkqwprcgLr6EHCpVt9Zi/3atzoPhAUa/kYdoq573Qsyp6++w6gt//5xAFGREZXJ78Z\nMXomwvtChReePcyNxgid0MGPLA5NrVEZaRPmIcpDbxjCssYe9glCC7/n4NgR5zamON2YZ9xuMmHX\n2ZNb5yfHn+PHZl/lxHvPs/VgQFAQA4fTtyPu/528lu23yL4X+rpJMSAvo/45EfGxJQxEwMwxoQG6\ns5uUpJwh8qzU1KCwFjF8AVo3KmysVNioF8i7PnNzGwTKQgpNbsVm4S/b7Pt0l/HXQ3INRWlR0T43\njI4E/rCi+mhE72iHx/Zd52BxlSeGrtLyc+RuO+Q3+uvDPZtzoihlNGitEUNlw6SJGcpGy8xKzSxS\nsV+IN1IyNrmQqG7PMPeu3MDaqMPjDwyAFtGbFyh95hTym6/SmsWsFQd2oxtN7LlZCmeXiVZWmfrC\nDdxVw8oZ//IV7NU61uEDyFqLS7/9JNHaOt7lVRrvOwATo4M6m8RARcKgj48huS/T+Dd+r8rcryqJ\nb4LQzMFa9TWJuj1od7DmZ7AmJrCmp1CvvmnusYz8QpIwC69eZ/WDRqNF7ttzx2kvf+o5wjEDuF3/\n7+/nwn96lOVfNpt61eth75qn/gMGAIiqG2hb03nfEaLNTcb+47MwOUa4YM7tjV8/mVYj3LM5J9G9\nyczV1shIys6IO/MWX6HTPQVRhGq10UvLeC9eZu+frTP1gmLlCTj3T4fRC0ZM2Tqwd+Dz0fIq+tQZ\n7H0LRB98JO1D56gB2rDtVCN24deefQeH1Qe2gEwCy+oDX9D/O7sGi7hULHNehGOjs8LNz71uXCnH\nRgd/V2QSt4B4+lVufGwU7fs0Zm3WH9Fc/Kc5rv2IMb3QjSYqZ2H/7Sl0r8eBX36OXX9gjHnkN1/F\nqbaoHwlZebwvurz2i08x8cwwaI13ccXYuGeYRebw79GcozUiUuZfDMDbta4Bg5IyMciAuuKOz6NU\nCgyJZgfndp3S1SZOK6J+sEz3ex/GOnqQpDohV/PThKZodoxebcfH2mhhbbYQjTbWeh1vpYO32sHe\n6uJWu7ibPTrTBYKybeLWkpPuTQZcw3aKhRNdoJ0ec2dyI9UoSoZVL0RuNdJkeloim9UNArNHdXNo\nL4fVDSnd7FBeCrHbZo/lVwTelsJpCLqRw6XGBD1tc6MzijxbwlsV5LYk+mKJP7/ykMlJFzWdCUH9\nUARKYF3JoyxozVg09hbp7Krcebx3ad+uhtCU1vp2/HgZSFaSOeC5zPsW4+fuaEKIXwB+AcATxZRa\nL8slwtlReOG0EY2LFwiRc8zJjjVV0o1uEMZC1PHkkFBJE3p7FKEaTbNAujns4hT+wVnGTneMqF6t\njrAsAxQd2o/erBPV69hzs0RLy8hKCd3pEtoS1e1iOTZOzUe1WkggPDCLeG6daK1qKL0JBT+h2Nt2\nSslP/h4AerIlY5mbKZtFyZYb2Au7Cc9eNNmPs5eQeQ9rfMwcoxM7owlTNxwNFRFnLyO7XfRTx5Fv\nXEEMD6E2Nzn/7x9hfH6L0R98AblvgejGIjoMcc8tQSFP7ulrqG6XyHXRi0tIz0N1u+z7rTdQjQby\nwSNox6I9U6R4bg17ZpqppzdRb1y8t2NHlsw5lxJyOYKZEZxbG+iEndDz+9as2fMuZF/bI7awBPqW\nqkJBu4NzpYddLuI/tBdl7cOp+zjLtbTGWIchhCGtjxxHS/BWOzQ+cMjoIFiCxt4i3XGBu6Hxh0GE\n4H3uBaITJ9nan6NwJgf1lulHkOlfFMXisvGME7ORUoQ8qwWSZPpjND0R2E60qZLxZu/Zhb64iPZc\n8rdbqHoDa3rSlA6Oj5oJHoyAuJszIqcvnUGcOIbV0/jvfwCrE3H9n0Vc+Af/mYd+6ySzX14zGiaA\n9XcvYz98jN1Xg7RkxrtyCz1nLnHpC68ZhsDCbpZ/6SRWTzP9tTUioHxN49Te0hvx3R03VkYIWmtk\ns4dotg0Y9FaT51tl07a/1cshZiaxgxBdb6KaLXRgBMh740Uauyw6cxFOPqDRcZFSM1LoMO41eai8\nyJDVwo9rwl5vzPHStT388sNfYfVQmZfWDyMDj9LNjrEC3Q7kvEUXBf0NaMKQQsrBz8RzkbIlKhcD\n7gojspgJLM0GLVk1QQQqfd0fzdEZswk9UxLjNDXDlyrYl26hG00zlj1zHXTRBNzYVsq6EuUSqpyn\nM2MC6FzLbAKnnxb4ZcHmUQimfNzNQdeZHdq7P3ZiFozIOeiZSRPw+P21yTCBuBNYzGbEoe9caVkI\nfKhu4dSajC4V6e4dozPh0B63UQ5YPVCOJFq6zXfalB8Yzb4MSyhh3KYaJYkVddpZU4eoI9XXS8rk\nGQc1iDIA6bfQrOGhPjX+lTOUXzEP6z/9JK1/UsNpeXy++iB7ChsMOR1eOnOIfc+0iAo2fsWmMW8h\nTlV4+uZ9eOuSoADlmwGjrzVp7S1z7R/uZvx0iHeWu+p9Zdq7O27syoCbV+QaAen0vRqEEmi0oaC/\nDSY9YAusBZbW5KsK9wVB6+I0q3PQm4yYPtpAaUFQUchAoi2Nlpqw5RC2bdxKj5LXY65UY9xtctBd\nphqVWA6GmLZr7HNXKI91mH60zmfFw4y8YmP1zO+nc0YCCm0//gTEgjvKyfrlF/GxZMZLlJMGDIrB\nolwzTgpmWdUJSJmT+EM2aCisGDaA09KMvCkI8zkaBy3scodeaHOjMULF7RIMK5RnkWgeKceUp808\np6gezdOZjbDaksprHle+cphXDh6GAy3Gh5r4EyGdkbcNnd/dsUPBADqOMC5ZfkB4Y8kkHJLsM9zB\n9EtK6JOEq/YjdMKKiMuxouVV5FoVPTeNOvgw8u/NTZfEDQu/bmQGwms3kA8egW4Aq+vI+49AdQu5\nXsN/7Ciy2qJ2/yjlqy30S5c48D/eoPFfP8HQ316k9IXXuPULjzD7qQZ6Yyse4yYBJoRIY/jksTkO\n2T+GnANhHO/LGERS2sxhMcAlHAGhwpqaRpcLRGcvYt13iPDNC0Yc24+1JpVOGfmJRMTYf3yW6IOP\nYF/foPcDj1F8fYnz/8Me3A3B/G8+k5pqzP/rZ7j4u08w+7Wt2JFaEy7dpvJmCfXkg/Dc6xz4ZXN5\nw+85Qe65s6m+TO9jjzH3jS7Lb8XG/G7Ex8T27HGzKhWjN/VOWww06kQnT0hUpwPdHtL3qaxtUlyc\nobFQoLG/zOYPnKQzE3HkX9WIqhtGY6q6YfZzfoD1tZeR5TLR5maq0ROtV42z8ZE5rHYAL5w2P+3k\n+vO0tAbX0ywolM4dmWMVJjmusRBSmI8mZduJbqyTS78zSXTKchnVbGLv3dNnr29jKlnjY+j5KfzR\nPPO/+QwamPnT88yMjRCdvxT3BOh2qX3/IayFJyn9af/yWViGfVoAACAASURBVONj6HYHbq+y+/Mj\nbB2A5ieepLDSY+L3X6D6zYPYCxVUqXAHGPQW7V1frxKQP0n025sdI3OxUxmfIsMU2nad4phCgLlv\n6x28tk+umqM7WWDr+Bh2V+FWA6xOgFMPsRu9dL4XkTK/axtdU7TGqjaIhkv44wXsho9V62CVTBKt\nO+bglyTFlRAZRIZBKtRAIleEGVB/e0yfCXsGNIbiMjOzz4oTo4kJkG0ZVlCyj4oUqUNeYiYVmP2i\nCC2cW5uoUoHi7U3ctWHacwVWH5FsPBYh2rBUG0JpQSU3xUvXdzP7SkiUE3TGJJ0pQedyhWZRIaSm\ns9eHUFC4nDOW9Q82qW25yMBm6LXNO6Vq7tK+Y1FprbUW4luXSdNa/z7w+wBD9oRGCuS+3Vz/+ISZ\ngIvFtM5XeO5AWQaQspVFTI9NRZrjGmoT2JryMyGEYQwpBY5t6G7NNiEgbIelX3qUXZ9fJ3rzgqE8\nyljb4/0P4HzlFLJYxL2+QRQjlvb6FhHgjxfwzi8Tao188JApbysUUspuAv4kfYkP3PQ7G4THwtNA\nht6m+ws5pEBFtHjLTFRXr6diZKLXQ+RyqGBb1tgSND96nMKnn8c+dwOtFLrRQA5V8JZtRn/xgjnP\nrpNOkKsf3cf4S5uIXA6rVEQ1mgbtr25h7dsNa5vYpSJ6ZQOmx8g1AlNOBbBn8k5q51uPge987DgT\nGtsG26J1dIrieUM7JfDjuvJMZiDZ4CSlDYm2R/J6Ui5lxe+N4qxKrYHb6aHLBVr7hol2FyjGx3zj\n108ycl5RvtYmLDqE5Rzagu6QxK2bbJTswcjZJr3RsnF2AYKyIr8i0PUG6uAurNWaAYUSllDOMRPK\n9uAh0VhJGClZXao0KDTBlg5Dc3/Ez+mWEcUWnkeUs7BHh9HtbpphzH7enyyCMBOEXFyjUPWIxsog\nBJUvl3n///MLzJ1ZQjfbqEy5WDDikVuNoJg3IsLxAlH/qSdNFvb0baKRMjNP12ntLtJZGCZ3Hpq7\nxZ2b57tf/+983OSmNBgAw9psQM83ZT5K9+/B7dmOrChvtswq+/fgDxqGYKxvYBXyRqxxfoqtAzn8\nYY22NEpJlJIU3B7DXod5b4txu85GVGJMNTnirPO+kYts9fJM2zUkGuUqqvdL7J6Lt+abBTMp29mp\nZTI42UwhUqTjY/sxG3cxadhhgWEBKZuYphu/PeovljIwwJRQisiz0+y+so0dZ/mmj7NYJVyrgoqM\nkGkYgpU3jlquE9tSK7BzhMUcKmfhVX3yy3HQlrdpTzo0dwlYaLFrtE7DnbnLFd/pkryLYyfv0Xrq\nAJav8K5UTSCwDfBJWzz/pCUfSTZfSpPkEMl1CFPWkLtZwxsq0z4yRW/IQoYa7+lzqG3M0W+1JRlT\n1eshXTc5PhJdknR8aGUAn2TpUhohdP8+1SrV8/x2AaBsk4UColyGHcrgWtOSqOcQ9GxevrGL5bEK\npVwPe1eLtUfKDF0NiHKCsAgygJlvamr7oX7cpzvhMPeNIlZXI33I1e905Xq79q6MG2/aXOKcoLbX\nIvQw9HA/ATcwoGr2V5LbUdPXH9KZ15LpB40IQUfmuwqrAm9T0CtbnG7vBQlD5wX+EAQV0LaGUICn\nGK+0ODi8xqjTIlSSlnIpyw5bosAVf5Jp21yPJ0uXWTw6zGubBxm62Gf0JP2749hFBjzOsIdETN1P\nHMuE6rOdALRtGEB2B5NYSabj0LitiXTOARkpItsmcgVBWeA2QEuD8kgf/BnwplpoLbCkYq1e4nYw\nhAgE6/d7lG5HKXU/coUR8b+tkYGF3QW3pohcgT8SsWu4wf6hddY2y0Tu24LQ2THwHY+dihjVaIU1\nOY32cgRzw7jnb6HqjX6S0bLMXJKwzBMh5iTpGGsKaqUNuGSRClWjFOrGEs7GFmLPLtpHpvBuN1Gv\nn8OemaK7fwIvUuggQudzyKFKDOi71B+apnxhC9ELqFyo09pbptg1IrymnE+hul0mT7XZ+uA+hv7y\n9f5BJoygMDQbdaPWMQBkJTqdSalrMk8ZFmJsrhHHcrJQMOz3k8cRQDicN7dQp4tud0x2vtlKE8Qc\nfQBeOE34PSew//YUzExTePk6OA77/5c+U6U34pIUm42+Krn8iSEO1vZAp0tU3UQ2WnTnyxQWdqO3\nasagZr0F+3ZDzCYHCAvWzuvDd2ncDDkTerv2yQAz6J19YXy+EwA3IhF5Vu02otdDvtpg+M0cYnyU\nXGOcqz8mU7At+V91u6jEvSsjYG1NTBCtrcXJOOhNeLiYssOwlEN+My7L2763kNlsRKLRkhGZzrym\nVWYfAOmxmISMiZ3s+Tmjb1TIQ6NhErRZMeuMrky0XoX16sAGOtrYguoG9sw0nQfmyZ9fIbx+E7eu\naM5alJL3ZXX02iZBPGPbKUgGoN44Z5Ks9x16J1fojvburFczWmhNb8yjMW/j1hRDa01EGKUAz0CT\nmZg4FaIWgzFpCsaY75BhRKHt4xVdeuN5emMOTkNi9ZRJWGptrkPOifc9mmhqGOVYRqMSs1Yo10a5\nJbpjZl7WFrRmBSpnY/Vy2Fvx3jhhB4WD8Yogs75Cqhk0aIqg4ySf7v8dH6tQGm1b8XwX9atPtiWd\nRM4hXJiKwSWBc2vTjL1bG+QtiVBFCCROTVK/MoyY7LFZLjA/vsXie2co3hKEeehOhSCgeN2mO66Y\nOrTBykaF3JZj1ngNsmWRr2p0sq98B+3bBYRWhBAzWuvbQogZICm8XQKygg7z8XNv0zTywAJLvyGZ\n//gzAKaMoNEcZNAkN2RGMygBTpIaad3pGNG5+DOpzhCkZUWy1Ukz0tX/5gS7PrtsxKf37CK8fhNZ\nKKAXb+Ncuoo1PITu9oguXU1FOZHC2LxfWDGIJRCWXXLzc+havQ8CJW5osdvKAHUs6T+QlHqlzmDQ\nr40GM6H1YuZPLpdeXB0HJXJkBN1opJOisG2sqQmoNii89Ib5DttGt9voXo/1n32Y4QtxidGhBdQr\nZ1DvfYjVxwpMvtxBrGzQft9hcps+vTGX4tk19NyUQT8nRwnLLksfKLHnT2+R22hADExZ6w3eARz0\nLo8d0HmXmx+fZuRiaPpx+ADU6v0INM5qpItBOjZiQUJpqKYEvtECSXRBlDbCvMpoDOH7lFod1HAJ\nhXEAKC5qhr92hd79u3BvbNI+MIaIYOR8h9zSJuvvm6VyM6Qzk0/ph4v/4iSFWwAavW+etUcrTH92\nHV3KGxEwMJtLIQYp1skEa1mpm5qQMgV+shNwf8xHEPjGSnZijGisjD51Bjk1Zsb6g0cQ3QDqzVRX\nBNsit9FBrmwQAsHBWZzNDrLeoXlsnOpjEVO/eRtVLqLiGuuLv/MEu76k8f7qBdo/9Dh2KyIsWBRu\neIhQYXc1brVHODVMb9zDLxsRNLtrroXTYJCNcA/GjVAaa7lqrm0UxaVKSRo7RvS17otPJu2tQKAs\nHTXzurYklAqo6RG2jpYJyiK2fxZEHQsv71Pxukg0bZVj2q4xbLXZZ28wZdn8WOksj+29wlpUZl9x\nnTO7p+l0HdZ7JSZPadzNXt8SFO6guKYlkUKYQ8u4q2krU2edfkHcbymMdWWsbSIjiCzjTCRDgZVx\ndEi1QCKNCBVBURK5ZnHONcBd3CK8eSuT1VNmnhdGhFnGoLjoBWgvR2+hwtZ+B+mbzaNb09QXJO25\nCO0FjJc7LFSqnKq8LSD0rq9Xolxi8RML9EY0c183uh2pw6GK+oAz9DV1YJDhJwUE8VyUAXlEDA7p\nSCE6HQrdHvmxYVTe+ZYcI+7a+8xvqW63T53f6b0ZcAitDaHCskDHoMq3kAB427Zvt8lExqYJSbPn\nZoneU6O9WkQogX3LY3G4wEc+8AonDt/gmbF9dAIHpSQHig1qvsfWZ+YYOxPgbjjYHU19l0OhGrH7\n07d20iy7W3vX5xzlCNYfsIiOtAh7Nk7TRdb0jto6dzhGb7+nY3ZL9rEJWgVIYzGf6CS4a8YRUOUM\nYIarEJZGOopOYNOLbFw3xIltyMasJsNWm65yqMguVVHiZjDKyZErXL1vlO7mOPkVPVCemmU0pZpi\nCeijs+DRNjBI6/R/AEJhtO/jsrEEFLK6KlNmljAbBZ1xh6AgUHE0q+PPKAeCgx3mK01qHQ8hNMH1\nIrktSXcmovZIj8aWg7biDg4FSFsRdW2cgk+rZ9P2Qgqez/dMLfLR0ddZDoc4OzRFK1MKfJf2ro8d\nuW8P1JtENxdZ+9hJZteHodki1ZhMEhZJCX2Slc7GybY9qG1GnLW2TOZd1erQbJHfrKEO7QZg/Xv2\nMPbCGuHiEvLYYdRrZ+l89DGKr9wkvL1MqZxH1JpEK2tY8zMUbkp6syWcwgPk13xqHz5E6c+ex16t\nExzKow/vRVy4ZkrgtE5LxgYYhrLPVNTEJT2+n7KkByzLhTCgUcyGtkZGELc2TcL3uTeMYUana85V\nsxUnmM0cbp27TgS0pxyGjx9F31hG+z7tf3Af7uIS9sw04e1l3C+8yPIvncStacb+r2fx/6eT3P6+\nWayeYa7mV32ufVxw8D+PYOdd6kdGsbqKzSMO02+Aet/DbBxxGDsT9GUL7tG4SeIVa2pyQCNpx5YB\nPe72PWlcE4Ml6V4rDNFXG7hrVcr397VE7V3zhEu3kfcfRL1+Dmt8jNs/cZjJ//AMslym+/AenC+t\nEW3VsL72cuqToV4/T/B9j+CyQ4vZPwP9gTjpK/oJYDCPMzHH9uMTttlHhYtLRmR7zxSsVVPznp2S\nf/73PUr1PoeZf/tM+pzMOQb0mhrF/eab6PkZxGMP4H3uBbzkPGxb29Juh+EdrC3r2GGiM+d3fP9d\n2rs7dgS0Z/J0xiW5usZpJ2VPg0ybNOa9G0iUMGsi1WfPgGHUaG1YY70AL4iISi5BycZqK6yldRMD\nFTwzp+Vdo0dUjwXqpUD2ApwtjXYsVM7CCjSRY2Lr4UtmDxUWLGTPxq51YyZQnHTcsSQ7PiaVuebZ\nqoBo2z5AmXI6tEYEyuhCKo0o5tE9s+8iMy+LoQoiVMhuaPrgBykZpL4/j3I0xes2+VVjdrDpOhw+\nbJxSp0/WaYc5cjKkYPuEyuLFoT1EbZtm16VQ6FE/KVAtm8JrJSqrGrsT9bWM3kH7dgGhvwT+W+C3\n4v8/m3n+j4UQ/xaYBQ4Cb8t3065L/d8ETH/UbC5luQzjI9CMEUA7UxK2/SLG9NJUkNq2+1acMf09\ncWVAaXAsoptLaVAsQ1LxU3oGzZPThl6qV9ZgYgyWlo1IrIoveBQhG32BNOvwAfjmq+hD+4lu1g3r\nJqO1kGUrZUvcUnq+MAh1KiCZFeiMBaaRhvYIGNBjfAx99aaZ5OOMO9JCWHGWt9Um2tzsLwJhaICu\nXI7e99cZ/7Ez5ly9cobgwydwvnKK+cXd0PMJV1bJL44hay3EMzdSkMde2E144Sb2/Bxzv/U6emQE\nFYNM1n2HEI32PR87CMnNj0/jVzSFL7yGBnpzQ7grMWslW3aXaQNgUHbDFvgxi8gy2XqtgWQCFMYN\nywxTbr3HZuFzphwxKFuwa4QoLwldQWPBo/3EHO6mpjFn4Q+bsjGTDRWUbkdYHcXq40NMvFSne2we\n99WrRhEe4gk26jNSoK8vlDCDYitDIfo29Dplx8Vua72eCbryHoQR8voyHD6ABuO+V2+b73NzEMa6\nIHnXiGaPDsHtZeytrtkM5nOs328z/DoDrmAAR353DXIOkTAggVPv4S77KV1aHXuCsGgjQ437+Rcp\nTE2y9YF9yK8beroVWyO/RXt3xw0aa2ULtbmF6nYRrmvYEjoB3ujffwkoZFl3fk12PtpemxzX3CME\nOp8jKrm0Zzy6I6Y8KygptBch3YihQoepfINdhU0eLNykKHvstzaZsXL0dEgAtJXLm905ylaX989f\n4mxtmmv3STo38jiNIN5k6TQrfwcNFvqsgsz8MvBa5li0INU10RKCfOL6E+OrSTwQsxLSuu2clW7k\nlGUy+6Ul4/aXBGbCdZG758w8WWuafnR7GHFQw1rzT0wy9sOLtAOHdi/HxmaB6ektdnsdzt2YRgjN\njFc3Irlv3d7dsSMtbvz0Ar0xzcQpZTJURQ+r3kzPXSrWnawDmUQGQNbhakC/J4pLOuJNQyrI/K0F\nht9aS7Or2wLp5LVsU1Efp/gOGUHbm3rjnNFd2Pb8tZ9dwLY2sVoSt2rEzL2q4G+eO86eI8vMFWt8\ncPYcK8EQrzcME77ha9y/ftFsJqSFPTdDeHORb5Fb9S6vVYLqMQvn4U32D29xu1GmW3DJNWKgdkea\nTfzRLDNoh9fTx4JYXwdCTxJ5gpE3MPO3hWH4CRAdC2u0R6Xcpuz6hFpSsHwmnTqe9ImQWCg8aYLV\naXuLSAsaKs8HZi/x6d3DuBuWAZd0Zi5Ik1iDYBDp3JQ5HTrT78w/GfdVCBChmT+UIwbBryjOzEYa\nrxrgtC0atkWQF8j4IvsVwZ6pKpGS1Ot5VMtB5DU+CkJBabhD21E4jpmTokiyZ3KD905cZsbZIkJy\nrTvOY6UrXPfHue6P04g8htwujbcnCL3L6xW0Do/hfe4y1sF9dKYNi9ddMuygpIzMOIw5Jhbw/YE1\nS/nGdMMAumYSFzKeg8IgLQsSRIZFEicThy634faqsYZeqOC9AblNHzU5Qu+hXTjNkFytRfie+xGb\nHWQnIH+6SrhrgtzlVXIXItSDR4heP8fo5es0fvxRhpfLxt1KaXTkp2ztlBUf67oY4XqzedNKG0kI\n2+478cZMaa01slw2xwyE1270N+BhnBSOE16pY1k5j/ByUK9T+S/P0fvwCbzrCjE7hVs1ewIV70EA\npv/dMyYGBmb+zTPGwezmLXrvPYb1dy9z3+V5Wg/OIJ55jcb3nmTqd55nLHoUAPn3ryBOnEzLIO/V\nuNFhZOaEE8dgce3t3r7znB7vPQarHBKwJZP0iiI6P/wYyhGMvxHvpTzPaHlmhJ2j9SqT/yEGUoIA\n50svAaaUDdc1IunDQyY+/+LLWIcPoBdvG8fM5DeFNHudbJ8GgJs4SNHxvgviPgwyiIQUpiQtTopY\nI8OEL5xOgcCdzonI5chf32KqVUI8fAz9yhnQOjVM2HhwiFEW2Lyvwuizt1n8pZPMf+4WjQcmKRU8\nRLeHGikjWl2WfnCauc/dJrp8DR67H144zdA3x6i9t8rm8RGcA4+T/+w7Lhl7d8eOLanttZh4rYe7\nWKN5ZBRVcLHabyGrsF1SQWUyG9vBxkTPS2lQIbLWQtbbyOESVq0Vm+HkYiApJlm4DjrnmASmr9AF\nF+1YcSJSxeLSArtn+pFf8wnzVposHQB93iKxOygYrc3vZT8bf14oHQtrx8nAmHSimyo1D+kD8woR\nhsiG2U+JVqcv6j46TH3BJG2cpklmRK6gcNPm850T2LtaHJhcp+T0WOuUeH1pFq0kYcsht2rTXR4m\nLGichsTdgvyqorAWGuFt7+0Xq6S9rai0EOK/AM8Ch4UQi0KIn8cMuO8VQlwEPhz/jdb6DPCnwJvA\n3wD/TOvt/L0dOrEroPKJdVAR1tQkqtFA5Z2+2Bz0GRLZviV241IiHNvc+DHF1HyxHACGkAI5VEHk\n81gTEwCM/dU51EiFuP8gjeuRrhTNZnB5zSw6sR6LKBVNzfJorEHy+ANEI/Em3pKG9h73JRH1S+n4\nGeewfolbnxablrelJ6bPVkhBpFgMTdVix5ZOt19+kbiTOYYOm4BB1tGDkHMMvXNmkuDN+HjDkMt/\n/BDOV06x8XNPEY2V6R0xAq06Z6NiC3uA5V86id6qGVrlzUX0U8cJ79uDzHvYM9OIRhu1zXbyXoyd\nsJwjLMLez9SRscNB5Mo04wXcqc0jZB8Mis8vTi4Wc47HjlZ95lAckAjXNePmyQcRrsuez7fxRz10\nuYAMNEHFIrcVIhQUVkPyqwbk01Lg1MFoFYDKQfn8FquPOvRGBKIXUd+TMw5U5YJhqsDOjmLZ8+vE\n2kiOYx5L2R8/ybFZlkHT/QByjhHuVQrZ7ppxvLw6sEkVjqFmCqUQ9RbdH3wcub6JlhJZb9PZ6zPz\nKUOBvvJbxg0i+MijXP3padp7KqZkEpDtPhjU/MSTFFZ96ntzWH/3Mtd+4yku/Mo+uiOC6s8/hb1r\nnqFr/TKOezFudBCi1tbTRTwJJPtvuEv52nbQJ3uuk4/K2J490/yJIs1deTpjEuWAtkFbIN0I1wsY\ncrts+Xk6kcOCs8as1aYsBRvKZ0MpAg3VqMSl9iQzziaL7WGKts/BmVXqCwJ/JHfn7wvu/EcGKJJi\nEDQa2JjFQrChRkYZJkC8qIvMGRZKx85iZiMXFi38WAxZRmB1wV1pohoGMLHGRglPHmP1/VOEU0OG\nKu4H6GYLtbmJajTQnQ52V2ELxf2jy+TsiJ8/8TT/eO/f85HJN3nvoUvMluqESg4AWfdi7PjDNt0J\nzczTEcVbhrETlXJ9PR4hTRCRZJMGhJfV3eu5s9pCsRihyOUGKebfjTYQTO/AhNseCCWB9U73wnfY\ndnIha+/3aTY8Crck7YM+k6/47PnDK0y8KLmxPMrZ6iTfrB3kU1ce4aVnD3Hu6/uo781+aXTXzGzS\n7sW4iTwLjteZH6qRkyHjhTZBRQ86iQni88rO92wMsGT/pceQuX+1FHRHzOYzzJvvi1yBltrMPVJT\nKnbJOyHTxTq78puM2w2GrRZF4TMsuzgiItAWU1YHR0TsdjY45i5xML/Csftu0h0XqQj0dg2gbF+3\nu4uJ7PMqSZJk/9dI3/xLhKNFrAuSlIuZ94RmA1C0iFxBadmUf2krdlw5EFJ2eiytD1M4nSdXtcgv\nWjhNid0WhKGF7URmeCuBXva4tjzGXneNstXlo8WzfKBylkmrwXHvBqN2k5ncFoeHVoxN/T0cO8Jz\njaMroG+tUL4Kzblc6pqVgiaZJITI5UxMadsISyLznnEjy4i+my83YtM6NMlKWS7T++hjhN9zAmHb\n2GsNcF30oQXcag/peTi3NlCnL9AbsUyGHLBrPaJCjuahYToPzBvG0cYmrYd3oU6fR73/4RQY8PdP\npy5iqclAFKESkWzIsOnN2JfFgnlvVgogNuAQcQJN5HKISsmAQ7W6KSG7tWz0WuL9hIhLuLlwDZZW\nUocnd7kFStM6Mp5q2OhuD33yOAD+9z1KeO1G9sKjut1UBye8uUhtj4ndpn7nGRo/8SRWJ0I/dRzh\nusx+bZP1B/px570YNwA8/gDKtQcc1r6lpqK+aU2yViSPtUbYTvp6/rMvUPzz5/GeixOB3W66fsn1\nWhof7tSiet241VoWolQkXDbMiOj8pTv7rlVaNigsK9YC0pn4XafJJx34fYbQNkbrdtexMN7z6Fbb\n6HPtsL7pXo/o7EWjtRVrpkrP6ByKxx7ArUemfPKPn6N5bIrpf/cMut6gdLZKd88wut4kyjuoSp7i\nbWUkN7QmGHbpffQxau8152voL16h9MzVHc/VvRg7ypGMv97D/uopovOXcJoRqpBh0WfGwI7gSnY9\nkDswz7ROZTG0lyMarxCNlrA26uhWG+F5BsDt+WZ+i0vHtGvFlvKGdaNsiT/q4Q+7RpfPg6Ag6JUF\n7Ukzt/hDDmHFy57AO69t9hjiY9JSmiqg7cz/7D2QvO4H6E7XAM5+YFxzt8dWsQGN9hx0wbiNiUKB\n7p4RY5zgC7rj0JqDsAD5Vc3QeYG6UuLC7UleXZrj2ulZ7NMl9C0PqxCibLA6glxd4rQwa74nCIpG\nIy8que84TntbhpDW+qfu8tKH7vL+3wB+4x39etx6W64Rct6zq48iFx2TZLVtg6Ilm9+YHZGWZWmj\nG5TNhqT1x6lYsymnka5rgJFGA8vNGfGwfbPwxiVDK92qYe+eI1pahsVlhGUhiwXjXFYuoG1pKI8j\nI3DDaHdpSyJfPIO1sBt1fQnt+3F9deIcplKEMdmsD5SGQZ8dFCRCZ3b/eKIoZQallulaIXIeOvBR\n7bZh/gSGLitc1wzEkQrR2Vjg+fZqql3RPDrGwv9maqNX/vlJ9v/0MwQfPoFXU8jry1jrVYRtI68s\nEbUN42ftF59i/jM3UZEC38c6fABxdRksCxWEbHxsgeFPvYRc2AWX+hPYvRg7QsGez9aQXT8NJNI6\nTicHvZ4JBJKxkGjuZP5PtKoGNIbi64IkdiczulLR0i1YW8Oan6NXcSicX6Vz0ICLfkmiLEFQFAyd\nabJ5cBTlYLKeIUx9Y532vmEa8zbasQhKml1f9tNyHWtm2jDaSgVEvdXfPNr2IDsl0RFKANBY/0fH\nVOqk3l4npW/Jc1nx8k4XXcwj5mcgCA2VulKGbg+dz6HPX0UHIcVSHl0uIjfrdI/McOjnX0oZY/t/\n7RTW9BTLx3KMnFeGQt5q4Xyp/571f/wUMoDh59fRR+a59SsnsVtQugF2GzoTZmLNbQX9zN09GDew\nbfMZ31cDrR+47TyhpvRS0muY2r1nF4K4ttjuKnrDFlqC3QKd04wNt5gp15lwm/SUzZjTYtpqo4Cb\nocP/vXGSOXeTR/LX2OVUOVG+zrRdoxF4zBRqHCmucO3BUeobFcaaoRF1jgGdO6jO2eRGMhdl5qE7\nwCE00o+wepYRj47tPZPvHRB4jTd3iQ6KYSOYDam2MVkcMJTs/XOs3+8RlEC+EpeJFfKISikV3xbz\nM9jNiEuvz/Ph7z3L9468QSPKsxaWCZTNxa0JGh2PEbcda4Ykh/rdHzvagplnIryVDiJSKMc1IDRx\nUiGjsUOQjJGYhZPVwrMyLoLbWyIgO1TpZyq/222n7PD259Ky7XexVOwtmj09hXczB9qA6XOft3C+\n9DyR6xI5e7GWPBqLHt/Ij5K/LZk9H7J+zCbc36HzI+88u3ovxo2yBQtjG3hWgBQahUA5OnYZw4Cu\n6Q9kfkvSB2DF4GtA6t6VgLZaQlCU+MMCEYG7Zejn9cMRwheockSu0mP/6DoN32NPYYP93ipzzgYW\nmj12nTVlNmBd7fBybxZLKKphiQm7zoTd4LGR67x5qxYPQwAAIABJREFUZIb8ims0kJISMdXv06Dr\n2E5g0bZ5SScAkFl2E+0gLTD6ZJC6jyVBubb7gHCQl8b1MtE4szQ3asOoVQ8RmqAZQFkauy3o3iqS\nm2mhIgvvlQKlRcXGfR4vHN7Hh4be5LQ/yZjVxELjiJBpu0ZLuUzn6viVezzndHvGtAQQpSLlxZDu\nSDynWnFJewx0pDIJGeMJrbWJhSDdNIskLorF4oXrms2155L/+pss/3fHmWzfR6Q0th+AJbAaPcIn\njuK8uYgsFhh5dYNwpIAaKdM4UKJytkax7dPeXUYUHex2m6AocbWmM55jaG6W0p8+x+K/OMmesxWj\naxjHyIlQdBK3pOL2sR5itolcLjWYwbJMjK61iXEiZbSCOl1EIY/l9sGEqF438bs2bM2oXkd+81X0\nU8dRz76GvWcXqw/b7P6cef/Vf3mChV97FvHwMfyKRZaMGl24nD62Dh8gOn+Jyd97hhu/fpK9f3Sb\nkW/eQA+bBJwCmvsrxikvXZa/++MmcW61z94gyrCdvqV2RxyhB7R1EtHnxHgGdtYpCpeMw7F136E+\nczwTgyVaWNboCNFIGa5B60cfpfgXz8PUOBych+deH4xtIC5rzpSE7QRKbD+G7a8nLT6mqF4fcCuT\n5fKg7tGxw4h2l/DqdWSxiGq1sBd28+nP/AHH/uSfs/8zF/G/71G8vzLrT1TdoPvkfnJbPrd/5ihB\nCXb9zRblP3mO7g89TumNFYiZUsl51L2eAch2aPdi7FjtAOdvX03/FpFGOXEiKDnPCQNmp9ghYxF/\nh25W9hrFrlyyHYtVhxF6apSg4uGsNhBhiC4XCUeKJo6MmaEqZ+GPeshAEeYlMtDk6gq7K5C+JixI\n/KLA3TJrhnIttGMh/LA/hu4GYMV9FNulIjJAUFIq1n+9P/Z0tuokOReWhSjkTXK92UXbFtpzET0f\n5UrcTU1vWKBy4K0LKtdC/LKkPSlxatBdzqNCow1YWNZoW1I43CI83CV8fgSrSezECUFJ0BuzQFmM\nnnvnibu3ZQjdiyZDoxOQtZBXtsyU+2R5xnGGOtkMp6idTBk5Wf2dvnaPRhQL6JjWr5stVKNBVMoZ\noddiPha3M1a5OgyRk+OoqVGi1TWC0UIKBkWHd6G7PezpKZyb63GJVgfV7SFLRaL1DYNkBjGNTIqB\nY0v6nQWGBpgdWXHg+NhQ2jCAfB9hWSl90lj7hhmkW8d11vFE9uARVKcLQYAcqlB+wWQ4tv7hU8z8\n/RYAQcXG3QyI1qvIYhFx34FUCG7jHz3F0NUAXasbEb7hiqE81hsGZCgVKawEpgY2Awbdyyb9OFhI\nN7kMMoTAnI+kHEKKnTf/A65u2gAxKg4whEB0+vod4a1lnHpAePU6tQXHUNo1OM2I0BM0Dg+BMMG4\n3dHM/vUi4XCB5rRxQ1l7dAhvLc6wdnzsjqZ1/wzR+UtE5VhEPRkH2yeuROtnG6KduNtBsjHtL5xC\niFgrRyG6vgGPgtCIu8EgG0kYNw95/0H0jVtoN4cu5smtmTFnjYyY3wh8qh/eS2FZUVj2IedgHdrf\n7+axw8gAhq70iCaHyTUMs8Td7GeDnaYmXFzCvnRrkB33/3d7az2jwbaT1WbmsY7HlfTN89qON25u\nxGi+zUy+RtnpMuPV2OOuU1UuN8MKS+EwL6/voqccPBEwIXs87l1lzGoxU6gxmmszajdZGNugOx4L\nVt6t7bBe361tL/tIs/QpG0APsBGgH+Qmn09LQwREjsAfyxvL77kZ2nMFuuOmTFC2fTM2K0W6+ydR\n++ewpifRRQ8rUBQXJa/UdjMs21hCUQsLVIMi1a0SrbUCncgZyNbfiyYUuNWgD4CB2ZjC4BjOgsvJ\n5iyzDuz85f3PmDKQt3XCenfaOy3/epfLxN6uhcsrzH2jm469ytevACArFcOuDCG3JZh+WrPri1vY\nzYjiLU3UsVg9sfPAsKenEO63mS3/TpoAz+ozISWGUZeAOQkolDY9+Nn0uZ2o69n7UJv3i8iUiIV5\nw5rxpluooRCrGFAqdCk7PUY8k/SxUDhEdLVDgGAtKtNQHmXZpSw7FIRZ+7raIdAWllBMjtcJiyIF\nqVLL+CwYlOnrIEsofm4HPFQkJUMD8w+pQ5sIk+ytMOWp8XnxyyIFmoSCypsO9fOjyMkuUZwcVg5E\nBXPfOnVBr5pHrXoMX4rINRS5uuC16iwN5bHbNpoeEYJA29SVhyd9PBkMMCTvWUvW/SiiV7EICqLP\nas6yfC0rtWQHSPU1s7pm2e8U0kgZJEmmTgfVajH7F5fpTHn4ox7h9Zu0dhdN4iPSRGtrhI8cMOVY\nQUSUN8xi9cY5VN6hcLWOciTWgb04LXORvWpg2KBA+YaCkaE+6ANp7D4QC2eSMml8nyT8MvNo1qQl\nYR7oXs+UcsQusgn7WYch2g9Q7TbWwX3Ichl7q40da4A6zf7pOfAHt0xMHETk1829a89Mp6yh9Pdj\nV1WA0g1N7ZEpcy1aHaKyh+718FZ7KJuUUXUvmozAunKrnxz8dttdgJM0LpUWcmaK8EMn+r9dLCKP\nH810xjJldtcG2ZqyWKT+U0/2y6PX1uGNiwjbpjvaF4EOC5nSF5EBJlQCamb6uhPw8w7XLhnrgw1o\nWmUfC0F05jxhrJ+Z7MXC6eH/j7o3D5Iku+/7Pu+9POquvu/u6bmvPWZ39hwQ4OIQDoIECZICTZuk\nFaGwRdkK2xGSHHZQdoR12XQ4ZFlihKSQrYMhUQcgBiQSIEGDOATszuwxszu7c+zcR0/39F3ddVdl\n5nv+42VmVffMAgsS2IF/ER3dXUdWZlbme7/3/X1/3y9/r3KEobftOcme7a2HnPEx8t+9gvzuW3QG\nQLVAv3XJfl5Xo8t9mmQx6w0geunpRzNXQcze6WuvM8Y6zu7oYum349p1faU5T+8+TtcysvdjnLg4\nv7qBubds1+FSIrtRug4zvkeUcwmziijnEOU9gpJn3SHbUTo/qHaE04jwagFeNSJbiXCaUcowNbu1\nMvvjvQCihMnUr520a/4lnrOS/y3D264b0/kvXp8Z30HnMphs7Brd6eJVuogQogyIEPyKxtvqoh3L\neApztuDiVwTeNjgtg7dtT+HTE/fQPjhtbA4Rdx8kup8/SPxYAEIYwPcwSmKkQA0O4t+vgbTsDdy+\ngSAWZ0qqIUkkrVcp80b32rQSaqpptcBxUKUStc/aAd29YG9q40hEPm9bxQAOzWO2a6ycGsB0Orib\nTeSJY4hSAbVeAykJl1esjpBUdJ6Ys9TKSCNLBUQ2m7Z4JfuxUzRPppOhbQfTJP3dqWME7AAxjDa2\nxzum2Cb0SxMGlkUk4n5YbTALS8hiEbG0hul0EPv3EG1sYrRGjQwz9MU3ETfvsfbrL1L8+mWi2Fra\nHN2LrMco/0efZvjtmh3YkgWyklaMeGjQCmfV6mTevIXMZNj+z174oVwOP3DEFSaTseclc+6WPUd9\n5zEB5kykd4IfsQVpmmRAz1EhEYeN36+rtkLQ/PzzoCO0r6ylpi8IM5KgIHAaIdqHTkkSFGDwn52m\nPSLYfmaS7qBHc0KQqWgKSyFj5zpEGcmdXxjHq2uCgsSZnaEz7PeugcQBbNe1k/SqJm1jyXGZMEI4\niQ296g1UUljatOdaN61SoTfAaWO30+6A4yCrTdARst5GNxoW3NquERV8Gr/4PLWPWueD23/jRTKV\niCAv0I5AF/Owbc9R56eeZf2ZIUZeq6DaIUHRI7ccMPulBYwSaAVu0zrsAFQ+tu99o9g/ski+d9iR\nYKTgmtY7JwMVO9P17bfYXQmRkqicoVt2CAqSMCdojWuq+zVuoctgpklBdcjJLmWnxahT5e8sfYr/\n7c5nGFBNSn6bWtSjuhZjTY9T5Rvsz6yxEpSZzVcIDjWpTTsQa/7soLS+R4i+sbI/EreFZGEmwz4H\noJiFIONWMhH12Atpm1yCZzu2dSMowvoTPvc/O8u9n5li6SOC8GCToGTPjzEGXchw57MuV38tT+XU\nDGHRh8gwcCPk1dcO81uLH6etXVY6Jd7emkZIgyqEDHnNXsvNBxUGVCtABFbIVXvWic1kH5K4idgZ\nJ2H59Rc5giBmkfbGnrSn3mh0q50C8488HuG9qb55jvl/fJ2p//2VXsW008Eo6I5EuA0ofPFV9FuX\nyF64x/CFOu6aS/HpDZo///wD2wuXV+xi8YOO5PYwEm0EWSeAkQ5RJmHc9b00ATaiHhDSe1LsuL8T\n4EVGPf0wrSzwnl0zdAYgKEB0pUi23KZcbLKnXCGrAiYyVfb69pwOqCZbUY4vbT9NUbZpaJ/lsMyW\nznGpM803K0f43bWTfHn9Kd7anqHod2hMmR1gUM9Cnh1jT/ocvdfs1j/qb4ET2rKCZKB7rKP+ccqQ\nsoV0zLCKMhb40koQ+SADGLwEmTdzhHlDezKiM6zRnv072NOhNFnDDHWpzSqijMCtG+6vDnCnM8K4\nClAYGtqnYTyutyf4VvUom2Ee7X2wwCjQA5PDkOxGSHUfmHJhp0hxPL5Y2QLZEzXVegcjKM2LYxmD\npC1IOA7R1jbRR58mXF7B2w5Zft7m36VXbtOYL+ItbKCOHcJdraPLOXjtHe78dI7GuN2Phb+iWT01\nSO7KKlS2yZ+7iyqV7OJmYxOee5zyvzxD9cQYwnNTOYcdxxnH7sIpSvW0g4TYkd8lbWP2cWnZ8okw\ndaStY26xmLqVAVCt28Lw5Wu2CyDSTH63Rvjxk7R+7jnCW3eIThxEBGHKoDVhxObRHKt/6RTNn38e\n/eGnMFnfauAAQ//0NP5mQDQ9gtmu2dzrQyeQ333Lygi4H2AFwxgrqN1nrvMn2QbQG3f6851YkBkd\noe+v4PzxWdTwkH0um2HrWDl9rfRc9N1FdNx5oA7stZvvdMgv9wofslhE7plGzU4zcs4yjbTnkLm8\niHjqePp5aX7zXiyPH6R40edYljo+92072WfhOIgTx3BmptE/cSIFBoXvw5m3+fpjRcq324QfP7mj\n1bt7cCq1tZ/9m68w8X+9kj6XWW4Q5XrFVN1opGs85/RF23nxKGLX+XMqLWswkvV78w/0rgklU7YP\nUvZe0w+mJDl0fyTSMINlK+nie4huiNpqgutgijmikk+37BAWFFHGMpK6ZetkG/kqLZR42138jTbO\ndofM/Tq5hQbeYgV/vYXsRGg//qzEwflhAE//8Sf7rvWD+/4e7KfdZlckbE2lLNNzs4asVBGtLqLe\nxDSauIubDF5vM3BNM3gtoninjepERBkL7MhI4G9K3LoFg5yOIbum2VgvMp/doLOvTVAA60aazJ/g\ntJJ58v9HDCFhwCjZm/AdB9Hq2IVt3CeYsiWSxDlmxkD8Beyuuva7dCUU2aFBorU11n/+OOVX7yGe\nfZxoY9PSAc9fxtRqRJeuIp46Tns8R7RdZfL3rXiuvnEHsbhGeGeB6PqtFNxxZmdQg2X8s9dR42OY\nwxZ40ZsVVCFvkcJ+RlBsD21ikCrdf9gheLfzBMm0dSxlPIF9bX8/eKyNYyJrB0kUYTpdi3ivbuLs\n3UO0smqZQJPjRLUao//wNGJogMwrV1AH9yEu3yK8eZvqf/oCS6cymDcuwNgwjA0THJklunQVdewQ\nwewIGMPqrz5JtLGJmJ1i4Etv/mkvhT9B9KG48TUQrW/EjlGxeKJO2DO9GzetTPW3d8TVeaFkPAj0\nLfzDEF2rsf4XXqRblOifOIG31qD5/H7GzjXJrgUUF0K6Ax5+xeBXdbpQLt7VdEoS/6uvs+f3NlGx\nde72Po/2kGLghnVkclqG+pNT5C8sQzEGJvtb3VLmmO49FkWW7aNkj/69e9DSUU/fJAGAIm0Hb71r\nAo0HPWd+zvbzHj5AZjMg3DeJs1ajfG6FzEYXXniCuT9q0y3YibRbdpD1JtHKKp3PPMviRxwG//lp\nopKPUZL6tIf7H89Tf3ySpnVfJswKBv/ZadvasRHuBEwfQaSJQMIQey972B0skF1JkjE7Fi7GczGO\noFuQtIYljWmNLoV4Mw3y2S7N0KOjXW42R/gnb57i/7j1KRZqA1xftm2IJwbu8dXbx/jNhZ/i1fYs\n73QneL21l1udUd6uz/B6ZQ/fvHmQqO0QFIVlVj5s395rPtAPOhzt1gIRfXbPSSUmEa4VxjqKCW17\nzqOsJCgq2gMW/NKercp3Bg3V/dYGPL93m8em79Pd3yIYyqV94Ex0KM5V2TogaY/5hAWXdlkhx9sc\nLq4QIVlrF7h1bgZ5qUCp2ERiUJ1HAFb0JxHait6afKYH+qTMoN7v3Qn5jrbhhBkUg0FgBS5/bOID\nZgbtjt3uOFG1ilsD1ZDkVntISri8gtxuMnTR0DgzQu53X935vpeeRo0MfyD7/LDQMXqpjUQKzdBg\ng6DADnt1SP4XDwU7LQuox6BJ7uHk/doXbB3uA5kEdIY0UcbQrvsYI1hpFrlWHaUVuQTG4bvbB1kO\nyxRlm9WgSFP71HSWi60Zvrb5OF9ePME7q5OcX5rm3MIMNyvD3F0fJByI0G4fe6cP1IEHGUP9rmK9\n15j0uJJj2GH3G+sKicjEAFE8f0UG2Yms1lhLk1/WaGVBoSAnCDNQnxM0pzTBbIfidJWpw6s4I21M\nNsLPBjw5vsjnj7+F96k1tucV2hEIYehoh68199EwHk3jExiH/3roLT5cvMKc/yPW9HqPSMcPbche\nW7Pf60RsZq3sQixtrUoE7JM8OM6NEmC6X4ZAt9tWgwVsAUoIqnt8xLOP4569xt4vbRC9ZAGizFqH\n8M4C7RkrSXDjF2yOMP/XzjD+eh1ncoLZX7xAc0LQnRlC753ClIuY+SmyN9ZRB/Yizl9F5nIU7jQR\nuVw63vUbsfRHqsGZsH0SoWnYWSiLzwFgRWgzvtXm9Ny0hU63bLFT+F56zOHH+lktOVTd6qYULq6j\nDu1HnX2XYKKI96rVTozW1hh5u452oHB1m7ufzFB7fBQmx+yp//BTuF8/awskUsCZt9GupPvpZ3E6\nJtXB+sAiuZektJ0Yf9rtpNtTabuYMzONyFrn5tRufn2DwT+8Quczz1qGz/NHdwDx4VgJZ2IcE4YE\nBYfopaft+yoV9J1Fwjv34O1rFiBaWLa6Pvf65gGpekXPJHazPITY6Ugn3wOM62PCmH6r8ITdEW/D\nhCFqecOu7169hHvHgumm07EMqEP7kd9+E+cb56xpCyCeeQx3o2HXV/37knz0+cs4VxZgdT3dd1ks\n4ExP2baxK9cfvs8fcIj7Gxgn1qTpj/coLL73huI8J/mREpOzci4m49l1yco6bNcQjRai1UG2rM16\nkJU0xh06Qz4IcFqaKCNxGyFu3baCiSBC1FvIzRpqo2Yfu3gD9/aKzc37GT27mT/9x5Q8nnYh9Qox\nO4oT/QAzMYidPNb/3qRDKDavEq24zbdYAG3wbqwydGaZ0qUK7moN7VnTBhmCiH9rByIftvYrWqMS\nsenyr6+eRKx7yCDOGySEWfA3DZkNjdOKdnZZfY/4sQCEAKsQHrNchO9hqjVMqUBKh02QtqQqkJx0\n7BeQACkPCDMDiXBdd8om2CNfuU54bxF1fxN1aL+dNHwfUSwifJ9gKIP3tTdQ++ZSMUrz1OH087Z+\n7UVMp4Ozdw96swJSEVXrmHoD88YF5GNHbBVjYnQHEJE6P+1eHGiDHBpADQ2ixkeRA2XU1AQyn8VS\nXZ3U/jcdrBLandG9yb1POE3FDmCpBelQmfDWHVvFEIJoaRlnZho1PITZriHGRxBhZN2ogPUnBLN/\n6xW2f+UFoktXWfjZMeR338LZuwexablq4Z0FRv7RadTIMK19Q8hS6U834fxJI22t6w3+xvd2VZ1i\nOnKiMyREj/WUiH0lbI9kcZZU3oRE77XHld3QDP+HSwRFl+5oHtnVNKZ8GhMunQFFY0JRXOiS/3ev\nMvfFezgT42w+Jixy+6ETNOdKZL/8Gp0Bh9y6palnV7v4lZDcty/jb3YI796jdWCkh7Ynla9kgEkT\nQztgiWwmfUy4rnUMc90eyBVY5otuxo5iicBbrI6fMpCEiCc2C4jJqqVBO9UO7r0NTD5DMDkAkSHM\nuzSmfboFq5nUmOgNfvc+rhg5b+y9deYCdz+ZY/DdOuL4QarzDtkVQWkhJLdsAZjmmCJzu5Jee48q\nUoAVdizMxUPOOdCbMHZvp090TxhrR6k6FjSIhu0xh4FiurxNwekQGMlyo8TEVz3Eb46w9tY4z+25\ng0fEocx9sl7AxbuT/K+XP83vbZzgy8sn+MbiIc4s7eHK0jjhahZ31bUTQU7taB/pX2T1R39bhnal\n7a9O6LTx4ktEBhlqZDdKASAZmfTvVMA2rtBjrMaQjt2MkkVilDF0hzTRQIhf6LBvcJMPDV/nY4eu\n0hr3EK5DfS6LlJpm06c9FbE9r9ja77J+UvPS/mv8mdIFTm/tZ6uTJRoO6A5qjBE0Ig/tPAKwIplf\njbX2lF1jEyUpEVL2Es+kEh9bO4tkjHnYPAW2ep+0duSyqVjl94v1//JFqr/8As7M9A/n+L5fSPXQ\n5PaDjExFI0JB4XYD+dgR1PgYzr556keHaQ9J5r/4oMWy8/KFH71I9w8QA9kWQdGkbY+9NquHvFj0\nvSaJeO4TUe+e1UqQWRdp8hjmDTpj0J61ma83MmxU89zbHODc6ix/982P0Qg9/nDrCS63p1hul/gr\nb/8if/vCp/nyrSf47p193Lk3QnWlQHsti7mbp3V2GHElj1tRKWtQ7CouPMgYsk+FGUlrSNEtSjpl\nmepvJTbyEINAgUaEveOCeCxL3BGVnVdlR/c5HVp3MaMgymI1mhyD64ccHlllrlhhoNTEyYbsHdlg\nf26dU8Xr/MLcW/zsr3wH91Pr/Myxd/hI8QoHPavdJdF8fes4v3H/JS63p7nbGcZpPUI2qxSYrSrZ\nVUF9yrNzPlgWkPeg5aKIi0n9Bif9wHUKBinFxmcO2Op7USDevY1wHAs6CRAnjyNbIerwAZqj9t7f\n+3stTNazujBZh6XP7wNg7q+/gnEEarNuP/vufcLREuFYCdPpWHfa198BKawRS1+enLaG0QcGGYPI\nZpFz03BgHnlgD3JoEDk4YPOVINihu4lSVp/IcawwdLeLyGQQKgaFuoHVZNIG//wtZD5PdPka4dwY\nrKzbPLdmdRzF/j2oZkj3+SN2/xyHoOQxfKmLvvAue/6gSZAVBGNFwo+dpD3iwQtPoG4ssvmZQzj7\n5lHfOkfurbuxK9+jAdd/KAW3HYvmPiD+3iLRwRkAZCaTXlNRpYL/tXNgDO4lu5Za+u9PAeBUmqlw\ndP6V63TLTsouStY5ItZ8Bdj83LF4PRRfrzqi370s3b9d53eH/tQPqn2XXId9LIvw/rK9foPuzrlE\nR0TXb9sCvDFW+08IxOVbtKeKUK2n+7L9Kzu7KaKNTcsgivc9Wt9g+4XZlEX1aGLneYzW1lAtTZRz\nH84ESkCUHc61u8bJdN1q0rWIUQLRDmC9AhV7DszkGAwPpOsdtd3ACEF9WlLbI9g86tApSWRXo9p9\nEiuRQa5WYLtux4Mg1gtyXds90YnJI87DJEV2MZoAXIfuVInWviE6c4MEkyULXu1mOyVjar8kQNq+\nmuSAgf2tI0wtxguyvjW1CgLbuZEIUnsuRtqihgyIjRJsYbVbFoR5qB2I0DlNZyVHYUGS2TB4Vdt1\noT3bfqYd0dM1fR/xYwMI9S+icPpQ3P4FfHwRmbhdJjn5O5zFIGXhACkKKYRAftcKZJlp6xQVrayx\n/eQI0da21eWpVCCKCGLWQ2fPEPLEMbudM2/b3ZmeYuC3T6OOHrQuXMb2U6vhIaup43qWKbG1jag1\negLXyUI82ce4VcAKl2kYKLH9oT12YF3fsFTVrW1MGKJbLUQyccYtaGBRaTU8hBofs5WM44ctmDQ4\naIVZfd+CSZ0OJDbsMThmul10uWAXLp6LLubQ65vpAHfot6zWUHbNDmCzX9lAjQwTLS2D71GfsYO+\nOn6Y6MA03tfeIDg2Q3h/5YdxOfzgEZ8TNTpi/9+o2ORIxG09SVuGiW/23Xb0yXcT95unLBGwi7TY\ngrX41Xdo/MRh3HqIiAzu188iDPjbGq+mCQqCzM31tHc6XF5h/j80cVuG9qiHv9lBlUpkKiFuLSKz\n2kGEGrcWED2xnzBnhezcate2cO0OY+w+QupGZhyFGbTis7qyhd7csq2MkUZXq0T1hq3eKNUb6LpB\nTMfMY8oFazHve9ZFT2urNwSWveE76LV1gsEMxhEYV9IZcFAdg4zswOO0TNpT7W9Ihr6zwI1fHcOZ\nHCe/ZBCXbiJXK6i2IcxB/uxd2sMOtf/kBYb/8WnWT429/wrDjyhSN4q0FWw361A+OBH0Vxxg58Cr\nFFHetsImYq+0Ff49D7OYZcBrMZuroI1kZbtIdj0g89Zt9vx+i3dWJ7naHefl6kHW7gySO58lODvI\n6XvzXL8/xvr9MvWVAuGWh3EMWoEV3u1RedPKuu4tMNNWMEB7ijDvUp/LsnEsQ302g/ZVb8IONYTa\ngkKBtVeXXcsWMsq2aIRZiXZlLPxq28tkaFAdu0iNfIiyBpOJkJmQbtOjHTmMO9uM+1W6BYkoFKgc\nlpyYvceTs/c49dQVcp9YpXaqBaWQsysz/L/Vx3j5wkHuXh3Hy3fJztWoNTKMePUPvmUsPo9pNa8d\noDraUpeVtFa/SXU4Bpf7HX0epn0BxGw/k44/4c3bD3Xdelg0ZmDjcy2u/jdzP7Rj/F4hPZf2J5/C\nmbWLADU89IEzb8KM1WCTb19DX3iXaGWV8OZtsv/+Nab+cAV94/YD79lR/f0xCF+FhAOhNR9IwNuE\n0Zf87GLcpGBLX6SC0kogI4Nbs/egDMFp2GssN10nm+swOlhDKU17M0Oj7eHcyXD+W7YN+FJtkrfv\nTxFeKOF+q0x0ZpBoIYe76pJZcsned3Br9ryrlgVktNfbp3TMSQAgwY6/I1+w/qRg7SMBq8/C2jOw\n/piK3aosA0h2Ioji7cWgu3YlnSGX5lSG6v4oY9yAAAAgAElEQVQszaksUdZFhjodW8OMFdE2klR3\nIcoakJDLdHmitMi+/Dquiijk2xworjHkNKjpDAXVZsSt8dOzF3g6f5tRVSMwDsuhLSJ+cuAdXixd\n55ncTVwRPRRk/5FHfyHRaIp3I+ozApPP9l4TBKnZRBIp61ypHXmxbSfr5Tgyl2Pgt63hyPTvL9J5\n3l4Tzh+f5dbPesh6BxxJNJhj9Tn7tuv/hUK/dYl7nx7Ge/s2E69soT/8lH3fKxcBEHXrGOTcXcW9\ntYIzOZG+xmxX0UkRClKwKrWeFyI1lBGOQ3TtJqLTteDNwj06h6cwh/ekbd260bTgTzaL8Dz0dg05\nMoTYO0u0d4LuqeNELxyDyTF0q42p1RCui261ba7/2jswWE7b50WjRXc0j9qosXUwdkMLQ/y7FTL3\nbDtTYzpD+V+eQX7nTZxvnCV3v8XiTxaINjapz0iC8TJ3/vqLVmIi8/4XZz+0SFoGhcDU6t//9d8r\ndjNw4oheepqlj1jnZd1uo0aGiD76dPz5sVBz3O4bxfjlykdsru7MzxFtbFJ4+QbNF/annyPcnjOa\n3q4x8G/OYVpttr7w9IP71Q8C9bOA4hxOHdyHGh1Ff/gpxMnj3/8wE9ApzfOiXl7VXwiJIpAqnQcx\nemc7sjHoRoPmuIuesaxv8dRxIteew+ilp6l/4QXMiz1NKhW7Jef/3atE129R/8IjkuJ4SDruVTpE\nGWV1f/qjv40Z4tznYQWvPuZNnEPJ7QZsbmES0fMwIir51A8OEA0XrWV8EGIktMYN+nCd+t4QDPjL\nNTK31vGWazibDWStadcuRlv9sHbbGub4HqKYRzba0InFq3evN3YDtca2d4ZZW+z2NlqoahfjqlSe\nhMT9zJg+AoFADg4g9sxgju2je+o4+omDyJFhu2YTwpqolIv2tc12j8wQBJhClmAkR7fsEvlWciHM\nW6DH247JBQJUXeJsKXILisiH+rQgu6HJbBiyq4YoI6xxS+f9g6CPtsTXH0KkLCHjKFv1qDchl7Ff\najwhJKLKCWsiZd3QxxTqE6IzktSFTJVKkM1grt6Gpq0elL9xjfYnTuJ9+x1kIY+JNN62nUDDrMJ5\n6xL6J5/CeeMq5LLotQ3bL3p/FWKbTFksore2MUHXgjHLq6iRYQvKZKzrV8I4MPGknDJVlEKOjxHd\nXiB/5ToLf+0Ue//pbcLFJZyZaaLJIQg15s2L1j0s1iJSIyPouTGWTpUZ//uvIDMZjDGWuTQ9heh2\n7eK+1bYTabVuB7m4rUwWC0QX3sXZN8/WyXHK59eJajX7PZw8jrmzgrNvHrlYxziOFVH72Ekyt9YJ\nR0sU/80Z2p95Fqcdob55DoDWiEf+A3KfeSDiwSVJjqKNTdT4CNQbFkBxe+5byL5rJ6lMKWVBkr5F\nHGAXeJ0uMpej/eFj+Bttct+8iD6+j+ZMjtK+eXJLbWp7snh1S1sPb91BHbSaOM70FM2ShxGQWeng\nbDYwe6dxagEyiNCeQrVDK8yY93CrXTo/9SwAbjZjExMpbVsYpE5iCAFhBBkfEWnCS1epf+EFarOS\noUsB/h+8DpOjqFqTcOEeJuNZILDeQJSL6IEC1YNFyt+8TnBkFtWJkFqjMx6y1oShuPfbUTiVJubA\nPGFG4bQiIl+RXe8S5B26JcXQuyEycVN64Qm8Gix/dg6vKtj46Bz5lYi1X34Ct2kYebOKrLYI9k2Q\nX+ogXrYg7fpLXfgXH5zY4nuF6QaIXHaH+8pO8foe9XMHU0j1HhPaAtzGdWiPZa12UKITEghUG4Yv\nGl4uHuILz79GyWnRabmotr133OVtwvOT/OuB57h8ZYY9XzFkVqqsPV2kcj+PCARey1bBSbQ7sDaV\n3YIkm4LnDzk+YfWBgoLL1gGP9oggLBjCvEY1JEHeJ7fm4G90rU5OZIEhpxURSoGOF5ytEYfarN0H\npw1uVVnR8LhFBWxLYFAyaNdAKNHK7tCQ3+SbW0d5bXEOMy0oHRynvbfDL429TmAUC8EQRwrLLI+W\n6WiHV+/P8ZWbx8neddEuyOUC7UHNnieXOJG/y7/nA06YTO88WvqzXYgbgbUSbXdSG2jLYhBxEhQD\nzf0tn/305SSExITBwz8bCD75DG7sSJJEZ7YLbQf3IbeQGh76oWsR6XYb/6uvk9Re+7cvfD9ebD44\nF8jHjiDXK4TLK9ZVNIwsiB1rNPwgUVgKiHz3oaBZ4gCkhofQ1bplAygFEyM9980fg8iogNxIkzBb\nxq2D7GufStJpo2K2XaKlY+i1evbf4wKijKSbl1aTLi8JfQve5O8q6rkso+PbFNwuqmBoruUpZDts\n+gXG3oA/LD+JGOzi3swwcl7jb4U0JlxAIiIrAp+MOQi7T15NoDoP2ZdkPxO8QVrns8akwCgDWsBA\nF1NzcVr2eBuTLpEnKN/qILs6ZQIFJZfKIZf6nLYnZbSDlIZoLUN2OUtuxaA6NmEOS73xUGi7XaMM\nxUyHgmoz563zuruH9e0CjdDnyawtYnhESKFZCIbZinLcDkZwRYhCsxaWaBuXCWeb79YPUwlzmEeR\nOe9qeS/cabJ8Ko8eLCDXN21uaIy9brQBFbODnNilK26J7jdcSXIhhCSqVNj48y8y9p1Vwqs3yFS2\nYHwUNTbMgf/uDFf+zxfY85XAMiJH49arigvPPc7s79zEjI8gN6p4VQeTmEtU6zYvSyzCM9YwQ3ZC\nnD2zhHcW4rzUjo8mws6hyl70xhikEMjREcj4UKnQPDRM9+QYgy/fQ565lN7/8tB+1EbFWlbncojB\nMnJ6nPDyNXjucWQ3wvnGWZqff57VE2Mgxhh7s4XoasTyCnJlEzk9ZRd4GR+TyxBdvII3WCK8eZv6\n3CQTe/cQ3rpDMFFGhBpOPUnpWo3oQydwri5S/cl95L/0Ku0/a+ekuX/8LtHGJsGftezN7Eb0vYVt\nf+jRy1dMFPV0Ev+kLKXdbTVgGTHfOsfUt3rjbXh/GTU7ak14KpUdm2jtsdfh2JktNBDetsXnaH0D\n/ysx4yY20ok2KwjXS4F8E3QZ/PI7iIFyqsmTCqYncgn9846OUMcOcfsXRpj9GzeRa2uo2Rn6OEN9\np6p3XvoLB2p4yLKfYlLADsaRUkhHpJ0kCWFBnDyOOXfJMucuXmHoq1eIDlstIPPmRYZidQ31rXMU\nTx7HnL1I9ZdfoPSvznD1N46x/6+etoZAb79L+dwKj2hV9UA4a1Vak1lMzkd0g96Y5CR6pfSBzLsn\nhF3XvdZ2DeM6iHyuB1hrTWfIpzrnEOSLFO+4OFstIk8QlUJMqEDa/FK0u3Zcy2XQGQfZ7PRy94RJ\nmrjFNVs2twd7vfSb9pgEZYkLeMqJWfQabzugNebTnC3gb9gCvmi2MZ4LedcKyodWz1U4DnpimPZQ\n1hYqpaA55oBxUfN5ZGjwNwOcRoBar1oWorHrT5PLgOcSFn3CnKI9pGiPGLojEaJre8ozmwbtgFsT\naF8Q5OI2sqwBAW4joj0gERpyK5ogL2wO/z5v9x8bhhDG7KQ2ua51sspldvRviozf09CJ6WnGGPt3\nIqjXLyScaA0phW61aZ7cY90FDu23DJpSEf/0u3Q+9gRMjaNrtdStp7rHQY2OIr/9JmJ+BrNZScXZ\noq3tOOmPLT+lsANHpWIX8NNj1q2hVuvdIAkrJRY3Fp4Hk2OEi9ZhyZmeYvZvvgKugzp+mPDeIrLe\npnrYIu9i/x5UuYT+yAn0/AQi1Iz//VdQRw/S/snHLGPowF5M1rdVESGsrWYuhxosIzzX9ue22qmj\nGN2AwhdfJRy2vejO+BhqcR10ROPoKPrCu8j987YvutohvHWHex+3+9Mcc1CtEGd2BmfvHkrffkS9\nrv3XTV/1PRzI9gSkowgRM2pItZz6Vk8q1mHqR//jlirhuehmExEZzBsX6HzoKNpT+JWA6pPjOGs1\nMpsh+ZvbqI79rpsHhglv3SFcXKI1rCgsdXCuL2GWVuD6XWQ7RLRDq6QfD0jOpduIQONVumQX6xYM\nigclkVTQZKIVZDDtNuHtu5hqjdovvUD53Aoz/+I6mbUWqlSiPVOyLDBg/UPjyFIRxobpzI/QmC9Q\n+HdvYFpt1p7K0RrPsvXEMO2pHNFQAV3KEl29QTCaR+d9dMGz222H+CtNOoMu9WnHLjZu1+zi8GMn\nQRtyq5r2sGDqO3Uw0C4rmpMCt6G5+WdLRNducv3XFVsH7OAsTh5n6Ltej/n0CMPsZmXtntwSUfvv\nF0JgXGUFmTWEGegOgMlFaA+KN2rMf9nwb889Q0t7CGl7n02rDbUGA1c0V8/OMfXHgvxbi6i1bdym\nwd9QeNsSpy7wtgT+piC7Iuz/NZCh6bEtYacWR8wOMkIQlByak4LW3i5RxlC8qchsCqr7YHufY5lC\nQqAzjnXyicfnoKhoTLg0pgTtyQh1YpuxT95D/fQGq38moHJEUpuVtEatsCsGZCAQgUAow/G9S3x6\n+B3259ZobuRo7ety8/Mu8zPrbEU5zjbm+e1rz/OdtQNcqY7hyoifmL7F5ECVMGfozrdT96THB5cI\njHo0jj+SdMwRWqOacRGhnO3RopPoaxnu1/Owz+k+sLGvhfV7JOxrT3is/fqLOx8MJUJAfkFYoCWJ\n5x7HTI/9iQ7xgZBq57bfI9TYKOrA/I72NVUq2Tn37lLaJhDeWSBcXLLzcalE+PGTOPvm39euqKMH\n8b72BhNfuvo9XxdtbFpqf7Vq84fm+2Nc/ahDI1Jx6bFSnaBE6jgGPNR9K2nL7I1J8cP9jMAIWqOS\n9qCkMyjicUcTZkBtOqyvlRjMNNlfXgdPs7Y4QO6+RHUN3qbCvZFl4Ioht9xBtSNkaMWp3brBaRrc\nqsGrGWSAZYh2bbKp40Vu6gyWXL5xnt0p2TFBaJAd8Jdc8u9kyKwoGvMR1Xm7z9V90Bl0iXxFZ9hn\n80iWjeMujRmN8Q1qssmByTU+su86n/uJN/j4L7zO9H9+E/Wrq2wcl4RZe8wmYUzmNJnhFkcHl6mE\neWo6y+cmz/Ps7F1Ola+TEQFbUY6cDNiMCsy6G+z3VmlojwutWRraZyUoc7s9wkIwxIy3iS9DjHw0\nbNZ+5oy6s4LsCOp7cohMZkeVOSmSmm43zVmF58aanKbHYIxzaeE6qIEy41+/R3T1Bt1PP0t0aI7o\n2i3uft6OHwf+VYPbn3doj3g8Nn0fgMP/dwXtO4T3lwkHskSra+jlVaJrN9McxXS7tsArBQSBLXau\nVYkW71udlKBrj0vsHBeNsSymqFpFb1etxfdjR/C/8jqlL71BuHAPOTyUmplEV2/QfXwekc0STg9h\nfI9gzOY/smt1NMRTxyn+8WWm/tE5pv9glfq0z81fzLLx5+14atptTCGHvr8CS6u2dazRwpmeYv43\nTrP+YSsd4G42iXIOzkYDrt1h/fEs2y/tozGhCD5xksxaLC/xCcuymvqOofH4lHVE6j6CPKdvnlFj\no9//9e+ltZNEwgiRPcdj6I23MmfFxjtP73vgrX/zJ3/X7tL5yw+wXxJmjvTcvnVehPD9tH1KNxq2\nA8O34sYpGNS/b7GejzMzjdiuM//3LxJ+7KS9P9xejq9KpdQ1d/ecm8yx0cZmCgapkWFksZi+xnQ6\nOwoSzp5ZqyV77hKqWKQzUeDe/3iKqFJBVXYWPZyJcbuNs5ZJN/hHdi7LL8WtaYNxcfsRuTc/LMJb\nd5CBsaYfsseIeQAo7GfM9//0h5S2gJ88V8wjCjlMqZAyY9ZPCNYfz9KZKFgAKJDIexnytxzchsH4\nLnp0gPZkgbDsx4X+qIcHOI51HOwGlj3YaFrGkdOn79O/70kHRazFKWstnM0GhWvb5O5UcbZaGFeh\ny3l0OUf9YJlotIzJZejun6B7cIpgMGPnainQrmWtBgVBY0KyeVhx+2c8bv1cgeqJibhDo2hlPuJ9\nUc0uQkOnLBBakL3n4G9I3BqpUHRmS+M0DG4D3CaotkB2Bd2SojsgcBvW3TpT0bEL9/ubr358AKH+\nEAJcB12rofN+rxcvXsiLuLIqVM9qXniuFYXdbSceVyXM0b2YoEvuu1eQjx1Bl7LoRoPGkTHLqmlH\nqR1i0q8e5kHEjJNgKGdBoCBEd4P4JtA9pzMdq/kDslxCn7+Mmp22g1a/7V48mQvXIapWia5cT+mz\nOka89fIq0cUrrP3FF4kuX2Nrv/2amntKVH7qKPLbb2Jefwd9/rJ9fSHWPCqVaB0YsQNIp9sDoCZG\n7UDdDZC5HDKbQQ2ULWMkCKwb2enz3PlfThGurGKGykQHZ8hdWQdg8dNjyO+8iVpcRx3cx9wfWLt6\n7QBn3sZkfaKFRRgdeuS6Eoi+BZEQ9DuFpZHYyCfnp7+VCnrocjygiIIVeG6OuziTEzTGXdzVGt2S\nQ5ATdGYH8b72BtGlq0Se/Z4XX7Judmp4iDAncM/ftMlGy+ryCK3tAr0dIhsdm8wViwSDGdxby8jN\nWkov3G1VbYwhWl23Yt7PPEa0f5rSjdjxY6CE3GoQHt+L+0dvcO8ztie7Pi3oHJyAKMK/sUr2y6+h\nBss0PnGc8dfruI2QxqQke6/O+okC9bmcZaE5tk3KCIEINUHJozmXp1uI24S6hs5ojut/9wWMI9h8\nrEBzTFoxtLevU5+RDP7z04y/1iXIS7L3Bc7EOO6Cz+h/tE54CKt3kQ6KjzASl740Od2xsN8FIqYg\n5M6JLgG2jStxWiFaQVAUBCWN9CMLkjS7ZF+9zvwXBV979yhGC+t0GDPVCgttxl6H8purmE4H41rw\nzdu2P24d3Bq4DYNq24lBtezizDhih56HdSuyLV/aVXQHPcKMILsK2VsesiNQbcPE6RaDl63uSLfs\nEGUc23NtIMw5dIuS5ohk+wA09gaIcpcDw+sM+k2EMHz86LtkT2zSfqJF/XiH1kRc0TdgMpqBgQb7\nCutkZMAnChf52ZNv8snHL/LCyat8fPwK97pDLLYGcKRmqVri+vUJzq3N0IpcXBkRzbXJFjp0hgzG\n02gjKMq2bbf5oEOI1HUGY1CtwCZKeSfW4OpRzDF6hy5Geg0Z64pp+l6XhDM5kVLHd4f2wHymwvJ/\neyp9bPzbCrXi4W/Fuleuhzh5nCjnIoIfAmIWj6XhnYWHPy8V6vhhAJrHJqgfG6a7f8yCQs89jshZ\ngDmqVh98ayZDVK2SubQIUfS+dOgSls8Pogeka7X33v8PKORDkJ6826U7oHvXcXo92F+py5jhAbCx\nH/A1wjL2ugO2VUy1jLWgFbElLUDdQRvBkNuASFC47jJ8MSB/t8HUy12GLmvyy4FlawurGeZV7Y/b\nMLhN+5NfjvC3DNlNjddIWlP79jP+EXErWWZLU74VUbqjKd4Bfwsym4bJlztk7isKp9boDFnXuOaI\nNSFYfdph66ihOWWdwUSpy8RgjZNDd3m2dIu/MvotfnbwHD8/fpb/au+3+exPn6H2XDy/Jhpn0jBQ\naFJy2uz3V1gPirgi4nMjbzLtVqjpDJtRgd+vPsm55jzvtGdZDAeZczeZ8TZ4tzVJTnUoqA5H/Pu4\nItaqjB5Fz9iuaLUpX4PtvcoyhV0ndSdNCl6JiHRSHE2LpjEz2sRznXAcVn/hmLWX/8XnyXznErId\nIPO5Xnvc6xc48DsdNn6twdU1CyrojENQsjmfu7Bh22W0tu5TxoDrxblxy2pjDJUtWNBqY8KQcHHJ\nbjt25bEOYj0Gk8xmbH6ay6LGxxDLa7aQ63k4M9OEi0sMnt9KT8ntz/pElQri7LuwuYVTsddDWPbR\nb7+LrDUR5RJiZpJwOE/pd86w/y+foXoQLv8P87Yg1A2QUxPgOOhilmioRDhr25uGT69gTj1JY18Z\n1Y7YemoE3Wgw8aWrFL74KpP/4mLccm33Z3tf3LLUsWLoD9h2/8jD7MxZtIbW+wDF3w/Tv4+N0/ns\nszuekkMWZOkMOj1nsDj+ztWPp3+X3rXfncznd4xtZldx0HS7sBqP9S88ka5j0n3tBxSNsfdC1ksl\nOEwQkrm8aJ+WAnPqSWQuR1RvEB7ttVmrowetUdDwEMMX7LXT+tnn0n00rTa6ViP4xMnUYaw/woUl\n9OYWGENUreJfWGDghj3/u8Who8kRhOux+pdOIYvFlGU7/qoF2NYfz/JI4z2uU287IMo5fcyauEgR\nPaSK8RBNpzSkJBwpEJWt5hJb1bT9SnUMTgO0Z2jMwuZhH6dlyC0osmuC7JohsxURFTO0JvPxfQWi\nE9jvvx/sSYyCtIZuYFlFiUvh7uOMAXMRRLZ41GrD+hbi/qrVJgK6JZfWbJHmTI7NIw5bh/KxeYxM\n5RlkJ3Yai2+j5qSgeiiiPW61NIOZDksfFmy8MGbt542xRlpty0yLMgKnZVBtm+vLIMYjjMFIW4DJ\nrWlG3u5QvhWSXTVk1iH0LVM9vxQQ5IVtTXyPNs+HfiXv61UfQIj+Snx8AanBQWStDZ5rgRVjbI+0\nEA9U6dN2oMSpK1Uwt1UQuWVvsvD4XuR6BbVsv1xvq4ssFnHfvIHI24W/t22/lJmvVTCNFghhAZFS\nyVq8K4WMFfX7qYwmCBGuR7iyZtvb6s3eQiDRsInZQbrdSVF4952btnrc6fTsiYVg9B+ctoyfGGPJ\nnb5O6XfO4MzPoUZHLRp9YC+yGdMbx0fIvWXpl8G+CXAUanAQk3FxZqYxQTc9RtPu0Hr+ANHKKnJ0\nGDUyzOAVjXnxCaKLVyxdM0amx95qoX/iBLreoLVvCP3WJeSJYwz/P6ftouPqDeTeOUS99cBA/oHE\nbtu/uAIgXn4rFln2e2KDQu4EDZMqmYldORIb6OS5bpAOdF5DE86OUrzXAcc6kkSeIHPlvu0hNoYw\nK3Dm5xh7Q9veeMdh/A8XbFIUs0+E61jLwVYH0ekimm1Es4PJePgLFUwxTzRSRg8UeoyURIPEGCtG\nFnRBKkQQoSoNZLVlF++Ogu06zrV7yEyGxlyEOnqQ2b/1Cu6ZS5ilFYKZYWQ+z+rPHaYxrggKLmtP\nZnCaBiMlzSlBbUax9tMHrFbQ6jYyiOgOZ1OwtFOSDFzv0hkUbB30yN+1ANHQPzmNDAzDFwI4uIco\nC+bUk7RGHNoDkuk/XKXx9Bzzv3GahZ+fRtdqNObyRFnxyDWE0gi6vdbB/kjYHbsdDXe0+/RaDbWn\nCLNOXO2wVE8dylRAVtdqZF+/wdTvejhLPu1RH7IZiCLc1RoDb2/0kiAhkIGt0PtbBn/bVu1laBeM\nTtMuvCIvBiq0YbdbGIB2JUFeopXA39Lklwz5RYHTAnejwfCZFdx6osdhUOvbhEWX2qxHc1TRnDRw\npM7RQ4t86shlPj16gf2FdXJuQEcripkO+Xwb6WhMMSQo2sWcygcM5lrcrI/wD+68RFVn+HNDL3O9\nOsrpy/v5ztoBXlnfx5tLM3QCh4wb4hQDhrJNLm+Oc+XdaXRb0Vos4OypIwsBrogYVn9KTYQ/aeyq\ngInIJvtRVvWAzURfqp+x2v/+1DVwN7Vaoqs1ou0HwRMA1Yat5SLVw2HqkDP47y8ydAEyWxF6oIA4\nvI/2RO6HdrgP3Au7n1YKnbWIxuYxj6UPKSoHM1bL7LV3UlbQwyKtsDoOJp+l8cQ0zt4972u33g9j\nSThWrPTRCnTakMIghUbGK8bEdUyMtYn8vgRVwA5nwP7/k3axtKfM5k/WYUSQu28IM4KgIAjyBuPb\n52QgIBK8fnEfL6/sg1BQuhXhb7TtPNIMya4GuNVu7ChoE3O3qfGrGrepcVsa1bXgj9O27oIJC/IB\nd8I+5pIMDKqjcesRufWI3Iq2VcxmwJ7fq9D69ijaNTilLpsnQ8KsrYRiBNrXmHzEgak1Hhu6T9lp\nIYXh1fYUGREw524y7VT4qYHz/NWTf4Q5WSXKWP0gmQtxpeal0mVKqs2L+WvMu2uMqRpPehvUdJYj\n3n1+qvg2RdVGCc2oqrIRFTjkrXAyf5tfKl5gxK2xGhZZD0t0tPNIWImpC1ffeR661KQxo9GlXCpF\nYMKebIKJrKlIqs0Tt8Un7HpbXNVE1Sr5VXtQrWGJHB1GZ1zQmqAYf48njyNefgv322XCMK6gX1sg\nf96COuHi/XT/hJLWRQcwrZbNyY2G+2uIXNa6NQ0OpuBvAmaZ/hy51bL7UavZPCzOxeRAOXXRjT76\nNPrCu+n5+MInXrbb81yi9Q3akwXUsUN4t9et2UsQEo2Via7fQvvKitEPDrL/r58Hx3Dlbz+OHrA6\nisL30BkXeXuJ2nwO+eRRq2EUau5/SCFefoviv32d6KWn0fOTqKMHWfq147h/9AbTv/kK7Z95jj3/\n8DKrf+kU/ldfR3sSr9J9fwzjH1r0FRQTzdUw/NMXbpN2sWIRNTpKdW7n9vSmXV91ShJ5Y2GHk9vY\n/9R7rbi9ZGU2Go0dc4wJQ6TnWpOgWNMwqlbt2PjaRXSzia7H7TYJm8lokMoCN50OXLHrF9PpWC3W\nyhbC84iu36I1kcEc20f0k09y63N2noxeepro8jXah8at+3SsOZv/hi28c2CO6MkDAFY79PTbD5xH\nIUUPqMK6Yxa++GpPYwiQJ46hRketDEjQZey3XkHXaqhhq1krXjmPs2eWsd96he6nnvkBv5gffThb\nLYKCQufi49zNBnqIFs9D7eaNwdlqIWJwRmQymKyPCCPcRoi/bVBtgVbQHgEEDF8MKdzT+NvWWTIo\nedaGPp0bdSqrkhb2g9AKy4dharRE2COZ9AowpqcTurKOXl1H1+p2PaANJgis41mgwUBtykE7ceta\np4vTCFJ2fpRziLKKTlkR5C1II0KBzkZ4hS6FcovRI+usfrTL6vOWYUQUYaSgvrfA9h4H1YHCPZvv\nyxArfxPZguDWYeiUJVsHPTaP2PnIqxkak5LWmGHlOT8Fo0U3/J6M8/74sQGEzK4qO9hBwSwswUAp\nrXwAPReBBJGUfZovSfT9r5tNqFlASLZD8C1yDIAAvX/aDjZB17J1zryNGiij37maos/C91P9IhN0\nLf3W81DjY8iSpaUKJVNhWqMNIp9Ft6E6U0QAACAASURBVNu9CTypzrgO6AiZ8VMxahMGaZ+1bjQs\n6JTLoW8vsOdvvYYzO2Nph4cPgBBEa2u094/Z41pcxtk3b8+V76GGhwhKHnptA12rIe7ep/G4nXij\ntTULnhWLZBfsgqM7O4jerjF4dh3xynmCTz4Dr72T0jfrUz7eYgWhJN7X3kDm83SHs0QvPW0BOyAa\nzKfslw88+hlYu8IMD+wEgGLnrVTkW8iUmrqDTg32PFerqXhz/noVoyTepXuIVsdaxbcN4eJSeuyD\n/+w0nfkRyl+/iiyVMM2WrW5IYUHDMEQUixbYycZWi/WGZXB0A9uXawwiihC3FncMpEZrTBCkFF35\n2EFkrZW+Tzbbtre1VrOJ0+gIR/5BJQUpwmeO0PjkY6jz16j83OO2smugPeziVQ3dAcHKh8o4DSjf\nDsmvhGhH0D40bt3zYoFh7QictsH5xlnaozpVtve+9gbOxLhVtlcCcWeJyDcERZeBf3uOgRs2Gdre\n5xK99DTlmxHOzDTtssRpmvf8Dj/oSEU4+x9LJo+dD9rfuwT0rNuNIii6BAWJdu1grloC0XTQvkEX\nbCus3q5SOnOHsTc0kSfS1kC2a7C6YceEGCRXgSGzrSne7VK+1qS40MWtW/FY1QXZBbepkVEf0JD8\nANpTlsKq7eucjqWVZtc0btOgfReqdYYvtvG3I5xqG5PL0JhwaY8ImtOG7nTA9NA2s/kKjoiY9Tb4\nfPksz47c4dz9We5dHaN2rwQbPpm7Hv6GAgEmEnRCh2onQzt0aBofX0TUOj6ipci7HYQwBF2H1naG\nSjVHVPG5t11mrlQhP9FgYNSCP1GoODyzQlYFbOmcdW75oEPK3uwZs4WMst9zVM73tQfH1rhS9Bhm\nDxOVThztpGXi6EbjPSfx7LpBtBUiFNz+nAsvPIGu1SjdbhN5ks5ojtZckTArrV7Frus5Fcx8v5Ew\nLb9HmKCLvGNBn9E32wxdhOG33z9YJ588SvWZaarHBqnOO9z5wnRqQ/y94v0wfkwY2uprrfF9X/tB\nRT9TKKMCivk2YbKOeNj3nrBudj8WhzAGGVlBd3/bgIRu2eoPqIbVAPI3BaYYomqKlbtD+MMtusU4\nAY4MqhPhVjvpnCO0wWlGeNUQf7NLZq2DW41QbZ0ygmRgYvH4pH3S9ITrDYgQnKbGbYSolraC8y1N\nZiMkUwkRoUZuNxg726F8DYrfySICSXNCEHm2MopjGBips7+0zqHcMkczixz37zHtVGgblwHZIiMC\najrLrLfBXz7+dcIDLWQo0C2HRtfld9ef4XbXsjxONw7yemsvr7SnWA1LvN2Z5UYwSk522IpyBCg2\nogK/Xz3BQjDEb28/xUFvmbbxWAlKrLaLqO4jmKuStp8+QEGee5fh88K2qsagSjqmJBpBkDKEUvMV\n2Rt3hOchfJ/8d64AMPKPTltdl9fegb2zlGNig3njAqpUYvzvvcKH52+iDu1P27mE76djhHAcRLEY\ns4Uiy8jJ+HFhTqa2yyjZYwil7MmYQa/sdanXNmxR0xjrPtzppMWx8P4y3tu3AVj7i7a95+xTku6n\nniE6cRCA3JVVdN4nWl7F+IraU5O2+u/7uK++i3EVtZcOoZtNjvzP15Cjba7/Uh7je5isj3O/QlSp\nULjTwiTj9mvvsPfLjfT8ua9fQVy+BWFk5+ODtk0q8gRRpcLWSQuMbR52YmD3g1x2xYPEbhDqxJE/\n3WaTdmkhIAyZ/AO7nhJPHbcAWawJ57RsQSRzYzUF7/VblywjCNCdDrresG6auwSZdduyyNIic2Ix\nryNrotNvYtC3sE/YSf2tXEIIq/daKoJUFL/xLnK7SXvItcL7szOob1ktVNXqzZdqeCh1OTPv3sS5\ndLv3mcagZne6eiagQ/Pnn2f9L9hrUg0NcuvPzaXgTjCYsRIjpZLdtxhUCo7O2banRB8UyN7dfh9f\nxo8o3mOIE9t1ayyScXramf2uzA99k3jwf0ch6k1ktWk7WpJWPmPwVuxnYEB1BGHOUJ+WOM0It2Gv\n5W5R0S07ljHj9JhlwnGQQ4OYmUkYGYzXhzIdF03HdmT0i0AnXUmEkTWD6ti1vkhA9Ciy6/Ranez1\nNXJ3qiAgdz929SpbJmXCxA/yisaYoj4t6QwJVAfQIPMh+WyHgWybmeIWx/cusflCl8a+clo81Er8\nf9S9Z7BlV3bf99v7hHtufPflzgFAN4AGBmkCgBlmDWdKpGQFk5SokkqWlSipLPuLXVapXLJdTh9U\nViiV7LJkayRRRdlWMEsaSkNxKJOcATAYZAxC5/i6X745nLD39od1zrn39TQHzTANeFe96u7X76Z3\nz917rf/6B3QG4dASDi3VPUP9jhVgKA9NcD4E4xmT2EQilTa5XDpZEFl3MLbwW8CfPzGAUMEQKv50\nnZ5Q855/DLsg6VplMR0EJS0QPWvoYa7ALpZ1EoNYrwlL5s33yg+bevYJ1MvvsPPp3KOnXifYzGVb\nZ06go4pEVyolqVxxPCv0PQ/VbGC2tmeGmoFIfHQUyeQlToTeWtwmfz52PBb209IiZm8fOx6jKxUx\nT8vjvwsASi+00I8+jFmXtAu6oqX2zp3F/9XXUUGA6fbIrlxDr67gxlOwjurlPWEhPf0oqlqldkPA\nnyKJzOztY947LxvrS++JhO38JfTTjxN0Y7zFRSZffgaA1i+8Qnb1Op3f+3i52Ucf3iHc6Jbmnf7t\n/Qd80M2tounNG+d5zW3WimbPS+ncyLUwZtb5NG2WKHVAy25k4uAqAf7J4+jxlP5DVSbPnGD4xDrt\nD4f4uWfQvMa5e6Yi2tXiIJtMD4AMrlEVJs9uB3fjtsgeXE65zIsO04xwp44cTAzJGxuv1UI/9ZhQ\nGONk5pofJ5AZ9OH1uYLPMXhMDki/O6X52gaTH32C6m7u0t9zVLoZ/jSPFU8dlX1H/WqfaHuCzhzx\nYk4Jf/8W47WQaC8lGDt2fu5F1l6DtC7GouZHnuPKn3uYqGPJahrT7bH6piP82mv0fvo5Jqs+/adW\nqd8x7D0RUfuX34LAp31pSjhw3120fEzrwOe1+N78vvKbaKLd/IHoa0ykSauatKFIVgzZSgqiwBLK\nbW6GmG1u0Xp7h9q2vI/OOaHXJzOkQ5ozMRKNPtjA//AGlc0BfjxL9irYQoXR9IGUMa3Iqh4mEr+Q\nYGgIBoZKzxAOZNpiGiFKaypXdvBHhqwVMX54kemiMJyStYzFlQGnGvt4ynFr3GYzbTN1AVo5Rr2I\n+nWP5kWPyp6muulo3HD4A40dBPQmEU8u3eGPn3yVI36Hprb8ydOv8B//8K/xV49/lScW7lCtxXiR\nwffzRhbYmTQ4u7LNDx69jGsYuJHLeJ3HyFZ+F9/5+1wKMZH2dG4mrbBVn7CTUOmmM4mWVvmU6i4w\nJd/jy7Mkj5ovvj7y4a0TcNEo3FLC1uca2B94Jvc1gqzhkVXnQKfJrMhWn36C6Refxlu/P18hVRgy\n3sdyoxHe+hqVqzu0L4zh29+5r9sBTI42iBc0o3VPwMcjlt1PRSIv+d1aC83f3fv7bSzrFDo32NHK\n4mvDnVGL/pW2mCvrew/HynWP96Jg4phQk9a00MRz4+eg56ETKRK9GHRg0KnCG3jEo1DYikrJtVMA\nQUbOUacVOjb4gwRvMMUbxvjDJE8RdOhEil9vakvvPGUp5VrKgj8xeLHJr9kMf5gSDDP8kXyRM04r\nN7vUdjPqW5b6DfEFcz7YirB8VhojQp3Ry2pEKqWtY7QSw+dr2TKbZoGairmWrBLplM+dvJ6b2SsC\nT37PS96QUBnWgx7Hg33a3ohQZVinOOp3uJO2WfUH7GUNPh1d4/e23uZctIFxmjVvSKQSJkb2uo/F\nQyhP1AWpU+x4jItjlv7BKwRbUt/pinh7qDwCWXnerBEqGFuFzULx/TSTJml9lcEfFU+X5MufEYlW\nnLD68m75FArJ5/W/cpbtH16TJt3e1ciPJMhD5fVwWSPnASfK92f2Ck89Vr425UuqlJ1OsdOphKNE\nlTK22XZ75Z7ptVqoSgXb66PrdYIhpRdM9I0PUC+/i3fuLNmNDfRIYufd6+9R6ciZWrCM3Jvv0Xx/\nj8EfeQGzt8/Df+wtPvPiBaYn8zh7Twsbf3eA1xmgowj/oVMkC2EOYjiy586Kr83FKwQjh1ms0/mP\nXqR5XnqJx/+LG/gnj3PolTHeMP7ejfP3axVBPEqhjh0WX8DfySquwyzDdDpk126ImuHN96icz0E+\n7REOhGnlwoDxY+vlze1oJAx3zyuVHXfvzV6emDy70ewcNZeu4caT2fedQ9fr+IfXZwbPSF0OOTjk\nnNTa1ogh9c4erf/3Isd+NSlfj9deEIbO8WN47QXc4TXUZ56c3V+1Svx7P1vK4LKr10m/9JkDwwvd\nXqD53h7rv/CeyL6tY+l9Q/g1CYLwuzHjz5zE9Pv0/vgLmC98Sm73jbfQv/YmOMeNnz0ln7+5s/uT\nssxqG39k0JPcVHpennU3S6iwvLiXXw/InhZIjTHv7aP6IyFrhA5/Av5YMTppGB0JZhiBJ4PngjlT\nBBHopUXSEyuMT7cwyw3pxbxZOEzht3YgSdrTOK1RcTLzEfW88ssVLKcsE9BoErN4PqZ9Oaa+me8p\ncYY3SvCmGTpz2ACyKqR1RCHQyqhEKYNhlb1hjeXKiFEaUm3G7D7pk51YA9+jtpXQ3JCgHuVE9i2v\nT35/zVsZzStQ2U9ZfmdM2HcMjzsGp+SMr+4ogoEi7EHt9uRAIu5HrU8MIFQ0U87TEjXqaeKf+CxO\nK7ztnhTWBTMoScppqzPmgIn03fHuaCVIcxRic7+B7PYdAXnefA9veYmFy7nsq1GTx5Y7EyPhahWU\nnqGFxcGnPczW9mwCrJSwcfKD2KVyYbl5EMm6MokMY2Q6kr9RNo4FDLIGXalIJGYBKFiJPfdPn8Rs\nidEdtzblNfTzQ+r4MVwlgNVF8bzZ7eCfOIr64Cp2OMLduI23vkayWoc4xltqy6R4r4OuRqTPPyZA\n1sa2vAcLTaJ//SrjP/x8CXRE+xn+y+/hnX1YPrgdOfD80ycxh5eEmfKAl3LMGEK+dwBUSL78GYLb\n+8LOKRLE0kyYZc6WwJBSuWzMzmlPS88ng41C0QZvbrNwcUTYiamf30U5SGvyc+mpNVxNDp+FKwlu\nNKKIiRUK9dwBrDX2yg0pcArjvPFEYhIDHzUc43fGEsfoz65ts7cvh+baMnq7g0tz5No5XK8vh12W\nCQA1jXHTGNOMaL1+W8zwhmP6nztWAgYmlCls52zIZEVTxJbbAMYnWqjM0vrGVfyxFd+tTofmpSFZ\nXSKCvVjo5WlDNPO7T0XoVO5Xp469P/2iTHmfeozOo5rFt7osvHITfyrvkX/0CGapwdZnc630J0Ax\npmu1MongezKW7jXxUEr06VoOKi+28lod4Dl0ZHChAwVxO0Dlvg8AdHqEN/blPS0kgvM65zQjurqP\nvngD2+lKgetrkYLkQJ4f5z4eEkhw4LnZiofzNd7Ulolw/thQ3RhS3RgRbU1QmcW1GuKhkFri5QrD\nIz5pA5JFiwosa40hD9d2eKK+wQ8tXyRQGd8YneXOtMXi8pCkLayzyp74JiVthT9RVHZ8ksRH42h7\nMj38TrLMD9Yu8qfbr7Fn6gxNhafXb/OZU9c5d2iT6tkuxmquXVznnZvHuNBf44mHNgjP9Kn5iUg8\nsB9L4k/pH6QUeOLZlCyEOKXQo8lMBmZsubfIv81sjyo8hO42xfyIVd01VDoKnSoq1ZTRC2N2nquR\nRZ7Eb1d0mWRTTDu99TX0k4+RNSvCYPtN5Gi/k2XHY5F1ZAb9+of3T1Ou1/HHhnhBMV0GLFQ6mngZ\ndn72aT7S4PR7LP/UzB/CXLj820oz+91cWrkDf5+agO6oij/Om/O8wHXq7s9w8edvvicpB14q0tSi\nsrOBK0GaYOBwnZD6hiLaU6iBP9tz5+7X5RJIPcnw+1N0d4QaxyXQWcTDe4ktQaHCP0gALQGDvDj/\n/9SiMiludZzh748I9sd4vSnKGElrAVTmSGsKnaeZOc9hI0clSgm0wcOyEgxo6SmBskTKEOmUvaxB\n30SMXYVAGbqmxpPN20SnB6hUMUkCEuszsFW2TZNPRTc5E25RVwk/WL1CTce8NT3BI5UtbqdtUufz\n+vQUO6bFcb/LSjDgV0eP883+Gd7ZP0o/nUlCHuQqPTNzkMd+9gmu/zefZ/Azz+OiQCSXRfFvrTQ2\nuTnzvYAhoKxNdRRhzl+i/cYO/uFDRL/xPgD2xgZqOCnN3gs2g/fv35AGRe5wxjrMP6um25014HOP\nZXb3hKkU+NjBUNgBIM8zr3dVICx3jBEgSStcnujrJhNstydsj1pNGBmTKSvfvIPpdMRvKKqgnn0M\n8/4F1KfPCZOj3cY/eoRgc4DzPOInj6Offlye6/lLLPzrd0sT/Iv/8FE2/9yUbFk8Y1jNGScLdXZ/\n9lmIE4J+ypW/+iwb/+Xn8V5+lxt/TfzcFj7swavvEnUN/ccXGP7085idHeLTq/iDWGo6c9eA4Pu6\n5HeHMSXb2Fy4jHrp7d+de/d9vMVFYTtf35B05V5f2EDWMF30SM4cwVy+jpdY1GcF/CgYZXYyEXBz\nMpWQnfwa9doLIndM5CIrGEUg16rXqKNWlvInkbOVwrBknBX+ey7NpK8JwtnAPb8P0+0Je1ZBdmsD\nFYSYbg9vcVFAJc9Dbe7g3hDJmItjsjub1N+6yeRone2/9Hm8VovoVp/wzuw8Nbt70O2Xr8t0OtT/\n+bdKwMu9+R6Vr34bgIWff4W9x2U/6f6JWVDEsb/zBpNnT5YJbAfYUB/j8o8dZXS6gQ3uAn3MnAzr\nXhKx+Z8tlpJ+TPWHUvcORrDfE+Pn0Zhg7PCHUuNmdUf96IDhUY0Npb42OfMeQKdWjOMXW5i1BWyo\n5ZwaJ8JITGcJiy5OUHFyUH0R+qgkFTuOLJP49zjOGZS5Gb/WubWLAIhhN8YfpYSdGIyT9LEkA2vx\nJoZKX7w9bcWRrmTUFiecWt7n1PoezWrMpf4qC+GU549d58gXb7L5BSGmhNtDKp0U58F4xWN4WMJp\nkgXF/jmP/ccCgrHIwuKVCo3bBn8s5tVZHeK2I16y+FN5/YUv0/2sTwwgVFCUS5RxfYXapX2CfWlu\nC5SvXDlypzxPQKHCN6O44HItcnkIXrkhU4fDh+SAWFuVQ8w5queF6u4CH9uQD2fWkAmAHY+Fxg+5\nAZ/CP3wIs7NTos/F0pFE29rxuDwgVRDO+b/ksoBGXQ5l52Sio9QMdPL93BDQ4K0so6rV0kCzBM0G\nQ1yWiYP+Qkvur9cXQ62dDnahIbrtwVBkbieOoJcXcatLhB/cEprv6SN4ayty//0+g+OVkmJpI4/s\n2g10vU7jl97GXLqK9+gj1C7soJSi++yKJMScEV2sCwP0tc2DhcYDWmXRXJiaKVUe7NFL57FbOwen\nYUXamMpZQfl74ua9PgofIS2pHV5nIIfXU4/gjRKSpQizWMdEPrUcHXa+wtbyhITYyPuYpLnMUAu7\nDDGLtReuzgDGnDmk6jWoVSXC0PNwWmNzszWlNW4oFGV1+jgqFRqtyn2sCt8p5XllwaRbTVhp4125\njRtPGf7AwxAnQttPhcFjA9GhFg1D2HNUdy2LFxOGRzy651p0f/Qhsqqm90Qbde4R3JvvMTjmlyky\nzVuZxKj//ZfRiYABi195Wdg/SrxNbvzkErU7Dt3pc/sPnqLy1W8TL4E5tMh0rUbYm5NefczLjsei\nG4ZZstu9pGLzkZV5hKUy9oCZM0iDphPQAw87kmLaBo7xmjAMsU4KIWNxg6Fs3gU1vfjTOtx4jLu9\nJUBxXuC7SlB6eHipkwYtc8xH0YN8RrLIE5bRKMOLTQkKqWmKd2cX/8Y2wVbOjlxtMzwWMTyS6589\n8CYaF2ti47OZtDjk93iueo2eqfPLdx7nGxceoT+soh8d0nsmYXjKkbQdWQSVDlS3IOlEfP3aWX7h\nzuf4xuhR/rtLP8nf2vwi+9bjl3pP82vXHmFr0uSR+g69pMqfP/sNnjm0Ab4814sba5yq7/OjJy5h\nnWI3bbBnGvdOZPo+r8Ist1i24mGqmvGhkPRQG9WoyZml1UyGqvVs6gT5UMOVe4EqPD0+YkW/8T6N\nW/Kil5sjqrWY6YpjuuyTNDRZJMWSmBtm2JUF7LFVTLMiKYHbk3tGtZcrH3CUfiTf6/cQhAcAG5ck\nIqGN72+y6R8+RPLCYyQLPsHQEfZEI5/VHPHpKXufy/BPHP3uG97nxCu7duNAKswnYYmPkFw8NT/h\nifVNFp/doXfWErclmQSlDlxf30suBoBxJYjkvBwgHiv8oezzpiLFc/2mhzd1hD1HtO1R6eXn393e\naNaip4kAQbEYcapYzKZ1NgN6vNiWUrX5pTKHN84lYXGGngpzTmVW6pS93KizJ+dautZkvB6Q1hRe\nIsMGHSv0VKG1oxVOxRg63AZg30Tsmxrnwi2OBh0inZI4j6PBPo9VbnMk7HBisYNOFcNhxBubx3ij\nf5JL00M0dULXVvkwOYxB8UTlNg+F2zwX3eJctMHARlin2M5ajG3Aw+EWK36fQRrRGVfpTqvix/SA\nlzMzfwxnDMHVTVpXHHe+nLH5A0uYk+voek38eJyToJV8Ki7ePPl7bHMgugzXmPnKmAuXoRJKnREE\neEcP45o1bvyUWA64LMP+sISgLJ4XawM7Hh8YoOlaDa/dJtvcOlAjF4x3+XuKrka4wm8tZ/rb0bgM\ndnBxkisDZI/UlYpYMVSrKM8TC4XFRWGIjCf4hw+hThyRsI145rmYLdbIzp3EjUbSfL75HtH5TXaf\na8MLT8nTHo0k1bfZZO2fvMNkv0raCqHdwjQqqGkiqVgnFNmdLcZHIk79Vy/jxfI7Of13LzL9fZ/D\nvS+M+Zv/gaXxf3+rlLLsPB1h6qF4hTzQ5WZssRzMu7tv+Z0sO5nC2jLecfEoNbt72PG4lPIuv7rD\n5vPyflUubNJ9NPcwjWO85aXy7NORmIHjxAdLwJq07J0KmwRVkT7F9Pszc2ylZY+ftwkp/s9ZIQSk\nSen3quv18vxzzhF+U1K+vGUB/lQkvx+zt4/Z3cM/vI5/aF0G4YhUsf7ta6y8PZbh4dYu5vwlvNVZ\nepvZ2sYOBuhmo0zB00uL+A+dYusvC3ioPvsp/NMnWf1fxYu1GJTu/dkXsdMpla3Z8ML2Hvyw/V4r\nu7VB/eqQ6bLP4NFFzMoCLgq/mzVfnCUFQDQfsjHPIpq/XZbJQAlQlZCgnwnDfALZckoUZGQ1SS1O\nqwpTycNoAC+xOE+RLTewFR89NeIP3BsJuFM8h3mv4mI/9LQAOZ2+mE7P9YplfxZFqPnQG6VkQGIl\nfEE5h/OkB0wWIyarASYQ5YRToAKL71kOV/t8ce1DfubEG/z+w+/wE2vv8lMr3+aLax8yOuKwtZD4\nUJOkGYACUxHwS2cwXXVM1zNMCElDMT6WsXfOJ61plj4wBCNhBoc9ReOGpnkjQY0mpQ3J/axPDCAk\npogq99/Q8sakGd5+H5YWYHHhgA6wTHKZj+3NI+jLhCiY+QwhU1I3jQVttQ595lQ5gfBaLdKVGvad\nD/EWF6mcv10i1K4wI7YGb21VTKMrlZkMyBqUH8gEIxGzX12NZt4xxpT+Mf6xo7jBQHSpOvdBynWx\nLpUDsIxtXF0SryOl8NpihKfrAhLopUUpvm/eEgpc4OOSBLOzg+4OZMNbXsQ7ehg1ibGtGro3xJ4Q\n2uat39Mk27gtiLr2aP+jl3FfeObARGf4pSdxj8sm2P/UsrCsplOa13LAa74mmjdjfoBLOeYaLmEJ\nuWYN/+Rx7Ggsh0GclO/LbKOaM2ou/D3IAaP84BRvpwzihPRLn0FPUmw1QKcWUwsIb+3jj8XYdbIS\nltGUwWZPHi9N5RpKM1ySyPU3GkvBlrPcXCqm5kxyR3trIfAFwQbIDGZ3HzsaiZbeU7jxVOjY5EXi\ndFpSsO1kKgdaVBHTat/HHV2lcaFLdnwVf2rI6h46cbQvT/GmDhMBCqodS6WT4X/9dQCSpmLaVkyX\n5HeWrMhhPvnxAc0LPVbe7NH4YI+Fayne4iKNO4awK9dA90+8yHhdoRdajB9JQMHm7zvJ+is90i99\nBmXA2x8S9lMqA1dKDj4Jy45GAqZaO/P0gYNA0N2rOPiQvQylRDJWyyOd+xo99ig00WlDka0tlF5k\n5X0UiQh5caNyM/TyWiSn/C+0MDVf5BoTi04cOhbjVlXsKcX0w5NpidPCFFKZ+IWoTJiYLk2xgyFu\ndx81njI52mS8rklaiqwGWcOJ/MJzbPWavLp9kpENqauEQGUEnsFNfEw3pN0Ys36oizkU47QYwzZv\nZdS3DY0rPtWvN7j6tdP80+ufJs58JiZgI5Mm4QsnrvKTh95lyR8xiCtYpzla7fKpR2+ysjhgYWFM\nN62yn9S4M2qRWJ+xDR98c5bvOU5RFjPeOCPaETPe/sNVhk+u49aX5L0thxdzRVK+lKdLyjzqHl54\n91h2NGLprQ42cOwN6gy2G6hMmCXB2OElwkJTDkwtxIU+LvCkkZ9m6Bt3PuIBctbi/QQEOIsKfJna\nriwfiCC+n+UmEyYrAU4roq7o5J12mLWEWjNGVQ3JsSXSL32G7b/0+ZmJ9G9h+GA/BubqPZcTyZid\no/5Yp8is5lB9wJknbzH47IThMVWmhRS3Kzx5iqXcnBzUCDipM3nvG3cyoo6TmNoEspYlq8k1sfx+\nSqVnSZuKxi1HMMwL2tRANtvbVGYljXOufnKeUP9VYtGpQScGnRpsoIUBZAtquyPsp3hTmb6jJKFS\npaaUiJV7Wk+MYsdHIuIFRVZVmEiVPgmmalHK4SvLetBjyRuilWXqArZNk4ENOOL3OBtsc8Lfp63H\njGyFqQ34VPs2NnK4TDO4vsBvXH2Yn7/wWf7G5o/zr7rP8t74KK9MTnIxWWfsKhinaOsxX66/z27W\nZGgitk0T4zTvjo/z+q3jZEZj4iW+SAAAIABJREFUnPp4fMvmmIXK83DTKcv/7B0e+YeG7tMpl362\nzvAzJ1FLiyWw/F3DDChB6pmRs9yvfvRh/OPHsHsd1F5XJvWdHuNTC0Q7s4vPf+2CSOTP35ThGhxg\nzpODNSoIpc6Zew52OJIhme9DpYIaStMrPyc1tn/6JIQBdjiSJNz5KGlrZNhpjDT2xWfbz9Mddzsi\ntSkayyQTX8yGj1paxC3KWZPd2mDpH7yMnmZ4jz4iibCtFuQejY3VEdd/UmPOX8IFMy+m039b2CL1\nf/4tAI58fV/MiHd2GK173PlL4hNz9n+T+i2tKfRTj3Hk6/sE13c+lhp5vlEvGDL+yeO/c2Ao98Yz\n5y+RXb2OqlQEDMy9cUDYV8f+XQeXCfN54edfmd0+zdCLi3L22Vk6ptg4eAfPn1yJMT9ocDnrw2s1\nShsMkAFp+XNK9qySYeTczIMziiTJeipSxjL4IJeflQyy7V1JxFttMvoPn8d7NA/j+ebbEv6wt5/3\nlHPWJUFY9hF7T8nvPjuyRHJ8keX38uf2zgXstsgx3evv0bgpErj1f3VF/v/9S+Xz/CQt9+Z7LL2y\nifNg79kWk4eWBOhUajb4unvfyUHJUi6ZM24I/Lnax0PVa9gT65hjq0Q3e7SuJ2QR6Iphb7cp5soe\n+RCCko0POWtbydmlU4PfmwrjJ2dpu3zPA4TNVDDwc4maG41kn8ltRAq5vEtSudayTPa7dhPbrKJS\nkc3pcSpDDiBrVeifDBke15IsXFfY0KEDSzVMmZiAqQ1Y8od8vnaRF6pXqKuEb+4/jI0s13+iyZ2/\nGNM561PppNS3DPU7hrCXsXARqhs+/hiSBbEMSBYc3Uc1ysHCZSMKjUiG+5XtkdiIGHvf6ouPOSM8\nX44ZGKSVRJ4WRq2eJ81xIckoJGLp7EQuQaCimC7+LDa/w4cwO7u4bg99/AgX/8wh/Ili5V1Dk7Mw\nGGPHY4JXP8QC7vg65jsX8VoN3FTP5FyA3duXD74VL5rSyKxRnx2CqfgNuTjOk8kyeT9yFNTk8fLz\n0+Bi87DTqWwmOXugWKbbEzlLbnJl+0O8o4cAmJw7THR1H7exWW4e+qnHpPiKE1zg4yoByalVwpt7\nzJf5KgzxDq9jNjbxtnrQasG/fwP9zDkal3vo/pgMGBz1qP+ziwx/5gUW/u37mDQRre2hdUgzzGAg\n75Xvw4Mulu5uoqzDVUK8h05Ap1ceFF4+nTqAFJeJYrpsbkqgyBh5fZ5H9fwWdrHJ3qeaZDWRVR15\ndQe12sKbZjT/zQdYxKPJvHce/9C6uNIXj+UkHcyORiXV2Vkn4GG9JuBDEMht0gy3s4c6eVSu+SLJ\n7ug6amt/7vk6AeI8japGM+0r4GoR5v0L+EcOo7tDzGITW80nRIbcmd9nfFhR6UpK1XRBkx7ziFZf\nwPqKcOgwlVxuMLakLQ8fmI5D7DviDzL8GZl+bP/UY3hTqPQd/T/2Av2HFa3LTqZu4Rqr/8trXPvv\nXyTsNwmHlmP/w0uYZ58gXgzxEov1Pn520Pyy4zFMY7xWQwBX+G66K8ymHMU6oKMGnDTpy9+R16iN\norKfYCqyiauoInJGZ0H5qEZDZIJpBqP8MCsmHMVDL7RkMqMU3tSWtFnID8p0jq6bg0xeauX8K3yF\njJWmTykpuqexyGuXmsRtr2zI0qbDVCXlp7YwoVmNeaS9y9hW+DeDp6jolBdXrqKVY29UIzMecebh\njCLaUbQvZ1TvjLGhh9NV/LEF5bHfq/PYkS1WKkNeGz/EmeoWx1t7HPW7fHtymlqQ8mv7Z3jrxnEe\nObzNsWaXzVGLV66dolaLqfiG/aRG02+iPhZT6RlrtGC2euOExvWMeCVivOYTt9q03/fQt7bLpIoy\nNRBmhZNzM+PnezQM3qOPMDq7RP+kT9hztM8Psall4bxiOG0QOGhdczSvxwTbA2ytwvhEvUxCKoAF\nlRr01j5Z4Xn3vdb9+gZlGUppVLXy22owTLdH+61d0rUmpurhJY4eHn6UMu5HuFiz/0QF/fv3iDyD\n+yf3J3XzVpax3d7Hk3r5PZakitkD0jEArSxVP+WJE3e42lhiZNq0LzMDg0DAlbtAoXIVDGsQVoJz\njA870kMpzaURo4WIgYnwpx7RvqG6pYl6hmCcye08hZ5KneW0nhXMBa0+j3EG0AWwo4EU/GFK2gxw\nTmo4bUQaRrEX5Z5Eyri5QjyXP9XrTI8uMFlWmCJl2cnek9Uc+A5jNNYplvwhzfzD7mnHyIV0bZWm\nnhJiSfCYWgEobiVLZFZTPSRsz2wjxMY1Jsspr6oTtOsTakFKN62xFI6IdAo16JoaP1y9wpNV8SHZ\nzNqs+X3e6hwj6VXIahkDz87kUg9y5SxmpdQsZMU5/G+f59y1Za7/0eNs/GzM6lcPsfi1PrY/lHq5\nCM/AlNIxp3NwIP+3OnYUtnZxiwuo44eZHGmyf67CyjtTbnzZI+wq2j/4LPo33sSORvinT4qXZasl\nKVGDQc6sNjMT3nlWAHLW6aAhLKAsQ9eqZFevy/+F0kDrtRWcp7H73RIoV54Mf1VVUjhNvy8NXiqP\nV+yhdrGF7uT7Q5LKAC4f6FRv9kkPt0kWAuqdQ1Jn1Wu4Uc4kWVvGXLqKevYJ/N0eR/9bxfh/EjZa\ncGMXu9gQgGCS4K0syrk5GGE8T4BPIJg4lv/3lxn91POMVzSrr8DKz79B56eeZem1XUmfLPzjHtia\nk/ZYm7ORDXa/i261oN3EXLxyj5upjz4DrMHFMxDExfE9+0779ge4zz9N91iVxv+1KUDeaITpixm5\nbi9A4qNh5nNVhjIULOnZ4+goktsUjzuNZz1VEHJAfm1nDCNdq5WSYd1sSnNfMIXmzgmXiaeWt9uT\nfjBnPvlKs3AtmBmh5wNCb30Ns7WNt7IsYNH5S3jHj5BduYbZ3ePs37mJ8X30xVu4cyfxf+MtVBAy\n+dLT3PxxxZm//C32/syLLP/9l+VuF1twYg336rvyOJ5370j37/v6za/T7Mo1Ght3qL5wjs6ZCGUW\nqF7JDgZYHGAMzd1X3tu7IJdpTSa444e4/SNtRsctpmoJuh71Wy3qW4Zo3xFvRvixWBFU9wQgcZ4i\nbuc9jXXl+aisSKVUp49NUmFKlgChyvcMUQfhe5CZ2f+XnkLzLG4rA3el0NWqPO/UiJpDazmHc+al\nN8kIhyFZXZE0IWk7bNWiHaRGY1Hcmi7SyWo8FG5zMTnEP954gfPXDqMcPP2lD/nPj/xb/vzX/lPC\nG/uENxAGFhD0QhYuBdjQY7wesHAFdp+BrOowgTCK25ctnTOacGjFVsQ5SXG7T0Tok8EQKiatcEBy\nIehfrt2LQjkIig1izjeomIIozzsoG8tNhF0i7BzdXuDCz60T7SlOfrVP7V98C/P+BbKbt3IJjphY\n6s5QmvRCmlNMW4qIQe0J4l08/UpuIgylKTSIQ70Zjg5Mdgo5ivw797LJga7CUFR5GlWrYs5fKm8H\nSGR8pSIHeO6I7h89Ik3Ezt7M8yjwwcLwjMTZuShAJRnh1W1cQT0sasxHT4tURSvMlRszl/buEHVz\nCzfK07MuyuuNdlNMv18CT8PPnizj3O85jXoQq5TtzF30nqDPqtmYmdXFsRQXd0VFltfQfNw8+aQh\nTTE7u+B5DB9qMjgtCHVt28rh8tr7+O9fQx0/Ilrl8RQdRbkONSvvT9frZTFgC+DGWbxGHXwfu9+d\nAVVaw8PHJcZ5Tm9eFjtZNtPcazXzKSm8AqJIJm/OScrZfpdsoYL1NCbU2ECR1DXDIz4mclQ6ltqO\nKff/rKLQxuFPJT1GZ1C7OaSymwNTk9x34OnHqXQzwr6hsZFR6Ytj8mRZE3bETM3+8LOwJ41i7Y6i\neW1SJtJ0n2iS1bSYp30y/KQPLptPsecLo7sj5++xXM44K+KYKx1D4/qY1oUBrff2iS5vU7vWRffG\nB4pD5fu4WoRt1CSBTunSA6L8mTCUKUrkl14e2rjyy80XcoXBtLFlc6byCX3hgeOUgpylpBoN4tUa\nWVUmLU4hYJMD5VkqQcZafciZ+jY34mW+sfswG/EiS/6I5UimbrvbLQbbDUi0JJhtTtCDKTox+GOL\ncg4TKczEZ3dc59Jgle8MjmCdxlNWGjxvyrnFTXwtF8XWoMnmqEXFz9DKkaY+mdF04yrdtPrxXTvf\nFRcvw4zK7pSoa8SjqxGWzKDSmPBeevoDBdNsUOAfPsQH/9kSk5/r0P4DG+x8Mebml5oMzsi0zIvF\nQLDSM8JMvL2Ft7lHMJxJJtDiCaMmyfeMf7/7se93uVSYsGZ796N/+F5re0+kbYHKCzqF5znc2EOP\nPMbrih85cpG9bqMs/D9qmd29TxwYBGDvKrKtO/hvXxmOtPrEiw7rqdm1nYPL86v4DBfYkp0z2Jwu\naszxKe3lIbUwxfNNbnKp0Imlum/QsUPHBudrbCVnWKSZpFZm5p7soALwVjnAUzKV5lhMOs2n/dZC\nZvOClIO+W1qGfa5RI2nPBhXCupMz1gYOFVrqUcJKZUhdx6R5yRooS1uPqSs5kyrKYJ1m7CoMbBXr\nFKnzOLQg9Y4/VOKzMPYY9yN2Ok3GacDOtMHN8SJXx8v8Rv8sO1mTr40eZWQr1FRMpBI20kW6E0k/\ns4lHmn5Mc9TCWw5me0c+NLW7+xz75R52L6T3sBZZVRhInah0OVQCSqZ98eWMxW3tCutYa7J2lej1\nK7QvpWQ1j+W3Fe2LMkBwX5CgkaJJcUmSD6SqfNcqLBICsV8wnV7pe4gnjVjB+HNJgp1Mya5Lgqvy\n9GwYkqQUcenzYRklSOAk6VV3BwK6aI2rhDIk87Wkft3Zwe9OiNue/EyS4ho1zHKD8Zll4pPiR+Pe\nfI/Rpw6jLt3gVGtP0nuTBN0XT0c1GKHGU2w9wi0JKLH/uLBPCgC+/s++xdL5GO+JR3FxzO5cWKKK\n0wcMCM0NqGAG8hojnp/94QF/ntnNilr4d2g+nS/10ts0rkmNUMq5yJllWSYpvYVEP5dauzS5p+eb\njWM5x4r9rz4zo57vy77rdtN49ns4eRSskzj4u16jzS05SuCn+H6/j+1077rPKdnDh9FPPobZ3SNb\nztPTtnbkuQUhbjgSAEsrgst3hFFbjahf2OfE1yze2YeZrCr0k4/Ja9/cZee5xuxB7vbF/YQsF8cE\n71yj0neYqjcLVZkfRsK9n7tzqDQ3aK7V6D7eYroqnnHKKbKGJWnDtC0eQsFI4Y9kSB32M/xBTNBP\n8Ke2DFKBnDmbWdQkxhV9d9Gf5mx7FQQzplJmhE2YpActaeaHIcUqJP8wN8CTn3GesJ/0NJOE3snc\nEAewqWYSh0yzgL24xq1xm33T4ML0EBc+OIa3F+Dqhh9ZPM/ARtQ3DW44xvUHqE5f+sr+hGBvRLg7\nIhhbvMThjxTBUBHkCZ7Wg2CEKC7me9r7XJ8MhhCUMgfn6XKK7bRCZUa+F6dCRTy0Cps7AqDketMi\nTtMVf5bTEwtWC6VvdRXaLc7+PdF7OqXwFhcxnQ7uxadRL7+NiiLRH1cqM7lPls2m6HEsm0c+ldCV\nCqrZxOzsYHZ28FqtMoVBJhpV2NvHmTwZYWUZN5mK3CxHJAsApjAWVUGIXmxjbm8CYuKV3doQUCMv\ncE2/PwOnlCJ6+wZ2NBFmUbsFmWF8ukXjVz/E9Pt4Zx/G3dnGVULsw0fxriqOfb0vaUeNCno4EkCk\noNN5nkShLy6U5qO1V6+Q/uCzhK98gHnxafTVTVzHUb+wj7m9JTKlNP14ivC7Nx7nSmq6CwP0oTXs\nlWtiGLe8NLtdUBSiQkdWnsal2UyD72nMfgd/fQ2spfkrH1D7lwP8I4fFmByhq5puD21Eq2yvXi+1\nxDaOxSMqkFQNlXtFYSX21FtZlkLGOfRSOy+WLKQalXsulAy0KMrR7BykJE/f8H3ZzJSWRLtGXUDA\nW3ekeNsfCWPKk8SYoJOilyJMGGAqYi7a/rCPHsZ0H1pDG/HwWHl7jHrpbZI/9SLVvSzXscoG+/hf\n38MAt39kkcPf7GMiX0yLPZnwV7qOrCoFkkotx/+dYffPv0jYc+w/WWPpvTHT3/85GhsJSUveA/G+\n+eTIxoplx2O8SgVq9yh4D/ygQ9AXAQVUbFCZIxhbate6cGcbO5pg8sJcBaFMqIriWCmohNhmhA19\nPA2q50OSzIzJwxC90MI2InQmQJEwK3NwRytUwVq0cjgWTZgXy2Tehv7BA9pTuKgClZDp8TbdM6Ho\nlvPEKm2AsSZraELfsFoZ0vSm/PrOk1y5uUp8zOfM0S0yq+leb3P86/Iebj/nkVVzOq8x6FFMZd8j\nbQZgoXIrZHuyzO5Sg5X2kHY4YTdrYHJgCKDpx5w9skXkpfjacijq8/jCFt+8fZo49dkaiJxDP0iP\nznw5pcowQgeoorE3DoWldmuM9eok7YCwEsJ4QpmSOS87zEEipRSujAievaDLf+E0tbU+aeYxdBVQ\nMF0zTPa0mAlONTqVNAm3sZl7YA0IV9uwWjQqDt0ZYq9vfOTUV3ke7iMi5u+17heoKZa3vDSj+FdC\n9p9sMF5XtK5blIN4HOAPPHQKSduSOg//vXs0Lv8/XPMsIa3cXPKYXBdVP8UciUkvVPCnHAQ858Hh\nuXMOJ4leaIX1FPGS4vBqD60cg2mFdByyeB1aVxPCzhQ6YKMArJPEIU+JJ9A4b9byJNaSVq8lhUVP\n5ybpBTDk5YWnUwJQTw16MBWgAJP7E+U3yod8qhrhWg3GDy0yWdYoA/5IBhA297+SBDRHPUxYCwdM\nbciVdIVHg208HIEybGYLTF3AIb9H4jz2MimyrVNUvZQfWr3EP956nvaOEwnr2CNe1GQtnz3PMkkC\nKkHGcnVMYn12kga70wbWKc62tnmousPQRDy3dpNf6dShFzK1FSofB9aY7x2lH1ABEOXMIX35Jo/8\nwmku/0WNXVmAXl9An2pFjLsLQ3s9B1AjA8hyT9raQZ2/hAEqv/RtdBRRX18lW2/Dq++KzAYwH1yc\nDb7Gk3uyAwtPTIkPV8KMTlLsZCKT9l5foujz5T18Etuuk73+/owhkjPiS1PXaSyGwZWKyHZqNdSx\nw2IY3+ujV5fJbt4SEEgpCVV57BTu4hXodDCfeRHbqKH2u7irN2E8pnb2YbZ/aI3Ctrf+7h2ywYCX\nvvkCx88aSca7eLuUdrtqBa83wrYEiFh5o4sFWv/Pm4z+0PNE+wnev3+D3k8/T+M9qG1odj6/ysqb\nPXRnMEuffVDrbj+Xwm/S5eECnoe3snzQALxYH3EWFL2MfuYcwd/a5/3XTnHqXyUEnQn2HQkW0E8+\nhv3Oh+hxKjucNbOexxpJcoaZbUOWQZabQVerZZpe2TcVUvh8jzJ3MV7LpM6iV7vrtXirq7CzLx5U\nueQRwD+0jslDdtTSIi4zpOeOiRz2m2/J61xfw6tG9H/0DAsv3xTbjZrPdK1C9b05aWTheeRpAU2L\n5zyZ4uIYE8d4WqFPSnr0sf/xJYgi9PISZmubtdeHJf5vx2P5rH3Pd+L7sO4DgzKdDo0bY4Ynarha\n5WAq2vcans4PxwIfnUmtqidKZL51Q7ysCPuaxobBn2icgtp2RtCZoiZiuREGmmRh5u2jpxm6O8T1\nBvJ7z3GC8mFNPmAtet2C6Z0D7SoMSonZASa356EXWjKozdOgXVSZfaZ8YWuSWYJ+gk58dEqeDIb0\ndMpxe9hi+LL0h7/4+2Keb13BeeKZZ6ceWjn+5q0fp36pg5tKz+hS+Tyo2BcwuxJS2xhLrWnqxG1d\nepUpC+3LGTq1uHYT1ennZvIf/V7CfTCElFL/h1JqWyn1nbnv/ddKqQ2l1Fv510/M/d9fUUpdUkqd\nV0p9+b6eRVHT5GAQcFDfZ2xutioAkWrlMfE5ZbZ8k8snoWfNpbOoSgWzswP7Pcz5Swz+yAvopx6T\nDeHMQ/i9iWwSVlKnTKdTSogom3h3AAxCiZTM7OwIq6heF+S7MOM0BlfPTX/nkFM7mqUMFBtXAQbp\nRgN96hjZ1s5MbpYb69mxyNrscCQ0y0Yd2+sLc2pnR7xoHjohEX5pKkBNvy8Gy55GrywJCLHTQzUb\nuNe+Ay88hb+d029zr5uSVuqcUB47PfyTx3HDEd7L76KOHUa9/DbOObzFNub8JdSjD+WTooNI+wO5\nduCgXNC6Aw7yKk4OJOqoQjYWzHyCDrDK5pZLM3Sjge32MMtNxj/wKPYHnsG1m+UGX0w79PLiQfPS\nwg/KyXVTssxyuqTyfdx0ire4iK7XoKAsFpMx30MNJ7PnkkvOSvAznTMK0znLo90So+E4NxJPJCHN\nVXz8QVJOdLOqhwnFLLhxy4CFbKmODcnNSMH/zlUAaruGeMFjfLwukpOnHispxu0rGXoU4/en+IME\nf2zQxhGOLM2bGa2bKf3TVYaHfVrXUip9gz92TA5FjA556NiQ1oUhJMX/A75u7nMVSRcHv3mPHbYw\nxc+nH14s2l2zUC0NQQvDXmfmaKpalzTaQv+MpSyC573T3GSC2trHu7WDv9XD705Ew5xKtLNOTAkG\n4eT9Lv1udJ7gWOyNhQy3GjI9tcjocJDLTSjTgnQiLAXliZdH3Y+p6ZjV6pBDh7qcau6TuvzazhQ6\ncfhDgzdRTA459h+vk622UJMYf29E2Euo7Vhqm47qbQ+7E7HbbfD23hHe7h7j/f4hvrV3inf2xMT0\nocYeLy5d4YvLH3Aq2uPZxnV++NglDrf7pMZjmIQH/Dwe2LWjKBPlyHXsNtDga2zoY0NPDAU9sIvN\nmbb+u66ZHNhzbsYYnVsn/u2YyUaDaRJQDVJwUL3j0bqRiV9LBsHIontj7GS2X+j+WEx9HQLKhQHe\nylK+33wPYOW3Oon8bU67DxTxQQAO6reF+mxCAReisz2SZYNOFN/aPknwfbQCelDXTWZ1yRIq/ISS\n3BlTK0foGbSyNFsTkpYw9Q6wg+aYfSXjJv+cK5PHwMeWY18f0PvVQ+yPakRhir8T0LqWEd0e4HVG\nqNigp6kYPmcWleRMnrt90oqp/WCEt7mH6g1R4ynEycys0iLXvryI72oklC2SyPL7DXzMSovx2WWm\nS14paXR6VtTqRP50RpNZXUrBEuexZRqY/EFupsu8NDjDV3vPYNEcDTqcjTZZC+XM72cR6lZEYyOj\numeJdhyVPYXf08SdiEkcCrg8bHJ+d42NUZtGEPPc4k0erW2y5A05HHQ5Uunx7KmbVA8Lw7sw5X+Q\n186Bz1pepxXx83Y0lkHhy29jRwHjYyJ1dsZiJ1OpU+aNwwuWUFGzOYezlsGPPcbun5ulHdnplP5z\nR/AuioRu3pNTgJ6s9Ei8e0mARyiysoWWsFA9jW40ZN9LEmw+QFVKSTPpHF6rQSHfL8Ag55wwPLSG\nIETlvjB6fRWVpBKwEgYzU9o0w/keenW5TMcDWPnX59HjKayvlOwTc+Ey9U2D98SjAGVs+dprsPN0\nQHh9V2r2NMVlBpUZmExRGzuo81fRuz3Up59AnzhK/ZfeIry8jfv80yy8tcP+n3qRw//zSzgNm59v\nY9baFJOEB1cf2wP9VHl/tSpqoYVeWiQ7e+zet/0IhlBRw9i33mf/b58k7Ghu/p4Ko1OzGtl9KEoH\ndeuOnD25z1QZ1mPswR5Oz8JdTKczG57P+QepSuXewFo+cC2lQfd4DW46lYRoxPy5PHNz/1abqyJU\nVGGyetBImMmU8fMP033EIzsqEGL0+hWCvsE78xBePz5wvpYesXn4EdbiHzuKd+4s+D7BL7+Gu3Wn\n9CsqwmPct989cD93h0B8kmpk/9YeyjqyViTMm7sZQkXgT2ZmX+W/81SuxBH2FN5EQSNDh4ZoR9O8\nleFPLF7sCCaOYJAKGOQcKjN4w5hgnAmSMceaVPUaerEt13c1EqZkcb7kAw5lnTyHwp/TOemBC5VP\ncfZVI9ShVWy7KSb4zs2AeGvzdGtXsoZs6MkZqJDI+EyB56hVUpwTT6Gs4ah6KV+un+c/+YFfgTMj\ngn3N5eka71w7Cvu9WW1o8t+X7wsIFfhi9wBU9mOa16bUNqZEeymNGxPCTkIwzLCNiOzUemmSfl/v\n5X38zFeAvwP8o7u+/zecc399/htKqXPAHwWeAI4Av6KUOuucu6+Ro8qM6POy/A3Z2cN5Xlk86loN\nc+Ua3uNnUMOhRGvnTI7Z9MRSJrsUK3+D3WCACkKa/+crWMA/fozs4hX0M+dgPMYWG4yeycwKjxc7\nHKL8AOfsbEPPD1M7mRxoEF3RGBaI99xGVyS3FF5DaNkYdaNF9sRp1DffAsQA2+53cfmBqWu13PAq\nlQMV5P4HsoH4D53C1Cpk7QqV0QS2duQ+en20p8nW2/g7YuBo86SD7pk67Vffy590ipc79dvJtNSB\ne6vLmM1t+NQZ3GvfKX0E3PoSWaOC2txCbe1h43hmjjtbX+EBXTslKJQ3wObS1Xv+mPPzlJ+icCiY\nVq64dnLwr6BmW4tNUvztHvXbe9jlNu7arfL+9MljuBsb2L1OTkcMhcWTpAIoLTTFP6RIw/P9mVnZ\nZCrFVKcjzyU35cMDF/owjctDr9B+43lQRLya2f+ZI8t4ewPoDbFHV9GdAd4kFlPqwzkrSivSxQjl\nJJUq8QRZ3n6+xXRZNKj+GFAw/LHHiLZiatf7DD6/KClVpo43MQQALzxF463bedKVg0gKdh07gkGC\nrXjEbZ/6ZsrgWIjTiv3HfA6/MmH7uSqVjkym06pi8e0bjD57av5t+goP6rq5n5XHth6U+NxFj727\nMTYGb5JhIk3SrlB59CT+/hB7e/OAzBWQz7GXyzUmCSrRpUmdMEfyh0qS0usH5NpVjTp6oYlt5t5h\nyZxvg3GgHSpV4Od7lnUoZ2dNmK/JGiGTFR/rK4Khw4YwrSlMRf5u6hYU7Pfr7C/UaTan/OHV14nW\nUlLn84t7z3BhbxXv0IQ7X6gRDBSm6rChY7qsGR+NaO0FqCRFT1L8qSOrKIKBNJLTSsiObjBJAnzP\nkhlNNZTX/1TjJi094Rv6GfxqAAAgAElEQVT9s7SDMV/dfJLFypjfs3aeX9ePsD+poQ7WhV/hQV07\nRd2TS2CcViSNoGxsnQcqA1ML8IMQZeO5s2BODlgMBu4RR6xeeptH1DP0T9W5/RM+buJTv+0I9xNc\nqEEFeIlcP8oPJJggCMWwM8mwFV/Ag8CDxVZZSPnjqZhlHpCSzFIP72fpWg0VBr9ldtCB1xeE2MUG\n9e2MwVGfpC2sE+cgCjKSpSlZXKM/jgi+vyPSr/CArhvrFBkeGodWFl9ZEusT6oxrvSWSzCNJffwg\nv7byC620Hbq7vpE7FWPp2OACjan5HPtah/iNGtf+QAPfQdhNUAOREitPo4yA015mhe2Tx+kyN5Qr\nEzdBGqc0RWW+0O4DX4Z4LperajWL/73bfL/4TAQe8VqdZEES8awPNsjTYjQ4BTaQL5Up1NAjMR6x\n9Zm6gOPBHi0VM3UekTIcD/bwsEQ6FYN7ZVj1+wxsRKAMu2kDLxb2lPMU4dBiA03WUGSxZtqJmLoI\nnMJrJZxsd3ikvkPNS/hUdJM3Jqd4KNzm4XCb05VtTteP80ucQ9lg/tU9sGun9A60Iln3Dq9LNPUc\nE+Lsz71K9mOflverMJDOE03L5mCOZVQw6nUQUPsX36LxzDl2/uyLLP898TRpvbaRWzd4sl/k0sGC\nsSF7jj+raaFkgJjhnMl8/hwLuwGXZQJqIWxqNRzi7Xq5tCc3MM/BIOV5IrvJJUb4Mp23u/vi8be2\nhPI9mMbi+5gZXKMmPcRiE5TCP3UCF4U468iW6yRnPkvllyT+u/7rH2LPHMdbXpJBa5bRujyi99MW\n+3d78nrIZn4uWsNiHbXQkMd6/T1crcb0x56idnkfrx/jahVWfuFNrv21z7P6VkYwMNz5fBPe/Jiu\nG2ulZ8nVE70fOp2zgRXjQ4rj3bOY9y8cvN33YgjNydOV71P/599i/BdepPNsxv6fHHP0FynfZx1F\nuDQTYNLlzyMMcYMBLktRfpAPpuc8ifLaV0cRaC0Anpo19cX9zoMlJcN1fmA3DwzlHlcqt96w0+ls\nuFvIwZwV9pG11G+ILYR832H6fSr/5jUOjZ8lWYoIlcJ0OlTeuCTX4dIC0y88TvDLr+W/nzwZMO8R\nVa2Gm05hOMSOJqIA2bgNb38gr2UulOEjAhq+wsdUI3utFq5QNdQinNb4ozyAQGu+S8PvnHxm5303\nmeuLhyMaL10FTjM87NGrB9iapXHLik2Fp/BrOh+MSG9WypktqNTK/lTcby3Kf86iEj8fwNpymF6a\nmOeDW5f3giV7sgCDrEUvL2FX25hqgDdJUaMpajAqlT0Fsx+tcZ6WOgvwJw6dKLyxpKGpikEpx4lW\nh90XEmpBwhP1DZpa8Yea77DxSJtfvPk5Lg9X8DcquPGk7DtUGKJqVXldvjx3NZGRiGmFpDVfUtYU\n+KnBvfwd+bw98TDpYhU9rN/34O4jASHn3K8rpU7d173BHwD+qXMuBq4qpS4BnwNe/shbOieoXY4g\nuuEI0+0J8v/sEyTLEZXtEa5eIYk8ws3dHOWbUWDxPBmoFRfLXKy3bjRmG4Hvo5tNspu3mPzBz9G4\n0MUmabkxKY+SWVSg0nKgzgAcAWfcbFPUXrnROetEmrQrjX5Bd1TNOuTF8/zGpxdaTD/9kGwiyAfO\nbG2XUYq6vSCbZW8gVNtpjGovCGAQx9IAjCeoWkS4NSyTw/z1KtSquKhC1gzxb0yhGqE7faH9RpTo\nuApDqEYCQqUJ3uIiqhJiOl28xTbZa9/BfeEZbA5YqcyiXnoblCI7exS1s4M6dgg+mI1xH9i1Uyxj\nUYMR2Z3Ng9//3KdQxuJtdZkea1PpDWZFdWlATnlglj5Q+XvkLbSkEXdWEtzOnITIxxvEmGYFfUOa\ndZV7O5X01ly76pKDunGbzFEarLBGdDQzZVUFPTSfkACo44dhrysFkVK5mXROyV75/5h7sx/Lkvy+\n7xMRZ7tr7pm1dS29Tff0TPesFGdGlAjSkk2LgEz4gTIt2S9aABu2BPgPMPwgGDBgQ7AfCFmwYEMw\nBFm2JFOASQimDIqzcYbD6Znpfa3uriWzcs+7nS0i/PCLc+7J6uqeHrK6qAAaVZ15695zz40b8Yvv\n77us4H/wMi7L0Bd34OZt/PYmqrbYiyuUKwnRvMbFWpKmIkmw0bXHJgqXiE9QcubZ+MEhdphy+Pkh\nxaiPqXp4regdnqcdNtIBVVT4niyGJrck+zPKzQF13xDNHfPtmGTqmO9ErL5l5fUNrL65QH3rRdTj\nX4PxkLq/pK0/8nlz31BpKnT3JJbCtFn42zf/AKZH8NZo/q6sw8xLTC8Sz6b1DD1KiEc9zGQBVS0J\nCB1Why+rtrne0KZ9d/NsQUphFKleBqOBdAxskB5VdskcCNeqvMfXDoxaFvPO42NDNU4pVgxVXw5l\nPpI/XQI+JhhK18SxJYosqa4xOJ6O77FuKn5n9jTffONJ0nczqksVyZMzZvMYNY+IjzT9ex5lwY0y\n9OkcVVlM7kgCxbUayp91EXFmDUp5sl7J06N9rmQy99fNlI1kSu5iJkXKpEgZxQUX+2c8Njjhe9Ey\n7vXR7VdI+IHRwg5KDWZeAwZVO2zPoCxkBznmLA/fc2FbeWjnujIGlAuSVROaCefrNPWtF1n5Foxv\nfgFdLtDHU/lur42IlTAyfBJhtjdxJ6ciGw3sVF25dl40xpSqtrjjk/NgEKB7oSC9n2r/gBHduAZl\n9SGfhZ95PP8U80sDbKpITwN12ihKr1iUMXFsqTcKrNX0p58eIvSo5s05zyAFeM3efMjhi9skJwKS\nmtIzqiHKxRdAjKXDdSphfCmtRAbaPJUHaocBrFHC2kkjksOcZ36zwicRapa3xbkqdTDcleaVLkrp\nljb1jHPiwXCfMTBRJIyuRmZkJXGTIPM3s0oMPa1bBmk0XgZGk18ccvhcQjyVlBjlxe/ARaplJbqY\nFlD2ibCmmnUnUxUWxQfVBiO94In4kETZljE0dykDXbAVTTioRpxWAvao2hEtLMprihWNTTzKKsxJ\nJKl2qzX9foFDUbiIi8kpfzB/gp3olB/Or3MlOWIrOuOXx6/ADfjt1SWL5pHuVx1Zja9r6vdvn/99\n+O4m330VkjiwVkMTs631YqjOG1PjPO7oWNjg791l5/CM/f/0a2z9mzut8XPnDbefqdnagqIQdlK8\nbAg+yDqgradD4pDO0iWYrLQEKoQmL1q1BzUVkojs/iE48c20B4dyWIoi7GSC2V6XfTlNQre+wmeR\nAEnTBTzzJCwK1MmE+u4uCpj+ja8xCObYJDH6nTvY42Pcn/8i+vd+iH7rFs/taKYBfFBJD+pamqxr\nq4GJ7vG5SKb07iGDH9/m3r97jfV/+B12//bXufCjV7n633yb+pe/jIsltdMOQjLbI543KpZkN3d1\nB306Z/TOFNsTBlR9eV2Yfz/L6DbBw+e99ZvfYaff5+DXX2h/1zZdraUJ4jnnDdR83pVfMtbaprsW\n0KZh+TQAVJbKOWjQb42hgSVg2TCFEEDJfukzqG//qLVqcIdHohbo/NsGgJFk4UIAp1cXktibppRf\nuEG8P8e99BrJi2+j1teovRfASmnq3T30zjqLjUiapk3tFqxGzPaGfFeCNE9nGfWt25inHse++Q5q\n0Kf8xc+T/M732fsvv87Ff32Ee+m1j7j1j2LufBhEMOMx7qnHqFYyCaYJDzMLR3SyWDLRYCkJa76X\nDVuq+7uQyEtVMvh/X2a0tUH/4CKgGL11hqosrhcTxxqXanwsz+WLMsi2GtsPJx6ZVacZ4Zywf/Jc\nQqicR40HUhNXNT6JUXkJzp5v0DZ+rP0ebmOM7ceYaYGaF8JiNEaA9To0imsrIJhJpKmhFVHhyI7F\nzqEeKty9lP1pzNXnjvns2vJ8+nuLi7yaX8KiMY/NcT543RmNt2GP7WUCBhkt3rDO49NYVCGV7Gs2\n1aQHC1RhBWDPcxRw9ljM2A3gzU9mF/0n8RD6L5RS/wnwh8B/5b0/Bi4DnVxBboWffWgopf4m8DcB\n0t5qewD3edHS+fzXXmAxiOi9vkdv/wRflMRGi1Ful9rcFNe9Hvb0DJ2l0kEJrBWJ6Cya1xXvnONj\nVBTR/+0fYUPkZcPCaHyDqGvZxBaL5QbnrOyrjewnsIiag33zGLY3sK++udTYjscS49mASnGELyy6\nJ3F98b/6Q8zmhjx+Mm3lR74o5EtT10udYxzJtfV6uGBY5q1D7R1i9/eJrlzG7h/gNlZR+0eo6Ryz\nGECW4qdzlNFEF3bY/uYBrK62z9GAULqXgXe4swk6TXEnp+jRCPetF4kuXxIN7CtvCEPhc09TDMIC\nuP8J0ms+jbmjlSSdvX3z3CZV/cWv0HvlLv5oKl/kyJD+6N3z3dVOweQWOXogSW52OhOQJonBO7mv\nFyXVTd3ex2iZr+Z2DZnoSpVS2OkMpVWr+20/Nxeof504cV9X4iVjtLxOeB8+S9CHZ6L7Rzrxrp+g\n7zSyssBwSiORlr2/K5/L6oh6lKJHPewgJb5zhE0NppLF0mYRNhFQyKaKKEdAACXx4P19R3FhRPqH\nb2J/7nMo54kKWoO0/s0zqi3RzbsXX6H6xS+RvrsPkUFXFjuIqdd62FSjS9kYkokTOZgHmyoOPpex\n9eOSk6d6LL72dTnM7u6TnK7zCXSuD23eZPQf9BBJnwh+Qe0m0fx5PxDUXYOazkKHqaYWJdE0oh4t\nC+V6lGIiLWyuxgfNis+GohQGYjC/I0g4m/kj16KlGzsYwNq4ZezhPboMfmfdQg2kGNQ64AyhG9aP\nmV7JxPg4E2DGGYLECFzsWxaRjh3DQc6F0YSL2Skzl3LieqybikTVDFcWLHopqtSkaYVSnqIwJBPF\nYLckOcqlg5PEIh2bCzBY9Q22F4qmSmMrQEGhPPuLIc+PLBtmyoVowq+Mfswb5Q5ffupdBrrgH+19\nndcPtvlL116m6vgvfsx4aHMnHq2JDEtJgeKMRhcWXTuS4wJz0Ji/29Ywsyu1INCA9VDo8z7PUVpS\nc5R2eB4MyKhvvSh7lzZEly6gyxpdRiJdi8UsVQ0HqCQRfxitxdQ3FC2qqqGscIdHH6agB9YidLqs\nHzM+dEj8Yw5z+wB3bUjV00S5I5l5qjNDtRsznxl8zzLenHF55ZSbl0as//SnfNjj4c2b4RreKwi+\nQbMq4b27G6RvZ6x84EX6VwvbpjGoVSFSXmRhUqLbRLex9JEHFRg5qvE9yCKRjzkvBWqkJX7butbU\n95xcCDrrS6jDnJOmQ5e1FkVSI5nOOqgUNotEVhqA8CZJTMHSaFQp7DClGhqyQy+MoLDWgEgfbSSA\nkE1FaulTR7xSsNmb0dclpTfMXUqmKnIfc1L1WTVzRlpA9dzH7NYrHNVD+rpgZHJGcUH95ILqD2KS\n04pqaKj7ITY+GHB7pXCziGjbkRkBISpvMHiM8uzEp2S6YuJ6XI6O+YXR6/yf17/6SOdORr8j7e8A\nuc62/i9NQ8kXFrdYoJoo93C49nWNn0wkIvvCFmr/aBkBH9ak+r0P5MB8dMzGPznAhjVBB/kZhEO3\n9yF96QAdDKXvB5g7byQ0xgJ7MRy4mtjwhuVhd1Yxdw5b9ocYwWrcYoFZXSW6fFECYFZH6LoWlppS\nuA9uyUGpDrX7xirqdIqeFfKYsmJxbY3sveNzR9ztf/4GfnsjzHmHGg/h+Jjk5gE+pEX99Qsv8999\n+a+RvPhue3jVO1si3YDgkwX2xVdQzz6FKirWXl+gn3+GC//jd+DnPo/OK6Lf/QHmqcfZ6G3yXvxT\nu/UPtz6OJUJbra2weHwDH2nSF1/HVyVRv4+tatS9faztAMLd54sTdJPu9qDXi5M2ZRmkObr+v363\nPRc14KUejTC9Hr4ohAUWzkzn1qEAXDZnnRbg6Ua6RxHECe7kVFQNyzdO6+kSmiq638c/e4PoeI5F\nzlP17TtCCuhKacK1tuBVEkMpptZ6NEKtrUijYmdA/HoiZIVeTwCSRY5eE88uXn+XVfV443HcYTml\n7bm2O8yTN7BvvUt0/Sr1zffpv9yH61e5/M/eo751G/+NL6C/98pHf7c+PB7emmNG7X3R/T56Z4t6\nZwXbi4iPc9KiWqafWSus9q40sePz69MUZc43NVXTcFCmnSP29i7Du3uBtDHED/sopYgWkdjlOXBZ\nhK6t2GuE89Q5MKiRdeYFbjoTOWvr0RsvU3yV4pxRf0dOCwHAVoroNBewNDRMfC8NjdZC9sKGfRck\n2zbVFGPTJjQDuJWa/uqC7WyK9YqFjbmZb/JH5TW++d7jANzYOuRS74wfXq7x1y7BO7dE1pkk0uTt\nNFYE+HaYWQk+kaRDh7DwX3iWaq3H5GpKNVK4ZHmfftr4ZLDRh8dvAo8DXwDuAv/9z/oE3vv/2Xv/\nFe/9V6J0sOw27d0jeuwK+a/+HDqv6b22K530swl+PhcH+GAWJe9AtxuVm87QSSwfpPdi6Ou8SC1C\nN0Eeb1sdqy/L4Jnj2lQxYft4ocAWS/oqyOLX6vi7NDiaQ34wQyse4HbfvK6z8h7C62AdejAQ5DhQ\ngd1k0h5I/WQSvG4setAT1lMAHfyXn8Hu7wdT51LQ8L199ONXUcFRvbq+TbmaUN98Xx6Xpbiddeyr\nb8LmmoARjRfOeIQ9O8PnhTy/97g8R6+MxRQ7zwWMiiL0xjq8cZPsB++w+Ms/J0VJp0v0KOZOnAzk\nS3JytjzQfPE59OeeoffGPUGSJzMBEed560Ulb7bbJXMChFWVmEFnaUs19FUtRoZJLEWyVssiKi9w\nixy/WAQQKJUo6jRdmpMhjLAm8UOFBAVljOhbk0T0oYsckhg/yIQ50inGVVm3hR1lJdegtYBGF7da\nTySd12JIbZ0sps6jQgy5j4RN4GJhKpQjxcZPplhpolKMNMV6xPSXnqHxkSnGCm1h+O13UdYSTUrc\nn5WkkdlF+S64NEblNTbWJO8fES0syXHwAygd822JMS+HCmVhdiHGptA7kO73/q9/juz3Win0o5k3\nnNfVqjTFbKwLGBQS61pvF/gwGPQAY+Cm07Xsiot8QtdCC/FKoUuL2TvB3TuQLlljetfIXZtDWPPa\nDQhsxDRcr4zQ25uwtSZgUFMANZHObUEUrqleXqdqPIU0FOsJ+ZqAQXVPwKAm3ccGU1ddgXIKpSAy\njnGSY5Tj/zt+hn9x8iVyr3gsPuRXr73MlS/dYeP6MbEJhdhCs/5KTXpnisprdF7JplpWmHmFN1AN\nlPhWLTSqMOBkfiZpTWpq+qbgQnTCSNXsmAU/33uPX8hu82ezY/7K9vdYFDHfvPcE7qe3NR7q3DG9\nAQRWkNfymSrn0dMcc/eoTYfw87nImlt6s1sCfNCu6SrLJBEoic95KzxoqCgiunRBUn5qi5mVrUzQ\np7EUPM2oHbqopLN1NsXd3aO+fedDYBDI/G89iO7zMfo0R727x+jH91h7bUoykdethgIQjN4y6Ikk\nyl3un5I/lUtq4aMbD7fO6Q1wKCpnOJgPeP8nF1n5bsbK247sxBHPnbCCqpDgZWV97B7QlPVEC4sp\nPfVAU64EQ/9YWBdYT3SWd7wYETbv6RR/fCp7hw2SiLKS/bCs2rAC6lrAoLJa7j9RJKlVg/6HPSIi\n076WcpLw0mVLimeZSJeqcUI1CMW2Bx8hDNWItmmga9BW4Y2HyBEnNZG2HFYDtqMJsarp64rr8T4X\n4hMmLmvvTe5j+rrAojioR6S6YjudcG3nkNPrMTY15KuGagDeeGzig2QN0J6zSZ/TokekHZvRmcTc\n6wVfyN7nueQOmao4tEMSZR/UPP9U5067X2nVSq7kRiphBcZJy4aXJpORekGr9vuss0z8NA8OUbMF\n/rEd9PoaKjAgdC+Tx8Rxy8rRaQraiF9QVbYNzfbljZF0207IyQPeiDQxkqQ1xFZJjGu8Yax4d6oi\nyNi0bq/dWyeHfmvb98mByPN9JfPWbG3J3pcKSEBZhaRdD3FM/d4HRAtLtTMGrTE724AkEarjM3Sa\n4q9eoH7vA/QLz1K/9wGNn+jf+d/+Bu/8h9KNdyenqCyT3xuNyoUxUF3ZaGVNeI+ZldhBSrSzjS4t\n3hjUl5/DvvkOR89EywTIRzFvkoGAv/0erp+RfvNlkt/5fgswuPkcX1ci/Qs+Kh96vpAiGV15IIYg\nwGAAg4D2eZbR8cEqo7HhcG7ZQA9eUd062TuZL90UuXPzSmn8A9LH2sd15qebz/E/fE2ksuFammus\n37/V/sw03qIhmRrvW79RN5ngj47pvb5HfCJ7p4oT3HQmoT0hYt48eV2YGe8sLSUA8ZfNCwFiu5dr\nXbBH0dhbwrR1+wf42YL61m1Qiuhgys8wHurcSUwPncQiEXv2BosnNvFaEe/PMSdT1GSOmi1Q81zO\nu839DyzUtnZ2rj0P+0FPfHgaICWcyYmT1mOsAYPoyTqnqho9rzC5bRlHvgkE8mHfWYi3kFoUqOkc\nf3Im0s8OVtCcs7pm/Ock0R2CiUoEOFJ5db62j6OQ2hvAoSSWa1EivfSRxiWKfEMx31GgQRegjGfc\nz9ldjDitesRKQiX+ze99nuQPh5THGdMyZTcfcf3JPU6fXZG6cNDHpzE+i8VGxEudrxaBKNLIHSON\nyyLcIKPc6LPYTihWFNUAppejB6/LDxh/LEDIe7/nvbfeewf8A4R+BnAbeKzz0CvhZx87mg6Y3d1D\npSmz5y8yfHkPfWcfP53KYtVQlzsLRwPuLHXGodgYDjDra0JtDvGmIgFJZPNKkmBYFzodDegDy0Im\nGEO30p8GIKqXZr4qikLUfeeaAL26Qv3OzRYlBTnQta8BLRKu11Zb4zSVprjTZYJYKysL0iBAaJLB\nbA+A7/6Y6OIF/LCHGo2WJlp5KcVeHKEqK4kRzz9DeX1LAKgTWWhmn9lEj4aysI3H2HsHmLU1XMfw\nWI9GEr2uJLENYyRBbX2lvZ/xJLz38ce36x/23MGDKsqWhqm++nn0LEcfHAvAUpVyyPbNJhQ+EyNe\nQSp4t2AMqt8XeZ4LlNb7qPJu/1AeF8fiETSby4ISvH0a0zgVR0v5WKBFNpteIyPToxG62YTaOaFE\nrjTL2yIdEFOzoqb1OWq6rmkCZ1O81vheKocC54QO2byvcI8adFnMPT268vQOHeVa2h6oXQL5imZ6\n0Sy7yxo2vr2LOzll8sw6elG18oXR+zm+l0qU+DhFOXDjPiavRY40NNhEk556tIXRrRpde8qhwsWK\n3qGVFKGVoOX+mEXroc+b7m2PE/R4HMDa+7pjHQnFuf+a0Wryl4tzyxYCVFGhF7UAQYXFTPLlRgXL\nNaHdPP0SFOpGzhsjm+TaisTSx6FosV4OfW3Eplsa9lmJeW8BbCNGtN5o6kyMkJtUH1NKN8PGMg/a\n+x55nBX5jvMKjWc9mXE1PSL3hjeLC2jl+drmuzy/eQfvFVURkR5o0uOSeqNHuT1An83xjVmjdZRD\nTTlGWEkOcEDsMKmsIwfzAYWL2a1XeaXaBGCkPB/YlJfKlC+luzirufu9i6TLWvSB49OYO16JibSq\n5fOJd08l0aGqwlrjhe3XFMDQHhjaETrkKk1ga0NkCFF0rgFx/zAXBQxSTuakyivMrBSpoDFScPUz\ncKDzEjVbwGRGvbv3QCCoc5Paa3uQl9GnOexb76JeeYdoUVP1NPm2Iz4TTzO1XVAUMXcXY56/fpvZ\nxU9ukPhxQ49GmLW1j33MpzFvaqcp6oiD/THD9zT9A0c88+hS1uXWQDr816y1EkIWWHsezMLiFcwu\nGE6vp5SrqZhZapbJY4R1ofFJaLzQrIWqFOZaUzBrLQ2G2rZyCelGyn5HEi9B8WaNUQo7SNroeawX\nJlLTSY1MG1fv05h8I25lYSFoTe5zkIspL40Jr0BZBdWyXjqp+rxWXMTgyZRlVRc8Fp0w0jKnLZrc\nJXzz7GnmNiUOrVnnlXg0rUC5ElGsho5yrTCFzDGUx8eeJK0oneFuPm6ZSGOdo5Vj5mMsipcWV1jV\n8/baH+Xc8XUtbPO1VaLHr0vXPk3lgBwaTr6qlyEm7STQSyAmilBpKiyJvOL461dge0MahUri4+3R\nMWowaOvlNlwFaHxRuteEltr6/KFdCTAVIueb4A6dpbi8kPoxWC34SpqyejLDz2bBjDpuayg7neEW\nOSrLhFXpvMjqT2W9lSSnCooSs7YqTMhC9lc/nRFdvoT69o+IzmSuVM9cxnzmSaLrV0U66z0+eOw1\ndbF98x3MY5e59s+P8JGcO/TKCOJIDvbe48+m4BzRwQT/7BOS4Imwp70JyaBFxclnR5QbwqJKjz3V\n6KONmh/2vPEKSGLshTXcS699eA9o6pufcmC0p2f46bRN0P2pQyk5K+mOeXRVL5OIG1WF98tGPLR1\netdAWn6+vEZzaUc+j34njKX7ONcoKRIxZnZWABYITfXBeSaUsxLWE8u5UAUmpLuy1Ro725NTYaf9\n4GUJ8Bn0UElMdGGHm79+qX1tnWXiwfoLy8aFm8/lmsKZTff74X6U4v/lHebyRdSXn5PPp2EDeQ93\n7zH5tS99olv+qdTIxsDOJvl2H1M4ooMpejpvQf6WZdOAid1mwfLC2kaC6yeUl1dwKwORPUXiY6eS\nuL3vqt/HD/vi99rc17JeNr8AnxpcLygopiV6nkuA0HSGO5sIEFid979TaUhmbryOoKPcWDJ90CJf\nbb2IIOxhiYA/RairatumowuoJWxtZaWZanKoe2LNoozjdNbjjYNt9hdDKq+Z1BnxRDF7zHLh2iG7\nhyu8fbTJ1zbfZbajUQOxe0EpXBZLzW+FdW5XBixuSP2irBMgKjXUqynzCzFVX9E7cJgCJteEBPBJ\nxh8LEFJKXez8768BTXv/t4C/opRKlVI3gKeA732S5/S5FCHFL36e3nsT6bBOpkuTy6aLHjrnSqml\nFKc7+bRQU+vHtuQ5iyIc6pzQFKHdnJpFRkUBjW42Orc0NxPJVohJrBoKrhIDz0ZeBi1gI52aUOgn\nSQfcCV+aEDmOs6gY4UwAACAASURBVLKZN/e01xMEvWEshffSdB7sZNJGeOqVsaQNKbVkriiFD+CM\nLwMYdDqFRY55R9DnekU2YSkC5b3Otw3ubBJusUdlqaSv7WwLW6WqcJMJZlu04mgjyGWWLQ+aZSlm\nkoPBhyIg7x+fxtxpdPQqTgQpPpviZvN2AW5Hd4FoowU7KLGzEEWy4UAAu4LeOySX+ZAS505OxQso\ndEGaeeqCmbQPG11jzt1279o0NLc8MAajwqaoUrWVzzSwrVSWCciTFxKLOF8IZXbcF6+tUdpucN4Y\nKcQTjRtlYYFyeKOIFhYXa4l4NFD1FUfPJGgrvhW9Q0d6JmwWXcqC1t93EEfMfvWLFCsa10+I9uU9\nzS/K66rpApcYtHWoRcliJ6NYSzCFZ/iD9ykHwkApQyHUHHyGP9lF15BvNmDrRxvafhrzphm6lz3g\nh0rWGB9SDO83SW0+wy7gEopSrF1SNAOLw8wqzCRHnUza7qN4Kajl3wN7xDdJYI3G2loBIOcLVFlJ\nak/t5FDiQ3pPOKC1m3KHpdRSaR2gwaXia2RTYWPYRDr0LgGbeVzqxdg1AZ84fG6YTTJKG9E3Bb+0\n8ip/fvAaN6t1fmvvBf7lzc/xzlxAm9qJ9ll5OLuRcfD5HovtWOb6XAoJl8XCDoqlU++DlYlcssc5\nxdks47TucWiHfFBucMf22XcR/9fJV/mt0y+xa1NWRgu2XnRc/P2PNzV+2HNHrF9U8AyC+GgO84Ww\nJ8tlw+Dc6MaYwpKBVlb4LKG6sML0i5fhyatSbJoPHxp0JgzGhpqtSlnr1OEJerKQg1AovFRZSVPA\nilzwXALiA8YSoPywZOD8m/9khcUnGtpgPvs0ejSSfbp0rdxxdt2y+MaUazuH2LOEm0frZFElTLaH\nNO7+xrMCxn3EeOhrjofSGnaPR2Rvp2THAszrOgAqTh6jXOh6hjWgAYNU8zsv/yaeOaqh4ujznqNn\nYqpxIl1EpEjGCmNHLZbhBIRUvBaILopl5745TDUeLGUp87ObCtOw3ZraKTBQdeUCON1hSzYJLIAd\nJFQDhU3AprQm0mhZf1zE8nexR9VgpgYfUtjWkxmX4mO0ckxcTOU1WQB9Kh+ROwFsPje4zQv99+nr\nksLFxErMPJVHQPDACHKRl7UulvWOxBFHFus0d+cr/IvdL/Dd6RO8X63jvCZWlspHvDnb5l9PPwvm\nY74jn8bcgbaR5Gdz+a/ZK6A1jQZwRYFvDjoghyGt2oN3U3faN94myh3v/QdbuK1VVJqg0sCKD937\nNiCle9C7f31w9nwDrcuaz4St37B9WmPjRpahA3AURWJQW1ZS585mwlwaDJaM6n4mc7fDzFe9njAJ\nnBUwaRik4L1MGKkbq5AmRFevoCorjVrrmT21jk8TYYP3MvwPJFylunRelDq/PiY+McJ4mItHip8v\npOa5fgnKCrsxxP/wZewwYfHEJtHlS8T7U+y9feyrb7LY1tQ9TfUXv8Lm3/8OZvUB6oHmfj3svcqD\nGg0xRx/BNOmCQSEB9Rz41/FFdLMFrI3Rn3vmgU/1wD3G2XON8OaspoyRpmiWCXB0nyzs467Vz3Nc\nnrfJy8s3q84pFFQXxO6+l+a5IEjHMmG/1VX7fH42R736rkih0vQcEKbiROZlv099fYetF8PnmcTw\n5HV8XZHcknOQ2VhfnvOM3N/mNfRoBD//PHgvUs3dY8x4LM2h5+Ue27MzsoOKs9/4+Y+/N3w6a44a\nDqgurBDlluhY6k+qOsiCl8wa35jT31/nNKO2+Ej8FcuViPnVEb5/P0tfzJNVlsq+0vE8VPNcklMn\nuaglQhNRLSpUXiyvqambOkBQk+bdspJg2ZzrgtsNMBQaa24gxvXCxjlvT9OwoCgrVFkJOyiJQjCP\npb9nSU88dQ9c5kiyGmMceR4zr2Kc14yinGf+4pv8D7/yv/PrV3+A30s52R1xNT3EN6x3o4Wp5MGm\nBr82xo8G1Ksp5UiwCD2viKZyBq+GEdNLmmJN7DpsT2r6T5oe+1PJ9kqpfwz8IrCplLoF/NfALyql\nvoD0sW4Cf0vukX9ZKfV/AK8ANfCff1In80Yq5uYWtXe4ZDd0mUANeNPILJprDNIvr0TPS1lJ5HZA\nWvXqitBDQzdfqK+0HkDtxhnkPG1HpZks5xaSIL9ptK0EEKgBkOoKNtbg8Eius/l3QSa2lKEpVJa2\nYIwyupNaFtgSDZreSZpSUbQ0og2T2+cFSmvs2RR/eNRGzU+/cYP0sCJ+6SZmYx2zeyq02bJq6XhR\n7lFJjInG2ImYVussEzCuLNGrKy2i7eZz8cc5ORXwYv9Yfuc80aRAXb0Er775aOeOp91I3FefJXrz\nznkrGqWX1PcgDZPPqbmnohUW08BYNr61ETQWGeuruLfeRQ+HqEEfe3iEWuQhVUOoeK6q5e8s59Q5\n7wWtoLJ4vwQhvbUib2zkitZJZy+ORL7nPU2KWLPINgkh3lp0mshzNnMgNm2XqzEbQ4UOqBafhyYK\nsU1H0tJB0iX0Dj0rf7TH7DNb5GtazH7nHlsqFtdWxYRYg80i9Ik8QdUXgMgPU6LTgno1xa4PiKci\noSlXIk6/fo1qqOjfE0+LKFdUfTnw+MmUeObJ9hV3/7OvwN/77Uc3b5rpkaaykXfSA5uxlIsti6IH\nHoiVsBApSnwdbnNXYmYdOnQe/NoYNezL4T2Y0vmqksS5uhagOqwbPmxYsqFZ8bXyHh10zArkOZrN\n7WMO601MpTcR1TCi6imRhyWAhjJpDkkBpDGIQUnsUMaT9UuGcUGsLJmqMHg+qDbYmw45Oxpwp7fC\ndn/C5GiAPomoB57pZY3XEE+FatscJuqewRvxraqHCttzqFrhcoNPLFfXj3lu5S7P9W9jcJy5Hrfr\nNVb1nFmd8s50gxvpdS6Ozjh2a20xLx/Fo5k7LlaYhUeXFeps1qEeW2iZ7qHx0LAHG029EkYEBDB9\nUVCuxLhIUa9mJJM1KbxgyYwFKYJ37+vwaoNZX5WiqbYiG2tkOh1AXK+uoJR6sA9EkE+fW7M+anwc\nWPQzDj3oU20MSE5HOCddLlkPDPMrci29qEJZxXyS8l5vjXj+cF7fTSbCUEvDuv2I5s2ijKkPeox3\nvey9rsMMgnN+QXKhvvPz8DNPKx1LTiMmT1vmFxSD3RjlIPYePS0gMALph9jdqj4vDcsDCGSEVeoa\nBnYjXwXwZdsNXsbXiueKNzqk2LU/XYLYzgq45zw+MtgsNE40wghSAsw0AI03shf5IB/zkccOBKTp\njsobTlxKpitw8v8znzDSOYm3jPWCVT3nnh4zsRnzQHcUb6LGMF/ut8lVkKp54n7JKCu4Ojom1TX7\nxZC3JltMqoyD4ZhfG/2Y17wi1TUvnl0B1wE9HtV+pRXcuAx7R/jpLHh9LZkVqqlvVCysmRAJ3wZl\nYFFe4cuSKJgp9/7v75Fe+hqLKyN6DvTpFLOxTv3BLZFQNzVzB1z62DWg87tGYtYw6/VwKDWOddR3\n7oabp9vGqqotqpfhzgS8cLMFZiM71yhSSYKvxWtUDQfSGO31pKG6WCylKVkU5NEal8XowxMIiWf6\nmy+SfuML4gG5uYka9nEvPI7+vR8S3zrEB08mf3xCsXoRF/m2EexWBqhhn/rl11GbKyKnLCzmxjXc\npEC5hOralgCxX/os/gcvc+l3jyi2B+z9XMqVfwXVJH5k88YrsJtj/Pd/8tM/s+bpGvCkrX8aLyBp\nQJx94zrVF7/G6j8670nsJpNl6td986D9eyFSMWVo2Ynd5od3HhWZ5fnrQRK2wCZvVB9LdpEPLLnl\nua+5ri4A1J6v7n/uhiEb1sg22a7fw416FF+5TvrbIrdrwxQ+uEXvhWeFMOgcvp+gez3q90Q21iTW\nAdJo31jHHh6JjGw6he/+uH35NgxofZXZM5tk4VfpD99h8pfPg3CPas3xFzawPUN6b45ufHQeAPio\n7pzpns2bmrSuwSf4SJOc1FIDpjG+H4DbxkzeeajmtF45bciPFsAoyM98Gr5DRXVO3qySBIbAZBow\ng5CIGZ6DKKQEBlbrOVlbc543cmZUZdgfGyDbNucyIQ60I+zhnnCeqhym9NK8CXc5jmus1RjjmBcJ\nbxxvsZlO+eXN17geBXWLBzMxvJ1vSxDLsE9xaYiuHNG0QjmPG6Toucj2dCGqEKUcelag5yU2M3gT\nUYygHGlciGZ1n5D680lSxv6jB/z4f/mYx/9d4O9+spdv/pH8MXv+IoMf322/kEDw+QmFbWxaeZdK\n4mVigZPDXCMdoyxpdJzR9asip7l3AF5SxPRg0MrQ2gN8oKfilmBPE+OL0m3MXJtA5b0kksUR7vkn\n0S++gSsrmZDHnaLbmGVHQ+ulBts78Z4pisBQairCAH41C13jcxQJC0itjPGT6fJarEFZi72z20rc\n6kvrVKupUNd+/4eoG9fwAXiy/Ygk0NAA+rvLg4duWEp1LTK0Sr5semcLuzHCf3BLTNQK8YdpzJPV\nZ26QX+wTzS3m1Uc7dxr/ArO1hbp7ImaoDQMMloewJG5p86qXBS8hkY2hZe6I31SFPp3hG7BwILRB\nN51iVsaYtTUpPPq9tltqjJEDb1W3ptIqSYQaHQDMpcZet2AQwXNKpSlUBZ4Y+hk08ZddXX7wM2p8\nh3wlDAC1tSGFPQIKqdoJY8gjZqLWib40UuLSb8DGkiqmw1csnonXT3FtneOnY9Cgatj4B9+h+Pe/\nis0kmcymYHtGko2A0QdFq5tV1qFziwuxi9Uwok415VhhSom5r/oKXXmihWplSbOL8vdytYPUP4o1\nJ9zXhnJ/buhzxf65x8vv75P0aNGtqzTB5/lSG647j3ceHytclqBsHPxBPGpewMGxdEaNbhl+jakm\nRpK3GmDI5wX+dCKAUhJL0mAStwbknZvSXPQSuLayAbpEgRJaqx/KAclrAYLaEXm88SgFSVaxOZqx\nGi+ovMGiSJXlerLPV3Y+4O54hZ1swov7l9n6vZjs1HLyRESx7tGV4pwPijF4o8S3KBLGgzce37Po\nzDIa5Dw5OuCrw3c5tMNgKn3C3KXs1itc6x0wswm5j0l0jYvUfW/70exXpnSgwNw7Ffag73RhOjTk\n9iDVFCxhH2iu2luLn0zJDvLAOqrwkUGPR/g8F1PEj2HOmZUxajgIDKwFyvfbdCGfF21RpQA1Hsla\npZUcurQSCUoSL6UE2iwPBp/ycJMJ+vd/iI0T9JPXOHihR3riiCcQnWnKNKXe0rKW5YZxUpBXDwcQ\nUnHC/Holvmo8or3Kw2TaI9szxNPgFRRYQc3v2+dXobvv73+OIBMFVO0Z3q4p1uLW+6saG7zOSCuL\nqp3IWDQBtNZAgspL/Gy+ZGkEJiRVdZ5tDS2DVhUF9Y0L6LxGH57JfhdAXhVmc2tm30gJ7jscmFLS\nxGyMML06y65X4GNaSZztOeLVnJVekPl4g/Na0liU48T2McZx4vrkTgAhjWPVzCmDU7VDSTKZqSlX\nPOmRMJDqoaxtOtey9vUtK8Oc5zfu8I3xm+zXI94yO+zmI/byEZP6Bn1d0NcFO+kZgygF3TnwPqL9\nSo+G2H6CCc2DtmbUCl9aVKTlQK1dSJU0YEvQEUpHrbTdlZUEjQRD263f/A71L30Zdesu5QuPk3xw\nDIdHkp41HMhrLRbnuu9NIm+3MdomO3VYJSpO0OuruMMj6heeQH/zRcxnnoQ357LONE1XY1o2mYqj\nJaAV1iUVRfh5jhr0UDo03LKerHuTCWp9rQWbSOQA6AY9OUC68LPOQTa+eQ+7vYZ/613Yh/yLFxjf\nuCa19XAAB4eotVXSU4d5TK7BzWZE947JP3uFbPoYHJ3h+xnm4BS7swrA6RM9evs16XGBi2Oqf++r\nJL/zfcwvfBHTZIIU7Tz49OeNUqhF9dF5Hd1EyXAukbNNdC5IR55L42ZzkolldsGcS2FuxkdK0s49\nyH5saIF/ABCkBwNhjSVJW5M19dC5pw7sGxWL6a49Oq8nb9+TNgI8VeWH9tfGvqNl/4fGb/+906bX\ng37hWdSixL7xNv6Vt+WHuwfozTXsfN4CPxiDGY1aj6VGQeFms/P3uHNv7O1d0svr7P6dr3Ph730b\ne3zMYPe+a3xEc6da7xHNavTZ/MMNI/cx4HBD3ujsA6oW5nw0LdGFQS2ETd00N1WjmCjq8/fFSD3U\nfoeLsmVpN3I17700YZvGxWiA2xyh5iXq7mEHG6happbXy9r4/ppeVTVUUVhLHJSBCBLqdDpyNkwA\nt7TGJVLf6lpSNMWKQZEvElCeJLFU31+j9vC7X425/vQBuW+S0sTbdWETaYrEhnJssHFE71CTHEqK\nWBPYUPcjissZ8cyR7efoswXJwZzBnYR8XTHf0RQXK1Rql4yjnzL+uKbSD3U0h3pdODHiLJeIsjCE\nVDiwu6UEq00hMEuWT8OWKKvOF1+8VMzGOrrXk4nRgDDN8wSn+9arKJg9NylQrUdQQI2l+JfFRG9v\nYs7ydiHUvQy7v7/8QrTSs7JDN1t+kVQUoft96dy2G26H0WJFWqayFHVxW5zqnRPzsiQR6ZZ16H4f\nMxygV1eI9s+YXI7J/qWwAqtLa7C5ju8lRDNJvWkYWMV60D3PhYKs+31x5q8q8eVJU+zqEP+HL+H+\n7BewZ2fiZWIMfpHLfS0qTOFI39p7aHPikw5Vy72qn76Mn4ZFywd9axOz2nhLhcNR05UQ7XkpVOsG\nFHAWP1+gRyOiy5fQpzNJF/NeAJrm0F6Uy9cJ/kCuKITe3LCPAmvIOy8sj/D5qlCU+VIoqvb4WBYx\na+FekNxFUQs4+dlcPq9K6Jq+WjKQfJZgTmfnFjNxpJc/vVa4RDq08VmNqiGeOjmIB98GmyqmFwxH\nn0nRVnSvl/+pbHLzrQivFDZWmByiSSUUSiC5N8NHkrTkY4NZVLhYU40MyorsyKaK7e8cUw41K2/N\nqXuy6Kka7vzGMygvDKX47NEvRSpJluyg7nA/w6GzCwzFcWsQ3AUH5E+RbqmqYeqEQ9Q8XzL+4liA\nxmYd8CIj1IOeeEuF53TzOa6V1Fb441Mx9uuaSrd+R365cXuRkOjag6LtljcyMR8hJtJWQBxlFX5u\nqMqINKqpvOaDfJ39ekyiHJ+ND/i19T/ir178Ds8Nb3OwN2bl7QW9OwtMAWauiGbQO7ISDFDKGqi8\nzLF6KGlKyirSccGFzVMur5yyGs85tEP+8ftf5f85+jy5j9mKzji1ouf/d9ZeIVaWd0/WyQ4+mn7/\nqQ0FugyyvbZo9u1/vtGUd0egIhOScZo0jgbYj24dEt07Qx9P4HQiBc5w2CaRPfAy4gS1MhLgab4Q\nL7rZvN1n/GKBPTrBT6Y0DDL3+CVu/9Vn0NevoJKE6LErS4lyAxxGn7B6eEjDVyWLa6uMPqhZe+mM\nchyAkFpxOB9g5ho9M8TGfmIt/E8bxS+/wOqFyScINny4o55HpMeEDuKSHdQygxqft0Z+BbSeQu3f\nfftfPKlYf61m+IF8r12kWGzFIg8HkYuGQrldqxofITgnVwUBh6TzLibnDXPZW8f0sR4nz45lHwrz\nSaRiss40LMRzkpOQbqesl32kZemE9adJme5+EAr0qCJJLGlUc5L3OCqFpTxWBRt6zvX4iEzV3K7W\neWlxhd+dPMeRHVJ6g0NTeUPuYrTyJKbGZh6bKWxP5Gg+9tiVGlYq0nFBL67QeGJVY/B8bnCLK/0T\nhnFBaSN+MLmOUZ6VaIFuzI4e8fCXt8UrLNQsrVeQk+ZkwxJq5GLtwTk83oeAFRVH+Mlkuc8A2dv3\n5DlrLz6AG+tyaF0ZydwwRoDDqm5Zi93maCM3VHEn6ADwdYW9toOva977SzIn7etv0U3lbRj+TfKP\nm8+X3nydvdjPQx3UKAR8kPun6VJRgBzgVW3R8xw7TJcs2vUVomuPYZ5+QmLmy+W/Gb51KulBG2v4\nwCTCOQZvHJGlwQIiTnCTKenLH1A8LkbWarbAZwn5Vg//hy+hnGd6WVhDLpEGXHT9KvpbP25ZoY/y\n1OU156PL72cRd1UQHZa0D4lq7aEepDbOC3qv77HyTiXngAeN7n7VBQwaFklXvtXI1M5dk7y2GY/Z\n/dtfD4/TrfF5K09sWHHNy/aXybHeBkWGUq0PkDTlO2esB4QntBKyopB5luf4927BGzclWTlNMZ95\nkrd/fbW97oaRpPo93Ipcw+TPPSU/a2wBOvYgrbTNGMzGOqf/8Xk5mK9K1Lde5PI/fqvdixebD1Er\n/UmH1tjUoIt6WUveDwA9iJXefHeb33UAFDPJUXktwQdlhY8N9foAP+iJNCqK5PvcEj0UetAXOWlg\n9/j5QkCh5nxU17DIl2liSuFW+uRbGfVaDxUZyNLzzd2uhKr1xrOtjcg5eXTrzxnO5VGEjyOx5ogj\n3DDDZQk+1tQD8RFq9mtdSR1cH2RUZymzwz5rb1hW3hFT6XvlmG/Pn+KfHXyJ3p4iPVScVD0JWojl\nuuqeYrEp5tuqKENz2VCuRpRDTd3XlGspdq2PHaYM9ioGe45yDJ9/+gOSrOKTFjr/VgBCOE90+RLJ\nSUHj/t3drNqNrdOBar5oPkRrNlHz3Q1ExYkYAZ+c4a7tSArU2qog3UURniMg5F0wpjElazogcG6R\nk4SpMBlPJ7B3QHRhR8CgENHeblZq2YVTw4EsagF0IQAF9uxsCUpVZTBC8+cKcxVFuJsfyKVsiV+H\nHvTFgCygomo8EgTUObZ+fxcA8+xTxG/f5favbON+8jrx7SOZ0CNZuM6uCgNLp6lER56dofo9MWQG\nqOvlxqmUGOoFeZNvNvBeTHwWuo6PenQ9ph40Gr+E5svcGryqdoHTvSwAMLYtOFSI9fPzBW5Duj+s\nr8oiYYx4FKmGYWSEuRGKLlQwSWsAoABOiWnaksmhBz2ix67IY3o92cRmM+l6NEbYhHkfR5LykqbL\nBJGQcuEjg+0L66SRQHijUd7jjcZHimRSEb34FsWqbn0bIHRmdZDAFFKkx1NZZM14zPj9gsWGZvUn\nJwz2aqKTeZtoNn1qpX0vNovE5d/LASee1QJMOXA/eZ18Q6HzmjpTaOvJTh3xVACB5Ax6+3+iWfDH\nGq2BLyyLg8ZjI4wPdcybzeN+OVnz9ybWUuvlhqLEx0kVFboQqQOAKmv5vL2Ym6u++CE0Bp/tdfZ6\n6PFI1owwbxuPrCa9o01X6Xblm4Og1q20UJU18VQ02HUfiXjWoHPZxFzicanDZxafWmGLKZHu9Iz8\nFyuLRTH3ht16hYntkamKeFBy8lSP06cGuAjWX7NsvFSRHJftutz4qzWpQj7IGLX2JMbivKLyhsLF\nXBqesp7MSZTlseiMreiMt+bbvDy/zB+c3uD4/TXi048xSv4Uh0gtGwBO/MjOSRuUatlATSKFCoeq\nJUV/ebD306mkYwT5r3tsG7e5ghp+tEm/2d4U40NrsafCSnWTSTDJ1zIXg7+HP5tAVaFP55jC4/tS\nIPk0Rq2tSMF6n6b+UY50b05vL6fY7GFK0b1ndyMO9sZ443HjmmmZYtOHcxC/842IZzf3+ARpUQ9v\neFALQzSXaHld+48s1Fq/oG49E0CXhjnUgEfJWUU8FzCoHGhmFzXlaow3SsCYsm47oKoOkfKhIYIJ\nVPwspTXWNEbqiX5fPFoQUGH8+ilRLvubX+SS3FO7AGCFeROZNnnFp0mbhhef5ET5shEBUiwDoXGA\npH4lXozsK4MLsqw0qkm1pa8LUmUZ6YpBAG7mLsGhSFWNxnFkh5zYPsf1gMJFFC7irMwwiwBENali\nkUMljiirSJMa5xUzm/Dq4jJ71RitPE/19nh2uItDsZePeCO/gPWaWf1wjM1/1lHsDNB5CMCIo6Ws\nr9mDmlpTB3Z7aGCqkFyoB/22ZnFlhb+zbODV732AuriN/oOXWFwcSDDL6ook0w4H0sQKfppL4Md1\n/C7N8lrC33Um7OoG7Lv+W3PxvGyGs0uvI2vxWYrKMqKLF1DGiEF0PwCbkQSp+LISBm4mQI+KohBD\nHmrlusa+/pYcIA+O5HqMblN0fZZSPLaK3RhhB0u/Gf/qO9hX3xRvoQAINY2Ws3vD4KdZotfXsHv3\nhA19NpGGTMcLZeN3b7L54gRlLV4perdnlFfWwVl69zoA75/W+AiZVPtnm+wl4FBXsgwCtNjdewx+\nckekOOFsds5sugP2AS0A1DbTuzWKsx++pnA9bpEzvyS/c5MJejyWzz4k3+GXQULAeT+hwFRTK+Ow\nrhkBTTvMpO5+bZ5+AvXVz8t3ZjhYPk/wbW29hYqC4soK/V0F9w7PAT1+2G/r72rQaa5YMcmOrl+V\n19reEoNygO0NDp8/733UvoWjE8zFC9IM/FPYlr0WSW2bHAlyJqq7dhj6PMDX+IN9yNg+3I+8FFCj\nrCAy4ic5jFpDdnlO1SaCK2PEFyzYefiyFOJG8PNq7Rpg6V/kPfp0TjypwUpzziex2KQ0c9CKhYVK\nU1Rf6mu1MpYzFggTqCjFDqBhoQWPtea9qWAqrWqHnuXLPRCkIa+DJ14qexpOgfacPmE4fkYzygr+\n6atf4n/67i/x3Zs3sAmUq4Eo4sD1IvG9Cx6bgBhXp3JvooU7V79U44RiLaHua/n3qecvbL7KxbUH\n2AR8xHi0rcCPGMp5fD9Dny3aDoQCuik7XVBINQasQR9NoI61Br0dQz1ltKQTnMyE7hd08MLyKND9\nvsTttj5CAiAorZYdEKAxllZpipvN2sfakxNZvH7hi8Svvg+zGW42F5TZOvEUAurnbhDvnuD37qGe\nurFE7ZVq3c99JfIhkcxVYshX16heT6QD1mK2toQiGweWSngOvzpCLQrsyQkmiVEIzVIdnzH5M9e4\n/A9fgvU13MoA9g+xa30UoTgKwx4eyRcky8RzKU1lY/jgLmY8xtybSLpDP8O9d0vAjbpGFRZVLFBr\nK3D8UyJ/HvLwTr4U0Wku1MGykutyS/Nx9NKjpwFpfFktFxOtls7+pmGHBSnXoLd8scAoalLqusMF\nWaPSCtUb6G31lQAAIABJREFULp+rI/lrJInO5ugkbhcas7XVejq1XkEqvFaaoq5ckKCwPMFe2cJ/\n/ydEF3bwtfg0+F4i8oBYij1dWerUYI4KqovD9jA+/QufxStFNTA4ExYaJYtWcuZZuVlw+GyGN3D8\nF54iPbVML0VsvDTDvfQaZufLUNWUl1bR78DhsxFXdnOs0aTvH0ESU6zGJGc1dU80/KaEk7/28+Sb\nnrt/bhWbgDoEFymSmSffVCQTf+7g88hGl8XhPYJedX7WBXvadaApwvX537UH/U6B1ciGtGoNYqlq\nVBLhgw9HA/zq8Qg/HsrnPBxI96RhDoWCVyUxpiiX1Fe/XB8bXxDlwmGsl2D7MS41FKuxAH0zR3pU\nYM5KstOExbbBlAqbhucwYePSoDOL1h6lPKPhgnGcsxbNuZiccDk6xuD5SbnDv9j7IrM64avr7/HY\n5gk3X+hj5orkFEavn4KGcmuAWh1L98F7bKKFNq8UdU/kYvd7hWxGZ/z1C/+Gx6JTRtox94pMVxjl\nuZWv8vbpJr3bBlXYP5X6WqJOy7ZT3YzWI6hZe9rDt2nn03k6fvgMG1Jsmkp6oJWEGt9Ll82P+6nt\ndY06m2F3986xWP1kKiBPpyNmz85gMoFdzwUlQEFrOJ8m7X7Yrn0BLO36Pzz0EeJ+7fEx5njC7Nkd\nyrGhziC7pxnc9eRXFG6j4rnrd3hzb4vt4k/+aas0pbxQ89Tw3iMFhJQHM9OYQoDwroE0cJ6Z2G2s\nO7+UY0ErJ5Pn9KjCkpzWVANJF4Hg75bFaIf4UUWmNRxva500lQN9MNBvQw5ADntpCDkoUvFtefc2\n4/2T9jl8XqDzEtdPIDbYxFBsZJIumQqr1MWw9tqCePeU7KgnvgaRwvYEFG78g1wivmWtf1mpsVZT\nO81Wb8p6IjVX4Q0TH7OhC7TyfDa9zR2zRqwsJ7bPaS0FvfWavilZ2IR5lZCcyX3RtRTKamHwA4ut\nDbO5Jo1rFjam8oaLyQmrZkaiLM+ltylcxCtnF3lzus3l3gmn1QNCCB7RULOFgDl11bKBsJwDaVpZ\nemBTtB5CZdkyowEBiBvPF4DTKebiBVwqccqq10MtcljkbQJQIxFqLAZwDjoemt057IoCs7qCe/F1\n8Sz6zo8gAAdLr5kgxXBgpnN8VVE/fhHzozcpn72MLixRXWOPTjDrq7KGllVI242XAS5xiK/OUmEA\nKYUa9IW9nyUYQB2f4c4m2MfXYCUlff+4lQDZP/NZ9DdfpLc7b2s5gPypHfrvxktPQOcwG+vw5i24\ncgE1XUBeke0vMNevUl7bwMwqfBKR3Jsx+cwKvXtSx238kx/i4JEe7v395/KORcY5aVhTv3TsMM7J\nAZvhLL50koacZcIkO52IKuLcC3feZJAOftSQIB55LZ2m7Xz0Vcm1315KwtzxcQtQS1x9sgRFHzDc\nyak0WvOi46MVXjOVhojLczlz3d7FvyFJY20zPNR6ejCQM14AhbI39rhwtCIWAcfHHPytr7H5978j\nDZ2tIQpY/8EhFgHS1XAgCc637shZrUnNiyM4OOGp//Ye9gH7rK9K/HiAHvVJTx+NjPvcUIisuVzW\nKsumkVnuJQ2bp2koNHIq5ZdN0e7TBv85vG9Tw1wWiZw91MMeUOG5VbDyUNM5bh5qYmslwKWXSb0V\nGqV+vpB6ua5Jkvjc/PVxJFKw5lqrWliBidTdPja4NCLaOxFGe15Ind2wa9OEJolMWdcyGhXI3F1U\nxJMIbzS2J/6ZLgry57UcWxui2FJ9saSflQyTgvnv96gGivjPTTh+OmK0JnPM5FD1I2wijfrhnULY\noZFG1U68Oc9qepGkBVcDg9fCJrKJePTZBGJV8+T4gD/4hNSffzsYQt7jVvpSuDQLb0Aa26I2+HC0\n9NIwmjhvtOin6RZXjUH0YtGi+H46X26ITcF+jtaoWyO9FtFufhXSD2DZ/WgWu+TmfmviqUJXvtns\ndL9PfPeY+t335PcBCGhjQxtJEQH4CgZYLTLZmDpGsVAYGx1jY5QFy5h5v2QWqX4foghdCgupevYq\ndpjiFrmYDAPxRDb3xjDSbG9h9w9aeqYPBtRukcOhSBJUWYnszkjimI+NLIa9P53OGRA8gdQS5GkK\nn26qF3QSxTp000CJlwd0WGaho6oaFtL+UbsgyhzR7cantESqqiSR11Vh4WgAxhCN2hhzt4X3aIS/\nuCERqkUwVgtdB1/XwgqpLewf4WuLTcM1R5GkboAcHrtniSbmMxY9K1phY40uPcnUtTT9BhBSVhag\n9K17mEI61y5WVAONi8C8fZfo+lXmO+J7VA8FRayHQSagpFCd31hBVxKNXPe1HHrC7R/cIjy3ABPR\nwgktMqDfUf7oj/VN+uC57/9HMSQe1MV6oL9Q52dButVGUzY/awovpcQAvJdJXHgskkQfwJ+282EE\nVMIE6mu/t5SWdYoc3zDC0oh6lFKuJuTrMbMdzeSq4fRGzPSxnmy+hUdXoIvADMo8PvEQe+mea482\njjiReZpbWS8GuiBTss6d2D578yH3JkPO6h6xtrjMyYHLA5HGDlJspiUqPU2k45aIh5VyCPgUoua9\nV0Ra7r9DkyiLUR4HzF1E6Q09XRIrx6KMMQXnDsqPcvhYChrV/dwbBlB36OV+Isaknb3n/ufsFE/K\nOTloN13Q+32uQNiLHdPKZriikDXjQ/8g3Ku9g/AiermH3dfRE0PaTxEMouN/BJAXRAuLKeUaowXk\n64poWJEOSp4c7VMtYkz+Jz9NmbVVdK9maPJHDiZqy9I3KLB8Gqnh/X5BzRBzZnhQ1LkP80hbh67B\nJiokByopuv9/5t4sSLIrve/7nXPulnvtXdXV3ehuAIN9gMEAwwHIEUXRkiiSQW0hSyHb0ousFzlk\nP9gRftWLH+xnO8JyOMLWYsuSqJDClERRHEo0ZyOGGAyAwdJobL3XXpV73uWc44fv3ptZhcYIFGca\nOBEIdGVl3bx58+Y53/l//8UsdG8rxlq5dqkwFGZFuZFm0YdMqZp+X3VGVSLedfUaWyWSKVUaTBvy\ntiHtamZLmtmaYnQJBlca+FaCzuQca2ZQAC70tXdZFTlf/1wyhCJtSzDYkaGZuJixD3BeYZSjo2f1\nnNS3smEMlSVWBYG2hMaW6WzVe0O6tcUCYOoUzitCZcV3SOVoHFo51sIRzSCj8JqxjSmc5lM/rJ/i\nsLE+PR+UtaqqPDGsMG6kQWrntgpRNY+cNoeupK06kTrC7u/jO825t4YRCUeVEiZdezNnrlcRzUbP\n01PPrn8lm96Xcd5VM7OWzwdhfbzi45vCvsmF1RjtjRlebqA6bTl+mZiIrmpkdVreupgAVHnseWlw\nEAR1HHXz+gG6cHAwb15mywJYuFBkPECZ3gvRkDn7PY7w2xv4yVQ2kKtdcA49nOEDQ3hvgCrN2v31\nj1Be/BTN+tocePscGUJ14lLVSFrwLgVqxlfdUA/KOeGMDMzPUqmV1ldOAS2Lzzn1Y2kw/iknJS/R\naKBazbnECwhfmcvdxFNqQUXiJZU1uLCNfu5JAIKrl089v45Hrxng5X2nVA38+byYew+V3lXyfZJm\njl5ZRl3YEnUEQFFg9k+Ela0Ug4flYXfSrwEOjsrk0zDEp5mwdIsCs7Ise0hXmmmnaU0EAAGfzGOP\n1O9BjSa4RlibEz/IUVlOzE/mNBPxVA1TMYWquWOxLlJn5oRaYioyYh/I3/mSsVrv+yu2vnPie1da\nDmAMVfrv2WZcHcJkLWowFtBocf1brL/P3qOBxjUCXKdVg0qnVBoL533KT6ms8/EenZ9epKtlIggc\nxrjypeXBfirzbrri2ewMWV4dcaHXZ5AnBBM/t5VwHjPOoUoWthICodOCcGgxqStTOlXN6nIRuKYj\n0Tmt4LTP1o8bXwiGUP3BVOgdiMGhdfN0DOVOdViFNutryVjtSq/Lt2QtOC0ysU67diWn14bhkCr9\nxVUGYhUgo1WdiFBFhssXwEnxWjrcu9kMs9TDnsgXv7h9Zz6pBoFs/MP55Fp8fBOA4KGLMJpTGxe7\nETLBMWenlJ4+p1KrKu+JKKo3hH46RQUBxc6uINxLpe67mcBgTOtH93CtFuPNmO47JzitCI/LYliD\nXurhjsTIeK5PFxkUYVj/DuvE72Y0Furv1gb5cpO8G9G4tTNPuXrAQwWBSKcWwMBaK58XZRd0AWgs\nGVS+SjiwVnwRoohFeZmfzaRLVgFzJWunKpTI8tJYU7pyi1Hi9rgvIFGziS6LcDeeYNqt+nNzU/GP\n8Tt7+ApYUgrSlNoYe3VJAIVuh3yzx/RcTPexRyTmMY7Q4+kcYCQUA+lYdKzZakOkBdbXRYikhZXp\nKgrMzEOk6N7MJP66U3VSxRC4tevInrpI/0oskfTO0Xj/AAtkK1akYs7jp1OKRBOfyOY0GFtsFBAN\nPdHQgg+IhxYbadKeFq+iRJF3pCOsi8+DIfTJRaF+HE5v7qvNVP2cH3OvV2zGCvTTWu4TVTKFsgKv\nBbhRyz2hgUZBuagISMTKElqbUhIqf78Yn6kAKqZiuYCqMMR2G+S9hNlqqS9uKCZbnmy9wHRy+oWi\n+2qLzi1L3JdCv2iBbVtMqyCMinJ9k/dgjCO3hn4mGy0BhApCBYnOWU6mdKOUbjAlMhZlFWYmflPD\nRzrowmNmXrq0jQRVWGY9jY2pU+6UglkaMg5k8zYsEj5K1xm7mBN3zNjFJCon9wEjG/PW0SbH97os\nj/1pqvGDGtUtc5+0DV8VB5WhtBYzQ1UVpGeSLerHKFmx0xk0EqbbbaJ+jp4Ec5rzogEozNens+eQ\npti9A5HC3mfYwYCg2UAtdankjG722YuGn9Swx8c1o9RPpgRDMalPDiU2dXKxoBEVtBspG+GQ3vdj\nWu/e4dMttj/bGL3wENvr+/TMlAcrGfPoVKGLkq5+Zurxas4eqKS3ykvRrLQX+jvUfkPV73EenVqi\nvmW0rcl7rjb796ERHyHv8UbidCvwz0O9XqlZJnR5VTY5GmXDq1rjolA6sTOJJFfel/WDwsUBeSfE\nhWV30kC2BNNNS7Q54fDhgHR5mdW3UqKhhBwUTYVrCEPIRQsXQpeAkAdr5TzPxQPWgpHEy3up4/Zt\ni46ey0XLbw+F0yRhjlYOg+cwb3HrYIl235MuiWyMimE1NTjj0ZFlloXsjLtkNmA9WabfbNIzE4au\nwUow4tnubd6fbDC1IZMi4nPxEDJIfLP3NQCzuHFfZOmoUlruq5paqbqR6rK8ro1wHt1qSF0L2Lff\nIz73fAnmLDRlq2AVY9AtYV242QyztipGuUpkOT5NMec25HVO+sI0DyPsex+IhcNsJsz1KJqvX0pj\nzm3gTvrC2u9PUJvnKN66RnT1a/Sf36RrNO7WXbS1JVCjZcOWxOIRAsJGKP2DfBiITKSw0hjrtnC3\n78jT3v+IIHn8FHjVvDnEaUOwP5DGBeD6Q3RqWXm7nBsrb9EoQG9vStrb1pqcT5qhxlPwHruzS/DQ\nRYo0pfudj7n+t6+yGW/TKF//7Kbxpzk+wUZaNJCu7DGUmjNMK5PoaiN8P7CnBB+rsJz+X32R1r2c\n4JuvfqZzqgyiq1HVSW4ygclE9j7lht1Np4hVxZqwkLxDL6/g7u3Mz1MpdH+MA/xgKNf+hthruPFY\nACalpA5zDjezc3CulLL5fM6wrRolPhcPIrfcplhuEE1K5lJpsK6SGB2GPPp/CBtIGYM5HsNTj2Hf\nuiavPxphlpZw5XV0o3Ftxu0mEwnD8Q7damJXuqjhpE4YBZFymtEKQePSZ7q2P+mh3ALLp7YiWGCT\nLdbIRs9JFvUBzoBBFQPNeXykUdaiU4ee5aefb4yAMkrjx1PIszpcSlX3Xyr1QrWXV6UyqAYCp1MJ\nE2o15uzYUklUh3uUab8+MKjQoDJHsdogYAV9cCxzpEHUJxU7yS0A5FWtHxh8GahTtAKKhq4bP8oq\n0mkoHIFcwzAgUzBczlDfmLK6NCLQjkdWDjjf6PMb157mwt2iNKcGk4Oe5tLkq7yUrUNPcsLcoXxM\n1jYS2mNLT9iLnkuP7vJicoPMB5+Z+vPFAYQqdK9iuNyHig+C5s6j3yXuWylV0tzD+jk1c8hp3HAk\nMpuHLuLjSLwVaklZyTjyHrO+jj04ENricCiLasUK0gZ7cFgbl6koxJ70xdgzCmtpmOmKDtHd2xFP\nnuNMzNeWergyucGXfg8oRXB+k+L2nZpCq8JI/lNKJpHqv0WdZKXzL1ONVKuJPT6Rhfb8OdRRH7/U\nwd/ewY5GmMcfQXVbdK4PYO8I/egV7Gtv4b7xFTb+YITdPwRnxfsoywk21ih299Ctrmi280zStYpC\nuklhCGsrfPBX17jyzwYkP7gGraYUnp/DED8m8fFQFUCjtUwopbRGVR1PmEfvKiUb7Sodrvp35RFl\nS4Cs1JSrVgNO+jVKXX0efpZitjdxh8ciGQtDYQu1WpBncn+U96QYdzfws5lEWpYouArkXlO9rlCh\nGzHc2cG3G7jQlJ1Tjck82flujdzHN1J8uyHyEi/R8i7SUlBHWtKQoE7TqaLnbQw6A5eIyfPofMTB\nlzfROTgDcd+THOTYRGMTw/J7U9m4NmPc6xIlt/oHBl04zP4If2GLcGSxiRYUWwnIE0wcs2WJGc+b\ncl7psmZ8wbP2mmftdU80dOTtzwFMXGRdlEXvZwKDPnGcBWBpoRtR07EXWYhKiZcQ4FoxthWLDll2\nZyKBdEBTuvJ6OBYzPaWgBFy9UXV6FGWyoGq3KLZXSFdjXKhwoaJoKbIuZBsF3XMjriwfcb7Z57tL\nlzl8ZYXmrsfMQGcK6yEIC5Iox3nFdBZirQBPnSSlE85IdI71mju2R6yOeDG5SetCytjF7Bcd4Dwq\nU+hUYWbCFGvcnZbmuSVNOAywiXjE2Fg2fy7TaO1KooQid4bDrI31mn7R5G66RCtIaeqMf/vKl9n6\nXXj4IEenmdBolXqgXVflQOVunooBZ+Q+C/8uO9l+4d/KmHIzreviqZZElwaJzRsD8YjKi/lb+zHJ\nLGeHz7P70tBPPcdomTem00+mwzzg4a2VlAzr8SYmW/KEA8Msb8M2vD3aornvapbtf9T42jN8/Gfb\n2CtTnkym3MuWfnJv4DMM5YUdUxeKi/5A97t/FXjUPJGweo5fAPhLkAjriU4y1t70zO4EhGN7umi3\nDoVsjl2niSRJOpEDlNHw6FCAn1lWMhKDBT80W0quS2BAa1S3Q7baIluOak8wGymKpgD9ei1lc2lI\nM8z46Bur3Ot2WHnHEkw9wUzJPNAAX0bjqkLNO+GxIwgtgXYshxN6ZowuKVKJEh+zRFmOSpAo94ZE\n5VxMjgiVZWQTtHLcmS3hbjcJRzDdqMA0RBoLwhRSEAUW6xW7kzZ3R11+4LZZa0441xxwITnh4WQP\n3XLspD3GUYRKP4f1yi80Gcq1pa5zvaM2lS7yeXOy7KarKJIGYxTWDcbK29BnOcH2+TpKO3rzxmkz\nYRZeNwwkOKHTgf0D/GiMbrelgVsUeK+E5dNqYc5vYm/fq9nnVSR49TNKkn31uXXIC2lMnvRBa4qd\nXcz6Oq139skuLHP0M+dYUQp/dxdlkrmEC4QxoEu27WQm/y+s+Ffd28deWCJd7tGaXRZfoG5bZETN\nJlSpT6+/g/nSw9j3PsB94yvo23fQK0vc+kaTy//gJsVgIAm+H90ge+xFktyi8wLVH2NX2pjxlPSx\n8+jcEcYRfjTGPHqV4vqHPPSvz3Pv5Qbt/+zr0lT7ne/8VG+TU+PT1sXFtURp8Au+P4u+PmcAIzmm\nBxxuPMVMqnTMT4fpz6ZpnU0mA9k32cHgk7+v9n2VjKwoKEowqDpmcev23FB6qSveUYtvdTyu9whC\nMojkO1LtO89K47SqQatiZ5cgiYn2T+rXVUlC/vAWwfEEfTygePs9QBotajpj9GtfofWWHCq4fAmm\ns5pgICnZ8xrRDUQZoE76mDQTf9fBcC6jQ6w89LdOv6cHNXTuyj2oq9eS2gfR+1OBBFh1miVUvsdP\nNF2rx6zDxyHRSYoepXMmfbmXq03lnRV5cxwLMy/L6oabSlN81dTXStIUnRfPzKA0fi59nVRazM/X\nGElqDsx8nbQePSuwJqRYbhBoULeyuglCltfgE1oJgSAM5iqAwuGaiqxrmGzIPiiYQHiiyVWEa1qw\nivhY4xVkDcPS2oi9j1bZa3e5tHXEldYh+kaDZG9Attog7ku9X3QTgqPxPGgoMKVcPCfazYE2QRow\nXTHMVgAFt3aX+XvrL3El3v/M/YsvBiAEEqe2ENHrravpYrXGHUpN7AJ90Xm8X7h5KlCgklOVG3u0\nwe7szcGD+oU1IPprP5sRXNimuHWbyuRZtVty09U0QvH6oaQY6kYiE0HpL+StxZYThz0+BqUkrWvh\ni+FmsxrFXkxDq4AI73wZvVkmO5y9WCUY4cYT3BOX4ZU3hbFTMZJaDdRgjMsydLuNOhmy82tXWPtf\nv0vxi18lfkPYSgfPNtj6R9ewzhJsbWKPjgUAOT7GLPXkM3CO4PIlio9vYrrdeXN8qcXK2x7/2lvo\n9XVY6qAqmuQDHt5a0ZtqVcsulFILEYNabpmF5I26i1/pi70XA84FGRggviyNBJPEuL2D05RoLakb\nKokhzdBLPYpbtzFrq0JzLrWwvpIZNhL8LBUmVxxjGg3cQLr8VcFGIcbUCqSwORnhGzHeGPKlmOgk\nZ7wdEx8XZF1D8qEj78SEuUVlhQANsVlIGiuvkVb4QEAieQB8AOe+02fnGz1mK2UMuJVNiy58rT+f\nrhqi3/w+7ueeQx8OcEBwYZu1H8oCPnl4WVLmDqZ4o0nXkjoNaLoW0Lqbka4IfdsFZZfWQe+dE/jo\nDlzZJl4wkf9cxgIYdPrxM49V+uNqEflxz09iVFGC286fRunzAj1R0IpxkZnHpztEY60VQSbdC6Uk\nDto3Sk+PrKiBApUk+F6HbL3NZCsm6+hafmcjAV4wniiwJEFOy6T8uctv8M3kMe69tklzF8KhwsWG\nLI4EdwosSZJjraYZZywlU1bjCbHOObFNvnf8DI809/ibS6/zQrzDt6YXeX9yjnEe4ZdzUh0S9TWt\nt1LMh3dhuSeSVudwa2Iq6gLZlCkHWEUUFzTCgk4o0c6pC8i9qU1jT/IGb022WH9F0/1/XxPwPAig\n0bg/y+unPNRiEkWVegN1sVHP24s/V/5lZ2R+LHT7lVLiAZSmUtCUTRJ50U9htH3K0Eki903Z8KjP\nvVwn1FgkZ6fMOD+HocIIvb4qnTrnCKaecKRo3/SMLmqmUZNvDx7h0uSP1lm/+Wc6ZCsF6iDmLbfF\nIE2AH/xk3sRnHOIZJMCEVwuATvX7BbAHqMEg4DQQVM0p1eOAzi3RsZMk0UCYSDhXMoykIaIKKcLz\nbkTRNITDAjObR5ibUQqzyk9P45NQwgIq+ZiRuGbXa1H0GmS9kKwjQL+25ffalHKwXDOYxVxon7B2\nYcQ7jU0O9Rrdjzzh0GMjJdT2UImRdOLk/YXC2omiglBbcm/o2xaPx/cweDo6x5YLW1On7BVi0Drz\nIQd5pzamb5uU/Wmb5KDUJStZ33AK37TyWoFDa0+rnOciXXAwbdOfJuwMO/TThINGm0k3YmfWZZAl\nNIMMHz1AI5hy6NzXKTgeL93zNJVaNQzQQSCM9yiS5+QFlcHvolzMW1unklXseleGobjhsG58VgEY\n1RxSpYwVO7uYR67Aly6jZjnsHaDaS2KyPJbEUzceo0bNMiSlgVsAgvx0JscufVncjduYdgtVplap\n0YTgwjbu+ASlFfH7GV5v0n9unSXr8MMx3tnSw9JKOtEsFyPpUkavCouLQxgOMf/+NfJffRHba6F1\nOS9HIemFZcyt2/X19TeFwWNmJQi/tiyPz0RFoC9tY69/SDjI0LtH+E5L0sxGKW7vgPT5LZLDDLve\nQzcTxg8vk1z/EP17r3Hp7RXc5S3M4VAaYw9qfMpGsEq3lNrkDOhTNS3ORqIvMlRLIMXtHbD2Wyk0\nG7hFP6qFUR2nAlk+cVyoE45Vs1H7l9Yer5NJzYbVzSaqkdQ+p4DYboSBeKfmBT4IMMvLErZQgkxu\nIr6uqtzAe1uCYPUJLKyPSqGXeqiGvEZx885cEgkUO7vo7TVhnp1bgXs7FH/iqwS/8yr6S1cIR7Y+\nV398gj3pi0/ocCiMuoX3V6sRCvleoQ26kbD7X77A2hsTottHFDfvSIz9WZ+mn/JQgCokLv4TkfNw\nulFaGTzfT2K2+PPCYyrLhfFXspRP1Tkl8CSGAUbkzWbBQgbme70yjt5XEfS2sm7RUiMXTuroaSq+\nu1rV3mOL7CdVglEmtbhAY9sxYa+DPzyum3mEgdh1mDP7BSeeQl4pnIG0J+thsl/ab/Sg2ZuiFIzz\nljTMI8v09WUuft+y/1zCraNNjq806F0XPEQVXuxeGgrbCAicK5PZgtKQO5B052FKdHdAeBwxWeth\nG55kTxHcbPAvPnqJ9GKGcv/zZ/rMvxgeQtbhK2+U8gOvPXIWfITm/i9lR6mKo19ACGtgqFzoqsjv\nShrkKwPpBVCo8pJxwyF+NCbYPo/66pPCAtrdE2ZMaSwmOkaL6XaF1VOi2brTwU1nNRXSLPXqidV0\nu+ItE8e4wyP0c09S3LyNeeQKPk3JfunFWmOqgmDOWqom5UqOBLg0LRHSkr79ijCfVLtdFmpNVJpT\n3LkrkdXtFn6lx8b/+ZrE2ye6nlhmqyzQAKW4UEpkTipJxHRweYni45ukv/yiGKElMcpodH9C5+ZM\nJtnAYJdb+O6nJ+L8NEfdcap+VmLqWidPIPeOrzZuZQS8CgLpWlVeIOY00FinjpXXSKJ4o1oGgtKy\nwBgjGnPvRWe8sSq+MGkqmvlOWxaAWYq3DrPUw6ws1475eqlXG1ajFH5rFbfUgXPruHYTHwW4ZohJ\nLelqSDhyDC+GKA/HX9siPJqIPCAKULlFz8oFqfC4SBg+LpDuqyp1uyaDzq2CohdTNAQcQkEw9mz8\nwRAeNbntAAAgAElEQVRnYHIuZLoasPKadCcGVxu4Y5EPXv9bQmGt5Gg6tajCidP9khEvi5IR1H84\nIjnMhdmiIBx7GnsKl8hELiyZz4FdttjJOOMd5CvA56x5dOnXcKoTsshmXPy3UtJhrwxdFxdD5wUU\nGqfotMCGpU9Q6QPkYoOPxTPM7R/C/iF6NBMwaJpKx7/dwp1bId3uMVuPSZc0s1XFbEmTdaQD70LA\nK9LCMCkinFd0zIwvr9xl+/l7DB4rMCnEB0Jl9R4aUc56e8z5pQHrzTHtMKVhMunK65zzyQkXoiOa\nOmTiFd8ZPsLv3HiUG7ur9JbHNC8OmWyVrIYqpWgyAWtJ15u4oPQQKgSkRENoLK0woxlkNHXGo41d\nVoIxH09WSW1AqBzjPMIZWDTS/jTZ1E9zKAd6VpwqbKtUsYqxWqW7yYmeLjbrx0ofM3XGL89XctLJ\nVGjSVXpmKcuovDwWh+l2Masrp8w79VIPc36T4PzW6W6/tfjJlOLezucOBgG4F59g8tgGrtXARwE2\ngqgPzT2JC4/3De13I5KDPxqLyZSN52Ci8f2Iu4e9B+vNUHYMdT6Pl4cKJJJ5tPJtUFWBCnWiWDUq\nMKiWjqnThame5JiRsOcofbq8KechpVDTnGCc4wLF+HxE/5EmwystZucaZUx3AQdHsHeIHkxkQ1B5\n8DVi3HKHYrmBjSXyNm9JQIGkVQJ+fq3jsODOuEfD5Pyxrfd59Bc/5OB5eS/xscdMhaHqQw+JRbUK\nglZOFBeExqKVR+OZ+YC3021yb8i9pu9i+i5mXU/YDo9ZDwb1/DSyUg/sZx0Gs4TWXV+en7AW0V4u\nqvEo7QmjgnaUstUY8PzSLf7ChdfY7vVpRDlZYbjT7+G8YpTHHE2bHKdNOcYDHuEgl8+m8taoEr28\nK8NYXC0Tq+TwVT0JnPLGVKasj6uEr6KAPJ/XmdOp1JeVaXMQiESm9Pzyd3dxb7xLvtVF9bpkj2yh\nN9akGVa+nj08ElC6knokicjKrBV2SbdLsLWJqerGwGC2t6RuGk/o/+ozUtuFAeHvvcnRE4bxE+u4\nSxv44VA2gXXwghH5R9Xx9x6MKAd0HNP6zvuospPvb9+D/WOi/THmiUcx5zYEeCjBDP2hAEM3fm2V\ntTdFkeDTFLck7z28eUBxSWRxlJs0vbFG69aEo8cSDp7tkK+1a3Z29d7N8VhS2x7grXPWVLp+/Gy9\npfS8rqnUGmfHAmBUzTluMqHYO8Dt7M2bIp8yTqV3nT10CSRSvm5tXp7PGXG61cLNUuzhEcXde3Kf\npCl2MMAe98Xf8sYt7MEh9vj4lNcsMG8ilSl9n4i8r9dWje+1yR+/WL9vFUXoJKn3fbxxHXXjLiq3\n3Pg7L5O8cweUIltvEf2bP5BzbiR1k76qFSsQq7qOejF1r3wt3WlTtKWx6w6P5fWDz6Fh6rxEzldg\nzcJesY6Wr35ebJLqhVr3DMhTP1b+d8qjtfqddCVrf02VlAmoWuN7HfxyF99uopryO99MZO/ZbYvF\nRyVbq9bPaQr9odSgpYJjUS0iwUg5Xils6duoMyGAZA+toi6dr9MOa5IJCBhd7Q8rEMuLB2s4hnAg\noJD45imc02z3+qxdOuHcQ0dc2jyisScya51DY1cznUY0jqx4SIYKm2iUk31cZTtRXW8fGkYXGxw9\nt0y21cWHBp0jycEBmKmnsaNovB+jP6PO/gsBCHnnShRvXmRXNNdTX+rSnLcy/lVRJJPQYsLBgmle\nFbdZ/QyUyV9FfTyQycZsbxJceQjVbQuT5O0P5TXC6JRsrLrJ7Gh86rVVq0mVRBY8dFG8hbwYSvsy\ndlApSRRTt3bkyzCa4H/2OaLf/H5tJOZmsznIVW4CBISRhV4FIWZ5qY5bN6srAqiVC7jZORaWyuoK\n6tJ57OYq7Ozj0pTdv/Ys8b/8PsH2eQB6HwiqaVZX5hOVMahGghtPZDPnPbrTIToWUzj3iLw3v7NP\n1gvrz0/P8rm7/IMetTRHNlly74SfYATNuwOlibYxdbEC1N03oKYF1p/xgoeTMnOADmME7Ou08d0W\nKgiw71wXg8SDQ4msPOnjhkNJBymLITcal/HQBqW1dOXW1/DbG6hJipql+EYkHhCl54SkAkHyG6/g\nApgta0wu51t0Yihj53XhUN7jjEwoRaPcaBrIG/Ov/PBCwN7ziZjzFhAOPRvfOUBZR7qkSZc1KBhf\nXeLOf/8yK2/063Q1e3EGWpOtNEj2p4RHE4qudOd0PmcCaespGorgm6/iAkiOrMjSIkjXy26edQIO\nfR6j3GTfz7S3HvdLFKv+XY2zxVC16NUUU1kkvT5j1Oc9KreEg4xgWHbiNejClYbg4svgRmPc7r6Y\nFeYFPolkY9ZN6kQDVYgZLxqynnTf8dSbl2EW0w1mTFzEQdbi5zY+4K+99G1GD1uCGQRjjbOaTpxy\nrjHkXGPIajymF06Z2oi9vMuqGfEXe6/yq63bxCrE4BkXMdZqkkbGUnNKO0kp1nLu/VyLwQvbZUJa\nBHFE1gvwASgr97JrWHRkUcqznExYi0c0Tcql8JCJi7h2tMFh2kIrx3arz/Cymps7fk5D5w41zU7N\nCzXTp2KalR5g9Tzj5+ljtZa9okfXBy7Xo6o7VrJR605YBR4Z6SKabhfTFR8gOxhgD49OGXf62Uwi\nwNtNgu3ztXkszmJHcw+Hz3sEP/qI5vUDlLW40KAt5G248RcEqM67wigxB3808K99SxgoHsBDENoH\naiGkC0dy7OZG6FqVEfIVMORPJ4o5Thfi3AcMgtNzj1v4vyufXxaPLgoolhpML3WYrSUoJ3LdaOiI\nRlYCAYKSap+LZ4I/PK6NOX0U4npN0o2mAFdGYaM5+JN1FLYxT6/0TpEEBbEpKJwhdSGPdXb5ma9d\n4+gZT5B6wpEUywQOE1vCpCBpZIShyI+cVxwXTTp6xmbQp6lzLIpD12LsI24UkjDW0TO2wyNmLqQb\nzOgFU7RyZIWRD1zJ69iGMIVwChU6okZOI87oRjMuJMcsB2OeS27yc6sf8OzaHbpJinVawCaTE2hH\nWgSo4sGXzsFr16V+LT0GAVmPq7VLq5pdXknIKJlBteF09e/SYqGuj8soeqBOGATmQJExkti0fY78\nT72Afe5RecnffY3ixi30771G8dENfJpJfRVG4MSrxZdpPPbgANNto5d66G5bzjfLJESjYiM1ypTb\n42M6/8/3sGtd7GoH3W6x/XszkrsTjp7poi6eF+ZOEAizsDKQtg4CI8BlHGAevYreOoe7tCXHDyVG\n3O7vi8+LFTsB/9TD9XW2pYysc1Pk7hVzSd/cRT/9OMXtO9hmiG/GYkExnZGfX8Z//03W/u53WXt9\nyNETCfHOiGDzXHlQS7HWEVuHBwlCL7INFw24vZ+Hqiw89kkZ/WnApH7e4pzjnQCI95GCLQ67uzc/\nVJIQXHkI3WzKGgbSUB+NyyZzUB8bLY3x2ox58X1Uw1n8dEbxJ76K/vLjoEqf1wWDZhBZV6XGUIte\nOOUx6oj5/WOCP3i3ft8qjileeJzi6SsSBJNnYhlyeMLWdzKRk734NPEH8/foRnK+Okmwu3vSmKku\nWZqi4xh7cMj0z34N942vzP9uMKR11zG8EJ2uDx7wUNYJY3QR1KnNoxdAH6PnTc/FceoeWbwR1en/\nYP4+lSrtEGQPbFc7pA9vMHt8i8ljGxSrLVSaS5OiEO9XVQUKBeIPS+WfVhQSce99CaSbObhU2Ygs\nnINyjmAwE78epQhOpgQnM7KNFqyvzP1miwJfSmRrZhTgOgl5OySYehr7jnjgpHlYQHSiSfea3Bt2\niIOCVpTxxNIuD//l95j89RPSFc90w5HPApJdafj6cg8V9QvMzOKjQNQiSYg3ChdoSRMNFemysH7D\nqa/TO1FSP/kAPikzuv/4QkjGlDHow4EsZme6XTVLZhGNLIvuGixSc237qQltIQGqBlhKSVYlzdFR\niF5bZfcXt1l/tU/Ri9HTAv1GXyIsexuij04z8VpIBXlUWiIS7WCACiOKuztC92u3pKOPUCS996cm\nSl8UuMMxweVL+OGIYG+ABYq1NiZ+HP/Oh6goEvOxiuHi3HyxTmJ8t43d2RVapFICfDQa+PEEd3Ao\nG6bVZfK1Jjq1+CzHPHqVrX/xETaOa+AmnJRU4CgUM8BHrsBxv97oqG6H4s5dgu3zuO++LtGhP3iH\n9JdfpPE7bxIflD44QYAaTn/yN8ZnGFXnyo/GUmBjTgF1NS228l0qC6kaCDJGwKMSnBFjb4cy1Ju6\n+p6q0sWcB11KQZKE/KF1dGbJlmLUVoeEks643JV7xTr8wZGwwKwFLcCUnUwwS0tlxyKSJKZpBgdH\n+Atbct6VUXdlDO3h+K+/hC4gmHqa/+z3+fDvvEz7pufcN48YP3GOZG+CTi0kEkWonDB5bCIAz8rr\nJ+y/sCSyLgUoeY5Xiv7TK0zWDUUbAZ+OLLNlQ/djhx5MKEoTdX03QeV9vAb98T1GP/swykEwkUQX\nbyAaOrKORmcw+Qs/g3Jw8OWQ5j15L5P1gNZSDzVKhd79eY0FgOYTKVHzX8xZQdVYLCZOFU76k0XT\n4nOUArx0LpTEVuoqparTwMWBbPgKN08bK0FlALW2gltu14lzyoLJPCaTxSBvKbKudAmq0UlSLneO\n6JgZ1ybnGOUxf6z9Ll0947WnL/L25ArhWDEbRthVTWwKNJ7UBUS6YH/WZlxEvNR6nxVdAIbbxYjM\na35+6V0aJmdqQ6731zkaNKHQjLcd0Ykm6neIQoMeTkUmUqbLyaZW4a0iDgvWojGr4Zj1YMiKGfEL\n7XfYunpCx8wY2oQ3/EWyKzOyKxvo0u/i8xjKegFsi+J0V9R5wM679xWgr/ycnVgNPTevl7+dNywW\nJdKnRpXG0u4yffFhJhsBRSLftfY9S/utA9g/rIMOfF6g09KUvFznKmPVP4wf0U972MEABgPUC08z\nvpBQNBTZksc0C3IP5y8d4r+7gfv41h/pdVZe2ePkS5tiuhx4kih/sN7A1pEc2bnRq7t/lSbJY3Da\nN0jAHWX96XNelBHep0Pvy64lgEsChpcSDp9Vku5VKqniQ033hqN9O8NM8rlvUJ7jpjOZm1pruGaM\nN5pglIsfWMk09cpjY0XeVpTkHDlHq9gftrmwdMLUhjzTuU3qQvHjednz6uBJmjueYKTIlxVaSxKL\ntRpjHNpYlqJpnf61boa0VEHmNS2VMfMhTT2vrZb0hD/Wfpedose9fJnCGwZ3O3SmjumKsFWVlfPC\na3SroNuasZxM6YUzHCI1ezfdomlSNuMBrqdJreHObIleOGOWhEyLkPslvv20R2WQW8fLuwXZghN/\nCmDOdq6aiBVQ7efAsrDm5U+rf9f+QkqjtADW3sk65icT/GCAv7rJycMhXkekv/Ayecez/C6svDVC\n39yVujGTRm7li+nzrE6treQzrgSkzfLSnPF53K8NzM2TX5KabDDFXv9QauTkEeKTEdO1HifPb7D8\nrdmc7V+BQc5JrbR3SGA3cL0muj9BT1Ly9TZ0YoLocdzb1wnOrYvHiHXokzHq6mWKDz+ur3fcd8RH\nqSQTxzF2/xD/yHmC1RXM7lCCIIzGbq9hRinFz38F/XtvYA4G9D6MSTda7P/pFc7/T7siMzpXppc9\nwDknHC1495xh/VTAnc+zOethkQV0dj45u2acZUff73efMtxshjvrB+dsiWN6dNVISVPZR5Veproj\ngTmVDcNifLy3lvitW9jdPcxSj/6ffBxtoXnt/dMvU4W7lMCnisKaKWvW1vAlYFizbZ3FHh8T3Wjh\ns+yUdKvY2aUxm1G8/CyqcKQPb9QyxApEVWGI25lh96p0T7k2rvQrbd4co977GLW+jt3fx00mrHxv\nl5t/cYu1C1tw7f3TTckHNcp0r1ouVT52SklRgUBV8MVZhjzc/z5YYNXUx11gqKEUPgzIewnT9RAb\nS5S6WTGoiw2ikSW5O8H0x/Pvvi+b5q2GgMIVaFSei4pCuY4unwcAVedZmk5XwUhqVmBbES4OyLoB\nWXeZzjTF7R+iMGCow2J8GKCswzYj8k5AfJzjwpDpmma2InssVYCeKsajhPX2mHONIQ8lh/yppR/x\nSvsqvxs9wsO9A779+08SHBwLESP3teed8r42rfZG4SLZIwSpSK+LRIEKyJsSXOMN5G1pztiG/1Sm\n4NnxhWAIocBVDBU9TzMQD5t5jHoNAlUb84VxyrRs0aOhKrqsrY2f65ctGSB+PGHl3Snuh28T/ugG\n5l2ZqFS7RXH7DsXOrtATK71hRXutfITaLUGuwwDCSPSqrdapdLCacvvQBQDc3gF+awP7wQ2Cy5cI\njidMLnVl8ex1qWIJVRDU4IVpt0QXe/1DkaE1G7LQG0lRsMfH86jQJCRvBehRJrIKpfBLHfndcZ/i\nF79K9wf3pHNfmgq6j2/V3RG9ukJxcU2Q8Tt3CTbP4Q6OCDbWaH7rGu65L8Erb4rZm7Xi1/Npm+mf\n8vCD0VwmWJQ+QE5iCasY+CohpQYXF81c88V7x31yM+bdJym0JcXWZznhvRP8q2+R3DgmvnmMPT6R\nbsOHN/C37uIHQ9k8lqw2yiJLRZEYkB8colckTUyNp6jlJVSVDBJoil4i0q6WGImZTOLbXagY/aWf\nAWD0kMS25m0txTqy4daF+LTYRB4Lpo70XIuiqeqUJzP1rLydYjLPZN3gyqI+OvG0394DJWahi9dp\n+98XuKh01X/0As27U+KjDBdUnWNFcliIiaKG8YbImOJj+T6uvp0TDR2+maCOBxKP/KBHZVhXMcMW\nE6Bg3gW5Hxj048b9FsSzsjKEweGOjrE7e9g793C7+6idQ4K9vhSoucU3E3RDOmZ1cR5Hcu2VRHaq\nwtVAkBi6Qt515D1LvlqQdFNWGxO24j5HRYvNeMB/sv4OG2bE96dXWYomfOmFG6TLjuAk4GDU4jht\nMixiDmYtxkXM5fYhj7V3aeoUB7yfG/7HvV/gX4+e5nJ0wNc6HzC1IbevbxD8qE1yLwDtcZFiuh4y\nvdDGdZsUDUXRgKLlxEMlU+jQ0Y4yGibjuGjy/uwct/JVzgdD/nTrGs/Ht9gM+5xkDfwk4OjJBsHW\n5k/mHviPGU7WjGquUErNNeXV5mtx3alA6fuNs4Xe2XtsUR5SSodVFDFbMSjraRw52nctZuYZPr3O\n6OcfwzzxqDBTs1wSOirZ2ec0P3+WoZOE4yc79K8abCwbdzsMoVA8vrRHMLvPHPyHHfuHJAfglzN0\nKxeg7gFfEp2VbOiS5VNJeGvAx8/BIOD0fVOxQtzC/HK282rUJ6o6Xz6mfOlncC7DrWWwluJXcqYX\nCg6/rDh8OmG63cKuddG9rjCEK18+7/GhxkULjNXSK8jGirwJWQeKBuQdL/NOL6XTmJGYgkGe8MrJ\nFXSJhv2plR+x+vIO421F1Ac9NThrKHJDngV1wtj+rI07U80myrFuxpwP+kRYhi5h5uYNBaM858K+\nSE1PjNxLscKF4COP6xb4psUEVhhMQcF6NGQtGBEqy9Voj5eb1/lK8wbr0ZBfOv8O14/W0MqznowI\n9ecIplYG0guNTwmyiEogR819XKoUVaWl9l1gCymtTsuGvKs3qPKjr/04lTHzMJVv/5Bzf+8Ntv7d\nAZf+VZ/VNz3j84oP/3yb/PFtVKeN2ViXZKXZrP47n2Uil+928cOhrGlRVDc0MQbV7Yh0w2jy9RaE\nAemlZYZ/+evoZpPkYIY/GbD1nTGzFcXgaxfx7WZtRI3Rtc+ee/Qi/sZtAYcCA0d99Ld+yOBKAz2e\nElzalnTe4wF2f5/JI6sUG8JUqaLLD54JCG8dQp5hNtalpgu1WADMMmwrwr5zndlmk8mlLuG9AcHW\nOexqh3CQ4SLN5ivzRql7/R1RNTxQENqekhGfHTWj1PvTRuL3a2Z92vqxKF9e/HulCC5eYOe/eZnd\nv/0y6qtPEWyeOxUrf9/h7FwmjTCHqvN0w2Fty6FKJmN1v/s0rVlI9qRP+5/8Pu3ffFNOMUlOHd+O\nxiVbREzVawnTAstFtxqY1RWx/wBh+h8efYKhZE/6hDf24ZU36V+d21f4vJA6oUynUkksfnlxLM13\nJ0w9//q7KGNOAU32g49p3fXs/vF1AVAHD14aj/eQZuLNU90PNTFDzcGgMxKtH3uvnD3+IjPoPsPM\nCjofjVn93h5r39ll+fVjOh+NwcFsq0m+2ZMAnvJ4qijBq8r4mbL5X0kis1zYPdadqr18yVBU1pOv\nNsnXm5Ke2Q7KhjrkW8votRLUDQJIYvHziUJ8HGImGY3dmTTjgXRJMb5cMFv1pXRMmp/jLOLepMuH\n0zWs11g0X127xX+1+U3iA42azISdlVqUhawXYEMt+wGj0CNpguSdkMZ+TjywgqEYOc/mPc1ss2B4\n1ZIu+5qx+1nGFwMQKs9WvvgSuV5pR+uCpFq8qs5HxQ5a+OAr36BqEZSHygJd6VMaaigXPSfGdurb\nP5TFa1m+/LqUYgXnNmSBKG9Y0+nU1H1zcVuOU3XuF25qN5nMAZ2ikAKr05nrJb90GdcWWq3vD8lX\nmiS/8YocLw7nrvnelxsKJ35FSgmrBJmgKAp8mmHffg/zxKOSnKCUOKZnDvejd0EbppeXcM0INx5j\nBwMOnolx+4e46Uy0t3fu4guRj8mGxsH33kBfLnW0SYzudQU9Hwww16RbO/vaowLiLXXmX8wHOnwN\nFNZsJ1vKwsprX+uQw+BU4kHVSav9hrw7LdermGVqHr1aa2erjkpFO/Uee/1D3Me3ZdEfT0rfIie0\n5CiUzzpNpRiqTOXCQAqx0gepuHNXulZaYxshKrW42FA0DDhofvs9XKho7has/pM3SLuacAzrr8n5\nTDYMOrO4yKBzh5lVSLOwcrxRDC+EBBPRupoM1t6c4kKRlnkDOoXODcfq//5dio9uMFtRBFMnZuuA\n/9nnaH50Imi6FkM4ff0mNjZkvYCsJXKgvGvo/va72Ah8oAhHnrXXhjT3C+J/+X12vq45eX6D7Etb\nn20B+UkOxY8HeM6ejz6zyP24Re8TlOr7dO6NRrWapRQ0qynR7ugE3x+ipim6XBhUuy3m9mEg93dD\nQMXKfFo5cIGSTU8gGuLqParIks0Cbp0scZi3+PXrz/HOcJMXGx/yXr7B/3XzBULl+JsX/j/OfWkf\nbzyTYczMBgTKsd3ssxKN2QiHPJbcKzdghhPXYFzE5N4QYZl5WeSW39Ss/aggHILKFdHAE40sNtbk\nywk2RtgJRpgtPvJ0WjOW4wlr4YitqM+gSLg222LoQvou5DvTq1ybbQlrqZ3TfxQGX39I6PhnvHQe\nzCg35mdBoGpUsgzvT0nEztK/TzU1zsrFKhlRaUg99xdyuMGQ3nsjOjdTgrEjHFqioxntD/q03+/j\nWjHuy49gLp6vI5Q/tZP7BRl6fQ0bQWPfs3y9qFk0zdsBv/PDJ4kPf3xi2mcZ9qRP3Pe0ujNQ0B+0\nPhnL/CBGKRWrDaIXZWLlECnZwu/LJEKv+PTu++JnrMv/zAIlvnD0rk9Y+70IPw1otDKCJIfE4gJP\n2oP+QyH9R1rMHtvEPbyNbjYlLXW5Jcl61broPXlrbobvovI1rHyvTScnCgus0/zxtWv8+XOvsZX0\nyV3AxegQozy/uHWN1vMHZD0IhvL32jgazZRWkrHWnLCajIl1zpFtceIafJAvc+TKWHBfSsdcTKJz\nxi7Gocm9YT0Y8OFwlcauNCdsAl57VK7AKbAK7+Q1x3nEG/1t3plscS9b4m6xzMyHDGzC7dkS39x5\njFaU88P9be6Oe2jl5RgPeiglTPFKllp7B9m6RgRhTYDUt5Km5Gq5g4Aw5VxTeQuVTPRaZmH0qRoa\n50QS/9Kz8uN4LPXmyYjuR1Me+vU9zn+roGgEHL20xfSxc8y+ehXT7eImE4KLFyS5dzyBKBTJ1kmf\nKvq5AtB9MwGtsNc/ZLIR4ZoRwTdf5eBZBY9cwoUae3xMthyx8f0h403N8MsbshEcjADQg8lcnv2M\nyNpcEkFZo/c+nEqiHqA6nTo5KupnmL5s3H1/QLB5juTQSxMxL+raNn73jsg5jCbvRgQPXaT57fdI\nfuMVkfg3Ynj9GsHuCdFJhv7d18h+6cX6I7THxw/UQ0iS6fL7gzZn/l0HGJz11oFPn2/gNHPoTN3j\njo7p3rDYCPa+1qW4tHEqcv7TRs0sW/DAMmurYoURz/cZuqybdZLU96cKI9JflmteNe2Hv/LsmRew\nEEY16F1dn2Jnt26gozR+a4ODP/ek/Ml4gooizNYm/f/86xz+jZfqw02f2MKsrxP3y+9g6U/qJhOK\np6/Id3c4nIOwUYh57BHMo1frUJvgykOY1RX0c08y+5UXWf7HP6B7o4CNlf/g9fqpDI989+uGqJ6z\naao4+kUz6PrvPgOY+Ak54n3kZlVCa6DFa2g4Rh31Mf0pyd6EuPQUzFeaZNs9io2uSOQrCRuUdddC\nWFWWy36s8vYs34+PxFeo6CUy94RavD0bGp17on6Oiw35+RXUytK8qW/FsBqt0bMCM5Y6pfIENCOD\nmUnAiws9yniG39rg4Le2+a0fPcX76Tn+7a3H+FfXnuafn3yV9i153z4MwHpM5ghHlnhvjBpN0TP5\njupZQdjPMNMCVVAzgKKRo7njaaxN+C9+/lvkl9I61fSzjC8IIITcEFpMOX0VFR7OdaQ1s6LqXFTm\nYFWHYREAKv+Gkhpb/1wtPOXzq+dKJHjpV3Tch60NmRwDI0ggoNdWUE9cLQGGTIqk2/fqvwdkA1AZ\n0zUaJbtnwdNhOBSd9cvPou4dwPfeYPdvv4x97CLhOzcBGPzVr6NmGXp1RSRGubClhOli0Btr2ONj\nAXKshfUV3PGxMJLiUORT7Sbq9j3C334VgKO//jUav38d/+pbmKceA6BzuzQTzLP6HIPNc7IAZllt\nHuxv3ZWUsRu3oCjEP+ilZ+VL9LPPkbz6ITu/8hBqMsNd++Ane0/8YYbWZaxpMS98vGzCVBLLZ1Gj\nn5QAACAASURBVFMBRaY0g65AIKVqhhFK1x2rmhEGc2S80uaDTFpZDrNUtOpffhzdSHDDoWzg41iu\nb5rC2sq8MO+0UUvSjaKwc4AyMJi1VVy7gW+EArRMStPy3NG4OyJ9/hF07ml8613u/o1nyXoKM4P2\nb/2Ij/6Hl0BButYgvnGIjSTe0IWKItZkbU0wdUQjX8q6BLg5erLB/nOhbNC1mD733pLP/+5/9xLt\nu472rWndZelfbcj1LhxmUkhx9OxV8o6RCWzqSU4sRazZ+0tP0r7rCEee5V//IXsvdMhbmrv/7cus\n/dAzvKgZXErQo88h9lqVhYBa2NjXjy9opP8wYNXiQnd2E65OH98nMWysYs5t1F08n2e40VhMyrP8\nFMNQN5uopR5ea6GQVvNXoLBlqpuwDhTBRGPGGj8N8F4xmUUcpi1WO2N64Yx92+X92SYP9w75k8tv\nsWn6/MzGDdhMUcbjvaJhcraSPrEuuJsucWjb7NkOP0wv0FIZ//Xmb/ML7be5WaxwfXqORpBz/KRn\n73nD6GGLsorZsiLtiVQz6waygVTgjadYKQh7KdYrZlaio0NluZgccT465tC2+CBf55XhFd6fbLAW\njXjiwg4uFsM9ylTGL8Twrqag+/v5M1TGi/+Be8mX8tbaL2gBCKrmHjeZoN7+kHB3gHKeomXIlmOy\n9RbTi11sI8QMZvjAkF1eJ7u8jlvu3D8p5Asy/Cxl45++zeo//AE6FxlR82ZANICNbxui2z+Z2N3u\nRzOe2tjhpasfoZR/sJuzariSmaQQZpD1p71/6o3W3Hx6ERy6L3tocW45689QzTcleL/8zoSLvwnp\n9S5haGl2Z5jzE6aXc2br4gU0eCji8JkO+dOXcatLJfgv6xBVsZu52hjbK/FKMCmYqYJ7CcM7XU6G\nDf7uOz/HP777ArEuWAlG/JuTZ/goXWc7OuY/vfwa5qsneAN2anBWEweWOBBT6ah0w+wXTXaKJRKd\nYxCjaQCD55snT/IPD17i43ydUBXczZb594Mn2O13iPu+NrxGI3HzVkGhsFbjvCI2Bc4r7k567KZd\nfji+xD89epG/f+cl7oyXsF6x0RzyxOoOlzuHNIM/Ojj5HzMqz59FZs8pD6EawPHzejiK6noXpet6\nEpjPnYs18uIoZa/ee9zhEeHNffzPPlf/uvjoBsF7t5lcXWb3hZDpmmHlezs03rqDizT7f/Ep0EYa\nl1UTLcsx50pD5jiWe7MyEG5E+LY0Qpe+f4/xRWGSPPq/3UVNUqabUn9EJzl6nLL1zz/i3ssK/+TV\nmsXgAwG+zO6JNMXSnNlmE7Y2hIl/NBZQqtdi9Nz5+r0E125h37kufpqHR/iVHvHAS1DLeIxKM1QY\n4TZX8bFIT5o/uosfjfEPncc89Rh6OIU4kj1CGBDsDwmuPET0m3PfThDA9IEO7z8dtLnfWIydP3uc\nP+Rwkwmdb77Dhd8+waSw81KH9FdePAXqVGORyXSK1VTVOdOZ7E+qBnyjMScOhCHZsvyNubDF7T9h\nTh/rPsuu3d+fN/HLe7/yM8J7Ae/u7LL2r8t9jRNViDs6ZrS9wNB78RnCUQ5rS7R+/fflsSBAteYm\n5NW1U8agel3UeIq/dVfUHqvLqItbHH19S+69t96n+e/eQl++SPSb38e+dQ3d6/4Hr/VPZVQG0rV3\nkKrZeKdYQtX4rOygxecvjoW1TeUFwZ7UONNH1rBba2JPMpqAEw/SyfkEZT1mWmAbAdn5npxvmtVe\nP7V9SNWQKw2rq7Quqc0Aa9G5Ixw7dO4o2tHc1895dGbJexF2TT4LP53BdIbK8jphzEcBRUeSN8OR\np3VHEUwVWc/j1jKiuMCF4vHT7E25MVvlfHeAUp7/+4cv0tqt7meRhOncE57M0P2xgE95Uf7OY8Yp\neloQjgvivpx3fJITTB2zccRTjdssLY9RBZ+58fWF8BACFjwUxINBBSWDwsyRvpr9s+Ar5DIxvKsj\nNEsfh8rrpQaIquMsxNKLh5CeL7DG4PoDfJkExu1dAZ0Ad3SMu3VXvINaLexgVL6mqtkoOC8mV2Ek\nVMbpVCaAsASzwkjoh+/dxo/G6E6H83//HZGmHR5h1lZZ+c5d0SWO5rH2rroO1lJ8LMCRWV0Wytrh\nsTCQlpdhNCW/sEq426c46cvCWxRs/O49iv6A4V/5Op1/9D2Gf+XrNHdKJDMIxP1/PBZaolKSJhYG\nMmkbg723i+l0cCd9kardPYIwJLh2i4/+1uNc+V+uURwcYr70MPa9zwEUqsykodxM6U9ufvIcwnDu\nAVQZhJUFj4LTLDQ4vVhUz6+0+M5DoMBbfJ4Lej3LoNUk6LQpFjxO3GSCOe5LksV4THHnrsRQluel\nl3p1vDjdjqTDWAtxiGvHOCMTcb7SIFsK0IVn8GeeIjnyZB3Fue/2SX/2CeJjOd90OSD86Ab2K5uE\nI4svPC6AeOBp3JsyeKSF19DctSSHBYdPxSgv9P/mrqd7c8b+zyyjXnxJkmAyx87X22x+b4Z56jGi\ncVV8afJOSHIwwxqFzrxImBy1V0w09DgjE9vol5/FhYqso4mGnqOnFa1bsPrq4YNnCHlk8VlgCtWf\n9/027oux8YuAT9Ux/3F66WpTXy2mFVCklICSS11MGOJKE3KfZ7ihQxWFMMsCYbapXgfXbcrGxmh8\nWAJ+RglDKEEYOLGnaHh86CBwhHFBrz2lE6Y8s/Uua+GQw6KNUY5fXX2dZ+K77Ng2wzzh4sYR+8M2\n++MWobGsxSMGRcLUhvSLJqGy/H7/Kq3VlF+J+3x7FvIP7r3E27e32Fzt8/UXrjEpIu4MexzsdslG\nEa0dud4uEJmii4BeTqOVobWAT2kRMHMhsc7RwIltSsffa7pBCbIr//+T9+YxlmTZed/v3hvbW3Ov\nzMrat67q7plepmfpHokcDiWIlmWJNCERlmSJNgxIsg1J3mTY8PKHAUM2BMgWYHgRJMAUIZKiSIqy\nRA45ai7DWbt7epme6erq7ural9wz35JviYh7r/84EfFeZlXPNCl2zQC6QFVmvhcvIl7EjXvP/c53\nvo/EZIQdTfudPdFt+36xXqYXX3JyB9/XwtKUbafeK9lChbBlJUxYAEaqDFrK1/xksVa6UELBQL1+\nm/r+kPzEIuOFWJK7maN3MmbwqRqt25b2Ox3UOEcNRlU2/AeqKYV67kn8OzclM6sN8faYZDugc9Gz\n/HJG1Emree9ft+0+lnDSpHzj7iny4fch/CkFx0vBZwpg/iGlYges5Tn43kPHyykAqCpLmRINhoJ1\nZB3J+pgT/ypg+/4M+58aEicp0cIAFmBntU79RkjUgdFSROIlGK7Oi4kwfmkdL2OSPNs29tiGA+MJ\nQ8vqbJdakLGX13mstsbF+hpZsSp+PLnLnz5d4+fXn0f3AzLjcU2wXrGxL2K+7WDM6WSbBdOnoVK0\n8uw4AQdWTJc/v/BSdQlSbzgbb/CN7Bzm5TZx1xb6CpA3PL5hIVOoTKMUDLMAT4JRHucVe+MaSnmG\nWYjzisiI8PjIhpyq73B/NMMg/+ASnI+0aQVOowyi0VOr4UbjKhHm86yylz/gLBaEwrYokw7TgNLU\n9uI85iY6ZsbgmYjmu26P4Nt9/DNP4N9+X0p0traJv7DNmVcWUEHA/X/3LI11R+vKLslGhJ6flbh8\nf1/KWPMcBkPRvyyBh7hwtivmRf304+S1kNaVHXjsHLaVYO5uUf+Vl9DPPEEaG8JxRn5/jbB3lr2L\nTRbWCvHzMIC9Ll5pwhsb+EaN+Auv0P/xT9O8vIXq7kMcQRhgY4W5cBZ2OyIcXcglmIvnsZffpV17\nUuL/OIaCxa3GmYCyoxFutoWqJ9Vz6ZMI24gwS0vY+SamN2J8bBZz/abEg0oJq/Vfs/L199UODxNT\nGi3VTz3FeC8ZQqUVvdIc0BUqt/mwzXvRWf3OuywNTrH9/BE6p0P6//4nWHhrH9Mb46/fLpLfU8nz\n4ndfiPiCVJAcOJcioQ1SShb/+isA2Nt3Ofdf3QRAP3WJfK5G45dkjDBzc3B0CXv53epYOo7xxqBX\njuA7XUl8ag2Pnca+cVlErktGP8KQO/6/vyqfa7VQ+2Ps5XfxH7s0OX/roHBWZarUWRmNK/qZz4WI\nYHf30KMRc3fWsOV39w73zlX0M0+g0px86nwfaTvMRi3j4A+bLP1efeYwW206NvYelWYEG130qE66\nUMMlAeGdbfS9TRK9xGilTtaelHuFnTGq2xeSQ1ZoPFqLUgWIVSb5x+mEdW10ldjQg5RkQ17LGwE6\nlUqbcjtfJNzrmwl+t4OPY5FhLUkhtZCsYUibimAojJ3uKY1tWUzgpRz6RArGc6I5YD7cp9Ee8/ad\nFWZfjUnW9qTvZDk6tQSA7o2q45f29irLUbnFG02YWYI9kRNxkcGuRpjQ8feu/TF6l+eJ9j/82uoH\nBhA64MICwhIqQZwCANJJXDFASibH4UzsYQG9MvtfCo+pIKgo/WoaUIKKPaTCCPfGZdAGszBPfucu\n5rFz8O77kqTNcwFbZtvYd66ia3FRI20xC3Pka+ty6FhsOu32Dmpuld5TR6j9qpSFmfNnsFevF1oP\naQXM+P0hyog1fHDmFAxH1TrUFd/bLMxKHeReR+pnn38KrhfBvlbk125gnnhMVMlDg37vFuaJx5j9\nrfexQNh3xFfXsd6LWN76hogVFq5uulHUiyuFP3MMffMePs2EdWOMCDgD/vgyzdseu7WNefIiau/7\nUOeK3I/pkotKB6gQmSbLpSSrBH8KAfKyZExNZ8ams2dhUIFHPs0O1BdTZjhKN44sk0GmsEmtJtWi\nldpMZcsfO4ba3IQ4EoRZKclube2ggkV8rdCJcRofaNKWpv0b7xBcOs3upSa1rZw8DjCpp3+uSX/V\nEO968roi7DvM4xcIuzkuEsqjMYCH/qk6zihMJv1g51KMTRDbw03P7M9+nfTHPomNZRCJu47BkuHI\n60KnvvoX5zn7T7vFNYJ4e4StS62tV6pyF/NaqPrRjiVtyjVKG5pk1wnA5SGbtaz8k74wXrJHGSUx\nCZQOi3MensAeNuF92ICoYHv4MJDsZxTgAo0ZZqhxNqHdKiVaQctLqE4X2+1LlrGwVFdxjI5j1MKc\n/F0Iy/ri3HTmMJlHOWF8eQ2+nUnafqRxNxsMzlsC5Xinv0x9ZsxK1GEp6HLE9Mi8JlEZjzXWOV7b\n5UV7kfvrswzHEe1wRM1khMqxkbU4Hm3z2ZmrXAg3CVWNbdvk2+8dJ9wI8QsdHIpeJs9GWM9QeVRo\nXnlZ+Drw2hMmuTA0lCcJc1rRiJYZESrLW/1jOK94snmPUFkWwz49m9C3Mc4rWjdB3bzH91UYuTx2\nKR4NBYVaGIhSosxBluF0HX5JkX4Yk4gis5/nlUNltYs8r7Jw3loR0BwMSc6uYpsRzmhm3+nTvmYq\n9z6tNf7O/QNB7Q9KM+dOw+0NbL+PimPM/Bw2dxJM7WiS16/D8iJ/WHe6dwa+9P4F0SeCRw8oFmCQ\nHFt+TINBlXuYp9IZ+p5tanHnVRG4GiWaP6Ewg3Tq0KlFV/pFnrCfsfyKpbeesP3xBJt4ll+CaE6R\nN6jcSUrNIpW7SnQT57GhKrKYMtSkbdnORZ72So9xGhCHOScbuwxtiPWKnbxJrDNaesTAxazls5xL\nNlg8vkf3jQVcGtGrJcSxzAf3XYtj9T3eGx6hrsfMmz6ZC9lzdRoqZc8HJCojVBaLAhez72JevHmR\n2fctZujIYyPXJfSofSPlXoEX0eraiNjIsbTy7GcCmjSiVAAhbQmNpRmOGbqIQR7RDMd8P2znJT4u\nF8R6IhjtSkaiLOynY2I3HAqzqBCiLsGjKomqFcorAZwtsk1Zal8wpXEe3RA2hstzePt9zNIibnFG\n4mSoXGqX/i+JfS2gP3ZJxpwpfUkVhSIs3W7L+bop5mMSwsvfRjca7P7Zp1j85hg2ttl/8gLNscWM\nRvjCQXXw2BLRtRuc+cVNrv35RWbeX8C8d6diNOTnjhJs9qrnu3llR0qt93rYIlnXLp4ZVauRL7UJ\nRivk99cIWs3C9GUkyb4owmeZsDQGI2Ex7UvC1icheTuhe7bGzNWB2HQvzQmAqjXpbECtuoFa1gk/\nCHUZB1iGh8p+SjDIe/D2wc8cbod0gx62rbcWd/MOCzt7DD5zlu0nQu58volyTY6/GPDe34hpvplI\nDPqPvv7QY+okrsBMP5ZSPl2vS8J1+YiMSZubxXpA4m/d2Sfq7FcYnB8OGZybJZFuK/IXiwvCJun2\nsNs76CRBL8yTNSIJE7XGrByh8+wytS0pA/TjMbacS68M6P/U8zR/8RuT89biMKpbTfIpd7UDLtdM\ngC97aF72ec7wJz5Nsj4muHYH3Wh8qFK7j6w9jMlzmA3/AZ8pZQ2+21wr20z1n3LfBaCjO/vEaU62\n0GB87gjh1oC8HRMMLOH2QHT5YKJzWjgpHjhvY6TcM88lyao1rp6gvCddahDuyoPpagF6bNHWk8Va\ndFitAGFm7LCJxh6ZxaQZPrdVCSrOQe4I9y3JrhKH5US+e/NqgE0ChsdywtkxUZzTjMYMbchrOyeI\n364xf3mMGoypKlsyS9AZoHr74sRuDD6RdUT/TAudeRrvbqNGY1Rm8LUIWw8Zz2rcWsLGrRr1NfX7\nKhn7gQGEQEChKuM+nXEtgBCfpsVNLV6fcn8q9YMAVCiZlHLC84WDVHD8GPmduwLCFALDpS18JWwX\nRVVJmgoCGI8JThxn87NHWOr2GT0hotDm9i72nasER1ewO7vVsV0xUeh6XdTri9pmhqMKDBr9O5+m\n+apkPNXp47ApquL5yizmSgdac+UFIV9bL3R9lCDOgB+X6LkjOLaK3+qh6jX89h7q6nV4/ilyo+me\nTlj43VsFW0gU7Pf+0gssfvkuvtuT7xxFxTULxPKxUZOfzQZqpk3eiFB7HYLjxyDPGT9+jPjGNn4w\nZOu5WRZe76Ln5lD9QUX3feTNTWU3olAegCm68wGQyElpR+mwMbGNLnSFgAPUae/EOKh0XDt9cvJW\nGKCGY/xwWJQeOQGGnMOcO4WbqeO/+R3u/a3P0rrt2DunMSkc/co+6qtvSLbCOnnYvQcisVINBchT\n1qHGFtohyXaO6/XYu9REW0/j2/fo/PgpTOpJmxqbQLwrds15Q7P+w4ss//xb7P/wJcAT9ixZ04gN\nohUa/d6FUPR9NOgU6usZPP8Ua89HKAez7zpm3umy+7E2+kuvY9ptVl62mM09fKsuYqVoxrMhUTcn\nr5tqUWIjhc6h9qsvs/9XX0BnMJ5TJNtCX+yfQBYb+yMJ1A5TTx9FO0AXfgiPu6qdfggo9LBx6iHN\nhwHZkRaD1YSsJmBZMPYku5ZkYySlcgVo4OMINT9HUArS57n0B2OENWikTM9HktHQqZUFmiqopX2P\nqitSB2QanAT73kxmg34eM3YhiU5p6RFdl3DDNkl0xifr17Be863ace53lxjvRVxrLPD04l2aZkys\ncxKd8VR4l3ltuZ71WTCa5y7eYONEi08s3uZf3bjIcK2JDx0qtuhY9IKCfVsIjlO5n43HIVo7kjAn\n0I5YZwxszJeun6OWZHzu0hXaZsS18RHe7BxD40mdob5psZ3u7/9+/2G2kmUIBVPwMJujyLSXY5PW\nE2ZQlYl/CMxRlYjJHFRqIBxoFVgJ3nlxpHz3FtHiPNnKLCrNyRYSdCblZMG+JWm3fiAZQvbq9er3\n9HMfZ7AUEHdEJH3lJbHXdu/f/ND7C46tHmBnHm7JpmIQJjBTBRF/0FP/g7WKIXTIXr5s302P4XAQ\nPt1KVpBWuNgwng+xoaqYmjoXJ8KoZ4k6GSqzUl5qLTNX92neNrjYEN/ew127WSWo7PljeKPRgwzl\nHF5r0B6dWcJ90TXKYxlnzAh0rsArRr1Z0gVLdDTn/rBNoB2NIK1YgCfCbQY+ZlYPuJvP8Znlm/xm\nuEC8rdifj0iSjNBYQuPoZDWebd9mJZQyZovi8ugYdZ3y8eQ2e67OiulSVzkDYq4Mj8LLM9Tv75PX\nA7yReQ8LOpPr5CJPEDgaYUo9SIl0zmONDa4PFmmFI+aCAUY5NtIWuTdkzrA2bJF7DTY4MKY+qlYl\nSwsAqBSHno5XfC4anBQOum48PigiXbDmS8aQJCPDah/eeczcLHZnV3ZYxMW22xf9Fu/ww5EYYeQ5\nfOwSutMnv32HG//zCyy86TGZp/3affLvXMEh2i/TZZBmcUGSiMuF/k8c4wZD0vmEWsEyX/q9e9jF\nNn57h6ib45MAtbyEHowI+iHDpQjzI5/A3O9y8gsD1l5osjpcxn3rbYKzpwl2B7hmDd0filV8O8bW\nAuyxFvEXRLxXZTl54XQ1+OQxmt+ROcUutODN99AzYsJCvVbEyoU+SS6SBKo/EEbTm1eotT+FTWSO\ntrWQrafrtG/lbD8ecPxX5aubMjm8+BF3lA9q30V7bFpb84HPVGzYKaDo8M+pfaENKjAHGD94cVu2\nWU7td97i5FuLjM4tEd/vYS+/y6X/Yr5KmprFBelzU0AKFNUM9VoFPupaArUE7Rz5+VV8oNBf2iQ4\ne5rex49Q++cvi9TFVHOjEcm/ePnAa3ZrW0x1ppg7bnsHVWhmusEAd+0G+WdXMN+4jC/OMXvypMTF\n504xOKJpTl/SgrjgRuMD10fXElwxB2Q/9HGC3371wWtetPrNffT1O1BLUNbC9wMQKu+x0Q/q/Exv\nAw/MS75w7lKucP+yDx8zfRziyzKvcnszMXRRmbAH1XBMuOFw7RrpkQYu0gTDHNuM8aFGD3OC+4Mp\n9/FCgqZgPJYu4yVZAGurRHS4NRDn2EYi87HzqNxjxqLTmTUDgqFFeU8wtKQzEUmngertQ8HUUdah\n05yglxFrxf5ywHC5MDPQYBMPkcMEDu+hn8bcHs7RGSbMXnXEd/ZQ41TWrKNUzn9UXBOt8YHB1SPG\nizW2nzDEu1Bbq+EiQ+90jf2jcn/Gc57GXXF3diEfGgyCDwEIKaVOAP8IWC52/fe9939PKTUP/BPg\nNHAD+Cnv/W7xmf8W+I8Q6OZveO9/80McRxbtYTAJlF3B5oADNFigAnoqC009yX4AVGU+CNih63Vs\nwdyRidFWVEDSFDceo4NAWEQFtdalGYzHqMGA+Z/fJB+PiQtBqvz+GubxC9j3rksGwXthFlWCZKo6\nfyj0ibRBN+rUX3wTZwy61cLfvIs6dQy3uUlQlHrpkn5WKp83G6IpojQ60lL+hAwufn8fFUf4KMTu\n7sqkfXsLrGXmq+vkQPbHn4MXX0XFMXHPkt+6i2k25DqMxgWaXlgjFwiqTzP8+ibq5m2yP/FJzLVt\n6GWEu6NqEh3Pnce//hYWCOZm8Lcngfij6jdyIWSxpeJYJu7y4S/KNqZLLapBrXjfF5OhomQaKTl6\nqUqvtFzfYrL0jRpkOa6RYJsRepwTbHQgy7Fb2yIGbh3s7KF39nBBwOrf+RoqCJidaaOShPzuPfTT\nj8P1uxNKaRShhmNUacNqPT5U+HqRyVaQ/+hzJLuWtKXZ+eETJDuO8ayisWYZzwXMvtNnvJQQ7WV0\nTtdRi/OE/Zy8Zgh6KTZJRMOlGCDCnse3FeGuZ+mVXTZemMMFEclmYWP9XofOk7PM/JxQcTf/7JMc\n+cJ1iEKwDp2LuGIwdJWIWjCQjKwZe1p3xvR/6nnSGUXY8ygLi7/yFtmz59j8ZMSFf5xKDfXc3AFg\n5dH0nalARz7PA9pBZTtcFuQOTYDTWkGHMhKuXSOdjRjNKrKWIq+LwJy2IfX7AXPvhETrvcoe02uF\niiMRvRuLi10JahIGuFj6g05Fu8kpha2ZykLaxuANqFSLXkYjp7Y6ZKXdI9Y57XDERtpiLZwlC/p0\nbULP1VigT0sPSXTGC/PX+FZ8kuRuyMa1BbZbe6y2O7TMiMwHbLs6Xx2u8lLnDM+07vBfH/8Ct7MF\nXt4/izEOGrnQaLVH5SJIbgYZujxPB3lq5BYUFZzOKwye+aDP58++x2rc4Vy0gcHz5fFjXN1c5PzS\nFu9vLHJqcyx07SLIfLT9hskE63ylMYe3B8YeX5aGfVCbAoqUOuT4U4xR0/pzD99HCWY7GDrc/XXM\n1g4qjqj3RxJgFdT6HzQw6GFspeTmHsk1i2/WqN1X+Fffwh5iWn6v9t3AoODUCeI9j4sVg9VMtLJK\n+ZVH1Xeq0q1DYFDFDkK0AmDKcv4hoFDZpoAgABeKsH+eKPJYiatfXQJDEfbXtG5palspZpBX+zQj\noai7dg2zfATX7aHCED3KpYQZRIzTezwi9GnGDhtr8kTs5s1IAF8Xe7K2Q9UsRnl2hnVa8RjnFfNB\nn46t49BoHKk3hCpnJe6Qz+ckmyGNqxGjRkZrrkeoHbnTjFzIrB4Q4VgNxjQaBTMFxT07x410kfmg\nz55t8MvffpaTb2aY/ri4ViHKQrCvhb1aczKf5ppxHhDpnEFe5321xMnaDseiXdp6yIlwm03b5vXB\nKWKVk/sj7I7raOXQ44qR/OjinNJxtwCfKzZ8sbiZOJ8WcgAmPjDHTetmViLDBZu+AgS8sEV0HAsL\nWitZjOwPROunJiVSPpd4R3V7uCLOPv0/vIw5fxp29siLWMgNBpURh9sfYNphBQKR5xCGEAbohXmS\n+31Ub1+SbgXQYBbmUTsj9O017PljmJ19/CvfZnbjBL6/T/b4SaK7u7igweanZln4Frh7a3D+tPTb\nKETvdnHfuUe8fIS9z5+lceaUXKfdDmZ2BrvXof31Gzglbm1mo4MLA8hz3HCEXpzHd7qiFxKFIn5d\nsH9xDt1qUX/lBvn5VYK9Afbt9zjyFXCfe5b2zcn1t10BnApZrEfbd+C7MzQ+yLnwYQyi6X0VP8vr\nWJaf+ewDxmxnccMh/s494r2OGGYEwcTduNUCeAAMgqJkbGrOsN0uFNfUvP6ulFGHEW5zm+bvdbBQ\naUIFp06Qnlggen8N75xURSTJxKGsWUflORT29aogEPh6AoUT3dwvvYFLU4KVZfafO8lwr3csEgAA\nIABJREFUIWAWSI/NcuT/+JqcVPFc6VrygJMVWhJ7OgpRSUIaTMZx3Wgw+PyTosH5xW+iWy1u/JkZ\nzv4/W2TnjopYcQGEPdJ+MxUXl6DHgcTEd5ubCnDnwL6m3qtAHyQxoQqxdp+EUt2ilJTQOydVFEUS\nxWzn6D0tSdJAowZjOY61BXBVrPtBhMPduCgfk2S9qtdRYSjJ1txWazAVhqIBFihsEKJHlmhPYqis\nFYrDV+owo5zxfIyvx/L5cWFmVJR06UySn4MVxeCYJexowlSRB3JSWWZwecim0wyzkOE3F1h5YwM6\nPekvWY63femPcSRjbibSAip3mJGlvhYQdx0uNKKd1BL3XuUg2lPMX87onAkZHpe44g/Tdj4H/kvv\n/RPA88B/qpR6AvhvgN/y3l8Afqv4m+K9fw94Evi3gP9TKWUeuueHtSm7QbSqrDArimtpL16CQWX9\nc6HhU1Foi799mqLbbUH3Sxct5zFzc+jFBbFq9x4zOyM2maUlondi51mWq8Wx6L5k6YTW3xscpKUd\nytSwvCj7rCX40Vgoj2mKXlosXIXEEUF1hEXkt3cxszPo+TmpNd4tMhZ371fXQy/Mk3/qcVlw1BJY\nXiK/dgN37RbquSdRzQbDJ1fJN7Ywy0cwTzxGck9KTzZ/+hM0f/uKHKsU1i7cr9xYqGp+NJbysVqC\natQxC/PULt+H7T3czh7ujcuYJy/i/ugzHP+XMmhv/CefpfvMMnpudvqhf7T9xvvJ9S/6j0+zqiys\nvH5V4FP2k0oobeLkUwVZaSYuPYmU1QWnT8pAVo+x7QgzyrGNkGx1ToQM50tmlytXudJ3Wi1xMzg0\nIJYBgk8zvCuojAXYYhshwbu38YEiGFlZ7Nc0eV1jUk8w9ER9h7IQ9nPCvqd3tsHe2ZCtp2qEfU+6\nOkv0revUb3VRmUNnsgDSFvJEMVpQNO87GuuW/rkZ0rZYltc3LcMFzdqPzFNfT8FZ1v7mZ1l8eVcY\nUHLD8EpJGULmUKmTsiBF5Xi1ez5huCBW82YsYtXbP/Ek91+oMXtZo776Bt2/8Dzrf+4S7uyx6bv5\naPpOSZkvJ6bDYND07/rQ7/rQdtMTZBEsulaNvBVhE4VNFHkCWcOTzTpGKzl7lzybzyYMT83i63Gh\nITMpP/KjkUwCUVhZwqqSTVYONRpcqIStpcAZMCnosYLYEtYyZmojWuGIrJgVxi5gxzbYyNu0zYgL\n0RqfSO5wMRQb5+WwQ+tIHxd4ll7WvP7KeX5r7SLrWZs9W+fKeBXnNWfq2yyHHTJveH1wio1xi88c\nvcUTp+/hU01wM6F1yxMMhMmknEdnoFOF2w/xVqGUJ7OGzrhGzybU9Zi/vPhVfqwldrEWxY/OXOYn\nzr3JUzN3Ucqze7FO9888gz536qCd7KMec6yV+SDPi0m8ANQPg0H6oKaZny6PLB2CtK6MA8pxqLKP\n/l6tWKB5L/Od7+/L8QIj75XP7A9Qe1jpmn3nKux2GBxv4l99S178QywLzG/eZu5nvo4ew9On7nB+\nZXM6UHokfacEefzhwLksFQMmLmQPAZmnx5ry9VJ01WjS2ZBx21Si1d5A3oTxgmM87+idsexcMoxn\nw6LsdHIOepBh7kjJhUoSiEJsLcSHBh8WfcnIOOkCXTBEwdYUWUNK4Wzdk7UcvmZJmmPqcco4C+iM\nEnbTGgMXM3IhdzNx8uq5GiMX8rHaHVaO7zBa9Cy+mRG90aAeZhxv7jETjtjN67w2PMOVdIWbeZ24\nKBELlWMl6HA22uBksMOvrj3DkS9G4kCjFCqzMuZYCAYKMwaVKtRYk/UjummMVp4fWniPT7ZvsBj0\nWQn2sGjeT4+QqIyRC3lvcIQru0e425thZ9TAjL8PcY6eSCpMW89Xz5J3UlociFaiO/SMVW5iQSBx\n8iF2kW61JLk5PyPvZTKW+PkZiGPR2Zlti9tsnheJQzElkZIdKxqSRWmzPrJYCUgrU2jRBAF+KDEx\nSom8Qm5lobyxC7UE36jhY+l7aqaN2eqgkgRz+QauXSM4fozs+AKsLBG+dRPf65Nse8bzCv3047Jm\nuLvO1qfnsK2Y3ieF1W/XN5h7eQ0728Q1E/b/yAXU/Bxm+Qj52jrpZy6hz5zA7XVQdSn0UlGE7/ZR\nszOyKO4XWpGFDinWoY4eYfzUSZnjRinuc8/KZ3NP+6qwOkrrcuCRjzkf1A7Yp5fjbKkh9EHlX9Nj\n0pRzWVUa7Q+CR4ct70vbdZ/n2E5XdAAPOXSWDKCylSCRt7ZKrJvZmYkTM1RMWtFf7Ak4FASomTbB\nieP43Q7hd66T31+TWP7EcdHuLA87rX3qPa7XI79zl/TYDOmTJ+QYoxFl1Ubym68z+7PfQD91CfO7\nrz1wHX3B7nb7A3SjgW610FEowthjMe0Jv/jNyXVJYpqXN4h+500Ahj98ifzigHxtneDqPXTnADvo\n0a+tXJn0nUp+Tv8+vW3x2jQYVH7Wa1WUNBeMo6IaYjrJ6uqixYVGZBZm6vg4kjgrt0U5VaE5VnY7\nrSqmvYqjiuRQ3Y+y73gv4E2jhiqNPuIIlST4dhPbiKRcbCzJPRcZfKDIa5rRfEDeEEA+7GXkzQhX\nT2Qt36ix99wy/YtzpPMJwwWDshBvG4KhIq97shmLSQpGUiySCXtvLXDyi33Y3oXhSKpNQNaO4xQ/\nGMFojB+NUP0BapgS9FNad3N0DulsJNpJfU/UgagDrTsObT17n0x59o+8iz85/HBIDx9iM+/9fe/9\na8XvPeBt4Bjw48DPFJv9DPATxe8/DvyC937svb8OXAU+/SGOU5zRRAsGiklsmhlUWmuWQrDFgk5c\npOyB/VVgUT05QOfXjaKq91BdM4AqS8imHcq0ZDjs9g6EUVVq5sqyhWqQnEInlYL1LXk9CtHtFrot\nFFS30J7YjydJ5ejFypKAXcOhLCwKiqA5ugJpJgNgUa/ox+PKqhxAt5vYWoibbZI1JKuqtMaHBnv5\nXXSjQet2ju3vFzRjOWcRkI4mzlzlNc/yApX0pOeOYDtdfJYSHD+Gq0fy4N4QOmb3giPsFhmjYh+P\nqt/Il5jSi4JCo0MJ2FWwrEq6dEUZLLctnewOZOjVpL+E4SRjHxhcEah4pTBbXfCI80oQ4JZmK6ch\npmxg9dJCxeoqz7Ua4I2pXlNlNkEL0GK3d7Chxoa6YoBkdUWynWEjxbitMWMKSqMibU0syJUHmxgp\nJbx1D9uO0Kkj7lhqG1LHrjMJTvbOBexeFPaGC6F1fR8XFOBCMdnlddBbuwcmA13U7XqlsDUBYF0s\nAqnKUixIFHFHAKy0pdi7CGYIyZ7sp/OTfYbLCpVO1VU/qr5TubOoB+mwU0Dh97SnP1zGUVBefRSI\nVW4kGXQfUJRpCEvLG89o3jOaN9hGJFpDU89maW2JLtwOC+YYICO3FlBOPiPZASkfU6hMobQX0Wag\nk9bYHDWJdU7TjDEFzSVRGYnOSJSnoTR1nVHXY2ZrI1wMya6ldV1z+9Yid4ez9G3CO4MVYp3x+ebb\nnAs3uDJe5etbZ7jeXSDWOZHOUSNN/b4i7rhJbbiS/qlAko5WY3NDlgXsZxFjH+DQWDRvjY9xN58j\nVJazwQ6Xave4NZyjVR+z9zh0T8rY5qcCkkfXb6rjFb8Uz+8hi/jJfZwCh0qx6OJ9sYs+uJ8HdIU+\nbCvHsDAUB7tC06gK0MLvkxju92jBqROTcwsCot4EdP4o2mjR8/GZe3ivpu/lI5uvDlvMf882vX2p\nE1T+M5Nr5EJN1tCVhps3Agj5AhhSDnzoyVqe8YyRBewD8bwXVnQZsCvIm9EEwHKT8ygztjgwYykR\ndgZ85FGBJ4kymmGKUiIcn7qA+6kswhp6TKLkPmc+YDtvslAbkC/kmLGjecdhlGM57rIY96nrtHIh\nNHhMceItlVf7eXN8grffX6W+mRdZ0SKWLJhXOClpM6lCpwpSTW4NudMYPLNmwIzZx6FZCfY4HW0x\nqwcshpJQS4KcZjwmd7oiCT7aOGdqXihjHKOF6V4s7quFeemYOt3K8njrJrHtoSaSCU4AQecnuiVZ\nKgt158jOrlQAh88LV1elCM6eLs5PzsFt78L8jJxbCT5MxTvl+eV37srcl6aQZmRzNVR3n9FShJ1v\nSnl6q47tdqUsa6aJCzWuFuKPLWO3tmms5TiDLOieuIDd3aV/QmF2B1Kq/NmnhfERh1Iuub7DcNGQ\nL7ZgYRaAaGco8fUhAN2nBdMyCsXZqrSpLiQIVLePGVl2LyXYe2tk9QDz2DlcqNn+uBQSZU+fneyv\nGv4fYd95SHtoiRgcBIfKdmgsFnOWqZh5SrZBBYEk3hGmjJmbmxwzSyXxUfYHJ8LQJbhTAnEHjhVP\nzVvlOR1bkbj6g77beFww3rwIiHe71RoPkHL84r5P7zc4unJgP+HXLxO//yBbqVwDvvNXZx54r4r7\na4l8vzQT5+Y0ExF4o1G15ACgxfws+bUbVZld/aVrzPyWXAu7eRAge6T95lDionptWuvnAz7jp+Pm\nwgXwAGPIaBmjSymP6WP4QrenBJGiUMaOQ31W1hpTYNU4LZzDCvB8WkD/cOK21OSpFyB0ocGjxzl6\nWAiZBwobC5td53JeLjTozOFig2tGKKVw9ZDRnGI0YxjPGNIZ+e5hX573rO0hdLhsMiaPhyEz74HZ\n7k9ICNPVCN4JKJ8WjmllfwZsothf0QyOiONYMPLozJO1YDSnGC4GLK/ssRjv49yHj6N+X8IdSqnT\nwLPAS8Cy976grrCG0NdAOuZ04ead4rUPcTZlGZieDFalqGaZEZkWjC6t5cvAF0QHyAiDSCcxKopw\nO3vYzc3yS+DTTBDg23dksCoEgk27LTW+4RTbqDiOHw5FZ2d3F7u+IXWlvR5m+ciEohuFk/M0RtT1\n47gCefK1dXSrWQnx6eWCcVQ+QLUIVicZlfwTj8nAarTsa24GlEJ/+XXyP/Yc+c3b2HeuVoJq4WYf\n9+YV6v/sJczCPK7TxX3rbblB/+HT1L4kWdfS2UbYVIKEljpKKgohFiaTardwZ1cJ37wBzmJmZ/CN\nGr0zDfSXX0fX6wRHVwi7mvDFVzHHjj408/uR95vivpclG/L9vDhvjFP5ruFUNqR82MoHsASLSjHo\nrGAQFbTh/NoN+VwUIta7lnBnIPXiiUENM7JTSwLyaCWW8lODYX79pgBLeV6Bf/nN2wRHVyrRQlXa\nO5YlBZkTG/tc3LyivTHB0DJzdYj53dfIaxKA69wzWgjRmVj+1jcdXkPaVuxejBlfWMH1egyWY6K7\nkpUIemNmbmQc+7X7RB2LtrJYaN12nP6lTfS7t1h6Y5/Vf/AtAG7/d5/l1C+tHRxgnUONM1ygCQYZ\nZiyaFF4VC4MIhkuKxn1L65+9xnBJ4yJZnKy81Gf2tU32/+xnGO7WOPkvOxNRuEfZd6ZZYXKwgz8/\nqB0uGTtMnQ2MsMhigwsVWUN0PEDKKsKuQo81OlVkM479FU06F2Hb8QQMUKpimqi4mLSMkayJKbIs\nFfAgGRiVy+/lOldpj3OKvf0a690W720v0ckStPJYFM4rtm2Tr/Qv8hv7j3HPKnouYuRCFmt98pZF\np46lN4csvBzw5sZRdvIG94Yz9G3CatCj6xK+0rnAWqfFIAvJvGY/iwm7msaaJdlJBcRyHpULS03l\nAoqpoSHvh6SjgHEeYL3Ges174xV+9vbz/F7nEqeDlAzNz937DF959XECY5l7cov6ukfd2zrItplq\nH/mYY/RUUOsrcMgfBnkmJyQsoDCYLN7Kc68W275i+bje71+gvxTKV1GI6vZFw6DXr+j4BzQdHlEz\nc3MTK98PaL5INoBk8fWXXpcF5+8XOClaxfKdavmPPlf9nq7kfGn9Anf2Zh5qx/pR9p1pMfjDr1ft\nYYv1krZfbncIqPZGY2Nd6QVRAEbCIIVkQxPsK/RI4yLPYFmRzhQLrfI6G1UYS4gjpw+MiOSW5xsY\n0bIog3sv+9e5ZCd1LiA32uNTTbdfY2tQZ384SVytj1sMXETqDQumj1GOWTPgWLjL+dYmJ05uVeXP\nd79wit+7f579PCbzpnImsyjWbIMr6VHey+bouoTL42P87S//KY7/miHcGxeLD1ko6NyjU2EJ6RTM\nQGHSyaV2XjMf9KUszQxIlIheR1i6LuFTtessRn3m4gGjPGCQhlKO+8AtUqf5iOPj6fnKZzkuzQ4K\n11dvFgz3MnFaJKq88xM3siwXNlEgOht2dxfX66E6PYlXQOKh2/dR83OyyL67JmLNq8sHXMvs1jY+\nDtGtFu76LUkY9nrYt98TpmupkzcYyr4Dia2CY6sCaGU5rtsnv3OXrB2S371H/VdeQo1yYcvGIWZh\nnnC9i9rpcP+FhKwdM15p0P+p54l//RUWv5PTO11j47MCQJz9Bzew71yl8csvTcpTrMN954qwhf7f\nr2NurlcaZXqvD3fWhAHX6UEhxI3WkqUfDCWpkRfsgWYd35axRn31DbKGwiwuEO9K/zO/+xr7JxTB\nsVXMNy5Xz5F+qHTcR9x3ppv+AyQcpsdibar1WXBsFf9Hnpkk8sNIGD1HBKypBHynkhFuMBDG/NS5\nuMEAMzuDShLUs0/iX3h6crxyLVgAUEpLst2ty5rOnD8Dn/44AJ2/+Pzks9qIO+U4rVhG1S7vr4md\n+xTDWIUhM78k65f+n/sM/Z96Hjca4fY6Ul72uWfZ/GsvoFstzIWzDH/kCY7+7sMvlwqCYoyerEdx\ntgKIXK+PG4gYNYBf25xcn889i93aZuEfiri2uXi2cp1+4DgfZb9RCLgSmAdj3EMlg4db5agL1Xzx\nwGetk1KxVFyzsBaVW/QwkxI5LzGjch6KxIf3XlhCJbBTlFKRir28H40rO/hqXQdULq4FqKT2CyZO\nYETDKJHxLuinmO0eejAuTBgEmNKZx4VyDul8xGgxwYWa0WKCn59BZY7WXUttW85Np57apvxTVuZF\ntR+gN2Lcbkx+v07zmzUW3+hBty99pYj9JYYUDUqfiXzLtGalCw39o4b+CchrYItE0HBFsX86J2sq\n+sc0++OIF69exG/H/KGLSiulmsAvA/+Z9757YGLy3iv1ofwwpvf3V4C/ApDoiRxXBQZNLY5LEb0D\nYr9Kiw2kUhVdUBdlYR5BsN1ojGk3q0xEcPwYvtsrEP8ioD/kMKWjEHXyGPbd96tJFC90fBVFVaCu\nk0SCpl5fsi3T5SI4KVcKAtGHGI0mAX5x3UoHMTU7g71xC7O4gFrfkYl5a5vsjz9H8vJ72G6XoBg8\n7VwD3nwP024TXNsip7BRnGlJ3aURqmdw6gQ4L7Wzx1YZPrnK0V94B1vS0YoB3ZeldWX5WMFCsOsb\nFdXXvyoaQYOf/Ayt3xHrw1JNv/+5C9z+MXjsP/4a5vwZfFH6dug+/6H2m2KfD/YdJ65g0w5j5L4S\nRawEph1FTXsBLpYAViglOeXkI65qReCiDerpSziN1KUrhUtC3FytQLItaTskiCOyEwsEr7+Hnp/D\nDwZVnbJKEnGNMobgzCkJUKyDbk+OUQRI5bkqJ0GQyh3BvtgJpjMBYdcy/vFPV8LN7Rsjdi8m4CHu\nWhFx/uufJdn2LP2Lq/R+6Cx1IOxbVG8f+/lP0D0Vk+xZ9p5bZnBEi+hvH+ZeXmfzh1Zo3Z0h/OI3\nUXNzbPz005z8Yg/2evKsBIHU3mrJklZ1v4VLQNjLsXEIHlZeHpO8u87dv/ZJvAYzggu/eJ/82g3u\n/fXPsn/Cc/wLYLY6D2XhfKRjDvVikFWHNyoPINnww+dVBt+u+O/Ac198NDDYeoSLDWlLBvGoC3mj\ncOIps/s1j69ZhsuawXaAGTl0M8bsCiCpYhHb9vUE10jwsTm4WFSgbJF1UcIiUw584LGxl6HLw3gU\nUW+M8F5xf7/NTDgSPY/6Ppk3XNlfZmN4nlvzC7TMCOs1gXaYdkZej4i3RzTvBdy+PsPNpXnONbeo\n6zFfG57hV9efZbXe4S8/9jKvdk7y4ruXUPcTFt/2JNsZKi/AIOswmSMYSemGjUWc1nmNTxRxkOO8\nYuBiLIpnFu7wb898ixkdcTmNub65gK9bnphb53defpJL39wSkP8hwe1HPuYE7QlwZ6v/in5RLCCm\nM15TTFQVhrKAy/MigTDVbwpQ3qV/8BIvb53owhWlst9XZxKQkuzvtc105va7vPZh28O+cyne6T73\nLGFrzK378ySN9AFA6CMdc0xLQJSHBNHlXtXh8rGi/5RUe1WNP34yNjmPjxU2kTjHZFK6GyBsTVsr\ngmmFAMaBJ217hosBLqpRvzuYHKeeoNJmMT8q9CBFDyZAoritFNsaNRlzCnapzhUMCuDGKXZ3Y7z2\npHFGPUjpZzE7usG3/QkiJc9NqSPUNGMWa31ut1dojXKOfmWf+yzyW5+OWZ3rcLa1TdOMuBBtVM6I\nt7MF/u/3f5jdK/Oc+h1LsjGA3In2hPUo5TBDRzDUuEhVTCkXUaVDc6/ZzFsMbEzPJTyT3GLgYjZs\ni56V2KubJ0TGktuCAW4PMSY+6jGnmK88fipxWuq1pHhrKgkFYJLMVBooYiDv0WHhiFuAQniHG6US\nfyYJbnEGf3tN2I4zbYxWqPk5XFvYDHppQRZfuUU/dgZ/6x6u1xMwejhGLS2QX7+JrtXQy0vYe2uy\nSBuP0UkiicbC7Qej8YMhenFBhMubDXwa0riyib94Xq5doGGzi9Iz5BdPEN7cJL+/xvG/vYb7oWfJ\nGwGtf/YaHkj+xcu4n/wMcy+vM/oTnyR487aATUmMefsWfraNffd9xn/qU9S/+i52ryM247MzqFqC\n7/WlzK58torFu2o1Jc6bYhGr3S7MSxlZ6Sq8/NK+LDCNxr53DYCTv97Dri7gC91I96230aODiNBH\nO+Y0D7552FIeOCAW/b13XoBkBhUG5Hfvoe7em0ih5ZJs90X1hBsMMKvL+M0J4FE6qOpGoxBeLphr\nWY5b35RrZQoOs1ITA4kpPTm316nkOlRuCe5ukwMLX7tfaZzqWoJPMzGDOXuazZ/6GEsv7eK+c0Vk\nMVaXyVZnyGsB0W+8Qn73Hnt/Zo7g2CrNmwOCzS6u1YIsQ9Vq6C+9ztF3V7CPnUQNUuJfe4UK6i6v\npyu0vLwXzSOQ+dyJe7WeaeGHI8zqCpufW6WxNkloBWdOcfm/X2LlxYAyhWJ/5BPwu6+hnnsSpq5h\ncZ8/2jHHNCfAy2E9xGkdoUPNT4FIYphzaKwsweEwwDVimV+m95dbCMRduexYrhaiavHEAsI51CjF\nh4EkSgYjWT95BwU7TGRRRFhaOfDFd/BZJtsqMfgoS1Z9oNG9VP6OJBkbdMb4UJIpOE86F+NCRbyd\noTPLcEX0xPS9TRrjTCpy6hFRNyKvafqrhrzhCXqaYChnH18XY5SZt7ZQOx3p50XsVyXdH5aULllQ\nQDCA+poi2RVig40h7IIZBkRdT+c82PUm0ZbBhDw08fWw9qEAIaVUiHS8f+y9/5Xi5XWl1FHv/X2l\n1FGg5NXdBU5Mffx48dqB5r3/+8DfB5gJj/jpyaz88t5adBJPrOSgYgiJjbirLOlVHEvtcMHu8dZi\n5mfFzaDIUPrRSAZ8pdEzLezOHhxZFMEqIL90Ev3aFbglp6sX5kV5XhsBkUr2RhDIQ55mci6FM5kb\nCbhQil/r2RkZuNJMACStsVtia+i3dwWEKFzJVK2GHwzE9vBjlwhffBUXx5gLZ3F3RRA0b8UYa7Hd\nLrpgJdlOF1VMyIA4KnxHdIJ2f/oF2jfHRF/6Nq4on6tsG4vyKVSIz7NqchA9C7GW99Zi2m3U3Ayt\nF9+Wa33nvgzk505QvzNg7s1CBK5wi9EfuwTf/uj6zYN9Z8kfEBMvv0NqUY16pSPkvZ8AgGbCxrHd\nrrCwCie6Yv9CXS0QZ5xF9ws6cW7x9RhvNHliRFizlZC1CsG43MmC5MwJ1HAofaPIMqgwkAxsf0Dp\nQqTiqFogClsolIAvClDjDBVoEQ2uGYKBsH/M2FPbteSJJtzexyY1oQvWNeO/9AKrL26CUqz/5Hla\nt+W69FcD6q84ojdvsLi2IKh4oGneMoTrHaGrNhos/fo+dn2D3f/gBfIEjn7xvjjIlWLbxbOJcwJG\nZE7srQkKBotC555gBDuXYvLnThLsAwqCoefen1zF69XChtxT/5WXeBjH46Mec9p6weMd3h9iCX23\noMhNLdK8R+hiB9/zcYhr13CJIa8bsrpCygo9yqqKJRUMhR2EA1t3DFYMcS9A5xG6P5bMSU0AR1eL\nJHufH8y0+ClnNleUh4Bk7ZUDOzL4IjGX5/JmmgdkXjN2IZk3NPSYH5t/i55NeKl7lnP1TX64eYXv\n9FYJwpy0mdAA4u0xK1+r8Ub3Ei8vWHxi0bHFW837Mwv8dnYB9VaL5SuOcGAJeyJSi58sclXmCAcO\nMzIEQ0T7qIhDx3nAXl7naNThRxtXWGlbZnSE9Z7zYZf/8ZlfY8/WeWewwvI3FO7qTdCG4OgyvteH\nzkfXbw73nZlkxasgkDFUCyVLOQ4YH/iynxQlEsqYCfDrizFJTvhACdmH1g36gOazVIKcNMONHwTo\n/01v9z5bI9+0xNuGeCvBTC3OPvI4J17xD7Wat2XplT/84QkYFOiDgND0ZoEmrwUCNGuFMx6Tgdce\nkGAxr3my+cl3TY9mDHoR0X4hEN0b45IAkhA1257EYtYdAMm9MRXDqdSL87ooKbZghkrKQQ0oJSVp\nPvLkVtNNhZ04tCE1E/BK/wwnkh0uxGtkPuBotMd63OZGAdaYYcbyN0fsdpusLbS40zjGi0ee4GeP\nfYZAO+5vzRC9W2PpWzmze2MRyS7BIC/X1OeOYGQJxgY7KsacslI4VwxGMfvJmL5NOBNv0tLy/LX0\nSKzt9Zi3R6ukLmB3VGdnr4HrhixcnVz/RzHmtNW8l9hWAGefFYufIm4r3cZKIMiXEgCFjoYKRTux\njFHLpmfauG4f1+nht7YJvHRRt9cRjZVyEeIc+Y8+R3D5DsOPHUfnwoAxj52DItlL/5b5AAAgAElE\nQVSZ37iFefJiVQpjb9+d6H9GkYyFaSpgVhxXoJAAkTEqCifxvlZSojXOYLaNffs91PNP4Wdb+NPP\nEN7YIP/y60Sf/jj+uUvwjTdRzz3JcE7TuH2PZK+LX5iDbg/X35f4uNCmiX/tlSqU0UeX8bUYd/s+\npbtwybQs4xycxzsRnfXDIardEuexLAetMY9fkPJw7yHNyBsByWPnyI62MYMc/4oExCVbn8FkjP/o\n11ZLD6OyVYnrB5geU8DQAeexQix6sr0Fq8RleWUB/7pUH5Saq9OJmmknSaASG1f1Oq7brf6ugHyl\nJsedLnfWCj+2Mu9OlbW5tY1Ka7YEg0DASx9H2Heu4nd2Wf4dsLfvcfV/e57z//k34L1rmNmPE3zz\nXcEdvMfu7GJm2uhBG19PyJ8+R+dcjf6f7nHmb9boP3ucrKlp/cKUxXx5nr5kz5djp50YHWlZe/nh\nCFWvw3DE4q9erhIfulHHbe3wxP/kKme04Y9/mqyuaf7RZ7j7uTonpgzJHkmcEy37yikM/WBs/EEg\nYjU/qAmAMw1WTbH19P4Y1S3ueyGZ4JOQbK5GOhtgRh6dObKWoTHKRb+rcOClSJiSW2EhZpmwgAKR\nmVEPkYLw3qPDEOo1fG8fPxjJ+j+O5FwPGTrpcYYjxDakRDTs50DAaEm0e0Yzhno9Qm/ksL4lQHjH\nEGwa3GyDPGkCmrgjch0q99Tu9dHdgawDjS6qVFx5XyexY9msrQgDapQSdEc01kJq25pgKDF22Pfk\nNUW4LzqxybbC7gcFg5dKyP57tQ/jMqaAfwi87b3/u1Nv/X/ATwP/S/Hzn0+9/nNKqb8LrAIXgIM+\nfw+0g/o/ZflPifDipea5KuUKggqg8WTleR5gFQEC+CCTY0UZtFYmrHLA2d4l394RQb23rmPH4yrg\ncTt7AtTsTwTLdCLq8WZhBru5WenvVGh1Sc3NMxGFynPM0hK+1xOh5kiyDmhV7VfX6/jBAOZnMdqg\ntnahXofzJ1HdAbZgQAX7Gb5whHBFxkUWjQ7iWErj2jHBhbOo4Zj5X3hNrtM02Fag2CqM8LmrwCAV\nyj5Nq4VNU7nWidiX+v2BiHKPUylzs5b8zSu8/3de4NzfElpj9y88T/vaYEpi4FH0m6L3TGVNlVL4\nQqC1RLY9VNpGVWZ/urStZBQZLf3CWnx/H7cvjhdBcpzsSJtgZx83U8dFBjwE+zn6K28QnDhOuJBg\n33pH6KvLR1C7XfxsG/a6laOOnpeaZRUEuN09yUqVYBDIdoV+k0pz/DvX4ZOPy2LBSnbWJkZKb1KN\nNp7u43OYkQwCUdfRP2a48yeXGM97kk2FGcu1SXbd5LvudFCtBm6+CVoxPL+Iv7BI/1hIMPQku6dY\n/NoGbO7IfS/BQ5CBKyhQ9TRDGYU3gdTxWk3Qz8gaYvOrnCfoK0zmsbGUTikHq//oLd7+Xx/jws8I\nqOl+6Fl2LyW4f/qNR9p3SqHmh+oHwUF20GEXjmktmLIZEahzcUCeGMYz4sCDLqidiSzSlJOyMY8p\nAi1xB8vqirBvCOIAVQaNUTjRwsiKUiStKxFpH8iCUXkBgXQOFJkIW9dCgqpZjHEo5QmMxXlNrDNG\nPmQtn8Hgebp2k2eSW6wGQzIPsckJAkdep7IMbdwZUdsy2NjgjWI8EzNY0oSDiJldR7CfEQ7yic7R\nVMBQshOCoSMYaGwsQJkLPW5s2O3WudWcYz6U4GDfeUZ+zLKJiZRi1uxzfbzEV+6dZeHWCD3TYvCZ\ns9x7ImThcgb/8hGOOZ6ijLlYxBdZeBVFFdB7sB+VVISi/KZ0I7NT700lFP61WxgK7fgh5bv/JjcV\nx+R1z7Hfhnh3RHzlLteLLO6j6jvisqdQeMqyK4pnY2KN6w9mTAuNsAOtXPironxUC+gcDpxolkWQ\n1xRZXeHCchEHaI8eGFzbMZ73pE1NVA8xnSEqL2zlQ9ElqMaaWoQapkUiRcaz8ty1LYTicynH0rGw\nb/KGnXxf48lzw/agQTsZkXtNOxCWYt8m7NkGicoYuxCtnDCatCxAgr0xS69JabIPNHkjYDS3CJnn\n9E6OGe2Lht/hhUn5CHqPHlnM2BdC0EL917ki6GtGtZhOnBAqS13L89J1CbN6yIlgh7v5LC9tn6Yd\njbi5PUf8Tg2VU2X2H22cYwugwlWxsK4lVcxV9YnScCXLhTWfgevvF3IKpjIUAcRe3nuCleXKxIAg\nQLcj+bvQtHNvXkF9/hPka+uEa+vw/FNS8m40wcqysGSUgq1dVBIXDOtIgJ8gkIV/ozEpsy1118JY\npBviM+LyYy350TlMrxDwna0TbPUwF87i+yk+0GTNgP4fPcnst5tYIGuGhIB/9S30x16Q29/picze\n/Bw+iUBr9i8u0PjyO9hLp7C1/5+9N42xLMnOw74TcZf38mVmVdba1dXV20zPxll6ZjgkZygKpElB\nogyTBgEbNGyLP2jwjwXQ8A9jJIKGDUOAaQOCf8kQAUvmD0MULdoSrcUER6ZIDmeGbHKGnJnepvfu\nquraq3J5y10ijn+cE3HjvczqrsquynxVcz+gKjPfe3eJeOdGxPninO9kKF+9Av/uZdkADNpGoeoj\nM0jTxThEeIdqtdMZ/KkNmO1pXAf5R49jdmKA0c1VDF+9BrcxQn5pG6/+wkk89Zw2+UufgS8s6Kt/\neIC2sxBpkOr+7OXMMwNGMyVWR53AczhO5zR7/Bgoz+V7TypYhj6iogCeeQLv/PQGzv6PXwP/6LMw\nVQv+s+/GjA539Srs+vou8fO5+4pktAfXGv2WZ7AbJ+DOnAB/63ktiMNzyR4AwLc2xe6hEadKvnz0\nf70qhYTzAjc/voojxTOgP/6LeG13axPY3AKYYbMMx/7E4PhffhjthYsYXLiIAd4DyfowJdQoz8BV\nBT8ew1orxEcSCRyySPz2NuzJk3BXr+L63xrjsf/ZAt/4Ns59Nb3EQY05LOmRC1IKIRtgrr3ppmqo\nDJbZec0gACENLFYtq6TyF2vxFOQZ/DCHLwxMI2SQzwjkALeSg8YFaKft5sZgK0GHVXV5MZnOaaZF\nNE13r97JmBNEpkNaHhGoqgEr8V9ulKNZz5FNHdoyg88J3gJQDT6qAhEoQtDEOah1sFdbHG0c3EoB\nU7ey0TsR4WjW5+yOEfzWpgGaFrb2qI9k8AUh31ISi2QOnjwiKdHlDYbPCLZmmPrOQoTuJELoRwH8\n5wC+Q0T61ODvQozut4joFwG8BeA/BgBmfp6IfgvACxA19P+Smd3u06ZIQp8NOtInLSmcppC1raRv\nVRNQWcZJJqSbhQnPrq9KuGogYGaVDFQaHgrvwOOJkEGPPSK7EHkhIaRWQkFpUOrkKpEzsFYe3sDs\nDgdSLUq/XGGv6xgeC0BKSD9+FjufOI7hP/9TGUwHA7hbm0JOeanu9dovnsZTX5ZQU3v8GOiKhNuH\nPFea1PBFEcNufd1EYkMqSxiY516EC9FAbQPKNAIIiNFVIJpbFEjYcav6AZJOF3ee1lfhTqyD//x5\nZOcew6WfOoMTv/512A8/hdEF+d7e/B++iKf/6U3gjTRN9SDsRpGEMzIrKRRCk4PthN00z4CBLFjK\nUgg91XyCVgYAALNxVJj8Rip/ZTfGYGvhc43+ahxckWP6sz8EEFBeb0Bf+BS4cUK0PPddqUpWluCu\nXCR4NpOJYTJBdvwY/I2bKrKn9zqrpdQlAPP4WcyO5DC1R300w+if/Qnw459DtZFj7aUb2PzUcZiW\nkU8YO48ZDH79T0E//QVsPp1j5aJEo9TrGcqNDUkZWxuBt7alD7bHsNsyWWYAaGWIlRcceDIROwja\nNVFfwnZlHYGY7wtNoUNupXTxuAIeGcjusUaAnPk/X8U7v/AM6g3Gk7/ydcx+6vPIr2egrz2HS7/8\nJRx5q8WJP9vCa+OYmnAgthNsZU9yB5hPy0idNUBzkpNJ0JCEwK4UUUyPjZJhhWgIeS07yUacEj9g\n1dwA2BjUq4TBdUlHNCGlUFMSwaaLGLDUTYhA1MmIwq46qlNLMJMMvJNhdorhaotZWeDkyhjr+QwT\nV+Kfvv45bF0f4T/9/J/gZ458Ew2LRseHVq7i6rFVvHH8CHyZwVStlPycthLyTlLecvWdbnEwJ4hN\n8t2HMtVkAHIe2dih2LFCCCEsLjK0jjA9laPyGS62R/BK9QgatvhbR76Df3zrWfz+1Y/gB468i1tv\nbGDwGDB99qOYnGb4ssvtPii7mVtjp0KAwckJuzyLaFqw0XEmRDQGAdbpdO8F+n5wO3v+Pgd99Ck8\n+atfj38vbJod2Hy1V8oYEwmpvpePRgTT+m4sXnw/lC8OpLDqHbQDKTnPJITN8HyGdo3hLWC2ZPfQ\nFVK9kstcomuIu/sLYf+ZliuPmhBQzTKGqRm2ZpQ3ZdxpWCJwiuMz1FslzLCFtR6utahaC+cNamfx\nE2sv4OvjZ+DYYOxLzJDjRjvC9WqEZgXwgwxm2hViMLUHGoKpWhQ3MJcuJ52qf1togxnsScesBvm4\ngCsI5OX+fCFRlfAE1pSGhjM8nl/BhXYDl9w6BtTg/7nxWVzZWcXLF89i5a0MPpfHn9r4XRzcOid8\n34GIZh+d61jIIi0tDwDGdBEZif5mcFDt6VNS4ntlKGuDvBAhU+1bWhnCr4pWpD1/Czh6RCrRnr8u\n6+ltK9Vu5cYAz/A7Y1mfTibAZAJ7YkH81zn4toVZW5Vy37kWKTm2Bv/tl2DXRtj5+HEM/8Wfov7p\nL8DMhrA3tkQc+Lvfw4A/hqufPYYjL1mpxjp1shFnrTg/wwH8eCqbepvbCJFVKxcuAYMS9K2XkRcF\nvHNAnsv8GjaUtc9krVaBVkeiHaRpVdxq8ZRHjoMzG8tWmzcvocwfRX1mHfbffRPX/4sv4tQfXMZT\nf7cbb+xOheydy0iYi/tvO3tknnTv7RHhETbDq0p8C5qf0yOReO26fG8aeT9XbRlCXuKl1/HErVNo\nAeRvXQVXNXbdrFaIjr4ekchpTERz1R49CnfzZkfGWcnW8Lc2YfR8VBSwZ8/AX74KPx7DjEbw4zHc\nrU1QrgLWn/oozBvn4W5txopi3NQ49lvfmo/KXZAACP4cq+7r+0KP81UFo9q0odiEffpJicTXdHE/\nq0SXtWnnUqTd1auY/Qc/hPIrFviG2A/lRaoBeHBjzmLqUpDdWGjvrggz061f584VIhy1AmqIyCEj\nQu1+IBv3dir+FXmGrUTDByxrSPYqC6KpXvF6oWS7aaLY/dz9h+JAdS3EimeJ9APQHhkIGVI30sZa\niaPMRlkJahnGeDAZFNuyyW3a4B+Ividp6XkwgxsGXaqQByKNWewpKRoixJAGIzABvp2PzNN+o0GJ\nGHGeZ5ieyDE5ZVBsMezUoF4jcAYUYwYuyebz+lsNsnGL7NYMr1V3JkPwvoQQM38Vtx9WfvI2x/w9\nAH/vju5AjhACw2teNHn4uomaQPIRdegNgRsxJMoyFcRTJjAJM7RH16N+gT1xHO7GLdj1VbjNLWQb\nR+EmSiYNh/LaZAYqS5i11UgGRcGxoBpf5DGskZsa9ugRuK2dmE8byRRjVRRKInH8zVugusbwn78m\nRNHZU3DffklE1EbCwpMxeOrLX4c9cRybP/FhHPnWFbSvvoHmpz6P8tIG/HdfQrY1hilLuKaNVSJI\nq6Fx24gBxmoTDpTlsT9gLMiQRDWGKKGQ9hDOU9dgMshOnZByiasj+CMj8J8/D/uJjwAzKXcX8Mj/\n8jVc+uUv4clf/RqwttblQOKg7Abx3n1VSUoWkvx6YN4xMqQDUNgNIl0suChA5qsK2elT8FvbEiH0\nxLl4HppVwJEBsms74KE4/isXp2hXc/jcoF0pkW81yDan4LSCgMKPJ0KkjEbIHjsruckrK1IGsQ22\nrzuAswY8GqC8UaFZzVFsOZjRCJNjOdaevy4ijEFAlIGVd6Xfr306R7HJOP7iDBe/NESx2cLdvIls\n5uBXB6Dt8TyREfp+e0cGm3QBYK0uCkKMvS4o2YMdRAhO0+9M28APc9SnVmFqBpUEO2Oc/I1vYvoT\nn4YrgeElue7OYwWe/u+/ifqnPo8zX92E2ZyAV4fdJHyAtjO3wxBsJux4LDodATGvOpBD8jeXBXxu\nwLnsHJiGZee8kaoAgDhvPgfYis4H1lpZR7c53NDADQz8MOsWm5pSwsRRVHovMsi0DONYHJxMHB7O\nGN4AYMA7gqQnG2zXJaZljh1XYm1QYbaaw5LHV8cfxYqpkJPDP3nl85hsDjHIATe0MI0TpzWd+JP+\ni2ni6YJKoxfIs0QNGYKpHIptj3ZIIJYJ1ZWAG4nI9VY7wO9vfxzjtsRfWf8eGmb8q4ufxPnLG3h6\n7Tq49Lj2aQvORCg22yFkEx9s4ODsJlS8MBaAk2ifWNXHxfaH3Wa9FqhtJVXUaoU07+Ozf9uqL3cJ\nPx7vEtHsAfhvv3Tb9w7KdiLh47j7nfcgidJnPNUNAhCqC4bf6/VMF81eyGIlZcL5s6mmSRlIOlDB\ngGE0q0CzKjoNnBmYqhEioGllh1QrwJhGnb3WAVSAKFzLw+cSncgWcKVEgGZjQvP2CJYYvGPRFgwu\nHeo8QzMwePHyI/g72z+HJ4/cwOePvI2jdozz9XF8fHgRT5VX8Zdrz8CXNur1xf7Q/hOxbI5jjhDP\nXb9xZgBHIH0uqXHItxu4AYG8AXnA1kK01R6oW4uJK3CjXcU3d57A08OruNas4bHiBi5MjmDrlQ0M\ntg3aFUY+JuTb0NSBAx5zPAOFag3qOjjqZmp6StwVV1sJhBFlmaSThpLznmX9elmySlg3h1BVoLVV\ntBcuAgDsmVOgS1dl7skz4NHTMJs7QJ6h/djjyJ5/A3Ssq9ZEZSHi05BNTb+1I5Hlg0Gny2gtjBbs\nwOVrsgHbtJh85DhWLh6H+95ryJ4UYejB730L9LEP6/qrBn3hU/DPfQePHP+c6PF88TNo1nPQH7+B\nm7/wRZiWRcR4UGoKCUWyh9sWGKsf3DSSPpJlu9J7k++pe/aaVorPGBGOphtbsnFXN+IrPPsJ2O+8\nDvv0Y/AATv3RVcyeOob8ldcRtG/M5hiclHo/ENvZi0MOWjy3IZhDmhOFAi2LpICXtSgNB/Ml4pml\nb1ZHIuYMxPSn9vyeGUryXanNhuwLf/FSJGncrVvd6TVVKIige/XvzPo6Zk8ex6Bp4cdjzH7sEyi/\n8i2dV2Xgu/6ZdWyUTwDf+DayJ86hfeei+EAq6ZC2YbGti2ud26ZKpUhT+52TYAXVQpJImAL+Rz8N\ne2MC//zLoLLEm7/yOTzx3/0p4B2ufyLD2V/7GuwzT8O98vpcQYiDG3MoRgPF1DEnVb+gGxhzkay6\n7iOP+Ui0FBoZFDSAAEiETp6JL2EAs1PDhEhUAFSrTs4wg10bgrbHYC9i8xhIhk6oDMjWyvcZih8E\n5Hn3d9PGNRlp0aHspvjKNFUStG0lcNcOZGNXMy2YZM3NhjQ9G+DSypdhFuwEEJ84dqf6T97s9sGS\nCmoc+jRkIlgrukdA3MB2BQEMDK9KtNDaOy04I2Rjh/IWobg6hb16q7ufO9xsvGNR6fsNDmH0YYGs\nAsEgIylfRR6riYXoFzMcRvHmQCB5ZfbCRGhPnlTWzsFtbsEMh3GyM+ceBTUtzNnTwDUZXHhnDDeb\nyYAXKoWlJTNDLi0ZIYMCsVJVXdWFtgG4q/AgE9FEzpPn4BfDJMHg7R05flYhe0RKaB75d6/DXb2K\n7MnHURUGXjWBxp88g+Ef3Ihhv4GEElLIAEgeAHXapYqY7foYkIHed58L90zWSuTVeAI0Ddp3LwHv\nXgJ99geA196Br2uUr7+Jnf/oh3H0uXdhNzZw9h9/VzIfRivgqo6D9EEiRnqQke8hy7rdVO8l9Q3o\nKmQ5B1rV6hCl5qznGbjR0NOqltDOZ54G55ko0qtd2c0ZaGsH9aOPgg2h3igxeOsW/JpUvcgv3gBv\n7QAfOgd++10JXwSEkAsaIl5zXutGotWqKoZLw4gDzYVGaDmGrTx8blD/yMdQ3mwwe+KoCJttOrRD\nA1vLjrD7ic9heJVR7DAmpwo0axzFVK99cohH/mAaIxoosx3TDhlIg1A0oFEOQeQ6RRi4CDJoVsEx\nMaDcwtQO5CzKWw7D64zpX/sMxmcs1t5mjC434C99BsWOR/1jn5TDtmdozh6F3ak7weaDQhCV3itt\njBlzc24khzAfFRI+XhbwKzl8aeGKrhpQWwrhIelSUp65WQfICUFW1QVgGNmO0WoEEPJERUD3ToVg\nPaERh6dlMBF8qMRgAZ8xQAAPHSgTraThmuzCzdoM47bAJC/w7PELqDYybGRj7DhJnXhpegazSQFU\nBkGXhJUgk26hOQKICeJsBsIolLnspHFkAaFtyXcciqE4orYSR7I+SrgxXsE72QYwAp4eXsOj+U28\n3Kzj2ePnYYjx4q3ToIFDu0bItqVKW7EF0Q45YHS53r7TuAtzGDCnRxbTVjXKLojeEyRSs0/t+n4B\nIxlgEVMOARmTGfNOB+TvKDgdxiPHgIVWGgSKzVCtDhJIqHpitmIMGrlsdYxQbTDc6RpcG6AlZBMp\nKMCZjoFNGxeckgrJnd5DuG3vZU/AZjFdFazXzWTBzJncM0OZGg/AEbwzmFQFHt3YxJmVLbRs8NL4\nEVyp12CI8WebT+D6bCQEljoZsXRxSoJh3s+VKETEviSQRgoZMESnzVQtsh1Jz7UNwVeEep1ArcF0\nXOJ3z38MH9q4jo1igufHZ/HdG2dwY7yCyXaJrCaYCiimBFsx8rFECB8KNL2JnescdmA+KgiIa0Oz\nspJEfesaqW1ghoWuTTa7jc8wxs9mHWmg6fO0tgbanuD8zz2OM//gTdkQPTICHVkHb2539px3FaV8\nqJ6jhT3CHXJVSfQ1+04I1nmsfO86KM9hT59C9uo14MnHZT3GDC5yWau/8jbw4acw2cgxygtklzdh\nJ0N4ABu/8XWJ2A5Vh/McqOv4TIV1vAm6o4EkCmm8C9EEUU8o/ASAoco0VLXMAVqMhN69Bjz+KDCp\nkJ17DO3Lr2JgngGdeQS8vgr/+ttyjF1YZxwGUmd9MQJIdo1kjaqT/JwukPoT5tSJqNcTdEfBHrS2\nKn0CdJ9X2I0N4PjReU2hqhJNpq0tIYFIN/wDQmpNInwt+lhJlMX2Nsq/fEPEp4kw+MPn4fW58LMZ\n7Po6Tv7eW/DXb8hQdGwdeOsdZI+dxQv/7aN44v8Gyn/z3O37a3ENdofONTuvdu+kbbOZFiMqQKsr\naNYzmD+SSmd0ZF02TLW/zv7a16TdW4evAxgiv0MkOIVMHmA3Wbh4rA1+jI8EB3kvmwvh+NbJOQGY\nSCzJ5mF1rIQ7ZmBrL8TMtEA+KME7YwCSpcC+i54lFWeO63nd1CBrRFTaOZEU0Y06Ho+FlJzM5p+F\nmMovVc5mx3MUt1rR8iPAVl7kETxgZjqGwXYZKmFupz2ed/bzG4iJFpx0iciepP4qT6biq5Yi17F6\nocboEqG4PpUI3rUC1DKym1OYzR0tHNBGMvxOsTSEULqTGlN7VC8nkhY6CYJ9zJEGe3DrOwIplCa0\nNobnt9cDM1tIaH5wgi9fAzcN/FvvwEOqkLXnL0jFrHevyISqrPUiKxwnY2Pjl0nWSEUpjVoia2NK\nWYzGCfo8APx0Bvr40xImu74OP57IxLO6Aly34O0djL5ZoQVgPvNxDN/Z1pQ1cSC4EaV09qwkj6Z6\ncZIqlhBYu4Sjw2QXjlfldSROihmNgJffgJtpBE5Z4sj/94qUw3Mupl656zdhTxy7fwbyHogPkKbD\nwRBQt6LRE/J00xKEgIYz6sJX8/FDVQAalFJljQi0LeQYRhrBYgB//CiybWG3zWsX4G7eBJUlyqNH\nMPnsE1h56TIwa0CjUSQsOSx8AAA27vLFNCRjtC9tF3KYGZhJDTfIYGqnwqKi52KdDFJrr+9g++lV\nmIaR7TSwVSER8w5Ye1Ouxl/8DIbXfNyJCboAgRDZlYpANEcWBYR0zjhBa9gnOQ9UQpgZIpStMPr1\n0RKmZay908JnBNN4TE8PUN5sYVoPUzn4IyvIbs3AxsQqAAcOExbLizthSQTQXq8HWAu/UsKt5PBW\nd8wN4DOCG2jqXAbAQXQ21P8vNoF8hzA9Bbgho14nNDcNBplRsTkPOJ0wAUBTo4JjRMxgMuKYWfnb\ntJJvbRoCT0VDCIYjKWSMx7gq8DZvICOPzDjsNCUu5LIj69jgWrWKTz1+EeO2wPnL53QXSHdHoATQ\n3OJZfxLgjQEZdXwJAANk1YFTBWnTeuRjCb11BYGJke8YbF1dxfbmEO+sH8X4dIkL1VHcqEeovYVn\nwoXLG8B2hmxsYGuCaUSo3NSH5JwRRRIzED8ETf2Mi4I90lmdk8/pBsh9gTukPulxZzDxseoqiwUs\n7kgvgANJm5EsSBuxoXaUyZiTKznsu8gZU8tYQ66AG4q2m0T1AO0wWbRPVRurbQGWVAfe437CDikx\nJCoDEoVkG4CYJC02E2KKIGlZNvMYTwu03sB5A2s8Tg53cAsrWMtnWMtneHt7A5lmQcni+zYORzIm\nc6AaQmM5lPolgCzIiG5FNnVgK9XYiIBswiiuWfhNg1vXC/zFmQEGgwazWQ7vLNxOhuxWhnyLkE2g\nUVjQ6KT3doTuG9T5oRDZkqarOhcjg6DR9rLeNSAzLyDsp1ONiF8DEYmey8ZGvEyQW8CtLcAYeE3b\nGV16TIqNnDgONA48LIHNLdgTJ6TqY7sw7oQqr3HtoVWEm7ojzSdT0GgFIUqHsgyoakCFXemWVOqC\n97BNi/bVNzB45Ai4qVE9cQz2978J/tJnwNagvNHouk7WgqFybppGy3UtqWJq2zFaE+g0ltIIg6KI\nRAR2xqA1Ep9gcxs0WkH26BkpGgKI8PR4guzcYyIeXRagrR3YE8fAdQ13c++KqoeGRTIobAQmkXnh\nbzMo4wZGrOQ1GsnmO3tQlkuVMBVRzp48h+qJY3jn3yvx5K9+HbS+inZBYAlfV7EAACAASURBVNpt\nbyM7voFdSP0tJYPM6mpXrRmIFXz9bCZrIV1L+1BNOVxjawvZxhHQ048DL3wPpm5Fe+qJk/jIL70H\nEfQBwU0tG8HWSsqXk0I3VEphmdE33wHOPaa+gMGZ334VLm03+xjBF9p6WKBULkGjgCR6CLs3LkOE\nSzgOQEwXa1Vv17OQo0RgHTNCYQW/MpBIoUmN4azF7PQK2FKMykRmO9+pqnevdcJmaljXA/Nrdg0S\noGT9hqqOfg8gPiCvroAmM5hpC9PksI1HUxjRoHOEeiWHaTzyS0k6ViJ7s1gVPepGxr5aWPsRRV+U\n2O/tDxGB6gblW9c7so0I5bWtOPbybNaR4qmMwx1gaQihoAsUtBXIGvjaaZULM++0pqxbLJ3YCVOb\nlRVQlsEMSQYQ7yQ8dnMrau0AMjFwXUuVKc+iFXPmEbAxMTWMyjISUHOL+2CESkgBmncbHgSd7Nz2\ndgxxpLBbEnZimhZ2S4WYixyoamRnH8Xs6RPI3ngL/qlHwX/2XWRPPwm+eA1oavi6Cx1MmUX2unPU\n1DqYyntR/4iUxEq0gyJRYaxWzNGdJ6aOSNIyyGZQamUIqbzlx2OtnEZRVLt995IsFOarI953hJzc\nXY562I0HEPVgkjx6AHFyFpFyJ0RQWUi6TlXLoujEUYnmKXJ5hjPtc0NoPvkkdh77KI68tI12JZdI\nnfMXYU+e0O+0ErHokCpCBMBp2ojp0tU0rDQdwKhuxYGudLeDCF71IozTNKHXLoA/9FHYhrH1oRGa\nVcLossP4tEV5i8E/+izcwGL99XEcMMQp9RrxEaKrEpLIyGeCsv2cg2K0Kpc14EBUWNORQ42TClmO\nUQCiuWSAdpjBlRb5dovi6hh+kIMaD1O3UsK2bro0v4NCjPrx85NHMqHJ+7chhsICaiDRQRzIIM9R\nCNo0ENFvEnKoHULLMwPVMfm9HWkVLkdCqmTJdeKOh27/a6QNUyhFTXFiNg1gawa1JAKqBIAMfOlh\nDcd5YTopsXNrBZM6x5MbN2HAeO7aE3h0tIljxQRXp6vIrUPjLEwYbgKJHsigJCJIdvPR3Q8oiXjQ\nf9G+xFG1U4csC/dIKG8ApsoB5KjWSvzxraEcMrOggQM7gtnMkE8IxZZEJYRqaocBDjteRpkypwsQ\nQ92zHV4L84ZX0V5jopO0S1DzXt1fWpmzx5KAIkkaodG6t1GdSg6lXX9TI05veCZJ00YdCPlE5v92\nIOLSbAA7kwjF2klKqc+FkWoHBJ8bWCIR47QaPZpGTYbnP+y4eiF9qfWwDcFWQv74HFFAHiFNjQCq\nDKppDm4MnFY8PLE6xqXxOogYJ4c7KIwuaMPGaTreptFBtPBauE3f7S6zYZDub3FIZWgcspmuz3KD\nwU1J6RVNIYPZrVU0BOQV4Esgh5D3+Y5UcSEl2LIZw44PL6qP1OGJkelZJmvQIG6frnPC+jhocLIX\n3ZJZpetaTfkejWQdtTKUtXTQ27QWZuOo2Nn6CEf/zQugUNkxkC4rwxipFDcrNarfz+ruHgzBWI28\nqRvQWhnXw3xzU0ihLJMNOK0izEUuxMtLb8J9+kOg4+vI7OPYOlWi/PHPyTMAoFkvVKyWkGn1L7mR\nhR3/gKYB57kQVKG6mHPzlSJDNkLQo1SNzRA57ScTGOdAx0RvkkYrUmhjdST3vrkjfROjbkTfCNMD\nnrQWNrP3ROLsz/0Mx5Pp9KpSuC71jJta/CF9zV+6AvvmO/jwiyfQoksf23Vd3YgN1yFLsXBOkMQQ\nUel6LuqIRiuSgu25S3ELBAUgulKbO3BXr8JdvBzTrtzzLwMA2qFF/r6dl+BO+nFX+1ReQQMZwgY1\n1w24aWCOHoG7fjOuLcla0HAofmtMxzJiWwdOCHFHBKU+wl5kD7AnKdRFeBpQo5tmRvKZmYXKp7Lo\nSCXnJArVWvgygy8z2EoqGrMlcGG66rrOdSXkg41Y221863WBxF/XYgWxcpemwvFsJpFCeR7b4QcZ\nKB/Bbs8wsFLQwFYe+bas/Wylmy5tUi4ekJSwFAlHIfcQpCkWCSGj62EPMIFIyXONbIrtbbCLBOMY\nFZnN+Svyur9ju10aQiglgwLJEtPEgC5VzDnZ7Vh07FUXB0SS23r9RiQ8Qv4ymIU4CHnWTSuRNOMJ\n6KlzaF98BdnZR+G+91oklbiu4QPbF8SJ4zWpuzYhTsDxmlEXRu41VL7itpWB4PIVtG9fAJUl/PYO\nqCgw/fgZ5F/5c1CWwZ6/KgPp628CAOwzTwNvX4hsfCCi5BYoRv7IwBiifhqtKNZgUUaMfeL4hnZp\nxFGsRBYGe+fA29ux2huVpURcbW11wm1k5nOKDwiBDIpaUiFXHehCloOjRsGJ8wmB5LqSl2sjmcgz\nC3/jJszxY7obtAOclJ2MLkJDFsSjd2vYq7dQf+IMVr9zSYS/R0NQJZXmup0OcQjJYy7yDdrPZIws\nhrJBNyiVuQip5VLZiTwkV3SzFgf83GmsvTVBdazE7JjFiX/4dWSPnYX70jmsvTGGefU87HSK9gsf\nl3VzSJMCOrKMKDqu0pe+CzNcIEJjill0hlnIMmuV4fcx59hMJGIIRJISBkiag7Vga2Bv7MTSkVLm\n8S4n23uNdOJbxO129TILP8yjrgUIquMhO+dsCFnFaFcIDoAbMDgT8oe8OGW2IuTbEvEiKQ2ShhSi\ntMh5sPExVQQI84aWrG49TK0iznpeaY+QJmgJrjXwjlAzAZ7AM4vtK6s4bzwmswLNhRGuP7mCp47d\nwNXxCHWboa4yFLoTlDpngYQCIe7OS9pYEj1EygM5cdAkW4Zi9JBpGfnYAWS1NCYjG0vUQjYj2EoF\nGR3gBhYgwFRSPSFEWJkWuzZZDgoSghwWAOnuU1gci1OyS2A6eZZCdZT7gVhIoMcSgeMQx0QyzGiE\n5ZwOzvtBnzPyACdRg+RFfJNKeZ5kPNIoRdWb8wXQbHjYiYFpwrgjYzaatltgA/Ict0ZC/MMc4ZxU\nlWwcbCXRia61MC1Araw5yCFWPQxC19mE4GeliMA3BhMG3MoUtbPYnpa4Pl7BIG9xa3uIYY2oU8Hp\nsLsQlRjF+8N8bCRSScr4AsiMDOms46RnmGmLDIBvRQcpmxmwEQFuW4UxVPpJxLxVB86FPj08Ejps\n4KBRbRQllkNkd1qpN92wBDqCmD3L+mh1pGvkHFTkqrnTwl2+guzso0CrBUYmU9DxDfjrN+EvXBRN\nk7fOw6yvA1dvSERM24rwMiDVcsM1meMmYpB1YNuIyHVVgUKkwKDU8zhZA5WFpB3duIX2I+eQ5Rn8\nC99D9vwb4CfPon3zbay8+TY2/7MfwfHffxstgOL/fU42fT/yeGwvFfnuTZ6UIPKaaRBIoUAEhQ3G\ntosaAtCRH1oZNup1jqfis2xuqR/TiGNZllKhbDjUDVcWH2B6m7XE/cL7zTGpo5+QEHKsRkxYG+c7\nKiW6gttWonPKUjIhQqEdFVP2kwlgLPy2pD2Z0Qhm4+guPaFF7bxAzAVfSvw4JX3yDFyJc+y3droN\nbu92+9fTChgNYat12Zj/7A/gxmfWsfG/fx3Z00+i9YD59MdA716X6La0L/bTj7c9RtKJwCzPlHMx\njdOPJ3ETngqJIvLjyfzx7OCu37j7a39gUKww27VFfw2VxoJ/aM2enwP0c67togejP8RAmcfNZAAx\nBRMAODPwhVbUBdCMrKRHaxVp9hwLdEQ5FDhwiMYBhFwKm97J5hzXjaSDWc2cyQv5fVBKW6YVzLSB\nWx/AjmewkxpumCG/OYPdVB3hMhfNosVnB5DnZvFvQAnPQFIl3bTLeGXTNaa6Qcel6awjnyj4tqa7\nfmhrWnHdP2iEEKN72JuwrSNfZNTKaRgUAgjSENTw2aQkfHx4yMCur8vANZnETmPno8CeffQ03KUr\nwHkpneiuXBP9oELLyWtkT/zy4oSyB8vHqs2ipYeDsHPQOzKPnAJvj8G3NmXCAKQiwmQiE3OWIf+K\naL5UP/ksit/7loT0loXsOszqrhpYVGcX8ideS8OGI3mm10+JKQAxMiiGyIa+DCCKTkVa4U06ST4f\nBvxIhGmI5O5SAvcRie3E6+qExnUtfRXE5bzX8F/9zjTs0O9ItBMNSuD6LQ1zHsrOmDWiOL+60mmk\nNA4Mi/ZIgWynRrMu32W2o07Y048L+bM97nbRtCJDJFsCIUUsO5xtKznvIbTSe2Gf4cBZLoJqU1lA\nNesF8K0XwT/+Gbi1gZZ8Z6xcEZvYefYsis0WzXoB8wNPwJcWpvUiAl0WXd6+VdIsXfCHyKDwWhJ6\nGXeMoxaVRAnB6HshYggyEAuRlQGZBdXJbgIzTN2CmlaIIOdF3O1AkewSzL28sDN228O7CaybDKXP\nbMvwuZDEvgDqkNLlAdMSPDF8zjCGkE0JrmDdsQdc0Z0/lr/1+t0Rye4DSSQONRIBZyEkjS9sdMDI\nyT9TEUwj0VnUEmwDuBUGcsnZ3hkP4JnAOaOa5Xjz5kaXMjGzGNTqqBppXnDERKQ2RA1QdGgXd++p\n84F1F0eje7yUwszGAA0MvKa6sYGSPpJmRx6S/hK4S20XINFQtsHu0qYHAaJut9JIhFCsdolukcvh\n+QkljW2y0L6faV33iWjq8cEg5dwXXkxTh4H5n7eLWtQFo5m2kUhqR7mU6GVNU1VyRnS6gHrEyKaE\n/KYBeYrkBifTftTDshaMtltchrmgNTLWs4T8c5Z1z6bvyBI30IjFSsa3bEKqL0RoRwTetrh0/hG0\nK3LzpgGmnkAtkI0l7F4+b2K/xTQtwjxBHboIlOgtKVHEDPhA7gjxZSonz6szccyyFSGrTIzOFGKb\nO6KOJSpXxnA+HCI6HecSEsM3bbc2BrrNwMRZjjdMRiKWp7O4XiRnZA20vg6ztia75UBcO/lLV4CP\nPS2pZd96XsrMX7mG7MxpWU9Mp0KgTBAjIIJeWkwBMyFave3eD+vWkBqmlVZRNxh/6gwG//J1AOcA\nANnZR8HbOzA3t+F/5NPAN76NY//yRWBtDdlTT8C9cwF+PIV945LoMrYtuKpgjh6RTblAxAd7DuPy\nHv0ZNUPD/EtJ+q86YbFUvWouUVlIe1rJamCutX1eNJjCOQ86lTds0Ow1H6QaP3Njy3wGhkR6qU1k\nWVw3RckM50RPVd8PxAYAIWrqBvbkSYA93KXLu27Db3ZpYNGRBqLHHDWKvAOH8tkaudURLh2yJ86h\nfesdtBcuiv+n35UfZig3uxShwYsXwN7HitFyMb59f+0XnGxWN22MZoIh8HQafbg05dOMRiJhkX4/\nhzGn326DlLRwgV/47OJzJbsecxth4fVI2DZt1Pwiz6IJZDL4wsaNVvKq3RbkAUzw+9s9CUViJTXz\nTrsMwHxGhPcSFbQ6gt9YBaa6ab1SgnYmoJtbyIJ+bJ6huD6B2ZoAswooctBMz6XEd5QnMYS4cxub\nm+gQh7WxTQIFPM1F28V+tzbqKwVCMaa3UhIBlBJgYewN4+8DpyFE+nCkopw+6PKoJkOifC8vdGGo\niyFalGVdepOSQSFKJhIdRBL9sbklVRHU4aIihzl5PKrkh4gbAPODecoARo0eiuGSIYonMuzKmrur\nV2HX10WraH0dtL4WS+QF0oqyHIM/ekEmNk1rw/aOOH/rq/BjGURgixg5RXkpJUK3d7oUE4eOrHFO\ntDx0kdBVZwuTYycYJ+1j7Q/dKUKoWpbkqQNRyFuitgi4nbr8/QJBHS6eq9wT0/yMCoppZR85Jl0I\nqIh5IlBOR9Zj+3k8BY2G3UK5dSBmuPVSFvffeQXDDz8JXluBqVpMP3wSw9evSwlX2xFukZCKpXvD\npOc7cgiQXbJMhQq9RIVwkUnZ3W98G9lTTyC70MCRETGxppYw6YkTYugLn0Kx2cDnJjrKdtrCjmsR\nZmxdtyAK5FSRg8uiI2XSySf93XeTcRqWSap/JEK56MiSlYGQaXXThXkGWAsO/RrCRQ90vlPSMEwQ\neyHtA2DeaQNiqhwxdFC2YGj6lzoR8LK7LFo3Qgi5QhwXV0BEpA3giVFsSTSRt0bSDUM/u24hCma5\npgNAHmRlMjBt13/kJD3ENEK+BOFmnwvZ4qaEdoXhhoyGCnmGLKPZKtBsFdHDosrAzoRwYaJutiDA\n5wa+pEiSksO8wwJpf7rDHxc+JCeRkqIepmW40sC4jmCytaRHxlBh0utaxOgD0zDMXE72ASJGyO1t\nOyESNUS4krValEDbWDdzO/o9vo+ga+S5lxZNeK/UDUDmhcrBOp5zcsNOrjxLiJUHA0nTDiVSiI1E\n6wQBap8JeeRLG7UZ2Pk4jsfUMUpIK2bAK/miUUBshNQRskRStuzMoLweiCIp0+sGALUE1oDQbBye\neWhlRiCfeKmYuBCJyJbgCiPVzBiwM9/tSscd0qSv1GFh7V+fGZkjWw/bevjcdscDMK0VDTjP8bqL\n5BO5kDp28GNOLKSSkipEmkLm489YOVbXn4xuDWvW1qLmoVkV/RdJR6ngb96EOXpE5ubtHZj1tU4E\n+C9egP3oh8GDAfz2Duz6qtjLZCrC0jelxDcMgWtZa8omoRTsICLZtB2NunW0Rs37zW3YR05JYY/N\nLYlc4nPiFH/9L0HnHptLZ7MvvAmcPgUaDiTqoG5gz56RdUYtREzU7HRexLNDdMtgAGQWPJkBTT1X\nkZaDvpG1QOOSTWEXx++wSS2RchYEJZDqJqbAxBLpGhnVfX9tdCAPDO91rbBW37XOWZiXjEbrJqXP\no5h5EJBuNVWQGX5LNFvtJz4CMMO9+IrIXYyne1bSTCto7bnuTLI/ZO0umylmOISfTGCPrAOPnsbm\nJ49h9be+AXdiHXZrA+7mTSFVjPgx2ffOY/TnO2AitO9ejsWJ7qrP9ovgxIcN/KRimrSvlsWN+muR\nDNorHevAIGM9R7JB7iNdy8fqY0lq2dxaP5SfX0Twg9LCNdG3p5gGnE011bJu4YsMvrRC2IynQraG\ndVSSHhv99T1SjkOkEA1KBJkY5Bm4kKhXmlagTZH3QFUBY8g6/OaWPNtBn8p3PttcNkq4RthgL3J4\n9XNorMcuZiIY0xVGiB2bfCbP4riSSufE39PNEWbxGZKKybs0Yt8DS0EIib7KQk72bQZO9uhCmhdA\nw+Fclas4aCk5hMDqa2dHwa61NSFTbkh0SCCDrE6OfmsHovuSEkILu3jh4fUJq63lh83aGvzOGFBB\ntPYHnoL99qtwO2MJAVODJnSTeBAPZNWgCWJVfnOru3ZoX5YJmRRyfImi9gu3iQEFPZgkvJLd/H0D\nmBuIIgsfiK9QVU2JJa8VKTgd3A4w2INbNyc0t18QEbxz8LMKpq5jFJkZjQD2smhhhr95C7AW2aWr\n0gdFIdUjphXsZIbBa+fR3tqEWVuTBVc4V9sIEWcIflZ1ef4BhkDTqQwiVQXsaEWi9TXYrTFsZtEC\naM4cRf7OdZhjR7Hy3YsdsVMW+r074aYzK2RLGJzrBn5zC26aDErGwoxWImHmdnZg19bmWOiovbQI\nTR0MaXAxDx+IqTLY3pG/gyOsi8N4zrCD6VxX+vWgkCxcYjjpXErCAoEXkKbP5RmobmC3dRjNOiY+\nGxQYXMrBuZRPDjvdnBm4geyqtwMLXwQRaI9s3MKOG5idqZTWnEy7xahJdup1sDdZBpNZwBhkmUVR\nFlhZLeCGGsquuzhGS4W6QkhCcY4IviC43KgjxrFqURSQ9ozhlSnyy1uSJx3swFrwsIAb5kIGVUKS\notUKEkkfd8TnIlnEcwuJEEkGyMIcKigbIgOIhRia+z5aL0LaV2/hQOE8/FY35sR5QUsZA4iac4EQ\n4qC9BZm0Oal+0+P7A1w3KF+6qH8oaR6KGySvvS88d+N6mJutRUaEIsvAw1KiL0P4vTXwgwKcq/5C\nWHd7TTfdmgKb2/DbOyLImjhlMbI4asepSKoRnQ+bZSgGJUaa+huOfeSrNtn88Jo1QZL6nOkGTkIY\nh/siz7BbM9DmTjf+qjYXrAUPii5qaFrLBkc65uwVaZWEzMdwe2ZJZ7a22xBII6HS3e7UwdExje/B\nmuOuwRx1XOac6L0+6vf+O5Tx5qqCU/0yFyrkWgt37TrsiePwk4lo5KytxXO4l1+dP2mIrAiOeloJ\nKlmjc6UpMoCk5oe+VW1Kbmq4K1dFRuGZx4DrN1D+q+fAWq3MXbkao4mMagv5rS2YlRU5Z9jwdW4X\nmeFufoDFaJARWESIig+bpkmUffw91XBKo14A8OKXcx/BRYHs9Lm5dJ2wAT23qb6YJaDPe1wHTiYw\n66vg8UTWdyOp0utvbcKsr4JOnoC7fBX21EnRnyoLtOsDZBduSMbFYAA7GoFXpKIdX7zcyTSECmXZ\nvGMtF2BNZ2y6NZpWgKP1VfAljfJupPw2ANBLbwJ5Bru+Lg5/khlhN45KBJyViso8qzTKSzWzsixG\nqvGskgyB9TW4IyPYS9eFEAjnS3S5wjo2zV7hkM6TSpQUeUcmh3Wn19SlPAe5LMo0hA3uUIjC384e\n7xc8A9uqpRuj5BJ/QIWhmYOgt49zRYpob74jJ2JxDWvFJ3BOv2MLqmrYaQ4zlc1kqkTuxQwKIUcm\nM/B4rHpeCaHHXgorKSgELyxU8ZINVuUblKS13gspHgIqgLnN4ljNWzV9KLTFOfCE5vwF1vaFDV0D\nCGE8me4emNN+CjpAe77nOltLEQpwpZ9F2LQRQlz8qztbW9DdsEf3C0R0FcLFXTvse7lHOIGHpy3A\n3bfnCWY+eb9uJgURbQN4+SCudUB4mGxnme2mH3OWG8tsO/2Ys7zo7ebg8DDZDdDbzkHiYbKd3m4O\nDg+T3QC97RwUeru5A7tZjggh5pNE9GfM/IOHfS/3Ag9TW4Clb8/LS3xvd40l7+u7wjK3pR9zlhtL\n3p5+zFlSLHlbertZYix5e3rbWVIseVt6u1liLHl7HhrbWfJ+vmvcr/aY9/9Ijx49evTo0aNHjx49\nevTo0aNHj4cJPSHUo0ePHj169OjRo0ePHj169OjxfYZlIoR+/bBv4B7iYWoLsNztWeZ72w8epvYs\ne1uW/f7uBg9TW4Dlbs8y39t+8DC1Z5nbssz3th/07Tk4LPO97QcPU3uWuS3LfG/7Qd+eg8My39vd\n4mFqC3Cf2rMUotI9evTo0aNHjx49evTo0aNHjx49Dg7LFCHUo0ePHj169OjRo0ePHj169OjR4wDQ\nE0I9evTo0aNHjx49evTo0aNHjx7fZzh0QoiI/gYRvUxErxLRlw/7fu4ERPSPiOgKEX03ee0YEf0e\nEb2iPzeS9/6Otu9lIvrrh3PXe4OIzhHR7xPRC0T0PBH9sr6+1O3p7ebw0dvOweFhsp3ebg4Ovd0s\nR3t62zlcPKi209vN4eJBtRu9j952DhEPqu30dnO4OFS7YeZD+wfAAngNwNMACgB/CeATh3lPd3jf\nfxXA5wB8N3ntfwLwZf39ywB+TX//hLarBPCUttcedhuS+z4D4HP6+xqA7+k9L217ertZjn+97fS2\n09vN4fdnbzfL3Z7edg7/34NoO73dHP6/B9Fuets5/HY8qLbT283h/ztMuznsCKEfAvAqM7/OzDWA\n3wTws4d8T+8LZv5DADcWXv5ZAL+hv/8GgP8wef03mbli5jcAvApp91KAmd9l5m/q79sAXgRwFsvd\nnt5ulgC97RwcHibb6e3m4NDbzVK0p7edQ8YDaju93RwyHlC7AXrbOXQ8oLbT280h4zDt5rAJobMA\n3kn+Pq+vPYg4zczv6u+XAJzW3x+YNhLRkwA+C+BPsNztWYZ7uFdY5n6+Y/S2cyhY5n6+I/R2cyhY\n5n6+IzxAdrNM93EvsOx9/b54gGxnGe7hXmGZ+/mO8ADZzTLdx73Asvf1++IBsp1luId7hWXu5zvC\nQdvNYRNCDyVY4rj4sO/jbkBEqwB+G8B/xcxb6XsPYnseRDyo/dzbzuHjQezn3m4OHw9iP/d2sxx4\nEPu6t53Dx4PYz73dLAcexL7ubefw8SD282HYzWETQhcAnEv+fkxfexBxmYjOAID+vKKvL30biSiH\nGN7/wcz/l768zO1Zhnu4V1jmfn5f9LZzqFjmfn5P9HZzqFjmfn5PPIB2s0z3cS+w7H19WzyAtrMM\n93CvsMz9/J54AO1mme7jXmDZ+/q2eABtZxnu4V5hmfv5PXFYdnPYhNBzAJ4hoqeIqADw8wB+55Dv\nab/4HQC/oL//AoB/kbz+80RUEtFTAJ4B8KeHcH97gogIwP8G4EVm/vvJW8vcnt5ulgC97Rw6lrmf\nb4vebg4dy9zPt8UDajdAbzuHjgfUdnq7OWQ8oHYD9LZz6HhAbae3m0PGodoNH76i9t+EqGi/BuBX\nDvt+7vCe/wmAdwE0kHy9XwRwHMC/BfAKgK8AOJZ8/le0fS8D+OnDvv+FtvwVSOjZtwH8hf77m8ve\nnt5uDv9fbzu97fR2s9z/ertZjvb0tnPobXkgbae3m0NvywNpN73tHP6/B9V2ers59LYcmt2QnqxH\njx49evTo0aNHjx49evTo0aPH9wkOO2WsR48ePXr06NGjR48ePXr06NGjxwGjJ4R69OjRo0ePHj16\n9OjRo0ePHj2+z9ATQj169OjRo0ePHj169OjRo0ePHt9nuG+EEBH9DSJ6mYheJaIv36/r9Hi40NtN\nj/2it50e+0FvNz32g95ueuwXve302A96u+mxX/S20+P9cF9EpYnIQlTK/xpE8fs5AP8JM79wzy/W\n46FBbzc99ovednrsB73d9NgPervpsV/0ttNjP+jtpsd+0dtOjzvB/YoQ+iEArzLz68xcA/hNAD97\nn67V4+FBbzc99ovednrsB73d9NgPervpsV/0ttNjP+jtpsd+0dtOj/dFdp/OexbAO8nf5wH88O0+\nXJghD80qQAtv7Dd4afE87/vhvS60x0nSl3ZFVu1xHl78RU9ANP8hDm9Rdw0O/1FyKCXXXjgu/L34\n2fAic/e5cJ1dxyfX2xN7vc9zv/KgwPbk3WvMfPI9TnQ73JXdAEBBKttA2AAAIABJREFUJQ8w2sel\neiwbZhij5uqunt4Edzfm2CFnx06IOaePysKjetdIz7XwCIb3mQDiPT63x8fT94gXPrPH+WnXCfQj\n1H2AknYyodsW8PoeLZxfh4d4XNqGpL84fE7PS/492mj0s373e/ON3OP9tL0MuAKo3j3fjzk97hqz\nrELdjPfztPd2832Obdw80DGnXNNLLSwfw3gb/o5YXJLOrfnuAovz417HJ9dinU8W54f3RPrZ8PnF\neYbT1wnEjMW5Tq4tN7Pn9RevsXgP6c/kGLb6ksd79+Fe7V24x0l7E27Sjzk97h4HOebk5YjLlQ0A\n8gzOrVv3QBiD3usztztmL4RrLryaHv0ery1+vvN/97o/JnR+efS9k3PENTDr52mP8aM79/x9345j\nWFjTJ/0bz8/vcb93BLl2vX0DdTt536PuFyH0viCiXwLwSwAwMKv4If/jh3UrPe4hmh/7QfzB7375\nrft5jTnbwQq++OzfBmcGvszAuQE8YKoW5NQjNQZsu2eBibr3AJBXMkwHBDYEzsKqhsBGXifnYRoP\nMMv1cgu2BHIMaj1M69XBpm7BEq5pCGyNPOBePi/3RvE8cpFwAECtB3mO1wQz2BpwbsGG5L2qBdUt\nuMjgRjl8ZmAqBzttQE7uE0TwhYUvDJgIdtbC1E77zEp/NQ7kGD43cIOs4x4JMC3D1A7kWfqCAdN6\noPXwwwxsjdyHl+uxNXFwk+M9qHGAMfC53A88x3ME/MkL//AeWMftkdpNWR7FX81+Rt7wDLQtuK5B\n1gJF3h3kPMAesBZoWvmp9gDPQJbJ+8yAsYB38rkil/fTY4wFWQNmBupKb8rIObzrzmnTwE3Tveec\nfJZMdw9tK8ew784XYI38zV7OY0g+r/dEZSH35j14VoHbFlTkoLwAt05sMLPgpgHqRo7PC/lZN911\nsgxU5ODZTO4x9JUhsPNyneRZoMEAcA5c1YBzoJUhuG3lM6GNbZu0k7rvwjkwM8gavXcHcInfxT84\n0DHnh+kn7+flehwQ/uj0N+7r+Rft5ksbPyfP3soKkGdi89OZPAvWgPJc7LptZZw0Jtp8RNvKWBPm\npSwDMivPB5HME00jz1LbyvO5tirvNS14VgFtCxqU8ZTcNHJtZnm+BmV3rlklY4whUFHItQK8T+7L\ngetmbiyjQQnodXhnAlSVnGdtDTwsQU3bvV7kgPMyHqyuyFw5mYFnM2ljWXRjdevkPKOVrg2ZBVU1\nUDfyPhD7iLd3YE4eBw9K0M4EPJnKsaEtjfZ324Kdl3OH/vEs7QxtzTLsPPsovvo7/82Bjjk/Wv77\nMofo/MRtK/1GBihy6SPn5Ls3tpsTgGQegI6b+n0SyRontK1t5aeT/qPBAMhznSO68Z2KQo7ReYHy\nPI7h0Ya9l+/Bu+41QPox2Fl6fb1msFmQkbnDObFB9mLLpdpmeN2aOE/TaCTPVeviM0B5DvYeRBSf\no3BdAPKMhf50Ts6la7Uwt9LRI7KO3NyStmRZvFcOa0n2cs+ZBazOm913Ke0nwh9Mf/temMdt0c9V\nDy++wv/swMacYrSBj//Mfz3nx5BLP6w/1Px9IE1T8ug25OncMXuRtUjIESP+EzlO/JJ0p7Q73jhW\ncqf7XCSOw+PeyvUDqcJGCF+fBT9PfUICvPplxBA/z8vnfU6Y46MYsA3DtNImtt09EnO3ObrYB2GD\n1cwTai4XQsi0oRMwt4nMBnPEePDLwv2E87GR4773W39/9w3sgfuVMnYBwLnk78f0tQhm/nVm/kFm\n/sHCDO7TbfQ4aATyZJ94X7sB5m0nRwk2Br4QYgKOldzoyCCfm/hwhvtjK8RFPGduhczQf/Ji8pB6\nIXKYAJ/bjgwKBE+6YE/+DkRQ7JewAFJixw0yJUkgRHTLIB0EApmjjZbjMm2PFVKLGge2Fm6Yw+VG\nSKLWg1ovJBMRfGaEDDIE08h74R5i+/VzbOeHBKNkF/n5MBQmgEsLX1hAB52UDAJRR/5of/vQHtb+\nubf6ZXc15uTFSBZpANAoMRGIG2s7YoW9kCCxQ0gdBCVu2MsC0qgT5xxQltK2pu2OyTIhg5wuokl/\nDwtLo7NpJHG0f+aIItudD+hImfC3td35XOIQkRECpVYn0ZA4X2GhX9dChmWZLPSDs5VZ+d15cCBq\nQvvZdwt0a9QR5LjoZefkOQhkULAf/clOros86xbUgUxi7l4LCH1rSByf4NSQ6b7H/WFfY06PhwMf\nYATan92QUSc7i2MEp6RzluzRmW4sJiXRsfAcUpYpkeFk7DDUEavOK/FbduM6C6EC9h0JkF4vy+Sc\nAfockjUd8RTgfXw/kiaBoCYdY8LzXzcyzgKg1VXwoJDPT2cdGaTEBkoZb6lV0hiQ14yMi4HsoeEg\nbrLE+/FKhhmSMQ+QsT3LwIFIqRvpQ2vknESxXayESBxjlCSCc11/MccomH1iX7ZDeS5kQ2hrQErs\nhI2JdB2WziMkBCPYz42b8TtP5/kw3zDPXy+QRWov8bphziSaI4Pi+ympFo5PyaBgS9r3ZE1H/rEH\nylLIIO/BTSPzR2hTlnXztFM7bNv4TJEx8t0GwivLoj0hXF/JRtnk0fVWJKeETEXTduRsIHkAtRE/\nT8KF/vQLo8z+p6t+ruqxX9y17WSDUUemMOZJjRD0kpAU5DuSYzGSjoPPYLq/AT3G6c/UxVg4L4C4\naS7X4c4n4Xn/jI1s4nubRvYs3C/kmEAECeEE2Jpha4nKkfPoZx3DOGkPW5ojaNJ2BzIqEDXkWUg0\n3qPNTtuQ9G9KVMU+RDhn1xbygdhKCSOO/WDahWilOxxz7hch9ByAZ4joKSIqAPw8gN+5/cc/0IK+\nxxLhzkPZ9sRd2o1es5QFkDx88g8ekZSIJBBRR5g4/ceYe59tSmLoANR6mFoWDEJ6UEcGNfIeNQ4h\nggeLpFjyoJLTRasluNJGVlo+h3jdwIjL531HBhVWmONGySBj4IdCKhnHMDMHM2vBRha7vrBgJYNC\nZBIxpF8ykjQhZcOFDKP5wadJ2k4JC51GNrlkIE7aEwao8HkQxIlpvbL9BGQGsHQvRqK7s51wm1XV\n3V+IgAmEhxI3aGpZDJZlR7SERWPbimPhXUcmhSih8HeWSf+FBSN7icaJZBB1C8mwYE1JjoRMoVwj\nj6qqOyYQKSkplWskkWchdsK1PQN5IYvxptGFddNFRjFHZyEuxNlLZEAgX8J19f5Zj5GdWnHiyNp5\nYi08E1nWOY7BoQhOrILrRvomHBPeC+f7YKTzIvY15vR4SLB/U9qX3VBZdM9Z67ooHgrRQaZ7nr2M\nE9GhVtKIjDyHkRxglmfJSKREjLbLsuj4UkrYAN2zHI6jjqwHoNF4EslBxgh5nGcxugNAQkJphEXT\nyD3quEfDQUd6TaZyzbVV8FAIc5pWEnWSKwFQ5ELyGIn+wHQmY09w3oPjzl6iZAKZowQEVQ3QNHMk\nMRFJO8pS+kEjmGKEYYgMNqbrGzlQ+0vn9RDNEkipDzYG7W/MCdcP30EgMYwSV851hH+wIVqYWJP7\n5pR4D0SNoY7oMFbtLiHzdVzncA86F0jfUDcv6rm6aCGeJ9RSwj88A/oeBQIn2LLXqKQwX4Z5N0To\nIhCWHVkWnhsKpE9C4kQiTJ8r9r57vgKpZBLiTZ9FBKIxELX63KXEY/pdybV97Ou5Z2d/6OeqHvvF\n/uYrJWp2pV8umjEhyg3M/Qtkx23MfvHctMdnA5mEhc/Jz4XNeL2XOT+UFn6G4SwT0iiQPqZV8kaJ\nqzTiCQiv0Vz2AyVklJBFHekVSZ70nhPS6LZ9EUmlhb5IjptPNUv824RYIgcYd/u+3wv3JWWMmVsi\n+tsAfheABfCPmPn5+3GtHkuGD7BO2q/d+NxGsoWcTv6WYoRNfCCdBzUesPqaRsWE92BpbuEAIJ6X\nCRJFRNBzskYjKTFDBGTdg2mSCJ1uh0h3nSxF4sW4hDQBOrLJaTpY4wENmfS5jFAdSSNkmC8tiBmm\nEjIIAKDkkSttN4g0HsQ897ppvTQ5RFJlMuCZRtvmeC71i5U48hqpFAZ7zoyk63VfJqjRtnmej0YK\nId6A7nQDMqPs33j2Yztx91nD50NYPeU5eNbOp4YVOUJEjBAtuhgvy/n0qdC2lAwC5p0Nz+rQ2O78\n6TGGgDrpnySFLYbOexZHSiMGKMvAsxm4aTWtQxfKYQc2EF9Ft8vMYeceAIYDWYR7ccAigVQ34gyt\naNpH2H0lo2knA118C3HGdRNTGuZS4UIaGHtwCyHErInkG9eNpgd4eZ29fI1hhz70RYg+CPZjzVxo\n/t2in6t67Af7tpuy6Jzv4CBGJzwZF53rSOOUEAXArZNnbCFKBE0bHWXK845AMEpuzCoZ8zR9NZJO\nXp+5QAiF84YImSLv0kCZu3SaQBxoyqmkrOmcW2hET93EVCNaGUYyjKoGPB7LdbJM7jfP4jxBTSv3\nlecaPaTPvFEip8jlsyHyUcfy0GeRwAkRIoNSxsFWI6zyvPsOAsmSIvRFOieFaBCiDxQhtG/bCSTQ\nIgzF1MIYAURGI3BYJTGE4KMsA4foynAs0JE1oc90rCbSNLQwPxFFkimmX6VRqcFmFvs0nAsQcic4\nMRqBGon+xC7jHGtIouqAjuyJ894CqRfSK0OKnJJHkdgK5Fk4xrn5NV+MvLNgT6A8k3tttQ+UDKPQ\nvtjexAsNhNXi1+f9B9r67ueqHvvFPbGdvUgKJORLeD957INGZOA5ArljkuiXqFtpwofUpzD6L0T6\nkPpHSsKkDxMTgSCb1uEeiDkhS3bfs0QGJaROck2fRiM5uVGvvlE4PkQqpW1n010f6U9WPsvKa+J+\nJjelfTRHJi0SOTz/ezoHddpGad+HXr9z3DcNIWb+1wD+9f06f4+HE/uyG6NkR+W6B8N22j8IZFGT\n7FCpDo/8LYRGYKADkZOGJfpCUsqo1V3TVkkk5vh5Jn3NhPSrjowCARxS1/SypvVAiJSBRu0YYart\npIn3y7nVyCOJDDJVKylhuZBBbAimVpIIgBvm4EJJm0zuwVaiEcTWJNFB3UIoXBueYTxgZ60MSiFl\nILDkC6RYR/iobpIOnpH1TwbMbiGGLh1OF2a7WP594K5txxDQcBLFIwtpruuOdIEDhoNukZ1ZeT/o\nBIUFekj18i5q8UTCJ03tmls063cQoosC8RT0egC5r7BoDcc6dFEGeSGESlXvTQYxR90Ouf9kt72q\nxHEqi27XE7rQ991usxkMuzD5QPAYAijrwvCtleuXZecwAl36QtzNBgBNV8gLSTeb1dJfddM5XeFY\n/U7k2jwfTaTOIK0M7/gr3wv9XNVjP9iX3YS0lLmok04XJp5bSU5WTZaQ8smt6yISAoyJ52WXRM8E\nHSEdZ2NUhrHiSKtDSyGaKCUckhSt+HqI6vMMLnOQ8Z2OS9vGCJGYWta00o6mFfJ6OADnGaiqwdOp\nXqeMpE+IYkUtkYtkJIWM8wzUtF2qUlF0RI3zQFV3mkFpOweaepaFjZQ2psaK5lJIx02JCwblgZCA\nfI5IpuyEKNtLE+JusN8xJ5KE1qqDpdFQsS0hNQxxLCXLEqGFjsSZixRqO5IpbgYAMheGz++hUUdE\nXcbIYgq4n09J69Kdu+iauOkARM09ChFyQFw7UJ7HOSsSSCH6iXX+VgI1HmMNQB2BKvo+MueGTY+Y\n8hjm3jQd0lohD0PkXKqp5FxHJC5GT2lfRDKyrgF4wEsk0a40zbtEP1f12C/u2nYYIAfVw0H0Wxjz\nZEUq/hzInTg+LvIRgejg7rj3zCoJ5w2uG3XXANBlPkRStyN45E+OZNF8+pn8i1FH4V5CCpm2wbTc\nkVrckVpzJFIkieYbslhUZa6QCqMjpWNbtD3MkdBKI6x2peyF9vp54eld/RnaeAc4NFHpHg8nUvHm\ng4K3Bta1oLDjqotsefh8JHFCWlIkWNKUJoamjElkETEDLcc0MYQUMSU5okZRCFlXBCY47qYFAiQ3\n8NbIAxx0eVgGABhpA2cEaiXSJ54/S7R3HIMaTU8jFYrOTIwmEqJLhKJd2WkGmZZBtdeUMxXY1jxT\n+ISBhww6tnK7opbkZ5dmhjBotTzfZ8AcCQbN52VD0oct4nfUEUsQYuyAwbNKnIvgYC0KcVobUzjC\nLiiPJ7LgGwzmnCCwV72DNjp3QnbM5FyavjVHeISFb7CfzHY7iyEcPuz68h7C0sHsNLSeigJUFnER\nzws7ynMi0rUSSINyTnQzOpZVJU7HYIC5KJ2gi2RDm/R+nNc0saQvASXWlCzjVn53bdSIYE3xiGlu\nxgqBZRe+i/RcIS2iTXate/TYDw7adJiFDAm6J1ZTv0IEjHO7HHRoNBB7sXdmlrlukXgJDnVZxOeU\nmUFptEKqMwToc6dk1KK+StAmitEV+lpIE2sdeDLrnleiLu0tEDjTmUR4rI7ARQ6qGzkmiF2vDGOa\nNrVOyKAQLZgny1NNOYqi1l6iXWO/AN14EXTGMnXqQ5RU65SIzjpyJwhxB4IkRKgQCaGWZ1HsOu2z\nOU29AwLPZkKikIkpuRSiaYBu7bO4ueIT0iPYSIgcDSRKEDQPqXNhM8Rk8+eeK6hgRJ8qCFuHcTiQ\nN0GcO2xMhHvJMtFxCtpRQRw9tfOQtl2W0T65bSV9OxBieh5CR6CCSO6pbbtHW3WM5ubeoGcUNi+C\nJh5sR7iyF0Iy3M+iLlOieReuHaKr2GhqZ55rKqUDh4ilfrrq8aCBOsKDFm04EB5KGqXC07zwuTQt\nioEYobNXtUARRiak1b26jXogVuEKhA1h7rPRFwvDkmoVhXMD6PSI9J68JXjbfRbJ8TLfACa4jHo9\no+eEYfgwlql2UNxI///Ze5cY27bsSmjMtfbe5xcR9/8++bFfptMu/0jbsitRpYwwKlQSCOQWJUGj\nqgEqmnSQXAIJRIvqFBJ0UFWDT6eQoWGKBiDKgBFgVxW4wJRLZVdmOu1Mv/fyvfvuLz7nnP1Za9KY\nc6619o4TcSPujXfvfS/PlO6NiHP22b+z9vqMOcaYKIAwXT/ZPhKgZHK0kgRagmuMzKKynRbAWvoI\nj7e9TvLizQCEboAdsI83JF7DV+l6HdyJhDVTVO0yg2ZEiPRKwSADXEaoroEWLABK8tVRs+rSgwfQ\nBzjmzodYX/OlbxEA50ZsJGPRnAODAksFMJV9mRwsVxTLLKA4rxAbYTX5bZaWwVGSnfk2wq8HuCEK\nY6miBAb5VjyUxFyb0jU49VYqKeUG6AirB1JtbYjgIEASN17uYxRE3q5bOt+8YCcF2EblFF/XYt7a\nqZoiywkSeIAAFkCWkdl3ud6ohwdl80kgLUS467JvRlXlSWpkoKYxSAJkQMVo+Bxlm9Blb50AmQSb\nRCxJr0ICsLhtZTJdSCUSM8hAKDPGNHPNfhA6vIFBlrntjWlUC4OnqWXybqCTd1mipotQHnpZoM1n\neeFg12nXZSypWZWkASmja9cZGYhDnrjbMzoMKifT70wXiiZPe9ms6z728aqCt1vEjVTNIvP4ARLo\nmtgMQJJRmeGuGOPqQ1D7bITc9/rMB6CeJQDHvITYGEgmzSlj6tWlCQ722XeIhyEDPURgk+m0nfRN\nKmuV6kv63jAUhtAzsJlLm4m09T3G4llvhenTSt/H8yaBRLRV03/nshm3U9DJrt1BgWeo2bGO8wYw\nGVCymOdrLWXLCgwl6RwUTEsMGb03Cti9pIfQCwVv2wzYzMxAWdpDAtaVLUMlSxNQtqX68VQ+AXp5\n59MVmYIjdi8m25CBgiabUhBvVA0vZkApefnYZ6JWi9TEhnjW6bhb+AORmX8rWJhYrt5LGzJmkDF4\nFgug8vJ6aVJdnAOHmBIedr8SQ06BLmPEkYGlVHz/Rbsh8x8yqSNRnlPavSkk1SPT+H3s4w2OhDsY\nGFSwUkqgpTRSdmFsZmwyrLTPUHzO5X2NcCPDY01+xQDDEvKc11qArHkMCAIy0FIkPUoGTawgFbww\nBoNKBlTpGZSOo/uUMVH+dhHJKNvAKxc4gz7F/SPF123tM7rJto8RqKPytwpwvZ5jgWfn7YrP6X0Y\nAUfXXI+752/yCmIPCO3jJYJ0MhcWNYbDBv2tBsNBXUi0BHgxoCYBHkY1VOAnNjqod5p9JEodC5lf\nUIkOl6AJQUCXBJ7IMaF+QZkKyApMiXSrZA35zSBSMeYEBkWTsimrCMxSYn5eIXpKHkZy4qTVvEhl\nZwNcH+Tc5h6xdgo6Bbg+SMdhuliGyM7arNufsnsAiH9RUSqeiwpuqbObMK9QGGobDTK/X7CtXmEQ\nszBqLDtvRplacSxliaGTvO127AnkCGXlFl5vJHsNYGTuDGTDZ/tMMvJUUEf9eNKk0ajwZg5rE32n\n3g/GgBsG8MZKMs+S9CuVIzYwyJEsCG1y2mqJ+cVYasVDSKwpOjhIJX/lvSEfR4EnYyEQkQBhBjrZ\ntXkv12NgUJ0Xn2nBYt4nZVU3+2nblpNolfKJEXYhL9jHPj4DwZutAMd1BVrOwUutOKYG7+Z7ImBQ\nXSyEBcxN5rnWb1lJeKLsNzSE3HcUjBAydlAJEpu5sjFl9DXSikrA+Pljk1+tt+DNRhbHdSPPf6Pn\nq8COVRGk5UJ+DiFJl8ybiGciFeLjU8Sztbw1n2U5zmabWZZmOB2jsKI2m1wVTK+PvFPWiZPjqYk0\nlBk0qqKZpLg2w89yJkx9yao8Htywqf2VQwD0gg2kcj3uOgVRROabQAyTCxro550A8YU5d/KIilq9\nrQTXSxZUkujpeFACZSFkZqhtw5zGqwSgmLRL/exI2UHU1LK/YdBqdEPe3sB/K3mfpNQerJ/jtiva\nc7FqKirGUdOMEwflnIOUwer8CEjjsl0YewrQMahg8RW+Smnf5usEFKCS2+kttI99vJFRPv6RE9hg\nZsXTIjhAAZAo0BE9MgtmivzQ+e3NM6gE3KcSqFTRyyOZQqcy67ZmI5N+0TkwyLanwLkEvaPsKaT7\nT+bMnM8VyICRlZePZpehbKXSyDmdm3UPlgS3xMtkv3YuiY1lZtUXIDUJyDLQDvnv9PlrxB6u3sfn\nIsKixrCqMCzkyfFbZRd4QoRTLazT0oSUDKDtAU2lBDtlztQ+SbhKel9JmR7pRys36sTS57SzKDtX\n67RK6ZZrA1w3SGdoLCcSc2rSUvE0RMRZhbCsESuC7yP8RhcLlfgAhblMiKozYRrFZY3YOAQFu/yg\n7B4i8RlK7CAe35sp9TwCxGraHTkxp6IvpGJqQp1vwvnvKQ0c+mZid72OMGlEpQuitk0yKguqvEg8\nDCBK7B69PxwFlLHMs2ZLUxlpk35x1AwBaRa9kCpYGWQty5zMNY1ZY0wlk6iZrAoA1VJul4hkYmzn\nl/x2IqhR4Ec9RhBZqvlY+WbNGPPJUwGDlOmT/IFKn6QobTqV9LXrBBKTIV2DeQJ55Pug9z2dawIG\nY/JDSh4RkTM4l0xNhSGVPBoijwGjfezjDQ6poCfsO56p/Gm9zWxCk4jWVvGP80LUFvc2oVxvhGWh\nrD0DlZIPjPOSfLDnxfosW6yWEiM7jjE6TSJV+qo4Zdb2Q17Uz+fSX9h+tI/hrpO+ZLkE15VIwc7W\nGaCuKvCskTFuvUXcbEC3jsT82SS3Q8iskdJLyKqzAZnlYWOIVnRENFDM7gPJedg1mxRuAv6X4x5p\n1bYkkxv63Ge+BskYAPmOCslXuj8xyjmZf5TdnyCSOSkYwAkQZJuQqMEzm2SKtV0ouMh9L7JhZunP\nm0lfa/etAGKSN1BpXl3Kl60v12pishtlWxdjTWJ1WcW7UkJogJ+BPs2EMVUCPtaugVyBz4DRcs7m\nxTOpLK4wYrwa83bEvHL5OyCnxtM6TprPkHNA7FSe9nrAxH3s49pBSKwUm7f7zipqkQwTjYAv52RJ\nCejReX7gBKqUpdVt27FB9GTpUAAepAwc89vZdUwAhU8RJyAqVeEa5O/SzNoApeTVUwA65fWXYNQ5\ne5TRGq+4Jl3+5YpqumGhjkhm2Jw/Y9I4igI+nTOZpvzZ0T2YbnYNws1+Jr2Pz3xw7dCvKnSHHiCg\nPo2oNkEYNaQMncaB+pjBmQJNTSXeh0JG5Uh8bUo3+xK5dUAcaWqLCSWQQSRnHWIc++SQAxNE1rXN\nmT+ufTak1nPyG5HksPdSYr4Rpg/1uk8ngFRYVAgzh2oTxFPIE2IB+vguihQuMlCrN5F1qkFK6aau\npWT5EOnAQHJPCxYUMYMGZf9YSftiv6mTM7DJKOgOuRRyRGIgvcowdhBvW/B6A94oy6fwVOCuywuG\n0oDS6X1pO62o48eeQWmRwUjVTtLiKxu9JjDIzJMN8CkqrJwzWjaTaKugQ5SrwAycS97XyoBSmVku\nMe/GNHogn3ejBq/rbQJskteQSlxSttbaR12Ah7YQ0MUoYkimsuk8OWbPoDhk7yADg5KEJWYfp2Lx\nxv0gAJxNvvcsoX18VsIR3MEKuH0IntegdSuAswFBkYFZpSwiq9Znz3/RR27ET4YqL/KhIYx9Wkrv\nlqizWqfgfVlufShYF3WVXys9dmwhvm3HLAvrX+zz/ZCYQeS9+AbNxBeGtp0snM1zTVlD7mwLXgtQ\nRKtlkqNRPwj7ySoZzmcqh3YjOZD4nsVstm0gFrP03SqXY6tuZmXkFegmLUevO9NrNuN8fd0AmD6b\n3r8OyRgZGBiisKO2ba7q6FySuAno6HNVq5CBf2EBBR03hOmZ2g0puGF9scoYEYLK8gi5AldM/XE6\nL5Nc6b7IOQUkgwBLqT1LgiQBPmXZ92Lc4hjFgDyBmD63H6sYF0L2xrN99coKcyTv2ZgNjAsXOCgz\nl7JRtxlX9132z9M2BihwJb9kMMuquRXAEACt3ufTMdK174erfXwGgoG0dgCQ5GDmdTPysoGsg5JU\niw2A4QywlLiFYs+lrMkApPQeMJJsJb8cb8ASq8mzrE+SlKx4z/abQCeW60jVxIwYoEDVqAgQQaRq\nEXADZxZSVdwD5PMcMarsmij/zSr2oEhp/3YvQLY+QmJjnTOUHqmJAAAgAElEQVTSxvgY04S7ycwI\nPJLmXUc29mZIxvaxj5eI9naN9lYGg5qnnUqvAK4IYSZMFq5dlm4pUyIBNn3QUvEKxhQVxkzuZBKz\nEeKqyPMokwTkMuysLJgCDOJKQBpnMjADg7xT42adaBRgEIgQlzWClnZ3nZplKzARZx6hcdJ5bQMQ\nGGFeFdfH8hmWCmvDwieGEg08YkLJxDmOvI4MIGOVpcEYVZETeJQYU6VsLt2bMaIuSH3M3k7Vq+2K\nmEgWUiFkMGixAK1Wif7Om42CMsr6scyfVhDjtkseB+SLTKFlqW0ia4ab1kbSewp2GAunZAYFzYLX\nTZqUUqMMGkAm3E2TQRZgvJ+qyhNlIINBJBNuAGkSzH2fpWKLhSwC+25kVp2YCSYHsAo05WTbWEAl\nY0fPh5pGJurGHDJvlFHZ3iJja4sy80yKLOfdD3mhZu/tYx+fkXCzGejoUH4/3QJPj8EbBWPVZDkx\n53SBmxgStjhtJ+CKmlEnv5cCtCF7tqZhQE7yTdFFcjIaLsYlNXHmrhMPIEAqnxkYBQhYtN3qeTkB\nd5Zz+f1skwFnQIykFzMBio5PwdsW7vatLEcLUQAv82mzKoI6Do/kSkAGOUz+pOXuk5eOMoOsKqgA\nXtKHofLZaNuuX78LlEUq+iEdLwEbrzioaQRgsPFB2WGkBv1lxbfkNWVMSpNEq9TJGJapEph5vQF5\nzALkc8U9H0mqynnQiDVD6bNSDTOCu169drzKHqu0D/OiM6N1mjVpDOW2GwFaNNcqll0v8sOqElDP\nJBjWfgGkEvPT80sG0sW5++zJZfJtNtZcAbRyYoypD5O1EdvPpApbAh9ZmKyjymv72McbHIQMplAU\neRUgbBUDNFzg5JtjH4pe5FcJZCkfNQNC9J/Ju5JPETCqGCZ/Z/AkS7CKtZbL52PbZy8dk4KpD2vg\nDLS4Qj4WFfAqrsUAplT1KxiwM36GzzF3JudV3puRZ5BDqmqWgCkgAV+j4jyYXF/xe7Ii4fHn0/2+\nxtLqzQCE9p3kPl4izt726JeC5PqtVABJ5dVLJpBNmBXUYK24ZeCHGC/rI2EobZD3iJEYQqyL+kRH\nBGTBrpN41gfcKI6kMhsDicyryG2DGEiTyMS49gmwcp1IyBC1vPxCpF8UVQ7WDnpODmFeYZh7EOt7\nfVAmkU6woxlPixlmmHm5TqUkuk7YVFNwB0Ayvk6Aj7cS9TSWh0VW9NwpKITsv1QAa2BWJ32RwgEA\n1zvc0j7tIEhG+2wtxqSLRS79TC7LlgCZINaaQZzPBIRZr7PBslUSsezjMCS/hlHlssLTR/4uQI9a\nWEbJR4FcmkybGSx3nXiQsIJSQJZ1cczeC3pOiY21bbOPj0nbgATw8EYYP3R0KO3NpB2WxS09RLYt\nrMRvei9VFqN0z8i7zHLympmuKllQzmbF/XBZWmD+SP0A7ofsQWRAU9tKFty+J0d5gr6PfXwGgpYL\nGStO14gPH2VPHTO3p9w3cNdncKeuRPK0Ff8veK/MRErSFFZgCJGzRMxAXJcX+IldYUCQMYBMjmVS\nWufE3Nk5AaFUvmpl4hNI3PUCFnUiV3OrJXi1kL7f3rPrbxrwYiZj46ZFPD4RJtEim2Gj6+UayYEW\nC2EZ2Xu9gsMqBUtsEF2km0cQR5Wg6jlSPyQwfuRhY0CCVh5jq95mi5K6EvZV2yExSTTz/aojrtfg\nrkM8PUM822RJkpZgF+PwkAyRs1eUz68BqfgAl2C6jUnkxn8rK8faUwJ1TIamlTVZgbPk62Zgo3lg\nlVEwhVGMXzRrMthWJgfsXif5Fcs4xCrrcsUyJrG7vACWgJaPp3w/7BoTo4eQKuiZ3M7GtIItljy+\njP0E5IRLK2w0+UNZ1HaPLSHk/RhE28c+3uQw4IEhYJCBwnGyjSaG2VHy1UlMF0wAm12AyDnPIBqB\nOkAJcIxBo3LbqcGynY95tLpBroMpew+du57y0mxfPH4t+aAyRiyetC/OQMwUjBGvWT2+pwxKTY5V\nAmej3x1GvkzT6zXT7Qyg0TkA67LYS8b2caPBr7hFUV2jOyLUp4zogbDwArgY+qydletMt+7AtTyQ\nxIDfFFW4GifmzaFgATnKwGuaoBTHZ3ODJ2EhOflMMqEOMZmEGc3Q9VGOu5ZJZqyrXFoeEONmBWng\nHOJcwCAmgm8D3DaXWI2zSgy0PVAfD6iOt4izAgzS63GdgEFca+l4Rb1dnz2FEgCmHkGjazbwh3IH\nw7UyqcBaOtgQf3nfdXIdsWD/GFIvAFTMVd/6ALzCyRIFBp+dye9NI1VyFgtYeWJUXiUHym7RjCtH\nyV6TmVg6lRKoLGrklZOqbHGWhABIbCErK28sG8v8OkLy2ej7bPq5lYWMOzrMCz1yUhXFTJxtYWm+\nCW2fgBS3WsrxK5eAK16LMau/e0dO2TyL+gEcAtzhQTYD7QrD7TiMK/bofUz3Cfn5yUwezRgrUMQh\ngGiWKfWafeYQRBJmQFHjRgah5j1h92MkqdvHPq4TrxpLJAI/eSaLewMmZjMZJyjKs6s+PNQA5Otk\nhkybCRgEqMdYsQgPyM+c9TullAzIrLzSKFkNmKVaoQdsrRwZaLeIJ6fywnKRmZLWTyj7EICAQQth\nbFDbCbhsl9404IMluHJwp1vw46eghXgQMQBj8Qgg7eT1xUwALmPoGMswap8XggDMBi7rfgAFpavC\nXwh6b0IEzQuTYKJkQG0VJxMz0sCgvpPjzBrp/1+D7MfAlxxNBiaAzNR0lEENBYgSEOH8mFWqLOE0\nJhmL19oNB5AX8+ZUTMDMqq1SWVnNy6TVQJLyoa5kzDfWlTFr7LpCBNUOMO++fsjjkI59qRJojFpt\njbI3noGFxppqmgzwGNOtYM6OvPp2JRPqLKfmIYBIAdXkY6fbWcKFObPMSm+pyKkaKc11rGxb4PUQ\nzPaxj2sFDYz5U53PESFWBZBj4EMhB0u58dKDx0Ag24YIcGM2SynnAiYgigFL5ecnnyslVSM2kjF0\nStDGwCljPoXJ/o2xZOcwkZGNgjM45AogKHUPMd+LkXE20egap+BXef6kCop0zeU9hoJv5b2A3l87\nv0IFc5V4QwChPWr+eYn4qr1gvINv5aEKM8K29giNoLBmIFZtGb5z4v6uXja+i6CB4YlGzKBRBa2C\nXSQvKGCiTJnEOKpcAoPYS4WvLOmiVFEMkE42gUER4LkXAKeWz/s+wm2FhsyVgEHDQrJ0vg2p7LwA\nSSL9ihWhPhMwKLGNvIEyQSRrCh6FWibzTjuzxN7R6xKvIpd8lLiiZCKXOlQglWQEIZtUO9IJJoDA\n4mOkQFieaKpMDhDm06xKx3+VTA8aIsLmGCAHt1rKVxwjYN9/ObEsSqon9ox3oNlMsvhtpz4Ovuip\nrU/LXgvyZwbWxDQ55gm0TVqt3LsCJbwWjxFazOWcjIoeM/WdtexvYhkQiQ9QLx4MpNIOZq1gxCwl\nsNdr+Pv3BNwxtoJVF5rPEqPAzKjtPEW+lvttms+zRAPIbIW60Ulwkxdw5LQajla/iUiyFw5BWFjG\nuir9g5yARmb6yW0rwNGeIbSPF45XO/fgGMdgUFXBLZfaziN43YJT9Ssn5tL9AOqU2RKiPGveJakZ\nAQJqAOBSBmRAgDEXzEDf+ofKi6fOkCs/oa5EuuXVtPdsLaw+56R/sT6BpN8yKRgRSXn55VzKfq+3\n8tkQM3B+uAI3NdzpFvHhIyBGuDu3xCw6KjNIzbVpPh+zhpiFpcSs3kgh93nqVQOiJAsrwQd2BGp7\ncE3AyTazEg0QYM6yvZl4yCVvNWOFAKlwAE8rkL2m4L4D9x2wXsu1ew82WXvTCLgGZZv2XfbmKXyE\nUpADgmlCypXHpG+1ogJThpExkUyq1vWSJNLER2KsKXiZzJ2NVVSwgRLrVdtNkib2A/j0TMaO1Sqx\nt1KxBDMQTwkZZRGojIzqOi/EVJ6Wrok5j8N2zc4BCOpPJedFy8VoHLSxiZT1Kuc+AWJLP6bXZUa+\nj31cM1w34OBbz8C1R397jv6wwjCXvt6ACANA2MnfVn0sMXgsAWysFQUtUkUucErcJwBHI1UmY/HF\nkdLyY3DI9llKvYQZRKnU+8g82pZ0UT8X7XyB6PJ12TYmMSulV+aNNJKWJRmavqz7dj2LWsRylnoN\nDLtx+TpL6RkV9yOBXAb8FABVCThlEI7SPSHGWMnxnHgzAKF9J7mPl4hqw3A6R4uVON+zotlJ96ql\n2ImtE3HwiFKKnRnROwFOsAMI0jA63vhFJNRZAChlGOnkoqTs0SBMHeqDLIIrJ9XEKhoh0iVFOpqs\njSEsnWIRzpVL5+9aYRTFeZVKyQtCzQlcgrKXmPQ8TaYD7YzMk8g8gLx0rI4BeGTTMmYg0ghQGmXb\nWLW4gWUSbtcF6zz1nBR0Sl5CrzLMJFIXUFTIJBJLqPSTqLwAJVYxzAAek1WV0rCkgaYk90rsL+/A\nvVHYi+pdpUTNZCAJMArZqNnCACWtPmaeEMIsMIlFzPIRpatTwRySBdVMFp1m1BpDkmWRvm7Xmc4t\n3UPNjJLLoJFlSYuyvOlva281gTcd6NZRfk3ZDWTXaYtAZU5JhrpIrZY+Ea+jSp1l1Pexj+tEUXYb\nQDZNVw8Xtuct5n6D2y77gxm7xwx1bVGrC20zkiYuzIKtPzHfEwDJU6fwXEl9oDJm0IoMzEAY8xyT\njSnLfWzhrlXDEshdVBykWquEMUt1tG0Ld3QgUi0nbJ90nSZD9cJAIdtX6V0TtN8ll++JMUJK+Y+d\nKzQZNAzCOrHtOfexlEqLFywWYy/avVFPp5Hnw5sQBUDDrQLvxiIzGW8VARSG0QbuWJQMF9L7oF46\nqapjWULepGBJAl0AIBzz6su2N4kyc65Sqe+RtRsD/3U/5Aoml3okpUSNXbqOWwlcsnPqhvF2BiYW\n50yWrTdZpbUJl6XPIomb3Ce756WcbVdZ+8KPiYciMbSPfbzpESPo2SmoqVFVTr14cvsdSbQMrLA/\nL1hDncu/XGUKZSDSdOPy2IwR6GTAyYh9QxhXgo4ZuErHMVYOgJEvD02uaXIq0wpho/Ow7oLkGrJ1\nCcZeQSWQRuP9JsAJ42OUjChbn6XP7TjP58UbAQiJ/vh1n8U+biIu0mN+ajEMuPuPN2BH6A8rbO96\nDEtCaCD61AYY5orGQt3oA1CdAb51qFovHjstoz6L8FsDPDABTDibLBMEzCCIN5Ai3KlUYJDMFzsk\nQMd1UYyue5VKzTzivFY/H5mIuYGl4liQidqwkvdN8mayL2LxARpWFdgTmpMe/qxDnFcIBw3CTDpt\n16o0p5KKYqlKiEnpklxM76VDKnkfa5dALgDJZ2nayVCI4htUkZx3tIwAq1+S+BWV1chsMm6yNtcH\nkfK9wj5AJs8iT4qbLSgE0HI5MmamhVLSLdPJRl13wqgZZEHGVh3MqvkENXy1xQ0wMndOUjEiAeBK\n0MeqhlnmU1kwVNdZBpLKx4ckm6LFPFU7AVGqQgNArgtQOZtLVdUQI9y9uwJ2dZoJ10WleTkkkMcy\nsMmXokrXSJWV6fWJzm9SDj49k8y6LQCCnAcdrPQ6+zHI5H3OYhcyuzTRh0ysDcxKTKpXHG6xQFyv\nn7/hPvZRRtFW3WoFWi6FdROjymRcWrTSTFh4vN2KwT05AVG2rTD/QsyAEJBkPWhbKeEN5IqCysYY\nhXq88KDP2XwmrI4Ywadr2c8wCDi8WACLeSrdTm0n/YjKfejwMHn9UNfnfgAQqdihSsWenSE8eiLG\nwocKCIUo4FPbyvM/a+T1gumEvh9XceIoMt+mHpcjt/HFFvghaDaXhelUVQV7SPo1YQExMGtEmsec\n/YQUNKHVUr6Lsw3gnZRbfoPjvLwMoK0yvIzR0qinTQL7fQLyqa7BnCvVMUvVnlT9KwSk6plWPt7k\nWcaEIc7sICCD/Jp8IDW7Tu/3vTJ9OI+fJuPW5wAhjH3rDFwCgEbbjMtgoFWTK++LSNtcOm5p/iyg\nqM/7sOcxxsSCNZk2d70cu6n1HPV+xeKeUiVttJdtadZgX2VsH5+JCBHh4SdwByv4fsD8bIFwa5EU\nFewJYe4Qa0JoHJg4gSrikWPABI1BFo1dpedLX59p5S75kP6wxLYmmA0MGnnyOFnruUE+FCsal283\nSRfGx03H13MQX6Qiac8Q8FlPZkrcKa8pWrKfAQJn7yIqj8EY7ajYWWkObedj11cCRQkAg1RDM0mz\nVW67arwRgNA+Pj9RPvCvIngIqL79AQCgvn2E+vgAs9sNYq2ATE3ol4RhSRjm1lmppCwKmOMC4DdA\ntXaoth5Vy/Bb1vLtQQCeyKkcfJJBlYgzI5WJB6CsH/ES8lspA08qrYqzKsnEQBCwpw3j8vIzLS8f\nGdWZGEIn6ZYnhLkHO6A+G+CPO7BzCAsFmJR1kyRrWrksMZXU38j1cbRQMD8fYSQpG0gBLpOFpe9X\nO+FYCeiTaIkOQNRO2c4lsnozxeL+OJloa2dtINarDvIeVFfgrkc8ezh+7/Qsl6M1iYGBNgrYgCjJ\nsRCCLCIs428dcTJNDjrpLtgvFuobBGBUEYyWi5xVtP3bBLjPFcCyITapVCPIOc9mKcuZqrF0PXiz\nEamYc1LRRzPlqaS77suOC2DsUWGgT/IgGWQiXAA32GxBByutKmbZatmGqkpKVA+D+I60Xbq3o2ss\nZHRmIsqteECU9/1VB7+GY+7j04hXu7BPvleASCNXixGbwK2W8jwzJ0kMESFGhlsoY68fENtWwH6T\nPwHyd/GMjgx3icbPZiGRIdsHqfmyVTEDBHSdz3I1sRCkhPxGvMfIi5SMl3P57GYjC2WOCfjmeSNJ\ngXUrvkHeACRlevTiZZY8XkpvI2AsJatrAQ3MON/AIAOBAClXr9UTCRBPBfNeWjUCPtn9NRNuZZ2k\n8Y05AVQgJ+ymrXgJ0a2ja1VueVMiScwAYL2Gm8+BuhZApK6QabyUmC8jE+SyolYZkZNkT3yIPICQ\nfHUMTEpBLnvBafGD5E+nAFOSG1uFu21bfE8FQ0eBL2pqZb9OvhhjMfkMtI68/Aw4Ms+i0tNPjwEg\nS5jbQYChomIbgPwMA0jegUB6rpLMcF92fh+fseCuB6oOdBxRnRRJsLoCzxvEeYNw0KQ1T5g5hLnD\nMKNkGh1rAzVoZN1xjulSdi8GeBhYZDIrFIycAjAx/x+Kio9QBluSwbPl7hVIOudNVBw7fc6PjZ+d\ngTgFaHPOXNoAqlSRLVc0S3YbBSNoet3npiXFfhGL94vtRr5Eej6hpguroO2KPSC0jxuN12K2+OwY\ncA6urlE7Qv14nSYCPJ8hHjRSiWvhMSwF0R5mhNgA7S3prOIB0B8Q3EBwHVCvGdXGoV5X8JsI38Xz\nD+oEwTYJlWhYZXLptwOolSwlq3E0KwMnlTvsFAxiFpnYokKY+wwmqW+QATphUSEsPPwmoDpuQcwI\nqwZRARiwfm6IqaJYbFzW8/ZRWDnqF5QuRzW5Bu6QeSeEsvOm5A1AjFQxTYyoSXyRCKOKaVBTa5PR\ngSgxllwQ1pOwhV5x1tV5uIOVsHDqSibLZCXSxVR5F/uEtNQtea3QY1ln7+V653NZjJCW1jV2DTCW\nfphUzCRoar5s3hgGJFmWFuV+bMJqYJBmTrntwF0HqqvEcOIhyyF42yKenAgzqK7leAZOaVadZrPx\n5N8GVfUOkuyxvqcyNVlwUp6Az2Z5wuwoT5IVVLMKLKT3SiQOmmntsm9HkorZ571PC1FU1aic9auM\nkexnH5/deLX5C8SyvUYGn57JP2a4xRxcVckTCPqTlgt4lXDyEIC2BVUV4mYr1fgUZDKGENVVqoZV\n+uToRkhSVmNLzBoBXU5OM2PDFuyVF7Nf80rpYmJqkJYI54WaAbfdqGoaIoNWS8TVHLRugcdP5Rxv\nHUkfq+dD2w6x64Q12DRgA7eDFmXopMIZzeep30nytRCzcXRk6ftK5kcJiBnjqusy+9M5UKNAgjKD\nEGKuDgUkKZx4mnnwfCZeGa8pqG50vBrAfScg+VSme4WI2y1g7ZEIbrmUMU2NnHNRBB2fTCI1DNJO\n1UMPfQdGI5+1tmMSMyAlDrgETaz0vMn8DAxKUjZfeN1plUyrTgnk9ty2mQVn0UkhBrb9KhOJVb5N\nTZ3YeHbtZEUk5nNQCLK40s8zs1wbMAaKbMwrEiNWhc2OS8bO69V/yLtX3ufsYx8vGpQYlTxm25GT\n6rzbFt45+Mc+Aaw8q8FNhXAwQ5iLz+mwIIQZZcYMtAIYMnhhTB4Aab0xAoBQAC4KirCHMBkVgBlJ\nxXQ/XCGxlQxksmOek/6OPgvkamk0Kphk+zD2j3kM7QRfGCNbkdIew5hOzjyQGOfYTuLNlO1KbB8J\nYDLATEEnYrmXI0PvK8YeENrHjcZ1DKxuKpgZbjbTiSGDuk79XsTcktoOnhmNTRAdgZsK3FRo784w\nLD36FaE7JIQ5YVgCw5JAkVCfAa5zqLYiK/OdSLtcz6g2gzyYqsOnQRk8JrdSmRU8gWG+PAVTJ0KY\nOhvV/qvJcphLT+k3Q5KJAQAcCbC19KCB0TzZgvqAuBSZWNTqYdU2oDrtgBjhzRcoAv7ZGfj4BHx6\nhrjdqpZeGDLkPTyU+TCiPDt5fzYTkGIxBzc14nKGuJSJu5WPR0SqqkbMoF4n78omgiLrsXHg2omE\nbIgIc+uGXl3bISK4eZ5gWmlkaprslwCVeQUx4aS6EYkTgKgVygBkY9haq4mogaVNdsmAnqCjSGlm\nqjR1M2nmXrOdVtEFGC1OQA7oTAq2yJlxq0jWtsJ6ms9l8WiT+aYGuh7hk0/g793Nk22bNOvCi1ZL\nkah0AtLEzQbJpFXvT6qqpj4SVnmGDNDxHrxeC7NgkxfAxqqhg0qkZHUlixjbl8k6rDSwmVTrokQk\naVuh3y+P5Fk7PRM5xz728SLxmhZnNJslQDO24ovCIYJiLxJWLTGfZJqAsP0qgN0czuQsTY14eiag\ncdsilR2PLAtoR7la0kyqKSbZqZnkKkjCm62Y9VZuzDj0TsD8fpDKjOSSQbFVhqJtK8+mSUmBVFUM\nMQIPH0v/crDK/RYg/cd2K/3uaimLCe9BygJMMuf5XM6f8lhYetaBGTyrZf1QV5r8qLPErfdiot12\nWUKncwRjKRlrSgBqHdOqCrzQKnCbLejwANFMsF9X6LWzARHew1UEoB77uAGZEfS8YE5jWmIOlcwx\nY98Mg4Abxs6yBAY5uZfeZ0BTz41DSKxONLUmOIoxsFPj62JtRk49pNRIupRW2niVFqc2flqCBZB2\nN5+BlgthqNVe5ycBrEBQaKrsu+EAtx1yd9AK65o2bZYcqtcd931KjIy8mwovIwGehHXGGwVJjWW3\nj318FoIoF/7gKGbpxgLnCCJlc/c9MKjnlnMgZbe7p6eovZfnr6kwHDQIywrD0iHUhH7pCpN3jMym\n4dR4Ob89Yt+I76tKwCLOjeO2rVVGs5DS88YaymbPZhwN6BrWGEeA9hFIYI0xi6yUPSVwhvK+jfVE\nBtpw6u9SMoHl/NLxfZbBhQZJ3sYF+9KYRclw28AgS/aHAqxSg2wKfOVU+x4Q2seNRnwN2no3m8lk\n0ijgNrkz35ehyJyxUuG3Hdg7LJ7qwr6pEQ5n6G41aG9X6A4J/UrAoXCHRIvaE6o14DtGtWbMjkXy\n5FXyBWbEmUdonFQxC6x0w5LLR0mS5boIt+5lktJUAvasZDJbrwep0oUMssVKwCAmwvzJFm7Tiy/D\nusPskxPg6THCo8dyHjvu006nlRjAbbh0XZQqmUyCYJCJfg91A3frEHSwAtcVeNEgLhuVS+Uzio0X\n1LsdpFOuHfxmeLWTbIJMVts2MYEo+fcIAMMhwDXKTqlnsqBRwMjYMiLjYoTj47xruw/qw2MZU8tM\n0kxNnMvqZM6Bz84yvd6y+FYNZhhkO5vg64LSsvxWGrmsKGZgEC3mwLZFfPoM/vBQAJS2Q3j0RL5b\nNQr0t45AR4fgeaNSCwdXObQPlipflEHGb+W7dJ1Ovr1kfnwvlfsynVcYczREMVIHRPr4+Bli20pJ\ne1KjQo6ZXQTkyb5JxWrN+KpMjupaZCvMcAcr4JMbbyH7+GGIVz9cwViIIw8wreaXvMZCBEIvwLAZ\nG5+dyeLZS9UlA0m8MvYoxMwcadvshaPMQHf7loDdURgwyei57cZyUANnbVEOiNfQ2ZkA1sbkWcgC\nnbYd2MYHA3CaGvHOgUxGP3yEeHoGd+sQODqQKmb9AOoH8PEJ4tNncj6nMhbz0GcGyMuE8yBHcLdv\nIX7hAdyTU/Bmk6q0wTlhI7F43onnkBpb23Us5pK41eqSvFrArbeoNocvf37XDaLMVGFhBJUeUgDy\neSePnSolE7Jh+eVMohFzCAJeuqMjkM+s0DQ+2T5VzkyJOVPMDDRhgMU8JxZilDGLhZFFsyYxVWmp\nkuWuRzw+kf7egEznpN3NGpXt3xF5/aISVjYz6scb9HcXYCKRxetiLXoZo2DzqcarDF8ZCbd1LKtl\nvgdm9Ace1SZi+a1HCF++D/YO/kzH2UHHo02rAOMmX68y7MAMdH0CQXmzfT19zj72cd0gjCv2xeL5\njxkILZ91Nh8xIDFNKUbQGmgeiZ0CzxrE5QzdvTmGA1kvDTOTZcmzN/ISsme0kvdK8+TkNYS8fToX\nh1F1LzcoE0evrQSKRqbQyGwb3wvI4jvOQJAmtl2fgaFU1Tkxc2g0hgmwo6BNyYQqGErspO8BA9Ua\nomZR4QSFIrEOIJJsV15D9DSqiiYVoPlavr57QGgfNxph9urF9bRaSuYTEB+Dssw3kB9Mm/RZh2UG\nhjq58W2HxWOHRV0hNhXCUYPNgwbr+w7DSjyIwhxAJPiW0B2JvGx2HFGfCgjEnlBtA/x6AGJEbCph\nDAEj2ZXrI9y2B/UhGTmHpVQI85sIvxbPIZCWt69kH/MP13B/+jHCw4cvLkXXBUmieNukzimN2xX0\nbqNN7zCpnAb3HcInj4BPHp0/5OEh3NEh+NYBQLNUsZXIcUwAACAASURBVC3MK4AhkrlXGiQmlsrK\nAVBU2REwiLxH7Hox4YYt2liKRpYVUjxAlM2NeegRT05VitbAHawkuwkgVfwxMIecePxo5R06WKXM\noxyUsrRDWUY0a2TS3PV54Om75P9j4AnNZjKBfnaC8OSJnO5qKZ+rKtBPfRXdWyvxo/JIzLdUDY8F\nwPHbgNnDtSycQvEslWGStmIBWfp7cFX0C3WN9s//PNzAqM56WTS28tOqJ+FEWQ/2jHoPbMXk1t06\nksxs252rOLOPNy+okHqUMh5WA3OLXFKcU5+UDFpvAiDYFe4VMz2ch5vPBOjZaol5q5QFuQellIWL\nsYz7IRn3prM2gNh7uLu3QfOZgBfK3GBlDPEwgNdrYeMY82PWyHi5bZPRsJVbR2UVD50AN+s14tlG\n+jI1iQZzKi9v8s/EojhaIc5rVB8/Qzw5kdfWG8QdY4PFhWwWBXaS5LT0SVJQPkl2TCqupsc8MOKz\nE1DbYTg5Ob/r+VzBrbnMI7wXE36dI/BqIdeo7CAmAp+cAfzgOV/0pxDkErgTNxsB8g3sMVmTeeAA\nWnGygVWAFEYmSxvRMe8qDCJuW4SHD2UsW8wzy0wldDDpdAhgHc+STExB/CRFtDHBKsoZg5VIcJKm\nGs3R3NEh+PahzKMqJ4zs2uXF2xBBfYQPHbxl0fuA+uFajK8tGUUkbbqc8wGZaTaEtA17YZAjMNww\nR2hcYsr1hzX6w1q8UXQxRwHw24DmaQvaDnDPTuU6mcWcHVDvoAg+OQWvXq4Z7GMfryYKBubztrRx\nuzSNBoPKNHQIwABRbJxtsHhagSuPeLTQsvaicgi1yMuy6TQhS8GM3SN/uynYwRkwSmXsDcQpwSKi\nDDZBABvf6e9BXhDwBslH1cq4g/Nr6QyHCLcdRmAVymlpLP428QUrkORcLlTkCXEmCXO/DeIziwxW\npepjnrI9SU2IFScgm2IGqBJL6bIvr4g9ILSPG434OlpUZbTwIbMMbEJrZWiNoVJOBmwRW03Ao66H\n6we4bYfqaYWDP6nQHzVYv1WjO5LOalgC2/vSaXW3PepTh9kzxuypGFFjiOB6bOZsgBBFFpPpwFJt\nrKkQ5x7RE6p1QHXag7oBtG4l+xSCsCGePgPjEk9C5+EPVpKJaxqhzpfVOMy3pghjL6VOVF9PZmc6\nmaLyfsUI6gfEx0/lsKulDAabLcLp2c4MZDw5kYXB+yqnrSq4O3dA794D1x60uSK1/aaCIIsk9V5I\n4Ek/gIc++daMvAPMTwGASZosGEjeAbZIITVSDs+OgSeSzXW3joClLqYWKtdQSjkdHooMw4kJdLqP\nBgZpyV2az3M7b2rws2PEzVayuFbpC0B49Bg8DPC3b4G/+XM4+9JCQJi1GIq7ViexnYKPVn45TEZZ\nY9uN7l+m/Cd5BfO4fRlTLyrrSSn9PG8wf/8UtG1FilFX0laJgFklncjBArH2GSjatOBnA+jwQDL1\nm40YY7/z9ou3gX28XBiwXFXZdF0r+KTnxAzVSz8SkwCWE0iOMjnzPpdB10kmeXkuTVLJfSfghQKG\nJul8sWu4gftwjXAqB4VWNwRHOPOzicrw2bYJnJdr0zEsBPH9soSGd7LQJwL3LajhBDDR4SFIwfx4\ntgafnMjxrIpUVcH1QzborU124/OzbkDUeit9z1xZiXWFuKjhnq3Bp6cCRNeVfIdHhwAz4vc+AM7O\nRqzU6aRUqgQ26gfkxhWngMywKKNgUclOKC/4i8RGek/Hez49FTButZT72nXgts1smILhaefm79zO\nFTIPDxDvHYG2PeLxsWRyX3FYYsL8dmSs0Im/3YfI8l1okmsKuoL1Ne+S55Q9j8/zIeK+Q1BGqb9z\nK4FLWC7yM8668qFcKXO0D5PonW1yVa9+AA5Wso++B89XiPOmKMFMcJ1UX6UYgXVMHnc0FN5DQPqd\nABmXDEC0scmYTUBu+2U2Xz/Lamw+W7dpbll/+BTVQ/NJknkbKocwl2qv7b25vPfFg8RmmD1cg5Q9\njk+e6Lj54m1gHzcXNJvlJKD2seL5VMx/yrEscvZO1H6Zy7YU+eXGojctCHr9YeRZOfL7AuS6HXIF\nvlKyOgy5OnyImbmoiQpyDv50Df+Rx2w5B+oKw605tg9mGBZOwSH5iOtRyLgymFMaQo/AICCDLzG/\n5yLDdawgUBQQJYhiA05ZhSa1irkYDvVB5snqMzdK2hZzZLK5MVEGnC2xX5wnLAFm/ZUt1Wo/XrNa\nssO8VrWyNTth5rtBigixVWp2wDAXCS47Qqiv/pW/1PKdiP4YwAlkjTow8y8R0V0Avw7gPQB/DOAv\nMvOTlznOPj47cVV62o23nX5IBrlU0hyBcw/WaJJpJcVjBLHLD593UuElRFA3oNn0qB97AXBmHpv7\nDdYPHNq7hP5APIdSZbNqniRjIyd5QI2i1RvIi8F0WFQIM4fmuEf17Q8QPvr4uYiuOzyUijRWotfo\n/ToZjrtQaovyOzJJm3VopuuHLfjd+fsWWLwA5jPAO0SbgDs9XIRM3Lpe5AR9L75Fhe8ODwPCw4fA\nQ6nsFQCgev5AemPthqHZg5ikYvJ6hJvNhDnUBVAzWdDqYkQWoxgvfC1sYCyqjYhRM4uk7/ET8RwK\nQbLSRML4KXyFUuleX/o2VHLPC6ouH58iPH2mjIMtsFyAv/w2wqFk69v7MwxzwuKTHoffOoFre2nX\nNpEun4X0vOxofeUEQO9TueDK1z55vXxfs7DU9aAu+3RQnwEAuS6t6mNsicojLufAV7+E6BzctgMx\nwx8e7AarLoj9ePXikRbv5ulkP10xyTEAh3RWAmMuOPEMAeTOO5KfpOk7R0B0MKg7tQOn5WrJgdSL\nhJo6L3gBuKbJUhhb/GvFoKsYf9MVGEI33W6SWT1HUFUngOIc0GFhE3ALnSymV4wZkgARBZlVuuJu\nHYl5fowiz9Jy8iZzdauV+MaUxwdk3FRvIPNooeUccTmXifHTY2E5cfaf2ckONWZJLSW9yRbmzuWJ\n865wxeLdJtdxwhKy+wFkAMn6He8SGECLBarFIkkgyB2MgGweBqkqBkjFyW2L4QcfAT/4SJK78zmc\nsjXdwQrt0dWqYt502yHvENteQVhj2kWgVsmhMVDd+NmEE7kZA3JPai+yLQNsyYFqgjm9XirbiwHh\n0WMBFa0fmIZK2sAxM4qgff0QENdruDu3wUuR7w23FnCbHu7xCdAP4pGlCy9SQGYE8th1lG1EbjgS\n9Mic5zrGArK5DpCkY1NACJhgNgVwTUkiF4WRBMBre+a5yON5ViHOa8TGo72/QKylkMn8/hLVsxb8\n0e7bWsZ+rLqhIBJLCQO7y/ZagKnJrD6xkksmmbWZIHKcQhZJBqAbO00LfFiykUyCWx5H55PPY9zv\nuparUD1udI5sx7Vxmov+mJyCXzFnqVl/Lz0vgQykKWuQ0n4BY3tDK/FVnwCHH8wRb63Q3V9ie7dS\ncAjZWDnkZ5Sm/RQhewMpo8f3jGrDqVCOUzaQb2OScblW1mWkBXcSkFwoTEa2FuVxJ4B08n2NlNZm\nF+HAqaKzFu+RSsznF9IEyLqRSKZXzqkliQJOLqZKb34roBY7YFj5K9tx3ASf459j5tLB4a8C+J+Z\n+a8R0V/Vv3/tBo6zj89APPvKteQbN9N2TNZkCLQN+lOgwyaOySm/YDlEzr0NkORkqaJWZJkMdA7u\nlHD4ZIOD79XiOXSnwvaOw7AgnH7Rwb3tUK0ZzTFjdhzg2ginlbbcEEFtUGqgPH6z7z9B+PZ3AeYL\n2T9UVfDvvC0TKM1ejTpZ6ySuEoVJGaDgzXMiodgAUKkpZL1jUqznwXBAUyEeLqXDHu7CG/C2acGb\nLfjkFLHwJrrGAHljfQ5V2QjZ/ICsmpfQ7csBIA98MRayMXJpkLe/JXtvf+bsNdWygLUFFOkCA4cH\nmfWTzEIp+zR4n2VnVQU+PkkLuuorP4rjn38H/YpQrxnN0wH1M/GAWH6/B51uso9WOaG2mA4W5xZc\ndH58moI+9tquKJ9BO970s+XAOwxj6SeRSo3ke2JHIj0EwE0lWZPv7j70jtiPV8+JVFnEOa2MUzA3\nbEJXftdFWyCgAIUw+ikTaVewggoAknf0QZqRJY5jKVXB+izlZQDknOtKtlGpWukLNp2Ir5orV4u7\nmXbjXJZyAcIIYk7MHzEFVn+bCVMnsYPM4FcZRSNJHUcF13QCr9IxeKke6A4PEPqCfQgIcwiQ/sx8\nXlS6mSRmWuUMRHAnZxj+5PuXXqY/OpK2M/W4AS7uJ8pgRezLPgLIfVPJ/Ji2RftpY2LE+Dwsa1uw\nGUcG2SHCmWSx7xM4H37wUWo7ZUWcK8TNtB1yqVKWgLGabADOM4H0GWUuWA3QZ8HGf+cEFHJIXlWJ\nOVSMfReBQzwMIhEngj88FMDPnjULk5R1vQJXlZg9L2YyZ6mFXeNOO5EmzhuZe51t8rzMzKITQyqO\nv/PCTDrP9UgAn/Jv3tHupm2xHI/K49h+7Hz0Hpc/ScdvOiMBD5lRzxvwciZVV2uPsGrAsyu3nf1Y\ndZ0ggr99O9lHjN8af88jAKho2zLOWIKiaFP2LOgcdnrcUbtxYihOpTqhZHwACsBmk3GTuF41uXWF\nePm2Q9BnLktTz0WRTJ32M/ZaGqMVPLOEPQ8qsWId/4fcl/PpGej0DPOPKszuHKF99wjrd2qEhpIK\nJSWZyim6w8h/yLdSBMj3jOo0iKcOCwBEIbN+aN2mxCRICymoJCtdk403+SJ33xNWHx8bZ6YFEMq5\nVLFuu9T6mUg904r92HVMz0MZs6ZO8e3V29WnIfD5VQC/or//lwB+C/tO64cm+KqgxO54sbaTSoM6\nqeRQlpC1ySMwfigiy4OY0P7ixG1xWmYwmYEhAk5R/55B6xaLhwELIoS7B1h/eYWTL1bobgH9kjAs\nCf2SMDthzB/1qNqgcqsA98kT8Ecf7wSB/NER6O7tXH5XOxXWc+GiQxlFqVMtXwPOgUDnJtJl7Jhg\np0ob022YR7Kz8aBH+XNaaQ1wkpU8WgIP7sLHmBgr9KdFWdnrxfXbDQEcGa7JIGFsW7jZLP0cLSIN\nAEqmnbqbqhKfoboCguyTakp0+FTq1jvErgfYKqpQAqPi2QbYbJMcjNSQkttOjGXNkHLbIjx9CpCD\nv3cX7b/4Z9He8qi2jMUPtjh8uga1fZZQTL8zW4hPsxyWSS+3mwI4tu1V2oz9vau9DENe4JaT9nI7\ne+4s48+cP6cZY2w7WeSuSbLJLx4/9OMVzWbCWNMKQOm7mpjhW59K0/s9meRAJ3nlpJAU1EvU8vTZ\nmECiEvwxORSA9DPtrzy+eb3Y8XTyzcUC0oAoUv+S9Fw6wlFVlIG/XrxYuyE1pHcEqmbZNNrkpt5L\nlS27/hDy86AymTEoxBnQTmCJ9cG57DcPg4DwgzING/HJ4a4H910GqLVKIYhyCXISKUV8/GQE4Nu9\ndFpGPkVijO5g8wAXvwbk123xvQuMnm5Xtr8SKDJPM18kfaZzgdJMu+z3rIobsxr4e/hbR8l3bvPg\n1fc55J2CNtY+Qk5KAALcGpCl12sJslJ6aFJCyVwLWINiX2khSzH7EBmrbVewFFWgqgItFlkCCMhx\n7t6WhMS2lbUbs7SrfpAqsNN5Wvk7kMGeXe3BXpsmKCIyUFSCi+lm0nnm+HTMMs+hybUmoIgmbWmS\n3DC5DPVqCm/2BMMVANHd8UM/Vlm4+Tyxq42pmsauKfgyjcnYtPsACgoZcF5We9R9nPv+y2Na/2y/\n27Es6QiAHI1/Dzo2GbOI3EiCRj//08A/uOINOh8v3HbIOTD0+osqeqNn1MYLCxurLKbsV/X3Yktc\nGMvVwCNyMgdmBh4/w3zTon52iP7WHNv7NWIFhIYk71FIx1xgUA9QAKo2wrUsLCBmVMct3GkrwC1P\nvsvyu7WqmkRZlqYSLalodsl8eJogfd6aze14bUeCdQQGlfueBqvZPZB+grnkOlwaLwsIMYDfJKIA\n4G8w898E8DYzf6jv/wDATpMHIvorAP4KAMyxLxv8eQl3dRbkjbYdck5L3haU4DKbA+jCMugk0eXX\nStBngsCOJhkFMES9yHiMzeGfEFZtwPzhHOt3Ztjcd+iOCJu3pJT98oMA963vIagP0HS48nfugO7c\nAs/qUQey06BsV8Ti53Rb+3s6+F22wJ9uZ1GCY7pvKjvIXfsvj8GcO0HHAg41lUjcPrjSROlm2o07\nkKyw7XQYQFWdS0CXGXfIgA1l+owGbJ2g2yDmmryQtX0RkXhV6P2zxSCARE/mnsWEerORSfWsAbed\n+C4ZE+ir72H7yz+OfuVQn0Y0z3osv/tUJtYmASvv81Voorbwmkaa0BdZ0ukzsuuZuegY9r4tbpll\nIVJWVyonVvZ3WpzsmHwbo+rq5Xz341UR/s4dAYG0Ct6V+oNd4Fs5+TMAudjPWEoGJKp5aUA5WaDz\ndCGm25B3QK+L2dIMvwSGiionab9psantyUCmq9kt3li7KRf0VpIb3gtd3qqFEZ0HgyyUrWVgAIcA\ngjK4yAkGZPt0HogKBln205iPgABDByvwegP0PeJ2K3IyO/e6AU+8dYAJCDQ9v13tZwoATUGY8rUp\nQF2ygab7s5/lMaeLtrIfdJPF4pRpUoINu56HSiQnxHwdr8Sb7XOKhZi1A/s9tRdjB7nx81Cy6hJ4\nWtcJKE0AU7GAFfBSgVSt+HgRMMTDAD45EYngagHcvyuS8aYWT55KGQJtBxgxb1e7sN+nTNby9V2f\nm84zSlBo1+d2tVX73ssCCZVXuVmRwNjV5svxyzm5xwmI1Ne757Ox7QqwH6tG4VYrKbpRAj/ABX3O\nBeOUbT+Zq0yZQrIPAph2g4Llz13gkz1nqWpkToKYF1iaR+rvCQAipwlIyOd1H3F+5U7nZtqOP0ht\nl4gEvCHKDB9t26zvg0iema4XM3nzsyt8MWVcU7/QxAqeKA0UDMp/OqAf4H/wBP5jh+aTAwx3Ftjc\nbzAsKFUBA4SZU23UI7OLYs9xugVtO1mvpTt0ERA4YSPaOaj0SxhD2v9eNL++Kvhz0Xxr0rcw2bhk\n49gF+zEgetr2Pe0kR+6KlwWEfpmZ3yeitwD8HSL6g/JNZmai3diUNtK/CQBHdPeK+NU+3vS4KhKJ\nm247pWGyTfq8Gw/WOxYZ6X1bKOhrRhkkRcWTmdkQZHKgmUIqQCjatqi6HkdPN1hpCfvl731fvAhw\n3gza378HWi3Bs0Z8Upx7PvBzUdjnppf4vP1N0ehdHeX0PSLpw23SNcqMXLD/KVA16cTO0R4vjhtp\nN7fqt9jo8Tur1gBpgCbvUznn5LUASFbV2Ab6+ZztR6pKFocuGcSS96nyi30mbVuLOW88OREFOIDN\nr34Dp+96UASWDyMWP9hi9Yencs9sgCvNM28qdk2yd/0NjNvFRYPcrkl0YgpNJnapWo4b/z56lgWI\nPSdfujw+9+OVPzpKUsJpJFPzqpJJ1tTDpby/0wmHvb+rfyjBGWDn9zGSjjnIRBsyCS6jrDSWFrwj\nRtAlt34EEu2Y4NskXd+XSe6V2s6Nthuqq/OeYwXQkwAiQIEdl2WkwE5mCExyoNcG7wpPnE6AqNlM\nst5l1bJeAe0vvQv3px9m4BoYVaBy83kCqlGABnmDF+x/pp/zOwascjG/CyQAzidubF8jmn+xQAfO\nA0lu0v4vYhkQXaeU7821HecSOy9JxOy8lQVUyr8NMExSegXayRjVBiLZNSUJ9OQ5LyrdUTVDabS7\nCxzy9+4I2Ok9eLUA2k4y7sYE2n2xVwMTgd3gznTbBMbg+SD3rrZDBRDAnMCsc2za8ti26rL557Rv\nTRYGl5+Oxud+rLpK0GwmlQ3rOoMEV0lE7Rqrpka915t3SkxkgueilDWjAIJ2tJmSIVT6TU5/N+Do\nnFfOxXEzc+TmbZkj2xwrSekwfj7sum2NVZ5nmYhJnl8lQ5gz86ich5cM4SEACGnMdo9P0Dw+gT+9\nje7OHLFx8Fv1GosMf9oJE8iqclrfU8au7+/SeYadmx+3rQvmvuwumQtbXKHtJUmZNVtmcKSMoZV9\nl+3TfBFLksAV46UAIWZ+X39+TES/AeAbAD4ioneZ+UMiehfAxy9zjDch/E//BPq7S7j/8/cuRhb3\nca240bZT12PGj4UNyJYpBMYVxYoBmwuaYKoKZq9B0WAWeVNaWKjhrUx+CubDDx4C/+gxGgDT6ZI7\nPIR7cE+YQM5l8+cyLlp4lVE+5O6C33d9Zvq+vTa9b1f4nZ0TU9YYz3c60wWlu+C9iCt5GOVd3Vy7\nSWCQgjLcaRlzM8Ib+pSR5a7Lg7SZAupig4c+ey5o9bGU/bGJs75HlfibjCoumH9RO6S54rf+k38a\nfDjgwf/m8dbfOxYz6K7PIFC6fxdMjq8bZs55lQnSdOJcvl7+LAfJXZO4iyZ0xiTatS+gANNU0nHF\nSd3nfbxyy+U5SY87PBQpx6wZg3Bl2EJnKoXYtd2uKCWKZRhgp5PFcywhj8zU2ZGh3UXnP5/FdZd/\n//p8JNaNmu6mv68QN9luTI4lv8vikpWpYRnltMiuCy+M0sdpWqLeSndbyXGS75KVgs/DADifMrsj\nKd9qhfilt8D/zz/aeb7+zh2RrMoHd2Q9te+5rP+5qI9KDF4+v+3z9jXdb1qwTLa1mPY1U4naLlk5\nMG5f1xinLG60z7Hj13XyDUpSmbQAjTADaUStkkkFe84YRYldhjGbQZ9jDiGzyspKmwY8kpPxsYjq\n3XfAB0twpdUhu/5yEEhO6uI+57K2kMbtYsy6SGJo2xljaMgg2Ll5z/RvW1ACRcKRMtBIk3Zkn5te\nn/WxzOcnhTvi8z5WXRZuuQQdHoyTFrvisjnyZQwQ4MJn+dw4ZG0/AHARUjUmZnBpKl8uXhvJ0srq\ntOkc4xgU2vF+YgyFaTr54rixtkOQ5JFVNSwT1lyCOz5ftyYuCBDpswGhCUjb8b2Ucjz1wJNku45z\nMYhlQFWJ/JcI8c4Btu8swY5Qnw6oH66lWEkJAu1qA8/rwy+bTyrgZCXdR/sv575kUjOWkU3BPI4F\nWLMr0bpj/nTuFK6SoLXXHF8LDAJenI8AIloR0aH9DuAvAPh9AP8dgL+sm/1lAH/7RY/xJkT1xS9g\n+4VDuP/j/92DQTcUN952vEtlQkeDePl92eTTtikneRd9r5d832TsBSgabAPD8alUkpqe4tER/I9/\nFfSFt8GLmWTPDP0t/71IXH+emmN6zGkHU9wDpvNSNrYO/yLA57JgvlhutiNutN0QRln1xN4hy04o\n3VVZOyJhsoxhVP+hWllC9WhASwO8VRjbtQi3CCFV/bH43r/3Tfz4z7yPB7/V4O4/PIY7WYO2nQ52\nBorw+PfrxvOMpS/b9pI2kt5/HuvEXotxvM1FA7J5YJSL4ouAiB3xuR6vnFLK1+tRO3KrlWRX57Ns\n7gqM+8DrZkiv8pkL3i9ZQgm4SCdLo2xtuch9nXHzY5Uf9Qc5g1yYAO+Y/Kf3dCJuDJERS6SMol8D\nkUpeXWbd1RVotZL+agcY5O/dhX/7LQGDnlcN7CoxBV7See6atHNecEw/b3GZnAh4/rmWINKUWVL2\nXda/RJ5Us7p89/LxG247ZjRuC8/i9dFxp14eus1ogTrZb7of9p6OjSZpSc8sJLnBfTf67mg2Ax8d\nyKJsvdWqr+HFxqYyEgPqghs+/Z7LdnbFxBZox/6niz37NwWHLotybnON+/C5HqsuCXd4CH/vrshR\njXn/Mn3ORTH1jnpeTGSaO/cF5P61BIoS+/k57WX6fjmPvEbcbNvZlQC4QKZXtnX9nSwBlQAK61d3\n3IsieQqgeI7HcwQ+WCLeO0J/T8Cg2SctmvefwZ2cgTatFkOIeW5Z/rtqlM/7y675EwMqjhleF7Ha\n7OckaT6KqWRset7TuMa68mUYQm8D+A19QCoAf4uZ/0ci+r8A/NdE9K8D+BMAf/EljvHagr/5c2jv\nzbD8k2PUv/m7r/t0PjNxRa3ijbcdY/KkB98XnbNlhkvACCiyhS5VYWId6EkfYvljB4hUHgMAPn6E\n8GR3FcfqvR9JINCLQ7CTuEgidpXPXBa7FveGeut7U5Q6Nh7D4QL1cQfa9GIMa2DXRWGT04qy+dnz\n49PpcyYSDMvokC7euB9SVjSBQfOZSDFCgJtVucyo9yAXU1Yn7Td2eZITYzIItQV89e47+Md/7QuY\nrzrMfwugX7uNB48/HGcop1ntaVxGaZ/Grqz9VT87jSn4Y+dS/l4+O/bdrxbiybHtgLbLbW0E5MY8\nMbT3RpOEKz9Qn7vxKhkSxzGAkLwWLqLYX/tAk89P+9FSIjFhhD2Xkm9Z8wABhVLXXC6mYmbOGINh\n2+q1LtPvO8MWsQXAYPsm767iIXTz7Ua9SNgmrqkyGmc6fS0G38kriOU9WsylaphzUrFJmRyk10UR\nIzo5dyr7SpIf9Q06OdmduLh3N8szLlpET+OytnWRvOYyj6DnHW/KErLj22vnwIPz++fTM9DBKm9v\n7bC8pl3nUnrLPD9ufp5jTDAAyTTaWA3FfUmSMpOS6eLMih3Ys8kqex6xVfs+A8uUXyfmxED0b78l\nnz9YAo+eAu8+ECBIz0tO4iX6nDJsf2U1MXv9InbsLj+i9Lxd8BljF120CLRqabcOQGcbef6A3Syo\n0hOP7bmurtp2Pndj1WVBsxnc0ZGUbAcubjNXTP5cuI/nfHaUsEAxBpkckBxEujQBfQr/uvT5mCtg\nUlWB3n1LKgm7PM88xw7awSIi7xO7/Ipxs20n9ScxM12MLQSM5xgqT7XPkd0n5vG9tOvhYs5Q3gcF\nh3gAyOvz+s599PdW2Lw9A0WAmLH8/hn849Ok2hjFiySTpowvu66LopyTlnOfot+jyGBSGQYxEIv9\nORn7bT1lbPfyb64duPZSDS0U69Gd56/7QMFi0tevGi8MCDHzHwH4uR2vPwLw5190v687+r/wS3j6\nYzXe/Y0/Av32Ry9FvvjMhZpQftpx422nHCgS02qDeQAAIABJREFUGi0GYNSp90K5qCwWNgkAYlnE\njIzCTBdbMhjMO6iuwXUFGoJ09NNTqirQT35NDL2GeJ7qV557vgHjn1eJmwKYLjq/Hec02pII6y+s\n8OE3Pb70vzjMP+jFlyMCFHgMDE2PYYu7yolZ43PiRtsNQ6uIhMT2sUGL+yEZr3KvpXiHKCCRVb6K\nAvq4mVZCICeVxwrgyM1niNsWiAE0mxUGgzH5c1TvvI3614E/+OgB3v1vahz94Rru8Z+A54WX0S5Z\nxjR7boaX14ldEo7nbTed5NtEG7jw+z03cOp7H//yA9z7z/6uLELn893HtgHa7kVpNl0e5znxeRuv\nEhhUhP/aVxC+/V24O7d3fGByj6b9ZeTL7+Pz7vEloNCl/Rk5SHkVnSBauw6FfOqcSaIHr9dwP//T\nwLoFvvd+Blpph3fQNKw9N8+f/nyq7cbMr3VSHTdbrQA2NklPPkrGBur77HUWM0CavJdUAhu3rSz8\nqwpuNkul44fv/+lo//7+PaDrpVLUopCHvcq4quz1IvCIOU98TRZkIFGx/dnPvoOHX6/xpf/wt1Gt\n1HDXZNM2Vk2fhXMgNV8p8XXjbUc9gKTyV53AROsHqEyCQQHCcu5Cxb2wOZHJCvkCNy1bEE5YrPz2\nXfRHc7T3Gyz+2++iunV43qPxeW3ouoDRZWDO8z4XMb7+i87B2k4CbnLfs/nqPdS/+bvg995G/fiZ\nVuCjzJC2wg47s/ROZC/ufEn086f7+RqrLgr/4AHCJ59I//O8+fFNsDUsdngJXe1zAgxJSfEx2FEy\nNae+lPixL+On/vN/gt//RQV0NaloLPR8rSaTj+n3EjC6cA1RxM22HQbaTq5P/TbTtZZ9izGBSmZr\n5FyZzIAu88lD8ZqN/3bNlrhnloXGrMHwhbvYvjVDd+gwfxwwe9zCbQfQRo2ip99fmajaFZdVoZu+\nPmJbMkAx9ZOp6pjF85ImLAb/yfQ5yn9UgEJpV7r9sx9foTmNaI887vz+MUaSvfJnzJ+Rfm6yryvG\nTS0nP/Phj47wvX//m2j+1/8PD/7T30lGwD8s4e/cgX9wD9t/+Ruv+1ReLJgLJoVOkK3cp8nJioUK\ne5fAINk4ewfBHPKZZTt7vcuZMz5bI3z7uxj++Huj06jeeRv+z3wN9LM/geGOlguvdMJgpQNLthFk\ncOFKkOBrMB6uHy8yyb8EjQYAMKN5NoA9Y/GdR/nafIF0B7488wbIvXmVURyO6ko9fTyiGrFSUeUg\ndn0eoLX6T+x68VkYRMYl5p1aUlTbi4FBIEr+DHG9Bvcd/NERfvBvfRPf/o/fxuP/6Efx1X/3DLd/\n9yPZ5snT3V4vZZQAUcruviDDpwSXLvPvMAZSuW25wChjyiaZ+gEwY3YiA1j3sz86BoxKBsqUkj0M\n49cuk3x+zsIdHqbfy8VZ9e478A8eAETw9+7KPSrvf/rQZFJtf7/I/btoMbfL+6n4OcqiAnliWLY7\nUnmLK9qB7aOQvsS/fozwT75z7tjTTO8oSnbJRYvgTzPUPyz5u2i5eKs2mJg8I9DVCZvJSsvbz2np\nX1dUgOn6lNxxd+6AQ0D45BGGD3+QNqeqgn/7LfQ/+WUMP/OVvJ+SbVOGVec0w8zn+cPsvP4doPZl\nQPQuaWu5aCjPGTifsY3j9v3svRp/6V/7O/kztl0JarvJM1MWp7DXXkfUAgJR2QeX34HJaIG8QE3m\n09pPJtkzj58rC2MHqecUty24bTH8M19Pm9Av/Sxo06H5/iP4TQScB59txue6q2+x/jyxj6759O2S\nHVp7uBR0pvy5XV5R1k7Mj2g6jiqD7NmPNXBf/0nQ7/yeVLYMMbMTbJ5ZtpVyHLMYPv2E65se/t5d\n+AcPwO/eO5ckuhQYqp4zJ7pO2HzE9j2Jc0kFcqN2lLxxSgnwVF6p8yP68BHu1Ortp8CHzAc1CTL9\nNzoRfZ4vm5d9WsHFffA+sYJGkfrPInkJIPkCFWNSYhCVfVB5vd6JZ1FdA2/dQ3zvHYT7R3j09SXq\nk4C7f+9jrP7goRy27cGzqgBEdkj37Pe6krZTvn7lezBpB1b905LHu76XXW3Y+mMWm4z0L0g/TKl/\n5vw7gGdfc1h95xhPfgqAJ1DgsaJCE+80GfdIJWrXAYOAPSCE/p//RXzwb38T4fgYP/If/PaossYP\nU5z+sz+O9//Vr+HkizfY6b7KsIHcHkbTsJdm0zYJYjEHoxBBQxC5WIznZWKct0HbgbdbhE8eIXz0\n8Tl5GH/z59D+C38W4UsPwLMKYVmjP6gQ5xX6uwsMdxYYDmcIqwbcVKPJKIUAGiK49hgOmlR6/pVn\naaeLOAsb/MrFvc/n9/EvzFE/c6BNi+Fonj9TuQQMpc4vjL+H0TFeZTDERNqMVr2Tv62i2DCkQc6y\nOuYjxCHANfXIW4gcSXbfZByFXIyaBnG9Rjw7g5vP8ce//nV869/5GSw/jnjvrzMO/8EHyYAzLtRs\n/GgBXs7l36wRxpAtxsqJbQmC7iiXee24bIE3nSiX8omLPBjKnxOW0PLffB8A0N2qJNs6/eyuwXta\nmewmM4dvaDhlT8XT0/yagkP+zh1ZnDgCdT3iV76A8ORpsQCcLMzKhbRNbIKaNr7IvZwAF8/fPDN4\nyLsMXhFhFy1+OtkGBAyrvvoevNPJ8le+PKbtWyWmNFksMrh6DjJhjVcs+HODMWVweAfu+mRov8vn\nxQywOYRRFjaV8Y0xAUXcSdY0bjYi65nNEB4+RDw7O38qyyWorhEbj+1bM9ln30uFs67P4Ku1i+Sf\notWjnBO53os8f7v6qV3A9BQUKvu9si1Pxy4DjaZeMgz8re/8EgCMmVImGZtm93eB7N5dp8rYjQVv\n29HCh5QtBOwAPxVEzL5TTv083AgMIk1WlO2OQwCiJDv87VsAgIc/P8fTv/Tn5DO//+10nygwqrfu\nI3zyibSbclwvQTpHsjDTCnv87DgDQ9dpP1cFIO2YZZ82ZX7t9KEqFquTn74FHv3CHQBA+979/Jkh\njD3u6on/zUsak38ewh8dgepGKuvO56DlXBKmgIz9TZ0BNYsE6ubEEM+bPFZdd854jTn1OT87QMFh\nf/51nQem50iTFgYMPfyXvob/4n/6FdlFkchJoJDtOz03BVCUNnbXXty/dJAkDYhI5rTazrlM3Kmv\nGdu6KvW5+XscgWtTwAvIVTbnc+D+HYQv3MPxz9zFx794AAC49R1Zk5MlYyvpk8PBDLxayL+DJXgx\ny6w9IPf/zoGbGnywkLmSrWGuGi9x37kchy6KS5LlrgdOf+IW+tsB7b35mElEBDjk10rSQ3nezFeu\n/v2yZec/m0GE8Cu/gCc/McP9v/E7+OL/LhrWi8r1Vl/6Yu7o+wG8Xu/U33+W48M/5/HVX/ttVO++\ng7ijWs1V4xpl528ujErtVPJlg3NVMG6mGSH7OR0kigVF+jtEDO9/sPvY3/ingL//D1E9PMGTP/M2\n+oMVFg97tHdrPP2qx7Cqsf2CVuMIBL9xmD90WH3AWH48oHkq9EcMEf54C1rUCIsaHgB1VyhHcZ3Y\ntSi0v20Td8HAs4tZoJ87fS/A9cps+bG38jaJLQSRkSVQSDsxt6PzelVBsiCKm60eXiVgjQAy3Jsn\nENIgxv0gwI/R9ovSmLYYo0bKMhOQwGVuW2x+9Rs4+zee4tnJEnf/hwVufXuD+g/fB4YB8UfegXt8\nAj5aYvPOHIv4Hh7/7AF8u4ILAEWgPgmotgHVcSslNbdtHnitssJ8Jgs5565Orb8OBX+6XV0Bmy2w\nmMvP0ndk12KtfJ0I7//Wl/FlfB+Lv/33cfKr38Dh//2n57aBVmUb6fZtkljKlD6H4W/fQnj6LJcC\nZwbVDbjvpHw8gPDsGD4E0KFMnrYPFpi1bb43TQ2sNzIR9V6yb+WzGaOAAM4DQ5BqZFeJaR/yvJgA\nHCCSCaZlD6eT4dIPJmAsjWpq/Cv//W/jv/rJLwAAnn79Ho7+6HuSFUvMskxzH4VR+skWy6+47YSQ\nvTIiq3x0ACnAPD3f7EEW02eS31CMoKYRECjy/0/em0fJkV3nnb/3IiIjcq99QVVhXxu9r0CTFE1S\nIiWSFi1akilKI4+sZWT5mGPLGh352OP9SJbtI8laZmQtFrWPLWqhRYqkRFqk2GygF3Q3uhtAN5YC\nUCig9i2zco2I9+aPFxEZmVW9gN0C2PQ9BwdVlZGREZFvufe73/1usvmKUhEqFcKFrY1kpOfRfOed\nZD73NGGlggxDVGYHtVGLLJhS6M1Nc13NVrKGJZ1/HIe4BbAu5c06V60iCoXXPw+V3qrZs90xsP36\nFDnCWFZHeyy5QdENIvUA2B/4oS/zu08cYyx9fFxqm9Yj0pqkK1XsDqSPux0WBzcRgBsnKkyHS2X0\ngdLdw+iAiYio3Nmxt5RUxGuDDgJ0q1uPa+O9RyidrzD2s48z96OPknvfg2Q+9zRcvIx1YK9hNg/2\nwfzCVla9MIxFkc91JQ90KQ9ZF3XtBqJYNKL3b9S2S2L1CmVL0UkSBqpTVvhK50ifRylqf7PCzn+r\nUUBtPIN7MXVMDFBKSFhl0N26PpEteOO3+1YxWSyiqlWz1txzBGbmDQA+WGJ9n0d/+x5mj+VBgwjB\namv6LrbJrDSQ65sdRpVS6PUNsz8U8uhmy6yjN7v3v8ae1VVm2XUjgkRHqLfTa2wx0NAD2q7cryhO\nW8nebT4oYgpJgQ7pjFOtMSXUogsY0vEeeKtNxImGiHGqukEx6FyXlnQSL3EJWLpkTEhzjlhHSUcJ\nKdtG7xjGL2dpjGRo9kn6LzbR0qWyv0jfc8v4I0XqB4bIzlbxiw5W06O6K4uYyqItzPjRYLU03nIb\nZ7VuRKa7dA51klgVjdaW72pbS2tYpu83jSf1+kJpUCbuRG1e6I614kS57mklH1uo6buokL6m/wWL\n+qiFu9jo1geK7kFbwrCFeq//JuOq/+UAocpHj5GpKvJPXmHoL43DpFstUwGT+mKtIwdoTpXJvryA\nWlpB2Daq1Urq+60jB1B5F+GH6LOX3vLMosG7DBVPlwqsv2s3pd87+dWd6HZsdjETI91ZLM6I9U7U\nOKCMJm2XiHTaGYxfbzS3dawRAntygmvvKJI9fJy+3z7JkJth5m8OMPcOoOyjVYB0FDuGNlBaYAnT\nhrAd2FQaLotrHt6NAvlrmsKNAHethbVaQzZ8wpKHdm1kexvBtFfaBLeb/NsFbtscVzlYYu2gxejT\nbbz5rdnkLeeKrkHlMgw8Lxl+ah2R9RDBNhnbFEighe4Bhrj15WKR6VbLBFcYsCcBgyIhVrNZh4au\na1kI4na1Zsyotp8cl/xddTKsYMQ3j/zZMn90SjP0x4MceHIN0dwwYnNguvg0fZoHRtmczBB4kPvU\nOYbOZVHVaudipYU9tQNVzNMeN2CAVfex1uumY1CoTOBfyBmR5u2KYV4ve+iVQKLerJwfMPuRfQy+\n2CJ7bs4EG72U+DjDnp5bmKAgd8P8XPv2Ryg/kwomUmNHb9ZMQAFbhTq/TrOt0vNQzSbh+kbX34Xr\noh44jPXCNMHsdaxSCXnHAcIXX8LOZdFZF3fNBHR6s2YAyqwHQWBAB8814zswoIQOwqT8RLgZdKVq\nQPVMZvsM7HbZp157tc5vPSChiDLDerNOlCbrOV5uySgKIRCex7tz0/w+BhDqO7VgujbGAsxRO27V\n9o02mIyylD2sE6NncGtN2AbMSbpFxWypCORJmBpRm904QEmAoZilGM+jOOMshZkntk0we33L51a+\n6xh+TjD46yfIfO5pmh98mNyXzqGqVYKspDko0G+7l3rBRgYa2VZYDR/r0nXCtTWTIIqSRNLzEHnD\nLtIDZYTvo2t1M77s1+lSpoP03vKc3rUn/TcpCYZLRmjzK89hj4+9drY3/t4tm6dXdzL65V5diHiP\n0t3NKNJr2SuxhW6hJaWQcaMDEQVdsf+TdNTRYKcCkpgl1G53M8+UStZU3fa7fFjr0H60a1O8XOPq\nB/qYeg7Gf+Zx1v7ucTa/7zgDv3GC8MI0npvpDlDSpjXh8gosr5hzjo4YxkGtgfZcOLQH/fJlUKER\n+L6ZxMTrESbvuRakheoroE6fg4fvwl7cePUSrvT5bIu7xuaYn9iH+xz0P7XQWc9isWutoR10Aua4\nxBKitvcxOPT6bvPrwdY+dJSBZ1YJz55HnT5H/dseQQaajT02VkvTGnQpzoQIDaEjUDZsTmTwD2aw\nmmVyyyG5mSpyo2ZEzaub6NU2IpfbPlh/Pb5xF0gou/as7cAgrTXtOya58oOKfR99DlksduZivF7H\nB/eULolclpGTgoHPvgSlwrZEgkRbMg2epIEh8+IbZ39/NRbvT5Y092hHJWBp0Mu20Gn9vlQ33i2W\nvh8hEKUiwUiJzZ05pG/kJ3I3AoKiQ/mFFdbvGWT9viHKL66jMnlWHhhAWZCp2JQv1qKEvQZboi1B\nu5yhMZKhutPFamu81QBntYlsRomDIATHNmBMIwV+byco3fsc0ut/2keVmHimlxkZWX13mc1xG29d\nUXpp/aaee31Ykl/QlC8HLDzgMHBaoZFd4JF2ZEdweptz3Axo+r8MIKTfdi/rB7L0f/wEAL3bgG61\nDDtmsA/14kuo6Rm81TJBDxiQZFDORcGabWNN7sDf0Y9VayNmF24be0i4LrrVwjq0n/Dli6/9hpQt\nzAxQBsKXL9J+5/BXfxG3c7OL2DxYEpyIMdQ7UXtodQkQlA40o00muHx1y0fYEzvQOc8sKivrTHxu\nlflvGGD9e44x+Mwq7ppG3V/Hy/g0Tw3Qd0Eh/GGcQBM6gjAjaA9L/CmFO1WjPLlG7Z4MK8t57LU8\nxct5Bl9oYFeahEWPIGsbgVVtrk1lLLQlkK0QqxmYetLeif9qqHAvGyr6P8wI/KN1Whc9nE0Xa7P1\nyu9LfY5yLYKcIMxlqL9zP/k/fALuOdJ1/qDo0hx2yS40seq+EVUTKrovDcHtGTTCtg37QpggOO4K\nASQieUkJWbvdcfTi0pOeDVpE3RFiMGjuT46wf2CZZ//p/dxxcSkZZzrjoNfWEFlTFuYPF/AuLeI+\nUyFc30Bjsu5xJiXOBAczswjLwrYsZLFgsirjJQLPwpuvGV3Ulm+yIGlmnJRoz4FQIzfrne89yWr2\nZNO3E5GWAkhlQgFsi4GXfJzPn0Llcsjhwa0POS7D7NmU/IEcfdNmjOU/8QQb3/4I5RPXogdp5mgw\n3g9yAHuxYvS7fN84I7EDFQTbZ/Pewmbv2dW97giBPTbaSVRcXqD1wAGsLz5jsq72JPbe3QTTV7CG\nhxFXrqGhU9IalwoJgQxDk910bHQgoNWCUhGaTXQzxfRKM7OARLsJzN97GILx+bddd2JgXakuiFIH\nAf7+cULPwvn8Kayjh+DGNsB7ihlkrkWgKlV+ZPo7gDlWP3WQgQ+eNyV08dyNtb0AOTaBmo8SP2kQ\nIvn91o4fHQNhbb9Dlc84CUgUd35KLA7a44A3puxHFneZYscowdnzXZ8lPc90m/M8sisBG3szjNxx\nkPDsefInLnLlY3cxfqKFnxcMng2w1xs4V6OyxIxj6O6DfVhD/Qg/QG9UDTjUbELMWptfwN672+jN\n1OoIj873lXT57HRO2zaQT24m/jk1jnqPCUKufGsBcXCTXV+BYG4ee2qy8960xlDPeYLxEsPeDEt5\ngXrHfcgvP7t1bYo6SanlFeTwUEdkOKb1v/4OY2++xYyeCPA0e5QypVrpMsm0pk4MJqYEzLuYRGHY\nYSBiBMb1xAii2ohYqJLSlTwXf+4Y+//RSfp/8wSz//RR7O86Run3T6JefAnhvD5WYVdiTVpYh/ai\nD+9FX7oGtTrCdbvuMxk7TsSoS/s5rwQCvVoQpBTz7+hn5DTw5Av4j96Dc21l63qmen7XmmB8gOl1\nj2z0t/Di5c64i0GBUh5uLNC+dx/uhfkO2BQzdqUVAZCv63F97dsrrPlWXxnheQTzCwx86hzt+/aR\nWRomXFrCXffxCzZ9l3xyF1ZR01e7myNIC6uQh4lRWuMlauMOtYf6kH4fTl2Rn21iPfsyan0DOdBn\nxnZKI1S7Jpkh/MCssa/lH7zOpJKyIoYQoKpVrFIpeW3bJgYxm9V1aQxLRKnI1e+cYOKnH+8CTLTS\nWIU8/n37kF96FqRlEpHblVPeLoYQJKz3mFXc9XqsLxSmEqa9rCAgaoUJKITj4O8ZpTXgEuQk+dkG\nzvyGOYcQtIbG8Afz9D2zxOpDwyy+rZ+Rr6zRv9oECbLSMIBODOBHc9i+btYFnfMIBvLUdrjUxopY\nbY1TU0aQerONcATaNmt93EhIxyWLQRhJOKRiwl4WavoRvZKOZmTVSRu7ATf+BmQXsjir9S1MoS3i\nPQr84Rwy0Nh1RfbZq+iH95uP0do8RiHwSxlCT5JZ97Fq7SghQHIcYBhUr9O+7gEh6XnM/eD9THxi\nmv6vzG97jDU4QLiySjA3z9p79zCQvQv91AvbM0N6TAcBwZUZxJUZFJHA58F9qKKHfuZsCom2kJ6L\nHBky9fcAC8smg/ImmXRdtBA3DQYBOGudUVMf2zqwl/+P44x9embb7GP3Rdz0R785FqvNxw6yjlrw\nbgNk6NQGItKU3rhLwHpli0aQ1VeG0WG0bSUTWOayhC++xHD5Xm68PcfKvf0UrggG/1sOq6UZXq5h\nV5qJ06kdCy0lfbYkKDi0y1lqowVae8Da2WBocpXKPo9LdxQoXMlh1zTNIYFf1ChXozyFyAWARi56\n5GclxdmQ7FIb2TI6RPQKjMX3raNuXkJ0g0jR6/2n18nP5XGfv0BwYLL72b7KpqqFwK5r7NUapQuz\nHaA1es/G4TKZ759n/c93kF3AlDlEr2snYnwEkajarTRtGD7CNl19ktby0N0xQZuSjsQi4ei4ZaiI\ny7aUTjbx1e87zg/++Cf5tX9/nObjLbLhcpf2h2j74HnoVhvyWTZ3epS+MptkMUUqABSem2gSyUzG\nCFf7QZJ5tXM5nIyDGOintXMAiDR5gHZRomyBivzp7IrCW8oilMaqNhFNo/kg4u4ovcGZ1iAk2raM\ngxVuBXZk2/xN1eu09x3BOz/ffQ7obNgp84s2+TPzxE92/hFJ+WTkXAcBN75tL+/8/ic590CAuvMw\nstHsiBqmuzN9nZSM2ZMTBLPXu8Aga3AgKUEEzByuN0BEHVqWllDPnUU/eCdMQ7i09MofoHUSyAsn\nkzDj8H1DCW+1TdnSYD96bR3GRxAt35RIF3OI1Q0DGkVBm+hlYPZmXHu7jmxjzsvXccoFQqC2p0x+\nfqn7PWkmTGr8qHqdq8t7mWKOb9t5mi+RJRFpxjjhrffcS+ZzT9PaM4Qzv8gWTZ4gzuTfWidbCNHR\nDIp0J7q6t0APACa756UUhoUQlycMDxJemIaz3eXu1vBwp6RCCNwbm3ir/Vz/piHGzp4nXFklt6ix\nGgEDT20gWm10rWHGiFLIYsFcq++bQF0pRCFvuklF60VcRh1MX8EeH0NPjCJW1g3guFmDkUFEpdYp\nJRICq1wyWhFxeWmvJlkPmAFsYRAVr8JqOffqDzpmbKTWhla/S95uUbgRdvwUpRKQU7sO1z84zuR/\nm0Y1m0gpukFzhQkyX0vw/6/LVGc+xJ1+OmB+lOFOi0gDvUzKNIiuW62u0S8eOAqVBnKlknpuivKl\nOgvvdFn5/uMM/voJJn/qcTa+5xhWfz+qXjd+pyXNfhp3yQtDdLu9pRNi515CwnMXkJ6HPrIP9eyZ\nV7xtmcuZzol2KiGjNVtaAMffUXKzesveEOTg4s8eY/8/Pkm7L4NzLb75nj0k+c7NE2r1uxTddWTV\n7z5/9B2Eo6azo17fMElI2+ouF4uFYB1763W/Va1nT0/2qyihKlyXcH0D9+oq/sEJrPFBxHoL+7EX\n0X57S1IeMOOiUoFKBfsclKWFvWOM9u5hmiMuq0dz5EbvxltsISqtRNOpOSAQGlp9IAPIzWsGX9hE\nbtQR9Q7gua2vEIMZr5JQdU+8xL7Nfan3iG6m53bvi/1+C/TKGoNnR81hSieArHVgD/avbHLpyx67\nv4TZ84Ke9e/VErx/rSY680Ck1pm0pTXttk0I9fhnSqOnRggKLpW9WbJLAeUX1hCbjc65hSA7V6e6\nt0B5tc7Ac2vcePcg7ZE87sxqx1+NzofQHdkE2zZrdLOFvbxO3xUHnfMI+/O0Bj3WDuVx6lm8VbMu\n+QULBAReBKgLk6t2agpvuYm10TB+UPw9J9UAne9Gx8lSUgSD5H4VzSFBY8zsObUJj75Vw7RNpDkk\nW8elhOagg7sRJ2/DbiBZQXPMY3Pcxm5oQldSuNTqECDS/thN2Nc1ILTx3cdwNxSjv/A4r7AtARCu\nrGLv3klwZYb+3zzxhlzEYG4e5gwQJffvIRguYj3zMnJ02IgCAmK9Sri8gnRdxEN3EeZsrJqPvLrw\n6k79a1hYqWDt3wMXL2/blvjVzK5HA9p1t+gATf/0ccaeUGYz+1o0ldpsY0dpOwpgkvHuceiSxUUR\nXNuqFWQd2Guc3FhMOX5b1jUtfU+9RP/oPSyUJdqC/EzdMGz8wCxewpSmiTACQyxJptYiswC5qw4D\nZxxagxnqIyOEkwLrQB2mWjR8GykVo/kGQ9kaObuNQrDSzLM5nKF9yGKl6dJc97AqLt6ixFvWZGoa\n6Wu0hNAVKFsQeGajLF7z8RbqWzYZ7Vg4G0Y02xobThYpnXqGXdpCkbNlb7QoTwu0YyNGhww9XGu0\nZVE9UOSuf3KaD/Sf5pf+00Gs/XvQuY5eQAIC2dLQIG+HRRtznJUXXZ2zYpaNoebHwFBSQhZNlDTV\n/lvOrPOLn9X80UffxfDGXFdZSKcbjDDidlkXdekKpfOXDDjZk2mVWS9qTZoqGYmcCRy70wXGD2Cz\nhrOwhLAsrDt2I89cJrd/J3JmjnB1LbkGmcshpnbgDxdo7yyhbcisB6ZTQbSZaUsSZg3DLvQE2fkm\n1tkrRqemhzYb5C1srbF3TREIooxRrPPPUkBJAAAgAElEQVST2pziDS8MIeOQna0aph1GZ8Bqk5z7\n+nfspXaszrkHAtb+9+MMPbnSnTW+GUbcW8BkLofa6AT00vOQfeVIBDbljAmBcDO4L91g89gevD+N\nOm6cu3xTe5b2250xW68bsFsp1EbFzELbRnkZ8/PqGsL3UZWquQ4/QGQ949S6GVPSZ6fWXSul2xaB\nQqpSNSUh8edHQGO4tIQ1ZAKp0BNJthE/6AJBtmsln/fM9b+v+AJf4uGEbaMaTda+92GW39XiwOfA\nPXc9ib/i88Sfj7r1Xca01lsEpGNdoUSPLNq7EjaRH3TYiymhetFfJrgw3XV+a3DAAC7xuImeo6zW\n6LuQZ+5tLrW//QjFlzcYONvAubFqGiaECvx2skcmgJkwotfE40XIpPTQ3r0TvbqeaC9WD5VxakWq\nEzaF+YDAk7jrRbyMQzB9BbSOyiA7pZBWqWTWshj4DHUSZKiNigHsS8VOWY6QyDY4I6muVtux1Syx\ntQ26hA0/i7LNvqWgwzbMZ7n+kxY/cODTfOrn+qPvIcUoi7O48Zy8DdYRY4/YPbFmluOYMZUq24jF\nbZN9LZ2RDoIu31DefRjhh4jlbTQ0Q4W9sMHAqR3Yf3sJ+88nCa7NUv69p9D5nNmDonkvLPP5wrYT\nwC/2Q1/JF1XNJrwKGAQGAE5rWgrbxhoe6qwzIgJJtY50kNrg+8jBgWjcdNYOd0XTut+cK3RjsDUF\n/KX3rPhnSyI0/K3x03y68vbOWhvtdeFwmdagZ7SVAGex2nm98+WZufVK+jNvYbNKJVP6ntYQBKz+\nPoL5BYLpKzhqJ4QK3W4T3oy8hgoJZq8jZ6+TE4LSzknaU4PUxz2cUoYgaxJdrT6LTFXjroHTUChL\nsH4wT3OwiF3XSB8K19u4S/UkaaptSZgzJY/KtZCBInNp0aw7ntelQSc8txuYjsuOFZ0W9PH+lQJJ\n1OoafRcnYHKM+rCFBwmT3Dqyn0d+7wXGM+u0/nmUSOv1sWO7LWtO7LulEnrxHh/7YaJ7nwbQElAR\nM0hECVMpEJ6LLuSoHO5DBpr+Fysdnaj0vYYh1nIFsStPfVeZ/LkFdvz5YjcYk2aux+WYWpsuifHc\nVSG6pSAIsOtN7OuQK+Ro7yjRHHTI3WiaSouaj3YthB8iGz7KdajtLrB+II+WeTI1hdXUZDZ8rEjv\nFVsacWspCF3LJFnrvgGQojkeC0prC3QhRDoh7YKX3Ku25fYAdvS/UCTl28JxkL6J0wDqkzn8rGTk\nSwvc+JYx9Jp5T6xLlJxHa1Cvf+x8jUb4b8ysOw4y/w2DDP/yidf9nsbBEZyeFuJvxFSzCRemseaL\nqGYTdfXalmPCVgueesHE3rkcYmQIOXEHYT6DvVYn7KGAvy6LNklraHCryN+rWOl4R09p97uvsHr5\nGJlNxcJ3Nen7LOT+6AnWv+MRCtuUUXXZ7YjN0t3E0iU/XRTjVPkDGKAm9ZreqGzR7LCnJtGFLNqy\nkoxiAgpFDrc1uYPw+jylp65TmC6hhUBuNjoodqg6ma34eiKaopYCGYTIdoBdaZK7btN3IUPrtEt1\nMkcwqREhrFXLbLTBWzUbm9XWhJ6gOSFo7mszNL7B8P5NKi2PatNltZLFO++Rm9cgzAItQ8gthWSv\nVTr3EWMwWmOtVQmi8b9xtI9mvyDMCpxNTf/5JlbNZ2NfkeqUZPCcjzdfR4QaWWtiZW101qEx7NG6\n+xjh96xQa1r8yJFPc6Y2wS+//e3AYjdgl3LStoip3SITVqe1blz+JVwXVa8nrKG4E4RpTZ/KhkQC\n07Gje+k/Huf973qaP/pn7+XgiwuGeZZuCezY6IxMOtppKczYCoIOVZ6I5ddug+MYzbJYkyMWDXUj\nHZh2u7NZS4H2Tbc6LSXi1Esovw3PnunOwgmBarYQl64gXw7whEC6rgGrcx74AeHFywi2Ev30nYcN\naBWXnEUBWv78KsrJ0Dg0ytr+DOLgFELB6F8tIzYbaC/D0jvGyK6GFB67iCgV0fUGUgimv3eSnf/m\nAqpa5Qc+9Of8ztL7CD1QD1bY++0vArD+vjpDn1k3zmacxYsdkpsAvL8WzRoaRNcbXcGONTrSYd/0\nWiyeX6tRmbLx4j9v00HqZiy97qnNGiiN1CbrZoL9Hi2jIDDHSKOxRqQdEy4uYfX1mSxnVMqiIjFK\nK5cDKxWsRsB6fU8f7jnILrQRxQI64xCev4QVdVETk2OgNOrli1j9/Wau2ja/dPR3+b95iJ+dey+w\nTvDQEeSXn6X9zQ+RXQ5xL5unE8wvJF3adMxAiQWnw9vQZSxicCSC9CmGW68eRSzQmW79SxgihwcJ\nrl6DFItVFovISEOoC7RNBbjetQ1EMMLmDovS822cS2uoWt2sMRETUnhuh20ba1pE3zdRIKPbsR6D\nAY2s/n50IUdurolsh1jNDJmlmmEVbTaMQ75rClXOIxptI3Q+v4Su1U0J4GYNuX+Y6sE+tDTCoPkL\nq6i5eZAWdrnUFXgU5nyq5wpdj1WVCzA9g6rXDTg92ods+qjnXzIll26G3IVVbmyWqey0yM+a+RUz\nnq/82+PcNXiBz77/biDy1eJ1LhYRVSnmx23wc5JW10J0s8nijpYRgyh9XGzx2E+LRlulEnrPBLJS\n79bS6Q0+g5DhZzZZ+qBk5u/sZOo36qhIo0zGAr+WhchGXe6ikjZhGUZ0ss9GYyqtsffVmA4Ck3h9\nDUv2sNjnAIqzPjvGF2kB7ppPOFDC2qgRXL2GdWg/ou2jbYvwwjTW8DCUC4hGC2+2yjty5/nvu7+Z\n3LPRY7k2C9Ii3DuMu9xIhkT48sVOIxro+KZx6e1bn9BqTFoGgI47N8WMtfhn205kLNT8Yldp4ldl\nWhNcvYa8eo1isYgcHsS74SGuL1ISYku1hSwWYe8kreEctfEMlT0Z2J1B+jBwpop1fRmG+0BKxGoA\niysEsd5VLtt1rnBlFVJSIP7de2mMuWQqIc6fP40sFgnu38/8Q1kmfuFUMidVvY5sa9qjBQo3Il/x\nJx8iOy8Y/cA1Pv7E2zj8sReAV3k2cTXD7cp7xXFM0tggxTiMQWl6GEK9Wkj9/TSn+hIgJnNjvcPq\nic8Zg+3RGluYqbN6tIA3X8TaqHWDUvG+FgHByeenQTsRJ24NKxeA1Q0y6xUyA2VEs20S2Y1W0rlO\na40lJaXVCqbbbw6VdWj1uzRGM4gwg1MLsat+1PUMLBW3kI+SKVFzI6E02hIUr2iaYxbSC6iPCeq7\n+1AZQbsoKV5rYa83Cfo8Wv2mTDt/eRMsgbfUZvmuLN6yT7i0jJZ7WTtSpF0yINPI0zWC4SL1HRqr\nCdqKAEqkSbbH4+Ymqi++7gCh1vsfwqn4NwUGAVj1IKHhv5nWJQz7asfV66goIBds1Th6PWYND3Pp\ne0fY/c8vsfzevShrLwPnanDyeaxD+/FHijjnr28thTt2Nyfv/S2+2X0E3WoRvusGfc4y+oHDjP+W\ni/vpE9hTk5SfXfyqruuv3eI60tiEiCZl9HuKPqfT7WUBgrC7/SyR9sKuSVMelmqvrqWkcqhIbVzS\nLkPhqqZ4LUtmuIxe2zRod/T5yef2gkGQgEGAWQjbvgkSWgGZWgtn3SG7kME/b2p9pK9Me9daVOIT\nmuxG3wULdcLCz/exNDxIc1AQesbfLsxqhp5c2Qoq9vejp0YJSh6twQzeUgvlWsx8pJ/S9ASFGwHz\nH2jz4N6rnFkYo/lSiY0DHsGQhb0kcCrQ7LfQMo+fl7S+exU/bLPjX0uyM1Wu/USWJ+7+OAuh5Mv1\n/bzwk/eQW3iC1rc8RO7qhnEQ/bi2HkNxvB0aQvFX1PYN28Ex7TVVrWYYG80OSIQ0QApgRGqDbjDo\nzlOSCycUFz+6k2KwuKVURnsZ1h8YoV0Q5BdC8pfWzVg6UKR0Ppcwj2Q+a1iEUcZJxHot8SVnsx3B\na9tGt33DIIg3xFBB2DK6ItruZGaE6AqGzd9MnbdqtbrAant8DDU6gPKM8F6739Qo5240sBcrhCN9\naAHW6ibNQ4Nc+ZDFzk/141R9xh7bhPNXjOM3PMz8h/djNWH4sQXCC9Poe47A1RusfvAIH/mnn+UP\n/vWO5HM/f2eRMR7vfm6P3kP/Z3I075oi+/JChyERpjJKtzFj/0asd6+xhgZNB6cYCEplitRgCW0J\nrIV1k73MOGRXlRmnX2U3yFeyOGB8NR285JjFSBerVsMaHTGsn55SW4hYaXYE0Ld96CuhK1WC9zxA\nbczGBawnz6KO7EM9dxarr2zGdtQ5jWVzLeHaGtbwMPX33Ml/mO0Dlrn8c4cpD18iyEgk4FR9nOl5\nvE/Ns/CxRxn9+cfNfIrZfUKgdQjSjhgkt3jsRIwOoFP6mMlEui4pFqIQZiGPNWJiMGhsJAHuY7OG\nhztBWWrNCsb7CXIO3stzBNdvIFyX3OIwrX7jdOsgiOZUlCSJ2VlJiWIEBolIxDI9/+Kscdwtp1rD\nabYhCLAgESxXtbphP23WELW6ObaYh3IpEaDW6xuEZ14mlyKKxCuoNdCXZIHVRgUxPkLoSnb+WdUw\nTheWqT44Qf5y1bAU6nUT3OezzP2NIUaeN6CgVSrRvn8/1xc1E1cD5EbdlCr+7UdoFyTtwZDG3y0Q\nXL3SuYggAOFEwYpNkjG/TYxErSNGW/Q96CAwv6cZZSkwKAmCYs2sNBi0fw9I2V0eFmfbbQvtZhCV\nTYK5ecNYLGSpnB0i3BnCYL8BTpqtCPxJfXY8tiHSOuqwBYXWYGHGQ9tHB/7WZymtTqOHOOnxGiZc\nF3X/YfMx9TZyeSMpU9YZB7FZRw33IUJN9ulppj9zmAnmsb74DBqS6oFYaqH+4UcorlfN+ry0hHjw\nThCC7zz5Q0xVepIQKsT6y2c6+KC0DDOhmENUat1+qSVBW18XJWNbmIgAlqRxYITK7gzKhtGTG8hI\nmy4Zi2+SqWr1NWMrVa3C6XM4QB8RG1EKcF2E50bVHFuBxbgzXnPPIO4z0zAyyPl/s4sj/3GZ8OJl\nat/+CAsfbpF92mLyN86z8r3Hqe4S7Pn4DFNzrkkgA3JwgPO/cgiWLQ79q/OoRhMNTH3ep9Vnc+Pz\nUxz++dNbgbIUgAncXgZ0GHb7W6lrSwDe7dBxISHSCgrHBmmNZNFSUH5xFVGtdwNBUkLGQfUXCXMO\n7f4MItBk1lqELgRlF1mtR5IYqfeFofFrdQQmxUmLtJYREds1zfZvK1hcSdq16wi8jBMf2jKdlnWo\nkM0WErCv24n/HEwM0Bp0cSqBieVsAb5ChoYFqPMeQT6Dvd4gLHkGHCq1CZddwhHF8t0O2gJvWXPj\n0SxWO0umoskthlQnLNqFEtmlgOagRbsMzloDXJepf9fxj+2JHfi7R7j+zhx2DZpDmHVFCOJsRVzd\nsW3X6FewrxtASNg283//YUZ/4fHXPjhl1tAgwaEplu/OsWM2C28uHvSGzbrjoJmAiyuv6KRXPnqM\nwBXYTc2+31xAjI3S//unkrKA+rc9Qu6Pn0C+vBVomvvRR1EZ+MDbPoRuddg/2m8jnzuPGy1WeqNi\nssUP34XwFfqVaL63Y+3qFdCN25tGZVpxyVaCmMbZMD/Y0k7e3jWFzmc7DJrUAugPeKzvkzTHQkRf\nm+Upi2UtQHuM/FWBwZMLBm22U0FqdE1pS0Cp5A+pY0KFqLew2wHWZkShT11HXCMq2iCaEsuWOKua\n7HVzvcIPCQsulT1Zrr1/CN4/RKaqyVQ1yjJ6MkIZltH8u0KsnGR0cJ2f3/9pfvLS+1n+n+M4V22e\n93agpgvIQFC4c5WN9RzlizD4q49jjY5Qfdse1r99k7MP/Hd+5PoxLqs9iLlF9v/8BN/98z+MtiX2\nRpPc2ScBWN/vcO19A2hbs+ePA5NBFsLU7N4WJ7vjBItILFCHJsjW7XaiDRRn8mPNoJjxAKCP38Pb\nfvkpvvAv386R0/MpiqbuONeWpD3RR6YaUv7Ts6haDX3PEaoHSmgpkoBe5k2mNWG2pcpDEkZMrA8R\nZ4VjMCgpHehkicE43okIbZSxxcI89yBAWBlEdLzVH2kgFHI0JvJRyaEgdCVWU+GXMii7Dxko1g/m\nqY8Wqd/d4PDHLplAff8e2pP92Fpj7d/DtQ+Ps+M/mLU4BKyjhxDVBuGeSVaPCj5ztI8CJ002/+o1\nxH1Hkdfm0TuGUc+/BMDco3l2/KfHWfmB42RfxujcxIypuNQjBsXeQmYNDnSBQUmnpLRznRwsaY7m\nyKy10LU6utGAMMRbNa3KeXPxoJuz1JxVq+vYuyYJLl/FGhww30vMVoksmF/gxo8/moyL9X2HGP3k\nJYiEjmt7i+Sew8y7yXGjjdOTvJj5/gPs+m/XaXzElFeWXt6AviL2F05hHdhL+JXn8B+9BzE3z/gX\nV42PlPVA1aNL1t3O4a22RBg4AoMcO8omx0yUdLmdSkq3RCaDKBW6wKBEW6WnPAylUYMlZt9VoDmi\nGBnbSen3bqBbLTJV09yASBMsXapmBKp7uIGxox11uTEsxUzkPEdro4j00/xIiDNmHDWN/xEHg3Ep\nT9y+OAEPoyA6bcJ1zXoVBKhinsvf2c+ufzGLPdhP8A+Waf3CILmrC8i+Mu28JHv6HGD8mfLlkNwn\nn2bk7Hns3TsJZ2/w0k8e4U8++J/5yK/+KMUnpk0JJJD/wycoDQ9TvjRBeH3O3PL+PYQXLycMa3vX\nVPRcFQYNl7eP5RGXhGndzQpKZ4HjICsGgvyg6/nKe44gqg0jKt+j74EQ6HyWxmQRdzULc/MmYD13\ngYkv9dEciPTkbBsyyny3QnR3yUtYeFan9DAuXbNNgwbhudDuMON0qLo6fhLvv7bVYRRFYFECbEU+\nkW61ECdOm3ubmjTPJDpGjfXD5Rn03Dzt9z2I2lNm4t+b9SfWDgWwDu5D1BoE12+Q+6MnEHt2IXbd\niX76RQMeXphmz3cZLckQkmtpvetuvNkq6sWXomdo7jM8dwHxwFGs5UqyRyddx25jfP+GTVrYI0Pd\npcEAWqOKBTYnMoQZgbem2DhcIry7DMDgiQXoKW+91RaXtoLxt6yjhwjKHvZGE1FroMp5dMYmFGAv\nbjD7Qz726SMIBYWRdea/cYyxlXXyf/gk4/5DFM7MEa6tUb5YZ/CUiZPC85eSz3jpZ+7ku46e5LF/\ndayLhev8+dM4QIFubNA6csAwZv/sqe74ITJ9y9ecrR+oEyBHd5V1A50Su7jpSjZLONZPZW+ewmwT\n58Zain2aunMhUH0FWkNZ7HpAdnaT+lSRlXsKKCdqza50Rxduy/tT4zCRZYiYQRHzxwhaqyhJGpMB\nIqAo1jlKgykR0KSjcisRBAbYdC3sq4s0xnZS2eMhA41TV1gNRZi1kUWXdtnBXWlx/u8NoDKaoWcE\n2RezNIcVmXXJ1KdXCQazzHyTx/hXfOxGyOphl9lvFHgLIEKBsm1GvjhH/9IKsq+MzuWSBiHCddG1\nGrIdUpxRVHZJvBVNayRLZq1lxKUTEgQ3xS75ugCErEP7qe/tv2kwCCBcXkEsrzB+fpjgTWYHvRkW\nnj2PNTQIg/2oO3YhAoUMFMIPCQoZVo9mGfuLOebeO87I52cTtos1NJhQKEvPzhEArQ88RO7iWpfo\ndN90QPZPntxWY0kOD6Gi8y185ChDv3ICnnwBzTbdcCK7GUXzN9VitDcGfqA7mxdlNGNaX2+WFYxT\noB37Fduo2tU2uz5ZQ8zcIKxUaL3/IWY+EmLZCqGjbgcxpTy+DmlEeRNTqgNSJdlc2QEQ4nsJlQFK\n0joIMeMoWryE1uhIrFBEmgIql6FdziADCPKgj1aRmYCM20ZoQRhYtAOb2kIea93m/iPT/L2xx/iH\nf/j3OPDri2y+WxNmBfpcEWFp7v/Gcyw1C4z/RIi68LzRNinmKUxXCT9R4l2/+gNkp1dRF84hczkD\nPDz7MrRayTok772DTFVT2L3B9+x/kl+tvpeJL0m8uU2QoBGIW049i8ZFGniRAu0HiegfmOxCLB6d\ndkanf/o43/DOF/jKDz9EcWGxuzwsZuJEYyBz5hrW0pIRnd81hW76FP/shQ4YlMsldNU44yuyppwM\npRIaflwuBnQdmzjTMeNACMhkUI1mJFwrEz0Jkeqelpgy7VyFY6Orm3hXZpGFPCKXRfcVzWdEGd7m\neIG+3zpBX/TWEAje8wD22etkTq8TtlqEFy8z8TOm29X8P3qUgXNt7FqA5dmIQLHnkzWs/n7CtTVT\n+gLoqLxNbtYS5ou2TFZv8NdOEGDWeTaqSUCUdGh6i1jc/TEJQvr7TWDUywqK9VIAtCZ7ZR116Qph\nECTPzXvm8pYS19tp2m+jFpaMs9JsGUBoINvJLkZAXmOks54NvlgnXFhErK4jczmKZ1bQnocOAtYe\nGqZ8/lLyzGItkuKMMqDTwX3IfB51+pzZH8EASBgGZvCeB7C/cApZLKInR1Gnz2GPjxk9LQx7QSvN\nrW48n6bXb2klH0QgXzRHE6Bmctzs2Sn2lTU02LUeJBbtPc0xo9lUPi8on69S+cgxnE2F1dIMvdCA\nai3ac2LWlMmICtfuFo+PutKhjOOcgEaRIy3iUs4IvBJxpjUB1IlAo045nG62EI6N9DxU28ca6ENk\ns6iVVbQfYI0MJesOfmCC7e94lPP/78MUL9pYfwojn36c1nseQDkSq60NyHFjmdFTDdOtJzLdaGJN\n7oBQ8OE/+Mcc+t1ZdLOFLBaSUstwaQnumOyACH15Vn7wOCN/OW+AoavXsHfv7DyTILwtQb1IASuJ\nRaCZ1jr5LmKAKC5Z6Tr8yAHE6iswKyL/wu/PUp102NzhoO8+TvF6QOazT+H+2VPk+sroVAAWAzxE\nuna67ZuyhXiPSe8z6bFPZy6Ye+v4SzI+pxRJwkYTgYbKSsqQtksi9bK9WV5JmIKxxo+9e6c5NuUD\npgP5xX/wKCO/9Dj+gQfxjh7ipR/PUzj9KBP/zzOoPZPw7EakTxKibMHmwTK5F0E8cBR5dT7xu/Wp\nM7TfcR+ZK1Fc8Wot7r/GbDsNUquvjMjnu/3rVMJUrlXo/82XkuPtsVFqD+zEqQSwsHzLrv31mKrV\nsGsNgokijVGPxtAAft5UFSgbirN5xj8ecu19Cm1pJj9eIPvJEya5NThA/n+eI4wYStYL08nPaTv4\nw0/yzH13kX32ydd1TeG5C7jnol/iZ5uypJvVrbbU95zMWavzf7xPpRORarCEX87iF21K56tYq5XO\n+E+DOTGb0bEQGkLPJsjZ5KfXyU+DymWQlUhwWoqO1ETMfolBYZ3yvVN7WqcSJNqTdHwNqcSQkJ2Y\nLb5fHXY9f60UVGtmf3YzFJ++Tn6ojN/v0RhyULaFUKbioT5s4Rey7PqMz/LdLtJXFK5rRp/2satt\n9IXLyBdb7DtjYvTKR48lMaeW4JegXRamzLJeN930ohjSntiBv2sYubxpxK6B7LJm5DefRTWbiPuO\norIOstZChOFN6QfBWxwQsvr7qb39AJmKj/uZp276/fb4GPW7J8l87uk3vVTszbS4o5CMqn909M/2\nPIYea7L2d44x/Msn0Pv3cPmnjrP/Zy526WvEG5/76adofPNDZF7unDv/F2fgniOo0+fY+O5jlH/3\nJMJ1sUaGufrdO9n5CYfw4mXGPn21CzTaDgwCbkuda5oJ1PmjTgSdEcK8rvW2JWIIgXV4fyLY1X3y\nzg3ZixtdToT7Z09xYPVuQs/GWY5qYoXoKmHTbhSwRppCyXXEiHT8c1yjmxaoi1X+0wtovKjaPRka\niaEt1tu4axKr5ZCpSJoX87RLgtUJCD1tBM4sDZ4iuyTY/JDmP9fu4+DYdVbetgMZwMipAKulULbg\ndO0IjcNN9vzCMtPn72fqc+Bshlj1gPKfvoCq1RLgR9XrcPL5pItM7FBcf3cf0gf5+X4+/uT78Hf5\nrB5xGK26WNWmASt6RWtuhaXEouNMPUJ2wJ8wNNo8cXlYELD6fcf5po99hav/Q3Djh3fibKx3g0HJ\nuXWU/tGIfBYxeZSwlKHa52A3FJnpqDw0pR8Ud2cRmQy60TCBVLxJpTWx4o5KUXvtuNtWfLyOxMul\n1zm30UPqgKU6ZhtF7URFJMgLhrWgqlXYrKF7GHTZyiQBsPE9xyj/zkmufeJOsn+RYegLhnodt7qO\nneLJT14nnJ1DeK7JdNTrsLZBqEKsoUEaD+wx3aDe/xBONWBz3KXw309i3XGQ8mWVXJPM5wnLWayV\nNfPM4rmTFpn+GjaZy3UB8TJvALdtu0Ck25i22uiFpWQubX7DAbKffPJN7U75ZlkcfCaB9eo6OvAR\ntmNa3gP7fuwk+vg9iBOnca6vEhCxUXdPGhp3qJB7xylfqpukQ/TMZLlEuLJK6fdOUv/wI+Qvb6Jr\nNdTb70U+e6FzEULAyefx/9bDxrkJQ+TiGnLvbtMNa9cU4fxiMvZvx8jR0RxPSq9iUftIMwjCrrnc\n2zXUGh0xc367sRPN79yZOaY+P28AbSA8cpyw32Lw5AKsbaSo9wZYpd3uCH/He1QMLggR7S/alLFp\nlejEmCxxJHQtRBTIy+j6BPg6AZF0ECTXrGoNRMbB6s8ZMKnZQuSyhlXSVzQdOYWNcB3svbvZ84er\ncP4KHN6Leu4sSIsgZ5G/uEau0UKtrKH3TiL8btZXuLCIftu9TP2FYvY9ElXOo67M0Pzgw3if6mgs\nWvUgSXSFwMhfLSFqHeHq4MqM0YWJmVy3gSEUgyxdbKDetS9mVfUAJvKeI4hG22g6veqHaJylTQYD\nhbIl6weyZP6vOWqFRyj86XOGxeo4kQ6W1RWI6bZvxkwMXMWAvW+ebVxaBtFYSR0X76+mjXgkMh6/\nJwzNHoyVlJlJz3vdmjSjP/8413/iUSa+uAknn4dmC1XdxJ6a3OoLAiO/ZBLLmbUW2hKM/EWGb/3x\nL/DYb+xAzMyx8Z3HyC62sb74DN6nnmThY4+SA9YPFymfOpOA9gDyy8/iH78H59oyie7W7fB1btK2\ngEG9JWLbABZqbb3r92B+gdyXG1Zhid4AACAASURBVISVytek1ERwZQbnygyOEJR2jIObMQlhz0EE\nCrFZZ/9nOuX0MpdDlktb9KterXRtu0qK193wJz23t2MP/7Wb7gb9hOjSDNpS2hYEiEIe1V+ksSMP\nAnJXKkZ3Ml3qBZ04J4p1ZL2NzDuErkVt1KHV30/5xVWs+bVOTAUdn0/K7meYAOWdRK75vOj6tNH7\n2cKAhQ7TKZ18j3Xj4nXMcQzw3mxCyyQ75EoFd30T92q3DEluuEzo2Wzs89jxl+toS1CfyuNdWkIt\nLpu1GTqEjd87SfB9x3FXLFNKtqLZOAD66D546gVW3j7B4FduYN1xkMaOIgsPuQy85JGpBAw8tczm\nkYFkXdXPnkHefRidsY00x036xm9ZQMgaHGD6Y4fJLsHIL74+BLbXgrl5mu/aTeY1j/zatHhDVLZ5\nHhv3jbDr041XBbdyL97oZgNJycz7+5k8bVT4ZVTOkv/EE4w9MUI4UMAaHKC9fxR5fWsHri32NRCb\npVvJxy3mE8Gv3ozZ0CAMDxjnZBuaZtp01sWemjSbetYjHCxCKySzWutuhRizf+LzRQJoXWBQ/Dnp\nRV5GlOIghWJDhxWUVtMPVQclV8p06bIkWkpkM8AJFJZr49QDlC0pXrNQjkDZoKWgXbDRlqb6DQfI\n/fETNI6OsnyvIFMRZDYlVss8r8KsJrPhce0dpvPKxh6bkafbpla/v29bQVtRLhHu30GQt3FPvAwC\nnJrGbmq0lLgLNs0BTas/Q67aTAFgt9A0aBUibNnNlokyDEmJVlQqBmAd2MvH/+XP8JXGPia/2ETU\nW6kNTrBF0C71N7nZQPghzYEMm+MO/WFoOujEJVCpDVJHJYSJuHCj0enklNIXUvW6eT0Ci0T8f097\ndogysI6TdGFIMiht31xnkNIugc51aTu5f1SIWl3DOrCX0uUm1sF9qLNFhv5LR68tbm0OBuxSi8tJ\nVys52I8ol1j90CEKNwJyLy9i181YX3zAYerfPkV5eJjg0XuoDbp4y35S9ip27mDtSIH+J1ew9+42\nQEl07bereuP1mvS8rky9PWbaz267DvQ6WZaFKBax8jnC1TXqQxbdcpdfuxZ/d9pvE653Osu0Bl1y\nxSKq3Ok8JupNw+6UAlFrYPlB1+tbNCheMFmN2Xfn2LM2CWfM7zKXMyC1Y56narYQU4XkmWrP7Ti0\nqXaxt8ykMJppieimSv6WgCh05mFvsGH1lTtrQa/1CEnLwQGjT+e5tEsCd10h6k1Uq939DKRIylCT\nclWsTtezrsBEdpUfJaWBcUlQei2NuqMJjEMvwqgLimWh8TvXGoNLfoAOm8joGGzL7IVSIq4tIIYG\nCZ47i8zlWP/Q3dgt081SSBmBzS2c9U30gb0JWwzAXqsjvvIc+xfvSv6Wm6mYcsIHTVkQz5tsmyrl\nUK4Nz11B9vd3P98EnL9NEb3SmHrv7uQAkQZeF3so/Z1JC21LZHoObRPQx4CkaPtYy1Usy6KYs5ld\nL+MNSEqu29VYIfn85O3m++0tB0m3rRZRYNulLxS/Nwr2ktdSDDrtB52SDx0mjKjX20l38nMbxk9y\nMkkp4GuJ8auMhdUOKMy2aWmbpW87zMB/PYHVVsx8s8ueL5rjirPmmQQ5c4/hugFGrFKJsFLp1vCQ\nb72SMVksbgWDYkv9LIoFhB8k677M5wk331jDg1tiWm+RjkCISPsuGmNCICbH0StbNfJu2u47Ak+9\ncPOXeVvwoBQrKP5zqBJNwC4h6TAkHChROVREKChObyLqza3JUuhOfmuNqDdx5hWOJdGyTH3ERrsO\nYrNnvKU+q3OuFHAVM39eTbQ+AYCihEya2d91fqsDCsVgdg/pIAGo4pjNkshaC1lvkysYDVC50aAw\ns/iqFUjDjy3QGB2jXdImRrM0c48WmbjYT+gKgrE+qrtylM5XcdczNAYkdkOiCi6Z9aBLH069eAH9\nyJ3YG42t8/U17C0LCCEtyhc1dksj7zzcqeG9SctU3/oKb+XfPUnjfQ9S+IMnXvPYYPY69sQOmofH\nsb9wClWtsuu/XkTs3Y08ZTr+zH/vMfZfOor1xWeRrkvYbGI/1dxWC08Wi91O6+2gUkdOY5dgdLzg\nxBNCa9TcAqrZxBod4dI/3IffpxCBID8jGXjZx1tsItopB6NnMmnHIpwYoDXgMvc2G7+smPqspnDG\niEkn5WoJrTJiCoVBh+4pIj2j2KlLO1Cxg5QuMYMOWm11dAFQ2rSAjtBzoQ3Ygh0BBk2FFSgjRisE\ndjVyyDSgFH6fx/KdLo0BifUtD7F8l8OeT9YRShsR65aPtiwyGw7tPofy5QyZSpsrH7BQGYvWaJ7q\nA31Y7SnKv2MYHfrqdROMLSxiBwH6jl3I4UHyNxQDj5lyxvDvHmfzkSZhxcFuhCjPoTmSxV1pcUtN\n0MlChmGnzjYMTflCrd4lHB3Xd//Y4Xehtab5QQc/P0juWhW5Uet0ulO6OzADs3G6GVo7Cqzvs5j8\nxWdQKgTH7QRivgncEodbdUowRDabjJFYVJqIpi+ESMpLks5FsaU3OKU7gtNKo8IA6bloesrHoKPh\noIzTLcDMr4hJFV6YRlyAc7/2IAd/4AT2xI7EoZLFouku1Wya8rtWC/+9D+I+dhZ/vB/nygID/9UA\nSO2332sE+QCrBf57H0Q+dhbx+OmkgxaYMrv1uwbp/80IePIDdD5L6/A47sza13wrX9VsmjKHew4i\nn7+ALuQSuu8W5zpuk5wCiExZmcTqL1OcfXPFOW+lCSeD9tvYjZDq++4g/wmzX1kH9qJXDcNS9pVN\n96mmhYjKDNb/t+P0/XYHdCw9cY0gmpcyALHSyUzLoQFUrUbpT08jd+8kuDLD8vFh+j9+gvqHHzH6\nIE4GkXGQjn3Ltysds0gjoWbdbkedDIUpzYoZE+3mtoLh4foGVDaxhgfN+hXvIdsA0iKfQw17LD3U\nz/pdAZOfSwkNR5ovQDLPERKCCMSLAWJLIhwjpE/G6bSfjzpGCuWnsrdxyXO0T2mBEFbn71YniBCO\nvZWFFLEVVa3eYUa6Lnp0gOYdY7irLZi9zsz/eS87f/YZxM4J2KgSrm8gSyWj86A1otXd1nrzYB+N\nY8cRCvp/60ns8TH0ginbbI5mke99EIDsywts7iySm6migoD20Smag3spXK0Z0KhluqsZ/aHJr24A\nvAGLNTriVT1mmgn8FPNTJQF5YipEnzqDPnLAgGv1ZkfLYztQOt7LbAvZVhT/qEj5UhTYR0Gchk4C\nIurISRiapEPcMQhMVt2PmGG+j3Ycc0wYmrGfBhPT1+L7nYRXnJyIyjyJmGjCshCO2cO77jkGHVMl\ntvrZM9z4J48yofein3/JaNfNzJpuhhmHcHV9SxBpvzRDcHgn9mPP8+T33s1gZhP/3Q+Q/ZMn6Ssf\n5/x/eYhd/8N04AUY+vgps55ozeWfOs7ef3HKnOjk8+g7DiI2NgnHB+B15FVvtzX+1sM0+yzy8wFO\n1UfeWINmKyn93c6E42BN7UCVcizfX0Y5MPLbp9/0xge3xGImWzaLrlYNWzVVVvhKtvkdj1D4gyeM\njt7kKFyc2QI86ggMkvfeYdiOr2FvJL59QyYioDbNgNcGwNEq2m9SOnzC85Azc2QHPGpjDsv3FSnM\nZsleqyI36wm4v6VbWVQaLKREuR5BVuJWQtPePS6fD1Wn6iViQW5JwMamVefa0mVh6dgp/l+m/OV4\n+sfHxnGBjMri4nLp6DXdaIC0kt+FYzQ9xeoGan0D90wTccdBwouXX/NRhxem2fFXRS78oI28nKF4\nWdLqh0s/dpjhZxTV3Tnc75/j+l9MULocYrU1zkYbv+wh22G3hIsyCRaVdVAZG6vefvUPT9lbgLy4\nvYVLS/T99gkKf/AEzckim9/xCPr4PTd1DvHQXXifPvXXdIV//WZPdZyS5btfH8/J3rub4PoNNvZ0\njg+XVgimryTAzo6/UgndTN19gGv/7NHOoi4txH1Hk/eKXBb96M099zfdUkLSIkaLLSsBiESzTXBl\nBtVsGtHg4QH6zoO7aHHk3qvs/NbLXP2wZvbdRepTRXSmJwObZFMllb05Fh5yYH8Nb84iu9DodqbS\n4rB+gNisRyi5Ml3LYrZPvBimWEWAcdSC0PyLf45K3QjCaGEME9BLpI+Jz5c4dgrZDBDNANkOERHQ\nY91YQQsoXw0Y/dwMmxM2o0+1sJoRcKWUeQaWQDYNUOZ+5ilEqMhsiGTsDP3BiwycXICH74LZedOh\nK58nePcDiEwG+eVnCaavUPr9kwTXZrF3TdEcEmSfy1I+a7N8t8vFj+Zpl2SH1XUrLdoYtNKRoymj\nYKw7KNLH70FU67ifedoAHe02+T98Au9TTyL8kNodo4RR+1ITCOlUOQUgJav39bN8Z4ad/9/VhNkn\ns17SQUh4blIepZstc0zM/olZYbFOBCRCszqVpUnT92OBzq7sh4yysOnXw9AANzGoIqXpuBZpD+kg\nQIcK1Wyhw5ClD98BwOZ3HuPQ33/efESKKq42N821C2E2JiGoDxs2U8yQs+44aESkH3sO6y+fIfwb\n97O5J8A7NW3WmWN3c/HnjgGw/EPHWXjvJPnZRpK1m/munUx/9yj2F05tn+n+GjTdamEvmOckGi2j\ns9OMRF3TXTy2yabpQhZ/YgChNN5j57a8/lYxeWA31v49OH/1Ao2BTrCn503mTGtthG6jIDOsVLDH\nxyjcMPPRGh4GSASBhZNh8icfJ5hfSALDWJNKNZtJee/ScTO2vUUDOlsTYyaj5tx6brAJYg0TKFlf\novuNy7fCtY1kv7VKJazhYay+sgFbAVRIuLBIcG0W7fewPmKTgtbOARYf7Wf54ZDyGZvimWVotZIy\nHvMB0gR5th0J+KaA6Ag8TkDmUEWOsWUc4ViXIYxKyOI1tIupEr036mgmLInIOEY0Om5F7vuGqRh1\ni0kEtjElX6LpozIS/dQLNP/mwwy9GCDKpaSkS/7/5L13lFzXfef5uS9Uruqcu9FAN3IkCBAEQCpQ\nlGXZsixZweOkkWw5jbU7mrGPbXlnZj2eHY3tnd2xvWcdxutAyyNZsmVLtiSLClSwKABEIAEip0bo\nnKpD5ar37t0/7nuvXjUAAiSBljj+nYOD7upXVa/q3Xfv7/5+3xCP1TcqjoMzNa0pmk88DED8s0fp\nODxHJC+Z/8l9OAMdgdPq+BsspCWwv3wc58YotaSB9ASqhVJYZYnp3bfOzBxLBwfviix5kBFQhb3v\nWFWrQWEwXAwykslbnuuev4x79iJUa6imlC7qwa0dZNPA6chQ7ktj1CStz89jXp3Ed6zECKFqV2p1\n+HRm/3eP2hgU/MKF7rCGli9S7NEN1Ypz8hsjunhqeJ/Xxde1MhKJOv3aGwcA5UeGtUYf0PuNJf2+\ndkTrnUUiuLmc1s8LNUXcN+px485nKXdEyL9jD/MPNaOOncb6+vMAVDMCO2sRm9Zj8MZvHOTa/74n\neI1au4PYtj74vdKTxhmfwBidWXVQ4iuJ9HM3aTu5RG7AYvz1CbIHenD72uv5DdTzm9A1raxpZe7h\nJsqtgo7jy6/NYpAXwjSDPZEzcv2enhNZ9kTF57PIU+d1Trxzc+Pr7t0OcE/FIPbtoDSYvveTvq8R\numcNEczlwrYb8xSlNILMMyCIHL1E65cu034yj4wK5ve0sLy7B9nepJvdoXs9CMOg2ttMqT+NkIrE\nWBGjWK7n0krVBa0DerUbFD/qr+MDAHwB6RX7OL9Q5K9LYS2hho8eEuX31ze/KOXna1Lp3z1xaiU9\nkf1opE5nvUd3PSOZxDh2nshEBDeqmRxGFWJzgqmDgqX35nhH7ynyQw7T+wzGnhRc+fEYbtwgtzaG\nshsLtcKVLK9PY83ntRTKPaKEXrMFoSCUIvL0MVJ/8xzWYpHK2x7B2LXlJZ9i9fXCvh26UvtS0LLv\n5hAioD+ZG4fp/a+HGvRIbhuGGQgct/3JYco/sE8/7n0H5vp1+rCqqsNcj56m/+sFij/0aHBsmBcr\nYlGtHh888Co/16sI4VOqfBQOevPljI3rjWhzE0ZbK8ZSnrbnZln79wvkf7ufm/+wDjtRo/mJKcbe\nZLCwJY2b9G1862KHTlOUhU0G5R4H83SK3m+XMZaKqIitv1dbu+qIShVRruhC1I1R5Ny8/nuYNgah\n7m6I4nM72trtfvZoRcrvtNYc/b6lqrZnNADLQJmeSn+lhlGpIUpVZFcri+sj2MsublczKIiOLWne\ndMVFuApRdTBKNYxiFXH2qk6qjrxI328fou1sgWKnRfngJkS5CkdPBw4O+bdsp9xu4wx0YIYg99mf\nOsD53+gkv6NCLa1YXi9peusk6RGDzCeOYI2usoaXop7gSg8l43XZVaUS3BPqsYewzl5Dzs1jRKN6\nIxMJFVPPXSL6j8cwrk94lJfQlOoJSztdTTgJ6P/clB6LaBqR8mh/wjRwl/P6vR0HoymtRXNTSV2U\nLRZ1kUroDr8wTVSloh/zHR0idn3h9oo8ARXDPyZUOBFCC2gHGzDvfFXNQVWr+n/fIUZpl7Xamx4K\n0D3J0ZKmAr3xYV3s8eceb3E14prYNPOhAzR9/Ij+0/PnUcWS1gd54SxmVyfX//MBjKpL81mrLrZ8\nZZxNH73K5C8epOsbM7Q/dQJx6BTqwE5G/t0uev/PQwz++iGuf/RA4/30XR7OjVFdqBifqG/MbQu5\nsKhRMT6yccUckNvSSqU1oov2d9mMinCR47ulUGboNUdGbWrdTahaldbzZW0bHgina+qRqjmIWEx3\n3wBMUxf+hNBUaKOepIdRAWZbI73H3LIBa90gAIP/oJFrxrMnMbu0bbtyXWTIdWa1QoV0gwJkRMQO\nCrbufLa+Hmcy9SKZVIhEHLO9Ldjggi6YyOzCLYVElYgx+mSU3BNF0pctuo/kYClXLwLYFkRsVKkM\nSiIXFrTFeHurdi7zzxPwBaK1tou3GZCe6LXv0hJQz27ThYV6gu1TxLy5SViWRoyE/+YVxqRHN5l8\nSxeRRZ1YuxFB7HNHUR2tdfcyV6IqVVSthvSE1t3dGzGqoSbD3CJmRdH2p9oYA7SGpJNykXb9Pmn6\n7EkmfuUgVncXwlHEb+RQuRwTv3wQpEvybz0U9ndqygkVLgIdH8fRBftaFTOTCcbHnfJBZ3wC9+xF\n1OIyKraiKOqhWfNr4pRbLazZHGSXtHaGVIH2nKxU6o2IcgWjtQXWr8XX/AkKRT5y1SsaBdp1EBIk\nD1EQfcRYGLWq6mNG2BZGMhG40ClPL8lfC4UdCZomRiKBvVytF1cXClTbEpjdnQEyV1g2qlrFaKpv\nuiNnR5Fv2A3oYqJVlEQKEgyT4jt1zpwedxEuGCU9Bgd//RDJXVlmf/4AAFv+/Q2QEnPjMADWMyew\nBgcQycR3buy8jHAmp5Anz9H2J0dY+6kJ7KJken+G4uYunV9Uqo3i80KgEjGyW6IUuwW9/5RDnbiD\nE/FrIHy6H+hc7V4j8qXjtxSAfNdUP0T53hDNlbc9glGsEf2C1sf9TuizNjbGvYapb/XuFV2Ebev5\nt1LR+x9L70nM0RnSR27Q8a1JrKJLdkcTpU1dqESsYV+FaaLSCSrtei5KjBe1O5/nhKmbBSpAz/rF\nIZFIeE1zL0/16V/hIk8Y2eQjjCzLK0qF1qvwsf7xEBTElFdk9rXObhH3V1LndIkYzk2tS2b1dN8T\nOgiA4QGMtf2s/4MbVJqhloZKm6Kwt8Svff9neXLwEg/Hr4NQyIRE2YrhLRNM7bNp+sSxBlF8M5PB\nPHcdBNR6Mno/eI+54GuXMnabCFTad20h/8P7yVxYvOVmBFCpBOaFG9+VQmf3HEoFGyiZ0ZsvI5XE\nrdyeemMkk5rOc+kq137zAK1nFU3/4whhy1d/8Nq5Gup6XWxPHDqFeMe+276ec2P0lglwtSNw6/Jp\nNeFikEdlMdvbAkgfoAs2lSrJXIn4aIzKmRQLG7uRO2pkv6/G4kiCruMu8YkSoiaRMYtKi018FlJj\nJu0nc5izS0FRRnjVbBWPUutpwUnbGFVJ7ok12EVJ+vKSHouGidXbjYpH6/BJn5pmhJLmcNftJT/8\nCoSR1BOoMDTkW3m8fmEYGvI+v0h++0bS4y7W107A3u2YNShsaCU6X8EsVIIJRAmBUargruzyHHmR\nlpMxsj+8m/jVxoTSjQgiyy7W6CzOwoIWz+3vITnpULwUpdwhqfTWMPIWyV+KEj9zCGvdIDKTQDVq\nEj7YEGjqlFOtb6LDEFghEHu2IZ47g4pG67QGX6/BE75UvhZQMoHbnNSFtKUCvi2n8lywOj9xJnCi\nCLq3Uupktah1ZVQ6Cct5ZHYRuaEfu1DCnc9iDfQjW1KI6SzkND1RIwqkdnnwqRee25gP5/eTb2Xo\nz6ZQdbFsDwXgI4wCMWrT0AYL3v+gkVLCjgQJibAsxt6YpP8wRK/OaGFgr2DlhywWcd60h87/9xDV\n793LjbebrP9EmXJzRNuqAsW9gwx8tYI4dIra6w/Wr01bC/nNrfT/xQUNu961kfxQiswXTrP2kN4k\nXvqjfWz607xGx62kWL4Gwl1ehnwBq6dLUwI9NBbVGqIprRMdKTWdISJI3izcdR9hDfSjSqVArNDs\nrCMhvmPhF1yjUYxCGfXCWZw37SE2MouKRvT6o5RGOnj0uPzufmKf17qAQQF152aN3LhNA8fq7gp0\nQfyodabI9UdpunaD6D8exxgc0IWkTAqmZzA3r0deuYFc5Q6GX3hWpUa7blw32IAIy/IcxATU3IDe\npYqloDvqO/GB1kKRhYIWm45FURGb4lAztYEqqmiz5vlyXZzTS95FUxqVXdQF6FQSQymwLORcFjHQ\ngzs+gbAjGIN9WoQ6bA2vJGDW0YpQdxITfkfXh+t7zzEESAOlHE0jMzwRfMsI2d27gY6MwJt39mwj\nPisxvlV3DgsXxLQQseGhLGOo+azuwH/7ZOMX35Ih+a2LgWW4tXaA+QPdxCcNEmNLwb1ldLSTX1+j\ntq4b8e2T5N/1KM6OZvq/mA0o89bgwHfGPMOVCKNODw6MK6rV+rUJO5fiNR6UatCY8MNdWICFBT1v\nRG1ESR+jYjaldiOguQvbhqirkUWOow0ColGoeULkhoEzNo6Z3gDdHWAYlAebid1YRE1MI6IRhKxp\nfSGoo5scJ9C1C+hhUM+JGhxAjXoxyUchmWag8aLRQo7nQOZoc4N1AxjFKhLtHNbzl2eIzM5DcxMB\nbdNDFLhz8wjLwmhuwp2dxZpvo/CldSR+cILoF48R9XI0ZWqUfaHToOWCgtHJ4PvMnWtlzXvG4Y90\nodbI5Rtyp+radiLX514LAKF6KIUzcp34yHXSgwMUtnYz8e5h0mMO6ec8iopto6I2MhMnMSNpGnGD\noutrNcIW9fcqXh4c7+05jZ2bb7v/FNP3ZggR/cKxukyHEN8B23nq+yU/j4QAjQkgfPSJE0KceuuD\nn5eynCNxziGy0MLSxiT5nk6arpexxxcRrkRFbGqtek63cw7GYqGuyePvb7wGhapUb6uRa2Yy3g+m\ndw6qkTYW2NFTLy75sbK40/D5ZfD5g4d8909/rZNa1wypkHPZ4JxV4e7oOLO9DZoz5IabGPs+SfNJ\nm/YzDlP7TOyhHN+37hwd1jIps8LTSztBCZRQpLrz1FyT2nAJIxYNcgERjSI3DFBtiWFWFaIqNfXu\nHuOuCCEhxJ8JIWaEEGdCj7UKIb4ihLjs/d8S+tuvCSGuCCEuCiG+957P5D6GPHWe1F8fQdkmxXc9\nitnW2vj3q9cbbvhwvJxq8HcqzPXrMLds0D+3tVLu1AUhv0B0u5h6/y7k4w8hdm9j3a8dpul/HNFd\nkBUJtohGMQu1oBPt09KSXznDtd86EBwX7lSHJz0nhFRerbEjpNLUKRUSkc4V6romiUS9YuwXWnxe\nqutiFMvERpfoeL5A17dM3GyU1K55xt9dY+INaSqdcYyyQ+rcPN1/dpK2/+8w6thpTUmoOcF719a0\ns7ink8nHkkw8FmHisRjLw4Lx71FMvqGV8g/so/amh3DGxnXxzUcIhZElK13IfGjlSuTQSoG/AMZr\nhApLMkB6KUsnzZXdQzgxQer0FNbQWuZ2pUnMOFhFF+FKhFsvRolKtcFVDQhoC7Jcpvljh4MiotXd\nhfvEw2RGCkS/eAxncgqzpYXim7YhyhWiXzxG+2mH2IxB9zMWm3/rGvLMBcxMhuqaVha3NiEjxqqO\nm6Dz7VOoPOtnI5FAPLwVcfGGphiGqB3+94owgq6kLBRwp6ZRJ85iLBeprOtApeKoiI3IFTCvjCO6\n2jViyjARvZ6osKudtuZ+9gDO9Azu5RHc6Rncg9sQh0+hcnnMTetZ3tuHPHNZ0yf6ezR6x0+q/evr\nF3O8jXX477qTrD+nCnXg9YVUjZ0Rf5PhyjqCSggmP7RXIzWAiQ/vo/83tROLMzpW1x8BwpzyqQ+V\nmf+ZA5RbLdZ/vIxZqBJZqmG2terrnjaJjC9y6c/30Pdb+vXcNz7M+Fs7STx9CpFOIeM26vgZ0p95\nHlWpIOwI5bfvY8PH9OYl+3g/cqZuafuaWq+kizM+gczlEMlEoAemcnm9yZESmV0kc7UQdKJXdnqs\nvl5AO26WN3TpzlxXp3YV8q/ld5DSa6RSmB0diM1DuJeuYra3oSyh55XJGcwmncgFY1YI3Nitma9P\n47lduLcR+jS++QLZbfU507l+E2FZdbFhw8BY289yLe6//6rNOT6yRdhWgLwJ5yNhFKLwYPhhuo2w\nLUQ8hpFO64TS/x6mZzRlTikiC1VaDkVoOhUhMltApROolE663YUFnJvjyI1rKL95J+XhDtyFJRaf\nGMLdOYx7TgssGxvWImoOck0Pwnuuj/byPwvQSCtYKczpd26Fpshpm2CvsxygC7z1ytvgYxhBglsY\nTNHyTb3G1N6yl8RkGaOlGWNhuVFHQtaFYdXxM6yM/NY2rb/kfX9qOcfyWoPWcy7GWH2D4YyOkRyx\nufH9Cay1a8gcG6f1G9cb8nKyIwAAIABJREFUNDxqva0Nm7NVy3MitlcMqQsuy3IlEL0NKIXe9RAe\nNcM3L9Df7a3Fc2d0DPfKNe3u1pSi1hpncZvDwp4a5bUt5Pb2IdIpjSirVCg+OqxRo6kUzuQUzsQk\n1kA/7oUrwf0VWahQXN9C4UmN1g9s6H3BaI/WH2zGfMchqDfHwiihUBEoQCH5n9Vrzgjfrh69flU7\nkkFu2vO1WURTBlkoahSZ1wQJr31GIhEU0+WZCyR/KcqNX9vDxK8c1PNqexuJ8TLVgRaUKaglBXS1\nB88f+shhdrRMkP2pA/XPFL5+jkZfCTcYB6+dtQqNcI0+fZyO5wuUm00m3jVMbbgHlS9oh8hjp0n+\n7XNEvnR8tU/tuzJuVwwCXpmj9aM7gn0erNbYaSycCJ/66aNFYzFNk/Kpw+ChxrxcMCT4rsoVzGtT\ntH7pKs2Xiiyti7GwrwunIwOWiZAKaQmUKZDNSVQ6oRshhqZiYVnI5eU7fnfu8rJeQ/01x9f2gYac\nNHDI9H91ZV12IWjGyxU5cagYFGrSK9dFeUVyVa4gMunG4pJ590bl0ps2MPd4N3M7TFJXbCqtMPpW\nsIqCTKLMQCzLaK2NvugCLy71YRYMzKLB3p5RUpEKu9aMcfk/7cRsbsJsb0M+vJlyV0KLep/PamFp\n696JYPdy5FPAW1c89hHgGaXUBuAZ73eEEFuBHwG2ec/5AyHEd6x9q06cJfWPpyjvGaL0zjrCxUgl\nAzitDysP/tbVcU+vbfX1IvZsu/uBDyDcK9dwz2urXZFOBR33O4WRSNB6sYLx7MkGupfxzRfqlVUv\nao9vZ3lTmoUvbGD+gweCDq0Y6KXzuIT9O2/7Hs6Te1h4/wEiSw0PP8VqjR0/iQBEsRx0jI1YrN5t\n9cOHKTue/k61hsgVsceztJ6YZ/hTVcQ/tKGUIPWmaa6/F7K7Mqh4RMPpw29bLFLrbmLuTWsYfUuS\nXL9B84hLclzhJhTtp1wSNy3yg5LR7zEYe1NEj8VHdyBKFd2VC7u5rCzwhCNML4MGbZlbIiRoLKRE\nOBKnLcnczqiu9LuS5V1dpKYconMlItlSXcdHCE0FW8xpisbjDzH9rw9SePejFN+wBbF3O9baNcFb\nmW2tTP3gELMfLnHzrWnkG3bjvvFhZt6zmeUBCxWNYG7dSOr5MQb/bkZrCk1NI/ZsY+5d2xh/PE7H\nz1/XCZaOp1iFcaOqVQwPwaOqVS1C2dUJ69cgzl6ti3iupFp5xZJ6MSkSaBA5N8exvn0GZZq4LUmw\nLFR3B+WhNi1ueWCHXvCqNcRgP8KyaP/jw/o62RHdlf/mCxR/6FHkhgHUjTHS/3QZYZpM/pJOTFXN\nE+P0N2JS6c0CBKgf/3GkCuCuQB2K76OEzPpmTG9Wq1rnw0PZKcfBWtNP9+8ewuzqxNy2iZ7/+1Cw\n+WhwevG0HUB30Qd/eoKOT54hNVqmMBDHmF/W2mTdHWCaNL+Y5eq/7GLjB09y4zcOMv6Rg0Sev0LP\nHxxHVSpU1rVTS3nXp6avj5GMU242sWaWufF9aappsZJGtSpj536Gchzc8Um9UWnOBEmFWlrGSCao\nNkVwmnSjwti2qf7E/Ttx+nRBQDRniGRL1LaswZ2eYWFHE7KjGbOrk0K/TiTl63av7gcDZC6Hs7EP\nI6vRcUtPrMf+yglNX/YpjX6hwzT1XK3A2H571Knx0NaG381N6zVVZtum4Dn+3LT+965iDQ4Ex4Yd\nieb3tCIzcarLAcLxKVZr3PgaCJ7FdjjJ1WtVfY6/nauTqtY8OL1ew8zmJszmpvrLX7mGOHSKzE2H\n+KzEPXuR0kAGtz2N29MO+3ciH9tJpS1G4uh1nISJ+/pdpD95hFpa27xbA/2oiKURwIUy1f5WjRQJ\nO7QEm3nVuL5CPRkOi46Gxa/DSXr4uUo7KBqpJKV37iN9ehZnahpz4zDR6QJGxdGfX9YTexGLNVxb\nq7+v8VTaWhtoOgs//DDn//MwAx89RPJvn8NZ39swTjLXJMoClS8gF5dusZke/Z4kdqFhzX2K1Rg7\nHp3Kb/rIYhGkq6nwPmpKhDR4hPC0oMx6gdG2GpBdDS9/9iLy0ghWrkrTBYvE1QjSFow9YVAabtdI\nRiBxdAR3bp7aQLtuKiqFMzrGwvu17pu8eh117DTRLxxj6lGT6o5BTe+IxwJUdHAOK6kMniB1YJ4Q\n1hqR9WZZQNsO5X26OFRfLyKndCFRPFJ3lzNi0UYNpvCGNxHybxQCdXGEgS8XggIOLU0IV2KfvUnn\n7x+i1C4YfWd3w+k//fl9LDzpuf+WyxjbNweIYDNfQY1PYZaDsfMUr7G1CqUQh0/R9ukXaR6pMbcj\nzsx7NkN/992f+z9xBPIbdwhj+2Zu/KcDFN/1aOPjIXbFnSiewo4w9svuykbJU6zS2AkblWi9OxsR\nj9X3UCvDX9N9jR3wiiz6eOvyGB1fukZiqsb8jhTLW5o1KwFwYybF/gTlgSZkMo7Ka5MaZ2z8tijH\nleE3VuTCQn2NDcftHM9W/m3lMX4O3eBsVt8r+c7Azth4A5rMXbi7I52dd4kuSYQLpU6JWdXatqU+\nB1ca1JTJgpPkmbnN5KtRMhsWEI7gW89u49zNHvoTi1hrClT2rMfZ0M/ipgRuzCB6/DLu+ctUO1O4\nCbuOuLpL3LUgpJT6J2Al9OQdwF94P/8F8M7Q459USlWUUteAK8BL3ykPOGS5jP3l46Sfu0nxhx4l\n9y/2I5qbUJWKhtMmGhFBvijl3cIZn/iu4MiuRHDcLmSxyOib9WZT7NnGwvsPMPO/HGTyFw82VDzN\njcNYz5wg8+njtP8bl/aPnQg2eKV1LVRTBsaLV4JjL/15XUSv1GHT8heH6f6dQ8Fjqzl2lG1pPZ3F\n5QZkkIhEdDU7QOC4jUmI62phTp+usVwgMpal4/ACgx83yD/TRby5TPEHl7n4i3FuvG9tQ8dd9XeR\nG4xTbhFEFiA5Jcn1mwgXmi/AzB6D4roaVlEQnTfIXIXJAyaXPhCjtqYdOZ8NRKdvK5DrF3zC/3xU\nEdSRQv5j/gY/bHvv0b/cmEXX0QKZayWcvlbMsiQ+XtCuRkohKkHrCjk1ozcq0qXaHEFaMPuwQf7n\nFmn+vQnO/W9dwQZMlcq0nS6ivtVCebjC1R+OMLs7RsdzC7SfLbG0q52JN7eDbeFevKK1qvbvZHZv\nhmpG4O7Msyk9jQjqYqswbhRaP8Bb7JTjYLa1Ivs74MpNTQfzhH+V14kWZsiK2RNI9Tc3RkxrGhgR\nG1WrIs9cwDg7QnWwnaVtzcSO6K77/LY44twIYssQ7sUrdRezbZsQW4e1C9PgAJmjoxpx1NaKO59F\n1ap0HyrgXh7RCJDWFmShUL9//c0CeBs0rzjqa4b4XGhfuyMS0Ym3TzfzdUqi0UBIOvh9OR+8rnv2\nYqANFdar8Qtr/uMyneT8RzcgczmMZ09i1BTXPjCINTqLe/Yi4x/YgrIM1v/BNVCSwV8/RN9vHcJd\nXtYb/LZWyq02bszrhL9uN7P/sInE52ya//IwN97bg1VCF9PCl/U1ul5pHZAycnTCo/7ZOrmwbZyU\niT2qO9e1dk8fZPc2lBCYIxNaiydio0yBUXXBMInNuyBBDnSS+eJZFt93APOwB+NfRW0hYUcwjp8P\n1tnmE9OgFFZvtx6jnnMdAPEYzvgElYyB0+bRoNNpTK8IZq0bxJgOXdp9O3AvXsHYvhn37EWMOS8B\n85IflcujlnSCGCBpDBNz/TpqSTDGZrE9l9HVGjeBblckomlifjHI0MUwIxrVxd3A0cSntYQKKN59\nrHxB+GoN7Ij+jKFrmzg/Retzupgx8bjNwuYkxcEkyjSwlsvEnj2PSMax8w7RC+OYWzdSTXs0ZtuC\nCyOUf2Af5bUtRC5PILtakQOdWoNhhVh9g2bDLahDoZsegVuLLoQRFsL0z9tP4Hu7SJ+Y0I0Jw4T5\nBYzFPEZZ248HYtqGwJ2bb3A6LW7vbfjO3fks8b8/Gvw+u1fR0rvEzIcOYqTTWNNLDQlzy6ExhKTh\ndf3m38IHDtD1+ASZm3Wx0FUbO6GNWXBeXmHFNwHQB9YpZUH326dY+UUi6/aFIeU4qONn6DqSY+0n\nRrXjT28BN27idjVjDQ5oFI0QWFcmiFyfw+rWiNf2z55rQNQuvk87bRkVl+z3Dmu65gpUUNCgCCOc\nVxpuhMNDmml0rgzuhQA9Zxq6WWGYyLV6HBiLBRifRrZlGr4vTU+8Q0ffb7wcOkX3kSIYJu7lES59\nMMboT+n5aOCjh+j9r/V8F6D5ksS+FMfcpAWlVcxi+fu3Y7a3sbi1CbV5LWbeQzG9Rtcq0AyByNPH\n6PnsCPF5ydTr25j/4AHkG3Y3sCzChdb/mSMxmtPmI3u2cfljD3Plv+1v+Ls8c4G205JysxHcL9CI\nIrpTwcOIx+j4s0TgygmrlyMrT6DZRywDet6uVEO5p7x9ocVfFxrEmPXPqlwh+sIIXc+MIyTM7E0j\nXDDLLpW0SS1lIqq1eyqqrAx3ekY32ebm7+xAu0JX0/8/bNLiH+fTmIOcOszc8L+qeyhW3S7s5Rrp\nr1+g+1iVxKShdckqAuHq85mrpcm5MU6dGCb679PEPt5C22lFy1lB6mSMs4s9ADgJExkzMRzF9D4D\n0d4KQmAvlLT+Zu3exK1fqYZQl1LKJ89OAf4I7wOOhI4b8x67JYQQPwv8LECMxO0Oua/hTE6R+MyU\ntvprTiF2b6PYlyQ3YJIe2kfsc0fv/iLh2L8Tjrz4YE72PobV3YWzppN1v3ZYN8lOnKUlZKwWBrXW\nOtNk33iA9j8+XIfWexF5+hiVf7EfsW4AtyOJOHyWLR/JBZz89CePcI/x4MbOUi6A/ApfANOOaKSH\nb53o02AaX6+heIKUGPki8asV+iejFK5kmNxvsv91F3gh0c9ULU1zp7blzPcJ7AIYDlgFRbnFoNIM\nQgqcJEQXIH3DotArEBKiOUXbi7A0bJHdbNJ5KYlcWsawWrSmRjjC+kLh81tZDAoLeSrVSEFTSnP3\nLQN7oUytJYa9VEZGLaLzZWRE28ibhRqG42i9IU/IGLQ46+KwRXrUxS4YZHvTHM2m6P2KgTG3gPO6\n3RjLZYyqw8BnJuATZeTCorY8zhew1/SR391NboNLencPxvZubr5DsWvjTfLPDpG6qXAdky99/ACR\npW+v3rgxU3qhkwpqrtbwaWvGGJlAmXW4qU6s9TSpPFFL0Bs73z7Z35gByGpNF15NA1kqYxw6Tca2\ncCsVzE3rERImfnYXfV+aw0incefmtXjsTU0dMjcM4d4cDzqgzkA7puOgetoZP5Ck57Be8Mo/sI9k\nqYRcytX1f2wroBSomlPfIHg6RyvhrkGE6Ci+uG8Qrou7sKCLeAtLmF6BasUXq4sXhonV3UV+7yB2\nwWHjLxwNLOkTn3mOxGdA7trC5I8NMfCpG+T29MG6DKlvlnAXl7D6+7R4qTCgViX9hVPa9vWhrVgj\n03T84AT+tq//Nw8FhVkjmYT87QeNF6+Z9UpVKoFguJFIoJaWSYw24YxqTbfozSyFtz1CbKKIfW0K\nkglUNIJMRPTGZ3oOuWsz0S8eo/rkHoRURCyLQp+gOWTD3EA3fZBhCGqPbyd66jpQd2tR6QRkF1Cm\nqQvBpok7PYO1bpD2v35Rj+W2VkQkgjT1Jta3VTXSab0hPnqa0jv3Ef+spzfkoUJ9VKuvzwVodAu6\ncOleuUZqe8dLawfouO/jJhCvj9gN+k5GxK4LXYaS2ODe9kV6PTHcgF6F/u5UuawpqG2t+ELP4eaW\nVRRUWqDpWo1aysK+PgOd7VQG24hemkKlEjjNcZq+dB410KPHUblM8tmLzLxnK9Fnc8ipacpv30dy\nMQMz8wTi2KJ+Tr5TmC4C0YgUsiwEuqCDEvXn+uLCSoKwNIWgVAHLxLkxhrl+raYbtjbr9UkYeiMf\njerNRRj59TMH6PzmDGKgH9mWYXFrhswn9KXyNT3W/X2NkR/NsPFYTo8jr7hi9XTjZhdwRscY/p0S\n7v6dTB1I0fOtZYyr47jA0gao/X0vvedurPrY8deksAMdtqXHS8Sud+OFv3FRAVpUrezk++hWvLVg\n5Vxw9DQOEFvXgbyUYn6rYM2VCmpBQ8DN5ubA1IRaFXPLBtzzl6m9eQ/2V3WCObtf0nxxE+LQKeTG\nA9x4Tzdrnyoil5YbKc++65C/TjmO5yYm6o0yW4s/CxVy2vTuB+E5cQb/WxZmKolYKuAA7uURjRrL\nl3QhydctCoXV36fRdiEx4eBvp0egtRl3bp7mF232vf8FRj87HAi5Gum0bhzVqjR9/AjN0Shqwzp9\nisfPkDqubwU3upFKexwVtXmJeM2sVaDn3MTfTZPesoGFh9qYOBinK7od+8vHKbznUeJTFYx7bLK/\nVkNEo8hT5/W9BGx4/+3X1tTf6ILOyhKFNdCPyuUCSqvZ0YFIJ4O10l1eDoSl7xL3OUdOe/p2si4W\nbVuNrsbhaGBh+EXduoaPr1UZPA7I2XlSX1kg3d9NrTNFsStKvl8QnzVIL+V4NWGtG0TOzCEMq742\nhQpXquYEBWgVRiGCXlM9KZCVKCPlo2N9geu75xG3P7++XpxnT+IC9peP0/Nl7603DnP5pzrJFaOM\nFlt4d8cJPs1+jHKN5ESFSptNPmNiViH3l32422D6EYjNWvR9fpzW56PMvLEH5629dD918iXPYWXc\nO7nsDqH0LuNlZ5ZKqT9WSu1VSu21aYTK3dUt61WEPHkOefIc6oWzlNpMSh3i5ReDAJ77zoqmiXu0\nzHWmZzAv3Jq8mG2tt7ixuTGTlkt3rnSmP3VEIwS+ofU8goRWure1Ob1b3Lexo5Sm0YUSbBGP6wTU\nNOrQ6YhdRwoFB9ah+8GN70rPtauGkS+TOp9l6O/y3PxvG4l/LYUyYPKgyVv+zbOoh3LE5hWZ6w6J\nORejpkhMKdJjDsIBaYFVUigDyp0uk69X1H4kS6XdRUYg+5ZhnF3DjV37wLElpMQfLggBvoNVAMEX\nQovr+rb2ISqZ8Cc5SwtFGktFzEIVo1yjlolgOFJTeTx6GZW6e0+lN0PniSLxuRotlyps/O81Nrz/\neVJ/8xzO1DSRK5OMP9nCpZ9MoSxTu1OUy7jZBT1GLo/Q9/lJBp5WODGBWZVs/Y0JSm+YZu2/O0zX\nM1NEzsWRFvc8G92PcRMRcb3AeR3C+SfXwUzW25DVtAV8oKdTL/j4Fu2+GGxg1x5YcnpaRKrulOJ3\nD+TITSJ5RefxEu65S5pX3daq38tLUN3LI7BzI+BRHY68iFxcQlQd+j9eR+chQC7lMNta6iKjPp/b\nPw/v3IOE2wvhLXZC+C5rKuBSgy5qKcdBVmva5am/T2tM9HTizmcxdm2p61UEguhadNaZmib2+aMU\nur2C1vhEMJ+bXZ2MvrWFgU9rnZPpvSZ2zsVdXMJsb8OZmMKdm8edm8NdXNLjaGEBro4GqD/QaI/C\nux/FOOF111be0y89Bu7bemV2db7cl7n396tUkMUibr6AObUQ0KCufqCH5ImbmJNzuH3tWtA+X8Sc\nz+FeHkFuGgRTzxGldlt/Ussic11qBElPh6aXeBTFBx2qUtHdq6VcA61J5IqBy5BSCqO5CfHIDpxr\nN5A7hnGXlrU+13IOFbEaNrRhNEjqciNH+U7hTE5p5JoH6Z7dZeHOzdcNCe72Oe7TuFGOA+2twVpl\nxGKa1hyPB6i9gMLpozr8eR7qrlxhqozr1qk2laoW+7Xthus78D03qLQoIpcmiY9kdUGqNYW9UEIu\nLiFbUlhLZdzlZU0vG+pFWBbV3cMYtXoRwo1qa2kidr34459fGMUUppFJpddXfxPhb/aFh2j1Nc08\nyqmwTORcllpPM0iXWo9HaxcCI19soJ2JWChX3LeDzm/rhpAqlTCms0ExCEDZJsauLZgVl8Q1m2pL\nFDOT0ZpNtock3jLsfacSJQS9X8liXLoZdKqFC5HllzcM7uec468l5bfvQzRl9Pca8caDX5jzHYC8\nAklAH/NQMYFeBmiKWSRyRxqZ+Y3nSY7Cmv9+Fvf8ZUQ6VaeLuy5yYQG5IUQfr9XHwKY/XsbM6/O1\ni4rIMsw/ubae0/jFTf+fX/SExnxI6DVZr9e6QBTMBwFKyFt/IxFNzXYcqDm60CMEqlxG5Iv6O6nV\nggKTH0uPaq3MldRHs6sTujsoPjqEiEbpfuoUX312F9Nv7KwjYWo1jA1rA+SHqlQQ1RrmhqGG18r3\nCWJThXsuxD+IvdWDCvf8ZTJ/dYS1nxglOpVHWBbjb3Wxll+eIPNrMW5Bh6y8vvt2UP3evXd8vjM6\nFhSDQGsM3avN/R3P6X7kyEYc30FSru3B7Wypo2990ebb0Kt8k4QAaR5YvMs6It+Vgcsurosam8J6\n7jxNz1wiMa3o/NbsqzbEcNvSiL5u7eDra2d65xgUcaRs/L/+PYReyCuAheYqX4ZB6whVeblh9fc1\n5LR+5N/7KBd/vgOn2aU6k+CFiX6+ldtIpL9AYSiDk9BGQdUmQTUN6dEqHc8rnISi3KGorG3DaYrj\nxAVt58vBun2v8UoLQtNCiB4A73//yo0DYYxgv/fYvZ1MIsHsvzpA4fsfeoWn9fJC2jD0x1fvfuDt\nYjW6qy8RYZvMO4W5cZjy2x6h8IZb9RiK+4cDoU5z03qMdBr7qycwv/E87hMPNxwb1ou5U9zNDjkU\n933sODfGGn43kklELBborDTAkKFeLPGTail1kuDf+D4ix5sERKWKNbtM5vQc3Z+8wMBnp7CXBF+f\n2kDnx+IkJ6uUW0zsnINVBqMGlbRJuR3cOOQGDJyEwiwZIGEhmyI2bVLqEmS3C7Lb4shkXCcsfvgV\ndp8G5v/zCz5m6Nb1nDIaNIWUahCoVpZBLR3BLNZwupoQpSrV9iTKMrTNvE+lEwJRqXfPInNFfYyj\nEDXZgIozOzoob+0juqDIXDQbrA/D94d75Rqxzx0l88nnsL98POjgA6hUHCHBKhG4kNwh7vO4Uchy\nGXPjMMl/6iCW1cmtKlfwhTj1x1B1OL6n1SNsy+seyDpcPWyr7AvBQl0XBVC1KjNvr2B86wXdBdq2\nXqNtdm1EuRKzq5P8ex9FHTuNEAJnk/5YwrKQl7TgtNnchBy5QfLQFcyBXq3FFLGDBUxYll5svUJV\ngPwJLYi+wGewKAO+XT2A8OygzZTWOnLGxvWmqVLVG9j5ZS2E7G8iQg5Ei//yADd//SCZvzoSnI8f\nl3+nl95ni9R6W7nxE2tZ+x8OY33tBNa6QUQygTXYj3rsIYydm1l83wGsgX79PXnaDiIaZf6nD1Da\nsw6rKCk/udNL9u8K173/69W+HUHC4r7x4bsc/CrCE56ee30fRiLBwFfKWpeqtQk3biPKVe1kV9KJ\nd3ZrKnhqcqpCZDoHTSman59FpJJUO1MYGb12mP09D+68qV/75KErGE1pjQIbHMBsaUHOzQdJmRCC\n2tpOltbrpsLNt6S8uVlvYrPb9fn6TQf5+EOBUYR79uI9NyMabOrLcDuB3RVx/8fN+jWBEL/YvQ02\nD2mnJn8+D1vm+gmol2SvRLbesqb5P1ZrqEKx4fPezLYw9PtXceeyyKYEzrUbVDoSGDMLyEKBUlcc\nKlWsHq0FImoSuW8bbsSg9WwOsXsbZiZD6nqBfF8E1dsBfsHJt/0Ni8sbQv9+m/O7BZ0W7twKjZ4S\n3R1YZ65pit+3T2sTDU9wnWotoNSpUil4meXhJG4mBks5r2hwa+f28q/EmNsRp/+/HCL6tRc1RbWi\n0R3O6BhOOorZ1ambGQkLeeZCo+C3K4gUJCpz1zF338dOsPHct4OJH61SHeqorz3+BscraATzfwj9\nidcAWEmTAHTh0bdsD90Xxq4t2AV00X79Om1Z35LG2bwGWS6jHAcnZUNWb2jt2QJWd5ceR5dvBGi3\n1F8fofVChVKHAevXNHTi6ygy1YiK9sd/CO3sHxsgiMBDCdVzPCMWQxaLyNk5VKmEuXEYVfTcF32x\n6hWoqJm9+j1kodTgYlfaPYh76SqlNould+9GFgqs/8UjLOyQlN60g8r3P4IYWsP8njYu/dshXYDa\nvxOViFJe16od79D0udKAg5OO3lJ0WhH3fdw0uPI94HBujCJfvIByHAY+Z9xRWPmfS1g93TjpyD03\nHl5l3P/1ypXIdb3M7U5TXJP0EEKhJmjQvBb1x1TdkKRhjvHlCaq1ehPD/+e6iFgUdz5LasLBvXjl\n1XwP+u2On9F7EukiS+V6ASe8z2vYL4UKP/5eCj93lnWKtmdGpOna1VdUC5Ct6dvmH4vrTey8IDZp\nYRYM5KUUn//GXh7pv4H5Ia1nO/YWRWFDFflwjnxfhFjWofmioPWsotgZwVou0/P1OcyvP/+yz+uV\nFoT+AXi/9/P7gb8PPf4jQoioEGIdsAG4Z/hN9j276PjDwyTHXl5V6+WG2dYK+3eSHq3dYlf7Wgmf\nGvWSx1y6SuwLx6glbr3MbtSDFe/eBpZJ8Y1b9M+AdUhrI5kdHRoOG7EpvLtRDG32Xx3gFcb9Hzsh\nHrjZ0oKRSSOsUMIA9WTDTwgsq56wrkQY+Igcv3vpSnBcRLWGSCYoDbdRaZMsfLubyHKNfH+EWgoW\nh7Vgs+F40PImLRZWaVUYLqDAzhnEL8SILgESzIqg0iwoDaSD81Wm6Sns+4lRSF9oRSX71u/i1qq9\n8hADZsVFxi1KnVGqfU0YriQ2lgNH6i68qd9PJWIU3vMo8x88QHFNGmupgpWrNHR7qm99hKsfXs/1\nt9tIG7r/6M7OEkY6jfvEw1hr12C2t2ENDjD/0weY+YWD3HhbM05C27nexY/1vo4b5Wgr7Mc/fYbc\nf+gncX3Rc0vwkDaecKlv3+5reSjH8aCmQmt+ROy6y0KoKx5sdj361tKP72fxfQcY/nFtn+zOzmIs\n6k6acX1SiyYXS2Q+d0qfoGkijpzBbGvVjkJtrbrYM9iLsXFI6wot5/RGKSx8bRgaHeTpdWj0kNnY\nsQ8ujKh39v2NqCGuli5PAAAgAElEQVQ0jc7QlDcfYWdEo7iXR/DF80Q02ugu5i1uzR87zLrfOxto\nByjH0XptiQRCKOZ2xpndnaTvtw9x+fcfxWxuQsUiyJY0bmsKN2Yyu6+ZWgrKG7u0rXQkgnrsIS7+\nPztp+5PDWEWX2Nde1GL697YY3/c5xxypd3fmtz14Z0q7IDE627GOnUcuLKIiFrW0rX9OxpD5AtbQ\nWpquljCKVYztm4lcmtRzx1Jeb6aTcSLnx1BKYW7diHPtxitCdt5LGMkkCEMj4Jbz9QJrNKLHnI9y\n8cKay5Oa0BvenkMVTQtbWob+blqe0jpRIqXP1Z7NN9AWb9eMCBBsEGgQyce9RpOh4dZGMrGqcw40\nakZce1eG/Lq0prOZpkZ6gIfuCLks2RqqHwhbhnXwgrXKDBLrBqQFsPQT+4l9Na1dCzvbkVF9LYya\n1EihNz5MZKmGcCXlrX3EJnIIKbEWS0RnShijMyjbQA31YyyXaH92gnJvuu48JkLrJBDo17lyBfLV\nrNOab9HK8yhl8bgufnlaQ8b2DToRj1hB0aFePHMb1rrMJ5/DSdr6sZamQJ9J7N1O5W2PUGmPs+kj\ns3T8kR5P4YKZH8KR1Db0IotFYlf0fmr5x7QeiDXQT7m/RrnZuJd554HkyKALX3bEodymUU0Bosyn\n4JmmXreqVT2fhzc9dwpf4B3quj6APHWetsNah0pITddSL5zFWippk4GuTqxDZxGGoef8ydkGvRGV\njGm6MRA9dZ2uo0WmDzYHRelgE7YyV/PHtN+wM4w6hWNlDiSlRjnFQ6LQhm54uPNZRL6IiHvmIrej\nxwEDX61S3tYPSiK9BoMRiwVW223H52n58mVqb9FIj76vQeLZiyQvzFLtTNF2eAqrJJBtGazxrKbm\nf/k4Y2/W6La2o7NE5k2Mu1tA3/85J4QSMGKxVSkQmc1NDbpd/9zCGujn8u/tR7Y1Y1Rcol+8J8rX\nq437P+d0tJJblyQ+J0GgdVrxiskr0XwNosu3mWsCdoNsKLgE2jzpNEYsRuwb9599o5xafe283foT\nnLesz5eheSZYT72ClwqZ9rySkC9ewBpo1LozN62n1O/ixsCNKuy8QJpgFgXP3VzLUHqeN+84z+se\nukCqtci27kmy2yHyzdN0fnOGps+fppoSuOcuBU6hLzfuWhASQvwVcBjYJIQYE0J8EPgt4HuEEJeB\nN3u/o5Q6C/w1cA54GviQUuquBDthmeR+ZD/NH9MLdW7tg52w3PksHHnxn4c9olKkP9Wo71N96yOk\nnj7N/M8cQL1wFicTI/a5o4EDmd+J0qLCkuJwK8m/rQuamZvW0/GHjWKut4vVGDvhsHq6VyBnDL1Z\n9xNov/rrfS9BJRjqyUeYbrXipleLSxS397K0zqLzGHQfrmDPFTEchVUEq6JAQWKmRvoaROcMlEBX\nfGcFdk6gDJARqDRBpU3SdsbFjUJ2i01toF0jgEwtAq38c/KLW2GtI//8fEG3cELuF5E83SRRcTBK\nOuEXjiI5VsRarGAWaqioCYZOhAPL+cVlMl+/TPuLeappAxU1EaUqRk53Y82uTq6/U1BtdaGtwuBP\nXGHxhx/GSCYxtm/WSWJfL9mfPMClP9zHxE/vYGZ3jGs/3se1D21i5P9qZv6xKsUeRS2tSN+EyKIK\nAK6rNW72PlfkK7/8OqzFMuU+j5bgFX+EbQWbLL8oJEQdRYNUgeVkkIyHUTa+a5er3RVaj8/R/vWb\nAU1TWBZqKaf1EpIJrSNUrQaFHwAjHtMJbTLhIX9cpg804567RO3NeyjtHUKNTaG2rNPdWm/DGJyr\nIYKCVFCw8s7dP1dVc+pFHe/zC8+eXjk1fItgN5cLCkMiqgW0ZbmMMIS3MdOf20gkIBrFualRe764\n5rVffYjo80nKbYLOPzjE9L8+yIYPPQddHeC4uHEbM5tH2ga1pNbbsp45AZZFbaCN7JY4G3/uGBgm\n9mmtb2Z4CUQ4Vmvs+AV5I52mlrrLwa8ijHQac9N6Mt+8oiHQsagWEzcFsakiRnMTbjKi3bza0xrt\nV6ogyhVUSwbZlECkk1S70tTaE7pTPj2DTHqotS3rHsh51+HUNYx4DFXUc4ccuYFIJRHRSFDwUErh\nXrqqXS/b27C/egLR04lyHC78fOCcy8wPajqPqNaY/+DtGxK1N+/RRahcLnAXyj6kX8M+e0NTg6RL\n/6dvwmBfUBBa7bXK7OjAzgsKXQb42nFh6oFfZA6JNQsh6vOST7lZCXX3569oBGtwALF7G63H5uh4\nPo8sFlHNacx8BWFZxK7M4NwcQ0YM7d5lGli5qnZITEQo92cw8ppStrg5hTx5jspAM5TKWPkahS0e\nZdIQjbSx8JwSCI96c4RHtfVFphsSakPoz60UytIFMjGdxYjHEdc8t9NYDDzRdYQI0DtmRwdmUwY7\nW8adnUWm6znkpf81Qq7PQkYMLn64/7bXQz32ENmfPIA1n6fQp+cUOTvPwgcOEF10tYGCbTHweUE1\nIxp0YFZz7Jgbhmg+u4iUgsUhs/59CqF/9ukZthUUdsIIIe8cQppUnj29V9QTloWq6YKy2daK8dBW\nhE+XjkUwvKIsrsSdnaf00BrMlmZ9zYplRCqpka2ZFLJYZH5XE6JUwezooHBgGPHtkxT6oLqxp1HH\nJ9S596mk9YtTR+b61MggVjbz4h790jQD2rQzOa1dznz6NPWGDYamRFvPnNBj33GCtcx5ZAuldv0a\n7oWruHPz2F/We4bMsTFkqYwzch1lCNwr11jzHw+R25DBGR1jdlcMq6ebNX9+BbO5CffiFdLXYOrR\nVHAdVnvOAfSaHTKAeFARpkD9c4zzv9rHwFckTnMsmE9Whti7nev/xytrrK/K2LFM8lvaSI6VSYwX\nKbabqHik3nDwES7hOTzsbOsbH7ihIkso/PvdR944o2PaWKP8AGiGStWpXb60Qnjt9BFAfnM1RCW7\nBemERtG/2lhpYDW/TzucK1ORuQptZ1yGPnKYnsMO5ospXpzr5Zsj63n24gYKNzM8/6LOh1Slgnvp\nKmKwj7Y/PfyKi1RwD6LSSqkfvcOfnrzD8R8FPvpyTsJNxxpEiZMTr0yx+17D3DDUIJpsJBIvm2v3\nmgifN75CUHDpF5bJbnqInn9awmhvwz186panGokE7q4NjD2epP/3TzaIT78UnE9Eo+Ddz6sxdvww\n169DJqI4mRj2fAGxXNA3c1gN3i/2rHSx8JMDn9sOASIExw0Sb1kokTh5k9hEC7mNTUQWyrhnLxLv\n30ul2aKaESCh0G1T6tSb2sgSYEDHC2WmH4nhKKg2S+ioQDZCodtEbc+Rn0yymE3QdrIGjkT4RSgh\nvLKtfm3/8QaIvZQIV9ZhqeHqvf9ZKy6mUqiIhai5yJiFG9O3v5Wr6OMdF1Gq4MzOYw32Y84s0rJU\npNaZRrWnUJbAbEtz9R1p0pcFiWnJ3O4oCx9fS9PTRzAGBxh7shWj1kpuSNK6ZQ4xn6btrKTcajG9\nH9Zsm2TycC+ZBaGRRYdL1NIWCxvtYHO2GuOm2pfkyL99hPhYFlFzkH2p4LtTlYoWM65WCZy58LoE\nfjIqVZCgBs45fkId3G+mdg0b6EdGLdyL4+DR5RZ+7BGaP3YYYUdwRicwtm4A28R54SxmcxMiEcdd\nWGDqwwfpeLGM+fXnMbs6dXdbCKJzJS1kuHEYY2Ie1dKitVV86pp3jsG6L0OUlFAEWki+YLYnBBuI\nZPt0LFHXU8J1kZWKLhClkg3Jn9o2DGevIiIRjSq6eAUjmeR3f/xP+d0feS/q+BnGf/Ugfb+t3Vkq\n/U24UYPkC6MsPTbI+Nsctnx0UtNq9u2ASzcRR87QdsjFGhzQoqaWpYvWW9djTs6hUgm4HIyFVZlz\nhGVhpNOIRBzrAS0dZkuLdspRCjnUi5CKmfdspfPQPO4JjcKqru8iMrqAA5S74iQvZZHTsyz80E5a\nn59HlGrITAKj4qIiBmrjGjhxluy2FK3sQB07jbVuMBBsvi/h3UOAvofiMWShhNnSgiqVUAVPP6ha\nQ9YcfdsrhRGLBcgf99JVTd1J19eucpse1257htjirZ12Y9cW7OUqtDbDfBZx+jLmukFaziwhAXdh\nIaBvOqNjyKHdyPFgk7xqa5WRTEJLBjcONVegLBNhGLoBIASoUMc1TAcCjVxsQN00ujIJy0II7bzF\n3DzVLY8gnBiR+TIKyG1sJn1xATE0iDtyAyMex6y4GBUHUapQy7Rif/UE1bc9QjVtEpmPU3t8O7EF\nfQ4Tr4sydE5gPX+JpffuItHSBPOLgW5VoBUU6EasSE59ClxoHgWlRUuFQHlrtqg5KEDlC4i0npuF\nbaPKZU0Ts0LUBUAuLmH2dmFOzsHaNTA1H4i3WlGHziNFbryjlY1/NIn/bZobtTCw2d7GpXfFSF8T\nuJeu0jybZe4DB4gturQfnUcZBso2cUauY2zuQEbAWKqj0lZr7JgbhrQjacTGHUlh2mi6qCHA8fMB\nQxfkwjQOP3zhZr9Q5K1dCjcQL/c3Y8tbmig/1kLX12dwbowy97MH6Di2jBmLAUvIVBSki1DogqZp\n4o5cp/iuR3EjAqs9QvzyCO1PX8WZnQfpYlYGARj69BLX3tXE0JkEyqO6YppaIDzcpAuP+5rTmJ+F\n0AbBGuY4el6J2JpG7YtE5wvI+SzKcbTtvNdY086aLu7sHObWjbhHT2MN9AcC/vb5myw/sYlmQOza\nHDRMoS5cb+zaQuzcWH2sFSXG9s10/+4hVEeHRtHForC4hBP35q/I6s85wrIwWlqgsxWxmIN/5gWb\nBxnuEw8z/Kkq1vOXkIUCYXEPsXsb6oWzqMce4vLPGfR8/pVt3ldj7DgJk9hsBWtRJzjCTSHjNkZ4\nzQma5iE0TajpLnwEo1S3CBoFubWXf5rNTQ+skOjn5YH2kafRGqat3xZFH46wILVUDcyUV3o+4chu\nB6utRNOXk0TyisRnNAhDmQJlQ/54O7Uuh0jWJDkGyWnFxOsUMx86SOfvH7oFFWQkEqhq9VZDgZeI\nVy0qfT/CqDYmd9Zi6Q5H3p+o9jUHMHKAmx++N80ic+vGB3VKDybC4nuhWLzejF1UZHdlGtABDSJ4\n69cwuztJx6nqyyqW3aJzsAph9fdpuL3UsOYGMWb/Z58CFn7c56/fSWtoRRhNadz+DkS5Rup6AeFo\n3ReEQJlgFxRmFYrdglpG0TTiEllWSAucpEmxR1JrcZFJl3iiikq6LO6oEY/WUCmH5SGotsUDEWjf\n8Utr/Kh6MWjl/4DyxbN9SH7wB/278GlnHlRTuAqzUMPyLVANIyRS7aLieuMklvMBcsiNmlx6X4re\n/RPUklDoNojNGCROe3RkqTCritw6RWL9EuWaRfszUaJTeey8pPMozHy9D6Omi1tmCayFEjIicOLc\njb5xX0M4EJnOB99LNOsVPlw3cPgC6nDWsHYBeOgfLZyH8jjQphF0RkQk0nAvLOxoxurrDYR1jR/1\nRGWTcYx4DKcljjGhKQ7u4hLlzT2IaJTq47k6F9jbZFvdXcztbsIIQ+B7OnRCHIviu8oEC7NPBfMF\nR310UGgxF2HKQQjlJAwRoCrMliaNTgkl6u7ScpCcmy0tqGOnkcUiYvNQ0L03Otr4yO99EHX8DDO/\ncJA1n/fQNbEYuf4IyVPjOJNTVFMG7d+KBBor5siE1geSOllQhSJEbFSxROkd+8gPpSAWDY5fzTDS\naX2/uC5m5ZV3ZF4qVKWCUa7ipCKY16aQtsnCNsXyVg81swKqbeccmMtitLVS6DE857FcYNdtFmq4\nCT22q2lBLa1/Lm7seCDnr09R1Df/htD3VrVGg7itN9+JoTWgFNbQWv27bZM+UxdFNXyn8WIVsxpG\nlujXL/WlEKcugWc/L8tl3IkpjLl6khm+t0vtkVWdc4JziMd0kc9WOAk0HexO646faPuFXo8OFMxD\nIetu7SxoapF6L+LHriJtA9P7DtyI1pMTFZ0oqk3rcGImoqwLTZFFPcdMP6JRBG4qgrQN7LzOI6wi\nQbc1Pu/itqbqOUbY8MCPcIIdCEn75g1uw9/9ZD3cvQ1cD11XC2abpr6Gsi70b65fh7FuALWcR3a1\nalOE0Bo4/F+qzBxoofmSDOYKq6ebhT163Ge/dwNuyqXrOS1W7i4sEMlL7GVXo5EqVY2kBRLXFnES\nIJMhetIqhSh5a5SU9XEbbgIResxHDfvjJoRuDYouftMrjIr1ounUHMKB0pDW6sqthVJ/sq7hU3Mx\nEgni5yZRy3mcdr3tLXYYRHL/P3vvHW3HeZ73/r6Z2b2dXnAKcNALARIsIAFKoprVFcmyLFuyE9nO\ntWT7xiVySa6drDhZiZdvlu+9XtcrduzEsWRf21EsyXYkRZasXggCBAiSIHo5vdfdy5Tv/vHOzN4b\nOCwgQYBe9rsWF0CcffbM3nv2fO/3vE9xSV0rCGPb05hZH9BzNWY2i/f0eey0yPpEdtwcYKlW0OfG\namV3tw76fIBRZCxee3BI63dFGXjlashcBH/TVK9THc2JRKzUBPrclVWcvRWMQ3sxF2TNsoZvCGe6\nPtNmO5F6Zpb6QApz/25J/nOarKTKoMZOg+G8OuvFC5WRTsm9xHHRyVdf4vz3ufJjMYzvnMHo6rzp\nZ4bvz1neEiN+KU7uKxfu9OndUpmFulzDSmE8H67QYlAv/9/8bob39M1YK4YMAZRpEEiGW8sa2ZzN\n+XIqXKPaZG03SMICu4dgGO/3KDdF0d/O82mpgRMeXE/RyCpyz6yE/14YtTDq0HHZo/NZk46L0PNM\nhWjewawrNg5s/sHoPWMYYy/u/9tarwlA6CaK08Lyq+ZtAJKc4J67FDaSQ99+aYDHS9bl3QVQZLNS\nloWKRCl/sN3/Z9fPnaD7vxynkVGhzh6QzbFf3rMX6fvdx0OK7EutV4Xu9yKlc+kwNjAyvgjT823T\nw1ACFsQl3qhlba1W2ZjbbJp0sQQdWca/P8Pim/qo9SdYvyfH5V/eTqXXwk4oPFNR2KGIbWjiK4rc\nt8dRGkp7G8w9amHWFNFVEzxFpRAn013m8L4J9vQsgW3QGG2wdDiG05FoGix7soi3/We30B09D+W/\nrtbPD3zNv+s1/91/j7xERDYF/utXttukhUcjmL298vobNvbYAEprdMTASRqkZg0mzw9iHd7AjUHX\nRSd8P53pGXp/7zhmDSpXcwz9G+j9+jRGqUbq+gap+QaxNQ0eWDVNbtxh/d4Opt8GdrYpGbsTpTxk\n2upPKIxSA7PTX8A9r41eGkwwdKMhm5AgXcxnBAUJOYGZs4pG0baf0gWgNbk/fQJndk7MoztyZN95\nDXX4AO5GHqO/l8hSEXdpGbO3F++xwzgJEyMWY/QHz0pjbZjoWj00eO/61Emh107O4q5voKfn5Z7p\nunJc5Tf4fgR1sFkM5W0gUdfgm0wb4WODCuRw2vET0PzIYZSYbit/cxY23L1dMmF98wPUe0WyYcTj\nOBNTDP7h0xjxOH2/+zjuuUsS1VqrkZ5t4Iz0YNyzl56/Ok/XfzsuMjBDYrWNnm5q7z3C4of2y4bQ\nnwKnL6yS+uwJnIkprKF2LfYdKT8mXGtN16Va6Jl0O8urVHAvXGHqHQnc5WXyu5KkZgzqWb/ZiliY\n3ztLfUw2trGLs7ira1z+2RF6zjbQp88x+aNbcSamwFQox8OwXczeXrLTDrGZDerveojkszMvdBq3\nXi3ruUok0LU6RjYtm7DAC6dUFvZQNBomRTkdkvxXOuBLkSIWQ1/bCFk9XedtuTc1bGKrLSxiz8Xc\nOUbyu5eEPu0nQoGAal5vR/N8Wtbm+Fp79PSdKLO3VxLAbIfsNVAavFRMJFABBT8YYLT63IF87wLQ\nOdhA+9dgyJQwTUlsi0RZ/7GjePkC0YKN15VBRaJ0fnuCymgWZ3JaDNzrNrHVGu6lq6w+NkKtX4AO\nJ6kpjhh4loFVdmhkLarvP0JiUUMsiv2Ge0l+4xyNzph4MYGsl62yZZC1KogedpzQ1+bGCOC2chy0\nD2wbHTnfXNgDuwHVWrtcAeQeePmapEv5ElfdmcUa2oJxaC/l7VnQ0PFUM7XGmV+g4+wG13/zKEuP\naHb9sY0x3vQFS33mBPHxFezeNCyvYtQcrK0jLLyxByep707nHAD1tQaRkqK6p46b89MyA+l4i5ed\ndhwfXGv3+gjlYn4py5LPpaUXci9fo/sPj1MekOtv7FePY1ZddId4HSpXY+Qk9t5dX+fKP5O1pOf3\njzP9FhM3Fxe2l2WG13Dku8+FQ4Jdf14mf7iv/XXdGO8cMHKDNDJ//Wqb6reCP4Hk0DRDwMerVEIm\nr4pYGAkBQ0L/KP81V/pkrWmzHAC2f+RpjJKkpoIwg8z9uyX85oMPo/duQz1wIHy8MztH/PR1xn+w\nB6O7E3dpGbdLALGdn1yi87J7pwyGwzI7cmIArwzcS1fR0zenG92uqr/7oVftuf+uVO9nhEkWMM1a\nK9hDpv/iBCP/4fHXvLRONWzZXzRsUOAkI02vu9ZqScdUpm/y7veabay/G8toDghu9MXd7P17pRUO\ncJ8HpApDWAImUUtqWtAbaz/h8pXu88P9hl/Jz51g7FePM/zZqTYVTiMrPrSeqej9veN0/MlxrOfG\nic0VSM4qOofzlD70yM2v9cw5WNu4pXN6bQBCN5S7uobadvvQwdZa/2iLZtOnfKnvPf3C59OSulV7\nz5EXP8htRhNfbokBboPUZ05s+vP+33m87f83izq80aNj0+Mcuzf8u5nN3tpJ3oYKZVUGwiDQOnSC\nb0OEg8jAeqM9USwAj1qnTq3la2BVucrQt2xSiy7FIQvlQcclRWVAURlUlLcotKHp+f3jdF2wWX73\nDtb3gyqbOClNNK+wygqjamDFbcqlOE8/u52Tp3YT2TDpOBFFeVAaTfgR8f5Np7WBCACtlqmajkaa\n/gD+NFCFfjEtBm62g6rZGDUH1XBCppC2fJ8iP5XF2zbAxqFuFt89xuqhJHY2inI00Q2HgRNVtv9l\ng85Ppuk55+BGFfZWn2GgFBw5yODjDjt+6Qm8Zy6INGNhCeYWuf79EcpvKsvnpCF1aYXsRI2uZ0xi\n6yo0cLxj5ba8v6ZC+ZNMDKPJ8DEM8S8IwQ+fMdTq19BSIrtqNrhmby/jHxWqvLlzTLxNfGNHc6Mk\nYIbnyQLw8EHcHYMYdRc3piAWw9y1nY3XbUXdvw+1fRRdLOHML8i9yxBJmrllADU84HsJ1UNT6XAR\na/FTCDcHrawCK9KMB231EzKarCEBl5ubU90KkjkOGCbe5Azu/ALW108T+eppOVytJpMepeTv20ZD\n8/r6ux8SiQ/gdCbC5qj+hnsIIuyJWKSu5+n5g+Py3nV20Lh/J9k/Wpcp7LF7b459vUOl/AlX5NwU\n5QMDt/356+9+iNKHHmHbvxK/tp6vTbLl20Vy10WuVx/tRDsOS/f7m5x68F46RL98Cmv7NtwYFH/o\nEZGJRk3MQg16OkhfWKM22kF8sYIzv4Bx3/7bfv4AGEoYK63+W0Dg4aYC4EMprI0qxu7tpJ+clOtl\ncVno0nXxvEnMFlGWidudlsllSxUP9eEWChiH2hM11UMHMQrNgY9bKIQDksjynZeJB/cPHJfsZANt\nEoIw4ffP9WRNchxpxIMG1G9kWz0NwqbW3zDreh1vI4+2GygXUAZmviZg4LZhnPkFIiUBVSsDMdzz\nl6kOCqDT9dQqlR4LsyPH9l85TmJJo01FYVsc5UGk6JK7VkWnElhfP42KRokvVtC5zA0DmBvW3gBo\nDmW2uh2kCO6jLdJt1bDletZec5rqG2+HKVn+/cjs6cK4Zy/WoD+8cD1YXsNdXMJYLZA+PkHPfz15\nU19W2N9BNK/Y9bMncGMm9r7R0Iy8+MOPsPJ6kWl6pTLe0+dxJqdJz7n0ntZtHkJ3tJQC26Hjske6\no0JpNCk9SzTSDMHwgcFAPgjN94pIpIVZ429wXDFlDq6l6//xaAhwd/35UyGbPvLV07iZmLCFz11C\n2zZz7xbGjFqL4rz5AQCMhuLqT5p4w70i5/WlW62MLnX+Om5MoTpzzWs42DQG626rxD8AhW6MiW7d\naAbhCaYMQ0K/o+C70vDZ7i09XpCy2fHH4r3hrqyG8fHW4IAwwN32aGk9PY/hQGzNwZxf49JPJUNv\nQACVTbP1N06hiyVJsDv1HOW/2c7SY33YKePOsxL9zXpw73k1hrbKTxyMffGOmCe/pqs1lfDvfAWD\nB9cjWvKod1roRMy34thMlqrae8g2T9aWwXSgxvA8vHL5JQ/UWkGU4JoLj/NSX1LQF7emeLbaQoQP\nbAlJgPbXdRuqdXDVWjcCYYklUZ64PlnaiMf9tDeX7JSD/Z1usl94tu131IP3YG0bbQvfeCn1mgSE\nALzoi9obvayKVF8aWBPEHgNt8W3xL7ywOXtoCPsqMpzuZHm1GtX3vzAIZq220Gzvxs3QIARJdCqB\nkU41EeqAkgyhNExZzxM33CKpuukQXR3oziyxxTLxxTrxDU1y0SY94whynhb6v1mVY1llh1jeo+/Q\nItGBCvGhEkNvm6Kyo4FyFO5CktiFBNlLJukpg9iKotalqHdqtAIdMZvnEWpeWyZiLbIxVargXrmO\nc30C9+q4pEHlC02WU/B4Lc2iVgpVd1C2IP/K8dqYU+ZqkfRUla7zFXrOlIgtlDDLDZyESa07SqU/\nSq3TJL/NojxoMvuYmCJbQ1vY2JOW9JojB8MmyatUQBlkr5pET6fZ8t0ahgNXfrIf+9fXqXUpSjts\nPOsOd0qGCqfaqtrA68w0Nx9+2oBES9ptMqkwjcWywseEFdLaPbTdwF1eZuRrJfSj96FKFVAKZ2FR\nGEQra8Ia8lH86V/y4IlnqXfFSH32hCSJzS2S/osT6FPPoWoNucEbphgqp5ICCm0UcC9cQZ96rl3X\n7MszAjZTKBcD8LQ0hp4rCWd2IwSQ8aViZjbtsxLMMC0seG14LsqKNMEiQzbu+oZptLlvF870jLyv\nSuFMTKHPnCG0HQYAACAASURBVMPs6iT2xSdxMlHMlSJGXd7Dq39ymMhXTnHldx7Ge9195B8YwD13\nCbMjh5FKoaMRorMbrD+6hnv+MurxZ15S4uLtrlajVl1vUOt60QjzW3t+y8JOmXQc9825+/twZucw\n59eIrFSwto4QWathduQo7pVpePXIDsx9uxj7tIc1PMTqsQH6TjtkPv0E+b05jIYP+F6fQscjKA36\nzEXU4QPYHS9fRrBpak3L+6MC82Bfp68bDblmotHmRktr1FoeFldwFpfk/4cGMGdXMHu6JaWu2sDr\n7cCoNCjuyYWHarz9QZKfk6GHsV4Ko9MBar1x8CVUgcF5eUA+q/qWNOpFQ39ucwWsBqWIrlQw6lDa\nYqHj0abfQsAMCqSeN/rG3dCIt8nyWhrjWMHF2D2GWlzFzcSw+7OYu3fgWQp1YBeJJXnvN3ZKz3Lp\n492gIP+2fZi7ttP7zRkKWyPE113iyzXiV5dQnkYbhpipH9qGqtTR8RZw5AaZKtAONCsD+rrR27bg\nHBhDZdIoX0ar6w2RxfrXikq2yLK0n/wYvCf+mhIwhYxiGV2t4j19XsCpjizmiC8l7+7A3LMdZTsh\nw1LFYpSGDLZ9UrwkldYY3zkjPmyAnVB0ni/K/eXRg1gD/Sz9s2OgYOFRTb37LshufPYTWpO9XqZc\nilMcMZrgVDAgCmKdw98LWEPNdl+1gS6+oap/f9/xP4qsHx2S75Hr4kUtrOEhzI4c5pXmZsVdWaXz\ncoPyDzzM3t+aJuKDtNv/5XF2/dhpqoMpWfP8ntgaFfDIvTqOVy7TdXJZ/MT88AYdSMGCmOdWNrcv\ng1bxGOZgv0ijc9kweTAMDon6KXOeh67VhQ3VkHCE8D5l282/B3I6hN3DkYPoShUjlcKZXxAT/tl5\nzI4my9DIZrBTCuvrp9GlElv/Egr/p++Z9uh9bBzZgpGStDweOQRA6h3X6X6mhFXVN1lkvOrV8h4G\n+5LbvT/ZLLHvhcrct+u2Hv8f6lWqln1GYrGOE1d4yWhTohkkRwbgSuBfpowmg6+V+ReC0G4b01W/\nRAnu9E/uo/DhRzAP7Gm/5m6FhHHjYzfzuwsGoaaBEYtJ/2Ea/t6yZW+mFLcCRr2cMm0B2RNroi5g\nzxh6ZIDCvb0oD0a+sHyTrYs+fS4c8N9KvWYBIXN+5SWxU26plMJseEI7D47T073pzXH1XqG1qwfv\nuaVDhBvKXVtv+fT00XvJ/+gjqAcO4LzlgbB5uduV+KsXBsHcS1clheNult8oacNo0uxbPDZ0MHFt\nnUKF3kItngatzwchQGQPdbF2uIvKSIZGRxStwPr6aVLPzpKe8UhNK2JrkFjRqEiUjZ1xYhsOqycG\naCwkqU+nmf3KKF0nI8TWFelJg/iqxqxronlNat4jM63JTPppZY5Pv3fcdtnYjekbnsYrSBNrDW0J\np1sBA0rbdggKqVpDEog8T0w7ZxZwr1wPYwrdy9fQc4vo9TyRxTzWSglzo4IXj1AdTMm0XoHZ0HRc\nrpBa8EiseKSnNQz1U3xgiPwumHtDlMsfi3H5l+OM/+ZR3Dfdz8IP76XrfJ34ssb8xlN0P1Ngx6cL\n1P5okPiaRtXM59cov1oVAG1KoWxhTRnpVGicHKb6BEks+BNFT/vJY/776tNkw+lI4LNgWehj9+Ik\nI6jvPY2zsCiN6JGDcGiXSKJSKTFoBuozwlBKXVyGIwexRofCG715YI8w+JSSqPtGQxgzhgp9fJZ/\n2mc/uk1/jSA1DBDvDd87KEgamfvlY1z/s/tY+fhRVj52lMoHHsbYPop2HFyfaRAuvEqJfCdYxO2G\nAEq+NMGIxwWQUgprbKvcV/2oaCOZxMwJe9Ds70OXK5gdORpZi8qeHsy1Ehw5yO7/S96LXT97Ai9m\nkpyvoyJR8VV6/X7xtGrYGJkMhS9JysJtXydeSrVMvlQsSmLFvdlf4hWUdhw6Hp/GmZ3HecsDKEuY\nG87MLIuv60SXqyjXhcE+tm4T2a9ha9wLV1i5N4bb20H3d+eIbshnF9twUNUGKl+SpLiaTfzyItZg\nP4XdGaLztwbkm93iLWIc2otqXT8DILCnBwCvWGqChNCkazuOpF65XphApms1kU5puYd6uSReuSKp\nZJ25MAhCXxpvyr2UCiUYRiYj0zV/42tkMqTOzlM9IJ9LY1CuP6usMQ/sIf7MVJNJeaeqBdBXlTqR\nElR7lKRiBSwqP2krAFJUwPyAMFUquPfcGJOrWiQ1jYxBeXtOvEyeeFYAwGhEwhDSMbyInEvhoFwj\nuUuK7EQdw9boWBRncprEikdivoy5XkGnEpgVG6NSQ/X3EJnLS7rJ3EpbYlxwrmG6TCBb9UEH99JV\nvGcvoo4/gzM+iTMxhUolMbo7UZ05+f3ARBikD8tlZSizpQe29Es6Xm8XaA+vVEYXSrgbeWmYA3lR\nrQ4NG/fiNVTdFpmif99TloUbA92Vw9o2SmFrLGSXWcND9P3tFGsHhC1U6xb2TGLZk17IhNjqnZfG\nt5ZRqmFOxymNeuh0a9y6kgS/QDYWrAWGzyprndIHf7asVwD61HMkFxvodFLu7WfOcfE3+yAWwxsd\nDL0mzf4+1ndHSX32BJf++QhGodrWs6bPzgvg6zi4xSJ6bUMGGQEYky9Cd2cTJIW2v7dJyPwezl1d\nY/KHhmGgl/qOPmY/vJPGAzvD43gbefkepFO+j54nG7lsBpXNYOzZATu3hbH3RiwmLDp/T2AtFyAW\nQ0WjIt8uFjE6/evSL2eom2hBrnF3I0/sfz1J+h1yb7LWyqztM6GvB3d9ndnH0nivuw9r2ygLj2ao\n9BtNO4A7VS2Jf4E8t80n8XYcIhZ78Qe1VHFf1209/j/Uq1Ot66O1URWJc0yG7OGgIhi+t7HLN2EP\nQQszqH3IoVbbpU1mf9+m51PaYVPYZnDh51+hEqXFV+ymannNXq2GfXgHqksAYZXLNr9DATD0aiuC\nNHhRTWq6Ij35+Wt4T58nczFPtGCjqvVw3xcwXNFa5K07x27pUK8RQOjmC8dZWETtuHVQ5QVLaxJ/\ndbLNN8ddWaV+9GYwY+t9c7ClT6buL6O8p8/f8u9YywVy/98T6NPnsL52WqQ2wc+exydDRaLoY/fK\npujIQYnavQMLTvV97awh77mLr/oxX7BakFrdaPh0c//LagiLIQSKtBYTz2AiBS0miy1G1P6EStfr\n2NkoTkJhVV0iJYdIxaP4w4+A69J1fJ5oURNf11hVjbYbdJ8tCtPH1Fglg87nFMNfK9D7ZIHOSy6J\nZY9YQZNY9UisekTLHslFG6uqWT1g+gaOBm2G0DfKxTYKUK1hP7iL6X99jMnf6eT8vxvl6m8/wsKH\n9+MMdOAuLuHMzKIrfgNrOzKFvz4RTkNbyyuXcdfXBXxYXcfLJnCTERpZEy+qQkPERkeUek6Ru1Km\n+8QShQNdrO+xcFIaJ6mJzUXo/mqc2Ipi/L1R0u9fYOmBGCgw7tnL0kNZzJUCZl3jvWsdHfXu7OYs\n+Iq0ejUBqqvT97nwfVpsP7nEa0oeVMTyPXmC1BajaZ7XIpUwe7pRjz8j8orDB7C2jYp85tR5zKU8\nqiOLVy6HjW9qm4AnOhaBk2dx5xdBa4xMBu/qhExj/GtWNxqoWMzXZwv41/t7xzG7u2SS6lPEVcA0\n0B5etRqmI3jlMrX3HGHoq3m2f+RpOi/X6T1TIvm5E7gXrmAN9FN7zxFUJNoEXLQWFtDRe7n8u0eo\nv+sh5j9xjPIPPIx5YA9GZ0f4OGd8ElwXd3EJDBN3fR23UBLfpMUl3L1bwbKIbdgkvnYW9+o4xnOy\n0Fkjw5j7dxNdraK+9zSl9x0GoPvXxnHmF/AyKeoP76bzh+Q+Hk6J72DpNmDZIPncHKXDmwBCr+Be\nXD64BXPvDqLfO4fXnfWbLsXgF6bQlQpqdglVqvLuLWcBAagBEssac3kDd34R47sih04+My0+YZYf\nVb1RELZgvU7u0q2BQcrfMAHoqIUe6sXs75MNdQAW9nfLn/W6MNlsBzXYJw2N64ZAp7aboQXuRj4c\nqBgdOcyVgsSMKyXSE8AoVND1esjaVVaE5GQes7tLNsKAMzcvz3dwO870DFM/4X8fvym/UxlUrDzU\nhbe6hmfe4c1ZUEqhag2yUw5OWtPojvvrTntKIPggtO/P0DoQCMylVcua4BYK1N95P+a+XXR+7llS\nT4xj9Mpnob73NNWtGWr9SdCaepfPZo66mD3dZGZcqn1RMpc3UFNzWENbSI8XMfIV2WTXGhgreXRM\nPJB0Ioq5c0z6qeC+509+cV1hgVm+tNayUC1prqs/eRRz13bM/btZ+fhRvEwKZ2IKZ3Ia1ZEVc9+I\nhUokMHq6cSancSan8Z65gHv+MvrUc3jj06j79qN3jsJgL0YqhUqn0aNbUA1b0p1iYkDtdqXFisBf\nB43+Xtw4VLZmKe/rp/cbM+iIiXHvPubetxVnZhbD9Tf9UYW7uIRV95j8t8dIjZsiub4bFUjAag0y\nE5Demqfel2waKdvt5xWuV63+gi2G5GGCpi3eOyEo9h2RIAQhCMOfjjDxkztRrovb7UurHYfy60oA\nbP9cTcy380XMbBYjk8FdWApZXUYs1rKBNGVNWFwSqXSbTCNgwRlhaIPWug3AGP3sPGp1A/NbZxj8\nvdOY33oGlUqy9u59Mmxo2OLTpZTcX2o1Vr5vuwRlaM3MO7qY+8AO1j96FL19GGtkC+7ysqQNL60I\nC9d10WVhvutyGef6BMs/JQMXa26NnqfyWNu3YQ30S/qbL4N2L1xh9N89jo5HMHeO0XnFxfju01z5\nqSF6nq3Tf7KEvr1k0hevVml70CP7KaG37RC3KNvOnF1+8Qe9inWrANbf19ItDDpsB7OhaWQjsga0\n2lko1fTfChhDnm5KpAOgN2QCyvAjkLK2GrMDuItL5H/0Zl+cg3unsbOa7ietNiYwtIAhL6WCUJXW\n70arr51phoNQ41tncCam8Go1WYP8fZORyUjSbCR603fJ7OkO7VPMPTuxto60S9xuoTrPF4huKNRZ\nidINzst77mJ4bvaYvBd69yjmnp2hjcutBq68RgChzas2mL6tz/d8ruWmfTOF8y19lyju7sDaOkLt\nvS/BN+iVnJefqnLjhxdofc1slqkf2XbzLyqF9+A+1OPPyGNPnkU/eRa0lgtyz06ssZcGqj0fInur\ndVekcgGAA2AgKS74bK1Ad976hQ08GFonZkEFwEvQeEcs6O0i/s2z9HzySZyESWUgitHwiJQ9nKUV\nnPFJOv74OFZNYycV6qGD5Henia1U2fJdh47L0Hd8FWNyEWNmieRCnWhRft+qeJh1D6vkYpUd4hsu\no18qEFtpLrDaMttAKuW4Ap4og/L9Iyw+GKeR81BP5MhcjNBzWjH4hWnM8xP+e2Ki4jF0sYgzPRPq\nSo1UiqWfOUbtPUeY/8Qx5n/xWCirAN/L68I4hu2RWqhj1j0MR6MNyG+L4MQVk+/MUDjUQ3HYxKpA\ncs4gtmbQcUmTXHSIr2rG/mcD+1P9VAc9Vu/zmPhAF+uHHcr7B1i516DybCfxeevOmi1qaDMa97RM\nk7vSAnwEySvRiGxiAtM88CfxzUSxwEwaCI2clWUJqP3QQfl318WZmMLcsRU8l9qufpzxSaG+7peJ\n64/sEAN398IVlv73Y7Lx9aeUKhoVpo9hik+QFfE3XRHstz4QviyVSEgT75vNNhOADJQVQUUsvMcO\ns/GPjxL/wkkxnjNMzG88JRHk/oTXKxRZPWCFDTVIymLhw48w9c4ku3/mJPGvnGHks9OkPnsCltZo\n7Big+MOPUPjwI6AM8Qwa6MfskoQ1a8uAyMW6uzDXSiz/o92Y33gKo7MDsyOHikYwkklmfmAU9/xl\njI0S1vAQue9OAPDsd4RmXtmWFT+LgiTZqMhd8PNoS7xReGvrofSmrV7O9EgpvNdJ8qV7/jK1Nx5E\nTc3j5Qtc+4+P4MzMCnC7ugaG4rFUE4xf+OfH6D61KiBwa5MeiaB9JiGeRleqeNmksG+uz+BeuoqK\nRF9So+we2Y/2JGFRn3oOuzOOikTaorhLu5sTdWwbt1DAvTYhh3+9yCg2a5ACHyRdq+HOL6IyKQL/\nM2ugH91iwuk9dlgYbNenaBzahruyiorFQj8C9fgz8lxL8fD9BEjNabrOlTCHBu+8b1kroK81yaky\nyoXylmi7WWewXt3YsPqysqAZb/2OK8vCGhkm/uUzeFcn0fvGqB8cxbk+gT4qDWJitozR8HATFpVe\nefHmTBw93E/88ycxHPGHASRIAVDlqoCJDVvWn/UCzuQ0eH7PYpgC5ulm7L32GU7acfCqNflsohH5\nHI4cpO+vrtIY7sA9f5mB/zmOTjRfe+HwACoWRUcsnOmZMOJ77peOoWLC5PFe73/2Z87JPWx1g+I7\n75FN/9UJANy5BXS+gHHPXswZ2YA6M7Os/fhRnOsTDH63TnSjQfL4ZZzJadYOZjGKVTqu2dTf9RDR\norz3q/fIZzF/zCS+Cl2XnLZr/Y5Vq5zddug6XyMTr5MfiwjwpZT0Kw3bZwf5G5yAZeYbTYcVMHF8\nWaeu11l+WDw6at93GFbWQ/Zf/PMn6T9lM/WeLtb3yL+5q2vET6bBMHESJm5vTgYGvkG12duDrlZB\ne6E81CsWUaOyFoCwO1Us1gQqbgA8ZbhXp3p0dygPdK+OywZSa0rvuQ/9yD24q2sUthtU7tmCLpfx\nSmXxS0KM3LtPreBNzMDcIlt+63G2fHGaxJrL+Pd3MPF/Z6m+7wjadTEyaczebvEj6+1GWVYIYvb+\n5+PMf+IY7sIiTjqKNg2chUWW3tCP3RWn+MOP4D12WAITnr1I6Z5eMt+Tnj45qygPRjCLdTYbgN+x\n8ocKXqWCkbg9SXkBaHgrVdnZfVcVEHfLd/DvXLVKv22H+IpNvcNEJzfpEzbrdbwmwNt8Slm/tKd9\nO4nNvw/FUYP5XzzW9m9lO4oX0SSXXMr3jTTP7YEDsOPWgj3U8+03DIXZ9+LJq3qkn8ob94k8NPBa\n8kkHKpMO7VPcS1dlvUQY1fV3PXST1+HzVfkHHoZnLjH85bUX9P5Sx6XXMQpV3EtXicxt7k/0YvUa\nAYQ2b5o3A2peSV35mc0vmEqfP1l8S3Nj9akLD5P5xkUxEnx2/raeR1sptamZM8hCtvALx4Quf6Q5\nxXXfeL/IE7QOL4Qby11ZlUSBjZc2/XUXl17w58HGNqjEX58Mz7+1vPJdaJQCECeYTidi4j8QTCuD\niVhrMxSkV4BPR/aBo8BsOgBgGjaqJowR9+hBnITCbGiqvZYYBLZ4tsRXbLyoYvZNGao9BnZnnEbW\npONKFXxKpIrH0JbCqnr+fy6RooO2DEqjcbRSuHELL26i/cW79fUFLBqnL8vqO3ayfChCdsKl70lI\nT3t0XbRJrDrodAJvl3+9e64AQS2bqfIHH2bq5+4lUtF+Ghl0XnIoHOxm8t8K68M4tBevXCZyfQHP\nMmhkTCo9spEwHJG7eTHN0gerlIc0sXWPWo/GKoOTVMy+ycKqa+pdAh71nYTRL3tYFeg6bVHYamFV\nFDoC9R73zk/OWmWDgHI9ocPiU8nBjz2OhKklMlX1wim4EYsRpuYERnU0wdzrH0hjjW3Fe1Y27crX\n9ZaGo3ivP0xlWzacNv/B374lPLW+/9Q0fDficbDtlsmu7/vjTzgCA2drZBhnZhY3XxDvo2Ba7Ms1\nMBRGOkX00hwdf3I8fN1B8oqKRNGlMjOfPSDyWn/9Mfv7uPLJB6gNZ4kWPbb+unz3S+9/AHduEWug\nn4mP78L47tN0Hp+l8/Qy5vZRzJ5uuQ+trOLMzuEuLApgbDuwnqf3L+U9ceYXcDfyuBt51NAAA78t\nr/3ajw/jLq/gLCxiDQ4w9qtirqxNUA/eg7lnpzCG1m8tSeF2VaCBV77fiXG7ekytuf6BONG8D44Y\noOJxATAG2psCrzPDj53+8RDIyY076MnZm58yFpH0plo9BBmM1UL4OgDMvp4XbJSDiVdkpST3RcvC\n7OkmNr6CMzuHMzkdyhYzzzVjU4Pvgj4qQJDrS5UC2WLrxiCYvqloRDaXltwDVaWG7sqJIbvfTBnf\nOiOP3TpMdHpdmAnbR3Empqh8/8PhOe/5gzWiE8t4rz+M2dNNcslBXZxAJ+N33kOolWKuNeZaAavs\nBxJELPG3U763WYtXWUjJ92Uw4c9aPQxME69TYuDL7zmMNg2iqxWs4SEqQ/Id954+T+Srp5l+azSU\n6MaXFFopjEyG7Ilp/9S0AFTBWugn/GnHgUgEc/cOVK0uYLIvp2lNcAvNjJU01+a+XRSOjBBZLGAt\nyToUuziHmc2KV8uTZ8PfXXxINtru5WvyHA/eg7V9GwMnqiI5S0usMzSZyu7iEsn5OiuP9mMM9OHl\nUmK2n0z6zDhLgKEDe0gtOHiPHaY8GMVaKqByWRpvf5CeL17FuT6BVbKJrjfIPLOAevAeus7J59Vz\nRtPIQGmLefeju7Umslhgbq6Lwhh46aRcJ748TLte8/NomXwbsVi7IbPXvpHRCoz79pM8flmkyC1+\ni9G/eZLKiEP1/c0+Yuira+C5RL56Wtj0vgRf+QbgALpWx6vWhM1mWbjnLuEuCkDn1Wp4xaKss8FG\nsdVc3F/zon97pq3XCgaPqc+eIPob0rvGVmFjV1TAjmyG+tE9GIf2CoNtfgnt2MJMBaZ+cITUE+Ns\n/TeP0/lnaabfrZn9+Qdw1zfC982ZnA6lukEN/j/HUft3Ep3bEH8koPdPz2B97TSRkocbM3GOHRAT\n/L86Gb6/1T6NZylhoTl3+KbjB6yE9/lcVt7bxG26hl8G80F5YsnxWilz/+67fQqvzWqRZKM10aVS\nm49Q22AMmr1wK9t/k4QxrXUIyLhvPLzpob0oFHc4TP/rJig0951hOs8p4kt1EtN+r/DAAdxkVDxR\nb+m13Qx/KNNA1+svmHBm7t+N2dmJF4+w+JCJymTEQ3VsK2aPsHGd8cmbfs8YG8E7ewnlatbu6xTr\niBep1GdPyFDl2c0VOMF9Oyj3mhzXW11/WSy41wggtDlSZ526/LysnpdTvU9tfiMOGiPra6epfEAa\nyZ2fWAk30AG696rUC02Q7Qa5CQe9nqfRsESa0dON+c2nwqnZi9XzOZnf8mm2NGxBBaDUjfF5d7xu\nYP/omKRu6arvSRF4M0CzwW1N31KqaTQdGEu3StDiUUrvOEitJ0ruuTWSU2WsqsaqyfVk7t6B+8b7\niZ2bJjvpYJVg4Dt5omcnyX3lAtblWQGjDH+CB5gVB6vsYJUaGHUHq2STvV4hviKJPJHlCsbqhrCB\nWqLjg5uzk4qQXHbY8niV1EyN9EyNWN6ViefVNYp7u7j8Y+m298bs7WXmV4+x8rGjrO82Q+f6+Uct\nits9Fh42WXjYID0jLKC1+zrFFHh+gejJy0TzLmZDozxIz7v0nK1ilRTmhTR7fnuSrq9eJ3sdui80\nSM279J/wQMPqAZP1fdJsmlWPjmsumWmHjX2ayhYXd6gGiju/OQuqhfljrVcw+/vw/EmnilhNfyD8\nhcwUwzxlWWGaXUhpV0J1D74TW79YbVscvIxM5SJlj8jFGZKPXxVTb2DnJ54IWRNmfx/WkFDZA7NN\nXa+jTFM8GPxmOZz4Gma4iJm5LMoQr6EgqldFrPAcQ3quMgQEatgiDUslwPUY/oFzNB7eS61PU/rB\nh1l83w52/dhplKvFVN+T15f91nUBpuoNRv69D2C5HqwXBGRMJUPmoZHJYHR34ZXLXPyNfSEt37hv\nP+UPPizytAfvoXiwl/yPPILZkWPrv3kcY4csshf/xTbMnWNM/IejJP76JNWBJHpyRrxmGnc+Phxo\nSnq0RkUi9J/It6XNvJIa/rqHevwZ2Zx99xLuUI8Yo863N/FrB3OM/XIxBP/S37qyKSgfmrvW6yJ3\nVEr8Nmp1lGlgDW1pgp7PUyqXxRoZRo9Py6azXBYm3MRU6AuSG5fzcC9fY+MfCzjkvlFSOu1MBDOb\nJXbiMtb2bWjHkQbKvfmL766uyb1rdR1tyQa8tKsD4jJ9b416vv6RPtyr49iHd+BdkYl85hsX4chB\nYSadvyzfF9cTBlHFFb+aun3n7zlBc9ximJua19gZTWNLzm+yvSYzSBltcqyQ7QFNwNeXObv5AmpW\nNsflAQNrdhW1sIquVokWZP0LvAZSs4r8DpGij/zFFObCKl6xiDM7Jwaa/v0NV4BvXa2GXk8grCGK\nZay+njaZUiDxCZM+Abe/A22aZE/NQqGEzhdRpiFpif6GvzVlZvgbch0GaXCzb8yiEzGs05ckVTAi\nni/W4ADRgiNmx91dmGcuk1xyWHn9EE4uBrYPgK6s4czMsnGwA60UsS89ifGtM1h1LWyTyWkS4+si\nq339YTZ2JcTfaGIKgOyfP8Hajx+l43ye2haX5NLmwROvegV9i1+q3iBzLkp0VwGnM9EcfvlJdNAE\newNAMWC+ht6JQTy9/1n1/flzrB/I4pWrGIk4bm8TDDFSKXb/9Ek6k9UwrVdfGm+ywg1JuQtYkzRs\nX9bcEmZgmiHAEqx1OuiN/J8HXkfKNDGHBjFSKYx4TKSq/gbIq9ZCiYj9RhnY9v3u43zkp74MiEF0\n5CunqIwKiO1u5LH6++CE9LGjn56Cng6MZJLs1y+z57/UqN9fYvxf3Q+RiBwrEsWr1Zj5pwfQR++V\n42lNbUuGCz8/gDO/gP3WB1j4Cbm/JWbLmHUX8xtPUfjgg1gjw1z+l+JzN3DCFWC/bj/f/PvVK7eF\nBY0MF9AaXa2FrKtX9PTLty7/in751F0JgwjqxjTkIA7+5bCd/l5UIPlq2CgNjY5YuJcJ03pb92FB\nvxzsu4I/Q4sOHX6Xows3W1cAWBWIL1rUuz0Wf1ZAoe2fnCa16ODFTTAVxj17qffcOtMtjJ+/ARR6\nKd5a7sVrqI4sRs3G2VGjum8Ar17HGZ8Uz9bnK8vE6u8jPl8iM1Vn9VA6TGZ8oTLi8ZtS2ALlTyvj\n0xoZdSCH8gAAIABJREFUBu1hv/UBYWLu2/Giz33TsW75N16V2vwO6ZXLFB66fUad2S82QY1WT57M\nxWY0W/bxCXjkkCQO3I56BTdcdyMvnkeFAkN/HmX+UfWKbqKt8fBBtTbWwC2dbwBK3S7Q6RVVK4Cj\nFI1tvXgHdzSnnDc8JtgotzngBwaLgVmY56GTcezuFNUug2jekSYzZlLrMnBiTX2sVWrgbeSJf/4k\ng99cwZxfkQXXv+HoWj28KaqGh1m2icysYkzMYy0XMMs2ynZRjicRwSvrTR8bQ6FNQ9hBhkFjqBM3\nahDJN7DWqxgNB6PhEs3b8thElOyZeXZ8psHqTwiNefWfHqV0bIyesw52RhHNQ3rGI1LWdFwSqZfy\nFLE1Rde5Ch1PztNxsURtRBZIr1gkMV1EG8JYqOcMrn8gTiOncROawpERLvzmCIW3lMlvi7CxyyI/\nZpIdrzD07SrpacX6fsX0x2wWP1SjPGjR/YwiUjDwShHMqnHnGyVob+wNg/yBTmr3joZJSIG3gmpp\ntIMGui2q3dNt5rlBFHvg4VJ/50Ms/9RR1Jw0T9lnl7H3DotR5vnL1N/9UNtpeatrOPO+CXVgkgqh\n54qyIpJ4YFmygYuI0Z+5cwx6xLAxAKtCP4/BvrYYSiOY4NoNaf438jIVBmLnptn2a8fJXC3R8wfH\nRYpyzgecslnxPyoURDZUrcqGrLOT0uEhvK39aMvEnZ1n7bFRrK0jeMWieEa86X72/vpVOW6jQX5P\nlti6Q/wLJ3HSUZKfO0Fmpo7qyMl09/xl6O9h5y88gXt1nG2/dhxz/25S377YlLLdBQ+hcNMeRGhr\njTGzTH7f7Wko4184if3WB1C2K/KFqSX0RoEt3/EbKz+9puNPjrP8hi3h9HzTe7FhivG8bxTulct4\n1VrTa82y5DpcXn5hya9liu9Ow5bfCaLBEXmHikSJ/s2TzP4Lad6WH5FNZvSpq1gD/SSenkIlEwI8\nXJ/ASCbR1drzTuOs4SFJIfIBh9TfPkd5v2+a39J8aku+d3bawvHlaO5GnvV96bDxd3tyqMefofjg\nMOY3n8LtzeEl46i7sbGHto199roA63Ym8LhrSn1Cc87Wtcq/3wSG98FzWf29MgA5cpCBPz0nrLzF\nJaoP7SC6KmBOwLYb+NRZEksKe2sv7tKyXB/++uhVKhCLobNpeX+UJDW5hYIAio1GKCeDlmRRn9Ea\nMD1ULIrq7sSLWRjrBUm+DHwblBJAwJA/ncnpcIMfWyxT+PAj5J6cw9y9g4ETVVS1jlepYK1XcCMG\nKp3EKxQxv/GUDO46c2jbIfa/niQzXWfpcAKvK4NKJ3FX1zB3jhGpeui4vMf1dz1EfqzZ/ja25HBX\nVolOLOPGpeF23vwAG3vFtqDeqahuSYMGq+K+rASXV1ybTNo7rjlYpkd5KCZASsta0dyUeSLj0l47\nqOSzGzHNkK3nFYt0nVkToH/fGF6k2R+V3yq9YuZjDh/5lS9h7t8taZnlsnyWnot2XVQygYrH0YWi\nDxDJ8VUmLeuo8tN6guHYvl2hzFA7Tnita8cJDeh1oyE+RMFG0muPgg/qjz79dpFZ+PeH9HML/nth\n4o70YRzcA4C7tIx74Qqltx+kcnQn+smzbP8tj4++7+tc+ekRf+2X5x/+63kic2sYPlgQW6my/S/l\nZ9FvnaX7Qg0ViWJulFjfKYB95r8/gTM9w45ffILFnztGYrGKcgk9rO5khUbvIcisMPv75DPXtwcR\n/7uWqhzes25gabSy6P+hEF+gGwbukYqm2uOzJIM1ShlNcMVrAR9vTL9suYcFYLV74cqmh+685OAm\nNFZZkT/cgCMH8RaXiRQd3KiB3ZWgNpzBjSsJSLjh/vhCDBkViTZtIPxzV9Fou6T2ecqIx3AmZ/Ce\nvUjPl2IUtkZCZvULxbx7l69jbx9g40AHlYEo9U7FzJujFD5ys1dSK2Dp1Wo40+14hE7GfXZuk4zh\nzMyC1nhRn4E98dJII22v7ZZ/4w6WuXOM2Nrtm/62RrO1AT5Lq5Q+JB+Ks7DI9fffxpubd3sah/jn\nT7LjM9UXf+ALVL07dpPxlj59rv1Bt3i+9tsefEXndLtKK4U2DLRhUB1KMfHeBJPvTOP0ZYXqHphG\nQ/vEtXVie2PD5XmoSo3o3AZ9x9cwbI/p9w8y9fY0hg1WXR5f2d6Jm4hgdnZgDQ+h1vJ4xZJMVut1\ndLEox3YcqDeILOZRlydwJqcF4HNclOfhRcVHx6g5ONv68XpyhJ5BvteN25Gk0REhutHA2qigbBej\n0pDUkXwNs2qDq9HlKtFrS3SdrxCdWiO/R+KWq90m0bwmUtJUuw2q3QZ2CpQLkaKw5SqDcRrDXZgb\nFayygzp8AHPPTlStTnLRJlKB9T0KN+3iRTVOymPm7Zqju6/jeQbFMUnyqfVpFo+kyW+LY9ia0S9V\nyX4tBeNJUgsOVk2jLTBqBpG84o4jQsGU3k9kKR7qpzxgEvnKKZmgOY4YcjpOmNSiXc8HiFpilP04\nd+XTZVWY6OKb2e4cI/blp+j/Y4lIt4aH0AvLFEdjqOEBzD07ia77za2hRCKmDGmYPU/AHN8wV0Wi\nWNtGMbJpSddxnGZksDJwr46jytWmWagnptRq23BTguFPWr1aDe2I9McN6NueK4agi0uYu3egz5wT\ns81AurV1RNKh4lHMoUHcxSWMnm6wLNw9I6SfmhHpgGXivP4QsXUXZ3IaM5vF7O0leuYa7sqqMIY6\nO0gt1LG+JpK3yMmLmDvHMMs2hcODbBwQk2o9Ph02bgu/cAy7K8nae/fLz+xGc7p8JytopAOpYDyG\nvXeI3IXb11BW+yLCxDBMua7iMVLH5TO8/oHmGpXf+XzPIGX2duNVKu3NrqHCaxrXg4YtflXVzTcs\nZkcOb2XNB8s9SWwKfbOiwqgLzA59XKPrjCG+P1qjMymJf49FwzVIO84LSoyd2XncB/YKUyMisqnU\ns3OoBw5grspUsfbeI2z/HxuUfvBhYl98kuk3SxNoJJN0fup42PibK/La1/f40hhTYZQqmxz1Va7W\ndCdE8jf/aJJGh8awg+AAozl9DYAh122/5m685j0PXa6ALwNxCwWRVe7eQaTQEGPo4KHrG3jFIrEN\nzdq+ZOjTEsqSLQvsBqpho8pVkWX6vZNKCQitUsIIC9MFQTYPhmwQvGoNlUnTGO0iMrXSZBd5rr/J\ndzFyGV+uLT2e4T+nm4qSWmjg9nXg5ZJEzl5vyhbml1AaWTNbJC+qWod7xGMsulymsN+m0ZMCx8Xs\n7UWn4iSnyzJwicXIb4/QeaXJ5LTT8n67C0s0sgq9voEXUaRn5Joe+bNrNHImmasmkZLT7vd0pyoA\nL4Po5lSC6IZD9lNZ0tM1+W5GrDZ2WQjO+QMNIGSUoVQzKTMRF/Z5TzfeZT/N79RzWKulcLNfHPEN\nYCen+f3zr2fhDd0Y0UhoHB7KFxxHvu/+2gkyeQ/kjbpe94ca/nt+6bqwcgJ2kO/lY+SyuAtLYXKe\n5zNkVSIRPs+NNfZfr5M7NYeRTgt70Wf3K9MUmWhMWIrB76YmSjJEe/Q+9Knn+MOvv4l/8p5vwNhI\n8/x8b88AgDLyFazj0jdru8HS/XG03WD2vUPkxht4rz9M4+0PhkPnwoM1ysNJTFujo5E765WIL9/U\nPqvNdXEHupn+JzvJv23fbUsbezGriLuSBPpS6uTNyod/qJYyDLBMYemaBm5nCsPWxFdd8SoLSnth\nvxsyRPUNoJBvKB2YSt8od7qxUhNFNOBFwChYXP5YTIKmtEYbCjtl4caVv/ejTaZm3Lef+psO3cSs\naT6g5TuoPYyEeJndGN++aXleOEzt/Otz9H/++vM+tBUoNdIp6l0xylsMiqMyAPcsWHiDd1NCbQhY\nhsds35e75y5JOIwvsTc7O8P1IXVhCefND7wscPM1AghtfoN0r46HySC35zDPc5y1dVYPNN+K3qdf\nRAZ1G935X3IpFZpkvtyKf/6kMFVuY0W+cuq2Pt/LLaV1OO01ay6d52HwuI21sNGkTQfU2dCA2mg2\n6K0IdmvSRSqBt7wKiyt4EYP0nEd2XBMtergRhbV9G42ciZ22qO8donxwS8gw0sGxgqlcLCbPubKG\nbtiySe7uQifjaMPAsF2MuoPSGqPUwMiX0aYRxs97qQT13jjR9QaRhY3wnFWtgSpWMCo1zLUSRlEW\nZ29llcjUMm53hvSUwqqKbCs962CnFfVOqPVqqn0KpSE965Ga99jYabLwSJLVh/uoDMZYeTDL9D/q\ng3yJxNVlPBOiBUVkzUJp6DhvYBZNjp/dRepEkswE5PdonG6b4pjH6vfV0KbCLNsYDeh7ymPyPQrn\nI2uMPDiL6q/hxjXPdx941arVe0opMicm6f8dkT6pSFSaJR8wCn12fLlYSHP3Jwy60QgnDdoT/w0j\nHsfaNopeXMHMZUVK1tsrhr97tpK7Usa9cEU2/S1+Pl6t5oNBIrswOjsEREmlMNIpnMlp2fwZCiOV\nCptbIy409yBBT5mGgFMdWVlADBMjkwkfr/zI3TB2OBIVNkmxiDUyzMZhMdYzervFIHpsK97iMioW\nw71wBWdiWo5XKIKnsRbEy6f+zodgdYPozAaxLz0p7/VQv1DLPV+iGYuKFHFiJaRpl7/vHsr7etGn\nniPztQtkJquY/X0s/ei9cPIsxr372PKfnyKykCf3p0/IuaVSd2+qp7XPFJKYbq0U3jMXXtlzKhWy\nNLuOz0vUd1cHeqDXlzBKI+Imm+D1yNdf+J7ubfL+hNHPgczDNKAzu/lAwDAlcrpYDI2/vXJZWASN\nBtpuiJTRb/pHf0sAvp7TBXR3h2zsro7DQK/I3jqarMMXPnEX9b2nZZpdKKMGetGZJOZ6GWd8Eu91\n95F+eg5VqaO06OlHvl5n/aNH2xu7Rw6F0dzD/+kZzD07MUqSQnnnI6BbjmcarN6Xo3qwSnJOEVvx\nQZOA2dE6rQwmsG2JQS3gktaoTBpnfBJ15hLW9m2Y82uoho21VBCzfL/0QQFOOq4I+KdMU+4Fhtn+\nvI6LM9WcMirLkk1+w/czq9agYTcTrLQWrzNPY/Z00RjqJDq9LpPLQOpTKMk1U6vhFUvSj/jHC6Ss\nbtwiOr2OGzPRT57F2zUKhoG5cwzV1UlsXthu9HaFm25ndg7leViDAzgdCTrPWKwcitHY2iP3QX9w\ngtaU3nsfA9/dILFYRyUTVD7wMGbNpf6uh9B2g9EvrOJu5NnYFSV2bQn7bQ9SvWeYxffUia1rzHLj\n7kjGgl5Ca7BMqiNZlg/HMRseRsXfnAWpkj5weyNw2OrzhCHyQ207MmxaWUUP9YlMKx4X9ufsAobP\nODVrzddsPZnBSSp/jTSaU3YrIs+3URSGNIQMH2Eq2U1/sIDh47ly3YAAQ7msz0BsyMAiGvF9/Boy\n6LDt5jV7QzkLi5JIaMugI7g+tOvilSsYEwuoro4wPEOfOUf8Cyep9Qgwsvc3x/lv33qMi59Ih8+v\nIlG5zosljEN7UTUBUPM/8ghGJsPQ7z2NEY/T//8+Tmw2T/TKHLUui6W3iaxj3/+xgFn36Pr2NHph\n+Y6zEkP5puuC62GUqvSeqZM7u3rHzJXVyJbbFlzzD3UHq/VatUy8mEV8pUFyqiDeqtqTdaPFwB5o\nWnLQIlttLU+/6LUX9FLRdYWOaLZvW2LlwS6clIW2FNoCz1QoT2NVZW9nduQw9+/GycQwbE9YqZs+\nuW7K2PwBzEtVuni1WhuQemNCWttjfaDUSCZRXZ1ESg7Kg/KQ+K1G8wqjanD146MvC1cIBr+N+8ba\n/Iuiqy9v2PUaAYQ2v0He7mhAs6PjeQ6vsVrIN9qgLd51s8e/7HN4uX47t2kR0Xbjpsj4zWrtJ46+\n4M+9xzY3Arur5YNCiedm6PzUcaJ/8yTOxBTu0rI0kEpJwxSYdEKTFWRs8lXwtex6z1YKj+3Ezpqg\nwWxozIYmtu6wfmSARkaRnMxjNFxKWyzcvs72a1cp8XBRSrwYHAcjEfeRclOMGy1pWnFlk6IjpkQ1\n+/p7HYvQ6E9h1D2sYh3tS4RwPTFedRyoVNGlijTZ9boYNvbkqAwlSS24GLYmVvTQliJS1mQnPKJ5\nMQ82axBfd+l6coWeszZ2BlYOaxaPGGgF3edsdKUCjkty2aX7vE3uCpgVxeCX54mtKayCiVnXKAdi\nKwbZs1Gy1wxMyyV/pMb8G3IUtynciCK+YLF2tYvrlweInktiNu4CyGoYTUqsKwk+1vAQZn8fZn9v\nU/9sqLB5DSeqliVSLN8Es81cGtD1Bu79e9DRCEYqKcaZ9bq8h0phLqxTGU5ixON46xsUxnzT11JZ\nYuYrFd/3JyJeGyBNu79oaceRSau/4ATTjYDxoywLrTVGZyc6mGZ7btN/xG/S8Xx2kef68hNX4jwt\nk+znnhIJyeIyKIU7txAuhmZ3F9ZgP0Y2jd4+DJ6L2ykT/9SZKdzFJbzxKYmCfvAe8fWCcLKuLIvy\nBx+mvr0XFY9jDQ4w+0aD+OdPoh68h8L3SXqiMgz6//oaZncXk+/tFFZTOtE2cbxrEbJBU+G6ML9E\n9Nxt8JrTOpw+4bi4F67ijQygZhdR2Qzu8gorHz/Kjk835RKR5edf/FUstnnjZSiMVBLty+5UPI6X\nvVmLbw0OyObLkOS8YJMXgAdepSJ/97xmFH2jIay0S8JWC14XgF7fkHvuLUiTJ/63nSIrW8/jXRnH\nzcnUbfz747jzC1S3d+FGFdO/coToXIGu53xWkG8UOv9oGi/tf7/KZSrbO1G1uphK3+mNfcBK9Q19\ne785y+7fqpObcGh0xfF6xDgbS777mEaThRbIU1XzOxz6xSjV/CwjloBdubQYVXsaM19t+nldnUHF\nYkQnljEbYHTkRPbTIjVSiUT4fKFnmWWhLZEX6VpN1q9EHBWPha8tSF50Rnoxyza6UGzeGyF8bOgF\nU6uFxzWSScw9O4lNr6Mcl8h689pR1To6FUevrMH8shjRX7yKPdqLce8+aYZ9I2zr8iwD//0ixR0u\npZF42LBr08R75gL1jIGanMc6ex1ndo6NHSaRr54mdXGZlY8dRW0EaXzgTM+wvitKpGQTu5QgO1UX\nEPFuSMZa/Q09TWypSiMHUx9ymXtzDntrr7CmzBbgsNXcNQCHWnvb8DP3/3Q1ulJD5bK4y6uooYGw\nN+r51OkQSB78TpnchEjEAsmxdiTdTEWj6GLR9ytqARnr4lfmVcUn8UZ5RuBtphK+3KxaQ1mRJmsx\nuO5dL1z/wpfR2dmcki80Dat1rYa5a7sMS0xTPPny8vkGHmcgISnBOrLjMw3eds85jK5OzJ1jaMdG\nV6t4lQoXfy4tazhQ2G4w/ksH8SoVlj56GDObxb10FSyLzqdW0Abi59GZZX2XWBeITOtWPvTbUP79\nJgCF3CvXJaXzeaQ6r0a5V8ebwTWvFgh/Nwb1f18qGFjaLuUtMcpjOdyBTlQi0WTLgzAFfeBa+Um3\nrUP2kAUYSLVepOKrCi8GkQ2DhGVT7Vc0chb1rIGdNPAsBQqMuuzvvLFhvGQUs2oTXa0+/7BQe6Ff\nmYrHXpQocWMianBPetGhVnC4AzvYeHCASn+U+Or/z96bB0mW3Pd9n8x31V19d0/P9NzX7mAvAHsC\n1IImFSBAihRJiQQpSqZDJiWHLIcPhS39YytCQUfQCkvhgEnavIQwFeIlghApEoQIAgQB7OyBxZ6z\nuzM790z3dE8f1V131Xsv03/83ntVNffOzvQiFMiIjt2prq4zX+Yvv7/vYSle0igL3RmDHQ+xh1p0\nfuTx6/5uOPUZoPm3nxz87tiR7HMN3l6U8JYkGOtuG5PfIYDQjYft9bIi4V6MWyGAu3/5zez/xz7/\n6vWUrXs0vhP8dlLq762K8onfPH7Lx0gTXr4ThlUqk4wBmKnxUeDNWuL1jURHP7pApb8fAYaGWEOm\nWqC1UKQ7oYk9SRjzGzGFc3WC1TZu1xBsGogN7mYHt2tRRsAFZ2oSXSlLge442HZHkhVMoumPBwd0\n3e6j+gk7qNvHqTWkIFcKW8wTzVSIA01wtYXq9AVE6oeoMBI5mSM+IfH6BrbRFN+RXI6oHOA1Yrym\nQcciDXN6Brdj8doW3RcAtDcGq496rD09zdZej9walM9rqu9C5UJIsNbFdLpEi0sUvvw6wZ+8RPmi\nHErf+cdzHPnUu0RTIVuHLQ/93Jvs++Q5WjstGCh+vcTE1wLa85Y4Z6kd1fh1MDmDMgq3K69r20fK\n8ICs0LaFHIxVpJBMvj/5ghLfjixuXg5nNjYJpT1J8jAWnR56nnuN+NQZ6VpGEbpYxLRauHsWiC4v\nUvj8C5hul+7HH6D6b5/HmZ6WedLvC8DT7WVz0ZkS2Y/O5QYHN8gYJWlx7MxMJ3IAjTMxjp2dlCIV\nOXDF9SRK2vOF1ZFSWoco+HasnBjk9dGlknj1WIuzYxZ3bpbuR/aLVjr5zFQvxOzdge6FRMsrmM2t\nRBI2jtoxg3N5lagkG+r6pw/Dkw8RrVwVk/GvflvAs9U1jvyyFIz2W4O12JaL2B1TxOsb7Ps356Xj\nGxk5SCbeNyOfx3aOYbZGckhWrnvDOPX3NDwvY5I505OoJCEuOncBZ2qSyvkwS1lSno9588YJFMDN\nu3BDZo/K97DFmxgzui66mBdGGklHKo4HoJW1Ql1OPWZI5mAYypza2JQDKoAx4mG0uXUdE+lW3ePu\nTGJOvLaeeIxIcerXNHpyAv9L36JfVuz6SpONx6eIkwhz68rzhmUBQdKhjM3S/j4Q37J0WCvSpwtX\nKH31HZx2RGdniWjnJFRKg/vAqEeDVgMgKJWWaY0qFdGPPojau0sOn/UWdnmV6NwFoqkS4SFhS8S1\nGrbXo/HheSZfXkd5wvpKJX/KdbGtNvH6hhz0+/1MqqN6IbbVgiiSw20cjxTFulBAz04TlX30xSvY\ndgdVKgrDIgEATD8UuWsoPmvZ8+7dBY5GhZGA2Ik/lT5/hejSZcLxvPjTjFWyz0ZHhnA8DzOTqKVV\nkWGvrmZ1Vm8sSbKp5OjNyVrXnVbYPTuI63Vaf+tJ8QzavxeTysXGyrg758nVjJhXty0rj5fQffDW\n2zL/PgCGkB1mtBqDc7XGvt++yvg3A8KnGpz5iTy1p+ZhYmyQSjf8t4k0GhiAksm1bFstkYW++Y58\nfitXpYEQRnT3TWWeOqbdxn7sUbzzK5RPrGf7Y1yvy/eRz8l9kn0x9QlKAxDS15H6daTAvhjzu9Iw\n0Jq4IZ5WytHZ684k2df4muhCQSSMvoczPi4MtmTfjNc3MJU8amFeQhOQ+R+fPI2OLc4DhzIJq1JK\nZNEvneS/m/kKZrJC6+i0+A4le8zhX+9nPiF7/niT/b8lhtZhUcHOWdo/+qQwgC9cZvrlLcKKS1wO\nmP/apoRC5HIf7JrD9YbK2zKS68Wdm71/184H5Qf3n/tIARzAqbUpXezQG9NsHinRPTSLmRoXS4Mh\nr7vUE2zkMRJ2M2lzKbq9HczCH10ltwb92ZC33twNVs4rko4MKDKWrykF2dqsuhF65eZ+PnZIPqtc\n9/bp2FplLFqdy2V71k3vfq2nlrV0JhT1vRrjgteyIhkrR7i5kKjn0piXM+PSP3kG5wFh8aa1ezpK\nv//C4CGH1sC06RF8++bytTsZ39GAEEgHMj55WnwDjh2554+fUkrTYrb3qcczs9L3Pe6Bg//9GO0d\ncjGYjz18R/dvfEb8ldLUj++0MSwXA8DV2N1zuPv3jtxv+BCb/aSJG0OFFlGUgUbORpPS2TpTrzap\nfultin/wAsGfvIR58x3Ma2+T/8KLlH7/BVSzTTSWp3K+C7FFFUXnTi4QqVjSEVW+n5g4+ujxMWyp\nIAlAvb50HcMIolgK4sSs1npi1pm70kbXhWFCGKH64aCw81zxhtFqIJc4ul/8FhREeY3bMejI0ply\nac1p1h90yG1YZl4JcTvQm7BsHoXmXkvhqqFyISK/bii8flkkO8UCWIvpdnEeOETtaIAOBaF/9fwC\nzoaLGYs435jg0uYYcTWisd/gti2FtZi5FwyVs1BYlsdXfUV+UVhXyrD93fph+WCSMqd64p1h56ax\nxTzxrml0qZiwGmSTU0mhqob8GmwCBinHwXQ6mEbjejagtWz9nacwlYLENj/+EM70NIUTUlSael1Y\nRMmP9j1stycsoq2GyLOiKJtDALpUStg9MkfilaujBqJJBLkKAjmApTrvsJ95uOhCISum9CMPQBjJ\nQWjn/OCwpxR2c4toeSWLubelAqpShsUVePP0IM0pnxfAYayMLQR0Hl4gKiZmrmMK/cYZsJbyFwTU\nsFGEs3sX8buymTkH99Ed16gg4OQ/nMa8+hbOsSOYeoNLP7k3A0AylsGd6L7vxxg+YAEq8GWuACh1\n10abptEgXlvD3bNAeHQn5vV3skNIvLaO/6Uhme5dmoLG9WZmJJsynYYNZFEKd8ccZn0D2+0NJJEp\nC8TakXShdF65O+bkpvExmafpOgbgubgLu25YfGXd4xuM/V9IAIPHjgkl/MoG7q6dLHy5CWMSoVy+\nGOFsdWjNacKyvK/ejLy++a/3YEbo1LpYxG0n62sUb//hLN1nUk85a1G5AFXI47z0NsVXLtGdzdN8\ncCrzSgESr51o8H2nhphpUEHgCxtxdVMMmCsFosuLcv1ai3dhFXdztK5xehbVaEPgo4rF7PvMPF58\nP2E1+Jm5ve10SE2tZa8aZXmoSoloqoy/0sI0W4m/zMAsWDkap1KSgtrEA2BQKVgVEMdUi7IOh5Ec\nXmencPfuJji9gm136O+eQD98FHfPAr3JHP7VJqqTHLaHxtw3B9fm2iNFdGTRjzzA3HFhHjkPHMI4\niulXI2yrjWm32fkXW8QnTtI7NEf5fAfb7TL99WW2Ptxj5pU+qhdJKqR3a/+L+zaG5gOAqjeZ+0+L\n7Pi1AOtZyj93mZVPzGSAi02u10wqlsnJhvyEPA9VyEsTa3o6ud3BOXaEeKLE2Z/ULP83T2SgrXde\n/eBTAAAgAElEQVR2WTyCVlaFDTj0uWcNBydJNEtNoLXUW7LXDNastNZWjoOenJB9t9FK5JF2NPQj\nAbnSBkU69PQkZqqK3TE18tkAMvdePkH87jmiB/aiHz6avd6Jr5xD1eqZJM50u2Jc227z3777GVYf\nr7J+zKU/XcyYkeqVk4Pr5MTpzF9o7rjIv2tHHMzHH4Uj+zCvvsXWPofVx4qoVlceI47Z9kUnXXNI\nAH2tcMbHt5VZmz6Xqd8Zo+K74ztwJOcRd6PF+OubBHXD1n6frQ+NYSeq2RkHEABlyL/sOnPpVPo6\nNJzZGZzDB2j9+JM0f+IpqZF7fUl1BAqXHPJXLaWLHcpvrlJ9cxO/HqOMxQSu2GuAhPLU6gNm/Q2G\nTpoZynUxzduAQSSNtbQR5t3eP+7aGkdfWGHm5SYT70R4bVEk6VChczHxlQK50zm2nuhx4eeOcORH\nTt328QH0emLRMBRIE9dqWeDI3YzveEAoHfblE9QfGHv/3Veg/wOPs/n3nqb36cdZ+fQe2j/6ZIaa\nF07fwyjE4S6oUtcZOn9QY/ZFeV1ZqsltRvl3xK8j2Bgt/pzD7z3W7n6PlC2EUphy/npTMWulY53+\nwAAUSn+fjjgWM0xrca5u3pI1Fu2cpDObkwKoH0K3JwyfxHhNpTK1tGuWetL0wsRUOulaGwO+Rzhb\nGSSkWfEt0C1hDGWsoJTdEsVJhOiAhqkLBbqzBeLAIQ40ylqcnsFqiH3xDFIGilf65JYaeC2L01Hk\nVxRTr1jGvnyK8mvLOB0jmnyk8Eq/8/b+MYwH+auWwqImdzJHsKGhp7m0Ok59o4jOR7i7W9SOWS7/\nWMTmAYdeVVF7KKaxoPE3tUgWQvnZ9sNZ2vlIu6dJx54wQre74Do09hWTg79OGF3OwDRvqPBUQx1M\nAGdyIjNeBTj9W4/h/GmVtR/scuanx7n0I7MYTxOvrhJdXpQOfcrmSNPyoigDbrAmi4437bZ0G113\nEA+dmkYClIvCXqoUB4ekpBAEMvAok/105ICkXJfOzhLm/KXs+dOhC4XkEJrERO/dTfvQpLA+mq3B\ngcNa2DGNcl36O8dYfWIcf71DsJ4U1NFgs7SxGFibZpMoeU6dyxGfPsfkrx9HH9zLwp/HtH/0SeKi\nDwcWcIYILzYxyfwgJGOZb8ow7dla8Hx0MS8mqjvu3jNBFwrYfIC3uDn6vNfKLO4gFWNkpEC4ieXA\nnxg9qlYHHQ7mszMxLl5UQJa+aM1Ikp7EoKsBWwhkXev1sJWSzMl+CJEc7FW3j628d5DM+UsBDreO\nloUCrjW2XBBPmDjGOXyA3GoHG3jkNiy55Tbu3CxRUeaqv9ams1fk4mrnHO5WMt8/ANlP1jW9tinh\nOPKZt9p4zYjWnIPN+YN0scRg/oY0e60gijAXFxNWaxHz+ihrLLq8mAGpqYGl20rmTkKXz9gcrivf\nsxm8VlXIQz4n7K4UnErWk+yAHAsIrbshulbPZKuZrBKRBdnYXFfHuXt3Z1IcQBokRiRpJIyh6PIi\ncb1Od9LH5Dxsu0uw0oar6xBGmIlBfeVMTuB2DVFeYZ59jLCk8DbaqE4fb60JkSEaK1C42sev9YkO\nzsshOYwlMeovv413pYbaPQ9aMz1TR/eT8IBkz972MfR9yL+TNT+MyJ1dZ/Ybiul8k9qHjEj5rgUT\nU4ZNOu/Sx0qv87GKBGAkoz9TpL2rCApaOy1bf20fgBy0PFdkE3EsDLDsNSZBGsMgVPIaTKcr8+hm\njE5Hi5F5MS9rR8Jgyg6XjjO61qRPubGJ3mxincF7SmXTWVPWxIQVj9a+ykDi6DjY8QqNR2YHD6YV\n7t7dLL04T2dKYXzwV1rZfqlcNwlwSPb65PHVcfH33PPbl/BW6mweE5+0woohLANridQ7jeje7jHk\n6ZKONKV0W19G5/0F43x3bPO4yVxVnT6Fiw1yNUNnSmMK/iDlME3JvNUw5rq6bfUHD3D+b89y5XsU\nS/+FYfHTszQfmiO/2idY9PHrltxWjLvego1N9FoNtx3j9EbVHqobYm6R9jV4EwmAdIfgfhbU8h7m\nsLtjThhF3a6E//SFGeR2LU4XTCjm0v4mOH5MZ2fMWqckQSq3GSnglQXSJEN332NNOPy3t7uDUuo3\nlVJXlVJvDt32z5VSi0qpV5OfTw/97p8ppU4rpU4qpT5516/sBqN6/BLmow+8r8c49f88wcYRj7H/\n7zjBn77E9EtblL9+GmanJI1iefU9Azd3sqjqQuGO9Yb3atinH6H9o9ezevL/4UUA2tPvbTNwv/Ly\nyL/T1KKbje2aO1apQTEA4AyBQmMlnGNHpGhNdetREhs7xLCxww741mbGvFTL4n8ytMA5szM4Dx6m\n9rNPc/UfPYN59jHctQblE2u4603xzXBdMYA1BjpdbKs16PA6Q4VFGGILuczjQhkLvT7+u0uQFB7W\nd4lK/qCrnZpju0OFVRxLJz/sowsFOp84RnfCpTfu0i876J7FbYQYTxHlpDvsbwFa0TxYpV8RLyGv\nYRl/aYV4fYPo/EW8dsT607PUf+op2oempBPr+TR3uAQ1KwyiFUtuw+I1oXDRJfdagfKbPsVX8vBO\nibhkqI61qXzfMs1jPZxqSOtgyOxLMZNv9vGaFmdojd2WeWMh9WLIgBTPlc/Uc4WB1e5SvNyRzzaN\n802LVMjmRPY7ACXaaVNvCtDz6IPkvzZL5fk89mc99n/WsusrIfP/8jnczcGbTr1YdKGQeXak0fXp\nIdy025lszN23B2vsAKQcOiiqXijzbHVDjJwh8xtBO5nHSMYsSvXdRw+S//o7whyq1YhXrqJcV0x9\n8zlsq43Oi9lo49E5go2eeIpohZ6axF3YxYXfe4i3/6cKqlLGX9pi9k/Ood45j+6EmGcfo3p+NJnC\nNJvoIMg6SKbbxTm4j/D7P0J84iTBF1+i8IcvwItvYF59i5lfeg7n8AGRBvR6owDFds2d4ZHOhfTg\nCwIKVSqopsgr7maofA4beFkHOh3OkYPXUf5H9qvhw96NhrWZD4iN4oGMp97AWVzL7mZ27xBtfTr3\nExnicFqR6YcCfOUGyV70+sI+6oegtMxP14WZSWy9QX96cHh0Du2/7uXpR0b3d53LZfMzLA2BjlEM\nBjnUeS66E6JaXaa+vYVutImWVyidWBVm2Wtvs7Xfw90xR39nFc5cklQqJexG+di2ed6ka84wYOI4\nqGqF9qzP5hFLNF0Z+FSloDSMFtspcGMszsw0ZqyMefWtkady9+9l6Z88w+I/fUaiwsvy/ftnV7Dd\nnoA8YV+YrMj3mgLbqlxCT4wTLa9IomC5DPncAAw3dqQbGs6P09lVFo+hKErWzmtYbIlMMZ2n7t7d\nmEpBgIXYoLdaQoH3XNl/F5dhdVDgdyYTaXithn3lhHgnXF6ks2voOpgYo/SNM5SWDGf/ZkDpskHX\nmsI86oVitr3VwW2GeLUO7mlJnTUFj7Wf/QiNzzyFDXyuPDsJSuH/5gTdSY+4mofYjMSHb+vcGWJ7\noHUWXKG6fSZeWObbX3yQDz92hv78mLCGfT/7rG1i/GqtMFkzppq1ImVvtDLGTvcHP0KUcyi9vc74\nt10Wvtyn/EevDuRV65vSnGh1ZI+YnEjfnLzMBPizkUgFnalJlOcSX13LJIjD65SNY8xYSdIpz18c\nun3ImDYBNIYPkk6lgu32iM5fRJ+/Il4/rRYqlc0NNWXzZzfYPOBmTIZocQlTDFj+yd7AV/P510Fr\n9vzHNu0DfbqzMdZzZH/O2GwaZ2xMGNmeO2iwIAls8btnqfy753FmZ6j+2+fp7DA0PnEYlQswtZrU\neNs5b4YTdtPmF4ARj8GUyXzPGytPPYx59jEBWm/UcL2H4wPzEfyAxnaerbKmhVZJkmTiB9fuUXk7\nkeZO5gbMGTOaMgZwnXzM2iylFGD9v36a+idbhMfa5BYa5CbFH21rr0scOFRPW/y6pXC5DSurmGaL\neL2Gt9bG6SVMRGPR9Q720tIdq3xsv3/nDPNEHXGnTTjluoT7ZoX52OlglSIsO9T3abpjSiw82i4q\nFuA5anocemCRCxem35NK6dqwqWv3//cy7oQh9DngB25w+7+21j6a/PwpgFLqQeAzwLHkb35ZKXXP\ndFPR4hKdufcXX/jgP7+A07eZoVxc8GBMivd4dRXTaLxn4OZOJoiulLcdjXdeOUnhP9wkBeyJh8iv\n3/cu1+f4AOaO1Yq44hMXPKJyQGdXGfPQAfG2kCdL7miTQ1E8Unjb2GQbmKo30Zst2sd2cOo3PsrZ\nX3yapZ84SOPoOGFJUV6McOp9oc9vJIapCahgS6JrH055sGGEabaIlq5ge32RlNW2UEuriYTBonoh\n8XotAyD0Zgt/sZZRBG16oE+ZTUphe/2BwfCenfhbIdVTDXLrIcFWDAp6kwHtaY11FWFJ0ZmFK8/4\nLP5wRPOBPjqGOFCsPz3H8v/wDJf/2TNsHsjRLymMJ2ZutlwgfvJBemOK/FpMfi0kvx4RbEqUfX7N\nklu3uB1LlAerIL/oYr46Qf/3Zim/GZB/LU/5bY/6bhe3FTFxoklQHzk03P95oxh0zYYNxeMEIKwU\niaerWE+jJsZk80oPN0mcb8rIUomnx+CxhS6vcznMq2/R+1SDmV96jnB+nObuPME3xfAtfkuooSoI\npKA2sWxOCRNJeb4wOZIOhi4UBAxwHKJzFwbyrzgegDsw2LDz4pmgXHfAhkpNpNPrIHkM/aGjcO5S\ntvapvBg3W2MhiojX1sW3JxcQX13FbRt0JxTAQmmZf9USe/6V4vDf/5ZcWxcXRY5SKIAxbO3LEfzp\nS4PnTj4r0+1i4xh3726Jl1/bIHjhFM7sTCb7dI4czP7GnL1AXKvh7ttzo+7O59iGNSfVyGfeHJkm\nXWU/0fIKaw/fxJvndsNa9FYLd2HX6O1xLCDL8GFquGOVHvZuMdICaCR9LI6JriwP9ihX0g2V4wyB\nXiY5ACWdwGQupcaNulKWNLxcIObRyWPZShF8T6RH4dB1foPDgbo4SvPOJCWuy8RbHZFN9vqobl9Y\nfI5GtzqwsiZgdauLSgpNu7SCanVwjh1h6vUO4d5Z/KutwSG41RZJrYzPsR3zJl1r0m5jPsCWEnNv\nK9da+bx8P62FPKqQeKwk4ErWgR2WxSTzzbbb6EYL59D+LLkPwOZ82o92yK0lnmnLAvyZemNwyB2e\nM0My2Hh1XQy9SaNtDbbdEaNoY0drnzjGaXTxt0Ix6TSJ5Ceh5mdgulKyV1krUtZCDr3VEvCi25Pb\nXZd4vCiskVyQmdGbZx/DanAaXXQKQgD64aO0p130ow/KS3n3LPHaOrUjmh979gWqb2+K7LEnPyqK\nUfUW+uQFzKlzUC5id86i2yGzX15i7FsrqG6PuW9s0D44TmGpi44tYckjmixdC7p+ju2oc+xQ0yrx\nj7LN1gAkimOm3ojIORFbB4WlKGleYeaVkbJtGAZkHEdki0P1ae6PXyT44kusPzlDVFTkLm6ilMr2\nB0mJa2TpXdeB0NagckEW5BKvrcuhzXOTNb83MBNPQKY47xFOFORwPyxxMnJ4tFGESeXUxaLsj0GA\nLhVlXwyjwTzu9q4LhonPXGD+r+ria5WuTd96k/3/R0RYHNQAZmkZ5/XTKNdiHYs+d1kaLkoJK8oa\nTLMlwJPv4+6YxZ3fIfuvdnD37cGdm8XMT+PumOPwv9miM6HZ+IHD13qlfY7tmDdpyq0d7FFqrJJc\nlw5Mjg0alO/D5qL3qcfpfXogX6nvK0iztt+/dzYcNxnblZZ2p6P+00/d76f4HNt0trJpg11rsa/Q\nksplAx/ru+TXDL0xd4T9q1L/r3Ska3/aADFmpE6Z/PXj2HNFdkxuMVdt0K0H+FtQuRThdGOCRkyw\nZQTwSePurUFvNXGbYfqkAoKXS+JhmbsNVmDNHcm/7nbYOMY7tyLekoH4Gykjze9+VdGvWqyysLND\na8Hgr7ocqqxSff3+vabbjdsCQtbavwLugH8FwI8Av2Ot7VlrzwGngdtHWt1uKCUd8acfYe1hJ/Mp\nuJsRLa+w4wvn6E4oTv3KEyw+W4TNW+sN78lIaffbOEy3yw1jhIGNYyXsfX452zV3lLXSLdZkF11j\nIeDKx4qc+UzA5f8y4tTP+Vz+mYOYvTsGNGmlpHs2JPUBBtKaocKpcGqVI7/SpbCs2Ho45PKnY3rj\nkF/u4lytZfGGqtPLzDCB5FCls0IYQAeBSEL6feLLS5ithhhO9xNgyRiJcvZ90BpTLWDKA6q1isXE\nmn4IYUS8spoVaunB2d1ooRsS924dWdSjghYWUNPitiw6gu6uPvlyF3fNY+r1kOlXWnQnFN1Ji/HF\n86WwGlNYkUXXFHzigsvEyYj8YgunE+G2Y3K1mMLVGL9u6U4q2nPyvP6WIrdm6U1IvL3TkUSzhS8s\nMfVmh/aOAGXFZC3tnG3LvEkZQmmxlHgc1B/fxdpf28X5H5tk/aESrbmAjWfmM6PodH5kMa4wiPgd\nivpVnivXnxJPJ3f/XtwzVyis9Gl9/7HBYyVmzvH6RraJWTt00NLCyLDGYro94mZLqPdBIDKcoeIZ\nBFwyaxtyexr7mfgOXVfwJQcvnnoYc+KkFPAPHEI9/pB818n6ca3G2imXyb1yIUsysGEfpsfRtTrO\nW+dx9++VlLFuF2KDqUtEaa86dF1lbJM46zDbZgtefEOMhxsN4tV17NoGulCgdXgCrKX3qcfp/vXH\ncHftJJwbE+nc0Lq6nftVRpFGQJn+YwfkfS/MZKbAzl3WqSqXE9AvAbxSr7uNJxN5w3D37RqW1G0b\nFOlhK+wPaNNJQlgWR29tZmoPZLHQKTPEmZ7KHi490Nl2Rw5rM1MCqruOzNFmWwz/tcY7cyV7nmvZ\nT3CL0AXHESlStSzXWBjKwb7RxtYbqKJI7FKzfYD4kUPEUxXaeyu4pxZRz7+OyblZfHrqbyNvd5vm\nzTUgmAojwrkq8eaWhAfsmUG/cYb5b1iMy4DFCAMJVupdpfTgvwkoaX1PgLCJgX9Z/NYpyi/mKS1G\nsLFFvDUAFG2nC554lZGmQlmbAd0ZMK0d4s1N4q26AJBaZR412TAG67tJMmYyr9JUw9SjbHwsa1y4\nc7OyB751iuj8RcxkBVOWQ4UzNyuSQBDgzvdx9+2hO+kz+WZHKPVRNFirXn+H3GacGW0O+3dthgXU\nxSsD/6sokhSrbhe7fxfmiQeJJ0roZhu1vErr6IzUhBcuERcDgj8RENvfigiuttg4NpACJ+9te+ZO\nus6lByutYd8C0eKSBAFcuET+Cy9y/PmjdKZUEkE/uH4zH7AUpBtOWh2So6XxxQBjv3Wcxod6mHJO\nmGPJMK1OssfEEgffHkqEc11hyTabUpfoxOA6kYHpXPJ316xbTruP20gWTO1cxyyzieeWMz0t/otJ\nJL3dOYvdPS8Mt6RJZnv9jGGbPX61gjp5QXxJP/bQ4HFfOUH5fCc7QJpuV8Ae1/DIgxfkvaY+KCbO\nZP8SEtEmWlwiWlyS+zxylOjcBZZ/eD/2lRNEC9Nc+OFxJt5u09yl2fhruwfPu13zZlgqphS2H9Lf\nNUH7Y0dY+aF9nPnZOVb+wRM4Rw6O1jnvcQRffInC6Q3W//7TOMeOUDnTIji5dHvD3v8MR1ov36+x\nrefyZPqk6cdWKdp7qrT3VWjtLRHmFa05jfET9l1mXC/7VGaGD5lE/VrLBYB9//Q4wb+osr+8DhZK\nS4bC5Ta6H+N0DE534DenEpUFUSQy33hIElkto+am0fNzuDvnb674cZysrrnVUK470mC542GtpGGu\nb6DHqoTjebxGjDIQVixhxYBj0cpiijFWQ9HtUbryQSTsyHg/HkL/WCn1ekJdS6uPncCw+O1ycttd\nDefIQfSHjtL68Scw1SJOu8/c8/33Dd5EV5aZ+7+e48DvRhSv2Myw834OU2/cEsVWrkv3h94/dnan\nQ0dgvA9Ayyzjns6dYe14WAnY+FCZlY8bZj55mR948jUe2LnM4b3LRE/XqR8oySErTRNLiiHb6wtj\nZxgYSrwbVKMliV7diPmvbrLwHxXKtXQWkkNSUijZdgdT20zSxNrimdFsJt3SQZGcHtiU64pEaGIM\nPTEuEjNrR4or6zpimDZs+BpGGdJu6o3M8d5+7FF6u6q091WpPTZJ/aEpeuMuVglIpozF61icnoBB\nTg90w6V3vkzxkiJ3pYm73qJyMcbfVPL7CMrn2+SPn6L66irW1cSBJn+ljW52UL0YpxXib3RR1hIW\nFX7dUrpkGT9lyK1b+hWF2xKQqbXb0huHs39vnrN/MyAOFI19RZy+QcW3pRPf2zUn3ah8D1MtUnti\njsYuh8kvnmLhXzzHxG8ep/y7z1P5d8+Lb4+xg/mRAEA2iZ5Pi+w0YSEdOmHpRGfPE69cxfmr1zLJ\nJgg4mA6TJDkN/DaEWm/DwbxMC1OllDBFRg5kMfrgXnnccoloUWQQ2aHymu6f88Ahzvzvj+OcW87u\nF7/9Luqd8wOmkOtmqWfK8+WxgkC8JpSYUzZ+8imah8awY2XpBi4tY6MId26W3oEZ9O6dmGKe4sqo\n746NIgG2dsyhAl+6yIC7sEs24SP7iet11MI8uT9+Ef3wUfpVh8KZDaLLi7hbHTn4XeONcJNxz/er\njAbte6h8ns39iXSqE0JtC10sMvPnl+7K9y5aXJJD0VZdEsd2yiGt+u4Niuth0P8OO7zDbAClFGpS\nPpJUgqi3JGUq9aqyUURqKq2DAFMbeBvZfh93bhY1mRiVDh3kVLkkwE3SITSNJu6unQND6zscttej\ns6MooGE/BNeV9XZzSxhoCFCeRobrXA7ntXdZ/XCZ3FKbze87ANYSjuUE0LD2Tg1O7+28UWpk3ljP\nZeWJAov/yzOsfnyG9WNFOp94kNhT5Nci+SyTAtvGyeE7AWxwhpLHHEf+XduS6PF+KNLmg/vQhQKF\nFUPhbA2TSkytxTSb0qlVClUqEq+tZyCBcpxsvbNxLCzIVCqTgIfDYBWAKhXpT+RQkUlkQXqw9xmJ\nCk9rN/XRD4Hn4c7vEEbT+DhROZDmTtrpbQugnBpohzvGKJ2p47z8DqbbJV7foDOXx3nwMLpcJn+l\ng33lRPZaQJoPE35LDirWorTGrG9IzTdexboad6OF884FOWjkchQubBHvFwBWRzKXw6qP2wzpzZWk\nkXJ4yHfm5uPezp30s3Ycmf+OpnFUDirxiZPZ3Q7+j8+z+/cvjaaqwogBOUkjTDk6k57ZRlNY1FE0\nsj4c/q9exr58YmSdUY6wZJ2xqlzXieQZZF1P1wvxohpIrk0q0x9ipxKG4mfTDdEryZrjuTLvMtBK\n7tv71OPE++YwGzVQWoCYxRVhCybNBZ3PC7Ms8dbT5bJIjKMo29c6Uz6r/3AQO++dXc7CMtx9e+Rj\nvpxjNl8fgJrDUqtpkcApx8GZnhbmYhyjz1xCFwpM/epxYd2++AazL4VYT+PXLY3dmjh32zX6/uxV\nxqBKRewD+1h9LM/FH9J0phV+XYGFxrFJWa/fx4hPnWHyN45jXU1U9ok37n+q8t2GN9zPka4bH8C4\n53NHpY1FzyGqBPTmS+SXmvi1PsWzdaafW2XHcw2cjfpg70+9NhO1xYClrgfqC339+VN/41Uuf6/l\n4Ocixl5YxFlv4NR7uK0IHVls3pe1XakslAdAhcn54RoQ2STNxZH347rY2Egi4m2Ya8p10XsXbh5f\nf4cj2jlJfU9Ae9YjVzMUrij8DQfVS6WcEJUMxirc9gc2d+4aEPoVYD/wKHAF+D/f6wMopX5eKfUt\npdS3wvB6DZ995hGaRycwb75D8d+/gHn1Lcxrb48mrLz3Jx35p/OX32b8c8fvm651uDi/nRGVjSIK\nX379/ryOG4yx3zpOfc+9pwjdgf/SvZ07JCCbq2nvLLD4bEDnR7YozTZZ/otdfOv/fozNf72b/r/c\nwc7PelTf2RpIhSChUieFTKcjYExiigiIjCsFhuIY1QspvbPB0V+o8eD/ehHn9KJ0GlOvjbTgt0YW\no0538FgpbdcR2qXyXInRTWmLCcgT12rSqQ98VBTjbnVxaq1RyqVS2EjACPPxR1n7+afZOpAnzskl\nXVgJcbtG0ruMRcWJlM5TRDmFcaVYDjY0TlfRH4Ozf2uMMz8zzcZRR/S6VyyFFZGsqWJBfEGAwoW6\nRIOvrKF7IU6tJZtFTqNDyG1Y/IalXxSPDuNCWLKYvMF4lu5shP9ojY899RbNnZrYg375tnPxns6b\nqJsYRfoe3f1TLH7/BDq0zH72uQyYGBnayQ5FKfCDsTilIqpaGTkYmW5XitogQE9PDv4+6aiCeB8o\nV1hEuljMEuLEd0HieFO2RtpxxZoMHErZRyNMovT5O93R7qq1WaqPUPaVPH+nx/7/+bgkPFkrB0LP\nHwBa2kGPVVGuNzhMeB4kBb/O58H3GP/mJUpfOyneWYCenpII43oDf7WFLebQrQ7VP35DiuShdCFn\nfIzo0mWiy4vZe40uXSZ+6kOYd8/hPHBIUiaDAHvyHNUvvEp86gzu/r2oWh01P4uevy1j9J6vOWn8\nuioWYXoCZiaZPCFgjTl9XiR2rRbRpcu3jSi90dC5HM54FbNVxzYa6DfPSAf7xTdu/Yc3YYRe935S\nw9WkgxeduzD6+xR0HgbvHJ3JNvSsyG+dwwcyaZBttgVI6PeTeOX0cJ8A3ansydED2nf6fu+gqF98\n1pF5r5Wwl1xXWB9BElHeDzGzE5LMNz8HSlE9H6KsxWvJwTBYbgqYMC4S7ti/ZQl07+dNYkZsy0W6\nB2dY+vQOepOW8iXD1Le3mPnGKoWTa4x/8xL5Ny4LoAIjILNpNIi36lIYO1oAyVwg30GnK6CZ74kH\n3dV1lOtS/t3niU+dwYbRoBAfYiLahAUorLGhgj1h8infxykVs7SwTEKbzO10PXN6MXpL5gFaZ+tQ\naoSf3rc7kwfXwRbzUG+CVrhbHWGTNZrC9kqZvAkbJip5qMgMTIFB2K+ezDl3adDYs80W7iBQlCUA\nACAASURBVJ4FZr/V4/ff+DDtJ/eDdoTtqLT4FpXy6FZPPIUmx4nOXSCan0B1+3Rn8rh7d6PbfVo/\n/iStORf70hvkLtcpXgkH3eqbj3tf5ySG0Cqfk89tY5PqNy/c0D/FrKwOGksIIGC6XeJaDTM1Poim\nTxsYYSjgu++D58v3njYAEm+7kT2mL95Ath8O9qnETyc7/KXrfJpCmDY6omggFysUEpNxD1PJD2ql\nRJKqPHdk/Qy++BJOo4vp9nAS0M80W9h6A1NvokpF+Xw6XdKkMl2twNS4AKDJKP7BC+Q3rABaSmXg\ncPz2u/R3T+BMT7PzqyH/767j9J85lsmyVRBIXHYyr5XnEq+uoqtl3D27JHUtkTLqhlxT/p+9hP7a\nKxhXUVi2RLdWstyHvSp5rbt2sPHX93P2xytYDQd+p8/e3zzDrl95g9lf+xaFz79wy7TH9zLMa2/j\n/sXL2yLl+k5kIOmvvfJBPO29r5EdYQWZkk8vCalxejF6o4F/Zhm1sgEbW+hzS6KSsEPgcxwLA8dP\nUgxTiwvPSzzEbrz3mnYb/Y1XiS4tQbeH6vVxOiEqtljfhUoJXSnL/hL4WFejjEGFSU3WD1HNNmZp\n+YZzQxIYQ1nnbjNsFN2Qyfxeh9PsYXxozSe+eW2L14D8skN8JY8KNbYUUY9yrD5y7yRjt5XNXXv/\nu3kSa+2KtTa21hrg1xjQzxaB4VinXcltN3qMX7XWftRa+1HfHaXg8tTDeEu1kU76PRn3C/i52Rgu\nzu9ALna/dbbXjtYuMzADvEdDqetR3+Fxr+eOhxRDUclj7SGXwmPrtLbyuH8+xvzX20y+UqP09gb5\n02v4FzfQWy0BeTJ2UGLyPDeNMzcrdOLNLexWPaOVoxSmmB+ki1gr7J80RSwMsanBqu9LB44EXQ6C\n7PZUNqgcjfI9OTRlJoxhRmkH8ePIkkwSaZiNYrlf9kEYVLWCMpax031yGzH+Zoi/0Uf3xHRV9y0o\niAoa44LVYDyIc4rchsHfBN1TWCXFdVixdHbGWAeUAb8eE797lmhhmt7eKXSzj76axAN3uqh2FxUb\noqJLYblHbjPG7Rp0bNExtGcVYdliXQiuOjhdhQo1rTNVvvHyA7SO9EFBv6Ru2Tm71/PGzUmXwZRy\nbB70Wfjd8xT/4IXBnRM/AOX5A0Am3cCGNjLT62VeLBmbJpFYEMdEFy4NvuOkOFKuK0yMJLXL9kM5\nVCstxa+Wg69JDoM2irLuZBo9n70OpTKvIWd8HHvukkg9rmFgpEW67YlHh2m3iS5cGsSEFwroYlFS\nzVLpSDL3bNgXPyItfgA4mtYPfyRjCNikmI7OX5SuUHINLf38o1x9agK1uAqdLnqsSmd3OTPNdnft\nxLTauHsWcPcsiBRgckK6P998TTbjt9/FGR/PmFSmH+KMVbFrG+J50+1jVm+dDHlf1pwEAI4P7MD6\nLnZpBeet8yPf823HLdg8NjbZ4TUzVn2viWI3eU4VBEnHWDrqqpB4TQ0fLFNAMZVHJt29VOpqa8mc\nb3XQlVJmRC6MoF5iSJ0e5pWYtCcAqBkrXWfkOFy43ayIya8MPE/itXUxaW23MVU5VOJ7woasJk2J\ng7vJna+h622KZzbRE2OopjAZ7CsnqP3AkVvKpu/LvNEKVSxw9dlZzv2YizIw/1ch4y+voVc2YL0G\ntS1hlnY6YvZsBvR65fvZ9W6urglQnwsEaIolOU6PVaHdkYLXc7M9JZW8CHtj8FkmLzRjsmWsxVSS\nRtpVFe+HVF6WepQBiRxJoXsD+r4wPCTWPH3MFPjLX25gG01I0shUoYCut5N1cFBDqNigCnmicxfI\nv7tKXPRR5bIYyx8+gNMxmf9QWt/pQkEAqMDHf/EUwekcK497EPYxjQZOAv44Wy1UXTx4bD4QWwJX\nYyoFCpca4iHnKILNiMJKhHP4APFbp1h72MfcGki8b3UOgU9/YRLV6hCvb2Bq4u2jAvEA0sUkOSpJ\nxUweZyRxy7z5DjbnYRfmUJWyNKWK4t0TLwsgIOyXgaz3OuPV1L9uyJTV9npJU2M0XVfpZI9SeghU\nSYDIdI4kRrMZmyD523QPhMEexlVhsqmqSKZ1pSQM7zgeSPcTIEkFAdHlRVa/ZxZncmKkYVn9s7cw\nzZbI25L3EH7/R/BOXMTsmSX/wrt8traHs3938Hac8TFhGi5MoYpFafhoWY/iy1dEflnKy3vs9nAO\n7c8YR3O/+jK9MYV7izL/vswba9CFArXHZ1l/SDHxlmXnl1Zxnj9BtLwiXlB30bT47vjOGvejRrau\nJi749MYDvEZI/sIm/nkxhrf9fpYiShpakniw2qG1x2w1wHWFBZgL5HpPWJ83q4FUEODumBWPVYR1\n7XTCgdIirW81IhnrhsIobbQw6zWiK8s3PU9L416PqkHu97iyyvg7XcZPxbhdCxbctigwpl8GFSq0\nZzjbmOIjP/zmPUvwVgvz7+n+dwUIKaV2DP3zR4HU6fyPgM8opQKl1D7gEPCeUB3z8UfRb5wZSRq4\nm5F5IXxAY7jjKUaY31mmZwCVdzW9R/bds8dzDh+4ZTQ73J+5Yz2Hxq6A3pShd3ySPb+jmT2+hbe8\nJcViu4vq9sVoMOlsZp3HhHGjwghbyGWHItPtynuJImyng16riVdFp4dqd7FbdUyrg0kP+amBWsLi\nsT0plEynmxXH2fMmHdes8E1lR0plndqURWTTNBZjyOIcU7nYVmNEA+u1IqxWWF9jPQ0adGjQPYNx\nwCR+QsZVGA82D2m2jkXoCEqXLaVLkF/WFC8KQ8hvGXJrXcyzj3H+b5SICo5Qs3MB5uOPwsOHAAhn\nq0R5TXfKpzPh0C9rwrwmqBsm344INhW6rzCBJSxJvH3xosaraehrikshM391VWJ9t3He4LlsHhtj\n8s3OQF6FXK/Kcwed9FRGkcYyO+LZkf431Uqrcnmw7phBgpNTrWQFtC4WR1PmkK58+pN2VjPG0NBt\nGdMHRij9WTE3PyMF9rB3xDX3zXysDu/PNM6AmHwWCijPl8N50t1N5WK2MzDiVKUihc+/kMgErmFd\nToyjSkX0w0exGiZ/4zhmcwtbKWErRRoLrvxdKtVrNDCr6+LXsbaWsZXc3buE6l+pED2wG2stulSU\nz6ZawXS6OFOT9A7M3DYE4L6sObFBl0v0JgM4e1lYG+81RTIp1G/4q0QumEp2bL//vgEh5bpo3xth\ngAGoYpI6lq5lyfcNAvBn8z4Q1oYzNkZcr8vBu7aZSbZsFGWx0rbTEWA8jjMAPutUR9fHjg+PtJBz\njhwcuX33HyyK8XgYocsiT5T3oVGFHNZzcbZaAmYNpb/ZnI9qdYguXCKcn0A/fASAxm49Gll77ed1\nH+aNUor+wjgbD1mKFxxmj29ROLUK6zX5zBPWhRTVyc+wBwMIQybxJosuXCKeqMBEVRoMrovt9YnX\na9nnnxkBp2CLdgayLyPgsOn2BmuH3FnWtCSlKpMBaZ3JjDJvMS1SIFvMC22/1x8EMyTBCOl3qifG\nURNj6I1G5gGBUsIIimKRK5VLsl+rARjl7pijfXga3Q2x7TbRZIl4rEDuSlP8hxqNbA1f+vlHhfF4\n6kwGdtoHG7IXK4WtlHAqFcK5KrZSxJTzqJbIvAH0ZhNOXyQs++h6m2C5SXfCobcgBsnzX2tw5alb\nd17vy9zxPOLpKs2FADNVFeB0SOKXemJlBt7p55d4nenigOVjXn+H/kSe2pM7MHOTEiKQpMcp1xHm\nI8heFQSDPWhoDDcm0vtkYJDSmR+VTaPjkxrJdEYPaqYfQj6Hs9HEtNryGvL5gWcP4O5ZEPCnUJA0\n1TiZK6k5dhhm65Tth9KsGlpjpj//FqbRRM1OiSxs57wwadN5nYxgtS3sTs9BjVX5V1//JFPTYr7u\nTE9jGsIy8s6vyL7WlL1SP/ogulpOPJM0zvwcSmtUGIknFbK+PvSTbxHfgphwX+ocpTF75+lOaHZ9\nJWTij94ifvvd74JA93CkSW3Dw911124pdzXuS53jaMKqDxqcrS5qs4Ftd0ctCOzQPnWTYTZqAuJM\nTaDKZWmIu+5NI9+d6akM9FGxkT2/1UP1YmGWBj42H6Bii+r05UzW7hCvrt+yHtSFwsA/7dr0y/s5\ntMK/tE75xDpOz2I1RCUwDvSqGlOMMT2Hpc0KPz39At2918+nuxkqNpjveeyO73/b2Cul1G8DnwCm\nlFKXgf8N+IRS6lHAAueBfwBgrT2hlPo94C0gAv6RtfaOHZLcfXswm917QgHU05N0HjxG4aWzN5aA\n3Ocx8h5uoJX8Thi5msGrdblXvKnl75sh9+Fp+O1/D2zf3AkrPpuHwW0oZl/qSSJGP6H1XlNMA5mX\nz8hI5FfOzHSWqgIQb25J4ZUyJDqdTCKhcsEIyJO8j8zUVDkOuNdHLNp+KEh54A86tKnkyFoBDdJI\neWMErEr8VmxXknUEVPIwU+NYR4shswI0xIGDSXyVdGQzjyUntDghxAHEvsK6lvwliY8vLUV4jZCN\no3ninMJqRZiHxr4i7SmN2wavHmJzPkQx7fkcOgwod0JMzkGHgnoX1iKRjsWG2NfEnkJFYLWlPxOB\nazDWo7RkcHoaHblsHHWZP9mBVnYIve/zRgHRVBmrQX3z1eRGhQ6CLJ43u69SQp0No5HkhMxXxRp0\nvohyHVrfe4zSm8tEFy6J1EorMXEd+u4zUCfxHVCej3IkbWu4U2+jSO4zXLglhswj4EDSXeWq+C9Y\nQA35oyjXFZlPqYRpNKRL2g+zx5J5JgV2WtDrsnSO41XpxtooQpeK2FabeEMkjSqfI94zi9Pqo7aa\nOEqLjKfXR/UCdnwj8XMZq2KKOXSjTbrYOJUK0dnz6FxODnwLu4guLwqFPwhoH53F/5Kwq9Rzr4ln\nfKEATz2MffeyXD/5PLofiwztjey72rb9qvfwXopvLhOlBch7YaCm35kxOGNiKnztd226PTlslMvv\nOfnyRsMmYLJyHGHsJN8r1xzQ9JAPkCoWxBSxWEQV8phmCz0+BrWarEe9njBGUhYADGLSiwVAAApK\nBZSj5SB2cUnkZ7fxc4xPnh75t6kU0BsNTLuNs3MHtt5EeT7O6ha23cUsX8V85CjuZgd76QqUZR01\nxQAniQnvzgSUv72OGh9n5y8+x9kd2aF5W+aNHa+w+D153JZl5ls9nJXNwZ4CydpzTaE6FEiRgtC6\nUMhqDPvKCTqf/Cj5iwo6HQFzrEnAFp2BjgIqyj6R7UcJ4JgBCQjrUQ3JwlJ5rMoNGdUPAZS6WMgA\nCBXG2FYLtBI5bKEgoEz6Wgs5kZamj+tIYg3WCisqNqhKSV5PFAtDcaKK9RwKJ69irq4Rt9t45zza\nj+4mf1oO6KnPlXJlP8tGpUR3V0jJk0Q8Z3YG1etj4hjvwipmvIJavAqeR7y6Su/JfaAmYH4clfjq\nxOcvEj39NLGvpWB+8Q2cjz+TPcW2rTn5HN3pPMWlPqrVxXoC7qb+MDZtbqVhCXGc1TrWWpFVeC62\nl4AsX3mZ1V98mvWHquz7vMKxFsdIk8Bd2AVhH9tsDQE/ybWSrhsMQCEVBLKuJJJRbJIipF1Zd+JY\nln7tjHTms6aIVnJ4abXR+bwwuaYms9rdFvOoblHk/CljMgyzBp6NBCTG91CJV5AzPi7yk1wO0+oI\nyN7q0PrwAjqsEqxvjKxBzvg4JN4v7lqDaG4MlGVtscoEDN4TEO+aRp/uZaCo8R2c2Sl0syV+Tun6\nrh3WPrOLhSsPYl59izOfPUpx/A+3dd7osSorj1fIrxnyL565bdP2u+O9j2vDEJzJCZF13qexLXPH\ngglcjKvwN/voVgdrkn0FGDaPTtehdC2S25PrRSVNrdoW4cP76U5PUj61iVpehZYEASjXy2ofXS7L\ntRNGsj8Yi+qIhF3lAmmSuw5YLXVMwlJSSuGUirec3xlgne6R2zDcfXvo7psiWGmiWp3EzxW6U5ao\nEtP2DDqIsRs+HS9gM753ZJbo7HnO/PezqBfuzMfytoCQtfanbnDzb9zi/r8A/MIdPXv6N2kQwvz4\n4HD2fkc/BAWN7zlI4Q+vAYTSxXqbhnKcewa63MvRLyucK2vcAyECADv+bIlzPzNAxbdj7gB0Jl2U\nhfG3LcFyC9XrJ8yNoU7xsJQt/f6vnQdRjC3kcOdmJdo76TiabhcNiZmZMG+yjlcUJWkeOunu9gfP\n6Xly8IkNiqQITxehRFtLJ/HE6EtxkxYwti23p686ZX0ozxMaZbeHrpTpTRWEFZS+ptgS5bV4B8WW\nsOwQ+yIXc3oWZcEqjY7A9uTR40CxedBDRS5hReFvWiaPL6N6IbVnJPY6f9Xi9GLxayj4BJuRMI58\nF2+jAxN5OlOegE9WAKfupKYzYwnWIX9V4bY9+lVLXDZsHHMINsBrQr9KkvqTgWr3f81BwK7JvzhH\nlH2+AxZD+plLB3FgbDrcBVG+ADo2tHJQnp8lzin6uybQ5y8KYNfpolwPXZTDdEpjt2E0MAM3sRSm\nqbQsjiEcGEtnRXRKc7VGHiNNjUm6qKqYR7eLMv/yOUg2RtPtjoAKyvegtpVcA/JedC4nRU0ik7P9\nfmK+a7AxItPq9kQ2lM+LzKBUxGn2aBwdp/CHp2Sdq9Vw9+6WuO/1GlQqAt5Yi+qF5Dbl8zO9nkjc\nOh3ZwBsNdD6P7YoEz//SVYkS9j1Mo5nEJ/dxTi8SHd2Ne+Ic0aXLuDkfMzZgY27XmqPzOeKcFkng\n3YxkHpluF3duBja35Hv96IfEnwvke1UKFfiorj8oZu7QJ+i6YWKUI2uMyBpF8nejkIaMfZMAB+kh\n0Ib9QYx4In217Ta6UpYEsFBACFXwBx24NCY98KWYqzfuSh7dOFih/J8uy9p84ZKk8o1Via+s4ExP\niTy31cfqRJLb7go7KIwxY2KWarUiunSZzb/7NGO/dZyxagJUbNdetbtKZyFk559rgks1ActArrNQ\nGDiD5MMB+CwAWiRgr6OlGB5+PY4iGi/gbTakWRAb4vWaeIDFA7ZiJpkJQ0x/ABIybIyv9IDyH1lZ\nIpQWMDmXE3ZcoZAV3qnPkY5iOTB4Eh9vITO4HnnutNkRRTBWgW5iOp7In23K3u31sYVEVh0LOJNK\ne+LaJt2JfeTTRkwUoT5yDH3mMuMnh5pxnguewVoBLOOVqzgPHkYVd2KvrksqabWCzfnY/XPkF1vg\npn5FFmanYH2DmW+usfnIJP7Tj6COv0ZhZQjU2Ka5018YpzXnMv38pgRdDBuUa/HRGN6frE2+O8cZ\naVLZobpn11cjLv6diMb+EmXA8Vyo1zMfMBUmCZX9/sAg+gZMxYwBPyRHzKSJSszPlaPRuYC43gQb\ni0Q5lZokDGnluZiEnTjsgcT6JkprrNKAQfueXDtxLPJ6x8kka5lfn1bCeuqH0khDAmVyS5O0dxdT\nER7Og4dhZY14fQNnh3ijUdvCcR38MQjX8ukHCjOT0Gig3jkPuRw2YSuqUxdR5TLm2AGcekcer14H\nE9OvWLpzRXyg8tvP09rvp9/PtswbZiYwrmLs2ys3T3H87rinwzRb6Ml7w/K40diuudOb9PC3Iryr\nDVFYRENnmBuVISkYlKYgpuB0GBHX63gbbTYP5dH7qpTq4ouqSVjBideYaTQGDbCk9lWuh66WUaEj\njYKUWZQ2LVJZdKWMo9WtTaBv4l1034ZS1Pf4TLQDnChGxeC1LfllTWPC4BX7GKNRoSJuuVwKJ3Cb\n7y+lLm0yAvibmqh4Z75E2/zJ3GQohbtzHvfqvUOuo5VVnJ6hcCUxOi2XB6DAPQaD0s7ojcz9YKi4\n3ubhTE4Qf++Hb/r73KbFjlfe13OkHiQA0bkLhKXth746U5rcqqJ8vjMKBqWLU1oApYbM6fefotnp\nwmUtKozoH5ln+Yf2UP+pp3Bmhe5rEr+gzP/Hk2QhlU8kEqlhY2uooxaG0pnqdBhEm0vyho0Npt4k\nrtclZrvdzjZrPVZFFXIDWVkk3U3b6ST06KQ7l0b0dqME6IHYFzAISIAieV86tOjYCmNniE1kAktr\np2XraMzWx7q05wylpZj4tBy4Sxc75NcNXseiWz30eh0VxgTLTbxmhPEdrKtxWiG59eR1JbI0HYoM\nbebbHbwk5j7YVASrDt3ZiPpHunSnLPk1KxJR97b49L0biWdStLwy1Pkc6IpVmkSntMgmlPjnpPT7\n1EQ8NWm1xsKVVSpvb+K9LXJXPTGOLhbEa2ZLJDapVGw4YUF5fkK518k8HZq3kMnFsv9aK/HepRI6\nL9IFd+c8ZnVdit9rWR9KZfG/kgIVS8qOUllqmU0OhalMKfMtSV+P62ZzXYBWIwXCao3C518gNah9\n97NPsvpLgxSquF4XkCfnQhjitVJQI/H7mJoUb4d8Xnw/UoYcwOxUtqamgB39ELfWzja7tWfuKO3n\nng9zYIHCmXtTXJv1mviXRBG60R2V+KVm30lUs87nBt/j3Yz9EnssTIGegDgwApgPe4CYXk88d4bm\nVBaQkDDCUpNf5XmYrXrmoZYZkbtuZjiepoyoa65159B++e/09E1fevXFRdTCjoGfVKMhxsmpfGRi\nDL22hc25Mr87klKl+hEYQ/dvPEHpjMwbJ5T5V3K217dv4wEfd9OlfLohngcmznwXskbCcIHrDLxg\nMllQcg2OzAEFWDnw2nwgRrpaCVsnCDKPGYywMEw3SWVKJTdKZ6yhzDw/8SgD0BMil1L7dwsoOOSJ\nqHwvY06qWNYLaxMWU7NFnLAoVOCj6s3s8I83VKT2wyEZgBG/PhAPJC+V7Ho4szO4+/fS+96HCTZj\nebxktHcVsbt2ZHH1ANZz8JZ9Am9QYNtLV+T5ZyYlEc3RqHYXp97DvnKC5p4CUV7kTnElh7tngfjt\nd4kClbFt3VtIDe/X6E74OH0rso1u97puPJ6XSDmS780MwCL0jZug/p+9xMLvuPgNg4oMncMzuDvn\nia+uAsk+aAzWWJGbJkbTWeokZH57I023kRorxvn/2XvTGMuu/D7sd865y9uX2quret/YJJvrkENS\nM55FE3s0kkaRZMeIoSRGAiOJEtgwkgBGEBmII3+IjSDIAgRQPiWGYcmJHSixlrHl0TKaIYfbcOt9\nq+qufXn19ne3c04+/M+5977qJtlkdxdJS3+g0V2vX91333vnnvtffsuhWbATR6D6g1S3Mq8jBK0J\nJSQyOmMeVa1aBkln1horl2iwwRj0cARuRM31YGga1DWisop95wVA/+QCKq8tpU3p678yiZ2fO0u5\n3jq9byQJtCsQhw4mj9I+L3dbtB5feorygSCAqFWIltkfIDgzi96JCuRkBZidSpF5p/7h5bHPXiUH\nW3YNj9VQXUugbt9TNuYTh5gio4x70aQeZth18mlcOj/r0GGYmrA8rNh/z3zkwSiPd9ohWLefGiKM\nNVSUTpFBLD9gt3u82YuIZiygri2hshbDHSRE82w2qI5yHNzLdczmvLxMOmdQCrrfp9zT5sJBaDTE\nTO5eIOkP5yjJJolarsbNOwUfUKi1DUy9sQex0wOkRP+Qg7jEwBPA2XURDz2ohIMlDGLIUeUBeGze\nS0777dOGZoC+z6XzuWgIac4gD00+FDXvNJRE4cY2+DtX6cde76ELKNu48j89g72//jJNSe7x5T0U\nMdBPEcGzx+FtfDjVwBkpDI817utYzrEj93w8P10WtRpEcPD0OKaAypokl5L8JswNhcUmBfbvfBIF\nmEm5ShtGohuh0FIkONqopRuxNPBpnYqo5azkjagmcxx6vuvSRmkbB1pnm5GS0Ek8Rg9Ji2AuUog+\nANJVsCJoxlkMAOBTYiaGMZQnIH0O5XIon3SCmNRk4QtARBql9RBOXyIuMyjXJPkhwCQD0wAPGdhG\nAV6bw98NgRfPY+c/fhn9I0VUVgI032lB31lPRa2TehHhBFGikqpPrjGMvgseE0dWegxKAKIfwe8q\n8BjgEeC3gMK6A2gGt8tQvW2+s48RJH+YoTlQuU0JoYW604dlJs5GtyUVUuac6GRG4JmXS5klLgBu\n9HD0rTuUOAJI7qzQ9NLcgGS3m66PdGJfKJB+kLHapRcnqDnLJ7Mm4bZF4Mp//QrYkUNU1JdKpNES\nxeSegPE9h1vxV2Uai0bg11k4lNHX0qluTOcXR+l56Jefomms49B7NFMiudcm229zfTiLC+CTIRp/\nv5Q2MpzFBciT84hrHlAqYu+M4YUbd6RkZRV6FECNRiRsbWyMAeD6fzSLZHUN/NQxpAK3QkBevJoW\nJsEkA+8fbFEPAMOjZcirNx7KsVSvlzZ55ZXraSGR1yBQvR6htOz3KveN5+7z2uk+Tvt9+xeeouN2\n7qa7qcFgbF9jdn80vH81CjLtI0sT5JyuE7M/aKmglYIueITwMnslM++TV8ZdxZjZ17a+O64blI/k\nzgoGJxqZoCTomhKzM6TnYbRuNl+kBDBZ38DgzASwvQc2ilC6008F8Zk0CC0c7P1qNKNRWWbg7X6G\ngLA0H0MBSpNppVL0hI6thg8bc2iz11750jZEL4SYmgRLJGnMlErjNFeLADLIM+syl+kJZfbgqUOU\ndSIzCJDRYfpsU6SB0YkBp2atpU/bIRjZgFPTWrU7VLDbfc7J5UpmvbFEQm1uI1ldh64TqituFui+\n7rrQ0xOQExWIUKJ4u5fZ2D//BNGjfQF2ez37fKIE/i7DyeZuujfyeg0II4RzVbBWB2wUQnsueJuu\nhaDBIX0OESTQjEFO18GefQJT/+IKvFV636OJg0+dB7MchZbRE7MaTUCWx6TXnqEAei6tmyjK8hKl\nsu/bhP87bxAd7/2rGE06iI9OgwmBZHMLrFGn65aTo6UVZNVhmBkXKAlLpxrTMUJWzCfLd3D914pk\nFGDuj9aJiHGWaUYZqiIh0bI9TsfGudCuTyAtOK0DmHVS04+foIZOtQTmunSujkP56eQEnPm51E1L\nnDmJxhWgdjsEapVsKCUEVMkDa3k4WqfzZY4DdfM2nPYQ+sQi6aRVSCBfJwmSokDQZAOpbgAAIABJ\nREFU5Ng9X6bP7PAhiOlpyL09FF/P3SsOuJeoHIbyUv+h6ZhaGl+qIfaIImsMfjG1jnTpkzk8fVzY\nRtxBhWaUy/NhznU531BR91jI5pokUXqRaRAKAV4gh77S1W34S7vZkGluCrxeg1b6ns0/XiiQky/n\n0AkNV7VtCHHai1R/AD0c0v7gOGCeh+t/YzHNoZz5OeNoKLOG1n0YPT2MUEEA9cFlqKU7YImE19eo\nrMWIywA0wLsO9MCBM2QQQwaXSSg3c3flhQ8f/jlz9x6I2oGpOH0C8ZHwvrecz0dDSCBDcDzESJZu\nj0HT2986/eknqx8Rk28JDOY/fzpBxUvrkJeufej/RxUOEd5ntzT++KaW7HbBP4PelzvQKG6GYKMQ\nqegyQImSbd7YaZot/m0zxyYAVoRRaYh2H7WrXTQ/6JLYpy3ePTcVLB0TUMu5RDGDpEiFh+20FaYI\nNmKLTIg0QRn9woskRNhsQkw0xs5bxzH0cETJ9CiA3G0hWVs3YoYKsuQimHKRFDmUy8AkwCTSpEMJ\nohOMZn3sPuFjNM0QV0DNmcQ2aBgalxgqt8kBY/vZMm5/p4reMSApMLAfvgN9Zx1scQ7qyCzC2TJa\n5woYTQqarkoNEUgEEw7iIoP0GeIKgywAoxmGK79awuo3NYbz1CgSgUZpU6P8gY/6LQWvY6hTB3wJ\neUs0DbQOXsp+j4ZKk28S6SiCMk5yvEAOImo4TN3HbKPICrMy14No1LH5M0cNJYOnLkta6cz1K0lS\n1628qG9anOU1fkwiDgD1Gwry0vXUBjq5s5KuL/q97MPc7xBj6YnJympaFKqAqG1USGR2w+LsCTg7\n/QyNAdLyYYUCGGPg9SpRd0ol6KKPM39/BPajd1PUZ+elRUBpOIMEurWH0PSfrf4WL5WgnzhJr7sw\nBz09QdfC1CSqN+m58sIVQiEwRlDsQgHgDM6RRZQ3Dnbak32IeLD71b7BQbKSTW9ltwterULOmwGG\n+S6tGGtewyMNK+L6MVF/h9b8zrOmAWiT7X0NJWacvmwSpaUyNGzSpGH1Woaos4L5ANFqHUP/rJah\nGsZZJI9AiqK7hGXlGhX2M69+uN6faDbht8K7Ejld9Om6KhBys7Ihs0K0yKGHQzIDWF6nRjqA0tZn\nU2QoF6isS8BSxXIT1tR8wAShFFn22Xou3a+MNgzzvLTwTm4uQX1wGXJnF8mtZYwOkeYTLxdJCNfq\nA9l8SBvER3r/k1lzB0jXkt3LLFpDO2w8h1IypysUUxFdLsGZm6VrtlTKGt3WGco0tLQjqEFoG2AG\nDaWGQzhHFpA0S6Ttl5jPZjgEi2KIbUMHELk9znfgbwfQb12AGmRUI1UpIGpqBDKHRpISaHfBpYLq\nGOOIokeTZwDOSEM59BkxraF8B+CEEEluLdO5fwaZc1Ji8Lpxer2la8UYUNhCDAB9XklChZlt9pvm\nHrPNwFzoNtGbRlMcnZMlaiwKAd3ukMC02XMsojQ1Sklt5nnWTIQtZAppEw4A9HJmuJCeN2DQaYbS\n5jhpASQmxoeVcq9Ngwll9EWsZpK1nx/QfU5sd+hce0Oiqdr7resAk00kR2fSNSyv3sDUmy14F1cg\nr91E9y8QUlFHMURrADFi+GCdtHrt9cZGIbSg4Z+ulVNXxNL3P8Ds9zdQ3pBgwwDJRBlo1gAuPlOq\nlgg1+MbD11F91I0aub1D/zjAQeHDCmfhk7k73Vf4B4yUYoAISMM0bQRZavN+jU1kyGI7gLD7jZam\n1hIC3Pehdgi9a12Wh8cblE9yRvvFvr2JT05Qcy2RUN0uoEmiAVGcDgl1HBE7YzCk2imO0bgKyLkm\n5RoFH7zZIL07Y5hw0KGTBLo/gHKAuErv0RkyVG9wuG0B5WkkFY2WLBOzA7irMb4/ko3ND/0/5jjY\n/sosFuf2cL9zr89HQ+hD4KwPO+qXOvfuaj5gzP7OTSz+oYEu36e+w0dB4x9W5J2T7vV6/cMc/ntL\nn/hYH/m84sFDqb2egtMLCU1jkT77hTlt2OaQtWY1NrrWthfKKNr3RmDDMF2XzvwcWLWaooPGpnPG\n5ltUyqk9N2AS+By8UmuduVcxmqirY/OE2LGIFKnoXLRO3chkt5tueHZqq/oDsCCC04/g9snmHUDq\n1KUdhrgsID2GuMgwmBOI6gCzjSIXkB5BCd0uUF1JULudgIf0mDMA3C6DO6JfGH79HEZHG4iaPjRn\nUN44/TJqOOgeF4hqDIM5jrBhXqOg4dcDsHIC5RJtzB1quAMNZ0joJc0YIaQO8sbPALlpYPFmspki\nfqyDWJ7CIYT53lhGAWWMJvZSpk0lO8lnBR+sWsXsH6ymN7jUxUdlzwfjpJmQ135I0WYurOOYmJ6m\nSaqZ9Db+6Ga61+ggTJtN1rnKNoH40+fI+nZxAfLrzxl0Ukxryd7IoyiznLYwe1ADVF6+Dnn1Bglz\nGucWnSTQQUCJ+EQDyWNHqGjo9mni7vtQgwGu/O0jqP3rq2BvX6KPsd2BZ2o5HdN1xGemoN8witCb\nO2SJHEWQrTamfuPVrFiUEvqJk+ATDWipICaaAGMor302hb3b+5Q6PjY+5D7B8nSoPO0CSNFd94I8\nM87uDbneFxbVdPKf5OjZ99DUk9vZtWHRBrLbzVABVh/E6JNorQm50qyn+yuTCrwzBCYapHumNbTv\nkibJvmm1/VlevJqiUS3k28bqv3+Omo25xqlzeBHY61ADIlHQRR/V97bAHj8J0aij/vYmWLEA1dqD\n3NujhBGA82NakwIH21DkCVDYDqkAlnL8u8yJADMhMiSQuQ/oKE5ROCyHZNhPJeBPPYakxAHfo0Tb\nNJZSBIdFGuZpXznIft7dSScJaaGZ/aR0qzPW3AOQUZeUhH77IjWnuj3IdofW0cIc6cUYtIq9T7Nh\nAO069Jjnpmgoce404vkmRIdcwUQ/grbOarfuIFm+A3d7iKRRSN+7e2cXfEif196/+/yYy2s0F+P6\n9hTtpwB0rYLR88fhbvSgnziJ+KQx55mdRvLTz6OwJ1HcjsGHRrOsKCCL4xoM7j4X9gMJBoheQAWW\nuS51QhoaeXqVdXdjZvCVutRZdFC+cWTCNizKGxJggJ5sQExP0STeIGwAmIIwSunv9IK5MiLf0CwW\nIXJSDSf+zqtj93gdhlmxMwqgllbA6lXox09ABQF2fvYM2Avns2MrQw8xSDlwQe6YdrhQ8EkLb32T\nUFTDIXQQgheoYSx3W0CrjfbpMviRnAPU6kaKGIpL5vorFYHtFuKZGPxdeg9qOASfaELt7oEvrYMV\ni9DLq9k16zjAbhuVC1tQuy1EEx76j0+Sffa+7/EgQ4QS6qM0VT6nkQ5iP2PH6E8Tcqb50Gta/YgR\nWXe9HgNEpNIaZ+w65yb31Tqrd2xj2gxJU3ozgFTCw4jdq14/3QucIWkCUcPVvTuPUQqsP4La3hl3\n5s05odqQ/QGSrR2oMETzt96G2O3R+SXjzSpICblH18QYKukB6Vn3Cuf4UbDnn6AafKIBHmuENY7S\nhgaPAa+noQUQzcbwD/dxazQNERj6dsH/1Mg+5nlonwNKbvTFaggBAO8/elt2NgxTvYOHGcnGJvDa\nex/7PKtHA4AmBwcZE/W7HgomNGSr/VBf5n65ig/1Ne0q5hlnNduYchB8IPs71zhiprDf/3jaOILR\nZgishbzKEjEL6wdS1xRrG8xcJ2sAGatDa53KPJcoAqFE+fYwhR0DoIJHCMBzyY7XnPPY+jENJBYk\nYIkCj8000+WQHqF0rL2p5gw80ShtUBOGWwSR0dEBA4khVzmUC/BIo7itUV7X8DoJ9CtPo33CSY/F\nEoW4AjNFBaA1koI5x4gU9O1r8Jgh2ijBvePDb3FoAcQlBhHR5MoimR7FdflxkVq6G5RD3oFAW1SP\nbY4YjR9LGUytuA0k1hbkjFOxxStlyK1tohtYXR5gvNuvNU1E8okDY+AVI4BrKQ7FArmrmEknc5w0\ngSW0GU9d6GwBD60hTh3H6FAFem0TcB04HZNMa3scU+RYOpYJWxyoKE5pa6mbjDCTYNej5qcjIEsO\naZUY4WdISRNmxSD39qgJxei9hZO5xldOwFvUamnRyTwPzHUgZmfAzfXCJwk5pDvUHNVBCO17cHph\nqjFykCFGjwYKmadz5LVQ0lByPDEDYDV+xmzD7xHcTOQAAB9kyFFhxX5hGlK5pIjV6T7Fa9WsGRhF\n42tWCLJYFla7JLe3Rvegg36I1WwaRqRY5/RhAKB3wl5D9LdoNugaimLoejW1t2dBBEjTlDJW4imK\nxSBzLFKGHTR/QwM8Mt+hSZyBrIgfG2SklGae0ZptpHuVxn7EFO8HpBvgOpnhQfo9GGSRpWMYUd8U\njcjY3RNJsxfychlY2TBoQifTTmTMaFxl6Fw+ndEbgvkKUUG1QZlZLT/6ZWp2FaweDX0eTjdI1w5T\nCnAM+tFSXLVGXMoKDt0fgK3Tnhg2cqiqUQwkDKOdUvq+VLVASKfBKEWlsliChRHcVoDC5hBua5ha\nGWsjMp0PZ3TwyESm6DwBpAXWWHMuZzWfCoVb6qfVpTIo6XvpeAFAMMGRFEB7qslRtMxpTdnPO6c3\nxYuF9L6TXzuy3SbzgTxFjfG7aSGcQfZ69N2GUTodT0pA92Q5W2fCXAdxhuRlQhgbevO+yiUSl7ca\nSlaw2p5Tq03ucaW8/la2n7pDo93h0V5XrAdwctrWql6h4UunC9aokWi6PcxEg/I/hxpVbidGXOQP\nnTr0SYPFauxe+0WLvGPzgevofMpgWhNC7SGGHh08NZ7FKjeYyt2PzLU1tv/kBg70PNMosvtQfuhp\nB/MFGjBr1zFDWX5XfqNHI+hO9y4jCh2ENEDP5yJGksPqbOp2N6UspzmANVmwZiy5fGR/o/xhhC76\nCKeKYKUC4Ag4ATWCrA6d9AHlajilBPXyCFtBBXxg+iEPAGBhxQKSegKH3/+1/7lpCLHho13s4uwp\nrH17Dnzq0egIAUBeWO9eG1daxAEPTX/ifmO/hS8AyEPhfSOa7vt1Cgd/4/E7ktA8FiFkkT6pPSLP\nNiSedYjTiSwz7l22ww2kkGQ9N0miZC+eB5udomRacBIxi+Px42iVCX4WCmDlcjqJtZa4zPdI/LRR\np2RpZR38wk0q7E0SorUmd6VSAclkBfFPP4fg515E/+VjUF97FqN/+0XwsycJYTEMIAIJEShAA3GF\nIykwSkTshqw1eASI0MCHY6KMQQNJQSOYBtZfEtj8ikLUJBRP9XaE+o0AIlTYPV9CdUWiuNyGMJa1\ng2NJ1nVmDE6gUdykZpAz1HB7gBMAIgCYZEjKGlFdo39EYe+8gjuQmP7HP0Hp//kx3M0OIQsOcnJm\nl6lpjqTorZytPLRK3VVkt0v6OkIQjSaKsomzdWABUotdtdfG6C8+jdVvVEn/wNCxAMC6KYhaLUMl\ncQFeLkNYN7AxxFBMwqxaER/ZUL7ABUS9RsK/ALjRmLECsvLmbfi/9wYlVIkEX9mCs3AIvFo1N8U4\nowAwRo2WOJvK8WIha4rlNHx4qZRqaKmyD+f7b1NDM06AySZw/ixYpYyTv/Y2AICdPAq3NUTyzecw\n9a6h5w0GYLNT0D0q+tUoSIsNNRxCNBtQrTZdb4dmqVB962KaFNiEgvdDHDDIAwDZEj+SUCrlhQ+P\n1pEKtuZibI1ykU7UbPMs/3yea/ZoqVJB5hTuzwVNw5F958x1UoSFqlfSQpDXKpRk2X3VCh9XyqQv\nZOlAOVoTwggskdCOAAKi9bJiZsd7L80AC4PeT7OoHKWJXorQK/hQrT2w+Rlq1Bc9aN+4nykFVq2k\nSIq0AbLP4CHBwTYT3T4DDy2NObtX6f3oIK1JRJNxII4JHeS6tO+MFdjsruI+ubmElILluRnFSGuz\nFzmpAKjVLuOVSlZgG10yMTVJyJ4oIpTFIBOI5pVylvAXi7RPlEuk9+B6UBWa6otGHW43gpyfgLO4\nkKILwRhpCDGWFsxETTAFiEW8KAU2JIoOpohCJGo19M42CO1q9l25twcdxXDm5zD3ai91VuTDAD91\n/hrqF7PPRzscbp80ZsTeACyW0OazlzUPLJRg67tQ9TLYoVmUrmwR4ioXxe2HKxh7X6FAFDpbYOUt\n5V0nHVbQczORcm6MBPJaQ3bgsT9GM6RBqF0B7XumCUNDAF6iZguvVoneEUfgkxO0d3NycYPWELMz\nlDNpTTpEdr0yBigJXqtkL8g4eDX7OVnfgLhB9Nm5P2khaDIMfu5ZQp0GAd2nLEIoikkUPyGdLDL8\nMK9lXccEJx0/+3JCYOL1bfBWbv8WPKV91d6lHF3XyuATDQQDD3OvDtIGm6z5YI0afXYB7WX2s9Gt\nNunr7HUhahXwP30H9cs9tF7MDfIAHHQP2umFX1gdnv3xWemxftJY+3pjjAb+MGI/9f9RBwPIgGb/\n43kKqs41hlL6uEr/vR9NmjaLpIRq7SGebyCYMjbyVs5jH0JItjv3tJJXQQC1s48KuR+V5TjA9CQ1\navMOaPnj5D7Xh6WzlQ/W6aOwMaBcaDCCvxuitJ1Aegw8BnrHAeUrlEohHmtu4a33T0BdIz1l9QDn\nEz11DJWZAWIp7luO43PTEHrkTlycoboiofceLiJmLKwLEL4YG1fx0oNPLtgL58f4ssX1z2BaP0xI\nlDQ/Qc1f9DnHMZpwx+P/l28S2ecqlQqg7vziE1j6bgWjk5NU/Ph+RimSiho7JbIVV+0OJSD1Sipw\nxoukeq+lJCHerR2i3PDM5pwXfCqw+33Dc9UAB8QohtuN4PYTSJehv+Bj77SD9W9MQh2bB8IITi9M\nN27NkSJ/CJUBspllhOjRHICmRo2/RwVK1FCQh0IwyeD06blh00F/kezCZ/9oG+V/9mMAgLs7RFR3\nwCRDdSWB8gX6h33wRMPrK/htBScgHQYx0vB6gN/i4DGDKipoT4EHHP7vvJEW98nNJag7awda2Fvq\nXOqgZIsmo8kDINVG4AWD6jKCl9YWN0XmWKcuI5AJ0M2y8vYKDv2DH9HPVtfH2MQzx0lFygHQ3iHl\nXTc+0WzSDcvsLWJ6GlYcGloRl9quddMMUrnjWlSZrpagBwMkq2tQvR6c2Zlsr5ISKgzJ7cxManRI\nGkkpcsDoKvFqhRpWUpLTzRvvU2OmVAKrlJFMVcCjhIoJz4N+5Wlq1G7uYO+Mh8o/fQ0AwWjlzdup\nwKgtVMEYxOQE1GAIHUfkwnftJpK1DWqiTU7g5j94GTf/zpNIpiqAI8A740iSgwgWPJr7lRoOUxRL\n6doO7QXAWJOHCiKzRvMok2IRKgxJGyZPPTOUTPs97w+5s0vrZjgEM+g0omBkOkIQHKxSJnHWiSZU\nt0eFKOeE7mCMaD0WQm7EZWGoPvBcJBubUNu71KgwtKVPUqgMr1FDQIcknpws3Qav16jJFETgvVFW\nKCcSqlwk16pCAfr4Qvq7+WgnB0tH4DHI9cxqH2idofqADGURx9CjIG0AjQ2YzF6Tj/z/O8ePwm/F\n6fHoLw3EMYQRCYbrgDcbhGasVel+l1tLAE2kWbFAe1yR0GXcUgb9DMquej1geiJN6nUcpfdOLMxB\nGsvbZGECbHYqm3oyRq6gWtOk13ehy0UqKHKIXr26AS04otkqiWQ+dQJeO0FhrYc85c420vUb70Oc\nOw0mOHZfnsOvzLyKQ7+/CSgJ59gROKstJAWRvo5okzaRLhUQVxwkzSLUsTk6n5KP5NYyOSma8wFA\nLmQHHDxBKr6e5inWgMLcW1LHyJxRQqrtY1DTeUHq/YPLw//djzDzRg+8H9BrsUzc1Oo7sUIB3DhM\n6U4X1pXSfheq3QF8Px1wZALjZoBiEIC2mc3Kpcz4gIv0nsDaPcz+qA2eaHR++VmiQhukrJY0rCF3\nTgbYRrcxgmBG908PR1AzzZR+ygQHtlvZOQDm/kbIJV0ugD/5GBBG6D5/CExosFffpedpDXdtD7JB\niDcdhKmjGZ+dBptsgvk+5PZ2Kuqqf3IB0mNY+y9fwfAXv0xvMTpYzhiLHm0tIqYm4Zw49shdx75I\nEf6b8FFokNtVQk6YyKHMtKmVGGNZYwhAXvPO7vNjbogArPmOCkI4V1dQuT0kNJVleOxD9X1UqCDI\nLOrvFVaOJk6gO92PtqN/RJGsrkG9e4nMNYIQPFZwBgmiGums8pChsOlgNPJQd0eY/2OeOTB+ioYQ\nf+ZxbP3nr+D2v+UjDB2stO9mB33o737iV3tEwfijPRV56RrKv/vOfSnj35cb2RdQ6Cwfw1/6Mkqb\nDzaqcObnoN94f0xfKA+vPagY62Lvh7vnJmkQguzirbtJHjGUbmiEJNKK4O28O0Tj2hBzr0k4Q0ka\nGKlzGaGCdBAQXSZJoMMQcnsH8uZtmnSHISVHBlbNHIcaSK5LDaQBUcXUcAg1CiAmmtCTDSQzxt0j\njKF8B0lRgEtgOEO0rqQE7D5dQ3RqFiyW4IGECDVEqFPbedv04NI8xgElGDWGBFDZkHAHAIsZxLqP\n6jWB+k0FEQCdkwKdUxy9wz70nTU4Rw/Te7+zicGcQPW6QHF1gKQkwCTgDBVEpImu5hEMUhYZvK5G\naU2jdh2oXhMo3XZQXTL0sunprGERhmDxwU9dmSnMxv4oKtKUabroyCBnmJlCOqQNlS+uU/cVIy4N\nKem6yE/v86gfk0DzQgHi9Anwp8+NQWJFrQZeqUCPRhCNOpz5OThzs6m2izANHZ3E4NUqnONHobr9\nFAEiZmcgKmWodgei2QRrdaBGIzrOsSNQvX6qJ2Q+iMxZzfwMRu4yNsGG0VASc7Pof+MxwLiVMdeI\nbRYLcNf2gM0dYKcF5jhY/k4J8sp1dL55Gv2j5tCOQ8ggJeEsHCLnl+NHCTUkqCBgnpuKbVtEFQBs\n/8JZLH4/wfF/3iWx66ILNXnA9Fvg7knUQzyu3Nujwuj6LUPPUmOFr3V5A0wjzRbpWlEjz4if54/J\nSiWkNuNjr6fGi0Ir1Op5YNUq+M4eiX33B5ATNTquaQ5kyEiTLJppISRpDmhHQHsuECdQBSNqPBgg\nPjSR0RU/ImxDysbke1R8iGYzTU51tUwUEmHOQykkt5ahqsaZijHA99B5jJKiMQtaAOqAleydETLn\nyDjJEA8mmEH0pE0g66Ikc8gQnYfx67TY54UCaajcWUXxyiaZLCSSrl871Q1CqF6PBJJX14h2VyrS\n8R0nnc6q4ZBEOvsDaiYaVxe7rizamRcK9PrbLajtXbBigdzwVtZJO2EUwl/ahdjpQvkC4ZEJMKsz\nFZJmXlosWO28vNui61BD/PX34fRCJDM1iEGMwtIueKsHYdB0VmfEosvC+Rpku4Od54D/9trPQV5f\nooLfc5HcWYG/Q4mKKhdMM9MFVjbIkAEgl5dEjSFJnMUFiBnSYhzOfEbUFdMwtNexNugYSyvUZk0R\npTznRmec6sbyIzuJ349AvLIM1h2QA5Cd+gMpVV5ubyN+fJGabtUqNRXr1bQJrcMQcrcFPj0JZZua\nvp/SwnWS0HWoLHVDkwadQRABAC+X6f4pNcpXdhEXGUZffwKi0UiHJ2oUjGk6pshDg/jVSQLZH0C9\newkb314kHchK2aBovXQvkNvbBuEaIZwuEUXR97D1PIc2FvG2JpDrm9AuB/M9Qh0YdJTa2sHw7Az4\nqWNwFg6NCa9X70SY+/EIhVZE93nvgCFC92EI8yAhd3aR3Fz6TIWzP1fx0lNY+JNHL4FyIJFYFKvM\nGr+2cWMRrTYXMMY6aW3Ec1Ic9MSs3jI6ZqrTg7i+SkOwPIpxv0nGR9TbolajHHSfYRQvl2lfGIyg\n9tp3Uc4OOtihWWDSCOVzgCVAZUWjfkOjsA0krQJ+sHYClZUHO8+dZ+voL2ooXyPZLiKORTYA/5j4\nXDSEmEZmp/0IYwzu/hEhd1tEx5ic+FBbt4MQwX6YsX8StPEix/Q/v/hAx1Sdu2F8cfUeT3zEkZRy\nvFX7t+WyGreNlD9vixjXOLbkKGZaWS0Z83cigVEAd7WF8o09srW33WulqVFg9ILgOJQAv3B+jJ+a\nWtQzDhQL4M0G0KwT5SyKqFHEGDUGzp6AOrEAVXQRTRQwWigjnK8hrjhQHkNcIpRbcUsjKQD9IwzS\nF0jqRfAggdOP4QyNnpAClACSIkNSYNCcEELKpT9RDVh/maP//Aja0aR2f0eishLACTWU2YvDBkfw\n1cex8kuHoV0BeXoRoxmASYKVO0OJwm6MqCYQNAXCJk81nUSgEUwwVNYSzH5/A40bCYo71LRyjh5G\nfHYByYl56Feehjh1PLtZHGCk6CDTVGRGQ0PHSaa1YafmnJmkODZ6LW4mKK1Vqh/E8ok2y7r9qV5R\nulbp/+SNZah3L4E/9RjUV59F+J0XqEloJh+y3UGyvkHFDmMETzfXnpiaAgAkt5aJ8mVoIXJzi3QZ\nogiy3UaysQlx5iTZNIcRFVnPnqMCRxGyiRsR9NQy2OohFQvZtLlchJqqo/jbr0P2B+AVgtbHT5/E\n8LFZ6E4PcmcXOopx62+dw7G/+zrE6RPwuhLFjdxU2n6mvgfV7SNZXiGHmXqNaCdVsvMNfvYFOj/X\nAy+XMfl+H4W1HsTeAPr2KsTGHmTp45sLX7iw+0cY3vtek3uMT9A40k6/eLFw19RMm5/3I0tEtUpU\nL4PM0kFALonNOhVwjgPs7kGeXIBY34F68iSSm0tInj1N63c4AhuMAEcQysJ3Mz0YqzuiFKCyexDT\nmiizHzNU0U9mFvRXf+MFNP7Rq4AQkJ0uDXYYA3b3qKERhNCCg2/tQTTq4Le3aE9f3YDmLE2yLD3O\nRsM5WBg+jzSYnbTafSLXpLNFfH7qmrqNAeOTViCnh6DSJJ15HnR/AN3rk/6CKeS1GYBYGqGo1ZBs\nbBJCMwiAmUmIZoMSacchBEfBJ/cwK0JvmjW8WqXCt+BTU2myAT7RJBRZs0FI2iCEbJahaiXoUgHi\ntYuIawKyWYacn0odYVhgUEKOQe2YJhY4J6oYY3COH8XeEzUSOm33aQ2urALCZHgtAAAgAElEQVRa\nQ33lGbBji+lnknzzeTjffwvM9/ELX38dm1t1aj4YzThycQRGx5vgwxBsGIB3BmD1Goq39uDd3ET/\nSBGq5KbOYwAQHZuGPD5n0DgPbUncd/htleqI7Hf0SjUKXSf9npmby2+AcaopkJkluM4YdVP1euRq\nOhhm2jyOM6av4b63BL2ygfixRcinTyE6f5SuaXscJaE2tlKNPOY4GVJIiJSmIWo1yI0tyJ2dMfFg\nNRgAL56H+uAyWJxg5k82sfGSg97Xz0BMTRJSyXWghyPAapvFMVH1DYLbGjgAwNz3VjPHVrMX9n76\n3F1W3v7WAOraEhBGqD+zg/nfMe/Zcei+GycQ/ZDug51eNtzgHMW3lrD83Un0n1scO67bJRS3d2ML\n+uKNA6+67kX7+fN4uJE3QNg9X4ZyHs4GwQxFE8CB284zBfAwTpu2KbLTmK6kml5Adg+zwyvbPLK/\nkx/MG6SiHTLq/sDos5IGHRM801/dN0y1e8QY1VwIiJkpiInmeFPIiFcnG5sHTrfbH7xUQnikib1n\nJiBLDpTgKLQVohqD11NgWsPbEWitNuCuth7otdyhhixqOH2OwpZAslu8b/bF56IhxBOdOod8XoIX\nCzTZ7PbogvyCI4L2N8JKj7U/MXxO/9QzYz+r4fAue0XlHuzNh3EO7fAsUbaFkhF81koR+ixnzZq6\n6lihxZzLTvo52WTLTDJZuwe+2zVTTZtgGTvyXi+1+9VvvE80pJefRvLN56HPHSeeeRRBtdpQrT1g\ne5cQMQZVAQB8bgaq5IG3B2BBAhFIuJ2YXMSGCZyBhDugRk9SZPDbQPmORlLkWP+pMgbHKuCJgjtM\nwBOii8kCUsROXGZIioyaMUMgrmnIqgS2fIiQQXkag3mBO98qYetLDEwDpTUNHmvc+RYV3FHdQ+9E\nGe4AaF6NoVwOlig4wwRBk0MJ0g/iCQANaM4QNUjXaOen5sBjBSapITV4fA5MA2IQwmmPaEq7H73w\nCEOEmZ5PZr2sjV2uT4ns/mmqIkSOFT2GVildDCDUTx5hw3iuAWSm+sw4BpFd87i4nXrvMvgPfgL/\nd98gJM70NBVqeW2yHF2EOQ4w3UwTXHH2VAqFp0YOaXtw34f6yjMk3Of7SNY3sPE3X4Z+430w14Wo\n1agBZRFRSULv31wzqj+A6vXAiwXotU2od6iRzI3GiZ6dAEsUvO+9SVNCxsAnGjjy934MKInwSBPF\nlR4JmIOuMbW3B/7M45B31owgLRUncq8D3mxAtzuIvv0C2qccqK89C7EwB+Z5ENsdyLJPmjRWgLZ9\n8LBES+s6uBf88H3VNnvsxJvdw5Ulbzduw5mbpe96OKI9Kggp2fNcWA0aXfAgd1voniS0mZ00RQ2P\nivlmPXXu0o6ghoHnpighgL5vHsbgjTqcxQU4d3bIkrw43py56329+UH675efIA281KUvjuAcOwK5\n2yKnqkoJLJGQO7uQZ45Abm9j9efnKRFkDM4F4uTbpqoNlz36QVQ+mtdCgq9HRhjX6HeNUYByjzFB\nEHodJ6nOkLZaO4bmxfYPQ0DUGR1GZKkeZdpgVrjTOXoY+vgCRLMJcfYUnMOLhEZtdzLBfCEg252U\n1sd9P6Xz8KkJqHaHcohiAcxA8hEntA6kJD2YHbIJ1i5punQPO2CxRDBfAmanSIcvFSElGrZ2Haiy\nT6LYAPj5s4gWmqgtBxCDOH1cTE1i8MwClCfAugOIyQnSLPohrRt+6hh+vH0MpYuFTBPrxhLki4+D\n314Hkzpd47rbh5xtQF65jmR1Dc3XNxBMeamoOgA47YDo19rY0h9wNC730nvU2PDEojvtfSG3nrTW\nme1zLlINoVyzyDYBLfpPRyTej5iaOjqKIE4dh7O4QAiyXg/8Bz8B+9G78JdbdM+amki/T3K9NM0g\ng54WT5xNNRWd+TlyF3LJ4ZNPNMdoR8FMkZqWt5bBhgGalzQ0B3Z+9gy9hzAkpyErVh7F1FRUimzj\nDfpYTE6QUL35nABAF33U3tnIfYbmnN+7TGgnqXCo0kVcNtpSm1tghw/BmZ+FvrMOVSLEEzWiEvB6\nDXJ7G1FDI6pybH77aHpo/sENJBUPulama0kebC2h9754DmNftEiW76T/bl4awftXP3kox9VhmA13\nGgeLhOaRTrVU6QGW/WE58WchxptDuQZkni52lwC+FaHmRifPIoQ4J2SP0asUU5MkSeB6hBwvFDID\nC4D28FIBulyk5xpksQoCuv9/DsAbajiEtztCoSUBqaFcBukyJCVg5ymB0QyDLGrAVUhufzLtqf3I\nqOZrq4CjDdIGn0iK43Mh2c5GIaS8G21ykOHMzWLw3BH4rRBxxYUWDN733jyQ1xanjkNev3Ugr2Wj\nu17F3Cf8HfbDd+56TDeqQG79OsMDvtlpBbeTK86sWKbep4Cfa/qkaCHbHLrLVUUBKqelkCI8eEbd\nEJw2ou49EGdKgr36LhwA/NRx6AI1EFLbaJOo8VqNlOcbNSQTFYheABZESKarYFKDJwqy7EJ6hscv\ngPZJgeGiRGFDoNDS2HxBIG5IlLY4KrcS8CCB6wskRQapCBmkHQbpA1wCflcjaDKIgIHHAs6AwRkR\nsqt7QkE1EnirLhrXJUprAcIJH36bo7AboXvMQ1Jk6B9L0LzC4CkNzRlGswVqVkkgqjBAA+4AGM4B\nSUlj/WcTHF3YwdKNWZSWGap3FIJJAS41NC/CW2kd+NSVW1tHbigbhg6mIoKjW7qWsg0WkFMY8zzT\nbNQpcsWKM2tDNSPEkHHTGYO9GqpYElKRunAIG985AnegEVXpe5j+oxUky3doQmqn8jmKiE4SiFIJ\nstsFr1YhL14FQEmvXl7JXHishouSAFyI1z6AShKIqUkEXzuPQouOl6yswjlxDOj1TKOKIMHcccAK\nPgmGguh98WOL4D98j9CTtQrUYARWccDWtsFy4n6EOtIQlTL0iUX4a13Ek2Uc/mcrSACDvHKBlU2o\n2FCiuBG2Nu9VtjsovXMb3u9vUhMrDCGmp6HbHejDk2CJBJuepIn/6OCHCZa691kE88etSG1j3+pP\nqY+A7vNyOUXKaqnAigXI3RZNH23R6DiUCDoCTCo4x4+ifrkHdvgQ2LXbWP/VVzD7v78JGUeQzxyH\nc2cNIgiBmhGgttQfgHSxNregT8zDbTlEAdragRoMMmvw/N78IfHG8lGcwF6KoHHm56B3zftUCqpe\nAru8BHFkESqIwefn0Lhm9uadPbBiEdFLZ+D9/htjrxUdsC2mf22TmiC2+Z2/91gqUCo0n3OIMi5u\n2lLzhMjQrjZSQ4Q4PZ5WpmHkEipD2nXT7gDL5mnPHIdyG4RkUEQ7ZL6faVVZN5ZiEYhiKoqHI6jB\ngJqKjgC6I+Sd0FixCHH6BKK5OtzNLuTVG3COHqZGvAKUxzA6OYnSMKDGYkh+b0wqqKJLzamL1+As\nzCM6Ng1nbwQWRlCVIpLJCpyzpxBPV+D2E3hLO0hWViFOnwALImhDk40nSvj63Jv442vT6Xcu5mYR\nVBx4rgtv1zQsEgl57BCUJ+CcPoHek9OQPqOhykQt/ZzUB5fhPH4GulRCUjz4ASG7cAOwTVSL7mEs\nReSmOna5BhtTChAsox06jqGBGepuYib5gqjTDBJgbpo/EVo2y6/6T0xDOQzSP4zdpxjcLsPs6yGc\nyxsk8F4uE0It50TIK2WogaHoXb2VNYqjCFCarOOFAOKYqFgmir//NqTJvVZ/+RhmX+vBWd3F1b91\nFNVvPg/nD98274vyKea5QBRDKwU1HGL4zSdRjmJCPbou0KxBFHwkd1YgbyxD1GspzYk/9RjUu5fo\nHHt98JlJvHt1Bo+908nqKcGhiz7U6hqc7Ta050IHCmJmCrpLRfvJ/+Yt8HoV6vgh8CfOQl64Qnb1\nkURSLxrx3Ye6LD42/pzKdbCx8VIJh/70EQwaDhiUwKMErD9MhwljIWD2e7v55HRYgTGdsrvCDu9t\nDZZHveaF8oUADs8jmilDMwbtMIhQwru+STplNicOI/AoTus53qhD7yratz4HzSAb6r0rKLUXEB2d\nxHDWxeAQQ1zViCdpgn/q9DrW/uBwer+939ivM5Qs34G7twhZAJSnocvyvmurzwVC6EGs1R5WRKcP\nISlx8Peuw/2Dt1B8exnRX/oSen/1JTiHFz/+AA8Q+WbQgcACGUPj/YeTCMsLV8bge/ygZWA04K7s\nkl1pvhCBnYKxdPKYiZ3lJmZJkqnPp9a7ucZPqpqvs8LcamZIlU609utd2JDXb9GfdsdMkyKowPLq\nPRKlVhpiEIH1R9B+Rn9RDkdSEojqDpKyQHE7Qnldo35FoHlVYvc8w8TzW3C6HM0LXQSzJSR1HyKU\ncAJNehXm43AC+m46xzl6JxQ01+AJgxMAU++FcAaACBgKSx4mLmpUfttM/nZDaA54nQh+hz4Tb0/A\n7UkoVyCuuyhuBihtxNACSEoMUZ1s7r2ORmGHQWx5WH3jEKrXHBR3NJxAo7SVYO+Uh90nCgiPTtL7\nPtDNO5tc2qm5imJCvSgN1e/DinTaiflYYxDImkF5PZScK1eePpb+LQSY60E0Gmi/vAhZYCi0JCau\nhGhcG2J4bg7dv/YSnGNH7mHPS45TtvAfo78oTRNZRm4vVgAboEmJmJ4iIeudXRReu0r0GwDO4UV0\nnp2l8zVOY+khByO62QgBxBH4D2jqJYywevS189CHZ4EoJrHhRh3i1HEMv3QU8aKB9S+vA3GC3rEC\nkqXb9DkafQsdRhBnToKfOQHroCZOHoPq9oCXnoLc2YWYnKBjP34GcnsbV3/tHNz1Nk31fXK10c7B\nIcs+DyGaxm3pQ7TuPpIWzYmmyMtl6F4PejAk17kworXvOJmoI2OQaxtQtRJ4lADdPjA7jYkrIcQM\nURU7x40wtKWDDUYZ+jJOwMIYzuICWT1XStA52gqvVrLG5ceE936JGkhxBDE7g2R9I7t2hwE6Z6pQ\ngwHCIxNI6oTIrLy5DNGoQ+7tYfjUItzu3aiuRB/s2lGtPaIQ28TZaJ3AdTMnNPNYap3N7bVpkEGM\nUWMslzwDMELUBi3HOT1u3cU+wrRD/OHbcP/lm4Q+Kfqks2ddBm0zyHEgO11aI5yTA6Dvp+ggJAlp\ntxh3MR2EUJUinM4Iql5C/K3n0fnSIdRvRlAfXEZpdYSoJhCengOKBahWO0XrQGsaiDx+GtGJabBE\ngQUh1O1V6J9cwGiuAFXy4XQDiNcuptP5eLYGOUNaUcm5IwgnXPSlj+p7RB9kvo9kZRWlZYNqkhLa\nFUhuLQMcEIMIqlFG9YNt1C930Xxzi9Z9PtY2waqV+9ZkeJihopjyBuP6l28K0ROMyKuheaXOdTkN\nxTwC2j4vewGdTZuVTt3L8lG53EL1Rg+VOyGm31LgEbD0iw6u/6dHIJ89Q02X+VnS+jEhO11oc90C\nVMDQtZyk9BJepz1IdXukE3bmJHipBGeRxOBn/5dXIW5tIFldg+YaO08T6hVaQ/UHBjlovhTzHkt/\nfImoa/0+ks0tQHC0vrpIunW1StoocQ4vYvfZRjq8YedOQtYK4MUE+oOr2Zvf2kW02IRz7Ah0EEDu\ntqAGAwyfPITgpTNgvg8x2YRemCHnuqUVDH6ZhKTx+vtQvhj7XP48/s2M4s6j2RzYAciqjIWRctHW\nKMLqbeaRQKkVPQ0u9b3u5fvvU3nqmK297GP7UK6q5GE07UFzgMcKSdHB4JkFBF85B+fYEdLHZIyQ\njAENWvMai591iFPHsx8U7cfDWR+DQwzKBXjMCDGogZ+ZvYCp98fvN/dyYf24YL6P6XcU2OEh4oYk\npNAXqiH0OQj3/ZuQLoM+S1+g3N6G9703Uf2t16ArRfCnz0E06qnd88MI9uwTdz0m99voPWi8eP7u\n133ucUxcfvCpupgmgcUxp5jPIFHSQUjNICN6CyC11tU5Dn2qabEPPp0mUVYIDcj+zXimRyRVlnQY\nhBBr1tH/K1/GtV9/Blv/2SuQ33gOzuHFu4QF7z5pTfoEWlORZJI9bVx5tMOgXQ7pERVLCUD0IyQF\ngnLWfvcDVJYZOj+aRXUJCKdLWPplhp3zRTjtAMWNgKaxDKmzGJMa/h5QWiPXL+lrhE2NlW966J1J\niMIVEiVNTDahX3ka28+W4fUU+F4fTqARNoHCDoPbMVoGjCGY9rHzlI/+IocsAEkRaJ/m6J4Ewglt\n6GOkYbT3uMbaXwBu/yUHYCQ8HVettsjDWhH3EyT2zMtlaK2pGVTwqaDijMSZTbKa0i18n6gbSU6s\nM9cMYpyNQfd1nKT6QmA8pZlpKSE7XdS/fw2z//OPULrRgtOL4Fy5g8KfXEDzX1yEHgVQL5yDMzcL\n5hjXKEMzcxYO0Roxlu28XAZr1inJtjdd10k1M8LvvADdqEInCW795lPo/sVz6Tlf/e+nUPujawCo\n4AAzNtaeB1bwqekVJ1D9AdkOl0s0hS4WoDwO9d5lqFFA3G7Xw62/Ng/xtzfhbFPTau/bZ7H91Tn0\nF7IbPi/RMXBiEfr2KqGcTPM21Vf58fukr7TbQvDVx6F8F+LcaZz8L16jBuvFq5BXb0APyCHoz1Ko\ndofWwwQVF7xcTv/Yn/Mx1rA3rmW8WoGKYmoiHl2AGgyNRTvRlHSBBHh1GKJ3qobWs03IzS10n5yE\nv9LB4Ckq1Iotcs/TlSLRhoKQaGMFnxJYR0AXfThbXVi3sTRBrFfTAjV/jvl90zl2BAAw93oIPj1J\nRattPh0/DHFkEfA9FFp0HP/yKkazdCw10ySh/loN/s6IHFP2f5YHLAajpaQ1awWclSJkQxyPi0ub\n9ziG+EiHETJD45gmwJgzImD+T2eTWiHueT8SZ04i/tbziL/1PPgwpuGU1mDVMjA9mQ48bLOKMUbn\nGpMGHmxjKiaHQ130wHoDyO1thDNF8D45EQ7mPVRuD1G8QHDiW9+toLATIykLjE5MEnplRAk9H8VE\nzXI4xCCGGMXQhQwV158XAAfZ0ecaXbtPFiHWKH9yb21i+1kHv3f9cWBr19jQk4Pe8HgdwfEp8zmR\nAD8PEsQTRePMyaDeuYjhqUkkjSLE2VNpriPbHXKr+eR5+gMHy+t12JzGNPxYPq8xTj8W4WN1hPLr\nJH2eQYTaIiq1dM8NMPL5rrxyHeqdixD9CKWNCLNvBjj6/0pUloHOiSL2np/G4PFZjF48mep92KKI\nMUZNRgBscT5rSlla2WhEKLadXey8PEODD9fBrd98itA829sQZ06itM4x8+YIW88VwZ98jIT1fS9D\nF3EBceo4eLlEyCBz3chL1+DvkUNnXnB75xuHMZrKBK1v/0wDe4+V4V8pGgFqum7kzi7cnSFpc+XM\nabzvvQm3TRIAVtQ8qftQg0HqzgoA4o/epn989vPvAw0xO4PhL30Z4vSJ9LGPKnT3651+0WLy7UeD\nyEq1+Q4sDAo+r/nIc3tI3l0wTtLaKEUXftig515u0OkxM4qZjiLoN95HZWmAqEFrwt8eorTUhduL\nER9qQp04BFargtlhVo6i+mnD5hwPI1i4LzeVEkoA/p5G7RbJazhdAW9X4P+4/mWUbo8zpT6JC2s+\nCjsx4j0fohoDobjvPefPG0ImZLuD2j95DaroIPr2C+P/d+ka1LuXINsdyBfOYfTzz6c3yQ9DhtxP\niO32A53z/YQtzPIxOFqB84dvP/Cx70WbYJ9FY5Yz0qSwjjc2YbIOT/s1gwBYsekxu0Qga/hYdw1T\nhBNKSI01naA1MByhfmEPEx8w9I4r3PlpH90vLZCw7sfoYqXOGp5L3PdGDdFsGdIXYAk1UnhCiBoA\nWP1GHf2jQNRguPYbZ+B8ZwfFLQ0eA1t/Y4i5wy3EphYUXWMJbBy/kiLAE0BEmoQ5Q6C8Sl1qfXII\nljAUNxnKaxrBJMPFXz8M+ff20P5ShLjMsfLdeax+nSOckvBbpAkhfQ7tAGFdQLmA19ZwexoionWg\nPI24RnBF5WuMnhzBWxxAlyT8XY7pd4aY+x9/hML/9zpY/6B1YHQqtgoA3HMzgVbb0DGuCRaKTxN6\nMzHnLBWXtsLSeXFpwKCBOKOmkXErs9pCjLNUlF1evQG+tI7kzGFKlBfnqOj/0bskJv2VJ5G8/AQJ\nj587DbmzSxa8hs6mw5CEYQeUpFo3F3OiKF3dgbx0Dbxaxalf66P8f1OSKr/+HE7+DzE5whR8sKcf\ng3P8KMA5ubP0epkuxZNnUgckNRgAQUhaR0CW5JcKOP6bm3C+dRvy+i0kX3kKzX95FdOv7WDqA7ox\nMs+4s0QR2O0NqCAgJJXrEeIlMZ+z1jQpnp6GZiD73kvUuHLm5yBmZ9D5lZcQnc+0Gv6shAoCKvCi\nGKJWI568lNl+s1+cPe9QVqOiWA9HZE/vOGC2GWp1OIQAi5PUOtzrJHAHtAcxBWBrF147gnP8KMq3\nehAnj0FeukYOUpxDc8Pp9z0gINFeLThYFIO1OoBS1BRcWU/PyyIReKk0tm8mS7chTp+A/9Z1ci3T\nOhNeFgyaM2jBUbpArlZwXVQvd4DJJpJaATh/muiVoxj85t3cfH3ADSHmOESpMUL2qRuctQTXWVKd\n6d6xcWTHfjo0kCGBpKI/OXFOgIpxa16QF++VV28QIvrCKrrn6mj/ey8DQpBr0LWbhAAEjDOmQ3bz\npnkrJifo3hXFpD9mKdhG+yGYoASdl0ronAb4zVUk6xuIvv0CRMTgr3dR+N5PMJj3gFNHxqiDvN0D\nW9lM9QG1LyDOnkLyzecxcSUE7wVgcQJ+/iw9/8nHwCVIt+j0CcTHZxHMxxAfVDJx7nKJdNkcBn+z\nDxbE4J0+WKmIaKYMpjR4SOtenD2FzgkX4YQH1umN5ToqCHDATEMKm9forCmq0wZhNm1nZt1o4/qn\nkyRrvlgUdC7PsYhW+/h+rY/9TSGA9mNvdQ+yIDCYdxFMMbhDheabW3BGEtvPeuh9JzeMZAyq28vs\nlFfWM40igJwLczH1u6QZltxaxqm/O4Bsd+DMzULdXMbi7+3AvbiM+lKCa3+9Aeb7JII9HEHHMVFm\nPRd6sgE4DjXzjJh46e1lMNcFr2XuJ43/81Us/q9ZPnzk99ronAbq1y21xawf1wMfBhlqzxxbTE9D\nXFtJ9102iuC+t3SXDTsvFMhh789Y1SU3t1D9wU30H58C+9KTNEDIFboWOWbjQYr5zzrE1CT0pZuP\n5uDyM0a9sByKJzVOGf/7XjSxjzSPsPe4e/xOOmx9/X3Uf7iMYMJFMFdC3CxCFhzwWIEHCXStjPDI\nBILTs5RbPqCbmEWyP4xI7qyk/xazM0AUo/nGJibfH6LYSqA5UGgxOEOG5MdN4Madjzja/YUOQyRl\nAVZJ0tTvfuvyz8fW9DnSa2Y/ehf+9hDDX/wyaWsAcI4fxdavvgJx9hT4n76D4m+/Dvb0YwDwQFZ2\nyconE4/6VK9xa3ns59Z/+DKcwTi16mGG/ixWlMolRVYQ0dK8gBR9kHcdy7vapYmSvXrycEOrlG9Q\nHimFzP6u1mDdAab+dANHfzcGU8Da1xjW/5PnwV44fxfv105GxPQ0USiqJZqGKg0WxXBbAUQooTyO\npCygHAYRKBS3Y0x9EKNxBXCGQPmNIoY/nEJSZOicAYabZWxfmIbmQPdsHb3H6gADnAGJSAMkLN09\nCUQN+lxKmxLQQLJdQOWmwOzrfUz9YBX+nkZx2cPaDxZRveChv8AxcSUGSxi0p1HoSGjBCSEiSJ/I\n7ZOGEJeAFrQO3C6HtyvAFKBdDRULqCsVVK548Pd0qkklajXoSvGAKWNszHVFS2rYWHQF2fmKsecw\n67ZiCzogTaitsPSYlpBNerSix/KuZMgSH0vlYq++i2SqAlV0sf0fPIcb//BlBD//IvzrW/DeuQGc\nocKbWcpI3skOhKzgpRL0aJSKv0LJlJKqowjyBu0HzuICxDCGfuuCeXMMwSGi9KjRyDSyHPAiud/p\nSzcg22Rd3/8rX4aeIGoGr1ahpcTwq0YsdGUdvFyGqNXgvb8EudvC8q978H/njfQcVKcHXqmQBSdj\nRCGoVyFbbSR3SAeJuR4JBO/swP+9N9LvgBcKSNY3cPW/OoHazRHc168Qqu7PWOgkQXJ7BXAdiMkJ\nottNTRq6IL/ruZZ6YfWWtNZEU3IcsN7ArGs3Lcy06wCjAM7RwygstVC92oZz/Ciql1vQYQinG0DV\nSmCjiK5dAMEUJXBMa2rsFVz6vqfqYFJBl4tINjbBji2CT06kDUwAqQvIfjeQq//bi5DXbpJeldJg\nvgc9HBJUPDEClEbvSBc86FIBLIwAQegSligSTO4NgZm76dgHLSoN4C4qjg7CbEJq9H9SK1/biAYy\n4WlzjHzzyBb/zNvnuGeFqgFq9HkeFfn7JvTJ+gYq/9eP0fhHrxIt55Wnob76LLQQtK6KRfBajRL/\nMKRkXSpyeTJ6eHAN/c/3wI4toro8IjrnqSM4/K+JYiOaTfQWHMy8GYPtdaGTBMM5hs65Bp1Xd0Bo\n2cEQ0fmjYLGkNfbWBQzOTMDtRfDfXYK8egPJ8h0MTtTAn3kcLIox84cbEFOTkDeWsflCGdAME5do\nws1LJUJmFXwUdozOWhiRkPRUjdZWoiHLHuJDTYyONdC4HqF0p08udrkQ504fPDUeptHjukY02Tim\nmXtSOsww/5/+juukeQtpUMmsiEv1PuQ9Czt7TwNoYLK/KZTcXIL3+29g4v0uaksKrXMCl//mNJKi\nwPwPR1CC3OFYf0iIW6WgRuODn9SKvj+kc2cM4iy5C/JCgfatFg1O9UQd6sUnwDp9yN0WKtfa0LMh\n4p96kgRkw5D0qHwf2NwBNraRrKyClQoYffcFEkXf3IIejRCfnMfgL385bZDm8/ibf7mOE7+1h8ZF\n0mazSFsxO00C9mEIVipSY1XJ8f2WMejbq0Tn3kdbYUcWxtERf4ZCbm+TM2nBQe/f+fKYGY3c3PoM\nz+zhhWjUMXzhxKdGdXz8Cxx0cZUffu+T1Uifwsd/tvpgZmjBTPPINhYKE3IAACAASURBVIVSJKOh\nQY8JTpum9tiQ3sgkJOsbqP2rS3CGEuGUBzCgc6qM9a9NIp4sw1ttw+0E0JUS5D3crz/rcBYOIXzy\nMA3kegO4Gx2IQMEZ0cDe7QGTF5OxnOiBQgPcUVCxAB/e/7r5fDSEPmcQSv3WBVT/5BpaL82h91df\nwq1fWUAwA/z/7L13lGRZftf5ufe+98JmpDdlskyXaz/dPd3TjtFo5GaEEAJ2ERI6AgnOAgtHLAcj\nELDAYnZ12LPaI+Gk0cEuElpABmlBM0JCI81Mu+metlXdZbpcVmVW+szIDPfMvfvH774XkVXVM9XT\nXVk9w9xz6lRkZEbEi/fuu+b7+5pL/3uJM596jAv/x5Porr/p36V8LDh8+yvaedrMzdrK08n7apad\nRyLmzd6BBOjCcX6AAaRyXxHPFNrx996gE+iDPblkDHYCSXnqkk/NUZWKROvm0sE0FZnR5jbl88sc\n+tUtRt5UbD3S5fT/VCb9r7M8+CXF2Z96nI0/9iTt3/sQ2ccfQdUqMsArJZIXa6HTRccpWcmQRZp8\nr2IjRTS/SWVOBrqg5Ri+kKIT6I47kpkY09GUVkWytfg4rDyoCTqWsOUIOg7lIK2CjgWNToYc85/I\nyGa76FhAHacVV797P1sHoXbFMflKSmXZUV5zJFWNOtBm4nlDeVnMIJWFXkOT1JWAWoBTELSgvAJ7\nvxAz+YqlvKSoXjE0XouoXYHyqqO87k0+J8Zh/4wY0e5qc30gEDzLLBJ2Qj7JaSWLTPpysP7i2vSB\nIC8DG1xAuywTcMlvwmRBrYSJEwYeIPJxv74Cq6tV1DOvYtZbbB2GI3/lWXTiWPn4LOvfeY8koAwN\noYaG+osOnwoTHDogaWLtNs66YsEV7NvLpb/7JOaeY7hej/b3PIoZHRWjzVfFHyH3cameWyc7ex6U\n7ldyez3chbmCtREc2E/j06fITp1BDw2ha1VWvvdBrnxzICyldhvbaqFqVbLVNRb//FOM/5u+hEkF\nIcpo9NhIIU8BkUHpSrlgXJrx0R3+MiroAx9X/+pT7PmCI3h7AQ7PFkyWr+t2syqbc+JjsbmFGRkW\ngKdc4sqfuA9z3wmpXI8IcOdqsql15Uj6jAcbbFcWUS5nVHq/tc7RCdJri2Tzi7hamXiqJl5RzRba\nM7n04ppU5Iwc29C5LbL9k+IjtLmF0xoVhpIwZXT/Wldk05rPU19uTjx4RDYLqlwqvKq0jzVX3ViY\nlYALDGq7Q3b6HEQhqhtLstmGyCrd1hbLT07c8P763URwvA9NRVFhDr3DPyhfHA96wkB/XvNth6zM\nS50H/962Wn2ZWW5QPZiKmfU9IfR1aXRb3/cE537iCfnbZ15Ff+5l2gdFhlp42/l0NJfEZBsbIskp\nSeKcW1tHdRNhF506Qzwcobox9rW36I2EBAdnsUf2UV9ICbdT7Mw4qlSitOHojGuSfWN9dtjMBFmk\n0V2JpVePPUA8pFEdSUIDCQJpj/sxd72JHamhyuJ71H1qm72/pRg62/QFogxVKpEcmEB3k6IIozsJ\nuh0TrHZIKwYbyfuVljqUF9vojW1cZUDCODMtErQ7wRDycr0dpuMDqTx4Y+ai4u7lYjkoVBi1Dr5l\nEPi/8+zWIBBgJm9hKClg5ZIwQW+y3nUvnaR+ucvs33+GYz/yPNWzqySNAGfArqzhhmoy10K/cLJ3\nWh7nG8JySdKUnOPqJ6dY+8QRbLdL68G9pMfEw1OtbRJeXZMgEyA7dYbRz5a59nhJQLF87gZUveaZ\nr2XSS3MMvXilkBdmG5ssPF0l3JbP1sONHXKmpGFRmUPNrxTPmalJMY72Rvau0xWpSrUK1QrtJ4+i\nJ8YIZqbRo1LoYED6pB69H5bXZBy+EwZUH5CmP/8KIy8tsvKtB9n4Y09y6e8+yT+//Hku/52naP+h\nxwVA/Cp8Uz4ILX7oyI7i1fvebsKkue0t3wvlvqpKe8VEVqyRCzAZCoZh39h+5//Xy8jyoqvzqYa2\n15M1Zz5e+ARCFUZk2y3MZ1+mdq5JMmTQqWP6i1ssPlZh6Zun2bh7CK4t73Jh+daaGxki2IrlPDTq\npBNDwlRdlZCF6pJl6IX3j5nUngqwayWClRAd37qR/de2WPM2tmx1jcbPPycmqVN7mP4nzxNMT4LZ\nkAVSu0MwM11ohm+1ufbtl8bkprPXN3PsLg788rsfVMzk5Dun6lyX0HUnGELOa8RVbqBo7Y2DQs4S\neqfBIo9NzAGknIqtNCoyUl2cGCMbq2Mj8X/Q3QSztFnEPtPtYRY3mHo2pbQ5wtJjcP7yFKu/uh+z\nz7H+nW2yhQoHfsPgahVsFGDWtwSMMhoqZZKxKk5D0MnIyoZ4SJNF0J6cYu1BS2lFUV6D5dkAGzlM\nRxFdjSgvKyorlqSuaB5WJHVJAIu2LVmsyEoaUOhYWDxpFcpzEdGmSMk6k3DxzzsemX2LF589ztib\nbczKFvahKbJIsfI/dqiVY0bOa0wrJqtFZCWRnFWWrciNA0UWgAtAJ47y+VW6H57G9EQzO3Zym2Bp\nk/jguMQHA/bgjMhJXAl3ZTepgp4hpAOpSuSSwB0TnxOQJU6KCHmXUUjCnHUCFPnFdP67nF1jO12w\nGWbfXtKr8+QR964nfgMY4xexUo3N2RHp+Ysc/rGLAESf/iL58ijYvw+MLkxU88qwiiKyhcViM2Xq\nNVxeacgyDv6tZ8mQ+7hyrVuYaeayA338Llhex1W898pHH0T/zsuSaOYj6UHkPOmluQKcsFtbqHKZ\nqf92hbF/KccU3HWIy//DXvb95ibMTtI8mjH9Uy+gy2UfQ2xxTmGXV2Xh5ytPenxMPJHCkNUffBhr\nYPKnF4vXmQP75Z70zKeht9akCru4ip3eBSP+O9TM9BTZ4pKk3sXxTWWoLonJmhkGuabTL3VQ7S7Z\nxiZm3wxsbGIvzsn13tjqs1O8QTE5YyVNpcKdWYKOZ53dcxculE2cnRhGrzYL/5psfQOjFGbdkT16\nP6rVE3BIa5GkdWMol9CdXOJlCA4fxJ46T9rpSBpds4kdrt3wnfKW/sw0JS4WC0znHAxV4doKalg2\nhi4w4lfk2TXNe0Zo/OZbEIyL5Gx6SiQnnRvHfr3bm7NBzxffBtk+uem3ikIBe4zBpqmkRQ20wjRe\nq2Lsct4U2MWxgHawwyvF+SRBlcsDs0wAQ2MkprvnqF4zmPtOkIxViS4uU/mVF1D79mKrJVhYEjDc\nszp0vS4m1NttARPqdbKhsgAvT99PUte4dhtdrRLXNdlEA6cVtTeXcFvbMvY/fILatYzSao+1e6tM\ntqfhrfNw9BDRZizpMuMNSC0jJzdxlRB1/3HM8gZX/9AhRs8m2FdOyam9fxb34lWa3/8E9eoaI8+K\nn5ALA6l8RiHByrbMtXl/6cWw1cIuLlHibuLpGmati17ewA3VhAWXeRlbterlEoY7QCyTaz74RJ4m\nl4NCvrpe9K3cRHowAcjPa3kYghuUoSiNbbUwx+7CXr4qfc6bmasgQI8MS3/0m7bBpj//Cub4EbIz\nb5OdPU/p7HlKgDp6GNabnvVZ7ft7LK7gsqxIsXQDVf2Zn3xG1pxA9dwatlYGDxKkl+ZIvu3DlO0x\n0pEqU796jot/+hit7/4w1V9+XhJCh+oyd3tPvWBmWmSqE+PY+WtgM/b9xAsSFd/top3j2rdNM3n2\nPOm3fJiZZxTZydNSoPGJjiqK+ufeStqoa25JASZNufSjU9w9X0OVI1jZYOObDlGb76E/J31Qb7Sk\n6LS6AXegaPpBatm5C4wtrpA+cpSRMxl/9Et/kZlOTPNQiL5/mvJ1qoavlZaVDbc1ouBOscsKm4zr\nCuaDNhvei6yQouZeQ4V6QxW+QjfzF7qeGbMjLdcDT0oLeG1PnqZ2vkL64RO4l06x54u+4BFG0Ki/\nZw+h29Gyk6elABaFxA8cZPWeMpU1CxrKa47R37lAurTyld/IN3PPscJC4WYtbFnK1wxp1eEMt6zC\n+orbd6XUrFLqt5VSp5RSJ5VS/4t/fkwp9V+VUmf9/6MDr/kxpdQ5pdRppdQnbu1QPpgtO3eBPT/7\nJcyRg2Qra6RXrsrmDt41GAR3lh4Z7x+h/P+98K5fdz0YNJi61vnmncbY+fp6N/uN8nruIk3sZqDP\ngFZVJGN9r5iCEbLDY8gVA5FrtcVXZayOLQXYsiErG7J6RDI7Dnum+hX8NEUvrTP6+TmO/4t1TvzT\nLnv+5esc+Rtf5PAPvMHRv/gcpdWumFWuNaHbE8lAKjIsnWQErZRgO0bHlqDrKG1aSk3H5IuaoUuO\ntApZxWF6iuqSo7wsn71+j0jCsiFLtKnZOGZwRokpdCxgnbJiUB20FKYHQ1cyxt/oErbAztV4+bMn\nqM1p5n9Pnbd/aIa1ewxLj8Fjs5fhM2OES94IOwf+E2TRrhU2gKSuSGrQnVS8+ZcnaX3/JnFDmGMu\nNCT7xkjqAe5LEvG68E3DbB6v0RsvF5TY3ek7zntuZDvTwwZp3s6K0TL0vXQGmEL5Y6Hth31wyJgC\n/DD3HiedXxA2TRQKe6ZUEtZQqYQeGpLIeB8JrEJhcOhyWaQufiGsazXIsh2ATM6gUV52VRx2mha0\nWdtqF693W1uoZ1/FjI5ixsfQxw6LL8doVRh1Zy+BUoSvnpdjCYJCmoA2RZVd1+uk3/Jhet/1GN0P\nHSCdmxdK/bG7SKaHmf3VJdzLJ1m7r86Jv/Z6cUzFfeijhl0So/2GlE63WPBM/b8nmfzpZ4XOv1dY\nmpe+dy+uUkI/eDd7vmOO1tFRuWf2TqAWV3ex3+xyG2lIf6hJ6pOMc+ZGxpDNxONufR39Oy+TXrgk\nxr+58fjsXrkGNisSq1yaoisV2GgWG668RZfX+gmKGy2i+Sbq2qrIvi7NkUw3pJJXq4AxZJUQtdVG\nb/eIZ0fRww1UpyfSM+fELFxDNuE9j5zD7hej3nxDf31zTz/E0KffkB/8olRFkcjevDRKtbu4aglX\nLRfMhqiZocZG++wy//zofzvvf+5/154tPHZ2p+94sBitivFHToItfEkE6LUeqM52gEdF87+TEyVg\nkK6Ui7hvOzGMixPxESoJK0mVSzsNiZXCdrrY7RYkCbX/8gr7fvIl1MYW+guvkc5dkc10FKK932Eu\nrdHVKqpclljiNBNvoaEqeruHmZygtLjNyIvXYGIMNbuXoUtd1FsXMWvb2IVFUFrmz3pIeblLd6pE\nWlFsHRGjcbW8JklNJQOpxSxvYF99E/fF1+lNVEhnJ5h5ZpPK8+I1o0ol2tMR8ScfY/n39Sj/P2O4\nbtf/64kUMjdX9uxuN+QZnFUJDVn4+BhhM0bNL5MuXCM787bM+ydPA9D96L2Sbtduk4fT7eaYU7BQ\nnXtntkCe4Jin1Pn+UWzevGl8/00H5O9J7JnPuh8qUDDaMpECjg5jRkcK37cdXbJRQT94d/GzGR3d\nkaA7uAbLtrYElHRWPH5y03PvTeW6XSmqXLqCbnVxSUznfll3lpZaqF4isdhRyOQrKRtHjCRTNpu4\nJIGgL49Mry0KmF6rsPynPiJz33Cj8PBLry0y81tLwqINFCMvLcm90W4XG1y7to5rd4p7yGVZAQYB\n3PO3L6KuLsPSKtnyMq0ZTfOQZ7tOjJNONbDNbTmHWSGf+fqbr26x2a0t9O+8DM+9RuVXXiD6zItM\nfOo5yr/27vcnH4QWHJwl+vT7zw7q/r6PFI/zwszu9RvXB3iU7jMT871RDva8U6KX//0NPq2wo8Bz\n01j7/Ah8MnP+fioI0KUSLsuILiyh7z+GmZyUUI1KmWx17QMFBg2yn7NmE4whXO8yfCGhtJFRXrNM\nf25dsIR3ETd/MzDI3HeiKPLaQBG2IJlISceTWyZq3MqfpcBfcs7dCzwB/Dml1L3AXwN+yzl3DPgt\n/zP+d98H3Ad8EvinSqmv6Vxg2+3iri0X5qlwo9fBB70l3/Eo5n0wkoadRlmdiZ0ks2ijAGN2t99Y\ne/OBwCeN5QCQGGLm5mi5bCwrokplEOsbSLtWWxJKZqZIRspklQBrFOFGF2s08UhEMl7DHt5Ltn9S\n6MyeQq/WNtHtGI7MirTO3/D69CXUF17Btb1uXSvxXwgDochnFt1JUM5hepag49CJQ1lHactSXnFE\nG0ID7Ewotg9aWgcs8Z4Et78D9YS04iSZrGcJmzGNSzG1Bcu+/7ZBbcFSXnUELbj2uOb8Dyla93Up\nryj2PJMSth29MYfpigeDnu7ywu/ew/QXtyRNpu2ZKD1veK3EtDorK5wSxpFKof52QPDrI5gY2jOK\nsz8cMP+XEq59JGTthz7C5f/wAPVPXBM/hjxBZ5f7jlKq7+kzkEbnkrjwAlI+bU4FYd8LKIk9iCOG\n0blsTEdhMdnpeh3njc7t1lYRC2+mJovrrmtVSRZUeqcpdRgWfjqAgEEL12RCrIsxsCqLbFEMXQUk\nMCPDpI8c95sGg+v2UGEkQNRwA12rka2vF2a29vxl1BdeIV24JtXhiQmYnpTKaJqKN0OrhTKmSOlx\nnQ7RSovqi5cIf/MlOb48Jey518hOn2Ppzz5F3PCLatU3xc1ZDSoU8CtbXUMpJQv5QZAWRBoXBoz8\n+in2/fgzZKfOkDbKzH1+lvKvvUA6dwW92Ro0Efz6mau03yCtrEmyW5II42d6CjM6LEDOO8iVi2So\nMELl18yzOlS57FkoSX8T5hwqMKTXFrGTIzIWdnuS3GGRDXSWecNpLWOZUSL3BAgM4Vob14vFkLeV\nkO4fx61tkI3XyU6dwVbL6GYbs7zZP9AvYzbZ/oOPo77wiiTYDQ312TDbLWEERZH40+SsUOdw5Yhg\nzwzl585gGz5NrVoVJsz4mGxuP3zfDo+HTj8uanf6jt1ZrCgkPF7G7OK4v4DOWap4ZlQuDfJ+eQVT\n0fudSVKUQw8NkY6UUdUyzjmyxWWRr+RGxPv3YO85JP1gAEjWs3sxe6ax6xt9FpkxZHNXJa0zP66S\nB5ZsJv1yeVmSl4wRtlAuI3QOWy1hGxWUN+JFKdLH7iG+b5btvSVsqAkWN6mfWiXoiHRMHzmE22zi\nXjrJ9uG6xMM3xJdMPXwfWwciVJJhFjdI7z2Ie/JD6EOzDP3Cc1z6PkvllQojX7jsk6u6co47XVwp\nQqWZ+MBEofzciyEVn6LpL0qxA2NwTz9E/IlH6c702Wtz3+EX261WAQjtWr/xfaTfjwa8pDJbRMwL\noCOV+iI5ddBEenDtU3jbBcU9oe+ShB27tUXW3CbbbKL3zsjaKTAkez3zLJdS5wWMoSHci2+gFvop\nufYuScNU9Wr/mL2xuYoi+UzniO+flXGlVBIAMstQpQh94ojMU75yHm161sDimsjrL0kMvXKOtA7X\nnpSxLltdI5toEH/oMHrPdP+50+eYfnYDVS5Liufj9/c3UENl3v6BCSpnl3Fz88UcK0yqABUG2FZb\nmEz+vskLJMFdh2BsWNZ3oyLRnfnJZ5j4XVknu3YH9cyrsmZodwflG18/89V7aIWp9AdQ6nNLTRvx\n87sdb50OnJM+7rKLY46fb/K1Wf6/Z8zLcbmd/w+AzwUjyIcdKOX3On7ec93eLV1315MCoqQg+qCX\n5hZ6s4WqVYr78YPWBj18VakkDMaVTarnVmnNBNTPb2PfeOt9+azs5OlinT381haVJUvY6NGYaL1/\nDCHn3IJz7kv+8RbwJrAP+B7gX/s/+9fAH/CPvwf4Bedczzl3ATgHfISv8Wa3tnZEnN7JaMRiIX6r\nf3/fCZqzt4enOv7i6o6fc7PFXe03uWRsUFYAntmQm5f1jTcHB6wiOrF4nwHp0OBGtlJCp17X6gCt\nSRqStJVVA7KyX2xHwlQSf4gM1eqg4jzKVQbBzEeWqkA8HlQQyOYmZ3448dlI6gHOKFTmCDry2aW1\nhFLTyg2uhPVjYgVWoTcDsmaEawVkVUtaFX2qSi3RZkx5LcO9+TY6g8qapTGXYkuWoZE2rmuozTuq\nF5sEbUe4JQjzxhE55sY50JttqfQ7AadwrmCE5Qi0iRFZWir/Ny6J15EzQKrpXB5i4vWM7f2Kbz/8\nFvMLo4y8tkpptVtch93sOy7rp4IVz+Ux894fKF9E53Hzhd9KEPY3Tkr3QRa/WNaNoR1SDxUEBNNT\nuIqPrz+4twAzlFayoPTAkN0WZkfeZ5T36tJHDhWsH2ERDLDanEONjRJd9Iy+vOLgrCzY90z0gWzn\nyN46h0tizMR4Xw4B4pHRasni3Lft3/8wjDTQQ3XM9BRqca1gO+ooRD94N/G+YWE+VasMfc8CMz/5\nTP+kelN35b1Lio3ogF+R8hvN4v6dHBXjVy+B1dUqOrXc9Qv++z3xoEhW+ok7Xz9zlc084yMR+ZC/\n5na0IcBGpdwHmK+Lmc/nKZfExSZSb7X877wHifMJV87uAGZcKSxS4Nz2NtlQCbuyKoCS91rTI8ME\nqx0Bl0Cua6cHw3VZ8Lx9le5EmazZZPOobAazRgm3sSkSLh/hba4OeHR4iVPe0spANdH4PqJU/3i1\nEqPqwPSlb1qOO2s2SUbKqDRDT45j1zekclgt09lz3bnK/9+tvpODOH5xXCRgDa4ncvPogShxNRCI\nUPwN+MW5EV+yfNwZGe57urU70g8CuebZ+joYhS0F6OFG/z3As7h0kVoHkM4vyGd6Ns2OYx2QYKuh\nOgR+o7zdwpZDSWvR0BsroVIrnxeFZCVNsNkj6EnBIxupg3OUNyymJ0wTVRHPq7iucZeuoloduh85\nRjpcorqUYa6uFKEcziiUL64MjbSZeD2R7+0BsoKJVRiaKjBKzM+TFJIEtdUiuLpGd7qCUopkKKRy\nYZ3qW4uoh+/Dfuxhhs/0+6Tp7XK/8dd8UFoI7Aw+GDRozdv1QRm636eKTVme7DY0JCwEM1AosxnZ\naK0oZtiywc7I+lPGFz+mDwuTcZBNrpsdgsMH5R5FNnUqTzsbaMFWDJkl29oS5p8Rb8atEyPo4Ubx\n92ZhTQCosWFco14w/2qnlgja0J52xdiiWz3WT5RwUYg5fqTwplMXrkof7/ZYfqiKzlmQzY6EX2xt\nyyY26M/rOTtCR6HI53LGlHPS31ttnDHYu/ahunHhjZZNNPx5GihUDqw1vq7mq/fSBmStX4vNHD10\n28CsQdaR3vbrvjvVbwaZPrnvmL3J977uOdl32Rt+/9UAOG7wvfN1UV7k93PhnWrm3uNf9vf66CGZ\n11JJskzqCn2b0pXV6QvoDLR2ssa5xe75rhxflFKHgIeB54Fp51yeG3sNyHcP+4DB7LQr/rk72szI\n8HsyK1NBcEOimHv6oa/6/a5fxH+lNtjZzv/IiXf12ubdI0z+3Mvv6jW32rJTZ3b8nNRvhCJ3s98U\nySuZxSVJv5KVL3LyOHnnBO1OPVgThX7T6qmRRsvmp15D3383rbuGSSsBOHAKWrNVOmOGtKxoTwW0\n9pZwWqHaPalg+4q8XV7FnjmP6/YwjTrBvr1Cc7z3uFDWleqbVqbeBDLJ6MxU6YwbAV4UpFWNDRSt\nPRHrxww4iDYFgMFCZVmx5wuOyecM1bmA4dNG4gy7GbqdYOZXKS+2Wf/eR1h8AjYPGTYPBwTbms5b\nI4y8Lourq982ztp9it64pf1Ymz/8Rz9LtlJi6plV8emwVhJZrMOGGhwEXUe07YiajvKaRVkBhCor\nlnAzJm5AWrNULwec+GcrDD9/FRs6Pv2bj3L8h18ie+ucLMjSG6mnt7PvqDw+01PAdRT2WUFBULB+\nXJaJL1DOFqJf2bfdnkxS/nnrF73BzDTp7ATukk8S1J7CbgzZmbeFnj+/It4dE+NS5feVWuUNruUN\nvc+HVgR7Znz1N+ubgfr3xspk6NbWi41ScPgg7uETuDQlefQY6VCpmNRdt1swlbKVVdyJw5ihIan2\nH9xDMLufbI+Y8OpymZUPaYmSP76f7Yf3ky0uSQxvrUbvm+5n6/gw5re/RPbYPSz8yYcY+jN53uWN\n44Ftt6XqavoSTlXy94v3JbryY0/B/CJ2WQBnMzLM6R9/AP3KGbI3z2I/+jCbR6pieL1v+obP+Fqe\nqwC5psZIapR/DIhPSL0K434jU6v1+4pvuSwRbYrz55rbBHtmsM3mjsVZziJw3R5mYhyzvIkaqmO3\nJeo5rcm81z7swYPAYIfrqGvLuE4Ht7BEfHAce21JgMQhYaD1huXaxn4+2D5Q6W+MJkYw01OkC9eK\n41AenDAjw5h7jzPyn0RqqLSShDFjhLlZKglwAUUhQG93sbUSLgyKdL2NoyXILHa4Vszb2ehOE2UA\ndZOV0m3tOzkLMAeDvPGvi+PCM+h6U+AiSj6zhUm9y4TdgZJo+cFNZzI7TrDZK4z6ValENjmMKpeL\nEIhgvYMdGSr8FmycYFfWxGulWu0DT/kmwBsAF+a91vebOJEN8EgD1UskGXB1DVvxG2r/XcxWt0jU\nrJxeRL35NqYr19GWhR07/IVLDM3FNO+qiT8YoBMnRvXLq/RGA6LFLWrPvV3I9dszJTCK3tEpGTM+\nO0rl5Usyz3sT8tz3SHnfJDKL6ibCZipFUIpIF66Rzl1h464QqhVKi21JMrt4mblPDpOWDRM/86wc\nU7VKbWF35yrw4M8NUlFbFJUKyTzsAB5wPmku9w8aLGxqtSPFTm93xRR+oOm3hf2gWh1K55ZIh0uY\n40fkrXs974UXY+4+suN12dnz5HLRop/1egIiDZpbv35WJM7O4Zrb4om3sYnKnKQGKoWZnhLZViKM\nroVvncKNDWNGhukenmDfb22SjqVsfIscQ3bqDOOvt8lOn0MlKelj9wgjtdmU+dFmjJ6NYWpM+u/a\nBkd+dg7Xi/vfy587l2XCjI4ib4QtLOF882nXNrBvvMWl7xzCNbeKAoYtBcz/5acK9lWwby/Z8upN\nq/Vf8/PVe2jZ+vod3ci/l6aHhlBb71My1FdobmPzhudub79RO9YeOyw2vlzzjPod3mWDv3N+vosT\n9PAQtnujL+I7Npv1C7Llsow9TSme2q737HyXhIn3q3Vm3znM/Dg0MgAAIABJREFUKZjdT1aLJAk1\ns7jtFns+c03GyK+y6YfuveG55vdLKIRtt9ma1aRJwNbarWMNtwwIKaXqwC8Cf8E5t8O12Mku/F1B\npEqpP6WUelEp9WLsvvro9ltt2cbme4oDvOmi28dmfzXty8XL3axDd/cOFYkxB//2Mzf8/mZND8lr\nar/4/A1g1ntpZnxsxzEGB2eLx/Hozr99v/uNf8+i7yT0CvZBwbBRChWFKB+r7D+rr31VGpIU1+3J\nYsh6cMinr+Tmv2iFGhkmHSmTlRQ6seg4E8AjcVSXMkqb8nNSU7T3VeU9NrZwkaQpFQuhdhtVq+Ea\nNdLhCt39DVw5LFJy8qQxlTmcUgSdjOpiisqgNRPQnDWkZdg4pmkfSlAOgrbDdBHAqAytPYbuuGL6\niz0qq5a0Aq2ZiLWHR8mmRtFbXeJhBRa2jyfwsXWSsYzSmmL4QsLS0xnVTy4Snmiy/8Fr7JvY4N9+\n+mMc/YWubC4GqiAqtejUYbyUzfTkcRYqYS4paB7SXPgRRfjoOqancAZWnpzk9I9P4o61OPxjz0l/\nuvc4ydQQthRcf51v35iTdfqVSiumui5N0WWh3KsoEnBo4L7P/YYKwMb1kxCK9/GvS68tElxcLO5z\nXS5huz3SBe87pqWya9ttkYwB6u6jfdB6oBLi4oRscUl8Ld48WzDXcraPpMhIpTbziwYVRmLs+8bb\nAERvzKE/J6CwCgLs0VmyxSWCPTNkH39E0u2aTXrf+RhqYYX44ARLT8gEZ7tdDv6tZ1FhRHB6jsqn\nvyRypDBg9Q8/iFNQ+8UX6H3XY3SmS0z/o2f6VNmbLB5ckooHg/eQyHXhtt0m2LeX1hOHOfjPTsp3\n0Zpg317e+rt3c/dPrxfj2Nt/UjP26TO0v/1BssbO2PldGXNuZ9MGMzYiXiC+eqrqNWHRLCyj0qxg\nRKi6ADB5Zbxo1glImCRSHTcauy3SPxfLcznTrGBFGiMmu0qhGw2Cg7NUTi9ixscoL3dhchySlHS0\ngqpVcd0ettXiyscq0o+bTTYeHAGgtCn3xsx/PIOZnmL4rSZqz5Sk+axtFhv+YP8+VBiRnr8oRY/J\ncdzFK9iOeIg46wpphttu7UieK8BNoyG1YPo7rfrVFBfHpMP9yHCzsnWDh971++vbOeYk9PobdV9l\nLZgIeRU1r77CgBzO9k028zSyfOwxnj7v/V+Cg7MkQyFmeUPGs3oN3Wigm50C0LGlAFsNi4qzGR2V\nhXa3JxvfmhQqzMgwwZ4ZYQRubgnbtlLBbm4VbFpltIB0vRjV7mJGRwkOHyRcaWPuPU57X4VovQdX\nF1HdmO7+IezGJrbbpXp2ldKVDYLVbWwlJF24RrTSojOucd0uweGDjH/2MsGeGdIPn6BxpgkLS2Qr\nq2z84JMk3/EojVNrLDxZYe7bSky8nrL/V67AQEpNboCuwlDYQFrL/RMnhW9fbmjc/e6PYCPAimcR\nwMYPPokzFMms+qF7se02Jr5O+rcLY06REAeF51QBKvY/a0BymCekCttQhd67yochgK/Se6ahOrQf\n4oTs2lKRQGcajX5Fv9XGxTHBegfWNnBPfkie7/VwW5IqeH3CbXrhEtncvJe0mYIlVKzVSiX5LN+f\nXaeDbUpIR/13z2LPX5J56f5ZdMOni509L2ueRtmv6UC9eYH6mZD2lO6/9zOvFsdgXjglbNgTR+l+\n12MAlK9ukYxVJSxkdY1sSUBuSdHbCYgWfoPOydhkdHHehClluOvfXLmB9bD387JZNUcPkxyYlGty\n43W+vWPO10J7F/4pH6Rmt7Z2FDZuZ1N+/1f8fJvHnNi2ffBKbph2HcBj3gHEU1oK7H4PNLgvA1+E\n0hqXxJIY+S6vfQ7Wuk5HUkzjeMfePl9P70YbTNl+p/RuMzEuNisvvI69eIVseVkKJ+8BDAJu8F7U\n99/N6KtSEAv2zLB9OMUtlqCnb7kn3JLuSSkVIh3v55xzv+SfXlRK7XHOLSil9gC5W/JVYHbg5fv9\nczuac+5TwKcAhs2Eu93R88H+fUXl/FZani6Qt930DBJPkT4dG6Dy9grpTRDiwdb97o9Q/eybIm97\n8kPY5167LVTGvAoLnmZciuCJB1m/u0ZWGgANbkO/gZ19p6HGnEu9i73W/aSxwEDmz2GWobTGYQsv\nDNvrSRpLvS5soOvOk0tTVLmMbVTJyobSWorpyiLB9DJQEK12UBevYj92gvpcQrDZwdUrUCsL2yUM\noeJQnW4hdVCdHtEFT8mPQujF/apwJBHNaAhaCWHT0ZmpYHqOciogS2XZUVsI0IkjHlJ0pp3ECipo\nPt7h6N5lFjjA1vEEU+8Rr5SJG4ryeo36y+vs/c9XGTs8wep9JboTo0SBo7U/o/NQwpMHL3FyeQbn\nFFdem2H4jOLoc+vo7W5Rjcc6MKDiFNPLcJoidjqpSXy9NZDWoHsghk5Aa76MATp7U8aeXuH+Sos3\nvngYnCP+xKNc+v2G8YPrxH9qh+nc7R1zStNywYuKfYAzRiaXNMVpzwby7CD/Bn5zLXHzttPxXghp\nf7Hd6xHs34fb3saNNsBXsvPxwzQaZM0m5shB8JWl4NAB8Vs5eZrCiyfQ6HLZ+/j0x6E8Waz4OYz8\nd+j332DfXplwvKRLhVGfyq8NZnICljdJgWxljegl2czP/c2nmP37z5AB2QOzNC6m/c/0UdMoJZNg\nFEKjjuk5os+8iLn3OJXffUuig/3niBwz6z8eBBSDsDDnxp93Xalg1zco/9o8mf8cVS5j1zc49ufn\ncX7ynf8rTxEsOOZ/4G7q81mx8L9d/eb6vtNQY+9pUP2KKRg2Qw3VcT3xVyokU1kGxsgGJ5dYeXBH\nDdVQ6+sDXk1xYUQOYLe2cb2emIunCcp4TyHjAfIg8H5aVjb3RsZR1+2gKhXMWkskWmFAVpGFoB4b\nRR3aT23By4YevR/Tk8e9EU0ZyNY20LUq6soiql4Tk2nr6N41QXDhEsnsBMFQFZZWUWubZKvrXo5h\nAeO9cXIdcj5+I/2vK5tLWy2j/Pc0Rw8LQH25idtuYboputHAHd7HwtOjTJ27IKEIgcGtrtNu9n0B\nb/eYU/SbIsnQL5QrZfEZyeU03vjZeVp+Ian0rFPXzeO1vW9MFEJbFtyu1RavlVQKHQ6La7dRWpEu\nLpF9/BGiU1egUccO19DRQZn/1oV9YVfX0ONjmJERcJZsZY08ot7FccGcHGSckMTY5TYcPYD2ZtjE\nCbZeoTLfwWx2ZGysyryoJ8ex9x1mc7ZC/T88z9oPP0l1JaP8EjRPDJPWwG630FkmZuc2I7y2iWp3\nsR7oae9RDJ9P6RwYprTumHmuR/TGpR2SOgcoE3n5dirEDKNFolIWI3KVpDAyjDq8n6CdMf1iApkl\nPjQJR6ZI6jD8tk9CrFZZfGKY8eGHyaLbO1fdtO/kzLGBtB7wrNQokrFCDaTOFabjDlWv41ZW+/OZ\n8kCi0uhSiO12xQS+LPPZ4KYvW1+X9WSS4V58g/ZThxnqxITXNnAjwwLcG4NaWILZPei34wGwP/QS\nK/95OYiSpgVAxNFDmMCz+8JQALnRUenvfj6JFluFaTzA1D+RoujaDzzByL//Enp2L90Jx+hbnr2b\nJ3jm59I/zk6fo54ckrnv5GnCRgPr+7VSCjdYwMgTGLWSRLcw7KfsJX2ZkyqVMGM+5CBOxEx7fZ1g\nZVuMyYGtB6ZovDBH6lwBlt+uvvN+zlXfaHe+nfu/nyBsaqa/mMIFeW43xpzh0ozL5dn9RDENum+j\ncH2ymMusuFkEPr3XM1h3WHUkSX9O+yoTwVyvR25+fydNpIv17pdpbt8U7AJINehFtPyJw6AydKwI\nOgZzi6rMW0kZU8A/B950zv3EwK9+Ffjj/vEfB/7TwPPfp5QqKaUOA8eAO24d/+XAoLzSAfQZJTeJ\n991VWuP1sXxfJpo3b+Vfe6HooOrZV28LGHR9u/JnHmD+k9MEcyuM/qtnuet/Fc3rneg3hfFlluHa\nPmEk1yfnlbRcL1+tYoYb6HpNBrcCBVeowIjx4HCdeKJGdyLEhkpQVgdYhw0U3ekq8UNHSMsalVl6\nUzWS0bIsIlqdYrDUjbowqpyDbg+7sipVsF4sFGWlcKWwMCB2RmNLhu5EGael2j4012NoLqa0Kcwk\n03PYCJwRr57R05aZXytx/sVZGt9+jeNHF8i2QrrjirSOmNNpYUaVzy8z/fwWe78QM/NsRuOswS2W\neeG5E9jPjzL8S3WO/ZsNZn5zAd1s9z0tcgaVl7XpXobKnLCaNARdS9AVf4WgBZULEbUzEdGGJq04\nohXDxm/P8Norh5l4BXjiQYb++hV+70de4fDIKroIv9mFvuP8ZthXTF2+gcoy2WD7DU9eYXXWg0Ha\nSzRy2n2WyYTn04DMxLjQxjc2iyQAic70m6osw9xzjKVvmpb0k6cfwkUhlEroSmUnA8IvbAcrKHp8\nTPpXGHnAKBF2QB4hX6uR7hvvR9v71v99lWxtnfTSnLCIkr5Hz8Gf8IxHbeiNBrjguiqyNgI0ra+T\nLS6RnT1P498Jyys7dUbkXvlnej+kGx4jMoVBdpXzFX3bbmM7naI6TZLg2m1hDu3fR+tb7gHgN37k\nH1K7qpj+qWeo/cfn++/7AZ+rcvZX7o9ys1Z8966X5YSBSF/bntHmTUvtoT39963XyK4u3OBrp7z0\nx2VW+oM3kMYb0eoolOuSe62MNqBRl+sxVMNtt8WrSClUnOBKIaoXU1pqiynvdgsXGsZOdWQDF6eE\nLbmuQdfJd7EZdnsbu7VNtrCIm1/EbmwSLbdAKcKLi7CyIabpSyv9RaNzfZP13DAZ+uyHTlcAq+YW\nLvdvM0ZAq60WTilUuYQ+fxWXZfSma2KAD7Qe2CPAVKVMtFH4ruxK3ymYK0r3pWH5GJN7+eQsoByE\nza9nnsLoPUxyZqJtdcRw+cA+3MwkwVJTzpOzuM0myhiyJQGE06ohW1zCzc0LI9NaSLPCYwUQX65S\n1Dcr9ia/hfy6UpFjyeVCnilmS37sSjMpEgFms4OrRDA5TtooE20I6JBWQ5xR6IfuJWo5oqbM0+XV\nVEIJokjm7p4wgCXNLIXD+wgOH2TsVIpKMirn15j+j6eJXr3gz6P3BBxgVyml+j4lvbiYB23d34dp\nhllaJ9iKSWoB2fQIwUaXaG6dxuWU2oJcg9P/8AE2n+6yfqxMeSXZ1X6T94scqM3TxnSp5EEXUzCG\n8vnqpus/YwrWHcrLj+s1kZdeW8ItrmDqtf795v8PTl5g85gYLZfWE7bvm5Bkv2mfFNhqCVDZiwWc\n0gKmmOlJ71lmC7ZBMXfm81qSCsjiWWrq0H4xQC+XxHBYG9TiKs6vbbNvfqTwtxv7DZFfZ3PzlNYV\nSVUVSZa5DPn6lp6/WDzOY+9VEAjINpDAVsja8rkrSfr+guX+e+tSCSplSfbLMjAaMz3F+qN91mZ7\nSouZLqC6u993vtG+Ntvb/+eTjL2uOPi3nynYrbvXb8QH9QafoLygMei/CnLP5aEH3uQ+fz7/f1D6\nDHxZ5Yq5r2+NUqyL8iNLJWHQJcmNMtpdbIPz5js1++qbxeP3olJ6N23rkGL0NcPxTy1w6G88i16/\nNVnjrTCEngZ+EHhdKZVrpP468OPAv1dK/UngEvC9AM65k0qpfw+cQtzQ/5xz7gPNB1TP9ivMXxZt\nvC5eL9i3t4igv9Vmxsd2MGyub5s/8ATDP/fcDc+/UzTvnW5ZGWb/02JxHgbO3+71G612DAo7F90D\nXg3586bv8UMpAtstUsZUEEApKha0QTuhPjcAJHVTXKhJq4bOmKa1T6ET6I1U6Y4rKsuO0dQR9lJJ\nMOn5yNtyCZcvPqIINTYiXgZBUHgIqSTFmRBlHVnJ0JkICNuWILGUzi6SHJzEqZDyUg+7t4yOobQm\n7KCR/3IKe+Igm4eHWH1mhqWqIwRh8ChIap41lcp5CObXCBYUBIbaW57i6Ryql/QHc+fknOWbtMwW\ni0jCAJ1YTGzJIkm80alIx0IlHkLRFkRNR/OQRlk4+OkOq/dVaN8b03g748g/OsN01OTn/vPHqF+G\ncPvXdq/vqJy6qgpAB2cLfw5AmAm6nzJm4wRdLklF1FcPXZZJRaRSESPoblckFp1uMfjn/kCqVoMk\nJnvzLBNnL+AA89JbZHFSLI7zMUWVSygffauCQGKex0cFKAD0yPAOA0+U7k82L/Sj3s3Rwyx8Yg/T\nn3qR7JsfwTpH8PybsuDWCvf0QzR+/AqdH6yKCSyAzaj/4gD91bOWcu+ifKNeGMqGUcHqyE3/CiZT\n7stl5XFeGS5AoSwjOHSA9PJV8cMxkpqmHrqXa08PM/WPpRI890cOsuf/eoa1P/Ekf+ivPcHUz3vZ\n7E4m5Qd6rpIFTLzDw2OwGV9t1+UydrPpq2ySUOeyTPqAj8zWW12sT61QZWGzmoOzqNaABDEQIEVX\nqyKXmJoUYECpQmYoQKj0+8JzJgxZfXyK4X97HnXoAZKhiPB3X4UHTqCX11AViabO1tfpfNMxqvM+\njjm1lJbbOKB+sYXaOw3nLvRB+jQtvrs6cxGcI11cRkeeoZD70wzIf3NPL9tqYxp1BqNslVLif3V8\nPya16F5CdmUBl8R0nzhM7fI8WbPJ1h95guGTG4S/8RbzP/oUs//iNKrh4837fkq70neKDacHkAVw\nodjQK39NcpYHSuSpeV/IjYVznzNVKaNLJbKlFZFJL3uWRZpiNyW5L9gzjZmZRHV6JD0rDMKZUeLR\nEpWNtsgPhxvQFZBNWCEbRYQ9OijGRFUpQ+w3xj4ZTQ0NEeydwbWEXZktLsHVedJv/TDByyfR999N\nNlojaHZxRpGdOkNwCnp/+klwjmgzhcyhHr1fEsRSUNWKAI7O4ba2C6Bcdbo4oPo7a3I/xUnfj8na\nfjXa2kIeqcolH3HuhCnsj1FPDEO3h+vFIhW6Ok/1nmN0DgwTfeZFet/2YVYeCNn3419k4S89RdB0\njD1bYuTMNnp9e1f7TdF2bMBEEtaXLNu+Lx7SfXS5LEmRa+sFwKe02smAzyzB1ISXb1iZj/D+KB7E\nyZpNRn71dSwQPHuS6OB+kY3tm+qPwVqjklQYN75y7yolWKdgguJ6OCFYF6+zF/r2Ji6JmfvOcWb/\ns4XtDuu/5wAjn92ZPln/365y4VeOsO9fxahaBdUsYUZHGD+Ziu9iFGFbbRRe+q8kVVFFUVEoUZVK\nwfLJTaRV3oeMl+LZfpiECivYbk88zba2MCeOgmfsZ9staDaZ/9GnOLAyQ3rlKpf/zlMc/rlrZMia\nf+JnnoX9+8T2oV2ATh/o+eob7c629h98nGM/t3mzvd8u9RvVlzAPrrO0AowH3u2NgBHgEmFaDs7V\ngPycxLfk55udPF08vqlCJ0nBp+HuaHpnEfV2tvfTiuX9aqbR4K6fvUh6dZ53y536ioCQc+7z8I6h\nZd/6Dq/5B8A/eJfH8sFv11Vc3i0YBHxZMAhg7OU1ru/KKggkIvM9eBa9n635R5+g8fPPoWs1DvzD\nl8huwqa6U/3GeRZLoVe9vko2UAFyaYZyvX7kvFKyUVYK1YtJp6Qab1oxpBZXMijnyEoBWaSormaM\nnJfXtvZERE1H/Yqci3SsRrDqIAwKGZvEhGvs9Bi2FMqiUmvvHWRBiSRDKYtpp9QWHC7QdMcMrW8/\nwNqDjtoVTWeiRtKAcBtUJqDPhb94Px//ri9x+rX7mfi8MINKG47Jf/cq9r676Oyt+E39QKqQr+aq\nVEwTC01wPvjnjCDwWv3+pKDiBN3qoUONso5UKXrDhqyUvzeYLlz7lozZA4tcOTdFWgtYeyRDbYa8\n/Ucizp28j+nPhIyUINoW/yR/zXan73hZSrFIDILCFBrwEo4MMCKbCEsFQDNohAwU7DP9oXtQi2sF\na0d8icriubJvEvuaTHL5JGY9GGRGhlGjI33vnSyTpCAPOmXNJngmz440Fw+45D4GLvclyam6UcjU\nP3kGB5QuLJNemsNCQZE3rZitj/q0p488QHtfleovP8+Vv/o47eM9jv/wS8W5kFPmCnAnZ9UV/iY5\n/VepnRXq/EoqDU7YRs6pYpOQXZmX5+IETEb2xL20pyKm/vEz6GqVq//zQ4yeSdFDQ4yc7aI/9zLu\nyQ/dwIL8oM9VeTX6BvapUuh6XSrsgKpVsdst8SqZnOzTq6tV3PY2KoywF+bQY+LXU3gY9OIieUc+\nqM80U0EgbJFcGuH7iYtjqXADNLdl3AxDoi0BANJaiNMCeDqjBEgBcmPq7qjBdEtELy7C7GSROrj4\neIPpT/nAAW3Y4a3hwdUbGLcDkdhKqwHg0Y/lSSqLzGql8H3TtRq0E7JKSLAtiVr2ow8TtDMxqm42\nWfzuHiOvyDkcumzJVlYJcpZWbreyW33HOoh8oSIHKXx6EdYKS9QOFDTICmCDshb/klzyE0WgNOnV\neYLZ/cKQ7XSl8BCFRb9Jp4cJLi6KWfJSCzsxjN5sU722TrZnDFUO0d4zB2shMMV4qMJAYuZ7PczI\nMK7d6UtpIgGeUBo6XZFf+f6XfsuHJU0M2D4+TOWa+NCpRE742g8/STyksK++SaV1GFcuYd94i8nF\n/Vz+/gPSR0ESwPJ0sDxlLTdX9qbbhAEkvoihvKTB6R2nXZhQXgpsNMHMNK7dk/m+3cF2u6Tf+mGW\nTpSYfEWqqc1DEbV5RzC7H2Xh8N98geybPiTGy53e7vYbhKmpyiVhx13//IA/Rw6iAv37zHowyJii\nCGJbLek3W1uygfOvF4A2E/a0MZKUWi5JaqY3MLe1MgzNYK6u4AaAFti5ScrOnvey5kz6rpdYy1yQ\n+mACMZzP55H9/+xVbCzM19FnZM5xvbj4jp2PLbJ/f0C23WLzkydo/LvLbD1+kL0/eo5Tv3S3RNYn\nSR/U0ZIIKl6BUrxQSeJN3HVfcj1QVJT+5/qby0GwEbDnL/cvgM3IPv4Isz/7JtYD3vqBTeyIsPpd\nq40ZHxNwbHu7GJc/6PPVN9qdbdVffn4gab7fdrPf7JRRWooJUynQ4GI7kHI4CBgBeQrhYMBYp1Mw\n099rs+02+maA0C6BQbpa3VUrmVttO/YK77K9q5Sxr7n2Pkq89NDQjgnjdrXrU7sAeOhulh65MSHl\nTrXGzwuDybZaN5fW7XbzkfIuSQra4g5zRev67KC8UgX9SlAOBBkDUYgdrtG9a5KsGmKaXQGDymLG\nGY9X6I2HhC1LZb5D6ewi5re/RONci9q1WFJ5Io1px6hEfIictQK4xIl4fixvoC8vojo91FZLFtIg\nqShJWkQGKyfrWmXlceNtTXnVoVMorUO4JabSzkC0AZ/9lUeI5kOad8H2vTE6gfN//UHO/tmIrb2B\nyCTyVngCDYzWflNSAD8DlfodrwM5n0mK7qXoXkawnVBZTqisymCclRQrH7E0Jre5+uY0pIr2X9jg\nzzz92yirqM1pJj4bEQ8Js6i8kvSv0W61IjFEWC+21xNvG28+LsweicHNjZDztkNamlekwwh3qp+A\noyoVoeLn0fIXrxYsm+DgLJ0/8BHM2Aj2ow/DvhnSC5dQpZJUb5OByi8U10KFno6fG587McTOj0cF\n/Y2g7fZwF6/I60olsvnFAsTKE884ewkzPYWu1QguL1H95efFb63mOPFT/YV9Lp0DYQTlMgXZYMg/\nSVszfaq9f744/pzx4AErnEiZ8uPVYyPo6Umic4vU/8PzmPExVBAw9VK3kMPqz70snz/A6nwnacAH\nrr3DQiX32RCZi8G12sWGPG+6XPbyqxZmfFQWVOMjhRQoOHRAJIit/gIlr3yTSNpStt3y3jT9qp4w\nPfz4N7Cgq59awUyMU7q4QvniGnq4gVnd8jHvjly2OPHsMuG23Cc2MvCy0KO74+zw/tkhv7C5R5D8\nrkjYy7KiclgY3ypdsBpcnEhVP+u/Xo+OoHoJptUrxqp4JKQ0t4ErCTgx+eslCAzBoQOMPntVPL7a\nbXm/O8E2d05kMsb7Z3mTzWKjmKbkEhsBfZQHkMRvTtKONKpaQXlZjatXYHld5rNKuS8RHRpC9TLS\na4uk5y9iX3uL7SMNsnMXIMtIhkvorU7B3Co2857RZTtd7OqajH8++ACtsR0PDHk5kHyYME6DmWlK\nVzepXtzEnDhK/cwmupMW4I0eGmLipXXG30wwI8OsPT5d+B/Mfe8B7OCyLQzlO+XXHQqWlMtkk16c\nv/y4c4ann8NyiYLzvjYYI/19bUPul1IJMzlJezpk8tU2upcS3HWI1n5F2LIkBybY95kVzIm7CDe6\nqJ5IOO9Y86bM+fpmR/Fr4F5TQVAwMV1m5R7K70m/yUvnrkhowfqmgHn+fgTIllew6xsCsrbbNJ88\nyPbHTqDHRjHrW/QmKhAE6CGRkrk4FvlzXizwc1Q+PynvsadyhrYHiq+f65Qx6JFhkUTHMSSxSBZz\nGdtTHxJwL4kZ/XUZb6qffpVz/+oE0aYAxTmLLgfBlJECiQoDkcp6dpt8nh6QxPv1oe7/PVBIylUk\nY0pegMlb6fyyGOX7a3Lghy5jljYECHJOzu/6Zt/C4BvtG+2D3hQ71/832U+JvLkAOOV/vzcQv1FT\neBDZXk8KnO8CDBpM475eEi/rhjuXTmfb7feUXP5BbF/fgNC7QArtRx/uG3XepEliVPiOv7+dzb34\nBtP/6NaSxe50G7yBd72p/uJnR7NZf9MD3pshKQAkAFLRsdtqGacU4WaXaHHLGy0G2NDgtMIpMB1L\naT0mq4Ysf9sBet/5GN3pClv7S7SnAmygcIHGlSOpXnr2iLP9yPuCQpnLstJMDB3DADQo68Sjx4Lp\nOYKOI9yWYw3aIs2qrmSUNywqg7SCJKQoiJqK8qUIp0Ef36ZUiwnbbqcXEIiELAzk/3xBnQNFg2CQ\nUsKs8gt+qcQqSWvpZagkw3RTgnaCThwoAbHK84bOmyOoTJhMy2cm+Je/9O0Mn1ZUFy3RtqW2lFFZ\nyQg37gD1cmBjmcfKF345uemrj+XN43kLIMgnkehqFd35av9JAAAgAElEQVSo+8pnP+3ATE8VGzhd\nLmOb2xKlG0byu2qZyrWusBW+dKagx7peT/4NTpr5Ncl9QdKUIn4TdhjruVRMhnWj3o8Uds779GTF\nxs/dd0QS0LxRuG21cOMjoBTJwUkO/70v4V4+WRyCCoWNUJj8+uSj/LHSXlKmVd8UODeVzj2EVD9m\nXs6vFplYEAjgESfY5VWRzIWRsF3CAPM7L/ePIze1BfBJSPprBRB6p6YVdrtFLuWy3a5U5KtVGZe8\nxMF1upLONiMJj817RsXM1Dflk9ryeUxpLf3Ug+MFKOP6Vb3BqrcyGttqC0ux3RWgTSkBrAOfDLS0\nQjpRR3VjzMQYals20C6JycoiUbO/5yEO/8LijmMrpIRaFay2Hayz/Hda9U3cue6+zK/7oJ9QmqK2\nO8K2VIrgrkNULzQLJqh+8G7GXlgS75hejGt3B4y2t3alyPOV2g4PBM/UKADeHMiw/TnDxXEBCuRs\nHq6tkC0vo2vVAswxE+OoagU9JwyyHDjVicPcc4z00DS6l5GN1FHVapFiShFDnleDB4ApY/qGugPe\ne9naukgOtfbAgtsB8Ou5a6gkJRmroocbqE6MU4pss0llRT5v7m8+RWvWMjRnZX72Ruo5ay1nuilv\nuj143pTRxc/yNwM/+/tKKSXysFZLQINeLGuC0QZMjjL60go6luSxeHaU/b/VoX6phdnqSjEnSdHr\nW+JBE92ZtSADY/4gEFTI4geTf5TewRYSVqD3G4pCTKMhc1OeVlmKpCARRXJdld5RAa/+0vNs7Q/I\nlpaxSyuUVjriI5QXIFpiPC9zSn/cL/yxrkuczMEq22qhRkdEElsqyffpdqWgEidkG5t0HzpUJBOG\nc6s456RI6zdk6VP3Ub+SMvZmpw+6FKweW8jliqS2PMgj/1cc1ADzzMsOc7BapGNB3wvOmOKeyq4t\n4TyYahoNuSfjRACzUknuyziR8/lO6UzfaN9oH6SWk69zeX/B2B3wD8oNpwfmp9ybE6BIdvZS73fb\n1MF9/cO5iZ2LS++sYnK3PIF2q91Syth/D01/7uUbpFqDzW7fminTf+8tj9ne1ZbrXHMgw1mhCg96\nPhUMhdwQLUe7xTRNlSJcvYqrhEIJ97HO2UQDF2h0arHaYLoZGIUNNfFIAA42j4TYEEbfSigvtckq\nocifklT+pX0GkNNKNrrG7GTnBEb8jHxil7KOtBqQVrSALL45v5bInMJpRVpSlNcc8bAiasLIuYTl\nh/wiqaJQrw4RbUJ1MZHFWr6RKDZmA8BUHhGZV8qK85mziXZOAKQZqtsDU8ZWQvluqaW8YYm2FeU1\n6I5pkroi6AIWAbZajrDjCFoZyoHKHPFYZYecbzeaiiLxBchBOyji4Qt6vX9+MKq3eH3ofXLiZEfa\ngK7VsGsbRdJTcU/4PpgtreCuzstiHLlngn17SWcnMOeuFimDRfRt7sMDXi6hiz7vvMdMwbDwRtTZ\n6loBnqgwKirjyhjUUB21tIH1FVjbbnvwQe6hrGxQvR7BwVnSy1cKIAooQKg8RhgQiUGc+Gq8BzwH\n5GMqCPsVVc8sySvVtt3umwZfxzbMmVYgmzw9NES24aUt2vTlC3dizHmfWtE/tJG4bOv60c0+Kacw\noTYGXang3pTkmup8t2AEubAvecylZ2jdT8qLIlC2Lynxm6AcTFSVct+HJU+K8r5igAesDdnGJvFw\niNlsoifHceUI/fZVGB/DJt5QequHvXSlDwj5vpsz8QY3qIPysNysXQov2Y6/hbzfWUkXKwOZxQUB\nZD1hEfjxSm9uY0fr6E4P1WzjAm82Hf//7L1prGzZdR72rX3OqeFOb+rXr18PJLtFihSpmRRJy7Jh\nDY4oIYIEw3bk/BEQAUKAOEiA/DADB/6dBHJ+JECUMLADJYhMJ3YUK7AjRZItJIYouiVGY1Mkm82p\n59dvulNVnTpnr/xYe+29z7mn6tatO1Td2/sD3rv3Vp1h71O7zln729/6VimLAXoPBjr9D84TzCwq\nUGYQyHsGec8k5yvnt/eVoiwA40zv+zBPPiH92pdS4DwaiaG9m5BLeuGBkDK9Avndp4DhALx34A2c\n8Xt/jN57nwNvOfWxEnOTEraq5PpDCGB7eOjv/9TrwWQyXmljCDt2be650u6ZEf88Z3yMXMzoc2dq\nbm/tgCqLrT96HeMf/n4Ue9Ke7W8wrr0CFAfWewMpCUXup45RD6fwFN87dw01xTIzIJfuy9PKK0VA\nJqjnqkoWfYZ95+G3ATOaujRxKU/PvULSqt33In/qDjC4eBKaVNGqsYwbw4RonOgzuj2ufWUxAxoO\nYB89Dkoidz+uHzxCdvsW7INHfh8zHDbSpO9+9s+B7S3U9x9g9NwmBm/nKA5GMOOJqMsmrQkSW6n0\n5lKYfREEd7/yatZ33PPKETBahVXvU5wb4PZN4P4DVK++Bv7kdyN/Z8+Xbp7cKDDdIHBOGKo/V7zw\nFpPMSvpobGPdtZxO4SsXRQVIvA9RXcNqsRB3zU1vEBZxskyepa74BNzz149ZvZdNj05sExLWEWwj\njyBD8himjjg9vufE9x73ulbvPSk6M2bi9l3i2G8dcbUVQmeIOGXivEHf95ELOc9VAemE2StaghzY\nbdC1U/jdkJAxzMju74H2R3ITG/RBkxpmX8w1zeEUpqyBWiYV+aHF9rdK3Pn8Hm6+VKL3uMThs5t4\n9O1DkVOrZw8QAlbjKkcpATSQdAYAEijUDKqkihcxPBlkKkY+tiAL9B9LlbGDJw0mN0W1ZKbA9a9O\nkU0siKXS1/57GZObFuPbjOmWAWdGSBcleoy8xpkB5xm4yMPvhmT7KCiHM6L1QWeegSyDxlOY0RRm\nalHsT9F7XKH3uMLwfo2t12vc+HKNa69U2H6tRv8xI5sC+UEtba2kSll+OF1qBWFpMAIZpKsYLqCL\n01t0ogrAp5J51DVMvw/rJuXZ7dtSbSnLvHEe9dxqoq4UbmzISmNf/KToB74L+d2nUD99C/i9P/Zk\nkCflgEDIaIrVtGykWsWePWxZvGrUnDa6b2mlKd4/kCpjjmjIn3sWX/v09wAPHiO/+xT6r+8Cn/xu\nWf1lDulgXpljGm2y5dQrOSjLZILhqrJ5dYcJaQw+bSEqQcxVJVXGDg8j8talxrnj1Y8eyfdwa0sU\nUpOJ+FJcVtluK52Oq0pWkr2/jG3eP1zql6bpZgeTkI5Y1UH5ol5F5TSMV3ccygzMcBCOqymizpOH\nhgMhBnUF3XmL1W/dA/qibtv4yn1phyHYL7+C+uFDTL7neRQvvSreLLlB9vRTvpuB1NEXjFcIUZF7\nhRBUReAUZ9543I0t6ZSu9ivBUwvhnmWi+iil5LrZPfSEPI0mQsaPRHmFUvxDsp2d5qLBBcAbICuy\nTJQPOkF14Mb3P6RAqSqBMwPaO0D1xpuoHz6Wyl9FIX4w44mMoaoSs+TRWIoaHByivncP+RdeRv3F\nryC7fg2jD95Bvem+P3qfOwxqTRkvw5Dm49JjG6oKAKSEsnRSnp/9Ary3j3q7j+z9zwPGoLgvlenq\nP/sSqm+9igcf6iP/yuugPMeNl3aRj6I0KCUti9wvREilrSyQQ7oYBDjlbwUtvw44osSyU71QWBBS\naDGFvQOgnCJ/8xHM4wPQ7oEjiAxodz9KOZcUNH58fLnhswa7VCh2izOUGfcdsOEZBjT7rtAFjaJo\n3ncAmOvX5Pq4xTGzOfT3V8pzZLdvezJj9LEXhNx7/r3Y+spj5G/vNioK8d5+OKdxisHRSNJdDw/9\n89BPEDW9rK6FzC5LwFXRQzkF3xTVWu/XX5TU0OvXAWbsv3eI1z8V7jEbr4/Qf2xR7FXeQiAeQx5R\n2mEcBwXSnJrXTSt9+uqH0QTZ+SI10uOcwgnWgg8OwPsHXtnEVeWsJ074wSckrAiefPYvGP9MPvL6\nLNS1LBieA2YV6DgPmO3tCzvXqpAUQidB26D4nJC9/fDE7uDvZrAaW6pywqWENUif6L1w83KTpDyX\nqmJuddXedH5RlYU5HMNuDVBvFjATMfq1vQzVZobhG4egssLomW0c3slhbueoBoT+LiM/qGRV2q0M\nsU7YdEW4qsIKKAD0e8FLyKVnmEkNkxOoZvQel8jefIiD77yLYr9C3TOAI4Lqvmzz9vcVGH+kgt2t\nMHgrRz204IFFZTNkJftUL6/46UIcQLGYWquMmtRYWtNHVFatwVXNIAMUU5Hdc5HBlJn4IDHABDGm\nZcCUFmwIpqxhKguqLtg/iODSMUoXDLsAst93prthYuorkEV+GVQIwVPv7oL6fWQ3b6N6655Xn2k5\nSlW0UJ4DReFLvJvr1+RB+eKfgO88CX7xT440UYkm/5l1/C6+EAzA+fM41YxX5QDIPvA88NY90I3r\nKJ+5gezFL4KKHuqHD+U4zHjv3/scaohXjXUmxRoWaxqYGQ5DIO8qhYXqYqGSGFjSnLwfiZcSh/Lh\nohaqw+96LkcgeXVRnIJGBmbYb6T6aNn6SwkrkxBy7deKX/XBoRBDLlXHG+Vf25EKTs7olEbu871+\nDby3HzxFDMkwHI+9Msyn0RpyigIrP1UpoenV7t7Awz6oqlG9/gbMd30QPC0xfWID+de+BdPrAVub\nYLjJ5OYGbFnLBPXGDsyhTFLtw0fuc3apg0UfsNGTzZm6e+WmM1EObys5EN2zXTDqDbh1vBe5eK/V\nVqpEHoykPUoWwU2Qs6g9hoCLeaSHPnHwuAMgKj8Napm9r50nwPR55SryUZ5L1azH+6IsfOqOGO72\ne6jvvQOztSlEr1aMG/RBgwHqb72G7PYTom4pCpjbtzC9ex35gfjA+cUKk/nUF9Jxw0GFI1UVC3gD\n7EnZSL2FteBHB6gfPoT9S98H88WvILt1A/baBrIHktZnRlPgiVuYfsd7kE0Y/PQTqD/4DOpBhmxs\nMfzWnphiTybgaYVscO1IyoFXfpAB9Pbh1Cj6u/ahkaKjE/rSLUBUgQDwyhRVhjKDmJ1qTby4fPU3\ns4JZvbYrGhvU6wV1tCftm6SXpIoZWYRwC1NmY0OqF6oyk4x49hweBnKSjDzfih7ow98G/qMvYvgH\nX4PNc9g33/YqNWZX4l0JfYWto3u7xgjh2KoQNM53SO/j9rs+AHNYon7py3j0Ux/CEw+eQvXWPdTf\nfNX3ffuzv4frd54Md4vf+2NsbGzA3LkN3tpE/eiRkKTDgXiy6QJY5HdCSmy6n/ECS+hDiBEByHcw\nMwDn4b7i1Gd2MvHfbVEAAnYyQea8U8IHcooxkJBwUSAEladloHbfD/WNBLoXcZV4BxwpPD6RfctJ\nsIzqaFnEWQBXFWtBCB2pBHWFQT/wXX7ypyVB21imetm7HjqpAFxwGx7gshLU2k4DpkyUOtwrQHUt\nE6HxVFLGqgp88xq4yJDtl6LoAAPjCmZqgZpRPrGJemhgKgZZYPvVCsWemJyy8zEQ49bar8KjtrIK\nBoRVvVzbYwDKwUUm6VQs/bG5gX3uFqbbGQ7u5qiGhOE7FoPHFjYn1D2CmTI2fnsgaWXM2PmaARtp\nW37gJkC1FULHGctSkQPTCry3BxQ90NaGKIMa15aFDAK6CSWXBuHbD4AqC55amLKGzU24/m5/NgTD\nANWihooLGFwImEG5AUzPB3SqptGqCpom5k2mNeAmIxNbNdOcTEKlJ8Crf+zhYSjva0xQEn3kg6h2\nBsj//Jti9vzW2wCA/IX3gfMM9pVveJ8gIJAk8oeBBtdiID094muU3bgGu38g/kY3ruONH7mNO//T\nG8D+Icy//oa/zKqs8RN3QPxrdOLgqpep6a8dT2TS5aT+XjCkVSMoKDk4MuvWa+grW6lJMLfSyYBG\nxTI9v1SGgaiRRiP3vvQ9TNbOamBcIEi8g7QSHVeS/uZNslWirZsPhWQ07ie//paYRT96LNXIlBjT\n8atEgxu38lm4sTItQcWGqGh0hXw4hH34SEioTWeGD4gCcHsbdDD1RuYgAk2mvipj79UHwKAP2j1w\n55YqP400y0hKTpmBHZdhsTwmh3SG7wzYG/d23dylR0rlsRoMgEgJICPqAk0FdUbWpt8H7+/LuBpP\nRPFy0fP66RRcFIHQcKo6rqrgH+Qn/La5iGFIqhVubwJvvwNz84b0fTQCj0ZSFcqyVM/si9cPbV6T\nCWpVoX7nAejD3wY6nABFjvzLr0na1+YGeHMo3+1CiY8alLnvMZO7vuQm+Sb4CNU1qFfAPt5Dtr0F\n3j30RPP4dg87zz2L8vYW8n0hCenQlbYfDFDcP8Dt3x+DRiV6u4eiSLRWTJv1uagKTkNA7r4Xeg9i\nIXZYF1diA2WtHuUJwCjtwf3k0qXY5plTxJRehcTTaZgIuWp8qGufgteu9HUhiO6fXrUyVb+b4PfE\ntXxfyNhAgNQ1zGBLqhfeuy/X1aWgmUEfdiSV1vKn7qB68y2/Gm739uReQYTsOz4A+8o3RUk7GoFv\nXwOslfTBt++Htqli23nxUV64+3cd0sQMybiqKqDYAA0GgEv/qLZ6mLxnExsvATd+5UXwxkZIMSun\nUpns2jYwGosKddAP97xHu05lKuopGg7Ef83dG83mELS5KeqdsTOijwnDmHDLwqQ3vu+FSm6q+Av3\nrNjoWz2b7GgcDK7PaWgkJJw5GM30XK/GjAoJ5LlbSG+phaLnvh0vuWAXL36eM7IbN8IC6bsYa0EI\nUZEjf+Y98oeuZFZVw4QXQHdetB5jOER9751gAKtmnP2+95hQvwb/4GIWI8U8l1SNCPlzz4IPD2Ef\n7zbyiU/eueagLm/0Mbh1E/X9B51k0CLHU0NB6vXEA2QsD0bzxC3J13/tTXjzWX04z5LGn/EXzgwG\nwAUX4CCnxvDSZWubZmMafMerrTFqC/N4X+T1Dr687cEI2SE5w0xR9GQuMJjevYHxrRzFgcXgXoXs\nUCbFtp/DDgrkeyPweOxX/mWFzzUpCwEE5Tl45IK4qgLGJcykJxVkDgw4I0yvDfD426S0/c2XDmDG\nVVjZKjLYwsD2Mklp09iQGUwEqi2yxyPg0a4P7L2keioVU1TpYgxJ3n7s6B8bTWs+fPR3Q31AFIIn\nQEyBYz8iPV782ejx7Iwxeh4wpvH943gFg+vo9Y593fv+nhF9x7WUN7fuWXY88Sum9uWvgyaTI55l\n1Stf72xqYxUkblslk5b2Kkl9/4G8D/Houf1Lr4sWrpVvreRL2xivS3ETvEzC+bKdHdDOtq9E025L\nVEjqSF/8Tz13awWpcZwO4774tYtcJToz6Cq5I8NiSTU5417rUn+U8DCe6JlKqXKXNkhFz6s6GnAe\nU+BgAqwESuxRxeOJHB+QduwfyOr59R2Y4RB48558r7/8TbnWu9FKmSHw7l5UfScQTEJORP44laSw\ncTUF62J85DXlx3P0nGfLLaUBvMqI6xqYaEqd+M7IJNmVlC7d9eqavGvbLvKeA4Tnkxrb2srf+/Q+\nqsqtTn8jy8DjPdSPHsO4z9KOx85IeQP2YB+8t4fs+nXY8Rh8P6hZzAvvAcZT0N4BrKomhgPw9iZo\ndx92Uoaqc0DDCNi/ThSIRmf6LMa8JJW3LIupeV1j8PYEqCoUf/aNcDyt8AUAbxzCDPpyv6xr0Ggg\nk+3JBPbw0I8Du7fny5XH33uzuSnjP8skVlR1q7Xg2jTKscOYoAQiAspSrne8wu0UtKzqofaERP92\nyqWLxqlKHHPtnwsAwJPQ7/i46tvWXg23f/jS0UO6hc1a1aJdzyluVhXSZ278jLF7e0B0vux3vgCt\nqctV5VW18T6NeH1GHM0WjT4DAA6BLBMvtNOCJ7VfXDnyDG1vG/3kuW6lZw/qS6pn8JlarRFvwiWB\nu6eSqoRqI559gHs2Rb5YTEGpGc85ncqelUTqUrrPQKxyV5jtbXlenLEq/EzVP62+ZTs73hJh3UHr\noM4honsADgC8s+q2nBGewNXpC3Dy/ryXmW+fV2NiENEegC9dxLkuCFdp7KzzuEn3nPXGOo+ddM9Z\nX6Rxc3G4SuMGSGPnInGVxk4aNxeHqzRugDR2Lgpp3CwwbtZCIcTMt4no95n5Y6tuy1ngKvUFWPv+\nfGmN23ZirPm1PhHWuS/pnrPeWPP+pHvOmmLN+5LGzRpjzfuTxs6aYs37ksbNGmPN+3Nlxs6aX+cT\n47z6k6qMJSQkJCQkJCQkJCQkJCQkJLzLkAihhISEhISEhISEhISEhISEhHcZ1okQ+syqG3CGuEp9\nAda7P+vctmVwlfqz7n1Z9/adBFepL8B692ed27YMrlJ/1rkv69y2ZZD6c3FY57Ytg6vUn3Xuyzq3\nbRmk/lwc1rltJ8VV6gtwTv1ZC1PphISEhISEhISEhISEhISEhISLwzophBISEhISEhISEhISEhIS\nEhISLgArJ4SI6FNE9CUiepmIPr3q9iwCIvqHRPQ2Ef1p9NpNIvpNIvqK+3kjeu8/df37EhH9+Gpa\n3Q0ieo6I/hURvUREf0ZE/5F7fa37k8bN6pHGzsXhKo2dNG4uDmncrEd/0thZLS7r2EnjZrW4rOPG\ntSONnRXiso6dNG5Wi5WOG2Ze2T8AGYCvAngBQA/AHwH48CrbtGC7/zKA7wfwp9Fr/yWAT7vfPw3g\nv3C/f9j1qw/gedffbNV9iNp9F8D3u9+3AXzZtXlt+5PGzXr8S2MnjZ00blZ/PdO4We/+pLGz+n+X\nceykcbP6f5dx3KSxs/p+XNaxk8bN6v+tctysWiH0cQAvM/MrzFwC+CyAn15xm44FM/8/AB60Xv5p\nAL/sfv9lAD8Tvf5ZZp4w89cAvAzp91qAmd9g5i+43/cAfBHAM1jv/qRxswZIY+ficJXGTho3F4c0\nbtaiP2nsrBiXdOykcbNiXNJxA6Sxs3Jc0rGTxs2Kscpxs2pC6BkA34r+ftW9dhlxh5nfcL+/CeCO\n+/3S9JGI3gfg+wB8Huvdn3Vow1lhna/zwkhjZyVY5+u8ENK4WQnW+TovhEs0btapHWeBdb/Wx+IS\njZ11aMNZYZ2v80K4RONmndpxFlj3a30sLtHYWYc2nBXW+TovhIseN6smhK4kWHRcl6p8GxFtAfin\nAP5jZt6N37uM/bmMuKzXOY2d1eMyXuc0blaPy3id07hZD1zGa53GzupxGa9zGjfrgct4rdPYWT0u\n43VexbhZNSH0GoDnor+fda9dRrxFRHcBwP18272+9n0kogIy8P4XZv7f3cvr3J91aMNZYZ2v87FI\nY2elWOfrPBdp3KwU63yd5+ISjpt1asdZYN2v9UxcwrGzDm04K6zzdZ6LSzhu1qkdZ4F1v9YzcQnH\nzjq04aywztd5LlY1blZNCL0I4ANE9DwR9QD8LIBfW3GblsWvAfg59/vPAfhn0es/S0R9InoewAcA\n/JsVtK8TREQA/gGALzLzfxW9tc79SeNmDZDGzsqxztd5JtK4WTnW+TrPxCUdN0AaOyvHJR07adys\nGJd03ABp7Kwcl3TspHGzYqx03PDqHbV/EuKi/VUAf3fV7Vmwzf8IwBsAppB8vZ8HcAvAbwP4CoDf\nAnAz2v7vuv59CcBPrLr9rb78EER69scA/tD9+8l1708aN6v/l8ZOGjtp3Kz3vzRu1qM/aeysvC+X\ncuykcbPyvlzKcZPGzur/Xdaxk8bNyvuysnFD7mAJCQkJCQkJCQkJCQkJCQkJCe8SrDplLCEhISEh\nISEhISEhISEhISHhgpEIoYSEhISEhISEhISEhISEhIR3GRIhlJCQkJCQkJCQkJCQkJCQkPAuQyKE\nEhISEhISEhISEhISEhISEt5lODdCiIg+RURfIqKXiejT53WehKuFNG4SlkUaOwnLII2bhGWQxk3C\nskhjJ2EZpHGTsCzS2Ek4DudSZYyIMkjZur8KKQH3IoC/xcwvnfnJEq4M0rhJWBZp7CQsgzRuEpZB\nGjcJyyKNnYRlkMZNwrJIYydhEZyXQujjAF5m5leYuQTwWQA/fU7nSrg6SOMmYVmksZOwDNK4SVgG\nadwkLIs0dhKWQRo3CcsijZ2EY5Gf03GfAfCt6O9XAXwi3oCIfgHALwBARsVHN3jrnJqScJGgIsfu\n9N47zHx7id2PHTdAc+yYrPfR/OknmxvEojc6wdn9ttx+QV6i6D2KN6XWfgucmzveb+xOHdtxc592\nM8m91vW6ws5pU7yt9qtLQNhuD1PznMeJDvno7wSgvvcA08nBST6xGCe75yD76AZ2ljxVwrphDw8v\n7J6TmeKjm7wNEAGqsKXWsGU++toiWHa/qwS9Bstci/bnwSy30Pg4kSp6xPsoebLMBT/5uEH20U1z\n3d8jmdn3kWaNn65rQO6/qB9dSm8iatzPdRvZvXV9jntNd9TTuG2aTaLoD7Tu864f8Tm0PdpOjjeX\nBxmBAEPN9kfb63b+fO74FJ3Hnze63uFZyc1HbHzNbNSg1mfAbLHHF3jPSc+rK4MxDi7snkNF76Ob\nG9EQ7YqN58VryzzC9DbAR1/X1/jIccMNgDh+v/n68ec9uj037i8cHZ86rgE3zh+fM25zoy0d0wV/\nXne85hsdjZ/3WWg/csLBw1fTPSfhxFj0nnNehNCxYObPAPgMAOzQTf4E/eiqmpJwhsifey9+/ZW/\n/43zPEd77Pzg/o8DlsFVBZ5WgCFQloHyXIJJQF6va8AYwFogy+R3uODRhO8K11a2dUEk1zVgGZSZ\nxn6o6yPvUZbJa3Ut22RZOAYAyjLZLgowuaqkTYiC3ng7bZvro26LopD3s0z6XpbSll4BKvJmX4DQ\nhl5Prk1dw04mcq16BUAGXJbgcirHNyRBsbue8QSFsiy011rAGDkmW3+t5T0GFbkc38p14KqSdheF\nXDeS6/k5+rVTjoz5SPecq4vf4n9yYfecrRvP8ccff3IGgRtHkMuebMn92qCONrVJLDKArbvfm5dO\nvsz7s/aJXzcZwHVEPLS2MVlor/7eedz2a11MOvB5/PbsPpwBGvccc4s/zj/c/HyNEhVdO7d+tl8/\n9uRztp13vlmvLUr0zztn53vUJF/aaC9izDpO945ToC4AACAASURBVEd8dPvjrsus6xA//4oCv1n+\nyoXGOfq8MoOBf/ZzWcKOxwAAynNQnsszn23jd9bry9Y/b8nI958yA2YOsUQ5lX2qyp+PBn1wbcHj\nCXhayrPe7WvLqcQDLl7Q2ANEsKOxP6/p94/ETz7uqS24mja+41T05Fh6HPe9p34fZmMDXFWwB4ey\nbZ6D6xqUZTAbG0CRw+4fgCcTwGQwg76cZ1rJecjAbG5I32t3raoKPJ7466XXR/trtrfleh8cyLXu\n9dz1KiXum1Zh3yJ38RD7eJDrGtTr4fPV/31+gwbNcTN4+jn+5JufPNfzJVwM7A99L/7l//ufreSe\nk3C58XleLM45L0LoNQDPRX8/615LuOo43er2cuOGDLiauIDAAEUR3rNuJVKDEP2dOZA++jBv98MY\noK5doCTbAWgEMv49E7IvKcvAbl8oYaLbAoC1brEiIop0ZTPPfTu5LIE8B8EFW0pu1RaUGUeq5BJM\nT6fgaSXkTpZJ0MdWgkagSZQRSeDCHIid2gKwzUlUmwyK+sTatwgNssoYoCzdhNOG66vn1FVxF5zG\nhNySSPechGVw8nHTHqptQuI4suTI8RYkT9qKkePO0fV+g7BiNGbbsSpl3rFjUua4c8f9mHXMRp9s\ns5/H7dtud/v8s/4+PZa438z4PE46Xo7DWR/vvLDoOG7vs6q+xWORj5PazsXSzyrq9318w2XpSRsQ\nhdgBkJjIfwcNgFrigSg2QPTsV+IlPNutO2YBFIXEB9b6eEViLYBVNmHkec4GnpiB/gQAk0u7rRxH\nz6Mk1JF7jnGLVMxCUMVkUL8v8cto5AlhthJXkJJO08rHHD5+0QU8AKZXeDJI2mMlhooX7tj6z5n6\nfcCQEEyAnCPLAGujmC0QSfqaJ4n0WlheSnXjcPpnVcLlxSrmVgnvKpyXh9CLAD5ARM8TUQ/AzwI4\n3+X/hLUAZ6caUkuNG1HGWK+q8a+zU9RMpw3FDuV5eKAbI0FAvGqlwcnUKWWKQlaDlEiy1hEo4T1R\nI8mxWAkjvYEbE9qmhA0QVEuNznBYTYr6AsteYaP9gHFBzmTiSKIMNHABUV3LqltZhn10P6CpgnLB\nUhwQ+cDIrTr6tkSkGNe19IEoBHp6Lheg6uqjXlM9nl5vrtw1mLdCvBjSPSdhGSw/bo6b0Jqs+/VF\ncNykl2bcZ5dJsTqSknTMMU4yGV4k7cu0JoSzSCBHZHuoOgho3ivb+8w77/I4+biZqUo54fiJU6+6\n3psDufdmy08u5p33IlIdT0oenVczTve8Wu6eYzKJQ6wjL5h9O1StItu5haOy1MbKNvF3JP7dyGcX\nVMa1X1iiLFJDx8SMI5b8QhZRIKBUCexiJFEI90JshYg0UgV1a0HODAchnppKPyjPhQwyohhSMsy3\ntdfzRI6diNIHJgtqaVVfO5IL2j9jwOMJrFNGkaGGkgpEvv0SK2ahP64fnpgDHOHmYk9VZ5EJRNzy\nSDHOuxmnm62nsZNwLM5FIcTMFRH9bQC/ASAD8A+Z+c/O41wJa4ZTBGHLjhsupy71KEplikkQJXs0\nrQkAsQ0pWKEBDaUPjAlBg3VEjV91kkAirHBZoObmvjZ6+DtlDjvljyeUvKInKHBi+bY/NxClWkWk\nUh3UN+RWvTymUy8ZB4W+x+fX7VkVUw6NYNBo0Je5AMf6dDCf8uBIMspMmAS6YI8An1bmU8yAoJJS\nQuoUSPechGVwbuOmTV7Mb0S0z5yUqoZCoeP7sqh64rjtllEenXb7WeTaccoffXnWBH1uP5efnJ3J\nuJlHKM4bP6f47BrPu5Ni3vicde55n+usfeada9a27WOds5KIDAFLPrKWHTtm0A/qmtbnSEqs6IJS\nVTXGkI8Xqimo58igWAEcxzaaeqbXr66PqJHg1C5cOwJF1cP+OR6IGETH17jJv24t7HjSSFtVgoer\nKihyTBZUOuW0+Xqeh/R5SDzI0wqUFz5dnccTr5amntuWJMVNU+292qiuJV4qCLAGlAuRw6VLNXP7\nW6dw8otoeg8yskBGROAsA6EOBJw16DDQWQgpxnl3g1cwt0p4d+HcPISY+V8A+BfndfyENcUpg7Cl\nx40xoo4xQlpQiWYAY0wgODIDlJGSR4MZF6B4UkbTq9r+RJ6sidQyEdEBIKiLXNsacmvmEBjFXkJl\nKStOeS59cStUXJeedEHmAi0yXtUDuFU4DdKqSTOf3ZDsE5NUjiTy5JMGM9pn17fGqqL2U4O+yKup\nkUKm5BbQvCaRd5OuXlK87SmR7jkJy+DMx82i3jnz9ls0XWoW5p1TX9fUr/h7S6abbDpPREqfI4jb\nM5c86CBP4mMelz63BE41brRtZOBTdbtS5c4C8453knOdVZt0nM1LO1z0XLPSF9c8ZW6psaMqnmkl\nfdZYR1OWbGuRSxUxvV7wNaSwwOTJIMCrWVTtrMpd1vQrG+4Z5JTJSgpRnjee816BDXgVMrv0cWaG\n0fethT08bNyPyJAQOFUlRJGD6YkSm8sSdjTy5wnqbEcGOaUPFTlI0+hsMDCXVDHxeaQ6g51MvAdQ\n6IAJHkAu5uFaiCsyJCl0ujinfQT89XOfr5xfSSE9Z2aAavmxmWKchGWRxk7CcTivlLGEhAsDV9PI\nu8YFm4Z8ephIidVDyIInZUgTi1erAFllq21Q5eiqm7UNn5vYVNmvpOnxnLKo4V0UBRZ6PjUd9Ct6\ngLQ9zvPXYEONm/U944LD2vq+wjgFkpNZc12HfHYXgPHESaPdMbzUO5pQeem1U/Rwbd2/2kvVvVeR\nruTFAZK2V0kiJcK8JN0Goi1SOCUkXApoPH+eE+kGSbPgyuACSpoY1PbtmueN0pVWNivV7Lj2Lrod\nENpzXCqU3r/jdrV9SdrHuYgUp1nw6TURIbdIeh1w8m1OowZbBF3XWdsw670uEododjrbrD4f52Wl\nu+f56T7v1nhvKJAvCN642AYCwqciWQtbTiUW0u3zXFQ1qsClEAPBkKRfAWK07NKalNCAlXQ0XVgS\nFVArhVEVwhrraGqUxgYaO5RTH59QlonvISAqHx3zRI3UMk1dAwDq90HDoYvdwj7U64GGgyYZNBHS\nxsReS47c0kIWCp5M/HWR/kvsGAqSmBCvTacSS/X7IZ7ReC5aPCNNL7PsY0HShUZ/4lMMgpNivXnR\nhISENcLKqowlXFGsIsgmR8JMq7BC5tQ/nLkVrVgW7bxsACfDZBaljfcTCitn+jqMCaV1jQkVuCIT\nZU+uODJE5cTy06VTRQbUsWLIVyob9OBNn50HUKPCmcqwp5UnqfwqGQCiyFcgy0DDYZBSR4aJpCtl\nVSXHikyolVQj1wZ/LZkb++vKm1ZaYzgJupJtrdVnH2wCEjQCIaXN2hS8JFwSHDNQ43F/nALjLNQg\nx6WazdjHr/rPI1AUzF6RIBOySOGhE8WTpGB1PSfaCqn2a/F7LfVU6EuH8qShwllAcXRRWFa1dNw2\nF/EMdqk9rKk2i7ZBx1B7bJIzMGYLbisoulRAXs2mitc5Cijg5Kly7fHXOr5M8k92yNNCijaE1Cpf\ntUufwfrdBLzPje+3Ghq731VVY8cTUQ/X8KljXs2syj0qPCkUp2Y20r+6XnPHUbWOT9mva6lWFnsA\n5cF0WheYFMaRPnZ/3HidnGrI7u65NDGnOu73JU4qp1KdTNPmer1GGpwtIxU3EJRBccratAQVPTDY\npawZn7YnjZNxTERgVVxH/fYKdI0PJxNcpNHzcaXaExISEhSJEEq49CBDwcw5VtuYDKYHsJI51k14\nYvNpVegwA2UZAhPAGzMTEMq8OsKHgaCI0df8qq9tSoZ10sJRVa9yGtLPIIEU9XpAXFlDzbDb5tKa\n0x+ntcVm0IakZKt6Crk8eXZ9pzwP+f1aYSPLQFmvKfWOEPsa+Xbo/kBYrQSaqXDtlLD4b3b+QohW\n4hIS1hwzg+wuRURXGtiy6WAnJY+OJVOiyXSX2qe9v58gUmOCrvffuelO8/q8SErTcUROrJqY9V77\n94vGWU8EZ5FmJyUHT3raPBf1SLvS5DHj2qcidbXNlffufG9WSti81MaYvFwGs67h6Y2Bl4Y3iXZk\nEG1tynU7OAgKIK5d3FP4og+h0heBENQv9mDkj+2Nlxs+QIBXW9uo3/54pvmZunSqxuKRT2UPShp7\nMAqftSOuNO1cVM8dpJcrnqGvU14A/T64lXZmBoMQY40nch4tO59lwGQCBoKBdDtVLEqh88pl9VAs\ncqfINsF3CAAjvvdEBtMaB+rndxr/roSEhIRzRiKEEs4WK1p15bLsCIxltUmUKI6k0NSpsgyrPS73\n3qdrAVFFiUjRo+of/VnkALfNFBHMpnU7IKSbxX/XNVhXpXqFnF/TwDRFTFU1Si6VpZBFQNgvCs69\nCmjQl+2nlQ9uSP2HgFBG1q/2s1jNWTGNbsOXio9S5XQ1z+fJK9nTJpV0lSx+LbpW4osEYIKEhMuL\nWURHmyhaROFxkvSvZUmieeeYpxQ6Qh65stb6e9dEPd5vkXN13Mvl+AsQG7POc14ePafFsu05LTm4\nKOL2mewoERSfI1aLtbaZOyGepTJatt3ziL9F0+naiEioU1YZWwpeUdPrgbY2QYMB+OBQiIssA2zl\nU68aal5X6VOe4UKC2MPD6P3MP8t1UUdSxNz0QMkmMiBjvR8OgLAQ544lL4a4xxfMyDJgOoWtbUhr\nc22VXWQRLB5bZjj0iiJPXrkYhHoFKM9hHz3232nT74v3ImTBjaupPwe59Dgf8+gCliqnXBqdL3ih\nKfIU+yRaH4OhroM/I+Vhsc2rwbPmItrUGV0bQlJCJyQkrCMSIZRwtlhBytisAFX9duJAKihauEXi\nuNQrCj48jdzveD9AAoL4ZG0T5VaVsYa6xhjQdCoqoyJ3efCZkEGuFL1X/+R5SBOzLCXmq6lU0FAz\nSVfxREvMm40NH0hpSXcyJCokNWC0HCTTWhpVFUuq8HFG3Fxbb17NSnZFZJDPk3f9jFf4fF/apFDk\n3dQoWZuQcJkQkwzAUZLltOTDrH3baTRnoR6K0ZHSM4tg4Wq6mCpFr8dCiqAmCeHVScumVC1LApwl\nGEElRNHzRifJi7ZrzmdxLoiPO49omafKWaZ9F9GfJXGaKmOnOm+/D7O9BRoMJF4YjSRWgUuNp8IX\npvBp6ojImiyTku0uvlEDZ0BILlLBjCqh9KemyKs5sn6fNL5wVV7jamVyGIkN7GTSUPh4A2nno+jV\nPA5mMPCLXXY0Du+RcZ5CA/FDdMSW2dhoLHbxaNQginz7Ab/4px5qgdBCSMFzbVWfRO0rEzXVRVHc\n4y0HgKb6mwj1ZBIU1CtwVUhISEg4DokQSjhbrCLYbp0zLpsamzCyZZhe4dOmmDmYJEdkkAZUABrk\nCICgEDLmaF9jZY1bOfOVLuK0Kd0ulitHBtKNlaVe4fuoK1Next26Br5cqhpMTyrpjyEAWTBZnDZz\n9CVdLL6AkYdSDFeNjYFmUAg0fo/bo2lzGiw1jquqIne9EhIuFbqUMm11zDIT94VIj5aK76xTz7pU\nPLOUTo33bHO7I8RSlHoyT7HTIJIW8IlpqFNm3EvWiXR2qkxbVycn9hZRVK0C81Q+80i6ru9I1+uL\nvn8eWANVGRU9mOvXQMZIYYy9Pdjx2I97XfDiKqRxMwsRQvrsdwQSyISiFmoOrfsoMRSTQoAnVbxP\nkKqAiqAkaqd++zgrWiSivAj7uRitkS5oMlH6ZBl4fOgqlMn1N71CFtAA2Md7AHMrBd6RS07dY9RP\nSNun9yiHuGIbubhH1eYaR/pFLiJfjU37FqfHe/NqR8axcf1X9Tq5fS4yc2wNbgsJCQmXA4kQSriS\n8GbFQGOywswgJU/UI8iRLprDrhW2FN6Uub1i7k/m5NmuvKs3tSYD9CRY4XIa5MqqxtFARgMpRzaF\nsvaugogzWdRqHWYYSptiGnyTZMWvJ2TQeBKqeWlallP7HEkhiwPsdrqYLzcbAkAf9PXyI/s01FqW\nfVDkq3xoXn0elXVNZFDCZYLeBo6oX47Z77zUQsehrbaZl341r43zzq+EjC+H3a3oIUPBNLhNLHWd\nY5E0L30/Mtyd29Y1mNyDLXh6wnLpq2o3LWgg3Un6RIbe7bfyYoZvUIdPz6xxcJbXZJYSrUv1TObo\na+eM7NYNoN8TwmNvDzZWsRhqLFz5Z7RlX0LdHh76amKmV8gijap5nCk127CgRESwkykoNw3SiGsL\nUqNkXXgbT0Q1k4cUMB+LjCID6bxwXjy1I3wmjcpoMBnM5oYou0dj30dZ6CJJhc9z2INDGTtEoOHQ\n95fLMrze60l1Ml1oa6V6NZTMQFgw03uZi6fsZBLKyZdlUBe5a63xHU+rkK7HFpRLRTI7mYRFtiwD\nWl7W54lkKn2FkJRlCeeM9SCEVpBmlHB1Mc+rgMsSHOXJx5UjfApUK/2JuwJRZu9HpCtHjfLpZLxc\n2wcrjqSiPJdApVcASh65FSgAPpACEJFBroJGnoP6PTm/I1M0aDJbW6CNIaDlVIFABqnSqBSjal9y\nWvP41YeoZZ4dp3YB8JXNxNh62mhnA9aGSmYR4eO9DLRSGzJA/ZzSEy/hEoDqjslia+W5E2c5mT9p\nepjev07q1TJPxRGTQEDo/5xziC9bR9Wo9nFnqZEWwaIKGrp4Pw8qejJhXWYsnCcZNGsMOEXH3JS2\neWNnxucsZsQzZsazTKS7znWW18SP4wXOsQJjad7eBI1Ln3LtF4C8fx8JMWEZVMiz1Rs2l6UnMzwZ\n5P72ihdfPj3yTIzhyCVYi0a6+riUNPbMqZDr2hXxsLBlGVLFAIlDnFKYy7IxrijPYTY2hCgqS58O\nJu9lMJtDoOiBD0ewe3ty+n6/kabuU716PZ8qxqV1bXHei5EJvhqkN9LHbFSso5X6JftkIe5xKZ92\nNPLqbJ5WIRWuqvz9jAZasv7ibjpUA9TvNz6DhMsJTvPkhHPGWhBClJmV5GMnnAPW+ablg0pNIYNf\nBWoQKLq5ql1iX6B4ghRX9vJVPmxU1tUEUmlaefk1Dfqgfs+rhbyZols1ozyH9z6aTrzZI2Vu9S4i\nmLy8ud8HbUiJeXbl4AHAqAeR5UBauZSzRpqXIZCR82rpWa880lU/FyzJtWOQsYA1QWXUNtZWQ+yq\nCrJxNZkE3KoiByPqdrnhhIQ1BFXRZFBJkXkVj5Y6yQLKmK7tu/adparoSvlqH0vfa59LMc9TJlYl\nAd3XaFmFR5tUOi6drN2uFahtyBiY69eAqoLdP+hWx1wkYs+fDsJPyfyl2znj+lLRm21MvQjO+rNb\n4nirMJX27aytPO97BWhz07/HkxJEBiZWo0hjPTFh+pIy3yAI1FjZhGe4X1SL0sU0/d2TL8zAuHSe\nOpHq1ymR7f5+47pqBTDWBbiymSZmNjaAfl8qgcV+Q2RghgMx0R6PUe/uylv9flAhTeKqYJmUqtdY\nRlXIjvhiG6X7kwEVzRR5KvJg1K2Lh0SRIsuEtgGwB1LlzAz77ntjjlxj0++DMiPE0QXClIzs6aeA\n0Rh2d69BsiVcMqzx1CrhamAtCKGEK4R1JoQ6EPvyeGPEtoG0IjZAjsgPIvKqo7Ba58igqmp4Bmmg\n5lPaNFix3DR11PbVUU6/L9fu8vqn02CIqLnucdlWoOENEJeIJ8ol4IkVQFptw/Xdt7HtJ6TkUWwm\nGV+ruNIYB+l6/H7DvNu1/cIxT6mQkDALcVplF1lyGsLhNMoYxSLnbxNA7X3bx+vaL/7+zEvliX1I\nFoX6Mc0it06q0FiHNDFAyPHJ5PwVJh0pzUcwtxKX8elFZ0p2Erln0QXddx2h4FMZ56mPFj0e82pM\npa0FT50q1ziVSt+lMhkCMQOqXjEZKM/AVQ1MS3m+5rl/Lsd+fkQEBrufIeYA4FKj3Fjy8Qd7BbGP\nEVyKlVfkTFuKMhPS2ck6Mim611ARimfElcv8e71CSK9xrDYKSmrvBdQmw6Ycqsi6tvvxrAog9QLS\nBas4/lMSiZ0fpQlVVglwi2fueHF1VQ6ejnCqc1+5rO3/eI6g2hG+WQYaDmCIYEfjFPckJCQcwVoQ\nQslD5AohO2Hgv2qorBcAT+El8o2KW2ZGn9QTCAiGi7qPtd58GZZlNa/Iw8RoWvq8c50wGWekCCNB\ns+bXa+nYYIQtAYdKoM3GhvgXjcdi0BiVpefagmzwTJJ26qqfCdJvF7xoRTHvQaBVRXT1zyhxFgwn\ntbpZo0KZOyar2silh/kSt7EpZZeB9UVhXSaKCZcH7WA6SrmQiZQNE+n2JHReJSbFMh44px3D85RE\n8e8NoibyImoTB3PTi+aQIbrfkWt8wv4ep4IC5LO46NAjzyVV2RnjepUk3ET4rFI7TqoqizGndLzu\nR3kRlCftYyoBM2O/malii2LRse7VvNalqJ2Bm2/0WV04Hj6GfbwrPoJbm6DeANx3qeCWgV4BzkSB\nzEUuv0+mwKSQBS+XrgX1G8xDuXRJ+TZB+Qs0S9bnramCUxDHsYukgU1FMWNjQqcn51Yyqpo0lDJm\nMPDl4jGZCGEB+EpkZmtT2npwKCbacOoglzrPEcFBvV4jnlBPR//ZRz5RlBcw/b6P4TSG0fjJjicw\ncGopFw+ZXhGqt+mimfZBK7LCEVTuXqdtsoeiJLpQQmhaofrma8h2tvx1za7tBNPu6dSPCZ5Wrort\nRbpeJyQkrAvWghBqlGNNuNy4ZAqhI2D2EnmGU970ej4lykZpU2FC5FKwnFTYk0xKBA36kdy7Bpc2\nKJOyDJQ76XOeO9WQjTyDZH8vU3b+JUokmeFQfIPKqRAzMUGlqVkR6UVEYK94bn5W3gzbGDGNVANo\np2w64imQZU0voYjkkWtl3XXJ5OuthBEQjq2Kq+kUF14RI62SJSyDeJxG3wm/qq7EEJH4VXBIMzW9\nIlQGOq1aYRZm+fAcdw4ldeapk7SKWPv9NjnUTueaRRYtktoW/z0LJyV2V2AKzNaC9/aEvGdRV5rr\n1/xE3tQWqOroOeEWDUaj85mkta+XyUKRg3nnI1deuz1+3QR+VjoV5cXsVLGTKtoWSRGMv5snuX5d\n43sNYPcPpB9VBQvAEAEPogIWeSap6HkmaVtZBgycCqZXgPNMFCOTEkZjlqgyWFwhTI2o4Z7RPn1Q\nyRO9nlkGIlHhaDn7TjLISAp8u7w85QVocwOYVrCjg0aFL65rUH8DyHPwpPSpYiDy3kmoqga51Kjo\nqmnyPv2NmufNXFp+9LodjeUe7UghWOtJMrO54VXZwQ9I+ohCiCKtZKbG1gD8952rSjwr+QJjZGbA\n1rAHI3/d6xbpTEUPZnMo9yJjZFFXY8fdPdjd/dWntyZc6LBJeHdiPQihhKuDdpWqC4AZDIIc94wn\n+Y2AAgirp3Byam+2zEBGgThx+exU5EL0AGLobB35EaWIUZaFbRwZpCSLrC6FAIeIYCsp02oGAyGD\nXDttOQ0VQiIZtPcwAoDCpWcVhVci+f44yXgcyMBJwz2sbZpExxJoNaF2UnKuaxAyIEMz3Q4IwXa0\nfULCpYZTVPivlMmOTIAbpOqsqkaKWa8fN1Ftf8e6jnPSc3plkN6LWhV6Guc8aTrXjLSkNknE3PRr\nOgkJFJNJkXLkosG1FUNcbffjXT/Z9ka4Tv1A21syyQdAloFJCT44CMTASTBPuaOwNXhyzPNTSZ8Z\n55/ZLv0udJ3/uNTd9uc8b9wukf51BO1x1rnvCgjFeCJvRRmjig4qJE7waVR5Lv6BGp8oKUMEFBuy\n4JMZoKpBVQXOc/BkEsq3A42CEJr6Tlkmyuey9ItVmE69ckfGWfDk8YUlXCp7u7y80RLysW+QEULd\n9Psw21vg6RT1w4dyPLdAR5nx10A/Lyry4Fuoimf1KfIqRuu3ZWd+7YuJRBVVfWyXZaCCvTm3HY2C\nytnFPvq3xkqxNxK5gh52/0AOvbEB7J9iEJwYmlI3m9DhaYn6UQk8ehz2cgbftL0Fc+MaqKqBaQU+\nOEAdbZdwcaAUIiecMxIhlHC2uGizRXIrMO286ONk78siPkfW86XTUURpT96Emnx5d98WQAIObb7m\nu6syaDKRgCLLZHKgKhxdmXNVO6hwJVWzzBFN1lfK0OBFiJpCzmUy4Po26ltbqIsMnBFAABPBTK2s\nHBLB9gw4ljQzkE1qmLIGTaagwwloWoEPDsGHI58mpquHPhAEIiLL+lQ4ggReVlPMXP8SEi4NiIJK\nKFa3LLCfnyzEZEQ7veykRMeiBNGxr81L5XJpJG0yQCfGbQWQkspxlUG/rW1sp5PMRqWfuPR4fG1n\nGUkfR37F27QVSxeJ9vMoTlmeTMLqfTypznNwUcBsboBu3oC5fUvu14cj2EePw2R87nmjPi+rgHHp\njtxl/k/U/Gyiz0HTjW1HOhw50oLygVfJUr8He3Mb5RObqPsGxBAjd5eWnU0tmAj1IAMbmSiRqvNq\nhiktsnEFszsClVNgPEF97x3vm+NJ2njMtMmyDvWT/+yIRC2ye7LLd5agIm8sVnni5vDQK5bV449r\nC7O16ZQfBrTh0hX7PSCvATMA7R2EQhf6/bbik2PdMbWkuq/QpeXsWwSI/NIkzBrpkE7hozGKEluN\nxbYiB22JYXZ9/0F4XavCkpH0MjVJtqK8tpa7yY94/HPt99ORHI9of8wqqK8oMxFhRfK7KqfVj8l7\nKoWjadl7v2+vuFjl2ZKKfa4qUWTthkFuNjdhblxHfv2abDMaw95/kFLMLgi0ZorFhKuHRAglnC0u\nWiHE6DBSjqTrZISdiNO7gDMhinhagqelkDNF4VeHNB0AgAQDo3FrUuMmV5pO5iaCPJnAjieArb3S\nx3vvwPVzMnEB6VACuNoCmYF5+inUt7YxudnH5HqOakCo+0A9INgcsAXABqg2GDCAmRBMZOVgasjC\nvjaTAWLZh6PYzkzldVMC269WyCaMyfUM+dii96hCvjeB2Z+Ayil4/xA8HgtZFfXfr8i5EvdWJdhl\n0sQmXALEw3QeKTGLYDkuSFdChQwaapuuhJcalgAAIABJREFUdKrTEkdtBU67bdF5jviwuPssADDc\nhJnc6joZuTdqVSJXktmVdgxdis1rtaJPrjecQCaRVkqcljCbm+KHoWbVDYKplfbWvnYrNpLvnDzF\nBE10vf1kv6qA8ThUbTIZzOYGzM426Nm7yIocNC7B9x+GtJq5jeggzI5TD2n646xNZqX6OWWQ9iW7\ndRO48wTKO1uY3ChQ9QmmBsyUYSqW507N6N8fY/DSq7C7e96jTseget9kXQSTS3+hzU3wzibstU1U\nz9yA/fAzqAcG0w0DUwP5QY3+gwnM40N5Vj3eg93bm53S1iIiGxWyLhiU500lSvxsrWtQT8q2U5bB\nluLzYw8PA7lxcCBkxngiJdSHA0nL2hjIs7qcyjGnThVUlt5v0E4mLq08E3ImUh/7z0Y9doCQKtYi\ng8zWpnyfJ00/If0um+vXQESoHz5q9N0eHMy+MDyDDDoFdNzWj6Lj6ne4qsK6gKrUq6kf/1pZTI2w\nzeamW7y7wPvPGVo42IMDf/0pz2Gu7SB77hnxqhpNUL/9TkotO0eksvMJ541ECCWcLVZw01ISRc/v\nJx4tEsivDpIJRJFCJxdLPKyVGNIJEg2Hkjc/rSSYnVZHjAQb3kS29p4RYCtBraqDTAag9iqa/O5T\nqJ+6hcmNAarNDOW2weQaodog1D241VQgPwTyESMfuyCbGb09i2K/hpnUspJauRQXNwGjmgEtqZ1F\nQWZuYHMD289QD0RBVG4b7D0rtw9bALZnILeTgZzPAsU+o7fLGDys0b8/hnm4D9o/9KaNQAi4VlJl\nLKEJk3mJu099tDakPTLPVgCybb7nVqh9ipQVA1pfDeYqoe1v4l9vqVxmkTd6PaJtyZU89hPw49Kb\nZvnwzDv3Iuqi+D6paj69nxoK91PdFmhUS9Ry14AFVy1yyytOtN8cqkFpn/UaxhUQjZJLdLQ6IgDm\niOBo31fi67gKU2lFnMLSRSp2EVf+u1TD7gmBAYhqwgwHoJ1tZHefFAXnw8c+zWZuMwpXtvs4giMi\nqDr7EVfxcu3Mn38vyvfcRDXMwZlMaLJxjcEb+yh+/yvIXPtnoUt3cCSFu/1+nP7ymrxm3L8cQD/a\n1tx5Enz7Juy1DUy/7TaqjQxUM3qPSuT39sBv3jtSOl12XHERBF+lVO85pvldVLVQ5GnmCzxAfpL7\nzCnLgP0D8QlyPoDs0svQk0Uumk79d5/c4psZ9MFlGYySVe0L+LQzJYMbHj9qiF0UsHv7zTLoavbc\n64H3D1DPI3/WDF0qPdrcEC9F5xlHg76kjl0BoQdXlSi37j8A5TmyJ24he/Yu1GuTH++m1LIzBucp\nRl53KClOvR5Q5EIGq1esi6m5LH3Msm7qukQIJZwt8hUES7GJoSODGmkKcdnjxiQtCqRUUnxSc9JW\nO9g6s0eTAaaOJsTsJ8k+7xwAT1wgbl21jqEzYSQjx7i2JUHaRh+PP7SD3fca2BzIx0B+wCgOgeE7\nFr3dGsXeFGZUwYxL0LiUFT69Dm6lrjFpt3Vol7YRCH97lYJb04+8iXjQg722AZrWoMMJkGewgx7q\nrR6m2znqgcFk22B80+DwKQOggJlsozhkFAcW/YcV+u+MYO49Ah+OhHA4owI7CfPhK8YVRTBC18/a\nkPhLaFqjbU7iuU0K6Rjym7hJiA2/+/P66i95+D32ndJj6/f3skik2xP62KOm7ecDzCZtomNwVTlT\nV3t0O2Yx6I1XY2cpY9rnjg/lvD0abYqqiHlzbL1/qlrH3TMbZFWLjGIbeY/MascRwqPueN0eWfm3\nB4fhukT3eZ8y6ypgIeu1Dh9SRqStKzJl6Bof+npE+szfN/rOuVQz2j+QZ8jmELS9jez2Tfl+3X80\nkxw6dkV/jnrIDIL/ixkMQNd2gO1N2GsbOHjPFoq9CsMvvgHz2uuN/daFDq7feht4620AEghrMEz9\nPujpp2A/9D5MnpQ+Dt48RPbOLnh3XzycpisI5KM0Qv+5eeVW7Su4cY0Q7wCN73CsnOapKHW5LMFk\nQJr6NHTpe5kBFzloeysYUmcZaDQWzx9nAO1TwNRLR1PEgUAYaVvzXNQ0e/vdah8W1dCJqu1FSkUf\n38Xejq5irBax0BT3RjprtK1/Bul1W/I5FKe6SUrb1KXGXa2JPVcVqjffAuCqrQ2Hktr67F2Yg9Hi\nysWEuUim0quD2RBFLgZ9cL8HHvbARebVvDAmKHstJKtCze0rC7IWXDPIWvHjsq76syFJd2YWAcF4\nDLu3L7YgeQ6zvd0k3s8ZpyKEiOjrAPYgz/iKmT9GRDcB/GMA7wPwdQB/k5mPX6pKuBIon9wC/uz4\n7c567HgvAiJZPaM4FaHwD3gJiKIV7nZamaZpnOLL16iG0cqpJ1cW1gcuWk2mrpFtbwNP3cbkueuY\n3MhRbhlUA4AzgqkY2QS4/nKNwYMp8t0JzGEJGk3kRqJkjxrbAvO9eTRgrGtwpYGSC4ZqNIOWiDTy\nFcXGE5jdfZFPO0LAsIWxjMIZMu70enIDHfZhN3qY7vRRXssxumWw/3QfZtoH2Wvo7zI23pqCP3e8\nUWe655wcZmMDtDE8WjpYJ5em47rre65qnn/ZyncrmIOTTLBbyqFYGdSFRiDeMbk6QkYAp1YWncvY\nmUcgz1LqdKp1IqJadz9C1lC4V3nyw6VxLUFu+GpQTqlDee5JQXarWqh0YmZlohl5iBzb30Xfm9vI\nOek7jXS3OlwCfV375UpsA5DrVkfqnAUu25mPm6htDSVQg0xccEyFRvqKSfVuLeRQlkl6zs3ryO7e\nlu/Zg0fNieoi6PjeZTs7wJO3UD57A6PbBfIRY/jGAczuCOYbb2LjD+4D6Fb5nAqnWbBZEDyZoPra\nN4CvBUURbW/DvvcZTJ+/DaosigeHFx/naHW3iGQ9QmpEY8gvdnX1sdICFKHUvKqvqKp8egptbcpi\nTWZgNwYwU1eVazKRku21lQUsPTfgnyeNSYzJYHoFaDgEj8fLEQSRclJJHo/4GaaLDAC8E2+WiQeL\nEuqOvPIklnFmVP5nLpO4aAHEp8G1fA+PU635ZnlF3PHj97LGOXY8BsZj4OFDMdC+cxv2A88h2xsD\nb95LxNApUO4stth+WcfOOsBsbgrxMxzIone/ABcGdWZQx4QcUYOgo3hdp7aSbQEJjwlokOJQUlrd\nS3yGvPi0ZW6hBe5+QwCMvSF/17pANpUKi2dcAfAsFEI/zMzvRH9/GsBvM/N/TkSfdn//nTM4T8Il\ngD2ZrPFMxo7K3n0VK7ZhFdsaCXa88iBMNvU1v+pmIxVR7Dt0ismMBumUQcrLq4m0y73nukb2zF0c\nfugOHr9QoNogSfkaM/qPGBtv18hHNbJRhfztXeBwFNIwyFUFi5QV4aKYzklmTETBETekv88zBPeT\nRwtMGUB1dB/jrn/NYpA9ngC7e4AxMEToG0I/z7HT74M3h6ivb6C8OcDkeob9p3uw/YUrt6R7Tgeo\n6IEG/RCgm0yCWK0op9CKbichMxROzRPGHPvUsCNpf+3JyCx/seMUQZEZrq8iY3nZqoJnMHbaaWGt\nNsyrmtXYrnX9Z6lFGj/dNbQxQUSzzzmrB3nuyPCglBGCKJroxGlEs9q5jmipbLzHHBmgdosEqiKY\nzjlOE2dzz/HmxO471P7Muq5tnELX3maGYTZbGaX24BB2b09WOK/tgG/dQHbrxvGTsxnVxPIX3of9\njzyJcttg55VDZL/zBWxp03EB6p+TjL2FUiJb/k0zzmH39oA//XPvfnXCfp7N2OlQq/gFLX0/VhHF\nz2an8mLo5+omLHWNI75eqgTMMvDjXbAxoIMCZjgET6eg4RBme8uRO0IYc6T24akQ1H7smAxm0BeC\naBEDdLQW+NyzJS5a0cAivpV63ZTo7lqwUBIp+klAfGnCmIqOQf1+SP9Xwlyvw+kWMS51nGMPD2G/\n9g3g6wQ8eRt49ilk5S3wW+9E5FjCwjiZrcKlHjsXBer3Ya5fA999AvVGgcpQ87lBBBiAiYRQjgoY\nxGAKpBCrob/+8/t1CA3ixVZX2OeI8byb06qnG5hFxV8UMM7gHYBX69vDw5MpLCOcR8rYTwP4K+73\nXwbwO0gD712DE0zqu7DU2KHMSG4msw9GvIkp4AKmaKLjlEKCrPW37hKCprnQYH3eg19TQIbDMDF/\n4ibK99zE6HaBcodQ9wnFPmPnG1MMX9uHebQvZYajFSpNwwgkTHuCGRus2kAK6d/x6yb6W9sUEzwd\nfjD+HJnbT9sVpQn5VTSg8QALRFEJnpSgvX1kbxOGZDDMxLDSTJZO4Xj33nNMhmxnC7S5KemaDQ8b\nav5UdUp7m+PSmWbBPYDUa+jIXq1AvZ1CJtsoMbvAOfX7DYTxfHqT4JOPHb186v91pJ0LjuPGQ7+j\nP+3AJFIXcSVMRmy6fFzJ8COm0O2KZquqvLUsTkpMKUFkAfW6OAWWu+csssjgv7cuVeuYZ8usiUKs\nMOOyRPXWPdCDh6IauraD7KnbwOM9SZ1qw6U/U54je+4ZHHz4SUx2Mux89QCD//PfYHBsR+dgFvFy\nnDrqpIhVdbNSf1ZDdJ7J84qKXjBuryoxdo+re8WpnMCR+z5bBqEOqptWWjuc2ppdpTY83hUPoNqK\nCfWwL3GTZcClQtmD0dEVa1s3vYLa/VBlIhCUj24VHYBPXfYLDrECqHEe97ouWsS/R2lscM8r/17H\ncTz5pPeJmCzSxQvdV1VG+rvrk5BYeahAxuyOtfS0a/ln1SrB7NMzs1s3QU/fQV7ehH3jrcUqJCYA\ngJjuL493b4zsYDY2QM/eRX19A1xkovDJCBWRr6wcKrmRn14Rc3jdAAzyZI9sEKmFdKE+MyArXq3Q\n/eNFVD1L3br/1PXR+7WqiqrKecfZ5n3edzADDQpkg75XEAGQ+/eCdmynJYQYwG8RUQ3gv2fmzwC4\nw8xvuPffBHCna0ci+gUAvwAAA2ycshkJ64ITOOGf3dgxRthTjr4sbtVLJptTT440PIbiPPt4cuCD\nkxmTM/c35UUgo8rj08zMEzcxvXsdj9+/gekGYAtCcSAkUP/1fZhHe+IpxDZKuWlNGtsET7vNXaqg\nNtrVeeLfY/InJsl8OplbYcsyIYbq2quyj0CVUPFqnAusmNn5zFTApAZbC1rMbTHdc4jk4ba16Uo1\nZ+AZRJyHu94Amj5f7QfVwmSQkgjRh3/SCbYNq6ltD53Z+5yKxDibsZNtzW9nlJoQHaDzPV+FSzcz\nBOZo3y7Cq6P/Ylzf2lb/1p9ZJkECRakk6672OQ6LEphtYi1+bYG9cVb3nJO0tZ3PNus7Ev/eKo/e\nUMMC3p+FRyO5h9y8juyD7wce7QZiiAjmIx9E+eQmJjdybH91D/1//mLDkPlU6Pos2v1YBl1jIVZh\nRZ54p/GGAYSMwWJK/fMZO1GaJ2vVL03rthzukzoeALR9tpqVWd2+08qXk/cr09E9hS3D7h9I6jsg\nHhibG6Ab14CqBi9oJByrukMb5iwmLvqeTxftIIX09VmI4pM4lYyZhVdRcqhNJreOS13jsCgCN7NY\nNdWzGTf5ziLnujCoEbXZ3IS5c1sWMpJiaDEsfrtKMbLCZMg++AKqm5so+5knSJlw1MvLMmBj0txt\nqwQQsyiFDLvXomO5nwT33Y8Jojqay6nCx7aee0oixfG4vhdtI/NNCqS03t+1oEc7dTXLQMPswgih\nH2Lm14joSQC/SUR/Hr/JzExEncPYDdLPAMAO3VzrqNR874dRDwvQ5/5o1U1Ze9DiQdaZjh3KTKhW\noykQLdInVgxRhoakWg0ZdX8/z4wDbP1bj6UpUpZDLn+r/2ZzEwc/9hHsPZvD9gAzBXqPGTe+UqL/\n5j7oYCRl6asqeKbMQ6z8ibdtVVQ78toiRJFv9IyAJSaFtJKPEkNdBIFTH5HeHTWlT992UnBoULvY\n3P5dcc9pQw3maND3ng66csAqc517AEJnRKGrD8RAVbe2x+zJmyGc2uWwneLoXz9mICw/kTuTsXOt\nd4eP9Z6JU7hmkEEAjqijwj1L0/JmpJ7FvkK6nfp+9PtNybDeDzUF7CqTQCcliBbD2d5zFiE/Z5Eb\nx6E1Xrx5bitQ5KpCvbcH7B/A9AqYp5/CG//JD4L+0kOMXrqO9//P7yD/l3+AHAvZLC2Hrv6cRiV0\n3D4xObQstH2LGwOf/fOKyPsfikdii+SIi2wYCrehyHxaTmDFeL0OHnCkqfeTCUCm2xvHVQbkhw+B\nLENmDKo33jz2Qvg0sNi359idOr4HSvC0/O2kba3Fp/g87X3mqYT0PAolh9R4exZUTRQfs61sWmxo\nn82zaniX18bFPYKWsC9//GPY/ZGncO2VEsVv/cGqm7XWWNXc6rIh29kBnn0K9VYfdpijypxfjwlK\nHmI00rwAuJiWw/czfkwbkrSvmBRi2V+PBTRJIXZVG6lNHrvjBVNpdzobEctkJR7vmFMSEVjjS3+v\n71ANWQbX06NWDnNwKkKImV9zP98mol8F8HEAbxHRXWZ+g4juAujQI18OmO/8EF7/qzfxzK+8DOqS\nVScsjbMcO36iQ6b1DYefDHnfCDSJIP/atA4riLEKQSvSRF8qJYNm+ZiYjQ3g29+H1370Oqaf3ENd\nj7Hxu1u4/f+NUTwcwdzfFSWQrZttOSm61EJt9U/8WldKWZdKqI2uNqrfSI0gxW5vP8uXKA7SXEBL\nWQZeQD181e85uqpPeS7VOvo9oN9rjEFWMmhOusiy524QQLPeN0ZymNXXAVGM26ES6kwVm4VzrPx0\nbmOnc/Ief/86VBD+/tLqLzMWnoLPSv3z6p9WetJlJ4IU81Ql59DHMx83sxQ9wPzvc/x8Og7ReJhp\neMuM7MlbePijL+DNv1Ljmd+osfn3vwjgHLyAFiV6ZhHQ64Iu5e7czc9w7MTpb2S8EbRPWycTFrVM\n8BHyBv2IFsXUO9FySCV1MQKzKspaakO3PxU57Hgi47Cq5pJB1O+HCUlMlCxCBgGO7D7hPvM8hRrf\nvTlkUAQi8kQSEXW3J1YNRf0l3Xaqi40rGDdrCPOdH8Irf+sGOAOe//TnVt2cK4WrPna6kN15Eri+\ng+qJLZSFAWcEzo4+S2PyppsS0/eEGGIiIYbIkTh1tJNLFRP1EI6sj3LuzO+tetcafz9ThZCSQvo7\n4M4DE9iZ2mVQ6BygrTxv31N0kdEQMI0yNBbA0oYvRLRJRNv6O4B/C8CfAvg1AD/nNvs5AP9s2XOs\nEtkH3497n7iBa1+runPsEzqxSMrYeYwdbxwKF7QYciQQN5jTNgHj8+fDBu5nx2Q7JmDUkLrtPdTv\no/6+b8fLP3sN3/nXvghjLLb/1Sae/u376H/pddCb98EHh95/JRiM2pNPhg15QmVhtLfVADPuh5JH\n+k/l5ByqS3nPJlbFkD3alrkm1VFftR/HNf2K33MASBpinosMf2MoZJDK3r2aJyiuTgKvJGofZ4lj\n+X2MfH8aQX8UKM/yDeocG+dIBl3o2FlkMhuneHbhOKJD72vudTMcBsJQCYB1nFCvGl1pfHNw5uPm\nCInXkbqksvEj+84hg9rf52M+e8pzZDdu4MGPvYB7//YYg9cLbP7Tzy/UhaWgfTryTJ2hbryIsTvr\n3Gd2+LMeO6ahTuFIlaup8Hrd2nHJkYWfaIHI36N1G1Uedd2P9bjzSEly5eX7/dDetmHzoliU3Gkf\n+6TnayxSmeYztuu489CRmnaSSdlVj3P4B78Hr/w7NzB9doIX/klKFVsUq5pbrTuy9z+P6v1Po7y7\ng3qQzSSDTgImmnm9Yz8h2bZJBjHBP1uYCGyMbBsv6kb35y6T6gaMxNdcW7CN7tfxPcqn90bHclUk\nT4LTKITuAPhVNxHIAfwKM/86Eb0I4H8lop8H8A0Af/MU57hw7P+NT2D3fRme/Y0HuPUPEnN9Tjj7\nsROVGOa6DpJqV244Dp4akzAyAE99Dj5Hpl7xyhoArxxiG1LOyE2ys+1tPP7Uh4F/7238jed+B//8\nze/Cn/wf34GnP3eI3rdeBR+Oo4maPd0SrPYhVuK0jzcrpax9HN+3JnF2BHHql7Lb0Q2zfvRYUpp6\nBZA5Sbr2N6pCRXqDdEaP4h2ERUmtK3nPATlPIA2e+33QxkDGWp4d2fY052k8KJmbKx4xuhQL7ZQn\nY0AZg9mNNa2fGcnrPenZpWbLMhBaKrnzmwie7dhplwuP0a741bmK4+4ztrXdcedqHSN74hbqd+6D\n+n3g8HD2tlcMZnMTgKQeLI3FxtrZjps56qa2n9QR2JYCYZ7yzB/06NjLbt/Gt37uA/jYX/8TvPZZ\ng2/7d/+w+3znodK5AEVXCJTbz8AZ5z5Nmtp8nM/zqqHsDaqhhh9bXEiDDMBV8PSrKrlfOG8pgpqt\nM6jQZ7zbJz5tkYv/1Lym5bmPuTxmTUpUVbOIP1BsDN1BuCx07DjVTI85q42qTIq9hOoa5oX3oP7z\nl2H6fYkzlTCK29QymAaHMvcL4krGOfd//i+g/KlH2Hurh+/4xbdQf+WVE9jiJCyYMnYlx04X8hfe\nh+rJHZTDHDaOa49ZXJ6nDGrEx9b5bjIQvIeo+TkYNH2HdMGc3HkMAbncd5gQiu5omr+7J9BUF9Sd\nCklVPkWOyXtvof/NB6DDkZhFx/O+mBSqLWCitjlje5SLl1JdmhBi5lcAfE/H6/cB/Oiyx10Vpj/2\nUTz4cB9P//pb2Prfvnp+efNrjHv//l/A7f/u/Emwsx47fkLZNolmlhx5AEAdgigljiyLxNoHVAjB\nFnM4hlc/BONGNVtkJvAnvxuv/p0SP/Lc7+MP7z+Lz/yjn8SdF0s8/Ru/C7OxAe5HdpxnpYJokDkz\n0sFO4hs0azv1CQLCjUi92RwjrYy13duT/F1Xzh5qTInaGUhzp3eAGlke28Qrds8BZGJLg75UoMsM\neP9AKrZsDoUMOscV7CPIjDxUugKPNhnUhvpy1cGXgbIMrGmFwBHi0mxvAVUFOxrLRKXG+UxCcQ5j\nJ56Qta+NK//sX2/7CR3nnRIrF7rSygBk16+hfvQYNJB6T5o2m926ifrevZP1ZV3Tc+bgwV/7bmx/\na4Lsd76w2A6LSK07cJH3nJmpXUdPfvx7HSQH5TlGP/H92P+FR7j1307x+i/u4Sn87nLn8Qddcuyc\n95hrpHsfk2Z3Tmlq5zJ2nCpZvcY0vdiOx0GxCcgCDrvtTC4TDSJYy2EbICiLsgywlSzYMDcqhflF\ntRmljPP3vQfV178J4+5FC61Kx8TMIlgwvctjEdKo1R5fWSw+jyuKQZD+3/kf38Trn2wtiMUEUHze\n+HcljqzFcZW/rlqcU37qB/Dmz48xvl/j23/mi7iLc0hJXXO89R/+IO78N3PutWeEqzZ2ZoE+9p04\nuD2EUSKlA+0UrnlEUCdchglZMZGO08ZUPUTMjhRCd4zM7AysDQgWDOPmTm6R3FqJuQE3v4rUwcyo\nvvYN7P7lp8HP38WTv/lNuT9XtcwRaoS5FlGw6FCiSP0oF5hb+S6f8BJdOfBf/F6Mfubj2H1fD3f+\n699F/eWvrrpJK8MX/t4vrboJS4GM813R9C/1DSqEDOI6IoPUjT1+DWhN5oxPhYnf0+BLnNuHOPjr\nn8BXf/ETeOMvbmL80nX861/6AWz8Bwbv+x9exvCr9wFAyq3quVQx0VAdsUgBpxW4nMqE+qSYZyi9\nCHS/WWk8s1at3c3GfuT58JrelKaV3Og0/z7Lwmoa0EkKvWtAJHL6ogezsw3a3pKbtjGgojgqCVVw\n82FBVe3/zUwzWaAtjd8zI//a541/dkG9oNzEA8YEA1H13AJChToyoMEAPJ7I2I8mOBdKgi2L9jWJ\nieP2ZxFPRhukRDRZ6Dp+x/XOrl+TX558AgBQvfa6nGI0RrazIwq9k+KSkUEA8PYPT1H83kvyR9f1\n6/rurBPa7TPZ/Pf1NRN9P4x7HsUTfP3bp/wSqOjh7b/9g7j3qy9g+OYIT/zUl9H/v15sHrqt6pjV\n5rO6rudNBsW/R9+/7IlbmPzED8Bsb3fv177GQHe/VwG2sojVqojqiURXRcyXgo9BBlzb5vtOVcTW\nqXc1Nbxslk/jquomK911OfhIVLAoTm1uQ+OARcZaF1SJE8Paju+S+f/Ze/MoS7KrvPd3TsSdh8yb\nc2VmVdY8dw1d3TW1ZCGhEQmjAVlCzwYDMmCDbPMMGHiyvR72A8x6IMuwzDN+BkmgyRJIIKFGQkIS\nkrqqu7q6u7qrumuesrIys3Ie7hxxzvvjRMSNe/PmVF1dQ+vttWrVzXtjOBFx4px9vv3tb9f/3vjb\nIqlldfpAIQszof9k3XfMBz8dI3wsv21+m8JtC/rW98+SK/+jhxj88FGuv9li7UckW3/uqXvdpHtm\nne8c5Op/PPKyjrGKCs6vOhORKBx8CPW6/QBYN8YMQGPLIGUr/A9AuDUGvLYFyhIL0ruWM22FUsf8\n1zvkHy94JqHxqe48kiB1TPvjhm2hoxFT9deStf8jdp0Pnvv4MQNmeQCziEYg4QUCvXUjjlMb813X\nrL0cr/J2o2+xhL3cKmMPpNk93VQ2r2Fsf5I1f3yKRD5P4l436j6wfzP8MC+3psgqlPDvmJnKD9Qx\nhQLnJqBRS+8/k/Llp2z4aTraR3jDzrVfAtqPxFkS2dvD/M4urr8d4h0FfnPvX/Hhz3+ADb9umFU6\nmUREI4hIbWHmzs6a43mOkIhGawCJp3eE0uhiEVUoGKAg4UfbXoFJYDHRaa+MfNNzLgYKKQnHn69t\nNjOL5Tnb2nEQ2luYeECDcFV9KXrAp2d/X0x30kJGI4h4zACB+YIRaI5GauCZUlCuLHyXPIcyoLVq\nHQz8AiAWXR2rSAi0ZIFQHm4ToLTZ3wvymUNsBC/S7Eemza669r0U6HjURLYx70ZQHvt+W7wvsEXa\n1+x5NaaPLbWf9Kh3ddXXhNGVisdQc3OIlixMz+Cev4SVy+FOTZnNpEC051DDoyu/jFcuVWbltpIU\nt8aom7TInDZ9Rzz6EPrEC8uw10LJfBtTAAAgAElEQVS/3WM2VCDg2yyFMNhokTb6rJfQPnW4v7QC\nkWEhBXL9WsYf64F/NM6aXxzF/YNLyO6uptH5FbGT/PfZEwr23927ai/z+bnjE8Qen1jcy6ljFonb\nB9pfCfN9GI/dbKrHVesXISH9n6Aill+GPqzx1xgwknJF2mMyHjfPXVpBClm+2yYGiJRXptoXRw1X\nNfSBFqUgkUC0ZA0b9rbvhagxcBZrb7NKZmE2T9inWazqWbjdwC3XtFnl8yZt1XXrj+UzjcJtC/cj\ny4JXcezLXtvPzME+bv4ARGYlm/7z6cD//X62yUKCN731GS78u3vdkgfP5t5/mOlNko7TDnbeRUoL\nd2oaJ7k+AF2kC2iwKspj64BQGuloZNFFVF0qbXFUVCKrGu35cCtiDYVd29Bnv+IYsOSYGZwjSC/z\nKpV5AVitLbMuCh+nATye2gm5sx3YNyZMMFgIdDSCcDxtoUo1FHQP+f+NaWTL2PcVICRiMWbevZ+5\nAcm6L03Q/fvPfV+mhjWzwrsO8fU/tah+fpa1P3r6XjdnVVZX8t1bQJn0FI+Z4wM9WhkwyEdNw05T\nExTVd7oArPYcw+/cSOKdo2xqOcvh+CxPfvhR/udfbyD346Besw/53ecMI6gAorjQWfYdrrDzHYA/\nERvZ2YH0qnYorUy1spXaatLEmv3uAUHadRFYSwNRizmVsGBg1K5CWIATcsSkjXBdM676UTTLetXy\niIVtI6JRT1/Jc9Bdkz/s5vPISgXRkjUgkWMQfzWf96L9oedg24hIBOGDPqHBX5fKUKkgkkl0LLK6\niPaCBbeAxbSF6lKjdKii1SLb+06x51D7AJKwLAOC+ZulU7iz88v33fvF/OpQUA/oLGADLZNaBjXt\nmHB1Q/80ySQiEQ++U6NjyFQKlc+jHaf22XUDgE3YdjAOBFWIGtsa/nwvQZKV6B01AU/W/N4TyD3b\nOfvBOFtPNN9tgd0HqXHB2N+gedf0uazEwlXKvP5jd3Vw8Rc2Yu+YJfE4tL/9QjC0uqO3mH/vIVpe\nnMY9c+42LkAHOjJ2Xy9qdg41d5vCsLfzPMLvGtSufaW7H9lLoS9O6noBeeby4hpU4XcjlEZ+T02r\noGS8qTBWrfk8HuvSD4CFfRezg6epaFHze6JRcCvm+vzxeRFgUCaTqEIB2dqCjHfhXL2OrihkPE6+\nV9CRyZA/utlU3HFBW5C8MoMoltHTs+a4XtvUfN6kScdjqNl5ExBZaRn64F7UByaalqBvxgSyDGjq\nX0/dLNmoO9SgMSTjcX7k9I/TtraMM3jDa4ZJJwuXuBe+3pFv4eewmrS3B8hkPM6NDz1Mx5uHGB6t\nsO2DL6FKpWVdOruvFyI2OhFDlCpQqQas11eL6cf24f5tknf8y7/kI+y47ePci2D7vbTpf3KE1j89\nRuYzx4m+7VFGD0ZoPyOIpZLguowcEbhJhUxXQYCUGqdoE7sRJX1dk5hU2AUXBESnCiSujeIOdFPq\nSiAdVjyea0sgHN9nA7/qGDr0TJaYy7QA6aeZhQOnywWxQqlem/7XHCrSAGL7THsqBliqOkEQ1uh7\nevNW9f8HhBZY+YceZfSRCOt+4wmy1K89RSy2aH601d0F5bLRahDC6KJEbKg6qMmplydqeR+Zigh6\njs8z+5bivW7Kqk37gsgi+ALtvwT+90GpVo8hFOysQ5RrUdvHMxGLUTm8nas/W+Gtm07wpRcfYu5v\ne7h5soTTIYkBrZ84RuHdh4i9/mGsbxpNi8X604K2Vyu4Xr6+zBeQnR3YGwZwrl7Hnc9jpVMrZwk1\nCmYvpQvUIO7rTk/W/szlFt9XaZC133Slgn5sH/YLl2uRII/xVNMj8BdB0ijq++lFtqyxhV6NjpIQ\nyEQCkYgbjSBPIFrPzOHO55HRSC3iWqlitbWC46CrlToNh8CkhUzEzfFsuxZFsCxEMoEuldDzeQSp\nlYFCS01G/u/BO9E8EiJsGzU3X0sNW+p4wZ+mCg1OaBS27dq7uRyj5n6wxlLhzdhBYXZBM6ZQY/qY\nrgEDMpkM3ht3YhK0xsrl0MUiIp3CSsRR0zNox8Hq7ERNTSGK5WBfVSh40WhzjIAJ2WTBJ+yI6W93\nGTCxtm2GyZnVax55NrelhfSFmnBrMyYRKgS23C7ocifNb6MHhC14HuF3pVkbG68xBKjJZJLJ9+wl\n/65ZNv1bI9rqm9XaQmX/JqxvPkP6c09Sfd1+on29dYsv9wceptQRwY0KhAtWRZO6UTAMrCbmDN1E\nJpPITOb2QKGVPIPFnultCqeLY6fIeGNu0xnHA4CEFDUml//ehsG3e2GhdPeggire++u6CG9erqWU\nNZSY9yuGutT7OFIsm6o+/v69dH3lMs7IKFZrC+o1+4heuUVxxxpUVFM9sAVZUYZtKk3xgmpbEjeZ\nJTLbgixWkeMzxi8qFFH5ApIkIh6rsWpWcy98ECgM4IT7ymLsICm59BsPs/HfHjNpKMtlUzRUzJw+\n1o110CXlAULhdDKkrDEA/fMrH6xVIcbQai70/rf8ew5R+alJyqc00TddYzPX6t4te2AtzrVBwIxD\norUFqg46lTC+n22Bq1CZBCqepXBwLdWUIDHuEv/Oi/fNGsvasrFuTF2plXNR4pOK3732Zkrv6iX5\nhVewmuOrwKz2NtyJSVr/9Bg3f+kovf/3E8QeP0FH4hA33uGyxtpF5rPH2fpH44iS8Xl0KoGTSzKx\nO8L0DkXp7XMUNVQvZMlehFTaJpGKYV0ZIeF2UehPISs0l8lo4gfVEeB9dyL07gupDfuncT9HoaIW\n5382RvpslP6vTTU9X1B6PpRnpkNpY8U1SUYOW2z+A2pr1kD71gssJuLe+sGBahXtysV98kXsVQ8I\nyd3bufG2Njqer7DuN5qLeulyGau7Kygvb7W2mJvtuqGS8zMLdxQCu78PnU3BjZH7ghp5+XeOsPFX\nVi8MXU0KZLFKzHoAFmON5kfawxpCfrQ9XN45LBztmy8O5tOwfcFGwNq0npd+qZP/7fAxvnJ9J0/+\n7iNsPz4ChZtoV+E+PED57Y8S++sTJP/iSdRr97+sy1ClEmrwBsK2sdf14wzeNH3KF7MWso4iLpPJ\n+nz8xUrF1p1EAw1pYUrX9X81N4dMpxbZN/RZCkQ8RuTyCKpBdyAAfTxKtTs7i8xkzL11qSHYlhUI\nVD8o5JCVmIhEEfGYuY/xWN1CT6SSMDOLKpWQqVTA8nDHJ5Y+qHKNc5TP11hHibhZqEhh9IdKJfTc\nHEKlahEGX8/AB+MaJ4ml0sL8/Zt9b1mGzeQ5bFZ7mwmH1PWT2gIqSBfz9hVzCx09Awp5fzRLJ7of\n0pxYJBVsMa0gqGfoNDgcAYsnfAbbRhUKNWBQCJMytn0z7umz2H29QWlnHAeZyeAOjZjgRqVSF5H3\nxe99TZlGRpMOsbyCBU3QkFcm3UrYNpU1WWLzBewGYGI5s3ZuxX3xPJmLs6T+/KUmBxfYPd3oVAL3\n4pU70t47ZiFGh/ZTeRpZd8vtDwuZZHu2c+3f20S/Leh795kFkXl3eobo4BR67w7UqZeQ334WvXkD\nc+8/bICfa/NEb0wRu+IYoNY2AK/blqb6xgNUMzaRvEv02y/UBTtUoQBCYGWzK/N/lgJVGoHoZula\nysXasYWRH+ig+0+eXXXamq8ByOE9KFsiv9tQYc0DgLRi4VjjPytp1arF3GUTlvEBtKPr/RvwgCzl\nVUGtVVsNfCIpasEZ5SJEBB3WIGo0v/Kq49ByuczMY+tJ/fko7vQMkzsTtLudaEvQ9+0K0eFZmJwx\n4FMkYgKnlkSlk+iYhZONI5JG01FWXay5Eu65i56OXhpKmMISnt9NLBawvPV8vqZNFIxdzbUIa21f\nCBJprdGFAvsfO88MJhgnPO2+8DzVbMxThQKldxzEKkOxQ5KCenasEKhiicqbdhL96tNGYNt/Bn6b\n/KDXq4ToYW3ZyMXfyJBIzNL73iFyhQtNt1OjY0Fqrzs7j502momL6bUmMf6T3LqB+TftopizSEy6\nZJ68hjOyipToO2yTh7qYf3cPff95deLQlYwkM1hm6tP9HPi157j6hVeogQ+wiUgUvX8bKmbjWgLr\nWyZAvfbjF7j4W0fY8GvHSP7Fk+z4TmcQQHLPXaw/BtDxPejOZlFb1jK1K8vEXs3cmwrMKoEzlmTN\ndzbSenyIpIL8hjSN6V8qIhBKY5U0sqoa5BSoMYTC7CCoKa1Y9ex67c0xW78LFz9ymFJPivjwfL0y\ni9a10vOhdYK+Wevr8S+foEc/asaqgFGsEPE402/cQu57N4IUXFPMBTN2rlKb9VUNCE3+5BHm1wnW\n/Z/Lv8BqYjJwTN3pJuBPM9Ma58ZQ8KfV3WUmw4iNc+Xa7Tb7ZdmGLxYY/5kjdPzR6kChUrtA3Bhl\n8NYAm7m64Hdh21z79YOLgmr32nwqtS+8WHM8VT0jprHiiOdUBRRrrbBasgx/YBdr33eZnsIEX/js\naxn4qwm4dQmt3GDBGx+aZ+gtbax9cQDnyjXkd569I9eiHSeIqAALtSL8rwuF2mXEYgFLoy5qFT6u\nF6kSCwABReHAAMlLWdxzFxcvfdzIVFIakU6YBU46hd3aYiZsv8y8Lc2i1nM4gypkXlv8wWpJdskD\nZv4iXWbSEIkY7SQhami/1gjbwsqmcadnUPl8TSh4FRYIfXoREhGxkdmsEWquVlGzc4hYNBQV9iYR\nfzFjWWbR18gAqruYRpbLMoBAeDILL3Ab2F9aa5M+1+RYhu0nDPMg14qamfWEpysNC6AmKVB30+50\naXflBsAgsHBxrY2YrDU9h2htwR2fQGbSiGzGjD3ptBn7Km5tvdHIiNGuNy4uDmRppQPGh19CWpVK\nJpouhQED7gQwJCSFnijRF0pc/bntrP2/Vg4IzW3LkXwR5OgkilrFNb9N9sBaEILrP7qGvt9eBBC6\nV+lj3nnrFuGLgSPNqmM1gBRWNsvFX99FZMssa9+zTKr3xDSkerC2bsI9fwn34hVaxychFkPPzRtQ\n30s78oEEcVMSTyRIZNOolhSlH3gINyGxC4rESyMmdUbrlQfDVlLtq/Fzw7NyX7pA9/Wb6N2bsa6N\nrophJmIxVD6POHkWS4qma3O7rxedjDdnA/iAkXv35yshBapSrY3jUgQi034gK1wFVYTBf5dASNoc\nzGOXNnsenj5QoP3mOFjfegbxrkPoo3sRT5xCS7CKVSKD4yYIUa4YILrqIOMxRDSCrlQRMzGEbWPF\nouh4FJ1OoOI2pYFWEtX1Zm6oOuSPbiY+VqLUEceqKCpZC2ULYtMuyTPDJuJdKNbmlfCc4vcPnzHk\nX1tjKqZnJ09sYfuGdHMfvSHFOWxT22wyg4pIwWdiqaA6qi6XGf2FQ8zsdNj6Ve841aq5h15KvHac\nRX2zB80GP3yUzW+6TM9HOkh88dSS0huqVMKaLVJ68yPEL0/grACk19UK7plzJM5AQgisrZso7+hj\n/o0bsIua1J83sGz8IEBrBqcthT1VwH3x/Mu7yAaLT7iM/oPVz/uFbknuxDTpZAc7UsNcpbXu98pb\nHmH0n5UeOKmOO2Vy93aqHUmUXZNAiHosIXdsjP5vDjDyr47S89EnVjTWu7OzcPIMrSchZ9uInZvJ\nb8gyttei9OPjvPjWHrq/aVNJC/J94KQ0ur2KLtqIuEMiU6JwK0XmQpT0TUUkrxCO9tJhNUJ77CBJ\njS0UMeXoheP/vrBd2/5wjEpvyNfXmqC8PHgVzGrjcx0zTmsSI4WaxIa0UOt7GHxThtikNswgn5no\nm2UhpFx8PdfEXpWAkH5sH1d/OMGGXz1G2wr3Ebb9snNXa2wisDeuh6qDM3jDoJ/VCvbG9eiIKcUt\nqg46GUdMz93RnNlKLko5t/pJR7hAdwfaWRhxKbz7EO/5j1/li79UvQMtfAUsXDksJBYdpIY1Cig3\n2Tew/Ts4+wsRtq+7yguX+tn0CUXbucvoajVIvwAMGDI6QXK0laF39NH9+02cC78djeXrX4GFiK/r\nsBKTcS+FKXQvInMObouRVpfJZB0dsakT42vXZJJMPNJB658drwFNUiCUEZiuS2lIperTybwonnac\n+nv7gJrMZBDxuKHB++lhHiAUmBBo20Kk04hiCV0urxyAbmZ+6knZxZ2YRHo6RapQgHxDaqAPjAqJ\nTCURyYTRbwjlHQNeCXgfcPGqFQhprquhgktdVSvhAU1CL/o8A5aQ0pCuSfmLRAI9OW0YAK0t0NmO\nHptYmIpyP9LIfLZQM50g35ZIVwr0LKJRWIoerzXu6Bhi20b06bOQzaKnDBCii8Wmx65v5xLzghCG\ncWaF2A9ChnLSvX1DC9EF7Ja6fl7TXVnAOsKM1ZM7JLljKSq51T3TIDLnC/eHWJLikd0wOY9z+SqZ\na2sWP8i9TPvxAbnGftLIFNLuwm1C97r81kco/MI0m35tCvX82SXOaY7hTk1hx2PoXJbSOw6SvDqL\nOncZ5vNBlT+UYaQFhDZHIBwH5vMwIohfspGtLeh0EqevjeKBXmITVeyT5wxbsbuDanuKwppY4BTb\nJUX6pYnbr+DaeI+ERHa2w40xnKUWCI0sqlQKsb4fzpxDVyvIVGpBaveV3z5Cx7OazGePLzxWuC33\nYBwK3jlp1crFK7dWrMJ7L4P/I3ZN4FnpIKXMBxrDASXfgsBS+Dvv/U1fmKHUnyHZ10vXiVnE0Jhh\naFWrwfst6lhIyvglhUJQzl20ZLGlxGprQSXj6LiNNTLF7IBNYlhR6LJI3jL+aKRsxg+3u5VKWxx7\nvoqWAnuujJz05gVvfNLxqJlzpUTFbaybEzjDhjEpbBtc18w9gI7oIJCive/rNIgCsKxeULrlsku+\nRxJpGKJVocD1f3+U97z7O5zYF7p34fLzgc6T4EEWLlWv2cfNX6xSGnIpv26EBCPL7mN1duKeu0jk\n3G3KRGqNe+4i1jlokRYc3MXc+w6TuZLHmsobnaqWNJW2pGGfzZepdKeZffQIyobMkEPi5NXbTk32\nLb/GRsRWJgURNqusqfa0UGmx6LTnIAQI3fr5o1TeMMMbB85zG4puD7TZ69dR6W/DiVpo21QA8wWY\nqzsHkN8xLKHI156m52u3dw7tOOjnz5J4HtZ/NY57YDvuw1HciKb9TIme7xQQkzPo1gxiNg+2RXFL\nF7cO2MzvLZF84yxjhTjFyQSJwSixSfM8rQooG1QEnIRAViE16pIYqzSwf2of3fOXUOsOeOOLRkuv\nBL3rGjBILeI7YgI/TszG8sGj3g7kdJ7+3/TSuft6DXsUzHiszRqLSARp27BCIu2rDhCa+GdHiM5q\nNvzq6hgyfhS0qXbHbZhz+Wrw2T9m+LuwWbkcojWLTsRMbu3QSNPJeiWWfPoarYkNq94vPqmZ2tsG\n+XoHXj+2jxtvU/zhF9/G+sdXcE/vRdA1Ygf0XV9QtbE0ax1TqE6nwQg1ylSCiX+4k9w/vc4GZTH+\nsQF2fnsIPZ83i2PfAfTLvnrMibZnpxh8ezti/y70s2e885nFVZBW5ad6+c0Jt/FOMw2WMSuXC0CZ\n8H0RjuLiB1JsPZMK0pLq9mtICfDL9spylVJ7fdS7EeDwI9Iqnw8YQlgWQps0Ju1F9lak+H8fmrBt\nk76XzRihZK0XAkEhWqiWAmwLmUnjrlBrakWmXFTJZ4HohUwQ/2/tGqBlbi5Y4BsBa9MnddVZ0C9l\nKmUAoWaLWP/0U1MmLbBYNOlwyWRQalh7DniQBpDPo/s6g32dvjZETw6ZL5v7d2VwYTpIGFS9H8xn\ncTQuDpvdn8UACCEMqFYgqBi2lOlqBWtqFgWIVALneo2humylqMY+0fCMhRAmyu8L0/rpnVqbikEe\nMwE8WrJyvUpH5rwyFkOVyyG2plg4FofO3XJJ4w4NE5tca47pzb++pp9fec5f9PrnyRy/hgPkH1pD\nbPBGkGqpH9tHNWERvzoMQPbTx5fUB7wntmRaYZM+Errnfj+zWlsZ/OkdqAj0v/3C4lo4TdLQnJFR\nbClJfW/MLNbDVaqC6loh5oj//LTnD1Qd82ymY1jjMTI3EqjWDO7+rciygyg5RMbnaRmdNQBA1QHL\notrTQn7vIZyEJDqnSF+eRZ+5UBP43bOZ+XVJqglh5hOg69kSkafO1XwhP/U0YptUpBvLBNIa3kOV\nz8OZc2Ys89KYwzb/jw7T/3dVIl97evF76L/PlgV3Oz7mPRMRsc0Y7fsyPqvLskBXAW9MFwLl1sYE\nozshmvocPhswnGoVBoa046BOn6W86zCJShVx/jqqVDbnjZh3M0hf1yrQBcJLJddgfI65ebRSiFLZ\nVMJLJkFr2k+XsMZnaXtRYg9PmXaWKwHDKarNIrraEqfcmcRqjaNsSXQsj7g+jIjkzCKoWEZMTOIs\nkUq45RMFdGsGhkewerqo9rbhJm3sb5xExuPI7k7GX9dP6589hbBqQY/kF57kxn87SHzS3KPZ9zxM\nJK8otls8+rbTnPyJ3YBJYfWfR+25hOeuB9PRuflLR8m+cYT1/0LhXD6z4v3csTGsjvblU+JXYsqF\n48+TOW4yMvR8HjefhxuGsAFmPW4BOUwau1q/huKB9RQ7NgGQGq4S+fsXVr3W63hqirn1uVU3OTat\nGd+XJHe2zBsS1/jtX3ofiXHN7EYodzm0fyXL1wYeYYDVS308kCYteGQnpXS0HggSAmUZ/1hZgmRI\nxuJOmCqVEN97ju5jFjIeQxUKNYByuAZsRq4N0vd1L3C+cR2JdQmmtkYodmqKXYLsZWj/0tmm/prc\ntxM3GUHgX1f9uz76aIzEeBThQqFb0PlcleSlSXQiyuBbcsgy9P3NLUSlWjf/6EqFH/6jb7IlNsKx\n/Gb+6n9sousPQtk6sSh6di4EYmu0xIy/9sphnlcNICT37uD6D+VY/4mrt824kakE7vSdAYRWY+7U\nFKxgMbCiY43eIvtNB7FhgPnd3SSvzKJOLxE99Gy+T9DzVIXtH52m+IP7KHbYVFOCUodg528OoePR\n+7cIlOvWyq2GwZfGVLFGIVjMwkZuWMtLv9zG/m0XOfPtzWz88xk6hi56opK1FwyapHKcOUdH/yO4\nqQi2txg2C6lQOVK/+pdn2tfxgcUrAN0BE7bN3LsOUMlIlA3JcUXmpUkYvoWuOqZ0qpfrLo6dYvOx\nxYNXjdftMzfU3Bw9/+XqkhoSotzknfKvWQqEZUNVwN1/9V62yVQKkU4FJXd1uLSvZ8JVATVeV6qm\nSpgnQPmK2GpARi8dsbHynQ4dQ8RiCB/cEcKwfyzLTDTV2qpIO07dJKkKhZpodsisbBZ6OnESEYSn\nYzO1PcV8nyA5mqb7b2/gLqcNcq8YHo1taGR7LMaYaTAf4LAymaUZYg0LdGHbqIlJo9dUrgTAjA7n\noK/23vg6GWUDxoW1hxZUXwz0iELMAz+Q4i18wrpHwiJou2EemoW5vbaf3KdOoB2Hgf81bHCnagW7\nvy9Iww73SZnL4U5MYuVacKemzeEbKuEVemJkvvYi7txcoDMkbHshIHSv0sXC54fl2+BvF2ZZ7tnO\n+V+Ns+G/F5HfXiJFebFja13zj6S1cLtlQENTuc4D/wsFRDSPnJ3D9tkorouuVExf8sSZhW1jjY6R\nfcEwE3Uui9OWovy2h001qsdPwfHnSTeQcqDJfKS9Kmenz4IQyH070afPIxIJ5t+4s06wdeyfH6H1\nQoXI10/WX6frQjrF5Q/vIr1tiopjUb6aYdsfDNenES31fFZBw79j5vsKDUwhH5QJtymYW/x3eDEf\nQ1qGVRrW3HFdZEc75S3dVFpsMs+NoG/cRDsOpTajG6jn5mpAr2vOEU671/444lXV1FXHtNUHsioV\n01dKZZCS6EsOuljCmptHlcqIaNRUI4tGTHvm5wGIJxLoVMJUpPKYjM70DDQZQ0XEaBapXRvhhEnH\nmfjpI3Q8M8v81hyZ6R6ufmAtkTz0/cU19K5tTO/OkfvudZK3nCAdTBUKzP7YYcotgsSQIHd8EAdI\nDZcRVcXIoSTDv7wReSqkR+W6tYWYd0+DqP3dtDtwPrl7O5f+jxjVGYfet17mtrjcrVm4E4BQyFYC\nFrgTkzAxSRSIhr631q/DuXp9VeerdiTZ+Mkxbn7oKPl+TXRa0P9bT8DBhyj0J0n+hRl7wkEImUox\n9945sp/NEPn6SX7sZ3+RNsthvs8iMifY+MlJLv3jTjb/tyvoXdtur/LjA2Ry7w6qbQmUFWIdeyYc\nRakzwugRjXAkXa0byX76zgFCgS3CjlywWakEL54n+iJ0/03t+/LbH6W6awD53fo1u7VlI+W2BCoi\nmNoapeWqQ3S2ys1fO2r6CdByRTGzURKb0vT/1hOM/KujdPz6DBP/aT29v/ME9poext68gcSky/Bv\ntbDh/c8HbfnyrhwG5oQu6qVbVDJuGEINFRe/PzWEDu/h6pvTrPuNJ1Y1WFnZLKpYChxYNX9/qNmv\nxnzHF+DWLxyl/XQJvvUMTEwSGWinsCFL3EtNdd5wgPhLQzghNNTauZX1H7/O3O8q7G+chFyO6PlL\nweBp5XKU920Iqmctx6LS8i5PeBAshuqAFqhPaQg7ud4iS1gW7N7C+Q9kibfOM/gnm9n8dzfQ+QKE\nWUFg0nAW6R/Rr3oRxWTSMIMqFeMciRrbKkizgLrPCzSOmgnp3qZpxyH9ufpc68Yjr1aUM0DAnzhV\nf9y5ucD5kLEYsrMDNTmFiEZxh4Zr23mgkdXaUtMaAsMiuY/IHysxGY8j23LoWKQW82t0wDzHWE1O\no+bng4H6dnSD7pYZPaJ0veaEctF+XxHSvB/VyrLpbs36l0gmKK5rJTpVCoAnZUNsBtLDDu7NeuFI\nEYlSfe1DxJ6/ijtpwIB7XomsaYn5BgtHhRvTV7ZuxH3x/LLaK1ZLFnd23jiZHtuCSARd9O6rbAAN\nlljEhlk2weflBI0XK1eva6CRiMfQ1YoBmH0dpBBzIRCv3rYB/ewZrNYWJl7XT+tnzDzkXrwStCP/\nUC8xDxAKt1fNzmJtXId76W9CPOkAACAASURBVCri4Z3I89eJfeuF4L2Te3eQ/qtnESkvDXF03Byj\nmTZZGLC7F7jQSsGo0HYiEqXy+j2MHoiy6QNL6Pg1gE32xvVMP9JD69MjCxnKYbBgCQbboumOHjjj\nemwu/AU/BCBmHdgsjDA6t8aRlkXc8yNEJrMsi8tnmQLYPd1Mv3Y96c89iXruRTi8BzmZJ/mFJ41+\n29+0c+lWB+vfdwwrl0Pt34W8coPrf9xPYS7Glp94BkolNv6Kt9iQJmKsM2mKP3KQzKmR+sVi+F33\n03+i0bvOEDLgDwEzyAdfZDRSS/H10nYDrZ2AXbbw+YpYzAAUDWAQQHlzN2N74yTGFdXeHHYyjpuO\n4SRqukJ1fgz175oQAuWXufd/095iBasmeu+qGmu06iAcT5OnWDSaZX7fqVTRlYphFpXKKI+Fam3Z\naPTmWjxtQqUgmzbXG7Fxz15k8C0Z1undaEtgv2eMcdFJ95cvo/IF7AJEZ4wW6Oi7jtL7mQs4Y2NE\nh26iMQwTke1h7c9f4NKfbmXDJ28E1TF9QHadtZ/I6Su4GH8ax6XanUV+51kj+u+nZVcdIzr7IJUZ\nO7yH4m/Msu43k1jfempVu6rX7cdJ2MSH5xET977gTticq9fJv+cQmYuzJt22WZpOdxfXfmozvU8U\nGX0kQWxK0zkMfZ+7hOrIMfqaHProXuzzN4jH1lF+26PEHj8RjGXqtfuZ/Ld5Wj6eJv3nJxCxGLHH\nTwAQ947vbO4lPQhIydCb2ok9coTcx5szhfTdBhPvpAmBemwvTsxCWw1AkKuJzFfh+PNEgOynzVp2\n4h/maX3RFEG4X0zYNqmT17n4oY24/2If7kyU9CUbWTXpY0JB1zMl+r48xGe/81l+6MyP0f+WZwNf\nJvOZ42Qwz149+hA9H32CuY9CFOOvOMMj5D5u/KINX1p5u+a3tDD863HWfiJC/O/PBOlisDpQ6IEG\nhNTr9jO5PU50Tt+W2LE7O+st6rpQk9N3LF3sTpqwbay1fcb5mpkz0ZeK8URUoQBac+HjD4MWtH1H\nY33LADd2TzdiroydryJzOTP5/t3JBYCZunSN0/9pL5m/PG4iuA2sBZFrYWpLjI5vmr91tbJk+cVG\nitxdtQX6QF50XVAXYUdI5MZ1jB3tZMsHz+K+kGLj70nsy5fMvV1EH8Dq7WbmkV7mey2qaVj/Z9eN\nqKZnqlQOnKKgWpluKAXrsYVMNZBQ2tZi1xC6DhF2kF4B8ytBLGYz//gwLZ86gb1jM2JgLTOP9NLy\njHGerR1bUBeumpSPaJTitm6scifRCzcRldiCdrvTM0HamXZV4Dg+ECYtrHQKkTSl5IXSdSUiF1i5\nYiKhYWHUl6Mb9AqbKhQCjYUgpdCqiVEvVQZW7ttJpS1BpdWmmJO0vzAPT9X3KWdkFGtLLygCBlHH\ns7PIkoOYnMHxxmG//Gj5DXsY+WCZzJe30vE3l3DHJuqBt3sx5iymIdKMcRFqq8+A0deGWJHZNjIa\nQaRTpurT6C1kMok7P48IV5Foxnpp+K42BoXGkTA40kxwvxnrqeE8qlAIHB5dqQasg3oxahdrag4H\nUJv6yV4pGYZUp1c1xDtm6rlBlNcnxK4t6FMvYa/pwRkewb14xaQA+MBCyNx0DDsRrzE5JyaN0zU5\njdXagnbVQj2qRv24u2XLMZTCoI4QiH07GX5dC6UOzfoPL+Pn+EBQfx+33ryOQregktNMbe0lObKG\n+JSi5amh2ry1XPBhKaAo9HugAxeqTLXodSoXrVyjuWbbJh3x4EOUuhJE8g6xl4YMC8x1a2nI5y/x\ntjPTHJ/eyPNf2UTrJYW1bTNzu9qJzLuUczGqeztIf+5J3NffZD2GBRWwrzs7GfjQFM7QTapvfoTE\nuVF0voCIxylv7kY5isiFmyT+8ikcjNDrxK4oa37viYVaWVqjSvcgDbFRD877X2ttWNFC1kSOQ9XE\nFlhILyz8nX99qlwm+twler49C9qIzDt7NoHW9BzPo6ZnAuZPEGLSCmFFPCDKCglW2zUgKIyfV50A\nyPJTVQHzv1cIQVgWqlQ2DCZVE3LG00uTmQzMzsPGdSgJSImTiVHqiCIdjRsTZCLb6D5RZX4gSaFD\nEvvTJO2fPoZzeA/20CSpEUV8ysFe04PQLNCZ0aUy7sQkz/39ETZ/+gzO7CxWR3vdNtGrY+hYzNy7\nRIRyRxZtC2IQpL6aBvvaREs+5fvCxKMPceUfpknvm6D7X0dxX3xmVftbnZ3Ip89jS4nMZu6oTuqd\nsvSXn8M5vJPSOw/ixgTS0UhHgwarpLBLLioCE/+mgPzbhPFlpmfRHTl03KbjVIFiT5x4ZB1D/yDB\n2v9YPzbL7z2P/clHyXzhaeS2jTA2iVsuY23bbMaQbIJ8X5zOk7M4w6P0/JebWFs2MvLPj9D5h6+e\n9DF7/ToqA+24sYVOvjZyOnD8+brvu/7gCfiD++9V0Y6DMzLKpo84FB7dSLHTotgB2gYEVNMw+IMx\n1v+7a7yn/zAJrgT7hc0dvQUew833b16OJb/wJJu+ACP/+ijtaifRb7+A8NJVhRBQXNlxHlhAqPy2\nR5l4KMK6T1x6WaUIVakEq2RJ3E3TjtO8GoLnkLkvXWDLT4C9YSDYztq8wSj5e/fF9bZXr9u/gGau\ny2WK7Rb2Gw8Q+fpJZt69h5ZPjuP+wH6sbz6Dc+UaPV9TdUDSYmDQPbNmqQ3QkDLmRbaUxv0Hu7n2\nMwrLnufpv9/O1i/MY12+2VwIN3QMHY3gxAXagnK74tIH17HxI3MLF/eB7oKh1/vnD4sugwUqtCgT\nouZk+xHJgN2kAa+cbEhX407Y/HsPEZtySFwax1kCDAJo+TPD6VfnLiEzGcpZyeXfybL29/YwPZDA\nPdBOy+Ui7veeI/L1k5TecZBINo0KvZ/h1DJdLCKTSaNb8yBoCAmjeSAScbNA9/vUcqy4WBTZkqk9\n50p15VV57pXVsV/MAk43i4hLC2v7JkS+iGpJkR9I4yQkxTbJ9B6HqYdSbHF3oU/Waw5Er49T3thJ\nNBqFUgl5+ebCnOzuDpiYZL4vwtG1Z/m7QztJ3hog8ff529ZYu2MWBnoaNYMawROtAwFb1ZaBGywJ\nqoVNeWOLnptHbNsAo7cQsSjCjtR0fcLgWJjN4AsY+9/5Giwh3Z/6hW4DG2g50CIMNvmac9WKSWvz\nghZoVVsz5otGS+LkmSBGrqZn6vTX1OxcwCoTN0YRj+zGFQKGR5DxONNv2krmM2YcsjZvCMrKz26I\n0zbWCZPTTPz0Edr/5zFTeaNaQcRz6Ln5heXt77J+W2CNIFuz3z0rveNRRg5ZDPx1HnHsVPPtfQv1\nA+fGEG1/PFRXVMNqbYFI1Iw9i5x/RfNLeN9GhlG4Iqavf7RIupKamzM6DdEo1vnrpG+1oJNxytv7\nUNG1JiVQg6wqojcmeXwXWN02a0fNwssFkqHSw6mebkpvOICKSqJ/c6J23R3t0NbC5IEO7NJakn/x\nJNUje5ne2k/u48ewPEZa+IqjX32a3m/YFH/4IPEvPbWg7UKK21TIfRnmi35HYsZ38KtHugQBIwB8\nYekm/swCraCwqdpzCvs0am6Oci5K+uR1U/XRB220CvSMpAeI+LqJNUDKBL0CAEjrALT1WU3arbGk\ndYhVpKuGheRr2/kVVH1NRxmNogtFxPAtRMQcOzKfwp6KgQQVjyAn55CdKVKfP0F2xxbcl0xp9LF9\nKdaMztB6chRm5iEWpfOZfDAW2V5KkUgmIZ9nyx8NoRr6gNy30zDUqKUvlbqTJJ84D0rjeuOun5of\niErf51Z49yH0z4xRHYnS8cPnb6ubh4G1BUD8fWK6XEZ++1mS/hdeCqaI2MiWLLpYZP0zCgb6UMk5\npremSKf7iT57CT09g4Bg39aew5z/fw6y/V8/X2NFK5dihyT12j2UcxHUQ+3EJtczdCBGfFLT/fh1\n1JY0nL5ogl9jY7gXLtN54TLu6x8OsjIeZLO2bqLc14KKyCADIPDzfZkP6jNdHgRzxyeIPT5BDOpq\nxolYDKujfQHxYqnMGmd4hPGfPULPX15eFsuwsllES7aOiBC2nv/yBJW3PILV24MaHTNjerOxfhG7\nRyGyl28qKuj9nSdeFhj0QFvD5OSDQeUfetQIOTbZPvLsJZwfPLDgp/ZPPkN0ygxiTsI4e8OH49hr\n+41z4Ik3Cn/S90zG43fiSu6MBalXzTQRdPC9TMQpdURQSsBLGTZ9cgrryogBg1TNWakzPxo3O0/b\nU7fo+9sJNn2+QNezDiKVMk6vFxkNSt37TrIP9Pg6QkIG5wi2D4NF2tdCapJ69AosYNKfexIVlc1B\nx0VMOw4iHiMzWKG7ZY7hx1LkvneDYpfgxuuD6ZX0yev1lWX8ah6h42itHxhHCUDEY+Y9CKcCLWdS\nIhKJ4B+RBxaHD0wmk4hIFGvbRkq9Gar97VTbkl61BLAqGlmSqKzD/Ib0gv2da4NEB6dqKUHNKt7M\nGN2IatpLRcxUmdkYQWYzr+CVrcD8R96MYbII60S25cx7M7w6HQXtOIHQd6CZYzWkgdSl8SzCNmzs\npz6AHm7vSphWAdgVSjNp3CQEKOgQy0M3WRhYfT1Y4yFAPdQGNTvP6KGsERrH3Iv4eA2VHHttT/A5\ne6mI25YCoNDjAbWeMKM7MYXK55l7pH/563slTfgM1ZVpGFm5HPEvPcX6Dx9bHgyCBXNdo7nTM7jj\n4zUgsdkhnJCg/GJjW7jPhIDGpub/LkIi+958CaAqVVS5jCqWUGMTcGOE6OlrJM7cJH5pjPiVcSKj\ns8H85C+8p/7pEUrvOIi9YQCrox27pxuEIHr8JYSjmP7xI2ZetW3c8QnccxfJfuo4mTPm/RPHTtFy\nqcjsjx1GHNhV12R7bT/2hgHT3770lKmOGVy7MKy3ZqmId9GEXxgC6vQTw6XiF+7kpbo1s3B6Ynh+\nA6xtmynlLKMN1cCMEpZVA6JMY+pTjbUKVSiUteIffgpZ8FsojT90bUuZdl1TUadSRZdK6Pk8TM0g\nxiaRt6awb06iSyUiM2VT7OD6TTMe/MDDZK97qbPzBQ+0dolcG0OWKthrekwqm98uTIpRAGx0Gpi1\n1OP1C4/pKCJRVFTgTs8EBUMCfztctew+t/HdFsMvdbH+z17+se6rNcJyplyT+lwo4AyPoEtlxJou\nxNgkQmmULYhdGW+agtPylTNgK0qv2133fdfTeYSjURY4McHcuqhhkiQFuiWNsgXWmm5Esv4+FboW\neU8fINOP7aPS14Ib9cCgBT6IN1YJqLankPt2Yu3adl/LKSxnulzGGbpZK57jf79M9lHXn57C7e9c\nchvwJDeWGUcST1/G6W4JfC+ffbkSe2BXJqlr8+R/5CDJm8Ul01yWs3CU8UE0EYlSfsMeol99Grl3\nB7GvnFhUR8mdncX+xklG/tVRej5aozfqchlOngFpoTw/Z+Bzw1TWd1I81Ec1IWk/Popw3HrgYPN6\nWIFg9SttwrZr6Vl+epVfiSPYSGC1tsKaTlKff5LNnzdfh18tv/pInYUXVeUyjJZw5/OgXBKAg3kG\npkR7E00Rn/YfPq5W6Eo9uBPOxV8qLazutzskjpq8NLUwChSm/jcxZ3iEyPAIfB1y7+wCx2Htpy5z\n810buflLR1n7pVs4oeit1d6Gs3Ut0+sSdSV9hW3jTk09EI6DsCwD6DSAQcJX9G+2gBICbXmOulLo\nYgk1O3/3Gr2U3Ub/kfE4Yl0fOhlDRy3mexO4UUm1aqNs0JZXXcGF1HVJNRtlsVB6eNxt1BARkWjA\n5ojMaS7NdvDQupuclr1UTq9Bjo7VROTvdqpv+JYtYAPVMxIDexmpnsKyAjBeJpNGy6lJZbO68u7h\nZxsGkqXHDpJ+CeQGNlHdicMMxdA1ha9zkZSgZvtqV5kSqJ7Zfb247Zk69lgYGBQRGzcODJtos2xv\nI37qOi4w977DpIdDQujHThkG0PgE7S+6iFgMNTdH6R0HiX/5KewNA2SeNNXJZDJpqqm9gum3TU0v\nPbYDwVxhdXehPPFsuXcHXL7RJOWtCUNtscN65cRVsbj09uFxf7E0Qb/P+KCi/7yDkzUUc1D+3Fyf\nvu3vq8teFTkIxKrBzIkyGkF2dyJ3b6e4LkPqmeuorhztn3kWVSrhhiKvIhZDJuLEr00Rv2lDV6dJ\nsUylmP2h3aRulnG/Z4R/9WP7kN99jixg9ffx0u8fQqcdur8RIXupiFUwaWxOxizM4hdv4VwbBK0D\nFtxdN63qgNzA39AKrKgnXCxq46G0sDrb0d1tiKFbiEwaPT2DKpbMfOS69dFj77MAE7yIRlCb13Lt\nTVly591aOr3lLVZdasEuv0Kl65ofPAAwYCP51VnBpIMJgXa8dDFJDURqAqgH+/nzrBSgTPDPpJsr\nox0kpdF/jETQ1arR0KiaUvXOgS1Y33qG0Q8dpfdTZ4l6YvPu9Ix5N6Le/Ru9hXYcJn/yCG1/cgPd\n2Ybo70SWHPSla8bn9doTGyugDz6E46VEyz3byTw9ZNJi83ns9euYWROhBSMnIHduQb14ASIvvyus\n2G5jfh/4yixX3pXh6o/YbCqZ9+R2TOzfhXp25dXI7jcT8RhOZwaZiSMqDrlPHMdZ5H6quTnWf14w\n/lCEXOIgiS8avSVx/Hns9jayc90U+1JEZqpkrltIRzO9O0ehW1Da2En83DCzP3aY7KeNb9z6+Is4\nR/fWaXXeUzmOFZrMZDj3mzvZsnOIt3b/PX9y4TDy2620XnSwKh4jUBiWUFCbQgrchIUbM/p/cXqa\nisQ/SLbaDABVKFBtjVH50UOkPv/kktsul37pTkxiSQuSScoPbyR+ZQIuLblLYA8sIKSee5H0YBvV\nHeuY/JkjJCbVsjey0azuLtzLq1Oav9/M6l9D9KtPmxKMF5ZheXgU1nx/E6r4gV0IR9H1/55AA9We\nFqKXR7Gfm0PNzTH9vsN1C3mgrnqZ3L19RdXMXgmrOUY+FV/VoaLCtrE62tHtrSZKtIj5aRx1wFBD\nOlDTF10KdFXXnN/gxB4Q5Dk5NdBKmpSPOgApJCqtVX3J10agKeSg18CwlU8WjZoa7rmLNTHY4Ga4\ndWtOq7sLPTcfLNhkKkXl0HZi1ydJfPEp9OYNlAfaSEwoWv/XBUQiwfjPHuHhn3qe7z6+l/YXXNJ/\neZKsswOrrxc9N487OxukCalSySjt3cemHSeogCRTKWQmDXGzUBdI46z61ggIVB2jRzA+fkdAvDti\nt9EO2dtDpSuD0FDsilHOSiJFjbJB2YYdJDQIZcqttl52iY9VsAfWmgXVSpsWAnkSUy6DL/bAzhG0\nhnJrhHQ6Zd7xSOTeab/VsXFC72UTPZ6Aydoo6rycCWHGLq0R+SJEI6j5fB2A7G/XFAxq/Hsx7aOm\nWiMNINFi4sLNtIYazmsqDFVwRm8hMxkz9tgW4swlWATI0ts20P/HL5kqQ3t34J56yRMAjpO8VQko\n9daubTA6jpqdw8rlSNwqm3vmOIw+ajPwZUApnJFRxP5diKs3YcsA+j4SqwS8BXQEqz0XOH1WNouK\n2sy9dSeTOyw6TrtBNZuVvr/2+nWobBLOX226j7Btoylj22itFwJPi53HB4Ia+3tdnwnNzboGJAXV\nqHz2mK9B5LNYPH0aEY8F40bstAnA2LaNU6ma9lYrho7vuoHANdMzqNfso7y1lcQXb6HyeVNcQVoU\n33mQyW02az/6TBAMcm4MseVDZlwvv+1RxLFTwW82gBDBQnDufYdJDxYRJ+5N36krJ+/7CaKGMISB\ndSudQsRjUHZQ69dQaU8QG0kih24ZcMf3KyzLVIsMg0OWhdrQz9DrsyTGNS3PjOAWi8hYLCgxrz0f\nRTtVTyfMnDvQDas6BrABgtTRYJ/acw+KbfiV6lTDWOWBRVppZCTmlXKXtW38Cl6WVcdC8vvx7OYU\n2U95C+2LVU87Kualt3maj0KgVa0/5vsEbYR83PY23Ie3YZ26aMqcA1femSVzDdp9reUrQzihd0e1\npmn/3rABoVNJJg7kyJ2+b2v1ghDGD3v6NOufNgDX9be3UfxHh2h7QdL+P1aua2Nt3oA+f/WeaPbf\nKROZDLJQRccs5IXBJcdb8chukmdHiQ70UfzgNIkvej9ojbuxl0rO+In202eZfe9+Wi/kqaZitF5y\nmd4SpWuyFRnqGu7sLIXeOJlMBtmSDfzO+93U3BzbfvkUon8Nn3nsLcw/5vCG9z/Pmcke8n/XRe6C\ng1VSQfpYOI0sOlPBGrz1fZv1E/n6Sa595DBb/nLpwk0rMXfTGkYPpun+r6srtPXApoyBQcLkd5+j\n44+OkX3uFnPvO8z8ew+taF97bb+hH98rHYE7YFZnJ26HR02rVJfU1bDa20C5yN3bSQ8KLn9qX93v\n+uQZ1KmXggmx2BNDz82jt68HWAAG+Tb8b45y+beP3DMwCKhFlaQHvvipY9qURLb61qA6cuhL10yl\np2VM5WsaJdpVXnRLoYrNtaZ0uWz6kS9cHYmaXNLWVnhoG9baXvOChyNgWtVSxvz9fPq1F/3z00XM\n9g20e2/hFERyQzT85cydnlno9G9Y2zTqKZNJrO4usyhryzH6oaPBPbK/+QyqJcnNXznKS7/cQWSm\nTPbPn4ZKFWfwBh3//RiDj5XpPDJM9lsXzPWceMHQtkPAWukdB7H7+1bU9vvFVD6PMzKKujVuqOrF\nEqJUQbjKlJkPMcSE46KLRZMys8JFnIhEjcj7K21h7apl0t/svl4qfTncuIWTsilnJW4MlF9dVxm2\nlHQ1dkkTm1EkRkrYY6YCndXetuTxm9nEPzvC+D8uYHUXuT7SRvrpBKkrs176QsmIdd8La3avQulU\nMtGAbnrvvTs9bcCbxVIiGo4r02nz3szn0fN5ryqms2DeCgPIVkdHfXpvMyCnWTpZOKVniTbVGrfM\neBM6r7WuH7/MuT/2ONcGDaAXXpgFQLyFvD6MOzML/T2IkkkVs7JpZGsL0aEZ71rbmd3RavRF+nuo\n7llPJRsx4MDYBO3eAsy5NmgqEpWrFA5vvq8ql/hpSDIWQ7a21Bxif5x87hzZr5xmw6dHsAuK0Q8d\nZfqfHFnRoe3+Ptz2DGJ4oqbr5JsHrmFZqEIBd3YWEY0EOjNmYd8wr4THC6ixwBpZQkuZl5qhlZmf\ng/P4c1q5bBb90qTf2Gv7sft6g9Qt58aQOUZIt8o/v71+nQkAFatUfmYS8Xd9dedNfe00ff/5ibrq\nhzKZDI7tVwGqvvkROLwnuMb8jx5i9vFNZD57fEGFzbtl2jXMG+0z9LyKYkCdADeY+UOVy6ixCfTg\nTayhceKXJ4zw8ta1yJasSdfzx89GnYmN/Qz9YAuxKU3Xd8dR45PmfF7lGhH3Smt7zz8os53JmOfh\npUwhhQFrvGIePuATFNSg9s7XlWSXDZ99IMl1zbW6KtAV8tvuM5TCAbTqGw+QuGX6/fx7DxF7/ARi\nXZ/x5aQI0t3c2dm6PrH2Pz1RnyrY1op44pTRA/LmZWdDCWWbAi5gFsPz7z0Eh/dgdbQjBkfQE1OM\n/sujiGSiVj3qPkNJAj+jUePr+bP0/9YT7Pjdm1hluPzbR5j8yeXHHXtgLera0Ip18u5Hs3u60ZUK\n1tQc1rnBJRkfVmcn1sQc1TU5yq2Cick0Q796NPhdlh0Sz1wj9tcnUKUSpTZhCmi4YJUVPV++hhga\no+WZeiCk0Cnp/7p6YMAg31SphHvxCrmPH2PHr5zn8n/YztQznYjXTDF81KKStQwzKAgmCGRFoU+8\n8H0LBvm2+RePM/Jzj7z8Ax1/nu7/uvpCW8sCQkKIPxZC3BJCnA591yaE+FshxAXv/1zot18TQlwU\nQpwTQrxl1S26TXMvXiHz2eO0fucq1Tc/Yso/LmZCgP0glTVaxJSLvG5eIJFbPO/S7unGnZxC7t6O\n2xKn+78+wZafu4x+bN+i+ySHy7izs3XpePaGgbptrM5OOp8rs+k/hMTP6gLEd6nvNOoYhIAZq7vT\n5INfvLqqFAHtOGYSqFaNk1Es1kXfZDxuqqREDH1axGLITMawb6oVIyBbKKCfPYN7/QbW1k1Uf/Bh\nqm/cj5VrCZwWE9Wy6kCgOrZQoD0kaEqp9p0oH5Baxim3urtq17B3B2K/0U8IAD0h6hcASlF4eAB3\ncx83f2SAre87x+9dPRZUShDnr9N60WXgr6DaEjMlb10Xu68Xe+N6tOMgP9rB9Q9uDw7pT3D2xvXo\nI3tJn7oZpEeYJjwYYw4Yqqc7PoE7Pmlo6gBKIaoOolJFFMuGWTUz17QEu28iFsMeWIt+bB/ltz/K\n5AcOMP7+vRTfeRC5byf22v6l0xSWeu5LLdwb04H8hVnD8axsFmdtB9W0jZ03elsqAsKtUX+tisaq\namRVY5cU6esF7KujuOcv4Vy9jjsxuXg7FmueBMeRuCMJOr4Ro/d/voB6/iyqVDJCzQ2RlLvadxoF\nncM/+WOFD3TI0HvVrJqX/zGcWiotZDpVE5YulgwrytvXr9Lng97BMZJxrFyr2b9B/6TxfHXX4f/v\nt61RrL+xX6wwmCIi0SBqb+3YYr5rrGbZwByw1/UZ1sr+7TA6bliM+3YiEgnU3DxMGGahyKTJnpk0\nAMbULNZsBauscMcnQLm0HrtRqwo0OY374nmc1EK3556OOX4aUiJRX+XIZ0p5uhbuxSvEvnGK3k+f\no/2pMfSRvQuPFXpe1s6tuJ2tWKPTqKmp4HlZ2Sz2+nVY2bQBVctlrJy5NHdiEu26OK/dg3toJ1Zb\na4PA/OIaRQu+b+xnjX/7wJAfLGmYw601PaYqnyegqfJ5o+8S7scNIKZqSTH+E4+iLUnLD11Ev2GI\nob/YhT5q7pV2XaN/9shuU1I85mnCbRkI0pan/ukRIl97Oqh8M/HTR7ALiuzbarz78Lhzt/qOsCM1\nwWZPRFr4jOgwGOS/W0qbNOWqg8oXUIM3ETdGscfn0NkU8qGt2Gt7Tfqk74/EYohkwujjCOj63rip\niOi6iIiNyhfQros7yOfiRAAAIABJREFUPWMETvuMjpfV3YXd11unYSTjcYTw0sNcZVg9nm5QoBUU\n8md0E7BaK10PFEHgKwXXaO6puW6vso4/1zopi8jXTwLgxrzj2KZCml+tV9j2As0PqDHGrR1bEMWF\ngQcxGqPtbLluEZseLFLsiaOLJSoPrcfZvYHer94KtK9kJgNB970P/Bwhli3Q4FwbpPUTx9j6hzdw\n43DxI4cpv/3RJfe5Hys2r9aqW/tMsG8Jk6kUU2/chNueYfRgit7vFtj4JxAf18h9OwEDrIXH9cwN\nFzlbIHnLwY1JnKGbqHVd6Juj2D3dWNs2I/bvouWKw9ef2dX0vPdF31mBudMzRL/6NJv/8BqRr7TS\n//BN9v7KKW6+JoKWYJVd7KJD9LkV5jR9H1j3768eyFnKVhNYXglD6GPAWxu++1XgG1rrLcA3vL8R\nQuwE3g/s8vb5b0Lc3YLSzsgoka89jUrFKL3jYNOBHq1XJaJ7v5rIpIMyxM7lq4tuN/mGDSYye/os\nwsuhd2dnEd97boFQNJgJ0p7MB2CHv6hwbwxT+uGDwXbu2Bj2N07WASVOoq5LfYy70HeCiKYvVIgX\n9Vvfj45HTV65DEWjQsj0cqZKJVQ+bzQdXrOPoV89ys1fPsr0u/fh7tlUExl2XWR7rq46h39ftOPg\nnr9E/ORl4qeuM/m2reije9F+Xr3PEvKBnxCLKPhXd8FNBF3961mGgeI7JlZ3F+qF80F1H7+dwXn9\n+zrQT3SmwsymJK0XK+TfH+fn/8W/5MJ/SDP5k0cQ0QiZs1NEp6vETg8i1/Ux9oE9VNd3BX0y9pUT\nFHpNmWD/uFZ3F25LCnHsFO6IofXrGgPrYzxAYw4YB8gdvWUiqa6nZeUqI3hZqRpnuAkwI+NxrG2b\nmf/hfVz6qbVc/nkY+YkSkR8b5dA/fwb358a58q5Wht65Dvexh5qPZ4toFyGthSDSMswW/39TbcOk\nkchkEvp7qLTGkFWFtiVO2sKqgF0OiZEqAwbJqiZ5s4i8eONlR3w6/sdTbPpth+2/c5Xcx48F7BK5\nbycinQpAkZB9jLvRd5oJOvsWYi/4EejgPW+2fei7RtBaVwxQoPJ5ZGc7vlaQTCaRne3IeBznsd2o\njBG39wUZnZFRZDxmUiPwxD19JmGzdje7Hh8cWixVrNm+zUSmqxWca4PIPdtQF4xulGxvM5p1c3Ms\n0F/DiLhqpeD0RfC04ETVRSuFWNcbgIvOlWtwayK4ZmxJ/NxwcBy3J2eYxMkk7sQkdk83scmmgYGP\ncbfGnIa5R2YyRsvQr7LXCMJBjYnhVM0iZXoWe6ZI8UcOUnlLKKKoXEQkir1+HTpigS0pbe1BP7zD\n9AGPdeRcvY47PWPA5oG1uFNT2Gt6cF//MGiN9c1nkN99juIjG8n/6KGlncrF5tHF+thi2zbcF2fw\nBs6NIVM11Uuhc8cnDfM2dE/867Y2b0CdeslUmHuqFsjqe/cZZFUhHn2oFqh5+jS4LoP/+wHK+zei\nnnsxABFyHztmKi0d2Yu1axsdnzhJ7Cu1qmVN7GPcpb7jswP/P/bePMqS667z/Nwb8fYl38t9rcza\nV6ksqVRSyTa2Me0F223TBsYwNNMMYOBwupnuPj3TwzkMdA9Nc+gDA8ywNDQDDDvGBtvYILCNhW2V\nVFKpSrXvVVlZue/v5dsj7p0/bkS8eC+zNimrJNH8ztGp1MuX8SLi3bj3d7+/7+/7FR5rRjvO+kJX\nGGTxf+cxa1RxDRaWYd5r1c5nkNu2ILNZVKWCKhZxFxaJPvsyW/50Avf8ZVS5jPCs362OrMmf3/sE\njAxQHTV7TmfHoOdo4+nqxWImd6pWEalkk/Hjs4R8YMtjSbcIU3uuZAH7yWsDE5bl6R6JFjAMPDBJ\na8MU9PJVeWAP6UvmOu3RETI3qmYcT5k1KWAYuW7AANlIy1BU6y0sDe26WHt3sus/nMP6e8MWq32r\nB5C8cIrlXQaYihy7gH3pFm5IS1F2d+ImgjX5d3gD8xyZTN4zYxkMMNTza0fZ9dsrLO6PcP1nj2Dt\n2Lrufe7M3G2PcS+CwYZd/8YIC8tk0nReDHQTuTQJvV3r3U9DUX7PfqJrCjduM/TFGcQ3TmL93St0\n/bejyNUS4tCBlntsjwwjHY3bmSZSbBBbaWB1dSJvzlH84CM4M7NmvJy5DFqz8/ebwFq5u+Xr/h3e\nQjmyMzlF928cJfFjMb76ucd51wdOkv5fb7G4N05kbm29U/M/xl1jw73ABiEy601dbhd3BYS01n8P\ntJd2Pwr8rvfz7wIfC73+x1rrmtb6OnAFOMwbEPql0ySePUnt0E6qH35DTuGBhV/Nc26aRepOCL+w\nbSIls2huNHm3i7k6730Cmcngnr+M1d+LiMUofKtRzteNOvW0DI5rj460ftahA0H1Ax7e2NGua8AV\nx6v4xGKmciUlLK54VXUVJBjCjpgNr8/OuYdwJqeIXJyk71iNzIRiZZdkcX8CMdhnKO6Og3PD6FFZ\ne3cG99rat8toXADu8jLu7By5T52gnosg9+3EyuWMZatsnpv5YQPHNGgVgW0HhsTGoMNG4bdLWj09\nG7aX+CCbe/EK4vlX6fiDF4g++zLOrUliX3yJnT9VJL6iTBV/2YCL7uycsc384zMB8OjHlr92qQ+Y\nCUzs2cH49+/AWjXVl/Zq0lt1zgFDG3dn59GlitFISSWQHVlEOmU0EkJh9/dRfdcBbn6sl+mP1sk9\nOcfbRm7xvm0XWKvGKDgxvnvLS4y9c5z0h2a48j02ix/db5hdkQ1cKDbajKu2DX647dB/zdf08F/y\nKfpeBVd25ilv7aCRkkhH46RsnJhEuBrhawsLwxaSDY1dcZGl2uaI9ioXdfIczvRM8FLxE08z/c4c\n7tZ+6k/uClgn8MaOneA5Ct3f4P63bV7v1Krng3giYqNWC80Wq36zEZbbRpGdeZxrN8yGy1Fw7WbQ\nYlPbatwqVLkcACfKb+lIxG/vNBScQGg+2ej/29/b3kLkh7SCdgqAemfCMAeSSfRaqbkJDFpg2u6D\np5/kFgpmjC6uGNA1bs7fbzMV6VRTaPHkRePy0d1F8X94Gmt6yWtpMgM1DFCGwcSHOm5CY0Emk4h4\nvNXYop2R0/a3qlrFnZ1Dj0+SfuEGsbkKpW9/Cg4/Yt7SqBtXpFfPo186bQCyl8+Z9dA7npXPo971\nGGKtYj7yHW/DmZ7B+rtXTHuWBwBF//olUn/2ImKoH6vnNi4oG61Ttyu4bLQ+tYFe/v/Lt+0zIJV3\nb+TBvch0Kmi7DA6ZTJpxcvkatQ89uSF4pV863Wo+IsyzMvyfn8f+ynGsXdtb2paTn3kR+9IE9d4U\n13/yCeSBPeuO2bz8hzl2VJM5zHoAGTDzthRBXgQGSNJKm38rFdTKKmJ8Cjm7hEpG0UM9WLu2t9w7\nt7dpqCzSacTIIM7eLZ5+kMA9e5HExVnsgX7EN06i00nw5i65PcQmV9rkYLJZ6Aos5cEAQG1MIB/8\nMW5qTcey9dpphi1kWEgGNNLFomE+X59ALBdACJyJKaJTK4GukXEB08E99Ofc1Y+9LRhb/oZLWzLI\nua2eHi7+4kHKW3O4hQKr3/WkYX+nm+O62m1a+X32MBg9HoBLPzyI6y0Tb+RaZeXzd2UG3S7UqQsM\n/V8vs+XZGpd/oJ+b/8czLb9v31MEn5nNrtv4b1SQxmOgvSEhBO78PEIplMcovdN7pWOEzt24RXlX\nV8uvnevjyEIl+P/5Hz7C5R8ZYXGfzdL+DFalweK+ODPfsRt3fp7iFjOG5MG9rHzn40SffRn7yhQy\nmWThh45Q6Q3lFW/RHNk9d4mR//N5rv3bPZw9P8IHf/DrXP+PcWofvDPj7B9yyEf3UPr4U9Tff+iO\n68zUv3umRXZBax3MK7cLK5+n8I71+/7bxWsVle7TWvtluBnAz/qGgLDYzC3vtTckdKOO/ZXjxPv7\nKH70MNGCEwhR+iHj8Tu2crwZI0Cs70LZt7JZtNakrhZQwOpjvajDfXR8+gTOkf1Ep1ZbbcGBwpYo\n7s499P/9Io43GWYvFQKRxcS8AV2046wTiV0bS5F97trdTn/zx05IsFKmUoixYcRaGV1YCypjOgR0\naLfJuPGpy7516502se78PPZX5snl89RTe0wf7HRrNUTG47jnL5sq7dBgcA999xZrZAi3M03sCy9R\ne98hnO1Z0s9dRPj20gHeI9C6bSMWiCz6G8o20KjdJWiDEJGoSaqXlxGxGO78PFY+j+uLcPvaS9Eo\nsqsTZ6wH+bUT6+/FpatkHZf6rgEir16j+Imnyfyx+frW6RNhtBkWPnkEa/QI+YslRj9t7ps9PHSv\nPdJviTkHPLbQ/DyylETmcxCLQqkcMDt0vY7szFN8fJCFAza1PRXGBhaJWQ5VN0LFjfLOoWscylzn\nyfg4e0anuFzr50LPAGe3DXDthWEG//5REsevBwlnc4y0CZWH9LWabBXv92HR8/YqradXIaIRVHcH\n9bSF1dC4cS9pcTVaChBgNUA6mJ9rLrLi4HQkIL8de74YzDFWVye6Wntd2gL2QD/xhQZW3aY0nGBx\nn0X+Yhecu+Ofbf7YCbHx/DXkdolw+/vN/4e+r7YNtT8HWd1dOFPmtO2hQdyai+zrRXUk0d49lfE4\n4oUzqJCwfOzKbIuQoLVzG+7la4aRUzEOZTIeNyDR/QhQ3054ur39LXQ8VVwzFdf5eSLLVTSGHeRO\nz3g6Iq3vt7q7gjHtbOlFnjHXaQ/2B/OEPnEWK59HVyrmHo1PBMcJwOWeTlJTNXTCbDhUtYrV14uQ\nEr5iWkhkTxfc2Qzkgc45Vq4DujvXu5x6z6VWev09D4FzqlSCchmxskrHXBe1nf2UP/E0uS+ea9G8\ncCanDCNztm2teu5E4P8nxydMS7jj4kzcMi2sI8NMf2iE3uNruC+dRjyxHyufNWPpbsyCOwlRh69j\noxY0DxRSJ8+hI1HT2hWP4567itqgFUVVKlCpGPDxCy8hdu/AghZmRsv73/UYC48kaHiF0+5TDZJX\nloKx4r+nko+Q+ItjjP0dLW6kcz/6DB03GvCXf3anO/AA8hwVzNfaaay/b/4cH7J9b4KuKlgPfG1C\nVQIqVWSjgUincHs6ELFB7EIOpz9HrSNKFLB2bac6kkMoTWx8CT02QuRvj5v5JJ9GnbqAiMVo9Hdg\n3Zw0BUUv77H27Qp+FqkUulAwDmG+E1nA0vFZPm1t8ZZl8rUQQCQsq6lMID0R8kbDvO61BMrlIk6p\nhMxmPFZlaxs8EAhTq1DOV+qXpN5+EOuFM0x+3wFiq5r87zTFlN35eeKzO6lnFDFp0fWVG6jVAh0R\nO3iW8mdbgbpSyDnIyTtECne0jX7geY6Vz9+R9XIvoRtG1H/nqU5WvmUXl379MLnTNr2/0mx38c1Z\n/LloIx2ejdbMh+7+GAo/NxG3Zjeca/ywslkY7idxc5XyWAfVrghL+wXysWfQB4toDWPffb5lf6Wl\nYPirdWo5m45XTRv0QGUX53+sg4HhIfKXGohDBygNJalnhfmeZuewurvoPrGGvVDkLkqtb5kcWX7t\nBLtfiPK1Dx8h98kFvuPnv8pvjX2Ygc+N39VF6x9aqFMXSOQfY2F/gsy/qdGd6KH0TfPr3jf4X55v\n8etVxSIz7+mk/1Tr+8KGJe7yMqlP37vZ1ut2GdNaayHEfcukCSE+CXwSIM6DFU91ZmZJfHYW+ege\nyh8+jIoKsscMHVnVG4jH9re0zvxDClUswpkLWLt3kP7UiyYJTaeYemccdJyRn24FhOyqpufPz7cg\n9OrV81Q+epjUs6eCfuzyP3uKekqSP1MI7l3qz168jcH0xrHZY0cmk4iBXrQQiFrdEx/0HCiEMBUq\n1daC5bcrhPvS7xLu8jJdv3XUVDzaFjkfXBTRCO7CIvZAPzqVAMvCvXgF5/o41QOHSV3OIr9xnsJ3\nPYp67x4yf3UaXak0kzafIs0GLI8giVbrN3R3CN9JTNfMY69rNUPtXisRtJOEAAVdrSG/cWrDY1l7\nd0KxjP3KFdxikcy1EqWPP0X2K5cM2BSJIjtzLZuQ7t8IJVbt55ZMImr3Nh29FeYcMAwNv+VH2LZh\nCSUTYFuUt3exvNOmMtYglapTc2warkVnvMxwfJlDqWvERYNFlSAnKyw5af72xm4e6Z/m2miVcl+c\n+HAfslwxlT7dyjoJmGZSmOfAH0NCgtAISwRV0RaANLAJNkm4SKdwUlGUDUILnKREKI2fkStbmHYM\nrXGjHuAUMeLB9Y4IxdEeeKIHu6ZJzFSxXt14k3ZPIQRqtUDkSzNEMILTjT1lajOJez7EpowdK91k\nMmhtWiLCRYXgWfI3YaLl/cDGG+O2UItLxo2wUYdYlMpwiuqBLJ2fOmGAlXh8XcuI1d2Fc2sS+ege\n1CkvffSYaertjxI5bQB77aoAhN4wPEfKdfOL/3r43MMRah+Tybhp0fG1OGYW0Tu3oW3T6iIiUbTT\ntCfXRx4JbMFFLIY+dhrtVZB1PIo9MhzoyYhkgqV3bSH7RybZsTKZ1rl4fgl5/jJioL+ZICmNM9tk\nmunVe7eG3dQ5R1pY2TQi14Fz5XrrPTUfdvtNUXB/Q2YDroszPYs9t0B+qJ/ie/awNmjR/5X5ABQJ\nz8PWjq3oW2bfIJPJgCngXB/H6uvF2rXd6H5N3KLn12+h8TaRx8/itv3Na467rFkykTCtSpZEFdYQ\n9Qa6UTdApq/94hdwvGM5M7NUPnqY5BdPIreOsPK9R0h/7yT/fPgFfu9HP0L0hQum9fK5E/Q+53+Q\nufcuBqCrv/8QyVO3cJ47QQID/hSOVMi+kCA565Kcq9P7K89vzNC87aVu0tjxgPvbuYoGzm2+HlDE\n9pg4Kvi9+Z1l1getQElUcQ2xVkKWKtDZgcqlKY4lyZ1exgVm393L8n7Nnl9dMKDZzDxojbVnG+r8\nNQNKJxLor5l5yervDYpCc0e66PLAepFKIB0HtVZqtvd7oJDwW8gAGZUmLw+zVoVAe9cPGNYR2nMm\nU4GbWXAPvPZznc/C9AzWUD+UKwhLmhbuiHHUCwMS9fcfYvhTN9DZFNq2Gf6zG8Hm1N46GshM2CWj\nFYRyA+aqvD5hWhJfOk33y0uI0REWvmmY/LkC6fGyuS97d9L1os1yuckauVNsyrixW9tKwnPoZoS7\nuGS0W09sZ/7tvdz8qWdwo5qtP34Uto6w9LYcHb+/sSHNmzncpeX1zruhULtHzdp//jqp1TVik1Nk\nbRs5NsL08gCld66tm8MbGUicnSJeqwXMXffcJUa+eJibnxhl4HnzWXZFoYXN8gd3k71Wxn3hFCws\n4tyraD9vjRxZN+ok//xFrOd7+ZMjH6Twdqj/33kiXxqj91c3V0fnzR7BmvSrcD/l0v5fer4FdIfX\nB6i+VpexWSHEAID3r59tTALhPqJh77V1obX+Da31Ia31oQieJd/QoOlNfkChTl0g/pfHSN4qUzg8\nDMDi/3wYN3vvi/ubIQKRzLu0BxX+yV5D5/Vaf8CIfLmLS/S+0mDkp9c/dPnj8zh7x9a9nvjssRYm\nVfIzL9L1V5deC5C2+WNHWtgjw0z+8NuYfW8/slRpOnR5yZF2jRW99vrMgdZKlK+VEdYXussEHN6A\nWH29wfciYjHE2DDW0ABaKdTEFMw2Ed/4548ZSnGpRN+XJrHqGr17K02HNK8v3r8G5a6v1rcAQ/cW\nqlQKrstvl9C1mtlwhjeA0jLuI8rFyq7vP5Vv28fcM924A52o/R4d8dhpalnJ/Mf2YA8PIdMpcBzk\nwb0B3RoM4GAPDWL19SIf3YPV1Wmo+pbVpIZvHA9kzglcdO5jsb2f0K5r2shWVoxrnyUp7elmaU+E\nWrcGWyGEpu5apKM1euJrdEeKBgxy06y4SXKyTl9kNWCMaUeSmqpT604gRodCLj1m/JiWSOn9Zxlg\nx/s3EPT03VmkREQ82+lo1LjIWFbw/yKZQEUlVgOEMvRoNPiphvBp90IY1pAQyLqLlgKrqhAK6hkP\npPJcWl77zdTBRtTq6mTxcZc9g7OoyF2/u00dO1GZwHfMsvv7cBeXPBcd0RxL/vN6P0yKtjlHVatG\nbNi2cSemaKQknZ9+FdnX4z2j1aZWkW0ba3aPXdPoSq77jMilSTP/r6wG7pHr2sDuer5trV1hcCi8\nHnn3R+zb0Xzr8opx4vPalALQ29MqEkdPBxp1vg26H6uP9xnmir8RF4LEXAMrkzH6QG3in+7CIlau\nA3d+wdhVx+OmFcC2EU8YoU5xd7HFB5PnjA5z9d/uY+XwoJmH78T09e/r7cS9hQ+KGCDAnZwh/XcX\n6P/KPPXBLNWPHMbauQ3AtFMd2IN75Tpi64jRBrQs44rkmXCIaBRWi2aTH2vOkS2Mgo2+682I0HWp\nctkYNXR1IrPpAGBQ1aoZM55Ol4jFEE/sN0Yiu3eQ+Owxo7N0c5Lc7x8j9j9W+aM9g0br0B/zGObK\n1L97BvH4Xqz9u7G3jeHsGyO2UKG2Z9C8NjxE/++8yu7/WKDzXI3sF04jnzthaPvt6/H62Pyx44tH\ntzsM+vM/4Ou/mZvlzc0hV6+AeeZ/Rsi1SxUKaE94uuP8KqJkntOlJxwiRYG6egN9fQJ3ccnkOgsr\nASPP9cBVK59HpxJBy3x8VQW5hkonEbks6xzEQuftM5oME6ipN4QPIAW6QqJpPS+l1yLn5U2uQg2b\n9kYd9Yoe0YjJp3ymuCd23byJgvikYZTr8Unj9hdiKjjXx7H27qT08acY+cLCOqc5VS4jr5mv0T1/\nBV0q0/2VcfTxs0Grolgpkly4a9Fxc9cqy8xxVl8vt/73Z2iMdG30J6873EtX6fzto2z9w1l6X1Es\nfPIItz7QSe7C3V1930wRrONa3zFXaWSjLD6SQQz1ozxwRzsO7pXrFJ6usOOTN1reX/3wYfpfrLL8\nji0gJDKd9goDWZJ//Spbfv8q4vlX0S+fIfI3LzP4hQkyNyqBsL05ubtu1x9MjvyAw52dI/EXx9j5\nEycY+jmL5MJd59b/bsIe6A/yldvFHdsa7/fzXuPffQ74n4Cf9f79bOj1PxRC/AIwCOwEjt3LAeWB\nPUy/I0/Prx+9+5tfbxw7Tbq+DwVE1zTyufUtMW/mCNpE7pBIWl2dZM8t4UzPtFQ3AGb/1TPrLOnE\noQOs7kyT/aMXEJheaWo1SMRxZ+fWVRbs4SHc2fW0tnuITR87dm83V35ohM4nZlk5aliSulY3lVZX\ntSYgrmsqxn61TelWJs69buT88Kq97uyc0SGwbZzZOdyzF00ltVIBrXHr9aBdSDsOMptBlcs4N26S\nikUp7eokvTCAMzkdmvhb7ctb4j6AoPbwRbIJtXYFLWpaI6I2cmQQlldRO7fAy2eCz7PHtlAcS5OZ\ndLAm5tDlCq63gHafWGX5Z+qcf08fuiERZYvE4BrluZ2Mfk6jogIVEUx+iyZ13ab7VIPi03k6z1eJ\n3hBQvuPGftPHDXiaKhHbtDI9gNZRvyorolFkR5baSJ7CqE0jAyqiEZam0bCIRxxy0QoJq47Skn5r\njS5ZZth2iAubb05eYWF3huOrW+jtXWX8Q93Ya4KOq910Nxz01GwTUPMZPmEhdQtvIyeNc14gJG1e\nEyKkGwRg24hIBJVJ0EjZCKVRlgF93JjE9fblVk0jNMYxoqKNrlDdodETp9JtG1v6qMAub84ibw8P\nUd3dz+y+GLnBJR7tmORa/q490ps/dpRrWlRinvB+JmO0TcLzRxvjLojbsYLCgHSIUSS3bsG9fI38\nczdQlrWuVdccU7Kyr4Ost0+JzhQNC09a6FszZlMfYom4SRtLSK8aTyuwozeYB8MAtH9d7b/zH1/f\n+aheR96cDhglYusIzsVrZrMXiwVuSQFfULnMHLYY+7xp51AeqwcgvujZzg8PmLUsYhO/uYLozOHe\nuGlEmdtar3S9gYhG0eUyYmQULl+Dg7uRazXziXcGoGGzx40w7XtT7+tn7CfM+nvXMwi1QweH8cSE\nW9v7zPu0cnGdBhSLxAp9RDMp3MvXsHZuI/F3ZwNA1T1/uVkEeOFUwNgMGFi2jezqRI30Ys0sozNJ\nmFkAS4LjYA2O4l4dJ3C3hDuy3e4pQn8nUylUpdqyKbe6OnGXV5ttgUIYhsfxs0Qwo8geGjSuPdUq\n9tBg6+GPn2XxB4+w+p4Ku358icH/8jyVjxymmrdwoxAtalZ2SLrOu5T68zjxThbeOcDYn0D02ZfB\nAzbc5VVkIg6NO17Nps854VYAAGv3DtzL1z2RZTt4VpACoZugtPDdvEIt5/6dFn67vIVxjmzUEK6L\nfnUR5YFMdqbBjp+exnEc1OH9Bgzp7UJfM5qJzlN7kV87ZQDEgR70+CTCsrCHBkn/xXFkf58B9K7c\ngK5Os9ZELPP8e+xsn8mKkK1FO/91X1fN0wpCabA83SDMuQtLmg19Io4Yn8EFxMQMVj6PKFVQHjPH\nB5JERzZgdlq9PVBvGBe1ej2Y18P3vjqURdnithuwwEVTuc0cPRQ6lyE+VzNtq7ePzc+Ph4cY/+Uc\nvf+1jn3m+n2x+O839PQcWSGIDXdQy9tGvP0tFMHz1c7aDIWwbepZj3WbTaBDeePadzxFT9diS7HY\nHttCIy1Jn10kdkOz/M3bQXg5U908idnzK9iWhe5IM/Gt3XSda5A6NdXS+n0Prp4PJEd+WKGqVXjh\nFOm3HqHsgYUzPQMh/cwHHXcFhIQQfwS8G+gWQtwCfhIz4P5UCPH9wDjwnQBa67NCiD/FKDo4wI9q\nfXdhE51NcvV78mz99wYMEpHoA7ctVCfPYe3fTe7Ziw90gnyjQq2VsJJJrF3bcdp0glYfaQTNpX6S\noV8+Q/bl5nsCm0RvYmunmd6L7svDGDvCtrjyL7fhxjXVz/eRqrUlo15PvbCkATxc19POkAFl+TUB\nQX6opgCee+kqtm+Ve2vSVI3i8aD/XXs6PVauAyIRsymq1XAvXiHWeZD6WA/2/EIrMLFRu8nrCe8Y\n7uycYQolEqhr/FGqAAAgAElEQVRKpSXR1LVac3O1tIzd14u7uIxMxHH6c8SWG0RO3cAJV40PP4J+\n5TyxX32crl6LSo9AOtD1hSSVLkm0UEVFJYXRGPt+bhqVTaJOniOGEVXTlSaN+mGMGzCbDpnrMK1z\ncVrbfl5riFDyrXXAgrAG+6lv6WRle4xGGrQFbtolla6RSVTpS64xlFhhe3yOR+ITdEoXSygyMkpR\n1VlVEa6Uezk9PYiUisiQqV4tR9Jkx/NEVwpQbzTbCWSbeDQEwI+2LIRfKQ0n3iFGhohEIGKjklFU\nVOBGBE5cIF2BbBgmEGCO4zGGtCWod0RoZGxqHRaNJKiIwKprkqcneS1E1sUfOIJd0UjXJE+L+ywq\nQw5WSZEVmi2xRVS0+Vw8lLGjmi0q9tgW87mpJKys0KKp0w4OtbdgbcTya9MZEpag8GgPqcvXDLjv\nMz69Z8/XL5LpFPm/Oh+sZe6FK1i5jqANoz3kcydw3v04keOXoR7a2d4LAN0OHgU/h1pTHCNi666s\nmo2i9BhpyjVv8zTb2pkWWz9TMJtVIYOW3Pr7DxmBzYF+VMa0B7pdGeSViWBjq+PNaqbV1dlkbcVi\nUC6z8ngvmcvXcDIxokWvnSRs1f0w1qpIlPHv6Gf4ZwwYZO3dib4109Rc81keG93fUDTdIG+zHvgt\nVNMzMG00TNJX19DVZnuMiMWaAsJdOUStgTNxKxDSdQsFs0bMzgXPrT00aAoAK6uwsrp+ftmM9cmb\nP4M2w54eM2aqNdPa3NZaJyJRxO5tyHIV55pp8ZHxODLXAXYreCqTSbp+8yhdv0lwTfHPHyPsK9Xi\nWSgtOn+7+XmqWMTasRXRaNVPfFjrVTgvkJkM1dEcsfFI8/eu72zozeNCIiKe5k5oHhC2HWgmmrf5\nzFOvTcsHljzHuszfJ9AekCjrBkwSxTJutWoYvjeXcJSLzOQMGJRMoksls9Z4LX1+UVJNTmHt2g6L\ny2i3ZPSEZOs4EkI0CxbedZgcyIBFhuXU5sbouoh4zGgIRSI484vYY1twb01h9ffhTE4Z1qE/Zn3n\nskgUq68H59YketsA8to4hEB3EYtx618/weDfl5CuJnulyO1GudXXi7N9oIU9tPo9T9Pxhy+Bcqn3\nZ5D1UHv2Qxg3btJm/JdzxL+QJfrsUdR9tDq+lhADvaAUVsUhe/zKW3dvdQcGoHYcsscmiG/rQ9Qd\nkwt54zX6yRkiP2UY8fX3HyJxdRG3I0nmRhmUwhmfIOOZz4QjuE+T0DuQwf7KKzh3mE8f1pzzsMPf\nE/1Dj43kRsIx82PPMPwnV81c9BA1le4KCGmtv+s2v3rvbd7/n4D/dD8nUc8RgEGAock/BFDIPXvx\ngR7/jQxdqzWrfaF7Wfr2p9j5215VZMdW1vb3kPj8cWb+5VP0/9LGfZsbCVLe0zk8hLHTyMVpZBVj\nn3WIT68x+45OVEcKsbyCbjQCwUHtKgMKWZapKAkJNG3qtfIBog02bN7PMpFAZjOBU42IxZCJuGEh\nKWX0eRyTmMhH9yBuzhgNmWgU0ZFBRyMwt4AqVZBD/TA9g3hsP9bMIs7RVyl8z9N0nk+t1yMJ/9sW\nRiQ75DzmbzrDf++JTa7rLdWe+0d4w+pdq18xc5eXwbaR6ZTRwHEUkUJ1vSjhsdNoIPG3r5LuzBt3\nJC+JjALW/t24Zy/S4zPNQm0Gja4kIr8Fvu4lpg9h3ABGcNK2EK7HGLtDVeh+wlRdzWber342+nOU\ne6OoCAQZpYREtEFHrEpfosBkJUeHXWHULjNgp3G1YlFVmHAirKgEi7Uk9arNUO8KU2f6cLMuYrDG\n8s4YvYs9iBtTJlnWuoUhBASJsPbBItUErJASwfrNOYCsOgYASgqExrSICUyFS4CWBiCSjsaqKWRD\n4cYshIJICdy4RtZZVzEVtk31fY/dzc4ZoWB5jyA9AUtPuljJOhGpcDOSqO0y3ciZE/HiYYwdlYyB\nx4RXi+Y50IlYCGT2QVxp7lV7y+ft2j03AFi0o0l9+sWAZaPWSoiRAQgsys137OwbRR4zYh0yHkfE\nY6iKEbqW8Xgwrq1stsn6LDXMJvd2ycmdnoewQ1p725v/oy/YX6+bzeniSlM02geGvHnAtxl2T5yl\n/oEniX35VazhASgUaGQsYpEozvQMxW8ao+NqCvXyGaP7sm8XrKwi6o3gXNzFJdS7HoPnTgTOUdlL\nRbQQRI5dgME+rN07YKFp0vIwxo2bjARgEBiWjtHsslqZNs0P8W5k2z2FjQWnQyEzGdPOqzSpP3sR\njaGf60YDXamiSiXcWs1ovdk2jlcAcgsFo+f22H6s+ZWg8CNiMdyFxZZk3erMN1kR9xq3W4vCz4Q2\nG3W0aham/Ld57peBxoxWiPklVH9XoOGiqlXUTLXF4W7p+47Q88WrFD72KLkzK4jJuQ3PXaZSIKUB\n6ZSLfuYgVqGGmJ5DJBJG8wkDOrJg/uZhrVfhUMUiawMRYpGIyW+ckGuXz7rRCvDAoJBDl/Bs2wMj\nDaUR4bZbb66yx7ag5hfp//KsAVgjUeT4LMq2mwVCpdHFNf/CDJBXKmEP9EPUgFWFp0aMa9voiHFu\nunQV8cR+xPnraHyHMNU0/JASGo5pTw65pPnFPa2cZouY50ImwkU3rZHRCGrerDl6bQ2ZMDqOqlgM\ngFC1smrMUW5NGsH5iQUcx0Ec3A3HjRTCyrc/Rj2nsVcqXPyBTnb8m6YpjZ8X20ODzL1vlNSMQ+rC\nHHr3DtyLV3Df/TidryyhE3FzTX/3ipHE8J7rhzFuIr1VUn+eJfd7R737WG8R7t/scC9dNfPH5Wtv\nXTAI7ghuC9vGmZ5FTk4ht42hvPfKA3v49qFv8LlvdKGPHKTaZRMpZFnbkiA5V8feQJag/G1PYZdd\nw0D0wv7y8Y0/NxaDqn96D2/OkakUIplcNxc/iPjvAQyCjQXWw9H/S8/fuYAqBOKJ/ZvOwHutGkKb\nGvHZ9ZcuopEN3rn5Ye3ecfc3vRUjtOEOA2ulfiuoYJT29pD47DHs0WGGvrgxLa3w3U9TfmL0wZ7r\n64jImmPAoNMTsLBM15kKOJ5Yod8e4/WWq3rDJBihXtxWwWZPwydMfQ/15suOLPUdA+i3G2tSq7uL\n5Q/uRcTjiHQKK9eByKSM3eRSEZHLIob6ob+bhXcOeTbkKeNCdfaiqaKfOBsIE3b+9WXKT227r+tv\nSax9S9qW6/E2+pZlEiEhWgQxW6rkkaiprsZixt55rWQo+Lcm0ZUK7tw8+uUzuOcuBZVkMJs5Xz9J\n12o40zPrREdFqYKVzeJM3ELG41g9XeZ+PbafRtrDpcNOIA8r/I0kbAoYFDDOQiETcZyUjYoIGmlh\n2qhsjYi5jGSXeSQ3hSU0K/UERTdOSkimnTXONur87uqj/PzU+3m5vI33dZ/j3Tsv86HBM7g5ByvV\n4PD2GywfVKzszxmWSsQ2lHiPDSQsrx2srQqLlE1avmpjxwXjRiMqdayKi2wYwXmhjJC0sgxYg9YI\nrRGONg5jNRe74hApKyJlhVUDZYM10Nfy8cV/dohax92/787/9yj1XgfnW1dMf810DDWVIPt8gpWX\ne7i41sf9Sye+vmikQzo/JTPOhRtyaROyRf9mHWiywUbf/7uW94T+xj+eKhZxz11CZjJmY+w9Z7XO\naCC6K7s6jU6Qn1yFxFndtRKNnaaVRr90GnvrKKpWC+aGu8ZG5+zPOd6/2nHMxt9qjjERsXFmZtHl\nSsscFTDUerrQ1RrCtkkcv4HV14PrCR9nT86x8L1GWzC26rYAnTQ8cepkrOV+RSZXAFqcyYRlocpl\n1g70UNrZ2cKIexghV0KaFD5A62vC3EmHJwBKdFNEfEPHt9C4LBaxrkyibYl8dA8yHqdwZBRyWbNh\nTqU8Blk9SPStrk6T/I8OmXXp1mRg6S4sC12rtcz7NBwDNraf+53Gkaf9s+594WdCCKMD5LfF4QFB\nsZjR3qtWzXEapg3bnZ1DvXoeeXO25aP8ws3i9x+h87ePQkeG/KvLONn4hmBQ7YNPGhH0YhF5YA/F\nTzxtdM/OXMBdXEIn46h3PgZw/0DYJoY/F9SzwuTJni6QiEbN8xhu/XXdYP0PnCTb1ihhWaZw5WnH\n+d+PWlxGdnciPHaR2LcdVSggO8wYsPJ5RCqJ8gAh4b1ujwxT3zEQHD+yZsbqzPuHm+1aDdc4cPrF\nLCkCLSBTzNhgDPlM7jC4rrTHGgrldNWqAfVKJXM9DWfdfNzOinZn54zmYSZDvcuwEOXBvThxwc7/\n5ybT39zN7l9rFkUrHz0cFEmv/tAo5X5B7K9eMiyodAx7oJ/I8cuoq+Nm3vFYgPWsfVuG0YMIIQjA\noOC1yIPdW4WZ8I33Hdrcgz8grcf7iUDDFXCu3Qh+1jGLmoow/yNHqPbFyJ9cwl4okvvqNWTNRS+t\nYG8dxR7bgtXdxa0ffwbZ0NQ77m0dkon43d+0ySFTKfS+bdCTv/ub/zFeV1z61cOM/4dnbvt7K9eB\nesfbaHzLE9hjWx5IO+abAhBiA1q7iD8cQavSzs6H8jkPPbwk0+rpaXm5+2SZ2oeepPTxp4h//hj2\nQD/O9XFTYfXC3moAIKu7i9KAJPXqPdmCvyGhqzUSl+eg3jCVJtsHc0ylXrch/doNVetD4s0tiUZo\nY2YSKAOqqOUVouMLuDHLPJCOYzaHPXmTsKZSxoobcCZNW5SbSyIqNeLLLu65S4GN9EbhLiziRqVJ\nsl/LwqebNPDQBTSvRzUdzNaFcpvuJFEDGOlGHbffLATaVS3ovbunCRKKjizutla9hvZwbtykcXC7\nqRLWaiYRjESR5Rq1Dom9XAHn4daUtNO2udysZMMbS1p5LWOpFPUOGycmUDY4aY0bg0TKiEinrRoV\nN4IUmqSss6QUp+t5Ltd7uVTqJ2Y5dFhlHolP8JGukzyVvMqusRn2Dc1wuOMGyYE11oYkOpe5/TWo\n9WmoAYyspvW8HzJUrVdGGFpoQDfJOEIZtlAYjNFC4MZtlC1NS1zUgF9uTOD054L3Wft2URyWxJfW\nz/tWPr/uGtJXI2TiNdACuySxKoLshEPHFSjU4yj7ISNCodMTUgQCyi3P2m3/9jUuub2tYqCiv6dl\nUxefNS2XMtcRiFyaNwpEIrRpVy71XBMQdnNp0zKZSt2xKnrbCObMtrYPf4OnWoEtVW2rAHptuyqX\nMoLBsZgBKIRo0YpR3h4mtlBpaX1q9GWRqQT1TrOJCwCLOVMBbwG/vfu1OmbTSMsms+GNCK1Ne3F/\nH76o9j3HRoYHG7SXuQuLRqj03BVUtUryMy+iJqYM06xUMq1fQmD19RpGh+ua189fbh7WtqGvu6k9\nVCgE99QtFLwiS+jcA3H7EIOsTbw3fA82vIYwGOqzKZTnCNUGPqlK1bimPXMQuvNY2axZPzEJtD5y\nkK7fOhocS128ivz6SdS7HjOAjwcUzP/IEeIzZWQ+b4SqZ+ZJjzfBS5nJGPbD195gvcnQ9UtHB62Y\n4XVfCOFp7LSZZ7TPT77Llz/fh783zHevY1HcLtNIV+9OImMxtJ8rdpu52s8LqlvNHDX3LSOoiGH5\nWD09xGbMc1brFGbMSQuu3ET15JoMVeEBQUG72gat/8GJeXb1G4BGhjnXvPZAEqFeb4JP/rV691Om\nUublfBZdrxNZMdez8ESOnj8+xdI7R8jecNCT64um9tAgTgL6XmrOSfLGNO7CkilGepqRflTzkk3K\nMu4pXLXBenNnDaPXFcK2AxFxertppDe5yLcZbamvNyIRhBTY/X1N4X1AXLrJX0weJP2xGSJFFzcb\nx718DZFMGA3GShXqDWpbuym8ewd2GdLn5oiu3p4LEjZkec25w2sMISVidAgVtdAPcMz8Y5joOm4h\n79AU5a6sIr9+ksiXjrdoAm9mPNwS2W1CK8W6WfIBIsG1b32S1Cs3cWZmSZ+4hbNJrSJvulAuuk0p\nX379JDGg+MkjWB8+TOJZY/Mb1pEIBptlMfDzd6GuvQlCF9bwHTjWhmKI/hj5xRV0vdB0qQj1zBub\n+RB44ltEQ+s4EE1qu7BtQ0WfuIU9ccvQgq+P0/Wbc6jH9mN5ia977aahH8dj1PIJap0RksdOE79x\nE+e9TxA9dqmpGbFBJP/8RcS+XXAn5XjRmhw17WRDGh4hejhg6NRhfRP/OJ4OAxgASFVd8LQBdLWG\nnF1BpVLrbYaPGecMK59Hl8pYV0ssfc/T1NMiEIa3dm1Hjd9qAklaU3h8kPT8ohFw3D2Kfuk0HRev\nIEdHjGDpQwxheQlwuI3wtbZWt290PBBRJhLUt/ZS6ZKoiEDb4PbXyGQrxCIOMelwq5pntpKh5tqs\nuTF+ZvoD3Fjr5AdHvkZMOuxNzPNk4jo9Vp3dkQoWgl/Y/imKKkpBxfnuHRF+p/4U5XM5UitFtJAI\n6mbs+5T7MNvEZwyFEwzbDjYIwt+Yecw66SrjMGYLtCUQSmM5ZkMiHY1wDGDkxiQqYsCgWtaikSJg\nRM0/liK6/WkqPZLSsMLtqpG5FSGsaLDwQ0eodglGP7vY0s47+HPPMxF7BoYbREqAFqyO2agoZKPV\n9WvHQwytNPbYCLpY8myejWNf0NIjQnNMe+tYe2tq2xpk9fWitvShXzrN+HcMMPyfrzd/ObuAjMcM\ngLK8jHV1EmXbXPjftrLjXxtVxuV/cYT87xxFjQ3A0kqgHZK6uBDQ+fWJs4biHy7AtAtLt5z/Bkwn\n7QbjPfiVp52lKxXzubXaOlHcoN1Va9yYhcQwiQB0slkNda+O05tLofE2WyHGq4pZuHtGid1cQvsb\nESECSrawJLphihuquIauueSuONgV1wBlr8P07r6jLadxZmaxMhnDYvDa6oIxIJvMKr/lB1jHHAsi\npDNn9fVCZwfML6FrdcMW6uqkdnAr9lda2xHswYEWjQJ72xhuPoWOWIiai3viLJz1HKT27TKg/cw8\n7Bg1wJGnM6OdxvoxvJEG0p02dGGtPA+sRkhzbP+4bfpKulE3rmlXaGlRsfv7WHrPVtZGJLV/eoSh\nrzZIHLuKNdBvmE/PnaAjHqf+roOs7IiSu1xHXLyO67lrurUaItxW02iw9p1P03F6EVFroFcLQcvY\nwwrjgOQBOI5DakYhknHDiBGyVSRdK4QVRTUcIxgNTc0u4QNIHqOv0WRi+dpNS993hMxEnfjNFWSl\nYQS7v3wc9cR+9PGzBiC7fC1o9UQIIoU6GsiO16nnbGLxKMKSuMko8m376LimkKkU7tt2or5xEpWJ\nYcdioFTL+qT9ucf/QoUBlrXTQNgRrw3VbXFT0xKE8op6lkRo2QKeaVeBzzhTChmPocpl7L4esG1U\nqUSjK4V9XSCvTeEC2Rt1dL2BdDSJv37FiNx7kfjsMcQT+6nm4uz6mQsQjaC8+c1nj4l9e+HV801n\nzJ3bUHbrWvygY8NPijyYbZ/MZGDrEGvbsiQ++xLupaskute71PohvLEEYI+ObGyW8CYNYduo7jyy\n0UC5hvWoikWS/7RO6UNvY+4Ji5Ffv4wLaNvCWi7jNuo4k1NY07N09HaTdRychUWSgN65DffytXWf\n0yLNsFEh90GGbeN0JNBSoNJvLSfut2J0/dZRHowH4L3HmwIQ2iiUJ9S7mWHt3Yl7/jJWVQV04ocp\n2PSGxG2cVLp/w+sp9v7faVMyl/F4QIm1urvAcQLx5Ddd+BOl45CarrO8K4bOpBBeO4f2qklC2Git\nkX6vOphkSSujIbSRhoMncikSCUrfso/0s6dR5TLuRSPa6q6sok+cRXkaHwCr79qGG4GOP3iB1KED\nwT22qi7ld+0l+aVTGzpa2f19ZlzWGxvrd2zo4qLQjebGU/v6AXgJoJ80ua6hl/t9+E7De59qVuJD\nn+knNapUMlpJsRgiHsNdWcUeHYFaHZIJcy6Oi14t0PWNaVQqQfnDh1naa9NIw9bPROHCNaNl8vWT\nJAE8t7VKX4Lpnz3C6F9WcCsNmHzIdpPh6rVnv65rr2HRDQtJ+yCA9x3Ivh4KWxM4CcNyqAw5JFM1\n+jNFUpEaEeGCVWe1Fmf+lT6u9fSR7yuwvJCBEeiPrfLs7D6Oxcf4F33fYMReoaotJp0c1+q9LDsp\nqipCV0eJtcEUyctJKKw122H8zZXjGJ2GdjDIr7T65+0DiJ4GkWg4WGUHqxqBmGEICQ2yob2WMbDq\nprLrxi3qGYkbEzRSTVaHisDaFtNq5nbXyHet0ZUqMzM2QjhddJICJ6Upj2aJX2rqnlU+epjKkEnG\n7RL0vVhg8dEMS1s90NN5AxEh5eJ2phFTM4ZZ529C2vWYwuxD7d7mWaZlE+2L+lo7tzH66VnwxJIB\nRDKBOzOLenwX8uvL6IFeRKVK9rL5Xq39u8ld9EDckxeQvuBqImrApNB8JcaGcc5dMgLVtVrrxrz9\n/IPzbANP24WzwWtX8ar1G2nGhF63X72KgmCNEatFrHwed3kZGY0gbs7i0qZFJQSx6SLalrhXrjP3\no8/Q+yvPB0Lb/nrvn58QAmvrKPG/PAZPP4qubL6r4J1i3SjVGrdY9LRwdOv99Obh+5qP2sYNhx/B\nTUWIXZrBmZzC/ur69duZnAp0ctSZC60tEBghZiwLmc2g55eDcaCu3TQ6RcXi7bUeX+vG1wd72sBD\noNUAQlrIeMycX2cO1ZGCSzcQ8RjOzCzZP5ol1OBm8IXQBktVq9hfPk7v0SSyp4viPzlA+soqTjaO\nVWlQ70oQvzqPc+Mmqlol/acvvLG6KD7rxbLQQHK6gtubQyyttLwtsF8PgESrdTMphRFzDj3TflHJ\n35gLDZEvHUeMDKMrFcMk93JEYduUvnkvic8ew11ZDbR0SsNJxOBhEp89hvrAk1BYwxntQ9RcRLlG\nx8l59M5RxDdOGkOHl84jB/tRUzPNwh20soP8dUorhB0xAK+rWl73GUPaK45RbwRjRzvGyUwrbcZK\nvQ7SsKRFJIoqFBFbDLs5OrGIsqxgjo29cgUFpD/1IrJNR9PK51nak6HjD14I3BwDnbad20zr9mqp\n1UVQSnpeKXLtAbds3S183bvNDHt4CLcvh7Ykqb85E+jqhAW2/ZAH96JePY+1WGwWm131lhEUdian\nzXd95gIyHl9nyJL8zIskaeKZemYe2dVk+ggpTO4cj2L1dKIdl/pQDuty6+e0u0OHW78fSgi8Vk5T\nePlHjtA//HjTAkLrRAc345jeAxU/f2fHG3lgD+rMBfQzBzec0O4W4cXzvsKzMMe2A8G71xuv1Uo7\n/HfuwmJAw35Th9JEJ5YR2/pRmThyhqZFKcaFwyRTXsIRsGe8vw9v7CFEX3cRliR7cga1YwucuWzE\nGIcHsCJR3Pn5FgZNx99eNBXft+1Dhfo8xTdOEofbWg37IKV75bq3OW8DhdrFWz3qs0zEkH096IiN\nKFchYqMXl43VszCtG9r7+2DB9Y7ti3e26Dq0JfIyFkN0d+LcmADpOXB4rKqwsKiViCO1JnVdk7wp\nmDuSR/ziKuNffoLe4w2SV5dgaQU1NoC1tEb8L4+x9S/xGBUuWr+xXDQRjW5KQtIi/CqMVbu2BU4a\novkqjYbFWiPKgdwU+UiZmGxwUgyz7TNF9MtnKH/bU0R/cJGRyCJJWeN5uY1Xbo5wq/ghvm/0eS5U\nBhgvd7JYTVGoxonaDosraWKdApVNIP0NQlu7RgsY5Nv5SmG0H0LAYUvrXsNBNFyEq7HqBLtaob2f\nBaiIQLiGOdT8MIisadyooNqtcboayLhLNl1lX/csQ4kVPn2wu+W+pW+5xJalaUfz2Dbiif1MfBBG\nts5z61IvjQyUh5Km0hrRJKwG2npjaeTWYhGn3jBsj3K56fQGrSwgaJ1boMlODAtRt7HU3K40vHAK\ne2wLslpDlUqogmEZRscXcIC5t+fpPnOB3l/1RIsXlhFnzQbGt4oWsRhqbQ17cADlbW7s0RFY9tg0\nqeTtnfba5h6ZSpoWo0qlCTpKYS7Fe44CZyOfpRbohZi5x7BifDZa83dWRxY8wMu8ZhgC7UYTdl8v\nen4ZNT9P432HSCyqwGFs/keO0PtCITimSCaNMK7HQmxko0Rv48D2UCLcHtXWChCAH/ez/ocARqun\nB/JZ3GOnsTC2MvrIQYTWWJdvQb4DFpaa4Nvzr6KAlX9+hO6vT6HXypQPjZGYKKLOXsTqyDYFpaWF\nle9AbBtGlGuIPWPIm7OoxaWNhaK9c/LDynXg7B2jNBwntuqibEHy0kLT1TL0XBi3OsMKCRhIfnsm\nBMCqzGYMS3hhybQdusqMFdfF6swZMDAaxZmdxx4ZxJ2cbjlXVS6jxsskxidg3y4i08s4/TnsLx9H\n9/QgD+yhOpRGRSV2ySV26oaZLx+eG3AQIjSfWxcnKL1jJ6kbcWg0zHPim2c4qjnXt4DRHljkt4db\nBMLSMhpBrxmGUHLOwR4aRC0to0olAwxKC2tuFfp6TTEAuPazR9j274/ifPMTxBfq1DsiWPk88ZkS\n7mifYZMurKJWVhF93UgPJFl7/wGSn3kRYVueVpQMgBsRscHFE702YtOq1gBcdCPEJPLAUgMkmO/T\nB7VlOoWo15tzjnJNkcOyUNWaYQjVzFxtTRvHVXdq1ogu5zrQ9Qa64SCzaXS1hjs7h+WJRZvPjBJb\nNTeh/oEnif510xxBFM09dGZmEbaN1ddr2rknZ1h8+z44/fC21huVSlSxiEylAjbYZoRaLSAbDcim\ncdvZ5KGQmQzXP56jb+SwAea9cG5NYu3eYRz8QqB0OOzhIZPbFor3reEl43FkX48pZL5e56ZQTn4v\n+ytVLNI4tBPLcxeT28fQc4uIdIrGSBdzh1L0/fJ6Qx+9vNJa1HiDwy+A/2P8w403LSAEBBXCTYtr\n5oHUt2HN+DH7jjw9Z2DxkSTdGxtv3TFeKxgUtjC/n7CyWUQqiU4nEa4yCc8mI+2vFVh62CHWykTX\nNLWeJIlrfkVNBv9qt6nvInRb24xorZo1dRBk02oXguq6kHDre3cy/LsKEY8bZ61iEXe1YJKsk+eC\nash9X1DAkYUAACAASURBVIcPToTOAVjfxgFgWUx/wFS5UrOKUq/ErgzS89wkTsjiUqRSQfVcSIHs\nMa0FbiZOPR8jPlNCzCzizs6ZNhLbRiQTJrEpl5GegKWIRs14S8QgGsHOZnCujwdW9n7C3n0K3P8K\nWyILWL3dLHzzKJ0nIriJCMvvGCDyWB+pibJhnFwcR6y9AaLSPhsCjDh4m9jkPR+DZtUaz7pXxm3c\nfArpgKwbdk2jZhO/HGchnqLyvim22fMoLam7FulSDRfTNnjlm54mstdlvN7D+StDZM5HWMgl+VT0\nCeZLKcrVGE7Dwq1bIDW6bBOxwU1EkH619U4VeiEQ+Rzatljb001x2CKxoMhcLyFXywivykzDQdRN\ni42TsrCqoC1w4h4DygE3IrCrGrvsEisYgMiuSOppQSMDblIh4y6xeIPCTIaLtsvQ0ArSatqwi8f2\ns/CoRNtQHI3Q0f0oufNFitvS5E5bTIhuoquS+LymOGxT6wSrLNmTmuF5Dtzf97XJoeYWsHu70V6y\niS+qHHZTamuHaW5qVev31NYSY49twXnhlGnNXC1y9SceNY6cHoDnemtN79FlFDDzvzxD/y8+jzu/\niNXTgzs/T6Uvbph5Shu3HaU8JmFzEwQE2mF3DSHR1Rq19x40GyFpYQ/0GX00IZC5DtzZueAzAuDd\n29ALKdBYxgmo3gDtIrMZAy4p17TAeXN2sHEpl7G3jeFcuxHkBbojE2zQClsidP23o4ito7C4RKU3\ntBVSLgvvGSH3/91CrJnNSuRvXkbu2ApvVK4dBj489pY/Fm7rwHUPxxNegYL5+eB7cecW4KgpbIn+\nPpwr142odD6PyHeAUjg3bpL7vaM4mHuefGXcjJe02RDrhmO0VjwXN7FWQnutEi3w5e00gvz8ZrWA\nOPpqCzPQxdjL63I5WPdUpWJwUa8tzB4apHRwCCcpKfVZ2GVN15k1xJVbLZs7n7UUHHvBPAdqecUA\njY7ben+FwOrIorYPI8t1XL9V+8ZNrL07EbUG7pkLJGrbcHoyiOdfxfXu88MO345deOftLi+jbIFI\nG5t3fwxp7TmHCR04sQVOYi4t7fPhUPUGdn8aFpcQrqa2sx/7qGHkqXIZpIVaXELYNo2kJA443UZq\noJa3yX75AmLfGGr7EPLSTZxDO4lfnEZXqwZA9lrtrHye9JVVs2KqprtYE7zRLfpoJmfTgRviRkwS\nHyz22VGGER1tKdSFc9jw64ZJpZGdOdzZOaOJOOGNqVIp+K5FWLts+wDRVXPtawM2nRhgyn1yL87X\nTyKe2A8zs8hcB87kFLJrD2pllcJ2HrpW4kYhO/ObCgjJbIb6tj6i15rC7sVPPE3uy1db3KlkroNa\nj0u5x2L1Xz3TAoS4F69gj44EOWp7+AYB9kD/fZ2biMUofOQgqckq9orRqrzXor3vluf25hC1Blyd\n8MDC+3PAFo1m3u6vWSwvIyZuMXRzqIWgYO3ajnvpasueA8BdvbMz1QMJrUEZlhCDfS3ns5lhj21p\n2av8Y7wx8aYGhNhspzFf5yVE/ay//1CL5R9AecDbIDogHtuPPnF2c89jo/A2AmGdBWvfLtSla7fd\noFp7d8L8kqHRh23shMDasRXmFu9qb/dawtqxtVnRe7NE0ArlYDU0pX6bZDJhNvhuGwBoWUjb2JYG\nrVM+9XiDFg4rnUJrjSoWA5BENBzUqQvktxxm6rt2M/SFKcRAL6JeR6ZTuNuH4NjpFjCopSVjw2to\nMoLWAXr++UGwqZSJOCIRR62s0vNrR4PzTXrHdwD1rsdopG0SXz5tqvCWZfr+e7uZ+kAf5UFNakKw\ntkVjbbWpFbbQ8eoO+p9fRc56tsPSVPG0l2SB6W0WkShi/w5ufdsQA78wHpybsG3zvh1bkMtrOBMm\nac/93hTuMweJXp6i61wDNTZAeSRF4i+Oob3WhIcabSwOYckWl5X7PlaoVUbYNjKboTiSopE0gElk\nTVBrSKIrMPS5W3y1+jh9316gO1JkrRqjk2aS0XsMfv+dz/D5kwfZ8yslxI1Jlj68l0tjfei6RJTM\n1C0UaEsjHUEjo6n2xohcjoQcWbxrtCzAY8tFBLq/h4VDedaGzTk7aU1pWFLuy5KeShmgruEiV9YQ\n5SqRZQs3lgIboksOujtKpUsSX9ZIB5yExImLQHxaaKh3CKq9Ch3R6LUIlapFZNmi3m/x5xcfJfX1\ntGmTnJ6hsDtDx+MLNByLQiHBfEeMwtYOGhlNzysKdS5CtVeTudUgtlhl+p1Z6nuqHEzcRL8BOGI4\nVKUKO7agTl0wjLmG02zX3GgstWsHbRD+ffGTJHd5GSvXwcjfemOk0TDW10rjLi8zfzhPZ+og3afM\nvGF1ZPFdB1NfPIkGs2FyGt4mLLIuqVXLK3cHH3x2j3Jx4yJIrN25BbOpisepHtxC5G/mzLxZr5s5\nz9e32bYF1wMkZD6HWFuDWAxnbgGZSBigPRJtVoBDrS56eRWZTDLx/XsZ+cJ8oHEF0P27xyEWQy8b\nraSRL5XRJ89R/MTTZP74Bbqen6HygScZPxJh9Ce9TcsD0tK4XWx4Vz3mggEPb3Pf7zZeQoLhulHH\n2rWd2ohhuDiTU8aRbv8O1MlzaFeZvGFhxWzUlpcNq+rdj+MkLJLHrhqmxmoBkUoikgnUYgUhRbCB\nFLaN1ZlHrZVg1xbEhRvNzWXb+fk6UVY6hejKBy0Q1Y8cJrLmEFmuMvt0BwPPTpnzqVSboKh2jWPV\nWA81WxD74kvEgJR/7AN7mPv4HuIrisRsncjpa6aFKZ832lWJBCIWNcxbIaBaxc5lqX74MOmTkzjD\nXVhXJhHxOLJYNXbosRj6sd3wwqmWyrx7+RriMnD4EeyFImp2Hu5vT/j6Q3piyp6+knYc4vM13O4s\nYmEpWHda9Hg8TTPhFSmwjA29CK21PivHL0DJeJzosy8jk0nDHPKLWtqAN26hQK1D4Cl2Ye3YSvbL\nF1Dbh4lMLuFMTKEiNvFLM+hyxTABpQVlk4u6qwXsVBKRz+NevYGMxVoLXSE3NHSzpV15OmTl/5+9\nNw+SLLvO+3733pf7Uvve1fs207P0rJgZABoSgEGAi0FSlCwrSDNEUfQiU2FZDlt2WDYj9IccIimG\nbdIkRYqCaHMRA7TFBVwHIEAA07MvvU9v1VXd1V37lpX7e/f6j/Pey8xauqvXGTJwIiq6Oivz5XuZ\n99177ne+832fe5L8qxPieLZ3HDwTa86Z4cEQOMhs1j3cKmwQj11XqaILhViTUrQYwYyP4l+52qFx\nU+9Nkn/vBgwP0ftvT4iYvTGs7E3T9U2YfbGLwbdh+keOMPxzr6KaAaa7i+7zMPsQtWC2ncm3cnG7\nh/Cnb6BvzuK3sWdSKwHNR3ehv94ChGxPnhefuMh7048w9o1qXLSIj7MDHaE7Lbi7ep3szTqJidn4\ntfrJR/BSSSKtxGB2vmM9NAf3Mfedwwx+fQ7mFkRtS2v8xw8QZDxSEwvY+cXbgmrRXili8m55PSHQ\npbNZdLFAUMxs+TydTED1ji793qMN4A/yD87o6dtg0EcjPtJtge3Azb2G6e4S6mum82ZzZvPE2OwK\nxVR9qA9l79s57CSc7ws9F+JqlekTJzRv/145r8eOiqjfuYtbt3M5R3BpIgaD2m0S78s5PiQHuJ2G\nc64F+vg+uYl16t0K21MMdT02tGvY1vOVl4gO0jpg1GoTJuDB2hq1l47g7d8rls4Li5jBflQiKbRX\nBZf+3gj1Xd0CBi0uxaLLkS2vzmaxDaG/d1igtr2nGZDvSedykkC1U+7bRV7DBE93d2FXSxus5+U6\n6p9/Dp5/nMS7l3FaoQoFVCaD/9QhFr7wKLPfOcjoH8+w75+eYPT3p9j/P5xgz98+xYH/x7J2KCD7\nc3PM/3JW2iYTHt7wEKZQkOpiaH+pjMa+d5axX35fWk8Q1w0z0I8e7Gf1kW6C4R5WfuRFgu98Wl7z\n6vv4M7Ni4/v2GXJ/fgZv3x5xa7gNc+9+h2sXaA2/b3Wv1p7xd6Rx+Sy1boNNiEVwrd8Jm8eTxGf8\nn7/Kb3z5Zc6VR+XrTbbGRdeFEn/0tWc4/K/r2PfOEqyskly36Lkk3lKC1LImPa9JrmiSywZTUyRK\noR283sB0iyJkDqlMhvKBIstHwT9WFl2jG4r0nKLWCwuPGapDGYJcEucZXJg4ebWAxLpPkDFU+zS1\nfsXcs5rZ5zVre6TVq3hygfxkmWqvaAgllzSmZNA1WWpGn7nJJ8dEPLE46bP0nXtRzz3O6n6NVo5y\nNYmaSYOG2mCAXwyYe0ZR3m1p5h1LjySpDmfx0zDUt0rZpuL2hQ8tnEXVpKVFFfKyubKOTSKQG11C\n2tvGNkSUuK7/rY8BLfcs7ysiCux/7BHc2GAsBp1Zssy+kItFg1V3UcCocBMHYStSyECJxZubDWGL\nHDsiLWMbW93aQxvUk0flWKkUhdcmsQPd8XEA1PgoC/9VmCQPtzlcxtfa0q4K5hcgkYR6HaUVwVOH\n5Sm93TJPJpKdrcsrAvYMvlNn8gcGYGYec/iAsEuaDfSeXVJVNQb9xlm8XWN0vy8Mh+DSBM4Qu+Kp\nVAqWHi79Pc40NohL23JZQPT2dWErG/oIdNam9QMhqNRqn1H1Bt5X3kYXCnjDQ9hSCfveWczBfSij\nqY8UOzZhweIS5mvvkPrjN2VertWx9TrB4pIwvSKre1oFK//mjLSeTM2hi4VNpxqfsu/Ha6g/MYkp\nFjHHjpCdWCOxWMG+d5aBXzpB5cigMJ0THjqbxRsbpfa9z9Pc3Y/+xruYv3gHc2g/7qUn0U8clWLZ\n6fP0/eoJcl96ncTsGmufPhqzx2ytRrC8LOzWVErmr7FR/IlJWbOdE9BnYRH/+jTBhct4e8aZ/fvP\n0OhO4X/qGezLT+GN78J+8inUU8fQhQL65EX8K1fvK7viTiIW/A8BncSZSarDGSlmRAwi02aSEYlz\nOxvqKIpenDIh2BK3jpn489F9vcLGefIQrtmguivkc4XfI9rQ6JYxfHjfDOWjAwQrq6zvzeNPXkNn\n0i2h6tBFzFUqcm7ZjACXuYwUlYzB1moCShkjQLV1bGRre2Oj6P274ckj5P/yIv6hUQGnPrjUYUCw\n/PFdcp4bmAzrf/uFjmNtDJ3LSWtayC6LADfT30cwfTOefxd//EUAMtfLkleG86/bN0awvEzP/3cK\n092FV5aJZn23XMPKE324XSN0Xanenu33EMKfvBbvM+41lOdJe+FLj3c8nn3/GguPyX4r2qME+RQN\nawgyDmv0A7UzNwMD8femv/kertnEDA1KLv7+OVy1xvUfHGfx5XF44pA874mjuJeexKVTDPzmSezE\nNYKVVfzJawJmv3YS8xfvEPQX8Z8+LOD6LSK4NIF65tiONHFtpYItraM+mJQWt8KGefXD0J5qcwm1\nqY82f+Tbce/xkQaEgE226Xcbq599BIDgeOcNvLp3803W+74sdunVgPSN7R2h7kso1WktiEwMulCQ\nXmbfZ+4HjwBw87MjsmidPt9Bi75dO1ewsHjfJn8Ae/r8fTvW/YqO3vq5ZRJlR2MoB6EtZCy23G45\nHyZEKuG17CMjjYI2Cr4uFNBNh3/lqlCKUykR4ww3QSNfX6a5u87KwSRs0KWI2rNsVaB95zfZMpyL\nAVBbLrccfWJh65bGSNSK0n4OGyP1x29y85MFoVj7jsZj49SeO8Ds81m07+j/5RPiElIsYheXMKFW\nQnUgwaF/9DrlvzFP6ld7WfinNVZ/8CkBcdbWxNVlYVHaDXLZ+Hz9yWt4e8blGrTGraxS+PevwckL\n9J2YITW5JMn8k3IfeuO7APCfPoxbXpEWkIftohAErU17qLWkksmtAbudRAwuybTqcmmcgnpXqKPT\n45PON2i0rfP7/qcT/MnXn6JaSqP8VgKsr97kwJcqMbAIIsosAJAiuUr8kyhDoqSkfSsZJqnBxlYk\nJwl5dxe1I8PUug25Gwp1OQsOTN0x9soiQ281QYGfEcadavq4dKQODZXBJEtHk5T2QKPL4Rcs2ZuK\n3nM+jbxG+QH62hxdE02CFK1NeF+dsV1LPNozQ0o3eWz0JlPfAzPfGXD5h/JUj9ZYr6Xwawmc53Ce\nUJV1VQuIpoUN5Wdh6aiHboJ1im5Txn7YeYpzuMnr8qvXxtaIWqY26gfBhtaa7RGtRj6yR1Ydduv1\n7gSq7sfi4dn/93Wys23HsVY2Rc7F4A9t2lau2Qki27TXspNujwh0CJlBZilknAYB/uwcXJaKrkql\nqH/3cwQXr3Dy+d+Sx8pVVKGATqVE/wFQ1Xr4li7WtApWVjH9fTS6ZJzZ8UEBBnKt4o1KpaRVrdHA\n++rb7P7DJeyhcVSlFoMbak3srfXecWFDVSodLI/Ul99k909Ji4IZ6Bc2yocRW2wIVSazAdjfKOLd\nVhxoA4A6bMjTaXQmHVfZVSqJXVlFp9OYnh7s5DT+zCzeV98Wx7DwuOqpY3h7xnEfPy4AUq22ud0r\n/HG+LxvAvbuFTVEuC7MsOsf2n7bz048dxb34JCQTuKkb2DMfYE99gLd3NwDJP3lTmGSPH6L6Hccg\n4ZH+wzdQ33ovPo3g4hXROzp5Pi6WReMquHCZ3O++Tu2Z/fHaotNpaSWq14XJduMm/qefofqF52nu\nHaT++efw9u3BPHoY99KT+JPXGPy/XiX5J2/iffVtvJUapadHcUaJcUSpJJ+NNnjDQzv4ou9zRAUT\nG5oDhG1jtW4jwGq4YYwc/oAWCB07dUk7a8QiUlq0v2ytTjAoeejM9+yBsSFMRXKLykDnBGuOHkCF\nw+/iuTEy0wKOFU/Kfeh8X9gMoWZPJC7vGg1csymgZVncB81u+a7i843YQeF16J4edC5H7cgIaqWE\nnpwRoObUFXSh1XgYbfxrPZ1gq7d3N96uMbKzIXPyyMF4vLoXn2x9tOVyDJ6rXBadl/Z6V62JQ2II\nevaeDYX4mwH+5DWCm8I2bPbKXGUfP4Cr1en9t8LYHn9FPqjC77xOfTRPdTC1CRD+sEIPD96X45iR\nYdaf2kWQNh3XZvu6KY+FYEKtJgD1fIkzrxym55wjfWFGNC/v+MRNy93uVtFsdLBAgwWRQ1Cex+xP\nvoQb6mXP919h7gXH3HNF/E8/I+6Kr50WDVnf3za/dm+dRn/jXZielW6MW4R7+8z2zsJbFAeieWbj\na1zjIVMSHehmINqQFtACmH07/vrGh51K3zZU9v6IGXe/cQMfhDbY9nh2fvMmtPuSTFKZ//DGtgLA\n9y2c21InyZZKrP3dFyj+5ms0szJp9J2pyWIY9pjeSeyIPvtXNOLKmArbxkrrpJctpV1JUu+HTKCE\nJ2i3Ch0mQkqy9NUHHTbtzrUEP10QQLUqCeKecVxNaMtoHQsu2lMXOPSjAVP/y0uwaxjOhiKtCWEn\nRT3qkVjsti1J2zmLxcyCSP9oZzjuyM/K5ic9V2H+p5r0f98FRv6s8znOORkblQrMz5M/LUmTWi1R\n+Mo5nHmE4O/Ps1B8kaHfOiNJexCguovc/NwoI78/iV1ZxT5+gKm/kafngxEK79yg/vRBGt2eCEeW\nq7haHa9cYekz++nWx5h9tkjfr1xHf+PdD9W5xTmH2ij8u12rzx2E8jxs0iNZdjQLiiDjIGHR2tLM\nuo7W0CM/M8HVv3cAp1pV52BxCTYIJ6oAkmsC3pgaoKCZU7JwgzCPMgpbzKKWV4hshePXK0XQU6Ay\nmBD2zpocp7HqoZsO5pbITN2gMPiY9NufnyJYL1N7dJhanxyrMqRZ3xug++pkMg0SVlFdLlK4psjN\n+tBoEswvkvzTOfYsPc71TxeoZy2FQo3BbIlvTe9jbS7Pp544x2efPsWfv/kEXZdgxUtSWUlQmDB0\nTfjMPmtILSsaXQ5dV6RWIL1sKV5ZZ/6pHF4Vsokmw2b9Frz4hxe2VkM/dhRmF2Ob9RhUjuzVo9go\nJL0hIj0M099H/5dOQzbbUfE2B/eR/fI7qIF+/Jszsdhjz7uLLWeT5baKpAotmCOACmTzE2pxuEZD\n7H+3AkJDYML0dBEsLokDUaThoaSNKGJlZC8tEQCPfOtHGPuOBHztHczhA9j5efx9g+jr06JBEr5e\n5XJx5dQ1m+TemcIHlG+FqdcmJB210NpaIOKuJ89z7X9+CVPvYvSnp6l/z3PwZRF2nf/4AAMra6KF\nlk6jR4ZwpfUOhzK7uvbwGYm3+lsItHRoTnU8YYtXb1grbK0GtZowTEEA+95uyRXCopE3PCSiqmcv\nwAtP4GcTpN69Im5nk9ckN9ooBr3RSl5p/Knp+G9mYACvp3vrVg4bCADxwRU0EEQbrHDs+1PTuBef\nxHlaNlhvnSaFtDvrJ46irs1iSyXM7l24pWVUdxfUGwQLS6h0SrSBDu0XMdqrUyReeZv1732efMKL\nxWl1NotdXkElkyRPnMMLc6HofUDYW2ZgALt3GJvQAjy9f45M6CliDh+AmXlhyNgAf+4he85vDK3R\nqRS2ViO1FuCG+lDXbwrYG+Y3EQuoQ1TaGJRyrbYxF4I2fh1da4i9fI0OINU0ZBxEgu3B2Qvoz4gh\nwNFfWEItr+EjgF3supRKtVrcIlv5IBBNOqWwC4uiuTN9M7weJcLQocYYIOOvK4/2DKmTV3GNJrZa\nQ+cyBCur4hoY5sL28G546zRDv34SC1S//3ky/+ENFj8+St/XptBff1fyNqNRY8Nw8QqJmZWOvUA8\nxzq3CRyvPjpCeq1EEJnMeGHRJ5yXEosVLKACFxdoy3/zY+R+93UWfuJF+v/1CRaPJRl6o9JRvPww\nw6Xvjw6Wf+06ec/g1isEbfOUXl7D72oBN7ZUQu/fxf4vXsMtrxJUa3esxSMH2pnW6nbPCdbW6L7c\npD6cZ2YFdG8Dr5YmNbmECixuoE+YkTvQYQ3W1mC9jNnKNr7dea5NkLwj7oQt9rALpgCBQ1mH0+Ii\n4hfTH30WyQOOvypueHcTH/nvdic9pTs6ztUpocRuSFqKf3IWc+xIx2OJhfX78p73GsXfeh2Ayqhj\n5UdelIQJ7hgMao+YCfPXKKJqV3vvfPHUIpnFABW1CMZCu6FeQxDg/OYm1D12CIqqnLYlQunKFXFR\nGOnFv3Y9ThpMl1Sndv1FlXP/qLvVwuesHD+0Yt4oRKlzOaHQF4tSmTKmo70jbvWLKsIRMLQxQd+q\nvaD9mt4+Q//3XcAbHoqZYjqdxgwNCtX8qWNxVRXApTwWP7OP2guHKf7ZOap/NMRn/osTlF8+KhtI\n38efmGTgF0+I+4zvw2snGf2Xr5L5vTfwr13H++rb5P/8LPr4o+KwMdxPMDtH12+8hnv3DH2/cgL7\n8lPy+fX0yOfzsBOlQOzSsSGbpt0d6k6jrSruggAyaRpdSZrZ0H7dAVVDtZwiSDlMW4XZn5ll9x8s\n3XY21r4js2DpO1lh4KvX6HtnmdSqJVFxeDWHqYNXdaiGLyBk0+9kQQ310xjIoCykV6wASw3I3bSS\n9A/0YEsl+t9YxFup4up1dDEPGpxWrI9pKiMWl7YEa0lqH3TRbHgE+2tU+zSZ1y5IP3ykg/XmKcb/\ncAldUwRWU/GTlFaymJIhY5rszyxAzqfarwi6fFzSoeuQvV7BKytyNyyZGUWj11LvhUZBAN9kybG2\nT7E3v8SizeDVHvK42U7qJSWWxbqQ37oKHLkkRb8rveXzdD6HeuoYwcIitlSi9Hmh4ketwzc/OxK3\n7VR+4GMEK6t4I8O4qRvx/BGsrQlDIpUK9b68uBVDJQSgEmDbxPObPrx/y3PWhQIqnNNUIhnfp8pI\nRVilQl2xC5fRuRy7/9Yppj4brjNLK9Iy+833RJS2WkVn0i3b+0g8VpvYZVHPLsHwgDBli/mYnRK1\nTEcx9PI0iVK4Wa21wB3rwc0fOiin7/u4SlU+y0/KfOPt2yOb0ofc9nOrUWpLYevvrebA28yPOpsV\nNutgv4yPyWtxrmB6ejB9vcL0DIExc/E6qXcuEayuyXhIpaRNIRybOpuNf7yxUQGTlJZNXBtLKZif\nl7yq/fyUajEtwxaleMxFbUzh+qrfPIP3zgXM4QMixhuGO3tJCmDDQ/hXr2HLVdzKKna9LK2SQYCt\nVHDTM9j5FtiX+8vzUG+gEklMX6+0YtSE6bGxMKYSSWmH7u/DlcuY6/OoV9/H2zVG47uexRzcR/Mz\nz1A+3Ifq78UcOSjshFuw+h5UOOeEfbuh/VI3HdXxFu001t+JwphN+nwRYLSRlWsOH6D710/E3515\n5BCFq8JuDkImMcDor59BPXOM4NxFXLtYc/R76GDpgiD+7IWdpERIPrqmdqZipI0UCLvSGx4Slm2t\njl0thfqLYYEvlZJrmltAJZJUxlps5frnn6Pw1jQ6nab3jTlcSfJ55/uo5TUIx0qHpXdbVB8ZQeVy\nkjuGn7FTxGzz2vc+z8wnujteY08Ka77RJYxyb2RYWLbAwLvy/l7Fkbix/JFoGQNgceW+HEan00Ri\n896e8XiP4U/fwGU7C2uV3QUBg0K2+d1Ge766Vdxyn6MU6T97l/S7k5jf7+HgyBzplYDg0kTLHOVO\nImTztzOFzNAguk1ao7qvp3NOjGKb3N0cPrDpsQfhvH3rcChrpUBjHQQfkXH7IUc7GBTlFH9d4iMP\nCEWU4AcVtlTi2uc7NXaCcxc3gUR3ExGNdcvYyeY3BCbGv9Kk59z9aV0zg/enBe8jFdbGPy4ICNbW\nCD64RPoP38DOL4htehtDiLBXXZnQ2rbddSPapIWLti4UpAI6NiqU04tXhC6ay8ULWsTw0t94l4HX\nDBzcK8BLePxIuwOtJGFPpzF9vbFeja1UwjaORkelOFhYlMS5XS9io9ZR1EKwwWJ8q/BnZuOE2NZq\n2KUVgpVVEU03Ogag7Mnz9L42S5DS2CN7GPr5E3zlF17kxscN3viuDmDL1evbouWRxpAzBlVvUv6h\nj7VaFYB6TyKm9Ov8NpvoBxlBAL6P84MWrb3ZbG1S7ySUFj2qMBFXiQR+3uBnwM8AA3USPXVczeA0\nBMyIRwAAIABJREFU2P5OyrM9fR53dosKUlsk1n163pxDnXgf/9p17MnzJMoO3QTlg26IwDMQbxxc\nYKUanE7RHCrSzBtMw5Fa9snONcnO+6RWLV7V4feIs5y7MgWBRQ/0YfePUS8aqgOKyu4APVYl11dB\n1TXFCeBqFmZSZJbslhU5e/o8g29CdarA9GoXTx+Y5OmPXWQ0tUJWN3j56AXG/6NJPvXYecb3zbPy\nuM+Nl4tURwPmnoNaP/ScUXhlWN8tlvPFiRqNnoDdmSUq9iMAcCuFKRbRU3OYYl7cxqDVZtPWhw+0\niebajvbU+HDpFLRp23W9Oyvtw7U6pruLtcOtzWh6KRRcHezZVNV2vo/plTYQ5XmdrUYbW4KUghuz\n8fXEf0qn0bksrrQu9+rGllfnxFI6ArLDOS1RkmMEC4syt8ZsqYRU93O5jsOogvzfFIuiT5NJoHeP\nQdPHGxuRz6pSFW2TsNLa+JURBn5JWjO8r7zN4j8QfY+hv5hl6PU10X05tC8GROeeluJAfU8fLgS6\nPjIRfQcRaLhV+9VtNpK2UkFlM7hsWjRh9u9FPfe4sLRKLavmaL4OFpdEbymZkLmvXm+1KVgBW2y1\nCkrhT98QwM4GMiYigDAsXAhI0qZxFGtVJTH9fa3NfJtOjDJG2odSAu4EF69gbizi7dsj5+n76GIh\nBplds0GwsiotFaWSrGUhw9WWy7GeR7C2Js5W3cJqM8ViDKZG56yfOIo5uA/XbMQgma1UhHE3NEjj\nwCCppTpudoHEK2+T/sM3pGX8g0vS4tjdCQg8jIjaquLCiTE0P/ssi48mMA3bcuqKWpYjO3frWmta\nu3tXqDcUgzIzC7As7Ga9f49sYFdKJK7MtFhn6VTMSFw4Lvmt3dB66XxfgKF6owN01dksLrCyUU4k\nsNUa3qAwjeIcyUWOYnmC8UHUdWGIRfpHzjpstSa/+77MJUaTv7giY21okPRMBZdJoYcHpc2wqy0P\nT6cEUNwAGLT/P0gbGOyN23TNwX1k3psSNlx/H4myz8A75XjTbg4fiGUf1vYkBdytVun7hrDo3Jun\n0E8+gm4AW7XlfljRu4O2qx2ErdUIpmeEOTd5rSMf7O4to54VF1CVSJI7v0D9uVvr7uwkgrn5bZ3+\nbsvgCOcmV6kw9Mp1lr+4m/yZnTP+tpIUCC5N4A+2xlkwO9cBPif/5M34faHNKW0bYDno3izxcddS\nBncbjjg/UdahAoduBPFc8LDC9Pd1zN8fpYhIGn9d4iMNCJm+3liB/X5Euz1pezS6t0i07gOKf0uH\nr50e3zlS3zyLe+v0PZ8PCL3zlkDVX8XQOv5RxmCGBjEH9wkjJppIQr0KZUIac9tEvNGCtdXPLs5i\ndmWVYLinNSFrs211eeCVqZhOHIWzLm4jsevrqEwGu7omANPamiwSbayf9kpApAcggNYGZlDHm7jO\nhDw8z44KRPi76ekRandbhcaVq7ixwVZSfWmC9B+8gbmxCM6JpbOFm987vmlT6I3vihMib3wXjc89\nJ8cIAQJ7+jwEAcWzy7iEJLEgLZmu2QjF9EoPvXLmogQ0ZIG5Wk0sRe+Cmqt0OL7CH4zG1BzJNYey\nYIwllW6iMz4uaansym86xu0qQIkTZztoyaa7iyCl5PhNMGEO5JIiUBszOZJJ7GAPQdbDKwdo3xEk\nNabik/1ggdzlFfKTZVRgMcND4uZSbxD0FlnfnaUypCmPWVzSMthT4rGhmwweWmDpaR/lQ+9JRW5i\ne1Zl4d+/xtBrEASaw/k5nuu+ikXx9aVDjKRW+ezgOd6bH+Xa9T7S/VUqT1fx1jWur0Gzy9JzrkLX\nRIC3rljbbSjtTpMcrrAvNUe3ruCnH3LlaivcMpOGeh08T9yXVFu7Rtg2Ixt+27nB3wIEDZaWWd+T\ni5MgO78o91IQ4BpN8pMh6JhKkVioCLNjVjb77dbxLgiwa+EGX7fNSdH41lrYGwnZjG0F6Kl8Dtds\nihZZWsR5ba0mgMAGpyI59xVUKiWMt7a/6XQ6rKTKvOvC+10ZAeDd0rIANLskUTY3l2B5FQb7sEvL\n6FQKf3aOYF3mXf3YUfK/81p4HXIevWdDJkMI2gPMfEc/riKPj/7aKXQ6TeqisIQfdoIdj9JojlYK\n88ghbv6Tl6h8/7N4w0OyyWnXj9sCMKT9OO3/9TyC2TmCMx8IuHHlKu7NU5sYxe2gfLC4FH+f222w\nNq51tlYTbby2wkV7u027vlGkORe3YNfrMcPI+b6sieWytEBls+JYd2Mm1u6Lcjblic6fNzyE6esV\ngeynjmEOtVhtwbmLoJQUEZWi9tQeEQUulbBr6zIGn3+c+qePw6UpmFtk7e++wNLfe5HG557D//Qz\ncpzZOfTX38W9eYr6i0dQzxwTV6KIJQVbtvk/8FAqXptcEOCqVbz1JsOvV0mdnIrva2W0rNHGsK2b\nlNKx62iU77h6nWB+HjM0iJ28Lt/HzKyAKMfkc27u7ocxuUftVsMlBDB1NtvRooluYz8nE9DcAIxE\nTJzwGuy+XZiZZWFcZrPCBms048Kecw5brkhrdq1GcP4yrtmg9vi46D3lM/hXpzBDg7iGCOerVIrg\n2nQ87szAQFwE0/t3C6ujUBDR8UYThvrl81tdlxxwcQnleSReP09iaoHgwmUZf86hugRc7gnlJuZ/\n8FH8yWsxC3rqe3rIzge3ZwE+xGhvC7yX8HaNbcv2WZ3qojyek8/5sUO46ZktjXzuNFy9vuXYjgqM\nOzuIw9Xq9H9lEndt673hli/z/S1BEfXq+x0Mx1tF3KnSzhpuj0g7soN1+ZC360paIFU9QNd80RR7\n49RDZ9YGC4vY/Q+WGPLtkPhIA0LB4tJDmTy7tpgX1epHo20M7r/+jyoWNjuT3cnrP8ptZ1oR7Bvm\n/D8e5IN/NcLcd+2BXcOxG49tNOPNS3u40KZbaRW2VoSb6VRKmDtvn5EEK6S5m6HBFsrfFv71abh8\nTVg/TT/eGMabfaUJVlZ2TP+MKNSb+oe32yiECbnOZjE9XR201YhJFCwvowoFob8Xi7KI1mqoSp3K\n/m4a3/Vs63rChNwbGWb4jQA/ozCFQgc1GKD2nFTL7PwC6ZmyLIzaoI8/KseZvEZw9gKqXCN1Y70F\nIO0aa23MPgwqdVQ9jfUybAjA3Vl/fSTU66yT8dNoonwbAzXNaoJGw5M1XTtKu8wdb0g3iccP9uO0\ntAxoP/wJwo1XoyFgolLQ30NtJI/TisS6j6mKUKAzClWtE5y/jDp9Ce/aAhiNNzpCbf8A5b35OHlL\nrmi8ZY/ZpSKnZkboTlfpH1slUVb0f2tGWGa3iO6TS1SXM/zW28/zyyc/yTcXDnDq64f43QvHqdkE\n6yf7GPlzD3e2QFAzDL0RatfsqnD9UznW9hhyNxzVIcfMy5a9/UuUbIaa+xCcNzYOU6VxpfWWY0/C\nQycTbcKuWwDOG5PA9pbDep3i6UWh4I8Mi4ZKsSib8FyO4Z8TbTCeOIxaXZcEONz8qWQiPp7yEuKs\nWSi0mB8RYwlw1Wqoc7DFfacNOp2WNTjapJVKrXP0/RhwtLWWVbjJ58Q56PT51j1kA1ShIBvaNlFb\nlUjiQvenIGIZhW0M/vQNgoVFGrt65BpGh2PmAMCVfybH1oVC/N7tAsTe/r24d8/Q/34lXj/VyCD2\niUPSylCrby/0+YAiHgURaOIcwbmLjPzsqwRJxcon9qD3jEnBZqcM4vb/brGmRO5JOpuNhViDsxc6\nnJaiTfXGTV2cI4SFBZVIxsBM3GqojbQUbjFfKmM684ywZUIlkgJiRpuqECyw5TKmuwtdyEuhoFQS\nAdliEX1gbwxQBItL4hr37hnQGm//Xsyh/Xgjw8I+WithS+sk/uwtYQg9cggzKkA3b5wi+advYSsV\ngrU1ir/5Gr3/9oQISX/l7VZLGKJhlPizt0QU9v1zBHMLuLAV7UPZ1EdgUKiX6Hwf9er7osM3Px+2\nu4eaQEq3rOajiDbQOgKmdauVHtBhXqhyWXR3FyorroPB9Az1/vB7tA4XXruphSz4IGjNZ0pjCgVh\nqvl+7LKKs7HAr6vVhSmUy8Zgbdy675wAelpyifbzVsbgGo2WSL5taT8KsJ0kc0VAKF0Kc+ZGU4SE\nkwIUtK+5wfw8DIbsttAVMnYZa/osPd0rc2uYTwHUHxkTsHWXAEmznxoiuHgF/+oU63/7Bcy6XIcL\nP47lQ/K5Fa9a8mdmP1IMIW/X2JY57J2GXVredj9x+NfWqfZqVLGAe/cMeniQ5Pz98U5vFxWHcF+y\n01ZOpdBdRYLZOfzpG7c15tkY24EiNp3YxDxtd7iLz7N9/tioG9oebXP8vbTY3VWEDCHl2mQVHnJE\nwu/uzVO3eea3437ERxoQAuJB+CBdHfq+dFKSkrYN7nZsonuNO2Hn3C+Hta1i/ofvvvfxIyeoFQoX\nyo/DfHCNI79SgukMIz86wQc/3kvtqX3oQj5uE4NWVTty7gJaSVWkS9R2rbFQrFLY0QFcT+d3GVX0\nXaMRA0eu2YirACqRlGRG6duCAVFSGrGHOpL97TSDoipctLkMxWzbE1iVTIYJfcho6ekScc5SieDi\nFVJffpPMW1diXSOQcej8gPR8g+qzFcovH6V8bBgdnqN/7TqJP3sLCKvH750VAM0GOE9jHjmE/6mw\n+nppQhxmDgji71+f/lCrZi2WkJNqaUacelTCuzNQKGrHiVghWmOTmmZWYargLSRoLKWxy0kSyx7N\ngsIM3ZvLhz9QwKs5vLpDNx2m4TA1ofaiRStGFfIEPTmcliS1mffQvsMr+wIKZUKgtFaTxGh+kWCw\nh/VdSaq9mlqPotENNtT3Sb+XJfVKkSuz/VQbidht5rbRaLL79xWHf/wtDv9UiUszAzR319nVt8Ke\n1AKJR9aY+aTDPLaKl/EpD2tc1aOxnsQdL7H2aJNGl8IrKxJddZJG3rjmEugPU5U8ZP3YSqVlzZ3N\noPI5udeM6WRNREL1UURJVpsANYC9fBUzNEiwFDIRtJJWmnA+MsUiqt4UAFqpWJw5bt9QGmW0gEHl\nSjwntFtSO98PHQtbm5RoDVRaxa0WEftD5pFWO8rG+9YUiwRra9K6FM090Zra3x1fo86kW+dhHY29\nss65RgO7QUg9OSsbtPIReU50Tv50NjzfJLzwRMdnB2ALYXtYbxsgrhSmLEm1MJMebvpzq3S68Nuv\n0f32LDOfGcZ/fH+nK+it5saIeRaG6etFH380zjNsuYwZG5GiSFcR+4njeHvGscsrsQ7HVkBSBBK1\nu5pFLc3RJhkVMiLT6dYmPXp9IolKJuQYbYy4yLknYgbpXA7TI26qKpXCVmvSZhiCRthWC3iwHLLI\n2q43+OCSiEcvLOMaDcxgv4Dh9bqwgT73LGpNXDBxLv5c43GpVKzlJ0UMxfSPHsO99KQIWn/iuLSX\ndXdhxobFDTNa0x92aLGWj4DYjZvwKD9R6VSsk9ixQd4I/EYAkXWioRRYAV4rVXmPcK5xzQaZKbkP\nE1Pz0t784pMMfu0GqpAXQDACua1oB0XOtrZWi3MelJLvJmQGKqNjFr0KWXMqlaK5ZwB1/mrMXItb\n4UJtpPj7hXhe1VkBsez8ouRhC+E8EgLkqkdyFRVu1k1fr+RYoUi6m7zewWjyr06JYQNAbzf+o3tQ\niSRLR1N4e3ej6iKmXu1XMavaGnBvn8EMDZK/LvfU0FdvxvMT1drWwv0PMNwtlMv869PCVHnhiXsq\n8tpKRcDWrd7/3TP0nqtgI3Ogaq1VPNJ3XhSLQxvRgGx/KJPecaHVHNi7tQj+PYZuBMz+8GMd+7xE\nKYj3rzqb7TCc+MjHhrVHP3F0kyv2A337E+8/tPf6dvwVcBmLwp+ZFd2WSJzuLkM/dpTFZ2VA9//B\nB0DYUlEuY4ZHJXHYyu3pbmILF5lbtpG1vzSRjO1073dIG97u+3KsWBz0wwylwvYH2xKFvnyNI//7\nKtPfvY8j/+kkE+N97P7pUfTJi51JKq0NUtzmoTSE/nKmUIiTGNPbw8SP7ae6twnaMb6rwuLXX2LP\n785JwrpBo6EjbIBrbwtrW8t0Oi16L22viyn47eBP9KJYM0i3fo8Sd+1hurulQlerYQb6cfUGwfx8\nLFxtKxURzpudwxzcR+3jR8mevhG3ZwaLS3hjo5ieLuzCEvR2sfxMP70nbsLUKEtHFWOvrO5IfM+9\ndRq1dzdBSqM/+RSJpQrBmQ+o96W5Px4X9yGsE0Ou6DPNpEVEr1IRHYE7AUDbBMlVIKydRBmGT1iS\nawHpiUVxgOrr3rT5vZMwB/dRTxlM1YIGrUO3saYVdpJSYkWcTOA8jVcJsEmN8sM+8GYIoCYTmK4i\nwYowM3RXkfJIlkZR4WegUXQ0ixaXDVDJAH85iW4o/LUk5maOzLqjcqif7OLKLdsogstXSV+akI87\nlyaTafB9e08zmFyjZhP8zBNfInu8jsHy5dXj/GnhKNlX++k9H3D9sxl0vsn6HkPxoqLkFFmvwaqf\nZdHkdw5KPYhor+DV69ggkA1SKgmFPKpaI9jIRHEO2v0r29cJY1BKo5KJ+P5SiSTByip6zyg2EkI1\nJrZ8N329solOpVqVdhtga4FUfNrmCxcE6FCQ1ZbLrfkyishtMZOR99cGXMudLHZhZDOQ4HaPwmlZ\n35x1HSBBu72wymalPdM6ICAxVxJ3NK1boFoETNUaqKeOMX88wa4/FqahKRY5+tNX8UH0i/wRHLKO\nx68vy/ul51rVaJtPYZMeKjz3h67JcJvwr1xl4Jeu4n/6GbyRQbgy1Wof2yrCogMIgGNGhsXx8b2z\n6MeOsvAvhvne3Wf4v98boPebKZyGvtPVTUYd7ZvBaK67lROmzqTjPMwFAa5c7jBnUIkkupiP18O4\nIBKJHbfPqUFAsLzamW9pEwoeW9HaS6dlbc9nsV1ZzMQNXLWGGh3CFrLoUgUVWIIbM7jlVdTTj6DP\nTWDfOEW2WMQPcy6dy6F7utEDffiT14R919eNXliW1qi3zxAAw+cuCqjQ34N5/Sw2qsy3tVTqbBYe\nbucEkVtXxBqONJhcYwNANTyAqsmmM340AqEj1lDEDgJhMK+XRXPM6FjcveOtT4tocsTyafQm8c6t\nyBoTBKh0StpAtZGWWYiLUSopQvRuXcaJMkbuVzaAEDZA57vQs6sElUqLjViLwB+ZUyKHw/ZrtpUK\nWil0bw92fgEXggURMzxynEOruE1M5fP4Z2QPYIYGYye+KCrD8v4rzwxSvFzGDA0w/JU5YSrOr9A4\nuouR1+o0hguYc1Dr0RQB+ntIf/UkLnzfS//1Cxz6zfWW+PbDLH7tBHd47STqyUcwc8t3D5I4h7dn\nnA9+coygEJCdTNB/0serBKQvzxEMdovmUqncka86y125NulcNjYziGInzmMQmpgkHwyz2L15itrn\nXkL1dGESHsHiEqk/fjN2s9u4V/LGd4FWW5onefv2bCt8/lAiGqbWotA4o3AJgz20C1MeJAjvnQd/\nHpv30d+OBxMfrYzoNmHL5Xu6SVQiyeQXetn37ybxr09vsrt2EYp9P8AgiGmqdxUP2MWia0KSnMgy\n+G5D7d0FZy/cp7O6y2h33YiYQoBbKzH8yk0mBvay+1NTVMbGyJ9LSOUrYgCFIoyR9ku7pbsyBlXI\n45ZX0KkUS9+5l8/8wJv8aN+3+DcLf4MrpT6mByyVAz2kNsyNERtoR2CZ1ihrcdsBkVEVLJ3uoLYq\nrXC0bFrjqr3RuHJZ2jBSKdEV0aYldN30JQkMAmwhS2XAI91dgOtyXG/POKWnRnBaUTzRxC2tguvH\nJTz6TjtK4wqztMZOYVn/6hSpq1N4e3dju6RNIP2Ns6j+vlZVLnRQeahhhckj1vMWsRKxgEF5JtSF\naWxOuHcSQSBMHQfp1YD8V88TrLV9Zre6526zAJpikaBX6NI6cJJU4XBaoZzQ3a1zaM/gPBMDRUL9\nDS/d0+iG6NmobAYd0umD0T7q3QbrIT8JUA6ccaSyTVSuQRBozFSO4mURG2wWDPR13/qa2q5n7XAB\na0ssNnMEaOawPJ6+xripU3KKo5kb3Bzo4lvFPmrdGgiwpQRkLdUhj2SqiW81c80CWVNH2YfLLlO3\nGArO96UVy2iZOwDWy5vv643fb7RJsA6dy7QxfVRMFVeNNm2xahWVyaAaTWzoorOVS17s6BPOcS7U\n35AN7eYdrWsKu9Gur3duXFzLznqrUJ4n84pSrfYMk5JNrDa41bWWrbqzqGwG1uW81Zr8q7u74pYN\n1/Qxfb240jrl48OkF+W6TF8vrloToDq8Ln15GptIigByFNHf285X1QNMPcASAlZbXsmDi23fb4No\ntPeVt3Eh68JBB2M1fv6G/zvfx78mE7jp72Py+3rp+XcBr30pwSHe6Xg7+4njeOsN1LUZNIjzWxsj\nKWrf6ght8IYGRPB7w99ULtfhFuWaDQGD2tezcPMXna9KJKUtbItWDWWMrFnOESyvYoqB2M0vreAu\nTxIQMtiWV9HGsPCJYawHQ684/KtTuLdOy+emjTDKSiV0Ru4p15hvMeKcQ6+u4+oN9PFHWTtcjHWp\ngsUlaAPs1bOPYRbW8K9ObTrfhxpR8SIMpZQwq9o+x9pYgfS0J99JBKK0iU0DbYWv8LC1GqZYjFu4\ntn37ooyT9FwNjMFVKnKvRwCuMfL5xoxk2Xjbel3u1VRKNOq8hDCSwnZWF4RrUbEA5Wp4nNDd1W/G\nYLZybRqJLmxTbbf8Nlo+i0jQf209HmsAFHKoah3/5mzHnKzaWuu9sVH86Rt4YepWGdD0vFESw4nF\nKmQyEATiRmwdQZewEfM3WyxQlUyiD+6NN81msYQzRoT/H+LmdqfvZN8/R/Dik6h7YM1c+dFx7GCN\nrrfSjP7pHGq1hL93CLdeRqeSqKYvTr0br/8uTDzs+rqsIWHsFFRSnifF0hubQc/7FYVJhy3kpCBy\nm6Kfq4oDpjcyLEBse4HJu7V78AOPSFQ6BvBUyD6HoJDCHD5wT47XOz+Pb4NBDytuuwNTSv2aUmpO\nKXW67bGfUkpNK6XeC3++u+1v/6NS6pJS6gOl1Hfd7xNu7L57tXGza4TRb9U2CVVHlE+1docln9sg\n/RsrkO19+7cKUyw+cItB7ytv443vumd2T3ALMOihjp2obSwKJxsft7DE3l+9xOJvj7M+YsTS2UvE\nlHRlTMcmR7X3qweBtNFUqzjfp+f9ZS7+2AH+2Wf/Dlc/n8N9apqD//g1Un/05ubziR1VboG5KoXp\n7optcbcDg+I2kg3Jc4cYtdJSAS0UxGY5rJZEzjHKmLg9yjVFX8b096OvzdD/l9dxCQGMdDpNMNjN\n/HGPG59QNPcOEczPU/yt13DTM3SfDy1c129xr4RJakfbAwIM2ffPybVUKkz/yBFxoIgSvPD7e6jj\npq3VMNpQx2LMnofO54RRcSfhxK1MWfDqjvyFlR0zA2XjNbhta6lKpWBsCLSKmT6mLj+6aTHVQOzm\nQ/aPSyXluXWfxEIFXQ/bfBSykVQKl02jB/uxh8ZZPlakkVeY0MY+sa5ILmtoKjKpBvv7F+nKV8lN\nK3rfXSZ3s0kzq4RRtcOoDGlqUwW+cukIr8/v5Xqtm1O1cV6vD/NqdR8XaiNkTJOuxxdZ+1yZp45N\nkBsuM7x3kT0vT+KcYq5S4Mp6Pxcqw6gO5+IHP3bcdtN+m6ZOsLRC+dFBCAJxcdq4VmzlHuUczm/K\nxjVMbqtfeC5+vs0m8cZGhYHR0w3OovO5FqujrRVtqxYAFwTSntNoxO0g8aZwA/hDyETo+Ft76+oG\nQWzlebjrN4m1S5AWMN3Xi9IKu16OtRVctUawZ0g25Pk8wbKw0xp7xHFIFwphK1KKYGGRRMln6Fth\nYt3fi63V402985vSxhMEHYLajAyKeP6Zidiu3p4+jz19Pj6+a2s5+FDznC304GwIlrUzhCLtnvAE\nOsYNCAPGhCD7rn/xKrkvvd5xTP3EUUx/H/qb76FnlwiWlltOXeWyAD1Wfo+Er3U6LRV1G8TsgU5d\nII1tm9tMsSjCz+FrtrteFwQdLbOmu0vWr2xWAKW1NQEHbUCwsop/dUpAmqh9zfdFS+iDS/R88QR9\nv3oiBmvidccGApI50XfTyYS0SXtyP/pzC7haHVXMY987S/53XsN0d7H4D15k6n99icbnnkM/cVT0\nqN46DbW6MJZSqY686WGOHWV0dAx5IJGIAd4oT1gfSUB/mCeHhZ8IiI02366NHUTINCKVQvVtbgcJ\nvuNpZn/yJUx/H34xDUqhP5iUsVKthVpSOgR8m635Qykpiq2vy72ey7aAFy3tY7EuUghYNYe7W6L8\nKrxHXcg2DK+l3S0x1mMJ7wtXFkDL5HOYgT5pX20De/yBorBDNozN2sHBVitMyIIa//IC9hPHSaw7\nYfX6vphO1GoCbMws4K7fRL1/AeV5FE7P4156Uhw6+3qoD0vR5uB/KyCjSiTkM/ow8pwdRG3w7tvG\nzJGD/J2/+TWO/MsKQ//Hq2GL54pYlmez8Xq3U8OOSGtsu9BZcb6M3793Z21MOp/DldZ3zCa61ftv\nF92/foLqeEFMEW4TUUHUvzmzaU1tNxDZGA9n7ESSGmE+HDk5G4UzmuZgYcci2reLuX/4EpUf/Ngt\nP9dvx4OPnTCEvgj8PPDrGx7/Oefcz7Q/oJR6FPg7wDFgFHhFKXXYOXffSP2J6RWCu2zp8q9OcfUf\njlA49hKDvyDCnO7jx7F1Eb+7Y92g2yCXKpnsqMLervoCMhHuePN4j3HpJ8bZ+8+uP8i3+CIPY+yE\nTI+OhyqVmKbu1tYY/GYX0981gOsuwMJSXHVSWzhxKEKxQqVRSXFrsqUStFEkb9dz7Xw/plBvDJ3L\noTJpgtD2XXR/dKuKFSb7Op3GNpqxVk+wtNKhRdL+XjqXQw8N4FIJ7KVJEYdMJiVhazbin9aLXKsl\ncWERJoHQ/te9eYrdIcZlDu6LmXS2XEZ/MEnP3kdb7QBbhM5kOr6D6Jy9fXtwyyvSx99sMvYSOCY0\nAAAgAElEQVTr55n/whGyI8+Q/do5XKuz5os8jHETBPG4cc5BIIyXSDRT2ncUJBKb6OTbRtR21mji\nVZr4WUNzIIfeIe1VJTypRG7DxHD1OsH5SygvQaKrAN1FbCGLzSYALYBP2E4gznvIhkgrbNoTdku0\nEVYK5RzKD7DdeRp9GYIEojekFU6DVwE/CzrrY7TDU5akCSh1QelIF35aYepOEuQdRnrJYhOaWi3D\ndadoWs1KI0vWk/E5X81TaSYYypfY07XE8a7rPNk1TcUmeSY3wds9+zizOsJiNUvaNNGd2PkX+TDW\nK21a7QwQj3m7siq223MLcUW7I6JxobT8Pdy8RlF4fYrqZ54h8crbrO/NkzMaD/Bv3BTWQ7Qx3W58\ntTE0ANlsObdlG5u3Z3wzdd3Zjmp99NyICYR1Mrc4hyuXQ+2Ztrajtjaw9gquCqy0jSiFrdcFSLh0\nEx9pEVGeh1uVdTB9bZWV4/10TRWkstvOmAn/NcU8wWpr3VTrVeguQmmdYKpzjVNGY31fAKrWlPhF\nHvC42eruj1lTm54capu16+/cpgJuy2Uol/H27mbih3ex5w+WYwBeP3YUvV4T8CCdlg1IBEpuJVzq\nHDhpO4zmvnaQWkXj1Aa4euuyg7U12CJ/ab9OlUhixoZjAMcMDcrfV1a3LFB1MDyi0Aady8aMski/\nyhSLHe1rIAwSNzMvWlogY9pLgLMdbfne8BCuUqXvV07QBwLCOod9/nG8+ij+jZu4F57AnL4ia0dL\neuuLPIw5R4csmah1zFr00ADB9ZuQNOieHoL5ebqu1Kjv7iW1siaMlDYQSOnNzHPX9OUeDz979+KT\nJG4sxXPB/PE0iZJDZTIkJ+bwlWj/RJqJkaOlbTdnUEoKWOHYUYkkrlrF+n680XeNRodTIVbcjFwI\n+EbfkfK8tva2zXdRcOFyKCjsIGQ4qmIBwvGme7ulKPbMMeo9SbxLlVCsPN/SR7NOdA3fWia4LvuA\n4OwFVv7wMP3/tCbnGjHQfT/WzIncyly5jFqv4C0sSwvQ8ire1alYUsHOzmMrFSkKL8dr+xf5CO2t\n8heWoa/3lrnddhF8cInf+6WX+T9//xf44a/9BId/7C1qn3oCrxZgZhzBxYlt92xbiSXfriCuB/o6\n2Xo7yK1Mf59c2z0yTnQud1unranv0Rz647uQBNj5uX2Rh5Ij21C7K9QtW6/hUgmCtAYF5cE82bd3\nesrbx+jvTVL6N0mWf3yUru++dO8H/HbcVdyWIeSc+0tgpyP7C8BvO+fqzrkJ4BLw/D2c36YILk2g\nc3eJIjrHgf/uNdb3OC78mjgpecsVzPzqHavM7yg2bupugY7rQkHo8A+YGdQejeEH+14PbexEC3XE\n8Gh3oQg/z+DcRUZ+8W3ZKERaBs4KMGSlGq6UavXXh+LA4tYUJlFt4M4tk/PtHAQiBkG5HC+6cRWk\nvUUwrNrbULwzWFjsBIM2vJfp7sId3kvQlYO5RWFB7R7D7R5FZ9KbhEe3O2d9YA/Nl5/seDi4NCFV\n0YilVCqJm9WTj2w6hE6n4+ppnNhb0VQxxSL+xCSNpw5g5xe48UMHuPb3j9J9sUZpl8Ed3B1XPR/W\nuHEd2ikhUyhkdalUqsUUSt1G7SjaWIWivSrhCSun5qN9h5/xUM8+hrf39rpdrilVSHsrBpZzsZ1z\ncGUKs7IubKFGgK40ZbwagzMarAgdAvJ/51DNAOVHvWMWanX8fBI/K+MuSCnqfVDvddT6HbXBABdo\nFhcKzFby9GYq8FiJ6c9ZVg9qsrNN7NLKba8NZPNgGmCqkFhTMJNiZr6L8zeGuLjUz0y5SGA1ac+n\nGRj2ZJfYlVxitlFkJLnCmLfMT/Z9k/946H2SJqAWJDBtU/fDGDsdLWNRohTqqrSL1mavhG6CidBx\nbAsWTvSZxCzFUKgXJIH1b87gVWQOS634qHfOtQCW5gaQJjwWSrV0NjZEu5tPuwYNgAsr6dGcFG+y\nouvs0DNz6FRqU8VXZ7O0u/K062TZSkUe1xp15nLMSgBhCATLKyJuG24QIot5llYpjWtxCQvt6uNr\nDVksHZ+FUtjeAv7EJK4uQshmaLA1jyWSIiLcxnT5sPKcW633wurYzB4Ctp/PtSGYnmH3//YGy493\nMf9fvggIO8q/eg1XroRCv0l0Pr/ptRuP2+HKtLYW/8TC0oQFju2q+aFwbCRA7o0ME7xwrGMzFzv9\ntG2yVCIZO1S5pjh7ecNDePv24I2Noh87RPDEAbGDHxlurTda4R45gDm4r3UOswsCBoXMEmEIe7GO\nlBkaxDx6WJi1a2vCtgnHvkqlxGo5bBtXJ94XwLJdd+lhjZ2IAR2KS7vAYnMZ1JH9BI/tZ+F7DtL8\n7LMkliqs7U2iEsKIwln5fiK2kG1j/4UMaRF5NqIfeOkGQX8xdqBKLzlSa6IzZJdXQi0oRbC0LPmF\n0qE2UcRWVjHDJ27dClnJQMsJMRQZl2sLxEkx44VsICffZTS/bGibjEGlSGR/cADd1ytMsEwGt1aS\nNbBel2KFNqjAkTt1U0BAG6B6e2KnO2+ljlkKW1gzrVakF4cncB9ckfMMzyVYWZW5vrtL3FYLcoxg\naTk2E8AGqOcebzkchtfcODgUX8dHZW/l7d0NLzyBS3rQ233Xxxn4xRP85E//Q47svYn66hjruzwS\ny2FHxn2S4YjCtWkARW6V24VKpVDPPS459H1oP9qJ7Xpu7AE4WLbvPx7W2HGOyIXXaY0zGr1eY+L7\nk0x8Icn1zzomfuvJ2x/nNuFfnyb/nyxR/tog9ivj93y8b8fdxb1oCP2kUuo/A94C/olzbhkYA15r\ne8718LG7jsoPfEyq2AHgIDNbxd6jBd3+//4E3p5xrv2Tl0iuOAZ+5/TtX3SHEVv2hmEGBuIKzJbP\n7ypuamV70GGyDwAQUmrrUmhn3N+xEzGErBUdiW0+Z1evC4U8skGFGHxRyYQkNeUKLpAKYqzdkfDQ\nmfTmqvoWEbF9OvSDIpZM+2IUVmDdFgul0gqdL4Z07JCCvfF5YdKlkwnsgV1UR3Jk/vQ9gqjaEuq5\nCPU2vM3DtgrlebFGSXSNOp8Hpaj1eqQ/9QzeV1uwv8rnaDy1j9R8Bfv+OTI3qlRH86ROtZJA5XmS\ngLUtlqa/T2xf19ZiRw/zF++g9+9l8OdD6+wXnqA45bPwdBHO3Fbo74HOOSqZDJ3ZrGgHRZtqrW8t\nNN9eYbcOZZAxtF7Fq6bwMx61gTSmmCSVScHMwva6XTa4Iztsb3QYm5MEVjcC0cQIdaQwBjwtzKew\n9ztiRKmmjEebT+MPF6gMJql3K/yMMINswmETYLMWVWygjMNZRcoEpE2Tx0duMNdVYO7qKOmJBfwd\nWqLqfA6vakmtybkEaU09l8AmLevaUW8mMNry/MgU3YkKWdNgPLFIkNekdZNhUyGnNN9cOcj0Yhcv\n77vMlZ0x3R/c2InYMuUyanQILk3IhuvmnNxri0udgG/Ha0OGWrTxUToUZE7GjFL1qjhtJBcqWN8X\nR7Gw7aZjXIZW4JtYJ+3Pad9UmdCCPvybu34TADM8GOvRxPbiSjaW0bFUIhnf1+0tbi5otbgKS2CD\nAGzEttQGnUygkom44mr6enH1cM5Np1qsPGexSVD1TgYlxqCTJmw9aW0YTVcRtbKOOriPIBQyD2bn\n0McfRWsDXXncbA3V2wW318V/KHlO/fPPsXIw1FtJQKLsGP6ja62coP17C8HqLYtYNpCWlwC6fuN1\nEXr9mRdIrGv2//KVuO3L+U1UUzRdnO/HTAZnpfIrT7K3LlBpcezsAHI2nlubdpBKJvFvzqA36JSY\ngQFoNghCLSmlVchopQW2A/7cQusap28QKb7p4SHMyDCu0RAh9HdXoa9X7iG/KQ5rF64I4SoEElrM\nOk0wNw+zczEQFG/ivRbjL3rM2zUm4FBPN7Q6VraL+zt2tI5b41U6hc7lqI7muflikr7TQThvK/zu\nDMWrDZy/jW6ZC1BJ0fAhCGSdMCYuQFGvoy5MQb+0xxWm6iQWKp3srQjUqNdRyaSw88L7UvSBgnh+\nibSwdCbd0kazbtM8ZQ+Mo3zbcmltA5vbgWf9xFH08jp2ZRXd34s/MYntyqMXV3CNprSarpcxYd4T\nLC7hjY7gpuc72feNJmpkEC5NYG4u4Ici/u3r77nVYQyh3oxS8ViPWN40ffzJawJK1+vSUtNThJsz\n6OV1AsB9/Djq+iKsrJK8cFOAulvHfRs3t1JKq/zAx6j2ajLLFhyYeorUn9ybHujAL57A/SLM/Dcv\nYXtAz6/E9gmb1qV2Y5Q7CJVIttYCwPT13LL7wn/xGKmpJfz7DErdKvSthAbvMryRoVjn8xZxf+ec\nqCChDS7tUT5YJP+NSxz6jTSqGaBX1rH5LNtkN3cUwcoqo//yVfTP35/jfTvuPO4WEPpF4J8jW/9/\nDvws8GN3cgCl1E8APwGQZjPjR3kePPUIhb8439Hveb9uM3/yGiM/K5TYBzH4VFexo81EeUacE7Y7\nn4cMBgEUTmQ6BfnuR9wegX8wY8fanbO82p25QlDGNROokUH0ShK7VupgAMWV7Y3XFibE7ZTXVvW+\nIS1f9Xoo5rrjixNgJRCb3zjB3sKqUunwuW+fIc3W94YLApTS6K5C7PIBAnJJlTNHsLwct8Tlz4RV\n/mw2Fht1tTrpU9doHhol0d1FoBVL//k64+/2i/tfxAYIW0YiAchgYRFTLAo42nYPx44fAK+dJPnx\n46TTGpu+pYje/R83QSBtK54nG1BtoF6XjdEWAr1bHHDzc2wgGxlALa/ipVPYwRw2qbEJTWO4QCLp\noX3/joCfTaEN3p5dBN35uC1Ml2riyBIEopNgNE4pAX+MkokuTFRc0qM6lKFR1DSzCj+rsB54VYcz\nIeslAOsrjGfpLlbIJRukjM/l5T66MzWyiQYuAS6x82UkWFkludzAmSTNnMJFLw0UzZpHs5rASzeZ\nrRU4nJthwCsxbNZ5NLfKvPWoOcM7jTzfeP8oXWc8Vnel2YE68H0dO16xJ3owBlhVKinjYVGYUi4I\ncOsNEXHeZt5XqVSL2RK2jEWirK4ZxMyIaDNkT12QxKytLU00KbZIttuOuZPJx3R3yT2qFLYrD9Oh\nsG/bxlmYP2kBEisVzNCgAC25lo6RrdZkvguF2JUJhfpd0HGOOtyQ2rVSvCmTA4SGAI1WPw7O0XXZ\nijNU1NYWsqB0T4/ohCSSMVhlqzVUo4ke6Gt9zvU6emUdV6+z9LEDdP3GBF7tttXw+zvnqNyWz7Gf\nOE56vsro1ZXYjc3V6tjVtS3nIFev4xBDCFetyhrT3r7Xtnb5V6f+f/beNMayJL0OOxFxl7fne7lX\nZtbaVV3dXb1Mz0xPs2dIcUYkZZm0KZE0RRKwYROQwR8GZMnQf8MQBBj+JRteYFsGDVCwLBozFAl6\nSI1JDpdhz/T0vldXddeWS+X6Xubb37s3Ivzji4h778uXVdldmVk1w/6ARHe97W5x48Z3vvOdg8f+\nKbFx7Oiw1yH9vLxnm7otoNjkzf477ZyZEkVX0uqUWaZtCjwIQ+DZx8Gu3jIML2baOFKfSw9X+1o0\ndGK/sMdu5uq0K5Z3/izUxhbkTp3aqIt5sGbHtItQO49t82GFHNTGFlhQcGPaHbJxCtTtDvSVxxBX\nQojvvuHWaYdgCRz988pqz5SKUOcXsP1sCSoAqtcVKu9sgcUSGEbQwwjeYJCwJsx1SLfeWSt3Zhmx\nVvdrMAArFqAbu5DLq2BhCPHnb9AaeZSVZtlfUVrLMHEjJLDbsMgMg5I5YWWVaSHU0RA6FBCNLpT5\nnrbMhBF9OlkMwZY3iCVl9Md4u0ts7mgIXimBRz5p6QFw7ZaMk+D9cEjrmmIeMMK9qtXO3Gt2PvT+\nSRHxV6/Ae+VDd82JbaWh91rQw6GbB70L56DWN8FKBRqrH9+EeOpxRB5zTmnx+gbA77muONJxE8zu\n1yIUly+if3oC5e9eReEBtXQOivl/QQW/9BNpn36Q1vgs2Zc4vZBdQ6YKnKPB/ADe998HDqkxdFQR\nvV4De/4K9JvvP9DvZNpl77/OOto5h5cMGMShiiE6Z4rw29IJ7n+2q3f/eOiu1X+D4zPZ+mitN7TW\nUmutAPzvSOhnqwDSfK8l89q43/jftNZf1lp/2R+xn2Rffhr80nnoV999YPGvhxWjiPVncio65pj/\nl29g56W5E93mcYwdrXXipnOYsAubVBuE6nQgP7wOOT8Fdm4JvFajtgJDDVfdLtGL099Vcmz/sw3V\n72dp0fcLK4wYxZTkeJ6r4DHPz1L6DUNA9fqZhRrzA4hazbWO0O9Re5E2VXUdxcSk4gzRs+dIGyJF\nRyWRa3ICYYUCWl87D0xOgH/vLWBmCt5mE+3dAtovnKWFcz5H1PvpKYhT8+CVEkSJzpVsNl3iIWZm\nkgVjinIv3vkEpdsd8M7B5/JYxo2USRUyismZzdjvHvpeTbfRpP9fSuheH7zdhdeNyOVLaXjtCLh+\n+4HAIDE9BXHpPIFBAKBA4o2DoUnYTHU1igkMSpvLMAYtGAaTIYZlDh5pKA+ABpgEtGCIcwCLGbw2\ng+iTzbgvJPJehNYwRPf1aay8sohuFGAwKdG5PHWgCPa4CFYbYDFInFkD4aaA1/CgFQP3FSYrXVSD\nLhb8XWIHgaGvgUkeY12W8G7/NObO1JHfVnjtzYuZlrFxcdRjxytQYs9LJWrPDALHbEm7ZDkh14P2\ny7JqbAsH369n5py9FAE7rtUDyDCCMt9JC8beS7sq1ebBjOAzALBhRK+nQFHbxqZ6/WRhb+Y1lyiF\nIc2JUmbnPMMs0nEMfnohsz09HIIZIVhtBWoBYlqZ31R7TdReISBAmTEvzPdZlcYdtf7K5DcDH/Gd\nFYAxJ7irNrehen1MvroF9sIzY61+M+fxONY56bn6+Svo/f2vwG/0wD9ehr69Crm+iXh5DWqn7nRK\nMmEcugBANhrgtSrERIXmG6OfYs0B7DOAhSH927bZjD6P7LyVnr9G257TLFVlW7NTzxpTSdbRcJ9u\nFfMDEryem3UadYhIDFzu1E3L0v0ddeLVtczx85kpatkxBhGiOkFsEZNQqF6fBKlXVhFvbGbAMrm1\nhfj2MlS/T4LavR68pUUSIi8Q+OKemW9/BPHnb0LMzcI7exri8cfuKXgLHN86hzEGvTCD5Z8tgylg\n+p0eJr9/F9jagdquQ+3UoVstKmr0k/FD4A93LVL2Otk1hG2JYmEIWTfsVZGAz+4aM56wqo1OnZbS\nCY0zj9gvdg6y7Wh6MHCv6WiYEYB3TOyI5hzHinbbVY6lAAD+Wh2q26XWRamc/pTTGfI8um6puVRu\n74AV81CdLsRkDaxUpELGBrHOrPC0fY4pMyepd65i5afzybzkea79TTYaNP/adZYnSBvyo48BT9C4\nbDQR3N6BWpqhXTt35p4FjCN/VlWyxXb2wjPQoQf/T14/+dxqRDTZvfZpfyaXvfd0FB34nLX3fPwA\n7mn3CydGnorzv7OC1Z+beODftkUhAIn240GfPeKxE/AcWCwJaH77GgrfegX+d157wCP6PB7l+EyA\nEGPsVOqfvwTA9lz9AYBfZ4yFjLHzAC4B+OGn2qFyGeJuHfLD659l1zJhRe9OOkSt9mDV/xMK1e+j\ndfpozXf5F5665/vHMnZSbQ/32XhSuUwvbNIJ1XvXUX++htZPXQCbqpFugG9YAEEAns/TAjefv7eD\nGOAW4ofaJ4Aq8GHoWrx0HNOCrdNxiSEPk6SC5/PwFuaTh6pxcdC9nquupY9PDwb0ZxI9uVMH/4s3\nAQDi4jm3uAYAngvBS0WgWkbhW6+4+1GHAaAUzvwuR1gfkuuJlJDtDuT2DuLlFXJ/aXcgJioQjz+W\nAF2djtNSEfOz8E4v0WG3Wrj598quWjf+NB3DuNHagW6y2aRE4tPSil0/BGm/8EIhuX5SQrfaEM0+\nRC+G14ogVrY+cwWEhSEJcy/MQJWM3ou9xpGkNrdhlHVPMosw7XFoXwCCtI0AQAtABuQ4FjQ1xEBj\nWAGiiob2NLUghBoy5mi0C4iUgGAagymJ4XSMnU4BuQ0BzYH4ynm61oc5ZY1dxHliJYEBosfAI8DP\nxSgW+6g3C/jeR5dQj0vYlUW80T+DLRXiRlzC/7X1Et5uncavnHkTUYnh3O/HKGzee6F0LGOHC/Dp\nSapCc0ZW87aabdursjuR3OfpxFuRC5nV8ACQgEPmffcdm3CPiUyS71gcI/ozo4vxVMVW2gUz48BO\nY99nHcikpNNKko29zByYcQixSZIFuyw4MDDuYH3bshoj3tiiREtKl4BG87SYFjPTNA/utdD95RfB\nOn0HNIOLpPBiEkabuOooNqK02iWjbGGOwPFrn2Dr+RH9nDFx9OMmNSeHIZiUKL+6AizfhWp3KIkf\nDBL2xLhkSZMTnStUtDuInrkAcWqefjMICPA3jAgwSsZVn8wFbFHB6qS5dkKrf+Z5mZY/5/aTHg/p\nQoNJil3YooU9TsOgVZ0O5MYmgQfFYqaAo2MDntrrN8aIgXkevLOnwcMQYqoGVimRHlJ9lxh1g0GS\n4BpdqbRDp53rLTAmqhOkkWOOkRtDBbm7SwURA3LqwQB8apJajro9xLeXIa99AvXCfg29zP4ew5zD\nGDnv1b9Qg98GZn6wDe/jNajtOoE/UQSVmv8tcOvat8yYsqAQAKerBKUIXDEgkAVsHOM5xdJx85NW\n1BKqZMI24yNOUoy76+t00ka1qtIgaT87vzkgCiQcz4tFqPquc/5kYUDOUcOIimhhCPT6BtTTrlDl\nnT1NzqhKQjb2oLs98O2Gc3my8g53/5OnDXNz6MZO/ss7CbPRGHxw64pXTlwS2WAIVjJ6QpMV6Dgi\nICLV3hTfvA2VPxhMPOpxk55BxMwMxN061DtX7/e1g/fPzBni0oX7GquM/4HPlHK64LncfjdoKce6\nl4nqgwMyh4lx7f/xrTvonjoa/szur30RANC9cuqenzv6OcesWQbDexa+P48fn7gvB40x9q8BfB3A\nNGNsBcB/DeDrjLEvgOabWwB+CwC01u8zxn4XwAcgtuB/8WlV8NmpWcTXPvk0X9kXth9e7tTJJcnS\n0U8qxolHfwpb5pMM74i0tPnTT0C9dxWtx8oAYQwnNnYOPVnpkWRtDEVdR0NMvbyOj/5ZDZ25Bcz/\nf5x0WTodyEbDVQMOk9Rbaj+A7CI5JfCYEW1lnBbKKVDCLcyGQ+r+kJLchXo9qF4PrJ/Ptp6AFnFM\nCMAn9w+rEeDaOFItbCwMwQp5qEKI5jPTqHyYh16+SyKcvZ7TInL7c3cTenoS+dU2WHcAudcEE6QH\nomMGsXgKutmm6pzSQKPp3GAy54xz9C7PIK8U4tU1nPlOHytVz5yKkxk3VvfoILrxfSOt6+FRUp92\nTmGMEUunvgcvisGG0QNVqvRgAPQHYIVcQjs3bjOITAKpTDXVihgrBRYZUEggYWhJTa1ieQZwgEca\nMscQFzRkCIBpgGmoogS6Hno9gUG5gzPlBqafa6MThbh2fQHnXx0i/P5HJPhbvA/46U4WR5zn0ByO\ncyy6DL2OD6UZZMeHv+WhHhdxKVxHpAX62sfVwQL+8i+fQVyN8dRX19BZYJj+7beRKyUJzkmNHTEz\nRWBE4EN3eyk79nQ1e78b1qiQMwCoYQRvbgZyaxs8LFACZar7vFwmIfdcjhyfkgPNTlx2fnF6ZSPv\n2fad1GvpRXRaJ0j3+nBCsYBrucpsx4I8IpXcWNFYIeBcE5UE/BAw7kLx6l3S2+jRObPuUBoCLKW7\nECzvkONYueDOq9dVYLEEL5WcJbl1IiOR5KJbnLNSkVgDXDi3w/65SfhmLTD9TjapOIlxwyw1gJl5\n8tYaZLebnPsU+/PgH7FgjGFntVrgf/Um9KULpHPXbCdMKQsE2HYv0+YFmOttx6y5ppnnqN2OGxc6\nKSykACBeLCbPG4AAgrSmmv2+PS6tk3arNHvNjFv3XDKAVboN2TK61Hp/bLu2O7dTk4ljlnGT0/0B\nsQXM/sjdIWAAJAtYqLvr1Iq7OA9dyEGvrjsgCzAJteDkDGp0vWiTJ7TOkQrxcxfQnWM49XIX2N4l\nJ1P6XSAtFg1i58AyDA0z2OoI2nnFhe9D91uOVaMGA2IjGfdEKA2t6LfSeme2JYyANZ/mCQMW6Ugm\n196OJykTwBPIjCkWK2Ja2lZXJcFypcSprFSCrjeAKAKChDWhZQJM2TZKVi5D7u4Se04IcvlK6Vrx\niUrijJkah+XV2GkeQQggjhF4iVab7vaIRbWx6VoYvfk5xOsbULUy+NYu6YUqBT41SYAT5+B3NhH9\n9PNUgHOPguMfN1qngLfZScQpp9zPEmJ6CtGZGbCb65AvPAnx6of3dT/MxBHo+Oj2iHiXVMmYSQXL\n5909/jDCbz4Y+GWjuBaBfekKGpd84I/otZOZczQZjhwRu4rWMMdg3vR5HFncFxDSWv/GmJf/j3t8\n/p8D+OefZWfEk5eOhBkEAOLKZcj3P4K8cedQNoFHGuN6Pe/hMPYw437tFocNdpcWTWEjBUyc4NjJ\n7szIQjOdpI24VYyL+MYtPP7fCKz+fB7RqSq8XAi2roBeL0uhBnAorRkgu0hOLWLJSYWSL9VuA4wn\nC1gpYd1E0t9P27nL7R3zGyyhZJtFLy8UknYOz6M2C86IDm1ZO0PTTra+gfL1ImCq/PypS4hmCvBf\nuera5VSnA1lvQCiN/lceQ/5WBCYExMw0oDXi9Q0nsKj6fbeP3uklsLlp6LUNBwrFN29DPz7jWEH8\nr94Er9lTdULjRggj0vmA96Zp9WFBkABMWiW/3+/TePEEvLOngVhC9/tOJ8U54Bwi4rvr8AQJ40Jr\nAoI8ARZLok4fMM+wYQx4HDr0EdXyiMoelMcQFwHlAVGRQeY14rwGGIgh5Guw0GhAeAoFf4iiN8Bk\n0MFKtwrR4QjqXahWCyLwwXUVhzkKVizA6ylMva+we8lHb1bDbzP4Wz6iWeDJi6s490vH0agAACAA\nSURBVIU6LufuQoKhwAcQUKjwHpSnUbjl448vXIEW1I6Z0Zg7obGjTs+CfXgTLJ/L2lzb+9TqlNm5\n6F4CmkpCV8tge03St6hOENjrB84qWzswOwX6pJN2gJLkUb0y99lk30h3KGFVWg0MF4YtkmgVZdkB\nznHHAEj2fnfAqgWf3fHZecm2gvhg+Twls4aBCc7ATy+44o3aMHbgBvjQUiF/s2EAhQRYViYBpWQ/\nVbE2CS2EcDo3ueU9SJANufzBO+DPPgG8/af2/B77uNEmExTlMtDtkYtaWs8uHQeNF/c5lVlgWx1A\nb34OqtNNADMnJp60b7m5Skqaj9PjE0haxEa2aceZqFRcq5Fj0qT30Y7DUTBo3wlJvWZZbeb/HWuI\nsfEt1+bYmOch+lvPYVDzUP6kBba65azknWZVFBmwkFrqxESFdEd29zI6NmJxHmpzm3SCzOfE9FTC\nItnaAi+XEx0rdxgnM+doKbHx5TyqH0v4tzap4OQ0luJEtydlmGFBQXsPMiPWzMolwABCYmoSmJ0C\nPqR/OxC6UgGTioAka/8uBBjM9bE7Zq632UBmn0eF653umW2XHR0jqTYv5gfZQqpMzXnDIY3DIbFi\neT5H70tJ+ki7e8QQVNq9lo7u0wvIv/yR264wduul97aAfA4wupFyMECzm4PlmqS10+AJJ4TPwhC4\negPSOBqynSZ0bQJsd49aHb/yDHozAYoAeM8c+wmuj/mzT0A+ADPIRrx2F9u/eBYz399A4HnA9JTT\n9br/Towx5jgMCJ7+ifnZrN08cOAaTvcOFpo+9uAC/gOknN65M+44vT97HXf/8VcRNFM5xImMHXak\nrXaq30f0d76M4LvvfM44ekTjaCDMBw07yQcPYnqWhOp2MZi3+hryWMEg7/QSxJOXaHEJWoSk3cVs\nnKSd/KeJqHz/zxwmnI36o8KEsvpAtjpqK+ppyupoC0Uq5LVPMP8vXoa/3YacyEGdOwVRLhttnSwY\nZKnoGe2GQ2yD+QHiF54EN3bI3uICuYa1Wkl1nXOwXNK2duBvmVYz+kssWS3dXyuq6rN8HrxSogWc\nAcfs2FSdDi16K2Ws//Qk1n4yh/iLj1NFP47BczmIahUsDNBe8BHNl6mXvt6Amq6BP/2EOS+K6NQ5\nanHafWkJ0fwE+ExWayb4d69BN9ukLQFADE/WW4Ax5hbUDxRKuoo9CwJnm6sHA2rhGkam8skgZyYg\n52vQS3PA+UXwyeqnBqTilVWwvTZYfwi9ug5s1RMBTeMihjh2IqSuwh9JsGEMFQqAAUFLQzNAFjSG\nExpRWRm2ELVyAYCWDH4Yo1KixVVP+vCZRC3oQc8NUH+6TJaujy0S3f8e492GLuQgQwa/FaH6cQS/\nxdCbU4hmIlSmOnimuobHC+t4vXMOt4YzKPIBIu0hxyM89+VP0L04xI3lGVQejEj6mUMz0LksFKBa\nbWflPFYfIc0Qusd11jeXKanLhSS07PmO0cHLZbqXjT6Ha79KW9kzBp4Lk+cM49n5IgUgiVPz2Xaa\nFIjIhG01S+5FHSftPbZNQBtGmrbJVsoe3LEVTWtI0qpkxibnVOUHqHXMCP0OzlKLNwEOZvutjmGK\ndNF+chKIZQIemLY4USrSZwyTCowBRiieCe6eA/Kjj5PtA1CFe+vAHH0YgND3oJopdsZBYEkaJAGS\ndipzP6thBG9xgbTZTMTrGwSAFItjNYF0NIQeDqHa7aSwYD9nrrnbjm0vMxbw7V99EfIbXyRG1zBK\n3CvTR2ifjcYpL30PsDC8d5u11ckKw6T9cLTFxGgiiUsXnH6R92evo/jNV6De+oAKEPNz8ObnwMtl\nEg+OY8jdXXde5e4eaReFofvT0RDxnVWoZy9Sa1qpBNlsQ/f68OYTnUWWy0F3up+tXeYBw1uYx7AC\nlD/Yge50Ev2akTWXVnRfErPHAoKKnvlG8we9PhUnAGBuGnGNzjcJRNM4kM0mWOAnLdDKPNNSVvH2\nt3UcGw2rLIiplQY3+jzjGGbMD5JW2d7QPLesAH3kdLSY50FubdOco7WZc4xWnla07jHzHznUDWk8\n5422keAQlQq1Cl44B39vmCncxpdPg5fLwHYdspFllQiRXZfIrR2I6gR0p0tti+0OrLMe6agpYil1\n+8Dz1FoYVUPkN4yg96j72wnEUeVW0BqTHw4w+IUXIDe2HFiaaUM8KMY9/0bbmlPBy2V0fuVF6Jee\nS+akaH8eNa5dDMCxaiTJb3zx3h9QEoPJz762jG/dybS8aU5/JxrHoHmbW2mi9Uv3OXefx0OLRwIQ\nsqJsbGXjPp88fISvXh8r/Hc/McBPG92n5iE/vI69p8ix5CDgR4+ZyB6F6M0ecRJ+tJJEDxZpMUz7\n4LFCq0BSGb1H6JV1eNdW0Z/Ng01WKbFod2jxYC2jlXa0ZdXvZ10xLNU+rR/ChavUxgWBxteWSIuh\n10sSencMyrQBqcRm2h5bej9txc1W82xlDgAPQ3iz09Bn5qEau0T/tsymMcev+33M/k8v4/Q/exnB\nSh3s9ALYExfAlk6R+KLvI1+XYJERuZUS6r2r4K0OvFPzBsDyqHrX2EW4GyOq+IgWJsEmKvAWF5LE\ncjCAnjFaXyeMJWqpskyGBwklEw2Q0QW6lNDdLnSrDd4ZgEkNzTmgALmWnfMyOizuxf2aGmqvCd0i\nMVS5vQO5uUVtRkYLQvf6YFFMCbRzsmKApH1THoMMQayggoIqKGhfgw8Y+BBgEQPvcfBdH1GfFpP1\nXgGrnSp2owJCEePU9B7qz2isfr2MxpMlwPfgnVm6v26W4IiKDMNqgNxGF+VlBV2LcOHcJi5Pb6LA\nh1juT+LfXn0Ov3PrRdwazqCpcnitcx4TQR8vXf4E3maA6W9/fMiLc8TBAXZnHcxLMWHu5eQ1qpcx\nRsRX9fum5dBoYQieaXfhxWJSVRtlBgH7F2+GZZER6zWfufpfkXaXcy9LM6yUpgRZkQ7P6PxgW3gy\nIE9aR0uY+YtxBy7xcnmfaLAaRvQ7vZ67X8K3b9GbYUgVfyClByKx9ewIwGXAMtXrO20Plgtpzs3n\n0fyZJ6D6fWKE2NPvB4BhH3nL2zjZIEtuRLFrcdkXo/NxOrk2yXKahaY7HWB2EuLyRdJfnJ4CO72Q\nYY05PanMrqSYbEqa66jduHGvm1Yy1e+j9P+8AvHdN+jrRqw1Ax5xcse037VjJKNhd7/CmNF/cu3F\nKfCP+QFEuQxRqwLbDdJdGmlB0J0uwBji9Q1yz7QteY4FxWh+0uQqpocpVzYlgR+8Q2LThmFFYt0R\n+HNPUmGkQ1p5n6pN5ohieG4G+Q2A7bWSud6wahJXLyRsHaWcKLNW2jjR0b2qev1E22arAX95x3xH\ngteqtL4BiMWqdAJQ27BrdpECetORGl98ngo+8TjdpdRvMqkAp19F84drmVdUuGKFPL0d+Mlz1jHb\nEqc4b3GBxuJEGRgabSWt6XiGEfy1esbJkA8JhJK7e8k9FxAA//z8SgLC+wEBVrUq5E4dqk9zD1si\n+ZbOz12BjqUBizrg1+/AW1qE/53X4G+Y9tb7aE8eZdiWMbGydWS/6X3vHYRbRgPOAnZBcOSarWxu\nGvXf6ODu14pg+TwYZ+PZSMcAXNwr+NNPQPzF2/f9XDR3uLXlQeMhDWjldjT8zskep1ZHX6CVH1zD\nxBtHl+cfGIcoTH4e++ORAITAGbz5ubHMms8astkcS0sTs9NHtg0AKFzdgPz6FxHsyfHJnAleKTm3\nEwCPzIAVw0djP4400u1i6T/7XhoIuc/DhAkOzNQgcxy6mHfJiep2wQMfaU0Ql/SYRawFgrSUmUUT\n8z23oA7+3Wuo/RVRQ+VOfaw2EcuFVO3M5yEqJdIxSo0f1SeXEJecGs0gm1RpqajH/e0Pofp9cqcp\nlajyG4YQU5RQiIvnySI+dR/Gt+6g9fQMmpcngM0dxHfXES+voPzaCrxtanFjQQBRqZC4pVJ0zoyY\npNzdg/+d1xB++1V4N+7SInbCuDN5Hi3Kw9S1OcE4dLvfYX8vJve29LzjxIK1Jmp5s0PtWwB4q5P9\nrB+AT9b2LRBEpbTfxSuKqC0mSNhg+7SQOKc/T0D79MekhOjFiEOGziJDVFMAA7wmBx9wqEBD5jRU\nJaa/nEKQjzBV7KLgRwhFDM40etLHTquIoM7Bh4AMAZ0PIdc379snzgYR+BAIWhHAGJRg0IpBKo52\nFKItQ3CmkS8MILjCniygr320ZYhXVs7inY0FlJaZaw056dAMJtFMa2lg7Fiy+ifJlw9mCikDBgFw\n55CXDBDkdDsM28syFFK/rcZR5I3DVzoWn6IFWSLMGmY+z0LSOOP5nJkreYaJpEcYRbYlhAmRVPQ5\nS9yDwpEijDJAsmk/s+5H6dac+JkL9NHBgJJAxpDbpjGWDiZMW4y9D2yLWa+HqGDOTeDT+3bfF+fp\nMyec1DPG6Xoagd1MocBGegyNE1f2g+R1xqDaHeg7a5DXb0K1WgQOX79BYI0DBg5qO0Oy/XSLo32d\nC8fq2QfyWstxB1JR0UKUy/AWF+CdPW3+u5RxlEoX5Jg1SDDCzi5G9zcFMMl2h8SPcyG1GRYK9Ew2\n54QvzGds6Pcdt9bJ/HQPdoLbxyCg5P7961DG5h442aTeRm8uRHk1pnZjqWhuty1RSidFI7PfABK3\nL6vxlAJBlGE6ya0txMsr7vXhY7PuniRHMH8fC4N5fuIAdlAbkAmr8xWVSOAZyDJKXAEtiqFbpA/j\n9J4Mk5AJQd9xLX6em2t0ZHT7eMqBb2GK1iZRbPSVJLVSdruQ6xvAMAI3QLG4dAF8r7tPHFjP075O\nBsmazALeOh8mzLdSwRXyWose9Bx9T1rnM/Md+fEt8yM40fBO3eOe+Ayh4xh47YPM2kXHMTB9tICQ\nWl7DcOjB68O1/45zM2WeB14sEtvMOA7SG8d0om8uH8oVkbUPN0foQ3RVVG4PfiwYQgBORtNXawx+\n4YXj386PWZz8U21cMAZdOhhMOco46tat+PYy2Llp5NfamcXC6HZkvZG9wYzbw4lqG40GYyje+TEA\nhEY1CxwbKJVEmbBuNqMLbyeWODIJyt09eMUiSh+TSxMrFcFBlXL4AQkpRiMq/FbwMr2IMlR4xhjp\nZwjhqsTx6tqBgms6jiEvn0Z/JoTXU1AeQ2vJw/x3Vvf3UmsNHvq0ADKLRCviuC+iiPSEBgOIUhGq\nEKK3VESp0yNxzdT5qry6At1skbOP3VS/T9o4gtO4t+f9HuNZd3tgUzV0z04gmMjD+/AW5O4e+MoW\nJAB2snjQp27VOlSkNV5AYBzJt5D4s261gXwI5gti75hgfgCxdAo68CFmprO9254HlstBhCGJpRrx\naNkeOdeakgQmBOnQlPPQoY/+dI5YLbGG34wgmgP43Ry04EDMAK7Bh4yAoBwBREFpCCEUGNOYn2jh\nTLEBzjSqfhcFMcTN7hQGmwWc/8EA4coeuhdqYO3uoZPs0t0Y3k4P/cUSGlcAPx9BaYaASxTEELN+\nE//ZxVfAmUKBD3F7OI31fgW9VgjW9rBw9yFqsjEDhPT7yTyTFpHOXH8j7Duu2DYu8QWyWioqsWzP\niNHbxI8zqgKnge7MfzmgTCuXaf3i/8M0gJuA7wP9fgJCm7lP7e6Rzo2pkHtzM4jvrtMcNUiJBmuV\n6Hjaea3VAhOpZwoXUHuthFEEJAk9DCjDaQ7JaOLkhFuc6MEA3uICFr71CdQsCY2xMCT9s909+n+T\ndFq9M7m9g6nvfALJBQGnnkc6MvUk6dPzM8AJYopaK2pdOkhLajTG6WLY54wV7lUaLIrAc2HCjrhw\njkR07XV12lKGIZt6xrl2nSBIPu+eoRJ6IN11YS88g7jkw3v5fWKZGrcza1YAGOZJr+/2U8zMgJVL\n4Ia56Bi6pqXWHdeIUDUvlxBvbu8/D0pmgGDNGLVaMwbEMeIbt+gQwpCScc4galV6jm7vuHvTrr14\noZC0G1YnoE7PQ2w2oLs9yN1dapuya4ZUMM8DIpxo9Ksckx906bgybB0j7sw4oCNABNDDIYnqagUW\nkpagayFTiX4gY4xaX1OFKBaR/h1TVncxxcTRMtU2mgK3LVAtBIlJ2+DCtecVr25CpV0BkUqGGcuA\nUm5figVwIWi9ZQBOxhhUr+9AAguS6mEElgsh5meBlS2owIdutYlNBCRzchxDV8vQt8l5W16/Afal\nKwCAzq+8iIkfriJeXkFcyYEDeH/3FDiWzW5r8OeeBNa2aWwHPtAfAN0eeLGI+b+ok/GGZXob4Dtd\nOLyfffhRhtaArpaBo7ZdV9JJCeg4hmq14A2PEBBi1EZ8/n8GgK7TW1MYk1/5HhmX7DXBFuZI96rd\nPbaC0WjOJqoT+9rTvFPzKN+4P2hEP3jws0DUapCNBsI7dexeurfL2OeRjfDbrz3sXfiRi0eDIYRU\nZeq4t3QM2/Hf/AT6/ZQY9jj0eFz12B9TITzB4IUCCltHm1g9DA0ht9gF7otqj+03NgvrgywxdRyj\nt1SGFgyMc+pX9zzD/uCJroMJbvruuV2IuIVSTOKrrRZ9PyWgCN8fOxZ0HMPbbKKw1kNQ7yO30YXm\nwPDs1NgqpbOJtT3992hlsfeCbncgNhvIbfRImDgVvDqBeGU1AwYBAMvlqKInaYGfqZiMOQ7mB+DF\nAjAYEniaIz0jAFBHyAx8FMJV/wHSR5HKtOkp46ZigMdUe6CYqkEXclRNDEbGghAkHF3Mg1fK4JWy\nof+PEVMUArxcgqpVEE/kMayF6M55aC15aC/6aJ/JQ1ZC8Jjaw0SPARyIi4rAoFABoYQQCkIoBJ7E\nIPbQkz6K3gAFMUTIYgimwYYMfr0PvbaBYO/wrXc69OF1YjClEBcFoloMLhSUZsh5EUqiDwGFCdGF\nzyQ2owpu96ax0y+CcQ1oINx9iC242rQsHGQUkLEt1PevAI4KsXJG90r2RThhV8YTAXlFQJBr3dnX\nGkT7wktFBxoVXrs98pnsd9RgAIRJBdzpcATBvs9m5rDUvmqTTDqgPX2M5jiS9jIjcuz77iN8aD9D\n1vK6mEe8vgHtW7BMO/CNscSG3rWqAUCvb4B542rkeaTx1aGkVOdOth7GGIcol017T+pv1IZ7XIyy\nhVLt0Bl2KGPQuWAfMGtbuSzTwlnOAwBLgfpjwoJ04m4dwXIDOor3sV7ddkaKI3Jri5L66gS1zt6v\nIGdEpOONzYR5dK/Q2gGzOiU2LmpVek4LQe1jhn0GgHT+DJtb9XrO8U7Wd4F3P0K8ukZskZSYtjAM\nXXdOhieMBgFQPiB6I9vVKmkZA2j8W0DP3gcHrYkU6fHsW69qmHHJDNMvTjQHASdMPV4TJnu9HODI\nGNTmdjLObMuZ2QYvldx3Mq1Hyjwn7TaBRPfPFD9YLnTtfQDIkMO032vTFje6VpIT+cxaUOyQpldv\nmicOjwbYqneT666HQ6jQcy528D1aMxlgmzeakI09B0LpwQDaE5n10ZHoFh429PHlVjqOqUXValZ6\nh5jHDhOp55j32lV4b3+SjCsp9+l36f4AsQHAWbuL+OZtGhMnlFup0cIcAD05gbDx4NfZzeu9PtSj\nQd/40YkT7jj4cYhHZIhp0rs4prAoK3A8k/G+ZNnaVt7vew/REhEAdn71WUy9uYujrFfw3sknatYV\nQyPlvuOqWiMOLqZ6vk/g8B4ovdzYROFWFbCLQEFUekhJNNYSVeTAOVSfnD8Y4Jy2mEfWrdy2SMVx\nKoExAqGt1v4HmHUSMxRLqydyanMWmz97GhXvOfh/8XZmkW0dgKyTELUrpWyHrc5AseAcsFS/D7W6\nBqyuQVrh2ZkZsGLe6Qx4p+ZpP5stwFjFA1SJ5WFINs/dXsKSS1tVgxIFR1u+uw7+1eew8usXMPva\nKfgf3qEF+6MiSP6AoaVMtTJQNdMtVqMYut2hBaPvwZufgy4TQwsAWe/mQnhnliBX7xpmiA8dBgQW\nWSHMMYkVLxTA5mcQT5XQn8mhXxOI80D3FMNgSkIHCtAMlatFlNYUgiYAMMgyoOcGKBaHKOf7kIqj\nH3lQioNzhb1eDndQw6ncHvrKRx8+8iKCChX6CwXk+BnEJR98sgLc3rdb+6J7rgotGEQ/RJxjYKGC\nUgzdoY9+TAvplsphQvQQaYHvbT+G3X4eSjPojofSikD4+tVDOZodRzAFwA+oMmznl5FKeWbeSWns\njDKIDgKB2WOngbc+cKCIBa11mqEDuN8R83OQG1uJqxTgLN0p+WeusqrNApaXilnraXt8nk9MH9t2\n0jILXs4gqhNQvX6yH5aVwLhJwogZ6Rib3HPzjnVA01ICge+0i/RgQOBwKkHzr61CSgkehpCNBtrP\nTaP0UaIZ5RgolVLyHDVzv45jOlajfwNOwrssnwN2EgF227p5kqGHQwfiJS+mRnKazRqQy5IzGBgN\ny7SRklp4/IDaqj64NrLRZKxpaXSHRmzeKUnnVJvzDXBmRPetC2K8srpv+6PAE8/lwHJhZm0T37gF\nMT0FMTMFubl174X6CHPIgX58v9uYZb3J+q47P/Hf/hL85gDy7WsZYMqbn4NqtqC6Xai+BEu5W6mh\nEeHWmli7o6fZD7D5D65A+cD8n29DfXz7objkcAmwnmmlSjOQx7gAEoMpcsdkxd6tduHoszZtQ9+f\nC1G6IQyw2wbjKqM5qAaDZB1hwYDICiYnrm0sSGzo1WDgQBExUUlMGMIQqtOBKFELmWq1XKEIAGSj\nQcWkUomAnmHkwBYmBK21hAFx7L1j3dcYI+ZXuUzsr1YbUBr84lmoyDi4mu1YtvX8799AbJgl4oNb\nqP/HP4HW+wxOaEJriM4QKBQgd+oQfAqQCqrdgTizBJ0LwLZ3wGpVeMUirZOujbgfnGSiqtixMZJ0\nHEOXi9j92fOo/d67+9faB8UYtzGeZqmlQEVlmOi8WEzWtiNi9mnGjl1jxssrJ2ZzPg7kXvn3pjD/\nyn75h08VXADnTwPvXYXaa0L5PwbdHKng5TKGX3kc3p++/rB35fMw8WgwhDSOlUapez3ol54jC9G0\nve6DxJj+fgC0SHpEBaRHY+dn+lBvf3ikv6nFQxhSRrMmIxg9WnVNaRXYdq5Mi9l9Qn5wDfLjm1DN\nFokR2u9ICdlqUXWoVoWoTZCeS7ebYQGpXg9qMACvTkDUagQWGPFnVy0LAuPOlaNFTOAnlX/AuY/F\nyyuY+cOPMah66P/c82OZQi6RBIwTUJrGbarSp2b3CQHaJFBubSG+vQzdH0BcPI/uc6ehy0XwiQpY\nObGm00MSHNXtDh3/1CQlE0ZkkJfLY/ePRwq/9pt/ii/8929h+TcvQ1y5/OOD6Gvj3Bb4rvrqtBx8\nj6qWey3oXAC5NANVLUIWAshigLiSgyrnIGcmwC+cJb0o3yOmkcehw4DAoZHqPPM84Pxp9M9Poj+d\nw7DEERWB/iRDfyFC6XQTFy+u4/mnbmLw1RZ2nmbQngE3AAS5GHOVFmYKHUzmu5CSY9D3IbjGfKWF\n2UILHlf4qDmHP779JNZ7ZSxe2MadvyOw9vUJ9Cc9yKKfccYYF8wPMKwIDKocexeLkD4D9miBL7jG\nUAk0oiIaURGRFijzPgIhIbhCb+jjzLeBhf/u5YcKprN0t4a9f532yj0EVkcBooM+D4DvGi2NVtuw\nzKSp0idAt7u3uADiOCs6rzW1hPhkLy536kmiaHdLqcwc6SqvmlpGbEui7nQooRxG5LI0GIzoDukk\nEeXMAA0jLSFKJhp6WhPrx1rG2wW1TRjnZiE3t8BLJUq0ajWs/V2ju3XrbqIXk8tldbNMZZlYCNzZ\n0+vBADoaov30PCUxXQKu1LsfjT33xx62aJHSAspo2pk/u99pYebM51PjSksJns+Bfflp4CvPjNe4\n0dq4IAbkAHnuDER1gp43qWuvBwPSWxkMnMuUfSZZVy5RnYCoVul5VShAzM1CzMxAaw3ZbGfGB/MD\nyO0deiZMTx9YuWeeN969S0nwUhHe+bPghQI5q83N0nNsRJPL+7PXIe7WwQKfPlepgD1/BTrdGslI\ne8ibmzWW7OREq/oDeHMzEDMzEBfP03+nJsEEx9S//D5m/pfvg/UGiH/yaYjHHzvUpT7KYDGocGo1\nuNTIfGJ0nLTSzujCsXctU886c9mQkuYJ65RaLCLcHoIZ9iobYRmRuHRyzlkuHMu6thqJ5E4aZp7t\nehi5JN79t91J2BBmPhCVitMxUq0WeKWUrJmsW5qUji1ITCFzLpRywIFqtUgzqFQkV89Ygl9fdm2r\nNnixiHh9w7n2yWYTS7/1MS78Gyr4WjdU1u1D7tTBAx+63UnE0pUC6w0gZqappdu0tz7UUEjOyTGE\nXl6D39Xo/+ST5Hh6n2Cetw8MAjBWOzMT5jqzMDz0s/8kwKCDYvgTLYjXr37m7+/8w5cgJipQH1Dn\niep24Z2wqPRxh2q14LWGGZfMz+PhxiMCCGknHnccofp9sO+/naENHybu6ZZzEKPEViV/BIKv3ccN\n6DP96ENCsS2d2domuwp8SvDVJOoZ15FPCUKoTocARmO3rOOYGDKBD13MY/jsOYgnL8E7NQ8xPwde\nqyXbVxq6RzbLqtul74WhW6SLyRrZTpu2Mvg+CR/aY0svluMYlbc3Sez6y0/tS9DUMIK1Y+WlUgIu\nAS5BBGMYPnPOgWdiahL83Gm38IHWxKzjHLm1FlhvADU3CdVo7BNQ11pDF3JUxYuop1y1OyQefeVS\nxlkMAPSr7+J7v/4c3v2tpzH9boTW41WoE27hOM7QwyHUHp0D6/xGbRvkGqfbHbD6Hng3pb8RCkQV\nH3EpgMx5YFEMudeE3mmANZpghsLOhlFCWQctZNlTF9G+NIHWko+oyMElIHMMMq8BoZHzY9TCLqbC\nLn763MeY/soGmpdjyBzgtTj6rRDb7SK2ukV0owCFMEIuP0Qt18NScRdnig0U+BBbvSLUyzW89e4F\nPFnbQO1CHVoA5RsdBDc3E7vwA0LMzUALICoyRAUGr68R1jlyuQhzpRYmwy5qBP9O6gAAIABJREFU\nfgddFeDOYAoSHM9OrOLx6hbam0UU/uy947tonya0cXNTSQJvXx8bmZYpnWmZ2DcHMYb41h1KpFst\nY62ss9b25pnJHzsHAFT91gq8WHBVexKbj5KKO88md7rbywJMVhvEHpOxf1bdLnilROzGKCL2Wz43\nVlvF7aOdfxWxVwDDnLv8mNkcgfM8nwPzA9dGC4AssRdOEQAeR8CpGfA9jxhP9Uby20IQqMRYxr5a\nPPU4ieFa4Nscd2/KHL9n2nlPGIDWSmUFjZ1td2r8pOzeM1pSadew9OeRtMOowQB8eRPexu7+NiDb\nHmxAJtXtIr51h/Sczi6BnV1KRMTtNgcDAhIHAxI8b7XofEtJ1u2NBgEp3S7kxibk1pZxWZQO7AMS\n9ki8vAJoBVGt7j85htnlvjcCGsndPcQ3b7ttodeHmJ2Bd+EcPYvM53m5jHh1DarTodavZhP6zfdJ\nqy4FSMpmk1oQ7Xk1Yza+uw5WyAHbdRJv7nQziWV86w7Ed9+Aur1f7+a4gylkmKawrfKmRdOxgm0L\nGU/AIADZ9k4DEGkjSq26XRLQjmP4V5dJMF9bzaektXN0bevc2ID9RVLrwmr1zmyLeEpr0woBq07X\nzQWysUvvTVazbDFuXMc4MxqIHNZpTUvpXMOsphVLrd9lswlWKQODAeT1G5DNpgMWyDGWOXCq//xZ\nAIB3egm1oAd8QMxEZlpa9U4DPPDB52czgul6rwW5vErjpj9wz2sbDlA6hCDxkYXGsc5zqt9H8Q9e\nR/6N2/fVQxXViaQwFob7rerTz7aR17VUNG89TM3VQwbzAwzq+QcCpBo/TeYv6TwzbP14AUIAgB++\n+9DMQT6P/fHIZGBHLfZ8FDH2hv4MIMKjGL2/9xWUHlBQWly5DPl+tsqqHwIepPZaju3j9Crcolll\nhaRHKquZyDCKDONozLW2QrHpCpPc3QN29+CvFND/6pNofm0auV2F0idtcM4gNzYTfQVj3QxOTlws\noCp+PCL8N9rOoQcDiOoEWK2K+OZtYK8J77EpbH6xhKncFXh//V6yYFMS8Kl654Ssh8PEalVJyA+u\nQXwAlwyycgnD2TL4RB5IMemkoTzz+Tng+m1H8wZMm5JPdq16dT3RG/DJOlrtNTF8ahHrP1/D4l/O\nwrt6x7mYyQ+uUUVyGCGfz+GkbeePNSwwPDJfEO2ZFtoyjiEAcExA1QrgfQmvHUEzQBZ80hRSktoL\nm02Ifh+8VgX6A7fI9hYXEJ2bRW82RG+KY1BjiIoMPNIYloG4oMEDCakYPKYwGXQw6XVQme3jdmkP\nrxfPIPg4D2z6aIk8SnMDVMI+zpQbiDVHUQyRFxFCHsNnErVcD2vnYpROtTET0PjMbWng1fcQH2Je\njBcmEYcMfluDaSAqMDAJCKZR8fsoegPkWIzFsIFXd8/hrfoSloq7KIoheE+M12c76Ugvsg8CgPbN\nLSTIemCMmZfsnOWejSOtZ1prMKsNc24J/NYKAdO2RcSISFumDOmYDal9yw+cVgZAlX/Z7rj2nETr\ng0NMTVJFvFyG3Klj8O+/gPCPXjXJHIMeSNqWEToGkG0Z5amFvmlBtQ5BfLIGtVN3jAKAkjdxKgGl\nsbGNi//kGvRzTwLvXqPzmErgwDh4PgfZbBI4Wt+DmJmB3NoiVrCZb5wGg1ZOUPuhROo8ZVqbgWyh\naXS82FaLNBstBRbpgYTaqTvATkZxFnQy15ZPVMg5K45pbJhWPOaZFtZB4mqnh0O6VuZ3Mm0YXBih\nYmJnMMboGWM0rXh1AtHZGfhrDcS37lACaKzFxdxslq09pg1yNMT0lBMot3Oi3W8xPU0sIPPMtO2R\n3rkz0MU85PsfQXW7biwDSctZGmDzTs1jeG4a/poP3upk3Jl4Lkfgw2DwUGznmWHSp2UPXEs4kIh2\nC9MexnTSGm/AayYItGVMJ99THAyS2HacEVCs6B6hOcjOP5blmjpvNszYdK6KRtsIXCTnyjqG+QGt\nDbpdArEnKqRHGMXglRJ0rw81GCC+dQfe2dOQ65sESjYadE2nlmjuSrsdBgHtswWfPC9hHE5NQl5a\nAu42MnMeQOAx6/TAJ6uIby9D/dTz8P/kTTrcShHv1UNUvXW65pZxGMdgpxegd1vJGo2LxKWMcUBK\n8N2Wk2MQ1QnI8/OZddVJBNMA6x9vgVrH8eGSesMO8s6dAQbDjMC/vV7M88aCPo9ykd1bXHASCgDQ\n+Q+ex8T7D7ZO0WMSqRN3Gfs8jj34iKD/UYV34ZwzWPhU3zvyPfkswfmnZu8c+S6Uy7RQKhcQV0n7\nQ7x1ff/k9GMABgEAk8Dkhw+2qGk9XkXh/exr2jv5Wcs9LKw+R8rJJJNQ2c+kY58rT2phnnYOGg2l\niSKczwEzk4hOX4bXjsBX6/D/5HVM2c0B0IZqn9HUUZoWQXFElbFiwTntsFLROaLwXOicXPRgALm7\nB2Fp+5M1eO/fRf5mDt2Lk2AvPgX+vbeSbQyHiZ6VaSHhOWIz2eoY80ggW/X7ULfugKecy6wmhQ27\nOOZPPwGxVYfc2KT+/4vngd09WnDPzZJGiWFQMc9D+Op1zPqX0Xg8jxrOgH1/L0kwpieh+wOo+i64\nODn3jROLkbFDgCUtxrnn0TlqdeExBpUn1gIDIPoxtNhfJWedHngxD1YqwpuegpypYlj1oQXg9TVU\nC1ABw6DGoAINphg0S9qxTgW7WPAbuBhu4EphFWcLdXxTfhHB7RC658HnChfLW5j1WxhoD5ES8LnE\n9fYsllHDsxOrOPNCA3NBEzkeoRwOUa8xiEsXHHB4r+idykOGQNjU4FKjcdkj0EoKlP0+qn4PIY8w\nJ3bxr+tfRmNlAitzE3hufg26GgFGW+dhBo8A3es6wCUT92IejrYFAVkAe/Szo2BT6rftfKJX7tLH\nmx2oOAYPytBxBDFZS5wtDYBiQUQtJcRExbD/hLOItwyDtAi2jobA7BSwU6fnY68Ha5vMJ8qQ9d3E\nhUowwjCMsLM2x8E8LwF7PrlF/zbtIbqQg1qmBZHqDxLHlp2G00CyCXw0mYcw7jbWmcybn4Pc3iHX\nIc8Dn6whXl4h16CtLURXzkD8oA1IidyuSYCNdflDi3E23fbZNe55M6pT5YBDmR1TMMlZq5WwEFJ6\nHYwz8Evn0b1QRVQU6M5yiIHG3B/eRHx3ncSc0/bU6d+2WncGDLIaMXZ9ZAECCwioToecrVbXEAPU\ntiUY1GvE8BOVCsTUJNRe88BioKhOgOXzUEZzTff6+9uTjJC4brXAigUMfuEFMkcw27HaMNZ1TKYM\nDHQcQZTL0FK644jvroPfXXf6ZGmNHNXvQ9Rq0IbNdNIuY+XlAbVTGe1C66Kmh0bg2zKBjIGF/bcF\nikbbzMj9kJ5FWnEwrgBJaxMdR2AjTDQbGW2mU/OU6ANQW9tg+Tzk7i5ta0R42gpx8wq1guo4Jhtx\npZ0Op/BHWIecu7mj84tfQuFbr0D3B+C1KuQ2tQZCKWI3DQYEKuRzBCptbJLosefBW942jmMBCUAD\nEE9egg484G6bgB0u4G+3IZWkNpbtBjY+Po+qNG5kjQb4009AvXcVXmzGDOPQ0ZCs3U1BT+7UwZ57\nAuzaLYinHie5gd09iL0elB+Qrs8JBY8Buf1wGRje/BzU/BQ9Dy4uYvd0HtXXN8j8AjAsT+6A1tG1\nsru2j2ikwSAAiHMME7cOT3Cwz7l05D7KQVw8n7FoP+liO/M8PDShxr8hcRxgEADIWvH+HxoTjwYg\ndIw9rocNffEM4jffh3d6Cf5uCzqWiL78OERzCL68PhawGmcv/6MS2894OPd/3sGD7H3p+t5+QeqH\npXvmAKC0gPJIojUu8RqbuHHQwtwcXbqia2nQ0ZAWlPkcdp+bQvE/X8XjlU0shLvYjMr4o2+/gDPf\n6cN74xp0r7fPnhdKQhsGEoEze04IVZmxZh0+MtU6wFVW440tiNoE1MYW8vkAa1+vYaH5BNQ7V7PH\nJiXpQRjwB7PTwF6Tqv/TU9DlIsR2I6lwgRZ6ulQAG0ZO3NiGeu8qJQRm/MtPbjkbXwwGYKUiGOdQ\njV1Ik0AEf/wqJgECjy6dhzRVabWxBXZmEazVBuSPB9h62NBSAZ0OdKtFCXe5BEyUSTOoPQAbDKFH\n5hhimflgp2ahQh8QDHygEAwUWMWD8hgGIRBNaFpAKAAamMj1sZDfQ45FWItq2I7K+ErxE1wprGL5\nUg2vqAtgbYGdTgFxjZJJqTl2oiKm/A6u7syiNwjwtSsf40y4g3c6p/H2zgJa/RCtSzE2vjGLqekS\n2Mtv3/OYowKH8hmiAocYmoqzIe/lRYQcj1DhPVR5Fz9/5gO8UT6NybALzhTANNoXyii8dc9NHHuI\nvjQtmQeMVzd/pNqADmMzDtwDHMoCTezyeeh3rrqqaryySsltRALPqt3Z9x2ez9E9mnLkoXnIJI4p\nvR96gb6vblBSLTe2wM+fQfjtV8navJADtnfA8hVgGCWCsiKrqcSnJ2m7gpJ3CAEeBFC9HrBJc50F\neajNY48EW41WWedXXkTxm68g2GhDghIE2WzSd/I5l5SJmRmoeoOAoTubkAD8tT2w6SnEq2sofvMV\nak9JgRo4wcIz8wRExRhcjAEHx7beWDex9Otp44SR55tN8vetSwyIIT+8jsLmJDA3jWq3D1UqYO2X\nL4Cp86hdGyJ3cwd6u07tgSlTAndtTYuz1bOzIKJjm6RasMTUJDBVg/zoY+g3k8qRmJmBPD8P724D\naLYPPF+WdeuOzfPhLZ4CoohYMpUSWBRDG7dW1ukh/H9fJZMsAwCxXFJMsfsvZqaho4ja3Iy5g5iZ\ngdrdg5ibweDSHPytLthgCNR3oZfmoI3Won1GsjA8cUAoeOdWApaMcXljjAGe71i6zAJXjDvAyBWJ\nRvSHnFOrVqZgoQ2oNF7Q24YFQXihQEyyYWR0hrJsRp7LkXh3oUCt8zbBD0N6/rk5jtM6JQjAqxPk\nFGjF0gO6Z+TWFrzzZ0nfSiSC1VpKiFrVMdx0HAOTVej1LZdw83KZdKE8D2h2INfW3X3nnT2N+EPS\nbNH9Pm7/o2dQe8+031sg3hp2dHuwLXTMD4AwgLe06O5HpRQVyNInq75nnBVPrmgqBg9XwoLncrj7\n9y8g19CQAYPmgN/TaLwwj+JaDcH1NWrdTLGp9XDoGJ4AHmkwaFzsXuY4/682Do2ljIJBAHDud9dx\n5z86hcX/NgGEeHzCLc5x/PDyuc/jgYK3+tCfQVT9kQCEqEr68LbP/ACy6IPD9Lmb4H+xRQyPLzwF\noam6lGk/EmKs28+PQvRn1b4WpU8b6r2r8E4vZc7ZQ2v7YdxUqE01VIj9i5gDE7gD2EHWHUcIAMIx\nAmxLFKSE3N5B+f/egXj3Ml794hcxnGCISkDhpTomvr6Nd//8WZz+0wGCtT2IvRZ0q01OJnahz4Vr\n5XBUbsBVWpnvQfUH4ADEpQtgrQ7UXhN8bgbxzdvUylEsgsUKXk+j8WwVk92RyoK16pRJ+5Gzr5YK\n3YtTyBdzBBIB8Gan0X12CYOqh/x2hGBjy7hdJYwhK3YKAN7cLOTSDMTHyyQo6vcp+Xz2EkSrD/nh\ndaKJXzwLlQug8h56v/QiCr/3ClS/D35301Q8/wY8fQxjg3keWYFzBtkgxhSLYrC9JlUxwxAIfPBS\ncZ+IIisUoEOfKu6BAJcaUdFDb5IjKjMMahpRRQK+BgslZqdauFTZwnzQRD0uYSEgPaBdWcBf710C\nALx0+RO8cuMc2vUCPqrMolf0ocBwp11Dr+jjby1+Ap9JnAu2sBpN4i+XH0PpW2XE5znYxT56Mx7Y\nfVziRKWCOM8wrBCLqbSikd8A2meASqGPM2EdPpO4PZzGrijgb5WuYtpv4UZvBvVhEWBAHD78McJi\nlU3eR8GedKupZfocyBri48Gi9OtjWlwH8yX47ySf5fkAWmsSTm13qG3HgtD2uxYYyuVcImyTPVfc\nsBo2JqETkzXHquClIrCxTT/X2EP/0jSC9wC9OAfW7UIPDBNJafc4Z5w5VzPbMqIHA7BnnwDeuUou\nQp4Hls9TC65hGzDPd456a78Y4dI3AfXJbadpJCoV0lfa3Cb2SDRE66cuoPBvX6PzFsfU4rO6DpQT\nS2v9pSeAH7yDhxFaKqeVNC7BduBKejykx02mnWzMWBplw468Z0Pu1MltzcSskeUST15CPF2G1+uD\nc0biv9YcwTLSBgNAUYLPymXobpdcy0bCO7MEKI34+k1EP/slDCc85LeH8N++QQyNH76LGIC3tAjV\n2DVsC2pR5IFPzMlcCF4ioV/bgpteazAjlM6LRbB8DvH2DsAYvMUFqKkKcGMFvFiAUsoVY/RgsN8t\nTUkHMsjlVYiV1Wyha6eeYYDQZTn5eUg29siUIA3UReb/GU/An5Tuj1YazDdC0hIOOHGuf4bR58Yd\nY84N0I43DZEUfA6IxCFKQiuZrBVSTm5QEqxYTOaTYhGIhobBpMlAQStilvkBVJ00qsTcLFghj9oP\n110BUwtO7GwhoJtN6CApUOnhELxWBYslFVVS2knszAKwtgkth5BpNhwXULWyc8lUrRYW//Yygn/I\nESuZONneXCZQ1PeBxXng2ifg+RxpS108D71yl5Kw1TV4S4uIP7gGfOUZ4IfvEgu6mAdOUAaHPewi\nm++jeVFj/n/dhLx+I/MWf/oJdJ4/g8LHReh1w2Iyelb6mJgTJxH9pWFm/f1ZQl6/Ab857xhmADJm\nFn9TYvDzL0Bzhtwf/vBh78qPVMhrn6D7yy+i8K1XPtX3Pu9KBCW3ncUc2v/gJ8a+r976wGkoiNOL\nEBfPj3fD+BGK4srRXPoMGATsa3M5kbCLGFs9sxXNjPvPPfaL8USsExjReFDQcZRY+9oqt9IZarN8\n/yNUf+f7mP0fX8aZ39/CqX86RPsfzaFwl2HtJ3PY+MYsWl87j/hLl8EDnyjzc7MGGFIuseTFPKx1\nM7RZyCpi+EBr6EoJzPOw/MuL6P7yiwS0VMqIannM/PbrqH7UwfbX5qlaBbjFo9UR8k7NExU/MFW3\nrS2Ef/Sqc5tjQiDe2ET+zh7yWxHC95bJGW1uFnju8eSccUHCrIxRhee19wi4sGKku3skGGcrbtEQ\nrNWFfvN9sJffRuH3kolKtVrHKir/yIW1eBYcbKICb2GekteI9DqU0UuI724QPT6Xy7AGWJnooExq\n5+onc6QdJANABQCLGSA0glyEerOAG60p7ERF/PZ7L+Gv9y7hsWADnwzm8MbmIuZzTfzM5Ie4vLQB\n5itst4sYKA95EeFCeQczQRtPFdbw9QqNkYHyISXHsMSgPEAPBLwuIFokCHvg3Dg/g7hg2Cic9IP6\nM0BwqYnnp1dxNtjGpZCSrnpcQpEPkGMRPtybx51WDXMze9i99Ig8shzD4xCrtHtplY3az6eT//T8\nNRL5j0wyI6VhjcXOZhpCgFcqYMZNyf4+rxh3QCOOyjhzovdpcVTzJsA4ui8mbkqNv3uZxFk9D7LR\nQFg3rIsodgkyD0Ona2NBZ9nYI90xI3QPgFo1AKcdIRsNxKdnoKy+S+BDnTtFx3o1Z7RtBs4UgE1P\nUgtTp+MqyLmtIfjTBHCyXEgsEtO6YgVMvdW6c8I78cq5TpkaAPuuLTkVpYDGT6NXeI+xYt/nuRz0\nS89RgpoK8dTjpOnz4XXgh+9CK4X4ynmopx+jZ4Vhltr72rZPya2tlI5T9jkb316mtYGS8P/kdRS/\n+Qr4X74F1etnKuJ6MARbOuXOD5QkMXTDPlJ7+6vnADF07HlUnY5jcLMgQLyyCvX2h2Rs0GrTPrqW\nPHN6CwUSts3R2AJAunzAPnFkUatBLk6j+Rs/Qe3S01MZHZ+TDD20YukEvHJjwZ5hRjt30cRpy4I+\nmXZQI0jtvm/WQHocsK81vPNn4S0uZF62Y2KfyYRlzjjdIbMfKmUbzjkxhGyhrVqhQggA9tRjYEZH\nrPuls9CtNnSDCiON//QlYK9NznW+bxwQh/S7QxKbju+uk6ZUfResVHLjsnW56s6jM88A0Py1F8Du\nbrt/e0uL6EU+MYiQAgCfuECgUhyDdfu0VruwRK1znINPk1gAe/4Kek+dIrOQtmmDioa0LjpJ45WH\njAepVgtL35W4+l/OoP6bL2Xfe+8qwj96FdjYBpubhr58FvoKzTl8cr9D2z4R6pFIrzv6/+FXjuYA\nDoqROdSGqE4gfzMY+96nCe/0Ek79q/fQO11JXnz4tbATj+K7d7H6DY6tP7iM9q+++LB350cqPi0Y\nBHwOCLko/5sfoHyzg/V//NWx73uLC1CtFrEyrt8Anrr4I0dltCGqE5j7Ye9Yflv5D2dIZajR6Yr6\naMvYaFhHnLRYZ9qxzDCEnFuHdd6w748J+eF1dC9OYe0bE1A+sPhXPdQ+GmD3osDtn8+h+7PP0qKt\nZxYUqUTAgiqW1u1spbUmd4yP/n/23jRYkis9z3vOOZmVtd996769oNGNBtCYwTqDhUOKFCkOKTJi\nKHMskyHSlEyLdpgRDof0w6Rlh2VFKCz9MB36ITJE0aQlkTZJk0MORc6InMFwyJkBMGgsjaUB9IJe\n7+27b1W31sxzjn+czKysurc3AH0bmMEX0dG3tqyszJMnv/N+7/e+59G1GjP/x3MUv/Bt1PgoZmwY\n+c1T2LCLvHgNHcDSjx5MQSYbRZhuiFASWypA7IrmzUxnDqDFm5lCzc6473r7HN7XXkYvLRMtLjlR\n7FiXwSV6sWPOoLDkoNNIJgYrsyIIsM88jP2eR5DTk9i7UHXd80jAoFi80646tzc5NeEWX7FzUpLs\n20S3I9EBCQKsF9tr5xTWExglUjq90CA7An9LIrc8OtsBWMF6q8h6WOLw1BqBjHins49z25M8OX2F\nHxl6g/3+BuP5bYaGmpSCLjP5Le4rLvJU9V2mgy3OtaZ4s3WAv67fz5eXT3BwdIPiTywR3tsif81n\n9EwsYPzMJzCP37/rT9ejJYwPUjuB3+0DgvbhDsUgpKV91nSZ+XCEca/Ow0W3OCvKDiWvi68091TX\n6dzbTnU97loIdrRr9EXCNsxaunsOPN31+kjet9tru4FJQhBdcUC8KBT6hWPbHae70W5jtUFOjjvw\ntlDoLRQT/R6tsTGl2IZJu1csDhsvWvIrPcpx+VosBD026v6/MO8Wx5fnsJ9wQEwq+h2D5bJU6Ncu\niQWtxZnLPRZkDEYJ22MamEYDeWkBWSxy6E/WUuZQelhqPcF9G0XISgXv5NuIhTUHPm1sOiHaeh0m\nRp1eydSk0xe6ycLijscg+LcbmJNhkPa9lh0jg851N9GtMp0O6vXzWE+y+V/2Fmf6rbPopWU6f/tT\nLP93zzjw51un4MU3YP90LD7d6Nf1iMEUEQR9xRTh+YggcODBPYeQ+TztH/805m88ml4z4tETqW27\nXllBnznfcwBLfp8QzsWs2XTskQeO4R06gHfALb5lIY93YNYBWT/wGNv/+ZPIT96P7XTwpqechhQZ\nICI+pmp4yGkXNZtufLTbRItL7vdUKn33Yu+eQw4ssgb70psMv11Dbjcd+LSL1fqdjjQPAdAOWEmA\nKZvoCRmbagulukFap0YYgxb1QA+EHPw/kw+Zdgezug5Soh44lp6nZEzsqoWRaRsTQsRtdlHPTRBc\nDpSN+Li2Z3qsvo3jPnp9M23X61aFazOLt62mJ3uFOkiFo2W1AmFINH/NtRvO7qd6ail1xxOyN4eH\nRWf84R05DMDWk7MsvzrVA4KS424tLK9hGk3Mxqbbhe2WK9TVG9iqm1vWHqkSXNtGPHAE/dbZ/rXC\nd0Oek4ngz05y/79aoXYULv+zp3e8LkaHMVevwWtnUcubdB+9d9cC4c0cxrLHOL/SvmEu+n5DNbrI\nhx/Y8Xz0wGFmXnj/68Lo6hym1aZwpccOvxuGPXc7oqtzHP0fX0L98ShbP73N3C/vvj7/OD6Y+BgQ\nyoQ9+Qazf3iFtX/4NI2f7EcjB4XDxNs3F1D9sEbtB+/Hf/vKzd94CzG4OLtZ28idCAfWqB6wI1V/\n0gG9hDm+GaevZ1vF+jYqe9tOwsQV52xidZ2bTvDlk8z+xpvICM7/tM+Fv5Nj319vc/S3lsltOb0N\n02zuaBfJVmIxTqtEVcuosVG82f2uSiKVS8Y9j2hhEfOm0wwSfg6zVWfyxS2w4O3rAT5CCmcVfP6i\nE4NutdH7x9OKn6pW6d4zyfpTM6gH72MwstUZG/a0kEQQkAjH9lX/bhDJmJHlEo3ZAt5G07WVfKff\n8GLbXCFFukC23S5mc8s5Q42OoKankKUSMmY42G43dvPJIUsl1L5pbCGHLuWcPX2gMDmJ9gVRCbpD\nlqhsCEcMpqxRgWa42mS82KCkujw5donpYIuFrquUHi0sU5EtGiZgvjHMeLnBeKHBUqfCaugYJcZK\npLCsRyXe3R7n7bdnCbyIz82+hukopl8IKX7jjHOQEgLV2Mm88GamiYo+xoewYmlNG9qzIaWhNkJY\nNjquwlxRLYZVE20ldVOgqto8MXKZx0avUvK6WO0cpe52pBbOA8yDdH5Rqn/Bn8Ru7WEpgG3637/b\n5weAqKTlSg4POaZQfRvC0Olr5HzsdhNvZgrTaqUOgyKzfdtyhYEd9vFauzH48lu96/WvnXiTKBbi\n797CbjcwnQ46cMCFSJgCScuun0vZjhiNt38mtg92NtdCSacVAsgzl/uOpW00nT16Ne+0keKQ+Xyv\nDS09ro4Vaja30jk7BcquXHPCtUvLiEdPpPfyuwYsDt5zrgfmQL+GUPJ4cHxkIrHydg8yrJ2E/dEN\nUW9cYOz5JbZ+5qm+SnfwpZNM/upzRPPXaHz+SfQPPIY+fSZtF+7bptbOuTLrQFYsgjXISplwetix\nOqKI8qtzqOdOp+xR++pp18rX9ztNP0Nq4Lfpt8+lrKNoYdGxPoxBLy3jv3SOoa+exZ656MZGFGFf\nPo144qHemI/Hgt7c6hOWlsUiamTEgZJh6ObY8THUiePYzZrTigHE4ydab89YAAAgAElEQVQwp95K\n3dJ2MOr2MpLcRIiekLJ0bWHJvJRc4ynQmxSzsgWzbOyWB/UV1hzYrJdXYHUT79As6vjRG+6mmnFM\nZZHLORe62NY+AY9sq+XaXOMcwtbqKdOr+MY89ppjQc7+0RyqGgNET32SfV9bQ5SSeUbSPTLR1x5r\nw67bN0+5ucVaeOgYWNvnvGPLRQcuFotMfcm1+NiYkbb8hGT0TetYTOA02aRC1prgeZjtbUQ+QJVL\niEYLsd2EnI9odVBTk0y8sIqYX0Is9cYauGLsh0Ezda9Dn7vAvb9yhuICnPu/H0c+8mD6mhkuO/Hv\nnI+eXyC4sEK0vHqDrd1CvPD6rev2vYfQp8+krPokxOMnWHqyRP6dhQ/kO5Z//nHs5V4RVXx3SWym\nYaOI0d98npn/M0fzaJcL/88jdD/7xN3ere/I+FBoCH2YIro6x9i/naP1E59m7R8+zdSXr0AUUfnD\nkIX//Sild1bQ5y8iJ8YxA+1SH4Xo/sinGHp1yfXbfwAxSLu3e0mHTb5zF0v5tGUM+hOgrLtP3BqW\nLCCyVOlEZFFI52CRCt6FPXFNrHWJl9Zpj3w2dK3G5L9+jsnsc4C64CHKJYzJLPgSfY/hoZ6AuRCo\nkSH3+sgQ1z47zfTXK6i5BTqPHyX/zkIPqJQKNT7qqNKn3mKyc4ztR/aTj1k5g9oSttOBl950PflC\noGs1ctc2Gb0G0aWrLkkeGcI2muiVtf7qTEY3JanKpPoj2jl0CE8RHnZUfO/tS84FKJdD5PNOWFEp\nbCFg6NQKLK4gxkbgo9s2fuOQyiWOpSLkfOxWDZuxjqfdwbZayE4HMTLsqPJSOkaXUshmG+JxZ4t5\nrCexGSae0BYVOkcxABNYqIZIYdENj/XFMeQDlsdGrnKhMc5DlWtM+TW28wGBDGmYgIps8cjIHNs6\nYKVd5p31KeaDYWrDecqqgy80tSjPveVV5CctTw1fJJBusaUDgbn3ANaXeLU2crVfbD4VIMYxmHQO\nGOlSKncYLTUZzTeZKtQwVrAUDvO7Vx9nplTjH8x8k6LoMJtbp6mnudoYho509uh3NQZEVgcEVGHn\n/HPT9qTBOSorIJ3RQ3OaP/3zhmm3Ufm4nafbdWyYcslV260B34m0inIRVug5bAlnQa7X1h3boKP7\nths9dh/+mxcxjVa6X7JSwW7GjkDlUupolbu8CvtmMBvOdUzkcuhOx+nFZISrUT2g3Xa7iIfuIzr1\nlgOcC3kUPZFN/fj9iG+dwuZkulATnhcL5Pt9Om82Fs2XI8POKSoGppLWIuF72LBLe6ZI8GpsA32d\ndqQ7HjcxO7ipWcUNmEDXddS0usfsrNehXmd0fZPuJw/TyWgNdD/7BLk/f4nSH/To5t7hg86tK+Pg\naaOoz4QAeiwRvbqGWF1LRVWzxTQ1PITthohcDhW7B5lmEzk+htjedk6KsahwarJQrzvmRhgRzS+A\n0X1sU5HPY/dPIBttWN1I759qYR1j+sWuVbXaAyWEcP+3O4iH76czWaDw4rvO2v3KNTDGWbEbDS/3\nKvWp3tFehxRgehpBriUs12PfZd5ntWsd6xORzoKJSVxHoLxPKxN6c5hUmI0Nd68aH3UmEUrBZo3c\n7wu6/3WJ1pFRChc36Owbwn/xHac9Ziy2HYNr8XwmgsCdu6TVdWwk1bYKD03g1Z3guJ4YQrbajsW1\n0cRevYaccM6HSIm/UHM6ZvNL7vfGuRnd0AmFj40Slnxkp9Pn6FT75ATVr511bLEwcnPC2jqtz32a\n6rsw+soaJs4TbdjFO3wwBQjBgUQ2jCBxSBsfc8ep0cRubmE7HXd84u7edM7J7eHY+RAV2fTaOhO/\n9jxDF57g7N+vIttPM3HK8ol/9BqNKOBbp05QPeex7yvrvXtqJgZdb7PxXm22bye86al+F8aBWHmi\nyuTLrR3kgfcatWOWiQzz7ruRIZQN+Y1XeXD+MBd+Zh/6Hy2wNf4UrXHJvT95jlOv3svoG4Kx33j+\nbu/mRzo+BoSuE4U/fpHKkcNsfOYAwUbE0m/6+BVL7UdmKKxOUfndF9wbb8dBhltI9naL2/yOG0Xt\nkEfuP136QLal7rt3h9X03WII9YlxDrjk9N444OxiY1AjWbxlKvLWyB5Q1O261owkgaQHhKnhISiX\nkFmx6JuEjaI+oeDElcNGUR8YhM3Y5K6uMXnuQrrQ9p59GR1X1rAWNVSl9YlZcvvHXdvY2+foPvoU\n5SSZj7cpci6BtGEXWakgR4dBKaILl/pvqGPDtI6MoZoR/oDuQ1bzCOKKfQKOgRMELBbRRY/GtM/o\n6hhUCzRmS2zPKIYvhOTW28jLS9DpoLcbyG73O5OvKATewf10Do8TVjyivMDfnia/2EReW3FVdBNh\njXWC3I2WS6A9D9tup6AQUsFQ2bXVGZAdjRAGqSVWCmRo8ZoOkA2rAozAGAm+wYxrhoI2ShhqYZ4t\nXWA2t8a9edjWeZ5vHGM2t86TlXdpmoA/bj3K2kaZNVsmUBGPDM8x7tfxheaeYJkHCtc4357i22uH\n8Yshy48XKewfonItovQXbxINtA+E00N4my6RNj7osqZY6hCGino7oJzrYKxkPSrz4sZh7G9N8vrD\nUzQ+f5KS7PC1jfv5xhvH8TY9lAA1Npo6kNydGJjjrsPuSAVcd3x8lzawwees7VmwZ80LEjvn2JEn\nmcOS+SQBtW3TVd/N2joqitw1HwM5iWYH1vZaXzKW9LJQcMLNjbDXfpL+JtkDp4aqUK874d+rc6ke\nkAwCB37Waq5qn7hfRZFjWMTuYaZedwLduNYefWgKtdGAWg1veoqucOuZ3LvL6OQ7czlss+mYiNY4\ncMxqUE5Uu/HoAYKFRWS1QrS0jLd/hujy1fSMFS/X0DhQTHj+nrqMpbHLue57uItD2E21hDL6d6pc\nwiQC0Nm3hN1emxdgtmrkTl1EHT/Ayn/7NCYnyNUsK7/0DGHZ4jUEh37tdHrOzPZ2+l0JYCByuZ6j\nEw6AU9OT1B+doXxmI9WQA3fdikoZM3fNjbNiEVEsoHI+0dy8Y0EWi26Bnrknq5ER7FYNMVRFPHw/\nshsRjhbpDvmUTy857Z+B+UA8fgJz9soOl5X++1hPr8u+epocccGmWkU/dIStY0WqF1p4m22ikQL+\nGxdiDZgPLh+7rUhyq4S1vEuuZY1FegJrNUJ4zhTF9MYG4C6q7IJ7l7ElyyUHhsVMMFPPtGjGwr9i\nxSJLRWy5iF5a5urvPM3U5nm85hAoifr6K4iJCRipYq/Mp7pQCVNIlEtuntIOZDTVgtP10ZpWNYdf\nrUCtRnckIH8+dHPU0orLwZbc/ptiHvPmOzQ+/yTlvId96U03v2zUsDa2o280kd885c7t8BBqeIju\no/dSOV9LQU155CD67LsIP8f850Pu/1+Xodly+mP5wI3J+rYrzMTsz6QV1iZjYWRoh3CyiDLjxM/t\nPbPsQ8gqyf35S9z/+jSbnzmEzgnO/c8nkF3D7IjAKo1c3Yi1paK+ufBGRRU9v7DreuSmcRs6bdHS\ncvp+OeDgJEslorzAe/nMTufl64SXzc0HX9u/j8rF78SE+P1FdOESB//ZpVhs+wWGgPZvj/JA4Sq2\n3b5lZ7ePY/e4KSAkhDgA/HtgCje9/Lq19l8JIUaB3wMOA5eAv2ut3Yg/88vAz+Pur/+9tfbP78je\n3+GILlyiEi+Sx3CJghiqYrdcUnkjxPp68Z5s6o3+QCzuxRMPMf3FC+/Laj4bdm4nNdL2KMt7Nm76\nFl1Z0CcrDp08B/0JXfaGkHUWS1tCjKtkBTlMfTulngvP64mz+j5iZBg2NtPKY/Ymo+67F9Y2+qjq\nQOrcIpR0FfTM+ZWxvW9SgU9o+0LJnm1yXOG3B2cwb1/A/+qrWKPTxGf0r6/SvWcSv9FyC+gkke84\n8V/b7qAnh9k+WKQ8VsGefMOxBoIAff4ifuyUsGOSzYBpgHMKq1QwjUwLXKOB9+wKQ4CYnkJKSXFe\n0JiuEBUkZrJA3k5iXz4db0Mj/Cj5Xd8xc46anCCaHKI5naNTFURFgZUKeXSIynyZypuriMUVt4AL\nIyc8ubH7nKKGK+BJZ33b1GBAVwN02cf4AitAB2B9A1oglCUodTk0ts6B0iZt47PWKvJieIjR6QYz\n/gYaweX2GAbBicIcB/w1Pj1yiTfn9sFiwDtmmqOVFe6VbYaDJgbJ5c44v/P800w+p7APQfdwBwgY\numwRlTISxxYQQYB+6kGMJ/G2YvaSAnImlu6ShFoRGoUUhiGvyfHqEqc/N8OJ/QuMqW0Wo2G+eeYY\nE895dIYFJgfm0NSOBSDs8bi5Ccvjtj+fRHZuitt0+hb2xiI8HxuFPVZP9jPJ/1ngyHPsGHLDO/ZB\nx7bfKWMy0aryPMTZS+iYDZEAAHpzy7VjnKljC0GfdocsFqGQRy8to3J+Tx8ttpJOQYNige6Ds6i/\nfAXOX4or8BFqs5nakOsDk3ivnIVKBbO+0QO6whgoiFuMUveryFlaF641MIDZ3HLsqYxzkLd/HzZy\nDEbbaPTdu/d8zrne+Ek0xm7mKDa4reRPpXbYGIsgSN3ZdgAkGxvw7U2m36qkINIIcW4ThTA2infP\nIczSCqloMTFwGASYTgcZBKjxMUys66QXlyl8cQ4d328S1mufu1kUOQZZHGpiwrHJshHfw1MmUvxZ\nDUipKPgeUfwZWSoh9k9jr8y7NqG1OrrV6r82bgDkiMdP0B0rkPvaKSec/vxrDMfFZoOrVaSfjPMx\nwrswbrJ28hAzheJWMSGdo1hy+AZZjFkB6cFiWebYeLP70Suxm6DW2AQITH57koc0mthWC7G5BUIw\n/uvPw9Qk3qnzzgEQEKUC5sp82nqFkLEAdA7bbKVAk6xUEJeXMJtbyFKB4C9fx5ZLyHyewlsLruU1\nino6aA8dxVtYh7q73osLHTpjefKlUto6JgLn1imkgCRnKpfBWnJvXkWvrTvB8I0N9FABGQRc/seP\nMfkl47T9/Bj0hB6I2mojR4dR1aprEYtB9c5jR1Fv9C/u1dhouuBf/W+eZurZRezqKjaftvx9x+Q5\ntxvRwiLl/28xboUvIPJ5ctrASNW1/eZyt2WZbTud2weD4Pbu2Zn3Du5b7cc+wex/vLajGHajuB4Y\nBBDtH2PfF6/0rdWMt/drqw9rJM5rwI511cfhwjt8kHBmBPXqGbhFyeBbgSAj4B9bax8EngJ+UQjx\nIPBLwLPW2mPAs/Fj4td+CjgB/Ajwq0KIO6futUfh7d8XW/X2bsZ76VKStuS8x3CVF3tDyuPtRiok\n+NQne0/2Js29GzdJojNIfc4Kc2bFObMOPvHrWQexJLkirjDJ2LY4acewUYQYqiKHqq5Kl/PBUxnr\n1QH9g7PvYlvttI3BOzCLmphwvfO4anW60El+Uj6AyTEnJFkouOpqPkBOjKcOYqbdRm9uYV5/x43F\nTLKrN7ewpQKdMZ/w/tn0+e6T9yNOHMM7sA9ZLmFPvkHpD7+NPfmG26dPHEfOTKXvz/Z6p8d4l79N\nvd6fbAtn/6sevM8JX66uY196k/F/8zylr54m+NLJFAzKfCj54ztizlHDQzA+QlTJ0S0LwrJA5yEq\nQXOfZfUhxeozk+gHD6OmJ12bz3VC5vNuYd6NnJWsEFhfYX1JVHAaQlYBwuJvKkRTIXOaQtBlNGhS\nUF3qUZ6iH1Lyu2xFBa50x8mLkIlcnbJqU5IdSqLLuF9nfKQOAoafD/jT5x7jX576LH+1eZw3GrM8\nu3gcfMPGgxANR9imR2HRnbvoyAxiv9Ou0k89SGsih2prdCmHyUmkBjqSTtsnyIcUgy6+1JRVh5Ls\ncKIwxy8+/HWeHr3A1XAMheEzx8+x9kNtag91ae4zLD5dvd5h2rtxcz2WR0ZY3UbRzkX/9T6fRLLY\nBPTqat/n1Nho7CjWTcHdQXef9KsS4BdcKwY4m2YgcVUUnt/HpvQmx/t3JRZ8TSr6aRtWLNoqEjAp\nsbYPAmi13SJrbT0Fsr3J8b4E2mxuIdvJIl2ijh/BNBqYi1edzs8TD8GpM8ixUWy70ydYK+KWs7Tt\nLX1eYbsh9vR51PBQ+n1ydavvffbyHIxUkSMD4NhezzmDgtJZvZbdWnvi96bCy7EukPC89J4nlHL3\njeTtsZ6QEMKdS2tjfbK8s/jO7Iuu1ZCVMurYEfdU2CVr0pDq3WX2MzEVSISZTdNpPhHbmnv796EO\nzmK26n2afsLPoY4dwTt0wAFBxOLS2w1EqYi3f59rIXzqk8iHnJi0evA+ZLHo/pVKeFMT6E89gH3m\nYbyZaUQhjz77Lqbdpnt0BpPVIMmaRfQJvXvpY/vKWxROX0sZHOrYERo/+aQbi3G0f/zT1H/qKbzD\nB92938XejhtjUyHpNEeR8biwpsfWil3FUiHpBGQcOIe9MdC7nvTEsGNvZfOprEPbof2OAWicWLWN\nIoRSeAdmsfXtnkYZbtFrumF6/mW51GMsZQp5cmIMvboa5zHWLfDX1p1rlxCOjQjY2alUz9AW885V\nDFCnzhGsthAzk6jREcc+9H30ykoqMq2OHaF9fJro2oIrkBmNqJbxDh+EF99g8z97BBnByJffdr+r\n1QYhXUtjIe/YUvkAISWiUnYtadsN9OYW3tdeTgt66r57Xdt8oZDqLG1+pu2syK3NpDnfGXnO+wkb\ndmF81JkbJOuqDPC3F5GMJzU85PKs24zoBx+nfKnxwbasvfQWtlyg86OfSjU9ZXQX1lYfx0c2oktX\nEM+/dlvA6k0BIWvtgrX2lfjvOvA2sB/4HPDv4rf9O+An4r8/B/yutbZjrb0InAfusAfgnY8UBGp3\nUh2ZvQ6Z8xGf2t3u8Gax/fRheOv8B7tDcah3e0whGcaV3L0cN6mGh0wT5T7wbDdr6MwCLiscLaRw\nvfdau8RFKSjkQfe0hhACuiE2DF0lTGtszkfF7jvZSG4wKXMIsOUCdt94ymxyCzzTl6DpzS3s3EL6\nHlEuOSvmsSrdwxO7HoZE4Dndxpnz6JykOdNbJIQVRXu6hJ4cRh8/0H9IZsZoHqzSOjaRioiaU2/1\nf4fnD3zpdRqb48pZ6+AQDFXQG72FWfTosZ3vlyrVF/mOmHOkcrRnXxEVFVFBYHwQEWDACrCepT0m\naE/kMSMVl2RfZyGY0NSJKejWk+BJrBA9Vl5CDukKZFuCFYRa0dYelxpjzDWH2V/a5HBpHSksG2GR\ntvXxhaYou+RFiC+0A4ZyXUzOUlw1DJ1R+K+XOLW0n9c393P10jh+uUv5xDqqElK87DF+ukVuo+v2\ny/dQExOERQ+vYZBd7YB0CcKA0KKnKQNoI2mZHpV+oTvMH119mOdr9+ILzSOVOaqVFrklHyst3aHd\nD/ldGTe3oyWSBa5v9HzG0SZ14goCGO0HMUQh70CeXQCERCy6L+KFEdbZUe9oZ4sZj0krkIzBhZQV\nGWup2QQIisHxxGLettsOND/knApFbImtZ3pAk6xUsN0u/qW4MGEM7QND6X4BhEPOopkoSp/rs6qO\nRW4TZlF2wS+UhP09MX2zVXMAyMSEs6Fut0FJ7IBjzV2dc+Lz2ydyPQgYZTWCkkW90X0sEJHLpcfc\nHQ6LjcI+l0LTaGDabURsVNAX3RDRzbj7GO0WzlLe8jiXxSJyZCQFt63nQCpRKKT3ZDlUQWiDWVrB\n1ntgkcz5kI8ZX90QXngd+/YFBwoWfMQ9BxCHZxH7prClArn5DdQbF7CRxtR7LBZ/reEYJXonACI8\nZ1PuQLV+R1I9OYI4HBdPNrYoX9qmOxwgH7of85lHaI0rcjWNWV5NgaM9HzeJIUHMDEqZc3bALj5h\ncpl+baBdYze2YobRJ4vFvmKFCDPFyfh73SJeYrLaeHGooQyAH9/jB63XE+dMoCcYDc61y5hee5y1\nzoGwFSLaXVeMw41r8c4lbLmAmXDzZHjEzQOm3Xbi1mFEsLh93eOx9JRl7HSEabVTMfLefqu4zdTD\nDuhSpcclA8aajQ2iuXmiMXfcCm8Weu+LwezviDzng4itbceOjiJEGO3eZn2nQyqYGKPxI5+8+Xsz\noYaHWL8/QJ6+cPM3304YDaubFObrsOTAbRkPt4/Hzcdxp+K2NISEEIeBR4FvA1PW2gQJWMTR18AN\nzBcyH5uLn/tIh91uuBaIpWX3xF3oIxeHZumMBPg3f2tfeIcPUrzc2KEp8EFFVs/Dr+38jjs9blKt\nn7gy2VtEOBFNd+POCL8mLh0J+BNGPXeypNUi3q7Z3u7rn3dfZPsENaPLVxGeh5rdh4rbKpLvEoUC\nqlJBr6ykwsyprkICXGWZTBlgKEF2TaPpbDiVwpx6CxknYy6xFb0WsEeP05wpUH3lGraYx5QCiksd\nVh8qMHTsCPrcBQpffNH9hPj7k15oNTwE88vkX3+n9/ou0Xez3kULRRYKTksJoFggWGtjKm7RqkZG\n6Dx2hNaEz8g9h4guXib8ocfJX6tjzl7YVZD8ozrnqKEqVEroUo72sHKtXMqBNqoDUQWshM6wpTmh\n8JoFfDWGajR3tHzIIHBtF+WCg/CFcMALILRFGIuMLF4b2gJMLl4kGGi1cpxZmURKS86LOLZvmclc\nndAqtnXAVlRkrj1CM5dj2ttiMRpmJaoQqAhb0HgNweTJJvV7SiydKCClQdUVhamQRyfn+drq/Qyf\n16hal85Ukda4gkMBwowSbGryS01EZBBCIHQOGQJGYC20WzlMLIS9GpSgAm2b40uXHiT/J0N87W+V\n+XtPPc+zWw+i/2qUo1+Y4+LPzKJuoeBxZ8fNLotj6Zx+bpjMmp6Q/S473BOPNrb32DjwQwjhFkDZ\njxQKqf1y0r6TaK7ozc3eGxeWkfl8aq+d3gey+yEVJmkT6XSctbxU0Gz2XLvyAQiJ3thwWjSFAmp8\nDL265kToiwWi+Wssfe8wU6dATk1gLjTQ1VxaeRJT44hWC72y6sBypRBx5VNWKthWi9yLZxETE+jV\n9Z1i+LEmUXauF57v9EmCAKRk4QfGmDztgCzHFMjRfPIeCl95zZ2GUoDd7GcO9Z8KcZi9mnPi9ttU\n0Lu3Ez12RhJSuaG3W96R6NtlWxYy70t03mSxiN7YILp8FSBtmQHQ9ToyaefJsJ93rXwngEDMaJOV\nCnpzs38fBuexSgVTd05Snu/T+OwnqXz7MmZyhO50meCbbzmGSbkEiSZW2HU519Kya9kSIj3faSTX\nQKlE9MR98Fev7tzfONLPSdUDJaTCm5ogevW0kwIIAux2g6gS4H/1ZQzgffJ+iks+wZdPupbE9t7n\nOUAGGIlznLh4JdB9zGY78L7rts0ljxO9phPHoRlrIcYaOXJ60jFxajXU1CS25hy20nGSGExs1ZGl\nYpovpWNrehxzPu7bTMw3jMKiU5ajaPWOZ3RgAhYWkZUKnekKuasL2FbLsaS3XIuYPn3GaT1lDAZM\no0H7QJniFff9i08VmfmWe6314Az5F8+h4zYdWSyiHzmGXWsQjZXoPjBF6aqi9K23McSgeBYQN7He\nWs6HTgezVUsB2KT1cf37D1P9vRWnXxTPW0ufKrH/zCj7/+Vzblt+LmU1ZeOjmuekcbst09lIgG1j\n0dcW8fbNuOt8u7EnXRim0UA8fgIuXOPa905y39n7+lqSbhQbP/oAky9v95uufEChV1ZoP3lPmpOL\nXY7vR37cfMAxqO20l6EmJu6ytuX7j1sGhIQQZeAPgf/BWlvL0kKttVaI2zPFE0L8AvALAHl2p71/\nmMI0Gu4GlyTTd0FU0FTy+H/xEt7s/j6XjRuFd/ggZm0De4N+1fcTqfBpHIlIaPr4Ax438Tb7xk4/\nSGGSjce094ymUKZlTPg5V3WOk56UFZRsy2gsLuESuVyvbSGrs5EBnGwUYdc3EWMjyNkZZwVvLWa7\ngTy0H9ls7rxpDFrOKwW215IoEstmozFtvevn1L5pJ6ppNLzwOpVjR2g8OE3xwgby/FWksUyv7euv\n/Ga2Y9oaVa3Sefwo3rMv3/zg32Tcm4SZYGOL16RwIhV6q4b37MtUcJxX+8zDdIc8CmeciKgYULf6\nqM45ws8higVskKMzkkNYS2EVOkPOGl5GDhgyvgNvWpMSv+FjBeSnJxCtdl8iJMdGMSNVdCnWrNIW\nYS1WCERkHCtPEDNwBLpg0BVNsdjFWkGrnmdopEHBj1hoD1H2OkgsnypfRFvBXHuEt2ozLHSGkFgq\nfpuy3yFX6RIVCxSvdMnV89jNHMfvuQRPr9A1ihfmD1F9Pcf6A7D4TIXchkR1QYZQnjPkV9qIsLfY\n8Noar2lRLUHU8kBYOgYKQZeS10VbScf45P2I1c+E/PQDr1AVHa40RvAbltXv20/rUMiR//fGso13\nfM7xMhXvTJJ2K9V4oRQ2HLiGYqfDRGi355oowbhxYDqdHa6WttXCbDdSUCZZcJsExFHKtV7U6+l+\npa6AsStX1r3MdMP0XNl2x7UZSZVW4fX6RiqwinKMvvD+A8hvrmH3TzkQef6aY8IFgav6A+pbb7i5\n1PMwl67G+hAd5KFZ9LmL5J47jTx8ENtoge+7FqeNjZ6wcOwi1jeXA1g3tmwUpg6HIgiYeqHmvi9p\ndSuXKL2zAuUSHJpFv/Tmjc7zh2POyYwj4XmxhpPp3dN2aVkUfs6184QR+tpSOofIYhGR8xExmCf8\nmEkUszjThb21WG2QpQJ6K0R4Pmp81OlCXb2WukxhzY77gG21egyPWG9KVSowO429PO+YSTEbyEYR\n0cIihS8uYo8fxbz+Dv7rccmm2YTVNYTnEf3Nxwnmt7DXlpClomt3tz3HPjU1mRbo1NQknRMHyJ08\ne2NR1wyQlYJwRjtnunweceQg+p13sUajvv4KEMsF+Irgyyd72xm8d+9BnpOwg4SSmE4YO+0JBDEo\n5Htpux42jAHmQZ0q0/c4uZ5F4viW95AXltM2Kd3ZwqyskVili2IBs1VzeU/Yxdu/L3VV0hsbaSui\nzOdJ9BdZXnP7GetYZcMa63R5YuMEoRRqYQM7PISdnSGY28SGoXdnnXwAACAASURBVMuvDkzD1cU0\nB9O1Gmp8DNvppiDU6kMeB79yETU1yeyfLMLICEyPo+Z7RT3zmUewxuK9eZGNH3+Q5qRk4rU2B3/7\nqstfssfSGkRQTOcf2w1jzUfr2JlxvqgevK9XJxgqw8oK9pmHkVFP40QdP4q5dBX8/mXXHZ1zcteh\n037QcZtgUBZ01htbqJGh9Dh9UC5dtxPdsQL+yxsc+yenMPrG+QWAOnoP0USVkb84+4Fq2Hj79xEt\nLLk56QcfJ/+nL6av6Vx/Q8+ezDkfsbhbYBDwoQWDVLUK169/9cUtAUJCCB838H7HWvuF+OklIcSM\ntXZBCDEDxNQZ5oFsL8ps/FxfWGt/Hfh1gKoYfY/Q8h2OgcSrr+p6F0J0IyzsCgb1VX6J9Uv2TRG9\n8+4dBa8SMEhVq7B/is37qxAX6O7EuIGdYyd16crapPbe3P+3EKkoIkq55GqXqr4sFvs0g9KIK6Ii\nCJATY2w/NE35pcvg+7SOT1E4PY/JgG827MLGFnJ0ZKd1e0bA2kZRL9mXCpnzkfumXSI+mHzGFHsb\ndh0YlAGp9LkLBOcuoDMOLXgSOplkflDjqFa7NTDoRpFlOAwey+ug9t5yjcobF4jiZM6GPdDqIzvn\nSIUaH8UOlelMlWmNKYR1/d8ydMLPGCgsCrrDzoLdSmhOSmTk4Y2V8WsjqdaXLBYxI1VM0Uc1Qgew\nxOwgXXALAgRoX2B8gTCgOgJdFkSRQkqL9F2Co61wLmNRAV9ofBExrDr8xNjLhNbji2uP4knNuL/N\nK6sHiELX6oYxFK412P+1Ci9t3084GoEW+JsKCtCZ1Fhl8bcl1csar2kINjqIVnw+PTcWZUfjb1v8\nhsTkFSZnMMpirSA0Co1kn7/B/3L8TzHHJUd8x1h5ZvQCf/BjVfxciL9ZJnht7rpuEnsx5wzlp62j\nEmSEgKGv0j6wU8lGEPlg56I+afeIH8tqFb2ygsg58ehEHyZpzYK4XWG4il3fdFoXAGHYY/yNje4U\nsU8AoF3YrWnbVxS3qcVAtGPZxO04xkLSXSsldquOv7mFBrpTJYJTFwGoXtE9JkMigJv5X+Z8t/C3\nFlnIuwVp4uCDa6+1mRaRdKFlbcwM6mm/JcddKJEuLjkVV1QrZYh1bWzMgml8/zGqiysO/O+GfS5j\nd3zOkaO2jyE2yP7ZZW5Ozs117eSJxbyVcuyb2Aggq9ljWi2kMXD/Ebyq0z7R02OohVUn4KokNjGe\nC7vozW4KtEULi+n4TdoXBwFNGztRiVi7xgkfOzc6sbCSalElv0VWKnDvAayv0CffcL8hHreyUkEE\nOcci+stXYHICjNlV+1AvLeMdOkDjxDT55Ra55067+8yN2NvXed47dADbaKbMAOF5hN/3MFYCX30Z\nbrBI3as8p6e503NAFbkctt1JHa8Ghb/79jOXSxl2CfsskT9QE+O9vDJ1HIydvBLGz9ioyzfAgX2A\nLRf757IYlEVKZ7EeFy76AF2pXMtqt+tyn7CLKI4jY2MFs77hGEiLsRFGoZCKQmMsanSY1hNHyP2n\nk6x/9hjVCy3E8479JyMHnou1dWQUud8SRpDz6T56L+ovX2Huh4pMvBpRnhrHKMHUtxuo186hk99t\nLAINyTWUHEffd8cv59zwiLcvSyVEvcnoN5qYnI+IXJHNNkNy9d61+u7PTjB0foLoP/5V75zc6Tmn\nvN+ySy3wbocNuz0GmdHYxq2LMb/f2O3e6NfiwstAnqqqVfSDh9m8r0T1Yhtvq0VrtkLx0hby5OnU\n/fKDiiwYNv99AYeehfCHn2Dx0zm6w8ZJRrOHc87H8ZEO85lHWPlEAX71j27p/TfVEBIOdvy/gLet\ntb+SeelPgJ+L//454IuZ539KCBEIIe4BjgEv8lGMmGKdfXw3Q9avLxUuYp2BRIdAb2655OYOgkGb\nP/s04MT6tn/gfphfYuTrF5P92dtxkwhgxoKbMp/fKSadvM8aTDd01fTGwDE1riqUWt+mnxM9nQch\nQWuiS1dcG0KQI7o6R+HCGrZSQk1OpGKZ4HQszNp6KggqSyVHf1aqz6Unuw+m3Sa6dNUl256HGh7C\nu+eQ6+efnkqtm5NQ42OO7p3p7QdXtRMLq5AP4gXrretBJL87q2Fx3diNzurn8GamUwFXmc+jpiZR\nIyPuRnv+4s52PD7ac44ql7ClAroc0B7ziArQrQpa4xKdd+1iqgPBliW3BZUrUFixqK77ZwKFrZR6\ni7Cc75zFLIhQI7oxKGQdS8j4EuMJklqQ0KDaArUtiboKrQX5QpdS0KWa61D1ewlPXReYD0dZiaoM\nyyY/N/Et/s7oKwypFvV2gDWCTtXZ3otQUz67xT1f2Obof4g48gea6Rc0+TXL5POCg1+CiVMdSleb\n5FdayHbUozgnorfa4jctXhNUUyA7Eoyg2c5xpT7CfHeEtvVRwnCmPcO57iR+XO9vdXI0uz5mvogo\nl1AjI3hHDtP5sU+lump7Nm4sKQDqFvK2N88OXsvJ748j1XhJ3pdtG03afhIWT1aUOn6/jSLk4Uxu\nF89VqaNXogOUtLTEWikyn++fz6Tq1xyRPTBX5HKYbogslXrPJU5liX5Gq4Uol9KCQP6tecccAFQ7\nZookrMTkGMVjOgUI4gUfQqLX1tH1OqZej4H9jADwoONWAuwr1dOqiVvrbNQTsMVY1PBQn+bf0KtL\niNHhHfbPezJ2LL324KxG0CAYdCvzbVbQv9nE1OvIfB5veip2CItdKWPRadNuY069RXT5KtHCIvbV\n004Iut3uEwzv/w7p5upYa8hq3d9ylf4u685bXNSQhTw8dCwG3bqoEcdSUMND7t48Pkr9aAW1sI78\n5P3OxSweK0lLWbJdvbSM8D28mWm8A7OIx0/Q+bFPEf7Q45jPPIKplMh/5TXsS2/2FnO3kPOIIHCM\noJh9FV29Bkql91ARBAQvncP/6st4Rw6nnwt/+Ak2fu5pzPc+Gp+GvbtX2QTwSR5rHWtadnvXjBQD\nYGoGhMky7OK8KJ2Pcr7LIeZX0+szuTd7067zpPXEkd7xKxfdnHJtCTWeEaOXAlnIu2suYYwVnH5O\nwrZ2AvDOgj4R59aTI+n4MrGzoV5dc2C3FKixUeTSunMEW10jWHPgYfVCC1XvFUJlF9dSaCymtu3a\naJfXsFcXCC6vI/N5Dvx5g/LpFahtM/qHryFfejt2+HRtS6nDrNaxo2OUeey5Fv5cordmMI0G0dU5\nTCyCbRaX0bUa5rW30bGs0NwvP0N3IqI810W1Y7bVRzjPudXwDh+87mu21eppVWaBmPdhnnMrsRuj\nRzZ3b03TtRq88DrjX7mIeuE05vV3CL50Ev3W2fft+nzDffz+x5AhND7/JFFBcvjfnOO+33T7/d0w\nbj6O9xfJ/U1+8xQTv/b8LX/uVhhC3wP8LPCGEOJU/Nz/BPwL4PeFED+PM3b9uwDW2tNCiN8H3sJ1\nhvyitfbOoRJ3OAYprncz9C4270kkE+peOp8N/4fnaf+40yYrfPFFV7Xv6Qbs3bjJ9szHOh1JgplW\nYzM3mSyTqK+tLAFLkkSmT2/DYrtdZLmM8LyULWY7nVSPIdFaEJ6HHBlJF3rOsaLlhFo9t+hLFks7\nzlcWWEntpwNEpcLmE9MMPx+hZ0bR+UnkNzfdQlsK9NH9nP25PMd/4354/VxMK3eaImZzC1VwLlUp\ni+F6FelECyU+nkkri3tAymraLem2Wqc6IACyWsZMjdIdLeCvrCLuOUA4XkZ+49V+AdWd8ZGcc4Sf\nQwxVsbKXtHtt0DmLUQKhwXruHxaiIk5s2sMxe9oKGVpsMXCaMIlVbid0C3ElsDkf6ysnKK0kVopY\nl8jitSAsC8KydZVtAWEtQDcV4pBlebPMernI6FQTX2nqJs/vXXmc7XbAf3HvKzyQv0ZFtjiUW+Fv\nzJ7n0vAYZ969F5v3EPU2AlAbXZSU4ClynqR0WUBkQOKAo8yC3frKvZZcT6Em2AzJ1SQ6iEVypUdY\n95jvemyMFVn3yny7foQvnT3BPVNr/JPDf8bvXXiM9lqB0cMN7LuSrU/to3ZQYSWEVcvUyVSwc2/G\nTbKuyjIS06p7DGQMXiNCgtX9YqXJ9ZhEXIBIAZ5ur+UnWUDZKEq1hJL2K7ROrb0TTSEyYxCjEeVh\nV2Xf7boXIr7m492INdW2P/sQxS98u495mlTrrbFc+K8OcvB/m0MEAaZWTxPk4pUacnwUs7YRL6gy\nvzmeR4F+0D0BxTLMyfRYJgvbvn2WbrtTs+6eE7cByyEnzm4uX0V4is0feIDy7zv5hCv/9BkO/tPn\n8A4dQG/V+swEuFtzTqwhtOO5bAjhznMsEj04ttTwEKbVdm2Fyz1nuuy9TRaL6IeP4S9sYFbWkMND\nTmR7q7aTgZTZr6xWXhoDDBwRBMhqFdtoYJpNBxK+GmsAdTqQaOfF4GF08TKli5eJAE/MYitOtLj5\nvccxvqD07Ntu0R2PU7255TSFhEAsLFI4W8DGNuQ3b+6gf+wkLZGdTp9OnqxUUq0iAFmtQD7AGxsh\nunAJ+/TDXPpckaO/tUL+xRVMT7tmz8aNA6AFNmknjXmSKQCa6B9mbeWtda2kjWa/M581DgSM5wkr\nBaa+7ZxPE11CYuY37t4WrHeQ1apreRICOTZKtLCElxGNFqUSemm5fzzF4IkIghjkdvma8P10PlQb\ndZicIIrbYqPjBxCra5hmEzU7A4srfeerfrhI+WQd750r7nqPny8vuJZHs91w39OJUgZ4dOkqQink\nydOYdH6JNZe0Th3ZEnc20+k4TcRWK2aTq1jg2ukLmZXtPrDZNJvoR44hYqbV9uc/zdi/fR7x6AlU\nBw5/wVJ4Z9Hdz118JPOc24kbWasn2pV6s1+3TJaK6fV9qyEffgDz2tvXfX31F55m8rdfu+56Tswv\n7/p8EtHC4i3vy3uNLHOpOZ0jv2oJi5Lhf/+8IyTfjbXVx/GRjMH7263GTQEha+03YTcVTQB+8Dqf\n+efAP38P+/OhjjstWDXY9rXj+0sFR+f+sIRUFC/VnF7OQOz1uEnarnZQ8nertO5IuGVaFUqmyUSX\nI31LbBFvGrEFaUYvQQ5VUxct+eAxxOJK7M7Sz9bJXqQ7gKBdFmpZ0ejo6hzlq3NOZWduvo/aZ42F\nF17nvhdcEVodO0I0UcG/usblv3eQbtVy9DcXkUHgksJM0pNU1nvtK8Ydg4SRoHWvYgZY06Ok73Zc\ns4wf2w0xp94ixj/Qb5/DHx9D7/b7+zbz0ZxzZLmEDXxMKY/JKVRo8dY0Oidoj0iMD1FRoH3w805D\nqDNqkKEgtxFb0helEzMdqroFvOe5pF1KB7DEYZXAegJhLaprUF1BFMWgkwSTNwS5CBFEtP0c3a5H\nPh+ijaClfcZy22zrPENBG1+68/ns1oOUVIdxf5uvXDpOt+MjAosu+K6CpuMFuhTYxPVICQSxW09v\njeIWXVKCrxDGjS8rBKoRkl/3iQpOL0t1BTpvibWlqes8X587itWCH556i4pso6QhN9JmplTjlQcn\nqB0TWF+jGhKvKZDd1LVlz8ZN2h6ZAhYSyCzEUsaQSEFba+izWt6VVVcquQWIkG4x0mwiR0fQSyuu\nPVBr9OKSY+90OthOx1kcexlb6GIREeQgQ77rtX3171e6QM7sVwLg5LYyDlZxwp4VpC5d681raQuL\nn6M1WyF4/R28A7OY9Y3rgt7Z9i83F+lYmJudc0wMqPUBbwCrPcBCFvJ0Hj6ctr/aRhP991fh993C\nduh8/JluiMwHfYu5PRs7ye+NdXb67lHXYyDHAEbvcX8ur/sEsgfAvuRvY/AvLWFHhxD1wI3DxLZe\nSFdAaLf7iiNCCmS5hMjniZZXkTnfFVriokJyDdhOp08/QVYqyPFR7GbNFQdiLat0gffpT7B5vMz4\nVy+mAABA8Gcnk1+w+3GL29BsvX5jBtUgeJgFFOO/ZbEIWveMGxJh6ocfwLz+Tt8CUDx+gs5wjnt+\nKV6YebH2YLjH9yprAMf0SddzUoAmvp+zs00sCByYrFR/8Qscw29p2TG34nNkwG0/+cqD+7DnL7nP\nnnwDxscwW3Xs2rpjbc1M9bf7BI5Bnbbl+z5mc8uxiTLMR+HnINYGEp7nQMrxUedSNzFGJydRuPNB\nO3S/M4zwZqYh59Mal5SJdYumewylTlU4hzTdm+eyAvRWk+oDOVDKHb8+Zmd8nAEwpmc0Eht7qOEh\n14Kv4nMRdlFH76FzcJRgsY6O99sqx1Rf+N4hZn7lOeQjD7q2eL3396sPbSQGL7meUPxurPGbhX3r\n3Ru+PvW1RTg8CwNi0apaRddqiGoFPkAtoPcSa3/7OONfuUC0uETlQoMKwItvpK8nhZSPx83Hcafi\ntlzGvuvD93u9zHcgbuoC5n04TleqRWH0rmDQXkcCbjiqfLgTCOoDfAaA8XjxNrj+SMGgWOgwe24S\nLSBZKqEfOca1p4rMfKOOt7yFPncROTLsFmzdMNX/yQq4psl0ltVkdAo62W4i8KkRdmDez4pap5oO\nscjm8BCm0UKfu4A4B9rPsf9fuITbVirxAlbGx8OAUkgvrjhmXEmsSRaw/e0qAEIB8T5dt4ITJ9+7\n3dizINvOj91GK9uHLGSlAuMj6LEyxldpM263IonyAp0TqK6lsGzpjAqivKCwbJFdSbBhKaxprBKo\njrNpF/nAjQelUvCFyGTEpOPj5UkkBisVxgcEWAX4FmMEvq/xCyFRqBitNtBGstEtMJprUFYdpLCs\n1kusjpfZ7BYgB/OtYfK5EKUMLVXAevH59r30+/FiEMjgHiuBVRKETZ9PHdGQjjkkQRhLbisiV5Fg\nBaYDIhS0mh7n6xM0CgGPT88xc2iLv1l6m4bN8Q/ufYFX6gdZalXwxluEzRy0XRudXwevefeKXSmD\nLjuB7LIgT64Vk7F+31XLp9HIuI31tpnMBbJcdu1B9x7GnDnv9qGYJ7oyhyyV0nYLEbeOpQ5AiYbH\nLmA4dhemkxAEJ89hUt0h18aUJKVCKab+9GJPBj4GhNSBfXQrigCwxTysZECcQVAn+7sjJ2idnSPT\neTwRw83qlGVaYrPHyKvH+xezEcI/ngDOY1pthn7n2649aGkFWSo6oHKvIzse0t92k1pewtocZFMl\nOnHVanpfS85/MmfLnO8W5Y0mZmERFpfwDs6mrNZ0txLSQgbQtCYBmxzglBobJMzXgZbqhLlkGs20\nwi+CANtqO2ZGMj5ffIPhF12pWk1MwPhwz3kzG9n7wSCT6kbHbLfX+to2c+7+lGHreTPT2OEKOmYZ\nmM88QmM2z/BfXoBzV8m/1kTGAsYY0w/s7mUYi8XGIB5uP5QC3XX38OR3ZuaWLPCZOvLlcm6OEAIx\nMoyJ2eeJGD0xu1iEETqT89rZKWws+k0hj603sK1Wem6tFGkOYaPQ5ctCQNx6JYLAae+AyzuS7UZR\nCizZ7Qa5N5pQrcLcEngeptFyrLZGE71QY/w118YonngI+7aTKVDVKq2JzPXUNw/rdB5x7WyxkH9y\nbGIQaNCdzXTDHoCkHdgqfA9Tq2PaHVTZtf9HE1XyFxwo6k1Psfz4MKNvNZAzU+z/oyuYUgm5EbdV\n3o1554OO23BZViMj2G53Vycu22q51k3//a1tbtYZkWir7Xi+VsPbv+/GAPMexdgXT8OYE2XPAkFJ\nOIbaHu/Ux/FdFR8OhOHDHknSdreSgDhutJjey7iTvbPvORKB5kQ4MX3eukVywoRJYqAq2wfYZCJJ\nBvoquuDa0hoNxLdOMfMtUPfdm9JjE2r2dW9S1u5MpiG1j0/3SanY8aWWqfT2xqAsl2BqAh0vDPsq\nxVL1fX/SxuW2K90aMIywmWMiPD+uesXfL03fcbOZ/nprBto4sgyn96C1JYtFaN39m/J7DTlURZcL\nGE+CBKMkUSDpVAU6EM5y3kJhzWJyrrVLaMHomYhuWVKfVcgIioBf87A5P20TETp2vEtAGOGYQcK6\n1jCdk46pY0FokCHYbUVoA6K8xg8ignyINhJfaba6Bd7Y3MeJoQWKXpcokiy3K8xtD7Pmldjq5Bkt\ntvCl5rweJtHMQTm7eETMEMomUQbwhfv9lj6LVEHMOjOAtHgtTbBlsELGGgsCtaU4Mz/FeW+c6ZE6\n+6c2+UbzPpa7VQIZERrFxdUxwkYOse2hOgLZEagOiFtwBflAw9Kvv5M+n7kmrrfQT67fgQVuMv8k\n7CBw4qgAZmMzXaAnR/zaZyeZiq97u91I5xSncdFAjo/GG95lgZTdxwEh7KRVUSjlWrpiFk8CUsux\nUafrEgRuTokXBgkjqXNwlJG/vgT3HMKurqeLKPf9A/NvFvDZLQbnF3YB9JNI5uPXzjp2g7HgCSZ+\n8yTEzNu0tcYatxA5fAB2wSHuaFzvfGQfD0a2YJFln8VaMLbbxWZZRMnYkso5k7UzwLy1RJevosbH\nnOh2N3Ttfu0OiWNm77xk2mqgN/fvdv/PfKeIHaWAuNXRT+8NInDspGQbemUFYnaRd+Qw4dQQ/pWV\n1Gnnto5n8ndGbDx9m+e5a9boHXR6EQTOVe98jyHgvXqOodckVusUxDXx/fWu5z/JYBAyZQZlxaTT\n3y8zhawkxwhd62naalooYFbX3ZyRzzvg2Zj0dTu34Foxq2X02jqNQ2UKrwnUzDR6fgE5POTaSKWA\nRqM3F6ftWLp3/jMh4rYzS5z3aJ0yZwijFGBGO8FhG3ZhpIpotKBWcwxcwHoS22jApz/B9kyBidfC\neCxnznB8PPqKgtk5KWFDp4Uwmeo1pezoWCzddjoQF+4Aly8NVfHOzUGpiM0HCCmZ+OYybNRASWzH\nAXBmacUJXmfbeT+qcRvapI3vOUb51PyugJBpt/Gmp7DN6+uj3um4G65mu4Wu1bKSGztCFou37Bb1\ncXwc7yU+BoRuJZKqXvghBEI+bCEV17UAukMhpEhv2ECagPSBQNmEJKMnlLjT9C00hHDtVZkku0+U\nNdXZ6X1En303pcqbSgG57hKqRMdntwVkkqT2VX8zG806viQJuoid0aw26M0tlOf1eo+FIPxbj+N/\n9dX0hu0dmMVWS4j1LfSK05fYkdAmiY81Pfp0ArCpeJ+UQuZ6FTWhAFSPkfU+xctNs9kHTn2UQhaL\n2FIB60uEtmBBFyVWOg2hXN3QGXa6OY0pgfUgV7MYX1Df76EDBxb5DQemGT9egKk4cdQGISUmHgcJ\nS8dKgVHStY4ZJ6gpQ1Jhaaxy6+JSh3zOtYspKdhoFthYrXChOMZjB+Z4cGaJhWaV4XyLqt9mvVWk\nGfoo4YAXAOs7ptIOhlC6YHd6RjZJoBNmm7Gx61Bv0S+7mmAjxEqfbsWxivKrErPltIDmx4r8WTtA\nCMt2I0+l3KIbebQ38qi6IliTWOGOmfFxzKS9jhhISeeN9wCCJpECFckxyi74heh3aWp3EEHA6Fs9\n0WgxVHV0d61Tq3WbzyxadnxhPyuozx0wXohl54hBZ7NEZ8V2Q1Jr6Zht4a82nU305AisrmcWr7u0\n8WT/zy7mE/F7oJ8VsrsLV8riNBobRmlrd6ILkhYIUo2VGJCv71yg3PG4CXvlurFLASMR60Vr6HbT\n4yB8LxbJ7bo2vNhmXlbKRAcnkc0Q5pdSx6jsd/QVPpJjH//fNz3fAPC0hj6mV1KYSJ3sjEUdvYfN\nJ6YYeqcG5y47Yd5LVxEXLnFbWdZurWHZe1FcqOhjnsVMpixoZYUTQxZjI4650mqj6/U+QDIVWA8C\nB5hcf+12RyJtC0v1/XAnxQy2YGY0uNIPZwD6IECWio7l0mo5oDefd2zURgM5Noqtbbu8qNV27ZXt\nDmpqksrrS5hCodfqF8/vqdNhq03imOhyK3a0nQvPS9k1CVAryyV3nSbXq+9j2x1kqYAoFaHdRnS6\nqWW7+vorqLFRTGSwgGyGVE5t0j083s+ks2ag5b0fYE5aXa3pgULJ2HDMSK8Hasb7nhxnIR1QLjpd\nN/8VLKLRwoYhQggHgJRKvXMkXcGSaA/vV+/9tvSBReErrxHdoPthVw2zj2NHXLcY8nF8HB9QfAwI\n3UZ8fEHeQtxBV7PrhQNVDJhkEWF6ekLxYyBNBFP6MPQ0cTKJX6oRlGEa9WyZe647Ipdzlr6FAuLQ\nflhZR88tOKcMcH3yuzB7sttMdy+rcbDjjS7RlfkA0+44XQdr/n/23iZWki05D/viZGZV3Z/ufv1+\nOBzOjEVSoizQBgyLBgkDtgAbECxrIWpJr7QwoJUBCbYXFAivvDBswAa8JSAZWhjmwjZgLgQIlmHY\nlhcWbYOSJQojDYfkcIYz5Ht806+7709V5jnhRUScEycrq27V7e57q99kAN333vw5fxl58sR3vohA\nfLGp4xy1HZrrAe1Xv5J3PWzhFi4udCHD224unMBD2RWmUHbNEAjULMTAiJtsMJJ377inVKys0CAH\nknnPJHz4HNyEvDvKFBAio10zwsDorhOGlYAlcQlwCyw/B1Y/TLj9gLB4BZz/0YD+MoAi0L3agG7W\njr7ugReAk7B1AGXiJEha+wGgKMdTx+BW2HH9pgURsL7tQMRYrnpgHYA/usDvPXuOdd/ii28/x4/9\ni5/i6x+/wCcXr/F6s8Sr2yUoQhh2Wh+DgBAyaGULzsxQUuYYE2TRrOORtVrZQ2EdsXxB4KYDmBB6\nRlxKgG0g4CVrZrqe8MOzFRCA5obQvQ7CgAoCfoWN1vmQQtimzI/f3yMAIjNCwpMnu+Mn2HwVI8Lq\nHKvfl3Tv7Td+Aqzxy3JsEyIxUqwdY+N91O4qfpAPeg0oyySi+fC5gM6fCYsi3dyCuhbNn/lToOtb\nxO99X3Z6f/Ap+PUVwqsbCXreNNlFxPdjq285BpMFkh4BScZkmmKEcAIPDkh34DpHZPdcalvZodd4\nSPHTB2bcEiaZqHfFDgSwpU88DMBmU91nxuqYmcr9BuAkKZJ/8IeV1wEtlyVYNTA5p2d2DbAFVm7F\nXqEA6loJjv7qlbgmWRybrs0s1vit38GTb/1O7QExjm81pQRWGgAAIABJREFU/j03aI+b3fj4CByS\nGFWxAAL6HefNpsQnAnIGUHtexcUv5NhdDy0W9BhA3sCxOGOi07ECQapQUy52lbjAqwtPaECLVgAY\nYxGPGFaiUwMCa9Y3BdKaP/VToJjAL14WcK3vS32wNVByujko63qTy6bFojAJU5JgwxeiP0gr0AeX\nCJtemJAfPc+A74s//6fx/P/8Lvj5c9BnPwR/+AypDWiNwWpB6h04ZgwgL163qW3BKBuGHD3Dqc6s\nh6aRjZBXrwVE/OIl0LXCUFotJYPbei26v1goWMkPa0ecwJLqrneFb24fZLO9/eqPP0hw6HclUwyr\nWWZ5mzIDQsfIA4Ed7zp49ZdNLN4NhQL80FKDhvqMLFMxCHyoIQ2E6CfeiuJuBkmKSLcRzVd+DOGn\n/wWJozSKgWBBXw/2tR5TnM3HXQMiNpcX6P+VP4nFt74vFOqf/AnJvOKL6DcIf/83J3dYZSdOMv5Q\n04kf/K37UNs4cNIFk7ZZXcsyCwuQ8QAyg8gM2mOljheScBLbWUdKOD+XXcshgmILQGIAgQj9RYPN\nZUB/IQGliSFGYQT6CwJIWEFxSbj5uEF/Tli+5BI7RndDaZDxDkTgVp9BAoKykbqBAWoxrBphCg2E\nlABKAF03SC/PcHWR0L5qQD3w+pMBWCb0nyRsBo398pUbrNoB373+ADdDh8iE202HxSvkoM05LhAg\nj4rs38jlhdn1NQlzyFg8zAATqI9or3osG0LoGwwrQhiA1Er7m3VAXEgf+GUj9TAQBvkpLCigveFH\ncRkrwMWEsbqVYWzbwDVDyWKxAZCgpXvrZYTzlbg7Xev3YYjiUkqUMwaBAtjPDfuMa39+JNQtZJ64\nvgadnwsLKbmAyDFKxrNNrzFDBvmdGfy5xvbJwV1DmX+3xsyB8t6VzI/fZANdmb47thmQIry7cM4q\nNsUafQhh1IHI7fA9wQX7vgTN4mRrhsn1AwU0Hz4H39zkDFnNJx9LPJP1GvFlzJnaMqBkIKRP1rAP\nXATkeaQG9PwZ6OZGsvpoZh9aLtE8f4706hWar30VL37ha3j6Wy9AP/gU/BOfgJcdwuvbOp7QlO4a\nk8x0xgMYpis02uhxcZH872MmXA6UHQsYUtXLHrS66wm9XeEYBUxJsq6xdzD32afrJo3nNgo6Ej54\nBn59lTM88aYHna0E7LUg4wogGnPHQLzw7Kkwez7+CFgtJX7Qpi/veGgEDDH2ZGKANStedkWEsGUo\nlCC5vWy2UduWLFAffgD88eeIL1+i+fqPg14pQ+dmDfroQ9CmFzZuIOCrn+haj7D69mfgxUJiIAE1\nO8hlErNYisZeMsA4X5s4A4g5rqK60leged8L6G3lA9LPvoCIAnjFkgHuIeU9WFKl6+ujNlDuK8P3\nfyBB4/+/f/YoG9ezzHLqMgNCDyi74tSMZQaDjhcDT3Lq0N65i3lQZmy8ug8D95sSXFOZQjmAtC2y\ngxmnCfHTP5bdKJ8yc7VC+IkfF3exzz6XHaJdVHufEc2MSANHmMuiLkXEly+x+M5n4M1GfI3/0XF8\ndb/DmTY9mssLhIsm716FZ0+BYUB69VoWPOrmUwWcNjHDyhZRMYm7130/6vm+E9jOOlIsELixQygC\nGBQECQrKMNBdAcQJza1kAltcMYYVYTgjbJ4S2hvg/I8SFl8MSMtWqPK6YyrlJlm8p6YY/g0jDAGJ\nBLShKM8lbIBuIKSFjGd3BXAI6C9ZMpp92qJ/lsAXA15drRCHBmnT4Ps/fIrvA9jcdKDASLctzg1w\nIQIsuDQB3AakhbjIGXsobBIocXbnQlLdISpAUlL2UBtAidG+6kEDg1KDEMUVjK8Z/S0hLZBBIqlX\nyjG3vGYNNBuWvx9U2DEkvAEai9FTgUDbwIW4A4YKvEibvgY/mGt3LkAAmqsrxB+I21b64Qs0z55K\ncOWUslGTru6IybADHKImgAdz3yJxj4kxswd4s3EZfALiH/wgu1TEz19oGepausNVNtdVBdq3gNNu\nHH3w5HyTD0zt4p+NxykQOLstasDl6+vipnvgt/idiAe8dsS8qWTEdKXFQlwwu06M6hDqAOQOdKLl\nMseVst1xczeb2i3PmajGbNWptu2Y77nfYPj27wKQALv8/Cn4O38g2ci+eAlwwvB7v4/L73wX3HaC\nr37+AhQISTdzpBxl45rB3mjWs+cfAENE+vSzbXeTDN6MgSqufx+BtJX+jNcLU8/nAQzYLUkRiKY3\nBeDMG0cmBhZ5sffm+TPwiy8QLi5kLaCAXVithPl5fS0xt158kZNWmPAHT9DcrmVN8OKLDBS1X/1x\npJfCrMpgiQfPYJtMesrANuYSs+xMXNaaJ5cYvvcHeP2zH+PJKwmQzjEJwGLg16YHuhYf/P3fAw8R\n/NnnoJUy3ax8C/NgoEwjsRmLrqSczbByFwMyiywzC82dnkUPw0rcyEABzBrLz3TV6ieSdzKECmAU\nwO09QGnGckQQ6aPlLbxLzSefgG9vM8NW0tlvB9zZl5p+lll+1OUkACHqWjTPP5E/bJEXJZMDO6Oo\nWkTlXZFQDFdgmnLv/cb9DpjurtGTJ0gvX+adOtutoMUC8fXV25kIQ4PwJ38SfLZAeHmdF0z3ln20\n6R8x8QtCnly43mMhl2LFFMogXbUojBh+8If1bbe3SPue7a5F9sTu+Zj6P84Mc7S4RVp0weu4H8TA\nWHRVnw8ZKb6D1HB0+94z4fUaeCFjGZaLfLy7XaP7XP8242rQndNVB+oj0sUS8aIDIqN9eYvwUnfK\nEoNvxS2BmUHG5NJMTwbIhRCARYcmBLRtg+WnS1w8WSItG1CSWESpFSZS6BlxISAMGEhLQuxaxEWH\nEIH2NiEuLpAaoOkZSV3ALr53g/Z7nxeDk0gCZS46mXtfX8uid7UA9S4grQGJ9kybUIAsPyYxoWsC\nlsuF0O1J3OG4DcXQDQEYEtBK8GwDKCkmUGSET1+8uwc8Jb6PLmBpxifG7k6WUcwBGGm9BiiIa82t\nZQBLpXwTM8i0LN70OZti3lVXxgeC7rqr8VLKoO1yfV98+QZEswTfTVGyH+aAuiM2C/dD5cpi/Rfm\nkzO4/fgYA1LjHeV05mZ4j79tPh6KsVRG/WHPlBizRJy7nQ8g+xgsj8ptiYIyJkbucGNXZ7dpYNl4\n0u1tzuBkax9aLiV2iW1cIGX3pubjj4BPPgS9vAK/eo10cyvZfS4vgKZBevFFHZR6vFnhGVwWZNqe\ne9NoAHwBKej5M1z9yz+Os99/Bf7O98G/U1waKQQxihedsMlilHkkxjzHjEEePwzxxRdbzNjJdWG+\neQ87zjFqJAX5QubYxJmdWSUSaRYFaHkEhkF48qRa6+bfjZmS5FmY61UFFIYg7+qrKxlbi6elYu9i\nJeoeB0AyMd2sZePn5jaDxc2Hz8FDLGX591PL8POhZ+wgcXZ9BrOU+/QJAGD1mbrwvb4CXl9J+SlJ\ngOYmSEayxJm9TX0Bxcy9PzOAunbLxT2cn+tcuqzBs8QC1mtMSiIFxnN3fNw4ibmYY1VSKPOey0pm\ncZaQJAnEwwqj+dk/nb+1trlUBfGe+i74zY6UwNc32a0SQIm91A/yPEwnmzKHh698Au5a4MVLeY4h\ngFYr4Nkl6HaD9MVLpKvr+tux1fwdcxEgcT6HIQN5N3/uz+D8d18iffO3BXged2mUlbfK2KtsWGiM\nTuubuQaGi3MZA8v+uSsweEqYytprv+8db9/n8XEKwgR9vNjbs/wICPGUcj50I4g+BXAF4LPHbstb\nko/x5ekLcHx//gQzf/KuGuOFiF4B+OZD1PVA8mXSnVPWm3nOOW05Zd2Z55zTlVlvHk6+THoDzLrz\nkPJl0p1Zbx5Ovkx6A8y681Ay680BenMSDCFm/oSI/m9m/tceuy1vQ75MfQFOvj/fPOG2HS0nPtZH\nySn3ZZ5zTltOvD/znHOicuJ9mfXmhOXE+zPrzonKifdl1psTlhPvz5dGd058nI+Wd9WfR8jXO8ss\ns8wyyyyzzDLLLLPMMssss8wyy2PKDAjNMssss8wyyyyzzDLLLLPMMssss/yIySkBQr/62A14i/Jl\n6gtw2v055bbdR75M/Tn1vpx6+46RL1NfgNPuzym37T7yZerPKffllNt2H5n783Byym27j3yZ+nPK\nfTnltt1H5v48nJxy246VL1NfgHfUn5MIKj3LLLPMMssss8wyyyyzzDLLLLPMMsvDySkxhGaZZZZZ\nZplllllmmWWWWWaZZZZZZnkAeXRAiIj+AhF9k4i+RUS//NjtOUSI6G8R0R8R0T92xz4kov+ZiP65\n/nzuzv0N7d83iejfeZxWTwsRfYOI/lci+i0i+idE9Nf0+En3Z9abx5dZdx5Ovky6M+vNw8msN6fR\nn1l3HlfeV92Z9eZx5X3VG23HrDuPKO+r7sx687jyqHrDzI/2D0AD4LcB/DSABYB/COBnH7NNB7b7\nzwH4swD+sTv2XwD4Zf39lwH85/r7z2q/lgB+SvvbPHYfXLu/CuDP6u9PAPwzbfPJ9mfWm9P4N+vO\nrDuz3jz+eM56c9r9mXXn8f+9j7oz683j/3sf9WbWncfvx/uqO7PePP6/x9Sbx2YI/TyAbzHzt5l5\nA+DXAPziI7fpTmHm/x3A56PDvwjgb+vvfxvAX3bHf42Z18z8OwC+Ben3SQgzf5+Z/1/9/RWAfwrg\nazjt/sx6cwIy687DyZdJd2a9eTiZ9eYk+jPrziPLe6o7s948srynegPMuvPo8p7qzqw3jyyPqTeP\nDQh9DcDvu7+/q8feR/kKM39ff/8BgK/o7+9NH4noJwH8qwD+L5x2f06hDW9LTnmcD5ZZdx5FTnmc\nD5JZbx5FTnmcD5L3SG9OqR1vQ059rO+U90h3TqENb0tOeZwPkvdIb06pHW9DTn2s75T3SHdOoQ1v\nS055nA+Sh9abxwaEvpTCwuN6r9K3EdElgP8BwF9n5pf+3PvYn/dR3tdxnnXn8eV9HOdZbx5f3sdx\nnvXmNOR9HOtZdx5f3sdxnvXmNOR9HOtZdx5f3sdxfgy9eWxA6HsAvuH+/roeex/lD4noqwCgP/9I\nj598H4mogyjef8vM/6MePuX+nEIb3pac8jjfKbPuPKqc8jjvlVlvHlVOeZz3ynuoN6fUjrchpz7W\nO+U91J1TaMPbklMe573yHurNKbXjbcipj/VOeQ915xTa8LbklMd5rzyW3jw2IPQbAH6GiH6KiBYA\nfgnArz9ym+4rvw7gr+jvfwXA/+SO/xIRLYnopwD8DIB/8AjtmxQiIgB/E8A/Zeb/yp065f7MenMC\nMuvOo8spj/NOmfXm0eWUx3mnvKd6A8y68+jynurOrDePLO+p3gCz7jy6vKe6M+vNI8uj6g0/fkTt\nvwiJov3bAH7lsdtzYJv/OwDfB9BD/PX+fQAfAfhfAPxzAH8PwIfu+l/R/n0TwL/72O0f9eXfgFDP\n/hGA39R/f/HU+zPrzeP/m3Vn1p1Zb07736w3p9GfWXcevS/vpe7MevPofXkv9WbWncf/977qzqw3\nj96XR9Mb0sJmmWWWWWaZZZZZZplllllmmWWWWWb5EZHHdhmbZZZZZplllllmmWWWWWaZZZZZZpnl\ngWUGhGaZZZZZZplllllmmWWWWWaZZZZZfsRkBoRmmWWWWWaZZZZZZplllllmmWWWWX7EZAaEZpll\nlllmmWWWWWaZZZZZZplllll+xOSdAUJE9BeI6JtE9C0i+uV3Vc8sXy6Z9WaW+8qsO7PcR2a9meU+\nMuvNLPeVWXdmuY/MejPLfWXWnVnukneSZYyIGkjauj8PSQH3GwD+PWb+rbde2SxfGpn1Zpb7yqw7\ns9xHZr2Z5T4y680s95VZd2a5j8x6M8t9ZdadWQ6Rd8UQ+nkA32LmbzPzBsCvAfjFd1TXLF8emfVm\nlvvKrDuz3EdmvZnlPjLrzSz3lVl3ZrmPzHozy31l1p1Z7pT2HZX7NQC/7/7+LoBf8BcQ0V8F8FcB\noKHu51bPfgykZCWmY6sjAHcxncaFjq+nyeO0o9jtNtJ0NVtV7q53V//HbZDzo/aSu8mu39UWHv9x\n9IDvlNAnvLr6g8+Y+ZN73H6n3gDbunOx+vhebZ2S43Vvn5heklPRwxl5/rmXdk3raaljdHxLL45j\nBE7r3v5r7iXMuLn9HBte3/cJHDfnoPm5czy9Z1WznJq8wg8fdM5ZffCVu+fZU5aJz8XW6bdPHq4q\nyMO3axzfRf2jMjcv/xibeH2fJ3i03lC3+Lkn7UfaDi4/ieTfoWxtm9Pt3qn7aNQlf834nL+GCEwA\npT3X72unXmvfCWK9ngEEymsXYtbjDIRQfVfKPW5sxnVbOxlAYvdZnLhH2yPXpuPHO383y7eX15uH\nnXPQ/tw5PUH94vpn5Nu64+/x7+T+4NHx6vy4LlcYo4zleF269V7T9vGp5bCVaY3YpbtOF7bWsVtj\nM1G3L9v3wddvyzcKYE6jtrn2e33yZU+M+224wSbePMicU61zaDQG5Yb9uuSP2fFdy9BxucB22Ty6\nZjxuVnD1SPc1akefps4RgYjKsxzdU5rH9bPd6odvz8Rc4vRI6nPz2Y521f3bVo/+x85x+4fffcA5\np/m5i8XH288+/3KECr9Vm57usG2nxnBsyPhfnO2+91mPyp/6ju76puwarqn2jnXevx8Hr4nqC2+G\nVwetc94VIHSnMPOvAvhVAHj69Ov8ya/8h+Xdmmo28WiVgTJeBFCyX9h9/ZGv21pwjNtjRaf6QP57\nXFZg+WltCK7goMcTygcl6gp4xweQEkBJruEg5SORLo5KOdywnLchCe561jKSXuv5X6Pxs/b4wzvn\nXN4uYnzO7v3oHxL+n//mP/o9vEPxunP+lW/wh3/jr8uYM0BRxxoyVrlPSXVipFu5P0F/p/qeLVAm\nsFwbWMZ6KGPKLYO0QCau+Xf6fMD6fLTOPKj+2el15J+71duWhQgNJMcaBhp9mEOo+2/HCcBAoD6U\nyWniG5T7FbUN0b0D5PSNGNzJjWEdpN32DJzeb83NifJ5srr1uf3hf/Zf4l2K15tnzcf88/xvyQe7\naUBtC44JHCOQYrkpNKBgzzjIeU5WYF2BlsWJ5Z6mkcWAlcsJoABqGiBQfS5FqatppOgYpV1N0L/d\ndfohoqYB9PosMWpddduobeXaxOChL+dDg7BaAkTg9Ro8DHW/rQ/M4M0mL2posZCy+k1dDiBGVwjg\nfsj9tnEBJykjaLvtbzd+uc5hqNtjY+Pbr/L3+L9/sDnn8sNv8Mf/6V8rJ8dz4q4yxvPPrkXCrjK2\nJuBRWdA5xOqysvIcx9u/57mgzEMAZL5k/enrt3v8tf7+8ffSvk2+nf7YuHyg9NE/Ysbuvo9l6jsL\nyNyc3DUAPvtP/uvDyrynVN+qH/sG/+vNXwKGAXx1LbpNAeHiAlh0cvx2DcQo75fcn+cAkP5sAhBt\nDkrgfgBilPfbv5+LTt6jvkd6fSXlLpegs5Vce3MrZQQC2ha83oBI3nler2UOIgKdnUmdzLl9FmqA\n2tY6Kr8vutJOAOg3SDe3AAHh8hLUdeCUwK+vkK6vQYsFwpOnoCbIeGi74qtXADOap0+lzE0vcwkg\nfQsEJJZ+ATJ/bTYIyyVotcxzHQLJeKxWSJ//EOn2Gs0Hz4BuAb6+Bm96mYsXCx13bX+MMt8Bot9N\nAwSdizcbMK0fdM55dvZV/vnNv5nHOrdrLONju+amXdeNf4ZGv3cjA2nchrvaMnXPvvtC4751o7op\n6DnXRvtm5/smyq3aq+2ZasvomOm4vK+j+ibvHy2squOMf9D9Hzsa93aksq3CR/wL+LfrCw795tw1\nhoC8X3cBq1O6tmsM72zTjvpoz7lxG/mAe6bu23f91LmJ9XXuQ3XiAAkNms0l/i7+5oPNOU/pQ/6X\n/tJ/DG6kvaFnhJ5BzEgtgRvKtjcxg21dqmPARM5mKA/TNhzMrsjLGpLrUguAgTCUa6Q+5CHjAGmX\nH1u7x5Yyen1QG4YiV/a8tdnKSo27R5ed3ACxk36EgfPx1EpbmeT3pgeaNYMSy/Eg9VYbGKFuI0UG\nxdJ+bpDvTQ0hdUCzAZpNQmqkDYITcKU6HOyclpft9WIr/ub/dtg6510BQt8D8A3399f12LTYDpJf\nII8Xv0xb60W4S8sikuqFK5CNz51raUIxvg0IGr2rGVwhzvdUIELA9mLYxAz9ycqRwSweLZzJL17t\nxWrkd69ItrimKMb2GDcTY51KOVMz7a4Pwuh7vNX2PTbKPeQ4vYE+MrUtMygI5PGyl6hGdlB//All\n7PWllXMjI8muzYpY6rU25HLGY2aGjx0fO2uy++eFIMBOGJWthpUARXp8EGAmg1EeDPLviN3HKAak\nAk5iBCK/b3lMA+fxzO0nVOAWN1wAH+2zgJbsH0uZ1N2YVobr/eQo3ckGjQIQPAzbQAqRGFxRrjOD\nBBSQQSEPGAEF9ICCLxzlmNZFbSt1JwaDxegKJLekCFbwhBzQw2r8USAgtAAFUNcCKeWywCkDUbRY\niJHogS0KYhwGVH2kToGivhhc2hGAOlkMxyj//NjksaAyjsnGxIFBblyknwHUUB5DjijgkF4XWlOW\nkM9RsGexDXa9oRw951QymiNtbiAPatic4fV7PAfdWc+OPrtvXDU3jd8nP094INq+X+Myq7mU6376\nl9l/lHeBQf4b4sGgrflOy02jQ7kffg53bZukLdb9oWoCeityvN4QBGi4XWcwSN4/fTcTF2AHyKBw\nFptnDCRtGvBGwFeEAN4IoCOASAGSYYARyXUZcNV5T+Z4lvlEm2k72+g6qTcmafswSB0KHCGEMhco\ngAxA54wEvl3nNnkwiNdrUNshXF6A2gbcK8i76ZHWaxmu5VLAIEDGKyUBbgycurmRMepkGZsB8rYt\ngFliYCFzWLqVctEtZG40kD4FoO+re5k5A1S0WBRgvh/kW3CQiuyU+805BoSMxRvXb1P0+7eTgXbM\nPHwM+43tGzq6z/rJsb4+jb5b4/LG5exiyO2Sping4FQdUzLV3zf/bt1Db3bUOfX8jn2mQLn+WB28\nr76OGV1T53bds+vcrn5P1XVXWYdIxRQ6UJLO3/eXe805SddiAmKwrjEoAxdl3aPrQM/WhNqszjQH\ndMlAYu8KWMNAICTb97ANY7U/zO5gfx52DRc7jOuljG1mSzm8vcwhAZlSQ8VWdBvgHBQMgoJhg1yT\nWgWozJwaDLxiZOAHAJjVNnQglwOlqo12v6+rH+EM/sDGgPLfFKXv+Tm4ew3osmcn9u9h+vauYgj9\nBoCfIaKfIqIFgF8C8Ot77xitl03GDI0tNovdy9vXlkJKWVOg0iQYlJkao8aYYnpmhoI00ON126go\n5aiNIPc3+QfvGpgNf1TsoDwefqd1VDZ7FpN/Udhd02BbC/YAZ3ksU/3i7tqVPVKO1xsFxKpna8/G\nJhIPODhDrKDSXnFcuWMd8jvs2l9jaeXnbv92vVnj56FgIRnwNNJrdoykYpDp6cwAguirZx6NwaBI\njjnGdf+q50oF1Mnl8eh94vp61GO4xbabGkv/vriPxhvIUbpDRAJ22G7wyEWC2hbUdmJkGDMoqQHh\nwCADYkBBDLxAoNaMmF4NmZjZNnmXOUZh1yRh9FDbSnn20dd6eBhgQAhrO6lrywTv2p0NIs9i0v5k\nY9KBNNQt5J5ejTC3uMtGELMYR9noazLbx/ot42TsBcfiSY5tlUrbabnMRlweMzMktc88DLJzr/8q\ntpD16e3I8XOOiZ/zxjqOcnwSDBrfv0u2Php77p1qC3EBg/I8xTJ8rtxq0zJR/UL68sZ1Th3P77bW\n69tfzaE0moN2LehR5kb/fT3EV3U0X78l8Bm4r95semGlKBhkzD2OSZgnUdl1BgYpE0bmF/3d3vne\nvQ/2fnadvIMUBDgyoJsCqAnCgAEESNZ7qsQiIcjfDjgytgwPg85Tcg11bWEkNg3QLeR6QECVmxsg\nBAGDVitwSsDNLXi9BigIGNR1AgbFBN70ck9iUNMgnK1yPzhGBb4o950NOLBF8nIpgFE23mQONZYU\nkjCkbLxyfwBwTGVOCiTgtvafxnPtmJV5vNxjnfPW5rvjZJeh/A6S0WS5DzAxBfyYvCk4k/b0d/xc\n7tP2w+VedtX08dGJQ9q9Twf3ATzhHu/LXfcc61677/hdZU2N1ZvKDtfWvRLeqN77fa8IE7aV/qP6\nE5wBCqLCvMnf32KjjQkLGdRQN2Bs1UcOVCrgzd5mJ2X0RH13/doIyMCVgUGZvROLTZeMGRQFuAKA\n1NRgELGCQVHbr2VV7Xd9MpAnDJzbI2NJmXGU26hsH2EHUcUM8kCYiQFcxhgqZIf9Y+XlnTCEmHkg\nov8AwN+FwCV/i5n/yZ332S+qNTvXezbCx7SJijJmBffKnKn2WnyjD8+qA+DBhcyo8JKVVhco5nLj\nF6P+2vGi3oEF+R4HBgg7iIXh0zjQg1G/bOZaRNCPWQEDPLsEcIb8FDPqLqPDXUPj/t1D7qs3FRjm\nGFzVs7Y6DLzT9nqXMUz0vYBJDgQx8IaLHlTuaSZ37V4rEMRjRVcQsQIe7daK0cOlL8ZAMjDIXNSM\nnZZI6nIGGSWq22wAX9LJyCYT03lvtDFqECq3b9RHu9aNCY8+bOT08b5ytO4o6MNRAZ1MX6bKbQvA\naAdS3+1sSCCzV8o1NZNFwKW2lDl2S1MQiAJpnWrQWTl6jYA0TWEGxZp9JDv5cQs4obYrbCXvgqUG\nUNo4FyyiYqhqf1kNT+oWxWgyY9TAHFtQxpgZTeMx839ncMsxmoSFhWzAIskxYSuZ0gYHCGD7+Rwp\n955zTEaACEHe5613etc9u+ZMDyJZURVjFuV91jK33cW4fFMCQKFuExHA4GIL5PnC1TMGy+/yvSaU\nealxc4XOkxRY6hrXkf/k7UWyjVOef2jEPHLz7F3fq9yP7aYfI/fSG4aweEbgKWz+iTGfy0wYe185\nAYO4nBpjgZw7p7Fn8nvbbwqAoW5ndHamO/msbESkgk4fAAAgAElEQVQ3l/WDXGfgcWIZJmZgI+wc\ndOqCpmCVubFS04CW4saV5yUFt8JiAVqtpB03t5n9E85WoNVSQKJhyG5vmQ25VLevfiMAmo2XGudp\nvc6/U9cWVy9zpwsEREh5wwBs+gx0I8U8pwnDKU0aWxkI0nPC6qLChLyn3H+dMz3PZYbpIXIMk2Mf\nCPIuQI+7jPdxuw9lbni5D5tqvLlSuR+9g3HY1Yz76M2+Md3HtpkC2O7b1/t8nw+95y6m031YQ3fp\n9yHjcOg7csyY+g2AI+W+c46xR2XtX+yFMRgEFHClBomUZeTssMoey3boyP7UOrlVV65AW65o4w05\n1p+UoEAQttujoIqwdigDW1Vfg5xLDbK7mZWVOjkuQBAU3EFxFSO9JxbXNQPVxOVM3O6EaeSYVpA2\nWfvMva14+RRmUQbFplTH2WxMVFhdk093W95ZDCFm/jsA/s6h1/u1nT2hvawBr5FMWwo6Vta9rk3O\nLYjcIQCK+LEziIuhPl2ULrIS6T/UBnW+ELWrW3b7Qo4lZGBQYaBIJ4ghbCGNJ0M9lTUx6bmgcYI8\nWOJfnhHIMQWGTMmknZPRtt33HSrH6o1vU6HqoTwf/9wrt6s9gGNWRuweI7vOs3fGjZoynhyYRO48\nE4NQJk5WYMeDQZkZlHf8tQ6nLxkMAopxp/WxM9CoAtHcsUjZHdHrU96dd8+YlElQsdScFDdL33Y4\nd0eefHfvK0frTlCDawLwKX9PrLRDAWyo7YQNo7GBciyMERiU3cS2wCBlwBiw03YVK4AaVDvSBihl\nMMXi/LSt7LB7MMji7gSqXcgU9AFQHaduIYZVCNnw414YShlwymVT3smHsQh8rKTxOGpbCoNAxoHR\nFKZCFZ9JjV9AfpIYsdTqGMfC1DrYGNoh95lzpF2o5wQq8z+AAvbuBH2OrlFkPFdrO3JdHjDLbECe\nZKoXZhDVYNC43d6FzM4DI2DH/fTsRD1GjbnxjCiB1uZxHVVDXZnEyDHhDlztbLnyvQW5j94wM8Jy\nWd6lxAKIDAWgoCaI65KeN3fWcLbKoG8GrY3pY/HGAkmcH+bMBrL5oXI5U/DJ3m8BYUnjEKVcZ36/\nrfzEwhCyWEdtCzpbZXAdKWYXNepaYKnxyZSFyP0g/ThbwVzEuB8K6AMBi9AJSGXMyCqemrl+AQry\ndGW8KOTvnzCxSMaXGWHRgRadHLc4TSkVgM6kHwqTcyPsJbLdfO8i9wZy7zlnqqxj2vOmkyWwPbe/\nbRm7d2XW7MhV7NiygNL/I1ymKvbwPjkUBHgDhsnxejPRnhwXCrvbzKzXvQEw8zavB7bBvLtcve4r\nd+nFPjbam9RzV/lvxhC635yjbk8CYGjznD2ZTT8X/4bVhqFYrwEqD3RzhVKgafy3sVwMDJJzrv+M\nDBAV+wXFBc2Oo7RxDAal1rXJvCfUvSu1qNg/BgZxKPWEnjPjhxt3To/7kCUW3ycMiiVo/yoGlF2b\n7UNUx02EiYUqVMl4HAQIG63BDpBHCypdiSFezgWpYiOYjBdzo7/HgEv1u1PGreo9YGK65N2Nqovd\nDVMAAUFi+fRqWKs2Tm6s5sUyF6PYgVMcWOl5MiAUTYm4GOkJJWC1tQHaBnUT2nKTM0PBfrdfrf97\nFGjSeHdA1dsw7I8ShrywDWq3qtxYayMKowoAIpcB8eMCFMOEuLgomAuhXWdgiQeDKuh7YvJ2YFA5\n5P5IjhnU2jPmqqwMBllw6aht8y4anhU0dumy+q0/ZnO7IOOT4OfUu8WoDL/KFREAObaWDY+91+Tc\nUt6ijXa4GENoYtelCn7sxQVCNmYQD2LIUKAc18fKNzeyHOdH763YLp4FBCDTE23B5kAUNrZOitnd\nLRszMea25P55NzG3kDJXOPb3BDG4PFDEwwDuN2L0LZdiDPV97k+u23ZuehdnwX28ze0O6vplLng+\n0LWNIadQ3wdImwKBex0/WL9DDYA9lBCQY8bZezIB/OxlCfmyto6Nvi8TL4gBG8QE9rsZ/vvk5qnc\nJjvljykQvC/O3Vb7phYaxApIo8wzOp+QzZPjeHoZWMIWoJzrtj7R6D73rdyScVFcxmxnvx5AqGlA\n52fKvOkBxBwfBxY7zLtPsgZzt3cI0J9R388BtOgkbpCBH5u+MGaCZM7J809yoCsg4I4CJ+QYSwJc\nM7BwIG7izEbioUc4OwOdn1cArQFFOfbOopO56fpGWE2LBejyQrrXi4uYvcP5eg1wjd7NZ+a6a65r\nRECjcy6pFRJK+82VzYJz5/hDiTO7ylhPMj/qmMTC7qS2BYdB5rw8NultuIwdL5Vb38gwPobJs8+I\nfVexiPbJXWwOi9d3jEG+D2zYV9eue9xGyr3YKI8oRGF7nnOJKXKbp569XXco0+UYkMdff+h94/Yd\n4uJ2rI5Uwa71mmPeoWOuGbfD1xca5A9lXl89/Fqn2QjYEbvCSjHXJ9ZQHXUwZGHOwJgpakbl+D+x\nAEx2j4UfKWyhYn9srV8UHAnRG1HaLs9mGol5PbC6fKVWGE3e9YrV3slBpHsPhikzSAEfixsEFBcy\nisgxgojVk0fBLjuWcnzM0n8fG2kqvtBYOJAyklz/YnHXQ+Daw+MIOQlAiGHK5QxEGikUQRE+Wwij\nvnbfzqIHPFD+9gZpvtvr2YgZlI+ZgczleDXpugfr46/UwBPl86lFyY6lys0NwK3WZ2wWD2ooSJHv\nyYYJkLNjecqZDVNwZUTXh4YlY9a+eczGwPoyKvttMISOFVnsErjl7CaX2S/J3Ou4jI9l0QLquDem\nf0nuryYkoPTLlVM9/6k4RJV+aNlc6mZlVZV6S1mFzUN1WcQCBgXWINJUjmemDkBDyPdkEMlARR61\nLYNHNhbuZ34Py/iUgUd5D/agOl7vq6v8e7n79ncmOQaFfoirTFwRqHbHNHh0BiDsnVYjQ4wiYdRU\ncYRiFKPdB0NWsCgDIJZ9zOIMJc5GRw5m7WMFtRZENSAHcPZgjMv4xTGCN6N+NEGMOssaBsAbidwP\nSNfXrr0FdEqbvgBSjiY55SbmQavsSpLHj3I8EjTQPgZQKMGxc1EuoKcE3k25728YaPFeIuqu7jX2\nfgHTOsyj3ytQY8c5/9Hb1QZ9HzPo5Fk5fk7SuSEDQFPlJgggBHffuP2eyerfeT8vejAol2XtkrmO\nx/GJsKMsPyY+4L371hXQaWrVhN3PIy8g3eLgIYQBOj8DlgvQEEtWPwUjcnYsQN7HYRDwwuL2DIMy\n+Ai8UfaeZchKDDSUjyEoy8jcv3gow0EBCCkDJ5YV0OKPZQA7UGYW8aaX6xSUFjexpQSENrcvZR7l\nuEHKwOG+R7q5AQCEJ5egEDRuUMyxy8LFhYBLrbjDCctJQJxgTCdOOStYZlqZSymcIWfzTLI5PeQg\n06zt2AJ21AWOGiAbqc4lj6DHHVPpUcRAr7uM6F3n94IlY/9vW3sc+I4cwbop5wN2slCMPTtM9WP6\nPmGqTZR3Tzc3atvyzXrXDJiHlHHbpoDAYwCb+/T3ECBtn07d17Urb+xNAF5joPU+79Ex4svY1Y5H\nlLBhxJVm01IAhRTwEXuyxAoycCczYFius/Me8MhiKpDLGMUeAir724CVypOCHTOI4bKfcQavwiDt\nyMyggCrTGYAMFrGCWjmGT6fsKJJjzUZiClmfU1vqMKAqu88pM8jqSm0BGyxuko2DZB1jZSKpTeIY\nQ+Mxy/fB+sF1/CAgg2CHykkAQvDKBBQL0hmQlXtV/Wu5YAzS6HVbRujEAnJ8XQaDPIDi312/+DZw\nRg3uDDg0cMhoqd8DEhYXiGLIgXxzAOmOAR/13LJNEUvKceeSlhlD48W1ddcr4XjR7rAH2rdG3nnc\ngQwPLToxVHEoFChjZ0xsZf8yAN5sOdudzmAQ1/1xAEjlxgUU3XNt2hqLse6Mzymwk10B/Q54NoIY\n6BjUJDGsrP0NF5DIXD8GKi5n1S6867+NnxmDjG0XOJtYDAxiyoBVAd5KKvnxWI3HsAJ4eeKeBxPO\nO9mhbSU+hhoPvN4At2uw7Uzq7nnFwEkRCArMLDrZrVfgglNAWOnCdEiyoCVyO9ixjGsg5JhBJuZP\nPUEtD6slfAyLHJw6X9CUoNPjhXFosnGV3dq0jgxg3a5LTKHR9bXbmQIyKWWQKItnQKnxZq4pGXxr\nmmJo5c6kzM5iBYfkMOfz0me9XoPCco+HlwBh5ngAZiz+3cXETy/2fgP63u8AOdz1uX5fhg8Yb25S\nvmz7PZGsP31dmRHp5x5XQQU6U/6WZcC5cfOPlmVxi9i7r1pZE/PD1u+7xveQ783Ueb2PpthIDyB0\ncS7gw+0avBGghNpO3aQW5UIFi2ghgZozS8jAYX23zY2MNz2Ig7qcNSWWkElKGeSR61M+brF+jJGU\n3b2I5J3zNpLuUofLCwGwAAGDLE29xjGSGEgNeL2R1PDMCOfnwjRUcFxYRTrPPH0i5SdhGVn2RTo/\nk3lkvZb09ZxAjZSN5RI5tpLFHbNA/EmDRC8kfpr0M5bU9kBxu5uYZ3OsNMg8XFhJj8AOAmDGInVt\nibe2jx15F0Pm0HPHAjzH1AfsNnx9woZx/cB23CRj0e7KQnlf4z2z8nb0+5RBH5NDgbqp+Ej7nrdn\n00wxje4LmtzFuvLn7gOMenf0u9p3n/fobfQbyGOZQcnw8EB06BPiKsjnPAozptkk+KDROZCy31Bm\n5EDLFovXu3IxQdaBMDuNqrKkoFFjuJSbmTQ5Ri8XG54ZIVkdUJcuAWNiR0gN5b4AumTRzGGpA2As\noCjHY0dgc5dbM5qNrF2Gs5DbGlybYkcaDwggzT5m7l0+ZlGey8yljCHxi3KKeQXgLJg06beKAIaL\nD0Rq6xkI58YrM5UOlNMAhABwy4VJTqiRO1uvTu1uOiaR3jpRuP4IZV0MoIApZg/7xSe5v42R4wuf\nejcdy2cnYcmDQfatGdzFCtiwAhZmrEtMGaj7GMoL5+7JwJQzznncn8p1qBgCvp7KuN8h3nXswd3E\npsQW+REIG+1sq4HJRoCNuVhQRrH1RCRsgTvmjkWYcA8bPWQrZ8KVwRsg5M9no1HdA1uuyhC2kn1s\n9Tpz8WCqn72Ngz1L73Jm48M2eXC51ru+jMGgsdHmGHKsrl8e+Z9ysRwTHgw5zxU9hm1mQ2qpjW03\n2Bb+CxfLJ8fYkJTpeZGqcYMQS5DSnMbes3ocIwhAvZD1BkbizDCCd1EAUGKO6M42c3afyGJuYokl\nkw+gAAsXty+gxBoyNxGLQWSgll2vQBliBDYbabgypfwuOQUCY8JQ8sakgmvZUDUmFmJxUclxDXSs\nzF1Ax5UzFkX5+qPiZ7xN8cDLFHAiv7hjb1ifn6esLP8N8hsUwTGCvIyPeZDGg0G+Tl9+cPc5pmMG\nokYMQvIZxpIyFhOVOcS3YwoYGmdD9HPm+J7xveNzfh57FB9VbYO5Kg2DsGZYY/3ou2nuVx64yFm/\nUhI2DovrVrhQsKQfNG36Ut5jQOeuKM/D2HRRQWwLbG9zjI9nlBKqANIunk4GijSjmLCF+sIeAko8\nn0ZSyfPtrcxpGmvImDuIMccCap5eAosO/PK1zGmbXuYYYwBFc4/bSJwzY3JyEuaPzbMhSXuN3WPM\nqSQgQdJykRh05thYbg7hmOrjBsLFCJydPS47yAyI8eaENyTfptvXfRkfh8g+9lF1bpt5upWBym+0\nHFPPAZK/L3e2c3zjKSyKD5BDwJddAMfUeB/iyjiu95g6p669z/ld78h9WG6HyCFl7GBtPYpbvEpm\n16i7VLNOoIEl2LO6kYnLlCzy85eVvC3p3cRc2Yycat4DQQY2VWwiXUoQ1xmlpY1cfe+D2q/WFmPr\nSBBnVKnfc/HmvhaLXW0gUa4/Ak0v/TAXOuICHuVYQspQCpZNjJEziU2KPndWrCHjAsaEUqYSK0vJ\ntzn/TraOs3qEmZTbf6CcBiBEKFmxshGMegGbF957ivFrWbPt/QL1rnd6BC6Ns0dVwIK3Zy1Wj4/l\n48s0ly9dxGblD+USvzmcOpbdVlVsbrliufj4K3ZPxdhw45UNcWuvo96XsSn3bdHTdo4VqmeSCTWP\nZNzTQMAABI3dlDN0BQ3C7Ts1BjmA4jIxNiho9NOLdxsbj5sHaHbt9vs6PIvJoSdshli1Aw+UrGKM\nnNrZmEGMmjGEoqMInI04H/i8ihXk+pyDXWd3NqeHu5hoozHc6f3Co+sfWKhtQU8ugaWmKr65LSmO\nmXP8CTFcYgZ0Kncmzajj3QwqZo7LIAZADBWgpKq3eEU+bkgKIFLA2MASPYe2U5eLURp2C9qsQa3H\niwhq2+24Qbbr3Lay8+xTzzdNMUKrzGUJ1CozwIFTAtYXho8YrcV1rqIZ+L5u3I7u1kKfshsZgJxx\nbJwV7sGFoO8ikBkx7nuw9Y0Yv+uTZe56SYDJ+TjXxeUdUgZPNSTuo5djesXgQGVXnmftGBvQyrA5\nyPri72uTfq/0u+TnJAKq2EC+3UD5UMO1ZWosrT3+mkOBHe1TdvPbOvmAEiP4+hbxh1/AjFuLw5Nl\nGAQ8ubmt5xPm7N4Vzs/l/egHpPU6u2cCKMGfTQKK65OlrSfK72/O3mLua11Xsp2hKYybs7MaJO9j\nAUsg4LoxgzAM4NdXAu50rQDvbQsLop1uboXZGBrJQhaTuKka8L5YSLBqBemTBZK2uTLHL3N/2xxl\nMYyWi+yaxptNCcBPJEGrAQGzbP7RwNo5jpqNC7O2qZvOovgQwiibD7tYMESHg0H3NXLfFtDh2Klj\nyW7Su+rjVLmR5W/XVkF0N5PqznbuedbvDeij7nV+vO3YIeDHvmvelR7dm9F1JPAyxYraKnOPW+O+\neg+JL3Xo+D3GOgcCcoRNQtgIMESJwUSIQTNoayYuNtcwbNuQhTlkhjTXtvioawKEkMMD/PFiZ4h9\nzxivrRgC+ki2MFRBm73tlxlJjbiFAUDoUbl9JfXyoQS0a3XpagQMI4bGDQIsy5iBTgYsUTQbceQK\nRyW7mDGehKlEecyK908ZP78kI6c3GWzS4yUxEB21xDkNQAjIFHxyhnlGE10KbcqL0hrh2el+ksEc\nu2bP6FidhreMdzJHCpXFx/8ZF1kF+C39sYdssYNMIbLLEOu9U+wULmtoADlGjhnvhTpX2pEDFWv2\nsQo82jcfTQEkfi1vIBcwzZp616IvZaNjSMrySWrjU9JvIai4euV3hwuoYcaLA8yqasbxOXa2p+jv\nZBkqefyN9TUuw56vGVy2ex9JYgcRl4xiBvwMJLGDPJCZnA5a//JOP7KhJRM9qnqzzvlNnyqGSOlv\nRrfda+ndwrIa+V/I9f2hd+0DgZ49Ba9UUb64Ar96pXEkghhF6m5AZ5Qz5OR4P5a9y4FB1DSFKZQ/\nfub2pKwXM3iCW2j6wMoWVDZxVV8+B9RsGhVj7TDzFs3edtSZeXtxrH3JGcIA2YVXgzEHtQWKC5kB\nRczFCANqoMaLZSlTF7LKWB0thqo4SmYUOKYQgJF72gGLtXchgUsgZnsX7Jth4Ar0+C6ww+QYiuUU\nnuGYNFtg0Oh6ZpoGg/IFKOxDPwcZAJbcuaDHDaj286grj8fzKbl1cG6DrfTc3w279TLV8/LUfDHJ\nIN6+DGQBH+9pdLyJrDdIL77IrgDh+XNxvep7AS8SC7iR55QgrCAgx8+R2DlBAiAPg85Fxl0nZWP5\n98V9mHMWPynfmEPZADd3szzvKJiyXEpqeSKJw6NxycyVjc7ONGZRyEGk080tKBDC+ZOSBYyTBJJW\nA7758AOZm16+Ku5oi5BdxXgYBJBPpX1w4Hruh86RNr9ZDDVjInHS9PREJdA0UAeuBsomgLllBQHX\nJEi3zl39Y/ioQl3wJoCPsdH5GMGhp2SHC0yWY1k3lh1rVObOYLuHxpfbZ8y/qSF/CpLixNjr72N2\n1bGsnFMbg13sovsyfwxkPdR1ztrgf97V3n11H1PWO5CwiaAhCfBCmiZ9UcCHZi3gTuyKHZABG4vr\nQ9gCMyxGjkkVSHoshBLvhw0MQT0m1qRAOdgzSN3A2hI82nszSGygEtg59Ap6sbl9QVg52s9mI+XG\nhTKNBmuXHM8hYrgcJ/+5ZY376ANwm6sZu/t9nxjFTcwApBFzSpYy2ga3AMzg1BGqczqAkFswV/F8\njDURIEDJoFkzpuKwAPAMH6+ARzVlDASZ0OgnABpoEgwyxgx5MIjr9mUAw975hjMtLKeSb11bbEHs\njRAz/oHillQxTJAX9GNAZKfkl0vKoqkd8NHLxQ0E6HpgJJsYaK9cQOQWiAsdUgU6wJKJh+BSpBuo\n4ZgvU0CiAW2T+rDPyHPGSw7IrOV5MC7H3wDKTro3kloG6XPLhpzvfGBQYHBP2UDlTstMVD87z+6J\nVIOUfjL2QA1ZBjyqx6CczuNX4jRJQb7sLRdDsvhZo7F8KGkabP7Ex2hueoRXt3IsBGmOGVf9IDvJ\nES5+hBgkRCSxc4AMlEhMDDlWYRSVuxjDEDYKYnRZ1hsBbjqAGalfZ6OxinmRUg7EanVbHTwMW6BM\ndhWLMcfgMNe3DBTFmNlBOYgss4JSCgYRCRikLmSWljq3y4uLIZRTVwfK7Wd2QI+JuqJ5YUtrb8Zp\noHrxP2YUPZQwgF63w+xjZSCQ/2kZ/6bmBxOq35mDJL+nXOqechMjCNPMvgWJwDEUIGv8PfNxwkYA\nTgaDqvnEz116bUCOG5TL9PGIjIVr5Vn5YxZRQIl9lD/orsyqn25ON6bk1LD5fvkNlgcSSkB6+Uoy\ndF1cIDy5lPcJKAGZpXEAkQBFLs07x4jm8mkBgwyo9a5fpPN0L25l4v7qsvFZHCFzXbNsXG6e4M1G\nWDIscw0n1hhHnbh0xZTZNJLOfSFgUdMIaNVvSryf5XkBg4wddCvzbXjyBLRagW8UPNJ3nc7OiqvY\neoN0eyuucElZmwYAJS6sIyvfYgmFJgNsHBPCainjZS7CzFWqex6GzLrimNw3QDK20WJRMpA9ivB2\nTLg8DqPjHgycAliOATPeBPiYAPv3Zr23uEGHMnr2uYoBGDOJ9rZzCkSzvt9nDN6V69GxEoJmot0x\nRgZ27AIR37a71K7yjgEx72rToS589wFspuqeAtwOkSP7MRVT8l1L+9lraWcTkM46xDP5XonHi7Sv\nWYshGkHFrYkh7BggAyCFyGDf/QJ0eCCEiWq+h5+6tFzzaqjID2Tn5IZkQaKVsePLSk2JDcSEkiGM\nS3tyfKABaDZyTVKgSGx3bQcZwKOuYhFVFjJjIUnfkFlHtv4obJ9RLFbXLx+YW9rEig/U42bAUOoc\nK+oIQutpAEIJWHzeaOAnzoNFcO+ELSidVIAPbZ0u5+zn+N2j0UV2jKw8n/lsdDOLYU/eRckZt/nh\nmbuYK5sYGqkdRQGBopy9FmRuT+SM+Ei1EW5sInMVssW7q7MK0qUgCOvacXKX2A8Lj8odXztW3gcW\nisDZp5LOLy2A4QwgQ4TNuLE1kTegjDkDlGPAVh/vBAfHx9iVTahYNtkgMRuw5cLysUCsHg1tGdQa\nw4QKGGSGmLHmhwAMQVwtc0Dqumk5MDqkfRhKQHLApWr0wE7g7Weu7R8HZa2YQ6MxGccQguq8sbEk\n+Bxj26J9d8JNwPrjBbpXDToAoQkSk4NZ4lLEmLPnIIhxlncCDFzRhQB1rcb98HEdCghUAhimTIeX\nxTGDOkI4O3MN4wJ6BAcEqetEtUNsMYBysOWaAp7jABkzKO8CRqBbZoMzvr6qd+CBmjUAiOuXGZHJ\nXMN0PJybmN+ttz7Lg2+Ki4rR+C0LkBszAIV15cAuGLvKWRSTMZkeQCgx2s9biXvXITMvYUiHf4cP\nmROPcX0a/61zwTYYxNlFjIgLGKTJCLZAFA8Gjesag0R2j7EQvbvtyG+bx4Gkjem4CyizMsy9zbtH\nj+eXsY94tXJ0f46//X6+f0AJPSPd3CCcnyM8fQK+OJM5ZTNiqeg7IYHfo4IwUUAZA4PWa3n/FYjO\nbmINIbuZWuYwK1eVhGMqYJC5jS4WWra4gLGyAIkI4emluHXZfBjLjjktFgLK2DxzfS1zI4BwqffZ\nCzoMSFeabczG4PY2xxIS0HgBWi01Jf1tme+aBmGhGb5iAtqQ3do4SdygEudNQZLEyqCSvuRA+BSA\nYQOLe8Qxaby0VjYBYpRx3fQyX63U3e3mFunmVmIeKaj1YDJmd5K44/LQY2xY5vl1F9vmMdgG5GLv\nTUnO4rnjml3ucPuM8EPYH7uu2eHSlgP87mI3TTE6xs/hIQ37EEBhoXoyAR5au3axbN+GrhzCKDoG\nTLlr7O86fhcQMz5/CFNnHyi06/hDgLJvKOn3viuuwOdnCE8u9Jui3xH7GUpq9eAS1Niywj7NWwTe\nMRjk7FojBBOQ3cIMhAmxXM7KOA8OSOGgwaM7ZPAGKMuFDBTlbGMC4IAdM0gBmNAD7a24isWFBp22\ntlh5FmuIChBkrnVsERO0XdxQBX4BOiYWjkJjLpUx5AyQjUXa6dZXuTxzdSNlPPHB652TAIQoJjz5\nNjCcEzZPCfGM88OqUqYZQGH3jYGcKRnds0tyzBkXM6iK/eIXzgwFgkgDPpnGIwNBXgkrKpwL6uzZ\nG8bIMMXkprTFrvMBgFnp+tyqC5hl1RozesxooHGdXOLrUGlvHjNr4/gl9udtXOzXRNUa/SEk9AlP\nvjtgOA/YXIbsfpc25YXnVgEjMxLsZ453oYXlseX62Y8NF29MWX9zlrIyxmM3vwqkszhRLkj4ZMwO\n0rJzDKBynAKDIwG99JtbFvcyLtdnEMwZYjZG5qbo3RJzm6dAUvvTg1NTz1v7k0FS/ZtGY8nq6iaA\n0EQ571hSSxjOG6T2DKFflXeE1W/6ukfYDMAQQb0uAm/XwGaDECPSBiUbjbFYzD0KqMGV7BKGDOIE\nDWYt9zNyxi4XSFlig8iCYOwuQK3G+miUtdOXBWdOyQxUbB4Asvg2dtDtdVms6EKViJC24hM5lwwD\ngPJAOuDIglQbgJVCSS/v206EFF0gbpMtl1/M0S8AACAASURBVAAqsY8M8NJ4SUftJr9FCT3jye8C\n/WVA/wSIK0bq1NVX035uMRH976brx8YN8qLsQA8GZRvGA9+MaTAouOu2ABPXdmtLxeDReQvYAqkr\n22cEgBt7qAKJrPz8veLMDspleBZjHrdR+4DpsZwaRzc2DylB42WZixcNUbIZXt8UYGa5qO4RsEfe\nVzIGy/WNgDUX5wKqEivzJwkbgIXhksFWA26ZqzTzHCUTF7UlG5fMFQngjcTxOT8vsXMMpIlR4/B0\nAvgA+bwB5WG1knOBADXy48vXcu78HOGjD0ucIY3JY5nWOCVg02dgyeKfWVB8ADrvqQuVjzdjIPGm\n1wDdAnDRcimxmVYrIMXMcmK9h87OpP+WKVLbRKslzFUsrdcCQo8zuD2EuMySmS3VBJnzRwADJ3ds\nn8vWIfI2jFZz9bqj7i32lZUZyqZHPrVc7owbtBP4GF9XVZ62z0+AADtBrT1jW8VEemghQjg/A9Iq\nfyvNzbPOGvpAoMM+4Aa4fxuOAXj2XTv1HA9p0xiwtHJ2AZmHlOf1zwDvBxZerxHXa+DlS4SrJ2g2\nPcJyAXQt0qIFLxukpaTPohgkPTuQbWG2jFlR5ySzkW3pU337se1hwqji9PjkNRaTKFisHggzJnaU\n3bo8o4hY2TkOlKFBGT1R1kKWkh7KKmrWEhg6dYRhKfU1GwGIzK6vUtUnOWfsoBxwW39PbqmbXcV0\nY1w6VrKf5ZhJzu3LiC3eHcyus3GXf1TqOEJOAxBKjLMfJmz6oCCFsD1SK9HMGagXf6Y8nnOF+tdR\niKFJqa6xRfzI+JXruDpGzqjOlaqij5kO+VhVoJ2wvnBmS+QFuxrqlslpOxMLF6PDGdx+sc0GHpjy\ne+q+lQEFRca0/DukGjdyZT2wUExYvNggDJ1OEoJCcGvIrUwSNqn65FbIw8E1W0iPHSxcflL1XEfX\naN1VmmYDfCbAR2Nw1bvkteEFjQ/EZqRJ2IdRWchsHxrrkY2D6luVacjril1qgKjrc+3S6K4fI//u\n3TQQamd2snctzGhvkoKAhLgit+MhRn+zbMSHOjJCr77UXQtai/HULBY54HJ2jbIU8m6BmYEMsq+h\n7FIzc/H9taxklo2rWxTjpnInUTGQxuKHjANZGxNnnO2MGWHR5QClybETyICcCap/NXS7Fia6GM/u\ndTFVsZK8i1k2uHzZo6xh43qr44EKAPbAQjHh7HPdqQrilhmXutAwhqu5Q+aFzuij/caN2FMOQUAC\nBnbGDBqBRuVevrt9/lvs7jUwKs9X/jzBZR3z85379jigW06RY3lyLmeSWXSouOdBD/29MqPeZa7i\n21txAbXmtS04bgR0GDR7WNcpKBIKu6fTmDa6s8+s/ckuoa5eBXBYQWepiJBdzAzUTgIWcYwIi5W4\nSrUOsI4psxc5AKFtQW0DHnR+2/TF+HGBqTnVDEV6cgk0AXxbgtVT2wLLpbSz73XeiiVYto8d5MeT\nOY+Jub5JIGugilUWXBlDGYc8VzUB2PTqLqaa0TQ1mBFdex5aciY1/b5gYg421lYgcDoAFHlsqVyy\nRhsBY9kCtnZcy6yZQA+ofx9IsJM55N4fz8q6yx3ukRgeMNdvx+rjxEB0iTCY36x9h7BwDCA51tXr\nTeXYMvc9xH3MoVEsw6wP93U5nNLHR0g77yVdXcs3YRD2aVh2wGYBGjogAQMgniokayELvLzFFoL7\n/PvlnzFYvSnEdUawfL+3HxjFhSwUho/YVrqk8eEr3Lkqho9u5mV7ORbXrNhJgOowIBOYDfDKpBWt\np9g0lN3JQAJGlU1nVCyjvGHu+r21aZZPat1B+wdXp2M3ZY+GHevoKTkJQAgx4vy71+ieLtCsO/QX\nZYEtBn2N3LEyebKvnyJ+njGU3Z2AEq3brStZjWRmV56m/CYHjlQuQ9lFjFTxOSuYxdspi1ipxDOO\nvCGd2xHU7YBYMmSxoZglNXgVgwjSFzQyFhYYuAo4xaoYXcp1k+4Oi++njqMZBm5NXhFD3PEtsf5V\nsRj4KOV7KzJEdN9/gebpOZqbFbrXLeJZyLTA1BGGMyAu5afpSlqw6JYZcqYPlQ65mENyYAR+2O9U\ndrHdc83jYs+O5Lli7CqWJzXVFzsHlJ19M4KcwSSuYsoOWyRQl+Q7klx7xrEyEnLcqpLtjourmBmE\njvG0tRMP9zft0BFj27HSSL2CkdZlYNY4mNoDCG16XPzTT5HOV+Blg+HJEptnLeJSdIcY4GcNgC5/\neMLAaG8uEHpG+/pDhE1EuFojvLqWQKk3t8jBlpMDaSjoc1MwSGMQAXBAElDF99FU0ckHVLW2L5fV\n7j/frit3tbCSbD+Wlj5n87EsOxo4NZmrmLofZLbTZoO8w6CMH2YGjUCrulESrDX3JUZQE5A2Gp/I\n7drmO5WpJIyEVHZfzRVO44QwoqaTti+gKstjGTxDxJNvv8bioxW6qxabS0JckmarEFqx0JW5+m4l\nyxbZWjy3iRdnBKJUkhdRMkdYbDGgrDu9qxgnkjnCACHHKqrAIA8SK/N0MpYQUAPZNi9l1qL7uFq5\n1l49nzcsxnHTgvbHu4ol1zbdXdwal33r7BHYNd7Y4fHc+K4lJunHostsm3R9Xc5T2U1E02SGTLNY\nCIMHANZrAVs0Zk/lbqZxxGipvuc5G9iQ43cByEA0NeLuiqDxem5uC2vImEEK0GC9zvMMNQ1ocSbs\nmRAA7pGu1PUrNDL/rFYZXOFhQHr9Wvry9Kkwm/oBfHUlgFBoEC7OJXviEMGbvorvIzF8NJ29TxHf\n9+LipUGeiUja4+ZXmwcBZSBtep2bFCw3lzAKEi8pRlBokTORBQIiwFfXMjdfXuDBfVQBWJZUz6bM\n2c4OMDazq5PJ2ww8fSfrYwfYsyvTlQnzdrsBcdEeB5J2zKC9rmmu7KNdh+w+/xMAQjNdpwEwleu1\ni3n1EDJoHEQu8QGDa5sJx1iSWBwLYkxdNz52l67dg4k2pRtvLPv6vg80HAWezgDcm8gYdHyEGEKV\npIj4x59Xh2i5RLi8QHN2hm6lceSWLbhrMDxdIi6bzKCJC2dbw9msDKSwDaxkgIWRGUAWYgVkSYTk\neOqEfTMsBTMQVhLQ9JyZO5I1jPL6vtEg0tYWSQ0v/5oN0N3IvdlVDMIkMsZRWqhrlsbuocQIvbKH\ngnqoqOtWFZNIQSjLTAYyO9rmS9YwNJRtj7FbXRkDzmnpjWFlOIe51nlW0l1yGoAQM8J1jy4Q0iIg\nDCF3mIOAQTEvtCkPsgFFaQGh7Hv/vNFisKpOF87GVKji/wAFFKByXOL3CLAyDpbLmmXFsjmRo9FX\n2cRssW9xiQwM0sxfBkBxy+JSRAzqQxVdHdA1sjE+hpFFbsihAVkWr2EMKhkAYaDQCP3ZR5Cpznmw\n4DHmK3XjoSagBdDcttknk5uAtAgYVg3SkhAXIft7ZpDoXEHHhfqILrnE2/EGiDcm3BhmF8IxKuJB\nQM0Wxz4rmIEuLqOPB4OIAB6ojs/hwEVONHIV88pBBVzyht84hlEoZdYAVn0dJcpudLtiaVnWnkwA\nsODV5u6o6sXufSvpKA981m9ROEbE73w3AyTLp0+wuDwH2kaA6PMFhvMO/ZMG/bnozbAMWD+RuSnE\nDs2a0d2co71+hvZqQPPFLcLVDfj1dYmNoS5kBvDIoJSJ32L15OxknaaHVzCnEsvyZQFXp9LLd5ol\nZ7MRYzMvYBOAJgNJ6eY2x5moYhhZfCCLgWSsoZiU2jqxuDcXrsQSz0MNsswKsB3gkYSFc7DOrAY1\nUlMqQbItKKYBRTlbm4BQk64D71JSQvjiGgv1CW9vg+7+UPlWLco3yxYGsROf8rhiWUgYMNRg+70y\n8dNKZo5yAVT0xfKuYswy37PGnKuCN+s3TwAbKHBQvlcF2JmYzEnnGeKteYkaAaI4hmrusGvIWKhb\nCQrcHOVd2KK7dnJc6u9V9VHybNeqrh1lPZQQEBYK1vpU6k7SRGyatF4jBA1ir3G4slgg5qYtoC8A\nZFaOxckphncJkG8VRPc+KTAcSOeCBOhcwSwxg8JyCZytCjNx0yO9fo2gxgEsSxkzgEaykjELkP30\niYBB19cZqKGu1dTzwgqSGGLORWqxAHWdurwlYRcNg7icDQMs66H1KZytBARbLMRNTOdfjgm8uRVg\nSBmawcZBXc8qd18DoJiRNj3C2QrUtkgvX93n6b8dsecbUQL+m3hjdCzk/DCJhMHAzuB8ly5Dx4Iu\nnjk0df0OhmphZUwAdjTR1/v2dwpM2xWQ2l9rwFF4R+M8IcwJ6YuXos+WHc9cVi1zHgAyME2BWHFH\nHErcwkP041AdmrrurgDhpUPl12PAoHeh3/uy5nldO0T2gY/5z4fTm0Mlu5R50XXq8vkHwNkK6XyF\ndCnr6eG8yUAKQIU1A2Q7wWIGeeAk16frg3yMChhktoUASMgp39mu6QpYFHpx/bJ7xLVLzlEsbmGp\nFUAIEACp2QhLqASe1vfH2D623FY7MzmvAwA5xbz1EczqmUC5f0TqrcBcUtpnm6GMF8XiYQDAMaNs\nfvN/H/Y8TwMQAgFtADeymGw2OljKo0otoW0ETUtNCTodOwGA4kof9kIzTBnDRhe/pnQlnk9ZhHqj\nuDKevZKqYV7TzriwKozB6ylgBjipO1KhhmncnlACkkpsB98elIW+B6AgfZNFOXKGMwuMlXdrRy4/\nW8GTM4NJdaXV+8zP026/ay4LloHKjddjiNHBmUHrXsYiANw0CLdA+zoocCe7h9wS4rJBXAQM5wGD\nsoeGM8JwQWKwKciYFlDmmCqGAStAecm8AWRDnRQ8CRCmlg2UjZO5cNh9yhyyXfIqiHQGqMyNTMAg\nYddwBoPYgL84et6AYyKp/jUomefsnTBxD9T3Y8sVzfd9/Pw9+ETIDKxKP419RAaIPuAHj1GMCt39\nxmeUd9XDYoHl+RlWXQesluCzJdKyw/BsieG8wfpZg2FFGFYN8LxBiB3a2xW6V0/QvR7Qvlqj+eJK\n4n0Mg+xkW9XqLgLAuXI4wAMTix0iMdTMRWy08whA0sUrmCKxiPR9tthGi4UYozc32ZigVtxRmFlS\nXw+yS5gZQwoIQbMLTS7CFGzKwa03UR67d7mg4NxPUgmcy+wAnlDc4My1ZRTfKAeeNtCqaQ791r09\nUfYAtwLWN+uEvLkVKO+I+fSifgMjrghxpTtPC51jjKVqQNHYaCD37qhtV9FNCcjBo83F2OYYm3f8\nu25bYezL1/PeRdXmO2UGlRhABAOnqEmwbGZb8YFolCUxB89HmRO9MGoXWQOvclvgwHqbXPz9o4mI\ndvzu594HExJ2jAVvVt0OKwFXLHj0liGwXiO6eB/ULeRbdyZxQXKcsUBAaLM7mrlUVSCSBYtuggAe\nmx7cryVo/nIpDBqWGD6s72UGbppGjMhuUQDfTS/AMwWJw6OxiDI4cX0tbewWaD58XtLAu3kkXF4A\nROD1RsZgs4FlCssMnqaRQM4GiFisI3O/s++/1Q9IP2yOTCzAVNNInCIHvLGyhvJcZy5kJjr2dLYC\nM9esrocSVXWy2C/jTGL73J+AWq+Ykd3OvMF6X9bQMayKQ847N5wpVlMVMBvIMZUyS2cKbDi0X/7a\nu9zGTPYEDPauZNS1D795YUOyXsuv/jv6SmNraebBoDG6aCkALD3rhBl3fp7bzZvNVibTUtcRE+qW\nzupc9S6yne1z9XqTstSlNevoAaDO3uv2tYsIPo7YQ4t8c1KeR+yd2xXoPd1GpO//QP5WBujq2VPw\ns0vEJ0sM5x3iWcBwFhQ4KcGis9sVc3E5M08CUuYLI8cK8t91YxN58oOll0/qVUMDcgwgn3beQJt2\nzWjWAtQMS5diXjOYETNiGzLYE6KykCJAzHkNaCBTtQGebSF51rZGHMf6yeZiLPrg3cuCmxZzBjML\nWk1AY6yolipA7S45DUCICPFigbhspNOK7Mk5XRMaPcwNMAfpfFzoA1CqfmpIUMgWiEuAFiixHTKq\n5+oAyg6tGbcGyETKKeCtPeajlw1cDwYwMlACoDB/7AHbWryFGPIROSVeNgaMcbQOCOvih1naSxrw\nasKVzIvvX+67uC5kX8NOUVJS32tSJogVyfUaW5TUFJ0LTmL9e+g5y6jduoATVJg1lhDU7SDJBlks\njWuuC0jEbUA8axCXAZsnAb0CQwIQMYYzYRBlNo2NkbFgzLCyMdExgoIuEr/HDaSPjQG9pk3FyOMR\nGGS6pOfNVQyE4n5m7hWOaZazhFl78kQr5yt3RgOP/POj+r3I2e6s/YStmERlIrPzelxBLXZGZ6F/\nQkDXxxJLd9tzBmb45kaYZ+bmBQCBsFgusVh0uLg4B1+eY/jgDJtnHW6fN+jPCeunLULfor1dYvH6\nAt3LAe3LW9DVLagfZIF1rTvbLvtYBoMstsUUHTpnzTGjwH0slktNjRxLWnq3aA5nZzkQZ8VCyCnm\nFUQyt65+s70DvUuYJ6+t2s8R7HZKLYWzsYRSVAolJ2EB5I7pIsn6Y+BRiqBu8TjBOokQL5eIK/l8\n5vmbZEEQGOJQz+79gszvqZFvVVwQ4kLYrXFpmxkGRgtQxAbY7mLQ6ctGfh7OAegdoOKYRZNrznH6\neA/m2gutLCBmOPcz5LqZCbwJwFAYQnkjggEkQqMJE7bHc/S3i6O35dba2OpwdP841by1X+eowvq1\nj9X23PXOJZCwBG5KZi3qFpVbkwGnbBn1FPREIPBa382hB/cbmU+GHuHyEtgkydo1WAyfth5WzaDF\nm42AQhqjLK1fg4hAnbhk8TCANwLw2QZAdiM7k0DR4oYqIEp2azNmkHvnedMjXV3J+a98IseurpGu\nr4tL13IpdRswr66hzfNnBdhZLQWUoQDEQXS6W0gGTmZBWQOpyy4X5qSC5twPCIsyr2IYpH5lanGM\nApZbFsTFoszNMSG+vpIg2Z0ayI8pKdXgziEMBKItw80H6Le5FJyENQRgy4AeHRt/n6jtdjKWqnLG\nIMCuc2NgwFhN2TV/bFCn7TZnI/uORenIyN86vo8Jsq88A03tcN68eMS1DqDfU51LjP0DCNODCLgq\nGVJpuQSdrRCePgG6TuatfiOgLnPJCHps/WO9rZjMO+4BtvXEyz622fgZugyuxt7mGAW0Xi0Bm0eN\n2d3L5iEWnfxtAI3ZGboO4ds1cHMLdC3iD78ooNEY6K/00/rOpW0Twb7N1f/BJRgrW5uk2WsJAGve\nc2ORA/J9GrvTpVevkF69Ar5HCJeXWF1egJ9eYvjwAsNFi7hqJNarAibGvikBoRnJs2Sg6ylFMDxD\nJ2cNgxBELMA0AI0LpM1SQomPbdRsJKsYCBhWAiJZ5rAMRC2CrNnU9Szp4isuCP1FI+s4H4oEyLbQ\nti3NuV0WPFvYSeLuZu5i+af237KPARA3MefuZm5t5o5Gw+HRfU8HEFo24FaU3xbYxlYRypS73P4j\nGZQQjT1kD0FAjtTJgxlWJC5DStfnDuLiokwcoZkZcGOLa10sesBF6602IfWabGgTYPF5xMcR+QZT\nWO4YaZFAAyFsnKsZA2ETEDZCT2uvgeaG0fTI49CuxU8x9CXYVh4fnTzy2tehi7JrTZk6JwYJYfMk\nIC6RmVTZl1JBo2TsofFO7ijNOOmi/8F3XYnAy4UAQIoqCyuiPCRi3dX24kGiISD0ES0RFi/EzSyu\nAvqLBuunhP5SwaFz1Z0g7CEsUOI8GRhEyCBgaUBuSDGy8g64gkE+ZpDd33I24uxa3gRhBxGARSpG\nGoesq9wy0CU0q4igQX0TE55c3OLjyyssmwGX3RoXzQZtiBhSg54DOko4a3oEShi4QWTCkBpcxQWu\nhwVerlf44maFdd/i9moBvFYaP1kKe8qUTulMPQYcWN45s+nMwBs/m4cUZd5UGTdMh1KUBbIBFcyI\nm40YaC++EMOla3G+XOLig6eIH1xi89EKmw9arJ8G3D5vEWKL9nqJ5RdP0GwSuhdrNC+uQV+8Ar++\nKpl0FovyUWU1TEbBqaEpNlNfxxWibpGzinHvPsZ5EQXZOee0tbvN6/UjuFwVcCjd+oV2rNeDYx96\nc0sz95YmVAF5H0wCIZ216kJX5tvCDpSf45h1lCBZLQZGs6Ec/y614t8el8Ie6i+URbRkpKVkMBNm\no74/HnWnUm9m4Iwzgtk1TODMoaY8b1VzeWYuujIaBrUpu6lmBhFDYpgNhDAQQg/9nmlZrLRvF7gx\nb26MX/nxnEHO7959m4y56Rm+HMoGB1quYwVZeVPfsIcWm1Ou1zmYOy1kDuXKIFJjpe00fbx9K4SK\nz8zizmHuTK9eSdnqwmWxQgBktgutVuB0LfOKuYQNAhDR+XlhEHl6vo99sujkOmZhDw2DBBltGmEG\nna1czDQS5tArca1qv/rjwqh79Rq82YjL1nKJEAJwtgKvxNAJZ5qxbIjov/4RmpsetBmQugbURyCe\ngdYbcNuUft24gNxPLuVnTGKoxojQdYiffoZ0e4v261+TLn7xUow5A8+BnKo9WIp5FXG7TaDLC/AQ\nEV9fCRB9KFj+tkTXd8bgLMfD/Vg9do+7Nwf9N3DH1pOmh7tSkwOwTY194ICN8V0uW1vjm1PST7BT\nMwPWlUvk+qDjM2b+TBnivkwPQPiNjENi7BgA4d0el8sC+j5wnM16Y2YHsOLHgiMYjo2lawZqO2Hz\ndQsBoXXjjG9uJe7Xse/EoYyafdeP750A7zKA8eRDib2Wg+jr84kJfLYEvXiF+PkPM0u8ymrqE3xM\ntIsWC6njbCWg0YcfgH76awjf+f/Ze/MgS477vvOTmVXv6n7dPdNzH8DMAIOD4AFSJgnAtG7RlHzI\nCh2htRSyduX1OuRj147dtWIdjt3whiMky9fuWg7J1/qQL8lrWfIh0rIs2RJPUCJIECRAgMPBMffR\nd7+jKjP3j8ysyqpXr/t1TwMDxe4vYqbfq7vqZWX+8vv7/r6/G9Cfw851EOMcsTnwqa7asSdHo4bA\nXwP4GJjUb7EVIvoxy8TrSoKbWxVph2lask+hHNNMFDD045XZ2IBroObmSJcWsQtzmPkOJpXojtOB\nzTv+OJJyDu3BoSJVK/K9LCCDkLL3DXSr1CZy82rriQAOD4j9CDWEdNu1ifGcRHdw8ynls5ASMKkk\nm4Os73yzkGZmepr5Y1t0WxndJKebZLSTnNxIRjpBCks3yWjJnNwoDILcSAZ5yta4xdawxWCjgx0o\n1Kaic0fQXnHBQ6y7bizOx8qt87dyWwTeA9sJcMFI3Nw9MJp2zfbx9jYBhChZN7u99LGjJ/wNj93+\nIqRagUPNpMUMBIlPJdNt4R1t31i6FmNdOXJrbSnU7I/v0rWmPEmvzVNVFaeMYlpcqljuK1Z4wMcK\nx+xRA0W6IUi2HSKZDCAZGJKBRQ21+9Ez40rV5sY7tMJ1Kp4F00iFDJdfR+AlBZrtlNElpqWwqSzE\nrVxag0M/ddvppmQ94b+75+ZYWBbTDmyi6Hn5l/UtNQGu0k8ZIbJSlgwhymcRo6oARRn3AEIKi9AG\nmQnUtiBdl7TvSkxbMp5XZHOCbM4x0fKuIO+7yZpJiCqGEU20KEEgmPwrLaJlfKQTTKYg8293EI2V\nXiRW+AlfLl3Eu2WQLY1KNa2WZqk34Ex/lQd7dznTWuF4usqJZI054TpijaAvMlrRZFICSjhCXjwP\nH1uJQaARZFaisP6zYt102LZtbuYLPLt+HikMR1ubrGY9rg4WuLHd5+7GHNk4QW8miKEqy8p7UEhk\nfnBVAUDDp3jejwEvLRyAcqF3MsNTCTo4/n2Loz1WaxgMEJtbiGuSTqdNt9vFHDvE6Pgcg+XEtxuF\nsIrkWEJrs0t7ZYHkzoDk9oorOx2i7SEtJKRnePYO4KNY48nIaSv1DILRpAaJj6zq1bU36Qm+iVbr\nS1ypZbdctNuuz36r+xsABCYwEiugZ7X9xmCQ+wChakbJcrWosR+vBo5BlG64lLK864Bo03asTt2x\nmK4vhOBBmhJI9qXlK2BQ/M8Dr1oW11KAQYEdFPYPoE2wTMJIIUcCNfLATyY8uEUluhUiegXe7VOp\nK88kAOg7ve4x0FUAP6JcKaPlygs4SucEufx9L+idWLdOWIq8Pvw1mfAg3iKzuMi6Z+KJdrsUN44F\n6K1xExCvP4bWvu17Jzww5bxAfXH4waAQaRZSFIxB0fHl2pV0YtFBT2cwdMzBTtsxT3Jd9IMBHLB5\n7sCguTmn3eP1hALYIxfmHSDkI+wA5HkBPCdnz2AW550gfesQIlGYrtcOs9YH0wwiN9ggfgskd7cQ\n28Pie2FaIzJZ+e4OZd1z8bo/QsoihUj2++i1dfTxJcRII33/bfO8qBQZnrHNXBpckdI6GhXsoCDC\nL48uo2/cvNfWsEfzY2aNabBrdSuYqY+sjGl5VunLhHJtsjiPVBOT2KZUx8rVhxSTppSgGgAzkQot\no2WeSWt9inExcY/7XiHLIgsNwNeuFk3CYyZUJeWrie0RX3O8rRAFcw126ffeCotLosdjaAx4NYAS\nNhujV13AKaSni24HeeSwA1WGw6J/CBqH00wor6e0E8i4DxNpgmzPIXrdMp0UsFmGWV3bH5Br9M7v\nmLVlYM0zIrl9BwAtFUR9hex0EPNzTjPt0AJ0W27MHI5gYwu7tt6oDekO9tazoV0fWo4LwlevLXTb\nKuw6/5BisAggEcUYg2eVhfszW1uORXrFgaZJu0260McuzpMd6qI7qmAPBYZO0OappFp53yr4LtYL\nTGtPqlJjx7yRGkcMCYU/CuFmN5fNupJsHkZLPjtk3mKXMpaPbHBh8S4P9u5yrLXBmdZd+nLg7gGJ\nxNASmrFVGA8ipMLdY2YTtKcoZVahkWgryGyCiuZjY5uwprts6zYvbJzkznCOB+ZXGOmEq1uL3Fjr\nM1ztIIaS1oqktSZJtm2F9ZQMrCPIKDefF3noV2f7ve8JEBJCXAY2cGSy3Fr7u4QQh4F/AZwDLgPf\nZ61dmel42haO3kxU2AoYYSMHXBAqxGlHrAAAIABJREFUrcjcojKBGQZU0At9Ksccyucg73m6/pxx\njcMKn8olCFHNAuyJtB2K1JhIH8YGfZ9MOGBh4BxooR26l25a2muW1qZGDRzg40pbG4QvbU0oLWut\nK/FXR/WLPGBRBYECvTFU2YifoQZrjHtpcoGQGpH5lzwMChEFDd+grNd2CqyZvCPJepLxgpusuKi2\nY85MsKl2+q0PuO24Qcw6iqeqAkDhbwVwiOb7leuygLYIXNRW5Aa2IF0T2NQLVHtm1WhJks0J8h7k\nPYtpO+AutIGiiljclC1lSkRSTuoc2CPcOs8akqlBypLGLZShdWzEucN3eXzhOhe7N3ggvcMJtU5f\nZqQCgkxvKgQKgfT3bHwbyvzFaP9dCYEUkFlbSARJ/2AMoAOd2AqM0HREztAOWZLbPLB8h47ISEWO\nRjI0KQbJ0KZsmTY3skWujJa4Nlzk6tYitzfnGGy1sGutAsUWua+s15qt4RxouwmpYpHmRfHOTIsq\n1pxXoRxXM6R42C3jBvf1DTqvJnT7ffSRRUbHe+RdyWhRsnEmYeu4It1q07nbp3NzgHz1hqMah+PG\n73gAcnWtTHOYEPry8Y3OjrU7OmbTnku98lk9OlWsj2nTURWjoEvglttJGvF+LGIW7YfVdJBtR1j/\nbtty8I1tN6dfGN9HhHdbWMhBSj9eDQRmwxYC1SaBbE6Sz0Pek+iuwXYBjG9/osrQrIM9MeMVKCqD\nhTQyL0AtRtKDPAKMd6SGHgTK8fn37vqb2D+FWGK4hsozqS2IA0FQFZe30THDY4rTumvHITpGiAA6\nQMg5hbojnV5T6gGiIHI9gx1ku7HjzL0L0qUmubSLzAE+HgRCtYp3JpSPF9KBQHGqqc0zB2j7d9Sx\niUoNskI0PkwktC7AG+fY9x2rcJw5ZuE4K4AVG7YXwlXWEsKlTUTglez1HFDk+0XhU0pEv4948BSk\ninE3RY5y5NhNIESmkatbiCx3fk4AZ0KfEX5eawr2afXHkJCPKn2L02Qy7h3M/XGD/lHQ0V0+jLi5\nVuqkCen60DR1/oE2JMoJTQfNt7jfNJtbmI2NkgUwox1U2xFNoMNBVlnaISXKRim8BVDG3tKoKuyj\nhrSsghVkbfEui3a7OgkO43UAnwKYUAcVpoE/O7GCpl13pA9TMHwmNmo4VsSoaEyn28UO3D9uSp2q\nB5WnPbdY8DkKhNlsDIMBrKy5KoGdDnJp0R1T6+KdaQLMdmy3TelUUDLMakLdcq6H2dpG+tQ2u7WN\nvrPy1rP4mqz2TM1w6LTQGkwdPYo8tIQ5uoQQArm6CeMMfftupYrsbnagfo4UUfVXWerVBfAn/D5B\n7qA+Pw2adUL4LA7jAiH+3Y7Br0Kgen0d3oB0+TCt/jx6uU++0CabT8g7jpxQXF9NYycEo3TqgkRh\nuRpbVBaY2ALddfO2ACrlXcHqEU331CYXj9zmoflbnO3c5USyRk+OUMJQV6sMgI+2EoNEI9xf78ho\n20IJg7ZuThRAIE0JDsWHNDYASZp3L1xBLlhSj/S8dxE4VW63lne5MVrg2mCBN9YW2bg9R3I3pXNL\n0lr3kjJjlz6mW/ItZQh9k7X2dvT9x4Bftdb+uBDix/z3PzfTkXxKRJjQF9ka9Qn1Lp8rlDLvvAoD\nNo+UxQW0lECvOUHhcV8wzqQvQ+6d2ihCiaxehzAiSm0LAIADgpJNQbopaK1Z2muGZGhRY4MaGpKN\nMXI7Q/iKISJMRsO/JgGoaYNXXLkofoY7MIXi7xU2T325zzu0HjRSSpCui4rujmlJ8q4im5OM513F\nrtbWnlDsg2k74ZlJ3+lEINCO5llXgHNKqA5EBWvI4gCMkSbZzLACOrcV+VxCNq8YLUhGhwSjJUW2\nYMpqYlBMbIqUjNCoEyfG6rbxEzqLYwa1DKqlmfcpXv10yKnuOr//0HM8mt5hLpp8SvDAj0Ih0FMQ\nuQAMpeWjKuaG9b/1z+W5LKkwQI4Uho73trV/UZTX9uiIjI7KWFJbPNq5yla/zXA5JbMJa7rHtfEi\nr24f5vWNJW7dXUCv+9LuO/9asd17uxE45zKvPa/4nag7SA305lDSHeNo1kIa5596IEaMM8TdFbqX\nW4h2C3PsEMNTfbaOJ4yW3Hsz7s8zN5eS3lxCrG6UoquRKKz1Uajy+qUTglUSvba+P7AlAD9RmWag\nWoGobjUwLOgPxfuJ+vaKSuWwsO3EOcO9TouQHYwd3Hg1xRrHLagCJQHwCIzWifHKuoDCKBRRELTW\nLbrtUljHfUW2KNFzvr8p8oTDvyrgVEkDE9F15BJGEjUUJNs+gKE98GMoqnGE70Wevo/G7ZiFVV8n\nd+iTpyzeFVgL/Wv4HuY6wgY3otTL8/pNrgIcmHaZdj2DHUC7cRcqlPLsIOneda39+2GpKPcHHZu4\n1LixCBm0hSgmyCKJ9MiAMpXGVCYhUhvk4gK260rGi9HYASAjn4LmA0rk1q3vdR3Qk2UOpBqNC/aP\nOH0CM9dx76xP6xKZJjvUw6aS9PY26s5Gqb8BRRqBjVmZAcCpW/AFQ58TxKPDumABsDCWQnASVQOl\nXYpGwRjw1cri52zxGkhJAl2nkaH6827isj0otrUbm1N/4Sl28H3O1PdocvK963a77FOZWHv9Otnt\nYAbD6alcTeeSqjKxLbRVfPpvAO9kt+NByrw6Bt8rm+ReAhJ73De+z4n0t9kPdXDtJvi1TYGu3US3\nG9aVFd0cMGc2NyEApkmC6PeRh5cce2g4KlKxZgJppoB2AfCW3Q7y0JID6Ta3oJWi2i307TuFZtnv\nRNO3brkPXozZttvI/jzi8QvI7RH50QX4xMyHO5C2EwIVVlMyg2IQqBDtNyVrCIp5aRDpLwIN8TZK\nIXxBoIl3HVyJ+zt34TK0TxxHnj8BR9rVauJ1l1zgZVHc9+DDAIznJaMlwXgRRssadWREpztmvjPi\n951+gafnXqYjMg/aOPBGYiosngD2GCSZR5xCAF25tCLPF5KMrSIzKRpJZhVjv33mc9iMlcXcqckM\ngk3dcYCTFcV+AFJYjrfXOd5e5/GF63AWRiZlNetyY9DntduHyK736NxUJEMmApbT7M1IGftO4Bv9\n538I/DqzNLzg0AgotEgEpSZJ8V2U1LAaUFRQ1UUECgUHVuOioZEDaKUlGUK6LUi3BK0NrxfTE+io\n+gsqqvriqzTFqUFCO0c63YL2imXuuqa1MnY58Jl2KGbuImtiOC6iYviXZerAvBugYfyFSF+hLTAY\nmvaLwY+Jh1+iuoEdVN+2UEY3Pq1qnJNsWFIh6CYSk0hMRyGH9zRo76vtgLs2q5SvVhehHeGeQgey\nC/WzTqMtU+Jssa+0FsYauZ3RugOdbsroSIvtI4rBUUm2INBd6wS7VQQMBVXxkA7m27Z1F4mcyzl9\ndJVvOfESH5p/iXPJGm3hMh1SIegIhaQqLGc8YbF4DH4ZMBUcAgcigSXz9xl+Nd2wi/azspBG5vZ3\nL5yJwvraSjJURI/0Jc6tRAmLEhmpWOd4usaTc6+xcbjD2pkeN8d9bowW+KVkl/Y+3fbebmzx36RF\nIGE8sZpKEw/060AtlgpyU9KiQ7R65JhD3dfb9Obn0McW2XpgnuGS5O5jHZIHO3TuHqJzc0ByYxW7\nvlnQayvilGkL0UqLtI1ZTCRJBYQpUiyCQGLxXGylP6gsD/1VoP7uRmGOwepQxSf0d/VzQpGbLtK0\n7Np9taSgm7IvvYydbe9tR1AUNMCn2taBi5AS5r5QHa8CLmN8CxQ1cN4vFJX2aVEjsNuC9jqOpbkm\nGC8osr5Fty22Zb3OkK2kPpe6Zf7cxhVKUANJsi1Itlz+vMwc3Tho4glT5q5PpL81PJNdzeKYl0IU\nY3tlnN/r8Sj3n9AMig+Ve3zesw/iUrOiqcObzfYxVnnQr9XyznPE3gspMEGvoQB2qvoNQoW0jogV\nBMSin0AxUXM7RX1VlmEHAzcB90LTACSJExb26R6i3XYpZl7wGV+JSy4tIo4fwRyaZ7TgxqJkK0Nt\njJyejzGk20PHNgoCyHWbxqhoclrrYFHYLgoCFcvDc4y/F8eJriOsK7bRrj/U5V/Cc06dwLRopaju\n4bIPvDfbv58T2czPNlgFBJJl+9gD2FH0waFv95PCgr2xk9V070QrLaraFanOQnjdpnsAb+6H1X33\nOA0rHrOMvpeUsf21m4ZraLzm+j7xtrXjlKyRqq9kjWM8cuuW+407beTRZeQDpxHDMcbree3V1MKC\nq9AI6Fu3yd+4Mn3jWUHRWfe/1+Pt0wrGjE8/U73H7uVw99TnhKqzFYHseqpmXAUtDhJKsWPgRQjh\ndJ18IZ2m6mX59RskwyHJqeNky3Nk805nKFRwDeO6q+5F6V8oGPcE4yXB6NyIJy+8xkeOvsBDrRuk\nPnqkapNCKVzSV1gfz3FKfRiK1DATzb9iU1iXZWFFAeo0WQz0ZCaZWB7AoIFukQVAykpyK4u5GYAS\nlrlkxBNLmzyxdI3xhYTVcZerW4u88s8aTz1h9woIWeA/CiE08DPW2r8NHLfWXvPrrwPHZzqQ9Eer\nTBQaNvSgULw+ONOxc1hnwljKRhlo7Z7x5Rzh3OkjJANZlCDP5l06lElFIc1QHCMXJAOnAZRuWOZu\naDp3xiRrI8TmADHKnCMVri2OjIF7SWAyLzRM0KZNzCoPLSBS1X/FvcftdBpQFNYV56cE5IplovrZ\n2Oo21iLHOXKcuxSr2eyA2o4owSDl7z2+hJAaVl8W33M8qIXvcZQi1kaytkBNQuVWZaCjLclmQns9\nZbgkGC9Ksr4lm48maj5NQ6iSHSSV5dzxO3z78Rf41vkvcVYZUiGRSJRo4z5VfzeDLUAf5YUxdDRg\nOYTaoBBk1hTsIHBMIRNtq4RgHECh4Cf7dTF6bSIgKABDAeHWyEqnGTrIeP8SVJLFZEcKy7wa0uuM\nOd1e5V/P5mcfWJ8zYTUw0J0toL9MtosdHIVKypUGK8rIillbh5UVeOMK/UtLzD94kvWLfYaHJZun\nFeOFOTqHO3SubSKu3p4Ugt6lAlicTlawcGJwJoDq8T3GNN/4GdSXm9qzqPQd1dSxiTKpWlevI94+\n1lEJy0OfpRx8GdIV8BO34vPsbKKDG69CBYm4H/QA74RFY1L83GPQqL6uwnrxY4YbrxyoITNLMpSk\nm4ExJBww1LGYbviNbAkEGZcOpoYCOYZ0y41dauiAJpnbkgHUcA3xrVSeQx2I2WG4KuTUIiCo8nnH\nE025pvq+TfvFv4ul1DzK7KwlWQ+m3fjrCE61jbSBHEtIOL1AK4rIrAhpTAEwqlxV9H5FVckq+iDg\nAA3lgYw0hSzH3F11712aQLvtNC3SBIajEvAI6Vz9OZjvYTttBmf6yLFBDXPab6whtrxIqrXuEcdg\nVmA87xadjAGe+LrD8nCMQmQ/Giiajl+kuKqqfxWdp+wXo3NDoa8krHF/lfapZy6NzPXrs6dvcNDj\nVdHvNvzOu15JtN1+gfUACAwG/nPiAbNWyfqqC1178En2eq6dK4Udl0yzRiDld7JV/IQmXYKZEKGD\n93MaGM4Fayi+Ljs5IQcmQKWJlMUYhAZXDXHDVSQTrRRxdBl56gQyy9HXna7OTn6MOnQIsdh3xTdW\n17Dr6/u7z2BN70rTsrpvt9c2WZ9P7LTdHo4tXr8x66YH1nYK3brUpYoVovCxX1lnCfnAo7WTffME\nS4hybowvGgK6TE2NtMn06hqsrpH0+7SOHCY/vsh4qU3ec5WhrRKFVnDeA92Bwbkxv/vxV/ieo5/l\nQnobYwVjP1+RURpY+DtGoqytMneKmEOpp6pqwfBgIVCOxWkFEdLJqkFy3F1ibDl3ksKxkYaB3gRk\nRvn5VW0OGH03HmwaIxjphIFOC8DIWMGx3sZbljL2IWvtFSHEMeBXhBAvxiuttVaIZoKkEOKPAX8M\noJMsuIWyBHImInfBsQtfFZ7Gbot1VpUbiMDoCPsFZyyAQfHhtUuHcesNyVCQDyAZQN5zwFDec+dL\nBs6hbq9Yerdz2qsZajtHbg6dCOLIR/TLh9B082BkUaWmssra0iGbbeAoLX75wrNomrg1WIVFYyM9\npnoEjnK58NtWwaaZAaEDajv9EgyaSJ+L/prasurJwoGr9xODQYExlJd5shbhO0CBzA3JVo4aGdp3\nJeOlhOGSZHRIMl60ZEsG29YIZWl1Mh4+dptvPfplnuy8xqPpOouyRSpSJAJVd/xrZvygW2EGCccM\nCsBQAIVSEcCZCDCqgUJEj8fQDORUHquwKGvLfWyZPxtok44lpPw6WQiv6aJ2Yrnv0CYVZHwXO5h2\nQ6++kgp9Oh7Um1h7YXkQYgwi1NY5xdbIIv+6iOprqtEPa9Fr68iXxyzd6GOOHWL7gT7bRxRr5xJG\ni4ssZRoClXiaSVc5qGD8xNdZfThVgCde3gQK1Y+xW19SB4Di98pfW6ElUXeGIichTBqKYwRqcuSE\nCCgcDz2ro3iA45VRogpGeEYNUK201wT4ROtiwfsK2CHKMcylRdkyDU34ChPGILQLTKSbgrEHh7IF\nVxERaV3Vr8wHLwYgR15ccewrVubMlDY1AfxUb6+6fsZhq9K1zDrUhWcbb197bk3LfaX56r6z++IH\n1m5EKot0UJvnpXh0mpRMi6AnVKRk2hIM8ppnBYikFDaPddDMBCMgRHYBMAZTKw0vsty9S/156LTR\nRxaK1HCAvJ+iBhq1PabzxgZybbOslFOf8O6F/RNbWF8HkWqAzUTFm4kHXgONauwia60TSa6fQ/t1\n0e0IEZ1bSseu2jtgcTBtR8yFHfy97J3dM5M1TVIbUooK3Q9fdtz9Nchez4P0kS/ebmO2t73uTL6/\nUuX302aZuB88qHVwfs5O4F9TELR6sOp28a4BHKivD6xqn55ms7H77d+4imi1kIcPIR88jRg5oWez\nuVm5DnXsKIATbl+ZTSJpJmsK4k37rWb9DacBSrNsuxfgCnbvQ0s7uLYTBxVj30/KEvQJy2rMydB/\nxn2mEKIEhQLQHu7LB0jCsUTMaM/zQjIhVCmT1zr0Th5ndG6ZwaE2+ZxgcNySPzjgGx9+mQ8uXuKh\n1g360jHSjBVIYWlZg5S6kbETWD2xXpDy1NuxqIJCMprrxiwht37SdNAZChpD3hGRHlyKNYQMAuMF\nqHPj5lBSGJxUr8AIXxDLgz4hYO+ql7kqZmOtGOoUbeTMvs49AULW2iv+700hxC8AHwBuCCFOWmuv\nCSFOAo3lGDxq+bcBFjsnbHCOraKsSlRsPPm51O9h4mYLMAiKqGTsjNcd7JBaJjQo49J8hBYkQ0E2\nAuXTxzsrls5Khhpoko0RYmvoUsDy3NGjQ4RklsFjyrtdoSzPYsYjkgVzp2HSNwuwVGfNNE38Jpyz\n6norKDuPXexA245PN9xVN2gaM6g88MTnRjCI0FZVJb1OaCfaLbRBZYb2imR8J2H7qGSlL3ji/FW+\n7tBrfNfCb/NgokmFJBUKSbdgAe0GBrnbEDQhWxIJwlTYQtCcOiaFQFvrNYhmh/GqKWMarJoaL40p\nkxJTQcfj4xkrK7TJneyg2s2CONzwUDxwUysZWzuI+1tzetyyCOyyXksopHVMc8qMqy5mxxliZZW5\n6wvMLfbRL19ygNEOz0KkLTe5CX1FLfIyucOUd2Na5Czcb/2diZfttl/NURQ+5axgPTDZZ4RtJiwG\na0MqWR0E3sEOrs85aaeyfvYCbISPMRjkAYtCoycqloAHCkyUDhaYPVJbF8jYEGQbTvDfSicsKHJQ\nI1fNLJQqLbWAZrzeaVZc72z3HsbewFyytWcx9RyVg0R/p11/w/ICFPLrZ733A2s33ZMWKZ0THKp5\nBcDY2BIIAhd9D+CINRW9hqLKUnkSHHIY3r2qjpBotZwTPh6XEd3AognprMDosZNsnUgZLUp6tzTJ\n0NK+M6Lz6qpjAmntQKD4HPc6+d0Lgyj8Dc8jTv2KtwmPpgDqg03rg205uYESMJrmg+3Ux9bswNqO\nOmL3AGBOtwpzbAagY9q+NbN5jpybQx5dxm5uIbxAuR2OnK6LEPsqBPD/VTtwPyf2aZp+w2kgYCVo\nE1Uhi/ebCBxFDLECuHR6jdZYzNXriDRBHVlGHjmMfewcYpwjb65gNremV/Dba3ttsia/5F6OPcs+\nTczzvRxzj8SAg2w7leIhUNWzs7baF8aVnSPgPe5bi/3CrQUGbGBueiaoSJIyKFhs6wsmeBkFMxwi\nxxnrD7RZ/ZYBj5y8yQ+f/jjnUiedVLB5oo4zgEDT0regBGjq1kJXQCG8YHSTKWFcQJ68CKorDFnE\nbg3XF1s4ntNr1WghMUJUpDwkFlmUqi0tAF4OTCrBotzWc0ym274BISHEHCCttRv+84eBvwj8EvBH\ngB/3f39xhqO5fP4QZRU4to9lMqrqNi++FxXFAvZRi7RWIpcBLzFlAySRjpkkhV/uTiA9A6KzYmjf\nGSNzg9weIzcGTg/IR4smHbN9WM0psrZWajUewOtmLWiHDzqWjyvBbndiCsxiTWBQ/dTCbVcAbDM2\nu4NuOxVmmC4Bm6KsfPgbBNGaOugGRkiFpVb/DXy7qVyJ9Q4+INfHMN/ixvsl3/ptn+NPHP01ziSQ\nokhFAiRT2UDampmAoSaTSDQlgyikjjWBQqp4aXzKmfBxVTvZUcUWd6YOtc7BJmivaDRxHmErTKO4\nBONe7GDbTXHQ6DcPDB/dDAo1MGRE2ioEJCvRfaJJ2xQwqFIpzNhS/HWKQ1ToACnV/F7Xhf2arKnN\nT7m3yj47sYJiUGY3Z8Zfu4BS4NVGekbB6kBPvD6kjBlbCsruYgfadkIQYWIZVWAnfNyhDy5Sljyw\nEu9bsBUqovmicn4XGPGgUO6EqLHSCSlaSIYeVNJMpoQdlMXXHl1/5X7iphbESPEBID/Hn5KK3wz8\niNrfpvUNPoMVzMSIKnY74D6nAgbFwEx4F4x1bCGopjuF9LK4BHdxDP/u1plBSnnH2oFQVnvtr0DL\nlwmy20EsLnDj285w9+tHzD0vWf5SRu/lu67wxWiMzTKf8toQ7ApVvnbyfWaPbE8eu75vAHzqWkLg\nrs/IKggUg0c1LQurTXMAKzCJ4v7fmFLvcUYQ+k0Zr9yBdwZ1dprc7sZQ2Kn/3mF7+e7HENsj7MYW\nZm3Dl66PgIHfSYyg+2wH3m6EmEwLC5+nASRxOmLBlq/5MQ0Bnx238/2TSBLUSZexlF9+Db7msM5d\nu+X9tKFZGTxvZvvc6dh7YZ/J3f3lN6XtQNn36eh9judMEXgTACAbqmXXgKK4WEr1XD6wn5ZgUFno\nwPm1Qqmi0MG1P3Sex37wRf7sib/NstyemLMo7ERlMGACJGqyaaBQ3VSkKQQlU6gUmDYYITHkRQpZ\nBlWJjTqw4++jAIeERfngRhkDKdPMiFLKHBAkinUtpbFW7HK3pd0LQ+g48At+QE2Af2qt/agQ4lng\n54QQPwK8CnzfrkcK0VZJWSXEM4WsiMQ1646ljQUqRdUJFNH2Nlo+xZwzX0Z7hYbWVk5rbYwY5+7f\n5sBF2QonfgY20NQTeuclWN35iR2Qyn4N4FCY0IZJUhBVlpPbxhHtXatw7RdM2t0Otu00pYOFz3Gf\nU4CLMwwI9dEpdiSbmFeh3SAgN9i24vZ7ulx46lW+7/BnOKoMHdFq1ATaj0kEZg8hw50qkLn10wdk\nM+P1TsurrZuOfijl0W412yzt4NpNsEqq1wyOQwU41OU7GwazMGGbAdBz7AD/eTdNIKUmIib7trgS\nxKzveB0U2gkkqltdWyh8D883iLnWrzHeb9q9T2NyTdrBtp0mwKFpeVhccZxnON4M41WhZxcxam3q\n1smxE4SWeXmsewGDZmUA7eu4UB2vp248ZXkdgNpp/70/i4NtNyHlKwB6cbu2xol31hlAUNknbFdU\nMvIaLUIKrI3BguBIR/6KpnhnZK9H/tgDrD/UZeUdFnWtzZEvjOm+tobY2MIa4xk5frq2H19nP2BQ\nUSl1l/M1VmQNGja2up011WU+TQwoAel6P1MTrp5JOLlqB+vnFO3c/d5vF5O9HradIm7cxa6tu3YZ\n2sz/b/uxA+5zIlCnCRCcBVCchVm2k7+Ef39sOa+xvQ7q8CFXTeog2D9NNg3wul+2W9rYtGv1wf4Z\n7ODbTr1frIxZu/iBIUDZoC9Z9LuNp43W6QjMlALRn+fOMydJfv9tft+RLzC0KUObNGoC7ceKfb2D\ntRdgKN42pI7JonqIYwkZSudN26ABWz2HK2VfPhspbKTxWi4PLKDyu6j8lVimZAc22r4BIWvtJeA9\nDcvvAN+y5+MJgdRe5FEA2jF2XAUXMRGBDOyNmB1UAD8eIBLaEreLgskSHIHALDGE7BeEgdbKmGRz\njGm5UqpyYwCDITbX1QnIvXQyYUJZXJxwANFE5Fk0d9z1F9FX/yo0KQCXEGTdbF+IQifIBoVsyURH\nb5VwqVGirKITn6O4rKYJwoy0yINuO7FwdEULCQ8ahrSupohIfaA0VFPPmu5HUh4TXCdnQBiDnm9z\n5et7HP2mq/zdi3+Xx1Mn3CzpVICg/TKA4n1Dt6ytqYBDSogJLSG3fRUUClpCCvd+ac+Kk7iOxJPl\nMDaISJdVxmJRaYB102FOjkhFjrbpVOX9JoG0VGjMLADKQbabcAkh5cvWImKm9m66E9WOEZfcdbpB\nxXZFBZeIbdTQlnYswyqES/eYRVMsDLy7pTMIUQ7ou7F5Zlm2U7Q8Anwq+/lrFK0UcWgJe2cFMxo5\n9gQ4qnFsIc0l/Db+uZBlM8+LDrzPgSobNQY0wj8iAL4JPNrx2LixypbghREULGGX9lUC+3lXkvVc\nuVU1wgsm3xsI1HhNke0KENUBrmh7V6nT+oCPW2/DduE1irdvOl/AYt/Eeeeb0W6CxlgBGhtb6AE5\nmr0pU8iCVlDQFBqNSj0g/z4EIMgGraHwUkjhKjkZWzKQ8hy1tMjatz3GxgOK4RHLwlfh0JfgyG+t\no67dZoL5HM51EFavDhaneu09kcrJAAAgAElEQVR0vpgNVGiKNfhLUIJC9e/SIObmsFtbTkR7OCyO\naWvMn0K7wnpdIelSGyaEdHewg207sR9WY6XX/Zkmi9lje5ggN4GTgEsPO3IYc+uOSxO7dGVyYv92\nmYTv12q+oUhb2GyM7HRmr5S1j2fwpoxVAcys//Z132Qaa6gJDIpYP7vtJ9pt7GiEfeY9yO0MkxvM\nF1+cPP6bYW9lO9zh3QrtZ8dtp11rCPbvYgfedgIzO/y2EVuHmL1TbC5KJqbvs4urNlE7kxIxoTnp\n+2khiuNQuNEa8fhDvPodSzz6kZf5U8d/nsda1xrZPjuBQTtlPtT3DZ+HlQC28XMi2ZjyJWtZEkoY\nWmiMyBiSRtuVMhm6JpmRWVXMkTSSu+M5umpMW+YgITfTA8MhVSy2ltIz+Zzw5pSd35c5LQRbgjk2\nAnqagkVhWeingkcZf6+bjcSSBZVywTK3pHfGJKvbLtoxylyjzI0roZplb23HEuh5e9DIqDCFrBMd\nRYjysqelgwA2VehOglWCdHVISAWzDZ1QeIYToNCMgNCbblGqWAW4iS04fALf7mJUkWpEP3w3xukG\nxZXgvGWHOnztO1P+xnf8I76he4dPDpdYNV1gQIK6JwDoXi0GhZqsAhKBB4fCvMyig4iaD+fXO8GO\nyPmJr36E//7Cr7KsNknRKGEZkpJZhbai0kkGhtBetIPeFKtTnIODA+WkSoiyfLygcH4KR7nY3lQG\ntFgEtk6hLiooTJlYJOcewG4NsF57odHifmEWIKjJYicu2F6YP037RtdUaHLEDMU8L9LDxOFDXP7+\nUxz/7FHaH/8y+Imoc1w9fBretXq6hjGQpggy7J6K/hyQRWNNfbDdlXk55Xh1wCWAJu6YlGlqFhfU\nEJDNK0Z9UfbFfp28DwSCXUvTT9mnuG6/zHrwKKyLx5twfJM4ENsqSAblM9oRAIt+L8ubCyTtaNYi\nkqBXJkogtNVyfUqNYVgwgyJAJOwDlEBQzWS77bYdDzHjDCEFo+94P1c/lJCfHtF9UfHgvx8if+Nz\nqIfPQ7tV9kmzjOO14MtMVk/zCst2smk6Q3UwKTwDrSEtJxOF0LSxjM8fQ/7mc2x992Ms/KevOJDI\nUPRVIUUh1r2YEJJ+85jTO1jDNcQT8yYGSH273ay+bUMgRC0tQtrCnlzGXrkJQpC/+jrJieMT2/6O\nt9q96KeeQP7G59j8jvfQ+1ef3t8x70fbiQNX9d8nLqARr4/BnmnAUNi/ftyGNqeOLBfvnvHbJCeO\nk1+fuXLWjsff1z4HyRyqv3+1Y1/9n57h1E9+orpP7D+9nd+bSL8OKIGdMBfawWIfsAIMhf2KYF9g\nj3vf2lrQFrO1hXznY1z6gUP83Pf/DZ5st/nXW/P87PWn+J5jhsda1/d+O3tkDzWlj4VlMShU6v80\nS2dIjBeHtshYzy4QGnDsH4NACVdhLDeSX/30O5l/YJ1vO/uSA6Sk306X722cKlYcZx+U7vs3S43N\nUlT/ChoJEzYlOlhZHs/pm5w94RFL4YCCoF+gxob27QFymIOxyFurcHcNOcqwnaQ5Rz4wTsLnJCn/\nxev2adZaT9kOeQFxuHSXYwc0OQBD2r1criqNdcLHfnlgS5lEsn2i5VlBJdugcZKyw/e3hUUv2NTU\nOv+90I0Kz6oGquE7pmIyGkrbAyI3yI0h137PIt/7Nz/K5777r/N7e2vMizYX0rs8PzzLts12BIO0\nNWRWk1mNnj39pWJKVNPQJE6sunHbOqItxOQyXNah8v5+SxhSjE/vcnm5LQypz+/sy4zhLxznt7bO\nVzrFjsiKbXSoNuY7qcwqBxYhdkXt3zSbiEIHAb1aukZlwFIgZCNQWoBLuwzuNs8bwSDZ6bgPuUbM\n96pi0fE/b0J58b1up9Qd2QuAHF93cdB7/C1C3ydlY4pbEXnXGrYHnPuHl1l/MC2cI5EkFcDMZnnJ\nDoIq+OVBofthBWC8w+MK/eyE2dpn2wCux5sIJibEuiPZPJUwnhOk25Z02zEZrKKiqTbNHMDk/x3E\n6xcDZLEJdo9OBTAsPFJD5blUjh+eVeJYUHFxwkqVt3Du+Pqaru0+WNG+A3PHGsd4EyU4NJEy5svU\nA25sjyZyoVKZ63t8Olin4/qPLEf05xl95H3IRx/iyjcmLL77Duf+seDcz75G65VriCRBv/I18qWu\nP9mU/ivWXnQnPqAnwvTod70a2E7bhm0CUNTQ/2yedX3s1T+Ql5McKUpmFlTA7PA92D6qjB2MWXYG\n7nf7LXaqNNXU54dxzo9T6tAhAFa+/XGnSfWlVzBr68hDS+5yDi3Mchc7n/NtbuvnXNt54/feA5J8\nP9pPwcqoMY2b5imyQZ+wvkyq0jeuH8NWwenN7/0g29/1QfIrV5G/+Vxlu+zCid2vveka9/MMG8fh\nA/wtdmH6/NKf/MvuQ9O9zBqE2+f84J4t9H8xWOhBoSLY5/0yN065/tNqzyIKY1ftmVhrS/8uCEn7\nYgpCCDh/mvybvw71N9f4Tz/wk2gEnxllDE3KneEcLw1PTooyU81iGNqELZuyZVPG+4Q7gqxF+NxC\nO2Cmvl1DhKkOPqUiL/ZVfg7VETmpdP/aMqMnx6RCI4VlYFo88FFD+u+X/D25e0iEJpG6uC4o2UGu\n0pgs/u0FGHp7AEK4iF8Qdi4n6dVtinXFAv83chYr6+LxMoBOgEld1FkNDJ2rG8iRxrRU+TSi3HnT\nUthOG9HrIbpd96/TKQVh41OGyVl/HpGmexv0rJ3+wu8nlaOG6leAjto2ARTK2y5lTPdqxLFY8Hra\nLYWO+34N9AHFiMGgaewgqD6HSG/I+nsoRLkD20gIbCKL5VYKvvJDCwz+ZsbGe4e8MT7M3ciJ7wnL\npcFR7hrYNEO2zbj4Vwd/DIaRzVgxA1b0Njn7B4f2a4YyBa3JlLDIBpG2VGhWTQs5hi+vn6io6GsE\nShg6MiMVuV9WllcsKoyZ5P4wheqOUQObpwoORr9JE/ATt3+jZwKH1n7gKUa/7/2oo0chTZFzc6A1\nermPOH4EeXQZubiAnJ9DtF1VsaJS13DkKrdYizi0hOzPF+ybPT2DWR2uaRG2etQwWi+SxAOpqgJq\nCSHYfvIB7MIcq49a5PLhcj+lHMAVhAXz3Fdqq6Xd7Qf8OiCrBC5CAKL+2OrjUX1d3BVLt41jy9gS\n1McHL/z5xn3F1omEbE6U+4Xj+f11Crrl/6ZgEjBqsu92TBvQLYFJ9g4M7SkYMOux7ZS/tW2EwQln\nC9Dp5MGn3ct9DWBYnM9QlEZ3bbusAlZS3UQ85vrUsVhDCPDi8jUfRCmQCtFqYc6dYvObH2PtGy5w\n9YdG3HnfYS78z59k7qcWkblrY9b4UuHAeDF1xwsTQKnKz4HC75k2djCEbOz9nD2+h00sobrFQFDT\ntgVYXjtWrJdUB7Ck4NBvuwo0y0c2sBfOVPYTcR8FJfhcF+q/H5P60C/EVvHlpvgLTX3ztOPEv2MY\nv4Dkwjnyxx4AYPHnPwtd5/9aY6HlAHnTa02ep/E+IkZEE/jwZts9nC93rwlHPp2gnnj0no/3lpoQ\nk2yepjlB7LPElcLq24TDtlqTwJDRjL79/QDM//ynWb2o4Kl3T1ySraeGN1kEmKilxfv/vPd5/h/9\nA3/UfdjJt9ppDiXEzAU0DtQCY9LrWBbXppRjnxZgo5zwx0Tw/+Ksirp/6lOhC5kAKRFnT/L6f/dO\nnvrHX+DWn97mxWfP8T++/ge5o+e8TIVka9zi82unuZwd4Ype5Lpe4LpeYMN0ikBzsKFNuZ4v8eLo\nJLd0f9/A0K6Pyjtj1WyI8jpU5HwojMu4KL57bMLK4jip0BxtbbB9LOHEx97g2nDRbyPI/XwpFcYD\nQ7ZyvGDWCjKjmv2oBnvbpIwBFGlgXvugcg+Rg1iJujY4jtP0bax0egWdWwPkIEPPtTC9Fmqk0Z0E\nPd/CtBKSRCE2tzHtFN1JYHnO/QvjpjbIsUZsjxCjsavEYX20L02wnRa0UsTWADsc7s2BqNOjZ0WQ\nldy9gzVQEZqOB2cl6N7RyNySdxPUlnNOJ56jdFoFjY71/eqsw8Q0rgoWg0ExfbNO0SwGMUrtIOsF\nboVvkAEoAtYf6XP7ScFT3/gCF5MR33P4WZ4/dZaffvFDjM4n/PDhT/Bgotm2gudXTvGLnXeTCu2R\nYAeMnGvd5rTa5LCUzMs2CQopJEOreTVXLMoRp5I22Nm1hpSQmJqgyqxaQrEF/Ct+jJMMf1ugzgrL\nn/jyH2bp5QFf/MKDXD56lIdarkpW6NgUFiUsHcZAi5GVXgxNFuJpbzkgZP1/ceWGGAySqlrRp3Ci\nIqZQFJHfjTJdt8F3foDuL36GxX/yKW7+6DOM+w9x6DOO/pof6XPpe+Yx6Ty2ZRGZQGSC3jXB0ldz\n5r66jryzit3axmqNvrsCK2skD5x2dNv1jX08D1t9X5qsabmnExc035jRWAefY1FpKel+6itk7zzP\n/GsSszgPQYPCH9e9g65FWm2w2DIqFUrT38eIfSzQLyyVKqCV6piiul9jCnTojmp/bSLRbYFuS8Zz\nrpS8+w4yB9OCsRIkAwfuICDvCXS3+lsJbZ3QdCg9b8sx1irIE4EaW9RBp9/V7z8sFkxPrbPRI5qy\nSXvVkAxt8Xxo2Nb6oNC01LA3QyR7RxO4wMLY60jEUdHRqKwiFglIV5hCPh21SFVVCvIRSB+csi7S\nmpw9zs1vPsOdJy2tk1vM/8o8D/23X0O/8wKi3ab9y8+iHr9I9sAR0quu1DNA59o2+tat8nxSkZw+\n6T5b69LmAyspSTCbW0ghEXM97GjMPRXZqKd/zSCgascZot2ieHnCMSLArXIcpdAvvQJAriW33r/I\nsUtv+ImNS2UVShbVx2xIZ7if/cysttv1hf59GqgPE8EQ9cSj6LkW+WeeR13tIB55CP2Vr5J/7VWS\ns2cQGxvO1wXk5qhMgvDHlJ2OS1VUqhRAD0CQB5yCtsxbZvH595gytPKE4Qhw+O9/kit/5hlOvPDm\nXeaBW3zfwXa6/yY/OYx1kY5W6MtEkmKzMeZDT5LeWKf9y8+y9oNPsfizn+LUX/4EV37sGQ4fdz5P\nMNOSs0/NrUWvrqGOHwOYXpr+TbQCBN2joHty/kHs6ze48uee4fRPfGL39zB8r1fp22+1xnuxEHyM\n24GI0rpwwE8FGGqygt1a+oDxfqLVInv3Ba4/0+OP//C/4dNr5/n03XN89/nP8w+ufYjP/dqj/NWn\ne/zXZz7OjWyRO3fnuf3KMl88dgqEJUkMShlOLazzzqWrvGvuDU4lKyzIIX05JLMJl8ZHeWO8zKOd\na5xN79CaUfS+AGtqy+tpY8qXoa+njMVVlWPxaCcw7eQ0pDCFwDSA9FGvf/zFp3jkX71Avr7OC7ce\n58iZzSKgHqexJcKnklmB8cexVhRsoVlbztsEEPJ0dwlYgZDWvRtxBFbgAB0/aQ8pZo1HqzvcEiyC\n1toYte4Hn1yT3FonO7GEnktQwxyTKnQvwSY9xEIH01GYVABJcS1Bp0AYi+i3HTg0yJGjDIZjNzna\nHmI7bWy/5xzbWUChWcCUekS+vl+7Rb7URY5y5MYeRO+sRbcVyUA79lQTCBVKHlua9Znup1lbIhkG\nl9bl2WbF+l2er2h6plHKx/B0n8s/YPg7H/o7vKu1zrLs8hdvv4s/9YXv5wcffpYfffy/8NMv/R6u\nDJb4yPLzvDA4w+VXjvO3Xj6O8CLeVllILAtHN7m4fIv3L73KO7uvcyG5y7KyzIuUR1J4JU94Ix9x\nUrXoidbMjyFUHnPd0Q5parXfT2MZW8u/3XyU39N7hX6DAEmTgJrbV7AxaLO0ldG+06uWU0T6VDGB\ntoLMJrREjvHPN7MKg3DbzKDkf6DmJ2cTkdVCZNGU434cUcPtJ6QAmZSpY4JyQjSDk9lay3n9zz/D\n2b/0CY79rU/w+l94husfOk66Kll8ObpGDaZjYN4gLm4x+GbN1fUeySvnWf6iZeEr6yQ37qLvrpBf\nfo3kzGnk0qKr9hKDMDB9sPZaY3s2axFnTvDaHzzK6f+8ifzCK9OjW7Xzi3YbvbKC/M3naF94mpvP\nHOLYpdeiyYkpolABcKKgI7uI5YFVXbtXE0QMH/+ui7I65oSw9DQfPMbPpMCmguGScoCHBalBK5Da\nYhKBEa6cvGkJRm13/mRgkeO4L3P/TAK6K8h7ILQDf2TuwCGZW4wSHlhxyw+USRMfK2oeJgHddoCN\n2kFbvdgvDgoZUCNLMrBkcwI1rB4bqFRiawTh7ocVAuue6SfdmG7zvJxwgHfE8wIgCqXiyz4ID6CU\nGmYibTH88Ht4/VsU6ZlNFn+9z+J/6NC7dBu9sYH45OfRH3qS9NYm+ssvkxxZhm4Xs+UAIfu52gzX\naPLX33DR+SNHXBqrtZBrx2bsdtA3b6GSBNFK3SRxb1W4JgNgM5g4tEh+6TL6G99H64uv1gJoXsfN\nWF9MQ0728cDqjT7qUcuxsE/ob4zrMy0g0sSl7b8tgKEd+tWma2qadM547eK9TyA3thFrm6ir2/Dw\nefQrX0O+dgX1jkfQX/oK+etvoB55CDyrLQBt8Tlc2WntWPNKFqLoABYHTtjRaGqq9oGbECTnHyS/\ndNmBXV9+ZXJyPwUkEWkLkZe/wdapmk9Q33ePYNObbk2i4sUkXjU/+6ZqdkJU0t2DWLU6cQyUJP/N\n5wpgcPFnP8XXfvxpzv/YJzn945/g1h9/Gv19TzH/c58CIPnV30I9fhGxsY3t90AI9LybU6nrK+RX\nrk5ckr5xE7WwgDp+7C0FheTcnOunt7enP68GE+02+ddeRXzdE2w9NgX4jAHUIFZuPfC00zv+Vlit\nPVd8Lu9bhiuLQSK3a83/hEpBk0CikBfP8+U/fYh/8ZGf4qwaMbTw2miZZz/2Tl5aeIAPf+jz/MqX\n3sHVjz3An3/3UYS09J/tcuIT68jtMWReLD1RjI8f49cvnuVfP/4BFi6s8vSpyzzeu8aF9g2e6b3M\ni6NTfHl4CmAmUCgWrZ6lFH0AhYr9rWRoU/7ZtQ9wsrvO7158eWKuUweDlDAFeHRkaRPz6IPw7PNs\nXlpEnrWAITMJuZVoKxjq1B/HkkgDBowQaBxAZPcQ+XqbAEKicKid4KMgFMjyq8voqxHNjl3N4Qss\nIZsI0s2c9M62Wz4aIza3scaVf1VbXbLFPghQWxm62yafS1Aj7SqfZRbpqXqBYRTMJgKbKExbgW0j\nM+Oqkg0zxDADqbALc05AMsvLl0Mpp0ukjYu67UafniVirw35Yoe1h7p0b+d0c4MYZVUwxKc+TeYI\nS4S26JZk+1jC8nOr2CToJolqqfpEIu4HdXEni5g8AQepphY2MIWC6R2evbXouRavf7jPH/3+j/Ij\nSy/QEQmSDkpIfnjp0/yjO0/zM2tfz3/zvo/zQxc/zc989Nv4ZP9h1HpC/5ogGdhKeokVYFqH+FL3\nEJ87/DDixJDHTt3g6w69xuOdq1xo3eRcormlFa/mOWcTU9ED0taSoVEIug1gkcOCY1CmKa+1yhBK\nheSzoyV+8mN/gOGHP8p3zn+RugyJ9mJn1eO4Y2zfnENk6yw/r/mNb32YiyeuV/ZTWN4YL3Mk3Si0\nhNx5tVPY36cA2j1bmCxEbcJNwGqTiIpwtH8PQvuqR9x2cBZE2kKkCWZ7G/Xrv83Siad49S8+zbn/\n/bc49398kZf+t3cgc8Hc9TGHvzhw+2SOsms6CYPjfdYfSDAXNem71lAfHPDVlT72tfMsfuU8x/7z\nDfKXL5GcPgXHlpFDP8vWGlopNk0QucZubjmh/HpUpyk9ongG0Tbx/d5eZfHSYb7yRzq84y8dwtxd\nqfYvTZ+tdf2ft9amwajy+NY7HqLdQl84hXrx1TKS5K/PaoM1e5x8HrTFY04D46Xyfbcu3o9XAEhB\nNicZ9yXCOJAnaOyE9Cg1spjUsYWCqLLQkA4sauzAp9jvsEpgEotuCfIO5F035kotELktABnd9tp6\nerIAgzBerLp+L7uBLdOIQP61yudEIYQdWD3hb6NJd69ybEi3BaOMSv9anFNMgkIVAev7NV+zFtHy\nrpfWri+JmIqF020NiBQHBFUF6+P0MWsk8j2Pc+l7FskeGJFcSTj7fypal1+FPMdai1o+jL5zF/mb\nz7H2vR9kaXO7ccI17Xr1rVtwy01wZH/eXcN8D/XweeyV62A6iE7HR9D9tea51/TxwFcMFjWVlreG\niUqr9ZSwJCG/dBmAGx/ocObuUcTrN8p9pgBAAKLvWYjA6Y9JFv7ka16sPtr+2DJiZQ2SBLs9IDAS\n9yUUf6A2Lfq5x+XBaoLBcm4O0e1gzp1EvnoDs7LimGhCok4eBcAMhyTDMdvf9UF6v/Bp7GtXqses\nTV5DRaUAOMp+H9Fuu/XjMXJhEb227kCjJHETlyYm0x4m4LvZ2vuOM3fpMvlih/Tc2aIt7WbywdOc\n+FT5fe7i6sQ2qt9Hr6+jlvx9wdsHGApppoHdswMzzG1vq2BQxDCqMITyHPv0e8g/+fnG0578uOb6\nn3mGE3/9Exz96U9y8088Q/+9T5Tg8/XbrsLojVvIbgeVJoheD7O8gD13jLyr6L5whfxa5FOur8Pm\nFsmZ0+RvXGk8b8V2+w1m+I3M1ha3fulRjv7Bl/bUFgMAatoJ3VfafmEzUCs6bQhsuYYgZIXN/laZ\nEJHWmiwzYeqpX0C9iEiF3RoAd7+NGY5Qy4e5+l9d5If+2Ef56YUvcEu3uKpbKCzf1P8y/88jT3Lq\nX7b5z5tP8oFveYnnX3qMi391jDAGm2QO+Oi1sEnHyZ7khtYbq5x4cZvjv2jgyCF++8kn+Y/vei/q\noU0uHrvFdxx9niPJBl8YnGXLtDiWbCAxHoRJ2DJtlDAcVpt0ROayGKZQjOMqy9OsJTS/vvoY63/9\nLDeWFY/82escTarzoJAtUUhpWInEkiG4dafPUu760Yf+5QDz9d7/886ZEpab230Od7aQwpIbVczT\nxESa1e729gCECmdOgHJRz2K5d4QLoUkiNkc9ahg51VaBzCytWwPEMHcCn5vbTncjEriSa1uo5R55\nVyEy49LH2qo8T9MDteU1C+Mm/FYKTEtiOwrmW6hhjhzl7iWab1co0SG1S2QaOcpd6tlwXDhMtj7p\nii28hA0dmE0lgyMCSEg32qSDceF42RgIqqWHWCGcjlLiG9Iwc9eMjxRrg00kMjOMe4mLxhYnbQBe\n3mqztgp27RQZiz+H7BZrqw6ff/5r71ji0f/hBf7BqV+mLxPaolUBZ84kXT74+CWe/7eP8ffs7+bp\nRy65Cf2XUpd+MXJt2UrrJiahHXvrXRfoSz2+1j/Pi4fPoY+MOXVyhe8+8xzv615maFM+PVykJ0cM\njUOB7+p5tnWb4+ka7+q8zik1YkkmxXXVK4rVv09LFTuqNph/TfL3X36a97/7EmcTB6DuhJdpBB2h\n6b6RgIT2as5Yl12K9MpE/+Lm+3np9jH+8EOfZVFtFx1pVuTBambnDh+UNUReRJQiFui6xTtjiola\nIxgUjtVAJxbtttf7qL4f/X/+Kdb+l2f4yt99J4/8jRGP/vQtd4y7q06jQ8VRA8H8V9v0n+tw8lCf\n4fEea+cXMRctnB4i3rHFV79tnvZnnmH5i2PWzqeMDrvUonzeYFoW29PIjYTFFwWHXxzRfu0udmvb\n9Tt+kK+XXwZcdFe4KHmlOUiJvnWL+Z+/xfHWU9heB1amAED1Z5KU7WTu3z3H3DsfdtsrhdAaceo4\nL/3ocYSFR37mKITJh9cjEt65iKst3Q8LrMnYJoSkI9Box9RmASYVDA4rrIRkZJEZFbaOGkOWOrZQ\nkkPWA5lBum2Q2gE5Mnf9WSULM7eoESQDQbrldIN0S2BaPgWt445Tjm3eqYu0jYRxARI1dttKbYtx\nd1ohiHB/TcUIQoqb0GATyqpQtWPUzQpIRgY1MlgpkHnNMZUunQ4L0zJRd61I9iaZNdYBw75SmEsP\nM9VUMWtAU1YyLCL7/k8EGKnlw1z/3kdYfYchPbbFg3+/Re8rV2E4wuZlSqsIgvXA0m/dcO9qg4l2\nGyFEGamujad2NEL7SYsc9uH8acSp49irNybLjntTS4twdBkxziDXTispgOsBGNIRQyccI7CHagwi\n5RkrW2c0q08scej1G015zeVnfxyzNF8syuYk33T0JX5NPlg+63OnMF9wpbD1N72P9NMvOlZL5C/u\npez8m273AjTUxq7tb36C+Wdfhc9/BZ1HFXWthmu3HKPmhZfIL11GPuHSdiZKrwfQYEpKjdnYACFc\nelGeI+bmXEp8kqBv3UItLKDX15HtdqXwglqYx2wNHPjZIE67F5OZ/x0/8Xnu/OBTLNYBoSmMn/zo\nAkufuUr45Q/PbVfWJw+ehdEY1tfZ+tCjdP7tZ3hbWQDp4mpj01KXou2BSoqf28b1t+Pf+7to/crn\nEFPAIIDOv/kM4k8/w+oPPc3SP/okx37qE5C2inObjQ3nTxmNzsbu/VpZQ95pk/S6pJ0OZnkJe+GE\nK1ffSxEff86xF9+4gjqyjL59Z6Z73/f6sNlHl7nzI0+z/Pc+OdP2wZIL59DPfpnlE+9tXn/mNLTS\nncHJ+8kQ8vo/BQMoBoPqwUMpq0BQuO6gI5RlWG3QX/8e1P96nf/w8E9yOW9xNe/SEWW/uiS3+ZaH\nX+LjF9/LA7+8xRe3HwMB4+UOyXZeyqNYSxG91hbTSZALXeQwRwxGHP7Yyxz+qIVjy2w8eJa/9o3n\nefD9b3BmbpWPXXm8YNDkWjIcpww3W6i25h2nr/OBQ5d5vHOVJbWFwhY6qFCKO7vT+pQwr59a11l9\nsv8a/+X97+bCT3yRz/3IA3x4+YXKcQKoFDOQAqhjtlJENvCp/Q40CkLSEsuz18/S/ycLfPUH1nn0\niGPMGSvItAOGpLBINTuA+fYAhOptPXagJ5xoWzBB6qljcVQxXc9Jb25g2wlyc9s5SHpSNNZuD0lX\nhuTdOXRHoUYGOQ5IgbCJScEAACAASURBVPtni8nj5DU6zRl/XaIEiHQncZMFJTBK+tSzyAk1FroK\naCF1FznUyHGOyLRjBWiv2h7YRMIJPiOl22Z76KjbEbgjMoNVkM3hUr+Mf1DSgx4TnPoSfQ4TCZVZ\nxHAEC93SaZaCvJcgLOiOgrUdf837Y00D2TQqtUc5JoAgCSI35ItdvvbH4Z8+83/xjlTTFl3qWZja\nOubOXzj97/hDhx5l8bfbPHfpcbrrPm0jdxMdVzran9qEf9ZXt4NkaEk3Bd2boDtt1udO8FOnPkzv\nwXVOL67x1etHMUZgNlMwIIcSmQvyxZwTD9zlnYev8+75NziVrnA0Weeo3KYjDMrf5tBKMiSZlQxt\nwmE55IQCGd23sZaHU43QsL3dDo+iwi3S0cxVYV1pRJ9GlgwdiKhbVTG1ltD8xFc/QvbPjrPxAUP6\nsC5K14eO7/6VnbdVCvUEW8iU6WNAqCxWF3bdKbrkJn6RoLI32ethth3gdu7/vsTV77pAvgSt169j\ntwduoqg1IvX6IuMMaw1iPHal6G/fpft6m96Xehw/3Gd4Yo6NM8uM36+Z+4Y7XH7nPO3XQXcsVlnM\n0TF2oBADhT08Zv67VhhaweU7hxBvnGTuimDh1Zz23cwB1BZ0L0GnknxeYYWgd22AeuUKbOcVYEv2\n+5iNDZY/ed0N0vHEKVCGg94PlBGire3iGcmzp9zqsO+DZ3jxTy1jleHxv3YbkeVl1xvrEHlgKESi\n32qrsE/i5RGjshCPjhkvDaCQlTBaUuQdgcxAZRHYEpnKLFoLbALJpkuZktoiM1sETYoqiA3X5goz\nOMAkHViMciBU1nXgkJWiKGmPdduF4xjl0tN0x/djumT24Pu2mM0b/rr0Lg8gFc8obCu8npA7nwjr\nig3DhdfuI/fgV2YQOd4fcNslQ0i3DNtHFSYtJ4GV/e+Hf20d8CDSBDseF8CySBLMaOTacqQjBJSg\ntE8xK+baUqA/8C4uf2uXk89cQf7zUxz9bIa8edOxjqEK5OR5MeGeOvGQQXsgmixG73N8LHATfPGl\nVyBJqqkONdOra4jNLVAKOT+HHWfIhX5lgoC0pah27vqH5NgRSFPsYOABIwfSDx5apvXK11BHRmTz\n3YJtXQTdApAUmErgnt84SnUJbdG4ajjm8XPwmecBWPl3F+n9lCKNdco8e/K+VhmDHceb/Zj+pvfR\nen2Fud94iXx9s5H9oNfWUaeOFXo/vV//8vREi520eTywEPrr/NoNN8ZdPA+3biEOL8H6+mQVTs86\nE90uDEfud/WAamEFwFiyiWSng/FFF4pLyMvPeWdKALFuQqAGGfpQHy67RYksn4B69GGn5ffq65hv\neC+tjUiI7e3ADtopla3+vQnUq2tLnT3lMh4+9tmZzrnwak5rPUddvIB++ZL7/f05bJ5XmC8BTDCD\nAWI8BrUJN26RLLhCPXJ5ie1vfz+d20Pss8/7914h33ERubmN3RrA4UUG55boXNuEr1yeBC73aSaF\ndKv5Hgtr0KcaPXiYVjul/9LqZMzjA++C125iDvebT7obk+utsgD0xMHCwBTy60UIqAZAKA6CSokd\nj1Enj/PlP3OKX/lDf4WhVVzOW7Qw6GhAdoHmnO9b/gy/9t6LjJ9v8+A/fwN9ZIG838K0VOlfmXoA\n0jrgpNeCTgKLc07OZZzR/dyrPPTxAfaxczz3wbOkG5buXU1rPSO9sooYbWKHI0S7xeZjp/m591xg\n45GMQyfXOdHf4JGFmxxLN+gpFxDZ1B2GJmVTt9nIOswlIz7Yv8RRtV5oCGkES2qbfM4ilHQC0BgQ\nrqx8fM+Vx411QFPL8P9S9+ZRlmR3fefn3oh4+3uZL/fMqqx97aW6pN5LAu0tCQnJyGBjAXNsYxYN\nPgNzPLYFA2NjA+LAYLMZBJZtiTECjAALAXILqdWSWlWtXqu32qu69tz3t0bEvXf+uBHx4r3MrC6N\n1VWae06efEu8iBsRN+79/b6/7+/7E9H1NI5ACp0ISj924gD7/rF9Btd+4OC6WxZq+U2li8G3CyAU\ntS5GTsqwjJ1ooAuI6Y3EGkfYEvLXa5YRFISI1VonUpaeFIVMDAi5XEOOFCyt3pORw24SsKerf3SO\n3935Tp+SvgphDWVhAYK4//G+jcQadvFxlZt8L7RB+NbIsVXRLMgjQoO30sJppiaKKAXDXWnh1QqE\nBUFYdPAqeXTOQ2UdvJUWIlDonIfOu8i2QrRV4vmbjMRbaZPNSUwxbyuNxUaTI1jZnUGEUJhXGEd0\nDKquG3AbF7+0AdvLhopbbNymU4RMrEmlMa7L1Xf18aEf+gqfGXyGnHBxySTCzspolNHoZBBqDnhZ\ndt17haUTk12LRboEstAdB8Te29R7bY1T14BpGswyZBcE/pV+LpX6yTUBDW4DHD9izwnQnkv9zChf\nL4zy2MDd6EpIebDOjuoSo7k1JnLLVN0619pVVsMcS36BjFQ8MvAy7ypcpCxcAqMTYKgkstS2a4wS\n1HWW60qxqEq0jMdebw5PaOZUgVPtCQ5kr1MRbRQCiWFtbwiLy3ijFVb8HH+2cB8Vt8nLyxM4Hx8i\nt+oz/3bDispTclpIoS3AZhwcoWlp79anjMVOOtDF7OlyhOKb2HEsuhhEZvNoZVL2OUpxSoSQnSiV\nInp+w6lpxv7zMiKfxzSb1niJ+mBiYFoKqyXkB12UbdFqw/IK+asehVNFhl7oY3VPldKkJDdv8JqG\n/FyA01AIFSC0QRU91raOsrZdonYG5HbVyB9q4BvBtcUy2VNlho+HeLUQoSE77+PNrGKuTXemwvgZ\ni3U1gPDiFVrfdS/e1n78iotflgx8YxYzPYfYNsHMmwfoezUg9+QZjDGYVjs5NzVQwvuVeeYbE6zU\n84z2rZH/ssPWjx3FFIuYPdtgtpMqFvdBxGDTbW7JfB5X9U20p1gfREhPR3FgKy9pl+34cpvd80PX\nthFo4rRsxRsjLTPIAs9m/Zq00dAU8dxkv3SUBZnclrC6RE56brRzUwfo6aSdaReMA9oVBNl4W7rA\nrzigsBkgI31QeftnGR0mSm2zQLlQ9hgqIyKdoc5+dEYgA4VQGpXNEhbtsTOrhtyyIshLggpJJbJv\nC/0gQWQTWKaDiCu1xCnpid0gSdOl0owg4bnIQoHpv38A8b4F/AtZ5MeGGD19ab0jnW7aIKp9sLra\n3aVsNnGsY6BKuF73b2OgKG3XxC3V/xu1WF8oZhfptRsL3ztDgwQ7x/BmVqCRunna4EUOd+blAkEJ\nMAa1tIRTqcCWUZhbTFgD8p6DiGuzEIaI1c4CXZgJ+OLMQVi+hjsxjo7AoLXvf4has0a5HQlLR+eY\n6GX4/u3VLuvVdfn/CBC542MEO0fJnpslvDbVEwzpaVrB9Vn877gL74vPdt+7+Pg304/eVD6tMG2F\nnLZC5mbF7rd3DOtGw37WbCbrr8xkknRLp9pn2WlxXwGnWrXrkx90rpcx5C+tJWCW2zQ4fRVUBIQ5\noyPohUVkuYxaWsIdHUHNL9hjn73EuX99iN3P29+eOzvOgewcRmmC4VJSUv3ie3Ps/dQ86luY5vY/\n3boAoGj83Kh/8edpcC0KYrlbJjYHlNNjIHXM/GefovGhB8k8O7+ebQSRfdUNQCMiUDy084VaWrFg\n+lqNwnwRMzpgK5O6LmiFfvkUFIv2p+02+YUlRLmEunsvOmc1YkWgEJemUEtLdrtsFrltC3huUsFL\n1Bqomdn1aXVA9WzAwl0e1ei9zGa7wCZneLgjyp/6nfPl51AP3E17KEe2V4j8qZdgfAz98lnWtW/m\n2Xq9WjzXx4G4tKxAun9EgQRjtYFEbB9G7CLj+6x94DCP/OzX+N3qp5lTVu4i05W9IJIKYQ6Gftnk\nkd2neWLPvbjNIUSgsanw1q9GYHUaVc81kiIyQ2xahs56iIzVuRPlInJ2mfEvNKJCTBG4JKUVyM9l\nQGnyL19ly9E1G3QcHcLfOsYTu7fTGBe0BzQMt9FtB9F2cNck2oGBO+a5p3gFx7X91FjB6aJsk9la\nR+/eyqlFn52FBeb8MieWxrh38DKTuUVWwgLH5neSdULePHiewDgUpM/du68SZOyIy56d5nPPHrZZ\nVHWXgz93wloJDx1ibTpHODAfnb5BRHpCgXII9c2nX3ybAEKmO5opUv9jI7rn+17wCAGZZeu8IASi\n2bZOR+9CJx1EuYjJZ9EZF9nyMUGI9DUqG4FByg7sLvM6xUrqamKDz+KzSgmxiB5Ks2U6WUAq2SoG\nwYxAOwJH2b7IdjQptxQyUMha2yL0jrS6IMo+nKqcxThWOLQx5KAyJVRG0BqQ5Bc8sssKlRU0hhwy\ndessequ+PS8pkGst3FKGxo4+jBRkl3ykr6hvLaAyguakIb8Yp59FGhNdOhm3adJKo9abpY3FXyvT\nPYlF//3BAhe+X/In7/oN7smAS7YLCIrblGpwKSywoErs9hbY6sLfnXiO/9C3jcxqRxw9nZIQMwmS\nMZse10AcbBIRSyKO3puUjlbsJAoVpyhakMhIKEwJtOuhM1XOlaucrBicnTXes/skVbeBJxSTuSUO\n5S9zf3aWPmkn4zmtGJCGnHD47/V+dh++ypkL43xi+ju5stZPvZ2hmPX57i0v4wjNldYAXzi/n7ft\nOsv3DDxHWTb5Yi0uvyrx5ms0/uM4zwxvISzC4EsBxaka00f6MfWQBb/EiGcdkl5apbr1OWO29UbP\n0v833D5iEm1iTMlcLlkEk594LmwZo7G9wsKdHsXrmoHnF1EnzgAR9d4POoygOGpmNCYIu9NJIiFr\ngUo0HozvI5ot5GqN6nSB/qjyi1AagtBWAAp8EBLpugxezDF4VKKLecL+HK2RIfyiZEhAmDMUT8+j\nzl5I+h+fqdPfh8jlUONDyOtzCNdl6gPbKV9VOE3F8L+8QNlr89S1bRT+qsLJfzGIyPQz/MUso1+e\nZepdo5TzByidXebi9w7htmDiV44iT17k3FfuZvDBae4cm+K5F3ez/3OLtpL7gR0EfTkykb0knChK\nrw3GqNtTijVqXYycdKAqZrGmW3q4p9Y3v+QQ5iOtug3EnI2IUro80BnL2JFBNMc4oitYkhb77+3T\nDc+BCPhRJmFfJyyjrjnLIANhq3uJTh+0a4GhGCRK9z0GfixzFrQjkPEc5kZsVkuUteteBsI8BKFI\ndI2MY/flNkQCCoVZgWyFCRCncuCtQflaiAgNa1tdVJQVlTC5vh1AIW0wGJLy89pgwiARZ00zcZJI\ncyys7rqoew9w/oN5CvuWEV8Y4sDnp2w10yBK84nZMUKgFpc7DvKenRvjgxHTQkhh/8cVoSLHUbgu\nRimrbxoxmLp0etSNnV7hZRK2Y8LoiPokvAwYTfsdh6lNeAw9vYSsN9HFPDrv4a62oNFElEuY5RVE\nvogp5BBHbYrK1l86arsQHyzjwfyyPe9UMxPDmIyLeebl5LPc8YuIHykTGpNoKQnXZfYDLSb+nwLz\nd7tsedYC8UIIdOTkiButDa9nS2yGHmbqTbBb1qXwHdxL0F/Aee40YRRk6PqJ6yL7KgnIYnV/NEHZ\npQcq7LSbsf02YanoZUs5V8vrdXmgA0SmgSKdEvc1k2PIVjvRKgIL3OlGwwIZ9TqyULAAwcunEPfd\nhXnmZaqvrKKiYzvVKkJKC6pOjsLSEnp5BVkqIoqW1TZ0vNPng7+1Avm8ZbxFYBDAjr9uUdtfpXBW\n2Ft1O5353iZEZ/zcCKzaALQxQYh4w52EvcLzXfs2VieqkF8n+Fy43ozW7RQYldaxWhfMSAXpkj7Y\nSobGDxArq+geu03X65ZtqRQyn0cvryCmZnA9z4IBlTL0VxC7t+DMrRBeutKxc6SDzGVREXM77oPw\nMpjAx9m3m+zfPI04eCRJWdWtFis/+BDVz76CXltDzc3Rft/9hDlJ8c++YXcbCUXLdkjhidPM/pOH\nydQMrX7B8MePgRCEU9MEj9yH94Vn1gtLx//TQe5b2Lqqx8Z+VpoZlE4fU6oT6ADQGt1q405OcPbH\nt/L7f+/3GHAazEU6QXFTCBSCi8EQJ5tbODq/i9HCKm+vnmJ7fp5HJwx9r7q4ddUtFwORtmHKv47n\nSW0686PEZsdkXHAlhJ1ZTBgbhMLL0iWSXcrBSNX6i35A9tQ1Rk4azPAAjR0VLn+3y537r5KRISWv\nzdbcMocKVxhwaigjuRgMM+jUyEmf5xvbKeXb1HZU8T4l+Hz+O23Qqij5y0Pj6K0tdM1j+JjDYlnw\nF+8p8Z3j57jSrPLS6UnuWJlBA+G16+z7sY7uX/x0tKtZymdc9MFUFoKwwJwj9TcVbP82AYTSoALJ\nTRXhBk40618bIcjNNpGNyCharW2caywEopjH31JF5R2MFDjtbAcMiozieFtU94RzM60LHIqBq97P\nsQNYkKqYJuygFYAMdaRJ5OA0o+hdbOwZg8l54Dq25G7BOn8q79Ic8SIHwuBXrFaRDKE5aqhNCnIL\nHt6aISgL/D6BymTI5yS56w3c1TYmn8GtBzRGM0hl8Ps8cjOBjQh7EFQ1K7scZJglO9+2qW3f5PV5\nXVsvKyh2zBJB8p7vsNd17v5+3vyRp/nz0a9REBkkYsNy703j84crb+DzU3cytVRh/9gsbx08w/G1\nrYQF8Gok5ZztziFO+4jHcRL9j4dWvK0xicaQ0abztKeDO3HXo/EilXV2Ym1d6/gIhBa0L5U4NTTK\nh8afZ8RdZdhZRSG5orJcV4ayDPg3197HIwPWSP75v/lesouSvIET5/ZTvG5gWDBzT4s/ePrtGAf8\nkZA9u6Z5enobTeVRcn2+8udvZO/jdUSpYFOLZtp4ay6Or8mduIYe7sdpGzKLDl+5upvFkQL3VK5S\nkNbbkxhyMkArcTP+67euxdH65H28wMmOdgd0RefXlaBPN+kgM16HsRJHUbRGlIr41TzGsc7r/He1\nWfpADuelI+z81GVbyUcrTEAE+qQMplTrSllLUtw0QrjoVttq77TbiQOZOPXx+UgJfqRV5kjE6hre\nNUPmXAbTZynLjV1VTv6zIbylUfLTgr6LITKwi6YIbXR+ZXeegV9b5szVUbzLsPygYujxDO3f2sN1\nCXKbpDUIw0+4gGtLpZ85z8iZ8/jvvo9zPzjIG99yipf/8gCyUACt2fXvX0HX6qyFIXuZT/CUlf1l\nat+3Sv0fHmD/rzQwZ1+N2FZR9YTXcEhf19b7nKueQMUNmspJ2hUJJmLDbIJrqYwgKJJoFYU5IB8d\nT+sOsNy7PtLz+U2CQwkrN82i1OltovUs0hYiMBFzCFQG/JLopEdrbF6/Z4GjWNunVZEYF5yW1TUy\n0qaUOW2DygraQwoEODWJ27DPjNMCnQUZCryawWtoCLUl0wj7+9yCITfdoDVimSN+RWOGDX6/pHhV\n4DTNTV2H17XFmj6RmHEC6qZTJ9KAcwQaCdclvO8Ayx9t4LVChn6zQO7sZauJuBG7I3a+4ja7ANns\n+u74vgWsoypmnTkuxVqK2ZHaWGAnrgwVMyfTIEW6VHI8/0RM7DhdTjebCMdB7pxE+AH5V5cwzgAm\n56JlHrnWxMws2EivUgjloZZX0HftxDt1pav/Tn8fankF9dY30uxzyX/2KZvGWm/QfvcbyX7+6Q3F\nZ0U+jxooIQsHEFOzqIVFah+8l8IzDvm/PEbuoUMwOgz5DObsJTvn3EC/8fVvPbZN8nEP4LBRClCq\n1b7vQfqPXkGeu4TeJNVWVqu2olwECJl2GzE8RH52gypJN7oWm7FQepn9rzWH91bHindfLKDX1pDz\nK5hSEcez6dW60UA3bWVfMT4C515Fjo2gKwWYmcU887JN8wo7E9v8Bw5Q/dQxC4CeOIc5cg/66AvQ\narHwfXcw+B+P0feHc50+OwKZyxJsG0JcuQqQlFkvj42iiLSuzl/snMftAoc2YN/ccMykGUKAM9Bv\nGXebgUGQ/N602sj+PvRb3oAIjdX7AXjyRbumJ/OG6GEJbXBduhhH0XykFJgQo9bbSGnBbN2wGk9G\nG4hY19IPbEDp1Us033kv2b5iohmGVkkaf9zOf/owuz9s+x+MVsgE2xn/taMooPE9D7K817EBrR3b\nWHvkDhrDkuGPH6O4YxtLf/8h+l9aRCyuoKdbiEvXMWHI4Ces/lAZcPbugpl5pn7oLkb+w1GaH3yA\n/Gc30Z4ypjtYcItazPYx6TLxaQkA6KTVxr9Rym4bhji7t+N9os5jO3+VeeURRGXa4xanSi2qEr9z\n8W1cPjnGlscNZwpbeeKBOzCVgL7r1vYxsmNjxUUuuogWxiBCvWE6eJoIYFyZfGbiLJ5o3JjItoy3\n1RkH8h6U8uAImmMFMisB41/OciI3zsjwKncPTrEcFvjyygGyMiQ0Dl84cxDVcKmOrpL/r1UG/tuT\nyMN3IBdWrb0PiPc/wL7fnyW8cBFz5B5e/TsFtKvJPDXEn4/1s++fPss+/TQqm+08C9LBHR9Fr64l\nTM3iqVkKFzzO5HeTe3CBbX3LCQjkCo3awJfdrH2bAEJR642i9kRf0zffSGsounVFZqGV5AmyVrdO\nwiYTr8l4XSlPYc7BkTbVDEO3eEoXDW092APrgZ51x9uAURT3H0i0hzrbR6hnoMGVqLzbAZXisu9R\nShsaWkMZnLZG5SRhzhrLMgS3YayeUEHgrYKpWkfF7xdWz8G3zkVjyMVp5dCuILPURgSazFrkDCsD\nUlqW0YjB5BXqSI1rE2XGjuYoTLWQ/v+cyN+3pG1oDNNJo0jYOd1gkM55zN5f5jv+0dP8q5GvUhDZ\nLtFosOwgR0iU0cypkK8t7OHKTBXnao7zx3dxsroT6UNhBdJpEkkTREBUBywyosMKSoCpnjSyLkeu\nB1AyEaMr1voQrojSTwyZVcAInLbg0uPb+djWCbxKm8G+Op7UeI4i64Tsq8xy9Mxunj9zB8aB0TMa\nx1c4bU1QcsguBuSWHRw/h1czzL+9jZcJGczVGc7VmGr0cf7EBAc+cRYG+qDVRmiNLGUxZQ+Vi4QH\nh4s0RwSlKwb3TB8vTvSz/O48bxmylI9YPM2Tm8ldv44tjrz0Ai8qlWIaPac3EhLdTDQ6bmpxCTk1\nTQ7Y8jn72dWfOWLnt0rRRoUioVWjZcIEsjuPFi+puyP1SiXgkFG6AxTpFHAVVzAyGpHJJAaFCUOE\nEjaibpSNhDoOwfZh3JaiejzL8kM++kCTphfSaHtoLdFaEAYO2z/pc+bkVn71XX/EL3/5Bxj42Wdx\n7tzP7EMDeE1Ddsmw9s466sUS/ec15T9+EndyK+GVq2Qfe5Gdj/osAZPFFxIjzB0fwyx3i5O52yfp\nf3GZ/HyJ5rtdzv60Ye/HdsK5i/aaOJFpcTtEXtMATALupoIXqc+7QAgBYQQGSRWlgd6A5NRJQ7Ni\nzh1GD0l1sa6KnJv1cbP9p9KyN6qomvSt57y6wCNlLOZuIGMsw0e72CqcTieVzjgg6obMmgWJpB+V\njm/YuS8oClQejGOQ5QDdB+paLgoMiSRd1mtGqbOu1YUpzGiCosBtWUcjKDs0tihMUXFw53X6M02e\nPL6PvpOOBYWI5ukbX5rXpaWFo7t0gqTTYdFEzCDhemA06sidXD+Sp3mwBRer7PmjNt6Fax1WUNy0\nsSmpxqBXa13HVT2pYt1fKkuNx8EE3foXiUaXsKKiaQA2ZhPFc59wvQh4TgEBvaCR1sl5malZEAK1\nukr27AWMkBit1pHrZKFg/6dKWofvuBf3S892GB6PP0c+msfP/O4e9v/8SrIG6cWldfsLr1zFKeSo\nHRzAnSjhfWGRVlUycMpeU3HsBcSuHcy8dZiRcNLOOeko+e1uG6Tm3AhwcIYGCQ5uo//oFcKpmc0Z\nIkIgHEn46iUAZLGIrtcJr17DXV1br4GSclQ69/w1QCvYePtNAi2b9VXXGxYovXotqeApMp5Nx44P\nXWsgDx0gfOl0Z/8PHUI9+SLu5NZkrA19fRoFyN07QCmcKwvoYtGCYanlxdm/B3X6HLx6DeNI6hNZ\nYqnyhbsEfUA4PWNPp5DFObAHdXKDdKBb2XrTDF8DfEmAFa0Q996JmF5av/1mh8plMZUiQcFl6ojL\nlvy9eF98trPBjTSm0vvpFW9Pp07FYFIPqJTMPfZNBKI4CWCuazWcgSru2Cg8dhx93x3477kftxbg\nnbqCafsW+PVc1MIiuz98nPuPKx7/hSMUP/MNQsC86TAq61A5dhFvbSvOnfsJXzlN8eJlilE/wsvX\nKF+8jAIu/uLD7Pg/ZxD5fMQ085PzWj00TGG6YoW2geKlGmd/9WF2//ONRatvl5h9rJuWMIWMSUCf\nOPAZs7aRAtNuY7Dgc+HHr/PPtn6R6ypLBr0uMyBuF/0hri9WAFi4y6FyQXPgt2fBdQgGi1bCRIpO\n7EFHZAoiUCj2iWVE5DAGlOkEtkJNrzBql+xMlMottAGVZj+ZjqHTUhSu1lAFj+qxa1Sf0OjBCq8c\nuBu/bEkTKiNojhoyTcHkvz2aHMupVODCVcLUOpz7q6cIAXnoAGf/bh5vRSAOrdGs5CifyCDv3oc5\ncR6ZzaKC0I5prTDFPKKYh7U1xH13oU9fQq+tMfmL5wjfcS/X/nfDYKFOGPVbfBOCid9egNAGRnby\nVSweHW3jBJrsbANRa2IKWUubbrVvCAYBiEaLzKxl15isR3sgGznosaEoENJ0U/43ShVjE7CnJyq7\naTWTGBhCdJ230Ha/JhLOSkCN9L4EaCnBAa+uaFVdnMBQmAvRrsBpR4CHK1BZgV+SOL6tOJRdMrQG\nBJ4Cb9lG/tv9ro3OFjxEqHEbChFqdMbBr2aRyqAdgVhzyQ0H5PYtMhMMMn4sS26ujQw6uh63rUUP\ndKzbtK7FgJAQGMdh/t4KC0cC/uRtvxEJR68Hg+IWp4xtdfN8cvdnaOwyzKkM3/v4Rxj6WiZi5vSC\nUhDrdcQi0r2On53UUmBQ2rFMT1xSdCYvQ1RFKN4JiZB5fO9zgUG7gtwi5GddtOdR90o29cKx89u5\nynayDUFmFUaPTnAijAAAIABJREFUrbC2u8zqDoeR53xyUw1kvYXJeOSvOxhHEuZKLB+BS6tVdlYW\nCbWkPLlqwaDlVZa/cyd9j1/AqbXx9xRZ2SUZDbcSlB3KlzVe06A8CwxdfGwH+m2CNw+dB6ywtNrI\nG31dm0jSIbrER6HjoDnpqmMbGzG9WkGdfXReG399JHbrLx3FHR9Dr651aXAIx6G3Qk4XQAUdWm6K\nJZQcJ3K2iPRJhDDWNvJtamyclobjREwhB5HLolfX8C4oTKnA2IzHwKkSQblEc9Ahl7FziXGgPQCt\nQc3en3iS32cXAxxj/scepv+cz8gTc4iVNUypQP+5Ku2q4toHA7I/vJ3mb49Sdh3U9U752DTFP5ya\nRr/5MGHRJROJVZp6A3/3CLkXLrP7b+dQb30D5z9cZc9vLGKisr4ik0lKu97ythHgko4ZxH5O9Fp7\ngqAg8Us2HcoJbgwGgdXfcaIUURWljGXWDG5Ld7SK0n0RdKeLpYMNGz1iceBFdr9P/2ZdH2N7KQJo\n4vlPGpsO5raj+cjpBDuMoJNCbSC/olEZgV8SZNYMXlMT1CVeTeCtudS3SBhuE/Qr3BUnYRFpLxKD\nNYL6jhKFa03y8wFu20E7Ar8/S6sqMJ5GrroMZBt87/AzLN+R53R7G31nBfL2aJB3muPYZ1XIxJkW\ncYWtlIi98FxW33c3tR9YZf/AVS5+eg9jX11ALK5Y5+AG660c6EdICdkMulSwGhtxi5g8HUBZIV0X\nHdjnqCt9LRHRNyBkIgicZlEmwFZcidFokhLidAD2JP0AC6Ib30cHYUqIlQ3n2d7I/dr3P0T5j5/s\n+ixmCiEd9vy2YuXwMMVrrYQd5OzbjTpj15trHznM+K8dxeQ8vDXF4oEsI1+wTL3s3zwN2MpA/kQ/\nlYsBy4f6qbbGLYAVBLcJFEo5Lmnn+CaauPdOtAb3+DnCqNLX5ocxhLPzyVvZ34cYH0Gde3VjUDHt\noK/77gZ2Ya+e0Kb9SRtCqf3E6WKRIdRJJ/LpTTfSL54ifPu9uI89izx0AL/o4QIqVcpcX7GpGOr0\nOZyDewnPvYqzdxf67AWGnl5KzLGlNw5ROX2O1ffcQelPv0GY64yFHX/VBDpghn7pNO72Sdztk4SX\nrtw++7hXE6g3Tb4n9cqEob0G/QU49gKvCUOk9qHX1uCV02RfgT0ntxFMVBMx8tf6bfq1SVcb3Cg9\ncqNzie67LWgRAdQxmB2lfqmFRWSxaO2gkxfJZzPWBspmrWi51uC5OEKg5hd4+rBD+fAaolq1OmXP\nnkK0Wuhikdwz51Arq4j77+byu8tM/sJRq7F07XqnYl5bMPu/HmHkd45y+V8fYesXR9AZB/exZ6k8\ndgZRKsKuHZjFJdTxE+w+Dtc+eoQtv3yUde02psf3FgVJwKD4v1IJGCTuu4sr76rw+z/y2+RESGCc\nLq2guKWFlB/KX+DzD5/GE+ABP3Hxe7gm99B3voFxrXZu3Dp+kEYo3fG9tBWURvQwh1K2eEIMSIge\nsqcIiOkASkIghAYtLV7gOUg/xF0OMaUCtH3kSp3qV5fs9q5r/3su4Vg/8z/2MGP/4yo4Do29Q+Sf\nu9RVUCbp3oun2PtzBWZ/8B4WxwsgoDlmWDzUT/+LAWbXHoQjcK4voJeWCYfLFog+cx55/hoqpenm\nfulZcn0PsvajIQUvINQS9U1oCH27hDs2fNslGp0OhGjILLZs1QjHQTTatuRjr1O+7jAGEwSI1Tpy\npY6stRKm0KZMn28mHSodRY0AnN6Sqev33/M2mRx7+mRi4KD7HI0gqTKDgdy8j9NWuPUQt6HIrCmy\nqzqJJrtN61TE4JKR0OqXBEVpBUL7PMKCBcykb0vRy8CWP84sS9ZqeRxpCEcCmgMOOnv7RV03a106\nGKm2uq9M7ZEaH7znOBNOG08466qI9TZHSCSCsswwJDPsckOGhtfsddzAFooBnhgMWjfERWe7jb7v\nVCSL92FSv43OKwJJhSLRvhIRYBSXvffq4NUMmRXL3Mgu2v/5GQsGqSzUt5XQLlQuKry5OrLRtoLs\nrTZyrYVTa9N/zse7lGVhuURoJK7UjJRrTL1rBPorNIck4b4tBINFitd98rOGsOgQFCRCg1dTiVMs\nFJybGmFNdUof345qYx09jFS555jODJ3y5vDaYBBs6iiITCb1o1RlgflFayil00hS/xMHMQaD1uXZ\np9hAsSZJCtyKUzSE53YAL206Uf74teNYKnWrBWt1xGqdzNQqhVdXGTy+wvCzq4w8V2PkuQZDLym8\nuiZ8+712Hw8dojkskL5Gl7KWYhwqMjM1yi/NUf16llo7y9JeF5PxkvSX5Nqk0lgyVxdZuDODu2UC\nd8sEolxC+grTaIIxZKbXQIKeHIn6r62Ddjta7/Mas4Pi77rWKwvg+iVp9YJC+4zeDCVOhtZRdVt2\nDjYOCdC8adtgKrsh3roBeLTut5tNj+nzNNYQk6Fdj9y2nYOcdue10CYRigZ7bo5vt/camuyKJrtk\nyKxKW3I1jJyUaD3VLrT7LLDWLjv4fRlURuI2NG5Toz27jsmGJLMoWQ1yeCLkYGUaRtqo3G2iBqWa\nWJfWo60xHXbGspACUchz/T2Kd06e5oVLWxk43Uas1jcXcU7bGkrZYhpRKmnX8TOZDhgUp6H37lM6\nmwu2p7RIYrZPMr+kHfg08zI+3zToFbMXI80j4TjrBa2j5lSryeteMAhIacH04ZyfQoZQ35IjmBwC\nIBivJNu6dduX9nAB90vPMvoNC3QkjDtsZSAZaruWtg3N3YOJSOprpji9ni25zhuBLOs/M286jCpl\ncBZXk8qOrwlM9IA1ppjbZMPNj/uax7lZcOQ1+5qyi+LgCSRrpV6zTLnsjP1vMi7eEzZNPs24SAMW\nMaNHDVruj5hZsBF+oPqCTaOberPd/9DXp5I1zFu019cZtmPO2buL8OJlWntGuvp0S5tgHQO6m1XW\nvTDEz586efaG5eQ33V+qhRcv4y41ujVnerff7LVOBfYT571ji4kb+FVdYHn6uLE4fnSvTauNafuY\ntRp6YRG9vIJptTBrNXAcnKFB25XjJ5L0nPB+W81JeK4FkIREnLhA/1nN6ocfsuw7OozMbf/maAJO\n7PyTOdznznD9Iz7u+BhqaQk9WLFsvNFhu9833MmWXz5K40MPdvW/C5y/lS1VOORmvpe5HJfeXyH7\n8AIXg2FaxkUKnegEpZuDSf6kMNSNy7J2uaKy5JyQoESnWregs24bOilgGw29dPZNKltkw0JIOqri\nFY+XqKI3MRtKawht5W+hdRRsi1LL4mDLSBU9VEUPlNHVCrpUQLZC8gua5v5RwpEKmUefQc3NrQOD\nkm40Ggy+1ED4EpEPCYd95u7XtihCoGgP5Wkc2moDNV8/TmGqbVmRxUL3qRcKlL96jqnZ/s6+//+n\nIcR6AzsuDZ6m1wj7ubcWIJsd48kUcyRC0kFwY5ZQPDk5GXQpFzE3etDHeHz3GtHpOW2D9DH7ec9v\nYhbIa61/acaQfdF1nHUi2oDOSIwAr6at6GZLJWwSqTVuI0C7kQaBcXCbkuyyRnlOV+RWZQVtF9p9\nGStgmoXcoovbNInBXr4IzWEw5wos7JT0D9aYf3OJwryLUw+ibt181Op1a6mS8kAHDdaAIwj7c9TH\nJdlMyHy7xHPtEfZ684w5ASWZ7dIPitPF4uYISWgUbRPyWHOMhYUS/Z6NXANdwqUiEguPP4tTxeLW\n0Q5KfaY7otRdn8c2TnJOneN1sYwUGCdmlEXjRZgkOp+Ueo5ARKetcdoG7QkGvn4dk8siWpEYu+ch\nWtGBsxlylxXDLwyx6BfxJ1xWWjnmF8o4Ww1X3z9C/7mQpf15Fu7V7P6jNqNPLKAqObI5NyoPrVjZ\n6ZFdMeRnwGnnOTs5zBv7r7AS5snK8Bb7aaaTgy6dxDFKmiARyUuiIvffjfrlZbYVl3jshYOMfN1l\n4LklxNSsLZmcXjhTjCHh2spAolJi5b4JhIby42dQy8tJpaGYnCZi6qrjYHSqalAc1Xd6rlI8PqVA\nOl5UwlnYeUeHyeIoM17i9Gk/sJEVz41YRBK8jGUMtdvWYGq1kJ7XoQRrjXBdvItQv2cLmcWmfaRW\nW+z8T7PopWWMMZbaqpWt4FEuMfrfFuCJUU7/iGbuyDDDiyv4d03irvmYZ162EaUoghhevMz4v7uM\nesOdOIurBGP9yCeOJ9OxKucYf0KxvL9E9bSHmBiF+UWrEXCLW7qqVzI3p4AgkZoHpK+jnHd7k8M8\nUUVM01XWfePjABq0Izqi0hGY1At0J0GEVGBiHRDU+5Cl15RNpu51/Yv3Lzb5HroFrmMfNl6bQoN2\nbbqc2+pUT3RCjfSFnbquStx6xzzRnr0WTnSr/T6B2zTUJzK0qoLyVRv8EMpQmNMJI/bCwiBfrRzg\nLZVTBAccPn/tPvpq0bW6DQFXIUUHfNEqEV1ObJbI4JSDA+iJYbb/meDl37uT3Z4hKDnooT7kSh2a\nrc7cENP1o3Sx5DMBJgjWp6zEjnNSkr3DhBSuG80zqe2ilpSLJuVMy3jNt+munY2jzxTJcYxSiEi/\noTOvdQCOOP0suSbRNQJs1afxMUylZFkcUQQeIZClknXYpINpthDFIs1BSeVywJVHimw7BvIrtjyU\ns2cnwx8/RviOe5m/J8v4F0nEpot/YZmJ7s7tnPkHDvt+9DlcwDlyD1ffUWTnywOYeh3h5JJqabe8\n3WTlqnhOdc9dx6ysYiYnkPmcXaeMvnH6ibFiurKYt8VXXjiZ2nHKxnutSlqvp2ZOr7g2dBgjQCKK\nnstCvY565TQXfvlhdn20Ox0nTonbqF15Z4nJJ0HNzeGMjsDqalIIQgza+x9euIgzOIDJZJLvTLWC\n6ziEESNt8WCWsa9H4sLF4k0FAr5lzdC5R73i4RFrxr4RSXrowj95mOyqof/Y1UTvpPOjb+6eqpNn\nI/H49VW7usZPLxtoIyZcqhpZVxWwyDbqLSAUi+PH5yVc126ilLV1pIOIAkq63UYobTWpcjlEudwV\nrHKGBiGXJfza88hiEbW8gqjVk6Bb+U+fRr3lHl79pQfY+dFjuJNbae4fxfviswx//BjX/uURtn/q\nPKrRYOfPNrn4D3cxfmyC6TfkGDse6cIC09/Rx4S/n7nDku1/TnI+tytdLAkK9OgErUsVA5yRIdCa\n7X+9xtor/fyrv/MBvmv/yzxYvsCkt0AGBUIlaWNxNTGwoEXLuCzoIn848zDPfvkAI9M6ZWN0/N9Y\nJ0goHekAYdchGVX5DnUHMFLG+vEKCHvSJnuDrD3jWqhYNkJa+1fpBDASWpMUhNISE7OlHBB+iD77\nKsXjbeQ9B7vnzxs0cewF+u49wvKdLtUXHXKLhtW9ZcoXauS+doLLP3mY/Lb7GfnKLDxxHANd2nhJ\nlbtGg6Ev7UP/kKAZeLjy5g2dbw9ASNiKIwBxSoz9vHszp61x6wGiraK0quhHEijmbOqYH9o0Mt/v\nRMJ7WTWVErqvgF/NRmV1UyBQeruUwZ+UFt4gTawLBJIiYo30HDP20TcCBXr2t1EaghWcNkm/4kgr\ngFNXhEXH6g4BMtCR8291Zpy2/TyzEqI9SXEWjANh1rI3nMA+VGu7ICwphG9L3ctA4NUNXg3cFqhC\n9PD6DkOlOn35Fqtbx3HaWdxagPDVxulat6Jp3QXkGURnUtCAK/EH8wQlh/JVRetz/bwwUOXr+/ew\na8cs3z3+Im8tnGa7q6jI3Iai0spoFlWbo60J/q+XvpvCyZwdq3HEPgJ+LFsn6kok/ByDPOkx0AUg\nGdPZRyxOG7fYAdskFS52GoWw6y4iUs5PjyNhomo9VgBWKiieX2XtQB9+UVJstRFhhPanwRFjIAjR\ng2WyiyGjT2te3LOFwcEaJpBklwW5Bbttc1hAOSAsuhivxMrOLH6fYOtnr7PyhlHWtkM9kPSdM7gN\nw9mFYXJOyOnFYQ4PX+89s9e/xc93JF6aGBZR612EnesLNH99K0/eNcl7P/QcB988xScvPIj6wgHG\nv7qEuDpjDe64pRlDY0M0t1SojzoMvdTsFkOOcq8T0T5tLFsHEgcsiejHhlA65UMb0KG93Wk2kZAI\nEwkrRqkcnXMLbKpIxrPDKyVWbXwf/AAjWoh8LjG2wplZhJeh+KLA1Gq0vvsBcp97ymp8OA602zil\noq3UEoTotZoFl5ZXqL7yMGvvrTHyeAHny89ZubZoseylk5vnXyEExCUrIBvrD/HUS+SEYO5nHqbx\no3cz+LJPwQ8S8dNb2eJKf13Vq3rmbhFqnEAjAktrLswYwrxDu+oQFITVEQoNbnPz9DEjIMhbcMNI\ngdvQyMCs1yta90MSNlH8vjeg0aVf1zVXdN5vCAZt9Drd0pE8Yyc841p2TzxfKk/gNTprU7w+CmVw\nWobcssarR+PbgcaoFeB2AhNVLQO/ImiMgsobvIZlX8UC19kVw9xhGC40mWpVGOyr8ebKGf5m8k78\nmQJezdxiADrVEnaNtV+EFMlcIxwHZ2wUNdyPOHeZ3EvNznatFloIzH13obJVvNk1xGot+q1JnGC7\nsYDAT5gzcROua50jL9NhJKXHgeMghEC32x1nKuW0JZpC0AHSpROxfGSnYpqmay6N5yOjrA4CUdqr\nkFHqbpyyr1RiGAnHwdm+NdGzWXzbDiqftuygJH3JGBvAgAQQWH7HbkY+ew69vIL/njfi7tqRlMpW\n514F4OpbM8jUFHzxFx8msyyY+NWjzL51Am8h1fVQ4/dpyyJotZCH77gtc87NNqdaxTSbGEiqPclr\n0+hmE2egisjl0EvL6FZ7vUMevZbbt4DjWL2cdEs76XG1uLTey+sJAvWmB23U0uAQoHdOwMIizr7d\nbPnaeqd6o1Qm/933kXn0GYaPh1Z8+urUOkFfMdMBC9TCIgs//DCD/+mYBQtOnCF45714kbM2emwF\nfXgfPPki5sAOuDn/8FvbYr8ldf9MSlQ8SRP1Mox85gR67zbm3j6Jyk0y8EoTGVdSu4l7K8tlO/6i\nMRGnbaV/G6eMCtemsOtI+DlpxmwMOG52/DQYmN7WKIxWnfsnU3aQVuiWivrgJZ/rVgtaLdyd25OK\nYnge6ppNMdSNRjLmheuiVmugFfXxTFKJLrxyFe/KVdzJrazdO8H2P7iQaEut3DPE1o/ZlLCxx+HC\npw+z68PHMW86zOhvHoXREXZ/sk0YXTP11jfiPP6cTUm61S0B5jW91XOT9F/PRUyMEg6VkTUfeeEa\npacXKf0pnHr4Hh59333s/45X+dDoc+zNTJMT659DheCMP8pXlg/w/KMHGX82QLZ1R+83siVEaDp6\nQToOdstO0SXojLW4f8p0B2s3Yo+lAaIYhHOkBYGU6mSBSGnT0tIFBtJ6So5ElXO2CngvM+8GzYlS\nEkd++yi1X3mY1d3WYBt7fAFmFxCjw3h1yKwadF8BedcBrr53gOqZkNKXT6FWV2ncv4Ps31jh+6Gv\nT3PyoTFKr7rU77z5gOm3ScpY1EzKwE6JXWLAbSq8VR/ZDCzFy7EonYgGqs656KyLKudQI30w0GcR\nXhEN4uhP5HIEI2X8vgxogwy1FZ/SJkEEkzK+ERBkByEdAzf1HdBF5UsAH2kFNW9E83stJldyjMiY\nN0IkYtRGCmRbR4a/wKuFOK0Q6Vv9H+nbEn0y1DgNH7cRIgJbTU27AhFidSi0Nc5rk+DsrlHeuoou\nKVv+twTNEUFjXOBXBEHJEGxtk6+0qPkZri/00e4XaEcQFiJq320cUcn90HTAIMDkXNpDFgwS2la3\nKc4qqmdDxv/WZfEvtvJbj76Hj5z6MJ9avYPzYZO2CdAYlNHJX4jiz2sH+cVT78U830d2KeXExWCQ\n6iDZRlpnrgPydLajdxxF36XPIwEfu77r/HUtsMoi4zLQSF9HZaxNUjlPBgbZtp8FBUlu1qaFydAw\n9NQ89JUxjaZNM4hKexqtbTRbCMJKFpWXFF6+zpbPeqys5cmUfFsiuiiYO+zSGtaMDK3irQbIliIs\nCII3rXL2R8Zxm5riVYFXt2lqRgicx/p55msHkAL6vY2plK97i9Oueg2NtCEirNOiZucpPnGWHX9w\nkfM/sZf/8lvfRcv3eP8Pf41LP+ew/M59yL4KcXni+E8WC/ijZVTeYfBEC+/kZYzvI7NZa4xkPEQm\ng/YDK8jXY6jF5Z7TefVdlGkdawzpKO3C7aSdxaeZFoOVwqaNeC7aD9C1Gno1Am+kQOSyVpxTSjsm\nGg1Ms4W7ZQK5fQum2YQtY5Seto6abjTsb4W0r30fE/iJsS1cl8FPHGPiE1lO/eQ4zr7d9nepyEnw\nyH2AFd/Tb3kDPHQo+W7q/ZM0P/iA3dcb76A1rmgNGzKPPkN4qSeCeYtawrxJPZuknk0ZaJy2Rvga\nEVWzkW1FZsWneN2ndD0kt2QjYH6fsKKE7vo1Qbu2pLqRcXUt+wwTpZOiu49vHNAZYUFq1elfGrhK\n58wna0rM+EmB1ZsJTXfO1Wz4lxwztXYFeWlZQIE9bqZur48MTZTiqpNUM68W4ta1ZQ4Zm8pTmEmB\nmQ60BgW17ZrWiELlrGEYZu06VR8XrO6QsKvOeydO8GDfq1wJBvnS8h2Y2Vx0XW8THBQ5XjaaGOnt\nxGCQl0Hu3YnJZRBnLqLX1jDaoNttKzoPFlR5+iXc584QDpYId4xa2riTEm6OtusFg6AzD5jQiifL\nfB4Ad2QIeegApt1Gt1rr5g/7I8viSUBqp+OwJek6Gxnbye9TrA4hk9/YFI+OdlK8rRzoxxQ66Url\nS9awdQYH1h1D5nK2X3u2kVlTqLk5ZD7Hvp85zsLDY8iyraLIQ4dY+/6H2PG5Gv1nOterdAmao/b9\nwH85xp5PziXHcqeW2P1/PEnw0B0s/PDDyKWOZsMtazeJsTj9fehavVO6Omq60bDO5cIiemEROVDF\nHR9NBLvT659TLhOM96PTFbKgE0CJU5s9mwptwjBJr0kceegGBF+vdgOAwrljX8L+Wj00RPavn0bc\nf3fUt1SAhQ4469y5n8zfWjZZ7q+eorGrihwdJrwWBayidSk3131ulSsBzh37ErZR/hULBrlbJjDP\nvmLBoDcdRp6/PesV0A2mxfcozfiTFuxVK6uIl84y+JkXGXv0GjrrMP+jDydrcNI2eMZlsWif24RB\n2JNy35NGasIQDuyy47B37ojnhN59xP5c8j7lnMffpbeLzq9zr70oBatz7iYqwBGzgpzhYYzroM69\niszlCK9cRQ7YNJwYPEuOrRXOHfuofPpJWlXBr1/s6P+EV66S/8tnk9LyYAPzzh37krSwXR8+zuI/\nfpi5w/ZZVDO28tT5X7XfO1+NUvf825Qe39siECSuHMmubehqybJ1PAezZQTnjn24W7cgn36FHT97\njPDHy/zKf/1e/v21R5hWFasbisBHohAs6zx/PPUAX37mToZfCK1vC/YYsT8edFhKRgp01qU9mCPO\nHOryiyIyhEgzmzaaK9LAke5+LWImbxoICxWiHSDaPsIPEKFKthWtNsaVOK9Og1bIXBb90pmudOcN\nm3RgZNCuYcCOz7WQvtWEbW2pMPuh/dTvGEEoyM8FyMsz6JdPUbmouPJ+g9k2AZDo3yEE6tyr7PvI\nUzRHNBOjyzd9a19zxhZC/GchxKwQ4uXUZwNCiL8VQpyN/ldT3/20EOKcEOK0EOLdN90TExuhJgE/\nwBrIblPhrkVlztUGN9dE+YFSoPMuqpBB9eXRgxVEuWgFwzwPUSygh/oIKh46IzsMnZTjbVyJyjqo\nrCQouqxtzbJ4MM/y3hyr27P4fS4qm2IRpAAgS1lLfS5El47QRgBQrI2Qvg7pCmZdoEC8ibRaLMYR\neHXL+kF3ziMW2opBEeNIZKAJ+jxUVtAYkTRGHLQrCPNQ32pQu1oMliPqrLIghnYMflXTmNA0xg25\nOYlpujSXc8ycGcZ9uWiFZvudzsOYWiRu2dgB0CkABToTR8alNZwnjMCgNNIs24bsiqJyKWTsSWh9\nbpTffPzd/OyVD/Boo4951aRtQkIUTeNzIQj49OX7qb0yQHYpAnl0lMahIi2MCPiJ00FU1gImcTWh\n2Onpuk7RfrqaiSeo1LiIzyv6EyoF+qScUaGxoJCvraMVMRTi/eUXFd5cDV3KkpuJdCkK2Y5ToSLd\nGm0QGQ81VkW2FY1hl5O/NEptwqHyWAF1pYDOGpbvCVAH6qiCZubygB2/UpBZMTSX8gwenkWGhuo5\nn+ySrZZUvh4y9HKLsKS5f/Ry1zneqnEjXK/j+KRZNz1gUNKksMb2wiLy5EXG/uI8kx8T/I/fejPG\nCB74F89w4ufHaT2w11bwchxEIY/pK5M9N0P+Cy/gfPUF1PyCjcBjqcq6XkevreEM9CeLhzlyD+6u\nHRZYCXzbJ61sJEs6iQFj++WsA47i6mJpwVf7L3ougtBGNmSnmpHxfQsMtTpATuzA6nrdGkELy6iF\nRdQrp+2hDx0gTjkxgZ/oMqUjqrHx5H3hGfb81JNMv33EVvpItfxZ64Cp1VXkV563c33URo+t0O5z\nWPxHD7N4V4W9//Qb7PzoMWShgMx361vcsrGj6DD5esAU6WtkW0XU5c6DnWjs+ApvLaQwG1CcVnhr\nVnC9XRGEeYGOhN9VBsKCBWycwOA1TSpdLLq2jiDMS5oDLvUxl6X9LtMPSKYfdFi4y2Vti0ur36FX\noqt3bYnfp+fQb0rn3XT+usrBCpuSrF3RMewSsKnDpk2A6/h6RYwhlRGs7LSMKqdtixu0BwT1SY3q\nDzGuwWmIJIIX5iEsG1pDhmA1yxPzu/nS/AF+/sX38+UvHiY/JQkLQI9Y9q0aNyboOCVJSioW0HAm\nrWGnL12zZbOTH9lnOa5EJiIg2ZteRjZ81Eg/ZstIVA7YMmbU3Ny6Y8f7smkrBqdaRZSjGknZDGJq\nIT45OHwgqnqWUuDuifL3gkNdjMV0+fnkHFJAdqwdZExnjooPIwVOuQyVUjLP1P7eQzjPRyk56WsT\nzT3aD3DidfBXAAAgAElEQVT27GDm4X7yj5/g6k8f4dQvHES3WvT94ZN2ft23m9k3luh/dhbnzOWE\nbQR2jLoNgbzrgH1/+hzOHftQC4uWnfjA3fT/28tUz7RQ07Pd/b0VY+cm8MsYDDKblJOPm261UDNz\nmFYLWe3HGRq04I4Qdoz1VfDma+sYsun0lXS6kTM0aMuSR83dtgV3y8RNp7fdsN0gpeNG2zv9fYhm\nh/2TAMBxqfnerIEwRL31jXa8aYV502Gc4WHyT5xK2GVOfx+yZa9JYSoVjMtm8b7wDFNvH+rsMOMh\nstkESBL33w3adIG0t8w+3oi1lU4jSwCXzrXRfoBuNFDXpskcO8nYX18iP9Ni5Qcewtmzs/sapoAX\nXa+DEFa42XUTfTCwIEt8XGd4COFlcPbvQR8/kTA45J37cXbv6N5/b25vyonvOhcisDINAPSCTDqy\nU+IAWSQZENtXpt3GObgXNTeHOnsBZ2gQOTFmf7rY7VjLQiF5BnTWw925neHfPcZP7TjC8NF++wxE\nx5SFArlLy8hCgfyxM5hL1yh/5Sy177Ogz8o+GH90qquvez76DO6uHR3QPfU83lrfKgXkpzSDZD6H\n2LEVVc4m11tEYIxxJaZcQO7chrt1C+bydbb/388x8+92878d+wf85cobWFYFGjrLtKpwrL6Xkxcm\nKFy1Y1FnrPEhQxP5MsoGu9shTsPHu75E5soCmWUfd6GOCBSq4NpqZBsFIxLh6Qgg6mEMxXZax08y\nHQ2hNKgUp0iHyrKAIjuawAZ55GoDE+kEiYlR0Aq1tHmVPlko4O6YBEdy6tcPceZ3HsBdarLlKwHl\nq4rmiEdzSNAYttIbmYWG1bgC+p+eInvdIxzMd+806qu7fZLMjlqUOfAa9zjuz01s80ngPT2ffRT4\nkjFmL/Cl6D1CiDuA7wfujH7zO0JsUrop3VIRzN6IpdtSuDXfOgha2x73osDxg6+NpecrjXYlqpRF\nDVqhJ1PMYzyrAh5HJuPqTERlvBEQlFwaox6rOzKs7PJY3i9YfINm/gHF3IOKqYccZu/zaFc9C8Sk\nGDtdwE66f9BhCqUj+1J0gUW25HwMJrGhESDi0n6OwPE1ypOJoa29iM7We3wpUJH4c5CXVpxUQGNY\nEhYFqmDwMiHLjTz1RhbZlFZ8OhAYaRAjLbQD2UUYOepQOpWhMCXt9aoYWoOykyLX/TB+ktd77ECU\nU5paoKPxYFxJezCHzopuZ0XFwIll1Ti+JrMS0ncxYOxrgtOf2c9PfuXD/OLMO3iqnWNRtVnWIVfC\nPqvYLuL0hw6IqV1BkLfAT3ZJkV0O0S70XfApX/ZpVyRL+ySrO6zQcmYl7FyzVEQ9AYHSDlbqDyG6\n30OXgHV6P1JFoFCgk0pw7X6J27ALTHsoT1DxMGGInEstdvGkZzSmUmTqTRWuf2eRuYcUQ4NrPPC/\nPI/44AL9p+2Yn9i2wK7ReapbV3DWnGhBEKzuFDgrDtVck1e/T5A/Oc3AiSb9Z+rk5nyW92SRVZ9A\nO8y0K+lJ6/UfNwZrGKQECNOpG53torEUpUHFEW3j+5haHXnmMqNfusb472V49LMPsH/nFDt/4TTn\nf2ofZnIUtbCEOn2O8Oo1y5hJldrV7XYSoRX33w2DVcKD2/DffR/u+SnQGnf7JM7gQKdkfFRNpVeA\nOi2oKaRIUjji90m6RrRt2nnr0hMByw5rWS0h4brIUhHnzv3QX0EtLSFcl+Cd96KXVxBTC91sAqM7\n13WTNvzxYwl9GmzJeT2fSsF46BAr+8qYNx0GQB8/QfXEGsN/dY7qp6wGhLNvN7KvAjsne3f/SW7F\nnJNmiNIBoy1DTyUMzWSOTzu90bNqGUMhxemA0rTCbUFQsCyXMBetg4aI8hwFAly7ThkHwoIF9pf3\nOizdCQtv1JiHVtj9wGUefMcrHP7ACbz3zTH/9jYr211UpsMwXbe+9Kw5SbpZ2h9LiUuvO/eN1qto\nPVcZkRiKyuuAUAlolMxjHRApLEiUJwhzNr3Vrwja/XY/YR50XoMRCC1w2iKp1KiyoB1AQ+Wkx/R/\n386pR/fiPl2mMC2obw9p7vDRsQ/U6fMnuQXjhjh9IU5TNcbqi01OYFwHc3U6AuNTDls6RUcpjO+j\nanX0zBycuYhcqqHzHuGucRgbQuSySbRxXRMCsWUsETWNU4pMLmtZNcUi/iP3orOudY5GR9bvopf1\n3AM2J9u5bpczl6SGxZpCabA6Br0iEFv0VcCLWBvDw1TOrCaCnIkwZ2p+k8UCc28eobYdzIEdZNZg\ny+OWJeL09wEw87YRK2yuNLre7Oqr2zJsfazNtUcGOrfq7EUQAnfXDi69v8QLR/ci2+FGaUaf5HUf\nOz3XvMfpsZpKtXX3YLMWV1zSC4sIz8MZHbbpZFKgF5cwqTk9ZgLFTd51oBt0Gh3q+j4c60fNzuOO\nj61LtfqWt43ShAC9eytm1TK5nH276X82GucvnGKzNnXEPjPulgm8i7MQhojJ8eT78I4diCvTuDu3\nM/TXZ5LP5bYtAFQuhlz/50fs8ecXk3Qbp78PefqSfV2tIoJkbfwkt2LO2QC4gf+XuTcPtuS66zw/\n55zMu9/79r2WV682lZYqybKskmxhY8AYMzTQgNsGR0ND44Yhxj0xMxFNT88E0TE4oOmmA+ghejBN\nDzDGbjZjQxsbtcGyLasklUollaqk2lTbq+Xt213zZuY588fJzJv3vleL1KUKfhEv3l3y5nLy5Dm/\n8/19f98fnXuTBoXiz1OizrrRIFxYQp2ZZejb16nfN8L6Jw53xpge4KX68DhybAT//YcS5o/IZhOQ\n2v/uRyECm8Mz59FPPZIw2vTJ04TnL7L+icOdfrcV0yx931NrnZjpBGxiI21OEbLjbOy/xCzCWHPN\n+8hjhEvLmFUL4sUptrEfpRuNRGzcHD9FcPFy4s8tPrnGxZ+expmZRrgZy5y+egPdaDD/8QdY/NhB\nwuUVKudsH931i0c4/zPjdn/G4EzvsH7migUTVKWSCFtH9vvci74Tm7T6dCZmdbkubJ8g6Mtv1ms1\n1l8hZrRnXGS5hDGGwl+8wJ5//ApP/9/v5Rdf/4e80trBclBiPcgzPLZBfTqgPqZoDdrCRiK0ATS/\nkkEtVzHHTqFffYPg0hWCS1cQR161fSjnEOQUYVbhlzOd8wi1BW9igMfYoicitEBPukqZidc9MQgU\nm472E/9F29g1QeQrNxrovqLNVqrXUWOjiJ45ZitrHz7A9Q9Pcv27h8lfdRibXkH/Zo2NaZfy2TVq\nUxJv0LDykA36G1fZ+Xt6B0hJdhUu/3yY9MO0hYMV2p5LtZW9bTXb5DbfbgNjzDeB3oTpHwT+IHr9\nB8APpT7/L8YYzxhzETgP9PAMtzxKZ7FuOq/ddR+n2ka0go5+Ss9AYISw9PnAajUkSGIUCQizCl1w\n0X0FcB1EvYVqBpY14WvCrLK6Kq6kPZDB65c0RyT1KUFrCHQGRFvg9nk4/W3Ezgbe/iZLDykWD2Vo\nDTodJ5uUg5l2mGU3Uwh6XsMmhkdXKsIWAJFNETLorEQ17KLWxKJaPU6BzipMxCKSoUG72LLHbQii\nMd33Fc16hrDmklu09H6nAdllRbhu8+3jajfCgDdgCEqGoD+gMWbwBlwLOqWv+570nQhEVBbYE9HD\nGpZzNCeLBEVbjtgo0VnsCIgZNiJKL4u1lrKrAf3nA8aecfj6Fx7l5479BL+39m7WteL9+Qb/577/\nyq7HZvHeW6U2JaJyyMZWcvMMhetNpK/JLNbpP1PDG7CTbraqyS8a3Jph6V2GlfszVgsk2Ly43HyB\npvsv+ZzufkIH4RbGdFIhA7v4VG1N3/kGmfk6/ngZpxGSf3PZ6sW0/c3RFKVoj5dxG4bcokF4kmKm\nTVs7fMfEeZYf9wnH2gzkmtTaWeqvDSI0zH5XgeZwhoEzmvIlyXytxEP7ZjHlAsIP0a5KBNH1SoYb\nzQrfPrm3oydyL/pN2jmStoT7LYX7hOhEkWJAqO2jmy3CG/Pkjl1g1+du0PitKb7+woN8z/e+jPsf\n1pj/2XdvuagCS803901T++hh5MXrhGfOI557lcKJq5Y2fOmKnWBmplBTE/CeiO4eT8o6Fr1OLSB7\nTztaeHaqpektF3A3q5xjPA+RyxH05RBe2wJUY6O4XztmI81LS51FXioS6ezcjn7fw1Q/dpjVn3yC\n1v/wHsQjD3RSFIgcsMMHefPnZjjz6fvxP/RunO3bWDlQpLZNsrErl9wjcfJ8F+uhtaOf+e/fxen/\nqUz7w491zvcejTn2YJ0/GRhUyzKDZDsC3tKMm9R4L6KIlIxSe516QHbFpzgXUFi0+ep+weoGSd/O\nCUbZz/yiiNirila/nafq0wFiVx1nuEnGCSi5HiOZGu/uu8SPTx/lYwdfovx9c9z4AFSnFHqrNVp6\nWOmZmxINtNT5J9/F6WeG7vS1aJ9GkbCpYlNtmyLWAbs74xWhIczITsqrsQBPAvjkBNqJfISWxF2V\nqHY0T2vILxoyaxFoHkJ+UZNbNmgFzRHD9N55prat4JchyKcCMvei30SAPkolItKyUMDcP4PwA8y1\nOTuupJ/FLaL7SWl336ZBmKs3kCfO46w30aUcwX07EDu3JdvLh+9PnYMhPPsmQVRy25mZtp/fWGD+\nU0+i63Xyl9Zwb6yhxkZZ+8BM128hApSdVOVC7PjRBRSlU8B6xps0WJ3eb/Jfh5hGoyPSOzFkWQTJ\nBXXrqiEkopCnsBgy/ZcNxBsXO9qQfgAjNp2pfDUgt64JLlyyoPUTh5JdDv3uEbQjaExqnF077WH6\nyvjf8yj1AyNM/2WV0Zd08myn7Z75yN0HtZfuOFZ/YmODTUwK2AyY9JhutQhuzKHXNxC5HHJoEJHL\nYnIRGDc0uImFafJWANeZ3gFAeOpM8hpALdfsYn98CBmzPd6u3Y4VtNX3UmGOnUK49jyF14ZoUd+l\nmdRjsWC9XltHD1QI19bADxLgJCg4hLunCC5eJlxaxvt+O+/EulS1SUXpaqRDEzFqnfExxKC9P3NP\nFglXVxOdwXs6V9kDkk4X6+gRii4AqKv6WgyC+G10tYqeW6D47XMMvrzCxg8covqxw5uOkf/iiwQX\nLuFU27aE+/49+O970LbVB95lfYdy3gaZAFVrJ6yjGLzt++zz8OBem8KVrvya1kK6mSVBty2YRb37\nEKIjlq91cnx1YC/Zvz5qWU6lYjewGbWhGh7Ce/dewKbKObt2dlWR2vlvXyYcKttn4QPvStIJh3/n\nCEP/+XnUnl34/Z1nq3DdAloim0WXCoh3P8jCj9mxO9FMS07hHvYdlao4qQ2yr0L44Az+QB7jSLQj\n7foqbtu0zyMEJutiKiXUxBjOxDgIydDvHWH8p5f43c9+hD+Ze4zvqZzkF/d9lQ+96zXW399i4XFD\nu6IQ2qCuL5N5+uWEqbelPX+CzN+8hAgMa3syGNcGpm0wLqWrGZ8jdESjY/Zq0DO2a9MdyIMuYCn5\nPgjsWuDVNzrn2Gwlc+ytLHtlhYnPnmTyq/OIEOav9zNXLbNyuM3Gff0EeVu0aOeXfUZernH5+yss\nHx6zgNiFS4y+1EBKw+KPPJDsUxYKFqw9eQ5xLYd5dgB3487Ymm8Xvh8zxkT8NuaAmP8/BaRrgl6N\nPrutdYAgkFqjGgGq7neXTNWANFtPclpjy7mKSHQZhBBoV9m8RjcGRC01VtX9hAlhpCAoWFTS6xd4\n/ZAIa0b09sBzcLIB2gh0zcUbCvF2BXiDGQZPKnIrYVJlq1c8epNtoSu0ZSWy+BzS28UVhDL2IZS+\nwbgSEZhEdb0LONAgAoPJCKSv0cpBR/pLbgOclkDnNFRdMILcDYeBsyFOU1Mfc/DbAnCQbQgKoF1o\n9xnCvEZ6EpEN8fsktSmFdnMUbq8NfHf7Ttw+urNQ0TmX5mgW7XYG/q1Kw3cqpJCwbGwKVkh+yZBd\n1zRvlPjs6e/k6ccP8IkdL3DFG2JbcY2PTr7ELy/9AwpzikxVW30rX+NXMvgVBxkUkvuls5bF5dYM\nYVYwfFwQ5Ay1SYfCUohqmCTyH19TOhc2tq7+0RuNjRdlUVuQYhvF7eLUfGTdgyDEXQgxGccKlFXr\nncEtJphlMphSwU7qJkv/BY8wn+OKmeBSaYR8f4tMuU3gKwazdc7OjTDzxRpGCfxKBnfDsvoytQKX\nr/VjjKBve5nMqsfK/TlWHvepnBBkVhRvHN/Jni94vNTcLPCYsrs/5iTpYvK2NPtNDogxXWKJOgwR\nzSaltQ32nx/h6LF3sfy9LT72yW/x7A/tpv5fnmD0v812V+2QArVSo39hnXBtHXVgL+bK9STfPDtX\nQ5+/glhYIqjX4fIs4pEHMMdPdfaRRPc6QomGKH3D2Co/8QIySQ2LmUSx0HScbubbqmRWGySKkkSv\n5bHTBJ6HGhiwkbH+vg79PWIxCMdN2jG4PEu4dxStYOk722ybWOHx8bMcXdmJ8/Eywdy81Sl6/gQ7\nn4f5Tz3JjScVE3qMkT8/hd63gzP/tECYOczgfz6SRBCDDz5K5oXTuH/7Ms5PPM7Uf5PkL6YUYLe2\nuz/mRH/xc6q8iIUXMzgjoGRTEQKwTFbTeY2SCG1TzJQncRsKr6JolwV+SSQpoWEGsBUGCPKC5oig\nNRqSHWziOBrfVxgjaGsHR2rKsoUSmprKsb9/gY88dYo/nnoXG98eoHxFWz2f3jmmdw66id8dX19X\nVU4642gy/wkS8W2hjZ2THYHy7Hvpa6vRZ1KMXWyqmFGWURTmLLij2rYNLPgjUHVJ8Tr0n/PQWUmY\nkWgHRCBpjgnCDDRGJa1hQ3vUJ9PvUXTb1EwWb0jb5763al+3vSNjjokq8amBAZgYQTTa6LkFG329\nXfWqmOmXZtmE2gK3b15G5nOED+6ybGgsu2PlYB/9r3TvRhYKiF3b0ZfseCTKJSY/d4YQLKN4qEzj\noVHKf2wvc9PzLrvZP53zExHTMo0wdl6LFDNqS4uZZCnRZrlSxaQrIqWPawxq2wTe9BCZ1TbujVWC\nRoPxr80jgjARpHYmxpGzVdYe6JTjTZfVFo5jdSpr2aTtGB1i4V0ZMDD15aOY3Ye7galb2zvj5/SY\nGh4imF/oAIemx9G5HaASma5WbVpdpQLjI4gzlzFA7ak9FL96ItlO5nLoo6/ZBXKc/pjNYmp2sSvc\nDOG5C/a11laUWiqc0eEuVuiWaUx3Yr2/2wowdR2MFyaLWFNvoHv1tNIC7JEFUeaFrtcJxoo4Jw3h\nuQtWW+vEaTKrLaq7y5RetNsVLm1AJAYLMHK8xsr9pa59Ln54hoHft1WntvRBN9tdH3N6TVVK3fpi\nSTpMOmiUAmljza84xbXtIxoN+hZXCXeNs/qTT1C64eM+/VLXcYQB79AuMi+cxjlzHjUygjp5mRDQ\nJyxTy//uR3G/dowQ24/CtXWWPvkEw585gjl+CvPEIZylKuGbl7E02S3ufXyOW/ho6c8T8XNjNm8T\nBfqSinNzS4nwvlnf6DCPTJzimyVcWiazPIoGVn7kIJmqpnDxclK5TrdaqFqLEFDPvMyFf/MEU88E\nZL9y1PqP1+cJ9g2TjUTvx//ji/jvO4h77Bz65GmQirHFSQKAwwdxLs3DDW5ld7/vxD5gdO9lX5lw\nZpIwH80vOpLA2IqZKERXRo/JuOA6OLltmGqNcGmZbb/yHOFf3cfP/fxPU5raoN12+PC+1/nmtRm8\nSj99r9Y6+l13YM7fHWP470Devw9/qGilZmKGUMRy6uozaUv3+d7r6SlQZcIoCBtv53frO4UbGzbY\n0745W15ks+j+Iub8RdjYYPoPm7Rnxli9r5/CsKA2RUIQyb25QHB5lh1Hu/chn30F531P0n/BspHU\nwABL/+A+ho6vIq8tsO1vfTJ/8xKz5s6Epf+7+ZzGGCPEJijjtiaE+CTwSYCcU+k410QLVy/ogEES\nblphKfqfRn2FMbYMnLHlro0UGCXR2ZgiaWloOqNQbU1QUHh9kiBvHU6nZZ3YMAcI0DmDaSlkoU3o\nObgrCp0xZMstPFezLHP0n3YozgeAsKdjOiCPSBbbWy8ONqUUiJsARCb6TgmUF5UyTjleaWaQCDSi\n5WPykXh2KySsuLgNbdvCETgRI0N4lhGkcxrZBqdh1d3jKhxu1Qp7+kVB7YEQHEPprItbNaxlXUxO\n0xizDrlbd29947tu393pOyL1kAd9eZpjGbQjUpVriNToAROp1vfqIcR4THTvRFsjfSi2Nbk1Sf3q\nOL++8wdpT7bZv3OOD0yc57cmqxS/UsZpBjjrLXTGQbY1xdmGRc0dSfFai6DooELQfYLGuKA1rBk5\nBq0hyeJBh7GXfCvIttXiJA1Y6dTreA4PdacaXsSKi7eV6Xx5Y2z+e9vHlPKIWhPdl0etRBNgkqJg\nLGhQLhIOFqlvyzP63DKi3mRiPs/gG2VUM6AxWeTa9wcUKi3yyudDu89wpnA/mTPXkcMDmKxCZx0y\naz5j38qxMTOEfwiyqy7lqwFu3cGrgM4aBk4JnPXb0ys7TXIX+g0dpsptwaDunWx2oOKhJ9RQq8OF\nJkOLKwycGuFL3/kUfd89R+aj87zxHWMMf307w8/NgxOB1NcXMc1WVNa2bkvCOw7u0y8lQ54aHsKp\nlAluzFkwqKfv2kh5VPFHYO9f0BkTO5H5qH9EWkPCtb9LtEyEtGAzUdUEACltpEOqqHysRs7sQJ+7\nGB/cOkmplDQAZ3wMdW2D3PFl+s9McuOpCZ49MYjzt8fsbstl/Ad3kjmfI7h2nbHfei7RLAo9D/nG\nRUoXDrH+oRrFG4+RW2oxd7hM+/0bqEcPkV80jHzjOuHsNcK3UJL1rs9XxrJdRBCBQQLi+lUdHbyO\niPOW+zYGg9XYEW2Nqw3S07gNRbssI3DEiv8bSaTbJvD7DMY1ePUMHpAttilm25QcCyqoiCc82xpg\nvlXmewdf48dmjvMnPEJVDFC5pFOgcXwybGKYbmrDKEUsPueuSmXRXCwMUfqznUdMDDwJuoT37e8i\n8FoIjCvRGYlqW/BceQbVsscTAZiMjZgZRxDm7Q6dZmiZ3NIyfbMbGtW27KnqrhAjDIXLLlx2eX0i\njzPShGGPZta9HSCUOsW702+MseOrLJcJ7tuBs1yDuUVMqDtVv7oP3PW8x0wcm7oaMW9CEoAo3Kih\nXngd7bdxtk2x8D078Eubr1EODmCuzaHrdZxtUxbUrtZof/gx8s+doX14Hyv3Oex82Vb4az+829L3\nv3W85wItAyhhIjpuN8MpLQwbgdWdMaMn2p9e4EXmjI8RXL2GGhrsAomAhOHQ2DeCX1L0PXe5E5Wd\nXyLY2MDZNsXSB3cgfUPl88+T3f4Yau9MAlqoB/ZbodBaA144ycyl0USjIXz9LFMRS0kWi/Qfm+ft\nqOLclb4jipu+VwMDVrsnZn30gkFvw8KNDWQYJgvj2rgiH4HxNi3NMhVkX4Xg2nVkuYyuVgnjAgIp\n3akrHxlg26uADmkc2k4mDQjdbDx8q0BRb9+BBFQNxwfg2nUSRm3aUoxa+eB9eONFtn+6Iwacu7hM\n/IuN+/opnQC1Wie7kmJLzd6w6TA5W1LeHH2NAWFZvHF/HfhDix7524YYf86m/Ih09dFbXtrd9XPA\nzrvh2vrW4MitNJ/SzCodYtqacHkFWa0yMttP/eHtNH74cQo3mvDCa7bNj76GIxVah1YIXoeEyytd\nVeky33gNgwWGcq/NQhAw/Jkj6Pc/gvzmK4gjr9L88GPk55c2sWQ2ATs3b5Ct+0CsHZTqN+rAXsI3\nzhHu3w7Pn7DnGvvgUtjxS4ed9NVX38A8eYj+PzyCeeJQknY2+6+eZNdnZzGLK4ne1sSRkNzXXkXE\ngFGjQfHlK8z+xG4mfv2SFWd/5mXMIw+w/O4K/ec8eOZlnIlxghdPoXNZ7tTuat8JQ4wxyFKR9oM7\nrb5PSg/QSAFO3KejAI8kWlRFY7ySNt0KbPWuShknn8esbxCePM3eX7CMw+qhcc59aoRtfeus1foI\nYz/zDm39E4fp++zzhK+fpf0D78EbdCmdCxCtNgad+Bmphor6dDRPhT1gaNg9T5lYXzUIrK8cbZOI\n+KfGoa4qjr3t7DiI+2bQLyUSUHY8vXadoW/B6k89QWNcIH1o39fi2g9uZ+I/LSf9TlUqNg0xCJj6\n1ecs+/7+fYSvn2XgD44ka4f8keAtzVlvFxCaF0JMGGNuCCEmgFhl7xqQFnXYFn22yYwxnwE+A9CX\nGzdxVNGt+om2y20t7Tz00AAtm8i+jyOsRnX0iXRGIdshQSmTiPpq1zKLEi0faQiKGpMLES2FUpp8\npcnauEJlQ/qLTZZDiT/VYk3kcJuKTDXc5OwCm8GgGAjqBYMii3P+upgfEDnvAtUK0W5UMSxkS1RT\nl3PIpg/FDEFe2cpkgWXLaBfWdisLesxKwhz4FYFfNjRHHLSygJhfssd0mlF7ClBrDpl1YwVPHYPI\nhrRHBDJ0CHK3nezegb5jIDToUoag6BBEIqZJNZ6uhk12Yv8JknSErvaOFjCqbRHwvoamdF3SGM1w\n+eJO/oX7Q4RHBiheWI72IxBhiKpF4IIrkV6AX7FphWD3ldmwwrEIQ5iF9qBmfdpl6I1WlL7YWWje\n1Ex3v4i1iJLfGZIc2XhkEGGIzjiopodWAllroDIuou3bhRjYQTsa6ERggdTKG2tJHq6oNsgGIXMf\nHKX2gTqHJua5sDrIs7MzeJ7LwO4cwy/VEOUiqCwmL5DtkMGXlyneqOBXFE4tJHdtg1wuQ31XiaCo\nbOqcH3YP1Jvtrvabihw0t4xU37Tt005IinWjDRB2UifWN5DNFjuuLxM+M8z63hK5GUnzh9a43jdO\n38WA4rfOJJE6oRRhtbrl+QjHoXVgio3v28Xw544jR4ZtCeRockgWYLGmRqqEqj3Nnqpk0fEIw4QO\nHANAcdl7lLCv223U8BB6vWqpz2ttZMtD9lWsgKnndRyrlAVz8yhjMPUG4uR5pt7Md4nr6WqV1lCG\nC9LHlLkAACAASURBVD+4gz3/i40AmSCw/Q8bpZ38tedsdNYNkZduMHZ0Bf5D6hh3es/u+pgzEQ0e\n0bwibTW5TgJ2z5gNm8bmBKyOh5sIFAKD8A0qNMjQ4DQt0B7mBI2RSP9NxWALiFBgfInMB1SKLYbz\ndSZy6yg0rgiZclZplx125lYYVVWuqwEOjt7gpXc7NGplCku6o2UWn3oawIrGwS1F743ped8ZgyxD\nyAJYsV6fCO15x5HytO6c0Brt2mu1mmyxqCRkqiaqchm9XxOolq16GRQErRGrNRG6lhVkhET5hswa\naEfh1qF4Q+MXBK1hQbnYIu8GLGZKt6v0edfnKmEUctc08x8YZfQPjxO2Wl0CvVta2sfRoc2gcJwu\nzTCjTSJYnTz7rkPfRY92X8fNU/19kUZYy7ISh4do3jeO+7VjNr0l0IQbG+TPzDPujySMxtaQi9PQ\nxEuSBEBOswliUDhK8TCxOGeckhKfW9rh3uo6IQEa9OgAzM1bTaEYEEqBZMJxEaGhNSgppij6Jgxx\nZqaZ+80M3rOCieesw55/5nXCmAUAmIuzyEoZlEIWCgTXrtty03TSNMSjD7D4SIW+C22c83e8QLm7\nfccZNvFcrkZGEKWCZT/FQYm7IeAcmU61D5As4JPFSEpE2jSbXdukwcDRlzt9urrdZehODn67+fhW\nzLIe8/tyOIDIZDZvnzK5ViU3v9y1cIpTP/T7H6H/uVl0sYhZWcW9cCnpe3H/UAMDqHKZcHER8fIb\nyOgZszsIUfv3wKmLhPftjA54D/0cMZg0jCyXWf/IA/R/7Ww3MNM7f29V7r2z8xRwG6LbYJZWyH99\nDTnQT/Ohbaz9s8OM/D9HOtcfgWPO9m2ImG0D1H/0cYp/9gLy4H1kn3sDM7OD5vYy2a+skDlzHbZN\nEcxeJfPVo2z8yOMU//wFu887SRvb6jri805rsqW+k9ks5nJUHW5ujQCQQ4OE8wsJ68cyoR3aH3wY\n9+mXmPufn2T8N56zFSJPXkBkM4RLy2z/9HMEWA0zMT6COXma/Bdf5Py/O8y+31nAafvopRWChSWm\n/mYAuWsn4fU5jOchr9xgbK1GcPEy+qlHCL51HGfbFOHi0q2v9x3oO7E/qMZGWD+8zfrqGpvS7acD\nzqmgUi9Q1wuyCOsXCEchBvpwCnn0RpXg0hXyl67Q0u8hyAnKf5omNd2Z9f/p8cT1yi57hDmHoD+P\ne8Pr+Bs6SkGM/7bqRzEYBBitk0A5YK9HdwBGE4NGxtDFPLzFmGyCALVWw2Szm1jBl//1k3jb29CS\nFC87DH8lS37JRw70d4FMsq+SBEnM8VOWZZcCW9XQoC0a0Quk3sLebl3IvwR+Mnr9k8CXUp9/TAiR\nFULsAvYCL95+d1aENjfXQLUCgqKLcW5xajEQtBVmFDsKWkdVXkwnhSbQSUl24yrCgotxRCKgaXUL\nLFiiM4ARmIxBZkJMIUBKg+uEDAxXGRncIOcEZDIBuumgM4aNaevQytQCfUuMNlE8N0n6QJr10VWp\nJX4dOdVaWVaQESC9TocT6TSEqB2MI0FrjCDRZ4ktUzNkNgyl61bbJr9gcOqCoKJZfNRQnRbUJyEo\nGIKioTEuqE0HiEJAOOjTmLBlf5EgVjMIXxDkbVT3NnaX+w4QGtYf7OfNT0muvzcWTyUB/7o0niQJ\njTG9GEjrV9kNSdpehjYdxK0HFBZC+t7UnHh2Lzv+chH8AF3IgBK0JkpIz8dkFWt7C3jDOZtj69oo\nuQwM+SXNwGmbSuLWDLItaPdZh1t5Ydc9jMvY2z5sEvpgkl4ZAWEW9LSDlIiYQXH6oNAaEYY2ultt\nYBwFUmL6yohqA1NvWtRbqgTBJ5vF2znIyoECQV8Ollc7ebOOYn2/YdfICrtLixwcvUH7XIXhL+dY\n3wtz/+QQ3o4Bgv4cfsVlfV8RoxRutY27EeLWfHQhg8kqVvcqtAvZDY3Jureb4O/6mHPbqFI65zgt\nUBh/ZkynYkU0WSRizZEDrVfXEK9fYODLr7PrD69Q+XyF0ZfqFP7ulF2QRfpC4cYGIpNBHjpgdRui\nnHQ1NEgwN0/muVOM/u1VG4lsNKh9+KHOufSAVJsAIik6eeBpAWgh7aQXC2UHQcIWMqFNwRUZK9An\nlEzKxcfbJRYL30btlYgzzkdpMEHQBQbJQgFnfIzKC7PMfOHWVFZ94jTm2KlN7IC3aHd/zMEGGBoj\nDs1hlzArU4LNMd2QTfpgXULwsSXMP9MZdwwIX6O80FbZrFv2ZjrFywYvDDiGTC6gnPUoOG1GM1Um\nMuuMqA36ZZOD2VneX3oDKTQF2WY4W+PBiRus3x/i58UmsKcX6Om+aDo6dTr9GZ1+qDv6bEBUMCEC\nh8J4brN6djGryAhhwfxCpA+jre4PEWCPAbcBbt1qfeQXDPkFgV+Glf0OG9sdGqOW6dsYE6ztkaw9\nqGlu96nOhCw/KFh6PGD64HXGSjXyrs9wX+12ldTuer8R+2e4+OkCawdMElW8Y4ZiChi6qThzciCR\n9MPWgG1TNTaKKBZBCPwDVvNFVMqEuWhMyGXJzsWMUUP2jWt2HBofo+/FaxQurSUaG10Lqqjq4SYH\nOCWg3zmvWzR4KiCgq1WbUvfmrGVTxdoMPSWo1fZJFh/J4g10fivcDIQhc98zwT/b8yw7/vxGUrUm\nBjuWPvmE3bZcwgz14+8cof5+W2HM1BqwfQKRzdL4h48jzl6htl3gbtwmna/b7m7fiZpQFousfO/u\nJF3rbQFBt9EVStvaQzpZYMh9Vk/KOzjd2VUEtohs1qaOpRY3mb95KblfA2danb7zVi1h4t7Beae2\nyZ2x2TO30vKQhYIFtdLPTnS8+U89SebyMsG165j7ZxKQR+2e7uhMFQqEq6u0H7DrbRMElgFSreLs\ntJ+Jlgf5HM61KLX51gzMuz7mxLp9ulql7/Q6IhKDTvyErZ7bXhZF+h70+ht+22pRzS+Se/UKQ2/Y\ncc2ZmkSNjVowaHqHLd2+exqRzeLs3E7xzyzAI1eq1lc6eZr8N19HDQ1iWi3a0yPRBSjKXz2JPHhf\nJFRvukHytKXfxwL+6etI/4/9Ohlpn7puwhQJLl3BmZm2ovtSoev1ZF9xVTnhOEz90TlbRSsMrehz\nXK3Kzdj0ydfPIq7e4Oq/tGLju/+350EIdH8pqUJ15QcGCYcrqKkJe42uy+wP24wu+a3jVsS92ezS\nX7yJ3fW+YzwPNTnG2V8bYe3HazSHVBKMSoofxdsK7NpC2TXGpraOwbj4vRB2u1wWOTJkUwqHh8hf\nr1P60xfu5PS2PN/Y1KvnyV5ZsRlChVyn4FJ8bkFo/6K1E0Fo739USc0Y0wmQJoUPTMKYSq4hFViW\n+dwdCek7O7fj7RrZBAapA3vR+2uoXMD03nkKc4a+zz6P9DWX/vE0+r0HEY89hN6/k/qTe2wxmvT1\na4MaGkQNDBDs295Jf75Du+3WQojPAx8AhoUQV4FfAn4V+BMhxM8Al4GPAhhjTgkh/gR4HRvA/QVj\n7oDHKiC70kbWW+hKlMgrJcSYfdphTb+OU8kiJtAm4bF498YkoJ1VLQ8Iiy5oEQk+20ooWomEPRNm\nDWHOgLI3Ol/2cFWIMQJHaUoZ68QNFRtoLalToDUCrYVOFae0g7xJUDqd/gOJo72l5kS0LxFAog0v\nBNIPUJ6Mrj+9XYodkLHl6kxc9lcInJbGq0ichgUppLJlV0UImRWJNxrijWhEIHBqEmGgvavFge1z\n+FqhjeBqqZ+p/irXFvoR9SzGtek/YSblmN2LvgNU9/dR+eQsn5p6jn/Z+BG44HYWZDH7J/U+Ob8U\nYBcLctvPN0/YcRqFX7TtUXkTS0PMZRDtANHwkEEBXcggQsPAmTpGSfyyS2EhIMwKgpzVuNDKisMK\nYyhdseLla3sUQy2bfpJOF+ztH0nVoZ7zSlhBUR+IQVBMxL4JQoTnW5G/q4uYcjFiEG3dxM6GR2VW\n0hrJUjpjIvDDZ/3BQfYemmVfZYHnFnaxuFJB5w3NEUlQDqk+6bH2qMLNabQO2D66wNl3TzDwmqA5\nKnBrWZrvq1H4RomgAN5oQOmqrSiQiL3di35jDNzkUUu+73qtO1VygLgM9E0tjpZHlQnk+CjhYIm1\n3ZK+lzfsfRgYsJXKHrwPffK01QE5dxkyrnWQLl2x9y+btalbl2ftvv2AytFrmIjeHJ+jcBTQLR5t\ntIk0gaJJTUiSNA/HwZjOWBSzm9KglpAS09I2Qr9eRe2dQV+6aplNPUCZzLj4h+9ndWeWwRMbVgOg\nd8IbG+Xiz+8huwyFBU3lz19CTU3eUZ64eeIQ4sirmPc+jF92yXz16KZt7tWYY5SgNaAIcyDb2DQn\nL/X89QI+PWP+ppTgaJtkDtDGPg7aoPMOYV4m/dVIW00rrvrl5n1KeQ9XhvRnmrgiZMTZoCJbhAhy\nIqCNpBrm2eEuo/MChaZ2f5arszvJ1OmAUGmG5E0vns1AUY8Jbc9dhlEQI2IIyZ6yz71FEKRvRaWT\n8ToEnQPjgGjb77WKK46B9Gyly3YfUSEEgc6Cv7fJpx7+Oq4IWfArhEZSVi1cEfLi+jSNIENWBQkg\ndC/6jc45nP/fcwwVa/R/7hZNeKu0mSQ6nmpH0XmfaPQA7e0DZM/OMfD1qPR1LoteWbNVUGrt5Pi5\nvz5mmUOuA5ev2YWsNpDNIHNDGNchPHcBZ3wMg13oJc9rehzdiop/O9B90zibaq+ohLoaGEht041e\nmo0qO/70KiafTRgesQjyzp84z6+f+G52L11OmD0xaKEdgXj3g2ghqE4X6P/WJdoDkUjy4iKNp2Yo\nXXKoTSgK1Sojr1iW4lY3+V70HaMt1Xnupw4x8cwyergPrvYE+e803epOWbHveYjpv0iVul63qXTZ\n+VqkNaUS1pBQqptZFLEz1O6dhG9etqmGD+xHKfXWwX3TPWZsZTHLTihlq6ZGbK+EJXKLtgmXV9Dv\nexj5bAzY2NtR26GTysTy4nXCWDB4aYX2QzPIi5eRA1aTSi3WO3pC0SKsPT2MvDxLcHkWtXcGs9it\ndXev5ird6szBRkpMXwluqAQwSVKpIq2gdBpVZydbgbupNo1YgOHiMnJ+AVWxKYVJpbDINw3PnLe7\nyWZsyuPqKnppGVm0KZG6XrfLunod+a3jSXqnrtcRGccCcGnGw1bnk04f1Dc53/i3Juz4ML6PbrWs\nvlo2S3DhUgfkFJ0KtCKTQW2boHbfIPkvvQiHD8LVa6iRke5UxD07bfrZ2jrbfqWTjhiefRPoCGhv\n+5XnEAfvI7hwiY0fP0zlc6eZ+Pfz+B96t5UOOHka+fD96BNnUpdyb/qOGh7ijX89yv/68NP8ztn3\nWQaujJjMkS6g7TcdsC2R8IjbXAl7/2OyRtg9hsfAiigX0YUc5tgp7obpeh2n3kQ1CzR2VChcWO0A\n6UJ0fLKEYGJBnzhFcBMrCDrv422jYGr6mHdiweVZ3HIRIiZsbBc+PszU0HUuvzHO2rNT6AFY+SdP\nULnSJswbrn0gT1Aw+IMBYMgslth9ZRQhBGaon+q+fnIrbeQ3jmPUTpsB8hbstoCQMebjN/nqu26y\n/aeBT7+ls/B9nKWaBTmqLUx/Fu1IVPvOJjgRRk60vAlqDEknNY7EHy6glSSoqKQKikU3QSvQGQu+\nGAkyH6CcECmNXTxhkMIQaEnTd8k5AWEoyfa18MjRHHXJrSqcRortsVW62KYTZEswKKkWFV+a7jx4\nxpEW/JGi85CFFgAw0pag9wfyOOse3qgF2oKcJLsW0hqQEKXKeX2W1VSaNeiMTafDQGZdkFmPSqr3\nufRnmqx4BfoyHnpQMJSrk5/0eVMNYxoORklMaoF4L/pOmHcp/cJVfnv3HzOsFF88cIHzz+9PFjUm\nBssippBIRaU3Rebj19ABVCAa0Ozr0pUmqulbACOwomKi2QZjcKptwryLX3LIrLct+0yAcTopbDIA\nryLQGSgsGOrjgtwiBEVoDSoqF9qEOdXNGIssfe/tudIFBHVSxlJVxqLrFKHGtNsI37fsj3rTPieO\nA/GgYbT9zgW1UiO33rB6Q6VitK1i8V2C9w/M8leXHkR+s5+ihoFzPvUxgWwJMpkAHxjqr7HRyHH5\n9Qlyi7Z/SR9aw1B+umjfXwe37tCKueTxJH4vxpw7tZSuxeaS9DEzpsPESev1CNWJnAcXLuF4k+z8\nT/Nd1bIA1FznvW40oNH1NcbzMHTSKIwxhFEqhzM+loh1CiU7EY0oDUxggR0rDEgyoZkg6AK3kvL1\nieC0fW2aTRDSOmnNFrJaQ2Qi8ejYeYyeed1qoZ55mQEgfN/Dm+inMpdj9btm6DuvqU9KqjskuQ8+\nTP7UdZu7f/q8jQ5uG+PCj/Yx8oqm+GcvYN77MO7lRcx6E0ZGMMfPovbsuIms3D3oOwK8/ljA2IIz\nYU7i1iN/NAZUbjZ1mWg832K8T4tRxyLLQV7iF0RnHHMESDCOAWXI5ds4KkQKw7bsKpPuKv2qQcu4\ntFHkhE9DZ1kOS4w7a/jGYcBtcGjgGmd2TZFfVOTWdOd8e4OuXUygnosynXEn1i5LWIwByLYBlyR9\nN0lBi1m0gdXzSzOChTGErkyqm4VZEbFcDcoDbwy0A9l1cBoGnRWgrbZQZsNqsbWmHFwRsjuzQFF6\nbHeX6ZdNqjqHK0LebI1wvdlhLNyTuWpEky945H+zH7Uwf/OUx1v5PDeLuMYmJJjAgijfON51DF0u\noi/P2ui11sjhIVrTQzgXLkEEOstK2Yp/rqwRrqxiDh9MQLzl79pF3x89j5yestosyXnornOJF+Vb\nagXpnve3sKTCked1FmbGdC1iRT6PKeRgfin5XBQL+DPj/Kvtn+FnP//PuwR0jefR/vBjZNc1Yc7B\nnVunkHMI5ubJfrmjcSO0QTdbjP62XchVXpyFfH5LYOFezVf1H32ciafnYH6J6ocOUOwRCr9joOdm\nlro2tW834YuvkZ+aTPpQOG8zUMLXz6L6+9DNlhVvhs4iCrr0npYPj9F/7oId30/ZBa149IG3tui7\ng+tK9LeUglR6W2/Aqzc9UziOZa88292YtY8eZuQYtjoxwMggLC2jn3oEnn0Fp+rZ+UdKmNmBuXwt\nWdgFl64kWiaxhecuWFZRui/eo36j+ioJQ9ccP0X7A+/CveCiPd3t00SBry5LjS/Jc53ePqXDI3M5\n5PAQ1UenyH/pxURU1xkfI7h2IwGAANqTfbhXIkAzLtV9/z6kqxCX7djiTO8gOHcBZ+d2gsuzmJdO\noh97CI6+1n1uvcyfdH+J/ZP0GNU7hsZ9JPKBdKOBjFPo45R4SObFcG0NVlcpLQzAgb2Ez5+w7Mtc\nNgnayb4yrKzD4YPIWtuCOgfvQ584bauR3Zi3Wk7xuKZBP/UIlc89D4cPIo6fIXf8MkTPUnswT3Zk\nyEpFc+/6zpnf2MGvvufPGHfW+b6db/BfB56kuGDbwhbtkUg0xkSBxHTlLnvgzSlj6dcxy8YPCK5e\ns+P77VKob2Pp3xutMcdO4T71CCbnWq24rcBhrS3oDt3r81gzKNkuAoxiAOm/w/TJ05vP/UCNS+fH\nOPBLZxHFgm0TQD58P9nVLLZyq8APBaNHFINfOJGkQKvBPgp/0WFWyWdfwezZFWV/3Nk5vd2Usbtq\nJtS20orXRrR9S4VPMQZuar1sIej+jRBdpX+NlHYADw2qFaCaoRXqVDZFzC+CN4jVJigZxKCHmwlQ\nyiCEYX22j3agcKSmHSpCLal6GVrVLI6jyfa1aExomkO3OPd0itimhrB/Ig1UxAyXOL0sTnsLdKfS\ni99zt6Nja9dWUWkP5aw+Q6Tvo11b5UV5hiBnFx5Bwf5GeZBdEWRXBZk1Q+VSQGbDnk9WBfRnm2gj\nmCkv0+e2GMnXyOV82/7SRJVw7p0FQyG/tftPGFYKz2hmCkuEOZH0hyQCvFV7x0yIKLUsqZgTdgYt\nYUiEu/2yS3MiZ0W9lzasMHA2orC6DtILMEoQFCXeUJbQlehIELY1KGkOWYFYGWIHVEfgDRmcpsFp\nwvoeMG7ENIgWX0nKWqiTc0trdaSvw16M6WHU6a7BL8l79TyM1040W3CcDkCWcdF9RfRACbnRwGTt\nTdV9BTL7NrjSHEQ8249bNYwfqZK/XkcGgBF4syWMESyuVDDH+9jx1ZDsGjTGBKXrmtIVYwVysyQp\ne1qB35e9XW79O2LCzVgGzq22uRkFNAaDYjZOimFjBRu7J4zg2vUto6OxHoMaGrzleci+Cu0PP4bI\nuIhHH8CZGEePDiQlf7XnbQabpYwqhRm60jXSFUWg+3yjyEf8Gh2JjOoQ3WzahWNEXxaOYx2qOK+5\nXEYNDCCffcVejxCokRHO//vDnP7tB6l87nlK19pMPlNl8t8dwX36JcLxAebeP8zSzx7mxkf3c+an\ny5QvWyBCFouIb79C/eAk5vI1wsVFy546sXkyvVdmlCR0Bco3SaUu7YjulLF42zgS1Wt3EM03QqAz\nKhqvDY5n06iMhCBnCAcC8oNNJisbbC+vcaAyx87sEmXVpK6zPL3xILP+EA2dxRUBQ6pGaCQNnaEg\n2+zLzfHYg29S2y5selZyYFJzEcmc1AUGxZe6FRikU+NWYFCeTXmWYZxKZjaNx0Za0Fy7lqkbRyK1\nC37ZHs+tW901owBp5y/p2xQy49jXhUVNblmj1hxeqe5AonlX7gqTqorCkBM+IYJ6kCWn/E3g1ztp\nGRUw+ht5CmcWMKvrt//BVnarRVDESpTFInrPtq5S4ObJQ9T3VICI1t7y0bsmySxE1aHyOUw+gx7u\nY/GpMTtOGYN7fQVz9LUuJqDwfMQjDyTHTao1RmNFZ+xI03ETKtadX6sx9loaDUw7WiBI1RmPhUD3\nlRCNltVFikSmgxtz1Lbn+L2l72DkPx7p3ud7HqI24VC+3EI++wrNPcNkzndK96x/4jDOzDT5L74I\nOsSZGEeNjWIaTZY+sB15m7ninTKRz9F3ZBZ95Rqm3Ub3iqHfSbveitEKXePR+qFhgIQJdu1fPNkB\nA4xB79nezf6M7nn1Hx3GNDtpwIMn1gBoj9k0YlkuE5TfgTaMzz2dytzLWANEjzCvMQa9sNRhskQ2\n/zgMfv0i5qWTNu0pYuI2xjM40zvQr7yOOrCX2sOT6JOnbYrjyAjy0AEABr50ypZ+jk2qRKz8Xvs5\n6XRtAHelYQN/SZVV0flLgyWxbRUQi7/vCQgFV68hNJYRFYbIfTPoegPhOlajEgt8qGdeRrdaiGwW\nWSlb5s/rZ+HCVZgat4ct2PYLR/ut8D3QmMxbNlEqUHf7dWK6T6R8oJ7fmiBIMZqi6xIR0BH7ODpE\nlko4E+O2XSPmSzi/gL+to5IV7N+OyOcQx04jbizYcutnLyEfvt9qA8Xpwp6Hun+fZYgrgTM1Cc+f\nsCzG1VWr9fTYQzY4VLsz9slds2KeX3nPF8gJn7WwwEq7aAkD6YrIYNeoOtVvoj8Tp4Qpmdyv3qA2\nWlvWjqMQjz6A2rc7AXPU8B2pjtm05qnJ5H0aTIpBbHd+w447cYpXVEXXRCXjTRTcJxUktVkAYpPU\nghCiW3rhduNqj4ls1rLDevqtMzVJeL7ExDMShvoTMEgND+EN5xk61aZ4Q+NWYcdXoP//O2KZdBG7\nLowKIKTN5LLIYuGO/Zy/F4AQYDtFhCQKbbrP7DZnaSn28ZutnWyTcqRkpCOEjDquFElVMb+sMaUA\n3e+TyQURKwiMsQwIr+0QaGnLzxsIQgVtidaCIFCgDF6/uBMtnW6nOAUAdJ94GpwwHW0hSNgfXdtG\n1xo773F0z2rLGIswSsjUNNoVESBmr19HBcJEANK3iwG3FkTOPnihgzYCR2qcqARZYCTttopS925S\nKesdNCkMBWFQCNy4us/N+kt07Qh6JrzoL2WJ4Gu8mRDorMCrSLzhvNUOqhSo7rVRZqMUOu/S7nNw\nGlEeclERZiXtkqS607YpUaQ7t2zvh2oKHM8ummRb0Bx2LegXsZbSIFWykOrpE1syzrpoj6YjfAuI\nOJe2t2ywFPY710HUW7ZEPSBS5eCbV8o8d24GI6B0LUA2fMKCS7sscKuC/JwkXHcx81kGzoRk1tq4\n9QgEygiyVbto1MpOKs0xTXvAoF3JLfUl3iETd5Bja7RJnIPOD0VX2Xq7odn0O6GUzZmPJ6yUA7XJ\nwrA7PSLaTg3b/GpTb5Cbq4NU1HaV0CP9GKVo7B/tHD8tJh0DO7epGrVlu6cjOalrBjAtz9LQjd4k\n2GmazY7YdcsDIRG5LB//4Lf554e/Zh2/jMS5sZrsX82v0XcpYGM3rO/XZFYVg6caZNYDxE7rCGb/\n+mgn9/vvgcmQzpgRjRM3ZXimzPSOPdwErI5MO6IDuGDB/CAPYd7gFtoMlhpMFdYZzdYYz64TGkE1\nzOMbxWK7TEu7uCLAFSFl2ankFyIIkewsrOCNhLcsBrBlhbQUKL21Tp79S0rKx/5irIkWjbkmYm7G\n7E0Zge8xy8iKUttt22UryB+DybFAtfSjcvRuxCLyDW5dcKE6xFzQh44G8TaSDZ3D0y71INO5H/fI\nWr5L5vo6eO1uh/KtWBcoFznfEetGuBacFbmsdXadzjGqO/NsbLdjnQlDTM5FZxTmzAUAwqEyot7C\nH8jj9acWSesbCDeDqpTI1FNji5vqL73Xcifj+J0s5NhifNYhOmK0ikwGXXAJLl2BMLTAftQ+lTfr\nvPprhzbtrzpTpN0ncN+4AkDhzEKXxozyDP5YxByTChwHkbNR/OoO0cWEuZdmlEAvr3Qq/oRv4zx6\n5/u0ye4FTmGhO0KfeW93upN2u++5KNty6/OP02HnAJy37eysR77E2DCZN64mGjxvdTF1O0unCAln\nc8XbBFiMTFetfg0P7u36fOhVQTBn03biRSVAY1Rhli3AEpZzEUsi2nerRVjIdPYbVQwF24+N9/ZZ\nD3fTggGbLdClNbiJ+RmzN24C5PY+4yn/KPdXL9LaOYAaHSF8/Sz6gV1W8D5m9aUkLdRAPxTyn1i7\ncAAAIABJREFU6EYDNTKCrlYR9aYF025Y5rQ8dyVZHOe/9CJycICEndR1TrcYTxJ/eAuqRLQfy4Cy\nY4tutSwQFDESu3bVbBJsH7E+2Y0F1O7paN+G2o89bvf17VeoPzAWMaktSB0+sp+Vh/q6tYCEQBct\nSKm++Srh5FByHTEgYo6+Rm1b5o7Tke6WCW1oaRclNBkREhi5SXIjsS2GoyR1LE7LSrY1nRQsIRKm\njV/J4m3rT3xgvWvyjsaH8OG9mMatqxSHZ9+0JJP0fJKcW+qiYiAo/T10Aqpy8xzQW7DldmY8z+qH\n9lW6Pg+uXWfPr522fk29cz16esKWnr+0St+pNUaOe+T+qiMBpZtb63DKXI7GdMUCQnc4Xfy98bBF\nEOWtBiGqFaCV7NDIt5rHZOqP1P80cpxeNMfbhgbtKmTdw+tTeBVBuyTxS4KgYNB5jVtsky22KRda\ncK5Iaz1L1vVRTYFXzbKyXqThZWgHDs2mFVRuLhQw8zlEWxAUweuLBplIELgLfey1eOFvOg6z6HX8\non0lgFCPIHXHOY+uVVvQSzYDkALZ1kmkN8hZoWMjwS8LvAFbTSzM2kix9KE5aqxw9PYsQhucuuRq\nrZ/lVpF1L089yFINslyv9RF4DsIxCMfccce7WyaFIRe1jysk7yldICiQLDbSZgE1uvtT3PawuZ+Z\nDgAjtEG1DAOnbaUB01eC0NAuSZozg6AEQdFFeSbZ7+o+W61NBmAU5FdCsmthVD1I4zQN/ec0ueWA\nTNXQd0FTH1dWEDqIFk5bAUHRYioNHibfp8DA7ovvAKImpnDGYmqQVBdDSHSlgMlnCAYKNGeGkgFb\nLayz/3dX2f6nDm7dULiwighD/EqG+jZDu1/jNC16PfMlj/6jN3DWGuSXQpQH1R2CxqhMhNuDgsCt\nRrpKrri1w3qXTURVZbqAna4NUpH4aJIQSnVNUF1i0kolGkMmDJG5nGUK+W1kPkfzwASNH7bOgszn\nuPR/PdF1OFkoEK6td0XznMlxVn/qCcKlZVvBpFJCeD7B3kkLTI4W8UbztvJDHLGPJi3C0DphcUl5\nY8tamzCMqv/ohOrdNQHebMEjFTKft2WlA5+Ygp1oSLgZ1PAQwnGQ5RKyULB5/0oRLixy7BMP8JnP\nf4QL/+8e8i9fTqoXyYKlxWa+epQ9v3ySA79xg52/9BziuVfJXexZhNRqyWs1NkrrB95zizv8zlr8\nTMYaZdq9BRB9s7E/TcdPxv7UMyAFOmOdsCAr8Pol3gC0RjViyKOv1GJbeY2y22IoU2PSXePl+jR/\nvfIQZdWk4jQ52xpn1h+iqnPUdZbFsMJKUORic4SjG7uYbQ7Qt32dxljc36NrCqO/TQEKusGg9PzW\nazHDMehslxbGT8AhOgCDkRY47gBFRFp3UJ+CxqTBGwtoD2r8kmUQaQfCSY/63jaNEft8Ztbh4vVh\nvrW+nxPeFJ5RrIUFzniTzLYGKTpt+t1bO5F320woENW6paaru+R6JRF92akyJgTyygLh+YsJ63Dw\n2atMfu60XXTV63hjReQLJ1FTlgFz5meKhOcukHntErmVzr0MN2oIJQnX1i1rBhAbdXjpddReKzKc\nMEUSlkGnDwvHIZ1aKpTavNjstdQYG65vdH0uHCdxwIVSGGXZiuaB3R12iBCI1y/Q9zdvdO3WmZpE\nO7Yv+fdbQCK4eLmz+0IBt67Z2J2n/iOP21Tfq9cIByuIconpz5zbpIl2r8wIgfa8pJqcW+1Z2N4E\nvN+KJbP1ATr3TOZzyG8c7/q68jsV1P377Pe5HOrE+W5mbbTY3/tH1a7fJe11MtK6W10nnF+g9sCY\nff92q6O9TSApff/SrKDaTCn60LbX8DejVA2/2ydxGgYyEdD04msUvtBJ0dDVKrIV2PbZO5Ow5WS5\nDGGILBW7jnEvbKsS982RDHKwvxPMiaoCJr+J26XXN0hb+r7pEJnLWn3Bpx5BDQzgfu0Y/vaI4fH8\nCaslFVU1VK+eS3569eMdgfSL/+Nelv/pE+i5BVs8o93GmRhPxrXqxw4DEI4PWMCot+/cqn/frM17\ngmjCcZO+FTMOYzaPyGatX+c48NLr6NVVmyZYtUCNfPk0lbMbnPv9RwHIfvmo9TEHLMAsjrzK8LPX\nWf7oIZzxMdS+3TjjY8iNZtKO5uhrqOGInTc3z+z/YcWo+z77PM7M9M2v750wYyjKNgqDKwLeVb5C\nczKIKnmKzcGUKIOl6z6E3e8TFnUEtlmNzRD8AOfvjuH83bFkbjRHX7vl+BD7vOLbr2wCereyzCtv\nWmFpY2wqWQJKdVj+6WsHOuym+JyTa9UgpQ2yv8VAturvQxaLmJ2Tm74LV1epfP75riBFWHRZOphl\n6YlR9MnTto3SpkPUyEgXI1iNjGCCgNKp+URS4k7s7w0glAZxZNO31PFMBKr0PuiSjvORtiQnNPVR\ntJhNHM+sQmiDN1HBL9gUntZQ5GBokJ7Eb7roCyUWb/RZerovCUJFeyxArTkEizmq63lqa3mCpRyq\nIXHXFZlVycApQemKIUwFJ9KgzaZoarSw73K847uiU9sLEvaNSKcNpdsv/TbjWFDEkYjAEOaVjTI5\nVkC7XbLX3RqE1oimNR4Q5mzqXJiHYMrDGw1ZeUDQGpQoTzB7ZZiG7yKEITCSmp9l9tIw7tUspqUw\noXh7kau7ZBLJ49k56jujtChJJ11wiwh+WiVfpPpfkqJH9N+AX3LQrsC5vEB+dgPjKkTLY+jYKjoj\n0XmXoKCQvqa6LYrEKlifkbh1TekKLB5yCPISp67JL/rk51pULtTJrHoUr3koz5Bf1rQHc5YldBMg\nKDlf2Hoh1tUoKSpwOqKcAjOS7QCMRq7WkNUm7vVVMsst+5tQg2NZUMVzK4x/YxldyROWc3j9yqZw\nTDaozmj8oqS6PUs4UEa02mSqPqoFmQ27eDMSjGNFG4OCoXAjYtTdSwZIzNSIU6p6rTeiEVOm0+KK\nPQBKoh/kuOi2n6RvhGvruF87Rvnrp+2ipF5n9789RfBdjyKLReTD9yNT0QLx2EN2wmg2cVomWdSF\n12xqg6q3GfnWPNm5OtmlJu63TyLrEQU51lIQsitykZSJTiJ+0jp+sWN9OwdbhzZ1I/A7z0lUSSPe\nvygWkJPjMDaM9+QBC5z6basBMrfI9l9+jul/dKJLQykdTdbVatcCLbhwCf3mZeShAwn4Ey9CwvmF\nrijJPTfT/RdkRada0x2yCBKHqheIi9KzdJRyGqdSNUcgKBp0ziClIQglgZZcqA3z9PX7+KulQyy0\nymy0bQR4yK1zZmOMLy49wpH6Xp6pHuAryw/x4tJOXl7cxvPXd/LCmRnWFsoERTtexSlinXPsAEWb\nwKB4u3iBngbXI0uCGGF3OlnCcg11UkXTvidKKRWELuiMwC9ajbWgZNATLcZ2rDC4ZwVv0BDkBX7Z\nsHtqkUf3X2L5kKExLO3cF0jyqs34/8/cmwdJltz3fZ/MfK/uqu7qY7rnvq+dXezsYm+AxEXiEEnx\nAA9ZIVKWRYVMW0dIYTMoOUzbkhVyWIqQdYRNBeUQFZQtkKIUkEAIhAgQhLHYXew5s9fcd0/fR91V\n78hM/5HvvarqOXZBErPIiI6Zrq56le/Vq8zf7/v7fr8/r4lGsKkrfLtxmG8vHkQKgxT3YDd9D0fW\nwhbGArg/7shkDVIxOH0As8exBoXvApH41oJj1Ox3iXh+tYeNYy781V3olVX2f9nNSW9sUr0Zok4d\nTyecJUTZMIbw0487P4Z0jK4fQo4DPiO+QRmDYzSI3h7HmSGwM8YksuOeJzYM8S4vunXplbeG7XYn\nndGvqFVRkxMu+Tp+BFsuEhdE4v013PuiH3IJnOn1KCz1CCZl1uJaVauYosfFXz6EbY+DHQ98pMmr\n0RRWevfvZvPdMplGnn/5f/wQMC5hzn/5laHXYOL50v7xx7K/r/6Eu1/sa++w8LefS5439JxJZRx6\nYxN5+iEKv/uyk9H8Uce9ikcjCaS9l3ws/XsUZnKLiVdHTdJFJs9R33g9Y2rIapXajdD5Do3MfZTV\nK8PkfBdXsuOZdpuNX3hymORtN9V9wKNypQMz9REgV47tQe/Lv2Ub4Cjrk+iLV8hdWyU+4dY19dbV\n7NrpS1ddvFCtYHo9Nv7Ss1z8v55i/h+9gK0UufU/PMe+/+UFZs60EcWiA4KCANNqO4n6wyeofuEl\n1PEjiPPXx2PF93Ovj64jd/ybABBh6M49Aciy71cKEAWBm0t90jExTxxxj7ed/62qT2LOnuPof/ma\nM5gGZK2KvnR1OI12h/pvvEi8vML6czto/MABWHc2Ao2fT4qEcZzJDff+ry+AVKhjh4edFh/USD/b\nJKHem9tgcleLsOrikUwNInExgBRDq5dMMpawrLTJfoCxIpK1lu4jQ3AktVC410ivjc0P9xxz6hDq\n5NF7vcQdt9FMGuv4w/znbkBQVmQZIZeMNgURI7nKHyFn0Y0mptvFnD333k8GZD8mKkN/VriuxFJh\nn3t0jGmm19YcUzYZIp9j6a8+hc35qFptqAp5j/Hd9ST7Xo6RL7XohwhbdlXDFImUDIEeA2DH4axE\nsgTcCXOli4EBtdXD5j2iapWokrScB+KSC0bVQGClR/Uq9Ls5+rtcq/Ug9JClGG/Zw+tK4i2FVRYV\nCFQSLwkNhYZxzJuyxCiBuhdAMpLYp7IgU3Sti60CEVvXrcyMV41HmSBjN68ZATWSa5Gak1rppAc6\nnwBCBdC+C4x0yUI9pFwJ0DcnECVBf4fBy8XEVYgnLM1pH7+hUOWIghdT8QPOrc2R8zReNSK0iWRP\nCx40Q2h0GAxV6bH/8CqtsztRaTwgtiUrgrvOc9SXZ6wFffK3xiGP8sXKcCEUAtnpUbrpPoviskUX\nPLYeNhjPQwVQbFpUYKhf0Mg4R1CT5JoxXjNAhjHWV8hegCzmsPM58g2NzgvyscF4ctv8tldpbDY3\nEcaIML4T/EkXLGMc8BGGw2A9BQyi2GWnUjjUvN/PQBIVa9dJLdauGtvoYgt59x2LDabso0JLXLJ4\ngAwF3XlBd6+ht2OC6kIVmfis5FrOVHtQdx5WAPFkTNT2EZr3t7H/SY4E4bfWGSLekfhkz1P3rlQk\nFfGxng2pwZ7wXaeDpCuPHQQZvVO3WuReOo+sVaHZxVZKrvrteZhX3qL9M08z+eICtcsdzv/qMabP\nCGa/dNFtaOsNV5ENAuSuOZb/wuMUGpZJT6HPX3Hm4aOaZymwZkQmmFRE7Kj32Hs0nUiDo7RqhrWu\nq4ufy0DG+OZCtknlr1lM+l3yc+jNRmZEKpKqmzp+BDEIiG8u3POzt0GAPXuOwtnh7xu/+CytQ3Dk\nH1/BdroPnEq9fcjUWDovnAH9HT5Od3nMWsR2YXfymBWQtm53x0+N/VMfMVCeRlvB7c4EQeTRvFpn\ns7OD3Kkmn953nrW4RlMXWeuXaXSLnF3cTakQ0O4UiQMPG0hEJPE6jrEnjNsTvH7iKZWyUseA0XEw\nyErhjPMTuZdKWaiJB5sDfSwgs/07k8CmgFJybYQ2riOZcNczLibMn4KTx+kCmKKmVh3w6Mxtiiri\nP9yaxG95hDtiTk4sU1EB4WmPd6Z3YkLFsf3LPFq+xbzX5qX+IVajGjvybcK6QglLN/4A/GBSdt79\n2Hh/hJGB0b6H3wrp7StTfMNVmb29ezAbm8RLy3jWOpPgK7cwH3uMp565wAag+sMYw/uD17Cp/8nI\nHFMDe9NsUfzOZeJt3iSAY+2kEoH09k79I5TIWAljsqKRdWIsGd0OLuZybj3Q27ojJUOWy4g9OzFX\nrg/N8X0P0+0hPQ9bLlI/3+fWD5fwl7bcdXjqEW5/IseBr7nEvrOvzM7fX0UD3p7dtJ/YTfGLL3P8\n9l7iweD+e8EDHHJ5A/3ocbiXOfP2+HD74/cZ+Yb74DK/u+Sc7ZKTTqWf3cpPDKj8NgSfe5LZL7yZ\nhef7/527fuPeLcP3FUnxIjo0j7hPS/ixMXrdk2PJcnm49gvh2KvJnnQHqJEanG8b6X4c33SMVTU5\n4Zi6I0mpXt9w8UG7TX/Wx99qIE4ehqXlzDw6/Vefu5zNU81MZ8eZeXULeXA/8bUb2AfIhAbu+Mzt\nG+8QP/coqlBIfAcT9l7qfTh6ra29855PjzfSwc1sOa+ohZ/Zz+7fvJB52MZH96B6feenM1GD5HpP\nXAmZ/vXXsM8+innlHQ58USL27yV+9W3MEw9jX33bxULdLt7ePdDsoJ99FDa7mXm38LyE/fze66i3\nfy96poaINHKj5WQ76yNd5YQY+q91u87sOXTNYmQx77wTrcUMAkxvGW9+DnP5etboQz56kvjsOZd8\n16rEC7eH6+VHTyOfP4PI58fuq/pvOH8zcWAfaz9znJ1fXcROTqC3tgg/+yQrT/rs/bsvOPApdmse\n313TqD/2UMJgkEm6bTg8tc75iSlKqwzzI8MQ4LFpQ4wRSdh2luI2k2m9tkGusRN5+iG3L90HeFfH\nDrP51CxTX72CfunN4R9efut9+SabjU1EscAdnb9H4zM1ApBqDX4Okc9ho8jlC3GMCCNs0rgFY7D6\ne7cveOttkFXKywa94vyoQiXpf+wUha+dRe7fjbm1mAG8anKCeOE2e/69hCAkbreHhtnvMb5/GEIj\nQ4QRqq8TyrjkDj+he1Lzt/0+inqnFSrfQ1ec1lyFluK6IU68g6Kqe67fdK3FVQDVyx5YQdDKoxYK\nFFcFk5c1tauWwpogvwX5hiXfsPgdy6DuPGPSJNi96V1+GAcdrOdkXf1pxWBSOQNoa5GRzpBVGcSQ\nUvKSD9gqicl7RPUCwY6SM87yJBgXsJu8crIDa12AnUukYTkX3Ou8JV+MqBYHxBXrpGP1mGp5wL75\nTY7sXOORkzepPLRJPh8RaUUvzhG+UWf91iTGCGQ5At+CGQJsD3ro5EJqLJ+Yu0hcEmPV33t5Rdjt\n4NA9qKVWCvyuxVTyyLbbHDaf3oGpDVFa2Q1cN6+iYeJaRFC3lJdihLbkNnrMvNGmvBLjdWPH6Ihi\nl+Bbi+gOmDizRulGa9j1jmFCdodX0Igxqy54rD0xSe/gJJ2jkzQfmUbXCsMWi2lryBQl1saZSGuN\nHQTYMEQ3W+hG0/m+KIVI6ZDJoqnrVQdMCoHQGpvzMAUPXfKcZMkIjJFJC25QfYGMYe1xweIPCLp7\nLL0512mtc9AQ1qC4LJl6zSMuW/KN6MEDQsYM9cD3Q/q3B0Pb75ER2Qa45MxR+0N46hFW/tR+B4YM\nBsjJYWcj0+0SLy0TX7uB6PScAeNgwOpfeY7Kv/0O5HzUWpNjv9Gm0DToQ7uwrTbEMaJSRpSK2KVV\n5r/wLvUXbzvWmnRgXzaHtC1mGoSm8o33GtLJ4zIG0FhXspHgMgrHfjddB9CYXs/JyKan3HOMdvdX\nEGTAm75wGT1TQx05iLdzHvHkIzR+4Vn0xx+n8fPP4u3fO/SaGBnT/+JFDv7tF9Erqx84GASuEABO\n6mRGKcbbn5cCKum4ByggrFvXdVG5fUs4wEb1RSLnElRLAbOVLmGsaGyV8bqC6nUI357gzcZuznT3\n8c2lI6y8NYd4ZQJxpsrWjTp6uYi3nCO37uFvSWfKHAhE7IoGbl5DJs/4fkU2X52XtHd7bJ7w2XjY\no3HUJ6h7yVxd5zAZJewfbZz0VSeFD18S1XzCSR9d9NyaEifMGeHWPqFBFwRxgYS5asEK8n7MkdIq\nu/NbyEpEXIK5PVt8tHaRpypX+a92Pc/fefI/8tef/hofqt9mU5d5N9jJf1x5lG+uHSW2ipIX0dc+\nvvwAEvsUkBXCrbV/rGONbnDJ2iwE3q01Kt++Mvybklz+n52fjh0MXKLV6dCdz9NJQLHNEwk4lty7\nZjBw1chkCM/LqOdWa0zHJWr22cSnJ5WfpsxEIYYMxbRAoRQc2seF//0RN62TRzEfG7JM7sVMkMUi\nslJB5BwjUZZKQ+bJwDFYZamEnJ2G1Y3MS0iUSqAU9tg+yPnE02W81gDj24ylId+5ypF/4dghemsL\nv62xNxaQ5TLxwm1ufSY5vUknKer+1BPv77P5kx7bSVTtDrryvengseer2wzPk/1i+1r7lz/0LQBK\nN1sucZ937DN94fK990jIGBP9ubsAsu8hpxKPncqOJScnhsw0a53f1KhkccSvL/Wi2m4enZ6bl97r\nM1N3nYdI5F6llRC5bzdy3V2jfNO9V/3tVna8lPnXe8pJKtXcDsyb5zn/13cmh37Aaddd9phwMoco\nFkcKyiNm8KOdAIE72FhZMp+oLzwfjrp9ev4fvZAx80y7TfOIK3TpjU3Myhrdx/YC0DrgPgeRMq8X\nV7GVEuajpx0Y5OewceyKabcWiG8tIF8fbyTh4prRqu1dFCOAqtWIb9xCXlnAvHneGaXHccayEJ43\n3IsT5rMNAoRyzBw5VUc8/hDhZ57A2zWPt3PeAT2DgQMvnvkQ5uw5ZKGAbrUyv6OsE2J6uZKEvfOz\nTvoWfdqtJWZji9lfe5H42g0an3Gm5IWlDnv/7gus/LWEbReE92cEPoCRE9p5Dk45r9i0m6pVwzxh\nzLJilMSVKhXSnCJTKxhUfQLVDZDN7hgYlLFUR4enKC9G6LW1cb/N9ztEUpRIr2Ua0yYMp0zKluRM\nNoqxu2ZY+6F9xEd20Xt0L/GxPYhqxX0eiafQ+/Ei/aMOu7mF6kPlttsf46Vl5LfecGDQ5ATR/ATi\nhFtrvEMHaP7wCWd8v9kgOrzz7pYY9xjfPwwhGH6htUH1I8LJPNaXDm0cpXEB3IuKkq5dcvR3i7Ca\nuFYAkcPkJHHZGSHHeYE3gCgW6LJGG4kfOEBH9V111lvKIUNBadlSux45o2WTc8GPARXarEuL1K6y\nqVIkN2WmbJ9uImESWIySBHWPsCwJaw5UCasCRI78OnjtALvNxM+ZHHuISNOfL9DZpQiroIIcpdUC\nfndoIi2MHQb7EsxIVzUzGTFo59k0gnA2xmt4eMWY3bUWntB0ozwlL+TA5Ca9OMdSq0aoFYV1iGoS\n2ShgchY1H6AHCmE+IEQIBwYpBD9UfZv/Z/ZjFDaSDUeMYHNymMBlQwAJCDPm0ZQMk/coXtmgeE1i\nSnlszkf0QwqbmuUfnGL2tS5yEGeJTbHeJ78hmDlbwnqC3FIfMYgQg4hSN3BAUMr6Csb128Sa8jUw\nRd8x3owF5eiXQjI2r3S+roOco3AW1kMGMznCiRz52B1btvqIMHKghxCgHUBgDu7BlHxMTtKdz1Fa\niShcXUMvLLrgO+dDxfnsyHZvyDgSgnAyn7CmfHJtS2lB0lV5yuuCfMNSXAHjW2qXIJyQ+B1L85ih\n15fsOL7Cqp3FToeYywVyDe6Q8z2Q8V50z5RJlQZIowl82spUpNSHVKKlxowtefktZgcnMrBIr6zS\n//GnKP6HcbmT7fag6oLO+sXQVUs2WthmC3vjFpVzBUS5BFHsQJ5GDFGEtc7HRwHxvhn8A3sxN247\nadc2Q0ghxVj3MFkqcfOvn2bPNzp4yw0Gh2eRgSa3sJnRT+02r4D7jpHgTNVqrpKs9VjFVtVqzgsj\nCY5kq0/r0VkmXl1CvHOF+hshNo6ZBMzph4gn8ujDM/hfe811ZsjnM5PPwY89Ren337w3s+t7PRIw\n2QEnToprchIZ6mEQmF17BxTeT+abPSYc9dr4buFKZS4yFKhAYKVlc6vMzn0tjBVsDiaydW3yIlye\n3sntHRNEl6vsekmTa8S0DuSxSiFjV+iwikySbEUKQqVzGDnF7DyS5yHQBUFrn0dnv8Hkk8Q6cPc+\ngN/WeD2BGjhfMmEseBKTlwR1n85ORW+XJZowqK5HaalAcc3gBck+KYYm0Va5+VhpEQXNvtoWxkrO\nd+epVAe06zn2VBsc9tfQCBq6xJTfYa+/wS5/i7Yu8krnIDcbk0yXe5xrzNGPfH5g/gol9QGYvGZ+\nBUlSm1SY7/7cEbbn+wDLhVLIudms9bGanXVd+Ta22P+VGdp/5hmqX0haYUuF3zX8nwd/h7/IR9n5\nr992FdbRxD01002lP0kwbcMQ4fkuSVtaRk5PoTe3GPqXufPM1hqpkInRNZ7kxD9ZRwP63CXk+eG6\nbz56Gv/Nq+jW0DdIeB5iz05u/fgc+37zCnbXHGsfmWXmt950wHNy7UyvBxtb2H4fG8fOtyWOEwYa\n2HaXq//NPMf+3k2O/KbGbDp2k+l2YV26Tj8Xr1I4d5t4MGDlrz3H3D95gfy08/dYe2KS6bNQ/p2h\nZ8wHOWwQoDqhW1/ud29s//t9npvei+LyTdTOeeKVtWzN3/wLzzL1LxNGQ8LO+unqWb7GR9HvXEA+\nfIJ4tI3yKON/O5srYZaUv3wGMXr/3y8GSFk3aw2yI3kKVSmjWy1ktcrguePkvvrqHa/zds6DlMS3\nF1E7ZrLOaaMjZW7oqzfH5q/mdqBXVjPTWvWHr2NPP5SBWoUvvexYJWfezVqI6+kqXIf1X+yx+z8N\nv0f7fzeV3H0Asc62IbR1RaV2e8iyGWVRpcDItoLP8ADD+8pGITbvoZIW6fHV63h7dnPzr51i3995\ngd6fepLyW0uYRpPuvEcex6i98XeeZf+vvuiAlK0t2NrCq1YRCbNKeF72WaXAjb50LVvX7hijsrD0\n86vVoFjAm64TX7uB/sTjzo8r1MjnzzgxRbnsQPIEXBY5H1HIO2PwGwsuVlm4TQ6wJ4+y/LEZpt+e\nR3UjeOsC9juuC6NNrpmamSJeXskYdtYT3EzOVc1MU/vyW1jPI/eNN5HTU7BjGhXNoC9fI99MwNdE\nTlS/4IAgvbKKmp2BB2t7lw2TtJc/XlrG7ukTv13ET7+22wpbLq/FdWseHSmRYcwnUbrrtLF5p1Vw\nFGffv2we5TzdXT4T3Nk9732dR1KwVPW6+x6qERsFOzI3JUEbtz+cPUc9YajncPeizefdc3bMIlc3\nMO3O+BsJ4fazlRamWiCu5cktNJyH2ntI4kaHqtcxnS47X+yh3rg4bn8bhei1NeTaGgbFx4sWAAAg\nAElEQVTHaN14dh6dE3RPzdGf2s3kv36J76YRwvcPQyhNVpObRrYTT4xtspntMqm7Gk6PHdf92LyP\njB3QpHMS4wnisiCoC/y2xWsLvKbCFA0m77o+ldYMubalfEtQvm2pLGm8gXYM+MiS6xi8vkGFFm/g\nfs83NLm2IdeMUYG5b8crYS0y0Oi8JC4IorJrL1xcN/hdaO73CGZyiIEDx3Qph/UdI0gXfYKpHK0j\nZdp7FMEk9PbGBE93aP54l+WfCbj1WcHiDyg6uzzivHCJReIToXOOFVWohMzONYn6PoX6ALNrQK3a\nox/7XNqY5eKVnZy5vZu3Fnaz1i0zU+kSRF7S6caQawowAj8XI5R9oF1b0uEYi8Ob/iF/gDrSGXa2\n2ZacIUi6jSUod1L5FmlyN2rWnFS4dd0l62qtgej2sfkcxZtt4hIsfbRMNFUgruYR2lAuhAx2FCkt\nDVyb+UYHPOXa1PsKEcUQ6+FPsgjZUgEGAYRRwjYasoPu9NEShFMFrCfxOiHz324gtE0SUleNV+st\nOvtLtB6exrY62fdGTNcJTx9m6WMTDGZyRGUPYaG9N8fij+5h9RefpPfJh2H3PHZxBTEIs43WFnOY\nch6/5ZIpqWHl45pc21JcVMjQJY5RVdDd48BNv2Pxu5bKDYmV0OwWKS1KPF9j8pbSkk0+jwe5HLlq\netp57Z4+QtYk4M82QPourUyt1mNShbRiat487zavpFpZ/uqbqGOHx97K9Hrc+Pwc3qEDFM7eRHT6\n6OVVlxwJZyiaUfgTZhdSZiatpttHfusN9JXrI9MaN8zOfIRwQVD8+DF2vdCnvb/E4PAsXjtEPn9m\nTIt8r+Ht3eMu2/RU9v/RoVstbBw7VlAUZlIyG8dO9vGR09iPnEZfukrlSof4xq3Eo2iYOJgz7yK/\n+QaFpQ7iw6cYPHUUs2fWVe0KBQpfevkDA4PsSFAvLMgokTjlxxlkd/3ujkp77zUS/zOjwCi3V0VV\nJ8nKNQTezQIXV2aZyA3As6iBwO9byksh1Sse5t0qM2ctpYUeqhfh9S35LfDb4HUtfsuxWvNbllzb\nkmu5PWwoFRuum0P5lzs/14TBraEyEJRvKnKbku4uS3eHIqh79OdyRNUcJqcwOUVYz9E8mGfjpKKz\n1xLujNh3bIXPfPJ1nvmzbzDzl26w+vkBix+H7nzqnUTmaWTzhumZNo9P3OJgfpWZXIeTsyuceOQW\nj0/comGKXArn+eLWh/nPrUf4z61HaOgy016HmjfAV5qdpRadIE9OaWb8Dvqem/P3cKRgkBDOaHZq\n8o9/zFETVG3w9uweT5oO7SG32GLjlBgakxpN+dImv7bpfCt0q0X8Seelk/lfJLKxjF2hFBiLmqqj\n9iRsh4ePYfsD1EQtMdF3TMKMHSQkqlKm/7FTrqJ+5l30xSsuUQPUiSOZV83ysyWan33IvXe1iqrX\nsU88ROfkNLUbxlXlqwVm/u3brnr/0DHkoyeRHzrhTqndxhqLt2e3a3VddwwSeXMJs3+OvV/TXP7l\nE+hzlzCnEvZGrUbw9DE6xyaxcYyZc3OZ+2ffQZ06Tu47rl36++ka+0BGmoRrjVrcgKcfuf/z79Il\n6l5MA9Nu0/j5Z52X29KyA1OS7pitw8NjpHvcHq+YvXbhs+66pev86HvcIe1LOnrZIHBym9QL4z4y\nytQ7Ll64nd2XenEF9sxnc9/4pe7Y/NLndR/fS3x70QFeibQpnZ+3exf22UezOcrUMFoIB3CsjMjk\nnnLXWjbGk7/+x909ax91ptv2DQeMTZaS7D15Xe4Pk6zyQXfLvAvQVvjm28S7p4bG0neRQmaMvcTM\nfexYaSyZz7v9/+W30BubBJ970vndLNxm/mUHgOX/0yss/NQ+RM7P8oP5377Awd9xCb1MPZoSWV5q\nUJ4xbHwHQutWywGAa2tDZuLdzm9EjiSm645JPFFGPHaK3Nu38P7gNeTzZzKTatPtYk+6eExUymNd\nm1JGt3jiYdcW/NwlZn/tReTzZ9CVHMu/lDS2MBo5OYGNQuKlZedjZi1rv/Qs8ptvsOcPXAFMr28g\nk458NgrRh3fDZpPBgSnaP/cMxSsOLGj+uWdQDx2j+OpVB3Af3DdmNPygxsD4hCOyj93+Jid2rRDW\nxDh6kH5thcgK2EiyfN7lVSkLWGT7n2k0kQ+fuJO5B9ilVXof3j/mDSQ7A4wnnDl5bei7qep1VzB8\nnyNbk6x1931676ukYAOwc/aur5VTdRfbbjYI5yqIStnJC4VA1WrJmvIh/HM3XXez195BfeN1RKwd\nu+iJhxGPnXpfjC8xWcM+dhz12vmxHEU8dgo1OTF2jHjhNpXbIbO/e5nCSp9c57uXpn7fAEJWyTFH\nbzEIUJFxjyf+P8A9QaAxmtr2sxICnVeOlq4tuiCzqqsaQK5tyTfB6wnkwMmthMEZ/65rJm5ElFd0\nprO3QiAjg98x+D2DChJgKLCogU7+n9ApRyj36TxHkwQrBV5PU9jUlNY0ftcBSxOXe0zciOnsVJhS\nnv6so9fLIEYXXcDd2anoz0j6s5aoainu6HFwdoMP777Fnz7+Jp964m0++Ykz9D/XonlYZuCUSM7P\nFAy+H3NocoNd81vk/Jjdsw1mSj2agwJh6CFyhnClBLeKNBplBrFHrCW93QZZi4jKrjObtSA8w3Zq\n84MY2lo0Q88SX0j+9JG3iAsJCLRdqgEZCHQvACsDh5IWyeun3SJuJqvYUsGZk1tLXIDOQwFXf1qB\ncl4arTPTlBY6eI0+xfUQm89hfSf/ENo6ECiKso0PYxxraOCqMbaYw45++TO5xUhXuUjjdSLURgdv\npYFsdild2SJ3u0l+Y0Bvzqf70BxhRdI4orBBQLSzTvsHj7D19E7CCY/iukFGls5u5Xymci6pBVj8\nqOLSn5+i96mHMY2mYy1I4fy9Iu2okgKKG4bKRR+sk07m2tYdR4EuWLp7YPPZkNYhd/MJA/1V1wYx\nDt05yrTd9AOWjFlrh+i5MeNdU9IxyhAae1wMN5O0YxdkAIwNAuIkmJSlUgaayHLZaemb21gBQhJM\nG0f/9H26J9xmJDzPdTDLDc2bHRAks84K6uRRZLGAOn4EdfQQslZxXh4JQJWBQtaiJmroTzyOPn2U\n3K0NcldWqb90m/zZ61hPOmbSfYbI5+n87DOYjU3nt7C5lXUMU7OzqCMHx54vCwVnJul5jkae+E94\nF26x/kjRbZ5vjPtgDH7sKbyd86i66yai37mAfe0d4pLEvvYO7VMzWTUvNQV90MNKhmC/BZVIhHVe\nOgr19lt5OzvoXiMJloySxEXH+osqwgEwOYsM3Z6V3xREi2VuNifBQmEdSssh+fU+k1diJi9YKrcG\nbs+TTqqZb7rvp98Dvwte3wG1ftfi9YfsnHEj+/EGBlYJVAiVBUv1qiS/LimsW+ZeDSlsCHq7LN15\nSXfeSZV1yaN1qMjWEZ/uLsFgTqPnQ6ZmWzw5c4Mnqtd4tnaFX93/H/knT36BX/mhL7HvT1+jfdAM\nGUsCREEzXepSUgEH/HV+oHqBz06/zU/Mn+Hh4i3W4hoL4RRFGbIS1Hh1cx83g2ka2iWbh+sbVP0B\nRT+ilncBf0FGH0gBY8zM9H6tqEcSm/uOTA4qiHdNsfjj+8cq6HJ1CxGEhHMxzcfmMiq+vnCZ3/tn\nH82e53/7bQBMwtBJ27unwW7KfNRbzcz8XSytu+90Pj/OjExPVSl0q0X+K68MH0yq6QDm6k2u/E03\nn1zTsuxyNDZ/8mE6HzuKavYp/oeXqf57x/zoHChj2m02f+whdCWPOXuOwa4q4omH3QuNJl50YIbd\naiIKeahPICJN6eIaR/+5k3N4N5Oq8/wshZsNil98GfnoSSfhTi+rEOz515cBmLzy/dEyfDQh1+ub\ndPaV7v68bbKesQq+vjfTs/uTrbHfbcmBKnHZrQX2uUezY/3wO5/Pnrfr+c5wfonPxj1P4fo4Q+eu\n+256LJKOOSPdwUzi5WSjEP3uRdb+awdq/sOHfwcAWamgZqazOZS+dQEA/cihbP9p/2RiJN5qE03k\nxo8N7vpuOVlYuseobmKMveSkk2kyVrzh9vL2wWQvSmKB/D9wkpa4ksN87LGRJPSel+Z7M+6yfpjB\ngN7OorMHUGpMXpeNkeLXmBn8SCxkg4BojwN0bv5Pz5H/yivoy9ddzNNx3yXvwD7m//ELXPxbx6jd\nSL5H9QnkmgPnUpAv3dNNtz8ECZPPGSGR1Sq63cZ+5DTixbPj55eCDCkzaHoK8eFTxNduoCYnsO9c\nRl655bq1PukAuuoXXiL43JMAXPspBy7olVUnb3/EAcZ61a2j9tW3M7aS/chpN7VvvcHcP32Ba3//\nGdcldnXNgZBCoJstvD27mf+3F9GfeBz1h6+jjh0m+qEPEy+v0PvRx50c/uW30CurrunIb71ENO9A\nDaME+t2L6I1NZ7C9uJIBnA9sWEtoFZH10EliVxARpycX6M8msY7A5eOCIfMt7ZJtIFUVZJKx5LgY\ngzWOgTPYXUHtmrvj7WWlTHuPx7Wfmx2C/ldvMvPFd13n3WSfUpMToOSwa9j7ObV+nzu6fyfxjo1i\nd/x3L971tfHCbbqfPAlGIyJDPD+JzOcxP3iawTPHnB/oC2cdy20E6LKdHuKFs3DmvPNHfuzkXYGw\nsfe6dgNefmsoT0yvzcIq+DnW/uKTmI895hixQO52w3UFLXj47RhZqbzvawLfR4BQxhDK0EOD7Mfu\nphuVS90F8Ml8Voy5Z9VVJMhkVC+4DiZ5Z16pIkuurbHCtar1W4J8Q6CihGUx0KiBQQ1c8pwOFRq8\nfozXdUCRCoxrUSlAhiarIMvQ3L0N+MicRGzwWxGFjZhCQ+O3NKobUL7eQQ2gc7jiWD1F181qMOWh\nfUFUFfR2WsIdMWJ/l52TLXaWWpS9gPl8k1OV2zxcXuSnj5xh+rllOvtcQG98l6wjodspsNiZYEep\nTWu1wsKlHTSDAuvrVayFfbs2sEVNPBMxMdFjbavK4GYVOx1Sq/axR3oUd3awSWT9oKU/FoFm+LGn\nXkKfq73JYFoMu7clyU42BONJ/shmMpoQWV9iE0aZ6PaR3f6wuh9Gzo8gUFR3trn1ySJyrcHerwfO\n6ymM8Ne62LyXJFZ2uBjGcdJxJpm51th219FOVzaRzQ4i0pmkI5sXYDyJ7ATkFhuujXFvAIMA0e0j\nohhvpUFhUzOoK6KKoHcyIHjuJN29RbAQ1AT5jZDalT5CO0aaCh04FtRJpGcCvylY+oii8aOnYKuV\nAVaAAyVnffxWTO26pjcv6Ox117U3LwgnEiZDV5BbyFFasgR1aB80FBc9+vOGytkCUcXi95J2lR9A\ncpYxhKQcVstGx6i54nZzPHeA8WDb2KwFvaxU6P3U05hez4EmRjvK6mYDs3cHql7PAhIbhex4Fbwr\nS8S3Fyl8+RUXuCsFwvk5Cc/LAuN087Nau4p3r4e5fgtzYwHTbI1Jw1JmUFppy19bR525hF5cQa+t\nY1sdbBAiX36HjUcnuP0rz+EdOjBkClSrdD//tOuKViww+a3rziOoWMQ7uB/56EnCzzyBXltDX742\nFliawcAF7q0WpjvkO+v1DWb/+UtD+v7INSx86WVMs0Xa4ShNGNK219W319Affxw1M/Nd6aP/xIZw\nP6lhf+rxg3ASZOMNNaqj62EquxobZtu/1unzTU4mnkSOXm8VzrQft294XUtxSdK6VMfbdLJNrxsh\ngojCakDldojXDoYBcmjJtQ35piHXTgoZkZNE+z2LCh0wm3YF2z5SWZmMnEl+cSOmsqQpL1pyHUth\nqcP8S31UIAjqMJiCsCoZTHkMpgRhHcIJi5oJeOjAIh/fdZlnKlc44K8z7zUpi5gp1eFEfpFf3P0t\nnn36PP2dMcaz6IIlV4zQVnKuu5NNXWGft8VaXOX/2zrGucFuFqM6S+EEO3JtpnJddpeaTHg9FsIp\nzjZ3U1ARSlg+NLXIqYkltJX4d2iHH+DIjN2je1cK3+9emuwranISb73N1Hm3Rnj79+Lt3wueh+32\nEQVN7evnh00RcH5c6VCzM6habZh8j6x9wvMdU2gE/EYq9Ooa3vycA15g3EtBSCc73jZksYAdBC5p\nDwKO/LoDabZOWf7qZ37PzeuL71D84ssM9roESc1MwzMfovrVd5GlEhNXeniLjjFZvNlEtvpDP6IU\nnC8VscU8W0/Nsf7hSeKr17G+x6V/+jTBid0ALH52jmDvJLJaRa5swpo7Zvtnn6TxoUlMo4n9yGly\nX30Vb8/u9/d5fC/GCFsve0hr8pvv4TJ7L1nqtpHeg4WvJFX3dL8puc+1tOSCbu/SIt3PPw1A8ZeH\nYJQ6fwOkchKLezF9k/t5VBII7nMa/Xs6ZNpRMmXGjjxndN2fvOquwV959b9I/iZdQveRR7L3E56H\nd+FW9priunuN6fYofucyam7HncBUch/d+BuOjaLfuYB3YN9Q7nxgL/rjjxPX3fwnv/Ju9tL4Ux/G\n+/prLP3N5/D+4DWWnxqyqe7ZIe0BD+ML5ETtTiPpEV8mcAyd7G+pVxgMAbukjfyerzuwTZ084uKR\npEt0uGcKNTPN4f/uJdYezzt51o3bmSfZKBiUxitZG/ERoMq028h8HvHC2ax72dhcR+9rqbCJ4bpu\ntrBR6Ay0AbW4we1fcd48vR3uvs81BfbZRzNGnHfupnsPa1Enjzo2SsL0Ei++hTp2OGOoHPyVF7n+\ny6ed0fTI2hkv3MYc2En+nFvfaLZpHnYxZvGLLxNfu0H8KQdMLv8NNx/5rTeIP/Vh6v/qRdZ+yQGd\nptMFaz8QNrRBElmFthKDRFvJntwmwe4Q7Y/4tAoxjHXS7s5y+LexoV2XYyFdTFp6c8EpGLa/d7OF\n8QXFFcvtH55y7xEEDjAslx1zLZ9P/FCNO+77HBnAmfoGpfN8LzA7AXBSywfVjbjxuQqcOIT85hv4\nv/8aZoSlP+qLlxZpbBzDy2+h1lvopx8aYzrda4SffRL5sAPF1MmjUK+h19aY+y3HojedDsHnnsRM\nluk+tg/5/BkK1zfva9B9t/H9AwgJ4dhAKZKoJEIb13rXk657S/K87cOmN+O9AqgEdNEFzxksJ+ux\n17eIGNTAZEF9aQlkACbpngIuQc4CZesAKBk6wMrrRqhB7H4PNCJ2QbXUBq8dYlP/l23SARE7uZgM\nYmRsHPjUj/GbEV4vAgOy2WXyUp+oKCkvBwzqis7eIkFNMph2tP1oOqY21+HQjg1OTqywr7jJ3sIW\ny8EEF3vzrMcVZrwORyfXiPYFRJWUIeRYV7l8TDf0ia3C3/CQ/dQYV2C0IjYS2fIQHY+8HzNR7WOn\nQur1Du1ugUIxpFoMiEOFiaRjejzgYRhnCUXWsN9r0TswEiyN3hopayvb2BjfTEYkicKC6oTMnu2h\n5yYJ90wR7Ks78FFKvJ5ARIL2cpX4SB+9c4r8udsIPeI7M5LsEcXYONlURxYwa23iv+AWS1spOrnk\nXYI3GcaIQYBttR0wYDTWGGwQZjK08rkVJs+3Ka4Z5FqOhU/lKC0OKC4PqCzqBIyEuOzYQV7fySOL\nqw4UCqYd0ycuGZY/oVn9iSPO5yY5j96OHK0DzvvKSsFgPiaa1I5KCpi8JahboopFlyxRWSAjENr9\n6IrB61kKa5L8ZoRMzdIf4Eg7jI3+PtpqN3lw27+S1HB57DmjiX8cIYpF5Ow0KhhnHrmNTDDYUcR0\nupQub2TVsOoXXnLtboWTgsliwd0LceQ6G+Scb5np9ZxuP5FfufeMsVHsmEGJ2WIKTLlpC9TueWSt\nillexfQdUCOUwoYhcqKGrNeZ+b0r7Pl6m5VP7eTc/7Yf8eFTmHab8r9/2a1lYZRRl+OlZdcK9dIN\niq9eHV4Po+8IroWfQ5aLqGOHafzCs6haDVksMvixp2j/3DPI0w+5IOvYYdTsLKbXQzdchdY+dpzF\n//45zMceI/iRJ9GXruJv9pw/SvDHNOb9Iw6byU6HQI+VqffNvbfVe7KERjzvrHCgkoqcVCWqOPN/\n1R+RfRjIbzlQKLclhpRsIZD9GL+RsIOsA1tVYPDbMcXVgOLKgMJmhN/VyNg6kCdMCh7pkmgZYwY5\nMMig+hqvq5GRxesaSusxfsex1nLX19jxakRpyVLYgP60pDcriYsQlyx6OmLndJPTkwscLy1zwF/n\n0VyHQ/4mV6Jpnu8e563BXromz4HSBvU9TaKadetFrFDCUFQRA+sjhaUZl2hFBSpqwMD4dOM8zbjI\nalBlIyjT0QX25DZ5qLbMifIKEotBcLiwympUZTWsPvC283dLltWeXXd5Iu9/PUzWHtPpOv+Or7+G\nLBToPjRP78Qc8a0FTKuF7StEuQwXr2dANCQMDakwm1uYIMiqjWNvkfORIyyg0SQxPL7LSViNHtvT\nhBRjRsRZu+AwcutXwo4yq+t4O+c58KWI3/i1PwWQ+cLkvvmWe0217BjSCctQ9iP03CTdzz+NKeXQ\nF6/gNYOx89Kr64h+QFgRTP/ma+7BzQZeR6L+8HUASqsGf9NVX8Oju5zRLlB/eZna//sSNggI6kmh\n4D6JwgMZ2/cia8iv9d6/VOJu8XHyWLoHTf/6i465YC2DTz+WeZns+zc3EU8+gl5fp/auY4eaM+8O\nk/X+wIE0ye+jLZEzEMe7Exx0L94GkAjh7sc0Ab6Ld91oouV/7Q0ADv6ZN2n/3DPZvpG7uJQ9R9br\nw/gFyJ255h5/6Ch6a8v5BIVhJpscHTNvj8iYN0Z8S3I+udsNoqrnwNEE6JKlEoXz7r13fcPNZf7l\nD8j85T6YcuW3XwLfc9/L0Ws8ClilDJ27Hls6BvP+3VknLXDAmTp1nMLFZeSjJ/Fev4hJGNFGgdq3\nJ4s9RD4/xspKk2ObxM/bWTEmdN6IqQ+L2O7HJITr5jXKkCwW3T1lLKpeJ769yN5/ehY1PcXas5q1\nX3qWXf/wBbxz17Fh5KRhqT+NVOhzl2DPPOpiIqU3Gn35Ovbg7izOOfAPznLtFw8hcjnURC1jSsvL\nt4iXV5AfOkH3yQPM/PMXh2AW4H39NfQnHmfPF64S/MiTyEKB/KK7jzr7ksty4sDdLQ0ewEglY5H1\n3L8oSjKgNtMlLoxf+7Tg7XJlM5b3iLTz5CigHYaZxE43k+/OyOdtej3iEmBB9aH5Z59OGPOJ7UHO\nHxZTpLhzHbnP8OZmybq/puCQdh5C9j4xpY3HAXj7xjsU11yunp7r/QAlAPHYKeSjzjw8Lnus/JlT\n71lssALMO47pyOqG80+bnSU8fdgBRNaS/8or2FfeovD7b6COHnLF2e9yfP8AQkq6jhC+57xWSgVM\nwcfvxePJ4n2CpHuxU2xi0qnzEp0XBBMik8bIOL2RwetZVABRheFNnFZ15bC9Lto6ICeI3QeVUyDJ\n/GaENojYujbdkRnS50blbklb4VT+IyONDGPUIHaSnGT4y02KGzGyH6MCS1h1BsJxybXjlaWYSiGg\n5IXM55vszm1xML9GZBUXmjt4fu0wC2Gdhe4khVJIfz7xNTK4OQtLrRAgsYhDXarHtpgvtylUQuxK\nntWtqgPKFiVrmzVqhQHH9q5wcHITPfCIY0WzW8QMXDe2Bx5g41RdKUtIY2lbw2+3HkPErso+1u0t\nGWkVfEzSZ4HtC5e1yGYP//oqVkm81gCvncimtCbXBNWTqLbCGrj601UX6CYduUZpkpkfltEO1Z6s\nYWsVSKuqI9RF0RkGECljyUlRLGql4YCDlCIplQvEjcb2etheH9vto7a61K50mH/JUD8H1nMga2mh\ng/UluuhhPOE641VVJtEIJw12f59gb4gaSCqzXQqfX0Ef34vou8WyuBYxezbCG1hUZJk471F/U1HY\nNORabuPPbwmimkVPxgjjZCpTbwnyW+48Gw8Z/HYCvr5P49Q/0SETHyHlJFhius7Wp48RfuaJO6pk\nQ98XPfwZNZreNnfTbhNfvU7+y68gazXXkee5R50+XWv8VoSam8VMlrEPHRq+rtvNgjPT62WSMRvH\nGRC0fYh83gUmRiNKxSzgsHHsgCSlkPU6BCFmq+FYN76H8HOYft+xlrYa2F4Ps9lAXr3N3O/d4viv\nBTROVPEO7sc7sI/8ixfcfPJ51My0M+tM5onWztsnSSZtEIxtcjYKHUNISabONhxVveg2/1xbIxsd\nop01op21zIsgCw5eepNd/+AF/LNXyW8k1dnVLWfu9wEBQhlLKNkXdM5JKFWUfF8zL5673NP3Klxk\nDRGc95bQFp13cg2dt1khAxwgpAInd5aR8zAScSJTHmUeglszejG5jQHeVg+vOcDrRK4okfiNySj5\nfwoAjchUwRUwhLGoyDjWbC/G78T4rRi/G7u1yRhKlzeo3YwprTp2Y1xO2sYXDcXagH3VLapqgMJQ\nlREVmWdKQmQ93uns4sXGYc71d7E0mGCiOEDOBAgt0KGi5IXszDUpiYCC0DxVvsKfnf8OnyxdYMrr\nUFROLgZwqzVBM3bJ/bHCEo+WblBUIY2wyFZcpq99ogfdEtMyTLayTkj2fXl23f+47jOStSE9XOzZ\nSf4rr1D4lmMt2CAAZTEbm6AUKhzeH+kaQ+qpFkVjoJCq1zPfi3RtStchoRS5q2swOVLltGasE1j2\ncCaZce+dVi9TU9vcxoDazZHku93GRnGWXHmdCFtNPGoijYgNQU0SV3N4e/dgzrxLf9bL1h0bhSAF\nc99aR03XUTPTiEKBQ/9uWDUtrkYsfcwBKsGUT7TXrZ3BflcYEPk8y0+7+yRlNNxT4vS9HKNFq4St\nqnbMIvphBoC857gPW2hURqan3WdfeuV69lh8a4GVp6vIYhF97hK3//yp8cOE4Zh/nqwN7x9ZKjlg\nYVsylXkS1ccr5CKXG3r5vNc5bPO+qb8y9FlxXi5DsCxlscHQkFZE8ZiHUX92/H1luZwxU4XnjVXc\n9bsX0ZeuUnr+AhhN96cdc0oUC0N50RvvEPzIk6hvvzVyDnc/te/JuNt7jRSz4phXQc0AACAASURB\nVBsLLh7wvPF49W5eiduHSTqYrm6g+u6zlQ+fQDx2ysm8SwWiupOl2SjEO7CPPX//BTafdnEDSt2x\nf+uWYwY7BmXCiklk+bJazf6vjh9xp5fecykwkBTCIClCFQqZTBDcmiI8z8VhnsfJv3WJfDNhvTea\niQn/ZvLcTgY46XcvYsMIWSq5e8poJ1f9oQ85499ul8mLBh5xfjdiEDpgKvludg/VKPzuy07+tcfJ\no7zdu1APHUN943VMp0v+y6+w9vOPYa7eJPr0Exz8Wy/izc9hX3kL025n7KUHOSLrMbA5uibHwPqs\nxTX+1cJzxN+pk+uaJDfm3rH79vh49P+jRdU05t3GgvK64PdcnNM8LJGH9mcyR5HLue90sh6Ofr9T\nD7p7SbLipeUEeBZDEornvbdR9V3Oc/5fniW+sXD/142M3r4y7aM1ovlJvG5MZz/0Tu2872vyX3kl\ne2+9sYnNObZu43DeKTdGpxjHrH9kLovPv5vx/QMIZR+OxHoKU85jfImI7TC4TYGM75Zx6bnOL1Jb\n14pducqrlS5gt1KgQovfd7IZqyAuyjHj0Gya2rguMoOkCq8TZlBosg5VMtSJ3CcJqM0QgECCiIwD\nuWLjnqctIoyRnQDZDZCdwLX29lM6Y0RYz7ukQyWVaQvGtwnw7eaZl25RVhg+WrvIkdoanjCsBxUO\nVdf5gX1XOH76JkEdJxHoS+JIEWlFN85xfH6Vg/UN6vkes7UOYn6AkJZdj6zQ32kwjRzXl6edpKxf\n4dj+ZeqVHlGkEAMJsbi3ifb3cEQIIgsDa4ms5XxY59ff/CjVSyqTXBklxpK496Lji1QHay3xbA29\naxrVHrjkqhNg8j5CG/Itg4yhuCKQSwX3mdQnhiBPAtpkCZYQiELB0aRFgmrH2gXiKR03MTHOGGqp\nvM04o2jb7SH8JHBJW4qn2u5RuUfkwMX8VszkxS5eJ0RtdTE5hUqAVq9nKDQsxnNyFxlb8huSuOdR\nn2mjd4R0m0XWmhVufrbi7vmBY7F5fZ0lipOXIgoNB6wW1wyTF5zXycRFiegroiq0Hg8IJx1oWDvv\nofqS6oLG6ybdYB5wO1arXdt5qw1WG8z6JrV/85LrVHK3QOiOCq298/fks0i9cwAnO2i3Ua9fQE3U\nQCnCyRzB0TnnsXK4krWqzeYWx44NFAQuQE7BEamQ5XLWGUOWSu4zT7t5pZ4koyaiuRzCUw70SboF\npZV8kctl3VFMt+vo9ptb6OVV1HqLyfNt7MYWZmUN024nlfvESG+kbbZuNMFamj9yisGPPYWsVrHl\nIvrjj4+clIH1BmJxHbRGb2xS+NLLlF67QXz9pqPcnr+NffYRis+f5+bfeHxsQ0+Dq/W//CzhkZ2I\ng3szWdsHMVJWkJVgPQfK+D2DiJNA6S5LzJhk7B63e7bvCMemI9mT0ucL6woZfs+gBm4tV+E2hmNq\nK6MtItD4mz3UVhvR7UMYDUEEbRO5s0XqFPQcMoXAgUEyMk7+HCVs1kGMv9HF3+zhbfQRkcaWCi7B\nCg3GFxjf7QfGB+tZCrmImj9gQvWY9xuUhGXLDGgby2F/jVOVRaZyXdbCCjP5Dk9M3+Tx/TcxeYMd\nKJphkZ7JEaFYjKvMe00+WnQyEF9o5nMtTlSWeLx6k2fnb9COCpzp7uOd/h6uh7M8UrrFU5PXWAon\n2ApLxA8aENrOROU9OqV8N/JrqdCbW47dAejL11DTU85DLPkO5W/nnGlqt4vXjYZG72HkvpuJRNVq\ng+kMPWFsv4/eatzBxhP5fLZm23zCREwSs0zyAcOqv0k6F40mcVIN9yxPUlgLhscGxOMnMTduI6IY\ntdZ0HWiPHcbmPOTqFrPfWiYuKbaecx5tM39wE50AN4DruKYNFF2XRr1rGvvq23i7dyGefITcZp/5\n/+MFwJn9y76Tz2wdde8v9+7iwK++NEbrz8CxD2KMSqZqFVhdv+vfv6t7h3GwJG37bba2xs67vd9m\nybUKtiVGNjESNy6W0SNMGtMfcFeZ1Lb9Pk3kZbWSJYZ3lVOOntuIpEgdP0J89XoGFqi5HdmeYRpN\nJ70hYbel8rULlxEHhk0RJv/wqpNZpqeVmk2Xy9n/U5ApbRueMoO8xGPUHHDJnX3OSc2Md38Zyvd8\nbL8XjMY+9yjiiYdRE7UheJuAMHcrcN3rmCKfx7Q62NfecffM2+exb7yDqtXQF69w+wedUbR3YF/m\nlzZxMQGCo3jMAzBdj+7wPRmRjAk/5+a2Mb5uZtdXDDup2igcAgxCZqxqkcshfNe5SxTy1H//SnYc\nb34OMxjgzc8hqxVn6JzMywwCxK45wscOZ3FH/suvwKwDj6u/9RKX/lwFUS6j19aHdgRAVHT3ery0\nTDBTJPjPB4hvL9I+Uc/ODWD6/34ZceKQy1cAkqKZLJfv2h3vez00gsgqBjbHwPh8u3mUm6/vpnrL\nIGNX5DZKYpXMimOpWmesGLbtHrTWQhwj/Nyw0cFdRnlFU7s2oH6uTXnREs9UEKPsw5EiutWuAUy2\n3wTBfdhtYphrJfnWXTvXvY8xWsR9P6P81TcproQ0j5TwOiH7vtLHeuKOHOC+73nG+SjN/puzWE+h\nP/E44sNDo+r6b7z4RzIh//4BhGCIUAuBGMTIyEnGdNHH5n3nM3QX/6DMQ8huo6olwwowvkpYQBqv\n7zofuXa2gmDSo7TqTKF10WkfrSRhFDlzTAciABZkqJ2EzYAcxKh+5GQ8KcATDwNnGZvkeMkCGjmp\nWQYGpT+xQUQxotNHdHru31hDznUTG0w5NodRLiGwEkzBIpWm4MXUc45RshWXOTfYRU5o/tsd3+CX\nD3yFH59+nc9PvcpPTr3Ogcom4bRGDZyJdtTM0xrkuXxlnrVemWZYpB3l2VFqc2R+jX0zWzy74xqP\nPHYNVQ8Qy3mWl+q0BnnyXow2ErOZR/UlIpTI95C0/4mPZD0YegjBYX+Ln33oNfpzNvO+GGUC3c0j\n467MpoT+KEMH/hFrRC+AWCO7AzCGyQtdcluCwoalvCDw2xI9UXYLVMF33cXALZJBiAhCBxbF2n3e\nsYY4TlhFQ522jSJENLyRrRLIXuSYQdYksiDjfuLY/aSBvXJGyDbvu8rrehfV7DsqlXSeXMaTkHhk\nWQlRWdDb5XyAVAjFGzlaF+vQ9KHjEW4ViI71aDy31807kVAKC+sPe5ikC8ugLll9ymZtsKMKzLwi\nXfexgfsObp7W5JqW0pKgfLuP6gbIIH7vIORPeIhtm9R99bZpNeN+gfbI30wYoabrbrOTIutcobe2\nsEFAcanL6uMF/MUmE+caNJ5MuvYkDByEcF3CPB8bxS4Zk2qMIi1yOWw0AghKMTQrT6smnue6IiS+\nVSg1pO5b416vtQOdSiUXQFnrgqd2B3l1EVGruq42iZxOr28QX7/pAuyRKo++dJWJdxvERUnw7HFE\nGGXSDHBBm15bQ6+vI0rFYaXdWNTkRNbVxb+6jGm32feVBu2feCwDlVS9Di+9ydy3NlzL2AtXsCOS\nlAc5MjAoBX6sA22ioiSqepi8GgZHyRiuQ8NFS4yAN8OD26y7loycr53XdftN2obdGzgjaC9wHTFV\n4BiJ1lfOkD4NKCMnLxXtXtbBUETu/lChA3lkbFCBdmzWpLNhem4yAYNEbJCDyDFj0/2qH8DqJmJ5\nDbnZdt0Yp6v0d/iEVbdXWenOAQueMkRGUVUDjvobKOBW7PNKsJsNU+JHq2/x56e/zacn3+HD5Wsc\nLa4wk+9iCwbZk9xYneL5tcO80TvA891jfLN7gk3jcTV29+WE1+ORwgLH84v8wszznKosstif4EZv\nivWoyg6vzbzX5FxjntudCVYHlQdfrc/WERfI3BfQ/G7Ww3QNiIaJp97YdJVU3wEv+7/SYXD6gHvf\nzeH3xkYhslJO1phkHRl5bzMYZFLmbCTFBxuFEEVjTRBkpTJW6c269lgzFqBn7MVyEb17Bnl5wZlu\njoBEYhAjaxVs3iWCul4inq7Q31kmOjiHvnyN0neuMvnaSrZuyuOHx4BoUy1gOz3s/8/cuwdZdl3n\nfb+99zn3ffs90/OewQCDwYMkQAIkQZC2RMkMJVEuWZZSkizbie1YsZ1yUqm4nDiplJNUucqxHbuS\nOHbsVGzZZVmW6Yi2JEuiokCmaBIASTyJ57wH8+rpd/ft+ziPvXf+WPuce253DwYQwaF2VRcw3fee\ne+45++y91re+9X39Aef/CwmY7ZF5tu9vk81KwjX6w59Az89JMvvwA9S35fMHZxbkeVyotBK/D/HS\nD2yULOYxo8ddfkdaACdeVwQ57y+0L8D9Yj6WLcmVeWAqxfuoIDDvkwgVunElmOPsGGyYeGFFnw+Z\nD7rRGBc1uAMgVNW2QTSpdLuNvxmAwM2gUVRoxgT3p0Ij0CzMgfdjQPTKuLrv1oW9ah4RxzB9WpI0\nnyRjJlGY61f+2JjpsP0zTwk4ACQLwky8/GPy+s6592+P/YGNfUBoAPX1V9i+v8Pajz6EOn4EMzU1\n1v/aLS4Ne+OeEF/4JMEcFSaCisV6XjcaotsU14gCOSe/8g79jwnQpt68XDKay5ZSpYQRXa+P47Ai\nWa+KWpcC+nryv8VpRvGYdVS2KkYCVMa10tjCJ4loZPUHUqwLsU1hH54v3RbHxuPHBAQN52EvXEY5\nT/qh46Wmiz03BpTu/+II6jVxkJydkZgFSimN/AefIP7tF2j/WZn7rV9+XkSqn/oIAFf+x0/gXnmT\n1tUx68/Mzn5vAEUPmTc4r3Fe4dD8gem3+fM/8mVWf2TExgMRWXtsVoQn5AQCKO7p2Kky0Kqg3dIy\ndxrTLy5JrLLWY+pKitkOrclayXPoQydGlkOWYTptAQSz7N1byHxlPu1D/PhujOjYUWGTjUbor77E\n3BdfQq9tE22PSKYNtz+3f9tY1cXXfebx0nXNzM+JtML5S9SvrqPeukL2Bx/b//l9j+P3HyAUXMVU\nmhFtDNCJxdUM2VQN2w7uSxVh6X0n3e6hFa5hhLnjIUok4M6bIi7tNTTWU/ldA+JtUA58FBYU60ud\nCJ1ZmWhln6T8KOtLQIjcoewY7CFUXpV1mH460RJWovE2tMVlGX40EhV070kOd0mmgsBoDChpx3Ex\n+Ial2x5xoLnDXK1PV4/omBGZM2gcpyP4wabl860tjkdb9F2dF1eOEW1rbAOyoymmr+lfmSZei1jZ\n6LK01eX1pcPsZHUi7WhHKa9sHGWqNuT04iq249A1S2YNSR6xvt2ith50mVyoaN/jYb3CorAht4oV\n/LcHvsE//qn/g43PDUk7qmRvTTq+TR5HVRK18ndpjt4aYFa3UUUbWGRw7QY+jjCr2yy8llHre6KB\nZ/7bFtcIgM9IFqXSWc46YX0Vn5PloimUZeONrkjQC2tSNZ6D6vaaJPvGCIhUBKYVgMtbAYhUs4lv\nN+SeJGJHrHeGMl+9xzYjdo43sA0BaVTouctmHP2jDjOE5rKmtqXAKlQrZ2Fmh80HNAxHDI42sXVD\n1M+lRSxSRCMRp+5eNsQDcS/yBmo7js4NR/NGRN6C2prBxaLf4LUksdh7CwYB0jIW2sVgl+7B7lGw\nt3azgspjjRM9pZUwgQA728YcOYTu7ArcXz1P+1YQhn7zEq1bY+0OPTUl7QD1+jiJCu1qpW6Q95Nu\nMaHC70ajYElvhN58YAE/HOLW1uX1zpfuYyB92EU7WpVaDQL82K1t3LqAWIXrSvmRWYqZ6qAfexj/\n9GOi/fPtt5n6lZdpvHi5dCLaM7zHz03zzl9+gv5PfJLRYycYfPpBbv/EWexnPyZtlEgVpPPF50lm\nY+m5DpU4cos5+4DM8fchJPhdGcW+kMtP1obhnGZ4ICbrxhMCvnc8RJXRUwnetRXAJxqAzhS26UvW\nUdwXEwOvxN3PJK5sKS0dLAMDUeWyZ/kiUIsj0Dpo2NmS4apTJ8LSAbjS1mMGopEnLiJa1qGwx0kg\nluJ6O2Ln7D2DY21Gc+KQ5mrgowBixZ7CeGDe7DCnoaE0LZVj8Ix8zDET86Ga4uONm0zpEVu2ydtb\nB6XQkCrsVo3Lbx/mi5c+yjc2TnFtNMeLoxNcSQ/QNUMerd9A47iSSVJ7rLbGw90lDjW2aeiMbdfg\nhf4prm9OY50mdfskm9/tsZsp4R3RqRPvyzJ3/+PK+pBfv1H+yszOoo4ewn3kAVm/nnuVxpV11Mc/\njK/FE8+73doWEd9KEK0bjbKK6q3d2wKWpXLecYwO7lzeunFCF/Q8qu1l8j+VsFMr/InD6J1k3Maj\npcqvu13Sg204dIDk6DR2aRk9zIg2BzRWhuQdAbbt6hpqmKAevp/05AK2XWN4cMwsTA60AhC9xvFf\nlHuuz79DYz3H/I4A1ir3jB4KoHx/yOxXpY2vsSTXKL90Rd7Xbn/v2lSrI2hV2OXV0o1x8u93Aa12\nF0P6Au7vrpKr+vg63v9PA+Dy1EeY/SfPMvlCNcGmUPX6WKwY9mq9hGEOHEANRuV7VLtVzp+yQFE9\n36pWX5hXha5U8b7SKj4Ake5MqLyHue3Df3UBAoTnQFhAGX51nes/vADA1ofH7dfFKPbBB/5h4RJr\nWflYiNOe/JAwjIH5V0OLx5vnJ7/0vSx8efbGKuHf3V96jvlfe4vrXzjI6BNnMLMzAegNrKvq+wIA\nBLtAOm2E3fuRh8Qafm29vGeDH3mcE79wCZTCPHAfjS+/VAI/WDvpEOr92DQjnMN4vVDjVtXAMiyc\nEPFu8nyKeV9JiquMIbu5JYW1KEI1m7gkwaWZ3FNthC0JRIcPYTc2xBa93SY6vFiuZ/orLxH9+9dQ\nt5ZL/bWClaK+9jJLnzsMxuAOzGA3Nlj7s5+i88XniU6fIvr/RMssv3qtZHPGNzdIp2us/tynOPXf\nh+cqy0VmYLtXFhG/F8N5EZXOfMTIxTg0T7Yu8eVP/10e+6NvsPJRzeBQjKvdBUooclxrJQ5RuvxO\nu+NOoJxr+eWrRC+eIz06S/OtJfSaONO5nX6QUJBiuPdeWI6Fa57WdwfRivmd55PC9fsNbSbY6ndz\nB9tvuK1t3P1j0KeI1W23QdZW9I/I+ehud+L4hYsvgP73L5frSZWhn1+6gmo2iJ554X2xlXaP3zeA\nkK8u+MXmkWZEK9vU1gbo3JG3I1wz2ks/K3qRldoLECHJNB5cTaq2OhOhysJZyRtF1opQTmx56xte\nrOOH0s4Sb2dEI2k5KxJXVU0OHQL+FCwhN660SoAuyKnOXNlKVraUhdcUibr3fkzdbjXIWwaTiRua\nKgRHYwGEcIpaZImUY2hraOU5VVvh0dYNZsyAq7nnXNZn5HO+3H+E/+mNL7BybgGTKPqncj5y33Vq\nG5rOVRFH5kaT4VKH0UqTC7cOcnltjovr85y7vsi1HUG6VcNijGM4qHN1bRZ3o4UZKnQKOtGTrQv3\nYHggQ2O9IgugkAYG3vKhWsILf/Dv88TPvczGGYNJJnU49hslSOTlXqtRikoyfH8orVo7A9R2n9Gh\nFtnhGRiOaF7dROce21C0bo2ELZblqF5ftICyXBKyqILchoDOZ5ksklk+BnaUFqpo6M1VmUNv9qXi\nVWySxWuLBD8srir0wrq5rvSZRlLxVYWQdWRKFN+knqwtyZtJob4BrWuGxoow8ZwJDIiZlFojY645\n4Ik//BqDjxxjcMAQ9TLi1R0OfX2bzpU+zZtDOjdz5t7MaKyLbtBw0dE7Zrj9FDRWPPV1uQe90zB1\noY/ZTuRZcPdeVBoCgOZ86eJlpqbuqBGhomistzFxkMpz7B3eeezGBvnSbbFLv3x1IlACCU6m/vlz\n2PkOo889RvzWNdFdUFo2J2tRnTZ6ZloC5bhG4aog4tKqpMSWAI/SUk0INrLCyFnFrm+U9vM+z8bB\nVdAYejc7UxVH4zaBTpvo0GJZPQVp49LbA2F4TUtLoVhk7nWNKEZ030nUKOX4l3t0rvZpXlhBZ57u\ntRzTz9h5eI61P/OpclNsfel5ETct1vbl1ZIyvpvlda9HtTVM56FyriCZVozmDXk7evdKWfGrKtM1\ngNfKChOovuFprEJtQ1PbhGgU9pNcnuH6loA65bEK1mkBBgVACIB6Dd+sgROmasFs1Zml0M1TQd9O\nJ1bYsC44aBYFEOuFZeRcuR6pWo3s0AzJtCmviYvARZ687TGtnFqUs1jfpqUTruYxGZ6TUcTj9Zuc\niddYdSk384S+07w4OMUvX3ucK7fm8caTz1ioOWqrht71Kc4vH+DltWP8yvJjvNk/wtV0gXeyOa5l\n8yxnU1zJFriezmO9pmMSerbB8737+cqtBxju1NkZ1dkcNe+6H3zgQ2kKh7GCNeH7Q3Hsex+U8bsN\n8+hZbv3sw6x/8iCbZ8aJl71wGb09RK3sCoDDc6viSNq9tJlwzNmzNocWZZ/l+F6vnM9VBpCq1cas\nIlVpmwnVehXXMAcPkBzq4G/eLtddn+eYThvVaFC/toFa26R+bQP78Ydx9Qj75nn0tWWa5wW8ECc1\ng1eK9Ueb2HZM+/qw1NyoCt4XFuQAzdcrLRiB5RedOkF6cr5sz9BJNnYvgzLp+J6NXcCIzzPs5iZo\njZmawiwelL/fbS/dr52jkkhEx46K81a3U2rSFSKlyWxop6vuG94H8K+4x37imHdKzvxgUF5P3e2M\nkxylJtoOJ/bYSrKv4hr5jZvSZrSrMl6ci34nuFkVDNcAGBWJVtmqtDBHdGgRu73NaD4wOirCuWXi\nWrjYfX1sfa7Dpbv8Y2PtpLnfPMfqz31q8gvfa63EKkNod6s7wlg+/Le/Tv9IjY3vu09A4ap8wZ7j\nqXHbuRe9Ht3twkVp3dXtNoMf/yT9n/wkrRsDbv7EaXb+w09CKDxFYX76wDjU7XZlLhcaY5XPDedh\n5udKlo6e7k7MjeJ90eFDk2uMGYNaE3PVSX7lej1hOM3PCZNSqxKgL1/a64HWuPkpEYs+LPo/Ko7A\nefTUlDCdhqPSMWzjQ6F18NW3MLOzLP62rCX5lWulaLlZmCc9JvMxPTpL7cvfYvGLb0nrT1zDnr/E\n+meOCcuzYMLtZgPeg5F5U7aN2QAXXMvmuZjN8jeP/Rp/+6f/MSs/lLBzpLaHaaMKELGqtVkUup3F\nDfcXWjdnH2D4Yx8nOnVC5pYxmMSC0QIEbW2XhVE3GOBtAAUL587gUndXQCi0rRWtpO86djnw6XZz\nf/LJux2i18N/67XJUziywPojTYYLitpHN0h+5OO4h0+9J9aSOizPUvr5J4UFudMX586nH/s969z9\nvgGE9h1KiUZPb0i0lQQ2QaGV8j6OUwTbCtFCsF6s1+uKvKlIOwrb1ERDR2NDtISikQ9uXNL2pVMR\nip6g+JfCxNJONNF/W/yUizAl6FOeT/Hjxgu2UkKFU406+UwTF4fFsnqnFHjtwSq8V2xnDZZGXRIX\n01AZDZWRecOXtj/KL25+nMuZ5sJgkZ3L00R9hYs99bkhIxtR3wxi2kOIe4poW6Nyhe1HDHsNkiTC\np5rUGlb6bdiOyFOD95AOagIG5VLBFoHu7+SGf2fDhgq0Q1zHMu+IMfznB5/BP7FdtluUDmP7tI5N\nBB4gbVdhqFqN9c+e4vpPnuT6HzJc/4Em/Y+dwE43aSwnNNYdOslRRXLmPT5NJSkLbRqqULUvKPh5\nLgLTYaH0AVRgMJyc495TquIX56OCS1b1vVo0ilwjVE+bsTBwKpXfoqUxGjqylmI0L+0dJhNRdZ3J\nfCvc6OqtjI8dvY5WnsONbYYHIvBgeokwjwZpSEA9tc2UuJcRDSz1bUdjWUNo20tmFbapqG0p8lZg\ny1k7Bk+/l6MQl9MqaO7sZQ9458uETkXx5IZQpb+/D1tZszUUvbLhKACEqWyWW73x+lKrBSZTcA1z\nu5wQijmrlbDDCoHYILxXBG6+Ot8rNH0fqnPFiA4fGotDV1tQdvrY1TX8tbF7C4Df3EZfujnhauCT\n5I4BjGs38f0B0a0NzO1NsI76zR2at/qYnYRo4BguKtQj93PzLz1dJna+HqEfe1iqfDaAE/r3xxZW\nMEiVk5ZLZQksGc2EltCu9WXyINVAGAoKto+kAKAsY80irdCpI+6LyLPOnfTx1wIAZV1gG1b2HK2F\nHRT2T1VhtlK4aFa1h1zBbPWB9bobFFACUtZqqKkOyXwdWxufY6nZZjxKeWrG0jUjeq7BlWyBNauo\nq4iWgpE3/LvBKf7fwYPcth3WsjYrG11cP4bIo1o5OCk8mB3NaLvO7c0uV7dmWU463EhmOTc6zGre\nJVaWgavTsw3WszY7to7zisTF9AYNfGpIk4hhdgfh2u/aGK8xE/c62M+T2+9IE6t83pTi1mfn6X+6\nz/apvc6f9u0L++99QGmqcKfPCOuCMkHnLs3E1j7Sewt1WT7WCzK7k/VUwObZDlE/F0vpCotStQPT\nJOj/+HqNrfub5N2x45drN4lOHie5T66ZWdkknVJsn6yjv/km6WlJ3gpHoup18tbhAltAt1q0zq3S\nePsWPjLEb1xHf0TaQdTGpEW6tNfe63nzLqNg/aUp3nvsfbuERN9L0rLP/R586AgszMJwhAr3pWC9\nNm9JArWfDbbPs6DJ8S57YLW1ut8fF8qMGbcQBRbBvqMCXOnArFONhrhy7vM6e3tZNO2m92o/mdlZ\n1MlQtbcOe0jAr8aanKPdfavv0I6x+A35vvOvVcCWtXWSuX2u//e4iLHfmPmnzzI8oEOsYcq1HdjL\nFILy3vgsFefSwUCYxv0+rS89T/tfPY//1msc/LtfZ+o3Xmf9o4HdW2hVeQ9xXK4j+7cGupJ543b6\nJXPJrq5hCtH7So6VL92eSISrAJPbFY+oWq1cy+zKijAVA7PeLS3jdvola9P1ethOHT9KpL0pFOay\nR0/ijyyU1yGdCuzDRJXtiW6nj1teFQBcKxpvXBcA0jqy4vVpmKcbG8JYfPysHLOYauFZ2lOI/K4P\nj60knpk3pD4i84ZN1+J83uF0tM5PPvoS/SNiqiFtGm7M+N+dB1cZqEFseCCq1QAAIABJREFUvhju\nM4+z/Bee5vyfPsC1P+y49cNH4fQx0Y5645KAxdkuTRLv8cPhWEIj5FbvqcUu6Lnq92D7DgHEDMUM\nNxzdeX2qjP2Yv7rVIjp2VPT0Is3WGUjmHdtrbbK26B2/F0ZYEW+33lhCdTrow4vY1TUpzv4emfN3\n/UZKqX+klFpWSr1W+d3/oJS6oZR6Ofz8SOVvf0UpdUEp9bZS6vPv50xKho/Wor1S6TfUW33iXoaN\nRQPlrqPa9hMSYDPMibdTtk9EDA8o8qY8dCYFM3SYQU59PSPecUQDi7audBbTo6y08QUEALIWlWRl\nm09h+Y114b9jZyidO/RIWoQmKrbFKB6aeg01PUV2ZI7+ERGSdhE4IwKd2oa2gSAsDbDc73C9N8Ot\ndJq+kwXxS+tP8gv/zw/wz37j+/g32x/leGM9AEnyM9Uecf7mQTo3LM01R3NFqtD1DUXUF9cstRmT\nbTYg19y6PcPG0hTKKnyuaTQFobdN0YsxI4j6atIJ5x7MHe8Vmdc4FA5VCkxnYQokPueI8fyfH/tn\n7ByJQiWewNpi3PO6exSiaEXCeWCWCz93nNafvsnJH7/Exz55ntGRjKxjGBxuEu2ktG8GavwoKe8l\n1gbtoKDdEUAgP0pkQYmkhUxVmHGF2LEqqM2DRKwGYbzoAaVLVgARKVqCWg3R+9jYwfQTmbda46Zb\nuIawS2zDkDc1g0OKnROOvKnKhHN4yPHQF87R+oMr2LonywzdeMRUPKJrRix/HOK+tLCpJBUW1TBF\n9xNMP0UPMswwo7aZM3PR0VjzHPqap3NdWA+1TU/7mmFwYkp0SLJ8YtO4Z2tOsE0FJthZSimxjd/N\nnHFWGDnh546Jk/dC+4wizMy0uHQdP1Y6H0SnT2EePYv/1GOonSGtpQTVapXuFiABhh+N8IOh3Fcd\nWtt8EMEO9PyqeDXWYlfXpZIZ7OndKCn72Itz25O4JclYMHPxID7L0AtzkpxWgm/TaUvAVFD6w/Wx\nm5v7VlnyJx9k+2eewizMT1xLdf2WzNM0xY8S/E5ffvfWJeyb54l/+yVO/Mo66UKLxRdGrPyhk2z9\n7FOo3LF9VjZYu7EhmgO7krN7Nneq169gCRXFeysFBRdB2tHiQgnvDQzyQcA56PkkXcNoXmEbsl7p\nDBqbltpmRrQ1pL46JOrL3uRqBtuMIdLCUCxYPMVeE6jUKnclM4jC3MDa8f7mCZpBecl81cnennxv\nNKpRRy/MMTxzkJ0jBlurOE16ZBFWoI1juiYtzTeyOS4ki1zNZ3F4LPCV/ln+2is/wt946T/g6/0z\nzMd9jCno/564nmO2Dc1VT/umonG1hr3eYn1lisub83x74wjfWj/BK9vHeKt/iNcHR3lz5xCrSZuO\nSZiOhhxvrDPdHoKHrFdjY7tV7qH3Zt6MWZ0TTA9jhBEcEuw7usncJZEskun8sx/jJ37uGRrfbHP8\nt3rMvrKXDu8rNP2JJCqwg3a3+JiFeVBqj86atxbV7UgCsF+AvHu9qXxvPT2Fr8cl06Jgh6h6HXdw\nNojx98kXp0kOtUmn1QQomc80uP5HjnPpP5aYMb9+g4MvJHSvpfg8KxOu8qPjWllAUbW4tIjWszOy\nV9druGs3xWno1bfQrRb5rSVxUQvDbm7tAdO+F2vOxBqixYXSD4cle2fPuIu0QjUhV1GEixVqa0f2\nhTzsASEh9W9enFzPw/4j7T4V9ltVP+1dWixUOL5qNXd9x73tP9VhFg8KO40wnwuG5T7Vcf/gCdTW\nXtbq8k88xPJnJKnPr98QbUjg0LPyLC28cgddwV3nNPWstEd3f+k5OYdwPU/86lrpkicn4ss4797F\nOXuZQfsNMxJDlML1D+/GIs67W/YCOGOmpshv3CzBwj3HfPQsql5j9ldeJzq0OOGo6Ho9KZjGtYkE\nvnAH83kuJhZVN1FnZX7uKoiZsw9I0WuXflB1X3X9McgjoMU+SbNzqEY9nNsYfIhvrFfY+Ra7sSHt\nO+0a5lEBcFpfeh6AB36xJ0La950swf9CU6twKvRpSutr5+R43/g25pEHufmXnpa/hTbz6X/2HPaz\nH0N3u+hWqxQvl693b+ZO5g2Ji0stocTFjJzEXJu2xaV8jkeb1+mfzqSFN5y7Krpeqmul0bL2VllD\nIb40Z05z4WdrbH1yRH4go7YUc+ClPirNiU6dkHvhpIPGBzHq8cXQEkummbQAhn303ZjvcqE9rj94\n72LSFYdNnyTvqTXLnzhcMixBDBYu/XeP8eZfWyT9vg9jVreZLjpKU83ahzXZzF3Oe9fIr10nv36j\nlGjwL7w+Zoq+z/Feyqs/D/zQPr//O977x8PPrwMopR4Bfhp4NLzn7yml3husqZRMpgIYijTEET6O\n8PUaPjKYnUT0gAqb930WuEJYWujyblzddCJypZKMhVdHdG4IMGBG0Niw1DcSsXz3iK3uKOgqFJpA\nidjCj89ThYqqk6Q4t/JjxwG4SjMBFEpGSiWgLkCjyvf3RuM7LdLjswwPNUowqppwKEsZVxJ5jHa0\n4oyD7R1mY9nE5s0OQxtjmx5X8zgUPzP9Ej/86ZdwJ0aYRLG6MkXjjSaN1ZTatqWxJYyOaCDAjs4U\nKlOYHU1tzcBOLIDSXErcykiTGGUctmtJ5jy2FhKWyWrkPZk7ooJvgo6QYuQN6zZm5D197+h5x5lo\nh42H/fheMK60CxBJqY4vf6wAf1qCo0PPWy5dXGRl0Ca1EZ0LMc3llPaVHfT2gNqt7eAQN9n+5NMg\n9GtdxSpe6KnkQUfI+9A2FuZO4SIWAghfaSsb02J3AUO1GDU9BUajBgkqt+hecBUCYQXYkODlvkxg\n6+vSIuaDYLlrelpRyompDWzL4ZcbPHvzFJtpk5GLOXJ2mdlvLct3SNKxUG0AQV0jwrZjlPc0VzJa\nK/LcRCNH67bDZNB9x9E7EZHctyDPzSirXrN7Mm/KURVqnu6iprroTht17DDRocVdr93VW3+H4Xo9\nuU/O88Z/vcgP/ea3eevvnMWfOCQVDKOINgf4nT7R65ehAHharXGAPRxKlT38uNGotJ7XrVYAfEb4\nPCut6Qsx0HKzCsFLwQ4qW972+x5KYW8vi2j05au4jQ0BtQ4cGPfI18UVwn/6cfo/9BGxmTVG5ujT\nj7H0Xz5d2u/GNzZpbFjcqcMyL4thjATww7GlrLAJHLrZxByYR91apvHGDernlpj9J88y/QvPYd84\nR+dfPjcGuLzfz3L557lXc6cCAvnQYukixGErEnDc1gV8fddRVNTCj0pzsXdPHa2VnMaaMPcA4oGn\nvpoSL4VWvUEBNkt7V6lx5/0e8VufZajtHdTaJmprBzUYyd4VROIp9YNE74y8sl75wCRyYd8NjqBu\nusPwzAEGh2S90vm4LVc50DaA3E5RMzkNlXEw2uaB+m2OR6IHUAvz0BiHMY7ERzzdPs/n73+T9sE+\nZJq0X6N9TdNesrSWHa3bntq6Rm9GrG+02Rg02UoaXNqa58WlY1zcWaAbJTzYWWYh7hEHcbtPL15i\n8dgGxA6X6Sqj9ef5rs8bVWmhCqFXngsgGkUBsFO4+fdWsbzTiJ55ga99ah5v4PIf7WA7exPkooIN\nTLAAfWATovR4nQBh01T3tEIXSCvsXEfm0a4Kdmkdrip6DkqXFVKiCH3pRskQcMORrH3Oo3vDsUbM\nMMMkjvYtW4rUq26HeH1AY91z6p+rMhiuv34N29CYh88Q7+xTJXZOEhJrUY06/vgibnYKbi7jN7bQ\nzQbR8WPCkjy4gJmZxi6vTAAm+zjD/Tz3cr8Ko2wlqcUUOk+td7b3FgD2G7taxqoJuc9zmr/5Mjf/\nyEnyB4+VulSFzoZPElSzWb53gg1USZqqAGHZSlhtmSr2nxCfFK661fOoHrM6dKOBW98skz/X749b\nuiqJfnHfbDPe16Wpey1j/pUKULS2gW63ia+usPXHn9rT4rH7XArWidvY3HPuZmFe7NfbY4dQ+eP3\nKM4phlIT7nHFOPi7y9iFKXRxbwOQMf5SfvLeOVuKR/tRwtK/fnjiOcl/4AnZo1fX8MMheeGIV2WF\njEZ7dAALd7DCDc5nuZhjhAS/iKvK8wDUVm/82UU72y7WkW40cMOR3LPQVlQ+K86Xbmt2e4fo0GIJ\nUEanT5FfvSbvnZ2ZcMWKLt7CR3qC2elfeJ31P/UpsSJ3vjz/QqDdDQa4fr+MXczDZ+D6Ekf+1tdF\nYPq5V8etZb/zIoOnHxATjklQ9ee5V7lVAIQsioGr8U4yz/V0npV8ihvZHANXp7u4QzJd0W1SQRs0\naAL7AAaNgUUt8gfF83n+Eg/++W9w6hc0pJr2NdCDFFbWsTeWJEYMACIwMS/L+eOctDCGebIfg7EY\npV5nu/Wd6/e9y3CvvjXBULXb28y95pn6VjjH1XUOPL9B5x2NHmnSWUfU+871otzmVvkd38+4q6qi\n9/53lVKn3uPxfgz4F977BLislLoAfAJ49t3ftv9wjUiIMHFlIS1abmCPNoPaDbqE9yjnUYlBGYWv\nx8SbI6YTi7JNsrYi7uXonRSM0PC9Ca1qQ0lSBZSpVKesH4M5Wo8/07nALAlMp6JiYYPYtA3AFK6C\ntIdjxhE+NiSLbZJpI9oQm/IZyWwkFPzQ5iatb0L7z6zhaGeLB9orzJk+l9KDOK/5vpm30J/15F7z\nifZFFnSNH519maUTXV65dga9GtO+6YVeVrR1GkXa8ehcYUYK40FZha17vPHUp0fkWUQ2iFFDw9Tb\nBtuAnftzbEdRX95FC79HcyfFlCCZCRH+y8lx5swOm7bFxWSRlk5p3beNbXSJ+sKkKZ3HFHI/VHAl\n2/0BTqqK7ecuctKfZuUji2w/2aC16qld3xCWmFbyvmr7YPFvnGSMtvL7KJJ/KwU1AU+qImFEBq/D\nImqdaDtUEryq+weZFSvGhRm5DFrj2w28UuitvlTglEKPwmJqTLCO9jRXvLT6ORHE9RoaNw1frZ3F\ntDN85DE7mt56m1vKs9lp8fj8Dc6fl97rYp7LJVRipDPKIRUGQUHxby6njOZjsrYkylv3a5ornp0j\nNQYHDzH7zaXqd7s3a05RyTQGzPg+L33hKLau6J12uG7OmX90GPW1lyffo7hzhaACKrrBgAf/3Df4\ne3/1C/yVn/7XXHziIN/+42dRN1cgzUICJnPDDQbCLKrXsVuiC6QiPW67KCybnR0Hv4GeX20HqwYO\nEpiPZ3S5ed6tZal4rdLCXCjm6kDYXO7kHK3rA9Q7N3HB5S66eIvG/ffjjCI6foz84hWaq+u4+47B\ndBcKsc/tEIDHHtKxNWx09Ah+qi3aV9ZjX39bqn+zs9iNDdGoSJJ3teq+p/tVsXYUQ0lrFwiw6hWl\n09budk+5J5PtOWWBI/foYY5vx0T9nKmrnmTasHNUdNCi7VEpxEqWo6zohJnchaJHOrkPej/WKis/\nTMu6U6sFB0811vFyasycdG4MmFo3/rpa49p1RgebDOdlf4pGAojZhoDLLgZbExA+68dspxIEnY5X\nOWIsXV3jXJZyI5/hkcZ1/tRDz7JjGzzYWKKrR5xtLfHO/ByvbDVQ/YjGmifuWSlMaI2LFXlbkfVj\ntlQLpT3eKZqtlJqxHGlsMhv1uZXO4LzixfXjRMrxfYcv8Gb7EG9cP1y5RPdo3lQZFAD1Om5zC3X0\nEPb8JVlL1zf3f29Rqb9LpV/V67h+n+P/5jZ2psXWmTbT36j8PYrEtALKxK4cwXHQp+mYKUBYC4pW\noLJFVVpYvQO2d2SPmgjUJ2MxFUXobhd36ggsb5DfuCngS6OBTzPsygreWWEHbGyNLey1JtoeMb20\nhUWYIcMHD9K4tsXcF1/CP3w/+tGz2NffRkUR8bYUX7JWROuRB7FvnAsabEVbSKMENPybl8pzNgvz\nuONH8C+9Tvr5J6ltpURJyspPPcLCP3i2vLa76fzfyxgZbfDeY+ZmsKtruAtXsE89gv7KrjXyLnMG\nmJhbPks5/EvnWf/8/cy9PbdHdNUPh7If7QJ+Cp0XedEEXZyyDczvAgCSwErr9fe+fvfXbbfLfbX4\nPF0RogYmwC09M41dXSM+f5Pqp0Ynj5NfvUbj62+jF+Yo36EUrt9HT3XZPKPZN1VU4gDq3ZiVt1tX\navBHP0nrl59HPfEovCmtHeqxh/AvvU6xadyTeVMpgI5/5+HYIXhDGCflvnruItHJ49hsHyDV+/G9\n3dUS6PMMn3kO/9Qltn71JKsbXU7/sZeJnnkBV4A6zpfXDGcnnqPy97s/MptM/qvaRebgggB8Bciy\n3RsDAN6Pj6+kfUs3G9jtHZRWk+wirQQoGo3Q7SZuc4CZnSVfuo1ZPEh09Aj2nSDqG05y88lDTG9t\nY9fWpR1xMIQji0StBvlV0VLaOamY8w5vi+/nUQRW1fyc7KndNvbCZeyb5zGPPEjUmyL/2suYsw/A\nMy+gH38EvKf+b79J/0c/QePXX6jcjnuz5uQuOHs70HiMctxOpnh+7RR1k3Nh6QB5EqFjR70ttvNF\njFAyjoNpC4UpT9ENsY9OTvxb3+JM7zE2z7bQW31hnof4tsrYmhiha8ITimBaxL9V6DaqaqwWQxVA\nlXV79qn9hpmdFa22MLd0vT7B2HovQ0URPs+Z+dLLzJ4+gQvO6WqQMHMhI+3GjM6OSA60eP+S1ZXP\n+eij5FM14teuYs4+IC3i73F8JzYbf1Ep9SeBbwH/lfd+AzgKPFd5zfXwu7sPpUpABSP/drVorMcC\n8nAshwW4utf43YH2+PWFhoJOsnADJAjXo5zZVzZxrRg9yFDWggUzzLCNKPQiegmutYZ6VCLkQq/f\nnfRXPtN7yQKMaLcoQKV5WblVAR8ov3OwAk8OtMibuhSoczUdqs2UrV4uLpIMDxqsU+gAgqzmXf7t\nzQ+RWsOfO/27/OzCs/R9jaNmi98ZTfNvNx7HeUV+MMNsRETDAJalDuNAdUypWRSH/TVvgKsBxpPn\nhnojZdBrg4d4x2NSuReNxT5D1cK9+Z40PT7QuZN5QyEKmXlD39d4ZuMhnn/nFFkSYZbq4CAaKmzs\niGBC68iHOadcmDsasOFeOiftiwGsaT13kVMv1ui9cYLaViItT0WSHcfjtq9EtGD267/2BbBZBFJZ\nWva+AsL2qLbCbAX6agBcCtplCSYcO0RyZIra7T7K2qAh4nGtaJICmIfWI10AlZ7WqsXWNMmUoncf\n5HMpzcs1Gtdj8lZEpMC2HY1uwiiNWU463Ndeo7QG1sh512r4Zl3YBQO5Vr4RE3sYLTTIOhEm9QwX\nFI11z/CwJZ3WtG9oTOLJDs/gL951Yf6A15yQnGFQzSbZ8QWGhxqsfzLjwOIWbnkKU7dc+Kk6D62f\nwb596a6HLI6r4mjciqUUJ//6C/ybn3+C8//zLP5PtHnwH4xwy6uSrANuZ0eqaRsbgSUUHDe8G9vB\nulC9NwZltGxkWoXNbjJA0/W63Os4EvG+IuK6Q3ukmZlBtZr46Q6qNxDBTe/B28k2EW1gMKD2WrBh\nrbSK2dvLzD/Xwc20pZJTMHhe2oIH7yc6dYL8yjtBP6Q2IfynGw38YIjf7pWfZw4cwG1v45OE0Y9+\ngsavfYPeTz3F1MWdvZXbu48Pdu5MXD/K9ScagnIi9lwwJqOhnQSDisReg0eH1tDw90Cz1kkuFvIK\n4u2UeBvqG7EwcBK5Zj7PUWkma4VX47bU6r5krcyT3UF+TQsLUUvxw+uw9/pQwBjlY2A7rBtAGXBl\ncy0GRxrY2hgEc0ZEWG2N0gnT1T0+9qjI0zA5FrGwbamYnkv58s6HuTA8yA9Ov8HnO68zcDEjH/NW\nepgXt0+Kzl07JRlJkUSnFjOU80ymVdBWUviNmuyp7ZxWPaUbJdRVTkunTJshy1k36AjJs/TpuYtE\nyvJbdyf7fXDzxjMJBjmLBDtMWBdPVOWLUVTCg1Dzu2kkFMGvPXcRtGH6G7sScCd6UtIO4sbH0kFn\nrDh+tU2kLGxUQCnv0LMzZI0IVbCcitONorGeTDiGnplm9QsPSkvXS0Fo9bowhCYo7oXI8My0tIQa\nhRpksLpBdPI4wzMHWXm8xmLaxbw5wtxcgZkpdKvFzkeP4WqK+K0t4oPdkh1V2qAbAzNT+DjCnb8s\nrbfdLmpxQVxgt/pw6gTRazfJThzAbWxS3xqzK++ovbT/+O6sOUoJ06rZgKOL4joT9HN8khC/dQN7\np/cW98NNxtUT/w3Drqww/+9qEwyy8i3V4tR+83X38fYBgvBeEu7by5ipDvmtJe42Bp99lMavCbpZ\nJFh6bmZPK2MJXoT2kkJIGgT4861Qoe/1SpdRAA7Ow+oabmMTfYevpWq1iXmg220Bkbrd8jyat8bu\naKWLWZpLWHl3fY/v4l4lz6594xzbf+wpZr98DmanyQ7PoL/6kgAaBXt413woYo+J+10ANIsHsbeX\nmfrhi8wdWuTc3/gUp//ysxVm2OT39kkiLWRLt8dgM0zOyxJEVCUgVbSyVtle1etevLYKAPgkwSYJ\n0eFD5LeW0O02qlEXo4+dvoDg9Tp2SxL8koWy08cXblXhuPmtJbrn5+HQAfQoEWZarwdv9zAP3l9+\nRtYt2q8tmBpKyzqr6vK5OAu3BdxmqoN945yA0Neu41qyZrmX35CvVK/T/tp5Bp//GPz6L93tDn+g\ncydxMZCBhi3bpJ/Xee7GSbq/3MVcGfHA7S3Y2EJNdbELU3u1BksASOMLkwso853iGa4O9ewrzD4L\nOWOGn7jJxbKE7F5Hwt+LuLtwVPXeT7RGT4xQNC3iy3cb6qOPom6tjvO3MJ/ezzBTU2x/7mGm3tzA\nvnEO3jgnBjadNhtPLpK1FPUtGA4i0q76jgAh3Ruw/WCX2Stt/Oa2XMP87oEOvLeWsf3G3wdOA48D\nt4D/5f0eQCn1c0qpbymlvpWRSN+k1vIAxgZvlNDfNRIk5wULhzFtvRhF0OqcsCrGH1JOxjFbR6jv\nOgTPZn0HPRhJMJ1k6GEm9vTOS2tYlcbqC8vdQMsvWoCqmgCBwaRyi69HY9HOop2sAJWc0PKL1w2P\ndAIzSQ5ja4q0o0nbGhtXdIQM+Ajylji3TDUSNJ7ERcTK8vDsEse6m8yZHWb0kBk9YNM1+fLmh/mt\n8w/xyjvH6MwOcAdShgsaH2l0ZvGRImsF9lEqPyowR3RGCGYVWntMN8O3LKufytn6viHRTEq7kWKm\nM0azd514H+jcybcGZBWhs28OT/O/Xv8cX33pIdr/rs3CM3UOvOg5+IJj4VVL3C8SY/kpxMbzljgC\nqRD3yk2oLGDNxtg2cZTQ+crb1L59RZLYLAs0Vlei36oQSvReNlHvx2h0YHmQ55AkpSZMkXSpVhPf\niMf20Vvbe2m1AQxSzSa+HguzaSQAle710f2hsL+UwkcVgCkyuFqEizU+Uug0iMaG+45TZNMenQqA\nhgdftxyb2+Tk/Dorww63RlO4pz8sTI0C2IqMPBdpJSlVimyqRjzIBSjKPd1rDluDmdc10+ch7cLw\ngGLjbPNuonkf6LxJ/VDAuyiC+Vk2nz7OlR9rsfphw8l/pZj6W13O/m8jzvz1EQ/97yuwsl4CM0pL\nhVA3GpOAX3WEIKMIdHyWY2/e5vR/9Dan/8pz0pI1HOFGCT5N0c1m6SbmBoPJTaoECvW4slIm6Psw\nfkLCWVrJF85Gu0Z0+hSDH/+k9P9bK9TuS+8IiB0qe5WLJ/8thDpXVsQadfEAyQ9/vNQKcleuo966\ngg/BVcFWclev4yvgUdXGWjcauMD8cTtC10apQHvtSEB0fh3z6FmaKxnDQy3804+9263ePT7YuZP1\nxyBQ+FFWdLVaKzmdmymtWwmtpYTGSoIZ5pPuhY6guaLEBTCAQ+OL48dOYdaXVu/1lQG12z3UKJH5\nkSSiTxbalaumBQWY7fOxLWvJKqzFwpAoBKaLdSbSoeV67CJW7lmFFpH3uE6D/tEGSVda41wQvbax\nKgWwvQYfiY6Sali6MwOOtLZoqJRtXyfxOQbF2cZNHmgu09ApXZUzrRMsilcHx3lp+ShXVueo13J0\nNyPtyn4eDSxeK/KWsA31SGGGGj1U+EST5Ybca4xyTOkhx2pr3N9Y4WeOfZO/eOoZHm7eJPOGT85e\nwb97SewDnTd2p1+2hRVWt+9Zv6C4d85jDh+6oz6CiqKJlowCCN69VqlaLKBzNbFt1Ev3nInPvNN/\nAXtknmi9L0yJqhZRVUzaO3GBmpniwFduEH/tteLiSDI5NSVzGcog2RXXKg6C1Ujy7uOIeDvl8Ff7\nxBuB5TQc4Zs11LHDYgKSelRkiF+5OFn4cR4zN4sapbC8NqFFoZKM9MRcEI3VoovST1CdNt1/IbnU\n9k8+eWfwY+/4YGPktC9sB2OkrXZuRvaP88I+KZJZYAL82DO8w0xVxJV3aeFMtEgrRX79hlTC99nn\ndl8LAczuAHYUxbFdf/fNYE9/J42hyufqVovOaxUmcdg//GDcGlK2QoXPccOROMNVh3Vw4/ZYNHg4\nfr8ajDCzs7jRiBO/uSWtjZWh220p9FTiMdfvE50+FRypguvis69gzj4wUbhQa3dg/k2OD3avovLd\ngl5loWky88sv47Z3cNduEr14bnKPr7aGlTFMilk8UMY1Rfu5bjSwt5fLmCG/vczp/6ZKSZT7rqva\nTkqJCHQ4p6J1fHcBtfx7OEbhjFp+H0DPzwrIU+gdFZ8J6HpdmDaA29ou28J8uOfFvfRJUgpVFwCe\n6/fRczOouCbuqmdOy3teeh1uLpevK+zj7bmL+PBsLT6POIZFgTUZ3NhUFKFiYUqaAwekRf/8JaL7\nTlL78rdEW/Kl1/Gfeozo8KHyHO3GBo3lO4Ab4/HBzp18QOIiMWPIG7y4fpzf+NpH6X6py/TFAWZr\nJNprB+fxjZrk0AUzuRKHeKVwLdFoK3SERI8zyAQEl7/9hrd2LHdgdNijauPnLIqCwUshcp4H6YT8\njkCP7nbZl5J2p3N46fVS++n3Ouz2NlNfuTApE2MMbn6G4YIIS+cxhlTyAAAgAElEQVQNqC8bNh8w\nk22/7/ezLlym+0vPkV+9hj80j1mY31+0fZ/xewKEvPe3vffWe++A/wuhnwHcAI5XXnos/G6/Y/xD\n7/2T3vsnY6Sa7SONa8VCO0uCjXsAVEpHlCJ4VWps1VsJllQAhYofjC77GFUW+puNKoOR0gEqFUo9\nWT4pIF28rjiPogpb0W8pXUMm9GGqlbTKT1Wjxnt8ZLDdBnlbk3UNeVOJkHSs9iQdFA4zofoaxTmj\nPEIrT+YNWjl+cOYNfmbxG8ybHSwKg+dGPstvPPMk9W+3cNsxeW6IYsvOcU86XcPVDFknIgsBdqEl\nM+EY5hRxLSc2lnZ7RGtmyMlTKzx16goPH12iP6oRxTlZ590BoQ967pipNiMf03d1fqf3MH/nhR/k\nwm+fZv4FQ3PV0di0xDtOhMKHItaqg1tcafNsxcI56xiS+YYkaY5xIhSAjrLto6i6Qzm3Sp2EMJd8\nvosdVAWB8rzsYfb5Porw9drkPCmS/zvQvvVWn8bN3hi8Cm2MujcswUcfi5OZLzSwgKytydpakqoU\nWkuK5tWY2kbx2YCCkydWSfKIg80edZOzk9W58CcDwKQVKlgw+mZNWt2CM5vomog+ihlJu2Tcd9S3\nPY1NT2PT0b4lLkpeIeDMHcYHPW9qSloGVKNBcnyGzfs1zduKY18Z0v72LWqvXkFfvg4X3sHfWBIb\n9XCfvPPB6t0RLR4sN+5yFIFLlkvwHQIen2eivxDFexK6sbaPEkeKej0kcQXTUBJ6pWQOit2m3QMU\nqnp9b1DuwtyrimgD9tpNul+9IO0aoVLiRiPyW7fLikzpzBHWrom+7+1t3MYmrYvrNNZz8gePoWox\nvtIG5rMU88B9EtRU3X4q5+hGo4lk066uYR55EHNwQZxfNjbwV6+jNnvEv/sKrWdew8d6Qqzv3cYH\nPnfidrkmeyU6dM01S+t2RrydEu1kmFGOTvJSHJrKPlXo3BWmA65m8MaMnZqUAhscCyt6ZCqzqO0+\nfmNLXOlscKdKs7FZQWAFCRhky7Wm1BhrtwQMMnoSQAqjAKBKMGh8ASjo3+lsnawta4SLw34UBcaT\nIoj1h2faeFTkaNVTajrndj7NUj5NhqelYz7T2OAnp17lw7VVjAKH4lo2z69e/BCb12bIs4g0k/nW\nP6rIpiJcTTOa0eQNSmC/qrNXuE12zIiWTjgY9Thbv8mnmxf5A81bfKwhwqbLaXfSvfO7PG9Mp10K\n/79b2+O+I+wHPktxK6virrSP2O6EfpicwPj3IcFSWo1F4KvP4XAozNO7gB7F868iobyzJlpjvqrZ\nEEDoou1MKYUaJvjNrTIxNEEs1aepJO4VnY2StaE1ppfQe3RemBlbO5jeiPjaKvq2tDGp+VnwnvTo\nNO98QdP4tW/gpzqi+TEYfxfTaePnpnEbm7jTkujrjrAZ/WBA7dwtWWuzXEwA1rbFhabVQkURM6+u\ns/knd9mI32F84GtOTdZhVa+jjh8R8D6rWCvvjg320YcrXuezfLz/7NorJtboanJdjV1hct8pWWD7\nPEz7FUyK12sDq6EV7U4JWjEfQqHEFTo0UGpkuKqO3K6iklIihF4IO6u4JoWH4WisPxdi+dGPfkJE\nj8O5+Bde58qfODk+VmjFLP9dbc3ujZ+n0qHz5mQS6RbnwvvuZZwzBoJ1q0V06kR5j91oJHMoTeV7\n3UEUXhlTauTk129gDi9iCkdAY8Z7fWg3Ld5TzrFwD13R8lNlH5nKXNi1FwF75reKa9JyVfmb3+oJ\nq77QNSuAosAEci+/gZmZlpgpFUHgQtcHpUrNpAL4VFFcCpPnV69hFuZw2z3UMCnnkev1QGlhBF2+\nWmr++GvCXOr8y+d453P18jnxaSrvKdqXnBPdyG4XMzMtGmhKCWioDerZV/D9AckPfxyAtT/zKfwL\nr+93uyu36gOeO6bJ0MZs53WeXzrB8q8e5/5fGjLz1o7IqNSNkDdqEd4YIWrklZiiiGP6Q1Sai2v2\nTEcKUUW86924/XP3KBxMY3mtG41CzpSV61YRA5c/ebZ3D9w1Cot6ZfR7Bko+iGFX1yaYwFjLylOz\nbD6ao1NFOi0GTcOHRqSP3feBfKZ75U18t/2eXcd+T4CQUupw5Z8/DhQw+K8AP62Uqiul7gPOAN/Y\n/f47DR8Ja6EAIkrqWREkF+yaKhBUVTIv1PuthUjjm7FM1hBol6yiItnfXfEKlVE1TEvwCBD2g/dS\nWUqzSYv5iS8wfhB8PG4xEzFfNwaMwvfxRuPrNdIpAcFsECP1IbAuHVBCR4EvnMU8oL1014WL1TEJ\nmTfUlOVotEHmI5bsFJuuxbnRIeJtxeB4Tn1hyGitSdarkU9bRnMReScmmdJlS1rpRmbA1SHvyGek\nSUSSRdQiy2x7SCtOGeQxGs+wVycdxZg763iFr/7Bz52Ri7mZzfKvz32E6ecbTF90NDcc0VCqhQIA\nEVhZu++ZzDMzyIl3rGh1nGjJk1FWJmTxVlVnjYI+Xt5jSb58AQYVWguFtXzBDAri0D6tiChXnIBU\nrVbSmX0FxCyV+SuvV42GMJecE02RML98HKjx1SS0ALSKVkWkncXWBID0BszQ01z11HqAAhd58inL\n0wcusZPUuDWY5mhri1aU8eiD1wW4qNUCs6+g9WrZHEJAbwYpJrHgIeuIdpHOvNjcJwIK5S1P/7gC\ne+c2iA983ihAG9zCNLauOfqVPkd/9Rbx6+/g1jfw/QGuPwxizkkAAYv7KvRUn6XYjU3Qen8BN2cn\nRY+L5CxLcakIQRcUaF9uoLZ0MShBx+JzAwjl86w8/m6QB2vv7K7gJgEkby2utyMtZQVNPNCyfXEe\naSbgVKslAFGzgXroAdTHPyyHHI2w5y5Sf+ZVzLcv4YajsjKT/aEn4KmPkC++i2ifUqVukpmZLh1H\n7OtvY1fXUK2mAD/G4DY2xdp2MKB2dY3hE+9t0/yu7VeK0vWrvpYSDYRdOrGvVJg1sg9UwJfABPKR\nxnZq2FZN2pqjAAymuTBVC5ZpmgkjsRRblVYwnwQ71gAEAXjnhH0YBOuJI3lWa+H4ULJZUSq0nYX1\nIndjc4Rq25ASDb60a8b7QxT2J0XZ2lwWEsIe5nONVh6DI1aWebNDXWm2XIrznkVTp6s0fafpuRpX\nkwWSUUw0N2Jhtsdop4YbRKQzjmTKkE5HpFNqgt3jjcfFHmKH94p+XmM5m2LddtA4DhrRrbqUNTB4\nBrbGN1dPTrhi3pN5ozS+v9eRb9cH7/3/SrLmkkTAlycfITp+bN9DVNejUnsMyoqrz/OyNQKlxky+\nO1HhlRpr+oRjmYU5ATR7OyIKXWnbKdmeBTPk2CGII+zmliReQQRZ1eu4NADlAWz2O31pvy7219zS\nfW1VEofZKVy7LmvBYEh0+BDZoRmy2SajuZiZb8t1Gp2cQZ09DUsrYxbQ3AxqsydsgJshKQ4tI8xO\n49tNSdymO9iD09jlVXy3hbrvuDxzN2+z8sT+RZm9l+uDnzvKGPTiAdTWHZyvqmMXgFONVV1f2Fe7\n2S9AKYZcjiJR3z2qCVeRnBX70u7z2H2c8Pro1PFyf9ydmKlo0j3SHBfnvWryqAMoUQUw97jgFWBE\nSNQLm/oqeFDMZ9uQ62U3t4hOnZDXV0IS3e2Mv0vBaCnOt1WJDQ+H9kfnJkBb98qbLP+Fp/dtwSvf\n+91Yc8I1sL2eCPTewbXtjm/PM9zGxhgUuvIOg8+cxRw+JEBvvV4WogqGYiEMXc7BgtFRZfEU3zmu\nTcynAqip7j0Thay19UlwMk2xvd7kWql0Kdys6nV5znd9bx/WFxf0sAo2kmqI/pB+7GH5vrdXxkDg\n2mbJMsLZkjnSeFPwFTcYlAXCqcty7XW3K46GIY4BeQbt1nbQsgnxY8HiLdhtZ47TuiDyDPP/97Os\n/6l3B6O/G3Mn95rVUYett+aZfTsbF4mqTCC4M5IQ7qNe28b0RgyOdUhOLUC3Xbpr7vu2uDZmq1ZY\nQkVhoxwT/+/2X6t2n0/ITbx/F12iezEWF8ibis6liIVvW7IpTzbt8FaTdT44oGr9EwfftdheHXd9\nlVLqF4HvBxaUUteBvwp8v1LqcQSauAL8pwDe+9eVUv8SeANpAfzPvN+v4W/v8Aq80ejEjtvDdtH/\nJKiugD93atdwEmjn03VUboJGUKDAJ04S1v1YOyCtXUU7WDRWSS+ZH9l4AqmCuVFFvK0NAf34CVHV\nzyqSBCMJmG/G5C0tukBGrqgKzIwCHCqAoaL6WrT25Nnkw3QjmcV5TdzMsV4zcHVaOmHaDDn8/df5\nqaPf4nc3HuQbFx6WtrPZXACBuiZvCiupcMoh7G95w+MaDhy4fsRgEGFnRtSncqzT5NqwNmxh6hb1\nTpPmamWTvAdzx3vouzq/tvwR9BsdGgUQlIfWhwD+TbCdKv9fsoQ8mEGOnjJsnDX0js9x5LfXhXVT\nCIfHkfxU0dYgvCvHdeN/60C11UYAoQm7eH1nxLZYIK1HebGCdtaWAbaq1casojgWqmZvIAuyrszD\nkIQWzKCCwaa0Fjwxc9Q2c3TbMJoxDA/KM1Df8OFZDPOxbnnm1oNs3J6CRfjMwkV2bJ1zGwdYaPah\n2cA3aiUV0kcaNUzxtRjfiBgdbNK4NSDupfhI2C3KawaLGp1DbdvSvG2Y+twSS8V3vEdrjuq0GB5q\ni034xVvSM151sCheFyoZyphSHFHuo2xYvreDOrIIb+8fqBeihfIPM97oSmBJPrOoWEiQKsDThJZH\ndbOr0LtLd95WawwIlK4+BVBXBLGVYziLLzXaQo92lk4Ua30WBD+VKgNgtbSC3+Xu5bO0dD9TtRgO\nH8Tmnuj6Gm6mizpwALuyMu4ZD+0PPs/Fej5LJ/qyCxc139sh/9B9RFvh+r3+NiBBqXpQRB+regL3\nau6AJAv1niPeydG5G1fHyuuL7CVKTRogVAAjZQWoTqcjXF1R2zJEm4jNe25FywcpcqhhgvdubxBl\nHd6m4i5YbPz5mDotzEZJTlRgm8n5VViOQTgSAnupdCqzMs/l4mLbtbBXBFYQAiw7A65GWczwkawf\nOlFYY7BOk3nDjBlwwPQZOMv5vEPmDWfiLRpKkfiIkY/pmhEfv+8qZzu3uTyY5/Y7c6hE1lhbl33K\nNhEASBdrlcfXPKbmiI1lZGMuD+ZZSzt8qB3TbiQY77mSLdDSCYmLWFqfKnVC7sm88YBWd66Ihmu8\n79jF+nF9aXm9/pMnOPZFXzpBlaMK/FYSZhXFkrgrNW4XC9VSn+0TTJfskIpTGCGJMwaztoNNkj0G\nHz5LMVNToequsZ060XY/nEOlYFGA3UqhpwTEslvb0lbRbskzshM0WB5/hNFCk7xt6K4fIL90hWh+\nFmUdUd9RixTta/JdhwsRLu7SOH95EjDY7knyWhP2o08zzIljZRHDJwnq8jWJC4zGdhusPt5h4XUB\nCjpXNZeCPsr4Et2LuePRM9P4eoy9dOWuLy/eMzEqgs/SDjNL/gNPED3zwsTLJhg376W1oro/7aM9\nc8fjVGOg6pqmVDA0GB/LdfYWOUpAs3hbISQcvmexhwBjAeNuGwNlq6aq1fDDIbrdpnNxpwwN7YFp\nuELp7giUbUY4W+rfFGN45iBxEBR2V0WE2PX7RPedLB3wADY/UnmG7sleJfemMGbYT/9nXPjcpd9T\nfvHAiK58n/qvf5Pb/8mnWPwy4sJnTKlvqZuNUBitFj1DfOjdxDzcr62naOUsNcgqhSxVK9YvjYoE\neFKdNqoCcPsiXg46jBMCwMVeppX0TxQxkVZghVXkej0BaN6+LJ8ZRK/z6zcwjzwIV+T+mqkpAaIA\nPxxizpzGnr9EflvmVud6PtY30qZkZpmZaQEdTx4jv3wVMzONXphDd9q4/5+6N4ux7Ejz+34RcZa7\n5r7VxiquTTbZZLNX9mgETc+MJcseeCSPJMgy/KABLBiGDfjFggEBfhsYfrIN2A+GbMmwJG/a7LE1\nktsea9rT6p6Z3tlks0kWWUXWnpmV613PORHhh+/EOefezCxWz5A57QAKlZn33LPGifji//2//79R\n+qknBewdcOc//DKX/tNvMrxUP5PzinOOshY/ubXF2psQTay4heFqKZTQd3QZQIS9zo8DSqHuPURf\n7HPnF1qs/HiTpW+7KuzweSH3uYwNfanpW8Xap7SQ6AjxOZgZI4RTm/eyHnOSJHsMPa+PpYX3r2rl\n/Vm6npMcZphRjv+lHvHSFHe3TWv3I8sDH9kqwX9E1zFfjD/iG9Iex2Xs3zjlz//tI7b/DeA3Huvo\nze9FsmjVkxK4OY2Bc/Jg9c+hnCcsjKcZ2DY2NSLQqRo28VBlRsUKz1cL5mqS0haV61ohvbACBoUF\nmiq/Z0vAIAygptRSaWQMvKqV1+uyMjm+lAsEVpACVeIVZcbVBU0tQxX8ugSIRIy2cJrCaw6KDtYr\njm2LY9smVpZvHD3HQd7mlYVb/MWL3+VLrRvcbK/xB5SgUiHHldIhCbJVAcpSu+ME0L0TqI+a6XHK\nLsACxMaSW8PWyhE777fnHs/59J0H+SJv/eAqy7eFfXIqGNRwFatAIOdrtpjzaO9JjixgmHxlwIPJ\nMpvfQLR5ikL0Otptyc6GxdZ8KwdGpRQYPwMEVXR4pUqKpavBJpD/E8mMBsecqgUQ0bv6+5GUmaim\ng5HRUtLY0M0qDyrnoAKLzqGtwhuFbYFNYLrqMOMGkOnA7MXsxH1wMMnEfnIxGlNYKQdQYUJQwmhw\n3RRsLGV3QHKQ4VoRyjqSh2NhxRmFsobhlsZkns59x3CaYNtxuE/nM+Z0WiR7E8z+UMCg6ZQgNF3V\nLet64SSMnsDyC4LUEpjqacb0z36R7o/vV04Toc3YXzZAGCkT05VAtEyGJZU16BWVAIp3XlwSA5B0\nytg4s9BsZMuUKcerklYdGD8zE5T35XmYKtOnkkTYQ87iJhKgB22PkBXUy0uglIhQh3MYgRoM0Ssv\n4QcDSR71OuhRt860eV9rARiNXhFRSt1qSV35Qh83Gomt7Td/CKsr+CtbDH/ty3T/4e8D0Lqxx8HP\nXaH39+82LuN8+g5ANJbxQk9tXRbWWPdUjFTv6/F/PrtVsoSU82Q9g9ex7C+3KCxqMhUQ2nkRbdda\ngl/nKvZhEPCW7JfolVVMxDKwquc1JWLSUI8/j0isABUo7uOIvBdRpCWTtSz1dKV2kI1rINnFwtjx\nxkPb0ooKnNdYr4Wh4+HAdnBojt0Aqyx/MHmSe9kSfTPhTyy9x0o04LBoCxvWgrKSsCCuQSe5j+X/\n2tPpTnhi8YBrPQm+97IOrw+vMPEx15JdJj4ms4a2kcSOLqqx+Xz6zaMC0GYQPb9Ym1ts+zwjun+A\nTXts/0tPsPK3ZwGhU0EnPScIW64JlFZ1OceJcyrFgL2rxHNDeYZf7KGG44qBM19qVmuEpTK+HZWL\nJ+dRpXGIHQyrjLs7ktIPXbrfEccSxwG0UmwnxiWa9CAn31xEvS/7GF9sYyae5Gvfwzx9FYvMXS5W\nBOdLObBHba5hr9/A35qil5dxwx38/qHMu+MJ0YUtKSmbTNCtFmZ/iM57VUB/8XePefvfngUnzqXv\nKIW/vFkJzf403zsrji5u32HwC1dYXVsVNmYJqPiiqBcwZ2Xjm/udT6qedhol+D/j0tbsc3OuiE33\nRpWm6P0B85BS5XxWnksFEAXQq+naGrbZ28c9fRlKQMiNx+hXXpCyors71XrWxRoF2KbsTZLAaCT7\nmc729fSbb1Xn1wQ57K07DP/Cl+n+A5mzln4Usd8rHe7Oo9+EmDNtaDTNJ4eaz7LpJDj3jH0mjqUB\n+Fj9b76F/9QzmJVlAUQ60o90t1u7myqFTtMqhgGq5zMP4M2cdhhLvK32gdYyrnkP3gqYAzCdSv9q\nJr4aWmg2sIOqzJmpnpHudmdYzSEh54YjicFKof0qDrt1T+5DyTayv/Aq5p9/D3twKCXujeubLhla\npZujWV5E9XtSkmhMVSamImFN6skU1W6j2i3Mk1dQe4cUb76NWVuld0fO+9rfvM7bdV84l/nqcNoi\nfa9F916GyoU5XK2bmkBwkHNprtvnZTOmU9q/fx33J59n9xVF594KiRNQyB4e1fd+MqnmphM48twc\nCJTkkFJ/1fBIUEj3+7WrcFm25t0j5uSPqamlBVRDGzS6egWvFJ2bB7hOgsotZmBQKx7XErDtI9CP\nRzbd62L35f5sfu0Wbz0mKfAPKyr9sTevldDtC1cv0qsPG50saPa4xmAWhKrC/1oWP/HeiGhUotSR\nrpk7pVOK6BaZavuZ70Op92JLfYY5rRctLk9Ekew3MvW5PGpynLPbq0ptSlZGAIGcKYNeDS6pS8lc\nLILSPi1prk5cWyJl2UqPuJAc0NI572fr/N//9HN8+7df4Ou7z3ExlsWfRZgZulAoKwBUkSqKDmSL\nnqIHlT5G6RITL00wiSVq5ZiuBHnTYcL+sM3DcYfL/QM+u3qHfNFhk0cHBh9/U3zn4An672uSoVio\ni20TjezELENIOV9tI8CRrzL80SCne9eTb7eZrCqyjS7TqyuQJmUpmK80XWb6ygwzwFWiuSIkbWtW\nT/lZZUHvHG4yQS0uyEI7SaqSDhVASkowyfuqBESVGiBqNK2FSkO/arCDAggaykJ8Ks5FVfMCAsZD\naN+XvuESaH9pl+XP7eASjz9IwCqcUzivGNmE9e5QskBG4zoJdlmE4fQoq+yqvRYbynwxwcflNeWO\n5DCjf8eSL0ifN5lnMGwJ6HleTWlsPyXaOYL9Q0IWHC/P59TMRGD0lBpClZCd9/jDY2xb8/5fvYJ+\n6fmTh5unbCrJhrjJpK7lLwqhZ0+nuPFYNBOyvCpVC5bzZ012oeRihpZd6hlV3wcJrk7J2DZZTHJu\n0+oaywuV45T9VF3aIr+6ztEXLhFdvTKzL18UmO/+RPa7+xC3uzejv9AcI91kgts7EMCpvBfzIn72\n4R68+wHRyPHg3/85CaTefZ/+b/7g1HvxSTdlIR45zKioM2UBK/S1PllFfZ//vfGzsp5oZImHQe+r\n1NILQvBO2Aqk4uTnex3RAmq1Kko1IPNZCRCd6gyU5TCe1EmO8J7Oz1nziZbG/Ou1qjSCXCRjhU3L\nxEWYw2JfJRN829FZmLCQTnAocYQEOgqejXf5THKfTeN4N1/mv3z7T/F33vgybw4usmiGxKogcxE4\nmau8Eb2xoq0oep6i57Adh4+EHaRalvXekJcW77IRH7MWD7jcOsB6xTujLX48vkRL5WxFhzyRPiRt\nnT9dfEajZb6Fd22+pEOdMscA7uE+W783Yen9hqjuUl2eqTud08tDtKlLJKqdzQXvc82sLFN84Tn5\neX2t+rs/PJaxax7o0qYUtBftKrM/xE2nck5lUqN5PbrdEpHk8UQWRv2eMHbyvAI8dWZp3xmQvL+D\n+tYPATh8dZPsr+2RLZQLwZ2HIqLpoEi1jGnhHhiD76REW5tSlrq7KwuEKEJ1O7jnnmD4uSu1JkpR\nwM5Dln8ywl+VagwXaTYv/5T6Tx9D80DRe0zvmbL0F3i0UYP3tA5spZeiG33HHhzUAs1hnzPHOGPp\ncBqLFVAvSd8J+lEqinBHTav4Zmw9CxAopbDzDmQzZZUn3w8p/3Ent3Ee9ZOb1Z8f/vprfPhnl4BZ\nMW6vA/uxcUxra72ZOQ0wNxqhXn2R+eaLgulCfa/igcdF57/scsNRfc/mF8BzrOGqzwSABQisDb+7\nx8HnakdAleXiDrexVu3HDYe1ULD3MqdXLHlbM+ebY0aYFxslZqH0ffAXvywxcrd7ugBxFFUxbjh3\nn2UNd9YynitZjkrXJbKSCDPVObnJROLwElDSrZTo0gVUFIkO0fExenkZnMUeHZG++4Do0kU57xLU\nDILAB5/SVb+zD/fwg6G46gV3M2rQXD19VcxkJlPY3Wf/T12TUz8esPRW+Z78dA6Hf/TmPfd3F+ne\n9UQTe6LcvWoOISuEMd3JukVZJ8np0qCCJMbu73P1n4xYuI5UpmwuwfqKjP9lLHxWa2p2NftLiJsr\nAermvFKKjVdlw0bL+QXd4J9CXPqP0oobH1Rg0MG/9RV+/Ne3ePjapvSx44msj8pFqk8t2VL6qN19\nZGuOT00zl49qPzuAUKTFeQXOZge5uUB1bhDxpWiuV6pyPdLjnEqwuh3j06gU1PTVPsLgT/heM2sa\ndBkCK6jRlFIVG8l32/U+tJKF/GnoZmilM4wgrjIBBateX2oxVMBM+XNwIHOxRyUOlxnGmSwaFqIJ\nG/ERW9Eh1mt+695LLLwHnQeKqY34IFvnd0af4lvbT5LuK6IhqExAJpuCbYFLPHlfNF1cUpaLJY4o\nchSDmHyUiLB0N0NHjmwaM5omXGwf8YX+DbzxswPFeTQPr9+6TOuhK62ey39e3i8RIpftKnZQ0PII\nC9ywoLNi99z/MGPlh5rOA0/RNdiWJr+wLIOJtZVdc7MF9wBhfAT9hJCROLmoRilUt8v2v/ly1S/0\nyrKUXzXFXrVMcsqYhiNDyToq+49vApnNSdX7qm/7NMJ1Ylwa4dKovGbJkCdDT7rn6d4Tu+zJqudf\ne+INXlh5AP0Crz0Yz0J3wrXWLsvxkJeW7kppkNbCEog0+VpPmHRxKTYXabLlhPuvxYy2Ujl2S47d\nuTdl/QcFzoib3try8SxQ9Uk3BWb3GL9/UAr01poAyhiEWVMH1UFXh9JhrNmCo0H/rT26dzyTyyf1\nhHxRzC7A5t+Tufr3qoXgrTEmNifGmaA9OL7Nu3WUAI/Sqgqo3HB8+vGb2ghBjPrE+Sn8eAz3d4jf\nu0f/d97BD4aSyX35ecyLn5KvT0S4000monFTnkvzmJUAZ57NZClPE/tzwyHpP/sO66+PBTiF6v/z\nbjoHM3ECJHvqZ3NaIqOZSYcT5TV4jxlltPYyooEVV47E4HoJvumQ02Dj+dKpypcAtTC64jIwDcCd\nrp2jGuBlsbkkeinWiRWsdbVxwxzLqWqFFVfOTK43JC9sKqPUrZEAACAASURBVKBQYLKGcmdVAs0A\nnTSnE2VsT3rsFvK8F3XCU3HM03GPjor5g9HTHN/t4/YSpi7iXr7MW+NLvHu0jhlqdB7AJkXRhqIt\n7CPfsfieJV6c0lsYs5iMiZXlYd5lP+/QM1OutvawXnF7usyB7bBkRnT1lDw/TwT6MVr1rrvZxdj8\nO1g2Px6TvHWb5L2Gq1TjvXGjEbrZf0rQR9ga+awuA2HcKxmkpRaICqXPW+vo/1hYFX4yFdBl77AC\nfeYD62ox5r0scqyV76RplVSZAZFCn01i/NUL0j/L0iX7cE+SG4VDHw5lsZemRFevsP1FzcPX1+n9\nL+IE5q0TbYZWyQgH/Gsvyf+tBDXJccORCNN6j15fFRcq5xhc7XL7q3Wf0IsLuMGQ6N3b6N1D9Gc/\nTbaccDQ6Q6PtE2zeQHTwEQKN1ca+eh4zls6nZMJ7P7pfATP2wXadzPBemBXNfcJMnzwtyVG1oBlU\nbr/zBQGb7PFxVTLYdPeiWY6o6/gFkL5SFLXBQfOzU67LPPOkbN+r3dTCXO6m05nExN4rjq3fP1m2\nZIangMVxhJtMK1FjYObn639l4eR3gJW/9a3q3Kcrdb88j+ZDTBNiR5gBearW+LnpPDgTfwBuPGHp\n9YeVxlJx4wOJL+5tozqdSn9KBU265v4bSSoVN+zGAwjVnCudRZfA8+4rMgbZnR0B3kL8E67DBvZ8\nSNSJUHSTJemdn+knPs8ElByNJPYo4x4VJ1JmtrBQihc73N6+9MEsR/f7M86Qxe072O1dzOIC/oEI\nnofj6ikSL5Zjqd19WMXogS0XHMq4u01+bUP6prUs/daPxaVuOq2SqZyl7/ZJtp2U1p5DFb5mBwVg\nqDTGEAdhVzuMlSXnvpmgLhOoKk4wP7zO2nf3iY8y9LQg3+ij11dPT16UTZKcbgasDOuieRZkGJfM\ni5/i8Fc+I8+6lco76PzMmHieotKhHT6jUF4RTT35eo98c4Hjp/v4zSlriwOiToFtP15sEl174qSp\nzVyzz15+pHlGs/1sAEKqFnyuxaJrdkTVAjOowQ7yjcWv8r66ogoUQharPtLYbiylNuX2M3bxvsH4\naOgT+bA4h7KUIy6dOsoDTTOK7d0Z57IghihaDHJNvmQR+TgqdV2UBEmDKdHE1cAFQCPgrsrJdP2Z\n8qCURxmH1o5IOTqlGELuDRbFcjpi72XPwUsFm+1j/rNv/zL/xbd+mdv3l3ERFG1hCUGpy5D4Ssha\nbIQ9PvKgIMsidKfApJZOa8rq4pBef4LSDus0d8cLdPQUWu7kYueTbg7UrRbRtHSCs5TgT6OflEBQ\nAIto/ux8KfhdDmzWEx9OWHpvSmfXYhPFdMGw/3xHNHu8ZORVCE5cOUiFf6Ub1JmlAaGPaF2WH0oA\nQwiOmovHJqvAORH8dE6YOVlWH6O5Xfi/+RyMwXZTsuVUgKCG8KsvmWiAlNg5+ewbu0/znXtX8B7a\nGyPixSkr7REGx8C2GLsE1etKFtdolAeXaHxbSr9cEhGE0L2CvKOZrqTYdiTvoVZEw/L+rig68fln\n6/29bRGOzvIKTKkcxIq8yjoEZpBo7NSLp/CZChot97bZ+MYu7Q8PTz9e0EU49UNf2/bOs4BmGBsy\nfm3/ez8HCB3arK4QbW3KIqxR7la1SvRTBJmJI/TSImZzo7KQnT+X6nD9PuaFZzFra5jlZRGLHE/E\nJv7oiOL+A+z+vmS9Pvc8t//0CpNL/RnBUt3poK5cFOvWF56pj+E97vh4NvODlJiYSxfY+Xe+IuLV\nc+wV8803q6y22lzjj6OZ3As4YgNAewoYNN/CYrsMpGY+KhxmkGGmToR6U0O2lOLbZWAdROiDcUIh\nzC8Vyp6TuHbuCGxBrQWk64nbijJayhtHeb1NUcjYU1g5pyaI3WTPgrgvHWeYzMu4UbKCdC7/u1jm\nDWEOCZsH4zHlHJVoS6wssXIYpZj4goGTcW8jPmL96j7L1/bpRlP+4Yef5X98+/PcO1woLezL41DO\ni+XcpLRHJ5YkFQdM5zVTF7GVHrKVHnIx2eel9i0+1XnAoEh4d7zJu9kWd/MlnD3n8Oej1oHzC7Sw\ngNGNmKWxnS8K3N4BPs+JLmxh1lZx1y7MvHvzpWPiAiR6YTMsjFLMvQq4lYCJQTzV37zNrd+RRaDd\n34csxw2GlWMLUL2TQCUSDSXzsBSOdoOhZP5Ll03dSmvgXStUqYPm722LIGwQmI0lmeC7bVhbrnTX\nVt7wPPE1iX10q8X2X3kJ++bbdO9mpPsyVse3Htb3LxbgVAVgvCOmDP54QDR2XP7txj1pt2Xu3H0I\nRcHBpxco2prJ3QYwcV5NK9Tte4+//WkxwSmtuPkh5HnFxtj5csPu2NmZZ1qfS8nCCAurs4SnG314\n8/+6XZ2Xardl0R0YkM19hZ+DyQECQjTLfOav5cQ5NkHN8KcSoNRz265+X5N+77p81hBi15NSf6Oh\ngqDi8p2pXPaimYRE/8Y8i6rBgi1BqNbu+SdMKwvrwBw7rUSmCRbNjztNsKjI8R/cqUs5AZ3EuONj\nfL8DWY5ZW5UyqKa5RVhDBWH6UN7X7EuB1ZamoBRuZxf3J1/l2t/4FmZlSVhDaVqXo4XSs04bFUcS\nA2mFWVuTNWWc1M80bNvQMPTOV+wRsyxOhUGo3B0cCqg0meCGw0pzSyUxw1/78uytyzPsc09Uzojh\n2lZ/XNSlkuUYZ+9vV/dC97rCVAFh/P6LH8h1lfp/HIiekHkohghnCTB/Ys17kgNNNCqTRo3E14n3\nPVQzVCSH2sG7+W7rkjih9wco53FpxOEzbezagswFZdlYszV/nwG4OR28DH+zb75N70NJfPrxuC4L\nnAGuzx8C2fq9nI1vKtKDguGlFre/2ma4aXCZYfewRzGMSQ4ebz1U3PxQGHqP2qaffHTsUbafCUBI\nrJQbAfV8ZrUJAoVAtgkGyU7q33X5TynJKmWliJRDSsdmNH8aP4djBpZPAH7mA7UgilguvM3iAnp/\nMItS5qUaugYfG1y/g11bYPrECtMnVsiurQn1f5wRH+bEY18yXOpMqDeqcm4J9Pzg3OIKjYkcrbgg\n0pZD2+bOdJkj16alcn5p7Sd84bV3+MXPSs358rcSWrcS0k7O6JJjsiXMD6m1l/0qB9FQl4wlUIVC\nOYV3il5vwsW1A9a7Q3pJxmJ7QruVExvLYdbmdraKaRVVpvj8miI9KMsYbAn8nNH5K3ZQExSaX8QV\nDjW1RMcZ8ZHFG8V0UVF0FX6hKxOKc+UgX2fdgRoMyoWVFtg81QBUUlFVEkNJhd/4F/uVcr+fTMXJ\nrrAlw0wGWb22gr6wie510Vsb6JUloeGWgbaaZDWrKDAImmWMgBlOad0boDOLyhwu1gj7TFG0FZM1\nxWRFgYLkQPHeTy4yeNCDTPPXXvgGG0sDRnnCe5MN3huu853tK2XmQ5egpSI6zvCRRmcFOrfowhEP\nLBvfL+hs5+jCU3QM4/UEbxTaOryG6ZInt4bTQ9ZPqClVWbfP/NkYsR2NYppsnQAQqcrBrRZ99tbi\nslxYNzt7EhQtneKsdUrQrKJIAqeSxTN/jieaE/ev5Xcy7Fc/B87iBkP8NKtBEl1Tp09rfjyR/RwP\n6ixLcwERSpmiCNVqoQZj6WuNexWo880WvX+PrW+PSfYmcj7lYk5dvYRvJ9BuofZqsEx3OhK0PXkF\ns7SIWV4munxJ3g9g/QdDzK3tE8cRHaRE7tt5B0ll07lH5XWp2IwQ81nAUHNem595yyybmRQyvse6\n1IszMzp2MyVogR3UactzimO5x82AKonFOrvXRXU7MoY8PBAh+uDgMc1QWV7pgfl2TH5hicmTawxe\n3OTwc5sMX7qAW+5hDkak+xYz9iK4Ws1XHpd6AYWS8ueWQxlJGgBcaB2yFh1j8By6jLfziLdzzdQX\nfKl1g7989bv8+auvY5Rn58Nlpntt0jjHLeUUCxYzVVVCpLpthUJrL0O3NWTOoJXnYnzA59o3+XR6\nhw1zzKdad9lMjxnYlOuTTW6M1/FexrufmTZfnlkBQbX2xfx2vsjxxwOh4z9zCRcb7Fy5ZbMFXalZ\noenohEOU7oqeRRhT/HTK1f/8R9XnbjyRuS0w9YyUgESXL6FfFpZJ8ZUXq3O2e0JhV0lcJU90ryfj\nb5pWtvMUBbxzEzcYVK5GZnWl0pvJNrpMLvVRcURx6zb9mxOiUY7Z3MC/9Ax7n5MxNL0/xExkvAr6\nZmoiLEQ3GFLcui2Crz9+V0TplaLz7kPa//xHMib3+yKG//xTcv67D3GRIu9oWg/Of8zxilnHyrOy\n6XMAUAW2BdeuU+YUKccRgKyzO6flMi/cbE4BFEL/bPTLal4pW/HBrWpccsMSpIzrcwp/qxzOnMU8\n93T1s2oKwM7No7MLPIN99335WoPh1Jznm4Dp+jceCPAH3Purn6n+HkSs84VG8nk0FoZIWVrmi2Jm\nMXbxH703c17Borw67tYmK9/ff+xs/cfWSrF0masaz24eNCzBoPkETb2dxLQ+L0QzaM7+nbyQdzvL\nq/IrFSczwFAF/Hgvf2+yHxtC02ZlGV8UHD5VOu6OxtKnup3ZcwKKO3exB4eVDqNKE+zLz6AXepWg\ncwVEVWCjlhiokOSIOz6e0beq9WnMzHFUv8fC77xbXVP01DW5xQcjKO+bKUGozt1xpbukWqLb6POM\n6NoT4nx2JECPiiLc/oH8bIwA4Rc3ZV8vPIt99/0SsDqf8qZm0xnovFyfhKHlNPA3tIrQUa9HlNay\nLgqJVWMEcDsaYzsx8VDYRKrTlmdwCuhT2cnPNdU00oETcW8oLYYygTKeVOs1n2WSlOh2KwZfdPXK\n6WWJf8TW3Gf7n/+I1W/eo3Vjj93PKqZPTUkGnvhBjL3VwRwa4u3HcJJ8jCaMXM5cE584z4/lqB9H\nO6uTnUWvbKLWTSCoucswKRaupg+r8u9NzZUA+jQBobBNo4P5wOxQwu4JgY3qtOvvAZWrS7lvlxhs\nNyZbTJisxYw2Y46eaDHd7Em2PrOlGLKAMs6IDXg1cSj5Vwk9ewVOobQnNjKIjm3MwKbk3mCUo6Vy\n1pIh3WjKIE9xRpH3PP3OBLdQoDoW5VRlGSz26wqdU2kLKQALvhCdIqMdLVMQa0s7yumkGXEkP+fe\noLU7/8nOQzSiBndKFLsqGWt2n7LWNZSP1W47YV9lFsOL0KvObC2aqgTYQ+sSwBRGSYUwB52gplDr\nHJCoTJltLx1a0Focm46OSxE8EYlV1s0MqnZlgfziMqwuk19aoXjqgky440lDi6js381ypgYDTgUX\nJJD9N7NXsWTC8n4JBDrQYyXOPho6OmOcR4zzmId5l0GecnDUkWtWSu6z85hhVh+rFIfXhSMalRpG\nRqxdJ0uavF9m7KywDXKnHxvF/tiabzqGzQXKZWlYEJUOZWSVZksZHDXpqj4srqc56jRAqDzmzK+l\nztSpk30zwJ7T/Gi/eZf0pmS+/XRaLuzLDGrQojqjudGoqutulsqBTKg6TanYUsfH2Pvb1eQpB3QV\nYDTTioLk/R30Bw+wu7tMf+mzRJsbqNEElVspJ5zUWV6fldojh8cQRbjBUAIj5/FHA8z1O9iH+yfu\nGYDP81J3649nClMlk65ipn4UO6j52SNYYsFQwZdgrS+ZPjMi8c1y6ZK1Ghwxq9LV8N6H7cpstjBE\n5kRRvavmKx8bbCdiupIw3ogZXjAcXTXsPxczemIBn8SYqcNkEiwq32AFGUREWnspM9UevMI6ReE1\nbZPT1VM0MPGeY9di6BMsnlRZFs2Ijs6Y2giMR7ULuklO3CogtVXJtNx/AYewCu/ln/MK6zRjGzN0\nKQZPUlrd9/WEjeSItsmZukiOcc7tTOypSkjNlV3Nlc6crmvmG7bZEdlyUi1wz2zNADpOZgGmYE+f\nF/jxBN2uF3PB0jssbPBi0QxUgvj5lTWKBflOthTVi8apaN1VAEWjj5Jn5cJMV/dAt9ulJbOIoIek\niU0Nzqjquzo40i70KHoJrbulMUErknLOUxguVaa4055hDqA1qt/HrK+Jo1ds8DokBAp0LtpY5o+h\ncuOnbWcmBM7S/rFnsIHmx7JT+mBdxtEUhnazDCIawEG45yXwPwMyLTd0jBYb/bjp5jrXZgTRm2VB\nDZBT3BZLV8uG4QtHg0q/SJ0yBVeL4FC2VjrhnQbIVZpIava9rfbV76J29s4e/z+hpgIgM3/cZnIB\nqucXwJA6NpotXfXWSuzZBFlAWKqnxDHeOgFlQv8qdYSarCC8n+1/JVN7/Ws35NfRSOzgy2d9GpOE\n4Kp0+w5FP66vuwQi6hNy4mAoF1mCNhLbVdp72pzUkvReGC9NUCF8vl+7g1VrRl+XJ/ksq87X3rlf\njav2/gO88xWDrLoH2w/Fmj1UyUTR+Vuke9EW1UWovnC11IYt/1YBQHPxT0hohzVzaOF+5bm4pmpF\n1tcUvUTG+Tg62U/P0M2sNIPm/nZi7GsCgkHHtQSHMAa90JdqB8At908fB/+ITTdKS+VADuKIaKSI\nbyUkA0c0VsQDjc4UavSY5cEf0VSovvr/FSBULiqZ71xNgKX5YoZgt9FJvDl9kPVKiTbMQfnC5SGb\n0djeiLi0j0zN/AmL5sjIQBc6WbNzh88jIwv68P0ygPexwbWkRCbvxxRdw7SvGG1qDp+Fuz+fcvTC\nMmhFNLKYzFcidiImTVXSU5WNlUwePLTSnF6cYUrUIy2/bPAc2g5vH23wvd0r7I67HH1lTOdZQaGX\nVgeYxBIfKqKxr+zsA8vGTEHlgAM91TCMGOx3uH+wwN6kQ6TrQd86RaILCbq7E2EbnWdzEI3qUjEV\n9IFK4ehKU6hyzCkHtgAaBZCkAQbJdg4zzomHjukKDC97isVUNH5Kd6hqARbVJYAggWYzQxYGqRBk\nM53K4kwpyaZYJ0F8Wd/qtSoHX4eaZBU4RRzhFYy3WuiXPwXOS2bNzU7CPgCS9pRsUJjIIlU773kp\nxwglGQEk9LFDJZa/ffMrTLIYpTw7kx5aOdR1KaFDNxaueSGaXeUgpKxMHDoTMMqm8u6YKYzWDTY1\npe02HI/PWZchAGi2tDR1vpGBdBIYBBCo0apMRamtoaK4FqzTqgJO7Poi6gsvPVa2YUY/B+oM3VzN\nu+73q8xUceeuWK+HDH4IOMp+hlKYZ54UTYhTygbs0VG1mFNRVJWO+aIoSxMFKKoEr7OsDrzLhaB+\n6irqi5/Bf+UVzMICPsspbt2WGvsS+LAP98V1rWQGuacvSeY/BEvOSsY1y1FG44bDUkTWwfIi+pmr\nmOeexjzzJOrztWinfbiHfbBdLdjOtYVxJejEzQcrZywIZj47lf1FyWiVsk6bKCqxxsBkLeclnyao\nfg/V7+FbiZQhl1a7qtcTCnqTyQoyj6VJKcJpa4C6dKBz7ZiinzBdipksGaaLitGGYnDNMvryiA9/\n1bP7JSk/SAZext1ShN61PK7jcK2S/aQAI8ydaS7B2Fp8zJIp9RWArspY1WNaypCjuZ2t8P54neMi\nZevKHhc2D3Be0W5nRKnFjAUEcnG9UMMp7CAiyyLy3HCUpdwYrvL64ArfG1/jnXyDYyfvTF9POMzb\n3J4scVykmMier27ZWQne5tjcBJiDts/8wuuEI0+B3z8kGubcfy2qQddTWhPgQSnMxtqJ8ccsLUqZ\nxGgkrBRVa16gDXqx1EoxZWxU6sn4PCO6fpf47TugFOl+Dkt1GU5gVgRw3VuLUkqYscks4F393BIR\ndSZTzN4QnTk6HxxW4qMuNow3W+QXF0nuHfHU3/pQzlcrzN4QXnqmvk+tZOa984OhZN6VwluHmmbY\n3V0Zm9op+u4OZu+oGnd6tyZ0HxS09s47c8FJNPEMXan5vhO2qV2bTu+E9uAQs7JM3jl7PA36KvMt\nlOA0y4LO0i5qskVC0mJmjtypRdejnaNq+0qU+DRm1FkuQd7PzqXeodotuF9rwCilUKW0xIX/+d3q\n7+ahMEYufqMut1bBQKbc34yAe7dblWea8v2w12/MaPyp8bScs04/3U+shdK8eUbQaWU/QfAZasCm\neX/D76XD5QwL6v5OrQsV9HjyrNbocTXr0SwuVPN/OB/dbmHW14m2NiuHu+Le/XqBbm2lRRiMWsza\nKtGli5VbV3TpIgDx175D/sS6sMy8l3MI1+b9iTHSB1A69DFn0WkqMVe3Wz3H4q6UbVZMorsP0C8/\nj93ZqSoG7IGss8ztneraAiBuVlfKe1KgkliE3L2ry/rKeMYeHTF6bo3Bp1cxS4v4i2unO0d+wk0V\nnM0IElquxCTeo/KiURmjapbQjImOr9byxZ17JA9HDJ5Q5H1TxSYVmzGcwzzw1yyhnn/33Sz7tcYQ\ngpZMAIPEPddPpxT37tesvzfeEXD8Y9YWCixVAL28RLG5xPjKAhvfzVl+2zNd0HKvc2g/UDPb/6Fa\neKeWFjHD/FSw+7R2/mmys1oQqzpt0HKcmpnAi52vL0vOqqYb/5elaMp54t1BjYqH4No3gB+MAGkl\nYBAmOR+LIJsKgTmAblBwlaqdWspMrm8nuHaMKwXBXCJ047ynyBaEiuq6BdutiJV2h97tjGjksLHC\nxLJgr8AVRcV0CSVkaOikGZudIyIlWdC1eMCqGaBxHNsWD457WKsxxrG0NOTg3RWOuyLAWRwlLN/x\nlQgoTv4LWg3aKlzI8lpQA8N03OHWfov7C1P63Ql7t5dIHhpeb6/wzpMbKOUx8TlnP0owoxKNrkRe\nqZBRVSLaVWu61AWU2zUWd2Uf1JOCdG9K964h7ylsrInjSAbBgIJHpeZUlgv1czqtS8CsrRlFaSox\nXanjotO0RrPLybUClCaZAIyF/F0HnZs4wseaaOyYrrVJP/00vPsBfjgSVxan5Bme5hqk9ExfzTsl\nQ2fqSQa+AgMDAOlaHmJPlBYcDttcW91jf9Km8IZeNOXaPxni0xifxlILnASmVCkoF+kKcIoOJnij\nMHmCTQ1m6tn+XMTeVy1uqNFjTX7Uemxa48fT6kWYMqrKBvkir0GgRgaisrLURsCyvKiFpsMenUdh\n8YMh+mjMrV/dwP7Ln+Xaf/3ujBBh1ZrZOUogSKtTg2446Wwi5y5jlptMoOHQ4IZDeO8mKC2LrdIq\nvrkPe3AoNfZBTNhaWS80KOLKqDIY9zOLEvtwj2hxAa8gvrtHMRhiel0JyKzF7j4k+WffrhIT7uEe\n+tkn0ddvyaSfppitDdzOw8pePvTZ6loOj4i2NimuiquJyk8G/u6Nn5x6rz7pVmXNzgqyTwN8moFV\nePZhuzB/WY+e5MQDhZ5q9Liotw/MVO/xrRjfistMXblo0SJ6T5pI9n2ayWJAlcFZxSqqA3OiCNVK\nsat9pitpqYUXWIOKbMkTrY+5tHrI6pUhr/cukf1el4VblmisMFMocvAdj4/Ki7BlqbECk1rSuCDR\nBStmQEdPmXjNilG8lOSkShZsubfsFx32sg4TGxNrx53tJZSGOCkopobFHV+ZIKDL/ugBr/BWQQRa\neYZ5yvVijQ9Hy0TKcrlzwKX0gH+x9zRv3LiEzzW6VeCdOv05fULtkePbWQsvTi7u54EjvMONRphb\n2zz13w+wc/bvze+60YggFu2LonZWUkred63qLHl5DN3piN28Unhn8WV5j2q1as2Q0j1NpeKSafQ6\nznrY3Z85V3t0JIurMNf1ulIOAiUQ7QW0KoFMHxmK9T7R/iH+3jap9/i7D0T3Y2ONqREHVjMqKFa6\nREYz+nNfovOPfx//8vMUCykBQvDGwPWbmPV1WcCVujJmbU0Wc1MBxuzuQ9g/kHl74SK3/waYr/8c\nl/7pA6Lv3KH13LUzsb1PrJ3Vdx7FRoRZ1525+Wa+uaNjln50cPa1Nc1XTgMTqMGgAAZU9vVhs6ZW\n0HgsffKU+c6sr0vCo8l0nZuDHueadLtVvw/e48eTWbHhfhc1mlRiwerzL+K/+yaMJ9gvfZrW//4H\ncj7ldUQLDYCzUcKnOh0oWR7BQjskjvRnPw3v3KS4fUe2PQO/+qSab8QpM2DdafeuqR8UXMGa2zZZ\nQoMhZqHP8V9+jf7/9HviBArYcvyYKbtykniLNiUZVNx/UB9DaXQ7re6n2dyQpGKSyOK8ZLgGd95w\nDdGFLSlFPTwWcGhhQco/y6a+9UOKn3uFeHSJ4vadSky/eW5KK1RbSsuCLqSKYryzEqd/6mn03iF2\nZ7feb78HZR9yoxHmphyzuLYJ9x+A9+z9+ldY/Xvfk8vvlftfXsR+eBsVJ5UTm919WMVM0aWL8vvV\nKxQf3CL9rW9jFhbIX36KyXpK50cGzrPvKIlzwrpoRi+xmYSuksyl7INz1TpAGKy1Dm8FSBsDboL7\n4Vs8OXoK321V65RKCzOwq+ZLxeZBINVwl5vf1nvwtn7nvT8zvg7ft0dH1X4/anz9Q7V2C9eOsG3N\nZMlw+AzgwUzAtjxb3/6jM8He/09ew7Y9i+9qOg8s6t2P/g78DAFCAto4ZrSCoA6UqwHJg6knphMi\nxvPou0YCv1YiC+xmiYFWNVDQoLa5fguVRdUL4I2ZPTfv8Uksolkh0C5t730S4WND0UuwLVNmkj0u\nUrhYgm1vyklBe/KtnN0kwquUzk5BPHK4SJcCnaqyoQcBawIlXxm5MQdZh/V0ICVbymHRODSXkz2e\nWdllYmP2xh32v7fO5huevRdieBDRmSjSQ1vtWxcKF3mKticqZ12vS2AA8JFDZRo9NBRZmyOnad+J\nSA4FkMm2F5msehay88+e6SAIHQ7dXHd5jypKFpTnBLWxpjxykv7oLNHhhLUfOPJ+gpk2NDxCCVho\nrRTf72JGE9zhkTA2ZoIZJ5T5bgddfk8VAhQxncpA1m6JZlUiQAtW7nkF5MQGlTu0Fn2pyYUeSfo0\n+q2bMJlIgB5RswlC2WMZFPpS7wclAOVk2ZRURQGEipbCRqAtmKEWg72u5sryHn/5wh/wjx58nleW\nbvP1B8/SvbUrC8+swGQFbrmNW+zIPc0KWZxGGpcamgmY5gAAIABJREFU9LhATwpUbjFJRLaUMn2q\n4D/6wv9JS2V8be8lJjbia38MidfZcg1h/DSFmasgITApys9UWU6qaAjZeYe3CAPswQ6XfytiutWF\nxR7q4HA2cwEnJpsTn8NMXTtQBdqhNYNb3ekI6HNwIM8hiiUgHgylJr/bRh0fz0ya7vi4BoXK/tpk\nIsw495YMlHA+9s499P1tivIc7NER/sUn5ZlPt07Ub/tYascD8OV2Hs5oVITMkG8E8MW9+3DvvmTQ\nkhh16aJkWU+pJz/XNgcef2Q7YwF12vdVbokOp5jAtJs/jnOo3OJaCa4XC/AytaisAB/hjUGPQJVC\n1D4wWL2XvzkvY1ccQ79DvthmupYyXdCVjp1oAYGP6+N2ooyvPv0O32pf4+Cby3TueZJjj0sULtEU\nkYfIQ+LwXqFjSxxb2klOqi0Ozd18mYmJuRId09Mtcm85dBMMEc+377EcjXh3uMEbNy6RfJAyXS+w\nKiY6NCQDT9aV91UVSoSlY4eKPNp4kqRguTWmE2VkNmJcxOzlHQ6zNh/GK/zk7ibpzRQ9BZfEFJ2f\n4vl9kk2pOlAOYM8jWA8z/4ekVVEIkPEoW/sS0DarK7gnNuC7b1bvken35f11wtwwqyuodpvi9p26\nnKHXFaA2iYUdMZ3ip1TsaZWmUv7cbsHSAvHbd1DdDiaKUJ2WMAWRcUJ3u3UZZBk/KWNOaNaEz4ev\nPU3r//gDjNHixrnQxSlF+sFD4v0OajTFrffZeW2VpfcEGD96fqlyHzMvPIs6HuKMwW+uws4OfiLz\nrl5dkazxkxfh3v2KMap7XSZPrvBrT3+L3/4ffh51PMROJphTgOk/9nbW4sWfXLid1dxwiL5x68Qc\nU309zEPezwILTfByLn6vygz7fREeDqy3OKkAgAqABGypq+InkyrhQZygF/vSv+cBCqXB27Ovv2SX\nBEAnzJfh/P3dB2USWPY72eqQAtNPXcQlulpOqF4X9vcrN7T5e+SPG5ofvi4VKl64hmsZkiBEnaZ1\nmeM5tWCeEph+1fMKIN78826OP+G+nnJvfV7gdvdY/t0c1+3W7m2hJDDsN+zLWYp79zGbG0TXnsDd\n30b1umJI0YhjKpC6ZAGF2IoG0KjipNJvMqsr2L19AZvX1wWYCufwzR9iv/gZojA+0gDFQgnh8TG6\n1RIGdMl+FsZQgb95G5KkTvwpjb+whnEet78/AyDoH7yDQ7Sj1v/f+/gyWefHImxcvH+zvsVxUl9z\niO+PB3JuvZoxZ4+O0N/4AR0QbbY6pDqX1hSSlgQvs1q/jYSoConysO4AAYNCC9s6WWvrVmk1/+Ed\niU9dE4CU6ouQiFVRhNncOD32K983FUXC1AvzVckOrNhhvgamTrAYT7t2c4qu58fQipu3SEZjzJUN\nji/1ufaVD3nnnYuS5EJiuT9qW315h2eWdnnrqQ3uPezjvv543/vZKBnD19bf84NPQ0S6cgCD2l6+\n2o6KEXSiaWSBGuy5myyhUnuhCk68F1ZPuQB3rQTfjuX74QWogAMnWhze12BQIrbetmXI+hoXK2yi\ncZHQ3UNpjioUamxAiYbKwfOw/6ywLZKBk7KtUrDTl8G5S3zpPCaXZZ2mKDUTnNccFh1eH13hO6Mn\n6Zsxv7b5Pf7She/whfVbJIeKrK/QGcRH8mJH47L8IFD8y7K0qkzNIFoQ/Zx0eYJvW3wiWRpnxZkM\nJSVArV1P554iPTzfADswW5qlG8p7dLBIDBWC5cAWSpmCs1h4lirQG+drYfMCfTQmfTDAHJZuPCB9\nJmQxA5gYGfxCF56+gn7iEurKBVSaVNoylf4MlOyihtZHsyZ6mqEGY9R4KttZWy7kHGZqifcmUlbi\nPaNLHfTaSjWhVK5p1Q1SpROYESB1hjkENq7Bv6yvGG8qsj4k+4rWjsHtp7y8fIfvDa+xkIy5EB/w\nwfsb+OFQMk9RCW5Zj00NepRV99zFGptoJlsd8pWOgG5ZIbbVmSH3holPSHXBc71t3DlqdfqS+q2M\nkYCj1MwBBOgpM+i+yKttfLDOLHWFfC7ByoylaVicHQ3g+k3ab9xGjaeS9TiN7q6NCCmfUbfsp1Oh\nUV++hO73TweN4gSzsIAbj3HHx5iVZQF5vMNnGdHmutBir9/AbG3Oun8gQXsFXp6hPaHKMkmzvIT6\n/IuoV18UccA56nV84z7J9kAAy1/5Etmf+QIqToiuXsG/fYPowpZYS2eZZOA6nZqiPid222x2fx/G\nE3Z/8Sruiy9ilpcxqysztr/n1rwXocXmfHVa0NxkDZ1RIlb9C18J4HRuxQyhmHuXg56QdehpjrKO\nohsxXUnJV9rkqx3sQoJPI/w0wx8ew8GxiEbnRcWCoN3CrfTJVzrkCzFZT5P1FUVbU7TK5AWgcoXN\nDYfjFoM8JdUFn928g/vyIfufBp1Buu+JRsIKInZEnYK4PyVt57SSnMRYtHJoHC0tOkIAU59zPZ/y\nnekKB67NF9s3+DP9H/HKQgkctDzKK8xIk5RzljdQMYMUqNiB9pjIkkaWXjzlye5DXl26xWI6Jo0k\noJvYSOZaJfNvcgjpvjrXbP2ZxwoL22rDxwjLqtLDmg0aBO7PZD2VwJPb30ff3kH3+xS/9Hl5tzu1\nXosbjbB7+3W2XRvRDRqNq/O1RwNZCGlVLXh8LuWmfjBEHQ3wF9eqzLqfTBn/6pfqYwyHwibSBtXp\nSOmO0eV4IOfpC1stMnpvlOK9cYJb7DF4ZpHpVhe3vYv74VtwcEzRixk8odBf/z76lRdYfLPBqFRK\nHMqsRR+LO5qbTDBrq1JGtLqMPhhK+evqCjiLPT7GjAr+6e1Pk7d1dS1BcPg820dS/ueZiY8qW31E\nc8Nhqef06Mm4KiGkLpGSHZTAUJZVC26gZoSF8sfA0AjOms3vKxH5Nasroh3TsDCvysvmGQfz7MvQ\nShBhnl2rInGlCg5SbjJh+q9+kfSffBuUIt4dsfNKI6FXssn8ZDIzD4dFZyhh5LWXZ45jvv82o816\nPz7LzpS3+MTaaFwvhk8Bmz8qUQXU93SuXMcNBhT3Hsxu09yvUhLjXLpYlUXZB9v444GITvd76F5P\nPl9arJ9vo+/oJK5MLKp9IuWHKorwwxFmcUGYijs75L/86oxj3PByB1op+rmnZq+tAZa6LD9xX8xz\nT0vfGAzr7zmL+8GPYakvY8erdRm7azC02d0rzUc8Zn2tLpVbWJBrK++5WV8X0H19CffcE+jlJdTR\nkOzPfKG6D+G+qVtnmwV8Is06kmMvAKaVNVJVTVHYCmSsmiqTz3khrpKVDb2dla8wpkpIibC4x+0f\n4EfjWiPKlIYulalLIaLeSVJJCFRldmXzRVGDkiGmDH17TofocYAeXxQfq8C07pfuu84KQ+77b4GC\nd25uER8YTK8g2Y6Iv//eR++s0U4rb9veXuTBuM9wnKITK46vj3OOP9WRP6nmJQCeAWpCC7+Hhznv\n+gWzV/GIK/LGiCOSETDJa13/iw2um2IXWvJ5pMU+uxXJAB7pmUlWjacVOOAjgzcGl0aldbtQ23WB\nuDh1dM3y0ZSlOQKmqFFEuqvJ1gsOX804vBpjpp547GubXeNFuDMGX9rBK+0prCbRlrbJibQl94b3\nBmvcGK2xV/S4FO1zMdrnTy/9iKd/5T2OfnFEvuCZrpTnl7lKP0gCZYUuwMUe2/LYltSRJa0cYxxx\nL8PHDt+ymMiRrTg5J12DVI9bq/hxNalxpdYI8shiwfrZLL4vQUcnA9qsIFpjh0G1vomCO1e6eU1r\nQFBrCRKSGBXHMsDs7KOGY2w7Jt9apFhqw/qK2FUqJRnV4agCEKvMaq8n2i/TqQyioU69OWgVFjUt\nmK62GF/uCnsNGG1ohi9sYJ+5hPdegvPqXSkXCpGuWXVeyiejsaOzU5Ae2grxLzrMgHw6g+hQ87+9\n8xn+n1vPEivHd4+voUcaezSQYF1rin6KGWSz764GlxqU9Rw+FXPvT7Q5+MySsO2sp3Ur5uZkDecV\nYxtj0Zyn44+PdVVv3hShC7RkuYbgwOUablx1Z1FazfwevgMIu6YosA/3sdu7tS7OfHOW4vYdAX42\nN9AvPY/6wkuVtgUEvZydWUbaXLNHR9XC0j7cq7KxbjKheLAjlu8lpXomcAmnUQbeKklKodnZMTjs\nizjG7B7BG+8KoNNuyeT86edQr76In0xw794kfvMDDp6OMJlDX72E77arem2f5ZUTh/ces147yzTb\nPNjjRiOiiWN8oYU7PpZM4EcsXD6JppzHTMsS08ctOTotyC4fZ2ABzeuYzR5UgN2gWedbMa4dg/NE\nE4suBJAtWgZnNK4Vi838dCrgbRlwAZDEuMUutpfK2FBeQxDLzXtluXIYRowniSyJsRzkbXYnPX7+\nyvt86U+9xeEzIuofDSXJoWNH2srptjN67SmdVAKysY3JfcSWOeRqNCJWBus9e67FQ9sjVgUrOmPd\njPlM6zZ//jPfZ+OVB/i2xbZddS5BQ6+ab7RHR452mrPQmtCPplxIDngy3WardcQzCzustoYspWMW\nexNhBSmqseY8l2Zmesaidf5vlWvTY5zdvJbMaYyzMtmgkoRoS9wq7bYwZKLf/q4E2/POZGHOjBNM\nrwvO4SZTosuXcIdH4CxmcwNVZnlRCrO+ilJKdERaKYOnFoRVkme4y+sVIBb0OGyTzRQMOlop3rrS\ndczgxxPiD3fxewfCWuq2UVmO14r2u9uyAFAKVhZp3Tnmyb97D/3KCxT9FHf9Zn0PhmNcN0VdvkDx\nwS3MlUsz1+p6KRwNuP1LXdzhsbhdeU9ye4/dmyscPE9lST2v2XceTT8qazwzVn8MIf0jQKRm4qIS\nyZ0vZQ77cHVM70rQUDcWcWZzY9aSuhIBLo+/Ktu64ZD8pauyTaNkS0XR6WB7Ff8Y7P7+CQc9AL26\nQrHdKAOKIjrf+UDO64Vn4cYtsqX6Pridh8JQODictcEO7IOyHT7TmTkfN5kwuKSFNdc8t3NqKjIU\npXDxiePPgzyPWnc1AJGZOdcLe8eNRqf3vcDySmKK559g/KtfYvCXXqvKy4obH8hc/mAbe3CIm0xr\nkFBLwtVNJnXyqNynL3LRNywKAXOiSMrYL2wRf+07AjYDw7/wZTr/+Pcpbn6IXWgRXbksjO84ITAm\nZ65LG3S3I0yjd96rnrXudmdAJnfzNsX2LmbnAPcnX525ZHv9Bvb5q5VoenHvPtG1K/KhMZjlxboP\nla5u7vWf4L/zBtm1dfxoxP5zDe2r1SVhvhx/PM5Tj9u897R281KGo8kKqpNhldZpqJYptUt9cFdu\nOhA2wB1ckGAxVelupRFVGvOoOEInscTFpX6miiLU8VBEt43GLCygu93K0Ta0Zkz/0+gBzejYpenj\nx3ePs+80qcpGQe7D5t/8Ls/8dxZVgN9JZf36U4paFz//8glwrPNWisaLysDU8Lii0j87JWPBGn7m\nj3OLkrOAIDf3+2mtua1u/F4OeiorcImpdE9cGlUK8npSKpNrhcpLsCDoNnTb+E5alpX5WmDXg8kc\nLlbkXQGEgji0K5+3N57o0DDZcMQLU7rtjMPnF0mOI5Khw4w99EvHscDWKa9BaRHrzJyhH0/YiI9x\nKDZaA/rRhL6ZMPQJE5ewFR3wG1f/V/6rzlf5RvtJRsMWybfaYvttqBxzVAEaRdHx2I7DRx7dzYki\nR78ti8isO2GSxRjjyDcd7nYf2xKWUdGCIj3f7Ec0FXBDeUoFfGYHL6j+VrGEGsygqh42sIP03EQI\ns4ybZlMK304ZXVtismLQVp5xa9/SeeMufjAApUXTB2ZsU1VLysO8c7IoiQxkGtVuSS3ucCxBcmTw\ncSQDLpA+FD0eFxsGF2OKlsJMHNPllM7lLfyNWzOuQz4wCspmewnOaMyogE5E0dbi2mIhPfCYTIlQ\nbCz/lAN7u0N+dcjt4RJKeRbfUZjlxer9dKkhOphgJoUsUpUSW3sArWjtOcxUWAfZagszdfRue17f\nv8TTF7ZZSsY4rx570Po4mp4UsFAvwJp6QN7pymEsiDQr3SgVgxPgUN1nXPXzqVmIR9Ql2wfbUNKl\nbdgWBFwC3HCMWVjABhp+mopAXUmd1p3OCcYOlMBVK4XlBcw9hSoDG7u9U4sjTqcyNLZbtXOGlsna\n5wVSCyffgTrz4oZDDJCvdkmu36MoywDsfsalv/0GbKySX1rCRZrUP4u7/oF8t92qygj0KQsss7xM\n8akrjC48S//6Ee6Hb+GLgsUf7PDhv77FwuWLFDc/rJxFzrVZEZyf0Q86K9A/baH+iPVk5Yw5Dw41\n5z8Ntt8iW4yrMmRVgM4d8dhiRoXMpw1Rez8sZMpbWsQtdHCtaPY4TsbSoqXIFlWVwAh1uJF2JLqg\ncIalZMyrvQ9ZiQZc//wag8EG8QCigSJfUcTGEkezC9jMRQ1xZ4NGY7FcNCOW9G0WteXYaQ5disbx\nryz9kNwbrNPsH3dIftyThXukgXIsLxQuM7QXJ6z1hqy2hqwnIly9FR3yy4tv4tC8O93kg/EaR90W\nuysLFMcJZko1J59XC/a9wBlZ+LL8ZX7+Oq2FhfBj9LtQ8qqvXeHGX9pg4X3H0k+OpR/+4MePPI4v\nckgXZZxwVsqhQ9lMu4W9LSyiiiWitSxixhP637yB1Qa1vMT2FxfY/DuvCyHuU1fh22Jh70cjdL8H\npmZRuOEI0+uSPXeB+I0PcIdHqCsX8e0EdTyGh/ssfD+XktVWC55/islam9b3b8DWOkfPLbD0e3fw\nVy9j3ymzrc5LYu9QSpKC5h9pgm+l6PfvglZc+/vb2DyrwCq3vcvW717k3lcL/NWLcHCIPp6cq5QH\nlPHxRz3vAMLAR2/3Ue2MkkX9zDXsm2/LwnljDXdjOLvB/P69nynjcOX8oNK0BqjD95q7iZP62QHD\nCyl9oLj/APPc09h33qv7oWk4VjXOO7p6meLGBxWwKaLBcm7iZinb6m5XdO8ebEuSaO8QLm7y9N/d\nrZ6zOz5GX70ED7ZP0fKr3+vVr9/GLy7M6AvFAy+OUQFzPU88sRFDnPj7aSyr+fnqtP4SgL7m9qWN\n+4njehF0Lm58gNndo+scut/j9n/wc3QeOJZ+dAA3bgnjLBhiGNGiqcpZS82vZmwTSvnDce3uQzG2\nyIXd5qdiwtH9B79ffV8PMvIn1jAHh2LG0rj2Ztlccf9BtcD2RSFg0EIft7oEb/yEIBfhS+3P+J07\nsLAgluaB+fPePez+YV2quPOwKm0L98W88Czu3RvYr3wG/bvfF+2gb/wA9dQ1bMNgzz/YxWe5AGJ1\ntzqXlt4fChmiCQpVJxbWo64GiZyTignn8a6xpm8mUgOjtbm/kk0l84erDAf08hIPfuVJkbNIhd27\n8b0x8Y8/qBMKSjUkHRqanuWz+GnKvmYA6mtXsG9fL38xZ46Jj9vsXDl3dGELd3SMGWX0P2yRdzTt\nXXe63ugjmvmd752Yj574zR1uf6VPrz1lOoofe231s8EQUsyIUFUtDDiNQPjUph/x2WnbNlsIiMci\nBqyzorKpV6W1no+0COi2UsnSBjAhsESUEgaGr8t1fCl2aBNN0S71WdqSeXWRx7U9KI/tOXy/oN+d\ncDxow1LO3oswWdQkQz9jcRqEOjGC+lmrsU6T6oKRS9B4LqYHXE72ObYtfnPvVf7e/S/z9cELWMQN\n7Pm1bbZWD4kHHhsLGOC1LChs6ilapWWwgujA4MYR1mqywrDcGvPk0h5L3TFZFjE5ShldtEzWIe9R\nO6GdZ7Menflq4GkOWgEkqhyvoH52AQxqsoGaYtON5o2uFsleN/qjUrhOwsMXY47+/IDk1+/T+vV7\nHP67R7z11y+z++c+jVroybZxVNVEU9bKVpTKosAPhhU7STXKEFEKVdjSflqhj8ZSTjItWPgwY+GW\nxWsYXojYeW0NdfkCbjBETcXtqwZCy4mvsSjxWsDK4ysGb0TULD6SEsbxhmd8ucC2PapQ/x9zbx4k\nWXLf930y8x11d1ffPTM99+7sgcUCe2GxBAVeokiaFClaEhl2hKUI2bIVkizLdNh0hBmywmE7KIcj\nJFlUkDQlBmVRokmTlChQBEGCIARwF8Be2Ht3ZnZ27umevqqruo53ZKb/yPdeveruORbYnWVGTEx1\nHe/Ml5m/7+/7+35JYo+LGzPsRBWWvrTuQCfcQtUKsBVvvNjyJdFsiFECGRvCjqaybZwYdttjuOAW\n/+fePsyr/RWqMiYy3j3N1pOk2G6vKAXLy8awY9AnLwubYBBlJWK5O1kBDN0pQCs24D5XrRbikw/j\nLS/d8bsAuXuCGQyQDdenzGg0XmCAYyEdsCizaeoyZG+dcwtVJek9fmhCuwEY2zF7Hk5Q2rHWsAZv\neck5lh30fFxfw3v+rQKYKt5PU9jZxXvpvCsffOtckQ2yWhcZr1xgUdbG2VW9vY33zhWav/uKKwnJ\nmj53AQRc+okjLsOc3P1k/4G1LIFAucz5A2zOdn7/01CMbVKS1j3ilnKlXnVJNCUZzXhEbR9dczp2\ntlFDVCtFH7XaYH1vnPjQptBX04FAB4KkLkgalqRhiafc/OQHKY0gYqTdM79S22be67GVNnhi/grq\n09tE0xDsCOzAI9GKJFUMYx9tJFUvoa5ijJVoBIk1XE2H3NAx88rjiAeRhd/vP8RvbD/JNwanAOea\nuVTvsTjdwxu450tXMiBHOaaszESrfalJjWQtarGeNjFIjvtbnPFvcia8gRSGblShOdsnmtfo6kcw\nV5Uz0nuZbUYfHFDdohXsCJjIzBfvZ2xBt36ShUPS8GhC76hjP8vdYTGW3HI/SmFHI2ySotrtIpBS\nc7PYzs44KM+o/zZJXanPXBt9cx3v0BLWU8z//HMOPJ6dYfNj432aft+VCjRqrsQxY5Lge/hvXkVv\nbiHqNWy9QrRQZ+Mzh9CbW9jhCLW0SPLph1h/YoruicCxDlbXkdpZTw/uKzEMpUDtDEnOOGaQ2e4g\nwhAzVWfn0Tn0TiYk2umizpzGWzniyluPHSbY0Rz9nGDr0WnU9JTLUN/zZm/N/rndGHQr9sy32KKl\nhtPBCXxMxrApu20duH09Bl7yIE1WKxOMBxEEBXO1HJznjKTp339nfAwr0xObn7AzLzWzVgqsrEE9\nMHacmxCWfuD4WOtECAgDopU2+q1MiTV7VuWtrKCtdaUgOOekoi8BvZ94mrlfeI54pT0u/Tl4Kx9O\nu1Uyswz47H2/xLA6kIFV/n2xlt5TqpqNP2pu1gFuOFDN9Pukq2ss/cNnaf3rr7HxZBv74AlkGKJm\n2s59LIrGToaA7fez0iJdsLqLfZixI5TudrFL8wgpkI06nR9x5Vx6fR01P495/W28s9dIHr+vALBl\ntVroywjPQz18pjjWohyw3yc5voh5/e1ifDWjkTvnMIBWw2n9HD8CwO5f+hRme9utCzOWkGw1C3kR\nNTfnDv/qKvL+k3jfdKBDeukKslYjvXCRQ//gWa799DPjYylVFNzTpsaxt93DGBNpxqYvlY7ZXGt3\nQrusxBIqrR9FBuQUrJw81s+MeEycYLY7dE+B/p4OU9+3SuMHV7n0NzXnf+oMwx99Cu/YCmp6GhGG\nE7IMt5IeeD+tAIMA8diDHxhbSM3PY77zk/Q/uYLwPUTqSvOa1zSti9++3bys19FvnUP9QZtuv0LZ\nlOqOv/229/5BtPxgDyoXKw9QE6U9H+D+hcAGPmq7j+yNkLEe68wAxnNivDZUmFbNiX5lFDWr1IQ7\nmkgN1h+Xv2gfx8CwrkxLxaAiAQYq19xgETYi4tRDXKtgBx7ieJ/uabdI9wa2KMMyvnUlY9KVjCll\niLRHPw1ZjxtE1qOhRoQyYStt8Edf+gRvf+E+/s2Vj3MxmeGPrtzHy5dX2OzV8UbOGUoH2cLYAiLT\nOEqzh9u3iJEkjjyGUcBOVOFGv8Uw9omHPiSSQ/evU31sk2hmnGm+t80itS3Ko8hJGhkbyF247P6k\nZswOysGgos51DCodmKEVYh8oZKVADhNalzTxxQa9KGC+ust8vY83P2L9ac21H11h8KmTMNtGVKtO\ndya37x6OCtokWiOCAJtbhGbPQq51Q+Cze3/buddVfG58pom/NaKyGZPWFf1DAn9oGZ6aRSzOYXe6\nk+eRCUrLKMXvjUV7jRIkTdfXcrt5HULtgQ7333fdBV+epdkYEgQpq9fbiJ3e+Nhs1o8qHiLRmRYY\nyMSStDyiGd+JfhuIWk5LS4eC0Yxg6i3F773+MOd2F0jt3dMaP4hmc5pz5nKRt0KIbkJLKgPTZDaB\nlRwP9zl2lP+/wwSy8ViL/q9UeO9//7QDW+7muNN0rPkjHWAzoT9Uon+LIJik+Gfnll68TPV3Xhxn\nSEuaQrqz40AE35tgtKU3VjGvv41NYmSthrdyhPR7HnfBgHGOEGp2ZiLQNYMBdjBwx5tdz7x0wEYR\n3oljeEuLeEuLjl4tBN6JY65k7r6T7tjabvGvFhfgqUe4+bee4ehv38R4sPPZk5PC7fey5UzT/PUe\nLaB9Y0iRqd2/qRz8sUJMANp7QaHy32qQ4vcNck9qKA0lUdsnng7R7RrMzThdAs9zNPrAL2jexX49\nUbhX6nAMlJjAQqiJIx9tJdtRjUEasBx0WE2neL57AoC/cvrrpB/rO1B5V6K1RAhLqzqiHsRUVELd\ni/CFpmeqDKxlYBUaQSh8FIJVXeM3rjzG77zzcV7tHqZnqpzrLfDe9gybuzVk6ubSfL6yyjpB6eyS\nVFRCIDWJldyMW6ymU6zrOpfSNutpC2MldT/mZHuL6WMdorYpys7uWcszmQdlG/eOF7cL3IXIAOyc\nzToGpMsaQkIKCiH8TCD1wX/YZeXzOwwOVTBTNczu7m0P2aYpcn62KIEtFvez7Ukw1vMcW88amJth\n9bMzYC3DB5ZIft7Nd97hQ/Q/fZrth7LfZGOF0yKSrn8KiWo1iiBNzc64cWwQISw0r2SgtRDYSkDS\n8Nj9/l2G89m1W5hl+343L4W/+7zb7/KSYx1PW++BAAAgAElEQVQMRkViyJXIuu1Ovb7lsvebW077\nIvQYPLTkylsvXyf8vedpvL5G/XrsWELVe68h5A56T9B9NwHKBwxWhy9dQB1eRs7P3dKeWVYqk4Bn\nnjyqlOaiUvkNMDGO54E1wNp//jgwLkvb/C8+jffFF91vsrnNDEdje/liI2oC9BGeN8GUzpt95lFu\n/JmpMZtgdxe9MD0BFqu8VPCAa5kfQ+68h9HIR84Un0+/5kqjvK+8il1ZzObLe7fQsWX27a2AnVuB\nQ3fDNtu7rb0tTrj2Xz2K+exkWZW67yQiDJn55eewL7yOObWCbbdIPnYcNT3lyr8y3SEzGBSaVWUX\nsWKcC4KxNlXFc2L4N1YZzkmnwbO4gF5fxztyGL2+TvDWVeJPnHA6YlkfcXqRKeadd5HNphMobjWK\n+yuee6XYRw7+AZBq9Pn3AJes8o6tMP2Vi+PrEbkSuPTadXSv57aRpognPoYIA/SbZx0TJnsezGCA\n+cwnADjyh106/9mn3fuj0STIcg+bzeaZwljJOtmJibLCkktyMR/lwFAeW5Udea11/7Sm0GDNW8Eu\nM5jRiFP/88sEn59idXOKrV6dpFPBhJaNj3tsPXMYfWYFcWgRtbSALMdPe9rdlo6JMMQ7ebz4W83N\nIq/c/MDG0uShI1z9niqDBQ+UIp6r0Tnlzt+/0fm2t5+zMRd+7lmqX21go7tf6PzpAISAQiOhLCJd\n+rdPQDp/Nr6dZ6S0TVvxnVigMW7xEafFwhlAV7Ksq68wrWpWKlZxdDrIHMlwJTpQACxWCqS2yBSn\nHSSdNouMBCa0WGUxRhBFHrpqELUU39fECym7h105gBpl4pcCJ0YdS5BO1yExko24TihTfKGpyZi6\njFj0d0gXYoZHUh6ZvcGWbnD/7Do6lSSX6nhDk4kCu2MyAchYjPdlQDc0tmIwQ4848lnvNLhxc5rt\ntRZWS/AMoZdyZGoH61vnTvURuIxh7GS5WDYYCZOxg8rWq7ltYq4FlP1+opUYQBPvlftjrueSpEy9\n2eHo5xNGz87x2o1DVL2EBw6tEbRHpFWIG4rOJ+fp/LkzmO/8uBMqrtUQUy03GOYDZZI41L2kTVUc\ns7WoKGOrCXe/osUaOlQkNYlMwO8bdEWy/eQiotlADEaUxbZN4JFMV9ChwnoSmVr8oaF50br7Jlxf\nUBH0ulWubE/jDQSmauntVkkSRePtwDmAZCLaGPC7Cf72MHM5cvvy+inVtYjqqhPAlonbfmUrpX4j\nZvaNBCx4NwNu9FrU1a2tID+sZo0ds38ynaAcICpAH2smreVzNpHJ6Mrlhe+eDMrtJhDd67HwO+dJ\n/u9F1OldLvxMQPRDT979sUcRsu4EmXMHhoK2nWX2bJIigoD4B55EPXQ/ammBc//kU25xli32tv/q\npxGnjk0e28YmstVyC+EDNHr09jY2jvG7EShV1PLbUcS7P/sU5/7FY+jvfgxvaZHhZx9i8Bc+RbCZ\nZf6FdIsspWAUYfoD9Oa2E26UErvTRa11EKPYaXPNTDH80aeIHl5BRinLf3ATbtxk5X99lsavf+1g\n/Yp70SSljBb7y5D3BvcZCJ23vbpBe1v5s8JAId+HtahhQrgZEXS109SR49Ji4wl0RZE0fOLlFunK\nHHJpAWamMYFXHIdjIrnvF0C+cAkLbyiQkYBEokeKzrBKqFJawbAwMGj6I07X1lj0d/iB+96kfzwF\nK0gThbWChh/jS02c1Z9pBJeTWba0zyFlOaJ8IpvQMykVkfLo7HUeXbnKd7bPE1vFYrVL6KcMrzdQ\nsc30/wBpIXDAsx4p4lRhrMSTGl8YummFq/EMrwyP8cXuQ3x15z66aUjVSwhUSuBpEFmi5R5PVzZN\n9gf2xYe3B4EmyjMmylVl8X+hdSbV2J0nE8y3UYR99xLi/GWm3timv1In/R73nO5tOSALQJbAmNCn\n29opGIWyUnHlyaPIsSb7Qw79e6eVEN7s4/8NF6yPHlgm6CWc/p+cHbM6cxL93Y8BoM9fzAID4cCl\nuWloT6G3dxxYFCdULmzgP/+OE7huNcD3aLx0lZN/b8SR/+1Zd6hLTY7+8vlJgCAvnewP8K9vjY85\ncCYeojdwluOe5/ZtoPbqVSBjL37iITY+c4ibT4RsPTqN9e8usPhg255Snr2vPywttT39VG9vk164\niK2GyMX5TO9lst+KZhN134nxGxkoYUrMGVsCa4AJfTwRjzV/pi6MX6tWi+nz43WCPH082/7+Ug7V\nmmS+WW3Qb53f9z3/Rof5l11W3ju2gu7soGueK5UpvpTd7+H+7L3MAIPyPDQ8UrKmf/Ms3uFDDkwV\nwumDfMAg3R1bOXDP/z6oldn1ZdbGrfrW3vM4AFAygwFHfuUdtC+5/t8/U3ykz13ARhHJ9z/B5l/7\nNPblN9BvnkV+5WW2fvhBvKVFB6J0XIBstUbmTLQcEM+T8NUKst3GPvMo9oXXESvL7P7lp1n8x886\nBlEQoB68r9Bv0Ws3iaZ91JFD+9b6Nk0dO2U0cr9bWnB6YmTrxTBEL06z/VcdUJNeu+6SohmIk166\ngm3Wi+tn+kMQ0rGkMtaU7nSwL7zujGaEM6WRmV6Wt7yEfPY112deeJ3pf/mNQnNNlMXb71Wzdpzo\nzf/OmUF6HKsgpRu/07QwwrldE0qOGUJCFK8L0wylCiFxMxox9wvPceyfS0abVWYOdxDLo0K7tnes\nxvYTC3SeOoRYOeRAwD2AM3DXpWM2iiYc4fTGZuF8J2u127P676LJL7/MiZ97h9lfexkRBISruyx8\nM6GymaCvXL/zBu6yeUuL6BD8ZnTXpfF/ajSEDmplzYQiI7s3E/t+Ia29g1a5ZlZKbKOKiBLkTh8b\nBtiKD1KMxz6ZBeTNCnKYuCCYbN0lxq5L1sscnATu+74ogBfjAQLi+RRZTTFGEgQp3nIfz9MkiVuU\nDJc1KlL4fQCBrlhkKrDSohOJsYLdUci2X2MmGKCt5NxwkbWoySPNa/y3T/0hACfDNablgMem2rwY\nH6f9pkBmC2zIgojAooaiEJgWWkAqHRvJCHTqo4WPSIRbj/oG1Ui4st4m2QmpbkgnRKzv8WRXLJQY\nC0sXtvF2gipXOPgcxADat9kDnqDcaW5vi2Iq17ocHtZZ32nyyicrnDl1nc8cu8DaYpM33l5h+jWP\n6qahdyRk6lOPwLWtAlXP6cpWGydcnQ2K5Sw+SUr1UicbbCsc+nIfYS2DQ1XipmD6vEZFhmhK0T8k\nqT2wTPj6FUStgsWJqZvQ6VyRlTPuHg6obaQIA3FDEk0L4haE29B8sYLxKwgfrJJoAtJhyPy7GvLF\ntjZOJG+Ul8G5ayPjFJIxU0YmBhlr/L7C60ZFNkCHPtMPb/KjR19loD8CpkdmE+/qj/0xzTQTk3a6\nQXKsL5QDLkJMWJfedbnYxL4tenOLqd+PaFw5ztm/UqHy313j6sef4ej/d6PIOt2qyUoFG8cIKVyW\nqz9ewMrAx6aiYBMFn38ejVvk3fe3rjoAaXkJ26gx97mzmM6O0x8qL9LTFGsdYCaqFcTyAmJ3gOns\nuFK1tZuoNC3EIcEFT/f/7FlEpYKNYsyhOap//AZyfpYbP3SExbdq7piVy96ana4TkfQ9bJS6DJTW\nmK1tRCV0ZYlJSmU9Qr12AdMfuFKFkij2rSyS70mbKOljTK/e+/mtkhZZvynrBZVZQhPzH0yMSSI1\nSJMSWJCpT9xU6MABJnFdIqoQ7Aq8gcZ4Pna5jRy5a2yldE5/pUDOBBS/N74twCWMQAQGJQ0NP6Lh\nxWgEc36POb9HSw7RSBaCHsdPrXHx/CJ0A/rSkNalS3Zo6KchiVXs6gqrusVpf4cEzctRnbPxEqeC\nNf72/B9hEEgsPetzunaTP9x+gPoVhUw1aejmUF03qKp2YolaYK1gmPpIYfCkwVhBL6kghWU3CYmN\nopIZL9wcNFm7Pk2wI5Ex97Z8AyYB47yVGUN72UNllvREgkIywW6UqhinyiWuZZA4z4ILbRDXb9K8\nuUV6/2H6jx+lenUG0R9hLjo9D33uQrGJPJDaazOeMxBtmmKzchpZrTpwqJNZMXcH2OHIBVKBJLze\nRUcRCEEyW6dzKmT2S7jtSQnNBqROM02fu+B0xtotNh9v0/6V5/AOHyI5Nk88HaBGBu+tc6ho1i3S\nAx91tcPo0aP4X7g5vuRJgvAUotlwTpwAvu8YAuub43MSEtPtQrdLmoFdqt3GpoabfybF2/JY+b0O\n9gNctH/LbS8j9f3oW5TXvLfa7h2aPvsuwg8QD56Ei9cLrRSEcCU6ZUv2rN+UAzKzO1l2Z0v6MAXb\nBqg9d7bQx7BHD6G+9FLxWdKu4mX6ROU5QDabExo+8tEHJ8qORRgiVw6hz79H+t4lvCvXnD14dkzv\n/fmQUz/18r5jM70xmy7XRdK7+8sHa8+endD0SK9dZ/TDT1F//qILLGv3eNQpJ4rK/eQ2uig2Y385\nVqDe3y/Kf5eFmfds12ZyCOFzb3Ooe5LVv/sMh39/A/3mWQD8L7zALM6qfe17l5h7pc/Uv/waOgzH\nY1rqEo1mc8uNN1GE8BT4ntM+3O0jlMJ/bw27uIC9cJmpq6uYMEQtLzqtQRzTI9dxaf7xWaJPnEBd\nukIu7Gy1RtZrrvyrUiG9sYp48hHs81eK8zP9PgKY+7dvY7MSdzMcIb/6TcTjD2NffAN7bVw6n+tW\n2SR21zOJHetptw9JpgukNbbvEmZ6y5WaFdbzRhfHQ7xfHP1DbzILulM7lnXJW64bJMSe0jG7P2mR\nJ1jL4HEu0VFi3AvcezmxQlYqhQOc98UXefCVWd79O/dTe6TD8mfXufxIG/t6i5k3nY5s/8wc9e4u\nen1Sr+eDamYwQBz+1gAh7/AhzHbHuXjmGnU3VlGpJn6kTe0r76A/wLXs1Z88hfjMNlW464XOnx6G\nENyeSllmBX2rTThnMRN66FqArgXOKj5HJbMFuakE2FoFkaTI3hA5TPDOXsO7uonsR8hBghzEjoGR\npBOLPJHktDlQiWOt6KpAV8EbWfzuGKQQkcQkCqUM9UpMvRI793dpEFWNmouI2hY1tPg9kEk+kQvE\nSBEnYzxPW8F2WuM3X/skXz13mo2kyZTqU5MRPpqKSHmhc5TK5YDm1QSZZCJh1i38vV2BN8IdmwBT\nMdjAQEVjPeMshQ1Yz7Ga8CyVSgIXa1SvegQ7jvl0rzOu4I65yKjrcXAlLAW7xgGJhgnNoDuVicHY\n2cf33MClxq48Ewv0VONt7LL43A6HviC58PWj/MnlE7y7Pkf1msfOg5qdE07rQ0TaLZqNGVMtjXWT\nXOCTC6sBDoCshiSHp+mfars+6kuSlo9INF5fU90yeCOTsdEcoNdbCVwgPxgV10bGGn97VDiWqDgL\nQLVF+9A9ZRgtaXQFJzRuXImj1xdQT6lfk7S+WXKjEQKUK5srruMeVpXsR4hhgurHeB0XCBhfYnxJ\n7/6U7zp0jlAmtP3+PRV4dXQ7Obadd4huViNuCmeS3GK+YA3l7Jt8cXsnWvXtWj7Zf/MsD/2DNVZ/\n+xj3/9A5Bv/Ucu6ffIonv6k5+vU61376GXo/8fRE+Ze11lnYpmONI+GXArQDsiETC3MpnRj+0LF7\nUIrk+58YH9pggKzXEJUQOT2Fve7uu2jUif6jJ1GnTzgdj/n5rH47cEHBxibp1WtOGO/CVeTiPPHx\nOZa+vDkWhTTGaQZNtZyIdeKANdPvO6eRfh+9uUW6uuYCj2dfcXoTRk+AQU5E8iMCg/J2kKHBAeyw\nSW2zW/eVHBSy2bNlQ4VuhKRTVdLpipuzMmcwYQxylBJsR1RvxgQ9g4oh2DU0r0T4vdSVPhuQiUZo\nPXYMycZHkTEpMa7M0wpImpa0lmn0jNyJedKwm4RE2s0506rPgjfO+C/7HX5o+XX89ghvR5FsVdge\nVEm0Ypj43Bi2SIzHjLfLtHQBX89o/l3nE3xhw9UQBcI4jSEkFaHZTurIaxWalwxqlDF6JOAb9Eg5\n0FlafE/TDEbUvIRYe+zEVQZpwEh7SGEIpMaThopKudlt4G/4eENx13X1H3rba7tdbnuBoD3Z+gmn\nQyEdICPGovhCKTculBbdWONcCHs9/Is3qX3jImKUoM+/58aTO1HrrYH2FCLwnZBqFCFqFeTcLGLl\nEDd+8AiDp51eS3KozejRo9goona5C+sZQ6dWw1/dYe6VcZCda5DZKB5/r9VEaM3c55yGjK1XiacC\nrvxZhfdHWelQs4E+Mo++vga+R3fF33N9rUvuDYbFQlwIAb6HrNecq9Dp49gkdoC1EKjZGVS7jWg1\niBfq/PhjL3L4yylypz/hdPWRtL1M1Dt9d2+7A3v1wPXNAc0mMeLyDahW2PjzruRZfjwrfS47ccX7\nx2hZ1h2CiXKy5OGjxevhp+4b/2Zjkg3qbw3GDkXlYy+xE2Sthrg0CeCp5UX03Pge5uU6enML+fEH\nWP6TyWtj+v1MP2sM/hRl/9nzWp6by2AUQPq9jxNuxw4M+ghcMYu2d62y182wzELM1zi3YxMVZdB6\nkvVYGsNEGDotmMEA8dJbHPm1C9z89Cy9n3i6+M61/+EZ9Pn3mPuF5+BrrwIgmw2X2MruZQ5OFSYY\nWhf9Kk9mpTdWGTx2zAHa3S7y2JExgwU3rqiH7h+Dl4B34hi5eUZ+PVS7jYkT55r6/GsTDmOyXse+\n+AZ6p+vO6eghx9QG7ItvFGyi4vw9v2Ar5mWRenvb6UGORsRPP+DG2yhfG1n3mz3gjxmNPhoNIbtH\nf7UAoEsVF1nyEGsmNavy7+wFg3IgSGQavL4rFbbaOEmNXJdOCGdNX60UsgZ6Y5PjP/Mc07/U5Mof\nHOPY/6KZecPFVv1FRe1yF7PVQb7Psl7v+NE7fyk/rcvX7vylPU3NzbL5XUcPnlvnpl11R7e7/7Nv\no+0+MUQAU9XRXQNCf3oYQnJyUDpIVHP8XSbBoXLG41YZjgwMSqdD0qpCh07nR2iLGhn8XoIcZllq\nITChj/AVYuRYQCIMsN0edHtuoTXVGuu9ZAvqwkY4cQK6xnfHJRMyO3oXYOf2q2Tv5S1OnRhnmkpq\nDTdA9GcDmpcV/rYlaQritinqm5PYo1kb0a4MmPYdwry4sEMriDgRrvNK/yjXRtM8PX2BQ/42NwdN\npi4Y/E6Ervto4WzmZeyOUVgweWY41HihxlqBrCakIx/lG6RyB1+tJHhK490QyMRiPMeGuvcp16xZ\nHPvH2Ox1GfgZs4OwGdIt9xzo3kXQAf1xovQsb54aI+daI/sjpt5Mqd2o0jteJw0FC7/5BszPZo5h\nyoGQYQA7vTFCnm9bKYhK7hu5iDmQVgWmVcWEHsM5D7/n4Q0y96eqJG24MrDGdYMw0Ht0icaX33HM\ntekGMkoL0FJFivpqjA4kRkj8oSXoSGQK3sAyXBRE85rqNYUOLWLLZ/mrPQeASkFuMSkS7d7LroVj\nIjnh2u37Qxo3alRXh1mZm7OcN6EiqSvCmQG+0ETGp6G+fTG1991sxgAqWcsX4tIwdhXLFgoFW4hx\nadlElv42WdpyCYPVkwKyZjTCXl/l8G+M2D53nKvfp1Cp4OUfPMy1v3SSdBa6JyRTD55CXlnFDkcO\nXMmZJWGInJ3B7vadnoIUqLlZhOeRnFxi9dN1Vn7rGra3izm2BK+8g97YRHR7Y/eXXg//Cy8UWTQb\nRS6zXqkUf5vhEDU3R/i7zxcZUGkMN/7G48gUDv32RdieFLne/I5lKtua4Pxuke0T1SoYs0+E+v20\nXFvEq1X3W2bfq/Y+ExR79YFE+bW1+8qibeARt0Oiac+xY5QDbYK+IdxMULuxm68Si0oNlSjFVN2U\nHlxYxw4GjmUVBpipsWW2SDL2Ucb+dNu0pKEDSWQiXKJAAtJiASksUlgMgsR4JNbDWMnIOn2hWW+X\nphpy/9I658/W8Xc9dlo1qnM7VH23uN3VITUZMSUjRtaigO9sneXJhs8Zf4c34zYXk3nqMmLF3+Tq\naJr6NUFtLUJX1FjrLpGIQudOE3iadjCkqmLnVggcb2xSky5guDiYpemP8IVhuFWl1s1++1HNVXdq\n+1hCexY8mUaD8Lxx2Ws+ZiUpcnqqcCoZB6qOgm96vTEwrDXm+g33ccnZpAwmq1arWKjmYvM2iRG7\nA/TQCas6lyaD3d3Fbm2z9Ed27BBloXK16xiK3b57/p98BOIULq8iNzsFezEXv1dnTjtbYalcf+30\noFFHzc0gkpT6a9d54G2P/Civ/fBholk4+nxMMltn9p89N3k90xSRpI6p5DndBqoV594pJXqqzns/\n3uL4z7wL1iIX5xmdWiB8+QJ2p8to7jBfunYfy69edwkcfw/gdE9aad3xPpmot217S4nspCvYhIMX\n7JvjdGcHhKC2fsy9ce6Se39j07k7bWyM56mccQL7kr+2FEgGFzfYn84A03Ui1N6Rw6RXryG2u6Sd\nHZLvfwL/Cy8AoKanJ8q3zHAIw+HEduxuH/nqRvFE9b/jPiqf+wYAg2Mtar/19f0736PfIpTEZjG7\nmp5CNJukV64Wn6vpKWySYvp91h8NOfLP3xizhu71uHOrdcleUPGg+1T+bC8rbU/f8hYXSNdKWiuZ\nxqErKXX9SK9vsPBvE8zKEjv/ydO0/tXXOPLFLul3PwYWZKQRz70y4SAFbqzylhZJV9cKxzgZhq60\nqz3F8M/cR/PVNfi951HHVlzp1rVVx2DPXcp6PbzeFDTqyDiGL73E9k8+zVSjgnn1bWf/3ushKxVk\nvYZ5+Q2XuGo1SY4v0j1ZZepXv7bvmpper9Ag0xubWWLRn3yO/KDQT5y4Zl98EZu5rQJE3/sotbPr\nmEbFHffmFqrtNJXKzLl72awQha28yFlBe1vZTSyPacox1l5wSKnitR2NEEpOiMxDtq6tVtzIZ61j\nC2UJwcrnvsGRz7lZsfEK5AWi1ndlfuVn8W5aziK7m2ajaIJtdjdNb2wy9aubxRjgHT+KmW445mKS\nUvl333hfxwsUbosHtqceIawkxIlHT9y9jf0dASEhxArwL4BF3Kz0i9bafySEmAH+X+A4cBH4y9ba\n7ew3/yPw13Duyf+1tfb37/qIwJUylcffgxbeezOytz8JB/JUPNKqIq1K0opwAbYPoAh3PBrXIryd\nyIkP5+VUYaa50Kq7cVxrl12vhG6R4ZfcPgzgycKdTDdy9yaL8UCHgrTqhDtzsV6hLMnI3bQk9qjW\nYiqVBCUso9hHNhPipkejZ6hfh7QmSFvGuazkzxiWTlJl2h/yY0deZUoNmFYDQpniCcNG0uTKaIYb\nby1w8pJjOFklETWVac9Q2IwX56EFFvCDzPqxHlMJ3AwY+ikL9V1ee/cIR65qhjOSaBoQEG6L7JLf\nq37jAKCxVhCOEp93CUNhKz+Rmd/LRjuovjqfjJRA10O8HTPJCBPC9QVfOWAkGzSJE/ybKe3uCBv6\nsDCHuXAJUa0iG3W3GO0PxpkspQAn2ikGQ1c65mWL4aEDBv3VHlM3nYi5kimN665Pp3UPKyGtSIaz\nshAh94eWuCER9Tq2swONmpuUMyqmMJak6tFf8kjqguqGYfqcwXjOaciojN1WcVb0Cy8Z1HUHDDhk\nX2XuZ7J4vsqgmpUCv58BWQ2fuOXROeWRNKB+wzJYEPz4fa/w6s5hZsI+Ryqd0mW/R30nB3Ks2S8i\nnWfZsyCoEGbNo0hrM0DXUra6vFXLGUe3GqtskpKu3ST8Uoczr81ip5ukN1ZZ/Mer5AKrcmkRajVX\nplXqp2YwQPkeJgvQrAGz03MC0Nsdlp+LSbOFvuyNHC4aRYUgtZqbdf1WqaI8BMYZUwlFgGl7vYkg\n0YxGHP5/3sbGCXoUIZ58hM6ZOrNfuUa6OE3cFMx8YwvT7TkgaBQ5raxqFZFl/ITnuQyckgjfp/OZ\nY1TXE9Qfv8StWvToCZKWon6hCxkg9FHMVZM3sTy+jF9OjDv5opsxEDTxed4llSJpBsRNRdwQbtyv\nubIuhCTc9Jh+VxFuONdBAQjt3AcRAlsNYaeLiRMnd5RWSxlc40rHkAVDUGiLDp2LpRoKrGfRFYuu\nG7xAo7JSrKH2GZiA9bSJLzTzXpeKSAiEJraKx9uXeat5jMYlgX6vwm5jxOGpHRp+RJQBSZFVXEgd\nC+gHa9toa4msRAlDXUYoDBfjOb569jQrF1L8zgimKyA8Z3owlG7+CywIS6olqZVUVcJ9jZtILHN+\nj/mMwRTKlCPBFs/unEb1FMYDEzr3RFsMWR9x3ykH5vtYQnsWQDlApBSY1P0thXP4mplGNGqwnunk\nZHoMIvDB8xBxXGTZXZn8wSL5anEB5trOYjxvSjnjgyTGdHacRpkfIJsN7HCI7u4iKyFsOQcvNdOG\ny+vF/uKT8/iv9tEVD78fFYG7mp1xJRQFWGAQU01kmmKHQ0SjQbo4zfZDDWo3U8J//zyq3XYaCctz\nLH69h9oZogH/9YsT5ToiDMHzsJkzmKzVXCASRYiey0CrnT6n/tEqGqfhoRemWXsqZGVzCfPKW6x/\nQjCtDOnVa6gzp11Zd3HbPuJ+c7ftbkrBrJ0o/cLa8bxodBaQHTDXWUv1K29DKQAGELXKxD5lrVbM\nG+VSY1mvTwSD6aUrxevKV98qhlIRhjAYuCQcY4AoWB8WcFke0BdM0mz/6szpwjVobyBXv+BASfXQ\n/fsCs7wk2WQlPcXfUTTxvSIAza6bvv8ofOM1AAbLtmANqZlpGORfvcd95wDwDzIAqKSpWTCD9vaX\ng/pPXj7qB0ViJr9GwvewsRMGzku9EMIlo3q7tC/X0YB94XWCM6ex19ewwyEyt4mv1QoWNNYWDoc2\nid24FQROBH57h8Z/2CHd3nZloBuubznTEHfM3rITidc3x+MRwPTLG+w+OEP1dVVsF9+HJCm2YQYD\n5OE5pv7188U526c/hn9pnfStc85gI7v/sl7Hxok7/5z1JkRhxuHGTA9RrzN8/DjB55+fEPYPPv88\nKQ5Q1J0d1MNnijE4Hy/vab/R1umtajyJPKUAACAASURBVD0Gg4wdVzCU2fJFQFqaT7RxTB8p3Osy\nGppLfNSqY4ZUqdkowhiLnGq6RMRg4MZvY9y6pl5Dzs1gN7eLccUm8fsGg76Vpjc2J4HT99nSi5cz\n8XL/jvIQtzyGPWBQ8n2PUz2/TnrxMu/+RB2ZDrCX6+wsRWMSyh3a3ZSMpcBPWWsfAp4G/qYQ4iHg\np4EvWmvvA76Y/U322U8CDwM/APxTIcTdc92EYELn5aAjvV1mNmeC5NsqgUE6y54WlvAVQTwliKYF\nu4ckOycqJNMVt6+yc5i1rjxMCFfSYxzDJLcCx1oHOkgKDSEsmWAnCJOBQTXQFRdkI13AbWOJTTNa\nvq9pVCKWmz2ma0MXcypLNGNJqoLpd0c0L7pti4pGKXeisVH00xCFoSZj1pIp1tMWH69d4bvbb3Oh\nP8dvvfQ4h//Y4PUiVz40ShGpRaYWb2hRIxApGUDkStJMIqlVImaafaqhy7bWwxglDf0kQPQVo2nJ\n1qOGwYmEeCpjCrl2z/pNmf1TlIqV7l1Be8zLxybo83ac9cibzICe/F/gYZVADKNCZJzMscdUfWzo\nY5VyQrhpNrEagxjGqM0eIoqRU62xdeRw5Ba/2XEI3ye3PLdJ4vpWq4GtV917mZsXmf6PSDSqPy7T\n0hWJiiyVbUOlY6jsaEwuLntoFoREbnYQqcHU/KLES8bGWcarzGUsEz1XI0ttTdC4oNAhTJ0zTD1/\n3U2kWT0v2QKioLYqCdogIo2MNSrS1G8k+LspOpDoUBJ2LEHX7SNpWs7uLvDWy8f4+uXjvN1bLDvU\n3dMxx+4RwBOeX7BZnGBy4hbGewWk34dug2w0bu2IJRWqPYWsVrFxTHpjDa7ccPT7nC1gndPXrSa7\nstUtjAEoZxvv+onp92FzG9lu4x05jFpcQC0vYqebblxTctJBA5CbXcyRhWyjzm5Vd7uYz3yCwY9/\nCnX6BHpzyzEPkhh1s8Psn9xwFqpRytyrQ+y1Vff5KAKZ2Ynu9pHVCmp2xoGkgQ9pitnu0PiNr0+C\nQU89wuDHP+Uyb48/zNmff4rVT4WkFTn53N7ruSoXeT4ARC7+3DuPlYHTUitEo3FgkG4EJM2Mcee7\nJELcssRtw2hB0ztl2Hw4YLRQc06XkAH51pki9IcTQMBERjcP8pQoys/AMRCtwjl6VSy65kwOKlU3\n9g9Tn90kpJtWSKxCYWjJEYe9DvOqRyA0y34HtTxAV2DhJcPotWl2ojF9ey2ZomtDKkIzLd1i6qpO\nuKIlZ/wdPhFepWuq/Owbf47ZL4dUNkauxDDWyMSZM3i7Ahk7FhOxZLdfYTuqERmPU+EaH6teZVoN\nqMuIJW+HJ+oXmPe6JFZiZhP0Q7vE8ynWm7g397bv7OsAtwjWC5DdzQ95GVg+HwgpXLmD1qhWw1m0\nZ4GytU4EVawsO50N30e1Jy27ZeA7wWljJxe3aVow1srsRlFzQp9WG2fvXK0Q33fIldAY7VwBlSqE\nn812B9PZcS53sYHAx3vpLPbKjfG+FmZR83PFn/rcBfT8FJ0fedgF0oGP2tpl9qVtas+5oF5MNYlP\nL2NffgP5xgUwhrW//cw+kXkZhjhLaeUAc8AMR5jdzO6+EjjwtD3lQDClEHHK0V96x2VvhWD6HWj/\nfdeH4+UWtjKRcb336+Nvpd1NiRjA/Mzk90tgpKhWC4FbYGI+FEpOgEFAoStVfK/sAFSaO+Xi/Hg7\neXmNH7hSoDLANOXKdnK9lfwztd0rhNHzOTt3tZI1V85TrN/Lp50LQr95lvgHnkR09+sBWZ3pb+Uu\nZCXnzfzcyvpH3qKbK9XZMeMgyBiJqtWC6dZY4/Je953SMZf7gwOA8vIGMfnd8nsHvTY6AzpiZL3u\ngJ/sWqn5uQnQyVs5Mgadogi9tY1qt50L2Dvn3TpAKecwduSwA0+yEpsCNBSiWBM5bZ0Qvb2N3t52\nuoppilyYQ7WdvELRL5p1EALZajnmSV6C9M55vIFB3XciAxs0o+94wDGL7juJt3IE7/hR7AuvO7Ab\niP/sJ/HevVHokQ0eXh5fE63dMyOVAyebzUIcOb92Zjh0bmeffx7VauEdPuS2+wNPgnRjZ/8zmVOd\nMXjHVtz1zPoWH9Vcla8hinXEHj2hXGczb3vF5stzWV46pSTC8/atX4tdJjFmp4fZ3nblyVq7+aUS\nYkcR6XuXJsBZWXdM6H2ugx9Ck41xKeG30kQYII8dvvMX77L5f/hiwXSa/abg9N8bcPpf7eBfDu/a\n/fuOgJC19oa19qXsdQ94CzgM/CjwK9nXfgX4sez1jwK/Zq2NrLXvAeeBp267kwPmuH0lY6WSrFtv\nJy/3OWB7UmA9B+JYme0zl2nJHLyShiCtZ0rne1tZQEvKidrUW9ZkFzUB7phya1/n4iUQiQDtqPtS\nWnw/03aRThzT84yj6Qdusa4GKZWOxduVCGXwsu+nRhHKlDBbYF8cznIjnsIXGiUM1/tT1C74hJtx\noU8hyg+zAZlaJwqdZOVjqQArqPgpSlg8ZZDSUPUTGn5MohW2kdI7Jqgs9xGhdkBVwTC9B/3moFbW\nBNIH3JeyblBxnzJgL/+/3DyJ8dVEdh1wQJAnsVKgax624rmsQhSPLRmz75utjvtbKZfdqlYyN5M8\nMNs/Nlvfw1SzBZSniqxYriEio9TpgqQO1FGRwRtZVOQcvVTiWGnRbAXRqDuGRqLZXak4p7yKCzYr\nHUNl07mMGd8BpFaBjB3TKJ1OqW7qSbpqXt6WZZEKZzRjXDYBB4bqUJJWVVZSCH7fEuw4nZLKluDF\nd45TXZXEuwGDNPho+441RS184SRWHoP2ZunfD20fXL37Hm2DohmNjRNEtVKwkXS3i7iyhrqVs4SQ\nY7v40iSsWi2nm3CLenMnZphpOrScyKp97wpmbR27veNAoVI9dXr9xuRYkbXgeodgJy0YbHnT125g\nuz3S732cpF3Fv7xRBGI2zzRlZXg2ScfPY5y4soE9x61aLdS712h+5QJY67TbIsncaynTf3gO2Rln\n1z6SfrN3nhrTNm/bcgCo0AuaOGmBriqMJxywm7trFT8G41uitiVuKawvizkrB8DtaOT6m+eNdc/2\nsPjIQagcRJcueSG0m6vwLEK684m1QhtnZJBahcLiC43OJjmFRWKoyISZ1oCkYQk7CY0rsDOoIoWl\nqhIGJqBnKkzLlCmp6JmYK2mLK+k0Csd2vRFPE11oUV/L+oeU47nF4srcUoGMJCKR6Fgx0h7GCurS\niV6PjI+PZlqOmJV9eqZKy4tYWNhhfnp3PP9/1PPVnVo5MJdq/HwUc5Ysxisx1cL6nhMmxQVholZF\ntyoOGPbUWKw0ayIIJnWIig8ce03W62MHqFw4FFzSIisNEKkpGB62UYOpJjaKGB6fxgyHRZmotzMs\nGNYyG9dkreYC8T2Z1rThs/q97r1kccolaN48X2gcpQtTdE9Wi+Oy9Qr+7q1ANfd82DTJynVtEVjg\nOcdN06iSnlp2pUipcXojD59BPPEx5j7/bsH26B4PJzPg97rfvM95x53/rQHr8tpVtVqIJN3/ef7T\nPc5dQpbHk2z8KWsHDQZujrqTzl6ZRZTtQ041HbhYbtmxiWCyZM8OR1B1JTZ5W3u8mm2vCVKRXrk6\n1trLyyhL83FvxZtgx443biZ1im7B3isC0Oz89U63COAbl7PzW15ARGNtmI9svsp1j/xgPA/cLrm1\nl+FaLhtjf0KtaGUR8X4fW6tMarVY6wDcWXefzU4X2WyA0ZjpprvP+XiXx2RZP1Nt58pVXi/IJXe9\nbdWxAoUfYNvZ+mmr4xJyUeSApmNHit8FWyNEnGAfPAFA74jnxKOHEcnRuUIXJzfdULFxpheZlljw\n+eeLa2kyBn3OujS7uy5mEMKB5lI4kDoDSXW3y+ZnHeBTffGiMwkZRax/Mutz19YKADpPKH4U/aZs\n1OMOXGONwVpLzlDN3y/HVyKPe/Lv5P9njPsiJrpNs9pVT7h1cpxvePx5acwSQeBAob1x3IfUROX9\naRXlgBWAPTQ/Jhh8wG328+fR75x360tFsc654/G9n50IIY4DnwS+Dixaa/M0zyqOvgauY14p/exq\n9t7ttuyynFLuXxzL0r9bXbt8UCuXbpU7jK8wocJK4dy+hFv4eqNMrDkCGbss7GDOI22GE/uz+eKr\nsI4MXBDse26wOCBrk2eGvaHNbIHJLHOdRoMaCvyedKCQcVa9cazY2G5yYX2WnVEFKQ3WCqyyRFni\npn51yNwrFtsJEMKijaCXhETGIzIeW2mdXhLSSWucjxb5Sud+rr+4zNLXI9QwGV9L69hBUjtATMbu\nWFUGBOSt4qWMUo+Kl1IPEqaCIf0koDOsMDPXI3x0m+F2FbUWOqHOA4TBP7x+k99gxtpB452Oe3eu\nHXRQK4NABSg0fix0zSduB8hkTKktB1cicU5gJvSwU03H8BmOCnqlzbK3djB0k0CqsdUQc2R+XENb\nFpDLnbr6Q2Q3y4TVQ5L5OrYa0D9Sob9SL47FG6QEOylWCpKaK//AZiyfDU1vxaP32KFiguselwwP\nN+gvB3SP+XgjQ9jTGE/QXxb0D1mG8w409YaW2ec9am9nGi3WTgYkpYyBSNLMjjLTFrKOuXTzMZ+0\nrlCRxUqIpwTbn0wJtyztF3ySpqXeHqKtPFDT40PtO4UYoiyBvWr8/t7zzJg6E33pFiKRwg/wjhzG\nO3EsWxS7bL134hjesRVkq4mamy0mCNPruSx/CQDS286OXYQhqt1GfvwBJ4KYLeBEEEwwiACXPVmY\nc5nuMCy2Lx99EO/kcWQYoru7LvAZxdhR5GjRGfMnvXRlsp7aWuTaFuf+r09hv+MTyI89gDpzGrN6\nk/CVi6TXrjuK/nd+EnXmNOrwMsMnT3HhL7rxVt9YHQeb1hTsgVxTwA6HznVhe9vZVu+l4GYZw7xk\nTb91jjP/rEPlc99w2kaj/VRjd9vEcT7MMScvlRzvcBJwuU0rs4EOsqzXdZ+0Jl2papCDNhRzhhpI\nZCRJm5b+siRpBVhflbaZ6cnEMcL3sYEDr00lN1AQE/14LDzt5gFhwPoGEWhsKtFa0h1mItFGMdQ+\nW2mdHV3jzdFhvjK4n1XdIrEeHV3j5NQm8aEEKwSzbwxJX5viUrdNTcb4QrOethhZwcBo1rWgo+sk\n1mPdeLwUrfArrzzN4vOWcDMaGzBo4/Tusn9qKPD6wpWPpQJtJSYrO+vpKj1TYUHtUhGat+Nl3hgc\nZinc4enFi2zsNAhueqjo4Hv1ofedyZ3d8XOhVMFaROvMsSYLim2mXRe4+yyGY0YgUoLWeBez8TvV\nEwEpgMnKRoXnT4LUSsHNLWSzUZTfWGOxuSaGyEAkz8O74C6PrFRIZ+uYKSfyqqtj/Ts51UJsdx2A\ndfoo/UcPFbuyrTp2NJoQtQ/Wdpl+0QVAadOxsm2aIhbnME8+TNIKaL+Wla3GCeabbzLzy3u0g8iA\neGuwg6G7ZtaCNchq1QEcqcYGHoNjdW58x1hni1MrrH3HDKufbqLXbiKbTS79/WeYeb031szbd6vE\nce5Vv3k/bW9Af4s+J+ZmSN+7NPleKdNumvUJ4dOCWSLEhGFB/hvT7yOOjNkTpjsG74vtex76+mrx\nmrYTmxaVCrY1Dp5EGBbWzzaKULMz+85x7S+cLv4Mutk5+z5exkDKj1E2G5PlHlKx8OzWxOYmrpHW\n+98r7Vc06sgTLqg32670Xc3NMXj8GIBzx1taRIwi0itXMd7+sOue9J09ZWA2icdrn9L5TDSpDhbC\nzcpN1fRUUYJl+s7tS9ZqTudpda3MakGfew99Y22fbbfY7o5dTq1FTU9hXn8b0880ET2vYAftBa/t\ncDgG+LLnUr951rkFWgM3XJ8xnR1sFLHzAw+hGnX0O+fR3/WY28YLr7Pz+JKbQ4HZX3LjSHr1GuJP\nvkl67UYxNnorR1Bfeon08tUx4y2/ltl1kdVK5krrABAzGpFrr2GsAy1Kv22/4vqM6XYL4GP+m+5c\nTBQ5dhtg1jf23YYPu98459dSQJjHSJ7TX3MHloFAOdhTjqfy+5VrbebJhbyfNeuOSXg7oNtod4+z\n/psDc7JRd6y7PXpOcmHuVlu6Y1N7xO5v12ySYo4sTPTx22673Z4wJDCvvr1vvH2/bYKxiROw904e\nd06PszNc/LEp5xh7l0jPXYtKCyEawG8C/421titKg6O11grx/jw7hBB/HfjrABXpBv7bCkmX3VwM\nE4whK+X+LHYpeDeBC07AAQcqAYQr4yrYOz5oH6IZQXLTQ+0qpE7JC9Jt4LuAV4iihEdETovHHZ+d\nAKysEGOAIgOgZObgaD0IdjIE2ZOkviXBd0yhjk9U91jvB6hQEwQpsRGkNUvSDAhu9mleMMSNBp24\nyaCdEk37+FJzdXeaI40ONS/mrc4iv3fxEaqXfFaejfC3R9n5G5cBkxIZaVSsMJ7ESjDWlSeYLMa1\nWjBKPQKlMVYU4qCbvTrWQljT9Do1qpd9vIEDvNQeQ4kPut9k2xz3nWAqE2QFmZeDpXmta/b9g2qh\nhRgPTqX3bDnT7klkrAk3RnhrHSgyohq5M3ALx0qYleAljv4Yhg7g6Q+g1SiyoXpjy2mmpCkMh8gy\nQyiKMhS9FCgmTggTJRFxipc6oKVxZZiV+xl0XWEChd+NMWGF/rKkvxxQvZlpVlUESQPipke9UsH2\ndjn269cxrRresELVl2AsOvCI2oLaqqWy6dgHjVVNuBETXN0aW/UWblzZIiLJANJcRE4pJ7QunJPY\ncEYSbuX3wLHcug8liMhl/NOaYObxNVKtSI0Tef8w+85Ev6HmatyLjHcmLC0FqCCrqc8Fo8sP9l7G\n2Z5ys8y+1KYJ6fVV50AhZbFo0tdXi9fe8pJz1Mma7uw4inGJKm+T2AFKWiPXO9hm3ZWWJalj3pQz\n+9a4UohMA8JbXIBqBbHtQaLRMw1kt5fZvGtnNz/TRj96GvXK+TEFv90uwBqbpuiNTU78myOM5gLk\nlI+VgrqSmHMX3TkHAfGUDzTpH5ojqQtO/GZM+MI5jJAIRXGdRSl4mHgdhgghEEGAeeQ+du5r0H5l\nC/PuJdTsDMMnTtI76rPwH9bRr749PudmHfZoSn/oY45s3DnbvbfsuQwmH5TcyOcyX6H98bgktcUb\nAGR6d1l3M6HBBpbRvGA476NGGi/JSjmVRGR2tjm70JXM6vE8qS14boy0KkuSaIuwAq1AaIEdKbCC\nSPmYRCGUoVGJ2I5qVFWCEoadtOp0hXTIlDegIhJmggGtmT5Ru0XznT6HvqK4Jhf4vHyIM9M3kXXD\n2/E8I+szLQcc9zd4LTrCf3n+P2X1vVkOfUnQuDJApMYdZ+p0CLyhwRu4pI5RgBUY3yICd06JlWgr\naaohS36HpkwYWcVW6lgHy36Hr26cQl+uU91213PviuNDHXP81t4Pb78QzhmYQeAC590+k24+mcaL\n0c61qbuL3hprsRWJCJUFddbuY+LkWmKFjk/+/k53wtHP7U9jhsNMRDrriGnqRJvDEFGv4V/ZxHR2\nwA9o/PE7TjA6DEmPzOJd3XQA8alldpc8QoDTRxHrHdLODsYTeCeOkb53Cf32uyy8dQ41P4/3zhrp\npSuoxQWGp+dYf9Tn8M8+iwW8k8dJL1y85SW02gmhOjdGWZShiGqlCHR0xUONLIf+j2fdb5Qima6Q\nNAXL/6d77+LffcR99sLrmCcfOeBW3YMxZ/LDyb5zl30pO6ADv2/3OnYBIvCLYDfXTpKZCG4u8ivr\ndaf9kgX1ZcFle3VcGlgEzUKS6+5ZrYs+KYIAu+aCXr2+gb1aKgU5fXyspbKx6RITiXOTQrtE1Gh2\nfM3zoN5mblB5M5/9JHzZWcp7J46RXrrqyo/KWln5NcqOdZ9GCkwCSu2pwmo8T+4NnjhO/aXLhTj2\n9f/4FAs/9yyyUtm3Hv2w1zn7zgn2J75u0WTgj8eBUp/JNYHsyIlGy9kZ0mvXC7v69Oq1zH3UAR95\n37CRY5Z4mfAzOHdBdfoEvHvRsYQa9bGukdHOxCM7fpuNNbrTcc+x5zng2w9Ir1135WdrN5HVCrqz\n43R45mbdGFir0vj1r6GB0Y88NaEX1XpzG/3mWewzj+K9/h74Hqa7m4E4GjMY0P+Ln6L5+28CDvAr\nxp09ZXY5sJVrKRVry1x/CseAYzRywsCvvw1CII8eRp+7ADA+NmOxGfty73j8oY851CaSvnmZcm4o\nkx+fu8FiH4MUP3Dr0xw4LrN2Mpc4e+X6hKbTrVr+naLfxYlLiOZsq6wf2zT9tkCWvQ6BE+2pRxxT\nVAjUwrwzcan5yLk2ZGD1bbe9p5z5g2hlgN47cQz6SdEvL/ydM0RLCf7m3XuH3dU3hRA+ruP9qrX2\nt7K314QQy9baG0KIZSC/IteAldLPj2TvTTRr7S8Cvwgw5c3fuuPmwE8ZCDqo7QvUcBoJgecy1YF0\nlHgNIqNQ6VCQVty206p7L6nDcN7DG4V4HZC7w8waz3O6MTCmAObaLjkQ4S4WCIqyNKscMKRGFoxb\nhFpLQcsvytey0jHbTtwiddcjaEbMNftcadawQ6fDIoxBDhLa74zwByHRlE/SCDh3qIkJDZf8eeSu\novme5OQbEV5/19mck6O9GaMj12WILMrLtX8sWOc8pkYCE0oGUcBMfYAUltRIAqn/f/beNMayJDsP\n+07EXV6+3Grt7qpeppfp6eEspMkeDjkkRcKmZY4WmPIfmiYk0IAAwhsswQZsyjJg+IdAS7D5xzBg\nU6AAChZFEyPbpCku4iJQXGame4YzPd09Pb1VdVXXXpVVWbm85d4bcfzjRMSNe9/LyqysqvdeVd8P\nqMrM++4SEe/cWL74zjn42PGb2C5ylEaj/1YuKqtK7pHu1gPMg7Ab+aoj2+mfZll8Qdh3P45XddCz\n8DNKjc5pIsGgXSrmCTdB62RdTv0TOkKvCCEC93JwrpHeGIh7F5HsGqyvAJevS9DxLAUfWYXaHTj2\nX7JZoaycf7ojoLycMrBYJIu5sgINi/C33hpJHB+tHampkOwCemixflaUPje+W+Ie5NcttnOF7DbD\nFiU0AN7ahiorpJUFEoVqJUO5lmB8DFi+bJEMGdUSYeWN68D2riszN4kHY1yAONTxSbxkvKzAuYYq\nDFYv1LvRJtdIhowj30yRDhjpgLH540N84fgl/P63P4UboyNQZUNq+kD7nDU6xmFCR+R2j6meYAB1\nrGifTewAcn0/6U2eeBy80of9UFLeUpZNDHztLFtCBA2QnH5CBr0q2iWqKvDOLtDOzEXUCAoZ71Tx\nYCjxRKwFzl0EDwYSPPPYUdDpJ4ScGg4BBm7/9c8i3bVYee2SBEK/fK2x65v80V+g99STKJ49CbOk\nsfVdR7Hz757A7X+rwPo3M9gEGD2m8dQfFDjy9ZvgC5dh4vq6HUX2RKILMhgWtHkuMuw0hdoe4egf\nXJWg1i59qFlSOP7aTli06Befx4V//wnoH72J7EtfAP7pl1xzzKDPSR/jiZ32FgHN7c/cd8V6j00P\nN16ZpRQ2V6hyFeLPqUrIGtMDTAaJfaMBKEa5ZjF4QiMdZFCVhS4kACf3exK4OmRBZHlfIyUZAPgY\nSEIKibyYLKAHCraS4NJ2kACWwJlsGiiyGJoUI5visXQbcJudKRm8kF3FheIYlrJSNlwA5DeGOPVl\nhY2tU/jj40/gD9Y+jf7ju3jhxAYqq3B5aw3b7x7BY18DnrtZId0qJFC2i/tGzKKeGxrokYbOAfIz\nFwZ4rLE9zrHdk9hGz6Y30COx3XVl8GPL38EVs4Y3hk/j3YuPYWmDJPOnRktU+oDnOf3T3EiftF9/\nQgqUidsX5TngJ3/eRVQRYJyywsjEO7z/3r0sz0FZCnXqJKqVHHjldQlU+tZ7zcWgW1xRIu4SfvHR\nyCyW53VSjaKs+/wj69BLS7KwsywuZlkaCCa1tgY7NrAuToS+NcBjvyVBnK//wFEc/8ffASUJRkc1\n8nMSI02yW1lRJPn4Lds7WHp/A6dv17use5JB7v3jqqzHLi3vAvWkHjwcgrIU6bVtZLtD2H5fFhya\nkL35IZ56rZL+8sg6Xv7it3Hrbx5BBYBffb31qFn0OSe5ES172ibXXnDjW7CNFnySgAl3sei++lOf\ngPn2OwBkZ95ub4dsa3YwEDcYh3jhalvps6fdP3nyNKqLl4RMcmqUiUVi7FbW78O+8R1U/87LSP7o\n6zA3NjD+a9+PdDIEkGxsRCTo8GQGrzviLN2XENmz2NE9+dLVxgYOAPRfPRPO2f4PfxDHvuPSpbPE\nePOYxTwnEDmOmDiQ22Gc6TBWSftneJWW0pLB6+KlmvRxbj08HqO6eAn0uc/Afu0N6E+8gOr4CsyX\nXwuxfQI2t4JLX1iUKx0mYYFcQW0bXFVQx4/BXN+AD2xtN26KYnk4CtnoeDAEra7AnFhDws+g+uA8\nev/fK4HYBIDxE6tIvg3Ql78FeuYpsOurkidPw5w6Bv7aG1j+0ldBTpFhrl+HV2+GINweWktf7Enz\nOF6WC4rMw5G8d++8X9dta0faZakHVAbVhxfk+IkngRZRMYs+Z42OcQgP4ddPbiwO6kCvDorXB1rL\neNLLZX4Z1giyxuGx6x+MgTp6NKi/DwJKEpcBtwBXMrbp9bUHQrZM4JXXhdDNsqBWTM9cCcHt543q\n7DngrPyuX3weS99zC/z6UTzxVYNr2wfr5w6SZYwA/DKAt5j5F6OPfhPAzwL4n9zP34iO/yoR/SKA\n0wBeBHD3OdUOCDIMqKiDi5RErBRMLrFSiAHrJrwmI5dlTEgZPXZEkQHMEmN8hNC7lUAPK2DXd6ZK\nFkpl5dyiuLmjolRwxQLLzi4ZIUrIAjYTNxzrOCUv4ZKYDQSWAoIyg16/gF1WOLoywEo2BvWMkLK5\nKFiIGcnWCOvvVjKRV4RiPUO5oqALIL85hh5VkvkKqF0U/K6167xUYaALC5sJacWKoAyQDIQsM7kU\ncikpMTZ1XU/1tzAoT+Dy9TWcxp8o9wAAIABJREFUuMLIdizGawpVH1Bj51M9I7thQnPHnVlIL+N2\nMuLOzEMrQBOQKDAcedRa4HGWSKye2wOoWzbKgKLAqQKnCaqjS7j1yR5OfHMHo8d6qJaWsfqd21CD\nERiQBfzRdVmM9ZeC0oaZneSe3c6tdeWT3V8iAucp7JFl6KubssPpyCEQCTlpGWpcIXPEF1lGfrOC\nKi1UmUEXDNaATRXMEklAPK+CGg5BbtDO0hTZxQT9C2vQt8StTAaz1g6AR5xeEiosEMAMViSuY2UC\npZTEDkpJXBNLhtWEbFuuVxXjY4/dxL9681M4/Tsplq4X2Nwdz8524nU5sywcSEnslXDOlEW9koB2\ndjic3HHzrghODiypOnliIq6PHwM//QTsN78NvbYG63bp/U6mvS0SarO9HQbjvbIZhJTT7DL+LPXC\n7la4vg3Lku0LLlvCjQ2svZpg9Je/F+bEOtSl67Cffh7JxQ1UFy+FCWH14QWk29vIej0s5RlWzq1D\nj1axfmaMbHMMtT0Cf3gJZjSenGg7FxMiashXvVqJx2NQvw8uS9j3P6iVQyvLsBs3sfT/vgLKc9ii\nQPHF78e17xNVIn7vGI69dtM9YkZjFaEmkNsuhEDIHhY+d/W/owJWATZPYLO6cVgRrAKqPiTzX8bg\nVNR/qAgEBc4sxkc0ymWFPNXQvq/TCtzzg43ftHD39v1fVB6y7MYsgq7EdQxEMClLfV1GzMpoDKoM\nPV1hs1xCZRWe7t3E6fQWnkluIiWD9WSA9XyEjSWS5zCjd3mAU5sJOFUwqUJxZAXnT60j3WGsX6tw\nfLeAHpR1dkhyGxSuPWEBPTJIhy6mXs8pfAygtzRurvaxno9gnNRqi3PkbLCqGKuqxJvjFfzJxseB\nG7kb3ySwvVdmzX2e004177J/UZJIfK04WCcQ7cga0NIyzOZmww4pTUC9HmhZMvuZlRy7T/ex/Aow\nOrWC3qXmJJpvb0EdWRd1T/yY9bXg6qPyXPqU4RAgJW5qZSUKNHZ93soykCbgS1fAVrJW2c3b0FrB\njMby92oP5Ijyx//VBcmqc+I4iL0iwbvFJdInDp2aejgE3j0DevcO7Thl8Qor4y0bI32zZSBLYW5s\nIFlblc2h42tQiUZ1/iKSjb7EHiECbt3C6PMvAnhvKvk0V7vZTxXkEW9YNo45m3PzWOO+k8Zpbp4w\nPiULZriQCQBE7eXuRSvLsNs7E3bsF2shyxQwMTaYU8eAi/Jsrqo6XXd0L69GBQB1/BjsYID89fOB\nIyPjNl1biNVBALD+5Q8DJ+uzjt0R1ky+m9PQOsfc2AB97jPA127j9k9t48jPXZayutgrwAxtZ5pS\n1Zqmyim2JfKB6mlSJejqqVy20+BiQyTEoAvszFUV1H7qnfPAyZMw77wP3e9LBIfBMHwOSNY50joo\nifWRdXFnHzmldhxPQGnoY0dgbmzAXN9w1xnoJ5+Avb4Bu7uL5OmnxD5JYvIoreGTyiSnnoC5easR\niyoZ1FlgzcXLYMsyz9u8DbWUg3wmsTRpuLdNzMuI5J3x9uDa1V+jjqyDB5Jh2OzuijLoE88BF6/A\nXL0mqebPngN9/2cBl0CEL10V1XZRADsz7nO0dyk0NRk0QUZbNJRBOtqwcG0an+vjCtmquiMZlJx6\nArw7gNnaQnLqCdit7abab3cArdXkGuUBwo5GQPxOaC1q7N0pbPQcsfvSCYz+IsGz/6MoXMGjO1/g\ncBCF0A8D+FsAXieib7pj/x3E6H6diP42gHMAfgoAmPlNIvp1AN+GREP/z5kPkJc5hl/gx3MgC0yT\n2rPvyGKXMkAInFRSwHMi/YnfuTUZBWLGB9H0GZbU2LlNpW7HNEtB4wLIlOwu+ZhB1orh+10VFkIH\n7DJdlRLcNyEEeXvvpsUgUzAKSIYyKdUjErJIE1a+k8ImwOD5BKsnd2CZJEMLyUS9WCH0U+2iuYtr\nFFUyX+8NK4TwVq6d2rvRrBSgHfFkLVBZ6JGByVSIc6THBFYcOuA0MRhWKUZVglRZvHH9CVirUJYa\nvfdyOZfEHUgVEtzYYbZ20+6k3EKEbSuAtveBNeLyFxZFbsEWCKTCgBIt2XrCQkoLKZgmQsrdHuLo\nOwCsRbZZItlVgPMP9+w4GXHPE996IXJobVWetylBfFEYAAZQbjfWWNCogNqUe3OaoDgtOxPZpS2U\nj61AbxVQowo2S4BE4dZLOWxCeOzVbWS3pQw2V1i+JAGmqb8ku8jeJnzwZwAoSyTnJQsHWxsyiIl7\nC03vcKtKMqsBTkKqZKI4GMk7x0IGDU8k0AUj2zIYnNRIRox802Lz4wnGf/YUTr1lsfbOlnwX9Xc4\nG9tpxIBxKqD2or0ty3eIJwVyng2uXFwUYJ+C2QeD9YEckwRIEoxPLGHp+WeF6FvuQZ+9IJkWmEN2\nirD75J/pAtjZ0Si4pvlnk5PnsjGgx46DdgcgnU9O6ADY7W3QeNwIqslVhd7vf0Mmc/0+kg8V2AfO\njxYPsnsnWYP4w0t47I0UzCxZQ+7U1q6dfFBYZg7BOsnt1JmNmyG7W7js9lZNDn3yeajzV/DBfwDo\nHYuP/YsboMEozrw23z5nLzi7EaULphJDrLXEMGCAKlE6KsMwSrJhmtyNYRUhKWTjggHAEkxPslDa\nVDIi0rBoLoqdupC1KCKb8TEYVFnoMUGPZaziBCDr4sEZknENAENhd5S5xAJjvHnzFDYHS/iB0+dw\n5MgAG3YZKQwGJkeqDYojoq5UhTSpGldAQdBEyG4XWL7Q7FuoHnZAILeRI8pZMgw9LJHupqjyBACD\nNSEZkhPHaFSsYJhwzazipllBL7+Id0fr+LOdTwAAzm8eQTIgjI8CrF2svHpomP08J0bb9TQoRiEk\nTCQNJ9cn+/ff7u7KQuL69bDIoywD1lckvt3lq6CNW1h9K4cF0PvG2YkdVTsaQfWiWAhKC6m0vgaO\nUoTLmMqglOQdNgbY2ETl7ld87ASufa6P0//4OmBH2PnRF7H0G69IPJGjR4EsxfX/ocAT/+VJ2LPn\nAKVCQNZjX7mCKuqvfGB/SlJwVUp/GGeyiRfrbve5rWqgJIEdjqCWl2QhU1VCoj92HLixAe73YPsp\nqpUMxfNr6H9wHtWFi7j03/wQTv8jmUyf+2KC9IciV7wm5mc3B+h/gvqgnfEnIgO8W087OHBIQQ8g\n/4szoX+3G7dE7RmTN6Tk+2kre9zikLRuxjWNCAh17mpz7HjuaeCN70B95kXQ+cswm7cbmyo3f+Qp\nrP3zCxInxqF3YRvJzv4BXuMNjoOCFIE5cpdqp5t2xGycIpy/8D3Al18DADz1DxWMe4daBMLsbIeo\nQVBMlKXdHsZIqIP43W/Ml9yYtrwMbN4OCjQ/31C9HsylK9AvPg/z7hnJJtrrhQW92dqCjgiZoGAj\nEtWRy0w4rWykSFTyAFQvFxeyW4Wk8v7MJ4E3vgNz7Tr0qSckmHgiGb/w9Tex89c/j/4fvwV96nGY\ni1egPvNJ8LtnoS/fggnu/k6ZPRyCtIZ972ydlcy3R0wAeuVV1JZqKa9dx3K3gQiI4tEHY3bnmjff\nlgxsm7dx8ydewPqv3gS/+jrO/sIX8Nzf+7JszDQJ/9nZjZ9HkFs3KYWwVRM8LhSgfCgJ1w5VJYlo\n4jkIKWA83nujsoVYQR//Xvdpbg1TtDZcneLxbhC7ME7D1s/8INZ+9SuTZbxwcSYZzfZE9D57pSUA\nrHzjAnq/NUnw74d9CSFm/lNgWh4wAMCP73HNPwDwD+66NB4x6TOt824TQ1OMi4lCCniqLJRR0qkn\nkPS1CSHdETcnmwoxZFMAJD+r3Mn7tcSMYaXcjr8NLweNClFFWAYr50JjlExgtey6cuQmINmbRJVE\nFUAJXCBPAmeSlh4EgBi7Oz2Z5JYa2Qc9UTglLISDtfWiIvYy8h293ePrUgBDg2BELWQt1LiCHmtY\nS0itKIRsomRBUhI2t/pQ64ztYY7VpTGKbx1BtQSYIxXWdqVOxbJCtuMm7QMn65y13TAa6eY9STgR\nPyiGBWgaCVBWsmvGjEZqRUDcxHoJ1O0BKNFINkdiX46cYaJm0El/vcswAKCZsasdUNpWIrE0pkFG\nUcUwSxqcJyj7CWAYqqiE5ITYU3kEqFYzFEcSqEpsb/dJwvJF1IHhIulmeKYvly+r1jVZoDQAg4nV\nvnW7Bc43mKoqpHZlEtXa6HgiActdc9z+OLB8SWHt/SHyExqPf3UAMha0K1kewkRlJrYT7V74wd0P\n7L5tJjLvKFG0eHe/Blkk8Sm4LKAff0yIjKJoBK6U9McJ+PYW0j/8C1TuuyCtYXzASx+HIUuBspRJ\nt0ttSbnEEuEblXxeoOEiQopEafTeWQAuQN53v4jhqSWsfOUDjD77NPIru8CZ82IDWmPrpz6H698H\nvPS/XQ67dXYwmNhZbS9Yw6RpZJxbycEm2T7GgCxoxQ1FHTsi9Rq6eCdLS1Anj2P3u06i/7Vz4O99\nCcmbZ4FLN3DuP/0uPPW7Bqv/5h2321o/c2Z9TlxN43fG6kN37HOASZcyBUATbCax3Lyijqx7Fku/\nnO4QTCZkkU0B25NOz+YM01NyfaLcOGTFBcRN4iSzZDS5S5T0W5UFVwrWBZb24x/I9SsMwCtYQSiK\nBMMyxcikSJTFen+IRBlcKo5i0/RhWeHLG8/h/M2joExUT1RGRHQM5+LrSaCJoPJKCTnlMilSaZDs\nGqRLSggrA6iKMDxJAAPjKsHVal3IICoxsDn+ZPslfPnaczi9chs7m30kym18DAnJCCEJwlzmOcD0\n98b3zxyR835n3u3AB9cPpZGcejxMBCnPhQyyFvbIMmCErNVHj8qYkkgWMn1kHeTcvAIqF6h+NAKs\nAY9NQxVjtrbkPXWKG+szIxpRDIAI+uoWTv1JGVxoVt68Xg8dziXt6C+uoDor7keb338Kqx9eRPX0\nSbzzHy/hE/9Z/TywbWRLZMu1isAT7Iqkm44XI0DjGtgCbFymHpJMQHTuosRCcqT3xqdzPP6/CgGk\nTxxH+bnaDeAT//23xKPz48/BuL413H9edgMcqM8NbjZtdzHn1pI8/RSqixLnxystAk6dBBwhFOJL\nuQ0LHz8ouEptb4srnh82XNnMjQ25vj2eRAtFc6MZLJdcIGAaFlNjeqy/uwOGuD6DGdWVq7jyY8dQ\nrgJP/ukdm6N+9l2QQm2XoAlVSJpCKdWIQ5Tc2IaBW2i+8rq0c71x4YoxQ9vx4QjiBbrccOq5XFVN\nMsify9IH2d1dqOXl0O/4tPPeHmh9DfbqNeD6RsgIFkgQF4sljp+olnqiHCoL6PUVIQFdgHJxD6rC\nXAmoY6dwUUAdP4bxD34c+e+8Crp4NbiCmctXpL8qC7z/v/wgXvivv4Leb70ikUe2t4VEf0PcVe36\nMnAJE32In19I9rDIZvy6gTkipCnYVqwS4qKQQNIry+IGv7oKKkswULs9XhOlzPr/+RUkz30MV/69\n00IGAS5WpBsDzLzW5FHcIKcUihqp/t3PnYOyCHWYDWuEnM/zCVfOu0GjL7NcezM43C0ZBOCOZBCA\nqWSQfvF5DD5+HP1Xz4R+buaI3t/BZ04jc++jfy/vFgePNjQvNKS/rc/iv2M1kVKOyLFgrRwxgxCv\nRxnJMKYLoMrlWiZgfNTtxCov0a+DmVFZ1UGzIrn9RFYtds9yNCprEok/u3s6Urzqy3N9jAhbEkZP\nlkhXC2gmsCVYSyi3MiwPEBYKTDKp2VMtdcBo4h5UGnEvsxpcEqhi6L6k9dUjoLjew/VKgTSjGKdA\nT0gsfS0BGalXMuZ6ETM+/CbpPYEwQQKFhVlEegByHtmICIoXZ9YKAZgmoK1dsHVEn8sqRMxgwyBj\nYZcyVKs5qpUU/bevwR45CpNrqN0RcFNk9RiNgSyd3FFSjtgD6kmvV+NYJ1dzOyRUlEivbSNVBBiL\n/vmtmrm3YtjrHxRYuaSgRwbsAmyMjirsPluhWkpwopdLBrQ4/gTElphF0RPayWcMCG0r5IF8HslD\njQ2KKK4MyKV/BeS9SAcWycAi2a1gU4X1d4H+RgU9KHDiz3eknXuZkEFFedDMiPcJcb/SUk0A9YIr\nAimSoKQ+c4InYSyDFMku9FPPA1c3JmJw6BPHwCt98MUrzcmxkx37yVT8GS0tAaMRrCcQt+tFSpik\nRsEhmV0sJDcx4aKEPnMJK2cV7K1b6H2jEhm2c3fTR9Zx9Pffx/qv34IBoL77kzJnfPsMNv7Wy8h2\nGCu/PjkQTrTk3Qzsrr4S9whCYF3fqPvTfh/bf+l59K6N0f/K+6CVZVz+S8ugL3wGT/3mZTz7Kx/I\nLtvpx4HL12F27n7wvy8Ikx33d4uUD7iTm5i7nrWGTbUjbeqPrCbncgnQrpAzxZqoW1UBYEfB9sQ1\n2aZwceAgfZjlOgOmV7RGiwAy7EgegJUQuDJeyYZFKBtByOAMQj6VCqMywbBK8cTyFtbTIXJVYWAz\naLK4Ua5gUGawliRmmXZjknt2g/RRNPnOe4ImdM1+Z1L6dj0oke5okFXQBUOPCeWKwniU4OZOH69u\nPounl27heLqLV+1z2CwlqOobV06BbqaihBqKQjfd5qlZMWeKKQsyiWdmG4oNUgSGlrhbxtRjhjU1\nGeTjrxQFoDX0lVvgnR0YAPyxUxg/1kexprH8pa/CvvgM6PWm7xXv7Ih6dWsr9G0ARBnrF0SkQMrF\n4Rn5hYobH8oSuHELamsH1pfl8jWJTeRizPB4jGRzDOUUTWtv34atKuw8u4yP/VZLJeUUQZTp4Bob\n2sSVhauqSeRzqy/3C7eydG5jVtRGRFAnjguxsDnA6d+RdlJ9CaT6wt+5HlyLgqqhRQbNHW316rS+\nZ8o5npAHICR8UDrEJLVTR/tHlQXsj30v1B9/A8nzz8Jeasays6MRkhPH61gn04gH//woHsy0Mnsi\nwgfYBdBQ5egrt+S76eVhEyPbZuSbd/Eu79dW+50PNAIrx4tUtboayu4XmrErJrXjVc4CfsOL3O93\n3Ch1oQuiuFOh/YkCaWydyxOYZf4yGISgzua6LJA9oXf9P/kCTv7vLgugi8USSJnr18XNdKtoXAOg\nVg159V+s5GaZp9rrN7D0xzdhIYF7Q7ZE7foNrfHx//Zr8q5//DlgY1MIzojEUpeuy1gUk4WOAIM/\n7mMaxarEUFBu/C79VgZ26yFRjpchY1py6gmY5x5H8kdfd22d4MP/6mU89Qt/jursOZz4P85JsHYX\nSzKoUOa0vArziOBi6L6HWCUEyLHKHdcaITu3ViFDJu8TViyGt6dGOaK2FuJtnznWAwL3cyQjI6FB\nFgDZ733tnu+x2IRQ7AYWT7xj97F23+qUQT6rmKqsEDtUT3oBhJ9+F3bplkW1pIV4cRNsk6v6RRgX\nYRHvn+PvGU8qWamQeUwZP+GUSb2lWi3hSSJVwaWhl2urLAFbgsoMlHPd2n2ugt7WWD3vnjFtkeHb\nIWaqQ6G4cR5DNzo9L+nnVMnidcxIdkS5lOxqFIMebMKgikAu4HS6CyS7jHQoiwsyQLJrREI+Q0gw\naVdN5dOuRyohYLr//NR7sewYjsbAYCgL/TxDUAoRgXaH0AMCa3HPqFZSXP+eFKeGkgY1vT2qBzBT\ngkcjiR8EyD284odcRjMnHyUiIYDixbUPWm5lt5+9u5vb+eeeLP6pqKDGCUxP/GmTIUOPDOzjGo//\nqUJvoxT1DykJ+BkqXJNCYBZyh7mO8RJ39mwcWaQkoK3fvVYEQDp+ZucuaS1oWKJ/bhecS4YjNa5w\n4lsl1KCQOFxjl4LTK4PyWcsup9iEX0xMKIPcYta72RmEAdBnvaAkkRToZ85LDB1/WzeJslvboN0B\nrIujYV56GhufXsbxX/4y9IvPA5vbtR8yEXg4gopS0AOYjGXgyxwmKFFcG0B85939KMtgb2/V2YYA\nmaCcOAZ18ihw6SpwVTLK6eNHcfwbW6DS7BnD/14QAhIqAhdGMpUs9yUlZ5Zi5f0tUd4cPwqbpXjy\nD29Db2yDb27CjMcyyTtzXnaGDhkU9L7hLt0PwmVeJUQEdnHuVCmtbZY0bII646OFE45ypIwB9Fih\nZFEJVUvitgulxK25MjXxXLn+pq3SIdePKbm3qmS8ISuu04BTuKaQnVJF4EphOMxwU8mku7IKiZJy\nl6xRssYzq6IquFWuSp+qVE0EtfpiaYPoQDRGe/Wj9EvkxhmLZFiBKQHl0n56CCS3Eox3V/Dq7edw\n9vHjWM4K7BYZKqOwvbMEeyNHflshGUjMQD1m6IIP9d0dGgd5liM3Ql/jyFP5wwLQwYUqBiUJ9Inj\nqK5cDRn77K1NcFVJatqiwtLbV1G+LOne+evfbqpBIAuxxMcEcc+ShVg9DrAx4grrq1QUErT6yLrE\n7BgOZQ6g6800kAI+/gxw7pI8Y201uBLZJdkhMxmw8tuvNtvCZSislYAm9M0TbcDsXpI2CSILSTse\nS7a2NAljFQDg5m3YzdsgraCPrMNs7QBtNUujTCTS/AtTY7LOHvHiNf4bmLS3Kfbnd7YbMX4AwBqY\ni3WGMCiN9NJtIRd3B7Cj0aRrxjTSpOX2DMCpbJuKpfD8Pd4R9ezTNSGXeDJUbEF/+iUc+3/ekKyY\nU68+AA7YD8RklqhPRBVMaeYCmHO9gRPHQHJp08FcK7FnjUD0JPtv4nAz9mGcac0ORzUJ6wiUoBS7\nvQXvnqaPHgWtr6L64Dwe/2dvgI6sB1cwWlqS7LrB7ScK39BGtDnpY4v5Oam0vQRqDlm8RmP5fSzE\nM7EFLfdRnfsQfPVGQ+GWPHkadnfXtUkdR2iC9ImVQH5+GJNHkQqmbu/oPixB7Nk6N9atbSTv25rf\nUQpP/cKfR0SXxGQK88yyEMX39LjwDw7xhomfB/u28PCbxUD9XenoetfX834B5qfBGOiXPl7H+2q9\np3Y0CpsNs4Z97S246dniY7+NSYfFJoSmwRNB/ltokUOc1inmAdQ7jZ6YKRmsJcBtlVOILzQ6ompS\nhWW3lROqJ+1FCfILdAB+1Rx2dN1indyiGAYS4LdSIEPCERiAKq8wksv0CDCpzNuTXQVbplAloepr\nDPMEelfB5iLnbyQR9PX2u6dA80uPFwBR9i3pvBgM1Qh8SpUQHgoW2bYNMYVsSihuCfGlSoATOV+V\norJKxkJ6USUEmJdgzw0Kspj038u0iVIM36kDQFGKG6CPo0OqKY308TcUSVzZ3TF6RYVTu0sgY6EH\nJcxSClriOl1naYT8mCgnSTmVQkgX6VUfxpFEvtyADHhQTuUmO/6mn8EsJciu7SLZKcJ3nN8qYDMF\nMkC6y9CFDe4C4X4xuemf48kqX2cdTZzhJgAKdecf4guZ+vOyAo0khokeQALbRrFoyIhqbyJ95SwX\nZvLAPQ4fcOfQ7xyRBAGnLGv4eavVVXEZcwsRLkrYyvlUG4Pkwxs4pkjSjr7z/kQZ7GAgcZ+AevAl\nau6uumOql8OOxmERp30mjJ1dOR7dg6sK+sRxmJubsqN34yZgObiDqKNHRcn0jTcfqGLLT6JVnkvM\nLD9pGI2hrhbg1WWxl3EBtTmWnWzlAq5HLpm+LjPfOWsvxA4JTnXYQAh9kXX9vQXSgRC0pkco+y4g\ntwXIEEzu+nIl/bJNCDZRMherKlEExinH4+dSHeSaWMYlXYrKkxMKi2vKJIhzIG1KBcMJtqwElN4t\nMhSVxsbyMlZTUcUVVtzK/OaHBP5vBdX2v8bKoRDfzLmSMerxzQrxBWZQYaG1d+206N0kqFLG32op\nw+aN49gkUVHZVESN2YCQ7ALpDoe4gepwivXD4wCTMlLUjOWidD3JJkfKlVWL9JBFXnX1WiPOmF5b\nk918tuBzF2GrCqv/WpQwpDXos5+Afe2tZgFcf+F31oNqlJy7Blvp14xpkAg8GkfKP1NnnVIS1NWs\n5kjcvfnmLeDkcejjL8F85VvQjz+GbGcPEr6RxADwsWrqv90CLY7jMS2bkhvLZWOGpR5b26KOrUqw\nUS7wbNT2sTIhKlPVUsfMDAchn/f73GWfa8f68X/Hbj/tmELm3TMAUb1jH8WAAQDbdjHaA3Y4bG5u\nEE1PPR3Vl5fr+EDVB+clg5RT35jlDNjehur3D+2GclDEbcJVVbssxvbm6uUDpNcXcHD7mQs8IRWH\nA9hvQyX6Dvy77dPBq14PUCpkh6MkaSqjId/V+K99P/J/WZO9bExQ8vhNqhAHxinYGsGuXQaxQGCT\nAuBc10aj8PygmrayUelJH+9yDwAwBsVPfA7qTyR9fHB5W10GrnDjmb4809pi4vdWH+EzM8YEHBsD\ntbICu70tqnClgqut3R3UivOqmmgHffzYpAvfLKBI1lJu3dMgwPYNtF6TaZ5EvluYGxtA5I6lej3J\nXBg9m6dlR+zQxAHnqYtHCLVdoWJl0J2Uln6hTNQgP9ipHvwi1hM4QnYI4QGCy1wCF6sHSDi6r7Uy\ngfB9FOpnhZekMtKaFUnKXKXAlRKipKp3r/y8lnz/UQHpAChJCBd9U34W6xo2UUgG5OIowGVUm6YO\nihj0aCc2EGP+JbYM8jNxxWBQINfIN7pVSEwJVYi81GQKycgvWGp3AmWkPDK5lp93zKIzCyhyMixV\nB0+NCZ8YMTECOFLM+fu6wL8icSyFgU4T8HAU3Mc4TSTmAhHUuAKxTExsqqBK2ZkPKRKnpFDlsqpJ\nGb+bGu+sWq5jEfkdMY80AQ3H0Ltj+Z5zDTWqUBxJcevFFE98ZQdghfy2DZnGKE2lLbTev3OI2sur\nh4T/dLGFNImhGbdja2WABmQXIA7iTZWpF84uGxmVCMRIIJxGUyaEDxQUdpka2GugmxI40CtvmBk2\nDtLqBnhSFHaqwsKOjeyq7uyCLl+F8bEw8jxk+QnuGUVZ7zyFcpDEEXHvM5eF+NF7t0S24u8OuEwh\npp4o+Ynd6gr4E08h+fYH4gLn3Py4qkDLSxi8cBz5ah/61jaqD87v04yHU8jIAy2YqV7kJmX9blSV\nuBEaE7LggJQs4PwuIVz7bg2LAAAgAElEQVSQx5mTiZicGE5x4d0XCjI+OZfDevNCyHVrCbpgKEOo\nFGB6Qvz4BAjs++IxoeGy5vqxQGYTAVaDSq7HLWsBS1CFccpZ5dx+ZVyEdhsY3qVZEcjIc1gr2EJh\n1xCGSQ5TKOwOc6z0RxiXKZiB0SDDqoW4o8WqxKieoWwKTaVQGK/8T3+eG8OMhR5VABKQIfQqIB3K\neFcuEZKRqIzIMkwuN1UloEpxE/djljIztps72WljgaHqBWZ76HKLMQ+9tgauquDWRCvL4IFz9XEp\n57mqwLtDidPxwpOg1wdQzzwJPnMBbYRr3bPiWGlBCWEMiLjuDy2LEjbNpI9XSsbL3QHUE48Bm7eR\nvPa+KPqIYG5v4drPfBp6zDj+JoD1Vay8fWtyncy2XiDFYzjbOp5QFGS6EV/IuXeEgMDOpRbO3Y6r\nSrI7ln7xpRuL0OAuw6Ym4X3/qWlauKIHj702KyZUUXv3yRTFB/QL6sbnvTxSqiqpa1UFm/PqKLW8\nDHu7mW7ZTiF12mNPqEf7XY/L4IhGlUdJEc5caGyG3Prhp7H6f4lKi77xNrTLSPTAEX3xXNbt0iCi\nXJ1C2RuqrTnpCVrKsdCW+9lO9DtXVcNmJK6OqolhUjX5UVWSVCXPG2RQcuqJELdMlDwunmBRv1+B\nWPZKYq6zDgZCCpD+xM2PPEFNWSauaE8/KZuRV67K35ko+O1ggOx2AVjbULjxlevN97zdDtPU2fE5\n8efM8MrtODkAaS3rCx+82mVr5FJiKXJRgK2K3msV5p1m46bMeQ4hsrkn+Pg88XqpjArhN4X9T++6\n69fFgCMh74/dTyWVZqQSp5c/DXrnvKj9PA5CjD1EWDxCKMZeBNBBJt/WBqKDM596npuT7gp1KniW\nSSNZgLWsd20SMaL+JZdTQeTk+Ex1AC3LILKAURKfQdXPkn8MVcj90kom3noM2FIm9TaXeqW70tkw\niasZ2E/OWXaAozTprKi5++oDBDsCyoMBcSWw4t4V6qURJt0EK5uw7lmAlEsXukk0UXQ9SawmYmDu\n8RjuhLB74zqvNlFUVkLwOCIIJPEG4NNVllWt5PEDV56Je1RpYdYy2bkeVVC74+D6xcYAw1EYxAJZ\n4jtWJYtccsoAST3vDMefa2WCbVd6UFsDlI8vQWuCurUjGYUS2clNtyosXRcXreT2GCsjcTNT40p2\n87xSKdF3VnJNUQ8RICRETFj5n54Ucj7FHO3mwrpU476OHjpyW2zHeJoVYl90j1gmHHbm0fxbTpRd\n9iQJO6r6yLrsvo7GsLu7snHd64GNDOoqz0HL60JiuNStdPpx0HAsqpwPL9XkIXO9Axkteng8rt91\nN2Fgy7Xcnkhsry1hjnZ1zKUrSIcj4OgRYHsH5Xc9g/Nf/ASe+d0R7JYMuIOPLSNfyaAvX52+exva\n8PDvPFdVne2urMR9EJCA2UO3EHVxtvyzKEnCxKq9gz1T7EU07/dZDK/IYxZVjL88IRfXBzCZ/PSK\nFpMANnUL0wogS7U6Nsi0pb8SlWHlxiuq3znlNjCUks2LRIESn2XRPcvI/fRY1Dc2ZaiSXLwihk01\njJG09GQIRalwcyuXrGQMqJGCKti5uSK8Z14J5G04fA40iCLyLmKMENzaK4bIWOdeV0EZBVsxyCiA\npLzJSElbMMCaIyVUrbwi413kDvJlzw7hXffkg49XRqqxuJAPqeGyo4+sgwdDUQX6gKYDecfU88+A\nL1wGvX0Otihgz56fqqYwbrLLvl8HELtPkHZxfLzrVp6LCs0YMFvQ8jL48eMw/RR45XWMXnoM2Qcy\niZaA2ABlGU7/9oVANpt3z0z2I8yibtIa7LPSROQ4xeOFKwv7Mcirhoiawf/bC19PxDp1K5ccFp2x\nAom0krgX1Gr/WeNeyHeg6e6UtzJQehJja6c+xhZccXDxsdvbIRCwd7NpYK+yTSMc7rCIok8+D37t\nLVCWIXn8JKpzH8oiLPr+j756JcR44rKAvb1Vq2H9fQ7iGnW3aM8V9jun/fe87KetEN0rhtOd7Etp\nyUbY79cJM9gAVss8xJE2QgxLynp94jjsZ18Ef+0NIRMviRtiUHr4WDutWEGN2GC+aOG7lPUPe+WQ\nc9Xj8Rj47IvA196AuXQF6si6KLVHY5hbtzH8G5/H8pkt2K98C+opIYxUIZnRQv/kuI7gkhqrvqao\npeIYjvW80a8ZrfRJVuoWz3cAt87ynrVxpizmSRdOoJFAY2bwmbQju5j6XsXjhV8P+GRKw9FkUPuH\nEPz1Kar5aX3APfbT88TCEkISPyAa9JtrselkkVtAhHP8MYhKxyQkO69GdgpBMvktEyE5dAGZIFZu\nAhqpjgDUbkTBn8oGWbVPLx7Io7guFhIAswBU6mTsJUJWLJsQdAoYJ3G3iQS8BBAmtqqSewTSxcdl\ncDuwJtcuAClDVU22zKdT52jGTaY1SLvUvp4MIR+Q1J8bkSieEGLn+iYBTKdMuuaN9kQwJjFU86Wl\n4Vg6v8rKpMdPOJV7RWzkxuUy+FQnV2F6Gtn1XSS3x2jEl+rlwO5AyJCqCs9sECNxPKE2YQLIZLgs\nQVrBrvWx9eIq1r8xhhpX4MwFnB4VUm4ipNe2cezqlgRABySgunHkYdUasBItCSjbmQM84RPHgPBt\nZP3EO6pnLQ5qtrtlABbQSjKRWQOOg3/GOwZzCgoH4M722k5nHC8ISMlCKE2gjx4FF4XEn4gUP6R1\nLWc2sqNGxtYTqqKAGsukyLx7dmJwaQafbu1OtY95daTf2bZGXEb6S7DbO0JQfeGzsJlC9s2z4MEQ\nvL0DShNkZ67ihf/ZKQMUoXemRIh3RVMC/95POJJHfnf25YkhryxxSjL/frCJFAKWm+0wK7TVhxbN\ngNKxgij+23/sxwob9enhXOlTycp4pQu3IcDAmAg2F9JFW4BVTQ5JRktVKwq9StJYsHbB8bV2qlAL\nslZeRyO7IL78Ms4AZISMUiUASKYzqgCTS/IFVSnJmGkBso6wdMOjKgjJ0NUt2rgAAJsomFyF8UqS\nE7QXJgjtKnWos6AxpP9QpQVXFpTqejwjQBVuA8jWhBQrBBdq7+Is7T7b8WrPRWpsSxEZ4QPWh3fD\nTPYDXjFod3al30mdC4aVY+rIOsZPrSO/thHSiHNVQZ88KYrEspi4p7jCqEC8MFPo82BHQJrX4ylb\nUR1ubYF6OQbPrGJ0VGP9FSD/o2/VYRuZgyuZvR5lZSEFlafTd39NcyGmslTccz0RFgX2D7fzwah1\nU/UTNnJi1VNQFCW1K5rfnXdls17h6dvlAbslTQUDE4rWaUTXtL8d1FIPxqu8/GIz3vAERFHWyhil\n1teC8iJ2W/Fu0f68gL0WRLH7XVRWnxXK49Zn17H+mktNnkZLlOhaH0zaP28iixk8uTpFAeOeOxdM\nS2AxC7SUDA3X873aCAjHvfuVkEIS+4fSDJSltZ24DKmq1wP1cpjxGObGBnRVwSgtZJC7nx2NoI+s\nw+7sigthsMPIPtptFdmq70dJK6jlNVCvJ+5hm7soXfBzc+166AtUnqP/L78J6+y/unSlVhJC+uXw\nnlsT1JCB+M4yqLVVcWHy7mAA6riT0brPrxkjpZCr0N7ESng3XD9ftvotovkoUaJ1oAf7NUVMUEVq\nUfjxyhXXDoc4DA6TPv6wSJ48DXtrc2o/cteY5nnwkGAxCCFroTY2G65PsHbvaPyxyqKN+GUEAK2g\niZAkWgLXupTirEniN6Quw0sik2xiDoGik80R1OYOeGdXWE4jLkJQCuwWzGHnVZG8+IqglAKSBDpN\nkC7ljRTxVFlw2gzqLOl160DYAILbm019rCKG3h5L5gdjgySPEw2kCVQ/A6daUgnvjuUcf/9oECQf\nu6U9IPqUxCF+TL0bo7VqdkxRO4eg2n6CtTMD2W4MZuhh6eJOSN2oskKAxK5LttVhA6G9yUneG+nW\nk0SImrIEJ4nLrDBukBdqVEKNStC4QsjikybyPQwhri6tXYHpVdhjcuLbelyAdobobSyJHVx2k7KY\nwIEjbJQK6h8CIoK0JalTSt5+q8C9DLzcA41LSR3vbSceCGx9TAJiQzp8b//WDRDKNgkiJukcvfrJ\nsrh+xCoX7845w4kSpSnUd70kC0kryiYYU7u4tRHHTaL6XwiiqBTUcl9IDC8RzjPQ6gowHMmCqRKV\nWfnCKZQrCXpXdsGjElQm0C89D7O+BH17CFy5EaX5danq/YTdKdbY76C77zyQJ0kSnok0hT2+hgt/\n8wWc/tMdpOdviD3msvNOSqS9nKXAUi7kIhFoTYddIS5K6OW+LLx8nJ+yRJB5GwnYqlZWalfLEFsK\noQ5hwhPvkEVukz5rUqhnfB/t4p25XSjykmT3vdjt7ZlKqdkYqKs3A0nF8eTogC4Bvg6JJ4acDYEI\nWitkeQbupaBxBc4TGSNSjXI1g02pOVZYif2T3hpB39yCvbkpMQmCqsO5Kyr/O4lUX2uQ0kgSjSTP\nkC3l6K/0QnlsomCWEihjHSEj//wGBCfRhgHcq+6yDlJlkd0aQd/cqftG5ca4PIPtO/fawkANy4n+\nOoxV8aK30c7sgg27eYInFRUh1zqMS+Gndq5MIZNjRJTPCmUFtncgE6Yt7Nnsa1I2CsYbkxU+ppm5\nfh3JH92Aad3fXL++d1G8wjV+Nps6vky0e23G45BdqvrwAvKLl5F7V5o4MO14PJ1+s6YZa8Ufbk/O\nrQGQThxrt08oe0zcTCFrpwbN9X/7z4LC0tVnTh4/UuZ7e7hXIbSDcccLU/IETNxPO4UFgOai1JhJ\nMiiUdVoB9ih/2ey8j32jdh80N5uu2PUcLlp07bUAa89hAMngB8xXsTBDMop6OVBGAZLbtu+JoliN\nQzURDMi7UV25WpMSqlYEsTESjN0FiwaE7FGQRba5sVEHkk5y0PpaiEEVsom11xauDD4bWsN9zCuz\nnXrQjsdQWsM+dwJJnqF67yz0B4nwp0ka+nuZL6WhzKqXC1ERu/w5ZWFwe4tc6oJbLhHAVaQk5Mnv\nM15nMDffmbaLkdtkDEpFaUE04qLN0y3ppowhgXD3YR5MPV7vuX7xOKS9z4oMAg6fpn1PxGqyPIda\nWZY+dMHdy2jfL3MWhSC6DmAXwI15l+U+4QQenboAd1+fjzHzyQdVmBhEtA3g7Vk8a0Z4lGxnke2m\n63MWG4tsO12fs7jo7GZ2eJTsBuhsZ5Z4lGyns5vZ4VGyG6CznVmhs5sD2M1CKISY+SQRfY2ZPzfv\nstwPPEp1ARa+Pm8vcNnuGgve1neFRa5L1+csNha8Pl2fs6BY8Lp0drPAWPD6dLazoFjwunR2s8BY\n8Po8Mraz4O1813hQ9ZljhLwOHTp06NChQ4cOHTp06NChQ4cO80BHCHXo0KFDhw4dOnTo0KFDhw4d\nOnzEsEiE0C/NuwD3EY9SXYDFrs8il+0weJTqs+h1WfTy3Q0epboAi12fRS7bYfAo1WeR67LIZTsM\nuvrMDotctsPgUarPItdlkct2GHT1mR0WuWx3i0epLsADqs9CBJXu0KFDhw4dOnTo0KFDhw4dOnTo\nMDsskkKoQ4cOHTp06NChQ4cOHTp06NChwwwwd0KIiL5IRG8T0XtE9PPzLs9BQET/hIiuEdEb0bFj\nRPT7RPSu+3k0+uzvufq9TUQ/MZ9STwcRPU1E/5qIvk1EbxLR33HHF7o+nd3MH53tzA6Pku10djM7\ndHazGPXpbGe+eFhtp7Ob+eJhtRtXjs525oiH1XY6u5kv5mo3zDy3fwA0gPcBPA8gA/AagE/Ns0wH\nLPePAvg+AG9Ex/4RgJ93v/88gH/ofv+Uq1cO4DlXXz3vOkTlPgXg+9zvqwDecWVe2Pp0drMY/zrb\n6Wyns5v5t2dnN4tdn8525v/vYbSdzm7m/+9htJvOduZfj4fVdjq7mf+/edrNvBVCnwfwHjOfYeYC\nwK8B+Mk5l2lfMPO/AXCzdfgnAfyK+/1XAPyN6PivMfOYmc8CeA9S74UAM19m5r9wv28DeAvAk1js\n+nR2swDobGd2eJRsp7Ob2aGzm4WoT2c7c8ZDajud3cwZD6ndAJ3tzB0Pqe10djNnzNNu5k0IPQng\nw+jvC+7Yw4jHmfmy+/0KgMfd7w9NHYnoWQDfC+CrWOz6LEIZ7hcWuZ0PjM525oJFbucDobObuWCR\n2/lAeIjsZpHKcT+w6G29Lx4i21mEMtwvLHI7HwgPkd0sUjnuBxa9rffFQ2Q7i1CG+4VFbucDYdZ2\nM29C6JEEi47roUrfRkQrAP4FgL/LzFvxZw9jfR5GPKzt3NnO/PEwtnNnN/PHw9jOnd0sBh7Gtu5s\nZ/54GNu5s5vFwMPY1p3tzB8PYzvPw27mTQhdBPB09PdT7tjDiKtEdAoA3M9r7vjC15GIUojh/TNm\n/r/d4UWuzyKU4X5hkdt5X3S2M1cscjvfEZ3dzBWL3M53xENoN4tUjvuBRW/rPfEQ2s4ilOF+YZHb\n+Y54CO1mkcpxP7Dobb0nHkLbWYQy3C8scjvfEfOym3kTQq8CeJGIniOiDMBPA/jNOZfpsPhNAD/r\nfv9ZAL8RHf9pIsqJ6DkALwJ4ZQ7lmwoiIgC/DOAtZv7F6KNFrk9nNwuAznbmjkVu5z3R2c3cscjt\nvCceUrsBOtuZOx5S2+nsZs54SO0G6Gxn7nhIbaezmzljrnbD84+o/VchUbTfB/D3512eA5b5nwO4\nDKCE+Ov9bQDHAfwhgHcB/AGAY9H5f9/V720Af2Xe5W/V5Ucg0rNvAfim+/dXF70+nd3M/19nO53t\ndHaz2P86u1mM+nS2M/e6PJS209nN3OvyUNpNZzvz//ew2k5nN3Ovy9zshtzNOnTo0KFDhw4dOnTo\n0KFDhw4dOnxEMG+XsQ4dOnTo0KFDhw4dOnTo0KFDhw4zRkcIdejQoUOHDh06dOjQoUOHDh06fMTQ\nEUIdOnTo0KFDhw4dOnTo0KFDhw4fMTwwQoiIvkhEbxPRe0T08w/qOR0eLXR20+Gw6Gynw2HQ2U2H\nw6Czmw6HRWc7HQ6Dzm46HBad7XTYDw8kqDQRaUiU8r8Mifj9KoD/iJm/fd8f1uGRQWc3HQ6LznY6\nHAad3XQ4DDq76XBYdLbT4TDo7KbDYdHZToeD4EEphD4P4D1mPsPMBYBfA/CTD+hZHR4ddHbT4bDo\nbKfDYdDZTYfDoLObDodFZzsdDoPObjocFp3tdNgXD4oQehLAh9HfF9yxDh3uhM5uOhwWne10OAw6\nu+lwGHR20+Gw6Gynw2HQ2U2Hw6KznQ77IpnXg4no5wD8HAAonb28bFcAMBB7sJH/Lzru/qw/R+sC\n9+FennBE7rYEZgYilzkikuPWhtsR3Hm+LLGL3bTy7VnhusBEBGYb1YNCVRoufO44+6e03fuoVZ6o\nOPuVob5FVN+97rnffVvYxq0bzHzyYGffPabaTqvMpBTAPNGeCN8lgEbrAo0Ktusa2Q2AiTaj2J4I\nIFLR3+7+077b/Vw2W3bTrlOw2bYtK3k+TS2v+2+aLe/13SOq45SykFLNZzSun1L/KRhhFwWPJ97q\n+4W23fTWH5Pj7MtG0gSuBHTH92j66zD1GnLnOnOLz+ED1Nafz1Q/2xeA2gWJy9Y619+rfR+ye9zf\nP6P9fJ5yn1a94teKqdV9UOuZmFIP1J+H++7R76tbuzPtczT0y32sPahHdTgo9hqr7gKz7HM0pS/3\neeVBParDjDHTPofSl5fTYwAYsIzQwRK1pi+tOUw855tm5Rx31H6QaN2zPU+g6EaN129i0tQag6bN\n7+PytQYsfz5F9eSo/kQAqfp4eIark4oGrLhufp7DFs2Kxs+Ji0ZyblyWuHz+ev+Z/x6i+X3cDsNi\nc3Z9TjdWPTKgLMNWcXWG85zk5T5WH9SjOswQB53nPChC6CKAp6O/n3LHApj5lwD8EgCsHH+af3Dn\nR8Fl0VyopBlIK9iiBKyRg0rXnys/kDihE9vwN1elf1B9fpKAkrrK7fuqLAWUAhcF2BiAFChNwGUV\nnsfGhEU+JWl4LldVVPBogCUCaQ1KElk8WxmI5P4IzwAAHo/rsdHVnY0N9YqfQWkmx8oilJ/SBDCm\nWZaoTJRl4fkgBdIKUAp2MJh+z1a7sbHSro2Jg2t7344A/oC/dG6yAAfCvnYDNG1nde0p/oHBjzSe\nD6WhlnrgqgIXhZRX6fD9he/N24+NJ1EW7P+ObaOX13U2BnY0qh/X7wNay/HhUE7LfFtWYqekQrtS\nmoVnh/JFZZfJB9f2qpSUm0jqZKRclKSgLAUXZXh3Yhtn41fdFszOhv13WVViJ0RQudQtHIvh2s1/\n/77cKs9hh6NQJ9Vfhh2Omt9DfG9jG7YKtN4nAF/lP8Q94K76nNUjT/Gn/srfhSoZqgJAgNWATSgQ\nFmTk/WUClGGwokBgsMLExJFizs1CCDMt17CWc1Xl7kWQz1SLFPKES3wvb44adf9gmuewip4LeZ7V\n9UJAVQwyrp4JYFICMaDHDF0yrCbY1NXfkTtkGbqQetiEQtuokoUQUvIMYoYqpV6+DKwAViRljr8D\n1w7JWM6tcgJZQBl5Xrjetw/JcWVqAor9e8tSjuUvfXWmfc4aHeMfoB9vnuD7wtj+7xVK73k//w7f\nF8TESrseUzcdWsfuUM49y9q+R/T3nnWLr/HPpCmf3QVRdA99zl3bzXr/NH9+9MOHfV6HBcMs+5z1\n3in+odM/A4zGYGNl7qY1kGg3J7FAWcoxADCm/h0AlJKxu4reU2vrc/z7prWcKwUAqqreWCICslTm\nS4rqeROzPE8puaeH1uE95KoCLEu5/WduLsXWypwlTeSYtUAl81giAvIMnKWgygDDkdxLa9BSD5xo\nOc4MGAseuzlWlsr9AKCs6rpqJeUuy3p+BABujjOxeeXajQcy36N+T66vqmbd3BzftytbK2X39Yz6\npD/78J+2v+qD4v6MVR0eSiRPPoPfPfuLs+tzkhP8eftvH/JxHRYJB53nPCiXsVcBvEhEzxFRBuCn\nAfzmXiczUBM4oWRaOmLmJhnEdSfOUxbyHBEegawAQkfPzLI4jYgWoCaX/GI7wN+v/Tx3LlelI3di\nJktFk1PVGJg5ImxI65oMKiOyJ0kaZBBbbk6Q3YI6Lmsov50yeXekFIyp68w2EA3hVK0m6x9DtSfx\n99187spuAlokBMWTIr/I0BpsGZSk0+sYkYmBaPS3jGxDCBlbf99+sDdGJh1xm+zxXYCtTITKSsrq\nSU4ieZZvY60btmOLUiZJSQrKhDCU+0SkYCCQPIlYNm1Ha/cOmLpdnNJngtT05aH6fqFOisI7S0ni\n6t9s1/A9qJadsJ1o4/uAu7MdR8548sJqIRpYIRAynoghK4SJJ4FiMqg+p751TcqQu6+7n7snO1LD\nJvW9yN8r3pmk+nnxM32543MCiWW5LmMoT0QGOdKLGNAFQ1XTySBVOaIMvqyOKDM1GcQKIGZHTrkd\nUVc/q6V+jTI6qErOs4kc9OQT+41XVZc/JsM8yRQTaAdRWO2Dw/U5bXA9TgCo3/V7QXy/g+Cwz2uT\nJ/FzpxErE0TOHcrpSOz2sUmSqTbYPYmuvUieQ5JB94j7YzcdHjzu9T28/ziE7bCQQexIFd+/WCFC\nPHEDa+VfmtYEix9/K0faxOOxMUJuENXX+DmIMbUaOUmAXi7XaiX3ihXQ/p5+zuLJF6Xq+W6im/1i\nVYErA0rTmtiKSRb/XO1In8KROFqDermQQcZK/YsSXLo1hCK5n6+zJ6uAQOaw76/dnIV83X05/E9r\nwaMxYI2U30j7cmXqOZLfhLPxekJJ2WMyKFaLHw5dn/NRxr2Na3dvOzMZRjssEh6IQoiZKyL6LwD8\nHgAN4J8w85t7nU9yUXQgmmS2SB+/yPQLWrYKpLzixS2AbVsxFClZppEBSjcWvWw5EANt0oXjy52S\nIyzo/YfRcynepbERuUUq7Ci0lUpeTcSewGm7GinXPv45Kn5GixxJ0kCQhbr46xwp4c9tk2Qxgrpp\n6of2vkzE79ZuJtAabEN9nT2F74It2AAEp1TRCrYwwY5iUq1W25h61y1qd9K6nrwYIzZiZReqfr6K\niLhowqPcxMlWNWHpiZo0a9p6ZDthd9AY2PG4Lmsqk6egIoptx9tivKvnnklTFm0qz+vJYESyclUK\nqVbWO2SeZGpDyFmeVKozN+1xHrbDcAogRypQpAzy6h6/WeiIndglKqhY9pjfeQKjeU93P0cGiboG\nQRkjN67PDSSQKy9YlDSNzzh+BkdEE4XramJH6gJEhA+5siROCeWUUWRq8sq6UYJMTRL58pB16iNH\ndomKqaV88uQZ4nLCqX/kvrFrmP8+Gu5iERptdo+TlvvS59zJdu/Ftu9w3VTS5KDP2dMtuLU7vt/x\ngzx3L3XRlDIcWPVE1BrnFJoD84PHPdtNh9lhNgThgXEo22HUyiCv1PFw5Ax50iNxxAZzrYipKiFF\nYjWPiubEWtdEUFEGhQv58yKCBCaa7/l7thU41gLjollmperrHNlEmSODvLqIGRgXoq7xRJGroyjo\nFSjLwGkiY0BlRO0TKZwoy+Q540KIG8gcB8pvoNXeA5SmTSUVIMRQvJlIBHYbbYD0vaTrkAQUk2Gx\nssgTbe65YePwkOj6nI842nZ6F+hsp8NB8MBiCDHzbwP47bu5RtxSPGnhBg3TmviFnUS/Q2EAnTXP\nae3UhoW1W4TXJI2pP1etzpotgHrxT54IiH2VIxVFU63E9XOctJbZNIkGJ83lsmrI871iKCzCWy5v\nUjRuEkiubFy0XL3C80X2Sm6FxhXXu0vRuQ13sClgYybcAyZIsnvE3dpNWHOmmSNOjGuLskF6hM7U\nkRRgA2Yrk4doxywmzbwLHdjWrl/hwU5JNMXtLJznSChPOAUyyEb2ERM0UV2gxLa4qhrvgVcAwSt6\n/KQlz2sVWJsMimw+tBFQu7X5e8WLNTeJEWWVZxSie8bl8aq39iKPZVIZ2jS2HUXy+mldK+zufXF/\nd7bDTsniXLE8ARffAakAACAASURBVEGMmqBTQoiwe188IRNct7gmhoICyJM1BJAREscfs079worc\n+QyvqgFq8iiOz+PJGcAd9woaT7IYcdcKSp+IaIpdyExKQa2k3JzYk0EAoEshglRVk4isfVml7hSX\n1RNUvv1VfS/23KtrR101v1zvLqdM1NahQlQrnPxlRE6FxHX736d13mHGqujiUL6m7U8nPR4ogXQQ\n3MFVK2xuHLRDP0xZ42fFt4rH0Lttt5gc2qvdHwDuyW46fKRx97bj5oM6FTLIz2u8KiVW43oShUgI\nE+fSFAiJyE2MjRXliydtHIlCnqQhks88keT74KBQknAJPmZjUOQ4kCeu/OeAm5tZIWOyFKxVrfTx\n9XGkFicaVDrXf1LBFYyMFcVUZVrz51TmFuPIFT+at4myx82HiWoVTzy3K6vahS4mfRINVOK6H56n\no7YG6rrbmjTjopTnHfzL3hNdn/MRxl4xOg+IznY67IcH5TJ2d2BZBNPSUlikAmgseEOHG8WPqE+M\n3KD8opXZxe6RHYAJVyrlOvMQAydarMfPR00GNe6h6munuWmpLK39pf29rCNUlA7uWXG8Hsoyt4B2\n8VbiBX2eI6gqbO2i5kmJOBZL3Sxc+3v7Y23Vilf3tNu0jUBQRUSJNUFNJYPs4Rnsw4IhMXyol9eu\nXVXVjIO0n2ubtfWCJCJLJMYS1d+ddsSK1uFZYXLQcmXksgixioI8WS4Qu2yrvHxR06yeRDlyx78H\n5OTTIJI4V94+08zFh7JRbCCps+r1XGwskjKpaDLjF+JFgYaKjlqugy13StKqoXBq2H8sCY/eLXbk\nUnB39O5yznZCXKcZIRAxCiHejlfVeJclIUuia7zSB5iIJSRxcLhxvY+N4wkjcRWbLEPDrcoTLjEZ\nZOvjwZ2KXXlMHd+orQwK5JKL9eNJGl1yUOmYlGriqvSfIcT/sZqgnDKIjO+L67LV/XN9r2bAag4K\nIg/vmhfiNIWTm1NmryYKiiB29Yrqdl9m2YdBW/rfJln2vG6Pvmg/dc79QpuIae867uX+1S5XNP41\njsU/w0P2r0Nw9Z72LODOfXh8/7gf2+/ZM3Ylug/ujR0+qmA0iJjQz8dxcNJIGeSUPg0yiLkmk9y8\nIqiNndpG4vm0yCA/j4wJ28i1PaiIPEHEXLuYE0m5rK3VOezURJ4MqkxNXHnCypFBXjEkm1NK7uWJ\nJ2a5xjKQJKBez6l7xKVL5igU5k0yj3JzLncN3BwvtKV3CfNqpSRxLm1JiGvUgHfR82WBm3/6Y0A0\nf7q3BX2HjzgWTOnY4dHDYhBCgCzos7QR9DnAKRzIqXjaMWDCgrQ9uXUTQ4pd0IB6d0AunjhfjvP0\n4+FQRCjZZvwUr/4BZOEbFBA+QO+0uEFpRAZF8ZS869CEQskRMEI+VI3yioqkdo9qkF1+EPdlb/ts\nu3LGk+UJwqsRY8KRRFpPLi5mAAJA/aXptkPkiB0ddm4mYlV5+XQUSPWO9XBESkPt5YkVH8MqtoUk\naXzPIZg3hGBpLIScQswrhyTWlQluhBJbSk8EDqcsbZJBcPaZZiK71jqoxySOUuJiKdk6qDVzuIai\ngJGNd83bWJqG+geFm1uIxW1HPgYY4MjQaEXk2oiNEcJqDmAfl4ZcYOSKAwHjiRcmApOQIvFxAIHA\n8WRQCKIckTWBxNHyr1YW1USKV9GEuEUtxREQPdc/M34uAcbHAIIc82qfEM8nld+F2AFAFBRDcj8W\nQosB1gSTyT8AdYyg4F7miu7JGq5Jnkb8H1uTYmAOsZr89V5xVCt/uBmTKVJPxSSZL7P8cR8M4TC4\nE0GxhwoGwEScrXC7ffqce8Idrmcb7fYD08vcJrv82NKOGZbeheA42mWfdq87ol3GtjJr2pjeft60\n+zxgxMrDDh3uGsq7ZFnQuAQGQ/BwOKnOJaoDKadprc5xCiCUEm9HAjmnCC5fVVUrkBNdu4lNlINq\npVC8EemIECISUsmrb8ZFXT5jZP6x1Kvdvtw8xLt3IdFgF/+Iyqp28XLXeKIqEDxZClrug3uZjDMR\n6US9vCaRos3LEHTaE1lAIHW4cM+LA117pY+flzVUlapWBAGi1k7rOQ15ZdbdxoTr0CFGOxbng0Y3\nVH3kMLe0822IL3ECYBwx6zosFn0HHBawDam787GId6zjwMsuMO5UKbyfQDoZKSrbmOw31EGxmqZR\neGo+17vBxO45PjheUHiUTeLAT6ZNy00skwGbW0RY7QbXyvoFyHOIA+FAyrq2mSTFuATaE+MQBwe2\nbh+WOk6QLv57MebuFgT3CQyA0nTCXU71eu4XkSKwQX2Od12Kyt6IN+Xd/ODUVXfIolNn4FCQRkbj\nPl4dFIJaRySJxOIpwvlB5eOz3DlFmc9+hylkkOr3a9/4Vuwj6uVgF4iy3s2T53BZNbN+RZnnuPK7\naO49CFnxKJwzbTe/7XrJlkFUL9AkbX2kpKrK+l27/0Gm94XfZVWGocdCCEkWLs9ACLzrlVfYxC5L\nMSkT1ETsSBfIeaxj0mdyEVqrYBAIjvC3u0dDlRORRaxIyKDUxdypEIJOh0DM2pFBplYHmaxWDPn7\nkpW6VzmFbGC1msgpkDTVqh9P1kRud3Xj1u0DuHMSqjOJVZ4Iiq4jkncOjhADgRW7ZwIMDnGI5PvD\n1BhDM8G0yf0+2bb2hHcNnfocbo459+Km1UbYNJimyNnjOcygLJF4HvHpSSLvNzDZBgeN8XOHesmY\nNO2DfdrDl+VOJN0MQUm6r2v2RwYzcu17VBCCGhsjcwRHXFCe1cQGce16FYUs8O5OIGqSQQ7B7Quo\nCZS2osX3RZ648XGAYkKkRc5yWbp5pitrmkrWMP+McaR0jpRJZCwQu4r18kAQ1a5pFshzUH9J+qVx\nJQGgYzLIlS2QRz4bWKLreEhx/ZidC11Nvvm6yjnuHtFcG0C9WLfRvCiEKbC1uvseYgh1+Ihj5n1l\nxwh91LAwhJBMprnRYaoslUHLWhl0ylIWt/Fun+vEG2RJHAjYKWRIa1l7ePUFuF5gWwZpNOLATCAK\nIF3HO2hPfJ07kFf6tOIfhdSdLjtZo7xhIIlJGyGQ7GAwkQGKtGos9OU+eyst4gC+jTZooXaja7qg\nhZ3kaVC1emvmiEUnfmeHSCYDzl2OjQXMuPX9yalsjKzt3c6V3IgDCaKWllxbOYSgz7IoIkCIzL12\nf1qZzsIx77LnSRavOIsnL5CFUCASAdgpCrmptuO+Y9smHuPUqv6YIoAiF8eW+iG4Bbpzg+KpraKb\nRur4erhA6Y0g3G7yFbu4zQqi/BHyRFUMPbIAA9arYrw7EtXKILmw/ikxdDwZRP8/e28ao1uXlYc9\na+8zvFNV3brjN/fXM3TT3UwGmiEQsBlsUOgoTEkkAsT8IYNQnGBFtvPDlrEsy4qFbMm2LIJjIWhH\nBmMlxIkZAzRDN9DQ9EAP33C/4d7vu1ON73DO2Ss/1l5773Pe89Zwb92q+3XXkkpVdd4z7HPeffZe\n+1nPelZg9ahmUCv1K00PazUErepiCt6EbYpN+f2IAQQwCEGcGkAoaQ94MMjr/zABtoJnQPkS8rmC\nYQB5RhET0BRyTrvg8Flol2oJVYjPhGLVL+p5Bdh4bCi5L9PEdmoZ+XAO/4Dk/vWh9JzXn++RWU4+\nSLrsYY5elwFzUrZqzNJ5dcWCvcV41EM8yHwkUwCdl9OcVzZ11dxyGKPpUTM/zvdWXgMe7baf29mZ\ndo+qAuZzAT4A0HDo07YdSNOXFAzStDE1TeWyNoJBqQaQgkqdoGRrHPCpX8oqDD6Tlo9XH9cDMalQ\nfFpNjKo6iFO3xLCtaesGNUkVMvV3VWDaiJ/H1oBmC18K3ge2cp8a58Wtg8+llrDlwz0C3m9y8R4q\nr+FYN97n9u3VNDx93v75RsZj3BZ0moh80Pvczu0+7HxuOLeHbI9MyhjYAfN5qJqkDAetDhB+54Uf\neE2voywL3lRrJ2H7qG5LYjEVKwFwEiZQKPmegAlhHy9gTFmSrsTLJe0D68QzOdxsFtvunWNJFavb\nqUB51ipTr/sHbZolEWlhb2iKnIIMIVXMPzfyAMZS+lT3++g+W2UldcAhBcgOLFn/EI3rJpQGBQAz\nmQAqzAwIhdkm991Jk5BcehsiOlKpjtvpT/oZcwA24FPHIn04YRkB7XTBtKyy1xgCGZiybD0/Zu5o\n8phwXTedxcg8+ZQwTRVbtDWnYIy8S10wKFTa6PSdwlfbMAJUpWltoZ/7Ch68WO434b1IHa3wrH1K\nnrKYtO/oIrqrWXRKZhpGtu9QbNXI9pvAuFGTClqIIE4CykR9HgFXljSD0pE1AXwCayZhAoXdUhCJ\nk23K8kn92QxoCgpgkGoJhbLvmU/7Uk1PX1VMS8ineia2kuObQlk8kWUEILB7NFXLNCmjKaaNLekc\nUXxeTBSemVYVC+lsmk6XWjI+Kjik12QPIp1p+k1nMUGnwXA76fvtBBRa2w9ib/SwoLgT5AjWTdc+\nyLr3d1h6132AcL0p6adkseqeabXjLNt0pna+wDmWcd2Ad/fQbO9KoMdKWhZpGrumO6VVrZJqYlqy\nXpgz/v3WQJgCHGopQNkVs+2yYsIhFEvOa9n1EEDzAtIqeN1IihpXvr1lAR4U4CIX5qiCONYCZZEA\nLSw+UF23qo2xVhoj49PVbAC3YgDK30eq+wN0dISauE0Z5M5FXzLLovaQnkeLfKSgWcrKtiZqN51h\nn6csg1lbO7Prn9sD2mmnjJ3bF5w9Op4IM9z+fmCoUJoq1jSyoEhBl77UC39sn8By+1o6MfQwItQZ\nDhHMRN/FL9yXqk0VedA2EgCAQ7oPWc8A8dGEVpnwsoznUeAp+YyI4Pb32/eY5UkqUvseA1CR3pOm\nwaXPSDVzuCdKGcSm2+cOgs09AtpyzNnR4HlvT0SKVWcny7yuUxQzpkEJnkrKSbiHTpof9DNmkPXf\nNdB2FoImRUwDS02ek7JewsZ2g5Py8TQowXsO4Cph3rgWQAVmn/e/8Md5YEZTszqV6sxwIJTyVkn6\nImpX9YkbprRvMlF3oIoi5PH4zvuVOJJLwA47wCSOYVKVjvLM9/sDgMmHZMSMfKeBnTsQM+qBRT00\naIp2hS4BYSgAHMrWMTqEZIgCyT5NK14Ey8yihO2TVidLq5whADHxeCaC8W1SseeWuLS214NB2i5N\n+zK1/yxvt8lUkv7FFgHYymYcQBgBg2I77YJb98KtsRChrH1a4aylOZR2PYq6QwFUAgL4EwWyZUzW\nKmQuo/AczRGxhodmCuinKcVHGQf79jvs2JMYX4/KRDlm21qAdMow6j1XknJ6mB2Uhte3/ZD76/Mb\nTs+orecHQIMK4Xlp+u45WHJuqTmG294Oc7pZW4OZjJM0cg2AihxBYPsqWKGgTmAGcbviGLMHjygG\ndVJgOO2PCoIAkQGt7Jd0fw2e+eAbG58K5gWhWZn/KiCtjJtFCu5ksX0AUFUCJmVZBIqm06APRFbA\nJQCeSZQEvjRdTI1I0uP0/MEfNBGwcjHdPXwWgl/yGXth61YxEP1e2Je21/f9jIKm9sIGuHFwu7tn\ncv1zewPa+Rz0BWePBCBEjoGMpMqYIvB+QY+mglYugDExvapx4JYGTywRvlLrB22HkHICV+wBJhNT\niZihq9a0XHeolARE9D/VzQkvkAvHRqaFay+kNaqjUYhWVSe/4J9O2y+liTnhS4to8hO5X3Epu6jd\nLvjj3fLCXTVselKSWuXu03s9AEA6NWP4tueg4SC2R59303idoTLcHxYLcFJaO+o3eQDQRL2fEB0L\nIJKnQXdAFXXq04Uh5VlkxWhljVZJ1iI5gSx2A5CY5JwHTSE1H80LfTF5D8xkIt9vJ32DfEQrVLBr\nfWiSyJgNAOeSWSsOmX9u4R0oiuhgdhZppizlmpq2qbpBhCR1zmtTneLinmqHwcu7QGbQjAvPOEHQ\n89F0rcB80eM8w4W4XcZdtX1kJywxhNJy7S1RZCCwY9IS9S5J0RKwhKM4swdpjIo9p8yZkCrmz1cD\ndhHBoMAocj5VbiFsnboUpo5dRDFqELXuUdPIlAUUWENI7iu5ZyDes2m8YLd/X8HcTqlT3N3fj7Kl\nVMwavCzqbWs+28pNqXD/cca/VSDHQefoHpMCNA8See6mh60Cqg5oF1nbHlPuN8WtDzhy7Xkx/H+/\nek1Lz/D4p7hvswTKRNdN5gZanlO5aaXZnNu5AQI6cDPvbPPp7i7xeZkBS/FvBYsArzXkWTNVJWBM\nSJXqBEVT9kyTnJs5pKNxUhUslHuvmwQoaWTbcCBpYHUjKVjqNxjPnPFBSqobAYNms7YGkLKUFpUA\nPEbWCpxZ0HQuwJK2P9ENQuWrrBU5WiXm03vTv1V3SZnjyvJxXlOoBYhxm2Gk+3g5CD2e1a9J9JLO\nwrI3v0nae3frfJH/RrZT/u7YOSxJHJzb57U9GoBQIyg6jUUgl60BzSvwYgFiWdwSEAd92xmgQ1RQ\nxW+jGG74bW0UVlbNFvIit2n5+K5DrEK7jUY12tfVCgItBy6NjurkOZu1j7NRO6UrDE15JmLAHafQ\nFPmSJkzaTrADc9Si6dVEclLtJy1dL+0VsM11KpaFW/KgBqlgtqauGQpRq7NwZMkxzMZarAgBSPUN\n9sBFkhtPJBWjWmmEmTgLCti1qv2QCREu19ReayeyZ7jioKkTwERl/+SFPA8AqOfS7RD7GBVFeFaS\nPkbhOyGfXkjWwnXTCEvRRtK0rRQoMoNBAJDQA5b29p1EfL2lcdRnPuIF14DyIjKWikIYTHUb0SFr\nwSzgZUjNBOTdyzLfnkW8r9MkClU16MVXQJsbYFpHnhHI2QAMKfulKWQ8MI3+lsNVeDkFgyKbx19D\nX+mgR5RcX4EQRhCgDgwfBYOSNClNx2pKg0ZxxDpeA4RQWl5ZSgrgAAIGNV43iFjAoGwuIEs1ItQD\nSiqQ+WOssHtUK8nUEcQJDCUoEEWR4YQIgKXgV/isEfCT/TMKABwLGKRAkzy3CGClIJSAYQhaSKdt\nlGVRJN55NunSTqtYQPeBfHbf2z7Q5RBgaGl8Xprr+p9lr+aNfmZoGWAG+gEbv40MRUD+OJY8N2Fn\nrpgHVwFFXRDt1HXLADMZg8siLDZ5PpfUYgUVzzIN8tzeMOZ2dkAqoKzMGAVR0qCegi+DQSghH8Cg\nlC2T6gYpA0iDjMl55NxtvzqAQT4oxCmQMhyAyzwCRalvoSnsgIBBcy+UTaaVDgYi+czfL03WweMh\naDqP5/PpapxZYSGpWLW2q8jC/cu+/v7q5DmlABkQg7VV1RaSTnSDmDlWLKtilbWWbpCypepGtp2y\nNRcnMDszAd/O7Y1rR9XoO7dzu097NAChSiYWHpQyCbCI+JKfmGjQcZTIAxCeYaMAiJstAtgi4FBy\nkSCM24SFPTcuAClLzlhInemkZzmfc51LuldIaUvKtod0H2WNtMSlKTBDhMWRsIZ8RSlmbjvZKoTc\nuF5nt0+DIAAcXW2LVvUoDosEU+T9Tr9ny7Qjq+3y4un20zZqnDgdwzJUcjKV1wTyzyVQlgFQLbn2\n5DWGKBNxaK5jyhnXdVtoPLcJGJSwhtRcI2lR2qYsa+Xoxw8MzCAKiHNVtxY5IILRNEJlxTVtYIey\nLIJBSR8xgwHgBcjT/qQsNQVyWqb9ra6lTxS27fClxq7t0CUsPCKC6xNJJRPAQmUIUeafobUgU8vt\ne82j0zRuGjTb26DpDHa+gNkZITfG6wkYuEGGZpjDlVZACM+sYSuaQeSHBAVzgv4PEoAD/jfp5xTF\npYEA1gStHkKo5AXAV+JCEJBuckJTyjlVmDmARTa2gRgwlU/vIi0VH8cBcoCdC2OnKQn1kJBqAwGe\n/ZQCS5UupAWsUlFnfSYBwPFsJgW39FloWlv8AhAqmYWUN1bQBzFtT5+lB51A/t4rDtpKZ2LWAq4O\n4wYreMUc03767KjpUgcxdo5qOp95kGQlWL/qWmmlzq71MYP0GGXpds/vrRtUWXl/3RS8pFrZSr2i\nVWlknWtQlp+JbhlPRuID+LQZms2FSZHqwOniVueH86j+ufVY+u5p/At7e9EHBUBFERm/RKHqlxTC\n6IA9aqHC1gowyAdTQTbq6TBLH/a+A2UW8P48Gid+2qIS1oETLSOkgIkyg4gEYLLGs0VZUr9mM9E7\nWpuAx0MBsPR8gOgTKYBU1UkJ+6zNhPLXZBPfwSAa7auccV3L/QW2t38WAwVy4zsZWE6Jr6bPCOoH\nNk7ALENnAsq4QQ6aS4EUe2FDNur6pGnQ7OycjzHnttLOGatfOPZIAEJhoWl0wZRE8RR4yJNKXM6B\n2AGDUoLZTSPOU5pGA7QBCmUJddlDqXVAoZZQrprxGkd+P+4CPkCoCsWuXk7fSY8F2uk+WlVtOk32\n76Q0dS1x+oXlkd6P6w1cp/fecs51AkyvbZZLIguDxU+YrWdzBtFNZl+lqHNtoiii7NtKxvjITdZK\n9QsiyZ7RsmQdAEgjYEDn+YVrx37XSlH0UbxgKftHF5K5d978O9FiBwVdAOr0KV9tY9HWcaI8i1Gt\nnr4T+ne6SPX08yWtrL7n4pl2S8+s+x7KgwCQgFOaSgeJ9p9Vbj3XFXg/pmaqMKYtC9B8AB5kcIUF\nWwMYoB4I8uIsYJ04s112zNI1PBiUWktMmpL9fMUtBXsCSJIIL6ei1sqwcSkDyYM7eu4uWGVqDqlp\nTeEZN1U8XxCypvY1+s7Hpp02FlLcHAKDqvUsPAFL9ZNSDaBwLopAW5p6FjSX/Pmboi2OfaqWgORR\nD8YAcFEnq6/cenfe6WPp3I9z3scsOQigP8J1QjXNnv0OFNHuHStWMKMOKkm/ijFzv+lirXP3B1ce\npgW2A5EslJ2LbN4s8ynKfg5WIeCqBpAErM4Xbud2mGk6FyDgxiKT6jE6JxeaOsYR4NA0qyQoAuLI\n7FGWtc7fXaubqLeT2SggnaZ71U0cA6jLnhEdHlhqV/ACJPWrqmW7B1RoUXk/yYNLqaZR07THGr0n\nffdUyyj4IR7ANuJ7kWeAi7/lWeLqRyoLOs0A0Gee+IWUjlv+/JSV/ePZQzaXG8HsyhyUb8rYo9/N\nooLNM/B0FvVKz8eZR9POQFTajEbSx2fzfibwuX1e2SMCCDVwW9swg1IGz7oJi2EqSyDPZEHmB3Vq\nHJDn4EEh4Mt8AUxnsANlVzDc7h7IxCpHCpakmkAB/e+xVtWp5EUgawVMIIo51EspZjY4wG7eSQfz\noAN1o5nGCx+nVRGAWMGsaeD6dH+01LwKEQOxulWXHu+aZQBDhQi1NGhIZUuYTl102NNnGZHJpG08\ndWsaKTmqZU4bnzueyaTHSUSGGinNSuMReCh9hXb3YawVIcYiB09nAeCTVMEkFxyIjlbnOcbKZSY4\nKK3ULQ/2kGcqcdP5LjxbR/SJJBIXRKGNbYGCympSs2uSMsd7CZAI/50wS3/oXEvL2QfnzusDpQAn\nN2iJnKbMIe0joFyiXwmoRJmUsHfdamSaCufvP6TIWQM3bbf9tIwyYUjxnXvtCc8z+agokPlIHxUF\n8vUJeJCL7lBu0JQW9ch4rR0P9OqQouCJIbTSx4Dwf7xePE7T0IgFCFLQRnWBVCQ6FW1OK4dlc/YM\nmsgOUkDHLjgIQ9dDQlOIzlA2T4SnvWizVE1T7SLEMvN6T5QATU6ApsB2MhFEclZBK0pYRRFsknQ6\nCsAXGJJGrM/Ks5IAhPQ1ZQf1lbo/FUsXHJom6gXlRSNL08kQx1JNTa4Wq0GNLkBykGPeddxX7btK\nr6i7OOmwg5aYoclnsLZd5fKgil/KRNX5IRHAPxSU6bunXmBpOSCwxIBIWUpnEPGkeQVaVFFA1xjw\nsJR5J4DzwlwgXy47Tc/h+SIWCzgJUOzcviCM6xrNva3wP5UlzHDg2T02MKgjEOPf+5T1kvqk6f6A\nsHXUZ/LVwvT9o6r26Vu+r2pBjNIDOw2DpzNgUYnWT563g7+LKqZsTcbCAprOgeksSC4EJnjdRGDK\ns7lVtDrITDQNCLYNUnmmeBCDzjx7Rucc1TGq/ZpE/9fnVWuafjwmpOOptiKZCMKcshUv3QVu3QHK\nEryxhvriGFwYoGHYWQ0alaCqQTZbgAcFaLYA373X6jPndvam78ypGRFoPAb5dZTb3WutO87t888e\nDUCIfSRsOgPPF3D7++DKpzFNZ5JiZQ1CSUnmoBnDhadl5hmocaI/1DjYshABOs1pTp3XEKXoAYNU\n8La1rQcxV8HirgCzijYnUZruggCOpWJOYqbIBQTolpIPOeHL1HFdeEuKGYOMsDCWop+hMhaFlLfg\nU/t7C+BbAEPskghyfByaRudP4kWQXaqTdFrmGLy3LyDDdAq3J1EOGg7FwVCHWiNExoAHBdxkCBjA\nMIOGg6gHPBiA96eRNrxYQEvNA1hizkQhcrfMigGiY6T9wgNXS6LPyrRZLATASYA2ZTpxVcv3nQAt\noVJdXbf6IpWlgHuLRVujSj/XtEUPjBJ5oexOioK8b7QyvUIXt2ZQBlAnROw6C7cQDff3AkBEp1NW\n4CkZGQN7YVPeLwA8m8NpAQ4Vbp/PlyfAVwHKC9giB03GyNfG4MkQzbhAM7BoBgb1wIRKX0GoWtfA\njDYYpEBQAFY4aA41OVrCzaZugy7OioZOWuksiEJbCkBSMJZUK3JAPRDdILBPCash34GydDzwQg08\nswEAUahwplW+FDgKYtCewdMS0O75raXttWobgMBICveoBE0b09cURNIUOLs4o0hmD1Cu+nXkaU8p\nSAwgpFpw7XXCbLGc+hR0745wX4eBQQcEPFrHpWCKAg2rUpU8Y7VVVQwIY+IqoKWXaXSEe2zR1Q97\nNkcBx4CzA1MaB/farQCOUVEI48FIpVL2f/MwAxsTxyYfDDD7s6iN4kuMu7391d/VuX3+GMm8Y8ZD\ncFXD7e3d96l4PkeTBJvMeAQqC5+qpUHFZFzSYFJIFUvAI1+Ji/IcGBTChGUWv6vxukDKtvEl5Dll\nvHumD5WFA8dkhAAAIABJREFUpP57/z34pZX/fDIBjwYCMM3mMZBlKAItGkxtBb8S9pCCOI0AR/Le\nmQg+KRhU1QiVxogAODn3fNFOK/NaQkG0W31MTRUDQpvIV3fj2RksqG8LuENZBjsokW1NRUPRryl4\nUMCNCmBcohnnAhRdnMBuXZTxfn8Gns3gtnfPWSJnaWfALuP9fWAylnGiLAH9MfLun4NEn1/2aABC\ngCxEGgeeTqPuSGPFiZrO2uktgKTDzGYwOon5HGJYAzeyATiiuhFNoukMmM+9WPOKCCPHsu1cy0Rk\nyhJUlrFcPHvQhowXrbNxMZewLtIFP/lyl4FSyh0WUBkXpa1FvRcDXqoyFT73VRMWVdRFUt2BFMRS\nEeAGWKLnJxFpslZEpeGBD/QwilJQS1lF+XLVrdM23tuH29kJ34kxRgYzb5RlQRCb6jGsY4k2NS5E\ntDi3oEEBDEsYXx6VnJOy9ilYp1pUqVCyfsd1DTefC7tkOAxUS3ZCzyXr+w07Yaf432lp+zDpatob\nkLB2YpUwyoXBkvZNNQVa5FodMCiPWkkIDDon4s9ZJwqhVdW6C71QYalJGHEszAJfsjX0LQVEVTsp\nrUaW5+CzKIVKJBHHMpcxAoAdDaOuQd0EZxSLSp6xr+7H1UK+g7094KZ8D9n6BPloBF4fo1krUU1y\n1GMrpdwpXlNTHAOgwgCMgB7EnqVjYgUzBVyAmOoFwFcNa5eXN5X8sPGfJSlmgGcHVYx6YFCNPKBS\nIYJBJFXFQP5atURwW2lbXquIlNkDRG0gSvaj2HZtX2AEQVhOmiKWaimlpenZM4MUDNJUOgBJFbVH\nZCGsTDrXtMF2QLYxSV/y75cAy34MUFH5BzU9R/q+a/GAXsBomTkjDNbVAAMFbZvjPfcAnK9q94qU\nqKUqXGpdUGdlmlp37EtAOGOl0MQpmfoFrML/uqj3fYeyXKpl5pkA+saEBTQPMjg7BCYDUOXn66pG\nNp2LvkolGkRuPj8Hhz4PjUAw46Fn8tbBLwjBIpVNAI4HELoGbmcH2PE+UlmKX6lzul5D5y5lt2fW\nV/p1UUdHfWjV5llUMT3cM+tDqqSvOMbzuVzLg59UaeqYEX94OoNZXxPdIGXN1d5/MEklMmUS1fF4\nokzWBdbENnX1HwFpe6JXFMYNZdkTyfuqWoeaVgbEdDMNBgaGkWglhaCBMoa6rOlTsObuXfmDfIbF\ndA7e3RegalCC6gZ2dwpYA7NXxmcAoL68BmANdlrBLGrg9j2grtHcuXs+znwhmO/vWrWZhgOfbipz\nkJmMgfV1eR+rWkgaiyoyWc/tDWWPBiCkjux8HtNMtMS6ZzBwzd4JlMUw15VMHl5PxQxK6axZBlqf\neOS7BAqGG2QwuwVoUYE8CynVZ3GzeZLa03Gq/URGXu8lAjNRXJeKIjrKmgqU0uIVPNJKYMni2oxG\ngHO9FaDImuUKZom5BPA4zFoChOn5knZqpSlOFza68NdFvQJ3KXBlLdz86G05USOE1L0UoAosHF0Q\nacodGWA6g9mfyjFEMGsToPTR2lycCGdEMwZO2FtU1QJWLiqvYSXXcLMEJMpzcQBUj6bIfQSpQtBz\n0kp4no1hhkMACEAeJxH9wJ4JG2JFN5A4iDxbZrEokCiVv9ostVRbIPR7ZTEwL0WAONE5SheuLUFZ\nL6Ctiy2uIgikVe8kKi5iiwqsmcHAX+QMHAsiAQJ9ZFFYhwm1PLOxIggzLBD3a0Tkkr1Dy9UCze07\nwO07ABHs2hqyixfgJiM06yWaYYamNIG14/yoS0DQ5AE8MIP4PzEAhyVtIgVmAjOoEVDFVsLkUTAo\nZSPZSqqKNTkJGGQAs/CACsODQQhtYyI4y4AyjTIRoHaKF7qkjUwBJErBH2KAPNuHGsAuBPBRVo8y\nglLwSO9fy9MHvSKK96mC12fGDgL602NXMWASYCJ9h4RR5MeKLA+AbHyvDmGydAGgrmB1D+BzoKnO\nzyowqCyXmEHhOK2WmW7WNDGNzCdjUauNqr3kx6deVpCeT1NVj8Lw6dMnMvG7IEOnCgiRn2PR1ZfS\nlFwFmlOAjIzMP3kuLI7JGDwagIsMPC5hygLgCbCopJjC3r6klk2nx0uLO09Be7TNEJAXQLWIRS8U\nuFFWd56kKXX0L1tBmBWWzvVyviKmlikQ4lPxAUhqPhA/U7Flfb+NEU3QLJPATy5pWdQ4CZQtFuKv\na1l6ZeRkRlja+1PQaAS+sCbtmddx3M0yn3pWSHvK3M8XBourY0yv5KgHFAoUhEIMfo6syzhnATq3\nMLIZI5s65Ls1zLyB2V3AbO3KfeR5m03ELDEQTTcLAQDVAHOiWZnn0sbpLH4vZ2BmfSLPeW8K3tmR\n5+ecX9s0st6YzkRr0+s95QqkGQO3NgSuXASXFvbqJQH0Xnr1bDIDvhDtDPxkAYMNwJ41RxEgCimW\n5P/2lfYo89qlOnbUNdze9Jxd9gawRwYQIiIfhU9SloC2Fk5I9dI0JylRCScRN14IE8NsbQuQMxoJ\nAk4TH2XLQaMBMF/4NA4/udy5B041TNJSlko3JROjwEDLCW+1NQFYAvPDxfa3wCBfGSoAFx071YGW\nuR/RTb+PJPUBGqXMi/6oy2kZURv4QBrF7mjeJE6vMMWkHHqj6WEAaDKWQXAyAo9KIDNw6yP5bK8I\nzCEA4OkU1ALX4verrBkKAuOcgEIc9qEsg5vPW32HfG6/RL4Wkcad6gZtrIMbDyQq+OKBSK4rNNud\nwTdJYeT5vJ2wyLy8cFpl6cIWEEZQ93x6Pf/uKjtONZkiYFag2ZUoOZUlcJp+hbJbqtqzmZJ3vXfB\nm/xw5scVv3BTbY+9fbjZDM32NrC9DQCw4zHyCxvgjQm4yFBvlFis5XCFsHE4A9iQpHI17LWAKIBB\noQkcK4C5XLR/FCSxFYsoNKMD6shvu2DYuZSMX0ykbL2p5Phq5EGqAqiHQDMA2HLQC3I5o1mrgZxh\ncukjrvYoTZM4t5alvSxpaPBAETUEWhBMRaAayPYNyruA8+00nqFkFwyzAIgpsJNUN0m/K1OzZz8h\n6BvVg9MXWgSwvNjujt8JY275swS40fFI5zLdxTtirCm+XaCkjw10FEs0wZbaqu9s1yhZXPawdEKq\nrIIcyngpCl/xJ6lsFPT8bJwb2QGUt+6bWvtSsgjWCp2LCGSnoHbKiOpbAKf3Zy1wmgF7QiLU3fZl\nWpYCedzAzRpgPgd2GLhzT+aNIoe9sCHVNSdD8LgUBt3+GLSoYPamoTJTAK4PAogeUTBI50IiElBh\nsQiaLGY48AtzfZf485clxZAghE8pBxCLZjALGBN25eDPIPesaJOBKF/JUu+9ZLVAUy2A7W2Y0Qg0\nGsZ33acuqsYnmJfLYmubykKCs4ZA80rAIF91S+9BBdfZGtlnOpOF5dpY0tCqGjwaoHrTJew9VmJ2\nkbDY8PNgSEeWOQ4GsPskKdaVBCLCnETkAxYc2LSABFhqS5hvGLCx4CyXoIoDhrc2UQ+BxTrBzoBi\nmzG416C8V8FMa9jdOWjHB0S18AdRTA8LgcEapEGwUzYzHoNGI3mOe8IOQp6D5nNwJpXgmCVNjnVc\ntkYyKzzryizEzzZDuQe3MQbe9qxk5W3vg/em4L29doD93E7Odu4/TfR+jAAZW/33H6pZKxhkfABp\nodkLVRx3tCqzrzxIgxLmwoac67yy3SNrjwYgBLRZJ8pKUQc0cVhl53SbOICcgC5uLiK3NJ9LJ/b5\ns7SxJnn6ZSE6GMaAiWCNkYFy5jWM9lRt37R0gkL1GDWiIAScglkAAmtI7m2xnHrlU2t4trPymaRO\nsd6bKct2elaSahTaDPRqG60UCT2CrXIeKM+idkxZnglNMO07VIoweasv6SJBzbTLJbMyzXx6EBkC\n7ezKgsY7JW4yAA9KKX3tIyY0H8LmUnKUZ7PoABhPGdaIm9cVYZcIL2sJea2KkQKJZRmibiF1L/k+\nzdqaAIl702RBmXw/pznQHtSffDsU2KTBIKa7lWULBDOj0ekCQoBUKtEIWFmIM9pbNY6SqJ83Ex0/\nDAcCEK1NBDCsKridXbi9vfCDl+U7Ly5tIr+4gWZ9gMVGgWpiA8DhcgqpYqYWwCOtDkZOdIOaHEEz\nSJk3YPZAUdQAAhC0eqqRwWKdUK0hgCr1mFGvN6BBA1s0MNbBNQauIXBjYrC3JtCuUJKoEeyHnE+F\n84JB1CCVFZLLK/vJMFzO4FKuO7/I4IsVuCGgMqCaYGYEs5DzZPsG2QwgDxSRA7KpL2Vv5YGYioXF\ndPpVfJetC/qsStFS62PhsCCAIZ05pEYX8RqpHpCCH2kbDksVCWmeXcAzZassH2+GQ3HyfSpyCA4Y\nDwomadxcIYpr6zjsGbIyB7YBsFDFMsz5TRwXyS9cnYng06BMRP99OzQVOM/ACxdLynfANLluAqj1\nvesP2eJcfkz2VpL+zU7SipUhbMoSZjwCNjdEz2wyBq0NYGY1UDcwXtjXbe8cnzn0sIwI9tJF0GQs\nflhmo85f3YhwcFXF9GOvh0UhvcfFz9LTjkewa2uiSeNTm3hYSqoLAKxPRNh7a/uNJ5qrKczwrGXP\nqGuxtYlimXlA2Mwa7CBfxddKP6Sk4u5hfcLt7wP7+wEYAhkpzlEWko61qNqBVEBYJyrlAAjQo+mS\nEB+Zh2WcS53zKWMO/OYnsf2OdUwvGwlYlEBTAmAgmwLZPmN0g5FNGdnMCfNHgZ6aYae1zOW+6mVI\n/SLE/70fp6Zzi6QpC6OXDWFxIUOTG4xfdQALU3b3CYutt2R+rl2DqWSOGtx1GN5aILs9Be3tB10h\nns7kemdQdt6MxzDra+Lj7s9E0iDLpJ8AUIYmFpXow9R1XFd4ECiAe17XFY5hZnPxm8ZDuMkIfHkd\nVDuY2sHs7KF5+VV5no/CePP5YGeQbhiCV9ZKQId9imRfBW6gDdCn5pwENfw+dmM9nD9IfZzbmdsj\nBAg1YeEeUpMWCX0aWHZ6dZGvzrE6za6B0DX9uf2LRLt7IGtAk7EAK5MReH2I5uJEPq8a0HQBe28H\nvL8fciGDee0YnVyMX7ivLLvdal9HJ8I7djDWs0iSiSnVdCBqvXy9JT+BtgC0IamkAARHSprhAJMt\nAUNmMIi6R8cRNUU7ba1b/epUjNFioqiQcryPuIgJ7B1DoukRzqERap+e2CCIdnLTgLa3JSpSlsDa\nGMgzuHEGzgdy3tzC7E5hpnNgazs4PbyXDIzWAo2kW1BZRrQdaIGFxufwc+N8lbApYAuYogjP2u2s\nBhHlJDZG4IElCnksX98GD4PGElEUmLYJOAssC1QfI9UgZbylgs1mNOqfRB6mMUI1w1BtxXGb7aap\nLkD73aWkdK3up+whv7AxeQ6zeUEA5u3tkFpW37gJ3LgJMxhgdO0KmovrWFwaBKczAD1epJl8W0P5\nea/xI2LPPk3Mg0F1SSGVTCtzuQzYe5Iwe7wBbSxgDAvgwwSuDTA3oLs5UBXCCm6ArKHITkquFZxp\nfX66Q59Rzz7+Vz0G+NUCdi7RWpezVEMrhAFUrTOQCePIzAzsAii2DOxMzpnNJLpbDyV97Eytr/+n\nAYtVFb56rJXSmTJg4EGWhFViilyyp/X8RwGDetoS0sA6+wVdu/kcWjYZlIMswlzDlWf6aTVPbYrq\nnSXzTGu8Dc8gztFp+yMruM2iAhD19DT9yoNGknKF6MACkWnpmQwqxgx4kOsYKdcnaj2phMeyNECm\nzOpFBfLMaLu+DpqM4DbG4GEOl1uYqoEZljB1A97ZfTAx0GO224xGoLVJS8Af0xnczi749p2HH8Ag\nSc3mqhaGVZGDBiWyp54EjwZyP4aAxoG2d9HcvffI6V9I9c+oV4g899VIk7m7qoG8vxCIps2HYKKh\nyNglE5l3PQUoUlNgyK6vA4PSM2yb9jVVaygTEWkQSSVgrQALgNYnwhpiBhc5mo0BXG5QrWW4/a4M\ni02G3ScMbgPD2w75HiPbb2DnTlK5agfUUjUWDQvQ1X5gHX87mdcTkexe83M5EwGWkO1mGF/3gJaD\npLRlBi63YEuoxxnqsUU9ICzWDKaXBgANAGzCVMDo9Qaj67ugvVkU1D5FCzpLdSO6mo5B6+PwHpM1\n4LlnfOgPIN/NYhHe22Ch8pyTWhO19xnXx7I9M6ievAi6dgFmVsG+fg9ue+eBhNDPDaeebshAfK8L\nP682cT0ZgCFPnAhr1S4h2ho5V9J+bjxQbSHMIc864sXiPAXxDO2BRicieh7ADqQL1Mz8lUR0EcDP\nA3gWwPMAvpeZ7x79pBJ5DMKVtOIlUDq+IpZAmwmSThDqMLoGXFNAWinPYNbXQaMBmovrqDeHwPoA\n9sIY9vYOeHsHvLsX9X/ijfsFtwlR0NSplgUu9w6AdnNTzudLfKeL9QD26DbH7SpB6YDQRWhNXDyk\nxy9VmdEqOB4YIhMX/8IiMi2xZD0m6EMc5CwcY8A/yb6jgqWUZUG0U9utQGGo+MPcAmB08aGR7LD4\nUC0oLyLeVDWAXUlHBISuvzYGlwXqCyXMKAcTkL8+BO3uw92950FO7nxvNvSdEHlJUsVoMhaNq6qC\n0yoQ87mAUcsPUZhoq94RjX5p8TPnAEsRPPSsl1TwWf+W6nWJGLQl7+TlycJUz2+Ta1J0GNJ0zwNM\nnMxDd/O3fFL9xrcrS4Qng7NsYvSwm1qjf7oDxibAf+cEGpSw5WW/gK7Au3tws5n8vHAddKPE4Okn\nYB/bgN0shOFjqaUtBMjfTUGBxq4VxeyCUZeE2UWDagJJ/Roz2DKacQMa1cjyBphn4K0CvG+CkDQ1\nFIWeuQ/s6Tx77vytdKC+R9sChBArjxGQ7VK4B7munoRa+kiihyRA0ewioxlKtDfbJWR78nCyKY5s\nD2O+WiWWnII7921JKmfQczNWGIyDElTXoGJwuAOl2kC9HxGgukXGC7/OG5i1SShzrqL1WpEwpHlp\nM1fhwWlalN7PQfP5EbYvpcyl+4R5XjcnY9Gi8g6sbQdrjmAn2m9afslyIOlI4EjvObzOYl0HPTNT\n5DBFAXtpE83ldVSPbYAzg/zeBGa6AG7dCWmux7IjtDF76kkRGN3ZFbbkzdeOd42TNOYW+BcKAnTM\nDAZga8UnHJTCXsks6M4W6puv3RdwdVJ9hwABcUi0c8Tf8/3b+6GhyIj/X27KTyIBOIrBoMiippCG\nF4pKpFqHPaZp0WYwkOIZvrJWSL03JlYNqxtJRVosBLjcWMP0bVew/eYC08vC8sxmkt4FB6y/4DD8\ncAU7rWEqJ/fW+GCNQwR/DmPZpdv72IArGYICthIR4Azsom6ny84FgDIAQIScKKSKcSGVj5tBhmot\nw2LNYr5hsHdtAy7fQL4L4M9WXDaxEx1ziCS46dO5zKCUfrKohF0592uXNKisaYnBV+SoA0fU3tcH\n1TRtTgr+VEBmUW+O0IyvIbs1Ar348iMHtL6RjI/IEDrRMSf802EkA9In8iz2DfUNNCij/8P7GZ7Q\nQFb+Z/ayLex8UFbWItmFDdE4vbd1zhw6ZTsJuPo/ZuZbyf9/HcCvMPPfI6K/7v//iUPPomyZVFcA\naEdb9X9g2cntRM1WOl6pk71waG7dAsjAbu/CPHYZ9YUR6kkOpjXYYSmCwxrNquswYZJVMEhQUlOW\nwbFy+/sww6EAQ4gRUyIRBW4BBSnwk24Lz2VFNCMFGtgB7ghaGh1wiNLjE5Oc8zaDpq0T4cLvB3xh\nT6DveIDHSHW3dqTctftJ6Buu/Sy4CfcYiUXcPsaDjbo4cq/dAt29B1OWyPEE3KRAtVGA3BhmVMIW\nudBtfb/RMsMBvPEgIpUlzGAQxNTd1k6v+BpXEuWOObpmOY0pNV8StfdzBTv69unqQSX/ExEY3GYN\n6fsagCAbPhcwKem/jkPfOvt+49k8xoDVSQ7ftetfcPb9H3SF+oEjFSaHMfL9lbKQx3QWoiHu+evI\nbt5CcfEC3IUJqotDLDYy1KUwhtgCziZVwzwxohoT9h43mF5l1FfnyIeVrBFmGXiagRoC7hagHULp\n07HS21cR51UA0EHG1I8FdW0JRHIIrKewLQGjiAHUEDaQb6dS/Z1Pp3M5UE8YTQEsjk8sO5n5qgdc\nTq1Xi+eA8xx6jI5BEKAjVBTSdy0Vo15qzApGkqajKYvSB2Ioy+C2dvpBpJS5s+paB4EtKZtu1b6r\nFnpdPyAZl3vn/uT4wHwwNoj8H7PK2IP3m8PeswdhyrQWv3JTbu5p+js7MK+WyNfW4J66iurCAHxp\niGJYwGztgbZ37psxZEYjmKuXwwKT96dw+/uoX3r5/u/ljCwAYylYZCzs+gT26hVhBwOgvSnqV28c\n59QP3nco6u2Ewh6LRQzYaHAyZZd3gU+dt30wiFQQFgC06EMnEEg2kWNYpXM5m4kfMxmDM9HXg7UR\nDPLpZPXbnsCt9wyx86yM86NXCRufcyjv1chmjcwNjYOZSkl36qsGrO958lwOBFI7fvaB1j0v87Iu\nUvdz/dGAWlWD9mTaz1+zGFkDzi1cmaEZ56iHtv98/XYyc1XjwItZSPulQmQOUPgiKMpW1wC76sMA\nkQ3KXkDbaSQIwqK3VsC/BBSDc6CFA+YL5LNF6J/2icekutne3tmxM9/AdmhmQNseuO8wkAA9TRsY\nBKLPn/r46fiRvm/qW3QrUut76dfRsp/ootrLl4BBCd7dQ3Pr9nHu/dzu0x4Gf/E/AfBN/u+fAfDr\nOHSy8798ykqaltXn6AQqvS7+w//LE9aBC88EFHA7O6DFAtlrpeTijweo1wcwowJwE9g7AxHDU0E2\nJ+k0rPooo5EItxVFqHrVnaC1BOfSxNQFgPT/7iTWndzCgjwBabr7JtpK4fNEl4g6QJNqDaULne4+\noW0N4nd0FA2Lw+34fQcakfKAQ0c8GkB74ZHqVgA+zbBncacpiHp8+ltz5KsarmlAL7wMOxhgePmC\nCAevD4BsHWCGGQ9F4HM+j3nkRKK9NJvD5BnYGGA2iwH1LIvOH9AGbVLAZhUY5D/jpmkv2ntAIOa2\nIGVrv/D4uMUi6gUuw3NL+ptOJmQCmER5FrW1gqBsT/TheHZ/Y04CBlHd0YBZAfKwZ/4AWNYbSp1E\nneD6Ll0UvgKDRTavwDs7aO5tyRh0o0T52FVkVzYwvzTAYiNDVcYS9M2AsCiAxQYwf6xCcWEOS4x6\nu4S7PkY2Bcrat0+b1wFdwrYHtFYKWfec/nppplCXgZRWQQvVyZYuIj+GEVlFcnSbPXn/dh9jDuJ8\noy/tUcqgH8XSfpf83WIcMcNN/eJV02AHZXiXVgJDvo1mPI7pp15vL50TZBrtS3XrAKV6n91tLaHn\nBPhJ3w9je+frA5/FUfft3G+7GIRnER2RvXiA3ceYQyfy3q0+9wrgmigu3O/eRbGxDn7yKurNIfjC\nAPmtoeiBbO2G9NaDzG5uAlcugrZ3Ub92C+75Fx/STT0C5pqoNXTTbzPHWtT32f2NOcbENC9N0dC5\n3DODZNGezOctUDQWz4Dup0whZUirBmWoGGhhijxU2+VF1buY5/kczXwOe2EDGEnlVBBh/uwl3Htb\niekVSV8evs547PccBncWsPs1qGrCmEBN0n8PejdXBYj1eaT7pYHWpUb3XKOTGr50Lf1bn3lnOzn2\nPgJ8NaYGtKiQ7TCyW0B56v6xb+J8DrIWZjj2WjDio3BVR3kBQ0DNCZNDtFU1vTD4dPpMskzAIPUX\nFWTyVai4qgQ08tqaWuQHly8g25+9MXW8ztDstavAsXDolh2777TeGPV1faXA1vZ0nal9p2e+DqQC\nIDCEAAQgiRcerPTrea4q8aOthb18aWWw/NxOzh4UEGIA/4GIGgD/lJn/GYBrzPyq//wGgGtHOpNq\nAgCdKMUK9L9bpYOb9v9HpF9HEApw05mUpt/bBxUFci0dvTFA89RFwADF9bvA9g6aO/dAOUulMB/9\n58UiaC6s1PoBlgGdo2w/6ByrLP0sZfYggjx9wE/3s9Y+If2IETSVZKfV7ei3k+s7esK0/yQipbJN\n+0RbpDR8ppb2G9csbwOgpYClwpfx5egXoP19UJ6huLgJtz5CM8rRXF0DaB2mapC9fEf6yM5uqCzX\n3NvyAFGRlI3tsHa6f6+q6tY5LgzK6fYuKNRhJfQCRHoOQBzSugZRtpxKmTKCgNbfzJ0+nfSd4JAc\njRF7Yv2Gfflc0spnAdxcThULwJG+E0n56t7FamuSTJ63spL0u84z0IUNZMMheG8fzc4O6heuw9x8\nHcOnn0DzrsvYv5yhHosYc3V1gWxYw1gHbJdwL4xhp4RhjSVABugANquMOseu2pZ+3AF7+tLE+sAg\n1UhqHYPlY1KwKFwrAZTIIQiJHsNObszpaq09AKAZqocFB2lZKy9NeQ3XIwqpyjybgx3DFAZgX4zA\ns2KCXpm14IVrp3R27+ckrHuu7iJLmZyrQJ5V4EYXREoDEQe1I/38MAbTijPhhOeqE7cDF9AxWMZ1\njebuFmh3D/lkDFy9hPriGHxBUuXN1hpw85akBCVmNzclnXk6lZS0u0dXAfi8s+O96yfWd8iaIKUQ\ntP48cyPoI2rf1qCLgkAdsEgXbeE8XqqBSIJlKthO1sQUNa+xR3mxsow9VzWm77yK3ccz7D4jAOjo\nJmPzzxsMblfIdhai1VkfI3jYxxTsywLgju+cLjj1d8snPmAcSMcJaxIWhGkDQ+l5WMCgFijUbd/R\nAaGT83Pmc2GnFzmQF/K9+eApDQdxHG0a8EIqRUWNSw8UWiNMr4xkkR4EhpP7sSaCQfMFeG8vMFnN\ncCC+92wu/qUx4GceR7Z5AXz77tJ4c27LRsMjV6g7mb5DSj5I1o4uAoYA2tq3qnGmx1krxZqYReeL\n2u+fCK6byECzJs7nKmwegmAOZjIGsg3wbHZcttS5HdEeFBD6emZ+mYiuAvh/ieiT6YfMzET9SxIi\n+lEAPwoAA7smG/smWnVmuhTz7mIsjT4e0cJCVC/rGjA7gKUCGN14TcrlDZ4GLWrQvAZvS7k8u7nh\nS+pKa/KWAAAgAElEQVQKW8jt77dRz/u1Lih0FKorsAT4rNwH6ABDsSIXuzZYFExZHr4SV4r0xn2O\nfd8n03fMBOAGzBQWP+LQJABjd9GgUWPd3lqk9DPNWtdPgLOgq9HESRYvvwpzq4R95gnsvVXU9Ic3\nG9Gjms9DhI3ywkdfEuFiZs+s4fa2o1g3jWwVgygBhYJT2Y2uITqXS2h/+v0H/S6zkhEjn3NwOINI\nLRCd26ML5p3smKNjRhpt1eegrCCtfsPR0WtpCIVFensRD0siuAnIM7MmUOnDvRsCwYRKZdn6GtA0\nqJ69htvvGeHeFzPo2j7yvAFqA2yVwK0hsAAGFSU6PEd9fPqg0gdzyOd9H1P8TSmw0wWJ+kyPNXGf\npdQy3a8LPLXaQMtiogfbyfQdjI72Tnbf3RUC1FHzbMU4xCLQyt0UioR5E6r3FeNYnjuZL5W1StaG\ntNcl9syh92P6wZ6jgizd+fuo1+4bA/sWhH3XWBlQ0s8OvzxObK4aH+liJ25L2g8NeN6gqWrQ1jay\nyRi4ehm0P2ulelGWwT75uFD279z9wgaB7t9Opu+QT1fzTEEt/KAgkS7MmFkAHD8XBd/CBynTAKhq\nWDK8sDBH4WpYK8BA4cWmVdPTA0uyv2g2kiHsfvdX4MYHFhiNZ5h9PMPgFuHynzYYvL6A3V8I+6d2\nMl73sXv6bNW40stKVPDmAH9JGUOpdX3rvjWGg/fDO9fSfVIfAmgxVwOL+LDUtmU7sblK5QqgKcJZ\nBsznno1hgKYGyIH3p/Fz1X/R/lPXsUJaYIfHvhXTEWUxzzs7cD6VMIoNO6lwt6gAQ2jGJdyftG7r\n3E7GTm7MUeYg4IO2nYybFNDR9W8iNC1jjIuFolRMWo/1IGIAh9IiGU1yDQ021zLW2WtXwVcuotkY\nwCwa4I8+ca43dAL2QIAQM7/sf79GRL8A4KsA3CSix5n5VSJ6HECvmqBHLf8ZAGyU1xg1lgfMVgfh\nNuujCwD1RRRXmXbIAL40YCSLXIrUXDMew5UZsu2plCut60DZ7Wo+tMAgFyfZA61PI6gLAqUC0un+\nqX7L0sSWgEN9QJFuIwOyiALTPl1sVSpZrx1vopPLn1Tfya8wXLw+N7LI6X43qSOkTCF/snbkOe1b\n8YLte7WiVxSeR9pPHUsVk80N7D+zhtFLe+A/+qSwgbyDRWUZ8/sPWtSsAjgPShXrs4P0hkwyoKf5\n4onTk/4f/jam3b/8vbes2wf9O8bMUHFzZlp+/w6wE+s3xTUGczvtqw9c9s+Mms7CVXWG9Lmm35Xm\n2ZvkfB0wiLTcfepIDkss3nQJr3zdAF/+Vz6Ov7zxPH7x5S/FC5+9CuwbZLsmMoESIGUVYHKg6THJ\nue7XllLH9LxY3k7d61H7/4OArdax6rPbo9/8SfWddbrYbmV3AaHbuu9ub8Aj2a/1e4V+RvfwJJXM\nrK2BLl5Ak6bwdErVc7e/H4c909ViazVEAxKdd6jvfCnwlW5bcY/h8z7G5qo05YPOc1ZzVXaFTyRl\n7Dj30BdACwB4I373vS3Ap27Yd79T9rv+KprdPdQvXD+BBn/h2on1HXuZeTZvLbzIzymUCERTlsXA\nRE+Ah6u67U/qtdIUZw8GtSroKnDti22QtbBXL+PuNzyD6Q/cw3c88yH8/G98LSa/VOKx6/swlQPN\nq5gGdj+B0uCnxwDKkfz9g0Bgta7fnY6LS+O2k+E4HdsOuWY3nbylU3gEO8m5yoxGUd9H79WxTKgG\nkf1DImUQFt8WAg7VtYBJqjdE0peCsHQQLhdmEOZzYc8bK8wga0G5pAJx3QAX1jB9y0UU//7DR3oW\n53Y8O9Exp3EI2FHinJGy5gwBLIHJGFhmAJH1w8pKTMEg1RviOOYsWXiHvDapik9fuIDZWy6hmlis\n/enraD77wgMxtM8t2n2rMBDRmIjW9G8A3wrgYwB+CcAP+t1+EMC/PdIJD2P3hEG4Q9Vftd8h25ZY\nLgnwRHkGGg7BtYgk2t05aH8G3toRdLuqVqftHMf6xKNbbTriJNqazJTd0AMAqSW54nETtfZdCf4c\n4VyH2Yn3HaA/r987vlE8e4VDseqZSQPb/6qzlB4bdEQIZn0Cs3kBsBaj5+7BPP8qyBDMeAwzHIo+\nUN/gd7923H7YrT4CtO6HiFr/dwHNpdzflI4NHPws0QaXjtt3TrrfUOParB7VBUgcP6WAJzcQPmvt\n27UUpO2LKKb/OwcuckyfXseNrx7gvX/5k/iPNv8cP/3p9+Oljz6OwY0M+ZaBWUAcU+/L9czThxpT\nB0A6Cp7yAIBTuBYf8HOU03X21YplR23bQxlzut9r3/aDjjloYd8530GC05RlMIOBiLrudcquscND\nSw07zFZF8Q9bFK1a9K1iCxy3Hcewh9JvHtSOu7g+KLiRmBmPwc9dR/Nnn5IUjnMn+4HsxPtOd85W\nJrFzPgBpY3Ci6xfoZ3psN+DYCQCuDGSSVAIyG2u4+e1vwtpffQn/6D0/h1/87Htx9feByXXvL0+r\nmBZ2FL/+fj4/aP497DyrNBCB2GZ9jn3jUffanXvsTRnra0dvU0+636ggub+2puPYBMip6xjkS7MT\nUs0WX2Y8pAlpUR3XXpMxS0A5+LlZUv3uyiaaT3/uHAy6HzvCuH+ifSfx87kTwAlMwh493C4xQk6V\ngM/6d1qpLmXct5rAsa9mGWgwQHN5DfMLGezUga+/cj5PnaA9CEPoGoBf8Iu7DMDPMvP/TUR/AOCD\nRPQjAF4A8L3HOqs6yV06+VL5dGoPsimrorvPkmNpJLWIueUsU5bBbKyjuX0HtFjArq2h/qJnkL90\nG86rnD9wSphadyHdpx206phEwKu98Oyh9Ke2RPdP8z+FVmonA6k40mU/Jawh9ghwK3UKPekQq+1k\n+05fRN1/T5oL35c+FqLr2t/6NIU6RkUh/UrLGPt97YUN4MnHgFt3hXZvLMx4BJ5O5Zi0fx7E/gGO\nt4BR8eig/G96QZ9ellC6TcvQJ6aUch3kA5Cj0SPdr66RXb6E5u490YNPBcsTJppWD+RUXM5aWecf\nbaF6gv0mmYC6VcWaRtg8KZCYgmTGp2r1sYOAJBqn76kDrB9qO4wQHg9x930X8dpXA9/1DR/GN69/\nHP/q5vvxk7/2nShuWxQLgpTaPcrjOdyClg/1nJNik1t2hGt3WUpLYFXPuU0FmAZSWt7GfVZWPyMs\n6w8d/bmc/HwVhKV7GpGmfLXmqiQFOuzbmcuA1jlXVRCjvIB97Crc7Ttw0ymMMWhev+GPyVoi1Ets\noNTCfHvE8bvL/jnSuVekmul1e59hZ8HVeTbZm57uZ7D0ASB9Y+7R5vKH4+echhG1+2Fqaf/6inej\nujBA8bufPK/+c7J2sn2nm+Lt2RnMLGK9zvXO42rcNLE0ffr9p3MbOMx/oKgppKCTvXoZn/3RZ/H/\n/NDfx4wJ3/bLP46/8VM/iqduzmH3t0Qr5DAQ6Dg+9FHB4/vZ1udvp0BPH8PxxuvA1Usy7yeAymFt\npdp/V0dLjT/xMScs4ANr2a+B5gv5fq2VFDIt9IFYbp5GhTB/fHEQkK8EFU6eSBRUC9HJdAwzyMIx\nzZOXwR/+GPDGKz74RrMT6zuhN/tsFwAtLTEMB9L3tXqw18UMKYJVAzYmVBbTcSYCip01LxkAfk1F\nBsxe/yzLgM0NzN60iflmhrXn9zH5P/4AcM1B9U7P7T7svgEhZv4cgPf1bL8N4FsepFFyorjYDs5t\ny4lOOk+6rSs62WOU+wpOXtgXRLAXN6Xjr01gnroGunEbzc3XkD93A7y5Dn7thFZkR7VVAtNHZQ31\nmFJ9u2KbUu2JwfM5nvuJr8CbfvLDIY0sgjwixrwqlYwMQXV8Dm3HSfcd7+DEfuK3a+oYtdHtPidZ\n7iPZ0Kf3kTgLLYr2e94Jev2elAa/6ZmYrkHznrcg+/QrYC1juyrynZpzQJ4fi/lDXaflIOHpY5yD\nnJO5XvucTdD/tOIYgOd/6K140y++Dn7uuuSQJ5XqKAGPAjAEBLBIqpccXj3gxPuNOq6pZlPjxXq7\nqV1dS0Gk7udKv9fzE4mANVFkJQHYe/c1vPitFv/7d/0T5NTgbz333fjlX/4LKLYIYwO4h1ED0lsL\nDFJg5T6Gli6o1AKaCC2GEOnnnuW0+ekK44++jK2veRpbb7YrhaeX0sw4+X3ENj+U+aovvTSAJcl+\nyVwVxpluOnTr2ARoAZKKP9Hsu94B99kXAOawiK9ffiWAJNw0S+c5yJbGv5O0I2sU9QR2+hZl3u79\n0xyTbz/gXHp83/m7n61q+sP2c1LrC3Kt+vwo5zjgMzMa4c5/9j6MX1kg/w8fQXn5Epq03Prnqe1/\n4Kux9rHX0Xz6cw/9WifedzT4E9IuTBDtTdPE0kBOYPQuZAxhNEvpUmF/fU+thSlL+axpgkbRzge+\nHP/L3/0XqGDxl/7l/4hrH27wzpf2YV++Bb6wdvA4cxS231EsfXeP+S4HWyXTsPTu+G1adIJZmHM7\nO7Bvf4voAxJF0WnVbXLcHseSv+kIQ+FD8Y+ND2KqPlBZil/i/S4alH4/AC7x0Xw/AAAqvZ5ULboy\nQRIj0Rlyu3vguoYZjWDW14A8R339JeDGTXyhGpUlbvzoV+DaT/3OQ7/WSfYdIgrSKUReuyzLwM1C\n1pE+4BTXBBz+J/j+rtpAXejGMeD1a8lk8g7pml/XVkSg9TVUz1zG7S8Z4bFfvo78+ksPrVDnuT2c\nsvMPZgctmlvRPbe8/SiOp08tYi9kZcYbkkN/9RKe+54rePO/fh303MshulrfuInmi59E/twBgtFh\n4WsCA4P7yvYe2K4eAKhPG6i7X/o7SV1aqjAGQOgbnrGR/k7sv/n+f4df+jtXI+XTUFIBxwXhaX2G\nXY2KI0eZT8ziJB7S3FysXsVN/D8c4Rc/B6VhJDuHe6IsD/3Cbm4AAJrbd/Dyt23gTR/cg/uTT8IM\nBuDGgasFqrUc+WQE3t/vX9h4B04n1KBzlNKUj2J95en7/k8ZQfrb/x00hPQ4vX3y5b0bL9wdms6t\nPtYMgJvfcBlXPveiRJssQiU1BiKQmNJEu33nVC1xqg2J1oHmOqfVx4AlpkJL/8eYCAApYOireITv\nXAFoADwssfu2Dexftcg+8Dq+//E/x49/4vtw708uI9sjTF5n1CMBTvigzEJdN+rQR/GW7vtxPMBM\n28s46pyfk78BYHBzHyDC4E6FrTe3b5YpuR1O2tddV5wUY/N+rYd9Cu5U4EmCG90xqtcCi8i0jqW8\nAFjo/VtfchGTj/+5sBGThczeux5D+cL1A4GUvmsdmCLce1xPFH3VNbvsyFUgWt9xfb+9/fZ7/w2+\nDV8aGUiHASHptR8gjey+7bBLHsZeOkpf756DG6mAOp8DzNj/wFdjtmlw5bdfx4V/+SEAQPbkE+DZ\n7PBzfx5Y8WOvAv/dkav1PFrmnE/9MUHDkqyRABIAVFVkD+XiS6Tp3UEH0PgAkKZIN40wg9QPKYpQ\nXpqKAV748ffhi7710/jUHzP+55/8r7Hx/AJvub0lJeOdE42Qxi3r1KQaerrNOVDjZI7V/R/kXTzu\n+J+CQUtjXtLm8FkEaBdPbsB+GrBra+0xSYEhzxZm4ggMdce7k5CaOK4pINg08szLUr7z+Vy+48k4\n7gdEXwa6PojrhJA6xAxkUWsKzoH39mO1u6efQP2pz5z+vT6CxosFtt/ePHgZyrOYs5QdlJAIyNpW\nFUMAcZ2h7HmgrUWl//t1J3MNslkoKy8nEzCIqxo0GcM9dQXbb1vD2gd/D5d/R2SGvxDNXroIXlSn\nUlnttFdh/caIGjBpp/eVoFYu3FMnr8+6tHzIotsMB7AXN+FmM9Rf/CwAoPnEp3HlozXuftkl0GjY\nGrjnmzloOIQZDmDK0pdwLKKejE+N4bqGm04lwrI2aS/Gj2PdiSr933UmrSXKq8ESqBQ+Shb0afm/\nZPtWPYL7uvfqTv4cNpnUPajUEao+9oLixIxj+5JFFoWymMmi3u8ToucHtb8DlIn2j4F55knYx64C\nFy+AH78KAHjy7/0ObvzFx0Ff9m7fL+S82X4DHg1km9cOCnn+6oxBBlVeVOLgjUYxLe1BJoC+vtcF\ng9J9V3x/wcFUZ1Hfo07b3vKvbmDrG2cwkzFUo0CYeH7i8LTSJe0CTvQPTtWS/q/gDRC0FkIpemD5\ne0idaaANBqnptjwD5xmqa+vYefdlPPc9l/Dlf+sP8b4f+VO89toGfvPvvB/44GUU9wjUAGYBmDmQ\nTRnZPmBnfluFwKwJAAl54KQGshlguqXnj/8o7stSMKhXXNr/pLpHAECfeA7uzl1kuxWKbQ77k0+R\nU5CLDSLTiJDsxw/c9hO3PlbhURctCvy0qvgxsseuwYzHoEEZ5sKNj92BvXKldRwAVGs98+iSnlxc\nzJAhAZpOIg//qAyBFojklt/9PsCm59zf9onvlD/Sth/WhiByz+jVnXuYdhp9Nbl/8lWFeD6Hed8X\nY/sHvgajX/g95PuMJlmsuUvraO5unc2C45Ttc9evgD/3Im7+t1971k05vingMJtHn1jfHZ/CE/wL\n51pzNGkhjCQCz75KbtDpgPdzihzu2cfx0g+/G1/87+/iLX/xOfzRp57F5HmLS//iQ8h+5SMw2z7I\n1Tjw1jZwdxt4/Q5wZwu0vQfan4HmlSz4Gs+mzSy4LAQM2toB7XsQUoMr92vH6berKvf2FW7ptMn+\n2h8CAJrtbdAiTZny7U9T9dP0MP38Qe/zQS1ZyGNRSQn4gWcA+SqUwchEZpQeq35d1kk7rCrwbIZm\nexvZs88AQGt8+UK3F//m+/H4b70Bx9ZkXAgph1rxK1RWFpCaMs8tSdeVdACJQnbw62cb5/y8QPVV\n78Tu1zwL/sifYfP3Xjnbd+YRsOb2HZiN9VO51qPBECIkCCS3B5tuZZGUhtm1QzqOGQxgNi+AFwu4\nSxdgdvfgPvRRNN/05bC//ocY/tvfR/n1X4rb3/JmXPqN63C+BCs1DLqwDrc2BIjARYZ6kiO/O4O5\ntwve2QVPZzJJ1zXczg4M1mA2L8DdvXc0JgqwImrhLRV6W2UJ+4JsAXYJptphBAV9F/kn7Pa//V/f\nDPp24NnfjiVKyZeY1ApeMRrbOf40BUtT0/Z0IsUBvdY+09HJaKVJdCvepP2PCPbxx8BljvnTmyhf\n3UbziU/Dbm4ie/YZ1M+/iGsf/Dhe+5534VL+JpiPfRYAUHzmVbhrF2HWJ+BCqiy48QBmUYOmc/De\nPjCfy+SMBm5vD6ZpYK5dAXb3RMD8qH3nKLYKoHRO0raqOjoIun96fcdS1lWF4zyLjKsF6qvr+PVv\n+Cn86LUfBj73YnyUSYoiO6/lpKligd5yNv2GrYlsHw/ocGYPZmh1I359tPXAhjJoLk5w5z3rsN/3\nGr7vmY8gpwb/4Ne/A5c/bLE+IcwuMjY/OUM+LbH7uMHwboPyMxWK518XRxsAihw0GWPx9CXsPlVi\ndsmgHvqUMgJcDsAIaASO249sKdhyjLm3BQLpcd3rJudUUIdYQB5NdXKlRbHLqNaSg9mfKj2vZxmd\nlJ7SA9tR0hWWmDD9fZ3yIugE6Xxh1yfgqoa7dhHOU+6zZ59B89IraD7+57DvegeyIkf98ivhPKaW\n65nhMDD/zGSM5u5WTM1M+i/XNSgvIovkfp9Ber+pZlDfYq07l/eK+R+Q/u2Pm/2vT+D6P34Sb/+x\n3+vfv8tc6n5PZzVfnZT1pZgxh++SK/mum2/6MtiPXcd4cwj+2vdh7ed+F9v/+ddg/Wd/FwDARQa4\nRgIan/isAAchFeng+aelVfUGsGf+jYWbzfCdP/L/4Q9+6rSDEA9oXsRXU3U0+CTBpOg/p6yNwApK\n0jDgWUYEhDQ0DeDQ41fxib92Bb/6Hf8QWy7HB37tx/D2f17hHR/6A9h3vQNb3/s1mHzwd1F/7nnY\na1eB6QxuNgMOYJiZ0Qjm0kXwsJT2Dgu4C9eQvb4txVpGg+ODkccB2sPz8+uGzMsBtNjUydzdLQbR\nc53mygbMVtTbosZJmrlzIMfiRxgDJl6uUHra1jSx5LxjoFrA7e/DTMayXas3qSxHYAE5wEnKEMhX\nCKtrMLLWM+Gqgnv2ceD2HdRphctDLHvzm1A/9wLsu94Bms6Bqkb9yo2TCU48QvY7f/Uf4L/8+u97\nwzFcGBEICoAPIP7/wsXAsmqO+c/kAAPAZzuoEDm7sEYlTcXU4y5ewK2vvQaXAVd+7k9gffpy/fyL\n9/eufx7Zyz/xtXj8d6YwLz18Aa5HAxAClr9wI2wKXtJZOEQnqLtY82YvXwZlFs0Tl2BmNWi+CMJo\n9tf/EHd++P24+isvof6tP8bF22/H3nueQOm/gMlvfQZMBNoXgWAuc2C8if2nJqjfsQ47dxi8Nkd+\ncwu8tQ23uwe3swMigllfg9vbP5JGSssOE5juGjvwXAb0ne/7aqz/wh8dvH8CDqWCpZf/mPGVf+0j\n+NTfRJwUYIVB4x33Vgn3FBg6K1OH3zWysKqrTnnlnhxW9ho3fU510sfMaAS85RksLgxQvHQH2a9+\nJCQDNnfvwr33WSze8xgG/+73cemffwh3f/D9uHJ9HW5/H/WrN2DXxoEp4soci0sDNEOLpiAUWzWy\nvRr5jXvAbA63vQO3twf34kvInnoSMPOYbta1vnYfVF5erYeyzLVECqtv/UoMP3ML7pUb4RzBuVwB\nTLmZLCKzO3v4TLWO6TMbKD/r26UTRYOQRiZla6XvcR3ZAWfBMCOlegOttLtWqhhzTClLwWgvstmi\nxacL7TzD7ruv4KUPNPjX3/iP8Hx1GT/9ytfhU7//LK79CWPzY1twhcWNr1vDzjMlLv7eTWzcvofm\n7l0AWHYebt2Gef5FrANYJ4J57xdh5+3r2LtqUU+ApgCcBexCmELHBoXCQ8GxQKG1Fx02PrWDW1+2\njtnlngt2h2cNOCr28DXvxfxSgeGtGnuPF+2dXQ/44xlDgS111qYAyKrARXffIxgZgr16DRgO0Dz3\nAvDRT4TP6udfRP0tX4HyI58RUOjKFWRPPyU6DQDG1/fFkauSHlTVUumwLNH4vzlx/rlawIxG4BRQ\nP84CbdX9dj/v2X73B9+PzZ/50CEPpHNu//fwpT1wOVx9WJb7xe6KKmuPgpN5FFDxKJYu0OZzZE8/\nhflbr6J4fQ/mzhSoFihfvIO9d17B4Cu/BOs/+7u480Pvx5Vf+hTw/KtoAOy+dQL71HtRjQ3YAHVJ\ncDkwfq3B5M9uLevuGF+UoU9v7yGavXwJjS/ycVzbejbDAMCPXfwQ/it8/ck27GGbB3ECa7eq4BYc\n2bhATEHvzteq7+EHzXAe7w+YyRg3vv+L8Lf/h5/G84sr+K5/8j/hwmcavP2VGTiT6zYf/3Ns0Dux\n/1f+Asr/8w/Q3OytXL1kbn8/gP+UF7DXroDWRmguTmC29kE7++DxsD2XHvY+pIzcg4I36WfWAK/c\nFIkIiA4bumBNyhbuSfUya2twOzsikPz2t4Q2sJV9yXEMNAFg09EjPAvTxbzqCJHxaYFFTG/PMvlN\nBqgXkU1kLCizkDWATwt0EhhmZrjHLwMf+zT4I392rCZNv/urUGzVyG++Drx0A818LkV9ihwwJWht\nAndv6/6CFA/J6m/+CmS/+pFjH/effvIHULzwwkNo0emYCstTkUuQGgjrjKAxBB2XOgUkutkHjqPA\ntCHQxjp2330VizWDy79zE7hzb1nL7lGYp8/Q5pcY9kN/eiru7qMDCKklqUncV5kk/fswlhARzGQC\nc/EC4Bj145vIXt8G374ri+BkMrj8cx/Fcz/+pXj6776E5hOfxvDFcYAQmtt3YNbWgKaBW4jafnHr\nDsrxGO7SOqpLI+w9PQQ/M0S5dQWmcihfERaJqWuY9TWw0uec8y+XpBGhaUSVv8su6JaS70ZRV+kE\nMWPre3aw/tl3AH/8qSTasawX1DrO24WP3sbffuw38X32GxNmBwOugRkMQJMxmjv3ZFIx1AGGztg0\nAs+eXpBGO/ruv7uI8wwiZQ7Zd78TqGpwZpB9+JOo53MBiIgkAlvXML/xR7j3338tRj7iuvkzHwKe\nejJe48496Wu378IQYfBSCZqMUF/bwOJCiZ03D2GfGCDbdxi8PoWpHfDpF1BffwnZ009JG/3iTtg1\nnrJb5FL5oeneQ6efqIN40CLP94G7byvw8jc+jrf+w21hL6XaRIGhFsEhIoqA7a17+Psvfjte+qYM\nb/012SQi5gI42Xe+Fc0nPhO1qZhiGtlZWbJ4VyeOms7Ck6gtEqnbgbYGQkIJr566hOt/aYS/8QM/\nj3cXr+C/+MMfRv3JdZiKkFdAPQSmT4wxemEbj//mFuZXRkCeBTAIRMiuXZXvLbNA3Ug66p17At4y\nw330Exh/FBgDyN7yLPa++Aruvi1HM5QUs6zC/0/de8fJkV33vd97K3TunpwHAwxy2F1swi5AMVMk\nRZMSRTPIz7JJ0aYVLIkyJT9byZI+tPSeLVmJskw9fURKpEgqcClKpMS8XHK5C2zG7gJYpEWaGWBy\n6txdVff9cauqq3t6kBYLrM7ngw+mu6u6Qt+695zf+Z3fQenbDMIvJ/NAmZpR1NoVTB+XawJZlICu\nRy/iXJiirzTOxe/vxUm2+VrFGo2h+KJ+YSyVyJybobZ1qPkcBJglhaxrfSpltJywwO/2dgvnnbDL\nWDs9u6sIaFTLHI/Wc3EuzaCU0mBQsG3kO+2FMs7uTYhHDuPOzVF7yz3YPiAkjp9DpFJ4gVMlBG5B\nn6NXrmi2Z0QQEqGBoiBgk/G4zvhHgS6/vDZgAzadU+u9CK4lEM1uZem02Nx9Lp1/0ea+qGZQdj3b\n8PdtyuH8feqvvg3rkSOo6pUbTdw0awduXW+pVuR7ZDLZYNy9+k44O4vx0NNh8mLpA/vp/PODFF4/\nCCTw3rmPrk8eZP79++l+dgWxkif7nTMI00A5rg4CYzb1oU6KIwkuvnUA510D5M565I4u4Z0827md\neeQAACAASURBVBgL7cTVX0ab+8FtdL5QotIfI/HFx696P2P7FnoPlwH4f2Zfj9GZbsy5voXj/xVo\nIcvHthtBmudp1m4gJg2hgHQo+guhvxjVudQ6RB7s3c5df3qYn+j6bV7zxZ9n4z84jM4v+8kRhZOL\nI+7cjXrmKO7REyQvdq6vkHmFcaDqNa17hu7MqjYO632WVxssBOF3sarVETEblU764ESUQXqFseYp\nwsUsUrolOnLgA0KiUtPJ3XZrSOsz6d+zQMdD3r4DKmvF/p0z53TZlF/epxMXPsPGNG7N/COkvgfV\nalgmJmxLn5c0dHbF7zTW2EeE+6mge11g0kDEbMo7BrC+ee0AibBs0kfmIF/EjXQ1bAJ/gvUomdSd\nn+cX23bavFkm7tmDUb0+X/X8VA/b4zOc/vU7Gf+vV0h+XM5uxdjx44dABgLwhaJ1PBvE0KpW88e8\nz2IUOl7Q4tKagaaqNUTM1NnORBxvpJeZ+3P0Hi6R+MoR3DZM08vOx/+MmENGNqsF6a/Dup4HEYux\n/L57yH3m0A0+s2Z7BQJCUQGrNhlWdRkAIjpApIE52I+qVCjcNkj66AzGqUm8arWxeEYWGK9UYsM/\nrVD6wXtJ/P3jDYc6OLTP8Ano0e6qCyuryOUV7KkYsXQKL5fCTcco98dZ2NVLx3gHyUdO4s4vYIwM\nISpVVDaNWFqFng7KG7QwcWJiFbmkmUVBXaaK+rm+OFe0JlMIEWZ7Ws36To5Lr4LBw5e5z+uVLizn\nKXmuvjcuDcceqL5mD8UBi45PH6KplbuQCEPcWuq4CCajdVrsCtZ3vsMuQPqeGP19qESM8kiG5HOT\nuCdf1OWG6bT+fZRqosoP/MGjXPrIAYIqTydC7fPyBb1trY5Xr+nFdHkFOTNHMpclkU7idqaodsep\n9CZY3WiSGt9D5vk5nFNnMDduQK3kdSmX42rxz+F+agMZ7JmCzq6VShq591qem4AxFA1SL8Me6vvj\nRxk5lObSZ4aayr6azPMajmX0FheLHD+9GysYVv74CRb5k7+cYPt/GcSZuoSQXtiZLmSf3QqasFJh\n9692pRdr/g7EM6OOaYQZpFIJ5u/tou8D5/jCxgf41Ykf5NcOvRcrLzCCR0VBtUMQX5JUBtPEDh7H\nfqqIZ9mYY6N6oU3E8GJW4xiOn53symldhmoNb3klnKOcM+eInTnHYCyGe+9Oap028ZkyxlIRUauj\niiWdbXNdzA0jlHb0Uxi2qOU0AyDU6Fkv0er71kqufb8y3ovVm6MwlMCoKJzk2uerHfhk5xvzT/6+\nMUq9BtHSsvRFj8xfHcLIZll6+y7KPvtIeDTIfgLU9QbTN8LWW6euw2QyqR2sXBqmLurs+xrQRY8z\n7/AxvNfdRcwvV43NlzUIVK7gFUtN20bnPhXMP0Q01DxXzy2+0+VVKhqUmrqIkU3jrhZC3T1iMdy5\nueaSsPBYXgv4Q+Tv9R03e8lg4lcPMPrRdTqwRPeLMFGMLZsQi6vYaZ9V1gLKyWSSs+9XbH2wuv7x\nhbgmAPSG2JWSWNdogcPslUq4r7sLa6kMDz+zhmHYdSSPd+AOuv/sIBd+7QC50x4J0AmMeBxVr+HO\nzem1KjIfy6lpckfidHR14PbmyG9KcfEN3chXd+HZgsHvLOE9+4K+56mUTpRE909qhPhGtrNfuEPR\n9YlnufjZvWz+4jXst6+Xjk/rgOwfX9jDdruZgi9TWlzXe/WdyIevwLC+RSZM0y8dcxtMIdBBmGX6\nAZxolIIFjT+Cso2IkLTsyPHCb27g+bf+Ea995t/y0EcPsO18EVFxQuYQSiFrLpWBJMmt47inzjSD\naNLQrI4omBBoFCkVNpZoZ+7yChxeueprN3q6ESkNDoXrdtSCuSaqr9TCsq8PdSLOXUDG49T7c5iL\nbdgI7daUoNFELIZMJqn0pYhf0KAZQsBqIWRMeR1pRKEMRBIWnqcbINyq9apa1T6iZWk2ULsyNik0\nMORrwjR1j3J9UMi2qN6+AfNbT2FdRwmLOdCvG/WcPntV20fZZTIeR3bkcFo6lhn9fZDTXe5K453E\n58qawXUDTT155Lp7dpiXbLxKBXu1/TdkHu4h/+r56z+5l9OkDIkMRMZDNA5FCp3DC7rtQUvpGBBp\nOy97u5l54yCJeY/BzxzFXV5ZdxkW6dT65aiXWzd9fcCQDX2L7XrBIIDsuQpesUi5T5K7gefUzl45\ngFDEQQ2tlYrczrFrckIlCK29QCxG6bZhEhOrpJ+ZXFfLp0m74ZmjpF/Mts1+6NabkUXPPy+vXEHU\n6ohiCWbmMFNJshcSJGZ6KA3G8bZuQD3xPN70LF6lguE4qGoNubRKLG5TGkuR394JopP4nM7+W0tl\n5EpBM0Cq1cbCb5lIy0J1ZhHLedzFpQZzI+IQx5YUhVHhB+UtncDCC2/PGFLZNJa/qLYG6pMfrNH3\n+UARPhoM+d3HbjJ1PLRAHDTIagfgTjTLHQQs0cA/GG+Bpo1hILeMUe3PYOar2F97Etd3AIDmcqsW\nIdTRL0yiOjvXZBzD0o3gfnkuKhC29pahUERenCGVzUDMxsp3URyOs7C/n45TZ3SGf2kJmUohuzpB\nCrykTanfptLdiax3EJ+vYS6XNVC1UtAgjC9UjfRF4DwPmUmjMimYX0KVy23BoZgRaSXpuk3lgY3y\nMU0XjZaliI0jyELQpSxYOPR+5kA/m/oXGqwE/34oT99zIT2QJqxNuL285jvHUSp3U3lYYMG4iYJB\nEcq6koLy1j7Ov93gb9/+BxytDvG2r32Y+EUL24WwdbpvngWlXom9KhAbR+DoCZ3NTSVQluFnE4OF\nVCF8dozCQCUNSMcRHRmMWh1RqoTgkKpWkd87TNBDp92T6JyfwD4/QRc6uDBGh6mOdVPqt6knhe5s\npsCsKoQLZkWfeLlHUu0UeC2yG25cYs/Xmb8tQ2yZBhMoeMxaMX2hQR3X9u+jFMQWapR6EuB/lplw\nSX3+MQBm37e7sW3r1H+rRaWjc0n09eUsCtT4Zo6OAOBOTMKxq+skETs3r3XJQItzl8uNZ7X1PFpK\npnTJph5XSglURYMmwrZR1SpeZxamLiJyWfCdNeU01j+ZiOs5xl9XAq2a0IJyb0D6mmReUPraskbU\n+uvgRISeg3sU/T/6WWALyzjbR7GnljT4Efnc6Mgx98O72PqBdbJp/4wyi+taAA5WKhhbx6mOdmI9\nckQnvNrZ4ePM/Md9DDwKG37jUUrvui/0faIZ2FbnWdVruPWaXqemZ8mdsOnozOF1ZiiMZzj/jk6s\n1x9g8JE88tIi9dEekILisGa91lOSwojEKig6TtWIPX9Bg4ov5dK7/TJl89p8jVq2MZ6UJ5rWI3N0\nRD8HvZ0s7ozT8/BLOsWXxQLB6LBVuBANTY5AAzBgBQUNHKKNM4ISMcOg8LY7+Nf//cu8Uxzh+/7n\nR+h7qoSRX9FrX8v8JMt1jGoMpy+LMZ0JWTLCsjXTBMLj4za0eYTn6c9lLGxf/1L8Q3d+Aa6hVNDY\nOg5BJ6NAHNfwtZN2jGuAxtBzIdHy8SiIHTxnCQvD9+/calUzVoPtI2DQ4gf30/twS4v1wFfwvLYl\n+y+7KU+PjWQi/F11C/G4/j0CgMjT90P4XciApvhBdOZQlon5rWtnBQV2vaWeoJMV3nRjrjKyWUQu\nS32kW+sQzuRJTOQRMwuoZFKDp/09MDP/kgLyl2pWXv/+pZG1wMTPnj7Oxy5cUzf4m2ZCaNHnsDIh\nuh57nvYXHCfsKqbqTlhGFloY9yhEJk3ptmFWx0wGvjqJc37iir243fkFjC2brhpA9E88bJT0SgCD\nXqrV0yYx2idWARZ/bD9dn3wJzLOIvXIAIVibdbzS4hGdtP3Bam4Yxu3J4sVMEqfnUZdmfWpbGzDI\nMMCgiYoYTBxNYon+uawpYYPwfeX6AEutjigUMctlchNJUAo31hDqdRcWfSDCQ9brZC5pxN7ryoCU\n1LoSlEezGL0plCGIn5zRgQJ6ATb6epodWl/jJ2qdx1YpjOS046AUxu7tKFPiPX9SZ4RjMcpvvoPk\nt440a00AYrXAg+UhSm+/C3vZwXhId1aQe3agPIl0VLOGEBAyt2521xZ9xvq/JuAwAix6ESHsdnub\nJsp1Mbo6cLaPUo8Z2Ide0KJ7yTb1L4FJiYyUZoRiekEw5Gfj8VxU1W0WZfPPy6t6CMfRpVP+WLPy\nBTovZnF6MrpM0XcgvKLPHrMs5IVZOlZKYBg4PWncuIE7kKaWNbFXMhhlBwSYR85qwNIwkB05auP9\nCMfDXFppgIwtTLlHpjYx7NYb9N27dyPPT+MuLKLqCmPrOEIIvPOT2vn0QRw3G0dWhQ7qd29Bzq+E\nTKnTPz1O8u8EA92LiLlIJkR5IeHv5ncZ82v7I1m7sASpXcAY3KcWUFElYswe6OK1P/EYn+j5Lu98\n5kNUjnSQqIpmDZwIKKSEDk7MQp3yaJa4uRNchRczmuayNc6jKbWWmdKtbQUWyrYQ6SRm3YFSGWdm\ntvnchdBtcg0DbAtq9RC0VI6jRR3PnicTHGJ8I9UNXdpZdhXKlBSGbQ0GmTQBMEpAYdDESeao5RTZ\nc4rkjMLOe3iWYHXMxIlDZtIjfb7MypYkpX49RgrDkgwgqnXsiQW6vzex5hfKv+9+6kmBnVfUUyI8\nppD+ebwSNIFlC0DeEkiE1gYIEpaNMdSPKpYajnJ0/3bmf+6cu4D7+rswz9oabBERXaDLWYRlG8w5\nnq8rER5iSgc0qtDInnvlMiLQwQtaXgegpdBloMI0Nbgg0IwEaSJSKdz5xjPfJOQPbPiiZOr1kWP7\nGiNRlqU5NopzfqKpNMldWqI0tI0kgC9tEwj8T/z73QwejGivtfsdWt//52QRUM179Z2Ypy5iPnjm\nstiochwGHitQefs+4l9+nOQXHrs2dp3n4lVc3QQhn0dM22TOJ8kc7aa0uZN61kauJrCml/Fm5ug4\n1xFqyHXk0pRHs6yO2VT3bsUsb0HWITPpEJ/MI5fzukTIT24Jv2TIXVhseyrGhIa81cn01Z8/MPDI\nMivvu5/MXx/Cijsc/2/b2PphDRo6g53w+PPM//AWep9YfUXIk60xP7GzpmW8D/QEgZgO4nRSTNiB\nmLCnfYdUkpM/N84Xf+R3efuDP8PY3woGLy2HLeT9L/ABAr9FvGViLVXw4iaytzsUsham2SRdICxT\ns3cCv9myfB/BaXTkRQNIgW7hDTFpYPR26/mnt4PSaBrPFKQmishyvQH6+OO9+O77SE5VMJ473aRX\nYvT2QmcW9+SLjfe2bNJBruNpBr9v9teeXBPM1t56L+mLDiwuQ6fO5Qc+RlML+ptsqlwJS9iCMkER\n99NGgZh0kBS1Gr+PTrBLqFZx9mxCPPrs9Z1AZL66kQG6VyohDQPzdDVs5gPgRY/hx3NGT3fog3vL\nKzekLLSdoL68Y6dmTEZs9E3nUb+l6Dimj3/p5w8w9NAK3/fJp/ilP/ogQ3/67CtzvolaxD9Xytcs\nc91Q9sT/QD/jgS8Rfe56u5i/t4fs+Qr9nzuBcw0Andt1hXm+pTJI+xh+BUJwPn4308tWIwihdQed\nOq1VIDfCjI5cqF92LTb5JoPNX4HB313LojZHhuk+Urhh4+cVBgi1ZAijdrlSHyExcllERxanP4eS\nAvPEhO78FfygAZPGUyEAZIyOUNnWT/zFufbq+K1O/HoOZFMpmwYAPE8hiiWU65cx+QJt+ly0Joha\nrWu6vqvLz3BdYskE9HaBp1je20NheJSOT08RUP695RWE4+CVyvqBjMWQmXQTjVI9dZSB3N2YY6NU\nxnuRi2XclI33mjuIHZ/CmZ5B1hWlN+wh+Z0XmgGx+UX+z8+8h9SlVTg7hYdeKC+9touhzznM3m0y\n9hWjwQJREf2AW9IdoE1JwXqLbkBz9EGgAEyTt+/As02UFFiPHAEhNH08pEjqrFqgGwRg7NyKsgzE\nibNrhe/aiIG3nVgiQGWQPfMAUa5gLC7hVap484uNhaxS0YLH9TrCP6Y5u4Bp6IXb7u/GzcXxYgZz\ne+MML/ShTpzW4yafx1xe0RlGQFWrGAN9qKWVJjp/+rM58GYxtm+hMprDi0kSbj9yoBfvyHFEocT0\nD26i/3sm7tETjUsu1Bj/gmJ5R5riWJrMvJ741Kv2YhYFHadqlDdkiB3zFxN/Yg5LDa9FQP1GmVKN\n7iDQrBUUDcqDUrGoZpCUVMe6OPd2m79+1x/wFwuv4k0P/AL2ssRwIywZn/WSnvBIzDvEFioUN6Qo\nDBnIqoNRNfASFsJpMO6agCmpwtRAAAaFWb5IQI5pgGVipJOIis/Y8DWfgo4nwfxndHfo3So1VKGA\nVyiiPIVMxPGySZa3xshvBCeh8NIuIl7DmI5hLwvd3r4KTgrMIvQdWsQ7eZaN83tC8Bg0sJT4+iXA\nF4Ed6ib3YgmzmqCeEHT91dN6HJoGrK5lxRj9faxulPQ/UaXSY2lASPj31L+v6laMmXbmtYDj7cCg\nlmYI5vhGVL6IN7ewtpymDagkMxlEPI63tBTOJU7SwIrHQgfmpV6Dqukx6Prd7dxFDRxq2nVjrvJq\n+njKqWs9E9tG1R2Mnm7dmdNzAf2Mq0CPyDe5cTTM9pnjG4l/+XG2PzOEg874Ors3wdPHgYgD5Wqt\nC2GZPjNJ35f4bBXjRCPL6E5epP7mexj90ixOz7WBBbfMroatFB0HfhJCZjKI/p625WHr2qHnWPyF\nAwx92X99hXK+thbMPdWqFoItlUjOzIGQvi6j1kR0Ll4KnWqxtExi0iQhBSKdRqUS1Iay1FMmxc1Z\nnEQHmb9qZnOJSBItajKTYesfnoXREXoPe8z95H76Dq1izK9Q2j2IUXHDecgcHGD+TZvCMjHv8DHk\nlvsAGPtDyakPuJz62H2ouMfO31mCXduwSgovbmK+BM2Hl83qPuPXB4OCeSAAgAJAKCz1CRJ3vui0\nu2ecfR9/kn8Tf5wf/Z2fZ/uh1ebysMAcF/f0uaZ5zejIIQ0Dd2UVkUg0SorqbsgUABolVH6ZiXJ9\nfyxoWw4hUCh8dtMaVqMPMIcyAJ4i2j02uh1KYfb3kr9vA/WkxIkJ4sseqQsFLVjtejhnz2NuGgNA\nPnySlL979KplPK6Zaz57TdyzB/XkEdzTZ/W85gP2wjQRtq2baUTuj0wmic2UUIePQUdH44t9MEjJ\nYA24+aF/ANTpFxJhry2lQ0idMApY40FQX6+hNg5dExhkDvTjzM43ykZtS4PJN9iU4zQY+VeoTngp\nzCSASx85wMgnX8BdWsIcHuL8j25k+H/oAN177Z3gKuT3Dq8Bg07+2T28OnGSGaDvyQKgG2oUx9J8\n6Xdez/DB6bUiyq8UC0EW2VQOFjKAgjEkBbiqIUQeVo8IhGVR3zTA7D0phh5cwD164oqsoFYTT7+g\nkxdX8+wEDOhgX38eUY4PeEoPLN2FM4wDg9J50/KvzVrTmEhYdhirX2/58/WAQQCyLhCWzcQv3IPw\nYOSbK6hnjmNk0zpxdgO7j71yAKHrod9DCAZV7xynNGDR+cQszMw3CzXDGjAIwJmYRO0cYPXOQZIt\ngFDYPYM2C1Hb82h24lW40PmiW06ke4tsACqqVvNRVYFXqSJcF9mZAynpfPwSF//FMEvvv5/4kkv6\n9ApipaBpnbaNW6vhFYtM/cQdDP3RcthdxMuliT17FmdhEXOgg9n7cvT8yUHsreOUbx9F7hjG/uoT\nWisi3xyMyVSC2GIVObfc+CyXJrHgkTo+Ty7Xx9TP3k3PczXsrz8V/gZXfZ9eBmvNOrcFFiPnFnRM\nk/EYbNnAxdd3MvLFSdSFKf3Qt04+fnYlCup4qRjLO9J0sgn13PHGtp6rWTOXYSXp72xZwHwgS9V0\nhwdVd3yWUcTxM03/O6XP/JG6JryqnXApBYbZgzWzSLpvI5fe2EdvdwpzqQTT8xrQEBJhW7pTxmoB\n57ZxxCNabErcexvpvzmEC9Tecg/n3i3Y9qEnULEYlTfdzur37af34wfp/cQi5TfegR1pLKFOnEFu\nH6fr88/qDmv+NeY3xOk86RKbLTN7f5bEu++l4+FzGsCURuh43Hxx6eaxGoJBQb10FAz2266GTCLT\noDLeTfk/LfGJ7Q/wH478KIXD3cSqgqbyMH/42cuK7u9N4U7PoqpVkk9C0j+D2EA/7mhfEwjUYBWp\nJq9VBOcVviFCfSFNYTe1KKxhNLIz0ZpuIXx9Cf86bAuyKSTgxSyUBFmq0fvZ5+jdNEp1IEWp30J4\nBtLxUIbALHsk/+lwOI8Gv1oUDDI6O1HziyFQqpJxZvZlUAZ0vFgn/TdPNO7+0ioik0YO9aIsA3nm\nItgWzvggfU9Vib8whXlpmlx3F/Nv397cmv5WWrQUNWrrsctEYz9zsJ/yeDfWN8+1369NoC42DCGW\n801Zq9hCtbm2P9i31VoBzvVKyppYp43X4bzX7nM/KaGqVQ3+BKcRsIlqQgdRPnuoPtyBPK0/mv7+\nQfo+PYszdVG/MdDL3J0p+g5WMXZv14CzEDiTUxoASSZwZ2apvvUeUsem8Z45BelU45iOgz1XRsXM\ncE6DNpm5W1Uy1m7oXpWTGwHU+npwh7YiL8zjXIZGHx0n9Tffw/K4xcCDs4x8c7mZWPcS74OqVnFb\nO6hGWZeeQpVKeu0SEgpFlOtiXUxjD/TinZtk+b13MfvTBxh64AzeyipeudyUZDG2jiPKVZzJKcRg\nH87JF6n+wL1kvnKEjD9PTfyrLFv/14vgusx+aD+dJyuoY5N0fPogtbfcA4C9VCV7dFE3vVypsPPn\nz4BtIdKpkHHX+dwybjrG2Y/sYew3n7ylQrbtTPktm6P6LkrpoCYoFYvq8wkhEIkYxdfuYPyXX+Az\nR+9l5NMWAxeXdBKiNdkphG4B3hJcR58f4boQiyGUTpLo8iN/vAW6hdAAFzydxIp2P9O+TMCakaH+\nkYquWaoRxClP+t2uaHQO9M/ZuTRN4ovTRPsNKvy1yU/COoFA/zoWMEYqb99HYqaMZ0m819+Fffhs\nE5ggTBPPH8/GsF/qOzuH7O9lYXeG3DOavcjSEsKykRtHQHlhGfotSWJ4CkwRJrWEaYa/hQrBdhmC\nRkEnKZFKoGI5vKh/e6VDvfZO3JKDzBf81vZp8m/ZReqBx1/eOfdlSEaf/t372f4/zuCN9FLPwuob\ntiFdRfrh03ScbhxveXOcrk+sLdn5sRPn+ZWn9jLx69tI9F9ATMzj7dlB/588idwyBtPzWiMHMDeN\nsXLXAOlzhWvu2PZymQLtK9Z1WaFSTgMYCpiB0gtLxZrMMBDJJMv7R0jM1hj8xLPXDXxdE0tHKWTM\nwqvVfRazFk8XphWeF/jAbiIBlarPSrUaTabCeUeX1AfJL5W/MWuBjMeR/b2a9YzPTOzK4Z44vWbb\n2lvvZevvn8Gp1+h53qGelqinjob+UaDJdaPslQMIBdZu0lgH/TVyWejrRvhlT51PzKIuzoQ02tB8\nEdx2IszW15/EWvNusF9QbtRmsml1KlszwuG+qhkc8NlEChoZEv/voA5bTc8hc1lUvc7Q31+gNt6L\nGzNwcvHwB1OWgbOlD+PbTzP4vx5FdnaibBtVqeL5JWYIgXlpiVzWxti9nRf+Y44dH1/FyWq6aOiI\nozNyqlbDXV7BWC3jDnRjohdbLBMlwT11htypM6RfdxdnPggb3bsaXQZuISi0HpiwhiIYBvkeav/t\nOIZE1l2GHlzEW1jSwqktZR3Bfmu0FZ48Qu5JEFvH1x7XB3HaUg5bA8lIeZswLVS95iPT/viJXFsA\nUorgmqXQzpnvVKmVVa0xlUqQ+84Z4ntGKY4kkANx0jErBA+cbAzLMnHOXcC6mMXbswMxPYf75JHw\n/OJTBQa+3YG4ezflwRSlXoPejx8MJyL7q080LsnvcCMAMdSPAZoF4Lksb5ds+PVHEakUA4V+Xvgv\nXSzuGmfTH1RDJkLIoLjJFgg+Ck81nNiACRTU/AdgkP9eZVMPS9tt7v2xw7yx4xgf+MqPE5sxGqyg\nwBRhe3TpwPK+ISqdIygJ/Y8uNZysaBlAcEwIwSARAFRBVliIBjDkC1UqQzS2BTCNRmmZIRrfETjb\ngVPqX6syJbJURRRKWkOmWIQjx7GO0FbErvUJl3t2oE6caYBEER2t2Z86QKUPYgtoVmKvroc2dm9H\nLOfD8S0X89Q29SF7OlHJGCtbk3Q/tYjX24FRLuMuLtH74ATzrxvVWiBKX+8tYwm1gihXMuVhbN+i\nx9FKobk7SwDUtP7vm5HNQrWmhZ57ezWrrV7DOH4et1xpPD/r6e01dQC7wvmul2ld533luijf0XPn\nFzSDpVxpzugLH7iuVJDf0WK95sgwPc8W8UolzPGNOGfOIfJFBh+a14Fci0C+l8+Dn6BY2m6R+O4i\nXrGI4ZfEhKCUJSluTJN8zr93Pd2o4b6ws1CTCbF2ML+cdp3HirZZV/kC4pHzV2QFGYMDOFOXwHOx\nvv4kvcDCv91P51VqVF2TtRtTLe8p10UYhIGol89jplPITaN0P3iOhTds5NwHxjEr0HmiTmzRB4Q8\nRS1pYTz0NCf/5F7MFZMt/22K2FefxFMKp1+L+3Y938fF925h6MEFSv2C7j99RrcFn5vD/tqTTP+n\nAwz83pN4ll9Cdfocor9Xn1tMv7ewO87Aw2XEwecYtu/kxMf2MvJ1QfILj934e3Y9FrSdD3yCYP0y\nzRCIUUIiLBGyit07tnDmXQm+9p7f4U3f/Dm2/LmLuZJvMFKj5s8ZXneW1Vffz8pmSXlTjZEvG833\nwE9cCUO3HhdBIquV5RMAV0rp5z94pgO2SggciZCFLYLAsl7XwZin/C5HOskqpEDGY42E2ZWszZw1\n+9MH6Puj9iL28S8/jjEyjEzGtbZgLoMx1Aezi7hzc1RedxvJZyfwVvO4fTmWd2TInutB5Cvk/lKz\n3AJtLlWv4b54HnPjqP5ypZq7mN4ss3zwTfrjIgBrlQLHQcTsBkBUr4MQ1HduuC5hdfmdqgaKCwAA\nIABJREFUZ0ISL+jEQO6R8zi3KFl8tWZsHUclbITjoUyJOnGW0W+5LLx5M9mzZYa/U8H49tOYI8NM\n/esdVLqh0rkfJyHofecEfGLtd/7RL7+XXkvgpDRT0pm6iFzSnWLdF07pjYLy/WSci68RWHuzbFxP\noukmd1QNvJAgTg0SpWF7eek1xOwjmrQikUBlUizc24tZVRgPPf3yVvdHKz8cxweVdaIqnCPjMd1h\nz/e3MU1daREI7Qclt1InzaUtfdYlIVPomhsnreMzuXfvoNAXIznYiRIC9+CzITMxapO/dICxB2Zx\npmcwtm0mPlsmMa1RDGWIEAwyx0aZfeMIg+8/S/3DXXiHj137PfTtlQMItXNqg/dbsrDCNLWTNNxD\neShFbL5K7OgEKl9oZBlaLHzvctnBNp+tYZ9czX5h9qZF10ZE3otoEum6RT3QZCqJqlRxyzP6wSoU\nsSpVbENqkeng62yL2HIc1d2Fu7CoqYwbN+BeiqCFSqFWVokdXEakkgw/2MGJj6TY+FmB5XeMCDet\nVnFfd5fO9M8uIMYGmXrPOP1/OI0oV8l+9pDObm8Yxjw7x7aPdXDmh9Nsnt6Bd/REcwb6ptoVjtmk\nSyWRiRhq5yaWtySxSh6pLzypqbKWddlgSXd1W2vuqTMIy9Ygk/8bhv97zQ4SBCBVhCLdbnAFbZuV\nB8Jqnlg8F+UGr30hScsMxR3d6RmtfSQFsWfPEevIasCjWos4BkClqhliZ8/r8ri0LpGT6SRePo+Y\nnqPLL2mRPbtYuFtQyx0gfdEj3ZLA8G7fAoeewzuiQY7pDx9g4A909rrrmH99m0ZR56fY/JcdTN8P\nkz+2k+E/eTbMBIugq93NtGh2NKTHisbz7IssBiVi+dv6SH54it/a8E3+YelO/uvXfoT4rIFod97C\nB4gElAYFC/d6WLkyTtUkNZMjFbsNuVrGS9jN+3mAVFrTAcISgTWgT7At+GNLNUrK8MGS6PMYZmt9\nsdHgeXV0xhnTQCXjCMvEjMd1Z7JCsa3TbXTkoL9XlxTaktg/NcBBo78PPBUKx/b9sXa8K2/fh2cL\nPFNQf9PduK6ivimHdPT5Js4vI1wPUXfwzAT1FKgLF5HpFLXbxlnaFqfzdIXO4wXm70jjxnxQ6FY4\n2BG7bJ15CPBIjK2b8JIx5NlJnACcuEoRfq9cQUzq8jtveQVu34o4chp3tRDZv2UeCcezsfa9yx27\n3XvRNbgJaFr7t1csNhIhEJZ4iboef8aubbjHTuJ1Z+GQRm1qQx2YF+NaoyMAiS/NYnR34RWK1F57\nG9bXnwxBn8yEixgZhBOnKb5qK/EvP07xbXtJ/t1jCE9R6ZAkpYE5OoQ3M4dcLSG6u/SYjmpH3Owg\n5VqXR/+381byGNs246XiuFfp7KlyGe9Vt+OkTBZ3WAx9/Gk6PnVQO8I308JkjM8kwfd3XFeXrq8m\nwbbp+vqLdPV14aZs3JSFk7QQSuHaklrWIL3vNrb8pYN8+AnErm24/WkdoH3rKVQySU+pArZFcUcv\nzp4ClXfsI3WyoUFUGPWZlPUaxXffR+rzj+Gdn2D+x/fjGYK+E6fpfbqI9+wLuoHDEyfYdTzN7NvG\niQV+0a00pTQIY5oNoCUChjd1FANwXZb+5V4+9CtfZKae472/9Z/Z+lwJc7XSvN6tA0Ynp+vEViS1\nUyapiSLCL6EPtRADhoDr6nUmEJMOEhx+hy/h0ViHIoLTIUjkuvqx8LymErgQHKrXG3pIvjZIGNhd\nQxMTGY/DjnHkamldMCiwQL/M6O9DpJIs7+mkMNxNx5lNmCWP8m0jLO6w6f/DR8k9pbdzNg82Amjb\nQmzXotXu0RNQrsB6ycabYMKyQqAn1I50XajV9Xzgv1ZKC/865y4gH35pJVaBqWpVJ5VvgV2LBkwY\nC0XWtNg/PkG0cLX8zn0IB9IXXeKLAqOqqHQbnD41iP3RETb+ajNLKGiMgRAhINau3Gjxg/t18w6p\nMCqXSYze7OSX8KtqgufeT0Lj+1wq6DxnBLGKRMRjLL12I6U+ydDnTr2kBgLmyLAmLVxNEgsioKaj\nYzLw75mvXxb48obvn0SALqWUrylshCWt+rgGeFrOQ4djdoOheCXzXLj/9tDPkXt24B05jpMyMaoe\npcEEU28E8Z772f5bp9aUNY781qNM/vwBBk+cxssm4PHnMcZGcQDvueOI3dthegZcD+lruR7/2STb\n//fu62aZ3fy0/Hq2LkjTpu7WMKjsGmHu7iy1tMQo1VClcphxEK3ARKTWUZh+gN1OALkNS0G1Q2Uv\nxw5qBUbaAFpN2/qMFaCpvEN52gFQjqM7jVVr+nW1qp3salW3I7ca/Cbn3IUG1TpwJgvFcLHNHp7F\nvmCzuN2mNtzBeqYcB+/wMdJTkaDUt/pQp2YWKEX2RZi7r7NxzbcoCxAKErfcZ+U1L8BCCkQmzeqW\nDB3HC2ROreqOdFFB40hpUJNJuVYYuvVYTSfV5jvadXZrGjtRFpkX/i+kaBqvygmUnCOTUtBpJBg3\ndUc/E/kiajWPt5pHreQ1i2hRv3YHOgHwisWwS4bws6WqWkP5LawTZ5fof1SQv6vC6oY29+HQc1oA\nO7xX4L7uLgDMss9K6kwgO3IIV7HhgWmKd5aRXZ3tn6+bZes5xcFnASikFCpmMb/H5DU9p/nqym18\n49t3EpszdBy+ziWEXQEU2LMmnEmROhonc3JZU9Izca0DFBw3mL/cxnkpIRodTYLHMPKsBbXVIgD6\nIiY8TzPIfHBICb9crNUxdVz9zzR0GZllIrJpjP5ezIF+jP4+jJ5ujJ5uHdzH47gnTlPqt0h8pzlA\nVaUyqlhEmCbm4ED4fursimYZ2lAYsSn32hSGDISnWUNuLoF1YV47o6cmSE17uqyxVsOzJW5CUByI\nIeousdXg/lzmt71Jtmb8tpkDpW1RGc3BkVON0otrAM+VUw+7R6l6DTdp+5muNtpFa0+w7XcGXTjW\nrFVtT+Aq1sDLHVM1ym1FsQygGxz4Zk37emPlsqafC4FXLGux7ft3Ucs0aN4A2e+dDZ+V1Y36vdiy\nnhONuRWcpMAcHsTLpTQA5Li4C4sU33p7+/O92XaVv70wDPLvuRdv3y7EagH1zNGrXmPd+QWMx48R\nf/gYXS/UYIdmsl4RvHy5zGdMK08zPaSfwPDKFf27F4swM49xfgb7+fPEj00SOzlN8sQs2ZOrGIUq\nniU1Q65cRdY8jGy20fjBcVCreVLHZkg+mubCO5R+5nxLn5cYu7YBkB81NE0f6DhVQxna0a9n9DnJ\nvh69lmZS9P7ji0zfF+eWmxANJhDodSn4578OtXY8hchlkS789t/+MF/42BvofXxVg0FRpmhgrUnQ\nuou9UCIxVaTj+SXdJbdYbGKWKDeSeG1KUnhNenWN0javARgpX48sYAi1aBiFrKJ6vQn4apTCEbKF\nrraRiVepIGcWcc6cu6rtAS3IXa3R8dQMQw/nqWYMYhcLJE7PUxpSmrkJuDOzTRo7YmQQ4bq4x/Qc\np4pBh0XZ7GveJIuW4YUMLCsopWmcj5BSJw5vlN3sBHHrWibkVY+P0CJjWSaTVN6xD4CFf7ffZzgb\nyLrCrCikA7FlRXzaxGsvebbmO9uetgdWySP3gkGty6P6L+5dZ8Nb4PD4Iv/RNT187bP6QjMkzswc\nuS89z9BXZ15yN8lrud6GP+OTSmQjAd9UYhv69ZE5R8oGZuA2Yl5hmnp/v2FGeKxreIbFk9o/NgcH\nqA6ldYMnqX16ZUB8xsBLepz/0Pa2+8eWFEZvL+rJIwDMvHkk/Exd8Ct8bAsnCWXHInPEZvbe7FWf\nX6u9chhC0MLmCLL0zUicjMcRmQz2bJHaXTEKGyC/oZP+J5LEzy2gFpd0RjUyCJoGhBS6dKYtzbmN\n8xwc/0qaME3foyKlQQFY0ubags0dxy9rM0IqbrDYK6eOF6i5R7p7qWKDMmuODIdZDRmPayfYc8O/\nlesilUIIyeg3KrgxyeRP1Rl7qPm0jYeexti5lZU9XaT/9jFSDzyGTKVQvriotC3mdyTpenQKLk7T\nVxzn3EdjdH9SPyBGLn3dwlnXb5EOcq2Z68jYEaaJ7NAOYqlPsrRda5oMPZIifm4JVvK6q060Bj76\nXVwm46A8msSsfbQ5qv0T6ElFBc/C7w66kQVdgsJJzVjLMoqASmFZWnD9PltIKaW7wQAUik3ijapW\nQ9TqusTruVOU37mPxBcfB3TrXWdiEpnxW8vm9aLIwhJdj9SoZkfIv6aE3L65SVAaQNVqzPzMAfo/\n9igDv/coMpNBWTaxRb+MKCapbu7TmdbeXmKJJAuvGSH3mcmwnevNNmUaWqQ72l0l+E2CemIp8DIp\nKsNpNnw9z3d+MwE4bBubZOWeIQpDBk7Kx4Ra1q+ghEx4YK8KrLxi8OsXcc6cw9y2Gbcj6R8/2C5S\nCuYqlBURjcYHihwPDKE/D1hDrl7gRHR6ii6mru4WE1wPQR141FlXCpQM7wtKIgzlC002vssATWHt\n7yP3mUN46PnHW1pGpFNNYLzyPIwtm/AySdxnjpKxdlHtS5J4bgJndh75znswC3WsjEG1M0a1e4hk\nKoF74jRJf0zWd25g9q4YqUsembNFimNprLyL7NAC124Lweqm2+XWBF+nzCuVSJxZwHHdsBNWwJII\ntmudP5rGYmStMLZswpjN49XXzkPROad536jz4881rXPmFa8z4lC1A4NakyIt2fuQNVko4rzhbswH\nn9IldAtLulQx2Mb/blWvIawksuywuCtB6gGQmTQiHsOdmcWMx1j40H7ii/ra7GdeJP+u+0h+4TEG\nPrWMu30MUXMwsllUuQxCUEvLUGfEHBy4ZZnrqzXluizsEVx6g0XqzGZGfn95bQODy+3vJ4+Sz01e\n+VqvN5lzLYmgSMdPTcfX/owXaJa4bqODaQAcxWN6jPR0YeVjeKurqLk5LKV0pxr/+7xSSWu2AEOf\nOkribTuZ+lCVjd/S5zfywHlUJkn5h/Yx8HuPMv2T+ymMbmHTLx2k/0GQ2zZjr9Qa19Tfi3viNMbW\ncWo5FbLTbqU1tZOXgfCyf/8dnyksBHKwH6c3S+avDoXdIxWagCtTKcRQv25CsN5v53mIsoPIF5vG\njbBMzQoIy6sjz7frISyroXPo/35Na0xUQyjKSvEZuCFTyAeMhBCN4CuS/dff56KU/7k01+0eFJRv\nyUyG+sZ+xKXp8L1A2yzUDgFkVwd0ZHFPnNa+UOBPA91Luv212LmV/sc8GB3EmI9DTyfF8RzxLz2O\nvGMnF1/bSWxZ0T2/jOcLkytDaoHq/r5r+clvjNXqDe0gQFWqoMo+YOL7u5alY4gblNSVd+ykMphu\nkha4odYqwwHNa6ryws/D677ach9pwD27KPfEST89Sf3AHQAkzufBf6Jii3VqOYvYskLWwSzrc6i/\n6e6mcvBoJ+JWq7xjH4mvP0v300tUB9L0/fGjeB8+wMS/qmK8aj+bfunGtBJ/SRbRCwoZNMIHnoMk\neYRVL+Mxfb2RTn3Xa2pl9cpgWgDUCN+n9f2oMFYLSsQCQf5gzgu6Hgbi+P4cFLIb0fOd/kNEOqn5\nY8qyG6B3vbZmLjU6O6nvHkN+7zAL/24/Rh06j+UpjucwSy4oQT1lkphRCMfELLe/vq5PHGwqnOj+\n04ON+GxsGGPyEipfpJ4SXDg4wsjbJslXY3hH9iK/d7j9l17GXjkMIVibsW8xGY8j0im85RXUqbNs\n+MsX2fwXM/QcqbO0zebcjwyx9AM7keMbtDhwO2thjaw5fuuxg2AsWIADJ3ud7RrHacnetmbl22yv\n646dhj6MLwKsXFcDO4HjZBjIVENCr7a5schEKfEqcMwDuuJIH/LhZ4g/c5bBzlXk3l3N5yANKsNZ\nOp5sOAHOXdtCkEf29xJfCrI6LmI5j3sigzk8CJ5L9e4t3HJrw/YQlq01lkpl3Nk5hv/2RYYfrtBx\n0mN1zGLyHf3MvW0zbB1DppKNLFzLb9SuFBEiC00bSrCw7Maktd64a3VkwoXOB5qCxa1NRk65rnZU\nPaVbwQZOlK+f5JVKWtMjYJ/EYmEHF7llDLOk35epFK7v/AXU9OD7cV2qm3rp/fhB3PkYJz/Q1XS6\nRjaLMTQQLooAwpDIjSOhuGviyCTzt/mZ1mqV3ANpCiP6Pq+8aRvmxg3t783LaML11j7PSmm2jBBg\nmbg9WSrDaWLzZYzpBmjlnJ8g9cBj9H/sUXoP17EKGvhpKqAPTEH2vMfAt+fCDKWKWxowCsCgaObC\nQ3e9M6WeoV0V0nSDGbupHEwpLSQdlpcZqGAMB9laQzZTjoOAwL8PwvW0ZkJkcVR+9jAQu3b6sqhy\nBXOgn/qOYf01Y6Ooai1sb6yqtbC0VVgWpe09iBNnAcLa5uVXb8TYuonMg8dBCGbvlRhVj+QjJ6n3\npjn30f2c/c37WfjQfmbvTeIkoPO5Zeb3plnebGJWXPofOEHnCwWs4i1kmF3GhGkiU8mQIu5OXETa\nltaAMU1kOqWDXWg8/0pxOS0tc2RYl31emtUswdb5Kaop0rTWyOhGkWO1rEHXCg61YxeFz5HX/Hkg\n7rptFPNB7TCLlTzu/ALu/EJE0LFRliJGBuHx54n5lT/O9EzYitzrzNDz9CpdB3Up3cx7dxFfqGFs\nHcfL57n42ixiYobZ9+7WbJmeHrqealCy596y6equ9UZacHuvdJ9Fg/mw5X+fYeAhg1qn4tSf7eL8\nbxxA3L37qg5ndOSQmcwNFZ1cY9caQAbtp/3ypjDg9/Q65pUbnrEwDLxyGWFbOGfP46Qsym/WwZlz\nYSrcT8Z0Iwjl1PFW8tDTRdd3J+BUiov/eb8+3moe79RZMs/qNa77SIWuY41zX7ivj+Kw71PV6szv\n1wwi99QZxr+QZ/FH7tKsx9FGhvZmm4g+W6DBk1pd6/cIP6M9NoKXSyFfONfWj/aKRdxTZ1BnJzRQ\nAA22UMR/UZdmm8AgGY+HJWJI2fhf6gYnMqdF3wPQpgmYDoKtVnDIMMIuhWHgJmWkRb2/beC7+Dqb\nUWZQQ9/D0EFaeDxDd3L0k6ayqwNx8FmM7q5GUjXwq+u1RsKut9m3EfEYxq5tOmn14jnK79zH4l3d\nuLbQHZNmZqn1pph4q2D+P+xnaU+OoU8dpeNTBxGZFHJsBHd1Neys6I71X+OvfgPMNHUlgWWhHJ89\nYdmIVDK8587EZPtnWfgdd6/B1P47KG3IkHjipYMCTacS/L7QSLYHMU7rtlH9UP/Z0FIKEbZHMM+2\nrmOeS2k4SWFQ6/5MvTZFbNWjPJrBM7UwuJM0EK5Cugqjpsh+7hAymcSot8ibWGbY4S4wY9tmAOJf\nelzPec8dx/r6kwDUM+CVTNJ+j6OAyQjcMLDuai0qXK/HjNkoE60F+jv6HqpqDTfSsTgs2XoJdqUu\njzKZ1MCPFyEFhMywiKB9pDNjwNJbw/KJANONMaZ0+Zltg2Xp2ClojuCbsEyNS/iVR8HYKu/bjD2p\nfZXCBkFiwaHak/BZ8n75fE0RW1F0nHYZ+P1HUa/ae1X3xfO1FL0jx6nt3Qyei72q2PgrB9mSnaNU\ntTEqPhnhGn+HVw4g1PRQri0TM7JZMAy8fEFP4NUqzuw83rlJEt89zuDXLjLwWJVKp+TF/6uH5bfs\nxOjtiXy9TzW9khBdhA0CIGMxzZJx9CLXNCm12e/y1yXW31Y2O0aqVguzaMK0QiaIHqBWe+rpGpCp\nQbEViTiyoDOl7sIiiZ+UHP/ZZFN7V2EYxB59AW+mQfWrZ0wmfvUA4AfBkyXEndohdS5Ns/GXD3L6\nx0dxX38XsWfPtb8HL6tFkNmga1XEsZHxOLKrA3dhUbcKVQp3fgHr8RN0fekY/d+6RNexOk5CcOEH\nOpj+wXHUtg36HrcAQ20zhMHvJgNU2X8AhQwzUV6lEmbzRDQojwZW0bERLHLBxCNk+HfT/lE2husD\nio6jx4gQ2nkyGhlZVXeQnR0hG6c81hEuRNEshvAnVRmP67E4Moh9UYOCO37tJPHNqxTec1/jPCwT\n5+x5kvORjOHYECd/vC+k6TvTM7i+v+2urpL93CF6D9c4+fF95J5bwJ1sCJzfVAuo3K3MIMukPthB\nrTtB/FIBma+gEjHMjRswh4capQqA/dUnGPg/j5M706jlDYEhBVYRsv/4vO4iIATG9i0ow0DUHIRS\nyJqjmT9SomwTNxujMpDETVmIuqsz51GwUekSsaC0TEnZNJMLpRqthNtmgBXUHT9TIlGWifKzIaLu\nIGp1DQ55Hso0NMU1GcOcXcUrFlG5DOYTJ8IgQYtS+kGCaYZlh+5AJ2bJRXZ3Uf6hfQjLxvrGU2TO\nFnFzCU794i5O/0gMoyKwD72AVyxjLlcY+6cSA4+7lHsE/YeKjH96Crmwil1QDH4vj/Htp3EXFjn9\n3jSlgVu8hLUBcIRlI9OpcOEGdLBaq2tAw2eC4nlryi/DrH+LGVs26ZK+yWntdPksRIisVX4ZjnIc\njP4+/fsATSymViZPeOBmQKfpvNaj3TcBTeszhrS4o4s5Nor0tbGMXds006wj15S5DTJ75vAQ7skX\nEZbN4OdPU3x3Y74xB/opD6VQTx2ltkEHcCvbFMZqjdK2bgBG/vI0pfu30HVUdwRy5+ZwXziF9317\nyb/vfjr//BWQfW1nQQLHTwY40zN0/N1htvy/x9j22xVSFxUnfiLJ6d+7H7X/jst/V3+vHoNXEUiE\nY+VmmM/eDRooCMtsiN2qoFS+jkynMMdGcRcWMbZvwcxXiX/p8TBoC8yrVMJ1X6ZTCMelPtbLxl85\nSGnIQ+7ZAbaFsWEEVSxjdHZiLpWZeXWkU9A2KAwZqP134ExOUU8KjG49tsSR01R6BPl33aMD51tl\n0s+C+wFNtL28TMRh86iex1+c0CXktr3us+tVKprtUqrooM71Qla6KFeb5i4Ri4VzlnJdVKWqmT3J\nhP7MMnG3DEMuE3YaE7bls3daGNFCaN81AIhcV5fDRsvfgyAuuGYIE6VB+Ya0rbCDkPbN6wTdhIR/\nP4Lki4jFcC9qUFSkUzq56wd2wjQRlo2RTiG3jaNiBiwsMfH5Pbivvwt3eUWXftkW8x+6n/ndJh0n\ni3R8xS+VlgbGQ0+z87+fRxmQ+8yhMIGqpMD1mRLCspn7yf0Yy9fXsvolmc+UULWa/lsaoeYkNDeX\nWWNKhb5hUCJ3OVt6/36WdiZJPz0ZgvdXY9E4ZN1TCRhnAYgT9Zuhwd4IYh7L1GBWMEaC8WPbOlFr\n22FbcoTwtUD1M5UfMZD+smRWIHtiBaOmWdjCVQgFVsEhtujQ9Q/+WNg6FjZNCMxdXlnb4W5hLRv+\n9O/fz7mP7sdNKOw5k0q34OQn7nnpZVcvwQQaFFI+oyYEg5TS48efs1WlollnUUZwPcK2vFGlbi0+\nilcqNeLgaEmbYfiC0UbTOYSMn4CFGKkg0mCRaIDSQjQ1KxJC6PESjyET8cb8BuEcJeOxRmfPjAGV\nKurAHWz+8ymKfa1JOoG16iAUJOZ00OAkDKZ/7sAVb4Oxc2vj74eeZunN2xDvXGDyFw/wjcdvZ+AP\nY8jzMxTffd81d8l85QBC0eA4ypiQhtYnCbqIRINy36nwiiW8SzPEDp9l8Fuz9DyvWN4iOfdvxqi+\n7jYtzuw7GpezqBMcZh5SSYRtY3RqvRVhNAMO13WNbT9bW7aiA/w6oWCXZeqsspDhZGuObwwnIaOn\np/krHd16z+jtxd08jHvqDMaOLaj9d+CePsu2Dz6J0dWJOb4RY9c2fS9LpSbhs/hchdxpL3SO1BPP\n60XTN6O3F6MsEI5aI4p1c6yR6RayeeyIWAyRyWhRv0hnL+W6eKUS7uoq3swcyYMnGfzGND3PO1Q7\nBZPfn6Pwuu2aWh20nF9v7AQdwoLadp8+KFMJkCLUURGxmP6e9WirrcGZ5zbAnwj9VQVdxaL7BCWJ\nQoTOkeezhoIsHMpDZtO4c/PhYcyCr7uxfYt/GB9g8CnbWJbuBjV5CVbyFP/lfbhLSwy/6yiZcyWM\nreM6UO3RYyPz2IXGJdQcBh9RnHp/d/he/xOVpgyrkzQwVw3U+clb0HYeP/uo1txPFbep9+dw4ybx\nydVGe16lNGsmZiMH+jBHR7TAMjoIT//NITb81XmS0wrpgvDAqEJ6ytUdkTpyiLt34+YSIfNHGUKz\ngeI+ION4CMcjeWEVWXYoj2YobM5R6U+i7GBBQ9cgB+NeqaauMap1AY6+bmVIRkoAlGno6wvL1nzW\nUMzGS1ioizOIWIzV27rDtp3OxKR2MiEsF1CuB8kEq5vTuLbk2C8P0fGRC5z83Ttx3nAXPH+KSn8C\nZSg6n5cYZb24y44cTkec1fEE5S6DDV9aRNmS6lg3WKYWtn/8eSrv2MeZz+4lc15g3mqGUCu7T+os\n9hqtINUA5/G0kx2UfEZZhKpea6wvkd+pOtaFt7CEVyg0MtyeQiaTGgDq6UZs0KwtmUzqwG5sJDz2\nmsBQRpylYJuIrfs8No0lt/37wfer5lIbtyuLqOmx4qUCdlTLcf1rcqYuYmzfQvWNd+DOzIYCnebI\nMF5/F8nv6ZJVa16vVekLElmskDo2S/md+/Q+L8xgLpcapWjSQFmSzkcbXThvqonLHNMPchp6eI37\n4lUquMsrqKOn6P/cUXb+3go9zwhO/2icSx850BbMMXp7EZUrlzgFCQyvUtGJnmvV3HipFiTAIsG+\nZolZTWXEolAKhTLl7rV6C8IwMLZtxl1awjl3ATzFmf+5ny0/dwjOT+GNDeDNLaDyeTBNvCPH6f9u\n41o3f2oGZcL8Xg30D/71cejM6Sz0hmGGv7l00zP0raY7eXmNYMXXDBKGASMDiHINzlzQAU89yBBH\n5pc2Y885P4H7windqVcpRKmCNz0bfm709yEzaZ2sUAqjswNjqB9jaCBsZiKSSTj0HO7JF5F9Pcy/\nZw/Lb9mJyGb0OUdFWoOyt3rATvLWZuujIFIo+CrDckIVKX8OQS/ft1JOXV/rlg22S66HAAAgAElE\nQVShrmH1dbfpNt/+9SrfL5K2RVCC71WrTL2lh5VtGU7939sQT2U5806b87/hB2jlCkJB3zN18ptS\noR9nbhgm/777IRFn4LuLzP3E/vDUA1aQ88a7mfq5exj4zoIG4G6yibj2PQMRaRGzNUNYqWsqm1Wu\ni0wmMYeH1t3GrCp6nlq+PMgEcP/tiDt3s/Dv9+N9316Mvt71tw38HMPQPn3wuwNBe3CdqJcNMMjX\nf9Fzv2axRcubhG1pZlsirv/FYjq2A+pvvgerqOj8i4OYI8PE5xXF8Sz1tNYPsooOsu7h2ZLCiB0y\nWbxnX7jyPdx/R1ugLDYnqY9VqXW5iK0Fep912PmRU1f8vpfTgtlOCNFgB+LHwMEz6/paj+sBD9cR\nK68LDiqFsGyta7lzK+pVexFD/Xivvh1j80ZkKoHR1ak7ivsM6DBp5gNaIhxLkTlGRsCiiGRIoB8U\ngtVRgMgyG+C25yHisRBklXfsxKgonOkZZvalUHFbVw8IgXQUsq7jCaPqaX28Uh25dxfWN59i4Pcf\nbU62t7GwQ51vuVMFCuUYqYuK7f/fCvZMHjqzzRISV2lXBISEEJ8QQswKIY5E3usSQnxDCHHK/78z\n8tkvCiFOCyFOCCHeclVnsd54EUKjcYYGQNYNpn39FXdxCe/cBB0Pn2Ps7xdJTisuvcpi8sd2wq4r\nlzNFs/6BBo8aHcBdWtLHvv92xOax9b/gWhzMVgCgTTlQ8Fq5rgaGPIVI6LI5fcIGaqmh2bNmogmy\nyB0ZFnenkZkMhW2dyLob0kCdS9PU+3OUxnJtncFqd5zMuTLnfmpH+J48etYPfGyK92/S5TLu2tF3\n08aO//BHgxiZTCLTKVQ+36AeRu9xEPw7Dl6hiHdhivRTFxj92jLpCY+5vSYT7+ijet82RCq1/tjz\nzRjVwViQZfA2jWhHt1JF7tlBdf+ONfs0lZJF0W8/gGsrVL1e2eF64yYoQRQSNdjX6Op1721Yp/xF\n+5LvAAZ0/rrjl0hK5u7rwl1eQZgmmRfzyDt26m2eeB731BkuvXUwPHaT3kClRvrFFewVoTO0QOz4\nRV0XjJ40PROs/NqA9KaMG9CTfyCq6INDKm7j9GVxUibWUqVxz9s924ZE5LJaF8D/3JmcouuTBxn+\ndh4rD8qEwrBB+Yf2sfL9O1jck8HJ2D51VeBkYgjPw5hZRpy/hJxZxJxdwUtYCNej3GXixgSeJclv\nSuF0JiDScSzsOhYFHi7D1givpZW56D8TQXlY+HndQQmBeWlJg6j7dpE+W8BdXUXEbD1H+k6X8kue\nhG1R2N2HdBVTr7cwlw0uPDBOfMZg8g02y++5k+VxE3tZ4tmC3BkXoyNH6d6NVPpipKbrdB4vsXRH\nB9axScxCDXfyou6K94a7mdtrYj+fJLbs0fFisyNy08ZOGwsC86ZOIqJBQW6UljY0wMIgJha7LL3X\nntdMFxmLhUGQsXWTBvBffSdqpB+nJ6033rZRa4gtRkCpALgO5pxomVp4rmLtPBJsG85P15ZDkpGs\nspuy/n/m3jtKjuS+8/xEZGbZru6qat8NNNDwZjDADMCZAUiKnvISRWklSjq5W7k7abV7d7r3tPek\nt3vrJO3qdm/v3XK1kp6OklaUpyzdiSNKIjmYwRhgZuB9e+/KV2VmxP0RmVlZjQbQQ2Kw93sPD93V\nWVWZWVERv/j9vgb1hnEitKZN59MPkAhhIV04NvqwoXOpriTJL3R2XMsnR3EL6WhOD7XMRj6/iGi5\neHcmcDPmHL27k6w+3Rtdp717J8kbC/iD+Xuu/bGuVVtFQIF4UEdPex5+pYq6NUHf8xPs+WMXNwdX\nP/4Eaz90uvNgKVA9W1M97B2jJukOGhf26IhBLZ6/hFXMYx3eb2gyj1PvJNzQK0MZtEYGDTooQI7q\nTAprvxHG5vbkFs9X1McLuB8+RfMb34EzvcKenztH6fueY/onjqFfvYT/hHm+sC2swQFyE+3Nee1A\nL05JM3CuxPQ/PWMQxTlDSRDVOippI+9bI308c46w7QCR40TXLHu68U8EHeP1MiJt5qAQHSzCzndA\nzxPJ5JZ5nnf7LnpyBtXbTeO9x1j/gdNUv+tZlr55L42nxxGpFDKTQZUrqNV1g3oI1/2paUQyaQpy\ncwsUf/MsuT94kblvGaP8bSdMQSLMzbaicIQRp3mEv8cEX9u6QrKDzhLSxaLcq9lEvX4FVS5jHT1I\n+pXbHZsoEWp/hO5lto3/jsP0n29Q+OwV9v/6AiNfqrH/92r03NTUvuNZ6qcPkJvyyNxZp+sPX0TV\nakz/b2coPTVM7g9exLt9F7GyzsCrFXjmmDFi2DeOvXMHflIy9ju3wPMjrc/HOW605xsUR2gxD9Bs\nPbxosylUtYqq1Yx9ejYbNYnjkfv9F+9bGLHHd9H6+lNM/fwZrv+Ew7WfSrP+vgYLP9tk+rvGkCeO\nmOJa+4KDPWC6c8zGNvlxwV9hyajYRxxpGyI/ICokhXpbhDTEdNowMt5xjPW9DsXfNAjSme/YhdXS\nCA+UEzTqo0YtxrnxLYQ4+/qWj+/681X2/9B5Dv/fG+z9n1fJTFc69Fit3iIq157PH9ucExZ/Yi7K\nWJZBB2n9YO3P+GcmzdzTYT5z3/fcunklnzxE5due4u6P7GHh3X3c/HGJ+6suN/87m8rRftwnxk2R\nb7Afq2guXWvdLvaE4yYAVYSfPwFKTPuqLdwfPCdCEsn2PBoipgzd1QmQZjL6vJbekafrFYMKky5U\n9xZIrftoAcLTCAXSDZrBFy7DuTc7rOK7/uilh96jeOhXLuK6Fj23G4iGi56YASGw6m+9IrSd7O4T\nwDdseuzngOe11vuB54PfEUIcAT4GHA2e83EhxMNbTuHeJJ6QCmGqxlJustfdOiJ0Q7OJv7oGd6YY\n+OtJdv1VBenBnY92s/zjzz1Qq8QvlSLOppXvMVDk63dR7zphFpflMtqW2MND1L/9mS1OYhu0sa1+\nf9AGLvw9SBbVRskswE4Ce+dI5xcyLoAdvI9IJPD6c0YVv6eb6qBFZXcW9o1Fx9nrNVSivWlwP3gy\nOsf0y7do9ibxjnRSiuyxUZCCrvMz9L/RaAvgdsYneBxjZ1OX2+ruRnbnTFIX8uTvE2GBRDeb+Mur\niNvT9P7tJDs/XyW5oZl5X4KFj+5DvWt7/E7/jKHT6fOXsA7vR3R3oS5eRWhzXuKpoxH0VgfwXXMd\nMTtWIA6BjP6udac+SPRd2fzcMFkKePHNpnm9O1PRy7V6EpGzWLgpC7voKAM3F8UCbpe5t8vv38XM\nB/IgxL3fofk2rFW9+ykAvDsTiFqT2pjHykkzOXtz84hMGvnEIcTELPlXF2gM+Z1W0CY+wds9bmKF\nRJQCX6GTDs2xAl7GJrHeNLSr+HcxSGK1DP7ZgQ5CNoM9tqOD761ffpOBj79A7yUXNwteWtIoStaO\nGGiol3UQtSaJC7dQr1/BHyrQOj5O68AwKt/FypM56sNZ0sseXZN1/KSg1SXwHUlzMItOO5FzWOQg\nFn6Gm7sycVTQg2ircWRK+E8K5PIa3sSUKUg0PfSrl8wYtm1ETwxG7vsmKcukSC01yP7xS+z95+fZ\n91/XKFx3yU1qeq6D1YJmrya9pBn5q2m6/ugl/PUNkp97jeynL2A//yrWa9fITTcRyQSi5SH37qby\n9A6WTiRJL2qyc5rCn76J/fyrm6/iE7zdY2eLiApjD7MjDVB8m0PVG1EHtm3t3D4VvytpuvG5HFZ/\nH9beXR0dK3XhMs7EkhEcvHAZBvsiuLm1bzw6rkPbY3NsHhMPKjhvdUz8uEBAWK1vRCg6Z62tD6Mj\nIfcYH9+yDEV7whSWZa2FNTpsfg4aGNkvXOpAw1lHDhhKyLWb1A6aAkZmvj3nLz6rDW04l8O7fRdv\neoZGfzp6TdHekH6Cx5XnxCNEBsUpeg9qLAWIGm9mFufcNfZ8YoqdfyFZfVJz/TdO4b/PuDvqjRLl\nAwbhEtJ2w9CpBOLQHqxcDu16eDOziGbL0PSWVxBNF1GqItIpyh977pHoQWw7QsFzX6FrDbNRO3Mc\n/8Zt1B1TCNrKull2ZVk7mCB9aZbUcoONZ0ax+nvp+cNXGHrRHN8qJMxaY1n4C4usPJGO9DysuqK0\nH6yVMsnTBuksrt+NNsCce5P1PVaEFN8Un+BtX6+CjUlA2UIZepx3YCf2cgVW1s29C2jx8aJKpL0T\nbZytLT9T1WigLlwmc2Wevi/coefsFLUhgV12oacLf23NFAXKZezxXejTx03hcN84zfceg8VlrEI+\nGtP9v3qWrj96CbVvJ3JooHOjbsUbMZvcxu6j4Rh3WYuMV2Ioah2ar4RUECdhdH5WVk2RM99jEIux\nRptIJo0j25cvkLg0ZShiN24bQdYX36Dv76fJ/f0NUnMVksv1jsLSjn/zApk/bW/evPkFrKUNOPcm\n1BtUjvZz498V0ZYwlPl7hXY/weNYq0JR4GTCrBlCfM26YqpaRVdrxnn0IahCefww8//4DLd/YJSN\ncYfMvEaUHJLdTfZ+/3k8z8J9Z4mr/0OWufcaIwp795hhPGhtdMW0MoyHEPkWFnOsoLgYihxHjtJx\nlJluUxTjVCLHNoWN4HthDQ2w9FRXJPDrfvAkA6/VsFyNtkB6hqavpWnQJVbriHcc29b9Wv+B09z+\n5dNt6rO0sHeMRs1SdfGquda0g04lOgoE3gdOMvqZJtV9HZS9T/C48pwQ9R1zFdMbpYdTAnWMEq+V\noYdWa2Y9foAuVaRDFCCFrEIPVn8/C/9Ks/SURJzaoPg90yDg5sQg33XyFWa+y+XW9yTZOLMLb2KK\nyqkxZH/QDArnHYi+C1FEgtjKIHwCBGZbuD8oHMVlO2J/R2lIOOiWi3VgL/r0cbLzhuqt3vMUTtWM\nHQQggzEUzE/2xqMzKTjwv1ewX7uOnp5DFgvc/KF+lp5yHv7ETfHQgpDW+u+BzZ/8twO/Ffz8W8BH\nYo//vta6qbW+A9wEtqicbH4TOiZ/4SSQ6TRCCFTl4cUgoC0yhkE4qFoNf2kZeek2o38xzY6/bVEb\nFEx95w5DkeotRolqx6lUq4bmE1LGkkkSN+eQuZxJlKoNdLGH9J+f2/L5WybI24HMbROqHbm1uC2D\nDtrqeUExwerpRuwYxr42ReGVRbzpGZIlTaMgafVmWP3hZ1DveQr/2m2sZvscnS+8ij79JPawgQV3\nXZzHXU9GUFG/VEJ1ZVj92NN40zM4S7V7uLPm0h/D2IGOTYXM5RDZDKoUFDm2MXYiCoZn3Lf8xWXs\nS3cY/NwUo19s4WYFdz6SQr3HFDs2J9hgCiD27jESEwFtTlowswBSIjMZUreW8I6Oo1I2fqnUtuRW\nftDZ2qQnEqeYwL0Fovi1h3/bcizoaBOqqtWoq+OUWp3HECZZgUr/+E50OsnAK6YQ6NQVzbw5bv0d\nwzS+xXw0w88vGXHCIOy1epteOLdIz2WbtcPtt/JX1vC7k4YCUSqz73fvhVA/tnEDJkHyfHQmRXNX\nES0gsR4k1X7suxuHmMb468ZCUqITDqIrg71jtINrn/z0y+z4xRfIn19GOQK7KkiUXexyE9Y2QGms\ng/uoD6Zx1uoIV1Hd3UX/lxbI3C3hdklKe9LUBiT5Gw2kpymNOTQGUuh0e8Lv0Ay634YyLAx1FIsM\nLUy4XttxzTMbsvCfWt/AOrAXme/BXi6bzzedCjYeQUdOBZu43jzuUA/1wQAt02igLl4l8bmXyf/2\nWQq/dZbUiouW4KUEenU9di5ms2sNDpguz1fexJuewetOsXy6n5WjNplFhVPVKJst3Tse35zTvscy\nm0UkEvd3IOw8wY7X0OFnonxQvtE5ExKZy2EV89GhteEARt1fwNthKHT+zTtmrfySmXt1sFkDILyv\n0jJ0kE1hFQv3IsU2Xdd90UIdx28qRscLkwGlWxSC6wiL89JqIxniDnaB5p+uBdb0qQQ6ExyXThm6\nWLXa4Z5R3ZOPEATJ583jyen2mMpOWsj+vqgzXvq+50h+1jjfqKN7osLUY8tzNkeIyoyPnW1C7FW1\nijc5Tfb5Kxz41UX6v+xw63stbvxfzyILebJ//BKqVqOyP9/xPP/mHcT0AiLXhQw6qf7cAs0DZk3y\nZ+bQjQb+3AK5338R2ZPbOtd5G0NXKqi1NVS5jHPHbF7l7p1bHmvvGEWkUox8dp7q8VGULZl/TlI7\ntYvmB5/Cfs3Yf6eefwMr38Pq15nXsVpGTNrq7ibx4hXSC4LbP7gD/3mzkVDVKpWPnGTthw36auev\nXaT51J57z/VxjJ1gE6I9zyCD8j20TuzFXq/BRjkSeo3skkOh5ng4TqCh4piNzv3QQhNTeHPz+AuL\npBc1Vt1F3W03k0Qyia7VEWdfx798HVGpkfj8K6ZDLgTWnjFaHz7Jyo+eNtRF16d0YhAx2NfeqId6\nMI7TISgNRJb0oe5LcI+NgLbrGT3EgMKvXS/SooqeG5yj7MpiFQpGMuHKDXN+ATUxLDCIRAJ687gf\n3lqvxZuYQpUq+F1JhKfw3/v0Pcg5a3Ag2rx6dyfRp48z+8NP0PXCHcY/9gapvzwXNcri8djWqmDT\nKlIp/NW1R6aDpRoN/OUVw+IIRZs3hX7nCdaP9lDdofGymvqAYPXrmpBv4U1mmfjDY7x/1w26Mw1w\nNON/4nP3e4e5+o9HENm0WQcH+o1eVCCbEc73xD/zcNMfIIZEgD6TyaR5TsIx/9Jpc0w6bVzxAvc1\n0ZWlcnyE/vMVsvNmLk7NlFCORLoa6Wnsim8MtixBamIddeEy+uU3kU8cwv3wKRrf+gwrP3qatU/v\nv0cLpvfcEn2vt+d1e3gQb2bWFILi9+uVixHVMFxL7/yg5os3D9DKtnPQxzF2Nt9nM6cYrcgtmrj3\nhtYdxdfwZ9VyUfVGZHrwoPe3d+2kfmoPV//ZHtYWukFAvZpgcrlANtdg984leuw6HznyOkeOTTL3\nbsHGZ/axsdtGZ9PoQ7uj4k2IZAc68/nNuYsU9+ZtVrDPCgrPYYELMA6PySTVg73Y6zWaeYl1cB+y\n7pGdc4NCIm3EjgbpKkTw/NL3Psd2QuZyW6LyAPTULOzfZRoY0zPs+JsW/RdMvjXxL07j925PGP6r\ntZ0f1FrPBT/PA6F0/ijwYuy46eCxh0f4oUgLq7eAdl28xeVtJ0dAuzsebGp1y7h2Mb9IcnWd8Yle\nWjsKLLx/mPWDwxQvQuG3OiF/IplEt1oGLdRbRLdc/LU1Y1M7NY119CAbR/Lkrifw1zewjh5EXbu1\nfUvD+LV2PKY6EVJbXVcsrP5+/KWlDsv5e16/r0hzZ57kWgn/xm0A8p+5DMMDMLdIb2mM+nCGlPKx\nGp2JvjOzCqkkMpXCuzvJ4f/gsPK+MYqfbRjkzcWrFFNP0PrwKZo9Fl0X2W68DWMncMrK5RBD/Xi3\nJrZXRLzndYIJTLuomoJmk1Slyo67ecrHBqgNJln85dP4WcX+n+58qsxk0MEmTeZygQuHwLs7iXVg\nL961m5TeOUJlh2T0LKjePGrvEPLLFyIL1M0UsXusoTfR4oBOOsc9m7Ut0CLB8+3lMh0jVsYtqyV+\nLomsu4gXDMS168/P45SfREwvkCqmufMRm0N3DsLsImp0EEK62O1JRG8Ry/XwSyWGf+MCsz9xwtB9\nZmbRbgtnaoWN73yW2oBk6I+us81P6u2Zc5RGp5PU9xTRFiTWAupKIH6rLast6Hy/olxItQJwbEQx\nj92dQ62utV2mrt1kZKOMu3cY++qk0V8QAntsB14hQ/b2uimo5FPYFZ/qwT7qvRZOXdPKCRp9Am0J\n1vclUQ5URmz8RIbsZAXR3OIOhmPCV7Euqm4XjGIUMS0FAtku8MSP9X3kYD9U66ZL5HroegNZLKA2\nSojQfSZYdP1cEm0Jur5yC58A6lyqRFQY98OnqA459L2h8R2NOjCGvHjTvEewgVHdGcTSejQenZUq\nvedvUIgVgKzubmOjfPwwYmYRHqy9+LatVzKTQVhWm5Yao3ze4+i1JfLTj1B55uJ9dICSkMF3VR4/\nTPeVdXxg42iByqjF0P/5humy+T7aNe8bQpZFMonIZBClCtboECpvqGTuB0+SvrGINzEFQ/3IeuNe\ntMU96MP7rEkPuS/hNVv5vNF0AUTZfH7yyH6DaNg0n6nBIuqCmUfsoUG885cQQ+ajErku3OE8Ynqm\nbSkLVActukaGULfvRo/5129hj+/CuzPBzl+7iFcqGVTj8grFv5uM5j1ZezB6lLdj3IQhBDKZjGiD\nX3VobZpmt2r0La3Qe36EyW8qcOXndpNa3ENyHTJLCnHqCfQrsUVaaVSwQQazsba++JoxQmg2UUf2\n0RjJkJqt4Z+/ZFyW3vc01hdf++rPNYyHjClhO9FYtvp6DRJh33h7o7T5FuQyiHINhCD1/BvoZpOd\n3adoFmxq/ZL+6kHkl86jWy3UE/uYf69P9yeNpa/VW4xEjUc/eZMr/2w33Xcs9JnjOFMrJFc9Zt9j\nI93nyF8tk7q9xDY/rUc7dqLGhIXMdeEe2UFiqYqoGWQhMSS0DhFCoRNYUGyJdBDjVtKODcoKtCo3\n5R+eR+9vnCW+6slsFpFO4S8umWJ0vgcs4+jV3FXEB5I3FshcXSDzhmvmfV+jJehMEpFMoCtVQ+UI\nxF+jzXzgXhbpfqhN6228ux9qgkhBZDsf3Ccr34OqVEGre7XcAhqd9lTgDCQQayWcy9ej6wsbDaXv\new7/+1fgj/ro/8Ik3uw8TsLBbxgquVUsQGjgIURbc+Xs6wyepSOvkV86b9asUqm90d46HvmcY9yK\ngwbWVsYoX2NEjRnLMlIAAWWs/pFnWNtnU92pEEpjVQWtgsJ2fNyNJCqtGeip8MJvPs3a0x6iZuE8\n/xLZnc/R7IXqkUGSn5lEui4ym0ZV60HTMkCqeB5ghNZFwonGjhEzF+D6EGq7xCUtQlRROA85Ntq2\nyF5bZu5DQ/RfqOJ94CTWbAlnrU59oAenavJ5JQWypYxBCGbPUd+VozJkk15ToKHwzTeATp0X/9pN\nCrYFM/P4tIW8ZTZrKExD/aiUzcaBHI1eSd+FGlbdRb96iRPjU7w5PUpm4TGvVzqW0yojIu8vLm9f\nqFh0FlaEFJFWHICqVA09eHAgYivEQzUaUMgx+fU2OuUhGhatIRcJDBdKDGVL7MksM9/sYSi5wXoj\nzb5/8iI/eG2Knz/xHYz+0Tp+3wiyrwDLa+Z7F51PQAsTwowjJ0HoSNcxz9h2OzcLmu/CsdvHK230\njQeL2FU/klhQ3Wm8XAKn4lEfTGI1FAhQjsT2POyNOuqNq7gfPoX0NCs/dpquGY/yTpvm15cY++Gp\ne1zWxGAfenZrZJ+q1eDCZaz9e6jt7yXz6kR0T1tjrW3rCX3NotLakHnfQsZoQgjx40KIV4QQr7SU\ncb+SqZSpnIb2sm91Ux/vjseg66rZNFoLU7M4L19j4OwqQy8pmvlYdzIUh63X8VdWTbXbtlHlskm8\nQ4vg+SVyd6pYOw1axi1m4FhM5PBBsPuHnftbSLxF0DnVlcp9DggWAEt0dD5UswnrJaZ/7Akqu7J0\nvWkScOtvOxM9b3IavbIW6RX512/R+6WZzs743TmEp8mf++ocoh7N2DEOI/a4sYz3b9y+/8b9/icS\nvnD0XK2MkLQql9HTc+T+9jr5r0zSNSnAbzuQWN3dpnDoevi3JkxHIpVCpFNmAy0kbr/ZkKWXPayg\nsC5aLhv70u1T8IxuT0eHfbNexxbue5Erzf2uKz7+ZBs6GXeSCy64fVg6xcqxLCoZE1l3W6TP3cI7\nsIPp9yc49F/WDRx7ba2jy6FqNQPL7S0Y+kqtxuhvX8UfLkbdAG9qmvRyi4EXSxDYvNpD27djfZRz\njjdcYO5DQ1QHbayGSVyIUcVECGnfSiMrEF2OikHCoIVCbSLZW8QeGozg+d78AuIrF9qC8LvHcEeL\nhvLlWHi9WRrFBG7ORtugHHDKPsl1Td+bHvZXLmI3NMoRdE17aAu8XDJ67+i8w/87CoHq3uPMzYwc\nxfBiOg/x53pGow3bBsdGFgvoSqWtT6GDopO0EK5vNH9W1w1SSgiswX6sowe5+R+eY+IHfGqDAi8p\nKL60gH7lIiKRoLF3AL+QRXWlQClUodsgObu7YX4ZpDTOVB84ycb3P8fi9xxF2DZuIR2JWm8nHsXY\ncTFJtT08FInTh59xWxR4k8vbg+b2+HwVonaU34ZOVxuIQA8oO9Og703z/qpWizp1wrIMPWjfuEn6\nXReRSqI3ykZsFkjNVdCBqKlYLxva8HbXp3jEUQWbhaU3v54lEaeeMJfZY77/sha4koTzWUCZElXT\nNbR37UT7Civfg7+8gj06Qn1vX1ScjgRdR0cY+Lt5dNogHeI0GL0eaAyFSVWjibVv3IhVB3O3fAsC\nr49kztEG+RRpnQS6Hl/VZ9B5cqB8/I0S+vItdv3qFQ79l1WsFmw802DxlIiKQSFUP6L/hJ3e4HOU\newwdWFbq+AkZGUh4h8ZIzJa25TS0rfPdKsLxoxVWf7/ZLHXnzGe4cZ88R1rUx3rQqQT+9VvRhjf1\ndxfJv7JAcl2TuLNo1h6tsVbK7P9/WpFTi7+yarT+PA9/YZED/+M58jeq2Isl8Dzsv3mVw788Tc/v\nvogs1fFnti/C277cRzB2aCIsidy7i1v/aZSZr0ubebnRbIv6R/TnoBDkOHTQsyDQ3AlpV4YOIay4\n6O79kerW/j2IdAq1awjZ1YU10Efp6/bQ2jMISmGXmiTeuItuNPAmp42mYDKJmF+i+/Ul45jZnWu/\nF5hz8836ErqYoUwXPtQJ0h2NChV157XvmzwtKAyF7mH++obJp4oFk591d7cbIAFaWof3Yaif0nO7\nsHeY/bGqVs24cxJ4SYH3l33kr9WoHhsJEJwNrCMHmP8np/EO7ISdw+ieHK13HsXav8cghPM9yGwW\ne2gQefwwaz90GvGOYwYZPjoSXdfD4lGtVbrZorV36G13yNOBdlMY3/dvPqM+dwwAACAASURBVI2f\nhv5XDTIaQHV7uOtJxv4KdMZjo57CqcLR/dMcODbF5C+cJvE9C/QfWKbZYwqNsrdoxpElTYM/KB6G\n7nfCsdsFnthYF+lUe9wkHIMSTTiRfhphoSwwzkAIsos+9pVJvLQFvqK6O4cd12LRGi9jYQXC9uUP\nH0ELQaKq8RMikliIR2g+4l+6FhUoZSplxqWUCMfBv3QN/eolCq8sMvJnEyRm1yMR/VP5SbQWeF1v\ngeX1SNarRoDKckyeLkSHO93DX6xNswp/FrbT8bvWGl2uIHM5QxM82Nb6nf3ZM0x+Yx67JhANC7o8\nnGyLYqFKd9KsW1JovjI7zlhimcOFBfz3Pc3LlXEQAYWz5uEOdiMy6UgXCHsTDiYsIIaF8nA9DkxS\nor1YqKcUUm8dx4ynQLBfum1KnUpYSE+hHGn2BxqjIaQ0tcEk1XGzjiYXa9h1jXTB7bIoXqoz+tFL\n9xSDAPxiF7KQ72CSWIWCoW0GoeeXyLw6AUpH9PFvO7a1btVW8dUihBaEEMNa6zkhxDAQlvdmgDiu\nd0fw2D2htf414NcAehKDWiYz1N9zhMzdjfs8Y5uxVUFGG4FdAahWC3tlnex0kvS8Gayhpb2wbTi0\nBy5cNkLCQ72wsIgs5KHlBva5GnH5NkoIk4BfnqB1bDf3/aput8jzoK7ZpsdFMhnRxTo6ILHjZCZD\n9WAfdr3TsQ2loTdPeb/Hjt+6BZsU3Vvf8A4Sn3sZtL5nUHoTUx2/+8srKGf8nscfEo927Nj9Wjx9\nmI3d2ciJ5i11tMMIu/ThfQzrikHSITwPKlWGvpLHavREm3q9ewT1xlX06eOIs6+jGj52fx86l0Fd\nvo7V3489tYInLTJvTJN5AxgdQa+skVnohP9FmkI6pD9uQo1Flep20VNYFvpBhdMOepBvHEFWVjuQ\nAcJJdFb99+4ktaaQTQ8FERLB3ygx/b4siXUj5hpHp218/3P0/t2Uofhs4qf7K6tY0mprFQGJmwvo\nrkzUafHX1nlIPNpx4wxov6+b6z+Z5ODuCTZ+fWcg+qYiO3cRR3ZIQdQqDZJLHRZBQpSN0h3FIWwL\nbAtrdAidTRs3sfNmkRdPHUU3WghPoRIWXi6JSprXSi01aRUSpNZNVwEByhI0P3AcZQlSK4r0XJWN\ng914aQvZk8Jer3cWw+MFLF+39Rmgfb7xIlF0jbFr9n100zjbMNCHnpmHgSJ6acV04+I8cKWhmKO0\nL4dQmq5XfLMI2zZYkrUnCzijVazzOdDQc6uGf/MOVqHA8rcdopkXNHsTWHWBSoBsQXpRI71hUhs+\nyhJURixqoxpla9LzAjk+hpe1SGxe4N/msdMtijrutCJTKWRfL970TNsFcDsIm3DOif998/OEQDRa\nkWD7xr4MxT88j8IUFL07EybZXN9A9nTjjuaRN00yFKLyWFszOjuXrkXC197MLHbCQQRF2225HwYh\npNi65r65AK01ulbHmjaoClFrGETG7LxpTIT3QCusvl68G7dR7zqB8DX2zVlUxTixlU/tIP3n5wCi\nLjvSovTMzkjDw+rr7XC51K2WKUiXy+Y+3Z3E+8BJnKlZ09V3EujVBwhimnjka5U9NIS/vIo+czwq\ncH1V69XWb4Z2W/jrLqyvM1ZrUL4xRD1YZqz+fvzlZezxXdBo4s3NYxUKlD5wwKydQqDTpqjm37hN\n19QsIpXExyBKm2MFkpsbCY8ywgKA0uhyuW2eIWJNrTiaDrD2j9Pqtmg9PUhXiCCSFqrRoHpigN6z\n83jTM2Zz3tMNzRb2UonK0X4yqaPRfNwRL77Rge7wpmcMQilAWW8zHu3Ysfq02DlC/T82ydYFA59V\nRjTe89pUMogKLBHyJsh9IShW2yJCUkROZWDmfstCWIAvkL1FRExrxh4eQs0uoKpVbMdBZ9LoRoPs\nnwQ51/AQ+rXL+Fpj7RvHKuYRno830I29WMK7cRv9zhNYlSZ0jcCtKeIC0yJEMUXi08FYQLcRrhE9\n2Twm8NsbzrjoLSb/9W7fRaZSpugpBMJ2UC03Kh5pXyEWlum6O40X0OlVpWqod0/sZ/ldLns+aShz\nybOvY/X14h7aSTPnIDy48YNJRNpG+4KuYo3qVD/F1yVeRuBUNDt/5CZXvlCg76LP0lNdDN4sBKiE\nxzduukVRR9/vtzlC5KbZIEv+j7/8NnpvK9ysoNXrM/ZpmPxmCQJq/RZDQytkHJelj0KX02StkSF9\naoVaM8H6ahbrFLjZYYqXavgZm+Rrt6FeN8YDftsJSutQW1NFYscd61DQmMWW7VsfFhkd27jKFtK4\nPQ65GyUaJ/eQ/vwF1r/zaZQFqXUfq66MqDRg1/zIzMCp+HgZCz/4W/HavSgeb7QIL3YW41SjAUEx\nXsXyYhaW8Tbtu768shcpFc3cQwtCj3bOkb1apJI0D42QvLNs5tGAtr2tCJIEYdvmey3t9nc4iEjY\n2ffR5QqiYQpG9W9/BpWA3IRi6ST0XLWovbtOMumyUU6zPN/Nd598hbu1Xt6z4yYp6fJk1zTylxVX\n1ocYHFpn+SdO4ycF/a/VaO0ZJHFzro2SDOcRAAK34bDgozRoLyhA+u0CkLDNWIs1vgSAlLjFNF7K\nwpnzyU01kQ2Xyu4uhMYghwJwhl3zyV+ZNw0MYPHZHhJlUzDyE0YaoGvTbbSOHMC/fB3OvYnu7u6Y\n50Shh/KxAbJfaET07/lv3IndgERFkT59nKR8HbXNSs9XixD6C+CHgp9/CPjz2OMfE0IkhRDjwH7g\n3MPPQuCdOkBpl20u/FFGbHIw/Gvzu6y12loEySS6brp1KhFU+Eol1OtXDFJIa6Osn06ZxTSTNh3Z\nnm78lVUSV6YfKFb9doRfKnVoTGxFR8hMlXE2mhHn2dgwuiw914usS/zlFSMomWyjDFo5abSChMDe\nsxvYhN547kkAmt/0DvO3ht9R1d1GPNKxo9MJFp7pJjt5r9DkW4qtXHe0jmCCWmm05yIXVun/XaPZ\nIVOpqHhglZtRpVatrMLckrl/bgu1uo49OgyWhW400XkjeJ387Mv3ilXHiz73Q43FHtOe24kqekAI\nJ2EEyW0bO8aDDx1+ouN8jVNRrB81qDlVrYKU2AN9FN49z/BZc691tX3Pi1+4TeWpwGltK9vITUUr\nb2aWlWfaIswPgVHDox43CZvr/yjB9z51jpuvjpG/HBRW73fPA60X4flbO+rF9Xk2I2wAbUusRbMB\nNeLMRrhVtnychZLZ9KQkqcUmfspGOQLpapo9VqS3U9plkknpQ+lAN+lll3q/jZtz0JZo6/6oTQmR\nUvds1IUfQxHFrznclMWpLE4C5peMhsMdk8jLQt4k6uGcitnw5/7gxcglQXdlgoQryfx7FO5slr43\nPUZ+5QXEC69j79nN4kcPoRKQ3NA0+31quzwaQx5Cg1PXVEcFK0dsFp6VeBnou6DpfUMw8vdlY+Gr\nuBdJd2880rEjbBvVn49g36rRQPd0xb6HDzifjs9B3f87GxWGpEHABNH7yoqhaQDUTUKpA7qIbrk4\nr7c3raEbDGDEXoNzDTtM3p0J1P6d97d5vU900FYfNvcIgTc3j8xmDc0kEQj7RuMuQGQ2TaLmrBlt\nEj3cC5YR8V072M5mmqf2G1p5V9bQEEKR3/7O4rqqVvGfNILBBBpK1WEHa6DfILpSSaMn8eB4tHmO\nZaGV0X+RTW9bjitfdWhNfV8/uVdn8UPglDSOPXq9hM61kUK5z7xpxonWkZipcAJNrCBp9m/cJnlx\nCpHvQZ448racciR6LIX5TtXqeHensHfF9jKb1hHRcrFcTbNHtAVeA0HzlSMW6u6UoRCVK3jTMyx+\n4zhqapb0QgM/6+B++BTeB05ij+9i5UdP4374lMl3njmGvWc31z9upDZKJwb+m+Y5JBzqH/dZrWZI\n/EEB5ViRCGp47yLtlJCCFbiMgllfdaAzpP22LX1UbAkcvMzaIfEXFjsaO/7qGrrZRKZS+EvL5ns8\nPoK9Z7fJfVNJrL27sY4eRFTriFIFXA+r1MCfnMbq60W+dBHRcJGLa9FGPnJCDdZNc54h4lR00jdC\n3Q6tovOMEEPRgAiQKEHDK0TAWXkz/4WaZeEc5i+vRBtcVaoY3aHBfhbO9ND9ZoLEuevRd8JfXkF+\n+QKZs9cZeKXK3j/wGPlLm91/CGP/aIP9P/MSA5+6ysjfrJBd9Kh+3RJj/+IFMp96ib5fO2vWVNt6\nGG7j0Y4b6CgGPcgy/muNKF84fpDJnzuFUxEkNxS1EYHsctkYtyHlk1iyKH9jhZ25dcrNJM8OT7JU\n78KSiqTjUa0lsZYT2DurlPbB1NdncdYbiK6s0asMdYJCx7AQ2Z9MBo2tmJ5QMmHML+I0sbBZF2g/\nqlQC7Uia3RaVvd1UhxPI8Z0mD66FItLmecLXWHUP8dRRZCZDerqM0JpEVdHqEaaZHkT9I2buqA0/\ndJ1h9b83OmX+oV0ALP7UGfSZ47S+/hQ7s2s8MTqL//Bl+pHvy2tP7mBjdzKiffv9+Yc8aVPECtLE\nC9PEcn7X5C/+ymo058yftrAa4HYJVM5n47CPVoJips7TY1N898lXKNpV3pW/wUfyr7HqdbHhp1lp\nZrlxZZSFuTzVD1Ro5qG0J7j/qWR7bHTkMME8ItqISWxT/CGYE4WU7cJjMMdq1+y9dCaFn5BIV1E6\nPkC938HPGKv5jmaxb9BllRMjuEPB3soyaPmwUtlz8V6h7nhN5B6Qxu27zD9rsfzdT7L67h1mDlWw\neNonueaikhY7EmvobYKQt2M7/3vAWeCgEGJaCPEPgV8CPiSEuAF8MPgdrfUl4A+By8DngJ/SWj+U\n96Udi9JYisGvrD10U/uWIk6LCAehk8Cbm4/sb83fVbSA2MvlQIguELh0PXOTA3SQXyoZJ45ivi2C\nN9yHd3cygp2aN9p0HVvB6bc61+1cVlDlVOubRKXjm/qEg5hdRr9yMRLp1J6L1dNN5Rsr7PlUm0sc\nwqyXfvI50ksu/kivSRwDS25vfgH5ZGCbrjT2zh0kP/OyKRq9ct1szLaIxzF2vJSk90oDeeXuww59\neGzx+USip8rH6uvDm5uPuhOq5UbXLmYW0CNBgcOyjPtbrQ5CIrMZdKtl0DQJh9puAxeUxw/jXJoA\niIpv5g9tlziE2Poz3oqK8pAxFBZ+tO+jypU2zSXuXCYtRK1B+oVrdH/yxfZ5WRZr7x1nbjGP+Iop\npHqHgyLoc09SO7mLRiH4jh0c7ygi2jtG8VdWWfpJs+jZQ4NYvUX6vjQTOSDFReoex7hp9lr83DOf\n4/defQanHCSRTixhkNIUWcwJte9hICINtBFBm4sqm5+TTcO1O6i1dYMqHNuB35WEZAJtCdzBbvyk\npJWzqA+naBZtlC1o9lgGgqxBBC+dWfDQAiojkmbBxmppZEuhUk5nQWozbSyiwGlz/uF1bp6X4j+H\nUFqtAqpY3gjR5rrMnBGiYXzf/HPsyM0FMHbNuTSNnT3Y3S1ytySpv2rnId7tuwx+5g6pVUVm0aPn\nsk3fOYsj/3aB0V96gcL/e4PeSx6ZOc2eT1UZ+VIVu66wWppmf4rasVHcnNXe1DymsaPSnS4gAK2B\nbJsutpWWV/j/ZlrzVt/Z2PEhDTZ0I2FuCe26Bv0SoEMjatmOoeglrO5uYxNdrWINDpjiHKbbpD0v\nsmnWr15CjLafd99zicc9RXOx9XxEO/lT1arZoCrV6XAUHh+MSf/SNYNgwRSxGif3MPJvX4gOr4wa\n7n7lfYcMaiiAsOtEZwvM3j2GM7tmaIYzswjbpvgXlyOHTlUuUz/aXq8fy7hJmk2MWltDlhusfuSJ\nhz3lrUfwWYhkkuRL11Erqwx+IhAdrxjbaH9tDREU4KxCwVAPQ8Ro2DxzW2ac9BWjQo2/sIh3dxLR\nfKiWxdd4DUFe1WoZms7KWoRs2xx6bZ30n7/MwJ/djJp5Mpej8U0nGTrnmuKpkzCaWiePUrxYQaZT\n+GkbZ6VK6twNkq/fxbszwcCfXSfxxTfw5heo7MrgT05z+BcMgjX32YuIZgt95vi9p/sYxk6j32ap\n3EXvx7MULpVwFgL9p5h7jo5vvrRuW2rbdmwT7QSb41ihJUAHhYUYme8xbqiBa6ZIJpH7dpuiTiGP\n7Mqi63W0LfELWaN9F3x/Vdqh+tRO1EDBbAZtiewtUnrvPmRPN6JSo3Fkh9m8x9+fTU2IeMgYrS34\nFz/v9j2wOqhvwmlT0/y1NdAqKgILy0KkklhHDxrX06BoIFIp/PkFyrs1vRebnegNjIA0/b1Y56+R\nmF6j59U5Ep9/pa3jOdSHf+kayU+/bOhjgQubVSjArlFTVAid0h7DuLknNusyPcKQ2az5V3exa2BX\nIfvyXewqsJKkWQSaFoOv+niehRSalO0xV+9moZRjodJFT7KBW3NIlARCwPjPncXNairjXbT29EOh\np3PcJJNmDRCy3QgL8wHPCJCH6LFobIUI6iBXkrUmsuFjN4zWVaKq8Pq6yCyaOdJPmBxJBy5RzvQK\n+vwl5NAA/pWbWHVF7to6pT3te3v7kydI/9k5rv/nZ1j4nra7Zjz0O09w/T+botHyu1wm//kZbn13\nltu/dJrS6ToT35ShPObw959+iomNgjmPIB7L2LEd6n02vZ9sy4mozDYpY0KYtT9A5m22ko8K12D2\n0ZZl5u1veQbr8H7ScwI/BY2iAEtjFxv4nmS5kuXWWh99TplhZ41+u8yl5ihX68NkZIvlehcDZwXv\nP3oV/24X0oOlUwr75SuUnxyMKG9mjhDt/FZIhB1DLjmBJpXjmMe1KQpF359gfsWyzLoghZF6kCA9\nUAlJouShLBHl7kKDdDXJ1RZ2qcHqj5ym/3wVy9Vk5z28tIhcDMPCrfvhU8jjMVeeLaJwBVaPa7o/\n+SLl30yiv32FzECVW99nURtM8PzyoYeAEtvxUCCR1vp77/OnD9zn+H8N/Ottvj8ArZyk96VFeKsi\n0tuNgDcsnATWYH+H2KvVWzSTTAA3V0sryGIeXQlgcVoZgTrfR+8egTdMhU5XqqZaLQT1kSzJC6Dy\nOazsPkOD2SpRflTFrqBSuXnxFLbTpv4EEMoIYh8mivkezuy8w0xjvKNRYe8YJbWmTSX+7gy19x4l\n/bdtOPXq8QJ95V14596E4SGswQHU6jqq3kCktralfRxjRwCJV2++dbLs1iew6cUD0VMhsfLd0JeH\npaW2QO77T8AXXjUbjFqtbcl4aDe8/Ca62UK3WrSOj0caTf7CInZ1BwCt3gzJCTPBuMN5RNDcl9mM\nEQoNz0nQOZZi53ffTeWDQkhUtdpREIrGkjKOW3rZvKZ3+64RWiyXWTkmyL3WTsxDysP6/iz5G1Uy\ndzfwnzmGnFpqQ813jzH3DaP0/+oMw392G93fj3ZddLVmxIn7e9kcj2PcYCt+8SvfRGoygV0HuVHF\n6jWbZi2EcQBQtJMHiApF7e9yWP1n6++31mjHpjnYRapqEFl6dZ3mWBGhNe5QDypp4aWsiGfsVHwq\nww7KNt0RLwPddzVCQXJdk7m1Sv25AfI3PTLTFWo7uxBK42cdrKodiYtGKKatKEhhESs83xBBFBtH\nYfdGC6PLoIMFUbtuhEghnWoL8gGqK4NoNBH5Hqy+IrgecrWMGs2x99830a+YjX1I5XE/eBJXCjKz\nDayLt8leLhhqT3gSvQUSGx5CgbVWY/VUH15KID0o73DomlHYDd3BqX4sc065xuYV1k9a2EIiLKK1\npr052/xZSLhfPhajxIhEItqQuH0ZEv39iK6MoYn1FvErlYgqZY/vgkodP0AN+Yd2GftjwN81iDVh\nvo9hAdt/7mjkToZSpnhUq907z2xjbjHI000bufh1BJRUrbRBCQWb04giq3xEVxZZMZo23sQ09mB/\nhBoCkyA1Dg6T/52zNL7lGbJ3SijMfCpPHGkjW2wba2gw6miGTRrteVF3TXZlEflhVnbFNIcew7hR\nCYE/N2/O5fot/PcMPPxJbzWCYpA1PAjNNtUwLvYKRPmN3jUMa2vR52z19d3jtiQP7oWFZfw9I3Du\nTUS5Ru2jz5L51H1oKA+iST7o1EMtHEui3fbvqlzuQDF35DlOAnvHKDqVQHzlghG/Xltj9ussnLJg\n12y/oXQHFD3xjmP46xvYpSY6GeiJBN8ZLIvSdz5N4e/u0v2XryMO7kVdM1bhqmqoRE6jeY+o9OMY\nO3YVBv9TisRSxVhfl6voarWt6RFq34HpuMfXqWDjG2nXxCyVww2zCATOAYOqkKBH+7E8D9Hdxc2P\nFdn3m4Z6RVfGUMFuzuIvLKKOH6bVl8HZaHL3W7sZ/5U3DRK6uwv1xgzW4ADdz183hUjbJrGyit63\nG1GrtREE4VwZoiuVbm/UovOMrU+W7LwegiKPEBFtSCaTZk6LNdRUtRY5rcl8D96Vm6bZF4iWq7kF\nZMJh7/9qzGbidHr55CFKB3rI/sk5cy5biZzPLBgk2dyiKVQEqOKVbz6IFoK+L8/GnQ3f/jxnUzQP\njmDNvXUdrC0jllPIZDJCWlnT81iNPsrjyowPex9aQGPUJTlvU+uFZNLl2vIApTt51KFFRj96iRu/\n/TSOpdg9tkTvgSoVN4m1Y5SPfejL/N7wKXb9tgVDPTgrMQdNSwISLVQwTkzuEo4NYVtoN/heKI32\nA+kP34+cpoTrYZWbJNK2oaCvtWj0J5GeKRBJXyNdhfQUsunjTU1j79yB6kohjx1AS0FtdzfFN9tJ\nwd5/7+G972nsDYvil9vua+E4W/iZM5SebjL8WXMOe/6rZurHquwbXObanWESEym8jKb311+k8K4T\nzJ+w6V5uF5wey9jxPXp+98XOfeJy5eEmMJtp43FkUFisC+engNaK66IaDbouzLDx3A6EhtG/rXLn\npwWZpEt/rsrsSg/7epd5/doY/fvKuNrmdquHj7/wftCwa3yJI4V5Pnd6kG/JLPNCxTRT06MVGu89\nhvQ0/kgv1uxKoJnpmcJPeC73XIeMXYOKhMtDhJFwHIM0cz3suo+2BdI1TVc3Z6GlQPoaq2FohXZL\n4acsklNmve2506RVTJBcN3TE3l9vG1x5M7OIk0dZOZpg9PbKvecW3metyf/OWTa+9Rirf3WASilJ\no5wEV5CacUiUXF6/NobYZun4axaVfiQhgNX1Noz1kb9+W0SPhBNx7QBETze1A+1NqUg46GQCf2XV\ndEYKBVS1hszlIiEoMOgcXaogbIfEemCB6Vio7hg8cDN14FEWux5GS7As/OWVNmcyLCKVK3z5+WMs\nn+hkKupcBmWBunAZf32D1Fy7ayhzORJVRWPcoKa8uXlQ2lDolE9rx1uEET7C0IIOhMCje2EV2JNq\ns2FJJiJEWBhrB02SqgO4tQg+X1k1iCuRNR368s4Y1lNaJO8um8RosRrxU5259VhHLnH/Qk+Y5N0P\n1fGwEDLaqMUtXaPXkRY0WwhLRugdmTNjpWsSnIpm4/s7bRKVA/KNm+ipObQl8ZfbsEe/NxdVyL35\nBXMvUylC9xOV254d4qMOWZck5hwzUQrQtoXcggoWxVbUKqXa1Kv4cfGwLaxmYMmeScFgH82ig1Vq\n0Swm8ZMWjaKFn5Y4NYXwNM28wE+aYlBqRZNZdElUfOymwuvtwqkp0vM18BSJkovwNbLhozKJznOF\nexFlm89z83HhYxF6KOpmtsd/wojpoXREx0EaYexQ/FW4bbpJcq3Z4XCkymWsfA+1IYdmj4V0jZBo\nuImPzkdrrJpLrc9i5Zl+RIiUEuB1gXIETtVHb5fT/naGDkRK4/PyZpcxuPe7+oDvbtQJB+yqix7p\nw+8L1iDbbs9PAC0XXakig41zq2gKt/boCFa1FW161XzgPNHT7vT5N++0C7NbFZ0fEg8VRg7m5/B8\n43bSRpDcPC6HBgyNSpmkS5XLpKYMCqr0zE7sv3kV68gB0nNVRKONUmkMxhLunaOGyhpsAnWMIhdd\nUiaNO5zHy74N68YDwmrpjsKZtTWw9msOmU4Z58QYAmrhTL4DZSMcB6u3iJia73i8fnJ3h3C0PzOH\nWFlH1+q43WY86koF2XpALvMI85zws+vIY0LLYCFA+fiLS7CwbM53zdByMzOC7tOLLJwxuZ71ukH6\nuLmgCRI4M5bfOY4eHzUOpY6D7whTyGg0jE5IrLPtvfMJyDyc/vF2hOUGzbqAok5PF7I7R+iKo7Vu\nz89hJ3szdTmGrIjmcxnM8bHj1JoRtA2LrGp5lZGveOhUOy+xV6ugjKNXYyiLl7GQd+cY+3zVFLG1\nQiQS0VgKPxcwaGBZrbfPN+4cFm0YRaBp1C78hG5e0fFxV9bY5xRS4nSrFZl1GLRCO/fB99FJB6sr\niz06QmtnAaSFTKc60MqbHZW0MOLa9wutNW5/F43nDpi1MVj3e27WKFyt4N2ZuO9zH0dYD3dW3H7E\nGhzhPbPHd+GXSqgE2FXz+SbXNLrLAwHCF2wcgMMDC6zPmbGxWjHz9wcOXqOYrpG2XWypKCZrzH/z\nGN+bP4eT8KgMO1R2phDdwd4lov8FKKCQ7u6HwupWdH5sQqiY70jbUEO0XISOaUBi8gurpY1rlC1Q\nlozmjcqJEfxsEpW00bbAT0r8GIhRXJtg8ekUVguKL7Wplzqbwn/f0yS+fonC2QSZBTO+Ei9eQdzM\ncGN2AJRANgXSM9cnv3yBnfl13PTjXa/uuWeAaG1j/ARzRNw1uc20aD9m7NsDfd8g1/GmZ1C2wGpq\nxAuv89TYFLl0k6Tl4bkWGbtF/+g6636GL64d4uzqHob/xqJroEoxVaXoVDl14iYbXhqV0KgkJB2P\n6ffaZC/MUBnLBLRTHcydsj0PxfNerdsIRILawWbphTCUKRQKX2O1jO6njvJuUHaI8g/uSyZJ5Yl+\nkjfmqYzYqITAzUojTxPdMMHiM92klvV93TWtWB2DKzlGc4HLbNVCNCwy85r0313CXrcfHWXscYWu\nN6Kixdv2HlqjZgORwWEDk/cnp3EzMnIeET3d+NdvYRUK6FaL+sndKIIkPQAAIABJREFUBjVRr9Ps\njlN3pIHNui2sNw20Q/g+8uY04qmj5pgHif1+jWgh7cW+mMEgDhcvYTvQkzMLXG8x6q5p30dtlNj7\n7y4z8Gc3o/OU2Sx+T5pmoT0c4mKLqlwmM12jOuJEUDZ/aQlR6AEhcF6K0e8edwja3bEHOGR0PucB\n9z5O9QkpMWD4orOLWPv3RLo/2Xk/oBIGHe71ANWzsIzMZmnuN7Sp9LLX1mPaOYJaWTOT0Z0ps+nd\nNw6uR/1pQ5WIi6MS8qM76EiyvemPd2O3cf0yDpkMNmORFanWWIXAbc9XeP2djjJDn55k4E+vUdpj\nxonM5bB37qBRNCKUqlw2+h9hEiUEslQntaYjpyF/ZdUUZQf6DBogvzUV4O0O4YFdN+geZUHtQB9u\nxkYlrKiwB7QXhnhBKEwcNhfmVAxJ5PmRpo8zsYQ3NY1/+Tqi3iQ7VUOfv4Rd9wNuOiTXXLyUoLIj\nQWVc0TPhUrzqM/DCGsoWtHIWdsVH25Lc1Q24cBW5XsZZquKsVHGmlvG6nOjctCUNvS10TRACbZuu\nBcHmIfo5TmWSm65JCnSjYZLscjC+Q/eIELIdaI1YG1UYKFI/MIA/M4cq5kAI7LlO8V5rcIDWib14\nSYH0YeHZblb+wZNmYyot5BOHsI4cQOVS+BkHNyeMo1pKGORURtD7pk/vp69h1TxTYHzcsWkOkZ5G\nZDPtImuYdIQaH5H7WPux6Pd4sSi+Zvg+Vl8v6l0naPSl8LpTyEmTXPoLi8jxsUjc3puZRbda1N55\nEJ45RvolswGuHx7G60m10RZBQpe9buaYcN3z+7q3nhcftrl/yDoWFsvNL5uuO3wJy0JXqvi9OWSg\ni6czKbTSqLvGsCB7Nxx7Ai7eNAXHIJyKhz59HITAuzOByGaweoKN6PIK2vOi9R5AV6vYVyZJrb59\n9IktQ3Xey+rII07wwyJYy4XVDVJTG+h3mrUqN+0z+T89HR3qL6/gr6zir6yiGg3Uu58CID2xzvSP\ntqls2vXwFpfRrRaJFeMCR1+R9FwV94MnH+35PyjiBYtg8ynTafTwANbQAN6xPVgH9kbHjP7WJfL/\nLM3aKZflnzgdoRe0LcyG3paoC5fJfOol1OtXUOUyanmF9LKHqNaxjhwwxzebEZLWWa1F2g+PPZRG\n1tvW8N5gD7o3HxXmOzT4omJPZ3ofFdKU6XgbSp4psOlWC3wf2d1t9OGC8NfWEI5N4nMvm4K/66EK\nXTCzgLd/BAb7cXMW2dsbiGwG+epV/Pc+jTywx7gFl0odltLhPOTdmTCmA+GaGd98hgXkuARCoAGj\nw4KglJFLWodDEETW1qrZ7MyJpAg0QRWq5eLfnsQvlYzz4BdfQzi2odj2FjvGktXXi7VvHJVJkLtb\nY/3pfuofecY4iY2O4H74FFahgEgmEUJgVV1SE+tmXRQCtzeLciz0y0arazN95rFGgBp9lCEc2xRU\nbZtr/ypw321o3G7FrV95DrdLkMw16T1nc/D9t/AHW1xeGOLAT55DF1s8OWwovYezczR9mw/2X+Wb\net/gfxn5PM/+6Hn+unoY5Ut2/MObhMhckUkTOsaZB2JjPcw/pTDjOsxvPS8oCqpO6lyA4vKTlmnI\n9SaC4hUIX5PY8MwaI8HPmvw5e30V8dJFVNImUXKpFyTKEegzx1n86TPc/PknqIz7uN0aFtv5vHr9\nClM/6VFtJMjfaOG8aihCqlZj9y+cZfCvklgli/xNRfdNsA7v5/qvv4P5cm7b1uGPLLZY2x9a0Nz8\nHGkF7smyTc+CSC8MpQxds5jHOrCXpZ88Tc/VEusHNdP/9AyvnT3AWPcaVdfMwZPlAmPda3xq+ilu\n/Ophns5PMfd+n8pKhk/t+2sqfpKU5TJRKzL8zBzHPniN3myNvuOLVI+PUu+VxlEuoM9GYyEmFRHO\nscK2TeFYa6MppNouYhGyKcilrWozkpjwUhLpaWRLG7t5KbCaCh38L2aXyUxV8WZmqQ0JvJSgOiRZ\n+MHjzP7sGazBAa5//B2sH1XUhjvvp3XkAAs/c4bKP3i2I+/d/S/PsfIfd9OVbiKbguyUpDwOcrAf\nNdJgu5yx/38UhOIn+6gny5h7lNXXa6w4AV2vI1MmUe75/BVjIQnowJpu7RsOgtakZssgjMhh8c2N\nyMpNu60oMQkhzXKlhHdoDHEtVtF7VDSxzbF506p1OyH0XFgrIbMZs9gNBMiTwFlCZLP4S0vo16+a\ne+L7tPJJrLqO9D82h71cRrpm42EVCubeOTbuh052OFY99tBEiYBMbVMc9a10MIMNW/3UHmPV25XG\nmQ8soP/kJcShPdhDg6aIIyX6zHGTZFerTH7InE/qr89z7afMhsSbmDJW9m7LvLbrwXqJ+sFBEn99\nPkIJmQvaQjtoc+L3Frux4YawDc32O+xmdcMsnrpex14xmzBvcdlsTINNxNgvnotoP7o7S89dH3fH\nvdQvtIa1DeyaojHQ7qzqhIPf1404ebQt7P7fImK3rjpkY7UU/x93bx4l13Xfd37u22rrqq6u3lc0\nurESIEFwAUiYFL1osSx7ZFuWrXifxPF4ThLbY88Z2xNnJnGSsSfHE2fi40WayXiXFSm0ZMuytVmL\nKQEgARIgiR0NoBu9oPfat7fcO3/cV6+qQIAiJZKw/TunDxrVVa9evbrv3t/9/b6Lsg2U1ZFMdy4U\nttUurrS0hO6CHMIQYJk0J7Koag3zvj1aV0kIhOsjHr2f+PVNYltNeudqKCGojJv4cRh4XpA8vYDh\nK+pTaRLzBQxPYQQKe7WIUWtgzOxAxR2UZeD3JfEmB3BWSu2ORqhv1BK1axV/RNDucgi/o/hwOyIt\ntHZt/S5aqKBOIU/Xa1u+ywC5uk5w/jL2Z0+jfB+jWEUl48h0CnPPLPKJB5FPHaZ+eAeVcQcvLaj3\nG1g1RfZKjc0fPMy1//AopfuyuIMpgh4HN2sx9uk1Br+4hOEDAsozktqQwdZ79lKdiOti7T2O2FIR\nctnuogdE1zTqlnXqg7X+vQsqR0yOEWxu4WVsYn99Cmd+A1UstY9RqiAsC/fbtcA/OyfxU4am9WR6\naHznEezPP09lMoGs1/WGJbRmlgtLWKMjBFvbGOk06vnzGD23+1t8jXgV7aAIhRhaenddg65jGNoZ\nK19EPX8e1dKj2y5gjQ5HVBJzoxBZ95qDA12JqfnSNTYPJTEO7ceanNDnEha+W/OpqtcxUikN2S8U\nkbUauZPdbohvddjlr/2c1xXhNS995wOoWp3g8hz28jZmJkP8k88x/eHFqPBjzGox4JYo9+rRhKaX\nX7xKEO9AQcggQmy18hqVjKFeuEB84Wu6tL163CU36kRR3VlTJlyrPB/RaGrThnwNmY5Hfw+KJczN\nEnt+4jSD/+UUIhbDGhkmPp8nuHod4QWY9+3R9LrQYEE2GqQurYNpIPIlPZYAozeNePR+5EuX2s5w\nb3Uo2nO0r93BlCm6tTheTR+m5ebVlT+EWk0tFybTJNjcJBjNYe2YxHhgn87zXE/Txl+6pJ0UT71M\nUCqxdiTF5mOD9J5cIjh/GX9hEdVsYn7pBdTCcpemZmej1zi4T6PTDEMXbVoi0bd/ZKXaqA+lQj1P\n/VjLlj5CD5lGh06o1dYcCjWUWpblMsxvhNntVgdghGMEqQiuXMMaHcEaHdGv9wPMzTLSNshcLdPz\nzBxGX5bFD0xTG7SoHduFMTNF48hu1JnzBJfnkP1ZjXxNWTRzts53BnLdovz/AEK5Lsxqc4K9v7CO\nNTKsiyMGBFkfLw0DmSrFXTCV2mb3jz/P2G85iFgM50YcqQTLH9vDn//i27n1xQmO52eYsrf5ePFh\nVmq9fGr1fmJxj+YPxch9dZna/pGIAtk5rqKx3dKVajXtWnpVLe0soyNv80J0q5RYFQ+n6GI2JGZD\nazMKqfVgpKM3+ZgC88BeqntylH7gUarjMQqzcVJrAYanKM4mSa4FxPKC5JKJsrrHtTh8AOtsDxPv\nO09srULjm/ZFc+2tT+wn85OLKAFOSTLwoRMEF6+y94N18htpjOD15fpvVryqGULXvlS2kUEtVKLo\ncBIMtYNktYo/f5NLPzNAkBAsvTOLCATNg3WCdMDp6zsIlEC5Bo2nh3n+6jRDyTLZPzxBr1nnmx+4\nxJ6fOM3e3/sfeXF7nJKbYCxRZCRVYquRoubZbL44xM13GwwdzxMMZSO6YDRWWgX0zgJ1J8KyU5ut\ncw4N82nR8DA8hfBVKCFBSDnUxWrD0+h/6Rj4e8ap7Oyh+R2PEtuGRtbAbCpNKY/B3M/OYjQNkmMV\nvB4VNe0A1p7sp3jIJXOxSH3/qEaA756B+/ey9kjomt4QTP3ZCjt/6QTXf3Qc6Rl/zyhj8Lo3tq85\nWjoGLdeFXVoINygUI4G5oFTCOh8mO4srmLtn2Gg1vzqSXnn2AoFjIB4+0PUWRjqNajaRpTJmuYmR\nSUfJRBd6427FoTs9/nrQLq3ntlxrlEI1GpH+hNzaxuzPafisaeLfWsNIJjXly/UQvRniK2VKsyBD\naoGRSuF/a7sD6F+fJ/1fT+rj1WqI2R0EczeILxTeVOeC1xSdVt/faHRscFoJhtHTowWH0cipYO5G\ndJMaa9soz9NdRClZfioVQfB3/q+aE6qCgKnP+BgH90WuP63HlesiC0Vi61WssZEIJWT29bU3ly1E\n0CvoJiGdJxRPFKEwW0tQ8U4hwoJni58PRLBq0N8tWwXtqrZ0S6OAhgaiTruRTmvUmWVh7ZhElKqU\nJ01qY+1qdf7HHo9+Dza36LmwTvyzWq/EmpmGQglx4TobD3cjkO5leD0CsxHoCRx056KVNLRoYXei\nlN1t3grHpFn3kZUq7lAPKtNDMNRLkHKQjonsTWFtVTFqLl7aInMzoP98ncSWT7C2TnytTmKlSnB5\njtTHT+O8vIDwA10ISjhgW4i6i/jqWcSz57R2WUfxpxUi0NS2CA7dgq46NjLbg+xN6Z90CuXYXcgn\nYRjg+RpF5vttioEw2otquOhpwek0Zn9O2xT3plAxC+F6KMfG3q5hFZvYZQ+7psjcDDCbYPhgr+Qp\nzUJi1aC0w2DjcJy5HzHZ3mtR25Xj1rsnqI4KzAbs/v0Cg79zgsxCg+yZTYJ88Q0ZA19XhNcpuDyH\nzKY0OhPuUBiS7X9vR/vdocgrLEs79UDUGQzWN1C+H7lLBmvrIAyEr59w7Yf6IkcZf2GRnrNa6DS9\nUMPctTPS7VG+j5HJRNROeWDn6/68RjyOkUzq82xpkdnObeiyUFvoTmLbkX5Vt86SDC3lRboH/9Za\n9Fy5uaWFJ+NxjfANhacRQhemLYE8e4HF90/hL69QP7wDjtwPfRmtK9MS4F7Q10Q1mwQDb6LL12uI\nwbNVfY5vRLTuV9shse4y//P6uHJ9s43KWFjEOjunv7NKjcKRMbbfsxeAiQ++jJrS6/jUX25z650j\nXe5eqtlEBYHOm2pNSh84qkXkM9/AHH6XQmhXEehO1OiWM53nIhc1Mi64dA1xMVyXpUbn+Qva3UpJ\nhXAc/LV16jM5nQvdXEFsFzH7srj7JyIklX9jAX9hEf/WqqaiodewW0+k4bEHouLRPYsQCWPWW40d\n3XWPaN+d2kG35wutTbRpRD+RsGp4bGvnDoSrCy/ypUuIRAL38f3I+2exJicw+3M6vxGC1C1J3x+c\nQKVDwfqOayOrVfxFbbUtbEfrdoVIdXnuknYUurWK2ZvReXhrw0jrY4m2JpDUuZiRyyIf3U/t3YcI\nHt1P81sewJgc08+x9bqlQpdN6Xq6YNgSyyZER7fGju9hZnv1HGY7Gjnk2KiepC5qZXu1BX2jqc0f\nEjHYKmBWXYxSnWA7TzDSR+6SR+5TF9m832buxwZo9NsYh/Zj7tpJeW8v3nAG59OntAA++h78BxWG\nqdFYZy9ona1Gg+1v2QkKnKLATAQ0x10GElV69uUpeHrPVRl3MIcGefrH/i9+cPhZfu3+P6P0T0uM\nnHKxDMmHVp/irxf38/ILO7l+a4BqOc6NH5/i0s+MUx63tH6h60XjX3TmItG56bU02NwkmB2ldmSG\nje+YxZsa1CYLQaDpxU1XM1RMgR+KJguptGV4xUNIhbS1i5QSQksqSIURgNWQDLyg1xY/KSjNCDYf\nNGhmFfUDdZyhGpd+s+1OuPDeXiZ+VWspBucv43z6FMFVzTBxXYurK0Ps/dcXKO60KP7wYyz+t4Ms\nf0uGX3/yo1Qm3uLt+l32U6/K4rldP0iqaN8JtL8f246e01pn4ismZkNRnQwQEgwzYHAyz47RLUZT\nJeyUR/9/eY49//g01XdUWPg3x2goi5xd5crvHsEuCYpPj1H1HU6uTfPC4gQ3lgZZWclp19qCvn6V\nqWT3nvF2um3r9EPkkLBtVK4XOTaIyqaR2XRURFR1LRguylVa6HzD045ihie1xIEhdKVF6cfdXhsl\noDZoEd+WpNYCmllBZVLRHJB4fQG5XdtM9eUZOLKGd3BHdE7lHTD5FwZGpYb9+ee58d9PUzw8xPI7\netl5dJGt+T7MhmDtW0cxMxnsMhhF+023nX/j43YY3xsc2t7SQ3jtpFTEnMg+PbKpDIXu5IBecLcO\nd+vjxL98DnO1ozNmmFHhRdXrqEtzqKarFfHvFne40cz+XORgYWYyEXXn1V4XCS12Wqa3EgPPaxeh\nTJMgX4yKQoZja6RQIk5QLusb/NoiVk1EGhSy3sAuhsWhB+/rgtCqZpOth0OqweU5jRq6h4mSepOK\niRH9w3VJ3GrrlBjxOKI3g7l/dySerDwXf/4mjfvqbavT/btbJ4j9+TN4g0ktOE04qUoFtq0nzdCF\nqqURoJrNjuLUbffF7VTEg7v1Rs9z9ViUwSu471GyHcKoVRBgOFpUM7IYFkJ31WJOhKqT5TJyRKN/\njJ6ULmBtF3Ty1GgSrG+QXJM0OuiGyQ2d0Ne+96g+3XSibfPan4ZcL7JWY+BDJ940C+PXG0EMgng3\nekOZAmWakQPS7RsY0Sk23fWHdpJt31jVtNIvvYDwA4y6R35vksaAQ2M4SXOil6AnhttjkDm7hnn2\nKvG/eUm7vFRdRK2JNTmBMIRGoQkRiTWLil6MzF07MffNYo2OaKHU22znlWlEzmjR+QmBN5Rm5Zuz\nbD/Qy8bRPjYe78Mb69VIKM9DlSsoP2h3UcIEXaRTMNiHnBxB7pqAgZyGcFsWRk8K+nq1rXWgEGvb\nyFQcFbfwswnqYylqozHctEFpSlvwppea4PkMnJVMfWyR4dMNJv5skfQFh/iWojJuEcQEblbrKy2/\nM8f6Pz8GgcIbSkcFknsd0jZ0kR3am7KoWH8XJE1ngahj/taFG33PJK9saDSDaeI/+QDVx2ajwrLy\nXPyUfo/kLf2dV75fa3ypak07+l2YR8WcSAzciMc1DTCcI6wFTelQrvu1i+qtjvzEKLJaRR49iNEb\nFlYMvX5ECWOrGdOBQGz9G1kGh38zEgmMVCpEAQQhCiLQm0WltA15tYYxotcZb6yv63yGv6qT8rFn\n9FocXymz8XAP8voCzYd0B9Y7slfPkSFKppl7jYjSNymsczfI73+dqKy7RcdaIXzJ+JdD9HKthtGX\nJf/jukgvy2WU7+Mvr7DxkCC/V3/f8//T/chzlzAzGeRLlxh5ZpvqwQ73OSH0vQ0E1+bp/dhpZCoG\no69j3TdMTbl+Sl9/c89st7tmR0QNjQ7k853uISMR17Qu09SNqkRCo55B6wttbumiQEOvp8lLa8jp\nUX0dmi7BxCB+ysQq1Kl9z1Ga73kU84AukqlmM+rej/zGcTj5Et6+DifZexGt4runNXBIxNuNoVZX\nOyqc3T0v0iibbmSOkYjjX59HvngRf3FJ34/1OrFbZUSgkLk0IpnEGBzAzPVFiIWWM04nNawVwnbA\nEASFYmRb39msCgrFCJWsaWBmtHlsoYAi4Wzfp7grSeITz2n79ysbyLQ+Hzwv3HjqIlcLLa48H3Ny\njNrbH6D8nkOs/fPHKb2v7dyjPF8LTPdlwffbeh22g4jHkbPjyGwPjfEM/n07MNY1wgylUKfPEfvU\nKYJCkfFfO87svz4TNU290Sz5PdosYuufPo77rkc05e8fYAjLovmeR3Hf9Qjr37OHRr+BsmDH/3aC\n8Y/YWEmftVoPvYkGt2p6X5Nc9/EXl/iJiz/MotvPH60do3auj/hSieef2cvJuZ3kF/owPAHrMayV\nGEFcoy9S6wFyY6tN4wmkNrvw/Q7EsooMNszeDJx8idhfnSL3eycQJ14kmLuhHYPHh/F3DOkGZ76O\nWdevN2s+Xsqk2e/gJ7TeUGlnnGafHovx9QaJDZeei9v4PQ7lSRNpAwKEL5j6nIszlyC40UPsRrtZ\n2pxuUv7AY1z54KNc+/CDzP97PS9773yEmV+uYVoBQanE2Efn6P3jk8S+kCG5pnh642GMtjH0PQ1N\nI71zw/mO+U2reBLON1HhN8xDgxW9h5r6q6KWn2gK+i7A2B/GyCVqOEaAKy0SCTfKKWSjwcizHn+2\n+CDXKoOIQGBXofeGx7WlQdaW+vA3EhibNtamjXTCvEVppP1d9YAicXvtBqhSCfylZY1MLlQQWwWM\nzbwugrfyGsdGSYnVCECAXfURUuH2WjR7TZq9JpWxGG6fg7QN7JKHXZGk1nwafQZOOaCZU2AoZEwi\nfMHWts4LbDNo6xEBzFSp50wu/KshGt95hFgBsscXGf9CicV8ltiGychzOq+78bMHGf2Px3n3N53h\ntVLG3jzBnm8gOpX935gD6kQ12NrGcHVnICgU8dfWSaz0U/r+x+j56Mn287cKTIzqX3N/fEovDC16\nWKOBXF7pPs+wm9FylwnyeexLNmJ6Cv/m8l1pBIQQOmSgYblugEIjllqwvBYvWTYar9yQWhbG5Fi0\niFmjI5GrSJeNt6lpHsF2XheRTBMRBIhMGqPpUn1wnNinVtj5R4uooX4olfQ5nbmkocJnL0TFp+r7\njpJ6+lnKU4IsGloeXL1+x2TgLY3bBcG+0Wh16mMxXUR5/nzkYCIbDVhd5+qvPMDs/3xV63i03HI6\n9t2VPX0kQmMXIx5DPPNS21knpEoI29KonVC9Pv7yImJC25Mqz+/WirpNK0gYAgwLo1xDzEzjX5/X\nRYF6naBQjGhdoOHQrTEhbAtjxwSsbuiOfMfxVbOpi1zhmDb7+pAXtdMKsRiGVIhkQqvupxIwNkjm\nwye7UEGJL19A9Ofo+asXkYBYXsc4tB9js0gtF8M5pXns5kA/QShcafbnYPMb/9q+3pAWVMYceq/X\nkY6J6foR8qL7fg15z53FoE4UkRCAhicry0SV9PW3JsZDXR+DoS8u4w/1UtjXQ6wYaMFCSyN7jIEc\n/uIKnDmP2LlDU1gNgdGb0UmOUlrYzzJRpqERQ6aBKNfwb63qCT0eo0Vra6GCIvFrw0DFbF3oAkb+\nk+5WWeNjyFBPRGUyeIdmsddK+vhl7bIoEgmCkT5WH9eoADcLXlph1dLENyEz75O4pRFPohR2TAxD\nO7YpA2xTc6oVFGZNghj0XfFxXppHDfVjBJB/TPO8rekJBl9sErtVpjbdy9ZBm94rYHqS4qxB4rrC\n+MpZ3G9/FOdN1J17PWHla1pXrVKlJaoaGSXcPi91ajfdHh0OXRA6/aXTKNfFT5jE//I5jIlxRDJJ\nsLGB22OQACpH6ww+8SA9Hz2p1ybXjcRcjRtBNJdI14uSZYBgWz9HNZuvDWVpmKiVNYTt0MzYWC1K\nWLOpbb5do+20FlJjhWliZHoipI6xY4LgyjU9rgGCAFmtR2tlEK5jkZgwek0z0IX27Z1xeuyHML/0\nAtbkBP6ZcH4+9TJGMom6eJ3s0P0o32fliRhTfwP53TFSvUdwewx6n4HkXFv8/l5EUCrhv5EaxULo\ncfKVs1jTUzAyrHVc1jfZPrCDbOi01QppgprQa0J8UxcKW05s8qVLJG6kEZkMQbmsO+1b7eulfB/j\n/DXUnum2Q93XChkgAklxZ5z+F9KwvokaHcIKz7PT4azlNNZ6XeueMHfPUNvTT/L0AsHaejSelOdq\nytvahkabdLjYmSNDyEKR4NgB/C+fQQwcxJqe0iL2p/PEgABIntdjS5RrlD/wGJnLZarjKeJXryOf\neBDjK2cJbOMedVFVl04OQJC0MGoxKBngtxtYkRNOKy8Ngg4XUU176XTxiiJc75Xvg5RaT2d4iODC\nFXjsAcp7MqSWHAwvQFzYRpqvRDYa6bTWtvBcjTZvrT9hYUgphdnfR5Av6EJeaP/c0hPpbO61No5G\nWqNr1a11sn94QiOi75vFD13zfEA+dRhpGThf1dqXyvOxJsdozgxy7d0xhk5JMlfLmM0evB6Dhe/K\nIvws2WuS1HIDzlzRxSHbQSTi2mo6EUdcvKHXzJG9bD6QYLichVurIATWjkmUY1M+OED64jbyqs7D\nxc1VjHyeUfMhxPEX6ffvx1rewl9e0c2dpXvfh7+TS/Frf3FHwVFJZKNBPWfhVCTxvMRNGVQmBf63\nPkz8k88xu3SAW/+7Q9OQ/OSur/BxBrE/exqAjfODfC65n5v/bYbZP70Mvk/P0gBVqfcbdlkglMDN\nKGLbAq9HUNxpkFychOWN9jjGbBePQ0q7SCXB95GTIwhrEjcbw654LD/VQ3XGY9/vVNvC6ek0hmUS\npOOaYm8ZJD/e7aIYtegzGUqPDOMlBBmjl+JOh/qwgJY8jq0ozDq4u+vs+uEz0evNvj6cpIvx43mc\nYg89X0hRmYQb/8fjxO8rMP6BZcQ1XSyX4bzWf6HBT3zw43yxuA+79neDMgZgDuSivearRvidyLBo\nH9GzpNT3VaOJOLCL7UO9pNZ8hs54rDxpUdwDfX9wioVHjvHEe15kvpKjtJ2io0VB4gsvU/qpHbx4\neYpdH3Vxrq1Tfngcc9XGcMEIRKgDBdIRoGD+u/vJXpO66emHOo8tIEqnRpBSqL4MXi6J3PEwfsJk\n5UmTnpuC4ZNF6mMpUicLBBsbBAcncc5VsTeqNEfSuFkLFKRMBOK1AAAgAElEQVQWa2zf10P2Sp0g\nYVEds5GWQEhLo4gUWHXFxoMOCF0IMlwDJ2/QzHhcWhwhfSZOX9LDRBcNe5Jl3Pd62HWHm/+dQ2xV\ncflnphg9Icl9BDLPzNG4f5LB00WGljdQh/bzowN/yO+/xqFz72cmoFPLQ0NF3+DTUgqRSGh78HI5\nSiLM/hzypcusPt799CCfp9wIOwy+j//IPoAuuo9+oKMLL5WG0bcU8KXCn7+J2fq/eiWaQJgm1pB2\n7pKVCuLcnBYYNswISaKaTeQDuyP0UPRa24k4mADWjkmCjU3MbK/mQXd+nvDzCsfRSXsmjUgkkGsb\nGLks8bU6+R97XHPAe9oZqjU2ohP88DxA6+aYu3aSWtFfWn32Dtoxb3GIDp2XFsLpdcfdKHpSReLb\nIkRtWZMTyFqN1JLRRgG1KteFduW855JOoKNufuSOEURdrxas2RwZRtZq2r2uw265qxgRnVOgi0hh\nETKYu4HsiWPumdUTbKgFolw3oiS0vkcjldKfqelGyb+1c4em+UxPdb1vUCoRFAoYIS1AlSuIZAJ/\ndU3beTo2a4/3ImIx+v7gRNSZFT0pao/NIhsNRCymkS1X5lGex/K36M9dfd9R5I7uDvRbHZFrVRiN\nfoHR9AniJsowdGVeqXYX1RBtXrHo+L3Llj78HJ6P8HyM3gz+tz2sv1MhCNIx6nuGMNwAacH2fktb\nUja1m4DKFzXiRQgNUxcC/NDi0rHbYtVSIpqaiiWk0m5m+3drZE7r84VFoAgxZGikkN+XxNjMY3zl\nbAT/95dXMAYH8L/tYRpHdhMkTOT1BWQ6gUjG8XdPsPXUJAvfkSG5Lhn7yFWGXvCY/mSDkRMufhxW\n3mZy7QcyrH/TAI19o2BbBCP9KNskSNi6sOUGeGmT/gs+2TldHPL3TVE8mKPRa1DYY4ABQRyKOx2W\n3zmAXfJIrUiGPn2DWEHSd1nS/9wG8okHcTMmqvEm2TW9zgguXiUY7NXdaaGFWl9VQLS1GbvD3GP2\n9Wmdt8cPaRrH2LDehLshtWpzi/rD01g7JvFD9xEn5lEb1fOfuG8WWa1GzhXCcdpzSThXRbTXnhRm\nX59Ggb5aMd0wtcBqLquRJ7ksiS+fj+YbAGIxSu8J55w9moomkgld/A7nQfnkYYIrYZFZCGSpoukZ\nYfHImhiP0CidTmsAwS1drM795UUW364/qz/ah7VzB/7+kA7+4G6U55K4voWZyZC9Ggp7B5D67DkM\nXxc/eKPzjK8jeud9bVP9avF65sbRQX0/z9+M0KvCNBg+pbDWS5EhAoDZhO/ar4vzI3+7jdo/232s\nQHerO8ewsCyt/2I7ugh0Zf5rF4MMM6L4qWKJgWc3cR/do8e/H2iUC1B+YibKczobWtbEOOJhjSQN\nrl4n+dUrOk98+ACN7zoSadUEpRLKcyPdKnOgn5YLmRCC0o44mz/5OOr0OU2NbR2/RT9E38P+0jLZ\nl/NsPpShOqw/e7M/FJb+wj3UvIP2WiQlZs1HOhYiHg8LKx20B6NNB7+dsqEdyUTb1SsINB0wn6d+\ndBdiagzhOLop2avFgkWg8JIGS29PhYi9JpmnT7fPK5w3jN6MzmEazYhmqC2aLUTY5JKlMqrZxJqZ\nxhzop2UTrsK1tuUm1nJOU0pr+kRIfM9FhsUgc+8ujUSW4CdM7Ww2MkTlvYdZ+u5JqqMOe37jBj0f\ne5b6eIrUpQ2yn7/K5GfKjDzXZOOwYP67ElS+/X7M/j7MkSE97je3kavr+joM5Ih/+RzDf/Ai8qVL\nWkDacTSVOq7X3yAd59q/e5T8jz+OiMcw+3M4S3ldZE3aEYpeNZqR7fy9DOMuWqGvKVpIVsPESCZp\nfOcR+i5VSH78WbykgZsRpFYUN743dAg8c57x/2GLwnYP6Q5rRf/bHmbnJ5ssfGKG0f/vRS1L4PkI\nX5HYEDglgVOC2LYitSToP+8R24axD1+GqwuoWk3vq6xQ27FVHFIKVavjLy2z+Y4Zrn2gl6s/1MPa\nozFWnuxh+HST8c8a+D3ttUWWy8h0CnslT+yvT2F+6QUA5v/t41gz06z99DGu/PYRjIP7CEol0h85\nSe73TpDf7eCHJhemC1YFDE9QfXsF05Ss/7NjABR+5HHU1AjiXJqVtSwTH7IZ+OAJ0jdg928tkPtg\nD3P/+rBGRAHb/0hr1d789hj/6dq3MV/ux668xQWhV8kFZP9rR2W33EW7qGaBdnczhwaQZy9QHRMY\nnmT5my3MpiC2rZsbU79ynL/97ANcWxoEv3sdlI0G+a0epp9WGF8+g7+0THzTxSkInKLALoFd0U69\nIyc9DA9iBa3tQ9PtaLC3C1SExXN/eYXgwhWKuxJcf7/J5v0Ww89Jeq97+OkYq4+Z1I5MA7D8ZBx6\newgycfyUiTIgfW6DZi5GfViw8J4kN9/lUB806J2rk3shT+4rS6weUzRzArMOTtHALgmcgoF9OM8D\nO5bZPb7O+B9dxim4yKcOU5y2KVUS+IHB8EfjCM/ALgsGDmyw8oRg5W0apbn6U03c/gQ0m8y/t4+n\nC48iXmPt995nRJ3R6YrwWjV0XmMo16XxjkPtYxsmqulqkc2hZpcLCQCfaws52Wt64xy5MXUcU1hW\nlNjLRgNZLOnNXKOBOTiI6Jx4b7vBlO9HSZs+LwO2ChrBcfUmhR/RlSqz6rLypE6Qzf27w/PXdB4R\nwm2bOwd1xX9oAFnVCZo4fKC9ye94b1mpgmProoIfYC5t0P98XgsHhxVza3wMVSpr5NLBfV0CgXJx\nhYHndFe5kbuHjglhdFHGvl5R8rs4winPpXBAo7VaguMqoTciQQz8XArj4L7o+ZnLYYFucgK2w274\nQE4nzZ3vYRhRd0y5ruYyo5E8IhkHy0TEY+37oKU10qIztXRd0BRDcfMW5EsExRLBcJba9x5FNZvc\nfHc6ukbWyLDmeXsu/sIiwna02O+tNYKtbeq7NM3R3DPbpgAqRbCxocdGrQamqQuOjo1wPQbPVjFH\nhjD3zBJsbmGNjyFsG6Opk57C+8OOR61GsLbO5Od0scuuSsytDlXV12Jn+QaHEnTZMfoJdLJrG2CK\ntoZQhztLV3QKLxsdxaMwkfVG+5ClMs5mDVWrEWSTWJtlrIpHcyhJbUQvBlZdYpdDSl2ppAtoYaFJ\nVGpRUk9Lx8f3o+6GKFXwr8+janXY2NY/rtdNv1XtTQSFMuL4i/ira7qbG9rumoOD+ItLCKlwCk2K\n03rD1BxOkX9snJW3pWj2GUz/2TaZT5yh/vA0ftygMeiw9qhDLK8Yfk7Sdx6shmL5bTEqe7IYtSZm\nvopVqGHUvGhj5SUN+j53DWUJSjvjWA0FAuKbitFP38LrEVh1hV1WbB5KUp4ykP1ZStMWTjnAG+wB\nUxDf9CIq1D2Ljg27m4trBGY4Hl5VQLRTV6gzZAAjulFQnYijLBMRii0rK9zoHZjF+fQp6nuHo85h\n8q/T9J4Li9CboWZOrRY563StqTLQ6wDhehAEumv2Kp9PmKam4IRFRLm1jazrxBvDxP/WhwnW1ll5\nV2jNu1uvfcHmlqYr10KKY0idsEaGkZMjGt0x0B+dn8wX8PdPt69rhBTQWn2sbRIUikx+Xmt9mJUm\n/o0F7EXt5tIYCmnPq+vIeoPsJzVqIHepjqzVSH/kpC443Enk+i2O+FcvcevtX4N2dafE/E5FIqXY\nfijH1j/RlEFhhYK6qSRuj0DUm9RGY1Tfp6m8uQuKvzj3gH5u06U5nOw+9u0bV6FdfVSlijms1wr/\noT13NqLobHwZQjtWGqHQ6611Yi/eIMjncSeyrH2r1i6q5wwW3x7mOZmMLlAaJv7SMsL1Mfv6sGam\ntSj4QB/q+fPEP/kcxccmWPvpY22qWOtyNDVqCKk0RflzNzDDFC4qSILWUXzkIMah/RGdLTh/meFP\nL2A19UYmvh6+8NWcY9+qaLlwhfeRijtRYUevV2b7d9pUsk46VkTbkAqEgZFKYmYyxDZqBOcva1qI\nacDGNsr3kbZB7lyJ7BVJY0jPJ7cjTKyRYYKNTe1mG87JLW3CFlLScGxN7YvF8K/P46+utZ8bNoMj\noWjHifKGu4W8fpPMqWXMiktt0MQ7PMv2sXHsimT881tkPnwyQjIkT15DLiwjd4zg5uLEXpxn169f\nZvfvLlOeMCm8baemxFeqiHhMI4V60/iDGURPSs+lh/bTPDyD2D+Lt2MQvy9B4hPPYV65ycwvnqDv\n908QjPVT+ubdBNfmCR7eh/mlFzD37kIWisj8NyjE/kbFnfQQX2t05qHNJn5CoE69jJnJ0OgT+EnY\nPqhIjbfzu2BtHXPd4T9e+bbosdhqBXujysRH55HVaqhHZ2ltnqoivqWwqwqnooiVJMVpC6uuqB2d\nQd4/2y5ERwUqETq7BvgP76X5nkfxUtCzAKlFA6Gg90ZAbKlI6ulno30dgHjkIPLcpcisYO2nj7H6\ns8cwmwIVs6lOKPb8fh2j1uDGrz2OuVubyQz+7gncNFTGTJpZRWNQ4Q4ECAFBYDD8vgWu/uZR3LRg\n6R199BzZJHM6TjNrcfW3jjL0sfM094zgpU1yF2DyM1XKP/AYzT6h3e5qgkMDyzw5OIfX89Y3Te8W\nnS6fXzNuz2+gq2gNUNvlUhuyCRL6uX4cxIheY6b/1Qn6jsfA0PNCa47GMBn6ooPzmXZhWngBVg3s\nSjh2CgrhQzNrYtW1+51Vk6hUBzQ3bJYC2qAkdHd13/UI0oL0VQtpa5fb+HqN2Nwa0//yBCs/oteE\nxph2XrTm10gulOh9fpX6TI7t+xysCihTCz2PPlNi7occKnt68ReXmPiCojIT0MyB4UJjOKA50yCb\naOCYPn3xGld+YQ9zP2lx8x1xth93kb5Bo+bgJQVGXTD1x9cpnhzC8AQqLil/4DG862kCxyAolWgO\nBQzY5b+HGkK3iTq9kdaMLTSNXQo5pT0pzSsNq4GxuIu/toHxQHtjP/b09fYBtgt3hlgqvZgK24oS\nBeX7elNZ1QUAZZnR86LX3CnCzYOs6K5uUCgy8Mwy8okHqU1nCB7Rk2tw8SrIAP9xjVpRlSrWzDTW\nV89hZnu1g9NBzXs35le0in7LlaNV0Gpp40yMohIxjfhY3aD8tnansvrAOHLvDg3hnpsn2NB8Hvnk\nYYxEHHnuEtboCJkPn+xGltyLaFV3QRda7sZvfT3RoV2QXNXjJrg8p7tDYQJj1aGwK4FwvcitZey/\nartnVS4TbGwgLCviyHYdvtGMilfK99sC4M0mweo6MpXQuixRoeG2RLRDn0M2m/p4zabWBbp4g8qI\nPnb6SCiMubaui5R7ZiPRa7F3Rm/sXA9zzyyVifC6rW5AOtXleBZs6m67ajbBssg/No4/fxN7JY+K\nOdFm0l9eAdvC/vzzAJgtB9BkEo7cj/U3zyOfOozz6VNsH+sQI78HVqy3I4SEgvpoSlPFOrsH0C74\nQETHiuCmHdbudBSRDNfXKI1CBXlgBhmzwLa0PTww8LLP8Kkqievb2LWQu97Xp1F+E+NajLlF73E9\nzcFWbWcVfF9zl0dHNDXLsqBlRWx0FBBb5+UHqHCcmf1t3R/leQhL0wXML76AOn0ONyuovechyuM2\nqZUm4//ncUb/5CLcWETsnyWICZIrDZyiT9/lgMFTeaojJl5K09/sKmzttyg+0E/Ql0L2xAkyDrVB\nEz8m8FKCrW/fxeoRk/UjimavgdsrUKZg85tGsOqQuuVpvQBLL5g3vr+PWEESOAb2xZtYW3WUQVtj\n4q2Mu1C+DE9i9Ga60IBwh/XsNvHFV0T4d7sqCa4tRAKtree2iqn2Z09H1I2hT1yOCkf+8ko0D6og\n0JoYrXPo3Ayi14WgXIblEAJ+ezOm1f0PUTv+UijM3LLxRVNiY0sFffimfn0sH663e3cRbG3jHZzW\nc8+LV/TblyuY+bDrX2vTxWS1inV1CXP3jEY/tDaxYxr5KmfGMeJx7FOXWfrHB1h/XBcCWtcotuVh\njQyj9u6MGidr/+IY4qtnI4SMOTyEWlx55XV/i0OWyzQGvo4X3mHMiFiMxIZPbTjcrIWFZOV6OGWJ\nyqbJfmUBL2lQ/b6jZD58kvFP2GCYBNcWiD9zQY+ZSP+qjTKJxroQyGYzKgIaX33xznN3a8yk0xrZ\n9pLOW4J8Hlmt6/XKMDG/+ALbhyWV9x9l66hPY0e4YAz1a7rqYwf1cda2te5PvoiRTOINJiNzj9TT\nzzH6/56l8dDOLnS0ajR10+6+Wd18u7XKwMfPYx7YGwmZmrtn8JdXUKfPIW6u4lzX62Xr7/1fvImS\nCnt+jdr3HP06vqg3OFpNB6kQno+MW6h4rO2W1Kkj1NLlbOVHUnY5dbWdc7QFfVAqoZ4/rx1zH7yP\nYM8UIptBWJZ2q1vNk/7YKRK3qpj7dK7YyiXMTIgMam0UOzaBKghoCV8r349eg2HqtW50+BWC0iqQ\nWgez/aAuGMR0k6z1r/Jc/MUlzPU82bkGtSGHzJ+e1GK9F3UuZo0M66adEFrj7UUt5iunR3EfmCbo\nT5NZ8ClPGKy9dxZzakLrKApBMJBh5ZvT0N+HuXuG/P29FHY5iOWQ2uhJvHc+AqNDGA/eh/HgfYhm\ngFWTmNmspoGnUgSX5zRF7utFsL/BEXwjhSkRaj3ZFioI6P2MRmttfs8B7QQKJNYM6nPdheLR4wHV\nM/2RflNw/jLBhSs6ZwTdSInHiRXDIlBRkVz3MTw9lzjhJr86ZNEYiLdzrc6mS4h8qw85lMctEtuK\nxKYksxAQ31D0LNS0WYNhUnywnd+q0+cAWP6FY5jZXor7fWpjCqcEN34lztRDy8z9YIqb3zdGckWg\nEg7ejAYRTP774xp1AigDlKEwXkiz64fPcPnGKGO7Nxj67eOM/fpxCuf6Gf7N46SefpapT0mCUgln\nrcLK2wP6/vR5xIkX6XvuFiO/cZxbH9hHczDgnwz+LUN2icD5u1MQCi7PveaxrAJN+W2Ju7eoWcp1\ntQU8kH3eoThjYNYMDBe8XkVjZxuUMfDBE2QGqpi7Z7DPhMV8qa9Z13tZBrGCIl5QxLclsZLE9CCw\nhS4OSe0o7A+HYzNEMLbOS1a01IG/e4L6gEWsKOlZliRXFaarMJf1PljEYlgva2T0np96DrfXoXHf\nBAhBbe8Q8+81KN3vUnjIJXdog+aIh5uLYxdMyuMmlfcfJf3sTfb/6hJeRlKbClCOwol7rBXSLHxo\nDz84dJIHH7uKqpn0v6yY+KSFsRZj9M8d+s6XGLhvk/r9E0hHEd8U3PdrGwS2YOZ/OcHC94YXJOMx\nbBX5+2U734o3CUrZEts1T13USJdEHDk9FlWYmzfSmHtnYO5mtLH3Q54wgKrWom7bHaNzQoqS7QD6\neqFcfeXfbo9WAh5oMeBW4UmurmOvFomv1ZGXusUnnRdv6JusWtOuQ56rdWOKFaxiHfO+PQSFguYt\nDw20F2Fof+6RFCoVPu56NNPt4SCkijauRrY3KiY58xsQdgeL36Sh1sHya+CSvpnR2rS/ScLk8ZVy\n1AUVfb1aewDou+KxcczX3cZwUxqsrWP25yINn8im+/bvvtXlMzsQQIRFuyBAxUxdxInoPmZ7AQyj\nhU5rQeRls4lIaT2Hsb9YwNw9Q7kW59qfhF3PQhHhem0tIdfTxS0ZoJZXyV6uYe6eQU1rXapgY6Pt\nlodGrxDo6np1pMOWPV9i7Yn25O2NZjHv2wNA9qs3I3qBsrX7mRI6Scp8uK3bdTv67s0OAXD7nkqB\n12MQXyxqvZ8uml74ZKXajl2dmzK/3ZFFCFShiLEQ3hdNl8p0CmXpLr1dchG+wi77KNvAHe8FSXTN\nRCKBarqoUjmiz8rw+ijf18mzZWrBTdvu6rQEuR6NYGsVq1o/nk+wtoFsNPQcF4qaKy8sNlVrBMWS\n1iyzLCb+8wsk/vw5cr93Anu9jDp2SDsq7JykvCuNlzQo70xQHbXx4waFA1kaOWjmoDYsMJpaX6gy\nZlKd6kG4Pkbdx3Qh9/SL2FWF1VRkr8K+39wg9+w6yTVJesknd6GCm4atAzFQ+j6b+O2zTH62TuZ6\nHS8lUKNDqLgVWsHee5RiK2JX17T46t3O6Xads7usCTJmYw4PEfurU4jDulEhbIf4cgXj4L5oDgLI\nvZjH2rmDYGs7QhoCkb6daupicZdrIWCkEt3nM9C+h28PI51GxJz2OtgSsjWEvqeDALmwhIjF2Pm0\nT/Pdj2J8+Yxeb9c1csd6/jKiJxXpAxrpHuRWuDEJC6xmJhOhd4Mr16gc26kRDMkkKqbXX3OrjAok\n8v5ZvIzuwHWd6zNnqB2apLQnHc0rIyd14alVAPb2jSNDh5B7Hb1zt6G3vs4w0j0kL6+z41MFfbwj\n92sNwHKZ3vN5Ft/Tj39rlf5PXmDtUf39JT/+rNa3M02t+aJk5FipOrvAt+tfAS03L3U3YemOzyQb\nja6xLuuNSAx+/68ukp6rsGt2lZ5cTdMy5m5oSrsbUrFLZYSj9RllraYdFy/N6/GiNAIo8fIS5aM7\n2vS0IECk0xT399L4ziMABJUq89/dH80ZMqNFqM1dOwmKJbD04954jvqBMYg5VN73iNZnq91jdFCk\nUdf+v30rjzx3KXKHjfKf8DtqU7FkmyoWClNH0UIUhWEk4ojlDcxry/g3FjB6UgSrbZSOEoLi/f3a\nicv1Ir0yvR5Z3XOfaWoE6viobgqZZpsaFo45GWpTRULXhoFw7A7NQycSq1eer4tLzWZXk8xfXsF4\n5gw9H3sWhNDOtzLAHBzUNGpT4O2bRE2NYU5NYO3cgZuLU5iJ0RxI0HN+g55lSWGfwh9IR4hlcfEG\nY//huJ7DNrbIfuyMtgPf2MBeyWNdWSJ+6hrlfTn83ph22zp3idhfnyLI53Gur1F550HdbOnPYWTu\nrbPhNxxGWAiSuhBj7dyB6Otl4d8cI7PQZOi3jjP1oYv4KUV6vnttS3ziOSb/ptFl7NMVUuFPD4NS\nxAoB2eOLxP7qFJmLRRKbAfF8gBGA6Snif6ld2yId1nAdE4kEtSOz+HFBeskntVTXaPSmIl6UBHEL\nldO07uzxRRb/paZ0yacOo44dYvh0k/l/doD4moXwNVLJfD5NuRlD5VwMF4b/83HtwNehxzb4OydI\nrQhkQoItGXm2ydwfHWZ6aoOhpF57Nn/ycQYO6fvIOLSfpW/R61lw4QpW3uL6v32YxV8+xsWf04Wm\n0i6tK3OqPsPNZj9m894jWjvjNdMOhRE2tmVX4Vc1m7iTfZj37WHwTBXThdETAUEMpKNo9HXvt0e+\n+yK33jESSV0Ar9Aa9pMWsbKkZ7FB5kqJzEsbOBWJXZPYNYXhQ3IjwF7YaEs+KIVyvYjmKjJpGsMx\n4oUAuyYxXUVyQ2J6CiyLYHUNY3qSHX+ZjwwqvIxFaYdDZSbD2qM2xCWGE2DmbUxDMjO7xuLbbQbP\nKMY/vkDvhUIkWD378ydJjZXBVJimxM3HySw0eKk+hWVIMmNlMp84gzIg6PWpDRqoc1dYn+unPG4z\n9bkGjX7FxpOjNLMCcfgAw18yab77UUaHCtx0B16517nbd/ranvYWRCfKg1d+0W9EqGYTlUoQrK1r\n9EwYPTcNgt6E5j/vmnjl68LOhroNYt6CON725PaivbmNGmk7XryCRxm9RhcMWvQCWS7r/ysFm9uY\nmyWmP1Xteq2saJty0ZOiJXAHGjEkag1qO3pRj2k4uL+6RvDwvu63rNWJL+QxtsNih20xcFJ3PTBM\nrKpPbVhXb+sPTEaUMX/5lra3FiKi27wZ39XriWiSCS1X37DzaekCXZ2HVrfdMiOr3cSZBXbtCjf9\nQYD7rkf0r60Ex3V18tIB34Zw3IR6Tq3iXEvwtYVE8zMxrfdzu011K1qWzi1IttSC0LJY0puAkHbU\n+4kUibNteKQ/f1M7D/X1RageYTvIahV7rYiKOWwf6oueH6xv0Hz3o+33tSxErcHY32zr4lFBC5Cn\nVkNdkv272TqYpHhAHyP/xJT+PgwT8dWzKM/FPnWZxX/RrYnVKR77loYCIfVPYl2RefoFjQQraxvS\nSEeopQ0kRLdj1yuOF8LdEwndVdy7C0yT7LPL2Cc0HdOouTT7LJwX5jBLLm7GwnjmDEEmHtIEDYSl\n9RDaXRWltb8yaW2Zir6HledF/wJYy1uwkdfn2AHtltv5SHgV09C0M6/tKqWUwkgltfhvMomYHGs7\nC27lsRc2ELM78LNxRKBpYVZdf1Y/CUFM4JQ15ct09Sbdrgj6rnqYDUlzMIl0TPpeLiEPzuKUA0xX\nkr7ZhO0C1b0DGJ6i0asLn+lFSXopoJEzye+12fyBQzT7HZafStGz5OIOpVCGIIjdoyWscwPfeX8K\ngVGq0aUZF1JtuhBkt7/uTjGg7yFxJSz+KInY2Gb++9qFG2tyAvnSJcoPaGSEqt+mp9S5MexELQmh\n9cY6aSShq5noGOvRZxrIIcsVLVArlX5OuGYp39Nd/WYToydFbLkIhhaN95dXCPJ5jSCo1XQBsxWm\nqYuMQmgaGhCUy1jjoxhhsUBIrUUkkgmt3zHQjz+/qMfy1SVm/p95Rj55QwvoP3U4KmA7nzlNfcDQ\njZAj92MubSCfOoz46tnwsyqMxBup6Px1hhDkPn3lDaEiCcvCn7+JfOky1vgo1noReUCjhYOLV6lM\n6wJPUCiy49NNbv1cuBmq13XxxAhzEGFg9PV1Ie+MeLyrqdQVlvGKbrGIxTBSyQj5CkR6UMrXTQhZ\nrgDg31rDLFYp/f4ExpezGEX9uKxWUS9cbKMZHTv6fmWhiIjH8B6YwZqewkil8G+tEttyufTToSOI\n1MiU7PPr9JzWVBCUZPAlH39+EbOvj8ZQEjk9SjB3g+0fOxLRwsXxF7E/exr/xgKF3fr+SJxtF2Hv\nSXQW+ZWCrXxUGFa+p+9lp0Nb0rbbxb3WuhTlSqLdrJIKI5nEmp7CmpnWa47vI4slLR3g+VrQfnlF\nN4/OnNfC9fE4Zl+vpnm1hOU9P7S01+uIOTigTS5W16kqDNoAACAASURBVEMamhki8z1NyzJN3QAJ\nc2NhaiSTrOpGqpFMapRfs4lsIaAdp10A6HA1jMagUlqzJ9urC+EbW4ibq5jPXsDYKuiGSaNJ/OQV\nhj+9gOEp6rP99J1cZt9vLGltmdEhrfunQmMR19XzVYumPziIP3+TYHOLIJ8n+fFnca5vYI2OsPoz\nx/De/rCm2ReKJD/+LEE+rwv2d3M3eosj/2OPIx45+LpfJzobmaaJ2s4jN7bI3FD4SZOlXzrGtZ/f\nh1kXd6SpSMvQIuV3COW5IBXpuQqxvzoVIVGFUhiuxE8YGJ5GCUUyDYFs58iuR3P3MF7aJLkR6u0J\ngZN3ia/XscsB0jGQjqWpzssrjB3X62V1NMbi21PcfJeDm1V4KYU34lGe0dIQhVISseXgJ+9+bZyS\noveSiWia3Hifxehgkf3ZNXamtlj+xWM88hNn2Z3dYO6PDyNfvKjRKt93FPO+PQw9r9j5iyeIbRPt\nyvf+7iYy6zHfGOBsYQL1d2e3DqDdhl9vtISlw8K1n7Co7MlS3J2kssdj+W0GIgC71DZE6Qzva9RT\npW3Qc72s0cAvXiS4eh2rJjEC7S5muopG1tSUMctCBSFysdHQecreXVT3DWFVAuySj1PwcIo+sYKH\n2VB4UwN6ntncRlQbuL16jYxtexg+rB01qI/7mHEfWbFJrAlWbgywWUlhuBDf8iLXsk6wyPD/Hcfu\ncamtpRiczFP+hTInt3eSc2rs7Nvmxi8/xPTPXSaWbVAfFJjjo8S2THK/d4KFd8dJL0BhL9SHFatP\n9NL7JycpT1lsFHpYd9OvFSD0d6cgFNEgWvZ0b1SEk28L4RFcntPUlzARBUgvBVSmkvi3VvFTHQlr\nK5l2XVpuYF3nLMPOy+2FIlNrFCEMlN1tt9tJO+tKooTR3TVu/W6a4PmY21WNDghfY06M6gnTNLVA\nFkQOEf78TZIvLFAfiVN5v4Y5Wy9f70YJlcuaB+p5Ohm3LILLc1ijI5i5LOazF0h/5KSG6H32NJXD\n47pQND0Zfcb0J850aQu1CiVvdbQ6YEKIN66wEEKUQV/rlvuJvL6g6RVoNNBgXCev5LJUR26jrsi7\noBeEocffHbrCItykWGUtSCus8Jh30zgKdayiTRy68CkcB7YKpG82mfqja5G4rLVjUm/sWogT08CY\nntAUis1tWFgmue5R+NHHMXftRDWbJBeK0bGDjQ1Nh6qESATTQDgO6eduYqTT+LkUAx86QWqpgZnJ\n0LMY6obsnWlflmqVzI32PW4kkxh97SLUWx5CIwfiBS1yZxzch0w6Wq/FoE2/asWroTtaBZZ6HZmO\n4+dSEHNQyTjsmUbZFka+QizvazfBlQ16LmgYqlnq6PKGhQNhGu0xbVsaEbi2qRdjz9OFHRVCcAOJ\nSsQQTtt6XpkGqlhua8kk4qEodTg2XQ9Vr+sk3rH1JtCxUcmYph+FyDSVTeMO6uKzU/Jxij6Gr5CW\nIIgJghj0LEt6VgN6lgISG4rMvMSu+gQJAxkzMJsBMmHphFtBM23ipS2qj++iNK2t5TMLTYQXEN8K\nSB+/QX0wnL89RbPXZOgFVztLfems1iZqBN0IzbcoIipnxxhoza9yfbONoDHN9vPEHZbb24pJ7YOB\njFtaZ6clpur7qGIJswPY0tYz+xqU2ZC20fXWHZQvABq3ofTCc7OmJlD5gqY/xmJ6U+j7em5SKnQy\n0sl3sLWNqNaJfeoUanxIo36GhyLnTJlvJ5HB2npEsVa+r3X8wuKr3NRF9fgnn8MdTEXzoiyWQQa6\naJlI6E1qPIYsl3HT3fPv8HNlZKPB4jvT+LdWsVdCc4WHD2DPryNv/7z3IMw9s13uXV93CKE1c/bu\nQtgW/uKSRl8997KmUSnFnr26CWZmMgQxM0JLaY2ZoP1deC50CBGLWAzpenqdVao9vkItRlGp02Ul\njJ7TI4fL8L6IXOzCjn5rXjMcm2D5FrmXCox9fpvg1qp+DyEQhh5TrfktQpP4PsHWNlapQWN2kOAB\nTWFylvPM/FmT4g9pHSVZKMJmPhL1RyninwzRBUGgBWRD+uXgyU3Wn9Rop/IP6NejFBOfL1N939FI\ny6blAPuWR4vG11qPhvpRxw4hHg61Ih07EmuFMG8N/y9Msy3UDCFCx4iKQkGlitzK6w1+uazzEzTy\nRlardyxe+2vrGpFohhQuqbRGUKOh54ekvj+Dre0o35A1rYlnxGLIag1Zr3eLkptmV/6vXDccN22d\nThU6FkUmKclkVLgCMFIpjWjM9kbIbdVsYk6MIodzVGd6qT40iUj3aAT9F57H+cxp5HYBf3GJZs6i\n8OCARkQ6NkZPCiPXR+3orC46j44gJ4ZY+qVjiMMHtNvvA/siyuro8TL2559n7X17uprcoBu2X7MR\n8BZE/9kC4tzc13+AViNyehxZq9H/kTNUxi3cXoWfUjQGJc07AE7j1zbuekizrw9rZRt15nzX4342\ngZc2ERKcks47/GyLdqgbG3g+aue4NuioS2JrVYTUBQKr1MBa2SZ+q0L8+iZGw41QhOYXtXh0bdDQ\n8gYKBs8ojIkaI6N5Moe2aEy6ePkYg6eh95qk/t4jr9BNs6anGPjra2TmfZRQOIM1YpbPfCXHx48/\nyvv/0ZcoeglOLkyTOZ5g/t89jlUTLH9HwPK7Bug9G1IQpWL0y4KlXzrGxV/s5eV3/BYDdkXvM+59\nHTGK1+QE3smWgfZeqBP4YULP+U1MV2FvWSgTpK1ACWqDr9wf7fjo8qu+ZeriWqSD23UqPiihKfix\nUtBGSoLWmCuXtUt3fwqn5GF6Egww3ID4jS1ic+vEb1Uw6j5Grk/Pe45N6vImHLlfSx38/9S9eZAl\n2XXe97s3l5dvr72qq9fpZXpmehbMjgEGFBcsFCgJXESKpBhW8A85grZoBW0xTEsMW+GwrTBpSqZM\niTYlUaAYdBCSSYoSAQKUSRAEMGsPZuuZXqfX6tq3ty+Zea//OJn53quq7mkAjZnxiejoqnov893M\nd/Pes3zn+x61WMCt9Dk8s8nUgW36TzbBN7TeqeI1FO1ZLxMZGuZGc/78GwQvF3GqIUW/z9HqBvvy\ndVa7JUpej2c/8Sbr3SLq7TLhyQ4Xf+YAcc6y+dPPYFzL3H9a5tB/6jF2HmoPhjjT03RmFB89cgVP\nxXcKEPrgJITU8GTRd3HmJ4uv6XQzxySu1zPnBqD8F5eoHxEODv+1d0Yc6qynfi/LnKgdjnbKdh/H\n2UOhdl5TorgwfK5hy9Rh8nmixSVpS9JOlqQQOWoH22xhF5awQQ41VoF79kvP8soqpT85Q/Xtbdwj\nh1DlkqCJdpjIf/bZ/IQE7HasDNMTmCekzzecq6KDQJyoJx6g/kjC4/D0g9K/fXOAtHrfUB7p5yfV\nzbtzsgHvU4oISdslnJlB7/FLz5+U19pdvPboPFCOHnFm0nPYsC8V2R3oMuW6UrX3fHS7L8H7DjLY\nDCWWSvGmScskKFb5vPzsOKicj/7qq0IgPJfA+qMYPT4mVa93rg2g8/PT4LmYRgP/S6cpLvaJZioi\nk9rqjDjB4b5x4oXF7D71Ts4TLS2jCnkWvjeZt8+/TvepE6jnXkc9for1pxI1vQRiOf71G4Nr8j1B\nq7yXlj7SKcpNwcYDDld++ggLf3mC5j0l4pI/2LzCaBTdkZ0n4XRIN7/0PZ6PrnfQLyfOTRSDARt4\nmMmKoChAOH+SNgUWVwTpkyirpBB6G0XoUhG7uS0OZRxDGMrak0oMxzGEfVRHgi6bVvLCSPgCdFLR\na3cGfdNhlBGAmmZLWmODADs/jWp1sa22JIC1g3U1brNPnHfojbl0Zjy648IZFOWhPafojslnFhe6\nlG9IALDxQMD2MYfi26v0qz7Gd4hzGq8d0Tyo0KHFeIpeFcbONojyDsvPjqMs9O8/wPSrPWZe6RDl\nFaWbfVr7PNTjp3BOHiWaqYDh7j3z34RlZNFD88F0u9hGQ9ARpeLIep0G3fKLumWLUJaEXq1hX3kL\nPA9nanIQVMeG6dcTbp7xccIZeS4Li8n+ZsxApTOpomeE8GqQ2BzIUYeyFrmukJkPX1tq/XAg7z1U\n0LBhf8BTFPYzBEi6J6jriXR8QiatS0VpWUwVD1MlsVxOEj3pfVzfHCEKd7/2Bv2jsubqqlyvefAY\ni39NnPrWfbK2rT/sZkGZe/AA+mpCJruS+ACVfHZf4vWNu4LK+bbNdWj+2If3fu2bQRIkSTXieBB8\nN4UrIxWuuPzyQcyzHyKu1zGeorCcJA6iaLC+J0meeGsrg+bbXm+wVymVBQJZG0BnNLGmcrmRIH+E\nezHlw7OCShnhZjx/BbWwJAWCSgnlelIoUEqSh4l/4czOCOHq1CTmjXP4ay1MTvhozNIK+quv4vRt\n9tnx1hbEkkRMhTq077HxmVN0fvApoivXRKHzyg2mf+dVwk8+QXGxhzM1KejYl94kvzK4Rvt+thoO\n7UGmFLB1ssA7f6PC8ifmRV67nFALxPEocnpY0j2Rr8/ue9LSkSrw6kIBGxt0uYx7+KAo3w5Z6pum\nc86029KyptWAINrzifdAEAiq3pf3WSPfdT7IkEMpbUJ6Dju0t0qBLPF/IxHV0OWyoHmS9jJdLksC\nKwyx2zVUuUTn6ROoIwdkzm03yS+0wEDjiQMjgb1yXeGlsjD+wk1sr0/v8eMwOY7Z3CK33kV/RWTE\nneUNDvyj57CvvoUul9E1QfBHS8tCsHz/CWZ++/VsTCqXE8GNwm0gJu+hmdfPjij53amlqnEpj5Xe\nbuLec5jwmQcoLUYoK4pJfk2TX5M2qZHj87fhnYnjDBWUmXaIii4qBqdjsI5CxRaTSwrs6T6RD1h7\nQjibpBXfQcdG1FyDhCdxcU0Q7Zs17Ka0Kjsnj9P80afJb4jiqdtRGEcRNnw2Xp2hG7pgFIUFl/Hf\ne43y514gt9Gn9sn7ib/nMUGCnTgqaLGVVa7/oMHbdqj+xxILz++n5PU48bMv8kc3HuTly4cJXirh\ntSz9+RCvCarpYL5rm7P/9YAQv7DYpTdloOfwmXM/xucXH6QV+RlX4AfBsrbv283nkWLXQMGLOCYV\n1QkW25irC8S+wm0pbM6Agjhn90yApaTft7LhVnoQrsw4p7COSLwrIzxCppQURrWSogHQObUfqxVO\nsyd+ZWwxrha6hdU11LVF6SzSCnXPQUzBJ5yvsvlgie6Ei7+t0RFEDY+bm1WOja9zaGoLQs3k64oD\nf1pn/PQavY/eP0DfD9m+f/wcB2c2ufHaPG+u7uP5m0d4/bkTvPN/3EfPuJy/NM+hf/gch39TE05E\nHP/Vdzj405eIqzG2GLD2SMDYbz/P0WMrLP/143TmI1xliNF3nOn5wCSEhk2lUNC7QQ6cmO31MN2u\nwFjHquixaqZKEa9vMPNKD330sARNQ8GpjUJZ0G+hwJJW1ZKBy/8mFuc4H6DrncH7Bhc4GiCklgYJ\nVmQ99Vg1QQAMoP6m3R4EDaUi6tC8yHs329DpYj0H+4Akd0yrJUE/shCrfH50ImpJWMRbWxQXk428\n0aY3X8E5I6TaOozh3iPy/tNvU3l1SeDj3TAbKyQb8fuk9qOGKmfKH2Rgv11L50F86Qru/nmpFI1V\nUcXBInjvv9pAf+gBGo/vl/71YfO8ZB4ncydt84JBIiH7MGnpsFGIMzMFw0TUQ/NkGFWWJlGHW9JM\nsylV/JlJ4qFqfHT5qjhY3a4gQA7OikOwvokKhcuGyfEsYZN78QLejQ3MeEmkzedns8+uH8uLo33x\nMqbepHEoGVO1TLCezIcgYOPBRO0n8Bj/refpfOYp/OuChhne+G1spMrzHptK2sWwCErIyEbUOhSz\n+phm44GA3lReUH7DJM07LZWjT6qxNopEVezCO+IwL6/K95v36M0UMb6TqQMSG1Q3WW+MhaQKniV+\nej102ualVbaR2tgMJLmNlXUiJ+1meK5Izrc7RAlxrlOtDJKJaXUvCS50kEtIOjW2WhauJ2NhekKS\noVUJMsJKjl5VZDWjQFpGvaZl/GJM+ZqlejWkW3WoHS9QP5KjM6kJy4qwbLGNJquP5whLLm4nxr++\nyeFfO4P/xZcpX9hm7sUe9pW3KFxcJ1cz5FbarD4W0J7zQMP4uS5evQ8WWVOXVt/fSuvwZydBNEg7\njmk0UIW8rM8JsmVXULyX8oZNVMmUEqLUsaogIvrSXgGgJ8YovLUEgDk6j/7aaxKQfP31TFo+42ux\nFmdqSpTBXHewL5EknoaCS5XL7RZNQCS5R5QwdyTfbBRmxznjAylaXShIi4jnCwo1lyNO2qdVtTJy\nLmdelMZsv5+Nw4b9keDvxvfms3G6B/bjbLcprsi66Nfk+Zl+PcyC1879c6KOOD7O9Ivi/NtX3pK9\nv955zznLbmXxW+cpX2yw+Pc+sivw/mbnt2k2YauGc/wedLmMMzEu4hmJ3furVwgrHurRU+S/+Brj\nXzw/VGAYFB50Mtey14aRt0NjslGEU62MFIWU46DLJbm/2iFrlxy2VE0ubQsaq4q6U7dLvF0TpcXN\nrayN2p2bFS6YXg/TETSS8jzio/OCRHrjHO7zkng33S66XKZytpa1cOtyWZJg7TZbp5JxHpynerlD\n8YokIsPZCurwAUy3i/cnp+lO+6hcjmAtQbi+cGbkut8XS5/X1Odqdpl6tcbcC4bmIbj8Nyq0PrQ/\noxHI0EQJYmhYej5VFwOSxPDgmgTFI89158QMZryUJQydqcmM3D37bpMkX4bcSX0ea3ZxqQnRedoe\n76HHxxKfOxKV3jSxM+zDJQmrTG0zQW/rQiFrLbWdrhBGhyE6CFClIqpawbY75C9vojo9TLUoRZBX\n3yL3xy+T/8OXUEEgoixHjxA9cBiMoAhWPnGA7b96ivasB8trMldfehMQftFUuQwA16X+2DzxMw+x\n8PelDTM+exGOHqLzXfcJ4qrXE3Tk+0yvcDcsVcdVvke4f4L6o3N0Jzw6Ey65LUVuEw59qUlYBOON\n+ktqq551EuykzxjmhknNOXYY4yicvsHpCbJZGci9fFHO4XuowwfoPnKI0rK0+KhIuIJ0L0b3Iqyj\nhVtzuyaJ7pXVrMCx9tFpehVNZ0pjXFAxlBd6VM94TL9m6XZ8MIrOXMz6TzyKMznB+sMFehVFa87H\n3+oSXxwIEI296nPP33+esd9+nomzlo1uEfX4KX7+3i/xUw+/hNODX/zF3+IXn/kjOo+3KV11aK4V\nGXvTpf6TH2b7IUNY9lCx4mOPnOPZ6XeIrUIraXn6oJlNRIvuhGB6pJjU6STzCDZ+6nHcrsWvgb/m\n4LYU+TVFHIB95pHbnPEOxrdvBrcV43YMOpSkn9eIiHOSgDYbm9iwj3v0SOYXR5UAFRucTojuJmM2\nlrjelGJAP8TmPDpzBbaPBigDtaOCYAMoXPUof7HE5e1Jck4EjkXFFmetJjGBVoSzFfnMHfbU1DWO\n/fzzzP3vOcK3K0QTEWFBEVmNV+4Tf/djXP5Rh4l9Ncx2jSfGrqO6mtYvybrZ+/STXHlrnu6EAgtL\nnQqNMOD/fxxCWTJF2h9k03dv3bf+rX5MIY+qVmRRSCqiAO6fviIb28yodCnWyuTNBxmM+ZY23EIQ\nx6h8gM3vTmopx9kdIIA47Il6gs4HKN8nWl0fPdb3xamvNTI1IffwQeL1DUGCXF7EWasJyiQIxCHo\n9ugcm5TgYmuw6EaXr2Y/516/IiplzSbBWwsoRwvvQ85h7clxSSY8/aBwFHS7kkEdNmNumTR7Tyxp\nGUudoLuVFEotWlzCHhaSyWHi1vjsRdTNNYy7e16kyRmdT+bwzpbDHc5B1oaitQSSxu5qRzTDHCGZ\nbLXN0AjKlR571Q9Hgh7l+dk4rFZY35UWjakJoqvX0WevotpdnGQBVK6LWVsnnChgiwHx+UuEz0rP\neXFpkPjTY1Umn1/BGaui6k2mX2lK1eC+o/SSLrDlD0sCrfTlc9hWW3h1hq/bdQfVy/fSdnyksuC2\nFcGqQ1S0bD0cUzvqE6bwZGMGhNLDlv6eooniGFUo4M7Nyj2+9whrH5tj8bvKXP+Uz8bDJeqPzWOf\neQTV6wtxZxAIcrHfB88Tkrt2R34P+9hON1NeMb2etHjld6+NZnNL0EggHB0mlmchkSVO2wQyotE4\nTlQgNHpygnCujOrFImXsJJxchRwm7+F0IgpLPUrX2oQFRXdSKi86tBSXI1RkiQMIi9CrKnqT0BuT\nv9m5aVon+hTPreF+7Q0II1SxgHtgPyZwCa5tScW/WsBvGJyldTqzFh1alp/Ks3l/QO14kdJSKAm0\nmSl0aBJFuO+MGMEdmVIZV0lqNoqk1aLdFk66JDAesVvNdyvcNsMOVlyvZw5svLaBrckarhsJ6eqh\neVJi3TShlJ4/bXXN9huTcHUEuZECxK3a7my9MVrw2Hmvkz1PeT7W2qw9ybTbGQeaTVoUU0WxtB1M\nJQojZnVdeM9qdWntSAo1NooyrohP/sDLyc2Isa025toCpf/wqiCgXpdW58LXL2T3uTOZILMKebhw\nNRvu8k88ICozHyCzr77FwX91luWPz7H508+8+wF7WJrgize3iC9dAWOINzZH1ISipWVyX3iZzv4i\n8dMPyGvOIDmjiwV0sSBO/l7zdY85ooJgRGVUVytZxVW4qvZwMU08SPalrat7IS8RlC1aZ3MFa4mW\nV6Q9bqs1aI/q9VD5fEairVsdHvqfBaFhmvJ961yO47+9Ka31y2tYrVBXbuKMVdk4FbD96JS0YD35\nEIXff1ESXbGl84NPZc/P3fZH79QyNcy0MGEtRDGq3aN8bouD/2+P/LJi+SkPOz0hyf0wkn8pT8Yt\nnnHlOJJ0m5wQ3/Ph+yj/xSQ/841X+Eu/8jwX/o7Htf/qIfqfekI4cy5dkQOH/I7UbNjfwY048HN1\nsYhTqYh/ohU2Ej4N2w9lP0sKwCqXE9/FGpRW6KTtS9SCnSxxritlzFiJ+OKVhGPKl1a1UjFDW9Pp\nYq7fpHNimtUPj2Gmx3AqFZyxKs70NOGxffQPjmMdTVhyufl9VZxuzNilHl7bMPHVhdFExR7Bb7y2\nRuEPXsQ7e52Dv3xa7tN3PwaXrxOsDNBkynU/UAII35IpPWjp0xrv+jq5zRDrKBqHFfO/9Byz//Q5\neOEN9v+vzzHzz54bOdwkrTbO9DTO7MyIKuBOcw/sx1TyFK7VcBshTi9GR8In1HviBJAghFwHpy3J\nIKfZR8UWHRl0O/m5G2IDf1erp3P8HopLEcZDfFUNsW9ZeTygfjJm5TM9/DcLHPtchIoV60/GbH3y\nXqICBFuGXC3etU6m1+sePMDKRyxXlyZ557/x+DeLH+HV7YPo719nLapQ1D3+2sk36I9ZDv1Hxey/\nfIXxL5yl+rZDe9alfAUcZfn9y4/Q7ObY6N7deOZumfA+xeiD87d/X4JCxtjM59RjVUzOJb8ZE+UU\nTtcSbCj8Ouz7leeoXIu/rW4hZ2oSU/BwujEqsllSUUUGt96VNTJZn/oHx/HqfXQk/r2K5H0qjLGF\nIEMzW2ux4xVUP5IkT9/S2qcIK5behKE/G9GdNWydsjTaAW+/dQjV19SPalY+cSDj7VKxEQXyHfb7\nfyL7v39hif5cyNyBTco/vkhkNH/p6CX8/2GZv/ddf4zvxqiT9/C5y49x4mdfJLaK+smIxWddTvzd\nF+gcjFCliE7kUQvvfM/64CSEdvJ0DNndRAoxXsWMlfZ8Kb54ec8xZDC3tOKxJ0pgh1qUsdLOtQfM\nL3Pa9zDb76ODHLpckqq/iUdhralcX68n6IJWh3hmLAtK0ySA8j1wHEy7TbS6Tr/ioI4cyAKEYVOu\nO4CBQgbxx3HwFmv4LYueGMPkRDECQF9dzBTZ5KBbEGa/FzaMeEhMOc5dTQo55TLNYxWiazdGej9B\nHAK/tkfVMIXxG3vLFhEYVEpSh802W9hKCeU6uwKwYenoEQfPSOuQzgeQD7Db9VE0UZAjlZpVrQ66\n3sFMjmEKCYqn0RBYfauHMz6OaQj/hnUU3VlJ6Pjr4uQFl4auP4pQjVY2d9ybG9KS1u6RT4AFGeeJ\nJ20p0dTg+Uu/o1uqMn2HLSVGx8o/ZUBFEKyLBGaUV8SBM9iYhqu0t+B/Ua6LKhXkb/mA1aeqOD+6\nxpM/+gb3PXmVxmHpWUcrzFrapmOyQF3lfPm+4lic+X6YBWTDzpjyvEHAZWyiJDUYV1ZN9f1BMKfk\nc1PiT+X7g+e+lJce6e0GqtOTVhDPxfqucBG5mjhw6E0H9McgKsr9i/KazqRD7ahPd0IRBwqTTD3j\nW5yOEtRR2yG+dEXG5bnYchFbLkhSR2tJxmtNYbFDtLzC2HmofP5N3BY4PcjVY/IXVoUMPQmKlLXv\nr5M9HPDuWNNtFNE6UJBEefq+W60DQxwsNhSODRxngM5MzcQZGbxNA6WEhNfGsaBsbnU/tMxjm8L9\nhxKKexUodLksrZJDf8/IsXcO39GSrKoMnu1UjSZtYbONpiSaE2SILRclkdTrjThntjhEgp8kY9/a\nFqJgO1GVKt1Qa4lptSQRUm/CtiSdqueS5NMe/DxZwuIDZPHWFvs+f4OoqL5leXOVyw2e/QSt61Qq\nOMfvIfq+x7P35TZ7WcvFMErVNJtSiEvWhp1tkdLmPOqLmXojQSUO+JuyIobeAwW9Y7y6WMjaiHby\ncmAtpt7AbG1LUc7zs73StNuwsj7S9hJvbqEOzePunydeXGY7TFBlKZl1bGB5LWv58q+vy7PkOORq\nVlRcApfOXD6b4852k617hxIe8d1RhPuWba+9x1q8zTbjF0LyK6CSxL9KUaUpfQFkbWTZa5C1j8Vb\nNZzJCd75yXF+au4Ffnf1aX7rKx9j+k9zHP78NrnV3a1yKSn0nv7s0BjT1pLh5ErKtZkWhNLn2fZ6\n4j+n/4ba97O1LVn39XoNTJyRO6tcTtrmCnmZVxNj6EP76VWlgq/6sveo8TGiE/Nc/2SBhe/JE0+W\nyK12mDgf4a+1UNYSe4p4NfGXh9p8M97GtOiaoco0HAAAIABJREFUmGk0sWGf4Ctn8M8uCP/R6TOS\ntB4fJ1VX+yCQSn/LNlz8CEOiGwsoa2lPaQ7+T8/d/lgkgUxsJD7J+aJ2uoc5lQpmIkErb9bQoaB9\ndGgkMdQfrCvd/WXiwMHdamcRrYoFlSFFPEFeq1JxpMVp8+lZ4kBQzDoEvyYFwagAWNDacOR3b+J8\n+RtYDaoUYVxFcclQ/L0XKTx3Ab3dYi+7+UOSJLc1H2MUN7bHWG2VOFzd4kpvmku9WSpul37VsvYh\nl4v/6FFUqcTMK022HoDmIWiEOaLIIYwc1ptFnG++w++9s3eb0zvjGN/HtjvoTgQKwhIU1g2zL7bY\n9yVBQBf/nxdRX39tzzhOl8u3bVfTQYCdkzZzt9lH92NUKMmeuOBidygrOk0hNNfdKEGhWazW4l9a\niyoWJC7PB+IHVwKcvsjaRwULFqxrwTWo6R65Iw16bY/qWw7+hhaS8pIirObwGiFurUs8sfu6pr8h\na+bG9x5B9Rzq7YDtdp6llqDqPjJ5mdA6fNfcO5z7O2XqW3IPtr8yR/ni4FkqzzUolrs0ejka/WBQ\nUHgXex8hHbcwvYNc2XESiWj324bquvvmOPczMwRrmoPeg7JY77DUud5p9hbtULpYFAfXDBRarEEe\nAKXR3Yh4mCRaOwM1j/Qad2zuGAP5YKRfMu211+NjRDcXRc1h/xzWWhpHCozdGCdaXsF0pd8/euxe\nooKD/6XTYGJKNzrUTo1TfieRmN2DyE85kv0XcuZQFu16k/HnQyxCfGXHqthnHiF+/nV46iF4SSqQ\npt1+/8gWYYDOALl/SRCcfT/fpvUfO87G/Q6V/fPEq+u70D2558+hZmd2JYtMuy2ObsoFNOQgO5WK\noEKGevmxSVtgfh9s71hEd5KQm1E0gO33UTPTslFvbUnLSQIHVwnhZLxdw83nwXUIpwoZIkguwscU\nfDrPnsiIN/2XLlD7gVPknnwIdUn4OaJrwv/jTE9DrydJizhGkQR9hTyqH7LvT1dhcoL5P7wKBw8Q\nHpxE9/bhnL9BehdMq4XjueLEfftf0zdnViDCaElsKDv4nwhy65ryQozbibB+0oZlrFSWh2XntYId\ncF6zug5aEx2bY+sRQ+6FGU43ZsivGo78zvODIaTJwLAvajq+j015YNK2HgbBPtbKfdcKU2/IOpC2\neBjQ05MJasUMuEQaDeEgSpSEGIrRlKOlolopYTwH5/KibJYJ6b6tFjE5GYeKLPGYR3PeQcWiypbf\nNHTHNHEA9eMWM90jfy7Aaqi8Ywm2DI0Dio1HK5QSGVp3/zx0uijjCxea52DKAXHgYnIO/YpLEDzK\n9NfXoFhk9jdewjkwjykVsK5D89Q0OrQEK21JJoXf3r7wLdke63bGhzL0WndMUxkfy5Ce2f6w8zzD\nrThhHwPog/fQnSsyHII7U5NEJw6gnt8ER4KUrP1yB5/YriGnRKz9vrRfDL3PxrGQPw+vX4f3ixrG\n7QJ77aCDhDNGKRjiDbHdpMpfKorwQRjh7JvLeH5wHXSlhO32pOCQkvWPFbJ127+6RgTYX5oBroMS\nnhI1nKAlKaTkcoNkz5mL0oK1uiHIpckJopuLTP/681AuD5KnHyCLbiww82sLXPiNJ7n3D765Y1Oi\nXtvr0f7hp1n4uOXe/+Il4nodZ26a3GtX5LH/8MOo514nd+okMQxa85TO2vZMrydIUydJ7iRFqbhW\nH3DVJXPddHvoMMpafm2nKwggz89ag241XpWozZh6Q9amIEAHPUw/xKmUiLdrMjbfQ1XKaGMxR+bh\n1bdkbatUUE88SPtAgdJb68QXL9PdX8ErB3BzkW/84ePs57mMfFj5nqzf1qKAeHFFEGzGMv4nFzJ/\nM1ct0/70ExTPLGNW1qi+MzcYd9i/az7FN2NWMVgn0tbl1FcElLEUrtZwekkSVyXIKmMglxug0lPx\njeG5b2zWVhqvrXHPL6zx679wHGfa5f7yCtHlq7sA4fKhQsxqO53bPkvK80c5pdL2Q6WlPfFWyrs2\nITBPlQ2TZJAuFqXVjKT1fGi9VSlPXqcr/lCpiCoVKV1rM/bCFrZWR41XSQUXcttQvSyiLfGFdwhe\nBaYmUZUD5GrxKMpaJ/FIotymyiVsMY8bRkRXrgm6MS2mDa2jve9/gmC9i76+Ap3uB27d+WZMuWmS\nX353Th6nHzjMvljb1ZWiH7wPtbyGKhYynzHe2JQ2VmNk78/tEGJB4jQ7VoYLV3HHqtjxCtaVWApP\nikDezU0iJMHZmXLx60aC9K02KieIZ+slyEOT8B7pQct//Sc/TL+ScC1acNsw9WaXxWcDese6oii2\nmie68rpQPfgG1fDwW4bC7ws1RLxdg1sUF2qnQiZecelXFL2JgPqYR3usj1KWzW6Rxc0K4XaAN9Oh\nk8uBY2n/a5flr5f4mU9/kV/7yic4+4V7CacMdqZHFDpMhh/ceRNfvCzrYrL+A6M+ktIJSki4hJTv\nyz5jLcUrDfL//uzgXDvOvXOtTYEIqlQcjWMT04WCUFxsN8BJ5k4/RhmLybkJaqyfFVfdI4eItZaE\nY6ODdUviz7saGypJovse6uA8cTVPWPFpHPRxuxaU8E7pPmA1/aIiF8j65i7mmHtum/5knss/4qAX\nXHLXt4gvXpa995lHdtEklT/3AgCrT1vyNx16nTLtsYj+eIeloIKnY2KruNacQAUxNtRc+BdP4pVa\ndHouatvj4q9+mIk/Uoz/xAIbrQJb3fzujp5b2LsihJRSv6mUWlVKnRn62z9USt1USr2W/Pv00Gv/\nnVLqklLqvFLqU3c0CguZ7HzywJpeLyE7LCWQ4XfvUXw3i5aWOfnrqxz4+HWO//rFPd9j6kMyqUPV\nsJQA2g71XsPuyTpC1Od7qNaOqkoKo07gtiMbfNIbbWODWRrwNsTbtQGqKHXIHAcVCZmUjskCDqda\nQbW7hBWX7oSbybTq1y7IBH7wOGonvM/YDCGklBIHolxCFYvYtkiG2lpdIMWui3Pmsvz80psjKKFh\niVl4j+bO4FgZeyJZqkrFrDJ4N2DeufOL9McN/X/jsPk3H9/9Bq0lyCBJ3AxlzG3qoO3Iku+1mKV8\nDSZwsc3WSLXfhtEo7xBkiDXl+ehCgejmUsYdZJqtxDF0JMGXZtodB+s5dCc9nNqAMNp6LqobsXnS\nzaC8ptGgsNKndaAA0xMjz6FNW1TCvqABrBUibMfBbtdgZY14c0vQIJ0OzpuX0bU28frGSP9svF0b\nyda/V/Mmy5pb+VmH4HYEjeL0wGuKnLq70cH6Q05rSto8rPgyxC9krZX5FwS437jAif/yRQ79j88x\n96svUr04ul4o15WEYfId2U4nkZGPEmTJYF1wyuUsCRevrsnfg9yAv0grbCEQKGqSINWFgny/SQLL\nxmZ0HuVysG+aaN84qhtK8D5RhYkxGKuguiHuZgt3vYmODG4rJr9umHojZPp0jdLlOii5X9ULinv/\naZ/D/349U5GLChqvBWFJcfD3JRFg0zUzNqgoRoXy3Ydlj9jX5Fe6OM0+/X0VWk/fw+bffJKNZ+dp\n3ltl8+lZ/FpEe8alfbBIXPRGkYHv4ZojFzOklpciHIbGM/3iBmZuMuNlGUnWDFfV1I4ER9gnPnuJ\nwrkV4u95LHtb89ljmCDh6bi+vFus4HZDDfvZGm26vSHVp8RxKxdHxmJzzt5cd2nwlbShDq9j8frG\nyB4uf5RWx7jRyAJYZ6yKanex3d5oGyzgLm6iZ6dBqSzZ5f3Jaa78L8/AjSUJ4nckvZTvC6IxJaT1\nPdjYhrlpMGaE58Y0pA1uBHn7Xs+b21j1zd1BUvKhtz0uDV4r31jih58+zYX/8yl0oUD30NhAyezF\nN+U8N5aSRNAo0jTlAbQ7gnDT6WYKc+nr8oIg1rL7npAajxRM9prn6XjjWL4PEycFrSSgSPYZay0q\nCIirRdRYBWdbCnbKdSHs0zxSFBLYOfku8++so4xFBwGH/mCVm7/wkVGVvgTdIf6mkkqz74kSVqcr\n66Ix5P/8bczKGqbdpvh7L6IePTW4Rzt8vvdi7uyq8KZrTKMlaM52F1bWCa4kz58z4A4iLSZAtmep\nHXNJ5XJYY0f8uXhtDbO4zC3NWkHzDBc3h/ZB5SaUDzrh/CmXhY8zUU6VBPXg5+w4z89+T0nv02de\nF/PYe49gqyVsvSFtR0cOCfF+oSBJyu2arDWOKP2ajS04/TbRjaT9K9m/neffZO6fPCdcQm1RRUU7\nmO0a7kaT3Gqyrmln4IelfI2O7NcsrxHfuCnk29PTxLU6ulrBufeYKLo++yGKZ5boTQZsf/dRSUal\n9/wDtOZk39+7mE26FgC5v6sbuN1YeHqefGjkvb25onBZLg+pKVVK0v6ptczRPSxaWiY+e1E4pVpt\nWN/GXdhA9SN0GKMikxUVbL9PbiumcL0uQiwJHYIknJxEKVajopjo2g0pQJ46Sb+kCDYtsQ86AutA\ne9anczBEuxZTjdDTXXo/8CQXf/UJHnrgOk5L0xkfHbN59kNSGB8e//c9jrvl4rUt+XVLflXhbzpE\nNZ/l6xMsvDmHuVlA9RX6YgG0RXmGxRfm6U3F/NqffYLqgRqdkz0qFxX+O3mi/oCjRr6q9ygu/yZM\nT0+OopP3SnxqlRQfIkmstnt0DpTY/s/usFU6bVuPYyEK3yMvYNptWN0gXllDr2zibDSE89Za8TWt\nTRR0B6hsjKik2sBHhXGGDBKVYYXNecTVPP2JgN6Eh3XEp+2Oadx0O1CgPEOl0KUY9NF9RetwifaM\nhwo1um+xxUEsqp5//ZZdNZOvavIrlsKixt30aNcDrmxM8OfXjvNnl05y4foctuewf/8mOh9RLnW4\n7/ASzmyHv/LRV9h4IubKyiT1Zp6Cd+fcvnfSMvZZ4Pv3+Ps/sdZ+KPn3Bbmv6gHgx4FTyTH/XCl1\n5/haM5jxynFks5kcy5xX/cj9d3yqPU07xBcv4/5tl6/828e58K9HA/uUADNziMP+4OcozIg531Wd\nJOE/QutBtWbIRpyp9BDXw5kYF0cs7Ccb9+jDpRwHU29I9S2OsTkPvdWgfG4L7Xs44+Ooapl4ZZXc\n518m2IwID00ln2koXKmjOyHdg0ObkufLZptW2R1HAs6VVaLFJZSj0Qfn0ZMT4lTOTgkJZKuN/tAD\nIxwFe9hneY/mjrWWlHQXpNqqqqI4ofL50fa2b8HitXWO/fyLXDq/j81PdHEPHxx9gxncw5RcMRtb\nPxyVn07/vhPxZuKkMusIme8Osse9AiGUxhkbk37cBKmWkU2n5KyetATablfmTiFAbzcpLHVRvRCl\nFO7hg9i8jzlzjtnTXdofOpQlhby1NvnlLv39VXjoxMh1iZMdigMfx9APpUpvLMxM4c7OQLdHvLlN\n7dOniC9dof+pJ0b4q4ARPi/ew3mjklaxNINeWDFMvdHjwOdXmf1nL1L5v1/AnDknRMY2QQcN8wjt\nxbWRJFhtt4uulDMSRUycEVNmx2ot8yNte+z2soqrtCcMJZ97PWxDqum6UJDXUgd1qOVIdfsDHqGu\nJNZtyvWS8WwpVKVMdGwf/dkSTq2DKQZEM1Wi8eTczlCrnOtIlVohpI5bPYzvUD9ZpTup6JcVft0S\n5z2i8QLBZky/quiOJ05+DNH1pJqbrodRBFpjCj7W1RTe2aR4Zgnv5ia62ycsuTh9+WK8tqUzqdk8\npVh5MpDPLArvgxp1LD/Le7VfDX+PMKKU5YyPC5Hy2xeIykn715AqIDBS8R9pRc749GLMxhZuYxBc\nl97ewFtrSyDdbO3iGAPQ+fyuv42MNa2aQhacAajeqFCAikzWjjfiuKScQWFfuGcKhcF5AWdifIAW\ntZZ4e1taiqzNEDy2H2K3aoOE09BzZGr17N4Mw8Lv/chV4lS22dqMbw8YJJST35Xvi+omZEFAaqnk\ncHTqnuE781ne63kzPN5UjS6XY/5Lo0nAzG6HLBgibzar65x53PBjT7/Ez73xMq19QxgzawUxkypy\nJr8P+OiS/xM/Jy1EpaIcyvMHyqspaXTKhaCdQbs57PJ7Rq4h86uiLDE18rbkPKqQx2xu4WzWMcU8\nZmUtu9Z4u0b19BKl6228FWlFiq4toK+toA7th/VNnvzBNwdjC6MM6W3a7UzVSpWKuHOzqHyA2Uo4\nmE4cFkW8qUl0uZxJYTsP3LvX3f8s7+XcsVbQqtZiNjaJbixIsmNjk+jyValAr2+Myren930H5UHK\n52FDUcsdFi0BbqtElb1vCJ0jSoZJESpRsCSZa6bREILlsJ88w0ZULbvdEWEMG/azwqtyvex/d36O\n+sfvE16PKzdQxcKgCDhUNFWOgy4lhWTfQxcL2XrnHj1C7fF9rH73HM6hA9m1RAs3Ra3smYfQkxOo\nXn/3dSHPp54YRwU54ehKEN7RtRuochF33yyqWqFzVHicNk/lWfnUQZxuTLARCipmcP8/y/ux5gyZ\nc+Io5tkPoYMA58TROz5uOKFotUJ3Q/pVX3iZPp7EVVphLlweUVM2nS42DLGFQILy9e3bFvtNo0G8\nvi5cdnHCGTiExla+j8kprONIaxhk/C6qH6HCmPahykB96qmHUK0OM7/zBmNfOktYUcQ5iPKwda9G\ndRzijoPqyK1d/ekOH3n8POeWZjj275rMfuk6rR95WpQOp6fpTudwaqNFf+MqDn+xR7AR4/QsXtMS\nrCkK112Cmx52tkf+aB1/rk3vQEjhqscTx6/S3xcy+Q1NsOYw85lz3PffSgtxsAZYUWQdss/yPs+d\nnWbWNm5d8CJ5jnYWtBstnK6hcqVL5zNPicrf7cxaIaDvdCE2t1S2jut1UcFeXhGO1M0GKm01VEoQ\ny2nBylp0RxJG1ktuSzLPrOcQjYl/Yz0RVAnWQwprMVZDb0KoE/rjlqhosS2X7WaBuVIDe1+Tm389\nZPXTPXKbmvJCROtwSYq66fXvldD62KOUliLcrsVrWfxthd72aK8X6GzkiSONlw9RnmGrlWdmss7H\n5i9z5StH+KH7XuePXniM3ESHj9xzmcpf5Cn5vTtuGXvXhJC19i+A3Y34e9tngN+11vastVeAS8BT\nd3hs+oGycSfOTfzWeUEfRJHI2L4bB8PtLNkUostXmf/l57j/f2sO0CPaEYiz1iNOMlaqTRl/wl6f\ntUdQqHM5bCEQDoPhBJIecoDTiojvo+85KJwgwxD4YgFndmZw2oSQSzkJ30IUSwB5dUGq03NTtB6Y\nzSrV+Rcv4tREjlgf3o+KY+K3L5BbG4LvJhLoWIEW43tZn3fKY2GXVgUOOzmBOf8O9Sf2Y7pd6idu\n3yL2nswdy4AD5RZqVSrnw77pXX+XF9UdzZ1UTePkz73O8X/cp/nwvuTcuez1kSRQMldENSepcumB\nY5F99h7m7N+Ht7CxS7VNuR4ZIWcyh/RYFXtoLuOG0gUhBR1OWGV8EAmKRPUl6eldXxep8clx+oem\niEtyLc6ffwOvEQp5Wi5HNJ5HvfAG/tsLxMFQYJgQFeM4Mnf7IfHWllx7PsBcuSF94krhTIxRWOnj\njFXJ36gPyNX24Ad7r9acVGFMGUEGlW4ayp97AfdPXyE+f2nkuTWXrwuaJZ1rWgIh67kSEDlDra4m\nTpShAoHDazVICg1/vutllQldSJxbz9vBDWUGMvFybzLJXdNqy4aYtg0EgWxonqDL5ACTnSedn8rR\nqGKR5qP7CcseuSvrqHYXvbCKc+4a7vkbMkdcQZKZgo8p5oiLguBBQW8iR+tQgdaspjtpiQpSMWnN\n5+iPeYRlh+4kNA9C4/BgnutkjcmC14KM2akLlN5MlOkfmaJ9zxhuOyYsOXgdS/GGrFn7vxIy91Ki\n/NO3tKfcgWoV789+NRzIZMg3a7J1yTt7fdRx2ekouZ4EQMNIp4QvxXY62NNnsgRLfOEduHQ1U+vZ\nxRek1KB9a/iz3mXP0kEwaOVC2vr0Rj0b9/Dep0slnAP7svcp3xvsk8h+RphU5NK2x2SOmpbIM5tu\nT/aaFL3R6Q7IpLu9wZxOuDoAmv0hTrSEoHL4d5UgWJxKRdYhz4UkWRG/dR4QyfJ4QlAs7kpN1i3e\nh3mTWrLG9D7+KN2/8hTd732Y5e+dwXjfJL1jGrwOSb6//pTPL//0T5H7qeXR6v2QvHfK4ZQlFpPC\nU7YvmkGgjkok54eSR87EOOaazBtnenIUJZyunyknVRCgHj0la2E6XtcVxdeZ0f05JYK2tToYI+1d\nl69j41gIkE8ez+SeneUt4TsD3Nlp4rU1eU7GqxzJbwzGYhMCeq3FP4siUR+rNQSdtF3DmZsVVGWt\nRfjJJ4g3t4keOz5oU9iDUuC926/s4P9Od8DH9i42nAxSiQJXWmjIhEASBUJdKspc2EEWvWssuZy8\nvziKKlRaDYqmSeI5LUwNDpZWV+X72FJhV1A3QlIdxwkfZJ54eozKG+uYM+eEG3NpmWh5ReYGiBBL\noSBjCwJ0pSx7YUmUhZ3ZGazrULzZYfJMC1MIcMYlee3OzRKPF+jM5ug/cACMRdda2T2yqZ9TKmK7\nXeK1dSG8LhZx98/jHL8nSVrE2K0a/hdfxhTzTP1fzzP5L5/HW28TBw6t+6YHBbv3a80Btv7WM/Q/\n9QThXBW33kVPT8nafie8m0oNilWui//2Ahjxo8IHDgiJr+djPIU+dmSUq67XI97YxFy/CVoLMu82\nLd/K83EP7Bd+QdcZoDzS1yspul1D4tdmiaHIoJtdcn8sggThJ5+geaTI8if3s/y3HqH2yfsJi2A1\nWBeikkWHoNoOxDKfP37kPO3II3e6hH35TaKFm3gtQ+upI9j907gdI77ikAUrbcKyi9uN8doGpw/F\nZUNuy9KbijEdl9ZiGXWmjGq4dO7r8vIbx/joA5doHAHjWZwTR7n4c8eYPd2hOwXOsk/sDyXh3pO5\n881BhDLqlMznGOIFTjpjMhETa7KYyqv1ULHBr0f0pvJZMSTlq931Oe22JK/T4tC7mDM9PcJL6Na7\nWGszoY5w37jwBfUTxcTYgqNQcYyz1UK9eIa4EtCvelitaBz0UbH4u3HeEpYsYcVgcga0xfciNJaT\nc6s8cngBEzrMfCMi94WXKb94jc5jh9EP34cOgj1bj51OiNXgNw1uG5wuuC2Fv+aCUdi+pr8VcGh+\ng5lKk5wTUwvzRPe2+cbmQSiHBF8t89yVo1hHcWVjAnOH6b9vh1T6Z5VSbyTQtRR+sR+4MfSeheRv\nu0wp9Z8rpU4rpU7H7VaGoDDt9i5+lhQKHW9tsbPtJjuf49weBbJH8B2/dX6wWWYb2G61LNMP2SUZ\nPjLA3ZNSlUuofri7wmKGEgOJw6xzOVSjNSDkTD8rDGWRI3GcfE/uhefJMQmnyTBk32tFhPdJMiCu\n1dGNFqpcxhYDwhk5v3n9LDtN5fOiZtQcTFAbReC6qEPzguBIElLltzdwTh6n9HunUbkc4Sef2HW+\nd7G7NneibitLTGTVp8TSqkC8sUV87p1bJhN1LnfbKsVwldqGEfaVt8h/8TX5npK2i1tlqjNkUOok\nDScHdyA7Uvi+GS9jVtZG2kFG2t6SpJLO5aRlaHj+OY7cg6Q6qDxf1O4Srh+dDySR6LmYzS1so4nN\n5zCeJqz4OPcLAshdb6K6fZx9s4RlF+e+48Qrq/jvDCDkulDInExTq4vqHWQkxurkUeLlVUG15fN4\nL5+n9exJ4rcv4KzXcffNUf/hPSrht7a7O2+SZFCwaZn7yialf/vCyPt1oYAuFHDGx3GmJgb3OanQ\nqijG5lxRnkuCTxsPCDwBcRKT78WpVEQOOnFC03VGOY4keqyVRHChIO2masQBGArkoowPKFMu0VoS\neK2uSOv2Bd3oVCsDFBHiYOO62EqR4gtX8L90GrO8Koo1rgOzUyjPk2SXq4VPSGuMqzGOIs5rjANx\noDGuIlezHPyzkPmvthm72KM3pmjOuXQmFCqWjUxHYFzofeoxcTwnE6ngSgk0OI2ezMliAErh1nqo\n2GJ8jdM1BOsh7fk842c7BCttvMUawYbFOgrjgS3dmlzwOzF3Qnbzz+hCQRIXvYTouNnKksDx+oas\nE8OcXyMFgaECRBIowRB6AqmUZj+ne0pSZR8+dqQVGQYJ6KG5O/x6mnzU01PphQIQ75vANoeC3+Hi\nRalIlCQBUErInNMgAUZUGBlCK47cT8+VFp1kPPHKquxByf1IldTiej1T+Cj8XQ/9wAlx+l1pUxpB\nQ/Z6Indfr0v7xqWrsLI+koy17Y4kIMeq2MWVd0f73s15E+3h/I2P41Qq+F98meKLVyh8/TxznztH\n7mtv7+mzKNcVpaZbBOtKqWyvsGEf/dVXyX//1RG+RGsseF6GDs4SPylp7nBycrgNaEimXH6Q1tjU\nP7PTE8MDGR2YToJpTxPfJwgt5SVtfr3B3jmCOknP4XmCRmu35dnI+cTjBWyiPBbdXMKsrct+ZJO2\nJ6WIL1/nsy99dGhMicJipzPKOWiNFFAc4eNSxSLR1evkVkR5zd3uogp57EceIV5dHynSvYvdtbnT\nj1rZvmPXN0dlz29hqShBaqbVxrbbqHyAHh8TX2AI6ZoG65h4hOcyTbaKiqmb+T2m3ZaAJkU4ArsQ\nzLsvKvGJjPhciSBF9r3rAZm5coRvE63E93z1LUn0kezNxWJSAOuTql8pN0G1prwx6dzdP4fSWlR2\nX3gDXngDc+YcKsiJdL3nERU88stdnE6ELQTEk2XaP/Q0uloRxeNKRfZkpXFmZ9Dj46hCAbOxieqF\n2F4/a0t0KhXMmXOD7+LiFYovXsFvhNxBoH1396ohc+49Rv0nP0yubiicWcR9+SzmjXOCMDt/6c64\nsaxFF/NSaLVG/AXPSVQ/k+f2QycpvHgZ887VPc+pCwVpR7xNx4UuFnFmpzHVkviWVlA/6X3VhQJE\nEYWbHZxGN0v+q474E6xvEV9fwD7zCPrh+1h/yKdXVhhf4bUtvarwB+kY/G0wviUuGqgkxapIY6ym\nHfl09hl6f/lJ3AP7WX94sF/nNnYj6MyHDfF9AAAgAElEQVRrb5Pb6OHf2BKuw82YKBBVVqzC3XBx\na5rufERhUTM21qK0r8kDpSXyj2zhP7xN55/HfOL7XsVbazH9WoRfU1Qv3pE65t1bc+LdJPJ3ZJmv\nYUYL4FqNtKAr38d2u/DaOYzvoIzFa4Q4nQjngXtH0aY7zr+TA3HPa3ET6ouZCXAdlBHVML09uI/u\nkUP0x3zhWjNWEpthJEkhrUWB8MMP0pvM0Tjo0ppzREm3pDEeOF2F21JY36ArIbnxLoVcn+u1MTqR\nx2SujXINvYrGGauKQqajiMvJGrwH7649fYblpz2crkFHFuNBnJOkJRZUV+b5tSvT+DrmWGWdqtfh\nHzz2BWrdgE/cf5b7fvwccdtl+hst2qtF9N3iELqF/TpwFPgQsAT8yjd7Amvtb1hrn7DWPuEUhPDU\ndO5gAt4iI5g6hClnzp0eN7JpKCW8B2bH3bMmk74csVtVXZWSILHZ3v2e5HyZI+9IRd/UG4KoIKmy\naAfT6wncPtmEVLEwGHPCkm7nxZGPVlZR9Rb+hSX8hU0JPKfkNVUI2D5VRX/l1QwWupNXRwWBJJDK\no0kps11DdXoSwAY5dKmEvbGIakqW1vZ65C+u0fqRO1ZGuatzxw2Ku5Jiu94fx5mTM3rREpxZa6XN\n4RZcQyPnHtq8tO9l50iJunchXvb6/of/llVKZcNzKiWsozIkyNA1D0lKixOvikl17Z0bg2RXKsOb\nBHMZOXHaJ2usEKRFMfbkPXJtYUTu+ib567XRsSlF88E5Cq9cIz53SVAES8tZFSne2pIFPuxLRTdZ\n/AXmu4Fud9HlkvCBALYfUrhaxxkfJ15YJN7cIsqrEQjlbezuzptcEWXAa1qmv7ww4rw5szO4B/aj\npyelL3qskiGd0vuSJo/1Rh3V6mBKeWypgCoEEtj6HqTyu66bPe/K0ZKc63RIedNMrydEv31ROrD9\nULhVer2sLW+EY0krSQa6btaKI9B5K86QM6TIonSWNLJDaBbV7qJKBdx9c6hqBVspYstFUd3JS2JG\nhTG6nTiUiWPu9AxhUZJBYV7ItaO8RllwupGQ6wFhWdGZj9ARBOsWFKw/4mE2twgnCqhyCVOWz+nN\nys/GlyRUnPfIX97Eq4tsbG/CJcprwqpH43iZxoPTInNvoLgcY68P+GHei7njMZo8dg8eEHlzrYgT\nLrd0zRlJ2Iw8WwMkqmm1Bsk9m5C+pgpa3e4gUN+JUB0uUgwlu4eVCHdZGvxDhjTUuVyWgMnQHJ1w\nVA48DdCNyH5nAWCrTUoAm15rXK8PCi07xuRMTQo3YKmYBZMYaYFM28n0zJSQ3ydy5qbREFLjsxdZ\n+PTEgJAyl5PEaYL2GJF1TpJF8cZmlqgGhMtss0W8XUPPTI0EzHvY3Z03bjG7706lkshoqwwlFa+t\nETcaxFtb4gvt4bPYOIZ8gDM9tafKiul2s4Ti0CDkb+l8sCZJiqhBq07Ck5KhT5PjRr7/HYGb8nwJ\nvNJk4bCDnh6XzEvte1JsOv02zuXFbByQ7BcJCa/y/cF1WUlcYUzm15lGg3hpBffGOippKdS+J8mA\n+VlMo0m8tYVTLoOJeeC/v8HFzw6oAVJ0tdqhsGfrTZz5OSFGrUvLorpyUwpNr58lurlInHdxJsd3\nCUfcwu7q3PGTuUMYjcqgZxeWoG6Slj755w5afpFn0LRaUijL+bB/DmdyHKdUTFqz5L3OWFXWJ8cZ\nJBcTrqARDpnBQBPEYnRrP1unqDOdcVOpall4Er2BYIysg16WkErlqlWxMIpecZxEkTMnvqkv88TU\n6gkSOtnvQmlLxlrZn8vF0fP4Htb3MJMVNk7l8Ja2cc5dwwZyP/x6lCHKlO9h2x1Uzpcil58gtoMc\n0c2lwTmPH0KVSzjj47gH9gtCodcjOjEvfITRbQPZ79heZT72KGsfnWH81Q0qz18lurl425bA235G\ntyfPc/Kd616I7kWZaqtuCU3Angg2LUrJKp8f+MvpGuK6grqam0XNz2LLshaorrTwmdLQc9vvg+ui\nWz35npM2ygwZOjmGPnKQsOrTOVjGa9rM59ORJSwonB5gEWWxbHwWW4o4+O9cvvTlx7hZqxKXY258\n0uH6Tx6mX7XEvrQQ6ebe98+7uUl86QpuO6Z4pUa/oph/rkt+WePXFFYDrqF9qsvR8Q0enVvgtfoB\nDo5tM1lsc7S8waniTS78gyL5P3yJye9eYvvk3urYQ3Z31xznNq3nO21H3JAWnVIlQUjWkCiU71wJ\nx5kNI/TkBG6jJ7QNKcJrdePd6EhuW8xxxqo4hw4IIblS0A+xWmMCV4p26bwMI9xuyguWqIo5GlxN\nfzJPe8anP+7TqzpghSszzglFAsjvOgasQmlLPhcSG8321TFW/8NBKm6HYrnL9klF/fvuQz3xIMog\nz4nj7OLdzS4tZ5NkkEooGhT5FYXbdNBdhcpHFKbaHCptMZVrMu62CVTIJ/efY9JrMeW3eOjEAo0j\neSZPO6g71F35lhJC1toVa21srTXAv2AAP7sJDJOrHEj+9u42VMX+Vs2029hmC/3wfbd+046JO7KJ\nJQ5QJi2aOVB274VzR6U3/V3n85iS9KOPtJ+lnz/kaDnjY+J0tFoj6BadIj8SZ045GlNvDqRXk41e\nbwqxnjM1BXEsMNrrNyVArJZks6sWhVAa6BybxJ2bHbkeXShg22259qRap31PFud8gFldl4nre6h9\nMxLkeq70aQNmZY3N++4Mk/admDsZeektPzRJkuzMKKdV8l4Ps7WNnp/D3Te382iAUQSRFhTO8D20\nJkng7Eg67VlxSefNMGIpOU5NjKMX1jKnZmQMOklgmWROVIQvigSCqVLEEAwCHU8SEyk3EbmEhDiM\nMPmkKue50hZ4+Tr2xpKo82iFzecEnp5UjNsff3j3fSkWJZFYKg0IItM2DyvqJbbRIto3LhXrRksC\ntIQjbOxih4s/f3zPez56y+7+vFERVK72B6ppkxOSICnkMzliUj6nIcJ7OTj1fBKeMA2dgxXC/RPY\nYj4LTjOiYc+X607+npLHp/wNNpSkj3K0OLppULcTEam0vJYgd0id5gQ6jdYQiVKdVPqFPFWp5J/r\nwsQYNkiIz3WSaI7irJVQbobGplxD/UhUGiJRGqtc61E5t43V0C8pOpMOzQMBtWMF4pxAafsVy9zX\nNPu/XBclNymOiXLUlVVsPofuhKjI4K+2cDYaOI0uqh8RFV2690wQ512sq3BbBh1awqJDr6JFOjSn\n6EwodGjQ1d3teN/puZOaDgJspZhIDkcDZaW9+FNSMQHI+FnSyriNIglucjkJZLSTrTk6yI0iQkYq\ncIMgPyP8TfeRVIkQRvep9DRpC0o+n5GtZpaogo1yB+msPSwL5putwR435PxlLY69XoLmSfjV0qrf\nEAogPdY0E1n6dUHC945MCX9LFGXHtx/qJJw3gyR8is7UhcJA4j6M0FV5JoavQeVysLGFevwU0dXr\no+isHfadmjfO9JQke8O+JKyG/Z5hX2TvQRGvbUggNDOVtdkNW9xo7EK82lRVLUEnZ4TR6Tw18e62\nntu1UiuFMzUx4H7TDqrRHnk9PS/aQVUrGWF0RnDtOLvGadptaSdM5r9Sgv61lSLO1GTW4hbdXMza\nAAFZM42l9XHhoFATY6AdoqVl7j0kaBrlOIM9O537yeebdpvoyjVRBd03iy4WpZ1sqBgUXFpl8UeO\n3fqeDNl3ZO5E8Qg5ulyASnxCL0sApZLy2Zqf/nP0AGW4tkHzeJX6R47A3DQ6HwyQ0kqjPFeesxEk\n1d5zUgeBJFluNV8SZd3huaZcF9vqJNxUvQHKLP1eXFeux1r53xUeRJXLScIwDAUJ2+lgOx1JMAW5\nTDHXtttSXGm1ic9fIn77ArgOneNTxA8fxz16BHf/PLYQSOtq3mPfb74uamFhRFyQNSZ4a4Ho5qLs\nkQmi13Y6oti6sort9lDjY5iPPYzK+ZIkubwgaqvFAv17ZmBmQtBML5+ldmrstq1438m9qnkgx8xX\nlojPXiRaXnn3A25jptuVwpdKVKNaHdylLdxGD2+9ibl4dXfAPuTP2l5P2nrTNSf1iR0HXSkL6td1\nhDfIGBHxUApneZAksMYST49h8t5A9dVYcB0RZbm6gDKWfsWhOeeKHwJYDVFOEZZBWaELCEuCDgHQ\nrsEr9rn+Vy2Pf/Q8xigqb3m4bUVrv0H3FeVLdfSVReKzIk6UUiCk1jo1J8TirZD2oQphGeqHcrQP\nRrQPR8Qlg7vhkbsc0I58VtoV3l6d42hpnU7o8eXTp2gbn7/98NcAcH9lkl2SVDvsOzl33tWG14ZU\nQCehYRlOCskepGRvHiK41wtrWazhrG7v5BS9Y9OFghQP9s1gc4Mk9/9H3ZvFSJal932/c+4We2bk\nnrVXd1fvPd09miFnRNLU0KJoWLIN0YQla/ECw4ItvdivhuAFhl7sBxuWIHiBbMEWIUiATYkSSYEy\nSckUZ4bDmeme6X2ZruquLbNyiYw94i7n+OE7d4mozKqanu4a6gCFysqKuHHj3nPP+Zb/IoWmDD2Y\nCpIvl+OIQrypM1lJM5FcUBLzBv05SVMTtzySpqDKgokhrUPSUEXxM6uBShXZxCfJPDKjoJMyumL4\nwWiT0b0mxofe0x53f6aDCRTeNCE7ODzze5z7/1KymiatyfHl2gmKzdQt1ihmn7QxVnEcN/l/rr/M\nXrpCTSe8Pdjl9/cv8xPdGxz8EVj/W9/AnB3mLF6/T3PRlVK7lX/+aSDHI/8q8GeVUpFS6ipwDfjW\nQ49n+dSV6uVhHOVp+Ge+cvpnVbtnC7Do8lLYJCYX532ou1m1i5YPz0PN00LzZ/n1CxSkVmMxeVDK\nWb1WBLZ9Eai2SVwmHL6PHYxkM6xFsNrGbDmEYC4G6ZLYrF2j/Y4EYToxzF5YRFEVG78uRWTNbCad\n18ygdwQind2+C/0h3voa2UaH9IuSyJvJhK3XEz75r//og68Vn8PcgQVr0Ad88OkBjVswRLB3zPiL\nFwvaVHUsfEYlSS8SmrzoFMfk/PsHbfzLdA+bpLKA+k54zQVlxeeEYdkFd139bNU5uuTfqzrXnDi6\n8rTj2hoRZF1pYYcjsJbgTk90GLqNIlg2w2GxMJt6gD/JCn2iwRXpbFeLXAVlLcuKOau7XXRdINcA\ndjzG643xd7axUUj61LmiUKJ//02e+YkbZ1+n/HM+h3lTOzEE/+93AEEFqZVOgY5ZeG0ebOR/jENE\npGWyrUdz5qsevWcbzC+tYdtNKSwp7bpoItBrR2OB7memgMIrzyvutXWOTEWRsyLUqXxfEliXJOWf\nXaxpJwPp3OVdu5oE9zZOCoQPWkknZDQR/aN6JAWvSqHahgGmFoqIXuiLkCOydnixwQSakxdXSdqK\npKOYrUnHJGkqdAb+zNL+BKJexuR8g3hFgQEvj/2GIyk2JSkm9DGtELPaIllvkqw1yOoe4fEMqyAY\npDQ+PKJ5e4o/McRtJZDbSAvfP7PYzoN1Dz7rubNw7Ccvwz2X4Fb1VvJiTXXNqRZnKv/2trcEEToe\noy6eQ7eaToujfO/CWpIHV3mBaWn/Kl6zjOhYbk5UC0rFi5aKRpUOr65FZSEnp7UlcVkEN7YUR3cF\nLpCku0Q8zaVYXCmE+efPlc+UE58FCA4nqHPbC+dhT8r9WwRwHbKy25V/u3VFVXS0zHBUXD+9IeYI\nuf7dgnvg0vg85k1OX3ukPeusYTJsf8DsiU3iFy9jv/ry4v9bWyJ9l0eOTjYlIrvQXzqNFn/avllF\nGua6ZFoVlI38NcX9dxpzC8gfcAXwynuqz4XJSge7IMDeuCXNvlbz/uKD1qLXBjRuyT2fPrVZrKnv\nv+OcVp2bI1Tm01yKT97WptALrMUen6B2twqER45USz++ycnLCTf/6uOPc3B04oV7ob3yma40oqyT\nEihoyAXFwlE4lMIMh7TeOqB/1WNybQ210ikQ6AUqPS+4PkSnSNygxuVaJBegaAwpLTGt0kr+BC7e\ndNpVMj+qjr6xQyK5Aqbvy3f3PAoatSdzVdVcgSgskz+lnPtmjmrtdvGvXsbUQnRimJyrYVwhSM1i\n1GCM/9Z1MXeIInR3FW8So+ZiDAEIgn/vniCK4kQQQJsb6M117GiC93tvSDFjfU1QbIMB2d4+Oskk\nTnhK5lDnB6MHJvaf1141/LNfYfWNE7JPbj38xY84sl5PhMJP+tjByLEJYjjuo1dXhA5TeU5z5sMC\nHTFYzMfsfC50yJMBahZj8wYEoAbjEkXabErR0hi5T+OJzKnjvhQKA5m76VaHuKlIGwrjgzJCX08b\ncl7hwIr7k9sG/L6HSTRbqyO+/PxHvH2wjfrWCrt/89s8+d+/TeOuJhwg36tKkV0ax88GzC+sktV8\nBlekGJVF0LruU9vzaX3kye9qlsR4dGsTXtm5zfONO9T8lGf/qw/42+99hX9+eA37U68Q/Oa3Wfk7\n3zzz8+DzWHMe+orTx0Ic5O6dLhsMIrOhixzAJiI8H9w+xh/MJM/8tB89mUjuk2YFelXluXQex+do\nbMA0aqjUoGYi/aHGM5k7zQjdnxB3FPMVRRbKn7SuMKEISZsAsgDSusUbiyB5HHtst0Y8f+UOL33x\nOh/11ui8HXDpn84JRmA8KUiqzD44BlAQt2WOWAUqg7BvMfUM61nUyGfz2xB5KdvRgOc297k973Jn\nvsobr11l+rsbTLKQ4LLsh/7BI1BBeYSCkFLq7wLfAJ5RSt1SSv1HwH+nlHpDKfV94GvAfw5grX0L\n+PvA28A/Af6KtfahJP3Pctg0Qd/rMV3XTP+t+3WzCqvdhV9aTuukWmNLbZjljlmVPrLkBqabDVR/\neD9lABY40lKA0YuJPPLwmLkLnB23G1xSoJyg9HRWJH62FgllJfAKIS6VwyatRf3e60VyEQxi0sYS\nmseaotCQHfcKjrxNU6EvHB5LRydNyfbvYQYjvKMh/au14rs3vv0xwSuLEL/HMnceZdFaLtqdSuOz\n2OGQYJDygz+/cephqs45xduKxLziCrd0z88sDFWDbleAtGEgG2wSL4rtOfHhghJRrxXieuUc1aLL\nob0FukeOKFFaCWc/y6RIoBS2WcOEGnulFHCzWmEaEeq9jwn3hwWlS2VWOq+nfAczmZTUjPkcogjv\n9mGx4WcffETWO0ENRiQtn7u/JMVEm6a8++3LHPynpe3k45o37Y8l2PM6HVTNFUZy1JinpStV/Z55\nMchBk4v7AqjJjPaNCSvX5/ijmHSjLQGnpyEIBXkXJ6L/1RSNIHGRS+RP1YkjTgRem9PIXBJXOLpl\nIgCqoshxso18VqNeoou0/N7GcYFCMqOxIJXSrEQM5OtajoICbOALXWzmkvhGSNIJpRATarJIYxXo\nGGoHlpXrGeHQoixMNxyc1oAJFfOOR1oHnQq8FhB9NWsxKw3QoEcxajRFxxneJCHsSeITr/jMNkLm\nl7pYTxP2E9beSwhPUrJACkxpy5Pu7+OcO/ln/ZEXUKOJUEyW3b4etOZU1w9jIU1FGwewd/axF3cK\ntKFuNqXQ0WyU60hB6THl8XJ9ojPWIHLKaU4Jc0YJKC2Fy+I8Hd0wM/cngkot2JIX+6QrgheUkvwj\n3b61bCtv02RBN8ZsrooGYKeDTeJSC/DDGwL/pyw8+EO9YBxQFM1dwTW7K53v7KRfNDXMZIJuNfG6\nXdKPb+Lv7uDP3PUZuaLIY5o32bOXH0n/5aHHGY3RccbBKzVGl+oivFoZpj88VbB/mcqFNRVBabPo\n+FWF/C/HOQBaO4FPez9dyNELyZNzWJxnyNq/QMdWemGvzAYjmVN54arZkPWt0UA71zibyDGygwPS\nj27g9ZwQsKGUA8gfk8mkfHaSxFGjFLrZINu7V8zJbDAQweb5nGx7lcGru8U16b7ms/7WUrz2mOZO\nQet017eY+xU0EMgzoYKK6HrhKGdKdzkg+/A6F/73d2h+z6GOtjfQ7VZBLTPDoYtRTxGYPsvcpZII\n5mLSNk2lmOwQs8rTUiyMokKKoWh0uiJ17rarPA87nQkS2trSJU1r2duS1KGNY6FzKSWxUaspP/u+\naN2kGd7JiPD167R/4w2hiCvFwc+e4+M/dwnz5EVx1G23HKXeoMdTQVQjMZS6sCt7l6cxJ33MaIw5\nECSD7nYx5zaxqyJQXaxh3/w+phWhT0YoT+PtnxR7/ePcq/yZwX7waCLkp44z0F82TYvmlfJ91DyW\n57TdRK+t4m1s4F+9jH/5osTP+Rws1qHTkYhmOBKE6t4Bqie0fNuoFc0CMx4XOonKWllbjBFKaD1E\nz6TBOtmtY0IpxqQNRdJSTDcVSUvWiMmWYnwBrGfRqegd+lFK4GUYq5jNAqKeJf2pF5l89WmSpiCJ\nzOtvk73zAf6F88Kk6C9KVlgfZus+WaTZ+P4UFAyvSgyU1i2Tc4b0wpzLX77FcB5xa7hK05/z3mSH\nJzuH7P/bz5C9ucL7d7b58C/dn6Y/nrnzozF2yuaQ0M9VGBbrSHZwgFlpyf10eU36yW3U0YlINuxs\ni8Njsynam2fIeZw20r19OBkK4j1JUYNxEeOq8bRgVABCEYMiX1JxgvUUaTMg6zbFHbehSBswX1WM\ndzTWk6Ji1rCkLYuJLFndYOsZ9VqCrw2r4ZSGHzMe1agfGbzf+S7t2xn+FCkIp0aYGGeM0Tm5To3D\njKgHSceStBTRvo+KFeH2BPPnjqjrmOOkyVY0JNIpa8EY00m5/Msf8+F4k3jmo159iHNbZTwAwiDD\nWvvvnvLrv/WA1/814K898hnAjzrvlk8AMxiy+b0JB680eCQWZLULdlpHd/n3lX8rz0OvdMiOjkXn\n4ER0WE5zu8qPaeeucul5oj9SaMO4ZDRfMK1BR5EIL6Zp6URkLdlo7BBMoWiZTET7yObd0HPb7P/M\nOju/eh2A7L0P0c0m1phChb8YQYhq1qHXk2Pv35POTl6A0OJmlcP4bBKT3dlj/fUmJ3/my3T+7jch\nTRn2GlRL1I9j7qhHFMuqdsyV5526Mdo0Jbx5RDC6gPfUVbGfrYxT+Z4VCshyN7XoQqbp/Z1W7eFv\nb4omT6tVCGLreYzNFyutypxvOeCOE/TJEKM9Cg0PwEynRddQ+b5QOnJdBq2w/YGgvlb8EtEzz9Cj\nGUZ7eGurHH11h/Vff0+0Ld4R/Q5vfa3Qh1kYgS8CrgcHpB/fFIqHtagkxiLuebkQpIhW9mi8X+Pg\nlTKBadzRTLerl/RxzBuL99r7QlvutEudgYqFuTLOZr6a7Fd/Lgq78l791nVwc0R/6UVMp4FWUoRT\njp6q8m6n1qh6HZ1TXOKk7JpZBdoVf+9DGBpUWEOtd6UTNo/Rzu1M9Ydy7fMAKwgKdGFeREIrsXv1\nfVl2fVeUNgZbC93nW6wSK1erNWkzENejQK6JMhYvgeZ+Ru04IbwzYPJUl/6TAclLY/QHDUChrCd8\naV9grzqRzp6gkpToBdV8VMvin8h1zmo+aSug/2SdpKWo9Qw69TC+2K4GwwTv9Q9Ifv4FBpd8Bk/6\nXPoHC3Ph89+v3JhcaNJ898Zi00AOev+LlYblGEwpCZCnM7E5BufC5YoyuVsXkB0d35/g5wW9auE3\ny2TNsCLUKmjTiu5ZU7R71JOX4a33BMl3rwJdzhecijZM/hmFMDaUVDC3LinfK1BAxe+XkFBCk5S9\nzVb0AvXBCfbibkkB2t2EkxNMnOC566LCACaQ7FYQSUgxSgWh0ERcYpKvR97mJsznZHGMGY3xzu8W\ne5w/WrwXj2PeWK1I2+HDg67lcRpKx2SE1+8x/xOXWX87JdtchVu38Z5+kuz9H8he0mxKML6M9rF2\naS6W127hvlHGIvk1BYo4x85m5TGVKowM5I2VAqQx2HmM6Z+ul1Ag3Iybu/kx87lmrIAqlIIoRCF0\nRgBevIY3mcNxX/ag6x8DEAxKS+Htp9z81lqS0kwoteToD1f4WDaGMJMJ+v1PmH7xRfSf/DK1f/wt\nuu/FRPsjqlfvccXIZl4WVgtklSsG2ZwuU0FfyJdwRV9PY9P7g6Ws14NeT2LLKEC1mug0lfjV84p9\nKXce0wUlPQPjlQ61FTrYAirE0a7v/YWX2fzOAPvuDSnW1OtShMvNETxP7nPgo4rCs2uEuCauqopg\nAzgR+mIfdnqcqtnA+qKJxWCIdedh7vUKdLOu1chWmvSeh/ZHFj2cwIVdVGZItzpkNZ9w35Btr8D+\nPdl3RxNo1GF7E71/IEmuQ72ZtTa3f36FrW/PiYyRBofvkx0cYL/zFrbbRT1xid5La/BJMQ8ey16V\n/PE/Qvv1PdJPi0rMUT1n7CVYK7pd3S5m/wC9sY5ZbYOvUa0G1hi4vX+q9tVZKAk7n5NeWIdvfh//\nyiWxDh+VAryytqWouST9xIk8B60GaiLNLv/SeXFrGlpBCHmQtMB6kjfoFOZdK3o+RqFjsBqM0fja\nEOqMZj2m91M+vS8E0Eqx85Tue2UxNL11WwTpl7Todr4+YbIbidvYOGXr23OOn4uYnLdC+6kZtLac\nTOvU/7dVjv69MdFGytTIHn/5L3zI69cvsr4y5vCTpSYsj2nuPEwgPh/VGCQI7zOFUg7ZZ61Ft5qF\nu5c+7GGQ4p/XXcXrrgj1/tkrUtCzzrwlTkSAPB+noJ+Xh+n1sAcp9qdeQX3jBv7WBmZnHZxOZxFD\n5Dl3XpjUGj1NsCs15ps1ohPDdEuTOaJQFsnrvUyRU7isttiaQdcyQj9jnvqkvmYlmNJpTxnv1PF/\n6ScZXvQI+5bWP/+ArNfDv3r51OsF4iyWhQpvrujcTMnqPqPLBhTYVsbl9R6b9RG/c/saL2/d4Up9\nQGI9jFW88MRtjv6VyxwNDrGDkNnOo0ccP4rL2Gc2Hjmpf8RhZnP8926y/tasrNQvoXhO1WQ4rQq+\njAzS3sKxVBhy+y86zSLPk4R4PCkrn0uB3IKLhju+qkUVIVC98J6qaKhqNiWYmc1lgU5iQQmkGZwM\n4PhEOoerKwye72I8dWo3Mhgs2eo6Bs8AACAASURBVJmHAWRmgcqm604c1xrs7hYn/+oijcrO59i3\nPmTt9/fwnruGCgKU/iwre482dPLDT56FYtAS2sfcO+Tc704w7fJaVGmD91WqF7ry9v65Uv2caoJl\nMuKnpXxmhsMSlXVnXzZedUpgR2UD9X3sPMbrrsix88IQlAWiij6H6q5IUtlulwuQ56GmMcFeH9sf\noJsN7PktDl+1pc4DUqxQYUjzXoYdLwq/W0cTyOeOGQ7FdWw0RrWb7P+xRUcWmyaY/QMu/50bqC+/\nJJo9Fur7j3fuKCMBv7exLhpKnl6w9VWpUODEyW8Z5XdK4m/MwpriHY+wvnMSbNZLtBBlMJ8XbmyS\nUtjLg6wBrhCbB9S57pDyfVR3hcErO5J0jcdSXIqT0uXJOt2F6nl7DsExGkuQ32rcn2QurXU28phv\n1clq7h7HBh0bidOVBE9Jy2f4/DqzVY/5umHtH9e58qtDsVhdVYzOK+JVQ1qT16tWU6htgVAjg5MZ\nep6RtiPi1QgbSAcmaSn8qWW26gSsWx5J2yOte/DkRbJAMb8/TnqsIzpyXPTTCkCPMnKK1HQKhyW6\nUr//CTmto4DeAwuon2rxqSi8LJ6HrXTC5P8z9IbA3K//kmjPLGvXLXyXJVpQgR7KC1MVuk/R4c9/\nrz0R9rW2OP+qo0aJrFTY2Yx4q6T92Y8+wT+3K2K3Qwd1ds/WS0/cLgueyFrubW2UOkLNJuaCrDkH\n/8ZTsLslz2AUFVph6d4+3uyxApflXH1F9MlDhDKr40EFRiC7d8iF356T1jXePXfce4eFaK6ZTOQe\nFCdwxvO+RFm/bx8Dxj95lRv/bYni1M2mCPieppWFmyN5ITDwIVks5C2MpfPKtQmL8zFCf7fzGONc\nK7P3PsTrdjn+QofJU11xl6ocyzvoF/v2i2tOQ8j3pdBhTKG9VFAJ6zVmP/0c8S8sOqaa4ZDN/+s1\navemKN8nq2vUyRmFrc91LKGvqhIHeTEoH9WfC/3EEvGXU3eWh0ozZk9uSmzhRKJVLSo6/TkaNUeu\n5tIKefNy8WC6FJ6fz1l7e4r9zluy3oxK6k9h9JEXBJN0UZvRnbOOIjFacJbT+fOulCoRUmEA613S\nrQ4c9WA6g5xmHwbotS7+7o7Qw9ttlDFc+z8O2fyfvyGIyFadyTNbJK0APc/ETGVakWiwVtxf4wRV\nq6HaLUHWJgn6eEj3/ZRofyRztVWHbgf/iSvyLGyukbUigslnnOw8wkjaPtntT49K1GHgCv+uUZnT\nbSrSAbpWE/mKeh1zeFQIzFulUPOkEM4HJ/jr0HnF+0/RoPIGMg9yt+CFhqyjmyqH8CRwGlOZEbfX\nVh3brBOMMokfmtKUShtgfeuEgCUO9CeKzdcs3XcsyWpGEGQEOuPOeAXfM1zY6dG6MGBrqw9WLVC3\ndLNJ+vFN0o9uLJy7fzJDZ4IkiddCBldDrA/JWoqeK4gMQZgynETU/+G3WP17bU6SOu/1t3jjaJdb\nw1Uu7R7Te2edzW+5ePE0xOfnOPJ48jTzgjPfU4kDioa4sSWNdVYydNK9fXIGjG03JYesRXiHUji0\nvhYty97JQuHQO0Uz8j7NvHyt+73X8VpNMcK4te/0PktHVDWeopJMCovGFA1hnRjR+kkEXZZFlqwm\n1EKdCepUpaASRTDQ1O4E+EHGca9Jf15jlEREOuXJtUNmX5xw++cNo8uGYGwLsez0xieLcVNltO7E\npDWYd4SpsPJRRtbJCC6NqbXndGsTBkmN9v+6wru9LX7t1gt4ynBrJkHx5b/yPvcOOqy87VG//ej7\n1R+OgtBnHZuZDNMfEn24D1vrsgC1FnUm7rPBPYvWU9VpAOkUVAJhM5tTO5YNODs6lk3J8858iIQK\n4DbKJBb+JDKhFx74qgUssiirKJSEypZCqjZNS92ZRBwg7GRKeJKiU1u4mXjPXcOMx+jhDG+6NAmz\nTITYptMyUHDOD2YqnMqoX96kQgg1iclu32V+roNdaaMPHu+CBaDiR5w8D7MXdoGwmU7x37uJnsVS\n+Qf0k5fLwzgaQjGsXXSgyyvOS90UoIRMuteEN3sM/6xoXSnfF8eU1ZWy42YXA7tc5wEQFx2/hPLr\nWlSITVtn42rn88Im2tbdOa+4YDtNpQiSpKLl0h9IMSc1qKzcmL3VFVS7RXp3j+jYqfMv0V/seLyY\nHDpEG5TFXv+qXEPdagm3+85d9GDK+JWL1I6sQCkf58g3hFbzvmKQnGhJoQIEMVHR/SFOJBDPhZ0d\nbcvrdPC2tzCdBoOnnE5J4BdFHkEHuevnBDDJdR7cfSuEbqsCm07ny2YGc3BE41d+X8Quw4D07j7m\n7n7pnICba55XFKJUreas0X2h9PVHMBjJZ+TucyC6Qb64LNjAw59lNN7dJxjEeNOULNJiOR/AfEUz\nOucxX9GkNcXqO4q1b91DpQYvhvFFQ1azhCeaqCfuHtn+PUdrFOHTdCUqNIqsp1CJcVaths1/+B5r\n782pHcxJa4q0pjGBFpHGphbHkB9Hbgb4588RHE/KRCh/Xk9LunNR1dOGS6hEnNnBqQcD/Euie2LX\nViDLyo5ovvZUEsKq5fNysXtBowUwh8fYr75M+2MrQTks2LIXIy9e+n6lKVGBgFMpTlft7t3QYSCa\nZYDO3TEre2ehfZKvhffktV63K3P86FiEiAdyg3PR9KNpo3gui+K875XnYl23HwhHtmj+5NQkr9vF\n21gnOHgkC9/PdBhfqLOPPB5SaLRJTPjdD2m93ysQW2p1hdlPP1e8PxuNF12V8rU7v2dV4fGzzkEp\nmu8foZ+Va2bGYtuuV1dORcbm55aPbDASelCrebYmYwVFpldXBN2lPbRDgSilsHFc6tUg8y9eUXgz\nQ3p3bzGGykyB3njz2BlFeFoaEk7DIv+8/HvqxDK4HLCcmJrZDO/6Ht7F8wT9RBy6HvuooG6cyQjG\nFlQxFfiyzrsCSUGLqKwNhVAz3FfAUfUaptUg3B8LYtEJwUtjUztDiwqN1Fb2JidlIL+QJoYOA4lF\n3Ofqf/F68Vm5VqFN4lJE2tPoWg1/e1MonRfP4V+5JIYnaVrcd3FgTEtHvMAv9KMwFnt7D775fbJe\nv6RIB4FQwDtNZs+dJ7u6I3HQh58UosDm3iG3f24VEyhqN/sEd3vY4xP44OPyGmmhlNmjnqxLqWuw\nzGbY/oD6P/gW2VvvCdJRKaFEG4O33pU1PvSo7z3uQAeik+RUFMKjDlvc68ChMe9fL8xsJoU8F6uo\nk6Ek2YA97pXzJQhRzabcs6Xmg7e6iq7VCtqq+eAGQNnUP+3c4phso43pNEjOr5GttTC1ULSMkpSk\n7TE+pwTJ4YmAtEoFLZSFouFjPWk87f/xhNbuiFZ9zmBeY5b69Ec1bh+skv5Bl3sHHVSsCk0x/8ol\nuHb51PO691NdglEmMcogJTqRRhqpIhxIQaFZnzMfRnz4P3yFu/96QsuP0cqSGcVoGtGb1Ln6qzO6\nf/sbAIVJwuMeVUfGU8cpTaTq0GFAIXtg7ak6vqZVd43MQGiYOZMlTgpEkRzME8fBpca8dq5+1VFI\nXTiZi+zwSFBq1YK5UpjIFze7QNYTlMKbOROLDS00QUDHCh0rMjeX0pYlq1tUpoiOYKU1RXvWoctS\nxmlEb94gHQWoWGPqGdP1JZH+s5o9oTj3BlOL8aRGosceSeIxG0bEmUdqNElLk2YeR8ctuv6Y43mT\n60drvHe4hZ347P7Tfcwb7536GaeNPxwFoYcVzc/grz7o/20SY457Ajd76qIIxj5gVLnVC2M5qfe8\notMvbzSs/f3XinMw/YFUytstcgG/5aErD5g5Ona21FY2RefulTsxVIU/zeERpj8sOmgqikSXxPdg\nbUVoJEhnsHZnyNo7MymIbW1w92vO2tvaQnum+Ao5HcnBtL2OUODsdIqOIrzDPvXXPpbN3vcFOVSx\nElTGMr62RucHD7lPn8dITq+wPnCcoSGU/21HY1RvQLbRwXvqqgjgVl+6DHPVZzxGp83LymKU3rhJ\n62MJEMxJ39mOG3HsWkogbZrKtXa/z076cs6ZKfn5RSEhK/V8XBHC3rgl9qzzRBJAl8CaRg2z1ka7\ngqk6OuHCb6d4zz+NbjQ4/pPPSacNSOse2clJsSGCVNj1Sqfo3uQOILrRgDhh/U3H301dYLi5Xlxn\n1R/SvxpQP0wxj2ZS95kN5SDw1l/6YEdxKKkV7k/+zMdJUXip6m0UGg5hIEGrUujUYnsn0rWqdGVt\nJtbiZJl0PWdzMFZQeUvoIbRDEEaiGaSXRa8rQX5uW4+xqCgkffEq8xcukrx4leFPP0H67CXU6ooE\neEksgVsi4p028rFaikAqNVKcSQ3B3UExv60ngs5Wy5qd1hXzriKLEBcDC5Nr68x2mszWFNGRZuP7\nhvq+Jeqbosmt2y1IZcP3j6Z4tw7wRzG1vTHB8QRvktLci2G9i1UQd0PitmgTzVc94XB7EPV4ZDvN\nz3okV7ZQ/dHC87xwX6o/m6wsmBaC0EvPtwuy8+TdDlzBIk4Wiq35Me4rMJ0mIh2EC+/VtRpmPCa4\ndcTGb/ygLAKepivhtFn0+lqB7PG2Nkvtoepwn1usP1kmSbcrFmS9E/l1FVFStcNuNbGfiI5J1uuh\nnnkCM5sxfnEX7QpBuUD9/ptb8rwgSYhuNAT5466rmUywt0SUsvNrb5B98BG6KwmZt74mWhOba2Tv\nfXj/d/6ch/1h17gqorT6d2VkozEcnsB6V8S7hyNU9faY7MHilcvFoKJQktNNpXCUvf8Dav9c9FFs\nEmPGE+noVsWAB0MpOueom7wpZjJZM91as1wUWu58m+MeJLE0ORwSxGZipKAbjQUE1Llfv0t080T0\np15+muwropdga44GDxy86dC305kgppTG5JbGWgoRGEPt+iE7v3m7pFwHYXGu2cEB8yvrhLd7og/3\nuEf1mcsy10gwBfLHJmmRuOMaC7kDVOH0g9tXlC7vb+WYylqUtfLM5fGEzgu4pQh80ewJQtlDlhwx\ni38rJXOgEld7nc4iwt5R3EycwDNXGb96EdvtMHtyi5Mv7aDX18iRbAvzxnOI6Cwj653Id3cFcV2r\n4XVXXLFKUE0qzbC+NH7SprhS6e4qut2WObW5zvpbMbV/9C24e69AEhQaV0pjkwQzHElS6XkSj+fJ\nqudJQeuiyA2YKGC2USPbXBF0b5wQ9KZn2pR/niM4/pRFqDxeyamUTqR7uckASBK9ugJJLPfCkya1\nMkYcEV1DytveLNxWvfW1Rc2wXm9BHiPfI7L+/VQzwBWWItFp+v67qK9/T+h5r73lvrhP1EsJRuBN\nlSTVidB8lIV4VehbSdty8lJKUBPtoMhPWa1NOdfq4/uG5nfrXPlf3mP310KCgWbyjFtPohB92D/1\n3I6/mJLWtWjVWUvvWY/pV8agwbw65PyFYzYaE7Z3T/jjP/U9/s2XvofGcn1/nek3N5jfbDGdhvj9\n8t7lJgmPe9jx5OEvysfSHlXSx50pips7ywUd716vbLJ6HsrpV1blGlQQ4l88h62F6O4p8PAwEM2h\nbldynTxmX9AcdGuTMcLmCQP0JGF6scPk6gpqOGF8dQU1T/AnBhM5RJCSuQNgfcQIq5Fh6xnzrZTR\nV6aEXsaFzR7nWn02ayMiL2Wv36bzTsDVf5Di931ZY199QZ6F0xpxbvSeDohODMpYon5G72kPUxdo\nfr0zI7UeT7SOaP7Ht/l3rnyHX3zhdXppkw/2N0lTj/5JA3/oiVzHD4Fg/8NREHrYCT/s/8+ALVvH\nLc2aAdnGysM/42GdsuJHW05oK5b0ypfOkk3TEjngqDvK9/F3tgtLc3WhVNqxaVqIHxbvc9+ngLW5\nh8jEiXRZ8yQ0LxhlBlsPMc2KYpK1eJOyK+DFZcFDzZcSAM9b5MAWQn/ORt0YmErwnaNcvM3S7lYl\nhqymCB5/07UMgs4aDyr+nHXMNBV9BAOm2wLvwYWuBZHw/GP1UtdUqfsoHZgM/8M7UqWeTArNhSol\nQgUh3nrpZqCvXKx8rinvD9yfOOICwETEiJWDNxMGsrFnBjwltp254v88Jhg6h7J6DRSFKKwJnM6O\n05opusz5It9sSqdxNnNzKsPrOSegRBLb4r1U5rfh8a9EueuJ08QpikDFyS3fq1PmTJVeUSRtUgRW\nRvi+bKwJAil/ZvPOZk4Fy3/nOTv5wF8oMCoXWOHEpAu7+eIFAs23ORpEq6IAkTZ8UGB9zWxVkzZ9\nTKch3bkqAq1aXEiNS9yATBzHsrWWrE++rjaqUQ42G4xs4SA263rMuh5JC1Y+MoRDg/EVylYS4npN\ndIo8JcKd9RrWXUNTl7XHeIr4/Arxqk/c0k7LSY5hAjmeN7efOd34UUfa9BcKKSX14Swk0BJ1+BR3\nJdHpcOL0+ZpSCMeWzYXl91ojlI3TIOWFgKnvF+K+5uAQc3wixgVRdH/HV5eIG9Wol2LAvnfqGlN8\nVo6OrIiGKs8rBdMXKJYVRJHnLRT2lROuzmr6vs+LjhYRLUX30mTFnrzguugaLQBmMBKbaTce1Hn+\nPIZdnhrLc+W+fy8uiiV1b7HYaCcT8LQ4Hk1nBCeLBaCF+1s0Pk5/cEp6kATwBboL2P2tg8XPNWbh\n2GY+R53fQV+7KnPouauFY2d2dCzrjDWnr6X56TlUcjYYCYS/KozseSgnGFxQvsZTODiWxF0rxuec\nCLApUd3RcUm9q+r65YLtuSiuPRmQ3bpTIOB0p4V3bqe8NqmgsE39h1aB+uyG9sp54bSBimfEOYuB\n7K0LhhcOdWyX778qG0xWKSaXO9i08ny5vcm6OLZEKKrC5r06lGtA5YgecXHLqYlqYa+pxtCYDL1/\nTPPtfeyNW0R3BzTuxZj1jhQOcoexHLmbZfJ9MykK5XqXOorkvIyVRmu+X1qLmsaEB2NqH97DDoaC\nClvvos7vkHXb1H73bTmfLaGRq3olnk7iMqFVStarqnNeKPpL8nsfPZnT+FCQDkShuGUlKWr6I7gL\nfsqh+5+ykFA1LYDyuT2t0W1tESfmzS6V06mVxDbKCXaTpMKMSNKSfjabSzKfP9eeVzglVpsfBdox\nCGBjFbNaoZf+xEvFj+Nra2TtCG+a4k2tJPMW0hqYUGzmTcOAButZCAxp7DGdhwU5M/QylLIEI2m8\nzjuKrG5JG859+mRAeut093ZVz9BpiTqPOxZjFVjQ2pAaTWw8htOI2Pgcxw2+f3yObOLLOQUWa9VC\n8/6zcuL+YUduJPFIYzlu9rxF6vqy/EL+tlwkPF+zltAzKorQqyvyHC0jhPPXKOe46xDxeSEyOypp\n2vl6qTxPmtOBj5rNSRsek00fmyRM1z3mW00wFm9m0XNACeXQhJYssqR1C577Exq0NkwTn7qfUPMS\nIp2SWUUS+4R9S/T6dfyRW2tbIXpro2zanzKSDvhTi8rAm2dMLmTgWUyqqEcSbCdWs1kb0U8bzI3P\nrWmXZOYTDyL8MJPz/iHHj3Fnq4wfNag/o5BjswwzGOJN1tn/6gpbrz36IQvBNCgTv9yWNU1FqC6K\nCttSm8SCrMmF0yrIg0KoMSqrk972ljgnIFA2b3Wl3OicLd4CH9N1hFDC51WBBPhmNMYbjsnWmnjH\niwu/DWQztOMx2791h8z3hSqyDBd2orLF5ewPi+9iMwOxwKz16gqstOHeIXRaeMaSHRwQ/mAPlW2T\ndM6e4D+WUU3Yl4sz+b9Pg7s7UUWvN2T4yg5ZqGl97+yPKTqwJiu69/dREsOwFD1dXZGuh7WYwUD+\nr2IpW3RY0hTdaQnKy9jCRlO55nYunKpqkRR8fOFRE0VitVxJ9oq/He3EjsfiytGokbSCciHwNCYq\nE4+137+HOr9D+vFNagdTLBQwa++pK1LVz12ErC3tpKdTWF1BDUaowMdsr6HnMWo8LYRPs4MD6kdP\nEgwTsuhxzx0rG0yeAFkXsOZubjlSKBegq7q8VVBERbe0KOgqbCrBrX+uJfaptVpR/CK3Uc0D2GoR\nNwzkesZl8Klqop0ghee5dG09D291RbrCs5m8PopKOpujEtS+94l07C7t0mx6eIlherFN2IoIPj7A\nzmPZIDMn+udrKdQ0oqIIarVQyKwWq/csEk0fLxZaV9TPqN8eMXi6w3RdM1mRopE3F9v50a7PfB38\nqSKY5IGlEWvPwMN6GtNtCbw81+NSCm9u8EYxdWMxnqZ2LIir/pWQ8TlNWoPGni0L3T+O4QoxUCmC\nLOu+VIskUOxV9xVhHJrGzuZ4Kx0xCxgMsFHgBMFdkd7RgheGNUIN7XRETDGfk2GAnSQFqjM3Osg7\ndjaO8TY2sMPhgq+DrteKbqQdjornO73+Md72Fl4YijX10tpapW0Vp5bvfQ7BZNOkvEb5tTjuSfKV\ni/x+LNbI7X/2frFn6ut3yIDN15Ny3wVyBySbpiKinlVEaJsNmM3EDEE5zb3RpNyHz21BKZX2+Mdy\n8HwG8qr472qwXP39fI4eTpi8sIt+chPsUmB3WgPE/U632wt6h/n9ypMPL0cDm0zWfe3hdbuFDoKu\nC+osb3iozBSCz95eD9PtFCLU2Ukf3WiIBmLlHt5HZymeEQ8V+Nh5JrStdltEaifT0qVOa6EfpSn6\nres06s6t71jOz7v2BBf/SV/mtxFEjddqlnFaEdvpoujkra85xG4Cown+zjbp3j76d18jiyLmXzr/\naGYln+Uo+g1KCjSuGVTsK/nanzcNAO2VtEybpChtsLEg4QuR4Mowb75L9CZkUBR+VCBC8GJgEmGH\nggKzSVroWWIyZyXvOwSrrC1mPC7i5cKl1sU9IAXEvGFq01Q0RXCNpXlC8O5tzIVN7JVd9HVLdtyT\nwoIxcj9z56JWs2hAoZXEIEqL0H1T3Kc4GUKvX9x3r9uFMCDZEaSBN56jGnXsy9cwqcE76IvOXn75\n6/UiEfXWukKry4txOdXXma7gvgdA9rUvcv0XO3hTxe7X59Te+/SW2p922JPTUSwPf2PeMHJi4kXj\nUQHSVKyiD+18DvWa/H48QSHNfjMeo1c62FYDqzXZRzeEzrO7JQ2h4544aYYhqtnAbzUFpd9qokfj\nRR3VMITxGLW7RdptEHdDuPBlVAbHzwXs8BKHr7ZQKeg0wmoIJlYswiNFvGbImgYCA5lCzbRU6j2L\nnfrE2jKr+eynbfy24eWdO3znUofpX34O/8s97LCGTgMxSHH522njX3vubV5vvULUzwoKfXIcQT1j\nNg2JAqeNpS0b4YiTpEGceTx9dY9b3RVWfmcFTIPsndfP/IzHNh4ElFjOn6rmPY52WlCT9aJJSjXH\nztcFLy/8zuaFS7a3uYlqO9mLvKjqeeiNdTjulUYVHdH0UifDIk5fLqKpMER1pIg4fnaTtC7x6mRT\nM3jKkrSewirYPxexct0QDsVgJasp0pbMHVVPSVcUGKH+4VmyVDOa1NhujUgd3SFQBs83eLElffoi\n1rckTYmjbbMOxydnXtbZhiFua/y5lUZEJ4Gpj536DMc1dKfP7ckqqdHABq/duYDvZzQ7M+K3VkjH\nHmFF+uNRx78cCKFPO4xYlno377HxxvSBNm/3vXWyBJNz3OhqZXzBFhwWXCps76TUSQDMSLjZutHA\nRuF98L8qT1Ll8FglaKHcglPn3Rl3HmqlI2r8d/fw7/ZQg1Fh04exxCshthGhuquYe4d4ly4UTiH5\n0I0G1CIpnLmOqXWQf12rCd1oNsPO50Jv6w0cwkBx8z+4hq7VhL//je9R+xfvPPL1fSzjDOTYo0Do\nTJxgjno0bk8fic5UQhGzsmvkkluhAJafaaazosCIsa4A4BI+a6XLlNM5xhNxhbIG7/wuwV5/ATqd\nHRyINWrefXNdMhs7y9Y4EVh8WAaHRCEEobjJHZ0Q9mbY/lC6M54I91pPoYIADo5k8bIWfWMpmAn8\nBTimmUywQ5mDKgyxkwnp3T2B+x8PUasdiBMGX9jg4D8RgdL23/sm6vdeZ/2tx9z9sMj3gxKWuowQ\nqnY0fa/YoDCmTCCoFIOqh59MiX7jD8gOj0hv3xFR1eWNdToTccpmU+7hdIYZjYU6FoalXXPgo+o1\nvM31QksIEIi8Kx7pTluC1hUndOn7sLEK25vY0EfPhcPujzOm2zWSS5uoltD6VJKKHoIn990GHmS2\n1PbRjirmK9KaIgsVxlcEU0PYT5ieb5FF8ppgbIl6ghja/4mA0WWFSqW70n1D1rjcSjy4N4TAx/ia\nrBmRNUKyhk/S8rGewtR9vFFM7cYR9es9VGbpvWS59qc+4OrXbtB/WoSrfxxDpXaROpiPs9aWakc+\nR9YtHDBPyBMJNh3NSt3al/X/lC5d3i1VoThC2jz4ySnG4zHKdw0El+SrIFxMBE1WoXy4RG06W/hd\nkfAD2f49Z+PuurenoVZgEa1kbald4rrFVUey7KS/YElu53O8Z54i6/WwTjchOzzig//zizRfv1no\n5cj7S8dIG8elU5/niegxUpTyLwmVI727R3brDv7O9oKQ978U44y5ZdMUc3RM0I+5+9Wo0D84bdxn\nimCWUADgHKdEry7r9RbXLZMVa6I56ZdNM2uFSnZwRHbrDl53BTsei713RVPRTCZCi68Uf8/8umly\nn1UxseyNuUudbdSE7qw97GxO8C3Rb8lcQefD/3Ab+9pbok3i1lTlUE/584H2xLp+5BAt0xneuR0x\nWTi3QfLkLupLL8rnzee0fvvdM8/5cYy88QAOyeX0hOQXumgK2Ew0OzCllphy3XH7ILQHFJbuZSHb\nyN7UaKC7q3g5yj2Pd5ywsxmNyfrS5PK2t/C6XVQgOoY5jU1FkfzflugFaYf4yv8oz4PJFNsfSFEx\n8kmev4y3sVHS5aisPXlcnsd71YJ04JN1m5hLW8U187pdiUWsJbh5iP/BLdQ8xZ7f4viFBqSG5Fx3\nAYlgp1PZx7VCNRqoi+dkz841c8IQ/8L5+2ggJ09EZFenTC+kHL0Y0fvpSzzuYbMfseNuxVjDpqkg\nPtz8K9DOyF7k7+6IZlMunjrzVwAAIABJREFUwD0SAXF19aL8LgpJ15v4Fy/I/TAG22mitzYKtoOd\nzQVBNJ1hAzlOHu963RVZj5RCDcfM1118lEHS1Ex2LIevtDj+yQT9i4ccPxcw2fJRBrwYQRNbRCNT\nW1AOiRM68eRmgucbtIKjH6zxzt42dS9h40v77H7tlljRj4NF19kzxm+8/hImAOvBzV9o07irIFOE\newFmFNC71+aw18YYxXHcZJyG1IOEup+w3pqw9Te+ztbf/PqPdt8+z1E10qmOZeRp3iQPpDhUZT+g\ndZkrVWIPtMImiTRvrMVc3sZGAaYRkq63sPUIs9rGrLUFkdpygtSDkTTQavL/y1IeXrcLF3aIL66T\nba6QtDxmq5rxjsfoMmStjP6X5gy+NGO2bRhe0ky2NToTpI7xQTVSdGAIGzFkClKN0paontCoxfja\ncBLX+c7hRaZZwEu7d9j/WsoH/35EWseJUlvUZHaq614+Vj7QmEARtzSzzRB1HIKy6JbEgf24xt1h\nm636kKYfs9KckmWaVm1O447iqf/sm1z9H9/64W/rD/2OxzkeBql+hGHTlOzwiOCNjx4K11RBWHF0\nKavjOXxNBbL4F7DFqotG5RxtIpzuqlaQnU6lU9JuoW7dFeHEbnchmTDDoQRoQVAk8bklJzjoXp6g\nZgbTqhV6LunNO/IQuQfMfnyL2t0RViniS2tkLz+FdY4tqiKwrTttQSXM5kXlFCOJJoEIA+bBuk1T\nsoMDEdTzPcxX+kx/roRpPrJN4eMaeSC7HPRUf35AAmfGE/QHn7D2jTsPpxdUtJ6ywWBBrNKmEljl\ni1/eVdFhIImRtQUCINu/J/fezR0zmwmHV2mBqx8coZ9YDCqy/XtUqVsiJCxBknU6NYWAMciiudIq\nOp/eXq8MlOOE5kcnguDY6pK+cJXJZQly8gJK9dql9w7lmXCJhplM5FjtFiQCy7fzOemt21gH3Rzt\nekx+brTgOuT9zncffH0/j6FLMen7Oh1GYMLF32kmf/IEqhKY3ufyAotQetehzSks8n4jAWUUkp1b\nx+6sCxJsZwu1uiLPqHNlULVace1tlsnz6PQbdKeD3tmSop3nodJM0CA58siKlXt0MEGlBhNqskiR\nrITEl9agFom+U5qh47QsAgUaU/MxoS8FIe10kRJLvKKwCtKaZnSxxui8z3xVrmVzL6O5l1I/NCRt\nQzAU7nXaUJjvuYJxFKIHU0wjIl1tCBVNC0+bzOLNDfNuwHwtIl6vE5/vkq63mG6F6Fjx7m9e4+av\nXcGbKebdHw9CyPqqWO8W0D6F9tMp2lT5OE23pYIoMrN5cezs8KhMzKxdoKbZ+RxvY0MS4nx+pKkU\nawqkktzPnBajwkCSuGZdikXTMjCpFrXzAqdxjQtvteTs2/ncBWEhVfrKwtddcs/QlaDezuf368b0\nTu+WxbtlgrW6Oi4KAXnBKnfRLFAL7tp6G+slOkkpTLtZ7P82TbFrKw/s8P6hGo/SwJhM8N+5wZX/\n+wC/NznTkUaQJR7+hfPyvvH9dBI7n6OUwnPxQL62F2v8YFQgfHSj4dDNpUaNbjSkgOn7Yld/dCwF\nbUcHySnFSqtCNPqs762cpqJ/UUTW09t3yA4PiyKguf4JbG3g727jndtGNRqFGYS6ehGdgws21qXJ\nlySlQ5Wz/M3jq/z7ZoMB6fWPMcMRs90WRy/Wsd9+E/3K84JseABt8nMby3sTFJo5BXUcFum/zo3L\npqV1vDj+lEXT/M+pn1dZp4oilFZFI0id28Z75im4dhlvrYuZz6X4rBV2OiXbvyeaYK5gZdMUr9UU\nk4uJ/H96d0+Kd5Mppj8UTZ7AJ+udYOIEOxwR3D0hOJ5gz286PTApdNksK+QWAGmERJEkh57GGoMe\nT1GZQfcnKKfxYy/vMr22SXJ+jfTOnojNvv8DphdabLw+RN+4Q9IOCp0xoXKHYtBSr8s1vXUX2x9I\ngTJJMN0WtlnHPHlRCkPdLt72Ft33pjzx1y3P/fU+5/7pAc07j58yZmef4jNz3abAmVNoXaAuCr1E\nKIq9ggbL5F7nejG5gcq9Y9KbtzBvis4PxjDfbMh6HCdY3ysaA9n+PTBGKDUnQ3GgyinER8fCXPhj\nrzJ+9SLBMCU6mDFd9xid92jeVhy/kqG05fikxeDplMMvSmKf1hX+BIKhRk80zHNNPykMaV/QHChL\npzbDmysu/Q2P3/7+c1ztHOMrw+CddbZ/V6NSi/7Cs5ifffXUS9f/C1/hyV/OqB1ljLd8vDmsfpgQ\nnmji9Qy/ExN15lzY7JG+3eHt3jYncR1fG/bGbW5+svFpbvPjHUVupTgrL7dZVuwL1qH3CmkDKFH3\nS+8p4urZDOYxejCFzODdPQYF8wurpKs1TCMUjeDBCDOeYAZD1O0DmbeJNEmAwrCHnQ3mu21mmxEm\n9AiGGSikcAegoLU6wQ8z1q8dEbctw2spcdvNnZHCTj2ymU+WeqhAkGZhPaFZi1lrTgh1yjzzOXh9\nm6//+hd4rr3Hy0/dRNUyakeKsG9Jmj6mWT9zj1a+T/3QYHyYbiimXY/WxxqVamr1mFZjTjOIaUcx\n7x5vM05DdppDdlcHHPbaNA5c7PgpkIF/uAtCVQh+/u9HHVUkj4OqZvcOz3YTQ6DL2imYF520yqZo\nJpMyqasE/oXwYc57dNpBudVi3pU1/QFKa9RKR7oNYYButxeKDeJiFZZ8SJAFtgjWHSw41x1ycH7d\ndNogW2vgdFzM999F37oHmeXuH22SHRzgX70s7gn58DzhOCcxzEuEk67X5TzCAObzwpGmuA5xwuSk\nztHzZZFA724/7K483pEnZSZbnDsPm0cFZSiTTeru/gL669S3hCHe00+WH5EuUjvybkpeFFKui5L/\nXBTTHAUic65Dut3GTqZCJwp89EqH7J0P0F94dqHbayYTCl5/ZgQtkmXoWiTVeUeDy7n3eB7kXXmt\nsa0GZqUprg1vv493R+DPhy/V8Scu8V0tCzgqipx1uAiGVvn2qlYT9ES9Vqr/WyuJp7U0Dgw/c/kj\n1I4Infu7OwtC1Y9lZOLGVxR4ikKPKX/2vaUA24qbWKGPUlk+c+vbHFXkRBPF2auy8CuHvHI6TnYw\nQn94C3X7HvGFLoMvnWf25KZoLVWg9OneviC6alGJBqnXhFI2GsO9IwmIM4OdTFD9oQjzWUtwMCLp\n1rGhxptm1A4TJls+452I+HxXAnyHEkLlaCCNCTxMzSuoZMoIRWv9zRnd7x2LsHRNhKVn69Kpy0KF\nCaVgtPqeYuu7M0wAYX8JQRX5mEaAjlP8/hRvNBcnmECTdDyshsEVn/6VgPH5iHg1RBlL9y3o3DDU\nDyztG9DY+/EhhMr1vsJ3f9Dachp19bRhltzCTHZq8Ulc6XKHyQR16Rzg9oIlR5gcVVNA/B3y1FSS\nBZvEBYLJjEYFQtTrdMh6vYXud7azLvtl7nxyhjhxcWz3vbNeX47jCugqFOFeM5mIGGSzib+zTfbe\nh/g723j/rCwU299cL45bRUnqRsPRO/NuZCjUBcDf3sJrt9G9AfOnd6iO+9Ayn/NQP0T48ugHLedQ\ndtLHfPgx7B1Kk+oUAXPrxJrxhQJUOLFUxaHTFNVuS7dfe1LAqR4jywqqvJnNncGBFJqy4RBrLbrZ\nIDs6FlpztytFoXap92HGY4lvztCUKF9oZU/LHTWVQvkiHlo4UDmK4fiFHezuemlTXfPZ+m5Fi8vz\nigaLiiIpBuXU/JzyVrkOZjwmPJ5x/JOuuPn+DWmI/RjEXXM0ujWlJtZCYSqnNkOp2bGgNSQFOKVz\nR7K8w+/QNn5lviwN5fsi6B1F2CQlvfEJpnfC/NIayVYbE4mtu3/+3IIrGLhnzOkKeZ0OeB7Z0TFm\nKLIEeVPIJs7iPgwxgxH6iUukX3sFwgA7HDN4dpXpuSbp0+eF6l2h2OOcOnExls2pj1mGPRlgv/MW\n2YfXBTUb+GQNiVn9w1ER7yvPI/q1P8B++02yaxdovHmnvPZ5AbG7Is256Uw0SFZXpDnTqKP7YyZP\ndbnxpzvMntmBHUnq9b94neDOsdhbD8YEd8+miXxu4yyHywcMaShWiv3GFI2JXFjcZlnxDKsoKgWl\nnRudmUzEZGc4xD8ve5PX7ZLevkP4T/5A9HdOBqhZLGtOrlGlteh5HUhyrzstmVdffZnBn3iOeTdg\ndM7n5FrEyTMtxruauAPTLUvrho81CqUsO1eOeOJXEowP81VAQe2wdBpTUUbQiVENR3H1DfVaQuSl\npOsJH/9lw1/9mX/EpfoxNw7XeOqXT1j55W8SHc3Y++k1+ldreC88c9+1+4v/xa8x2Q4xoaJ5LyU8\nsQwu+aQtQ3NrTBZ7JLHPJ3fWyZ6YMfrtbYb/00Wu70vBPNw7y/H6xxPrPHSclls5Rk0V0FC8JHMN\np9xIo9EoGwq5Q2KuERbHgvypidSCfzQm6M8IjsbS4Gw3UWGAGQ6FoTAei2Znf4iZSd7q7e6grlwg\n3mkz3g2YbGpOrjWYbvikdUXSBBPJec+mIV+8dJPQy0guxhBlTLctaROiI4Xfc8hkbWivTuisj2nW\n5/heRqAztNvk05ZhtpsSqAyDQh+EbLyRsPsrH2E9mF5qlyjLpXH9v/kyxodgLBqZWSR6QraR0q7P\niYKUVjDnUvuYWeLzzW8/w3o0Zr02Jp35hQzGpxl/OApCn0egdAo/3ybx6Y4qUDxs6d6+FGVy7vzS\nJpkvdLnjRX5sXauVyI8oKjRGwCWOLsi3SUK21pGq+vEJqtkQvYjKyA6PBD3geNsiOCvWfXnQbuZz\n1J1D0Zmp1ZwWSEay1lhEcmhFeP0eu783xvzMq2QbnQWomp1MMY0aKghJ9/YL4WubuUQ/CDCjMeOf\neWYxgD46YfW7IfGXfwxK0pXxoALfsnDiI4+lQqSNYydaeUbA5BIa9g/wz587lZpok5hsMBAdmEZD\ngiQX5OlWs9Rs2Fx31ohZKbg3mUjSP4+ZX5Oim5rG8NSVhc/IDo8cn17LnMpFOKOo1Kaq1+HwWDb4\nXl8SAmvB95hc6pRUSU9oQ1vfGYGC8S/9JByXFWd9+QJqGuNde0JoYdNpec2yzDnQyDy890vPFu9L\n9/ZZfaPHdjRgck02QDudYlYq1siPYVhj7tc8qUDx5WSzUmzdVMQr3fe0lW5ZThuzSwm/qtfQnZYk\naLmQdK4NtL1G+uwlsmsXYG2V8Lsf0viV38f/re9g7+yTa4kpl5jlYsM2cQLhnZYT4jOojTUR3LMW\n1WljNrrYWoiNQkynzrwb4I0TZhshs40AnVjqhwmzzYhke0U+ax6jEuG85zQxZYQ6ZjwRdQ4HKcpa\nhs92yUIpAoUnlu1vJ6y/OcH4ismmhwkUW18/ZroZUjtyLmOAevWFgp5mAo2eJmAga4SYUGzlrRbR\n6Nk6tG+mTLY08YonAn+pxZ9ZTCjFpx+XqHTtxtEjISIX1qdlCmsx7+7vlJXvqSR51V+HIZgM0zsh\n6w8EAXR7TwrIeTLmqJ55kceaUvMKhxRSWi3YklepYqoWSVDnKDbWWqFaAfOtEoFWIP2q6KhqMTwI\nCxdCTCbrmXO2rGrJqEYdFYakDrlju4v0i87HaZGcZb1egXLR3dUFGom3tVG4kqV7+2TPXyE7POLk\nqbKI9OMQd/1cHPGWqapJTHZygpme7SxkJhPSG5+4IqHTm3ENn6qrljnpi6h0RV9I6OgVZHR+nyuN\nMDMcYsYT7Fe/gIoi0ZvSXnFPihgjSReFeU8ZWa+HqtUwd/fLeCoMUFcuYKbTIu4yvROab9zl6Itd\n/KuXpTDw2rv0r7jnbzqTBN73xZ3OFTcLtEwYkg2HjP/Uq0JjcnNav3OD7Z2ThWuzoPv2uEZlrbA5\ncjVv7OTIHSA3SwBK7R8n7Log0J0PpRfXpXyfcY0plRexw4Ds+Ssc/+IX6P/5rzD+hS9Qu36I/t3X\n4FtvkH58k/TW7fukFgokV5yUiB7tCTWs3RIn20YDvboihWy3X9pP7uD/1ndAadJr50BB9Ot/gEoy\n7M4mutUqihNFcVkpQZM4JL7d2RRji05HUGNOo89/+wbBb36b7L0Ppdh1bqcw6/B3tvFvHhR6QIUY\nvzXYWiS6mnEs8Xm9JgWrwIc0o/n9u1z+L7+BTg1qOi9Rvb2+yES0GvfRWB7HeFgzc3ko31/Yb5Qn\n+i+FwUW1WOTo8ypHoM/n0pSKY0H3uPuf3r6DCkJGP3sN7/mnyb72RcxPv0J67UJ5ns5JN0eWgdyP\n7OgY3V0lXg1pXR/R/GRcOIbpzOLPhBKmY0XneoYOM7JUc++dTbxpyurP7jF9ImayI00tf6KwjuZT\nr8do39Bqz9hZHTCZROwN27z81E3+9LPf426yyt35Cq3GjNlOk8O/9FU++qU28/+fu/cOkiPL7/w+\n76Up79s3TAMDYIAZYGbHzyy5nqJb3q3Tkas46Y6nk4JHSjxJlC6CFwoqFJJ4e4o4I4p7vDvFUSJF\nkZTIJZduqV2uJXd3LGZ3HLxroNHeVXe5rDTv6Y+XmVXVAMaROxjqRUxMo7orKyvz5Xs/8zU1yK+F\nxgxjz/jS+v1UzjQJsxJ326d6xWf7AYW7Lel1XOxMiO1EiKbDPVPr7P/TTbya5NC/FqxdbRBUbx/U\nyKEmyLtuDF2HRP9yoP000LYcHokgPEoZmYQEVSbEQBRfWpDNEBUyqPEqYaOAtbINa5uIC9eRMYos\nGarbRc3fRHseVrmIKJgmd3+6hF+2yTQVdg+UC35Z3OL8mX2hwP7cNvtKTTIFH8tVMOPRH4sIC0YL\nE6Ep5vtMlVpMlVrknJCy2ydQFmvdEkfK6zz+0CX+znu/TUYG5G0fpCa30EJXSoRZSZiXhu58m6bU\n2COrhFlBUBDULgX4VYHXMPQ014po5LoUYhcXr+dy/J9c5esv3M92P0+u7NGdfPtrzLuiICT+shzX\nv9SHC0PdeuT+kZdT7vwdBLVUv2+S7cTyeeg7iGJhANGPrX+TzpPuecibawjXQVYr9I5PoWJbvxEU\nzu4uieX0iFNCJoMcq5uFc33dJN6lEqrnEa5t4F5aMsiQQgFrcgJRyBMuLmFfukmYt7DW9nQotEIE\nYRrkJBaDKW9/YxORy1E8s4acHB+5PpPP7nBofDN1EtGtu1Acsl5nCr+Zrj0MFrM7wR+T9w/PBSGM\nzej0FOKEQQZFzR0Dab987c6fpcwCaNVrg+MlPOwEWRMfX7juwCEnRoJl5mMBciFonooFEWOePkC0\nuDwoOiTc+mFdjYm4W9vrI+LuvtpuIpotcqs9ZLGI1agTTdUQfoB+4VWkr3DaakT3SgQh7LQIx+Nj\n9PvYkxNmMdexfkGnC45DYWWPOOqNJX7rpcdZfdxJr5tsvrNzR8TFmtv8wvw/cYkbpnnFQyd8ehgp\nAom9c0fIQYCdFHVihJ8qFVj8gTpXfjzHxX+Q4cIvlLn2cyfxfuxxrBNHzYba7tz62V7fIL2ENCKZ\nq2uIjIu2LdjeMYmbY5wqTCEAUIrS+S1ks4PdU3QmJbVXtomykn5FGlv3uTFzjMRhxhLGgrhvUEP9\nuoMIFWHewmu4eBVJkDcW9IW1iMy6hzeeoTsh6dcEyoHlDzXojkkKqxGla2buyFYX7dionE3m+iba\ntdFZG21LgpJFv2obQemeYt/XeuRPzzP17R1sTxEUJUJDdiMwnG6XW52b3qERXrt+i4bc7cawIObe\n9WPwR/rWNWrvXErRhCaBFkfjorPjmD0ofuYSyL4pDOyMHCd1jBIihVNjWSltKEUqJqK+8fdLaFna\n66dFmtx8E1komGC9URtQC+CWQrw1ZlwSZalk1odEeymTSQtFRmdNmX1Xa+yD+1PxejB21YWrO4Ym\nl2jdeZ5J0pOAMg6YdaeDODdYg60tg0ZpvDpYv9TaRrpHv1PD7kZ3hIkDt97zt9sRHkYqJ/+O4xz5\nwPERlGpybxNtwREdxMCHIEhdLhMNEVkopOc2rJdnqCUD6phzY8MgROs1+j/yMNbiRnzcYOT4SRKw\nt+GSFB/DldVBfBVrWome2W9UjHxT3S7hwk3Gv3wdbUlDGXzyJLO/YfR+VKuNKOSRlbjIGIu4C9c1\nz45vNBqzG76hXM9Mxu9rsf3iOOoDD6V0xbuBEEqGuE0BCIgbBTG1dDhhZ6joldJNbxMziViiIEYP\nJQiRxNJe2DbNYwXW/70+Ox/vsPV3O5z/H+vM/+JTbP29p7DuO2Z0gfbYyicNVENfCwyd3jKutuHS\nMgm9iDBE7bbM3qbM/JWFAmiF9dIlCp97ziAVCw7rT9bgnv1GiyyK0qKWjtGxgKGrb+8aF6Fyiahe\nxptroMYqKbLKnpokuP8grQcmiMZKpsCccU2Da7iIErt86qVV7KlJY3mtDIVc57Mp2jiKnyX7hQuo\ncp5wpo596KD5zrtxfPNGiLjvxXgrzIp4GISpbdDlIwiQpPAuR5EfccPMiAjHJgdxUTVpdurAJ/cH\nzxsE+te/g9320ZahIMpGPW18JfuDVauhJmrY+2YJ5iZwuiHy+grd2XyKtvSq0mizSAjzmqWPaGbH\nm8xMNNn/1YhLP2PzyNgCCIim+/gVgQzA6lj4nk0YSaRUVHIeHd8l+5082+slxrNtmkGOP1o4xTM3\n5rCkZv4Tkq3HQpStmXrBJ/OnL6Ady9Amh4bSgu6hMlqCci02788gPYG7CyqwsJ0Iv5lh7uQSB4rb\n3PxFycP/4CXe+9nncSe6IKD7iSduvSeVO9uUv6PjdqydIYmVtPg8pJ9qEKsxCjNpou5FOg7rnCV5\nSxgS3ljE3ukZK/jXrhEcHMd/YA59fM4ITe9FIAW+cakcq6PGqyZPjzTubojb9I1MhIagZOhiIgIE\nOOU+2Y+ss+xVOLM2xdS/y/BLT/w2Tx66hrMjUadaaAli1yFSEksqFIJ+aKMQ3NyssnR6mqnMLieK\nK+yEOV7cOYgXOrgH29z4aJ2bPzZBlBE4bYXYbI46GcZj+cIEYND3bjPAL2v6DQWBINICV4ZIoZnO\n7vIDRy5w7jMHKO3fJWOZ56Y7pVOK9Vsd74qCEFrfGenxVheztxFEiWyG5e8vs/afvzftXr3hiEXT\nRGxtl4hkWuXySCInXCdeKP00aI7W180m0+/jfuNlA1vN51FH9g8O3+8bJ4NS0WzKQxuU2tjCGmuY\nYMy2YaKONTttuq+drum6TI6jp8dQsc1uFCcA4fWFwXeQxiFB7LYhDoAS/RuRz8PMpNnQWy30xpYR\noE3uk7SwVpu0/9U+Lv/dMeN6dDcCpb20wrd7jL0/3wZhdstCKCXR7BhX/1Yl1Ud4M8Nw7WO4ZKFg\nim62jaiUUyHUJPBT7Q4ym8UqF1GbW6jlVUPJ2mlRvBkXHctF/A89YE4rDE2RIJ8zHbGk0p4UicIh\nN7liHj3ZQHU6hMsryMs3keUSenrC0IWuXo//UGP3whG9Cd01wbEMBoF6uLKKVSoRHJuFceNEEy7c\npHBxC2tyYnABDs5y9CdfxL+nh/9Dj5q3vx2e+19m2Faqt3XL/El0g2DQ0YvnQxocJZuW0ggp08KQ\nGCooCdeJu2si/U/Egs8iCCkuKsqXJNa2DesZ0LD0PovrHx+n/eHj6ONzyPEGMpc1/8UOY9oPDAIs\nUibosm0DSXcMrTCxKtdSol2b/liO/nSZ3j0Nwpxk+tu7sLBMmJPsHAHlCNqzGVS1YFBQoUKEGhGo\ntANWuNkje8MUkyNXEGXAa5gOS5iV7BwtsHPYpnUsojtt+M9oMLauAuumSTiF5xv6WagIpqv0J/JE\nuYFQY+RAv2KhbVOEan74HjYfLBvdqXFJmBHYrT71sx0yTf29oeG8mREjTs2Xus3683rOHPH73+7v\nRT5HfypG9QTBwK2p1zNFoIlGKgosbCdFEyXJiHBdozWUz++xsJcpiiBx/knsuSFO4NfNPqJvLqdJ\nM0JgjdVv3cPjxDNJoJOkO/318cOpzo8c1rUrlUYcfgAu/pvD6PmbqRZBco2M6UEfMVbHmppAPX6f\nuQZDnXh19Toc3gfPvpLSeo1Q9jsb/gg/HBRpbjf20gnfRiJ3R4q9kOiD01z/G3XEvmnEQ/cj7j9K\n95NPsPMfPok8efzW9xAnc0nSHotMp2LlQZgiQtKOcDzvo11jyRxtbBJtblE4uza4p7VKmkQpzzO6\nL4kBx3BRyHFM8U8IZCGHVS6nFLfw6jzh2gZWpTw4P0wxkLVNwpVVLn86m8Y9RJGhxcbHT16Xc/ux\njh428ZznYT1/lmhxOdWPsffNMvcLzzD/o9lUe/GOKPPv4RByoMuSIjWS/SRGbQjHNvo9cWFI3IY6\nkKKEtBoqGJqf9xojQFyolcIge//PZ7j3py9w4J8Lxv+3PAd/TdJ4VdOvCzYfadB7zwGYnsCqV42x\nREJD09rYwcf7kshmjFxCjH4HYmcwU6ALHpiDoweR9Rqt9x1BHDRIQKbG8eoOE99cJ8o7iH1T5loM\nfQ8RC8yqre0YlWLmlfRD+nXbNJ5sG3vfLGqqQfNoju0jNiIyjZporGyKW7FmmtEPis97ahxdNqgm\n3fPQrZbREJIS/z2HkNUK9r5Z9IlDqLyL1e6z9aShhYTLKwaZ/S4fKc04psDrBBUNhloZxz06GghN\nq15vMHdizUrt9VHt12/yqZfOIr/1EtHCIvT7pqg/NGdFpYTc3CUar6JcibPSQh2aoV+2iDKGShMW\nwRvTeGOK4oJA5EIsqdj1MgQ/u8mnT51GCs2Jn7uEtWqEfb2GxuqDXMqilEQIWN8t0u275D60zofv\nP09Ghix2q2xeaHDo71xifa1MfbYJQrP/KxHOn50GwFrbRpVievLsDFajzpWvH6JXt4hcwc7hDLOf\nv8HEaXOeVjbkQH2b/X8quPncLN9Zm+VYY50LzUl+++yjqKtF6i9J8p9/7jYX7B0Odu6UV71ebJIU\ndWKqWKpvNuTYq/fG0kPmLMOva61TYEZ09iLRuUsmP336ZayvfwfZ6aNzRkczQTQmwyoX0fkMcrdL\nOFVNY9ruTJYwLwjM9JbRAAAgAElEQVRKgqCg8cY13rhCFUMalQ77Sk28yOYjBy7S/Jk2l/pT1N0O\nU89G7G806U8HWJ6g3cqy1cvT9l16vkM3cDg0vknuviZ56aMQvLS5j7O/d5zXTh/CtiO6R320gPI1\nj9zpq4QrqyN6vsmovyoIioKgDN6YS/EG2B2BLAW4VoSvbJ5ZnOP5jYM8UpznB0+e4Z76BkoLets5\nZr4d0np45q3d63i8OwpCcAsk/u0f6C0+NNrYWc58bYugCJd+9hD6qQff1FuF645a00NsuyhH/ibp\nbslqhfCk6eyKsTrNH73PLKidLmLfNN7kaLXQdFZ0rJEQ89uVRvU8oq1mzOsNiEoZomHKjW2jilkW\nP1wlGDdBmFWt3vKAW7Hzg+710MPnHFctxVZMKZKxs0Aum0JrAcJ9Dcovr1E7Axsfvw85fhfE0IZF\nyt7OeDPFJDFIQEY+OgixlrdwdwTzP3UvO3/7yRGh5DsNmculSKAEqq+VhnplyDLaCBnqMDSdgZlJ\nkBLlebQfO0i0uob85nex982y8+hMukGl59ZqQ9W40A0LAUbnLmM16sY5zrEIG7lBl9c12jbNU1VU\nZqhT0wtugcYKIQwMf7eXFntMITGHDOJi1wODJCM8Mlig+jNGS6LxlSxL73PM8/aOC5ILI64t5Qi9\nM7FMHknI1FCwPGTrbgTyjHileUu82SUOcWFo/kbKUSHGKILNbUr/z7NM/MrTHPunV5h6RlO+ppl8\nXjHxHZ/IlewcK+EdmYD908h6DZHNIGtVA6nXxmlHZFzTJVEqtdPWQiD6htqlXAu/YmP1I/yKzeZ9\nFu25Au0PHaczZZFdFxQv74CG7myeqF40mgCRoY2pjEWUs/ArLp17G2hpLOczu5rJF/pUrplihHIE\nKLDaktJVSWkhIswZXj+QWgrrrJuKSFsdn9yZJZyVHaQfYfUU5XmP4mKf/LVdZGAoYlZfU7voM/aa\nR/3Xn6c/nsde3aE838fq362K0NB4I90guDM66PVeg1uKFjoMUDstste3jWX4kK1qWsyJi6tWrWKK\nOFFkqMcxHSxZL3UUGVOB5KMcO02uZKWcrgvRA0dM0gxsfPSYaYJMjBFduop+74Oo1XXC1XVjA5tc\nDyFMgmbbqFbLJBr9/oCSBumeIywLUa8NkEjH5xCbzRSZAhDtuilaL9HNS/RkomYTvbVNtDIQiRZC\npM0dWa0MGjS77UHx/o2Kdn/VQ+s3X0x4O8Wg5H13KFDK1S16syGX/v4E1som6uVz5P/gNJX/61l0\n1kY+eOK2nUW1u5sKAidBtzUzOXr9pEj1m+zpKaz7jpnXHz9F9KGHCa9dJ7p8DfnAcUSrQ3Thcnof\novV1rEbtFkR2uHAzRYyJXA5RLhEei4sDwmjhqKMHkEcOYsX3WrU76FhLK7uaiEWXjXaQ10eURumR\notNDZ4z+n3CMdqM1OZEiudRYhehDD3PP77a49jP3vi697Xs9Un2cIEyLoipxH1Tx60N6QSMC0okr\n2ZDbX9pZT2hjyfphyRgptIdKRlxIffYV3C++QHapRflym9kvb9E4vYHlK7qHa7Tef4Tw0WPIYgF7\nchx7ahIdKVSvl8ab0fqmoZGFYaxh58fPt8Le6aNevYj2fVr7LEMfm51BFbLYnjL6Yjse3cNVxKH9\nhiYWU5WIUWwcPmCKv9mModCublD43HOE8zfMGmRbyPUm1cses3/eQr/wKmqiBgr0wnJKWUo1/xwb\nNX+T6OIV44roOqYxt9UkunjFmGJEynyWAp59hejsRcq//WyqjxhtbqV79Lt2SJG6VgJmXsWF96QQ\nqcN4/sVxjczEuoa+j+r3UX4Qy1wMzEZe77nRYWi0Ond3kbXaQB8uQTpKkL6C1XWivI224nhDQ5gF\n5WikL5j4V0+jezbrrSLTHz/H9remWPdL/OHph4iaO3zwA68g7msRlhVRVmP3BFEoyWQCXCdESkUY\nSW50aqz1i0xmW6ic4uY/fJgnjhnEqWzbhPnBc+Edn0affg0wtLjrP3Wc2nllqO19TZgX+AfH2PxE\nl9yD25SLPdp+hsUPSvwZnx/adx4Vw5ztswUaD67hfGqNK//8yVvACYnr7Ds23uwelKA74z0/jVli\nqmoaF0sxUvQRQgxc61KEURyPS2NO8HrO4NHZi6hXYsfHGJWWsiVsm6iQQbc6qExsA7/ZwS8Yl9ww\nC1ZfoGyNzmjcVYfNlydY7pRZ+V/u4Y9ee4BPHXqJl1v7+cZvPcb6Qzbj2TaEgmi6j/Jsmu0ckZJU\n8j2ydkjZ9fjkoZeJtCRQFt3AwWlrnF2JY0UQCtyWNkXQmJK6V9/LOnEUqw/aAi3Aq1m4LU1/KmRq\nfIdjlTXuLa0ipeL6RTM/ilaf7148yLkL+0BowpwkyN/ePfKNxrumIPS2A6Dh8TaRIrrfR1+4xsHf\nvEHtPFz+dI7Op26F7N0yYuiz8rwBgqDbG1QqY4HZtJMchjgrsQ5LEJJbN++XY3VEp0fuL8zkHg6E\nw+sLpptSyBmaWblokALKoD50q419fQ05vzQQ6Ot5cHGesVf6qcCUmpsh/9KN0YKFFOCYTp9YjTnT\nCaRditRVTDh2+iCLhFKiIqztLq1TE5QW+tTOto1DxF0Y+k6V8zto/gCk9LAhEbSRYHpYkPMOc1OH\nAdHqGgd++wbjL4dsPAzLP3nqDeF6qts1xRcYuOtoNaDr7Kl2C2keblk3VAlli1SkLxqvUroco4oy\nmcHrG5uISBldjlzWBNQVo/+gdtvgB1hbuzhrbUSpaAp/UYRudynd8PAasfDivlnkzm2QX3FwKjo9\nVCxSLnI5Y/F8cxN99QZifgmrUUe0OvhlczxrrIH7tZdoffpJKvMetXMaq9UfLJDv9BiGcMeiymht\nAss960na7ZCjwVL6+2STSwSmpTT37ja6AcK2U4potL5O8XefI78W0tpnsX3MCCgXln2CkkXzZI3+\nPROoQ/vQ5YJJbGJUEpGC3baZR0E4oItFEVoIrG5A5Ytnsc9eJ7sRsP8Xn6b4xy/Ra1goC2b+7XeM\nxbstaO2z6U3n0BkH2fWx+mY+hnlJlJUo2yCCIlfgthR2L6JfdfBLgiAvyG5rjn7mLJO//DTZtR7u\nrmbqmZDy0/NATIkUIu7WKIQXmEC7nEO5FjLUpuDU9tE5B7sXYXcV9T+9QPbsIpnrWwQ/8BCdSZuL\nPzXDwkcyBIW7xBl7o71muIicrJ3Dge5tKGG3RcnepmihwwC9sARKGZrDnqKT3m0bJE7a2Q2RR+ZS\nlGmC6tBBmCL9kn8PhERFijyyWn2IKQ+VeQ9rrEF4zaAHRahSdy/VKA9oz2JAcQaQiYPTMO30shH/\n1VGUOmACyK5vCohDlLyx56z0OUqpeglKS2vjVNTvY7143hTKut1BwjvRgMs3kCePm67cOywmnY63\nM1XfTkxzh/0qXFnlvs8sUZqHhX9do/8jjyGkwD64H2uzhXr5HOHCTaxGHe/HHk8L+il9fHd3MD/C\naKB/IMQoUsOy6B0w80C5Ftc+ZmIKWSyiL1xj5/vnzO+aO2nzLdrYNIi1IQTy8PMQLq+gPQ9nfi39\njrrfx1rfYf5T42x8MHYWy2QIaznkgyc48MU4HnEMskZ3jSDw8FDbTbg8j76xmJ67apRTJ0995jLO\nZhd5ZZFDv3LhFo2cd2wMT4NEIygIR2iawz/rxGo+LhCl92248ZIIUQ+hV83+JW+hNt2u6RadvYgI\nInaPV1n7/jHasy5OKyC76RNlLML7D4HrmGc51pcyVBKjqSmzsQ5nEDulOY4pHL10FlSEbrWZ/OWn\nUZ0O0UQNfzxH5gsvxOeu8IsWYTlrdEJiEWmkhc5lEEGY0rSC4/sNcihGBkVTNbzD4yau/uZ30S+8\nai7rxg76u2cGemfJZep0Y7dPg7q0qhUT//RjdGImY1CNvZ5xhfzuwO45ocmu/cx72fxPnzLNkHfr\nkAPUM1KaYqNWsW7ingJiFKUaTsoPTME1DA2lOY5tE+SaLBRSF93bjWFh5mh9fYB4LeTAtoiKRl+Q\n8Qa9MZfIBcuLUT4B2F2BDARL/817jWhzJLn2maf4+Ke+xde/eYrZP5Os/eFxHinNY1mKQ58PsTuS\noKiQliLrhNTyPdo3y7TP1Nnq5ljvFfnW9cOUp1s89InXWO8VaV6qU3tN0DxiIR84TusnnmTjgUyq\niWXdfy/9ujJoZ2HipH4NVt6bx3Eidpp5Or0MO70s++9f4bGj86z7JWZyu2TtgPf88DmOVtc5WV/B\n6gmi9Y3RCxWMOnd+z8eb6ZUnTnJDyFcRr7fEa9CwpIKhtVvpHEt1OWMtqlGEq4LmLva+WexDB+9w\nAsIUg7U2+kH3zCIP7SfaaiL9EKolUBBlLYLxAjrZXgLIbJuikAiMxEGU0WgtWH1ckiv2WepXubIz\nRpSBj37iGfbnt7HbFrQccrUe+axPJetxqLxFxe1xfmOCc+0pzncmeW13hiPVDbKfXKX42AbNZgF3\n3UZZAu+jj5l17/FTqPXRvGfr4Yaxt49AaOiNCzYfEMhciB/a7AQ5zu1OcXxsjY88+hpnuzMsexXK\nr7lMHdwkX+ux+RNd8qvB26qpvItXp7c5Xi+Aep3f6X6faG2dxv97mUN/FLD+sGTpH733Fn7o8Bju\nzqbHV0ZQLbWrD8KBtkG/T7Rg3At0t0vmhUsgBFE1tqxMNqJGzYivJiOKYutp28BhPc/oAZSKcGzO\ndFZtGzE5hhyro3oeyvPIfOsMmZfnDb2s46Eb1ZHNLoF9CsceKeYIS6K2mmmyoIPQVP5X11GxdbjM\nZqG5S2u/RXfKxbq2cstG+o4MzZ07vWpQYLn1faO6HYNg6jZUsaT6fbuPD0OilTUKz1zm0B/10TZc\n/Nn9qO9/z+uedmJ5rIZtlLd34nmj9mg5BIidNuHNRazJCcqnDRTfnp6iM1dM7byt8TH8wwOnN7W2\nYZABjmOQJJ7RW5CVEvrQLOH1BaJzlxD5HHq6gcjlTAHw2y9ROb1kOnuVIoQRYWHPNYwiQ1sKw7Tg\nKbJZdDu2hpZGf4AgRIcRhfNxIB+GyEqZzHbItb+RoXqhjTpz4fXFwb/XIymsSHmrJlUUpQigYSex\n1IZ3aCSC08PC02kxKBGUTgJuMFa2Q8Vf94svsO+Pl8g0Na39FstPZWnN2BSW+rhrbWTHQ3RN4JXQ\nVcEUDGWtapBCMToIIVBFl7CSIbpvjuD+gwiliT74MP4HTmH1NWOv9Ykeupf2PRWUDVZf4+6ERHl7\ncP4C7HZE6WKT7HofZQv8kumydKcydCYl3UlBPwZd7PzgCbqfeILmvUUKaxFbJ5wUHSRc1+jFKYXK\n2Kh8BlXMp59leREyiIzVvSWwOgG5pTYi4xLMTeLNGcpba04QzfSxfIH11vQy/+rGXrpRssa8XhF6\nOBm7zWY9gpK903GSxkMYmnV+u4ksFkdc+qLtbdMs6PsDwei1rRSNOGyWMJzg6jBIAzs95DgplteI\n1gzlz37hQmpxLxwX6+KN1GlMrm2j5wYFKmHbqE7H0KF3dg0iREVY9x4xiCFvSNS9Wkq7yHreuEYx\nMaDhVi/1blmDE7274aE8z1AVhCRaNeesrlw3He71LcRjp4y7DYyIad+V8abQqX+FIZrWhDcXmfrN\nM1R/rcSNT0fM/8LjRnfOD2j9xJPo73sP0eYW2T95Hrlt7OVHqMKJqcXm1iD+SZsqRrsqvLmI+0WT\nuNunz3Pkv3zW/NnxOWQmQ+Fzhg5hTU5g78QxRmjipEREXw51w63JCazJCUM/W9sYEeIM529w8Jde\npfHHZ9OYyL28jLixgrwaO0XFGjjaD4gS2o60UtFbHam4qWcoMGJ5M0XZ6cBHtj2Ck3N3r2mRjGTf\nSFCqQyiepCmW6HcIKQZFIq1uReAnCdwQ4hUYIPiS/QpS2lhqbjA01MvnKP3+acaf26b26g6tg1n8\nsoOz6yOeMWLTCf00+Vzh2KaT7zqpHIKwpBGVnpkk+uDD2HMHkJUy1rF7sCYnkDeWUxS0vW8W0eqS\n2wiwWrEwerJHa2W09S5cJtpugtfH6kforaZxJysX2L2nwNZ9Zq+0pyaxxsfT+SUfPLHnOhkUsCyX\njN6VjOlSlmXMO2In1eT+JA1Va3zcNNPqVbYfnyYswPgLO4Y2+m4aQw3QlOITx5/SddL1J50/8byC\nuKEQhgOtykQ/RsfOgAmKyLHRMb39dgj66MyF9GeZHWjBhZUc0UQVZUuE0uhCFss3zktBUdCbEIQF\nTZTVIDTdGYXnOUipmHlkmc2gAFqw/AmfTx9+kUu9Sbq7WTIvXiY82iWqh/g9h82tIh3fRVuaB77/\nEmP5Ls1ujkP/TDNVarEv2+T6yzPc+z9fpfHvnkEGcOOjdTrTkuymJvzge4g2NvnB33kOd8cUNZQl\n6FcEIoTOgQi/b2K1MLCYKrcYy7UZy5h1tRO5jGU7SKHphi6nV/bjT4a3okn/MkyItzNer56QNJtS\nCqoe7FXJa0NzhdhO3lBc9zj77j10UsCOtcS054HXT00kRs8xdi9Ozuf0a2jXwYobUKpaAAlCgVd3\nDTooB1EO+vW4CORownJE+XATWyoOPLLIk7PX6UUONy9OYD+xzan8Ar3I+NOPPS85PrFK13PZ8bJ0\nQ4fVbgnft1ntllho17j454c4tzHJD0xfQAhN7rUcs1/3yW0ptk7YrPzke/AmcshGPY1DZKmEjEDb\nEOahX9P0a+bcENDxXGyhGMuauePIiEBbFGwf+yMbHCpvcbBu8vPdubeHRPz/V0HoduKcMECD7H1t\n79v7fdT2Nu6z57nnt7bIbGkWPjbQPln/6afMIn8nWpDWiHw+po0M7E5T6OSxuUHyXCwgyiXQGmtj\nB9EdKi5tbqOygwQ52thMhQLTQN22IeMiV7fiAF+gSnnW3z8z9NnG6Sna2ES0Oih3T9IdP5A6GriX\noZVxUIBBYUsZm1nV7ZrXhgL+nftCijd6hrv/l9XyeTvjzXzkLZbI4pafR1BGQpBYGN+JLjb8mg58\n1M4u9nPn2PeHS5Qvw9pjeZr/0VMA+D/8WCqQmX5EfI3TQpQy7lCogYhx0lWJDs/g32PmYbS6Rjhr\nRMXVzi65ldhRqFQiWt9AOTJdOFWng66W0KVCLPIc62aM15GtnpnL2Sw669I9WMY/OKD86Yxr5trC\nMtFEhcIZk9RbYw2z8YcRIpcjXNtItQKEJRGFvEnUYpvSaHcX3e2iN7eRhUKMJtD0xuJixoXrWNXq\n3dFlCIcEo5NC0LB20DC3OQm4h7SCEhRQ+jfDKDMpDTzcjpENtmX+y8SaBLadws6t8fE0yQmvzlP9\njWeY+pdPs+8zTzPxK08jv/ldw6G+eMUIWQZhWshFCog1GUQQInp9I9pczuFXXHYOZWnvzxHlbfp1\nB6/hEBQsstsRTtPDjzdJu6+pne9hdwIiR8aFpQCrE+BueijXRmhwdyMm/nyNwmLPuHxpUK5m7JWQ\n3EaIVxN0piTKge6YRWY7nsuOa9YVrdEZB6vlYTXbCKXQtkQL8CsO3niW1lyOfiNDUHYJ6jl6D+zH\nr7v0azadSYvgWI/cuSzOroGM35Wxd01J3ZaGhHxhZE6kczwttt2KEhr8PBQs7S0ODVGPVKdjCitx\nsTc5Zvv9R1Gt1iBZGauiO51BEUQZeoaMBZqBgd4QIKYn0PcbvR3/1BzWhNFukVMTafNAuI7R64nX\nsHB5Bbm6hT07Y5KAZE2N95nUuadtCjlyyEQBIYxYKxhnoGolFeeXpRLuza3YvdBN7cJVIio9dIzh\nwnKaxMRJsp5qDNAAhcKIO8ldGW+mg/dWaW1vtAfHAXT+Cy9x/J/sEuU0Fz77MJ0HZql+d53udIbe\nxx7H3r8P3Wrd/hppfYvAqekIR1hHDyMeuX9AFWnUBwXfjd1UjwUAxyas5FJdJ93rmTkhhXGfC0ND\nR+55hPcYLRbhOogDsyOoAtVqGcrJ9ja676PGqzA1ltJ+dEw5Gy6MJALYut9PY7LU5Wh9fURrMRwr\noZy7HCrreD4PxylKj7jrJQWglC6m4s69kKnLZfp8DIlTJy5SiT18qh/mB+mzLXPZ1HXwlsJsGKJe\nOY96+RyV33yW7B8/D8++YubDkUMDGrzjGq0oZYoOqt0xn+e6ppnU98G2CAsG+U42Q+dYIxW7F7aN\nPTWJapTBksaF7OoNgsNTiGzGiMSHIdrrG0v7XBYdGGOMaHfXOPpu71I5v8vEZ58mvDqPGqvReeIQ\n6sAk1uw0sjVATKa6VJFC7bbS9SZBUolyCRo1dj9whJ0fvR8xO4U1M2loLnVTfNKuQ78qmP1GC9Hu\n3RYtfFdHSoVPngs5yDVi/UnlByYHCMIUGTRyiBilKRwbq141e0VMIzMN8mCkwSlsG3t2BpnNcv13\nThF+5QCbf/8prGP3mGb3lIl1tWWcTmU/gkgjFtfJbPYNnUYaFIXdFYhQcPC/e4YjP/cszvk8vVaW\n7m9O88rmDJXjm5zav8SCV+dap0G13ubyz99HrdwlV/bQvoVYy9DtO+QnOoTKYtfPUMj4uP9snb89\n+yzrfgnpC+N+9sGHaR9UuDsw9mofLUj1D/vKYf+XWsjQUN0BuvtD7IZHFEqko9BKsNXNcX59ki9/\n9SGeWZxjx88ihWKxU+Hs6hQ7CxVk9jbx8DstSP5Wcqu4kW3mjUGO7TVZSYvX8VxJzWfiZqwoFJCl\nIqJWGRQUk6JQp4vudG9fFDIHHZxS3jHNsow9cK1VmtyqhwyN7qSyISgYOqLTlBz9DZ/d3RyOFTH/\n6gxjmTYFy6d6sMmH9l/ifG+Guewm1qE2nRnBa0vTSKnZahZZaldQWjBVbZGzAzJWSOnhTe4fX2HC\n2aXnO4y9GuB85UXQpjjldDTahmBfI2243PzpU6lhSnL9g7EQWQrI5nyKuT5KCyyheW7lAM8szVG0\n+lSdLg9PLOJFNm0/g+/Zg2O8xXEX2/J/BeN2lB9Iixh7Ny7hugOLW9dNA0VhWaNBQRQhLlxhYm0L\ntW8CUSigOh0mf/1ldCaDmBrHHqunsHkSSKWK0J6HzGSI+n2TBMW2ejoMsbZbyOkpg+ixLGO1fRMj\nTofpfETrG8YF6plRAbpwcQnr3iOoeROo6E4nheHKQh69s4vs96mzD1EqGT7v/YfwKi7u8op5qIag\nrID5/n4w1F3RKdRPFguIjIt/ZBr5rZcG19C2TTHC85Dx9bUvLKAxOkUp9/qvy0gS+L0L2/BQkely\nd7uxq41GhwGyWExRUTqB0C4sMfn5DtGhKVqHTPKV+erL6MMHUEdMUCuffnUwD5PgK/AN3Sc+B5HN\npAUJ5Vr0aw45DBe7V8+QiT/TXt+FagU9N4t+6SyZV+YJNzaNU9jmFvraAurkPVgb22kgJlpdc+/D\nCFEpI1pdMht5/LpLBmMLvHtyjPzvXwHA3moTzht6B2FoAk7PM3oMKkK4xh0thYaWSohiHvyAcHEp\nhXPKWs0Iqnc67ByR5FYxXbdiwSSq77RJXbI+JFS9VPtEj2y+I2KbSWEoYdYkr1lDxaCkyBeE6HzW\nJMBxlxUw9znjGqc2PzBBebGAlPINKQnR+oa55o496Mj0PKLtJrJcRhTzxh1su0O2H5E/3yG8voC9\nb5bwkVlK5zbxZyuEeQu/lqUzaRO5oFyB03URETitkCjnYO96yH5IVMygBUR5o0XUvq+BV7VQDrgt\nzdSvLhJeX6D38cdpzYHVE+TWNNoWTHz2aXOdXCf9/iIwDi1RwxTEtSVRroWWgiAv2TksGX9Z0Rt3\n0BZ0JyQyAKetac0BS1ky24ZeJt9hFPVbHYnY7ogNazKfRkR/91BTY+24vfNhxKZdCrMFBP4AvSAk\n6Ij8zQ4aDIU5kyE6d8lQcgqFAW0moUamn6/QfkIJVsj5FSLAXW0N9AuCMIWuy2rFCAzHRSRZKBAu\nr6A+8BBOPmsKmGCcoIa6m+Hi0i2Oinp5DXXvQVhcQhw+gLpi9tbuJ54g//nnTMIYhmYPD/zUklYI\nYRqZQmAllGnfR9aqRuS+XDYdRKBzqETuZQbd8Dd3C9/5sdeR7q2M4TXs9f4s8FFX5jn2L9u0njjA\n4gdtivdMMvHZp7n5j9/L1okDuDua6T9ZIFyIEVtDxxWuO5ifccEycR/rHChiTZ4i86cvEE3VkLUy\n6rXzBmHc7abvC+dvIOZvQLmMfM99qJfOInTZNBKahoasmjumGPH0y+bfnQ7W5jbrH7uXieaMmUsP\nHEd4gZlvWuFNF3G/dDotHupeD9GomwLJ0HUVUoA0Dbvw4WMjcc7ItXIssmdvEu65BndrjAhGCzka\nryR0sb2/T7a45O+i+Hcp/dkkZbJWNZqSQbzP942jpXBdZDGHTuKVXu+WJo41Pp661aUfExd1DfLL\nHtCMmp4pAhdjKunGpjne9jaZM+b0rCAk+yfXUYUCcryBVaui81k6cyWcVh63VEAsrxnUaYwoUD3P\nIA0tI8KtgwDrxFH8qRL9rEVuoWUoaZg4pz+WR9sY04NclvDqvDnx2O1K5HJpLGCNNRhBjPc8BFmy\nmwHOs2cRM1P4B8bYPJmlMwOVK5BtRvQmBLLTR3j+oOH0bhl7KDo61rPRUTRwm9MKLBfhmkRbxNow\nt2hqPnQvvWqGoCDRlsDdjchfXEdvbUM0WP9lpWzYB1Ky/3+1sLwyjdPPIJJG5vqmKRKHCumFSK2J\n8i4im8Gvughl4o4wJ/DKmqio2PxPnmLziRCn2EH3HNbfH/DB2hrb/Tzj2TZfOP0g1ddsgiK4T+ww\nW9rh5RsHsToWTkfQWyrSOLRNL3TwQ4uj9Q0kms9e+RCtbhbrSJvr/8NTlB/ZQF2vMfErBvU4dv+9\nsLTG/OdO8m+/UeCY7mL1FF7FRiXMucUcqqjA0iA1YWTRXS5y9OefYekfvZfL32eQTeUvF5hYCdk5\nZCGDWztd+p0uCL1eRWjPvTfIOUwsi5kzRkvKGilipxqbYvBdZOz265/cj3JkqkeZW2oj14yGXFLc\n1u22aa5nXP8rffAAACAASURBVMLrC4QffgRnxyPKOQbx98I51POvYh2eg0BBbKKjMhbSj5ABSN8U\nE2UEkYCgomgeyQEmLnK3JVt+gbrb4bEpk/d8efE4P7TvHLP1HeY+do0zv3yS/o838TouqytV9s9u\nUnT7uDJkKtfi0foNLKE415lhrNhh8f0VJjNPsPEewdjLiuqXLyLKJXTWTZZmxl72sbsh2nIJCxrl\naLA1yrMIbAudEfjK4ma7ivV7DcbOd5j41V3mvTF2giwvXT2ADgW1iRb96q3uZW9m/PUuCO0JoG8Z\nyWaoddqx0mAW+3jDE3GHRA8nFtqI8UUbG8hWKw14VbeLVArpFQZBUvw5wrHRfePylXSfhOsYtX3P\nbH5qYwvtB4ZvvLWN7GZRgKhWTNJWKWONjxlIu7TiY4526KypCcKFJdNZyWRgvE7UKCK/c94ETxdN\n8iHHGuitDplIoxmIuqan7JgFVntmgReZzAACqiKjcWPbuNc3CDGJiKxW8O/bh/tdI6wXHBwnd9M2\nYnlPPoB9cxP+OhSEbldEjH9OFzYxgFwPw+ZTcT0RC+rFxcIULTQ0b6rXSkTECduFyzjqMEhJpIz+\ngvI8k2jF80MvrZogKWusFKPNbYRt415exjkfomM4beH8OjpOdHQ2g2ruENaPmIc56caVirC5hep2\nsa6vwngdsb5lur6ehygWUFMlxIVrRN0u4uYi+ckJxPQUZDNYfYUdFy/TwiegOj2zofc8iJNNkcuh\ntrdNciYEolQw7naFHCwumSAzDOmf3I/9VRMwRjnN3L94zVDuphqIREvpHRsxmnA4QNsT7OvYSjUp\nvAgh0kJQqr8A5v+3SRR0PovOZ6DZMtdCCLAtVCGDtiXSCxFBhGi20Jh7ZhUK6E7H3LdqxaxTrovI\n5wgXl9D9fhzwxgFWouXkuqnAtI4/B1uiqkXE+En8gkOmGaCzxtGrO2Zj9zXKhuJKROQInN2I1n6X\n7LqH9EK0YyFXt9B2g7BsCqFBwSbMSryGoF/TVC8Idh6dQT05i18WjL2sKV9uEVQyZG7upJsdWpvi\nVzYWwNbGaUxbpgtkt32EdrA8waG/WES1O/T/5v30y5LOAUVuRaJtQe6+bbwzVWoXfcKChV96l3Zc\nk38OUTne7PuSzrTqdo0eTiLKHPgDhKYeEoxNKBlDwb1+8YxxvPE8pBSmQWEbarB0HZRnCirRsKth\nch5CoFc3zOfatqGVxucULtw0XfoV747dbvfCEv7RGeRlK0U8aqUHxfTANy6Y2Qw0mwjLQnW62DfX\nTdK9umH0YY4covydJcJYJ2A4ATUuVz5Yg8A5sbi2pyaNW6PWiFoFYufMRE+v+/FHKT89j44LRe+6\n8XpOZG8whG3fQvO648eEIeHyCvkvbHHsuboxxDi4n32fedro4CmDKk3mV3rNgWhtfdAB1iqF7Ytr\nCxQXV8znSwt55WaKOJaVspnTE2OIVptoaxuENO+NEdHR6hrWvUeILl0DHRkXOddNEUs4LtH6OvVf\ne54Qgx4LKzmiqSLORWB6AvdLp9PzkqWSQdAliewQkk+4JsnFcQmLDpn4GZOlEsGjR3FvNokuXWX3\nUJZ6swp7Yqi7Nfbq+QjbTtEcKZ0nipueSTKWxMJJEyGxgE4QP1FknEltm6i5k9I3jQZhXBRRClzH\nxBAJWi8aCIFHGxtpsVVkM2mzTGazhi5i22ZOWZZpLMX7GuUicn3TNE0ilZ5L4nAoYqMWnXEQnR75\nL1wxzzpgH57DXttFN6pISxJtbKIAq14bFEfXNhFjRWSkkRvbiEbd6Ii5DtY3vkMOiOJ7n45Ejy2O\n93QUQd837wt8VCcwx95tYV2dN3F8LoPV9pl8po/cboHS7Dw+S+OMcUkCBhqd76Ihc7nB/hQn3iYO\njhtPysyd1EVQ2rc234HeZBZlC7yqJMoI/KLAL01SWKpiv3o1LgaoEVMA58z1tIms4qZG9OBR7PVd\nRKQRPR/Rj3XipmooxzSBogxoC0QA9q5k9wggNYFnky316Xdc1r0iF56fQ0175G/YNB/ymZxp8uj4\nAl+6dILDx1a4tjiGfSaL9C2ajTzjhTb7yzv4kcWOn6P+32epvfAqF/+PRzj45DJLmxVKl23U+x4i\nzFtsHXfZPVXix+85zbd+50lEEKXOu1EGZF+CABGaxkV1osX+apPNbJ8bv3uK//jEl/jC0iluLJZp\n/OozABT+/SdSWu3w2Iu4ebcMYQ+jgYfXm8AU3IVA+dGgeTrsJBej3EWhQL/mEOSMJEGYF1iHa1Qv\nF8gt7KIXlgfN804XdmMQxddeRBQKWLFrauR5iEdPwmYL4YeIjofOlBBK443nEMrMG21rovhR1I5i\n4yMB1UqXnB3AqRZP35zjkZkFbrTqPFBfZGOxwpc4gRfY/ODkOf7igVPoizV0KcLdtNiq5pnIt5jI\ntom04GpnjGfOHqFwxSHMQfXRdRanS2SuZpGBQs9OGLWTWBS7+8knKF7eISrG7BwLtKvBl4hIIErg\nhxa2VEzkW7z4fWNsfNDhRwBf2bxw/hAn/ukmNz41zXZY4dgvPf227uUbRtNCiP1CiK8LIc4KIc4I\nIf6L+PW6EOLLQohL8f9rQ+/5x0KIy0KIC0KIH3pbZ/Z2xlCAAnEHSMfuXLH2DpgN1SoWTGKbbEzD\nIr62nW6IyvPSDiOQwlL3jsROV0iBDgOEY5xYks+UxWIKtxTxphuurpnN0nWwJsaJVtZSSphwbKyp\niRFIfHThMtFEFfnAvaklMGsbWF0fa9jhK5MxyePNZay15gi8Ov2OsV2psGRqNS9dx2wMcRKKJVP0\nEpgAw/3uFZgYMw+nLZh40VTSdo7kUdUhx5p367wZpmsMaR8kIxU9jEVRZT5vApJ4WKUSsljAKhbM\ndXNHN3jjxOKg+v3U2nZETHbI+hkAZ+D8o9ptE0y5DsQOQTKfR7WMYLcoFkArU6CJhQz9CYNCcnbi\nTVZprGoFVR64OkSra2BJek8cMfOm20NvNdGOROyfwT48l76XbIbw2nUK59bxY0TT8EiohUakM4ZX\nx5Qx7XkIxzHIjU4PfeGqKTTmjbYQmC6b1agTZbSB+j95kvXHyyPX8Z2ZO/H9Hxb4TeZD3P0SCQUl\nhtbfYisfw+zT1yzLXAut0Tlj4y63zPMj+uY5CcaKRFkblbEISwNtMXreoJgX03qi5o5BpeWNuGLq\nuhAXnBP9hzSYtyRBPQ8SdNZBZW2igktUcAiKNlHGMna4nYDcZkThpkdpISS31CO/ZtYdp6voTWXR\njhUHbz2srTZe3aFfs4myht41+XyPw7/bpHqpg1+SdGYkdk9j9xS79xRpz7qpdbMsFAbXZqgAJ/wQ\n2fIMEskLTI3Olux830E2P3USZQuy24q5Pw448LlliosKvlFj7r99BvtrL5LZ6GP3hgop75I1Z0QP\nK0Gq3k5IeuRNQ0FSJjMoQuZzKWpR2LbZZ4YQRtZYY/B5Q5RpkckQrayawnVuqFsUGwmAWavSxEfp\nlD5mVcppMpfSJsIwpYamtrCJzsrO7sh6Gq6s4qzuInPZ1CbcOnHEuIzFKEi1vpkWBmWphMxlUa12\nimy0GnWietFQd4Q0++7QeSQJjOp5A0eoWI8t2txOnyEdF7ywLHKr5hheRd6Cbrjrc2ekU/82ESgJ\nqiG+xjKbHVh/x7+/3WfqwIh4q9X1uHs7OJeouTOg/FhyRA9ReR4ym8WOXSYTke+0GKUiQ+Va3zTn\nFus66M4QLUcaHRd7flBsEV0P/eTJ9Jiq1TJFiAPT6MkhhzgVoVotnNfmyZ1dxj64n+jcpfS7DahK\ntqG7h8GocHXimtRq4X7xhYE+UquF3fJTAw2vLtl8uG5itfc+OOKYdFfmzR7tOuUHKWpI2I75zzJN\nzxGx17gAJqzYicwZerZzOahVUvRfWniuV8G20H6AalRNEzEM03sthmlosVSCOb40+jwnjqbFKu37\nhn4UF5PM/ZeIVkx7tSxEtYwoFQnnJokOG4MM1dxBb22jLl8nWl5F5HKGElYqoTe2wA/QhSw0aua+\n9/ssf/wQ/ROzBMf3Ex7bj/zmd3H+7LSZ54dn2frAAXpHx7FqNaxGHf8DpwbXKdZKErZJZg1NzNDp\nos0tVM8zjZpcFlmtIE8eJ/rgw2ghkO0e+sxlo884UaH0xdfI/36smdWop3SouzZ3RuaRaWwqrz9K\nRbSsgSh57FSXinbH82Uw+cxr9twBgoKkOyHRFlTmA8K8oDtp0Z3KsPU376P3/uOIgzHlJ177o3v3\npy61yXHt9V2iy9cMkjguIEUFQyHXlkAomPj2NpltjQxi2rqjcfIBom0jhGZysokUmrASMje9ydRH\nbvLQsev85NwzHM6tUyx4XL1qZBy8hqZ8TSGv5Wj98n7WewXOrkxx9foEF3/W4cpvPsRHT77G0laZ\nic9lCcpw7WMZNh50mfqlp/mf3vd5vvJvniK/2icquFheZFBMu5iYRoLORlhlE2OttEsEkUU+2+c3\nLj9u7mvZZ/kPTnDxf3+UpQ8YC/v+Rx9j9z94cnCt4zzkrs6bEX3MwX6SrD1olWoHCdtJY2MDkpBp\nITpBD4lSkai5g39kEr8gCYqmGKQc8MZh67hL53CV8MF7DOUzLl6nQ1pGpzCTMbESEBZdQzkVAhEa\ncxUtBVHOxK5oqF4w1DGhAAHFcg/Xjmj7GYq5PlIaPaeFtRoZGTK5f5snJq/zycMvsxPmCMcDijcE\n+Rs2+SVB+FqZ175+lC0/z2a/gCIWgq5qwqJB3umujd2B5hGLlffV02LQ6j98r5H+kNI4oukYxdSP\n92dLoyKJJRW2UDQyHT586hx/68EXWfarNP0cT5y4yvn/aoLufR6yZ2LH1E31LYw3014Ngf9aa30f\n8CTwnwkh7gN+Hviq1voo8NX438S/+zRwP/DDwK8IIb73ali369DHwY1wBxMz/oXZfBJxwji5Tn8d\nhkbjZ08nxgRYjkEODAdX8fHMeQyhCWxrsPHlcwYNoiLTtYRB8N7rD7o5yWKrNHq3nWo3pF+zF7D+\nmHm/LBZM0vjK+TSwFrmsEdnDdJgJTWdj70i456loXCyuaE4rruJalqH/xDQFnXWJdtsIPzAWf0+f\nIbdgushORyOHAj3+Ws0bNTp3hju0uUExAzDdTttOu56iskdPSooUApkWJhPx38TFCgZFxqSjlxSi\nAIQ0AQ4YDap83szJbDYtVBGGiHwOy4uD3mCQIBko+OijLdo9dg8MkAeq28U6fz0Vz7SnJs3cS7o3\nfZ8wP7j8VnlUM4K4g4TSEPgGzeYHcXFIol0HWTQ6HaJlEFSZG9sw0SDa3KI4b85v91AOu8soLesd\nmTt6sLml8Po36MAMuYqJRCcIBgKcUg6Kfq5jdCfC0DyPjg1OLJbshYjQ8Je1HesuaT3Y6ORtkkMh\nkJWyOU5M/WOoO5veFj9Cbu7G6BuJdiTKkvgly7iESYFyLGSgkKECCUE1Y5A/eQvb01g9RZS1TYcu\nm0VbpuMX5iR+0WzayTn16xmCosBraJQtCAoSvySono/5fzHSUSTXebggG8XPXfxcaDlwMQuKJvCz\nfE1Qsth9cILumKSwEtuinzzOztE8QX7knr0715y9FLHbzbNhhJBjj3SrZTZjCjbFgtHxGGoSGEvk\nWx1cZDF23un3U+2QaNcUaW47z2A0eYzXLDkkei6TPTFeI0RsoZwkiMMjunjFFNLrZq/auT92SOx2\nDaqy2zXrAhi3n3rNfLe4eOU9dAj7xhoJnVfEoqVAnMgP3C7NvJKD9VMr9HRSONBpkhgWzHfKb0S3\nEwi+u3Pnr4CGlLr7JEU8rcGysGK9n8Q2fuAONuTqok0CGK2sGeqd1ua+jLiSylsaIAC6Vh7EOXdw\nyhOxZo1VLhsEZNvsCToMzflmM2njKly4SfNYfkQvImrumHWtP6RhGD8HUbOJzrpsP3kbfYlkrsf7\npo4Rn4kdMo49+kxpg2QTF66jYwON2sWATCtCFPI4i1sjeii8k/Mm0QSKR1J4ka4zoBBrNdoQTZ6L\n5FmPRX9RyjwX8R4uMi66kE2bPAnFS/T6Btne6SB3jDvpsB12UpiV2Wz6fA5rg4S1vBGrh9S1Kj1/\nIYi2tglXVkmEiKN6ERybfiNDfyxrqGqlUoostGpVODiLyOeMVII2QulhKUM4Vhwp1jnbHkHZoTWX\nM0UHIbAmJ+hN5fBqEukrU4DKZo2+B6Sop1TYNtESVAZRJuNcQsSCyzoMEX7AzuEMYdXY0FsTY4hH\n7mf90XKq4WbVarTef3SvacVdXnOUeTaH94HUIXVAHbsjfXUoB4pqJSIn1grrQ35+x1jC2yBDExug\nIRgvjKwR9koTet6IUHxCMzR/YBlHVWuoYRJpwkaOfk2ABLstyK5LlJLs+4rGWzTXvBO45McGlOul\ndoUISSvKcmJslXyji3MzgwyhNN9DC8j//nMsXx7HOV1i7FsOR2fXuG/fMlfbDQrfLFL4veeoXlCI\nUOC0NFt/7yn+xcWPUFiNkL0QEZm4KmFEiUgYPZdQoiOB5zsEoUWkBK12DvcLVSypKJY8GoUu2XmX\ng38SsfjJOZafsqlcGugoDDmC3v04R4gUXZiig5L1JhlxEzXNJ2+Xg8cxdJC3CXMQZs31yjQ1KGN0\nEhQk3ekMql5Kiz7JsOJcenhNdteMGYK2TA4OoOL5kyCEMjsKEZpiiwgkWgu2dvMsLNWZLe0wVW4h\nhSab83FERMH1Kdh9xuw2NadDud5BBprKFWVQ9jdg9hs+Z9amuNas88ryDLm8T+XkJuWj22yslsnf\nsKleiYgypHTC9FL1jS6o0TsCEYoBq87SqMicf6glSks6kcvXFo/xanMGheBgfovpe9axlzNo29yP\n1vvubIh1p/GGBSGt9bLW+jvxzy3gHDALfAz49fjPfh34ePzzx4D/W2vd11pfAy4Dj7/lM3uzY293\nf7hQo8zmL/L5NIFPh1YDOpYUiLh7lf56ZxdZKY8sXsr7/6h78yDJjvy+75P5jrq6qvruOTGDATAA\nFlgs9uQevIKHGCYti5IsWaJOSzIVsuUIS7bpUDhsWQorTIdN2gyJIYmybCpkSjR1BLU8V1wuRS6B\nxe6Cu8DixizmwJx9THfXXfWOTP/xy3zvVXcPMFgTAzgjJnq6uurVe/nyZf7y+/v+vt+p2OdOpoTH\nN8pgyWmk+ONKnbEGZymnwhA6CyhnGz55sGTzqEYD2xPh3eDEBqzKe2yaYIaj+dI0gEtXma7INc8e\nOSEbeZd91msrsLFaWJqD6DXMTbD++jLRLvFifV4XR4XyWTueynVVLFhVlhOsrZAdW5RyuDRB7/WZ\nfv+H6XztxpxN8Pt23LxN4O1ZZeAyRe3WITc55QSBAbL17tzf8v0eqr1Q1MaD0z1YWhJgqTeYs1A0\nvcFhIdRAi1g4bsO37K2cFcZlzQhDlNaEF24QLC2Rt+tFWYkZj4WyXD2vW1vU+pbw/jPiDnT6JHm/\nT3blqmz4j6/KZOs2l9n1G9S+8I3y81UHuXw+KDUeCFRKMozWki814ZiM8+zWJnplmXyphWnJc3js\np54mPHmCcGZZ/fylOYHZezN2KotTNSuulGxQnF1mFQBSgS6t5D39PcuK4LrQHYojbKiJrt6WYNcY\nWZhyQ+3yDvrSDYJRQnzV1Ue3GugFJ/abJsLyWloSADqKZQN1ew/T65cZcL+ZctauPsMX3tyT7Ii1\n5LUAlVl0bqjvZrReuCm3rxm6rFrArBvQOxsxXQ6YLWpGxwKmyyHDUzVIUsz6EirN6PyzZ1j9nevU\n93IWbmTkjYDh/W16ZyOsgpUXLUuvjqjfzlj/4jZ8RcR7g25nPkiwFjWZlX2lFDYKRadIg4kUs44i\na0JjJ0NZGG0EbH1MM1uCcGKwn/4Qr//FRcbHFHmtUiZ1L+ecI0AdL+r8luVh6kDQVP1TFBdzMbgN\n72QqmxGtRIQ1N+VYAczevozLgxtxpYRC3e+LE5lj/6h6vWDS2GRegMkzGgsXHcBWWZ9uvfNgtq2X\npdRAKQrtWnb+lGzgAVvtrofOSGbP0b7JMiml7A9FcwyobY3ItnbK+boKelX712UMdb1WBodZxs5H\nXXK0US+OsfuInG/9l77Cwfa+Xa/eQdPH1kXHxYt3B4Ho77jYRi0vytrlGWMmF/DHxUyq0y7KEu1w\nKELl950gPOmYGkfpm2kNO/uSdKvVCI5tEJ4+JeyNzzxJ4MadzXPyVy7Ixr/VmmMkZNeuk11+k/6j\ni4U7pwng5f9Ovjd46BzBww8K6/nWtrjqnTmN+egjcgBrYb9P+0rl/KpaL1CyYbyItI/ZjAO9ZzMm\nf2j+9uX9PrMf+jjxr3+V9tdvku/1yC6/Ofd839Nx45J0vuzC5rL+FMkUD7Z4EMgnJwMH5BnR9ZBO\nDQrhVxVHmP0e5rmX59nwkynZ1WvC0Eoz7GCA6fUx/UFlrnIxduyc4ZQSV9rBQBxLn36+ABsL4eI4\nLoWsXVNBgB2N0Reukl25Su1XvioaVHt7qFqMWl0uQLvx2Q43f/gc2dkNpp95hP6PfJK0G5EsRuhV\nAbDX/v6XMM+9TO1Xv0rnnz8jpYjra9iNZRaeu8H6Tz9N8O++RnbpSjHnQAlwVX+a8Vj62LGnVL2G\nXl0u+nX8wDKLb0zRv/ucJO8W29z47i7BzMU+zSbf/LFHaN6czCVn3/M554DmoVLK7QNER9WmScFw\n1c3mvPEKlOygYxvsPtEhr4NVChPD/hPLZAuQNWB4ImB8TDFdCsQxbHVZxl+akV+/JfONdQlRHRA8\n9rCAw5kDLZc6kuhKxNI9Hhr2z9VJW2ACS2PLEo4hn0gJ+ZkP3GSaRPSnddqNGUu1MRcvblD7+8v8\nxG/+IJ9983G+/NWHsc91Of0bM+o7iujNbTaelUT/4n37TNYsux+0tOMpocq58NUzdN7MSP/Ax7j1\nXYalD+7wH/2nn+c7/+qXsb+yQn1zhjIWNctRuSWcWfK6ABA6VeipxgwiZjebaC2MkaVfa7Lyj77E\nOI1o12fsjprc97efJv7cs0yOWZKVHPvsi0V3e6fP93Tc+PtkHTit9JwxzsGfSjmAsfoerQq2Ynbz\nFrpeJ29oTCwJwWBmCSdgQ0uQwOC0Jkgt6XJTBORrteL5zG97UyUt5fGtlhiwrC+BAdusSeITARK9\n2HfvXEgwVWAVYU8z3GqR32hy+t8ExEFGLchI8pBTiz3enCxz7fYi//bNR4hUxjCv89DKNqOT0P5/\nnmF80rL2bI/aS1fRv7PI7s0utd/qMJ3EPLl2nUBb2i/HHH9mysLFPp3LlvXfkxhs/898io1nBqjM\nyD9jCRKLzgCrCAYBaqoxScAslTUs0jlX+kvYf7PC1V87yycXL7IzW+DWK+s8+OMv074YcOO/+jSN\nrXdumvGOBBiUUmeBDwNfBjastTfdn24B3kbpJHC18rFr7rWDx/pRpdSzSqlnk3xy8M93dz5heIjF\nM1cnDZJFcIuT+2KssbKJdYujHZf/981Mp0JdP0C7sqMx+WBAduNmsUCgVKnp49+X506TJ5Xz6Q+x\nez1UrUbtKbEJV1EMq0sFFdU264zPr7iSASWU3FqtCMhAwIXTf/d59OOPEN2WACg8eQLbapCtd8hf\neg07HB1mdBzVjBVktepQEegC7LBRKLbVr110F2Wh3WL3A8JMAkjObZA39Jwrx8H2+zlu3PHKsWO+\nhbGjg7JMsFJm4W0zgbIvJuVDpWo1oa5nmdjfNpsEw1nxN/8zu34DvbyIrpRq2Cwj390n376N9Xo5\nnp2EE1bzDmNZJpslD27u9+W7JxP0lVvy0VaD/NiKBF3NBibW9P/IR+S7ZjNMe95S2aYJ3c9+A9Nq\nYD/8MLZRE2vUc2dJTi5iv/6SBNz1eO4zcDjrK0F1Vj57PqvkXD3QmrwRFmVSuEzs8GwLvVdmPK78\n6bN0fuUFEVm/Q3vX5hwzLhkqUI4DL7R70EnDg0NBIICrYwgpx4gqNBaclouappjbu1KioLUISHtg\naGOVvBFhXbZQjaeYjWXZcPvAORbmh+4sCEV9Mik2ZNY5qRTWtw6sAiQDubGKjQJqN/tE13cJ96c0\nXtuU7P84JWsIUGRDRTww6BRaN1Ima5rJqrxmNdAfosYz7J4869nlN2k9c4nmM28QDlNmHY2JYfWF\nKYsv7BH0JsSfe7YsFXPMtqIvs0zGR25QuZE+UQpCLcKgWuxa29dzTv+Tb9K4OiCrKUyk6FyEsz/9\nEs1rI775JySb2NiydxSVfjfnnJTKQuuf0Wqm7Eg9u0qG7E4aMV5022XBgqVF8uGocLexWYYZDotS\nrUKHrCF6G748C0SkVTtmiJlMC7An29wqzm+O6VBlSeZ5kSwx37xcnL/Z3SvAKN1uw+199OOPFIfI\nTlfKloHeA01ZF3RA5xe/XnbFxWuEJ48LcP34I9jpjOzSFfRCi/DEcbnWVy6WmWml5JpNPm9hDWWW\nvjpH6YCVb7iNbWUeXHt+wuSHJQ4uymSPaO/enDM9+Offn+ZKW83tPQGUXbNJIiyNNyWpZAdDVLst\nmh1u3Ob9fgmW9AdSbjydYkYTzN4+bM2bW5jR+EBJpMHs7Ym4eBCI2PBggBmNiW7sFTowwZrEUWYw\ngO4Cgx/+cLFmBmtroBTRIGfrY8LwWPv5b3Di8xr76Q9hazFqOkPX6+iOaGplV64SXbxVjPl85zbB\ny5fn+8XkJWDvQXv3DJbldArbbRM8/CCtyw6gzHPMo2dJfuBjtJ4XsMAstQsr4+q6Pn8b1FnerTjH\nTh1TxW3EqkKtSSKx5hF6ZapeE7a705rT3inMl1zOZpIUjGOxc49iuS+RlJ0FS0sEG+sE66uiN+bc\nLYOTx9Dnz8n3pYkIxzcbAjAewSixaVLEXUCZaAnDouzV9AaOxVj2b7DYFfAgEhkHO0uo//JXWPsH\nX2Lv4Rbx7pTOP3uG5oVdmk+9Ljb3R+j0qDBEtZrc/vDS4SRr5T3efbHoR8fcLkpeokhKXnb3xcFs\nOqP2Wg1FqQAAIABJREFUa19F/7ab38IAdvY4/hNPs/Szogmz/SMfor6jCC9vFnP3Eff6LO/CnDO3\nVh1+Y5EAVoGeqwyYZ8x78LScjwsmllKY9SVQUOtZ4oHFapgsa8KxsIVmS8Ig3j+vRVfw+k308pKA\nz6nMUXY2Izi2jn78IUwzxtRDsqUGNg4xjYhgOENlBiyYUJHXQWcCtgzOQf/hHD0M2fy0YTirkVvF\n7YtL9EYNutEUFAQzQzDW1P/pMu03NOFH9wimGYOzhvzECu1XduFjH6D/+hLR2SHf9m2vMUxrPP/s\nA5z7sS+x9xcHTP7aHijL33z4l/ji7Qf5nZ/+NpZfm0n8kltUnovT71gYKOFIrOeDqbih2basXcNR\nne1PGBq/vcF/8+DnABiN6gSdDm/83IdZ++gm5//K4cTFuzluDo0de8R6VdUpdAYz846o8rt1BANb\nSR4Lk9iUQJEbQ5Pv/SB5rKjvGqKhJa8rxuvyPUlHMTlmmC4GDE7XCPfGmAdPze37w401VKuF6nYw\nj51Dffgx0KCsFekDIHC6TlZLiWHSFh1TQinpUonGNA1X/wBc7i0zSmO+ceUkn169yHI8Ip2FLPyT\nLv/wwnfw5dtnee4rD5Ksy72M9xQqyRh85n5mS5aonTD+ziHHVnp8+eZ9JJ+XuOjiH47oPdpl9Xeu\nky6E7P/ZT9G5NEGPU2H0a004TAkSKRkLEtA5qFSBcf2RB+wmTW7dXGK8rlj63pushQOujRY5969n\n5Ps9Budyuf6njjZJeKt216LSSqkF4F8B/4W1tl8twbLWWqXUO+I8W2t/BvgZgG79mOVOSdU7OW54\nfY+qewscyr7ayaSso3fZjII2r5UEtnlOdvPWnCNJ0aKoEPYESh0iZ3tbfKeZtwRVSgnl1gsxzlyd\nrrFFjb0K3EZxoQXTKao/ovlsD7W6wv5n7mPhF54RbZnVLvgshlJSM/nNy+iVZWyaomox2XKL/gMN\nus/gHKTexsb7APvBgnNwyWA6Q3fakKTEF7cxcYTNhDljb26x/u9sIej4+p8OOf+XpUba9A6LdP5+\njxv3uXLsROt3/vwdxo4KAnSttCk9qtwQrYQRViuDC+02ZZ6CrddWyJxYoF7skm9uFU52tj9Er61g\n3pzgdRDAjRtfguY3ZsaW9uVhiE0zJ8B5CzMYFuCVnSWY0VjOd5ZgGqHwXPKccH/G4taI/BMfRL/4\nBubFV0Wc023OAakVf+k1wrP3wXQm5UOdJv2zNZZcX6kq+yeKZVI/IFiLEQbBHBNCawFV4wisJd4a\nQZpJGWMtxmpF94XbhUXn/p/9FCqneBZ89mPuPr2bc068bgl0CQq5kq3i/kJR71xs1KNIADOtUaM7\nAJG1WACPJCWfzmQjFIgeD2GMqcfMNprkdUUjNyTLdcKlBiox2K1tKfWZzlANVZS0KleSphoNJ4Cf\nFTbCKC1zQCQglVloQqAkeDIW26wXLCT18DnyZkSQGGo3+0xPdtCpZfWre+jekMXWCaJhhok09T2L\n2e8R1GvYKBSGm9fFsgb9lT4rLzSKcX3wKdPtdglSmRJomGN0+jIya9HTjDDQBLMcPcuZfvA0yWKI\n1dC6ldN54TZqaZHx6RZ0Mu77eU3861898ha823NORy3bQ/OFtUhK6uhDF8xLT8E/Ys5RYShzki85\ndQkP613lgGB1lXx7WwD/OBJB+mpSpDLn2awEt4sSNOdCNk/1ls8UTopVxqJn0TpGWlEyZIxkzl98\nVRiKe3ukCxGNYxuFgYHPxknJV1S4gUlJhoyNvFPDn71a7GD39p2zkSqvxWcjff8d6lwloOmwUkb2\n/GtyjJ0S0NCznIYDptJjXdTFow71Ls450dqd45y3aH6DOyd6W55wkbXVHcfm2u+Vz5ljbOp6vQAF\ngbnsfnZrs9BuCs+dhf2e26wh46vaTA5BuSaaJJWSRiforUEYaEqTX70uY6ZWQ7VbBJl8hxpN6Lze\nh4fup/fBRTr//BmCxS7hKGPpdTlvMxqx8K+eJXj4nIgQG4t99AH2zrfJ4zMs/tMvidPMiWWUS/bl\nwyOEtPNchPcLJ6q8PO+GlDmp3gCUIr8gx1FxjH71CtHj92N6ffTjj4hAabsN+z3RhvSum8VteJfj\nnHDVqlrNlXypwiFXSiYdw8PZzativQpLq+dEmKfWZEUCBxyD0wl142JfFcWSfGo2RTNosc3mp1dZ\n/2ID02kwOtWk/fxmIZQMCCA1mZbzumNo6Tgqxgg4xs10JucYhpJEOrGGunwDFUfolgPDQze/BQF2\nNCK/LkxoVYsLCYOlf/Kl4nzzxSYBqyhfznpAJNpmGdnFyyx5F7FK86LXXqfN96F3Nqpqlvm1mCTB\nJilKZQJo+WSws2ZXYSgx4c5t8rri+E88zZ0i8ndzzumo5cOf1QFBR7RbijVaazl3Lx49f4L+wMVL\nZjIBHRBurLH/yKKwe73PxRjy2FLftyz98stc+uuPc+KpnKym2X9yFZ5cpXVjRrC1XTD2dL2OWVrA\nBgG6P5E+zC1qOBEjCmvJGyEmktLyaAT1XcPuB0QXRk+EXUIjZ3evhUkCiC2PbtwitZr22pDsv5zy\nE+c+x99648+x+Adv8EMnXuBzje+Cbsrwvibd3+uho4DTv5Gx9ZE2z2ydx2rL2Q/e5MLf+zZ+9ol/\nyG8OHuPndj/B3/of/2Pq+zlLm2N0kqFyv9YBFoLEEI0tJlbkVsFU2M/UcozRrC8NOHXfVT7Rvcz1\ndInMaL7jgW/yxX/wAH/jw7/GYjDmZxDA9eKPf4psMefBn0vhd/7FuzZu7mrsWAu2TMwU880BNzGf\nYFKB0+ur6FHpZk3AIFfOlSwEWC3MoCBSJF3pw+43oX8OdKIwIczWFKuTGbMzizTXVjBXJUlken3U\nqeOYRoyepiKfoRQ2FI1Pq4DcSglZIMeu7UHiCM02tohNtkU1coaTGvUww45C6jplKRrzsXNX6P/V\nOru/cYbXT3U5/+GrvPlbUumRdC3khvare+h0kf5Wi6QNu+EC9R3L8V+9Su9jJwhHmsVnb9H76HHy\nmmLx9RF6mIh0hFECYGWGcGwIJ5q8rrChnJqxYIxmmkd04yl/6iNfpv3xKRtRj9wqzrZv89Rf6zL6\n0x8nXpyw9JuHXerupt0VIKSUipCB93PW2n/tXt5USh231t5USh0Httzr14HTlY+fcq99a+2OYNBh\n3QRgDq0s3FqqQY3T3lCNhlDNO20mjx6XGuKTG+gkmXt/fvMWwemTxcanaM4pAShcW2yWFiJ7NjdC\noW40hAGhNMS6cDbxgJLqDWTxrYuTQr4p3dj9eh3jSpPSdq2kcrlJ2UynmBsCBqvhCHX1Bis3TpAh\nZUtvq4cCEiwFIhjoN/gqjgRwWuyKBpIWaq/NMuxQXjeuFE63mhBVFokDffSejhs4nIl35RpCV1bo\nWo38gIubt4f2fzObLkiMYvLhiGBtpaBAzu5fI3DMKHNqDTa3yg3y3h7B8TXZZB1wfFGNBtY5+Pig\nziaJKzmR/jbrS3Dzlkyq3v3DbQTzfh87GhNd3yVzIq/KWvKXXiN46BycPEawu4/pzGcyRfDckl25\nVohXq6sZq6MpLHXJd/cwm9tFHf3cBqQSDIhwaQRpihdaLjL37nerlHMVMJjeAL22LIu7a9vfO+Ph\n/2WMv0MH3fTe/bGjSkDClNenoqh4tqvZDRGQ1qIDZTMR0K7X8Xa9ANYYFGCHo8KRQzReQnH/ikPh\nZFpL87qUAplIofdzVGZEcHImgTtJClGI6Q/dxkUAIpum0q9+014ForMcZS1qax/bbmFadUwjLAJ0\nG2jQEPUTbCxlY5PlgLzWQSdtWq9sYxZbjO5rUdtNy3I0kO9v1NGuTM46MdaDLeh05mvJncigzV1d\nvWdggeghOUBOpTk61ORhxORYnbQhNOFoYkkbiq1vX2P1a332Hwi57xfsW4FB927OcfOAtRVQ8cDf\n/QbJi776tWLOht4BH/53zyA0O7cLlqgHkb1uT/bY/eiviSihLcSUdwnWVoo1JL+9W4AJnk2kG3WZ\nj5QubOv9plI1G+BEzFWFjVY4KeZ54UpmxmOC5SVxL2s1xS76y69jK2BSkJR9YirPtxmP4ZYDJF68\nRO42cVU3wwJg8796IKjax97uvNGQ+dM5fRbn3WyKq6e79q2PLrD+jLObjgMBoirL5HuyXh2VjKg2\nr8EVR+T7BwAh99lgsYudzoQVVjUwKIDtgPwjD5MtRET/9ln0kx9AjWfkr78hjDEonVQ3DwPzB7/P\n5nkxZlUUok5sEAxGxbjzmwa//NrZDLu5I+CUUuTbO1jHCm13PiSAUb1OshSTNjUFz9oa8lcuCBgd\nhgQ7PRbqIeMTdcLjx7C1mPDiTXLfh0cxU/JcNutVhzoHKJjxmNBpvGSb25WSpkg2y08/j63V6D2x\nSNw31H9ZAJDZ2VWCCiB0T8aNpaL/Y52ZgejuAIWAtNcN8ht9M5oUILSIJas5wWnP9PZNN5syr9VF\nK9EmCflrF1l55YJYwS92aTzbI6/VBDCq1WROcECCnc0cE0gAEVWvYa/flPhyOitj5DgWoerJFFyJ\nY7CyDMuLpCe6xK/fFBFyY2BTSkGII7KzG/S/536Wn7ousUocy7FfuVyUtfs4qnq94BJi7h7rVqso\nuTazWaEZ5Ofpgm1lZLNXHCfPoV5H+XsRRyKMu9oRZsjr10Sc++xxzHOvoh9/hOO/fvOOOPB7Muc4\nsXegZFc6XcJDYvtHOFjqRkPKPteXSVabpA1ViPMKE8eSNRVZXTRkoj60v7HF6JE1pssBjW35jmBp\nkezWpjyf58/KsZMMbm6Jy1yrjhpNsK06ebMOCsKxIekE5JFoDQYzyOsQjjTJUg5WYXdrqKWEaCEh\nswHjLCbPNcdafQamQf2PbPKfn/0CL05OMV2OUGFC2tTCRJwkNK72ue9WgGlEqFlO75HjrGv461//\nKzRv59w3NoTDsbiJGSN5IKUKRopOc3QSEE4saVP6JmtC1NckG6IjpJTl2mCRafYQ3736Gp/cuMwX\nb5zD3qrz8vgET/3kJ+jyDK//w4+jphY90Uw25oxX3v1xc6ct5Fy8b8oEgdedqgJDWkpXhXRQiQf2\ne3BmA3viSRKnFznrChtcGYgGlpVfehX1gw8zW9SsfWWXvScWSc6sEA1SMVfa3MZMpaRTN8Vd17v2\nmrVFSYpqjY0UJg4KQWmdwNI3EybHItJAQQxWW6L2jCwJicIcrSzHzt7mynSFWGdsTxb4k6e+yuU/\nfpVI5/SyBpdDAYSCBGwtRM0ympf6NG5FpO0YEynSdsDOd55CWUvjtmHy4Cqtq2P0OIXQJ0yRfUEu\nrKZwkhONAvK6IquDqoGaaqb7dfYWGixEM+o6ZStpMzYxTzSu0ghSGnFK9I2I5T+8SfiLsj6pWo3p\n9zyB/eKX3vZ2w12UjCmBHf8x8Iq19icrf/os8Ofc//8c8G8qr/8JpVRNKXU/8BDw9ty3b6GZJHXB\nbUX/A0rmhUcmKcEhXatJAKsVeb9PvrVD/QXHptvZ56AYr82yorSj2qo6DnOtcKgy2MGw0ElQ3Tbp\nI+UzqR4Rwad8b09oqFqz+x2nyuPsDwoBxOi1A8/unDiXLRb37M1rZQnDXYhUmslkrrZTBUEhgoeR\nsg5bj0WbCNlgTB47UYAew4+f4fxfePbobrhX4+atcK9DG7RSBDivsplc7TJQbsrczyqY48WizX4P\njKH22g3CYxsC/N2uuLF5gc29/pxDmT9uIYw2J45qS1BOKfSOLNiqvcD4gydJHpOx4z+b9/swSwSU\nA7Y+IfoZ+YWLqOFYQM/JgXoa705lDTZLRVy6PyS/cFGsHN31VmvHj+zWYiPrBBejSAKmMJSx4Z+/\nZh29vuqOZxk9fryga3d+r4558dUjj3/Pxo4x82Vjnhbugz1d6gbJ6+J4YaczyaZVwaAsE7eT8dTV\nSEdSzuAXwGaMjQJUmtO8sIP96gsE13dovbJNcOEa+uqWq6sXxp+AJQIyF6LVtRjTH5aA1SwpmI6+\nNEv1R+S7e6gsJ+/E9M81xGGsHjJdjZ1wsyZvyRjd/rBivB6QLmgJ2DYaWC1sCt1ZkOv0ujbGohZa\n6MUuwVJXygkWu/JvaUmuNwrl/d6dzc2HHoQVjQIR6SRJCycfgLwRkTVCkgXN6LhG5ZBHiv45Tfta\nSrDbl+zOrwoYpMJQNhE+Q34v1yq/Oc7ScvxUn5dKKZnX0CjcfHAAh3+/nwM86OGdnHIpc1FKORA2\nFucwILq8WYCo+e1dKa0wuTBR/Sk06sL0yNJDYsDKjxn/eyQlGwCmPyA4eRz7kUfl98dcaUiWFWUz\nWMvuv3cegNGHnMbMYDAH7C5cGR1ejxxw5pMueb8/V4pwaC33zdrDpSBuA6xXlvFlHSoMRVcPRKj6\n/tOY6ZRgY52l12YCWIYhtdcc47a4de9RnHMXmnZmPJY5p9onFbAx7/ULZqpnycwlw0xO+OIlgpkA\nOXpzF9Ufzn1/vr1Tlr9Wmi8jkmMeVMJ0WWFXUooOyD/0EHzyifnzRMaGmYr1+96f/Hh5iK++IuDM\nfo/Wqzt03hhysOV7e+Tb22TXb6K+9DztX3me7NYm+etvCAj1Vn3ogVpfFl+rgbHF3OzNNJRWRWl+\nvt8rpALsbEY0NmRNXZSnhU+Vuh73ctwUYJA3FNAiVWCTpEx+VQSkCxv6A0LO/nXP3gq8cLz2QJFF\nRZFsyifT0pre9Y3vF3BgtHMU8vOXZzPmm1uiUZhlTocoEdDFWAFnoBBC162WrDVRSHSjhxmOSNfb\nwiLwjmjGknRjavs5tj9EPXAGe98JVGcB8+hZgg+cl8Squ9cFqzDNCvv4QpdvNitYUlWXYQ8MqQqQ\n5MtcbOq0dQYD8uHIifzXxQ2xFRFdlATe/kfWSZbrct3N6EgNT3cv3ru9VTHP6lKLam49qIjE67KE\nTLda6OUl0bXc2SNthkRjg04tyojuXzQyTJcV4w3F8Ps/wOi04cofP8H17wzZ+jZLXtfkNY3ZWK58\nhxbR+H0pG7RLHVSSQaOOaUSYOBCNHic0DDBdEcaHsnDmbz7No//7Jmoc8PDf+Abtr9XJs4DtcYu9\nWZNTf/Qlet9+m7/93A/RjFJemZ7gxqzL9R8wnDu+Q+8h2dQTSQJNjWcEvQl6mrD4wj7LX9li/Uu3\naV4dUbsxJBinqJljo7jypKKPJik6NcQDQziVsvZgAouvG9iqMe3V2N9d4Oar6+z+b2f46ee/m1FW\nY/UPvo5dTThZ26f7c8+w+8vnqW2G2FaGyhTxfnaPx80dNlfWFgke70QHVH7mcyVdvhzRJ7f06rLs\nn5Ui6UTSRz4EyMAqKRXb+qOPMFnXpAuw9aklsppi/1ydcLMnWlTdUhZFjWfo4QQ9mpDdvCXJV+8w\nFmgBE6eG0I2d3v2RxLmpIuppHvgXGemgRnS1xuTlRRZrE2pBzn7S4LMvPkHjj+3zhd1HqOmMpk44\nW9/BnB9x+y99Cj1Tzt1XofIcPZxSuzWgfnNI55V9ll7us/z1Pbov7lLbHIuAdOh0mAIlKIwDFTGG\nYCzPUDgSDaVwpGjcDKjdDJkmEUkecmm8ymdfe4J/+fPfxUow5KX94zT/wSK9T0y5/pTgCIM/8Ul2\n/uxH2Hs4eut9cqXdjYbQZ4A/A3yPUuo59+8HgR8Hvl8pdQH4Pvc71tqXgF8AXgZ+HfjPrLXfAlH6\nDq2qw2BNGRhVJi3fdKtVBqhuM2xmM1R7oahf1K1GYU2bb28fuQkutC7c96swlE2XD7pms4oejZGF\nz4tyOvq7HY6ItgZl7W1Ydr1SYm25+HK/cNYw962761KYs6Wrgxz0QADkA+o7ZMnu2FxAJP83Ygs6\nGhdi2TbQzI63C32gYGmJvQfLoLz1tJQj3cHe7t6Mm3dKiqxkQeZEMp3jAsh1zv3NM0kQQMZMp7KA\npqkDhyx2MCx0mzyzxvQHpZMdPnOlCtcyyWrHJSU5Lx0fzN5+8V6dGNIFl3lvNgqXD5umxfFHJ+Vz\nXmQ83+8xfGhe8FoOXOlSn+1VqgjWi+tVFZbHUd3oNWxAmEJJCo26iIgqha2HmHZ9Lut/+3EX/LXb\nnPylt0xQ3IOxU6G2++fJGEfFP8As8xpBLiBXWsumXVdcepK0cBL0gJEKdKk3BOjhVDR5GjWxqj21\nhmk3MWePk5/ZwNYiEQ5OxZrXTmf4ckPTcwLgaYKdTCtC3vrQnBWcPI6ti738ytO3iD/3LLWbfdpP\nXyJ69oIsSFa64Pz/dZuVf/Ql2pdGjI4FJO2AwemAm9/eIn38DLZZF5aTB3kqrINDr0E5bvw402Xg\nWTSTl+DHZIq6sS2MKHcv8lhx8gv7tH/zFaKxIZhA/LlnyTYWOf6TT8s1nn8AvbIswXzpknLv1ipf\nGjF37VXx7PnyMdGSU2VJVpXBgWTeC5tsfz+d+GJhE7+6XIopbu/M6cSphQXHRixZeAW4b21RCu0B\n7vkyaxGCLeat6Qw7nhLe2JUN427F6aRiHLD4mhwr6pXAs334/uL/phY696O3iEaq1rVV7Yrqc1ld\n8w8kQ8AB9CAMtpVlKUUJQ8zuHsOHutjPPAmrS0Sf/z3Gn3m4AKUPaKO9v+KcanPz89y672IeFccy\nj3uGY8UxSHcWirU87/cJnnoBjJTHZ5tbc84+NivLe0EyiyoMsaNxscEvnmVTARq0It/rCTBjcnSS\nMVsR3cNgsYt+4pFycxnFWGPZ/SCkf+BjckiXMNEry2Rr7TkR1TvFOXN9cRdMaONlA5A1V5IXgTBc\nokhEgh84S3b9BkGng6rVuPEjDxef3304ZOEXnin0mQ6U7t2zcVPMC0rPic8f9T6bOxDDl0ArVerE\nQOHAq5vNopRQx5HcD/d5O544V8AG4bEN9BOPEGysS4zxiQ+iWmK4IVIDlfKs2Wye8esB+zAsWJLV\nDWPQ6Qi7L8tEEPbCRcxggP7i10WI3GudWSNrmRObNvUQNZ1hui2u/PsL7Hx8pbSzdnISwJzovhdM\nBub1Tfz/dRnrFX/zIv+BJIvMdOpcVRNsmqIHUxGovrUJSrH4+deJ/q1LlDpzBd1q+ZtTPfR7OueU\nIJguWR0HnifPdC4+06gLc/nyVfIzArxHI0P7ypRobGi9uk08SDGxlI7tnwuo7Wgm64Zgpjj+RcWs\nGzBbCsna80Y/drGNWeqgH38EU48xrRp5t4VKc4JZTjBKsUrAF51DMEU0BA2k3/dRXv5vV9HLMy7/\n2JPUvn+bZmtKkgXsT+pk3/tRzG+e5i899hSD//Mk//h3v5Mv/NaTnP/Rr5L/T+tEA1dmn2alOY6L\ng5Ux2EaM1bpkc1hbMFBQSsqRtBaWUKDQs4y4nxENLdFQRK9ni0pcx0KLnQac/9k+9/3Y6/zcp/4R\np+riaNhqT3ltvMGN//rT3H5jmYUrEN+KRPh6WKyz92hvdYfN1Vxi4kDMc2BOEhDVFPGe7nSE2bfQ\ncvcS4qGhvpejE1i4mYsTWAhWiyj5dM0wOCP9bkPINrrYQAmxAxzIL8+vaTeKEl/brGEjDcaKsLSR\nMvYgtSRdBRbyBUOyljE8EUOuyGPRe9qetAi0YZzFfODMTSafPM84i/nsm4/zM89/Oztpm2M/X2Pl\n//gSszW3Pyv2TZXSvUBYSzasxOmuggJXZmiDQMaUD62nGXE/JxpBNLTEfdA5mBiMVUyyiC9eeoDm\nV5roT+xzK+tyfa9L/Ze/wvGNfRrbsPOjn2K8rsnqChSFVMfbtbctGbPW/i53xpe+9w6f+TvA37mr\nM3gnrUKvliyHPXQD5lphOaoKi2Zx7SmDZrWwgGo0hCptcimJOlDiY3b3hR7vXVic0FyVxm6NC9A8\nlc7VrvvNvh2OhHHjNuD2lTdKtoa7FjWckPsSpcxggezh04Tbg7eXHrgLRtBRzUxnEvDlbvKfzsTx\nSWsYjKhdCzA+cM5zTvzrN4pa6KI/jqjdf1+NG5Ax4LU1PIBXed3TyIE5QWFfLlGICrqJRzebAiyG\noWQrd/cO3QMzGqE3SqFX61hYYg3vwQi5/7rRkLpsD9J5WnWWUX/tppRrRLEI8tVqZXY2T1D1Omc/\n25M9frslgr1RzHRJ0+SIZm05TiuL/aGyjLdYM2yaiPh4EJSigM2GTNKjCdoY8iUJgoJOBzWdsf41\nJ1Q7GGAGA4KN9aLMQNfrMPFffw/HjlIixJyk8/fPSP1zAXr5+6KVlIa54NB9twA4o5GUGkQxetUJ\nRGeSyQ22eyIqv7xIul5neLpBXlM0tzJ0Yoj2pqj9gTihDEeVYN6BAkqJhpC7bzqOysU3CGSzoCU7\nbAPJPuhxgg0DggfvF3bSche1uoRxQa9OcsZnusTdDzFbill+aUwwmDE6vsx9/+wy2fUbqJMnijEP\nLihGF+PXWlWUyMobdNmvRbDg2DBVLDLLihssFqEBOjNE/ZT1l25iR2OSjzxIvJ9y4n+VZFb45hYc\nP4ZtNbDXbgptve5K/NL3YM6xVr7NzeNHagNVAQ4dlPo4UOgDQQm06GazdN/yJb0um26zvEgomNGI\n8bc/XLClTK9flHl6LSDqB5w1ffOsJTeW1EE9MJNj+v1inqxmuAsgSSn0N6+RA/H1PdGUq9dlDfPv\n9Rpcb8ngqLjNvY3unc3zUpOv+LgVRyxrRdPDZ/HdRnjhty9gzp7AXpKkRv0L35Dqm+0dCSRdjP2+\nW6/8d/g4p9BArAJiBqUUwamTZNcEYJc5ym2EGw2JbQaDQnPKb/KxFr20iKkI+qt67VAiK9/bK7/O\nj90q4Ossuv041heu0nxDkfWHEk/lprhfXivkoZ94Q5xVwxDWV9BZhlntcu17WnTOfZLu//3MO+ig\nu4h73Pws52mFkTQcybwzGqM6baanu0SvOeCs0yFrCEib7/c4+T8/LaDWEWLF93LcFKzVA89KoeNR\nKRVzfyjKpkS/o5LocPfL31/dbqOUaHEBmFFZKq/abbKTy2x+YoHjv60gyeCrL5JbK/qaQwGMq3MS\npcELAAAgAElEQVRDwbLxcUYQl896FKFIS3DKWrwLttfzUU6LUIXC2lDNpmjaLXZRrRZ2OsW+col8\nPEY/8Qhn/vuyJMKzrA8azigXv/mfhTtbRSew+N2DSdoxdT37yQFNBcA0HGFcDBMsdjG9wSGtLxXF\nEkOGocw5hYTkezDnVBirxTGrcaASNsVBtzV/HawskS63yM+tYiJNbW9GslhjfLxG1tAED60yXQlp\n3rQsvzYtxLZ3fvRTrH9ln8EDbWZdzcK1TPQC3TMWTBJ3Xm4DPxhhWw1hZddCbE2LsPRSDeN1sUIp\nF7MabnxHDTU05KkmP5Yx3ewSNVKmwPrSgMs/FMGNVS511tj8zpw//8mnePo/+SjDP/5JHvnrL3Lr\nV57ANGN0Txwv1WRWsseVgppL7KVILGWMsFAcMGQdcKTSXIChJCOYaGr9kLSlUQbyGtT2FNMgwrZy\nXv3LC/z51hafHzzOZtLhwk89yR87+wwv9Y4z/MCMcCtmdFoRjpyBxjB578ZNMQhKZipQSRK4BJdj\nYXrw2lbmXQDVaqDCgPTUCjaWODWviYaQBy7igZTahRM4/RsDLv3wAt0L0NjJqe0lTNZrLFzsF5U7\n2idnA11qOaUGGytU6so9Zzk0Q0yoMAGYANETyuUatj4BaqYxawnTZcX+qMHKwpipDunN6mx/X8CT\nOiPQlm5nzIu9Eyy8vEMOmGaOV2uyWmQZivPwcbLWEAGBEglHawXgcu/HqPLZtJZwlFEbaCDAhBas\niJMP+g2yXFNvJIw+ofgz557jG+PTLC2MefN/+DTp7hhzPkdliuZNAYPCUeV83qbdtaj0+64VrKDK\nIncgGDfTqVCkC90Eocuafr+gjwJQi5n8Bx+l8YtfKSxbq80MBgVzp/gqrYCgrK91Ll1FQJXnUlLb\naMB0ipnNBAA0do5eG6yvFZvicLFLsL4qG7FEFte0HaGePqB+eZDZcNTf7raZHHIlixy4EggjC+5o\njEpSgrVV8u0dCSSPsJ719H+v1fC+aVX22AHm1JwjkA7mHHd8Nl2324U+hwfOzI7T5QgC0YXptgiy\nrBg3h/pgXAEf3eQpOiIVQXJ7wCXHGGcPXCff74mNOBTZdq+Xwdoy+etvEKzFmFgEptU0wQ4GBKdP\nsPJ8/zCByk9QVbDU98M7bDZJZbKNQmGuzJzeSX8Auzlhvo7tdDCTKToKCX/z90qxR6Uwt3fLgPFA\nqcI9adVrduwEb8VrPYPIzDM9lAOgrQ8sgwAcY0yFIbrVQi20RFw6leDCH0d12thajJ5kLH35hgDT\nq4uw2xMgLQylFMwBykWAfbA0zVSYEqELWIMAlefyvjhyQBTyPi0LpY1DyC3Jcp1okKIzQ7yfEO6P\nsaEmb4YkSzEL13KMF6B1362CMgiw2QGgMCw3ImWQfYA15DYzvvQMLDZwbKtQRLfDzZ6cN8DKIvGN\nnpSUHdsQcMNn7LIctbIs96tZP+QId0+b36QXYs0Hfh58L5RJjerGoRKAF6zSLJvTPsm3twXsceVD\n06WAGgKomYFzJdRBCeDld1gbC3aFLr6zKjYt4IoLPg+ANF73QTcaxdpbuOWdOk5+4WIB9Ea3epg7\nOar5drcb+uL/B47nXUVtLqyCeh3jjSGskQ1vr18Cb77UxZXvqSPKwd9XrXie5pmdfsyZ6RRz/YYk\no3wZoBH9nnx7pxC4VcuLmG6LG9+9xLGfeprw5Ik5u21A1ntn210G/MGh71ZhUJSpWmNRkSoSKvlw\nJGC1u0++vNyDlGY6JTh1HGUsZnu7KDfT/TFn/94NMN+S7vbbNmFxRyhthNw0maAWuxLrDIc0LmwV\na5XNc07/3efIK7GOTZPCqXYueXQPW8H8CSogvI87/bNYLSvzzf9eBfsqTTstvHwyFfFnYxBhDQFm\n8ltbcPUaG89QqHrplpQO28Hw6LkOCv0dSYRRzjeTMiayQYAO3EbSJU89WFE4o3U75N0WutcXBu1+\nrxBtVmmGmpTzqKrVKjIITkPErw9+Uwqypvn3BAdYMX5KqCZccGV2fgr3+keVZ+OQHpPbX1hri02y\nimM4XBV575qfO5yOlAoqoI+bQwiCYoxUte6C1WXyTqMAAeLdKUFvQnK6IYLJFkbHI0wI8UA2+jt/\n9dOs/72n6VxJefMHRcXXhDA8FdO5YlD3HRcRfC9R4c7P1mLROZylRam9aUSYSGNC0Zlp3TSM0GAV\nJrKgLVggtKjAUPu9FuNThqQzRh2bUqul9NM6ehxwebJCsD/mu/7G86zHfX639kFn/Z0X66b1IJAS\ngWI1TSX+M2Z+I6+RcWbd+1Ifj1nCcY7VoIycZ9yDrKFIQ41tZ/zy1ce5f/E2e7MmTzx5iS9cP8/O\nzS7BfiispRyiIax+bR81O8JU4B43n5BRYSR7RXBmIT4RKICeJyAVySanU2i6LWzYxsZajFRaIVld\nkUdgIhivBsQDC0aYQ3o45YGfHTH8wCp750O6l0RgOm/FhO65N7MZ2s97GokhXVJUWYtRyiXuAItz\np4O4pzCRxmYWW7PYUDRAVWRIZhHXrm3wxJOX6AE6UdwcdegNG8Rxxiu3Nmh/V4vRnzxGuGvRTh/P\nN1slqijRl/L/JxQTp2KiUSIerbIyrtdOXNoECuuAo2igMLdqzIIYs5rQ6kz5lWuPkeWaaRIRfmif\n2bU2OlGEI42JIJwIy2guFnyL9v8vQOhg8FioFrpM7VHBpXGiU/W61D2aHBWWE7XZuQ1as/DveuSA\nTZI5V7Hiq4blLF64OUThXMBeCLRVgyi30FX/Xm70cmi30ENhoeRb2wTrYsGav3JBnDem7yA8eqdg\nUPW85cKAvKgbt7nBDgbyHLl6cwG0SjHkajPvQZD0lu3t+sKNHy+2fOjPvs69cN9xrk+OLqy2bsNw\nRPqxR9C/e5uCzVEVJd+5XWbskSBpLvzwgVySlA5l1r3H1e570UPrgnvrmGbT+xaJXpeNYthdQJ05\nLbartRrmWJfo4q3DzhY+IKhuDu/Esnub8SQLg6NKOlDNJimkqdCq+4NCF8mLuxK5DP8B6nq1FOWe\ntmAeuPCAT5H5OAIMAkqx9TTFeMCuUUc7AXC73xMwOHPlUbUY26hBoNGDMUzF4c5euop97AGmx5o0\nrgzQg5G4sk2m5TziaMle/6EKPFfLr2wQiKj0cCyBeLMOgcYGIbbmgCltUcYSbg/I1tpgLOlKi+la\nTGNzhgkVtb0M88RDcsy9kWTLXLPGzGVTq84WKCckroQL7AXHQRebl7ng24FeylrULCk3OFGEGo6x\nswQbaCmL9HpVSs0vbrd23t5R8d1u1lJslfya9E5Kd3WASdJ5YNpvsg5syP08Ep47y/LnL5K7Oce6\ntU3X63IsD2YWGb3Kpq0QsS7oMai4FGSeY6McmC/sQrM4jyDugg7Iv3lJSpP8s+HXu2btaFewO/Xh\nQXD6iPmnTMBUwa0jSj/8e9+iyRr/rTFrv6X2+/FVR123tXJvo5oDXP1zUoLK5vYeajBk5RVhbWbX\nb8ytSyCJkHDJlRn7bK9WWDs/Doo5qGDdhk4kWLTnTMKh+8aD96FfvyyJkJ3dYgOR394lPH4M02pg\nLl2ZK4P8fW1W9L5UGMlzlsvGz6YihKxBSn49Yy5J7rj+6WbzkBnFvWjWMyg80yXQJQ7j2EHF+Peg\nSjE/e/C3fD50vS7xilYFs1U1G5jeQL4nqpVMnUiEh810SnhsA7OxjL22WYq5p8yzTEAAlDQv+tsn\nxIpY0s0Nxpkw+LKqYn2LI9RsJiYmV2+gNtbkPi0vcu0PneLkr95CJylqMBJ9p8U25tKbRRJErjef\nL2PRInTsS7rLNapsyruCRkHJJKqaJMCR8W/x+TkpiahkaNkcU2HcvWetCvjn8nsBKDvWefFWX8Zc\nq5GfWiOvh6jcEO1O0bOUyf1LYo1tLSpE1iMD6YJi1o2IBhb10ce48e0R9V049YvX6X3kGDq36EmG\nGjvgKc3EnTVXWOcqpsZSMq/SHFOPMI0QnRp0JvcrbUqJj07BBqBnCmMUJGBDQ3PTYiLNdm2J+uqE\n8X6Dqz97HvNHUr587Qz3dRX//LmPo7Sls6UgqyQ4wqAs5QHUVJKf3sbcRloceZ30h0/g21DL50BK\n3SYZJhRnNB1BPJBSt7QTkHQC9m5H7Cx10IMQG1nIIRxr4p4iHiBlVQZ6j3bpvrz/Lg6Ku2xzBAxd\nPls+MQNuvB+QCACCB85g4lCuKTXYUGNiRTQy6JoiswoTwWRZwAzQ7P7hNZZfyemfCbABNDanZAsR\nWTMkROQ98l5fmMFhUABB5MKetUoSkSYSTUqdWXSmRLMoh7ivyBqQ1SzERpY5C3mmWXlO8eLacVYX\nh0QP97l5a4njx/ZQwPXtFQZnwcSWqKck4aqUxLe5FSaQd46uxDNWSf9YLSWKNtBSzgYyttw6q9Kc\ncJRhAkXW1IRTS9yDaCDnPtmrMzoWMZLcqjilAY3NABREAwG+VG6FvXSXia/3ByB0N4HSwcV5riRh\nXjgPmAderBWaqrUl8u1dNUZCHdb1NtBDLywcdhSDgko7t9glScFS8gFRsXl3jjoeVCjKOpBFKlhc\nJN/bw97YFHvy8Rg7mzE9v0G8tID5xquoVotoZ3w4Y3aHjMyR/XSXrQCzHPXe6qx4yM14XGxWVBjN\n0Wfngu5vsWztXW0+aK1ubqpoNmZOFb/I/ilVAB6q1YLxuHCuAVf2NBHXnuj2SBw4nCV0tRX96o+v\nldS5O0t3rwdgplOhS+MzgbLR17VaIapoJ7lo1CQpmJza9hg8I2kw4vb3naN75aoEuEmOXe6CE6EF\nh9Yf9RzBPOJfnPzb38+5DV+eC7PMWmdd67QeHGhhrUU5JF03GoWeijX6aEvle9UqtugejFNaz2+C\njggcMQacOKXqduQzcSQC3WEoTJ1ZUojGo7XUEoc1qMUkay3CYcJspU7j+gh74RK2Viuy76ULlFsw\n3PnZJC3K2aSczJW8xZQC0I51g1IQK5kiaxqdJNQv7cL2bUKlMAs19h7rUOvn6GlKqBXR1kAAmSSV\nDcFRYKFr1jEVS32LMhhX1T4NJIMGlCC6d3Lx2RX/utc2qMXyf2thljhWR52CHWkMql6TzcW9JiYe\nBC9spQzzIKDyNs0zBsXdD1Sgyjn20GbLjccoJN/cEtfB4agM6HODjiMZJ9VN6xzLo5pIced4RI15\nIYTtACcVhnM27gQBfOwD8JUXmH76YRrPXkTVagXzRKUH3NTert2pr6qM2KP6tPL7oTkMims/dH+g\nZLTdi3bnx+gdHqcy9nQJDNvZTIA5D8h7B6YkkZhGKRovXJPyPs80O9C8uYB8jz5E+UfhQGpVyf66\nDWb1fPx5uv7VwyksLWJubWJGE9Lv+CDBNEM9/by8dZaU+orvVqsyY0GYKs4Fx0ymqCQtNb68OYi/\n3krL36NNvVIOzMgPPMve0rn6HKRu/TigA+jXWe9qa5zejwpF7yvf3Rfwxycc8lyMLHIDgSZcW5V5\n+rVL5NPS4v3I+cW34lkTd2Dl3MuUj4mdtII3qFBLXRGNdqzZ3M0n2fUbEg+NJpz6pRtkFy/LsTwj\n0DO4wlCuP47mErYFQ1Wrw2CQZygbU869/nUn4C36gkfMkwdt6Ys/6EJ/y5KD0TLGDyss3NPm2Uom\nqcyV1gCBe6Yp9xfuGQ7W10jjgHBvgh6MIElJ7xe9yqifkbUCJyytMSGkDUXWUQQzi55mrH/dsPBG\nn8lDa9x+LGDhqqVxqzIhZq401iMwjlltPeBiQWWyudWu/MU7UpkIsIpwpEhWc9rfDOg/HHD7Q07Q\neaxJ04BHf3xXTFf+w48we3OBN39AE9bGBGGO1XVsFGAjtwcKAgg11iWwCpDHikaQcsCqSnMZM1Xw\nyMVdXgg7SIyYeWihqKi6bOqDCURDjdmJ5Tq8hKeF+rbFxAjYlgMWYZC8x82DuX4v6PeIArbr8hnz\n7/faQc0mpttED6eYeowep6RrTVQOtX5G2gmwWvrbxnJPbQjtNw3B1KDTgLXnp+hJhu3E1PZmqMkM\nWzAkJdFprRVhcCNlfFY74C7SAibmzhEPyFy5ofyiINOoqUalCtPNGB9XNL7WZPtJhRlGPPpTe7z+\nFzZon99DDwM6FwWsm6wh48RpSxWlYKHGCnFOzu2APplnVptQo1P5u7JlHK3SnGioQIWAFh2hQMZf\nbR9UHqCsgIY2kP7SqYyXuGfJGgqdIYDRXcYe7w9A6G5O9mAweFDw9qhMordGrdUwo/FcIOwXwfDY\nBtmtTbLNLUEb77DYV4XtbE6RQTtU1+9cFArXKleGoms1KSWZzYRBcmId9vYEbNk0QsE3hvqrN0W0\nDURYeL9X2v76rwhKyvaRffQttrm64VyuVbk6S8+imQMADorJvh8BoYPNnXORrcqZC2aqVFn//kK0\n1NuOAnplWfQYBgNU3WkL3CFjNCfk6F8rsvNm3ua8Euz7YDtY7GKXOthXLmCDoCwrvHIDWk1BoPOc\nWq9cMIJbe7KoVs8jSdC1WqVcrbKxqGh5FK/5ksy3uq/WFs+azXNIkiIYLcAAF6ABrhSros0DJfDx\nXjZ3jSoqg0gPDllnO1swt8ABhqnoHTjnKLO378CPQJw4nG6DcuY8ymmcpMe6oBThMEFf2aTRa8P2\nbdRiF6V1Qakv9Mb8uSmnixBQAC+iAaNLXQOtZUG0Vmx6l5rktYBwnGJqAcHOTDQZuh3oCftv9Qtv\nkl27jgXi48fmLJjDkyfKecUxkPz1Y63bjBwYI6YCOLjz9j+Ledka5iwNlC6AoEIIVStUlhWBu1IK\nXEZfOaAUZx18z1vxfFTmDl+SUGVVwIF1q7JJdvO6fx69xspcyamnWzMPwCv3PJnJtACUrKF04nK6\ndUc+u0e8Nqcfphx7oN2WMrX7TooTYUWgFmuxozHBG9fJgcbFXfK9njibeSDq2i0Bk6p6f3f4/qPY\nSId+3k17i/cW6/J7PtlU2t2um/59R5Q/C2PVlWgNh8UaZx0LQi0syOvue4JOB7RCG4M5wEC2vsS5\nkvGd04ZxP8uSY1eSk7p1MRaR5ny/B9aW8dXFy+h2m6DdxkympO2A8bGIztPl9elj69i9StnNW42X\nb7VVgNoqo7kAt3RQSY7JvPZelYgdbEeCl97lx5o5jbZCXPyIse5LsWyFHaZqjpVR1ZZJEkySEDxw\nlny1TXDhWiHI7j8jcgwT7tQKNjllH4u2UFRsjrxWIkqhF7v0P3qCzpevSpLDmGIDKjGRkVJDB/4c\naZOem4JJJUy2il6Q02ACty5VgSB3/arChPPv8ywhVQ2pqm5uzuWwyiBSWhVW917L6a4Zk+9is2lW\nlNACxV5lXguwBOF9SWG4I0zo9NRKYUxRvzVieqzFrBugMyvOoLFitqRYeSnFhorxmQ6jdc14bZHx\ncVVsTq0WxnXBFrOSyFJp5rR6Qok30kzs3GcZQaiEcVOTza4ysgFu37Cs/9YNLv2pk5z6l2+y+QOn\nGR9XZE2LCcGOIi79yDGmZ5dYW+2zYztMVy1xmJPOQrq7bnwYIwzrKMQWCI+CQM7XP4E21FL2GitZ\nL9MyBrJxKACBG/d6mhMnBmUjrAKdK/JIEU4U6QxwG3oQUEhZsTJHg04gmti7FgW+J83fK1spB7W2\nBIP8M+C1caMY1V5Ab/ewC00nbQDBJCNrBkxXQkwk99V3cDiV+zpe1zRvpQQzy2wxYnQsJkgstW3j\nWHwxqm5K1nimpXRQi6YTOaipHFTYbQhrJlcCMuYQzBQLV2Fwf0htV7H6jZQ3fygg6cp4NtMAVc+5\n9V2rmIZhMKpjFnL2Hg0JElh40zoHT9GOslpDrArRbBPKOVldXl913VfWCrNMyfhSuWMOpTnBNHMA\npLjzCdtMWE7BVJHHSsaGonhfURaXWTd+TKFx9Hbt/QEI3W2b23Tk89ko1wqNEsqNpp3N5kGVIBC9\ngVYLc3wVtnaE6uyyaJ69cOR3F4KK5vDfXDBdnqMps6tRCKtLZIsN1FPPYS9fKwINT2EFMP1BwVCy\nqROxPRiMVOl5xYVXsqjfavMDtAI2HRIF8+VVOiicc3CL5VuJEL9r7e0AsEObjAN95857ju3kwbw8\nR8VOKDxNUK1WIaQdrK+gum0YDLBff0nKPnp9gpXl4j3FKXgxzsJ5qRQqBsqMnw8wrJVNXs8BA8td\n+h9YovWKlGqoU8fd+ZnSESE3tH7nVXLkGTC9fmlV7L+nWpufZcUGQwWOKuzv/xGC02/bfKDtqNTW\nSKBHklQWjUqJ3nRWBIsHxR/vWSvGTmWz6gEIKoEgJajhwQlrxIVFyuESGCOgb+wyoJOJlD55UM5n\n0pt1rFaEg5kwKMIApgn5A6dQs1yCkVScUojjIqiYC14r7ilVAUxrrSyCjj2DtdhQEW+NUNMZ6uoN\n8tlMXOriCJoNJ34fEJ45jS8dDB44I1kVY6S0DQqwBl8iCEKrrseQ5agknQdmqnNRFSByAbeA6si4\nSTMR3POf1wqQxbzQFPDHzc0cCHVPGR4H20H9Ov9yAXpVQBa/ka+cr24vFGuSXwvMdDpXYqybTdE0\nU6r8PxRMDpvn6M5CUaaqWw3MaPLOSrX8tbhz1HVxmGJtCba3ydY76EsyJ9jZrPiMSVKYylyXv3FF\nXqskLvLh6LBzGBwGNTxr863WjzsBJ0cxHg/OYwUL6u5ZW+9Ksxy+9rs9lwJEbEoSolK2bRNTBN5A\nwWy1aYJNIWi3CRda2DQlu3mrEO4tspWVcyriHmvL+3EUQ6voRyNJhgQZOxtrjB/ZoL45xjz3Mtl9\n64RKiRXwdIbJc3Qc0fqNF+W7lCLf3sFWQOi5a/7/kOB6u748+Ptcwsavh96K/X3QilIm1+bmvgqj\nR95ciXEKUWmX8PPaZDpAt5qoWiwxi5XkkxlNChMN3ajDfh++eWmOqR6sLKPqdexoVABpZVKpTLoV\ngtf+GrR/1g0YjUX+Lnb3huzaddqDAdn+PDBYLb2aew2ECVRxDivMIByYJGCZQS+0MGuLqFkGO7tF\nebtn7ypjSmDIJ1+gEKkWQVgjbIhqTOyYEv8ve28TK8mSnYd9JyIzq+7t7vdm3sxoyCFpizIIGzIM\ng6RMyZbhjWBYEmDQCy+ojbWwIMCA/2DAAA2tvLQXXhjwhoBlaGGYC1uAuZBhSIIBQxBM05BlWRQ5\n1vBPHHI4wzfz3rzue29VZUYcL85PnMyq26/7vu5b1W/yAN333qqszIjIqIwT3/nOdxxAWva3V3H/\npbbTucxkLEiZ2bU0kFBZ67N16ksfyLiNBeWJVDVMz3fI+wP2f/TLqENCPkhJ+O5W/OvrbwNXf+fX\nsftX/ll8/M8MGN8DwMAXvl5x/Z0R6VCF8aLV/ngqMJF8YPTgE3cZtDuArmUMaepAhVF7wvC8YrrO\nYAKe/MGE6bd+B9vvfg2/9e/8UyjXjP45XIen7jtMV4z84YAPn3+AtBfGxTgMyDvdVCfZjGOjPg0R\nyvUW5apD9/zgKT00VQHEKkBdkg3/VFu6UFLwsFSAE4iFIZR3mibLyqYqQD4kYXcYeJAFYGICuu8D\nYEZ/W0Wjaand+LbtnmfvkiXH03hyL25renr/mbDnqaXcGYMHFeh2jP2GMLwQzRwoIPbB//0RvvdT\nX8TtV3uUDeHF1zK+8I0DNt/doW46pOutfGc3g3//aSoCAGeVWQBEn6cw0qGAlIbV3TKoisB0moAf\n+sVfR/q3/zlMV0DZJmy+I6lXZcug24w0Em5+FEAF6vc2yDtykCcdABRh7vCmRzpMUuCnS6JRlLSq\nGAQ4dKYXoQFElWW4jEVkoGnWwPHYgUpG7XUOXcl3rvTkLCEQgwkCrAHob1j1kl4dF7gMQGgS7QNf\n4OzhHqon6AvHC52agyZe5piCULKItLoWTECl87c+RLEqGZSQNkI3W+bXtwvV+eJnv5u+hbbR6PuU\nNXJ3cwf67W+i+9pXRZn8Rmj+Xi1Kz827/SxKLHmQYYHJGR49N+pezi6Q6cJ26mR7XnAwfy0u4IEJ\nsoyk+rFEM/ZTS72y+3EcvXzrZgwUEzZbbDRi5E+aTLM5RBngWuaMMndaVF/g6RPg5kbYXWbf/dhL\n9Pq5rq7ud2A5jFsQQo3lPnnUCLxVBLF2fvtDPHnaKgaVb/y2nGa3F+rzOMm8ztmBOqr97J4aWMNc\nGrMCCAKMi7zx2NalY36K+WBv2fcAEE0hZx7QAlws88+kjLeiJnqP8Thh+u1/8kbPWSyl0tLfdHxs\ns09KjU9f32HmFqYM/O43Idure9q7fOG+je3iO5h+7ficUh43nf6uxg0fMH/2hvueNhtJkwPAL25R\nb27kfr+Ons+p1CoDB+5r2+JZdbYNfmBLAGjz2lkNi3UCmP/NLKxVoLF6Irhu5iBu39KWUwZ/X4Xv\nh76lJQOyyYnP7djel41TCGYYyJl+X9JN+9/4Foo+M2oEmQOI5IzLitlr/jywe0p0lAZn6dbtOX4P\nuwp4BeDoFdKpI9vmMZeroUfqr5uvADiLUprXAGj7GwCi4L6Bhe6f9BukzcbFyNOXPpBz3u2Q3n/P\n00vrV76A9Mkt0p2kklGSqoVSHfHWgcY4n09ZqxqV/Ti62qL74oDy4feA/QFpYnz0z7+H9/8+kH71\nN1GZRWzfytdTAnJCvtrKGqY6Nl5Nz1JiU/KNKsZR2v3kGvz0GvwHfwiM48mxM/HlWGbdKvbFdCs/\nt6YRpU5Ad9dIslRdZpDRPPXvx2YMca2n/dHPYhYEDQoJ5j+WT0nhXga9Zsbmv2P2895zfXxY/D0X\nZwbzcUp5eG35Hses0QBQ1+fPgVBV72W2fFIe/T2r8rZg2S37fW6Nu7BZjyymqG8a1xl5rrfX+fYO\n9Hsj6iefIF9fiy7h3Q7oO2x+h7BhFrDCnqvTJJv0956h/2TEB7/OSGNFZwHOTQ/aj0jf/USCapa6\nCYBx5367B0gpgQ4HUEpI3+vQdxlXVxtwSnj2m6bpk0H/0r+AD359Dxor0lRV1wWomw6sm3Zr89UA\nACAASURBVOR0qKiDsHtQgaqpRP23PwG+8yGqBcIA0HaD7tsE0oIxBGH10iBaW2YZgBf+MFa8BteM\n1UY5obOgngUJiUT35r49g/mP2qbyzd8/fdzbsiXBwcxSQGdyIaVpEC5Ng6y4uUXaKQHiMKL/wnvo\nPtmCbne4fu9adJq0MApfDUgvbvGFX+9RNx2e/j5JJd5vfQjqe+Qug1/ciLzJNAGdfult72aaOTkj\nKXM+dxndRwO2TzaofVa9J0LZJOCPfAnv/Zam0xbG1/6Oaj9lQtkKQNrdFalSNhDSoYKFfIjNd/fo\nf/e7zQ+rBbnvka+vRAPzbg/eH4AvvifC4LGg0Wysw2Dn1FhPpSB3Mu/Z1lBdHy2lERWwIjLchWpr\nU1Wm1Ks5OnTWCKs1gugPIZm1H567LW/IvozPT1+A1+/PP83MX/n0wz67EdFzAF9/jGs9kn2e5s4l\nz5v1mXPZdslzZ33mXK6t8+bx7PM0b4B17jymfZ7mzjpvHs8+T/MGWOfOY9k6b15h3lwEQ4iZv0JE\n/xcz/4lzt+VN2OepL8DF9+frF9y217YLH+vXskvuy/rMuWy78P6sz5wLtQvvyzpvLtguvD/r3LlQ\nu/C+rPPmgu3C+/O5mTsXPs6vbW+rP69Wi2y11VZbbbXVVltttdVWW2211VZbbbXPja2A0Gqrrbba\naqutttpqq6222mqrrbbaD5hdEiD0C+duwBu0z1NfgMvuzyW37SH2eerPpffl0tv3OvZ56gtw2f25\n5LY9xD5P/bnkvlxy2x5ia38ezy65bQ+xz1N/Lrkvl9y2h9jan8ezS27b69rnqS/AW+rPRYhKr7ba\naqutttpqq6222mqrrbbaaqut9nh2SQyh1VZbbbXVVltttdVWW2211VZbbbXVHsFWQGi11VZbbbXV\nVltttdVWW2211VZb7QfMzg4IEdGfJaKvE9E3iOjnz92eVzEi+qtE9B0i+ofhtQ+I6G8S0T/Wn18M\n7/1n2r+vE9G/cZ5WnzYi+jEi+t+I6B8R0a8S0X+kr190f9Z5c35b587j2edp7qzz5vFsnTeX0Z91\n7pzX3tW5s86b89q7Om+0HevcOaO9q3NnnTfntbPOG2Y+2z8AGcBvAPhjAAYA/w+AP37ONr1iu/81\nAD8F4B+G1/5LAD+vv/88gP9Cf//j2q8NgB/X/uZz9yG0+4cB/JT+/gzA/6dtvtj+rPPmMv6tc2ed\nO+u8Of94rvPmsvuzzp3z/3sX5846b87/712cN+vcOX8/3tW5s86b8/8757w5N0PoZwB8g5l/k5kP\nAH4RwM+euU2fasz8vwP43uLlnwXw1/T3vwbg3wqv/yIz75n5twB8A9LvizBm/hYz/z39/TmAXwPw\nI7js/qzz5gJsnTuPZ5+nubPOm8ezdd5cRH/WuXNme0fnzjpvzmzv6LwB1rlzdntH5846b85s55w3\n5waEfgTA74a/v6mvvYv2VWb+lv7+BwC+qr+/M30koj8K4CcB/DIuuz+X0IY3ZZc8zq9s69w5i13y\nOL+SrfPmLHbJ4/xK9g7Nm0tqx5uwSx/rT7V3aO5cQhvelF3yOL+SvUPz5pLa8Sbs0sf6U+0dmjuX\n0IY3ZZc8zq9kjz1vzg0IfS6NhcfF527H6xgRPQXwPwH4j5n5k/jeu9ifd9He1XFe58757V0c53Xe\nnN/exXFe581l2Ls41uvcOb+9i+O8zpvLsHdxrNe5c357F8f5HPPm3IDQ7wH4sfD3j+pr76J9m4h+\nGAD053f09YvvIxH1kIn33zPzX9eXL7k/l9CGN2WXPM6fauvcOatd8ji/1NZ5c1a75HF+qb2D8+aS\n2vEm7NLH+l57B+fOJbThTdklj/NL7R2cN5fUjjdhlz7W99o7OHcuoQ1vyi55nF9q55o35waEfgXA\nTxDRjxPRAODnAPzSmdv0UPslAH9Rf/+LAP7n8PrPEdGGiH4cwE8A+D/P0L6TRkQE4L8F8GvM/F+F\nty65P+u8uQBb587Z7ZLH+V5b583Z7ZLH+V57R+cNsM6ds9s7OnfWeXNme0fnDbDOnbPbOzp31nlz\nZjvrvOHzK2r/eYiK9m8A+Cvnbs8rtvl/APAtACMkX+/fBfAlAH8bwD8G8LcAfBCO/yvav68D+HPn\nbv+iL/8qhHr2DwD8ff335y+9P+u8Of+/de6sc2edN5f9b503l9Gfde6cvS/v5NxZ583Z+/JOzpt1\n7pz/37s6d9Z5c/a+nG3ekJ5stdVWW2211VZbbbXVVltttdVWW221HxA7d8rYaqutttpqq6222mqr\nrbbaaqutttpqj2wrILTaaqutttpqq6222mqrrbbaaqut9gNmKyC02mqrrbbaaqutttpqq6222mqr\nrfYDZm8NECKiP0tEXyeibxDRz7+t66z2+bJ13qz2UFvnzmoPsXXerPYQW+fNag+1de6s9hBb581q\nD7V17qz2afZWRKWJKENUyv91iOL3rwD4C8z8j974xVb73Ng6b1Z7qK1zZ7WH2DpvVnuIrfNmtYfa\nOndWe4it82a1h9o6d1Z7FXtbDKGfAfANZv5NZj4A+EUAP/uWrrXa58fWebPaQ22dO6s9xNZ5s9pD\nbJ03qz3U1rmz2kNsnTerPdTWubPap9rbAoR+BMDvhr+/qa+tttrLbJ03qz3U1rmz2kNsnTerPcTW\nebPaQ22dO6s9xNZ5s9pDbZ07q32qdee6MBH9ZQB/GQCoH376Gd4HmIHKYGYQEZAIAAFgeY8BEOkZ\nWN+zE6Ida1a5vWeHk56TIOcsVV4jAKT4GPP8nDGtLr5HoX31ROqdX5dau+01ZqBW6SMl+antYWZQ\nIiCleZ9qBVcdG/vH3N6P7bF+Ae18sHZwayARME3SzKzXq/WePoS2n+onAK4Vz/HRh8z8leMBeTMW\n505G/ukn26+0vhJAyzba2DOHMTt54vsvetRnAhOBmF9+rXgKmwJ2uB7D4TA61bRXubaf50SbAHBq\n88XH557+2hh6e0/NbTs2J4ABqtXbMOvDqbFZvqev307fx3i4eclN+Gw2mzfU//TVe3/k6DGybP+p\nv2fnvGdolsctj3/pPT91TptWR+el2Y/jhsh/p/pA4dEBit+dE6dJdhEOcyNeNJzovvacbMvimR3s\nvrE9Om6seH77rcd75lD300/wHgDrUlsTSDvO9r/Nr9na5YfP3oada/GI9rMSgWffeXln/tmwPi5u\nif3STs/zoaf5MX49t7YGH7VZxkg/U2Gt5lOf0Xae7NNsgOII2UvyDGM7h/19z1jPrgkcXXfHNzjw\n7nGeOcg/fa3zpo3VqfVjcV8+9SKLP06MJaXUxu3VGq5jt5wjy6Hik7/G5hClo37e23+7trXXfJFT\njxrtFzOHe1rvHTtKSY4pZdHHcNLoGi2/W6H/05evcfeH33xUP8fmzmrvtu1wgwPvH++Zc/1V+f7E\nrdNiPr/UFj6SfG7x3vI7R2g+KjD7Xh2vS3qIPZuZ58fENi6fFYvlySgOzT9ur3Mi8VV1nxn3ZKz7\nG2LM943L61Bo57Ktp3z+pMfGfaadL/5uthxLbgNch4Sbj3/vUZ85V89+6GgcvInL8Vn253j5fsVG\nLM7zqscvP3OvD/r652l7IRz36ZTvfM93YnbueMzMd9GXks3He/qyPNeptutbt+NHmO4+fW/1tgCh\n3wPwY+HvH9XX3Jj5FwD8AgBc/dCP8b/M/yZ4twPGEcgZlDNwtQURgfcH8OEgr+UMniZQF5qeE0AJ\nmCb5OxEwtt95nICUQEMPpAzK6qDc7cCHg1xvGEDbjTgh4wiUAuQsX+LD6MAN6zWo6+S6zMA4iZOR\n5GlEEYghAvoO1Pf+Gg6jXFfbRFdXQCmoL26k/30P2m5BmwG8P0g/agHf3Mr5hwG42gp4ttvpaz3Q\ndUAp4Ns7aEO8H5QzsNkAtfiwWZvKdz8C5YT0hffB4wi+27XPA6C+k3Mzgw9ja6ONO1dwqUCtqDc3\n+Fv8P/7Oa84Xs0+dNzqGPnfeow/4T/3EXwK6JA/qWkFTlfufE7jPcl+mCqoV3CV5f2kOKFHjzen9\nRK2gscyOrZseyASaKugwyQPfrkcETFXOEwAi7jNQASpFvuSAtxsJ8p47wCTXnarMMW0Ld6mdU9vF\nffbr0li8f5zJ+1GHLL/uRlBhcCZwn0GFZWyYwV0CD137O+v5CgtIGBe7UsGbDvV6AO0L0u7Q2mH9\nKKx9ZRmboZN7NJYGWhF5O//ub/1390yLV7LXeua8P3yV/8U//R/qWKuzQPoQPvHQZ5sT4aHux2Hx\n3qnj7c8S3tcFIE1zx8V/p3YOJgLn9hoH54LJjplfK03h3BSuCSCNDCryGc5ybqoATTwDADkRuCPU\nTp8F+h7nBv5RYVAFOOs4hjaJAzZfMNNo52jHzK6nCyFVbuMcxtTG3dqy/dYt/ubf+88f7Znz/vBV\n/lObPwc+jOBpFEcyZ4CSPCsBWQ8ikMoRZNcAQGUNesCPpZzApep5k5w3tkOvZ9eSwEmSYEGpfi2u\nDHAF5Sy/A+1ctiYCGihAe45XBmVZI5GS94OnUQ7bDL728jSB93vp/2Yjr5cia1xl/WwBEsn6qgCA\nX1vbz6WCx8PsWSnrdJ6PHaU2PuMB1A9tHPUYLkXa0/U+tnw4AGA/nnL2oMf/sf9flrf6Ve1Ba9Wf\npD8jY5UzuBQZi9oAirTZoB5GvzcOXtwTdKCuk3uWSPyVUtxH8cO7DrTZyP06HOabQb3v8Vzg6uPn\n7SOajSkA8DjJdSm1ex0tZfk++PyR66btVvy4w6j3HbP2pKutzL27OzBP/hn/XkDWjXR1Je0oRcbT\n/LBlO9Ty+++Dxwn15sbH2vsSzw2A+gHUd3LO+J3TOfkHf+FP4P/9r/+TR/Vz/iT9mQdebrVLsl/m\nv/3Qjz5o3vzMT/57ErgDQEV8ynQoqEMG5wTOhOQ+Y0I6FPHJbP1KpIE/9ddI114iATwqy2eoHVsH\nvd7ESPsJxEDt5FoGunAWUDj6gcQMmtQ/SCTn0bV++R6Ypd2VvX88JAeD6FCRxoJy1Xt7kr4GSHsA\nAJlQNuIL511pPnVH6sPqNbuE2idvCxMhjVXGtDBql8Lrct2yScj7inx7QLmSPQNKC4pRqe4HWHvS\nVNs1dUxRGbc/co2/+9f/00d95vzkn/4P5B4zZK+jPhwnvddJxsD8yDTxrM12zHLuEAM1y9yh0vwg\n8/9A4itTVV/C7lVsq/nKgK8hVIM/nGnmJ7of6b5oCG6qf81E6s9Ku+qQUHs5eTowUpH+cUcO1NSB\nQO5rs/RX2+b3Men8ruorJ/Wb7X3bq5EcU7P43TInK8om6ZhomxP5/bCxh83HyrP9ARj45X/w37zS\nJHlbKWO/AuAniOjHiWgA8HMAfumln9jvGwiTkoAY5ixOk0yoCAaZY2KghDkBNhH1d3c+uw5IWV6b\nJgFlbKOdEjD0rS3mhJ1gRlBODvgYQMLMc8ddnT0HY/q+OXGlOLhFQy/gTlGwx8CwzQAaegGmuAL7\nPXi3P27rNAGlKLNH23sYdXNQfMyo7+b9885QAJQGGY9S2ubfQK7FpsT/psX0SZ95Or3+vAFmYBBi\nxNHGi/UBnpKAISmAKgCMccNHjB7brLXjkFJ7OOmXWTYwND+nHR9/j+fJBOh5JGKBGUgC6MMk/M1d\nkrbXKqBNkflroBdNDUCyB4QsbEke6GNtbbAx4La4cbx/zHKuav3T46n1k7MsojQWHxtUSDSmC3My\njEWLGNmCR7P3P4M9bO4AiNGzI5BnabogvgwMiq95/xjH52UFiOJ7EQyicI7wuy2abCDQiWunIguU\nOy9JQZxEck2fBwrMAL4Qyh90EgySxSyw2ux2praYOximYBDQfvpY3dPuo2Pj67Ut6n4ehDn1MHvY\nvCnFN+sOBmUFZg6Htjk1tkzXyfMygkGA/LTjuKIeRt/gUt+1Zzswux7Z+qgAC5camA/Jj5E/aXYu\nAQXq7JwAHDhyqwIotT70svGepgYuQDfPBkaYg+sgjgAJvmYqeGFt4yL9RmprDHUd0qABB2PQSgPl\nxzTq84bURyhtbJkDQCHOJHW9gEHWz3Fqa//DHzsPmjfUD63NYX5Iv3tlzNQ5GHTvyajdMxvP5T00\n0MevF4Gl1ADB2WcUJLL2pSxgkL0GtHucs7KbF0GWlJGGXgGq0a9Lm437cTweZu2krpfPMAPjOA++\nSedmYzXr9ykwKKxV1Ckwtd/L3+pn+jwA5mMDzL6/7UWZr7xwiV7THr5WrfaDbA+aN9yrn2kBFlZf\nQAEaP46oATu6afcNvX7Wj1XfAKz+H7OCS8mZOOLfVJACBgAA9UHmDIsADKjPa5tcKoxUJEAJB2Zk\nw+3AiYEJ7t8wSIGaOmTUvgEtaZR1wcCXOmQBcmxzruASd+RACBzoModDfxR2gE1AhjZAnEg28ZAx\n8ECxjzUcSLKx9yBYfIansC/5bC7yw+ZOCu3y19pYux//EjDIACDPTiDxKS2YaNeZ+ZW677Dgtcwv\nzIOevPh9MT8jICMvyjmQFNxScMf3M6GtxEDtFcAsEsR0MCjLXk4CqQIGAXCQFEnvp/rK9hop+9uC\nzt62uAaHuc9JfPjat3nowdWpNvBLzYkAISjr77/i3HkrDCFmnojo3wfwvwLIAP4qM//qSz8zTb64\nuyMICOhR1fHg6iwfTFNIsxI2CBLEYaE0G2TqA4B0GBeOhYAllJLQk6epOUQ5CfMDaOc0f4MreKfM\no66Tttlp1fGyc9vGm0ttjJ++EzAoJfDtXWMMbTeg7VbOMU3CPgpjQMMgbTGWUXC0gRAdrAzadIBG\nrJFtzLI4TaWAJ3Hgqe9adHGcZgAQkX65uwywgW5z4IdLbU7uZ7CHzBtvp4FB8Xz2ADdn1Ng3mcB1\nQfu0YwNoI0CNvpCSPwiAAN4Udsdzdj1jB92TDsEptfNHh9R+n0J/DLDqc4tYKFBUh84ZAvYZViCM\ng0MsAFLxcWFlNzXwDIEZBdC+tPYDbVEyJpN935RNZG2kWsFI4Vxh83siNcDH/LM52J9p7sgJXv42\nLfcFxlZZTvkA5tiYCcW4OVS+IFRu821xHUY4BwXA5R4gJS4MSRcwZ/OYA8Yyb1uUoS0eEo2xRpCz\nfWrXPgsCakdtM6Tn8wXIadmawsGL4xxIbP0SCnIbfGIGv2T1cgaXtekz2oPmDTPqft9AiJyVEVMd\ndDHmhDNS9HMIDh/lNGODxM8ZizWyhfQAZ3w66MEVkZ3km/YAGqEU1Mq+YXaAKinbx8AdZfJ4Vw34\nCoAXEUm7dY3z6/qHlKFUi2/m62F0kMPaTshtzfCATtZ2pQZIUZWlh0NwKOXWJw6eUcpt7LUtPm7m\nA3AFCrSND5tED37eJHIm1wy80WCV+S++jjtQZg8GPu4b0BhZ9lrKPi8A8a9m67N9Fys3X2V2TgM5\n0c5h8wD6U0EZHqejZzv1nc7fBkJRPzQW2SGAQcoGi6w0Hlv/qdNzBbBa2MnUrr8Egmbj1MY0Amiz\n8VgCPzqmcg79ziQB4I7m+2vaZ16rVvuBtM80b3TtodJ8vsgaAjBjCVGpDWCpxn6Bru3qh9im1jbz\nXWrfdWNZTBXcJwWfUvOXAfe5jfVjr9VOQKVUKmhq/gUAAYMA0KEegQl1yEilgT7cJdRNdp8h7Yuy\nPrIGV8n9uDQJy0mYJclBIgOYDCByVve+AePCCJHjDHzinJBsDPQY97mBGTgU5Rn8vpQqP/V60t5X\nutMn7bPtrdjb2dprfiM7cBdBPKTGBvL7F/dCLPPK9kyR7UM1XCcAiMZo94D3rD0QIAZooGBt57Vz\nATrfAiMJaO22OVWzAjtJrpuMmZbb8TEgafPU/OYjAM32k9BAbQl9Jx1HC6JrkJ7GNi+sHUxy/jSx\nM+lnoK7dCwXt0sT+nXkVe2saQsz8NwD8jVc7WH7MmD/KDnKWCuBsG3eolA3jIMl0aGCOaREZ2JGy\nMG2YBVSqLM6ORne56rVmNH8WRlJODg5ZahRY6cP6MDCgyKNaQw8ojZ6VyWPgFlkKWdeBd3vw3Z2A\nQZuN9IVZXrfPWd+HQVK3xoNGVjk49iQsIvuiDr2CUcERVieRd3sZF2uPpb/p5sQBhpzh+kMxOggo\n+ynJONqm4w3Ya80bs2poLzUgpsvODtITy08Db3qJmh6lj9nnAQFY9DWmwDQynYbCDQwx+uvJ9kEW\nP2dOLMAmuy636zrgZEBUksU0Al+SopU0ClNcxwcW+TEGUAnXysoEqjJuqNB0pOwPkhlQFEGqBDlO\nUwgs/Y31mga4STRH+1Qg8wQQZyCT/AvAGhM1ttVnsNeeO7YIKWAxY/QcnTz8TovfF+/FBeCIdWaA\nhl9XX6f5MUswaJaO5guRnIPDnLVFzcEgorAosrKGME8VM2ou4HRXAX5sUW/3KS547hgQWjTCokCh\nfY11ZAt00Jqyfvpn+Eh3wMdsOYbLe/FAe8gzxzbDvr6MwhT1jbdupsnSjpN8P5iLp/hwQVtDFNiQ\nDacBpewAiq9rcXMewCBwBY/cNq3m6Ngm2I6LqViLlCBLwYnn52n0VG1PW/VUsNw21g76NnaqrCsZ\npgcoAYwGmM3OA7S2xYhZrQ1YgI1XRtpulGVzaP0xAIPrDFyx8eXDQe6bB3fK/FqvaQ9aq4CWHhcY\ntjRjjc1RZk9DVHaL/KEgYEzZstSvfpD7MDGA6nGck6li1IAVP0bvqwR54PMyNFYAHwN2ZqwjS8mb\ng0EgkpT8UgRM9UCEMeGyM5v9nJZyBijopOuLspkJkGOXKWK6JlvKlwNHeiz1w8zPYwW4Yh+4FGGy\ndR14gvqI+r36jIEvaeLD5s5qP9j20HmTIiMC8BQwZw1NtfmxQJMYiACG6USqj0BjbX6Bsd0rq0+k\nATADi5YsCGOP6Ea79qltsCuDQkDLP2YpVYci7WIFdxSMEgCqbba51xSviZF3k4NBRUEiAM5+SaP0\nrQY2VQy8+iafgHRQVpCBZb2yFAdhFtHErS8OJDSpCkmZq+ojVu8XE+CqZravZBvPuQ/0EHvo3Jml\nNRnzh4CkwE8Eg4B2Lx1EUaaLgRmAAkU+F+UXY+AYYyyyd+Y+dgPmjgKblecAoy2pXUtHNMCqGqhD\n6nfW+flrH1LB0Hzi5bmpABZE9dcDqGWpcTaWDgZZKhyzA34S7LS+6Oc70j2DAkpjnYNw1qTADEIK\njK0Fu+9l9hkwxzdnBHiqFLrON7JQSjGRLMzQSJGnfXlKUxKnwLQNlD5PObXzjYeWbkYkn1HHBYAO\nWvgiAuDD2HRygJZOBTQWkzJrzAHiIlFR2m49GoZSRAdpnJoeT9+LmPPtrTg3XScOE8Tx48PBr0dD\nL+8NfQODim7KcxZ9FgNzANl8hCiWs3yqglLBgaOchUVkqXmmg7RMEzMwzM6n4zy7j58xcvZQo7EA\n49TAmU7TqIC5swq0xctmfmSpKDACQCl5Csyk1EAUDgtFauc8SkEznQo9ztOxDIjRtvrnlGETmTy2\nQHPOLSXOHs599kXbU8WURWQ6PmAWpo+mfvmYAM4UASBgjgFQU2hbtIQ2NxSht1Q35EW6nQEhM8ZJ\naD8pKBUiBvQGnOzXMiLU3mivaP/8/cXhEajAicXZF6Z2vANN8TwKBrngoZ9fT2NMoNTAINbFKwJB\nnlali6ZFY1Jh1w2a5RFDFi5nNFlbQ98tN7oMSRa/ZNeaRz9m/bcFicy5mp9z5tTdt/cOYNB8sGxM\nWiTv1Lg/ujHLpl43jABmabQ0DEjbjQIR+n0aR0kHs02lMW4AT6vxTag/X0vbjFt6DtDWrMBCiqwh\nCsdFMMjS0NxiStsw+EbYu2nnsvQz02mxtBvbyAMKSB3mDB59r9p6xroGRYaLMnpMs8XBMV1nPY0Z\n0HS1xjRC7KsFRUoJTJIk7KowBtLGsTFQHtmcGcPhvgR2zjLly3Wi4us6hgZGSh8bCCc6S2V+naOG\n6H1Pou/EBuAQzefgNM7Gk8w/IjpmBpGcq4GEbS6lqysBmBYaRmm78WvVwyhzS0GtqDHVdI40VUxT\nLU/eRwWlYrqjA5WqIRlfn/2EzDObY2zXDO+bTtVqq70LRhN7WhMSoaqPONOxATQARKib7JtyQPwI\n9y8jGGTMl0H8aQkkon2/Ld3JN7gtZQiZRMLgVCDZ2NPGPk7il4BkM2waR1UDog5GTdX7UntJBYOC\nPWmsKJvsYIX1Pe2LsH1qYPdYwEs1Wmqf5j6bpQYBDh5Y8IwDqz4dNG2tz3MgAc2PEr8qzUAQ1nET\nNpdcg0pF/Yws+oeYAYaRGWMAh4EN4jfq2Nl9MjBIf/fUKZrPAweDpgYQgUVDxz4PBH8X8CDmSbM5\nXblpVNpeTxltkXVkAcl4Ps4QXaACD66ajtDMZy8KJDI7GORzx+ZvbmNon7G5smQpHfnqlRtoZUGO\neC903vl3KoxX9BdSAII/zS4CEAJD0qRMsLJUFRzUXP++czYKANEbUmYL5dRSoTRCi1GjmiqELI5g\nSIXKuQFDp0zp//Y77BoAnDFh5x8nZyO5g3q1FcBHBR55f2j0936QvrJELPkwCuB1fSWOVK3ef2M/\n0dWVC0/zrmkt0XbT0tqCI+8C0za85lBFB6pX8M2ip/vALgqMH8op6AZoSkSvY2dOeyni1C01hR7J\naD/OQBbXCFLQY6Yb1KVGdaUFkGEMowVbxemRkfI4o3zOneLZOeuJY2dINPkiIii13n8HrlJ4vWkh\n8dApOt8Erw0Iq8rWEUFoYQ5xn8PCUz1CYTpGcgLNB6+tbZ56FsbBNaaYhe1j51TW1GxM4sIZruMp\nekSgEMV9NCPMIgTx9Zk+BOtciaCFLzrH5/R/ARxxcKjaYjgHg9qcUmegkzYYAOOMoQVTCIBHCKgK\nENQEmw3A0VMXOJDJygACGn01FQYIKAPNxZ65tSFGYZy944uq9TX+a52MYtFRaNqHzsZkCczpe3Gs\nbVybPtMZUCFls3BYF6JOjjMvIc/HehjbJjUK8Qc6NXW9bMyZZ2A79Z2udWFihrQzu/F46QAAIABJ\nREFU/zuwhSzFerbxtzXUdFAsXcj0dYx5GNcJAyyI2jpA1HSDoOtFTOfpB9UAyk23xsAKFfKNqWIW\nvJmnqlUPfDjrtu9kc56zrJ0K/hjoNQMHQqqbj2MieEoaoGP0aTf6DdsiGJOGvrGUp3nqE4UA15HO\nks2lE7pAr15JrAW7yFI9wxwzFrJpGplwtc/7RZoWdcK8XqZwUa+aiKo91frXy3xICfXuDjFtkBQo\nks+MbTwC06Du985uO+pXDMgsxpuLgoNL/Sxb8+J7GhE3QPWzpsWvttpjW9pJeq+lUNVtRh1SY71Y\nuhcAHkxPR337pEznQdg23FEDg6L/qr5pmmrTUgGav6JBKwd4FCAghgg+m/+g2j9McO0j0/eksSLt\nJ91oJwUnDOBhZ0HVTkStjVmRd9MiJUv6nfcV+W4UxsXQ9JTSWCUlzQApwDWMJO2sMX1cmJqEkUSs\nqWe65jUhbT56TpEREHTtFIFqA0vs5pGm751nb5VGdr+0qtSE3T8HNwwg6gjgyAwiZ8gwKdPF92O6\nfyA4Y90DnUTzn2pRLqGlS8Hvf9QLqr0G8A3wqYx8qI2xNgPezJkNYJFeI421BY0BsG6raVIwCJjr\nbFraGbXz2GcjSGbC0N43i2vVdoynGZYGNMlBLS3P/Og0VkTdL6pwnaZZVbxPsbOVnV8abcUx4MNO\nqksUZcbkFCjlJNo5pnujwA0NvTJfahOmHkIkqU5Kca5AdDw98qTOd8rOSvIUm2GQ4wz0sVx3wKuP\neaQsZ9DVVtLBmKVi106jqcMg11ZNId7tW9WwJ9fOGBI20V6qqGyfgd57JteaJtEaUqeNtts2Hnd3\nTumnnKSamDviIde1VDmGCNRlEa0GZlR0o/dL/mVqDhHQgLBFFNlfPxWJfAwzPQoDUZhBdwHAs4VL\nGTJWbQyVQKyJmfZcnxoNtkU26gmnc4HIGlAIePUxAM4O8jSq6Kyz6f2giTMDku6mon+xCpjrDXWp\nVSTYl3ZtUsqrLdBWaS0lTVkjB31Yz8Ndkipp9pAxwCn2V9lBDoiFBZ+75M6AU0s5fM55ofrZwMzy\n/s0+9Fhm7KuATOiiJaAOt1SquECbxdcMrDl1lfiVOAF2yEFNG4i7xUKxAKxOIf0CBsHF7Vz7R00q\nis1z2S0PGVWpv5U1d14XTwOWoiOnwEys+nWStRT7GBZwe8/SLikec2pcTp0vAnPL9x7RyCJeBjwo\ncGFpUtI2BXfGqbFzYjUwwBkTttkl5HkFsCzpLZxwJEIM5NkGmzUwwrrmQauMzd6XEzuDg3qtrmkp\n0wbAkG2Cjc2jDFhj7ToQVdtzD7LONYZSBLUEFAAzuDYWEWXytcs32xakMDFi0wWy97QPkhreUs5c\nO8gZUbY+EVCtjS21ivfnZXoYGIK7u5OVwQC0Sl45AyWkmqnf0cYsN3AN+eh5KqmE+ofON6koZ1pV\npZ0baKmGBpBUboydcSEIrQLSzDxPawMAIqkaVhl1t5+9bmnt/OJm1t40iAh5NdayjodVSpvNjXA+\n7WhLWeM5eENDAz4tBY2raiItzVhu9tm+a37PEtBfbbULNpoq6qYD54SykTmdVQMnChZzTs7OcTHh\nohviCqBTwGZq+jamfwKgsUUsHexEyhcxo+bUGBTLtZ80+KTVvGoAWbzNfWD61MbSQG0pYZIqVtHd\njgJGDNlTyDiRMoMmGZdex6UKqCQMpCTMHksBA1pFsy7NXRIDjRQoA7NKUgRdGMCBJGd6GAsosmEM\nKDE/Z1QAKjC6HtOIGVUBlDrIvtAr0ZoPxCz+Zpg7BlJYQRvOLfjo4GNqzBxPozK2u7l3Bp5kSJaD\nApRRH2jpP1p1LtcMUiaPs7g0EOzpZdoH841rL5/Pu6raV9YW9Zv3FflQUZQZV3ty3z4dqqd/uS4R\nB6CnS7M57/59DX1WBpQBaJ6eZ/cksLMAtOC6+UbqL6bRCASv7uRcDCCEnIRts9+j7vdahWtwpksr\nxzvNKq8A8BLzbMwZq1RhugHbDYAsvl8UbMxJUmQUKII6GzawrmdgTr8BLqRtDegudV0rL1+KgC3m\n2CubiLosm/39AbzbwfSMyMAgZmUHHTRKtgW6DH7+ojGG1JGiLoso9H6vYqaq1WBpcLZxB7wPDoTF\nDYs6le7EW5+JGyuqMoAyp66bzlApLQ1hmWb2WFYZ3DcdHzpMwBScPBVAnlUiq2jpYKitPxUzLSIa\ni4okh34DMm86fT2wgI40aCKLgRdfYKABRcrasSpmnmKmzCFnY4WIg4FXxuIRgCNJmU8TkB46V+n3\n1DJAxsNSyCpAfA99V8fB32N2TaBW1h5eHUJ75eedVWojdSziNKn63XtsQEhBnJqp3aKExmJRnagl\nNfWUxtAsd/i+Z68CITHvGRZ4sOsHdlmsDjADgeKCGQCaqAEUGT6yeJqINMGF8mp7HZB5ZRGFNLW+\n2Jh4BMcW/RwjIIsNkl476gvNxiCMSez7qWphvvDfM6ZnMYIC4CxryzgJW8GaNU6yFlSN2nhFrQUj\nAZrmY+XT7Rgr+w20562uS9R1M/bqjAVjwIiC8zzxMaOBEsDKuLDramqyM0sMDLL7q6kzrVz8oOyd\n6kLTBsyQsnJnoIHNaU3B9tSkCFYFjRgbn1i9jeMz0I5VsN8BE22rnkC7S3MtIdNtsnXyTIQPA+Jc\nK/DogACQkQRmPHXJCkBY0MfYalVAvqOvhd1XKygRADSOfkLQVvLy8zm3NEcFWZbi1BQc0aNuKAiz\n1Ppx/85KzwMNTE1pxgyy81DWUvVLMGg2bOT3PrbTWW7WX29LBagHgo6Qg2PxvESoKztotXfRNBha\nrjJqT8g7YcAAaOngvfiQVkIcmVSgVzMvMiEdqgeOWLUg6VA9yMexGBArY6TYhr75x+67VgVOSEAG\n8XV10z8KUGKAj6eCDVlFr9lFmq1al2zmVXyZNXW+zgGImgn5IKAPUhLZBQO1GEFYO+gJxXXJxOzN\n53HfpgWoOGtAtScfUyoKFun4QVOWZtV4nTVjuo+EZPvON6Cx+RCzfQXUXzWmjQMrBjjYGFpwE1Aw\nT/23CgUSdR4ktDQxDQ7H4OJcDFobQ5hnWAANeAzHprGlcHkpeGM3QdupbfJ7aXs+wNn2gF7bfOGu\ngUuuJ0QC3lgmgffD/O8Knxun0t/keu29KCLtx8Y1GjLurhFpgBm135vGk2aBvMbUuRxAaCrgFy9Q\nNFpEm41oCgHijLIAFDT0DsaYA2vOIkVmkAIrokugjtB9LBaukJ1Sc7RnOgzGrIl6QsYMSgl0tW3O\nhG4CMIXStn0nfckJmArqza0AKaYbZAjlNAk7qjLSk2tlPhVnEnlFM0sHGw/aBp3U1ldtN4wir86P\nlzPebsBT8YiwCZ+S6hEJ4LXHTFhamUMm2K0D31LnmN+I2OKDLKSx0VhAuxE0TuAuKwhhND4DQ9J8\n82kVbUyYelGdDMAc3IAupIA+SOwLbxuotrHiyKzxDxtVscixvqBmf9+uibgRMn0gZflQWLxEfFoE\nptNeo6ibri04hUFlagtOnz3VSK7VohfGWHJKsArimqi1PPTkPe+rfa2cdk8Olnn/AzjGKc1Q72Xl\nuscwp7EaYELz96QanS10QKyI5cBNYL60Dy8v1MCgo2N08TDBZr/2YoGYmbYleY5ze90reDFa2fkS\nmEFhoSRlrNVMqJoqZothLCNvES0Tl3YRaV9AqXUo9lX71drLSn+FL+6sHbXzLvtp15hVF7Px8zG8\nD4V7u8bjhHp7O39N1w7TPnFhWz0egKff8DRp6lVq7IqY0hRTwADwyK1qZNT+icCBbeiV5eMpakBj\nBYXUrZhG7MLNXS/rJulzZbdvm3ZtLwBPbbP3kq69ls4lH6DGGspZ1j5bj6bR04zMmp6OsThGUN54\nGnNkVM1YKw5mNYFlB35KZM5UULeBaRHiHFJCFASW73YnD+HxoMDbYk21/sSS7DPwqAEis/NVExy3\nNui8MrAsMmsW10yW7rUA+AD4/PJqePFz2y0ANA0pfyNLCjww+/7M5mTQOrTqZM72WjKDIuAV2FMO\nGIZ5oIMxbz9wLM7dBg5EXUuf8+scDfFqq12kOWtG00/y3YS0mwSM8RQamqfyLKqBpVEkCCLo46Xd\nc56LSQOeTkX62oyxUQPooX/P2ETMXngkTcV99dolBQ/aeVLQz6yb3FLhR03dsv7FgJey6su2m7WJ\nxgB4BQaSMaXkQN14L/1dO4eWmLcsg2TpZTWMQZqzYLzbqZ0L0GuakHf3+P6xtAnOmgEDaV89IOhs\nH2WjGKMlpnp5UZIpiGcrGCSdbICMgx9Lf27pNxvGoT6kF0khAJ4q1YArv45+prGMmt/PuTF9aEJg\nDslnyiBt73Y1zCm0LIK45Krv7OyeMFdiMLdVOJN+0VglfbLKmNsY+TxJ8yCsnytm8diYh73V61Sn\nO88sO2H8yXPUFzegREjX16CnT4C+dyAIh7FVK7KcblLxQ0tbsqpa6jhSdJ7ti2ub02WEKYJLiRrg\nZE4yUQNiErm+gZTdFcYOuEo7p0nTBBJoMwgDyKqU3dx4uXi6vp4LYd8KdTwNPdKTa3HGP3nuzi51\nHXC11dx61RNyCj1hllqXSNqluhEuGG2AmYNJyR1/0zIw6rm0qzgwZJHKRk2rjYZtwNkZjPU+01hA\nt3tJlTKzB8FUFiwWuIiegUEAWhWu+9gy+o/Dgyxex/R+DDA5AoP0ujA64TjJw8TSurxag4pL63uc\nM3jT+4OG9tIfqxBWt5Jyku4mST3rsugM+WIVynQqkwhAAHQ4MMvQvg/WLj2H9zW1Y1x82/p29EBf\nPORtXLxqxSJF7TFMARj5ZxUH9AGtQETVRaL2QReqwh/+SzDIBZWjnQCDIvtH/g6sngAGnbKYokhB\nQNraYxG4NGpFhVAusw5G5YbTe0HyehnUkQr53/MqD7Z4Eqxy2Zy5tOjzIq3MtIP8cHccT2gqLW05\nneKqdaYVLD19Mt84pixBDNUZqbtdqJikTqFpxujG08EVT80NqVFAY2uqkW102wvKEA2pVs5mzS7w\nS5qq7BXPbPOPtt4J60KZpqZrk5ILXsv1qLW37zV9SIEirZDpVdZ8zeqdmToDBdRcH8aKPABtPJQp\n5QGhwIhxBpGZBjdc7yaIYMeqWK6ZY37DYxtpNbdxRPnkBY4qZAXjBYAxW8sBzKq8+YcC+E7zZ7Gn\ngMVrGPPMHc0FUzSfuIZWq4vX53FebczngwGdgX2WnlwLwLPfe4qZgUcAjrWGtpsG+C1ZSIu11aQE\njrSYbH3SgiPWlsaIDiCs9TEyA+w7EKv0rbbaO2DTswHcCajTf3JAfrEXXy6JH0gMT6lZrqecSeUH\nFFzJAsi4TlBgaNjzpukDsfrKaOyLwr7hbWLQC79c07qoVCSt5mVaPKbnQpMCOICAPUNGUYArFZb0\nMmtLbin0eS+pZ3XoRDwb8M24A0hdclFjE8n2CmHGrDaNpVnfqqez1Zzksx7UXfhV9nsK8hK2uVez\n1DzJGCCcDA6+Zat9UnYYo39ekPdzBhWT3AuvhEU2H7gBfgtmkAOPweKYvPR1BWi8QnAIhlq7AAFq\nnH2UjXEFBz69MpiliTnICNcNcqZTEMq29+qGZpISyYKuqQWZgQbYxOD7DPw09lQJoubh89IAdhDR\nKvl6NbbS9uMRZEulCVIvBc1fZhfBEEoFKM+fA5SQrrag62uQpfBYNbFIiycScMWAn6wVygzMUAFP\nt7jYq6MJSpK+FRd+K1sbo2R9B8qds35AqTmfSQAfbAZgt/ey7c4MskhsSpImtj9IyXelSwuIpA/D\n/R7V3nv6BNhuNFUslNXdbDzyzLtd0FIKwIx1ue9bWyKok1U7qLbJA+ZWkY2rp7q5U7/RijkxTc6u\nadHiw+EsLA8AAqpMRf4xtwpyxmqy9hahJzCqgyU0TfOyikQN+Figvm4VRwunH1PQWEGmPRQ21f67\nlYLXaIiLhylQ5CXmjc1jx0wSNZiVNO+EHZQOBWkvdPq66eeb+aktnl5hQjfjzpayyE/UTNJFmPQ8\nbGwyjw6w04+dUWAsowoZc32NqtCAT0WgfFF8RKsqgmdpUKlA2S7xGLmtR9WyXuUZewIMAjBnIwUQ\nyB/gBqD4B6h9F3WBSVNcAOCMHqFjN3YQAKf0WtUvFy5EA8QQFkoTo26AF8/BLsNAK3weeX9rYyyZ\n/pD8rk0IIJq1dw6WkaftLTUIfDiUouvMqscGEysLa0bXiLTdOstQ2k5gqKYLsgoAJ60IJUyLKJBr\n2irOVujpiPUi7ydP4xVABEjX100PRQEXGgZJcbHKk5pq42ldWVNyYpoWtwpVLp6rYtiRaWFMCQLm\nwtcm9KwADFA95drWoJm+jIFfkd1yKtedq6d1cSlI263r29DQezqbH+4C1EMAoLKzr0zrxsbwsY0G\nYf0cae0A83UCgAsm50HW2rGlVzkwcR+otQQ4lmY6S1o9RVLERpiIuIFnlIOP4qcOAMoCfAGJuLSD\ng4sqYDQM4jMdxsYOSgo+2n2JYJD5POpfLFlIs3M7qy2AqDpnCZDPH1q6maVlUs5gFC+sMavWR6l9\nB+waa+rYau+QTVcZ+VDR3U7CHk9zkGFWeh5wn4+TpImlScCjapqTdpwFES2AbptU0zgJbBEGGkBk\nfmYAgnzDr0HaZEx3AJw73zi7Lssk7apdEsFrTWNLIysDCM6oKMocyvuK7oVqCm2z+2ciMF08UOqp\nYnadMfjDVdc+Zyspk8h0ZntxdNx3SQAdZIwqhUAs1FdSoA06Pva+pa4RA6VLwoR6/OVKgMSDaObQ\nWD210Novv1BLjTKQRdlC+aDpVSpXcLI6mAWMDORB+2m+sqV5xbQvZwapvlAs6GIAZ+3C+ZL5pwGc\nC4VlqEBFtEMQxfdmLPpArjEEB7byWFtVtJBGJmBZ9ftr6W0ONloAlyxVEjMfOmoHmTaXV2cjtNQ9\nHZ/GjqsaGIZrab2qXQYgNMqDgQZJoTKghHe7pp0zSweDAhcaXdxsGpXaSsWbsxTTxKwal6VGAQ0c\nUqCIjabH3NKhKAHl4OKgLi69GYDtRsCpsYFBpuUj6V3Z08QcvArC0wDA+4NrUKT3noKeXIPvtO/K\n4KG+a5U6djs9lz64DJgxJy+l5vwATf+IyFkg5vBEoVEkAvaa6sYB9Ok6YRSxSMG6s2SR5L3oIKSn\nT97yTDlt/P3nDezTlDgMaBXYWKmcSVcVA9im6qwhe8BHIVQAsEgHu4PNLdXFNuruzFLTHxotBQ0i\nkBfOhwqkg457l1XgGvBS7c6a0MoQW2VAFRZ9JLRNvOWsUqlSbQ3QCmRwR35WhUwrl8EXdXMCAiuK\nQj8C/RMqgM1ZUvNQqJ0j0lptzdOIgYNctpAUFvCuy03HaDqDk62gQu0MCGLB7xZTwBhDlrLUFkR9\nP4CDs2pY94BBs3MnYQdFMGiWBkFzR2tWTcwibUnaJcLeaOLg+jlbaNLIM8Cmaol5F6CrDC8tP7sm\n3Hmqfj2ag0Ew5+p0f61yhmsF2d/yRIGlgMnvtjEGGpAVzmmsNu33YxvXinpz40LJtN2I3hsgoNCu\nMR8QGKysz8koPO0AhrNj5BnN4AbcWLoPk2vf2MbUUoZZ11DYMz4HjR4tnED9gHS1PdJW4VJbuo6B\n+rZ+KIiUnlzDNOMsEGNpafnZs/a3XY9Sqyg2TQ2csTLzXQfTr7Hy9TxO+j1rjCr5pa1tLnbM1de3\n2TEpN5aIMYPGyV+nYQCYJXXNxvsxLaR7HZkGtJavSeXV0gC+AFos0wr9/URzplYiZQilmeaSVfKy\n65rIN+m1lwLSlqJmdpRedn3tfkW9u5s/H3oFtkqVAGDoi59rmWpowBKzF+i4z8iem4sURBlvDTB6\n8I/aZ4B52mUYe0uz9PZ3naTAneG5s9pqD7F8qMj74sBGedI788M2z8nSwSoEXLGgjAMd4qdaNSNP\ndY9pXMY6rqz6mhAfpaOmRQP4NW2zbO+bnlEapfoXAL2utBMd2oZZ/RseEqatPD/SxMi7qYFBJOly\nxorubkZgqqhPW/DcU8UArU4m6aApFEqJpbyJgRqCvF5mnDEHe1jFs4uktXmxF6AxivZFzucp2G1z\n73o0tsdTptRjGqWE7rYgHWoTF2egDhYRbACE9Y8JrdqYgkGWUUBT0LLkJj4t54KDSjGA6cVWdK4C\nczDIfUpqaWxpYmf9uL9pTa6Y3Qcr4iIphrqP0RSuWJylu5N5X65y8+n1Xlk7ai/zLB2CEHRk2jtz\n1/rWfOGqKZIGmtWOXGPJCpjENDzT+orsH/vuyO9QQBRI9Wgbcq9dBCBkm1wT/pN0qJ1ExJy9kEDm\nEJkzmBKSaepUBt/tvLS7RNcU6NENjJyHmk6OR0dD5RdzRk0kWh3mCK54lKtXjZ9QTQwAYO8bk2m3\n8/QuGnp3Si0drr64Abgiv/dUqoqNU6u8QaI3QH0vbbuTcSFlY1DXCTBjx3YCYrmIo6UBWf/NuSsq\nPqnAGW0Gr+DhzJa+l4pltbT0sqoAiIFBlVHvdp46dw4rH30kv2h0MiUBdmiai0MSM7gTfQ8qGvUr\nVVLOoo6QpQ8lBteF2K0BN35SY+6EiIDSYsG6MHYJPFVJrZrqnG1jAI3NuzE42JYqprRSqTgQ1Pj7\njNpniR68OIBKkbQy0xkyNpGllg1Nn8MYTJZ/bXPVaMHWtwhMxD4DbeOGUsGmH2I0RtbUuV4YRays\nJnvPjvUqZ/yqj6w3ZMzobyvKECpyKfAzF3RDy6OO67GCFA7GGGtFz3PyCRxeIz9vAGBC2/zXAEaR\ngjoCoEPBObijEFlBDiRZRI7RmEG66EoKGTwyMitzj3a8lZg9VX7eAZ/SxsrHII6DLoAiMEgzhp2U\nxWzg2VFltwjIhTF8bAdpaTwehO0zTbI2mVjyMICePZ2LGR/GttEGQDmh3tw1gMjTcG3Vr+CCJui7\nfG/kxiBxxkPXAhGWOlYbiymySFmrcvIk5edT7hvLScEdA3ySB2KKrAkB/MnvvyfrgBcgKJ46599z\nL2FPuuY29i7lJOccxxZJY/a1uYlvV10zpb82Zn5uPT5pcIgP4yzFzquSekqbCnc/Mg59PxhEx2AQ\nBBTztEC7z6YbtSy5HuYC27pv1zW6uoFlQGORRU0dE4Gupyt5efUzbnpObgGMm72noE96+gQoBeXj\nj/29pFpCPE6z6xkY5Ozm2N+4Lul15WdqOkNE+t1rzLyYOuZaQ8zib00T5mAiz74/AFwEXP44cQ9X\nW+0Cbfjuner/iL85XQlzs2ZyP8RKygOyOU1FgRKGVigjB4OcpbEMdvleA7AA6cz/MCaSMm+oVNSu\nE+CEGShACtqYVhktlv1Oo+xpmAjoCEWBLQNeqLJX4K1DFk0WZvTPR6TdhOnZpjGAqrDb01T12KYN\nRhN7ylrtkgpX1yaoTdY3NJDD/C0NpCVU2QfUCk7Kyk9Q9r/8q0PMZCHXRbL9QR2SMJ4Koz52pioR\n+o93Dk7VPkuqVAB1nJliAI/uhSK728vN2+f03AAaA8iDq/MHqxfQsTVrwgxYMaDIQB1jp3mKWpbP\nxH2JvVc7anPdmDjGUiIFvhjobmUPVbZp5ocawGWSEl7cxeZ65Vb1utr4YOa7W2XguJ54ufuO0N1W\nTFfZATDzx6nKdT1FT1MlPfsgCZPJKo296np1EYCQVFfSxZgZKFOjn5s4ZCmyqTRq+jS1qCbQqnQF\nMegmEp3aBiSIbM6cCju3bc7NqQAUWNEN+3YjYIg58QfVN4ob58hQKqVVG1PmkGkzGKOJpxFpswE9\neSIbuf2haRcNpkGkFTY0QksBpTaKPkivaw5UoGs3GvQg46KRYCLRoBGmTxR+VBFtZQ0ZY8g0KRpl\nvLSI9bmN1Yk1kdSYHqhpT75Hjc4qi0D0kZK/Ira+aVDK65H5PLHPqaZOvEf2/jIdK7BqSEGjGUMn\nN2ZIZC9xSm0RmqqkzaXAGGI4GOTXyiT3yqi6Iagsm3K0NpvTHcAbfz9aTP0K9wH+gF0IeFsfUgMF\nnD30mE42M7qdtd2iFaENBujrg7xCN+bcgKLTqA/gqWKL12Z/kv2cp1UBJxwtvaawf+ALltG6Z2CJ\nYQYBuDHQJzJ6XDcJAUjS6IgvPMGJm7GXdAG3cYiLlIta07z98tOYde0a844ej9UywuOWjo89l/F+\n38qDkzBraOjbM1SDD7QIRAjDc3AmkLNZvcw3iRDyEhAKZlWgAMxZRzGVx7ReZt9DXjwfGyg911kR\nwWtL/ZS0pZaWZf3l0nTnXKvI0rlMlyakiTljNbJCLFXbtIPihtyeMXFDPxsIZb4YW5PrcRUuFNW7\nMQ0eahpq5zQdlwj62OtIBN4fa+IdiU0v3l/qWwEQZhYRGOqs+neIZ8f5+RfPMBdnVhDl6P0l6OZv\nJGcxRz0hZ8oZc2cBIJEGEpi5zfHlczUwjOBV/UJZ6LhmhrLPbkEewAXKExqDdjGGrq14yg9YbbUL\ntPR8J5vSoUfNPVycVp1h0w5yRgSJ7+xizEOCaem42XME5mvq+xzeDwyIKHHgKTtZQCj3T0oNDIeW\nvmXp5jPxafN9cgh2TaEQiqb2cALyjqXE/JC9ChkxvEqv6SI1Fok9a/TvCKwbIyqCYrrBp5FbClBl\n8R9DgRnzuWdlyG2fyTzvnwbgACiT6uH3/8HGjPRCn9dXA8hEoYMvGEEeGUe4Po8wcOaATqyKNfP/\njNDAL3+2ylwgT6ECAJAy3FWryOa2V7lN4V7p8ebTul9tzCFztXpylk86iNiziU4bo76NRfB3Y58U\nNPO2B+aRmUk0kLKavPw8qYTIjNAg4ySpauE8aSG5kcLcOaHX9DK7gF08gMpIQw/aboVtczgcRZ+8\nEgo0j942qICkLDklncSJNIfERAMrN1Fori19LJHrIrh4szk+pvmw2zsbh66uBBCq3MrHa1qbpSvR\n1ZWfj29uhdGjzCCPeinww7u9OEzPnoGvt6C7vQhPmz7QZiPtniZJ2zJnf+i5VUJVAAAgAElEQVQ8\nbUuq1JCzgfgwSjlXc+KjWGdOAnDYawrw8G7n4yGleZMzr+p+H8AsamCYsbIGYRLdG/18RPOUvp08\nyLgUZ1NhMMYTy3gmknul6UtUKnjTA5RbENsYQQFYkQtFSLeBIjPx5s5ouUY/VcaWAkFsgt56HRRu\njCUDi4iEWlorYloZbzWfu7LoBpUC3mxQtcIBxsb+YRXKZiIpKGMVwyLYwywpXETwkvdESlVNbUEP\njD1nGnXz0IUxk5wBZawnq8CnGzfOWRhRtYK3j8wuKxVX37rF9HTAdCWRDylLamBJO/SIxcNAUmDG\nHIKkDBfPkdYFx36PdE/XDOrIq34tLYJDpu2TD3UOBuW2eHrVBAVlzLFzjaTZwtTYQVnFpyXaAum3\nRlNEb0g/k9q4xEgIEMAgXaSM1ZRKuDa3/thPG4uoOWR9iX83OrmAV1GH4GKslnlxolBK21g+8vzX\nZ9A0ga6u5JlgDJtxnONbpuNCQU9IjZLoFM0qg+lzLqZzJdOwM4FoA0RmorsBCFgK+irQb0USatzQ\nq4ZPrFRGvbKQ+J4iA8ZgYvb0bbteBBFavyRFScrV1waOWZviPAjV1FxAmuBgS0yPos1Gzn2sc/2o\nRv3QmE6nAJYTwM/s2AiMKfg1A9EMKItm/tCiopbf60WJeEDuAw1DmF8nKoql1CqKhb6k7UaCd6XO\nq4pdXfncns05myPK4FnO13m7+sYsM6HXMO8sLbFpJNFszGYpYTYvFxqK1gcfl5RXQGi1d8b4n/we\n0PdIT58gvfcUnWpSWiUvYwdZpSXbvNeOMF2pzlZlUJXPuZDu2EBaLznetzUbMH+AFDAy39D8DdOW\nhGgV3U1AAurQiS5QLEVeRBsoHSbUba/aQOIf570KQht7iRllI0GJNDH6T/agwpje61EH8ZkxsQtW\nWzs8EDZWuHA0q1yE6gtxiuXo9Ryxf6WCKsHKzBMDddvkQQQ4kj1C3XSoQ5b0OQWJPDVMA6bWlvrY\n/jEgFbM//B6QMtLhCjRu4emDOla1TyBLz+qMkQJlapGLTROh+dQBEHOGiwHxQANsls9Y9TubpIG8\nbGAQANfwcZFo9dMt6Gm6oWUrIGc6WGEWEXUW1lZj/HQ3RRl05Ez2qB+EBJdSkGtoF2bAKNz/nVW1\nm9D0j9D8YNlXAagsc1yBIKk81s7Dfs0GzFrQn1XnCKxMole0ywCEzPpeKnSp0xmrsLgjG0QwzYmo\nliqm1HwRXlbdHDu3OUVWCUxtGTWikAeKUsRxt3P3gzrWVdqpws5QsISutqpnlIRtcydaP2mzEUHo\nLsuXzNp/dwcAkir25Eqoyze3rZS86RSp7sBSoBF9SNNSSjRblTNmj/qao0dZgaWuA6bQVwWPaLtp\nUWiLNu92c2ZT1wX9B3G80/W10M9f3Dzsvr8ho65Dur4WRxKYO9Oq7YGiKRGm2fTsWXM+iUDbrWg1\n2SZJS9c7UnuKDYMGBgEBYAH0y84zZgzbBs0/3z4r7LKQ3jWFamMmyJxEGBqVkW4PMh/7TgCYRKCD\nCWizAEE5t4ergobkQq7JWVCRCusWxK1PRSmkHVXR+SzHGkCWaRahjQwHrzAxKjja34OMvC3jivTJ\nHfqpIu171VfSXHelksYokwMieltKBsDkgBAXLROpCoqzqlrUfjVKseUuQ04zX0As8lbNEeNjIWVl\n4hjgkg5BZM+ou7ZQGHjD81SxVCCUVbK+Nb2nCPh4/zWylmKp+3CMMX/sOFuIW3lZeEedAedAWQDc\nDMhSENKjjIFWbHTbIybWhZmDHVV/t/2wslbS1RbISZibOQFFHXDTpCv1CGhvbInqG/5luewodG3/\nnLmhujS2yT8JxChQYdo+vlboeKcnkv5TreiDs5H0O5+Sty+ap5Ip8wOastTKouvzKVPTfwnMH1JG\nSd3vvR9NZ6lK6lGsJpaopX0nHTtjDE3HIMyjmrFOlgLTqekeHglfMwMc17UFUBLAoJkGk3+cZ6yY\n2TUNMCzHYJCk39dQOS+CJVupCLvbz/SG/PNXspEo3/9kdj2vmhb9mpQ9Le1kH2NQgsj9OiJCLfMK\nfFESQPqh7AgVGI/nNjCoVXYL466FTCzomK62ZxF4XW21h1jd7QD14ykl9Lu9+4HoMvh6i7rpUbcd\nylUnwaWJwR2hXCX3Z6breUqVr9OBneDpX2h+sBcuicUs1EdJh+LpXrBKYp2AQdBLUGHk21FTY1ID\ngxIh7wrSXkrT1y45SGF+TPdiBE0V5boXRrQ+/+y6Nfh9SARoGhBp+pmLRmtamTP2g3+fIusd0NS7\nBGSIzIAFVlUrFIDqFelYsYBP5gvb+0yEfJjAXRKA6xw2TgAmCZgTIY+TV3HmLgObAfWqR1WNKUvx\nAoDad0gHBf/UPwTQ0rgSNYAH+rcFDz0gar4r/BgLiMbUNA7goaSo6edrSwerESxSQNMZaaGyl6VS\ndjdykrpJ0mZmryzm5eoDY95sJlpNBtSgAWGs7dd2WUUwY0dRad8PziTi0SFt0nS33E+H+dbSJq8K\nPVV5zSQxXsEuAxAigJ5cA4CIKWt0M0YnPXVMo6JJKflygOgtECSdDOokUvgJAKjz6KeLVQOBFaEs\nGmfi9EGYEKpdJMCT6+qkUF4eUObQXpg1Xedg0Cwq+uIGPE3I770Hev89ASru7prIKBHo+kpo1nd3\nct1YjSUlETJVphGgzl74PJsDHftECmhBNhuUIe1U8Wi+vYNrBZmDpWDQrDRwFZFHIgJM7PrMDCHa\nbAQYOYyiSWHV3NTxBNAYTqUILXa3B/NdO8dwJ+fpuqbHtJWKcBx0MWamdFkvr2iaQWMBulaZS8AT\nyPtEorGD5IwdJIAhYE/tEtJhappC5tMnFZlmRr4bJTdcGUUuJF1r+1yX/AGRdMEhZSIht4oBVr6e\nIoAD+GJWt12jVUYdIK3s4CCQglDyZtMMkgoTDVTjXtlBpYKvjFXwoNv+QCNvb5o0LaG0B6eVK51p\n52ipTRBQNoTSt9dBrA95/bwDK5gtcMYIciaNOgwGAtnfaWLkQwNlLG3KKzaoM5YmbtcBJMJm1dMM\nRFIwxcpllp6Qikb4Ihjkuf5tlKx/Vj7eWD+eFhdAL2knWsRj8V2JFcZmaWMWQQmAl4NAxrwyVhJa\n9CfdV0HpbRuRBCtUsPhIa+VVrBZwLSihalS62mqlJGUzjpPq9YT0J7OYBqSsUz4cYJU6PS0ZaClg\nlpZDmJcTN4BGARKrNibtrF6y3UH0J09gotNcSmOgGNAyThKUiOXRUWXNtjQxyBqFXtZsY8N48MXS\n2Iz14wzh4s9yA3UMAHIWiAxMq3KmzCJLN7fqUkcBlkc2F4aevUhwrZyFhs2M/fOpJ29jByDcpxNA\nCKCgGhpQYsCLphsKiFSPAB/qB9eAOgKDiDRAk1E++t4xWKXAVKycllSbUOZlwhFDyiPtQRoAAGtK\nr/t9CyCNkmgxWhDOrh+BM1YG75FQtmk06nhQ352ulrPaapdqKQNWiGC/B+8PwvAkAu32yETIKaEP\neqTcd0i7p8ooFlZc3ahUQQdMOYt/t0lNADds3lNRVntgRQDwwGM6tP1MFF02UWJLMU8mvrzpwASU\njbDj817AICRCtYIngDKHgO5mQrqbUJ4MraR3En8174uALn0oMW/PjMqtopYJPvfZGVUmbo2wIa9D\nRjqUxojq4OyrrIAVJwHSvNx8ZXiKUEwhSySFaFTHqKiG31mqjDHLPlMDMXQnazuyZiJMBfnFLTIR\neOhBk+1HEmi88pQ4A/BqL2No97hp/dAMSGmpdq0trruZgiaRiU1rcFHOgwZWeraGAW0y9l5C3ou5\niM9ZNgJq9Z8oYGjz3UAciIZntUp8tlw6y13m+azUfQh8LvtnrKWY2uVAWZ+0eAw7AATABagpzFfz\n44mD/6+/W8WxV7ELAYSS0HB3exdvlpxzBXgsgpibYxOBHivj7k6UAS9EM2DITSOYIkDdieNtTBoT\nx31xM9PvwTR5mpGk98h1LLVKUo+mxtC5u9MUs21jBlWWPt3eod7tROjzS18UZ/z21gULKad2bUtt\n0zFJz56KM361Qb3eyKbaKOSaNsJaMcoqaNA4gfsOtDvA9YUAefAcxkbRLsU3AkKtlypjfDjIuTSF\nTB6Mon+UnlyB+h71+Yu3PUteaiJq3TUqPNBALDOlyhvQmGaaG7Ihqrs9sNu71gX1HejJE0n52wwq\nQK1gAhGqVfSyMvJdJ2DHVIGpyPMspaal4wCCACtWbcyrnOkDLxmg5DRKciCFEyHtJ9DdQSI82/Y1\npqk2+mSfvWQ9aUU13iRf3OS95Lmptde0OU1F40TAAAFMlDJLVY7Ld6O0OeZIT1Xmhgqp+T8bG1vw\nlQ1Eo3yH6rabi2k/hhHAm85F31B17Ynof05Ii/QlqxrAfZIKXVqpq3YBWNF9G1XTf9JLcgBBtA1y\nbgNGWrTBgB5vK7XIiAErJobXym/a53khcCfv10HAIKpwYWpjKgmtlZEnKNsoLMgTI7M5U7UJ1ZnF\nxcbAnbCQ16xOjqW5KT3YdIr8o+oAumZQALMiGGSaSUutoscy0mCFsymM5Rc3oq+6cTerBfVGGJbp\n+lpA6aGX1CbdMFuqUGPLhu+etc3AGWMFWdus2payS2aiz7YR1rVyyRqapYSpYHTTBqrgKQA0PiYy\n6fOXPgC++L48A4e+Ra/G4qm6LqxvpqxI2h2A3V4CIqWiPn/egAqgpY4PQ0srWjA4DXQC0Kpe+RiV\n80pQJWrptMBR203o+LXnEiB9cwDQwB3VyAkMI9ps5gwlDbyxOpmkQFod90dMHfG7BAyqS5YTgHR1\nJSDMzc0MgDKGcQQZAZmjBmTW3e7Yb4tjZCLj9rsBgM70FjE06wv1nYBWtumYxuY3Al4B9khIuuuA\nvveqdEkDl3ReLHG11V7LJEggz23eqz+v6ZMimVG9YrBXO+w69Dd3spZsN+DtgPp0i+lJrylCWrq+\nI1SNhRtrwQR+LaWGRtEHKtsOtU/C0Jkq6kb9Z1DTo9RAEE2MNAmYUrZyXFVdoXyoSLsCZ0UwAwWY\nnnQixntT0D3fo171zq4h1opruwmYqtQaumNkAOluRPrec/Dz5yjf/0QwBi1Q4BIiiUQCxJi3Vqkx\nZ+BKijbw1cbXuenZRvqpFdy88IylSWkVKvc5ewHYatZ0JtWOK9uMPFYJED6y0dDPU8qtoBGR7E2J\ndN+TQbc7AYIOkprb38mznfsO3bYHb3qU604ZXlnvvzJ5db9h7Cv3wRW8sZQpF0q29EDMwSQ/T9Fg\nJWnaGjfRa6so5iXnAQV/xD/t7nSuDqmlvBlbfwopa4C2Dch7kXNIY5V5ygmwgGs41oHAhX9sLCJP\nxesaA8pBLsBBIwezLC3RQCUFqvJBPuApku8WIESijxMox14RJUZ6uLrD61U03AGvTocmq76lVV1E\nk2hUrZ0GlMCYG5ZeZUKGu11j17jukDrARdrkmg5dB3r6RCbsVJqekbFTgrYO5SRg0IsXAu585csC\n3tzeAaUI2HN9Bd70qE+38hBkRjp8IE3oEnZf2aB/UXzip738ng7FH9AgAQx8w2Ab0idbeThp/9PN\nHfDJc+CHviaTbjcqCrwHdrv5PepbqWQA4JtbAa62W9FCOhyQnj5B+fj7D58HDzTXNwCc9m6ilADg\nujX2E1BmFzlIh5xFJ6CE9Iq9zsfdvlVJsei56TfRFay8JoiaqryBIdZGbg+wmW6QVuLycvC6eJoW\nkVUMA4Ci+dxpP4nYW1JAypk5FmFJ4DSgbjtPhUr7IsJ6G6lMBjQAA0a/ZAZTpyVEw1ipGSBQO8Lh\nCwPyoaL/eIfybBPeS0o5rp5u5qwjFrYU91kWw6m4dlDaPbaHTcpAkO8LsTxTrFIGISDwaM9viRIA\nrDnt8BQzEZ3jjjBdJZRenCSm5BTTprmzOLcuXJZrHEGkORgUWq+gTgR7bGGkCbOKYoABWNLPvNe8\naeheqlQHoNK+SMlXE1wkAu0PMzDZnrNI1PRtlqktgLxvGma9VAxB36E+3Xp1DSlTGhxLZbp5Drgx\nrCoQtYMMNGJ1OB/bvET2ooz1zCLL4jU29fX2FlCtlXR97esS9R3QD6BawHe7tuYt0nh8E23fYXvO\ncZVnpYE6yq7xzxK1IEtYIx2o2m5lg38Qnb90fQ368gcoX3qGwxc3GJ9klI2kVVqUylINjZGWJjRx\nRAP8uIGXNt9rJ+MXo2xpYjz77VtwJuw/2KB/PqH/3i3o5g78/IUHlHiSCmOx0EHUOKKcBfhPGURn\nouJritbMDLyx34E2v4AjQOZTWWl+Dvuuq76gpVBpCvySEeOV7axCXq1HTKU09JImdkLvEVBQ8/pK\n/B3TDVK2UT2MAlgtQCTe72d+672M4xkY3dLCuAAuyG5MzMNBtIqur1C+/R3ptwG3Uc9KNbh4qZ20\n2cwqnFHXKTB5ummrPb7RZoP8xS/Id2LoMX7tA9z98BbjFWG6JqkkOgiIlyb2oI2nNgOgAnR3jO6W\nsfl+xfbDHbo/+BjT7/zup3/PLtzS9bWkbSYNmI8jsN1ovwJobAA0a/C6cvuOTgV0t0P+6BPk7Qbc\nd+DNgPL+FuNT8RnLJiGNgHhPVbSACOh2ot9maVKA+iclVAVjAEHrhD09qYh+ToJXFEtjlVLoLFW6\nDGiZngjYkHcV3ff3otGzyehuR+QPnwPf/dgrEi/vaNV/3Y98Dd0XvwDeDuBBgrvMDNoXl3Iom9wA\niKkK2LXXjJHvPwftJSWvz9mvR5D1M335S+BrSROv2wGswIgx9z2VTFlK5ekgPtvtBP7ygMc26rWA\nErMAQJVbwBdoP016pYT5ZGvuVCTN7PkdUie+YN30qFcdpiR6UOYvyDnhzPRW/YsC00y+t8wNDPK9\nVfCxwTxnBhlrf2L1LUKamAZL84HR3RSUbULZJj8+azU6GqtnD3hRHu3v4f0enHMTZldwR0S2pU/V\nUw7RfB8N6qZDdYAJmbD5aC/B00FSDeuQwMRt6TEmvVkimTva5rKV71re1Vdery4DEAIkxcrYQZtN\nE4BcpgV4xZbgUMUKKlyb1pCBPzHdyfR1Jkn3IgUAWnqafLHT1Vb0eyBORayEIj+roKdXV7KxvL0D\n9nvU29vGDNKULgDen3q3Q3r6FPS1r2L88lO5/gdPUa7/f/bePEiTJE3r+7l7RHxH3pVVlXV29VHV\nPdM9R890z7mDdpjdAZZlD7FouWy1tghWoAVJIMmEwNA/QiYhmcwwMJkkQIYAE7JFoGWHZZe9hgFp\nGfaYmd6do3v6rO66z6w8vjPC3fWHu0d4RMaX+VV1dnUvxmtWlZnxRXgcn4f7+z7+vM+bUvRVVeq5\nsEhtEFM/cGoLk4J+7rRP3IVVL2UoiRj/XTqNwrM7/EsrwO07GiOyjOGZJbKtKSrXLo1ISuh33b7a\nIJac0LEIK9Q+3U32+44Rs3PPrdAtLsK7BAiVtPbAZorFxBvARqhEAtQBQvD9xKcBJgmliOZ0Wmog\nBGdZLvSQucuvtRG7rMyp9sygcoD0QW1ILxOBxaaUB3ZAjtwkKIwTcw5VE9xkJN3nE/c9mU6KDQJ3\nVCs2KNeXjZJRyo/wYJDcU00tlCfHVoNuYMIEKnB4hjpzjKJiwdFyUynJF9OqEkV4jn7QUxPtrtmC\nmOSYfuaAB7+KYLPE3c9k+nCd7AC0xJvix9IMzMJ7HPaJhEtF7vqNGruJKxm6nG/drdhDZf6yopF2\n5X+GFQjjmD9lNYIABEXX6yofVAwil3Pv9hWaSmiuBqZDMraokSYZFo5hNtGI8QQxnmJzx2wkYp9Y\nf98llhWzOIJeVrytfHTVczU+HSk+ViYJMjin4EBWz4ixicL2MiccmapSDwCg6KmSHVTmiOvoO3pI\nVgrdRpWRSlZFsyqWEB51E+XcVdsf9gWLYhFepEItLpR6dQBMc8zurhuPOqkDtGNNoDzS5hGyAoPC\nPlElLtntVKC/nzvC+ZNHH0GvL5Evd8gXE/IF16+FcYGUGhu6d6dugSLXntJsENMC4UXvS92K+PnE\n312Yr6yttNsCawQwix30YuZWfC3kywnjo6uYdM2JnVtQU0u2VZBuTZB3drB3NhtpSRXAIdKscuoe\npgWmZAx4tAE80fztDmj5vG37LGvpZ2YwbHwHdRHqsjR9ZDJLEQt9B8DFoE7EzhGdDnY0rvdfo7GT\nfYDR8I74fWMtoRpIFfuEYf8I9CyrigrHRBJZWtONDCCQCM/X+3JlSphSVeXXLCvnfekX92xRlFpy\n/9YeniXnzjJ99Cg7ZzsMTkima5bpuqZ/bEC/k6ONwFrB8cU7nO0OMAgSYeipnJ6aMjEJI12J805N\nwrhIMQiMFUx0wqRImGjFnXGH4c5RxOYpujckwoBJIBlB966lf6Og/9Y24u4WxbXr7+JTOdjK90j7\nhYR4oRuqBQutPSBknQ8ciu9IB/BYjXuvxhMYjJBKInc7JGmC7XcoVrvojqoWJpXzYXQma76WGhWO\nGS+rUvdBPyYsfoV5xAkvu7Quk0pkbkhGFesGbcsFOYDelR147ZJbxBCiZHibTgd59hRcOMP0SJei\nJyl6ntEtKNOMTAKyoLbNXWB4mPXFC6Er/8zZcUKBjYVrOdmtAaOzSwgN2b0J4u4AtnacNMd44ogQ\nUqGOrbsx9fiy8wOnBgI4pC1ilN+XOPChWvD1PKmi9BHiuUnrqvhRYB/H80rhUvvE1EBeoIZj5DBD\nbTvQTS9mlbh51H8g8n+lAzdCZbOSIRQDO4lwukUeDAoLiyb1MgwT/1mkdRSYR8nIku3kfnEf0kEB\n2oGO+bKi6KQUXQ8me00g1wBlylqlXVTdellApdwuyn5UstwtuBQof+6hwSZdJisSWTi/Rk4dMBUW\n74UnfZhMIQuLjsDW8FycrIQpz3+QvUemNVuBP1KVlHU7nfrVHgU2B5VVDJCkCjBK8CiqMlLmqGNL\n7RwBFRjgcyLtZBLtX1Ti0Gnq0rzGk1KXx5XgrdLLRM9p/DDNnZPg25JLS441FK4vy9wx/R7mwhkm\n6x2KniAdGpKBo06qYU66Oaqo9MZQlhqPVuRLp7q5Ih1YKW1OpJSIaXSc1tX41e3Qe2vLsYIKXYIh\n5bHgnHIhnIiYB9FkksDKkgvkrUUuL2K7Dx/BBmrllq31GhiiDgZZbTzVUVLVkffBq9eZEEQOKaak\nigolsf47DLoZmCn63hQxGIF0WglioY8svO5TIh0wE38PPlVM5LpK6wq5z5n01Qd0CRQJa6uUJm09\nWGSwHYVJsxrTp1YFCyqk3BKVgA/9h3IQcmk7tjymolrW93EgYwUOpbtulUb3kxLdBvdZmV8rwagE\n+m6YUdMM3ZWosSEN160kyb1Kw+mhmb9vq4HSKWgEq/E7NgM8KtO9AtgqhWMPTQ3JyK2K6Y7EZO65\nFD2vPZRWE4EsIJnYStcHWoGgMIkEZlC4LpuEzyjpsEEsD0CNC+Q131fHEwf+5O5dscZEgtey+hlr\nScn6WOsajZgVMeDaFBFuPPaQZlS+gsY6UGMyrZ1TBkA2SxG9LraTkS73SsqxSR0j690AhNx1N7Rd\nhATjQYeYGQQVcGR1GfQ+kN6a0ejtbcfU6fXcgkWSoDpZpXnniw/YIi+D+5DWJvt95wwFBmuSlAG7\n8GM8WiMWFsAaxNIigw9tMDqiEAa6W5p0W9O9MaI/zhGjqaOHhyILeV6BkBHgV/t2wufKrUSXOnxU\nY/Ee80xeeU+h0tQXWfAOZpI49lkng0Rh+hnFQsr4WA9zug9seGd8SrI9Rm4N0FdvuPN1O5XI98O2\nJjjT1oeFdH1mFmjWBJFqc/7BrLQ9mj9RaXWRZZVf1UwV63ZAKsyowSL257VFUa6Mt1oE/LRViQOq\nBZ0ggi5N/bM2RmJoo2T+egbjaOz6mU9zC4uH1tq6Zp7xOlcAMqtYx+CYZQt9jAeHTIUr/Ft7B0x+\n+P3ce2aF7XOS8YaBoxPW13Y5s3SZx7u7nOhss6jG9OWUY8k2y9L1xbFNkRgMkrFJmVqFiaph7Oge\nW7rHUGdMTMKu7lAYhUGgo6hprFO2V7tsHe8yfiwlTTTdpCA3kkmecCtPmIz76OkicutRsk1J9zYs\nXtUsXNyFb726Vyz+3TIfoAcdUtHrue3l2BGYH0Fr1VbVdCECel2GRZkujITJ1DGId4dk2445FMbh\nfKVDvugAonxJlgEteLa78Ho7wReTFRgkpw7wCRo/piMdi2tQIMcFtqOcJubUl0a/u4W+dcvVXllb\nQ7zvUSbH+uQLDvgpmcVh3AhulvZscB+0J7lbsIsD6LISbACBPCs7/F4uEkZ+tSxgupIwXl8NdSIY\nH+ljLiyAOA5h8WJXo0YGsTlG3d1GvXEdcfceVmvU2VOIfKn0i+LKtw/NQkqYjebtCEivgUBQjx2N\nqSpyN2NXJT3z3FXwlmPPVhUCs5hR9FPHrreU5d7VpEqPaopOB82eMp1MVhXOAiikxrZMUwuaQSZ1\nAFL/9gRZGMbHukxWFDqLgB/wlcX8LRa4eBoaQCFVH6D63QqQtg4yht+FaLRD1RcnK776nbQOiOpF\n86bx12EcyBXuO90uPDvIsdjU2OyNDfextwUICSEuAjs4976w1j4vhDgC/CTwKHAR+GFr7T7eQWjM\n8Tdlr0tZJQxK7QMRByDBcQigj7VllZHSeSip/F5skkb1jCCMFcADcMFHt+sGz6Jw+bSxgxtOr5Qr\nHZylTkDaGJc2lRfIxUU4eYxisYPpJBQLCcmowCSSyVqCGlu6t8fIXedMi8JfU3Dy4vSLppOoo+2x\nM9hKNY+OjdHaeLtSkBfOqQ+OUUvOvii02576Eq9CODTbuBUEsbAAa8t7Qap97FD7TnDwfGnhUpg0\npIPlxd5gI/5ehXQvprFOc9OnwrhGfZ8KVbFCLvF44iu/OadaTyawuekmo8UFWOz56l4RyGBAWK/x\nY306mGewlYDPpPCTqjuf7iao4dSLR0uKlU6FjIcBBva+8NGgFH9UZ/iWxSgAACAASURBVMHQiNao\nDWi1fW10iLFOvyZM4oSJ0bpyno1rKXNk/fl0JtHHuuWxjjGVYW8d3H8Ord/EQIu1Dgx0J5gdZMXb\nAjPEuHcvHG/BlysVYAQqN8ipLEG7dCDRXUHRlUwXHJhjfMq+iJhDQPV8glmcdkWcTxyGwrElGWmS\nnSlqd+IAXmNcWt5w5MD1eJxoYfaUTJ6msHhZRUOWwZRovutxMNfCyCtNNbyaMOE29w/A0WjsAjpr\nkdcEMvUaNws97GLPUcbHdQbDLDu8MSeMHcoFtIGtGsYeiKoVecZCAJg9w8ESBeyBpj8nsBWqxoBL\nB5Ary25sttZpHEyrQL9kBvmqhaVekE/bAUhObFA8usFktUPRd+mOycQgp5bOnSmLr45cf8oLLx6c\nl9+RDYyNkEbdBiQGzb6QXuird/ovpdL7gxirr9oIYL4s3Ap39HzLPu3bl0qRZSmdxC9idDNsv4Ne\n7DA+tYQ9s4T94EnSQYHcHMPXD37mhzpXuYtunqA+h5f7zUFfahufQn8KAEhTkHy/doIZi7V6D3Ap\nOx3nU+3stANOzW3hnZjF7IFqrt73+uR8+/lrD1b2N6iVqC/L3Yfn4gHVoA0GuHufTh0jKstcu8Kl\nGevuwZfhz3ORw+w7/waa+NgHGZzpMzoqGR8RjD4w4sPnLvORpW9yNN2lLyf05YRlNWZJjuiKHIVF\nI9B+AszQSGEwVhKWO3OZsG26DE0HjST30V1uFblVaKTT+ogs/J0IQz+ZYq2gn+ZIYTFWoKQhlYZO\nWqC77nO9LiiMZDhJ2Ron2GkftfUROnckvduW5Tdzel+/fF9MokPtN1q7KrLjiWPCQRVnZKmLc5oL\nPFHgXs5ZYdE9LLJaW5+3R2PECBACtQnqbpd0ZQEk5KtdZGHI+wkmSX2FMeMrltYXJOXUgf0mVb4i\nq/tO0u0p6RvX0bfvuAUIvEad1ohul/H3fZzBcYWwVbDsflKJ+AY/tPF7+BsoC2iUZqPPQ2Bv97rO\nZaDvjwnsIxW5JyXj3p9nsqywawp5PMWKJXefQ+NkQe6NUdc30TduIleW6T6ydNA37S7jEPtOWRVb\na8fiDgBREwxqxpshS6OUdom2SxExz3Dkh123sC6UciLnaYJZ6GBShfGsM+M1fYKQdK2oiaWUPQjV\nuYR2YJJJHDte5o4pk+465k++lJKMHGBy9+k+uhPEpl2fUQ3QZ88icO1BtTw7n5Iq4uN9DCTajovi\nsXD9MnquIt7f97Ww0BwazAv3HsvCkuw6YFV350cSD4Mh9Duttbejv/888MvW2v9eCPHn/d//5TwN\nySwtV3DM1OkAlJVHrCkrQ1XCmf7phH0OslDKNaT0GFuCTcJXtyiR9MmkSieK2hadrNQHovD6C8Y6\np/zcaUZnlxgdTVBTS+deQbo1Re1MQEJ2A5eiUegq5STQM2M6/UHWRi/f79hZnzUDP+8g1YI9ayvn\nPc9r24V3tkQnc0yheb6Duh1a38GYeqoY1Fapq+tuBrsVCLQnvUxGg1o41vdFkbkVRGut0xTwpjc3\nEcMhcrqC9CJzTj+Fqnw8UJae90GUGttSWNmmCtNPS6qsTTpuu6cXtgkTt5kVjYGnbV/R8tmsfcMh\n4R6iHNZmifB4WymQLKtB22QVSFIseiH3+bvP4fSb4Au2TWbRNvccG0FbuUqC6z/hOYTupl2/sgif\n8uk2q4kgGQjSVJIsKUdd7gbqssAkUdoYUKaT2UobCNxkI6fGiQ0OcuTWELZ3HfijdZnuVbuv2Jrv\n/kHbZ1kbo+NB9omvVQmg7qgLcGNm7hkwuwPETYHyWl73YW+77wgEodpQLUANzJ+YGRR+Cq/VYqPK\nW23jeKMc9kFmhsNSv60sJ7+y7EA0X3WsZMSWgW6OOnqU4sIpth/rYZUg2zF0NnO61weO+ZMX7ll7\nhqy1xlellOU9OwCoYvi4648AxQAw+m02fB4BaK1AiGvc/YxZRjH4ER+rHXBRPknP+qnmA0miJIlP\nAbK9jgOJ+qljfs5nhzdXxdYcT5p/Ny1sq7EXPZMoBl0CW7rJepzlCwQGm993TzUxr7sTg5F7LABR\n/vxlild8nW0WryA3re2Y/UChqB0b3+s8YFJg04Xj0WVV2ABiCiVBZkyO3xfD753pO79NTXQ67Hz/\ns9x8TtJ5cpvz6zc5291lo7PNyeweH+u9zqqckmIxwNgqpH+7DQKJxSDIPfjjwB2BtgoVRVhSGLoi\nx0jJtu4yNilDkzE2KROTUFiFsaJkB01NQmF8eqoVFFahpHEEmsghyo1kOMkotMRa4f+5V0gmFpIC\nFnKKs4ZdYbk7zGD7HNnm4/SvWez/+eV5H9Wh9JtycT0Uq+lkDtSXogro4zmrXCwNLUSp0YmsadSF\n6qi1OT68d4MhcjDEDkd019ew/S7FIyuYzOkZJgKs12dxIsraC1FXekNCW3qv30W//BoABSA/9D4G\n51eYLIcUGXc6YS3ZoKp2VqtqGn6V1d/lfge4J7OAo70Pugraw7lLNpE/LhYUlmGKzyl9bisciDE8\nnsLxFJ5cQk3PkowMu6fuK1w/3DEnxHaJW2AvCy0FxlA8X8VzWOxPKumyUMr68H679MCjNoCupZUp\nY7HLC5heSr7ScbIBimphVLh/pfC0rFcFdqnsBcnWhGKlw3Cjw2TJaYrJgjLlTxaQbHmWfwT6tdm+\nFbva+kkznmr73YONTcCytNjNjIDJMqMAyudulAOJXApZ6rWp9rnmyN6JlLEfAD7rf/87wJc4sOP5\nJ5CmPlUsr+exK4mZRuVt49WisALbCPSDI1SyhYJjERT0/WlLNsk0dyuQXkcDpVwAnyYl/VqkabkS\nizFOHGx1icnGIoNTKWpiyXYMay/uIHfGzqmOBHVL042gaz8wyFqaKVz7P8oZjmRwzgMjpQUMcocf\n4JBG+9uQpqCnjk7avK/7twfoO9G1SlkFafEEpSJH1a9kV2WVoz4kTXVsGbS0PUtbczZlt+tWGz1F\n2E4m6Bs3EWmGXF5E9PvQSV3gGmiyOOBHDiaIcY7tZejlDqbTr1VPCvmywVpXNPYZvKqdG79HE9CB\n4XpAtW0j5/Wg87T5935FSOhKA6dE9efADWbY2+s3zRSxmFEnKnaTaHtSoWJcMN9eNajbxnOwiNwi\nJ6AmymkN9SRF11GbdUd4EEg4raDcehDNPSeZG9RYIwuDujuAzW1XoVDrvayf/QLKtmdxkDW0gKpj\nIx2Pw7DQXnNsV9XqZO1MD5J+Vdn9953wrAJLJrduTgkgT7iHGuvH34ugvJ9SRygWpo6qMVUso8Z3\n1gQsi6IU85f9PmJp0VVG9IK41lrIc+TaKsXZY0yPdMkXJcnQsPLKALU5QOwOXZDgK87YcH/hHCUL\nszHGh7mk2S/C9gYoVJuH4mfZZLnG72Y4NqoeWTNfPKKkqcfMJFulyJEXWAbl50mSIPL52GUt9mBj\nTtOaAHQAd5rWdLhrz8vU+104JJSZLmYN1vtcU3PTrHcssOSqkzY+nwOImWUzhOrnas8aMLJMcwnH\n7mEGtZ0znMPYSqDaj6+h2IjozQfYzrDD6Tu/zWzyvR/jyncmnH72Gv/e6Z/n2e5bnEp26HvnpSsE\nCkFHJBgUuTWMrSEVuiTHA+S4OTIVBhlmAg8KxaYwdGVOblza2NimJRgU9IQCI8hYx/IJ6WNhW2zG\nCrSRaCMdkGSkG3K0+xsPDIXqRlYIZGJJujlaGabLkslpQfGPHniefFv9xlVultjJ1FcMjvTuTATQ\nS1FfmAhgQJhLyrnNlBUD/QOq3rfASsy9LuG9Ldgd0ANMP2NytOcr1gq0UCQjX23Xa51ml++iL191\ncxsgnv8A955apOgL5BRUbknGfk6KpoPwu/X/NYPr2lsvoCz7Lvb61vv5o+VnoX3TOL4xTVY+5D5A\nAR4kstSATQRMlxTT5bflXz1Q3xFSYo0p9VTxqbe1OSJUEG5b0EgilhBUi+AxU8jg+lOiqth4Mi3b\nErtD5CQh1ZYklRRLmdP9CVV1vWxA0AySU0syMiSDHJMqBqc6jJ5xxX/U2KKmlH1nj0YU88VTM7Mz\nWr7T1kX3fc4NLWCQaO9T7hf3rKuqwrb2ufWFWuaxtwsIWeCXhBAa+N+stX8D2LDWXvOfXwc2DmxF\nuI5HnhPKkQaqs0iTUtSwZAeVqSZ7QaDyOL/aY01jhSqi6Ys0KXViXAlUr4ouXClbvEMFuNLqx9ew\nWYJJFdPVjPG6ItsxJCPD8msjkruDCgSaFxyprfS1gDAHrezt125thawFVGoCQzMYBXtYQ1Ayciw+\nKNLs+T4OsMPpO/G110RvKyeweV0idp5lBBZC6Ui6STGpA0YeJAoBFmnqnl+auoHe52DbaY7Np9h8\nir5zF+7cdakdG8ecOHeagDEYlVGs9MpKYE0G0MwVDCmIPaQYGIr/Lm+pbYCbNbeEwSsewMr2RTU4\nBTTeb7OiXk6xtSR4ySyqjo9zuee0w+s3fmWj9tzC+9Do73sporb2uxNFrP4WiDKojo+NtYrEVDs9\nrqkkGUiKvirFDouOQEtBOoB015CMNcn2BLU5wO4MHIMxTgVpA2rux2YxNZo2CxQ6TGsbRyJtrz3X\nOv/YeDh9x1pXitWaOqATQCHbGFPLtCpdC+JtETtQ9ftz9Py984FIs7L9tiA9VCgL4tHy2Drm2Aq7\n5xaw0jlC3Vtjeq/tOhDIF0ywjSB7ZsDcMCGEYzvG/aLZP9pAob0N7f1eS+CtajtUR6sxP2Mh7EBf\n9xXYhPGpevH15TlWGyyTefvO4c5VzXuOgZ64j9SuINqnsb0OHrq5KhTdaFYQOxTzweIeBtB9tdEA\nduZk/czc3vwZGFLW1gPV5vkaAtpW1q9FRHpECJ9KbgzWzB2cvTN957eBqfUjbP6uJ7n9rCA7v813\nnXuBv7D6Au/LNjkqM5QQSLoVqBOOE5LcaiBHY0mB+HFPrWWCZRrAHCw5jSA6tIUh9XmoxlZpY8ZK\nxjotQR9jxZ70saZpI5lqhTYCKSxJorFWkFuB0KK57oMxEgocg0hLbCHqN7K/HV6/KQukiEgQOKSB\nB1p2tWBa+szh3fY6XvHnQiRuDA0l6/0ivQ16coWTabAh1cgvwIq7W8g7lt7WIma5R7Hk2O/JvTHi\n+p2yEmAB2O94ltFGh/GK9JoplnRQT7mayyKwpwbcWCpB6BlB+awAPYBIob2ajy78cwqBut9fwB7Q\nKW6v2X/i/aS1Ffv8YDu8vmOti4UDUGigTPMO1ceac1I8r8XFjXx7JVMooBRhbi50BSSWgJKvepoX\nqK2Bq2Y87KCXOuieExwXhSvBngw1cqyxmWTnTIein6E7AjW2ZLv11MTak2pYGxjUjKFiEHGPDEft\nQL9NNP5uO7fvh02GUswIqv6unrsTp67aqBEFQrrknC7y2wWEPmOtvSKEOA78ohDipfhDa60Voh1r\nE0L8OPDjAN1kGSQlshyDQSUgE3LhI7S6ZApFqWQBDKouIhrYYjBIiko4MWgu+DatBDuZIKZTSFMm\nz5/n9oc7DE8aFt+SpLuWxasFqy/tIrdHLgUsFn92N9/u5LZZ/LLs9/msz2axefZj+RwU1O13bGC4\n3C9IVbfD6Tv0q3TBwOoJItEhGCtXlj2YGLYFocqQCmb8dsVellG0athMiRAhz9qDRbLXhV4Xvb1d\nHm6GQ6RH0ovlbpkX2xxA5mL7GNu639zU1ug8+9IjZx0/a3vt3BU4FMpCuoEpnnn9MRJXon725cZ2\nOP1GLZZATi2wmPWutqZqVO93XOJ9PxPG+nSyEOxaVwXAWNLCkAwl46MpOhOokWXxyoTs0iaMxpjd\nAeadCPCCzQsKQTtI/KC2Xzvx+P327XD6jljw846/PmsrIKgJPiep3xZV9grCgFkSCY9GQFcTKCjb\niqZrz4qZxdzQn3yae493Ubkl2zUsXBmR3NyG4cg57bkr2NDKLJtlkZZUsNAP9u35bSwiKau0sfIG\nRf1ndZIaiLQveyoCSEVwXMP5an+LOqi0vx3aXBV9sP/cPWs+DxbpBAWdqHK3oPExi3l8EPu3zWIm\n0P2+j22ATjy/HsT4iVk7zfF6zvO2jlezGI0x+7y5X+jL8z++w+8772FLzp3l2u89w845eOT5K/zg\nxi/zfP91zibbrEpYFCmp6JGK/fPDA0ikEGhsbYG7K1zkpHGBjhSWFI3GgToBGAqMoUxoluSYsUzZ\nEV1S4fSGgi5QkwnUNOGdpMAQsn5/KawrA93yPljr+lAsaB10BR+qn0Pf+afWgEiq0vJh8QIqEFqb\nErhx84/fp3xPZTWXWVt/D0v/2Af1WjtN1rRTWySxQbt1d4h97U2Uj8mMu3DUU+fZ/OhR8r5A5S6Y\nTcYBTaEW8O5rMchjq21xylj1MOtBdK2Z/fxjGqCUra4RDy4L48ba2N8O54k1ZspztAAIoWJvkyGy\njx3emJMkdcBGSteHsrQqMR+2xdXHwC8C+X4V2D8ijOOyYhYF1pBfBAsszNJfCMehEUYgBiNsR5Hc\n2oabdxALfYYfPsvweMZo3bGwk5FFTSAZzR6rZ7HA9out2rbvK7Gx38se9emy77RYExxqy1bYs+hs\n6/1tXntbgJC19or/eVMI8VPAx4EbQoiT1tprQoiTwM0Zx/4N4G8ArPROWoc2lwIcDedDg61KwxOv\nhmn2MoPanIWIli98dZJQRSPQ4B0zCUc1ThPkyjKX/9DjXPj9L/PmV85z/Fdh5aUt5LRwIpvNUvRt\ntl+wM296VvOYeN/9Atg4uIitxbHfc2zr5qhUK1QMobACfh+O4mH1nWVxxF1McBT9RBxrXZTXXtJX\nTDXJRaKo5fYAEMUrI1Cxg6IgI3Yyy7QKa532hje1toZ59BTT5cyJ5Km939msSWce2upBjKC2wWzf\nY+LJtMVE3D8O6rYHtGMRvmzkfD72oY052XFb0lb9hFsbaNtSWGZfVHswG7ODasw8vyk0H45Rgsma\nA4OOfGMX9cZ17HCIeXvA6+FbVHJeGCqWXRNEncfmAZWaY8u830uzmcPqO3LdVvo8qqrE1KwqJkKF\nrwjsCY42uBLcAbSOKftNC/tEVTSD8xQ+E2mCOnGcO585zZ0PCxYuCY5/dUh6dbOsLGej0ts2dtrg\n4DmhCehEf1cpAy2gz34WmDvVRbXvE11fKVwdX3cAtcLzCH8fBBYpBZOD+8+hz1Xh+4y0Odx2ny4W\ng89tbLg4oIsByOg9cVo4MwCvtnO37tcQhG6b3+cBZ2Z9Pmu82K/Ng4CkfY6tgUJR+thMi1kRKupX\nsL+jXz/n4fad96JJxfAHn+fqvyM4/8HL/MSpn+LR7BYX0i2WhKQvUxJ65e5qTj9RIpEN6oRXxyMT\ngtw6YWnlhfaUFUzDVIolpJGlomBd7ZKKgtwm5FbRUzmFUexYx1ApmUJUAFETKIq/ACksutQPau8M\njhkUHags6Pk6zqH2mySpL6QXhX9PojkrBoMaqc0Uhau6HHz9YHtAXh1VgY7OCe54XxkysICCqaef\n5MZn1kGAmjjgIx2GMZDqXbsf1yICWuJts9qIK0DNTBeLwZo4gI8De79f5dtBvGA4S/Kh2khZfEVE\n57gPMOhw+44Qlb5PvLAzzauqdEVRZwvFc1ahHRhURGNnMzYNc7YQVXpaPOeV/VJg0wTby7Bf+Sa2\n3+faH3+WyRp0Nl06WDr0EgtmxndI9f3u9/l+x+2JnWTVd+oftGxr648HAUHC7yLad21mksTMs1pq\n2xz2wEuvQogFIZwsuhBiAfhdwDeALwA/6nf7UeCn52qwmSZQKpRXlMRZwtEleDRDT0g0nQ7h6Oul\nM9BY2RVpAo8/wo3f+xhLv/s6r9w5xsa/hpWXd1BbA8Rw7HIpA2PkvWBxkNRmMavlgU8xw3m7zyDw\n0PtOwwksv9dQ2rjpdMc/D/o99KlylbIKnMrKZdExdjrFDIY1UU57dgO9kGKU9GlW1Snigan5c16b\nZ//9kOIDRdIa7VfVueI2nL6QbesjwSQNwCQCl+YYiQ6737StBkUna/+9kSq2B5yIPp+LNeTfHZMp\niq4iHWhWXt4luXTLVf+I9VbeyzZvumgJYoiHel+HPuYAmCjVqoU2LZRnojbnrVhryNrq2bUB/QcB\nkdYxY83z7+f1HzvLne8dk+wKjn5jTPrWbezOrgOn28Cg2jXJ/QGcqDR8OQ/MqigWs3n2sDL2OU9b\n3wirzeF+SyauqYpJBGAp0M0b7dtm6lScYnaAHXq/mXVOIeZ7hw7qDwcdO+87J1V7ZdfW8+5z3Q/i\nH7Wkc83NCJpnW6OtmX5NZPvqDs2wd2TMeY+Z7HbZ/QMf4/LnLR/72Mv8qUe+xOcXXuXD2TZHZOLB\nIIUSsvw3j7l9naZQKiSpkMgD+q4UFoVtTR1LRUFX5HRkTlfmpEKTSE0iDIl0bCEg0hKSlWaQlaXY\ndNNmgUHuQ1yKmI/YhLQg7YELX+9Iv2kyKoWIGEJhm9wbPwUWYkgNi33tkAYdtzHrPbUWjN4DBgFs\nPnuEbNeS7bgS2nPJB8yzy/26F3v83Blt1fzE2e00dYbaWEKtlxF/Lpy/PW963OHH5bZKf4s1AGOA\nUVaAzZ5jgxlTA3ZqDOg5M2NsliKGY8xvOcLTrT/yYabL0L9u6Wy6dMKDwKCDrMm02e/z5ra5zmmj\nfw0gsNZvGn2olj42p90vOwjeHkNoA/gpP5kmwN+31v4zIcSvA/9ACPEfAG8CP3xgS40LF9GgY7Wu\nUru0dlXBIkp0Wea3yCN6vm8niHY2TChZiqHZoJ9gDbLTIf/k07z1ezqsfvA2d183rP70Bie+skty\n+zpzaQPN4zTs9+IcZLPo5S0BSflZs+pL+L3WhHUrAd1uKdI6Ky2k1TFqAeL2scPrO+Hc0gcE8fet\nJEx9ymFYEY7ZZcZC6u8vL5xmVJsmQRr1x1CeNoiRe+DSTiZOvyNcUpKgTp9kenadIlO1l/8gwbr7\nfpEjTaEY/Z5HS2gPMwig+Xft2uraPwC6K+ncnWA6qgS9ggi1Q7VFHfjRUFYYMCCw+wNJlR1qvxGW\nmhZT8/nseV7NCawBGlW03wY41HxfouN0NyFfSkgGmv7Lt7DbO5AXmLcnlPxwzBjHEoo7SlswNwus\n1gax0C81B2ZaG2DbBqLsb4c/5tg6C6NkpwZ2UDmG6IrVgZ+X8ip9uSbuWasUFfWh8t00iCTFFjmy\n02Hzh55l8sP3SJMBnZ/vc/L/SOheugU373gg5IAxOcwJc2pDhTmhTOGOraWdPYye6LxCKac/1HZN\nbeyeqB159Aj66DJia4i4ecfpAFrrtN1ibbw4dSxsy/P7qYh5uP0GWufKkmlWbqiDy6FPlfv5FC5r\nInZZCSKGQXbveUNa/az3pkxLnJfte7+AT5t20AOkgO17TJzeHbOJ/HwtpHSVCmUFBu3xc2ZcV9C3\nnHOSPvy+8x4x8ZFnuPHpFXYeMxx5/x3+8vkv8rHuW2woSV/0MBgk8sDUsP2sIxyYFKxAY2xeppAp\nQemHhDL0qTAVs0doYrHpTGiW5Yhd2SVXqtwvMIUMDgya6AQpLFJYJkWCjtLFCi3JtSJLCqyRGCNa\nhioBje1C4PpMatpBhLod/lxl9N65WQoYjd3PoDEUs+KtrVgggRESFumbw0sAjsIYFqpPef+4uH6j\ntrs6dozrP3Qekwm6d8xeNszbXStqHm+jn00/N/zp08maQFDprwe/unmu+LrDMcYifEM6AWmdn5yM\nfVGVlml5j24M1fna5CVm2OGPOXF8GRZfEuWEn2M2TxuzNVQlSxKvG0T73CNl+/ynJDZL4eZtVzhD\nCO788U+xfR46dwSLl6yryBuAtn1iq4PiLtj7+bxxVGsqYxifmsDPngtr9J3oXVBTy2hNko5aNKQa\ncUZTOygwl+bW2uJtAELW2teBD7dsvwN81303KCTYCNSRApsXzonx1N4YDHKHeGCoiFY/Iyc1OOS1\nXHohEd2OO99o5M4ByGee4uU/tsqPf/6X+Zu/8F0s/PVVjv6rF7GPnnLH5QcEaG00uLnvXex9me7H\n9juXEHUQqHkuf+0Buc+/+zl6L15zq68RpbrUiojTxQJ6HFhCc0oyHHrfCWWdfVlYN6HIclW8ZPLE\njK4yZUzUQb5wH16LqHYabcrjRYSQhwo/AMmjjzB+4hiT1YTlr98uhZbnAYAeFNUOxz4IItxqkaNV\ntg0E8eimvfV7JRf+9G+RnTnN5PxGWRUt7Cua/bnJuNEwj994uP2m8d2WToItr7+W7hW/2/4eSr/T\ntyUOCmoCUODbnxzrkgw1i9+4gb56nWI6RS0tIVaWYXcQ6cvMYYcl9twGdh14blulWrYFkq2AtURv\n3mH3u59k6Y0B8uK1vcf5/WbafYyVh9l3LNRSvEoxeR9oizSrUsXKg0y53en2RB2+VmreHVMDXELw\nH6UBFd/1HHf/4wH3bmhWf/EIKy8MSe/eRr/4CuLRR1zAu8+zCQFwKyBz0P3H6Wax4LMQ9faaYtLl\n/UapZk3Gqt8/LADVLBKMHl04TvpLX+H2j36K9Z+85gT+wZWVD6uWbQLWccWyOUChw5+rrB9frU/5\ncn2hdq8zWUQy+jXM3ab6zJq924PJsHC2149R5x9Dv/rGnnPMbYehKdRmD8oumsFYFkIw/h1Pk90d\nw6993S0K+j4QA0OlPkp8vfH1zIlxHHrfeQ+YfPZpXv8DKxx9/gbfs/F1fv3uOSSWR9NbnEuykg3U\n9pC075PzsoSa+xprkUKg/fiTAl1hyHFl46HSDQqpZFoYtBeSdrpBrmpZRxTkUqGRFMKQW1nqCeXG\nkvgIzZWdd59N8oTd3S5mmNA7tYU2FistUtrKhYyCOfe3cH6TESDtXNPqO+IfJ0kE6uhqcTTIcJSs\nSf+8vfyCSBKv+yMRicIa9zyquT6qNOYLXQilKoBpmqM3N8tLufvHPsXuWUH3Fhz7zSGbT/X2Lkge\nYPcb5Lb6xm1Dy0HuW9xOI9BvyjHE4MPgpOTsP73Fqz9ylGNfv5EimAAAIABJREFUsxjlUshEYxE3\nPkfpW4Z+NeezeUfmqzjlK+gHGVv1mTCeN1n1IdUs/B4AodhvC6ndngks0tSdD0C5PqsvvoVcWOC1\n/+mTiELQvyo48nUD2D3Pbt9baTzbB7W3FWc1+7rvR00GWtm/Ldz5VM7pn1OYRNS2x88x7i/Ct/8g\nTKl3ouz8/ZsAW+iSdWFzi/DogkhdLqodjQHqrCCtcdFkNIgBYSWs3KdMExLILC2dJ6SE559mdKrH\n5o/uoiZDfvYv/E6e/PYtxGRKsb2NGh8jP75Etrnr2mij9e/HHLhfu18wqO24NlCqbZW+5Xrf+IOS\np/9SJfYp8ECI3AcMerdNVAGJqwbmNpcMpzbHP7CKms+7xjBSYLwDHQYs5QIWMxqDNcj1I1WTzz3D\nZKmDSQQ7ZxQrX9OoYY7ueaX8FqS5dkkPujJiqkEhnowO0g3as61tYg7xS2MyjIGh/+xzP8sXWKe4\nfAUubJTASFjVsKE6AX4S9BIW8TXcX4G6w7B2Ye4DLXqPanpD4eesd99P/noxRXckyUiTDDSdN25h\nbtxy6UWdDmYyQS72YDp1KWPzXs87XflrXisrbjXG5D1sKbff9qOKdNCjf7GlrX3BoOCUPgCA/jZN\nQAX6CDcn1Vg+sUX3bYt8/2uN+lYI3EstBq2RC33u/rsfYPsxwZkvjhj95hrnf3FM+tJF9yzWVlrG\ns4opU5rWGO+4h/b3ZWjNvFxRVugsU7Dj87XpEzV/D+9MA8Cx0usztT0vpRgdT0mBheu5A4HC9Yfy\nuDHzifBYbVWkIrCGHrYJUWOVlalipYMc6QLtWSgytaqpMfvZAYZ+exsDqE1PyKeFmZU+st+vMVxb\nrZnC9SCC723C0POyhOb0N0ptw8a1W2vZOZMwfG6Js79GJUuAc8BDNbpW/ya+xreRdv/b2Yrveo7X\n/7DgT3z8i/zA8gsckZq/YjK+eOkCr0xP8MnO9RLA0dZgsKU4dIFmaHJyz+7pi5RUKCTiPjSFXApZ\nWP5NhUAJGFvLwDtTCluWjQ8i07EpLKkoSGVBxzpAKPVL78qzgoLYNDhASBuJyTOUNCx8tYfuQrEh\nUdKgpMHaBKMrsWnwr58Hg6rUMbDq4c5V7iaUC+SDNIb0FQgnU0SWepaqrcYhIQCnHVZWdLTWgUFa\nezFhA6mrPlVWFpvm5Zyib92qXcLWH/0k249L+tcsy69b8kWQ4xyregczs7k/AKhpQYfFNUQdzJnj\n62im7exhCQnn7sTgTbUYCjYB/eIrLFw5BkJU/rHyC0o68v09GCBq/nGQY7i/+z4UC2LSwQLTxxjX\nrwLoA1XfCfNWEJ3W2u0X+wdBrNr/s2FhTUrsQg8uXy+L8lz6i58mX7YsvwrZjkVnFSi4L8jjn2f8\n+4M8wzat1rljh0Ysta+mkP879HVhIe8LFl/K6GxOGB1PaWpj7Ukli+65fDYPgyF0qGYjkCcvSscn\nlIUPK+UxEBR+rwE/ngkklKhK1IcVOSEQSYrodhALfYoz61z9zCLv/8Fvs/W/XGDjr3UxStC5tYOY\n5hUTZHsXc3bV0cyhcl5nOf6hwwcU9WHb2wGjAJTFHF9D3rpXbTsoD//dBobiaiCe9lqmSsTOZywm\nHVLGhK1YQc3KIt4xFMaWwY4Zj2un3v7MYyy/uIr+1suoOzvoxQxhQfccECKGE+RKpwaglAwU3KQQ\nfAehLWqsQQlMIg+FOXRfFg+gUA1gtkKdy0oPpmLSfHX7HMgRGE2yM6VYzPbsUw58Mvqp3QRisQez\na95hqwZUUZ9g9gvgm5/FonmN/abrXVdpzULv1dsUFy/ReeQ0+ugyspPBzdtO60VrbCdFdjvOiYv6\npGOoNUDMMJH6ioyxcPA7bm8HhAqrvDuW8RFFf3UZ7m039nmAgPMhmAWnERZ0VqxxwUAQ9C3yaJEi\nCvCbQX8c7Mf3Gaq7+PuXj5zm3nPHufMBgU0gOb8NX0w5919/menv+RjZ0gL29t2yPdvrII6sOtDD\nuHHOjieQT11/ylKEcZW69Pa2S289uo4djw9OMYufwwzq9x5mThMYCn1YqVqqjm20UWu9sXgR6NP9\nV24zee486a86XQE7nVYLAD44cWm+pn6uEPDPJWV/iNZchAnpHPG2toWlkDImRQWel8LSVfW6GjjZ\nYsmZ0w64B8qKQalCbRzDvPFmO+hTXqebK4UQ0M2w4wk2n3oR0Pt4T+/HX2gBihx7rKWfhkArMHxa\n5pS7HzZkm/49nUwQaRaBPlWbju0WLX7FaTbwECfld9eS06e4+bvPsfuIW9QRY8316TISS18q+nLK\n7laPn739Qc6md1iSYw+6GJZEwTGV0BMZ4ASh7xl4JV9nYDo8k13nsUTRIZkLFFJCkqLQWHLfL2cd\npfdEWmCsLLenQqOiqDuRmsw61pCxgqlJMNaVlzfC0ktztkZdjr8wIV9SXP9gh8WFcQUCleIwfnwK\nWG4MDBlRAkMP1UIBgk6HUEiHonDvbZwGBtW8E7YZWZdagCqNTArINSSJG3db/OPp736e3lffZOWV\nAeP1JVc+XltMKtE9x+osuv6Zmepf/O66kvPud5OASVzF2sNgxM/NGBG4Nay2fcPXHvnPcbv6uR22\n/ugnOfkPX+XSj5xn+c2ogIQQWGnxuuiOTV/mibk27Sw14YdhYS4KrJ0yrpJV5bB4UaclzbnmJwbx\n6ZaMGLu+Crc3XSy1vMz1//TT9G4bercsS29RVlsDXDn5icWkAiMqAM09P/+7iUARXL9Rub3vobut\nj8yVRhbvfx+stridnUck+YpldCytAT3VzpHP0AY4wX31nfcGIIQL2u106oEeh06LxJXlLVO/IiCo\nLC8f5+MH9LtsVpYra0Ip5PIiu585T/4n7/CDZ77M3/2/Ps/WnzvF+tVLFJev0DmxQf74CURhENsD\nAIrrN+hoQ9FAvGW/j+h1neZOlL9vC+1Rd+l7km11TPY+AsGeQPJBzdr2lzNeOW2pBqOOHSPpFtz6\n+Bob/7QChMr0An8vZcdurvK9m8Fb6AfxCnDoHzWWmP/pK4aJUI4zTnkJ6WKBYaQ1Zmendjr7Hc+i\ntsYsf+MOV77nOBtrfYpfeYGs0EwubKA7YPsd5K17pMYgvAi5nU4R/R5moYde6rjy80qAEuieY8gl\nOznSgEll+wu+jzVZQvvtU3t81oFTMjccWADe4gAu6wbgHzn2r/gfHv8B9KtvoG7co1g8XrXrU+bK\nyS3SHxKCalI8+KyHbnsQ/0gg+LDS7/LlDrorSbdz0ps7mDcuwdEjqCfOYW/cRqYJZnUBmWwgbtzG\n7g4w3QR9+gg2PVpLu1O7U+T2CLEzwA5HJRPAau2YlJ2Oe9QPERRqFWRtE2PfeyDq2DGOfn3E5lM9\n9JFFVAwItYpbxlR1ovHm4a7YCyiBBht0gULaWEhPtsHpa4BBoQ2vAwRUujCNZ6nWj3DlR55i+wNT\nRDpF3Ml46r99Bf34KW58oseJf52R/bNfZ/I7P0q62C3TX0wvpdhYRGcSk0qsgvGqorNjWLg0RF2+\nhR1PEFKgNo5jd3Yprt9AHV1HUNwXKATU5pUybawthbG53YM+djJBZNnsxQwPHoVjRJqw9qtXKYDi\n9YsMPnGC1bhdrcsUMvcgVTm/Wp8K7XRgzMPuOs7KoKvBFGqrNtf6fkXpdAEs9gtgs5heyelTFFeu\nYvvdKkXMuqBvupIxWTtO5403UadOOF0RwOzsYgaD2vUJlANKAJGlLgUyBJdvd/6fgyUUwCChZMX4\nug+9o3/yfX+V/+K7/0g9u93Yqr3o96a+UA0AfXfXL95xG3/fx7n7voTdCznI3FXIGikWLyb83OB5\nLn9qlX//5Jf51vZJOq93+frrT/HHTz4ByiJSg8w0p9a3+NTxN/iOxZd5JrvJkhT0/cT6wuAcvzV8\nhO9Z/k2e72jUnPVtEhQKjUGUFcckjt0TVwULmkK1e7IpuXX6QCZi2oWy9YVQpFJTWElhKqaRFJZE\nFkzGKcmXXiD98PvQOsNaUVYagwgP2CNEQgUKhcW1h2lSuT6d586fCAtNnSj8a4I+YcEirogbPg9V\nyvCpYZNJNU54Kz73HOP1hN0zivz5C5z7a1/nhDnH9U8vU/QEkzXYfrzH6KhgumLdl2h9lTEtSHcE\nyciSjPAMGqe707lnMJlguigRxdt4CYM/2vZlNBdGI/+1GXQH7KaVaQ9gLZObfda+uY2+cZPdp86x\nclHuZTAKB3ZJXfnVrqnK/zs0SYj7tTRxkimBVWstdLJqjoqZuGHuCvFmsFg/KJ7btMYuL2IvX8N4\n2ZLL/9WnMR1Itx1DZu3lCaNjKbrjWFJFT2AykLlgvF6BLTKHbEsgc1dyPmgLhe84HVl0yn0vtL/d\noj0hXg7aPjOFyP34EJ/v+OeukH3+TRCCa3/2UyxdNo30Mndio4S735Zrup8qY+8RQIiyYkicEhZK\nGJblfUOgrikFPIU0pRO+l0JdrZzx7Pt48Sc6/Inn/gV/5wuf4x//ve/i0V+5RPHmJXSng3r6Scyl\na4h/9Zvw5BMUly5Xl+bBoLCaJDK34mF2B9jNLWS3U4JDopO5694dwsqiAwJmOTpxikkbGHQ/IJEx\nFNeuAy7PW97ZPuAAKnp+cCKPraFvd8gXqx5X0w6KHSfYe08PP+/HWTSZWW3qYFB8bUEg2vejPSk/\nsflg1hZFjUqfnD6FPr7Gztkut39fj/P/+3VO/s+/weYfeo7OsY/T+8JXyPpdejc6FGs9sq0BonA0\nWzuZYnd2Sr0mIRXZkVXYOIpe6iB7CUVfkS+npDs50lpMpip2azQQ1Oir865yRPvHZhLB1mMpJ/7+\nN+HMCSYnluZrDNCZZEPtlrnoxaXL8MRxrBAIKrQeQBTWgV/gJmMlKqG0t8tsOwxre9+aq/Rtx8Sf\n+Z+6o5isZ6ixYeGb1zE3bmF8QGo272FPrcPqOeQbV5HWUmyswOpZknsjF6wIAdo6we1EYhJJcayP\nPdEHs066k5PeGSDu7WBHI+xojOh0IM0QQroVu3c6lcoYrNZMPvMM3SvbcM1XEInHgVlMAGuxwwHp\n1U3yj/bJVzvt0hzl6v17iylkdRDydSBVNW9FAX1JofY5kuW4qUsgCajAIA8IiCRh8t0f4eIfsGBz\nNr6YsPzGiOTObaYfOIf60lc5+eISV3/iec781CX4519l+H0fp3tj5Nr7yjfxyyqllUWfP/IMt37X\nY6ipZfmNIer2jpu/drvo23ccKKTsHlCxFfijESTHf88Siw4/pUQ/e4Hpcsq9Cymn/t6Lrs+GzwMI\nFHTvTASsCUl++gji4luA02hYbZ4vz7HaOJZmlpXXI3z7ARh66BZAwiBK7vtKq0h3DBDtB5aFRbAZ\nwIhcWODep8+y/Moq+oVvIRcWML/jI8j/92uITofR0YRsYFDrR7A7uzDNHdATp6x6kLPst760tFpZ\nRt+792Cg0P2kiUX7mY8/TXJrB/Pya84na7Fa2pgfQ+TiArmVsBMFr43xSShZA5yafaT8+99UQOjj\nH+SNH1zk/Kfe5PPrr/P+7lX+4gs/QOfLS4w2LMOThsU3Ja/9Pxf4s08+Rue24sy/GJNd3qw0vhKF\nzRJGJ4/yC0+c5B8+8UlWntjkuY3LPLd0kQud63x26UV+ZfAk//jec7D6FZ7v5HREWruUWHNIt/iW\nyoNCYZyTPl0sFcall1mBditdJTj04ugUv7V1mq7K+dDyFRQGPQOMilPHpLDk2xkYjbx4Fbv5JCyN\nvByYQxYsYKaugIhQkZhHMAvCvAtjjjXYwlQ6QiGOCWyhwErRBjJVaYHOGnOkKEFtfftO7aO7P/Yp\nRhsCNYLuXcvpn7/N5rNHuPwnP8jZn7nF8a8MefWPdFg4tcOWXOXIi4bpokD5oV/mLp0sXxCMNgQY\nF+h3Nt3PoqvobhmyXcN0QTqgZI6wo/R7Z4E9tZ33/r17WtK7bRluCJbeipiEIYiP0nwCoUdYMKmg\nf3IHMXI3mC5NsKIXHWvLc0gDJujVG+FBsAhBfDfGHGsr/SBjXOZL0AUKII+SbmEl6ATF/UZGqFvQ\n9vNkBdvNEKMJ+uXXUM88xat/Yg2rLCvfhuSGRU0tMofhRkY6MJhUMDgp2blQ0H8zYfmGYeGaqyxm\npUAWlsmKJF8QTFYFUjtwKBkBFnRW9ZV5hKebcdWDSExYAWpiufp5w+lfkBSd+RebpYZMapfOPZ6U\nKXLxtRKYrLpiPgl44L7yngGEQqUvkaSI1FEQrWYvI6jMXU+BCjAKTlGg8PtGUcePcfHHz/Njf/Dn\nef3rn+GX/vPfwRNv3EBoU9Lf7GSClRL9oScQv/IC+uXXatcm+/3KyTcGcqdbIJYWy5VLuzvAbO9i\nixx1ZA3R72N3BrDQd4NwLHZdhFVlVVHo9tP4iT+Pg9Z4eynwpbj1sRWOfdkg79VZLTUUtxQslWgP\nJNk3r/DYTy/x0f/x1/jWT27Uj51M3LNf6HsnNARqccT/HgnaQh+I2QRNxzK+1vAsPGBkC4vw6RTB\nRKeD/chTTHoJVgiyLY3uKa78vpOc+KtvsPr3vszrf+VTnBl9hN5bW6x/c0yyM6nybZPEpSsmClFo\n7HCIGQ7dhOon1ezoOp3FBaZn15muZGRbU+RUY5OwJOtXC4wrzWkTUX4Ps1DveXSEAFZ+6Crmbw2x\n33qZZPlDFP26c1Yxj6oqY8Ja7j7d4W/d+cye6nsh71lYy+hoyso3NynW+pT6QXHqGLw7K/XE9+U3\nzAp82yaDln2tFIxO9pCFZfHVLbh0DTOdOvYELqAw4zHJ9U3GT51Evv8R0m9cRPU7mG6KzRLUjg/E\nopUUqwQ2Veheiu4qpqsZk/UMma+SDDXpvTHi+h1s7oQjhRT1fh2q4nmQ87D0U8x4jO4qRo+s0N8e\nYBsrha0mBHZ3gLUWqyS75wxLVxTd5n7THE6sIoZj7GTqr1/uDSTfaeCrzcpg3f0upHBpZFAfq4O+\nWah42dSLqVUgM6gLj/PSX1pFJjnLv9rn1C/fRVy/5Wn/ErXSQ20cR9+4yZl/fJk3/9BZTv+VS3T/\nya/Nddn2a99k7Wvud/XUeXY+dJyiK+jdzOm9skDx5iWS06cc8zXSCbBpghhP3feQT8tiDDVWULBY\nG8jvs+fxKUlycxvxK69z4hcTio8/g/rNV6MdPAgUnMh43ju+jnrhlXLIOP3FexV4FASrn3qM3ScW\n6V+bIH/jRQdgBBZSmiLiqmMP08r5qP7+VaBgGygd6QbF5aPjfRsgI0AsJN2/OeXmJ1Y4+gKYwQCr\nBNt/+JMc+ZdvceRrdxHbA7T3XxDSaS0GjZ2WFDQbKgOOx6jlZfTuwFeErWBIkfnFsQD0xXPurGph\nB1QSs9Zy+bN9jn81pfPyay5lrQEKlQtYPiUunM+e3eAXB0/D+iqE8teh/dRVwxFHVmBr2/Vrr20R\n2nxXAMSHZOroOld+5CnkZ+/y5y58gc8tvMwRCamQ/PPHXuZf//xHWf9mzuXPpkzW4NSvTDn1S7vI\n3SHFxbda64l0XoCNNOPUxjGmjx7jhQsf4l9c+BD6kTEXTt3kE+sXmZiEn7z7Ca4sv8wT6S26QiOx\nbJkO90yfI2qXx5MR/Qgs0lgPBAn/N64SGMLrBoXtovwH0BU539g6xY2/9Rhb5wUnvnebtXQIBgqb\nkFtZVhQzEZAjhWVUpKhtFy7pzU3SexIecZ+7sEC6V1FayGUVCPuKY+8aGATVgmmIQxKfXh7KzIfL\nypQHUokYmdH7p40P/i1IamBQ8bnnuP6JDv3rlsVLDgybrEoGj6+y8o++hvnhj/LSnz7CuS9ojn9Z\nMNxY5dgbmsXXd5x/W45jQCIxmWK6kjJdUuyeloyPCnTXkt0T5IuK/k1DZ0czOhIEQ/0PBQiQU0rh\n5lJoF/bq/9gq8N+jt1L6hGATOPrTLzH56OPc+nCHxavR3BGme7MXRJgsCwb3etiu2//Rvy4ZnIrO\naWC6JOlsGYbHJD1fcc2GBVMD0jOh7ofpcWgW5u5AGjCyAoPCeKiNSx+r+T1+btI28nc8qJQmmOV+\nWT7+4l/+FLoDa98ENREIY9CZa6t/c8rweMZgQ2EV9G5aFq5Jll/fRQ6nFbgkJUjoXXeLp/lySr6o\nGB+RTJcFOoNk5DSIQgqi7lRflDBO7NtKB8QEgKUZV7UtygdrzbwwsPk+xdmftYjCUnT2jgGzgCaj\n4PrOEmfWwR5f4ZH/+xKbnzxd9TFrSUaWnTOKdCBIJh5AbICS7iR722+z9wgg5Dt8KC8/nZbsH6DS\nA3J/VKtpUcAvIkaINRaRJgy//znW/pM3+Vz/K/zUX/4853/rLmK8VasYFsQUzTdeQj37dD0u9dVd\nShMC44XT7GQCnuoulEQsLiCTBDscOZHL6RS7tV2yQWaZWltzmg5J9FW0sRKCAxiDOm37Gc32E5AM\nV1n/0vbeoLWZShab1mDhh1Z/g2/J7yvPpTfvYScT1NNPMnhshf6vXWx35N4NkU4grh4mVCP4iFeW\nZqWhNCqPmd3d2jMSH3mGYqVTiSQLR0dceUmw9R0j9Gc/ivrSVzn9pYKir0BK0utbDnQ0BmsMwg+E\nWFf2ViRLrtpd7hxrMxqV4JC8+BYLjz/K8MJRuld2IZGISe7RYInc3Mbc20JuHEOvLaB7KTaVnpUT\n3W5jcnL3TGNGdLbeHXDnuz9C9s9+HXVnl6K/FjUUHduwnSc0v3jpKc4Wo70fAtvnOhR9WPzWyyRP\nnWd6chkhK7Ao6AjNyRh/1yxOJwPq76X/OT3SRXck2XZB58Ur6M17Xii/cXNCUFy9Rra+zPjkIsnZ\nDcQ4R03Cal3jXIAwEpFr5LggSSSml2I6Ct1RFH3FeH0JdWaR3o0RcnMX2+9gswSTKg8mufQhoS3p\n3THq7jZ2MHRsgAB0h/uprfD48bVkCe71ShZeusXgfcewK4tQppjs/4Wa8dil3RYaORXuXYktn6Kf\nfpThqR5LL951JU6hruXxLulOWSiZGzUNO2gB7h044laRmx6EKVda5dISb/2ZDzK8MKH37Q5nvjQk\nfe017Hgc3acmubXN7scepfszNykuvsW5vzvl/uWgfWvffpX+tz0I8/EPcvV7z7Jw4xQrv3GV/Mw6\nuqMYHUvpbGnS7Snj4x1Ga4rFawW9S9uIrV13fUXh2JZea02kSQXAe1BhTyqTsWx/+BgLr7yOLQp0\nN0E1+x641K9Gn9MrPfh2BTyOTi7Qe9kDPGnKnd//AayEI3/7y6gLj7s0iSyDOMBPEtd2/pCDtBgQ\nBGpModiEqNhB4biyjWpRQ6gZaWJB3wrAWLLXbmLf/wiT7/0YnX/662QvXmZ07DEH7Lx5xYGzIR3A\nalwNJ3+aNKvAzhbT29uo848htMEqFzAIbdBrCy6FOGgWNa/LX1urNbWMIuvftGw+lXLi59oPtdHz\niW16bIGXBycQW7uo1ZWqOqhnk4unHuel/3CFC3/mV93mroOomynzQt1/Kvd72XZ/+JNc+31Tvv+Z\nX+MHV7/KB7Id1mTJKeT7177Kzz3zEY79xoBHfyZj86k+neu7mG+8dOA6js2nFJevIC9f4cj/B8c2\njmNPrLP7xBn+/iceof/UPaZ5ws8MPgTSOt/ACOwwQUwkrE154vQtvvPYK3y8/xpnky0yYeh7nEVb\nS27BIMitZIpkbFOMlaSiQEVOixSGQZFx9F9eZuX1de5+fsEBQkBuFcZKpiahMLJkGwFOSwhbslhc\nY267X6R3++2miKnAZv6cWlQLXZaZvtc7bsZWYE5T2zT47Z4lZKG+iApVipiPsfRmBQSptTXe/JPv\np3fLsnzROLaCj0nVyDI6qlh49Czrv/Aad37PaS59d5fHvjBm5eUCOSkQgzHSWGyaVALFUiCB5Lal\nlyYsvZGSr3YYbKSo3HDvvGR4SoBV9G4KhidckF8sWFAWNZBkWwKrXApRMnJME6H9QiWRb+zDIWFd\nAA5hv7rvbBLY+eyT9H/qVxl+zydZvNrynEWEIYVH1xeozQQxdozb5MYWnN4o2Ys7ZxT6O7dY+6Fv\ncfsvfYr+bailFQrH4AfuSxz40Cz4o0FAGiIdIVH9XtMSirbX5jqBPbKC/ua3Abj5E59m6ynNysuC\nzr2wv/uhpm7hOV9IWLg6YeeTbjxa//oAOS4Qua6yb4SAxEIOwhYIJVA7EzqpYuGSpFjMmBxJMIlg\nsizQHQe05T4RQmfuXoq+RY19nxm69EVZRL5/tHAcsF6I+oqg9T1fvGTZOZVw6p+8xfYPPEL3bsuo\nGYGPMbi5u9PFjm8jt4ZMz66X5wbobGn6f+EK9q+eZbKkymddipKHtsK1zWHvEUDI5fSLALhI72gr\n5TRXkrRiCEElnBgBNo6yD1hD8uhZXvozJ/jbP/C/8qf+5n/E5Jd3WLt93Q18QeMBQAjk2mqZEmS/\n8bJjgvhzlhZWSv01WK0RQUQ0pLVNfX6ulFAkiH4XkR3FRKlnscluF7m6gh2Pa6CR7HYdUFAKlBZe\nsM2Wq3fJqROObjdud9KKE1PMi1ljBbFO13cnk3VnWynS7QlSVECGvnWnXCH88z/zD/hvfuzH6s5a\nE1R5NywEYzEzKPxdMqFEDUCstlf3b7XBxCXkHzvH9PQaJlPlC1UOAtqyfKlgc5Dy5vcoLlx5nP5r\ndyFR7nsJfU3Ketl1FT2rJAGpkP0eot8DbdBb22A0xesXyY4uIQcjpqfXSAqDHI4dHXuaYwYDzOsu\nKEr6feTaKnQy9MoCppuUukTuXh1yLEcFwhiKZQdcxKi0FJbRuiIDl+IWg0BtyLdnAAGcXNrBblYB\nmpWiZA/tPmK58N+95FYQm2BdeYCldYnxHbZ5y1TGOdEVLbM62ErB+HgfkwqWX7iOvnodoxqBTzAp\nHWA8mSCu3KSjVFl+lCaoEFvJcDOI3CK1RQ4hkRKbSIqljHwhYXy8SxfQXcc8DEBhsKKnKM4sYB9Z\nQE0syaBADb020dgJQwZGG0piE+XEeccT2N6tVvtj29qcyH7oAAAgAElEQVRFFkfr17nvg3X3a8YT\nRCfDZLHTIB3L6Pwj3PrIAv2bBjH5/8l78yhLrqvM93dORNx5yHnOmmcNVeVSSSoZYWzLlidsMxge\nxg0PcL9umsZ0L5oG8+DRvKZxN2/1etBM3YwGzGiMTdt4wLawwa6SVJqlkko1V1bOc+adb0Sc8/44\nMd1bWbJs7Crxeq+VKzPvjRs3hhPn7P3tb3/bDUCYrn1v1e70JlqcmIhBhuj/brZHYs3pKA/SCn3i\nTl58dwbRVox90qbnsRn0+qYp2+kG4dY3sesD6PsOI04+HZUJb32AwRr1EiLDkT36LEMBycgDxNVr\n2ECyeDRLXHpWf8txGv19aGlq89OrLlbTR3oKZUu0I/FTkvRKE2tu1TBMPc8wi4KOZNKN77uflkZ7\nLxTwB/M8uAawFGFXEsfBqjRh3278cxeRuRx+JshaOg5rb7+N3j84FR+0lAb4SSYrAoDKBPo3ed3q\nZocFa9V1OlLBGOoeYx2Ao/Kvr9LuBlwCU8sr9J4bYfab0ux6YQdqYYny584Z3ydiriXWwrBcqruU\n7QYl7qLRgnQK1VtAC7BnVrAWPdTqWsd2KB+RSaPqdYRtR6wtkUmblsPBd+hmK2pXnWQACSFwqpra\naHeiS0Tzw3Wi08HrsuVH7BFRKMD6Rrz9bbtRv7TB8O/2dJ7XdQm1uNvqP3WTRw5x/nvLHLn3PD8x\n8jB3pefpkynSIgaDLCE5nt7g+D3nmD65l8LHn2LgCXGdePDLNX9hERYWyT0Ne788RP2u7TT6bbLL\nHunVlgn2ak1E2zVC+KUCjd0jfPjgJL+35zVkhmsMlyvsKK4ylK5QtJpU/Ayr7TwN32G9naXhOYzn\n13lL37NMOiuRnpDSktHcBstOP86c0cgsWE3qpKn66Y7jtKVP03eQoeMjFSoRLbllRUoLPM88a/6G\nw86/8kkv1bnyzl5aOwNUIUAJREQx+Jou2z/OQkAn9IdFiIKE78X+bdxJT8f+cuC36VYbVVmNdrvw\no/ehLShOqeu6HQkFlgutsqB6sI/i0y4TH7JRaR+70jIlVDpkNHRdlCCRKnyjvSl8H2ujQWopjdCa\n3EKG2miKhRMaMWdhNwSpDZCeudaZVUWq6rM5adPugdo4oMGpCqQnsJpEgsPaMgG0csBqQ2ZZI9Gg\n4m3C82kXJDnA73cJAfPrgIDgNYHZr93Q5KclLJvrJhqtaG6vTEr63zSD/+vDcTAvErG7Jm7M8lUE\n9d8QC1vPhz6NY5skXcqJX5cBM87bYr1wbLRt4Z95EXvndp7/98NkZ2HwMcPE7JCWCABFLaHZa5Ha\ncBl8uk1qqWGAoLCMPPEdIqGfI1wTewnfR7sWqZaHs2Z8knRvGi9vsTlpkVnRRpzahuyyMhpEm+bY\n60M2rR6jVaRsQapiSr8igFcYkBCBEba2IbOisT3dAdwZbSONWxJ416apjU2SWaEjnuwuZQwBJt8R\n5J7NIlIOze19OKtNIAMCsksuP/fbv8t7//yH2fmxU6z+5H30XIw/b5r6xN/xsm/zy9/0G2gC4wSE\ni3gyaBeyAwwCYicq6mAkEY5Z2CtvPcq3//xnmb+c4md/7P9g+9l5gyQmEUyIgzwhkMUiqlIxTiIY\n1k/KdNEIGSfa8zodLSGDevN48Ec1ub5vJtpIjd+KnPKozt6yTHZVSKyB/jgQUirKXFk9ZeMkuy44\nFtZAH+19o6wPpSid24wBoW6aedUms+5HmTmZySAmxxCVGt78gtn3np1mcgq+x08AId/9mR9h31xn\nCcLyvzjBf7o80XnfwhKO8J7cypKxMCsdgi0h3T0pEh1a2G1M6UhzSDWanVnQu++glXfQ8vp2j2Hd\nsNVU9D2Roue7Zmj83TC5c0vQaAUBdUL/IiwLjL4/CCBD4XEhgoy1wLJ6jNZQo4G1tImuN7A3s4iW\nCdZF3QTHVqlkJtlG03QLWlyOOh9Z+Rwik8HbN46fsRBCI1o+1kYA2hTTAYqvo/M5/fwuUocEZTBj\nMC2xmorMpSW8kR7aPWncvKT8xDw65dAeKyG0ZvARyR+/48/5/sx3RKdnf+EprF3bqL55hO2fTDj2\ntQZQiC+DEAbEVQkU/iZbt7D0daWQiXliq3pit5Sm1Wsbsd7z06hGY2sgCKJFU2DO3V9ZxS4VTVad\n5OKfeJ63KiHR2iyKypyAcH0c18euWAa81Npk39xgngydDUugLQMg+RkbLcEt2LTLDmIkh/A0qbUW\n9tJmsL3szAzdwNTaGnZtAu1YyN4yOpNGFTNY82voWh2RSdPePYKzWofFFXN8uRyq0QClyM5LNnZJ\nqqP7KE77ZBYbaMcy4oG2MKBU9GVbgEI3GUwUQGfzApEoCdPxPQtBoZCZGIwl7XkIJ4VwbJa+5zCr\nr2mRO2Mx8bcbyGvz6JC1Fe4+lTL3IAB3MpeX2TwyQq7joEQkVC1sx8wFEdsjsO7uZv8IS3/yNOkb\nvBeOFgvj4/jpNDKX6wrSFfmLm7TeeBepv3uGmdfYlMcOkV/0Td1/1cU5ew1RLKBKOdYPlel96BK6\nUkVs1ph7+3YGz11E1eukNj3O/spB0qUWk78e697II4eg3grAeZPUEVqDUAEj5hbVqUIMvmgNMtRH\njP2EcExF20Sf03HntKSFybHkGhyCHcGYy7wwg/uWHTR29ZNeWol9HicV+TFxV7bAsU22qk4KuyeP\nFVCbpjzdajTRnm+AJt9HJXWIwm0bgdaV50XJPen7iP4+85nNSqdIbYINqLWmfKFGZVsMVcp9O1FZ\nB/3Yc+Yc8nnU0f3YyxX885eMtprSOC/O8PNjn+Zf2N+D3jBznOwpg+dx/scd+j84Sc+fxGBixzNo\nWWbOldKAmreq/OfrZKs/eAL/nav8zL6PcH/2EsOWTVbkom5fddWmpT2aWlGUNv/78Jf50bv3U/p8\nLlrP/7HmLyyS/ptFMul0pFd13RO5sEjq/CVGPg3jA/3oiWGaI0OcGRnj8X5Bc1DjpzVWQ2C1BFYL\n3IJm9Y4cD/Q+H7WUR0tc4HjpKh/Zu5/MZ5/k1KU7mBspMbdeolFJs2fbIoOZKlc3elldLJEtN9nW\nt4avJZ6SeAMuMpNBNZv0PCepVMum+5WGgx9awn/xAgooHj1BczLKHMWmEz8326JuYsGaEP7f9VwL\nYfyCqETIN12fk/GBOHYb195YpjAT6Lck/SJpfJuwy6zVgrU9NvkreXIXVoxfHCQFhOeb5KGvEa6H\nxvjJIpRZCNdRz0f4ClnxEUqTqjVxllII1UNqw6Vdskht+qTXWgFzxEf4msxSGuVYNAdSNHskKqVp\nDAhUAdKrYLc12VWF1VI4Gy6pK0uogTIbB0rB3EcUqKfXNLklc02stM/afrP65ebN+aeqmvqIRHgm\nEE9vKKw2ODVYO+wxEbAN59+2nbVXtxBS82+OPsSv/dVb2PGxU1h7djL8mIuXlZ3jQxj/TQTj7JaY\nlJ2MH8cO9KacTpBoq8Sc76P7yqhzl9Fum2s/ex/NQZ/+xyR2K2YFJRlZyjL6SdLTNAYlpSlIz1cR\nnjLfZwdsmNAvDV8DM25CjSOlEUKBazThaGqytTYql0L4WdIrbdySQ2rDRdZdc51dH20J0mspo9tZ\ncGgXJW5ORgBRasOwBYUyx55dUeTmWqiUpDYatIYPGToYwGj0yw1ksYjdEDQGBG4B7CbkZ009Y7NX\nUN0GA0/raOxZbU11l2nakH7qMjPvOUB1uyK7IHnfz/8VP/Lf/xU7f+kkle++l4FnXbycjK4nxNez\nW2z6peyVAQhB3B0q4eyHXcWMTpBjsqlhtkxaMVjkCKyhQV583yS/8W2/w4996J+z4y9XkbWFTnVz\nIcDzOrKq1vAQspCPukhpz0Mmy7dkDPpo1+g4CGkABR3oOkTggjTnoQEaDeOAhtmtJJNJBmUEzVYs\nxBfqwxTyhgHk2DR29IAQZGYrIASt3ixe3qJ4qYpcrUR6DqKnjE50wdr/25uop1+Ir+Mde1Gnn43P\nubeX2oFBCs/No2uNaLIX28YQF2fY/ec7sUdHYpHqwwfZ3A29/3GIpSMZxs/SWadvBUJ0L7eV7DfK\nwmO5kYV6T+3OFsRJrSB7+yTtHQOogBaepAUqR0aLT+7cEloKyqIPX0kaQzbZyzYiqtPuDBjNF+vr\ntHY6JtFAByMSJ3dNFlusbEYBjXYDsdeUY8ZiLosIwcl6wzA4XBe/UsGxLfxD4wZkkAJVzOLnU2hH\n4uUk2dkGKmuzOZZhx0dclu8IgKm2S/Yfzhqx4nIJq9Ek63nU37LfiB8//Azp9nYqdw5jNxX/eupb\nzVgOTynonLX7LyqRkw7gXb0GOweN1xdeHkVE271V1gn0iAhA2UpXKEkZrY8ZraDScyvo2YUgqNsa\nPBHpNKKnhDdYwqq1sRaWTYlg2zWgrxDmPkEXi08E1yjBDEj8Do9XeAp8jeWa+bEjs+1rkCC0MNs1\nNVbdjCNtCVTKdNnTUuCWUli1DMwvdbD+tFYmgNYa2deLbjRQ1RryyKGIgeT1ZKjvK2G5mvSai7t/\nhHbJJn+limz7qHwaOdQPS2v4h/eabPDyBoPPtFk4lqLVI8iumvlU24LSlE+zV+L35bE3q1HJhrlG\nt3DACBGsRcQBfehAdztHW7UVFxJxaDdn35dHVDXjH3MonbqEbjQ6GTJKGTBooBdsi+Z4iWa/Q362\nhbbicufIAsdee24csIfH83UEg17Kln74BJk1jd1UCA+yMzVTnrhZRWwbozFZIjNbQTsWtW0FGn2S\nfrfNrp86dd2+rv70fWSXNP2/fYrS06CO3cbSsd2037xB7wdjMML+/OPs+3znZ+vfdg+F8xu0x8uk\nGy38+cUYYAl0j9AaWrdgzbqurHCrbYJE1BZl2FuCQdG5BY5wykEf2oWXs3HOzuAvLOIvLeNUdlGZ\nTJF5KoWqBWMnyVJSARsraDmtu7uHBmNMSNFRBqmbLRM4NrpKh7c4v4gNBdGzoZpN1Mz1dRjCtpGF\nvAFJGw2skVFW9udxasZ3iwCvYJ2x+vvMZWh6Zi0GdKuFPT7G9Lt28McbR1FLK5Ev4C+tYG8bZ9ev\nacRJMwZlPo+q1WKmUei76aDnjxRcR5n9J2LWwb2c+6F+3vba07y77xT7HY9CAgjytaKqW/xlZScn\nN/ZwZnWEO/rnOFa8gh5vwuggfJ0AodD0FqDhVhaW1KeAFOZeN47vZv5eh3ZJ4Wc1OqVJD9V587bn\n2Z1apKIyLHklilaDmkrzqcXbkL4BSPf/Yo3NQ6OML7VxnjzP5hsOcvq4pHBNcOh/TlE/NMKL7xin\nd2KDZtshNe9EzKjB/36KQYiAeD+RTCxOtVnyLLDDBDdoqQ2r+FaoKoSs9EigvhM0xifynbWvouoL\nAPx2Bxi0+K/vQ/i6Q1gZAG0C38ag0WuBQA9GQ22Hz9rtJfqe9KMktHZk0LkqYCGHiTcdJMWkFbGH\nRNjhKmy6oDXCb1J+bh2hFFnblMKjtfGngs9ZroclBM6KpJCywTPHrHIO9rUlKvdsI73iYlXbCK1p\n7h9hc1sKocBPm5IhlTJMjep2zeHvP8v89AHEtSx+WpOfFRRmfZZvt9k4oFEZj4O/soZOOyycKOMW\nBI2jdS5/ywd5y//7nQAM/cGTFKfuoDZq89tPvJUdv2zKU9ePDVO6VGNzVx6rrWMgMVlyeCssHDvd\nCUodomUQsueBGCAK5E1Uf4+RY+nv44X/vJviCzB4RXYkgEMwqF0UtPrMPrOL5vp7GaiOpylvthEt\nj1A2Q7RddMoxIL2diKGVjv8PSyXDY1QaUMhqk/xFAwA5a43OJJ7nI7SFtdnEEgJ7s2lY/OHYDMZa\nuz+LnzbnrBzB5o4M7aLAqRtdn8agJL2ucOqamfs09be3GfnVvbh5TWPcp3DJZuh0nblX52j3auyK\nYPsnG3g5i/qwQ3bFY+Z+m8tv/y0e/JdHsHdsY/h0jYFnbfys5Dd+8l2MfewkAHOvVRz8lXXW7+w3\n4E8Qt0ovvkUv1145gFAI7iQpysFrUSeXBB1fBCVAwrGR28YpfnCd++QZfuHHf4CdZ+aiNt9Ah1Oi\n1hLt1NOGptxd4w4Y4WjH7qTrdwm1mhIBRVhXHuoLGRHXUMFfBdtBqH8ECUcvpK5blgGcGk1EqQir\nG2QtiV9II64tgFakLmucwJFSlhW3Qt/Y7DzHp18wzKdsls233kH5ofNmzj9xmOZQmvRKm8LTs/gj\nveigU4uwbZhfBilIX101gEO4v7SN8ME+dYaJqVH81XXkrm2wGi8UwK3TEIKYHeSImEUQlm0B3WVt\nYcvaZEAl7rqdZilNks4XbS+g0W9R2SYpzAhyL/j4l66R2ahy+ct7GVrz4onFsjonxqSFk2f3tQpL\nEoUIKIdmUtMhGwTidqFJNlZI/Q1qd1WzidVThmYTb24eZ3UNa6AfNdiDtiWy7SNbHqsH0uSuKuzn\nXqT5qiOkahbjv/wo1sgwzX0j2A89bnY/MWzG0sIqPX90Cn3fYbjvMFxeYPoBwfApwfq/GUd4V8zx\nSAu5Y5LqRI7CP1yI/J8ws2Z94Qnk7QdwB3PRwq2FNEyhm2xbaSyFWjY3AoO0AG1LmoNppKvJPz2D\nWlm9IRAEBCBfGp1yzGdHC8ihPKmZnljPTOugfWZikQ0XuK1Mx0J6OpmtTpYohccuE+eRLCFVIDyw\nPJNR0UKgUhnq20rYQ3mshoe10Ygo3FJp9PIq7uQA7d4UuSsbtPqytHtstIDsYptW2VyHZtmiXRZY\nTY3QeQovrMYCwQM9uOUUqSDLk1pt4lRT5Gc1mRUXa7VG9fAAyhYID2ZeU0B8U4GJz64hZpeDc3qJ\na/ONtuiZC/RfQkuCQSEI012uJSTi8AGuPVgmdwEmP70FK0jFAbrI5/DOXwLAecEQ1eWRQxQabjR3\nhayO6ztyhgwTPwaDkkBVyFJ5uWVlL2H2jm14V6YY/M1TbLznXjYnbey6xk8XsCbyWC2FXfNIffo0\nZ3/7OPt2zZF7/ZmI5aRecxT5RaN2fe1n7mPyF04y8YvG4Wm/6TjZJ6/iP36GgceB3+r67l07APD7\ni+jTz2JPTlB8bgn//CUsYPn7TiDdCXo++pT5QMezegvGUHi9k6UaEN+DgO2jk474VrYVKyjU0hsb\nZu5EEaeqGToXg0uZFcjPeyZwCkCdsFStQ6sxoc0Y+WBhQJYyTT86O6Wpjk5jkcbjFqa/wnMrc7m4\nfND3oa+H+TeMMPQbJ9k8NsbKHYI9P/8Uolwy9zKYQ4Vt075zB9bfPQErq3iY5Je/tsaL/88Q+dPw\nxdduA9GMfSflo7NpnKtLkRZX6KOFwb/M5YL5UoPF9WVk/0RM3X+Uy/9K8f4jH+NbCxcpyxQ26QgM\nAvDwOdXs4Re+/DZKZ1IMPtnk2YkBvnDHnWSXBGJj4RaeQaf5K6tkT0O5fx9Lx0EVPTKlFoVsi8dX\ntzHV6KPqprm42k+jkcKv2+z4MKT+9jHz+efPkX8+2BeQ/8gj7PoIIASe1mTWN9jd3sv83f2UrylK\nf3I9aI3W1+lr2Q89zujQvSzcI1E9LrSSycFvzLV4SdMaYUt0FIuo2M8M54sgCW5eA4LuuiFYZx3a\nx9V3DJBbMAFv8jxCX6ldEDT7NU5F0HfWx08JFu6B2++4yqXpXfQ+ZyEa5nhwPbRtGd2xJCs6LCML\nk2Jh4suSsc5guF2rbUDfoMOtUF2+j1KGda3MZ0WzBa023p5R83kPpl+fRVmGvWPXBdIH2QYvC6Ur\niqV7FMfuuMTjL+zk+V+/He/VMPyoovzINN70DOf/8FWM/I1k4gMPYw30Uz++i+xcjaHHqky/X2G9\nUOLEJ/4lfbVr5hh3TpJ/ZganPozz5EX8YM5PVX2agxk2dklSFSjMhA0rjE9oOo593UfGVzbPN9c3\nZOH44TwoYyZOEjQK5VWkQGezqOfOMvsT91GbUPSdFji1rfVzlCNYP6SQbcHwI+b+VSYkjQNNilMp\nUwYWNtBxPSPNEfymu4QsKmET5hgdO/az/RA/0KbkLWy24odSCUHsZslgjGiEraMx6w8WEZ6i2e9Q\nGw7W1aDQQ7oaPw1uQdIugtUULN6jSQ3WKf15kfow7P7wJtqxEE++yMyPHsPPwq4Pb6IyDrLt0+5x\nyC16lN8/xfzCEA+OHcHqKZvun6KP9LNT6PFB5NI6jI+B7zP2kOTatw6Cht7zHr4jIoaSDmPDl+nm\nvHIAIa0ikCf8H4LFOQRLIM6GaYU1PsrK/eMcft/TXK324f/cEMWZxQ7R6MhCxDJY5EU6jdw2jn95\nyugGtVpRW/nQsdFBa1XabmcQHrCCQoZMBAxB1LY0Wf7WIXK4VecrCAIIA2LojU1QGnXukikby+fQ\nrTb+0tINrl18txvvuJvsXz8KWqPqdcp/dwG1YcSlF+/KM/bQCvUdJeyVVcTqWjROwlI3kSuAUrjj\nfTitNt78Aht78+z+0zWwbbzLV2k/eBd+WlA448NGNT63W2U3EqBMlo9BPKaE6GAFAXDvnbg5Z0sw\nSGhTR9rsjyeAtRPjZHcPYU2vM/H5umkB3naDGloVATwdIn7hpBMGJJZlQB7LChxyM5ZCkPC6TLAQ\nZny5vtEHitgSvgEFnBSyWES3Xaz+PvzVNXSrhTczi1WrRWw1XasxsjnCle8aYTy/j4m/uILarCD2\n7oRmm9RiLU5MnL2EbrVM84ddO2B2jfr+IbzbxnnXNz3CM797CP3CRcTkGFQq5liuTuMfHjAO+8qq\nAZGqLexN05FEPXcW58ghvHI6uL4a1Mues75uFnWW6LrXN6q51QKq23NYriaz0MKZWjKlEiHL70bf\nE7ABhdY4zRZWTwGVtk3JX+C0QAIM6rakw7QVPdfqYhpspfORzOKEn5edDpTQGmejhSim8DJGsFqU\nzJgRvkY5ktRQCeErnIpHe6iAn5Zk55u0yym8vI2XFbR6QaU0alcdeTFLccY4CqLZBiFQ6xtYw0Ua\nIxny1Ryy4VKc8bEaitRyHVGp4eaGaPUI7KamcUeDB/ad5YulI+z8CIj5lfi63EqmkE44It1BYqDx\nArGzLQ7sYebBPprHqxT/TjP80AIsr5k5P3mvQgYLoBsN7F07aE/2snxblqHfOIl66vnOw0iCy1qB\nlUKEQXl4DElWhjaZsnh8bMFa7M4IbmWJ97wgsQBQ/tDDpvS0y6xSCR/Y989PR6/VvuMe8h95JAKD\nACZ/wQBB0z99H+0ezd5fOoeaHMHqKbFxZz+FDz9iSu4O7UY9/QLepSuIY7exfGeBocv9eNemsQ7u\njfbX84enEOk0699xlPKHnwhYHmGwcZMjNJHwccKXpOlsCYnALKlFtdX130orKPAfhG2j0ykGnm2S\nmq+glULfdxhnapmxT86iV9dQjWawZvsRoCgs0aG7l0zMiZARHYGMiUQEMchjPhMk9lQSMEquy52v\nXVcCZ1mmNTYg3DZqaoZW/wjtB++i+OXLFD5TM2Dorm2m4cIVk9DTnod98oyp9AjPqVTASjmolTSl\nK37QrbDTV9FTszBmuqraI8PoeiPq5Aeg6vVIYDoSJr+F7s7XYpvfcy+r76zzM4c/yRtyV+iXuQ4g\nKGlnW6NYG7Zp85236HmhQv+XKtBsRZIDrxTzV1Yp//HD9D22B2+gQGM4h5vLs5rqZzEj8LNQmvLZ\ndmq6M/H7UhaMS//2XdjrLbZ/eBXv0pWv6riKf/YwPc/s48X39qFygXMT/txsS8hx6CDO0FrHZWHh\n+zoot+kqEbNHhpl+cCBmBXVPmdr4xKmKZuTP1qLuUUiL9PpRpq7sYuh5U86lHTsQA5amTCyTCpK5\ngW/ux2uqliLaFjBxXYINIoJ26MLzu+YXjU475vXgcHVwntg2zlqD9p5RclObDFGi2WuxuVOgHFCO\nmeLavZqF/S4H/+0lLr77IHueriO/dBp5+CCtwRy6lEek0ww8lCaz5mLdtp+rb+9n/As1Vu8sk97w\nSX/aYvvHL6M9Hy+I3fTULH6thtNsRjHIpV86wc6P1XFmVkl/8hrVd93D+l6LnvN+NGa0ZX5uugkR\nAyzJ6oaw8iZMWoYdQS0L1VNEPWfGwMxP3oeX1ww+LrZkBYng3Pw0jH0RiufXkZUGzV0DWG2L0lWH\n0gurBni1LNMdNCw7dBIduoP4PmLUWzIqTbyu62nABIoaLLl+/F74ehfTKWQeWXUXr5gmN9vEqTm4\nOUlt1ArGjpGVsOvQvqNO70fSDDwu6T0r4OGH2fyee9ncU6Qw3UTu30n5so/V0mjHYuF4jsKsQlng\n1BXTf7SLnY+u4b3mKHzxSWQuhzO9Apk0YmndxB2+z4sfuJPdf9UisyKxay6VHbkAONR0iFu/TDfn\nlQEIaa7rJNYBvoSObcgMAjhygJ2/eZ7fHP5T3vqr/57xhzZIra52ClrBdYGSPTIMuSwql0GsrBtH\nxPMMWyh0IsKSsZDBEGgYGbAHhBOIhyZbyV/nlHe1bQzLyoKSMSFsozSvNBodtaTGslBVQ1cWqRS6\nWjOAFIZlEQafEWDl2PjrG1ilEhsPHqTw4Ufi45CWKSPyPOzREQafrOOVMmRnashSEW9xOd709gO4\nvVnkPzyJ+qYjeHkbOT4A8wtGNOuZswgnhczlSC83WN9foL5/gNyLGFDoBtnAm2IhMygsW0tqCRG/\npn0FrtshiGjv2kF7rGdL4eikCQ3Fawa1F75m9YDN3LdY7PlQkdT0amcbxhAgSDqeIXoe0i1DkdRo\nIosZTEJKAxQEC7VWvqmBjVorB+1Bk852wB4y4tRmLFp9vWZStCwjVA5BRtWwv3Z+6Bpzb5lg+MkN\nVK1Gc89B8g9fRmqNDp4FmcvhB1mi0Cmyt/fj5mz+4qlj5N+UZvypFu2JXpzpOcTu7fhnXqT89DKt\nbX1Yl67g5Wysp85DqRg9Y+qp57GO32HEj4Prc9OTZ2EWnk4gKG7VGAfFypG0e1Ok1zwyU+vouUXU\ny2XEKW3EwgOWhlzIYE2ORfuOvMQkqJAcO8nXAwHTD4EAACAASURBVGaQCIOSrVhoN8pgh+fTzWby\ng7FpS4SnsNdb2JbZb1JXSTlGAFs0XOzFDdzRXkRa0i6nsNoKbQkyqwq7Yai/1YbN8LElFttDDHt9\n5M4vQ72BqlRILdXY2NlHQSn8UobcbAMv5yA8harWKE63afan8TKCVNpjT26Rh+9cZ36hl9G/NQLX\n5lzETafha6CTAaTi/wV0dsI060fjHceZfr3AWdcMfThL+bHpCPjfSqQ2LD+UjoMqGMFpp6ZZ/cET\n9P1eIlMdUOmFJWKG7Y1KMLrLyG54gjreb/iMbMUgCs45Agu+goUO8OxP3Mfk3yyzfLyfgS/P48OW\nnawmfvGk0R7aux1ro4Y/NY2zq5f17ztBzx+e4uo7e9mWvZPmQIbMJx4lu+0e1PYRrOEBVM4ACtbg\nIMKSePMLlP7kYdSJw1jPXAiaQQQiADfbugDdiDGTBFeSTL8ui3QIuy2hsyMuX8O5bMaRHBzg2hvz\nTH4G5BNnY3YPdOwnTGyZcUTsc9lOZ4IuUd6vu4dFN1gdfKZDGLtru0hMO3zfdY3gfMC6ltkMk//x\nJK23Hoe2Yca133Sc3FNTkM3g10yZWlILMRyPamEJOTzInj9pMv26PIXPYdhBd9+BPHPJNGeo1RAl\nI6RcO7qNzOeeRncljFSzabSIQnbvLXR3vhprvPNuFo5Z3PEt5/m50X/grvQqZZm9IRgkkdyfO8el\n1wwyf0+J8yuDVD7Zy+DvvviynvFbZf6LFxAvcp2umtGqa+J9DQxIe7NJfXuJXMv92o7p+XPs++AB\nzv+z3gQodAsoQmEs4mk6BNeV8UOFbaE9H3xlkn8J1vzsv7sPuw7ZxS7mdGjh1BX4T8vHetHHT9Dq\nM+LNIyc3GJuuGP84LLsJdVltKwITRKjxGjJShIjBofBviAGK7iRZeI6uZ/YXnE/IIBHBdjqbRtSb\nOIHvnb+8QXbeoTCTNvpHtkS6isagQ6oimfvegwz92kmsgX7O/to9bP9EkMBbXEHmcvQ/sQYXplC+\nT26+D7fk0OwT5BYUpasqkt2wBgfxl5YibbTFd+6n52IL6wtPUJgSWJst02kNKPzlozhvuovNHTaF\nuVtYdQGd7J+QFRTGMrYds2sAshl0vYF67iyyWOTsfz1A4TyUL9Ah+gwxGGT+MWCisgVrd/bg5ntx\nC4L+My6FaxvRmBCuZxqdhIlxSyB8THwcMnvsRMIiPP4o5gqApO6EVxivaaNfpZ0EcKQ1EIBKlm30\nOlfraEtgV1pkHIv8rB132ATcosPI3zdpbHcof/kKqlJl+qOHmPyZNVrDBQPsSEl6LU/m0hLNXYP0\nnndpFyy0NA02+p+rgZTYT1xA7tphYqkvPGFYaPfsIjNbRz95hvSqRNnSNExIW5Qu1ljfn8duEotb\nfxVTzismz3Ed9TnR9SIJtmilkdkMUw+WUAgefOSHGT1Zx1qrXQ8GRTtPXBHbBt9HVmr43R0wdOxQ\nxZNmglYP0UQkRBxMaq0DwKgLwr1RwChk5HhF5xiUB4XAgA5blvuGit3xE7Yqr9WiTBrDAxEYFOkW\naYUKtF10o0Hq2gq1iYxpod5XRkgRt1adX8ItmAnJavlk5gIRL4jE1IQlETuMsHTvc8bx8oYTueBb\nyRKCrRkD4WvBde4WufT7CqaeOWFbygMojd1Q2HWFbBtRMavUNp9NZii2cIi3zvAG2ySD80RJYjct\nPeo21AFwJphmEINy0Vi1EtpVpmtcKNQu2i7+7ALlSy6ikMfav4fsbA20Qm9UTAeYoOPedYfe8JC+\npud0mma/xt65ndTsBqrZZPFeo+Hgv3gBu2o+qy2BqtcjzQp7dMTsZ7123b5vtW3lr2lhslVWU+Fs\nGpaLSKduDLx0mbAkMuUg0zEol6Q/60C/p2ORAqJWr1seZxcLKMFU0cHPdWBRGIB1vy+JV4KgRFG4\nPqLlIpsusmF+7EoL0XLxS2laO0xXMT8baE+kTAc2u6lJVTTpNY294rBezeKnNK1eO1owZT6PWN0g\nu2qcNrfgGIchPO1yCaE0Tk1jtTS+L2gph0KmRWWXwu+PhclvjSWetyRDKBF0RMGTtBC2w/pum199\n8x8wcWIGu64MXRm2BIOEiLtu6lYbubiGM7dmrpem4zuF1VleFLE4wh/i7YVjE2rvdbxuWWYdECJ4\nPxiLWkUgk2HPbpGiVP5XLAFKmsxkmPzrBRCCgY+ewb9w2VyHG7Q1N+LEGm+giLVtguU7HRa/2UV9\n0xF2fGSV1YN5pr4tWKc++ghz95ep7i3j5Q3oLVIO/vIK7hvvAqA2kYnK88z6+7IP/etrAdhm/ozv\ng45Kgm8wt2x1D7r2G3ZRC8egzmVo9yh06vpS5bhELKEJSFeCK1qrDLCjg85+EZgedvfc6pijsfoV\nfIPE+2H5Y6RnEh5Gy/hC7huOkXvO6A2pMKklLfwQJE6YajbBVzhza0YIdHTIfEfClwGM/wi4Rcto\ncG11iGEZihC3JrD/GmzloA37arym7zx7nRVywjwX/g0SeBLBLtvjPf0nee/I3/O6iXM0+/5pnOt1\nprXxkb/GcljRaJkESP1r66gGoJ45S3pVELejvgUTTig10P18hv5FYg1KgkHtB++CgPlzw8NOuhdK\nIz2QPigbNm7zaIzmTcCuYnCnIyDvaPYSf0nUSCJaixIHsFWTiyQAYFvxuYafDf3nkBnqBhIProdo\nejgbTdLLDdLLDVIrDbJLLpnFJo1Bkyxffus+Jj6ryV5eIz1fNdfU95FrVQM8ptP0/9FprJZCpcAt\nWGxud1j8kfvMaXQd8+DpNTZ3GH+wPqoRMwvohWVksUjjHcdJf/qx6LkzmkncmrWqu2xZiDhmiWIr\nHQF1/sIi4thtXPqp28ledcgu6pfXMEZgGFAa7Aa0+gxAFAFR4W+IwD3hJ+5pNwEgPNYQZAyZTBAf\nf3KMBNvq5NhJWngNwhhMgfCMnyybLqJlpDisass8BxtV5u+x8RYWOf9/30Huo2VYWCY9vR49D+kp\n03nOavlkr1bILRofyG4o/IxNdWcRdk+iLYlbsBFHb0Ok06TW2lirm1jDQ7gFjbPZxt5somxJZWce\nNGa8hKfxVYybVwYgFB24SnS7cGInIcq+Sqz+Prw7djH4jMeV7xll5/9Zx7m6hN6svHTWE+KAqNlC\nLa10ZFKjLFYyuE5kPoUlTSAXZMgiiqUIuk4ETlEyi9LhKEfsD9HxnfGhBQPWjZ2R8Dt02No+1CeC\nKFD3l5awd+1Azxoqr71jG9ptm4Dedgi1CnSzha7WqA9ZOEs11o70GVApZMtoTfpTp3EfOIafsVHP\nnI20iDKLQZnd9gkuf0c/+rHn0Gcv4acls/fnzDE2mjEgcbMtaj8djhcVvx6JcypUtXrdGNGPnyE1\nu4nV8NiK0tvBHPEUyha4RQsvC6kzOexK0M0npB9CgKoHC6CvggU5cW3CCUfFoABKGWZQYvEL6b0d\noE74GolFJqn7EIKModh5OMaSjLaUgyrnscZHSH3mMebetQdVSMMz50FIw1DLpA2A4ftBZjQeq9al\nWdyCRe+5Fn1noHLnMKyZjGpzUFD9rnuxBvqR1xaxSiXTfQ2TmW2+4Sj+xKA5pPOX8HIWVgAc3ewF\nL5m1CDMWUZt5MEFPcP2dtQZW06c+kaN6oI/W4R2wcxJZKr60kDmYsSENw8vq70P29lzv5CTBGyGC\nrlJi6x+JKRPrdq7CAD8cPxH1Whq9ofCrwvctEfxY8fhN7iu5MAaijTpl4xYdNnekccsphA/aNvvx\ns9KApk2FXdcUrgisJ4v0nIeNXZL2hGnpLAf6QGuKj07h9+ZoDDrItSqZS8toS+BuG0BZgvJlF+mC\nvprnr6fuZHd5mX/2wN+zvi9v2HD5XNyq+qaa6AzMtZl7YiA+BodlJo01Mcrofz3Jf9tzAPuBKaZf\nb/HCT++g8roDyHLpur2HyYGwOxSWhc5nyc7W6Pv9U52OcyLwN+CTTdjOXEgRrZtaabPeKf+6ACla\nB7QOPpsAt7XRyNBu+8aB1VcRcKlmE//cRabe1n9d2a7V22v0WpImLdRzZ1m4t4h36Qrj/+Uk+977\nGGsHsshqnb7fP0X/ww7e648BMPLLJ8l+7FGsLzwBwNIbtlP59rtwAt2QntNziEO7aT5wJ/qe27kl\nmh6Bhcwro9ETOqeJNWErC7fvahNPstweIEiciYlRFu8fJL0sSV1bi0SiIz8k8HuMrxCMt8R3R8Ck\n0oE+or918iv6QDLAU9HYE7JrPuk6x+T7ofZiWLIve3uwt0/ifO5xaq87SHqhhjc9Y9b0eh3ttpEp\nhxv5H95EP/5gmaEnWuiZeazb9iNOPQ0Ly2y851649050kKwof/FSdFzuA8c6x6PjIPK5rb7iFWn2\n+BhWG9z5HB+efhV/VTnMM22LNdXEw98SFLKEpCQzjFnGN/7bqQOUrqhXNDvoG2XakqaL1ur6V974\nJWzycxWEZ0BE4d+CCSdMDCZFo5NxiudBq9XRPa711uO0emwaw4rN3YJmrwwC9K59azoCT22Bmxc0\nxn1wFIZRrzr9i8hvNYwT0wU6WENsyySOkn5IGPTbMTsx2l8oHKxUZ8I09K2THaahAxAXLRfhesha\nA1ltIeotZL2NqDYC0Eex/edO0pgsMnB6hfznzhiGyguXgu6rFmrJANL+5iba87C+8ATNPo2fEhSv\neaYc6rWvQo30AzD1H+5DHL0N9cxZej9omL7bPtXAX1tDVSrIwX7yl4wmbH5W42YlXlrS6LdunY59\n6IuG8WmoE5TQetKtNv7iEvrVR5j75jIDTynycxo/gxk3JPzrhIWxlRYE40ewdgDa/T7ZmZphrVkx\nSKMT5Vw6jK/CexuCOeHriY52HX5yN7gT/gTbiBAs1NqM3XD8eQE+4PmmdM3zEW0PWW8jg99aStIL\nNWp3jLLrVy/gf8tR9vxZjb6/eBI9Nghrm6YxkK9M12Vf4cyuoZ47y9q+NLklj+qYxdq+NH5KwPmr\nLLx2mMKT0yzeU6Jx2xj1sQzNPUP4i0ts/1Qba3EdMTXHxq4UyobidIv0uovdULQLEuW8/DnnlQEI\nRRhMIuMUvuUGGXkpsMdG8HePYp+5TO6hM7BRRQQtuk0r967T2cqp0hp/YbFTTNhJRTWQwkpk0ULn\nybFNtxcw7Jyu/XZ0RguBidCBkp2Onk4CTokFOXKCPC8GAcLPhkBVqDkkBdbEWPTZ1XtGULUaslg0\nnZwIA4UAXFIGwKrfvZuR330CtKbRL035XGD+yirW/j3MvTqNvdGIrsv6e+6l1W9YRMv3DpIKtBhl\nNkN2oUVqQ+MvryAyaZpHdlx/vW+WhQ5xeO8SZXva8yIRSau/D5nPx5/T2tCNTz1N5vwCdt0lSYNN\n/taWYHOHzfoeid2A0YdbWKvVuK4ZOieeYCxFzK9uDZfQEn9H2iHBPiKgsOvviFEmZBwUh/TNEKxU\nAZAaLrC+MhoKjSbVPeVI90P4Gmt+DZnNQKtlgNBgnGutgza7Puo1RwHT7SOz2KLZ7+CnoHB+HX/F\noN2NIUOpFY6Dv7DIzA/eHlFhATZ2O4hGDHqqlIRnzpuW5DfZwnIonZw3ksF2GDOtmFbXzswquek6\n6VUXPyOp7itTO7YNvX+7AXm+AjAkshkjGB90FRN+rB8Ugz0ypkMny0oS7J4OcIgA8HkJtlIHQJQE\njcLpR5r3dELEMTqmYMxqJ3iWbElj0CZVMYtpkpYaMp2kp7FbmlRVU76sKF1t4lShOp4ytOLNqpmf\n+sr4WRunoRABLV+4JtOSefQ8qbUWdlODhuWpHkp2C4Vgc5fA2zeOO1zu7OZ3k0zA9YF7EKgnGRdW\nTxkxMYo/Pdfx+d3/7mH2vu8RnE2Psz8+yfrbbkP29XQyEMLvsm38UQOg6cfPxK8HbDNh22b90sbR\nT+oERWtNGMSHpdAy0f0yaQGrKNrupVgqWzFV5I2ZRNbwUDR/WAP9jP+Xk9dt46+tdazL1m37sfbu\nBGDsU/NsfO+9iKO3YY+O0P87p/CuTCGO3cbKcQ/780YEf/r99/HAcxXU/Uepf/s92E2Nl4nPo3bb\nMFe+rZf035xGPPzM1uf3jbQguSWk6ADSRCoVl4p1s/622EcEBIbjsCsLKyxJ+8hu5t44ilsQbPtM\nBTU7H4E5EcATgkHQwYwRka5dd4YkkXzYik0kZASQhiyz5Dam3C0xt4VzUyhcndQoCsZz/bbRqGy+\n0Wchrs4ibBu1thYlfFTbjRNCgDh+R/z3Y88jWi7NPhsxNox/5kXzFWOD1EYk9tya0QuSFu2DMWto\nfU+qI5HjHd6Nv7LaUXL+SjZvZpaxX3ucgx+4jPzlAT74xw/ynlPv5WfnHuBUM82aauDq64Ghlvb4\n083D/NTz307xz0r0fOLMDb7h/9+mZ+aRrX98yY4+/Sx9zwjy09IAQzfbQl8wyT60g5hGaXS9YcB5\naWHt34M9MkzukUv0PHSR0S9p8tOadgk29kBjQOIHWilAJ6AuoDYqqOxSaKnpf9ghO10z/l84rwVs\nDuH5CNdDVGrQaqMdu5Od0Z3oilg+AQDkep0VIeHc6SfONTouEQXzouV2lqiBCfxbbXM89SZ6eo7q\n3jLi3BUArr3RQqxtmjlxccUI3vtB2ZqU0Zorbz8AwLa/bVMbkyCg54JL6smLke5fehUqewpYh/YB\npqux/NJT0aE+/zMDppsWULzWZulbm/SenMZq6evBuJth4TUPk9zh/B3+L6XpcK0V+uh+nLl1xj6/\nSvFKHatt2OJ2U+OnhRk3N0AchDZdxtYOgdvns+NjGllvBUCmMCLkUpoGO6HgcwjchMcTHm9oCT2q\nCFgURnuqowSxCyiKRLxDwfMkw8z3ze+wKiQEidouCIG8eI3aziJOxcNfWuLyD2r06WeR/X2IhVVT\nZZNOx4Cs1niXr9J4590M/dHTtIsWPRfalK+Y9W797Xcw/OGzYFukNzRLh1OUnlkm/cQl9H2H8TMS\n79osmw8cYOWES3bZQ3iaVo/D1IMSu6VJr3sve+y8MgAhAVHnjaCbRYcgpu0gd+9A9RWRZy6jag10\n20Wtb+DPLxp2SqKWUfUW0IXsltRBXesqUxEiZgIJaUqKhLlpwpLIQh5rfBR/czOqazeUftnhFEXg\nUUTDDF5PMjNuVP6REG+M9pVkK0HH/mRPGbVi0Hx7Ypzex4z4oW63OydRIY0DJi3k9nHcooVqNnH7\n86Qqmuah2Plpvu1uNu7sZ/gxNxKFk30mo98umuPq/YNTDD8cXD/LQj7yHIO/eYqV957g8o8eIHsx\n1iS6qSYSCHb0fxDIttsGec9ksPr7EI6DyGawespYvb1RYAXgXZuGh58hc2kJy1UdD5HQ0C5ZrB/y\nUA70veCSnt2MJoKo1bzrmkVWKXStji7koFyMJ5LQtO4EELYCL5M03ySQGAV6ZoHX4aQYgj/hs+B5\nndl7KVCVCmr3JE7VvC5vP8Doxy7jj/Wb2u2QjeR5Rgg5lYr2IRse9qQZM/JLT5nAvwH+2YuIo2Yx\n1P1tsvMtg4IDEx+Z4vL/Noz6piMADH95w3Tgu+8wwrbJfPxRhCXxS5mXcaO/MSZ0ghIdAS8gXIW1\nWjWtUoNFwF7cIHVthdyldbILLZQt2NxToHZkHDE52jGeIlPKzCf5nAGfkkCP7FqwtBGZCxccbXeX\nM24xToKSr7AUrBsc2ur/sF09ik5gKGATdZSkCYF2JNqWqLSFlxXYdUWr18ZqaUOrVxrZ1tE+7ZrC\nbmoyqx5aCkpTHq2ypL5/yOhZtV1ou6TmK6Q2PHSlYpzCtENjNI/eMYa8Ms/yq+Ceb36B8V3LXKgM\n8KFn78bLatb3ZLHqbTP332TTdCYtomcvAcjYY6Mw2I9//tINy6Gczz3Onn/7MH1/P8XK/eMwOWqC\nda0jUEjkc4gXLuM/f67zGBKlnIYRaoJ6e3SE5tvuxiqVOthA2k+ARco3xxSCE6GTF2zfIT69FSgR\n7jc878TrN2QSlQqRcLS/vAJC0PzWu+PrF/wWgTC+NdCPqDdRF6/gvvEu/POX6Pv489R2FNBK0Xrz\nca78pxOIc1Ps/WB8LSY+cJJPvP/1XPgBi9xHHzXirn9ouiOuff8J0n9zmm3/4SS177wHawt21s2w\nzk6qgUZPwt9JbtcN/nabKSEPzj8BiMj+Pq69IU11u2bkZAV5YTpim6FVxKiJyrOC8WANDiLz+U6m\ns9am3DBk/CRK3Tufg66S/8AHCd/r7iDbMX5Cdlqi0xqY8lKVkngLhmU6+MgKIpMxzJ0O/8vvOBZr\nfi0W6PY8RNMlP9PEDzr2AdR2lbDrGJ3GYB/NAYf17zsBwNDvP2FYnXt2mi54YeAmtmBKvEJNt4wQ\ndPpTp5n4wEn2fqDB4791hB946If4v+ZfzwuuS1W3aGkXV/u0tMtzruB/PP3N+A/1U/7kmbgj2/9i\npup1UleWEAN9/+h9DZ5apjBz64SnhBU8KyFYC2jPR21uoup1rJ4y9o5J04nLthGZDCKTpvTYDMOf\nucbk5yr0P2cGfXNA4OXMM6BF/OPmBY0xH+Vo+h+36H+6aoL6MGkTACkiWPtpNFGbFXQQoIsg7hG+\nivWDohKdBIATJsxsKy5562Z/hH+HCbbwf8+LwaRu8MDzUStr+K/aj9U05YbuA8c48N/m0MW8mbva\nrknyuh6qWgOlokoTWTHziP3Q4zhVzcqhoDxzfQN753YANg56+CmB2DTb1g6NUP+2e/BeZxiupadT\neH15Vn/gBKmNNrvf/RSqXMDL3BhM+YZaWJGQBN9CBo4Q+POLiJ4yanIEe27N+Lr1FnKtSt8Tq5Rf\nrOBUFVZbk67EMZXQdJyPsgSrR33UtgbbP67JTFeCZK2FaHvobMqAQW03undio4LfX0AVMzEwEwKG\nSSAoqV8nTAJYO3Y0vsJux+H7QgUyDo5tgKHw+7qTIyGLKBRJX6/gH9iOm5Wkzs+iX32Evb9iGvyE\n7DbteeiWiY+05+MvLGGPDFMZt00TqMfn0ALaRQunrij92SM07tnD+j3j1EYl+bmAWWRJWr0p8i8s\ncv6Dh8nOt+h7xMGuutRH00y/1Wfv+x6hdLHG2r4tkn83sFcGIKTj7FTkeIQOh5NCbh9H5dLo5y+g\n2+04kxUwQnTQmUttbKLbbUTLMx1tmq2oJSGAbjY71PMRIlEC5iNSjgGfCnkDOAWZIDVrhMGEFHBg\nF7K3B9VqdbZkTTJ+kq8lHaakcHZ4TBGd2mwf6RIldG8SG5vAMpuJFun1ExORk9NdAhd+XuZzLLxu\nhPJD5zn/K/cyfyJH7wdP0eozD4U9OUF13KL8uXOGphdauUi7LFjfG5+DfXYKWSzir6yiPY/2g3fx\nrh/7HNs+WUGvd3XuulkWdEdIllOhlSkNrNUMINbbEzunlmWQ7kDXRRaLcVYc0zFHfvFJ0vMVMzkI\nQ3usD1lga7KLmvRSPaYlhuCOryCbMaBMq2WCuWrdTEJao3tL+KMD6Gy6c9LqRqij/1U8IYcWtgMW\nCQZZEiwKHe0QMQ8XMUA3msjeXlpDWbIXDHi3eagHf2nZsHaSXQCEGduqUjGZo+EhePRZdMksVvb4\nGOVHpun/uMl8bO4tYu3fg/alqWfdMOPTuzZNc8Rj9ptz5j5cngatsdcbscbFwd0o51a0UAjO1Q8Z\nNERt5YWrsNYDMCgZGAcMLNFoYS9ukr9SIbNsBOFWj/ZRv3cPYmw4DrItCxwnFufr+OKg84Jjo9M2\n3mCJ6qF+Vg/3MvvgEHOvHWDp7l6a40X8Yvo6JlDE6gn2FZWSWYltLNExy3d/HojfTwBDSHMdtJRG\ncF0KVMqm1eOQW/Sx2gplY+q+hfmsdJVp06mh1WuRWXbN/56m+MgUo59dIL1UR/eV0TvG0HkDAjpL\ndfM8BsebWm/TGilAb4nSecFMrUzLs3nx7Di9X8xQvGK0ikRja6DlZlhUWhMBtkHywklhDQ4acc7L\nUy9rX97MLOUPPczy8T7W3noIWSqiGk10o4E3PRMJUZoviOcMmU6bhgET4+ij+7H27YZ0iswnHqV1\nfC/y9gM03nk37QfvMqBDCP4ktYVCACgAh6KfrQCIbuZPGMTfSNcmAHjs7ZPoeRPQi7tuZ/UHToDW\nZD7+aLyf4Ld22whLsvDt+9CVKv69t3P5XYKl/7kff3OT3EcfgVIBLyfZ9ukmspDH3ohBQXHsNjIf\nf5T+LzumuyGmjFqcfJrePzAU/faDd1G4WI07l95MEyIRmIlone4oyQnvQeg7BGDKS5kBdEyZu8xn\nae8cQgsoXgbr6kLULCPZbS7UArLKJZPdzGTQtVqc8S4UsAb7465jyYQLCWArZAMlzrHDL4IOnavr\n9ITC8ZYccyGQeXAnucuboHzabzoOS2txKWXiOkbXABC2jXfNAGDqfsNKU1enESefBoJumcDy7TZ9\nL7YidisYILs6YcSIdauFum0XrG10dMG7rqzxn5Cp587S/zunOPhLK/zDh1/FD599N3+6uYdLrsu0\n1+BLzQz/+dpbKDycZfjR2v+yYBAA0sKbmf2qO4xtZf4L56mOS5C3gOkRyQaoeK6WAh20lbd6yjA8\nGCc3k89hkNiz5lbpfXiGkZMbpDY01Umoj0hT1gIoR+AWBKlVi94zksHHN7A2GjGYs1GBhWVEo4XO\nptG5jAFr9m6ncv8u/Ok5vEtXTIVDq20C8iT7NzympExCQnTaHMQWbMaQzZG8FuHrITAUtBnXG5uo\nqtFOzcwZPTKhwJ+dpzXRg8jlYm0zAN/vYAt6V6/hve4YVqnEwP84Rf/zLrkrJt7cPDKCzGTIztpk\nV/yo4136U6eZvV+QOTePNThIZlWz9Ko8pak2+vSzAFz5zj4yG+rWAELhPQiaXCTvg1pbx5oYRZVy\nWKub6JRjABLPNz+1BnKjTv7iGj0v1rCaCj8taPVIlBUnLpUtaAwJ7IpF6e+zZK9WgqYpMmIHAYiN\nKrqQpTXRA1JSe9U23FIKP++Y8eX7qFw66k0ZlwAAIABJREFUrq4JE/CR5lEs5SFCcWmIWEAhMBQm\naTsYSBCBRxFgmWAUEZR9C2WSoN78ArWxNNbcKu7BbaaBCATPWHAdywW026Zx5yRDv36Synffy+Lr\nxsnMVvDTgux8A3nHftb3OJSfXcHLQmG6bYgwyyuk19qc++ExDr5/Hrfs4NQ0Uw/mcSo++977GNZA\nP1ffXCQ/5/NyS+O/4hATQvyeEGJRCPFc4rU+IcRnhRDng9+9iffeL4S4IIR4UQjx4Ms7jIBdE7bF\nDunF6TRy3050PoO8eC1uidpNVw5EmHW7bbI9q+Yh9McH4npU24qEckOzBgZi6rWQyL5etNvGX1uL\nnAt/bQ3VbBqn9q5DyPkVvLl5rKHByMGKgJxuR+dGQoqJ8rEkGGQ+YhzG0IEKf8JafFksROwgcdft\nFC8FE1cC0EheQyyL6hsO4RYErcM7GHhC0HPBx56cIP+Xj4DWzL95ErthAKWQ2miPj6HyGXrPtdn+\n1ytUvvtewGRNZD6HPTqCvWMbC3en+KMPvQHhqo4aZLhZY4fo+oVd2gAD6NVqiHTaILRSxpo7ygA4\nIagibBtZLl3n6PnPn8M+eQan6qIcU0+Oo3DzAr+QwhssotMptGPjLy3T2j1knOGUg7++YSbIdAqW\nV/EXFvHKWbAErclevLEg6xRMUDoBBkWlYV3jR/sqBoGSjKhkV77QwnLF8LfSqHodkcugbWGcHGnh\n1HwDiE3PRYLlIUshdMrt4cGoBS/zS+QXPc796HbcbQOmw11/H6lNn83b+3EWHLxSpgPMPPizF/ih\nd38aa88Ok93dqHUwHrQjafc4QbvEmzhuIC7BExgnyZaIlo+1XjWAcpLVZW5Q9KfwFbLSIDNboXSp\nRmbdp9lnsXb3MO3/j703j7Iku+s7P/dGxNvfy3z5cs+qyqqsfemlqrrUXdWCloQQAoFkViMvYCMd\nmDl4DDM+Y/CMzZkZjpex4WAMxgs2tIzBYJsxAiEkhJDUkrpa1Xt3Vde+5r7n25eIuHf+uBHx4r3K\n6m7J1WX7wO+cOpn18i0R8W7c+7vf3/f3/Z7cZ0BIMK45W2V0s2mA6li1SxUyeMUMG48WWXx3ltkP\nwOq3dMh+xxJ7f/AKAz84z+z7HWa/LUtzVx6dDFo5hOiCP/FqSPgv/rc48BOCRv0hY//i72UJVNrG\nzTl0BhMYTQCziNtNI/zX3yMeAqhOuUVivWGYPNk0rG6gX7yAaLbxCikDVrmeYWhlMwZ8A6yWR33c\nQRXSjP3meTq/OoH6gxKTXxA4NY2bE1R3SnTCQSQSPboeD2LsiJDZEAo0hxvkZBJrcgyRcAxzyYoB\nL28jik+fZfC/vMKdj+6m9uHjWFMTWEcPUv3BJ1DfdBz/vSeMnbowG1Y5XGLzhw2bgXOv41+5bsYs\nYH/+ReRWldRym8yFRSrfewJrZpdZ60IWRt8mPmJo9G20o/ay8HX9rJX44/HQGu25uFNDEUtTXL5t\ndJDiEQACwraNuPXUOK2SYO1DB1h7NMPBf9Vk4idaLP3EGayjB9ELy+Ru1dCWYP19uxGVOtaRAwa0\nlqYVunilxeIZMy7C1liZSqHe/SiZyytoJ1jvQ2viB7hWRbqEtmPW9z59FiEDN9U461jEkvE3Ywu1\n22jXI3F7jcErkKiZlhAxMWoYimFesG831tAg9q4d6GbT6MU5DqrZRLfb5ruaGEVtlZF7dnUZa7FC\nUz/o03+e4brUBYPUtsfePT/ZM67siXE6QynU+UtYhQLSVdBuo9Y3TEtzqL3Ux5qMX0/7lWuIUw+h\nTh7q/r1cof0dpyjcUiTnyljF6Gsl+UfP0znWQB3bax4493oPYATgP7of2ejRf3xw69V9Cv/qDSZ/\n7muk/nGRn/+DD/NTt7+Hz9YPMuuWaPkOnQK0RpOGafhnLGQqhXVgL+77j2Pv3vV1vTYEG7d9Xw+s\npkBGbu8PaNz4vpEKgGiz7C+vRDITIp83hUvoMsvjEXZXtNpYS5uMfW6OXZ9tIl2oTQtaJYnd1Axd\ndJl6ps3Yl9dRr7yBnluMgBe1Vab25F7cXSNmrm+22Xz3LuRmlfyfXkJm06x//DTVv/gE3vwC/rWb\nUT7Qc4+HLWExU46e+z9wFQOi3LpbzIuteyFIoILz9RV+tUrzw6fYOphDvXoRe/cu1h5OYg0VSV6Y\nBbdj9hGOHbE9AJofeRf2nmnEqYdIbDRZ++6jbP610yQ//Tz+G1dofee7aBcksz95gvSKJvGZ581p\nHT+KNVxi8LLg+o/uwl9dZfjL80x+8nbUAi1TKZwq1MYtmhM9BdsHNHZU14o9DCnw5xeRo8PoVAJZ\naZjr4sXm42B/InyFaLSwVstkrq5TernC0MU2ygEvbcAUq6Mp3PKZfMZn4JaHaLVRCdvk4o22aUuz\nJWvvm6ZTSmM3XDYeLYIAp9LBqnVY/shebv6VCeTCauA0p+nRDoqPExW0goXgUKwTI2QB9Ug5QFcH\nK+YMLUL9K0A02zQPjbP2aJ7EZ1/Ae99J6hMWul4ncXPFmD+FxIFg3PjXbqK+6TjJlQZbP3Qap2FY\n9eVjQ2QXOlhrFTYfHiS9ppj79hG8nMb64kvIfA59+hGqu1Ls/BOXK39zmuwr8ww9t8zML1wgPWdM\ngZa+7wCFW5pWUYL19lDot4M5Pg18sO+xnwY+r7XeD3w++D9CiCPADwJHg9f8ihDi7Zf+A+0StEYk\nEqgTh6DjIm7Od921Yihwjx5PgNLpjouu11Era8i5VdAaf2zQDOpMGmsippuzZ7z72co3LUOAdXBf\ntBBawyXKf+UJvNuzWJWWqciOj6HHS6hWy4A0uWz3GISMaNk97T3xiDtqRIlS3+a/jyEUsqLUVhlV\nrRqbXinMBiuw8u5u/KyoEicLBRJbHjs+u05yoYLd1mTnGmZAB4m+3YLC7Vak32DvmMKbX0C/fAHn\nj1/AHcpQnglopu02qlrDHy+x/uQkI6945GcV+tVL232jT/Mgxk54nQP0XzUaEQ1W5nORIDgh0CEF\nIpzgYnoZIuEg8/nIeS08X557jexz1ynccpFbDomKpj6eZOVkBnc8H/VFexkL79YsaiBj2DJLq+it\nMnpqFGHbWNU24vw1UleXWX84hz86YGi0/dXfOPsHumMoRKLv0XrYE/F2s+D9reES+IrMlXXz/8P7\njGC4DKxIQ2plHGwCVGmwez06Ltk3Vihegq0DZsOlJ4fZOOSQ3PTY83fOUt6XRhzaF40vf32Dc+Xd\nuGMF/LV1vNuzJukaMeLStekM2iLer/80D2jOCUWkQ5qoVWljrW7Bdq1Id1WxTbIjmm3kVp3MrQqF\nG03slqa6M8nWmZ3oQ7sRqaS5n32Fv7qGrtbA9fCHcmweLbD6aJbVxxS1vR5Osc301BqbtQwpy+O7\nJl7jkdNXeeRbL3H7uwTLjw/Q2JEDu68q/1bH+narS+GUE0vCRMe0h3kZCRp0KEXj6XtWHrwUqJSD\nO5TGHUihBjIwWjKbr2YrGGPmuc2dBaqPTuBNFNGOhZdL0CoKsxmsVim8sUVmVdEuSDoFQX2nT+OR\nJs3pPJVTU3R2luIf/TTv8NiJwNLY/CxsG2tyPKCdb8TMCKxe9s1bgEOq1WLy554lf7XM3PfspDOS\npXCtRmJ+k619SZo7C9iTE2jXw5ubp/iJs3hz88hjh7AKBbylZdY/dhr95KN4c/OIs6/izc2TnWux\n+s3jWIUCwkl0QR4h7q0ZFG4E3E7vsceSq5732m48ah0xM1SrhbCkAW56Trrb1qZaLfwLl9n1Cy9R\n/MRZhl9vUt+VRQ1kmfz8BqxtBs5B4Lx4lYHffI7qiUku/s1B1K4x9POv4y0toy1BeqV7PNaRAyz+\n6AnsV6/j3bqDVW11q3YmnuZBrVXmTXrOPYqwqLFdK1Y8R3iTcaTqdbz5RdDg1DW62WT98VFEJoM1\nOW42L9po//nzi8ixEVSrhapWI1aVarXwr91Ct9s09pcicDssqkRgUHhc8ePRQaErpiEUMaPj7Ndt\nnNYicNVJoHMZUs9fN0/fPUnylZtmrQpzo3h7/D2ui6pWsVbLVPako8cW/+IhyjMOA//+OTZPDrP5\nwYM9hcLM1zIsPZnf/to+dZyVkxlGnu95+GkeVI58P0P52H/6Ivv/4Rus//I0/+9XvoOXatP8wMQL\nyJNllh63qHzgMPKRw/9NDu+/VahWC9FsoxxhDDO+jqgfHrnn30ZeaTH8msaqR8zWp3kQ4ybQVxXJ\nBEKIqLhn79xhTDG0NoXLsGAazj0hsBLsLYQIpDU6Ls6tFSY+u8T42Q5uFip7JBuHHWa/JcHSUyXs\niXHaTx42uXEygdw5SX3MMmLurofa2CT/O8/h3Z7FfWgG7XoM3Ogw+PoG6x87zezfO4Pa3EKHHR0h\nENQjidE750SaLv3tQpHpQixniq9VwSbdHh8je7PC0MumsF0+OcHUr53HX9tA1+pmbxqA0HFmkLYE\n3s3byJsLrD42gN02RauNv26KNY1Ri1ZJ0BnQJCqasbMFbvzj0wil8NfWyS75dAY07Q+dwp9fithD\nVmkI1WrRfleNrYc9lNOzvj7Ng5xzwtY7KfBuzyKOHUDbFqLt9mo/hWBbeH1jLFzRcbG2aiQXKwyd\nr5Fb8PEy4KUFbkay+ojNynEHpGT90QL4ms7UIK1dg6yeLFD65AUSy3W0EAxerpH8w+dZeHcOP5Mg\ns6YYO+ey9N17uf39E2Z/W2/2thTG2T7b5Tr9ETLJwr+H4tLxMRQDwtyCzegfXMcqFKhPOoz98tcQ\n6TS640ZFeaRxKNbtDv57TxiphdUtSs+vGa1DDX4C1o+k8MYG8JKC2qSk9nCbff9+g6ufOMGln9qD\nSloUn1/GavoMXYClD02jU0mYGMW/cJnNv3SK4tUO1WnB5ntaiPbbK0rab/UErfUzQojdfQ9/BHhP\n8PsngC8CPxU8/tta6zZwUwhxDXgX0FcSvDtECAYp3/SwH96D1XQj9yyjj6O61GkhAZOUaKWRtugy\nMQO7dsoVqNawmoPoQhZ/IA1fMzQ8e8802xHGrULBgEihA4plUfwvr6PACI6NDNEZzuG8cRurNITu\nuPhb5cDdRXc37WFIAX5wvFKgOz4iYZnH4kBQ6LAWq6yZQdzrQKJaLWQ+bxKdchM/nKTNlxVs5Mwg\ntifG8HYOoxIS/8JlZDZLsdnGu3UnOndrbJRk2cdLWYSdht7cPNb+GdjYMm1X0JNcu6cOUt2ZpPTC\nGv7Fq7T/8hPb6kY8qLETBy90rW4qnJkMIrJSjolNhmwc3RVlRnap8MICrCRWImH0h4KJ319bJ/HZ\ndWYax0nMrnPn+3ZQ3+MzeNXGsS3kvmkyX7lsWEFN10xGqZRpQ9ysoYtF9I074DjUj00w8kIZP+PQ\nOjpO9uIKImCqCSegXUqJ9l30dva2SqMJAEgvOHYr/D2kScb+ForCDRbwb88j95uvRNQaSGVoxMLy\nje5PsIGN655UDw2QDeoQqlpFVasUb96GJx42FSZPceC7r7A4t498MsnIZ26YMZlKRu/z0jMHmRj0\nSQfj3Tt1mMS1RZAWC+/VTP+hRrjBxvBBzTnxNUAIrFobWa5F+kfiXouGEL3uBkohXAP42B2XXL2N\nO5ShOZpg62CW5PhBUqst2GzA9aphj4yWaOzIUJ+S1Hf5WENt810LTa2dZDhfZyhRJyVcnhq6ytmt\nGcamN7D3KOZfH2Pi2Qzp5Rays32VvOd4w2OOh6S3mhP15/c9DqikhVAgVFDRaSvDBvIBAcLTpnoP\nKEca2uyWxs07dPKS2qSF1U7gZQVajDL1hbJhV7U66OU1UpkkzR15hKtAgu365BYTtIo26alJlC1x\n04LGpMCum2NUVYfauIVbEGjR3cw9sDknDOUbkKVURDea6GqNSIg9cjsMdVJ6mTd3Xfv42752ifHX\nYP3jp0lWEmSyDp2CILnSxJs3ltsykzHAd6GAunQNFSS1pX9rDt8qFk2r38wUzlKZoa+8gvvUcbQQ\nkQsXWsdaefqOK/w9OM8oCQ8BLq3uqY8E9JybPb3TJJL5PN7snGnJcY3+jXASkXmEvXMHOh8wvt64\ngvzSy2QAHjlMZyyLu7dA9qYR2W49eYjEZ54n/clzHPgkPZ0Y9lfPY02cwJ6aZPVbp9k8BD/+XZ/m\n18V3IH2Y+J2rPS5nD2zcxFrF7rp2QkRaUPQVhO7loHXPe1/5DD+7jH/1BrJYpLpbkDk6QXK5gVWu\nR8LK1tioAcaEQCQSyBcvRZgwykecPGoq3U4Ca99uWN0IbHN9hCUilrMOweF+FlAPiCWBkP0cAEtK\nRxX3kEkkLAtrdBjv6g3sHVOwuQk3582mNpdD1OomVwrvq1ju4b3vBM4zr0dOq7JYxLt1h4Fb3fbN\n+i5NalVgHd5P4beeA2mhY+9RvOpiN3vzGXtiHG9xidn3pRl73iP36kL3q3nQc859Dn+rTO4/fY0j\nz+3gmb9wij981zFU24Ihj/lvg6GhQUYu2H+mnMa82Tky5Qr1bz701k+ORebZa9xLhtr6wkvkAK2D\nFv4HNud0pSu8pcCNeGI8KCzKrnuX53c3vbGNs/Z8BF6XvQ6BVkyLzGtzTN/JU99X5M6HNaIjyT+r\nWXv/HqSvsdpBYb2RYPQ3X0OMjFB5aJhcNoW9uoUeyKF9hRwewvnqefx2m9G5Av6hadizE3X1pnEC\nKw6aY3Psbu7l+6agGhwnluwCQlIYZ1ToCiGH7I7+9S1wzdKZFFyfNQA5UHh1BcaGsTouulxBt9qm\n/b8vlk9J9j1TAq2p7IXkusQtaHJ3zPyam3exWzY7/nANUa6ysLSPnY4Ll28CkLu0QfKvpMm+UcFz\nO8hMhtv/bobSb2bJX9rAcy32/o6HXWlzM/xKH+R6FYJBga28fPQIotE2osshIyuu8RSCL1KAFwB5\nyo/YW6LZxvJ8stUWyfUMnWKCtYcd3AHN5DM+mydHaBcF9b0FnKqP9DSjz27C1BirTxQZuNFB+Ir1\nj59m/PkmflJi132SG22Uk2bgpqIzNYjVcE3bYpSzyKj4CxptyW7rl7TA9+42mJEyEpnW0ghSR/dH\neN5C4I8XyX3uDfT0FOqNqww9t4x65BBs1RDNlmHoBbrDqt4wbLsvvMTVf/Y4h/55htZUgU5emvN+\ntMn+X3RpjaZJbSncnMXu3xK4xTSHfuI6JJNmD9ho4M+UaIwLdv3nBbxbs4gTh7n2T58gf0Mw/KUV\n0j+ZZuIX8mysNN/yq4a3XzfujzGtdWidsgSEMPoUMBt73lzw2F0hhPhRIcQLQogXOn6z6zCWTNJ5\n/JCx/5tdMglroI0TgkGGZu32tldFFMKYUKJvQBa1uQXzy9jzG9hjo8hjhyifHMe+s3L3cQ0U8K/d\nMhvEsVHwPHTHRTx2DNod3OEcG0dSRkOn46IPThvGUMzxI97iFUUAFInAri9u/3qXqHSchr1NVVbV\naiaJ6XOv6aHHCYE7PUJzLBVRFCPrPEyli8/vYPav7iP3hUvYrb5lLOEg0mkjwHz2dUafWY7+ZH3x\nJQZ/4yxiq4o49RBDf3KDryPu69hxCWilUqCbzQgwk4EuQujoFE1WYatYGHG3oFAoPKjQilQSmc32\nOPLIL7+Md+sOdgvQkKi46ISN2Kqimi3k2Ahyfct816mk6ZcuV2Awb5hL1SrzT9mIegv54iUqu2zq\nh0aDRUsSWcvHtRakQNhWt40srh20XXU0Lk4O5rwsC8o1c38kAh0Rz0dsVrrMvP7KEGacFN7YNOwi\nzAIXfo51fdEIKdcaXFwZY/OARCQSeEvL+OsbCGGclgD2/oPz5C6soE4dNsytL7+Mt7iEPb2D1JJN\neq623Vcdj/s756juBKkcC9F0kRtVs+izDRi0/RveXRn3fESjTWK5Sv5GjfSqh5aweSjL1qPDWCPD\nCNumcnSI8rRNa0ijUz5ey0ZrcBwfSyomc2WafoJld4Ahu0bLt1m7MMLuwgY7HlmkMm3RLiVRjmV0\njwKhxe3ww+g4e9rHZPSabZ8TvJe2TEtYuxBY8FoYllAoPi67wJrQYLd8/LQkO9dEuspYXkpw8wLl\ngFMzi6zVCHWtmsiNKumFurHyFALR9slfrWK5mvLpnWweK+AnBYkyWB1Iz1vkr9m0hwS1aRWJ3r9J\n3N85R7e637eTQORz5p7pBA4msfYaYTtdu27L6rI3tb6rzXe7KP2bs+T+43MkrizSHNH4uQTisWMR\nGARdy1t7zzS63cEqFlHvfhQ9PYGq1JCVJrc+OgFA4soimweTWAf3hSfW1QEKXZ7655EeoEh2XxOC\nG3Fdor7nWwXTiquDxN2bnTMOUc2mYb1KKwKDrAN78aaGEJX6XSLa6tWL2J9/kdwba6jXLqFeu0yz\nZBnAAIx2U7FoNjqAdjsU/sNz+GvrFJ8+y8xPn+WPjg4y/ovPMvrLz+Kvrkbf0ZvE/V+rgmtz1+Y6\nAGTMycbWqpBt3P9dvI2Iawu6ec3WPgfZ6qCWTN4jkkmjR7BVNuPRMqYT8Raq8gEj8K3dDmxWaB+f\nMW6UcLcDWXgqkbaQiJg/2vd78rfoudIwD8J8SThmHfSXV7DHx1CbW2asV6um0hroPUbsohiQY0/v\nJDlXNu8RnF/4PQPR2Ci9pqk91I6kBcL3CM87+ennSbx+G+9bTpoWTcBbNDqS6WXI3ti629H27nhn\n8px3MLzZOcZ+6VkO/d01Jj5nk551SBebdArizxQYFIZfqZD61Lmv7zV9sgnfQLwz48b3u2DQzh0m\n3wz0CyOAxLZMvhxueMN1zDaam12XStkFZLRGbFXJvTTHzk8J9n/CaMZsfWed+g+UmXsqjZuxI1F7\ntWOUgXPzWGtldKuF2CgbBqnnR/u8i//kIPZqBW7P03r/w4gdE6ZIF29bCln/XncdirSCtO62lEnZ\nKyoc/+l5PawPPb9k9nRJx5xrwjEC2J4fsDyC93K7bozNv/Au9v/KrHEDXd9g+tOG4Tv9M2cpXmqa\nLhQhWHrKZ+5Do6hqDesLL5F+fQ6RzWCVhvAvX8N6Mc/SByaZ/6kz6KN7mf5Zn8LLi1QPDVH6XAq7\n2kGW39KJ9/6PnbBNSkpTiHrkoHFq09oIM8d1eoIuDKL2Kt3VIIr2L6aYKlodo8O5ViU9V2X4VZfp\nT7fJ3izTKknaJc3ikxZuwSIxv4WsNWhPFhh+sUJirY7QULzUJHFnAz9tYTfMd7z0uIWXMZ/pZx0a\ne4tdHeFgH6jtbg6GDoChGLNMKAMShnIzIgBKRVyLyvW6GlZaY82tovftQq5vGXF2XxldJdsKxm6w\nxgVMXFnIUflLT3Dw35RhbYP0hXlSW4qJn3+WfX/1ZWq7syhHIBRYHc3K8QSJW6umDS+bMUSDXZOk\n5qtkFjXVh0a5/X+9i62DOXb/vsvk51ZZ/sAOMr9WNMXabYDM7eK/WqZKG/GT7TODN3/dv9ZaP6a1\nfixhpU1VqJBj5a+fQPoKVtaNS9O92sT6aNTa93t0fKJEL1SEb7ZQq2tG1T5pIV2NPzEcva+9e5ep\nVDaboBXWQAE9XjKuVAkHP+3gLS7hLG5RvBJsGlMp2sPprkhjrE1Ax8AfoHseoUtH/Hzi4FHYahaf\nuOJ2qkEvoj0xhqrXseP0+75KoZ+y8dLd16pqFVWuYI2Ncv1jgttf2cXOP1hBtdu9oon5PKIcbNAD\ncETdmUc+eqRL9xcCPTTA5qEczePT5nVxO/e3Efdj7DgYdoC/VTZaTzO7DRiUSnbbwcyL7u4pDs+v\nh+4oehPyRAKZThmQKXZ+w680SKxbOPMbiBtz6E4Ha3zUiFt3OhHTRgQaEaqQjhbU0nkzyeh2G+lC\nZdpGDQ9EQI8QMYAzfvxhW2Koph/SIUNqbE+fbO+5iADl156HFgKZzQT3hntXz7jqdBc82fQMaOR5\nJsFeXok+wzswRX1mkPaeEYafzqIcjKByMknEwJoybSqqWo3asES8JS8QIpeVt287f1/mHGlaCFrD\nKRAga427e+ehtw+553HR/dcXQmlwPWS1RWq+RmauTnrNR1ugCzlaTxygOSRRSVBJDR0JCizLfOeD\nqSbDiTqbnTQVL8VOZ53HBu9QOLjB7sw6ewrrNMc0lZ02nWKit6oBkTh2HNjpPcA+ELH/ngj/pDFu\nZCrUPzDVGh3qBgkMSyi4HsoWlHcnSW4acUo/IREKnIq5dullzdhzZay5VeSSaVvkoYMRo9IrpPBy\nCfyBFEhIbHnYDUV6zad4scHoC3VSG4rUusZPQn23jzXewPs6DOruy9gRKSOWvHsXc3/rMSqP70RX\napEeXVy0V3tuxGaI3JnioMCbtf3FwltcYuanzyK//DL6hfOoRgN7ajJqbZapFK09wyZZGMhjfe0N\n1KsXjSbe5Wvs/Flj867KFWQH3PG8adkMq2OhflDM6bPHSSocIzEgKLgwvbpEwWOAaWXudIx2WagP\nVSx2GUlad8EowL98Ddl0tx2L6qnjdL7tMdOOe/Qg8th+iq9v0dkzijh+FO37+Jub+GsbWPv2dA8l\nNFoIW/aeeDi6XuY7ugfzpi/u21oVb7dLJg0700l0waBwPolRzIMD7dXaiX8HYdwDLFKNBnK6zuTv\n3ca/eNU81bYRQkSC5dbICKppQHJRHIhem7/VRDeCx22LxEYTfWg3IRM50gfqBxFjv2uljV6S5xqQ\nVHaBIpMPxbTxfB/h2Caf09oU4wIASiSTqFq9FySLAZH1I+Ow1tX7UX2OsjqbRj/5KPmbTcb/yIFY\nKzSY+zEEhfy1dVI312Gxt2jo5oGFZbMZeptxP/OcMKzSkNF5ehug8tcb3u1Z8r/zHHt+a4HsH+YZ\ne/HBOzn+9xTWkQM9c8qDivs55/hr690nuAb0oH8MizC3DHV1Ytoxcbdkv694DKAU+ZcWjObWxauo\nW1mUkkz/UZX0ly4QyjpYK5v4Syt4s3NGmyu4txsPTZl9h5NAtKUxXnFdNg45tKcGzDj3Ylbz4Qbe\ntrpuY9ALGoURb/MJzzP4qWNW4nL6NGP/AAAgAElEQVRwwLTE+oZUIDbK3c9QyhxDAJqHkX9lCVUq\noNsdZCqF/LLZR3nfcpLmWBLhKepjNqJlkZ/1oznJW1zC3yxH+mRT/+hZRp/bYuoLVcSlW6hXL+Ld\nukP+i1doDwnkrUV0ZhsH23vEfRs7rosqFvBu3kYcP4psBdIkIVAUvi4qUoedCzFpi5C5Bb0C39o4\ndMlKg8z1DZKXF0BrBq67DDy6xoFfmSf7uQtGq9WxccptZK2JXN2iM5AAS+APF6hNWKYLJuvg5RXp\n5RZe1qI2mcBu+HRGc+bzgvEsPD/KmaN2N90VkwbM8+KgYhghMyjMuT2/CwzZ0oznwEFPJ5yuW16w\nXspsBmtkBH99g+SWj/AUYqCAVor8JQMmr/yNMzRLkkTZQ9lQ2asZe6GNv7Rs1mal0AM5WN1A1JuU\nPnWJ3JVN9vznTUpfmiV1ax3RaJGf9Vh+lyQxv3nXHuFe8Y0CQstCiAlzfcQEEK6a88DO2PN2BI+9\neWiQhRzzT0+yecJDfull/LV1VMeNwJP+qlKX2dF15upJFOKuX5EIokK7HtZ6lUTFwwo2JfLYIfzF\nZWQ23W3ZyeXQtsRbWkZkMgadA0StQeJ10y4mMinSt7fQzVZkx91D9Y67pYUAVfy4wFSOY0lfcILB\nz77HMZVPa2wUb34Ba3AgQv37EwNreJjKdCJyAQgTT1Vv0Dw+zeee+mfM/M4aXinbtU18+BD173sc\nVa3i7SjRPDJB9ck9tN/7sAG0hIDBAjKfp/mRU9T2D+ClIX3TDOS3WUW6v2MHIuq/OHmUO983iRrM\nmxsgdHaKb3g9L9rki3ABFLHnQe8mP9j0C9uOKo8Ai09mmDjrGsHSsWH89Q2jVZVwTJtduWIWknYH\nOVREVppYO6ewDuxl6NyqsTS0bYpXWmTWFOWDBcgbwElrHegedQGdqL0NojEkQhQ+jNjE03P84WIY\n3EvWRsW8v2NsQHWz1TvpxTZ31T1ZI9beahvh0fCjHjuGVW6xtc9m/qkUqT84x95/cZ2VbxpB7tuN\nPTUJrktt3wDNMwcNa2FkEGdxCzVeio63cWYf0sPQdd+8+n3fx01tOoNQGvuNW6jV9eh6ifh46afC\nhj9V7N82EVYZhOshm27k3ueO5mmM2nhp8/4qpbAaEixNMmVaBHNOm/FkmenMBkcyC1RViunkGh+d\neQFLKIacOnq6SW2Xprzbwct2HbriYzcChmK/x8GhUD8peqwPGAoZQl7WWGCqhMRuKJQt8AMbVOl1\nN7hexkJbYJfbyJaLnw5cSAQ0RzXZFQ+5ZsS1ta8QW1W8gSR6aAC5vIGzXseudRCuj6y2UAnJ5gGH\nyrTNymNZ6jvSVHdJKjOgHNAJRT7bwsu+JWvivo4djcYqFbnyP01R3+3hJUXAYOhEJgA9bpLBxrm7\nBmyfnL5VLP3kmeh3e2Y33vwC9W8+ZMSSWy2cZ15FV6qopZXIRjyuhyazWVSjwdCvn8Uut6FYCFqd\nQ5p9rAUnBH6IAVfbtZK92XXyvG7L7eoa8tghs9bEHNlCMErYDs2PvIv144PoXFfvRdg29sxuVk6k\nSZQ7yHqb5s5CwBK6hF1ucvvDA8z99OPc/n9OM/+Tj3Hp7w6x/DfPwBMPU//ex/Hfe4KrTz9C60Mn\nWX8oy8LfPoP7xJFAN+ZNz+O+zzk9b/6xk9gTYwjH3p6pFGrjhazVMEIQLb4m9I+j2HgSJ49S/IOM\naQUfHAjYWR5yOKa9NTQQfadqucuqEWdf7TLRVtfg+ix+LmGMGrYBf+I5TAQW9ZzSNtc7OE8RrrO2\njUynTXtCIYe/bkC+kGEbtpWZ18XWql220SdpNHrOP7wHVp4aZ+NIGnH2VaNfMpjuOQxVraJmJruH\ntbFp2FPBfSGcBMomcCl9SwmOd2TsiJNHWfrJM9TP7EMMFHoLWvc5vFuzjH7uDtYXXnpH3v9/hHA/\n8BjL31Ri9ZvHv26B6W8w7n9+HIAO9vgY6x87jRouGoawFfyLj2UraCELnXjB5AiuAep1fA3o716I\n5f/JDcHAb+eNU9aB3fhbZfwzRw3A69hYh/dT+/7H0Y6NdeQA0jVtY9aOCQ790mpgrW2R3DDt6Gp4\nAH9js1u0jVhKqqsv1H8fWDLS/Inae0Jgy/MMGBS+zrYNO8jz6EwOmGJJJo2u1VEbW0YLJgCOorcv\nFll/96QpvHQ6PeYW1R0JMgstrvxQluySy/6feI7BcwtYRw50j69PZkO9ehHOvd519pMWTI4aq/Fk\nMnLDfZO472NHjZdQ5y9R+4EnuPOdA6hMzMI83Ecp3RVmDv+Fe6WgOBqJfce/o/C70xrRNkV00Wxj\ntRXWb5ZQSyv4D+/DLreMvXzCQicTuLvHWD+WRFmSxmQap6HxExI3a7Pr0wo/bYOG6i5J8uYqbt42\nxxMCP5bsikfHGWZg2uD69e7iOkJad0GgABjSqYQBgl65TP3gCN78Au3DU7BZRm9sBnO0Ga+q3kDX\njQlGecaJiC8ilTSFd6A9AKXzTW5+JEF1p8XBn79F6soy7jc/gt4sG93Scg2GBg14OTWGqDVRKQdv\nbh6dSlA5MUliq43VFqjM26+YfqOA0O8DPxz8/sPAJ2OP/6AQIimE2APsB96Sc6ltyc1/OcWPHvgK\nR/7BcuwPMdHOu4R3Y24dcatxpXvYQj0JSKDTo9NJEi9ew1tcMsnH+laQqOpuTyogLt7EHh9D2BZq\nfcNQ8sPPTKVMT+XFq8jhIfylFaN95HbuYgDFBaJ7xBghQKn7bvR4G1P8ZxCR41PMxeYuMEYrRr+4\nQOlrQXKnDGIrU0nq/8sW3//qx/DfuBIJfgKI2WVDURsuoZLmvbN36mSurILykTfnDJAxOUbmdp30\n752jcMfDv3zNfGT7bdGa7+vYicfyEwPUj7bw88kuhRG6N3zccpIAZAkBujhwEg/f715ny4qccLIL\nmszl3uqhNW+s3GVxEFkqGvFg2/Qmh9RTwGgzZZKII/twXr1OZrGNsqGzsxgBe/peG64etlzfcfc4\nLwRJdioVJbS60TQV+s2ysbVuBWPesnonvVjYLYVIp0HKHs2NlcfyiI5L8YrL+NdcY/W7tEx6w/QI\n68E8YmYXQsH6EQeR6Sbf3kASceqh4Dgx9uVvndTe3znHcVC2IH19Hb9S6yYObHPtw2vTf4xxhlC8\n6iRFZGVpKMYewvXREjoDTgTSemkgqfCzCivp41g+u0sb7Mmu4wifI5kFBq0GLZWgpRzyssXNRoma\nn+TU9G3svTXqOzSdAdskdlJsfx3jrIN+RlN4znH8QsReJ4Rp+xLgZiXKFkhXR45wgewRwtdITyNd\nqO82Qn/h3/2EILkpSK620JWq0QcoFvB2jqAtYe7XhIOoNbGWNrEXNmB1w3zuezapvqdB7XSD5XeB\nc3qD0UeX6Qwq8AWD6Rb+WxfO7uvYEYkENz++l/SqYOpPBPk7rYAlo6M2loghGiQCEXMonIviLmXw\npgCLtX8G6+A+xv/ps90HA9ZG6lPnDDNyt3EQ8ysV0+obgi1SmratVMok3CXjbqheeQOvlEOG7UFC\n0qMT1HPC8cGxDZjVH9vY0Ot2G3X+kmELBULU2nODude0jaU/eY7i02dpTQWsp0wGLIvW7hLZRUVr\nOIVodUh98XU2fuQ07gceQzQ7jJ1z2fXpLYYuaMbPNdn5ny0Gr7mIFy9htTXJm2vM/DrkLqxQ+tWz\n7Pjnr2J98aW3s169Y2uVNTZKbVqjC9lozo8KFGGE7plBYaPrSiqi69b73D7QDrMJ7JTSDH32evDB\nVuSmqSvV6DqHa7gpGvUya2QmY9rGAut6+6VruId3GZZpf4StX5bVC4yG+o/xtvrg8YjVnUiYNuuQ\nQeUkohZeNsvm/grXx22ApbEvr8PYcPd6BNF6z0N0PniKkRe2KF5sRqw6+3q35d4qmXtj41gBe9x0\nWoig3dl9v7GulwN5ElWi9fAt4r6PHXH8KJd/PI16aouNgzbks9055p0I1bXH/rMY/ntOsLXX7AeG\nz21GboXvcLxjc87Sh2dwmjpwIA3uOdfrtsKEG3ToBTxtO2J1h2Ys98pPrUKB9odOkdzU5K8GwEbw\nXGelZvZSjQYsrjDwucuGEViukXpjHu3YqEIG0WjR3jNC5/FDjHz6Oo3xBO2xbNcpMJzf+sWMw5/h\nv3g+HAJIfWxvEbYPBUx5a3yMxPnb6EYDOq5xrQbD+o/vKaSFX67QGDOulqpej4C3jR85TWNCsPxE\nFgSsnEiw+cOn0a02K2dKWAf3oZ46TvtDp1j422e4+suPIx8+hHrqONbYKLd+9jR3fuYM1kiJm99X\nwkua/V0PGLN93N88x7ZRr7zB5l87zeZ+SWpVG02gfiCwf58asodChmvYLhaOqXDfYsWepzSqXGHl\nvZMsnklS+K3nDOAtMCB/0sKqtBEdF5WymPziFkJr7KaicKNpkAwB2ha0hmxqEzYjr7ksfNdOMneq\nlI8N9bD9Q1Co52fA5hF+HwAUj1ibWDgeRLMNvo+cniL7+oJxpbsVFJidRMBsi5k+zeyCuSUGbrow\nYvIx7dh4i0vc+tnTFK8qrv2YZOh1QWZFsfnUbmqPTtIccWif2k/1sR2sfGCajVMjvPF/TlI5Msjy\nB3bSLqW49bOnufTjReymYvZbc6SXtcmv32bN4C1XEiHEf8CITx0UQswJIT4G/CPgW4UQV4H3B/9H\na30B+I/AG8BngB/XWt9LYy2K9pjkRw4/y3/63z8Y2eaaq9Rl/vSALJHmjrirSnWXa0XwOJgkQmYz\nqBt3oqqX9rzIRUl7HjqZQKZS6IKppkZ06XwOWm1TVfQVqlgwSF+hQOXkpBExnByLjjt+HL3V4t7q\ncZgk9dDBw3N7sxAiYHZY3esUYwmJUEhtedWwNTBAjxwo8NVHf5vCvwySovGui8L6dx2ik5PGPrnh\n4VQ66BfO4924ZXpdt8p0xrKG2n99FnvHFJnzC5GOw92H+M6PneizTh4lvaY4Mr2IOxA4JoTVhPgi\n0Ccw3WN3u801BqKJTZUryIN7Efk8xTcq3bHRcQ1ba3EJXA+dSqDTScM2syyDfguBP2wSTH9tnc2j\nBeRmDcaG0QKGXlpn7aEUOpe5m30SbDaBHpAU3++p4twFasUFzhNO5EYXigPqajUQ6Qv1Tbo00LAy\nn/vSZYOCx+6/9odOsXVYGzvJtiLxmecjQDKz0DSb1XaHrYeGsOs+O39vAXd6BPXaJdbePYls+8ha\nC3vPNJmr61ht8ErpaNJ6EONGKMXgC8uwso5wbMNkiF27t2wl0Zp7sYOCk+g+NZ2gPZ7FaWjagxI/\naVqwzGInkDmXbKZNrZ6i3E4xkShTtOs4wqOuEiy4RVxtkZFt5uuD7Extcn51nEyqjXOwQn3Mwi10\ngWwdsMvCn8BdzKGeQ+07jYjd5GuEp5CueYL0McJ6OqwIBa9VGukp7LpPbr6DdDUqIUGD3dbUdmty\ncxp7fh1RKmJV29QOl7jxPTnq4w6y0TEaM45t7lvHpvPoHtoDEtvy+Y4DFxgerHHiias8OXmTY0OL\nDO43yVfbs3tZTw9g7HQGHZKbsOMz6wx8bZ7mWIBIBQUJkUx224adQF8nXj0LW6XCf9uNm+C5wkkg\nfIV/+Vp3Hi8NoWO0dXtqEneiiL1jyrAhpEA4NvbEGLI4iF+tItJplr5tB/76BpWPPoE4fhTn5hLr\nHwy0hEIwKJ4Ehcd9V7tkjOm03bwZZwD1hcxkkNm0WS9DBzblmxa8PdNYhQLOn7yINTJi1qGJMTYP\nJLBbitSnzuHdvI1qtRj6tbM4n3sR//ptkustxOwSxWdu4aUsUp86R+qPX8YqFUl96hx3vm8H1hde\nwrtxyxxevY4+84hZ+3R4uR/cWgVAx8XPKjpj+ajg0NM6pQKWaNhSda+4p+W7xt4xhdaa1GwZQvBL\niAgIU0ELrxwd7gLDgdB1vEVa7JyM1jo1M2mYNAmJGB/pWRei4+ljZptz67Yihq8R/eA0GAaBZdZj\n7ftddtL6hnFzDU/RsXtAIatQMAWuwD47Dlat/VidxGeep3JwAGejERU2osIasPmBA6x++CDFT5yN\npASa+0bMePzjF8zz19YZ/2qZ9r4xw8YMj+UBjB1dyHDlJ1L8wPEX+OjeF2lMKcOkC1rw/jzub8hM\nhtpUArsJw//qLOr8ti665rmPHvmGPuNBzjlLP3kGBKwfE3j5ZDd3CUEOEWzQpehajYct0K6Lbne6\nOVEMANDBBllrjbe4hGq3yXz1CoPXO8hbgfnBWtkAzVdvootm3xEykETgbqtdFzYryJVN/OUVKruT\nJF+9iRCCRMUnfXUV7QSMn3A+jBt7WH2t/SEbSAjD/Om4pkMk0OjUYbEu+F2HRZtazbT8aI2uN5Bj\nIwYsCphFuhMYAQQuozt+9XzU9hZGZS80DreYeKZM9rbFrj/cMAL/yyumGGhJlC1ZfszBd2Dmd40+\nkfzya1z8v3ez9xNL7P7/NmAgz/Tvl7HbGgo5ZK275j+QOcfzDBh0CHLzmuaowC/E1vRQjDvYa0Xa\nPP3fUcjCiefLgetutB+zLWQuy8hz60x9uYm1fwZ/ZRXZ8RGej73ZDPYIZq5rD6dRlkC6iuZYCqfm\nGcOTpo9yBOlNRfb8Eso2UgTZ+RZ+MdMFP4MWschevh9QDAvEIUja1+oW/XMDHaqOMRLSwV5Pb26Z\n4oQUAUPKNuPKdRF3FhD5HOnPv27Ov92mNRNotLYEB/63C+z/oZco7wM0FH73JbJfuYqfFEZLqqPx\n0oKVb3U5/HPGSb14rcWdb5dMPOux/xMNlC0Yfcll8LpLdXcvE/bN4u24jH30Hn/6lns8/+8Df/9t\nHwGQS7b49N96L5mbG5HDT++b9lWV4k5c8efobdg2sb/LhAMzO9CvXowetnfvorEjT+I8JgF3Pdgx\ngUqbDZbIZgzbodlm9akpip8wwuz2QB5vq4y1f4bsnbrJK2UvOAXEdCO6QM9dVvNa310xiyfo24RM\nJnup0dLqsoSE0fdh1VCeZattGBzzC3Q+eIoDf/RjHPi0EZpWVaMVpL7pOJ2CYPSFGt78AjZEbjYA\nG99+gIF//xz2F14xm47RErpah2aL5pmDJLapJD2IsQOmcublk1gdjetbeGmJdixEM0BxVXcSiETk\nwsVNBaDKdtOj320/VBVDsy8fGSQ7mMZZ2MRbXsF/zwmshbJRfgdUMWccUWZ2IBwH7dj4N24hTj1E\nfUeG7C1DYU+veUbQ86EZrJaHnlvCbg5TPVIi/2yl23rYT8XX0Q7m7klWWkFLnIg2axErIWQCtQNh\nU8cxvagd19Bd0ykDxoYVIKWh3UEMFFAbW8hcFj/YSGghKFyTtPeNkVitR640VmkI/9wF9Mwuqg+N\nIjQknr+CV63izZwkdXg/pZc2zOQaUi1dz7SMxQSOH8S40a22oWvqoJod+9tdgtL9PcTxjXBc52Ob\n5+hkAq+Qwm54WC0fdzpFbRqyc6Acjcx47BrfwPUtpNCMZarkrBabXpbHMsv8zNWPMJKuc3xwlmPp\nOQ4OrDDqVGg2kuyaXObhgXl+e+4MybKN3TA9yT3nKQyAE0XYghjiDhoDUscvQHh+SiE7Cqtpoy2j\nu6alQFnCbKTj76FAovClRPjgJyXKEfiOwE8rOgULb6qEfWcFVcpT3WmjUgqnoZHVJq2ZYaxWIFKp\nNF7GwksKKhdLWJPX+O6dr7LSybMcuJZslbM4mxbV8SS6RyrsnR87Vhsm/nTVjB8hyN6sxRwuffBF\ntAHW7XaXCRRnvIbOWoFbV09CElWgjNvS+plxBkt5vOdfx9q3h2s/Ms6e/+Os0TvxfTr7xpBfehm9\nfwY5MYZOJRCez7UfGmPmd8vYSuEtLjH8r83aVXx+Gf/aTTxg8PKoSb6u3thmbrlHzhiuTfHYjkUU\n00uS6XSkJ0QgFyYzGfxaPWqZUsurIIR5fHXV/Ly1iZvfQbtu0Z/WWEcOGLesc6+z8rHTqASM/Atz\njtrzaB7bgbO0zOTPPWuYnfk8utOh8qGHcGo+TioZ6dM8qLUqCikQrsDN2SQSDrTbCEuajUokxBzT\njAtDyF4EN3Du6jGhCL+3hIO3cxh7tYJfqRiAJwbI9Lic9bOQH96LvVKBqzcQrTZ+AMy0h9MkgMTZ\ni9Tfd4z0nXmzSRIyAEHpgkL9DG2IHo8cxcL2/4ClajZqQYtW4F4mUylUu23axYLiRY+LH6Da7ago\nI7PZqO3CnpqEZweRDx8ym4KYWLlVLOJvbtL47sep7ZTs+o0beIC8s4iY3on48vlozQuLKSjw0hai\nENPBewBjx8sIvvPYazyZu0JLO6gBD5WwsIRAB7bZfx73L3SnQ2rDJ3N9456uYYBZ4+1vjKH1oOac\nlb9xhvRqtxWmNZLErrQQjXbvpjhejNAmXxRg8uOYk3E/O0h7PjpgFerjBxG3lkm+eisS2A6BV+15\niGoDmUrReGIv6Wcugefhb25iFYtsfnA/6XWP9GtGIxBpUXtsGqujUNk0WzMphjeLiIVVU5gPQSwv\nBkCoGMgQnoOlu0VQLzBPifRcu3MVEABHPiKRMM8tV9BaIwcHDOM/mDvtnTvQuTT69jxUqtg7d+DN\nzrH+8dOwr87wH2XxClB6w0W9dskUNw7vp3itw+L7htk64iG0z97/2EF+6WXWf/g0w/ND7PtNF51L\nIzoeOuWgX75AgaOoXJrOSNpAOjy4sVPeC8WLGIdZC7y0je1YCKVAy6gNTNtW14HL94N2PRU42MVy\n0qjYJKDjddtvmy06+yaw2j72lpGwEImEYdYnHYSvsWoddDpBbSpB/nYb6frUdmUY+Nxlbvyvh8jO\nQ35Os7VPsuuPa1ROTCIUuDkbNyfJzTZ7BKTjmkGR21g8r7djsh3hOIszzSAaD9rzzfrdaCCLg6Zg\nt7xm8tlsBl1vGFJBq4U4vBc/l8BptRDrW+ipcZw/foH1j5/Ge6jGpV88SuZbXEZe0Qz88UWY2YU/\nkMZLm2Jtea+Dev8mh/6OB9U6lqtpDicYe844AHeKSfykYOC5Obae3IXd1ijnndUQuq/R9m1S8zUD\nxvQlmtv1ofdEvArV368eWJkSJh+pZGRtHYY3OoBTdQOKvTQtUb7CWt4y75HLgBCoXIbcfDeB0htb\nBkCqNZAN87ioN7suJ2HlLL4JCFlA5j+9TKFvtMoTT76BkDWlko5JqvN5c14BZS21WGP/r3VBt5Ae\n3hlwkK7GnjeVd2+hS6e2pyZJbfgmuVI+sjSEaLYj+mhj9P4LG349oTJOtDlVhC0u99iw9Imh3ZMZ\nFLJrpDAouGeuWWalg5/sUlW39ibRKScCEXTCRmYziEbbJLhpg6hvHcxitZTRRxkbIbnSNFVMDbLc\nQBbyDL9Soz4uo+t6FxU8vhD3f+8QtQV2zyOuCxRuLlQvwBGg/LheUPEJqreWhbewiDc22K22BJH6\n1DkjIK01csUs+lZpCLV7AplKovIZWkXjNBUm5smVOm4pa5zNggpMeP+8zZax+x/3s7J6D+BWBGPN\nyxmAWUuBWzRiccqBVKZDKVUn7bhMDZSZTFeo+Snm24OkhMt6JYtC4AgfH8G+9ApZ2Safa3K4sERS\nejjjDdpFabSE7mL/hBWzt2A0bXc+CgP0+NqIRytAE1nQC7/3vIWn8VMWftIARsoyn2/VDSuqNZZG\nDw1Qm87SKYDwwKn7xq7dErSGEzTHUxErSfqQWhV8dXkGX0uS0qOjLCpuClV1SGwJpNDoB7yKyY4y\nDkWuZ+bxMCnw/YCZ2QcgQuQ4FiWebrzSqHvaf2SQ7Aop0PU6dlOz9ETezOXlGn/5Q18y7n3BRtpq\nmGTdv3rDVOsCdpHeXzetYUvL3eOwbVQ+gzU2atpkbi5RfWjEfG6oN/Qm7WtRxKtkMee0nghcskTQ\natvPJvErFcJWIlkaMhox9TrqYcNaCtkhk//kWQZ/4yxzv3s0eq09PsbK6aHo/6V/ezYCg8JIvXqn\nux57pkqnmi28lGDpCRtabcOyfdAhLUMx7wi0HQDQsTWpB5COAc79ulQ9moMxNnX3ORp7rYoaNMwa\nOTyESCbuar8P9dPC798qFFCORC+ZjZdaXY/YXtIzn6MaDfykiBzHImBnu5aw7RhDseLeXfldzJGs\ne1FkFwwKiyXBOVulIXS7jcjnDXjUbEXj3ZtfILWmqe8pYF+42X27ZBKRTGANl6jutBg714qcxPz1\nDVPxjX0PIftaZRyawzayD3h/p0NbsDu1zqDVICVcrKSPdqz7u4b9eUShPY/sK7P4V66/xRM1+oXz\nD+agvsFIbaioxdupCuymMmt5vD04XuiS2+TPsfk9ynV9FWldatdDplJUpzPUj++KAKSNv346AlgA\n3F3G+CC1YPTARMEI/t75scMkqgqr6aMLOYqX2zCQw0sLOgULdyRDbtGjcmiwl1kSimD3i17HmEI9\nDMv42hzNWWY+CbsqZDIZaOsZzVmUjlp+wrnKm180Av1KBY7TwR7Qh8yXcqydVPhJi8ztwDRl1xSs\nbpC+sGBy56zH0CsS55IppCdqCpFKYr9yDdExnyVaLjKTYfn0AO2xDH7iwW/X87eD/E+bHDAqOPqq\n12mxv6AVj/62spB5E/652ULns7RGkrj5BO5QGtFo4Z0+Cr5GJx1UJkF7JEOnlCa14RsR6bSNU/NZ\n+Z5DyI6gcNvDT0pKF3zzt6pHZwC0JbCbGjfnoJOBlEFcJyi+H4xymhgwFP4M91BhhAyzAAwyjG67\n61Z9DwZ1p5TCWdxCt9qGMbe2iT01SfkADP+XDMWX1ph7T4LBZ24i0mlUIY2XS5Bd9qnszVF5okni\nk4Pom7PokSGcio/dUmSWXTqDNloKs04rRTsv2Dj4lnp3Ufx3AQgpLZH1pmlT6LNH60kiY4lFPGHo\n1+XpsXKH4IsLNFUC4SZr/4z5uVFDfPUV5MwuVK2GV8rh3byNzqSwSkPMfmTcUJE7Lon1IHmUVpDM\nGpqk/8YVk2hvbvVQCo2drhy8xoMAACAASURBVNzebjVIbKJNRPCa6LzebIMsDNLYM5mHP7VGJhyE\na95X79uFajSCDYSGq7dx5jewjh40p5JKGZ2BgsRqgyoFlM7gBrZ3TKHbbZyqR/PwhGHjzC+gWy0z\nmKVg4Orbd4h6J0I5Ei0EVkux1UxTH5dou08sL+ZCoONCYqGgdPRmsQkgRIeFQOZy2OOmEu98+XXj\n0gCMfX4et5SJKtuy6UImjfAV3vwC1X2Gep+fbaNtAZZAOzay7aILOaxqGyqGpaWffx27gWF39SXY\nvSccO95wYhUhgBXvq44xjIJ7K6yU4LrR5CcsK6r6hO0EoShtbTrTXXyFiFoMR19ukbixitoKrHt9\nn9Z4htq3PUT5cB6nrrHXulby6rVLOEtlyo8YOr6o1PEG0pBKkihr4yz4oKMfQHZ7NwHd56ntNZbk\nmyRPYQiB1fJYP5zAzTu4WRBpn8pBDy/nk0+3aXgJJjJlck6bQafBr158ki/M7qeq0vieRdNzWHez\ntJTDsF3B1Ranxu+gtOBybYwz0zep7la0hnoFRnuYQX0htKk29Gzst3ueUghPG0FDQQQ4CaWNlpCv\nDfgTVCCE1pHVPICXMvpBwoeV4zbz3zbMymOSxv42/oCPdBW6XCE1W2blhM3yuyT1XVnThuZqklua\n9ddG+O0bJ6j5SSqdFLc2i+Ao2iWNY399nTr3I4SvjIuE1uB2aE3kjAhlsGmNwJ4w2QzWAu123px1\nA925PaCw+1tlsr/7NcZ+6VnU4d34q6s8+0iCzqN7jXPmvh3IG/PIfN7oD/zFCaqHivhXrrPno68b\ns4Pg+5XZrKHFv3zB0NfXN/BXV8lf3DAgQOstwJEYaBVVaAkLHdvcB6qrnRSul6FFvWkdy4LWpjW7\nVjctYwf3UZ027T79rpU7vveCeTyVwltaZvTLq9S+/3Fq3//49sc7kGPpw3uY/XtnIgDNnt7B4L87\ny/TPnDWGEW8tDnx/I9xMtdoMXIPahAXJmMsYEFr2CitglfkxoL/PeCICYra5/t7YAP7VG6ikbVgz\ny6v4y6vIQBvH3jMNdIG3pY+fMPbJlQrVnUlkqWiqtMkk1tgI1nCJ5PPGpUymUhQ+fwlGh5HJZJTL\n9LS9h+M/bBWLubBGZhphu3xcG8/3IZk0uVEyiYppPRnGqzLgavhYIDPQmRlB+wqZ6hUVGzm3QfZP\nLhiB6PA17Ta6kGP9Ow4w8nKTxEvXeq/d4hL+yUPdaxrkpVrA4OXa23ZtuV+hgenEGlnRYdSqMl4q\n0y4mTNvNdvfen8d/dYQA4f/oETqBCqWxOuHv2+Qz4ea409elEeqfhGOsD6wVUgZsV8ng56+S/sol\n2icNqK9tECeOREwS2fbQrTZWUEisnJxEZjJMfLVJ9mYZ+5VreKUcyha0Zko4NUVmoYVQmsz5BRqj\nEoaL3eOOM+OCdS4OAOnA7UoI0bX/DgHlfiDakhGDKNrHaW3aU+uNaC0HsCdNoWHhfz6BzGS6DsK/\n9RKjv/IsVlOSubJqGKxAe2fRXDcpmfzcBod+dpPSr56N2FOF8+voXJr17z2GaHWgbT5fNZv4abBa\nPumlB7/PspuBXqSGzHKgVylEIDXR3XuEOjx35cd+39oUt3xPOGBJI8a9tmkkAv70RfMZqQS3P5hE\nvXEVbyCJtVZha8YhObuF9DT251/kxl+DxGaHZEUxcF39/+y9d5BkSX7f98l8pnx1V1d7N9M9fmfN\nzK2dvTvc3QKEJYiDJ0UIEAgSQSooiiQIMgKSKCpIUJQoIigGI0QRgqCgRIggQAIEcMABuAPO7uzO\nulkzO970dPe0rS7vnsnUH/neq+qe2cOKuNs5SJcRG9tT1VX1qjorM3/f39egJVG6LjQWU7TmXBZ/\nu268Lx2BDLWpvzIpRGgCX/YxsrUepNcJYRp+MPA6sqyBdEzr/Y11x4QJiXweXW8M9unAzHdch9gD\nL71ShXqL7R95HH33Hmp+AqTk+D+7S/Fak+s/McHhv/sSarIErkN7IUvq0ir563WqpyTT/8Fl7BfP\nG2KGH2D1AjIrTfZOpBKD737RovPEAt6oYOJNf8AC/CPG1wUgpDWDifSgtA3YX9wO3/ZeY+h3k1SK\nuSmCjU2s0RHCkjlshjduY01NIupN0BpndReEYPtjk4TVOpkdc13htZv4paiD+gDfBx2GiHwOPTOZ\ndCXNZQxQ5X3+Rgdo1QfNr79Sl3YAGg153wz9vg4CxMa2WdzeNQedsNFKIlXV1g76rkkpE4UCRKhp\nkGYfg6r/nU8bU8FQYde71I666DfMoZxyCZVLsfO9jyDOD4ypH+awPEXlTonmsiLMuwNtNCTAzj70\nd/hncQDtHp5bQYBqNln9T46Yxd+xEbUm9sw0wZ27pK5vGY+ebIbw0lVUNk3/kOle15ct1GNHkJ9/\ng9qyTXc2TziWR6WMZEs22wghjEzv8CLjL27Rm8mbDWZYI/2g+aAOvBd48NwRUbymiJKO9rGIxH4G\nUCzxKBQAGH11E5HNoFptw1ywLKxSCeflK6aYi1OEanWcuk/tiEXplW2KN5pUn5owhXL8sWZTZO/1\nIAhRjSbi/Jvc/YF57B6Eznv4OH0QIy7Sos6yDg90leLxoL9BvHkMbSrDi297aYSg4JKpKDqTNr2y\ngJqDM9pH5M2G0/JSjDpdLrxxjF9662kyKY/WVp6X20f4rz7029xcm+BTN0/z+dpJrnRn+XL9GOud\nUV7fW2Cnl+dzF09h9QRBWhjQUbCPcaXjrt/7+AySoQa3i9BIx0Sokw1HDC2BMlQIpfELDmFKEqQF\n/aJFkBHo2EfQMSBU80hIMNdneWGH8Zk6/ZJjKLWWhbfUI8gqGosWnSmHICuM5n6xy8nxbZSW9AKH\nzo0R8ldcwpRGa4F8gMr4azsGTDodKpymj54z81xYVgSWSITtGCZCBILc5yX0APNl8yTmfqs8xrV/\n+fTg9gtvY01NAmB97nWsyQn0K28TVva4/vdO452aZ+FnX6TyiGWMc7Xm8j+YpPIT57Bnpu8zCwao\n/MQ5RKuL96Gjg9ceHsPXPQRa6fgwRdToiAv/ocfowDBvZTqdAEhamUN1zAaKR1itEtxeIbx6g8Iv\nv2SedygG3Dp+xAAYzz1uYlo/fAZvtsjoS+uMXNzBmpig8hfPUfvRc4Nrb7YZ/1/Ps/D3XySs1dF9\nj3f/zhQvvN2m993PRN4fH/CaE8ulQkXpSo/uhCCciGLeZSy7egDTcygkY9iXMA7PiD//GHTxv+VJ\nZMSIEV++iMjnUL2e8W6K/HV0JBeXj5nmUHpPIQ+bMJrSuw1qT88gR4owWUbVjWde7Dukej3CWh2V\nSxswS0Vg0Hs1MRLQSiY/Hwz+SJoV8e/H/4734/i8MyxtxMwTmU5jfflt4wfX6SAzA4GhunrzgXO/\nfmaC0qUG8otvUP/2R7CGUtf0809g37iXvJZqNmn/wLM4202QIkl2/MCGgLQ0RWJW+jxevkdrzjIN\nVMfZB5D9sV/qaxBl/43x8IfQIAJoT9vGEiM6HydsiXhfGq7BYonMcNMoBpOk8Q7SUZHc+K7HTDp0\ns0n62hb2wjzlnz+PdizUmeNYx5YR795CtduJHcX6J33Cs8eRX3yDK387x84PPYr0jLze3euRXalj\nVzvYr99AjRWY/sIevaWxSIo0VJwfBCIgkd+KoYZmsr4MhzmoA48PQ7TnJ3H0CRgQf0ZggIxUiqmX\n2oh0imD9nvFdW5xDZrMc/e/e2vec6etbBEdm2P5TC7CyburOyNweILx6A7+cw2lHfjQ9j/DaTe79\n9DmmX+ogQm0aZR/wiJllQoPVg/6INLWVGgJ6Yt/Rg9JDuB9wjAEiGHjzKIV3Zonyv3sHhCB//g7+\n9AjHfnEH9dHHUbbEWxwjtxXC5g5BVqLPPcHoSymqp7IJaFU76pCqmtTX0RtdRq93UCmb/GqXwh9e\nwc/ZEA7N5YRlNrRfxUB/fJ1D9huJT1U8Yp8hGTfYVZTGJwfzyrb31WSyVEK0OohsmsnzVWQhj7y+\nihrJE06NYm1WOPJ/NxBPnkY7Fv3lCbJrHXpPLLJ3tsToVUX+V15m87983szTjItze4uVT44hQ016\nq48INeVP32D7rEP5ko9yBcp+f+ecrwtACBh8gEJEcbBDtw9HycPgy5wYAsd/2Ad0X+P7LAuVS2FN\nTBjELjpcC9uGfn8Qq9hqIU+foPKkMfyc+Lyh9MlcDveVa/c/PyDzeYNMd7oG0Yw6C7FmH3ggBXoY\nhJCuY5JgslmE7WCVSoOu4YHC4T3j3aOJGyfeIATa85DZLPbkuEl6ibqBKIVqG6NI7dgUb7TpTglE\nzUh82j/wrInFAwhD7r0wxuTLhl1lz8/hzY4gb6wx/lokGYoKlYcy4rmuoXjVwp1r0y85gy93zOQY\nZo3F3e1ESnbgCzPEHNJDRudiYRZZHkO3O+jRguk8xwtD9KUPRtOkbmyjPnKG4p0Bij73r6+Su7yF\nythY9bZxpx/ujLbahNdvGS+Vg0UB7Jf9iAhUlJEeWlomCUIPJYsNg6yxAfUwhVZFTLsh0/bkYKmU\nod9vGDM8a7xsCvdO11D6XQdVbyQFG4DVDwlyRroSFFKMXG6y8cPHTHF74ih+OYt7cxNsC7FoDHJL\n181cDnLW/s3jgxrJ4cZC9fr3A4bAPuPFYYDuj2LYSAkC3PU6+XUPZUN/QiGUwO84jI6aIsWSiuXM\nDpMvCSY+k6JxrcTUopFujlodDs1W8O/l+IPLJ/jC1lFe3ljk3ZUZVu6Vub05jlOzCNOaICsI0tY+\nQOqgFC+xH4muOcw4eOUM3eks3mjK+CEoEGFopFDaxL4KHR0oQxLqcEwfjl9DegrpaZyORlskHRst\noV/WeKMKnQkZLzc5NbLFjy69THtSIjIZ2keLSMtcXGdW0x8x19GZ1UyNNXhu9DYXtheptLPI+Q6t\nowEIjRA6AZ0+8BEBqc5qBX80TZwuFvubaN8zTISoI5lEz3+lVKCh+aTqDU7+82ZylzVeRkepFEiL\nYHUtuU8EAvvL73Dvbz/Pwj94MTHOPfZjr1P+hfOoxtDzTEwke0r5F84TrK5hfe5AtHRy2AsHsrah\nw7RMp7CmJk1ilQqT/8f3yVzWAMhaGSCi3086rHIo+VCm00ly4/CwDy8ilxcHPhTXbhLcXoGX3jIH\n5i9fxN1qmU6u1jA5Rr8kCB34tncabPzU84SHorSoVAr/W55EtTsc/8sX+IPHcqR/8wLq4rvvvZd+\njcaw7MtdraBtTW8yYzqI0eF6WJJx3+Oj+fMVZfRA5tI66vRSEvigm62kAFF7Rg4f7hqpWOPECNbo\nCE5HQb1lzkhvXCH/Ky/TOjsH2xXwfQO0jBT2nUesnRphq72/MXXAL2vfiOdINotVzJvvhWMnspPB\nE8cyw6ECQoWR7FIYYGsIBFFRZLTqdExKaq+/DzC6b0iL9pREv2YaXKOvbBAcmzd3pdNIL0y69/Yh\nA5JldjyoNmgtZHBq7ytR9as6hp3uTufWac2DHi181V9HnjjyVX/Ob4yHOBJWr2F89MaESQGNmJ1x\niMR7nmUikEhH7Jskrj1uikRNQa8gsQ8vYh1dQlX2kv3JurKCvVGFetM0Aj5yBv9bn8L79qeZ+S1T\n41gTE0z+novlQWchh9ULkPUOotlBdHoISxKUMshWDz9vodvdhOmv47on/nmY5Q+EO7sEm1uEuxXz\n/50dwp2dQb0YA6BiqF7QanDug+SML2Ov0N09hBDI168QVvZMcz3lou8ZebZIpwjXNgYsV8cmzNjG\nKqDZRH3sLOr4IvrcE8n7F6Fm9EsrqGhdtqenaC+GhGkLv2jj1h+CT9hwX0JBkBEEWcv4liV3RKDi\nwTkUe+/AA+4b7A+qUsXP2YjpCTrf+wzCdXG2m2jHxq73cep9rIZHZqsPmTTbH7IIcjb1E5qJL20j\nQk3tuGT201tUHk0xcrOD9EKce1XQYHV8Kn/mEVJ7fTpLRditDYyug/21W2IiHe/Tno/OpsGxUaN5\ngxPEvkm+b+RiQpg5ZNsD9tkw6GVZBmBMpYzXlm0bNtHWnvHwXZhB9D1ky7BWZT/qcEqJn7ORffN3\n70xKRn71dRPGs61oP7mIuvgut//iMoW7msJagNCa1pzL7ncdpf9Yh8ztKvVDNtL7E8QQAvYVxsNp\nEvFI/HeGNOrDkabxHyFh5BzQrQshkDfXCXd29lHjG9//lKES27YpkGp1enN5nD0z4b35KKa33UY1\nm1jj5eSAYC7WSnxSVNuALfbcrOk2hWHiPbPvfQxdc+yxIKcm2Prxs4SNBtbkOIyXBrG475HaEvtS\nWOPjWKMj2DPTBlBKpZKULZnJmMhv23TORCqV0J/l0UOIlGHSqJSN9AYGcLm7HSb/+YvYC/OEjQal\n637CDtLdLqt/KkVYrSJ6vvEWOkgzfUgjtxniOAGtaQvtWPuMw+Juh5AySRu4vyMu9v+sjbYXYP5T\n26hsCt3tErbahJev4z9hpIfasWHMpNVVHs0QTo7g3tkhu9FHWxLr6BLhboVwfRP37p6hoIYhuttF\n+76Jg44KAGevk0i4/kjfF61M0aQVajqac6MFgmOzMDaKiKiKBIHparjugA4bvUfhulilUWSxkHhC\ngDlki4gppIv5yGdIgesMipUooQ8gzNq4DVO4BlkLce0OpSt97LlZRN+jNesmBVxnsUj/O54m95lL\nVE/yvhesr9WQrhMV9AohpZFrwIOBnuHbDnaXYDDnpEB6iv78KF7R+PtIT5C/LUmtO7h2yFimQ6gk\nFhq3ZSI0l36zT6WW515/hH96+1u4c2eS4jVJ/lKK9bUxmvcKyB0XuZ1CrKfRAlRGE2Qx6V5g5GJK\nG2psuJ8eHYNC/YksVi+gM2FTO2rjjdgG6Ik3PNd0VETfR/ZD83yBQtmCIG/RH3PolR28UdvE0XuR\nBEyA9EFboBxBkNWEaY1Ka2TDpu/bKATNMI2fF6jxEfZO2IyXmiye3OLZj1zG++Y6e08ovImAe5sl\n1vuj1N4ex7s0QrCToTjdBAFZx0dbD3HuCIHudhGhTiRQyboeM4OAWAKmgyBiiOrBgTRm4QzLPWNg\n/9qd5KXC3Qp3v3uMrf/iedAKe34u2RNy66ZIXvylFXp/+pn9TRXYz8YZPgxHo/enn4lStx7ASBTi\nftaAZXHzn01z5ece5e7fe54r//Q0t//hOayTR8yhv9m8T4ImUims8hhipIi9MIt46lETMx4ExmzR\nto2U7PGTJuJ5Z888ZryMNTGBvXQI+9AC4Qmz/2rHovfYAqLvE166yuw/fpHyL5zndx8tMvs/X6A3\nmeHe33oelKa+7KKffdQwgwoFbvzcc+/3L/y1GVqhmy1SFUFrdhDrHBc1SaMijmqPzzPv5REXNwiE\nSabTyvjVxcWa6nSof9upZH7FDFCA1qxFWKvTHbMQuUwUc2/mR+7yjtmjgsAkBdWbg9cD1F41me/D\n7y16M/uBovhu36P30UdQ3Z5h9yzOYU1PIjNpRCZjzj2eb+bcAcZrLEuzSqVkjdbee0gxv0KDwT40\nj93R0c8LhGsbhhEEyNIo1l7LyC2B3hHT7HLv7tF98jCpajCIJv6AR4hAacGcU8U/1MebKhg5zMG0\ntz/Oa0Qyl2+M/++MeM+3opLC+A0eOBsnzdEhn80EjI3qKCvyuBz2Q1UKmc2iHGg/MgXVgTRTPHka\n1Wqbs210Btl7JIPd9Enfa+LlBX7BQc1PMvapy5TPm2a6VWkar8nI81Kk0zhX1glu3cHPChgfRdjW\nAADSEUAVS20hWRNiQLj+559Dn3vCBMGcPmHOynGzNwKjhRCmWHdds491Oqhez/zXbid7msikzZ4V\neyM9sYzue0Y9kEkbXyHfG4BmUrB3IoVfENhLh9h6KoNVabL2Qg6ee5yd7z5K7UTWJLX1egTzZVS7\nw7G/+jLr35QCBXb7IdVYcQ9aa9AQZK0hw+WhdTAG0JJG6tD8GmYUDT91EKCPL9Ibs+guj1H4wg10\nJkV49QZr3z6GtiXKMa9ntzzaTx+mdFmTeWeN3Kqk8fg4Tivg0K/tgW0xet1HdjxkvUNYKmDXOoh2\nj/IruzirFdAg8lnTgBmWi8XN9jhpL5aGpVzCy9e5/efn8MpZ+qcXCGfLJhBnbBRKxaRJngBJVsTc\nlIZVpD3f7O99E+5EEJh6OQyRhTzBSOTD5wfolA2VmvEaLbikKn38sQy9MRu/AMFHHuXKX5shf6/P\nxjkbcfY06V2Nlxd0JmzkxWt0pgXFO31mf9ll+6MTpKvv/3z89QMIDQ1xoFsIQwDQwU1+uBMVd84O\ndKeEZSFcl7BaReZyCZtF1eqkKz7yiVOEW9vJAd7uhPglMyHce7XkeWQ6je57hOsDw2Vj5Bsd5lWI\nTKcINrbQnS5yasLIBmKGSnzJQ8a9SIMm62yayf/ddGl1Ng2R0SOAvXw4KjYG70s4LtbsFPf+2lMw\nPopenKH72DzCdZGFPLrbwyoWzXvyfMLNLfMeslnD8MikjXRnr8rORyZxb28z9Uo/WTzlpVtmkS8X\nsYpFsi8a6Zn3bU8RVutYXfN+/Kkiwfo989kWvvrdqv+3w2krmpUczSVQ6aiDKMR9TvdCyoSOLiw5\nYPnAAOUFtB8g8nlzONzYxtprRAfSKELekbTPLhgEuWho6r1xQXsxT7C2jrYEVquPaLaNiWu5hK41\nBgBaEETRhRGlMJ1Gr6wbHeqQ99UgJlQMHifkQEMthnSunm8W8b0aOpvGPzlvAE8/MNpfSDY5vThj\nDvz5LP2TcwSPLWOdPmEOxfkcut1GFgqIRiuZG7rTHRzG1zaQj540z2lJym/30XOTZG/X4MgCqZ0O\n4cQout1l9GqLsLJH9dlZrL4is9HGe+4kTlOQfgj6aGCwicWdoP776PwOFznDHamYdRZ3tYOQMC1p\nzzoEaYmyDVDSWlKMv6Wovj6Br0whlZI+Vlfh3tkBBe47Wb60usz66zMc/lXN1Pk62W2Ns+OQ2rVI\nVSRuXeA0BW5N4FYkoQNeXiaMnYTVM/SfFqBsSVBwaRyyWXuhQGNZ0jqk2H1CUnmsQHc+v2+dFaFG\neoax1ht3ojQzaM1KuuOS3qgBh1oLaXplGz8rTQCFJfALoB1AgZYa7WjG821e2jjEz1/4KF5J01nI\n05kPeWHmGh+ZvEkncDg1ucXSIxt865l30BoaQQa3KnDrgpErFt0ro9gTXZaKFYR6CFJDOfCGI1Ro\nWySsN4gOOrFUGZJCPUmDjMCfpOgdZuJIC/vwImC+pzKXM5530mL+v38RvxCtw1s7yAiElt9i9otg\nbZ30b10YNBPe6/IP7LHp37pgzKeTX4iYTNEaGacVilTKMIDGxzj8w29x8qcusfwLdzn+k6+w9DPn\nCd+9Rv1HnqP6Y0a6FQNTwraxxsvc/Ysnuf43j7D34Tlu/Nk8l//RCe7+3ecNUFMqmQP4WybiOdyt\nGFZrrW66umsbBCurbDyfZ+Onnke9eRnnM6/tY0rZhxawZ6bRQUD6ty4w9VoP9cwjNA+D9ALqSza9\n509w9G8aWdp9zN0PYsSeOu0Opes+rcVoz4/3pDBkn2kqRP4TMXMo3Ccb2wfAaI04tYzaq6HfuLIP\nlMn/ysvw7GMIIRCWTNid2gakxfgFw8aK54FMp9Eb26YxYNuJD5ZMp0yzKZ02jONkfhwASWIwdDjl\nMxqZV26aOTExgRrNEaysGtCyPIrMZg3ImskMhXNoA1gm3xOFyGQMI6FQSNhPwrbRrfaDASIYdOz9\ngPLbLWShQLi+YYq3fh+RSqF93xSei8bvLn17F4Ddj8xSP2yTfvXGB+4hBOBpC6UlHpJR2WFpdpfm\nYioqbh4OQPWN8SdjxKmiMtBYfeiPWkk6mh6WxcD9TQHLsLcT5qIaajB5ftJknPq3V8hd2oRyKfne\nNpfzpvba3ErmqHIF/oiLeusKVl+T3mhh1dvguLC7R/5zV03ibRAahm2rY2Lv6yYpsfy5VUSrux94\niKVukRxXBwGq3jANbmnR++5nKN7u4tzexOoFqKwLE2Wz5vjeoEnqOOZsHCkp7IV54893bDnxXIMB\nu5IwNBYKV9aNSbDnE1b2sOfnsEolAyBJi/DWXcIMTFzso7NpFn55Bd1sceg399BCMH6hSmY3xCoW\nWfuZ59k7lUMsztL84ecQCjKrzfsCkT6wMcQwc1uaXsmkOBu5lDTn3WEgSOkBwJjULQcarMMAnh9S\nPr9F+kuXCY7Pm3PRk6eZ/bmX8UdSqJQFgcIvpclsdfGKAu/ELNMvtnEbIe7aHmJzB1FvkXtrHdE1\n0e/WTg3R89ApF1FrorNpcjerBsCJ66/heW/JQa3lOqa26nvc++nnWfrfbpLaahGmJZ2FHMIPCK/f\nQrS7iGLB+I9mM+Yxtk2wsYn32GH8U4twZIH+44smhn5q3Hx/XAeRyUAmberDbh+VTSO6HuGhKVTK\nxvni27QWM3SmXHqjgsIdjZ+3mT4PVidg4g1F81iBVE0z89ltWguC+ifPkNswjdvNZy1qn+hRPj90\nrvsjxtcXIDSsDR+WSQ17FUQsoAETaDDBjDnhwNgwNpeO/0MaqUq8SFgT46RXqqx+e8kcdCPau13t\nktoxrx/cupMcauW4QW0H8hpTXMdSgOSwESVx0fcSdglheF+yhnBd5JFDqGaT8PJ1hG0jUikTARx1\nfu3pKRpPTCFLo+Y9OS7W1CT9Fx5n92PzTJ83TJVgJEP6jRVzMBsbRWSziLFRwkbDRPu6rlmgWm1E\nLmc6fVu7iENzFO56tB+bxfnMa9jLh5PP03/2JChF2GigF6exji2T/uK7hN/0BIu/U8eemaZ6Yih+\ndZh58hCG0BrpKfKXXbInavijqQECPKR11XpowYr/C4d0wskTGqAgWFun/uzcwDek3UZELDb3i+8Y\nb5jZAr2pyJvBgvSu+Sy8URtZaRgT7pjGbttozzP0w2iE1SpMjJn5EoaR30Mw6MLoCH2OZWx+YJJV\nxkrY83OoahVu3EW1dvbbzQAAIABJREFU2oQ3V/DGXESxgLq7zr2PZhDptCmuGq2kWBRnTxvz8bT5\nnFI3t7F3W3gTOba/dZF7P/YoYmHWzN3o81GttpmLkQxN9XqovIt89CTudhu32kNWGoSXr9M6akCz\n1pE8anHS6HeBymOC9PUtUIr6YZf8usaqDQyoH8qIO96dBwBT6iscth/QAY9v7xwt47RC0pUQPyfw\nRgXKAWuqi9XTLP16k9Uvz9PspRi12shAo7tdgpxNflUTvjPC7JdCsle2sHbr2D1NqmpAILsDbh3s\nNmR2NKmKILupsTyNtoY24ngMUcGlF9CdcOmNCdqHAoKsJnvPAEzdSUFzzkY7Fv5ICp1xCAspgoJr\nmD+Bxi9aVE7bdGY0tSc9+p+sce87fHafEPSLAq8g6ExLgqw5RIjA/B+pGV/a49nyHb5z8V2cHQdv\nxufehy1S0x2k0NxoT3Dx7WWuVSZY2Srz+vYCRxe3OZrdRrnQOmYM8uyWoJDr4cogOex+oCMMBwCp\n5+Gu1egeGrDl4v1L+959hbtJMIno7nEiyhAzCBUS3F6h8hPnUB85A0sL5vBx1gCv83/Qolu26Hzn\nGWNICKR/yRT3Mpej8pcMGCOzkTnzMPgT7a2q10OkUnjf9pTx+Xn8ZARYjw2u70DIgczlqH//WXrf\ndNrItzDMo2B1DXt6is73PWvkNj7sPDdoeljHj9D/5jO0H59j6tU+y3/nPGNfXufI33qJ43/5Asv/\n8iY7j9vs/GKJa7/wVHLd1qljxpehUMBePoz2PaxSiZmfe9HMxUdPmmt/9KQ5gB9b5spfn0MXctR/\n5DmTpPaHryO+fJGJNxT6tUvM/qtLuL/7KlaxaD6Xh1DYx4wfHSqy13bxRjTBeD5K7JER+BIMflfI\npBgb9sDYJxsTMmloiVCbeXf2pPFF09pImwHrxjp6cRa1NA/TBvAYvRkgHzuO7PSS1DVh22itkcWC\nYU4OzVHV6Zjmz4PAtH2y2v3rpvrY2cSnJ6zsIbJZwp0drN2GYcgCqpRHlkZR/X7EfB2cCYNF08iT\n2SxhrU5YrRKu3UOHIb1njmEdW07YZvEcOsiqVu023U8+Q7C2jr1eMVHBQWC8vkojhiHQ6WJPTyG+\nfBHrxFF0JLcM01C+1DP790OYN02Voa3N+ynIHp+YvEZjWZizyFeSoX6NxkO1CfjGeP9jeJlQIH1N\nZzIq6oeZQMPNLTuKA4don4pYw8Ns44gBEVarWNNThNUqutMjvHYTGQG0+dWuOasGAXrW7FX1p3ts\nn3WwymP0RyWy2TXfsaiYxomY5CqS7/geYb2BPn0Ekc0SrK0TbmwaM/5hkCoeUiQN0953P4M4e5L8\nq3exOj7esVmsvTYEytRZQPMTJ8GyjHqkOZBWt37wWYK5MZOG5vngB8gnTsFzjye/ozods051ewjX\nQWTSWCePoqq15LlqP/IMlR9/hvE3+0ae5/mmpnjhGNy4izj/JuqdK+Ru1QgbDTqHfSZ//y7aljQP\nSSYuBsh2l87CB+8hlMydqJkolLEmUO7A4kFLYaLcwdxmW4P5FLOI4kZH7Fdq20aZsjgJt9cJr9+i\n84nT2NsNRKNFmHWRjx0ndbeKs9ehcbxAmLLYPZMnvx7SH3XwR1zcShe1vWsCc9ptdDFn/lbxucrz\nkbWmUTgA4ZUbUMgljfFYSZP4G0V+QMHtFTa+Z4neI3Ms/Icteo/M05vJk3tzHS2EadiDkexGjT3V\naBLuVaHfZ+evnKPySBr7lcu0D+cJXYk/VcSbG0VPjdF/dAFdyBp23XYVPZJHhCH+VNEoSjoerT9z\nlpHfvsTmd3qU3+nithVeQVK41aIzm6E3Khm5uMPItSYbf2qSxd+uUzktSFdD3NvbKAem/71Lf7Fk\nvEXfx/j6AoSGDsX25Pj++9TggJmYMO9jBx2Ip9dqf6rX7BTWkUOwbtAye2YqQq01nVlF5zueSHwX\nZL3Fkf9jIwF8dL+PvXyYcGd30MVl+KXMwV57kc4+nUa32gQR6+igqXT8s+p0CN81vkQiisRNDnxB\nYBakzS0qj1p0Ts+gw5DmJ8/SfuYwmZsVRv/VecSLb5pDcz8g3Nmh9/wJhOej221UMZt8dqoTSZSi\nTpgcKSAK5kuSubFD9vw1rONHUDsVIzubn0EojXrrCuEnPoR687KJNfYDEKBfu0SwMMHES9XB5/B+\n2BVfi3FgwyvdCDhW3qFbtk3M4DBNccijYfB4/Z6FQTwH9k5axjS8WkdFjBow73n819/l3je57J00\njCS3bvwhAPKX9wi3dhLUXCtlkm20Rnt+cvAXqRSibTbPOFXlvq5r0i027AQ5UQbPR1VrSayzzBgv\nk9SnXmHlh0xCXHcuNBrm3QrCdbCXDxvWWbuHun4bMVIE1yFYXaP5SBl3vcb4azVECKvfPYk+fcR0\nZFOueZ1229AgczkDpHY8ZLNNOJJG1jtgSVPEtUPUm5dRliAopNApA5qW39Goyh6y2aUzLVAWRnL3\nQXsISbFvLsh0OpL13O819UBQ6D624hCgrTWtOdtIrST4eYFf0IQpjWUbE2a5us3Sv6vRvlTiN3bP\nEqYlSIv0Zpvi3R6TbwTkrlUMfdWSyEDj1jVuQ+O0NU5L4zZNx89paSwfQlegbTnwChq+rlCjMjZe\nKY1QmsyOJn/bxuoJUjVN+ZJPelejbEF/IotfsAizZv7LQKEtQXvKonLKpr3sExRCxiYaHCpVSec9\nTp27Te1cn/oJRX8UepMaZQEaVEpjFXxm8w2k0JzLX+fMR68xN7tH8XSFp+dXuNMps9kuQsGn13MQ\n62kqe3lq3Qy/t3WK3rgiW+5QO60IMxopYMJtoe2HJBmLC2IpodYkTEVFu+sOWD9E3+O4gFdhwhAS\n9tCcT+aOTMCk6mmN/NJF1DuGMcNbJuGpO5Wm/OIGzb/QSFiQhX9jGC+q3ab88yZ+XXte8lxJYRxL\n1YRA9/u4v/sq2vfMOl8xUtZhz5UkGcp1Ue02xV96CffTr9z3UQSbW/RGJCOfzVJ6ZRM3kly3XjjJ\ntb80SeVRl+wrt7A/+5r5/alRs9987CzX/9oyCz/7IuVP3uLQrwru/vUzWMeWCS9fN82SyHDaKg1k\n1LP/04uod64gLIl654ph7l6/xdG/8RLhtZvk7pmOXZymmf+Vl82F2jbV/+xcAhzohyl11gq9sY3V\nFXRmjVwqBmLi+818GGYXq/sYx4On04a9E4RYx48gb64ZT50hn7dwtwKWYOPjI6aL+shxCi/fRdZa\nqJ2KYUo7rqG9R/5ywMCrCczcteT9Rs3D/iNDa6M1OoI9N4tzZX2QSgnJz8HtFTZ/0PydrHsVvOWp\nfY/XHz6DsB3kJVPAiUjWbC8fNilk7TaZS+uE5TzqY2fN78RnN39/k0qkUmR+/QLW6EiS4gcgDy8Q\nrKwSPH0KOVJM5P+i7yX7bm4zxBsxRvFW+4M96wgNe0GepsqgtJEYP5W9TXC8QzA9anyYvgojThF9\nPyO2F/jG+BMyIpaw3QM/j/ERcoakY3FBHDM7hrwmHxhKoTQ6SsNa/75DWFOTpsAXAj1jgF/Z8RCW\nZO/HzyEiLxTpKGbO98APGH+ni9rcNkb3th0B25Zh2/h+IrmSrmPOlv2+YezMzUTel0N+RjG7Qxkf\nTbm8SGazi1zZRAchcrOCs91E3VpBv3GJu//t8wB0JgZrmVUeQz//BPrcE7iNEHt1l/DjH8JbKBsQ\n5+QI9mYN9dGzbP6N5xNZqQ5DZLFgrCDWt8y+YllYU5Nkt3ymfm+VzI0d3LdXEK0OCIGXN2DJtX/x\nDHt/4VzC2Bp71Sbc3GLr+VFSVW3qrUyKVPXh2nKYZFoIshCmjSVHYrQcNwzin4c9eWJDZhg04iNw\nyKo08Z45Ds89TmajDbt79E/MYjdN81x0enQXCoSuwKl71I9C9jNvkb+0Y+wJXruEmJ8xXj65XGJU\nLWIfnjA0oUDZFPreFtbJKDwjBj9jz6D4O+D5qPES+twTTH9mk/SNbYTnk1qtkl5voLNpsr/2Miv/\n+WkA9s6UQAqTWDo1Tv87n2Lzzz1CYS1k6kKD3scfQ9mCzGqT2rEM7VkXbyJHa9ZFpRx6RycTsIog\nxNnrmKTelI3V19z9q49x8qdW2X0ii91V5O/2CNM2m89ZTH1mjav/TZHds0WKdwKCYgpvKiB3tcL1\nv3qIpd/o0RuVhK5EBO/vjPz1BQgNjwd0n/aldJkfDsg39suC4t+RroPo9tHrm8ajZ2LCJGsJaRaV\nlKLwylpiwBisrhHcuoM1YUApa7yMrtbvY8AkrKOImRQfPpTnG9R83HgBxf5Hw8DQPqNDaUx9hWXk\nBDKXI6w3GHnLgArd5T5r32w8TkYu7hhDzIIBJOyFefTRRcTrl00sbKVHcOeuMT5OOVgnjiZUx7DR\nMAelSOPoLU/ROTxqENZCgY1vnUIfNzH1zUfHsVqGehdHSiMtvI89hl3rYy/MY127i9wdAEIPLZ1C\nkERsC62xO4pb1TKNJYlODboc+6RBBwt8cUA2Bvv+RqM3FIwWk8N6MDpIMRHpNId/rUHqhV3s5cPM\n/mEV3WwZz4U7qya2MgwT/XXSzYg3vMjHR7fbhoofMdL0kJRsmCkk8jlEsWAotY3mfrNspRNG2+Rr\n5tC69O8Ddj42iz09ZSQZxSxhuYBaWTMFSD6LqBhppNMOwXWQtRYzn92muBJy99sLdJ9cShhTutdH\nNZtUv+UIcnEOcW/HXIstCCaKpss9P03jsGMMzfsKZ7eDeOMqte95jOKvvsrGT5whvLcJEpyu/sos\nnK/VGC62pBysOb5nfo4osffRXeOfh7vhQ2yz2EMoXVVY/RA/K/EKEGQ0MgDfM35CFHLIvSZLv9Hm\n5S+eMkkAUpiDy2aT/NUq7NWSz0Z6EQjUMECQ29ZRwoLG7mm0NKZ/CPZvyvHbjeZJkLfQAlJ1RX5d\nkd00z5lea1JYD7A8TeURB7ce4N7aIUzbbJ/N0C3b9EvQe6TLxHyNEyfXeWHuOh8tXyeb7tP0UoyM\ndkjNtglyCqsHQV6jHdCuIpftU061+XfXz3ChfYTvm3idzcoIvRfHuVUf58LKIdZ3R9E9izCwUI5m\nvNyk3XPZ+Pw8jPj07hYoHarijYUU0z0KVu/hMIQsK/E3QCl0r4fTDM16HBsox55AkZwYSFigaDVY\nX4bZsCo0ZrvA8Z+5aF5qvGzYLE8cByBV8QhurzD5PVfYeSJ7/6UVi0Z2EwQJu0OHoXltx41e/8EH\nhMQjIfY/iq7/gWt7dN1WeQyEYOwXz1P98B54PqnTNe7+3efJ/PoFjvz0eRZ+6VZCs7fnZuHC26aT\n/Pk3WPqZ8waMDUNSv/MKk6/7rPzgNDzzmHn+0RHs2Rn0oRmu/csTRsJq26z+189z/e+fpfnDz9F6\nfonKXzqXsKPS17cIbq/gj2e5/W8eJ3jhSe788uOEuxUmfn/lwUzAhzHCkLF3TRqlLuYf7AWjdFL4\nCCsKo4jPErFJeQRAqk4HKlWCcn4Qsz7k9yFzOdSblw1gO1uA7QrBxqZpdEQdbR34g7CBfgQqxvtr\nNA9UbCQ93FwZZrnFN9kOjI9BGBJu7+x7f9r3EibP9K/dBCBYv8fmuQxWqZQwUIKckaupdhtrvExY\nMYb7eq+aFHLBxia89BZ+zib8xIcGoFo0rGJxH6AY1ups/+mBebLORIzs16+hpgwrQKbT6HoTddh4\nQlp9RZgSJp3tIWxXzTBNLczS1m4iG1ue2qUzkxkEkPwxxz7Z6J/AcdA77RuD6Hxs/g+G5SF96I85\npqiHyG7gQAjLUJM0SeqK74s9UGPvMwmMjRiT9qHvnqw0EMuLuC3F3U+a7/P8/+mQurMLUuC8eQuR\nzSRePiJiJQnLMpHd8XM5DuzuoT0PIQTByip6dy+y7BBDzRlhfFEzaXOWurWO7vbQnY7xU6tUjVQH\nUFEjKbcdGpbpoQX0zCQqZUyL3d99lWBjC2evg7teRTgurXlTczpX1pj5XJ1wahR76ZBhym5sJh5w\n2vfgkaPoTpfsW2uJrLn93BFIufS+62mKKx6q12P5V0Imf3cFcW+Hxp97jqlfucLqTz/DxL94ieop\njZ81r6keBpv1YO9cgNPQ9MqOkd1FScg6jmY/yJhP/Jz22yrAQFHSnnawqh2svRZipIi73UoAnfaZ\nObPWRg+bftmEVIi+T+qtu2aPqDUQrmOa1BEbDd+EDBDtY9bGLjKXRTTaRkYWMWeTa4x/tm2Einw3\nKzV0p4duRQFAO3tQa2I9cpzSNbOP5dc9vMVx2t//LDvfNE32i1exO5C7sousd+hM2mQ3+vTmC/Qm\nBPn1PqErsXzTnNUC/JliZPOh0Y6F6IfYtS7KMZHx9PtMvtZi5fs0zk6Lzmya2S8EBDMlpn/DxepD\n9k4DLQTll222PzZJ6V2499EMCHAb/vtGer7+AKG4QHuPAnFfRPvB1DFIKPfDQ/V6qHojYe+ESyYW\nXvsewvOxWhJsK2FaxCPY2jEdqGYL3e0mhfrwsPI5ZNyBS9gE5vXV/CRs7e5jM8VsouRybXsQIRvL\nEKIurl7bwCqVWP6/YDRqEofXb2EfXkS/ccl08mwL7ZjUDt3pIjse1iPHaT86A4GCvTo6m06kYDoI\nCOsNw2BYSJH6nVeQ5THUzi5hiiR1Q4Qa2TRfGq9gGVBJhWRu7qLfuGQ0/qMjBNu7Q5/9Q5xO8ZSI\n/gaNq2N0FoKBj9Awgh3/W+skjv2+EdH0ReQVVPzVV0Frc1A8fWKfnlfns1i1Fv0/GOfWfzqL2KxE\nh/jhbG6TpkQ6Zb78kam1DpWRB8YdDstKAAgrnxtsvqFhiYhMJrl2VYtAygjMEMKwzmKZh/MZ0423\nP/sa/ZLAX55GplLIehur0ow6KSlU1kXns8hcjszba+i79+iemCIsZRm5uMP4WwFrPxYQHJ01HgtR\nIet0FcLzEZkMwfo9RKCx612j0d2uYHdAnz6CWw8IRk2CXuFOF1koULruo548idOC9F64Lxnrgx4H\nGWOm+Brqjg2vRQ8oevbdpwex86laQPVkniAtsXxwWgK7LdDbKbx81H13bORbN1j4fc9Qbx3HSBg6\nPUTVeE1pzwCzMtCkGor8Wp/izRa5tS5uS2H3DTvI8jRuU+3vBsS+IoFCpxyULQ2w1FbYPQMoZXYV\ndk+hHYvs1W2Kd33ai4p+yUGNFeiVHYSCxpKgP64YHW1TSnfpBQ7jTotjqS3OTNxjo1qkdaWEt5ZD\nW+DWBaNXMBH1ypihrrVHse2QnnJwREjYswiymrFMh1Tax3Yi4GQzRWZLUmtkWR6v0D/eZXKyjggE\n1b08Mu8jhWYvyGH1HwIiFKdmQOL9ohxh1t3ks1f746AjdtB9TMqhOHcgKeRVr4e9dIjO08us/vUP\nwUWzCcgvXST8+IcAGH+7y85fObfv6cKG2eti8Ef3+wNmUuRJJgsFIz8eHUmKKPvQAuJpA8LEYFK8\npg9fs3Bcs/dE1x1W9vYVAcHaOjOfvMzip5vJe4qTN61i0czlx08mEmuZzaIeP0bzh57FOnWM1Gff\nJLeuuf03JNbUJGGtTrB+D/XWVY7+yBsGuBCSxX90geM/+y6FX36J3O++Rfnnz1P+hQtGZhcEBhj7\n/Bss/dm3sP/gNQ7/8FsgRBJ5PPyZf1AjiVgfWu9ymz7dSYXKp8zaHSdMDqfe3P9EAzlfxCSKZWEi\nl0W8/M7gV2cmk7Q2kc8hs1mW/oeLrH6Lm+yLYaOxb28Uto0cHTFF1LB3YcR+00pHiV/DZ6+hn2UU\neDE5bmQGERs7/j4k56xobR1mm1hd0IvThFvb2NNTOJ95I7kv3Ksl7zP+ngjbTpgtqd9+hb2TKTof\nP7XvLBeePERYqyVMOfWxs4zeHMxpf9QUtqrdpjOfNyBYZAyq37hE55ll0utNnJaxHxAPAu6+lkND\nPcxQC7M0VYamStPWLik7oD8i79vD/v86HhpL/et9HDheBVnY+LBFUEzvPxvH7KBh38qIyapjdr3S\nUQNVGZmUbTP3+xUTQoHxt4uBpmD9HjvPlclu9Jm+0EM+epLM5y+hW21Ut5c8T+LdqDXa84xktBaB\n1Eqb5qmIQlGi7546tsCDhh7JowoZWN8ywDUGYNKhMhKicdPAOPKPTa2T+fULtP9Jn3BiBH31FiLQ\npO8Y0NkqjyHrbXSrg8znmPv9PYLbK+i5CRO+AehsGvm4kS8bJq1pNlz9yRwszRHOlhGpFNd/co76\nko3OphGhprlg1qLURpP6uQX09AR+XhCeWGDmpR7WWImxtwXFWx1Eq4PVfQgpY7BfgaHB7kLtqETZ\nBqhKzu6xGfmwQXk8Yn/TuFGptfHeaXfRUhBevYGu1vAWyjRPlmC7gmj3CNISbQtKlxoEBYfCO7vG\nd65WN1YXQQDdnvHFzaaN95TShNUaut4wKozhNSEMCdbWCZZn9s93YaRiqlwkzKeQ79wc7HsROAkg\n8ln0rbsUL24TvPAk0lfc+a40udUOE792he0fOs34p2+iRnP40yOMXO/QG3cRgaJ0LUD2ja9okBK0\n5zNYvsLP2rRPjKPzGUSgsDYrVP9JSOFaDT9vIcolbn1fjvSqS+dIicYhye7jDtbVVVLVgPpRwc5z\nJTafSzFy2wMNqUZIuqLJVKJGUvgnlSEUIY7hzu7+28XggLSfIfQeEacHi7xuNznkWLc3UZvbBnXd\n2kEoga6aCaaefTR5jHTjCG6dGJUND2tyAjJpdKw7He5KScv4okwNpG9CCkPtHaJex+ajiQcSkY9J\ndJ/IZkjdrZqiKhrBnbvIdBqrXIJeH6vaNqbGnU5CmfPzEmu3bvxuak3qZwdUYJkx5thjX143HbfN\nbUQ6xeznjWTOGi+TW2nROmVon04rJFwzRto6mzZGjHs1Vn54fh/4djBR7QMbw3NdQHfcxmkKildt\nY4YbMz3AfPZD7LPYWHpww5BnD6BtyzDEoiLdKhaRzTZWs5cUNDqfAaWY+bkXmfrwPRgpmAXqIMst\n5aIzg1QdlE4id+NYTwP8RDT92Dg6fh7LMprVSCaGjmM2VfI44bomclfuf+2ZL9SxK20D/u3uGWZR\nXBy2eoYVVMibzbjZxG76dKfS6Fya7KffJJX2ufsdWdN9iWKD85+/bhZT2zLdVAGi3iLc2ias7FFY\n66NfeZvtD6WxegH9s8tYHR/GS7iffoWtZ3M4TY3d8venwX1QIy66IumYsCyT1BenHP7HSNgOrDuh\nC15B0J1S+AWNUILUnqQ/KgjGcmgpkJPjpN9eJbPVS7TP2vMiaZFIGGB2NyCz1sa9tYW8s2H+nn2N\nDMyCb3ma0B0q6gI1AIOEIMg7Jg0s0NjdEKcZGBZQPcDqKVTGGI+nb1UoXpO4tYDOQoHuuMQrQn8y\nREz2WCjWGUl16YcWu36e7aBIzjabrlsTFK9L3Jr5HuW2AtLbAqdu0e2aAuYTC9c5nVkjLT2+58xF\nnv7my/zA1Kv85PEv4/Vt7LxPaqmJUOC3HS6vTZMv9JjONVFTfZw1A2A4MqQdpO477H4gI2YTxoDh\n1Djpz79D6neMnErYNsJ2zJqo1YBtM0yrHv43JPPNnp5KCtzg9gqp33mFuX/04gBEkBZBxsJemMd+\n/Rqpmrk9jnBPzKt9L/GOA8MOkQWTJKh7fXTgE0agsnBcgpVVxJU75jWia5KZtDGXT8zrRWIu/EeO\nC28fWFujxkevh9yuIjJmL9Geh7WyhdsKaZ0oIYt5xj91jdQbOXqPLZi9dHQk2Wus8TIyuqZh8Mz/\n1qfof9uHkF+6yO2/sEzYaFD70XPGt0YI7Pk5bv/sc8gzjxjGyHj5Ay+k97GchUQcOcTWky6jVwWy\n0U1StJIR+8ZFHnL7mC9xsyAaSWKO5ye3i1QKbt1NfKT843NJek5YUKjFmcHfaIjtqAMTQKC73X1/\nQ5HNmOt2DGvnvrNXfE7TCmtuGmzL+DDGEq74jBCxuw8m0QFMvtpG1lomrXJza3+D7wFm0ToIUI2m\nYX4DbkOz9ZS9P632wtumKIzmrbPZxPrCm8nd3cko/vrEUfKXzGvKcin5TL2iRX8qj92JjG7dD5gN\nraEbOlSDHOt+iXW/xGcbp3n75jzp6gcDTsXG3d8Yf8JGxA7SwjB5emOS3pyPcjVhOjonBpG/SxzH\nPdwIG5ZvDstZozAWHQSEl64iej7Cccnc2sPabSQhM3uPmce4765x9S+PIAp5E0wSS4liho8UkHIT\nn0trdMSs0blscjbWw16IdVMnxbIg4Tro6TL0Pbi5as7skfQ19iTSYWhqPttJLEIAKp+bIUzbyKOH\nsF+7apJVs1n07DjeQtkAQLkswg+xymPsPDWCV85i7TYQnR5X/2aO8LnTpmGcSWPPzXLq53ZNs8gP\nsWamGLkOs5/ehLVNcm/fo1cW2IcXWfmecYrvVlHvXmfy164h+iHWH77Orf9lDhlC81AWpMTqPqT6\nKpo3aAgdwc7HzRpqt7z9zdLhJmoc5w7795ehBrxuNBGWpPzqLuojZ0yisSUofOEGjI0SXr/F1tOS\nzEYHEWo2nnMRgUnOFJY0IKFtmzj3vmmaas8jrOwhC3mjpMhnE+mjYW75hnEcJUomPkieZ1KatUa+\ndd3YqcR1V7+f+L3qas34Td24TWq1ivjyRTI7AuErvDNLTH5uk2B5xjB/Cjb98RRCgXIkWgqCrENz\n3iITNcG1FGw8b6MtEJ0+KuPQPznLyM+kaR0bwW2ENB+fongD5j/bpVu2Wfy3q3RO9Wm8cBxtS0pX\nFeW3WozcUnQnHCa/uMP6xyUigF5pv+T8jxpfP4DQAfrWQfDFyKmGvhBxFGvCEjpQ2MePiz4MeXgB\nHQQEm1voZjNJx1CdDnZHEDaN9GaY+aH6/QFN+8CwymNR+kkFdcCHQKaNjwueb2KfI1q3VvpApzXu\nkoWJBwwMsYZCM/mD8QJj7zT2Pb9YnCOIu2p7NRPle2jBeLEoRfFaA3+hjD59hGD9HiOvDZLRVLtt\nDnrRdVvlEqKWkh81AAAgAElEQVQ0irxpACJGiwSFFIXX1hG2TfbKFjKXQT5ximA0g2o2sZYXOfTL\ng3QXGJiYPpQhAA3KFtSPSPyCprgy5PcU+fY8iOK+75Adb3Qxw0cpkxowM20+s0wa3TGURTlujDC7\nM7kkpnDl1iQqlzYu8rFrPZiFsO8Zn6CDgE1M/48WtMT82g8GcjDLMvLDbh/VaCa/I4QYMI2ixyTm\n6vHbTKUQV+6gM65B1m0b4Tim2+vYsFc311XIwWTZeEidf5PC29sEIymsuRlG/3We/qxP87lDiQl1\nApo5NnJ2Gmevg6rsoZ9/AntultSdClapRPmSj7WxhzdiQ6DoLY0Z76G+kS2592qIdveP9ef/jx5D\nnXjjAxYxrg5KwobHQalEfFs0tCUNwNYPKaz5g7mZUYRpbQ73EwJtCUSoCEsG5HM262bjibtzyZpo\ngR/grlSQq5tGshAEZk5HG7Xlaay+RoaY2xK2Iol3kJYCuxcmDCKrF5DaapHabpPa7iK90JjbBSFj\nV/soV9Kct/DzAm9UgYJcts9sts7x/DbPT94ma3mcrx/han2KUqFD57CPNwJOC/wcVI87Ro62Iwh7\nNoGSlJ02Pe3yZucQT+dv873jr5OTHm+15jk8XWFqrMFHFm7RPdMBS5O+lKHdTnOrOsaHlu7izfiU\nx1oU3R62DB+Oh1A8RyIpqrq7Pihu488+3ntiZulBJms8DsyxYHOLYHMrSZcUjmsO1/F3WoW4NY9g\ndQ3VbpNqxPH1Q7JSx0i+VLNpmBGpFKrbI4yYsvvivIcL/qgJIlw3KeLjg7Nw3KSQT9YvaZl1P/r3\nQSNre8awca3jR5JDeLhbSaQpYn4aWSoRbm2T+tQrZNe7qMMzhLsVZv/HFw077clHDPAjrYjx5MFk\nOXkde+kQne99Fuf3Xk0AuYWffRFx9jS5ex5MjNH9nqcJ1tZZ+pnzqIvvJteh34OJ/LUeOjpX9OYK\nuA0ov9kytHSGzgVyaB5Z1mAvARLZ2FBTTEQFmPZ906wCc35xnSTcQvph8rcZe0PiTWQGMpthqVcq\ndZ+fVHy/GPZeG57TQ3PKnpo056s9I0UWtr1/PX1QYmw07Bv3TNMjirhPwjqiEQ75EMVDdTowZphD\n5c/dZfKNgOp3ntonIYrfi70wT3j1BqgQe24W69Qx8v/2JeyZacLrtxPD9P7h8ciwWTBypUF7xsF5\n5455nvfZcf1qjr6yaQUpqkGOrWCE87tLZG+4ZO+2v6qx8+81VPd+8O4b4+t/CA1ozNkAA5gu/arm\nxM9XSd/ZM4bA8ZoTm0nb1v49Tuz3W0xMeFMRkPrIcZO4NTWBCBU6nTIel0BuqW68e2p1ZFcSLM8Y\nUChUhk0O4AeRTDlix4+ORMElCh3F2uM6qHZnkFwZA+XxnpRyEZ0+1BoGiEmZc6oOQ3AcRJSwrP1g\nX5Fsz0xz6Dcq2C3PeGq6ThQ97yA6fdwbG8itPVS9ATt7CNdl/I0GjUMuq98/jzdXYuSVFP0xs3eq\ndtuc2xstRDfy59vYYuxSi/D6LcJGg2BtnbErPuH6JjKEMJ+i9QNP03lmGWu3bsDXK3mUBcVbhuXk\njQ1sKj6wES/XISCgVxZM/oHL4qeqJs0L0zQXEctGx4bSsQwrZt/AfoBICCiXCCuGueqNuuh8Bqvl\nmWSuaB7IEOOJ6QUU7mrCsbwJOiBaz8Mo/CKbMXH1lT3sqQnzGlG8u0inDHDU7ZmaR0gDFMV7f5T0\nLfwQsb49OPsoPWCuSQvd6RoPv6xRU4TXb2EvHWL8bQ/Z93FXqwawciMQRoBb87G6IVZfYXUVftGi\neNfsQ7UjFu1pl+yGwGmFqJEswguwWz5hziFV9XFr/f+HvTePkSzJ7/s+Ee/IO7Pus6vv7jl3ZnaO\nvbjLQ6So9S6lJUSKkmxZFGCDNizJxx82YP1hW4IhQJAIwQZsQRZhUzIsWSaXEmGRoihKy2O5nOWc\nO0dP9/R9VHfdWXlnvvciwn/83nuZWdU7O6JmeyljAih0d3Xly5dZkRG/+P6+B9ZXNG5ERDMBc280\n2fzKBhtf9fD7lr2nA+o3+iTVkO1PQfXOgObzC9Sva4YLivm3hGH3YRvuf3gAofwAkx5WJowQYbyZ\n594LWSGUMzqOdCKPeAplmkRdLOZRvpk3womvDfBPn0SVSuj+JOgkDA6bIpL5pqsU5qApKU9HDt8o\nlQNELkmw1eJYd3tk5EkicKwz6KxDlUrY06t4b13DvfbuONUhCFBRjC6VcJWSLK7FEFurYBpFYZJc\nvkGw1ZIEj3odhmKM7a+n0cieh5troIpFbLvDnZ9cxzSbqGqF7tOL6N95Q9z8P/O0RMKmmsvgxpak\nWt3eJLl1J79fXSz+wRgVH8FQzuVdEOWgcd2iHDQvenRPVbD1sgBlkII9xzsfxwrULGozFgmfq1Vk\nbg6GkhiWme8Bpfvd/Joz76TPkySyeKTPm3Up7PaubDSpr1AucbRWwAjPy41O8y68SRe8wMPuN2UR\nDIIpdD5LS3FxNCVH8Bbm8dZWcKMRup0ai6eIt16cJzPks3sHqCjGVotEn31CNuT+gGDzEKcVtSst\nZl8LuPtlYa/oWUlUclGEvXGbaD0Fq4ZDbv1YmfjUIsnN2+z8xOOUru/nMg13+Ro7z4eox8+KMXJP\naLxSfPxbT4U/+EgBWLN/IGanalKXfmSZzDodMLFu2XHx5FzOyDElTdB16EiJNDUdo3krhs3DETpK\n5ODR/zagmO/LnDs4FD18ulbY0JdCL3boWKRqKpsS6T0oa3FFH1OUn1WR+BqpOP3BUYTaPsDb2sc7\nkKQ3Wy0TVz36iz7OVzgPdKRQicIBNzrzlHXEY2WRAb2+dYKrl9fZejDL7Gqb6BN9umcN0YxlNAde\n7ChvWRhp3ru5xj+99Qzv9Nb5uTe/j69uP8++qXJoynzt+gWM1fzw6hVe39ngJ554kz/yxBVGc44g\nTOhs1egnITPzXQZRwP6wQisuPfrYeccxdo/eWGP3P/2sxKF//jl0o56zD20q2RoXr5OHaDf26Mmu\nVavhzTQYnF9Az4phrO10JDUrZUH4B728A1v+ppjt2n4/vY6eZig6l8vGctnakYbL5Foj/07Q1cr0\nITAzyk4lzfKkJvfj8ep1dKOOrtVycCyTipmrN1BhgHfhrPzs7CwYiy2GDD95CvVJMWl0r7ydy5b9\nE+uUtyNM6gPnPX5OkhI7HW7+mSVa/8FnUGdPYh9s0zrrSVLa+TN0f+ozcq033iVq+Jj3rtJblmv4\npza+p+lIk2uzM5biK9dZfKNHXA9J1ubQdfFHUqkEGJiWbyBr/VRtk+5dLgMkPQ97cCjsqzgSz7dU\nOsHLb+W/m9KBJTgc5c+Ty7nSbr3Z3R97SckT5Xvkw5g9uc9Q4GM2loSJOhgIMPkhzLtVoSCM5d1d\naZpkMdUf4PfkPXY+/7u5cg0QmUr1t66y92PDKZl/dpDc/PGT+ffan9pg53PC4o7PLOf+XQBBc4A9\nuYy/vobeb1No2bEEJX708o3I+rSTEh1TpG8KLJa69E/FND9RR50+8V33z/lQrMCPxx/OkbE8AGUg\nKWnMu1cw127iDg7HMdzZ2SlrSB1pfAmTOjMSTpuSQchotQbNFm44xNy9D/tNzKY0oXu3GuBpWbsL\nlqTiQ5KgS0U53BvxrSRl7+h6VZLJsr3Hpozp/gBdLORNdddspYoSK7YFS3VUt58/LvfySxt9rtOR\ns1+pmF/DW5gXVtL7N6VBVyrJ83U60jy5s5n6EWnsU2dgfhZXr+LttZm5NqRx0+B8zfI32/gDy95/\nIvLtjCyQJbXt/bnnRa0ANH/lAjt/8XNULu2w8x+9wMlf2MTfbRNVFIVffYVL/90q9twGc+86qvdj\n9E0ByP3+o2cIZeEkLmWY1e5ZgoHFFnxstZADic7TAgxlTLOHMINFCp02X61FDUboUpF4qUrl5euY\nRgnd6hM8OER1+/gbJ2hcBe+ghzpoMVhUqGhcu6iJM6crFXC3N8XYvNuDbH3ODMq7XbnXFBcQH7hx\nDTy4sCQ+qqkZuPi5pg3v4Uj21qxR3+vJeerpx4lXZii+/D7xfAVlLLZaRg8SdD/C7xmSio8taJKK\nh/MVJtRYXzGc9Zi5btCJo3E7Jil53PljNZzn4e0c4g1ionoAL7/F1k+MJFCmGXHlvy7TejomKSpa\nZwLqtw1JOaC7HnL2n4y4/WNlgr6lummYvySNC2Xsh7bk+EMBCOW3OkFZVtXKGLyY/P+8c58d6o8c\nzCaKFiAHcZK79wQMioQKqGdn8NdXcUmC9/IlXDEkuriK2t6fekrb76cocyq/8H0pMrKJ+LB4Zytd\nOBWGaYfejAty0o5XBgRMSgiyVBpjxAj7xAq6M8yNE3OdvbWY+Rp6cV6SwFIfHxXF+NstcVQfjUQW\nF8VwYoX4zApmvkZ8Sg4U8UuPkTSK4s3Q77P8qiyi5sE2xd3xxq+sw1tcxFtZwgUeZk3c9vXcTK7l\nlxelRar0vRwOdGypPIhY/qbF+rD9Kc3+czNE6w3ZdB7ywVDqSMczK2zTLqm/cQJ3ZxM3GGA6ndx8\nM0txs996j+TBFuqTT7H4Wg89EiqjMwY7HAlrp1zC9fqCVqfzSGmRKbnhKKfDqlSSkQ+tBLSbr6N3\nD0X6mBpIOmNTyZjL/5wysC0UJL1hMBQ/iFY7/z2ZvX1so4KqV4Ut5HmCpl++JUye9RXZCDs9YUN1\neiy82ee//8Iv40Yj4o0FWJWDlUsS/OZAFllg5fcN/p78vb+iJPXuc89S+/oNdK1G9a6lc6FO2LMU\nH/QnNopHjAhln71MvlEs5Kk1yfbulHwvHxNr1NS/J/6ujMUVPGygsL5COfEP0olCJaBjKO6I87+r\nVXJ2lES7pvfhe+OD2GgkXkLG5O+VqpSxJR8dWbyRlcQFpQh6RpLNbAqUGicdlsy7xJO1RkdGdMWp\nPtp2ezI/4oRoqUJ/wZMkklD8BpwGNIxGATd35+maAqFKKOuI2fIAF1qINEo5Zhs9/PkBaFAx+ENH\n/eaA0qbP/DcC7Nfm+M175wkKCYnziJ3Hpf4aL566w+eXrvOjtbfp9OVwM7I+lQuHnJg7RFdibh/M\npm+JsI1Gxkc96rOZYhxrmu0DD3ZY/Wd3xIT9jxXZ+7HHUKdOpFKxcXJYBsrIg8b0+9w7Lmf1tAh+\n/VWSe5vY4QhvYZ7hsydx6eHYXLmG7XRIfvgFMWtOWTuTptAZszVjhBw7MB4p9v1TGzkApDxP/j6x\nlkyZYCs1DRbkiWomXx8zvxbl+3jnTqPWlulfnBcJbhSJr83bVyi9fQ+8adadvyIpoMo5bn9JOqPt\nJ2fz13Dyr36Dxv/1MubS+9jhkNWf/Qb2rcvYW3cxQXqPn3mGylclXWz5n17Hq9dJbt+VfTRlGx01\nzXwUY9ID0XY6eG9epXi3xWi+SHRuBU6sSJLWJBCtJ8ChyaFV6ufjC+C2MC/mzXE03qeGQ/S501NN\nNn91hfK9Pv72oewReiynUmEo8bkg61HGdCsWpDjOGhkTe438rEJXKnjrq3j7HWEiWzfdNEvnztGA\nDkBkgN0eqlCQmOm8CZhKRNJ5PDnildpDv2+aTWrVAXY0kvl3/gzenLz+xbfGwLs3siz9trDV9CjB\nRXFe1+jDLvrqHQgDhheWKe4MRIbp+9NSiUc0YuuROE0nKdK3Ic/UN/mpT71C78fb3PviPHziwjE2\n1cfj45GHLjgBg7zI0V/02PmLn8O7eE4YK/e3JuRiE+zkieZXxqTP2OgEIViHNz9L4bVr4n84GOLi\nSPakdK16/H96IImRn3+Ok//CErYiYesAucTU87Dtjny24gT0RAN+NBqvhdbmALHtS6KtqpSxczW8\n/a74vqYqifzxWo+BYe2N06TL5bTGH6BnGuhbD3DDEabdxjlH/MPP483OyP0oRVIJSOYqXP/ziyTL\nMwR7XWrvHRDeb4FxFHb6hO30fXvsDN7j57DlEH/jBP1VhQtE+nzw3jy1zUSSMyORhSc3b7P0tU1G\nX3qJtX/pofsj/GEKuFUlJl0lj37NcSm7HRDpkydJtoePVRmsVbCFAFcMxmwyGNfVk/Mo8xDKZWVO\nvJQW5ggub6KCAH/zABUnqGFEsrEAvsf8603s7Xu4+Rnqtwzqwb6coQoFYdNrqZNdamnCaOIsVSrh\n+sOxCsCKZCw7y2fBMW5+huL9jrCVsnmSNWFS9lAmHXbDEXY4Qp85Cb4m2G7ByiLBtnjw6f1DXOAx\nOFEjKY/DGKKqRseO7ZcUykKxadCxeH5GVTkr+H3Qt+4zPC9JfUlJY3/gk5RfK9NfDgm22yjPsfKb\nHl4s/kBB3xI0hwQDy/ZLJWYuQ/XqId01j6QkckXnffhm+x8KQChfsTJpVkY30xr/xPoxttBkIX1s\nTBYoEwV7plf3Zhvs/IfPcufPnOLmT0unKKMqBvdbmN3d49dUOqfSO+umu2NHCqK8QPY8zM5DrsUE\ncp1ee4qyH4TSHWzUGa7XMe9fn3qsLpdRgY+335Hi7KCJfea8OL7v7MHeAbo7kMm5sgShJAl0T5aI\nayHDJZnwXj9GfeNb+SEkePVq/tzBdflwefMiiTK7u7ReWoNvXUG3B/gn1lGl4jHq9jHPnEc1JqdB\nSo8tHsQsvR5TuwXNp+DWlwrEqzNTjvJHk0gkTWWi85rGrBPHKZAydqZXccL+87OoF5/OtfXxXJHg\n/oEc8D1PIoDT9Dnb6Y5p/9nBJ/MNSuf6t315y3O4wBPARemxbxATHRtjUonbeD7qUhFXCIXd5Fy+\nsWXeWHqniWt3MScWYX0ZigV0pUzldleYDZUSrtPFdXvE63P41+7zhdINSVs4VSKZq4zNW/cPQUnc\nfO2NB5BSQcvbjuT2XXafq2BPLKFmG8z/61vc/yHwexZv9zBd2L8HJzMYf/bSTUOXxPwaa0gebGF2\n9j748dmwEwWUc6IbHxicguGcIuhA9TYsv2o48a/arHxzhN+PMTPlXL+fSztKRSgVBRTyfQH+MgBC\na3RaAOHAHxh0ZNHJGBQCAYNUlHZSEouOjDCDrEPHkqKgokQKqjAUQNT3wfeIZnyUQ1hOJTBFh6lY\nbCOmUhrxxMo2I+vzi1svcHs4zzNzm2yc3KOy1CNKfDr9Ip7nCJuauStG4lvfucnMNUuxadExdLar\n1CtDIuPxavs0IxvwTG2TJ0r3WfP6LNR77IxqfOPqWXr9Av04oNHoE1+t02pWcFYziAMOoxLeo25c\nO8YpdBNeC7bVpv61q5z6lT7dDcWtn1oSxsEECJSnjB1lCWXDmjFjSIun1a2/9ine+x/PcfuLPlf+\nxtO0//3P5Ae/LMZ9qqEQS3qJHQ4l6TBjHKYx9LpYFCnakfU6uX03ZyrpejWXjB1LGEtZQtmBXZfL\nwrpZXsCtzqOffQJ/ZVkAhrTgN9duYq7eoPArr6DqNZIXL4rvWJJIOsur76DCMH9d0flV2j/5Ivq3\n30THMqetp6ZYtTAGnfK3MkkoHsj7ff1PldHPPiFBEts73P5LT0/8YOq79qhZiVlXPQVyQH4v9tZd\nyq/fRjnYe2me5LENWQ+OMKfzdTJPFnNSL/h+mqYzQFerR58VVwpRM/Xx3lMsiPfgKJJ0lon46ew9\nzqVrSuQXLk6wvd5UQ+zo0DMN6dbuHRx7nfmcP1LzgLDiiBP0/FxqXHtcApXVXVPA1qvvP5ytBHQu\nzaFPrtP74y8wPD2Xg1z6d97Kf6b0W5cwV4Vhp9sD8Ve6IHWhG4qx7fD0PJ2NEO/6pnz/exCAoBwk\nThNbj5HxGRjZw08W9vlLj/8mz/zEJa7+uSqDH3wyZw5+PD4eQB4XniWNOY2ws7uOzX9vmd5Pfhpv\ntjHBMJSQHfH30VNBJzkYBOAsyeYDkdLEYseRNa9hzCjLJJjbnypT3OqjBrGcXaJIZFjGSA1SLuUH\ncuWNQRzTFYsLlwJFIGtAxsB1gY/qS4q0DoP8wC8pvVbWrYxlOFnfnz4hMrPUnNj1+gIAFMTcv7Db\nl9d00ATfI2iN8A/7nPjXEf72odRtu8Ks1/d20Pttdr4swMHdL87SP9XAu7cLccypf3aIbkqK1slf\nTyRBFki+In9e/4fPYXf3KX/jfSqbQ+7/6BLKQmFvkCdiqeGjZyUqN2YJyTfkuK6NI6pp2hdrxHNl\nkvmKgHj+RE0xoaJA66k0ZBWmqXGdHqpYEKLB3XvSsNnaxt9u4bp91OYO+vQG+y/M0XhzF5bmcN2e\nAD+ppEsVxMxb12vSfE/tOlwc55KvvAERJ7jHTsl7mgb1ALi7D9CVksjMsnAnLfWGixO5nhOACGsY\nbcyiugNcIQDfk3SzQoBZmUdHhqjuUbrXwe8bAWYsOA+WXnX4A2HsWF8axuWdCBsooga49WW2PlWg\ndbFK4/Vt9CBh/V8eULvZY3Buno1/6NN4r0PQNmx9OaLy3i5XfqZC9WaXmRsJcQWipSpJBWrXO7jA\nQ8fH99JvN/5wAELA2Dxxmh6NSvV9HxRpfrTAOEpz9MdGzod/9CILP3WX7oWYgsjbsb0e9sp1OOw8\n/PqTfgvf7vbLZfnQZolhUSwdr8JxkOSDCgqXCGWNepXw8AjjRnvSOUxRdBUEqNkZOqfLoJQYhBoL\nvoe/tkq0PouZq+K0Jq4onK+oXhUQx2uOF26lxx07ZwymeZj6IDn8va74NPSki21nKiT3NseUvPS+\nxF3+e3Sof9hw0v2rPjAUdxWNx/cZLhbGGlcgj/PlYeCQmpJVTB5EdK2GWWwwaijiegH72CkAwu0e\nWSw7xsjBT08YRLvUlyhF01V6oPww+n/dj1LwKN3QsiSabHjTYJZ0YSXKMKPjgoB2Kgwl2actbKfR\nXAHTKOWP0+0BthwSLVUE2Gw2Sco+NKr8YvuTeCdW6ZzUeJ2hLLBOkHeSBF0pi6lfOubekY24fjfB\na/UwsxVsq43zrXTnM2ZE8ohTWybHQ9aLjIng4gnjvEmZ0Hcwo828yEwoHYGFt4csf+OQ2hsP0O/f\nobDZwtvv4vUi3CjK55orhvKVHcaOzEsVBrhqGRf6stDblBKaiGxMNuyUcTjpCWKPUEcn/TzCQACo\nSplktsyopnFaNjDnQSbH9EJLOYw5V91le1Tn8v1l7vRmqftD6oUhgWfo7lYY7paIRj7KQPnBCG8k\nc9UfpJ81D9TQo9UtstOtcr21QOw0I+ezm9TYNiXmSn18ZQlLMTbW7LcrLFZ6cl8jjTWKfhTQjQp8\nLyKgcxA364wZI1GnwxH+tfssvpkwmhUq+ySbTGSdCceYrdlQCv/0hkjOtKL92VOsfuoB5y88wDYS\nXMGy96zi4E8+8/D7OmIm7+JImIipDAlrUgm0h55pHANU8qItlZx5Mw2553R/yAyrc5PsVDKmfF/0\n8+/dEB+HdL/2GnVUGOReSADxSoPeaiH3tQEp8KMf+ATJixfz7+0/pdDVKvPvyD3VbvaOAQUPk7Fk\nPkIX/842t74yy96f/SS6VmPu8mTzZuwx8UjHQ+oIl8p2XadLcL/JaFbRPVnK38NMcu6MyT3jju61\nElQwGkswjozRUpnRqXkxK1dKQiJ88UUgjnPzVWAMPhuD8rR8TUpEPiDi3FUkBfOYL9/En+ohdYLE\nBkdiZJ18h4PP6mL+1+wAetS/UFcqNK6DbZQ5eNwjbA6PgYlob+oAmwFDebMlCIRVHmq0cWPZXSab\nfMQjsVKuWxSJ8xjagNh5zHh9fnTuHc5/4h7Ni0Hubfjx+HgA8nmctK9LD/n+yFFoOfqLmsM/ehHm\nZ8e1mLHT5zA7/RnOrutVK8LQmfgcAXiLi3T/1KeJf/RF/I0TADRuGdTIoHuDPFLeRZF4Nw4nmuSZ\n52oUYVptlFboRn3qPkyzmQJVHq5cwFWKwsI3diyBzRquWVhPVg8zZhuauSp2vi6KiuEwPfynJtRX\nBchSG2vCph8Ke6V4+YEAF1dvSNKv79H+gbMk63O4/bRu9NK47+w974/EtsTzKN5r5xYm9jfn8GZn\n8X3D4PufpP3Dj+PvdeltOAp7I7ytZmrrYIXx/aiHS/ka2RfknlQAOnEMlkIGyykL2Rypa45adGTN\n+JSVzuIsrlgYy8TPnKL3x1+g9cIKvc+cwZ1YRo0iZi53UYmRZnvGKstAm2EmEYzGFh1pGrNpt8Ug\nOpOKOYe+vT2u70sFbCjs2mNqgImRNU1dnEizy1cS5FQtiveftfI7shYSS6GZoGJDUvYY1XVaf8v7\nVdgb4PdELqYTR1z16S9qCgegjCGadRQODcpY9DDGhdKg9YaG4s4AWxYriuL7RbCWcG6I1+zRW/Yo\ntBx7zxSp3zTofiRpmMZ9aMnYI45K+DccGUjkeXiLC7kfQT7SQ4988I+YZE4cePJO5jOPs/3lEf7/\nvMaTb+9gt3bys4RLEszurnTaMo1i9vejMpGJ4c3OYprNHIHOu37GoEol1MhMNyGVSrtmHGOk5Nec\nm8VUS7hX3xlPfmvQlTKqViW5fRddKqHWV7DVElFF4d3dIQFUuYStFGg9N093Q7P2t97Cq1aYLZ0R\nZsD+Ibpczosf5fupwWV6e2EojJhA2ApOia628Guvynt49Q5qZVlixoMwPTAbXKLGEcePejg3oXUV\nMy8xnIOgbZh/11H9coebTy5QuVnIGTyYI+/90d9FkqTRs3pMpw9COLNO+1yVaAZ0JiUMQuw7l9En\n1sVnyBh0rYpXrQhF1Rh5nwM/R6/tUFLLxuweJ9KJI1T8pF4kvLEt8jPrUMbIxpei1srzZCHyvLFx\n5vqaJJG1u5I8FsUy98pl8aOJJkAIT9FfLVF/0MR2e9gHW/T/5KfZfU5zunkS3niX0vU9bKPC//FP\nfoTCjyt66xa9e4hNpAuD76evYwxY6XIZfWsbd/4Mlct7uE4P3euj5uc4948Mu88WKW4voO/tpprd\nj35qfMcx+ZnWCvAAkxvLZQbsarLr/u025pxtJPRUL/XpKRwKK0d3BqJ7B1SrI0kblbL4UVkB7ly5\nIBKv2AtaKasAACAASURBVBxTsyjfR9VquDAQLbXnoVPTIKfAs1L4TXUEfJ0zlpRxeRxs/tqdExbZ\nTJVorkRno0BclShR50ln0e8qTFERhAnVcMRS2OF3ts7BZonbpVmem7lHqBPa7RKnvyrVwv3PF4nr\njtFcSNiMUI065c0+w+US3lBTfqAZDSs0G0W6MwImNYtlrFP8vj6DxnGrO0e9MqQy22aY+Fyo7xJ9\n0uPW1WVs36dHEWs1+nvjC3yk4xWOk1JGIyovX2epdkHYXiCfPT9ID9sPN3TOfh/JjVuAeOiE/9kD\nholP7x+t8uRvPcB5enxwnRzp9VWxkEuFsjF5wFZBiLe2THL7rnwjA3dySY/MF9vtHTEU1nlBmEWe\nO6tRoZgvuiTBpD5hk/enGnXoD8XscWkByiVipSjuxbiTq6huD12tMHzhLP3/8pBmp8zZV8rw9Tc5\n/XVwQUj17oDhj32KypU9jkEdE/sjpMCAl8rurt3k5F+7CQhmWP6lb9L8C59l4Z9ekkjjI4eYRzIy\nFs4ka8bFQOox92CbQnON/acVM681IAchJuQaE3VRLms14NWruFF0zHPHP7HOvRdC5i8lhDM1vDjG\n7O2jmm3MaCR+CLWaUOw7nel9MAgkjnc4HL+36fXzOiYbzpHMV/E6o/EcVBpcMlGPWZxhqj7zZmdl\nvkUR7O5PMc8e5h/UP9OgcGn6e4MfeorKe7v5Zwdg+Z/f4eALGwyfGqB/bgcz4Xs19Wf2q0nrF/X+\nHfTsrEjjn36c8NdeQf3IC+jTG9gbdwRkPVo7PIIRWR+tHDZl1B9QIVCGOa/LvN/lZzZ+m7/+R75I\n78oShZSV8QcZ3sVz0vVuy9xzgwFm/+AjeQ0fj+/xcMIQyhgL3sihE2if1njRAvU3t8dAUBxLfZk1\nPbI1JzOzd0akOxPyyav/4HlK7xVp3LDsP61YfBPcU6sUG1Xqrz8gWWqgNrfFqmNuVuZWu4sXhpJ2\nGYbiJZSuS/6pjVzKrjydg0BYqdFwFjWModUR1kfWkI+TsXTMpfdrJ6wwNtZgZ18SNMMAh4DIemFO\nmEJKSdLZY+dpPbuAso7Gqw/AWJLN+/R+4tNsfU5x7hf60B4SlzXtM2Vm3lN0/vRnMEVHcL+ZhsQ4\nVH+I63aljtw7wAyGeLOzLHxrRPLESc7+lTZq1CQ6u4itl1h61eE8RfJgW5QGSYJd/R4AvRNyw4d9\n3xSE5eLKimq5gDpMQbDEHKmH7Xi/ArAOvbEG+4eY7R381RXe/9kVKi+XmbkWs/1SwNwlgwt9bLWM\n1+yJ9KnVFeClUpb3pN1BpaoJBSJjdJbkwRb+qQ38YhGbeeFlL6XXEw9UpXCFAD2Kc0BSlUsyD1Nm\nfv6Y9GzjVSvE51YpvXsfN1ND90Y5OSKZrwqIkyZbRys1RrM+SVlR2bI4D4r7MUk15OZXQhZeV/JZ\ndFDetZgAopUaZmVE+fdvQ62K7g5xxRCMxbcW52m81pBSL6I+W6fz3Aqr/8Cx/7kV5i4POXisSNhy\nzLwinzXdj1GYj85UWin1vyuldpRS70x8739QSm0qpd5Mv7408X//rVLqmlLqilLqj32ou4DxIpQV\nTKMoNZtVqTP8EUOtVOqkPG+aYfFBHb9rd7j4syMGcx47P7h6rNhQQTjufil1vFOljrxdSolpIow7\ns5MxsI2qoOFHH5f/gB2DV0qhghD/xLoYRb9/Sy5bKIjERymZtBmSnj3GWmavDMapLZUyuicmVBu/\nvAPWYNptgrv7JFVhAnB+bKqYJ5pNbAKqVELPzUjxd/0WOIu/vIQ3Oyusk5LEG+tJDyE4zmZ4VHMH\npOJP3/qk6KFT41zlHN7Q8t7rpxg+NSCZLY2BE3eE1TQZ8Q4i10mEPpjH5saSGnB4UaMjCHa6eA8O\n8t+7G0ViIuvcuHiffIviJF9osmS5DNQB8qhMQLofxgoanXZoVdopHr9uYR3lRrFKCWU8SYRNFsUy\nR7PFWKsp/wN/ZZnidp/SzggSI7HyQOVOj+pd6J2uii/FvQfodp/134z48p//OvPfUlLEp/fvRiN5\n/tFIfE6URjfquGoZ1RugBpLagHWY5RkKt/ep3jcM1iok59fG2t1HPW8mh3WoIADfl89Fepi33d7D\nQaDJQ71zY4DRWtFCxxZ/6IjL0HysROv55XzuueFQ3rdeerjKjRpT8CaxRzxEUmprvw/7h2IEvddC\nH/ZQA0kz1InFG5pxAk5iRBaWNWgyidMEwO0CD1cKiedKDBYCTCgeA06LmbTK7G5Ch+dZqsGIWb/H\nXKlP8VybC/O7+QHF8y2DBUkzC7qKpJGw97RPf7WArVUkxXBgKe1bSjuO0rYiaHrE7QKbBw2uHSxw\npz3LlYNFLt1foR8HVMKI5XKHFxbucRCVeXH+DounmqiiwfZ9opGPntgaHtXcydkG6TrskkRM+YMA\nVatiT60Q9C3R+mw+RzLwPJP4ZBLjSUPpye8l9zbxf+QO1S/e4PAJuPeVtWNgUB4zn17fpsVsfq30\nT2+mIWyfOBqDQTCWsyklAG5qaqwnZdraS42LbRo1LmuOrpTxlhbx1lfG/nZHGErJ7buYvT0p0ra2\nSW7cIri3T/Abr2HfuoyzTvySfuM1Gl+6xuk//dbUHu4tzOHtdRgseA8HwlKpnH9iHf3M46gTq2I2\nmT3+/BlUoYB/Wva82Z//PeKnz6CffSK7QPoWPaI1J5N6ZW9tqShAYbbHBAGz73WJZ62YpKYHJGfM\nNLPmaPMi86Lz9DHWV3R6kaTqCFuJgEB74pPo4ng8j1P2Uf6eQt65zxsHsTDFXJYo822Yrcra4/XQ\nZPjHpJQf5JqjkdRyo3EC58NY4d7yEuVb7WPfL189IFkax6LbXo/k3ia7L4Lt+dhm86H3mg/t5e+F\n7XSEgaAUXLuFrlQoXd4SachDzJsf1dwZJT7duMDQ+MTWY29U4Up3mcuDNb7VP8WNaJFzs/u0T/7b\n9XnN+9dJZsvEGwu4cvG4b9XH4yMZj2reZJIx+YcAQjpxmFBhQkVcVlgP2hsetpyunanHigqC8YWy\n9SdLd85YgxPz4/G/dA1/CK1zmuKBwu9bwoMh6s597O4+/l6a5uz7AiRldXWmUMia8el5yO4dYFpt\nkY2lNW5WH6tqRVLIwgAVBKnnncvlPhkYdNSX05tp4LZ2JUBkawf2m+OEs9RLU16mo39eWFNRJa2/\nisKu3/+Ehy06eidKECfUb8g5sLJjOXhKUb0NDEe5NC47J2a1uD57EndyheKtfYLbu7hqCTtbJbyx\ni/MU1f/nZUbzoaRZ9/vYbi9nFT3KuQOM5YaQM8flH6SyJ0iKYEqBMNtzpte4pj3muaYVtLqocklC\nKBZnuPCX77D+S7cZzXjoCAotg+4O4dot2GsKCJ8kci5LwUqsHZ/TjRHD5/5Arrl3IJYPab3ijM09\nqFy5ON6HUlYYSkkNryei2lMWuO31RA59Zp3gwaHM4W5fgK8wlY1ljB5f4w8S+kshUU2JxC6y4ika\nau7+cIHirsaLHf5QgnVMIF6bzQsF9G4oFiND8Q4lTcXTgxjvsI+thowWSsy90aSwF+ENLMUDw2Ah\npHYvobRv2PvCOno0gV98SHbZh5GM/TzwxYd8/287555Lv34VQCn1JPBngKfSx/yvSinvIY99+DjS\nNU0ebGEPDsXLY2//Ax4IefTg0WtNXt4Y7JuXmLk6YO5ST+jTR38m0xoeAXHGiLOZep6MeTFlFJqy\ngGw5xLWPyNCce6imXoUh9qUnIPAx124Ku6RehyAYe9c4KxNFe3IvqU9IcEW07f7qCqNT4jcz89q2\nyDSy1+h7OKWwlRKjpbHxoI1iXAoqqDCQjm4YkNy+S3JvExWGOQhkmk2SFx6DxKDPnab7uTOAeA25\nJHlYN+/neVRzJx3KCbIe10P89hAbaMK9Hhf/QRvbDUiKmdQh/R1MmDlnJqxT/28NSms5LE3Q0s/8\nn/fQCZKsddjKjTbdUKINnTFCi00j5p0dU1cnDTVdkox9hTKwJ09vSI1CB4kshDA1LzMJWQbG6FpN\nfJ/iWK47UxdddiZPCwSQsYOh6KR9HwohehAT3NvH9QckF07gzc+hLt1g8ZtNvKFFFYt487O4Xp/i\n9R3+6tIbVLbltWWG3NIJEQBM16rCVGgeQsqIIQxINu/T/9Rp1DvXSBbrJEVN6V6P7ZfKuMWp7sej\nmTdHE5+MEcB0aR63sUxy8QTqhafwFheyN3wKTMk3u8nvZ2Z0VjoFxf2Yxi353bVPegxfOIuemz32\nvC7bmEYJahjnEdTpa5SnT3XurtPFtdqShnbYQQ1HYhANYhZtbQoopQCTMfn/q8QKYOQcSa2ALYeY\ncshwLsBpRaEtNHLniaG0LUBck8cOByGtqEQzqfD9C9f4jx/7Xb5//irvtNd46946QZiw81nH9qcD\n4rrI15Kyo7/kES+UMc0mQSfCHwpQFnYcYUvhdTxGzSLtbol2r0hvUMAPZD19dm6TH5y9wruHKyRO\n84uvvMju5gyry4egwRiNTqbW+kcyd/LuYyK+Brpewz97mu0/fpZbP32a0WKZuKy5/4VSbmY7CR45\nY/JUpzxhMp1DSh9vRpz9b36PoOvY+5nPTn0/SxbMD9GTaYlK51Hx5rA1jm4PQvmaBGHDENvvpwbV\nWhh72T1Pml6nQ1erqI1VoU3vN4WR+IVPYr/wzNjDZBJgcC73WpsEpLxzp1AvfWLqNU3uI8mDLWh1\nGSw8pNGTgVjlsphvv3UZ8/51zO4u3mPnpZi+e5/N//wFklt3uPE3Pkvzpz9LeH2Lw6caqZQ8v9rP\n86j2qiwmPl3v3QuPowoFkpeewD5xGu/2NsUHnqSMTIBA2T6dd+rTa6nJuscTc+jJwAf99TexAYTb\nEv2cX28wHPsPxcl0oly25mTsVcAlY2mZdOeP1FjZfUwkiuWg0UOY0JlflO2JkbS3vJQyEFK5bfc4\ng8t1uph3r4yfMj1Qmvev47WPewmZmkGN9LeVoelaTebrhM+Xv7oCgLewIF5cvR52oYFrHmJmK6gn\nzh197T/Pd3vuOBilQNDQBETWIzI+V5uL/Mb9x/jq7Wf5u299gVfePwOK/LP2Bx3qd9/Ef/cm+CIZ\n/3h8V8bP8yjrY+ckLcpTDGc1w3nF3kuW1gUYrhnWf/wWradmxmlMME6dzBhCk2eX7MtJLLyuCBt+\n7efepn8+ovvCgLAV4d24L01SraE/kGsZqauJZE3J95dsvckaYEkiHnWzDamr42S8pgS+sKqLPq6U\nNs6zGjq77ygaBy0UCvgrywKuFIv4J0+g5+fIzIOxFkYRptuTaPEwIGjFlHciFn/7PsmtO6hOD1Uu\nsfqNiLk3NMNZjUoMwX6P+s0+QTthtJxQbFnxR0rfR3PQxLS70nScEVWA3j7A+eINqvfb2LcuM7yw\nDC+/hb+yTO1N8XKNf/RFaRyMptawRzN3UkbZpLF0UlSYQNE6p2k+DqNZRW8DotmH7AlZbZyxhGC6\n6e7SoKbdQ5ibYeePnqRxtYcNoHj7EHb2x8zrFFzLPFMZjdJU5rHdCZkNR6qAyIJiJOBpnPqMlj3B\nlCfuWU/sE+k819UKttPBP3sae3IJdXMzPyckyzPjl1EqiIVGOlQKuBYPLPPvjtLgF8dw1mfhbUf9\nlmU4q/CHdizhHFriqqJ+VYndTMqyUoORnAeMJV6uk5QDwlZEvFAmvL3HYCmgsDekuB+Dg+o7W/hD\ny+BEleF6leFabdoH6gPGd2wlOOd+Wyl1+sNdjq8A/7dzbgTcVEpdAz4F/N4HPwdj1otzuFGUU1SP\n0t8nR9YxyzwSskL72z5POnH019+UDbM89k3JUEQ1QUnMn6dQSGlkwZELOoT/fHzoaoW47KN6/Sl0\nOpehTTyHV63Q+/7Hqdxs5ZTnnPGTJbUEYX7A08WCUOOUQg0lTcRbXCQ+vczh+QLLV7elu3z6JJRL\n6EqF/sVFlJHDYSZlyd677H703CykJp8gBZuqVqRLECd4C/P4N7YFIKpXKO5NRxUfe78fwdyZGhqs\np3E+7D4ZsvErjnB/IFKdbp/z/6iA3xzk4FquQzUWigXpVkSRfN8fd3JdHIvLv1YoI7Ty5NYdNn45\nwE5Q3Ek10bpURKXRljbtfE69T1bjcGOpXnaIy2QBE5JFlhfw9rvCKLEOFaixTCDrhiBySNUf4R7s\nSErM/gHe3IwswukBQk34CEEauQmoZltStaxhuHQBNX+eyjdvotp9Skph9/ZxT5wT5kqzzbV4RFT1\nKGWGbEYOjCoMRdKUxjSqakV0vYVC7itUvtWGagX//gGFtRLKGHQCh5+Ygff192begKwBpaJIcqqF\n3HzZeVoYe4MPkELaCTbPBKitO0N0KtGq3bEUWj421JIYF/jQ6crhKf3du+EIlSQ5m8sl48IGY6a7\nLJ6HKpeE4pqmN9ggwOtF4l8UxVIsaZ2y5yzKS9dL53A6jcH0fOKaT1zRmABMSeENHCYkBYXEUNoF\n0iYKtOEgqfBU6R4rfotvDU/y9vUTVC+H9E4Zymtd+vUCru+jux61O+ANHUnJwwPUIEbHBYK+xSmN\nrilwoBKNaYcYz6FCw/JSi8VSj1ZcYqOxz2Kpi68shBZGHu1BkaAaoT07RYd9ZHMn/Z0rz0PXa/Q/\nsU5hb8D83xs/NATqMJY5TYCJmSRROR87GAhAkHVLkyRl/dipg+zktadGyuBRYfFY4IHL9rFMWm0M\nOJWzCfNbixOJbD1soY8EBuSPy4r/QoHh5x5j8wcCzv/sFdxwRNLpoDfvS0pfKhvO1hldLqeG1mos\nM9Ye/vIizeeX6GxoNvqPjQ/6zuGfWKf37Brl330fs7vL7LUz49eVMenCEL04j2t3IQWRvCcv4m5v\nYq5cE61/FLH2N7+Bv77Gxb99g9ET68RnlqndHGA//TR8/V+kT/kI15x079HlMiwvcPeHq6wVn8Lv\njPAOujjrOP1Le6hWF2vsVCoZzom8IUg9EJhe0+3+gbzfcTI1ny7+L/cwmw+m6iM7GMjjUoDnWK2V\nSrwyuWBWZ9koRrkJQDwdXqOOjRLYPxw3zh4ijdSVisjdb9yWTm6nkyexunhCXnZU0uX7U2Ch8n3s\np59G/e6b8nqu3hr/cFpfBQc+8cxEE2/yfmdnpVt8ROaePNgSK4DdXbyZhngzKoU9bInZvqeITszB\nzeySj2DuOBiZ9HfsFLH16EYh+zdnqd70KO47NrYTvJHB73Smwb0/4DDtNlw6zsb6eHw049GuOcL6\nNaFisKToXoiZe83H72qqtyDoaW49OM1iLzsQ21w+LMyKyZRAPa6ftYJBLPVFqYRKEmynw5N/bYfN\nP3GCYOt+7uvjBgNhKRuDNQaV+ek9bCglDdHsXNfrp2bREwznUYQqFdHtAbS7kiAdjtmWk02M0Zde\nonS/B7uHeBvruHZHUq4OO+MGrXNpvLiADapRJ9jvQWKwO3v4pzbY/pETNG5FlK7u4g3msIHG7uwR\nv/QYwUEf39MQgj8gNzi2qSm0N1OHpXno9qHXw/k+5v3r+GdOQWLwZhq0VwLmTm3Q+eQqe0/5nPrl\nA/yepBTTGq/Pj3LuqImy04SK/ecNhT2PoAszVx06scS7msp7WQr2RHM0O9dPgnxRnMr/FK7VkTo1\nMdBssfjVPfqff4y13x1hb9wZ+wzGSXpe8qRGSdflvLEN43OR1iIf87x83mUglKg2vByQVMbC/qGc\n01I2bh72Y0V6Fn3xJczQULhzgLl4EhUl6FYPryXKBwJfzpC+hxolmJqw7Aodg5caSCtj6a7KfRba\n4vdZ3nUUDmN6qwV0AlHVwxSgtMt4vzJG1FILs8SLVfzWQGRkhQAV+fSfWqXxziGHz8wwmNes/s4h\n7edXaZ/ymH/XMpz3mXnnEOt/OLvofxtT6b+slHorpa5l/PJ1YIKPzr30e8eGUupnlFKvKqVeNZ1e\njuzZ5qEkfR1NmcjdysfoorMp2ybVEOpG/RizJ3/4hLE0SknU4tb22Gwz67AWC8e6WVlXzCVp5+uD\n6FdZMbO2TPCgPd2Z0mN5W14sF4uoRp3qa3fygjjr3IqhpzynOKentOYMYMhMIbVEVXuDmMXfP5wq\nwlwxRM/NysIVajhoEd4aJydlYJA32xCvgFYan1dMY2+TBFcXI2lVlJh6Fmcx711Dv/oeKEX/+8ZG\noB9yfGRzJ2Yk6KeGuOwzWAwwoab8IO1KN3vShfA9wiv30fvtMdsmj0pOY7erJfn9ayUJT54HcYI5\nOBRjMnluSXrzfeyN2znDJwd9rMNFabRhbu57RIo2wQDKOxkZMyibv6kc0tSL0O6ON850ziulxvMR\n0N2hmAZ7nixQgOoNBJwZjWRDSSPG8+ctl0Q/HcdS7Achtbe2MUUxcsdY9GEX5xxeq8fgZA2zOseX\nfv2/oPmTPVSjLmBQHMk8zhZmK/IDs7cvJtNpd8A/cwrz7hXsxgp2rkb1agv71mWq9w0ocN950fpI\n5w2pDAalhX48P4OyDu+gi7fXxts5lFjmUTxmBE0eLNIUDjeRNHV0eIMYlUg0fHlrROFgJAyd1ITO\nGSOU0LRD7RKRxzor9Ng8YWz6hcj91qu4UkFkIiaNkk9ST6uRAE1q4guTfiUWU/DonCgwnA8YNTRx\nGUxRqOOmpLAhOF86F853eJWEuUaPuUKfkfVpmQqestT0kMXlFoNlK8COcgSFBEKLN1IUm5b6rSHa\nOLzlJfReEx1ZvKEwiEy636tIoYcaNdAo7Wj3ixT9mLmgx25S5yuLb7JQ6PLlp9/hz376ZRqlIfHQ\nJwgMSfn4+/7dnDuR6cuaGwao1SUGT6wS/tor4vn2YUYqsdQzDbhwCl2SxkQu+wRheaRMhcmhy+Vj\nKUIZYJOliqkgzNeoyfmaG9sfifNGe2L+rLUcjielOtnPK40KfPGuq5QJ/8WrnPkrv4fZP5hqeGSH\na+X7eOurkso5GMraE4R48+lbn6b41f7xy6z9rW/kpvJZpznZvE/pNy9hHj8FQO3NLZp/4bP5PWWm\noMntu1MMBnPpfZLnL+JvnBC2U8Y23rxPsrWN97XXCW7vMlhJpTDlsbzs24yPds1J/Zf89VX6n3+M\nve9bpnHTUri9j769hd3Zw/X72Ku3hGGZrs1TIwVbVKkoDM1QmkMZm0eVS2SxzRmYlNy+OzaLnvzd\nppH1UzHwKXg4KfualDQfBSqzx+D76EE8kegznl9Tt9/r5ey6SUa27XTzPflhcjGVfk7y208SkVNn\n/56Yh7oi8//sV7vMrR/inzxx7HqZVG3qOdIG3KRMzqvXcwm/GsXofsRo4dsba0+Mj65GHvToj0J6\nUchBr8yNBwvsv7HE2m/BxlfvMv+P3yD8tVfwvvY67tV3Hmq2/vH4d2Z8tGsOIu0ZzSgOH4feaYOK\nNZVtw6l/PmTpm23mvtXk9D/Zp3K9eZzRkTXeSyUBTOJoHGKSNT031rLnRlcq2K0dVn/uTfFp7ffH\ne1uhICBOrZoyEyPZR4/sVdnakTUXMjAoW4f8jRNy9gFUpyc+QyAyfDOu60EAaL8v8nl72MIdttN0\nMyt1ljFST6XKAFUoiGqgUkYddlDdPnqmQbI6S9h17D1TwBVD/M6IoClpVdZXdC40sIFm5rUC3lDq\nYpGxGTGn7/bgoCX3MBxhDg7xz54WbxxP406uMvPLb3P4qTUqNzus/e4QtbXL7nNlktPLxGeP1wPf\n7bmTmRFbX3ymdj+fEB54nP5/u6z9dpeZtw+oXz5k/ve2JbDHpWyrjHHly5mDQpgzcDKQJ298Fwso\n3xPgw/Mof+N9wpcv5+cUl6TsVd8XkKdWE++go3uElz7/RC3ujIEgyJ/Ldjp4F87I2chavIOuMMb8\nlPGdzZ00GMh97lkK232CvT6MIrzdFnr3ELNQR42kyeW0kjOXUpLmGRuimYCgI9dKKh7tMyVK+5ao\nrgi6Bn/osJ4iqqUs8VSKV3ngqG5GqLqwVt1wCAuzEAYE+z0Bg7R4H6megP7RUoWwbZl7b8TeJxvE\nZcX8ezGV97Zpn9aiCPqQSM8fFBD6O8BZ4DngAfCz/6YXcM79b865F51zL3ppLLbrDx5u9JgVKBN/\nTlLkXRLnHXZdefjpYKqAmSxUJox4AWy3eyyON9fNfwcdXg46aY9ktiwx8FPxwhmqPgEuZd39VjsH\ngrJizKXU6/y6R6LG1WBEcn5tbPLYHQgNMXNdT+PFk/U5tj/lUX7tthT9rbYYB6ZDhwHMNkh29lAn\nVuW5gkD8KOIEd/eBgFPdLt7iIqrZxqtWciS4dLuD+aHnP/C9mRgf6dwJkPcsrvocPBlgA6hsDpn7\nVhPV6eexujhJwnJpukHOyPH9MYq8tScpKY0aZJuUVhLf3u3J72qCqu+MyYGaKV+FlLJ4nFIvFFs3\niaCrDDWP0kUpLYgDeW5lUrmXGyfYidRg3ClRhYJ0PNqd3JhPl0rp65bYzVxXnS7UKgwxd+4RnZhB\nBQHe8hLewhwkhtrVdj7Xktt38VaWMHNVwlZMNFPgwt+P+aWX/i52Y2kMWBZTZoBODyil4ri47vcF\n6CiGeAvz6O5gip1Qfb+FP/yOnMaPft6k6Q1oJTr0YSSyrcFIGE1RPG2ON30xeXzgC5V50ptngm6t\nYoNOxuleKjboZhu7dzAulFKqtFCysz/dGJjOfs8pA0svzMFMfUztdmIWrYZJDjSRStAeBlS5ok9c\nD7A+xGVNUlLYQAkLwIlUjJQcIE8MWlvKQYxWlncPV/lXe4+zb6po5fjM8i1OfGKL2VNNQj9BKYdX\nMCy86SgcJKDB7yW45TmSrW38boTzICkobAB+X6FjhYoVyiqU5/A9S80fcba0i3GaQCU8Vt7ixdpN\nvq/2Pv/V2d8AII69DwMIfaRzJ/RKaaERovpDgt947d/sYunelWzeh2t34OxJ/OWlHMzJRnL33rGi\nx/b72E4nj6WfbDKAHIoldn50TOb1MG8hVSiANdhOh2RbQhUmJT/5z1phcNh+H7N/MHVfKpDPde6H\nCw3DFAAAIABJREFUhOy3Zmsnl726JMF1OpjVBZo//dljCV/myjV5XApa3PzrnyF58SL+dgtvYR43\nGNJMbX90uYyenxNZ9WPn8Z64gL+6InJZQP/OGyR37wFj+c/R990bWrx3bkD/A5kUH/2ak3qrbX9x\ng9aZgPk3Dpn7xn3s3gGu28vlvy6J83XbpWtBXvsgoIobjlC1Wr4nZVIu1x/kjOZp36Hjc0ESRuMp\nH5Dc/Dz/hjACcoAppfkfBZeU74tv2VEfx6MNNt/H3d+e/pmJpFMmDnVTj1s7LvH3X7927HvehbPY\nTgddq+FeeZso8dn//Pp4HU3nqJ5pjJtf2a2mQErGlrK9nkisMwbWW5c5fGZeAO0PHh/p3PGLFUaR\nT3dQoHWnQePrRU7/yoD6166S3L47zQz8ePy7PL4r9bEpKLob8v+NSx4nft1RudkheNDGa3bQ7b6A\nH/3huG5wbmwibZ3Isuo1aZ52e3LQt8LUpNkSBlBay9goHidTpsb/ulgUD0TrxNsyZY+oLNY+l92P\nvRgzCZlL4qnAn7yW1XrcwEj9jKRBMqGC8DwKV7dQra48R/bzB4f5fahiYSwnsg5dKWPu3GPwiRPS\nVK2U0IOYytaI+u003TU2uDcvoRcXxDy4qIirPvPvDLn/hYLsiVk9X6tJrbwwI8+Vpog634OOsJB0\nSyLYq7flPBcc9LGdLiu/c4BKbJ7k9UjnjlIoJ55QgxOGE7+qOf3Peuj2AG+vI3Km/hAVxajJdDqT\ngUFG1BdqfO5govGFVsLAarXHtcNEGlxOoAiDsYw9jsb1h0ub8XE8ZtFnMuhMSpaeicZNewECVRBI\ncpmnp/YGpdKGuOcR3NlDj2J0ty+vRynxgGoPxsBpIZRzcsrAtwWf8vv79FYDaagqhRc54rKitOsk\n3MUTr87qpR0OL2isDzqB8m7C3jMF4pVGfj50lSJs7TJcr8u9V0uQWAbn5ilu9UBBoSngVLFlKe0m\nmFDTeXaFU7+wxe5zhY/OVPrbTJpt55xxzlng7yH0M4BNYGPiR0+k3/sOQ0Fqynnsf3x/DKpMUhWR\nYgalc/aOi2TR8C6cfbiGWo8LqsyHJy9C7Dj9ZSoWfqIgfvitj1kD2eO8uRl0ZLC9wXQxpHRq4JzS\n75USV/solgJ+NMqRyryQywqtFLhSns6NfBmOCO7Le+ZKBYnvSxIwBn91BdsoY+pF+mslll43mO0d\nRo+voeZm5cOb3Vajjur2hSXS7srL7XSE6VGriplWVnxag20KY8ZbXpT72z1g+8XvuFilL+ejnjtg\nA037pE/UcFQexPjbLXSrN14knB0zdiYLTS+dT2GAKpUkLe79GySLNeK1OVypgCoWhU5/2BKz0rTz\nKiyiVEKYMX5S/4OMNeSMGUv9MgaQTjfAtMBGq7FHzJFNzBkrmu9RNO7+BvJ5yIAYb2EeXSjIvI1S\n76DUFDl73Srw882bjGGWfoVbHQHK6hXs/AyuVkbvt+VaKdAYbcxjij7em1dzeVvLFogb8rzeTGPM\nksrmVfa+V8sCPu3tCWhRKKBS361kRuSM9p3L3P+CABKPct5k96mUEhBoMEwlhGa6SzYJ9ORgos3/\ndKUC1CryON8TkzmlhI5qLXoQCxAUGXQr9QCaBKgzw7vMoDFJxr+vbJNLJW2qVhHQMtvEsmLN12Lm\nmoFB2bqUzimnFGhwgYct+NhQEg5MAUwgmz5p8ogNEXDISGcIK149AIGynKgccq66S6gMl/prHMYl\nztX3eGxuF2s1JvGw+yHF/Zj+SkBno4Aeynsgk1sR1TySisL540hcW7TYogWn6PcLDExA34bcieYJ\nlWHRb3N7tMCl4TobwT4Lix28N2oUx4THRzZ3dLmMW1sgufchp5qeaGRMyMNsr4fuD2n+4Bl4+oIY\nr08wKjJZZ/acGZAia4wZf6WNiPxnHrZf5UVPkLMXMxNfb2VZ1olMr58O5XlT3mneTAPvwtmp+euS\nTPZoJgo9MQh2UZSDnSoMcW+8y+zfF6a6d/Hc9LVnZ/FmZ9DLi5z/G5fQv/UG5t4DzPl1XKfL/Nvp\n/ZdLYAxmbx9z5RrmvaviM7h/ID5qT15MX6fP4Kl1vMVF/PU1/NMbedOl8tYml//mE3zQ+G7MGxX4\nRJ84TecULLwzQN3bxu435TCVysNENqWP+e/kvlOToFCvBysLecddKYUdjvLnyn8fk+xGmIqYF/Ap\nrYOOAIz5XnWEEfQwwMbVKuKplwGKetw8yf+dfs/2xfw82/smAaZjYFN2/QkQSQVpCuRDLAVGJ6Ux\nbg4PUUFId79M++yE917uLxKj/CC/39ygPX2/MqDIxRHu9Fr++Kimcvr/txvfjbmTxD7DVoHGex4r\nv7GF/uY7H6d//f9sfDfmjQkU/WVFXHPMvgfL32xTvXooIFDW9Eprlbx+mGxqZQyW+9vY9hgoNa12\n7tdj9g/kEG1dLt3KvTSzoXVeo7okkYYz5HtE3kw10lC1UfzQKHBVKAiDw/dxhSCNrp9ghdgxoOwt\nLwlrqD/Atjspg7Io8jbfzxmCrj/MgSJVLECxgLe4gMt6J4MR+qCDvz+g9taOvFdxgjc/x/0/cZL+\nssfstw6JK6LEGG5EdD8vTXddq0myVaGA6g5ypqNLEtyDHXnt3S69J1dgtiGy/80d1ChB1+vYty6z\n+3yN2pUP9vL6rtTIzjGqK4arCSd/1VJ7/xDvoJf6VqZzJrOlmATynBufBZIJuwOd1rGFwrgZnnrI\n4ew0U9XacXMhrcWFVRpLCp2xuYeQy+r1TOYYRVPEDqUUtt/Hm51FDSMhAZQKkIYG5cBkynByUYRe\nXpSGb28g5yalxDRbKVxBWLkkRoCgDMBK73dwbh6nVcqGN/gDRzBwlA4ySTT4fcPml9dISo7yjuyv\n0qCF1nmpi9RsA9UdwMIc4f4Qs9ggY/6X7rQwlRCvnzCaDbG+wu8Z/F7C/8fem8VYlqTnYV9EnPXu\n9+ZeWVtXV3dXd/X09Axn4XARR6I5tikatABTsETTMiDbhGH4QbAe/GDA8oMeDNvwi18ESzAk2LRg\nWbAkWCI5XDTUkJylZ+lu9l7dtWflnjfvetaI8MMfEefczOxFnK7spj0BFCqXm+ece26ciH/5Fhkw\niFRB9pukCfo4EUKMsY3at38JgMXK/zMA/z5jLGSMPQHgKQDf/dADaiyIHZqT0K/qnSvOFos1wELX\nSlseeiPE7OdunHKDWAiSjRhvnUZWVahP6C68jyBhdSybMFKgzzyPEr8TQZPjt9qAnXGofhtqXPG0\nnW197QFjzQYVgsqS+PuNBi0iaQZ9PIa4/gQVMZYpGZDHIyAMwEpKRuPtFO2XqGOarATIL/Sg9iuR\nbsY50ecMVBKgRczbWCeR6509qDSFnkygxlNa2OMQs89QkKQnUzAFqJ958YPvEx7D3AGQLvtI1hh6\nb2sEB3NK7kvjfmU3ijr32IqPAbQBMu6CQV2WYH/0Mna/1MT05gqJDAc+3ZvZjJBZhpvqjlsfJqCm\nAmVNAM0GxTYYrc1jbahedQqYLV5pwWnBMwucznNDazR/PzAigHbjZnWLRwOHNUkkC0k4liyyOXin\nA+wdEiUuK4gS1gpN1Z2bTkkTRdsHLxXUbAZvUiBbCrEju3CCrAZJpYsSutcm5yyz6ZerHegmCevy\nI7Jal1vbYNMEyVroHO8ajzhk8P7L0eOYNyhyKt4AFY2wvh6c6FQtDLt5mM1O9ZrQgy49VzYhUgos\nK8BmKfi8IFrfzMCcDVXVaXiY++0cPLRy8GcKkArqymV5LYCrFafkiQTKFoVMcGeFpbXPUbQ8cofw\ngaJJ/2sGaI8KRMqnQpAWgPI1eM6hZh7S0oPHJZ5rPcLnW/ewV3bwR9vX8M03n8Z742WUmqNUHIxp\n8IJhfCXA5DLHbMMU8FPq7KhAoIgZZASCynpUfIIRL/SDEkoyHOcxtrI+9vM2jmUDTZ7hjw+u4ff2\nbuAPZjfwS5deQ+9dibXvvr/OHH2UH/9+hcCHeuXND31pHc3qGhp12haA8vZdMAW8/Z80UX7uKfAo\ndIWScmfXJalO78Q0CZjnVdQwgIr1SeJcXOpoozok3zqFAXBaReXDLdo7s8whUwFQwCWla7A4jReg\nQgRpbSx/KeEXvS681WXnfqbSFCzwSZMEpvAz6KNcbiH5uZskYu950EmCcncP8tFOFSwWOe1jSwO0\nHlKwKA8OUe4dGKpzH/yFG+BR5AwUyh4F3Col9Jbc34fOMhx9eR3sqSfADfXZGwvnJHj2R/fxrzli\ndQXbX4mw9Ccawf0jWiutg6p99mvD6iYQOohXDQUzbGFl/uJlRwvmge+aS3YeuGCX3thibHJiLtRO\nvjBPbXGo/jcL98u6wCjTCDFUCffeW81F9LXWDiVwcs6dit2AheIP84mSeOoa/ADh/aE7Pu91EfdS\n+OZPF4pNShp0uUkel5dobzWIhjrqJrnUds/A0t/9Fg5f/BC0+GNYc2QmED7ysfx6AnX3wYfHpR8y\nxLNPwbt0mkr34/HJjcex5hQNhmygEe9wtO9n4KM5oaFLWSGgLRqoupDqn4tRBD2DjENcf8I1IQFQ\nUxKE5GCcOeaDRR5awxYmOK13SoEHPkSvVzXelHaNMeeqaJtijDv6GA9DirGSlOL8eUKyBXEMaAUe\nR1UO16uAAS4WtznWPIEuSvBWk9Y1QQLqvNUkhychEH//DqFylzpQXSMbIRV0HEBHPuT1TYhMo7Ul\noV5/G2mfIet54KOqYMyX+k7bRrdilFuPIE3+Nf2F55yof7w1ISr6dA7WaSO/0KEGEYDhZxSSSx8s\nFP9YYmQAw5sa/VcF4gcT0m0qa/pwNo9ZcGtmVXHGIr9scYhzqFYEeWHJuQ5DmCaq1f8JQ6fj41zi\n8rw2Tyhf4s24MmQBnAum03cMfNfwVQmZ/bAwINMdrcHyotJmDQKjI1TpBOsooOu276M0DV8AfE5z\nD75HjdQwAJtngMdJdiKV6NxJoTyGsingJRJFg+5RGXPIgOaJP9Pov0XnkwFpNJUNjWgowaIQcqkN\nVkP689Ec/HgKFXg4fmGJZEJMgcifleClhj9MMF/jELkCKxSCsa6c4T5kfKioNGPs/wDwVQDLjLGH\nAP4bAF9ljL0ICo3vAvh1ANBav84Y+z8BvAGgBPCfa/0+qsv1oXEa8so4rGBzHfZc/9rCy8nCELTB\n5znE0QTTL/fQvHQB8t07i4f1/IWAGABOikjbLq47xwdeuzaFhMJpOehOi6B0J6rbrhPFGAlDRiFY\nIWmhq0G46cUSWhMtQCdpJRIpBMHnJlN6CEODDPIY/GFSFdakQrLRJAvD10gkmhkkSdn0Tn3w3voa\nyp1dcFQVeGUePGgFb/MC5MGhEQRl4DWEkZrPsfadOe78cown/7B2r89j7gA4ekbAmwLdWzN6KF0i\nf5KyVeMo1z5jAIbq5LtOafuhxP5nPTTfi0k7gzGUu3sQqytgVszZwhWFAFS56B7n5o/Z3ES9CFTp\nBTHGoGQJHpmuh5ZVgscYPexWw8pSB+pvKS+oKm0FX+OIuNVSEl+7TifRxI+2BRzngqYV9NEQMlpz\nOj66LKGvbIBNE0Q7c8Dj0ADELAPrB1gRY3BbbJOKUGZpBjaekcixJJE87I1pA11bBpIMLAyghyXk\nu3cw+4V1hEcxBIAL//0f4+7gfOeNTjOwbljNiZPzpLpx1dd1AWn7chNUZRttRMM2id71jQOB0oS8\nsFam7SZpf0jpunHabEwLhcr6ec1c0VlGxVejb6UFieJpwQl9Yzs2NpCzRSHXPSOEmgo4ypBBC6MV\nxEEFXQ9QIaC5poIQB7SvoYUGiyQijxKQiJWIWIE7xQqhWhOBcRqiE6aYjSOwYQCmgdkmWdfzHFCB\nB7salrGACgCRArzBUMQKIiHKmI4VWnGGtZUDbDaOkSsPUjO8k6zDb0i8OHiIf3H3OXzHfwL/9vJr\nmG0I9F6qCSCfx9xhDHp9CbBW6x80tHb7WL3psAB/B9D9rTdw9NzzmF7m6N8ilz69RU4ZvBlDTZUR\nlfcocC4WbXrr5zsrUXRdMFNE0ka8XE0m4FFEIo3DY4Pk8QErA2P2Jmk7qXkB3K+ai+SeKKjQ7HlV\nQwIk+MjbbQraDHrXrY2cw986Qt5bo3N6Hti1y9D9BvBHL0NmGe1DWQZxOIHaP4B6Zg0CoOu9sA61\nf0io4tGYimE7VJRif/wKFZmiCOX2LqAITdT5h0d4+De/gkt/5xGQprj+t17BvhVaP6c1Z/b8BlQI\n9F4+IIpvbW2xeojmm+prwBT4aw6otbkk33gHx3/+pxDfbpFWWJY5KgRvNBaFmH3Tta+7olYXYL4/\nQw/NotJqKLeTRSEtOJ2fi0UNm4XYitVU1lEVtWt78UKX+H0GiyPo1iJX1L3Xo+OFn8dhDmXZaCVp\nAsnpjBBltfsjh8ek7dWkwpWl9AJAMMzB+l3AFDV1VENRncPcYQD42EP7DuC/tQX5IxaDAEC1IqRX\ne2gWhTMx+fGohl1/PvbjWornOa052RIDzzWWXyvhDxNKMOmgtRhDV00vWwSyP2OMpCYMpUoXOW7/\n2ga6761j6V+8YyjEPtRoDG/zAqEdZ/OK7mqH0aKjgyinaWnFl6tCLQcLhGuQndrP4sg5TIFzR5+2\n8g31vEvHpghgc684du648D0w6VfrmRVit4VqY4TCOx0U7RBHz0ZobUu0Xp5CvfoWsVGeuIz4MCZJ\nAK3BS0D6ANNAaEx31N4BYJCbQmmIQd/th50f7kDNSKMIhyTVoMYTsCDA8c9vYGXYA7Ye4fo/zLD7\nhQbwW/YjOp+5UzSpoLP60oRMZSzTAqjiSgteqKNQOaN7bhtRthE+nWP+/BqUz9CephUaPkkJ+BAE\n1CQx6CAWhTQ/gOpZFALMIslMwUcb6Qe3tzAGOZ5CtJqu0KNmM/DVZehZQg1sw7ZwDRSTy6npjIw1\nWiG88cwUS7kBDzBCywkOxKERks6pUCQElE+NXSY1tMfAFN3DoslRNBiCKUN0lEPMCgyfbUNkGsL2\njz0GXho6WUb7q9gZQvVbhmFQkuZrIwRTCtGwBJ/mkN0I3kwCUoMrhfnVDvrvFMh6PspYIBxJQvp/\nhPFRXMb+yhk//nsf8Pq/DeBvf7TT2z86gyuilVmIKNklDqnvqseV5eEZ0OXRGIM3kqr7X/+d4R8u\nagoZJI6lZhn9l1OvOzkY0Yb4tctOEV1PJlDtCGxrxxWJ3MuFgNaqglQLAXZMrSsWBCb45pULGagT\nppKEJm4UgjWbC4KHzPPApIT/aATsH0LOZuBRhOz6Kh781RJX/1eO8u59oha1W65iuaAtwjkQ+BQc\nzWaVs5lx3hJLfeSbffCtR+68+ugY0X7HgUSYBi68sLN4r89j7gBI1yQu/AEgjk3ngw5WBZnWTYwz\nMN+n5LsudMkZxcC1RL/zO28iWboJluVQvSa470FkOW1EcQTME1qULFrIIHyY55/QQ1CLLj2A0QAC\ndVDXN6FMgkUIODMPTTWclTUamU+dBJ1WQYo6HNJmKjhQKiAMa2gXosNBKrMhFuQaF5gqOeg980YD\nrN1G4+EcYjij7vnVy9j+6R66t5uIt2dg85zWWka6Rj2eQfocHKAFdLkPdnmTXAM4AyBo4Xy4jfJz\nz0BFAsEeAwMglgaQh0fo3C/Bi9PJx3nNG3o7teLJWcPOCQd55dWmV9sA+TyHWmlALfXALHc5y03x\nhoMVmhbzOKBgQ2qyh08ycpzICcbKgsBYidvghhsXMbo+lWWk+WWuRR9PwJpx1T2pFT1tsWiBKlIq\nQANa0OYDRgghMEMPM/6UWgDa04TaCRWCuIDgCqUSkGDwWYkN/xg3l3ewFadYimaIRIGlb4SIjyRG\nT3hI1skRSWTMBRK6LKF8o1sUAKwEWMFQtjRUpCBaJXpxgp8a3Mb3ji+j4RXYiEaYqwCvzzfx0613\ncGtpBQ0vR6EFykWd2XObO+z+zvv8okJw1J25TiXPJ/YVOR7j8t/6Y3gXN4kG8uINCADl/YdQSQpu\nXI90VkOvGsoqE5z2lA9Ab7ifM47hLz2Hzm982+nrqNkcOB7RnNMKUBWqw+6Bbm/MMuiCkqV6IKYL\ner9MStdgsahG3mkTZD+jQFzNEmjTuAjv3ocENSTe+C87gAaee4+aEw7O71G3cHIpwABU2NajMfDk\nJXijGco792gftM5tywPsfXUDq//yERXIy9Ihqy78j9+BtGYCN58Ee/Xr5tacz7w5es5H910FHI8J\nVQXAGgUQwth3Lmxu3zCv+aDRe9fsN0kKrC5BKA05HhNCp7Z+LBSDgKoZZlFDZ62FtVjIW1ulxlG9\n0GSOwQqrz6fccVQtobYIMYdcqzfeDHJaW4F9O+pNnPpgDPLNSj9IPHOdgvN37kAe1agVnGF4v49w\ntfqRms8hBj2o0WShWOYE0S+sAccTsDx3TUfvjbtADe0EUSvknUuMDISHHN27qUMX/KiDv/sQfnQV\nutMCflwQOjV4q+kK4R/rsPvDOa05eVcj3mGIt+dgSQ6HfrbPFDeoHaNRpouitocpMKFdc8kWyeJd\nYLbBMFhfgddskAaalJD7B7TmGsSRNTdfyKlsI59xYjlICZ3IRQZIsZjX1dcbZkWClQYrSqg8p/0G\nwEnaEd89gsqsLIiRT7CfqdWKKUhnVOc50bukoriNaYrT+x3IWCA+UgiPcpQPHkL0urj3n93EyisF\nGtuJ02gJxxq81BAJd7qREAK82wHzp8DuPq1xkq5X3rlHl+J5xEQwMaAcDjF8TqP/TkhN+j96GfnP\n/1R9LpzL3JleZBj8CcCTgmhT5j5a7U1Lm7LIGdQLRnXnXTvXui3wQpNmpdWf8n1oJM7QiAUBFYA4\nN6ifApZ9ow3rAUHg8iCtTZxl9kqVFxCDJjCbOUSt04cy7AddlrRfFbljaFikM2MEtBBDo5MV+LAC\n2SzJqAhpNFHd+5QKqhmBF2TYYvWEig7dl3TA0Xu3gPIZ/Fdu4/bfuInWAw3fbD9MkvOY5gyt+8Bs\nzUfseSRbkhaUO/gCfJ4BmYLqNiAyCT6dY/5EB8HQ6HUpDZEoPPrZEBe+mYHnEt44hQ7PaPKcMX4U\nl7GPb5ys6dQg9o4PaiHktotmg986553RgqKyDMG72yQiZkZdU8h2NasfaFcVr4sB14+7cG01LrxY\nHuDhX1ylQpPgEJ0OxKNDmsR1AWGgogTZgDSnDrDVYDEXVzlOAY6axAMfbHMdrEEIEDWfEwzOp4Sf\nTWlm8SgCX17C7hcj9L4Zwfv971NQqDXUpXXIkLiFCwmJEad13Poih1hdNh8BR35xgHSlgnDzOKLF\n8+42vPU1iGefQtH2MUo+mo7Qxz2YZIh3M3pYTeKu3ycpshuVs5u3VB1z/y3EXY7HWPvGHlVpH+xh\ndq0L1u+SLpSFFnL6W+u8YgP4uu6Vna91uL3TggCgfQ/8+acWupEuueccLDeaP7aYdBJ1Np2awLoG\n+bWCezWEiRyPgbVlut626ayazgzvdaEbEcQ0A4aUqI2+sEFFgoCQJLQQCuigqiErS/HiDBiOoDrG\npU1KsGYDyAuoNMXhZxqQAUfZiaCjAKzVhLe+hsY334Z/v+Z49wEaQo9l+KcLxqfGWe5hdVqZGSzN\nER4kgGDkSOcJMCOWD4fiKSsdHW7+PkmpW8RqYtx1IWHfJ+55ZDjXSkM3QuitHRLzCwPo6YxgxnX4\nt6WS1f+XyhSiNJSgjoQMABlpyNAggRQJO0PTc8UyBjYX8H0JpRkOsyYOijYUODb9IT7fuY+vrb2J\nFzpb2J130NwtEYxKiFRDzBn8KUO8pyEmaXUvGVDGQNEkehqXgGqV8LsZ2q0E/XCO5+MH+OF7l/Gd\nu1eRyAAtkWE/b+Prx5/BF3r3MQjmeJgPEB7rKlA5r8EZ5Khmx1zvjBmEjhN0VrISA66hgxb+pjbK\nh1sUrLx5B/nVZVpTsoxQZyfcxUjUPjfuYpXAuEUC2Wuz5+NRBF3kmP7KGOrnPodyewe81aTk2Nrt\nnkQY2STBFFWYHxDla2WZ6MuiKnIzISoUrB8QqvRzT0PPE7BO2wkmnzX0Ug9rv+/huf/6Acq9A4il\nAbz1NXibF6A6MUS/h7zn0DzQSQr18hu0hvkBaUIYy3t9RMG0XO4A1y9D9HvV/q8kvIubRF30+NnP\n92MceVejcyel576oCvf2/lXFFFXtKUq75pJLqE6M6JtvAEfHkOMxdDMi7QHPg0rTBZ2mk9pSrrhc\nC9pPubewKlF78FdJF6NeSHEFpSQlK1/PdPt5tW+5Q9U0ek65p9WKVfZ1PI4Xr9+ecjRZeC/HLy6D\nHY2q9+LO50NMOLJBDSlbltBJWjnenRislJBPblDx3dgay+PRAoqG+ec7b5gCGtsa4b2jU5/hn3bI\n4RDeS29C3b73sRzvg4Z45jrFuZ+yIdZWz9QbFU9dg3zqMdHpxPmmXaxk6DwowWcZxQg1KheAU8VW\nxk1yLaWLc60Ri30W1741wtIbJZhSKB88osZiHLkE3skqGE00u3aBUQOynn8xIUyT1NLE5ALdWf/U\nZwmBGoZGumFeXb/R1WSeBx6T3qeL/bmAPBqCd9pEZQsCwA+qOLnWWFfzOcTKMr3flT60UuR6ZeLo\nYD9B+90J/IdUjH3rv30W2fMJypiDJwX87WOIXhdlyJA3OYqOwuwidatYFNF61+8RiiRJwfs9V7g6\n/I+/Ar25Biz33bWLpQFu/A/3qdEPwLt2dcH+/byGCjR675LQOJO1hlNN49ZRx2o6TjA6oRBVoQag\nONmfFGjen1FBphFRATKKCDlvCzfWpcx+bShkzFDLFnTu7J5Yy5GkQYk+/Os3qek5ncFbX6MCpEWq\nZTmxKOzzWNNWRZaRu3O7ScLfNf2gBeR9UYKlGXTkQzV8yFAAgoFnEpozsBLwEo3OvRKaA417Y7z3\nN59D+ycO0LlfAJrQQDIkGpkMAJEDySojF/HAh+o2qNHmEVpL9YwJF2eY31gDUxrjJ2LwXELGlA33\nAAAgAElEQVQzQKQl1l4q4E9yyEgg3Wh95OTqU1EQ4vX9rZ5kcbbwzwZOLmioT0qgQhDlOVn75QXE\nygpEpwP19OXqHGdsqNx2p+rDaMu4CWCvqVZt1LM5gpEpIBUl2f+Oa5oWJzVmjNq+WxBz4yZS5ATn\ntgUEz6+Sf8adVV9574FBApgiQ+BTdTYMgOUBFRM8geYjhfXfeeROe/BLz0AcT9F6mCPaT093HLWm\nBdWvqp56NneLVuu3/6RCLRndBXl0DK015ld75GJw5/w3fMY5gmMOb5o7fqmub3i2eGgf+hqHeOH3\nWtHC4FeirvLWbbDpHOXOLo6f9CAHLfA4oqKQE4llVZJjqV2mQHQK/q+rLrAd8tZtFIPFgLduD8wK\n6ehsJNxczQV6sSYtnMKgygysn8SkqVjoKunNiF5bSrfAusP4HlQzdJtldFhg6bUUjfsz8EmKcrVD\nyJ7Ig5dK7MsmeG54rXFERcnc3IcwJME22zUZacR3hkQnKEqobhO604LW2rkBfRLDbQQWIlwfJ2li\n7o8Wk39XeNOauPl5SQLvnoBqRO64VoCPJVml92OpYlbzKY7os/W96toAsGYDvNkAb8ZggoMfEJpD\nJ4lBhhkEhCI3M9uZ0oEP+B6hkmKjG5WX8GclmALKJiBDUwjNqQikfA0ZaKhIQ0aKKGO+RivKEHsF\nPC7hMwmpOcYqwoN0gL2cChWhV2L4tI/h0yHSFYb+2wpLr0tEQ+ooWcg5U4AWcAGO5qCOu0EnKc2w\nX3awvDLB5vIxml6Gi8ERYpHj7fEqbs1XcX/Wx28+eBbBWOOswspjHYwt7iG1Qoyj1NQ0GBy91A+o\nqGqLRWcVrRmDt3kBvNPG8OlF9yOdUkHG7UU1wWdL7bLFf22ROnb+CeFo2Rf+0hvgBmlUbu9AHhye\nKja582aZQ97Y65DDIcqHW5XwvUG2gnGy+zbPvRqN4b2zBTk2Nr9Gc4gPehDLSxDXn3BJonz9bXT/\n928T+qTZwOFffAbZjU3aw4czyMMh2g9Mw0Jr4zLWJhH8OAJbXwEurELnOeTxCNf/q+9Bv/QnYA93\naS1stxaeW7GxDn93BHyQkv1jGDxn8I5m1Z5h0UGg5sECbcwKS1uHMUvjsEXGWlKl5nPIA0pWspUG\n5ErX6UvpJDGulYsaIVYzr/6zs5A49Qac+CAzqyxzXWGrIcRsEG2GLWIuNPuAxWsDXEPKNs1O3cfm\nIjSw/9IOxStFvqiLIyXK1QLhweLxWW3/482m+7l36SLUwRHEJHNNlpN295/EYFKjcSChDz5eEWmV\npj+yFtFHGTqsmcN8iobc3XPItfpgkxm8neMz/uLP3gjGRF9iWVEl546epSpEuSkCndybdJ4vJPi8\n2QR79z5af7JDmohKYvSLN8FXl4l+U5Tgndp+oo27lDUssA1v61xYu6az5uLWV+n55HFE+1EUVnlV\nXpDrWVmSyL7RwaP3Jum8FqkS+BT/Akamg5M7VJaBt9uYfPmya3pa3RrGyc1ZHIzAx3NHIwMA790Y\nwURCvfImigt96CsXDMoaQKdEGZp9OvChR2PIXgusS3G0Whs43aXxdSC53Mb42R7F+CE1TdXxCPLW\nbbredgycES487uHNGLxxuthstA10qSpEkFKV0Ulpm9iM7m/N2EAXBfx7+xAHYyrmjaeYffEqGaUA\nsDp5AOBs6i3F0jEnzPl5pYVnXZnBuKHV08/DI7PGt9tQk2l1DlBjgAWGDWM1r6wREeOUPxlKmPY9\ndw+04IQIE4QC040Ixzd74POCikGJcRwzn5c3lxTjaiDZbINJhvx3lzG66qP/O7cw2fSQtwVErqE9\nYL7OEB1oOqdS4LMMZa9BDSzGULaoSOsPU2x91YM3k9TYbZDhhIw9QgxpDS0Y8q73kefOp2KFPlX5\ntJoZtYDBBkva6A0AqODPLtCrYJC6LKHnc3oYr16ACk6oKp0oCmkTaC10l84QsWZxTA+y+Xs1n2Pt\nt0yHxajou+JKrQPmbaxDPPsUHfPmk67zqxMjMutXE5PEpwviPZrur5YK8r17FFTHESE74sgtUOV6\nD+VKh9zKJlN03kuguk2IpQH0Z57C9CJDeecewp0Z+CwD79YW7IwEu+TxiMTZGg2UDx5SAiElgvsH\nUEkCsTSgBKTfJY0UJaEnU+QGFtfY+gSmk+8hOgQVI6SsFgxHnzBzgtWqwLZAZF9jhKWtpg8PKhce\n1xVkQNkKwDptCkYLumeuaGdh+WbDc0KgwEJADdSCWRMEh29tLXxvk3soBTakZIp32uCdFlSaovzs\nkwvuQzov6Fmwug0WPmldE4IAYm0VfPeINpzJjI7tebRgT6bg8xSziw1C9nCB8O4h/GEC/cPXUay2\nkS5HgFYomx7EOMdYRQhGZnNNUmCpBz6cAnlBCWRCHG/mB+i+NQIrJcQ4BY7HyNZbKJdbJIJaG+y8\nN7wTaKszUWV1jn09YTojcWJGpFEHHom622BLqQUnD7ZwTA4WBBRAtZvQxvHOblTuOqOQft7tEKpw\nqU+FoHlqhBi1E+7TnoDutqDaEVQjQLLZxuxqG+WgCRX7ENMc4ViB54DIq41Le4TYUYGGChV0RP9E\nu0AoJDpBigvxCGv+CBHPcS9fxr/avo7fvPMc7swpgZtclxhfJxpn62GK8LhA0eBQzQg6DEi/RlAX\nhEkATKPoSXBPwfMUOFfgTGO76OGXL7+KX7v0bbzQeIC2SDErQySFj92kjVkRYnivDz+pFXvPaZxq\ntthk1qGz1MI8qRdToGRVWD+JxLDH4BwQAqvf2KWuqXUWM5bytrisi9yJCluqmtPiY5woqY0GeLdD\ngrmmIAUA+ParC6e1gr0OmfHCDaT/zpfAvvA85v/WZ3H0q188JfRLWnyqEg7mzBUydVlATSaQ+/t0\n/Nmc9jWpCNEWRVD9FrLPXz91XDWZIG8z+C+9TTS50Ri6yNF8aPZKISB39oCigHzzFlnc37oN+frb\nC/s/AKgxaW5NP38R4smrYJ6HcusRdSaPhuddD4KXAGyeOofJkyLOABxaSNt9xDOCm1JS0+oM5E19\nMA2oQIA1YtLM0KZL7wJtO1/V2W5hJ2OemiD1xv/22qnXm4uGSlK6t0VOwqwAxPqqE/sGUMVdxh3P\n7pG82XCfGfM8SKPP5eh+J8fyYAE5VN6+6xL76YuVI5gaHuPpKzvov13dZ7GyAtaIIXf3qBBaW8vV\n0RBqMoF6+z13ft7rLohj08/PGeWhNPyxhJzOHuNJ2GND8ahX3zrTRfjTOsqdXZR37z+eg58zKpEX\nhBpwe4trlrKKAr9QtFVVbGSbq7XGl02ey3sPiLoLIJiSAQqLCHHhkm+7FxrEELkgpq5pUV/rADgd\nuroG2eoPjP6i1WFMkqogUBQfXNAsCrrGoubcChB6aakHcOb2yPZLD4EiJ4diUNxMNKIEOgpQbPSA\nRgxvfQ2Xf0ti8IaC//XvYfqXfxK7X2wAWkMFQHxI19PcLQiVm6bAxiq4KcixKKTiUuCDN5u48s9T\nNF/fQeeVfajhEHrJFIZMA03cfIaob+H5V4R4gQV3WPohq2KuOj0sM3REQTIJzizB0g/tXCpL83lI\n6FYDymdkW28R+zXGhpXjcLlUURAizImU13ImmOa0UmBhCG/zAlZ/5z7UbFYVQpO0ApREUZXnri4B\nUoKvrVBuKyV0mpLDl43tNck+sFJCDlp0/aaR3nv9mDSWShN/eJx0facltMegfIaywQEO9N5RiA41\n2g9LpC9exfi6MvINQDDWmF8p0HuXYh3NOVQzRN4L4O+OUKy3KV4vFcp2iNWXFLxZgd57GVipSLdI\naqhIuIKQl3z09eZTURA6S8MQgNMPcl+bYV3FKuoGLWoL9CynTs+gA4+0ND7wGk48bCeDLgcTkxSE\n2+RdaajDI+McpgwnUVbJrg1QB11CBJQlyna14Gmtq+qmCagtPNM6ZLGaKJcVqGWm2m5dOqh6CEBJ\nqPGUBKgMfSVbitC9TceSHbLaq3e9dF17BKiU1u3PlCYFf+uQ5gmHHNJSUpVUMPizT6CEzTlEStVq\n7egx9SC7jvQ4gQwCXKdiQSW/vgDZw3BDkfI9V2ipjlWD+5vqsjYblp23Ff3QFA1rbjHqeEQb4QkI\nPROCrDINj9UumMlaSPQv977UwnyxEEu3CApBooA5QWB1DYqpNVk0Yp5AhgSL5FFIUEijX1S2fCea\npzwGphTmKgRLiuqZ6DWpQJHnDrUCpSlAmJPIKYoSyAvwXCHvBWcnxJ/UsF36D0BunPmzM5B2AKAC\nD9p1M05oyNT1iAQn3acorLoqnqB5ZueDDdisTkoUEiJQiCrBsusRZ9CBj7IXo+hGKHoRkhUPk00P\nswshko0GZOxD5FQQ4pbFGpKQtPKpSwFm/hnkTiYFODRCXiLiBQQ05jJEkvvIEh+J9KE0gw4UlK/B\nSgbtMRKQ9gFtoLQsjlBGnIpB9pZw2gxZDSE0KmP4TCLiBaRmSBXNfW5eU2oOMbOUxU94GzuJODV0\nmYVi8fuhmPgZv1MKarmL+VNLpvlQK2hzcZpqo836LMjhyyGYGAlZSkMD5Sdcnni77c5tizJUdKqs\nUcXOEM27E4ABYlBRbE4myEyQ6Lk8Hp0O0Gu6SvTH9F74LHNaAidH/+2MAjnAUQJnm2bPEsaVz66f\nSVI1VIxotuh1idq2PAC0hj8pjc6bKTqMpyapON+5IxIsQutPjtreVRVwWIUkOoU4Pj2vmNSQkQf4\n/mLzrB5LOfSRufd1hM4J9Fsd5XNKB8gMK8zprqFpkGthQLpq77fW23l9Ikn+MNSKajfe1yHOm5lY\nKQyh0hQXmiOEx7XjdVuUpMHEVrVzu6SzhuCC7y0W6AFAnXMlUQMik6fXmo9xiF7vU4GG+v/8+BA9\nsI97eHNttAP16X/WJMOug0KQfg6w6NBbk8mgXMU2Jeg5CffTKjb2iTLq5BkAZyO/4FpYQ8o7qrOh\naPKoos7HP7xnrsc0vIzuEACidYEoft5VYoGwLzzvDms1zKhhWlYoJSEMaltX4tZz0mq1gvx0WZo0\ni5oRjp+KoToNwPcRHqaI92mtOL7OwRTAp6mh7Cj4cUHPq+8TQt8TYMOx09vRs7lrBopppXvK4hiz\nJ7pQ/Za7/yrwSCbkIygcfNwjGJ/ItS0qqE4fs41S1wBn9D5NbsBO7FEOVex70GGAaD+D6jbhKGZG\nSNwhguyoOYqBU/PeMjR4owHeahKqq9WkwuPxCKXRvXXsjZyKVswTzo3Vu3oZxUYPfGmA9PoqxdZA\n1cw1z4mtIRByR7vrZSnlStonUIB9HZOUF2vGkCxxKI++FrmGKCgmGd4IER5y+DMFGTAEUwV4Gjwt\n6D1KCRkKRHtz6DgET0p4kwzggEgKBKMSRTsgRBJjmK0HlZQHKB/gufrIja9PRUFoASFkup8WnWO5\npQCqYMh0WV2QUf+5HWZS6fEELC0X4PdnXoNfC1i4gOi0qo6uSch4q+W0XpgV1LJ6QEW5OHlZjUrE\nBbC1A/1oF+CChHRraBCVnMBh20JWYqhJVlPGCGsBIO5jFFHSPZqC5xL+beMmFvhQgYd0tYH84gDR\nowkG3yKhYO1zYDh2QZDodUkM24qCceK4LtizFkWlGSAl9P1HQFESHa/fQ97i4LmmxeOchxYM/lxX\nC0898baLlTLoL15LPrSizase+NlhnQtqQ/km2Y5DU/zTDsVjk7H6fHTzyRWeyMKdxxHNoaJ0gbZK\n04q76i5dgzUbbsNVR8e0YQFoPEoxvtGDePYp+rysSLl9TqQEiyLoUrpC40LxNDeLjdl0VV4Avk8b\nnCLKpU5TIMvhPXEF4WEKf1wQQkVpjG508fce/gzY/pHbCMo2LaIWIeeuoxGD5QXUwSHp3DRiBK8/\ngD8pUW4Syskml+eOEALdZ31WgmY3sfdN5Hl1b+vFVElC4LIVQEceafyUJ6DYpaQiuOBgnTbQ70A1\n46p4HAZg3Q54p0OJrzmHjkPo0CcqmL22oqTOm0f0UdVuoOxFSNYijK8EZP1+iWH0jMLOVxi2f1pg\neCOG8qiA680BphjKWEO2JFS7hGpKJ5rKhIKWDLMsAGcaDUHBS8QKdL05NrpjbK4eoxck8JgCKzi8\nOUO8wzG+HKFoCfhzSlBZkgNryyiaHDIAFYEkAySDLjnyzEdeepiXAe7MlnAvXcJu0cX9fBkTFeHJ\nxj6UZrg/7OPe7hKCYwbpM0dFO79RmxPvowVEltZGo8BaxfuBo9K4/eEEKhUAyq1HOHqhi+2vUEBk\n15JKF4g7xI/9GWsTnVUej2CpzrzVgui0ACVR7uxSh55XmkJM1BCOZu0QvS4hj155E9H/813I/QPg\n3ftY+cYWpj9xmcR7QVQTV0SyUH+TNPAoIu0XQ40m+jMnJxXOCDm0uw/sHiD47e85urR46hrEU9fA\n/AD+734fgFkbAh/8s8+i+Y+/U932bge8TTbArmhh6HhqPoc8HkEOh9CDLokhf+t1ZBe7UD/7ObrH\n2ztnUkUe9/BneqFTDaDSz6glSJY6ph0qiLmfk16U1eM6HcLNLgRUaPM9I4ipFwWqjWaHnXe80Vi0\npQfdd7suk4PcYpOI14sxtitcKyrJXUKGaWOYIC5tnioi0TNQwLrU/esMnuZQ4+mZv/O+8bK7RrE0\nwM90byH+wb3qBUI4pBU192r03LoRiUHllbfvnkKz8ukJxPljHkwZHbbHOPTmGuTm8oe/8MfjRxra\nIifOafhzTQj6eiGoXgi1xRWtCXFjUTecUexiC/CAK6AwQzlVsxnAGG79hw3Mr/aMUxSJ8LpGtm2O\naOWa9rzdpjXEGAbZoWYzOqZPSGkwBnV4ZPYUEycaGhjzfSoA+AG57Y4I5Vq2A4qN6U3R2uobnRmD\n/mdBAD2eVGgWq9smJfRsRu8zMAV130ey2YQSlG/o0RhikkKkJfiLz2Hl5QKDNzJTKADSgYd+ew5/\nZwI1mYBFIVQjoPtqYnjGGCFQmg1CjDOG7PIA+vplxLsJ+HDqULt8Moccj1E2z19EKBwbtE7NVdpR\nw+r5lmVn2KawGVrrqoFukWZAxU64dQdbf74B2Qqr+22cTq25CrPNJ1PQYe3WAiWRqF9UeGNBADWa\ngLWaRAVsNGh+hOSuyZoNaqzbve/aFahWA8GDQ0INCwbVaYAtD6hRa9H9jFVNWk+A19diQfeBKUVF\nRs4ABsiInpm0L5B3GMKRBC8UgrGElyjMLoRQAtj8gzkhiCKG8DDDf/Hl3wdevUVugIxB+xx8kkIF\nHni2WGdQPich64gj7/rwEwVmdEJZJqE9QOQKH5Uy9qlo0S8UhKyoov1aBFXSzjgFT5qZgk8tya2J\nTLuAW2moJIU4GGL1X+WntKvdMIEBjyIDZ1SVy48RrHIcQ3fRHDwOqoBCSbew8k4HWimIfh9yOCSI\nWxSBNZvAeAJMM6i6zaqx2AVQ8drjGCrNaCEzD1gl1miQRIMu9INtAIC3NyItiGYTvN1C6XFwqeHv\nT6EjHzoOkW52EL+5DTQi0iICwAZ9QGvIdwgiDSXB49aCzb06HlUFKnONfHUZb/6NdXRuCXTvlGjc\nHYNdOluH4nEPkeuai1GFxIEs6WGtD6vnY+eM7RAAZlFj5HBgikI2qdv8hukoW84sZ0BJXRAehuS0\n1WoCeU6icYGtRvOqw6I1BZbzOUHkjQuPQ7OJqijHPOq2kO1iTvSIvCCx1u0hGqyPbKMDP7oBvPHu\n4uauFRWEjI6QLooF9JDOCzApoQddME9AcAbdiBA+OCb1fKt5IhVUO4bYGSJ/dh1yrQdoYPpXRpj9\ns0tY3/1jQjYJAW+cEU2qlNQRsfd1uU9uW+222bx9yP198P19qJ95EcUvfhHRfgpx6/5HXrQ+tlFH\n+HBWdTLqMNj6OEkfq21wC7/PC4h5DhV6EMaRbuG0Zm3RYQDVDeAEps3GAgXoyAeLArBJLWHxBCDt\n3DMdf07IId2MIQctlC2TDDIqYhYthnRdgg9ydNpzBJ7Ebr+P4i0f0aGGSDV4zqgY52mwgDYPnQlA\nA4xrBFGJRlAgFgUKJfAwH6DBMzwXbkGsa0xkhKkMscPaQEn3wx8DMgI6940bXS6hH25D33wSRQPQ\nHlC0NEQGQhPlHNpXkJKjUALDrIFceUikj0kRouHleLH9EFsPlnD1HwP+KIeMs4VuyPmNE0Xnk8Pq\nrthvTTJeh8GzGlrlrNH7B99CDwY8e0JfRUuyUQcXEIMe5NGxo9jQCxS0BPRkAjBGGnrzOXi3YyyC\nqdgvjdMXC0MKtoUghzPQvsfiGGoygVhZhh5NEP/OLsrP34D47LNQr7zpdIugNDlgmiKXyguiA5m1\nwT0jjRjC91E+eEhaROZczqbcJhLPXoPYG2Lyk1fQ/PprYGGIbLnhghUmOOTuHsTSgBo1xoFGtNuO\nEmzfm3z9bXdbjq8HwC8d4uhXv4SLv83Q+CffrZy+zml4ma4scg0l/mQxRtebFkBVtLNaQoD7u7Oc\nwQb/8i4hkp0+D6v2BeMSREEyfX1ybgKm4Od5Lv5xlA4zbxes4bUmB9O6Y5dFQEsFvnsIDYBfvwJ1\n604177UtOjPoskatPOO5qLvcMc+DfPPW+99kJSGWlyAPjzD9lS/j79/vIt6/Q8fxA6i7DyD6PdIc\n0QzauheFoROodTpfZpQ7uzTX4hhqPoc3O2eEkFJg2ePV+mFbu2Arg/ePk388/kwOkesK0WFFpQFo\nZXQmDRLCueXW/1hJAAIappBt7bc5c7GpWF5G/EiAadIJZEFAjcGCjHV4M3TFDesKzQRJVFgmBhPG\nwSwvnF6eRTBqpWmvMY1POZ3R/mJ0fqA11P4h7QHLS+D7c2hfQKysQO7vk9241ciTkpgOcbyAZtfW\nuIUrio9N8VrPZmD9Hry5xPLLc/A5aZrlFzrIux6iPYbGu0col1qQ/QZajySGT3vIv7eC7q3vEj21\n1SD9ppwa69zRnTgVQbbJlj58eAwdB1DffwulkvA2L1CByuiGxTvnW4QGTDHB6gM5pLvZTwKfAhSL\nMjNamLYxr0tJ71FKh/gheQOKTxhj0J97BkuvSXhHNSqs2RuZ4ODLA8j9A4jlJeh5At5qAVJCjiaU\nb1kdIAMksRbzOssNoIRiZD1PoJIUXrtF6KyNVWB3H8hz8Dgmox1OKJ5iqYEgK4FOC5jMKsSTlWQI\nAzCY+JsxQgcJQa5ogoNJhTL2wTOFsiHAlMbS6yQqzXONou0h63K0H+SQYYCy5WO2KtDakZhfiPD3\n3/0y1su3oAVHeqGNcH8OHQcQx1PIQQssK6ADD0UnRHiYApyRq53WUD6H93vfh/rZz2H8bBcyZOCZ\n+MiI1k8FQmghwLaCTxbiLKvizgJaqN4Zq3dZT3DytZSQw2PoB4/eH7ZsCkgsCCCuP0ETy1S+ebtd\nWUHnBUSnQ2KWRr+BhZUQLzOcUGQZITpMAQVSQk2m5BTT6wK37kEsL4N5nuNs6yyrAjg70WpJqqUg\nuW4cAO0L6BtXSWfBHJttrkP3O/AmGaJ7x8597ODLywj3ZlDjCcqNmruGJB0g0es6yKUcjQklFATk\nHHJxAxYCSpaMHooLffzUF97G4O0cjd99FWz3EI17o4/8iX+cgxeGYqdUhYaxNLA6lcsOSxMzxTX3\nPWCCde7mg50z/OV34G0PwbLcCDdXHFY1nwNaQU0m4MsDiBVCvtgA075WzefQ0xl4q0WLYZYR6sYG\n2aYIVw+6bVDu3uugB7V3AH9nhGBvhvHTbfArF+mzkkakz0JeteGCe15VlGKMeNVpCjYcI3tiBazd\nAsty0rYQnDQfPA96Ogd7tI/y4RZmaz6Y1EiWPfzM5h0svUkBP+/3oaWE2DqghbLdpHtd5CSOl2Qk\nZt1r0yZcC/ZFUiBZ9iAbHuSNKyS89kkOi/b4MNrYWYiQ2utZKcHHCbwR3U/m+25OudcUJfGmlXJw\nbhX7KLsxVMOHCj1obxEuC8AkdwowQuEsjoEB6YclGzFmGz7KJhVzlMcgQ3vJGo2gwHpzgqevb2P8\nQobJZQYtAH9O4oEs49AFBzQDCxRYqCB8iSgoEHklOl6CQgt8fftZ/ObRCxBM4alwB4IpvDNdxd68\nDXQL5Ksl0hUgOlIIHgwhCgVvfwKVJNAMhLTjcEAbJhkgNIKwQDPK0Q0SSMWRS4HDrIlJHmEvaWM7\n7yLY9RDfPoJ47TaiN7fQeGuX9KrOc5z8/J0rJqu6oUYjBUqeQpoCZye97zvscSzS0TRNvNVlyOub\nkD/3WXhXL9N+0u+DxzGYR3uRWF0BWx64BBkg6piF54uVFfBelxA1R0Pn7KUVaSd4G+soH25RY+PZ\nJ+Htj1G2w0rDzFIkDXJWFyV4FJ6huVJCj8bIr65g+itfdmgp0e/Du0SaL/L1tynRv7MFeXEFPNNQ\n8zlmn92sLHy5cLQeeB68tVVYLTc1n9NavLIE7+rlU+5UnbsFmn+3hxv/8xjt1/aBLz4PFp5ArTzm\nwRSqRgRQNQTc2kLNpVO0QFBDSNf0FRa0fmpzstzeAR7tQc9Tl0TZYzuqd5GDdzokEGtpg6ZIZIcu\nS7JLrlNTLU0vTRfOqSbTU2glqwWijkeQBwfQgQdx8cJpLSqLUDjL1bV2LXj+evX1Bwzv2lXnaPTo\nayV2v7teHafIKdZy9MoavD7LwHpd52Z06riXL7rOdL50zmUTjcUY5jEMORxWjcH/n47Rf/CTH/sx\nZ//elzH8a1+B98SVj/3Y/9qjTg2ztC+pKhmBupYP54vNiHpsrTQYY5TvFDmu/NNDhIdptU6bwepa\nMoATfLcFeyhJRgQBNdd5HMHbWCedTSWpwR2YRrj5XrRIGxUbqxBLA3peA5+KOEt9sP0j6NAHBl2w\nz92k00wmDqXtzINsE1YI0papUWlZFAJ5geQnnwYABFsj8If7wMExWLMJnkmIlEw85K3bePhvNJEN\nQhRNjsmNAv6U2COsEUFt74IfTcCWB+DXrjiKGosiqP1DMM6p6b5/BLa159ba9/7Tqw4tbm4AACAA\nSURBVNj+d6/h+N98FskvfwnR4SfAwHDgDLPv2IKgEIuC0nbUvnZoS8MiWNDo1Aq6lPC2jtB+bZ8K\nZvV90DZMZnOwIKCC/MV1il1q4uSsEROrweTaYmONkMNFQU0qcw26LOFtrJEW56BHBdBWi9xP2w2w\naYJ0s434/gTK5ygHTWSX+tCdlssHmFSV05rSVABijOJ0DoP0AmTkoXHnGKNrAaCB6Fg6Ax4VcMiQ\ngUkgXfKx9P0j7H7RJ5MVqXHwGQH2e314a6vQjRDR3SMyqvE48k2TtzMGFXoIHwyRrURghYQ/ySFm\nBcK9OcTaKrZ/OoYMiPaf9T96IfGTTsEA4P3t9GpOTacEnuuFnzpsn1mRtAoF8n5OFe5vTRCvsqyy\nb3/hBgWbdW68VhR0TgmqTAtRADWdOkSHms0gx2NSxK+d0xZ89HxOolWcgS8NoKWiIhRQFQUsRcBa\nKBqhaWZ1YYqSCjN5CX7bCBL7AdDrILvUQ7Hcgn7tHeh7D6HzAkU/JrHYV99C9pVnIN7bPnHvzL1K\n7fvUtODGEfigD5YV8K5dhVhdIXi/4d9+670nIENeCZl+AoNJTaJZdUijTeqtoxjjleiz5brKKig/\nBbt39tiUNPGI3KLU8Qh6lhBv2RZbmCnaMVLE18MRLVRxBHZhDXx9Fbzbrpx3jKuU7aYyr4L/0wJm\nRF0bDcA4JlhhUGYq3WxzHWr/EHw6R3RYIL3ah3zuqqmMG0Fq46Kw4IDmCbcB2sKXN8pIfylJiV4p\nFZLnLwLdNnVxDg7BWy00t3OwGW34X+u9huih0ZIwtBOdplCNkNT386I69zwB3xti9OIKyguDBVoc\nHydgUkPMCohxev6283VHg4Wff8CF1Neak9abNQQRKyVYktEG4gn6dwJNxEoJlhbQHodsBeBJAW+Y\nQMxydy6d59DHY9oY58b+M8mou9eMoVZ6KDY6yJZDZF2BrM+R9jiyLoeMCSUEDShD+wKAi81jxO0M\n6dMpJlcBXgDBMYOYckAx8EAibqeI2ymacY7QLxGKEpxptESGZ3p7uBofosly5FrgpeMr+MGdy9h6\nNECrN0dnZYri6QTKZ8iuDMjqvijhra0i74fQHsBK+icjAAzggYTnSYReCY8rPNXdx2o8wbv7yxim\nMTjTuDNbQtFVUO1okV9+ziKdVlvLDVvsMUGrNtz0uvX7BxYazWucHf37nZcTTJ8FQRUkfftVBA+G\n2P2FTYz+8hcw/vmnwddWCKY+m0Hu7qG8fdeJ47MwJAQfI30rPZk4dBHzfBJT3XrkKG/l9g68Sxch\nlpfI5n0yw9HNGNOffhL8xefcdfFm02g/mETa9wmubZBDAMB8H/ybP0TrH32HChJxBFxYRX5pCcXX\nvlDdzskEw+faaPzgHrz1NTReuovwrcoxk6+v0uuMXpGaTKgT3W6D97rQWzvIri5j5z96cUF8P/jt\n78GfSui3b0Peug1v67CiSp/T8GfUoa5Tvlg90bKFe9hfm/lgET6ugVFDK5rjLLiOTSbQxnUHUi7q\nD1k9oIMDQslIRcW5C2uOCuKOMxovUN8dWjkMHY3MIWpqgukAxTxixcQMng/1yptIr62YoL3uQlTR\nDxZo9vXBGDnTnBje1csLLmEAIPtNlDu78FaX8d/9uX+EK7+VnPo7ciuKFmUGAJR374NtrEJsrJ0u\nXEWh0yxBdN4FIU1J04/HYx2d90xiubZ6al79qYcGkhWG3b9wAekvfQlofQI6TUo5UwsYW/m6luRJ\nnRdCdciqAWEZEDXaqdXB1FIBj/YgHh0CWe5Q+raBrGraYnVkoVheIlbGZELNdYekLSDHU1jtOZtf\niOUlsCAgqq+UwOGQ4mEhoKYzsMCHfPtdyN09sDduk1bPD1+ntYbTcbTRX9VFQY1SmyNYnTCLigx9\nqCc3Ia1TWJZDT2fA6gCTn70GkRSIt6bw3nmI41/7SSgPCEYFZhdIy3Xtu3TN2veMJAQnuYl5ahgX\nJLzNW02U2ztQaUoF2aPK2U6GGl4KBBMJfyqRd845QGYMIrMaOrpqRloreZtjCVHFYnY/UkayxWpJ\nWZq0ssgak5vP52RykxlUmEW+1ynVjZiAGeMZNTsA8EsXgNUl+kwAym/CkJBiFvkcR9BJCh6G4EsD\nIAygJ1N6D/baSwmW5tCdJqJ7x9CRh+AoRdn0EP7wNuZPDqA7Zh0waz8rSpIpsOwTxkjKweMUGzJg\n9PwATJHDGC80RErPxHTTg/RJR8ibKySXOkiu5lj5/hjHT3oorye48JvbcFqmjEG1IgKnlAp8RHmj\nmOVIrg0Q7dD3ZcsnlL9SkE+sIzwivddgpuAlGh9Vj+PTURCStQ+/pma/YL96UlDRBhHWWtd+735f\n49gbHqmDV9tzGTQGE8I5scD3Cea3e0S6CzUovi7LCkpsO8GFcRXrdZ3tKx3Hc7oKNvjRZQl4HrKn\n1mnR8jzwpT7mT9cFgi0SoEIUWPi+znNaXC2Xcf8IajqD6PcpMS8liZp99w06l+8Dyz34R3OsfmMX\nxde+gOAwcZ1i0e/TJB90wcLAWP42F+6fbsZQxyPs/oUNlA8eEgxzPIa3OwLfinD8pEl8lISKPwHV\nszRDsJ8s2snbBcV0WyvKVm3+1Dc30/E45TJlXcRE7bMucle4cx0HrcE7LfBmE1pKtyBhbFy3fN+J\n5YExCsIthNIUK731NdLzmc+pCm7sO61AuU0u1WSCcqVNr90/hMgURCKRrEfQz12jtyMN5VErWoil\nrGw/S7IEZWEAhAHEcFLdkvEYqhmDl5TAa61p0+60Ef7h69BxgGgosSLGZDcKgtKzzXXAD8An84pD\nazUvtEa5vYOsxzG92oReX3Kde3nrNsBAFfb8Ewh2bSBk//+AZP0UOsii9eprzsL6o6tChX2WrXij\n+Vo1IqhGCBX5KCOBoh+j7EUou1Elgq+0Q5bp4xEVrIsCLI6gOg2oRgAZCmhBSDlvrqE5kLcJhUNO\nXvQoFFIgECUUGNJpiCcuHGDjxR3MLmqIHPAS6iiEYYFOI0WnkaIZ5mgGORQYtpIe2iLFV3tv4eda\nbyFiJQImwZmG50v4jRy9OEXol+Bc4fAzDEfPhFCBIDFGz4MKuEMH+RMGGZO1PRjQjjJ0whQcGk/E\nBxgEc+S5h4PDNjJJ2kL9q0MkG83F4to5F4QWXI/qxR73ghP2uWYPct/Wkaq1Dtz7JsO1wQQHD0OI\nzQ2wz92Ed3ET8t07WPpfvoXOb3wbzf/rO9DHY1pDTlp597pgjEHlBbzVZbCb150WkHftqqP58Hbb\niVPzRgMoChQ3L1OAzjnW/+ltNP75D1D0I9KlM5a/KqFit1sbAajZ3K2rzrERhEaRkwnwaA/+0Rz+\n17+38N57/+BbkLt70KYwPX/BWIkrCbW7D/YTNytnEbNnkdaNRxoDhUKyrrH1q8+4whVA+g7i4gZd\nz9YjsHNedxp3RqYjX1FVLULI6gYtoIOsjlBNFNohiiy93hSTnK4h4BCmrhlmUdS1WIkbAWHealIn\n1WjJkbYHxVYLIrAmNhNLA5NUGYHOIKgKRb63UFDSa1SQs3NLpOQwo69fPr1e2vN4fkWTq81hS3O3\nQ/SJ7n7ShUx//3X6wvfR5Bm83Qq5zDwP3sY65MHhqf3ePpfTmyvQownYjWuLvy/I3OETGUpCHf3Z\ncen6szrYt14BQHb0TtT+RxzdH+xAZICXkraHPqsJ9TiHhpNUsNSeBUSQqiE4TINT26L1wl7Fq9ja\n/p2NnQzTgLQnM+e0S06U1XPmmg8/cRPq6gbk55+BeNq45hrDFXU8OuU+5l3chJ4nkMMh5TtRRDQg\n4yQNVPvywa9/Bcz3IF9/G94TVzD52nMQN54EbzapUK41rXVC0P9aEdLaIHWYENTMy0u0X952RTTe\naWP/SwOUEdGE+OEYen0FzUc5rv6TEY5uxPDmGu2VKcJ7lAuqB4/gXblU6fAYTTjHHjHjnb/zRfAX\nn4N48orbz4xcI0SqIOYlyo+pPvlRBxMC4dEJ9DVjToPUjXqsKwTRtUqi9DEnrSCq/cqip83xFpwk\nbeGRs0oDTyqwRgzdiMA/+yzUpVWodgMIA/B+D6xFrASdJJXwtLk+lWakB6QU5NY2zZsooPyFc0KS\nMUaN1jTDoz/XISHmUkM9uYnxFQ/FUhNqqUPXt8A00UTTCgSJOhvtHiUYgolC7z2SNFA+6QCNrvlU\nOJwqxAcFypjh8DkfN/6nKQ5e7CAcasSNDHqbagMsLcBKiXQ5Ap/nlKO2YiNebUAEkxRv/3oD4VuP\nMLzRgmyGEIdTiBzgktYakauPXOn5VGgInRKoqifvJwWjTyb2tYnlRl1TqO7acYJzb2loYn0VO794\nCV5CH5bmQOflPWCXAlfqcHmnUEYs8CGN7aJNaJlHekHlQ0Lu8DiCFbi2rwteuQPlBwBjGH9uA43/\n+ztUjV1doY1oPneLAgsCgl1a5fUwhN5chXr1LYJP9skKEXkBpBni9w5Q5jnpRjx1CdlSjOiV+8Cg\nCxly8NuPIJ3tXkj6MqEHaYJ1pwWgjbr+3iGgFFa/uQ8JQO7v072YTNF/Czi+oSHWVqHGE/Bpdu78\nc601xMGINjitAHXGzLeFIVtgtAuO+Z3V8gGwyIc9OTivOS/oBeQZ29wA1gJoj2Nyowd/IhE/mAD7\nRwYeGtLnByzY6zpKZE24mzVi6HlCrzdJGAxtkccx+L19KJOEHT0bYe0PD+GNBfa/1MPa3gbkzh51\nQgzaiIW+q4jLwyOwn7gJ8egQejIDa0TQrRgs82hT1hrB7gR6SNBYeWkV/N0HtFlGPobP+Pjr3/tr\nuDbdcrdFdRsQhUFHWTcWLug9G1X/5R9OkPdCaM4hlgbuvcYHEmXDJ3TUn3IO/KmG3agEc9DpU7+v\n/2+/fj9EUf3v69+fcVxtuOPggDgYQZQlfADgHHK1D9XwwQsJViowT1TrVkpUB9ZqQvbbUJFHMFWl\nwTMNIagrUDSBvAMqtpniSxjlWG7N0PVT7KctxO0UX166C59L/MblLpKsAS8B+Pz/Ze/NYy3J7vu+\nzzlVdfflvXff/vp19+ttepnh9OycIUVSESnSEh0tMSzZMizLgZVARmTHQYIoQBQpiBEgQZwAChQr\nfwSS7NiBTMqKLFEUl1AUyVk4Qw5n7ZnpvV+/fbv7VlXn5I9fVd26r7ulUaLpoSQeoPH6bXXr1a06\n53e+v+/iYCY1njaYFGWrNZDI94crt6k5wpC86s/gW4eLlduwDMPQZbdXZL9RJKxnYN7HbWcYTLl4\nBw62UhQaK2AyFj1Q6L7G5AyOY6jlu7gqZDrbZspt80BuA+9sSN0v0AkytIMsF6Y3eXVlmtLrJbke\n95nhccdIGBqj9zxeK0ZJReOzYvL19H2SZhDZQ7Noij1hgwB3osrmJxZofayL31oEbx7tGaa/kGP6\nC9dGwMuhrm9YbwjQ0+/Lz8Rzfj5HcP2m/FDMAnHEDDqWYelNCUQI52vsP1xh8te3cOsDGo8tUFrb\nFMZPRuLRVfTaYbuDznjoxXm6Z2bIfP5FMQetSYEWbGyK0XUURy0StmlMoyny20KB8O0r6AfPkvlD\nAYx0Tkz59Tu3REWzuyfHrJZRnpekiqitbY59I7r8gDs/R7C5xcSLG/RPzpA9qGPanbFO5P0Y9tqt\nVDf1zvUqSaWMapPR10beQWMAo3aS++VwXHwaRLrzRARodpcWCWcncQ5aAjr3ehJY4XpSc8R9NddN\njm+HPiam6JfL0qRKOsN2bI40KQ+n/qefpPjcFYK9ffwLi+SXFpM6aewaeG6yPrjLiwSr6+PPUOQT\nadodbCrKPPaSSv5fLfFHzXPYjVFTz5muCUMOkshsIPFTAih946qsXVdujXwlgfDWbZy52btfz/d4\n2ND8uQEU/1+Hcl2cpYXExF91eknH/nvj3iO4fpPy2jzat+Q2uncyTN/jUb4ShcgEwagplWbBR4lL\nkmSYsq2IrRaCYDy1Ng5nOZygq3XSSIw3+vcaMWirgFCPapy0t54zXYukqAIOJL6u1TK23kh8X1W5\njHYcTKOJM11j7subybz35n8+x7lf2Sd86wpOVTb1piMenio2yM5JcjJ+gPWHDD/0IJk3VtHbMrdY\nXwJVyOcobgbkNzrYNy5jXBezOEX+7S3C+UnQEBQUnVYOAvHvs4MB/tIU7ju3sTu7qNoUuljAtNuJ\nAsWZmWHujx3CvIdXbyfXc+HZgIMzHsOqS9ZY9H1WxtsgwN04GNUR4Qj0SUykY/sS34+UEuJvO8b4\njO+liEhBHCse78vieymue+KQkDCUmuXUCqo/hMEQU8yhmz0JRgKZE9MpkUGANULQIAhwSkWpt1tt\nUe1MlFH1ljDsc1lslKgM4C9OsfjVBhjIbLW49POTnP4XXayjMXkPlc9K/HwYolwHixLbFs/B6QzR\nzS7Ni3Nk932sMYnczirFsOqSaVpyByFuJ0QPQ4znUb0e0j5TxXhQ2DGszGzR6HTQ01OoIKRzdpbC\n1cjX0ViCchY9CBgslnE7Ae1zNWovOhx89Di1b+8zmC+hqwUK2wHDsoNxo03Au5xyvisYQiBdoUS+\nFG3exzyDYv+T+Ma6W0ff2lH899jB1WiiiVFuFXn0uC54Lr1pRbYZkt/oU7lUF5QuAoPgzmILSCRI\nulhMEkt0oSDu9fFLx4kWSsnkVSnJxj7ycai8JAWRu7jA7qdOjg7d6cgEW8gLotwfJDIEtS4JHiqf\ng0KecLLI4LQUvHbvAGd6mvDsMfYfqtCZ94SN1O4JetkanVtc+Ot2f+QfdFCXa5/LMTw+I94R+Rzs\nN3Dn5yTKd24WlctR2A6ovWIZnBGNvhqM6KD3c8QF3ugLKZZKQnVMFZTpGOdoYksi69OLpTFjySzx\n14A7N1trG6AUwWSe0IPOgsvG90/Rf2gZVa2gCgXptqciqGM6rVObwnbEg0OXy2L0Gce2R+bTNgjQ\nE1WJVuz30bVJnEqF2W82UM0O5pVL9GYUnQfnceZnsYEfeSWMJuf4XtWNrkxY/T5mv04wWSCYLsNk\nVZDzjW3xkZqZoH2sCJG3xKCWo/NEl8rnSpLwEnVvnb2W0GELBWwgk7jtdoWyuzCNMzuDs9Mgu9NF\nGUOwtoF+8CwA2S+9jLJWYsnfh2FDMzIiv9tIA0N/UmfvHt3u8RcbSYZMzmUwW5R40f4Ac1An2NjC\nvvIW+qVLOLtNWVBy2YRdZiOZo81msFmRbRrPSdigfkET5MVIOihahhOGQc1gMwbXMcwXm3SCDDO5\nNk8u3eJ4bpfLbdngBKd6DCsWt60YdDJ0hh6DwKXVz9IPXBZLDY6WD8hqH41hLyzxP1/7OF9pnGXK\nbXOhvCEsohvTZF8rULjtJoDUoCIa62Aij1/QhDkIChZlwOmD9Sy5/JATpV22umVudGpc7s3Rtx6P\nFW/wgdJtyl6fjA742htnaB83tB6eFyD8Pm/o7xjJumRHRpRj7CA1/rPpEa9j8fMZ/187Ywli8e/G\nDMNgc4vyagDKMvOsy8q/Viz/K5fejOLSL6zQ/fGncFeO4UxNjrx8YplQvSEMoIoUx8rLCD0/KtZ0\nLitrU1Qw6Q+clTmjWMSdnca+/AaTv/4caAdnp06QU5gnziUb51h6LYVaiBn6BNdukPn8i/J6mQw2\nn2Xrh1ZwzpxMksjc5SMET1+g8dQROLYk5xzNtWEl5WsTPUP27HGRdR9ZEuB76DM8OY//g4+jHz4H\nSuEeWUqSy8LlWW7+t08T3LjFsOoyeOyUSIL+JHnoezDMYDBib8aboMi74o6RNLCkZhmBQTHzMNV1\nhfGiO8UcuueIEkx1u0dYK+OfXUZPTqI8F13Mj91/NpSuro7CARI6e68//gxaM2JulcvJfKcLBYrf\nuJywk3s1FzNRlu75oZF4fABmZ+8OQFU9cjb6ufF6w14Y1U9qeZHBfJF/e+niGJASbG7JfV0sjklZ\ndLkk3nkIyBhsbGJ6fUy/P8bwtrF30v2Onf8uGOr8KbY+cYS1H15g7a8vsPXpFcxHH0mu2/fGvUfh\nt1+gcKuFHgZ3+Oy810Pvt2TTG68x4Yi9YQORjllrI/l/vHlPW3KkJDwJcy+ltHAcsbmI5utEfpb6\nOzf+yTN0/sZTdH/8KVo/8UH8H3w88RNK++yNPdMR+8+ZmsRs7UhjPpvF1hvJnkrl89hWK5G2hvt1\n7HqUqAkc+30Lm7tgLWs/cwF3YV7WpVZL5pUoMcv2+pJKVS6jB9Iwtv2+rDdTEwRHaphKgcK1A9SN\nNanHJycYTOfA0ejOgOKmzFO5N/OE2zvJn+GtH4hcekGeE9NqyXsRN/K1YuqlXbytRiIx0w+eJfP5\nFwkz0F4QBopznwGhZAQRKOg6SWMZ1x2BjGEoTVXHSe6lWDmR2DKEKSl00iyNbDsOe/vGPnlKo3M5\ndj88T/PJI9SfXKSzUiKcKGCOzmKOzorHXbEwZkURW67YThdVLkGzLfd3uYxqRFJEL0qbi1QeqtsX\ntk9Wfrd3tMrCH0mCV+b6Nrd+sISpFjClgoBCvhiRW0clFg/+fFUsTNpD2WtnNLn1Fo0VOWZ+L8Dt\nhMIS9MTaIcworAJlINMIePH1qCYKQmzWo/j2DqaYI6iJl5EyFufybbqzLtZRZJoB5Vs+uV2f4UwR\n42msVgwmHNyBwThI0/hd+nF8VwBCyhKhilEEYYr2PGJu/AmbtvhGS7OH0oVTLDmLJVgpOqINDWZn\nj6Ofb1B6c0+Mo5pCfx+fnO4srFQUexszMQDU1MR4nG2c6uE46OkavQfmZEKYn+bmTx0VGdZEleGJ\nuZEBbLyx6PWSRJjk4QLsYCgeP6FJ6HvZK1EXzHNRxTxh0aNxGvI7UlyFcxO0Fw6xnCKvCwbDJMra\nDgboYgFcB2+7JUlpu3vy/mQz2KU5grV1bK9H9nMvkm2GhFkHc+449j4bdCYj1qem33MYLUjpJLEE\njY5NpKO4+j9JdmLtaJFLA0fpmPjBQCiqez0ybUPuQLSbg0mX/kqNcLaKObkk2tfofdRR1HhiOgxy\n7WMz9YjKant9ia9UCjspSUH9EzMMHj+N3twjuL2G+fBFKjcMbiek9ciCLKIxLTVF6dSz00KHjdhJ\nptNF+wKgqdCAH4jhn7XUz1WEConIMVpHXYqFARPvdKOo6GjibbZGQFrMPsvnZBF3pZgI17ewniPx\nkiZMZh4bBGRevfFnfsv/XMe9gJ70Rj3+PP29P22k75n48xg8GIQYT9M6U2Xw6An0whxOtYIzNSGb\n5oM6amNbqKzFgoCBeSk+4mc1XVhaV4lPmKcwGZlTrQabD3HrLq1mnqVcnRdefIBvby/xaPkWRT3g\n+SsrTFS6fHDlOsHiEOuC7TkEoYPrhFTzfUreEK0sszkBk/vWI0SRdQM8ZchpH4Oi4A4pXXGZuBKi\nA1A9h+wBZBsGk/MI8y5BHkz8KGYgKFncypByboCnQmbyHQaBy75fpB4WyGmfb7eO0vDzFNwhTiEg\nLIXsPijPVdJNuo9Dxabz2exIihMnZenx+O2x9z61hokHUmxGrceLpagwjtmsKo4JTx0v+7kXWfnJ\nV/ELioPTGQpXD1j656/wwC+8Sulqk52PLNJ96iTm4hkB+60wOd15WX9GqVEa59Tx5G+xYYjtdIUV\nEYZsPz1J+IFT6MkJ/pvnfo/dn306MoOu8uYvL1D7xjre2j7+B0WWFTabuHOzYm5dLqOLBZFgR0a9\nYbMJe3Vmf+dtwneuJuwLs3/A1Z9WHPknl8ERqVr3Ex9g6+efwX3zhpyrl0nkpurNa5hX3xLD62ZT\nfPu+/h28L7yEfesaWEu4tUPngWlsPoN98TWO/eJzgGzO3C9/S8yp77PcMJF3uV5USKs7ahX5oEbf\nBxIfj7FjpbyE0qyhwx5D95qrTFToe+LHpQMjQQDVinTdF+cTUMiZmJCXiZmVqa/FQ2WzY42z4OER\nQLPztx5ONmmAdC6vrxJOVWSTlhxEjeoupe4aR6/8O2tBncvROj4yEe+tTLL20QyVr+fu+FlTm5D1\nKi1l2d3D1sb/HueBE+JdkTJID/f27w34/yUf5tW3yB0Y+tOW7rylO6/YO5ej88hRke99b/yJw7xy\nSTak9/n+iVnaCbMjqkNEWjOS9dhAvEmTpjmMEp5jVn28iY/+2TACAGL2YCxv1RG4FK1rcy/2CDOK\nzqzG6xi85pDu+XmGn3wc98Txu563iRh8KhUOoE6viF8qSB1VKkbeMwHO3Cz2qQeF+Xhsmf5ff5LC\n81cJDw4YfvJxMg2LqU0kzRDTaAqYoCJiQGhQjsZ947qs8UgdW39sls5SHtUbovyAsNHEOX2Cd/7x\nCgdnPAFMhj6bTzl0Fyz5XQGyYkmuzWYYnF3EOloAZZAmcC7D1g+tyGtv7zFcnqR9YRrn1Aprn5xC\nuS7Lv3EZryvpUe/LiCPXM17CpJH/R1LrOMI9AopiRYONgSMYpdPFUrF0raNjCdnonkrqcUejjixQ\n2A7Ib/bRIajQ0p/LM5iR982WixDVzCryYJUUTW+0PxsMxG5lqiznEQFbNp+V97w3wDaa7F0oogcB\n9uU3uPVJl8JWRAYp5hlORKbQpYzsc9OsJFdjMg56GJLf6hPmXJGd+YbdxyZxexY9tGAgzGmy13c4\nOJ2lecpQut0nvzWgfRQ2n86y9CUlHsOeC0GIKefprEQ4wyBEd32Cc0eZfK3J2kdyuG15HzL1Aftn\ns1gFl/9ugaln1xkWddR0tbxbD6HvCsmYVWCDQ0DO2I2T8oC5i+47jidEkejw44hWmy6qYtp12mvG\nikO5euuGADwTBfzlGp7rYOtNwno9ueGd6RoE0YbZhGI2tcaYhj2JsY26rUAi9SIMyX37eiKrWv6V\nVyS17+QRwqxm+n+XgtWZn4XI0NNG3S2lFGRc9PQUttsn3NvHKRXB0Ti7TcLNbdHWVsrYXIbM7Ton\nfz3yadEOxnOY+71rjJE4Y9ZUrw/R6+hcTiLt+wPsfl2ACC8jkrC5GczrbwEkK10ACQAAIABJREFU\n0iMVWHYuZvA6HgtfuLN4uy8jXqjSC1kYjKIR0wbSQJK2EtFn7Rh7aGS6l15AD/tPQdQZSVHKAczr\nb1FuLdM9Nw9oBhVNpqXRzR79lSk658pM9wbiX1EsotqdKKY9AqiiiTY5pyiKOXnNiCqZ3RLZTrC9\ni87laC/mmHi9jt5r0vr3jqGfPEn+q29IpKaNUPheX8yirYXQoKsVdMVim71k8rb5LE6lgg0CSusD\nvPWGdFS1pOG12zmW9lqERPdkNivPTW8QGVpbuQ+LBdH2buxLqpQ/ZDCXp3B5H06tEL761ti1DMrZ\n+5w6nyqGDo9DiWDyNTUy1Ev5cIwf8tDX7lH4KSMa9vx6m+F0gX7NI8zOUriZg9UNYQNOTcBERWiy\nO3tS/BSLqGIeCxJ1GaUbGFclnQas/HN68rn1NGHOYH3N1qBC9kibqUKPRpjnUneBUrXHU3M3OZbf\n5cX8Ufy8J/MokHVCpnId+qHHWrtK1evTcAt80z/J0ewe/2D5a3RMlvXhJG+35wiMpv2AT3/GJagN\nUX0pkHJ1RZB3MFmJ9SSSsQ2rBlMMIVT0fZfV3iQlb0At2yHv+LTDHHVdYL1TxaCoZnqcWdjmUn8x\nSkaTKFd7vzf1kHQv0QLWjMnDDgOHKWZY/LUxYD4tEYvWOZUGmyP/POWkmB/RmP3VZ3HOnebK35th\n5uVprBYTyunfexvTbLP79x6j9/0ljn3Ww1y7KYCKUglrwvT7kEoWUo4jjNB+H9PtMv1rsiYFwH+9\n8gTTPId+4BRYy5n/8CUCRI5VP5Wl1v8APP8qwdY2KC1Mk3IJc2QWva7kvXKcMWAg9o4Id3Y48zPf\nQr6zj3v8KLl/903yrgsnj0O9Mda5TlgfUY2gMx4qlxV24mCQSICKX397lGgD6IvnI82/xr29B+v3\nmemRsEOjuHmtRlIIrbCBH73POvme0pHkPA0wp8HqqPZJxl1kjPcawcYmutnCmZ1meHSKcH4Sdem6\n/N6Z4+jjy4RXrsvG6eAgqrWitarXS5hDADqbxYRhgm15b6/JOpHNMvel26Pa48mHmP7iNYJOB/X6\nZZqffoTC/70zAldTQxeLYwwf5bqY1NoRyzNVuUzl828KM14pcpsd/IkytS/dyVrW9RZBFAwSXyed\nzxO++c7oZz5wFrb2JeJ+Z2fs95WXQTl/NUGh4mdfoHTrIdY+VmYwZenNKpRxcQYnyF3bIby9/mdL\nUPwrNsxEGbv3Pmzu08+V1iMGuqPHlRNA4uOS/K4Zse1B5qUIPMFPMeyjY6f9ZHTeEXDk69+hmsnQ\n+PFHaB53CQoFyldb2G+9QYCwCdWReQhNknSnTx7HXLsVxddHzfz+QJjtvb40zl0HE9l12LmpJAVq\n9yNHUMaS29tHl8s0j3tMXB6itvZgfga3WBC541A8YONwAn06kidFjVG3WqF8rYPTGaLaXexggDs/\nR/dkDetaKjcNg9Nz6H6IMhDmDLXXpBGrikVUGKKGPpnVA2i0wY+Aq5kplB8w+8dbAkz0+2w+mWf+\nuS7hVImF/+lZnCNLBLfXmH5hgsZDNfT78VjFzPggkogloTFKPo/fG2sj/6Co2Zxerw4fL97bx3VP\nOkEbRkARQKNN4YrGVAsUV7v0Z3NgwBmEhHkPk3Hwbu1CtSzsna09VBgK+NNoJg1D5Tiovi/kh9CI\nVYZSaF+YT90PPUDtjQ4qMFz9H57m5Ge6uI0+w5kiN/5miZOf6RIWMnj7Xdpnpyhdrkf7KGnGOu0B\nwUSeoOCKmXR7yGAmh9e15Hd8TEYMp4cTLtf/zjL9xZDlP7AMqx575z3mXgrYfMqh8oYwaG3GE5lk\nxqWw3sM56GKzrtT7WQeTdTj2+w38iRxeO+D2xyvMvjTAeJpz/2yL1sPzTL2wRfvBGdoLLrz+F4gh\nlIw0VTGSdMVgT2I2nR5qPHnssBnj+KGjGzbS5qsUiGDDUOjB9QburW28jTrBTAUWZoSJExWd4d7+\nWHEZXroMMOpiKQU9MelUjngxxIiwFC7SkdPFosQXOg46lyMsZMh87XVAjD/NZInhKTG+DOsN0bnm\n88JECo34+HguqlrBP1IjuH5TpETHFhgcr+HPlgQIqrdwZmZwjx3Bu7El6VHpEZl/qnJJZAOQMJFs\noylARbRBsX6A2Yg8JwoFnEoF3Q+4/QMenWMBC//PLuy9T6aHsdQwWbjCkWQsNOPa5yTJJV78UgAQ\njC9o8bHTi130L9bL4nmJ7CEewc1VMp9/kak3uugAhmVN+8I0emjItkIGp+fFy8OYZOMSF1G2Pxgx\nt2LTu+g+seUiNvKHUr0Baq8uwOSFk+R3huhGh2B9g+KWz/ZjHnpG/BJsfwCDgZhTD4bQHxBubmNq\nE5jZSTEq3t2HXp/BsSn8h0+i52YEDGp1sFmPcHuH/Sd8Jv8oB3UBpWzMnIoZVkMfoo1Z+voppXBq\nU+RXWxJv3x4HDv1zR2Vyvd/jsJF4mgl0mBUUzzNp0OfwRj897vb1yD/Iarleqjcku9mmsN7HZBSt\nByYILqzgTE+JMfneAbbdERPwQl6Kt8JIAmRcib2M2UBhVhEUhHkT5i1hzoIGm7F4BZ+tXpnzc5uc\nq24SWk19mOcjS9f4QGmVqtNDKYvNhZAN6XazNHryWu1hlqwT4lt5Zr68cYa14STnsxs4yvD5jfN8\n89uneWtnjnOn1lh6ZIOZhQaqOiQoWYZlFZlJR2wzzxIWDGYiQGVDUBCEDv3Aw1iFQdEJM1zrTfOd\nzlEcbcg6AYFxqGT6KG2ZuuTLhv49jmK+54iZQFEaF4yYnfE9ErM77xiH77nDhVOcWGhGPndpb4U7\n5KqXLrPyC89RP6np1TRrH3X54a9d5u1ffZi5L66x/M++BcagS0Uxch7bHAjIpAsFSenodgn3D4SN\nUy4nchkVed4BhG9fGf9zggDrQH96xKRwSsWI0SZJL7bVBmtY/9mLOBceED+SuVmC00dof2hlnCWC\npD05lQrmyQvJ61ljMZ0eTkVYJTGryamUJKUltTbHTZr01+TAhtZKEW99n3Bj890x/f48R7TxSqTt\nh5MubYrNGoP0iSnnnfXPyLvnLs9BIkOMjh1LyQ4N0+kQXL+Jt91Gt/qopXnU8iJYy3B5UmTwvi8S\n+pQ3liRmjhp3pttN6jGVzSbhCtYPRFINOJUKTqufBHBYf0hnXuOcOHrHeTnT02NgkHPhgTt9HC+c\nlku1szOSw1vL6i8qlv/Qkrk2DuboQkFqsjHWZhQ1HdkWKNdF3drA7NfHwMvkNXN3RtL/VRr2xddY\n/j/eoriqGE4a6mct249laTy+gDp7SqSa32MM3TGc82fonKpIU+k+jpjRGte6dwPshM0zYs6nA33k\n+ThkwxCPuHaOPWXSsrHIwkNlMuiozp38g0vMPd+keVyz/WSFrf/kGfZ/5mnUkXnCS5dRgyHhxx6V\n9aDeFJ+Xbk/YnIBd34IwlLVFK/ERjOY+8+pb8OLr6GKR6S9dZ+oPZX+29+MPUr06JPfOJqbZJKiV\n6Dy6LD5j7U7ShHWWlzDFLNZ1MPsH6IvnCRYmcfbbsLlDsL6Byufxj8+Rv9Xg1L9uU377AONpnJff\nZlgzlG44OA0BhGzEsrWFnFz3fh/yOTn/VgfVH6CGYhysyiXmn+uSubmLc1VsRILbazjnTrPzwWnc\nrrl3Gvd7OdJ7H2sTAA2IGuVm5CMUAYvW9++Ux0c/P8ZihRRLOvU91x239Tho4mweEBQ9ctuSdDys\nSm01qGXpPzCPvzCJzTrYxWn0iaPonbqkLreiRPB8DtWQ9UEV87KnDkOs62DzWQq3mjjNPibrcuK3\nO1itMHlPGl2vRqfsKLF6qDiYYhblhwlb1RQydBdyeM0hTi9Ad32ayy6ZVojVoH2D2w3oTmtmXg1Y\n+hLowNJedFn6oybtv99g+jsW9hvJ3lS1u5iMpGNbLwokyrgo3+D0AkzWxekGGE9Tez0gu9kht9ll\nuDhB6Y8v03x4lsZxF6/77vdW3zWAkA1SaR+xNCou9u/B0ADAxJ02ZwwEUjH4E3XbdC4bddsEREo6\ndMlLys0d7u5hdvdxDjpC73ScUbF1qCC7QzuttLAlwojyHwSoXE4K60qZ7pPHUeWyFDmTFVhewPT7\neBt1ObdsVtDLvk/m1m7qbxS3fxsEmKiQ0pFcTb8gQJKqlAiLGfbO59BffVm+lstiF2oyoVZKCe3Q\nqU2NTtnzMHv7SWdbUrV0pLPP4y5GhbcWiqkuS8KVqpSxnsOPfvx5TnwmRLW6Y9Tq+zpiMEjpcWQ6\nDRKlFjLrB4mGOhlpgCguyuP7z5gojU6Pfi/apClHCyiU8e6IqVXPvcJgUlH6Ny+Q/51vkr28SW5n\nKKaCUXpZ8hqxVCDaRAGJV4PpdDD9Pt3TNZisEjab9I/XIEofU4OQzGYLmxMz0Nxqg0wDWhcXRBIZ\ns9ZyWTlesyUeEf0BqjvADn3CeoNgY5PG8QzWVQIWei52qgoHDfRDD+CVhsw8L1GfIJsuPTkhi0Ts\nHxUbFxorC2utAvkcKp9HH0jkYxqEUY9cEE3t/d6Ywd2lYofjM8c2z+rOr6U/vwdjyLoOplQgnCxi\nqgUxskstsN5eh8LNjsRQLuToPLqMOnuC9odO0ntsBf/EPHZpFlsqoPpD8VyKb3FrUYEViZaRj9ax\nBEWLrQ3RXU3lkovf9ajlOlzem2F3UKLgDDhd2uZYfpd2mCOjAs7PbzK12EBpS9jyaBwU2e6WCa1C\nKUs3EMDjmdnrnMlt4mDxVMjqjWmyOw5KWbSydIYZekOPXGFIdl/jtW0UXwo6tBgXyBiUtlijcBxD\nxg3JuT5aWW60prhcn6Hl52j5OSYyPbSy9EOXU8UdvNUM+VuNUfTp/R6RrOuw0e0d/geHN69pmVi8\nOU8Kb5UATCAbap3LyrziSiSuLpfRcWPgLgXXkf/+WRY+c4WVf9vld8/XOP9Pt7j8s0tc+e8eleKi\n08NJx30DOp/DOX0CjEmYNe7KMZzaJK0fPE/nM9OoJx7CqU2y/zMfTOj2SRe3XCbc3WP6156j9Pom\n7soxsFZkXI1mkipjul0wlvn/5VnCN94W4CAIuPXXCuydcwl39wXoWTmWnJv/8EmcV1Lgk42MIK0k\nF8agjx36ODMz4m33yAXxpYmZQ9H669SmpFN8foLy9Q6200UfX+Y+0xJFZhszbA41s2LgJ/HQScw4\nUzuBJCzD3nveie+ldKOEQw2zu4wbf2OG/rEJeW/j49vovauUxJcuFRuti0Vhy8TmsnGaGXJfqQun\nktd1pqO0seEQc+XmmNx6+tUeg2NTY+lkAKSeJ+VlsDduj327+2NPjcnHdEpacnF+jeI3Lo8SPyHx\njEp/LZFoDgY4czOJ/D+sN+7wKEpGGKK992N39t0zwr19Zn/1WZa/GJLbEV+43Yccbv+1KZpPHiE8\nfeRPP8hfoeEuH6F5bhK/oO/3lDMCbSLAJpZDAUlIig2CVL0bMzb06Osxgz2q35SKmI1GPMzi2jf2\nE7rDWNpxpNnd62Nfep3Zl2TuLv7wJo5vufTzk7zza09w6b9YJMg74vUVgSdSB0eWB7Up2dx7buSR\nOZpHhp96AvfoEUnxnaxII7VcprQ2JLcqNgjWDxhOZejOuOhqRSLvm20J0HEd8W5c30LPThNGqcmq\n08P2Bzgnj/P2zy/TPpaHjR301TVhel/apP/RB1l5YIPFrzRgY1vmmWiNUd0+qieNXoa+1MCNJsHN\nVYKbq5i9A2yjhffGTUy9kYBfALf+/RmKWwFBXhG+H44crgASyXqQtsoIAmlSHvaOVXHj3Y43Pe7G\nXPWHwj6FJI0ZYyUFGUhSon2f7Ftr6HafMKfRvuXK38mw+nFNv+ax9WSRnccrdFbKhJcuY2Yn5Tr6\nIoM07Q62JMlkKCX7FSN/T/jmO5hChua5SVRocFoDgqJLmPfI1Q2l9WGSJLb/UAW3b0b7xIgtZTIO\nxdWusP8V7D45yeTlIc7AoCxk15tc+ds5tC/N29z+EL+kKW6FWK34iZVvU/mdl5NnTQUhwdyEKC7a\ng6Rhrv1Q4ud7ProXoKzF6fpidJ4TBlGYEzLK7gccKjdDUYvpv0CSMWCc/px2IU+bSB8eSpPIxBiB\nSmNSMSdC2IZDnMmqaMDHukJ6FJuqpBtrez3sjdtS1BTyycs50zUBbfJZVH+YJGTEOvt48ownwbhA\nMe02ynUpXG8QrEpRY3PeiPrcaIsb+tFFdLsLQx+zu5/QoU2ng5PLojIepj9IrpOpN6TQyktMtbvb\nZvH39ggAZ2aG7Y8vo0OY+M23UEdmyP6BGHuSOl9lLWYwEFPQoS+bD88TWUqlzO6HF5j4zTWRklUr\nhMfmcNoD6PZpnSqzOyyRuzpK8XhfhlaMpbXEmuYYJIonpfhzGJeJpcHGpOOaKrw9DzscoqdrI12z\n42KHwgbTRYnAjDW06dSVbN3iLh8h3NgUmdjaOm5tSgC1Zgsz9GXT52isPzqfMf+saBRuNKAVSQit\nAC56oorq9jFbO4QfOIU3mMefKLD4pR1u/PgMK9+eJVi9LSBYICZ6KpsVJk9/KBN+MY/jV7GhRCVm\nNppyb3/wA4R5l2yry7X/YIqZ3zao2zcxw+HIcD3jjVJb4pSIwUCuhzHUf+wiUy/05HX6A5moHQei\njWJY9CSKWCnuc8xY8j9r7ViR9Gc7zD1kY7E0xHUIpsv057JSDGrQPuQOArLbXVR3AEGI7vTJ3Q4J\ny1mCooveb1HqyrNu8xlJHItANgBlQQcGazXEkfM9+YYyChVYzNDBZA39aY1yLK4yONowNA7GaqpO\njxDFS41jTGR6nC7v8FB1nX+x/xROU+aInXyJhckmWSdAK4tvHc4X1skpn8v+DA6Gh8/eYm2pysnJ\nXV7dWGR4o0RYMKhCSM6CDsDpBYTZKHJeA0Zhh1oWqhxk3ICyO8BYxY1rs+hCwIWpDSa8Hhv9CmvN\nCtYqpmY7FDYVqtWVeSxK7ruvQylQKTlzDBClvw+MAhLUnQBR0mRI/x4jCZofoCMgPqw3ErDeGpuk\npdyNvRBubaOiZyu4cYuV/+qW/J9R0hbI5tgOh9KcSEnGrB9I4pi1FD+7BZ8VzCQAZj8HQcofz5mZ\noffYcQpvbUF/QHDjFgc//TSTUWKZe/QIZmdPol+1Ep+fyJPF9kX2HPv6WCB87Cy3PlVi+YuTuAdd\nnL0OYSyZjhiTptWSY8SFo6OTNVoV8tz8kSrYKiv/fAC1CbrHqpisonS5gVrdoHy5hb6xLuDX0L/v\n3Xo5UenGKzvqyKdTxcYCLOJ7CDOqj2Kg5x6NKqzFnZ+R9zpZA8Mx6bq9C5i69JUu3kEP42USwM8B\n3BPHJUEy6RY7Ke8shR2MUjMTRne1Il5ORMle0cbTDP2xZ8Wdn8O8/A7hB8/BxQfgxdeS10gaGQiT\n6DBAU35tm/DK9eRz8+BJ+OZrbP6nz7D5b2D+4NkxkElFUskxs/bU2P/IMhO/vYeJ67diUeqsOLks\nl5N6rNfj3Xoy/GUf2c+9yNGvlVELs7BfTywLVG/AnTyUv7qj8eSSRFl770PjK5b3wJ0NrjsYihGj\n3soco5zY08xNHS5m30d7LWslDr42Jem2KJnjOx3Zf/m+PP/WRqnJDpnnL7FweYqrC8uc+N03mPq8\nF61JPubYHPaJB2EtWjs8d1S3l/LQahE2ZU9l86MmbK/mkKtKOvP2h2rMfgNoNMlf2yO4dgN35RjK\nccitdyncCGh+8BilP2zK853xBLSJRxDiXr5NuF8nsAanXCaYrVDYVFQvCXPQfN8j9KczlC43uPnD\nDrmvHuH4+hWptV1P5itHrEewMQkh+ju6sufa+NlHWfxXbxPu1+/K8iyuyz1jtXhEvi/DWlkn4/CV\ntA+VMaNG6WEWfbxexfOtPUTqcF1wXcxBHXV0EZodcCOD8tCgXGka2dAI60gpVL1F+TWfcLLI7LMV\nJn7zOdyFeSqNpoQv+UPMhy/iXtnAGIONvaxiH6T+UMymiwVszkMNA5zzZ1h7psyR313DVApsfLTG\nzMsdrKvxWiFevY9fzaFCi9cxOEOLyXmYrIu73UQNfJTyZEmwlqDkMXmpi3UUQdHFeJq9T8xQug4T\nV/tkb+wSTldoPJVn/rkel3+6wNq//ARLg2dRkxMJUUAZi7vbkHvcGKzrYl0tTZDLN7n2iw9z7Pck\nLEoPAmxGrrPbCQgfPkVpVZqvOrDvuvH1p1ZDSqllpdRXlFJvKqXeUEr9o+jrU0qpLyqlLkcfJ1O/\n8wtKqStKqbeVUp98V2eSLnZgnPUB4x2xwyPugMUb6PijEkaHDSUdQ0UmX0kct+uhK6Uo8UsnXhCx\nTt70+pK6FY1wd09Qac+VDXN8rjHbI9V9kq6uN27KtrED2sGpTaE29qTg0EJzs8MhYSVLuLFFcOOW\ngECpiNMYyFK5SI7WH8jx8zm6Z2YIp0qEb18RdlNtCmYmqX2nSe33JfY1jnkECLd3RsbV3V5y3WIg\nzTRkAqPXZ+qzwpfTczNQm2D/Qgl74zbBjVtsP6b56gsXCG6uyqSf8lK6b/dNPGKpGNy5yEUmzTaW\nj6UXx8MLZRoIijf1vZ744Th6VEwqNWL45LIi6ckLNVTn80k3cvr3r2CmymPdS5XPY3b3IzQ4TCU3\nOGIg3ROqqa5W5GMk0WN7D4Y+ulwme20HFYSYVhtTyGE6HQEIYsCg2yd7AJ2HFnAmJ6VrEvkmqGwG\nBgPCzS0peCsFggsr6Jka2Zt7qGix1W2hP+5+bJniumXipU2RoEXvs/Iy2E5X5GiuO3r+og6HnqhS\nfacF3R620yPY3KK3XCaYiLpJjz+IHoY4G/tCv0zUovf33kmYYoe9g+JF7W6d9ZRJfXK/xL8Td8c8\nF5vN4Fcz9KsO/SlNZ1HTOKHZfiTD/kNVSQ+I6NyqP8DdbZFba8oCvF+HzR30fgvVFOkenitsKmNQ\ng1BM8CMPEWUhzMk56aHCaTqgwF8eUqj0afo5ChmfbpBhtT/F2mCCzYF4QxWdAWWnT0EPmZttSFdj\nXxHeLtAPXEregJwj72tO+3z+4CF++c1P85XGWX507mX+5vFvUXSGFHNDzLQPWYPtO9INOQjQgwAV\nRnKSENQgfjZJ4u3zzpCpTIdHzt3gqRM3eKCwxbTXojnMs79ZJTSaf7fxEJOXhwQLk4Tzk9L1if0F\n7td9EwNAY6a+8T00bg49dm/EI83uSbM5IJFJ62hOCZttYQaVSglrCEDlsji1KZFmHDayBsz3PSLr\nC6OGRRJHT7QGHpJV62JRjn/ofOPub7C5hS6XcZePoB67AEFAdqcrceW+jy4Wqf3268nrBjdX0TM1\ndLEwktW5LvufPMnmTz9E+LFHk+vh1Kbg+Vc5+kvPor7xHdg5GPN0SQPkscG+U5vEWottdwh3dwmu\n3+ToLz3L0V9+FtvuyKa0qFn9QegvlAjPHuPt/6hI9+lTDD58HjU9lXRj79u9E4FYaTnYGHMnZocm\noE0aCLrLpu7wfBVfryiw4I6gheg1dKl0B5jtvPAmaq+OMz1iELvHjxJcu5HM6dFJy5+SWgtG35Nz\nC1bXE2+9YHMLop+LwUynUpF71/Mw3S5eo09/NodzJjKiPuxjkhrmwxcBxsAgAOfaOubDF/GLcOS3\nbsiGMQUiJV5/d0l0U67L1FdvjfkB6pka6shC8rn/9PkoIbZE2Iu8Ke53nfNdOEyrRfjOVUlnu3aD\n8M13BFT+3gDAPvMwXsdQ+uPLTLy6jw4SWdX9vXfCUObLuGGaZqcfZiKmvx+ZR8v/Y6/LyOIglMQu\np1KBuelROFC3K0CL74tBfT4n0ve4ho72Siu/dYA9uojt9gjW1gl3dtDNHs5bwpZJFCDxPLi5i+n0\nRmvrfh20gy4UmPrCVbi+hlOpMPPcgZjy9vuENWHF7n1ogeDDD9I+WUI1O+jAoqJES3vQEMAAUPmc\nsF6sxTlxFOfUCt0PP4DTHHDkczuo3hDnwgO0jmVR1rL/yCROX7P4tT621cZ0u7JP8zKobl/AjUwm\nMj4WBYAql+DMcarXAxj6sif0Mtz6xWcY/NATANz+hWfozSr6Ew79SQkLue/3TVznxgEMsadqBA4l\nZIjY9yft/ZscI7Uvi8MPTGQ3EYaoXBZ/uiSgRzaT7MlsLoOtRIbK0R7dDofYVgdnfY/pr6yK9QbR\nWuQPsU8/jPPipeT9U0pAT1UsoBptbL8/wgH6vrw/QcjiV/Yx5TzWc5iOPKC8vQ5+SWqzxokMncUM\n/UlNdm9I/VRe0sU8FzUI0MMw8ux0cNs+fjWD2xrgNX12Hnap3AyYesvHuIq9Dy1y61MVqldDOktZ\nbCHg6P/2Os7kZKK+QGt0z5f9XGTsbTJS+4eFDLs/+TDzz4U4PV9kZcDax8psPlPBu7XD3oMF6ucs\n1lH0J9590+vd/GQA/GfW2vPAB4F/qJQ6D/yXwJettaeBL0efE33vJ4ELwKeAX1VKOXc9cjTu2myJ\nJ6fDqGlcQB8+RgzKpD5XnjBsdLGAqpYTRo/1A3TGw5mbSdgNThQHPzpAZDjtH+pzpIoxd2lx9Fox\na2cgXX3lurA0P9bFTc4lnwd/GKWcRBrEfh/37dXR62nnjgQd2+2hp6cwT14QJD6fxxTzFN7ZQb8q\nelk9NYk5sQTbe+jrt1GVclJAAYmvRZwQlRhLay0PVBSLqzIZcF1UqYgzMyMPVbfP7BduYodD3IV5\nqu/A6X/0PADNp4/D1FhKx3t+3/ypI62JjgyEx5hBsa46/n/sERR/O/aBCgLM8QVZGAeDCPwaorKZ\naCLUBEdnpYPdHyRMGZ3Nit/A5ZtjoILNZeS+i0C5mGIryHgoSHcQwPyMTGAR8CfRjy5qblooj92e\nvF9etKEKDGQ83N0Wtt2hcivg4AGP4cUVQGjwZqIkEq5I+mcj2Zju+tjIMNnMTeEsLcC1W3QX89TP\nwtxXtrH7BykAzSRIvo28qIieNxsEcuxSAd3qC7pfLeFMVCncaJLZlq69L13DAAAgAElEQVT/3kNl\n3FvbwpwanwPuw70TgRMJ6HNoKkxvltLJB/G4l/wimh9EJpbHFDzx9slDkIMwC37V0ps3NE4p9s8X\nGCxPSOfLkSh5NfCTc7DWChBkTGSOblCxTt+YqHMkZs1WCx3V6QvoYjIWmzPkSgOynk9zkMNzQnR0\nsX3rUPM6nC5t81BhlQfztynoIUulBmFeNOu1VxRbN6Z4bX2RbpCh7hd4pz/PTKbFxbk1lnMHDK3L\ny42jrHWFJfToyZvohktuw2XiipEkBK1RoUWFYnit+wplhBVmAk13kKEV5NDK8tTkDR6p3qKgBzhY\nfmD6LZ46f5WTU7uERnNwKsP6R8p0jhTGrvn9uW/i9/8uEfIwYk4c9gaKP1dqxBo6LHOOZENSPHqS\n4BFF5JpOFz09hSoKMG3LRVQuJ+uLCSVgIPV6+msvJ+ekMhncI0sQeQUBUpiacOQNpBRqcY7g0TOg\nROLjzMxIotjsTOIlZFotgrUNlB8SHhxgv/UG4e4e4d4+Ngjofd9ZzIUTyc8HN1fZ+qkHcSaquEeW\nCA8OqP7L55n9X5/F+aNvi5zr1HEBlqNx458+fSeIgRR9Ceu23yfY3MIOBhJ3n8ngTE7injiOu7Qo\n81AhR/EzL3Dm576J96VvwTdf48x//E2yn3sR7wsvCdDxftw7dxmJZCwtZbeHmhN3i5C/Cw3fXZhH\nxXVEdD/G180OhzizM8KqOgT8OfOzhAd1wv0U8ywu/FNM6dhrJ30+cn/dWU7GsrKE7ZOWl1mTxDPr\nW9sYT9E9OfJstEEgCXmHRubmSE6flu2Hu3vc+DlY+T/XhCl3iAmUlnQf/p4NAoK19bFnKLi5Kl6M\ngPnoI2RviFzftFowSP7W97/O+d74rh7q2VckQvwgArlHe4r7c+/ENUn8vMc1cJqBHkb1RZI6OLJZ\nECmoSVg+8X5B5bIjj6+lOWla9QfYXk8a2pWK7CMCSUq1sUzHGzUP1c4+amtPrAfisXdA2GwmXl0q\nnwOlxf+r1xvZizz0AER7OQBzcCAJmkGAPmgKIx7ozedx5+corw7w9rqUr7SSeSiYLODOzxEeHBBc\nuyGplbt7mIMD8YydLtNfmcJ4Cr17ID5HEZOo9uUbOD3D/gU48mWfzGs3EimRHQ6F9R8n/eZz0hgZ\nDCXcJQjQe03yX3hF9hgLNZzaJPMvDClclnmm9rENyquGma9t4PYhM1K63r85Z4xRppN1RsWp1GnC\nQxiOs0chxRpK+bsqJXunIJD958Is3nZL9iW9gRh6T1exxZxcz9kp8dBJ/vpArlnWQ+XzBFs74ikF\nuPsdYf9WI2m84wjQp5Ts3ZTG7B8wPDo9AqAcLaoFI3+vMhab0VhXGO39uTz5fUO2HlK+HYCjyO+F\n9BdKmFwG1ekJ0+itmwwnsqjAkN3psvfIBJ3lPOVVi9szZHf69Kc93L5l+rWA6vOrZP7+Jud/aTt5\nNpNntD+Qxq+1mFIWqzW6H+D0fJx+wOTbPbL7PsNaHpPR1C9UyW9bZr/VZXhijv4nmxRXNdVLDXJ1\nA+bdMRP/VEDIWrthrf129P8WcAlYAn4E+I3ox34D+NHo/z8C/F/W2oG19jpwBXjyTz2TpLDRhz4e\nAoBiXWJqxGkd42Znsvm3xorhcmbEt1OeAB02Ylag1CjKMDnmu8DK7slYEpAg9kVRjoMq5CVS3BiC\nI7Uk1l7nciIbif5WZ2pCCvdcVgzT0of1A0wxz/6FgoA31RI4CrO1E3n+FDFTZVorRTFtVBpTKeC9\nLUBYnB6VXNexTa8g8DYM5WF3XWHEZDIwPSFd4F4f2+mgzp8inK8x9YYwTvQHzlI/7YzAFe7jfQMp\nRlDq70nTGO9WSMPIx+UeKUU2WvxUNkuYk0XSRppUOxyKtK7Xw2pFWPSEJaTVyGdBa2wpL+9bp5cc\nV3V66KmJ0T1m7n4f2QjdtkNfZI1+AP4Qf74K2UwUEaqEQqgUaLApYCO32yfIQfNoVoyvAZN15VnQ\nSmKF8zmUsTgHLUloUIrBbAG0xvR6dGc02T0FB0LJTDrYKYaM8tzIdNCJCodIntAfYgtZAUC1ljjj\neougKufi+DYxF439KqLrfh/unbtJUP9/0LnTumgQiZwG6whYE2YV1gEVAEaAG+tY/IpiWHEJC56k\nCIAcJ9JlpwErFYQi80u/plKJnxAgr2FAhwrryDXV2tLtZ9lpCXPDVQatDMZqPB2gsWRUiKcCqk6H\nWrZDnASWOwhxmw7h7QK7vRJ1P88Le8cBeKpyjSOZfa72Z/nW7WVWDybQWFxt0ENFpg7ZgxAsKc8j\nwCJgUKAgVFhfMwwc/CiPXivDa60ltvwqWhlm3CbHCvusNidxtKF9zDKYtuKflPKkur9zTgr4id+L\n9DjMHEo8WSKQxvXGPexcL2GE6HwONTU5inYF8cAr5MR7LjSEE4WRwTiy0Vdu1OGM1jLT7SZzupkq\n45w9JZJjSMIO0t59dnWdzHqUquk4MFVFZTz6p+ewZ1IbcxMmcuc089EOBhSefYfBdI7wwRPJ1/1P\nNjAnjzBcmcV54NT4dVpZonFxJomtB8hvqtG8wGjznqSs3e05DcUHBmvpXFwSxmK9NTrljz5yx68o\n103Ygfft3knLwmIZRLpojj7e1e8nPb/ca00DYc0dftmImROfg9I6WROSEQP5KdZPuLMr83oKQFFx\n0mJ6uOP7i3iTpmdq4vsUMXVi4C9eS+IGmKk3yG0P8MuO1EnRGC7Xkv/HRsWx7B4gPDKT3B/64nnC\n/Szh+ua47C4eqWjsu4FXIDJH+SPV6HnVDlapMdaL8qP37n7OOd8bf0nG+7BexSN+LowE3BABs6Rr\n0TAcf1aI9kyx9EaphN2R/EVZ2XSbwUBkodqBhVn5/YUZ7EQZE7OGooCf+Bjh7u440/DwmqrU+JwT\nfRzMFbDWYvr9pHELJNIz2+mKh5xvsf0+br0v0vueAFPWQYIuUmC3LhRkXozmB3ergVcfULpcT9Qf\n4fwkqjfAtDusftwjmAjJX92LQnhS19FLabwGQ1mLu125JpFSIW5ohKUsuC7579xKmI+rqzWqn38T\ns7mN27e43ffhvknMxqPXjvdKYZiYcctFv0tDNWaVxY2vtKJGKbn3jCUsR0D90E/AnmAiC6GFbAaT\nF3sL5ejo3pFjqU4Pc1BH53Mjpm/MXPNc2delfT9jn9ZCAb/iyn7HGNmnZB10vYX1HKwCpz0kLGax\nWuF2Q7IHvtTSQ0OYdfCLmkx9gPJDAfmGPmGzSWvJRRkr7H0DzsBQXB/iDELcjQN6NY0OLF4rZOcT\nx2gNMgQ3V2XPnSYrOE7S+NVdWTv1wMcqCZMJsw7efhe/5OAXHTJNQ/VGH6czpLOYpXuQZ+kPttGt\nHn5Bod5l9sqfSUCvlDoOPAK8AMxZazeib20CcatmCVhN/drt6GvvbqSKIvmYot7LSUQf9SgtTEUm\ntlFkq4qlPMZKYZLLYq6lFnPHkZt1RyLelOclBXL8miqXlTclVZjFVEc2ttG5nHSUYHwyioty10Wt\nRX4NmQxmelIYJJ3OiGkCslmut6SwnpmCmSlJfMnnIDL8TAwZ/SFqMGTq9aib6geY194RimI+jz17\nHOs5THxDfCPCgwPMK5eS2NSwNSqQ4wfcdLui148fKNcTw+ogwHouvXPztB+YJDw4EHBopsbOE5P0\n5wvwzddAO7z1D8vMfbM/6koeGu/5fZN+6GM2x+EuSBKZqRMUPwGC0obS6d+J0wdmZ3DrfZnUrQAe\nKtLPxnHA3n4PUy2ia1OC6vbEQ4cgRE9Ux6jrwcYmTFQSN347HB46P0kZ03t1WWC7XSm4w5Cw3mA4\nmZFzCQLcuVl0q0O4t4/u+QzmiwkIo/sB2QPLzlOhSP5AmGRbO5idPYLpssiaWh3M3kFikKZCSzBX\nxTl/Bj2EI7+/je12E48kudajhSHxswgCYpqm6XYx+weEBQ9/eVp8jnb3Cbd32XuwgH36YWpfX0+6\nwLo5AszS4728d8bYQXfbZMZdssPjcMrG4d91HEwhg8m4+BUPv6ixDqBAh+B2JBlMGRhWoVfT+GVP\nFqBcJOUMwiRhDmuxhRzhVAlTzEvcPCQf5VgW7VsBm1QEwERePcOhg+879NpZOsMMWpmIjWNohzle\nPDjGb209zpv9JTb8SXqhh3UsVoPXCph8C4q3NK1BhqwO2O8VGBiXRU/YQa8cLBGGGqWgHWQT8+mJ\nqwGZRgRsGYsOLNqXv1uZiCnU1TDQDAaSMJbTPtvDCl974wxvtBY4ntml7PT4482T9L4+zX6nwMLF\nTYqriuK1JjYt4xx/b4/zns45kUzrsL/dHc2LFFtIO0Ijj6Qs8ZyQpGlG6VNhvQGD4ZjEy3S7hJcu\nizTj4AB96Qbm1pqksSglUhdrIk+z/Mg7RUVF5+uXI4ZZRD+O1wI1KrRNvy+sGZBnOQwxnQ7Zl68J\ne1CpROYMkojZ/YEHMR++iDM5iXNqBaJ5ZuexYnLuiz/2JuqNq7gHPYJaMWEP6WIR3ehQ/eo13Ofe\nwDm1gnv8KHO/8uzYpU5YndZEIJcesT20I+cUFXumWqQ972IeOonZ28eZnGT4ycfZfjSfJJn5H38s\nYfeSahTF472+d8SzTI18DtOSd6XvDmYclondxTcIkGub8bDN9vi3IyBQZTIiV86LJ2B6mGYLHVHw\nk98bDHCXFkadbhAWNIxtAsz27tgap0ry/vdPzIwBm7Eky/pDmJ8ZMQU8F/X86wRZJfHT0T3mbYln\nlTNRHXV9D/3dztEj8ORD7Dxe5dz/uD6S4x0ydbfBKL76XobR+88sJccFqeM6P/Y4mW+PJ+vdLQL6\nvtTH3xt/sYdSdwUj3/N7J930jEN4tDMCghJ/sKgJacWAOWkORHus2AfIWpvMKeH3P4o/mUuYP8pz\ncRfmxCe108HE5synVySEIFZNRLWVzueTBoDyMmAtvR99MmokOolpsfWDpPmjCwXy1/ZlXtIOPPyA\nBAucO83qPzgH1RIMBuiJKvmbdfEcurlO+NZV2N0nWL1N8Ytv4G01aT00subY+amH2f3bjxB8+EHq\nf/dpBsdquFt1WN8iePwsrZ/4IGvfX6Z5cY76py8QlkOW/wBJ6bU21bxI1SUZT5j8na7s/6I6Pli9\njXriIZp/64O4Oy2C9U3CrW36n36C3o88ydlf6RA2m3R/4EEKW0PCzJ216Ht/31ipG1xRLySJdZEK\n5o79QMozEa2EVOBE+4PUcWwQQjZLcHoRv5oRPz8Q0+faBLofooY+YTEj0qlyQRodSS1gI9uUTCQn\n19IwGAwJv/9RVKszqs3jdcAKA06VCuRXWxD5qgZzVYyr8Y9Os/6REk5P1BIqNOR3fdzmgCDv4LUD\nHF8Y78W1Prof0D1eAa0wq+ts/9wzeF1Ld6nAwcUJabQPpO7t1zKs/8hRhtHy2jyeof6pDnM/tSly\ny0hhAcj5xh6v0XughiJvM3kXFGT2BAPYeEYAK2Us3m6X4VSe/QuKyusZwrevsPpji3gd+66RnncN\nCCmlSsBngX9srW2mv2flKb0HXeaex/tZpdRLSqmXhkH3Hj90F9QxVQipTGZEhY7AICIfnDhJDM/D\n1ptjHgYYI8yOKFUFxxkreHS5jGl3UErJpJQq+E29IdKb+AZWI98hXSgkD4YNQwFqXDcBh4KNLQF7\nXhFvBGdyEmZr2FZLJrusR+/YhEwaszXxBbp8DXskRYu+ehP3rVuSpLIj6WDOdI1wvkbzdBn70usE\nG1vjiR3RRiR97Ux/kAAoMeilXE+i+qJYVlPKk/t/2XvTIMuS6zzsO5l3eVut3dV7z3Q3egaDIYAB\nMFgGoGguAEMgLJq06bApyjS9hGiHLIdlKSzRQYYUjjAjSCuCtiPEP7QhByWRIiWRIihxEQkSJARg\nAAyAwQxnwcz0vta+vXrrvTePf5zMvPe+ejW9YLrq9eB+EdXV9ZZ7M/Odl8s53/nO9S3Uf+er8qYw\nQDbXRGsx9QLVt/7ORxCuBdCff0GqJ+3+nN9Su7HX9LaTYFCIehRSe1yko5iqVYgwuDQn9/m4x300\nwuTMg/T4HNSmpG04UTxqNkq6Cmq9LQf0wcBX2jGDgeQ4L8yVPwelwbeWwL2+r27HaZJPrkrnQueG\n5cDTk9zX4NhRNC9swHS6QnN95IhMtMyilh8qDA8JNdXUAsxcSYGQbelL7cszc5YhuLUOrG6Iw/Dc\nKSSPLogqPwGdk3UMF5o48rmb4Bu384jGcGjHSPucdCdEyFZLyOWbUxyLMNp6xx8u1XQLegCo1Ehp\n6Xc9hvTYrHjqH7DtlOyG+6XPvPCi/G9T2CSVb+43R9656J2RSlhBsUzcWV3msKjN0H1IhS0CKAOy\nGjCYM+geIymjCcA0InCgPSVXIjRKNlehltKaXiNNNm9OmwckBxVWgAntY5qRbMdgI16idreGbhrh\nVmdGRKKNRieJcGVzHv/y6gfw56uPQRMDcYYsBtKGxtwrO5i+nmHz4jxudmfw+NwKAmVwPTmEf/Ta\n96KmU/zYu76JepTgpcsn8fLXz+DI1w3ijaF1BBkgY1BqEPQYegDoPkEPAT2UsQ0CWegzW9r+/Y9f\nxTOzlzGrugiRYaPdQOdMisOtDm6uzGLh+Q7UlmV3jrATHvScM2RbbrtYotcyCUjRbgeVtQ9SJAdf\nV21Mae9glg8/E0duo5HnkgP+cFy8rmm3wYOBVOc6fBj80ad8qqbZ6UAfmvPXdL+dUHCRvURhUHJs\nuaBHtrbuI5XZxoY4/22ghJ4WNk+2uYXWS0voHo/R+8h5mCvXQQOhvM++UT5wm34f5qVvgb70AiiO\nQB96Dy78/fdKhHBpGf2PvxfZhctIr1zbPfg+OulYViaPKNu5x6VAq9UtHPr0s8CXX/Rt54Bw7P/+\nilQm+9hT6B2RFMzsmXd7zbXC5/zg5pziWlV6kd3nFBhjOWuo6HwuOCHzG5TmL2VZmNnGRunxzBVD\nsPsVDIbIlpZ9sAmApHUZ4/Xv3P3Sm7dhig4m5ywpzIumsH+iIEC2ugYKI9ReueGdQMGxo6W0reGR\npjhmlAadPS3MswAYHssdP85mTa9fso30B56WoMm1ZSx+4jj6R+tY+M2XkN28be3ElNPDi2M5RrwV\nAPT5s5j/syulx7p/5QOY/otVZFZM3VXB45GEi33Z51R4qKHPn5Uzwkh6+gOfc4op8YVMChoNpjj2\noj1sm15fguJBIEHvosODyM9X8dV1RC9dB69v5KL1wwR4TdYP1gq005OS8hvymmxjw7/fM/yaTVAo\n69fUl6+Ct7aFfT4cSlpwIdUMROCbi7KPPXIYqjsEBRrUH+LE53fAS6vINreQnVoA1rfkvXOzuPiL\nH0a2vgHVbGLxv34K2aEWbn+3FlkNpXHo//0yjvz+JYTrPUxf7kuBlavXpaBOI0BjaYj6MmPjcY3B\nDOHxf9xD6wsiJO3OgnCp/q64jGVi8XBYEtgf/uUPYuuxJpqLQ3GIsMHy3/gYrn0KMAHBvPAquv/x\nR8AKyGKNnUfKZrAvc06JYePYraYcCLWML/e5IDOSFqnsedwKQsNq55ErBlKLEax10PjWkux33D2S\nFOHiJmiYIJ2KwJqEubO0mjsns0ycS9aeqdmQ1K/2DqIXr8C0RQcVw0Rs0dmrPdupdQmImdkWTKAQ\n3doEK8LxL3REw6ozRDIbQw0ywADRxhAXfiJEeGsLyVSIK3+lDhqm2HhngPT8Cah6DSc+cwXzn7uM\neDNBfSXF7MtthO0E8Wu3sPpejebtDKf/YAs3v1+he5Twjr9+WdYoT0CwVdsyI2dLy4CnwRAwBma2\nBd1NoLcH2HjPDK78J4fw6O/LGTToZVj8nnks/c0+Dr9gcPyXv4al//FjaN42CNspOLg7U7irKmNE\nFEIM79eY+bftw0tEdJyZbxPRcQCu1NRNAKcLbz9lHyuBmX8FwK8AwEzjBMPo8kLNDHDmK23lXsdC\nRKkuh1ze3s4jswX6NQVSsndUnJDTFFSXkt2q1YSZa4Fv3ERw5hFkNxdFI8Y6ebQt88uDwa6Ik8uX\npDjORda8N5I90ybb2rZURKsWPiLEaPp9eX6rg/r1RWQATKsGfu4v5NqFjR0pkghxmvrIG+90oG4s\nY+p5KxxtMrAr/9ps+vS08iCYnFJnFMAJSIfiLBkmQBxDL29IafFCqWL9xg00XjfIAOijR/DhH3sR\nN56RzWL2WjmK9iDsRoY2t51pms8t3S12lubI2YiTwU5kktKUACqCatRhOiMOSbtBV60mssEAapj5\nCd3rEFkvv37ycXGitNvIHj0MFQTI5lugW7GPCqi+XQh2OmJ7ikpRU9spz14irWG6XQRHF6BsDjcP\nhtIvrUHtbk7dtO9VjYYcBv70RdAT55CdPQZ94Sb6P/gYoIWaSVrbSnV9SWNbXfObdRqm0FuMbHkF\nwalDqF3bBDZsBQaWiJGjMPootn2M5bPONxdKypBSswG90ZUJjVlE0g/NonU7AdtqMre/fwFHvtYG\nDRLoXv49fdBzzrQ6xK58askp5Gxo1FHkS7EWUgmgcpe6o1gHGhxHMLFGFimpLEYAjDiBTAhkdUa8\npjCcZZABOAA6xxTizRC6p0DDSNh2USjsxVAO6bo7FBqtJiBjcESAZQOxJhgtaWkqtT99BRMZgAAz\nkPkxTez8SYyhCdDSA3z08GUcibbxm9eexuHaDn7k0PP4Yu0csjhC2lCoD1I0r3dx/AsNXFt9FG8c\nNjDNDGfOLKPbjXFNzWKxM4X21w/j5AsZwp0UwU4i9GwW+yQWx1DQNwh6BBMRTEAAGJQRTKawndSw\nk8V4T+MGnmldxEKwjb4J0VQD/NV3fh1XeofwQ/Mv4ud/768hvHQRw3eewM6JGFNXe8CVB2c3o7Yz\now8zijOLi4qZbM9MHlcli+JY1oh+30eLvXZQGAFJInpyI+wNimNJJZudwdbTx9H811+DfsejSI5O\ng7/wTZBlgTrtBu73Ze53Gg+2DV7fa6TKFAWBHFZOHSuJOY8iW1uHBuC+qenlq2hdvors+z8AdeY0\n0guXkX78aZjQHUD0rgN4troGrK7h3HPwlYji339uz3vm3zmTR9hJ9gAw4ninIASnCcyNrh8vqsVA\nv4/49/Jrr727gcaKEU2HL3wT4IIj40HPOcW1ihRISdEMVQskeGR1Cz1jbIQFpKdb3rFTvE6pkl09\nBpzzpvh+tx84uiBFIADRnZudhur1LXM5g9nYhJ6bRbaxacs9O8fyiAdE6ZLDRdaWCKbbLe2TzHaB\nlVzYi1EQIHz2FZFt+Mi7wS+IBmJWE1q+Y8nu2nPBfrZ2PcmOzeHY710V3Y+kEAkutLPMMJeKa+OQ\nXbySM5bsvVuvrktABEDvRz+M7iGNuQvzWHjOTzn7v8+p8NBh8EMfQuPShhT34FLxlQc+53Big412\nD0NaWQZQUnYwO2bdcCgByiAU3Rur0VYMsGbtNvTUFFSthvZ7j6D10gr41lLuFDGZ31uqly8hLVb3\ne/d5qJcvwmxtQ83NiZwGc16NTBGyNWERcTL0+zCyFW0pCCS4ODUFFccSwF41YJYCG/piF1lHMh86\njzQxvSjp2RyFOP+bbWz8F88gbQDH/2gJyZEp1JYJ0a1NZFqDdIh0cQm61YAOFBBoBOfO4PX/7jiC\nDmHuNYPeAuHI1waoX1yFWV33BQBodL9IToRZ5XILmbHyHnXUL2+gfl2LsDHEYbjwzQ5mL0WI/lCC\n8Dc+ZRAtBjAhkB4tMDD3a84ZJnlWhbt3LZZKXS74qywLx7FxnNOw1QC3d3zgSzppNWuts6b7XcfQ\nuLwpZ4QwEJmU6RY4AKjdgRoaqJVN8Nw0cGwB6ZFp6Bcv5gWbtIaalgIJbB0nSFM55/Ss3Tp9YZem\nbbWluFkHdfoIuwNwHCJoSwoYAHCg0F0IMPuasHL6CzFO/gmh+/ghLL8/xLGvZsimpYx8sLwt42A1\nisKVDtR0DRwqDOYjXP/4OcTrwGBaYeOTM3jiFy8hvb0Imp7OCxM5xjB0nm1hg8H+LJIaIFDIpmM0\nFhNMX86Q1jVUwugfCqEHwNFfrqF9WvSAt88bbD/OoCwE/uGYTIcxuJsqYwTg0wBeZeZfKjz1uwB+\nyv7/pwB8pvD4jxNRTERnATwG4Kt3bEkxRawIL7CYR6Xc5oNtzmF+CVvBw1Z/Ia1EyM1GdyiMRFNo\nagpqekqiSNNNqBWpJJacnJeydf0Ce0CRVCErDwp0q+mjksI6ymw5UpL7ZBkoDIX+7yKrDXEuURzn\nB4NlS5WMQqHlG4aq1aBvrMghf3YmP4gDNrWAYHZ2RDytVhMWVLfrNQFcHiyFkd/ovenQZ5lsqItp\nZIalBOBUS6pSATIJ1GLgyGEAwOb3ncOfXzo/9pr7ZjewkY7RtJ0iu4yUZbLIouOdhsVy89Jof/Aw\nwwTUkvQGtbol1diiKGeG2WuYuuROZ5tbgCbwqaNQvQR6QcbI9PtAtycebAtOU9GwyuRA4CI1oxFN\n05TcZu71xBk11RKb1wpkK48Fy1veYZqcOQo9Nwu13YXe7IJ7fcRbGWhHg2uhX8xL1YpcxHZ1E2qz\nDTXVQvDqFfBtmybmvnc26iHDSeVNt9UNgtPycsLYLj2gmVf3o+0Odo4L+0UfPYL+EcDUA5hD07mA\n6T7ZTslm/KaoIDJehIuUvFl6mVbgOALXQ5hQIZnSyCIpF5pMEbI6YAJGFkuJeDWQ9DE1EOZQ0rL6\nTFEAKAUKQ6EbF5xQNCKKzorAmgC7/2AFqKGkY4EByuxnrhlQDCJGPw0RKINBFqCXhbjRn8Ws7uKn\nHv0yPjX/FzgRbCCuJTAxI6krX+qydbWLk3/ew6P/NsGZ3wJ2fv0Epr7YQPDb8wj/n0M4+fkB6rf7\nCLeFGVQcW7apiLpvEPRE+FolAJig+grJdoTlTgurgxY0GfQ5xPXkEGoqwaZpQJNBO4lxoX8MjSWD\n9JEjaJ+O0X5EYXAodp/nvs054pQo6Ny5YIVjVpReKw4fHg4LqUF9P+IAACAASURBVFrkD5+uglZR\nzye9vShm1Wjk5ciTFOm1m0iaCvr8GWB9Exwq6PNnoefm/PzPw6EEAQqBBzU1JemsgDimbB4/Dwbe\nAZEVSsqrRkMo+DaFaFfFS4hDwTF09ee+4RlF0Uon//ztwf6eMe67ySwp2VbQ3gl3CuNTNst6bg76\n6BGp2rm5JZXYDh8Cf/QpAMDmE4zG7V6eGudvt4/r1cj84TXnbFVVz4QaRTEK666lXfrerHwWK2si\n1DxujgKQHZnNr3H0MNDugIo6UJkBanHuFAfErvz85wJvZYeVmp0p3dOLf/d6fo0xq2vewaPm5vya\nqJ9/zZd2D7oSDfcHS5XbKWD3cMMhoucvwqytg5//FtJblsHqKiUVdShHPbSFvZCrhpd3nn3wy7Wz\nd2bWt+36J4HGWobo2joOfem2HcZ9nHMqPLRgTeMCpvuzz3FSFy4dzB5ei0VtXBVeTlIQkVTKrcXg\nqWb+vPu+2+ABnzkBajXRemnFn2N8AMLOE2t//aMYPvMEKI6x/tc+BPrQe6BXt3PHAOS7pqanxEmV\nJrawzdCneCp3XuoPpA12zht85HFh7mxuIVtZEafwdhvc7YIUQc9MY+rVdWHLd7vCYH3tKuZf2MDh\nFzqg7R10j8fonjLI5ppe05PiGHxrCfStK+ArN2AWl/GOf9nGo7+3hbnPX8Ej/+wSal+7AF7bsOcJ\nU94f2ywV54QoObWzzLOvqN0BllbFaTJMQMME4bVV7ByX9fL6z34Mx06to3kLOP3ZIc5/en/3xwBy\nvR/nmIAQEABhkpXkOTKTO1+CQM6zDsx+XqYgAJ9cAOIIjQvrwOKqXD8RsXJo0ctsP/MoOidEW2n7\nyTmkC1MIVtpyVnZFCgzLWWowtKloaR5oc2ltznmUCIsMgGRD2CA810Irqm4dL1EIDhSmbgyAjGFi\njaCTIdoWPcyTf9ZFuJNhOBMhaQLcrImT1cp44PYK9CtXoL91Fa3nruLR39/Gyd+6goXfehmP/vJL\n4E5XmLl+TbUsJ1tcKD+fGi8bQWkmgeDUQPUkdS1pBVAZw4SEaDvDzOUB1p6MsfBnN9H5sY/g8fdc\nx6HnFR77p23UlsenSI/iblLGvhvATwL4ASL6pv35FIBfAPCDRPQGgE/Yv8HMLwP4FwBeAfCHAP4H\n5j1CMkVw+QDh6WnDQkeKm5wsg+l0YaxxOkeRpN9YocLBoCScyMkQKhLxXygFs9OBef2yv4d+8eKu\ne5md8oZJUoxCq5ovdEz26WMqnwwM+7apZhM4NIft7zuPbHtbNB2efkJo/27DZBgX/hupSuYdUi5a\ndWu10K5yzq8ZJjIOnY6ndJpuF2aY5N71cZtDUnIQKeSAEpGUQwRAzTq4FiObbWH47kdtZY0BVj9x\n1tO4V99PeMdPfHP3tQX7YzfyXvkiub5kxvfH0wsdlGwSVV2qOklaVp7241J1JJVCnDW8syNRgKFo\nCOlWEwhlUdS31oAt0YAKb27K4X1tUyK1Dlp7kWA//LUavPK+Q0ErAwDU1o5npplOB/1zh8GdDjBM\nkLzzJBDHMjEahul0sPRME9nxw74/VK9BDQ1aVzWypqS6eQFet8AbYReZ7W2Y9Y2cYpkkucPMRWjc\noucOJoV8Xl9lwNu/FVtbXkP7cRFKT6/fwNr3nsbsG7LB3nnmDE7/UQfh7W2ozZ3iHLBvtrPXwSlP\nLxhJzyik24ymknEYwDRsRTDDYEUg5+fW4qwBAZQS0hrAIZA2GMNZRjIFDFtKmD5xIGKHLo0nSUGp\nAQxyh5RSJaFmlTD0UNLSHHnFTKeINhTqNwJAMdRmiHSlhq1eDUmmkbDC7772Xjz3h+/G7yy9HwkH\nGLLGSjaFY9Nt8FyCwaxtj+277iWItoaI1vuYf7WDhW90MP/yDho3uwg6CaiU4mIFr4lkpUkNgm6G\nsCsCibovjqFoi6B3NJJUY2g0lpIZ/MHae/AHa+9B18T4V6sfwq+//kGkRuPTn/1+9A4rrDzdQvu0\nQlbWxd0/u2Grx1PUEXKHUS44FUdy7DlNZS5l9pWWfHls5l0aLqbXg5qdgZ6f8xv42X/yrGgJra17\nR0y2sZE7fJRdh9JUqnjNzUmalhXPVHFcYqAU/+/ZQVpj52NncfHvPIngzCNY/eQ7MPyklMOlWErq\nvvF334l/9OofQb3vydL3yLz4rRLjx2+IncNsFM6JZn/n+kcF55qrPOWi2IOBVHI8dgR6YQGq2YSe\nmQZNt5A8dgKLf+ujgNLY+Z7z6H7oHOjZF7D9E8/g/N/+sk8nG8H+2E5xziCVBwFcP0fLPwN+PLjT\n9esUYJ35NkXRtNugRh3Z9g6KulAA8hRFAPStKwAAs7UtmgRr66BGraR9AZQj82puNmf2jDKFLNix\njBzOPwJ9VDbd6h2PShsLOo3dD5/B8D1nykPTaGDq+lDmEL/PMaW+cCpU+mxzy65fmd/LuDEtjd9o\nel1xXAv7Oofh+876sWr/+DOoLUqfLv/CR/Hk/3YNUy8ugze3i5Wi9m/OqfDQovZvx56/9892lBL9\nFxfMCyMJ9DrmEOAZ9ABkrTBGUpmsphARefYHDxPQ0rocgDe37XfR7lsbDUBJpcqjf3Ib8a1t6Pk5\nzL+0DaRGWPPzktLM7baX8YCtsAkA9MF3S+XImWlbbdO2wRVXURq161te6BkAOv/pRyRIUIuhHj8n\n6Uk7PT8fXP65DwBnT4JuLiO4sgQeDDHzwipOfF7S7t05wmUBuIq5IAJeeB3q4g1wp4tsfQOm18+1\n1IB8X+3mLpPl+2M7rlSLQdNTvppztroO7g+w+sPvBJiRXr2O/uPHMH1Vzgq9c0N0//Aojnx1G7Xr\nWwhXfNru/u+PjbFOPCE67NJmBbweFYWhBLkHMlfD5OldVJN0ZLp0Q8Zke0cCA1mWZ3AECmaqjuaF\nbcz+xTqyY3No3B5ADVKp6DU9lRMqlOyFTaeb+wyeOCP7g3pd2pRIhgTCyJ/31DAD1iUtzbz4Lax/\naAHDI03g1jKS+YaQPjoJECjoz30Dix+JsXkuRNDLwJb9nNUVZi4bb/eejOKYdFr0r9SF63Ju8zIQ\nOieyOOaSG0sj6z9bPVYQydmx10fWiPKAsAHqN9pYeaoGEKH+6iKWnxYB9fTKNfzO//VLwN+dw8JX\n1uXssNc5ZwR3DN0x8xeAcSV5AAAf3+M9Pw/g5++qBQ7Fw1aRYlZ6jcoXfGM35EWKb5ZvphwFvsgO\n8lTJ6SZoU8oT6ulpmaCaTfBwKM4bZh8VQpaVWUj2/0XBT06GOcODQrj0K6n8YsW4khStizuSXhME\n0K9eQyZj5dMJTnwxv8/w8eNQf/486PFHsPnEFGZ+bcUOAQnjWWmfKw9S8OLEI5FFKnjiS2Aj1/FR\nRwUzTKC2tmWjmaRAHKH7SBP1z8hiRq0WNp4EXIHIcz/3HBiAXljwwtX+8vtlN3DNV/6AJTS80nWt\nvdiJuVC1hm2upjxAoFoN6dIygqNHbOTZeq1d5QVm0Pxs7iU3cqBDvQZsbIEPT8kE1+3ndPVAg/t9\nnzsMpWFW1/IIAvINMDMLi61WA7fbpS9ytNKRhao/QNC2i5FbsADMXEolza/bQ/LeM1BvXMLWucfR\nfmeCwy8E0I6eiDxKzQo+Tc2xz4rjVvoA7Ti4/HHOstwBoJSkbhRs0LTbUO97Es3rHRGRA9A5oXDo\n2S3gzCOY+toNmSSZwZ1efkDdJ9vx/StshEoo6lEVKi0AsLnIXDrgcdMyNEJbLStlhB0GGakyphLA\nhDa1QwMwgKkbmBoQdAJkEUS8zjrdfPsUiUMmUPnGwznpDEMPMhhNUJmI2CVTBA4AGELaZKgQ4IzA\nsdjfIAkwNBrdNMKR+W3cOhliLu7iue1HAQAfmL6GK8+dQq0jKWgm0lCDMXOIYRC4XOWMSGzCjo1E\niYx1jDHUIEXYDpDGgaSRZeIcc0ymnSTGv187j1Y4wPnmCjIQvnjlLNKVOsyCOMb7hwA1FGdb0AGC\nTuY+z/2Zc9hmjNk0MZ/GZDKMTUdxa5ZjETnWTPH7GATgDz6J1DkrbGTUPWeOzIFvL5bXSQv11LvA\n37rkixyYbleECoGckQQAVrjTr4kjqWN+jcwMTLuN+me+ijOfkbSuuYJ+CycpVC3Gub/3LP7G3/tL\nAF5B/4c/jKShMPfF62h/OsLOIMLCf/Rafp89Kin68YRzymfgcWt/QQtJnEeyFntdGaWhOEb76ROY\nemkVx/5PCVT0ZzQGc4RjfwBM//qXAQD6sXO+nHjehH2ynSwD4hjITC4qvfvC5T/3EEmmKBJdO0VQ\nc3NCWXfjVLATNTsjaXpKy+vDSIJRwyH0yeMiDlvcpBaDK0Sy17FVYkqp54V7lJxBANR2F2zTxag/\n3PX5x2sDBFeWkAKgU8eBC5dhul2sPhVj7vUEeuT6pbFx6XGjRSzGVQ7zDtkC68q+f3TPYr73/Ygv\nryK1Y7j8QWD26wPoQ/N47JevI11cQnDyhAQC3cF4n/c5Fd4+2DfbcQftNCsHLYrf84KuECOU4HYU\n+aqAUmFMWMvp0oqIRtugJ3d7XmAaAOj0CdD2jjiJF5dhunK+Ur2e3FvbH6UlaG/34aSVd/6oizel\nolIvdyLDBWUBqbp5a6nkkMhCmQezs8eQTEeor2/J6+0ZJ5mx+7wgQO/dpxB+9uvQh+cwmFZoakso\nSFJwcRpxe/4wsOx8y651GqO26IewW3LGh0/PjkS7lbSyAZ18/lLNOjY/+S7E20bElAFs/+025v/3\nGrLv+wCO/3GA2RdXwUqBOr3c4bGfc45L71LKf0aeKVbUubMZJcgs66vft+PEssc3Emznbl/kN86e\nBK235Vo7O6CZadGMmp8DRwH0+g6ymSbURhcUBdCDRFLHpltynlpdz8kMaQY93ZLPJguAN67bAKYB\n7/TydEfHWFIK+vY6YMki+p3noTIgvr2Nznc/BtZA69VtmCl5Pv2Bp5E2GYc/10Ww1sHm+w+jeXuA\n2pdfx/J//l0YHGmidoVLn78Mgv2uFbOcHNs7M0I+GN0XqVy83bHyKIqAKER4ax1mtgVKMkTXVnHh\np09h5g1GvNpDev0GHv/RPjb+waNY/psfw0/8Z08hXNuU4kDrnd332QP3weV+wChusoHyYb1Y8tpq\nIQAo5Zq7jQenqd/4qlqtxBzC6ibSVVtO9ehh8GxTPNfPvwx17hFkr77hm8Np6vNWuXD4BilQoL0o\nIjuNltBWkMksrd1SNM3yKtTGJjKbPmB2bE6t9YrzcIjG62vIIB724No6UgCbT0xh9je/VlYHc1oD\n1lvuNCiks9aZZsfQH/JHI2VuMSiWlzQZmEVXCUSg7R20vrQlbarVYNY38Ngv57oPLmXNb6zGbeD2\nG44RRArMKaiYiui+mGGhxJ+jdiZJXlnOpVNsiXCrajSknLsbs8x4Giq6XQz+ww+h+Y3rMsl3h0gP\nT0FfXoRuNcUGDVuqrj38KfKLBWdDG+FMvGC1p/VaG6I4Ftu6vSYMLlKSxuYOR/Z3bWUgqW21GOFi\nW3xi1lyDXuaprU5HiQrfKRCVUxmUKqUqOmaKe787zLIVQnM2bLLMCpiLo4yGKdRmXxyHh+Zx/Isd\ncBiABkOpajMzLZv7YpW/SQZzvrAUH45CZPXQCuDlz2cxIY0JYEAPGPE6YTgtzozZ14GtxzRggLAD\ngAHWBBoaGSPAVoZikGLRjbKOFVKQFEXAUl0Bo0kOylp+VFvDhAxTY6CvgZoBGMgyhc4wQjMcYqHe\nAT0CHI52sDpsoamH+NrWGWiXxaIgbCWbnkbjvt7OYUW2D0QyRbnHnC6TEgdW2E2RdRQSQ9ADgFJg\nOAfsdGpYUgYLzQ4ilWIm6OKNwTE8fmwFF/VhXFw9BA4ZWY2hB4SgD8s0Gl/d8IGhsAYUHRmlebXI\nciim7Bbn5VFHfYG5QlHkGRVmsQ/YAIQ+fBi9DzyKaz8U4IlfuIzBu04iePUmjN/0aImONerA9rZ3\nVpGNWPl5yEahVLMpLESrgwCglLoGQKJxTjDeFiEw/YE4nY4eRvbGJdT+zVdRA5DFMeo/lKJe6HPR\nGUBRlDMNbVu8Zo5du0hr/x5SBKiCQ6noGCp8HnpmWsre//ZX/HrFaYq5X31218c36gzaVxSYL84J\n76ulInf+yGvdYW2MQ8jS4VUtls+l07EV2Kjk/KA4zqPo9jr03neCv/mK1U+cAl5f8+XmzWAANSZl\njTSB0zsEmwp6Pem1m34dza7d8IE6B33hZh4g2ZLIt3rfk+jPM8Ita3/F79I4OE2p0u83SRfbq90W\n0eu3ka2u+/F97J9tg3ry3Uhv3oZqtWDWN2B6PejRdLMKFSYdowxWoHzwtOsDBYHfjxErn95FcSB7\n3HoNPDsF2mwjXV6BarWsnpsBRU1wPQKWeqUUZNPpIDjzCJLjc1BJBvX6NeiZaRGXtqx9tuLLgIjg\ny1kqT6cushNFbwWe0a/qNcw/ewvQCvrqEoIoEmHhWgwKQ6hmE+/4FwPQlZvgU8cRbQ3BAF7/74/g\n1HtuY/BLC6i9rkvnAgnaEIrao8U9sdefNEacWcpqBRXmcpe5wJnxWqWq1ZJ2Hz0MPWBMvbIGDgOo\np96F3hfmwNRBtNRG9BdrwNHDUO0OzPqGz97YV7gqt1aXZ9e86dZhtycOAinQpCUI7quT2bRFCjSy\nU0egF9eshtSsvCbNQHOzSI9MI7gq0ke6J8WN+kePoPHKIvpPnkS4PYR64xpUsyGfLyDOuf4gD+oa\neza2VcgAay8UQ6KwuQNOzsAGsy+uA0qhcb0N6g3BtRCqnyJrRgg3+jj1p4CJNTqPz4MMEL12C6/9\n/Scx98Qa4p/Jz0Ol377yWoG4YZ8vlZm3r+XMeHYaKQIrLXbl9ILjCNQbwkzV0D5/HMe/lCJaHyKZ\njrHzkx/F5q8AM/0ujn2hB7XVQXJsFuGVJR+8uBtMnkNoFC4S7gfNHvat7g3YeGcMAMCUU3NUrQaq\nyabIOZDM9jZASnSA0gzqjWugVgspIM6gkU2I2emU2EZeCLS4eWMDCuLSppq0gpqZkoob2rbZewul\nL8HZUzCLy8JO6omX3fR6UJYuH2+bkY2giFGyUd7Q2BR1kyyDqOhQc6kLrk/FKJuLUpKSyKx1XjjB\nYaGl6/xw0i0LMBdpk/rQvC8fua8wDIbdFAZaIqVhIfIxqhVUdHQQ5V9gkkldNRpCDd3peJ0oaO1z\nUnlru5TK2HhtFTzdAiWpVBs7Nicpdzaaym7MnEZEmto0QccYks+CRlJMuD+AOjQHchtnH/21Ds/1\nDain3gW1uAaYDLozlGvFEbC0An1oHkEXmHs+QLCxlXv2gdyx48Asfzs2lHt+1H4cpdjlCrMBpyYX\nb0tTqKak45mdDmhlQzQpFIFaUwivrXrxOIptBMoq/+8Z89gvjKaEjcMIK0ioqIFsghSJk8amk2Wh\nOINYA1CAUaKjo1JCWgfIAI2bhMEcMJwGKCOk24TYXkeubxewFACNqV5FBA6Ud9ZQJj9qCARdEW/O\n6kZStoy0Ix1qrG20oJXBXK2HQRrgdn8Gm8M6Dk8v4qvLjwBP7KDfD9F8sVZOAwNsSfsCM6rkSCQv\nol16PlC+GholBkHXgEnBhOLICnYI/aUa1jcjbM000T0cYbk3hX4aop9Kv3uLLQRtJbpLqTiSojYL\n/Xcf4Qt4OCeQOwgX51fkjt8SCjbmKxxqXWJY6MOHpOqGZQh5LSCS6l/Rv1vBEy+dAOII+nPfEAe9\nu65Ll3ZOAMe6MbA6K7sZF16zhiDBgChEtrScv8Ten9MUwckTyI7NAV9/Gdn2NpRd74JzZ5BdvwV9\n7IgXLfZdtusL2IhgaXGMgsAe4u0myCi/xsvcIqyqUtDDOsBlU9gGBSGyzc1S35h57KG/iODkCdDt\n8SlQDwyOUg7IdyiDDwiUUr32Sq1zrJ96XTZ6g4GvwgNIOmAxNatUwMLa6eBIA7WFBWRr6wimp4Dp\nKRF/vpuAzl7BJUjU3hTWOk7Kgb3g5Alkq2vigBwM8wCEXdd2zk7h2FcyhCs7yNxaN8LqKY3LOKdP\n8dBb+j3eQQnkDs/09iLU1JQPwvAbV2EcK7ZYiZZZylovo0KFyYdjyDtnaWZ8xSfPRC7pvZhScNCV\n9aYwBGoxKEmAW8tINzdFayiObNET2SPj5opo5AQB1LlHsfOuQ0iaCjOvtRFeXhTN06KGkGUoFud9\nd5CXc41l1DQaPpAgwQQp1uLWOmGZ29Ts4VCcUEcXPFMxbYWIWi2wJpF6OH0KC18Hki8fxczltZIw\nNPv97e49c0lA2u7h2TrWHIPGBU9cIRqqxaC+7JfVoTmpJLu1g9blAGaqBhqK8+GRf7MmekI7XbDS\nojFknQSquTvF9YGjsOf3qVHkqqkVNBTHVQQfTY2KQqCbQt9eFWdOHANxBG53JBhvDPSqpNOjFmNw\n9jDAQP9QgOzpE2i9ui76Qq2W6Nk6R6W7p2P6hzY1S6n8c2k24bNHmEVqY3ZaxKy18tqhxCzOoI0d\nJI8cFma8AkykoDspait99I7VYA7PIdpSCP/pPKi/lJ8hFQGwv43K98kZ8vs4H0CBIS5yM7DMochn\nJrGh/LuQGTlnAGhc7YBjDRNqqGGG5lKCcHMAvTMQ3SEihLc3gCBAtrjssxbuhMlxCI0u9qOgwkbR\n/u1+kxItlpLeEABX9i7b3PKsBTYMFcgXlLMMvLQiFPjD8/49+p3nyiyhZAhYYdyS4bv0NCXRM05T\n2Wx41oYVmgLydDYrIgzYQ/1cE3zJKrZvt6EPzYNPH0P26kUERw4jXh/tE/l0KB/JdZsir0NQiKy5\ntow6hQAfVeMMIPfWLLMRY3tNtxlybBTf392b7Wx9c9dj+wLHQHCfjRNPdpFoYNekNgoKA9GF6nbh\nUswoDECWtqpmZyQP1FJFKYrkQNdqIrtwGcHpU/IF7vVgosPiFLGlD81OJ/9SOxgW54G1R1Z2cgvD\n8mfc74u9FPNMA/LRiawRgloNKdl5bRH8yDFgmCK7soXg3BnE2xlMoPNNgasYMLLYldKmxjlGHMPK\nOYus19/ZidOjYmVpotouoImdcNNUxPPSFNRsyhinqXdqUhQBhUrb+4FdQuSjDtNi2XnnCCr+370t\nDmFqoXeEKBgktuy8Thh6CAyVsIVMXUSmgz7QPUYwWqqO6YF1crDsfyjJ/FhTmkkKmGs3Mxi585A1\n2fLuDJUQKBXfke4LZSeLKb8wGGaoodoBFpNZ8FFCHKT48pUzmG71MB93sN2pIU0CcE+L8LMMltzL\nOoM8+6c4fEqcUwCEtWTHkoyISrt0MjKMoJeCdYAUCoECautA0BVaejIV4MZCBChADQgmlGuFWwpB\nlxC1ARHRtulq+8xKFMdwlB/iAXFahEHJeZPrmowcYq23jM0IM846PrLVNYBIGAnttjg/bHTOpyzb\n9DAKI6izp5EuTCG8tIh0aQXFCi/uuu475mjxpJWUgrfFCMxA2pRtbPjrAsgPCnbzZdbWgSNznjHL\nwwTpx58G/uTr8rphAn1oHjTVQnrtJrzGy4hgvkQLZeNWDPIUdfic05kL1aN8mpvJZGxG05gsRit5\nqkYjd1bYDWx68xb2Xb7F6hx6gU03j4xqTwFjnXeAONHU9BRMewemn6eJURjZ8syRH6MS7N+1568i\nW10FmGGadRGSbO9IYYlkuHsfBez+/IC8Yp072CUFey/Mpf41ceQrtrpUxuD4MS+g3rrcholsAYQi\nPCNvD4eVS9cssqOLwu6eQVRwKO7h2CIiZP2BVLuBMA88o86xwIMA2Byp9lahwqRiF5PPHuCL+ppe\nisNmDLjvhlvHXXbGjhQrMX2pqCT6ZTuiS5emlrFsHSb1OqjdQf0zF1H72FNQF28g3dwCnnkvguUA\nvLImc9bGhmjn2aAEgEKajy0gZJ0rcPtjw+JQ0No6EywLY5hIwNFi+31HMf2lHpgZ8edeRDoYIMgy\n0e95+gnUlxOolHftjykIdu+PtRbmfPEx9/qCs8jJQLgqmKwgOpChXbtSYTdxpwOlFLhRA/UHUBs7\ncr5oWGFEk/lzgmo1d1XL3hco2buTCw7b/uTsZwaiIA82Ffc6rr1BIJ/JMMmZZ2EAmm6JM8gFhFMj\nwe9aDI5CRNc3ZB80mEKw3gGW1zB831lESQr0euBhlms9ZSYXBdeWqUVkUx0te9Q6sRhS5MnpdFIm\nlZJBJIVtbF+7x2NMv9iGadagBwbBV15F9xPvReNqB4NjTRx7doBoc4BsvgW9tpmfCWyhi9wZlOUs\nHWUDiK6KWFFDSGspxuE0iNgA0F5ugyiD2twBR6G0uR6DagFUuy8yE4BUJjaca9wpgj51HHT97lj0\nY5KuDwhFZ0bxd1Fc0P22pVnd3+wGsRh5jWNQGPjIq2rWcxFPW+kLAEx/IBOKPQwHj5yEuXB1V/O8\ncHRBHNTdz1XD8GybQsobD4f5RoVEWAyAr7ChLt3y1zDdLna+57zk3w8GQBwheGVMW4q5m6PR+6yw\nGXJfTqV3e3BH3u83fEbydIubbP+c67tLfYrj8v33qrn8oGE3bB5OA0mRjYxQ2RE0blNpKY1mp+Od\nLapuNWGcOj2RFeu2EZN6TRYgAFyP5b2zM1CJXZhUfqDx+k6FQ03JmeIWMadVhHxi48wx46wjRinR\nLAIQvH4DZBXqs40NtM9PI5upC6trcRnxZoJoR9LPvJaSXdje3AFbYCuN09cJQ8soKkdKnLPQ5ZRz\nkoIHw1JFQO73hQHhdBics3SfD/Y8uoAB5X47jLKCigg0ONRgLQwY8pEGCBsoAYIBQ2UACDCB/AA2\n8KUA3SOEbUj2EQEqNaD+MG+jkYWSnGZTaaMi5dzFGcTQib1XASqRa1NPgToaSBTAgNoMsbbZwvLG\nFBpfb2BjZQqvbxxBlmpkPQ3V01AZ8kpmgDiD7N+sVekHNmVN0tbse7R9vXWmsdUVopQRdDNbhp5R\n22DU1wziDUZthdG8rtG8qlG/rVC/rVFf1Ii2xBmkhtJXRi55uwAAIABJREFUNZRxflM7fgCQkr2F\nQ7Ndk1yRAQ/LKCzN0wU7L+rH6KNHxJFSr7ub7ErhVLMzft0KHj2N5BNPy2KfpKAvflMO1uMqStp7\n8mAgZcFtJU3PmO337WavwKJI8jXA9PtSldMwTL8vqdVWwNp88F24/JOAftdjviJZ9tgpcBTm13Pr\nteu7/XGVZFzKFAWhZxMpNw6FTbA7GJTXnLubM1w6larV8r6OVoPbB4zq3oh9mPL6xTa4sYddU70O\nZqtz6MrJT03l67JWu7SJipXeyAYI9NyczCe2tLB3/vXeJH13xIlSdBTlAapyMEHNieqgq+zmbFhN\nTaHzgdP55XpDmDgA9UYcUuP2LkDJvmSNd4dbKo+nO/wW5/ZCdJuTfC/nNUs800CqHhVTDzjL8mqU\nFSpMOFywTtKa7IHUrV/FysyU7+fc6/2PZYCbzS1QJOXogyOH5awwGIAOiUi06fV8FV3SymsQ6Z2B\npPC8/7tgLFuBorCw7zX+u0lBWNIkkorNQV4Exzl/mMGdjqRjDUQugdNU2B9WuqC+2Ic5Og9q1MGD\nAW79Lx9D532noaZbMIFC+5EI24/GuRO6KJo/bv4tZhu4fbFj1hOVxq30GbjgHpFUDd6RdnOvJ2yg\nrW2pombZQa4gkU+jS1I/lvsKW9odgDgsAssCK6aKOaJG8dzp0qPIMlyUgtkqZNjMzshnbDJwq1E+\nT9uzFmUG2NiS7IL+AMm7zwAM75iiMMiL2ag8+O91X+3/2a1xYZS32xhQt59rEKeZsI+SFNAEMzuF\n+oqkjpExiL76OrZ+9H3oHtFQ3QFMJIHL7fMtycwA5DxjePdaE4zYuMlKrCQfaLZj7B22gGXDuawj\nORtSbyCVqzs96PUd0GAoe8AklT51e76PSDMJxN8lJoghVIiOlWjCphQ99KwX9x6XQlUUfh7RZ1DN\nJkxHBslXWrK6CcHxozDbbRlkAGZ5dXzEcThyAChG8Yh8dJitaFipGgcbUNyAmp8DN2rIXrsA9cQ5\nYG0d2eZmQZ9IYeqFJaSXxQmU3Vra1RYeDPyGigdZ/uWzm242b7J5KqUkjdlUKw1PrXYOLU9v17s3\nrg6uDXcob//A4O/t2jZmo28PWMVqCABkI9xsAskQbFMD3WdtbAUvVavJYzZqTVrBdESrh44tABsb\nMpHYw4ba6YsH14nL2ff6MbU6HEUHm9fHcs4tN6E6BX2TQZ09Dbq9jGx1HdnHvgvhdlsWP1LeuTT9\n0hpomIj4mmFE1zcQrsYyaTh2gK0CwKbwnSv+LoyZf0zr3a9xdk6WNeVoova9zCxsljSVyAcgE7Fh\nyYktitqO0eV54DBsPTd7ROSpwAga915jwEEE1hoqyWSjwwAlBiqQ/KwsImSQNCrKxAFEbk0KAJ0A\nRgNpHVAhYDZH2mI4XzhSBZDxGwskWZ4JpghZ5BYRe68YAAP1JYXBHEH3RXdnOM3IYgDESDshVC1F\n7wgDGWFlbQomVUCqbOqZXWQV5aXEiXxKGzu2kB+zkXEqsg+NtAdya6ihQQBpq0kIKiWwYuihaAux\ntq9XMm5geS0Z+37rBPNRzP2ET2GBX7xJF+bMUUe7f59oz7my6WpqCjSSoqWmpsD9gaQo27E1vR7Q\n7SI48wg4DJC+cQnh1eu4q7jPaNqNe3hUkyaKJAJo9czU9DR6T59B/LkXMTx/HP2PPorGv/4qwOzb\nS8++gMeeLWj4b24Btxf93446r5oNoD8oVL7MGTG5Nl8eZSy9zo1jVlibxjEY72IcPHPqAJxBAMrs\nJyCPxPv0Jhu1VLs1ewDrTMkycLfnRcfNYODXCABlvUQLp/dn+n2h24eS4kprm/lrbZtG08J3N4LK\nTk7/eDk1KzhxHOnNW8hOHILa2pbDoj0wAoCankLzG9eRWgYcltcQrm8JKzaM/N7HfVdKzOdRhs84\n577fH5Jn9+z6PhZYCd7uCraRB8ryoEXRuVahwqSDlOz1fIDB6ckVzldwFW+TcrDJpfpwmgFJAmX3\nlRTIvtTNK9wWdgtFkcxLwwTZ9rZnmibzDcQLh2GyDOHiFrjd8fM5G7bBlHLwn4dWjN6kwpB1j7n5\n0xhfAAGA34eoOEb62CkE37oGdfE2qF6TbYfSaCwxoACaaiFc2cGsDVjRIAWHhUJAgHU0qPIaU2Ia\nmvx5m5okDVD+/b6QUZrmZ8+i3s0wybMxvA6udezXauIIKrBf9h1OQgKAq17MmfHaQD5rQFGpwI2s\nRdqf2bnTFQdgqynOsJ2OVOCamQYGSc7QCSSITjtdYcBMT8FECtysw4QK0XJHdN2crZLyBX6c/g6A\nEsPLFcqgpOi4EfaN6xd3ejDzLajVTZiFaeitHsLlHXAUgLoDmCfOoHtE4diXtmGm6wi3E+hII9gZ\ngtY2hdXUH+TOnZR3ByDcsuLO0s7OvJPKnoOYcicbG9lcOeZez+T9GxTWxIIdMltnWVeYcTIWd/dx\nT8zKtudiDdloe52cu4kGu/dZMV7T7RbEc4WeZvoD6PlZpCcPATdv+UnFdLuihbO2Xr7kLi0IN3k5\nOpcIvEpeo9N8MVBxjGwwADUaSE/OI1iUtCp+6XV/HZ9mBiC7frNwU1PaGAFiCLvGig0oCKHqNfGU\nOyE2zyQyZafNyKE+T5HJJ+gi24oLHvliClqJ/XTQKH7xHKPDcJ4i5ZxB7stTFIdr1mEW20AY+qpw\nvvwkZDJXYYhsmEA1GyAimO1tcDKEOncKwbGjwnhRBLOyBjpxFGaqDtXr5zZRTHe0uk+ldAFYR5GW\nvzlNJO2s4CEeHGuiNpgFr28gXGznC5a1Dz07I9UdLMUQcSye5F7fepfzNEBEodBWbcSaokhonS4C\n6iaz0fxht6gB8GlkkD21o8tC28/DsJze3aJRPCRb8VvvJButGLMfKGkBFVLmHJhzH2PRpooIA+FZ\nZgyEkIh7llfeUplQbIM+QSUsrBkCdJ/B05IyxkocHEEPCHosjJswyFPy3CKX2u+dVoCR1DBW4hAn\no3wKlUoZQd9WGlOE+oqkpCVNSJl3Q8hqkJLtpME78hnqbfm/zsg6bIRdRNbJzYEwi5gAEyhkNatd\nlLH/GQURwLCVxxQAYz9vsNxjkIEMIwsVVKrABAQK0EPlx4WdLhEVHEMMqIStc2j/HUJ+fjVZzvgb\nc4AvbSKZIXo+dqOYplJJ0MEejE27LalgzSZMpwNVj0vpTsmxGYQrM8isdoJqNsFPnIHqJeBL10rp\nYuRZeHb+IUibXVqRXTucto0+ekR0XoZDgA1ufzTEuednwP/+eZQUDEYP5IU+lJhGdpNoOl059KvY\np5vS1JSIIdtIoS8371i/QEF/qOBMt2Kje7IKdwWVRl4z0sb9hD/MWDo4EYF9UCtv87gULUBS38DG\npyHnzNPM90uYpfZShZQumplGMDsjekEAsrV1YQnVYllzLJt67L1LzKCy48e3raAhRGGE9OQh0Ooa\n9NIm0v7AHiby95mNTe9oMYNB6XtcCoS5tPUiC9yVn961nxlJHwPy/YvbkRedgUTWYYSyU8k5iuze\nyfT75ftMwp6nQoW7gd93FWzWMAC2v7PS3qakNZlloLAB3tkB1WrgJBFZhGEiQcpGw9/DDAbQs7NA\nlom+XLOJwXe/C7Wrm9A3NuQeF68Dx4+IBtfmtujlKJKAR8H5T07TkyUt21XfJZXrt6pmPd9TA9j4\nL5/B/MttqBsr6M1HCONI2msr2AYnj+PQlxbFoZCmoMEQ0faO17rhxFYB48I4DIels5/T/KMoyucD\nd54IQ/lt9+Vep9NmFBRTywCIAyEKbX8MyFXscP4BO0/7LIeDQFFmwp+fKA9UMufOIZve5mGzIWSO\nVUAUgbekyA4Ph8IctfsD76wkAm1Jv4en5qD7KYLNAThQqL1yQwLdYQCiOsxQGEeOTOGqwxFRfjYy\nxgdv4di4ADhJxFHY6QJpivSdp5HVA6jWKSSNAI3Li6BmHTRIwIqgOgMc/9NEAv/GQGcGHIeSYhbb\nfmkta4s7P1lNLU4SOy4F51lRX8jArkn5+ubZem65VLZPELYrd3uiyeSr3CWy1rtz69Z2zljSd287\nk+EQShJwtveBcJczxolkjkNhAyjpKk7TIZ9s2FK8zOYW6Pn2SAUv2uUMKt/bHYaz0mNuE+6FhNNU\nNjD28WxtHXowQLpdMGKgvHke2aSO0+kp6kgU2+M90U4AdNz4uDaPYweV0lBGNvRFjIo9+mseEDsI\nkCpnjm466ggbF00cAW1uyQI3TCyLxm5G49hrMXC3B5gMZmeEfnfpBox1orjNuV5dB20GML2+UM7d\nRrZkMxmYC7Y6tN73YX7IMQWRPACovXANGAxAQQhz5bo/FLkDnTEMspR3iXSEpeoH3jaToZSHJ5VH\nYYMAanZGWFFZXnFol2ZWQfvCMZ38bxfxKaQYcqZA7rtQFPkcBZvSRuTBgyU6czcv9RM3lx8zDDIG\nekv6owPtX6c3Y8QrUW5/1j6zeggTa1DGyOoaxur/EANBJ4Xe6kPtdCVi0e/Dp/gBBTqpHJJJK+gg\n8LnIYRyithzDRDa9MVIYTgeI1xOZoyJt78UwgYIJFUxgo2qJ8algxKL5QxkjXusLLTUtMNy0AuII\nphaABhnIR5BGRrPIInDzlBmZe5yTUkvanR+rID+0Oe0h1gUHpXW8ETNofetuPsW3Do715v68g3jx\nuLnHjKuqZzKYvv0OFVO2CoyN9PJVqMtXUZxtTacjIs/jbl1aK8opYeP+77SJACBbXcOj/+BLY6+7\n53w6NmVN5j7XN9+ukTEYy8wds47x4A5rzbj17U5t3CcUmaEwDKdh5JjF5blxd+ddOq7fBLvP1wtv\n5064XXa60wFnmT/Mueuhk0lxiHFMyHHYY/xMsfR0FIJevgSTpEhvjaQyOtZbt1uK5Ba1okp99k60\nvH0qjmXdxUhAyrOs3DpqSnu/0uuAXWPk+1dMi/Dvse1MU884r1Bh0sFTtiKey2ZwwcHMlA/O9jWl\n4yORlJdPEtFDjUIgDKFrsWhBWsYh5mehholIYTBDRyFoegrRxsCWI5fvkjo8j2RhGro9kLRguzek\n4t5Q2erRdr/jtORcMBxaCzG31ZJ7sUG2uYX6mrC0dRCg+eJt2U8GgS/9Dtj9R6ClWpiV73D9lDQ3\n0XShRk3m5/5Aqkm3GsgOtaBvrsuckST2bXZPxLx7f+gc8XVY5q3927F9bIVIKJIxL+jJkLtG4exC\n4Yi22gMGBRo8O5U7fgBJS3J9ZRfA4QLbpbBfBcC1CFhdl9fHMVy5dTXVkrPqMAEdmgOvbYBmpoU9\nFUcwc1MI2gPojY4EHftD8PwMsuka9GobvLaR22whvarEpLJOOl9Br8BkoinRL4IiUK2G7okapv/8\nEijQiLQWBpK1d0pYnHr2HjBGHu/a/ctgKHbmPp9ApFTk+xIArQbMVAN6ZdM7z1gVbMc5bkqs5fL5\ni4eJvN5J11j9I6Sp1yjivs0WAbxuK4jAgxS4S4oQ7e8hbI9GEK0A6ABYPei2vEU4jLdPX4B778+j\nzLzwoBpTBBG1Aby2H/faJ7ydbGeS7aaacyYbk2w71ZwzuajsZv/wdrIboLKd/cTbyXYqu9k/vJ3s\nBqhsZ79Q2c1d2M1EMISYeYGIvsbMHzzotrwVeDv1BZj4/rw2wW27Z0z4WN8TJrkv1Zwz2Zjw/lRz\nzoRiwvtS2c0EY8L7U9nOhGLC+1LZzQRjwvvztrGdCR/ne8aD6s/kVBmrUKFChQoVKlSoUKFChQoV\nKlSosC+oHEIVKlSoUKFChQoVKlSoUKFChQrfYZgkh9CvHHQD3kK8nfoCTHZ/Jrlt94O3U38mvS+T\n3r57wdupL8Bk92eS23Y/eDv1Z5L7Msltux9U/dk/THLb7gdvp/5Mcl8muW33g6o/+4dJbtu94u3U\nF+AB9WciRKUrVKhQoUKFChUqVKhQoUKFChUq7B8miSFUoUKFChUqVKhQoUKFChUqVKhQYR9QOYQq\nVKhQoUKFChUqVKhQoUKFChW+w3DgDiEi+iQRvUZEF4joZw66PXcDIvrHRLRMRC8VHpsnoj8mojfs\n77nCc/+r7d9rRPSXD6bV40FEp4noc0T0ChG9TET/k318ovtT2c3Bo7Kd/cPbyXYqu9k/VHYzGf2p\nbOdg8bDaTmU3B4uH1W5sOyrbOUA8rLZT2c3B4kDthpkP7AeABnARwDkAEYAXADx5kG26y3b/BwA+\nAOClwmP/B4Cfsf//GQC/aP//pO1XDOCs7a8+6D4U2n0cwAfs/6cAvG7bPLH9qexmMn4q26lsp7Kb\ngx/Pym4muz+V7Rz8z8NoO5XdHPzPw2g3le0cfD8eVtup7Obgfw7Sbg6aIfRhABeY+RIzDwH8BoAf\nOeA23RHM/HkA6yMP/wiAX7X//1UAP1p4/DeYecDMlwFcgPR7IsDMt5n5G/b/bQCvAjiJye5PZTcT\ngMp29g9vJ9up7Gb/UNnNRPSnsp0DxkNqO5XdHDAeUrsBKts5cDyktlPZzQHjIO3moB1CJwFcL/x9\nwz72MOIoM9+2/18EcNT+/6HpIxGdAfB+AF/BZPdnEtrwVmGSx/muUdnOgWCSx/muUNnNgWCSx/mu\n8BDZzSS1463ApI/1HfEQ2c4ktOGtwiSP813hIbKbSWrHW4FJH+s74iGynUlow1uFSR7nu8J+281B\nO4TelmDhcfFBt+NeQEQtAL8F4G8x83bxuYexPw8jHtZxrmzn4PEwjnNlNwePh3GcK7uZDDyMY13Z\nzsHjYRznym4mAw/jWFe2c/B4GMf5IOzmoB1CNwGcLvx9yj72MGKJiI4DgP29bB+f+D4SUQgxvF9j\n5t+2D09yfyahDW8VJnmc74jKdg4UkzzOb4rKbg4UkzzOb4qH0G4mqR1vBSZ9rPfEQ2g7k9CGtwqT\nPM5viofQbiapHW8FJn2s98RDaDuT0Ia3CpM8zm+Kg7Kbg3YIPQfgMSI6S0QRgB8H8LsH3Kb7xe8C\n+Cn7/58C8JnC4z9ORDERnQXwGICvHkD7xoKICMCnAbzKzL9UeGqS+1PZzQSgsp0DxySP856o7ObA\nMcnjvCceUrsBKts5cDyktlPZzQHjIbUboLKdA8dDajuV3RwwDtRu+OAVtT8FUdG+COBnD7o9d9nm\nfw7gNoAEkq/33wI4BOBPALwB4LMA5guv/1nbv9cA/NBBt3+kL38JQj17EcA37c+nJr0/ld0c/E9l\nO5XtVHYz2T+V3UxGfyrbOfC+PJS2U9nNgfflobSbynYO/udhtZ3Kbg68LwdmN2QvVqFChQoVKlSo\nUKFChQoVKlSoUOE7BAedMlahQoUKFSpUqFChQoUKFSpUqFBhn1E5hCpUqFChQoUKFSpUqFChQoUK\nFb7DUDmEKlSoUKFChQoVKlSoUKFChQoVvsPwwBxCRPRJInqNiC4Q0c88qPtUeHuhspsK94vKdirc\nDyq7qXA/qOymwv2isp0K94PKbircLyrbqXAnPBBRaSLSEJXyH4Qofj8H4K8y8ytv+c0qvG1Q2U2F\n+0VlOxXuB5XdVLgfVHZT4X5R2U6F+0FlNxXuF5XtVLgbPCiG0IcBXGDmS8w8BPAbAH7kAd2rwtsH\nld1UuF9UtlPhflDZTYX7QWU3Fe4Xle1UuB9UdlPhflHZToU7InhA1z0J4Hrh7xsAPrLXiyOKuYYm\nQID9Jwdz4fH7YTONeR8XngIVXsF7vIdG3zRyoTHt3gXOf/mXunvz7seJwGxG3iMvkOd4j/vn7Rxt\n9e77uGvTyDXH9XHcmIx5TaOGdufWKjMv7DEQb4Z7shugYDsVHnr00cGQB3f6Iu2Fe5tzggbXo1n/\nN9u7UtHEmQG69+bwmLcUr7vX8+Met8/CfcfudJ3R1+z1WvcaLsw5AO/xuL/KrufLf5fnoHHtuGc4\nBmvxcxhltaYpttPVyZpzRqfj0cfHPTcJoJEGPsg2Eu19j6I97cViHrcluNM2gcp/9Hnnfuece7cb\nVeN6NPcm7RnBuC3HgwDv+k9+47u59+gc6T6vvdrP9p/Sd3rM/e9j7n1TjG5t7vTaN3sgzbCdTdic\nU+GhwLexz6ns5jscbWxUc06Fe8bdzjkPyiF0RxDRTwP4aQCooYGP0Mf3eOGDuPkDuOa3e++xm6a7\neO7bvf9eB5f7RRf4LP7V1bfoamNx17ZT4aHCV/hPHuj1R+3mw/3vdk/sfeh86xshv9+K+91Pu8e9\nR2mAzfhrvVl773fc7uZ993BtimP8cfprkznnvNlac5Dr0N1iP9p4p3vc6xjeQ5u/WvvC3b/4PlCy\nm2AaT33if879XEWHx7g2FxwqfDdcbusMI1N4/R7XJVP4P49xypG0jzXK7aUR5zIBrPIHyDDIAJQx\nKLPvc9dggDJ5DQgwgVyPMnl9sQ2sCSYksBLHMhn299/VnTdzwNv++baovG80Mr+41+zyS7nx4fy6\n9Qur+Hdv/MN9nXM+2vxhUBAAYSDzY2bAaQoYAygFIgJU0aYUkGX+T2YGjAFpDWaW12s79wPyf0De\nY1heoxUQBO4C/jmP0fvpgqGmKTiTa5NWcn1VuJ+7HiD3c/93fQkDeX0ylOtkGSgKgTiWAOZgCB4M\nJKDp2h6FoCCQcRkm4CyT50LpAw8TGYMwAOJY+sJG2p6mQJblY1Mcs1oM2Hv68dZK3qdIPo9hAifB\n4ftrpI++b8z48uAP7sUM7hmjdvP4f/Vz/nsEBkwA+d4V5gn3vfBxa/s4ubnC2OeL3383L3Ee0FKZ\nfa2S7xMruR+Zwv0K85S7TvFvE8C3l6nQLjvXsP2o3etV4uYceR9rgFKA7X31oNAfA2Sxm3PK/VQJ\nI60RTASoVO7t5yiTzyHFflAGZLEN1Ls5CoBOGCrJ+5XFhb7a8WWV94Gycj89TP6a+f/vWXyW9+9s\nFTXn8JHumH3OuL2Ze+x+9oTFOYEUYLLxzxWDg+51xf/fqY1324a7CULa+5IimWvGYbQNb9YmpfP+\nMOd/F58bvfa4do17Le7+bPWgUsZuAjhd+PuUfcyDmX+FmT/IzB8MEaNCBdyF3QCV7VQYi3ubcygu\nPjH+iqUD2x1OmXcbzWb+9p1BRHIwuJt2j7t/8XVEsoDsda03a+/99uNu3ncP16a7HfvxqOacCveD\ne7abKGiUDl0A/CFrHFjbn8IuzR2s/EGieKiyv/2h6w7sIzIMYjnEsKL8wKcoP3g5x9CoM2j0cCid\n9c4dMtJ2ExJYy/vHOYNcO4rjwZrAQaH9bNug5H6enWgKTqS9+jtyABs7FESlg6a/lu9jPj57szjv\nCfc35zgHDpE4W5wzyM2VisCZ8U6Y4kEld1Ro+9s6MpyDh5T8TsSJU3IYyQXEsZGkYGb/A8P5+93r\nmIGCI0icWFF+WGEW50uSWieSxi4455HJpD9JIv0OAnEGpSl4OLT9Vv49FATSrsyIE0bZftq++TEI\ngrIzyGS7nEEO5NoCeIcaBYG8j413zuWvt33KMmlnwdH1bbLevr21yjmDnCPCOR8KztOS89k9x+W5\nqPhdUim8k1QVHMDFazhnTXHuosK9nBPHBO5Hvm9G5w5gVuQd1DzSZtcXdx0AMKFtU1JubxbZZjkH\nTMGpZULyTiQemQOkDeVx846hPRzW3qnl5lGdj6f/QWF8Kb+3cf0EMHZeu3fcs+0EtXtgB3lW6Bhn\nivv/ONsngg9Guu9T6boFR1HxXqPOm+L11Jj5ZBTuNa5Nbl4avd5e+19mOzftdr6UXvNmTqViW0ad\nQXeCG49d7Fyz+7X3gAflEHoOwGNEdJbo/2fvXWMlSbLzsO9EZGZV3fft2z3dM93z2gd3FktySXPf\nomSatNZPwIZl07QEgbQF0wZkGPAP2bIB/zBggAb8w4BhG7IAyxYkyDJFQZQA8yFTImmDSy3J5e6S\nu1zOcnbePf1+3VfdqsyI4x8nTmRkVtbj3r597/RMHaC7qvIRGRk3MyLOF9/5DhUAfgrAP3pC11ra\nB8eWz83STmrHfHZo/uQs7cDnARRnxTDSy01blQAWr8tJwalZ7bbAhFcm06czyzkFW/Y5SzuJPf5z\n03IejmuUzv3Srio4TxOmLBePCXYM0AI+EiZNFzNAjk9PZpgKMFXKxqlBHGKO14zgE4JjplUx4ZwM\nkXXUALxaoI+CRPMcpoajptfVusSVVq1zemJSN8JpgkInenaoKATcqKomSycBKEjD/0sBi5hr5o3K\nAjQSyaTsGQUvvK/BIG2fshJ2TWQZmRpUAoJTJyweOAdwAKY816whXbnWuueZ7CurSXZQljXLy3Nh\n6VgrgNVoLHWxVupR5ECRBzDIxfExgjPBUYrMI2X2hH08LuWcAAo1mD69nnxWVQ0w2cR51XMN1WBS\nWcnfQE3v6/HsRM+NAhkR1FFAJQVWEvBVAZsUuNF9nLyD+m4qkAEEICOAJPrum6oGi9oh08oC4gQc\niseFdy6Cx1qeq4EZU3LsQ9LrKntHyyUvIBEbwIxlv8+0b5J2cUVdBpI6NRuzBsC8FfBKWZHSJkk/\np1hDnpSTgEkTMgFU1yeG4lss1MctYE9untMFYKRgyKw5ZjoHjcBQG+RIACBgcn/KiAlAzUy2u57T\nBoUmvpsp2xcAeWbtn1b/cO+UsjanlquAe6vtH9MPeSIhY8xcEdF/AuBXAVgAf4OZv/0krrW0D44t\nn5ulndRO9OycMYjz2Hba4VvTzlEablcYmekYrNJyFqjDTDDrjG3Z5yztJHYqz82cV6UR+qWnmMlj\n4r6ExUMMMDrCokI4l/wAYshYxEVazKBW6FksuwUGkRcwKDpToQwN96IKwVlLQj6UMRTvLTAATGvC\nnDpm2s10AETpPaXHatsQuAGUpW3TDptLwzlOW0frxM+ONZGJoqFMAGqgIYAq7FztWKXhTb4jTIw9\n4ENomR6bZTXQ4wToiSCSAjBqnkPIVBgvfHJcL4tMGWifr8ekTCetr7U1YONdDRQFRizlAfAZjaRM\nohjSRiGsjZ0HxqW0S79XM4E8A8bLdZVlxCzHOifSeP6nAAAgAElEQVS/03ZM2VHegYPTFkPonE8c\nxnC+8w3Qh/KsvtfAUqI8A0Zz/9KddtLnhhJwRsPGgPodju8j1yCKUgW8RR3ulYSP6vmRBdNm4CX7\nInBk6ms2mDZpf5KAT0jKTEO+9DyjYVmhvrEcDsylJAxLgSozTspLwZ0c8Fb6S2XyROBawSf120mO\nhZF9kSFVST/qLcFnAlQ5A7hcbso4rvvFKcQSTv170nrUf7OT2omenUVBqI4QpYkQsnSOOC2UigzA\nLTCnKwxt1hxz1nXS71NCqxrntoEmLW8WM3/R8LVpc3kF8KeF5LXqo/3jafkyT0xDiJl/CcAvPany\nl/bBtOVzs7ST2rGfnWmDwkltkRWRRcvpGtTmrbQcx6bEJZO1YKXStwdQ9rMH0bOy02pnaDHLPmdp\nx7cTPzfqFLVZKmnZiQM0iz3UXlFvXKbj/YhhVu1F2EjrRwSDJo9pftbXEWdnIuREwSAndYmAD1EN\nwGiZCROg4bgqc0C3NS7c3SZ6robD1WAWNcTw2+ygeJ+JE0qqnXLKduJnJ2G/AJC+0FAEeBpgELMA\nJW2dIGXjqBZRJWFgEQxSNgwQtYT03AmWi7UNoCr+lpuM4Aycq0GmXk++j8uo6ROBJgVZyhoooiwD\nNBRsNJLt1oJ6Rc02VVZPKR6/AkRyDy1NEs9gdrUGExDBtXhuuvIeQsK4rATQSRkNAQCLbaTgGFwN\nlqVtDjyWc3/S50afZVJczqIRH6JhXQjYMLee+8Y7nbybcX9HX6HHRSAoeffkSxMk0vJh6+PT99VU\nHEEaqjiCO6qJpNc1VQgVs2joCpkyuXcIwOMDa8rnJMAPUIPHGuKFGvQiyDkKFKX9XqoBJKA2w4f3\nRfq/uq1TEC5tPwXQ2tc+jT7o1OY5i4b8dzFpusCL9H1qW9fxs/R1FgWOYijaFLBmGoAzbe4ZwSLX\nsa0D1GqXMQvUOaaPQlnWDSotYE8qZGxpS1va0t7HxscHgxYJMTsNkOI4oWrTbF5dpwA7okvRMZjM\naiui+dc7ic2i6bbDHpa2tJPYGWOZPut4T1qOV2M1PPmcaumqOk85ntEMz0rOjUBN1AihpqOWOGbN\ncymyCqaJNjfC04LTlLJxmEQ8WgWk6/O1btOu3X2Ptfjz5B+2sxxu1meW49VV5plau58jkhCmwIBp\ngEEAqNerwYgATkTdHdXFCWFdpGwbDUkLppo6+g9AzbipD2o6c5QAO+xjOJWEpwURl1QDKM8l9EFF\nqRWE0nspcqmbC3pCqaBzaBN2XsCispJtRQ7K8/renavFsbXaqsEUmFFSrq1DwlRjKeg1UZ7VjCM1\nQzFUrK5TqFdkGHFd16ChddYm4ZxosnUUaPWt9xc1UNH45BCupcyb1nYpAM1Qs+RdbgtJN8KhEsA3\nvqcBfIp9TACpTMmw47oMNQW9FPiJYVlBF0jBqShATbJPgCOOYLmwhALwlDAqo7aP0TCxul+LItHa\nBwHN0NiEbdhm/DTaPO3L0fH9LI0BGNsEV49jacjVxL7WS2DC+9+e83X1uWm4l28BMPO0i+K2BLRu\n16MN1KTADnOtw5a2C3MzdC4NR5sGBnUBZosuUkcWP09cm6tqdtvPsCUgtLSlLW1pYeCjXm86uDE1\nvOoMAJFjn2umn2/sycqe5hDNA8LmXWuR9u5akWmFSixtae9riyFdzee9KyyiE7zpLDP5ylxr9ei5\niTM1VTcoUxAo/FMHrgXI1Cv78u6RZ5iKY6iYhns1GECJcxSdt1gncY69pXrVvdUuUpf0JuvjUsex\nsZreap/G6jvXTluq99FuSwBNYC1tz/Ny0DS8KmgGUb8H6vejBlAUVwYEvACafaNnCaNSYEOFqQOo\nkWYl48CImWp6vLKBFPCwIWQi6PHAs2QGAxDZTN6Bj0bRKSIiYQ2FRAmq5QMAVBRRKJqHR3Vom+cY\nusZlCT48BI/LWjAa4hjxaCzAUxrWxj7oMDVZsDGcTkErZSnptXR7GjKnYtwqXA3UmkJpWF6qt3QO\nZsvwrmUtQKJdpfC+tHVr4jtU1b+5vT8BjGJol16j7Q/HvoWa2xIh6RRMIc8S0uUYdiTlxXtBDWzZ\ncQ2skAvsIRaQSNk3diyVcb2wLwBlCmqJqHUNBqUi0xzCyoT1mLQVENlIxAzS8FkgAkftENS0ndOs\niApEaZkNLbMztqhRs4jQcdtSFo9aG2xJbVqm22lltzWANOwsvVYLjCHbApKm6fk06tWsEysr0Lnp\n7ZLqAk0Dg/Rzkbl41zFpXVWUum3H/LudW9r5pS1taUs7N4srWDJRpHRCTCE4fFFq7BOrY0fZXekx\n2/u96xzYKMtkMJsW890u01hJq7ko/XTais68c0/Shue9Wr+0pZ3A2BBgGfBNkKMNoqThZPPCx9Sp\nSoEgQgsUagMfCkxRfY020NEVBiJfgoPjaodFGEbUYByoI1RnB0qcKd0XzkuFWdvhIuB6X5fwape1\n9ZQWsujATe5qawydi5VVDOuK+jjMIrBsHOACwKKiyUEgWY0ogBZFXoNBgGzLa+YL63XajCQFNGzL\nEWtkiQs6IPq9F8ShFUwZl+DxWBg31opQtgIsKYhCJPuKRDcIqPWNQqgYj0YCFOm+QR8xC1lIEZ+C\nRGCugZ620LMCY6EenLAB6oxiLY2QBEAjolj/2NZqlWRva+gvnZEpYOszeS9tyfAZwbVCuQBEEDgC\nOspogQAnyiTUY1PWTUw5nwA5GmYVyw5ADZL+IvaFCQCtYIuCMqorZoP+EmdonAMWfSDycp+mSu4l\n0f5RplS5GurL9fmqG6QAlIJFbAFWZmfCNErBfdUeYkM1QG5C26O+fh0i22z32E8l4JkyseYyRJ+k\nGQJgAR/6CiJQloOrcvJdmGZpBi01ZbVoXxEAHrIz0rinlmr8pH2OAkUKLrXBnBQg13e/rYuZhrd1\n+QLsEyaPb25vSzwsIv+Q9tGGputJz5KPaDOLfN0elGVAOaXMli0BoaUtbWkfXiMD05fUrDpRrfd1\ngCS6/XEAicc5f94APGP/TGCna3D3rntwOinwM+/8k5o5+0n20pZ2EmMCYKkB7MTvnhrZuLqsAQql\nK+kdq8jq1KWhDe3V+jREreGwJKyaBkuHOclAxB2OUVghT7SKar2MWk9Irk21gHSo50R6e+i10GAl\ntAVy4/0kBIMJbZJZC7GUHPc+NWauwaB+T8Cg4ZEAGGRAFnW4UqlZr9IwBhLHIaR8J2XsaCgTK/PG\n1scDNQMGQGSeqrPlEqcs6sw1gZAIxpRjCe0ChPmjAAoT4OoMX/A+hmdJxrQyhooBEIZUntdgmHMR\nIFNx5ygsrVnU2qLX07J+6X4v9ZBMaLZ2uNjVoWtAbEMC1ddI206zmQW21UzW1RMyZQGSA/Kh3J/L\nAdULSkGfNFQTQHwvTAAnfAsMitcIfjP0XffN/Y13Omj6NJiI6TVDeXWmLQICs4cJ8L0axNHwLVMK\neKMZvZgQU89LGeHSFUtqeyvgks/re/Q5gtYQh2OlzVyRMIa41jFCaLtaMyhpQyP6QgrqiI4RJWFp\nrf4JzfZRlhUnmdDO3BjxHYmXD8+4hngygJnMnmkABlrgR3i/mKnZv0ybK7ZBIKA+NoJCU/R80rqZ\nFuA7webxzWuF88iGus9alG3Ud8acOdnXmca+yw9JGUZ6z13nKeNyQVsCQktb2tI+fBacHLJ2EgjS\nQ6LAcquzfVww46zZLV2DYXv/onpKpwHmHPf8edf005ZUlra0OTYLJHgClq5Gt3U66jAtqmfgjIZm\nR7QW2BEzhSXnTYRsKCgSABxd0VbB1EbxOo8P/aSs1nPMONTUz6hBnZhpLDhr9TUk01gEg2ytG1SH\nZVDTGZ2oB6aC9A0RamptSy22ebpyT3MZQPEYYMKROyujLAOtroAHEtZMh0dNVo0CF+W4FpJWh0ZN\nmUHKnEk1htqmQFA71Mn5ZogUEEPBol6PWpFLHcZlQ+MoZhMLABVXFVCGZew8B/IClFlw5WrhaSNg\nl7CKLHg4lGuFMC+yJgBKNbAUw+MAwIV6cgBwwj3GFPOgeF/KIJIdzXtTpy3qDaWAmbZF2uYqBK6a\nT2dsPhNAp9j3sGPGeE3RHzT6kZgxrPXnTkHoNLRp4j1ogUSxr9HvQAR1o9h7BH2S8xLAhBgiIK2h\nagEgqUOrGNkRYriW6hT5QkAfkzAjTCnHVCsUw8NUl8jlNWgWdZGqpC/SPi3UOwLe4d6YKAA53Lie\nTzxsctwEdlr9fro5DXubC2Y/QYsaYvqsk+h3aUgkWSvT4/YceZGy0/4jDbFKwZwG4zCZB84L7ZrF\n1mlsb4FAXUwmTM4vY927rtESuaa8EEaVAkWd18B0/aCTLr6eYJ6+XFpd2tKW9qEzAsGur4u+wRQB\ntqgD0LWS+CQ0g+aV2xUPvEg9ZgFB7f3zYpoflxl1kmOX4WFL+wAYB/BkIiRK95Ho6cSwDEKtCxQc\nkHaoAdAENwBE0KZrn1wrSe+e1KNTF6RxHcT08nV4V5K5KwitqjaQhoNFQdkAukQh6VamnXab1Bee\nXqd4Pnffq7bBRIr5pC3iZ8s5bqfRbv47ew+N1lbBqwP5vncA/2hXtHg0tbkCH3nRZPc4F8OyOsGg\nxBrZslKWS/oZhJ/le3LddgY0ZRpxUyS6di6D8+RcXQ9jQEUOyoK4q5anQIpmAKuqCBTRoA+YwAxK\nt1sL9Hp1+FYIF4vtosBPuqAQ2ouCTtOEEHVsH1MDP8oiSoE15yJQx85HMOg8QsZsycgPPIiB0aZB\nuRIYiibpT3gS+EmzksmNJF+TPizV5WqwFjteEQGJW2BQ2iR63fA42DE3soNF0MpK4XZUH6vhVWxD\neFzSD4pOEKMaKAhdX5dDXxVZihpmFvpbDU+LmmMBpFfmIrnQltqPGhIwKW0L1HVRa4S9dvn8CfA1\nK9PkE7UEtNHss1xV4AiahhDVk2gMTc0qNmWBrz1PnWVkQFne3NYGhdplhvPivbTZTencOJVtmDdX\nDaA8Geo+Z1EdoUY9p9S/65hj2BIQWtrSlvbhMyLQyiAMZgTKi0mROgANZo2xtSDzkwIpZjJhFlw9\nWNTSwS8t7zzu7TGO5SdV36V98O2cHp0oqprqeIR/3iahVKnppq5V5vA9FSGdAEjSlfkUlJoCTqWT\nTuMSAWk0wR5iCbMwiZBqWl9NPR+dm0QMNmUupQKrDSeTm2Vp2Jr8roGoiXZqN19bRLrVNpPHJz/O\nu4shgruyDe5lIOfBlQvhSiFEjKgGVdLQqDwTwWYyEQyhPBPmDlADI8zd/aiGkmm5QA3SpIBJGTRy\nFLBRZg4ZAWjKElHfKIJRPhFu9pJtrNcD5bkwg46ORGsoMIqoV8gCjpN9cA40GNR18i02UZGDjGkA\nRcIcCs8wM+rsYqaZxU0FssnETGzSrh6NLGcKbGm4m763abr5yCg6H3dr4/Uheg9DyBpRI/zLW2qk\nbY8WsnU1hJAT4Di+j13vaPjdADRSUEPf2RRA0u+EqDFmR1xrBtm6PGUr2pGAXZpWXkEeb2vARgEk\nU0rmMLYCcvkMgJFPn1Gd1p4I5OrwM68hW8pgRADEpwA5GsImB+p5YWfaz7bbSA9REMtgAkA6DzOD\nPgCA+j2YKA5fh0ZyCD0lfQ9SawMdiy5etpk+bYvaPlOuo6d2hV+1wZi2peFnE/cT3vkuhk/Xvaf1\nYC+AWheQw1y3abucaUBbI9ztmG08w94/IWP6Rz5uKuilLW1pSzum6QSY+n2YIM4Jorj6iFLS4qpW\nQL3at6DAstoi4NEs8eZ5qw+zdI6mxUXH8o6R1eG0QLBFVjbmHZ+KBgKT4qdLW9rCdnaefnQ6DOJz\nzeCo4zFtdb2dlazegcaqfn2dtpfS+qnZwGb5p8k1Y5hYCuo09rc0g5JwEA0H05A2NiSAV3CyKJ7T\nBKUaoRUpQMUdzlibudCyhuh2+K3fiYNuEdfb24wFvcdprIezMLIG1WqODACPKtBKXwCPzCa6Nx4c\nxJcVqFGmDR8OwYH5EjOMBSFkDQtpMILaWkBqhoCsV/8Oadm1jhEgCXN5PhpJ9q88q1lJwET4lYSC\nSap4Zha9obGASKysob44pzwcwh8MRTcoBU4VfCEKLKMM7JPxO3xnY+L3hmh0O9xNLYhww5tG6Ey8\ndgiHo5QpFD4bIJtqO50xuJh96w1kVy7BjDeQHWaoBkaAkMDS03CtFJzQEC2foxFS2gA0uqy9Pe3T\nGCAooEwJ0BJ2K6BNAtpkR3oDk+WZUkPAKLB0JAsZZ4gZxbSuphLBZ9cLukEh1TwzItNIdYOIOYZ6\niaaQsH1SoWdlIWn9G30C1deO7CQnv32WiOdzALG41fahramqz2u0+xkaeYBWBsCgL890vw8cHkp/\n4lxkvDAz2HMtNt1m1qh1/Z6lt9MV4hXPTULCIjiSzGfTrFtd57d1gdLjpunxTMtM1i6/CzBqC1d3\n3pO+fK02mTb37soslraXjnFPo6i0ilTB2uZDtbSlLW1pp23M4P0D8WE000mYHFKeA0Uheg2Vq8EH\n50QUMqHGzwWIFunHusSbFwVOZl57CuDTBb7Pu95xQbBp4P5x+/VFB8KlLe39bszIDj18j2I6ZCBx\nCtqHa1hXsDTTVmrTso9NFJoANhPizI0CqREKEsVR0zqpg8fJPg1BS8NQwmq/nCuhYiDEDD9t9kCX\nxoaG2gl4pJNdrR/H9oggFSflpMBapDDU39NwsrauSWyOjhCzMzcydT0HBbiXgXMLGBMyN3mYowoo\nBxIu5TzYGmAU2DmGQLBB04dFPFqBsnYa9Yb4crIarxm+lC0TQrAi0KQaRkANBlVVzb7R8OyQyYs1\nA5Mxwv7JAwNBRaQ1zCrLBAwiAh8eChhkTcg4Jtfj0VECBhVASFWPkMI+LuwAder6PK+ZPNEJs5OC\n0CG9NI+PpM1SMCjVBwLq8D3Pck3vBezqFYDz4djTeigWM7e7C+zuIn/0DIpBH1zkQGbBmYHv56jW\nCgGHcgNfSOVcQXAF1fplKWCdWKP/mPLepWnbgSYYFHVyUgClEl0gcCIMrdcPIHgEZQxgR9IHuB5q\nkBnymR2JELXrUWQbaZ18AIPIcQMIYyMaRK6gkD0tONZO/nFgVtUgd3LvXH9n2+qzqdk+ERgySXNR\nfX/eSj/p03LO0EzlgV4BMoEVE0LE4Bl2ZSDMOc2yVxTSz7BtaIVNBUqmgRxdC6BdOkLtsrqEpFNg\nKp3f6pixaH0mWEtTgJz2sV3AUCy3LVSdAlwz9I/atgCI9FSKSrNnyZIwNefa0pa2tKWdojknk0IA\n1OtJiltraq0/zyDv6w7ZeZBOVo+OZLI3Gh2rw13YZlFb25TZqcBPxyoIEFdFn1hXy4wuIb7Tv8bS\nlvYUmWdkQ4cqZH5qABCpA6WOBZLtnAAtHdbpMHS9IpT808M6ypQ61KvZuqKdhpqlDlBDEFr9aWUG\nhevG8LjoNAV+FCXXbNdbJ+5A451P2yiCNOl9tMtof58F/KT72sd1nHcmxgx7WIHGAj74fg7fy+Bz\nGQeIGabIxImrvIhBeMDYEWhsm/1lCJ2KQFCaUj2AQV1Cy5JlK/lb6HHG1ALRhqT8AMRQYN1qKFnM\nWqRZvDTblxVwK9XhieydAGBABaaBehFH08SnjJ92uGXKdNJ2yPPkurYWyk1For2rhzFX1SLV7AHf\nBM4iIJY6dbFOGnq24DL9EzLe2weGR7F9yFpk/T7sxiq4l8MXFpxbcEYYr+cwfQIGJmryKMDRBd7G\n78qYafcpAdQFUKe1b1QOUbvHlPVv7S8oYDbCsqz3a9k+1SUK/akCOL5HEJFohs+oeUxg7LAR8IUc\nwEWoa6IlpAzJWuxaMyJyDBNT8Xy9R28JJvkdb1XbTzO5h+treNskQI9z6XPIcXgXIOCyhsOloIf3\nYO9luzVAaaW64xJg31wwnQVsqM2a9wLd4FAs3ze3zzp3WihaVz0XzRo2jfHUdU77+mmGwsgocnUm\ntmlt1gVqzWvDGfa+AYQkM0CHY5OGPgDNm1dbOgdLW9rSjmn+6EiAHQB48ABmdbXJFioKIM/AWSIy\n1y8AAMRroLKSSerREVBW8KORMIimUU61jK7fXdbVFwKYG1o7i6FDNAlgRRG9xwRx2qsaj1POccKH\nz2HV3l5+Bu7W7TO/7tJO2c7y2fEOxe192LUe3EoOX5g6i5eBrJyrs5CyfrocrLA9Hq9z5IlJan1+\nzPrVAp8agJCyRjSjWMIOAtAINUvTyLMJ7J9wzbamj89InLHgqMXQuRTkUmco1DkV4VZHqQ0oxXbQ\nNlLnLWX9pO2Vgk8EMAhdDKFG6JjGtKRg0hn3OVxVMK+9K05Zvw/aWAVnK4A+Q55QrWbhGaqdWXvU\ngxk7mNEaAMAcVaCDIWg0FvarrwGYJsARQAw11QrSMULFlzXUTNtjNGro+FCWhdA2OZ+db4SDEYmW\nH7IMXJYCJo3HNbCTB+ZQ5cB7+7Kv3xOx6MxKSFgSdlazfQIoo2Fp6iRZKwwqIgGalM1TVTLut0Lp\n5F7FL4n6SAoYlSHsPNyjsIh9fZ8qhG3FSWQNJTtrilAIV6EiB49L+MPD5v7r9Vd5tAmrOxdAa6tw\nO+twgxzlRo5yzaLqEVy/9R6ppbhb8r4I2DEZohr7kfCfHUk2sZg+Pgo9C/4GAswo/M7qvqLq12nh\ntU80legL+VyYQ/lBCCkLx2m6+ciAohqg0XAxqgCq6j5G+jHUWdIC6FOLV6cNgChQnYJh2jbEkHdU\nM5klfSBU+8gBTut5HjyJsoS//wBmYz2woSjR1pJ3nq0BKZuv7MlxQXSeDw+D3pdQs1izCQIJoOTQ\nlgCYYPSk88CuLF1AMjeeAgYpKyhm+krmlwnriKwNyWT07y5i0MytcqeBW+kcus1g6sIstD5t7CPU\nLbIPF2Hup4DUCeff7x9ASK2LZjUtpZ3+sXzycC1taUtb2gnMHxwABwcT2ykvRFyv15PJaACJuFcA\nBQOrQtO3o1Jo8kdHMpiORlNWKuaskkwzHYTmgUFz+syJffO0hBat77xjZsWET9RxwRnQSdvycc0z\nqNeDWV+L4QzwsirsHzwUsHFpS0vNM+hgCAtxFnxuI7jAGQWniaKuhTpRXaFYatMcBSaq9Tr0fJus\npLctvEd1anlZkleHKdYDqEGXkEY+Zi1TRydWoq4LJ85YDCHT+5vmH6cAjtantYIew98SB3UqKDb1\nGlSDQAlAFNlRHcDbeZh7tBsdKHuwhvzhALn2p70CvNKH2+jDDTK4woAzQrVqgRULtj1QxbBjDzMa\nwB5VoKMKNBqDDo+C8PO4ZtcEQWgAk2FiqdC0OohJdq+YHj5k+WpkABuNJMRMncsgVMtHR+DRuD4/\nGIXFGD4cwo9GEj7WkxTzMYw7gC9kTSusjetPQMptZFjz8i8N/3JeyvEcP1lZTL2esJHYQ0PLCAJa\nKfgUM5cx14woY6VtAQkdO+OhwW6syd/m0g4oz5A92o9i3VyW8Lv74FA/aWyGu3sPuHsPeFMw25Wt\nTdD2FtzWGsoLfYw3MlQDCSuLqdWp9clIAJHkHWIkYKu820aZQRAQJKahN/V3exRAniACDQ5hYtx8\nV8FBbJqAakAiIm0Jrgi6PAF8p4pjXU1V14sDyGNH2k/JMcKSkr4iZhXTLjGANu3MYnqPEwB2+CSS\nsgA0sqtpO0WB7PPod5gjeCjZCbkO/zQmanqhV8h7bEhCx4ocnBmYPIvhq2AGj8Y1SBQylQkgPeXm\nGiFWydyRAv2x1c9HMGfWYqteKwWWkuMmhKi9A0zWBHcCCCxZ1zoAqvY8dxpjZxabKC0rnbOni7cN\nnMQ3P/Xcae0wxd5fgNBxVoWD09PwG0JjkelYBV/a0pa2tBMYl2O4dMIEyKR8exO0siIAkTXgQQ8Y\n9EB+DTQqQeNxXDH1RyNMsBxPVJk5wM20bXOpuFOAlcddCW+zhnS1Msum99GLAF5q58UODROk6BAZ\nA5Ty21x5RuZ4Jjgt3oMPj+Du3Dmfui7t/WFBE4WDw2sqXwMergaB9J2LIRaB9cGBZdPQFYqhC0AM\n3QIQwyjC90Z2MXSAMMwxhXIUPtVzW1pGqinUAINU3FUZJtrVGamz6mDoKr7cR9I0bQwnAaCiYLUe\n1/XKK1iUpklO+i7yIYNQ16kJkBXTSvv6NxM1wkGmZip70pb0i7LwUIcrU5YBeQ5LBKuaNVkGXumD\n+znKnRVUfQvXM3B9g3I9F42VYQUzWoPZH8McCtMVKesGqFfMSZ9NroGTLBP2SxkcMXUWiUIYGQW2\njZtIeR9FpCsnYBBQM4O8JHxArwDvH8AfHkoq+H5P7pVIGE6aYr7fk9CvLOgqVRVQcT3GaPhZAjZF\nK+txSEGgeI4Nz1TIbpYKRjfKVZaZOoC6PYSYSXsFIOqsH5+weMGrfdGdWu0JyyUzAANmXMGUDnRU\nCjg4GsM/fNQAidzDR8DDRwDEaexdfga4uI3ywgqOLhYCDuVNcKihN6abW2A2VRyzmXlbnweg1g4L\nGcWEGdRi+QCNvgpch36V6xTDvKqQjI4ZMY28qRDD4ESgOgGfAlupoWGUPjqKJUWwJ5xPQZg+9LVm\nLHpE8bTkGABRBymC7+E+GhnSHGDH59DnMACSd4nHYwF1qsCicQ7Y36/DOgP4SUUh2Xv7PXlHVwdA\nFbSHVvow66vyzlaVAETDIdj5Wje4A6SZYNZQAv4k2yOYk4RcNcpoLzK2Fyen9OvsWuARBRJKW+sn\nta556oTGke++31YdyVJd9WkLpcncuq7DMRZWg72/AKHHDVlQmpUWE7L3gEwTAV/a0pa2tMcx7+Du\n3Qfu3QcAUF7A7myD11ZkhSTPAAyAsoJRcMg58PAIfng0PawspZIeB0DSTGVtkCUpbypQfpywteNa\n+/yUCvu45YX28kej6cc/IaNeIdEuKrhYudpJ0DCK0Vi+Z+LIZM9ekaQJK33QaAx/594kfX9pH1wj\nCGicBc+Ck4xZmpJWARVuAhURFLLC/JCMOnHS78UAACAASURBVEFQ2MRcZUiZRG1tnQkQiJJwLC9p\n4zVsolGOqUWojePIDJJ6BacvrIBT67WWUDF1bHTFvcnqMYnwdJ3VK/wgNK4X9T9iG3ENdAUgh+Oq\new2WiXBrzQBqhoc1y49sAyACXjG8jJK2PiejALpwIujMzgM8Fh+OKPYr6rAVb+co8gK0tgK/uYpy\nq49qxWK8ngPrObLVHKYawAwrmMMSVFYSEj0ai1hsmjlLBZqzoKejotJt00xiQBR3jto9haSY53EJ\njEZNZpBnCSPr98DDI/C+sHYjEKQOVDmuGQEBrOERw+3tPf64ZaxkRssyCSMfJ22g96aC02U1mbJe\nj1V2kHPASkAlzhoRKnLQxrowEisPZEYAUpZ+xQ1yUD8H1noA1gQQri7DVB40HIOORuDdfbgHD2KR\n7tZt4NZtGAAbVy7DX9zG+JlVlBsWrjAoV0hAmPCOgeQ919tnA5hSwCAFRSIgRATjOLJxlDkUAaAg\ntMwU9IQSRpKpBDyp+nX6eFdouYHlYySEzI4F+DaVpLgvHoxRvHtfQhMPDmumW5GDikLCE4dHAo4k\nf29aWanfq+0+XM+iXDMYrxkJfUsB/tDXRpaUtkWVgN2k4BdieO2ErtBZGCEweJJnm0xDFyi+f1Ul\nT/XREWh4FLOQUa8HWlsF5Tn81rq8vyt96VuYYYYjyea7fxD7lomkUm0whT1A+STDZloYmfYXbUCm\nbUl5lBc1ZjBnMTVd3KQsFz0y52uxfSCmno+YRNhGRUALA/vKj0YwKyu1j6AMoTZw1BUil7KGTsAO\nAt53gNApP/Vp9h4TKKxtoasPsxkLM+hLqAzCS+BmUPiW9tSbxsHb7S2g35NBTyc7WQbu5TI5D/Rt\n9kL1nqAVfxDsOKDLnNAkLseobt6Kv+32NnBxG+gV8P0eyDmgcjCrKzBBd8jvH8SVl4k6HCcDmE44\nZoEs7OusLicwe3EHtLrS3Og5phwWyrBpDlrOy8pvOYbb3T/9fiVcxxQ5MDzdoudfmmO4AwB5V8pS\n3q+qaqYd1u2hfWgoDpC5sA167jKocuCD4ZJBdB52pvOAAOLY1vsc5ygJ1BA0fuW0kO3HM6jywAgw\nNpRjCV5BoiyEmwWnKgIfwGTaaKpBHgkVa65Qt0EldVYazKAsaGgwotaQMmyE0YSYWjmCTSTXM3qs\nV5Cp+XcQp0n7kTTV/JTVWCT703uL4WraLuGwRGtnQt+Ek/uwTUZW1Co5p/kjZRkoz8DOieMESEIW\n4wH1l1TnRue66sQdDIHdXdAti6LI0VtdBW+swm0OMN4sMN4sQD6HKfuwQw8zdrAHJcz+EDQuwYdH\nEfQm1d8Zl1FzB3lWAyWpBV0gAHJOrycMJuagHcoRDGLnhF3Q70kGs719MDNMrwdYC7+3Dx6dwQKA\nd+CRk2t1hJEDgGqOUFHIYotmXQpMKrlHYQdBsygPj87+2dnagF8bBKcYIbQZoIzjMwNAQnsMybtd\nWKCwwGoBpjWQvwBTXoPZPwLuPoS7ezfeR3XzFnDzVs0cWl9F9cwGjp7p4WjTolpBzXYked/ZSChX\nQzxa65GAs9lQ+gqXowZ8g8i1MotSZpAdMcpVef/zQwGLs13G4G6J3pv3UL3x1symOtEy1cEBEIZu\nG/4VAFZbh5nVVdDVK6guraNcyzDazlAOSICuAEJrP+tb+Ko/D089ABHaz0RrP78KtsTFvtAvOYCH\nR/H9MXf7QFHAbKyD+wV4bQBe6YFKmRerH8LjMVBWTWB3gt0jjDueGm7WIYPQpePTEXZFWTbp67QB\nqgRYSufdXI7BSXNN1K8V1ZT2ZXpewx8vx2DnYHo96SeT/pWV2RiBsnSxtK2RhIXs/QUIPUnzLv5x\nVOBOZ1wfOEd3UfMuPnzAlHYIKyUivFdOvmRLe9+YWV+HubSD6uI6Rjt9DC9mjYwOLoT8kgvCeZkM\nRiLkFxD/sDqhg61xHJ0LCtTVbOiR75Yo3nsIv9aHW+0he3gI3L4nrJmnxY4DUBzzuXcPHgBhRc1u\nbwM7WxJalmdA5UC9AnZlBXx4CD447NacaQNBM8XlprAr51FSIQLJWF+VWPCJchnQ1eLAgmHNnqKr\ntQBwcNg8xzOQZULB760h29pEpNI7J2DRugBMNByB9/bhHjxa/G+ySPz1E7SogZEFLQovHryuXovf\nGwRHNQRDx53QflyWMvl1DpRZYRBlGfhotASHzsrOcjwjyPvoAZjkukESIVoQRW4wUbgJipBnsKMQ\nkiOOnC+MpI7WcCwCYBNQKFy/KcBcawY1M+G0Qj08t1LI13pEEQzyCVtHz3PCBLBjD6oE5CHPwQEK\n9+QZ5HxLfyj0WRq65WdoIyST/IaItEn26X1HxzQARNYEcVgTRK6p4bw2w9o4tsW5mLFRFJnDCntc\n6EyMy6q5jQUsYs8gprDo50Xs9eEjWGuxsroCvrCJamuA8UaOct0CZGHWc+SHBczIwe6NQLsHgII7\nKVuiKKR+BvVYpICRrp4XRWRcABDdoGEY90I4JeWZhJHdfyjp0oO5GSAQ5YXMURW8TLSJJnSQ2pZm\nV4vbuE6n7Tz83l73hZlrodyU6EkEs7Ii5WqY3EAmX9IWZ8sw47WBhIdp9Rw3fgMJCAPU/RTQ6Hdc\nz8L1VkHbK6CXr8AcljAP91C9dzOOxcIcAug1YP3KZaxcu4ThlRUML1qUKyRNTYTsiOvU8Xqp8N4J\nYCRgkB2zpH9nmXtqWJopATtGDfISkA09+vcqbH3jEdyrr020QxfYk2a/MzsX4J69ANfP4AsLn0tf\nYGK2rTpk11Qc28aUHlR62GEJsyvgqXvv1oQ/5Q8OgO9+D/RdAYzS2VZ27SrKFy9hdKFAuWowXg9O\nvHZx5yEqrZb2s12gim7XYxrgSR1u5UejyCACe9BgIODQ5hr8Sh806ImvMS5BlYPt9YDRCP7wsKnt\nw1yD3NPmxO1wMK1b+54677MjrPQ8LAr4O/ij7rku5YUA6NZK+F2q7xYPWvx+PjyAUGIpokdZBtPv\nR/TtQwsOTbOwUtI26vUA4GxWa5bWMNPvg15+HuUzazi6UGC0KRRdzhDp+WyEYpuK9wGBtpvGXJMA\nReQogkBxpdcBHjJx9kRAAbgewfUI5ZrF4bOXw6AJkB/AVDsNx6HYrZA9HME+2EP19vUPLfMsBYfM\n+jrouctw26vi+Lk1mL0h6MFDYQylAvldKzGpzQoD6zjHrK/DXNgSUCqsyNJoDIzG4Ef7ondUVc3B\nVx1ApbwmkwNZoUkGIHVQ0hV1DYEJobswFFd7+dGu0GvzAjQYwG5v1mEDRDKRPjyCu313sl9On6Wu\ncIWzMA3x0dSrtjXJDveALKvDLjS1MhAy2jjpS5VNNByCej1kL70g7TlqMs+Wdtp2xuE/zCDvwTC1\nJgXRBEDEUXEU9eQWyfEIq8mOJRSKAOMZZuwDW0jCydiSgEQ5AWmGsQAGxXAtvXxgBTWAkERAGkAt\nfE3JeOG4AZQY5yPQRJUPwBOHVMZePlOg2rec0kWaUtvEJH1SChylww2Jlk2qAyEgkZRhDSQMK4BG\nbAO4Vkr7xUxtCuidw8JYHX7gEcMPooaNj2A7GaqBjrCPPQubJfRRMa18yMLFVQXs7iErCuRrwhzy\n/Qzj7T6OdgowAdmwh/xgBdmDIcydh/AB4I+6PzHtc7iuao8AQVPECFDjvTgvRyPpD4miaK0vxwAe\nddy8gCwxCyhQizZPC+doO4PhbxzNB3FooJ4ohWeEM1kEpczDZtsCvOZ53XYaZeAc/PCoOQ9mnkhQ\nYUIIGY/HZ9/lWIrPPIVQLJ8nIU/KJLQdFUub0AV2AoX3Y62AX9sBru3AHI5hbj9ojFXKHOoDWP3Y\nyzj6yA72n8slg5dDYBiGyyR6YRpCZaqgGZSJoDQ5wK8AdiTgUH7IyPcq5Pslstu7qF5/E0DztQcA\nu7UJPHcZ5aVVATtXjMxjC9Ti1UAUlI73HcCmNJQrtkfCIqzbcQCqNmAqIDu6iv4DmZeN1y3IA9mh\nQ75bIru3DzoYorr+Xt1W714HvXsdfQB9rfcnPobxcxs42skXZnicqqWPQxqiBExfpOxIWtLI3EUU\no1B4fx9+fx90txDm4/YWqMhlkbm/AtsvACLYh3vgo6PGYjOX4/raXaBQ19w4LNCxczHMq0vL8v2C\nASwiqyCMpGZ9Tb8vY1kQ7/fjcsrZk/ZYgBARvQlgD/IOVsz8GSK6AOD/AvASgDcB/CQzP5hWxnlb\nRPiJYNbWAhvGL7PEzLE2EES93rHAoQ/Cs3MWRr0ezMYGcGETuz+wg4NnLHwvrF6GmGtvZXCN4nSJ\nBkJ78uECY0iBIfJhrqvf1UFIsjbooMiQbbJKwo3CNQacDIVehVANCuByAVOtwXz6CkwpcdrZ/QPg\n/qMTsSDO7LmZEyJ2UvN7e8CrsuJoL+4AWxuS1v7SDuzmhgiF7u3DD4fzrz8vDMxYmH4P9NxloFeA\nDoaiyXD/oUxMnasBqOOGzjF3D1jeTZKViMIcIawiRqprAjAlQBIVhYAkWQY2BPvcZQGxArsK9x82\nJgd+GqV/ohqn+OwQxfSqMY1xntchdBo6BqDBjPJemEMkDoYsRPiaaWUteFyKY2stsDJA9vKLcr2y\nQnX9xocWWH0itoBu4RPvc9qT664V2PS3R1PgFACBQEGkmpxk0ImMIOuFDVoYuJ6R8AOqM/W0waA0\nY1eteRHAINXUYWGVmpJhjzzM2AdgKQGFSg9UXp7llO0zh7HYvLFu75m7ts8qs8U40htvluLqxVRj\nYKywVqJ+U27grYBDVC32Dp7qs8MeXHLy/otgkoI9GkIQAfkABKXbZK5rIoAUgSEgaPCMZB53/wFM\nnmEwGKC/tY7xZQlzKVdEGy8zBrS+ChqXsqCQClGHfl3TTVPIWEb90KcPhyJSPMPsxkaT5RPEqRvj\ncgQET7iiPwEOIZZLysTyFLWL4m5ra7YnALu6WrM+KxeBsHRcavgTC9A9Tn2sAkBlALGSulNYCCcV\ncY+AB9cgiBojtn0ajgoC3GoP7uUrMM8/AxqVMPd2G4CHe+0NFG++g4uf+CiOrq7jaDsTxhDJfDKK\n4gdGjimD3k/IsmWcgNc73x7CfPVbE3MP/WUvXYJ7+QpGF/sYr9uQCU3K0UyH8XZaXUhXhkQ9jvR4\nBYgIYK7rraeQ0VT3hPFG3syA6A2YcpBfkSxm4xdgR4z80AtY9OAI5ua9CKq5V1+DfXUy9GyePbHx\naharRq1jbjKROj2yiSSsicdj8GgkujnsYdbWkG1ugDfXUG30YTMD8Aayfh98cCDZFvXaXeNAkIJg\nbyb6C31u0k8KWQI/KImo0r6GAbm/BaeMp8EQ+heY+W7y+68C+CfM/N8R0V8Nv/+LU7jOkzXmSA01\n6+vCfFWwaGlz7YRMoQ/Gs3OKRr0e/Gc+iYcfH2C8QZHpI4NM81g2HMVH6xAAXWnRg9BC+uWfZjCQ\nlVnU4JCvsz7EU9Qx4HrQTDMlxOuET+M4Hq/b2AizaHilD3+tD1PtID94EdleiezRELh1F0ifhNn2\nZJ6bNAzpDFaANbWr3doErl6BWxvAjEqYlQFob3+6XoJqH7XqmF19Dn57Q8IyQsYYLkvwuzeErrtI\n6Nk8O8l57ZVarXs6wU+AJKHgHzbOUbE+6vdA/T6yl14Ah9VmKiuZ4ixmp/PsFHlIWywhdJF9oAyg\nNDNPi+4cQ+00jSuziFOH7DgU7gvMElevkx5rkL30PHjQA+0eoHrn3YVvemlTzM93zoKdznPTZjQ0\nRCGnvFtzgeGa9UIIAAFCBhOIdo8ZA3xEsD0L1zfNbGWKHyTi0Q0wKNUZ8QwzFCDIuBAGVjoBgxzX\nYE/6fdr9TGN2tI9tHTcRFraILfhnpiB8DedAYWFV2FAENgZWNYWOJ2R/Ks9OQ/sy9IlgHxlBKQsz\npj9HAga12UOudszYV02GI7OIVo93gd09FNctikEffPkCyp0VDK+uAlhFduiQ7Y5g7+0BmvVsXDZS\nr6PIQVkGd/9B53hmVldrcVVNaw1In5jUR8PKGuZDuG7X9jbg0wUcpe9/B0BEWYeL1HWOprTPbEwi\nYNbXpOrOA+V4kkk0306nz1EglFn0pRIghxGYQQE8lska4n45P/wMIBErsy5lzOiplsD9HP75i6Ar\n2zCH4yglwFUF9+1XkX8bGDx7BeXLl7H//ACjTYRU8hyFoFVXyJTA5ptHML/59fp2wqfd2ACuXoZb\n78Ot5ti/WmC8TjXApMdTs45Tm0nBno57Z5pyXJeFxVrWuTe3jg/7qwGh6hNGGwagDOAeTLUJW76M\n/MCjf3eM/MZDuOs3TuJfPf6zkwCAk/fYAmbbx7XZrV37vWvOub0wd/zeHvz+PvCeQbZzAXjmAqqt\nAbjIYA7XkK2tgYdD+Ee73XrAYX5JliYXTDukBt4vjKBTsY62Ps79PYmQsX8DwI+F738TwG/gKXPq\nIzC0shJitpehZGdkT/2zcyIzFtWP/RDu/kAP400EoUtuZlBJzdfbGqscBLANoxChMZFPLQ0jI48I\nBtWpe0NxCaDTXj1pg0F12t60nBZgFJ0N+eJ6Bt4WKDdy2MtrwD+d3kRz7HSem5MwL2aBK12rmR3H\nakpXs7oKXL0iQMelC7CrK+AHjyazpiT1zK5dhb+wDjoqwfcegF+9C68igEnIQMOeJNg14z4ntrdB\noWnlMddifaMR8GgXICNi0nk+KXZ9PDv5s6MrX0DNADKiI0RZ1pgMcVUJaKTW1rMITCFlHCEARJLJ\nJgH/mEH7h0BmBRR7tNfI/rK049oCoES3neC56QCD9HNiUtsGUZN+JI2QbK+AqrMSQsmAxIFhhqk8\nzMgI2yU3cIUJ7FJqjQsB1NcsN5UPzFLRy6AqfDpXh3/NsmnA0AlBoWPZMfQ3JhY6wvnEHgQv+w3A\n5eI0/A57vPFKGSyJibB0AHu8qQGi9LR2aG2irxNBagWREr0zrip4z8DeHujhI/S2t5BdvYjRxQGq\nFQs2ffgiQ7Z7BLr3UFb6ARGBPjgEWho8lGUwmxuiMdf1Psxi/CgYkwIx6XbdFgCaxu+0jPb57fK7\nfqfnKJimOiZtawB3FsgGwiQCgDv55PGL2cmeG9Uky61kKVTgL8zjOB2DFRTqsFRcvU633mQKUenj\nbl9k8EUGs9aHef4K6MZd0RgCUN24CbpxE9svv4jhRy9i+EyOqldrBa2/dQT6yjcn+g378Y/g4BMX\ncXjJwvXRFIvXz1CXZuVb2xuLm8lhc8Ceedm+Gv1HCq4n15kKPJGwonxOqPoWR1sD0EcGMNUV2DFj\n9e9/dfbFZ9vxn53Ylh3gTwr0dI1V08CiuD2ElrXBmZRVzQ7u7l3Q7i6ytVXgmR24zQFMZkCjAeza\nKvjBI9EYaoWGaVkxURIQZBg+ZOzqYy7+Pi4gxAB+jYgcgP+Vmf86gMvMfCPsvwngcnc96WcB/CwA\n9PFYE/onZjF1Z68nzppzy1Cy07MP9LMzz+zOBYx/4CXsPd/D4RVCuQZw1kJ207kSJwNJe2WmZWxD\nHDaF7DRdc3GCAE+hzBT80etNXU0JK0u6YlSvJqPujMOKUyPOOnxGAWsj8g/EgCsWpn2/v56brpWP\nrhX/BTplFR00/T7Mc1fA/V7nudlLL0jqzuEIvLsnIFAahhULfMzB7yRMolnHz3N8Fykvtm0Q2js6\najoVc0rDaT07CdODgvPBuloNcRgpcUzImIYYd9TycIn2EAfGkDESHue8MIQ0I4/zwKhMKyXp7K9c\nBjPHyfbSjmGLPTun89zYdRFzbQOhykpREeSud6IdNpZua6/G6vc0HEiLqTysY3DlYcYGpjRwPRtY\nqBSZo6aUzF92HIAf1QAqnfxbBASaVv/0PhZlCz0OKNQW7T6mpQARMQMVN1l/s+30+hzmOrRWM4mF\nUDFN/BEvqgBRuiiQ6gqpyLKyiQzi+ZRndXr5NJSC5Fj/8BHM4RAr1weSbvzyKsYXCrhBhv7BEH6K\n5pnd2pQMY/rsnyTUKwWA0vO7ykpBoa5zZrED9dz0+dTfrUWMyBCdFvKp59cb59/naT43lsAkAHA8\nphIhem73HV2MjvZrR6LV1WDqMWA0JM2YwCys5L3LDNxKDnzkWdgrOxJO9u51AED1xlvI33gLg2tX\n5XciUK1mP/4R7H3/JQx3DKpBAgBp3dpN29W8OmdOzotT6A5g6MSWzs3Tz9ZcvrOureMkPI1D9shj\n1eLUxqvJkltA0DT2T/t50nPV2nPTrmPjYmAF9+ARaP9AhKavXIJf7wMbA5i1FdiHe6jeu1GPd0nK\n+A9NIqQucA449r0/LiD0o8x8nYieAfD/ENEfN+vCTNSNqYaH9K8DwAZdeF//xXg0klWN7S3wnbvL\nMLLTsQ/Fs5Oa/djLGL1wAXd/sCcAkAF8IYhIF/iT2tTBqn336YBnGOSmnEgIInrJXFEH145FokYo\ngZ4vAQox7KwBLHVd0iPqHOlvACGGfeHR+Mk9N8cFQLoGukXPpzBZ7wBt/NERfBBIVLOXLgEXt0Cj\nEvzgEfjmbbhx+WT1ZB5nIO2aXE6bHJyk3EY1Fy7r9J6dKskaxhyyyTDAXrSBEueDAyCkoFDU7SCq\nsx65EG7QnnCpjoaXa3BZRu2hCISRrPDbS5eAcjxXn2Npx7ZTeW42i8vccChPw7yvy+pyRIGaIWCT\n64awMjNiUOljVh2QaBHZMgkHOw4T6Dg2rW+Yd1rKSljUFgSFjitsvYCd7njFQQhZwRznJsGgqsQE\nO1RDyYK4cSM9fJKBi2zI3qNZtnSuq0AU+zqd9GgEczhE/8Fa1ItpzIyNlUQBKRPopEBQ22aFf3UB\nRbqv/TnNtP/W42aM8WQE5G2EDsed9Xg3wRKdbaf63LTffbTnW5zcV5sZksz54vlI3kMi0dRiBlsT\ngWMA4CKDz4JwuAHcWg9u7RLM5S3gD/4kOu4KEKmZH3wFex/fxGhDQCCfp/Wa0Wrz9qX3En53zbUb\nDB7unpM3QKYE5NG+iZg758MTLKSO+XbjMsfvk05vvEoF9DXcqgH2JCLS6bPfll9YBPBPP9P5Y8hs\nxuMx3GgEMx7DFAVoZSD902AAMxiIOP5o1Izm+TCAQcCp3edjAULMfD183iaifwDgcwBuEdGzzHyD\niJ4F8NQvW9qLO8C4RHXj5nlX5QNjH5Znh//UD+HOp1cw3kQUfvaFDLIxsUXHgNM5AKWm++b0A6p7\nN+04ERgNdSgBbymmIk4Hqnkx04tmXmnoKTKCQCnV2g1z7NSfm44V9YXtcTrhQImNwFCHJtD4X/oM\n7Mij99Y98P4h+I13JP3u46yWn5VNA4G6HOLjgGiP0ean+uxoxjCtU56DqAJMLk5aWFHmykWdIAVu\nQh1kBd602oKoDkNIV531+PR+goAprAHvHyzZqyey+c/TE+9z2r5tm6LfrEx3WfqTW8cEAWr2VH8n\nRIdQQ8PssAJ5KyLuIwdzVEpYWDXZLz0RO2noWIfA9lzT4zswgc6Qscew03x2KC9qUAeokwL4miHE\nztWhYe10w16z7DRvnIKzDs9QbTMAUnYYn5RtFNO7h6yIbncXSNLDw1jYnQsShjaPwbOITdP46bJp\n7KEUKJrHCuq6dhtUmsIC6gx/UxZRaFdeMF3UaT43vtBUXgloSDQBRFAAdGTOqPVP9qEGOqRgFv0h\nBSO1nQJwzLkNGfqkPzMhnCy78aBT/45++FM4em4F+89mqAbhmVwEBDoFa8+3YyKV1vy5M6Rs2p+U\nMEn6mTevb5XnbUh7fww7tWenXc+UfR7ndwo4txYA0zT06cJnV/hZvF7HImLYHjOVmfAsF7mEpN57\nADzaW0q6nJKdGKonolUiWtfvAL4M4FsA/hGAnw6H/TSAf/i4lTxPM+vrwNZGHRe9tMe2D8uz43/0\nh3D9z6xgtCNgkM8ZXsPCWoPPseiqNOX7lGOj6HTXCode39R1YNP8XVe0+Y+Y6+xkjMYkaSqAxIgp\ninWFKaYxnncrT+K5WRQImuewnBSg0cGzver4me9H7+4Qxe+/BvfOdfgHD5rC0CcBsM7bIsjREgtd\n1NKJ+DHb+9SfHZtMsrUuqcNhhe1D1jSBnVD3yA7SzEwm7LdW/hmqV3FdksFHVx+NkbKLHHw4rMGg\n9ztQ+JTZE+tz0s82+Kfb0uPT9z3ovk28O+3jgHqG157peXFQybGEegSzwwr2YAxzVJ0dGAQsfp3H\nqY/BsWe8UUD3BHbqz07K9tFU8oaSdPQubm8cr985yWZomuB0Q9NsQnPOx3PCCaKV1iF0azfW6rJP\ngwmU2iIC8IuLxIs13qvEudX6pyLMyvhsv2ezno908WNBFvRpPzecLjooQtGqSsq6q0OaJueqs8BS\ntpQwa1p/f5Zys+v3OsGg8sufwZ3PbuDRSznK1RAipYBQ1zz0pDZjDgxMzlvnaQY1jKe3TyPb2Kwy\n2/uO2fU8kfHKTAKK4WKTY1nX/fspOlttwDqyGtO+qAanKcsAL7It7u498OFQtCWrx9JzW1pij8MQ\nugzgH4RBJQPwd5j5V4jodwH8PBH9JQBvAfjJx6/m2Zrd2ABtbwLOw926A//aG+ddpQ+afXCfnYs7\n2P2xj2HveYvDKwy2HtnhZAxwFwCUrh5MA4gaOkKNHclnAuzU2j56kdbxYaCKqzEG8JJTMwI9teA0\n1+WH7cYB3so2VxCyESLbZ2Jw5FqgFIaEjWRYVq0XG/nO77mZ54gc11GZwnYZ/aufxWjTYvtrd+Df\nehduPH76gJ+2TTwHtXCpff4q/K078MPh7PvsipEO2dYWpOGf7rOjoRfKFFLAJgBBuoJORA3tIBFu\nFd0gMkGwJcvk6U91SZTWXzkRsFUBawqi1daCj47g7t1v1utpf1bO3OY+O6ff57QdyTYwNLWq4R1o\naw21V1nV1DdWsF2JI4nD53MbwfhsbwQaueOlhX8/2DyWULq/AbzNcG5PB1g93WdHM4NZC3gDsohg\nTUw5by0mwsU4AamjwKqpdYMaunOmqEpIXgAAIABJREFUPi5sT8vUsIxGtfIC5sIWqP38TsvsdRw7\n7vnTtITS760U8w1r6walZi38pS2Ye7u1xlICrHW+kwqyZEGXabHbOdXnRrLIdoA7aZhhZAxp/ZP5\nG6PBnIvp6a0CSFyL0JcOqDyQGelXGCDvYd+4CXfrNtpiG/aTH8edL1xEtUqRrf7YNg9ACvPXBvuo\noytI2UApY2gCPErxiw6GYXYIrL03xsEVAbvifLw9F2+Vqdc8JkvoFJ+d8D4roDOFvRN/p2Fi7ePa\njPGURaTHp2W03yWWLLR2a1N008ZlnUzjaRqrTmDZlcuopuiyzbQTMOpPDAgx8+sAPt2x/R6Anzhp\nuedt2fPXwPsHqN56p974mKEKT4s9+gtfwHidcOmv/fYTvc4H8dmxly7hvZ/6OHY/ewTsATu/x1h9\nj3H30wIGTQN40gFnUZZQ+zgCps5t2XAY8Gj2yoReX+fLAeThJPtYfbH0AozDZyyu/sptvP4XLuHC\nt1HrNRAJAKQTDw8JQ2BIFpxQr3T1ZOZ9P8nnZtZAl/5u0MLbE+9WA3ekuEwq3Tjuzs9+Dqu3PDa+\nfgP96zfBRQ4ez6HBth3Kp9DKZ7dQffQi8l/7WgR4Ou+ny4nmKStPHfZEnp20TgoKaRrUwALiqnas\nWB0tMnFSA0MgBZUCkBTNWhGXHo1lu2oWjUtUSwHpU7LZ786pPjeE5vObghNthtC0vmdeCNm0voCo\n4Qj7XgbXs7BHFeyBrLCS96DjMiwe19r3vOD7PKEjtGDomISxWIAAuzvq1BaK5SahZScJJXsifU4K\n6uhvAHBopJ0X8JkECCBhE3JgIEZgOoIEpslecS5qB1GWCZhhTEyyEi+9vS2hGxtroMMFGPRPYh49\nK538tFT0XZnJgM53Lmq1EaG6toPv/kwfr/wvgLnzMGq+RWAoPbddnnML3/8Tm+co8GEIFMIGIxCk\nh3huPuu6MEGoxe8jkygs/KXaYpX0IT48l/ZgBP8Hf4z2LMhubYKvPYtHn9zEeFMRlin17gJPuhZF\nj2NTzj0OU38iycsUYGnrb4k/tQng7n/0xSjcn2YBrjNBhuql5dDiAPUT961mLWZ0hpTx9HnwRN8v\nfVgsJjnPfvwj8G9fr/URP/cDwO/84WPfztNg3/mvX8LH//Kt2f5El3UBeHPsSaSdf+rMfuxluNfe\ngP/TPwz/jddi2nkAsJefARGdDKF7yqz8qft4eG8dl/7aedfk6bLsymX80c9dA8Ylsvd6MA5gAwzu\nlLDjHlwRBs723F0HEE7Gu+NlE6gtHYxagxSrHzFlUTSykjIAVVgJMSGFcVj5aR4YyicGe8LB8x7u\nT96ALy7JYBf0h6JGUsVxlSpdATGlVIgNGhkwzsymOWCzfjdWPeZ0zgt03u/951/Che9UuPJ3/wh+\n/wDOWnA5BqmY8LQBWL8TgXq9sGI5GXp2rtZ2ftV0pbGqQF/5Jvqf/DicrkQBiwFD522qH2QtkFkB\nbayV7ZqSmjVkzNb1zrIIIJE1NcijK/+RBWIiQ0iWxix4NG6MTUt7yowxfeV0nnVN7JhrIGTKxI+Y\npZsyEh7m+xbjzQL5boni7gHIMTgz4CKTxALlMSacp2UnBIUWtjRyJZMfvmdh0/0LAEqnrS90bGMP\nLhmaLSzqBmnIBNUC9MwOaUiGZgwDAE4WMthzrTnk6345GpkJbTJ7cQeU59BsiJxnAq4oO7ILtFQw\nU7MoBhHix+7PpzGI5jGF2qLRQKeTS8k2uzfCtV8dgN6+AQwG9TEKDClAkl6z9a7TaYfRLWKeZ/8G\nagBMkxzoXdjJZ56cl9T1vvXOuiADYAzMWzfh7t6bkOna/3c+j+FFgyu/eQ/+W3+M1fVPY//qahNU\nadS1BkpkXoqmttAiNgWoOQlLaOK4NlAV9k/rKzSxSmQZaQK/FIucMk8/F2vPe1Nh6a7jjlPmxHYP\nrhIAiR0e/PQXcek33kX1J6/LMeE5NWMHrK/Pnw9F9l53Apf3vRHhI3+vxP3/4Iu48DdOQNQ4Zv96\nDr3TOdiUCYbd3oZZXYV77Q3wFz+N/JvfA1270jzowqak/f0Q2P2bm7j0TwqYH3zlvKvyVNjhv/V5\nvPtffQnjjz2Ll/4uYfBOLh0+Aa5HKO4eoHgA5HuEbEgwY/nXSAWvrBwG8gNC7z7BlDQ3Y9eEtVk2\n7cF1zgCqOkLtlJ4+Q80WSgdPPc8Cg1vS2W78CbD/vIn1Jpb9E/pAcT9HHSI7PuOVaSB2lqRO+uPa\nvJCPYHZ7G7f/8pdgNzZw7X/+JuwoTNSrClxWknZ+ewvZ5WeQXbkMe3EHdmsLpteTwTK9DrNkQez1\nYNfXT9+ZOo51OQIN2m/TAaAf/hTu/aUv4vDlLWQvPl+f1xAknHI/582Oci5m/YpgUNgGoDPTDadt\n4UM65ySjT1xFVjDIM/hoBHf3Hty9+/AHzRX6pT2FNi0cRfel+ztA1MZ7RARkpvms6TlKWgyOie9l\nqNZ7IMfId0uYytc6RCTgP1sj4FBmwEb+zXr/4jFnbdpvt9/9BYYQNgRTOtEG6tnmOV3nd20jwoT+\nxVlYEHemomiISIMMKMsR04WmoWJR90dAJFgrQDQg3/MASCsY5JpOU1ustfrxH0H5yvNxTsy9An6l\nAAZ9+K118NY6eHUAHvQEKE+Zb1UFjCUNtN9cE3bRgmPmqdqsULZpzzwRrv/ZHTz4Pgv3fS80fYJw\nTtRkcr4p3K33qH37k1ZInqg7GkBG472JgEYC5LVYQwAiy5ttzSYTOYGahWDGFdy3X4X/1h/D3b03\nWQ9jMV4z8DmBhhJ2mL1+Ayu3PPp3GcUjRr7HMGOEvgn1giYDdsjo3/fID3ihd/00LWbRVYBq4oA5\nv4Nd+t3AcOEw57b1sZSAXxPXPZd5DtfzTbVpTJ8ZvxsZhNP3nZrjFhVFvIb/0R8CAGz/zd/G6z/z\nPLJnm365eXQAs7MN6vXq+fuMMZUMidj9edoJ+rns2lXY3/h9XP3p149XVvouH+d6xzr6abU2wt3r\nwV7cAe/tw1y+BP/6Aei3vwl84mNw3/kT2O/7KNx3vwcAMti9/jYoL0D9nnT6eQZkGfjR7gcqs8uP\nvPIG9v7Du/ju//AFfOw/O+/avD/NfPqTuPPZLTx8hXHpa8D2qw6Hz/Wx+evfw4s3dvDej1/AeAOw\nIwa/+gYur/fheha+MHB9gs8Ih5cMylWCGwTAJeO4alDsM/J94OgiwQ0WGwQ6Mx90HAMd57tWQpTZ\n0wb+DYEty3wyHQsorCIR44WffwcVgIu/v4vX/kqOzdd7yXUlZSg5DnTQJksIqIGhMzedwFXtyPZj\nnD9ttX/Kiv3Dv/hFXPytG+g/8Nj98iex+gtfRf6Pfw+H/8pnsfqH7wnAsLmOu59/BoeXCa4H+bt5\nIN8HNt6usPbqA+DGbfiDYVzl9QcHAEQE3+/vnw1Q0gZljnNNY8Ff/zZ2vh5+X7k889iJicj7hClE\nWT2ExqxhADAaIYZvqIZQSDuvjgPlkikDVSUOhvPJaquHv/+gGabxNK5wLW26HYfO3Z7gtQEitZQ1\nZAx8bsDWBOFoDybAHFXw/Qy0VsAMSwHsDcH3LHwva5RFXrIDqTbIREiZARjm8UPNTiucaA7ThyoP\nczBCTgS3UiAbDSdBoRnnnzdLKM0SxpWAK5p9jCjJIKYAUBoWBgiTVAtzaDCE2mCQWvb8Ndz/09dw\n4TffBv7p1zD+lz+L6hPPYPDOLqrtFey90Mf+8xs4eMGBLYMqghkR1t422Hi7wso7BzCPDkEjqS8f\nDEGP9sAXt4UJOzpBhqCT6BPFUEAzyQ6aFUYWzhvc9Vh/awT7vevwB4cw21vN8zW7ZCb9/EQoGRDA\n/zN+flqXU41Hn5nWMVPG8RA2xtbIsx+yi7ElUBWAoq99eyIsbMK8w4X//bdx8Oc+j+qNtwAA7tZt\nbPyfk+HPdmsTh1/8PuxfrTOOEcu82pQyFx2v0+KUBkKQMWht72IltU0ZShEUm3JCBLAosoTa2j/+\nG38EfO6LcU6nTHoKUQWNhWCt27l1N4ROpnaXVtC0TyTz63YfH8qgvAis+ALmxWtw3/0e8tt72P83\nP4fBL/4OXvhvvoI3/8sv4cVfWIELTCE+HOLRn3kZq+9ugwsDGntwZpDf3gPuPYC7/7BRd64quHv3\nkT1/De7m7fPJSkYGc6MKWla98y72/t0vYJW+F8qgyTG/y04yJ8eHBRBKLHvpBfDwCP7hI3GidndB\nn/0BmDfeg3/9bRFw+u73YC9dgrtzBwCiiF77ITLr68guXZS0v3v7kwKf52DZyy9ifO0CzP/39fkH\nt2ynd4A9AJc+cff0K/aUW/bsFbz5Mx/B4UfHgK+Q38vQv1+i+NXfA77wg7j/5Y/iwv/9HVz9P25g\n/5//BNa++wBuNAL91jcmXrLVUN7olefw8CM9jHYI3gK+ECCof48xuMMYXiJUqzx3QGjHG3cNcmwY\nxAQ4TA4yBLgBo7hFePj9FTa+m4EW6C8pxP3y7j4AwOwPAeR12cnKhqk4rIhQFCEkdV6A83HwG/HP\nNVto4dCr9jFTQtCya1dx5ydewMrdChd//W24O3ex8XfeRPnlz+Dg3/48Vn/hq+j98u/i7b/yJWQH\nwJWvPMTW3/ptbDVLh925gMPPfxTv/GuX4PNL2HzDY/M7j2Bu3gOCyJ7f24Pd2oTfP+gGutI6Pi7L\nhjm+FzvfqTD4xd/pPq7L2fMO2UsvwL37HuyVy7j3Y89j828nYbnt0LyY6WJygsLn8exYK85DECFl\n54FyDOr369AxDSNIRKdVv4PU+dK/0TiEfQSAqXr3+lnf0VNl/Kd+CPRb3zjvapzMWhPmmSE206j5\ns1b+LMGt5uKQjB2yvZE4KbkB5/IemXEF389Rbg8ErK88aOwnx43coOpZADmo9DBjJ3T9KnTcXq53\nKqBQeo8z7o+z+j5odIwJtpZZOWHxDiyysGA/lXFg5uw/S2Mfwv9IwIcsTzIRBqAnZCCLn7ot1RUC\nIlBEGjdnCGiFC5p+H2bnAtztO1i5dRm3v/wiLv1SheJXfhf3//0v4vqP7aDcclh73aB4yOg9MKBK\n5jE+JwwvAbsfJ4DXMLixia3XHNbeOoR9cAAajsB3HwCb6+CVvjBGuvrx9nsSQ1cWQALaoJFzGH3i\nObz+53J84n/bk3Gz/Zy1gSHd3ytgR4zi9VvgyxfluHsP62OZ65DfqpLQMIMaGAJqZtZZWxdxQrdN\nA2Ibi3WTU1Cd19m7u6jefHvidPPpT8J/8zud1Vn9+1+dW2X38BF6v/y70KXF6id+BHvPFyhXDPJD\nj2wodSzXJxO2xPpT8h3obIeGNVhUdRuRB577xTdRXX8PdmsTN/78p6JAf+dibFJOsT9lbqJMoAAM\nmQqNcLgUFIrJXM7DOkCehs7PInOvWWA/EbgcI3vpBVRvXwe9/hYoy+C++z3wpy7i1n/6JVz+H7+C\naz/3FXzvv/0iXvzlDWR/9BbcrdtYvf4ssju7QK+ALzK41RwP/rmLqPqX0NvzWH13CPvqO/CHh6LH\nyYzqnXeRXbsKf/femZE5KMtw6z/+HJ75n75yovP3XjS49bWP4pVrRfe8cJbEwjHtQwMIZdeuApmF\ne/e9CUdpeHmAlT86gvm+l1F9+1Xs/+QXsPbz/0yyJ7x1cyry7ff2Ygyj3dqUa4SJfnXz1rk4uW/+\ne1dx6ZslVl96obOjnmW/9uor+Bi+jnsP17DZsd+srADAhLjgB90e/sUv4vaPVqDSIb+dx8Hi/isF\nrvwqgH/2B1jZ+Awe/dlXsPb3vorBP/yduasl1Y2bsDduYufXxdH3H7mKg+dXcPCMwWibUDwCBrcZ\nowsh+wLqlQTyAGeA608fyNtGnmoabtf+irB+vcL+CxaHzzLW3taJY80cagx84XvVp/gO8PWbKL59\nBcQurqiQB8brBmwI5Qph5U4FU3lQ6WXFJTCGzkVDKN5LfWMTIEoaHjCPodF29ADs/vkvYP3NIXZ+\n4Q/AoxEq52AGAzCA/B//Hty//rkICj3338uAMc33cPfuo/dL9/HcL8nv6id+BO/9+Daq/jYGdxgX\nv7EHfPO7cA8fwV66JPXVFeIsA/UK8GgM3ttrprBfxLrAIyJUN27i2s/dBP3wp2CvPofq+nvd7dI2\nY+Gu3wRXFap3r2Pzb08OdGZ1FeVnP4HiW281KegKDunf46yFcIGm5o9zoF4h+hjhd+M4BYHCJlIB\n6TyXTz2eGe7GzZMz1j5EZn7vO+8bmYVj2ywwKLUZk+i4vxU+6osMvm9hhxXM4TgKvnIvl/7WefjC\ngrwRYCc4G6Z0kv0xvS4JC4BzCx9CyaoiAEpOACRzVAVRdEj4WPtVDPo8x8pclrKhus7xgNkdwm8M\nJGSuSi46axghgjkqQeNSdFC6mt5KKByFsM5YD3U6WXTzjk/+PwVTJk9ZSd9nLCimjqvDTKNwdOUb\n29lAgKOQrl7Fpjs1gpIwanthG/h//xBbX/oU7v+LH8H2t3Zw8WsPANoGOYvt/5+9946X47ruPL/3\nVlXH1y8nvIAMEIkASZAgAEmWqGxbMr2atSzHkT3jGa/18VgO8trrnR17Zx3W9tozsx7v2Ou15SBa\nkjWSlYMZLEoEQIAgCBAgcn4AXk79OlbVvfvHraqu7tcPgQGPlH0+H5D9uqurblVX3XvO7/zO75xe\nwB6fN9fLVyZBalvoVBKvK83CQJL8KrjxZgFvyeDMt9B2Drqen4HrE4hsBt2aNd8Fc40TDtgSUfUQ\nhVKNPXm7JkRN0yg0KbGKLoNPORSHW2iZXahnJzVjHQVMIp1wULZAp5OobBJ96EVkI6s14VBe003q\n9I3o3mkGDC2LxQAeZUvqBO7DErGGTmSRcLvFIlFj4Sn0c8cXdQ2b/2HTmEbZgt6jtzk2aSFTSVS5\nsqSPZT9xmI7wVN50HwvDKZyixq5ovKSImDZWBayqxk8IMw6ndj5LWkMCtRnAE/o1/uwcXSfLTG5L\nLd5Hk9ftJ+YWTYkR2BRslx31SD1xDH/3FubWmP2GQFMIBt2RfMSraU2SnDquQbUUS74ZiKt1jV0U\n/N8eGjRNnIJYVSui+zLzuWcp/as9jP7cXvr/8z7W/Mfn8fZsjfZrvXjBdHANEri2bdNxMgkdbXh9\nbcyvyeDeu4lEXtNypYQ9kcc/ewFv5Bp2fx/MS1S5YgAu3zdMScsyc+WryCDSnkfbeZczf7yLjT+z\nRNL0JtZ3qIydr3Lql4ZZ/9GYnxxe2we3vGoC29/xgJDV2opeOYC6cGVJICP1pYOMfmQvvf91H1Z7\nG5kbFVN6kc83r4VtYv7sHIQK6NLC2rwBUapE1MjQRDIJSiNbsohMGqTEu3bjVSsHKN1TJvlbzzPy\n0b30/6fbB4TUW+4nfcII5XnF5rdF4V3bcLOS1scOvCpjfb2bftN9nPuhJFr6OFP2IkE4N0dUXuh8\n4zmS2za9rESiPzUNU9NkDkEG81vMbkjhFDRdx4u4rQmEp1AJiZP3sEou5b40s2sdvAwoxwBEpiws\nmLSJLSLatLoM/y3SAtJQbVfIqkZ60HbfJO6VngjUCYX9GtttaiGotooogJWtuYjRFGaQSp0WbedL\nAMy8KUP2hjaBhOvXRAhDLYzltCUzZZo7onkG+1BvuZ9Kl0PH18/gz8yhYh0YQp0gVS6T+tJB093v\nvQ+R+NqhOxqy/cRh+p8wr63NG7j6vh7Uux6k+7iHVVHMDzt4WUGlgzqnIj2u6TxVJnFpEj0zh65W\nUSFDJZ5VDizSq2hcJLVGJJPoSgV95AQq1eAkRTtoxnRQaNdHZrOoQgF7RT/ejdFoe2vdas7/y35W\nfr20eA4O25IGwFAkino3LZYN1s1KHgMGkUgGOc6qW2v/DYYJpBShroSuuvgTE8hM5p8BoduwkLVb\nfv8uUl+8cydr2WypstJGEKRxu1uZELhtSayyjzNdMuBObB/C99G2Y5hAwpSHyaqPVXQDULJ2D2tR\nK8UQrjLfsWVNY8gyLaVVxsbL2lhlH+kpo8sTtbgXUQcjobRhF1U8M67wWM0Ylo2vG+eOcK2YWEBq\njd/ZYvSQbsO0JZBVBVXXlMDFjydBWxYqbZtOS0ojy2oR4GZeL1N0FmoGgSkTAyI2kIwB0X4wwnhH\nMYjAoNAawSCZySByLabsKT6nSol2qzhHzpPo2MSFD7bTdgZ6nplAFEroUqm2flBjwgjLwpmw6byQ\noOP5FF5nlsJQioVBwexGzcyWDjI3Omm5plgYlFTbwMto/IxCZz2D6YwnaD8FrZeqJMcWDJMoBJ6W\nAohCJo63eN22J/PkZoswl0cVS8jWXHBtY/dQs9eOjVNUkC8gx6dMwi/UBPJ9VH8Xpd8tMrYvyZpj\nFcM01rUOZUKaeqBlYbPGAJ9QNHrxPU2dPyji5c+Nuzt6Jpp/Q6t8z0PMrXbqABjvHTuxnzjcdB8y\nl0N2d6JygTi3lCZRGPy2YqGImppuyuIQz7xA7jZPXW7bxNzWdiptAuUs7vhbx8QJEp836woMYD31\nPGzbu/iDJt9ZiiUVbt/3DyN4l6+a5m/fPAJrauVkkU+xjFNOc0DeX/x5MwBoqe8T+Gw7NuEdOdH8\nmMF++p68ztg7B8h/aDe5Tx7AevooSprP1MICwrLMnKZ8o6VZqaBn5rAnW+g4ZSFac1SHOnFzDhP3\n92O/pY+e/ZN4J8+i9+zAni7gt6XNGuUpKr0ZtIDMqTHU5LTBDF6FZzb99EuI9217Wd91Zsrok+fR\n4n7zRsxHEA9uY/yBFnpeJRfoOxoQsjashZk51PFTt9w2N+LhvWMnPHEY5+h5/FfSzUX5+C+dQSST\nZpHNpKOgRlcqJjs+OwszMwgngdXZjmjJoktls7jMzr3soCDdYibqSsctNmww6fqUu5d2rMrv20Vi\nziMxt+Qm3zEmczku/7t7Ka2vYE0JrHKYUTGfh4uIn9SMvqOXnlBv6jbus9s6/reO0PktomC5UdJc\nA0mgD1MiWNzYQ6XdppoTeBlhFrVYzbXRggCrCl4Kyl0xmm24iPVUcApQ7RI82HuVZ+yeiI1UtyAJ\nolrsRrqsbssZYEoCWlDslvT+zVFUsUj5fbuwqgGgZgnwajtdNg2huN3p8Zcot5LZLJM/uJ2ep0ex\n9l/Fb1J+pn0f2ZaDwNlp+8RNANbbbDXpnzzLwMmzyEwG//6N2BN5kvvHm3ZhsDauY/y7esm/awjp\nDZOaNPNfarxigjZf46cddELittgIH9IXplGXRxY5grpaA4lkextqtFwbd0hjXSpbFPzf2rwB8sXo\ne/bKQebv7WX1vzddFez+PtNmvdHRCEvJlnBcX1NTsYAk0FQAatoUvm+cf6UMCy5kD8XGH4pK+5NT\nWO2Gk/lPjX35cs0eGsQbuUbLC9cXZalf9xYHfZoFZlBj2jTDybWOSrUQAi/rILTGmasgS27TuUz4\nQTAqBLLqGWaPUjXgqAEcqWcPiEB3JGB1as/oE9kSlbTQjsS3JdJVZkwhpqw1GoGWApWy8dM26IBd\nFAJNvlp8ruGxfY1w/fq1IfbMCdeLdE1u2ZZZBf9CsKOu4xToQD9JeEaLok77o/F6LlfuIgDr40LQ\nRgOIGmMxbBMO9WAQBIygGhAU9zHDbroRyNFwX1pdnfhT0+ReGCU52Ymdr8DsPLpUNiBVcHxhWbUS\nKaXB9VDFEiKfx56eo/16irZs2mgPrUqRXymY2iZwFiA5DXZBABZW2cIpaLyMYPYezeSbBVTbsGct\nWkYELdd8nLyH9LRhcGQslCOoZk1Ti9ylEs7VKVOSG/utVSaFUAp/bByZy9WE/EMATOvF3cgAUSyT\ne3YWUklUTyccn48+94d7WfF/X+Kbh7aw4df3QU9PdP3DfWptOowtS/IiYhJSx4YRvjIAUez5Fyro\nRhiyiDTRs2UVq6ij9cxMa8Naxt7eh58U9d2/NMxsTNDzxOLh2KuGUbksvmMZcDcMbpHo4OHS6QS6\ntwPp+shiGTU6/rLWRnX8FLnjRACS1dqKXjOIn0kgtMaaLiAKJfyxQMfo/s1M3duC2yJqoFAT17BR\nB7PZdqIJYzzcTgC9nz+HF8iSLLJldoebWqMv2rh2xde0RhA/7PKlfPSeHbD/KDQDg6LvGL0d7+Jl\nuo/kkPmy6UQbdiILj9tgIWDuzy8YFuT8AvbkNE4qReZ0msLmPsb3dtOdTWKPTOGPT2DlWtBDfYiF\nEkmtKQ22MPauIdBDZMd80qNF5HwJRidqchJKIVJJM86EY+Za163JxtSVt1qoQgFnumHhuFkpXezz\nuU2ttB73TSwW+w3soUG8545TfcfeKFZcah+3a9+RgJBwEljDA6jrY80vUhNLf/4g539/N+u/aePP\nz78q49CVipl/XbPwhtn0+EOl3aoBi8IsuBCmW5BjG+BoqQljCWv/VA6ZyZCKV1hkswB118LasDYS\n6ALgwDF+/s+n+MIvddHxnAO7t2PNl/FfOsP1j+1l4Pf2MfVTe+j9zKlbi8e9ga38/l1ceVSBcklc\nDzppyBpDJmTZoI3YcqlXYK9ZtYgJ9mrY7dy73sXLJC5ejkAjmUohcjnobkdlEljjc+hyxTiBfZ3M\nbGuj3F0T6QtNzyco9AvsecF4uQU0pGaMw1DuFCTmNck5RWa0wuS9aaQL0ofEnMZav8Z06rs+xuA3\nO8geH8XvaSN3rIAfLOJui6TzpBsATKEgIZFI57K0O74TawSAmkyy+Q/tJnujQvdjR/CrLnV1vdJ0\ndBGWha5W0QuFyMm+qd0hc1AVi4hnXrjpM+qfOU/XmfN0BX/bw0MUt66guCJFy4UF1AsvRfhnWMO/\n5P5iDkDhgZUIfxg/Jam0WnQdGENdvII1NMDouwdJTytavvhCBIrbwwP4126gTp7l/O/t4b1vm+Rc\nvptTRwdY//MGJLN6egybZqlFTfnLQ8UPxaBF0HY4phMUdZ0J2EPR9o0OVCB0CAHD9J+i3SbguciC\noLiwfQXJqyOLPvYfecBkcm9tylqpAAAgAElEQVRpywAmNpiWwui7Qf19HgdmoMZW0RosUI6Fn7ax\nSh5WvnJz1o3WiEA3SCiQFbduswhQaQSD4qYAAlanUkilDDMoYAOZMqtgPg9L1UKwNhClNU0KTIcv\nnbIRWiOrqla+VgdM6ajkrH6wOnDGTZCrUrEukb7R59KWhU5aRh8pOFehFCrtYC2YUqRSt0U114ZV\n1TgLPonJItqW+BnHMKfC3+N2GFp3waJSL6WpaxkvBajY/KNkTa8mVr6qfR+RSNSxLqzWVsNUbwRF\nhKiVwHo+IpNBVl38G2PYUzMIy7Aa68qsQhA8LG2rVg0QYllBaYdCl8uIuXnscZvOK2na+jsoDGWw\nygqronDyVeRswfzGno92bFRLmmpPmkKfRXGFYGFYM7tVI6oO7acEHWeqOAvGx85criKvmpbnuqPD\n3CexMcp8Ae/yVQDEQB/5zZ0Uuy3Q0PutcUSxTHHbAKMPOww+XSZ5NpB+KFfwB7sRFR+ZLzDysb0M\nvPcKI7Nt/OzmJ/nDz30fG37NJDBEJhWVotU1GgiTAHfbdPSfGGCjTcew4HVYOorStfbqwfZCaazT\nV/FnZup2O/tje6i21SQNgFoSUYGyBe67H8T5xnOACWB1LoNKOotZ4UHDBSAo2wwGYEt8x0K0rsaq\neoh88ZYVFcK2l7zO/vw8HJ2PTq9xL9aFa1gbN+JmTVlo1H23YZ3q/4ujkX/uvvtB5lY79H/1Kt7V\nEWQux8QHt6EcqL57p9EZjVnXn+1vfuzW1ijJqiWmJX0Qc+hlJtADi4Wkb8UKir+vfEOOSKfw99+k\nljCca5Vf9zvqyyM1NlCMsa89ryYhED+29g1+Li30wgIsLCDzSTL5BTIdbeDY6GoVmUziT04hFwro\nIFGQGXHIOg66tQV3RSvVzhTFTS1Ir4fkrE9yoog4cd4A7KmkOWbKdDsLBbLj18PqbDcxviTSKLXa\n29GrVhiRcQw24L55G4n9JyPgU6bTqGKRuTWSVuBn3/01vvRdb0dLQfK5s5GeUPaGRqwcgJNnF1/P\nO0x0f8cBQvaaVWjbwouDHUuZtLB7u43eDyA8gdXdFf39allYatGYXW++sa4DpKwtG/FfOnPbx2r7\nxkkY6KPvv+zD6ulBre5HXLhmFNbXroZSGTVvaintBs2PPz+/h27O0PPfYhPW7u2sfOwSHtD5Ugk9\n3AcNC8N3gslUims/8wCF+0tYY0msipmY4iwYoSA9LkhPKCxXMb/Kwm2B/I4+0q8BIPRyTJXLhnky\nMUH5fbuw21PIio+fsSn0OSwMmbpqZWukZzqZCQ86jxhR0OHHPWa/spLBk+cQqSSqI4coVSmu78CZ\n9xD7X6S3vImp7a1U2gXZUYV/7qI5dj5P8suHTMb+8tVowZOZDOlxNwChgkBBBAuuIw1oqu5s4rrr\n1ljaURe4WZS/dycd/3gRb3zSlIc1fG739eAN9zC+swVnAboOG0FLO52uF4pr1sEhtCVYSbe0W2QJ\nvKsjJK6OkABkVyeVt+8kdXHSlDkJAbZlMsFz84hUEn/jSqzz18D3Gf3QFmb3VLjnZ06TPXadmTcN\nY7ma9r/eT/4DDzPxm1lav9xC95+aOaXyngdJj+Q5/VMdZFfPMfThLP7sHOs+th+znF1jPcH12L0d\ncWkMnU3XFtom5yKWIWDTrhvoQwQaE55n2qaGjlLgyAghIOks+s4/i0YH9jJLpSMAXplyST9whoST\nQGbTcFtgENz1VGwj2CJi64yKzTGywcEO7nstBQKBn7JBQmK6ZMD0ZtlSxzL6P46F8APQBWoMl4g5\nYEAcHTCO4gBIM+aNtiX4AUtJKYQOWm5rw04xrZND9icBS05EIFF0zmHgJwTKlsiqVz/PqoDZFOiw\nhMCQTtj43W3IhRKy5KGdQDTZ1/hZG+0kkRVTDqeF0UBCCLxcAi0F1gTgepS6JNV2SE1Az5EKolhB\nt2UMS8ixEC40DXSWySJ2SROmkCkZCzaUMWZQXHdI6zof1O7vqzGCoPbb2Bbldb3MrUlQGBR0nFG0\nns5DfwfW6Ax6bt6AQcH+tecZzaHw+1Fgb5n5LmQQBWMy672L9jxksUjrVacm0q8DgX7PQ2sFloWc\nzZO6LkjbNiQT6JTpyGjAokQdWKExl8Hq7jLaRMkE7opWEpen0JkUp366A1kZYugpj6s/7LF1+Aoj\nL65i3d9VOf0zPVh9Jbq+aLHmj05R3b6a0qZ+kpMlTv1shrdtPc3Yo2nU3DzDn08wMTWM6BX8yZOP\nsu6xk+a4G9ehp2ej7pMhMKd9hdY+da2275YJ6tdNEbBfhDAMwXAq0oGAtCVqHbWEgAPH6sAL7x07\nmb4niUpAnD0uXVjx1GRdvOK9fWf0WpdKqJ52Exj7sfK5YDzCqrGVwgSsmZMCH9GWiISN1Zo1ouSF\nomEKJhwT4Ccc46s4ltEKcz1wPXQ+v3TCJeZvCdumfP8a3KwgPaVoO1tgZlML6Slv0ToVT9Y633iO\nboiYqiqfp/uvDiM3rL6j2M2fnyexoHCztXvE+Ml6+RhDjf5WeL2asb3D7cP3dE1SwNq4Dj1ywyTA\nmvm1we9uDw3iDnfhXJuOgFtePGvukUDnRzcmCBpZS/F9x8aqPQ81M4csFKM5S2uNsG1T8qorCNsx\nCfSEg56Zxb5mY2tNujUHQRJi8s0DdJ6y6gHSaD03v12cJFB8eC3JL0+x9lMzXP/ILhJ5TXbMI/30\nKa7/0l66Trokv3wI+4nDXPyNvaz7y+t4Fy4hBvvh7AWGH8+jPY8vfeTtAFTbbBJaY7W34d67lq6v\nnGHhTetIn2QRcHmn9p0FCO26F3Xiwm0xK0IwxBsdw+rrxR8bp/uoRr+cFpivgclMxqijX76GtXEd\nolRp3i5PWrBrKzz7It4jD2CfvoEOuh8IS6IPvUj53Q+SOqTNTbZzK2LOAE4hGFT8wMPYBZ/+nx3H\ng7oOa9W2BBy4jti5FfnCWVShgHrr/diz5ZvXx76BzB4a5KX/MAC+h309Fens1LWABOyiYPALI5EA\nWi6bpbJnE+kLU6/LsoXsgfMUdq+j2ufgZoyOUHJGoxyBnxT0Hyhy7ZEM5R6f3k+frAMioykliLuS\np83/1Vvvx0vbtNzwSH3mVNOSpEZTxSL2k7Vacr13Ry1rFnVJWSbBxdhiZAKaBsX+xr8bggL33Q8i\nq4rMPxzDW0KoWTg2aqEAB0fpOWgc8Ss/tg6rAiu+KRFjE7XnOr7YLqIaN1l4m33WaPEsd7z7TOx7\nMptF9vXgXbiEVR7m/E8MgBZkr2tSMxq7qLDKPqkrs3DwRYrfWM34fAurf2WUnv92Ef9N9yFmiuQ+\nZZg9V39tL6v/9CyZz5p5JNTaSnz9OejqZP1HzQ3lY+Y62duNf2OsXqvowDE8wNsyxMVfvZe1f6lr\nrI84HX+5NHe0jkoOhG2D66J9VQsCPM9kkYQPUpptfL+58PY/253Z7u1w4Bjpp19CbVmL3L7JBAKX\nR29b92/ZrOHZrZUfxMCQJeYAbUncrI1dCFhBSwiqaynRCTsqe1BJGz/jIHyNtbCEj6OoiSfHLQjg\nIACDgvfqmDtxAKjhveh1bA4VfsAmEgLlWKblfcpCeDoqJRME7B9ljue3JBCexlow86xOJ0z5TzqB\n22JTabMQvhGVTU0o8BRWsYxOOrhdWXPdSkZoX/gK5RgR2tSswp7Mg21R6U4jPMXsxjR+ArpOlrFn\n7043mltaAJCgZF1ZGI5lShmCki3AgNS+otZ+vhYkWO1tiHRNu6XOfB/VniM/nAAJrRc1c2slN96a\nBQ2rvpwi80zeBGdhmVEICoUizhFbKwZUhp/F2ENICZYyQbsfzJFC1MSxQ12ksO151YViyTRISDiG\nmQnc+OHNlLsgkYf0hArYyxrpahJzHjf2pnB/ugOlJHpOk7whKHdYbPjPZapeFxvtIjObW+g9qOk4\nOI/frdGFItZTz+Ns28TlX7fZ0XOVaz+/FmvhnGkGMDpB558bqQBh2/jBGrSwuYtrb+1BZRSb/mge\nOTkTXCMJyOUTlm4o6zEaNSoCfIWnaiBMABDLYhV1rF4GYfbH9lDpaCgPC6ztorsIAIn7fcJxamWk\ntlw6URUC3xrwDVAdan6FIDdpB5FLm/2EejsxJphOJ9CObebH1ixyaAWiXME/dzHSbwTqqzU8j+T+\nU/Qfb8EbHUMD7Xcm62jO07ZN5UcTMEjs3EphZQuZzzXvtNbyd89iDw0y9bbh4AtElQnLYmGr9PC3\nipKVDe83W6+khdXfC56PF8hqAEv7tdp0AbPaWrj+/mEy44O0fPpAVGkDoU9VD242rjMRsygOTkkr\nYhOpsGu4qp2PcBJGhB/QXsAoDViQYSJS5LKoK9fo/pbmwsd20H/AJTWSR9wYj84X5eNPTaNTCa7/\n0l5WfvIyfPkQpUd30fLMeVb88QW07zP2kYfJPJdm4PdNI5kLv7uHtb+8n1X/YR+ldz+Ic+ESpXVd\nZBaK+MfOGHbVM8eRne1YY+OIYA53Tl5BD/Rw9fsUva17aP/r/Yt/kzuw7whAyGpvQ69cAcfP336d\nacIxQqbDPfgHXwRp0fn0FbzXCfslPA9VKEDwMAknYURHQ0X0YDtx5DRy4zrkdAk1n4c1gzAzEwVK\nzuNHEAP9WLaNl7QRDdeo4+cuU3lkAt3Wir1mFf5Vk70WySTFPocEUO1IkVwzDMdPIb95BPeRB7B3\nbkUfvkkd6BvA/Ece4MJ3J5EFjV2I1Q03MbsAuLXgUxUKOI8ffl2CQQD+5BSpL02RwvyWwrZrTtdQ\nP/5LZxj+drDtbexPZjL4UlDssXFKisTCwssal9h3FL13h1nEg7bBy6YhFAd6hFiMrt8Mbd+9nfTJ\nUbxrNxazguKHqFTqMrPe6BgDv2dYiArqA8BwLDdps1437qVsKRovqm4xDRdPVSigLhQMEL3vKKv2\nBft4aJvJrAtQScnknl4yGzpJvvsQw9Tum8YyteHf3If7lvu59LH12EXB6t99AXvNKuMcBOwYq6MD\nf2YGVSyimnVE3HUv1oXr8ORhNjwJhX/xMMm37zROZgywEwkHbq8y+FWzkOmjPa/GULJthE1NTyPI\nEmNb4Cu8JqVN/2x3ZuX37yL15cNYpy7jY4JRUahEzrfOZutKMc/86UNs+qP8osBmWa1ZdrTZ5w0s\nIuVI/JRNYq6KLFZvPQcoIyAtfA9cE4SJoKSqaRlUI3Mo2k8TppAQ9eDRzVh6TTLCWhABUKEotE4Y\nsWpTPhIDngCr6BlgJgCTVMJGJy28jEN+OEG5S1Dp0LhtisSMRf+zDs6MaWYgylWsihG89xMSnUog\nShXaL/hoCakpF1Gu4vd3MH2PQ3pKMbnbY+fmi5z4h40MPi1wGkGh5dAtg5pWUGBa6whQEVKYwElp\nE9Q0AEEQgEGp1GIgKEqISORsno6/rD0v7ZjnzksJMmenAlZGIlaipmpzXWPbdhWAWAHgE2mvhTpF\nShkGWHBuKhTNtkMxQgBzH0dgUrEIXgJ6u9Bph64TZWbXJyl3C8Yf1minxqgQvkPrach8I8PUIxWG\nHhdkPrsPa/0aFrb14DsCp6iotAmELyhu6CZz4Bykkka6YWyKlR+aodrRgZObwysUiDRRwt8gbKqx\nYzPZ8/Pcc6JCeW0Xo2/rpP9pkOMzhALTy9F6PgJXYhbpboXgG9RKP30FB1+sw3vtVcPc+O4h/KSo\n19DSgMDoDF5buGlTFd3VHvsjGJCvEVrVNPhCgCpgGerYc1Z3HkLUAG8rGIYOGjmE+l+2NHiop8CW\nqFwGe3jopuuwKhRuW2ZkKZMb16LSThQbRVIhgDU2S6ZJzGSvGmbyrUN0P30N79IVup7STD2yMjhX\nFoFvd80aAaDQwqRiE+AhJDOgfOP3XL9xZ4c8foqB4moqqzoX60feDIAKhxbr2npTq2v0Um3QvVSo\nqo9MmI49qlBAjk4ghwfQk9Osecwhv7WbmR3tJNe0YpV8kKa7XjW3kdynDtByfxenf36Ydb94jfTn\nDyJWDSN7OsH1WPH0DNPvXEvnwRbO/WQfa395P8UPPEzms89GJZbVnCQRNlq5fyvyyg1ob4WxcUQu\nh85lYGIG4Ws2/qvnmP7JPZz9+E42fPjw7Z1/E3vDA0L20CA4Nv4dOnwhncu2bcZ/cg+df3HgdZ+5\n1W61Vn4WvBc6v+XhNpzHDyMzGUpDOVKnk6h8ELCrWhDm7lxNZvVK9EIhyqRe/PJaut89TOLrz7Hw\nzo20CwFVF93WEnWISp8eA9uKJnzrqefhoXsjcc83mum9Oxh7KMv8vVWcSbCKga5OOM+FyHzsmaq2\nw9UPrQa9Gi2J0N03gjWCErx05zpZqlgkefIaC4NrcBYU/tvuX1Knw141XKN8NjGx7yj+nh1YoQjq\ncgBCS4Imgd2Efln8wMO0HhzBuz66NGgTHiaZRK5bhdeeptqeIDVWrAdSGwNAeEW0z2ifccdVNSyS\nweKnfd90wvJ9AwzFwWKt4eCLdYtEqCk09yO76fjcMdS2dYy8I8fqT15DpxLoK2YOVYUC8ltHWPst\nmPnwHqq7N5N88UqdJpo/M1PXXS0Uu+795hiMTaJPXkJkM5FgXva/P4vcvgkZv7eUHzm0d9O0UkZb\nI9QPasyKe14tcCtXXvUy5LtqL7dU8SYmt2+qB2mkhf/WHWghyK9MMHWfZv1HF4utp754kPGf2Ut2\n3Cf7mWcNizaWiVWFAhQKyG2bUMdPkRizsf7LHOXfufMufq+JLXUtm2X0Qqq7ZbqCaSFwZsr1pVVL\nHUbrILuOyagrjaj4BgxSteOHLdZ1vFRMiHoAKC72HCtxM8e5xXlG+6iJx9Z1lwy2k56CUEdOiCg4\njc4Fcx6y5FLtyVLucnAWfBMkKnAKGpUQVPsVXleV6fk0ibk0tucjqi6yWMUuJqh02rj9bSSuTpG9\nUqgLLLwW07WTKUh3lviJFd/mt/a2MpHvp++Aj1VcXva40Z9QNfZMOO9pZYBRq8ZAEYnEIokCq6en\nNl81Wvx+8n2sjg4DdLguquqSPXjJlHGVAxZsyMYItNGEZRlwKgYShSVBInwvLAsLvhuximKfh6WH\n2vPMPesYNlA4LhzblMr5PkzNYM0vYCUcem8koxIyZUtTii4Fbs4iOVXCeekynX9hQOILv7OH3uc1\nLZcK2NemwLZIX80iyi6Te3oZ/8hmVuyrkDo7hi5X0J5n1q1w7dIatI946F5UwkLsf9FopMwXqa7s\nJHF6BucbF+l7KsHC++6ndWYBwuYLy1DeHJWixl0dIQg7j5kOgQZwsQrVxcz/Xfdy/cFcrUSsiWkJ\n09vb6Z5eDLjYK/pRvR2BUHW4TmqQ2jB44vNKyHxTwXwog7I2abobEmoyxcTT69Z/KQ2OGAJDIgDC\nXR8hFKozh5VeZ7rjFQovW7tPveV+/KQkMVuh3JMm+dXY2jI+hezpjBJkdcnApWIlz2d8r8/gvy7h\n/8I2vOeO03qhh7l1mWVkB8VeN9ZpNQNlAn9ZFYuw6144+OLtx4YNvrZ34RIJxzYEhyY+eshKrPtu\ns/EEvrmQwpxCrOW9sO1Akyjw35VfO03LAuWZ+TRgXqp8HlGtGjB85Aa5uaA6QmlEMlBxtSTptixs\n30TrYwdofczE6GrtIDpIXMlUCtHWStuxU9DdTWqyn7Mf38nm/xBrkCEtWv7uWarvfYj0kcv4L7yE\nrzVnfnsdfU/vpu1vDhh9rpfOIFb3A9Dz2Zfo+YLN6T/cHWlwmosluN2Sw9eDVNXLNrltE+V7+qH0\n8im93tURqm31iP8bycJMaOpyQE3NpElfMTdqvANQaOl9p/G7cuihvui9lX91nkqbhZXL0X54DL8t\ny8Q7VoLrYU/kzaRarUKpbIJHIUyZx9kr5HcO3oWzfPXt3IdSFB8uIgq20QoQ1D008XKxiHbvaNwc\neFlQDqZLxT8x80bHqLYIpKuoti7Gk6171gOgJqexursWfR43e768fGAQLH3c0GlR9Zl0uWMzZ/7k\nIc7/X7tpOT+PipemNMugh4dxPRgZxT57nfSVPKUVWewV/fXbxhezCMxplsVfokuJtGqfxYNO5ZsF\nTwaMlbpzM0HabWmbxcweHEBoKL11K6UVaYZ+ex/excv4J882zbB1fHw/Tr4KbhWru4vy+3dx9ddM\n29b0gTNUvvchIBC7/rP9TD/cS3n3RtTWNXijtcYA3jt2wsVrqPaWuv0vRytfYdsm2xtmvc1AImHM\nKDiKBUZvWHsNnlF9sqbxJ1Mp7JWD+AmJcgTS1ciq4NqvNGntCyQWtOkuBMi1q5puI64ZAC41Lbg+\n31qny/C6tKWYQsJ0EfMdiVV0l9QLWmQ66NBV8RGuXxOQjfv1jaBPMOc07di11HwUHk6wmF3bbE4U\nhmEQtbaPz3l+8M8zHcik6yOrplW9Sli4bUncjjRuzgYBKmAUWVWNXQRnHmTBzIFuC3hZ27DzgnOS\nvkK6Gm0LdDIBvkbOl5BzRZNUTFo4C+AUa9d3XdskCysVbqtzy0v+WltUAqZVVFpluhcGJWSyVkrW\n6PtZ3V314HWz3zKcx6QRS5UtWcSqIXhwCyKVNCVb4doUE8mPl6mF/4/AIBGOq6a1Fonux8cQvg5A\nJmGZJgxGOyQcl6gDj/AV2nWh6iKKZWShhDWZxxmbJzGaJ3kjT3LSMOkmHr0Hmckw/RN7yF2C1pdm\nsRZMkkyXK8jpPEzP0nFygdwVjUoEulTJhGG2BiZTqdrr+RJe2sJatwqrvY3qyk6sooc/NWPaqm9Y\njZ8QYFvEO47ddWs8pKi9L/xaMkt4CjlW3+TC6ulhakcL2q59p+m+BFTbBBNvH2bhg7ujrpkAurMN\nnbCb33MB+LvongyvU6RltPTpRb661rXtGvcbsNHwNTrloFuziPY2rO4uZC6HcBJL+1YNFjbpkZ6m\n0pVidoODeLDWUtyfnLpjCQTv2nUyl20KbpLRva1m/wdP1Jjzy+FCaOp907jFmTpxH3nbJvPi4It3\ndqwYGCSSQdpxasb4zo3WeB8tEhWKvd/seQuOpSPNvsW+ga5WI8F+Xa0G1RUW2vWMWL7vG43Nqosu\nFtHzefNvoYAoGj268D7B96l2JOHGBCKZNCVrpbJhUs3OMfSFUXp753CHgngp6LQLkPjaIc58bG10\nHrJoMfaIuSbKDpIpYaJioM+I6Xe+/MTFG5ohJEYnSFZdStuGSGfShvVzpzVza1bR9WJ95683lIXo\n6GyeyX+zh95PHEOfvWgeJBEU+seuiT8/D4dPcPl/28vKF8x73ugYbV8p4m9dAweOYW3ZSKlXML+9\nm+xnnjUI58o+9KEXQQjTJnpkFH92jvywTXp5zvwV2T3/3zzl/izXv0vgtZgARKhgDmxyC4WdF5Sl\nsVxB10vebennfCdapUNgF1ySL1ysKxOyhwY5/yM9rPk/bxi2yS20PPwTp9F7TOmYspchYFuqxrYZ\na0gI1NGTbP5fOik+vI6zP95G9uoDrPjmHOLk+brOLYv2oXxUqYyUpja/5fAV/InJpseIaP5LzWNL\nzVPx95sFltpvLsZXFxRaixfRJk6ad+06rY9drwk9Q1SXH3ZRaByDePEss4/eR+5TB0h9cYrhL0Lp\n0V3kXhwn+eVD+G97AG0J7CcO0/Y3i5khAPYTh02VycVryGwWvWk11uQ8emYZOnQFQY+AWhe0hGMy\nnpZl3tcaXS6brPobyZZyAIU0XY7gFek2hZp9/iMP4EwUKa3KmYDd07gtEj8hyFwX6CX88/a/2h+9\n1tcMpVrmcnXzsfY85H1b6P/DfVS+ezVzPz6HVd1F6osHX/a4XxXTNWHoxveB2rVXGFFUS2CVLbQU\n+BkHpDAt428XGJKYMiBPIXy/LiMfgjJaxZk/ova9+H0g6sup48mSMCBrxqptdN6N5oc2rkkj0FhX\niqIj8MrP2lQ7EoEDbKMc09koYikpjVUFuwQtlyWVuTSJWfAyEq8thV2pIotlnEoVayFdG5MlEAtG\nYJREAifv0n3cRwtBaSrNk3NbeGfHS6iHJSfObqFvvBRpJ919nkdgYdmUb9idOmAHgQlWkCKak+21\nqzn7UyvwsorUuEX7WUXb6Xnk1HwNvIlbnDmUTKBaM4y+uRM3Bys/V6y1aA+2C0EO00lMgqejMURA\nUMgKMhvWxKdj50IIntetg6L2vu+jXbO9AYlqwBdekMWXQclHjDUiEg6JcpXymi56PncKv1ik+9AM\nYuQGJJOo2Tm065k5LSjxFUfP0H6wwtRP7SE1mgOtKa9oQa7tJnHwDLIlC3PzqGIR//Q5EpeS6E1r\nEX09CFehD79kmAZuFbvcRdvpeShXQAj8oR6s8dlX4y64M2uGw2htrpEmYtDI8yN4DYwZf2KCrv93\nAvedO5ndkDAlY0uYskElwBn365g35pkP7gERMH50OGHoaIChDyg9ZcIWi2h8IZPJDCoAiVTQKc0i\nOpdoXgo6N4ZVh1oqAy77PihhOkpl05BMIHwf6Zt5UUuBKFWaVovIHZsBKA2ZhJRyBNUWibOgmdmc\noz3WTMyPa+bcpg399j4KZx9G/Ng0HLgXffBFUjM+mTNTVAfbb72D18JC0OdWFurntKW48Ht7UGnF\n2s+4OAdP3b6MS3jIAATyJ6fqjx3MCRE7qBFkbcKuDccV+it1Hega/d/4eqe18WN9jNB01Y2YieH4\nVLEY7U9XXbTvI9Mp1LmLRvc3k4FCAW/zalKXZvBnZgzwqIPGUUIYJufoBKk/2sTEDocVk+vxT58D\nL+jKNtDHul8y/rC9op/1Hz2AsG2sFf2UEgLx4Db8547jP/IAPPU8eu8OVj0mmfuR3bR94sAtSyQb\n7XWeNmtiQkRIrj85hX/mPM7jh6FYQu/ebkSTQ4TxFmb19eJ3tpB89vaV4F9vJnZuMaJ2ExPYJUzG\nw43d8FCP4KZSWH29tJ1XiPu3mo9tG9HXjX3VBKn+qfMUBxSFvuA6T01z8dEgK681TMygVw8AMPD5\nK9iDA1g9PVhbNt6FM3yxg7MAACAASURBVH51TB09SeLrz7H61/az6Q9G6D4aLDINQUjc4RUakrOC\nvsMu6c8vc2CxjLbqC1PMr8lAbxcyk4nen9s9RGW4asCPdAr1lvuZ/6HdN92XMzoLB44tT5exZgFV\nk+ypzOWi8/Snpkl+5RDrfvEAQ588z/VH2hj5dw+g9+wwGYElsmCytQXR1oq+eBXvxmj9ggY1R/lm\nwHRDWcftZrRuakFQpj2PqPQgziSKZ/AxDDCZzRrBwMEayykExMx+atc1vG6qXCY94SJ2bo2626Q/\nf9AI3TsJ7HyF5PMXsFcNM/PhPYx/xLBD7P4+yu/bVdetpPime7jyczvQh0/gXb66PAwcKRGOU8s8\neh66aMprw5IxXangT02/Yk2C19Ri95NwEgHzKZb9dxI1oDL6jjS0Z/vl5ZP8MSPCKMs+pVU5I3Kf\nMp1trLImUdBkRxVDf3n6lvsKr20jOK/y+SgImfrGAGs6pkh89M60DF5Li8CVZuwrBbLiIsoVZL6E\nPV3Anishqz5+yqbamcZrT6OSzs1ZO46FTjomU+7FtDWigLzeGY5YO40m5aIMfZwRFL2+HV2dxox/\nPIMfZ68EQtLakbg5Bz8pogBM2SA9agGcDkEhTWJW03ZOkxvxka4pAyOZMCUk5SrW+BzW5DzC9ZAl\n0+kK3wfbQlY8EmMLlHocEHBgYjUp6bKl5QYLKzXVnrTRLnKW0W1WmriYs0gk6p7DkO0pMxn0fJ71\nfz3Fmr/38JOaG+/xOPdDbUy9dQi/vyNiTzVjclWHu5jc2UG5F3qPVGE6ADKCrmFCmE5m4dyrQx0j\nS5r5IwR7QqCnMWgLgZ6qG3w3pjkUB4dCkeBgjdKuVxOaVrV96aoLlYop1fVMV6gwqE+MFVD5PJP/\ndg9i5IY5XrGEEAKZThl9xUD0WlcqCCdB62WX4nALcjpP8vEjpE6PUn1oIyoAgwDEg9uQwwOooyfx\nT59D7DsKypTbyfu2oKdn4NQFKpsGuPwv11IcSKPn7rxU/5WalrE27iGgL4xWkBYgSy7i5EX82TlT\n3h4yG2LmPH6Ynv9nP71HSlglbTKnijrmilDQ96WLdeVTdn+fKUsNwJwIDPI1ouohyi4i1JH0VVBK\nSjRWHZujtDA6aso2/7Qla2BXcI7m/eAcreBvgWllb8samKk12pZGfDqbMuXutoVQzZtUCNumNNhC\nabAFPyENu8oDq6JJ5JUR830VLPuZZ9m14jJXPmb+Tn75EP7ZCySeP/eq7P9lWSPQUpcokLUkprSw\njpxh4++fZ8PflJjcnuLCr+1g8t/sqWfE38IixmHjscO5JgJ3HFO+1ciMrxu7avjzJr5i6ONEa5Bf\nY9iHrEwRzG/KR1cqNbBLmrLZ0B8RwXxkdXRgnx1Bj9wIGEZV4xNLyxzP9xEDfSS/cojUjOL8/278\nZW/kGqpYpDrUYUgYW+/BuzFqyBj3bYJkgvTfH8QamcBeu5q5NQbzcC6MknzyGOMPB9cqkzL+9m3a\nG4ohFGWfmwRN3ugYYnQM2d6G9+Bm7NkS/omlHUp7cAB/oAt59gr+bTA9rO4u/OnZ1xWTyOrogIvX\nET3d6PYcnZ89Bts2ol94KWipF0NJtR9pcciNq+k4Mc/cplZyR8x1VZeugmVFHcZ0V5XyrKHHivu3\nsuY3DjPzY0bFXGRSqJfMBOVdHTH1onDnNMHXiXlXR2h9bIRWaVH+np1M7LDxsrWJIwSFZFUw8I9z\nb3gh7Vdq/onTdBZXMfvQClpyKfysw8T2FIl5DdVgcbAs7HyF/Mo07fGuDg3mXbwMu7fXiQcuqzUE\nZ1Z7G/78wpJzzoo/MKUpcz+yG6d/G7lvX6jp5ISOeyKBLpWj8s46CxazuBNitbZCwlncLalxcdSv\nYC5qRs/WMWeoCVXYHh7CO11zTHSpHHUPW3ROwfWKZ4fsJw9Tee9DOKkVWIUiMpuhvHWI5OFzcPYq\nSIF3+SodH7+KeHAb8x/aTfsT50l9yYCvdn8fCw+tIvXFgwx91dRm63KF5Wg7D9SDZkLUgBTPQ83n\n7zgzthwWisPqeHc3iNYMaHDQAO25aA9kMmnu7TC4uwVryLpnPW5PC/LbL6Deer/pKOUDDkhX4ydC\n0WONXdTR/V+X1QvH3eS9umO1tuJnElj3rEcoGMm30/Y7LcDSumZ3xcI5IShxWPS+pxBV0y5ZhEGy\n6yFcD7vsotMJ/JYkftJCJSRWyUIWq1HAFZqW0gBCIthnA2tPx5hIYLLwYXt6QY3RgQoG2/iMyZoA\nbcgOis6LxX9HpxnbdinwPATytCWpdiRRSRFonBCVUAhlglIRDk+bEg67Yu4pq6ywKgotwWtP45Qq\nhqkBYCUN3T/UotHaXOOyh9uZYfQtmkd3HgHgWHElX726mfSECTi1LZHu8viA2vcRjl3fPQyi8tRI\n3DiVMgzGYglxfYzk+BTrL+WoDrQzuSPB+C7F3No2+g9myJyZMNciBgzrljQzm1JUOgT9B1zSJ66b\nDHmo5RMAUDqc38K5Q1rIrk50uRyVy5oBxQC0WEmtEMJk3eM6QmEJbpzBJMMgzJScRUL+jmPAMEcE\nzA9t1gPLQler2MNDuH1tOBdHob+PvicMq12mUrW5I8js163v992D843nSN2znpk3DdF6ug195Qb2\nk4ejikv9pvsQFQ9RcbH6ehFC4I2O4b/tASoZC+FrkifLqJ2buPQ9SVZ/pWz0Fnt6XvF98HLMaPLU\n/g7ZNrLooo4bLTerqxM62kAI7KCtu9/QZEd+8wg934S5H91NuVPWVTJlRxVeKIILpjymt8OwGQEZ\nlDFqyzJsxVIl6thrDw2iOnOGuWMZYFr4ugY0B/ONlsKsEQHDieBvI0YfP0FhWEXh/WbLGjvRDdhC\nrh+BRDrpGNC86kYJi/oLKEmNlygOZpCu0SuTriY15ZM8dum2mrLcymY+vIdqTlCdu0bLV+rL4tU9\nq+DQMsdXDf6gcBLRsxMKZ6tSCeF6iNk5Bs61oPt7mNnRzrmPrCEzupYVnzpb7x83S+bJMEkg67SB\nojVfWkYTyK2a7rjplGGkNWP2x48TgjwhgKRq/k2YEI2+GwPKQ8Z7CCbJVEA40cr4TVVTlhqNZX4e\nNTGF3rQajp01bMGhQdTINRNrl0rRMWVLK3rkBvbQIK1/e4Cp79vB9Y/tZeD3jD6t9Y9Go1Xb0nRG\nP3kW/5EHmN00gNw9QO6TB7DXrkZ65vfwRseQuRwb/3KBs4GW0J0k7t4wDKHoZrhFNtifnUM88wKi\nWMZ7+866+t+4Tb91JdbE3E1FxaLsKICvzI0gBFZr6x0hnq+V6cGgZrBUojzYaihsFdMyry6jq3yz\naK3oNX8eO4W4MUl63MVevRIcxyy0lUr0UFjXk6zYH0zgR06AVlRzAr13B2p61tDWWk2tq3V5DJV8\nQ2GLzU35pL50kNWfnSB7LXSQQLoCe0HQfkb9kweDZj68B2vDWryLl2l/5gpzG7KMPWiAQ7uiaT9m\nnDSRSFDtTJOe0FT3br3pPpUtsfOvv7IakUyadvG3AQK3feIAXkpw5pfXU37/LpMFCOit+H5zcCBk\nBAX7twcHsPv78Ofn0aUy8z+8e1G2Lqxlrr2xOLt7WxZn/sSz9HX7knXH866O1J757i78sXHUxauL\nmUrxRTewi7+zh9kf30Pia4cQz7yA7O5EF0vYT72APztnzrnq1ob33HHaj07hT0yYjjAf3I3q7YhK\nfqyODrBt8x3n7s890VjDwCIs5XBdVKG4bGBQXNfMXrv61l8Iu/pI03EuzhISTsKUgoSAkDCvZSZj\ngCSIOnoI2zaB6BKsNeGYNsDOVAGrp4dyVwJ73GTLVSwLLDRkr5UiEBAMWLrwwXqm4a3AJ39+njMf\nTnHxB3sZ+sQ5Oh+9SOLKJOot99dveLfJZVrXg0HxEhxPISqm45Xwa6VdIXtSeD6iVMWaK+PMlRFK\n47YmcLsyqEzMVxHCdNgJ2a0NYBFCgCXwW5KUhnPMbW1nbFcrI+/McvVdOUb3tjG/IUe5N2PYMKIh\n0AqCM4QBbbQlIo0iLaj7O3ovTkZqrGhtnLKC8fsZBy9j4TvCOLyKKHEQtmK2qqa9uHSNrpRdUKSm\nqySnykhX4cxXkWU3uPS6Vt7peYhIIDn4u1JFOxJnTnIu38PR6UE+sX8P8rNddL7k4mbNuYrq8vQV\nlemUAUJCMEjWdHgiMCiTMecZtXd30aUyamIK5+QVBr56nbWfdUnMwaX/UXP2X6+gsqHPsIUsiW5J\nU+3PkZ5U9O8rkj50HjU1bZ5zIVGlsimXmp1FtrdhrehDODb+Iw+g9t5rGJF5A4Zrz0MEPnMdOCTD\ndSW4R9xgLm0CBAEGpKpWTTY93r3RN1l6QnmEQHBa+75JQCmFVazijY7hjVxDlCpY69eAVa8FIoI5\nLTQdBN7+6XPkPnmA2S05U/4RN60RZQ9v5Br+2Dje+CRWdxfWPz5PYs6l3GVz43/aidfisO5j+7Ge\neh6rtdWAanc5gSE9VRNpDocfAMX6lEnw2IMD0NURzTU6lUB0tGGvGsZqAmK1/c0BBj51DqegkR4k\n5jXtT1+sP+7KwairoVwowsS0md8qVbRlUbynF/HgNqwtG1HtOdSxU+gjJxCnL5s5SykzvwRAECIA\ntkI2UMII7WtLRCyoeLdaoYlAXJRJNCAF2pGoTMLoGikMYKUMGKTnmpMDhGOb/WBA6XDOcb714uLE\n3cs0ZUPLdZ/Ee0bo/It6xlF+dWaJb722Fj1rDeXDIdtFBL5XpFkmZND8yEPN5dGnztH5+AXWfnoG\nLeDMr6yj9P27otKpSNsyfszAt6jTFQrAJ3vQVKZoz6PwLx4O5qJaDG/19NTpfJmNY+zEEBSKgT91\nXckaE6WBzmb8e5FvJ2TQhUybWKFQiEBJkUqiD5/AGlqB1dNjms8QMJSCY1rdXfjz8/j3bcDvMyWB\na37oKJkxzY1fqNdPVEdP4l0zMg3JU9fp+PwJCn3mfvQuXELZwI6NBpRva0VeusHw4350rW7XbgkI\nCSH+XAgxLoQ4HnuvUwjxD0KIs8H/O2Kf/aoQ4pwQ4rQQ4j23PZKbjtK6o5MCwzywnzyMyqXx3r6z\nTuQMwCkotG1hr1m16DN7zSpDI3VMYGv19UZ0VZnJ4OfzqLl59J4dtxTOfa1MplLIYhnhJPDn5rGL\nQV3jhSvmejVkBN2NgzA1a9DEbBZ/bBz7ycOMvWMQlc8bKhpEk1vbOYir91feeT+9f7wP9zdmI3q+\nPx/QX5U2AsEN9rq4d16G+SfP0vtf97HyHyokZwTaNtdB2QKrr3e5hrVsZnV3YQ8PMflv96AsmN7V\na0rBbKNtURxQKAdKXZLWKx7WsBFEUwmJXdZceU+iKQ05NOf4RcS1WlZm2e6beAlXMmkcxjuYd1r/\n9gDrPraf+VU25//9DvTeHUbn4WZMho4OxP1bEQ/di3ftOt7oGHrPDlShQOtjB5A9Xag334fcbsT6\ndECHj6yZXlAzaxaoL1EWFr2n/Cgr7b/tAawtG/Hn581i3mUuv3arzQEz5aPefB8Xf2sPN35hL+t+\n/QhdXz1H/gdNYO9dvIz2PKwNa1j4gYexh4eihdZ/5AFTIuYrUyN97iItnz4QdaWy+npNy+GFAtZg\nP96mlbFTujv3jsgETke8w5gQUHWXRVtMbt9E8X94GNYMcuaPdzHxhXu48Z4VpkS4q3PR9lGyI9TO\nSCSC0gkZCWaHzl7YZlokgox8vCtQImFAT8cBx0GmU1itrYuBTEuCNHOrmp0jMeexsLUbt0UiPRPM\nC6URnqLU3+DQAS2fbq4rdTNb8xmf3iMeIz+6noXv3wlVF/v5+vLwCNC6m3NOk2fNCEAbMKjZMyxU\n0IJZa9M1a6GCPVUiMVMBDdX2JG5nxpSRhftsZCFhmENea4rCmhzjO7Nce5vN6PdUcb53gi3vPsMH\nfuBbPPSjR5n8/iJXvlsyu6kFlQjmjliWvn6fATgkRBTARZ8FoFFjOVlccyjaLgSTpEA5kmqbHWmW\nKCfoAupr03UnmrvMtRFKY1UUdtnHnikhiy7O2DzWQsWUpFQCYdCEY/yaVDJgGFgGJEqaACUxtsDK\nr5WZ+pNVLDw2wPDXof1CmfnVNjP3WCjbtLuOghbu3r2jKxVUyGgx+0HFu4cKgQpYUNrzguy9qpVn\nlSuo0XESRy8y9PkR1n1CkZoSnP+QxdUPDKE6cjA+hfXU82Q+9yzy2y8YgCdg/OhSyfjDHe1U3vsg\nuq8Td6CD0tu2krg+j3PsAvZAP2LnVtSb7zPduWbnalpCxH4336+ND5oCQVGgFpSohe9FwtQh+yNI\nZupyhaikY/d2ivcOoo6exOrrJf+Du811Gp8y+5OixrCKJWzsFf3RGMOkb9snDkQ6HFZrK5Xvfgg/\nZRtmjdZYWzZS/p6diJSZ+8QzL9D6yUP0/6d9OI8fib5HwqG0dQA/bd/d+yYsGdM6EJEGa3oBdfSk\nWYP7eoPnQtWe7fB6Oza0tWCvXrmoiYo/Nk7Xn+2n53ABq6LNMxT//OwFmJwBX+GPXDcSH1evUx1q\nZ2ZHO/OrHC4+muP0r2Y5/dNtlB7dhdyx2QCKR08i50sIHbCBwvHIkC0YJLBkDQwKy16jf3FgOl5+\nFoLKtkSnbFTKAENMzSxiRAFYmzdQfssWSn2p2LUEq+TXs2pvYrcjp9H1Z/tpfXESa8OaupjUam2l\n5TP1EhV3596JMcYXadz5BqRpbEgSAi0BeKJ93zCuzlxi4NPnWP+3C0xvsjn/H3eayhK12D8WljTz\nTJh83LzBXOeHjY9srV2J3LaJ7H9/FntoELljc3S9/IkJZF+PAY6kFYFOdWNfipkaP8/G84kqbcIS\nWdPxW1UqpsyyJWskaGbnTOfzYH/qxhg6n6/5yAHjSVgW/uQUcsdmnMsT6MMnEMkkVncX7X+1nxV/\nsI/K9z4UPXPh+Wnfp7p+BQvv3MLAU9PI+7YAYJc1+rnj0XF01aXYHcwzrzJD6OPAexve+xXgCa31\nBuCJ4G+EEFuADwFbg+/8sRDiFQldCCfxisq01LFTJPadwNuyGr13R/R+y0uT+OcuojMp1PrhelX8\nlMmSys4OdLWKmp1DtubQXpDJ0BpVLOJcHMXbMHT3u00Fjrx36apx0hMJ7JkAtfRrNY+LbKDXdGQY\nWhE9JL2fNUGWDhZs6571iGSSnkOzlLtrnTXygwESHHhwqmxU0uWOzeYhzJew+nqpvveh+BE/zjLe\nO6/UrKeeZ/APn6PvoI+fgpktUNi12jDE7qAu841ueqGAmpgkMa+pdBrx7XKnpLTBgGNamra/A18f\nQ0uY29mPWiiQ+Noh2k8Y9P7Sx3YsuX9/dq4xy/Jx7uZ907AYyFwuYMvVU0dvN7PX+0f7WP/7p7n6\nrizXfnkP1paNWPesx9q8Aau9zbBbMBO1KhaRV25EWUkAsf8o9vAQ9qphvEtXkN9+Ac5fZeKn9zD2\ns807L9WdS7NxNptDG0U8m+0r0FWw/vF5/JfOmAV49ZARvruFyW+/wPrfOcHQ16dw92yhcu9K2o9M\nmE4U0kKkU6gLV8idW+DsR4a57whc/V/3Yj31PM4zx1GtaaypvGExxswfG8c/fY7qw5u4/KEhiv11\nmnEf527cO55vdIJCLSgvyBY3cShfS7OHBrnxi3s59ZEcG//nE6z8s8s4sxZvHrhA7w9c4ez/cR8n\nf9N0/ovuvaBUQyQSROKvYIK0uOCrUgboiZxvWZ/hDyx8HQeRhGVFDp1+0324u7egjp1Cvfk+Zj/4\nAKVux3QVi7GDZFVhuYr03786+mzO44dJffEgw5+5SvYzz+Kt6qX8li1Lbf5x7vaco7UpUyh7iFIV\nUaoF9qEtKqXVGuGZAF+4HnKhjDNTwi54+ElJtSuF15aqy+iawMhCOxZuT4b5dWkmttvMP1Sm694J\nVg1M/f/svXeUHNl55fl7YdJnlncoAxS87QYaQMOwSTaN2C2KfkiKMtyRlnJ7pNHOETmSZnd2tTqz\nWkqjM3tmJc1KHGmGlCiSItXSkKIVTdN0E0CjG23QDQ8UCkB5n5mVNiLe2z9eRGRkVaGBJgG0pNV3\nTp2qjMqIjIh88cz97r0fm1vniBkeKaPOuzpO8Uu7n+R9r30K+f55rj2apLApjbR0iXpdeYHG7/Ca\nIj8QsolWRgD8hNlUFXm//1vGTdyk9gvS90HvZ3j+50aZAB5h1Tmz5GhfEscFv0y1CCRRUemSJ1G5\nNKq/C5FJ6apA/n2350u0XCzSMlrDLnhUOmMsHnSobK9SWhejOJzGHWxiTXyCe9F2fFN37Zshmhnz\n/iJD2JaWYgULaN/nRzl+XyWlBpZm54m9eI2BL04z+BVBrV1x/n9KM/e2bXoOuH9XE8NQuS5icB3O\ngS0UD60n+d0zmml+7AUS3zqNd+Gy/pxqFaNQwZ7KU3nng4gDu/UCv1QKwRzleShPNvoeY8UyZC3D\na2j4DOGDRdH9/GOpeh2SCYTjkTw1qheGrTmynz2Bt7CkmUu+/EMYQgND0sPcshFz22bcwS7MTRvg\nwT2467sxNw9jbdyA2dGOkU6z9NadXHsPXH80xsjvHmH2l45QGWoJ/bnkpkENniR9UDtYoA33M/mB\nbah/M4vXwE0+wT3scwLA3Z7O413WbB6zpxuR1uyTkJVoGI125YN5KmZrn9HBgVUereL4C7R86gS1\n4dVMIm96Bu/SSLjoX37HPm68Mc7sfljY62GVBWImzgP3X6H4PxY4/ysZzeICmJ3HXChhVPW+oV9Y\n8OhH/IaEQgO8gpv0OY3qicJbzYxWcROR1OVxovMNs7UFtzVFPWc2+mIFsaU6sRtrM4NMv3pZeH/s\nGN7Z2/OpldkE3oXLGkh9cA/Wxg068b46SfAJ7nrbWWPeKxoJsHA9DM0snGCT64bvl7Uacn4B8dJl\n1v/lNYa+XmfkvRnG/u3RsDJxEN5SXs+/kwmsDUN456/oNVfgcXv5KsbcopZQ3RjDmFmEHt328j91\nWPtK1mqYXSvIGjdLlgYsoGjSNGgf0X1WzqF9HyBVr2t55cwsRipFeVdfuJ4xWlsadhmRdYaSCveN\n+xFXx1l43SCVdz2I2d1FVNnjxQ3k8rKugpfJcP23joL0MJ54jsxIgfzOVvLb9Ryr5a+f1YBSawvu\n2DiV121H2vocndfdfO21Mm4JCCmlvgesNL94J/Dn/t9/Drwrsv2vlFI1pdRV4DLw4G2fzcqTS6dv\nG4F9uZDVKuLYC1hXJpEP7cVaPxgOJl42TmFTBvxOzkil8C6M6AHMcfQX7mdhRCwWmkaZuRwqm0Yc\nfwGRSCD2v7ws5k6GkcnohWQ6FTKXxLJvaLpGCT0A69mLlNfncMfGdVYjk6b21oOofg1sqEt6gDj3\n4TZ9vPEZWl9sLG66nl4EISj8bV8IhojBdVR705i5HO7IKJPv3Ux8uiGVeDXbzp0K5dRJfuEkmz4+\nRut5nRWoPriFsQ9serVP7Z6FrFaR1Sq5z5xg3e8fI/eZE/T91XncjIkXB7sokJbAu3iF5BdOkn7s\nqQZL4vJ1Ws+D/QpIE/e03azURVtWM8NjLUPM2whvfoGh3z5G3/fLnPu1HGNv66bWl0O0toSggZHN\nYmQzePMLCDumAaOuLqzeHtwbY7jXboSLbVkq0fUnx+n5w2OYWzbe/IPXMqmNXmuT/MNcvY9PBw7v\ni/+eYBLojo3rzB+E4MKqj/HPufTeQ3oyc2OSaofNyE8LjP9SZmlPK8aerSHtWD13huHfPM7z+2Dw\n/9TaaVWrIeMW+Qd6Q5+B6V89yiMvFZj/uSNYgwPEFir0/+4x0n/zVOTy71Hb8TyU1IsaubCILC7f\n1m53KqyNG5j9pSNc/sUhiltcshdtHn92Jxfz3dhFwWipg0Mdo2zaN4ZIuYjH+7nwWzuY+OAOXTXS\nz4grryHTCA1qg4WWn4UXQjSkZb78I8zqeV5IF1d1R2fp/ao9ANb6QZyMRaVb+/ko26D96VmsmjYX\nNR2F4ct+4lMlrKcvUH7Podu6B8GkO2C3ingcq39d04Kl9qMHKe325d0nThP7+rOh5934bxzFa9dM\npldlrJJoL4u6o0ELWAUGRc32AyZMY3+pAY+qg5WvEJuvYtYkbsam1p1Cxi1fWmGBKXDakhQH4+Q3\nG9Q2VRnqXSAbr6GUwFUG3YkiA7F5NloLPJS+wH2pG7yx/yLve/uTzL29yuKOZMhu0Ce0xjUp/4fm\nRZh+3QwERQ2mwwWdVCghcBOmLtntyz6iIJT2C9K+U0IqDEciXIU0BeWBFOVN7ZQ3trG8rY3C7g7K\nm9pRuXTjnhkawBWFEkahMV8JgCNlm7jZOJVOm8VtMeZ3m+AKVNVkuV+wsMNkeX1EYnSv2k4g6zRN\nPScNnkHDbJJSKc9/PlcaqPpATMB8VeUKTM2SPXmdjZ9bpOcJk/n7FRf+XZbJh1rwWvQ9M1tb4P5t\nqHiM2HiezJOXwTTxHn4AY/d2bab6+n2orUOoWh15fRzv8lWSXziJsdQw1A+AKiGEZgxCaEaNYYTg\nVdB3rOyLAoaiZivGwveImN2QXZo60SDOXcWbncUdn8C7cBlrcECDNMIIK4sJywp9QbxLIxR3dVAa\nSjH2zj4ufTDF0P9zhdTHi+B5of9f7rFn2PnbE6z/ao3Nn1mi78s3iH39WVLfv0Bxfz/z+3K4o9eR\npRJmLsf8zx9B7NulGS91hfHRTmJz1XvbbmiAQeb4HO7IKKBlYiKZaLBt9Ek1gGSfVRSdG6hUAmOo\nP5TuRCPwO1n94QaVdz7I9d86yvibFWZVYLiCWEeVeqsiubHAu7uf40DvDcy0Q+H+bi5+7CBjH9qF\nd/EKYmQs/PwABApAoVAWFnQzUSBcNCRkwpMYjhcaWOMpba8RmFxLTQSQr92njXj712ENDkBnO1ah\niuGDzmZVamnquevhvGRlrExwht5bK8Ia6F+1rcmS4uSLKGtt3OaetZ3o/Nj3hjR84Oy25sNB1Vof\nBJHVKt70LLFjr0r4agAAIABJREFUZ9j6J5PkRiXnPtxG/qdWF5+p7tEJUaSHyGWRi0tYvT0Iy8Kd\nmqa6vU+DTYUiLBUwczlaPnWC8rsPaTba9IwunKQaYP8qkAeagZ6bgF+rrBoCn0yfeKE8XZBFlssk\nxvVc0Ni9HXdqOnIv9Hza7OzAWteL9fgp6OsmVpQsbrEo7l/H5Q9vZv7njwCQ/uJzmJuHkcUiXlcr\nw39yOSRcyNPnaTs5xeRbfLA0kOkND2Dct534l5+m48+Og/SIn7l938Qf1HyhRykVlOyYAgK6RD8Q\n5XaP+dtWhRDiF4BfAEiwWh8ZavLuYHjTMxjTM6iebkgl9GCWr1DPplHFZcyOdrzFvF+GMobKF8K/\nvbl5rL7e0DTNWy6x9K5dtF29jjc7S/m1G8lN9DaZqt2tkMvLIAyMjjbcazf0BH92Tg92Ac1WGKC0\n5tKdmERsGCB1/DIejZKIqdE81XVZ7JcIqX/2nIX78F749rOYkYyMPH0ea8MQvY9dxMsXfeDsMqlC\nL8qfgKdmJebkHLeIu9527ka4o9dpCwaAw/dR3Gjx6rtIvXrhzS9Qzxh4cYFZhUr32oODLJVW6aF/\nwLg77SYyOJi5XEMGGZRgj0aUbhodJFeWao+E8eTzbH0SzC0bmT/cw9x9A5jVfmptgvV/Nx8a3yun\njnfuktYbRwaRgIFibRiisLeX9Jeew7s0grVhCDm/2Axe3Yz2Gj3/aKysQhhKxyLlOIMBz6fGqpou\noWukUmuyYaz1g8iWNNgm6cc0UOMVCqQfe4qtj4ED5JhEok2qnTfvJzFRRF65Fn5G+Hnff57crm3k\n33eIzI0KPX9wjL//gxwdHMcFuKFBqdtg5dz5tiP8BYXjvCpVxJzeFvLbFTLjgmvAaxdJuiZV1+J/\n+5nPcKq0gR2JCb7pbGP9p03m+4aQr3Fw0jEq+4dJXskhbzSX1g2lKDFbL5oCFlAg9zCEnvikU6GJ\na/h/Q4CV1NuU9PexKW/vwaxLcmeXwDIxv/0s3oN7qKcN7QvjSF0NxiA0N0397VNU3/YgtRbt2ZKe\ncrj2qMXmjzzdNHkLTacX9TOrajU9CUwmw/EsqHgTlqWXHpx8kYlfP0qtTYVliW8Sd7bdmBEmsS8T\nw3FvCgZFI3jdBAhFn1vX05XipcSoWcikhYwZENMSLi9pUe61WR4QVHtcYgmXQlU/ax3pMp3xEluS\n0+TMKmVlkRAeE04rz8wP8cGBE7xx8wW+vrQHox6nZbSKcFeAyOHf0ZNuvFYIPSWJXkfkGsOkv9Ce\nH4GRtBCaHRQFg/SCMJCS+ECTrSWJQirK3RZuEry4wC4r0nVdUYh6XXs7pBLab8bT/bYyDYSDBjNj\nNl5rjmqHjRcTJBYV8SWFOG9S6TAobpLIrjq1iVtWsr0r45VSCurNSVIRAWAB/76aCCEajD9DIIT/\nPBtWQ27lg0OiUqFjvkBupIvZB9JU22HqoRZS2w6THzaIFaDr+TLW+Rnkcgmzs4PYmRuoYlGbo37v\neQ3o0PAxM9f1auaVv3iS1aqWkgbjaGiSHcjH/DbhMxW1cXBEUhZhMgavleeBqxrMFkNoVm02q20V\nWltQ2TRqYakhU1MSMJF1J+xPzF3byJ0cQ87Nk8tmcTev4/q/KgF+ArijHdXXTa0/Q3J0CfvkBWSp\nRHSGYBc9FnZYzP/cEaQFdhmsiqK8Po3dtp+e7y9AAIDdPO58uwm66anFcH1itrZomZjewe8HfQBa\nelpqtdZ8J3h/Oom5eRhRqtxyzWPu2MzCDotqrwsCKoMu8fYKG7vmObT9GY7PD/PXUweoehaJF1Kk\n/+YYPHKQ0r6KZklfu4G1UMLpzDSSWv65Kf/iQm+hACwKuhZPP/sBoZHATwhQdjTxBbI1jbVYQRRK\nervvqaVMgTTBcBr9z8o5h3xoL7HxRV0kJXrtu7ahrjRvE/E4RjaDyqb0mnOtYiPB6ftrtdK/OERm\ndBmeeezlbvWdH68ifbyZSWvD5HJ5bWBlzQPqdSjQmEv6RSnU+CStX5ih9ex6CltzjP0vR3Fyii1/\neE0/4988BWiShswXUI6LN7+oZY65HHzrVKNQ0uYhKusyxL/6NImFenhf1XNndBu67oOKK5O7URnZ\nSmAoMLRew4IlBJl8/6CodE7U6rrYij+fCcEjIfR+3R24569gpNOIfJHEFy8z+GQbdLQy/Hldsp6d\nW/HOXqS0rZPEpRHt49vTTeqlCaR/ze7IKANf6mH+547Q8/gk7sgo5uQc02/bSFvLPl384MRpXTTg\nNuOHNpVWesS5/dR5Y7//opQ6oJQ6YBMZXIXQnhk+3fxuhDc9g3fuEsbcIqJSI7mgG6q3mMdIxPWE\n0nWQ1Srm0EAjm1GpNE7Ttmg9vxw2zsxIkfL9g3ftnJtCGLqsdy7lTwZ12U4R6n+NsHF70zOYmzYg\n5pe0QW5k0ul0pLH9hw60L9Hm3z/P0pYYVm+PNqm2dSbGGhzAHb2uHzKnjuH7UijHCV3jDUc10Xpv\nFXe87dyrOHGaHb/3KlereZVj7hePsLBLUM+BVYHWi6xpPng34o61mxXsFq9QaGQBZKRc7kqW0Eoa\n6W0MjN6lEVo/eZx1//VFMpMeAx89hnfmQiirCd/nP0vBcxd8pnv1GtmXZvWzl81qCnfvivsdPbeA\n5RPEy5WoX8kQCrb5v42UBkCCQU9YOiNrrDTaBNxrN7Q55Kkzq6ReAObWTaEPl0rEKAzHYH4pPLaK\nemKgK9pl/vopPbCtPFYu94olWneyz/GmZ9euSHKXY/n9hxl/fRqZkOAaiJSLbXrU6xZdqRIlGeex\nZw7wjcVd/Oi6s0wfsLHLil2bx0nMKxJPnKW8rROjtUUb1cZi2g8oNIh0GlnWIGsPaH8Owy/T7VcH\nivgMIRXCMhG2Xw62NUfy2Wssr4shZhcobm1F7NuFUfewywrDU4igqJ2rmmRomVPXQYBna/+Yzb92\nYm3Z4+H7UJ7URtd2DOW6yGIR4/4dWAM6ky0O7kGs6wnbnZFIYD80T2bH7bedO9FuYoafWRXRSjkN\n8+hwn5tVXFzDvyf6PzyJcDyMqoOVr2EtOxh1ibQF1Q6LSoeBm1JgKpQU1F2LuO3SkSjREyvQa+Wp\nShtHmQyakvsT19nWMkOrWSZpOhCXLO2Ack8cZYnm8w6kFxE/j5UMoma2ULPfR/h/AcoSSFNo9pjj\ny8RAewehF3/BfsJDgx2uRHiEshJlCMyaIjknScxWm5hAuJ4+hmWiErEGuyQRR8VjGGWH7IU87c/O\n03IuT+ZGFcNVVHogvSnPQM9i6G10O3HH+hyfjRf13BB2rGEgrVSzXCxgCcnGswwa+FVKNf+u1pCF\nItbZUdb991GGPzNFz1NFyt0G5WGHzhfKiO8/j1wuhX20XFxEVqtNlSmt4fUY6RTGxiHmXrsO6g5m\nV4eWJgVJ3ijDUOrMujBNzQAK2EFNAJfRkLAGbS4obR94uCkFjoOqO5hdXYh4TLMRFpeQo2OIZDKU\nBAlLAyEi8izJi1dRLRmwbeRSHutiY35npFJ48wssb23h+iMW8spoUxJAxON4hQLW46fo/91jdH/u\nDL2fPkPrXxyn5S9PkPz8SWLHzuClY6jJmfD7uY3v/460G6EUnDit1QHBOfseb03AT9C/rJzjBK+D\n8zYNbUJuW6hsGmvjhpctsjP/QDteHKyCiUh42C013GsZzo320WkXmVnOUHTivL33NNX7KjhvOcDm\nTVMwE0e2ZvQ4f+4S+ICyfv4bx9cAUAQM8l+vBJ0B31xa6pVv4EXmV2REKbg8ijs+AULgdeZAKbyk\njek02IyxpWZA1mxtod4aY+bhdXD4vqbt8vLoqgq7qlZD5oswOdMEBplbNmK2tTX5lMqH9mK2tTF1\neIW5/y3ijo1XAWNcKUQq2Ti322XLR5OOK9qUqte1JcuLF8l97SxDX1qg4wXFyM9vCJOiZk4XS5LF\nImZHm1YMCRGCmWK9xrXE1XHtI5fLYTxxGrlRbzcSCbypmQarKYiV8+PVN6LJM2ilxFC/9nGBWi1U\nzRiJhPbNWiw05vBKNh/LcXHevA9ZKuEtLunbtFxCLJdZfv9h1PXxUGIYW6prP03QAH8yjpHLhh6N\n2SdG6PnGGHJWJ8fcqWm6v3AZ+9x1pO33oR2tt/yawtty2+9sjmkhRJ9/kn1AMCseB6KoyIC/7bbD\n2jCEtVSlum/9D3hqtx/u1DRXf3qA7LcvojxPT46TCcRgX+PLq1S1jwKEBpwAeB7GSxq9leUyxlye\n5JX50Pz1rkWQbSmXERNas6h8o0G1kiIsfJ15fhnZ3daUmag/coDY6GzjrXaM4tvuR9VqdH7sOCqT\n0pNsv8Re6b4+zG2bMeJx3UFPzeC+cb/u2AwTs62NWN4N3/8ycVfajtXXy8RHbuGvcgfDHZ+49Zv+\niYb7pv0sDxIOyu3nHDpOTLPwlk3awD2Xwxper+m3R25fv3qLuPPtJqATH9gNh+/T7JToALaymld0\n8fMDhtyxgeQX/DLqgwPISlV/vh/mts3akNOpY+ZyTVr0QKoli0W8SyPh66YIzm0lULXWYnqt61iR\nCcTQNFiU0hVHdmwBJcNKMlHgStgxam89yNIHj2AN9Dco1VFTv8UCKl+g/sgBvEsjdPzpcbzpmSZ/\nt1uFuWubztjevoTvjrcdVSrfETnzK43FnzlCLSdIzimS4xa5CxbZXIVKLUbnVxKMLrYxVm/HzDi0\nx0q8Jfsif/izH+Mn/vevsjEzR/GNJdg4hBc3mH3rJj2p9zwN9EilPUjicZ8iLUKDaX3RssFEUAp8\n/zoRjyEScd33x2z9Hn/BV9szRLwgUfkC2bPz1LuSLO7KoUwwqwplgjLRvg7+BEu+fh8LD2/AjQuU\nhV703yxOnMbdrKUPZmd7KGVwcwmcwU6wTKqdCZhfZP6RTZhtbcz95D42ts3T35JHvTxH+s63Gz+L\n7WZiWsq10pQcQmnYSrnYy0pBoyHRi2dXogTUWwIwCH29CqQSCKFoS1RosSskDId+a5GNsRk221Xa\nzBSHEgU+1Pk9EsKhP77I1g1TJLYvMbdHUM/ZDSNoQdMCrem8wp/gBvg/ovknAIMQGgySlg9qGI39\nlKk/x3BpqibkJg1k3EBaAjch8OL6vYYDVtnDnF/WTJVsWoNBlZpmp9QdRKWmGVpKoeIxqgNZ5vbn\nWNzbysL+DvLbW5g6kmL8EYm7pUx3dpktLbPUb52vvDtz5Ajgb2Sz2rcrMIY3zbBPFCFgouVZWuqp\nmkCiqIRLBQu0ag25lEdNzWJeGqPv8QU2fcbD+P4L2huluwthx5BLed1P7N+FfP0+zGwWY882ZDqJ\nt7iEunqDjs+f0fMkqajvHEA5fuGTapUm77Kgupi3IkMfAD/BdRtGaJAdGmUHAJmUui9KJfX8OF8M\n5+JGLoMqBOOV1WAqBNX74nHM7k4NCtXrCNNoZm0IQeWdD5KYqbH9DyZWmeCuNNb1CoUG09gPWa1i\nnBvVoNXLr9PvfLtZI5nCSilSAPoE4GgAnKwEhkIfnYB2ZKASMVR7SyjdjUb90YMIqUhOKzpeVIgF\nm0y6ilUWxMZidFkFNrfPcaTzKj/XMsJnj36Mo//hKd7Sc5b0xjxz+1uZ+qldGIkEscvTDXP9oDS9\navQ9TT5CSjXaeQCImkbjxzZ1JUZT6LbjeLi5OO6B7RiZDJgG5sIy1d401e44Rl2F/ZZ9tZkRpTb0\nU+4ycZOi6V6rgb7VpsvB/5z6qgrX6sYE3uJimGQy0mmcnK2TL/0V3ExsrUNF4862HYEGUqSuiOVO\nTevn65XGzdhEqmFaLUtljNkl2p+aYsN/eB7QrDyvUNCMGcCdmcPq7WH5vQ/izc3rfiil74m3XCL2\n989o6xfpYYyMU3/kgAasazVEf29z9bGV8+MA8InM+UPAOJg7r0wOR6rpeotLIARGZ4f+Dmdn/Sps\nfjW1gImYzcJiPmyzZn+fv053UJkUqemaJqL4thDGk8+zuC2mi85MTeNdvoo7ORUC0t7sLLIlrZNg\nfoLW29SHyGYwntCG9izevJL6yvhBAaG/A/6l//e/BL4Q2f4BIURcCDEMbAFu2yGy/sgBTbm7PMrC\n9ls2/h8qgsx8yxWps8yBSZ3nweSsRpjtGN7CYpiZkMslbUZnWWFDDrKSgbdGvSu9Kut/JyM07bRs\nXXLe88KBVhiCNc2kazUq/dmmReH0wZguI93ZgdXXi3Lq2MUIHf/yVbzFhiQl/uWnUbbVMAV06ihL\naMZCzEZVKjpreBNDwEjc8bZjdnVx4cMbVmUk/znuTlz/kIeyoOUS9H+3RPwrTyOvj2N4MHUozsz7\ndzHywX7GX5/k+o/eMUnfXelzrL5ezPkinDjdPHhHOvHw9cpsQVAy8zYAInX0fpbfdwhONsyj5cKi\nfo6eCQtF4F24rE2k8SeWc/NhXxSU9ja3bgrPxdy1rZG1ieqdV57Tzc7xVsyhoCqCZeFeu4F37lJT\nRjgERfy/4195mtZPHmfhdYMN8DwYDDvaoTXL9M/uI7ZY48a/O8rVjx7B2L0deyqPOno/9UcP4r5p\nP+V3H2LiI0d1SdqH9iIsi5HfPcLMrxzFO3MBuaEv7Jua2FRrxx1vO97yvZeJgS6zHSsqlgcEzo4y\nRh06MyV2907y7t/4Fh/d/d8ZiC3wxEN/xAfanuJ8rY/jpS2cXh7gqxd34dYtrvxkG/W0gVlX0Nmu\nF49Btqvu+GOhvxgLQKB4HILKZEGlsYBGHV24gQaZ2nLIXBIvbhArOCy9Zy/CcSl3W41KMYESra6Q\ntoHZ3alff/c5rKouZwwQ+9rTL3tPxPEX8OYXcCenQqDeeOI5bjySJn9gHdMH9Vhp1hWirYX2/3ac\nrF0jZ1fXBjIacWfbjUBLWjIxjHpQqW2NKVikr4kygoLS0WuyhAIDZ6XLPAtP4WViVLvj1HICL6Fl\nIW5SIRIesZhLR7pMT7JIb7zAcHyGlOGwzqzRYiRwlIdUiqqyuFTrJSFcDnZcY2/POLHdeZb7TJRt\naClWyPBZ+7JXl5VnFbMo2Bb6DKHBIGWCNBvsINBgkPD07+D9XszASRt4ti/vcBXxgsQquQjX00wg\n26I+3I3X1er7YyltDh9KBiSlXovEe6cxf3qG8nvzFH68yLpHr/Pwfedpy5UxhaQnXkDeenp6x/uc\nJmaQaTZAFZ9xEyT8lCfDcurCZ9EopcLqPRpE8p93HwQIGTm+obDR1UF97zAzR9uIjS2FGXZVLGJ2\ntmuvvVIJ9dx5rKfOIStV1LkR5NlLOpGYSYOpE4Wqp4P41TnE/p2YbW1aUhYAoUGFwsBcWvr9jVKN\n/iW8aNFgBUX8zYL7oDwPVdPjkdHeihifwcikwXE1QBP0WUIzjoRpaj/R3ZtxNnQjTG0QG2V0qKP3\nc/4PdrC8zmTyNSnqgx3hNTQZ6+/bRfndhzA3D2tvPcNk5leOsvy+Qxh7d7L8vkOInk7NVLqJz+fd\najdrht/uRcRMXbhaiqfMRgW3KEiNDyqGUuGmv+UqzyphWVTbTWptBtUOQanPQLU7JGMOvUcmePiR\n58kZVf7dwJf5cMdTOMpjnVlnKD7PF8fvY6AlT/0dS+S3KmY/uE9XmFr252gShNM4RyVoSA6DPiXq\nVRacmyCsPKYEurqj46FsE2kbuGkLZ/8WvK4WvLY0TsbU/ZBf0t5wFSqXabpOY2oew4PWkWZpTiCB\nvp1Y/JkjLL17L+aubYD2dxr98P14CQPaWzCEwovfcrl+h8croU3Yj9wfyrPdrtzLz3dvJ1katP/A\nn9Jft1Z29eOOjOIc2o6RSCCy+j57F6/o+yI93Klpcl98wQdaJOqZl/TzmE7pvsYHSlS1Rur0mGZd\ndbTr5KkR+dyV5xkweCJzfuW6Tc/4mhFWD1MY8Tju2HgIYOljNLcJr1jUfkgx38P4+hha8ZOkuqEd\na0n3PQuH9Jx++f2H6frj40hbvz9KOAnM143FZcyuLmS5zPX/4yicOM38a/rC6rJyQ9/LX0Mkbukh\nJIT4DPAw0CmEGAN+C/hd4HNCiA8B14D3AyilzgghPgecBVzgl5VS3poHXhHqNXtJPjOCh0bTC1s8\neu3YXcvCinQKUS7T/sQN7UdhmqhKBel5GmlTCrOnC29qOhw88DyMdAqRSmoUVwi4bwvGxesgJbJU\nInbyIsUf2Unqb5+61Sn8YOcd80v9rfD2EEr4YJWtHxSpJw3KdSFmkzp5Bc9nF4mDe1j/pSUksPgj\nW8h95gTW4ABeTWq2UzarAZ5oJuTBPajnLmi9eEsOc10P5qnG9wXgpoyGLpl71HZSCS7+xiaE1A+4\nsXv7K+qI/zleWVj961BK0HtSkn38fJjlULUamWsVqm0ppOVnZyvQ90ThFfNW71WfY20Y0qZ9M/OY\nm4fxroyunclYK8Phe+2shb+utZ849gIZfOmlb+we0s6F0IPWwtLaTB6ldLbBshDDg1rumkhgtLX6\ndPhE45wCVqB/XGGuoX9ecQ23jEgmB3ww3baas6grjp/79AmMtja8pSWsdX14M3O6sk8qTtcfH0dY\nFoMn/ewQwO7tWBduYDkuzr5NeDHB4Ffn8c5exG5rY/Q3H2Tjbx5rfNypM5qpuFxqGiPuVdv5YSpf\nvtKoP3JAmwUnTWotAqsMtT6Hde0FZtYnsWtxrp7tY91r8rwhc5aSjDPippj3MvRaeSQG353dgpxJ\nMLx7gskLA8wekLSeF8wd7qLzS9rbAl+2EUiQ8aTOCAYMIkApgbDtZgq1UhrYCMpFmxookJaBkzGo\ntcVRAspbu0hNOThZCy8mQhaM4SniU8vIthzVfQMkv/EC9axBvCjxqmtPMK3enmbDxjVi3UNjOM/3\n0v2cy8wXtvOjQ8d4fHIrpcePkl+Y4fV9l8Mkwj1pNwq8pIVVdjBqrjZ9dkwEjeqlK+VjQLPvzlrP\nsRH5HqKS8JxFPW1oMMjEB10Uhi2J2y6dyWUqnk3Zi7HJnmWd6ZEQFmVVp+i376JMMllvYVdqnKfy\nwxhCcn/PBE9tbCE5b5OYd3z5RfPnr2JBCKFvQChkiIDrNLYJBIajF14BSygEg1TACBAYUmLU/DmQ\nKZC2aBjNSg0mGa6uOhac0/LWNgrrLdrP10nO5XWbrdbA80FO0Gw2YF/HOJcKXRzuvEq3XUAqg6xV\npeTG8VbkUe9Zn4OWLxldHboc+PxSw09IqsYzimb/hL48we0LPiYAk4LtEcN45YMm7sgo5tVr9F4d\nRC3lNUvUV90ZjqtBnGrV7wftBnDs6gRrwDKUlSpmzMadnsGs6EWOLBa15CHK+AnALX+erT+oAUys\ntCIQptHEEBVS6tdSgeOE+wjTANvW0pNKFeU6iJj+DOW6uNduwDWwurqQPhBrdnboktDpNBffm2Tz\nx6vMHIiRmFdYpy7glctYGzcgJ6YwWlsovH4z449Khj/r4o1cx9i9hfqDm1j32BXkUh5Mk9bFduTs\nvDbRDuYE97DdgGbrBOC6qlYRtvbkEZ4PAgmhwVPLbPRDUjZYOVFZufBZOgF4LRUq4klnbdzA0oFe\nDBekrX2DRF2QaS0zMdaOnXb4teGvs87K02W4PFHtZqTeTa+V5zsL25j/Th/Te5dxJ1PIuGT+sKTj\nT0G+eBGO6qIAYdWxaBsXDdaQsgwMVzaxD1cZrUtQpqmBIVdR67BQpoW9bGFVPBLzDvVWS8uRajKs\nJmf1r9PMZlc/C6lpRzNUbiPM1hZEa0uTKfXCLjDrgvYnS1z5j4e57+AV/kXuCf7+wR3MPdONeQHM\nWgOovCdtR0qM+3egnj0PK3xymubE0b9vNs9c6aMDBFIq5boIO4b9zVMaoP32s0ghEFEGlWrc9yDp\nI+JxzIiXpbV+EJYFlMuI9f24vuzK2LsT5hdQOzciXrjYlMQUpqmZggHbZ4XETa1kLa4EqIPEjVMn\noBuryZnVvkKWZmKbra24I6MkRkYpvfcQ6cee0m1pZk6zOcc1qavj29eRu7eT+dwJxIHdCEdi9vYg\nL1wNfbXcnhbMxHbcl84z/3NH6PizWTb+6SieZdHy6adRu7fo644ald8ibgkIKaV+4ib/etNN3v87\nwO/c9hn4YT53Ea8cqfjg6tK4d42Wb5qYPd24Y+OI/buo9qZIfP0FUC4imcAwDOTcvG4s/uBhDa9v\nahCyXMaaWkRKidHeBp4XZq2t4fWrDMZ+qIg21sDkKtgWmOUBIpYIK8hEK46puuM3fo/85jStLy6h\njtxP25fPws6tuGcvYgxqeYosFjG7uvBmZzE7O5DD6xBnRsA0MJI5VKmM8Dy8QqOyjrBjWgIQoaLe\ni7bjpkyEJ7BKOgPq5eL/TBS6m2EY5J5IkPrb46wcUax8ha4/fgFrwxD19R0Y333ulYuYuUd9TiqB\nsi3k1et6QCqXMZLJxrPT/AFrg0KBoXTEswtovNffz2zJgVR4hQLujbE1jx+WqbxvO/J0M6Ap9u3C\nXFrGvXpNa+kBTBN3ckoPPIO9EFS1WDFIr6S3Nx/4JlTeW0SUDm+k06GkDPzJTlsr7tVrIY3Vm57h\n4n/aDxmXLT/TMAIMT8OOIRyXhUe34sUFqVmP7GdPIO0YYt8uvOfOhNXHVp6HiMcxBofgUnD592a8\numchBKmzU1S39LC0Rct0ev78eRb23IdUgj2HLzO61E5s0aTkxuk1a9xwFDecDv7XL/84/bum2dsx\nRl8qz+VcD23xMvHPTXHu1zsorbNY96RD5eAmkscuNNgqQQIEfAq+oRdkQcY12qYCxpBUgAyz96Lq\nYNgmZl2hTIFVVzhpA4SBGxeYfmWxkCW0uIw7Nk56uhPn8E4y43WW+2MUNgoCK+bA9H35fYdY2Gky\n9NsvDwjlP9PPT//OV/n6zE6WlzN8b3oznjTIXZcUvtPN1XcsRnCJezTPKTkYZUezXGI0fDG8Bvsn\nXIAFETzLEWDopl5CfsikjRc3tPeFEngxf5EUU3S2LjOUW6Q7voyjDPrji/SYdRwFeenytdIO0kaN\n7bFJ1lszROSiAAAgAElEQVSLPJgZocssYBseSdPhwewIo3vbKcz2Esu7WsJlKFYNCNBUIlpvIAIK\nrRFKYdQ9zJqpmUIRppT2B4mAAMGfK8mQCryYoNpmkJyyMBcl9aF28hst3ASYNc2AU+kkXm8rwlMY\nBe0PGV9wuPZ8D71vPctDAxeZ9zLMOVkcZfL8/AClus2R3mtIOwq03Ju2Y2SzGqB1PWR3K2ZQSt7z\n9C0IWDMxOwKqRBhmojHdD8CTEERyXb0wFgIZPN9KIadmkP7CJui3w0q7nR2ITLqxsPX3M3dtC2V5\ntS3dWOensDYM4Xa3YOYrmL2dOqmRTjcYQUEEPkEhC1czf4StjbBDHyTX9X2FgvYROURgoio9IIbA\n0WAPfkK1Xm+MVz3dkE3jXb6K2dONWi4h80UKP3mYmR+tse3fz1IdaqXjpRr2N08h0V4v06/vIbnQ\nQ36DiXu0wNAnUiQvTKM62lEXR0k6gyjfX0mYpgae/O+wgf/em3Yj7BjzH9yP8CAgtqlKFZFJ+32P\nbAKjQzZQ9BhS9+Ph9gB889uPyBea1m8qEaP1e1dxp6ZxP3gE5zVl6jWbUjEBnsAwJQnhcLbWxx9d\nfQPVv+lhabti874bvK7zMie2D7O3b5KLz23BrBnE3jRH8ccPk/3sCaxCFbctCUH5+PAkCfsIgc82\njDCFhCeb/MqMgAVlaKaQ4UjtV+bqY7opzQ5CgVXxkKbAUApmF5C1GkYmjchkqG/sClmNa0VTsRJ0\nFTJWyMU6n1fM/1iVi7/Xydu2PUN/fJGatCk91UnvyTqVTov49UYC7l60nVpnXM9FI/Nba67Iqhnl\nzebHwbbo2lVFFDZK6e/Maqzz3Ws3tOE5+j65b9qP9fizyEujAOQPD5L+Gw0IqVoNfJmU2eYXWOrq\n0oneiWnk6/dhfPc5xPgs5s6teM+8pBO/l6+uDfisLLISXNtaf6/xOpS/FYurkzp+UlbEY7p6nWmQ\nfuwpzK2bcC9ewezqYuoXqvT+yQbsb86z8PohnVRNpRAXr7P8hu3YuQHiU624Zy5g9fbgPfUSc//D\nQdpfgo4/O47Ytwt1dSwE2Lhyo0nNdDvxQ5tK36lYtRBT3LYc4wcJVakg27S0y2lJsLjZbvjfuG5Y\n0h3padopILNJytt7Go0cXelElkqoZByRToFhkntuisqWu2Sw60UeLFMj+U3eQRE2gDAN3TDqDmJd\nT4jMtn3tAl4ujpWv4O7ZqOmjgIxrCYyRzYbmtvU96zFnlrSTe2uLprylU8hKlSg9InigxStwNL9T\nEcvrDIAyQMZeRgLzz/FDh3tjjK4/Ob6KSmmkUmE7ckevY3z3uVfj9G47RN1F3ZjQHbXPqlkTDAoi\n8syHEeiQV7JFVmTqkYqFt+9k7hd0OUmrt4eZX272uwpMGaNgkLltM3O/eARx+TrKN58Lz39oHd7D\nD2iq6sRsSDVuOodbxSsBgyKytWiEwE7QHy7lQyBcua7+vzDY8XvjDH8S8j91OCwZDHpCrpw63oXL\ndBybpO18mcQXNZtZOXWMKyvM2/37Kh/ai/vG/Ri5HGr6lpUN//GGUrg3xog/exmzpidQslzGcAR9\n6QItsSpCKNhRZDg5x18sHeB0ZZBvLO5i25/Oc2OsA1t4PNJ+hl86+F0OtV3F68ggKgb1Tg+76FDu\nspqy7SHI4/sIBT8hq8CMZJD9c1zrvIUrMWsa+LHKUjM9VMDgCOj8IDyFWi5p/x/pYVRcbYZsghnx\n4wwm1YvbTdJjt2673X99hjPL/byr93lMQzFfTFOp27R87SxtF13OztzrOpEKo+o0/G+i8uo1FmBi\nZTb7ZQ/d/F4Z1yws6TODvAS4aYVIurQny/QmCrTaZTrsEl1WkbISTHgxlmSM8VobVWmTMhw6TMWe\n2BS9ZpkNyXnWJ+bpsgpsa52h0qNw0zcfb0X0lG5nHucDRULpNiGkaiovLaT/OwAFBBH/kAbgpAyQ\nlv7xUhb1gXbKvTFqbdqkWtQ1+00mbYrrU5T7k5pxYxqYVZfsKDyzuJ6EoecyBTfBkpNioZRiaSlN\nTVohkHkvQ8Rs3wtIYixXw+ox4aImaE++/UHgGxSGcevpvvKkzrzv2qYlGK4bysV0Xx7IcVbfgMDv\nrtqf1fYChWUNkjgOXlcL5f6UTppmElpubUf6nShbSCl9Lf6CLbjmCLMmck1+/xTIgpSMSOUin+FX\nFwu8lsJwXc20Ar2/52F2dzLzICjPQJQqVLptkpcjfpvFEtkbDvkNJsXtDjyXI31pIQTjZLWqEze+\nNK0JxOzrbv78exDFd+3DTYom0Cy0mfDBnzX7msh5rwKgg/f7TFLlNM/7RaEUMjhTsy6JmIMdc1FK\nkOoss7N3ik9MP8Qnxo8yPtpJ92fPEFsy6E/lOZS+zC8+8ARv6jyPFwO7qDANydJWXzazuKzHDb+/\nUIYIGU7h+UbX9EJfSwAGiZXjlW8uLVyJ4SjMumZFeTHhM1mDzxCaUVSvI8tlPdcZG8csOTrZsVY8\nuOfl55V+ZCbqeI7BkeER+uOLzDlZrpS7aLkiSb1wg9S0g0re2wI6ysRPbEbWeXHbV6G8PDjStC1g\nBgWbvchr6YFpYiQS4RzYW8pDn2YTmmVXezr5bKKWZ3x2kGX5TCu9hnd3rtf7zs6i8kW8pTzV9li4\nbX6/7pvcrtzNzxdWj1NR/8vbiUAGF/E+i3oXKdfFm5xCZvyqkUl9jqpYxLI8Rt+uFTbJGf08iVRS\nG9ZXJLH5Cov3t2Gk06iWLEZbG+lpN7SoMa7cQGS0zE45dZbfsvsVgUHwDwgQWhmxvAEDd3HC1tmO\nseT745wepe/7BRju14hatYZynEYJ5IEevf3cCErA9JsHVh1OFEu6bKmSyMlpaq13CczyqzI0RVD2\nWhhNDUBWq9qjRCkqGxpO497iIuLYCzAxTb3FRo7oBZxwNaPAaG/VD9u+Xfo4C3rAVFldMlTVHd8M\nq1kLai07tzXpuOMRDAwmFNa/ClXH/n8YKzsaWa1RGW57lc7mBwgpdebTZ/KsVTFr9T43YdmuIfOI\nUmi9QoGWT52g+1OnQ3O47v98DHPnVr17PB5OnoQdw3v4AczWFrwLl+n82HFtIr2UJ5CWmR3tukT9\nd57VYMr0DNSdsNzvbccr6Z982Zpy3cagFwD2PihmtrUhDuym/sgByu8+pGVt2SzKqePeGMP61ila\nPnWiqTKYKi5jDfRr08Kr13S/FI14HPnQXmo/drBh0Ic227MeP6VN9XxW5j/VsHp78JbyOBmBeljf\nu1he0BKrMl9L05kq09taZFtiksc/8hB/dX4/b+94Hu/CCB86+CSOMrlY7eXMch9fntjDxZ+N84HX\nHkfUDcbekCZe8PD2bAwr9wjLChddwl9YiiB7HE3SRPv6YEIelUlWHT3J9hTS1rIlZWgfJNNpSIKM\nmoe3uIjKpfHmFzDOjeIlTYQEJ6uY/tUGeDrx60eprK+TyDdLSCY+cpSR3zuCOLBbM3nRANLZ/7iH\njx57KzXHoj6epjSVhsE+0leLvGP4xXs+AwokB/qFWHXPwvD7pUAmFi7YxOrFT5NHhtJllp2sjRsX\neHFBPQu1bhe3v0a2pUJ7vEzGrGEKSdxwaTVLfGbpIP/v9BuxfX1WWcaRSmAA7YaBLWBfapSB2AJT\nTitDyQVyO+a1l1B0sRic90pm0Mr7sMb2sJS8LyMUHgQVg1BKM3lcXZkuMBqXMW0m7cUMnJRmQgXG\n0vWcYPb+OGNvTDF9GNxNVeqtKszme2mb6cMw9iZBcVsLMh1HOB6tl+u89PQwn54+RE3azNYzXC52\nYhqSRKpOq33rBd7dCGHbIWuGhbweM3yvoDXnXYYRGkqHcrDgWEKEYInyfENm00Qk4phtrVT7Mqih\nXoyWHMKyWPyZI/r5j+k+2OrpwptfwBubCA6ogaRtm7G//gzML0JvJ15nC7Vdg1R6kqRHl5EtKaRt\nYOzcgreUbyQYHKcBaAUyMR+0CM4xSIaG8jEfwGm0fb09YD0ZiXgogdP7eTp5K5VObsTjiEQCkctg\n7N6uZVSJOO7kNJv/9QkGPm9y8X9eT/uxCdzrDQ9ed2qa2N8/w8CXptnxn/IM/s4xvAuXkYtLyGji\nRkktEavXsdYPsvTBI9yStXsXotxloky06XFwak5dA4orwWnPawKqNTPIaHg+BeBaEL4h+MrS6XJu\nnso7HwS0lUS+kCIZr2PZHm3pCq/ruMTlP92O+ZMu27aO49y3ke5TDt+9soWSjNNilvnW3HZqXR7z\nBzwWCincpMJ5835UtYZRc0NZWChT9QHiaP+ozNWyssbFiQa4bBiYxZoGoj1Cv55AriptQ/c9nlz1\nrBkVBy8mWPrgkaYiIMb9O7jyvkxY3W6tCKpTxU6P0v2NGGc+sYsXCoO8sNjPd17YTqwg8Qa6WNgR\nb6rSeE8i+LhIX+2dv4zhM3iaxqBgvrCW584acmaUCr0fhRCwbRh3epaZX9FjvXfuEpO/dhRx/IWQ\nnCEMoSuGJRKUf+wBvKU83sQU1377KOL7z1P4icOaMV+vY6TTZC/qZ9HYu5POJycwO9oRT72kAZq1\nxt1ogis439uxBohee0QGF0RgqSLicVR/t06UpvwqaZV6+J6+d52j81lB+d2HsL95Sq9J2lvh8H3Y\nX38G+fxZcp8+gejvRdS0+X1qZAkGtUeQVyjoNUIAEDlqzUq/Lxe3lIy9WtH7lENhRxuZi+Yd7UCt\nwQHG3jNE/8dfQrquZsPMzSPyRYyeLlxffmVms6jtG+DUGbh0jdqb9xH72tOkRpdQll74GskkImaj\nhMBbWNQdf083ypO0fHcEMbwed2T0zpy43zBDqiw0IbehfAWzeZv0kKUyqZcmcANDbKl02fpShcQ3\nXkC5ri53uFDGw6ftbdmomQd2D+7ezZjHXwzdylW1BuVKg0bY04W7vht74dWZKAVUUWVApUfwjwiW\n+KcT99BT5Y6EiugW/MHBSKUicsvIICYM1pSGNR0rEpGBxhocoLyrj9jXntYZ1qdfbFCIx6Ywdm+H\nqzf0ZHzDAN7Zi5jfeZaZDx2h5yuacj32b4/Q+aJL4osnV028QLOL3EsjmLlc+HyvOs+bycNuVzYW\npf1G+6JIeIuL8MwiMTQ1XYL2mRACI64ZlHK5hLFxCDU2hdo8hLg+iTsxhdmS06WJbbupPK43O4sx\nO0uc8Nti+X2HKA6ZDH72GqpWR6STcPXWl/CPKiL3e/HhYRJzA1Q7FM5CGvML24l9VXFuoYf5011k\ndy7Q8fspPv7vX0Py9A24uJE/7Hgj9v4Wvvj7GYrvLPLru79Oi1lhe3qaqfZxnl5YD5bCzSrqWQOI\nkznngGWhDH/BGPH0UEEiIlysObqtKaXnjWElssgzpRQY2hPGTRg6U+tno4NMrBKamWpvHqY83IKz\n6xDpsSqFQRs3LbCWIb6oGP2dI9Q7PESyyo6hKeaT65tv10OLxJ5qY+7+LN3fLYXyFrvkER+LIdvL\nJGYMNnxqHK89x8j7coilAYT3g/uyvuKIPmZKgafBG2GZml0pJSJAqCKy0yZGVfA/Vhwrss3LJqi1\nmkgL3LSg0isRSY90rkpbqoJUAg+DsXIrpyYGebJ1Ex2JEhPLLTg9BtuTE3xtfg8Xyj28o/05bDwm\n3Dau1TqZrWdZqKe4XmyjXI1jtAlkzEBUVfN838/KC1b3L2uBQSv/bzgSwzG0qTRR1pAPHLk+40yA\ntAWeDV4cXQ7e0L4lTlYhYwrZ6dDWUWS4dYHT5jrqbQliNwzcpIXZWyGbqbCwoxOzlsRedin32oh1\nVTanZ/EQLNVTXLioyxgPDs9iC+/lK9/drQjAIKF9vIRlNzx3Iot4pVTDUycaUml/oeBZ9U2ZlUHo\nN2SkkrhT09gzc0jpYba2oFyXjr95CXZtwyhXUZaprQEmp7SVwkA/sj2LFIJqX4ak2oSanIHrE4jN\nQ8THlkjU6pqFJQTq0ggilwsBJlWvN/sFhayhZiaQMGOaKWQAmKGcVe8kNdBjmloyJj1t6BqM2YYZ\nlpvXCVSJEU+hqlWwLIQPHnm+3MPq6yX5+ZNs/Dx4wUIv+BricYyNQzA115TcwDSRxSLqyP3U22Ik\nv3NGg261Gu61G7R+8gYqlQoLw9yrCNhs0l6x3fUQsiHzjcr0Gm9Szb+DhXSw38pqZej5yPTbhslv\nBvfRB0mOmah8jJLtEXs+Te6/TfBXb3mU1IKLOzXN7PI2xK4knR87zobKAzy+fScvLupqkQNbZ1gs\nJyndyNJ6AwrDMRKjGczlGrJDKzcaoH6DddrEyvJ8w2tLsFKqqkwRgvRCylC6C/gAUANMMupazih6\nuzAHehHLFZCSwrZWvx+CmXdtpZ4T1NoUTqtEpRzqD27F+tapxvzSMDG3DONduBwmAr35BcyaYn63\noOzaXF9oY9uv6kIn8z97hMIWj/7Hmlnidz388XqlbEqkEqulSFEp58pYK9lhmA07mK0bkC+cw3vD\nA3T/5+M64Tm/QN//fYzq2x4k8aWTyNfu01WzXBcFzO+0GPgCsHszSb+WWu4zJzQ3oF7X9/qClmKJ\npWXc0evhMUS6BeG6jXNd2caJXHcwD3uZMSvw6lWBx190qLYsTdRw6qh6HXMur+fFJ1/E3LFFS2ez\nWW3TsnUTbX9+vLGzlLBYwFQKsWEolOaKwjLu1LRWBShFrSeDdQbMrZuQ41MYXR1Y2QyJL51EBeDd\nbcY/WEAo9rWnmfvIUXLZbHOn+0OGOz6JjA1BbxdcH0c5bmgoKxeXwi/e2TlAqTdO29Q6sEwSk8so\nO4a6Nk6mWsczBCKVRJUrOsOS0CZS7tQ0ZlcXuC4y98orLFm9PbpSgmUhLFN3GEHG1TfZNqKGVf6A\nJywT5combyFhCDD0g+uOT2gKcK2m5XKlkl8hTTOhvMVF5O4NYd+qUnHU1etY/mDhHtgJc0VMYSAX\nF3XVFv/BdadnsWI2bk8r5iuRodypiHykNP0F8uTUzd//z3FXIjG5zC1rzP1DDKW0+WUuExpnNg0S\ngf+e8lYPkDc5XhDujTFivm+QsHWFl0D64hUK8JL+20ilwHGRD+3FS5h0/NfjoVZ74P86pk0xo9UN\nI38HbX1lqdubndPLbouGYSIMEUpnmyLKBLkJCGW2tmhmk1I6S+JnSkIfpOfOoNJp/Rm1GkY6hdfT\nysJbhvDi0P1np9b0kMv89VNkoKFln131ln/c4WemvDc8gPntZ2k9NUN5S4deCLmCUjnO9p+4ysbM\nHOcOVpko5DCeeA7nYeDwfdQ7PB7tPcPgXy7wybc8RMfJOL/9b97Bwe1XKbsxrsx2kkrUIOsw/MvP\nAr4fSDqlgZ0gGx9khQ2jsYgPfnsSd246BPtktaqznYk4oloH2wKlMCsehuPL/GyBcDXbRdra40F4\nChQ4vS2hT8zy+iTxggZgq50we0BhLwvMXJ313Qscah/lE68ZoPWT/u3av4vYF3L0fvwYU//6KJOP\n9LHu8zWM7k7kr03xaOskX/3KQbwOGZrIbjR3M7U7e6sqY3f4e13x0vNQlr16ARYgK5GMZQAKCU9q\ncOhm+/ivDVdheJopQ1sdpKBWs2jvKGEIRcWzWailsZ5soXI9w8mH4UcOncZDkDOrlN0YL832cnp+\nHfs6xxkrtzJfSbFcjVOrW9QrNqpkkbDBSwisZclKoGql5w/4jAMhUDEDaRo+OCjDRVsoEXMCA1eB\nIXQbCUEYFWT+Gws24X+RQuoFsIwr3BaJSngkMzXWtyxytG2EjniJU717ybxksNxnYZhVXM+kMuQw\n79jYyxb5HR4/svkCr8le5O8W9lFyYtitVTxHL37LMrbqu7ynoRRYJkYuE4K10RLuYSGBlawIH2BR\nnmwkOFaALmFVS0NgbBxGXhvXfbAQcPYSoq1Fs4R8e4XiBw6T/dzTLB8dpPX4GAkhmHldN7nrbcRm\nKxilKuSLyHwBkYgjsllK7z2EMgTZqyW4cE0XRrEa8jEhBKFBtBGwmySyVg5BJCOXQwaVw/ABLT9x\nI3xzfKWULiPvz3OVq5lQytHAUeBBJ2IxKC6HySAjk8FbWMTsaEdVa749ggrnlUYyAYYRrksCv83Q\nP/TyBGappI8nBOX3HGJmv8Gmv5jF7UjDya/dlWZxO+E9/ADmd3Sfr8plRDzWnPwyjIhXmd4n8BgK\nzaYhwixSiFrzGK0yKYpDugptpctCHMzTYnq0JKuoswm82VlaPqUHbXFgN+ty85x/XYrerw2iqh7f\n/6ODFB4tkU7WKFXi1Jfi2CWDnu8vYuRLuNduYNy/IzxnFWH6BGBQ2PcoMOeX8S6NND2ydm8Pslez\neUTdn0nUHayyh5c0MX3DehGAS0ID30bN09UzkzbOhlbqLSaxgkdi3mXySJJKr8Sog5v1SPeU2N0z\nyfOv38b6b4G8bzOcOI25ZRjhrAZO5vYafPgdf8fvfe/HsJZMjM0b8M5cIF6UtJw3kR2tMLFqt7sb\nUWAtmHMaxmpAqMk0+ibzyrVYoXYMefo85rbNWJdncA7fh3pBzw+NvTtJfOkkRjqNdXkS+nqp7BnA\nLtQZ+Ogxyu85ROpvn6L7OZPpf3WUdd+cDeeWslzG9K1PxFKMwk8epuVcUS8V21tRQWJ1LZbQGudp\nDQ6AZaLKFUQyoecRK0AwIxHXz7z0wrV6U6UypXAnJjVDybZR1ycaXr2tLXiXRpoM7WWphNizhdJA\nivQXT+lDvGYvXJ/T3pxnLuC94QHiL17X9n0zc6HHW+EnDtN2KokoVxHLpdC37FbxDxYQArRpd3cH\n3EFASBiCwS/P4bWn4aJeoDi9LcQqfcjFpfCLKA7EmTmkyH52AnFwD+rpF7HWD+KNT+Jevfb/sffm\n0ZJkd33n596IyD3fvu+1b73W1lUlCbSjRggJhGVswBgYPMBhsD3A2BgGY87M8fFuY4w9xjrYHhuQ\nhAUICYlGarR1VXWXqqurq7v27W319pcv94yMiHvnjxsRme/V61a31Opujfmd886rypdLZGbEvb/f\n9/f9fb8G1SuaDUD7HsKTLR2NlRVD80+9+o9X93TC3KLZqFMZrF1TqOmwYx4t1FGnJZy3jm3uk53o\nwV7kRplgcSku0qITUlWqyJ4u46whaOn+WBYik0GW3bigl8Uqvu9DOkUwv4BVqxMUCsbib+ckLK4Y\nW8C1dcMQmp5l/gfHmfzEGzS+0QbMuvtGsN5AQMjeOfXaMcO+jUKubHx7AkIAWpnEb2tsTYBeyexx\n233soUEqRyfJXZjDn7+H9qD2/Y+Rna6gz78Yb6yqVoNb08gbAYnJcervPUryqSuxRk9QKsWbBWzf\nial85ASdz60QXL/10se45firH36M+XebxMkuW4z/eRPn82bzQd3vohZtdJv0BdqOJZqXFuk0QaGA\nPTwUsycj4KA9ZEce3T2KqLtGe2hunp7w5TlyiNWjHWSXAtJ/ZJgc7QKN7uPHyJy9+Zo2DN7wiBhp\nAqy/MIk7CYfqoI30Ye/fOsf13zpOZqLJ/vQCfU6FJ/wDrceffR7nbz/MotvJmfWd3PzJMaZ+5Qw9\n505ytW+AaiWFWEyynkmDhBu/8RhOWTL1y6YzZQ0OtDSe2uf+IyaQ46CbzdZnrnVLxNW20ZWq6XZ2\ndoBtY9XzNLuSiABsTyE9hVX1cPtT2LUA6QUEaRtnuYyX70FlJNGYkFCm66rzPn5PgFhI0T1e40Z1\ngPcevsTd8NhKu/PkZ5u4jx/DamiGPzdvGiBdnUw/fZDKowmm/s8zzPzaKeb+wSlqEz4HfmMD29Kb\ndDVet2gvXgDtWGBbLXHX9rtGgtMhKLTpOdqBo6jYtyz8jL2pqNMNC6ts4Ts2mQmPifQ6G36GpUqe\nRFHT+fQcieIQ5yYneLy7m89vHOLitQnS0w7rac2XD6ZwGw5+wwYvnMsAZNMwePykJNn+vmCzfhCE\n3yn4WQe3y6Y6aNHshEQJOu96JDY8BMoIxfoKaQmspiJIyPi5goRE2SC0YZ2JugqZRAZctFyjmeRl\nwE9rdCrASgU0qglqfoJBp8iS04GXEaiODMW9cGJ8mqQMcActbk/0sVzIk7AUL64P02E3OD2/g8pG\nmnx3DSfbwFOSPqfy+gKJ7RGBP4Ey11u9ETvYbAJHYLO1/FZwKBSQbgdeUBp98mHWHsrQe6mGvD5n\nGp3hei8sQbC2HutMAnTcKMPD++m8sIzOZxDVBgNfaRJ0Z/C7kiRmFow7b2+P0Q9aL9DxRAkSDnps\nEJJJ061vA7Bih7rwHFahIUq091jDgwa4WGl1AqxBozmiyxW056NcF2E7BhxraypEjVStAmQqhda6\nNXIsLeyRIWMm47oE3uZGiL+waPLuiWHcgSyJ9ANUJ7IkCx6lyd30XtigPpYj+Zlzm/KGzCefZuqT\nIIYGkbnk5pGr1yNalyzl8SSReISqVpHdXZvXeUvGoPMmwekIcGwfp3kJYXvVkUYoQe9/MkYQM594\nkMdGpin7Sapfa2wSJbbWykihkVKx+p1j9H15nv6VEqtv66VZTuCsOjga/Jzi+o910Xehm67/Oouo\nNxHZRAwMo9g8/ts+5nTj9n3H6C8uweKSqfdcF2vcMACl66MSEivQpO6s3ZfHR6YZwUQPVlORWlUI\nDX7aJkiASilUTpFYcqimUizmOmh2hgyjF+8gujqZ+54BkgVN84Mj9Fxu4lR8rIrL8Gmff+N+kIO/\nfRudTTP3vcMMdTxM9g+epv6/nsQdysKll/2mv6URiyYvrZjmUSS5AK3rJDo3vl6zMWKZe03UWx8x\n7L5rNxGzc8ihQdY//DBd/+8Z5MMHUBdNHmwd2EOQkCQuXOP6bz7Gnp992oydScHI79+g+tgOUlfM\nMQjbNk0pTH3e+YlnkR05xNgowcx8G4AlWw3f6Pij39Iyte3SyrZmMBFAHOWkquHG+Zv2mqYul8I0\nm/fsQJRrxsjg2s24OWrnjeZPBDoHq2vIVKol3L9aork/Ryb87Bt9CbTdT8L3qb3zAfyMxIly6oE+\nxKU36igAACAASURBVJ4J9LlLdPzeWUToaGz198PyK/uO39SAUMcdRWV/D+nrr3Cs4etEBIwEV24g\nbDPqhdZYboA/2oudcGLxVmULTh29ygogb88jxsfMzG1IUVXlcgwAyWQy7qKLZBLtmQXH0npTV/8V\nxdqG0c0olaBYQuzfbU6uvl78vWOI0xfRzdimIH6Y9n1UqYRsNKCzA3XsEFbZRVbrqKWVuPuhNoqG\nOQRobd6/qtWwx8fQ1YZhKiiFWl41qPi9RYRtG90h2zbOQVrhH9pBeSpNx92Z+Di6bm6mLr+uISDS\nEdrYlaT3i2/MYQCsfMcw3f8TAkLfVqwsIYghxHamS3Mz2HFf933rc7wUUCQEVj6Pv7hE6tNL6I4O\n43Rw+TqZTz6N984j2FtmjTl6EM69gD89izM9ex+4FoFB8UtE4EwYuY+f3c7oZ9P4SXtY/f10PjNP\n9n9ss9lNTYTifBtmrQxfJ/pd/fBj+GlBdVgiPRj9L1cMyzDanBoNkNamc0I1GrErmTh8EF64aTqu\nWxxKomPW51+k77xxdam9/xh2LcBNWzhVH2e1RvKz57Z/v9/OoTVGuVKz8lMnSa8pUms+OhTJBTjw\n969y+/cGeSBv3I8W1zvY0fYU6WeyvDAwwvUbI4ydV4hjDxIkBOV7eaQrseoC6ZtZHLsuaPQHzP3S\nKab+820jDqqUGRFrO/dFONKhq1Xo70XvGkacvsj1/3AcWZPs+oM6fpv+k2564PnIYg07YaGSZq9M\nzBaoHOqnNmBhd1uUxyXJDU1nsge7ERCkJXZNUdxhU5mAIK2hIVEKum5LrkwNkvujDtYe1uziLAAb\neySP/NxtsnaTy4VBih+yWf/qKbyDNXb+9TPM/dIpOrjFxK+ZAmXtJ09y40d7ec/AhTcyv0ZojVbK\nFDVRkR/Fdkyh6HFKA6G2R/T3QIEl0Skbr8PGTwoDpgkQTYldFeTvCp5K7WH02DmylkvNdcgABAHp\n22vMXxzmP3e+hYtXJpn8lCa1VGT1cAfr3TmEJ3DqIrZ1bnsTeJmWHsOmv23qvILXkWB9v0N1TKEt\nhUopGq5E2Q65BYvkuoflKqxa0wiS13205RBYEuUIqoOS2rBAORq7JkhuQKJo2FDm9cDPgJ/TaFuD\nJwmkGWXrSdY4V9nBF2b24ndDbTyPP9zku3sumfG5Zg9jqQ3WeswYyoWVMb6yuItqOYUsOtTWOwl6\nPB7be4e9qYXX4Nv/BqKdFRYEZnzC80NXMWIBY9Fu1R4ygba6dImte5oyGnHizEUGr4ZD91oZIP+B\n/agXrsZ7lfZ9UxAWClhLG6iuPDqdQDQ84+4TFjNOPh+Tt3WpbPSOwj1WSIGYX4GtDNBtxIsjUMfq\n6GDlh4/Q/+mbpqt+YA+lgz3kblcILhhrZZnNGpaQ7ZiRsZepG9qbEzKbNSBTpWLA78gmur8fYcl4\ntMceHKA+kCVRbCLvLpC/7hGUSnRLC7F/F6nlBtaOSXQ6iZ6exz25n8QXLyLzeQrfuYPup2YNo+t1\njsiK3ctt+UMQmLGvSNQbK3Y6jHOGaHQ1XJ/i8dWIORQ20mQ+j949QWMws2mR2Pn3yjz7r8bIp1zS\nC3c2vbx/Z5rLLx7H2bDIzTUhUFQeHsJal8imwHIFQVKTvmchfaj3QeoDx0mUPIQXCfyEzEPajlsI\n7PWq+U5DUAGMNXnQ1xFbcUfnqn9nGmvvLuyVElbBIrhx+343LVoOYfLONInhIaqPjlOasPE6BH5G\nY5XNZyldQTrvUvjMCAc+NY+PqRnLP3iC7/nhr7LmZblb7mXwIyUuLI7hPd9N36WAiV8/bV5XWoz/\nbs3UkXt3UX9Pmd5Lbw7DHFWrYY0MGgkRvcWuHbbNhbe9TUiEZSG/+pxpRI2P4c/OGWe6zE7zWhev\nmAme2zOgNLV+i2w+x9SnzOtZI4MEi8sEKyukPr0SH4v2fXS11joeacBse3QEa3iw5Yy4tePZ9l6E\nYxOsF1j7seP0fjRsmHV0ILo78UZ74nxH7Rk30jLh42Qug6pUDAMxrP9jVrwQWAf2GBa1EAZwjEZn\nXdeMo44Moe7O0nzvYfjcOfz3jMSHl/nMs2BZBEqT+vSi+WzKZdZ/7CQ9v3MGa+8u9MMH0Akb/9wl\no+tpvfKu15tWVBog/7GzrD5ovzLB11cQIpHAffej2IMDiIO74pnijX1ZeOYSjR19iHDmzm5oVhtZ\nMzaRz1E6OooqtbFf2lwW4vlBzEZrj4dfYBDEwtQvF1ZXZ+iIkDACsb5vNmjfx+sL33t/Dzd/yHTf\no247mI1M9PUYqnAyiSqX8efmEWcuol64Ckqx8kMPG7Gz8Jhjem2bLb0/v4A/0AGWZei5tVpIvU0g\nhgfMYx/eZ07ujSJWrUl1JOxAuU1kKkXH1Y3Yaer1CqExziHRywpwe8SrF9h9DcPtEoZi+Jfx5o32\nZCf8v256htmw3X2jiGbot97eHuEGGIu8dXcTlEoEl6+b9UBa2E+eN9RziM9V2fBwHz+KfPgA7ncf\n27x2yC3OThhwRmazyEcObloj71tz2ub/hW0jjhzCffwYqlTa1Pmwd0wiH9oPYADh/h7zubQl7dae\nnei3PEL2fzxN5387y8g/O83Qvz4NUrD0c6co/+AJ4xYFoAJzXNIydqA7p0wCpjX6/IuUP/ioOY5a\nDWvfbmQ2i9XXi3rrI/d1+JKfOYf91RdI/uk55JcuEFy5Gb9Xe3J8++/h2ym2YZgN/9Ftcp94mvJE\ngkav0UaZ+6VTBKUSff+75qPn38JKM8/RiZlNTzX0r04z++QEu3/PI/OHT6PPXyZZ1KTnbRJFidUQ\nOEVBelnQczkgf8ei87ZCd+XNuPJ2oTXaD4yQ443b1EZSzPzaKQ78yi32/foVZN1n+WdP4b7/GGCS\nRlWtIvwAq9pEC0F5LElw8w7JtSZBUlDcJXEqpsC4+yHB4vEUqw9ZNLot/IxA+ICC1KKNcC147zrv\nmrxOMy/Y9QtnsQ7uRTgJmp0aX0u+cO4BGn84yL2lLuo7m4z2bXD7n56ktse8p+g6EwG8/93nzG1v\nlBYMmCLLD0et2rU4Xq75Fa5ZWm4PRqukTeAYXRg/JfDyoNMBWkJ+psnEpwSfeP4wnraQUrf2zaZH\nxx144Ws7GP1zQeb8NNbSBnZNk1i1SGxInJIgURQkNgTJgsApmx/pE4u3th+j+bf5FaRsav029UGj\n6aPSisyMTXJNUh1XFHdI3G6bZpeDStiohClMg6Sk0W1RmrCoDwrcAZ/kgSLDb5/Dft8qK+9xKeyX\nlCcl9X4DgokApCcQgcBKKA5O3eO9vS8ymizQqCfw9tSZfZ9g1/gyTW1xszHIE0sHuFwaZqFu8r+j\nA7OM5TewnQB7uGaAMKmZzESjBt/41/9NRXTuSGkEkR27JbisdUuHJ1Bm3Mq2EZZssYZCZkcs1Bxa\nz4uEE6/bQaFgwP16wxQpS2vbHgrHH2T5vRNox0KW64iyGVcQtm1Gsdq0inTDRYf6nBEoFaysEGwU\nTRMmYinBZjaTVgaoOvYg/qEd9J9eoX54EvfxY4hGk/xnLqJDMCj6XLTvb2KxWoMDxpETswZYB/bE\njKIoVLUKnmeOx/ORuazJBVwXf3kVa/cO5EP7qT80TvrmCtbyBrreaI1pq4Dg8nX0uUtmtKrpIft7\ncSoeIp2mcWwX3V++azTvttHd+ZZG28epHIE4cqj1p4bbOm+2iv9G17AfnlvROdaWhwg/MDULBvCQ\nd+bC5mzrAvFv32Xgg1dZPL+9SdDEZ2H4dEDqyjz4PnY1ILkuccoCqwHJdUFuXjN8ukaiaMwInNUa\nVs27L4eLQngBwZUbBC9eozGUZeWnT+K9+4gxyJESe3zs/jypWMa/M30fo2jjb5zkzj8+yc1/fYKl\nnzsV26L7C4smH4kIsjWzHqIEueOrvHvqGtVxFbuurvzUSRberni+OMoTFx+g8v+M8dwfPEDuEx34\nOcXiY9JoSgIym8EPP9drP9PP3v4V7I36S33D37rYKhwd1pCqMxO7XH9d/dAt5kPxeaaMox9A4Z07\n8WfnsPYYIGjwY5fx3nsUwNjEa4W+t0RxD6ipYSNcD4akEQQtB9yQ+QcG8BVOwrhyua5h3qytxwDm\npmOLjiucqDHSLS4ikWDgj66ZUcuODhjsMw3bewXu/YIRwC7vysePt7o6jR5QV5chh/i+AaH27TYC\nz1oTXLmBf2ea6r5+835DlqLV1WkkXcpVrI4cWkLjA8fp+49nkI8cBEKW1gOGJIK0CG7ewZ4cp/8r\ni9jDQ+j5RTYOdqIc876CQgGcLeJhLxNvakAIoD7iI/NbYe1vLMTYMHPvsFHlCnKjEm9Azbz5bT95\nnpXvHMUeH6PzapHrl8dABfjTs+RfWDFfVlQcadVi2oR2l2BOQl0MNwnf32Sx/JKRTBodjXBWu/11\nEktlOPEQ9cku3nX0BfN6vo/s6zUAUN28nkgk4qLQHhqMLyx/epaBLy6x/MG92MOD8aJuuifKOAGl\nUqACnHsF8DysgT5DxRNG70RU6+a+dS9WhleXrjP8VAV7dMQkD4/sRX0DI3KvRUifTXT6IAHuyX0v\n/YDXMOydUzS/6+im20b+43Po+huweL9ERE4GfxlfJyJdBXhpVtA2TJtt7xOG/47DMbsOMJR1FWAP\nDyFyWZb+t1MxZV2W6yT/9Bzq4hWSf3rO3DcEccwxyfteW1WrqOcut/QP8vmXpqRrY+Orz79I8rPn\n2nTIjKW8f2eaxkiemX8Yujotr8Z/X/uJk2z8yElEuYpz22w+1qF9ZqPbOYW/b5zB3zhN159eprFv\nGP+dR8zxhTPVwcrKffTr3MfPkvysKcyDazdR1aqhzH71OeyxUcp/9QSNDxw33Vta7CT/XUewdk4Y\nYcJQsPPbPqLOvZPA6uhAv+WRuCutHKONpoVhP4D5vA788wpfmtlF1m4D7A7sQaZSDJ9xkV+6YJ5T\nmlEapwJOCZJFSBSJnWekC13PLqOn5826FXbysay4m621NhRxDDus0SWxazD/I/sovXs/XLrGwG+e\nJj27eWRYFzYQM4vYT56n99NXAZj/zgx9z9VoDPuU9gY0O8BZt5j4wyUSBah8pER9QJNeNiBYY8TH\n6nY5OjRLznJ5/9/6CoUfNSyf279+hMSOMneLPVhVycBTBfb+hsvenziP+q0BcvsKoExRuPb9DwDg\nZwSfufYAu9PLr/vI2FanmAgQ0pZoMX7a/7511GcLKLz19iBpmfPFgWYHeJ0KK+2DMHtk7oVFBv8s\nwWeuPYDr2ji1sFivVOi60WDwrKbz/IL5rm0Loc25kiia8ydRCs+jssaugtUAhGFU37c2ahCBQiUs\nmp02CMjOC5K3k1gVSaIEw6dd8nckbrem0S1xO8zISpC2qQ8lqQ5Y1AYFtRFNY6JJur/Gnt4Vsk4T\nITSHd8wgD5WoHWxQ2efRGFAttnAyoLuzyu78Cinh8VjmFn/lwLO8b+9lTh2+xlv7brHkd3LP7UQK\nTdlLMlfsZLbajRvYSKHpzNfJZRqIQRfpmGshK903ZtQQNoE+KIXsyG/W+7Ii2+PWuJjWOtbh0b5P\nbEcfWrZHDcCIgWod3It1aB8ymTTOPLntG7KVqSzd1+rIuWV0wsFfWIwLM8Pq8eN8U1jSNDmbHlZf\nr/m9e4fplicSbLKOj/4dBEbb7MghRNPHvr0A60Uyz8+RvTBjrput++EWx0n58AGqx6ZI3lnBGhxA\n9nQZoGBpGXvHJNaBPdhjZlxINRrGXCWXRTc9VL1BUKmaIrFapz6aJ31pDrWyZrSFQh3Oyl95DGvP\nThofOE7w9sMEN24T3LxD5cEh7NlV6t+xn9QzN1AD3Yh89v7xvdcxtIC1h1pNr6BQCCcf2nTJtl7H\nWx3sXo51tXs8Hm/eGjv+wZn7bwQy0yWy5+6ifXMeW54isdFaa+yQ6KEciQwgvdRAFCsIL4jXx5i5\nqI0mmbXRYhz7WXNNrBxOUnnPQfS5S/izc638J/osllpzNcK24cRDlP76CYIkiJ1VZEPQecfn6r/Z\nxdwvnYLjDwLQ+9EzOCWNtsDtC2CkQVe6zqqb4yPvOs3Sz51i/u+forQLRCpguZpD1CUi0ORnAjp+\n9yzZOYkcqzH7PT0GwNg7gT00iL1jkvSipBHYNAdemzr4VUVbM9GcF6G2khsY1uHLMFnj2GJG0h7R\nmhMkwlr63pIhR2SzeFkrbjChNSKTpvsKiIY5uawDe9D1OjpkN+oteW/EoFfVqtEDCxTs34mu1Q04\n1c5sklbbe225dQsh0PUGiRemDfibcFj/8ZP4d2eQby2AtHA7QmcvrQ2DDPAemkK7LtbeXfjz9xBu\nE//uDOLRQ1Q+cgKkZXLf9Q048ZB5i03PaAmtrqIqVbLPzhgNxlQKrt+NSQbi+gzi6AOot4SPKxQJ\nbt7BX1hk/cMP0fWpS9SGDShm75wiWH7lIptvekAoPW/j7RrexMj5RkPPLdB9JSyiVtZAaazubpxq\n6z7d/+UMV35hDH35Fvv//UZLF+jmnU3jHbFjASbhjmYOhW0TFA0zINgottxXtgkDughzgsYHaYq2\nCNwRG2U4+zwA5/77w9hTE0ZBvbCBnBgFFaAqVYJyuUXp9TxE3QVpIVMpghu36ftvz7L83knkrinz\nvCG9WA4NUHv3Q3FBqLVG9XWCVliD/ea9D/Wa99f04qLM2rcT69YCzZ0GbKiOppHlxtcvll/rCBlC\nstliCZmxsVeOin4zoe4tUh128N59pHVbW3L1Zgj9Egnd//SxZSPTQdBKEl7uPH6poqz9Lo4BaJ2n\nWiAuEIMbWBbB0jKD//a0YcRA3Ekyd7RMB0uHNrWhM0r03Nvae2IS4m1HVKNjDtepTREl7Bgx/4l/\ndBp2T7DyfQeNsHE+T+9Hz9D9++cJChv4C4v4C4tG1O7aTfzbd5HnDCU7KJWwnzxP8tKMEX5si6hz\n086esw7sQRx9APHoIewdk+iTD2Pt2Yk/N0/+Y2dJ/ckzyI485b96AvWdj7L+Yyexv3AefW8Jmc28\n7GfxbRfSQvtmBCEqGjZ+5CReTuDlNUGXj9fZQr6DF6+R+EInX/jaA1i9PQDo6XmQEufLrfEtkUzi\n1DVOTZNdVKTWFImKJrmuaeYEVlOz9M5BGt9xKGSPiti5SEiJ9gOzR40OmuRFQKKiSa0ahkmi1LZf\nzbeSav9dRwyjKNQbmv1fDnDj3z2Gu7/O/N/x6RvbwC5LOqYV3nCTme8bNGv5l7s48tZrVMc1Kqlw\nuhrkc3XOL43xiT9/C5ZQfOjnn2TPP7vO5Gfq1Fcz5P9FB13X4NYPdaNSDjO/epL575Ckfr+L/b9R\nQff3kJ9rUvzhEww/uYrtBHRaNba6znzLQ4agUHsXPtKFiW7/egzEKLauX7ZEJSINJvCzGu1otBJG\naNkxyW33uWW6/yyNns7GhZtuuCTm1ul8bsWwA5VJ9KWnSZQ0iQ1NsqhxKhqrqZE+ODXjFqdswxDa\n9rOURow1SJq/JwuK3JwmOyex65rkQpnBs0WSBUGQDC2iA0W9z6EybNHoE7i9GjFZ5dCued45eYPv\n6L3BvvwSGcej4iVx7ADLVqBAZQL8rEY54GQ9etI1Zqrd/P7icTaCDB/qOs+Gl+bpu1NcKo1wsTTO\nhZUxFoqmSPYCCyk0M9Vunpsdo1DKsL6aJ5NtkEx6WCi65Bvkphp/pmFOaVnG2arhxmyHTTlqqBME\nxFbt7eLNrftJ01BMp4z9+vS8WdtLJYK19VhGwR4eQhw5ZHLKlVXyN8rYl26jy2WjiyGtFisoEiiO\nrOOj13dsguVVY8d+bwl9ZzZsGrSKzVhMOmymyooLN2dQG0VUoYAqlQlW1whm76Ef3kv1w49tej/W\nwb1Uf+Ax7J1TaCnJPGnGsKPPImK5BrPzITjUKpiCQsGwG0NgPCoYg9V10l96EX9h0VjXV0zRoL0m\nuU88jb63ROrT57DD/R4g97UZ/Pl7ZK+s4B7ejdeTNuDLVoDlWxwGKGlNcfnZ+3MXbbWJSQdqk3V7\n64lErDH0Uo2xwgEj1G+190NfpnazenuQxWoIapp9R/ja7C8FRXJDGYMBoDSVREtYP5DBm+w3NQ6t\n96VDIFhWXVhexTqwh/qHjhtGUQWS69oc29dzXpIW1uAAtz6cZel9TSrvqXBq8g7BUJPSpI10FLVd\nTW78aIaVnz4JQP9/OINTBZ33SaaaLH1mnI0f7+Xz9/bxkz/1J3TcVez7l3fY//N3KD7Xx8AzAj8l\ncLskhR89acbebmaY+OQSsqsTff5F3H0j6LUC6SXNyd47+Ok3aGSsnTkWfufqhatGfwq2ZWi9bEQ5\naEh+aH7XUbr/yxkjMF01ACxBwMYei+RnzuE+bkChYMcQufkmYs6M7Oo7swSlymb9IkJmkG23NHJt\nO3bnVRevICyJPTK0ZcwtUlA3xAxdq5uJnVLJrAfFMjKbJXjxGp13DNBTvdHF3N97jN7/dIb1Dxw0\nDMsQJHQuz5nnmlvAnhxHOzb22Cj6wot0fuE69uiwMXNaW8e6fBdr325Uw0VVqlhdXUYCZqiX1Pnb\nBIf3IfI5w+Y/8ZDJ8b/2ApWxcM1vNrF2G9GAnmcLobtq+H5q9VcFQL/pAaGJzxUp7kobAOObCJE0\nCuB9nzWCqyKTxhofAa3o/ZOrMUoHMHQaij9wmODFa+GD7+/Mi1QyZgbF42KWZf7dRkMT6fRLHpNM\np4zQaqUSP0d0kURdoEiDI/HEs4x+cprKA0NG46daRVRMYiISCWIhLWmB58fWzSJ0g9CuS8/vnOHq\nz/aGrgvhRl0sk1puW72DADG3FBejAFahbBL+0HYegOU1grV1gnCRkoE2jII3Yj46MAmqDAwoJILQ\nfvZ1CNVo4HYL6gNOXNjHx+W02GFWf//rcjzbRXDzzte/0/+Msc1GJgf68N91ZPPI4dbE6BWwhLTX\nRNVqpkvQ34/37iOs/9jJmMnjz82bDUQInBvGAXBTqCBmCG19zci9IDo2kUzG97N278A6uHfb92r1\ndBtAaptOjWo0No2dqeev0vM7Z6gOJVrifF7zvq5a+/uN2YZAsLpqdEAOtZh6qtHA6u9Hd2RbwqTL\na/j5BCII8O9MI85cJLhxO/78I+G+/MfOIr90gZ7fMV1GVauZjXEbF7JvywiTZpFIGJDrjAF0cvNN\nBp6tM/g1RfKeg3Y2r68Dv3WajqsWetzQ8VWtZs679sIwlSRRDkhuKNKrPp03q2SWPJyaSbwjhmXm\nxYX4PNOB0RFCa/CaoWaepDqajtmYyZIis6xIFNzWGEjk3gHYXziPetujLP/sKfRbHqE2ouidLKAD\nySPD8/zi3j/jHe9+jqUTmt6vJui8o7BczejnVlj4x7sJsgq7bKGURGuB9+Vedn28zBcW9tFjV2I2\nGbbRm+m+Vmfo6QDn1gI7fvMq2gkTxOevsnqsG/sL5ynuktz9vj5+8sBTPJia5Q11i2of/7TlpoS7\nPfQ24q33MYe0BmmAF2UL/LRAJTRaaFTFQUsI0hLhOLBRpu/cGr2XwuewpGGSFDbQiyvoZtN8n1pj\neZrUhqLzrkv3lQod064BhVzThLGaZrxeBNq4fqm2H61RSQtlh8BSVWE1NXZdk1lSODWNyiSw5lcZ\nOO+GBWBAszdNMycI0uD2arxBj6HuMv2pCtUgQZdV4+0dV9jTucLtpT4qdzrR91I46zbpWQe7IsDW\nBIHEDWwagYOvJQpJl2yiwnGW3mQVKRQNz6ZWTrJayVIpGLHtqdw6A91l+roq4Etc12FP3ypSaFaC\nDuSbZNlR/V3IB/bEjUdhWS3AJwQahWWAGhF+zwCRexfKXOsynUJ0dlAfz5v72zbCSWBPjqPqZvRC\nK4WsGYt47bqIa3fMuRKomBWkmp5hJIXPAWZN0l4ztl42ZijKiD83vTBvDdlNESghBGJqDN2ZR92d\nNSBMsxkzoGRnB1ZfD9bVaTrPzuI+fozKR06w8TdOwvIa2T94Gm+4C3lrtrXnLi7hT8+iZ+9hnW/T\nRPKaMaAOBlSz8nlEIoHV18vKT5/EGh9Bdndh75xi4edPUX78AayODuyxUeQjB41AczqN3D0Jxx9k\n7SdO4u4bQT6wH//2XRJrNZI3loyT8Ruls0kLHNoUYbEfXbf3RZR7hPfZ9KdaPf7s7LFRep9dZ/Av\nFsjPKdzvDtkdKohZWGAY6/boiMkVggDcpjkH6g3URhGUJr3q0/XCBj3nVui6ViVRMXuD1dTIAJy5\nNSNu7Idjj4FGNgOsqou+O4eqVKlPdhkzg5rCqSsyqwGpdS8+h7aLykdOoE88wMxfn0INuGRyLr0d\nVfoSFX726F/Q86E5ElcyjP2pRfdFSXmSeBpj5J+eBtfCdR0SJQ1rBbKJJqNOgdSqZ5poe8ZCZ0To\nvFElN+eTLCl6rjbxs5ra7h5W3zUJQPLqPPM/8QC1IcFwYuP1r9Y1m/ekeO0IpUdctyVlAF+3Sbop\nQkFn68AeMtdME8l918OAcTz1F5eo7DWLbPovLiEePQRnn0fbRqQZaZmcNeFsagjGJAvfv28kMBoj\n1ZMjpj5ul2EI62drwNRpqlZrjdlGbtw508x1nrkGtsXEn3u868OG4d7538/iLyxhFU0trWs1rM4O\nQw6YX4BCEd1oGAbQ2jr+7BxinwFxglIJrz+HTCWRnR14hyaxd04h5lcICgVu/GiiNZZpS5MfJpN0\nX1wnePtho4Xm2DQ+cBz1wlXKf/UEic+dw56aiFnmrzTe9ICQ8BWdt+r30cFebchk0hQ89YZB5lbX\n0OXQwadQYP1ANi6I8h87y9oHI0EqtW0BJXPZto5G0LpvfOBtoJBz/9iY1d+Pcl3j0NJGxYtCB1ts\nXFWArtbInrlpNmAnQbBiRjraN97231Yua/R+2ualU4sWjfc8HB+XqlSRz99oQ0hlTIf1F5bMxXl3\nBpFwqD22yzzvwb0m8VcBqQvT2FMTpJZd0w1KvD7MnPYQ2iywsgmWa6imI59f//oPfI1COeb1c6uI\nIgAAIABJREFUC/s3g38i4ZgRkK7O+8US/zLeHNHWkbe6ulBdOVLXl8xsfRTfAOutfZMKVlZwPn/e\ngBkRyNrdDbaFtXcXIp2i+fCOTcckbHtTZ6b9+WQmY9wubEPZ1W1uD8HNOwSXr28+GGkZ18NCMRZR\n3C7UVmFnoOP3zhoqaxtgJbNZYwU6NdFyOATkYD/qkb2GAaQ1LK9TPNQds6JkJmN0I168hsxljVvV\n2jrWXzyLev6qYT5+56Nw4iHE+DD1Dx6/T6hcPnyA2V8+ZTQdHj4QsmpehWj/mzGEaDU8ggDZmcc6\nuJd7/8cp/KzF7Q8mWXvAIkhrsnfuX1/7n6ujr7yEsxwgclmsuiI3WyfxpUvoc5fI3FjFdk2SbTc0\nwofGHsP21KEIoxACVa4QbBQRRw5R2d2J3VCkl1zSyx52TWE3FPXBNHr3RHyO1j903LywtBBKk10M\nuPnXkmhHI4RG1y0u/NkBrjeGyVkuOqHp/egZch8/y+Dn5/B7sqQ+/QwH/q9p/F4PtZKi1kjAWzbQ\n/2SDHxh/lox0Wf6ZUyz+0QH+4Vs/RXFPBvHUc9T6LPzFJYK1dVLLFiuHBTf+7WOUH68AMPS0h1OF\nj88c5qo7/Bp+ia8utDB2ydoJBV3bqfnb3T90/TH/2X6cQ9tGfFlbRlw56AwQmQDhm8f5KYnOpkEr\nxHqRzps10suuEYcNx3midU+E66JdCcjdqZB4YRZx+TaJe0Vs1zCDpK8Noysa2Q4Ls+hHWzIcYTMs\nNLsakCgFJIsByVKAU1UEaXM+p2+tkl4NEIGm0WPT7BQ0OzR+j0ffQIldnatINPeqncw1e9gIsvha\n4tUdUsuS7JwkWRAkC5BeElhliS4mWK+l2Z1f4bv6LzNiF8gIzUcGzvF3HvkCP9H/ZQ53zDDWWSTf\nWacvV8VK+VhScW1jgI5kg8P9c6S6GjQ3ktgyICObNLV1v4va6xHtDDIhCIZ7mP5AF4tv7UFkM0Y7\npxmK/0egrudvzp2jsSyl4+scIChV8KdnzRiDFGaPGew3RXciYcZDujpQ2SRifATr4F5UvW4kEvzI\n5EQhHNuMWfg+QbG0qUsvs1m00nERFxsVROt35DQmBWJsGNFoom7PGE2flGmeatfYwOtqjWC9QFAu\nEywtkzlznY5PPUdqPUCPDiAf2o996TZYFlZXJ1ZvD/bOKeMO3GggUkkDTAwbID1YW8fq78c6sCf8\nPEpEwrfDfzIDtbpxHuvN03fRpfPMLGrvRNwsCd5+2Bxz3YVnLtH70TMkXpxF1hrGKSlp4032hx/T\n6wwI6VaOLBT0Xbx/nxeRTlD0f6VbLKH2KQfddrsQiFQSkUqBEHgTfcy/p5d77xuh0S0o7G3tVVGD\nGoiLVJHNmIa54ximm+uaplHVJXt1Ba7fhcUVrNllrLrCqSnshll7onVPKCN2Lb0A2fDQV26bvOLE\nA2gBTtknsdHEKQfYNYWyBGpieFuNUX3qYdwOwcz7MlQfbNDXV8axAlaLOUp+ipzVIOs0yc5r0ksu\nXTeb9F7SuBOt3Kj3vEVQdai8t4L9Pxx+evKLHEwsMfPjATf/5Qke+q1L+NmQmVus42clHc/eI0hJ\nUiuSe2+1yfzIvbiYl64ZE/e0hdV4A4DEbSQUolwlWF0zte+rZQjFTU5FcO02/t0Z7KkJEk88i7Vv\nN8HqmrkWi+baEjsncAdNbS49FbMOwTQZES2Hb5FwYgZSvBZG1u+R7tXiWqv5GYKdwrYNkygaG5RW\n/D4jcXq1vmGMlapVxHoR54mv8fw/bJEArFyW4NpNk/+GOr325Lhh+4SO5I2ju+P762t3YvaT/Opz\n+Mf2EawXcF6chnqDYGUFkUwy+cfhIaVSeB0O6z90BO26zH53H9YXnzVC6VdukHvW6IFu7A31g3rN\nOf5qmqZvaq69PTZKeSpP/ulpAsdGu984KBSUy3HXQrtuCKisGLFlQEsQO8YhZAWpufCEERLYxg62\nWmvR6KLbgsC4G4QdEHPj/WCPNTgAkWCfbaN1G8IanczRJtv+ms0mqt7AHuhDbRTRvopvjx2ShKH/\nat8nqFSRmUxL0wgY/79PM/cPTjF1YQhV2DCbseWgGw3s8TFDyy2Xzex2Og2eF76GR2IjvMCkNIwX\nKQiWlgkOHSYxV0C57manlNcphALha6QWaAX5+cAIar9O4ZQ0qVWPel+S+b93itF/YtxshGO6ZjiJ\nbXVdrK5O0yV7mSL9L+NbFCIccWgXLy4UoFC4z90rvn97fJ2RMu37ZtPZO4VcLRKsrCISCcO0EIKg\nUEDvn0CcuYg9NkriXhH6esPr2jfXpbSILDEjtwKZyZhzpl5vsQIhvn90zm0Cd1SAv7xKpBmmQxBJ\n2HacoJviobmpI2QcWzSqWosFoiOxYOC+89afnsX2Axr7hlGHhkl87hy5j68genugWt10TNGsdXuo\nWi3WvQmA/Pog/omHsBcKNKf6kF+6gLp4hfGLbHIXk6kUvHkku159CLnZCUJrgsvX6dnZRbPDWNC7\nOxukrqfwM/efd/IrF1528klXa6RuLBndhOi2pINTDlDdNsLTpFyNbF+7fd8k6tJ08er9GVIrLl7e\nIUhaJNbryGIVlU+jHQudtJDhvpO/uIQPiCMHWTqSobQ7wK5Idh6foSdZQwpNfdjhhfIId4s9iIxP\n8YdOmC7b9Cwi1ITyFxaxClPYVYk9HjDaWeRk7x2G7CIfXzrK3/25j7Me5HimvJPmhwusZE7S6Bc0\nPnmI0e9/keHTLvYXzlP98GMsvCXL7K+cYvyJMtUxi7f1z3LLHQTud9j7lkeYUgDmelMK4YU2vJHD\nzzbjGu2gkZZbxlZFZBMNVlMjlABLYyUC/IRE1yXNnDBuUIFCaw97ccNc3+FIqvb8Vq4iBXg+6dtr\n6NV1c+2GblXKCsW4A9AiZJTJ8DFByGK0BMqRoR28jjVm7VqAXayjLQvtSDOq0plHVGrYdZ96X4JG\nt8DLgdehEAlFb6bKrswKGdlkIr2OIwKeKu3hbrkHJ+3h5xykJ7CrECQNQJUoClTDwu1zkELTb5fw\ntMXFZh8jdoGjyUWedQeYbfSwM7fGVG6d9WaG7GiT9XqG2flekjkDju3qX2U+0UlCBlhCYaFRr0Aa\n8jWPdv0gKZHFGjt+e9mAtq5rctU29oNxHwvPqzZmUByqdZuV64AgCB3EsuhaHV2pIIcHzfiEbeP1\n5RCBwu/JIhu+6YBXqrFYNEJC0ER2GnMSajUjLt2m9WN15IxmUaUSs0l1EBZeSiOkQqazCM9HrZqm\nnkwl4yJQplIGPKiZ/Ftms0Z7bqOI1d1NeqkON43IflCtIlMpRDpt9t7F5XgPCjaK2KNZmjsG0PtG\nkG4AKyX87kyLNKg1utEA1zW5d6OB2CiS6uzAX1uH+XswOoK2JYlnb1J4/0F6vjyDPTyEt2OQ4PRF\nrP5uKjs78NOC7ufWEfkcovEGjP6EY6Qi0IZVuTWisVWI1xnxcql8xCRtuKi1dWQyiZuxqY4rgqwi\nPWtjv8yerBsN40QpLXOeSiv+jsXMAkGlahgejg2Og1AGfNZSkKgqdCZl2HAQO4vJ5QK+18Q6tI8A\ncMoeQcrCdjXpOwUjbp5KGhH0bGaT3pQ1OEB5KIXbbVzNBvpKHOhZItACS2i6nDr/dfoEyxs59H7o\nmLZILlYQOsvKQyk6c8dJ//Ez9P72GTb2n2Bq1zoPdc6TEh4/d+sj9HVV+NcnPsqv3f1eBp6BzLLL\n9PcPoC3IznRR67cY/3wZnrvGws8cZfmvwcRnc/Q9X+Peuzxc5bTrdL9+sQ0ZQntNrD07UXdmjM5g\nxGTfMlb2shHd7zHD/PHvzhj79ms3sYcGDRjmGfCkurOLRo9FAkhcuBXnflFOrL2mYfFoFYvax5M6\nOojXiPj20M2Ltqav9v0Y/JKplAG6lRGrNvV8EANDMnQPtgYHyNxYb+WijgGV/Nk5QwKwZFx7a69J\nsLpGcnWQ8ocfw64pkp89R+bc7dhdTX7pghlzLZYI1gvxsWUvLRDYNiKbIfmn57BCfc6Rf36ae794\nipF/dhrx6CH8UFx/6OlwhOz2PQJh3I65P93eNt7UDCF/bp7UapPK0Unk7qnWSNQ3ElqbAs0KxaRC\nBwZCC/d0QdHsz8Z377oiQgv2bdhB+XzLXaAdVbcsc/K0PUZ73v1iV+lUqziyrM0XULvQ1RbAySQE\nRs8hKhojJfNoxEumzGic1d0NWt03PgAw9fv3WPmuHWajTKdjG3vVk4/nrIXjoHNpVNl0VvXBnYjT\nF42NXRCgazXW3msYQ8JXUAzH3r5JJterDaFB+Ia6bjVNp9vtkDTfd+zVURi/iRj8aoEgZaElaCvs\nhmUyiGwWkUmbJGzLIimzoXDhX4JBb0jotuIq+rG6OmOXh20esPlna7Q5MKC10RDq7aE+nEVXawbE\niRKQ8PF+1jaU8rl54zLU9Azok82a61kFcacissiN6Pfx+FgEHkE8ZtYOvAgn0WIIam0o/eHYl/Z9\no0HWaJiRry1ujioCcSLB/G2s4UUyiT08FAuX+/P3sJ88T+Jz5+LrL1hb30TJj6L+weM0v+tozDgq\n/M2T1D90HGvfbrPBLS7B2efxxnqRX7pA5SMnzHWVTG5iTKnm/eD5t1VoFQJ6RuRVdHaAtMievUXg\nhMDlhkN9R5Nmp75vNPXlQtg2weraJjc5MIBQo8dGC7Dr5vtt5k1HNxolUeWKEW10LLTAUPKb5r5B\n2jFs24U1xNW7WNdmESPmHGiOdlP84RMsHzEimE5Zkl4QaC3I2k1+ZOpp9vSu8OzsGI3PDdDzpSSl\nnZLqDzxmGGdCmI7+jkl2//IFMgsafa6Ta9NDfHF5D59cOUz1O1b4tzffycXyOJ/92kMM/6JH4Vi4\njz3bya3//qgROgZWHpXs/xczNAYCrv94mr/53i8ynlpnR/KViy2+piHE5swr0ltxQiHvLWzSqODZ\ndkys7SdirQhlxJ5FxcKv2aBB2xovJwgyBiTQDRcaLrpQbLEh21nCgUJXKqh7iwSVqinWHRuVSSAD\nQnZQS09IaGKAQQsMOyhlmDR21cduBKazrzWi4SHnlrGml3CWiqaxNNBNZSRJvVea702AVZfohkXN\nS3Cn1kefXeJk9gY1leDpxQnu3h7AKyZpDnpUJwIa/QYQAkitaRJFaBaTPHFnP78z9xZO1/bw7+fe\nwe+un6SsJE+WDnJ6eQdztS4mU2us1HO8s+8qj/XfJdtVR0rNQqmD0cwGbxu9ha8ly808K36+5c72\nekZUtEeF+8o6/qKxeY8KI+0Z0WhhWeZ71vo+zSDzXC12EEobMflkEjE6ZDR+fB/dcI3rUtg19/IO\nVqGGfX2W2mQW+nuN9lAyGWtqikTCAD7FkmHGh0ykyLFWVevoet3cT2tUZKASBMaKPpFAT42C39Lz\nixusWsX7l7AdU7iF+ZNhyyrEpRvIrk5jZ53JoJoeQaFg9hKlNu1x/vw9EvMFrJpnxh09H3H2BcOM\nGx5CdnehymWCchkZ7l/W2Ai63sDq6EC97VGaOwex5lcR+RxdlzZo7hxEd3cgzr6AOPqAce+7uET3\nn11H3Zo2+fTrLSrd9nJaCIJ3HN70Z39xCV0oGjexaEx4q45Z2zELP4gt6EU2E7OutCVIrkqsiqTZ\npe+3uG+PIDBNkGjN8Vt1kwqnOCLACdsyo0IJM3pqV8xxmiLeAOGy7sVFepBNYFW9UEpCGyDM81Gz\n99DXbiNnF1uO0ccfxHv3EUpv24HbIdEW2FXBRiXNs4tjDCbLHM7PcKfay/ydPlLncuSmBbPvSjD3\nXb2sPJKiMqlYOGWZ7xuY+pMmd78yyccuH+G/LZ1E/UofvT/tcssbYO6JSfIfO0vi+bvU9zfIz2iu\n/1SS4u5w3fSaDP2b09SHFFf/dprCvjSHBhfJSBcv/wbzN9rqqeDGbayJMUMcSCZbTKKXAoO21rFh\nWOvV+O9BqYTV3W2uVWmx45MVxJFDpOer9D1x25A4NorIbMaAxBHzB1o5cTQu5tit86lajdl+qICg\nWEJkM2a9iPJIacV1enReAZtqd5EwepWqXDbg1dIywc27BnR2EqhiCWvUsI6NfrDReLP6+1vOZ89d\nJn+rjFPzjbi+2zQAUsjArx7oN/ny6DBWRwdLP3HEgEX5PHrY5PH2k+ex9hmwbPipKu7jx7A2KvFx\npm6vIRpNgkLBsCqb/z9hCAGIp54jk81SfP+DZHoeJHF35b7k9pWGDgJjOacCwzaSFqKvB6k1+Sev\noqp1ZHc32DYDf3QNMmkIO2MRS0hmDLIcKZhvYvVEwnjhbTKbNeJzbReAPTlOML9o2EThhrmVjqfb\naHgylzN2jvl8i11QLrf+nkyCFDGoE0VQKJjFcWn5PkDIv30X71+l4EwvsuGaGUdArpXwQ2Q+WC8g\nertihfb1/Tl6pvvNBXX1JiKRoOf5DUR/P9ZKBbzmN63z9I1GNBethdEy8nKC9QMO9sQJBr+4THD9\npccpXotQL1zFGjmKl4PxJ0pY46MEcwsEy6vIbBqSyc0barjZbTei85fx+sR9UKE2DgGWkATvOExi\ntvDqtJe0jtk8UfizcyRn5wgIO5vO5q6U8/nzKMz5EFy+jsyY5ErX6+Z32AnVitYaIcIkqn2e+yVs\nP4VtI1JJgpW1GFzadF8hjIZZ0zPA0Eudj1HHMJk0jo/9Paib07GmkK7X0ZMjuIcnSD1xobXetI3H\ntWvLyHwe2dtN+o+fMXT6Wg17dIS+P74KWt3HHhJPPYfV0UHu42c3sbdEOEIgpNhMGfp2i+i7jGyZ\nS2XKf+UYyQ2fVDEgsWEb4HvRADN3vzfNzq++wqfeZpxO2DZB2iFRNueRciRWU+FUQk0Nt2k6/14T\nfephml0JpK8Jsg6yacaLpGfYBO0Fjrp5B3t4iMWDaVRCECSg0afxs5rkuuDG5VFu18fZ/fgyu3Kr\nXHEG6b7ukfjcOfqOPcjsu/Os73uA/ud9sldX8UP73+oYdF9VTH6yyPqxYc69w2cva6yu5PlqKUPf\nOYuZ7x8k01WkvkvT/2SC5rE6zb/bJH13N9l5WPruSWRfHbWe5KNn38ahvXM8PvDCfZ/N6xZCgNTg\nK4TWZnTMscCWCNczhb16ae0OEY6Ux0whbVg4Wpofy9U4RYkH6KTCckUo/izDBoVsFUVSAOHeHQEF\n4bkYga1CCmR3F82MjeWqmHEAYNzEDCClBTHQIHyFciQiIZFNhVTm3MG2wPdNwV9vIHq6aOzsot4v\nUY5xCfXTGm1rkJrFQp6Km+CR/CyjTgGJxrEUwpNmHK7PQzuKpi9IrUishhGkbSDJ3XRIL9nc6+/g\nk+9K0pk0wPq6StFt13hsYJpdqRWkUARKUglS2FLxlrHbrDRyLNfyrLlZMnaTlXqOkXSRhjaMpNc9\nrFbDAaXM2NP4GMHySkvbTQVoX2wrHr0JBGr7LYQwQrZuE1GuYvV2o2t1VBtjUFerZK4sopZW0IEi\nvdiAjbJhd4Ti1bpSjdk/AMIiZs2LpN0SDlah41jQynOFbZsGZXcnrBbx5++FzRDMuRgCkjJhRLRR\nTXRbyhs3NqVEFTY2MWg1hjkbu4hNjhJ0pvFyDtbFGeTSCgiBX63GLNj2UWVroB9/vI/a8XHqfZLu\n671YpSbFnSlSGwGOUgQLi8i1dWSjgffWR2i+/wjZr1wzNvanHkZN9pB4YRbeAM07oTU6ulglrB1M\n0ZE7TupPnonvE5RKUCphT47fx0a8rxmmzMiW8HwzETDUh93VQVMIEiUQSpJa13TdaCCOPYg+d+m+\nYzKFfdY83rKMq2EbwzlqrotEAtWRQfgayzdrYWLDhYVwtEdrrGI9tor3dw6jkhbSU2aUrBkgPdVi\n1mnVctPr62VtXw4vB80OQbPTzNbZVYG+msPVgtWhHI9kZ+hLVsFR2DVN140mjbc3yTxSZ2mhi8Si\n0S2TVZcAsL74LJNfBO+9R3nu7XvZVSvijfbwX+dO0uzU+O88wsxbk4h1Rc8fvkBt0AgRLx/P09l/\nDD8lsRoCZyWJtjS+kjS0g/gGpAu+6YhyxhBMQQhkOm2ukdt3TS43MQqrhdg8YttoP/Y2NlFw/RbW\n7h2ou6FTbAjAWB05gmcuUfrBE3Re3sBfXMIOmTQRICOSLeZgqxmrNj1P6zVli0nkNdGphJnm8b2Y\nEbQpx44SSq0MSO0GBljRxogqyuOjdaX1ObX242Bp2TR3c1nEjnHcqS6Snz2Heu4ylm1D+Dz22Cja\nNevC2iGHkc+ALlcJSiUakdrLyAB+dxoZvo6oGvqdn7FJfvYct379JJO/Om1kGW7PYE+Nx3vAS+l+\nbhdvekAIDMKX+/hZgnccZu77Jxj+d4uvWjdChGM72jPjVdbwEKonD+U69bftJ3tlGb1RBJ3G2zeK\n/Opz5stsB37AbEbQNjfdVug79iY0Tjc9AwhsOhARU89gMwJp7O68TQuyGQMT4HkGFKq2OvbmOHxU\nw0WmkjEAFEWwtBw/V0Svi/7//skXeVbtIejpQFaqBGvrqPWCWYhd11zohZIpwHq7ySz7iGSCxr4h\nEk/VTKfm4hVmfvUUO3/7Nn6pYgCh19lBwXwIgDA0dgVxbtvsEsx+7yBdt/rI/OHT39JDSJ29Tnb4\nENbCuklmwgg2zCIkUslWd+r/Y++9gy3J7vu+zzmn++b7cpp583byzOa8i90FI0QTBEmQNKlA0SoF\nS5RYRVsOolwlU5b8h2TLZalkiZZUlooSLNEkJQYxgBQIygCItAG72ICd3ZmdnF9ON3f3Ocd//Lr7\n3vvmTVhgdgCo/Kuamt07fft233v6nN/5/b4hEw7//+ObGzsTH6WxW9uEL76De+gw3Y8PJ02DxwE3\nLcQAQ9oJ8ox2IUX5DIauVlEH9omAvXN9SHtqVa+r1bT7m6QLjhSNVbksi9Iu15BDaa3FZwtX9vwP\nXaQXGHxYQBXCfFEMDu7Hbzdy+lp+eK8n1IQdDnp2cws2tyi+OdSMzJNru7GBf+Ex9GsnMXtm8cUC\nyakz8hW++S5oM6QxEOyb59JP7Wffp9a5+KMT3Pf3Xs0Rme47Hse8/A6qVMwX5W97DaGB0OUybmGO\n4palPRtSXkk48JvrxFMVzOe+yvp/+TzhWZ8Xw4beWyqhqpWh4ttuYeZmsQUtyE6tJHn2YF56R36/\nQojZO0syOyYQ/c0IVxDkikI0G3yg8XPT+HQs5Hog4yMoDy6AuAa25PEVS2sefMlhneL3rj2M9YqF\n8U1O/XiF6dnn2T6UbSbABSpP8AEO/6Mzoj0FjI5XWPkBQ/NTh/gv5uTZ/DXzBD927C2cV/z7z3yI\nsX/9Isv1Fxj93Bpn/twExQe2mPjFGtVfKbD+gCH48BZjhQ4bSZV77jIG/Q58VhSyHmUTQWKFqRaC\ndWD7nUqgTyfbuTHINtVeGiLKKYIOjJ4BlEZZTXktpdz0kpwK7pstCEOZgwIjaOZ0U+9dnz6mtBQM\n3PQYXilMx/UpYkgRSCVSXFQIbcxr6c4r71JNISd6H7EkzaqUdi7DADs1Qmcy6BeDah5bcfiapTLa\noVKM2T+6TtsV+P3Nx4i94dj4Mr2FgO2G5FfeKbQXm+ryuiNsOrxRlNcdpbWYpFxkbbPG/L4tDI4v\nt49ypLTEfLDBhGlzORnjqclLvN3Yy3tr0xwaX2O00MV5zanVGQpBQilMWO3VqOgI9c0AJWaUsQwl\nlK5fZmZadFPS3M8niXSzjck3wjkCEfqFofRv733elRf3WXfDnJrN8fqxB4imK5QubqCK4grk446I\nUhdkHckduKxDF4OUeqr6hf4UwaTCADO3l+TSFfm8Xg+fWrrnnf8McZ9qgviUtuijflPEjIzI+qAN\nZqSGa3VAaXS5KBStSjl38LQbGwTVCkG7S+C8rE3OY1LBWNduC6p2bobk8hWCPXP07t9L8eQ1Rq4G\njHgvz8ncJGNnOgSbHaIH9rHxY4eZ+71LMFGHL75BCfCP3o8JC3RGClROLX9rNADTqWN7f0D7LzzP\n1K+8nqOPAXyzhapU+rpBg0gh63IUK96nrsMxycIUSX2Uwqe+wszuH3dDZBtlOl3curjY6UIoRUyl\nRAajUIDJMbCe4nKHeLwEyqMSaRrl6I6VdXkOJidIUlpc/jmRlTlHa3Sx2Gd2AEyOoxNP0FF0J2St\ncmVHMqLw2qPKljeX9/L5M0c4uneZDz1wjpc5xOYDAarnWOnW0dsB85+NKL1+fojmAxB++lX4nuc5\n+VcrlOo9nio3uXJsm+X7PY9MX+Brf3gc12gw/5kt/GsnuP7XXuDSxzThpuboLwr65PQ/fIb9wPVo\nTBCW9zp8v5CWzTeu05H8I0rNJhoN/POPoV9t3cCQ2f2cPv/bjIxgz5zP99l2exv96P3Yt0TyY/yV\nRZoPzVC9PI5dHNjbNsToSBeLoimW7anTdTV3S80Rbin6J47EzKUb5TlLlgPn1LCsaJs1Wnq9nHYG\nQCHsC9L3epLndlIr+25P9Iqnp0iuXhdARaEAi6tUu5FQ6TOR6noV4x3Jlav0PvYMxf+wQuV62lzb\n3kaXShz8R+9itcGfvUjo78NphR6foHdklkK9gk3H+sH/7S0cED33AMFnXsNO1vHnEnQQvK8U51ua\nMrYzzGe/SuOY3VUQ7HahjM4nPj0+LovWqfPiALAZQSJK+D5OCJdEUM515PhMvBUYpnNlcRMam48j\nGBSDLZWGeIty0A6i7k5Hs6z72uulglluCInjowillSw2o/V+opmGmZoaomtkRYkvrQgHtHWwJp0V\npYY1BOJYFP8B1WhRfuc6vtkk3OrJRJ5+D3Hdp2403zznhMFQTpLi7ClwITTn+3DOuxHmyEF47lH8\n84/lr9ntbapLya6UOR9HkpilEEK8/09qE/vtGB76C0j2387mFCp14iyFjYjoo0/veKMcp24jEm5G\nRkSvJ7ObL5Vo/KnnWPmZ51n8b1/gyt94AfPAUdE/yHTLdhSMfJKkCXcin5cm7ILMaEjRLqWBAAAg\nAElEQVRhe0DUefB9WScnmJsVraqsGLwLjTJzLVNBgJkYh0gcFfQuNK/B2Ekxu+Hfpyfp/dAz6FIJ\n87VzUlC6voQ7e2GgG3Pj9SRXropjx9nLjJ12LP7M07jvfAKUwvRkwR5EWv0nE6kGiO5GhI2YQtNR\nvt5CWUtrbwEzOcH05xcZf/HqrgXlTKTzVra6qljEl4uY7YigI91TnXhsQZO88JAclCS49U3M+UVM\nK5ZjejZHB3mTFpMCPTwGlIIopnYtEafHksD1dSnB7G0zv7DGwYeucWVxnGvnplhrV6lMtmnNi/bN\n+KmE+mWLC4fHhF1ZySHVynrcdkgnCvns4lG+uHyYn7z/NZ6qnudAaZVjT13Cf/hx4jrYE6c4+i+u\n0Xt3lMY+Q/XkKs2jMdVixHZc4nJ3h7PfvYwdRR2hrAgVwhWMoGjukPKcaw75dN3zQgOsLCfUrkSM\nnO9QvtaidL2NaXRlvU7nJWU0qlrGj9QERp8WBAbXc1UooOo1bDnMncS09VJITFIR6RvobFIk0pGT\nsQL4wfsphPl5uzNlkjJ4Q067lmtzFMOE2VqDY7VlVuMab23Os9yrMxZ2GC13RYJpO0Q1AlSSaij1\nPDpyBB1H0HJ4pUgqirgbsNyuc741yTvNvXRdiEWx6UoYPPPFTcomRilPOymw0atQMAnlQkyUBERJ\nwGZUZjsp31pf5YOM3RpuzqHCcMi8xFvbz0W0FgROSgUF+v82QPPXhVAKdbfITdTVZUrXGrDdFJRX\n2mR1vZ68b8BWXRkt+i+mbz+fGyE4j48TQad7LwWc0RH0VLrmKC3FzLyIZftrr1I5RQ2AhT2Y2RnM\nxBi+m1LQUsSrXV7BXuujfVSxKPPb6jrJlat92nSnv/bqajkviPiJUWxB450T+pK1qDBErzcIr6yJ\n9lWjR3HL40eqXPmBCczRQ+h6HdXu0XvkPkqLLXyzTSYef69FpYfG6sBjGtcVG398mH7stpsDxw7Q\nxXY2z5yTZ7hUwjR6lM7fuYmLCgvo8TEp+JRL/SJT9rEDNHgVJyjv0a0u2jp0IvOjGR/Pj7Gbm+l5\nw3StSmSdGkBQ+sDkAuD555QLmMhjemlhsSf0bD3eozLTYnyywca1UYrvlnnv8ixHqitMzG6Dgvlf\nC9n/f2sq1zTFZWmo70aX8gaCUkIhTLiwPcHx6WVemD/PQnmD7mxC94efZfVJyeEm344oLRpcCP7K\ndUH7lS2NuMRqr8bu4pYfbKhBVCLka5LvSeEjC9OJhymAt1u7MjmBtECna325FvdWX/9V9ucxamwk\nR/hk1zPkpJrNB+lcgvfi+lftnzcHdWxuDQmlZwL3KhsfO+mSIHNosSjzh7XDDmauX5y2G5tCn2y3\n0VXJjVwzpfS2UweylN5mJ2r4fUKzr7wiLJbJl9Oi14NH5D29nhTPS0X8uUtpMyeheOoaqx+aonhx\nHf/8Y7kDWunCmsyxb72HmZyQAuv7kNm5bUFIKfUvlVLLSqm3B177n5VSV5VSb6R/fnDg3/6GUuqM\nUuqUUuqjd3wl7yPs0X1DGhJ3EoM2zZf/3FHYO5NvwKLRgghulouim3H+kgx2lyKKisVdv9Qhuzut\nhtTP8xgU+Tu8X+CKKcIgh8xmRaABR7Ns4MtDJl1B3+neUIjySYJJnRJUq4Ou1Yb+3W1s0HpeBpcZ\nH+9XOf/+NKpQoD2tBeI7gFhSYUEQQKnom11ZlT9b2/hX3x667+P/5Crtp/djxsYkORh8SO/R2Bm0\n0sw0hXTcfy2qw+LzN26c32+Yo4dY/+Qx3v35CU7/6QorT1bxLzyGOSZaSuXXL2I3Nnd/c5agxfG3\nRqfoWzju+ZyTLQDaCFomCHC9HvrLX6Py5uVdF5XbFfTs9rbYYj56P3tfqnP6Fx+g0LTM/OJr7Pvt\nq+z7X7+Mffe0iLMjBSTRNjPDm+wUIpolrtmiGBzcn3/O0D1kkVISk8Ul6cxmSfRNYMcZosiuSaKc\nXLiUd5zNyIh8B0qh63XM+DjB/F7UwQVxVEg/3xw5yNpffJ7Vv/K8uBNevEz58ycl8QPMA0fRC3uH\nqAJ5IW5HmONH8FFM/VdfYvYXvoz+wusyB37la7nNa/6TDCzO34rr1Z1Ezl+PIlhcJRoJqb+1jHvj\nHey7pxn55Zewa+vYM+dJUtHlwVBF6Ya7ibpoEO0Sul6Xgh+gW128VgSNCNO1FLZiCkv9zYA/vh+/\ndwrdjVCdGN2VJFtZl+tH4BzqwD6CffOYqUk6P/IM1z62h+6YIanIRqR2QeMakqytblcJtWXh1wKO\n/lKPja0qI5UuXsF9n2pQ+uQrVH/9ZapXblQjtRsbqKcfprVQobQcsHlxjOX1EbpJQDMpcqY7x9Xe\nOIdqa5z78RK2CGf+zROsfNdeDv/qBtvf1eHKx+f4+BNv0IkDlls1TqzvyTdL39Rxo6VYorxHdxOh\nXhUCoXcNxG4aQvlr3qOiBB1lyBwobEWULqwTnr6GurqCeu8CXF0SFFC6cVelEm60ih0t46vlPCn2\n6Xl1IUSPjghtw3tUlNIwIin26NhhYtdHLmV0Ju8xPYtpRkMde5TCG4UvFWFmks6xGbYOhCRlBa6/\nfpuuxjtFMUy4r7rBVNjkVGOWc9emOLc5SVEnOK9wq0XG3gkYPWlESDqUopK2jrBhCRsxPpBCUeFK\ngctnp3n72h5Ob07zZmuBF1tH+WzjQV5tH6RhS4yGHfaPbjBf2WK2vM0D9UV+aN8JRspdOlHI9Uad\nM42poU32PR07O4v6A5sXMzUhenGZhpBz4hzX6UgX3Q9QxgZccFFaCq5GBH6DA/fBs49gjh4iOHSA\nzo89i/uOx3Hf/QTugGhkqEJBNlYDmyNvbd9WPj1GGY3dbuZoADJLe2MkZx5EoHZ7+EYTVerP597a\nfF3MItO8A8Ql7FofOZA3YCoVzOREmsenG/7ZGXS9JtpoSTK0FqpSEf3w/bK5mhiXXBto7x+hcuK6\nUJriCN9qCyVtcwu3siboptdPMnK6QTJWZuG3lugtjNN94TjJzAjaOpnDV1bkuQgCVFYwu1fjxqdz\nR0bz9KSFXOhOaFb/yvP9Qwf0CfPIx4wSlFBGG1MKn5rODCI6AdQzj9z0cszMFG5yBF8WwXFVKEjO\nE8o64bPiYrGI39pGtcVWW3cSdCfBBxqM7u9Dsr1LrYKKEkyj21+jtMw3hIG4oSEU9u4PP8vmAyL2\nHddEs6y4ptCRpliMqRRjOr0ClUsBJoL6GyVib+j0Chz51R7l336F8D++xuyrXToLAlDQjz0wfJ/T\n05RWFepCme2VGpvtMrWwR+IMV7tjPPLQJS79hGXt6YTF/+YFbDlDZcG5//ExeO5RRk6EXFia5J2N\nWaG+Zd/vN2vOSfXAYLiB6d54J9fuGvxNdj3Xjn/3zz/G1T/b/+4G823z0HH0l97CV1IB+oxBg4wT\nwr5bYf4RxmAmJ8QAJd1rqbCQN4BVoZCjGOWcotuZ7993FL9QKm9A6nIJt9XA93p9QyrvpQmX5rFm\nehq33URPjKUgk0gaL5kZU3ZvV1ZIRotEH30au7YucjKpvIluiFSN7KnF/dN1uzKX93q4ZovpP7wo\nzduX3ya+f57ex54hOXeB1sfFhUyN1NH1Gmb85g3CnXEnVZVPAP8n8K93vP4Pvfd/f/AFpdSDwE8C\nDwF7gf+olDrmvb8NhuzO4/Cv9Fh+ps7cu+WcDnEnMahrMfPVHmd/aoIDPy88TxOl7juLK/1jBxfM\nVPBuJwgmS5pwFu/7vMihhWZQ/LSUqpxnXMNBOF56bdl7soHvvc/hbLmNXrbgZtfkM5hZI3caw1uC\nmSmSxSWq761h6cNhfRxR+INXWfqd48z994vY3ehrzsokHIpItUqRLbpUwjWaqY2fxl5dpBIGsHeG\nYLSObw0l85/gHowdlUGfkWTQxBB0HSjRJHCGWwvc3WHY0+cY/18eY/WnobLQoP7ZKsFWF9XqYCYn\npAN3E1Ft1+3KGPsmuLDd7QgO7s8h2B9QfIIPeNzkKfUgfcOJxoEql1HOoacm8GEgyUVWSL0D7Z48\ntMG9dZJrz8GRZxIufbTMwspxkleEU585HaINttnKofGuI64ug/DbXGMhFd+74fvfQX0jdUgABux9\nb85z2JVSlsYgzDpbGE0QwOJKv+vvPX5pldlP9UQsPbXZ9J0OenoKWm24vryru1gWZnxcNCQ63ZxS\nZkZGYG5auOYpNcCePoeZnMipUTvQMp/gW2i9uuNIN2tKKVSxQNhOuPaDe5j9x+fv7O29Hr7TFcpG\neOOyLnpSJUGUJkV8YAi2u5Jcu1Rh4kraSU87q0opbL2EjtJEpxMLpSlFs6iebKqiwzPYoqGxIFpH\nnWkt83BHEbY8hJ7RWhejHeudCqObEcHyNn5lls1CBVf28EpfZ0J3Esz+hRsKX/7Vt1Hzz1Je8qjY\n0ItLrAKfd0cw2rHVKmOtYt8jiyxv13DLFfyfWGPjTzl+cOYEjUMlfu/dh/m+4yd5c3WeYjA03j/B\nvR43gwjFQW8J7/FGoQLTd+0cPHaXcyjnIbaYnhPx1VRvw41VMYnFbzXyjqN3PqfsYIxQ1rLNRrqu\nD4py+U4Hdc1idEr1qpRwpQI+1KJ75OgXfbyXTrYTTSNllFAMjRYNjAzSXwrpzVZpzwSgyQss4kqm\n8MajA3mxoBMqusd0scnc9BZ7qtv0XEDsJEczXU/Q9biiJq5BZ9KgI0/YiNGJQzVjKisBOtaYbkDX\nlVkG3lD7mKk0KJmEZlxkKypxbHSZo/UVjpUWqZsOXRcyZtqU5mO+sHaES5tjNKIiZngP8gnuxdjZ\nkVtitBTxuhFeK3xFCil6K7VM11r2/16JFk9ePLwRle6aLSnerK3Te+4waw+FjJ6tULkmm764HlK+\n3IDzl3FJIhSxUhEindPSXBRLzUErvNKyVmS5aarpIxdoUNoN5Zt5M7Fn5VjItWTyYxhec1VYkOJM\nquGR2dmrYhFVqYhDmNaC1qlXaTw6I+4+X3pX0LDze2g8OoOOPZVXL6LaXTFMKRWg1cYcO0xS1mIK\n0e3lSCu0znNxMzoCxSL2tRMEkxMwO0Xp3au4rX6jRj10HHvilDgdhYVBbadPcI/mHGmaipZQ0PGU\nthxRVeMCKDaGx4NvtVHjo32KahZaQZLqgHkPiWj8eA3BoQMk5y70z7GLblBGIffdLqpTluuxDlVM\nm99a0GQu09JL0dE6CKTA7D2uHOIDjV0V6/BBnSxfK0s+YkxOUfWBUCtVo01y9RpmcoLuEweJ6hpb\nlGJQVCdPCH0g5wuMpRgmtOqiKdSd9jSSEkFgscVivnGOawFLzxj2tZ4UZ7PHHhAaPGAPzlFc9yir\nQAe0VJmvmb0ExtHuhVirwSqm923Smw1oKM9CrUkxSFhs1jlbnKJ6BUY/U2b1I3DfcI3lE9yDsdN3\n6xqgaE5PicZWRjHVIoHhJ0ZhbePGeeo2oV58k8IDz/PcmzG/94+/i8lffDH9nGnsiVPynJ+5AKRj\naMCIJzNEyAvHadM0p837HXOe96ha9QYdYpdrBTO8zg7k+b7XE3fMVHbGtzt9HcvpKdjckmfDWczs\nNHZqBNWzcAWhYW9s0vnII8ABip/6KsniEmGtAnvGhPWUFa4fOIp997R8v150Pr11uaGKa7dxjYbo\nD+1fILhvnuSPXqdULOKB6idfxz/3KMlLb8n5jhyE1Tv7LW5bEPLef14pdeDOTsePAr/qve8B55VS\nZ4BngRfv8P03Dy1WgXzxDeyHXnjfCCHoF2eCz7zGgc9A6yc+RHk5ojtVIIjiIY2PnVXHXTdLgxvC\nrJiTUjpy/uEgYiZxw3y+HQWkTMvDRzH49H3Wio0nYDe2hj4jcxizi0tSbIiinO+Itdi1Ddl0plXH\nbOOUbf5efOqX+JGzzw7dT+bWkB8fFnLxrmxCD/bM4asz2HOXhI7mPfbEKZp/8jnGvnRp4Pbuwdjx\noKwUhbwGqxXOQHVF9FaSsqJ63WJLqv+gfQOhvvwmx74MZ//350lKHn/hitD50k7UrZAj3jpBfOli\nbvH67RhrL+xh9AMsCN2zOWdQMFEbVGDQo3XWP3qU3qgsDtEYuAIc+PVJ/MkzQ45etzxvJsKX3dNX\nvsbCV+D0P/kQkw8/z9S/favvfrDjXJloX/8Fed6HCuApJQxj+jD5/H6yDm0oDmW7aEIMfV69LoUC\npdEHF6SzfG3plkg2u3KjQ1O2SJnpafTYKHZlBZ8kJNcX88XsVmE3NmBAmFCXSn2xyz1zJNcXcd/5\nBMFX3xMnhl2e52+Z9errCWtlI9Vqo2LH3Be22P5Tz1H/ty/d9q26VMKtraOaLfRIfZjzjqxf+W+W\nJksqLGAW9qJGKnij8sKfb7Ywm21UpweTI2IhXggwnT5PX8VWhD3nZ4lrAS5QVBdl3G0dEth7UvFs\n1UGXE7YaZeq1Dk/PXubTf/4h9t/neab6Hl955RjlhqL1xz9E9ddF5023e3SOzhDugoTyRqEjKDQA\nrelUCmx4RVhIcE5hFyssvlclOdzlp7/jj/j1C4+z3arwyXNPojuap55/j4vNCaqFiG4S5M5c37Rx\n40VQ2hWC/qYk3Yjpzo06hUOxM/G2DtNNsCUNXjYrqmwoqFFML0J1Ov38w7scQaK6PVRsUL1IGlAm\n7Uw6L7nIgGGFLhVR1Sp6fARXFbqHsr4v2gpS+ImFUpgVq1TaBPMKfDHAVkI6kwE2FOcgW1C4Qqrj\nEYKtOfCKta0qq6M1StWYj4y/y3ePnWTd1vjU0kOsbNTxtYTGgZCwmaKuDSQlRVw3BN1UjDhxBGnR\nyDcUrmDoFYosAq0opBBYrNPUiz2M8hwuLTMfbvC17j4qOuK97h4qOuKHZ97iM8H9XG6MCQI5/wnv\n0dgZLAqm9K9krMzmsUnac4rW/gQ8jJ14kj2fXsRfW8o3zEopPCLkrLTqb/J2GIHoUonSp99kOn6U\nyx8JsfUS0y9pJk+vw+XrMj5SeQHf60luaq3o9mS/sQVIhWhTMxa877tDZrlP2rjMijl6dAQfx6g4\nycdfJpFwg1NvuhHLhKV1OUMQJFIEawtFy8cJtNv4PZNUz2zDxav5vKg7dYprMS7UuPtm0acuyjq4\nsBcAVy9RP7WVmrlIcc11uvlaG8zN4quyBpsxsczWna4UNHo9zNioNEBSSjgMN13v6Zzjpeiq8GgL\n9c+cvGlzxvd6MhWlaD4FUphOMpqh60sgeI/ebhPvGcfU+8WQnZEzHoJAxu7aRr9AWQhzCiukyDLn\nUqSbxq5vorYamNlpVFDHxFbMOAohqpv0bcijBF8MRZjfenH8jS3q3fMkaS7Te/wg8UhA/VIXF2q2\nDxSJRhRx3RONit5de7VCYc7y5OwVzpa7zFQaLJQ3+M1XnqZ2PmD5aRgb+xDKehrzAUnVsXmkSHXJ\nUljpz4PdmTI6gaDtKa4qXBCwFVbAK3zXYJoaxhK08iyMbbLUrHPp8/fRnY8ZezOkGkDn+Sbmc1Wq\nL1Uw7YH1/B7trXIdOWNyMENyfRH/4cfRr74LjxylPV+h/NuvYN95Twood7pepRHMzTLxL1/kD6Lv\n5NDPvMebh57nwM+/iM8cBMMgLxK7Vksag2mxOS+y3kysfRBhn7+mhv5N7tUzxMnLC0k2Ryy5VqsP\nykhpjbpUwgMuZYaoUhHfkrGmO1Xc6QtyfenevHy1SW+2in74KO6tk7gLlyk027iD8/isqbKSFbMc\n3qU00xRlZLe20dWKOJSVi/jlNez2NuqJh/Cvn6D5Jz5E7ddehpfewhw9JMi9xp07WX8jotL/tVLq\nzwKvAn/Ne78BzAOD2euV9LWvO8z4OHZrG1Oryo0Xi+z7D6tik3mTuFW3exD5U/2NlwkO7idcCoZN\nagZU0DML1juOAfs9Xa+Lww8CbXW7bP4Gw8xM4cZHUGcuyEKnlCQ0hULfGnZQ1NbaPpIgU1EvCu0t\nmJslWV4d7qhkYrPpd3Ml6WFGR3ZdGHSpJMmES1XKU1E/uSaH6oiQtdvcwhQE6lm70KLz0F751W8d\nd3HspNaSyGbBa+kyVk6vUvwPw931u9n2P/zXZS7NRoa3FnWbAo9PYtAFSaiMkcTl27AopL95l/zB\nzDnaSMfzwD5cpcDo/3PjBvx94bqyxWWXBfDoz76cny9H8AyIzO/q9pU9wwOweV0IbzwuK2xpEdUb\nLAjkMXBNwcH9rD+/h4kvXME3Gvhu73078qmwAI8fpztdovyFk2LTmxUetEB37coKrt2+KT9ZuiMu\nv14zPo7d2BBXmBQV5LbF2TFc2mbrhx5h9I2VvItyW6SWxD1Zr77uSDubpEjQYKNNMlGluGXp/Oiz\nbN8XMPsLX775+43BjI/hthtSgEvh8TcLXa2Ks1C5KEWWNLHWlQo+itCJleTaC7XAdGLpvnqPbovm\nnt3eJhipo3sjhE3Rk0nKhrhqcEUvm/pagtaeaqWH0Z6a6fFzL/wBTVviEyef4/g/W0Ellks/sZfg\nY89QubBJ89g49Teus3OaCeZmMT1HoZVCxo0iahgB0YwCylOYb3HwsTUWG3VOt2f4+P63+eQ/+S78\nD68z/SOn2H7mEd778xWO3n+Vn1x4jTdv38i8u+NmB8rHBzqnhqnE5e5hWN9HB93sHIO0SwDnMO0Y\nUw5wYf9ps5UANTmGNkaQC4O5UxxBo5Vu8oUmPuRONWBFr7RClUswWhMKhhdUklC9Bq4lpb8RW6Fr\nZNfrHK5WoDNVwIXSnbdFoXm5QArvPkQEpasJQeAIAkdRJ2gcB8IV6jrik9uPcfraDOZSCV/xRLMJ\n8Zgm2NYUthWFhkfHPtcPUR5MzxGm4yauiVZIEgVs2SpaO8rliGPjK+wvrVFSEdOmwUK4zrYT0eqm\nLdLzAVPFFlPFFl8KZ+/k1777Yyf9fn25SG/fGKuPFmkcluZX5XKAjuS79MWCIFoyeoX3OeLUO3KE\nt48TdOoU5lIHXl0qUfjsWxz5vGb744/RnlGodhfn+4U/125LI3BtfcgsAxjW90EQBEMUtly/qI90\nJwxF16Nr+82NVEdoiGKMrFt0ulASpCMbWxAnUqyxltzBbACJb5Y38HGMbfZpscn1RQqFULR9uj2S\nDAl7+pw0IEaKFC+sYXOJB5dfm5kYl+fleqO/bs3O4NsddL1GcmQv7uW3cd/9BM29RUZ/83XJo529\nISfYJe7quFEOfIrCKzQ84y9fJ7kFUlcVBvVYUh2eOJbvvBCiQlkXfC+Sgl2timlH2EoBPvw45rWT\nQ3SibC/h40S0YlL5C9duC3rL6FzLyqdjzHsvotXWoktF9MS4UMysh8viiszUBCz3tYu81qjYCoo1\nrUWaxbW8GGTGx2mPBCjriUZCbEljC6SFaBGxD0oJiTIo5XmkfoWfmn6RMd3hb1/8Ufb9oaJ2bpO1\nx0a59h0KZTW2njByKmDsTJfuZIit95teha1YGtGRQlvoTSr8RgFXthA63HTC7PQ29WKPkkmpd2UP\nTorjOIg3S3RmFGELKcDcPj6QPCcrzmaggO50gcqDR1BRQmm5h374ftzbJ3OU+5ATLvSf511AScni\nEgCjv/QSW78Etb+cSgZcW5I9axSJeHQ6puz2tuSdKTIpE7zOwRjZ50H/etK5RpdKImI+sBfPRaF3\nAjSKRXStKs3HkZE8XzdTk/hmSyhcmbh02jTJHMF9pwsXrqAKIXqkDuUSybkLuDffpfj4g6iuHJ+j\nrRaXcpqlXV0bQMCnmsHp/asggDgmuXoNVSxiZqZRnS7+9RP0PvYMtV97mZWfeZ7p/+ulnMZpl5Zz\nmurt4usVlf5nwCHgceA68A/e7wmUUn9ZKfWqUurVmN0dl8zkBOxJrc6z7mWvh33nvRsEWAdDj470\nEUTa9B0LkgQ9Wu9vrLQRrYzT57gBRgtk+ha3olrsuKmhDoAeqeeDzs5PCXxx8NyDfyMDQW82xOo1\nu0ZnhbfcaIjbR7HYR/B4LyKk6WvZfaqwQLK4JHDWwcvb0aH/M3/j5zj71x/s/3tYyMVlAekCxZFs\nHqoVKXoYI1b2jWZKJdMk15cEAfDme5jObTdnd3XsJL1W3uVV1lNeSZj6/TPvzzL8bsYtxNSyRMlb\n1+dJfxvG6MmbJxMfYNzVcRP5vmC8mRgjfuY4yUgJXr/NortDv8FMTuwq7JxpgwXze288RapT5OMo\n5+zrSiWFo5t0sTP9/8+6aqnodSZ8vRPaqsJCf1G8WdKZFo10qURy/iIjv/wSyeUr2M2tG+dUpW6L\n6vFxhP/K16i8eAa1sGdo3sVZ7MpK/h24dnvX78o1GkPFK7uxIbo0Y6N9d7FWC5/E2PfOUvt3L0kX\n+cOPY2rVXb/jHXFP1qtvKNKEGaRDytUlgqUtEZfeTph+o4N6+mHM8SOi35SOkSxcq0VyfVEcYpS6\n5fqoikX09CR+rI5Pu6m5DkcqfO9Szn4mdJzpwuhmL0285VrXvmeBrUMFFj9UZvmpCu3ZEJQUkbCK\noBRTLkfM1hvMVJusx1UOF5ap6IioG6C2myTnLjD5TkxzX8D2gxMELburTtLijxyicnqdsOUIep64\nCmiPrscCeIkM3dUy757dy3N7LtKxIT8x+hpjf/IqjWaZc7/8OMv/U8T9/8cKl/7oPq5Ho7jwho8Z\njLs757gB2oxSohMUCr0h2O5itjro7Q56syUaAjehH3udbtLyF1IERmJRnQjTTnKxcOUQkEbRyIbb\nuT7VnTSR7fVECyTVuMs/d7AYFAaCBpkcx1dLkstk1MGsUJChLUGoJT4VnE4cWI+tFGgsFOmOa3qj\niriqsEVp4HgNLvA5gkmHjnqtw4HJdfaUttiyVVaszB0lHVOp9vAB6EihQocvWXwAKoGw7ShsJegk\nFZhNHEHbEracFILKXrr0PYPtGOJ2SLcXsh2XCJVlMmhS1zEfKl3m0eJlfmT0q/zY2GusRTXeXNvL\nvuKG0ExuHXd/zvEetMbOjrH4kRnO/QlDd8pz4Hctx/5Vk/2/vsR9v3mNfb9xERbQQ3MAACAASURB\nVLW0JsWggY2ALpeGcmFvrRSDtBYkeiHMdX7wDm8dI7/7JjP/9EWS8xdlnu52cVEsgq2ViiARO52+\nq2aGONohFAxpvpoJlg/m20o+362uD8kR5Otd1sDYN4966iGIYlyjiVtcxl2+JgWKLLIiU6pVlK3D\nmd6RmZxAPfEQ9nufFEv0Zgu3vCrIoGIxX4d9FFE8szxEzc7uUZfLuO0mdn1TkECp4D1RLKiVMCS8\nsIw+fhjTjBg538bMi/D1HcRdHzfKSRNv7HSP+q++dEu6vxkbFeHagf2JihN8oyl07VVxgfPtjlDy\nAOIEdWUJ0+jhCprkmQdQzzyCefCYaKaEoYxF3xfmxolMB5nAfYZijuNUL1E+X5fStapeESSR9/29\nYKmISxHFulJBpWuUshbVs+h2D599DuAXZulMaVpzhu39AVFN050UR7GgrVHaU6n0mJ3dYq7e4HJ3\ngrPRLC1foBJEbB4xbD44grYeN5qg5jugPOOnYsLNLsWNhNZ831Vaf+F1CtuWQtNJERqZr1BAomCz\nwNLSKAdq6zw0cp2fPfI5fuD7XuXI0evUP7pI8ftXCDcN1auexrH45iiYftzVsWNbrRx8kO099YgY\nF1U//TbqzCV47wLm9VOQUrqAoWc2e6bwXhoKWX6oVD/XJW0spnTi6X/1Gva9s7hGow9gSF0V+3vT\nKC92ywt+aF3LnvuBG5O/alVx6ob8XHJPGV1M59dNipBVTz+cuhgqyXebLXlGoI+w9K6ftyuV6xfp\neg20Jp4dxX7vk3Luy4uwvpmazljUE2Lmoc9fI9i/AMDaDx7PKXk+ivJ51TuP6/UIFvbhez2Sq9dz\nQe7KJXFanPu8FJQ2/tyANtgdCtl/XQgh7/1S9t9KqX8BfDL936vAwsCh+9LXdjvHPwf+OcCImhja\nvZipSdE7aLVxZ98/NcWurcsk7R2u1REIdLr5do1mblspona7bJx220zdKS9y0BJ+YJOjIqGRDZ1h\nsBoZBPheD7e6llc1dbmMywQB00KNHxj4yhgpypRK0u1Nq5aA6JJs9gWOdb2OqpT7WijAyC+/xN88\nc5J//PP3D197aj0vMEGBv4qlaGplmlHWwoKgp5xFj4/Jgnt52JL6hq/nLo+d+tg+n4nl1c818a+d\nuKtIoDuJrFqdXtzuB2kzjAT5Ng4VW+Lvf1psNe9R3PU5R0/6wd/CfO6rcsztL2Tov+3aOmZsNEe1\nDIWzJFev3XiKQVvL7NAMAegsPuMsk1kA9z9zCP04SCEYeN+ux+64Lte98Sm54Xjvd3WzMlOT+Llp\n6QilsZPuhZOFTrd70OwjmfzBedSJdg63BcQdKwwF0Zh2lgZt6AevJ4vk/EX0levYOELfDpn3Aa9X\ndytUGKSCqxpVreJKRVxB47XCFRWmq/BXrmN3Q36R/n4Duh27hZmahOkJXDFEdSIwSmx8B347pZQk\n19bhBjSDxBPeYetFVp8dp3r/DN1xLa5QwvChcZ/Gaw8ewobCTWtqpR4lk+BQ/NFrD2KfVHxk/CSP\n7b/CWz93mPs+vUBrJkiLAgqzy9gEKK853MUruIen8FoR1zzFNU2nVMAHDoxnbO82W5sVrFd8eOws\nXW/46YUv8NL4Yf6z0bepqoi/8N/9JR74W6f4t0efQtlXbvpd3e1xM1qYSaGsqbaFS124ukKTGSqo\n7BQPTt83SBnyRg9rfHjpspt2hA80LhTdHt1LMIsbspnLIO9O9wViI1CBl9xiR36Ra5fVqqLREQ5Q\nAlJkkMelEEqPcpkl/Y4vwiiisZC4qlAObFHlrmKA0Dsc6BicUygFhcBSC3vE3vDZtWNMl5r8hakv\nMhtu8cTcFb6mHa12EWU1Pg5QFoobnqCTFi97Ft2O8KFB9yx+JCCpKnzo0R2NL3h8wYFxFIsxgbIU\ndcy0aVBSnpJSHNLd/Fa+f+xrfOHqIb64dhgX3noK+KDmHF8qsPlAneZ+mPqKYfzdNuG1dRFJtRY3\naGySCdUPbO71qJgXiMjxwDqQ6YEkiaB/Up0f141yOrXoWuqcwqVSRKMqFFJdmZRG5ARZjlaiU+Wc\ndOAHtUi0IaOLeWtFj8i5ATqZ6m+I0rwpubaIabXxfqChphR2LZ27tBJx2CTJnTkzOomPQSUJqlDA\nbDbxRSPotRR95JotocDNzqBGarC0mrvsDm3EdZpzB0Gap0vxKNi/IMWOKCa5clUKK86huz1UsYAf\nH8GeWxakQfvm264PZNx4KG/YPMcZDDM+Lho+QSDOhtAvIiqFSm6ci+1AEYa0GKxKUiTWkZNideJg\neU3oXmHqcJdtamPZ4GfyGD5OcnRQJjKtggBVKeNH64ICc04KT40+itjDMJUwpbiJpplFdXu4uUnW\nv/+wFGWqUoTWEfgA2iOQVL0UlY0H7SkElmohohb2+K13H8M1nubvfOQ3+OjkCZofK3Ly7QV0pAgr\nMdZqxt8IKP7+izL9/bGnQEH0A89Q+NRX5DuKHXHVEFch3FaYCJoVLVpF4xHKKbRyHC4u8WjxKocK\ny7hxzWOFJjGejyZ/kcLrY8x8MZB86ebEmLs+dooLC54UNCdgCqF0orTkq6lOZaapMxTZ3jYVnc8o\n/yglKJ0ULedTmZLMLMUnMT6JBREUxbmMiWu35X2Dsi7eD+esGSJwsJiMrGM+TjU1s/krziitSGFz\nENmkZV7DGNHPO3VR9gUDro12Q7SSskJylidn0i3m+BHsqTPS/N9uEGot62e1KlqPQYCqVnDb2/C1\nDUEEra4RpIWmYiO9/lDOrcdGod3O7ym5fIXg0AHcylpfCmZ9C12tYN95D10qMXGigZ6dyc1h7iS+\nLoSQUmrPwP/+50CmdP47wE8qpYpKqYPAUeDmGddNovvkQdz6BnZjY9cNyZ2E3djA79+LPrggE0xa\ngfS9HrpWFRqWtbdEdAzFYDK2W+yAcZvZmWEqlgO91cqPHbSy1xWxC0YNuy70oZsCicusOrP/z08d\nxZIQ6NQGOIPIDVRIXastTgk7ouVSIcIBikFmwZmLVxeL/SJRIUTXa/lDrEdqgrS6voRPEi7/xL5b\nfYsfyNhRDtEHeO3EnRx+VyMT/M6oHjeNO4MKf8uHmZ0hnqyy8mjh9gffxbjb40ZBan86PsRfv81F\n7Pqy3dyCIBBE423el6F+hvSLUiRivihlscuYuaHAk71fiQOYCoK8U7FrMShF/dzUMv5mc1xOBwiw\nq2tDxaAbQht0vY6+vAjLa0IrTZFBenULMyd0C9ft4rpdcTZbXNr1fnW1in70fqGV7bg2Mz8nUOXb\nuPZ90OvV3QrfE0FuUp0N3e4SrrXRiTg56c3WLe/VO0EQ3IDq0gYzNkpwcD9+77RQwUCcWqzPhcFV\nWMhFw1WjLaKhiRMtjkIgaKI4wZYDdAKNhQAXIg5ODXG2csUUtWEV8YjDJpq1rSqRM0TWoGLFV68v\n8F5njqV2ndmHl7n2l3qsPelQVswAgs3d0U3V33hZEMKhojeabuwzhHisMWVLpxcyNt7iSGWZd9t7\n+DuXPo5FM1/c4DNbD1JSMX/7I7+FXV2j9moZfUspsA9o3Ggt+UAnRrW6qCjOu+ZDMVggGngtd/Qy\nBl8q4AuhbJq0FIhUN5YiUM+iexaz2catrd+4PmUNIJd251O6zWBjSNXrMDmGG63hCykC2fp+MciI\nhpDY0TuwLtf/EM0glds/J2URG7ehFIN0JGPHFsiRQgA+8DiraPVkjQmVZbrUZKG0QdeHnO9N47zm\n8MQq+2fWUdpDogi3FWHHk5S16Cclqe5Jqs0Q1TRRXYpQKlEic1OwBEWLtZqLW+O0XYEVW+dCUiPy\nnhDFmbjE21GdRwrLBMZy8q37KK3fOm/8QMZOYIj2jdEb1cx/Lmbmc9cJzlzDrW/KxjodR9lvKTQx\nl6MtfJyIvkWqP7lzLHjbF3Qe0t1wtl8AAjLxe5yT3LPX6xdNMrqWd2mHXSzp8f1xpcJCf7MWBiIG\nXQilsDQgubDTbEUXQmmatqS4pIpFdLmcu5JlhQWllGgKGaGCmyMHUU8/LMjHdpvk/EXMOxcwpy5j\nt5uCcOoJ7WXze8XB0vV60un/7ieGXC2VMfK5oyPiWpaK3CYXL0t+XQgFCVQs4ra2sRsb2I1NVDci\nWNgnSINbSFB8EOPGxJ7ybw0fqkslQZqO1MT6PZ1DfDCQf+SyGQo9OXHD+uvabSmkxWKAozcaBJsd\nTDfBbLVk4ztocJCNTe9zBEZ2zqwYBLLvUeOj+IlRMUhIpSsA7Iqo46rxUVSv74imCqEUpnr9nMct\nraBiiwugPaNpzWnClqfQFH0hlxah0aJ3B7DdKuG8oh70qFR71Pc0WE9q/OH6g5RMzB979m3uf+oi\nNtH4tSLVxf5vWbyyRe1iWxokA9Ed0yQV0Th1IdJ1NB7fNdAKKJuYVxqH+XvXPsZiMsqsafL77QV+\n7srH+EtHv8TYp08x9m9evCXqFz6gOWeA+uW2tnGZ+Um2J80NS3bJS9Mc1DbE7Cg4cJ80Q6wTtF+K\nfB9E9mTmRS4r0uxg3QyOwV1rA4PzRvZSXshR4hSYiUKn9E+f0bRdWtz2DlUuy363XJa988B1qFSv\nLLtWUkFrXSrholjOYUV7yHeFGmmvL+KvLEpxtBCCVti1dVo/+Dg+SYgeOSDXmorRV//wRP8edd9c\nIkMj6mqV5NwFVKUszybybPhOR4rW3S768jIn/9ZBudbSrZH+WdwWIaSU+hXge4AppdQV4G8D36OU\nehwZ2heAvyK/hT+hlPp3wDtAAvzs+3XecN/5BKVza7hbba7vIMzICPbNd1n7i88z/WoBdeo8+FSc\ntStFIbs+0Km/1WZ9B7dw18i6H1nshHsHwlPOzuPdwDmdQ4+P4ZrNgdedLHAphzoX9UqvR5dKsnin\nmiGu10PXarnyeHLxsiCgMvezgQJRsLAvV1l/q32fnHJwkfIOXR/rd421Rs1NQ6stolZpgUiXStKR\nHB/Frq3TfuYQbmBE3ZOx40Enntqrl27QnPhGYqco600/PpsQb4fI26n78G0abu80vcmQsPnB3ce9\nGDfSbnUyYd/OrXCAvnmzcJtb8Phx3AP3ob/4xs0/d3DhTLsZKoPop9byKsjcf+wN+gk3P7Hf/T5U\nZjfv8qJuJhZ/y2vLurNZop9ew86F34yPS9I/+Kw4ScoHEYtmckIWsZT7PBi6UkFVythVQReqYhEe\nPoJ/7YSc9y0pPpmxUZiZwp27KGLVFy7R/fiz1Dbn4XJ2u/d2vbrb4eMI34uEBhHFqAvrBHofqtXF\nX75267Gwm/5U+nqWUKsk5RBBvv7oVicFeAjtWE9O4IshqtWRtWmrixut4sohenkDFMRViOtpMu9E\nvD8ahWjUEbREo8XXLPQMccdgpzXHR5d48rsvUzERL60fZP3FOeK6Q8938EXReAmbNi82BvN7b0DY\nmelpgeynw9emCbYel3EadUPUiToX90zxbP0c19pP8G5nL59bPMr2p+d48Kev8T2VM/y7Y9/J3D/6\nMher6Sb1Ho4br1JR7ijetQMvv1m/qHLjCYQK5kOFS4t7uhfjSfIE1bQEGaNiC6nj36BjU+6WFCd4\nUsrZEARf8g/fbqNLxZSu0V/Dcs0gp/qFLJXShFJEmQ/TwrcGVw6woSCDXEFOZTy5kLRPT++Nx4cO\nuoaWLxFNBFR0xHeNvsd8sMGleIL/d+k4V1fHmB5vUC/0wCuUE+RRUlTEZSkMFVcNOqW8uEKFuJrZ\n0nvpCHiFd9mGVNHpFdiIqyyaMVaUo6RixnTE72w9Qc8F/Pj4q0xV2tizU0y/3m/V36ux46tlNo4V\nKTQ85bNr+I2tdM0Y0OtIncXy3yQr3mgNhrz4p+s17OCGynvwsgHLdEJA5mJZB5IhVJBXWpCMxoie\nVHZMiiKSdauv55E3zlIXoPy7y7SFMipROgdl694OEeYddEYzhKyVY4L8GnPR4o0tuHh16HNtoyEU\nmHJJGsYjNbz3jL21DpuNtLEqhUxfFsSKrlSwzRYK03cxQgpcZm5G0JmdLszPgvPoUHT+fK9Hcv4i\nwcI+QRN07+2cM3J+uJBgpiZljQ3M0ByjEjv8/xmCMLFgNGZifOi+gdx5KS/M9CLMdiiahL2eFJUH\nmknodGz0+u5QOR3GunTTnkiRvFSUv7XYzGMHTFvS53owVLMj65a1KOuwvR7GOryB3riYzdiCwgWe\nuAa2mOY02uPKDtoB8WaIHWuwp7TFzx7/Iyq6xydXH+PVN45QWNckRzo8uu8q3ok2WWtWU/7w43Rm\ni9RPbmCWN2FqLr+maDQgrilc6HFFj25Ls8RrT7AaUj8P794/x8Nj11jp1Hi5cZg39H5+5fVnCZdC\nPvrjJ3bdzN+rvdUQgyUVbO//e4b026EXJBc4lC+77Sbctwc9KsLjvtnCzM7I+u4tZmqy7xznhF6W\njY/8HL2e7GGVFJJvKrsxcC3DCCIPmbB99u+FgiDkGr6/59MmB2PkSMDsnpQacBBMEUbp+VV1FLrr\nMk8t9W298muIInkeKmVIEszxI4y8eIEEsEVNUCzmdEhVLmHCQJrN3uUMFB8JkipHf25t47WWovXS\nKuyZQbW7IgOxvEL1whHMyAh+686ANXfiMvand3n5F29x/N8F/u4dffqOUE88hOkmuItXb3AVeL/h\n2m3MQ8eZ/ex11j80x9gp8kHnWi30IMfQDyfIuxZ/brMpEwt4LdDa3bieA7BducA+VNdFMarbZZjz\nqHOkDkoPFIPcQFUzc4oQKlcuIJh1TJJENlFGFrCswOPL/QlmImgBI/l3kHMns2RBG1yrjb66KIun\nySyyRfAV54kf2Y/+wjpJRbPvH7xCpsJyr8aOsl7giHcxOt/9IMXf/8rdO2EKb0Tpvhjat2GY9W3U\nfJXw1qCMbyjuxbhRSuzl3YDI5E3jZoWggSKfjyOCa2s0n1+g8H1PUXz5vX6BxnvM2KjYsQ8msGkS\nPkT1ylCCg+J4AwUpFQTDXOkdNryZi0zmCJFdG0oNn/MO7nknBW1n5Enz/QcIljaHaF7ZwpbBfN12\nM9diy8d+Os+6dlvgsGn4Xg92QfvZzS2M0ujDB7Cnz4OzlH73FfxAB/derlcfVLhGQ+byNCnRGw3p\nEO3bQ9CNxAY5inJqxJ2IatvtbVRbtCx8qhui4kSQG6lejyqXcw0HZUNBKoEghWILBQOVMrakScpC\n2VJWCSC1IIKYPvDYEoLCCBy66DGBZbTYYb64yZ5wg1ebBzlxbp77XkuovrfG+Z+axVU9oye3Rffh\n0ftxb53Ej9VvALarapm4ojEdwIk7TOm6oWNCUPDA8SsceGCdZ+tnmQu2+Kk9LzGiu6xM1Lj8O56/\nc/zj/MFD5zj5V6c4+l+dzTvK92zcaC0bliiWDZecbOfJh//eoZXQp4l6MAoXmpziR7oZotMD0nV+\nYhRVr6J7carXIYKwrt3uu05Z+nTZDHLvU2F679FG9/OGbOOYWckPRjY36bT4aDzeBMS1gKSscEGK\nBtLytyt4bBHQXsSQQwcFhzKeUiWiEkSEOqGqe5RUzLqtsdkuEzcKbJdKKMA2A0xb40KIRhU6BhOT\nW05jNLYoG4lCA2xZkVRE58p3Db5oOTS1xvH6Eg9VrmJwbLsyl+NJ2qZJ7A1nm9N8tXSQathDx57w\nvf7AvFdjJxmvYHow8dYWbDX7iK+0cJLnf+m4UqlYuSDSXLqxTosl1mFmZ1CFgszbA2POR1GOGM8Q\nQGRUnrSA41LBX6UVuFSxWKu8Oy7VJ/Li0E7aVTZnuU4HZQy6VExpGS43SdHFUDaBSEPBpbS47Lyq\nkJoyxMlQ4crFKZ2lWJTvKElS+loBPTEGE6OQWHHSbLWg1cJ4B9UyarvVL2RUKuiuRbV7uCTpr2m1\nKlTLoi+S6g35ZitnBOiMAlevoVMbcjM5AYHofapIZ+Pg3uTHXxpoUCmFKpXSvEIP006zcSIfJmtO\nhhhKbF83ZUdk67cZGcF1e4KCGB/DpGYRvtsV0e92Wzb7KY0wE+n2g/uuVOjcJ4mMoEIov1W3m//e\naCPIocEwBgLTL2IBwewMvb0j2JLClsAZT3dSNvVxzYMSpJAPPKqSSHG7BFPlJlNhg7rpsp7U2OhV\nwEFpVdEqlbk+PsLsHxSoLMZsHC9w/cMVupOe8lKFcH2LpKKzmZekpClse4rrcg22ACqWhsn4w6vU\nn+rx3NR5Kjrih+bepqhjvrRxhPqJAiMXLb/w2PeivneKkV8e3t/ckxx5t/PcgATaRTx6ALXebyTG\nBNdXWfyRQ0y/UxCdyHSfakZG8O3URSzNA/MGewp4kNcE/ZMXfKFfPJabHJpbBq9XVyrokXouYJ0j\n0+JExNEHjlW6n3PnoIiMijb4/YTB0F7ObYmGj+/2hL46NorSGl8p9zV3SyXwXnLZvbO4qXFYXKKw\nFYkz7/KKzMHzM3D6Yv++lMoNVjJ5CtHYbMr9nr0oaEtrWfqBBSb/xRXMg8dY+L1Vzv4PD8HP//td\nfs0b4+sVlf5AYvXJEfSZK7nQ6jcSPkmw1QLJuQuU1hNRBK9VcniVa7cxqRjT4GR0QzHoDjZPqlik\n+9EnGISJZAM8PyYZFNEb7sQB2PVh/ZG8m+dF60hplRaDdF4Iyu1D0wk97w6nnGozOwNTE/QeOzh8\n7l5/cT5eSjuwmS5QoYAu99FHAv2VjajaP48aHRE4rjayyRgQri6tx/deKNlD5fzm7Y97n1F58czX\n98Yd42UQDSEbuG8M+fZND6UI2pbe6B1SLd/PqXcu8h9geO8FXnmzeSYrxNysSy8nGXp/cvUaoy9d\noXStgQoCgn3z+Xvt5lZ/877bBj4r+uy2ORx4T4Yiyv4MiTSnYp35MTvPk3Zq8yLRNxiu3cZubOFf\nO9EvBj37CNFHnybYI12yDCGUzemqWBy6VzM9fWcFqjTsxgZupJzbDAOwunHzN3y7Roa0qJShF+Em\n6rh6BTs3jp+fhSP3oe+bR1dT6t8g1fAm4a3Fb2xhT5/DX76GvXwNigM0jSzJKhXFfayU0qzLRSkK\nRBZXLxNXDToht5aPxj29CYcteExHY2sOV7X4SKONZXaswd7yFtZrur5AzfQISgnb+wM2npomrjtq\nlxT+9RNi3dzsoh9/cPdnU2ucgeqyRceQzMRE41JEGJlrMFFs83jtEr+z8jhGOe4vLFFSMd8/doKT\nf3OC+/9pk9Nr09x3TBJDH9+hYcRdDJU4bhBhhv5zkM05uz0Xg68513cmyyIV38w0N7xRuFoJN1rB\nTY7gpsfwtcqwzkq2sU6FhvOEOP0s1+ngN7dQvVj+NNv9HGLw+gfvR6ei01Zec6FsgkyUFoNKnqTi\nsSXZmAEQ+DwjLZRipuotqkFEz4VYrymphIVwnYemF9l/YIX50S22OiWq50PqFxVBB5KyFJoGxeC8\nFj2lrCClY0B5XM2iazH1apcj9RWeqZ2n60Ismrlgk9gbribjHCitcnxkiS1bphGn8843oaHTnitS\nWUrQq1viDgc3FoO8F+ROGPS1YDLXpvR4SNeRsRFaj+7Bfs8Tubhr9m8ZnRdIx4IWJGi73adzpLQy\nn8SSX0dRjiTK/8RRvqHLw/U3cxlNzEdx39I9KxZFcd5IE0pclI9Rb62s3873c2WXdtKztTIt7JBq\nYZm5GdzCDJ39Y/1/z0JpWFpNncha2K1tfBQRLm4KUnLgubPb2ykVz2EbYgIzqMHmWi2hUqVuRlt/\n5jlUvYa9fFWKSub2c/UHFWZqihzJlxeWXV+kPrOX3/lc/3/svXmMZdl93/c559ztbVWv1q7qvWd6\npntWznBmqOGQtiSLpmxJdmw5cmTDkuHYsBMbDmI7sAMECGAgBoLACGRbDgzITpzYshF5USSZkciQ\nojZyOJzhLJx9el+ra696+13OOfnj3HvffVXVPUNypnto+Qc0urvqLffed985v+W7GANK3tG9Unc6\njk7jB9gowEw3MXNTcGgeMdseIzOM0yorhHiF55fD0qLWsWlGtnKL7Mo1shs3Ha08H/oeSM2Xju5m\nlXTNIiEwh2YZLOb3tXFDi6xpSVsGqxxK0AYW61ts7D6TZnvAXDggNj4j41OXMWem1vAWh/SPWsLT\nHUa/doipf/UNvN/8FnOvD+kf0+i6KRvtKhlfO+276+oNQI0gmTXomZRoOubBmXWmgyH/4nc/y788\n/wxdHTGnenyqfYnBkiXoaPpxwGDh3pfpB1LCilq5knuIg+5t676jenuHqSsp/Z94EqD8PHWn45DI\nLafUX9ZMFcv40jVwD1Ld6YjJyvGY8XNxjKNC96tqmDQBBtlD1bZa503kPfTJYs3TY10jtJ6UaDDa\nfbeKJlWYi2afOOJoZfNzZb1uL15FXM3dwrqxcwIrEFn9ERhTUsT0xiYiz/X09rZDceb0PTU365rh\ncYxdWWP2jQH2uU+g33wXVjdov3ubD/WAuPd3WiWE4f3pG99ByDcuIOt1ot9zmBV9/hLxI8fGqvOF\nerfMIY97u523S7L3Fv1KsfmIP6ZY5DfgRCRp+bwJ6HZOFympI1DerEJWmlP5TS9rEWqq6Q6v0AGp\ndFALjQ+A9MEjmMvXiC5MikoVPEWAtnT8yOKLYrpdxMy0e68oHB/LzDRbn5zNoZu6PIbs2nX8dxz9\nLJm+ewV9NfTb5z7819wrEPxdhqgiPPIoJm5qbpadn/30bZ758Yz45DxZXRHfRi7ne4oPUNR+WCH2\ncJf3FV/FBlCddlQfU3EBq0Z2/Qb6rffQ29uTk1e4cxOmoIpVo/raxXvnXOXVv/6cW/S7XdT8nLO6\nvI27mIyico0r0ELCD97Xmrx86zB0idsBNLNq48k7dhTVi6m/cXOywS0VamrKiW/Pz+Etzpe/Ki3q\nD3hP89kn8I4d3ffZ2BdfL9dX2WiMkSz/EYXe2UVv72K6PUchW91ytGNr3d8AG9tjzZ+CwluJ/Toh\nttwrzGDgprMXrlCIQ5ZT4/4AMYwdimWQu9lpgxgmzmHMWLyhoy3pyGICb6z+TQAAIABJREFUC8oi\nM1Gy0dACteuR7kRs9evcHE5zZTTLWjrFYtDhLz32NY781CUW/qvLyMNDlp4f70lmfRMxiBHDA4ru\nNCOrCUYzkuY18Nd86qd3acwMmakPqamUFzun6P3NZf7y13+WQZ7UA/yjz/4i4ud2SbXixka7vG53\nNfLJu9hbdBW/O6gJtvfn+f9F/pnIUep0cvIir9ATKjQ1RG4NX2pF9QZ5M9w41EejsQ9GLxt1Rw2v\nTlKjopmcYnc77t5IM1dEFoVk0eiqIA1EZhAZjjrmO6qGjiwmss4ZTDsaBQan7TNS6EwRehnGCq6N\nZtjUTaSw3O+v87nZt/jxw6/zyPQKg35IsGsJdwxq5BpOMgV/6JplCAGexHqQ1SFrgEwFMhX4UzFH\nFnc40d5mxhswsj6/vfMgv7P7IKn1mFU9VtNpdrM6D9VuklrF1Y0Zwp2xI+DdDJlZajd72OEw15LM\niweVf94Vm/nCGbBoCokixzO5FEGaIna7BNsJqp9OOJAB473N6HFDp4pYky5vLpwtJ35f/Lv4f6k9\ntH+NKhFlxoxFzAvnIen07qyxmP7ArXH1uvs78MvBaKlXlGVjcddWCxlFJWLJZhl2t4O8tkb91auQ\n0+285SXSzz3lhJ9HsRNgNboU+NezTcxcezylb0+74m84dDbQ+bEU51XWFnGM7nQw336Xud+7ib5+\nc1xU722Q3aWQrdaYfpQX80UzudQlK45NCIcOMmbcWCu0hO4UBRpru5NrjCmslNi+G5DLwC/XHZSi\ndKPLUWIfpFkmonD/mphliDQbn0eaYWVOL8rcHqXrBh26fwuLQwThEDv1iz7R+RBrBbtpxAvbJ7kU\nL9BWA/7c3Nf5m49/hb/1E7/KHzx2geV/M643+kcjaiuKqXMKb7OPCANUXAEGKIjbgqxOLqJvac4N\naNVHhDLjlbdPcvbvXsT/0jS/dP5JIpmykrT5/A+9wvBvbHNiZpupq/eIxV70VhqNg39fNpkr51s0\nUqrAihz1bpOE2stX8AbjQWbR3JPLh/K6cspp91RzujwPLl209+Z7Re5sx81hNdWk82eeRf7uK3iH\nFtzDdrtjwXpTQRXlr1nUZTJHFu7LDeRkfe5O3TXgMbp0uy3X2uEIs7YBwxH20jXUwhx6edbV17hh\nqRmOXFN7Z9IMRJ+/5IZf3W5Z52er6+OmWauJWsjz6LmZsrYw/T7i+decy2i9ju0PkAcZZ90mPjYN\nIe/EMeob+numilWjKBqq+hZbZ0NEs1FSGUS+QO0t9oCJG31fVCdogwFHvtpFzszklCu9LxkXaeYW\nvfzDVVNTbrM7AFFTOCs4kdB8OlOhW0wkcBUIXbGBFr/ztoegVEkJKL58VbHrd+LcsrliT2pH40Rc\n5rQFs75JtKkxm9sUYoXF69m8KAk3vs/RL99jVIXCizCj0f4JGbjEuj9g+kIFSfYdICXuVchYO0E+\n73tD8O0NhxT5UF/yjmGLhs/4B+/3hMnGUCG6eQDaR0aRE0OOIuQTD08IOJeFd/lgNWEFXPwMoHRN\nqB5fbjm//AsvE8+5xEhvbGJ6vds2eMqJbuVciqnu+91zstFAnjxGITp6p8iuXUdsdyjF7XOYq2zU\n3UQ3STHbO2Nobp74q7lZ1MyMaxgtLOQHbfFXO9hWHe/Uif1vJuS4kf8BKFMfu/ggzU/jKDsiCrGD\nIWqz65IrJZBb3YnhiWw2kAvzE/eACAJ3/YuGICBm8kZIfu2rCK7y/iuSpiTFhgEiThy9zPeQA0eZ\nSZvCwd8NrtgHrHI6CYQaJISbkuYFjzRV9NKQw+EuvtCkViGFwROGo/UdlmY7yJ3xHm26XfR7Fw62\nR/YUJgShIW0Kwi3haENakhpJZiWbcR3Zj5n//yJ2TB1jJV0T8X+vf4oHp9YQ35gmeiX/Tn5AO9YP\nLbQtnY3KYvigZvSdGkOVNUGkmXMpKzSHlMTWQ6zvuYZRmiGSrKR2iZGz7HbDI9/lEo2ao4MU3ydw\nDaH2dFmA2ywrNaVQDhZvt3f3u6MVeh9SOsoWIJIMv5eBxWl3RG46r0Yin9xbdGixkbOPxzf4QUbD\nS6iplFBmqLw66diQm8kMu1kdTxrCKCVuC+K2xHhQW7c0Vg3e0CALJFZmwOIkkAy5VhEoZQk9d/PG\nxkNbyaGwy0LQoyFjjngd5r0O7/QP8XLvBK/vHsZcbhBtHdx4/6gj2M2QOz0nHp3fB2MkTpajc3I0\nUN4gsmlW/t8myVinRUpMt4f33nW8q2vlBB0YU49zAWWb24KXYXML6XwAWhZZsG8tLihV3snjyMfP\nOP2iet3lv543HmbmzQhr3N5UIgOSBOF7qGbDGUAUr5lTy6yxEzm0mppCPPUIcnoK0aiXzTObOnFb\nvbpGdmsVOxjinTxO59kTzslxrl3WCbLRQC3MY9stBscamGZQnrfe2UU1GyV9qkA5iVqN3p9+lsHn\nHkedOV1eDxmFzgloIs+/N3meqFcoXxUnsWruXzoPFgV9kiMovXxtkLJELQAT/wac4HeSYrVBDEZO\nbH4UY0ejsm6QzQZyeso1nItjE3ntEhwwdNoTpZOmteV+p7e3MbfWMKvrTnIkTZHdAX7foEPh1hwj\n8AYCrMBKt1/ZwGB9tx55A4hjD2MFM4HLyzWCTdPg2/1jvNE/Sk0mxI873VXZapG0BEf/5xc49A+/\njp6pY6eaqLhCWZIOAGmV27MArBX0hiHdLETWM/SpJZJpQehnLKgOsfG4PmhzrLXDm28do7Z6ZzHp\njyoK4Ob7Dk2qe1LRbKmsj8LLTSyExOzsUn9zBTHlGhtlrVlBAAJjPc28nnY5a+4UXiAXDxjSFu7X\nemeXtR+Ly+OTjQZqbvJeLY/P98qhp6zVHKKwEI6u5usFslGKcs2TgY+IwlwbbEQh6IzvO5H+Ud4Y\nHo1Aa9JWQHwib4K1WrkDYjJG9lbDGNcMH8WlllHZ8M+F+uMffwYb5dICRW+hPY148wLm0fsdcvM7\nmHl9bEaro9OL1FYGY2jrhxQm57YW/N+ga3NHLwmjUcVe3Y43vWr3UCq3fhfFWZH8WI1stcqkXF66\niR2OJrmNFUhqdvkq4GhcZnUNpCB77hHUV18uJx02M6Wlp3v/vNlTUMNwm6Be20Ao6RpeFQSRzVJs\nv4939IhDJ1y6Vh6Pt7yEbTUgF4UrrPLeGS675+ZfTBGGzrEMJqZgNkmoP/8eZhTnN3GGOnofSmv0\nzi7e0SPYNy7ddcv3j1Pcji43gUSphBmNJvnd9yDJ/E7DO3cdv36Sxo0Pd7IuAv+uNsQElJaZJV20\nihA8SEcMPtBnZEYjtzYMR/DqW5NP34sSMhprxeT7VfTFCucxmU/2yib3aET0axWjCGvLjbKEX+fO\nLSJ00zizvTNGLu6hEIwvjJuQFK9l+n149/b0yWJiUayDVS0v9cgZxGCEvnRlsrFV8MTza6E3NvdZ\n3ts0QZ+7OPFeqj09bmbnUFm9vYuqfTCk08cq8v1EqErD/zboLpvb+jIcIbJ6bq1ryuul2tMw72x4\nRaPuknijIU1heso5Q+YUH7PqEFk2TSb2RWCcbIQh8fFZ1Chj9/46jVspMjN4m0OQAjUyZBFIDQbh\n6GM156JifYsKDNY3DM9kLB/a4Vhrh/mgz3Kww5K3wzf79/Nbtx5g9dVDvH2qTxim7P7EDEs/d6ls\nCN4OOeauAQQ9S1YXDBct2SCk1RghgEBmLNW6nP6lCzxXP8cZP+blpMWOrpMYj8u9ORo3DXNfcWKO\nH3a+cecQY62fEhkxpkkVVt0TYe3k76prZDHlz7SjSlSRGsVjjUGMkrHAc94Ak4Hv6N5TTYf6mmoi\n43jsMuX74HvIMMAO8gQ8SbFZId5rIXGNQnxnWW2iAN3wMaEimfbQgcAbGmqrI/ydEeGuz3BRIRPh\nGofkU/PAgABZy1DKIKSlETnr57Y/YDnY4YjvEIfn4iW+snaGnWHEmdl1GlHC1qIhqwuCrkDFFr+n\nHVXOk0jIm2XgDR2dLGtYTCsj8DOyvIkI0JAxf3jqDeZUn7ZMSKxkSrlzv9qf5epum/otgd9N7+pe\nVYSwFuLEoVtzLZ/xYHAswCyEyK29c9t3pUq9Ias1AoU17vfkTk1FjiLrdXcP5GjSKlLIIcl9hJKl\n/svkAe4ZXlDJiYQTUjdZhjUWGRVDmXzCLuXBgvgFRSRJXK4uRN5YGIsRi0bdaZ9Z4e7Zized9pBS\nJYXuIN1Gs7nN1Cs4TbVttw7qH/4k6vpO6epjpXPRs7h9VbansUsLiKs3S3Fm2++DkrRfXMFsbDmd\nwPy4C7vscn8TArg3eV6VklIi+fbqkynp9o+iaS2EMzgo8hPfc2tFbiSxF0lv0wQ7lI4aIwRkDg1Z\nUHPlVNOtO9ZCLULkTT8rJMIad2/lrzWx31dC7+zizc5glUQuH8Lkg4OqC5deXcPzDhN0UkzgoWLh\nGkAKp2smQSYCWcsQ0jK43yBDzemFLU41Nnmsfg0lLAMT8lu7D/Hr334Ub93nyCdXuPJTipkHPo2u\nCeZfi8t8Tdc8vDjB241LoCwWZGJRSU5XnXf3oO9ppv0Rnzl9gd7fD/nbi7/OI+FN3kmWeW3rCNfW\nZjk0t0vrgoeVyT1qIbow8dgMaeI7vkevp/x5NcTYiQyjsYDZ3kEuzKEWFsp93saxW7+SZE8unA8y\nKtbuwFhLM6/ZJ+r3PB74XxMskN1adYjzbq90AisE9Ismb3n4qWte292uWzOSBOH5Y8oaOAeybtc1\nuOLYDV58D9Pp5WLX2hlXtadRvofpD8trEL5+FXtkAesHyGYD89BJ+Obrzvl1FOMtHSK7tYrMdRSL\naySn3HfBxLEzchkOwfOof+0914SFEl2nd3aRrRa67qNwqNkPGh8bhFAy7SH73wMv+/026LKDiRND\nVK4jt69Yr05ui6nqXshsEVUF9N2u29AKOJm8zaUt7BN3O2R15bQ2CgewfV+mXEx6jy2fzdJxIptP\niYSS405sUVxXHRqSxG185eVw57ST1l3HM3+sbE+XkD2h8iI5RzGUItf5cYhOv5w4Uyii3+X4+GNq\n+M4QDB9zlJDZ7aJGmtaND7n1d5cn9ZaKjk6VHlY+oIIGggkkDzA5ETngMxP1Womue/+DuQ0iwIwb\nw1ZrRC36QDQvW8C2lxcxp486zZB6hDh17AMdy/vZmxYhwhARBojDhw6EFZt6gO32ytfFOs2gAna/\n75gPimIN9gNYmJvUuugPchvP958qfizDTq7rB4VDd+XJTjWh972SxidarXLCJGqV+05Kh/ZJUkyv\nh4giRKuJd+KYSzR6e1wU/dz+2fcJbuzgrXXKgqi/HDI80cI0I2RmUUmODBK5GHA+abWhQQiL52ua\n00NM7kwVypRAZEzJEZFMubnWZvoCyLebdLfrznL+5HFYmIHF29MS7GCI33MJfdKC5ESMHnksT3W4\nb3qDUGYcCjocDTa5kc1wMfO4kBziNzfOYqzAIEjr4kM3IfhgYcff9eqfPXv8+OGTSfG+X1fzklxg\nGnUwGrWwXkfKEtEg6jWXK+S6G6Kg4YBLhoufN2qIRm18PxVT3IIaJgQ28NBTAfFcwGDRp7ek6JyQ\n7N7n0TtWQ9d8VGKd4HO+7OrQTejx3R8hLUJaPM+te4lRKGFKQWmFK9B2hhG9QUQvC1HSYAPr3MNy\n5I/xBcYTFQqdxHgCoR2izUoQfl5IWIHMR+GJVQRCEwlNYiUD69b7ppcghWGU+KiRdbSU2+V3H2Go\nfjpGAOUFfWExD+OcrtQRKtaUNHW/q+rtgLtnUmdXX2iRmcEgb1KLcX5cGZDa3M5+H3re2nEOK5xT\nWXWt1tdXMOcvTz4ljincL6t7azFkKB+Xiww7103XTC1ycpf3VrRphm7IizH7nX5zmpuam0W0mq75\nsNuFzW3M9jbqkTOuV7PTdYj7oUNDiiQr0QdkGXK7kzt2JphO1wlZd3vYzW3XsMrR/MXE3uafk/C8\nCVTMPYnbDYKK/+s9n2shRF5FNEqJqKCe90aBhnCC1WMTHOF5iEK3NdNjak2x5gj3XsV+Lqq5zl7a\neP7dNlP1kn7knTzuKOZFaI1IDSp2zR8s6Jpxe1VgMJFF5utNbXrEbLuPrzShzIhkSlv1kRhuDVuQ\nSsJtwfaghmykDJcEcRtMMF4HdCCxUVhSc8ENTYQFrw9py7qhhZcxXRvhS81y1OGPL77G4+EN2jKh\nb0ICqbEGdvo1RAYmuEeaU8WtUNDwivigg9K9Q9UCWR/HrhE93x7TQ6u59URDeb/Gn/CDMYKoaAor\nJ9guG42x8/Nr74zzZWMdsrKybst63eWieajTp9xDN7cdiygMJxrtVc0tGPcFbObQTQV1taplJGo1\nJ2SPy11E4CO3u27tGQ4ZHHXfI5FmY2Q2jIc7pRufQS0sYOO4HL7aOEHv7Jbaq6WJAK7+8HqJk5NI\nP3gD+mODEIpbkqnR90A5usOkT3c6E91IZ6OoSmRQ0bkv7Q9zq3bh5w4CpiI2nU/rzcA5vRToguIm\nFEpi99zDBT0NOWlXWfutt0g++SC+Mei19bG1n+c5x7Iy4StcI8YTQJtmrhjKxf5ErTaeanRySKVS\n5c/05paz38yjKPq+8o3HeMC8WHY2mWpiV9dy2LDJOZKqdK6QjRq64zjW2Y2bqNOn3CKcVqbVd1Pj\n9TbJ8ocaQuCdPH4wheHDjo85SsimTrMi+rXbW6t/N5HdWoXgHp77Hs7zviaN0ZM58N5pyZ7Qa+sk\nn3+K3mGfxS9fQ99a248Cydec0gmh1YI03d+Qsc71T8dx2ZgqJiKyXgftaGQiDEuhWBvHjocMmBwJ\npdrTqIcfRL/13vi1D5ryfNDINcvs2uaYlls5J/vi62PEoFQ5NDcgK9bhO1y/IlSzAcuLsLWLvbWO\nCPwxX7q4TgfYsn6/hNUaESjuCK3MMje5NcY53sw0sL6Hmp/FTjUxoYe4sYZoNZ3w50wbcjSYt7SI\n9RRKCrc3NevYzZ0DNdJEGGCOLZG1Q/zNAVZKds5APBMxOGxpPbJL5/+dY+pyRm3NghUMFyGb1qhG\nSjSXIqUhyxTGCEJPM4gDOknEffUMbSVtOWTR7yC2Apo3M3Tokz2oXUHvKcQwxu50DrgIeQTOTcx4\nkExbZN5MWOlM0fRj8Ie82V3m8nCO7bjOlZ0ZWlHMtRtzICyz81284e1f/iMPY/cXXXBnXZGqrke1\nET3xuu41TehSOjVKx4+z1tk3exIb+Ii5NvgeJsjTP21dM2h+FqWU28tLXZocjSIdNc9mWdl4EEJA\nFGKm6yTTAfGMR9x24s3DQ5bkUErQSuiOPKZeatC6rgk61jnbNSx6SqPqGX6Q5cute12lDKPUY3PU\nQLYsdRnjiwxfGOoyZr4+IPIzml7MjqphhdMEkSkYT2B8hxSyAmzkYyKfuCWd+53KG0LCMop9+p4m\nVBk9HXI1mSe1Hh2vQ9fUUBg0Em0Fl3dmGd1oMr1ry3Xvbocc5I5Zaeo+n1x3p9QLggmEudMZKvQp\n3WdZ2rwX1LH8cxSNOkII9NkTqBub6NW1yWZQHsXeUh2UyCh0qKJK48gMBk6zRsmxmUbekJGBm7gL\nP3B02Fyvwzty2CGF8hy5RIgYDdI1/ksBbeWPG1S5uGtpd1/khAWKyfMchcz30UfmGc7XqL+5gtnt\nlHuIjCKsEAQvn3esAm8e2/BY+6THqffS8bkZi9neKfWYSoplGLp9ylrUoVy4WUl4+1yJbLBZ5vb4\nwT0a+hX1Q1E4VteQAoGodakXVGpQSTF2Fiyop1F4x9zBGpO7WLp9S063EM0GpllHbu5gRzGiXkPM\nTCOlcOiHgUDmUhqqFkEY4B05jNnc2p8TBT6m5pO2I+TU/WR1xdrpILeYP87itzKaL11B9RNq6zWs\ncutS1tR4zZSolmCtQGt3LaIgxVjoJSE9HdLVNY542/iexuS8r6RtOTuzzRudw/g5W3v3pMfS6VOk\ny210JBmemqH2ypVyO7fS/VGxJWsaSBSDUUDoZ+wkNbaSOiujKb4mH2CofRpezFzU59z2EY79wwx1\n6yrDh5a4FyEOmtHuyYkn7oE9DSDh+ZMowgLtZ6xrpB6ZZ/hHniD6tW+W7l8liq7SuCzYNsLzkPX6\nBKq5oIg50xLPNbbzXFT4HmY0Gq8jUiGnWxOOtqLRwJtpu9put+es57td7HCIOnrYIeGK3LpwE+v3\nSyBG6chJnsvlOo/F2mkOLSBurLvm5XCIPLSA3d5xqKvRiNpKfl8b65zXcjMWGacYPyhdFoXnYXLA\nRWH+hDGOHpa7+Zn+EHX6FPr8JfTqGuknjhMN51HJBx+2f2waQlZRNhU+itDr66iZGeZeWMf2BxUa\nVoUelit1q5kZ5zJQHM8Ef9qUm53pDxy9Ir9ZneNCPj0rLEErHN2Ccy0bDaen0e/jvXoee99RvML+\nsxoVJfQJKlkh9qdCrE5ymO/IFYhRhN5yrluiXkeoGF2B7FVpAuf+wbOc/fk1bDC29xTpWIm93MSt\nQbanMTu76N0OQimXAAiBPn/J6YzkQrF3GyUk7kZDyNq70wz6PonRYp0PuwRX7TZ26+47t5RxEDqo\nEntho/ues3caYi3BF19ivl53g5bCIRAzsdlVkTEHCuofoCFUXY6q+mhl4rl3eJsmDjI7HGHfeq+0\nrSxe77sNmyZjG888vKVDTq+isJqvwoVjXa5xjhtuy9e5XehOByoJgDq0yM5PPo5KLVP/7mV3DN+n\n303n+FZMlWSp3bH3M7HDodPDyDRilKC2cRSdhfZ4b5lqYVq18j6UtQh77Sa203UON6eOonb7Ob3H\nK4cUstFw+0Q9Qi+2Gc1HpC3F7qkQ40M6ZbBSoo+OeGT+Ftd+Mmbl60doXbGoEcgMp/nia9r1IZmR\ndPKGkLEwXRsRSI0vNa8PjrLgdXgquswPPPMur59YZqY+xM88hrJeNjDvFKNPnnIoDyGorQuGxyGq\nJUhpSLRHKDM8YfiBqYuk1uMX+8+wO4wQyvDAn3+Z5I88Q+38rY8PtVndBmlyu2ZpZW0q9z6bi8Mm\nGULmU/lKseroOhkMBaYZYpq5MKV2TRNhLFZbqPnIMHCi054qLadtjjoS+b3mmpgBcnqKdLlNPBs6\nVI4vyCLhkFsLGQvLu9zX3mQ2GPC16VNsvjRDfdW6iX0q0EAQpkSBo/v0hwFGK1SU0IhipoNhrjnl\ncSFZRAWrPBFdRR0xXE9mWUtarAxyl0WLe93M4g0NamTceQUeVkl0CLqWo5IUmERhPePAWQgyq9hO\n66RWsZG1uDaapaYS6irhS28+zMwLAUfWDLXVGBlnd27gfVSRaUqkYIHUyRsgxXR4n86bUg61UgwL\n0ePi31gs1tE0ahHDTz/I4JDP3M7ADRiTBJuM76MJ2oa1rqET+G4PkgowJaXMjEbj/ayqySnkZJ6c\n09J0r1+u87Jed2iSKELNSPT2tnuOsWP0Y4EWqrxueQ0kE4NCm2WY3Q7q0CIi1q4ZtL3j9HCmphD1\nmiu2rtxAd7tO26M/QB9boLZqYXUdEYbIY4dhY6uk1BXrt80yh0S4uepQLTNTbp09oJ7R29twrwCt\nWpfaUmWzp/hZzpig0HXKtPud742HY4FfIgLxFN7i/L79fyJStx6hFCzMYte3ELtdmG45Ee9a6NBG\nUiKGI1d35NQhUa/nx5eMP+c8vKVDJLN1vF5CVlMkh3xGM5LeMYtuGg6fXid5VnD1N+/n2K+uEXQN\nyZTAGwkyLVCeJvAylLR0+hFp4lGPYtq1ES0/JjOK90ZLXE9mORWu8ccWX2Mu7DMb9Jn3e7x+8Qje\nwDW2jS8YnJmn9tU38U8dY3Sk5YTJAfnoWXSYIxZ9CLYlcU2glMGXhsQ4bb2pYIQvDK/eOoKvNLvb\nDR74b15wdCfAv3b9o7sn7hDCcnvGwt5m4AESCxN5XfXxRmOGI7zr62SnTrphey6psu8YKgiyEtVa\n5IMVS/qi/jYdh0gvhqNU1j4hRWm4BG5dKOzgCyRRsZbZLCO7fBV1+hTy+sr4NQrqZ7EmKoG1OZKy\nbLy7ddImKXK7izW6rNGtpxDtaUSv73LgV97FUOkX5K5krG069GMUopOkzNeL5lbVVMXcWkMtLTq0\nZ+CTfu4p/C9/C/9LL6GFoL42NnF5v/jYNISEcRCojzL09jai2x2jg3Ih5qKAKguqOEY26m5jG47c\nZGI4dJtt0eUcObirzUXYRBCMNzqpxhunkI5TzPgLYoZOaFjW627TfP090j/4CYJeH72TW6hbA9Ir\nJ/7ldZJjmpsIHVJJhCGq2cAMRznfU+ZuYxtjGlnx/MoX6vCZNfS5i25TzO37sqs3nGBgFGKzdOyc\nZq2bbmjtNm9r8e47SXK4Db/3KubyAfzv/xT/0USBLPFOHMPufDjf0/M/9yzBtqR51UH+xT+9ezB8\nISUyGuslVBGA+9wGGX939wlAlw84uDFZfD8dnH4/QkjWasi5WfT8NPaVNyeeK+v1MqEnp/IUVJcC\namvTpHRTKd6roH2and1cryFfJzyv5EeXOmPfRXhHj2DaLcwb7+z7XbZyyzUZcl0f9cB9iG7fCe4p\nBfOz6HfPj9dHqdzjfUdJ3avzsC9aDeaev4WIU/SjDyBTjbi+cndRiR9SlDTdQDqah3AoHpMwkWyZ\nOEb6PiLKtUCSBKaazqRga5f0xAK6ESC0QW31yeabiBwhYocjbK+PzN0hRewajwXlWC7OYxo1slaI\nE9YClRiMp0gbAgRkR2LIJJ2kxrHmNoc+1+Xl3zlDbRX8nkDveMSepeNnhJ4m9DOiwDIVuWnnTDCk\nLhO+vH6GX33zcX7mEy/w04sv8JmZOb6w+hg31tuoWVvy528bUjGc84inBcMlS/OqRUjDoBfiTRm6\naYgvNNd7bZhxgqA/uHyejbjJN/QJAILfeHGiGSTuNvVnbxP5O31uVcuhKNSKf6cZsshH9GRDCEAk\nKXIg0K0IU/MwyjnGCWsRWd4cirVzl5NOy8PWckh/krkCTwioRTBMDngZAAAgAElEQVTbJllsMTgc\nEU8LvKEFCybIRaN9g680gcxYCLr81H2v8JXGGa6/fJjaGvgdgQ4VozwB9jxNFKVorYmClHY0ZC4c\nUFcxXR3xW9tnuNS8xV+Y+SZPhNdYz1pc7M2zM6gh6ppMC7K6Qq3ashlUnHshbm28/Bw1oAVRLaEV\nJrT8EQtBl9QoRiY30UDQySLe3F2m8W7I4gu7rqGahxndw+FFHmNXWlOuHxO/z+23sXaCWl82TIoG\njTbQ61N/c4XatYZrHnqea7rAmMawp8FRCqICpVMhY+RmYXBSDC1K5Gieb6v2NPgBZJlzt43cfmd6\nPdTigjuGwXCMADAamznx4eKcHH0ubwSVFtR58RaMGzY2y5zWT6dLVhm8qDOn0c0QOTvt8pujR7CN\nGubiVXbONpm6lpVDUHt9pcyv1fysO568PjCDAYxG0O0iu92yHgBXtMnZGWySoNfW91PZ7lZUkT/F\n38aCzkpHMSCnsOb/ziroj726Q7VoknlRhBDuXsyfYz2HOtSbW66OSJJyAC/nZ926EgQOHZ2LWMvZ\nEIYj9PaOaxrmaDI5N8PgzCJpUxF5bv1KaxUXr5qmOwo5Mr3L/X/yLV6VDzP/RopMIdgBHSpiL0II\nqEcx9Sgh9TWRn9HyYw7VOnhSsxE3+fq1U4y6IV/+kZ/jDzfO8y93nuLfXnkStGC4KAh2oHVdE/76\nyxij4c138Ssp3PBYCx0IkilHky3EfT1lqPsJpxqbvLm7zLnNBR6aX+WZw1eJtccr33pofCmffATe\nOIc6tPBd52vfU9hc5H3vvlORM5hAju3RgjxQizOnjuntHaZ/6yK09sgNVN7HIW3Geoem2y0pglY7\n0w2nC6TLdWKsE5TTagv9tCxzzw189Mamy5FxyHy9s+PypxxhU645G1tOoyzXzi2+1xMAkPx8nP28\ndPmskk67qLCnzxFD9sYt9KP34wmBnmvB6+dcrb7mms4UPZAscwM7KVHTU04XqNHA9Prle5f5klSY\nre3cBCDg1rPzHPvy+NrfVo/xgPjYNITCXQN3smX+kKLgAdu8Y1nAlKtRdN9Uexq0dgVWLmZX8vcK\niGrBV6wu8hV3oLKBU/1CGY2cnnGvXUxqY42YbqEWZtHnL+dQtDFXumheTUQBDU7S8dTBWrAORVCd\n6Hgnj5NdvUG2OragP97aZhMclNjz3OaaauTcAmZ726EisrSkunlLh0jvW8K7sIJeXUNfvc7ODy4z\n+3tMCNHe1bjbLjG/T6OgGdl6hHj+tQ/lNU1gML6gf1QwWtLYu0r9ERMN3ioCZ/yQPd+3gk98J1rf\nAQ2lcXN4/+uZwcBNKLa2UctLmMUZ0Bbz1rmDRTYpNt1Kc0mpEvVns2wCNQTj9ayYeiAEKtcGK4Xy\n/OC2wsYTp9dqodc3sJXkRIQhstWEmWn0uYvu/ft9hv/Zp6itDBGXrzuq6eaWE7XPNSZMv19yyvce\n8+3CXl9BLi2SXbsO1647l6TZme+vhlCxN5R2zOOJv1AKWYtKGiAwbupbgxD5lj0YweoGWaeDPbWI\nv9ZldKKNHCRkTR+R1Z0XQn5dvTh1Sf9gWLpdCiUx0w3SmYje4YD+sqS+ZpGpZbgg0HWLvytJlMfp\nMyusDposRD1euXWUH/v8i/zKt55k6i2f+oqkF3iMwoDWTJeFhjvu+aiHLwxSGOoyIck8/Kshr5w4\nxo+03uSVwUneffU4jWsSmcLqj99Hbfsk9X//wsHXzWicOLBFaIcSyjZqHH1gjZqXMhO5+/x4a5sL\no0W2kgbzYY/Z4IPdW/ck9mkY7tEk20tlLZ+3X8NlQqy6mrxXHxOnKOH0gXTbQxj3eeOBFaAizw2/\ntnccCmhuxtHMktRRlFpNzPw0yXydZNo15+K2QAcCmVmyCKwHWMEw8emlIalRLIc7fGbhIi88bTh/\nbpnWOY9wUzIMPWwtpR6ktMIYiaXmpdS9hJpK8IWmLmPuq29wNNiiLgS3kLzVO8w7N5bQfQ/VTLEz\nhlE/orYu8foSb6Sd7by1pE0P4zvxc4QtXc4EEHkpTT+mqUYshF22siav944AUFMpvSR07mQqp9MU\nBfJdLuqFkiViq/jsq8LK7v9mDy1MH0gRmzj2QpQ1SdHrG8hOFxv4uUZHMSkt7inn+iPr9QMpp0Uu\nLFutshCaQLBWqNEi8NG5hIGazh13E+eWp9rtEmWh5mYRNhzn2Vk2HugWx1WeF26ImaOUEALZbGBP\nHiFrBqg3Lo0n8bh9VMQJMqdJySceZvORKdr/9hXkqWMOdTY040ZWTvkSQjgEbH9Q7vWlLASuISby\nolEdWnRFZBQgPKdfxM7dR5c5pEVRzAPY8XUr76s9a5FSY+SQNuxrCgiBaDXwwgCz23E0sCh3Oc4b\niuQUU9t32lRyempCNsN0u6iZmUnHzHodPOWQsfnrqLkZ9NEF4lbAcN5jNOsoYADxnCCrOb0etj26\nvWl2z8Q8Mr3C88sG9ZJBGGje0GAVxvPQLUHNz2hHTudOCpuvAzE1ldLPQmphQrMW05KCd9IG/+Ld\nT2HeaxLFgtGJhNGypH2BMoeSj59FbnbIbtwEwCrXKNeRcAjFyIKytKKYQGmMFTwyvcLb549w5Rfb\nrHzW8sAjN0inxmt7Nh0in36I4VxIdLcbQgU7uSJrUH7+BVVqj8zCbQelRRe4knPaOEZvbCD7/X2i\n0dV8XEYRHFuGN3Ph9wpiHCHA95G59pTezhFlFRqbEMKJwvuBGzp2OmNE0GiEFQI1P+8YMOcvIR89\nWw47C8aLOn0KubI2gSDaKy3h5GIyZwCTf7fMYFAau+iNTUdHvXQLwgATKNIffpzgN150l2Zqimzl\nFvGPP0P9BWeoYpOkdAc0w1FJzy11lIprNNN2OWSvT3xmWF5DNTXl1sk7sPCr8bERlW69se4aG3cr\nqk5iechWC3VoETU15bh8xcRja9t9MFWR2L2w/jguN0twSbwIgvKLI5TKIaY5wij/oAttIW93SHb5\nKunyFGphbiz0nOsciYLilk9ARBiie/0xUqDoiApR3uzVZCG7fNVZdzab5c+O1HbK55rRyBUiRaOs\nMkEqz1EbvPUu6dkjZZeyeyr/pf8BBXQ/5PioUWUfZsh6fcKC/PsxzLn3p3V80Gi/5bm8pPgI72Ke\nZI2jQToXwT1FWPkgy74GSWUScuBz9opTH/DcgyzHTb9PtnIL8+13EKubqIdO4913cp9Ys4yisbvU\nzAxqfm48gb2DroW3vMToj33KPcbm9rkPnS5dnQoU4PuF6Xb3oXhkqwlzM9gbk0K9tV/5Jnzzdcfb\nNhb56Fl3/1uL6ffLSc+BotBCIJ5+lJW/+RzxH32m5Fab0Qg913LTlPy62eG9FIX5LsLa8bpqTTl5\nL8VccZPvYj+RtcjtPdbm7j4penWtdJyQv/sK+t3z+F96CfPtd4i+8R7e1bVxEgZk166TXbqC6fYQ\ntQjhKczSHMPlBsm054QvB5BMCQZLEl1zVuDJYkbzosf5i0vMREM24zq1X5nGWMF/99nfoPOIm776\nuxJjJK0g5kh9l9lwwJQXMxv0GWqfkfX4sWNv8rf/1C/zD07+W46pHqlVLLwER39jg+aKZrgo6B1W\n9H7qB/ZdMvHMYwg/YDQrqa8bog3B4Igl3FCEXsZMNGDaH3J1OMtPzL3GF3/x07z0rx/nV88/Rl+H\ntBsH3yN2L7/yowwLItP7mz77D2r/2lPVDjqgsVz+vXeKXzw+/2M9hZUSmWT43dTpCwhXvAiLEzBV\nzjpXdzqYlVXY6UCaYWshZqFN1o7QkXRaPNq5dyEgbgus784TYQk8jScN094QjcRYwY8vvc7Pfvpr\n9O7TeEPwegproR0NOVTrcrixy1zYpx0M6WchN+IZ2mrAH59+hR9tnKcufCKhkViUp1GNjDBMUZ5G\n1yyDJcFoVmGUQGjjku6mxHogMne8umGQUYaShtlwwGwwoCVHHPM38YVmM26QGoUnNPO1HqNFQzIb\nja/pvUB4eJ5zioNS30nkOhYlOqgo8PfoCZUi0+U9ISfzuiLXM9ahzLs97CieoEaUj41j9Pa2Q5U/\n/Sj6hz+J/cwTqDOnUXOzrjHSHzjET+U+ndib0tQ1BYxG1iJMr+/W8TTBxDF6t+O0MZ5+FNKsbBaI\nZx4rj6E4P1EgaI1DEwjPd2jTXJKBMESubuG9cs45/4Qh3tIhd+yffgwyjb25CitrJHM15p6/hVqY\nxzQiVGqJ3r6RD3/ducjpKZeTD4cT66vNm0LyEw7dYbPMXXffd02R3gDby12Bb0cT/QhDhOMi1SGh\n8zWhbKZVhlhZjhDzPUpB4aruUL6+WJmjhjyFnJtBHVlyWk2NeklNtoMh2cotdKeDzbKJZlAZBVI2\npwqawQB9fcU12uZnHYUvTjCBQmSWaEvj9yxpQzCakSXqT0eWYEfSuiSp+ym/8t5jTL8juPmZkK3P\nD/FGlvq6IdgRZLFHM4hZiHos1zocb2yzHO1yZTDL1eEMDzZu8T+c/XW+8In/g0XVIEATD31Hda1Z\nvFqGPx2z8hmnfSUjtz7opbG1edqU+AOL3y0GGIAR1HzX8E6t4mS0QXjTp/XLLzPzpuTCy8c4/Ngk\nSlZog9Dvn5t92FFgJQrWy/gXdnzv76U2V7TFDoy9EgVCYobDiUbtvuOwFm6uoU6fovvTz+LddxL1\n4P3l+5put3S8U1NTY9SiVMiaq7GriHqRa/OUDdwkdWj6J8+4Q1pZc/lnvt4ADjV0+JDLyYo+QE7z\nL4+z0CyzFn1rLQd/uLU3feS4O6Qocu/VHyC+/hpJS7rzmZoqkTw6kNhe37ExMidYr+bnXF2utWMV\nNBvojU1Gf+xTAGTXbzj2gNao65ETyCfvM4QfnKP6sUEI6XMX75wk3YWwSVJyawXQ/4FT+P1jBLe6\nmItXoe+4hibObSWNnuhs2jh2TSThrPZKW3pZNHUqG0ghEgvIRp3R4Rb+WxBc2aT77EkaX+yMbTZh\nYgPH2lJgy1ScYgo7vOILUCADimM0cVweq5qf4wv/7gzH+LrrYvqBs4Pc7aC3tl3xYdwiXVLeul3M\n5haBPoZttdDb27Quuc3+QP2T30dxIHR2TxS0nRKO+H0Yt3WD+i5i8ee/ztX/8Tk3rY3F/gnVRxnW\nllPIg0J43hgNdECj5MDrcBA89qAw2k0Pjyyj56eQwxRT85HDFP3We+4+us29VBW4q05p90F1Ycyj\nNpps5RbRr91ya8mnHmPnTJP2v3h+/xvcRihSzcwg2lMH6vXojU2ocLP3vp7Z2XWT2ndy+/oCyppP\nepw7o9g3ibIvvcHyS+6/1TOTnSHi8BJmZdWtxXdzkPC9Rj5dE4XIczHIKsRhC7cwzxv/HFzBk2UI\nkaG7zjRABoET5TxyyOnGJClCG3S7idAaecA9boYj1MmjbhqfaqS2BOspLARkoSBtOg0YxxdyMAr9\nbIcfOnoFTxie//efQLXhSLhDbHz+4g/8Lv+880P4HUnS9Rkt+PhSExtFXwd4UvONy6e4sdDmzx/9\nOsf9LdZNyI6uczpa5Zd+Ysj2Q3PoEMItqK9qp13w7OPwjW+Xx21ffB3vvpNYCToQhNuWzlmNt6sY\npD5nplzj6XhtCykM7c+vsDOMkFpyItpkq1Xn/F/8NHP/bPKeF7dLXD+KKDRfYFKD5v3WvWpeVG32\nVKNwoNuLeCyelg+UbOQ7i1tAJnoCvSxTg0gyV8Tm64AZjdz0dX4WM9NEh7mriwaZWlTiaFhpU5BO\nWUzlcgZK0/Ji6jKhp92Q6rHoGg2R8NqjR3ljeApvIIh7IXpOUlMpUhj6WUioMjbjBkPt85nWeywo\n19A7nxm6JuCZqUuYE4KVwRRXt2ZIuyHeUJA2XKGoawoz9N33IXCWzzZHQQktMJkk8DSLUZd5v8es\n16MthzxTu8j0oT6B0KxnU+ykNcRiTG85IroSODoV7NM1+ajDJgni5oZbzysNqcKGvchZgdJy/iD3\nsUJ8udrMqKLQgQmB+6pOTjV0pwMvvUHxcevqvpF/pwpqRf4mCD9AzrZL0ehCgsBqXYpTl8fgechr\nbu3ylg4xfPQotbdXyn2g1P2QskQKCaWQjZqTc8j3WJLUFX9FLqwNqtUEbQkurY017fyA8NVLWGPR\nDxwlawV0j0valeaanJnBbO+48wpDSNIyzxdRBO0WaTtCPfkI4u0LDn3QH8DCrLtvdjqu0XIPotTk\ngfF6UyB/9hb3BTKoaDDL8aCiWGes3LMmSelcxYp1KG82TaA53ifMYDC+d9IEO4oxx5eRjRqi03fD\nw1QjrIdKHPImaYPJL6n1LKPTMX57wJmpNa5+4yhzbwxp/L0V6l7CreF9+BJULBFbAbuLEUfqu0hh\n2Urq1KKEN1aWibshn33uPPf766xryTdGdQKh+SMPvcVXaw/Qro9YvzaDv6XQdcs7f+s4R796FL+X\nob76cnk+SUvgDSy1LUs84/bSsOVQkFlOczzmb3Lss9d49+c/QXtpm7oV7A4jmrnOo78zIpmtEbfV\nh67b+X7hDapilQfYy+/NFffoBE38rKqfWc2T9wpTM869RRAgW030xqarlbe3aZ2/hPY85P0n8e47\nibm1Vq4FJknR3S7q0KLLe4x2qNai3srvY0eBk24AbZxmowh8xBsXoNFwjb0ffBL1Wy87i/ckcc1l\nT6FmZ9Abbv0SUkyso+rIEtnlqw7ZliMYbZqAahK8twJLhzCdLjIIHH0/DGk/f91paQV+SYtrvbGO\nTlJkhaormg3IaW54nqPj+gHNV25g52ZhcQ799jn0bodTv9zj3M/Mct9/7+oF1dzvAHy7+NgghIAP\nVkx9hDH8w5/A9PuYbtcVUP/hmwSvXGDnE3OIM6cQ01OIVsvxm4uoWNLJKHIdSOXcFIqup8hhvMVm\npxYWShEqNTeLHcVEr14GHJJHZhb76GkKG0bIN2s5trS0ibO6c24NnnvfQ/Pjm77aJc1vnurE5u3/\n6X5O/bML5UIvfA/b6eVw23FWV+gTqZm8820N5uYtp4h+5DALv/ouox998kP9HL7fQtbr3PpTp0l+\n9GnMZ58o7QsPisIS/D+Fi6UXEnQIMrvH16Q6UYfJ6Wg1Ibrdc/dSO4TY/7zKewjPo//oElf/6DTd\nszOYyCedrbP5lz5N708/e8dDLRwXJn52QIPK2e8eMM3+5usTzaDsDz3lxKDh4Mfj9NeqzSARhngn\nj0/YdhYuMsAY2WS0mwx2emPOdaFf02o5VGZ72rm0KIV37Cje0SMT7wMuYfeOHMY7dQJ97iKdJ5YQ\nJ5zFrL3H+8YHDqnKZlCp3WFzKkfRDIKJv62144In8N1j8/+bwYDs4mXMG++g33oPG4Xo2SZqt49Y\n2XSaRP7kdEhN5/z7eohuBASbQ4Q2xC1FMiVImxDPGZJ5jW5phG94fPkm80GPzbjO9A/f4tifuMSJ\nYIN/9LUfYWR8nn72PeJ5jeoqrq3NsJPUGGmf1Ci6acSJxS1ClbHodRlZn19Y+yH+ypf/Av9h/XH+\nwKkLLDy9itRw9Ctdmv/mBcKtDBPub9TsPHUIHUL3uEQlFpEIdNOQasVQ+/zmqw8T59XBnz32Tf7L\nB57nHz/xrxkYdw10eMB3+G4OoazNxVpzatftHMfe79gOut/3TmgPamRLiakHrqmTGWSikcMMkTp6\nlUhzKH+z7jQUizVGa2wOcUcIrBBOsFkK0rogawjSKSdAnrU12XxKfWrEbDRgOdplK2vgC8390Rpt\nOeS95BAPtNY4+/QVkrZBbXmsdZtsxnW2kzrrwyadNOL+5jqPtm7SEC6XOZ9O8fdXPs8Xdp9gyd/l\nbOMW2kpGN5rUrviEO67oMp4gbUjimQDjK3ToNEbShgUJIhFIz9AKY6Zzy7nryRzXslkW1JA/ULvM\nw+EKxwLX5DapZLgoSBdbTlj3XoTF6bBVxJRLO/MCKaSLAsibbCQXa4ixuYW4KVFC9n2akTZ1OaaM\nImSjgXfs6L41xb3PpGRCqdtjbD6YSHJHsGFFd8OMndBMcfy5o+bGpqNwdDrObaqfOSFoKG3pTaFL\nl+fGhean1QZ1aBH54H1ljlyE8D3saIS8cG2/JovnXIW9tV2EsbSuGGy3R6F3o9fXMX2n4SGCwCHq\ncahZvb4OWzt4L76LfeXNEn2gt7cZnJ6l/9AiYmaag/QJP+rwlg6VCFOq1MGCEqjkGAFkTKUZZB3S\n5wCqGOB0uoQom0RV3a7vJCaaRhUtKuF7btAB6IU2apAgMsNwXhFPS9KGIGm7vSqZ16iBxK+lfGr5\nKl86f5a0abnwlyU/NP8uz791GpUaBouKaMsSrUlWV9tsJzX6WcD2qM5OWuf04gaHj2yx6HW4paf4\n51vP8d9+6Wf4a9/4s/zF+d/h7zz2RbqDiPv+jeb0P1/j2Bc1Xu4aZ/xxOZ39yFOkTcFwXmI8CHcs\nVllmWgNudVu8tbrEr73+OP/7zT/AXzv+VX758z/P3334V/nR4+8wfKs9drR69S3UMEMH94BmqM34\nu753cJJLn5Rx0CCxeIwQ4/v+oKFpRWIFqCDg26z8F2f2HZfNMvS758kuXkbOOpS8zbKy8WG7vXLw\nXtLuS3t7t34LKcZNY6nKtcQMR+iNTURmnMNdr499+D4A9NsOZajmZtyapvV4cOcH2N0uqj2N6bj3\nLxDwenMLvb6B6XQRjUYpE2HjuLSa1xubZI+6utFcvu7WqW7PHbfRZFeuuR5DowFPnHVC+2niULu9\nPvrtc2MG0jdfx7u/R/r5p9316H1wyvzHqyF0j6P5huPveadOlD/TO7vMfO06XLjmrDnDALs8j3fS\nQcCcYKy7yQvqgwgCJ+hXCVEsslIh6lHeGRWs/ckzWK3RG5uo+TnkEw9T/8YF1OoO9tOP5d3PML+B\n88LAD9x0OUnHNzUg4slJuZqfwzt5DH32hIPjVjR+RD0ju7XqCjFcF9J0u/uOW+92yi+oSVJks+ls\n7oTADoaIZoPwCy8iHz/7PV//79cwgwEL/+R5dCTpnoiw9Tv38t9XOPf3UQRffInjX+xRvymc5sNd\njrLoqU7WqzQLGNPA9iY6tyu+iv/vpY9V3sOMRoRfeJGT/+Rddk8q0qaH9/J7zP3T52n+0jfgU4+R\n/OjTt6UYVqevMorwlpcOfqxUiCcfcRzoVotbf+M50s89Vf56+Cc+RXh1CzuYpNS46evt0ROFaKTI\n6akAMvDp/PQzrP7159CPnwacGHn8R59BSFFukOU5jGKnJbGz66apcUx27TpmYxP5qFtPbBy7dfGB\nk9huz8Hugfovv4B+78J4ivn9ECWvXbpk1/dKPYyyCZQXSkWInAM/MYmamz345d94B/utN7HdPsxO\nQxS6yVe1ebi8gBiMsJ5EN3zU2m5eNOPclwKc3awAhGXpN3xev7XMpf4cvb9zmM4w4i8f+W2+3j3N\nmV8Y8ssXHucnF77Fc0+9i4kMdjMsnZ+kMDS8mJ8+/CJ/6/gXWVId+ibkhZXjnPx/LCv9Kdr+gEQr\npi4A33wdAO83v5XrXIzDO3GM0YxLruNZS+vKkNothTc7YqnZ5QemL9JY7PPvX3iav/fWjzEwIe8N\nlvirr/xZ/tWbz/DaF8+y+L99HfXwg3uu2j1qJh6E5vkg9vIf5PXuEMUaa2r52hGnyEGKTCrJvO8h\n52aQMzO521PoxKXzoq9AB+hQoCOHvtGhLS+ljJw24+qgSU+H/N7G/ZwfLnI2vMmNrM1v75wllBl/\n6cjvcvjBdayCfj8iMR6eMBxu7DIb9FkMutwXruGLjL716NsAJcbnODI+u6OIcEvi9/LzMyC1dUiy\nUJA1PLJIYDwLwpkXmLpmamrIQtRj3usx73UZGZ9b6TR96zGwitfjI1xO5pkNBtSnRiRty2ApQLeb\nzgnmHgx17Cgu6V9lkzgMx//O0UJFc8g1hD23fmjnUGZLhJOumKrYycZQ3qCpFmrWWuxDp7j8546z\n/dNPoR5+EDU1hWpPu1z4oPs0LwjLJorv9KkKKgfSrYPk9FhHZ3b3p5qZKfNdfXMV9e3zJcpHP35/\nuaaZXMBZVGh0gNO4fOs9ZxBTi9yk/7lPYB865eiPWo8py2GI+dTD6PXNkn7dOR4S7mRj8XCtUQsL\niCcfQc7PumZXkqDm5xBPPuL2VCFKMwX5xMOYH3yStb/6HPVvXUFmluTYzO2p5h9lRKHTCSr0r4wd\no2ordYX7f74P6T2ooer+RN4MsharHDKodC6rrkFKTQ6MwMlj3HfyjodbDLP1bgcxiBH9ISbykLt9\nZD9G+wJhraOBpgLVl6i+ZPZ1qP9uky+/8gin/sxrnP35NX7hM/8n/+y95zj9f2V0j4Yc/XMXEQam\nrhjkps92XCdUGWemV2l4Tnfor5z8HY55W3RMxMpoGjkSWOPOeytros818b7yLfR7Fwh//UWEFjS/\nvYL/pZfKcxgs+lgJacshWq0S2FbGdDjigbl1Dk138ULNa2+fYC2b4ou9R/nHV/8QX7j4CFaBaDXL\nHEg8/xr1jY/OgfuOUeQd7+Modke32oNy4Ds9Jg+9scn0xZSL/8un6f/nkzTyYoCZXb/hBKK1a0J7\nJ465l8sy5Gy7PAe1tFjW3FXKvvA81Mw03qkTmG4X75ADe8jfexW9toE6fAj74uvleevtbexc271e\nnseDu2f19rYDaqSJM4FpNTE/+GT5PsLzYL6NePh0WVPrzW03aAC8zX55vDaOscMR8nTeixDS6fT2\n+8idPuqMy69Z30TN5mANKfCWl0g/9xSn/uubrD8eIJ5+9DtCs35sKGMfh/j/2XvvYLmy+77zc865\n93bufjkBDxkYYDCYHDDDKFJZXFOiVEq0FSyv5LW1Kq+965V2rdpdqcolV0m0XZa2VjmaVKAoUhZJ\nkRxKwzCYnDEIgwHwEF5OHV7He885+8e5fbv74U0gzZmhJJ4qFIDu29237z19wvf3DdHcVVJzV6l/\nxz1kSjnMs2cAsCkfc+IgcqnsqgrX56n84EmKi8tusuuTZOoABuIAACAASURBVAGDcfXCTbi9io12\nlFbcZmfkbNNpqQsFVxU5OovcrMD6Bq27ZihMTqA3y64SkhhGGvBTEDV7Blc4ryMgpgQ7kElUaihv\nFt33IxapFN58DFp0GUhhx6Gb9WaiGRVdDbEx6ErVnXunAwdnEV3H95zbhMr16vY1/D+4lvnE42Tu\nPUH5liHyxdsJrq07ZPcb7VVbfVeGMMdbwhAcMIdLHnydk9bX4Hz12jrTHzpF43vuY/WHb2P0+S28\n5TLR4y8Q4PbFzfffi2oZgs+4BYcaHXGR7jFb0LRamMU+/55+oMpo7DMvJiqAqf94auDzMx9/PHlO\nHdqPXV5zmuxtBvFqeNiNcfGi3LRamG3yMdNqUfzwo3RhHzU5gT7zEqkzoA7sI7o0506vm9AQdgY9\nBYRwiS2tFpw+5zYOuSyiWCCKTc2T911eAWvjRIc3Ufbz1bSuCWO3df3hiIG1fkCr/7sYF/kOXZCm\nS7O2Cb14p9YvOfR2zWBLeeylqw50C7w+IAKi6WHaIz5RRmCV8/NSzZjB5FtU29LYzNAYCRCPPIfW\nt/Dw1hEWmiWW7ytyctfzrEZFqmGa/ccWubI8SqgVgdTsz66z0Bricxs3856Rc5TVFus6zzt3XWLt\n53Mcyy9xsTFGuZbBHLWMxufvHdiHfuSFAagmnBnB+AKvCVEe5t+Vg7sqDKU7BDLiqdpe7pm5yti+\nLW7PXWU5LHGhOo7/cJHm4Yib3nOZc6WTHPmli9tvzuu/j1+Ltt0DaLtP0FczpvS/bvv7db0+4iab\nISIy6KxPVEihWsoVkiKTlAetUpBNO2DIxkbSvnIslTiC3krh5GEOZ0EY8BoSE1q09IiUodZMs9HJ\nMpquk5EdyibLtXCU3ZlN7s1dZJeq8O6pC/xpOY8xEiksBb/FTKpC23ishXlKqoEUhrLOcTBY5qcm\nHmLd5LjQnuLs1hRKGtr727TrHmjwq5IoKxwwFDlQyHrgfJJAFyO8fIi2gkYU0DABeWUoeQ2yss2G\nztKxLnZ6qV1kyG+yb2SDc+kCUuMYC2+VtYEUPYkYJIa73dZvHJ0c12XdxGtQIU0vpbYvsbYXtfsK\nLA+tEeevsLc5w+q9Iyy+e4yxF3KoR1/ExsarDuhJ94yk+5igttmMn2sCTqJhmq0kGrrrVSOCAG67\nyaX/XF1h8QcOU5yLSP/V44ArYGSvNwZYP1ZrZBcYM6Znbp1OY7VxfnmjI27DtbaRjJtqbJT1f3Y/\njWnB1CNt0uOjtG+ZJVQCFVqyF9aI4ussUimIIuTCqjNQ7isAq9Uy6esdhO9jcxnaJw+iWobU0hbT\nf3oVU9tKwAJTKLx1SgglHdAThj3pmrHb5KsGiIvX3uC82h1HEiZQPyuo2/rHGyFgYgypTc9Swuhk\nHfC6mqewvodVAlPMEg1nMIEbh4SGoOJ+3zrtwF4dAML5Oa28e5LfXX4Hja0UtT0pVr+9zb+efpSf\nP3iAQ7+7xOqdU2y1UzSzPoezK5yrT/LC5gxqzFBULT63eQt7Mhvc/C1/y4i3xRfqR/n08nHC0R44\no999J8K4eZT+tb4AKyDKWar7ne9QfsgV3XZny8xkKhwqrjHkN1AYvrB2mMVP7kGPWtI3Vzj3fxxg\n10OW7Gn3drL91uyubmAQdueaRAomdphzHAt6gLX+lc5zMbCd+dsXOHJukks/uovywQeY/dXnnN9m\nnEaqjhxED2Xh8RecJUdtCzEzCS9fxlaqyf7YxGOUk9OqRFUDgNaE00OIy1cwlSrzP/sAu37pFDKX\nIbpyDfOOO5APP58kbusXz6MOH0j8PLvjj2m1eqD12jrqyEH8F6+ihXBr2nYbeVUz/1O3UTxyH4VP\nvYDIZpCbTWw6jT7/shtnuqxKrRGr8fo4TlhUw8Mu7bATxtI6gwh8lzQ8O0N04RKpiWFEOs3sb73o\nSCNfgWfZNwChHVrq008gjh2m/V33kP7sc85Q6loKfesRZP4oYnmdoadXYd+su4kxjToxxupqrqVy\ng6bq/TjUUCkehJUzp3r+IgYSipk6P4+OaZOFZ5eo3r+P7Mcf71HduokzxiRaZjk6gg2jnrG0tS5V\nbO6q68AvDS6CV378TiafiGnH3R+tjAEna3qJQzElzuo4acFo56K+uOaqSlFEdH0eefvNRDF49g++\nPf4Cw+eKrH3gON6uXQQ3T+E1NeqLz706iv4PtOl338nK3S4+lDczArp/vftKk1V3I/+V3revYmOX\n/YvHKO7bw8L7dlOcy9B4725q377F5B9mnDkzOKbPagxKv9JnfAWfrQ4fQF+8knihCW0QuWxv8db1\nFkmnXSU2ptfak7fgX1p69YhwSPxrZC7nFoHx+yVpM9msG7e6E7O1g+w5ox04tc2fTC+v4E1NYmOP\nnO3G2193LfbskKlUDIRF8YIkcpT87mHdTVg3PTL2igN6QJGx4AuQXs+j7lVaNL8A8/S8GZQAX6Hz\nAVYKrK8Is5Io69hBVoD1wKQNGJj/nojZyU2KQYvco3n+UfEL/JfT7ya6muP9//RRPjD8JL+2+F4u\n/vUBPvhDn+cjtbuotVLMqxLT6QpPLs3SbPsYKxhL1fnrR27jfQ88zT+ZPMWvz7+bM0/uo3BJUjli\nuPgrJ/GrkvQ6TD2URlyZ730/6ZgoURY6o5rOuKWoDM2OT6WT4WhhmYJqMelXWA5dVfq+0Tle+t4G\n+3PrpGXI1YNDO0Qkf/W39atq25mGSQX+FUCinV5v7OAib/vx/fR7KeJiUly9j7RLcrIWk/HRKYXw\nJKoZYj2J9SSyGYKO5SLjI5iUT9cTxHoCK4n/CHQal6ATgM5YrG/AsyjPkE118IXhYH6JEa9OTWdI\ni5A7slfY523SsgolDEemVrmyOczSVgFPaMaDLdrGo2kCKjqLRvL81m5Gh7a4L1vnwabHJxZu48r8\nGLlSk8Ozy9TDgJXNApHJENUFqknMYHDnawIwQyHpfAel3NqnYxQNE+ALjS80FZ3jJes2+aFR5FWb\nKAaqZEeQ2uwga00I36JqvXHMpy4Anqz3uqlb6EG/IEg8g5LiHtyYVtttcSGxv/8kxtTGQrMJF68w\nUa2z/s7dLLw9Q2nmTkrnKoiFtURSBW6dK9LpOI2r6ZK2uqwUGxcY4/cXXsrJYzsdNzc89aKTe0jB\n1O886zZJQyXsnmnyFyrYqwuO1dMtWsSyOMIQa62TlO3fhVzZxFRrPf+QjYrzx4yb3aoz8fGXemD9\nUAH/C89R+f67qe6VjDzcm/dNvY7yPSfxUApif0+0cT5BcViDCCOyl8qwuOK+t5I93874mvBmh/F2\nx4zuv7seQd0mhOvTidRdkIBC3fWEMQgrbhy7+hm6MUtIWJdi2H29HB9F5nPO9PYraGpsDOsrdC6F\n9Z3ctTUa0CkIx/Tz3ZiDdeBv9QDo/U0OTa1R+nyWk/kv8NcLx0hlQoZ+YoVf2PNZPlM54caCfJrU\nuqRSy3BFDTORqrHYKLFay7NeyvHZ8i38zakT7LllkT87+mH+v827+P1PfxMjL4J/DNTfzlBpp1mr\nROhrhvLhHEOP9s5dB+4cwyENgTPu11rSinw33kjNRFBDW8nVzihDQZPL99e4a+Y6E+kanyjfRvYv\nngLAvP12GpM+pVe4Tm9o6w9d2O79A70xIznGrZctKgGNBvwtXw+Y3rfuNq0WdmGJA7/eZuU79nP+\nP9zCTb9ZxTx3FiDZ23q7ZtATw+hnXkTW41TdLktfql7wSOJx5IB90wkRUYR84ixycgKzvsHuX34c\nOVTCHJqFJyvILz3jJLNjo5jNci/EJQh6UlwpXZFuq44q5tGVKvqli8hczqUmbjpfXlOvs/t3XnQF\nN6UQmQysl9GtFtUfOknxjx9LCp22E6I3YplsnGI4YKjve86gf2kFOeQSfoUfIK4uUXvnYbKfejb2\nQX39YOI3JGOv0EH12QtkHjoDtzmKub7nGCLURENpoiO7iEbziErtRskJrqMIr0/HrVRvo2MsneOz\n7oeSTmEPOelZt8PavgVwNHcVv67x9u91cZpKOtQwnUqMtBy1zCUeWK0Tp36bSSXfb7tUozUqKJ6a\nc5/Xca7rwnf6aRtXDLrnbtptlx5QzDsU0vcc2tql9h7a76qL32hJ09Uqw7/3CKUXy/iNCPXQ05i3\n3Yo6chA1OfFWn97XVVu8P43XcOwE3kz5xvaP2u4DBAnDZsfjXvW9u9oJ1fPAiTXNwg9eUYoVzV1l\n4ldP0RhXBDXDgX+xwNUPaG5/BsznZ5GtjgNg46Su5JT8IIn6Taqy2SyqWETecpTqD51MKLZqciL5\nfH3hUvL9bLvtPIL65UVdr5pWy1VZWi0HGJ96LgGDZDZL87vvpfYDJwektt3mTU8R3XnkhuuCEE5H\n/VWYq3v79zq9d7niFtk7pZR9vbT+zbk2Lgwg8AfkHP3x8910ml6ksnTzSSGPKMUeJl25nuf17vtr\nNaOdV1O1iU05IMD4Am9tC79hUG0QEZiUJRqKEGnN0Iseww+nWNos0Ip8nlyaxVjJu/a9zMkHznE4\ns4zCcnNhkaACC+0hHth1mepmlrlr41xpjDCR3+IDh5/DxJEl1rPcnF1gl6pwZn6Kg//mUSZ+7RT5\nKxLZFngNaJegcsuQo3DH0uzGVAoZuU0AyuLlQzylKWZaSCz7U6tM+hU+u36cmk4z429yLLPAyaHL\njHh1VjsFRrI7JI29FcX6V5J3dReXZtsY9Fr/3t6EwPoeppRDj+SJRnPYXLrPJ8QiOhGq2kLVQ7fW\nKKQSMMikPEw+jckGWF9hu0Bu/15QW6S2CINL0FFAKUTkIjDQWsvQDj1yXpuFdomW9cjKNlN+mXFV\nJbQSheVYeoH3jJ2nlGmxvpHnwvo4c41RmiYgNIqVToGCbPK24gUOByv4QlE3KRY3i7Dl4StNW3vU\n2wHGCkzaYHy3QfTrBmHcOVplCbIhUhqkNKT9iLzvDK8Bnqju5YnqXhomILSKYb9OSka0jY/E4lcF\n/mbLbZz7pElvZhNK9sznTcwGShjePbPrGyQCsVSsKxPrSsRu2Cx0DV5tnNbl+T0mTuzxYzohZnWN\nkb9+iZkvN9k8JrnwT0qc/Q97ec8LdXJfHOfCH9zJ3E8fxw4X0eUKMpcBYzCttis0xv1fZjIO2OmE\nSWU9OeWwkzBSTaPhYuG3WrCygak3EOkU3HsCdfhA7Nspe+vuVIC4toxtu2Rg8447YHwYW6/3UnZP\n3oq5/Qh2q+6ArHIFltdQ42OUD0n2fnwVs7qegGdqqOSsEvpMvXW1it7cdH9WVx3Df3kVc+Eyulxx\n3yHeCItUygFk7c6bD0JHfeEYcWhB0vqAm4HWjZvvegTt1LrrJW0SCZrJZ9GjBcxQzslmuv0yn03G\n8tfb9OoqVilMSmGlQG3UySy18Jq4+cpClDekNgSTT2j2/btHGP58mqtrwzz9hZt4aOUw901c4e5d\nV/nhmccIhKbotbC7W1z6/mEK1wzqfI6lK6OcrUzhS810qcpis4TEktlb47aReRSCU+sHOPinVYb+\n4BFUS3B5bZSFa6N0Gj66pCle7s0t8rZjvbFSAEYQ5Dqk/AhfaYa9BikZ8TtPv43f/+I70FZyd+kK\nP3b0Uee51smSuurWjTKbpXogg3yrasn9faMLnPb3lb54d3d8n8Ssu7bcKYp+h/Fzp700QmBDZ28y\n9ifPs/9jEXPfM8zS//IAAC9/6CTXfv4BzPgQvHDevaRrotw3dqkxxz9OLF6UG+fUcAlxyxFHnFhe\ncUXKGPRV82vud9sFn7Wmc5+T8ekLlzA37UWNj7m9fCaNrlbxpifdb//+W91nSwkTTlaafP0wQm9u\nuvGg08HmncomuxzGY6/n1oJhx0XYC0cokem0Gw9bLWcBE0faYyx6dT0G3hwjyErnI6zyua+oOP0P\njyEk1QCdrVsBEUoNAje4qgBPOs7e1mya4keeRcZpCHJ4CL1ZRpaKrurQv/APXYdKJumwJ0vR1SrB\nQiWRaQhj3JrU99HVqjNxHh7GbMWxzJ99ksV/fj/Tn7HYag0RVRMmUtJJyhU3GcbnLNNpWHPIoggC\nmByDmCa7+WP3s+9PFl0yUNf7SEnwfUy9Ef+IvT4qsYV2B0aGsLGfkLd/L7bRRC+vUD82TvqTT70h\nt+rvejOnzyWIq/fsy5hO5xv+QdtaUIH2sNuMvumtW4nYbvS4nSX0ahuxV2PqGI1tb5sUt1Nud2gj\nv+sMnzVw5MfXeRaQXENLhTp2GH32wsDxXcPO/vczzab7nNNViqfjlC4hoJCD7elqfecSXZ93NNy4\n8qKGSuiuJGCH728aDTIfdwymCCdni47uwSs3YWUDW8ghv/SM++rdtIdXYlzFrMnme09Qn/QY+/Az\nN0jXgJ65tVToThXv6xxkdYCPikH7+MF44WSF84ITvte3+bIJy1TtmiacKtEpBSAgKHfwyk1Ete7S\nLDwPkc26zVq9Zx4YfvNdpFYbiCsLyf3T5Qpy9zQAquGMm23KI1UO8Rpu0R0WQTYURgvyi5rsxx5j\n89b72BjO0nl6mLnZUW7NXye0iufrsyyHJaaDMt/1k19iI8xRC9OImkewqXhS7eVdN10gr9qcKC5Q\nUC1+69t+m1HZYF6XeGD/JdZ3zVC9d5ba4Yg9n4TcwxdY/Z6jBLX4d5PL4E1N4jVdhLhOW4JiGyEs\nkVb4qQ4ZL2QxHOJaa5gr/+kIj3z7Qf6vt/0lB4IVHq4e5lJtFGsFrci7ManlzdycCXam2Hdbd87t\nAjfbZWBdecdr+NdY3yOcKNCYCogyEu2D17Kky5r0SsttrGPQQGqD7ESYwHOpc2ubjinoKfA8TCkP\nPqAtMjLuVHzphrAIvLoF6yLrbSQcdUhYkBYlDVJYIqNo6BRKGHKiQ2g9ruo8aRFyOFhm1l/n6eIe\n5i+NUa8EzGVGuHV0gSG/gS80aRmyz18jLTSnO9IBRHsuc3V0mOFUg2ev7SYspxChAM+6WOiWxa9H\ndJTvvLE88ISl3fZRygFCgdSkZEglyvLolX0MFZp88/AZhlSDl9tTPL05i7aSlIrw6yAa7bfEO2ig\ndc3njRmQjyVSsa6/0DapR09WG/9tDdbI5N8DqTtSOcBF68SMOJlPrMZ0QNg6/guX2L80ytbNY7SL\nPg/9zxPIiSw3lVqIzhaiXEMdOwwr671k3i6QPVRyUeJxNV+NjjjJVTHPyjsnmHhkA+aXMIdmUfPO\nkBVRc+tW3FjGk2cQszPuK3RC59+jNbbZcgBmGCHzOeTDz6PjOUcVi9S/9z7aJcnEZ64QdU1n0yls\np8PSB4+TXbawtBZfGie1s50QPb/Yk9lZM8B8UKMjmEr1hvkqYcMOlSAVex29fo/Xr03rZ56qbUEX\n/V5B/eOM1zcG9UvQ+9+v7/+21UYoxdbhEp2C83rzG5bscofU3Dqi1QHP+QeZ5dWBueoVm1QgQbY1\nNnDnI5sRqYqhXXKsVtl2Y0+YlWTTaVojAq0lqZrAWsGe1AZ7Uhu80JjlDzfvZ3euzPuOvgBH4cuX\n72HvJ2us3pHnUm6Mbzt6loLXom08Jvwav3zrR2lZn9+qnGAk1eDMPXspzNxL/p41ok+PsffRCtXD\nBZYesMgvP+vOL5cjKqTQqV7xQmUjlDIYK5BYDILzW5Ps/0NInb7M3F+Msurl+dwTtzL5sGDtNsG+\nv3EAk77tMKptidJv4biznRW0fb3bv5Z9tfXxKxzXtVxJZFLJXlzHAInCale09L/0AgfOj9E4sQtv\napJD//pR5G3HEPUW+t7jeBcXd0wPTtbfMWPSdkK3d65uueLku+5AfuEZRCGPCnz02rpjBeVzCN8n\nWlpGr67hLS4l6hu1XqOzbxx5fT6xPogWlx1T6NRzyeeJRoutE6MU51ximT22H3n+Cnp11Y0bc05q\nmL64QhSfq+x6pLXcuGljs/2ufzCH9jnPSK2Toqo1rv8xXML4wpltb9XddX+dgOJrAkJCiFngD4BJ\nXD3tN6y1/1kIMQL8CbAPmAO+31q7Gb/m54CfwJ3Gz1hrP/P6TueNb10mTGKWF6d9AQnatn1zBVD8\n48dQx29Cv3jeoXTNpruZNedmKJRLkLFhp0dRNTrRMWNFIiPTL88BYJotxPnL8etl8j5dXWK3+pNf\n1FTunCL351dQxaJ7necnHiIik3HV1F0zLiKv3Yau2VW7DWuOJuvt20N2OcJcW+iTtMWpFbbjqiEq\njsTrRpEaxyKyC7Vkw2KWV5HDzrBLaIs6tA9W1gY2jn/f+s1/b3stacc/1Db9uSVW3jXJVl/x6E3r\nO/ECd8fHt//7lYCf1/IbkgpVzMfeXOHA5JqYwWcybmHcD0xJhbjtKJy+0GPRGH0DGJS0nWJBdzgn\n/bIbb1SxiMhmHJi8d7f7zdebRItLAxJT02zdAAqpmL4flTL4y9XkeOF52GYL8fCzPV+iPgZQ/7iY\ntG00ZNPSpD75BCmcf5JMp2m//ThLJ1NMPdomfbVM4+AIJiXwa5r0S8uJJ9vX5ZgTa+Fl4Pe6mhRg\npBvzlYLuJYo3GgiZLGA6s8PUZlMuVaUA4BNUshSvlsiddVXs7sZN5nLJQtt/8KkBTzeRSiGzWUxK\nIZohXjMkGs4QjmYJ891oaLefN2kDvuH6t0oKP3KMg4UFbh2a54m3gScNf7t+Ez80+Th/snYXS3O3\nIrIRt++/xs3FJZraJzdbI1ofIn0hzXPDM9x2MF7wiJBPlW/j05dvprmW5fjRa8x8rILf0lw/v4fc\nZVdxzy072YXYtwcdeMhSAa+pEdrHBBZdD8CCLFlq7QBfaRbaQyw2S9SnFScOXeFAsMJCOMzf/tWd\n5K5bNt7ZJnc6TYmXB29PlHg5vXl9Z/tY0gUZXk021r/B775+B78X63vo4SztEZ/WsCTMu4Qt4wuE\nkWSXPIZf8glW6q6qby20NbITIrSTH9lqzSWJ5XMDHHLR1gjPMYVMEI9dxknGrLSItsIqi8hqCsUm\nE3m3Nmpqn4V2ifVUHuXV6FhFaD3SIsQXBl90uH/oIg8HhwjmA+a9MfYUNpkplMnKDsZKaibNqcZh\nvrxxiBPFBT4w9iSXCpM8VtmPH0REWYVtKfAssuORqmhUI0JkPed1BISd+Jw9i7UCYwW+0Ez6Fb71\n4HmmUhWOBMv4QvNMYx/rjRzjuS3WGjnHnitlkVsS0WwnQMxbMeb0++cAyUZfxJt9YS0I4+QQfZHy\nN3gG9RdDumAQ4E2OJ9HKA3NWtx/EMldd3ULUm+TXNimUChhrHVgf909vahJW1tGbgwUFt7npJPHw\nAGar7saxcoXxjyxh2m2X5DW3iGm23LhWrzs27OF9mGyAiAzmpTm8qUmipWWE1qjhISdTa7YcmKU1\nariUbNistZQensM2mpgoQt5+M43deTJLDaJ8QHNCsP/P1noJwUo5xrznIYP4mvqeY+lKAZ5H+5ZZ\nTMckoAC4JGGMTj535X84SOFaSHq5gd1Qb37f6UrdtkvFrIlT2voSLrfLUYWTgIkueNQPVGvjNp1x\ngaNdknQKgigHDSGo7k1TGpuidHoD1sqIQg4xM4nXcVKXVyuQetOT2FoLKQS6lCGcKBAWfXQgENoC\njlle322oHTasf+AIk0OLHMtVmSuNsDtf5snKXlIqYrOdpRH6VDppAhlxf/Einzh5B+NPRkw8Vkan\nh3lyZJbvnn2ebNDGF5q/3LyDz186gr2UIxzW/NG//TUudib41PqtnC6MUd+TpzkmmfliX4rdzCSy\na9yfihnWkSAUHkoZIivZDLMMBU2efG+Aft8Bfn7kY1zvjJBeVIycuk5tz27Uw85DTzzyHIVHBfaB\n2/pu29fXOkdIB7699lr5RvlZvw9ad+3ikhNlD3DtphCiwHSIFhZJb5YhNlM2z5115va1Onp5BTU+\n7qThSkEcvqLXN3pWKIANNUK5VHA1t4Dd3HTHLa8g49AOOT1JdPkK6vhNsLKGyGSwtZpLAk+niS7N\nEdi9sH9vUqSUuaxLKpyeIlpexWpNdO06xUoV024j8zloRbQeuIngM08OsNvN2kbync1WPfETskYn\nY2435EFn/YRlLzwPc+9xxCnnryRTAaVnV2G4hPT9QX/R12ivhyEUAf/GWvu0EKIAPCWE+BzwY8Dn\nrbW/JIT4WeBngf9dCHEz8IPAcWAGeFAIccTanXZeb35TM1MD8ckym47pqo6KK/fucoid9AaobjKf\nx15dSP4/EM0e/1sEfm8C7W56lHIsopXVOGEgRrqLeUfj7RsQZdZ1JpHJIJRKdNaFp+ap3rsbNTqC\nXt9AjY1i9s8gX7wYewfFCGEMTmGt65BxR9Cbm3hTk6y/fYbhjz0/uCiQqgcsdenHXQPCeMNi6w3w\nfWQ+j6nV3GfGP97sYxdp3XWA9EZ5YEPC37N+8432xjR94RLj1xao/Z939D/89dF3tpu1bq+MvZ7X\nwSDDpntIXBUBsLWao6Yq1aPOx2bQangYvblNVtXVZqdSfb5l7vPU8DAimyFaXL6R+dTXTKOBKhVd\nRfN8b5Ms02nEgT3ocxdjhlMb3Rn8fF2uQLmCin0eui2JlQfkLUeRjdaNBpKvB7ga+K4S/8GnmH0w\n/mypSI3k4NHngZj51JPgfX30GxgY6xNPuT5j6W4BwEX2GoTwMDqeb0zHVaeGh6jnPYwSLv1LQ3PK\n0B4WNMd9hgtTDD0pHMjXcOatslDoMT2FQI0Mu8XQ0QOwtI7QzudCtDvIfEC7kKJTkFgJfs1VIoVV\nhGOGYLjFaM71x7Zx3nVnq1PMV4v8vnmArB9y/60X+Edjz1JQTT40962MZ7aYKVa5WCwy9gxEiyP8\n2pHv4Ce/67MoLPvS64SXCkw/Zcne0mE8qPHgmaPgG87/xDC56w8w++cOQGreNOmYTGnPARQaVEu4\norYVdNrunMJUB4nlrqGr/PTPfJ60DLkWjnK2OYO5eYuGyZPJt5n9ePmGQpnobX7e+L7T7er9stPt\njJOdGETWMpBA1v83JMdb38MUM3RKATpwCWA6DVHeEC4vNwAAIABJREFUEmUsNmXoDEvCXJrRM4rU\ncgPZ6jhTaWsg0sm8LtIpx9iAePOF80lUApRABzLxEjI+iEgg2sBIRCoTMpxtUgxaNLW7R8ZKKjpH\nWoYMyQZF2WJc1RmRmpoV7AtWGZmssrU8ythjikc7R1g8VuTOkWv4QrMQusX/kfwKk36Flgk4XZ9h\no51l78gmm9kMS1dH8FZ9ipctfi3CeNKRlUJQbUHU8JCZCCktkZZUwzQNEzDjl/m+kSeQwm1YfGF4\ne/48ao+hZXwe0ftZ32vxWnlGToO31ew3c37Txhxr7Y5SNZFKJYyYZNMlYnlZ/H/RNbIfmMfi57we\nO1H4AbblkrkSVg8MAPmy4GRXpraVpNNKJRG7phBX55N5LfGYk4qu14iLRjY9T4/udwgCTL2BbbXi\njZubS7xiATFUcvLaXA5SzotINdtOClUqOjAJV/y0UeQ2buXK4Nr61qM0dxdIr7aInjydfC9vvUp+\neYNocYmNf34/sw82MBevDJp1tyPn9xEEPQmGcCm7NozwPr/Su47Goo4dIhrK4L1wCXVoP5d+ZArZ\nEUycqiLqTQfYufbmzlfbpV9dKVlXqiPF4NjUbV3/oO2MRcBu1Z19RSaNzWUwnhsPZAd0GlrjBisV\nXnOYfMPJboQxWN9D7Zp+VYNps1lGxsbWIpsiHEvTLjlz+3TZklk3bBxXtCYjRCYilQpZrebRVjCS\nabAVpqiFKXyp2ZvfYDy9xe2Fq5xIX+NSZ4ID+5fpjI4TPHqWaSFovjzEx6bfw/o9mnfcdo7FRgkp\nLa2JkKGxLebCcX7x6fcRVQN2vXuJ+WNDzH7Ukv5vjiEtb78Za4yTt7UBA6Lj2JQaaEuPTZWhnM+y\nO7PJL3zvH7MUlbjSHmM6KDP7TVc5P7ybkaOrtJ6/g9Snnkiut6q0+gs8b806p29uSsYMa29kv7+W\ntLk7lvQFIgHJ2qVr3pz4HkYR3vQUttXuefHEUlJ5y1HM6XOYehNVilMD07FNg1JuyhUSrPOqFJ6H\nHB5Gr66641ot9OZmb+8qVSznD7DpODW83kz8ekQqhTywJynMdgEjefvNmGfPIKbGnZdPq+1sQpoh\nPHkaXa2iikWXHLZeJttoEQHR4pLzPGs2E3VPd39u2+3YHsI4mXec5mfrjV4i664ZovkFx8g/fAB9\n4RIbdwwzdH4L2Y5oHhwlXam+blbia3oIWWsXrbVPx/+uAWeBXcD7gd+PD/t94Lvjf78f+GNrbdta\nexl4Gbj39Z3OG9i6nWubc37SgeOqrE2nHGq3LblGDpUwW1u9l0WRSx0oFgflVdtbd2KJP0OkU/HA\nK5Fjvfhg2wlddSfWQQMJiyC6Pk/uyhadE/vc4+MjNCcz7njfSyLtbBT1zkVKJx2LW/3OPWRXIkyz\nOVBhEvG5AD1N+TYTKtNqISbH3GJEukWGrm4hczn0ZgW/6n5o/Trwvzf95hvtDW9ybDT2EIqrmV8v\nfWe71nkn7w+xwyJqYEIc/C2pYtGBNkGANzWZGCLbdtuNOdv8hbqyIKRyUbwwCKpsOycbRdhsmhsi\n77d/tShCr6ze8LhptRA1t8Dr/4x+DXTycPjKEsjyiSFa+0Z3fO61mvB7VZOuB1PvBHUCBg08xtdR\nvxE9WYH7v+zNJ3FSUO/czQBwlDSlIL4HnZIzVPZr1vns1AUygtqspH50PPEls50OGIO3Z1cfkBAv\nqKO4Ehy5xTiRdsafXXwhXmSnyiAiEG1F2PawVjC/WaIapdidL3M4v8JQpkW5leHOkWvcUbrKfelr\nnAjWOFRc5fTyNFthgM5rgi1Dbllz5Fev8UxlD+cbUzxbm+XwPVdofXCT44VFzlSnyVxKgRaIqRbt\nEeuSGY2NWS0Wk4q/g7HIUIAEkdIoT+N7GiEsTe1TjdKcbs3yW8vv5Ep7jEv1Mf6f2/8bE+9YoLGS\no3Fkh/4Yb5Le9L7z3yM92j7mdP9WCpOKE3l8gQ6cVApHGHHf07O0hy2tYYXJ+tjA66UCdUEF4wpF\nN0jXZAwKCdHrN3EokdQgOwKhDEJYjBVshSnW2zlSKiLnuXGiZXwMEilMzA4S+FhyosNYtkGUsWQ2\nNPk5xdXlERZbJSo6w4tbM0hheFvhJWb8Tc62ZnhubRdLtQJSWBdHLyC9LkiXtQOx+s/RAkZgtSQK\nFZ1IUQ+DBOjUCF5ozTIXjpEWmlmvyp5gjbnGKCkVoafbtIecPKU/FfDN7DfdaPWELaa1k0h1wl5h\nYKexBOLxKJ7PRN99FYP3WKRToCSm3e6xZFKp3nwglZNtRREylUrWj3qjjLk6j9w+XtNjFDn/vL4C\ngnGBBd2o6GQc72eVtjtOLuYH2HwWW6li5q45Flut5sCMvbuS401ta8d5T25ukbleQ11fHXjebGxi\n6w0a33Mf7RGBd+6qq8rHLH1remOo7XQcq05r97cxbpPWVRtEEWp0BBZWHEu2WgWlSG0I9nyygj7z\nEjYGRdwlfxPHnMQsmsHClpSvPhbtZIDfN/aYWs31QW2waT+OWAfVAa8ejwnGMYdsKnAglHbeXvY1\nxsCud1SP9ebmKakBC17TolqgGhK2fGprOcKrOZbOTdDWHuPpLXJ+B08a8qrNTLrMifQ1bguaFGSL\nyUyN5oTvWBbzq6Q+/SSjv/0IU1+QvLAyw8X5cXw/4o7DV3jHrov82dLdBC9kKZ73yAdtpNcDg4Tn\nobO+S2iMx1uphRt3BGAFxkg6kUctSlGJMixFJX7z3Nv4r2fvRmH4idkvsfvEEmtzLlGzv0WjmeTf\nb9k6p3+duZ2l2P/8TkULGCiIwSCpAqkgDJGBjyy5GHZVzCdPm0oVYhb0wHssr8fhJD3VT3TtugOb\ndKzQ6R9PjIVhBxw5qX4M+sQgEkaDHwc4NVqu6BqDy6YTukCQreaAF6z1FSbtxji74EBwvbmJV2mi\n5td6a/qU8/61sfxW3n5zfJn6mJt9IL47xw5d5RHSscpFJtPDCIRAZrMOoIqVQH7T4M2vI1ohmWvV\nG7CMV2tfkam0EGIfcAfwGDBprV2Mn1rC0dfAdcz+rO3r8WNvbYuTuygPSne6k57MZRwYs7qBLBUd\nku0PmpUKzx/o5KbZgqFCUgHuTcp9x3RCzEbZDWpKJhVJXS6jR1zHlLG5VDeGUwyXkCNOktWlr9mn\nXuTSB+KEsaU1/HrkzKWbTQcsCZfS0KUIm82yq/DELcwrUo+cT65F8v2NRXRNpIVMFg42CjGtVrIQ\nsNlurKeOqWya5rtvdoZdZ+ZemSbI3/F+8432hrel79xDUBVJpHF/e9P7zquBO93n+1sXkLmBVh+g\nbjqEt2/PwCSmq1V0uYyp1YiWlp0ka3QEhHCV1nRqABQyrVaPsZfPob/pTpdUCDuCMaZWc2bRuHHF\nm55ySQdHDlL/vvsclT05GT0AGndbdO26q1Zks8ljrekslQ+ehJO30nz/vagjB5PnvNnd2LfdDidv\nxTuwD3H3LQw/v4n3N6/hLfYK5to27CDuOI5+952uItT9nH17Bj5XFgrOc23sxo3+WzrmJAsjOej5\nIoVbPNs+02itQbq0i6Sqj6NPm+VV2iVFlHF+LdlVQ2pToDqQWbZYBY0JRfOOva6CFlfIzfpmQkXu\nhhToF887XfxWA5MPsIWsMx6M+7NqQXWfpFMEBHg1iX8lxdpWjrE/yvL0J27hhZVpmibg7eMX2Z0v\n80J5ho9cupsz4RirOuCbSuf47gPPs/7YFCKU5M9v0h6SRNeuc+n/vYnP/9VdPPebJwik5h8feILn\nKru48JmDzP7iKSa+6KMuZ5g+5SqG4Z4xUqstsKBaMessxFVdmwpqPmHTp93x0EYymXJs2k8vH+fK\nvz/KZ5eO8c7hl7jUnmDlSzMc+08bLN7vceUX7h+8VWF4w+17w/qOYHD8kH1jzU4AD/T6krGDx91g\nAqswhTRR3kenJGEujluXblPmbQlERyAiQThkaExJOiUfnU8NJN0Bzvw8FWCzaWdA3jWXjgFEYa3b\n9GiLjEDo+A8glEUIy2Yjw2Yrw1K9SFP7ZGWHlvVomBRVk+ZMaxenmvtZ1pJVk2Jd55nJVbCjHVTb\nMv5cm/SLGa7UHAje1D5t4zPrlWmYFM9Xd1FvB3jKkPU6pLwIVVUU5zSp9TA2k7aIyCBDG5+jwDYV\nYd2n3Qpohj7aSkKrONee4c+u38UTW/sZl4KWVXx0+W4efuEwbe0xOV4htWmRlcYgiNt/e9/gMcf5\nRUSx5NTGEqB4DBU7bOyt6ZlHd72Buim1fWBxN61WHTmIOb4/+W4ylcLbNYPcswvhe6ihEmp0xG3A\nWn1snLiQaNttdOxZIXM51M1H4N4TTiZhtFv7dsGWfsC83UkSbdXwMN7UJOqmQ7Tedy+imIcwdNLm\netOBX1GEXt9Alyturjp9rveV221MvcHKv3yA8o/cj7zlKPqb7sSU8ohry0RLy6jJCVrvu5fmd9+L\nPbaf8nfezPx7YNdDdcc2iv2BuvHZsrtZlC7UxTRb6Gq1Z+Ad/0blLUex9fqAPYBNeez69Ar2mRdd\n4Tbwd7y3b/h81WUHDYw/PZP5AbCoe4xxrMHuY1Ztew9tXNJS5FhizZk8JsCN2U1LULWkNgRB1VLb\nI2nPDmEzKWzKh2YLEekb1wAD56fQpRw2l8H6DmiRkUV1LK0RQXWPh5WONepvSlLzAYXLktnPaa6t\njGCs4EB+jeOlReZbQ/zBk/fzY5/6KR5sTPKpjVs5uzZJbTbej632gMLhz75EeblAcDlNFCn+5a6/\nISUjXrg6Q27R4jUsLy9OUPxS39rp9qPxOYOMDCq0iBBX6OhIbFtiIonWEmMF1xtDfHjuHvKfKDLx\n0Qx3pa9wvTNK5RMzHP13L5G7ssXaT/Xmqii981rpTVvnbJ+ndiqOdtsOTDKgt+/sMg2HSm5tHDOG\nbOT2tAnYEe+/vV0zmEbDybnGRgbX06urdH3JzOo66qZDyWfYdjsBd7pNBj7m8rUYKIpQYyNOYra+\nQfitd7vTrlSxYYfoyjVnGp3qgUWqVEQvLrlzucXd8+ZMDvHkGV763btcGuGxw3h7ZzHPn8NGGplJ\now4fILzJXXJdqUKrjVh0PmW6Wu2B4VHkCrDxnOyYkrFhe9ONf8Tkj+g9dxFdn3esp0wGvbmJuukQ\nuY8+5sCurQaiXBtgO75We92m0kKIPPDnwL+y1lb7q5zWWiuEeA3u/w3v95PATwKkyb7G0V+bpnZP\no68vJv8XqVRPv9hsIfM59Oo63sSYk3Dkc44SWa8TXbuOd2DfgNzMttvYaz0ZmZMF9AEjXQPrmKpm\nYzd+2267jdhLcxhjEb6PGh4iWlrGhhpbqUIY4c3uxvTHZGbcBKo3N/FONVxcfRBgq1tOCzlUQpSK\n6KUVJwkpFmHXJESa0ufOo7e2elWifqMw2WcivT0mMH5cbtQwCa3YMZLSKy0sEN56AO+5nu9If/ta\n95v4Pd/0vvON9sa01vvuRad2rhS94WNO93ewTQomPD8BeeMXvvIkd+OHOH+vsIPuk2INtG00/K7P\nALiqmJOC9en1jcYap0VW16472curALDJe7VaPf3wSxfJvXTRvTY2b+6mh6njN7HywAijv+nMrM27\n7sB/5iJibAQJRJfmSH3K+foIzyMTRdBlOpUK6PklxLXrePv3Yko55MX5ASDnlU+wb6LqyuD8AHHz\nQTh7EdU1/PQ81n78HrKrOjGw7qZrickxwukh6CM7fb2MOVZrR7VXasCbTsTfCd93/mydTs87Lk4D\nY2aS8q0jhFmXvKVTsHlEEeUtOgARCdrDls4QqLbC3z+J2iw7CaCxyJEhzPoGcngIMVwkHM2htjpo\nQDZDdCGNakWI2D+oK//plCw6HxteK0u4laL5vSHT427x8vTqbg6U1nnb8Mv84dx9jP5Klv/tnf8U\nfcsWUagwDY9dz2tngrm0Rm6hSOUfn6Q2K2nNhMhbHYv0ofUjXPrUATojlou/fJLUhmD6VEinoGj8\n6P0Mvdx0G3rtUqtE2sNvWIQRiFBgpcW2JVGgqHd8Qqsoh1kWPzdLoWD4Z7OPUlBN/nL5NmZ/8RQa\nCIdHmf30tlt/A977Bo45Ijc43vQO6n7Azm/SZXcYcBdDDP7+hXDATdrDCtx4asGvukp1p9Adu0Ti\nD9WclKQ2PGRkka0AGUYIIxGZtOuL2TQmHWB8CZZeao4FtANbEBIrHBhk06DTjqmjtaTdcglg2kgW\nRImxoI4UlpFUHYVlLSqwGWbZiPLkVYucbDPi1xkartMpDFG43GT0jOL6zDiXh8Y4kFsjr1qcahzk\nwfVjlPwW33fgWV6sTfPM1VnMcprxZyC71EFEBmGt8zcMDV4TvIbApIQDQY3ApjUZ3y20O7Gf0X3j\nc7y38CJ5maIcKsqtDJnRJoeKq3z26RMcuNpB1OrgeW7B3qekfTPGHFe0Mw5M7gN/XKR8/+NqIGGn\nvyWV9HhtKoLApX91OuiXLjqPynbbAU++89ToFg3V5ERShOiaJ8tcLjHN7wYGOFmYxc5dRwW+25yk\nUgOSYnfijpUfLa8glHJjejqVsGLzZ1awmxUHlhvtHlcSectR2lM5/AefQhYKhHcdJnVuHj07gaw0\n0C/PMf3hs4jhEiabxtsKkeUaUXdOGimR2uzgbTZYeO8YMrIc/c/L2IXlPomJGfBfiu+HW8NL4Tal\nXe+d246weXOB4TM1hDHIoRL1kwdZOqmYfbCNeuhpAFe48D3H0By8z2/sOqcfVFaiZySdqCNi1lhy\nnIEY8ENIRDYds3RELHG2SUy9HBl2e41D+2mOeXgNiwkEzYkYkDZglaA1adg4mmKilkc8c95t/Dsd\nvImxRFqoxkYRxYLbI1VrMDWOAXQuQMQAtBWO9RjmBJ2SxfoQZSxIi/UtnSFJa9RHyg5PLM1ijOSb\n97pCePpqwNSjHf5X9YMI4+aQYKh3abthGq079iO3FO2ZkJtGNvm5cx+g/blxUjnY+JYm8mqagx98\npve6Y4cxQiBDEwNnAtWxqNCBVdYDk3ZG8IEf4UnDajPP6lKJzKxA3rXFiAp5vLKPmb+8SrS5yfX/\n6Ri7//0pAAeQXq3cKHd+o8ccvy+deifrhN6LbljT7vDGyeu7slETJ/HJXM6RIaLIeW3GFgu2VnMB\nS/H/VbHoQJojB+HluSQcSmSc7YttNOD8y87UuVYDITFbWwP7WQfiOiNm4QfYesP9voUg9ch5DO73\nriYn3NgXhlAqUH/HfnIffQy9uUnn2+4m+MyTRMMZJJA7u0IURRz7t1cRB/ZBrYFtd5xErNHA1OuI\ny1cJGhNxuIskWlp2KYt90juEcMbRntcjl/SvixOfYYm44zipa5vxel4gJ8ep3zpJ/gtx0lo2Ddq4\nkJjRkdctGXtdgJAQwsd1vP9qrf1Y/PCyEGLaWrsohJgGutbe88Bs38t3x48NNGvtbwC/AVAUI19x\nx72hvUpqT9KESG5+oruPIhfVvns6mRBtqYBZWkZNT2A3yj2/j0YzSSWLv4SbrLaDLN1mNCJIOw+h\nzQrCF841vPt0oxEPrqGLE+5em7qLlhOHZ7HzfQBWp1eV6k7MwvN6my8hMUN55GYF3elgbtqL3Gph\nLl/tAT7xeff/PfAcJNdIKOWMsLJZ9PJqcg11ueIArTOXELffDF9+Frl7F7bVxtx9DE59ND70a99v\n3Gl/jfvON9pb1lbu9tj7yRr2iRe4bnsJHW/KmLMd5Il/wzdEoe/EEtpOj+17Lxt23OJ2dhoWlp3n\nziuMD6/Uugb3SLGzLKv/vV7P2Lftc+XQGGbJXW/94nlGX3QJhEHNkPvzx7DpNHoHfb/VcYSnUpjZ\nCWr7c3gnpvDqGu/8IubZM6//PLadE7gNi33ubO9x4Sb9Llgls1nk1AThVImN41naQ4KRc1Hf4V8H\nY44QPSlut5ovBYS9KpA1FtEn8bXGooZKrvpcriCaLfyDQxglUW1oDwnCggOCcmtQO6TxqpIoG/v+\nRAYO7YPT59w1rG2hJicww0VsSuHV4o1coBAdi/UkIjRuEYtyHkWR2zjrHNiUQWYirJbkh5p0tCLt\nuet8uTrC3SWfk5NzPPFze2itCA7/wPNc/JWTfPC9D/PXj7+djdsM6fIhMtdqqGYKoTMENR/jl1ha\nKTDy4CV2LZ9CHdqPMJbo0hz177sPgNKlFkIbjK9c4hUG2dH4DYNqS7wtgQkExghkqU3aj7jWHGYi\nVePf/fhHeE/2OiUZ8JHaLn5k5hF+8c+/k70jm8inBOm/euxVbtsbO+aU1JhNkn4Mrk/0/477K/U7\n9Cl37I3gtPVdTLzOenSKik5OJNV0EQmXdiNANQVaOVAkylgaUxK/6aHaAbIZQqQRmQyk05i0D0og\n2xH95hU2iaMGo3CbPnA4lYaw5SF9AxZaHbemaUUebeNhrEAjUcJwR3aO0HrMdcZQGA4HSzzNXoSw\nRBm36cwst5j+YoYvV0/QGdWItCbIdgiCiFyqw9PLu9k6O8zY85agaghqITLUPTaVtYiOwW8YvKZC\np93mTAvc+UUe1SjNdAD3ZOb4ltzLjEgP8DnsbfEv9j1EWWe52Jog/7JHsFrFxuCqn/LhwhvXb7b3\nnaIYsV35ANDbHMQMjYGme+NM0mIACBX0xc33POu86Sn0zChiuYzYiBBCJEAMuMOj+YWBj/H2zmI2\nyshcxpmg9m+84ph7Go3B+SkumLjzC7FRTyphm01XEFEqLoo6NpDMpBG7p2Fl3THoOyFIQfP99yIM\n5F9cIVpeQcVMI4xGV6rIKEJMT2DyAa0jU9Teu4fyMTfOpdcEUTbL7OdqyAtXMVv1bWtk05O09AW8\nYA02tAmgL4RAXF5g9KXIAXIxayt3qczBi5ZoxLEZOt9+Dy99L8zuWaPzY31ecm/W3qpP5ogxzqup\nyw5W0oFEXTuNMHI+dDEjTcWAUPzm7vWdEJHqKSiiyRII8FoQYTEpQWbJMvZcg9W7cphVSX5B0x5P\nky3mQSpMuYIcGUr6jSgWMPk0yCyMFh2wG2rwYuDZgpUCHQj8LUtQhcaMICxqSBlkoFElQzgmSaci\njJE0tlL4QnMgu8aVk8vMTY0y+bCkul9yy7ed5/Snb+pdllwaccdxgnKbXV9QRGlF/dO7GX9qgeiK\nA2fUzUfQZxwYJNNpzK2HB4AaYUGEGq9hUC2Fajn/PyvBFiwW2GxlGc9s8V33neab33uGW4M01yP4\nH6e+wE9/6IdplacpvdB7z2hpGbp+XG9gv9ned0rp6cF1Tv/veKfEMCF6TETfc+vW7nH9crMYjFGT\n40TX5x1g4gdYa5K1t/ADTKuFNzaajFEim0E0W9jFFdSBPeiXL7v979p6D1gRwjFugCTFIzaXBjfm\nyFQK03LMHRs5GxURBD1LGK0TWb+tVBHGUnxwDXvrUVbvGWb0tx9BeB7B5TgVLOMYRHp1FRV2EHkn\ndbN7ZuhM5KjNBox8+ClsPpsEU7nrsA0g7wPbrNY9MMjzYslYyo3L9QbipTl0s+XG03Sa6PIV8p5y\na8d7TtDO+XgPn0bccZz2cBo+v9PdvrG9npQxAfw2cNZa+6G+p/4S+FHgl+K/P9H3+IeFEB/CGVgd\nBh5/fafz1TeXoLDzczKddtXy5VUGjFb7aNh6yFV9dbWKmhp3FYBa3aFvhTy63XaU+2zW0WJj6dRA\nR4IbwSEpEaUirG9gQ5zxlTWYrbozqm42HQV2aQWsxds1A1Jirl1Hzi26uMy4Y3g12Ytu7n5cX4fS\nm5soJd2kGgTw7Hl0tyLUpQhv9xGLPYEQsvdjjpFXcLRhvVVHlYpxhSaF1QbTaqHGx6kcKVK8kKN5\ndIpgaRlVSxJ//k70m2+0t64JP2DP/31qe5H+res7r8X+cSeH8HyE7/WiePuek5kMIptxPgtn+uSp\nfcepsVEWv/8mxp+p4728QOu2PWRedolRpl7vVQnihIRXbN3fbh8YJPwAuXcXdnntVZPtom0LDIDh\n33uk99ajI4hSHnPxyiAgZW0S/cvyCvkn+97zlc/0q299183bO0t05RrtQ2PUp/wEJOq2t3rMkdls\nsqFx8i/pKspwI6hnTZzo2HEbVxUD7bkc8sAeNm8fpTUqXUJSzN5BWHLzMPbrj8C/eoDhCyGtIUVz\nXFA9mCNV1mQXXfCAabWdIafnNvBiyy2qZD6DaLQRgcL4EpNyi20ZQqpiGX5Zs37MozUpEFUFk20X\nHa4lmXTIRLbG8eIiKRny3MYujg6t8FtH/4jfe+YBfnHov1DWWR4qP0B6WWF8x2pRjQ6FOfCbKcKs\nY5xc+YlDlC4eoHxYIiMoXp6ieKmOFWDjyONuWkt8c1FNQ1C1MaPQYoUg3ExTCRzrKpARGsmlMM2k\ncj4RC+Ewb5+9xGKzhB4dlIct/8wD2N995M3rO0L0DFyhBwD9/+y9a4wlSXYe9p2IzLyPenZVP6en\n57nDmV2R3Be5y1nxIWhFURQhUzQNmQZMUTYF2jBl0D9sgaL+2LBlywZMwIZk2ARMU4AJEqRW9FIy\nTVLLl0gtucsld2d3Hjs7Mz3dM93Tj6qu6nrdR2ZGHP84EZGReW91V9dMV93uyQ/orqp78xEReTLi\nxBffOXG37eS1W5U3U/onpcC9DKabwCaEsqtkAqIJZU+UZX73OFVIvg0eCaFjOoDJAJMqJKlGuHuW\nBiUAlTb4NKwkZIx1FWoY8mUUBAwBM9awAJKOQZIYaGJk2qBkhbFNMLAZbpaL0LB4rvMOnppbx7Iq\nUbDsYNdNSwznpF5UWsy/PURvLYHNFGyqMF6aw+CMQrHLmNuwWN4rkeyVolhisQlC5dcRM5KhhHmY\njhBhyAA71rh1ex5vzq3iRDoAesCO1Si4xGOOsFBksWO7+OObTyLdZRQrfQzOZNh5TGH1xQR47Yj7\nnCgszPcrdns7LN7FYWxhUS9Jq81BxuP6BiKkRFXu1C7qyhrMrY1qxRoAlIZeXUH5gUeQ3tiCvbEG\nevQc+J0bMO/cCJO7YI5zcyF0ddJWdUh0zWWVX/qPAAAgAElEQVQpq95ZKlvQ5xIWxmUBZq4WYYlA\nSgHrG3LdogRfvIzu1k7I+8GjMZInHoNZXYB6+yZoIKv+dncXeH0AUoSUFE7Oz2H1hXNQW3uwN9fF\nXowRVUC0w6NvH6+MCjk23U5dBFEGkVussG4+AKWhT61KnqMbNyV8+t9+BXpxEZd/xGL5Sx10f34R\nnTU36T0q2/H+v7XyXhOB0rQigOxkv0JagQFRXViW5CLRWEyJFvXEyhL4Ux/G7Wd6KPryvkn+Mka2\ny6A/fgFnBx/ErY8sI9sqwQmh+OBjSG9sA9vbMGu3ZLOctTXJKUQEurYO3t0DrZwA+l1wN6nlOiMr\n+e76N3Kw6sBkGqrUsGkKPDGANYSi0Hji5AYWTo1wLtvCL7z+Seysz+GvfvxruPzsCr5/9U2cTHfw\nIj1bzamilAX9K3tV32e5IjJv3kJy4VGYM8uwiZIyMWQHNt+XEyEZGqS7Cco+oQSBFWB2UuwMNdjJ\nLR8/tY7r5QJeHs/jY909LKgR/s5zf4L/4w/+Ms78r5+/w+M8Krtp/B0RQKQb8+14jglItE3s83gV\nmjWi4Nneht28Hb7z/QhpBZsX0BcegV3so/zKy1Df+hz4q18PPisXOZKlxdqmKk1RA3U6Icl+7HtR\nloHm+sBoFFKqSBLrEvrkybA7md0bSLnYLdwVJdTGDs787hClkr5h9OxZJFeuAtfWgg35DVdABNrc\nRPJiiZWP/4UQMaD6/XDsxMKzb9uwu5qp2g0QosolmbZ5XpFF8xLtwFddNIAVNd6p38+BL7+EZJ/U\nDNNwEIXQXwTwowC+RkR+X8WfgRjdrxDRjwO4DOBvSX34JSL6FQAvQ+YIP/le7NpyN0wdgBxoaREY\njcQwfFiI29INkHwN+uuXA9PLV69DLS+hvHZDCJy8COeIqse9CSbaOlpHGdPjpHXDIciHfVkDZCmo\n34NyOX/02TMwa+tivAB4vo+tD5/EwrXr4NG4tuqy/AqgVpZhbtzEfjC3NpzzWK3ITMj89lMrOIaX\nuv2wiu3DHHg4FBXV628iefQ8uNeBee0i5n9lDeX3fBS919ckHGE9hIo8EHbT4vgwtUMUHK3tNBU/\nnhydWmi+Y2duBwNZFb3DPcz6LZz+32TANwDSz60FMkXNzYn81TkWbDk43Hr1BPjEIuzFt8KuLM33\nmIs8bC1PnQ7omSex+8wSFv7NayLHLkqUV6rFoeEPfgLvfLfCs//kWi0ctrz6zj5rSO8xiKBPnwLy\nohZmppeXMPjUN6Hzm38enkV5+W2ob34O6W9/CcuNa7g54LH2OX4lSyYSPtsu7RvD7ft8f07y5OMA\ngOJEH8SAHjEoAWxGQpQoYPtJQP1Hz2NwjkEmBWugmAfUVZaEt2dPAbc2EHamyEvAKtjLV6HmekD3\nnMvdQKIWKhnZnsVYaQxOEvLFBGVfiJxHf9dg7cM9bH8I0Fe6yD4s9VjLFzCvR0j/6xN44blH8E//\n0wLPL76OLhkU0Lj6aUayNMA699G/rEGFgRqV6F8uAS1qpoVLKUDA0qtFSMho0ypHBbsExmQskLpr\nFBrZNqOYI5CRhNNzVxNsZz2cWdyBJsbvbn4Qv7D3KTw2t4m/sfoV/O//9w9gdNpi5ZkNPPeTrwSx\nyzt//1Moe4id3iOwnbsQzvsphJhlBb+ZO4hI1EFdlwTTVU4VooKxiSh4WMl3ekzIuxacygSvNIx8\nntDNFGwngVJOKcAMlBYEJeRccPYrdRBZhi4YyYhQFHIvf3+MNMqxxlhbsCXkpcZmr485nWNsU3xu\n7YO4sbuAH3rsBfyVhRcxYgMNxqPZJi4s3MZXV87CdLSENBpGsleAB6JOym4T5t+S+/s2iNvDJ3D1\nvh0ZRrpbIt3VQo4xAQownKAwhMGZDCOb4u1yGS+PzmNBjfDvLnwD/2L3g/id9efw5NwtXH1nBfPz\nhGvPd1H2GbYjYTEOR9fnuIT0zBzI5tiPBVCpf+IcR0q5Z6cAciSH1rJCPhoLEb2wUG1fj8qfVr0u\nUJZIL90AkkTIG2bZZMWTR+74sFOmP9ftlGjWN6o8VT78yqVrYJek2ec6m/BLvSJlNJafbtzl3T3J\nK+Q3YUkSqO1hUAJ4QgfWgJlA2uXueOG2JP71dYyVL0TBt2fjPlNJUFOJatcGUtfs7NTKq3pdwJgQ\nTpdfOAF18RJe+Z+fxeKXU5z77Rug4Tj2LY7GduI2ZXbJ4v3GNV6h1ciJRQqAdTleonfMJ53vdkCl\nJJPee1QSHquSq/6UgJ3HFHrf923YejLF6CRhvNJBus3obGssXzWy0O4SlAOOVBmMhVAbjSQ3qrWA\nYXAifVAyFtsu+oTd8xmKecKJVxgLV8bIXr6Ca//eB0Rx2u9i7XvGeGZxDQaECz+5hfLqK/ijn/kU\n/rP/8F9iVe9CkcXojMHgBz4ioeghfI7AiYLNEiG4+iugM+JxGEUun1E8p2KwVi7xtYzVeliis5Wi\nmNMhf1n3loZJNcZLCfaKDJ+99RF87eYjGLx4Av/ghz+D/+5f/jCe+I0xku+tPwvzlz6GtY928eg/\nfwt46wjtZj9QJRgIY4OfV7sdwnjo1P5uJ2u/cElpFhQ8nFcLNJTIe2ZHOVS/j/LiJUlBAECt3Qbc\nLmD65CrM+i3Y9VtCOt1yZI97p/zu2pznLnVDPU8V5znMrTHUwoLMv1dOIH/6LNQffSWEptm9PSTn\nzsLuyi6Ka3/zOaz8X38sSqZOB8rlOUq+cQN8chVm4zb04jzsrq1xAIGkeuHV0E5h46U7pHzgsqzU\nQVkGGFPVazgUZWKSQJ8+hfLtK6DhGOpbnoX96tehn3kKoxNdnP21N0BPPo7yzcsSUnzAp31XQoiZ\n/wiTXKHHp/c55x8B+EcHK8J9gntZKcsquVg0cJLWoMW5EMfoQ8fsaCwP/rFHoG53w6oEANB8bVt1\nsGUZZOKHH8PvyOW2jwcgEtu8EIltmoBdzgcZwAz4yjUszHeCIXi5GyUJtp4BTv3+5C4OU1GLDfbM\nrp38zCuQUCmnQvyiS8ylul0px6aL7RznMI+uAq8B6sMfBH3+JfDykqxCucHwgbWbFseOI7edpsO0\n31jp3p2wLSYwIaPVp1YliTzqhBclKVSvO+FENlH1L2525fIHAXXpcFj1uNPAMh6DX/w6+i+68eDW\nxoTiqPfZL+Lpz4qXkDz1BMyJOfCfvwz6+F8QRcLLr0t/cBD11GHAPEFw62c/ABrnYdvV/Pu+DTuP\npTj9qy/DuASi+sQJSSA6qEixmehzvJNISkIIpq2+hrhxcW5VJ5XkrIMhMB4D55ahSka2A5Q9QrZu\nYBOC6SqwBsq+ON9b31qAxgpUEsq3FNJdi/zUHLRUTMaNrV2g1wE984QkBk4UTFolZSQju73onKGH\nhOFpRjnP4NUcNk3Qv8EYfzPw6O/keCc/jew7rmG76OK6WoLKDU7/wXVc+tEV/Nn6X8IPnH8JL+48\ngkd/m3Djkz0kQ4A7Oqy8UmnBEGdbjaLFE8shHEAVFjYRIo0VAIijTZahxwadLYV8kQAQyDoCoFAo\njMa1wSIu/slj0GPCwqdHULB49H/4PG7/7eeRPyXK2c2/87xsjawBMggczZHYDqMal60bi/0tm3bS\nJIeI6iFmRKIO6qawHVHQAIAuJNGzKoCyL+2jEyFs4G7HcwZgwI7FpkxXCCFOE1DhklqyT3w+uaBE\nlqFyC5WRhKUZtwKeAdAs/yxgjIJSFmWpsVdmGNsEO6aL+XSMvU4GTRZfGT2OOTVGSiX+1fVvwdWt\nJdgOw3Q1VB7nGKsm7oSKGPOhJLVm1kJ8wFjZlWhs0NkxKHsaYIIyhHJMMHMWzIRd08EX957GbtnB\nM4s3YJjx0t55vLO7hEd626DEYvCIBRSgB5KgO9kz3gaOtM/xyei9WmVa/+IhOYJStwuUEXWQ2zhE\nJSQh/qORbAowHDqFTll/1r0u7M6urJK70ApevxXCQfSpVZi1W7K6786Lk776JM2SY0hW7OUZ+gpZ\nlK7/V70e9NnTGHzoLPqv3kR5egmcatDLl6sdz779W/D2X1nAhd/eAv/ZS9XY5BYT9JnTdYWTDwM3\nRsbuJK1Iej9R9JNW/3uoPIUNHSQHXC4ElMuH5H10LkvY7/wI8vkUvT+7BDU3h+0f+BYsvbSJmz/+\nPB79/yzm//XXQCvL4Cg07chsx03gJVE2VTnJGsfUfk8SqE5WkdBOXRQm8ds70ma9Dsgy0gGQDqRf\n1YUFGY3RKeD2BzIU88DojMHIEhYuKiy9WcLO9cQ2N25XC0HWCtF/6iRUUYjygRmcKsACqmAJbTaM\nsquw+yjB9FhyG6GDebqAcg7ItgAqAWMVtssO1osF7H70UXSvvoN8ifFz3/hOWCYMBx0881Nfivw3\npwSLlEJetcRKFiDYET4T2XlchIpXJ5JhZFsl0iUh0VUO6JyRnwfYKgzyFH/4wnOYu5Sg+NAIp5Jt\nPP2ZPeBPvgrz73xHuOyN//xTyHYkd5In7Y7Fz4n9zKa/HH3vlYlxapSagl0rcFERN/Kh5BKr8vZI\nH2RvrouaZjis/F2vjByNkJw9LYtfcFFAeQGztl6pCxVNDVflIg/q+fLGGuiJM0G1Y7/ro1D/9qty\nHZdLNBnLYl156S0hvAcD+dstoKoPfxB88cqkKMXNrf27FxM9tTl4o525LF1Ukwn9LPv2VArU74HP\nrqJ84RVJcbO3h9d/6nE89fcB89pFDL/9O5DeuBk2jAnz+QPgwEmlHzi4VX7V78uWdY1EWJznTlYm\njWUHsvXk/G99TRpw/basbtxYc/F7utqazmNaPGWsMIhXarz8C4Dd2XHGQbAbt4UYKpzRjMdQb92U\nbkUpYQThHACG7MhwoPr7F7gRR8eOxY9XRsL2yO6ljgyYyxJqfk4kvY7Yok4G/eZ18MIC8NplaZ/C\nJUY1jfu1aPGwwJFFHKuHGr/vp97jIpfwTYfk/CPgfhfmtYshJ49XyfgBzYcg3bVMB0H0btc+TjOZ\nKLDkcfHQ69soHjmBpNetS38b1zs0pp3vnPKQjNuFQmS/9SWsor7IcaCk1ccBJ6cO4WJuxxpReiVh\nG1Gwfw5WEmzO9UVC/YHHUCyk4nS6rXn1mJEMLNJdBTKA6QKrX2WsfyRBZ5Ow+KbB3jmFbEch247C\nopJEdhNLFFjrsIIJN/dRYwNVEMYnEpQ9N5krfcJmjbe/H6BuDk2Ma/9Jjk46QKoNLBM2ijlc+q+A\nj52/jeeXL+Jn//D78PnuU/j6ixfwzK99AY+vfQTbT/Vk5bQwUe4ZcaihKKyqsnJuNFfOOPsxSrnh\nKZEQJj2y6G5yIDxsCiS3NTYHPewlKZIh4bv+xpfxwytfwsvj89j9W9+BW9/KONPJ8dovfBx0mzF/\nWUKfOrcjpclRoaZE3M+nx6RSyP/tiSIicDeDmevAdFRtEmM6hNKnBxlJXqjxCWnTbEuhKFOAGOmO\n2BOTK1dEuvif5MLUJMrBhQqQAmmAiWAT97w0RHnEkK3nUwYbQtY1YAYGRYqdsoPFJMXZ7jbmdI6U\nDHZNV+ypnMfYJOFerMmRgk79F/ksIcF1bB+N0F1yB7IVcivdMch6CmQBOwZUTsiXFTaGfVxKVvHM\nwk1c6G5gRe/iYtnHB3o3cXNhHq9snRG77DD0roIeE7JtQI+OUbzslOlhp0IXqlLlBnIgVQ+XiMPK\n0lT8uMfOA9u7QVmuul2ZdHSkT+LtHVlYcNfx40dy4VHwYABzcy2EUPvv7WgciJ8ATzS5iZCfHIUd\nbgHAWthbG+h9YQc2L6BubQrhYq2EkSzOA1+/hAtfGUPNz4GeeAx2aQ72hVew+WPPY/cC4YlfvQm6\ntTGp1p82dkfk/US+iXCeEfNLE3hSS1Tz4jerfh/mQ09Ajw3Sr78N6nax811PYbRMWCoNzvzmZfBg\nCDq5Ar69HbacPhYQyXNIEiE/9lMkJhpEndDPhLApSFgUJQns7QHo3GmUJ+cBdqGnWTVWdTcIqiCs\nvDKC+sMvIzl3Fu/80FPo3rbIbg1Qnugh2Ry6zS0cudrvinpL+3sCSJQjdUuQUSjnNEylzoNNGbuP\nMXafYNxMNag7xjAzUMRY0Aa38z46ysD8vXVc+7sfxGPzV3Ht9iK6WYHdrbTmv5mOhiqtKFMbpEdM\nDEG5/sn3O64vJ+bQNzEBemzR2bIgW4V+6xEhH2vsqg70nsLguTF+9vlfwaX8FDY+NIdTt54CCLj4\nj5+HMsD8W4yiLzu1BdXNUaKhANrX7wvviw8xjr6L5see+ClvVLuAiF8kfpJXAOnlJQm/AoCT58G3\nt5CcfwTl1Xcqv7goKyLHRf+wRSUA8X1flMeIy6IiZ4hAaQL14sWwYZL+4ssizHCsn5rrY+UPr4gS\np9OBOnsatLMHTjT2fviTmPvMF4CLVyQP8JT61nYPi/6+UwRC7XgXtcPDodR7OIQigu3IBnI+ncv5\n36/8+qXPfBmsZFdijEaO0J5+uyYeWkJI9bqwe3uizvHhUF4h40M3bt+undO7MQq7c9nbW9CPnJFV\nfRd3PUHGBFKlPgjX/vbJ6ZQjWIwRya5yKybWQHXmgMVFmLW1ahtorcF5DjU/D7uzg+SpJ3D2C0ZW\nke+E/QabqOPad/BrKIU87NCpmNxWnLy7K4xlmgYiy2xLHiV9YunO5WvR4mECyU4tlGW1nD2q25Ud\nDRyZ3Mzzw3mBwUfOQ184ATS2Zw/Odz557tQixLsCAiFXQy2sbT8VkUuA7Qcc30eVl94CXXprf6Xp\nu3VqXX/kV2wm2qjjth91q9v73U8k7QrYnvr10SKWJkfPg8syxKnXxgdf504H5tQyymdkkE/2SoxW\nE4yWFTgBtvsJVMGSSHPHYvlL11G+eRmq/CTKHmFwSmO8Asxdl/EoefS8hAUyi9PEWib2zADcjkRJ\nJk6bD62xojrSY4IqAVM69Q0xmAlJIkTQpWur2Fnp4JtOrIGZ8McvfgCdD5dIl0c42d3FyS8pvPGL\nH0V/bgTzhT4WLzvH2TnEcGofyKXFsfY/XagYlXVFCghg+Q9kGclQwvHIyG4z6S5h761F7PYN8HiO\nL924gLf3TuD6zgKSH7uFJUtY21wAjzT0mDA6yUh2Cf0bJhAeRw6v+AGq3BPA9Ema/y7KM8RawfYz\nsFMGEQMmJZhUcgfZlIJTrnL5Z7oMNSb0rxPyJdmdRy2Q7AinI4LKsiSYhgYTh8kOALcLE8GmBNby\ngd96XhUEHmhYS0DXQKUWxihobTHMU1zZWUZCFh1VYjPv4ep4GYmy6Kscm2Ufjy1sYD4b4w0jPgQH\n0qwKxQht58BEzot1xBHg1E1RezGgcotsVxboyo44+8keYf3GIjY253B58QQ+duYKro5PYCOfQ8EK\nt0ZzeOvGCrCdItlTUGO30j/men6rY4DfAapmOwD8Vum1kLH4PGOg5vqgTgYe58CVazCjcSCDbF64\nCYR1OyAWkhfoQ09h9/E+Fl/elLCh3YGo3LNs6n2kLPKc6hux2Eql6vrC2tilNVC4514Uks/Dqc5B\nCmq+Bz53GjQYwd7ahCoNOM2wdGmE5dcssLFV3Ssuh28XoE4WTfOHo7L7MsOYUF5YaXfVl13R9PqO\nkPcnlsCJxvzrW1j88wF4a0dyfQDgG2ui0nJ5kY4cLtk13EI0jK3CxAIxFpUr0Y3zSZ47AHtiEfbC\nSbBW4ER21Rovino1XySMlxV0zkiGkDw8AMpr19HZegLDVYXk6UX0ro+E7On1AP98C58LLBpH/To7\nOwI6JQmnzhnpHoFYIV+2st19YkGJRbdbgBnYuLqM26+tYPubr2Nn1MHu7T4SZbEyP8C4TKByhVt/\n93ksvF0g2xyLEqm00pV48scTP8p1L0bYaU8M+U7JK23hwslkh0yLZGCdelL62XQPKG9kYJWBE0Z3\nfoz//hvfj9vbfZTfnePW9ywDOzIGUA4MTxF0DvQuTyqpjwRNIsgrW+JUJE3FkCMx5Lx6+gUuS5gb\nNx2h7RYpnb/rc1NSkoB6PSRzc3jzP34CF/7bz0OvroSQLhBJ+pZbGyExtQ9xrN3Ph10pAiNS5gCV\nisgYF44q4Ww+f6ean5MEzd0ukCahb+S9gczTHzmJuc98AarbBWXpdEXU3RZNm6kqomNjwpzLUgjy\nXlfmGYMBkrduwvb7oU/p/e7XwCE3UVm1JxFUvw9sHexxP5SEkCSbKiY7e1LVdstTVgaTF9+EIclS\nTp2OOEVzfZBbIbF7d1itD0y6e1l83GTDICT5NVeDkxfndCQW2uYF1GgEOnMSfOlt2WbTxXerku9J\n/jW1fLGCqZlkOmorthxeqJDk1pObw5GsUmktq3iFd2bNHSXMLVrMFKaRLfe6Y5cb0JpJg4MTC0xc\nj4scZm0Nnf832itdaSSPnQfv7IZt6IPEFAjvb8gZ4dSHPty1fvPGSmgD1OlAn1wNu8Z4IsvHdqt+\nP2Q7aSaxPxTusKoUrt0YRKe16TTFVBzCe6yIQw4ojTr2KhEsOcWC5PKQncjUqdPAyhJszw3FDMnt\nY4FkJOE/Rd+pYRJgtKpx+wPncfrLp7H7iMbwDCMZAMkAKLskyXeXF4ArEHsxsuLJWks4UKLc9r2S\nQwjkJ/QMVRDSXcBqhaKUkBoQkHUKEDE6iYH5xjLWT3aQPmvw5KlbeKeziCt7y1hZHGBkUhQLhG97\n4jKu7CxjyzhyR6GW84UjIoRKKzkZAJcnAuCUhKhRcMeSOOIkx6vcgjJxlG0CdDYJ2baCyRTyZcZG\nsYzN/jx4mEDNF7C5RrKWIiuAdEfurXMhwXjaCvn9RKwMutOuYjHiY/w5WQqbaRfKADCqVVlVAMmQ\nMV4i2A6QLwOcVlsg50vs8icxwDKhsy6Rd9iNyBh3XxVWzCVcQo73yh1diFpLlQQeewWPEkJIuXws\nLDuObe/2sDXs4umVW8h0ia/ePo8zvR2c7Ozi5mgBudUYlinIL7YqqpRiTg0Ug52CyCvOArln3Tn+\nbzdBSwYSeilzOEJ3nZAMhBjdW+zi97d7YCbwSEP1SthSgbZTpLuEbMsTkvLv2PwcY4L/yMa4cBmH\naGesmICJQVpLaBczeDQO/a9aWKgmRlkqixl5IdfMUtDLF7H41hywvAj71tVql9tUdi3j3IVTxT63\nD6+OyRRyCa6LEqSshK/1+zLB290TpVNeBLUTZZlMuub6MJtb0GYOvL0Ds7cn49RwCMpSpC9clPqk\naX3SGifatpV/PlEuV95K4VCfrMmxHNrX15PzHMhzUVylqRAuee78Z5LFiqJK5K1WV0AbR08ISY4W\nVx+fJ8yykEJNgipWhUSRBLy3B1pegumnQgaRvINkGN3bFmSB4YqC6QLFgpyXL8zhpP4ITFfj9jcp\npDtA78YYes9tpjA/F8L9yFhJXO/vrZyCFKLe4VTJezwCbEKSJH/siGgNILVIUrF7pRjZmsbCZeCt\n1RWcPrWN7bFC+QeruPp0id7pAfSQsPUMMF7OcP73hrCaoLQKY4IsUqA2fnGqHFkEN355GwGo4Kq/\ncu2ocwseusUODdAWQ3v+a15hlC9ge7wIbQGzbMEJI9sU8jnxPGgp96c0A96lK3ZoeNtp7ix2J7UQ\nUOt//OZO8jFXi4FAWJT0vqzd3oEdjvD4ry3CQnLj6pOrwN5eyOVjRyPZOCO+T0P0AUhfSFkGHhs3\n703c3/Xk9yE/WVmCH38EuL0l9w3huSPYR05BbW2HscWOZEfUO7bZNPgyTtmFLcAaqZY/xu1+xsww\nm7dlt7TBADQ319itzLoUNHcpwxTMNiF0yLAEShKZKHhSJsTtQVY0ohUH8hL1UraNpCwTWWieu20X\nixDK5cO3Ahoy5XpHGh3mJ3DhnpCH1uuBXfgYb2zKfdx2kOPHVpBcfEvivPMCsBbJ3slq+8t7RWx8\nvmxxwq/mAOCJrYgZDoO0T9hXlmKkjuTy8ZItWjwQmEaa3AsZBNQIJDU3FxxNT1Q0SYyYYNEnV4W8\nHgwBtigvvVW/dm2V0jkk08K37hE8HqN851olz/3gM9j86CpW/uQ6eH1Dch2cWoLaHcG+9mZVlnvt\ni+802O1buP2P3Td8jip1wLEhXpViWyf9i7LqI9mGhKVsGViYg+1mUIWFHkiC5fFqR1QIBYMVUHYl\nh4LpiMqjf52QLyiMV4G5q8DClRJ7ZzTSPQs1MlC3d0TNXpagxCWJzVIgTVz4loYaleBMwSQKyVDy\n9tiUMO47JUkJ8JhgRhq5TjFc76NYHaJYZJx4mbA2PIPBBzeR/OYysv9nAzf+m7O42VnC2TWLV371\nORTzQOom9lQ6R19XZIKfSLAjNaCjPA2q+t3DhygBBD2WsZT6MhamA5YcSxmgDEHlCVgnIAPYjgZr\nQI0J6Q6gfIiUBYYnp6sojgzTyKC7EUTMgE5ge6n7GyAwGNJeqpT2S4cSamCdzdgESHMCFUDREUIs\n2VWOGJOcQHAJfgE/OZOEruT05gRIPifDYq+5TJiopCqhNIQwsYWC0QrGKLAlkGLYkcbuToq3E/ER\nNm8tYOtUF3aZsDaax7BIsTXsBqIuJusCCeUEQ7KKX7WX5NiI+0tEfo70Xaq0SPcMQBrKCBFq9gDW\nLuH2uOfqDphuAk3yuR6Jwgos9kPHFS3myGTyawQaEpoawgui7czdbl4hPtSRHdTriepmazssOKiu\n7NbDRlIsyHbIVQiEHY5kV80bNwGnUtDLS8DJFWBzC3Z7F1BuKqEm36kQEsZCrHBRhhAz2DKEYVGa\nhBVvP3nkPIc+/wjs6iKSNAWPc9jtbRlrz50GdvbAz52D6SSSZ+yNa8DeoMrTBkSLrxzCdyfIIBdS\ndqdQTn+dWvimdSFkRQlg6LaLdioEkjxNsqOkloTTm1tgu88E8n6h5scT4Oc6cQqMplrBw88LxjmQ\nZrDzfZCxMgkmQtGRsUqPGayBZCR9fDEP2ExI5J3Hu1AG6N4C+jetvNuphtoe1udUpZvw+kl+aYSw\nshYgsRc9tLCOGLJODUkGUCOC2U6RG1XYXpEAACAASURBVIV8pKCHCppkISW52sF6Oo9Tf5zgxC98\nHks/9Enc+PcVVE7o3AbmrlkJaQaq8FnXDtaFrsoiCur9DRE4FWUtE4EzDeUWYERpRFClRTKQPsbn\nWuM9IYeYCF1Q6Ms6t1weuJH0oXok56mSMV5UWD59UhZ6jgqMqX5f8GGb3+2nGvKXc8RJ2GXLp3QZ\nDGB3dx2hLIucdm9PdkDc2pXIQbfDLAC3DbtLa7Kz27gJR5Eutkp9UpQ1X93n5PH9AayBWlgIi6Nq\nfQvqicdQXnoLZmsb9i9+K9Qffhn85ZegHz1fi8DiIhcVpV/cbNZ/2iJzk2DbD7Ea1lQhmzBGhBmo\n5gR+q3pKk5oS0S/0HgSzTQjdK5wzXiODYgmZNWGrOU+CMBOU2z4+dN4AlEscF2NCitpE/DLYxuDi\nDICyFHT+LOxFSZTnk1UBkCRWgKgHri7BsGzv7kNAsjdvwsYDrl+VPugkdhqL6u2tGSsa18evkITL\nuMmpy4cRBkprqhXGFi0eNMQrh8DkoBZ39PFWjiTbzcdqFT8QNUmMeCA167cmw71qBzsn9V3UJ65D\nclZCksrrN8L9AcC88hoWX3mt2jZ+exu4JDl7KM0mE+IdFPdKru1T7omvm212XDkZYkS2U+Xwl8lb\nTAZJWd0Y0+2A53ugwoAGErZBqYYeWeQLWrbxNbIaSgxk2+JMjk8AeqQwf5mRjBn5gsLoJEEVCvOl\nFeKn45x9K7IGygvZ6Ucpt+JpoYYlqNTIF32eO1QJM0tC5xZBXVPYfYpw8ksat5+dBxSw9YwkEt7e\n7qE/Tyiv30D32tMYnzK49S1SZtaMzobfHU2BjIHtZG4y4J3vSvURVmU9ueeEQeEzC3gpvzJWVl5d\naAwrgBWQjAG9LivG1ns2blcpJiDbZtjUX0NCGo6cSPQbRRBVap84yavFdFIoVliliUxgGCEkQxcI\neYRsCuTarZpbmYiQZpiOTJ5EKeTaQkuomVfR+Lw0ZK0oyogkRMapg6iQSZtmBmuCyTTIK2eM3E+N\nCVQmonRjIVVMl4FMFGe7gy60tgAx9kYZXt04hXGRoiwV8mGK+bFbkY+5BWcPnvgJK/HRIlYQy1jx\naxjy3sD9o1ISkzMBqlBQHXI5s4Tw0SOxG5/gnF1ualghgmAlVMWTaEeOmIhwiPvBQAJ5YqhGeAgp\nQURhkxN94oQQ1EVZTSC8/0ZK8mv0+zCbm+CxEWXpuTPAOAevLAE3N0TV45M0kwLbOjkVwoF9MmlP\nyPgdFtmCSytqAZgwuQkKW2bYrW3QcAh0u4Ai6Gc/gHf+6mmsvJqj+6aocFgR1LgExuOgnvLjJ6Nq\nlxAZ0GyjWOHZHOP9zmOWARjAuC7Kb0Pv0jswc1Bfwa3kUyb5lexwFBYGDrrjz3uGaLt5Dwo5hBrH\nNeYrXkmGspTdmo0B7ZZAoqU/mM9gOoRiThRDJpN3Jt0D9AZBD10olZEFDgDYfqKLuWsK3a0B4Dbz\ngXXt7sm1NAllo8JAjUuwERUoR7NWskCyS+itM+avWOw+4navvJjj+nd0ZDdOC5hBgqLv+scEMNf6\n6G4D6Y4Q53sX+ujdzKUvc8SFSVVQKXLi5kFufAx9jSIYJeMJLMPW7Er6ZyLJfUeZgsmcUsgC3U2L\nYkwS7hZIbiGIVMHQY7+BhBD4Rz638uRYU3HjiY8J/9iFbTWUL/E2655w9t/bwSC8Z1xIaL0nZszt\nLSQrJwBANmNy5BGXpezGu7dXJTmP5qpVipgqyXX8XgsB5PxwraEySRRN3S6S+TnZzassYW+uB+Vk\ndmUDOz/4CfQ++0XwOAddX5M8oHt7MLe3xPeP59Cxr9xMEQDs7+NODcFzv7pcn4AnxaQOwTd3XAcl\nXdef18P1DoKHihDSi/OSiMo754UbxYHQ0ZHWQKcTQq+Uk575rOeUJG5AscDuHtSZUxPbv98RjYdJ\nSSKKJZc4Ta2cwOjCMpJvvCFl8bGHpOSBu7hB+8alkOUccKs03AgZsz65IAUjVHN9GZyKcnIyGcv8\nPIsalTPsMDFVBhg5Gv5v/6tfbQH23WK5RYuZB08mXW5+H9DoaCeIn3hngQb06grsk49Av31TyBkA\nUBp6aRFIkrDzYcBB1DnRMT5RNGkNfeokdj/+GOZfeAfl2/ssL+0T3gqgXo6DDC5Nh3K/OtypTnep\n60SbzoJCCAg70sTqIADwq/rSHdvgOHGeQ11bB1aWUK7MQRUGrEnynewYFL0EumDQroSNmQ7h1JdH\nyJcTDFY1bAoMFhVsBwADyZhhMw3V60AtLsrkpCwB7bZLHudAlgIgUF6C+xlgGTq3KFkSLac7MhlW\nJbD6UoHOb/wp1n/ieZz4+gDLbyhc/0QP41Wg7FvwIMHgEYvX/sknwXNjoFTIzxpAM2gvQXJRVaoN\ni5CXwYcdkRFSgbVI7yVRJ4fvlNvVBYSQa4iYYV3YWzoooXOZJKiSXDgQg6xTGLFMRqyf12lxrmEZ\n6YDdTjFHbDh+QacRjhHAHIblWn4Yf0yiAS2JVqm0MgHx5BJRjZxJhjKpUCWFpOHSlsLxQEuoYTKW\nnXy4k4LGrs/yMng/sdbK2RNBKbmvKjkog+R+cM/BFb+kkLco3SUUcwTTt8i3OoBioFQY5BoDQOrM\nBMoJyZBDWGNMCtpUwXTcZzEJFYNRKUL8cf5aCarQsYJBRkFlYo/JiKFzsSFlWJQBQCAbPbHkd3HD\nceSeikKFm6FgnqyYCBlzILeyTP0edJoARQm7u1eFbLhk0nY4dIuhohbzK+bJubNiB6Vc17zyehgP\nKM0c4R1NzmLfs5FDJIRyxQu2Lrk0uZxwamkR5swyiuUuOi9cAg9H4OFIVsc3tvDIL22KjRoDunod\nia+3ta4sUxZnpyWUrhqw+j3aJrv2jjoFUfDLSUgVW4xD+gQAbsIbrez78Lo75Ha6r0i0tJUnTj1x\nBdTrN2UBG0DYBj7p9yXt3EIPnCghO0rrcs+JOlEZcmG8jM6WhR4ZDM6kGJ5UKLtAMU9YvGyRbY5A\noxzo9YA0C9EGIBJ1IkrXV8qOdEJWC1FinCoo3WWonJDuMVZf2Ab/2UuYe/Q8hh86h+6lW+h80zlJ\nsD9nQQONnactdv/x87CZTLJ3nxBmTw8UVl5S6Dk+wyYKyoUmsyIoy0g3R2BNyE90wYlCtZDu2khR\nJV6M+i4iGcuSgQFGBmUvkfxuDEcMSe4lVYjiCRBVsHXhanokfY4+jlAxbwL7+WNNHy5+v6L3idJE\n/FGX/8YTI3GeTX3ihBDPLmQ1ufAoyrevoLx4yaVJqPd3Xh1jdyOFUKxwC79PpkfxO3rDRQThqUeB\nF16BWVuD/tA3Qee5+ODGgJ1yyd5cR++zlwGlYTc3a/1YTY3off6IlAJLWCwbAxhH4OznC0+rQxCX\nTNmZLJBwVairHY6q/u4eF3FnixDaT7Z4QIRVBzRYzOi6Pt7Z/+1XIsyGxLGGOGMAUB3w5paEix1E\nHTTt48bkpXz7CjrdDEZpCd3wW++FZWUXN0iEaica9/cINSnvxPVdNnJXkTuWqzISO7WcU+sVlXG/\nz9qQsRYPCvSJE9UfbMPkS7YLd6tq0xJUykGA2/3EO9t+K2BKkvpKxlAy/VOWIihz1m+JIockKTUs\nVw660pVT6u/l792cSE5z4KJY6PLadXT/1fVK/TNtlaL5d6R+Iq1BWlUy+CyVSTszqN8DlhZkNe+d\nmzKB8M6vWyEFENqVvCzbTzbdynIzpHY/cioMivFHSlZ5cAwbcNTgV6OjBfn9j636SntrA2o8RrKe\nSbhwUSA5exppmqD/GsmOL3tDWQXvd2FeehX9TgdzH3wappdC5SX0zS2Ub1+B6vehlhbB1sJub1dO\nv18dVgqkxYFBWSLZkMTdqVLo9LuwC11QYWDmOyh7GrqQSpz57BsYf/MFkGWc+dIINpXwMpMpqMIi\n3SuRLyUAQ3b/6mmokjH35ibwxtvyLrA49npuDurkCuzSHNTuSEiIbbfSV+RgY8VO3Fa0frc2ShK3\nOw5JvVziWyQJoJWExPn6+tXreJXb77RmXRjUWFbXqDi6BQxmycMxkTsoThod/z7te61B4xx6x4VQ\nRLu3JbdTdK+nslV3YSQ3EzNsqmH68nxMR4VcTaqwSAYGejeH2hlI+M1wJL6On+B6NZObcKskARIN\nrRSSRCPrZOgtdGB6iZB1WogbuOTgrF04GTM4IZiOgk2kXKpEUOIAkOdhGb0bI6Q3dyK1irwHnCUw\n/VTyaZTuORZGnmmMZk6H2NlmDgoATqUuXv2EpJ4viZwKqhYGVVoQM9RafUOS+w1KE+Ajz0odjOyc\nhtKpuGy9v4zVS353JPmCALf5B9IESvUAPQ9K0zBJSRYXwEWBZHkpPHe7uoh8oYPk9gg0zkGlgX7u\naZRLPSTbI+DmBnhvr9p9K7Jdiv14rWvhVMGee72wmxj1e7j9bWcxf3mA5J0N6HdciOvCfGSLzuZL\nN6nzeWcAUbLMz8lnWshTGAsuCsjGKDqEb00FRz4A4MLC3LHunBD64sY45eviw/LCzsLRmBa3ycbR\nkkI+1OZdX+fqtWoinxdga5D0+0jjCbHPKzoah7nVktJIzp8D0gT2+k0ZDwDxSXziXJ+TNA57DGGF\nFpSmSLRCQgrdTlY9w1R8qvLKVSnjlavoZSk40Tj7e2vSbyQuZ19eAqWRscLtWslucUGtb8GsrUu+\nVH9/ANnCAlAUoS5ZmtX8oRq8z+jPT6rpNTODtEKaJGLztUgPVX+H01TslkV1BPduhsXDIwJrQnLu\nbBXi6N8FT3g2ienYN/M7H5Yl7O4u9NKiJGlOM/EhjYEdjWTb9G4HdmcHenVFdlIzBjzfQ3LurKgD\nOx0Z58sSemEeGI5gHFFNutrWHUAjPy9DZSm4dE80FdU0EUEtnxJiJ8+h3ryK8Q98O7qf+yrsG5fD\nMdRzGzwxA0pBnzjhEumnsvP2aByenVdkS9irLPaRmwug14Vx28AzKVHEaV3tTOafv7Pppn8c6pUm\ngK3mBZRm1TH7pJKRPio5sH9MPM3xPmIQ0RqAPQDrx12W9wgn8fDUBbj3+jzOzKfuV2FiENEOgFeP\n4l5HhIfJdmbZbto+Z7Yxy7bT9jmzi9Zujg4Pk90Are0cJR4m22nt5ujwMNkN0NrOUaG1mwPYzUwo\nhJj5FBF9iZm/7bjL8l7gYaoLMPP1eXWGy3bPmPG2vifMcl3aPme2MeP1afucGcWM16W1mxnGjNen\ntZ0ZxYzXpbWbGcaM1+ehsZ0Zb+d7xv2qzzFvs9GiRYsWLVq0aNGiRYsWLVq0aNHiqNESQi1atGjR\nokWLFi1atGjRokWLFu8zzBIh9HPHXYD3EA9TXYDZrs8sl+0weJjqM+t1mfXy3QseproAs12fWS7b\nYfAw1WeW6zLLZTsM2vocHWa5bIfBw1SfWa7LLJftMGjrc3SY5bLdKx6mugD3qT4zkVS6RYsWLVq0\naNGiRYsWLVq0aNGixdFhlhRCLVq0aNGiRYsWLVq0aNGiRYsWLY4Ax04IEdFfI6JXieh1Ivrp4y7P\nQUBEP09EN4noxeizFSL610T0mvt5IvruH7j6vUpE33c8pZ4OIrpARL9HRC8T0UtE9FPu85muT2s3\nx4/Wdo4OD5PttHZzdGjtZjbq09rO8eJBtZ3Wbo4XD6rduHK0tnOMeFBtp7Wb48Wx2g0zH9s/ABrA\nGwCeApABeAHAh46zTAcs93cD+BiAF6PP/icAP+1+/2kA/6P7/UOuXh0AT7r66uOuQ1TucwA+5n5f\nAPANV+aZrU9rN7Pxr7Wd1nZauzn+9mztZrbr09rO8f97EG2ntZvj//cg2k1rO8dfjwfVdlq7Of5/\nx2k3x60Q+gSA15n5IjPnAH4ZwA8ec5nuCmb+NwA2Gh//IIB/5n7/ZwD+ZvT5LzPzmJnfBPA6pN4z\nAWa+xsx/7n7fAfAKgPOY7fq0djMDaG3n6PAw2U5rN0eH1m5moj6t7RwzHlDbae3mmPGA2g3Q2s6x\n4wG1ndZujhnHaTfHTQidB/B29PcV99mDiDPMfM39fh3AGff7A1NHInoCwEcBfAGzXZ9ZKMN7hVlu\n5wOjtZ1jwSy384HQ2s2xYJbb+UB4gOxmlsrxXmDW2/queIBsZxbK8F5hltv5QHiA7GaWyvFeYNbb\n+q54gGxnFsrwXmGW2/lAOGq7OW5C6KEEi47rgdq+jYjmAXwGwH/BzNvxdw9ifR5EPKjt3NrO8eNB\nbOfWbo4fD2I7t3YzG3gQ27q1nePHg9jOrd3MBh7Etm5t5/jxILbzcdjNcRNCVwFciP5+1H32IOIG\nEZ0DAPfzpvt85utIRCnE8H6Rmf+F+3iW6zMLZXivMMvtfFe0tnOsmOV2viNauzlWzHI73xEPoN3M\nUjneC8x6W++LB9B2ZqEM7xVmuZ3viAfQbmapHO8FZr2t98UDaDuzUIb3CrPcznfEcdnNcRNCfwrg\nGSJ6kogyAD8C4NePuUyHxa8D+DH3+48B+Gz0+Y8QUYeIngTwDIAvHkP5poKICMD/CeAVZv7Z6KtZ\nrk9rNzOA1naOHbPczvuitZtjxyy38754QO0GaG3n2PGA2k5rN8eMB9RugNZ2jh0PqO20dnPMOFa7\n4ePPqP3XIVm03wDwD4+7PAcs8y8BuAaggMTr/TiAVQC/A+A1AJ8DsBId/w9d/V4F8P3HXf5GXb4T\nIj37KoCvuH9/fdbr09rN8f9rbae1ndZuZvtfazezUZ/Wdo69Lg+k7bR2c+x1eSDtprWd4//3oNpO\nazfHXpdjsxtyF2vRokWLFi1atGjRokWLFi1atGjxPsFxh4y1aNGiRYsWLVq0aNGiRYsWLVq0OGK0\nhFCLFi1atGjRokWLFi1atGjRosX7DC0h1KJFixYtWrRo0aJFixYtWrRo8T5DSwi1aNGiRYsWLVq0\naNGiRYsWLVq8z3DfCCEi+mtE9CoRvU5EP32/7tPi4UJrNy0Oi9Z2WhwGrd20OAxau2lxWLS20+Iw\naO2mxWHR2k6Lu+G+7DJGRBqybd33QraA+1MA/wEzv/ye36zFQ4PWblocFq3ttDgMWrtpcRi0dtPi\nsGhtp8Vh0NpNi8OitZ0WB8H9Ugh9AsDrzHyRmXMAvwzgB+/TvVo8PGjtpsVh0dpOi8OgtZsWh0Fr\nNy0Oi9Z2WhwGrd20OCxa22lxVyT36brnAbwd/X0FwCfjA4joJwD8BABo6I/3sXifitLiqLGDzXVm\nPnWIU+9qN0DddqiTffzJZxIoWBAYDIKFgmUCCFBgMAACQKjUcAwKf8c/yZ3jr+XPIKB2HYIcZ8Jf\n8rf/SVJOgBkgCswrAzDM4f5KKgQww7pyMQALkhpxdX9FjBQWRARmf2/5LiVAg2DBKJlhQVBgJEQg\nEFT4zqJ0ZVZgaMixxpVHu7LL/eWnYRXKS2AoquqpwSihULIKbejbA6E+k+1oWZ4TA2CWut64VMDs\n7VUn3xvaPud9CiLCNm8cWZ/T2s7DgxH2kPP4MH3OoexmLllpHMG1H/WT3X93U3FPlN5/cKfzXE9M\nNO0CUfH4ztdhdwz7azkoAkhVHT7b6r5E7nOu6uaPjctmLWDZDbqNMk4tEtc/p/CfuydV9WmeH45l\n1NvD/d1sIq2xPbp+hH1O8vG5dMW1gy9/PKoeEHGbBHD91/g5BFNqNGztElT7EcrWbMrmdxNf0OSz\njuvpn6EvT3z92jlx+0RltZEzRVTZrr/RfnWvHcvV31UBpyM+Jvp9aHaOrM9RSfbxebU8vajU+Gxa\nt9H87F5L3WzTO71fNZtuHj+lnaeVMzybKc8Tzc8ju93XZmn6OfFn0+y8dm6zjpNFmo76F1yURzq3\n0ir9eN/OH+JWLWYNB/Vz7hchdFcw888B+DkAWFKr/An1veI0kAKlCUhrsDHgogzOBGkNaC0duyLA\nmPo1/d/kJqeKasf7a8IywBZsDEhrUJL4MgHGgC3LvRSFYwHItYAwsLAxIEXhOtBaSAClAGvBxsp9\nbPVik3eUPFw92N2HkhSUJnJ+WVbXJiXl0FrqUZShvipLwcxVW5GCytJQjlAe5mpQBEIbAAAlqXxU\nFhNtTVqBjTuWbfWdbwt/HVKANfgc//PLhzKKAyK2nUVa4ade+nT1JVHVVu82HHLCCZ1yveBk3sP9\nm+dMg9KHr4MvgzX1z4D9P59WBw9v/8F5v0P5m47ZtO/3+XyXPzf9mu8RmnbzSfq0kHWdjtgzM+xo\nLO1DVL0T/h3x/Ue4oGuXqK1Cv+HfB7h3Kmo71esBROC8CN9RklT9hHvH/N/xu2zH43BP308CqL/f\nvk8xpt7WSkP1ulLP4TB8R50OVK8LLkrYvb1am1GaQc315Ba7e+E9j+sZ+qF+3zc0KEmkrMaAy3LC\nLlS/D+p05JpFDkozkPbtVQKuj5OqUtW3ouqnAcjE7Ic+ii/80n95ZH3OUucsf+rCj4IVgYyVPtZD\nqcrG/SR5Sh/Bqpqokmm85833QymwVtKuZsq7OO1v//t+941A1pXV2qq8/lhnd2RZ6ut+Qu1fHn9c\n+My1A7vnG+qrGgJlO6Vucf2a14jr6M+NrhmOLc2+ffnnr/7iRHu8l6jZTXqaP/XY367qVxpwIeNt\nc1wGAErlveeyrI7xPgBV9gNmeSfKUs7xfQJQt013nByj5HqJrtq12d7WgobyDiPuZ0oT+kiUJexw\nFPo7ShNQloIWFsC9jhRxnAPjXN7pfhdIE6A0oOEYnOegLAPP98BRuSkvQNu7sHsDuV6v5/oSU+93\nFQF54XwQ68pB4kM5v46SBOh2wIkGjXJpc9+WfqwmJf2PL4Oz71D3RINdW4EZ+YUT+L3f/Zkj9XM+\nUX73/bxdiyPCF/A79/X6tT6ne5Y/kX/X/n7Zfv7fXUnouxwzzQdVetL3rPX1ru+edsw0P/sO96ck\nqfrN+P77+dTK929m8tr7ndcsf7Oc/pr+3GllboxvU3937ZZcOI/ffPt/Obo+R63yJ+kv38/btTgi\nfJF+70DH3S9C6CqAC9Hfj7rPpoIBeRGVloEcCJOBAD+5KkqZIEDXJmJhoqJICB1HvPjjiZLI4XQO\nV5ICStQWRFRzytgYELtOyjkeXpnhiSLSuiJxtBJSxjsRfkKoNUgjTJzYKpCyFQllHGFkDSgRZyp8\n7iY9MjE01cTQ18E5MqH8isDGTaA8GeTr4yeL3gkCKsJHUSB9wnekAhkUnH8msI2cpojIitv1XeCe\n7GYC08gYpStbMKZexjt18H4QACI7a9TP3Ss8y9ipJyXHx537NKIo/i6cShG5eUDypXZfRGWn+nfT\nntG0stau0RjY7+RQhEmwu+Y+51KS1AmLd5/L7N5tx5M+jgzioqzK6icb7pn6d72qR8M2XD8AADAm\n2ITNi1rdApnqn6/7zvdZwYZISb/BQvSQI4iDzTli2L/jod/x/WQ8IXfPQ2VpRdBEZBBlmZBBw1F1\nvC+D74+KMhA7lCbSF5bVZ6rTkX7C91mOeJ9GBgGo3pkil2v6yZifgMX9Chxp78rO8TMBwO8u8Plw\nfQ4zqGy8y75vDosO7l1QNPGukkWdNHLXjK8fPrcW1HxPfH+uG5VvnCc3q+4/QdTEjupEGVn0g769\njRBGZBkwZXVtfx2lJskgf4y/97Sy8pTjpznaNHltuV90XFTnQBp5uzRW2ktVY9q7wCHsJiq7sUBZ\nVgRuTNT5rqE0ABfV56TkPfCLTkAgZcIiVfxux6QRYh+AhZxJXRsZA3ILR+H5eRu2QkDV2ost4Pwz\n73v4lqR+D9TpAIkG5QUwGoPHOZAkoH4PyNKKaCoKGQe6mTyviCijcQ4uS6lDkrj+uajsPklAiQaX\nrj+LiGny/YfvLxO491XGGyKSPsO6scn3WaUCdbLae8BWCF8qS1C3A06l/Xna2HtwvDs/p8X7FYez\nmzsswk0uPjRIm+bxwOS4MfVYNXkdtvVzJhZB7JR+X9U/rx2/f13YTCF29quXL1vz2mFM2YfEmlae\nWp084XwXfzl8F7VZrQx2uq9/bzjceNXifYX7lUPoTwE8Q0RPElEG4EcA/Pr+h3OYaACQATpWr2hH\nFPmV6Wj1GEBQ6ngljT/WnwuthawxtjrPT/j8NbiagJCiSl3kiRcr54uTxNXnWsukyTlolRNWkUgT\nk0rnYEmZHEmhKqVScG5cfUlFbWOlDrVJkZ94RfWNHTku6g5TgCeD/H1jJVb0d6y8IkVy/5iw86TZ\nu8c92k2E/ZQ51hFxRS6Hxaun8YqocgSj/8zGZIWtXzcmXRzRFJ6jNdU/f11/jh903LOmJKm3tTvf\nT/wDwdAsb3Mlt4m4rGHwju7fvEYgQWiibuE98hOROyG+JjC9/K7uE7ZIBNyzHrmGe7Yd8u9u/B7G\n33nC16sVA4ljQ5uSit73qE8IK/txm3sbc5MMr8aT06nq3zz8ub7v8cd6AjpuQ0ekkF/5bzg/QUXo\nSRxAVDlZJmUZj2tkGCVpIKDZuO/9d74/jfugWLUAVOqnqoJRYVyf7K4Z+ixHKgjZVNTfN99/N0kF\ny++WEDp8nzOV2HWTdUWivohIxarMTlXUfEc9UdF8z6eRJkoFdQeUAnsFg7/+NLLJL1TEzqa/X1ho\nqN+HSlOV11c7JqECga7qn8ffTatDU0nVPK9J8DS/d8fUFFpEQrTYBinmyQ2vgplSz0PgcHbj78vV\nOx2/N+T74HhhJlqUig6sfnrSEZD654WM9037AqR/iNUuQO3ZV89bCBWObdUY+RuY9J20hlqcB83P\nAZ1MjvdkEADqZOBeR4iUogxqNO51RDEEyGelAQ1G4NFYrtHrBjIYXgEEiH9YGiF9PJrvWQxfV9cu\n5Elof55XOvv3sPnYjCubU7cdW5/T4v2M+2M3sV93R9LkHvrMaSTGNOI//jlBEKHuh+9X5ua5dzt2\nv+/uVjdq9L93mfNQktaJpvgezTLtR/w05xyHx73bTssHve9wXxRCzFwS0d8D8FsANICfZ+aX9jue\nQDIxAZwz51bB/Yq5U6uE67vQUK3TpAAAIABJREFUKA7zl0oBUptQeViuyKWIAAkOUzzZ85MytlX4\nWHBYuE5SReqZsCLOPgQrCWRMPJEkP3HyTlcUJudXMq2TQAt0uJY4vFHYlqpC64AqvEtO0/UVe6+a\nAsBlEU3ikkpNRAqUUlj9B1CbiFbtg/rk2V/XKoSHcgjcq91MICY2ovJ6wg1AJSONj5kmZd2PYGIG\n2FQhPvsNoEFmGqmn/PWskY9jKapTMsUT3tqk2BfNkZ5ib9FqAkUhkc1Bt6b6mhIu5q8hjRiIjvha\n7Ffh3fWqZ871cvi2ZAOOyZAwETJg3scBeBcTtMPYTphoAJXazZU3JlxCW8fkHiH0Qc2Bn4hqpG1Q\nqQEhzCooh+IJoA8v9ZM/49/bipxTmVMA+XBUvxoORGG2eVRJ17dqDYzHFRmUJJUaMy+q90LpiIAn\nxKGrQcHpSG5SBOao79YayHOpmzyUmtKOtJZVf6cE4lzUQV5xWOu/KepLvC26NvHXCs9+ShjUQXHo\nPmc/sqNp00RAoibP8SoNH3bmyQ9/TqzW8IjCogL54kiRWthZk0gicgRAAioayp6YTHHXrsGPVb5K\nWlXKG1+nZkjbxCovVUoeO8XpjdsvsodamzXJoSmTdgBCkvljY6Krqe70E/9Dms67GqvC++pUcUSA\nCx2r7fqqCKRURcJYlox4yqlpGgS8+DFO0ZImYSEs3FMRkKbgTibtVBpRvAChbZshkCFMc5y7hY7J\nPppIrksL8+A0kWt45Y5WoDQNZBDlBWjk+qduRxRD7vnTuACKUvoF60LbvDooJn6Us5cy6uesrRbg\nPMGsKISNofQqIFlsEYUQ1+szJdQu1F/BkVIKhCk+5j3gXfs5Ld6XeFd2M03Zsp/6ZuqxUz7bz1+7\nk3Io/r6pkonPu1N42X73jo85SPnv9N20+8dwvuydMOG/xz4NTZkr3Yn4smZSDXwPaPucFgfBfcsh\nxMy/AeA3DnRs/Htj8lXL5ePUKWES7Sbmojiw1aQryi8RkxuATIQmcm34SRgcuRGFVVHqX0iOiJgq\nfIx8riAAIXzIOaGc51VIlVf7uLKGurp7hvAHN9HzJBF5h9HVy0+2SNcnRYEMisJRvGM1TekT2sav\n/LmJgtJpFToWhaXVQs2inEpEHD6TvCeHJ4SAe7MbD0/OkKY6QeGVPoA4/rFqpxbX25ikxJ/XbhQ/\np7vUc1osMkf3B6I2dZP7MiII9oHYUz0njc83My1meoK4iepQhdGZ2vG1a00dZF1Z/TvayH9Tq1/t\nPHdJRwzUzhXGad96HwSHsZ04BEkKREEBA9TbzZedtKoInTi0EIjUiBFxG+fDIUcaRyFn9T7HuBxi\nlQLH5w0Lecl83jIfuuqJHU+yNOri2zsOQ6QsC3l+AoHkCJ+gGASC0icQyI1rBTIIqPqnWoigm1i5\nOkFJ/xnnR/N9tCfKuelERRNoBqp+3is076QMOADu3W5Y1Ap+YhoTD7bqG4MKIiZRIpJEQsEa71c0\nyScfsjOF6AmhU81V1hjxtVy4TO199pPnmIwJ5E2jTbUOpE/szHNShROFMsX38fU0d3Dgm+RGFL4E\nRGWJw6CbRFazjcKjiggR71AXZXTvyWIdFPdsNwwhJnwZfS6f0lRjsYcnN4DJ7+TeoLj93IKUkDNJ\n9d5EvhMliRBBWon9AuH3mj15u/P3slaUOHGYLCkwi/IYSkHN9cFZWimMvMK5k4W8QVSUkjfIh4p5\ne/IklAsTQ1k6NSVVdfN+kQufD/Dhba6doFwuIBdSJot1FjCuj8sLl8OIqz4HCMQcuUU339407b16\nFwsX0fO757GqRYt3bTc1f+6AZBAwSWDse9wBfLhppE/zvP3ImDsRO9M+nxYC533sxoJq7Wdcrub4\n3MQ+ZQp+bvOawOTcIl4cjOcp+7XPIdD2OS3uhmNLKh2DSHJQcJ4jqArChLpaKY/9ABBVOYB8rHgz\nQaBX6Hgyx01eQgy5VwBNWWGuTVaCs6lqjhqAaOIcy7ypPgELZVbVRNMRX5I3SOLWQ5iFJ4+yrFqh\n8qt/AFS3E+5Tda4UFEHMHBItNu8fh6awqTuilCZVXZ1aIUzk/CXSpErMDT/Rs2CmO0u27yO8kmUi\nPU7cgcedcbOzd7YUT4wnznGd9YQCJz6+kbtoKjkSXzd8x/W/p90biEi6xuSgqVSKrhPsOyK9QgLw\nWn4KqhRKMUFWm5w3B2ZbtYkv3355kqKBLiabpiq2jgg+hApARJ5FucniMDJmUFKFmIU2Ygu2Kqhq\nJNeOa1dSoE4HHL2LIccXUD0P/y4pW71vjowNikKgUgUVUZ/lJnqc51VYl6+PI6+CStG/51kGylL5\nPISCkYSIeWVhUYTwMk+6T6gUk7TKY6SUJJHep88R0rJKjssml++yLFJieSWR268vJi/ZiiIybh+q\nFJBHjigJb6xQIl99Zkliax1R4kmARpLfQCaZKe976BdU/f1orq7W8rs0+qaYbInvH5Mv08ig+B5O\nyVQrX1DYOMKnjMNOI+c6/iwuk7+3J9aaRBUwnWAKatZGf9EkxuLyE1XKIUB+BypS5Kjg+puQ1Nk/\nt4h88DkKSUXqoTgvUCNcj6P8QZL8OJF3I66bv16aVGGFXJE+VJRCkrl25qKo5SMTxWdzAmODqonm\n+qL2AULYF1srZc1SIYqY5T7WSlmUkhxVRemUQU6l6ImfWNHrcwT552ci+4nqAeVyLCXJxOJYKHP0\nmc+7GNoZVR80ERJnWZR+3jaPx9Vp0eLe4O3Uq5r3ywUZfzZNHTORDyjqW5vKnYP6cn7hv5k3p3nd\n+Jp3IrCm/T6NDHJiggkSKL5XczwN/a+eXHid1g6I/NxpY7LSqNRCFbFPWlTXU0mp/VSxLVq8R5gJ\nQsiDGx1C2F0LgGOFqq+zzK0coTqGo8Hc585R5JJDp9U9fLz4FAKjmpxN6dQiMqiZxLUmV/aESZTH\nqCJOGvlKoslnLUeJSkI+EM5zyZ9RFkKC+c7RJ4gFqlV9rUEsE664LmFiFf9ujNsRlis1krUh4SJp\n1J1NACHUzZ/vVx/jCd9RY5r0ddoEZNrg5YibOMxmIqmzJzP8IBITNOFazYmWH3BiQiFKPu3zDYXJ\nWnSt/ULf4rrEZWv+7pUpEPKHy8n3qgrFrNR4tQThgVydMjjGCqvaoDZFEeTLxRaUZpXtxxO2cD8c\nKWICZWInqwah60Os/AQsXv0JqhrmigxiBmVJRSoFG5xelpCzDBCSO492F9R+pbsiYvxxXvFop5FB\nYbfCovbsVK8LALUk0p6AhiLwaAw7ir7ruMlenNTZh7l6NYcnwvy7GNXL55+qnr00gsoaOaZ83Y0P\nF67eCXaJb2XSXPW7bPndJng9HDyx39w5y3+tp7yvQM354zSZnoC5sdvXBAHkf6op94gJk+AUV397\nkqpGtLjzQvhas6oRYdOs59Qd0hxR5EmkqeFsgWyK+r39+uzIcWdFINSJlNq5TcfeWMCFWU2dABwl\n/EJNltUVUBGZFRTBPsePV3YBFUkRt5OJxhFHhIQJhfdJkgTQSsLD0qT+/EoD5IWQ1v5d9YqcOMwu\njP+ehBJyRS3MA/2eqODyQnYT82NdmlQhaV45BACdTIipNAGNC8kX5Psv3w8qkhxBRV6RNM0d00y1\nu2t4rv7vGjEYjWmZhM6CFNBJaj6lHG9DXckTdl593U7IWjyo8AsojoCZ2IUr7hOnkT+xErrZdzYJ\npGl97H7JqiP19YGImWZ5w2KGmixD85qN6wQf7h7GgqmRAdPO32+MCeVuLAz5X6eRTS1aHBFmhhDy\nqpOQGLrbqVa+86KaIHilT21XCcCrE2JlkKyUoR4m5lfqvXKiMamPPwsTHqByCOLtnb2CyNhABnHp\nYuBdR+VDM6rOtmJ+Qx4PokbeIFQT0/z/Z+9dYy1LrvOwb1XtffZ53Ge/58V5cPgQOZREi6RoypFs\nRJAhR7ANxVFi5YftODAcS3ISBIHlAHYC/wiC/EgQIXBgAwEcyJLsJKIgQ5IFWUwkO6ZIjSiREsXX\nDIdDzqt7unu6+z7Oa+9dlR9Vq2pVnX3OPbf79r09w15Ao+/Zj9q1965dj29961vzsDhzXnqxYPXh\nISFTEnvRMk2kcG+sayR0hZLr+Uketa3TKvDnBU88KVjYGK6SnevYCHf3/u/ZssEnAXXyY/wAkmhU\nEcK9hvN4EOyijwIRIMqvz8eGv90iOU1ZLga8nEXUNdgtY90AwsMS21Unm0lq2cjryXBAtk5QqsPr\nkmsfyYEuC41LGFg2hq+t1GI6JaOicFlk5rXrc0R2LCqKGPYVvMyIIXP+ODONwsvOG+fER5PvjPsX\n8n2RAHg45MFp63i2FYe1Cg8VgLh4A2BFCnkoHcWgGaQR7V4N+u5eJlPxjr1nfdAHJtMIBgFQVRXY\nhI4BZFNWo7VO98NnCwv3z8bAZNMIAFTFhR/3RZw90iwuupjRFhwGXCaH4Z324p4vRxQyb+UAC6dn\nD+FiHf0D1Y14ZgwkmxhyzGydrm9QnJeweiR7JrSJ+ExDfeU1Qwp5m9YDSFJty7C3kKbcX0feSwCC\nukLe8vvI7iWpt/jN1wsaN8ws6iqPzdrIDJLb+T6YLXNKZgHX3hvvqDL+edW1B4o8465XLmg1Eb9D\nCUqERAYW0F4kmXw4u2D12coDr9lz5vdj5zVQz4GqEuONX5gIIMiBdza0URoOHBhUeJYgi0hrt8/2\ne7BKOSC3buJz92wlELm+g+c3w0EAYZgZFL5xDr3lNu7B4eSelIoAo7XufM9wdJtsdNQt0x0jlT5r\n1i7juZcHPO2S0x/aQ3uwzPV9VPaiw4YofBdL5155qvVlTBtgEVQNfciKEKmFavJcl8IcIwm36jpe\n/m2z+Wpw4qZzZsnwSXXJRFTAKkBrTYfCUiaRHO+6jK+zCgx7aA/tPtkDAwhFj1bhBAo5UwUgwpQa\nt3jKwQ4gYehwiEYIeVLKU6JNAIIWBJa5LClWytfxCzsCPNXZADpOpqNIap2ACSH9qY+zd4U6OjSn\nbmbRVrdQLCPYUpbOUz+vo8c/hKvExaFl75UEnPy+/PlYTnWLbJHKXjwZcsbPSusIGLBmid/m9iOA\nUGdq8pnC1YnQgeiHRYYXJc9AohT86YjzlWXk5eZl5eGPXAZRHIwJnQNywqbJ9ocJ7pLwtSBELBfg\nQARu5D3mYWr5vS3zzIjnCHQAWlxeKKdjcmDTkK1c9/XUTGnQYOC+kXqyQPUNul8SOGNxdc9GjGwb\nFUPH2tZrxKThelSwaDeS7yoAzgxWs1ZZG8PH+NkFbTTBEgwMA2CRGQQ4cFproG5gJpO4XXngWim0\n43F8JuxtB6Inzbdd6pWun5XgM0QbA2IGRGReen+9AH7M54ihd0jKSv4WWiiB3WUNziwbhrVBrBac\n3Q1+4WwtyHhwZOEbVYsTS2b2iPAvao0DBroYPaIOMkwt/C+BgwzkkduY/cPpx8OkPAeRRKgZhx0l\nQBcv5CUDSVwrnNOIyW5eT7kokPcDD14kYDOlzyIPhcsn7Qlw4P9vWpxF47FNG0AHO/UZtQA3jg/6\n7llJVhDXnUEJY12IFWv9yY6Ts53ys2WNJ3b4tCaEOwZWD4fcw4NTRjKfuT/x37+fy1AVMxTSpIl9\nOYtIlwVsoVzV5nVIUx/YQf752/ncpb0fDkAcduZZRmGuwYBM0wB1G9tN1zgcsoDpCDpzn8jhZ3LM\nyk0yNQH3bfDfrMn0cIH20N4uZhHmspz8ghnjYS4o5Q1WpZxP5n0rwAprsTCZW4ctdFJMGevn1WsA\nN8HyuS87ao+o54L5c2SCkiMBrWS76e7Xjrru/bC8Gqvax0N7R9iDAwgZA1VVLs1oWcYsNH4fAKh+\nlaSNl4sHGAuUOgFlQqplASCFjD2AW1zw+awfIoUYE/FkStlBfD5RKqYqFmUc72+t9WlUTUDrQ7rn\neR1DdciHbvE+TwenshdBGyDx/FNVxckRU6flfXBYVwsfFtbzTAeZacwvOlmjRIbNZWBQ+K01CK1j\nBXWATKdt5O/VSJBEvItOBgubBEWkp4AHynwwBMTiRYVnQlqwkhLWjVlY7ATvB9N4+Rxf9yRTVLY/\nZX91UN6BGCbG3hOlxXkyI1m2SOxiIUmqMN+DuO84+Akmk9LZ8xALYB5sZZ2P8iDdR9MbI+eVH0/S\n5w4ASsPMa88WFJ5lISxv+Nsm5focAR5JwfpFT5qKoDGQiMzL7zJuN2F7wihkj7/XDAKwQIWmqgpM\nyZDSmc/r9Vx4xySCYapfBWFkx9KcxzoLIekElOT7FW3fhbBY2JkPr5NgUNAOEvfN/YxvSwmgy/0t\nfwMsbrvM23+/jCebRLD9nmDYmMiIYfCsq1lLxkoA8k1ctIt+JgnhyllEOagi+6ncgwrE42QWKQMw\nKMLhPRLQYdZQAHqkXpC/JjOUOEwuhEIJNlIAj0L/QclzCr9z0Cr3lOZ9MB/HzyNnDsnwORnurOCP\nO9224xJRtECr3Lc9j+NwqL8x8b1rDVQU2TUSDOL7LAq3CPFOkHAes7isBykhnlHbOtaOB3EC2MPP\nlLcJ3TcWrHbM5jIIUgemclk6wKdXAoUGNcZlFPMsG9srHTOo9dtnnv096IP6LowVDWdKE4CYe3A+\nbJ7F+Z3TjMPqA2jE8zMyIFXG58rC2PxsZDviZ5lr+vF3xqwurd0zhHmoIfTQ3j7Gc8o861Uy92PG\nPLoX/l3jyVHXXCbovKrsLuual3aNc8vGPfE7mU+sOj6vZ87eB5Y8J5P9v2Q8Xlb3LqfPWZlFHB4f\ngkHfFvZgAELWusF9OPChGbVbnPFEQ/swCBMHaglCJIKuIrtPYK5IYVL+n7Nw8IIseLX9pJY9h1JY\nWnQmztNfisnDMhZH5qknCkwWC8RFuUe1qfD72jaEYSRgEHvkPQAR9Ad4Aq/Fwp/BICFOm+uQBDDI\nAyqh/hzakocYSdYT+UktX6Moca9Zxu7GwvPxjCVXVZsuKJn9IztbGSomtzEI1CXsvNCxI4AuoRgJ\nmPDCsFj81GRGvRASSUgpo7ygCiGTkhVkxEAu2iEzf7rYTkJ7JbkPeZ+CWSZDNVMBQH42AviSg6Zp\n4+QCiOBQlwD3GZoajVyfM57A7O+nO7kN5GwoZh4CEehlZpAEK3KdsNAm+Jnxt1ikfRWp0OdEXR53\nvgujFZm8ZMie7/NCaBvfRlE40X5rHegjvnNVVaBBH2hbtHsH4Xjy/W3QJ/LvKgBFEuiTxuGwHMKi\nlGBA6PgdMBgkPYEZkG7mESiyxoLQAkGk2/eXZXE2IWPc3xoLNHUqjiwZGZlwcAJidAEcuU5Jfoxk\n0MjU9AL0CVpAefiYZP/wPgletdm1uAr+vhxLloECk9YFSMPRVr0TeU9cl2XHGxPZRVYAO2zy+RI5\nRgwzYYDFjFo6e5anajaAUnY8caxC5TW6fN9i53PHQFZu7LVlAegCKOGAuOksJNHgkCkLgxDDJNsP\n6xSFtkFA451Sxornor1ws3xOOs3u1bpvjwYDlyreWsew8qwbKkvHbuL08taCJjOAw2irnmBJW2A8\niaFivUF8Tzwmcr0CIyoK0jMrM2g2FuT7Rq+1xuCNZHszGMjfKM9tGhv7dTZj3PGI66EgCxDu4e5b\nwUN7aKdp5BP2LITny7WLZ5YnIUvyGLZ1gBi2zky7a3w4mRPAMbRbLIyhueVgVxdwJMeernuRtkzw\n+qj76wr7WlZXOQZ33Ycs4wyAoiCXMJ8fffBDe9vbgwEIEYEuX3CAZN0A40nIYMFm6yZ60ljfwIsK\nUq/sToXMC7O2TRbASdriLGzDeL0iaA0qHIU5ZAnyGkXWWij/oYQJiJ9kJKngQ+XjB60qLtOJJbow\nEArhbXy+mdfuufgsPAH4Ed50N5G0C8wl0sppl9RLOqOw8NIw01kAi4z07gtBbJDLgCaBtWQRC/EM\nT9tI1LFp3Bo7aEtx+JQHIwTYkYRPyY42F7lbECxfwmwhn6mMwb8sxfxCNi3pZRA03vTeIrAU9ufn\n+1CbpI78twQLAri1yFKBFOSWdSdKw+rkuZSyr0IIVD7Q+ecZ769j8bfOIvI+mBoOQb0ezHicZugC\nBHDlJiKs60PM4isKtAeH4ZkHkNeHf+ahiiFElTezXhkQRVO1T+sOIRYvn7HvH0wzjuX6RRORDd+z\nBDKpKGI43GSWADCkfagckVucMsNxMAhMzEQPrShDX0tEi5OEBEBVLq02L/D4HfvJBQNb8luVKaCt\nz1gm+1PWFXAgGaXnnLYpAYxwGA4gJtkmPYZNAjL8W04KJbix8K3bNFTGGFBtQsYqBoeYXZKIVufg\nkSxfXifbt0xoOgeDksl1Dk6JOiT3KJ+lLEfWiTLAixM2CObIgndVKYDE9aTekbxPAKdLEPLMzPkc\n5vDQbVLaiaKXpQdp3LdPvZ7L3BXGXBuAigCq+nsla2E92Gqr0oN7JoqBs/H8oGmDWHUYw3N2L2cv\nUwRQASIFGg1dCnkP9tjp1LX9ooDdGDp2kGiboY0XBWyv9O3RgOa10xoy1jGGlPLhYwLo9qynkADE\nWjBDKZhnBVEpEm3UdQTLuD2IeshzXbZZLdqPAZFnyTHYBDg2FYNkitvX3bz/h/bQTtmsDdmKrfUS\nD7y0kqAFC01Lp12XdmYXyNE1b8vHAp7L5g7jo9hIQLc0Qtd1c+AnbBeO1vzclY6LjnEvB2vy60Jc\nh3WUVoFEq+6B968Clu6nEUHt7sKOx97J+JAh9E63BwMQUgSzuwGa1aADC6p6blLkd3N6UNsaN+D7\n9KIBvfRaGoBYmLUCNBKaQQlwIRZntvYLLiUmBID/mMnt93o5wVPUtmk2HhFi1RVGJcWf5XkgBdWP\nIR3m4MB15B48CqK1PGFSOoJenLmMRVmZtSOEnxkw6EqpymF1bjEqPI1SYNkDagQfQiXYV2HhWvpB\n55iv/l6NQIHNEBau/GyInEB2a0A9nYS8RaZUkYWlRJ2WBU0hYHGQEB6HoEcFMYjJ86UINImwLQZl\nMoHz8L8EbQToGNllIkRH3k8OJHUNyBAL0+x+4kOW30KmseXLtMYfJwEzrvOSycSiFtIpz7K1hjk4\n7AwTi99O3OzCnUpQWaQAim9vJojfp5OR5H35bUkbU5QAH8zw4cxf7N0D4K4rwUQRwmbrJgWDqipM\nBs1k6kAWiv0gDQZusXZ4GACxEM7FC1DOpFaUUeOjdWmlA8jaNUniegUmSWQdJKA5tymp4cb9it9u\n29bryAm2pfKOgBzIOy2TLBRr/UKUF4vkQAgOrQpjj1+gs6Ycfxt5GvWcJZR7OqUGUQjtMYFBw7pD\nQdTZlxF+50CVLJ+y9wa/TzKg+D65eo24n6z+zBoKWkh8PX5uqxYT8m9ZNoM9XIYxi2XIfcsWCgBO\ndcCyFu3+ftoHer1A6pURmDGNE4WWdfbp3Dlle3iPrBnEv/27sfJ96qw9NW1M887ls4W5kW+7xrGq\nqF/BDirHwJrn2mQlbNWDLTWodmATeYcWqp5jObGAd93ATqYe9CqjPIC1Qt8HgglEQG1Fn2MiOKO1\nex5SHFz6EY34PvneJJjI21pE52GBtO0BDtjmc40FYGAl0+yhPbQH1BwL3bix27PcLGdoZlkKKRPB\nLCKpZbMKwGBbmAeoFECw7rvpcmiuLOeofV0sni6AJncIHFW27D+X1UcCPR3lhBC8rmt0/Z2VFYS1\n8/7oFI0qN7dVnOxESKqECIeH9o6xBwMQAqGtNJQfZKkqQVsbUaizbR1YxLHzYSJjIvDjVfN5kZ3o\nUiTCrRS9YVL/paSYDcx/oEG0lZlI2nm9wwJLpirncAgWi5zPY2iXAK9CuaJjpF4RaOPmzn6yKA/3\nw4s9opiuWYheB7NGlB+ZQBwSxqCT9IARl8UhYVgEoTjDGXvQArjkF3ukVdx2imZho66UMeH9uNTd\ntftdwofjQCzIeOHjgb7wLFMm0dKBJBwjwsIkm8G/twXwRpwb9GU4xFEylmTIWYdOUKLbY1q4cEPO\nJmPjtfIsYHLw8WXxvSXZyXhfPhjmAFfuRZKZ17xnJgKVbbwXvv8kxA2na8YsgEHhOwViu2Lj7dNZ\nDGdlwIVTGYMnAvFvIHv/bkfwUif1aSKow+namSVoZDYx7gdE5sOQ8p73i4xiATjxdYy6SWMYLySt\n+v14j9x/AQEMkppGtm5SYMtfM2EW+npR4cXyGQDkDCccEqtieBmsD1GjGCpLNgKufP+q77TTbNOc\nQdp5u5ja2gvl2kLHjEo8fjVtzHYV+kgRcrXKaxgAtoxdkwO4coHexIl3IvIsgZwuEMj/tl5PJbCN\nGFQQ54QsWPmie4kHmQwi0ChBJQ5LytLPJwBSfv8SfJL7ZD34nhkw65qAn8F4lT8b6vWcQHNZujAl\nBmD5PbWtA9z4PbC4cnifBCCGKFLTwvKsjrNucVvQ5IAa65lB1qZzBxXbIo/lVChQ34WCOeCz8e27\ndWBOX4sQMhP3+6xprLFlyWXVo/HU6QZVPacb5B1LCRiUhfGH+ZxxfRyVToCaSt//5bpRKm3TrMUY\nWEfcnwAIbOgwTkenWQDkCh2/63nt+9zTRBIf2kO7S+P1hneiM9vNtm2cGwMgXhvM5w440mXULyQs\nBT2W2rKQqaPAGNlX586ArjGmSwybwahENqFjmyxLAjL5dY+63yVlJo7BZSwoWXY2l84dbqeulQg4\nJmfTgLQCDYcxsQGbzMobzjkjJ91Du2d7QAAhQDXGeZeIYEsNlDr1lJYF0PS8EKL/cJrGeWZbP9hz\nOJlgxySsi1wsOt8PpN5GY+OinaI3zsrJCxuDAXJxIrVD8lAyXkxzNh9FsNOIBodwCMrqnAEVIR11\nvuj3dQ46HuwB4yxpfK8+1XwO5th8ssg07KD5YMKzCUDIGQgDk9JQuzsOuKuFlofSDmTzHVbURGid\nZ5G9kqwz5O8joN427ZwdWwEBQIQ1KZhhY1a2sDDnwdiXE8ChpknLhwCkQnrLFHgJYUiSjePrRWXP\nXV+CG2FCnIWj8X34fdFCQjoiAAAgAElEQVR7uiRNpgSn/D0lYJJkVAURbsGEQtYscrBLAkmnzC/r\nvF8RhmRFHDpxOBezERkEJM4CZtFFcAoZ39ikPpP4hgmIelyAe5ba94F17VlDmQeOv7uQqSs+TypK\n38fYBWCLtHb9qbUBDAKR84QDC5nL4AEbywBA3ofKshmA9+U4oNOzF7l+MgSIhaGtBQWPpQ3gPoyJ\n6bolECJ0jKxaqMZ9Ndu0aF5+BVQ6bSao9BuxZc/pmTAwr5RbSAKR1cH3wQyWHOTomkjnQJDcJ8Al\nW+gQ5hUEoJUK6cFl+vhQB95vF5lFScp3fzyPIZZDfto2AZ6S1PO86Of7l4v1XhnbrA9zkmFvC/dv\nLToZQfw8tF4Mc5NAEv9Wjvly1qE/ZjqDLgrfxhkQiZWikOxBvPsuy/cxWJQDh+HCYkEF+O+Q0n2A\nA3uY4VM3IdzMtsa18bKI7Yb3J21HO7yqdfut/w6o8mwj1g3iOrA4dK5fBEQmJQNjuTi01zyTIDvP\njxYAnPCs+bpZmIwq0naWAfcP7aG9bUxoioYwSyCOWUUR5s0E0SVa6+YVAOxczP86nBALjKAu6zqG\n55MLbCI+J79O1s/xvKsTfBLs0K4MusvsKLDrqHPF3DvYOiDaEUanDUJbC9Tz2HdWhWMMcdguZwwt\nCpcogYEsIh/afw+Z4h7amdiDAQgZg+LVmyFFqu33YAYlTL8Moog08CLIYoBX8xZUt1AHY4TsG7M5\nMJmk4VFGTAoyACAcA0QqP2vySH0QyQ4QVLmE/cNgidAsIq2Fd71NhLItnKebUzjH1NUU2UbMLPAi\n0sHEc7DimHCs9Lp7I63c4tCHl5D2k3o/SQvhYxnjiENTwqLNeiBIMbuqWECJT81kH6+18xpKrYBS\nhLqwZ9RYh3oz+8uHlSVhZHLCzEBH8Eq0KUAkBptEBFhQXhaynXXdCrOE8u1dngEGg7SObRqIg1EG\nyvC+lK2DCEB1ZYNgIEoy2vz/rpxSsIkY1EnvO1xXip3nYXgnMFjejeWeDCp7QXw5aFHwwnYwAOvm\nhDBJHyomNW0iINYGEI/TywcNNA9KQrAAwCFYHIYWhNJNDC/lehZFSCHPWcMSbaCy5ynirr9JmIxl\nAeU9Peb2nfDc1WAQPIjtdCauVQbmGEwTNXykh8v/zyFuDDSzRhqHr7o+x/VRZjqL7dFrd4SQMH62\nmV5cqJO/hplMACKY0x7F/ATTzloYY4OuXHy/07gg50UrM8IY0LA6sjeIEFK+S+CCwRgIYEWGBgWW\nCIP0HqRslkzMc6+kZ5UAiN5HIgDphJ+MdZp0ygtPs3F2NQYcM09mqHPeVhg0YiBBgDeBdeTZtJ2L\nD1lWh0UQykRQRAp9n0Ffs9RMi3ZvL9yPqirQaJgxonyfzeLaHpwBEMGiQqegjr9nDm2imcsqFtLM\nsz4PG4Oapg1MYvRcog/b78Vy6yaIQaOoYpY9Y0DjaWRv90rH8rIW1pBzzByOgdkMtLnhtIgAkK0j\naFMU7t78u7Lt3OuMiTAx7vv4u2EWnh/T4dtq0jp4YdbIZyaAbV9uIl5N5DN2kwuB4/PycM6H9tAe\ncLNNA0wmIQMvVRVCYgyiCA4RJRpdVHgAYF47wfjpDChLmEPvRJIgTpfeUD7eLAsP65p7Luujc2C7\nS4NoGTspd/6vcz15H13HdyVx6Tqvy5nD8+J83SSf3xnPkdvbd8LfVFVQW1tpEo/Kz0M9QxptCzUY\nhBBfNA3sdOYcjw/SuPvQOu2BAISsMTBv3YqLzUEfemPkQiL8oG97BdpBCVM5D6CcdNLuAGQs1KyB\nmtRQPruFrWtgXrsQBOHVDhMKNinyyYAHAGgNVfiFvshgxh4lzm4WQj2Y2ixYFyEbkReRliLHLF4N\nY10n68GIkCGDwSkZHrSMNsiLd6Mi48h7ZoNoNGuc1B4Ya+IiQnH6embTAG7QKET8vCjTvTcLKinW\n8QxSE9qmRXvtutNgUMpNYllXgJ9brwysMvKdlms/JYjDYljgljWHPKsjCDZLI4rtgLLZZwKMILSB\nXN8llOMBNQAC/PMgqAzhkowaIAxuC2nd5aC3cD0uSwxAOROK68xAE4f3yHYtM6qJe1nIYgHEMCFm\nT0m9JivaDBGCftUZWRCnr5uoB+W/HU5vHIDeMgo15p4yfl+y7YSwTSBhIYWsQ0gnCSxQvcDuYQAa\n7t3bWQYGFSXUaOAAZgavxESEej2nGzSeREBMcbgrwc7bZHJHOhXKT5hKgRFGIWSWBfC5DzWTqQif\nBCSjkYrKhaQCIKVC9jCSbE9/n/IZU6/ns7v5ye1pr9EIgZXn6ucWmGY+j/0leW0p8v1BUQBGwVq/\n2G4aoI3tIYQ2AZE1BMSQra4JpZhYcmiYY9ggODdCKnlmXjFYwqBRoUN4llUCkBH6NPL8AGAB7rwM\nfFoAsCRoBSS0d2qNP16AXUTJuw/ASC48zc+k8V5vyf6R2k3GeibQElD9QZmj8vcynQLTqetfeMHW\n6wVwJgBpHDZurXsHDLLJ0D5jXFY4D9BS7SbnMptowmzmsaeq3EKw0I7B1bSxXXjQhaoe7LDvdIMa\nE3WJ5PfLoWLGOBFqDiMbuLlGCK1k7aTgRzEu0ywnClEUAWJmEPE3wwAmZwZTItzOs4UsqZhELLDj\nHGhvW+PaqgBtA7taqZjKXmZLW5dp8NAe2gNiXSE9ndqJXoOVej0EbT+fhZQ2e4Aix2hsmuDcDskl\nVgEnnfsV0JVkJHcC5OsKefyy9cYyxlLO2hHHLmj+dJa7BJiRc14GeeSx3L/kxy1zEAcQTcyRzwBQ\nobIXIxNmM7TXr6cHKO1IDVXlnJCFZ5OWBVAWoKYFbbRQ803Xp8/mLtPtQ/bQA2kPBCAEIMmOQ7MZ\naDyJXubSaeyUVc+FNZQum4bp92BLBTMo0FYabb8AbVVQ86FjDk1r0HgGPathDw69Pof44qWHnn+L\nkAg3oaeFRVdId8zeX8/ksVKrAYiAVu1BKSAsGElr56lX5NI9e52eJD1528asZwwcsDcZbnElQaoo\nUIzIQjAW1kTNJYAFc3VSFxlWJlPRM2vAwiagmmRA8TNVvRJmerqAEOAGNh7cqOwBd/bCPmZTyEku\nCh09fh7Mo5EDkmzTgCZTt9huGhBEhjo5EWSq6rLwQ0Eb7YyplfuXgEUOPGnTQUVcW4I2sV6CKZZf\nbxWFNaO62roNQEFk1FFcnMtFKoNTSWij92rzNmuXh47B38tZjhFKO2+0mCRZY0HkwRoGDEN4XBSu\njwM206p5kuPvjUECIIAlAaz17yV8h551ZadTBP0nD5Qladt9u03BoMLpBiHtT/k5U1W5ReVkCrO/\n7/d5NpJfPCcsxV4vCrTzPeXsLi6fw74C0GUTkXV+ZuGUkCGxdd+sEc+SWVQihCzUqfAabp5JpIZD\n0Kl3OVFc3LbGiX5TEdlRfhwxk2lkPPG743A9Xmga61kPLOZAKTi0MKmkxf5A1ox1V6qYdABAGkbl\nPcFW6stALIzz8ObcKwskYWnx4h0LZQEgJcdYG+vEIWucFY2Zulx/wWRK6mRtqm3E26X4tY7XW8js\ntoxJ9QCYHNPgM5Jx+1HDIWhrwwk598oQzhXElT1ARJNZ/M0mxzKFdKFSFG5S78PugmA1ZyXz7yJc\nuypcFzevQTPPkixL58DzgtDMSrKTCaCdHhFYE8mk4WCuj0lZk/K+Wb8isKfloskYB+AwUDQXemqs\nfUgES76fbjkzq4FVXg+rUAFsCtdgh59nI9Jw4Or0MGrsob0djLve3JnQZZ71agHAswADG7mqAGVB\nRQ+2KKCqXhxjPAsksuyXMHS4HqGvZjb1ElDIX3+plEHiiMsAFy/HkQJJxukZ1jmAJdY0q5zacs6b\nATWyngkYlN+vvMV2zfFHzqlP07xDcAE4lGZax/4Zjxd26Z1tYDBwIPqg7yJlNuFlPGqXvSxfWz+0\nM7UHBhDKxWpleJVtW9B8Dhx42r1fVLF+QzEaOW9V1YPZ6MFUGm3Vc4v83QH0uAFNNkCzeRA1hPFp\nTlmo2sfPhuvxpDL7aMOCrHUdJwu/JumVSQXBV/byu8Uee658yviycDRqvndmBQkPn/ITNCdo3Yvh\nCUSOAeVDwNJKKr/I9J7BEBo38M86MqDMeBz2uzqyKLWKbBqeZItQuAQwY02lsgwDyVlZKqzrWQfz\nGthzIBGzbqhXggZ90MbIAUXes0xEwOaG08iwNjzjMHmUnhZmS2TgRvK7Y1CUoF+nUn/OtmFggMEY\nz+AJHbXXP0gFjLsH2IXfMhyO2204xA/KcINcMp7xvl4vBbx4sSV1j/KBO5QRn8/S1KKnZBz2mJgA\nxhKWFoAkywLrT5AfPDkmnicNHogFEMKiAqPGRp0pBhRSLSgF0vFvBm6lyDz3K5yVUGZA4/ugooTa\nGAHGuhAVwHl3gjC1hW3nEZSXIWmTyQLzK2HC2RaW9aJ4v3IhPw5M9G2FmUNejymAT9a4OSRniGwa\nVw4/Y/me+lXIvEGlYzupGqdqBERWH/x745AvBjKUApUlCFUEZRqXYQmH/hkXztFBQHznWvvvW4T/\nSBYHU7OzbyXo/jBLRLKMeJ9g+NhCh0xoAdjhb7HQkXWiMsCF2UhN+r1aLRbj8O2AWSuFDwHyKdIl\nc8haC2ptEAbnEsn6bV5/BtY6sdPZ3Kc615E9JE1mkSKKoJNkGfH9FEJP7W1gtmmApkE7mwG3bgEA\n9O6uAyl6pXunSgFk4j03Xg9MhkCLPsw9cePAoOEgikczqMRAEINpAycwbQvf58xmoKnXL6t67nzR\nXmhewx6M3Zg2Grp9OeuxjNlXw7bBALTpmXQMfAGAVjBhPuOqTnUTgVivkwUGF73Qtvs2owaRnc9B\nrJ9iTQpWs5cbcHOeqWM3yUxw6iwEyR/aQzu2SSfiEsB+xbwrOJ38gp8qlw0Zw2GUaGhbtzbhY43x\nbF/TMf8TzB1rQYX28pFinBd16gILFjID8/1lupxdYWyd4EboD48AaKTTITt+ZdgX/680EvArf+5d\nGdOACGKdsnYZAQvassex9vYdgEPOiKC3t0Cbmy5ceDSAGvYdMF/Xzkk5m3U7xx9AC3M3rd2YeOU8\n5heGaIaOqa1qC0uAqt1YYYnQVn7MbH2SDQJUY6BmrYts2hs7sGz/IM7RT9keHEDIWwAvpNBgCL9o\nQZZgvDe9PTh0i+DJ1NGYtYLuVyg2NmA3hzCjCu2gRLNRwmz3QGYEPWmgJ7VjEE1msHv77nyp78MU\nZcBPsFQa+sKMHQZMuCNkMGjQj2FCgVUQBYvV5qYLTzkcO4q40tBbG857BrcQt+NJFHy9z6Z2tmEO\nJ4GaTZnwJ+sGJbo6zCTytG4qSqe78iBY8BSI7F284PAhU7Zt3Xt/67Z734OBy3wyGkZPdc0Lz9It\nQpomsAJQ144lApHFK2HcLPF+BOYPIkCY1N0DohnrR6aPp7JIgUoh3qyGQ6jhwN1Hv4IduHTAVhPU\nwdxpSBjjJvFNk+oztK2jdIbvQEUtiV4Ptu+9QoVbiKkbd2DHE9CF8w7xPzyMbTYPK8tFO7votKft\nAWFb5j3jyQsvooT4YSeQxyEXyT16MIj1ywKLMGcnujTqASTJ6yHCzTCfi2u4kC416MO2rRtUOb08\nM4O0htredJdjyi9R0AyzHf2Mnc3uLZpGTmz8MzNTB56p0TAZ8EJq+14vgpBaw9Sz5BmrymmxtZOJ\n+z3ow06nUO091fT4xiwawWLgDIeB9SD3e6CfhcnZgWBbxyLC4aF7H1XlU5AD1mubOA2TJmoRyTTq\nFEPFQr2AGGYGm2oDcR/IAt8S1LE2hHsBSP4mwdKyng5uhlW8b8AtzI2JWab4+KoH9AqYnoYtPHPE\n159aCxAcy1f70FvrACxqDNS8hZq3wMz3W3z9QYUgTO4X+sFaE0GMtgUZiqAWA2aKXJjTGQLQJ2Xt\nrVsBHFKjEdTmhvPIau3GMe1TszeN13SwDtyQbViRW5iVgrVmbRwD+R37cC9baqAxwcGGtgX6lWMN\nCRFpzGsXatU0oJ0ttxCoG8fE9YCk1Rq2X8BUhQeg3LXMoEAzcHMuUxLanm/bjGERYLT7rWo/wfbb\nqbXQMwNYQLVuwk1164BHHgvHc9DEt6t57Z6N1OHTPpRyOgdEaC0zj84i489DW8/0xYugjWHUt5p7\n9trMC+RqtchwtBaYzZ3eycHhalbE29FIjAPJPPV4faDl+YVnLarNTVC/77S/ql5YA9C8Dkw9Mx5n\nERYS8KnT+nGd8vmhdD7kmpZLjlu4x2X3Ks7Tu7v+WD9/Z8CY6+8dNsE4LJnn4IdjQKnutdtRQEfO\nvg7P4WwYQi6D8wl9B9YmABGVPahzO8D2JkADYGsDmvviycSxqx+AbGV6Zxt47ApmVzYwPVeg7RH0\n3KKYWKjagFoL1VqUN8eonn8Bxf7+0namO7e6Z0EbI2B7E3Y0gD2/BfSfxOSRAUxBKKYGxWGL8q2x\nA41mc5g7e8fDB9ZsOg8OIMQLGA5zCqEpCIv6sPAWoSjWKMA0Ho12HRAdHIJuFFA9JxJLmyM0FzbR\njko0owLtsHCThfkAxdYQdDh1Me57+24xHFLH1xH88IAQAZChEXnYhkpCCeqw+A8sgKpynnp/nwqA\nmU69eFcU8DpNk8Jhyz5CqqoQjmJns0Cptj623t3zGSK7OfMEcIucTGw3ZgBjwAZu8jedOSbEW7cd\nU6HXg9radB+pMY4Sb7ywufFhIp6pEULLRGhPwqjI6aOSQSMzgBFFJpkSwFE2gPPz17u7oO1NmC3n\neVV7Y5g3rqG9cRO4cXPhEZ20fyGUx97q8+dQXLkEM+wD2i26aO8Q5vadGKIU7tWDLQnV92wWaKT1\nIssJiABP7hGSoI/YvqB142PJHZCaMoxCKmUbwy0tZ8Tj83nRweFmReEYjTJzHYtEAy69vBzAfRtX\nGyOAVBr/be2CWHXyTFhIWnlvOgPk8hhm/GS/k+xp/CxZeJbjzDliraoC89DO59EBME3BICgNGgzc\ne2J2kNYwt26depYxwI8N0mNXlh5YVTGFtRXMHCC2pQB6Cf0wBt39d0JV5QTORbZMYv0S1vfxmj8h\nBTwQ07XzNbiK+cSZ34fMHOZZNMnzVMov9Jkxa0GzOdShF/TeHmF+foDZjpssBYc0uUWzri3KQwNV\nuzqpxoaFO0uGkQFUbfw13Hmmr9GMCqcXWGzAFASrgGLqFvrNQEHPLMqDBsX+DOpgFu7HagX0e7CF\ncsCEBKlIiG7noXFvczOHhzC8UOv3oXa247suCse6atughxaYMWXPLeZYa0g4Qxwzq3UsnWEfpl+E\njGE0nrqxryxhe6V3pBig9WyuqZ9LXdhFsztyYExBaEsF01NoK4W2IjR9QlvF+5DtgnwUmdUIGehg\nHRDExyk/dJDx2wgBIOIyipkDuJqKoFqgmPahpxbFYePBR6c/icaHzPD3UgtRa/4WiwJt7ww6nYcG\nvbUFunAOLbcnrydKFm4+3RjUlXZO38Y4gNGzy1jEHoDXrhLju3JaOTToQ53fAQCnubV34ManZx4H\nzRvQ3iHs4dgBsW8nW3B2ZeDJEUyhZWb29wE/Zqnh0LEVtfbZqEpYUlBl4eY2nJAnr1fukOuqi9y2\njEnD2j1d90EEtbHhvmNm6AstR2utcxADMSrCOEZmmOd4h8dC/TmCoyjcwh5AceWSk/y4fhPq/DnX\ndzRe89EDj0vBlq57AkJSgVMzP07HytxdG+ksup6jvfYmcO1NUFVBn9uF3RgC/cppCE+msE0LOx6H\nMe1+W/HE45i87zLavg7C2eVeg94rN1F86qvYWHHuvaytbD1He2se1lFsg+w42tqCvXQedmMH7dOX\n0WyUoNaivD2FvrGH9uqb9wyiPUCAUBQvTUJjPAgUWRgmLKaBKMqVhmR5fQ1rXVaLw0Oo6zehhwNg\nexPtzhC21DA9hdmFAejcAHrSoNjbgDqcwN6+E3R9AAckBJCIdT94sdeKkBHOWMEZz9rWeX0B0MDR\nus3tO2jeuHpvz0og1CFMiJ+D8Fwlmi7S7uKjDp4B/t00bgAone4RlQXMncmxyz0xO+qeiFwHnAw+\nfhE1k1mVHLPLegFO0sq9u9EQdlCFxZYL2aqh+n0nljadBYFq40MSOVtZ2nbF+8lT0kswtMObUDz1\nLrQXtqDujGGvXk+8w8DJAz7HtfbmW8DNtxa2U1GgeOxR2NHA6UhMZjA3b8EcHCCh+p5F/IZkbElj\nRlBIQ3xEbDmDWpK9Ib7JTvFAUR63GWZyhP7MGsB44CAHcTxQTf0K5s5eBgbZQK2WgG9e76TfXOL1\nZhF+Cf6EbD5LvFZ2yfdo68axBljAkoW7ZfYspXz/6ceDxovhN03wilC/CuCZKU653fDkkE2puMjm\nQ7hNMWvIHxd0UfpVBL/mtSuD3wcAM5250CA4cIjZmMS6DT7sFQUcwMHi0FJziU32OZxCXjI//DNn\nsWIO8YK1oPEMdDCG3R6h3h2gGWnUQ5e9SnmwpzioMXy9AVnrsllJpoUHDxYm/rwI49C4PMV3HuJA\nBKsJ7UYF09Po3akd6FS4Mdw8OoLVgNEE1VoUY4Py9gz6zsSFLUkhZr7WO4AhtMzMdApzNfYVemfb\ne/ILoN93jCGfMABlmQJlrfCI+wVPEJBurWPbePYzFYVjjvZKoFCwLGLdK9DuDFHvVKg3NJo+oakc\n8GNFttSgeZW8a3jfgGeQKb/fIgCk1iJM2i2Bo1KDWY0IPCpgXjqkyCq3vR5oDyq5KbBqAD13gGUx\nMSgPG+iDOZRWUF43CG3rQhyqEva0+5xvM1OjEfCeJ2H6Lvsbhyia2jhgpm6hpoKJKMJR1YEN2fcS\nMXxmRTaNW2wCCNn2WLeNQ079PMy2LWhjBHVrH3Y8hTUtqOqheOLxOF5ywpXpDO31mw9UyEtnKz0q\nIxbQvfg/ImmM1JKhsgd9fhc0GjhweGCBLQu7f+AYQ0mSkqyvz5ynPEcJ85ssc25ez6C15h3YIBUS\n/ti2hT2cILC1gShtsEzmoWseKNd88tosv8EauE2D9s3rwYFOvdI7mrfi2OfbZHvrtisyW2c9EHYf\n2Ul2NgtrYioKB6DtbMFWBWi2jWI8hb2zd6JhVFT2nMPkwg7qCxuYXO5hcG2O6rNfW3BePyBvwN0/\nS58AYHEPCwBXLkM9+xTmlxwg2XvtDnDzFszegftu1pzq3BMgREQvw/l6WwCNtfYjRHQOwD8H8BSA\nlwH8mLX2SDg9fJQi8xUQwSHLhKugj5Oe71I722TxReQ7ag7dqmvg4BD6qhf2PLcDszNCvdXD7EKF\nZlSgOOyjKLRT0p9M087JmJQZVDcRyOJwK69HQ1pDlWVsXOtq6wj2SLhfuVATA1YwRVAFLSzCSC85\nPmTHadNOl6/njzlK14UXZ6EDO0ancZJtJyzI+d4ECycAM6zx0XW8KEeGxdnGwDYANQ1wcOgWYAM/\nqR70gc0hMJ07rZDNDdjDCawUAA2ZTNrQTkL5mR4L60Ow6d1d0O42bFW6d3d7D83L3wJedg/s7WS2\nadC89nqyjcoeikcfgd0agcZTtK+9AdRH91on2m6A5ROhVW1ZerL4t2Q7ZVnm3DEeyNZec6srVSqQ\n9Cec1Ywz+XFGLr42aQ0aOECyiz6aTyYcsC0mscACCLSM9ZMba5klGRoRASJ5nrXWTUxZfN/aoBcU\ntD+AZKFurXXfmz8WgEtp6sNqAQTPkYmyVyvtRNtO/kwYyOVwMb+QTkLKRLtxsfkGObAU/hz03XNg\nFiLgQlcORUjybObCOasKMBT1efKMXHxNrzHDaeJZkNiWGrZXuIXWZA41aWF9WNjBcxfRDAi9fYNy\nv0F1c4b+1dZ53lvrwB8pVr2Klp//5gUa4CbHR+gVUEMoeH6QJXDgMmyvcKFphUs2UW9tw2qCKRX0\n3KB3cwK15xwXdtRPn9Wy6550n3MGFhjISjsth8rR1C1nMpPC0VJvSusYJgbEd8bM540hmgsbaAYa\nbV/DlA50mW8qNH0gMsZ47HX/GMRx4YtZZRnI0a4PdHoLks0g/jR+lwd+kjLgrrOQhZCPFUW2PaDt\nEcgSZlsKqi2gZxVUYx0T7bBBeWsKqlvXtsr15jrvhLZzGkZFAX3hPMyV85heGYGMhR430NPG9Ut5\nWLAEEwDnUJDGWmbctsXx1pg4T2RHXSPOb5FEKdiDQ9j9gwjy5w4krYOOnN4YAVUF+IzBdja/KzbR\nSbWb8NS6mM7AIsizqg9fFu7fcbyt52iuXnOXGI2gzrlQLNrddrqFTQNzOEkFnmVZ8n01TRqmJUwy\naKiq3CK/aVyW1cNJqikqy5Wb+NUv0TFaYIPnDHFxDtfVTibxnppmcY3kkwTJRCFqa8szqN28wY6n\nsNOYAMReu9H5DBarcZ/6nFNwoNimCcwhNRqBdradHtzmBrR2z9V4lvhxjIoC9IFnMX7XFuoNhepW\ng8HLt0G396Ff+AZGvg2dtVP9bq25eg24eg36j93vVmkUTz0BPPOYmxf+4b9Zq5yTYAj9GWutbKk/\nDeBT1tr/gYh+2v/+O0cVshAeY62fPLC2AE86VVjML7BhxP+hTO7DoF22IKZANw3wyutQ1yv0RyPY\nnU00W32Yvkb9yA7o0hb0wQzqYOpCySbThCUUQjtIgfoV1GgIa61rzEdZDvqE7WpxwdZlUjjT2OCt\nXzhGWnItj2JLZkAGMBFlGc+AkF55KVB0/A7jRNqOu3aG7DMDSGksxC9n6R/TgUiEkjGI45lFtqmD\nB0RVlZsEbG065tB46iYBwwE0h/+0LQgarB+VaDBJI4I+twtcvuA8Xa++scD+eaeZrecOJHotbqP1\nKbEn126k5V4qyIXuEUy7FQASh7kGsJqZj13eHwa7Az5EjnosvzkvKg5rXHhg162UIjtYFwNoTSCo\nEwySoA8zJoFwrNwv/2fwh3IQRIQwJdfwIHwQ0ff/M+tGjUawTYPZzrG8V/fedsS7ZmFwl5RABzFl\n8hmRJAMtbOPFBhlUW10AACAASURBVIMROXDUtuEeyYc9W2sjI2o8BqyF3toCAKcJw89SCbaN0IJj\n3SCqm6ADBGtdiPW8RjvcwuSJLRcjP3OiiNRaDF8bQx+ICVg+rsiJ/LIxYR2q+TrilQxG8LXkdT24\nSLVjKoEImgglkXMKVSXaQYl2o4fZxSGsBsqDY/n+7k+fc9pm2rBALZ56Fzi7GwCn+8HzMNas6pUu\nnAwI79Bs9tFe3EDb15jtFpjuKpgehXAtSwihWq7gFKzhUC8wmLPCLDnkSIaIhVAGi6gdxNbVFVB2\nDANI+XberQBDzDwkqNoBXPp86QCiqcV051jhG++MtnOCpp57P6aPb8IUBD03KPZrGAJAhN5bU1Br\nopi8QWCVBWBIOvfysFxp5ET2g64Yz//lfM+bleFA7MzIwR/vpEnmj3LBLy9dFKDBwOmQeGeMPTgE\nDtZ+TPfcbo5kCEl9GtmHL+mvk6xfRzCG2DiUVY1GUBfPu7CqxkdPzGun2ZQDN+GCtJC4hMqeC4Pn\nsXQ+dwAQ6/GJc+8axFh13rJ9XQDSUqBLZHQT9WU2FPWdeLcaDQPIhX4FrE+SOYF5Tse9naLJEGi9\nuwuc3wGpc44xdHCQRPEsM/2+Z7H3ofNoe4TdP7iJ/q/8Ltil+HZzrB/LTIvmpZeBl/xvWm+ucz9C\nxv4CgD/t//4/APwW1l7Ux06dtE5pfEACotiODDR8TPwzorEhc1jr5wA+ftQcToDDCfDmDRSDPnDp\nPJpLW6i3emgHBfSoQtHvQe2PYQ8O0d7ZA2fYUpsbzoN2cBjQ8MX6SHdWxvzJjYEZn7K1ExQKImYd\nx0k20DJgKQN+lpVtuauS5Sty4Su9KJIL4CQzRN1d21nG8uBFfR6qsEAvs9kxPFi67EnM9gmhXN4T\nYGYzxxwqC6itLWBny1GUax93PJ8Dk2mSLS8Ryd3cBF2+AGoNmm98szPc6m1hSRje3Zu9+zTQd9/n\nLFRCDOBZRoxg+USjg1WU657F9OuuDXThS+E6on12HmdiVq9wPaH5447hPoDB3xS0iVVPgZ9E9yep\nlk2OJQ/iLHhmpXmQx1obQ8KW3XOX8TkMntSNSyPO1/QhK/XmPbW7u2o71CvDMyYw4wfJPaNuo5A0\nkPS3YXzj1N69ngMDed88ek6tB4yCjp1PWd8eHIKTFIA9rYUH8hnMV8qFiflQMGsANZ7CWovpk7s4\neKwHPbcYXK8x+tah01GRxn3mKgfFqu++KxRgWRn5vmXbAFDuBMnrIBY3VFugblAcOGZQ6dOJcxjK\nXdrJ9TlnZM3L33JJCFjjgsi1m6YBp1y3VQnTK2AGThi87WtMzmtMzytY7eaZDOqw4DMBnUBLbvz+\nAnDE5+SvXM5BukCcVXjwMoBI/synDx3lm4Lc/RpC28NxQejc3vZt526sePwxTN93BfOtAnrmwvLU\nrI3AD49RHhiyGqAWgIovxLHGIMIFKR2v8n5AeeTPWq8b1EZQiJ3IXSAIh/ZKR0kXu3uF2aYJmnAn\nZMdvNz7UMr23DLAAFp9bzgLyxyROLBkiv4bxAp+qCvrSRSd2v70JVRRAPXcLfJ77iJTudjaLIJA1\nMIcTtLdvd9YvsaPqdS+A0XHKXMWmyuoeU9en2ZKpLIDnno0L/OPb8duOhf9+TgkMWvE+2EGuL5x3\nWaC3t1D0+zCH4zTEiwj6A+/F/vt20PYIO1+4idH//VlXxmncw4NqayZBuFdAyAL4TSJqAfwja+0/\nBnDZWvuG338VwOWuE4nobwD4GwDQxzD9aLxodJg0AwFAyTNdJWVKvaG29WFkCqRMmpkpaBWZZJFu\nrAG93qC4vYfi3A7acyM0wxLNaBN6OkSxt4FiexOoGzSvv7HUO98Z9tVl+UvKgR0J/sjjc1BInrPs\nGp0aJjY+x7xsAKxfsnDtcJxfzBReQwNYKVSb2cm1nYWSbfffyywB7RYHwkQUWLGuCWssOKS/vXED\nan8f2BiBtjbjhGPQBymCETouxdNPAkRoX3sD5sVvHF2/B9VWMQPuoixaT0Po/rQbCeqE/1PNp646\nuxrZOIEhJPRm2zIooLpDxe7RAhMIWMkAilVOmUC5CLTcnh8vQSEAabhTl3Xtl9tCliO1eGy+Tf5t\nbSoIbNcb7HBSbYdGvo6UHwMOowtZnEKVbVz4YhGYC8kMjAOFwOl82QMOhHKtdRk1FWcGnM9dOxsM\nQJV2+5sGdriBdmfo0qDuTUBNi/qRLRx8aAeqBQbX5zj/hTugeeYZ72IBdT+U5ZO4VZPfZXaM4y1r\nfiwBjJJNEohj7z4zidbru+7fWHXGZsZjxzgjgj5/zunlFYULExtWmJ8boBlqzLcU5huEtnIhYWQA\nJTVRux4jxX2y7RP8Gl3FfwmjqKMMJxxskbOB5Ke/lG20rPlKICrxhmenE+NQBCgnTG3Wnzm/Y9vO\nOqaffRr1Yzto+hp1a1FMWgzGPsSHxxVNyFE6C7iscJrgtA+iERn36bc2lOFOOvpbluBO4shc1tew\nQwJA0J25H0BCR1VxkmNV3Lka/AlXtwkos7yWK/YtYRDZ2QzNK686naFLF7zOUAXlk2rwPEltboax\nzzZNBIHy+t4PFtBxLGcALWsfXU7EVfeRsYmOkU315Nflp2GrnK7eOGGO3t0FbW1AeRbV/D2PYnqx\nB6uA7c9dxfCTD0Ggu7F7BYT+lLX2NSK6BOBfEdFX5E5rrSXqHqZ9I/3HALBF5+IxIrQigEK5/k3C\n6IjsoSTWNC8nxmDA1k0Ea0SHZVs3UbR39kEHh9BvVqCnH8db37WF8tBg8zNfRLNM5IuEMPA6tor9\nk2/rshws4jLXCTnLrmPbFmRpEbiSvxk8YtHszEImjvXt5NpO7iGQvzsX7dnx1mUtCvHM+eRACsp1\nic55ANDMa9DtO8D+gRPc7ldo37oF/dgjMN/1DMobY+CVNxwb6J1gqwa/dU2cv2YpJ9/nuJ3dE40c\nIOwaxEVImexzAIQ+wXDGwns1L8bcBQDLsKoFwGEJ80fuk+ctO7ZrX172QogXWx4qtgpYEmFmC/fD\ndeWf6z/WE2k72/qCZUZQqFvbOm+1d2JYvkfE5xVCx3iMkGFj/l7jLZJj9XAYg4qge2Ak+TTqzAiy\n87ljTT39BEypQa9cRTGv0VzZwa2PXHRMoKszbH9t3wmyhjC1NYGRZRPxVV7Rda0L2FlWhgfdOqn4\nYhtl41TISGTEsevZ/elzHiSzFub2HajdbZitAaaXh5hvaYwvqsjU8MZZvY7ssCXQkg+Z/NqUPyZ/\nFeHjjv9b1/KzguKxS8EhcUz4m3/n9yC7GdnUCYIBlSNIK+2d33a86YsXMf3wk2h7TmOJrBN3Lw5q\nlHOTpnlfx2PN33I2rbRKgRrj34kYo5eBw0QhzTwRuTBEHy0QbJljArH/Nnmo2P21Exur0nDJ7HnJ\nfjbvx7vSoHcdt8x4TiTDzORulg3ITG9twVobs5IdJYB9HFu37seZ1y4b+1aF1J10HVJ7+/Y5fi11\n1HdGoyG+9p89jvPfeR3TX7+ER//JF6G84PKDIgL9drR7AoSsta/5/98kol8C8DEA14joEWvtG0T0\nCIA1RHUgFgAtLHScWMuFFetrSIExZuIIlgt75UOoRqIo7xFn2bn78mSaZ7W7g8MPPwFYYPef/I47\nJ6+z1wJZAE7WGezy0K58u7Rl4FEX+LMqJIz3J8CRcg4Y64X2lrGZAP+hcmeXMomWZjRbYifadjo9\n1ELAly1PVSnBCM5AxiGKXZ3Sqs7dU12tJZcxwMc8q+/+AJrPfwnqpZffOWj1Kor2ccuRoNwap5xo\nu+E6APG9L6tfF4OIt4c2k2VEZFuSNQ7AcpBRViMIlGN5vyGsS/cnva1uoWgp+iyPzctOwB4RNtal\nQ9RVt4XtciLOAEln/fx1EcGV49hJth3SKjghwiLDekq9D0e21gtjt61Pny3CmYmAXs89rzxjGT/H\nWixSjIlCqQxGaR3BvM0NNI+dhykUihsHuPG95zD5szvYfqlFdafF9pf3oWa1e67rMoAWH+Dy7et6\nnte1ZSCTb3ML4D/vl4tAMZSRsQsA0bp24n3OA2h6ZxvmPe/C9Q9tYL5JUawZgGqwHEC5ByPbUVyO\ntWS/WZx6VYYx3s7XcH+kZS5lE0nwSG6T/x/jGXw7tB31ne/H1/+bHppZga3P9bDzQo3qsIGatlCN\niVnl1gxbCMeu+F5dVrGoEbrgBJT/c0biCpEVaF1/EDMad4NBIfz3lO3E242cZ+Qgerzossos/93J\nrM6A+KZZuV/1+6DBIGoBjcf3L7vW3Yx1dzuOSX0mWWb+e1Ud5LFHMbLDaW/jPkespbpMfdd34MW/\nU+FnP/6/47/4ez+B7Z9+Edt48Z2ztrpvtl7fe9dB9EQ0IqJN/hvADwH4IoB/AeCv+MP+CoBfXq9A\nn12HKGYc8yAFKUIiZpwt3IKekBADdv/Rwu9kocaUdzbtvO96dwf1M1cw+NY+qn/5fHd1iyKmbGZw\nRoI061rO8gG6QSLeli9aV53LZedhZ7kuEINaclG86j4UdS/21pxwn3zb6QK+2jgQKe3AuyITyvYd\nrltw+06fKbIiBXgoX+mjvcq+k9fvexZ7P/5xqDuHq49/O5qYVCW2vsc9liN/HnH4fW83ySRALb+/\nZPLpgcMcSJVilUd9F6tAWGl52OZdmNQLWrAVE45VjKGjjIGjpeWs0hcSZSTnyiQEazmbT7bt2NZE\nbTA50fN6P472bmAPx87TKZ65tTaEeQVTKjwD5xX176Kuw4LFhTin74gzH5oL21CzBsXX38Dk6V2U\nY4tH//Uhtv/4FvrfvA01nvnsUCb9fo8z0V3VBrrKOW75R52XL/qkhzsfy7MJvc2/GXJis0fZifc5\nD6DpnW2YZ5/Azec2UI+ciDK1cFotLNrM/+63dQEySLeFMKGjutV8f9c9EBYBKD7XIoaydQFLR9i3\nQ9uhD38QL/+9Eu9/5E1s/n4f5740Q+/2HHrSODDo7oeNCP4yG3BF/2PzsXnB6eDL0j6cl/tqpRZY\n/dzPWmtdf8vZI/MF/n2y+9JucofUuvew7Lgc1FgGMrGt2G+bBu2tWw4Iqud35ey5r3ZSgKB8Zl2M\nts5zjrdEfyf3Ofo73oOv/O0R/qvv/lf4q//0J7H9c5856yq94+xeGEKXAfySn6QXAH7eWvvrRPQ8\ngP+TiP46gG8C+LF1C+wMEQMyoEKnqeV9th4ntGkCO4jLg61DGey9D6nrG+6knDip3t3B5LnH0f/d\nF0D/9vOLKeiUEAgF7mlh1skCysGc/Bqs27MstKwLXFpmKg0RsU0NvbPj9ATaFrYWzyq3tnVCp6Fu\nGoR2bUAIJ912OjwYDPxIyqmFXgTUrF3MQgbE+5bsjSWpJmUdZn/uo5icL7Dzs7+Dra+++M6iL+YL\nMv7bpzJ2gusdIXknZyfe54S+RbYLlbWTJfdNZS+I/7k+SQWG49HXpSRlauchVbU+43ANW8bekULR\nIbyJ+4WuCZxk+QgQKTl2lQaQ/22thRr0YSbTtddZRJSBQWs/mxNtO0QUGD+OLeRF5K11jgXt2JTL\nvgBidhBbnimHn59fsOTvBYADgh6/CDVtoG4f4LU//wQOH9/BxT+w2HrBh4VJAOgkFjLLvKWrtt/N\nNdhk3WX7bQ3s3j6wsxUZQx3Xd6yg9P45bGxNxtDJ9zkPiOlnn8bk3edx+z09zDcdE6iYAAkT5l67\n8C4ARuzj7GGcHp6WXTNj55BByGq2ACKJ3wlTyLprtBWBWuuAL3FcAiBZQLU2XkcRnGZRR9jacnvH\ntp3rf/NPYutH38CtsQH93jbufGGAyzcOHVjHYs383FaYJUp1gOQ+Lc+lKD7dYYnI9DImBoNAReGb\nSAOCXzewVk0rmPIycY2cD9x/xtDJtpu8b17G1lkza9iR5S+5hur3E41R/d53A9ffClkPjwSVztLu\nhiXkj2fZADubdTO1VpwL0/pz2nXH0rdvn7Nk3UAfeQ5P/sOv4ycu/Sz+0//uv8Qv/fWLeBK/cwYV\nPAMjQvHoI52hlcez9druXQNC1tqXAHxXx/abAP7duy0XgGBn+LTfDXtJ40IrCEcbPxmXmjgSLDIq\nHBuAIkb7/aKMqgr2A8+g/YMvo/zNawn9rLhyGWb/wH3MEhxZNdCts4hbJigt9y8LFcv/7goTy3WX\ngCgQzZtlI7EW3/jPvwPv+vUD0B98NWguhexs8t4ZFJP3qRkUWqxybvet7TCdnEFFmy2y5GAnO2Y5\nEPJ9dgyMVBSLGdWshRoOMfkzH0R1fYrq155Hddc3cIJ2L+Eayyy772Ccypi/T/nMV9UhGwCOGu5O\nvN1Y68MKs8mSqFOknftBOWcjZP2SO95EoEn3AJOBPr5vWwCDiFA89iiaV1+L29YAg5aGgK2wVZpC\nXeWvvJYHL5J9IgQsT01P4ju99cPfga1f+AxQVSnYLspd+vcazCJxvyfadkLoXNsueDQDGMTPguvI\nItFKxdAyrUTiBFq8T++dttozHFnHbXcbnEHsyz+1DZrv4NHfbvHop24tpnDves85QLROf3HUBPak\nQCdpMoRQ1NEMK7RXtlHcnjjmk2QMZXV1AFDcRuuLc97fec4ZWfHYo9j72BO4/mEFMoTqJjC4YdFW\nhEUv2P011v9ikekQzpWBMwuZxwRAxKLPAWCS5dt4HFlgfIEweaxFdUNj9IpdAIy4PpIV5PZlBa9h\n78S2c+2nPoGf+lufxD97/VVc+7Un8MQ//ybQ3kLz5KU4H1xzbrwKDDrSFACrYGEgs46tPodfNkVw\nyFXEhY8B7j2LRCoEkdjGX0OfP4f2rVv3Dbi4H/OcThAon/vKOW84XmRazRkuR13TmxqNXIax6RT6\nve8GNS3M9Ztov/Z16PPnjn07x7aTmAvfw/n68UfRvPwt7P34x7H1859BiFo4CnyTUQtKrz42VPNt\n3Odkz1gNh/jK//Qc/u4P/Ap+6T/6AfzXX/g4dr9dgCBv0x/5KK5/Z4Gn/6lG881X7qGk9eZl9yPt\n/N2ZX0TZNgWDchFpEoNNXEBEIWnbImEBuXJLUCHp+O5D1FtbaJ57GsWbezDP/1F3tTZHLmPLETGt\ncjFj7zaisYsVtMxyLZFV3k7JdllhvdvA7HyFvrFCPLr1zKpMX6gL9DomvfGkTLKBQmY6BhOlthFl\n7QKIHa3scLsGRmChDVDZg75wDs0bV1H9akdo4Rr6MPfNTuuaSqN46glMnzqP6gvfSCdKxwCDgGPP\nt+/d/II+1IcnQLmYomQMcRsCku8pDUVl5oj/hrpEEbM46cAG0sqBQsIj0MUOuZcQrtzy8omzf3Uc\nt0wwugtgYr0feXw4Rimoi+dx7U9ZbP0CPysBhIjjAvgjf8vrnDAGsZaxcDRRBKY45Gtex8UGgzoy\n4YAXg4YxYbxjPaAFJpU/h5lR9l2PwpYaZlDgG39+CD0Hnv25Kcqbh67MZo2xh8jpEZmO692L5aCM\n3A7cXZ/UdY61UAdj2K+8CLpwHnazI5OOODcRkc4XR99Gpi9ehH3sIl7+4R2YHlDdAlSN2PEe1RQ8\nG0cKLB+7087BHQZhFAJTiHLGT14EOQRIMrxS0eesT7DxmOlFA31uBnNrAKuFPpI/34WI+XYj7i+I\najNw9W1m+r3vxld+4iIuPHsdP/OPfhQXPz/Fowd7aK/fgH70CkypoWrR92ROSmoM4LOCWSKg8HSw\nY7BfXdsQ8zGfgYwQtYRIzj3y71vWSWtfFwXAAGUR1xZy7NMe4GqdBMHBf/C9IAuXyvr+MaFP1nLG\npTSTzX9yW4cZtYQZqjY2YPb3YQ4PcfiXvhfbv/MKmhdfBmkNfeUSzP6+y8i7LrjGc/Tjspju9/vJ\nGeQZ8Hbj+x/DzsvfwrXvs9j6ecT531Hrg8QBe8pI/WmbeBb6Pc/g1s8Qvv/K1zH++8Av/s1LAL4c\nDmXpj2NktH5b2/Cqhbm+JKP5CdsDAwhRrxc0GdgkkyeknRdp6LkDj9lbEMPJOFSMy2rqADDp9zyD\n5uIm6LW3QJ/+QoBv9Afe6xaJL78KO69F1ikFNehHry/T+1lwzlhY04C0AvV6oOEAmNcwXlh4LVvG\n9lnGNpLb5bmr2EI5YJOxkHZfqKFqC33Be0AAl9EoiHv758wAHNfB/09a5Y/9VCwANUQJKBSYH8nA\nnXfAKzrkFZ4F/ezTbv+8DlkU1HAIM52FAYsUOYYI61txe62bBaBTAhHLsjLcd7sbT4pp0bz0Mqp+\nz3fqR4BADxotWILN+XNn8FBmpgPCu+PQsKB55ssjLful5ZOX5Hr8HRqL9sou8NrrCXjSmW2L2RNE\nIBaDNi4l+TqMoaUsoY5rdWUik8cfZUFHKGS2MrC9Ep/48FdxHYCZTKAqwa3rus/8N2fZOoOmRFUV\ndIKgdWhHVDI4LZ6JAHUk6MZjCZ/DwtMBQPPC1bS1AbOzAdsrgMbg+se2UEyAZz55gOL6HmyhEzCG\nmtgWg3k2UQCwDBAYSUBkL90rSLIEwFnrnKOuLY+rG+hHrsDcvgPa2sgmz/E4XrwvZBb7NgKDimee\nwvTp87j6XIXenkV1y6IZEoi7ngLQcxciZUpazNaVAz8euEnYPPfyDfK5y4AgWvG3fO38rrleHWZG\nLdAStCHMdoHBdQ8uEFzI2pKuTDKNgOXHvdNs+iMfA/3tN/HKly7i8meBc//zDMCraHc3HVgCuG/x\nYA61P/a6PK5fsYWCLbXT72KUrzHQ4ylQNzDbGzDD0pWxrhPUYv25QxeTxfKcFencC97hKftDAJw0\nwWoNNA22v3Qb7agXWC8PvFlGSMVcswuw73pOEOfJ/ZI1bdp0HsPyAbduAW2Lvb/8cWz9wmcw+uTv\nYfKDH0Z1+46TpWCm5+YAajBI1lJBLzavi78WDUZJGWduXWOPGIPOf/Y6WgDVNZ06+0w25nY9Y1Gu\nXZMN/bYzLwNz/T/5OOyPvIW/9u7P4Nf/7HP4/KtAH7/rHO+XLwbmvBoOXT8znTpHqgdr34n25ocL\nPP1/XQeKwq0vx+P7er0HBhCys1mSTSeKSgs9GKExJJlCvJgOXnprEnYIgwT6ymXMnr0M/Nbvg16I\n6en0zjba23eAazcw/Z5n0Bs+A/rKy7D1HGZjgPbyFsaPVDAFuZSrAAZvztF78wDqrTuw4wnMbAbb\nNDDTKdTmJmg4gFK0ICi60tYJNVuRZp7KArZuQmabdPEowB/+m4EKjz5f/84S1S2LwZcyeqKOGkEh\n/E6GkfnyHijPWVcnnf/tTbavJNNahxCf+f7vBtUG7ae/EDbrnW00H3wa5t9+HmpzE3Y68wCZF5gN\nwIJLHa3O7QCkYMdjmMnUXce2UKMRaDhEe/36iT2GY9ndDLBKw37vc5gNC+idAQovEJgYD26rgDcs\nn8TfN/N9C08+kkElZwXJ/+XkSukQRsgToxCeesTzpA88C31zD81rr8PWc6dJNKgwfmKEwecAdeVS\nogFjbt9x6yGeLHF2r14PVinYgwMPNBzD62ptys6R9VsnFM3rIOVgWgCbmD3jWT6SYfTyf3wFX/3s\nJTyLz0SvrxXZ5vKQMOl9kzT+M5gXhuxifG8B8IrguLuH2OdKkCh5VpxaPni+PYA0GqF+6hL0/hRW\nKbzyg5tQDXD+SzXUzKC4dhu2LEDzOurozLyOUZEO7XZ66MClqgfb74XnSnXjxophP7a1+wGWdJVL\n3vtOFK+96nw+rXVtiSfWejgAmCXEoJixYiEKcCOxitz5D8pi4n4ZEdQH34fp45t49cMlVAvoKdAM\nCP1bBqoF6g0CWsBUQNsSTAHMtx2wYrXTz1Fzgp4Beoaop8OAi+wyjmD1JGaBBQa7HKIlS4jS4zlN\nvatLFnJES+oh69wSdv91H0Zb3Hm/xeA6xbKZ/WNduRYdY5IFqD2DseoUTfX7+Mr/8iH82Meexy99\nZYZ3/ffn8OxvfxZUlMCFc7DGQB1OgN0ttLOZW6i9+lqn60PvbAMXz8MOeq5fK5T7BhVB3d4HmRHa\njfWD7HOWEBQAs6LxyWOZabqMGclOzWzMArzzZjbDmx8/h90Xpzj84ecw+sXfffD7kdwJd9y+vUtP\nUQA0AML8iUGy9tYt0Pd8EOZzf4zqTos3f/ITuPS/fhrlb/weJv/eRzH89ItA4ca4ZquP8snHYDb6\nrixNaPsFem8eANdvwe7vw8ydl1kN+jCHh7BNA727uzjPPK4dxwEqQ7yOqbVEfnx/1z/4NCY/+D0o\nX3s9vTY7g2W5XeuUk2TzPihGhNkP/wn8+//jb+BTN17CjZ95Cr/yi7sAXkPx5BNovvkK9JVLsPv7\n0O95BuZbrwGPXUa72cfes+/DnWcUrAfy9RwYXLPYfmmK8svfQnvjdFg199PIAO1XX8L4L34Ew09+\n9h5KWq+dPzCAEBVFYPaEUDHALbg8EBFDyIzTDuJzmYkBhH1yca83Rph/z7Ogz34F+rdeW7j2+Pve\nCxig+pfPo/yNtzD+ix+Duvh+FJMWh4/0MN8gNEPXkZoCgAJuv7sPsn30b57H6I0Ww2/tQd3cg7n5\nFsz+PnA4ht7dBg0GwGSyHigkGT3LgKEVrCEzHmP/P/w4dj5/A+brLy9kT1gwZq34Z/nkL98ATeeo\nn7wIdS0DJbSGGvRc1pumCYwhsiTKOaPBUVJJiRJvxZEhW9YuossyZpo9+h/9ENTtQ+C3/yAcpp99\nGnQwRnP1Goo/egnzP/0ngN/6fai+G9zo0cuoH9vBbLd0YGJtoacGwxduoPnGNwFroS+cd+9pMoUZ\nj2EODyNAeVomBqLiySfQfOvV9QdK06J89Sb07TtQ21uwq1K3L7OzmlQRLegDAEhAorBPTqRE+OqC\ndplnMy4TWFejEZoPvwflzUO0f/gVqCuXUTzzFJqXXgYUYf+DF3DrfRpPPv0k2nMbUJMaaFrQeOoZ\nKb49ahUmrcaD6Xpnx03GgKO/fWldaeMFm2dp36UU7GwG+5EPwH7mD0Fl70hAWzKSpo/Psfu5MimP\nGFxh1mdRqHM++wAAIABJREFUROZoIuh/xugzezS5LfQroHZgIFoEIUkoXoBENpZVKtEZSkL2mJ31\nzONoidAMNF788W3oQ4Urn2mx8bU7UHcO0F7axvyJ8+i9+AZQ9YDpDCxAbQ8O0O4dhEmmGvRBj12B\n2RpA7U+Bm7ccONQrgV4JuzEE5nU34Ckt9zJLoPSobzgvz1rQeApzZ88xarc2Vi9WZHhiWQB6CH3h\nPOx44sAgUS8y1rGhysKF0BmTZhl7h7ODiicex63vexy33ue+keLQiUXrqYUtgNkOoX/Lva/xFYLV\njpZe3WnR9hzjru0RjCY0Q4t6gzDfggNiWHjaePylZYYNrWb4SBbQKvOgzALzSIBCk4sW88dqlFdL\njF51+i/rSCS4cgnbL82x964erLKIIkLumry4sBTLZT2hXHT6nWiv/t1P4L/9az+Hf/DFd+Nf/PIn\n8OSnJlD/5vcBwDlIDw7d/BYAMscVVRWo1wtsQ3N46OYxfi6jhkOo8+dgh33YXgnaH4P2DqGtRbvZ\nP6YzFFiVI9mlpc/YGtYGHY7iymU/nqy5sPdlbFxtUI8KFOO34eJczmelA2dV371EPiEp1juFzOEh\n9NaWC7+7sQfz3PtR/drz2PjR78Wbf+sTuPQPP43qV5/HwV/4GIavT4CXAfX/fX7hDZSjEfDkYxh/\n5CmAgP61MfTVWzB7+06/6aYTotY723Gcuxs7JhikL17E7EPvQvH/fO5Y1/j6X30ET/79lwEA3/hL\nGu/9TSRtMoSPBQFpE/e9g6148gnc/N8q/NS7P4mf/eDTsM01jHANgAeSlYJ+77vRfO3r0JcvwQ56\neP0nvwdNH3jXb+xj91MvYeeTe27+2+tBDfqwTz6K/We3cP273wfVWOy8MMfgi6+iuXrtzO6z/qGP\n4PXv6+GZf3Yd7ZdfONa5F77YAKbF5h9dB7a20O7t3adaOntgACHbts4DYUmEgEURaAcAcQiZyDom\n9DyiZ974czXog+8B6hb6//39zqxhMC2qX30esz/3UdQ/9BGUv/F72PjqLVz7dy6ATIGdF2fYuTEG\nzWtQ07qJZq9EszPA5HKFw8sKNz5UgJ47h97tXYzefAL9N2cov/gNtDffgt7ddYsF9g6zZkTp2FB2\nNku8FYuCrWtOXv3zuPNuhfnWRVy6vQfz1u24f2nWMitC4wg3/+QVqBbY+l1fZuuesa3n0BcvwNy4\n6cChgkJGBtsKYOgsTCL3gJvEhdDBjk41QecF/TXviK0FffRDmF7qo/rV5xcGrvbFb0A/+zT0e9+N\n9mtfR/n8V9H8wIdRV64e1bVDlK/fQe9bjkFiywIoC8yf2MXkw5dhFbD54gHwxRdg67mbMO1sw44n\n0BcvwngPiAQXHPjpNF4WBK7v4fnpZ5/G+H0XgC4tpBVGZQ/m9h0XD/7IJSCP6/XMGf34o2jfuOba\n+xI7i+GPijJp/7A2Plc5geKMYDJ8NRcuD+LtHfo7pQes2xblzUO8+YkLOP/lF9BcvQb13Pux95c/\njnOfvQqyFo/8zgSYTEFfueHWQVrDMJOHXErcED/9/5P33tF2XHmd72fvqjo53JyVc7BstW3ZUtN0\nAncDzUAThn7w3pB5iwc8eLBmgAFmmPdIj2ENQ+iBgWGgaRahgYZehM7RbcuWrJYlK2fp3qub48mn\nqvZ+f+yqOnXOvVe2O0g277eWlqQTqnbV2bXD9/f9fb/SQmYzZtNbq2EVCvilktmsxVkioS5PcH3r\nulatd3/WK1MLGVW+j/emQ8wdSjH0XDCGy/WnlAj4CIAmmU6R7akhmzFAKJ4BC8Wo0ylzf1239ZlO\nsOsBdBwRlEaE7B5dD/q11lHZRBvQHGc7KWWaHMwFUfOlRPb1oLrziGqDW+8ZRLqw4y+q2KUGwvXx\nc0lE3UGcv46zZQx/0wDi/HVz2FqtfSwL/laVClwxn/ExgIHfV0TWm4jVCpSriFzGNN+ShkETB37C\nP5bVKjuLiz13jqWvECDS2TR6bh6xadi89nL6R+GxlTJZ13zOUMbrTXQ6GZ1TS4FwPbxrN7G3bm61\nWeu1pWP/gsLq7aH22HYmDyfQ0mgEhaVNXhpSi5rkqs/qZpvyiCR3V5GeV1gNRebqAoTrBWHmGCEl\nJBOorhz1wQzVAYdav8BPmsSYcSVrlZ61ATmADh/Te4Ep6/wMa0SlRft7zUGPwztvczY1SrOcIbkY\nO+49up2fEmihUY7EcjVdF2V76ZcALyXw04ZNlVzWCJ/IbWzNdf0LisbXP85bf/UZ7jZO82u/+Z0M\nn6sjvArS9RH5PKpUQubzrXE4jFgyTjcaa+Z3kUxGTpKqWm0rebA3jYHnIUpV7IaLTjpEJTRNF+F6\n6GQClUtuDD53LuqDMWJdNkXIvDx8AHXlFnKwH2JJFuMqth5zSEbtzp6bRlfrXPl3O9nxkaDU7PWy\ncY+N0xuW2GzEfukoEwv/bwWbVOEkkNk0qmwYPCyt4L31EexzkPng83jf+SQTP3uMsV99lvSHTiBS\nqQ0fVVWpwIUrJC8Ep35kP9WDI0hPIz2FM9+Pf/4y/vIKVlcRVam19jK+j0wlzRzrq5YhUed13CvW\n+Yx8ZD/+ixeYeXwXWy4MvmKAwR4eYuh4617LaqvMPzyHzGYRjm3A07a9TMd+5FWYIbymQwgmfuYo\nf/O//wbf8ws/xZ++fxN0+DH7yytYTgJdr2Pt24WoNxFzy4z87k0zztAO5epGA7/RgOUVsmcgKy3s\nTSOUDw0z9e7tKHsHxVsemc9cbAHanc0KAO2N3v9iQzYV23/nMiKbeVXsMnt4KAKeq7t6SY+vdRqz\nhwapHxjD+eyZL0vZ3GsGEIrEgGMOY8A6ZWKhpbxsCTnHwKEQTLL6emnsG8X69Bc6ThQwjaLjm89n\nT49TemIz8i1vQC5WGfz0DKLeRJdKRk8oZBMEWVh7UlK4niKfz+J3Z6kNp6kOWCxvt1B7MqT37Kf7\nSh375izNHQMoS+InJSoh8FKSZk5g1zWFmzWcqWX08qopm1MKrI5NWFyrB6JyhPU2c1vfd4uFt25G\nOM5aMOllbOnFSpneZ8ymwg+ZQ1oZsOLhfcz+sk//TyTQtydbDmWWhbBoARQPMmIPWkRUidWJR32s\nUyhPiDUPqT06Qm3fMM4nTt3bNWx5FZHNYO3ajn/1BvJzL5IYGzWHXllt6UiFpSRCYI87FLMZSKfw\n+gtUv/EwyhakFlySL95EVatIIZD5PP6yWaQLy4p0tnSjYcCjfM5oVVWrLZ2njQab4JkSnRvV8L3Z\nBbL1JnrXdvxrN19F9sSwOaxCobWhiB3XHhxAlcp4t+68suPdzwiATvPvcMxRawHC8NkPxw5iIF3n\nZrjzFE4i2JzHnsW5RVIrPTS+/nGS/3wSbtxh+Vt76D6TIP/8HXS9gV+tRjbmMpUyAIlrdMrQqk1I\nHd+PFqzScbBHhs045bqGPQKofNaUFi0socuVFuCy0cY4ADDi4Lz2/TULbaviUt4WgF3KRwin/Tjr\niUBrjXASjHUtU53Ptr8etEfVatTf9ThWzcf5xClkNrtW6DoEhx7U3j4o021pTbU05nTYvlBQOs5o\nipWZhVpCwpLoLSNoTzH+zi6qw4qt/9QkNbFq+lUAbsuqi9+Xxy5XUXdnkHoANo2gb09EfSVuaR8B\nekFbtK/wxidgfAKfYDG6eQTt+Yhytd0cwXXB941eUjqJqDWg0TBzS8ps0trKsuJgUPAnBGAiUCY6\nuAbbwhodhsUVyKQNYN75DMWfr/D/wXn8iSlEwkGMDrV9Xs/M45dKLH7vUXrPlZFLZQNyxdoYWs//\nSwlx+AB331Sk0QOJFZDxfbkwdPpmQZCd9um6rpk/mMCuKzPeVEzpclgKvmYekRYJIJ3LwmAf7lCR\n6lCCRpek0SVQWbDroAX4SXM+5YC2NNIVRpBZBzpFzdjjGgdwojKwAMQSHZ8J/68AJRhKl7idr7K4\nKUFyyYqOc69SLjcLVlUimy5OReKlW/1RaKh3C0p7XZJTDlYSUouYTaiv24Am/UqTdK+DkNkst9+3\njV889AF+8U+/i5Fn6vTVzVwitCm7lGNDcLFkkj7JjtXQy2xuoo0aGH2Z7qIBDRoNMw69wrAGB6CY\nRyccwwySEq06xoQwvCCh0znmhG06fR4NlN5wkMLTN2PHCErEOseg2PylZuaQw4NYmyvtyaAg7NER\nVHcBde7SK762+x73Akg2+j07ysSs3h78+QVUrY41OIBaWGxntWtF6sY8lWCNU/jz52j88NGIDf1q\nBIHVixcIVhhYvT0sPbUbe/cTFF6YxJuYxNq1HeH5+L15rGoTlbBxe1IIpUneWkAvLaMqtfb95XpJ\njPXuT3Atiw8V6XoRRv/fZ/EfPQD3AoRix1f9XWTPTkZwR3IplkgJ2LsRs+rIQ3Dipbb7DLQY668l\nSY4vMvTRh/nOP/4w7xuf5Ce2HqPrXq5hjYZJkE/NsvzUPrpO3L1nQrktlI93e5zU7XFSGHDF3T7E\n3HccRPiQnfXw0pLKgIVbgGZBoy2w6oLkMuTHfQoXl1HXbr3yc24QidkyNF3qhwawX4VTmO4u4Cyb\nc9d6bZIdz0zj6x+n9+eucedDSUY++eXRUHrNAEJAlNUMWT6dZReRhk0AEoXfiQtNy2QS/9G9MLW8\nFgwKjx1M6EKISATZm5omc7uX+lAGK+VgTc5Gi6RQ6AwhTUYBjA1w04VSGWvGInfDIddVQHVlqQ+m\nWdnicPdNaXLbNuNmIFHW1HolXsYseIQPdUtQ2pxFellSCyOkF32SSy7O1CqyWjelWQHDAttCOzY6\nm0K4PkxMo2v11kYzZOc4Nt0vraCWllvtDt2OZMvlZ71MiM5nEOWa0ZMIF/KeR+2bjtD3UzfJ/cpW\n/GsnW8wD0dLMQEiEI9CNBwwKrRcBLVN3TnYhCNDxujy4F+/CVVPr+zLhzy9gCQm5DI1veJzMtSXU\n+F0D3MQZPGEpEUCjgQr0XuTMHPnrKUQhjypmqR7ZgZ/eRf7iIswtop88RH0wSejG4mYkyoH0nEf6\nhRumjloYRwcDHJjsWiR4C63NqOuuPxFrjV8qQZDpeTVZfplOQV8PzC4gcln0ikHXhW0jkkm86RnU\nmw9jL9dRZy7e+3j3OzrdxPQ6YFAs2lzrXm4R0TbWxJyiAF2ukL+ywtSbexg+tBcxs8iWf1qFmflA\nU0oFwuPB5lXrCIjRIYMp3ibXi34vVSoh+3up7u4nOV+j3p8muVBHpW2ceY2uVM0El0ya3yiTAbcZ\nMV1EcMyQ5SIA4TioUrllfx62SQis+RKFba2scRyIaN0L2QYkCSEQqSR3FrsYcDvvm0RVKtz+T8fY\n+eabuG+Zat1fuf4C/76HYMMSWdHB+EHKFngXPpMBSBT2DzE4gF9MUx3LMPENPv1PazZ9eMWM816s\njwaaKcqWqKFe9PklVMD8kdmsWVSGx4z3EdECeQSgvUCIsdk02diAxmxv34rKpOD2ZJQlk5lMVIsv\nkknEvh3GUWipDKVKW2lfHLTRWpv3Uil0MRdcd7sWhU7YuP1Z7JUMoumB67W9v4YVEP+73kC7TZOs\nSDiIegPhK3SpTP2Ne5FNRc8fH0cc3NsCpaQAjIaQ8NRroy99iWEPDbL8pq0sPCRxypCaZy27Rpv1\nhpcR1PoTFF9aYHg5hbVSM+NBsxkB4+ua2QTjpL+6CquryOsWxUIO+npobuqmPJqgUZAkygY4kb5h\n1lhNjVPxcbMW5RGLZsGAMkKD8AxAJDzzf20ZMAgBXtK02a7RDgaB2RTZirHkEhOFLkpdaSATfaZT\nPi0El8JSMLtiNCe8lAGqwvM2uwSl3S6pSYfiNcXKDmm+Zwmz9NP6X5yQ9Oz/cYz//m9/i+86vovf\n/vfvYdNEeU3yESlQuVSk2fIlbY6Uj7+wGP3XKhTQvr9WnFmIKOGlG038pSX8mVmYmY0+IjMZY0Ig\nBbrp4pfLbXOwzGYNUGzFdtEd7zez0oDbcRfhEDyXknX19QKttlTSXTvnH3mICz+UZN+/vf7F36Ov\nVHSu5+LA/av4nnASaLeJP7+APTSIWl7Bn51bF8j3707jPjYUJVT7f+84Kptdf235Ch3E/IVFCn/x\nHFZfL819m5HjE+jJafxKBW60WCM2YI+N4m7uo35okMSqh2wq7PkyYqVkfu/QDVQKU+oIYFmopeX2\nPqk1iUoMFEza985BCUkoO6FSDrJtnUg071iFXASimSoLTOltx71pMdNfv/OVzOe59F/38NGv+S1+\nfP9TJCq3X/Y7/uoqdk8X2vXIfeA5vhTIw5uaRkxN0/sM2Nu2UNk/QGaqQe6Wh6w0YH4ZXa+jazVk\nLot3YBvTb+qh/u5ehA+5SU1usomzWEc2THm9n0+ikhbNvENixcU5c33dki6VNSzJV52AmphGHdpO\nYmwUP9X+Vu2bj7D8PSWcf7+VTReufrG+5mviNQMItco0iOl6qFZmOtiMtTZkLRaRsB2072P19tA8\nuAnr019o7zxCmHK0TtctSyBTqWiTLK7cInPdZGxVwMSIK+m3jmeAEOWayVE4NqLZhFodOW+TnUyT\nuZrFHS7Q6HZIlASpxSb5Wxp7tW7q7pVCJx2aPWnKYwnqPYLKsI22bKSbxq6DU9IU7rgox7CKvLRh\nFRVPTePXYhv7mKZQnIkhs1lkTzfNrf0krt7Fm50Hy8L7qoM4S3X0xeuBELVZDFa3dpG5oRHlKnPf\n96ihTCvN3a9VpH5mhMSzJ7G3b8UPqWsBaBeWi7Vthu53bADurKG5hq9Ff6tokpOpFN4T+9p0gjY8\nD0TnUktLsLxCZjJtaKqdTIZART/uhoaQRoBYaYTrISpVmHfITKWhmEflU4iRfuyVGrn5khHhk9Js\nmpRCZ1NUn9hBrW8PVkOTmWmSvDYTKfF3Rli/L5XCn19sMWPC95NJvMf2YlVccCT2+BxqaRmRSpoS\npdiCyx4KKLNaG2pncC3YFv7yMvboCCQTeDduIR5/COfSJHpldWNnjuB3eVBCnVE5WPh/Kcx8HpvY\ngzdAux39Z53jheVhsuXK1cnEEZOzWM1uFh/upvcfZxDnruE33ZZYfsACigDpwP42EiCOl2eG42R4\nDdUa6ZtLIAUprbEm502/DAQZhZNAJpNB1sksqEUyaSitnmdKg3IZM6Z4Pmr8bmuM7NTxaTRpvDDS\neimdQgSlBd7svNmsp9PQ24W6NW7GUSnRpRL1qVEWDlqM/LP5rjUyBFoz8W1j/Jt3f5LPHkq3zhWW\nXIWMG2i5e93vfhP9/BpcwxqNfl/LCkAXLwDilZlHQiAtXmrl2OixQUTdZeJr8qBh9x/WsEql9vIp\npVoiyUphly2aPWlSY8Oombkoq621RmgFBAzYiJ0UtM31AiAqANbCtgZznXfzNlaxAJaMxPGjEg8h\nDFX7RcPj9zEsXD3Uj9cd/E4SlC3xE2YzbdUVyZkyYmF5LQNICPAUzuQyouHijU8YdlM6DQkHkU6h\nbQvRcNH1BsK20Nm00QVSGn+oF8vz8efm0JdvoILxzNq/m/TtZZiehwN7jPaWZTZxa8rFXi+lHhuE\nfGQ/d57qwk9Cao4WYBFj3bT9raE8KilcsrCu3EG7HrrpboAC3SOUH2nDWNdu0tPfjx7uRdRdRK1h\nzBLKlcj9JZlKURgawO8vUh9I0ShaNPOBLqMw2kYROyhse8AM8lOirf1agDPv8PGZvYxmVyjma5QH\nsmhLowWkFgR21ege+SlT+mVXzbrSrkB1WCEUpBc8Vjc5uDmBtqG0x6XrrEPxhsvsGxycsjlXCFIB\nkWlGJ2Po9RYymyX7kTTv6P4IP/C7P87W56tIr9b2GSMarhBNjbYlDPXBlyri2xEb6mFojapU2tYK\n4digqiahoapVWM9xR1pYO7bgjhSN81mtvcTN6u/Hn5tDODbFG/W29ZLMZg0gEDuuSKVQTTdy+HGf\n2ItdauI9X2g/7r5dNLMOwx+3v3Sx4/sRrzTpF/tceA9kNouwLLyZ2Y3XQLYxuOk6OcXSe54k/5fP\nAUE5WHwtFLah08n1ZcKfX8A+WTFmcakkrLOu9CYmEROThKsIq6uIHhtGD/WaF67cQq3XB0PwJXZt\nqYVmpO3Z6E2SyWZRtTry0B7kchnvziQoH3tokMobNhvmtxBYN6e5++27GPhvpp/5Kc3C9z2JUND/\n9HSkr8XOze1gdudv8zqeq8SjBzj8P17ixj85/NiWNwKvwp2v0TRg3ZfR0c+7eZvUxFS0f/U79oz+\n8grimRfpf8b83xocwN82RHUkTbOYI392FnVrHKu3BzuRwC7m8AvJDUu29MmX8AFnZRW5dTPLR0bw\nUoL0gkf6ky+ZtfWRh1g8mKPvxFLELvRXV1nak2bgcpOBT0/jvfER7F+aJSF9RpIXmf5aWPjWg3R/\ndu5VlaLdK14zgBDCLCIjC2chDdAT2MW36ajYpiyhtfH2kQd3IZbK7aygeHlY3I3LksjhQaq7+0ms\nNLEu3cZfXkFVKpHTmdksBUwBEdqZB8cNgZDwmL5vnKR8ZTZXTRdRqeIsrZKwLeP44rqGlRNkWLTW\niIRDctIiddGCVBKVT+P2ZmgWbIQPdtUn8dxFVLXaVrbkQdQB7OEh1GoJValgb9+KXlqB4X5uf1Mf\n1a1mMhz6rIXTu4VmbhvFKxW8tIWby5EWO1GnzxsBr5FB0uMlRLnK5LdsZeUNDahbCE+w97dLqHOX\nDHASWCSbzWnrHqwpxbrfEbCA1n8vnpnuqPvWRkNJPHoAUXOR9wKDYucRySQy34UuVwIXhGCRHCtR\niwAF5bffmnhbtUJ7Cu1qo79TLiNXVpG5LCKdNmVDIePHdVsMDMsic9Mmk04hMmn8nhzVgyM0j46R\nKCnS46t4hRTalgilEYsVvEvX2jZk9tAg/tx8yx3v8y9G61wPI/pG08Wfmsbq72f57Tto5gW9f3jc\nXH9XEboKEBMgn/zpoyQXNd1XG1QfH6LrC7MIKRGD/WaxdXMDu9AHNeEJ0TG22Gtds9rKDTdeSHWW\nh8XBIJHLIgp5Y7e7sIiu1cnMKhYOWvTlsmYDpXywEtH4FzEhtUJrEZSMmZR2BJKHumnBtQCo5RUo\nlc1LgArGSdVoBKBpExXvkEqhSiX0yyxkQ6BL5LLoUtkwTHoLyKahcuumS+mtexFak/77EwDIkU1U\nd/XhrLqIa150D+2hrXz3Vz/Nh37/za0TuB6qK09li8/n3zoKtLLJa0quOpzWHkSIeElCOA42m+sz\nmYLythAUkj1dqO48fjbB+Lu7GTjlkb2xQuSCE8/K+sqAOa5r+lLTJen66FQCWcijG01zPzpNCaQB\nTyJgKJk0fcwnYH8FQL5tQzKJbjbxV1YRtoOwpEl0pFozjwjmQe15aNczzKH5hTYmuwQSIbDT24U7\n3AXdaZylGjSa6Jl5ZH+vKdmaXaBxeDsr2xOUtm6i6wp0XSpjlRt4hRTi9OWIkSAOH8BaLqPnZ/GX\nV8zYlHBAWmi3iT00iLtjGP+ZF4FANLbWQJcqUDSC1YYl0gEKvQ7D6u2hcnQnc4dtrBpGQ6dzOJLg\npYLSLWn0fqQHbh4aA1lSdwxouUZj44sIf25ujcBwPFS9jrp1B25BEkjn88ieLnQqiU45eF0pKkOt\nfqYc44YWlnSphNFAsmvmWtxuD1sqri33kbA9mjtr6NUEVkVSGVNoCU5JYNeg0a3x0sYdtjakUGmf\n5MQyLC7jfKzlQjP4psPYq2VKOwvUtjYpnE8YJncAQglBVCr2ei41XPzeo7z3P/w2/+tzP8DCL29j\naKXSEl8OWeQNHy5ci7Q6ZCaD6O99oO1W9XqbPqFVKCAy6RaDXkp00kF152gUElhVD1k3LBBRrqJ7\niohKDS/op/7yCvLp9rXeeskqVa8jbDsCiRb3JOn//S+QfOwot//vo3Rf0qRnXexL01iXrpF/rW7c\nX+2aKwaahzqLIRikPW992/e4Ls62zbhDRbg1h5vuGGuDknHtNjsStrEE3HprrI7XwiSVv2jWLdGa\nrZNRGkRc4NweHqL01EHyp6fQ5Qo60LgKzY2EY2y+/eVlZDoNnz3NtV87yrafOU728gJq/3YqWzJk\n/+Z5eGQ/q8ceR3qQ+8BzJP95hvq7jpD51DnU0hLe1y7DfzNt2PrzrRKpcLciDh9AnT5P6T1Pkj/x\nGu0/X2SM//wxfu27/4T//ra3sXX8HuVhmPtQ3p6j2i/putYkdfomOpfB7zQ4+jJEZ0L8XhGyEzPh\nC709yO5u8zrAeLDODt62CgXUrk3oU+ext27m8o+OMHRck/3b5/GHu2nmBJk5n/RnLrD0bY8w8zaP\nLX8r6P3TkyjPw940Rn33IG/9zWd4/z9A79wclttEXLuJ/1aoYf4A9H/kBp60+HLFawcQAuLuYZG9\nue2YDHi8VCzYzAgpEMkk/qGdqONn2l1QQwv7jnpv7TaRW7ZROthPacwGlSCxe79ZiJbqqGu3DUAQ\nup6F+hAx56AICAqAo04rdkPB9hDNpskIByJuBpxqDVK6ElAWLcvoesxD4m6ChNZmch4ZoPrWA0hX\nk1ioYU3OG3Ap4Zis53KJ0hObqRctes6XuPVUATc3zJaP1tnywVnK+3oAyD93k/mv3c7cEcXSnhxb\nf8E8mOLhfbhvf5Sv+a3P8Md/eYDN//kUSggGf+cug6FoXHc3IptB9PdTfXwrjS6L6jsHGP3nadSt\nieh3e6CxER22kzUUAjFCtCGqMptFnTr/imh3IdNG9eRR56+2T0DR+WPnjEDFlvj5mjaFGYlA40c1\nXUQ4eQkZaUaF9puA6V/SsNLEyipiaoakr0h4LtZAP7q/B3H8TJRc9Wll2bAkIp3GG5/A2reLys5u\nKkMWgx+bQM3Mcecn30CzS9N3WtN1fpnxH9hOchEG3vusacebD+Ocux0NlKvf+STd/3wR/9pNRn/9\nDlagNZGYFAjPx5uZa0OvQ6eI1sUEz8MruP9f1ggXPTHdMjPm2C2QSBiL3NDdMN7etkM5LcrxmnAc\nVt5gi2Q4AAAgAElEQVS6k/KYxfDTq+jxCYSToDogo6xzWC6rPTfqB2vOEbYDWmBQMD7GQ/sqcgJs\nc2wMGHHmMyG4JTecHIVtI9LpFkgW9JvmzmGzmH7yELd/SjPyew3Tr6RF7sZqVBpY/vYnKH76GomP\n3gIMbViVStS/8QgP/Ycz/PWfv4XNH7gUPXfexCTWaoHd/9OK+kfERlPKZGoTgUZRyBh6NW5qX8aI\nwLlQ4D1e7hQCMCFYFZYKBqwhMTaE253h7ldn8ZOw6aMV7OXqmpIqtDZGBrZlnFsaElXMIlzfMDGS\nTgQQE/7OQXuIl+IFOl8EQCMQsM6CtoegZSKBlUoSinOaZnQw3KQpy9bBJixkzqqy0dSQu7ejEzba\nUwjfJzG+gK7UzByez1F+2z7SHzoRNS11cZLUzSS9N1sU8rA/WMNDzH7dNnouVBDnb0I2w+T3HGD1\n4Qa7v9c4vVjd3WZjWK8jAjAIwNs8QH0wDRqyVxYMUyiViN7XMsb0fB2FPTTIxHfswM2Bs2pAnvVs\n1v0EIMEpQ3pBUe+S1AZBOQEbx/Va/WGjRMpXKFQp0KNxEshCDsftQ40lqYya8TDSEcIAMr4DtVEP\nmXMZ7l/BbiS4+eIosiFIzQs2X3BJTa2yuqdIZqZBs+CwsF8aMKjoY1XNcftOCXr+9rwByDtYvPLp\n08jtW8ndsek+laPvbBXnzjzlR0bwk2LNPX492s5f/a0n+bmn/o7vf++Ps/mFOla9o/wrKBWTd+da\nuj9CGDHo2+uwcR5ghOWL60W4qVHxpM4Gmi8yn0f29RjXV1jXzlx7HlZXkWs/vZ8dv3QWBQx9Yhrh\neviTpqTZ8zyjtRYrqWtLKj2oCEpGozVqhyh063MbM1K0a9gxQEs0et1ztcYS/+oN7LtZSl9zALuh\nDTNrfr611nOba9lBah0wqO3fnYzt9rK3NWBQ8Jk4e1rYNtbwEN74BLmrRRbfOIpd1+RulLCXAxZ8\n00UNdOOfuciV3zvC4DOS4p89x/b/+AXctz+KWG2iT75E9iSM/9wxNv3ysxSCqaf87U+Q++vnSf3j\niWg/Ovqe69HwYe3cZsDLlIM6a5gg+vR57LFRuj5ykVs/f4zNH1lFv3CudZnh+st7/dSsWt3dXPql\n3aSHVnjvrt3AvfXCrO5uvIxD8fQM2Ru3kAf3Mv69e7EaMPi7N+9Po18uQs2n1TIc3MXCN+9ENiEz\n5yF8jdAYILrcZPGhAt5/3MPjQ3dY+K0Rch86hdy3C+X6DHx8HBybpXc9RPfZZYTqQstg7eZ5eOMT\nTH3PZo5//Q62TgQgWlTCa2Hlsqhqldo730D26iKW69J4eBuzjyXZ/Dd3jWPxmnhlCbDXFCAUMYFE\nCxQCWkBMXNBVK8Qb9uMnbcSzZ9qPsx4YFLuhLCyT++wymVIJcXA384eLrOzO0nO62fpMeCwp0J6O\n2EvRcf1ma2wSEiFDvRYRZWAjHYUg86KbzQh9jsREtW6VF/g+ulxB5LLQ12Xq16Vgca+Dn0qgZREt\nQAbnzUwPUrhZZ/wdsPUHp2g+k2fXr19GDw9Q3d5Nrcdcx/J37iCxotn1Y8+33Sd15iI28Jl3HWCb\newtGhqDeMOVv0sKfmzP2jraNPzdH5loBdvWwuE8w89ZBhj7m4U/NgDLXv5HV9n2N4LcTdkyHKlbm\nJYKSA+02sUdHqBwaJfnhV+asZfX10jy4BTdv4ycEztAjuDmL5LJH8tx4q5Y6nuUIyg3b9IS03z5B\nh6GV6WuADvmj2kN7ImKptIFLobNCOEFbFlY+j15ZRdTquE89hnQViZmy0ZzyPDOhBwCA+zWPoise\nqX84QQqY++6jpBeHGfuVZ1u3c3SELX8H6twlvLc/SuL4Raxzt1Gbh7n2C7vZ84sXKfz5c61NXHfR\nsPBqDdAaL9BhsrdsYvqdY+QmfVL/eGLdhddrIaIxSLVEpO8p1k0w3nQAOPGNtOzrwWpqBk5W4cwV\n465iSQq3PfpP1VCLS0H5TuCmGADjYV+N2CcxNlA0TgZMPXPS9R0XW59vLZKiRVTIhAyuL76o1Z6H\nVcijizmju+J66JVVbrw7ya76QyzvzJD+lMD+1HHUob3IpTLKsSKQoHh2AX9+ISoVFKkUliWpDFk8\n/WePsvnPLrUDg5iFvnT9ltt0IYdt2xG1X2u7pUcUgkIPYl8faEwQ6gKF2hPBe9G/dcvVTfb3ofMZ\ncD2Wd2XoueSRuxpjBcUjWNRqxzZgRq2GbrqoOxPRbxc6u+AkgvI+r/04naBHCGpGgugqKGuMmTME\nQJFw7DagK946LWU0f2nPM9dWzCMcB+/ClWiT5fcVUF0ZEN2gQVuC/EuzLP/rJ1k4KBh63otcDWvf\ndITSJhurrul7sYR+4RzutkH6n5lDVGroTBpveoah/zrDECAP7kWWKqj5RSOyXyxgb9uCmp1H795K\naUuGruMTeBOT6EwGRocMiJZKmL7sx56H10nIh/cxdawLlYTkCtzLVUtocFY0yWVNaskjuSQo3BFY\nTUXq6gx+033Zce0rHdpt4i+tYClND5Bc7aLeZVEdEpHmj1AgLEjftfGyFpNNi+KZBDtOlNFCYN+Y\nwp+ZRQG5YBmYAlJDR6mOaLCNWGjmrqTr/c9GmzSZz6NjbjL22Ci4HvrkS/QHywEPSI1PUH/XEbSF\n6TO02vV6CaurSONviryr6xR/9IvfzPCdGCsoFloIpFLoag3hJLDGhtGlMv78Qos5/yoy6/cz1itH\njwMXYTKiM0Jw0nxo4+RC9Y272fazx6P+o25PRvci0oiLgUEzP3aM4c8twYXrD/aeRRNpyAJbBwyK\nvx97zx4bbc279ca9haCFwApYZCFzQlUqpD90glxvT8TiaTt3wO7Snrc2oarb1yVr2r4BC6gNPAq+\na/ZchpGkgw23zGTwz1+mcD6YRzeNBHO4BtvGK6SY/5Fj7P5hsxa2dm2HuQXsT55qG3K3/v4lxNgo\nt/63LQw/V6frhWlUNotIJZl6z14G3vusMXlwjX24nphCbN9MbTRP8qw5xvwPHaX/fV9ANxps+qVn\nmfiZY4zpA+hT5037QzdS+/WRwLj1y0d5xzte4NonJGM/cv4VfUeVSgjXZ+nIEKvfPsLwM1VGfuPZ\nl//i/QxlzFtkJoM6fZ7+K1nkQB+V/QM0C4bsoXts3EyavheWEMd9bl2u0X1omcZbHib5/BWEUnjB\nONU1v4h7aDvFyyX0qfPt/eoDs5BwsPbsZOFIP32fGTcarw/vpTqUIfvSXZyKh3/5GgD2pxYZ+RT4\njx7A3rIJb4149Svbm79mAKE2rSC/9SB3Ws1rpU2WeM821Knz7bhXp1ZQPCIdBb9tI6pfvED/ZD/C\nkqjVUmsDFdMtEk7CuMAENuvR7rdD4wiI3J6E6FiYxzNSoSOXkKHebFRSAKBKZaQ2jjG51SqZO1lU\n0qbZk8JPGpBIOQLpGQvV3T98ghVgO8eht4f6aI7s2UkyJ02JiBoboDaaZeonj+GnYPQzFeyLdwxA\nUCrh3bpjEPxg824VCohCS7/DD2i2Xl+O7Nkpdpxo4O4ZZfHoCN0fCSbUBykq3TYhtPeV1oQS/K6N\nBlZ/P+6eUdSZ668YDIJAQPozC9FPZvX1kkmlwPNQpXJ7WVHYroAdtqYuOSiRfFmLz7C8TftorVr9\nW+lI4yravDWbKKVNmYdjkzp9G/q78Yppmtv2BG0ClRD4CUnxxTkQgsXvepKuy2W633e8vQ2ALuZo\njORIlzfDJ09BJgO2jTW3zM4/l8x+6356/+g48uF9yFKthU4Hz5jV3Y3aPoK+Ok7fH0wgHtnP3A8d\npe8Pjj/4DFq4aAhYXGscduKsrnW/f4/xJhZqdp7cp5fMOJHLMve2TaQXfLLPXUeVym3jnRGJ9pHJ\noCxW+6Babl+tNrlR6Ww4DkGweCD27wBIFBZoLwYmhv0q3v9EUJYWAphCmhLYpdUWyKE0u95fQjZc\nek7V8S9eRR7cS2lXkfxVEOeuoTzPAH7BZBUt1JWxMO4/sczE13ZHYJC1Z2f0WYDKjgLpc0b8j1qj\nTedBNxpR2W9bGdn9DIE5f+gqBgHrMGYpG31WIJNJRG83OuFQ21Rg/Cmb4c8rcleW7221rjU65bB6\ncJR6j8RLCfpfrGGfuoyq1aI24DbbgR/LAsdkm9o0l6DFDIJoHGmbn8J/S9sAQyomEB3qD4UMokA7\nSWttysHKFbPxqlTNnHCzPS8lMJvs4tIKuQ+Y8aH+jUewqz7552+T+3Qt0rTSgGx45v+ZFCzUsAYH\n0EEppJxfQi2vGBeS7gI0XLyBAs3d/WTOT5E7fR6Vz5sy6vlFk7HesqnlNhbc39dDWDu3UdvZx/QR\nh0QJrFBs+R7NF54pu3KzgtKWBKk5Tf/nZ9Djd/FCrbIHzewFo0e0tARLS2TG8+RyWfN7hoC1Y+H2\nZpBNhZaCxM1ZdKWKKOTwbo9vyOrt/cPjlP/TMRppH6sq8DLGAcqbvGvGud2b4dR57E1jlB82ltaJ\nj6y/Fkj94wlq33QEoGU///roOkz//T5+59Bf8N0f/0G8fxwiP3dvpo+WArFjE34uQT3vIN0+nE8s\nPHimy8tEGxgUahImEgYsjoFB8tDeiJkBBgzQvo9wbErfdJjEikfioy+sOX7m+Rt4Rx/GmVnBu3kb\nmU7hh0Ls69yboedKzD3WxeDKUKQv8yDjXuVUbeswrSMGtzcxiT06gj87/8pcwZou9Pdg9RSp7Owm\nc6eEOnNxTdLHnDTGmt0o7nXPOtbYnbqebQx9ZQxlRFAWjdZtOlHaba5hVVjTswxfyDH1I8cYeO+z\n+FdvUP2WJ8h88PnIKQ1ArayiFxYZ+9VJrv/no+z+f5Zgxyb8s5ewa6aNqlTi2m8+yc7/6zlzHy9c\n4e6/OcrOLwzgz8zS9wfH0bTY0KO/9izz33+UgTtG76oNrHsNh8xkuPRfDgI+176ui21z9y4Ri4f2\nPDjxEvkTkMfsG/QGIO4DjUDfDMyYo25WSN683SbpEmptWV1FY/Tha/yUhUgmwLKQwdpJVatGpkNa\neG9/lORUCf/CFXOaiSn8h3ZQG0rR89enmfuOw7j5zQx9bpH0Z8/jVaskLQlbN5tERr1ukv2nzsOW\nTV/03uq1AQgJTKYy0MaIXo4YQi12hJACkU7jr+NYtOHmLJ41XU/FvVRCSxkxeCJQQUijGxTqvMRc\nzqIFS8yNIXJckSLSPjLnb5U2CKFNWQgm8xVluaNrCLINTWP5i5NAej7SktjzlikfsC20Y/6IuocO\n63GBOz+wl4FTDVRfETm/AraFLNfInVlBJUaZOiaojKUpXneMGHIQfkwDwF9dpfLUPpKLQ9ifOtV6\nPW1jZ1LohUXk51+k/qPHoK8bypWWgO7au3//IsootJg2UcR+8+pjW5l8i03X7oP0/dXZ9euhX0EI\nx0GvlvBD/Zd1BmxhGcaEarprJzgdc7oJQKxQ86oNABDBZ3Wr78SvVzdamZPILaZWM32pVMKSkkzC\naZWTgHHQs21UpULx8rXodwsHs6h/35ogXeunuaUXeesOCIE/M4vV3Y21ksZP5xGPP4Q6+RK1r38c\ne0tPpOPlve1R7FsLyOsTkYCkPn2evuQhU46USDzYhWaHtpTuGCfWK9uKR9yx8J4RAsBB1HsFWlpk\nGk10sxmNE0KKgNURjHshu8TqaGsYHUBzyBpqu45QZDhWZgvE2I2tBWILjA/Fmn0jRA2m77iuEfh7\n6TL+Y/uxJxaQqRQrB7ooXl5FlutRBnW939VfWsFOp+Hqbew3dkeZDJUz02k4iWVvl1FAfVsfqRtr\n68e120Q4mVbb7/ego2nNKeH4HQP0gUhvB4CEE5UkpKcK7JzfhCw3Nh5zYgtA4frkbpXJ3Q5KeBfL\n6GwWK3DYaQNywja5HtqrGwAn4RC5TcbBH8uKXL20Z9hNEWtVCPOeFOYYvm9KlcMIHdKCUlYRZlaT\nCfAVVk9X21gjHDP26HwG5hahtxtroJf6piKLe2w2/f0curtgjmlbUK4gfB/r7gKLb9lK8UoJssPI\nu3OoWg20RvZ0U3vrQwbQn56h+i1P4JR9Eh99AZVKYe3eYWj5UuIPFbFeuoE/0IU1v2oAgdeRdfj8\nG4eojAisBsgmvCz7WxuGED4IH3zLuGhhW615SL42ln7xUKUSqlJFLi1HrGmZTJJczJsS2GK+BQ6/\nAnZpchkaYxrpGTHX0mNjpCfvYhULlMeypJIPU0/ZNLokQkHiHseyawovHQK+X/q13o+ofNsT/Oy+\nD/D+uTcy+jFJaq6G8HVLvLaT1aoDJrstseqe+bNY/pLcfR5IhGuXgLETbirtsVG8AAwShw+gT59H\nZo0RiEilyN2p0iwm1s2w+/ML2P09qJk5rK4uGOjdsGQNAE8x8NlpdMLB6u9t6Y08oIjWBHEgJQJL\nOvZDm4bQezZhX7gVGFHE1pz3KDVTpRKi0UDYNlkhqG4rkowXb8QZP50gR/yYG7GYoD2RGh4vVgq/\npiROxdfGXqSH1H7MdfaEbhN/YZH0vMLeuhnv9jiF09N4YHRa4+0JYvdvXEft3oxcqWIVCuQnXO7+\nu2OM/PqzjH4mSEgffRhx/Aw7379I/eHNOB+bNaLFM7PgmASftXMbvX90nMbbH8X+5FxsnfMaRqGF\nQA72s/XvFImPvvAluV4JJwFDfajA/fT1Ftr3sfbsRDu2EYjObyX7uUsbi+grn8SJK6i9WyPpCZnP\noZ47S+7AHkRXkcLtBss7kvj5FE5vD+rQTphYMMmyUhl6uxG1OtbQICqfRXYVI3fYVxOvjVWBxiC3\nMe2MeKY+FGsVto3IZvAXFhFOgsmfeIxmQTP4gk/u6jLMLaErFVCqlbmFtokvdCRDK+zBAer7x0jd\nnMefmIrZ2VuRAw+hpojWoLzWIj+0lQ4jcEATUpiN+EbaFnGLQ983k1F0H7SxHQyz/a5ndCU8zyy+\nw2vyA1HjRIL6rkGauw+T+eDzNN/xGJt/71x07V6pZB7UXA4SDvlz8+Q/u8Tsu/egxvqxlKb26FZS\nE6VI2Vwfexjx7Bmyf/M8VleRqR89hpeC3KSieLWMun4L7Xn4b3kDTklT29FL4uoNZCbTrqPxICJW\n5hNuLluOdeaeWN3dJD98ku0fNi+LPTvRPVmc8Xn8mbmXpfeGv62wLLyp6fY32/pcu7OYkMKUgcWp\nu23fNROc6ZsxN7J1GxHLhsR1kkIdnGACbxNLdr0IFAjbpF0P96nHqPfY5O7UEM+eMWCQtJAJo0+i\nXQ81NYO8PYF8eB/qzEVDt11ZhaUlBi5fwxoaxD98wDgrAKv/y5Nkp5rYnzrVtpi0R0dwt/Tj3F3C\nC6xeZSaDHOhDL6/A8j1v/Vcs2phBYXYxHCdgw4k4Am873o9YE8F7of6KSCRwD2yhtNuj8HEBrhsB\nz3HAJ842BGIMMxkxFc3CxgvGm0BHSKsWPTmmfRaJ4IeMR8syO8aNtENESxRZ1RttmmkCIxjJzWm8\nmVkWvv+oYYht32pAj2ChuW5mR/n4wz3okR7SCwagsPbvxg+o0aVveYzcrQry7iIK8LJW5JpodRXB\namkLoYJrfUCLpJAVKhzbMEd937CpHDtiWAnLgnQKtbxC4+seZ+qYTW4C+v/kC/iNhtG/6S4akD8e\n8efeV1hLgWNTwqE52k1iXBnNOWiNBWFpMpjxKQSIIoaQBXYI/umW6HTACDMXpYzQdNSOWGkqBHOV\naIFL4Xsh2zVk34SMIl9FpdLCMcCU2jIUUeGdy7D54gg6m0bfuWvACmkYVTKXhYRD94cv4h7cRmJy\nCTXUy8rXbseuaQqfv0nmhVvU3vk4qbslMh98HpnNsvRdT1IbkHRfcUnfLiEaTZzpBfTYELWBFE7S\nInFzFn/yLtbgwJehJ3xlw9q3i0a3QFtQ71e4eUFi2YBDIrYPWhMakKAccPOa5IIB+YRlGYJLnMn6\nWgrlo+rBuOR5RssmXEhvoAOzUXRd81jdI1EOKFsz85jFgHwC6WqWd9pUvs0ldSGJXYfUgjb9ISyr\n7rBXdz72As1vfQI3I3GqrwFm1cuEcBIUzs7zvjfsRzg2BXEFkcuiijlIWkaDcoPQUiDrLnKxtKFr\n6estxKMH0BNzcOQhhK+M4OvQYGT4IqTEmi+RXrGpHBwiuabkAvxwg1qpIO+RyLIO7DHjf7nKyhu3\nkp4vIB8wINTJBG57reM99eIF7MEBKm/aw+om2+hpXZ5ELS2tTfTEAKZova01XCyRmetrAQMbaQTF\n9X7in+0cm+IAz3rXFJdj6IzwHCqYC9fRFl3XTATI//VJ1EO7QWvDDMvnjYxGoYC/utpWNhhqal56\n7xPs+pEbOB97gU3ju1iOuazd/gnNtpM2/vnLOOfDSzPXX3p0hPT4BP61mwDMPZxk5PNJs190v3Tx\n/69UCCeB3LkF/+pNEjdvY4+NUnlohJkjDpkpzdAnpjbQtVkb9tgos09tpu/UA9oM3Cs2BClboKZw\nEsZ9dXYBvXOMxtc/Tupjp/G9dfZ0YWnm0CDe7DyNgRSZrWOwuNxaf1+7hcxl8dIWvX8UMK42jTHx\n1hz1/gx7f3OC8rGdWDWfdLWOd3caS2v8xWUjAL9vG+LcNWg3W9wwXhuAELTrB+kY2hu+n0gYdkKw\nIZA9XQw/W6W8KcXE2wX6XxUovNTH8DMl5J0ZWFmNNmNrNg3KWNQvv2krqUUPvbzaEpIOxKFF4AhD\nMnggG4020EoHOjRReUVwDYbd0RKgjfSO4gBR/Bq1QjXN92Uq2U7D1xpcFxWwCEQoqCokankF3Wjg\nDBSxP30Be2wU6/pCROXHdY2NJhh3KkDfuG3AnISgvC1H4foEiY+cRGGySVoKch8wA5fV2wPSYuB3\nW3Wc8buYePE6/ZdSJtu6azu3v32ILX8zg3/l+hfXAb6EaNPoCSemdSZsq1DAX1pCJJOwfycq48D5\nm4jL1/BtGx7Ziz29dG9gKNgkaddDplLtk2Bcc4YY8NLZlrBfB/pCECzQYxNcSGUOmUHmxY6JPNae\nFtOD9r4WRJTlERKZzSIH+/Enp3A+9gJOdKzWpBstygHtBsyhgJUntoxiV+vQdPGmpo3o7/QMMpNh\n+nsfYeSDN/CmprH27eLad/ex839MI8pVA2Q+eyYCicIsfpS1W/+Of2UjGsxjgEzoFgb3pC3HadQi\nmdzwcwCiWMDdPcqdd6ToeklQPHEH3/MMoBAKFMdYHqE+C8SAp3iJUqgHI5zoPaPx0AL+OvVjQsH+\n6LvR+NohNB2WwoZtidgwTSjm8buzcPUGpfc8SfeVullETs9G4o1rwE+IFlDW+Cxk0uQsiTvWi73S\nsjueeQK0yJI/8RIAidXWLFZ6214KJ1rChHKwn/qOAcNgvO8MoWCc8X2ElTDlwYlE63qlQFgJsCR6\nZRVraIDMyRts/1wd2d3FwrcfptYnGX56BX3q/MbAUHguQKeSNIcLJO6uGDAoEgSOMX8c2wAvER3f\nb+kKxfSBQic0YbWLcmtfRQL25gXVDjLZsv21Tot7WuCosGSLVeQrU0Y2PWM23ft3s/xQD93P30Ut\nLCHqdTO/FZItYEtp9Moqla/ag7bAen4KWcjRM70A+SyLX7MdoaH75Cz+1RvmnCODdP/dWYrVKvaW\nTUZfaNcWVg9uJXO3TmKxiX3xFt7yCtM/fozhzz84EPqVhEgm0bcnGf0nH68/z/zDGRrdAjcPbkEb\nJ614BVD8ORDgZkElwVkVDJyqwuxCqxTefbAlLPcjMh8/S3HbG6j3mnugbVjYb+EWNYxV+cY95/hU\nfheVq10oS+B+yw7y40bjbr2o9Ukyc8q4jL0292YAkQ5cuBazuorGiKTeQFSrZt3SlUelnYgppy0Z\n6QoJpVFnL22INb7eQjgJVMpBz8xS/uptFD91FXp7olJXACSIWgO/O0fyn05i7dtlQOoN7K47Ex7e\n2x6N2PRitYI/PoEoFCh8/qaZM8EIwu7bCec++RW82peJjTa10KYf6M/MkvqHWVIYUHruG3eSXvTJ\nn5zAn53f2IgiFHDWeq1xyEbsohhbKTpG3NE1/P692r+eEHUn8ASRmHXnGiW+RhdOAmtk0LDElM/i\noS66AqaTrpn1ih+I4of3Qfb2RCyw3HULjjyEPbOMd/kG+QBIFLZN5ulclOArfccTrGyXjP3Ks1i9\nPaT//gT1bzxC6h/M+NP/YgP12D7EMy8afbzX4AMps1nE6FALLMWYgyQnJtn8YRCPHWTqqWGEGmbw\nM7P33h8+eYjF7Rm6rtejvcZGERqe6Hrj/ml0bcRqC8dNJ4HMZdHFHGRSyJt3SZ0tmzVx3FUvFjKV\nQuezWMU82bNTxvhCabypaewtmyg/NMzyTpvRD88iRkcA8MYn2PKHNfz5BWa+/ygDn5vBv3YTlU6b\npOvcAvKh3dz+V90MP9PArtdb0jQvE68ZQCjS1KEDRAlLbmJlLMK2UYvLWGdrdF1O0PVSH+VdReYO\nweXvT5O/upORz5WQl2+bxS+trL32DRjUeGQbiVWf1KUpo8cQMj/wI7tv7St0vQ7BpGB1FVvuHJ4H\nMrAotJ326wgy86F2R9uvEXcrAqKyNEw2HoiyzFHmNhgcdb3RYg81Glj7dpmKhUwGLIl/7aYRS6w3\nzEYzcKXSbhOrWDDW0sceJjftM/2ExHf2Ufirk6B8Y58Yj6F+tC2RI32Im5NmM9fXy+y7d5NcVuT+\n+nlghRu/fpTDx64w9lU3viSa4Jc1Oh5YkUwaVktAM9euhzh3FcuSiK4i1oEhRLWO98I5Y7c+PIRa\nWjY23etQSSHog/XYQBTSUmMTi9Xdjd48tHZwi4EMbVTeGFC07iC3XjYlnETjoEFn9jf+HeWb2tdb\n9ei76k2HsapNxPnrJksf9E8ZgKGq0UBksxDUXYeDvz08hDU4QHPfGMoWpF68xdCfnIGebpNJuXiV\nbT9zFe/Yw1gTUxGAYu3fjVdM4x83s2zIPLrva+z4PY8BerA2gx45j4UAXcfCJLLHdhJgBYygEMMc\n9doAACAASURBVNi1LFa/ahvTRwWFazD06VnU3HyrjDRgmphxyDF9yPOwCgUzDkX1/Sooy9SBi5WO\nxpo28fJQQN0KXMvCTXtckDwOFnUwlMypdOSeGM+mLb99F12fuIIPZKcayKdPG22Ou1Ote9cJgB55\nCD8AebzpGayd22h2JUh++GRLjLxQQI7USKy2CjfspRqlb32C7N8+T2qu2cpWP3kI/4UL2LfHW2Pk\n/YzY8xRda1A6FgmMu8aa1+ruQi0uR+/rcpmeD19BZDLU9g2x+H8eo/dcg9TFSUQqaUChDg0ivzeP\nn7FxFqtGYDlkkYbsH6vVJm92HpSPvWkMIaXZ8Pm+0b1zDOAonOCeBWVjWhtNJpFMtNiw4TgQgpSd\nYvaWha7VAbd1zWESJWQKhWYJgMxlEYN9JjuvNfm/eg6P4HlxXZPE8DwzByrfZNkaHrNvsMlOaSrf\n9yi9Z6vYV8ahVKH4Fyex+nvRgz2RmDTzS4iRQWQmCXPLuEf2sLA/hbag8PGb+KurTPzkMaQHQ7/1\nLPrJQ1+xLvLliND2m6s3ENcthq6b661uLrCy3cbNgpcF2QiMJgQRUKEc8FNg1WH42QrWSzeCcjv1\n/wswCAxgP3CywtzhLKu7FCqlwNJ83eGXeDR3i0dSdzg5t5lyUlHerkkPVNGfKpDa4HjF6020LXFz\n8gFlL14+hJNYw27yl1slLlZfL7pag3odK5NB9RbQtkRoZdzdNFgLpddfmdg9QuzfgXNjGv+xg6Tn\nXOjpguWSGbfCMTSZQKeTNIsJHEDUm+idm+FlNqZhxKUVCOYEv1Qy7LaZWfQbH2FpT5q+vz63wRG+\ngrEeI2edvzv7TRj+xav0XLyKPTzEzDdso3BrmNSJq2tLYGRL/xVYywgKxKJD0Ejmci2Ht3D90pnM\n3Wgd23lt8evpWJ/FgZvwmNE5YmtuMPO5vW1LVOKtvuoRut5/HPnIftSLF9quL14t4s/MRqDg8H95\nlhu/fpTtHxRYmRT+5RvIh3ajzlwkPd9i0eb/8jnKP3mM2jcfIf33BgRStnHOlrksfOoUzXc+TkJa\n+OOTiAO71v19HlTIfB7Z04V3D5BHv3CO/hfA3jRG5aFhUsUM+uRLa4+VyVAaS5MbN2vKVxLCksiB\nPtSqKTW+bzpdG5b6K5MEm11A5HPopossFAKN2dIa0FLYDurQLjjxEgs/eJQf+skP8dvv+2Y2f8jC\nGurDu3iVnK9I/eOk8akK9kkAulzB6irS96enYMuoIYlUq8h8nvob9yKbiuRSx7j0CuJlVTmFEP9T\nCDErhDgXe61HCPFxIcTV4O/u2Hs/K4S4JoS4LIR4xyttiLCdGDLc0lIBo3fStvkKFqi63kCtlNC3\nJsh95jLb/mKabR9UCB9uf0OeuW87ADu3GoaPlMZWt5BD5HM4Kw0yZ8bxpmbMJjioV5fFAqpSNWJ0\n6RT20CD2lk1Y3d0QaK6oer2NzdRicqgWuyh2Ldpz1wWCOrU+wu/h++hGw+i8xBykjKNOjBEiBPr0\neVSlgt9TQGYyZkGuVcQUEI6N1WdqmNWbDiOePUPmg8+z/aePU7xUovSvHzdWiGGHSJnlkErZRoPo\n8s0o6+vPLzDw6Wm6Tk5Rf9cRFn7gKNs/WGHlqxaC37B9c3a/+s4alwJYs1lvc7QKfjPVaODNzqNv\njqNXS1i7d2BvGotKwUKW1IbnbLtY87vIVCr6nr+8bEqs8nnsrZuxdm5ru9edkxHKb59EI32h2L87\nJsg4wyjOMjKuIJ3ZFWkmm3zebLp2baf67idI3JlHnzqPqtfb+q9qNFDVKkKISGPK6u/nyu8fMaDO\n1DRqYZHktRmSxy+ha3Wzqa1WEakUPHkIe3QEq9yAvdsNcAn4F65gnb2GvWkMq78ffcFMKCK6rPvT\nbyJGV0TnlEROKrHFBNJqgTe2Y/6/gWV16GQRuYwlEoiRQRb3WiBg6OlFmJoNGBrmWReWGcwREplu\nbUdEIY/IZaNFkpXPt1gcAZMxAqnCvtTBPgzHmcghMewHUqyZQEVAp47GVz/WLzHZILuuTOZPWsia\nsdrF7tC9ioXM5yEAg6zdO8x56k2yZw24Ez4vascm1N00mdutzYtKOdS7pCkrfPo06s2Hab7zccQL\nF1rsqXS67Xz3pe8IAzKLuLW8OVbA3DHMUlkwc0lk2a7MuKybLmpxidRzVxh5/0WSM2Wau4dNGVw1\nmOtso9GjM0m0JbCX68iFVbNoD5/nZNI4UmIWCAiJtXMr6s2HDYM0SAiY47WSCzoEbAJmUcQKarpm\ns9horClBM8cx7CDtekZjyGo9FyZ50jBAUjgfgimjy6RRqyVErYF3644BlIXA6u83GbWgNFX7PjKd\nMvNYIU/tTXvZ+sFFui/VGfqnO9jLVWqP74DeLqw921Ej/fj/H3tvHmXJddd5fm5EvH3L93Lfs/ZV\nVVJJqs02XrHVZrGNjTEMDAMMPUzTDD2chmlOMwOcwww+zRkYDoOHoXvAQzc2GLBN2xjLyJYly1Kp\ntJRKta+ZWbmvL997+faIe+ePGxEvXmaWVJKrSu6B3zl1KvPlWyLi3bj3/r6/7+/7TUSgWkPEoqCk\ndv+5Mo7KZQhfnKbn/3qegT+/TOl9+2g89iiDn3qZga8u6Ll+fs0HUO7bnHMnsdWaIx29hr96mdjj\nrzDw+CK5y/p+q+dcNpCFtm13Xx5dhtwVB+vihC4GfTe4gN6nMA/sYfpXT7L8YJxwSaEsRd/YCh96\n+Awfz52mIiNMNLtYWktiNASEJTu7l1l7eOtqs5FIED17i2bCwGiqNkDou2bsCPG61XJneQUnn8dZ\nzWNPTSNfuYi5UkLUmxiVJubimp8Mv9nw9pDfFSEEdkcUVa1S64kRni0gkzFfq89v9zUE6zszhJ54\nieqHjrL0zgFwFNbo8Bv6OHPX9tYePbBXmzsZp/vp+TZm0X0bNxsLiVvslT3tEveDtnwbe26ezv/w\nHBiCmZ86qPVwAnt+IxzSbXhbfL6IRPyWfG8fKNfXsccnab7vYf36TLr1XtHopsLI6+ro3IZF5N8T\nwX20F+6eWxc1TEQorFvD4nG93znjsns2guguk96IRn13NesbLzH9qyepf/BRtv/KcxjnWkCJmNc5\nUvbb7fbr/b/7LAuPtOb75LgGKnWxBcJffQFrsL8lG+Bfjrd2zjHicYxMegs3q63DmZsn8fItitsT\nLP78SYyDe9vfL50ifW4F66Urmz8rldJ5RFcn1vAQ1rZRzP4+RC6LSsZh2yDqxAOY+3fr/eb9DHdM\nGfE4Zn8fdGn9RJmIIXIdOCurOGtrm3NUpeDQLkrbElz/3eOE1hV/s69HC4of60LUGljbRlFFV/9s\n2yjVgSSgiSliqB9nrYCIRmgMZzH270I8chDR30P4qy/QyFht3T13Gndi0/Jp4LENj/0b4OtKqV3A\n193fEULsBz4BHHBf8ynhe9q+dii72QJWvIOLRTXDJ5i4GC2BVC8JVratqWOzC8QuzNL/VIHMdUl5\nQHDrB3KU3r8fI5NGVas4awXsiVuoF8/rVhfpJlZNG6dUwllZxTioL279kV1gmtR29uDsGmodQiqF\nmUkjwiHMVKrVohNIuILOYxtbeHzQy9PmCCZw3vsEwSbvn1uBleUy1sgQoqzpi+aenZjzK4h4zGdE\nBa+R9JxZNiCv6swFUn9xSlOg3ZC1Gtb2MYxrU9gzs8haDfvITiyXrkbIQlkmiRcm6P7MWTj1KkbU\n3cSHwxt1GT7NfRg7IhLxJ/RWYiw06yAabWNb+QuY3z/cStJEpUZjrJvVnz5B420HtJBgTxfW4IA+\n/6MPUPv+o8i3P4g1NOi3CWkXOhOzuxtZq+mE2RW7M9NpxFCfToSuj2sWVzTaoshuBQAFEwKv31kY\nm58H/kLhg4mBtjVhmvraeIu9khpoLJWwhodwrt0k/oXnsSen9LkYZluFRoTDGDvGMDoyWIMDiIcO\n0Nw7xO6fO41z+QZrP3ECTBN7egYRi2p6tRBaQyafh1PaV1O+ehn56hVq79jP4r88Se0HjiLLZb0h\nDTr+tSbM+zJugnpLPo14A6jRJg7vXsPW/S62TN6Ubbe3k1Vq9L7YoPtFYH5J38cu8OM91zi4F2t4\nABHXAIfx4H7s6RlfGM7ctV0DTdFIS4MsAEp5x67dgzZvmjYJR3rAxRbXpA08CsT6+w+SfEov2JUP\nPYJZ0q0+zvziJoaRF8ENsLo1o9lBY93a7QcQiTiq0WTqsQw7P7vuuywAcPocTkSw/COHEaEwoTM3\nCH/1hXY74WSCWl8bOPtp7vXYkdqlxF/kvTHjFgFUvQHNhtazg9ac7L9es8xkvY6ztoZz4QrGU2ew\nb03rDc7qmq4y5Ytw+SY8fw5uTuuWsEhEf29NG+p1nJk51FAvle89RO2hUWQ6hmhI/ZndWfLv3c7i\nD+2huXcIEY/r9/AAoEB7VpvxwoafdVusu54o5YtPI91kyvsZWutxo6nZSJalhUn3b8dZXMY4tBfn\nXUewentQtZoWv3cZcuAy7dwWxOjXziDmlzC+dYb824dZPdKpnaBsh2ZPEtF0sJaK1PcOQq4DkUph\n7BrDHOxHxsOsfGCHBlJWVol//nliL00gdnjXqIkqe3Zd92nc3EGIUPh1K52q2UDemCD19DUGnyzR\ncU2iTGimQIZBCTBrinBRYVYlIpnE6uvV7qzfpToUdyuMQ3spfeI4Nz6Ro5FVFHYplo/oc46HmjyW\nOUdNhTgSG+fZ0k7shTgyBLneIg933OJdB64w+Zsn298zHtdFt6Ul4rM1lCEIldqu46d5q8fOa7QC\nbRlKYQ0PYRzcizM7D1cnMCpaiP5OtbVEJIJ45KBOnAcHqPzQMeQ7HvLXvjaQ4S0K+91HCE+u4KwV\nCK81EJUaZl6vSaqmWdLKkZT3dVPpMTEO7iV5aoLsp59Dnr98xwmvF861m9R39W16fORzU7C2SVT2\n09zrceMt8VsxbbYCTTY+FzbtcUJfe5G+33+W9ZEYCz93FHPfLp0DdHfR2Nm/+RBCWtfQTKe1g5nH\nLDr2ABgmoSde0oXBwR7M3Tt050PNLYzcpiB729O1rNu/7jXuD09D0hzs059fqSDLZarv3A+AvOKC\nO23MaoGs1Sg/OqZf846HGPrkc8Qni8z+8kk9Z1y6hhGNIId7MKJR8m9r5ZHW2AgAuYuKq3+kXQzl\nKxfBcdwCodAAm3vcjc624teneYvmHKuvF6Ov5w3piynbxp5fIPWXpxj4/E2Wj2ZZ+ZkTWEODgGaO\ns5JHJBI03/cw5oE9rZwOkN0dyNE+ze4qres8NGTp4uqNKYwXLyEK6yz/8EHqH3z0dSUc7loExpTM\npRBrJUQ8hphZQK2u+XlgWwiBkUrR6IyR+stT7PylU6Q/e8r/c/bTz6EqVZyutH+v1LZ1ESo1Kf7o\nceS2IVhcgaMPIEslIhMr+vNePI9z9QbW2Aipr1/yP4vjh+74Pnpdvr1S6mkhxNiGhz8EvMv9+f8F\nvgn8T+7jf6GUqgPjQojrwFHgdf3ngnbzCEM7iW2lyu2izK2qvhat1NoITU1FLK3TuZQiPdLFygNx\nlh40KOzYTvfLg4Se2Eyh8sRt2T6CTIZxTAPx3DlCIQtn/06sr+vXqMP7MLtz0LR94S+zI6PbPSqV\nFlvDbraDQkG6fVD4VUndLua1yjkO4IJFVkg/LhXKQDMCACUE8p0PwZVZnLwWjpITU/o9a3W92XfB\nJCMeh3AIkUpSH+2kmbSITxQRc4uIUEjfhKArrO7iPfOLjzD4ZAF1cwKrr5fqoWFKgyE6i1mYmcW5\ndA2rrxdnpBfjFlCp4Dy8l9BsnvnvHSBcUvAZ91Tv09hpo7q67A1hmltTWoMW8LTGnXIdTqzVPD3j\nWWp7+lj5mRP0PLOEc+W6Zv2cPufTyW304mNEo/4GyFlawurv0/o5rsp8ZTRFdLaiGWZK4qwVkLWa\ntuXO5/XkEInoCrvjIEzR3j+tFL5QXpDiuyGZV46jWXZh0x9bShrguLpXrvCw2d+HajSwp6axRodp\njHVhPP2Kn4h57+u1LXl24Gs/cYJIySH51DXd5qMkHf/xOT+dcpZXtLBeQNneTKdBSt/GNPz4i/Q8\n7v6tW1tq+uBTKIxQvkjzfRk37ofh0Tc1k6998hau1bZyAgCuIXQLjlKAbHfPCL51va7/NRpY5R4a\noyFt5/reh4nMFhGrBcxwCLljCGM+jz07h+VuxuUrFzF37/B7rp0bmlbdeOxR4pcXoFLRbaF2U3/P\nATZQCzRvuZcFW8ncB1usxSCw5M1X7nM8YXTx6AOknryMs1bAeHA/qaevIUIhnEpFL77BcRm4hkYi\n4eswKNtGLK9SO9RD3Pu8WIyrv7qbHf/6WcofOcbq+08y8vtn/dfkrtS5+XGD3J82fJvfYMz88Haw\nWlpD92XsCG0M4DF/fN02wOju1NU9121FeS0JwSqtZ9keDvtrhqzq5MS5cl23rHZ2IPJF1L4d1Pvi\nOFEDsyGJLlQxZ5ZRwkCO9eFELULzBaJLIczxeeTqGqLZQKRSoBS5p6dQ0TC1sRyNsW5CK2VYWNbH\nKFrOcm2g50b3IXTbmHJ0yyKGQEhQhuGKaTf86+GDulL6ds4iFEW9cE5XzydnMc8WkImE/mzPoQ1d\nABKJBKvfM4IMCTr+7Dmc5RXMbJbsMzoxs48+wOquBOnxKk4qgsrGML/5MvaJwzRyOeLjBVSpjNlo\nkgkZqLc9SGh6BacrjR2xMOo2RrVJcyCLeS7faqu+n3POFqGZiOK2bRsbQ9m2Ljys5umc6iG1a4C1\nnVHWh/V3I+uCZhKciIXZ6EMJiL5Ygzuxj/4vOOo9Cc2SCoEarGHMRLHTDsnedRKhBg1lsje8RFMZ\nnFoaIzFSZH0xQeFyJ1+UhzjQPU/8oRXs9z6M9fWXWg5AbpiVBtElQfqVtkLGWzp23IN4wy+xp6Zh\nymW1WCb2pWuY3d3QkwP3nM1d232NrmCs/LcnyF6rYccsah96AGkJup6conKgn/jgACoZR6ai8OJb\n0CLlhrlvF9b4sjYmOH4Ia6mEajYR6L2bny8kQiQvLBL90sRd0U0yv/ly2+/CsqDe2OT6c1/GTXBY\nBIGgjezo4B5mI2B0G9ev1F+eoqMjw/wn9mMe76LniSmUJTD379Zs07lFZLnsg02l9+0j/vnnW2Pq\n1Ku+iY2ztITZk8O5eoP1jx/HOdJJ5s9PtQk/3wno6e/vtwLVX0t/yH2+PXHLB0TFQweIfeMc0ntf\naC98ue8VXmvgXL5OeKAftWs7Mmwx9PgqhutW1zy6F/ObL6OASN7m2h8cY+//fNk3zGikBInxViru\nFxOVwp5fwHn3EcKJGA0rUAh+i+Ycs7tbs+7uUCR6q7Dn5sn9yTzGob3MfniU1PQgsS+exnEBlOhk\nCtZKGB0ZRCKuC3A3pjBMAyUMX8dJFlxg1+2McBYW6f6CbotmbBgWV9o7Q+5VuLIQXBnH9sBwl4Sw\nqV0R3XkikgmiE3nq73mY8EoFUanrPeRKXrM4FxYx0WlG4cePE6ooVvdGiOQVQmktUbNQxTE0G4nl\nVaz+PsZ/ejvVbQ32/NwsRipF/kMHWDgp4cyd9Ti/WQGGXqXUnPvzPODxBAeBU4HnTbuP3VF4bWJG\nItbW99x6gmglMlskxJ6oqtO0EfU6VrFE33yOyq4uVg6GmXt7hPj2E2Sv1gnPFf1k10ynEekUrKwh\n6nHN4nDdj+wzFxCPHMROhTHP3EB0ZHR1pa+Xxp4BeEqzbqyhQRwPYAkITwNuy0bLtt5r9wDT/5t+\nWaAFSKmW3kOg+mrEooTO3MAuFrH6+3CWlrWeTankJ4LKcTSLwDQ10ri8gjk+SfG/OcHqvhxWOUe9\nExrp7ez537UAsLcg9LxcZ+4dGcKHTpCZqBO7MEt0IkZjIEM4nUZWKr6IsCeUJ779CqojQyM9SOf5\noMrllnFPxk4bnTJkbb2xDrbWeD3DG5gTslJBNRpE1tfpudVJeW8XjYePk/37KxqxHxtBrVd8MEPZ\num3G2DmGKKz7qLlz5ToiEiFyXutAqEQCoyuH8+AOVg5E6ft/XtZVkVKpjU3iCd21RKWdzQt0m/ZN\nC4Fuo8Z6QJLvdqbBDrm0jNHXg3FwLxIwnjrjM118h78gA+PgXtTl63T8R712+MusUsh3PkS9I0Ti\nG5dY/979RFcaLB2KEc1LOi6UEIt5VDoBy2uY6TRyzyj1zijh1Rpcm0adOMzCsQSRNUWlT6D+4Juv\n9Q3f/XETcKVrA4NE6zvACDiGeQ5dvmPXRpDlNuycep1GR5jcRb2QLR2O0E0a0Zcicn0RXr2G3Wxo\ngbls2nfTUfFAlcOlNcfPTiHzaxrsjUURjYY/97W1kPkf3gKGIAD4eDb0Xmuu50Xsujl6OghKKg1m\nXplsJftXJ3QLUiatQVbPXTDo3OF9/L5traRAGKihflLnl/1xtPKuYULrBurEYdKnp0jeSLeNv9Ba\njfByuu09Gx94hPDjL1L/4KOUBxQ7/6zJrU1XvS3uyZyjAsAOhtDtW7V6S/DZkKBagAewuZ3A3ega\nsagGD21bz8dz8xjDQ5jLBeITs4iONPXRTuqdUSJOJ+bSGuqFc1jxOPZDu2l0hJC9Y6TOLTL/vn6S\nsw6Jy0uoegNneobQ9XHdrhoJI0f6MUoVWNGKyv5937T1+QSzIm+8GAIcT59MC1ILYYJl6SK0b6zg\nCZu3dK6kS3v2Ekt14jDi8i19vi5LSZgGRCKocpn0Z09hDQ5Qe8/D1LpCxBfqGE+d0ffj9AyZ0277\nYaHkJ+viubNEABmJuIL/EV3Q6UhqcenJKcyDe8EA58IV7Vwc/B62jnuzVm0Ir/3wTbl0ukmDubxC\nz3gv6T19rO6JUB5RhAoCBKzuiRCqKCLP3BnY9F9yhL91nlC9Tvr6Ayw+kkKZUO+0WFdJ4j3zXKn3\nExYO/8uVH8T+chepVUUKCJdslvI5xr+ngWVKInMlHLS4rieID+gWcLgTjZ37M3Y2uCK9mXCu3dRC\nugf2QKOJc0GzQI1De3HiYQi4P5udOZoHR0nMO4Sn8hhdKZxIjOTlVeo7erDjBsVjwzSSBsqAjvBh\nrKvTb8oC+TsJc+c25PVJjO0jmL09yBcvIrq7ND4ihKsBKnTLajpJ8WAnqYUlRDzut8e/7mcECjav\nFcq2UakEzMPsr5xE/vGp13r6vdsfu61b3t64jQ29BdDRfhJbz5POWoHuP3oO49Bepj82QmxRkptq\nUhvLES2s+/qr1vAQ8c9rnVJRa+gCqxA4z57F3L0DOTmNc+k61vYxkp87pb+zRw6igoBisKiyQdA3\neI5b/ny7c9i4ZzNMzUABOH9NM7lrtS2Lfl6hc+VgjO5nFPbMLI3HHiVUajLzPRkgx9BvT2EV6pR+\n+BjJv3qe8OMvsu/qKMRi4Oa4mRsN8nsiWtpjeQUMk6v/9xH2/sI5ZK1GI21hPnmd8OZuqo1xT+cc\na3gIFQ1jbwEQv5mQr16m55yg8f6HufE7Jxh4xiF5vYC8Oo4xNoSKhVE3phBup5Cs13Ue0WjChvnE\n7OqE7pw2sLg5iVoroE4exlrO3X2jI6/g6slKWDpHl7WaLo46jpvXG+15qDcOO9I4mThGqUbk1irO\nzVtYo0MsvruX6vdHqMztZPe/OuPvbToulBBSEv+8Zv1I9J5BXtGyG+vb0iTmFlHpJCNfK1HaloAH\n9yIm5ogt2ez+Fy/yvLqztf87VuRUSikhxBsuTwgh/jnwzwGixP3Eykgn29Xp2z9sM1vC+zkgmupZ\n7sp6HTE7T2w1z9BEN4VDnaweMClti5C+0U3n1Rt6kuzMahvOSBjmlzBzWUQqiTM1g9mRQZ69imUI\nnHodKxZDForISoVwPAYuCmxPz+jBWqm0sZ38/z3gwWMOuW0ZHhjkbZ7bFvcNuhxCCN0a52hATDWb\nmh6/tNKiyHlgkFRt6Kh8+4N0ffEictsQhb0pGh0Gvael3kx2ZLSuRaWC9Y2XGDyT9V9ro6v81cNd\nFD52gJ6vT4MjufVjo1QGJPFZg/i8ousbtxj+4hzOjYk7HgN3bey03hCUg6o7G1+A33/sjZ+N+j2B\nn5Vt4xTXEdUaieU88dF+Vr9vj66C/d31tg2DfMdDhK/NoqbmsF0raHPXdt2aUaqg1svY+0cR+Qpy\nag5rfpH+s3GkbSOXlkCI1kLgnYNh+iwzf/IRBnj1K0802BBghtscxDYyPII/W33dmh000Z4+G5FI\nm1ua57KAaWKfv4xxeB9CKZxUlEZHiIO/8SoHE9N85ldDJK8XcEolf7HvfznltqJIjZbPmZg7RnGu\nLcEL5/BJ5Pt2IZ47S99z2qGj82+uMl2+s+r13Ztz3ERYbu5N94VyA4ChCFnt7k6uXheeTXvwO9rw\nfkHnmkaHYvKDIXb96ZqrK+MKlSfiLbcGw9T04UCYg/00B3KIuXmo1XCO7CT8ck07XngtY6aph7g3\nd2xoK8OzoHcZURrkwgerNaulBV5748lLiIx4HFmrYw1kdduSBywF3Ba9469/4AixJ8+h0JUlYRrY\n57WjnMeQS03UKH2kiflFvaHCbSXzN2Dnr7OjMEDjXUew4ybxZ68S/tpLGPE4yhT0n3IIT915snFX\nxo5I+CCPCIe0CUEsAutuG1mjiedwqRmbLqjotv4GQf+2n93WV9lognR0BR90u6qUhBdKiLWSdvYz\nTN82WeQriG/rVjsZjdL7hbJuh4jHEIkYVmoMmYohQ7qlVFoGZl7b2OMnB9JvBfOOHQLgsCuK7bXI\n6Qso/Xu9ZXZguywizR5yXLFHa3QYTJPGcJbw9QUt2A+t86/XkUFWwvgtrJlZkrhjjhbgLSIRRLVO\nY9cAYucAxouXfKc+M9sBUd1WJ1MxFt6WofTLu0ieipO73GDueBg+cpKR33xWj8nVO9sC3fW1yg3d\nah1q6T29yVC2jT09gzU9w8DNUdYP9lLrMJEhKG5TJGZEW+Hh/6/hb8BPn6PHnXKtbaNcp/+p/wAA\nIABJREFU/h/66YmUKNhxijLK0mwH+z53RY/f3m6q27LE5xXrj/fhhMFJr/ssVlmv+6Kyb+qY7sXY\n2cjw+A5DNRs4F65gdnf77GZlmhivXG2xZgwTe+8IdtQkslKnvKcbGdaMtNL+TqqdBpGiotYhqPYK\nxj47h8wm3xrh/8I6RiaFWK9gu6CeqtURmRTUtWGMSCZwejqoDMRI/u1LiN3bkfEwZncWFpaZ+fG9\nvOPHX+LmY4ktc5I3kmh6YHjuks106T7uc0TCezP9X72u51PXIOS2wMlGAOR2YIsb8tXL9L2q26CK\nD/Wz/IDJ2GInIp/H2DGG7RXfOzKand7Xi5N3LR4LpZa72cwcs79ykoF/9yxidY11F0jZ4iQ3Azwb\nQaLgvt8wW3v/tvcx/MKpEQ5pfdh92+ClC5jDAy0mTJCpBP7aW/v+o3T/0XP+9Yo+fQFZqTD0ba2D\nJAFzuUDp3RmS7kfa45OYXZ0+OBd64iXiueOowR6sUAh7bp7dP6vdn6sfPkrsP7vudZEI3OEUfrfn\nHGtsBBWytmQLfkehFOHHX2THP5jwyH6qQymcXQ/SjBtE8g6JfBZnbt6f55xisY2Jbvb2IFdWUetl\nVGld7wttW3dqPHsWlUi0Afp3JTYy6dDrr98FUihixGKbpQK8cZkvoG5MIMMtAwB7fJLc+CTVlaN0\n12Ubq8ioN2Ep3w7meq+bmiYZsiCV1G7pV66TfAG9P+vMEbu5iiMEd+rY82Zn6gUhRL9Sak4I0Q94\nnNoZIKjCNuQ+timUUn8M/DFAWuSUspuYu3cgmjbcDhAKTlj+Te65/uC3xejnSFRT6Qp/VSGm58is\nFsic76C8I0u1y6Ty4aNICyo9JgNfnsK+MYHZ1aU38U0bI5vFWV5GWCHMbAeq2USlk6jBLk3bKtWg\n3GLEOMWi/tKatpusuyCPzwhi62Tdc4wRhq8T5Nv3ehtz1QKLzL5ezUQRBvbklG7NMU0t6umypIxE\nHB7cg1HRC33oiiviemOKXL6D7DdqPgLpFIqYuSy19x4k+qXTOIUi1vAQmAbYOonpeG4a2ak/R66u\nMfi7pzG2jWh3rplZbPRGXlgheG1dw7s7doyc8m4UIxrVyWyQoueDhc6G32X7c7xx5S0i0kE1pN4M\nXbpBbi6D6s5RPTKKcEYIPfESxR89jmErwjMx7ZTjTRT5AvaeYazZBf19fvuVFpvKEJrNZZpg2xiR\nCGQzmLaNUyjqRH2DmK8+NicAOngPuS2GgfYfZQds6o1Wy5AR1guNJ+gHWgtLNRqbEgXVbGBPTmkh\n7AN7cM5ewuzMYRTXiTQbXPs7uEY3MU5DR0b3+65XNFhxdQpnJWDJKh3EeoXaDxwlvNYkPLGEMzff\nZlNpffMVRK4Diq85a931Oae1gWgJcSupMMKhFhsGNgFDPqjiWbN7oFDQgew1NleJh1awn+hCnr+M\n9FoXLQtnNUBvdZ9vjY34AJ7TncEq1nx2jRMxUGMDcP5ai70UjCBraCMwFPi7/5gw8BynguCOs1bw\nad5ioBeuj+sKq2i9z8awersxJ9Z0JaxW21R1FREt1t3IhrEvxzDy0210fWGaiEQcWSohJ2cImyaR\n4jq2W1WTlQrVnEnn2UKLdXP7uKtjJ2N0KtVoYnZmcQa7EHUHYzmvx4x3LaR0W6rcceNpNhnt17Zt\nxLvnIUIKIUI+A9GemQXDxNw55gveI7U2nNq3DXNhzXcP8oQ5V3/wAI20oPuldYy6qzNmS2TY1GtX\nuerPgco1VcAQfnuYzwxy2u9J34XMA4g8J1CvrdJL/pQWija7OxHu81S5gvHUBDIa1S1t0tEuZy7L\n0uzrxZlfwLl2U887l65jJOIIy2LlvzpMPSvo/3YFo1DDPn8ZazUP24Yx+ntRlomQChWLIMMWxo0p\n5PgkPa9Cz6dMzHQSNTbI8BNNUCAeOQg3Zja1x93LcZMWOf9iCsvC2LUN5pdboNptdLjeaNjjk0TH\nJ0n29eIMdmHWU2RubG2f/Y8hLv3rPrIjq1xY6+fB7DQ1GcJKNLH3jhCaXEJZJuVei/C6oufJWWQm\nwfzbOgjv2knur1wG76U3XGW+Z2PHOLQX0XTa1tC7Fc7SEiwtYQ0P0RzqJNSRQc7XmP/Fk2QmbWKz\nVaxa655pJgxQEC5JQhVF5uwyxoFOwiWhZRWOH9KF1vsd0oGeTqg1/LlRmzhIlMfYtB2kZRBd1ExF\n5+JVDdB2d+IUigx+ZZ7xL/XjrEzctcOqdJnte4nNcXfXKrNLJ0eBfYisVDYDPsE9o3LY1HK1URD3\nNmFP3CI+cYsujiEWVpGu7IAnreCsFTTTMxTSe/ZUCmdh0W8tV/U6ySl3XWo2dPvr2x/EeOaVrT9b\ntJ9bm6zChv182/ODj3vXpe62LherWhFgWeehRiqFLJXa2Hj2/AIcfYDol09rIxq3eCMrFc38L5cR\ng31w7Sb21DT9z2RZ/PmT9PyhFvr1tSFdsCL5uVOa+ZH1daAxs1liXzztt9XdAbB6T+aclZ89QeSj\nC4R/L0dk/NZdA6HbQjpwWheMzQN7WH4kp11oPce17k7U1KweN7tHMGeW9XdQr6Ok0gUwISClYTdn\nNa9BoYUlTNd4465HoHPACLsFsUZTO3qvl3WhcH29Dbw0O3OsPrabUFWRvFmCSzc0M1g6mLt3sN5v\naoARXQhcfs8ozQT0f2md1R89QupWA6ui9RmrAzFSZ+ba2veMeJzKew4iHEXsqQsYpTe27r9ZQOg/\nAz8JfNL9/28Dj39GCPG7wACwCzi95TsEQ+h+3zZB0dd8/oab3G+fka2quCv+qqRC4IpPN5qIUomE\nVMRmIqgzF1j/+HH6//wC9loBy2X7CM9uu1TSyGi5qt1X+ntgtYBZq+Pk0hrZ7uvE6M0hX9WVbyMW\nRUrP3lUDQ7rtq5U4ipC3oJotQVI/kVDaVto7nyDzKRzWji2rWnvGcRkmIhFHFYp+oiFME1Wtol44\n5yePwjKR5aY+pkwCGWSJKEX10R0sHrEY/ZoGV7wJLhhmsYRUCiOdwi6VNqPFSystwdLbx90dO0qj\npeau7bCcbxMp9s5tc9uV3LywbEVBVUqjvMLAWVqBpRXC5/UVvfUbJ0HBtk9dQ9ZqyFIJsyMDpqn1\ndJZX2LCkaged3m5ULIJzSVdMZK2GtV7BLq67SVQjkGgHAKCNoMOGv/uW31KfnweOKtvWL7FtRCjs\nV4bM3h6EEDiNhr8g+gueEJh7d+qJdmJai2Xn8yjH8d32sG3kelmDBT1duu3jubOI/j7KHzsGCkLr\nDvWsRebiGonTE4hoBJpN7HccIjxbhIUliu/bS7joYDzzutXXuztuNkT9+x4lNlVCXHfvC8fRwOxW\nw1kYWvtrU2sW7SDJRrF4N/L5JLt+/9nA85wWyAu+fgWACmymxcWbOJUWAB17eZLqw2PEptK+eLMH\n/niMISVboE/w+DcC0x5TyNcs854ajWDEon5bgVpYxuzt8TVM2gDMwL0z9+Ft9H/hJvbG+9Eda85g\nFzM/uYOhb5QY+7fnUPt3tz1NNRuYXTntjtRsoKbncMrti5tVV4hyDRV93YTj7o4dQ2B25VCJGLXe\nODIkSJWrUFp3N6cC/yIGgRM0wN/K7IzW3wPPFeGwHn/uOmR0d4IQbfaunoi/Mbeq17VUksqx7ciQ\nIHlplVBVYThgFqp6jVlZQw330sjGaWQsMqtpZCqKuViA9XK7qxi01iX3mAmCjV5C5bQ22coVmMbw\n2HICIxED20YJAR0pnAnXjTIcRhaLWveu0XBZaMof/+a+XVpoOxrVn+049Dy7qqv3KyWavRkaH3yU\n+PVVKqMpmokOOp4eR9UbiEoY07JoHNpOKF/VLTDZBA5gzazQ3NWH+fRZ3e65cxusvyYgdE/mHDOd\nZuVDBzAcRe6psnaEU2pLl77vJLzW7s6Z3pZe4D+yqH3/USI9FdYKCUxD8c3ZnTypdtGVLTHzS1Hk\nq6MoU9HISsyKQce36hpIdPNPb+a+U22nQNyTsXPr108iHigy/LHLb/R43lDYU9OELBOVTZP/wHai\neUV8ukK9M4oyBWGXlRwuSRI3C6zvzBBddXCyccy6xKyCOnGY0GyruGsNDvhmAvc0DBM6s6jxKdg+\ngjNxC2tkSIPxFd22LUwD1ZFi6aEE6Vs2UaUwDu3FKJSh3kDs3cmVn+5g5y+9ZnvX6x+KC4R4oILp\nFqlfI+7+uFEKI5VCDPcj8kVdVPD3JhsKVp6swp1YeL+Gpk9xzCT+hXYdqvLHjpH46+c1G21xCWvb\nKHJOz0tGV85vmQ4K7IbKktCFSXDZen54xxjUOfLOx/3f38+2nd8W+/wAKAQgGs126/lSqY2dAVoi\nhOUSDA36uZKnFyMsEyUlzo1JzP27dV57+hy98iCFHztO5q9e9ovWctcwvHTBf18nn/c7BtRwL6Zl\n4TynzVnuYA6663n5ys+eoPS+Mp2P3QRu3inR5E2FcXAvMhmmNBAj9+cv6M9y97PO9XG9V63V4Mxl\nZDgE0C4to5SWR0mnUY6DPTevtUlTScyeTl/3966Fqz0KIKtVqFQ0sFmttWRcNp2kSe6JmzgLi1p+\nxjT973XyY72MfupCq+DbnyO2YhPNC1SjSfbPTrP+sUepdYSxY4L0LYf5DwwRXx5AWoJyr8H68So7\n/qAGp15FCoFIvDEw7HUBISHEZ9FCVV1CiGng19ED7nNCiJ8BJoGPAyilLgghPgdcRHcb/bxSW/H0\nNnxGOAzT822PtdG82phAovWYF+7flNqcIPuOOR6DwgF55ToYpqbjLTbAdVii3tB9ktUqslDCGhpE\nWSY0G9rBa7Wg3WPydYz1Ms7KKma1hrN31J9AfAQ8mDRuFHQNbry9xz0Wgvd/IIlUUiFCbkuIW821\nRobAdlC1GvbCUuuc3fM0kgnkrhGcqIXxrTO6NSyT1i5G063NYfXDR5GmIPE3zzPy1ddmlvl99O5A\nNzsyiGwHKhxCTc8hMmlktSXAeD/GDujJ2e9r3bhIbWIxbACDtlr8NjLRvNcYJkYigdHTxchvPKur\nGyXXrj6dwp7TrnXW8BAyl8JYKSJX8xg9Xcj5Re1csIUYm6/h5H9+AAQKjntv4fL2E0r6j23UjvE1\ncQyzJZztLkJmZw7psvCUbWtmlbJc8Mu9fstrusc+l9ULnn9NZMtFDT0GnKs3/OO35+ZJ/HXrXg7D\nJqFG09OfAhJ//bz3rQQu//0ZN14Y0SilIQthJ4lNWK3WK1fTQ5gGSjkgjYBwvO23gfotogHwNnAy\nbdR++c6H6P+SXkSEZbkLgtNKrg0T6xsv+6/1dM4AH8zzKN8ynyf2oqR+ZDuRF661aOD+Z28Gg3zN\nMmGAaoI/Z7ZfMmGaPoCnQvp4jY6MFk7vyvmspdslsb3PFXCGe3w9JC+s3m4aO/sp7Igy+plbNLZ3\nYwDq5q1NAnwr7xkjdzqOc+2mLzI990sn6f/dZ7FGhyn3G3QIgQqAFfdl7AgDZ6ib0rYEwlHE5+ua\nSem3V3mbVOn/77djeY6RhtbhUbggkSckL6XWQAvoDnlON6s/dYLur9xAGIbe7DQamNEIcqQHY2KO\n6BPzumjQmSX1rZuIZFy3hUXCyLEBVMQkOrOO0Uyw9PYeur+1gErFoVLRXgbecbnC0d55BF3E9HF7\n4120QC1wWUbu7677mAiDiEaR41OYmbRre+/oe8trn5O6fcPKZTVD6NI1rP4+LR4pFSKboZmOYhWq\nyHgUBES+8gLO0QeIzlewtyVZfv92XRwwoZEW1LNgVeKEi4ridnB6G8SujJGcVtT/5TFylxvIuoMn\nPnW/5hyzq5Pl799NrVMQKqFbDdfcMRBkst7F+McKBgFM/0iTnmSFSMZh8lYXiWthnAis71/ng7su\nUh6KUJcmUhnEzCYTX9mNMTf/+m8ciPs1dqZ+7SS/+CN/y+d/5n36c++CftDtwojHNZg6cYvG93bT\ne3odZQiaKROzrrATFk7MQAlYPJEjUlQIKVkfiRNZs7HWm4QmFnxGowiFsWdm7377xlbHHo2gbs1g\nDPShHKmNGmwHDK3r0dpPSXpPFzVg0tvT0hcKhZh/Z47k6wjT3UlIV3/G3zPXW3vP+7rP8dYXr8B0\nG5aMv9/dGFu1jAXfAzSLtTOHvWuAwc9c1zsKISDvauW8vIDjsrBVva5bp9JpqNX8Nc4bH2ZHBhGN\nwldfgF3bKe/pIvrlJf9zfDaQF0GG01b6oBuZRN7D3p7Da32PRPxj2apFxwuveDH5mycZ/fWZtr2L\nSichrwWSG71JROdDhGfyqGKV2HIUs6eLysEBIt88h4yGKP74cTL/6RSVjxwj/oXnmf3RPQx+aRr7\n1cs03/8I0Yk0ztUbmimT907n3o8duzNB5yem6HyvBryMQ3tRV8bfDDh+R2Hkixglk+QrV5Gu0ZNq\n6sIzSmFEQmBEkNVqq6th4/fpyl9gmv5YsmdmNTB0t+dL16W45fBstAxUDFOPiQ1GNTKf902sRCqF\nnJvXelo9naA0wGW/92Fm3xFh9MtFiiMWvZ8+g+Oeb/Jzp/zWQ6BlzmJZdHR34fxx3v9+zFwWVath\nplKwhSTzlqfU1hrxFkVa5NQx8d62x9r6XLeK4GQQ1FRxw9PACP4PYGbSqHpdawQtLGJ25lC1uqb6\nZdL4lsKeDWFHpvU5lgWOBNPQE8fMrEY1PV0MF8U2O3OocoVN13YrqqgnAu0ijW3tZRvPxbYxXMRP\n2XZrw95sYCQSulLsMXRME1mt6daxbYPI89f0+QSQdnPfLiY/3M3gU2XGPxxn7O9qhC7PtLlqgAaN\nGgmDzJ+f8ltYnHcdITxXRBTXkZ0drWuQTvN44U9eUko9cvsv7+5FJj6gjtbetvkPG6mh0L6QBNpp\nthJTbmstC1QbVn/qBIYDXV+fxFlc1jbgfd2wVtI20MVim7OSv6i4wAyGwEinqTwyRmSlhjINjJqN\nUa7RGMhohwrvudA2obSEplugg98mFASDPHDCXeh9pyyl/BZGaIGlW7lrmb09yKFuhKMQU/PIQhFM\nEyPp9tMLQenjx8j87Ss0T+zHjpskXplB5tf8e8tbJK2hQc1wmJrGOLSXlSNZOs+sIWaXUZWK69AX\n4lTj7ymq1dcsn92tCM45RjzO0o8dBqDnC1e0TlcwuTeEm7RLvzXGb7dxgbiNLok+kBdYsLy+cUDP\nHW41IbigmR2ZrQX1A+FV3Kw+Xfk39+9GhS3U+RbDMrgZEiHLZyv6IFbgZ+93/9hBn7OlNZNENKI1\ntdw5CMPETOpjV81GS0gvcP8Iy8LYs8MXKPVi+ldPEskr+p5cYv7d3T491nuNsm3MA3uojKYJlWzC\nM3nsmxNY20Y1E2hp1adbG4f2Uu9JEJ1b5/Hz/+v9m3Oi/WrHT/wyZhPSN6s4cYvY9WVUvtC6D4Ng\nCuBZzbcxgmADc5G2v+vW33aDBW+jbM8v+POMuXMbhEM66fHeIxxCRkIIx0FUG4iadhbEMLUNbqXi\nV6+t0WFUvtDSEAvoZ3mMwbbxvZWWRHA99q3olb8eeXb1slbHcDV+gHaWVLPpb/Q8PT4jlULuHEI0\nHUTD1mDR0CCELOybE/p6JJO6IBSPIio1VCyCqLuaPJZrrLCwqMftnu1aeDIRRTQdTl359xTq8/dl\nzsmEe9TO//rfUOsUmHVoJmD4qwWMG1MaYG407lmC/48xrO1jrP6hyUNdMzz5pSMM/0MZ8dxZzN4e\nxv+7nfS+fZaQ6bDeCBMPNak0QyQ/mdZGC3cQT6i/vm9zTqxvWP3eU9v5D5/8EF3Pum2Vd7BWvNmw\n+vtobu8jNLGI6khR70ti1hzquTCNpEFsxUaGBEZT0UyaOCGBYSusmkTYitC6jbVQwLkx0bKWnpre\n5Np2L8JMp7XhQizqz0+qUkMk424Rta5blk1D7+eFoLa7l+jlOWQ2DQZc/h8T7Pm585p97rI8zGwW\nkU7esRW9iEQw0mmcpSW9HmbSNA+O8uK3fo+CvXR/5hyrWx2V79IJaDzG0g/uJvcnAXOpjeDKm8gH\nt0q0g63uwTB7e6Czw+8G8cfwhsS++f5HCH3tRV+42+rrxenvQp25sPlYb6endSfntNFMJfAaXShV\nWwIgQXdhT1waXL0/y9w0Rry2N++8RCiM2ZXDWVqm9oGHiPzdC4AGfYd/69m246v+wMPE/vY0CMET\n8q/u25wTGR1W3zN13P/dGh3GmV3Y5Jp1N8LaNgq1Os7yqi5EoguxzlqhLZczu7qgrvN1ZdsIy8Ls\n6wXT0A6rluXf16pe13lwuYKZ6wC4N+L2W5AKgrla0MHYTKchZOlir+vMDFD86CNkrhSRr1xk/l+d\nZODfn6X2jv3EzkxuOV+WP3qMwnaTkc9OYs/OY/V0oTKptgKyPhCBmUnzXOGLFJzl151z3gK1t9cJ\n78v3Et0NE5Z/47fd5AGGkP8+xiZQSFhWS2i5UtFtM5almT47tyGnZrXrgAu8qHodp7gOSmLmsq2+\nz44MKteBePQBxHpNK5z3dumN7dKSfr9sFuUBWt7GOGRqbQl3s+wfqsvsCSZo/s9usumfqSda7f7d\nSMQR0YhOYpsNlKPfy4jFtA5OtQpXxjGTCb3hdIGK0ieOk5iuMfJ/nqP8nn3s/LM8Ym4Rmjb1f/Yo\n8RursLTKzE/uQ0jo/8aqXzeofOQYqW9dR5bWdTW50Kr43Ovqz8bQ9snuL8EE5XbUUG/Cl87mjp4N\nIJBfKXEfN9Npup9f0WLRto3Z240sFHXrnGFibh/BHO73k2Br2yhUa9qCtSOBuKQpi87SEpG/d1ld\ngNHdjSwWscanMLo6cVbX2oSivfPzHwsctGpuEP7zWw+9fmqtK6QcowVImSGt+xEO69bCpvIXRg8I\ndRYWtfVsKIxsNrQTXyKudYgSCdg5QuovT2GMjRCZXCVSqfqVaDMe021FpXWqjz1I8pVZrbF0/BDG\nYpHcf9J0UCUM1EN7MG/Ogm0jeAu0BoSeF0Jlxfqw267TtDW4GrJQOL6OF4YGhTa9hXc/eq2qhmgV\n+j0asmUhx/oxV0o+FVkM9cPGCXyg13ef8MLcvxsnGYHT5zT7bFZf5/LDI0T+bgE1NUf17XuJTyS0\nDpVptoPKG4Fo13ksKETd9jdh+K06OmF3N9Ue/VpJN3kN2L077VUaYVnIq+NtmyXn3Ueo7Gww/C/O\nMfPfP0zf/9Ha+HjglohEuPaTObIXIfuVF1CdOd2TX6niuNfN/5yFVZzRNE7i/o4bO2FhNiB3No+o\n25jJiGaShkOucLTEY1xpe+NG6+fAfCSEC7AFQSKv5cptPZPVmnbUskzk1Zs4awWMwwOIwS6MlZK2\nTp6eo3liP1apgTExp93OqnWMWg16u5AdCaSVovbwALH5GoWxOB3n8tC0Mb12L0MgDKsFGCs9Brxj\nVkq1NI6CYoobGWLu2i2U0uZ2UvoAqnSvg2q4IKLXkgsY6TQik8YIWVCra72hjgzO6hrmWhksE1Fv\n6g2hZWJPTGH19SJ7c5plNT6DMzOLeOiAThpwN+fKgFQCs3O31nRq2ohyFREOYRTWUc3vTMz5jYSM\nhql2C6wKCAUyBE46jPHaLST/FG8yVo/10bBX+erpw+z96+WWJEEug2HD9Nl+zDo0cg5CCnJnDSo9\nsq0C+90SyoRP/+YP0nlpTbPE72GYro5JaHIJ2ZmmOpxivd8id6mKkAonLGgmTCL5JpHxJaonB90O\nWcHccYsdv3MBIhHkUA8oxfrhAd9UQXW7lvZ32pb0JiI4v9BoQiwK2bQ2QbBtDQbZNoRjOPOLqHqd\nSK2ui3grqyz9+EP0P94CArxxY+8dwbp652CQqtf94qvXYm1WBt8U6PJmQ8XCCDuCrNURjkN8aeN8\nvcEEY6vkNiAlsIl9H9A2Baj9wFGiXzrtg0EbGWEiHsO+eFVrxF28iuPmDmYmrYEit60nnNfuvI3B\nDOZVzXKc/qkdDJ3hdY9hK8BoU3HYCzcPEKEWc8o736C2pmeC4b2HrNV8MoAstnRibv3YGAgY+Hft\n48R8/iJGNgtf0+6o8avLUNMFgNjTlyl99BiJv3me4d96Vu+ZVvMalDq4S4NB3jW6Dy7qXkRulVu5\nFSAzCdTk3QeDjGgUtZLXrJ7OLKpSZf09eymMWQz+/aLuPnFzXO9+Epal7/H9O7FDBublSaRrYBF8\nXyOX1eYWq2uYyUQbkHfXYgs92qDjswcGCcvSxjHLq4hwSOdI62VkpULHSwvYPWmm/+1Jtv3JTewH\ndhD91kXk/u1YloXMr6EO7KC4PcHyYUFiWjDwO8/6bpdee3jbdT20Vx/P9EIb4/y14nUFX+5rGGaL\nDREJ47fJeKGUm3htoYnhMyE8G2XZaheT2gZuYzLnLCy2EMOVNV3ZrOrBYnRkMLaPYg306QnAnbiM\ng3thoBdRrSMaNmK9qvVUYiGQCmv7mH/8WiwqUCUNVE7b+oiF0cZyattku8BWCyBq9cyKkKVbOhoN\nnehHo34iKCsVrNFh5NEDmhGVzUAohAiHyP/kCVY+UsF45hXUnlFic1W4eUsnbj2dVHos6sMdlN61\nm/KQpOtcDUzthmVPTpF+YdoXvxZutdn/CgOixfc9hNGa2HEnea8Vy01u2ha+jeMoqEvl/u4zdZoN\nnGIRGQmx8j1DqEIRe3aeW7/wANbYCEY4hHN9XCfBXZ2AFve05xegVKaZjiDLZWRVV+StoUGs4SGd\nwPR2aiCy2UC4QJ7HGNM03nZ3sVYrG61z8Gm88raLn7K1hpRsNJHlMk4+rx2N3M9RtmaRmOl022tA\nA30e/VuWy0z9s6ymdK4VUPkCsjfnv8ZZXsFZ0C1y8X94FXtqWjNZbsyhiiWXEWdpnZj1OqV37MQp\nFDer8t+PaGvlRLdwqdb9GRR19yNw77YBLy6Y4ruWBdoAlW2jLEO3iLjhZLdwjslvBlSL+7MYDZcG\nXSr57DM7po9dlkqYDYnIdrjffWs+2WRDHzjvoNh0m/C00TrnoC4ZaB0s73y8Y/bSqFjuAAAgAElE\nQVTp6LQ2VrJcxsikUAHRfdGUDHzVpPq9h+l6tb3qprJ6zDXfdhAnouh+WrunOiu6YtRWJfHGfEea\nWtZExu5vXcOqOj4YpOcMdNXHtlHVmgucCb+6KEKW1q/wwB83fJexUEifkyvQ7AlQG/E45mA/ztUb\nOBev6mpYNos8ewl15jKqXEXs244x0EdkYoVmJkLl0e3IjHZBU40mlW0ZlABrZZ3k+SWsuTypvziF\nc+k6MhWl2ZNC2JpR6LdIhqw2Zg/g2syLVkHD+1uQ7RQs5EBLEylk6WPPpDFTKb8q5gGHALJYRGWS\nNPv0GBZp/Txz+wiTH+tj5gPdWjwxk4RaXTPUSuuokEl1KEnt6C7KHz1GcU9Ku4c9dACnP6fZQrYG\n6US9gYqFcRaXkecv43RlIBG9N4PkNuGBQeCCQpZ7r97hhu2f4s4je3aV9bOdpK6ZbfqU1dEOpAWZ\n67Dtb4oMPSHofwq6Xi7SjBvaEe+7LIwGpK+UtMi7d4+9tjjxdxQqm0alE4hak/V+i9IYFHbEkJbA\nbCgia01CazVUJIxVU1h1hR0VhEsuyJ3LIOMhOH4IZWqhWBGJYGdjmjF0j8AgoLXPl8rXNhNN280f\nAvNvTIM2IhLx3SCNzhypaZvUX7RrBxmH9xFaKOj2lTsIsXFv6b3PxPwdJ2d3JZQGyJDafdisb/js\nLQCSNvkCaM89NrRptQkdGybFYYv1j7dYJZd/a1/bezld7t5yYVnnCu7nT/3sPpzr49rMBuAVt6ha\naskcDDxT1fkXbN67bzyn4HltVRze+B4b87ENz/HAQWGF/Osjz1/WxizNhi7AAyN/NU18TrH6Uyf0\n26ZSADTf8YBPRoiPryFTcb/tTJZKmlnn7Z0KRT+PqoykNQMY9P7uLQzhaNbU3Q7lSJxSSXfgAEQi\nhAs2g/+wohm/jSY4TqvrIhTGedsDmNkOzEIZ88aMZgQG9+WWpVtGM0l9X4fdIrj7Pd3dE3Dvi63G\nZGAsavHrOsbOUepv24cc6dVsKGGgpuewrk7TfdameHxUG4CUy4iGjVwrIIYHMBfXiOZt0jeh51PP\ntn2M2dvjMzFBjzt5/hpifOYNrRPfFQwhYRgI03KBHb2gOMsr7o0XENMVwmUxGBiRkE5mvYq8V9n0\nbmbRAmG8G80TAq3s7sKqOphPvozZ3UXx6BDxzz/vC78Z8TiELOTNyVbi8+BenGQY8cyrsHcnImRh\nrK3j9GSoHBnArCsijqLRmSFaKPrVbq/VZFNS7zitdiVX/HeTLtJWmiSG2dpIG4afRHtgk7Aszfyo\n17VAtktdVPkCqtHA6O4i92qRejbDzU+eYOAZh+SLk6ihfrh6A+f6ONnr45j7dlHp7WT3Hy2g5hZ1\n1Tkg/ml25iAUQlZrOO8+AgpC+Sry7KV7MkbuKKSDkU6CjOK4YrR+BKsIStGm1bARPAmALRtpqE4y\nTPbcGmJ0CGN2gaH/7VnUzm2IcBirrwdV1e5tZkeG2tFdRKeLsJQnenUeXJ2pIJ3UUgqnv6XpY09N\nY20faynHe/pZGy1A/Z8NLWJnN32GkDC9dqCAXpJ3voHz9ly1RCSCEYnoa2bbLWtHpTAzaa2LZVmY\ng/0svmeI3J8+x+Ann9X8KS/fz+cxDu+jOpDErEvCi2W4PqFb6mwbEYvRODBMtTtE5ulxVGldX8+L\nV4lf9E7r/lbKhaXnHGXbJOYblAeiuu3EcwYAv6Ul6PwH+Il7sOXQBw/dhF4zh1xA5dEHMK7P0Dg4\ninlRT9ji4gTCZcZ4LbIe6Oa864huHwSsqgQpNWuxVteWp6ZJ6nLBZ+1FXr1Fc9cAxux8W1tgMIIt\nbcpx8IXEfdAokGiYosVgCYe0zoxh+vbYt2ttEabRakMKh1CFlrCe8cwr8MPH9Dl946X211XrNB57\nlGqXyb7fHm/TPfFsalWl2lZtbPalaCQFVuHe9LTfNpRC1DwGn8CoNxHVOkoIzTAzhC9KTjik78mI\n1dIYAn0dPYHpoC4P6E2LkoiONDLZ2oDJWg1zeIBbv7CPbX94WbN6Zpdci9Es0YszmsE3NIjT1wlG\nJ4lLSzidKZq9aYTtuqj0dMArV3BiIao9YaxSAjU9h5FJaap1o+FrCXl6Qn6S5drJK89q3tPk8FhO\nAb0koJUwGFoYUTVdsKxag3LZF84WpoG8cgPDNKGnW9vI2jasFRj67XFWf/oEiae7Kf9KCqtcpemK\nRourt4i8WESEwkTTSd3+Xa/7rBsPSLSGBvV30XQofPQIjZQgNWUjzt3HFi0BQoKmNIGwoZkyiUYj\n+pr/U7vYXQ3n4lXGfm3z4/WMnue6Xyqhzlwg7naIKSDe9yjTPzRM3+/dGRPkfoWQYFTq2g7eFdG/\nV2xsVa8jGk1WTvTR9cwsRhN6XpYUR01iyxr8Cb86AV05EILVvSajf3ie0vv2EaoK1h97AIDEVAUl\nILpYpzKSZuWDD5O7bNN8YIB4IoaaXdhaePU7PX5P2LfRQCTiGmB3ASFhGFp83jLBdrBGh6lv78Y4\nc4PGsb1Eby4RWahgv/sIoZUK8tXLFH/0OB0X1vQeckP7kNmRAcva1IpyOxaCHOpBrNznOrybsKpq\nlfX+ENng327Dmml7fCs3Mu/XIHNIOvR86lnNMHMZNSOPSxofeITw4y9q5ssL5/RbltYpfeghkp/T\nwJult4MtgeZoRHc8vHhe/55KYnzrDJO/dpLh861zuiO21Vb6R4HrglJtJgp+3uCZrUS0bo33t6A8\nR+H7DpD6i1N+McWeuEXHxC0qP3TMPU89vp2IQejhA3D2ypbugJGVOuLATsy1deyJWxq86+7WzLrd\nOzSYuoEhfb9D3ZpFxGII1/30boXYtx2ZiMBaBbVaQJXLmE++7KtaGqkUTnFd32vdncjxW4Quz+j7\nbmZO7x+yGcxwGGd+EaMjo4kKSyu+O5wIa0Ode6J/5HVmvB7IraQWDVeS6GpBa0GurGp9o3AYZ3mF\n6Jdd441UCnPbKM14GFEuw5XriFCYcFeabNWBow9gnL/RGpeldb3/tFwN1OF+ZC6ONbWi8807zK2+\nKwAhvzq6wR7ZZzsEklhfnLUWcDgJTkqCFkDktYy5N7uXbIX6MoSnVvwEPdVsIoYGkfk1rKFBZFcG\n+xWdpRqH9yHPXsKcz9Pc3acr/ecvoywLY8cYwlEkr2oqoQpbhJ54CekCUG29tQGASv8qWr2rsoW0\nt1XqfT2K1rki25FS772NiGcHrCc7s7sbEQ6hMklNlZ9ZwIhEsKdnMJZX6DvTWrBsIWB+oe141fQ8\n6UvXcADxyEGcsIm1VMLo76KwJ03HmSWYmdc91k/qxPW7ocYpy1XtbrMFXXTLPmNoZ3O0OUeptpu9\n9CPH6XhlGdFoovJriHgMUavrysbQoKbJGiaVjxzDrEsiX3mB+nsfJjK3hL20hHzHQzQO9JJ8Zca1\nSdSbE+PKJDIUpv7ew0SWq6hitfW5G8XUg8emz1jfHgHgx2+d3LBYCstyJwwvuRNg11ENiROYKEUk\ngtizDScRwXn+PCIU1tpBM3Pk/nRK27jWGxiZNM7SMmZfD6pSwzl7ichZvUmS24Ywhgd8JzpVKmF+\n82WS6GYaIxpl9ldOUj5Qo/fxMLlT86gNpnX3K5TjEJlcRT06QGMgQ3hptaXjEgRWgsBJQIun7b08\nNN7TZnKjkY0QemGF8CUT5QLPAJbb22x0dyInK77Gl7QE1sMHUC9dIHF+nvyJQTJXJ3SbWbWu3VIC\nrWXO0hL/H3tvHiRHlt/3fd7LzLqrq6vvE/cxA8wM5j6wpPbQUtTSXMth6qJEKWwpbDlMORwhy5Ij\nFJJC8hEOhqSQTNIRlERRpCmJomhSFHfNXXKXu6vdxZyYAWYGGBwNoNH3XdVdd1Xme/7jl5lV1ejZ\nmVkOgKHpX8TEoLursrIyX773ft/f9/f9evksjI7gr/SLovaxhPpc68J5N2j3MYWUE1ZZI4Zl0G1n\n7dOb6m3vjeYNa6V/eq8KIQssCpVMkvt3rx54D/yJQdp5TeGXX8E89ghOpxO3mjnFIsHMKLwTbqTC\n58HdbTH5rTqN2YEDj/kgw6YSqKaH9RvQ6WHQtP3w+nQBTxtds05HrpdSMkeDrCOtFhiDWVyOLdn1\nYEHoxXcWOPaLHax2sNUawbkTeKtl/NAoIRKmdFIJSs+PU/zqKvb2PN7oKAzmpVIeGJgYQ5cauG/e\nwDQa6GTyHjAIwvEfcK/ukdbd3zn9bMtInBqlpLVwHzO3y+SN2ndNdx2PW+hU3Ptvn3mE0S/fovnr\nbVTtGkyM4V1flqRhdhKyh1H1DqpSQxUGaB0awtupg9a0nj3M7lGP0TdreKtlgivXyYemLjqf/9Ab\npfsRyogNdS6fRdXq8rz0sO3+/7g/UXxtla2npgiy3j0U+cwbd0l9dee+uul8P9E3SpXq0yn8OMOd\nmaZ9fIzSyRROC5pHRxi8Wac+laJ4Xdaz7N0qDA3SmimQurXJwLzB1Ovkbu1ROTlAarstAtQDCVRg\nqc4kUAEMzgW0BjS7xzW5yVFG/t39Ezu3xsgaHVvM+939caeNJSGMwWQC3Qywh6dIbNUIinmUMSTn\ntwmGctiXzpFda9MeyZI4YK5oP3k8Ltx8r3BOHIXtMgbumQ8fSIQF0exap6sj2seQcbp7hP0Mm/0R\ntzT3t5ft/KWXGPoXLxOUSsKyK5VIfvl19JNnsD1MopW/cZ6pn7pA7ldfYe4fvciJv/YKY//nBfZ+\n+zgDX7gFcA9Q6M8v0PqR55j9Xy589LHf26Yd5QBxXiBC/nHnyX6JCYg1QKM81NRqcSvc4JubYlEf\n7nPcY0cw65tkfv3VWOvRGR4itVYXrbh0GhUEdF54JM6bANzFLRE/fvSkfEa9TvVHnyCzMo2+fAvb\nakkL9L3mzw8sIiflj1ucWfmGIOPibhtMeTeUKnC6Gqhh7sbosDyv+Txmewd9ZBadz8n5KIXd3ZOc\nt9nsc6RTySQqncJs78h9q9Y+XobifoJB/MEHA5bBXhWM7N2Vlwg1OgXcjxnTlQpKKfTisri0Wosz\nNoKtttD1Nv5QlrX/8knyyz65q9uoRotgdS2+N6rexNvYxlRrghO0P9yK9skAhOjS0gFslEf1JsI9\nIrpxotU7cfW81u5L1qLWMV0YICiV0N+5ROAlUAlPXMVSCajWUdMT0PExKbks7sw0/uX3qPyZFylc\nKaPbAVv/9UukSoaBr1yVNq3NMmYvRCFHigSffZrqdIKBWw30yg7B8mpfEtar19ErIK0SCdThaTpj\nOaxS6HaAd2e93yEk/K4RQi3Cn5J4Wp+ueJXSohXU8aDdQYUW4bbTFm0j38cN25qwFlur0XnsKIn5\nzZjG2EsFtW+8i0LyAvfwLIUv3cW0O6hUkr0ff5HqrGbqP1Zx9pqoRgseUmIP4cSssgcCKH2icX1O\nXrbLxNoPxoUgoz1/juJrqzFK7xSLUsXutNHnHsWubKGSSZyRYQYur+PfnqcW9gXbTAb38Cz+t98i\nBXHfp85m0fkcNp3C7u2R+Ipo68TIeMSC2w+17XsulOeKU1Xv3yFe5IXmqmJbz76IgbAuW0QnkwTv\nXBcdEJCJqNWORdyiaphKinK/v7AUf6ZTLMLkKM7OHmYwx61/9RTDX00x+EtdIUOdz2OqVaZ+qkt7\n9HvP+0FFyEgEsLt7JMqTVGaTjFxLdHVf9reMqa6mTvwzgO0QWbxbX8ZM7/dxGkEsqKl7rCDtThno\nOkkt/7mTTPyTTfycQ2qxhc1kMDtlBuYKBM88gruxh9mryOJcLEK4MXKPHMK6TkiNN92KRa+uVDiW\ne6O3Tci228JwMTaeR3TCkzHkuaFD1L7rZ4PuhskEcgzX62q10RVgjOj591RplKI9mGTgty5jgNqJ\nAdLvdm2VzfHpuFIYLbLlv/AiI99ZZfv8BOmt+9d+8IERrUERG6jZAh06ljgumHDzFAT3Jplao8IW\nLNWjIxTpDlnfjx0o/KEs3vwGJDxsOkmwsIRTGMBbLQs4nUxS/eKT5H7zLUp/4SWG3i5TvLRD6Y+d\nIlExpNfq6EYH6k0RfnddGMhy5386R2pT4TYs419fwYY2wBFAFbF9+pzQovbbiVH84RzaN9KWtrKD\n2QmLI025xzqdkjUvCLrPWrsTJ2ox8Bj0GDgEgehtDAygUincuRXM7BiqE6AXwrbVQ2NgQNeauKs1\n0crzPEiA8803MYjleCenmfjmDjbpEAznWfyJ8zQmfYYvOhSvNz6C4ffHFLb7f6cNnawiGMzgbEs7\nswrMfRHt/F7R+fwzeF+7+MEv/P9I+HfuojpT6P946Z6/3W/B4+83omGjrJX94WDhvgBCwfggu0dS\ndHKKkbd26RRSWEfjVQLaBRerwHhZ/HSexG6AP7/AwPwCFth5apBEVUSldRDgXJ1n94+fIVGRZz2x\n5+M2HPILLfxsaMt8v7SEolZ4v+vgGSeyoQkC1qLaHbz1XWKWI2BTSYLhPATyPPppabXS5WrfTkxn\nMjhvzsX7tb61bV8yGMzdwRkdRS+sylr6oCM8n8z1DZpPHML9+uaB4Mc9Vu0H6e/sZw6FPzdHeooC\npd2uFk9YXI8KPIldeX3rR57jxF/rtuYN/WTAzp97kYF//Up8LXtNcJL/jwgvB0+eRH330sGsn33f\nN9bGjApWvV0C0Usjh7AQ9Il/VgqdToskhun+XrlunMAHN27hTk/FJiERs19ns3ExNNjeof3ccRJv\n7UkesLCEt9Og/sXnaQ46DP5fL+Mvr8hr37sZA0m5X32Fyp95keKtLKZSEbDkYUfU1v5xhVKwWcK9\neoMgut6tFq0vPIdX99Hfeiu+1u2ZQbxSE3NsCme9jK3UCLa2hV0fduQ4Q8WY+BHlSKZWg1oNZ3gI\nlc+h6vUDVRQO/LqDBdb/9Bn2joFbFzOI2S/viIlSLzOodx7rc+zr+Z4QG7DgCJNcJRKx26oNpK3T\nBgE6mcS0WjgT43FOjuugag3MTgl3I8XYd3dEJ8habDJ0Lp6dwq3UCJbXpM3/+GHUxg58yGXtEwII\nHaDTEf3F9eL2BiBuwZAq5QF29H1uS9FBNMpT4GicE0exqSS61sDuVWKKojM6KmhuPg+jUnH2p4Zw\nUgny//YV1MgwXnuQsWob1Qkwpw+jFjdEgHpAKo12fYvETpnhm2n8pWVMPn8AwGD6nImi36mER/De\nTXRPx1WUukdsnygRjFyZbLuNOzWJGR0UhNTTWEfjblfFjWd3L75uUa+rbbfFsrpSiSc4ncmQmFvF\n7Akqr5JJmBpDz46ze2aQZMkn8dU35JzuLsYToO20Gfg3rzAYMh7sY49gN7Y+8t3/uMP6ftw21xd9\ni1rPwxst8/sXwChMgLpwmV4oJSiVcE6fIJgagG+8KQ4U0WIaOiUNfP0a5rnHMa+/A5v9n68zQmWO\nAL9ootCFAVQuiy3t9lPC99NeI5c038e2AvZ+/EXaeUV6x1CZdjAJOPRry/h37n7vBKNnMxYtltHn\n6mwWNTWOP3cHbNg/3KtzEmmIWCuJa9gOEus13IXjf77nvrx0DvXqu9IzfewInclB3M0K/mge59JN\nqL7/ad63CPW8bLtDdiNg75CLzWehVu8yOBwH2u0uizECXKLrAPH9kH/3oy7KdSmfSDFcH4X1DdGS\nCl0nTKPZZ1lan5R73Mlo2NhGTU+I0OIb79L+kedwLq0LsBK5KYSfFYk4ukcOdefMKGKRdLqMyZ7n\noNcRRA8WBLyoi/CuqdZQhCLRnX1i/tGcFuq32VCnoPe505lMP3vkIMeOZJL2gEMitOjNX17Hhu4i\nzsljUG9DWJGzLz2BunCZoV99C7/ZpPqnphi89jAGTk+ELXbCuNJgQ12lIBBnOqXi/ni7j54egUK9\nDBwbBKh0GufQNK2ZQfysQ3q1LmLKd+6iXFcAwHpDAKhkEj05xsA357CpJIP/6jV4/BSq2aZ4cROT\nTWEyHnpxQ449NY4yFru2yfGfq2C2dwSwGyxIu9r3ajcMQw0N4t+4Jbhn+DsfQDu4s1OixbW7J9eg\n3e6Ov3wOZibB1fH84ezsSftzvYHZ3sGWd8XwIZXEVmvQ8dF312FIqOB4Lso36J2KHDuTpvqp4/hp\nTeApNj41Se62y+yXtlC7VUxxgCCTwFvb5chPL4KxBJWKbKbuow7LB4XuiLB0ZyAh4t7tNh96p/ox\nRfVPvcDWn2wwmXguTrj+UMQ+wP4PXCS8+3JYe/EKxYvgnD5B7eQQid0O7UGP3KUV1KMTISCk2T2m\nGXm7f6wO3mzQHE1gEprk7W2sVnjVALcRoMOClVtpY12N8TwppF273V/M+oBo/InnySzUaI1nMK4i\nd2X94FaaIJA5qCP6IyqXhVYb5Xly311XjFiqNXQ+Jz+nk7BTxowWMAkH62icehtvr4MKLHbfNd/v\ngty3tlkbCyyD7O9MeZfmD52DrzyEcReOdbNdovXM5L2JX1TQieb5/bbuvfE+LViT367FrmDB3h4b\nP3mesZ+Vol8vWFZ+1DICVGZckoijnb+6hn97noHb8/ExlOsSbG5KQandifeq5RNphl7dx1J537Yw\ng/VF02f0S3M0njlCfcxl+MvXBaAyUqhRIUHA1MIib1jE6r3Hsa287wvTpFLBnZoUMOf5xzGvvRPu\ny7r7wshUI7VWQw0Pib5fWERK/dZr8MXnJXfIZSm/NEPuV1+hNVvEvSnPYP7fvsL6X36J4Z/vZ30/\ntDBW1uB97rjfb+hkEpVJwYtPoC5eiwuU2beXwXUg3JsqL0GQ0DgJB+fmEjbhoTxPisuhTqVttbpg\nENwzv9t2R/QEP0qMjTDx1SUmAIwVvCCbRefz6NFhKV6tbXT1T8MuHv9zz7DxdJIgDY1pn8S2w+R3\nfTKv3ZaCejhGbbtNb8HW1Os4w0OYag19aDo0KJGxQKvdBYfCgpt5+xrO6RPYu0uYFx5DVZrSsXLk\nkDAclbrHpOZ7xScEEIoQZ0nOetE25blSrY6YDL2odG9S31sVj6wEw5Yba8Le31yWYCgHr70j+rGD\nBdp//DkSX3mdYHNTXEv2KuiWjwHc5W386WHsp56E9V1UpSYTVTKJzmWJbXmDQAZbqIeAtainzqI3\nSphwQ2x7EkmllSCExspxEIDBfupJ/LRD6q072NkJSo8NiK3xhcvyNUOBMhDWhikO4L97DUJ0GYiZ\nPMpLoM49gm51YGMbW63hTk5g222cUBg22CnHyaCp11FPnUW5GuNpnJUSJBMU/sPbIlB95BClF6Yo\n/OalGM12Z2fwF5dEd+mJR7BJr+us9rAirF4rpfraoGAfXTQaK70LX8ym6EmgXVeqcUenMJ7GfW8B\nEp4Ikl+fQ488GY8hANVqoU8ehY4vlomvv9PVsDp5TCay1Y1YpFy5Liqd7lJkg4D2kRG83X36APs1\njmzXJc0pFhn4N6+w8HfOs/O05cQvi2C4D5gffArd8uGNq32VEgDz6afYeSTF2CtlWuNZ1p5LkF21\njP7aFRHQrtUgrHKoZPKevvhge4fgM0/TGvLI/Hq3FSiyxjZ7FdTUOHZ9C3P2KN5aGXvsEGZ+EbOy\nhtdoSkJ84xYGUL1tKQ86Oh2ydyrsnC7ij+Rx17ewUbIO8aQdu3L12LTHv+tN5sJ5yj16GLO+ydAv\nvIzK5+PkWX/nEs6jJ7FLa31i2plHhDGUWevA6BBqrypMnaRH+vfe6WtBDbZ34jGtvARYI4un696b\nWOoefaN9C+Xus5Nk7y6CtXROTuFWWqIFVhexOlPeFWCnsU8XIQI3U9Jjr7zEgWDC/kp2tNmKLGf1\n5DheNRDmlNaywY+EGwfS2ItXUM89Dq+/Q/lUhuIFaH/qLH7aYfz1Fqrz+9+YfOTo3XyGlvLWc7vt\nc64rVeogwDpOt3VB64Mp18YIwwUEtK/VoFTCvSGLtAXZHH3uGdzfu0iwsoY+cUQAy2Yb6k2s42BP\nHcJkEriL29hao+vKoRSMjMjx17fE/r2QF82sVhaaTdmEhGtMxAqCkLnrCkNMZTOgNWZji70ff5GB\nf9Ot8N74+WcZ/bZH8V8KG1Alk/EGUocadP7SMqxv9CUIvnZwj8zCUAEnm4GWtK3ZmuhWqZEBAc+L\nGdpHBkl89Q3c6Skaj07iNAOClEPu6haq42Ndh+Hf3IaZCVStgb+8gptMoDMeNp1ADxUJhnLsncwx\ncKsGD6M5KELRrGCHjTGPdCqFqjf6TTMeAGBRnXbwOw6lk55sev+QxPgbD5FV+P1GmEgqEFb7fWDX\nOCPDtB8/jG0F5N5dIxgtkF5pYza3SPs+7VOT+Eqh29Aa1PRKzAYph0TZx/3O2/i+jzM6SqLcRneE\nQajbAartE+SSpFfrNCeypGtTsbPUB57bo+K41PrhZ9k94jJyuY5/564k1IU8WBuzlYO9Pfl9Js3q\nD0+R3LOktmXOdesB1lEklsuoRjNOKDUD2LFhTMLBLdWxSQ81vywsoadPxIyP/fF+LTS7R9z4+kRz\n3fZZD7764e7FfYlOB+2/f3tUxPrt+/v+cbZvLxoViNXLl+HkMemsWFpm7GcvcOPnn+XUX35Dvn94\nzC986i1uAiP/9GV48Qn8V97uu4bBjVuiVxgylcSMofv5xV98WRwoexPdXhbT/r0yMPobV2F8lMRX\nXidB2AX92CMEhRTe7TX81bU+5pZpNnFOn0DtVkApSp8+QmIvIP3ta5hKpcsQihiFr4k2UlQQViEL\nvPxDp8j/yiuYS1f7HDDN28IwSf3Wa8IwK5XgJRHULp9IMHH7EH5BBJDHv7qAz8HFtAcdQbmMOzWJ\n8mofCch9vzDNJmztwOKKGHMEgZAX2h3s9g7WWhGkL1doDbqYhCa3mhV35HB/9T3nQCXmHCqdItja\n/tCaZe7Rw7Kf2ymD5xFs7QhQmM9jzh7FuToPgM1l0OkUQch+5/GTrJ0foHDbZ+of9As/63OPMv9X\nTqMMFG8E5L50SYq7oearUyyKLtLmphj7rG9hjs1IUXRnV3J0L4EzJo7m/oY/3UAAACAASURBVOoa\nKpkkuHkHZyAnc2ypip6eAj9A3VgQoslHYBx/QgChULzSCTdCvS0wpp+9caAFYgQCeS623RWZjnrP\nlOvhzE7h311EN1sC9oRASOa9NQgntIitoYOwSn94FPfGEsHWNurIIUEftYNttTBBIEmSMVKFcBwR\nrSqVRDB2e4fA9/vb15RU7sXaWya5oBS2pjxzFmstOrDUnz9O9p0VCr98VSrBI8NCjRsuSo/k5Fgf\nEBR89mmSt2Xj35kZRn33kqDZb10hQIAInUzGQE507dzpKWx5Vz774hX00gYMFbA37xD0uGvpfB5/\nYZmB5TXsEyepHs+T+9VX2PrMLCPfFo2R4PqdPjHRhxbWSg/zxLhQA3vckPrGzX4wsUeTJ14UkQQ6\n2NpGVaq4s1N0zh4msbjdBT0uXsMrDmJHhgXsczTB3N2YcuqcOQVrm9h2h2Buvo+aC8KgsL4vk9bs\nFHZlncRiSTSqeisj+zSQVDKJevQ4anlTwMzZGQ79fZmAnJHhmMbsXVvCjg9DjxucMzKMnRiFb73F\nyLdAnT5B+u1FZn9Hxr959jFu/XiO7IJm4p+Ex5wcx+6UCfb2YvF1lML55ptk6NpyOiPDMjEC5f/s\nCQbfLWPOHsVdK2M2JBG1Lz2Oe2M5RvNVMhlWBh6CnkePo5Ze28ZpFqnNpCjc9Loir0rJGAlbwpSj\nu200dEWle0HfCFT079xFZzIiBO26fQuSqtRRIbswQv5dJ5Ax83sXaX/maZwbt8SW0/cFmNzalusV\nsi6i8aCHBuPNSV9rpHy5MAntjnP38Kwk9qvrZH/tVfSTZzCXruK9e6dbsQDqTx8m+ZU37gFXK3/2\nxdiJJQaZQnF8Z7CAKgzgL67cU0WFruBmUN5l66+8xMjPvUzG0Rjfjzc9zsmjBNfnUO/dwWoH3hbW\nWdR+sPF0kvE3miTfW8Y/NPYRbvjHFEr10NJ1yAyKxgTx2FHJZLix7WEAhfdHeT0270EQr3XiJjYo\nAEoP2G/LuyQvV+HkMWEItDtQ2oVshmBU2q2cpU3s2jp2ZFjcKcJnUadTEFU4222Zp7Z3IKRcO4MF\nTENAIZXwBJAJ2UwyV0lhI9jbkznz2TMMfXOepf/+PABT/+wSj/7DPTqj2XBD1w7B7hSMDmHXtjD1\nOo0/8Tx+WlP48pXY0KF00uHQf9iMxTZFgH1J2rsjVxNrcDccnB2HvR97gUQlwLiK5FaDxN09qfYj\nWlru9BQ0ZBx1Pv8MQWBJrFcx2STN0Sx+xmHw6i56t/Zg8SDbbfmJfw6gMazFDaVU7up2ARykS/D7\niM7nnyE9txmzAQHqUxatLU6r/0K4s+Kkeb+Ei98vdI++2v2M9L9/0L2Cv/9QfiBjxxUxd3dyvG9+\n+DjCzowTJDSJpTKtoyMo3+I0Zf7yV9dwx4o4NQft38tQ0q0AfeGdmMUfbG6iZ8ZQQYAyoIKAIJ8i\nyHi4VWHe8CGKQDGDdmOb5o8+T+6NuyS+ui6OvhPjtB6Zxql3UMbipJJSqEulaD53nMq0x8TX1gjm\n7sR6oFEEPcd2RkdlPu/4uNs1ac+oNmB6QrRB37rFQU+jc/IYKCVs1tHR+Hvbl86RWwlwzp7GzM3H\n61rxhs/SQ2QlmlaL3Nwu7U8/dbD2US8wpPb9bj8wFK5//vKK5CA31/FD0CwGhb7lUf1TL4h2YLiv\n/sqNMxxHlNzXXswx8QrxnBeZayitQEuuFxORn3gE8/a1LgDlJbqahvvZTNrBOX1Mui4yGQGPyrug\nFOZT5/BzHomvvI757NPM/dWjHPlb3cJcrMNSrYs5kJcg/yuyV9WHZ1n7i4+T3jYUvzUf72EjTSGd\nz6NHhmImb/5XXmHlr59n6h9cwNnZw0b29YD/uadxv34xnvMige12QUlhb8mVQkzITNNHD8ENHm5E\nhfKDOjC+j9CPPULjcJ70UhW1vCEsmb0q5tEj6Ct1OHWEVjFFcmUDr27ILFRkbzU+Au0OphekVUrY\n8fvMhCL38Ki4b+sNEWN+v1xVKfAD7IAUp2JGD1Icc0p1dv/4GZy2oZ3VDK1voZ94hDs/NsTI2wHj\n/4fkTO7MNDaVwCyuoA/PwNI6s/+rzD/OmVNs/MTTjH9tKZaLCMoiXB89A9b3cdo+qtmO95DKETmY\noLyLfuIRqicKDLy5itncxlvbhU5oVuIHYWGxHmoIfbj78QkBhCQOAhNiVkLI3uiroPXqwZhAQKTo\nxmkFOF0x1NAuUg/kUUdmoFwR5fbJIvpS/1Om2sJIqs6mKa7mcEaHsDv9tKtYPDYSn/V9ob+FArsk\nE6jxEVhew9QaYTJmYiaBNVaAo9lJWhN5UjfWcIIA6wckHR3bMPvzC2K1uLWNGcxh5hcg7MUFsOfP\nyUS8tCwgQTi49JNnUHdXCUolqWxoR1DP7RIqk8Zai61UUZk0zk6V6hefJ0goCm+uYV94DHdFPqNx\ncozkRg3eviZA3cUrFBZG6Xz6KQZv1kTYdGtbvsuhKZz1LWmPeshhA7MPAOrpf+6twMY6Kz2vsz2g\njSMAoHr0OMGlq+g5elrHdlFeAn91je3/6iVGXy7B+jb68DQqkOTb3LpLZD8NXWqqbXcEbNoThxxn\nuIi5u4T1/a7DWBSRjk0EUISgpL10VapgoVh4/N2rNdRzj7P+Qp7xn3sD3WkTRCyvF6fIz9fhlbfj\n1wfX59D5PM7Z0+w8VWTw377J8TdkBml+8XkyX39XFqhkUnQ+kkl0p9PHGIoWubint15n4F+vxD33\nPtKChglQ370Ub67Mp59Cf+utkIHyEDZKPZszW6mS2TDUJh0GUykRomyGukv73Au7b+oycSIHRKAP\nvGu/9Cjebgt9q6vPZX0ff2kZd3aG8kszDH5XNlaNV0dQ9SVJ0t+ZF8HCQBydYuH5fa1bOp+PXdsi\nnSL5oHsBNuVJ73Lz+Bjed9/tagjNy7kF5V3cI4ekYgVUp1ySvVpII8NgLcWXl/HpsgQBdLEYM1KC\n0QI6n8W8ey1mAh0UYy+XsF4CKrX4GXEnxgnmF0E7BE+exL25IlWTkWEKF1fxgalvV+nkPILZMWHA\nPYzonVM64sZmcxnYLodtZMIkizSBgBA8EsaQbXdQCQ+lXZlbO+LeEQkum+0d7PlzNMeSZBZr2E6A\n8g1Wa4JCCnXhBk5B1glnaw9bqeJv78g8XyoL2BwEouNQkxZA5bnodCq+787oKPg+9fMnwELm5TnZ\nQMUbP09AK2tR+TzBS2dIXlvB3lyCZIKZfx+6MQ0V8a/eQAP2uccJMi5O3UfdXBBdhMEC6vRRMgs1\ndLONPTaDrbfIfvkSmVYL88xZdv/8i+gABi9uwEgRZ2IENnewzSa20cBxXcz0CNnFOtuP58it+lSO\n50mMpElu1vHzSRb/6kkKc5ZOFpK7lsKNCs2JDHf/4jADd2DkrSqJ1+bh2Awml3ngGLQyEKFQVil0\nAO0B6BTTuAu625J6Hworfs7hvf9hktM/n4t1PQbfg8Z2hsxmN9FzRkcxwwOw+eDbv/1zx/HevfO+\n88Uf1lCWsA1KA44AQzmxpv64BKads6fZeLYACtKLLo0Rj4Ebe9SO5Emr48KsDwGV1JmXGP7GAiZM\n0gESK2X8fYCBsuLIqDoiFq8dB6fWpjOUkQRmq3TQqfSF7bSlvbMTkJnfI5gewel08G/PY186h1tt\ns3UuT2Y7ILXpYqaeZnc6QfFSGe93ron25cw0bJTuMT6Jksdgc1Pa3psOKpWkMztMkMrJ99ppxGt5\nrwOsM1hA+YEk/88+hr16Oy6AeHfWyL68DieO9rdQt+3Hq8HyYaNnf2sXViiff4zhbx7w9/h1XSmO\nuAj/PZgYt/6C5tRfWsY5cZRg7g7BuuwDWoOKwV96lds/9RLH/oYwRxPvda2/Z35jUdgvoYZPdP36\nXJfDc4rGmb+8ImwKR3fd3fbPlyYQMCh6NsK9kFMYgO9covETL2L/k+dIfvl1zv69UWogzP6wRSe4\ncQubDc/z3CmcGwuSC2TTjP3sBZwzp5j7b48yeWGW5G+/HgPnplLpOj+HY2bqH1wQECvKzcJzSrxy\nDX14VvZipSb6zhJBeZfpb+xhgdp/+gzJUgcbiU9/iGflQcXH4gisHYJ8kszNHWGFyYFFP8dz5L69\ndUVAihNHyb29Cu2OgHCr97bQKde7lxkP/XnKPjfAew8ijCJT3sUs3qvgHZR3UUdnKFzeonl4kCCh\n2fvMCXJ36xz+uyEQdHgWWm3MTglTr0tRa7uEqXbFyIOrNxi+CtUffZ4cCLMxvCbKddFFKfAGV2/I\nHvvMYdxSHbWzK6yp8TGYXyH73m38UPZFJAsc7GAee+su+tA0qt3pc7X+oPiEAEK2W3GPNqI9uhpR\nhbyPltnL7Igqab2Jc6Sz4jihdo6whUy1hk4mQhZSC3d5B5vP4w4WuhVZz0U9/SiDv3dL9D7CSSpm\nbITVXdOLkIabZrO2EbKdHHSjJe0C1vRYPvewmoxB7VZJrqxjQoBAJRLYjrhYBZ95Wmi4YTtStIkr\n/8WXGPm9BWw+A7tNbLOJOztDMFZAAbrpw7zY8sWibEYWLnd2hmBtA7TCKQ7ir63jToyTfeUOweYm\nPqDu3I1BD+/uIurMKVlQrSXY2pbKz7dkwm9/9mm815qoyTFUtf5wHBQOCNtsxq0p9/6x2+5xD6Ic\nheq63ijXxbx9XZg34YTizs5gm61YKG/4n72MPjxLUCqhmk1JxEJNnRh0iMZsEAg7QCswMj77xMP3\nncc9/+4RuAtKJWlhzGQkkUwmJYF6/R3GXgf12CPsPVKgNaAZ+hcvk59fEPBufAyVzWC1wq5uSFX2\nynUKV4DIvQ7IfPM92i8+SvKNm7LoJZPS2jUzSekHJhj91opsiJ45S2MqS3qlhppfxTxzmnbBI/ON\nK9Q/d5bMnT30dpnNH3+CsW9vsvpDYwxdbYn9ePTcmoc8dowht9hk70iGYHwQXavT69wX3ctojord\nohCQRjTBQmZZz1xVH/MY+PrFGASLWV6ui7+4ROePzrLzRw5R/FqHo//yLgSBzDn1uiT10bEd554q\nnfISAlqFjLQ+UdQDtNWccaliqleviSZQVM0td0Ug24eH0SGLwIn0+186h3r5Mts/ckoEwrd35PPW\n5POcSKQ+PBZv7GLOn8M9exqW7128I+HEaJPXfHwWLzz3YGtbhO+PHYG74tAHwrbx5xcEsJpfZ/uL\nxxj/7TXMSOEDbux9jN5rbIzQnhMetEwswh630YW27ARBtz2sd7604japPBdSSTh1BPfqPPmVAiaX\nwd68g8plUROjmISGzzyF3qzL+xotWduyWYLFZTEpiNq8HAeUAFC21ZK1KRRgjJhMmQtzorORTEgL\nRahrFIGPKpmETpvEWkWs3et1qFSkSBMlVZ99GoDExTnsnmxqGz/8LM1hl+Lv3kLv1jCb2/KcnziC\nTScIXjxDJ+OSWqszeL2KavrYZEISSECl09hWO9YDsRev4IyPMdoO0Jtl/JVVnLFRVDqFfvsah79j\nhe329nWcXBbGR0hevMKJbwhIjXZo/PDTpDbqOLuVWNvpQYWKpAQ1MRhlNdSnUgzOZfBr9fsCBgEk\nt9roIcW1n8xy5m+P46+tM/QLL2N+8ClMQsdrSvuxWdy9Vpwc3e+ICggAnbxH5/ypP1x6Rh82AiMs\nIVecdyJ268clLq0aLUYuV6nNZggGUiRLPu3hDK2CQ2LPoxfGKF7Zk71yD0NpfyFLuR6q7cuz3Gxh\n/QCtFDbh4W1UZD4cHhQm9/dgGyjXRXUCVKMVitsnhFm7vYN6+TIqm6X5+XO4LU3uagWspfCN2+jD\nsyINceo4JuFhrt5r990bwfaO5BrjwwRpVzRLWobmeIZ0bQK3UsNkUrgT8uzgJWL9InX9br/eTPgM\n97bDuRPjVAZ6dAcfZPTMKaZWR+2voexn2SgtrSxhQaH7+35x6WjOGP966I60GI6HJ07CxSs4TXnt\nyX94i9t/7zyH/+4FjvzczW5BcEv2z71Czr3n2teO17P3CUqlrjnHvvdE80mk89P3/UPGbOGXX2H5\nb55n+stwNLvNuxAzVO35c6gbAgrpbBbzxrvx+TY+fZL0VQiu3uDI35Y1r1crCsKCnXZo/9BTsfbq\n9mcPMfQfqgR7ezQ+fQZvr4Pea+K/fQ09O4x96wrmmbM0p06T+q3XWP1r55n8RxfEue0b4ddMdvfl\nDzNMqYzK59Dt9sH51YcMpRX67TmCcP4KPvu0MBLfncdd3xUGX3T/KzVsPkvwAeBGTBj5HjbwkRPc\nQfOmcj2xqA8JJH1EgahLI+y8SW0U8cLCqcpm0cND0gWwtdOjLarEgMnfEwxDKZxiURhArRbp373M\n7o8+SUEp/IVlsIbOueMklnak0Ntqgevgzq2glMLf2AIT4IyOxkxvXRiWfdz6FgwNwuKq7C/3qj2t\nmh/unnxCACH1PRFHG7Ve9SrfQzxpQdi2ENl0RzcuEm/2EuiRITrPnMR5Z74roJpKiQju0QnU5Rs4\nYyHl88p13OmprhWclxAAKJrwtSOaCB0fGwSYUGArEr+2StTDowVSuW6fuxhKywZ2qIjd3cM0BEDQ\nITVQpdMo1yVx6RaqMMDuj71AbcJh7GfFcrH4r1/HHjsMfoBZkO9it7ZRaxs40xMiPrW7150EeyZS\nf3FJRKpTSezuHs6p4+LEUKmJhtJIkfZ4luTbCzA2hJ1fwty4HeuUqLMn2H66QHbNx09rBr5+DTVY\nkIpVlHA8zIjGRqeDOjyDXlmPKej3tBta2wWD9vdU9/wu7m3e2o4pjupr0vfcN+k4Dq0/+qQsAvuP\nF4JB1u+6nemMVPhUKhk+3E6YgBl0LovK52P2xf5ztJ12PC6BrtB4NGaTSeltffca2Xchi9Az9W4V\nf3EJ1WigqjVMo4kzNIiTTomQcDaLSiawhRxqZxd/dY3Ue8tUPvcI2d95V56J8DOKc3di4NBevELq\nosw7JpnEefkdUr6POnWc1G+9hkGku4f/+RoBMHZ9rnvZCgOiNfJxVB2+3wg314nFbfxMmvpMltyt\nfXbZUYtYCFzHALaxfQLx4l4mP7tjIxR/t7sBcs6cwt5ewDSFwqoSCUa+PMfmj56AoQL+zTv9vez1\nuoh7R1pBoXhzeEJEbVp9trFAb9tjXB3L5wnGB1FXbslCHrEpw+dCDxZkjH/rrfgwflrcmlJfeg2d\nSjHyndU+cfXoM3srL5E+jH7tCsHTj9L61CmSv/1m/Kw4Z05Ju1M4L5lPP8X2Y0kmvhbeipBp5N+e\np/6fv0Dm11dwjx3BOlq0rApZdMfHaYLZKaHymQ99m+9LRNoe5Yq0XLluuDYRAzBADLJEY6XXtav3\nWCqVwroOtWMD5KvNbkX6xFGUsfj5ZNwCxe0FAVjS6VDbSosOULguqVRSNpKOg2o0hUbc7kjPe6g7\nhSMJZsTycwYGBICx3XEdtyzeWYxBLJVMhucrn6EuXMF2fKpffIbycZeBuwG537xIwvcxzz6G3mvI\nmpfPQLOF8gO8TkCiUg9p2j42myYYyaProJripKmHiwLQZ1Is/jePMPZmh9Rmg8bZKeqfOUSqHJBe\nrmGnnhAh2LVdzPnH6WRc9g57VP6Lcaa/1cHPaAFFOkYc11ptYXY96LACDFkFkZ5QbVxTyGdRpXKX\n6fwxA0POq1fRP/koJhkw998d48jfkiKEt1GhNVOAJ09jEw5+2sFpOGhHdx1f72P0JtLpxQo7TxVJ\n3v+P/YMXvi8MocDcl/Fhd0rY2/OkUk+xdyyD07bk5yrocQ+32unLKezFKx94PJVKomoN7F41nlvc\n1Ews7GpdB3+8gLq98L0Ogz56CFUOwVutUHs1Ad7DMLUah35hTirqSHHCOXUc/8YtEWPd2cWEAsIf\nFKbZxDEGp+4DLspYEl+9SOtzz5B8p4LJeJioeNfLDp4cE4A8jIPc6oLZMZy27eoPPqjYz/4xAUNX\nqvD847H2zT0araarUdlXhNqXU0SOz4V/9QrtH36WzPUN1j8/zfA/FzbQxNdWpU1qfQOndQIQNla8\n9tdq3b3L/pa03nOAvr1PxFSmVusr8EbCvCglYNA+TaTI5dXUasz844tY4OofSXP37z/B4b8Tat9d\nuBy3vNl2pwsAAtnfvYKemcbW6iKR8I03afzpF6n9yRfI/tqrfdewk3NIIPnj0O/eFl2rM6fIfOc6\nqlggGBqQvdB3xO3QXrxCbvsQPuJACTBwt1ustp0HMBl/iNBDRRFT/n2AQdDdd7qzMyLu/tp1QPZF\nZk5kPwD8tXWC9Q3c7JG+onzfsUL7dlsVzU0nl5W8+oBiv1lZOxDI0pkMenQYs77Zfd9Bc2w4llQh\nj+NoKBakC6dWi0kjOp3C1GpdV7Horfl8zKKXQykKry2LXpnjAA7u6+/h94iomzt3MT/wJO7lWzEZ\nABPI/JpOY0rl7vepVLAvPYFu+KilDQG2PsI68QkBhLoRJYXGb+OcOk57ukDi7fmYidGH/inV32bf\n6zBmbFdLyLSx2yWSoYCcc/oENumiS1WpWE4PoV1XkLjw4beVap87SmxLGAoR21r9nkElgI4Xtxm5\nM9PYPXEFi88nBBec6QlsNWQfOQ46kRJgKRxMyhppIdjcpvCmZsBzMc89jt4UKrVVCru8JgyCVkuS\niMAQrK6jc1lJ/qL+/30Loa3VMKUS+ughcU7YrYA1BJNj1A9nySzWMIfGcDZ2CWq12AVAnTmOuXSV\noUvdHuEAoLwrekTtdlfz6WFFeL9MswkR6BBZTwZBd/z0CEfH79tX/YAQWBksdPVZkg7Zqxv4rVbX\nbtsadC6Hf3uexO35OCGMk3XoZ3W4rrCOal0UWrkeplXvJpPFQWy1fu85KYUzMoIp72L9TjxxRULC\nOpWi1yLdPXpY3IiCgODda0KZDoX6eoEulUyiHCd2XtBbKdT4KM7oKP7qGunfXEc9ehJ9e0Eoi2Oj\n3bYX1xEB2LFh2C6LhtP0FJ1DowQvX8Y5cVSEpJ8/i/vuHUgmhWX25BnU0nrcZmYfhsBrb3ge5een\n8PMWpxmJ1Hc3cNbKv2OrbOiyhyIgqMdV0MnnsfWGtAVGfem1RryQ6pFhzE6JYHMT451g+4VRBq/P\nYdv9z5Btd1BZESnuXeCcwoC0o0YuXz3iyqpXh81anMEC9sg06sZCPG9FfeBRVcXs3qvdUbjTIXW3\nDKOj2GazvwpsLc7I8D3sNj0wgK1UxLnKc1g973L8jeH4GQqu3ugb10HSYfoX34tBs1Zoi6uSSfxk\nuB6sbUirZatF/UieXNsXccywveqhRQSq+QG2OICdGEZvlGT9CJ1u+sKY2NI9jl5QSCmCUhlVq5Ov\n1MDzug4ohQzO1h7OTg3V8dHrW6jxUTpTRbyFLVn8Oz4kIuBJGEm21RbHvNB90cllu0Lo0NUwik+n\np40yCLpjJHTd0zkBjU1Z6MvEveoCkKd/8zXykxPyvSYnJHnbrmA9FzuQxboam02imj6q3ZHfeU4s\n4u5sVzG5NP5kGne3BbcWBXAyhiM/vSotz602SX+S5JpB1Vv44wXcK3ewHR/z6FESyyU6k4OM//Yq\nY+mktPCCOB9t7WCPTEvLzeaDHTs2NKFTFgH3UgqTkPY21Wx378N9YAnZTptCvsHWSoH2ZKevjcMq\ncTsLkhrrKJRvhA0dhjM+hn9sUoRj72OYd68x+O73//6IKf1hAIs/UGEFlFVKCbFMa4LF5Q9610cK\nlUqhnp1FBQa3afGqAZ1iisJcjU4+8ZGTBZXwMDvlPk0o22igSIsOEqBbPrpY6O7v94Vz4iiUZQ9N\nEKBC0XtlTKxbCKDSKZyzpwmuXJeEcWtbwKAgkLX5I4hvB1dvoJ97HFVpoyzos6dx31uGTApnt0Gg\nHZyTR1EdHzeX7Tp89rRPH3g9Wh28in9fnu3vGQd93htXcU4ckTX3g8TJD3I+jICZ4aE4Qc9cW8e/\nu8jwP1+IW9f92/M4J4/hFgvM/tRr3PiZFzj5V1+NjxnZbVs/lNBw3e49DdvbY73E0PLd+j7B1jbu\n7EyffIZKiFGPMI3CHLHXRj469XDfHRWvTa3GsV/ZxoTsIdtqdU1fHI3NZeJjmFoNgoD6558gtdWE\nV94m/xtvMve/PcPxX+u/RLkvXUKFzrzB+oa0jYUOvM1PP0LqS69jM5mw6PUqzomj4ugLjP3MBRb/\n9nlm/+cLIXFBv+8z8iDDOXGUzR+YYPQrBwusf5SwgZE8OJ0k6HluVDKJ8hK0T06RWC6JY9byGjSa\nIv1y0HjVYu4R7Wni3Ff37L/CjqKD3cxdMZxYWT+QqSbvtz3F1yDWF1LlXRm7oRQIzWa8jtseFj5A\nsCVt2HHRrl7HLC7hDAygC3mCnXI3p/MSMclEf/cyxlohc+Qy2GpdmNonR3GshYlj6K1dadW8cBld\nLMLUGKrZhEYDPiSW+BBtfXqj/8Jba9HpNDbhSSV0r9r7xy5LqFcbpjd63MXkZwED/LV10XNZWoW5\nhbC6nMOptVG5LI3jI3SOitdGsCcMG5VMygBQqkdwTXWTKi8R/91GAqOhcLQplaWtLNI4CgeJOzmB\n2S51kc6omqul4m/qdWm7CAU9g6VV6Wl1FMHqOvgBQQh2qKyIEavZKXQhdCHr+DA7iX3pnPQaKoU7\nMy1sIKQi54yPQWkXvSvX1s6Mo+st8hdXcHaqqPfuEIwV2PvxFwlmRsXlZy5sIxkfw19apvPHnsWe\nP0frC8/ROTSK8oRu98BjX0LoFIs4Z0/jTk6ETjch7TUaK6bHaWm/+G7vMZXCtloE6xui8zMyjL14\nhWBpNX6ZTng4Q0VMpYJTLMoihWy+e6mukdMYSvU5dkWir7GlZbigBUur8eTRmyy601Mytjtt6ZmN\nTj1k0cWLYghY2Wo9bgtxTh3HnZzAGcgJC6DneinHkU1VLovyEphmE//uYqzdgrWwuomeHBc2wdpG\n6KyXENZBqwWlXVQmjfnBp4RtFIJBwa159JFZ1IXLsrHzfXFcuzJHV8/oKgAAIABJREFUsLUtNov1\n+v5p4P7H/krdsRlqkw6zvxuQub4RMnJCRkcQdBlM+wAiQBL/aONkDcr1ZA5xHJzhobh9yF9Ykh5j\nwBZy6AkRRB663qRZVDJWep+hkAVEMkkQOc9FmlehILGTy95bCekVrtQO9tAkaknYchHVOqKTRoyk\ng6opie0G9u4S+L5s7HU/wHFQq2OwuUnw1GkA3I09Ri5bGk8e6goEy8WLz837nTfiTSCAt9OMz2/o\nFXnWtv7MuVhXJH95jeU/NkrhWgVTqWAyD2HOMaa7/liLyadRzTbq+h1srSaV7ERCxky0UYmAIGO6\n74+0oayN28n0YAE1PkKwtY2/uIQu5FG5LO1iSlzB9qoyN02PESwu41yUtjuVElag7dW+AllfWq3Q\nGdMQRFWjhCf/WQueJ7pV0bxgTDze+/QjjMU2Gpi9SmyvK3OrsBqje+yvrmFbbfzFJYKFJWx5T847\nZAc4O1VpJfFc+S6uFsHlhEtnfADd9sFAYyor1XfHESZesSDfb3oc1eqIMDTg3d3EP3OEyhceQzc6\n2FQC7+4mOz84S/PoEEExi3UdzGCW9lPH0dt72GQiTkwfWITsIBGYBhVAdtlSvFrBVird1vL7FKXd\nLKqpSWTbvPAD71H5sy/iD2UxniZIhWCQsahOgE7J2uQensU/MYV1PyHbxQPCKRZxHj2J2dxCVx++\nG899CWuFDRgYKQ5E6/rw0Mdz/HQKvdfAWymRXm3i7UmLqOoE7B356HNssFM6WCDcGHFbbXekRXS/\ne2UY7sS4iOaH1XBrrawtm5tSgOoNP8DMzQOhts+zjxEUMzK/jH7062NffwfraFpDSYJ8EjtUwOyU\nUe0O7uEZgutzWNfBNpoiWnzjFrbZghefeN9jlp4YJEg5D36fE0VUUBwfE42dSLclNOUBunuL6N/R\n+94nomKeMzKMf3dRnsNikWBzO2bA3/2TE/i359GDBQav9M8hsi+SfaypVGIBZaAPDIIuoyTSUozm\n7vjnIOhJpt34O0QspghoiA+f6TKLg/du4oyNxoX8eNx6nrT99YBiptkkd3GBdiGBc+IottPm9M8s\nsfI/no9fo7yw2BYYdF60qGy9Ee/3U7/1mohk12o0C9Kuqzo93w2YvNCKP8/U67iTD98HUlXrwi7z\nvPi7fN/HcsStNLg2F4JeYYGq3cZ22njvLQjxYmNL9jXFAcmbTCCfvS/vi4SYe42ElBM6jkc5nzq4\nG0kPFjC7e/FYObBbJPqnVpKz7FWk+ygCd3b34nFjmk3pJEp4OIMF3JnpMHezAv5kM33kCdNqwdiw\nmH+A7Nk7bTqff0pYZNainjlL89whcZhstVCZDOraPKZShVuLUlh75hG5lq6L2q2KptUBDojvF5+Q\nFb6bYEUtGKZex7x7jeDqjRgZBrrgjNLdyasvkdfdm29NCLJYoW9F4p5aowsD8hnbO9KfnEqSvr2N\nuylJlzsz3bXG7aWGJpPotIiNRQi2CHUKZT/qudXpFMpz499F56lTKUgmwvaBMPlTWiYwR37W6XQI\nYhmCvT1xQRgs4N7dQCeT2Fo9bvsyOyXY2Ib1LWyjKQDG3h7Blevopk/70RmCzzwlg2itS1UzxQFs\ntSbXIwgwl67KIlepYMt78nBdvMLgb1zCvv4OreEU7RcfkUU6RNZT8yX0xWukv3UF786aPIwPuvoB\n9zy8pl7HJFz8w2N9lt59r9WhHktUne994COGj5IWFWdkmPqPPIl/ckbcyzwXZ7CAMzyEnhyHkSGx\n5z42JXaI+3uukWRbJZPSnxrRZAmT8lA7JEK+lZdAp1PxmOplCAWbW5hKVcSdtep+D6XQCQEhrN+R\nPtVmC9tsSpUC6Yn219YJyrvSKhYKUgclET8LtncEwJiZxJ2ewp0YDx0QqiL0Wyrh37mLaTalHW1z\nU8SsR4bg8ZOodBp/eQX97bekZSiTQVXr6LOnCebu4Jw5hXNohqBUwi6uoI/O4n/uGblM3sNI6nt6\n1ZVCLa0z+c0dUhtNrOfGVtmRWFs3obf3triFLauR41gEFKlkAjq+zCVhshesCIgSXLmODTc13mYN\n3QGdFcZfDJ4oLWh/WK2XNp/wvD3RmwnCfufezYTtYRo4xw6hmh1ZOOAeFzL1Pu0HOp+Hy9djB0U5\nnfdnVESW5QDu3IqIBt68Te7fvcr6cwns2eP3vKfyp5/rnoeXYOWvn8e+dUU2maeOxxoNo68IOOr/\n0WcwG1tkNgzqulTTdP3D22p+bBHNGeGYUI02QSGLeew49vCUVLIdEZCO3Rf3MXGisO22rBsRu3F7\nh2DuTjyPmPIu+D7Jl69hl9Yw5V0RVL06J4LRrRY2lRBGEKDDjZpKJEQ3qCMuhqZak2JLVmxYbb0h\nFbdQ5BpjZGMSVbd8P7aBjUBi6wtLKFrnIodErCXY3hEGUrEoSdLunswhw0OowQFIp1DtDrrSwGRS\nmHwKv5AiyCbQew1UvYVqdHDLkiAmFrcxnmL9s2NQkOtpcxlJ8ObmYWdXAKpcmtoTU5iEQ+E782K5\n2mxjRgcpXt4hfXOTdjGFGUijbyzgfONNbKOBLldigOpBhQq6/2HBbViUgdpsFqYncMJrfb8ifyGN\nV9FobTmS2aZ8XNOYTNHJadp5B+OFz3dg0YUBYV2MDaKbHdF9+YRGUCoRvHdTWE2ugz1/7mGf0v2J\nIJACTxB0kwz9MYGaxmBXN2jPih5cJ+fRGcnh5xIkqvajf85Blfh8DhIeqhVW4R2FyqTveZ07My2H\naHekVUypeF4DKdhGLoRRgdK2WriTEwTlXZztCu78Ouzsoir12AHso4SfdUluNXCXtmFxNXaPsp7s\n1YIbtwjWN+I9ZrC5ibsuRQvnxNH+gz3/OLqDPF/OQ0q7Il3VbIadv/RS/zzTZzu/jy2//xg94yDS\nQ/FPS5ErKJWklSqX7dEFs7J/3NomsxkVzWy8d432KspLCIt43964Txu25/9RQm2NaBl1jT9U394u\nOoZtidaiMzDQJ2AdvyZsyeoFG02lEpszuLMzkpwjBY/EV9+QonoqhdkpM/PbO6JvCPFabDttNr5w\nTH5XLGBbLW7+9Avy8/IGrS88x9AvvIzttFn8sVms73P7f38JkGJcb9jmwwe6/bV17OvvUHtiktqP\nPIl7ZF+h7yOEaTZRyaR0Mfi+5MvJpOx5e+Q0cJx+t8vQVKc3l9tvtCJv3telEb+///nTqRQqn8NU\nq/1s7fg4Pc+CUrLP7fiYWi3WcY3AKOW6OCPDuDPT6ISHaTYJyrvSTbO+IQYre3v4a+vdDqNQSNok\nPfT4aJxjKtcl/d6amJQohbO8ReryAnZhBdNqCUu7Vhc8YyAPmyWca5Kf0Wnjr9yr3flB8QlpGQsR\n4OhGOArop/nFQqxaYX0LvX4BfSwP0534wpYxnckIADQ6iLNXx5Z3RRgrAms6Pu0jI3gbVVGmf+IR\ngqtzoDTOwEB38xtulk3YKhS1kSnHAVfFwtVRm0Ak1CrtSnKeenxU7Lfr9ThJtH6nq3mETIQReGA7\nbWkDCgxmpxRrF0UWdQDaGFQ6jc7n0MVBsOJY5Kxu4awpcb+pN/seDBX1gDabIrp39hCNkQTZ5QZB\nysWtzVA9nCGz2kJ99xLebhtvrUzz7AxBUpO9vIxZWsWZmqAzVUTdWJbK1cNuGSNcSN4Syrh69jH0\n/Gp/3+l+yuE+rZ9Y2wOwbYOdGiV3s4ydX8KGmxO8hLQ9NVuoIzPi1laqYQcH0PWGJHkRK0nJYqdC\ngTEgTBK7bWu9qLacksU0W32sNPfIIelvbbf7nOviNrkQqNO5XMy4MBVhUajQxj4CQ22nIxWLyLkq\nfG9QKkGpJElgMhGDSRETRD95Bl2qxKCGzudjtpofXj9ndFja1I5OQ7WJ2hTno4guqx97BO4uY+4u\n4d64FYvHPczWH2utuLPNLaCnxulMFPASHjoSsy3vhkmz7XtPpCskukEq9LLVAuzmsgLChG03Uehs\nGpwcwXbXXaExO8Dk19ZRA3lMrR7fS6UVtl7H1EQwOOqPV44TJ/tR//1BlQCdzdKZKKDDPvVY5Lhn\n03cQiCubJoUJgr5Wtdjm/gB7aHP2KO7iltjQ9vRJYy1eBdrFFB7iYqSyafz5BWrjmghGMs89SnZN\n5g9Tr6MGuolCZyyHfg9St7cIHj2K27IhuO88MPHbvtjPUNUafzBJ+ViSzFZAMp+UBHpzp3t9I2Hw\naI5UKgZfImcxImOBnutsGw3o+OjiIGZ4AL1Xx9y5G4Mxpl4nmLvTZSQhG1IbatypXiZPuB72aeeE\nBQtVGJAWrmjjHYHboUC/DaJqW0+bpHZknkIq84wMofwA1Uqiki1pV7NGbFIzGRgpSkLY8cFRaCBI\ne3SODpFcq6IabWm/SyfpTBZJ7nRIrzZQ9SY2nUTt7ILWNH/gLNZRWK1IbTXJ3CljMglsqy3fIZPC\nKkX1kSIbz2iO/9KmVJwPTVF99FEKV8tQrXNgO8QDCmXBavDTivJxh9bAEIODabyFLYKNzfuixzf2\nsxdY/pvncTyf//vmk7gtOQe3YTEJRNcour35LCblijBwsxPP85/kcIoF6kcGaBYdhhem+9w3/8CH\nsYDF0mUS2IxUzt1sWkRJP0Jr1D2H39rBf+ok3kaFoJjB6RjcSgtdquA0C+iB3O/P/U0paLYkIXMd\nbMKTNtF9L9PZrOiMbZVl/xGtQe/Hnmt0Eyt/dU0YzR1f2B3fo4Xrg6JVdPG+diXWzHNDpofq+LiT\n4yKqTbgHKpVAKczWjrSO9YhJA+h2gNsy6I6FB21tCD3rVYB/e56xVpuNn3iG/HIH73fe6L6ut/vi\nwOP0i/VG31t991IM2llrRT4gTOJP/tNl/LV1dDZL9tde7YrIGyk2iNSE09cSdo9u0QGW95FzNCaI\nTYJAmD+xHEPELoryKxP0gws9EbOdo2LeU2dF7DlyPqvXodHA/MCT8X4qbuNqNlGew8qPzjD2MwuS\n591dFP2gX3gZnn8c/7V3cEZHeeSnt7DZLMHWNu3CyVgvbfIfXcA5eYzZr8leKzIRisWxH4YY+ftE\n8suv4x49zNoPTzP87hD6jfc+2nqlHSkql8uxo60CkU85cxJlLeb6LezWtnRe/L/UvXmMZMl9JvZF\nxDvyrqyr6+xj+pyTc5HDGUorkRZBizK1khayIQESvZZtWbJgA7ZhG7uGYRu7MgxDtnaxBtYrr2Vi\nvYZki9qFFlpCBynxEDnDGc7RMz0zfVdX131mZWbl9d6LCP/xi4j3Xlb1MT09NVQAje6uynz5MjNe\nvF98v+84fQpqac3Zf4CbBGhbxxyy7tlE7+x85qVSDhDi1Sr4SA3J4nKu8Z4ehKU4AajJhmPj0IvL\nxAJLYgc8UQMuIpsIY8PhDmMi74drVZeCxzmiySKiMxVU/uhN58so1zfBy0VSTGkNVioQO+jkHOLR\nEuT5acQ1geK/et29Zxt3zzq91G/0PscPCSBEnVZtZBlWiuEYOplhFwvnD5SNaHXFsGHqyLTQTtY3\nwLa2kTz3GKILx1BcaECZzZi8dhP8OgPOnYYYHwNr96BLJdcBZcUCEPF0Q29lHBYMMuelk9ikVpHW\n25uZhmq1yRvIotSNJlSvd3AzAJIfWcBAx0mqcbXAzcQ4IBW01vCmjkGP1ym61hoF73cgjs8iOVYD\nmx4FNvaIIcI5VKOR2zBaR33v9CloAN5OD9W9PvhOC2x6FL3pEorrA7CY6KTe5dtIGg0Ea5SIhpPz\nhIqOVeCv7KaAnf8xTKk7yb4A6B9cAnvkJPj8lFtgh/18chvp7AXEBTE2riyQzKvbhTh3GtGJUQTb\nXez87FlUlxIUvvOec8oHYxnWF3VgdBxBK5kz6HTURC5I8mNlV/bxGR0pH6sDI1Wo2yuEDGekYo5d\nJAQZU4chbSAZo25zrQrdahvmkGEcdPN0azE+BhQNzdD3oRNJG3qz32dhCPH4ecj3rkK99Z6DYr3p\nKehqGfzMcWK/NTvQu3sENAkO+fbl9LEz08ALT0HcXIW8dJkkY7dMXHm5bDo0Hwe7zHj/GL8XHSfA\n8hr85j7UiWOQE8cAqeG/3R+SHRJLCP5BQIIHPq0VzRYxJYbTDPwAOuM/JqaOgUlNC3gUu84C/ZK6\nIcwPjF9TJlozjtP1T+cXfsYZWJHkNsHCZmoEbVOhHMsSB9ZY5lGCIguCvBdZZhwwagfgre+5Inl4\n1JYkGudDzLxzDK0ffQS1b5MGfe6fpd5BXrOPsX992/2fL26QSej5M4AxupZLK1j6xRdw8l9uQTpJ\n5sdQYGeBb05d1WCliYn9EprnykgKBVQ04Hd6QNd0+owvHKSk57gGiGGfxTFcLL3pkvJyCfLRU9Cx\nhBIM/NoS5GBAgO3sFJLxMryry479Ze8fvBCShNccUxv5sVaainhzfOZ7BDbVR9B/6jiKl9eht3fS\n+WfWMy2VY4cx33OspqzXGoSAXt2A7A+I4VitUHff98BOliCLPpQvyDekH4O3utCCg/cC+HECOVaG\nGi2SoWui4O12oGpF7J8ogc2XUFrtgS+tQvX7CLZ3Uibdo6ehSgF4uw99cgay4FFTYz9C7Y01VN8W\n2PnMNCa+sQiUChi5tEusWt8/chCaaQO6wLCEAPBYgymG/gTDZq2E8uwcRt4KIG8sfqgNfna4tFEA\nlWWFrf0C/JsFVFYVahe3iLE5PobB+WkkRQFV8sEKVoqhoe5h/PvDMuSZOcQljkGNY+1LJ1DenMfy\nTyqc/9W/7qllptY1jGGtNUW6RzGx8yZqYONV6DcvP/ic0RrBjXUg8NGdGUdU4Qj2A5QvXQVvtj4c\nGARQqqH1VEskmJDgS+sHJGP82AT0+jat64zM5qnu8XKJdGAMbH4G8uZtI4PS5GdYLUML/qEN40e+\nfjX1tfupT2G/IpAUTqLQkIAGxGMz6I/7CFoSxb+6DJycg7p0GWx6MmdEzKtV9OaMTJuzo8WDNPJg\nilnvktU1TPy/e+j/2BPY+vWXMPXPL6UNnpynHc+DRNl/2+Nma24hoDsdyOsLJDVdXHIeS/v/5pMo\n/Yvv55jMqt2m5nchzAN+psaxKavD4S+iXgcrlYCdXWraJwk0qF4erm8B2p+xMISOLakgMcyQvMkv\nkII8/PYatG3CGQYsAIjX9nOqP3HhLPTiMtSb7yL8zbPA/0afQ3au8revQXseWTBw5gCrrb/ZR/X3\ngeu//SLO/mevQF67ieL+NNZ+7SVM/u8vk0fTzi7tP+4grfy4RrKwiIl/sgj9machZqYo3vx+FSJa\nkbImDKEGA6z+ly/hK7/+D3AjnsTf/aPnMP8XCfjcMygst0j9stuA6nTT2pgLQJo9khDQOgNiGqmW\nBX50f+Dq46w6ww6128hfH9n3kPENYkJATE5ALa0SRmGsIejvkOoso1zi5TLYqXmKn19cISbR9g41\n9h85SWzs3T0wwSEeOwf5/jUU31lG0fOgz54kW5hrVCPLPdP4zMxrrzcKv90FX1uHzzj46AjJ66IY\ncnoUYnf/8PTse4wfEkAoP1iWin9YdLhWAPPBOP2trXEcQF+gi3yjQlibi0/Mz6IzUUD4tddw4Jap\nNemaJ8agt3cJce7105swCB1kWruuPOOMuv2GLQLAsX0A0AQx/gp2yHabQKMsLd926pUm3b5S7j0P\nu6rrJCHwQEpwIYByEckK+WzomORf3kYTziPCpAndSUfYPzWOwnvLKTvL88C7EUrLCiyW6JweQe+X\nX8DEy5vwyqW042YuGlkJwLshYIqFj2XRuscilCwsIv7CJxFWq0QLzDznMHlX9ve8PkISDrMpvvXv\nTAPPttBfq2H6uxo7j/sY148h/OY7xlm+dxApz96QswbXZiMv220Cb6Ry8kDMHINeXKHu/8YmsLFJ\ngGA/45xvvYnsRlPrNGaQcZcIZrXTTHAycpsYoxt3r0exzuUi1M3bzo9GDZ0/LxYQT5bhm02FnZPJ\n+gawKZxvSTIYwDt5nIJzhuitydo64ifmMPjUaRQ2pyEzpp/aFHtHnjJmr0vOAJV2DbTWQKcDsdlE\nND6N/VkfE5d92shnTKatkZ2No4fSZs1RRDWuVA59WRYG0LMTEAsr9B1FMYIGGdHpft8A4tbAntYF\nZu9hnIExAmFUv58WHUM3Mq00rQ++B93OAFJZRoQFw4YGHx8jKW2h4OShdxpibgbJbequJLcP78bz\nQgHF9T7a82XIR6YRl7hbk7PeQXphKS2gTKHmnToBtbbpTCpZECCqa2ArY7B4xLIfOsEMtR5wf/Nm\nFyNXFOKRAvy1PfqdlYOZlLEcZdnKyCwgGcXQhj0q5mYQz9TBvvuWK0Cl/Z6lBOMM/mrD+RTobs/I\nt5RrSmiAwBvD6hEjNbB6jWJXu10qkH0qVP2vb0F6RNvm5bJhoJmubRQ7Hx/LCGKeT9e+XcuUBpuf\ngdftQw8iSkVJEmDAgc1tiCCAV059G1S9CnBQ08H3kJR88FgBiQJvd4HNHXBvBqU1DhUIiFYf8hPn\n4K01CDwTguTXOy36zEoldC6MY+0lgePfiLB/qozy6++CBQHq//ctRD/2DJKih9LlDaBYzDO8Pq5h\ne1lKg0cMmgO9CY7KeAXslvjAHb7s8Gam0X7hBBrnPfSmFCbfOIP6pT14fQ22VoDfYihuRq7wVCur\n8GbGIANKX4UGfRf7XSQPUFx+HEMVPcQlDhUCSYFhMDqUvvjXdDANWjcsO0+Z9cTct3hnAFUOwcul\nw3177mOobhesXEbv6ePY/IUe4u0ipr9NteOHBYPAGNUa/T41nZQiE9bZSbDVLUqLMkPvd9MGo+AG\n6PHytT0oNZMlZLoK49eC+Wli6oQ+UAogzp2GurWMQ6Uj9xjZexOPFHjCUdhV8HoS/TEPnenAMOsY\n2OwUpRYCGJwYhf9XK677Lz9xBkmBw+srSuM9aoZQliWRWe9Ut4vi96+jP3YB2//2kxj73Zczz7G+\nPYesQfZ3nIGPjmUCfzj046cBwSC222g9dQzVUsHVseVFAlKUbXDZNUVpAoaMBQcyjTfV7RpQKG/0\nKxsNCOM3pIw9Abrd9H6VNee3+yvzusxP6ydx5iREHNH8Hqqh5M4uxOQkvMlxB2oByER5p4yS7uc/\ngcIfv4rNG+MYwXVnGOyek23Gb6YA1PQfEIuktMIhP/ccgjdvIFlbhyyeNu+TrjsiOfxwrsHsexeB\n+Tnkkm3vNbQmBY0fQH/maXz5y3+K//pXfg3iL9/AGaTzUGfrECNbB2PgJpn5UM+gICASh+dRuuDQ\n+k9kEvPvUpFqr6wa407v0/cInO52KaTFkjeiiABNewytScK110aysurUD0wI8AtncPuL4wgbGlN/\nIqmBatZWHUVkCv3JxyFurqZzzBJQMkMur7nrRzx+nmrgXp/UGYmCNv5GHxQUuicgxBj7XQBfArCp\ntX7S/Oy/B/AfArAz++9qrb9mfvd3APz7IPHEf6q1/tP7OhNrYslNMoplC0l1kCnEODEsnP8Ld7St\nXDS9+ZsXChQDf+s2wlv5ThfzA6hPPQbvxhpNCsPcUZ1e+mGajbMFO5gQYH4IVi67VCYWhrQQ2UQW\nrWlzFycuMtqbnoKOY0rz0Qpa8fT8QUkIqj+AqJSJpl+tghWL1P2QEqq9n9IiR0cpLWxzOzeRdbcP\n3e8fKArEY+eoYBiST4XLe/kbZRwDvR5J0xhD8U8WUCqEiJ4/h/25SUS1ExADoHo7gjc3Bv6tNyEZ\ngzc7Qyh8JpnkyObOYSMbw601wpevUHGR6WgzA5S59z+8OVAylxrBn3wUp/7RJQcO8XIZ9UIIubML\nDUBamU8Y5szwcuhzNkqTMbehtxpUcEHmwRkDYV4qUQKY+d5c18Sa6FnvoSzbSUmn74Y0huaamHPJ\n2rpjP6kmJWCJ47NQ65vkLTQxht5T89Ccofj966TV/9abDkRlvg/v5HFCpJtkWsbDECgWoLZ30zlq\nZEW8VIJ+7BH4Xydao/2Uk594HsGrV53xmZXWHNW80dm4eCBXbGtIqK1t+DOj2Pmih4nXJoBbywaQ\nYVAJmXrrw+wAtAIPQ/BKmT5rM0StBjUYYP2nTiApMczv7YNdOAn52jsQrVGo9j5JwwoFMFPY23VO\ng4A5ZvXUXBA7IsuKzF7HWoGNjyIZKYJdJx+enKzMrpfDlNpCgeK/kwSII6Iq4xAmnRn9M8fgLa1S\nIWDmOa9Woc+fcEk/fHICeOsaynNP4fYXKph5JSKW5NDIFlCq3abOX6kAvUyPFRfOQi+t4vRX98Gq\nFbBmmwqFDEPryNacYXqxUmBKQ3MG3uohbJFPDvMpHQ79fmaTI4y3EKdrIVOsM98jwBZAcvMW2E1g\n8G99CjzWCHb7xIIJPXRP1MC0ht+MEUgFubYO63kGIRwoqyU1NESlkDYuGg2I+gi4MomEynjb2WvB\n0ew5eG0MutPNyaMpTcwU7DbanjGas8trQBimPhmMk/S0lM5VVSuRaXGjBV0iGSvb7yC4vWrA0knE\nM3XIU2MI9gYQ+wMIxsjUvteDrlC3HYMI6HQIuByrQ2uN8l9dw7lLNcTTdVR2+9j8tRehBUN5XaK4\nEaHwzXegR2pAtUzzxjaejmrNYQf/zRSgOf3NNNAfZ2ifLGHk3fCBunwAwD75JML/dQPHgvcR8ASz\nYRO/d+J57M+NoX5dYvwdgCcKxXdXkL2q+dImvMIsmCTAQey2qPP7Qzx4uQxuNm18ICFDuJtM77E+\nCjcfzOPifseRrTlSps0IJaFjBWbBZanA9zpuvX6g9+EH6D97Eotf4nj0N1YOjXd+kCFGRwGANinl\nEgHFku47XCmo7tC9wDRaVLcLXqnQ2mJY/4wxIAypJqpVkNy6TSbAuw2wwAcbxNCcQfQj6EJAyYzH\nZ/PpmNlzM42Gu43ez7xAslUNJEWBqOaBKaCwpxzjR4ce1NvEfJaSkhjlDnnK9AsCXp/kYsqDq0uP\n9F413GwzLAnZaGDkD9/E+q8+f/D3St45ccnUznJn19UGO78qYUuoAAAgAElEQVTyAkQEjH9vHXp1\nA7U4obXDegK9edmxhoBULmPvLU5+Y0/B7Ntkq5Xuk3R2r0PzhgVBCt5xI8se8kl0VgxxlNtc64Ul\nAg8AiIkJ19i3CXasXEQyXQcy+0ZvbhYrf+sUSlsK1d9/BfLqDZQCH9rzMP8NowSppI0POmCG6Z1Z\n06t/eRkYH8Psb32PfnDhLLDXxMTFAeIvfNLJ+VwQ0Lp9Ox/j3mpo8GoVutMFL4SHsrPuNJjnkXn0\n8g7+7Nd/DP5b16BAioXoqVMILi0CjEN1DNkiMxddEzQ7rFrCsPOtRPDA+Y7UUhBTkVVETp542Hss\nhMTIvr5Ae7QhgNz+n95T4mr59M0acsh2A7O/dQUAMFxNy51dug48nl97M+fEy2U330V9hOqw5XUC\ntgIfGAyg3nqPGopTkxRsNaxQuMu4H4bQV0AkuH829PPf1lr/VvYHjLHHAfwCgCcAzAL4OmPsvNb3\ngg21o8JaKj5jDLw+QqBKnxy1s5PNSbWGv/Thl9LaSa68mWks/8JptC4kmPoOx8j/8wr4+UeosV8u\nkZxrv0MFcrEALTgZdkpJ0W1AyuyJI0fhoiQr7ZLCmE+TQndIJ6tN5Zesb2QmrUkvgnCnzQIqtO2G\nj4UB+TjYhc8jih0Cn57vCfCpSWCvBXlyClpwsIV1Sh6bmoAuhWCxhLx8nQpfqcnUb2cX0Brx55+H\n9+4K1CCiG60QRPFX0iHioj4CCIHw2jqCiz1nNAoAOHsC3NJCV1aJwZL3EDqCuZM7SA6EsdRUXikD\nfkAGv619+k4Gg5T2mX0eH+oo2k7F33gWg4qH8FIL4okLgFIkuzMXm41tBzN0UMbSToVlfJjNt6hW\nXboOhAAbZBKBjATIycDihBBypEkJEIL0zHZYMEjKHE1VNhpOtuY01IyDF0PjQ5RSMFWmYErW1uFb\nIGN8zFBtk3Re9weQa+suFpFpRoCW2STywKcUgqkJDH7sUZS+exUqwwiyDCPvG69TlP1tZT4z95Cv\n4AjmjU31c74/NvFoMKDOqy/gbTbB4wo6p0dQXt+CbsXQWuYKF8cacqmG9Ds1FJEpW2Sy27ygMfY2\noEbK4NdIIqVX1unaMZJZbjfUDnhQOfYdD/zU1wxIExXtMGup5gwY3lRasPywIYTrSmVverxUOiAd\nE6OjGBQ4vKFjyU+cgfYYuLmuLKjq9TU+9cVL2PndKpK7MDOctKnVAt5rueKML1HXTdxchT42ToaD\n2c+IxldwFGtOtuPKGDGxlGHuJNRxsr435rVymnItJSUGAY5BZBlyqtlyjxVTxyD6CuHr16GjGMkz\n59CdLaB6rQX97jVopZEAJDtNEjPnbPFr1pREObDaDrXfoTVLSopC1xrMrut2k8k5GVFbgNdc18TO\noWYNLxepaVOtmFjoCnR7P01Ps9O4P6B7bDEEFCBHiojnagi3utCBBz1aQu+5WfBIo3R9B0IIiB4j\nw3CtoQoBcGIabGGFfIIEJ4lrWKTrptF0112ysAiv28P+i6dQXZIoLbXBW11EJ8bQ+umnMfLmJpjS\nBNSl96ujmTdAus7p9N9WSqY8AoZ64xyj46MPzPbQP7iEd7/1EmY+vYafnXsLa1Ed0VoZI+saQSsB\nUwI80pC7jdzz5OYWvMkx6FAYUEjn1rAfxqEfP43eaIhCex9YWEdw+jTiKoMYAPNTDTTemfmoT+Er\nOIK5o5OErivGAEjqSEcxTSGTWniYzcL9Dh1HKKy0MfOtOlCvAQ8JEMoybVi3C1Yspg2GajnH+mFh\nSO9JCApXkZLqNFvvmzWHlYpIFpfI22wQ0aZeaejtXbByiZpToZHWD+4Mqt4LDAKAwuYAot0HkwpM\nhZABB5MayufgsUK41UV/pgK//DSw1YLXiRE/dgJe6xh60xWE6/voPFIDTLpgZnwFR1kf04FgpV+8\nXKY9i+dh7ErkbAEAuOs9x7axG/DMfS/biBr/py9j9b/6DNQ/8DHx35xEcvF9ACaafmuL/HuM96SV\nwKf3USN9ZwZg6A/cvi19zfxbtWbePLNOMm7qt6E1i6w88j6IgGlC2XrZpvoinbO6VABeeTsHZCUr\nq5h+eQytsykDnK1tgs/PonpxA82/9QLKf/j9/Ofu7q2mwVssGGPingM6xKNnaU/xwlPw/uJ1JD/x\nfO470e397BG/gqOeO4cMMTlJja1+PycFvJ9h1THJ4hL44hLizz6H3qQPEWmUVnuAVJDNPfsmnEdP\nbh4OjQNqIqvIuBM7cDDIKyIOAT/F5CT07ARkZj6zMIDc2j6Ygqc0oEx9wgXEuUegF5dTj9Y7rDd2\nPRx88TmUFpoHFUz2/XW7YFFMvlIZEAqDQRqg9MJTELc3CRR77BGI60tA4w4HHBr3tLvXWn8bwO69\nHmfGzwD4fa31QGu9AOA6gBfu/bTUT8cu/CoyqTizU2CnT6D1pU+g8/OfNidFkfJOKmaTx/InfgAh\nVo09zP6TtzD9bY6dpxk2/+PPQL5/Hd5WC3p7F9osjsz3qNNi6WdBYAp4uxDy3Gta93pif+j0vfh+\nmlgF2lTZBdYZXhnwwZuZItq/o1FKyO0dyO0dmgSeR4W69ejhjIrsTg96ZgIq9ODtEWqarG9AF0IM\npitQlQK8uVlKe+r0IccqlBQGoLDSgmrspQbIALGLWvu0EXnsHJLHT0HPHHOgFB8n1gmfmoR6+3Ku\ne+gSa9xXcBRzB/kFwgAxoj4Cfvok+PnTBNa1WtDVEvnlHDZXrK40ixRnfs6/8yZKbyyCl8uQ714B\n1jahf+QZeqxxvVe9HjE8TOoOQEAM0Z0Na6RYpM+714fu9qB2hxha5jXdZl/JPJND6Xxymp2DGX8g\nUR8Bf/oxiPNnCMQxsiN7LCv54IWQaLMT4xAT4/lYTnPcFEmXLnGPFUICCrPAmZnjzPdooy4l5PUF\nhP/6NbBCAd7J4xC1GvpfegG610fzl17E7r/3EuT715ye25mZHtW8GR6MEdUTgJifgX7sEejAR7jD\n0DzluTh4rXQKJg0BMS5dQmuwwCemlo3yhklp4IDf02BLGznQZViqlz2v4f8rwzhhwjCFDtmwaQOY\nOFDQdpcPk4mZVAfVoW6JmDqWO+/DOj+sXELhzy8e/Pl33wKLlEtjdK8RazxXu31no1fDhssaV4pa\nLTVIt+cgFfTSGvl7Pf9oDoQ+srljwDsrHWODmID56wtIbt2GLlPHRi2u0M3ayB3sHyc50zoHwABw\nPkPe/BzUzi6Uz7H4609QWtf3LmLkjQ3oyzfJp6BcgqhVIG1kuQUm7T1m2OPhsCElAb7lElilTOuV\nSR2jbglL56AiDztWLkHMTgF+QB23zW2ium9s0j008IlNZ2LtGTeeHnECWQvBezGKN7ahOQcSAi6L\naz2EO33IcSq0VeghHiMTSL7fA99tuxQ0LRUx2UwhxDwPGKkg/sQpyM8+B8YYKt+9gcrFVai3LwOJ\nBP/Wm6j8wfehRiuQYxUTW8yObN4wGBaQ+QNuQCCfISkxdGc0elMaSUmjP0GA8YcZp/7blzH4v6bx\nyt5pLHbHMH6RoX5lH147gtdT8LvJwSJea/BuH9b8TVdLEKdPwDt1glJ26iMf6pw+iqFfewf+n79O\n86LZQtiUED2ASWCs0EVh56OVBR7p/cquH4rWDdlqIVlZRbK2TveWD2tEvrKOkb+8jmSy5pK+HubQ\nSUKbdyeZ17lzZsYLEUCuKWYfL47PQvX61IAcHQXOnoJ8ZBqsWATG65TkVC5SSminD96LXTz5gw5/\naZvWj34C3pcQAwW/FaG02ESw00dSK6C43IboUdOuebaMqB6g+Xgdi1+WuPblOpIiR3GlTZLYj6PO\nyeyHeNn4GT1+GmJynOoapbHw8xMHn2ZqjMNZQtxt6m2NMfs/fw9jX7oK8Q/3XNLasEcPGCNmbyHM\n1cm2UeWY0eaxVuXhnp5pcoILUnbY42YY8tl9QZaVw/wA3tws7QWGPyNT79t1Tr5/DWAM0thy2MGX\nNlF/p0GsHVCdbJvojfMH55sjEgwGLtFXtloQE2PwTpIHp3z/GtSPPgO8+g72vvwSvG+8DvneVfS/\nZL7mj2NvdcgQj5/Hzn/wEm7+Ty/h+n9+Ftd/4zR2v/TYB7cLMYCi+8y/+QYqf/B9bD/lYe98mZQS\nmf2YS2Q2+/L7GgYrsPOI+UHq3WvWl1w9nJ3jXEB+9jns/RtnoAwYBC4gt7cp1dA23DJ7MOuhq/p9\n2sNfITIGe/4J8E88akythautKYK+7OZtUuTARgpMAjRfXeqaICad6vXp5+UyhWZVKxDjY/CmjgGv\nvkPkE6Wg33ifSB73OT6Mh9B/whj7MoAfAPgvtNYNAHMAXsk8Ztn87B4jLYp1Qt4HvBCCT03i+i+O\nQ5ZIX88jjv3Zz2D2GztQVxcAzdLO+GFF7xCKbWPu6n/0DkZfPYaVn57B0t/5NE79iy3agMcJ6ZoN\n6meTfaA1mUUBqWeLfd2sOac1uWYcvBzmunt2w52sEUJON3VidjDBUzNWLiBGKOFHzx0jfbVUzmdC\n982/fZ+Q2U4XnDEEexx6dw+J6eKrS5cRiseo4A58yJW1lE1gIjhZP4IWgjqlgXCLFfMDMM6ht3bB\n3r8GVqsREOV50O198Ccfhbx83UngZKNp5G79XBf8LuMhzh3k2D1MCPBaBaxWRWJMw73Tp8CqRaj3\nbqS0QzssFXXIdM+leGQ6pNL4+CQvPgrdSyhZAYCNincdiDiBNzPtGGF25NDrjLTRydekohuhkSDa\nBccCEA6QyAJCWkNcOItotgbvO2+nen+jiWZBQPPfmlRbgDMi2Q7zA6hmGyzwiZE3OQbR7UOtb7r3\nwhiDmJsls8C9JpKNrXwHyaDittBQnR6Y78E7dYLm5PoGzfMwROGPXwU/Po+Rf05ftZgYpySik3PA\nO/f8ph/uvLGyKRCQw3wPu587BTE4CeUxeAOF8i2N2i2FsCmhjVeNM7RXMpXRCAEwBWeILwR5kHGK\nHM9KrurvM4xc3MpLpHo9WNYgY4xuhk5DnJ5n6ntExnlqMDgU4AFjSMbLEJ0IargzNqRHFo+fh15a\no8IrJJCQlYrOqDj33MwYBnay3Szv6hLkEIjE40y61tB6TTe3Ir3vrBdSdLC7Gz95CsHSDgH4iUI8\nOwbcOvgRDI2HO3cAKk5MsqLu9MAKIZq/9CIGdY6x9wcQvQTJuUkUr20BOw3a3Di/HeOhIRUQx3T9\n2wKDM/JF6JAxZfAnr2H+TwD57BNY/qUTOPlVYu9pY/xtU+1cOqXvpSAZN+uxTRmzUoCMVNY2QdR+\nJy3MbTJZnNmcIb0/y51dMvQcH4MeRBDHZykFrNUxFGxNTFb7upb1CMDbIRaT9gTEHkW9iiaHqhhZ\nmSS2Eu/0KY3IF9CFIvR4BXxrO22o2HuXLZR39iBuLREDcW4CbCChBcPe517E2BsN6PmnoQWD6MTg\n3QF0t5/3czqCeWNlYZoDMgCSEoMsAEETKGwyFBoaItLwehJ8Yxfq3oe866j93itof2cO/QvTmPju\nm7Rxnk43frw+kqOUi4lxYhpLSaCQkfZoT4Al8sN7yXxUw3hS8HIZg5oAOJCUgEgJiMFHCwjdZTy8\nuaORaSQSG31YTujNTAMwDMNiIW3mfICh4wRMafi3NiCnx8HrVeDm7Q8kBbnX4OUyNVt933jqZH43\nNkoS1Si7gacI5v6L5+Htx2CGzax7PfBGC7zJyQexFIJHCbQvgERRWrHWxAZ8wCFqlMjKALoGtIbX\niSHWG5ATI0hGQjCt0T1RQ2G7DzVWgd8ln6HGBQ/idgGV20BhO4J6+zLkl17AME3okPFw91bAgXsu\nC0Po196BNrJ+/+uv4/S149CGjZt9jp13uVANIJWIZ1O9zIg/uwa88JTbDzjWDpDux9ptimzv9w/W\nF451Qcye7O9TPxkKL3DpYEObeddUmpxEcnYW7OWLTqaUrKweCngSk16mHphaOya8OPsIemfGEfzp\nDyA3NsGbLbp/A5Siu7CIZGERys8cN8MkziWzmjReayngnT6F5OYt9I+FKAGoX96H+hvPIri+hspb\nK9D1kftdex9+nWPfih8g+ZEnsX0hxPg7XUz9yTaxZOKEaoo7PM+Cebn9j9l3EYgS0HPN93X873/v\nwOOyLB+dJHd24XIWLMilg1ksQIyPpmbvJsznUPar+X686xsQ31yBGB113lG2BrJ+Rs4TWCuTOJ6x\nVzB1nf7BpZwixbLttfEksiNoSUoMN3JK6/3qUskzwUP2umN+QP5ZBpwV42PQM8fA1jYhfM8wqu8P\nFH9QQOgfA/h7oNXm7wH4XwD8ygc5AGPsVwH8KgAUOHUErUaYT05g90fnMRhhmHk5QWGjS9TxOCGN\ncLsNG/FsN2cHDJSMRMdG8doNnItrvrWE2X+8BtXvEz3LTtCOTeCh/w8vdBr0mk7uZePm4oSK3FgD\nOobumM2jOS/d7TkqLJBOVFuYi8lJJOdm4S9uuSKa3VpNN5NRRCayhQLR9gFatIQAU2SQycbqwOOn\nKLnlB++DrWxSBK8Q4CfmoE1CizV0TRYW4R2fJ5d10KbUm5+jmG2zQfXmKbqVV6tUJB6bADjAHzmB\nwXwdg1Ef1Xe2nDHlfXSoHu7cQSldNIRw2m2bPgDfg262wKxReBzlbxyGisrCkMCetQ23YcoO5/Wz\n14T3l285MEdMTJB8i6e+VjqOkKyt00bLJDal5mCpBMhpq6PI+edQHGMIK11y3lRR7D5bxzozjA95\n5TrEFVvc99yG37GMuICoj0C29g2bzSDZNnGKC5r3nQ6wsQltjPeglEk8gzEcnQbvD8AKIbqfOY/w\na6/l6bdWPucT4JTcug1vbhZeuQS523C/T5aWiXZZLEKub4CPjgIbO/cCEx/+vLFgUBiCnZhF49lx\nNB5lmHpNoXZxk9h3iUR9aT1lJdhhQRUlHRNC9fqOEaalpMXa88gY35qZc4GJ33k5s+Zk/GMES1P6\nssUbZ+Q3Rv8hpg/jJvGQp9209I3SOgeA77RoU5mbe+mxRX0EqugTsFwsphGrrXYuzeUAgHOIp1A8\nVoJnjTQzmxErqQ3X2viH3/4Czn+6D7zydv54vncADLI3RevzwAvkN+MtUzdOPHEBYmMP/afuKQl5\nuHPHp+4OkwqIyeS//+xJDOoexl7dApptMuNmHJ6UBLpb5o71rPE8F+vOiiR7Yr5vgGFaf2SjATE6\n6oAUdmUBJ66yXGqd6nQhahUqbkx33Sby2FAFlw5m6f/ZJoZlvqqEHufRz9K0MlPMZdYfBAHYp56C\nDAXE2zcBoaEbTWBXAaN1AoKimO55pSK9PwA2NUgXfLAogaqXMRgvQAwk/J0umUsnEgh8dM6MItiL\n4K9TzDzvDyjqNQiAJDEglg+M1IBBZNbKAKI2A7W1Ax7HwFgdcryC2s0euqdqCNoxRCuCaLRJulav\nArt3Zc0/1HkThnWAESsoKQKDOplIlzY0Jl9pkKdSv+88DB+WkXOyvAJveQUKABcCfBCD+4KkepVS\nmmTjeWCVMnTgAwpgippPbEBG58kDAAxHPowEMi4D0YjGdreM7jzHx8Brerhzp1B37KDhddcmyGX9\n6vCAAI7qdKjW0xp8eZOanw90pMMHr1YNc1YDpSKwnTFuLhSAwIfeNp5CBvxiYUhs1NduQEcR+PF5\nU//T/JSb2+An58AHxuTV49CBANMA68U5H8gPOmSrBW+klrKWYgne6kFXS9A+h7dP9WRU8yFD8v8I\ndyK0TxYw/m6MpMihBZxXV+lW68C9dGg83HtVMJKy3zU1oLP31GzTOrltPqfh9DCtKTIbONRXSnU6\nbp+QHfzdm3nWs5LUBElMgpgNDBpuymZGLorevj/Po+8/lmCVcs6Q3FkzZDw15dYWvMlRkuZn69Vm\nKoEXtZpJ4jVzKEkcgGP3lfL6AoqcAxfOQl65TvV1BnDw5maRrKyifk2Rl9S1m/mGcFb+axrM3ulT\nSG4tkccVF5TC9uwT0K++Aw5Anz9DPlhrcObDdxkPv0Y2wzt5HOs/OQ/lM8z8+SbklesHPHDuNCwQ\nxKtV2uuYUKa0ocoPpMi5YfZnuR5m1gszPfHMC9Jx0+8mGziVb7HckdWkKQXMffeNRm6eZq/g7Lnr\nOEkT7Mxe1Jk/j48BNuUVtE9ijxwH3r3ijuX/2Q+gL5wFq5XBrt0Cr49QkI8BpLSZ39zaeAxLhLV2\n+98sAHm/6sAHAoS01hv234yx/wPAH5v/rgA4nnnovPnZYcf4HQC/AwAj3mQKno3UsPGTdIjJtzrw\nlneg9/eJPRFFjkmRY+loBXCSCTntqZ0UxiuGNmYlYkUYmpg26C+s7hTKdfwBGIAHzjsFSFFHm/pj\nwRqSisFpcyEl1EClC0ycwJplWySRBYWU6dNug79+GbpWc0bVjkqmFOD7pO/jnG6KYQgUQshmixb4\n8THA8yCaPcTjZcgXHodY2IRmHKwQIjGAjS3+7EiWlnMX4YGuv+AU+wyAxQn0+hZ4qQiEAYL3lhEy\nhujcLHx2BvLqDfBqFTiYUv2RzZ0aG9NWewxOXjZicpK0od1ujl3hqIPpgdIuyGBANOQsEm9+xwsF\nB+5oafxjzO/k1pYD/bJddPu3W7jsjSp7s9Upw4Rioakbkt2IE4KdT9cYXgztomCTEmwUIi+kprFy\nr2koksRwg5TwTh1H7+wECq/dyNEzs8Z7zPMw+IlnEO4OkLz+Hr1gv4/SYgtsbhZyeyeVxQUkkVTt\nfefAn2W+MT9woJmdg970FHSlBHl9AVrfGUz8SOaNeX/y6bNY+fEyShsax7/RR3BzC7rZgooyzJoM\nC8d6MYEhZVvESQo+Z2jULPChWq3U80zmgeJDzzPXHQ2QuxuahEUHAg1LY+3PhKDO6DAINKStl3tN\neKtFJCqfipHzFjksPcIaN2aGv9nOgRWAMdLudklWdPkGapc/jdtfqODEK7mHuRSZ7HBeWEZ3bQFx\nZViW8t0rwIufwL3GQ79fFWc0GIMWDPBC9B+bRrDbR/FtYpoiilMmkBBAFGU8BHjaZaqUwX2fwPfA\nJ9DXzjnLDuz1XLoXFBlEu0LaGoO29lMgkfGc6TyAlFnAOFggXEHm0jI9n3zWtHJpYjyAYSySbwkv\nFhyIzEpFqPduwq+UwUpFAn7M8dU2XddM0OOsxJX5PrTvU1Oi24X3yElwzuH7HHEtABspwt/tAgFJ\n6Qp//Cq9v0fPkLSq4ANnT0FdW3DrIRsMoLd36LoLQ2gd0/k8cQasQ2uJ2G5DhAFELwaTmjz1RqsQ\nmw10n5yFXvaPbN7UavNac0B5QDTC4PWBsfciFG/sQG9sQxqA8KMaYmKc/FVAG1smNSA4dSRLJbgU\nPACsPwAbxFB7zQ9lVHzUg1WrEDHAFKBCDa0Z5r5wG/wflR4qy+Ve42HPnWptXuvBEBA0PgbZaB6U\n5HzIwRgjYFII8jl5CJ8bC0PDTvZJOioEtOD5lElt7BacUXa6odNxbHwPO2Ri7/vuvsxrFZLsGkAI\nRR9aCLBEgTdaH5plp0YrYBu7AOcQO23yldncASqzdJqVAMFejMF4gHA3hgoFCrsSLFGo3GgD129D\nmvVcXboMfZfUu4e+5pRnNeK0CWDXF7l1iD+Uq4ezVgCmzt3eIdlouXSoybxc3zjwMxfxbf2BkK+J\nXdPBsJJzI7MnGV4TdZKAex40Y8RGzb3owTqZeR7ke1ddzWUbTYf6s2VeU0yMgZWKOd8XefWGs9yw\n9/jOz38a5a9+n9KeVoCRr76BK7/7BM7+Mj3H3q/FxLgB3lM/I7myRnu9AiX1akWNH5hzlVdvYO+X\nX0L9tXdoH3YFdxwfWY3sB2h+chb1axH8b1+EfMB7lI4iiNlpajY2W2ZvK6H6eXnf4fJE09QaDk8B\ncmoL661rFTjZIeoj+dTcrP9w9jUZg6jXAQCykVdjgCG3jxkGr9KaS0GZmHk7rJLG7StPzkFdv3Xw\n/UoJ7LXABHdre840HfnryPrX5tZpLqD7A3jH5yngYwH3Ne7Jlz5sMMayLdmfA3DJ/PtfAfgFxljI\nGHsEwDkAr977iFTs6iiCnh5HbSHC1DfWIK4tQ+02yHirP3CdS9clyXjwkIdLn3wQrA+KudDcqxgp\nGD0/dt4/zoPAGMsy3zOoZZJ6pwB5ChpAgJH9YkwMPfM8qF6fFrhct7toCnuZW3RUp0sbed9E+HY6\nZN4JwNLsXbFvaPLcMikYhzh3GvpHngErFKCbLWBtE8H1NQS3t+nCa7VchyT5ieehTueZgmJ01G12\nRa1GMYtzsxCTk6SPTRLIqzeAnQZ0t2dQ9IQW4iQhxkyjB1WjLjAfqeFu4+HPHZjNtwdeLBBy2k7Z\nDTqJU98O89lbiY/dhNJnHACMQe41nfbZfk+q3yePjswGmwWBc7TPmtVlb0K8XE5ZL3bhyS5SjKXy\nIyCVsw15Yll/KgDp3LbDgJ7ukFZWZiSSejAw6Q3mdbRyczi5eQv+n/2ADHvLJdN5EU5by4pFiAmi\nyOrX3gG0ogQ80GY86xeiul0XRW+TI5z21WqEp49BHJuEqNUc8ylZ3yAw6DNP3+Mr/ijmDQcfH8Py\n58rwusDkdzbgX14h3xYTY0s36cznlllzGE+9VWyBwUpFMJMGxnxaC/RgQJG7mfljvxMAOR8P1R/k\nb3icpSCSYQY5lhtLWUPDg5dKJJkZLrSyRot+QDTgTDHHPM/4OR2khmeHmD524GfSSDSzY+dnn6Au\n3W4DzPdQXZE4+dnFzIkaZD3wiR1XzvimDLGFAAMKDfmYtI/fva/xUcwdJhVYnACeQPH6NvitNQpA\n6PVTj6DsNSyNnNBIuXQUQe93HBMTUoJPjIFVqwaQ8elatz50AJQBuVUUG1kvAw/ovuGOGZsEN56y\nzZzmnme8+gzTLLteaCN/A8z6Jjj5j8UkFbCAle72qDOrNMXLm6ABFgbglTKZ93tGQm1S+SA4SY6e\nPof+T78AOV4FlILX7KO41CIwKE7IADaKoV96Gslnn9IE/L0AACAASURBVIH2BViP1kVVCcBPzhPY\n5HlgpSLE3AzY/AwwOQZWo7QTsboD1umB9QbA9i5YqwPR6MD5Inkc0ekplC6tHgRTP+J5A5BMjCXA\n5Jt9FN+6Db26QYlwDyBtsWv2vYaoj5DxN0CfQZzQ5xMn9N2UyzT3AGAQge0TG/ZBTa0/rtF/+gR5\ntO1raF/DExK/ceIvEL/w6JGex0c1d+zghYJrHH6Ikzz0x7LVoms+Tg4ECXzgwQV4tUqAsvXaMB5k\n2URagNYpJwEVgpjw9t+ZAAVICdVqE+O+Sqk7zieIM7BYwmv1yZvsw3oqAcDVW3SdRbHzr9PdHnjf\nJJp1E/hrewiaCZKyR//vJvA6CdjtNWpSHp+9r5f6SO5VnpfuKewYnjf3sYYkt25Dlwrgzzx+4Hc6\nSVyanH3Nw17HyZaN2S+Ag2AQkG9gDZ2jGB8jWbt3CJifeTwLQ2Kl2AatlT8XDjLR7Tx3QTTVKpKF\nRZdAZj1cAKQWCKbJV3vXNNijmGwS4giF9w0r1kqLYNhVWhOgmZXS2c/g6QvpeVfSOmjkeheNv/3S\nofVVdnxUa4761GPw9yW8v3zjQzUsWBBAF0O0PncO/Nwjbg/gFA+HMNjdsH5jh71+zvdV5fZL+cfp\ndD1jzIQzZdZAu/cx9bTc28vvxaxBtZ1HfpBXNRgPLACOIMBLpdSj1eAD9v3J6wvQgwHE+FhufvVP\njZGqxTGrzfViXot5PvjoKLzpqfQ6y/hseTPTECM1t09QtdKhc/6wcT+x878H4LMAJhhjywD+OwCf\nZYw9A0CD3Bv+IwDQWr/LGPv/ALwHSlX7jftzMifWj3fyOLozFZQurRKCaIvl4WGZFs7/wxoCa+j+\nwNGsgHSxyTE1HFXNJEFpY9TLOG2gs94rAKwZr45TJFPHKbJoN+kWdCBmhpcW8p0OFdMZE6rUSFdD\nD6QBu1Kfl2wCiuz13XGZEBTvu98BDwNgEMG7ukIbBefK3yRqruDgtRohpkqBb3TAtIbKUjBnJsHa\nbWJPDQZOi+ioaFZeUChAlwpgJ6agowSs04e8TrCjuL2K+LmzEMgzjI5m7gCW4TOcpHPo4CItvO3F\nm2PxSKilVfR+5gVUf7BMDBfH6klBHT0YOrWslnTIo8Mdezi5IbvAGS8hC0LmngfjS2USwWw3gbyq\ninltsdLGD6fkNNbg3MlTiGBiTPncAuNRNPTsFLCxBdnaB5IBgaztNkXMd/vULW61iAUWxwbQTDs0\nzPMgpo458zfV2oeVLwEpG42HIcSxSafTVq0WvNWGu/ke1bxhgY+9HzkBWdKY+1YP2N1LN/TWDwxI\nJTcZU2YLzjCR72CpvSbUM+fhLW1D7+wawI+6rsQ0zADLplvgugqZjoWT/Jh1iQAp5LoY6YsOzRet\nAMHJJ6XTTTsQQ906VghJyjZ0Ax6mZx/qHzTUJbxTfG91KdXi81oNcYmjn/gI7bmac1d7TTDOcvPJ\n0dAZc4wzAIhPT4M39mievfI22n/zpfR8j2juaMGhayVoj0M0WiRfUAQ2u8Qw+z1L6czGwTlJoMLQ\nANUKLBAAD6DWNsjU2TfBAz7JDV1KnCkotGUgAQT42fuVR2xT+D4BDEnsrj3nUcUZeLlE8pMoclG4\nTsYhOHW3jLTUUu8ts9Z5FXGW3hvMeqY7XceYBUDAKPNoY2ekYN5WC962AVKVokQ2zqELAXTBJ/8P\nAP5GE57g0GWSkbBeBK4UWBSDjdahR2tgu03o/Q7U+iZ97owRUCUldfE9AXVmnphBvQh8t00mydst\noF6hz83MqyOZN1pDC0AWgJGbCuHCFuRe88E3rYxBTE9BTtbBV7funpjEOAF5dt3o9qCShEz0fT8t\nGOMEzK4PYQD8NcKDxOgo+kUBHmvwmIFFDIPYw5y3B9F/eMwr9vwT4LfWAOP9eRRzZxi6OXQT/UHe\ngx+An5on9sf1g+3jDxJVfNehlWPGMwMSs8CnZmIjl5pEjEKtyVOtEJq1MQDzfSTrG6nfoBBgniZW\nZSEAfA+qEoIlCqwfg7d70IEP5nGwWhW816cG4d2lWnccrErgtV5aBZsYB2MMsj+gNcfj4K0Bbe5O\njEEWGMRAQAmGcK/vajNdDCGeuECsVnvco5g35HFhAJS8t8mBpo+VxAyn7GaTUt+/hu7PfRrxky86\nH0g37sJiB5Aex9Y9iqcATi4RLHOe2drG1uv9jI9KfSQnGePlUiqTGQwgpo+loLZ9zzL/Wq7JZs6b\n+YF7jjRsZD59DHwQpYx381hRq4F1DeBzfQHs2SfAVgJMvpUyuK10h/kBxNQkkuUVV3vHn38e/tdf\np4e+/q4DKuLzc+DfMdKily/iqd+uYPkr6UdxVHWOGB9De6qA6jevQj7g9eNGHIO1u6h+bRn69Anw\nWg2q0cg10QHklT+Aq1sOJIoP1bP0nIzVQjblGXAWG/Zxejh9UJE0jRcKRBIZYiMNp5UNW9TY/Zk7\nN9PoO0xmmX2e3N7JNYWjugff7uUtyGQtRIwHltpr0j7P2NVYNh4vlcjj1b7/Xg/q7ZW7qi+y456A\nkNb6Fw/58f95l8f/JoDfvK9XT59E9LiJGopLNvnKXlCpNIxxy6jgyPlqAKmMyxTf3qkTzvXdjaFN\nlIaggpob1o3x5kEcUxfWegVZho5lmthjWdQyoyG0KJ0eDA4UejZ5hSj0lsWkXXFMh2BAHFOMsCR2\nEi+XUm8J4xHBw5AmtL2YhHBUSF6tEnV+agx8t03nH/hgK7Th4JUyxQnbyW3oZszzIKanyNSv1yMw\nqVSErpah1regTLIDG6lC1SvQn3ka7HsX6XwiCfXjz4J/683M13oEcwepz4XWtps9tEjYz98uONlF\nYsjXhxcKgBCofPcGGSwPxqGabehhaqFZAFKGWH4eHNBE34HKallpqttN451N7KY1mDYHcMyAbDEo\n9zKvCTjPHzqQyPn6sDA0/lSxMS/2nKZWGSNqnQFC7EgWl6jDLDj5CbXbBF4liYvQlDu70ElCHkzm\n8+cFkpnoKDYxjHQTVIMB1NIy+JOPQl26TGbrt24DXmK/x6OZN6N1bHyKYfa7EsHiNqWvmWSlLCsn\n27m3awJ5s6iMnMcAG/0+mmdKqPFJiL0meBBAtlpQvT54uQiFfhpVmemSOfZR+kKGRZQ1lM4UZ1Ym\nOTzsfJGKboC+72iywzcs5grAIRlbjtlyf5hs/Ogc+CEb0vD6ptOaM8ERVRhazSpO2HPNmByzMEzX\nMz9wYNAwpdxf2oE+fYISQACIfuZ8j+h+ZYEEvt+l9dKAQJYFpIdlD1nGkMxo0I1PC+LEgBnKbYR0\nFEG1WrSJMn4/yoD0vFyia4rx3NoBbTpQPAWoGU9lpDpJyIMPtG4yk3ood3bdmkYddw+MMagIafOC\ncwJ5CgV6vdiAlWFI89i8V26YKDqOyZDV3kOVAtOaPGoYA8IAOtBQoQ8WSySjRbBYgccKybEaxHab\nuvyCgUGQFxNA9cFuA2JyglhC9r5dNMy2RBJ7K04gun3oMICqFqAmKvAXt6BrZWifIzpzDNh0qYBH\nsuYkRQa/BYxc2oVuNNMm0YMMTZvi9rkqSpUAfHPrjpverDTHDl4qmbS2HgGPpvawfnbM88gXw/jq\n/bAP2WigfLOJaLKMqBLC6zH0BgFuxJPwVnbv2/PiXkM0Orj5G48C/wP9/6jWHDs+TLS8O1wcIZms\nwr+5fu8Hf6gX0sSQGak5+SixJAoH52qS0LroEzitez2woVRYXiFDapTMfdO8Bu+bGiz0oH0P2hdk\nMB364JPjYLvigdlOzBNQzRZUvw+1vGK8QCT48iZEuYh4ZhTshacQ1T14HQnNGVTIEU2U3AZL316l\nBnfuo/no541mAB+rQ25sOil7Tuoy7C2oh+rcQ1hk1e8tYOnLZ1H90WfA/+ot93PZalGYivHPTEMs\n8g1YN4ZBoIyvqn3dA3Iylt+UD8vbVLudvjZjxDh1jzXMDGutYDf8jOWAodxGX5GCQK1vQj57HswC\nQkKAMUr5E8WCuyZ5pw8pJfZnPVhOhtt3ZGora1AcfPNi3oRYa8iNTQRBgNbPfRqlf0nx9Rf/6VOY\n+GQbeO2r5mFHdL86fxyVhfah948POtRgANbrgQU+5LtXwIIAYmYautlKU1Kz9a7xhXUYgPu5mZtD\nQUDDzVJ7PFGlvfRw2ha7g6+m1tr57GbHodePPRZnBzxGdSzdXsybnkKyuQ1Rq6DxU49BDDSqf/Ze\nCl5m9hheR9G92TSDeaXsAp/SczAxpbahbIAj1e2SP2u1ArmyTj6LAKW83sd4IMnYRzK4gPIFsLlr\nIiYzvi869QxyGycb2w6kE8f4AuluD3KiRgDFYRIEN4FUno7fbtMf40FkX09HUerrwagIB+hCF7Ua\nvNOn4M3N0s2v33cLmKPDAa4bq6OIiv0kNj4QpFfUUhnfB+X8kiAldZmN6TArhJmEqL5jiTDfB46N\nQ58/hfjzzwNnjpPPw9uXkSyvIFlYBHYaYPUapbYYM2oAwMa26cIEtKFfXqHNhJF+qfY+sLGdTtwo\ngt5rgm/tQQUC/BOPQsxMwWt04b9962HPivsaqt9PwaCsGZ6l+5m/s+DNgUXE/Nv+Xm7v0E18vwM+\nVqeLzPMgxkadhjibjuDkVr7t1Iv0RmPHED0RgPMMsilcBOJ04XymTBS8jZDWSZw+1h7W8xyjzZ6D\nQ8+zQJGRLjGPqNjaUCxVp5N+NooWUfapp6A/87SLR5R7zdyNWRybhBgdher1IHd24R2fp9QGK8sz\n80lLBTE/Q/RHcy257+3SZfooSiX6TIcM3z7q0Xt0GuAalfd2SAKZNaEzn79dfxwQZGQwAOhzGtbc\nAxCRhvaJbchqVQL44gjK6N2zVOfcnLSDsYxGOQMG2XOzr2NoxTkZoe24cUZykAz4OdxVHi6Qc4kM\n9tq5j66QNzONYDHfBVE//iwVUlkjWsZQ2lYoBBmpgJImap7lO4zWiO/YJK17metIrm8iqacUW/7R\n2a4cPhgjtqQxlM51ngwjCHHs/DCcvNQOm+TlChtN6/f8lPPhyl4ndo3QSqcpYnEMtd+BbLZym0Pb\nRHAeQkbq6GSzjMF75CR5d2V8+awO3bGDBgMDQKfG+KrXo2t4MDAMVjM/k4RAR9sgMesrKxbBSiXz\nmSgDUnJi7tSKiMdK6JypA4KBKQX/4k14790if5tYQo1WoIupfFrs7UPvd8AqZYiJcajtHaitHdpA\n+j7FD0tlksk8s/aTVI3vD6ACjr2X5iFrBYi9LoKlBu4jZeyhDhkAtdsJsLpBhpZ38RO5n6HbHYR7\n5h50v1G8ZvCRGknCt3eouWTB6WYL6KX3NjE+dlCq/EM27D1ZvnsFwWoTYACPGaKBh8Vo4r7Wsfse\nWiN+9Oj8iOg1M/98GDIoAP7KLkmvgDtKhnipBF4oEHhs6pMPPLSmzZhhgKpeD7oYHu5NZLrqOopc\niqAFUlSzTetLMYQuBFCjKcuP9QYEBEsNXfBoZ5NI+mPlIYcMceHsvU9/CMiRO7vGj6sIOTmCpOwh\nqQSUztYyjMNEQ3kM7JNP0rm32x+pP9hdx5A078A4pC51qovsxtsMubGJscsJZMnIqzISMrVPfqY5\nJtKQ7MYdN/Pargaytbn5N5+iRGSXCGYsH9Jzv0NkuPm/2msePme1TtdLU/dnfUDdw5LY+bjyV99z\nzefWzz2L5EefdJ+HuyYVmSXvH880qZLEnX+ytJwy9E1jUUxOYHgkS8vYeSI974nXW7Q/PsLBOEdS\n9YHLNx/OAc2+ihWL8GZnyLd1aTn1xB2ud5VME+ZcE3QIoLwDGCTOn8HC//gioi88R3Uu5wdSF3MJ\ntpk5euDnQ+9heFDsezUFZoZ/Xy7TOqsk4qdOY/Rr76P8h993e2rmBwSYmxG0YvBa1YGkstFwidC8\nWnWWMXx2GvLpsyQ5Kxbd3JW7DWhjiK2OjR44n7uNHwpASCsFXgjhNXvQBgXTSsPFbQtBm2zL2DES\nL/szHUcZH5YEqteH2NgDpIZ+7BHwcplkLgBs0phddFwKS3ZhyRhY2ddzYIE5hv2/bLWQ3LyFZGU1\nDz5Zyph7j8bzI3PuzhdjnzxXeCGkoowzJy1gVnKjFFSzRZKdYhE6idMusdam6O2heGMbvNlx5p6A\nocANIsjlNYpFNN4ygCkiFbEJxPgYnU+LCm81GNDmIwM+qE6HjLsbewguLUJWC7Tx3Nx5KCjygwyn\nv7QAyDANNbuYHLbRNZuznPSPmeKl34fc2HQMGLmzC7nToO8q83y7aNECFjv9ZrbbMbyY6CSBOH8G\n3vH5tPi25q4WjLQ+V1mqotHTW42q7U5YLytnOGzAS+YHEKOj8E4eJ7AJMOCZTlOH7GfGGLwTc+C3\n1on9lXHhzxaHSMh7wr6nZGnZgIkp0KUTihaVq+s0vybG6RiVCryTx+GdPE5G8IMB3biPeOydC1C9\nwYFm2xV9WqoUYDbDAUFAjgnBfM9sfvPL6MhbW/DXWvT99ftg05Oua0UaYuUQfTqQAQesWXlWTw3c\n8d+r/y4VJLmOlj12nAEq7d+HyMyct8DQjYzxw8Gg3Bpnhtxt5NiY8eefh9iPiCqdLfoDH+XlHr54\n4r3c83WckITwkIK586lTJBHKpGPpOAJ7+WL6+vcnj354Q2uwLvkFwYD4jj1qPS9EvsDIvTcL0mWb\nDW3jcTNSBSuXwEfrRFMPQ2dqD8Cw0UxahhDghdABwLxUAi8WHRicpmHCzAua18nCIs1FwR3riO51\n3AFALAzBC6HrUrEgIFZqFJNpfJKQxCMMaR2wnkEAdfqjiLrqW9vGC4SAILsOsyiB1x6gtLQPFiVg\nu01gdgrJ46coMppzIFHgnQHYgNg+UIqYBYZxxI7Pgk+O0+cmKHoavgddDCFHy1AjZQKJlALr9hG+\nv4L6Kyvw1vegCz5ULQUVj2JoxuD1gOIKScjvxGT9IENubaH43hqCa6vpPf0+wBsxdQzwPHd9qr2m\nYyurfh+y1SKgKIoBzsgA88efBXv+CQDIeR583ENcOIvk1BQVy9UqvQcPUEJDxRyx8qDq1Yf2epuf\nm0WhcI9N9kMeNjrdNmgexkgWl9L1+Q4MMNUnLz0HnD4AU0zUR9D4wrlU2q411OJBT1vZ2gdiSiGy\nLDUnjS+VqC4WgtYR6xk0iOiPlFQjF33Isg++PwA2d2idFnfZ5tztd2ZoqZyc3Q5WLCI6OQ5Z8sA0\nEFcF+EBDdAYItrsQA4Vwl0ByG8rysQzGcu/xQPz0UB3sGMvW68ceY2hjXP6rayi+u0qGyRffJ/Na\nGOArC0DZTX6WJTS8yc5Ij53Hirl3Xv77BJbI9Q1as4B8TZGZj3ZNsvdaC96kUn+W1jmM5Y5j73k6\nSdIah4tcM03HlPTM/ACljQjBxv6BeogldD5+Rg2p9vcp5v7UCTq/OEptH7TGrb99+sB7ACh+3fqZ\nytrHAMhzDr8VfTh56iFgXLK27qR34uwjUJ84R5Ll7L7sEGCFfj50vWZBxAyQyLp9nPudVZTeum2C\nbtoH919ZgClLJMgQPrI+oXd6f6xUhNrvpDXz0N5fdbuu6R+sNHIWH2JinBh8mb1zVPeh4zg9L6tg\nMnsP52uqFLwrS6mlAMy9X5NXEvMDsMSSZu78FrLjQWPnH/pggQ/W3Hc0LyaQdjUBUIQX3AYXgNv4\npqZUyngbMKi9JoIkAThHMhwdb1JXnNTnEFkEbeDiPGINs7iIIKXim+6vbFGcpDUEU81WrvvHyyXy\nbnDnoKA7HWIYFALw+ghtHk2imDW61lKlCUVKE7g1NQnWaNKkUQQ6sH7fxV7zWhX67AkwjyYl39zL\neX4wP4AYHyUD4Mk69PauQSLtDVulGvJKGawQQoyOInn0BLyrS7QRUtQZ9q4sAb4PubProtmPdFgp\nnaXeW9qrc543aVBmQ5Q1Z84mvmWNpxnj4JWKS/jRcQIxOQ5l/B4srZSXSkZmRABSdk4ROyhNEzjg\nxaIk6Y8HEeRUHWxzK++DdCeJb5baKCWd4wEpEcufk0GZYaITdWJiC400xUpS7Hc3LLUU58+QzGNx\nxXmJqMYesX4Yo5uYJm8AbaQvzPMoDrZYoM2FfV/mPFW7DSsHYtUqSWOOeAzqDBOXiN1A19lQIh1S\nbx9mosN1ZNYnw0BwWmNkdPbX0o6K7vbQ+/RplDa26fOVkgqP7HWidYayLPPf/XDCV0bP35vWB+eV\nmQtqMABnBly2gKXxyHKH9rwMm9HPAUtZCisvk6+NvBNoN2SGK2IFfnsTstHIyRt0uQhZ9OBziWwv\nQsfRgYLbDr+TIJofA19YBPMEGZgPFSjsITb/73sw5t43E5wACev7ZmRj4JzAiMCw5czm2gL8ABx4\npNv7wH6H5LtWUtFr0u85d4UidbtMoyIjIWNCuLWI7htwfgj2PsAEd8ku0iRgcHO/cqxRTiARK5fN\n+yKgCJ7nEl14pQxWKtEc5qnpKwI/Z1rNawWShQlOEi67NkUxmJG2aV8ACug/Pg9Z4Ah3B2BxAt7p\nEUtlpEqbP8WgPUFpQv2+OxfV61NU+l6TrqNjE2SGW/IRjYYIPU4x0aWQYu0tUNqPoYtHX2R7XQ3R\n7ECpD8cMyo6sbx8vFICzp6AN+/KwwUsllw7nrs04gu4PSNaeGXJrixhC+10obwyD42UUXwfJcFrh\nx9YEyp3jlev/P3lvFitZkp6HfRFxltzz5s27L7V0LV29Ti/TMz1DSjMjzogc24IkAqQpyYBhQS8G\nLQsQIFgPfvCD4AfDomzYhh8Mw4AtCaREkZK49NDScGY4S/f0vlR1d623qu6+5809zzkR4Yc/Is7J\nvFnVNT3dt4rWDzS6bq7nnIwT8cf3f//30T/KZfDpOvpLVWgOqAAoVvt4Mr+OH+L5z+z79r+gUfNP\nFhCy7Fk56qr0WcaIAyUAWIvlrNNuNu6lMTf0Ee0OSneH5+yxDptKurYLm/NaBi7LUyFKTVXBehHN\nJwhovgoD6EIOOvCgPY7g5g6ShUmIPWpLtfb140J+eO2+xw7QWFcbI611FnQYSGjGoDyG/L95HezJ\ni8DmLjx/EeKgjeTWbegxRZSTCs0ZMavs3/dyaAKGi97ZglW2lcyEPDyE8DzwiSrU1jYOv7qE8u+Q\neY1qtSCmp1P3O522x4/V1bT10iwIZX6vS/9gA/LFp6DfukJsY05FELfPyOzdRvceln3NC4Vh3dAx\nzGedJOBPX4R+90PKRTodx15W3e7Q3kbHEVpLISYPaUwPaUOZFrXy3XR+92ZnkGxtuzVLTFQBPzB6\nr8D0ezSXiMfPHxOOZj0D8sfKabudWHAOsd/GPXYiDxb3AJCde+5RG6LRhOr00lz3Xudp2fhjnmee\nTzm5ImmNZHWNCuYZ5g3zvGM6RN7sDHR9Alow6NCnfO2jFWJk30MuwUlvGAxAHjQgalXaP9tjtKBS\nRiBcHRF5xO17qhXo+Smod4cLpJ0ZD+H+QYZIkBpnaXcdNOTmNni5RKzubpcKh+UymSr1+7SWb5p7\ncJwW85h4ZAAheB4lKFKlGiecAciIABvAx1H7zMaMFirp0DQGU3ntcbBSyWnruMgwN1IbeZFu/LKt\naNbCzoAMQ0wNRZtycfEc9FNnoV57nz6nP6AJpNd3bkK2HS0bzA+oHYKx1A3IgEGAmdCkBDPaK978\nLC1+rQ5VZI2GAyvkybHGDBgtJYTvQ1VJy0FVaUCKiSqwMAusbVGivbWNpJaH0IoczqIY/NI5YL9B\nIEG5SEl5KQ81V4PX6JLdZycVsBYTVaBYoE1jLgROGhDSejyFepyrl5aOgZHV+3ELkROZjqE7BBZx\nzwN8D3JnN22tM8CRshsiexwji+3QBttuzowelep2ie2lNfSd1eE2r5GqjXdqCWqCfktZCMATZVy/\nLBptXpsFhez3mgmQhSHE3Az04RG54NkqjiSWCMvnIBZmyU418GkCMX2ro4uUc/mzNuD23uqCWCGG\nTWWBCe/0MtRECXz7AKrTBVuYBWu2iUHQ7YIbJpw+4QUvKWjkdvvHE13GAR2nGixOM2h4znECrYwD\n91g2+dwMoECsD1BCz/NiGOgxFQXH7ALcpG9Fqe1j2b8Xf3CPTYmSADwHTDlQRknX4w8MJ4fZsZrt\n56cntQODxomNkvhx6OY376cfQZr5rPFrz6fik1Lh6EyA3195FvP4yJ2Tt7QIub5FyV4+HU+iUgF/\n/SrNg+YY+eQMmFQjrKjxl+HzDG115TgBQ9qCepzReLKV2IwwoQURoTWxZqy+ji02WGaRFWWuTUAZ\nsN6OUddbzhmgeJpYcdLZITFWaluzAoSA+U01rXf8wlkCk26vUluYVDR3G8YSAb6Hx+YzXi6b18SA\nsuNAApqlDCG7kfM8wBOQ65ukKVSktkDt0+Mwjma82QHCAOGaKb74HnTOR1IvIqoGCJoxRCcCFIMs\nEosYhwqsWIDOh2AzdWBnH3xmikDrOIEu5hDe2Yfc2AKvVIBqCWxtm1qrPY9spKVOq2cnFQzwexro\n/XyCwPcNIagF7xM26rrZOkahl/sHlGOMbJjs68JuD+HsFM10UUyaV48AIGRDtVqIvnQR3VkfTAMy\np7E00YDPEmAMI+XThHd6GWxyAF+c8NixAOJJaDmNAkMq49KaDcYc2D30sGFb2HlcJwnEGx9R4afT\nvec5eGdOQdbK4O0ekqkyRGcAbOxC9/q0hk2UobkpxnR6YEpBVYtgUQxVDKEFA+8n6D5FZkv5uWko\nxsBkCgR/mpCTJehbI4BWrQJ/qwWdD5AUfeT2Y/CnLyGu5+FxDpYoaMNi+swEuj9NsDFr+7h5weYb\nI88P6QqO5Gdyd9cxg0p3e8eeGx1Hji0/kpu7nIZZt+CSyzeSrW2w+an0/eYc3GdGMbz5OUAIJGvr\nZIBy1CSxfgMGKVM0tWugW29HtLjsxly1UnqPlgQK8So541oAvP6HHwOeB9npoHtxAoUr5g0GUPc7\n6fwgDxv0/739YaDMRP77V6AAqFt3Aa0hnrjgL3t1UAAAIABJREFU9BGT9Q1qh13ZRnRuDicanAHN\n9ie/7tOENoUy6xrbalMKPcrGcewfA7A4MxdOxTCzB7JdGcwPSCvTaB9m17ghLVCTr2itoW+vQXU6\nELMzVCCvTaSF/myM6D9l93yjaykl/ZQLHntOk7SMNz0F+f5VwieMcdSxcwcgbDvayOPHjJSEgNzd\ndXqxo6Y/DxKPDCDEfB866qYVVCsuxTgYV0M/JgDXTmb+MIAOYMWiCRSKAdMKIiqVsaJyQ5OfsYp2\n+gtKkpiwo6ONSQK0BjtqwT9qIbEtaPZztXLI5TjmjE5iiGINqtlKXRgAtzm2NH236ej2gG6PjsOy\nomwLS0YLgQVEG+NG/V63zMK8NA9mk34rADqQw+ih1lT9kBK6Q9/LDpvgO6QRIg3w5MLznE7Gp+ov\n/3mDMfBikZx3sowuO34saAIM/35OY4cDUGll3YwzHhidHdOKlV1Y7Pc6t6hxWiua2FzO3YKxVLCO\nkfi46veBc8sQ7R7U7VV3DA4cMPTH5M4qcNcs2ABVF+zp+2R/6cYsMot+hi3FBG3O3H1jqYhGGFvt\nH4A120OsKTBO2iL5PAnJ9vuprtX5UxAHTSSrG47qy3IhZOOI7EcFhx4YFwipoK9cd5CJshVdUMKh\nul36Hj6yGHzOwTTAewZUGffdQ24bigAgY6OttRoCsBhnQ8mGe1urAy1mKFGISVtKG8F6lwRZa/kh\nIJAAo6F5byRhy71+HTIrdOfeO6zHI2amkayu0X0yWQW2d8cn5eOSwhFq9djrWMiD5fMOEMoyeKJy\nel1Zf4CkwNDaKcH6o1KLE3OMu+xxj5uvWT4HXipCHmaS3BPemwEgxkSWqaQy48FpA6UsIec8xjnN\n9dZ+Pk7c2LOgDwt8sFIB6A/o2gpO93eSQBl3GwCuIgaQdh44cyC1BTOdcHSvR61hQeAYFWRdT3pZ\nqtOl9c+0wvKJKlipiGRuAsrjEAMJvt+C2t0nVqLRLQNM+4ZhvoFzp5+k+32I2oQza7AbJMTEJlK5\nEKyYEZfV2jmCeb0IXsMAR+Z5/tEtKM6oKjaI6HuUptyh3aUCSS4H1mxBSwV+Ztm1taqzC1A+h2gO\nwGIJHXgECJ0wCM0T/bl+J/M9YnTk8048fDRUtzu+cKNMznQvNkWzCT5U4T/Z+fpBQgac5gMNaF/B\n4wrXB3PHinGf+vNnJsDFw0CgT+A79X1ApzHVch6GxCC0oIH7GE0gTmYdIYdCH2jdG9DSvgfeHQCN\nFjBdBm92ae6waxIAphS0Z0AhI9SvPQHNQDmyL+C36TtVzjOsQJ0aw3yKSEoBspmtd/Y01SAER1IN\noXwOeBqi4MPfbIJ1etDFPPTmfVz/HlIcYz3YFq4hZjTSglVGL3Esa11r0pKMkuN1mWz+NOoOlQWK\nMtqFOk7AajkAGTby5evjc2yA1laloGcngbV1IJGInj8H8b2308++17HfK7LXKKPjipm6A8B1r+fW\nSp0dHKZlrF8TyNlzzewR9Oi8y4XrBrHXSxWCdH8A0Pd3e9D+Q1B4+Yz0ykZDK0050PlTkIEHdnA4\nXJi1oJ3nUZFDUi7MAirIq9HjcjmEgh4p9DgA0eyT6EHaO2edOW0hm3/hCXickyvyuO8Y/fdoZCVL\nRkXa7TH5AWn1KaPJmO0mssPP7mM5g2reB9ixXRcW/OHUteEYRXTA935/9qMe6FUnEDqKXCXU6acY\n0UrL3LFirFZYM9VS8Y3YqxH1zTr3SAk+XR/vMJBlUhhRMdXrIevuZMU2h0ATLiAmqo7Gn2xtI8k6\n7GhNiXsYOjaTd3oZ3tnT1OfuNG80IeDFIiXXdlMohBOOAogWb4U+rVAvDB1SRzGY74NPTcI7vQz+\n3JOkq6A15OoGklu3qdXpK1+g9qSPb0ANBpA3b4MXi5B5z1XldRwBW3tw7RCDgWFIKaBWBWp0zt7S\nIsSTF43DVB7x/AQxnXInLeaRXp9UN8duxjIbbGt1aftNs/oamdc58TIlSRzcVHK95SWwxTkaf1nx\nMSlJCyocPm8rwKg6nXRiE4Lc30yPpzLudvrKDchbd52+jB2HFlDKMpB4seiq/t5jZ4wN68CATumE\nkq2kpE5fkTsOAE6UOiuMreOIQKkgMCAQocy616PNhXWB6A+g37ni2hBZGEJrDdXp0Xm3WpAHDahW\ny2kL6SQxdrFW7DXVgwFgju9kNxiix8D6cXpeVtQ6IyhtGYO0ECnHjrItOzQmskyhkZiZRHdGkA2u\nHSdZ50Q7d2XnmzAcTs6H9K1SIXxbRROTqXDcqCgiAFp4YDaCUQxvYe54JSYTxxbbTwi9OEOb8zEx\n/yeb7rzU9i70Lx2i9k56jKxYdDayqtsdAtnG6RUld1aPAfP8hLs3ABAgYjR4svO2u65CGO0cAlms\nYLNlnNlgge+06qg6mgPLhUhW7kAemOTTtlvZ8QgMtelpy5JUlJxz037HhICKYnJeyYXgpVL6vswm\nAIyD50LwYj4VUJ2oQAc+xNVVBHf2wHoxsULCALxWo7nB/lacEfvGtLDqQUTtzKbl2QE3iuZfHQbQ\nHgcUENXzVPWPEvB2H6zbhyrm0D81Qa+xAL/gwLMXwE8v0RiPI+egoZWidsJymZzGpiehl2fpvVEM\nLajVTHRj9BdL6JyrQYUe9P20AT6n8LrDQPJnHaxUQvNiZYgq/7PEaPV6NLSUxBTzvGEHn0ck/HYC\nnmjIkAG+RiwFfvvOFz+zzz94sgQuFKLkhItfn2GL4bhgfgC89PQ9n3f6d4AraLFigVzpRtu/NGmC\nsnze6biobndMFT0NUakAe4dUrJis0uY3kdCVEjA3Dddq2o+hOYeslSHrZSTlEMlslUAiDSBREJ0I\nohNBGdDX6b19yuhND7dRqmqRgCjOqWVMmOJSJKELIZKNTchrNz8zEPLnitEpbrRwBByXGgDSPZRl\nQ9jC+Egka+uInjuL5gXS6BrKP+xncpE+rnUqoJvV88xsopOtbZpjMjliVnTXslBFpeI0PtmtNbLc\nXt+A14qAl591x898L2X22+8FMCQenL1ESeJyNSsorY6aYJn5jhULLl8s/u5PqVPCfl8YYvL9hjsf\nLWVqRNPpQEzV0y8zshY6SSCWSXia391B8sVL6TVe34A8PMRgYrww+ucZ+pMEyR8kxq2zdpz1ImiP\nm72SSvdo9vuVdqActCJNs5h0xZw+aqloWuO9IemP7GdoZQpySppuDMPkzuhX2ZxcvfcRwJn7zYbO\nIyuQPu48TZE9+5iYnnY5unPEjiOHSWiVnrO4eM5hN5SvyVTH1WrdejSewcgMhOdzELUaYRLFIvDk\neVz/by7h7t97zo3LUVmHe8UjwxCC+eGdwLMV1rWgkEQ6YGyVyvaljmjBOIaDlNQXHyeIfuUlyJCh\n9JOV8UmP1WXQivR8zM2v+wO4lhCjEaQHA2fbznM5SvCs9lHgO0BCGaorfI+o/0lCPbfGpUD3+lCd\nDvXpz85At6mizEwbk44TEs+0LjVSppVmxqH7PbMZLUL7HlS1ADaIoY1wMLRy1Rv+9seOXmbZUp1v\nPYXye9tI2h14S4tQxrGGBVRdRiQhm23wfA48DMgZ4vwSkCjIUgDvDqNezdU1JMDwRHdSoTXuyXYY\n+jtjA59t78r87kP90zaEcEgx0QxTxJeYORmbdxPjRNiyds9g5CwnDw9h7exdNY0LiMkJcn8xG34C\nhjglGFyA53JIbhGgJ6bqJP5pmT88wxxTmlrDhuwZaZzywOiOWEaBdRPqdtN2KE6Wh3L/gMa2OTde\nLKZJYAaZZp4HxqiSxwMf8Atug2kFhlVErVj89CJW/9o84orG8nf7EK99CN0/ATp8JngMcorinCqP\n2i7OsbHpjgHNHOvPivI64E5pMD/VERrHEkom8iitZ5hrptUHiphio6wuns9BHjWHPsPqPYELR4ul\nJwygmXXnMqKI2YXcgeGMAwcNwPfhzc7QuBnVH8r+/15VuczjPJcDW1lHcg8NqOTWbYiJKmSzDbEw\nh9965l/gH/8Xf5HYYoxBNZtDgFaWfZgV/8+2QzotI/OYd8JdqmCMKs6MGxq6YQNl9YNc8smhFdGH\neTFP59gfpACpfb0Jm4yqrz0Plmjwq6uwuj6WDco8D7w+SZoKQlCP+mBAAMyAxiJyHCwMKHHt9l1f\nOS+QEYGWKgN0Uvsri+hzoTT02ibd//VJAqPbXci5GngvBttvQCuRugKalj5b0WK5TELkkTmCE6D3\nPcDjBMZ4HOEGOYCAc2IQKQVx0EQAQPsCTGqoPNnSa1+ARTEBbfUJoDegeSpJoK2jkGHwsX5EiXw5\nBRXZ2jaCd4np6i0uIFms319w9jMOpgGvJwmkMuDgZx5ao7A5SHOAzyGY4NCt1r01xR5iqIBDeQzK\nB3hLQHCF5qszqOLGJ7/5PiEmqjj61iXsP6eR8ySa7fxndMQPFiSA+jl+fhyBX74JBRxvGbOvSRIy\ngbB6Y4wBQkDUas5BN6vLyQt5IPDBOR/LMhW1GrVwHh6CVcrQuYBaRn0BJTg5Lg4iyEIZbLJsmK8a\nKudB5QRkKAhkVhrBYR9sIKFzHqTvgUkFMIB1escr/T9jlFc6Q/V1vrWP5BQJHNv5Q/QkevNFaMFQ\n7J0DNnfoGkzW0H1qHrk/u3Ly+pqfFDYnya77fCQXHn39mBDfexvBt18ip6X+4PhngvZvNseRRsty\ntC1RTFQBxslVaaS1UB6l+YU8PATzg6Eiv7Xk5uUy9AfXIQoFwGj7WAMWe76MsyHNRyCTf5vgpaLb\nLykjjZDcTdtOWbkE9PrwKmUSSJ6uAw3S/OOPnYJ8j1ri7f5LzdQA06ov9/adJpHN3wEgWbkDXihA\n7u4i+vJZxL/xMmqvrrvCa3j4ECpfnwUQfY9xo/p94PotiO0K5D1yTYsHiMV5MoH4+BYxnW0hVmUE\nlPN58DCA3D9wXQt2/yMmqsRi39qmQp7vEwkjjqH61BYom03Xkq8Pj4CZ+tDv4zou3MGx9HHzb8bJ\nlEHUJ6mlcHsnxRsYO1ZsFVN1sDBEsr4BUamg+cwU6m/tQ4JaoC2+YM2DZKaV3xX1Ox3SvDJ7x2gy\nh8f+4av0BbUaiZnffbDF45EBhKy1OlXLo2NIMwtMz58FjQCDBtqNg+8qntnqvpYKqtlC4eoOdCFH\nCWNWXCrDKLGbczsAvMUF6FxuCEByIoxGE8bZRjMGJtJ+YZ7L0Sa+24U0ExILAqj9A2KKlEvpQAPR\n1Xi1Qq1P2orMMkfBz7aUaU2bf17MQzaOkGxuQagZiE6P3t/tUrvZY6eh86Q5g9VNyMEA3twskq1t\nAEB+qw+1d0BuMv0+VLtN16JrwB2tIUokSpesrUPMzkAY/SLeyUGNLBrZ8znJGCcW5iZ/K5Zr9YPs\nczYyvzuA4WRIS+gYzqFOdY6L1tkQU3WwUhGyXga/tTEktuncE6xDXpwcE+PMgovZ65jVvxKVCmS7\nAxXF6e9o0WMlAe4ZYEgBEGnbWfacDItFdbvwlhaRvPg4/A9u0UIuiR2kBwMoC850uwTmtFp0LYxm\nkJiedhU/Uau691swzGoMiUqFNJjMa3mhQNdhZx8L/+NKeo0KheMOGJ9z8ASpOxRAYJBlcJh2T6tn\nBmCY3WFaWWHdA22bn21BtMywVz9AYcH0fmfvl2x1DgDLFWh+6GTaEi0V1FxTm3DZ4+XFArGxRjZm\nTAioeAzFVElinWgNcf4sRBggubt2zwX7nqE1LZT7B05L7H6RPHUW7Mfv4vAXlvHxYGFo7OvBwCWR\nPAyHwdR8joSWGTC6QRHT08BEGfLGCuRJawMrNWTL7cK2h1lNHvtay0C0dGXfBw/SiqUD+e380O/D\nf/922g6cScqsVa5qHKXXqtMh97+pEq0rG1u0TrUAmLmE53JkNd/tpUmJEaLm+RzEzDRVzfoDqGYT\nvFyiebXdAeoTYIMYfGUDqNegZifBG22g0yUAKvDThCgLsGStixmDzofA7iHU7i61XQSU1GnGyCo6\n76dAY5cA52SyCG+vDR168DYPoY+a1L66skosrWIBulQgkVmpoEMfutWhNrJCjtqmI9Lx09OTwPlF\naM4QCQ4eS9o4nlRoDRYbR7rk3q1ZP08k6xvgm9uQn5fWjNKPJBBkw29GaJwLIAYafoujHYWY++nP\nz2Ra+T9OwfebKGiGSr6P3eiRSZ0/s/gkxzGA5jC2vECsmyQx6zYBvkOAh5TETJeSKt0jYVsarDGL\njmP6HKWRTBQQHPQQLUzAa/ahfQ7ejzCYr8A/6pPmWczABIOILcuRAYJBBQIy54GZe03/nCLcYqIK\n3N4cUghMtrbBp2qQ1Rw0Z/A6EirgyO32MKjnEM1XIKp5iIM2ZLmA4Dtv4CF0NQPAcRZkti0826ae\nZdYDx5/PvmZM5H9whYrlPDr+WstAnaxB9/uU3458DhWp2xCVkitQ6oFMW6cyrez22LylRai9fXre\nsGxVq0Wb50oJemuXmEKvvT/UumiZ/dqwRYZcfO1xxwnE4+ehbt6mVm3rCmkiubsOUasCAVmBW/Fn\ndWoW7MrN9JIJDh0DbH0nZR0ZVj/zPDJmyYS9h8L9AYofNwlwnaiCTVTh3d6718/8ucVJ6HrKdofm\ngCgaHo9I91jJrdsAqFsjujALHkn4l1doLTIgpmq3gTZMvsFdFwYvFsnBsEGiz87gIws4mmK9ZY3J\nZhNod+CdWYaA0QgavRZ2j5nRlXWfZ/Jsey6iXAarlKEODlOJDM+jtnxj4qN6fXRmBYr/6pqTKLGA\nlgZIQsDsdZnvUeErCMAW5qB29qA6lPf4P7rsAGxnJvSAda9HpmXMbgiJ5SAc8EPuPsK5O5H2hj7W\nRpattjlWkbEAV50u1OY2sLEDK3yZ6g9lKvHlMtHEDI0sWd9IwSDDzBCVCtHyC4WhicSJ63GqmFg7\ndzE7A29u1iF8Ym4WbKICfdgA/8ITDmywAljWicxNUHHsEmvV6x+jOXqPnYH6xeecQJfcPyDW0eEh\nURwZgyoQms5eemZIMK1xsUhV1G4XkAo8n6djrNWo6trrk24RZxC1GuT2Dv0tJVinB/nyk/DOngYL\nQ3jzc44Od5LBOD8GBpG4qwVfomFqqgFI3GuGPiyjE5XRjXLW0NbS2y6ylr4XhpB7+0hu3wXvxYie\nO4vur34Z6i88T799tULgYKdDk4GhFDrqnzkOFcUOcBS1GsAFgUHmO2WzCVEqQlRKSLZ3qDL35afB\nn71EjLMkIYFos2lkpr/f/T+gf3PTvpSsrYP/8B2aLAGwfB5iqg7x+Hla5GyLk2kTELMzUFEMbkFS\nI0YuD437mtYQE1X6r1JxqDs8D+Lx83SO3S50fzBU3UkZLyfbwsFjuJ5vdyxmfgEwBBTZ58CN+LVt\n++JmzDi6q9GlygA+6uCQ2Hfm3nGJ1kiyRewsur+9+TliWY0kdLatD0gXL0vhd6+JRgD1oQ+g75Q3\nVqCLeYhyeWxrVva140KdXTj2PM/ljn3W4Nsvgf34XTDPw/bLwG+9/c3jny8lvNmZY8w6ub1DDKDF\neYyGA1y0hjppJnW2v90+lCQ0V3PDEo3jtI3OMMF0FDuAx83vUoJlkh8tJVWt2h3XSoeMqLRrqx4M\n4M3PETAGqrYla+tIVu64zwNoHhH1SWoT3j+EbLXS9tEgoNaOUpEYHxvbdK9XKqbKr4CpGoEtngCm\nJsGabbA7G7TREgIsDGidGFAyp7WGTiSxorLtdIkE6/aRXFjA4NsvUXFGKSCR4EdtiLVdAoEUVd3Z\ngFq9/Ns71ENfCEhYnxltstoEWd4DwO4+dOOICiG9AVApQVeKtGn1PXIgCn3Iah68n0A0BwjWD+Gt\nj0nyPs/QgOjF92xV+Mzi5wSDmOdR8WeMxflYd6hHKbSG1wOClobyNRq9HPz/982f+2NzQQzBNDyu\nUA4GyOUf8evwOYXqdKDurkM1W5CnZxE9vQy5NE3tXCPzoU6SVAphTPD6JFi5BF6bIAA3DKBKOfBE\nQRZ8xBUf0XQR2uNoP15DUhBQoQemNHgkIQYKSnBozhBXQsSTeSQFjwoIGrCi1zbGjedPitZfupTm\nQSMxqAVICgJJQTiRes0ZWKKgAgG0OtDv3dvt7ySCyTGbWGDIDTf7uGunss9nnxvZrGdDdbspi8cU\nyIZyoG4Xydo6yVs8fYnmGLN2AWYDriRk44gMbsa0rWtJekdW2iFZW08LkEZSwzu9TN91ZxWq3UF3\nYRhwcQBMVlbE7gOy5+V7kFdvOKt7ABD1SfBCgcaRkpD7B0hW19D7xUuAYfaKtV3w2fS82BLlLqpx\nZDpPjGuYKRInq2sQF88dy9e8j26jd64OeXcNsnEEtX+IeL6GEw2pPv+1CkCqozMyVm1L2ESVxKIL\nBaj9A3h/+hb4j96Fandor23d6zI5tV2nRLVCOZYQBoTxU31fu/cyv7t44gLE8qLRQhTwTi9RAapU\nJMbPPVrFhnJys3cQ1cpQm6SOIhqv3S7lgxnwy+6NdBxB27cYmQBRKTnQyTH3TFeA6vcRP38O8fwE\ncOE0vMUFyL2DVJJm6Fo+2E/xSJQ5mCB6u2o2HZhjN2GOEcSHnW8slcy2iIHx4fdm7ca1cm4qruo6\nEmJ2Biyfg6oUMHj+FJIiR3GtB7Hfhlq5awQ9JenqCHHsBrY3up3MLAqIVhvK6COxIADr9dwkJjwP\n+uwi8P7HjpqWbG0TM8mKR1u7a0kJNs8bkdD+AGyyBu17CO7sOaFPMTlBN/LiLLmd7R0BUqLxa1+G\n31XIvTNw3zX57iGYofzKw0O6Br0+Cabl82CFPFSrTYLEpqovm02g2YSYnoYSHKqYd1V+Vix8Ilvg\nsw6tFDCC6zghORvWfU6wVCx8hDJKb8xu0DO22KPItQUIbKtZZvGSH16D+BCwt+Qx4i1jhORmqgW8\nWASfnYba2gGUAqtWIHdSINKc6HGabLsD9up7UIADYawtNZ1CBuAyLZQAoPrUdiQqFdKmiqKU6THC\nbBK1Gk281Qp0pwteLIAtz0Ps7BNLoduFqFaI2QIQI8+g7RZEkju78DjH4NsvIb/agvrwOi2qxoFJ\ntVpGM+xkW8YqdxPXmkkilZl2Lu4ZcMjMQwaVz7IU2ehc4pKrjFg5ANXrUWUq4zg1GpYF5p05BfQH\nxHro9SAyY2FUk8DNOYVCykwsFJwAsTsmM3a908tIVjfcuN//Yh2Tq5uUtFy7ee/N8UgLAfMD6Dcv\nD7+GMbCzy8Beg+irJnL//j1oAGJ6CiqvUHp/OEETszOQ2zvwyseryAAB3uj2wJ+9BPV+JrmO49Sx\n76QZQpxTi5L97ZVKreSVcsK+1pGLCe5afmEet59D7VTm3rSgD4dbpzRMlc7Qo4m55oHXJqErJbAo\nRudrX8bOFzmm31Io32qDb+wTs0pKyKMmjVXDdksrrTF0ywCHR02iOU9UUxabFbk8aADlElQxD3BA\nnplF60wBTGpU39sDyzDarKaPaxNTZv3yPWqt8D14e214uxoIfLJ95xyqkkdSDuEdkeAzUwrN52ZR\n/mDXtI3EEFf3aB7Ohc6RlJWKBH7mcsQmY4yuYbNNzpvlAuRH18klZm4Gotl3lVxdyKXHdULBpAJv\n9iDvI9z8KIROEqBSAiolCM4eaUbQaPCVDeTmzuPoMQ/K1+j3PpvJ4WitivxcG5xrBEIi539616o/\n9yElrUWvfwABwl7utXIPCZua3ElUK9TyKRV0o0kF0lxA85sCZCjQmwtReXcH7aemMah5OLwosPzK\nEXQooG3LqdauRVALgEnA60owpSG6MfggAfJUpGD53DBD9wHj6KxA5a3hBJN5HlicQEQKLNGI8xys\noxHV8whfeQPyGy/Aaw5oM5l1CX0IwQcxRH3StP2PYci7F45vExz7+L3mLiUByVy+PcqWBkAOp5tb\ntMHWilzBmu0h1rDq9R0zyEkUGL1YaHncKS3TVp7cWUX0y19E8CdvggUBCr/3U4gnLkAVArKub7WM\ntmuq2ZkWf9PjlPsHrpXHnps2TBaMAIThK29A1ychahNQhw3c/fsvYOm/v0NPNprUMt84AqplwGjN\n2pZxAMDOHnb/9kuo3o4deC0bR2hcCLDwXh3J1ja5VOdOWLfs82hpftDQGrxUQOuXn8TBJQHNgUFd\noXqNY+EPV6Gbbdo7mFZBF3Z/ZsasanfSfN0Lj7luuRxfK8iPb4CXSgR6f+156PUG3Tf7BxCzM/Rc\nNgcfuTdEreb2M465ZEL1+7Sv73SMo5gmCQ3DDgKoy6SwndEx9QOodoeY81ZqI5+jFn/TIua9cdXt\nKZVhSo3V8n3AdOORAITAGFUYlR76gexO39IESddDDbWMETBkWEKmvcNV4N2khFRrKKtAbvRjdBwN\nqY2H7wP2kupnL4E/fg7Y2oXK9LFqrV07DwvJOp4VC1DNthOSdtURxkGKd1SVFUvz0KU8sLqVbnLq\nNQitIfcPoK1dp6Wzx3Q+PJ8jSu3WNlXCwgCMMQIGrJDV9CSSySJEewCmqP1AtzuY+KGxRl5eBKIY\n4vxZoBfR5JvPGfFhn8ZNFBkmS0CtA8UC1Px5dOfzKN5tgx91oVY3wGOFaKaIoFCAPDx8OAwhT0AY\nN6+hiWF0EbMgkK2KjLMUzII+93Fhsn2k2riCiYvnsPO1GSR5GpdRBZh5O0buu+9Dxwm15GX66wGk\nYn0wVbdbnXQy29459l0AIciuNW19yzkzsXzO9c3ac+W5nNMJofeSEDIv5oHpOtTtNUdb1W5DN+IW\nkqStbXbMsTCE+vCao2kOabrY87KXvNUCWi2I2Rkkm1sIN7cIvDIAJDdi6tR6efL90cXXbwO9fgrs\nWBDQMDpYEIAxfY85x+icmfc5ENKKQNt5zPxNQOQDzMpWX6bZJoZIFLt5b8gR0SQzoj4JZRlefmAc\nKbruPLJtWOqg4ca1OH8WE9c6UK0WhJwisCizOLnvyY4Jq9k2hiUgqhVgfTujV0Tj1zH0PA8vPnUL\ne39wduiz7eKljDVr+qR5fy4AmsfFOVViFb8IAAAgAElEQVTjCNwCECdLLIOOYqjGkWmVsGKYyv1b\nR7GjsLtNSBYEsudmWxANa4wJPvR8lknEGAOCtOIk9w6gjSZB8fZdnP1dcw+Xy1BxTFRjIG1x5DQW\n7L0uymWa1w8OwQIfXn0SutWmc7CC2fTFdCwrq+QYyKoo3+7C2zyEnK4CxRzEziGtM4MILCSQB4Cx\nolf0uVEMNjVJAAxjQ7pAMudB9BNonzsnldKtFlQlT7pBsQRqRYj1PfoOz4OeqjmwLduSlsxPkKCs\nLxBXAkSXvoz8zgD89g7i5Rq8fQ7e6tDvxZldlk8m4oSEc08Y+B4N78wp0mtiDKzVcS3k2WDdPjkj\nlsvg8c9uX/uwQu4fwOtJKN+Dmh1AHXw2OcmpP1TY/tscuWCAkjeAL8ZUYf9/HslfehH7T4dgEkjy\nQHlNofbqOuljRvF4a/pMMFsQ8TywdhfJ1jaxRLSGFgJ80CegJe8jvxuhc4mYFq1lgdO/v4ujpydR\nvtGGynuIJgL4LaNX5NECwBMNrx1BFn26r2+tQZ1bBuMz0Js7n2oM+21NWmlmHhQTVdqnxAlYosG0\nRrgXgWkg2O9AhyH8N69DP356rJbkSYeO41RQ2+a+dk7PMh5GrOCPPT6uXWzMY65onzXJuHAWqhRQ\ny6/vQRdCSLvvGSczoSR0wlxrmOp0qF3eagFl11VQ7iEbR+47w+++S/sYpXD0t15G9Z+9BnHhMcAA\nM+5zXL5HeZpl+7N8jtrapByyplf9PkQQQO4db91S7Q4RBR47hTO/veEKwXJv34gTH0Feu+lABOYH\n7nNl4wizP9qnYrLJjQFAhoCuTwBmfhadk82RSfvwc14g79WGyAVYIQ+vp3DmX+5DFUKIow5UOY/b\nf2sZmgFLf9qB9/FdajmXKi14CebkM5xpjcJw/pxtUbN6sAbMAQDvzWtgVgj62UtIyjl4uy0w1y2i\nj90ryranGlyBCQ4+PU+F81aL2rmLRTLGSCTU9u6QC3V8aRn5PfqNaT+hwU1+bI2BdOKBFYvggOs4\nAagQzDyPCmPWrXxkP/cg8UgAQlqqDAiS0fMwLVipQnymSi0EoGNTwSeWkAODgBS9s8m3xYFGNWKy\nOkJjwgI2lobl+k9tdb5cJkvfJIEIAnLs4oz+b5BAsv8NUw2gtU3a1J9bRPTFx6A9huJHu05NXDaO\nqGWnkCeNGMMSog2HJFrkRAnY2qfBGceuB1JICb/RgjpqIsn0dHOvDpQLQLdPrXBffwHBR2tUZfc9\nqGYTao1E08REFczzaFI0OhQeYyh/eBuy1YK0Og8/fAed33gZ+MoT8H80whg4odCJHHaQs8KmnnAW\n7+63zYhKZwEN95h9/zgq7QhgZMeaThJgaxcz39eQ12+5w0h+6UWs/9cvYvHfH0G9c2X4oDPta07E\nLGsTD7jqCjcUVwtQyIMGkO1nVSoVEBUC3tICkrtEpWV+4Fhz1oZaNo6AxlGqa+T74I+fBT9oQW5u\nmdYy0vLQUZS2fdnfvFQEwpAeM1RGUa9BlwrAjhmPQoDXJiBnJyC2G1B7+1QRignRx8IM9n/1Eur/\n56sQvgcxMwXVbIG1T3ZnL3f3wY2AOrV4ZjbpQOo+ZtlBwDAYZPWDRqxb7XuGHtcauJ+SAGN0jUIS\nkFeTZaDbI8ZJYBycMqwf5wzXH7hJnwmeukSZyCalw9UNDvbWx8RAKeWR5H14nd59XYZEffLY8+L8\nWdLxGWEReKeXITe3oQcDAoviGF+bvI4//n7PXQUdRwRSAUOWo2J62n2P/PAaPTiSOKp+HzyOabye\n8P6aMUbOYfZ3sBbyUZwC81JSFduOJWNdyzJW9EPrFQwTKGNDzxgJJGupoKGNo6RnCgMKvFpH9Mxp\nJHkB0VfIXd0kccJaDd78LHSzBd3p0vujiEQXAx/yqAkFgBs9PVYqAZ6gggEAxBFUX7ked0gFPl3H\n4MwUaWa0I+jAR1IO4O93yfhABdBWP0mIlCHEGPTSLKLJPMK7B2BSQQsOfnOdnMpqFfAOAZ86F0L7\nArw7gCqFkHna2ImWed6O+SSBvrtBDNhKKWUm7R3AWwUJ1OZD5Db2EeZDIKT2bf6DdzD45ovIDSKw\nRovYRifJ1LHt2Q8xvOUl7H59EX5HgUtADOrIbU1B7DWH9MTk3j54peJc8P48hd/oI7cXoBVxTL/x\n2TDAwlfeQP/XX8TSZAP8RFHERycGNQ+VOwlyOwOIXgzeaGNwdhrq8Vnk3rlz37XDbU44bea1YhCV\nClgxD1UqAB6HKuWgAw+Deg5akAA7kxqVOwzxTAnhYYL2YyVU39xAb24BXpeBSQ0ea4ieghhIcvoS\nHMrj8Kfr6E3lESr1qQHNqXfa0PnQgQ7S6JCIuWlEEx4GZY7SZgweK6Acwl+cJw2zRgdscQEAUpbJ\nQwjG+FBr+djc1sY4NtCQ/iT75Dx55D16MIDo9rH/Yg1TzT4QJ5DlHBr/+VdQ2EkQvvLG2OO2mprM\n84gpZJk9gwFYpnDHhHC/iWVw2HVCdTqo/9kaEsYgr99C82++jInfe9c56zrmlC2amjZHzzqGJQlE\noYDkxUtgP3kP4IKEh41ph5iaJMYTAG40YZO5Mrw/fWvoGsWPzYGNgO78/GnIj66nD6xtEZPo8JA2\n94U85v/xT7Dxd7+KxcYCkvWNk9W7O6m4D9tMHTRQvJID4gT66g0Hsi29R/9nzz+F1tcvovzxAdhe\nAxgMhpy7sp1FolqhPKg/IOAoQxrhxQJwehF8nX6j/f/kEupv7iH56DoBwN0B2PsfQxcKENNTkNu7\nx4EWNlwo1VoB2hgSjbaaeQLoDZxDOq+WwXI5dKo+iu+uIwGcDrLdG1pCDCvkoY1rrJioOnMrbUgc\nIgyhjY4Wzp8Cu3H3Z8o5HglACJps2l113Qp/GeaATtIWMqchZIAZAI4R5Oh/QAoG2dYxgG78MRMe\nLxYQfekitr4Uov5RguJ3P3LiZPZiDl1UTouZ6nbpdeUyubj0+q5KIuOEBpoVhM7nqLJsgZt8Hnj9\nAwQgvRBtkkVLL1StFrxqxdh+91M6PCenIHbQoDbpQh6sNgHWHwDTk2CtDgn0FfKAOWbmedC9HuRa\nqpIPRlV2a+nHCwUStS7miVbPOdE5i3mwQ7rJ2NQk0GwSE+j8GbQvVJHfiXHwZIjixHOovrYK9TAW\nv2PgjoKO5fEFbhw4xNjQOMoyQYbeY7WHLDhnxpxlRcnrt+AtLgBhAL13AHz3LSx8F9AAur/6ZRTW\nusDrH5jjo/exXJhSCzO0Vyjpxu+QC9jsFLx+BN3r4cY/eBzTb2uU/uVPAcZx9J+9jNrlJuSVG+C5\n0OnR8EKBNiJGYM32osIIriPpQb/3EbQFjxRNap2/8jwGFY7pH2yASwm2OId4pgz86N3h66bVUIWZ\nhSEYyI4Ua+tuEudCgE9UIQp5JFeuon7FCAkagIouywkveEqS2Vf29/c9B044celMu45jgcTpWBv6\n/whldYgvfr/Np2nlgRBQ5SLiyQKCTRLBR68P5EIwrYdduMLMhtYAB1k6tRUIBwD+3JNQ734IAGj9\npy+j/Duvuc/Z+VIVc3+wAj1RhkiGBc+zi9y4hL97YQrhjZVjj+98YxGT/5dhHM1NoXuqij/Z5VCd\nzeEXnl6Et3c4NIbk/gH405egPrw+xGiSN1YgHj8PeZUcg5KtbTrvh7Bf1ZEBm/1UwMhWmYbc0TLz\niNWV00mSeZxnxs7w5pXcy3TqRGcctHScQD9xDo1LZdT+6EN43S7E4jzkQh2D5xaRv9OCvPwxgbWz\n0+RYeNiA6vUAs8bovnGi4pwYWMZlEJwBHt3DVhiWFwvQcQzx/bcBGGtUxiC+9za050FffAy6VCAB\n526PxpwQxP5iDLzRRq5BLDYd+KTPcGGJtEB6MTRjYL4HdZmKL2x5CdwTYB+tkLDiF58G8zjYdqqn\nx+ZnoMs5oBsBrS50LoA8NQNZ8DGY9FG82wHXGmh1wHoD9J5ZwtrfO4vTf9TH4RdnIGKNwnofeuvk\nQGgC9R6u9ozaP0B+bwG9ugAYkDvUSMohwCfgMeaYpzqKyLku8IcLLo9oZEFk3uojbJaQWw0w/Z2b\nx9u2P2VU3gtxJ1/DQTGPKHk0UueTjOrr6+QWKBXkzi6SwQDi9l0SXWUM3vwc1GFjLDOG1tWIWs4r\nJWq/KZegPUEgcLsHWSsingjRnxSoXm2h9VgJe89ynH6lC+1zqJCjMy9Q6fYhegosUcSaVCA2vMeg\ncqQhFJd9RLVp+J3kvnWY+4WoTwKHHcMGSNdu7/QyeqcmEOcZvIGGEgzhj6+i9xefhOgVwKVEcmOF\nTDuyOffDCFu0GCqEZ/SCRpy+su9zj40DgkYLqRkX0CEnJpAgcL2Qw/ovT2Hhew14V1dR+/E+xOwM\n4l98DmIgod/4YOh7hsxUDHCjBwPSsTwYYROb44heuujAmOv/25dx4Td/6hzm2r/+Mir//DXwx86A\nHTVJa7XdcXu8bN6UBfB0FMHbaUJlmUKdDpp/82UwBZR/mwAhVi6BL83C/7P3XHeONbTxPrwNZQFR\na1xkwCDbCi+bTdJj7fSgul30f+lp5P5gH7P/y08w+MYL8A8bD7X18GGEjiMkt+9CXDyH5t94GbX3\nDohFdf4smFRI3rmCwjsAW1zA4S+dg99RKL1D95s6OCRMASB8odMbKuJarR/GGWk2fngdPPDB52Yw\n9f1V6CNyHMPUJHB4lK4v50+BTZShr1xN8zVFWAQvmU4Vo4ekk8RJbqQsew52cARdq0BM1ZHs7EHu\n7UNMTyMqCYTrGykrjTFoacb/4RGgIiduza0BiXEVZkKAVcrmXA1z6PJ1Kh4CD8yif6RWNUsRtIgY\nkCJltuXLuYoBx3QV9FBLhkK2heOedEcloTpdhG/fwrw8i82v5NCefxrz//bO0MTAv/AEcP2O+8Fl\ntjWm3XaaMDxXGBYJtSJQAFguB7E8j7hehLd+iPa3HkeSY6j/6ysk+vz8U+jOF1D40VXIZpOcvabq\nZHEIUGWlP4C0eiHlMlH0hYBamgbv2CSfgVUraPxHF9GvM5TWFcr/5h3Ir79AOg1XV8B3u8Yq2Iig\n8hxRxHf2oc111VKCi2noYp4S62IB3uIC2i8sIb/ZRWmlBba+i/krDHJ75zNLvH7msGCQ7dnMbsaz\nYNE9NuTuZjU34LjKiQMiM68FDFPB98GfvQT50S3oJIZ48iJENIX+6Rr8dozC7/0UACC/8QLaCwHq\nP1ilRMGANG58WLCGp7clC6nvVQ8kZGbjfdbYCnqLCwDnqP7T16AN64dP18H5NOTqeroB4UZMuloh\nfao4hoqNgPXsDInERgRg6ThC4fd+igKMBhJjwLWb4NcIWGB3NiGPmkMUcZ7L0TjMCJ97c7NAGEBu\nbEP1+ukCb+xFVasFb24W0fl5+B/dBTs4YY1787sSUMwdC2hIw8xVGpgjKJLgW/qa49WyBwSBRiLZ\n2iZ2XiuA73FgsgocHFGyMDcLsThPNu4z05DbO0MME8twssk487yhJDaphs5BoDPPUTb/FrUa8vvK\nVbrk11+A+P6wA567XNbxwwTzAxR+fPWYfoQ4fxbFneG+7s2vBuD/7iyWMQwIsf7gWMsKz+eAldV0\nbBUKiJZqCPsRkqsj9tGaxGNPOhzoY4WjLVBhtYSAtHXKagRlHMMcOKQ1AJGuGQ6wTvXwuGEd6UwS\nzq6uoHY3h95XH0e43UXyzhWI/gC594/ACgUMvv0SuNROk4DnSHuOBT5Ur59pZ6axTa4bRv8oiokJ\nmAvR/oVzEAON3GYb1/7RaVQu+1j6nZvQpQJav/EyKjc7YHtNKkiYY2S5XHovSOU06SA4VJmeE53I\nMYggGGQhh7v/3VeRFDQWv58gf7eFzreeRnCUwH/jKuk2AakrkVIQW4c0lxULYImEOGjD24jgHxyC\nLcwCnCN5bJ6Aj9uHuPA/d4B8DrVtAXntJrzFBbKtPqnQeODE7PMK1e0i98dvIf/ikzh8ooTepIDm\nDCrg8FkVIvCBnT3KC6ploD/45A99BCILVrNuH8XVDsQgP7Yd7tNG2NDoKA5fKLQ6j1TqfCKRrK5R\n8fPx0+ClPLC+PaQDaNcQb3EButU29tDeEDuHMZa2YIVkM8/7EVirA17MwWvHqN1pIKkXwRRw7rc+\nRucXLoApjbjAsfCvbmHnr5xHeS1GUvLh9RLEkwFUYNrGYg8qYOCxRnAQwdtrAc32vTVy7hN6eY40\nzQ6OkNhWkuUlREuTYBrINSS8jgTTGq1feRq5gxiDqTz8dz+EeOICdJxAPHkxZbk+zLBs5VEA6H57\noyz7ZxQIGo1RtGLkc9XljzF3Gdj+L7+C4nYZxZU5KI+D/4jau3i5jOavPAmeAIXf/yk52RqtU9sS\nD4CYoi4H56mZDwDvT99yG/cLv/lT8C88AXZnA7JxhNK/eA3MD5DcXkXr115C+XdeI4aGYSFZF2de\nrTj5BdKN7QM3VkiCIXN6lX/+GvRXvkB7sFyOzBxeegb84mPu9+b5HGRMshzZbgXnON3tQl1OWUJy\nsgS9QueW+4PXIS6eg7x2E+J7bwPFInj/P0whe3ntJirXbqL77ZfATr2E4DvEKht8+yVsftXDmT/q\noPzbVODUT16EunknLZxakfQsoyfbPQSQ66rWUH05rOkzPQ15Y8WxG3kuB/3hDZNHpcVWm0PZQirz\nPPAzy5C37tJjXBAbspBHsrNHpJDMusSLReiFKfjdVN4DgGtrsw7N9CTdi9R9ZJzHOQer12i/Z7od\nvPk59J5ZSg0V/lxpCAHUN6pZavFs2QqZzTiAFN3TylVZR0Ej+7q0eq+PW5NnAQRN7Jzg3Zs4vTOL\nzW9M4fpvnsbpV2bBf/gOHd57HwEwG1/fpx/VDCjSGjHuQ0YIVPXJUpOXinQsti2l04O/34CWEhOv\nmjahQh48isCPOijuNqD9zM+SkJ0usV7ILs977AzR6IyaPgB46hQtwnbyaRxh6gegY5QK+tQigrVD\nyBsr2P6vvor572walxgPutOFGgwgymUS+2x3yPnB80j7AQAKeeh8CFUvo3TZ2J3nc4gvLoL9mFgj\n1p78xMOK12VZP7Zf3VYrRhfDbEXDxjgKrWGVHUPns4tdqwVcvg5RKUE2IsgrV+GdOYXcW7eAmTqu\n/tbLYJLh/H/7NqqDARIQO0ZHEbTW0DHoO2zrj20tlNK1Ug6dbqZa4UBLy0wRAsl8DeKo51h0THBy\n7h4MgO0d5+rFXnoGYq8JuWGqHIEPUTM9/cZdThlxWrtQWpaJvXd4LkebtTgBjMuZtbVOdvbMz8PI\nojNOnEsSpKT70fPAf/QugQonvFly7V/2b8YoibVzUBI79hBgwCHTnmrfr5ORMZNNpB402cqEbBzR\n5v1OAlYpAYUcxFQdCAPE8xPwo0VoC0Cr1AVirCtHRpdJ/PgDtybM/6+vu3+rc4sov/KBK6J2ZwNM\njElixVQd6ii9t73Ty0jurEJmFlpx4THI67cgb6wMsYZkJYdoQmHpT4+XuFj7OJ3VCX2bpIxXKwje\nW0FyeByoElN18OikRYS00aAxGkKcOycw5nsOANLWQcy2lEmVCkwDtJCrkWtinOuyrWdWV4hlv1sI\nIE5QuLyB1hcXIc9/GZU/vgxRmwAAR8X3HjuDwalJeHcPoDa2yAnGsm1N6xsdr2n18gPwcujcLYt3\n2uCHLUAqPPE/kStYcoqcVyo3SE8OAOTuHrkGmSSGWa2KXAi1PAdxZHR7Lt+AqE1AV8sERPkC/KgD\nfqRx9p91qKUs9KEKAcof7CCen8DhX38G9R9tQBs2pe52gR6xs1gYkP5gvkzfF/jgs9M0vrWGt9cC\n61NbtS4VoHMhgVdfega6EwEn6eSbXZceZiiqyNeb59F8uo7OLIfX51CnfICVMHm5BH/7iApDj4AO\nys8aydo65IVZFH5y7Z5ix58m9l5UuDS/g4H0cID/8DSEAJPrvHkZmJ2BOrcMsXcEvX8A7+xpDE7X\n4R/2kJhcGcisS4I2RQh8cmTK5ynP5UYgulyE9gWggXiujCQnEDYSyAtLyG91EVdDFH5yDSiVUNxM\noHwGPlAIbu+hX1+A8hjlDwyABvJrbejAA0uMg5GSP3N+yroDwCddDu/0MjkZ5kNqU4sUlMcgQ5qb\nvZ5CXCS7e/n1FzAoCIR7fYhbD69djE4i8+8sKDQu/x3H/hl9LJvTjLKOss/dAzia/t9fhfzGC9h7\noYL6B230/tqX0DjnYemf3iC2O2jNSm7ddhvhIZby4WHK5hkD8GWBYbtnE09ehL6zbmy5A+T2Y3hn\nTyNZuUNrchA43UW5f+DMWaJfIfCB+QGsgy6EcMdlDV24IkIC3vkI+tJ59/2uGKtS5r8tqo1qLQEA\nu3Z3aN/Omm1yoTYtj9z/89W6+yDh9jpO3Nvk49mODxPhK2+Af+EJNP7Gy6i9vYfCm7dx7mYF8tpN\nxH/5i+CRgnj7Bu217X7f5Oq2k0OZucB2XfBKBXq2DlnNkR5Rpwten4TaP4Dc3XVtWTZ0kgDGxdfN\nbVZew8jHsCCAur1KnRr9AWnInloAtvfHjlmWz2HjazUs/mGqPQUuHGagoyjNG7LMPXM8utVy8xrz\nPPBSEXvfPIuJ/+fVzJc8WI786ABCVuA5iR2YY39UK9hqgR8AQ+LR7v82t2YsvfBmU38sCcu+hpEN\nnIwisE4PC0dttJ9fwuq3cvBf/iqm3xmA/cNd7L6yhKVX9qjfc3qaXNFMFcQOjizDyTr+qE6HXpPR\n2RD1SSSra47Wz04tAomkAVWtQMzUIa/egmwc0WLUH5D1XpkDUUx9iFxA/8Jz9IG3tuhva1t99nRq\n39vrgXkCycodiEoF0291iAlkLZC1JqHJbo8AoFwIeUCbL1GboITb88CiGHyPWthUtwsxPZWCQbnc\nwwGDgLFU1yGXJQsOZtk4tr80M2kMTUbZtp+sPb1BlnkYDgmZEdOsRzaIxUIq0Ht4iPN/n1gNGiTo\nqSZKwJ1Najfp9QhYMALqvFiA7vUIfBCCAEUhoM4uYO2bFSx/pwFcvwM8cwFi6xBqb59cyXb3ieof\nR8Br70MyBlEuG7p/4LRxeKEA2e6AFwtQb3yABMTA0FJCPfUYWKNL4nfZYAzqqEnjsNOFahy5yWmU\nHq6VBi8ZRpsku1GIwLlcMCEcm0JM16EMNZOFIXB4wkwPIVIWjVbD7ENgCCyyr7PX0VmEu9ey+ydF\nxxKrDGA9EqrfR/yLT2Hv2RBL//dV9F48C55otBcD1F7fpfmiPyDh4JHvsJWL0fmOXToPbVpyxOwM\n9aSHIfjKBmRGdyhoScT1IsQYQbqhHunS8IbIW15C50KdgKCRhfzm3xVY+H2N8lvrQyxCUZ+EarUx\nGnowSO85xlzleTR4Lgfd7kAFJzxuTKuY0xAyLCGnvZUkBLbY1ucMc0wnigB+nuoDDZ+UeZ8VTAYc\n+ERtaimTTScJ1O4eiv+uAXZ6EQd//RmU1iKogGPlHy1j4t0AC797E+L7b6fX3d6DUkIznjJAfN+A\nTMZxUCkoU8VSoKq/vHIVolKB0NNgcQId+NCFEMoX6H7hBeQ3ehCNLpjVQzMtY2K3QRtBztH6q88j\naErkb+4D4MDVFehqBcm5efBYQfkcvJeQ4LTg8G9uYvLDCMokRdAKrFCAzodA17LhALS7xFYo5KgA\n1I9oM2fEo+H7YIkEBhEQ+PB2jlKmwgmGPklG0ieEvHoDlb0DiK+cR2dOoHkO4BFDb6qI3H4BxR2J\nwisPeUP7KcNrDj5zd7TiUgvrR1V44uGKgj8KIbd3IKQkdl4YUm65cudYd5Z46nHIK1eJNWidlfI5\nIJFgcQIVepClEDzyENVCdGZ9MKVR3IzRr3tAnQSm+UCC5fNQU1UERxGiiQC5O4dAFMNvSyR5Dp5o\n8IEClxr9+RK8XgJMlKBX7sA7vQxkHFA/KeJvvgjx+nVgaY5AoHYXmJlCtFCFzAliFjIGHiuEq4dQ\n1QJZnCsGmRPwWwl4n9YFYt2+/Rn/Ag8Y2ekmy4y4n6mKfa3dlI/LbYBhMCOTL1jB5nuJjIvvvY3p\n14to/NVnUHtrD/l/fQNX/8nLCPfOAww4/U+MSMwICJVl1thjZGFIbdBPXkTvVNWxR/ClZ1KJht3D\ndH8WR8i9dxetr55FfuUOGQCZddYCTbLZBPM8BN95w7GUAKD7zWdR+OFVByzawqzqdCAmqjj61iUH\nagFwa7uOI6PnaYo75tpm2+IA6jTJhpqqgSUJOT37wadufXyUw+WpWQ1OM+6cdnBmDKn3PsLk/iJ2\nv3kKuy9Pov6mwNHfmYHyNApbHKdulMEsMSMj86INaONyMs5MnsnAdg8g7lABndcmSAQ6I/jN/ICA\nIeukPBhA1CZI07XRcHm9JYnoXs/lgQAxfvj6NvTpefBWC2x5AaqUB1/dgu71wUpFVFcSJLdup+dv\nOxTsuLWgIgDmexh8/RmISCF46waxsgUnh+dOF3p5bhgMok94oN/j0QGElBF4tm0cSMGfrAV9upES\nKUCUaQ1y1X0rGpXZ1PPAd/a6WiqyLjYTjE4S1/Yl9/ZRfCPBqYN57H2hgN60j/z/MIPyhMLGN6cg\n+nXM/dtb0FFEwJDdIHNBtvBBQJOFaRnj5TL4dB2qnMfh01WU1wYQV+6ChSHE3AwtkloDvb6zuWOe\nB3H+DOS1m2RfWa1AHx7Rz2oT42oF/m2yKkcYABMh2t84h+4Ux+zrzWFr6L19sDDEzq8/hZk/uOnQ\naxYEQJJAbRoKm9l4WGTSUq5ZGBJTpFSEbLXAhICaqYGb1iEWBOCWOXXS4RgZfCyyPCTqawEjOz6G\nXieH/53ZyA1VdrUeBkLMgqXjCPJIgkcRxOPnofMB+G4Dh3/hFPaeY2ASKK8A079z2YmAZ1lq2UnF\njmN5ZASd9w+w+GZmTXjzcrrJ6/eJujo/Q20fUhGFtVgAN9aMVghPNpvUhtZquUXcLbCvfwAJWtzF\n1CTiM7MQnQHY9oFpeVEkam2Om6KktN4AACAASURBVHFG9ElDYXQuSTGBismz5yBzAsHr18BLRbKJ\nbnecFaTc3nHJg+oPUgHekw5rNz8SlnHIfLIMt4wgbVttxjF9xlTG7L0zBFLauU6wsWMxmvBQ3FTQ\ngwiFa7vQzRb8P2tDLMxC50KotX76WZrc30bp+TbExXOIJ3KuZUzVK8D6xrHWVwAovHUHLBci+upT\nxCqyAo0jwI28cnXo7+YXF1F59TYScx7sxaeg37oCcfEcFqYaKH23AZUFqbiAsm2HY0J/+WmIGxv3\nFCplxjGLMQb9MNpw4thZwjPG0vYwpdK/M6AQgGFHP/Ma5vs0f0uZaRej1i0YbR14HjF4PDIAoO9P\n0u+WEvrOOiY3toH5GSQTBVz8O5RUZwE4b26WQCS7Ubb3bxiQG00UU9JdCIFqGYPzk7j7bY75HzJU\n39ujtmnj0inLOYiDNliTnMnKmweQ85NgVudOSuhmi1rFDDCjSgVU392FLoRIpstQgcDOf/wCRATM\n/vj/Y+9NgyQ50iux5+4RkXdm3VXd1Te6cTSuxgzOGUq8Z4ZccsldrkiaZCutGWU0ma3ZmmQrySTK\npF8y0/6Q7Ur6QUmUuCIpaUSODUlxSS4X4HCW1wwwwMzgaHQ3+r7qvrIqs/KKCHfXj8/dwyMrq7sx\nyy4AI7gZDF15xOHp4f75+9573w7E+jbYxiZYtQJWLEKXCsTqsWPP+rt1u9BbTQc4QQgnwbNgdnDy\nOH22EEEXArBEQpUjyHKEcLVF7IQCz+R9B9H8eGQUe/AjaHJzC8U/ehOVx06jsjqByrUmVLUIFXIE\nm50988MnpenvXLj/hz5k67SKqDVoU3DAOOLHssmNTSo4cuoEeJpi8+8+BRFr7M5zRC2NyfNdyNff\nBa9UyO4gjokdFIbQrTYwMwktiBXEuzFEJUT9lkTw1iXs/sSzUCHD+FtrGBwdB5caulaBLIeQpQAq\nZEhm6+DjFRSWdqGOkwiaaYApDZYqqICDlUPwF54GljY/lLlz6foG0t0OBIC0XoQIBWQ5BB9IyKKA\nZkCwmyBo9amYiNZgP/UiwAAeK0R3NpDevgtx+iR25yM0HtJv8EBtiFVwz3nHJa5GxdH3AIf8jykN\nxolZPwx62KY6HdS//Abaf+cllC9fw+n/JPM0ZKdPgi8s7002pin45ITzRoWSbh8jL15BaakBGMlY\nWo3c5laur4PXahD1GhXUWV9H6Q/WXQUy1e9nfk8GNLP7OekVsyj88VvQ585CvXcZYnwcrR99FJWv\nfgssjCBbu6h+9c1cv+gkdmwjC5ap/oD8QBlD/NLjKNzZIllSEBDg6e2f+EaTqqKlKSVtC99/DCFw\nATFBpAPdH2R7e2sZU7RM+EwqmC4sYvw3FjH+G3SISe9wslCAmBjfk0R0wIr5XV1Ce3MrY95o7X4f\naE0eYkoDgkNubRsSAe17VKcLKEW/y2CQxfDm2RD1Os1v1RJZbDSbgGG3sdUN6KstYq9ygY0fmcfk\nb71FinKP2bRHfWDBXClR+PPzFO+nKcTUJFovHsWgzjF2tYv1s2VMXSqMVA3cr90XEGKMHQXwWwBm\nQTDTr2mt/0fG2ASA3wFwAsAtAD+vtW6a7/yXAH4J5Lrxj7TWr973Siz65cvDAIeWMc4AERlvhWFp\nmDZ0UZ6nVdkSf2ZwWWNd2dqlzWyhQMcxZQxtB7IggFxbB9/axtyVGm2Em02EAOpmY62KBYhHH4G6\nfivbyGoFPRi4ylFMCMDKyZo7YFtNTNxZoUmsWoE4NAu1vknA0WDgACkxS5R87BA4ILd3IBinzMpg\nQJvzkKRe9tpsG+sNMJZKyPUNBCeOQU7VIUshwvdvYfuLj2HyvV0y9Isi6F6fNhWFAqAV5E4LvFql\nzXupBEQhuk/MIa4LNF67lFVZgKGqWUrmo49AVYrgC2uApa4d1LgxzWePOSmfxyKji95Le7X64exA\nPIdIu8ndbGZ5pQIr21BxktFuDQXRyvr09VsA40iTGON/oTD26sD9ToqLzI/FNz/X2YLtzlcsZucx\nTYw1CCBs7dJ4m5uB3tjKMXt4sYh0eYXkR2ZcsWKBWERetkQ8cQb9+ToKKx3oD665rEe6vAJmysQD\n5DWjDGvMBgtagRzvCwXwUpEkcLZiWr8P9o13EADQZuJi3S74qWPgGwFYrQJdCIF1MkmTzR2/xPaB\njR0mOG3EhyqEWTkZE6A5x2a8hpsPCuUO7BkkHj2c83/KxqMCWAheCDK/MdOqf/gOyX/GGkhv3qbj\nlMvEIlzyfDHMuKFxlzF4fJNEdeM2+BUPjLpya881itkZyngsr0DMH0JcC1H2WEX7meGK0ychr99C\n+fe/lQMfVDEEDyNc/o+mMfvPAbW7mGccjZJhei0ei8B8MIgLiFPHXD8OfuhpFP/ifcr8BPZ2DnbO\ncYAMkEnITGNRSD5s2lTuMu8zYyqtra+QMzDnmezYgknFAhAE0DvG1N8AILY6ILo9ymQxTmBOLMAX\nVxGsh5lUxqNGq1bbASh0zcbkmDMgSalAQRCQTLWpUTk/wOPXCo5Zo5fargoe7/aARh1yfgrxRBFB\nJ0Ww3UN8ZALRYhO6baqGJlR5TYckp0AYgC2sgm1sIqrXMb91GKxH46J39hB6k0fJ8HmpD9FNwO6u\nZLI5lRmvgwtaCwsF2mAWI+hKEZs/eRylTYXa+XUCohgD3+1D1UoQzQ7EqsnocQ5dLkLb7PABj52P\nW5OXr6F4GdC1GrjglJz6hIJBD6MFp04A7RB8rIv5egt31ff3uLFScAjanOk43rdSl81sj/8mZaXr\ngIsjguNHIZdWTcIspRhkEFO1nDAAUwpMa6iyYUBoTcmIWCHo0nNavLWJ7pkpqEID8ViA2lsLKAIA\nY+g8exiVCzsId0uQBQEmNWQhY/7qgIHtph8KDFI/+BzSv3ibJCABhw44ZCkEH9DegsfKmFhbRrkm\ns+OQQfQVRC91Vg47z82gN8NHAkIHOnbuBz7nmMv7WCnsBwIxqrBEMnZKjFrGuy0Z7yw2hr5f+8ur\nkC8/A7zxnjuW9W2xjRcKDhxSvp+KOX727x50QvuT6K0rUDB+lUpTdbBJKiMenDiG9NYdjJ/fziqe\n9nrkGeOVlOelIuS5Mwi2Os4EWr17ycSrTdRfuwTMzkCurtHnPfDLjn+bPPQTynowILXA178DnD5J\nJxMCfGoCzZ95EhN/egNydQ2tV06g/PurlFxeWoWKDEjy/TLncAFRrZAVgVXxcEGl1i2L2XoTjoi9\nWaHgiAu8Rkb1EALp6nomRbOEEW8Mi+lJKrRhx5KTqhl7kAGdS7V2XczKazWnBFL9QU7q7wpcWdNq\nJaEGA2gb83sWEpaBBtAcO/i3n8LYlV42NnxbG9NHrhiWr35RVGCGhRHSxSWUf3/JiZhn78wjHQzQ\n/oWXUb/SBrt2B3jAQmMP4uKaAvjHWuuzAF4G8A8ZY2cB/BcA/kxrfQbAn5m/Yd77RQBPAvgSgF9l\njN0f2tQq61AQMMQMfd6V+DYP2DBgxILAVALaZ2PvgQWiXoWYGKOKWnFCD7A32IL5w/TjR0RXk1vb\n5Bb+xBlCFDvEblDtNvTCsvtx3DkBxziSrRZ9TmuSAcUJXW+1QsFsKsFnpiDGx8CLRfDTJ8DPnYU+\nNAVMjoFx7gaybDapctghAxZZGd1Ynbw7fvgz0K88SxuMKCRQqlICSxX5IEkq4ckv3XJyFyaIzWFL\nhYuJcbBCRGWItYbudFH41++h8ZrRhHMB9QPnsP33XwE/dxbBiWPgzz6BD/7RFDaepxKiBz5uTL87\naqFFaS2o4gE/sL4W3qKU+4zIlw73P8cKpsyfcXC3GmYrDWRCOK26zWS7jlheoUoGodlMGaZajtnk\ngCH6T4w1qGpHv2+Ag+yYcnuH/FusnpozVwaeVyoObApOHqcALDbGdn2q0gDGsupol64i/Np3oN7/\ngMZ1p+PYcmJ8HPEXn0dw4lhmQGvpnEHg7kebco920eblMklLpqddHwfzh0mWeekqZXBu3KJ/b2yS\niV+Yw6YPbOzo/QIlH+Q1fjDud9DaPev3OHD273Af3F1r8FIRfHpqj5TEsklyIE+5RFIv4QEP9thD\nfgCslD2L+3mWWH8kXiYjfMt0VOubCHoS/SO1HANKjA2FtVwgPjKev1cLxn7jHSz84+dRWeRo/NH5\n3DXnPmefy6E2XI42ODQLbGbVRdY+E5EWP47Bsy46uDkHZr4ISQplJVcsimjt6A+cwbp2gAbJc1kU\n5aSJTPCcKTWxdMq0Pm1ugdVq4GMNw+bxWDGVMsTcLGUcjTm66nYBxiHOnKLn00rTul2qdGnkbO68\nUrrEgN5pUUY0jOg9pcA6PegwINnE7BQwPQGAtPhypgHNGQoruwi2e0AqEX6wQFLlapnAKMtgS1KS\nawFInjyGzs+9hOSZUwBjSGfqkOMVFFZ2Mf7WKipf/RbC2+tgu72coaLW5G1GZqAFsMlx44HEwbp9\n8JVNzP7RTVRvtIEoBNvZRf9QFa1nZyErEeLDY9j+3FEs/ewJ7D57mO4vG7oHOnY+DuygUY3XawRC\nfgoG5Vp64xZOf7mP7c0qTlU3wLKBc7Dj5qAa57ThKhYpdiyXycvuARoLggwoT8kbkUUh/WdjiEIE\ncI5kogSx0wNLFUSf1ilZIF+hoCvBBrEDzaP1DkpLPQLXwwBqogYoQE43EC63UFjtIGz2EOwmiHZi\nhNt98F4K3nrwssvqB59DdGWZEmnlUi5elGUCKTQH0opAPBagf7gGfu4sMDmG0toAYTdFcOWuO155\neYC5f/bN/U53QHure881ztMOyMehD3ocw6bQg4EDhkSdbAOcX2UQuOSZjT0BYijijfcQHJnPjlWv\nZybMAO2XgIzZAfIOFPU6vWyKGOgkzpL/hgEvt3eA2Sl6bZMSmuktUmfIWpH2dfY6lAT77JNZV3Q6\nYN98F/LSVZIcAsREtdfeaqHz4ons875EKSaZmOpQlTr3Pa0ogVosUkVpAxrwagXpzduYePW6A5gK\n28YDcm0TvFJGsOlY2p+cOWd4HHl/i0YdKFG1ZcAAPGFAcUqvZ5QqVL1LVCsUp3pjlZeKJJEaDMhG\nRQiwagXB8SMAPDDIj9UZh9reIUsURqQQ0agTLnD2UQRH5mnMcrKvsedUnS5ks0m/sVakiCgVKS4T\nAmJyHLs/81nwpx9FcPK4myvF1CSYEAjmZpH86GeIucwFYQynjqE3SR6qtm/Y0N7RxfV+P5rPBSeP\ng5vnDCBf2mBuFnJ9A/EXn8fYn98Av7VEYOwDhhv3BYS01sta6++af7cBXAIwD+BnAPym+dhvAvhZ\n8++fAfDbWuuB1vomgGsAXnygq/F8NbTSo/X21tBVCPq8MZnObXqGpGIA8mCRVFR212peDYMCAGVH\noxDce02122DNFj3Unv7WodM8Y6TYa2LepMqCgDbmxnhUrq3TRMUYkEoy1p2dhmYMfHULfH0brN0F\nigWirdkWJ0AqIVstYuusryO9vQAEgkr3SgW1vUOb7WYTbLsNvklo5OCFM6hf3qH7NiwObUETQ/H3\nN39aZqiqBRN4qYhwfRcTbzeJBjdVR+uxBorLAjPf3IJay9D1Ax03HkvHZtBzABC8TfHwosaYW7SI\nXcbzC6R5Xw/Ik8BO5rxaIemh0mDlEm3sy4TRWg8XncQI5mYRHD1iXkuI/jk1CTHubaRHUHnl9g7R\nHrnIXucCwdEjEJMTdA2VCo2FazchJicQzM2C16pgFboOa5onGnUEM1Pg9Sp6545BnDkFPj6G4NAc\neLmM4Mg8LVBTU9CfexZ48WknpYxe/TZl8ibHCdQSGZ3TVWYolwmIqlQoMxLHdF2bWw4USheXIJ44\nA/UD59ziH8wfRvKF58Gee5Ku2zAsDnLsWMnNnlKU+ywmdkzck97iTd68UtmzKNpxAhDIg0DsWQic\nlNPfEPeMZ0qlkn0u2As20SI0emoXjbrTRzNBQb/qdkkyZLyEdJIiaMcQfUmV4kxTJ4/sOV7hcpZ5\nFbMzOaBj4oeXMfd6h8a+Hga8TOUs45U1slnWaBAQ1dsw7MSTj2HmuwYF0hqib57xg5xzrDQ5jmHN\nvS34o41XhgXrsqqYPEtuWMmuYajpOHHMIJiqdqxcgpiegu73oTpdklqaANPKqHS/D1apEMhk5j25\nvk4yBsBJ61S3S3O4ZQtapo3X93x6CvzoYfqjWCCfnkCA7XbBBgn91+5CzU4g/dyT4LsDBIub4GtN\nsFYHuhAgeWwecrIKHYW0Pq2s0jzU3gWTCogTBJs91D/YRrAbg8Upggs3wS/cAOtTUCdOn4SulCBt\ndRfDLnB+QFJB73agt1skH+t0qe/KJeixGrRg0AGHmqyj9MEKKn/4HQTNLsAYCtspDn35Eop//BZY\nu5MxCQ5y7Hycm5Xlf9r2NPbNd4GEQWmGRJrn//tp3HjMembiCFaIIHc7YIFwSQZ//RrVtJRAGNLa\nZ83xczEVN+urBksU9B1aQ6z0lymNpMrBlIacqiM5OomgL4G1LWjBoabHjBcLh4gVeDcmULifEDAg\nOGRBQGy0wPsJ1Opo2fGo1p+MkK6uE3BvZSvSxMERR1qLoAOOtMihhInvuwNgeR3BWguikwBTEy7G\nia6P9r8DDnpvtQ/IAxv3eu/ZpOq9jjH8vs/gMMVCAACcgY81MtWD1gTwmOPYJJP2fAwxPzvyHH6M\nJDc2s88JQQVxAIjpqew2LCM5MM+qVzFRDwZgUqFzetxdi9zcwu2/VTfHmc5dg9raphh5Yjx/TanO\n9mjDrCovRvRLoFOcoIBCAcGhOTpOg86rmk0HmAVtI4drNqGNrx8d4hM054ySHdoWhVScSFlmDa3z\ncqtJfwtBCfjdDq37dn9tmq20BdCco7rG33Q3kxQO/w6A+e0D8ntk5TJQKFASrGcrkzH3XdXtUmzF\nh54PQwbQJbJq0PUqyst98I0d8mUMA/BikcapEEAhQvHdO+Qtqyle3HlyHI2ru/njAg8Mxsbz427c\nAJSkS0/MQkxPofTOHfIC3t7e8717tQ+18jPGTgB4DsC3AMxqrW0N4RUQfQ2ggXnX+9qCee3ezYI4\nFhTyXbSt0TQX7n3nMm//Y8wBAt4Fw8q4gEyKpU2ZOTE1SfrnqQmI8XHaYG/vEEU/CsErZTeY0pVV\nF9izIKANPYhKZtFgMnYy163JXDc4Mg9wRmW6B0Y/6jYIZECl+31gEIM3W5DrG0gXl8jnIZVQRi4A\nGLBqfZPkOz9wzlA0JdhuD8WrqxC3V4miWalAnDlFx1AKm7/0CgZjAfTlm9nD4ZerBmhDEie0Cd3e\nAZKYSjIa5ovq9wkN7fSA24sEOF2+jdJajOP/7B0yDvQ2qgc2bszvQaZr/phJ9y5s/gNnxwvMwmFl\nX5baaceS9krN86wvnHxOK2K5tFqEHnsG1CwIaEO0uExBlEF604XFrERhGGVj1pfw1Osmq5JVyoOS\nSO8uQBrdqwUkeblMpTmLBZIVKk3j+qnHodptqE6PKn5JiejVb0NeuY50eYUAJ6UgV9fpntbXKeh9\n8zwx2wYDYhr0Y8i7i7CsK58xYytC6TTNpB2CJHFicgKq1UJwZJ7As7vLCN69Dt1qU1ZNKZTOL0C/\nfQFyY3MkW+ehjh0j6aH+HQJ4hsEgw2D0GWjDv1n2WY+B9ugJsG5eC89nvKBlQICCMIGBu7TdDlVi\n8QIt1elQJm6sln3QSWe9eS9OIL1SrTbo4M88DkxPZkFOv5/JBztdB4jpJAbePI9wq4ve0xkItPGZ\nbPFhLzxN49HTanefP05+acUiNn75Fez8ySGId67ScYcov34FtP18hLb/vRfNZzOwv/kPXgHb3Eb0\n6rfdfUetvd992HOOq4Rmqow5oJTnAWUyjjaSPlt5TJAZJhMCtjKlWzu0KdterzqmEYtCknMdmgEO\nz1KwPTNJLJhqJQtOzPPJKxVT0CA25tQCwewM2LHDJDX25Yk2EaAomYCdXRrnkiqZyYk64tOzkDMN\nYrpFIVinj+jiAgVM43WadwIB1h0gvHQHUBqDIw0CJgsFdP/uS2j94Gmk03UkhxsAB1hvQBuriQp2\nfvxxtH7yKegS+QChEEEvLGfZZQuucZ49k/Z5Vd7zqBRYPwZv9wGtwds96EoJ6qWnAKkQLm+jeGMT\nmJkEf/Ix6PH6HjbnQYydj3PT3R6QjJaH/v+98XIZR09s4NLOHJJkL4j9iR83LvaouuSn2mmRjKJG\nPkBifNzFOfsCQ1o7L5T05u188gugZ05rIJUQnQTs8Cw0Y1ClAEF7gMJGD+WVGOz18+geKSOtGlCp\nUYUWDLJWRHx0HLJEBtStx8eQjpWB7RZkKUTQHiD47hWaO+8sO+aGn/gd1dq/8DKq/+q8kY2YzaHU\n4KmCFgyiL8lMWmvYimbazGWy2YS8egMqEmDdPvnRAPsWRBhuD33s2DlyeH/kvz/ceH6MMyFGfi44\nfjSXSNVJDLmxSTHfYEAqhH7fjRe5sUnsEE++bIuOAIC6dpsSkzz/3jDTWd+mPtaDAZiRg6FURPKF\n5/Ofu7NEx3720exewgh44z2wVGPzP3zZvT5xSUE8+Rj04SnHFnKem7Ua2TCcO+s+X76+RbG3Pa4d\nYzwDL1gQ5CQ/dk+hdzuQ84a9tEKsIAgBdY6uk99dy+4hTiCnvLjPnu+TOucwRkwoIYiVqhXFnRbE\nURJQmhJCUtL+uZ9ZugAwVV0jYmKZZ1yMj5En4jBBxP07b/Qt19chV9coeXXrLlXZTlJX6Mbuz/gj\nJyDOPkrx7bNPEGAoBFUtrVag7ywiuHyX4qhWO5fEZ1GE9PZdquLcqEM8+gh6P/4sCjsy7/ML5BQr\ntp/s/20SVTTq4GMN8G+8C7VOHlfBoTnIF8+Cn79O1h6NGpIjWaz/oBWcH9hUmjFWBfC7AP5jrXWL\neZOJ1lozj0P7gMf7ZQC/DABFlDOtnG32b+eMj9wmzWcpZJu0/MbC+srwUsGANiHR441pMtKUwB+j\nkaaBqaF6PaDfJyaGp1+1vkBEpS0gOHoEaquZgSrSaBABMG6MNHdagJQQjTpt8JQiquBUHVjfAbSG\n3NwiWU4qnRm16nQd7dHdT7FICOiTj4DHEjh7GqoSQq+2oFfWodpt8EoFg1cep5LnZ45j86k6Grdi\nFN656fSy+UpK5ne0m5PE9KcQruR58oXnoTmDePs2VY5qt6E/fw79aoDS9U1IW7JxhAHs3/S4McfM\njR3aUA4Z/e5nME0nzsaX+bwdK46qasAlMdYApiZIOtHpOnSfWaPUIXNpMT0JTDSgbtzxWAAiC6JM\nWWQoDbm8QufjAoB3rTajrzRNAt6mRRyeg6qXwW4vQfUIpAMA7LSc1wwLI2jPV8oBWmGE3Z9/GZW7\nPQTrLZrMBjF0tYSdJ2sYf78F1osxmG+geHMDqlZCPFkmJ/vhTbtX7QgAoDRUMiDvoDCC1hLKjAcb\nHOXaOxfBjP46mJuFrpbBboe5jzz8Occb+2ZzbysQACDANkmNufSIA/plV+kE9uLo7WIRrDuAXMwH\nhemdof6IE1pE7DG0JjbZIAYvldzYYZwRS+jmXfe5YeNFAE6j7P423k8skZDXb7vXreEhAApCjI5f\nPPoI5JXr4M1drP6tCRx5jT4/+evkESHGGlBvZ6WFxWOngc0mil97Dzt/+xx25wVmvt1F+P5NSKsB\nH2Z7DrPjhlpw4hhKG/kAsPczL4In2hndi7OPQl68gmQIh37ocw6rELMsFJl3kJGDmQ/vPYCRbrlS\n9UniqpBYMMcCSqrVdhW+HNsxDMHsJmXMgDNK09jZ7bjKbBY4YYKDqyJVQrTFAVZWnUbfgrguySEE\nPQ8W2A0CsFYKvt0Cv0nsSG1ka0gJDGZJit7JcaSVBgrNBCrk6E3OoriVQgsGdXQO+u0LKP8eVV4R\n4+MQhh0ltYa+MUBQr2NscYxo/PU6WK2K1GM3AcgqtTGWefPZZzQKiRGZUCAVH53E9pkiqkspikuA\nFgLxWIitx2dQv5uguNhG/1AVpatrSO8sAHyoGt9DnnN8b6+PY5O7o31iPm3A9f/6WUzrVez0i9BD\nTvYHEeccRBNTkwDj5DNZiMArNGaZqYALE48GJ46S3HQxHj2eGQOfngQ7NAPW6ZksvwFzzfwCrcHj\nlCoVlkOwRAFSg0Eh2Bmg/8XPIClxyIijuKnROz0FWWTQnKH6pxeRPH8GKuSo/tE7kC+fhd7t0PEu\nXYf67ONoHy+herePYLtP/mV3l/f1xer97IsY/8tbSL0KVrrbA6uUoIsmztEadmcV9BRkgSMtcaR3\nF6jvzj6KVGMPyMyCAGJ6al9w6KHOOazifg9YqbsNZhin29nP6H7o9eHfmZfLUN0u5MoarT/edTu5\nFgAUC5ArqzS2+mSrILd3KI5o7SI4NEd9o7OEFHvj/QxEGZV8Y8yBAFpKyIVlSsDeuIXozgI0jO9L\nIXLG0OziDTT//Vcw9RcLtEF/4WlULq6gfTRLelW/8ga08QllAPjUJAE3P3AOMNIe63kHIF+Rl7HM\nh5YzF9v76gS/GhufnkT67fdzFawGP/Q0ylfWIcMIanMLwnoUKYWknu0Fze/8sZxzSHJFa/V+TDO7\nj4aUFJsMxU7WhsPGpwT8BFnsZL12hCD1TZv2bTY2HD7fMMjCgjCXlARACU5b6Yv6Akqm0J0YfGmV\nknuPHQe/vkgJ2ygEq5Yz43ETi7NCAWpjixiMkxNAEpNKZLcDdfIIekcqqL6/6vZr92zentBKImVr\nlySEc7NuTpFbTUR3IwxeeAzBN97HxudnMPF/ULwezM0Cmw+mEHwgQIgxFoIG3v+ttf498/IqY+yQ\n1nqZMXYIgIUzFwEc9b5+xLw2dJ/61wD8GgDU2YTOgUEG9OGFApk/muyqn7HfU5nHL6noBhcHFPnj\n6DQlJg5AQa1S1LFFkkzwIpniun9boKBSJuaMysrJ6zSFXN9w12Q3kLY0HLPlrI0nCy+XHegEI4Xj\nnZ4BHzh4rWakYwLymdPYSO7rAQAAIABJREFUPV5C7bffQHDqBGSjArxtKmaUilCra8DbH0BMT4KV\nimBJGapRRnKMUOXubIiwo9D8iccgBhrj72wDN+5AGXDCyWIsKCSlZ9ppNigmO8SqVaBRRenqOvS2\neTDH6hi8dAphKwXTcBrY+EsvYOOpEIUdDfzaVx/auNkzdviEzhlKW0M8WyXMjgdPOrgnKPcXO1sS\n0i522zvAUPlaFkZQRkJnQUFeq0InCU3eqxmyDy4ykEkrqMEA6s6CkxfuuRYPoOOlCKrTBRfkU6Lj\nGGp1HfpuTBWOlIZc36QNntbOvE8nMTHTwoBMUwsRsLIOubmF2u81XSl7BjiPjsbbcIBhcBnAqRNg\niUT4rQ9o7NjgwW9DIJEzr2YMLCoCs1Ng/RhqcwuqP4CoV5GePYGg2SX/INNPdhLX2vPLOYg5R+k9\nwRsvFsg0zpja2UpjwwsbL5Ifyx7lmBdwsVqN5JzDGXcLNo6POx8oVioRk0drt0CqZpMkQ3HsZLF2\nDhq50PqXUciqDFjzOX1nyZ2b12o5b6NgYRMpgM7PvYT6168AAOTsGKIRlZt1P1/WfvlHZ3D4jwfQ\np+cR1zgOf30L+uK1rCKenx17wKZW1lC4dSe7nyBA9dImsNmEBLE9t5+ZQLXxLLons4X9IOachpjS\nWuvMWNAaRptgxXw+kx3a9SAKspLxkmcSSfsc2Yp25RKCadKg606XQBqANlFCQHd6wPYOdBhRUPLY\nSchGCdHVJahWmzLj9SoFSp0ePeuMUwCkZFbpRHiAFkDXyMmfQw9iunZDpw7mZgnACkjjD6WgoxBB\nV0IMyP8jWu2j+NY6XWdCvmUWBAfg6Nd8bgbx0UmsvlDCxKUE5RtNtH/xZYx97aozfyXGp4Y2z5Jm\npr8YGW8zKkZCSZ02BWfgAuGVRUy/n4CN1aGLZFRbeW8Z5W/1gIkxJIfqiLYH0IUI8Rc+C/WNzN/j\noc85fFLbAhYf27YPQPtpA46+sIhWv4jN2+NoXPKYwAcR57CJD725+56aVIBOKRsfBJn02GTpxdQU\nrR29PtLlFTLiHUoEuopJpmAKxQMRzYkWdK5WKKYJ6JnmsYQsCKRjRQStPiAYwm4KMPIUKqzsov3o\nGHiqIXoS3R96AoWNAcLXL4KdPgG2Q+W/k8kSwpgAhYm7h8hnCADr9JC29lJJ5Q9/BmlZoPr1D7L3\njUeHTlPwOAFLC5SABcgfTQOKM6iAgSca6gefA4sVpCRJq2UyBMePQjd30Hvl0YzROtQe9pzTCKa1\nNesGsPf59vdMNplqPutiiOFEh2UYG0CGnz5BVUe1zoqlgOZwXikhvXUnN06C40ed6TY4g06H4kg/\nJvbinFylX8bBSwVnYwAgM+Z1lVHb4I+cBcyGXXW7GPut17H+D17B5G+vQ711Hr0f+yyqS/nzq07H\nARByaxtQEr3ZAhonjhEjQ0q3Pxjq+OGfIrt2AwT5sWB66w7AhbOiAIDo1W+74hz6c8+CXyfCDz88\nh91DWcL0I51zRrHivfe0lFSNdJ/PcI/5zsolKkRkQBoWBvSbHppBOl1HcHUBrE7PsN5qkn3JYGCS\naCzr01HXZJOoviTS7JMAQHfkHhKJ3Sdaz1dnD9Nuk2XHZhuolMFsHD6iSqklnLAgAGYmEM9UwBIF\nJicRbLRR/MML2DcCuFffIsM9VLudq0inBwOkt+4gWF6F/NyTmP7dC0hfeRa3f6oMJQD8N/seMtce\npMoYA/DrAC5prf+p99a/APAfAPgn5v9/4L3+ZcbYPwVwGMAZAG/e90p8apPZZQ2zL7KS8hjdaZ4G\nmgCchALSagW8UYfaadEGu1R0m1lltKuq33cInz2vHAyMX0she/iN/plFERl1BmQ+ZdFfJmylM+4C\nbVYqUrnNatU5pztzzxJJ0/QghpqeAe+nGDvfRPr5c0gTCbG16yrG6N2uYzHI9U2IagWs0wMXHKw/\njnimgspyjHCzS5VVVtYcS8X3R3FmW4oT5dX1G6fAmvGM+ri6AW3MuhAQZbT0ry9AdbtIv0jUzPRH\nP4u150JUFzQa1w0998DGDfKAinmgXRZcynwWxEfsbfMRY7NAusWuXAYfH4Nu7xJzy/OeUp0OyXhm\nZxyowcvlzCHf8woZBi/pN0j2vM6EcJXAbNbfl3j4184rFTKfNfIuCwD0fvZFFFcHCK7cNZIRnlWH\n0wyq04OYN0yjk4cxmCwi6EvE9RBpkaF2Yxfy3cv5MumjaIwgDxImBD1H3sZVxQlYr5+ZfQN03neu\nAkcOkaRxrAI2SNA5Vcf2qQD4n79hDn9AY8fdDnPAkLteCxQxDui90zdttlW+b4w5OC+XzQaVQd+8\nu+e7tnVfPo3Cn7wFPjkBPT0BvbqZC9hsBURWKkHverTkKNo7hofmQzE3kwVd5li64wFTSQLpLyjm\n+I037iK17DLGoAX2ZOZ8ZgsAzL7ZAgYxxNUFTH675cBK6kdPxnuvxW6IbeVM123WME3B4gSpATCv\n/GenAAZU7wAnv6JwBwc4bhglK5xZdJJQ//YHrjodAOMPxGi9EIZRx4xfm6k2Zqv4QEry7CgWodu7\nSNcoeOaGjeqMngsRdLdPsrJyCelUDcHddYjLNyE93yvd6xNYZDyKfDafZTfSCXg2zopFI11TQDIA\na9Shxqvgmy3ocpE8gAYxlZMvFJAeHkdvNkL90jbkhcuQIGYXbSxKEI06ZY8NOGbnNdVug9+6g0N/\nRZcgAdQuX4MKAgrWjMTO9h8zIBCUBdeUuydWLhMIZ8H/ehWIQqSVCLxrwLlCCOx2wAYxxDfOUyyw\n20F05TqYPsD1Sut/M7Pm+wSLn7aH1wY/8QLunhd47L+9gonNK+71g16rHmbjtRowMwnW6VEyQ2vI\n1XUyvDVrie73c5sR3ekQ491LmpEclpOPqdLQ0C7xqBHSHGd9XUIBsb4DOd0ABANLqeKYCjiUoCRU\n2E6RjpVM5TEJ0UuRVEP0DhXBZp9B5UYLfGMHCkDQsVYBJK/nWxXwqQnoMAB/5nEwqRFPV6AFQ7jV\nR/T2dYjtHQxtC2m9ScizkyXEUNQFin9Fjz6dljhUSGtbuLAJXStDVqnSFgCkt++i83MvIa5xWG5H\ncOoE2KJLnB3QerVP/DacQAdy/7YVk93eZ4ipY9kr6spN97rbsxk7geV/93nM/Oo3IdfXEX/pBUSv\nfZeqQYF8MsX0NFSzmWPO+Gx0HxzKsdSVBB49AbxzkYC7YhHa5IV8UEq/nz2rto3/xuuZWkIBu4cF\nnM213TsOgTeV3/WqqF67mU82j2g+eYAFgZMoOd9aC5p2uq6v7XMknjgDeekq2idKaLxJ8U564xbG\nDXvlI59z7rUG+UqdffpHJynFxoMBUq9KHBNE/gAAvbCMcJBAdXuQG5t7+s6dy6o7JMWawaFZmqNa\nu5mf49A1617P+aGJyQnoI1R0Qpy/AV6vQff7ZMthztf/qRfRmROY+YNrmQojCKCFgEj2yvgsYAMA\naDYhLmRv3Tfdsh+IVi5T33gey8H8IehCCHnjDkSjTkBZrYrueIjw0Axu/p0yzvx3H0A2m1j3ku33\nag/CEPo8gL8P4DxjzNhh41dAg+4rjLFfAnAbwM/T/egLjLGvALgIckP/h1qPFFzkmz9JDcvHjARo\n5MbfgDtkgszcho5XKmSqtLmVafoYo9LgxvSXF6nCj5xqgMcpWLcPXYzAdnvQ3S4Nik43kwLwLNvv\nJgtbdcnS5OxmSRD7Izg0Rwi4lJl0xveKsai3lNCGCSQBhKdOQFvfhBefhtjpAZtGnmYGhmy3gXab\nZEWbTUQ3qOy5khI53NIvWScBW5WLBRnjygbacnuHgC0LWEWhY3IER4+QTKrbRfojn0X06rfR/sWX\nsfyDCo/92g7E+ra/cT2YcTPcLPjgADxPRua9n9uAap1ncZjPB0fmobaaSJdX3Wez31kiODKP+NQ0\n2BsXqc+KBVdek1erVMo5CDOKqKGiUiUgGtPMGBNaTyytZEaP9KsSHZ/H7pkGaufXkM42oBkg3rsB\nZbJa7V98GStfSvDI/y5R/uN3oJMYys+0eFkgncSQC0tu0x5xQcbTpqSiBgGHTpY5bDroe+tICWWl\nlKUSlZPd7VAp2V4PwewMOs8dQ/nN62D1GvRmk2i2Lz4NvHkeGkB1dQalP1jHHeUA4IMZO9zbbFqJ\noUTGJtuv1DwXrmKgHyTxKISWJA8UtRnI9c29VQO836JyeR0pQNR0O9krnWP3IBBQu7vZfDE+7n5T\nP/DJXV65DLmylvubN+qU0R1rQPX6ue+xMEL/+dMIv/YdGuv29ThFaVNlsllLHU88kFlJ4DsXIIcp\nuMOyzGF53VATkxN7Ms1iZhowZu5ifBydJ2dRuHUHnZ97CWGb49iftCFuriAYd95GBzNuNLI1wYIp\n2jPHzswfHRhEDL/EycNsFR9r6M9KJVojFpeyyoVR5AAeqnYH6I0tqE4HwTxVyQqWm9BjNfD+AHKn\nZeYNAk90f5Bla4tFr+Jgj7JxAEnRGCNQCyCjRyMnk3cXgLuA9uYR6wsExsC++S4qoEdGPHEGqhhB\n92N0HhkHTzXKF5YNE9KMG8O4c5VgPIq1ZVPpXs/Mi9ytpRrmPdPPDkRLUsjlFWJT1qpgYQhUSmCb\n28CFVfCTxwnADATiZ08i/M5V3P6VF1Fe1Zj9nYtg01NgS47p8dGsVx+mfQoGfWSt8s5dnP6TlVEB\n/cd/3DxoSxJgbZMYxUFAhQaSGLIZ03xUq7pYEKA5W+12wJCXehPbXIPXa0jbbSOboCIm1heRdXrQ\nVfJVVI0K4rECBhMhBg2GiQtd6JCjfTRCdTGGLAliIfYUbn+xgNJaEVPvDVBa6YMnCqoYgpWLCOYP\nI01kbvNok3a2sTCCuCSdtcPIjrdJCGnmo3IRpig1OOAqovWmAjAJBE1KhulbC9DnzgBTY4BZy7Rg\nGP+N19H5ey+h/u469NY2KQ6oHdB6NTRv+BWY7zOn7OfvB/iJ5LxUDMj2RzO/mjEwo9e+C14pQzZ3\nMqDJJEX0YJDFM4wjOD5PMuLh5JcXR7BbGclFP3UaojOAvHQV+ukz4Oev0rEMI3P333kJXMLJl20L\nvv4dzN08noE9o+Rzw+qT4T3F3o4x7xtGq/EkFZPjGRteSjCQXxemJiCv3YR8/DjwxntU1Wz+MOpf\nfgPsmceh3/uA1tsoAmjJ/GTMOXvGHXN+gDpJ8/sI9x2yiVH9PpSRYgJwBWyyY1nrmDCLMbWEXNsA\ni8LMimMEGKrTFNoANqxaARZWwbaaYJMTSJeWMdwqV7dQ+et16DiBmJ4mEkivB/noMWIF3mb5Z+oh\nNFsJ3E5YYmIMcm3dFQlJnjoB0UuAizdQe2sBnWfnceo/f50+zsUDIFHU2Cgj14NudTahX+I/BgAZ\nU8OX+ewxfNWO1eEQs6GMud1U8WIRrFJ2iKFv0ivGGpR5LUQUCHeJXm9p62JqkkwWGZWb58UibCUY\nViyAhSFkc5smLVNlhnmVW5iXTedjDbBaBfH8OMLNDpXjLBfAVzahkwSQEr2XzmDr8QhT5wcIvv4d\nAMj0tSDPD9XrZ+CFBRUs6wegTWk6JLHzDXK9DYZ/rQDAjMGX1hoYDADGIZtN8EoFu194CvW3l4nm\nCMp0dB+dRvtogMn/7XUy2UpT6F4Pr/X+r+9orfPObg+p1dmEfon9aPbC8KRtX/PbqGyJV/qdFwrg\nczPuXq3vhpPUFQskh/ARaNOCI/OQq+t7ZULe9VhzPStNskazbnyasc9NZTrmZ16GmmWl+e+LJx9D\nPF1B4fISVn/yJHQAzP7ORcjWbm6s/I1MYFYiyRmVgTSUTnCB4MRRKmW9uUXPYa0GjNWg7izmjN7V\n9g50kuJb8jW09NaH0xZ9j63OJvTL0U9kwFuakmeTWaws08PNRaaxMKLfJMyXZrZ6aJ2mZAg+3sgx\ndGwL5mZdUMCCIJOjMQYxNQVWq0AuLrs+FKeOkSzTBCW8UqGxBzzw78eeexKi2aYA67NPgl+9m/MZ\n6vy9lxB0FQr/8q0cGCVmZ7D6s49g9v+5sMeXKH8Cb0H0gyffx2uUpNc/xJB0MpibxeDxeYg//y4A\nYOFXPocjX2sDb57H0n/6ORz+779JJWMXV8FqVfyrhf/pwOachpjSL1f/dvaCYfz4slsnGeMZQwjW\nlFMpWhc4c7ItZWTJYmqSqmgNBu7Zt3ILVoioT8dq0KWIKkhGIenVAfB6jZIfKlsTSXZNMgZlDKbp\nTbMOGoafy7TFMVUIqlagJxqIpysIOgn6M0VAAeWrG64ax/JPH0f7FHD0tRiFv74A1e8jODLvEh9i\nfJzuw0pOgeyegQwcS4a0/Oa6LIhkG2Mst16Bm2qeYQBWq1Kwt9mEPjmP7rEaKpc3aeNZIgDr1s/P\nobqgMf5/vukqw7y+8RXsyI2DmXP4hH6J/dinwM73Sfua/upHF+f8DTfnVWZY7Xxygpjs3a5LrLJC\ngTLVKVX8Y2EA1emBN2okPfekRgBImh4EBIBY+Wmc0JwYBGCVMnQYQBkPod2jRfBUo/5XN9F/+iii\nnRh8u4P209MIOhI80YgbAWp/dgk7X3wCQV+jtNRB51gVOycF5l7vgKcK/Maik8L/G/dJFBFDvFyE\nLkSAqWAYT5bQHw/AlEb9ahvqnYsI5g+jc24endkAE//8deDlZ4A33oP+/DlAaYRLZI78zTu/iZ30\nYOacRjClX9Q/sv+cMypeNvfuEj6+jMys0/6+xLdj4OUy+MwUxRoj/NKCk8eR3rztwB9eIemgZVS4\n7/gJpBHJpFyy0h771AmkN265TXu6vJKta2kK+UOfgfjLd8HPngHfaCJdWcXd/+pzmP/LHvhfvf1g\nHXqfxFb+IvcCBQ6sZAz8yceg3v+AgMzFJfBzZ6EiAbx5nk517izY3RU3llkQ4E+T3/7kzjlWPm5i\nDtlu5/doJk608QE/Pg9VK4Ndu5MlbgFiVZm40jJn9uy3PmTzx+o9ff5MklM8fhqsN4CqloHbizn5\nlrsf4MHW+gf9rB1PAFgYgB897CxbgvnDkIcnwS7eoL2MYfdpSQb539J/9kB7qwc2lX7ozaLyBtlj\nguVBDf/B8joGMJlqGzgbyhkvFcEmxikz296FTmJiDVkQhNPn5VZzXxq31Y86zaFUxAwAgG43u2Zr\nHhxReXJIScAWB0lHpASSGHpHImx3aJEtFcHWFXm8mCxz6Z07mHt1jaqhPXYayXQVuEaIpZicACbG\ngDuLeYBDyRxepgYq66/cG94kZn0ZDEpNHhOGqWK8I1SvT5Pui08jKYeoffMmEEXo/9SL2D4TYP61\nTZQvraD09gDsxDEyuxV8/wfpoJp9qPyJZrgyjZWI+QChlzFR/T6UAYPswpjTCxvwhZfL0J95AjuP\nVjDx6nWwahnpzdsUOFUq0HHimUYjYwMZtNdl87WCTqy8xnj1aJWds1CAqNeBQgG60zHMAqoAQhMh\nOe2Lo4eht5qQFy6TvQaAyV83pmO2e5TXJ2bytbISSLkXLPInK6vJtQCWX5WKMUjzHFjZR3rjFgEd\n4+PkQbC+DqyvG2059Y9cXXPV8j6SZkFbxsEETMUnay6t9ixYloGoY5V7nQWBm4NYvQa5uDfTAHjM\nElAw4wycCwWo47Pg1xfp/ACsaR7sv0EZz5Ggyr3kJBevITXzIt67Cjlkplf7l+epugUAfmzelSxf\n+vnTkMV7ZwnNTcF5duUyj34fedXy/Obkvfl5Izk1B/GX77q/gx7Auwn4oTnM/w9vUkXDjW363j5g\n6UNv1jvIVKZw64EFg2zjJpixmyEgA4hMVTJRKVPlsI1t6J6pHjjWIN+cYoFAj3aHMlPWdHl8HGpt\nA/z4PNhuF+nSstPh299MttvZ/KcktLZyv0xOZu9Da02gLcwctbSG4BpJrMs3BMnQzJoKpTD3tRXM\nLq+B12sYvHIWmjPwzR52fugokgrD7F9vAXeWKLPpmW47KS8GuYqbbg3SmiTWdu4xcYDWEpCK2LcR\nMTVdFra9C1YsovtvPYaoGaP61m2gVMTGjxyHjICZv1rDif/1Ms27BqgerqLz8BvLMUY/bZ+2j0Pj\njj2YZBvobhdyq0kszVoF+tGjUIKBX7pDrGBb1WdqEnJrO4t9gVzlWpZ4vne9fj5ZKjhVJ1S0zpbW\naV2SJ+dQWOsgbZSQHB1HtJMiLQmIOEX1RgtqMEBloY9gow3WG2DwdB1H/98lpDduofULL2Psxn1u\neB8QJN8pJhZTCrrfzyS3nEPXiuCJgog1eKrBBgnEk4+hc7yOoCvRuCmhfuAcneqVZ6EDhqDZR3J4\nAuHqTn5teOgt22iPjLGs5+FQP4ys0uTZLahdLw7xmNKq2wVrk0qARRHE9BR6Tx9B+Nq3ERyag1pe\nzSSGJtEenDjmmPUODBqxd9kjKxtimMi7lMiXJsa0167TFKxQQOHyElIlgWu3IM19nPjKChZ+es7J\nl/e04UTWMDnhXsCV1hTL+9J3mXmYqvc/yPkpqXcugj/7BEVNXEC9c9EoEj4ECPUxbq6q6mAAlaY5\ncMyNQ6OS4OUy9MIyeKMONjluqnSZ/b2/NxHE1rln85nq9lpMYtevTG2bkyD6xArfe5YLyMs3EBwn\nM3IHBvl7pQ+T9HnQz3oYiE7Iv5f2HZxILItL8I+Uq674gCHyxwcQ8n80JaEhMvaLRPYgepOF29Az\nKkfrgB0uCLwxlXvsJkr1+kRZL5WIVdHcBpBJodLFJQRzs1BT48DtRfiGUSwk+r6TgLDQbYzBWWbO\nDGQZUHNOKAnOOSAUWEQME8QJmbqmKeT2DhnKlorkCF4sQN66i2hnjMo1PvM4kkYJ0aLx9hhmuPgs\nIVc5y75vJ03l9ae3ADBrbGoWPuPdwAtUwlxsdxGsp0QhLoSoXG+i8kEKbLfMA6OAXp8muGGTtY+i\njdJEa7nn9ZEMHsCZPUMr6k8hwJjOe8x4ix/ePI/GmyB5lqUJe34+2QkVdOpd1yjgzJ/0uQCLAket\nVb0+YCuPxVTZw5b4Vs0mdJoivXGLyr2PNcyCzSHmZmgTaZ3wveuB1tBKOu21PS89U97k5sntLKDk\n+oELNyk5nbQxVfRZIo4u7qRZkjaBxmxd1OtgrQNJmuWbC3aY23jm5hd7H/b/w1Rr2wc2CO71aHLW\n+YoStvmUewDY+NwMJu8sgjXq4MtbRNfPaeX3mtblzBX3e80PQrxqD/74tWNLxzExtdptYIPmmPhL\nLyBqaVQvxRkIvudC9sls3C/Q9sf5cKBjAbbX3zPslgJYrYr5L1+jilrGn03HCfSAxn0wOw1sjD7d\nQ29K5ccJ52BKQds8hjVuBgDBkBk4Gw8hpQHBaT64vWiCFMNU2+1Ac05eFqA5mlUqYCePYDBTQnG1\nC1mNwFp9sEGCwLDtbGOMAV6VQsZC529mQR0n6TJNd7uZhE3wrIohAD4xTizQNKX3wwDs+DzQ7SN6\n/y4wVgMYw8Qbq/RebwDtr6EW/GGKEiUWjLLn1poYUV6f0cbRmHJ7iQtl5ldLmWaFCOAc5aumfDFj\ngFKYfHMdLE7cGgWpoGPqI7XTxMeBIf1p+7R9ZI1TlR4AgFLgkxOwvmiiViOvSqURrG1SkY3h0t+9\nfmbbYF+UvkWBzJ4xxrLnHgCTivzmQgHRzdYYzRjJwJSGGEj0pyIEHQkZcYhSCAwGED0DNvX7GP+g\ng/TGLbDnnkR5Nd5T7GJP82JfJry42We0GvBcSw4uBiRHDQRYkoL3EvBQoLKQgCUS8WyNytIPFDRn\nYEojrQSIdkyCrBVDC4FgpwdVLh7wnGPjFDV6Xf4wQINWxFDudNwmOJN5ZceWTTO/drtQ3S46P34S\nY5wYOywIgNgmaM21yKFk0b2uyWfamwIg2SY5MxfWSeyKrAAmJq8SM59PTyG9u0Bspas3MP+/rOQt\nNvx+8uO9UcDMqFhm+PuM5eX9Ppmh03VxIq9UoN77IF8QxNyTXxH2k9h4sUhJR0ukYCxvBu0r2Bh5\nuIqpSVeyHVrTPFOlxJQy0nK31/C+m/3bIwIMA573ScqwWo32W50OoKVLYAMk85OtXejdLrDmBZ7f\n63M9Ko6+37NqrEV4ycwnnO1LbLEkmQdpHx9AaJ8HLVfeM5dp9h5h7wdnYQTeqEEP4hx1igUB5G7H\neTXoJDGVnIqA1kjnJ8EOTUDfXoV6/4Ps2IYVkQEnmcQDADE77OUFAT34cQImKMDlpSIhm70ebQK8\nKjTM0PMBQG5sgU+MAVPj0HeWiLLfqNEG8v1dcCUhDSjl+gLIrisHBrFsgTP9YzeMGUOEuU28ZYq4\n6mqh2UQMBrRJDwKgEIEpDWy3SVtu5HV2Q6StBE+Ig9+cDaP4njlz7n3771Hl6Bk3fZTANxHWA5kD\nPGjTJxxiLI4dgaqVoN6lMtxiehpoVIHNbZP14HvLG9pTWpQayGVBLBilBwMqk2rHIIwkUFNJTNVu\ngyeJowZCSrBj85DXblF5+8kJMx54fuEG9ty/O+8ooMqnC0tvgWRUjcNuMm1WhsxzmWMg2JLurFYj\ncMJIq7JskIZstT6SzVnGEiMgMFd23gfD7N/DjTGIaoUm5E6XpD8WfDG/+ygKqg0Cpt7chOYccpWY\ngaxYAAaZASEbAcaMYuwM06yd788+122lSeh2CUxcXKJymSaACndiTK50kDYKe8evW8SHFrBR/7d9\n6DKRewGu3KEtc0+RybLuDwjksKb4xawUubv34ICZHlbmNASuuEy4vRef8WL/9qt6ARnbxczPDAAr\nBA4cAWeZ54SVJb5zEZHWYGcfRbgeQy8sIzWVUaw8jFhCip7pRJvsnDTlgbljBgLIChxwTgUQ7H0Z\npo4FrTRAVUECAb3dBktT6FqF+n+8Tve2tZ2tLXbOVd6apTWsb5Lz2zNVyJjtW4DWIGPMT1IxYln5\nUjwrcWPFAnS3By13iXlrpN262wd2WjSXWkDa3q/g9LytHOzY+ZQd9Gn72DTDkNNJCh0n4GMNw3BX\nYIUIrFwC19qBxPwJyx6MAAAWhUlEQVTUcVdm2xoK6zSlxMJu5tPjgHE7ZwAZO8CuB1YSyhiZNncH\nEFpDhwKyEkIxAZ5QnKYChtLlVciZBtJ6AeLlZ7Bzooz6NY7k1DR4LBGdPI60IBCttt288iAtYzvb\nQgDCk0qZBOpgAKU1OGOUsElSiM4AbEDen0EoXElwLRhkgYNJDd43EpRutlHjaZwB4wfSWD7m9WLk\ne0m49x6GPuf8mOzf/X7e8NfFr3B/j/3W604+DLPucJUBJGrd2zBYabxlaHjmzNoqLxJKcKlul8CT\nOPNx9UEG1W6TDOudiwAAvbQKFkZIjTeNFhxirAFWLO71HB11/74kftT7wN64yLym7BqupFnv6Fqt\nCgVcUNJXa2dB4sefstUiq4kOPrFN9foUd0RUpRlQ+Qpxltxg9m4uiW1UBnKnNcTWyhjPrg0lsL/X\nJjc2cr8jO3YY6VQVwTvXCIRSpHjI+Rp9L80fb/fba9jmGZ/LoXhiVBL6w/TDxwcQGvGg8WKRMoG+\n/MlOZoAHjljLN1BA3O3l2SqMmZLvkswzTVCp+31wKSngXlqBVtJJa8TsDFHbDNMiVz6YwZlj2sBd\nS5VtAP2SvjABqAn6XfYiTSkzf2gW7NhhqkaUplS+0V5DECA4fhRqswkdx+D1Om2Ohu7fZy2R+Wge\nZLDXkP1hswYyAxuMrCHL4nLXl9YHI7swQRuHJIU0GSKmNdRu5/7ykofRhlkbhna4532f4THiGPY7\nvFLJjL69Cl9WPkYgCD146Y1bZD794tMQV+6Qw/3GRv56/LHtSdjc4uUdO/cwe2UT3fC3C6Stktfv\ng1kZRaMO1htAVCu0ebL30Ou7jPp+E429Fv8es3sVmZzMvydzPY7t5GVn3LiyQKTZWLIwcMGgLe2u\ndc4w72Cb0hlwyhm4CLM5517NScVCJ+XLmeQCZvPN9hoj2uwIAHXlRlZFY24S6JhjGGO8PRmQofPn\nXuIsU0DuI6OyFRN1rw9rbGwzC7s/fQ6Vr5LpYriwieToJFTAkesJH/AZZuLtJ2XbcxFDc/0+rCHd\n6dJvYTfzQkB1ujT3WsaeZo7VdGDNbmiAzBdIGM+v/oD6FXBgORmpellyH/yJQmipoLa3nYwLIKCI\nmFAm0LblykUEMTMNuboGefEKsQTrNfCJcWIUGXAnC6TzCRTLZKO5jdY06zMEwIBPCVilDOuXZyXN\nkBK6VEDaKCHcpUyfXl4Djs8DAPjmNjRjtKGsl4mNY/ojn7mzG0Yx0oeNriN2axAAAojiGM6PySRS\nYBmdEQeTAogT2hDadUgIgCsgkW4+pHKxGnJj8+DXq+8T+v+n7ZPf7Prs/DGVhNpp0fNhSs5T5Z+E\n1hMDBgEe01VKivtGAZ2W6Wj90uDFOnFCcbLWUFxA10tgMtvMsVSBxxJskKDQJCY9u3Ad/LnHsPlU\nBbW7CXi7j/hoBYWmhg4DBItbUOPVkaxan60MeMCP1hnT34vPHZsZJvkQx1CtNpnXA2CppPk9DMAS\niaAd0z1KDS0YNGfQoQBSBZ6kVCBGGYuIg2YIDSdD7wdu7NOcL2utZnxcMmaOmJqk+TSJs8R4n/xO\nRb3uNvyq3SYGu8dmyMUqfoXp4TVD7QUAfFaEHYNiYtz57vCdDpi5Nj4xjubnj6D222/QF9Y2oY8d\nBtvJKri6xNWebtSjYxkfCOICTo1gXxvRcvemZBaD2ZLnpsR5TsrHhQFRPnmNhVn8m5Nh2aItfj95\nhXVs0kd1u5DNJlUvZGE2dvbr5w/zfJn4nEWkbLAWL/Y34qUS9fvGNsKtHWe2H8wfhq6WwfqDvFfo\nh13fh2PoB2n3OH7OX/h7mGc+PoCQcRffU3qY/kX/M8CPk0fZCd5u5O0kBDJgth4DstmkH9eY+cKU\nvROTE9C9PmSrRRlzuwmcmQDb2oFK0myRsGCQx7xRg0Hm92Gvj3GX2dRKgwlaDBFFYCCkNyfnaG6D\n9Ypg05PAIAY/dxYbn2mgvCZRubGNwWwV6vQ0gk4KfuGmYzA4kMKjvDIBOC8U75p81oNjErn+RCZT\n4AzKsDk0Bu6BtEyg3KbPLJx+lTe6XwE8eILmb7b5i/4ouuBIRkOWGWLGONqvSsGLRbq3JM4mNc0A\nTbpkXipCbTWBhcXRRu528fVZFQaIyz7DPYQ8f110EQSu8FqNMnITY1DjNbDby1Q1qNMBdADlyZGs\nFMtmGmzlMmfwatlA/sRhQSTGnLxNK9BGdHgxHCX1sf5H3n05Y11zMHv+YeDrw9Aa/8aaBXmlBEDP\nt8bQGMkB0MP6cAZeKREY1O26rBYLAi+Txvcu5N445I065FYTwbEjwFY7DwAA0O1djGwjJvt7+XeJ\nyQkyBq1VIQoFWmA9hlpw/CiYpHvm1SogOIKdPsLlPpTHNsrMz++x2Nh+yy3Y+Tknn1HzZEPeuMiS\nAQaMVKQfZ6VKvhTuqEpuD7m5jLdNMACZBMwD1pkFSX1Gk+clpHZI/y4adTcPyN0OeKUMFvDMu4Jx\nwIBHUBJicoKq9gmOZLpOfhpJksl4GXdZSWeQLqXzyXLHhFnHDEjj5vpeDygUwBij4N9Ul+TNbQS1\nGlApAYMY6bOP4PovFDD9JsfkmylUtQAoUNZ/YdllBQFk64llVQFU5cxfW2zzQTSA5G2RJ6f0mLZI\nEviG3gjDbL1yATV5NSEKqf+NXI6NCvIfUmMghqfqfwoIfdo++pZL5gDQ/QEZQZvn3iVxajWq7jcC\nvGVRlE++GsYvlCK5qw0InN8geWzCeO5BazBJFhEqov9kyBF1Y8hygGh5C7xehJyfAh+vQxUFagsp\nSt+6it7LjyLsSMgCR3y4AaY1wuUWpFfFNZcs9Nbv4QTpnsSWiFy8b5nj2s5lWmcSMqmA7gAiCaCK\nAZjUYIOswACTZg4SnECkfWQdD7W52NP3F70/W9d+1675ejAAC6OcZ4r1jvJNvO2m3xbQkK2WM5Nm\nYeSYMKOvcThuQD7e8BOSHuuJBSHE7DQVNJgYg0hSyFaLyoSbalPp3QU0/sUWuPHtka0W+I0UulDI\n5GU+QDPchsZQ7nqA/Fi7X7zs7aVc7Ovbogxfh7+n+QQ1Mqpn0LFh3Fm2/HA/evsQq/IB467yLAsj\nR7ywccB949AHaLxcBp+dBrSGWtuA6vWJ8W+M8G1F6FwFXMagTOGpPW0/sGYUE2h4P7rfM3G/441q\n32O/fDwAIYbsYfNv1N80e5OZRRgJ5MgonqxWg7CSMCmhB6mbxFgUQvX64JUyEMdgLMiZ46n2LsT4\nGBAEUNdvQ/qoNReAtBtpQ1XzGBv+Bsj6Hbnyeub8SBLSPZp7EGdPI20UwW6vQ3c6pCUNArC7K5i+\nvUwbBi4Q3l12WWNwRlnoOM5olMYwjRfIeFTHCW1SDIhB52PZ8+cPyhxllMoakwFoPhDXBkCz58zK\nTXKz2bEZIPHRMIRy8hTkAwELsvj3nXvffDWJ97JzwmAP08JVX3Dfo/5HrwdoTcblh2fJgX6ruafE\nfB6QyxYNQtETb1yD5I1KZbKNyTGwnV1CpG9n37PsCWbkaRbxBuAmT9Uf7KmYtS+abRerUaCax1rK\n9YcFZm2Gz/PW0onOZJecUZ+Za4bSe6/rgBrJUbgDrqzEzYEegDe2Rnv5oFAA+gNnpO0zytz3Rizk\nLIwgZqYoc1WtkmmeLTdeq1K1KMZGZ4Xut5AAe0rS9z97CuFrW1BHpsHvEHCYA182tlB9dRNaCKg2\nAVOMEZDtU/Cd6fjwef2xNBy8+QBRLigdClBHHIeeGb8vWaZDt5//CMBE9xsLQRsawxR10iYrdQJy\nvkB0GzSHskYdLAyh+31ibBlgnRcLOaBCSwP2x0lubLH+AKiUEFy46fwFcj5dvuyamWfUB6akBIMB\nHq2XfX/gnluYhAgrROi+eArtIwHm/uQuMZGMRCS8vIgn/klIgWuagi1l3j+28qBlUAFwUjtbpdNV\ntFQ6uzcrq7N9YPvXgqT297Yl7KXM2LhSgSHJvm8rmBl5mT9vfa9ZtO+1adwbtP20fdoOtNm4hDMo\nY61AiUHy5tC9HnmIFQvOH9E2523Y7ebYNMRsZBkoZJ9LICeVRZoCqdnQKYD3ekina4jHIxS2YoiV\nJkSaQm41wY5NQXP2/7V3Lj1yXFUc/5+q7h73vOLHjCwrjrGNApJhQ4RYIRArIJuwzC4LPgAsjfIJ\nYMEHQAIpiiKyAYmskAAhseMhBCi25diOFezEdp6MZ8Y97Z6qw+LeW32r3fNMu++pnv9PKk1NTXfP\nOVf/rrr33HPPxfbxLqRUzH3cg549g3yrgGaCVm8bouqCL2vrUfbPyDN7dIJnp8GbX0EAP75w7/Xt\n9OgRpCiAxQX3M8uAzC3zzsKyoKyeBaSdtruXhjqj0+zrKIb1BcMzePQ5HRh3P4ye5bU6NiGY0e/X\ndlitlqyoQgcD5Je+hOLqO27H3swtF5Njc8DSYr2uZTzZ/IRdUf+g0lYxDOKoy0r/+DvncPz191Hc\neBf5V74MXPG2RjudalFUGR3Sarm+xEjt03h8tSOjfedYW2U9s2fs68b1iSoDysqOuH2kle97+3Ar\nxBs9hTqqcVmMalwQT1Bn4vrFvkaqqrpn98AHjOLdeQ9lVNS3ejyArj10Yy3PE7Waquyvcrw+Rz6z\nmgzsdJCtnkKxsoxsow/94IG7r47Lphz3mU8h4LMXNgJCELQunq8eIgBcfYvt7Wr2tZZpEAYlVbFM\nqWZOtdfzHeisqmsicQc7zDSKG5i2zp9DsfoMsrVHwPomtP8Y2amTkO6cK3r3iR/U+8BTbc3g6KCm\n2kHGz7KGGkW+cKccX8bW+ZNobW4DNz9A606/ykeQ3L1f2sNZ4FCnBoDv4PsvhF9+FmZWtShqIg6D\n7Xx52b01Eo9rq2LY1qH+hQ/qxO0a3lvNUofP9kUHq8KfoVBgiN9N+6Y1Lko/7m/h9zg6vdsSsv4O\ntVrCed/X5IgyisrNTcDvAjT6P2v3/Vq2SbTELQ42jmxlGLYYrH10uLnU7BpT1Hocu6U2jpsN8e+p\nle8afWjG2RKxTeOeeYkHR1m3W2VEVFkMoSBmvFwFGN5zou97trgAlG4dfZZFy3taLVePZ9MtNw1Z\nAXEnIz+9Wr1Wez1ABNmJE5DFebcbi/8fY6kFQKPlsvH3vNMZ7oa3tIT80bZL3b5yC2VRDpf0hSBd\nWNYa7PcZGhpmYsJsbp5D2r6Yo9dHHrYorjJkRjL0quyU0QB/XMAdw456NFBxDoTd7YZtEoKr1ZLG\nadJqofzqFyGK4T1wUEAGhVsuFRdSjoLr2vLPgfC3zR50Y8Pdy+fn3X203QK2+qhq3oQlTiJAK0e5\nsgwVIN/oQ/2ASi+exWCli87/+sjvfuQyegaD+rMqiwZqIr7O13CiASJuRnL+mKtb9XgAPb6E+99e\nwTO3B1i4+gALV+E0sLxYfZ765cRV3bC4U1+UkG2fZdtuQcMsuX/W6LE5yGDb7aJWlC4LYXT2LF7+\n4ScfpCr8qsPs3dCmee6KdAND/6L7nGTzQ59LBXpTzBDK3He8sqnabQ31oJd/HofvTDUhBLisLy45\nI5NgzORmubkJifoP5f3xS4/jrCA3IeuWnOs26t+7OFNiZKIp2+pDNrpArwdtt9H6bA3t5SWX1XH+\nnNuNt9NB69p/3XfaZ+aoKtDbQud+2z1nH65XmQilXza7o7/Brr2aZsygrbZs39fDAULwO6vfu+JB\np59ELf3EyjRrJWpZQha7yPLM3TtluH13FUjPsvoExoh92eICis/WXCapn7iUPId0uyg3NqD9/nDr\n9O4xaNsFWopPPkXW81vL+8mOcmsLrZVT0IfrrvZlFKSvBUqAaBBeDoMAob/jgwRxn+rU728Cq6tu\nk5Xbd6r+hLRbfhfQslouHCZOazsshzFQqS7z2y95zha6LmBwbA7F3XvDTPu239AgjD8B32dsDTPs\n8hwo/USGr1dZ1bKr6le5CflwLtmYZ5JkyJYXp16fNZQ/iPu/GvVpqtU6496biUuCGNFT/N16Yp7V\nBxkBPLmVe3jJ5x03xMHaweNadtuO7HXPiD8zWh5XvvcIeK85cTyxsMuGiHwEVy4r1V4xk2YFs+ML\ncHB/vqCqq0/LmBgRWQdwfc8XNodZ0o5l3fCeYxvL2uE9xy7UzfSYJd0A1M40mSXtUDfTY5Z0A1A7\n04K62YduTGQIqeqqiPxDVb+e2pZJMEu+AOb9uW7YtgNjvK0PhGVfeM+xjXF/eM8xinFfqBvDGPeH\n2jGKcV+oG8MY92dmtGO8nQ/M0/KneVWqCCGEEEIIIYQQQsjnggEhQgghhBBCCCGEkCOGpYDQL1Ib\nMEFmyRfAtj+WbTsMs+SPdV+s23cQZskXwLY/lm07DLPkj2VfLNt2GOjP9LBs22GYJX8s+2LZtsNA\nf6aHZdsOyiz5Ajwlf0wUlSaEEEIIIYQQQggh08NShhAhhBBCCCGEEEIImQLJA0Ii8j0RuS4iN0Xk\ncmp79oOI/EpEPhSRt6NrJ0XkDyJyw/88Ef3tJ96/6yLy3TRWj0dEnhORP4vIVRG5IiI/8tdN+0Pd\npIfamR6zpB3qZnpQNzb8oXbS0lTtUDdpaapuvB3UTkKaqh3qJi1JdaOqyQ4AOYBbAC4C6AD4N4BL\nKW3ap93fAvACgLejaz8DcNmfXwbwU39+yfs1B+CC9zdP7UNk9xkAL/jzJQDveJvN+kPd2DioHWqH\nuknfntSNbX+onfRHE7VD3aQ/mqgbaie9H03VDnWT/kipm9QZQt8AcFNV31XVxwDeBPBSYpv2RFX/\nAuDTkcsvAXjNn78G4AfR9TdVta+qtwHchPPbBKp6T1X/6c/XAVwD8Cxs+0PdGIDamR6zpB3qZnpQ\nNyb8oXYS01DtUDeJaahuAGonOQ3VDnWTmJS6SR0QehbAnej3u/5aEzmtqvf8+X0Ap/15Y3wUkfMA\nvgbgr7DtjwUbJoXldt431E4SLLfzvqBukmC5nfdFg3RjyY5JYL2t96RB2rFgw6Sw3M77okG6sWTH\nJLDe1nvSIO1YsGFSWG7nfTFt3aQOCM0k6vK4GrV9m4gsAvgNgB+r6sP4b030p4k0tZ2pnfQ0sZ2p\nm/Q0sZ2pGxs0sa2pnfQ0sZ2pGxs0sa2pnfQ0sZ1T6CZ1QOh9AM9Fv5/115rIAxE5AwD+54f+unkf\nRaQNJ7w3VPW3/rJlfyzYMCkst/OeUDtJsdzOu0LdJMVyO+9KA3VjyY5JYL2td6SB2rFgw6Sw3M67\n0kDdWLJjElhv6x1poHYs2DApLLfzrqTSTeqA0N8BPC8iF0SkA+BlAG8ltumwvAXgFX/+CoDfRddf\nFpE5EbkA4HkAf0tg31hERAD8EsA1Vf159CfL/lA3BqB2kmO5nXeEukmO5XbekYbqBqB2ktNQ7VA3\niWmobgBqJzkN1Q51k5ikutH0FbVfhKuifQvAq6nt2afNvwZwD8AAbr3eDwGcAvAnADcA/BHAyej1\nr3r/rgP4fmr7R3z5Jlzq2X8A/MsfL1r3h7pJf1A71A51Y/ugbmz4Q+0k96WR2qFukvvSSN1QO+mP\npmqHuknuSzLdiP8wQgghhBBCCCGEEHJESL1kjBBCCCGEEEIIIYRMGQaECCGEEEIIIYQQQo4YDAgR\nQgghhBBCCCGEHDEYECKEEEIIIYQQQgg5YjAgRAghhBBCCCGEEHLEYECIEEIIIYQQQggh5IjBgBAh\nhBBCCCGEEELIEYMBIUIIIYQQQgghhJAjxv8Bs6OreOUvnmkAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "activated_img = activation[0]\n", + "n = 8\n", + "fig = plt.figure(figsize=(20, 20))\n", + "for i in range(n):\n", + " for j in range(n):\n", + " idx = (n*i)+j\n", + " ax = fig.add_subplot(n, n, idx+1)\n", + " ax.imshow(activated_img[:,:,idx])" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "conv_img_mean = np.mean(activated_img, axis=2)" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(224, 224)" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "conv_img_mean.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvVusLdl63/X7xqjLvKz73mvvvne7+7hPfI4FDgkGRCSC\nQoBECCsPWLZEEkGE80IAkQc7eUBIeYlQQl5AEY6wCAqQIEEgCiaRExGhSBD5grHj2Mc+9unu07u7\n923tdZuXuowxeBhVNWvWrJqz5lxr91mN9iftveasOW41Lv/x3cY3xDnHK3pFr+gVlaS+1w14Ra/o\nFd0tegUKr+gVvaIlegUKr+gVvaIlegUKr+gVvaIlegUKr+gVvaIlegUKr+gVvaIlemmgICL/uoh8\nS0S+LSI/9bLqeUWv6BXdLsnL8FMQEQ38JvAHgU+Bnwd+3Dn3T269slf0il7RrdLL4hR+GPi2c+53\nnHMp8NeBH3lJdb2iV/SKbpGCl1Tum8B3a98/Bf65zkYMxi44OUEMIC0JCmam+dONeJy2el4GbdPo\nelrX8fzLom06d137tn2PMv0279xs603666aM8y6TtNlHbXlkOe3GV6yV4TSoFKZnnz5zzp1uyvqy\nQGEjichPAD8BEBwe8y/8tR/lO5+egjgQEPFv5Vzx+lZwVpY7TDlE8HkAXEtXSb13ZPlZI7kUdfvP\ny2UsjUlbPS2klPV5i/dxTnAOnFWt81iUbX+Pooyyja72u9TKB99f1vp6FmmW09XTlmWV6Ze+139v\neT8p61euKr/eRluOWT2PcqgivVJlO8BahTFS1SnKFukWbS7Tl+00Ri3etcwnrhrfZr80JeV6v1Tt\nMJ55tm55vpX9INX8bOkPcYiyaO0zWSvYoo3VYlaLupplL16u/lmW5zAs+rRaG7XPS3n98zfee8aL\nf/ga3/pz//HHq61epZcFCo+At2vf3yqeVeSc+2ngpwFGp2+77/zaG5z8Svdiq/rFsbSYW9ZPJ62s\n5b47StcOXv+tZUd00lJHOTla2tnErD7U+U5d/dT1zh11drZlzY7e+h6uZ9oenFTVr/W+7NGeleLc\nYs3V09TLWzdO9d/LNrXOx1pZK2u87X3XcT51sO/TZ8Dn5pTjJ/0n1cvSKfw88P0i8n0iEgE/Bvyt\ntTm2WQkF9dywt05bUXNR77BAvnRqactaQNi22+sLsCN/bbOuPWwvbiltj7ZsO45ti7ReZ/1v9XwN\nILSVv3azaWFUl/JsI1J1pd9QhqtxwH3opXAKzrlcRP594O8CGvgZ59yvdWZo21HXpaVjIDag+o3p\nNhZVD2rhGDvTLVFLHzQnnyv4Xqnz0jd5hx36t747994LNtWzhnvs05alopog1QIstzqvyjq6+qIF\nZDq5jTbOVG3X3pemU3DO/Szws70z7CIGdLCK61QMqxm6y9qJukCrVlfXu20z2TrTNRfHNu+1jita\nxyX1qGNFbO4Qq9a1a6vdtUy3AXRWxmILgFwaL1nt73rZa8e2DzdaT9uTC+s7Nk36nikab5V22em2\nnWCbyqmRWzPIW+k8bkCri3DLwnssqCpdj7bUF0XrAunqs3U6k466ltJteI9tdFLNPC9dfIVOndTS\n941c1B0QH25CW6sWNk0O+FJl/XWD3/fddlCvtHIITSCQNke1NbvMRll/oyy7/vmNFKpdv63RXWxd\n/ybuZkOdnek2KBe3Ek/6pGuZC+voboBCU3lV/0naB7Silo7eGRDKXWVHOXlt0TsugE3ab5+o8fw2\nQXADIOyq/1i7SLsWY3NcW9jo+uRvBcFa/Svl9tlgNtFN9DPbiL1s6PvGPF7XF026G6BQUNcLtnZS\nfSA3Ifg2MtumMtuS3wJ3UKZdt7uuY7s3AcKmSeFEFmm22EH7mOxuIhZ15t1Grm4m7dAjNJ9vnHfr\n6u1q2wYuYS11bHydnM8WVp063SlQaFKvHX8bQCi/91Bq9aXb1kI3F9FaxekG2bYPEKykbVsgfQC4\ns462drV/X8ue91JEthewLTCvbcu21EOc6Z23BVzWbhY7ci13BxS6FFG7DE4j7wo73sYuviS9w1Zm\nt7Ipfcx163axXanLOlL2WY/yb7KYmo5A7RU0M5V5WvQnrn/fLzlAraP6/NnxXTvbtMNCbvpbdJX7\n1dMpwNJsatUgd+ZrSbPp/fuynhvqWmpny+7X1FJvCw5r2dfbokbbd1JyFtQK5OUi6hAztqqvU7zc\nrVO29pVYylzWvYWItA5smxvULegmdqU7AwqtHnB9x3pNul4LshicZtreE6ZjUd2Kk8uG/G0LcUk/\nwGLRtIoTbW1fIyZs7M8ulneDMq9edicX1NKuNkAo37PP2PXmEFratQ70Xct86qQuXUDf9B3PdwX4\nOwMKWFp3+41KvA75uzNvW0d1DHZrvi0WeR9AaAOirctu5GkDhPJz+duKPqFLlOoxDtXvaxZsE5Ba\nnZmadTRBYI3uQJzrryztEiFb2tWse126tX3UZPP7KAF30OF0lfOVtD60maNWJkrLAG5Cw40++Gt2\n9lZlW71tm+pqVtWDo+mqbyXdxkXanmAt19CzbX209FX9xQ6/DEgt4N2Qe1cWtzTKrDLXOYMegFBr\nU2+qA8i6ceo7F2/I3vehm4iBdwIUpPGhrxa6jSvYZOPvrrzxuFN+XU5z29aHbakpKqxQk+1ew6qu\nlY83LaSG+NLe2CJpC1A7kdU2btKpuI7P29I60WYNR/aylNMbac1Y3AQMSroToLA0tq1sqP/bpWnd\nieWmHVTayl9XT5Pt3wkk2hRNtTpXRIvGrtqlQ/BfOups9OXG9veVc1s4sXrbVg7yrOHcOuvZcbyX\n6q/3eV/9yJpyV/LV+9dtuVjXAXnL2rgNIKjTnQAFKBQzqn3iVzKvW3Rymaailh2kbaF3WQV2AYLm\nszbQ6TWB6n9b6u6rP1hbR/X+7ek7dTHbyN6tfeXWLjqnwClZzdOgFdGh+T7bigQtZW2iTtGthfuq\niwobTctrFv1awOoLoI1NZBPdGVCoa/+pFutCRhS7BhD6VtGxO3bRJlm6nq7LIWdb6tRYdy24Kl+X\nHNRWyeb6W8vp6rcO0WGz89QqV9PrnboAbstF3plvDUB3tWWpuDZAWCeadC3wTXNdFsla59uO4s3d\nAYU2KjpVLBWnAGx+2Q6u4bYO4LSbxrYsY0Pa5m7ddbhp7Q7QxVVskEldS//1oW12o63rKNu8jZ5o\nV3Co0SYAFJY5oVYQ6AHwrcC0w8ay1gO2J+0ceUlE3haR/0NE/omI/JqI/IfF8/9URB6JyC8X//5w\nvwILNrLWORUg2Bqn0KC13m8tVNqPd3UoKtu6VH9HPduU0/p8y3dbyt8zbxsY3YaM2mYJKAHHdbxf\nHehWAOaW5eY+5Or9WGtr2b66aLQkgjY40q1o2/HuWBPrRM5NdBNOIQf+tHPul0RkH/hFEfm54re/\n5Jz7C30LEvB+CgoffNO6JQ6hi5WuXryn8mlrheQGtO5T3tao3RCheu++G5KtY+W7lKzb6ERa29ml\nh6hzPjdY7J2WlzVc0NLvtXnUqlPZdgy6qJxHazaQm3hX9hE1t6GdQcE59znwefH5SkR+HR/afYfC\nQOXLsmX935KprAkI9TzrOqMtfVtTerK1u1o81qZZ2bVXM5dOOr0mal92u60tW9LK4lzbd8scYVtZ\nOy/EvoDQ2bYyQ/m9vR1NLmEjtXCXbUrvKm2fjW4bMNiiO28lcKuIvAf8buAfFY/+lIj8ioj8jIgc\nbyzAgZ6DGOe5hKaoIOAUu7NWbez+jjqAFdZsV1pTRtuiF+e6d/s2wKsBwjaOSov6WupoE0u6gGed\naNQiMsD2O/ImIFoxYTfm1FLWnuz22nFYk78ptt6Y1gBSvS6/kW43/jcGBRHZA/4n4D9yzl0Cfxl4\nH/ghPCfxFzvy/YSI/IKI/EI+uyaYCioDldcUi0ULnQKnF/+sLp6pGlh0LfzGIHSZirba0W9KbeXs\nwqr20BtsdGxaU0aXp2K107eBQwOQmnWtP6twO4qD1jXQAgjNRbqqX1k86AUGLXX19WJt00n0LX8F\nBJrUY57U6UagICIhHhD+O+fc/wzgnHvsnDPOOQv8FfwVcivknPtp59zvdc793igcE16CTvxNNirD\n3xa1jv0VKsVk3b+hlxPRDoDwMqjPzrF6ZqDkPZsJywSLfBsBYc33tp2z6TDVWW4ftrcSDVe5opvK\n8DcR2cr6m/284hDmWAKXpd9qtE4vUwLBVocB1wHGBpDvSzvrFEREgP8a+HXn3H9ee/56oW8A+CPA\nP95YlnUMzi06dTglOAU2AKv9Z1hwBKVeodytlhRWTTNdy6KQtkuY1si3nW2+BVBZ1ZOskV/rv7dN\naLeafkUuXZrIspq+V6PZ3E+tu/KqOFQ9L8psnpdorX7LMxtrT0Gu4dg654Rr/9ymJFw3L1Y8O9e1\nqS3dJqr34ZZiy02sD/8i8EeBXxWRXy6e/Vngx0Xkh4omfQT8yU0FiXEMzgw4hwsEGwg2FA8Mgb9+\nyxUiA6W4oByu3oPC4ntzIi5NMrfEKbjlIrbr+BvSOkDYqD9oG2THsgdhCzew6y7cK1+9bU0Aqi2y\n3rqR8nEfn4xN7eq5QOog1aX7aNsQOp2HHPQC0gbXIfV8m3Q2G5Xs203qm1gf/mFHU/rf9VCSMcTP\nZjgl2EgX/5QHhjo4FJyD00XnKVfjHBatccgSG+Xqc7JwqW2dl9ZBC+K32drr1Gl2XDv5oA0QuhZM\nq92+vpu1LbYeGuylPG2cR40rW8nX1k8N0GrLWyWvc3llf9QBzS3SbSXTt9EmVr8JtrX6lzxr63J/\n21xpAkpLeV1tq9NW5sm1gACi3FYixd3waLQWfXaNCwPUIMRFgQeGUHlwCAQbFRxECQylz3wBCE6B\nC2pgUfOnX+qPlp2iWtT4ydc2zq1eazXa2ntxg8jQSs2kS0pTt/ysLX2zuB46h62diLo4hGayerm1\n/ti4q64Dupa82ziRtR0kazU9NoChrKft+H+zvHW05Ii3SXfQh2Tx78sSH26PrIPZHEkUmBjJQiQL\nUKHGJgoXKGyovGihpbgGqxQpFiBhIsFp8dYJ7dGx0kmUnVN6TdY7qr4rIsuDX+oqil2iSrqFQqmq\nv0q8XfesW1xdMm71vT7Pb8J+17+2nTlYWYwtba7t/G3l35Y3ZS/qwdKvBYSyjFuilbm4Da3hflwf\n0aVBdwMUAGetZxFzg1MKEfEcROZBQWWqAAChvAfcaVmAghbMQHlQCEpgKMCjZrp02mEDDw5SFzu6\nZE4HlFeJW1dxDf09/dqf9+6XdQu5ZTfrQ33Z8JWF3cpCrT5bMVn2UPZt6s+NcSOaxXaN0Q7gvBJs\np6UZtw1mneX1nU9L4yZbte/OgEJFzvl/1iLl1pFbRFGBQZVUKSiBQSt0oitQqACjwU2USkwTOlCl\nz0NRbo2DKDmMJVlXCa6wXrTKmWy3223auTvNj0W9S+1oox25hHX1rnUrbgOEtmY1HJb6mGXb2rQu\nilRnmetY/Ja0W50+bIgTvm0tedYN2TrOr1MU6xZppVhO22wadwYUJCiaovVi8dedWiz+uXPV74L1\nO4gWnFKo3HowEPELWBWihioBwosfNi64iUAwoeC0WygwK2epjslaiiNItQO6so0Ve1y805qB2BQu\nrXjBxo/d5a1QGyAU4LbtrlvW3dtq0FMcWCsWNYtce3ZDtuaWmnnXH+Eu29AP9HcxUXcqtzfoULo4\n0aXn9qvIKYhAGIBzS+LBEpUcRPl5KQBLMVLGLPpPfDnVYCtwWvl/QaHADGsWDk2lj/CA4RZm0Lou\ngprIUbWteFiARGVC27k/Wp61sqxtD2tZmiZZt/pbp3PUmnpXfq/6RVavPW/dwdpneeVT0OSCunbr\nOmfH6sRvPejV3M2LvPX0XnckC06hNu0AL0b25ga3FC36pm0OU62eFZHY4TfVnnRHQAFcGCDGgiq2\nYutACUu2Q1t8rj8vuAcBMPVCa7+X1SgDyusd9LxQXuqFAtN/lwooTMiS4tK7WBe6CF2bdM0BaAKE\na6RhlYWu98VOHMLKJOnYXhoLtkvpV29/n9OIzV2/01TX0o7u4DUlR9jYyQvgcYEX/6gpk9e6OLuG\nrqEGKittaeRZ+mtrgFGmdaCMq8pouk+3AdY60/daauMGauXSqNtzCv2R6Y6AgkCgcc2G29p31dID\n1i0ctUvuoQ0sSnIKjIFcQBl0WnATWkApbOBBwYUKE6mFI1X1j8W/AjCWzmCU1RT/+TMcsjzYjVes\n29+X3Yi7d85N7H+v3b5r9217vEFsqOsRlib7unnoWD7XIst9uKwQlKWFXLmyF85sK4u6yRU0F3Ct\njvquWlmXWrmyRf5WL8kCLMS07NiCjwlSzglbE4nrbduC+ooou5R9N0ABPIfQdE+ufzcLkQFYAEbJ\nUdTz1cGiTtaCSMVV+I71pzIRi84KgEgUqgSIoOQe1MLTMhRMBCYqQUKWRA3qk7ZlAjUXe5PaBnzZ\no64941Zeh9Tq3xYMmnX2AYRaXXX9jQ2Xv1ccxRIolHVVDVsV4Wr1iGOlE1fAoiy3xhm5NQvUNT80\nuZ5iwSuz+M0Gy+WLxYOGBTHi/1bA4Ja+r9TR2g/LaZp+DtU7CytxMNfRHQEFWd791pxd2Ei2JU8d\nOGrlVk+aAEGNixDxFo6g4CQKfYSJFCYWTCTYEC9qlABRO6exZMXwVVSTTyy4FU+q4k8NOG56erBS\npNVFg3qb2oCiizry1g+i1cFxaYdXi7+VPF9yCZrFYoclkaCqp9l+Vy6yZd+S8nzLRk6lLHoNQDff\nof7eS211gCn04cXFRpUzXf2ZqnEMS4t/ARIVUJgCLGrcR9c7VO1ro6+kR2OTaorEFeoUI6T79xZA\naFI132xt5qlC/LCC5BbRBVAECh3qChxs7K0YpUu210WAjWRJtCgXQmkmckJrmLm1k5Tab30Yg5oF\nx4n0m0h9MKjGmi/t/pV/yHId3tOUJcAsX3yJzS7fvVjYaoXjKACguYAau+u6iFetZr+WMVhq16L6\ntd+B1WP9ZfHF+zkHskbsKedECXgqK9/XrbS91R+jyfEotyyabaC7BwptuoHy7xYs0FZ1NahaQJXG\n1o9YuQNJrpDMoOcK3eAebFQqKYV8uBAvbAholncYaq/ZMtHLtiy3ufG52qHX900FCPW661xMfSI1\n2NI2RSmyeK9S4eda3q8qQoNr7FhiQXJBmcXuvhS1u7HAV3b3+rM1O/1yQzrSdZW7acqVoFiCXp1T\nSlnu8woMa2BS5mExB5AFcIilpl+qdx6VKFLqKDoBUrnWMemiOwUKYguTZBsg1KkpItwGWBQA0Rbw\no1pwFUgsHKtUbkELKhF0qHGBYEJv2dCpwkSF/iGmOL+xzEYv7R5N0eFlUm1yVify2sxW1aQXD2os\n2H0bFv8isNrVlL4lsMmS5l6MVIt9Sb5eEpVYBYM22gQGzXS9uKr6l57lFp+rdqvGomwRt+rA0VRS\nN/VRzjOnq5xPCeTG6zFKHUXFUdhalfWx6UF3ChSgBgxNICgXfpvO4KbU5E6WGrR8Kas4t9BB1MUL\nwGUWFGhVgEISeA5iIOSxwsQUCkop9A8sy9/FTmvLXcDhdQ6uhWPoQetiHa6oMso4E+UkVQCyvPNV\niamUhCZyuHCxIYrx8TYlry36+g7WZG3buJBNIk5bnk3UNrR9AGVDPSvsfJs+o6scWf7bBIvqeSmO\nNbmwckmI5yqWlKzORzHDeU5hG7pzoLBE0gEOTcXhTcovaeWQjyyetzj6iHML/UPR6WJtwf55DkJy\niws1OlEEocLEC+VkPvD/bMjCNNfcNWqLyZW25vrk6uiCtfEHiglamt+qHahgY+viQFNZuKzNpjp0\nJjmoQhSoA0EFBraWv426Fss6buCGe0MvQOhBnb4RPcapBPvKH0OWx6NKZlbBwupGOqmKrD64wANz\nEBhvCelJdwoUFmcQGmDQBIBNgNDHerHricF6EeXis6uzWBSIMZAa1Fy8H0SosJH24DBUZMMSJArR\nIqzFn5TFIqwWWHkwq4Vz2JaTqJx/Ahbu3XUZt7QG1EUCh3fcAbCgkkIfkHdwASzy7kxdO/W2nEI9\n67b51tS16/u2mpjtoi7p4CyqiGM1jq7iImpKXGExnvujhEm0v7lRBd0IFETkI+AK70uYO+d+r4ic\nAH8DeA8feelHnXMvNhZWP/DUplzsYu+XG7T6vYsD2JRuHTUUlK2uwiUbaS2S452lMoVKcvRcY+ca\nPdOYgecg8gHkQzBxobyTxWD7SliyVpRiRVv9VRtoESFq+gATlZyBPzm6pMuo4Vzdrk5NB+BlWZbB\noE0u33UBb8LtLcvddLy9teyXIK22UrP/2vQqDrx3p+/3pTAAdVBv6Che37/kW8N7vZtyG5zCv+yc\ne1b7/lPA33fO/XkR+ani+0+uLUFYuDd3WRt2tdW3WTL65GmjdabSevZ6W+u7ABYRwSUGNRN0FGBi\njRlogqEmSz04mJjKvLk0wKWIUbLkxd8yOExbG8rzCKV1wIZU7KcLwIaueuasl0NVKlVU7SYQLNfR\n9vIsT+xbkPJaaceyt+ISdgGzviJSn+o7uJDyuXTp12obilNCpHLc91h8+BHg9xef/yrwD9gECvjJ\nK6q2Am7T/NjL069LQJflz/VDWW35Gm7WK2BWul47BS5D5xaVGvRco5OAfFjjHAaFWFGX7+syZM2M\n1wYMTsnCJbvQE9gI6h6BThdiQQ4qE6QMs29oFQl67bRtaZrPtl2cbfm+rF18DW194Okllb3KUZRl\nuOpZX7opKDjg74mIAf4r59xPAw9r0Zy/AB62ZRSRnwB+AmCg9xcmkyYYbOPduIkj2EZM6FrsbXW2\ntbGKC9GSrzC7igGsQaxFMovKrRcpYkUw0OQjRR4XnEPguQdqPgGi8MBQKPecLbiCpq6g/jfw7RHj\ndQLeWkDFdcD6idh7AWxKdxOR4stm6behpnqppZy++p+dDky1gENqgy8VFH6fc+6RiDwAfk5EfmOp\nfc45kfZpVADITwMcxq+5VuekrsW9rfVhW6ViGyA0AWWdKFE/g9GkRrvFOZwBcQaZOyS3qEyhE4tO\nNUGsyAfeYmFiyAcCEUtmqkrZVPgNlC7XXhlVAmXxp7Bpl3drtHEEt7L79Vm8X+YC/4pRq9flNlTL\nY92XGE/BOfeo+PtERP4m/uKXx+XdDyLyOvCkV2Ft5sc22uSn0BWLYVd9QlNcaH5e91v98xqPzIV5\n0yKZBwbJDCpR6EgTxJ57yEc+LF2pkMzHkMdgg/JCXl++LY55+7LxXoMFCKhsoazs7IIvY6HWFZpf\nEjC8LFb/ZYoQN22DOA8K29AWfk6NykTGxW3TiMgY+FfxF7/8LeCPF8n+OPC/9imvd7tV9+JaX4Fb\nDw5NUGrTB5TP19UBHrhsAxA2UHWU1rjCYlHqGnKCSUZ4mRFMPX+fj4TZQ8f0LcP8rYz01JAeOvKB\n885EBdSr3IsIeg46XQDCnaOXpYxsoa3Wxy7TrG5xuUE521IXIFT0JXEKD4G/6S+KIgD+e+fc3xGR\nnwf+RxH5E8DHwI9uLEnA6Yb1oaSm4q4vNRf4NiJEFydwkzK6knUGMClk/6yIHBNr5sea67eE+QOL\n3TOga/kC/446FVRaEw166AleGvXhAnaxItwxsaPetyuu0ju283vJfdzkMpjfAf7plufPgT+wU6Gb\nFt2639sW8jqPxU35+9ZRp5I7aCurzt00uJIlYFDgooD0KGb2IGR6qpi95sgeZhycXLAfZcg8Zno5\nQD2NiC49CFTKwju0WIDtrA7bLKIui0QPWvLQvCH1LqP2bq2X/zTefVO5ffQ/5W9K3FbAe3c8Glcm\nzw4j1nWAqk++Po5Ru7ZJdberdC6yUUB+FDN9GDF5TTE/dWR7DjfK0KOcg/GcvUHC1TxmcjYkfBIS\nXsmy+fCrQD20818V2tpVuu3db1hvZxtuwKXcHVCo0yZfgCb1BYF1py83LfobBjrpsmg4EdwwZPrG\nkIv3AibvWHh9yvHBFBHHPAtI04DZLOLqfAQXIfG5Iph5HcGd5A52obosvu37dHEN30sxo1QvFSvM\nRgU3ZxdcHTS4xJu0dw23sC3dHVDYtTPqC3yTCLHrbt9F9UCyXW3riE7tAoXZi5m9NuDqLc312w7e\nmPHw3gX3hlNyq5jlIZeTAfknY6JzRZR5M+NXjjtoo+YCqOsWtl0cXXk3SYx95PaOtvTt+2wPzMCR\nHVmCiULPhPjMj9+iHTuE3K8yc+uKzLsDCrC6YF+WGHCTMjbFcugzuCLkBwMuv2/IxdeE9N2E1197\nwWE8ByA1mkcXh1yfjVAXAfG5QqdUHoxOLU+qryx1AcNNOIWXQS1t6quXmD+wuHHOe+8+5aNPTslS\nRXgVoBvjVwFDW5+UzWjW1QV+K1N0uw69O6CwaWD7HG5q8ylYR21WiS4/gzpXYBvPm8/KttUAw0UB\nZhyRHoSYoWJ6X3H9LuivX/KDp/7oyJPJHo8fHxJ+ERFeCns5i4NK4I/C2oIlrbGgN6HbVLrdGu3K\nRt+ldwAQCB5O2Rsl/Ntv/SP+y9m/RGY02eMj9Hx91p2tD7cgRtwdUOiibTwJu0SIddSmt2iro84R\n1D/3CPpi45Dk4YirtwKmDwUzdNgI8tOUN/am7AUJ3zo75ezTI+KnmmBSxOUDpHBb1ta7N2tD5c14\nGxtkeXLwewYOXdzCbeoWupJvU36HknBTv+2P54wjP5hvHV6QGs1vHh8weKqqskplc/2ei6Zz167x\nH0rnpS/No/FWybF+Ua/zFLyV+rcEkzp1mCLzoxHpccTktYDJ68L8oUHfTxBlya9iZBrw+W+d8ll4\nHzVVDC68ArGKT4DnDJwGl3tOgUKv4HRRXZNBucmiLsHh/y/Ky+8liQfzwzjlg4Nn/Ob8NfaCBALQ\np3PsRyNUUkveEhinzi2scA49rDe7juGdAYWl8O7rDh9VGV6CILktF9KWpixqGPHiB0ZM3hTmpx4M\n4tBwsj/BWMWTeYh+HhBdCPnIYYaOfOgQI2jngaGiRmQmf/elrEborYNEtQv1e/UyElN1GnOLvLdO\nN1GerWud46qNAAAgAElEQVRzg/tYCUl3y++b7cMoTHkYX/LJ7ITUagJleXByydn+iEGymmedJaKv\nSNFMs62b850BhSVaxzH0cWDa1oNxXb3rnjfr1go7iMhOBly+G/Hsn88ZnswYa0syD0mTgM9nR2AF\nlyi/+ALQc99WG+J9E7R4jsFQ7Diex3eBIx8K+diRjzyA1IGhjAasTO0YdN2zcQ1Q1G9K8onuANew\ni12/Tezoa7HeVY7voNnrOa8PL7nMh/zqk9cBeP3gkoejKz6/f8rgme7XpurLbu2wzVvKNtCdAYVt\nrkoH1i/6vp6PfY9H16nthKZzEGjyoyHXbw+5eldx/X7Ohx98Tu4U8zzgs/Mh4ecROvGL2kY+1JmJ\nHCoTgqnXNZgI8pHfKnVCFTbNBD69aIcdOFxUuxihvnisgBEkKyJMJ/6vqsVJaLKli/dofH7ZWv2S\nvkx/gi31DjehozcveRhfAnD5eA+04/WDS14bXiEnKchwa8CrOLi+ptId3vHOgMJGavob1GlXzqBv\nvjZ35gIYXBh456M3h5y/H3D9riV+44p3D6+Y5SFPL/eYPxsSnmtU5kdVJXhuobgc1QUOMkHPBKcc\nJobknvHpAbNvwApqptCJoK8VZkgt5LpbWcAucJjQYfbwu30mqER5L8iCg6DltGR5z0A16b4sjuE2\n/RbWkI9qBWbo0DPxB8UKNv4m79fkMpzAe0cvuB9e82vXbxA/DlCZMH07YqwT7h1fk0TDJb3CInPx\nt+O9l8Lyr2vzV12n0JuKRbzi8FGPeVD/W/9921OPG8iFmvR0zOU7EZdfA/t9Uz54+BwtFuMU3/7o\nIeHTkDgRbOT1BiUrr1MvKpiBZ/WdOL/gEz/idgRmL0cCSxTnpNMQdakJrv1EtlovAUEVn0/7EGsm\nAhtbXOggtLiBw+wJNtboqSKY1w5O1a8wq91/+aXrGRriy22T05DtO9L7hvAwYTYJ0RcBw8eqfXFu\namP9cYvIEiiDQbjKY1QiDJ85rpOImYm4P5rwncNTBusCCzS4uSboSB0414yL+6qKD2upJbLRigfY\nTU5FbkNKcHFIejLk6p2Iy/cheTPj9LULjgczAJ5c7/His0P2fidAcq8czMdCemQR5e9FUJnXG+Rj\nRx44VAg2xtuvLQRXityCi4R0GhBcagbPhPi5I5i76iLTuhjg72KQIgiskI+0V2IOtBdXIosbWvKh\nJS9EDMkElRY7ZiZFWDaWj1iXk6/P3Gosmp0iJzfptriEiAoQ3n1wxnefH2FGOXMzZPDE98FG6tKB\nN0QyE8FFOuQ7s1M+uz5EZzB6Yvn0+R6fHR1wEk/5jVPD8PGa6AXltBdZicd4WyHq2+jugsImZ6Uu\nl+auICv1/DfhDuKQ2Ztjzr4ecvX9OfffPufD/cvKLfmzs0Pyz0YMz9TCtGjxu3Iu2KGFBPRMCK59\ne9Jjg4koWHWNTiC4EsILjdMalUF4BYNzSzix6KQIxFK3NhRsvr8pW3xQllgKcCj/KpJ7Bhc5CCwu\nKtQQmWByhSSCngvBRNAZSMYiArLzO21TWdl5AWyd02AHcKjTLgrHOhWgZkOQYY5zQpIHBIElinKu\n7gfk15EHw9sCoAHMspCPrk84ux4RzWDwNEGuY3KnOQovUUcpToYtG5xvcz6Uqt06EfSsCKZTJner\neW5DWXp3QQG6d/ttTJa3cdZBKewwZH465PLdgKv3Ifi+K755+oxRkPJ8PubR2SHZp2MGzxRxsrzT\nivO7r56DHRbsfewIpkJ4JdhAkx/nqFGOAVSuCa9h+Nz6QCm5Q88dwcygUosYW+0cKwpa8e/uFZTK\n3/cYK/KBIh8Kk6n2/vjDQtkZOJwq/o0tdh+yI0FPNMHUB2gRW3Ihvu1V+LelOwdcde9AdUdk5iez\n5FvEgewSH25psarAYVLNo6dH4GAwShkfzZgfenfy26J85FDiuEgGJPOQ8bVDTzKC6yHWCeMgYThK\ngCGwLA47JeQjmLxlcXs5+iwkuhT0rAMQ2jizG+hhdgYFEfk6/n6Hkt4H/hPgCPj3gKfF8z/rnPvZ\nXetZom0WeB/gaFJH7Eczjrh+b8z51xTTD1Lee+cpr48uyZ3ii8kB3310j/CLkOGldEY3EutNj3kq\n2JH1loaZEJ37CeG0xsY+cIrKIJg5Bi8Meu4BQHLnwaDiEPx7SAEAS6SKa+yMQ6XgEkUwleIqO00+\nVKR7ghn6uI8m9od2zJ7FjXL0yGLHOcksQF8rVOoDvFZ3RIR460dokcD56/OK2eicYI14K0imkEQR\nzDwHUg/+UucmljuqY2zq3MI6wFgzvCoHEUcwyDCZ18mIwN4gYbI34gaByFbIRg6tLPM0ws410cSh\n0pxgKmRGo7GE2tQ4Kf/JBkJyAsn7c37fh9/mMh3y//7mO2QmYNimf1gnqpUK4i8rnoJz7lvADwGI\niAYeAX8T+HeAv+Sc+ws7FNpfF3CT+AZ9gEEEOwxJTke8+P6Qy+837L/zgm8enQPw8dUxn31+TPRp\nxN6l9Dq1qDMIZkI6AjsyZKk3RQ6fOYK5Ir0e4AQGzyC+sOiZRc9zP7CmBgaN9nuFU63fjE9TPRGL\nE1BaoROD1cUVdgNVXV+Xj4XkUJMdKvJ9A6FHNjOyHkzmnpUVI4guQsQ7wRm8JaW4UBZT04ophxvn\nZGPICqAodRil/iKYyaqyc2XMWFhByr9FFfWLapcAo6UslYHSltEgZaZC8lwj4hhHKTI0OAlvTXxw\nLS4ITkvllJY5X3e18Yu/BCi55wh+8JI//sH/QyiGj/UJo5Mp6fOD/q7tN1TW3pb48AeA33bOfSw7\nKvikBgj1240qanNe2qRjWKqgR7tqwVDywyHX7w65eF8x/4EZP/jO5wx0hnXC77y4x4vPDomfaMJr\n6XViURxgvC5BEoWcJOROSBNNdA7jzy3xmaCMI5w6wmuDTowXE6xb4g5aqW51afaBc4gIYg3OOURZ\nVCoEc0UYehHDxIr4XEgOFelBQL7nRZxqchcikMoENxfsTCpRwTtMSXHjMSDe/8LGYIYWF1kktkjg\ngcYawWQKMoW51uhC39IKDoUCFVUTUaCKSK0yKtBoDYVWG3ZVLMg4zH2sijQk1AYlrrqEda2X4xaA\noTLBOSHSBgkceewV1E77nTsU48/RQXVhz/y+I/zmJT/2tV/kWbbHJ5NjUhsQaEuee7HClXOhQa1g\n9mWLDw36MeB/qH3/UyLyx4BfAP50n2vjejkvdYUwWylsB0Ao0tg4JHkw5MWHEZdfs+y9+4KvH15g\nnfCd83s8++4Rw88C9maFrX8LEgs6gfBayI4FGeZk+37Hjh/lDFOLuBZRoXynbULKLZ3wBL+q8WWW\n4Jvb4p5L8TcJXSric3/fRLIvZHveH8KGIHkR/DUtdui88JxM/XspYxc3ZSsfij4bC9m+JttT5COH\ni52/lLYWdt4c5hiHd7jKF1yETrxHZgUSFqRSx7NQskrj37oucpAlAWasCLQlDnO0ckyzEGf8wjTR\nQqGqSl1IeVWfLu7UiIrTq8V4lpGy64ASTIRBkHEUzzifDkkP4yrephLHh8MvuHw45O+8f+IV0APH\n29/4gn/rrV/kUXLM3//kQyaP9hm+fk2WBoRTz0movPXNOkkcX75JUkQi4N8E/kzx6C8Dfw7fjD8H\n/EXg323Jt7gMJjhYLXeNy7KrcRRbB6dYk96OYyZvjXjxoWbyuxK+9s4ThkFGbhUfvzhm8uk+g6fa\nK3wstNmPl9u5+kys5xbSTBGOMrKxIT3wF80GkwIIjN3MGbS9U5t/Rl2/YfELstRHOFkAhBbEWFRq\nCWaK8NqHlC/vnKhukjbeHKpTh8qcV3w6FtxM8d42VNhYyGOv4MzGZWh6cOUV9gGYsfV3U1SLuuAA\nEg9CpUenqys1tZ9cKqc6R9ebzkOm49DrPqwgAvsjx2CcMnsQL27Tdt6jNJgIwRxccWTdxJAdOMzA\nI1MwUYSXQjBd1iUFUziI5vzw4UdM84hvHx4i04TwCi6SAW+Hz3nt+IJP/9kjZnnIG+ML/tDJr/DL\nk3f53z/5BvbnjwiHjuQ4wlyGhHiLRjBrvE8Pq4PdUo64DU7hDwG/5Jx7DFD+BRCRvwL87bZMS5fB\nDF5zne1uTPS1HEXXuYV1JIKNQ9LTIefvh1x+vyN695Jv3n8OwKcXh5x/csTgsWZcgEEfudOphfec\n0w6xiyvZVA4y1zDKIPAOTPlAEcPCslAFclWbxYbm5/qzUndmG399QsotRKxXWiLW79RzRTArbsrW\niz4U6zww5IVZ1LgVYHay4D5iBVYrbKSwofj7KmKvxzBDITnSxV2WizLELOpTpriMWS1P/KXDYIvX\n6JSjq3s0nRCHfru9vBphEs3heMb795/zZJjw9LMjghf+RqV8zzs6YUFPdOUb4oKFhtQM/OW8yOK8\nig0gH8HvOfyEf23v1/i16zf4NiBpxv6nhi/+8QP+fPiHGQb+SPUwyLgfXfO3nv1ufv677xD+0h6j\nJ47rt4V0EqCnCjNwS/2y4ujVJjrtSLcBCj9OTXQoL4Ipvv4R/F0QW9Fax6Q26rOjdqSxw5Dp22Ne\nfH/A9YcZ7733hMNoziwP+fT8kPnH+wyfqYpN7kNO/MTIDgq5PHCeHU2Uv4NhLpB7mRPxpkETCa5c\nfJsW+rbU1u42sCi4CHHiF7uxqERW+9+5VeVnjUqLiCgfI0CLRSceJJz2/2zoQSI98zoNV8SN8Ae+\nIBs7bFwziRa6BVuYPRGqw191z7/yslwz8NxGKeLkA0iPHMHDKV87ecaT6T4vnu0TfR7yOD3h7HDM\n3nhOMM7geVDoKgS7ZxmfzIiCnHkaMns6IjrT6JlU8RdRkA9d8W4wfy3nvQ8e85P3fotnxvI7V/cY\nnDkwltFnc47/yYiP8rfITzOCwm/iH8vr2LOY/d/SHP1OzuShJh8XFonQkR3493Eaf03gLSlE2+im\nV9GPgT8I/Mna4/9MRH4IP1QfNX67Ma0ARteiWaeELH63w5Cr9/c4+4bG/MA1P/DwGUocX0z2efzo\nmMGjkNH1droDV7C3JvYTBSlOMwqYscHs42XUcU4UZ+SJXigq62vPUrgc3xAM2qxsjZusV7kIv/VW\n3ENJTTfyKvnqmAh4a0MjPkB1ZkS8ojKYBNiwAESBdF8zFUV6APNTLx+omTeLVic+c1kKflpdv+6K\ncw2xj4noQgcWwktNvm8ZPJzw8PCKaR7x+GIfmXi3cazGXI14sR9DbJChQ1gokNMkYD6LMIkugL12\nWE17bsFpmN+3jN6+4o998Mv8ntF3+F8me/y1L/4VPv3FN3jrOzlYS3Ax4+CjADER2ScRTkdeSWpg\ncGbZ+2xGPtDkw8DPdSu4gWV4b4pSjkt1yPCpEF655T5oUo1bUFuyDTe9Nm4C3Gs8+6M3KXPLBiz/\nheUJ23WQSSnygwHX7ww5+6YQ/VMv+PrxGYEy/NbzU64+PWDwRHt2cIcblcqJ4vUH/hCT0458qDH7\nBtnLGe0lREHONPU+BEFivYKxNtGXFnXXAl9HO5rdKycaKwulIKzp1676a2KQyJIHpuDNmiqzuEBj\nldcPhdeWKPZKynxP4DDDxgqbep8HlQoqd9hSAVkpHb3ew0aOfOxwezkPH17w/uFz9sM5ezohVjm/\nfP4Wv/30PtnHY+JrhViIzwsAkICr9wU5SdCDnPnZAHUZkGX+mDuB9cfXx54rUIl3SAtmQjbyLuvv\nnZwRS86vz9/kb3znn2Hyqyc8/CXL8JOLqh/Az6tw4lDGL+7BWY6eGYKLGbMPDzFDDxThmQc054Q3\nD8958nXDi/1Dho8CBs9cFdG7Tp2nYHvS3fZoXEeb4h60cQ5asOOY2cMh5x8EXL1v2Xv3nDcOLjmb\nj/juo3sMPo4YT7a3LFTNUsWt0OXuRamx95MozzRmrpjMNBMrxE81w6feBCmmdPcr3qO+i8MCGG4a\nlbospw/Q9ATFtshBS3nVKofh/Qy8srJ00RYc8aXFRgqnNGkqmJH13EBsvaOV9f25MPIv/rrYEh/P\nUcrxxt4F5+mQ98fPuB9e8atXb/HtL05xH48YPfEgonK/cMzQj1dwpcj3FdYKaM/lBVe64HIU4aXC\nRg6rHcRSBdQNpzAPHYkJ+I3JQ37p87eJfu6AN38rJX4yQWYJhAE4h57nRNeBvywYX38+VAVIRsyP\nFPMTR35o2PvtAHGK+WFEchjw3tEZgbY8jQ9wOmbwxCt91zkxfWnOS7dO26iQdzE5AnYUcfXeiBdf\n18w/nPPOa2fEOud8PuTJk0OiR+GKFnkXKp1qVBFCLTt0SOZNkfG5wAsB8XqK+Nx7LoZXOZLb1Xer\nL956u27TjbtB21h1munKeIMrz+pcR+13yQyq5s3ntKCtZfgMVKpIJspbZ0bFPZmRW9ykXRXCgl0W\niKOc6+sBv/X8lDQNuEgGCPDZ4yOij2Pi5x4QoqsSyPxY2bDQe3wRkY0D0A47ssQPprx1cs4sC/ns\nt0+Jn+hCVHFFX/ldXV8pPn56zG/PH6CeRtz7rkHPDfnBAA6H6HmOJBlqlhNd5NggwAaeK0K8bgUi\n8pEHRyKLDSG6ELKDkKd7exzHU44HM8LXDZ+5E7ARo8csR+qCJZD46kZz7kt9F8FSzANNfjjk4oMB\nZz/oOPjwOb/r6Iy5Cfnu+RHXn+8x+CIgmO7OIZRUAkIwE9LIeeed2IL1x5YHz4ThU0d05Q826blB\nJxaV5Csn4VaorzjQ5ACagNJM25NauYE16UoqQcYVt2LXwWGhrAQxyivrlKBTi54r4itFOlZke5CN\nVeUjsLTzCX7nVuC04mp2SHgp2NmQwMHzwR7ZvmX8uSK6dGRjmL3mSGZ+LEZPLO7aW4D03Jsh85HG\nDB3pocPkisxo3ti74MnJPuZy5I+4s2iHFweEJNeEw4zsgePsGwMOf9vrSvKBEMwidOKIzlPv12Eh\n2xMmr/vNIn6xcM5SiRA+Cf3nFMILxSQe8R19j0GUocUx2E9ITjU61cRnbgEMK1Lzl2+SvHXa+XKM\nMo+t/dVef3DxwYAX34CTH3jOOwfel+qj5yckn+wxfKEqLffNG18owxTeDGm8STI+mpNEMYkJic4h\nmFrCaY40DjhtEwdyhTaJA61KxZvRprFq/b2suyZSqMx7W7rKTVpQqUUnimCqsOfenGlC8TtqySgV\nXILVniuzQSEWpP4ilnwM8Rkcf8tbS9I9b93I9y3BVFdelMHMEl8Yf/R8qMhGiuRIECvM45in0Rit\nLA+Or/gsCeCLqAiKU5iYrSN+LqSPY+TtCdEwY/JOSHCtUbkjOfa+DDpxBCf+EJRYR7ovngsq3MhN\n5JXSNnLouSzu+Ci6cDKNubwcogOL0hYOM+aJoFJFdOFWgq98T5yXbo26Tv1Bu8Z7ExXnF/xlrRHX\nbwmjD1/wtaNnnCUjvv35A/RHA0bnUnnN3YaZp3JnthA/97teOg/JYkMwyMn3NCbWnqNILSprsCZt\n79m10LvSNdNLQ2G4jnMoi14DPnURYRN4y5IOYVW0WNIx1L0ti3UveaGoFaAw2Tq1CIdOoYvwTk7i\nRQDxfhDZgU9ThqErz3g4gcHnmsGZI5iBTix6blGZRXKFlKdS56o4KRowm+7z7H3LMMoY7s+ZTQLK\nY6LhdfECCh+jQkApzyHmexqV+DmW7fs2pkeQnDjiMx/mffjYHxbzeihv1swPLGIVYSKVN6VEBRAA\n1vpBHu0lzJRjng0IJyBZcxy/N85Lt0eu24dphZpKRZHlU44iuFBjBwH50LuIBtpwEk25zAYoZcmH\nrjIvieHWIgst2GEqeVcph3PiffZz552AmkrRlWPQtXfc1UTZtri35BLaFv5NXcwXeoZG3trpT5/O\nVj4PFOzxErCIr6N+VNwMNBIX8QeMEMwc2djPAacguvD6hOGZQc8dKrP+nInxXJsyCpuV4+O5iWCq\nuIwPuAwtEllcbMgiS76nCK99qD2nIJgL87MBOB8+zwYQXnnwsaFgI5g9tAzfv2T27UPiM2H02BVO\nYGBCr7zU14rgWojOHdmekO9bRgdzlLIYo0gTL1rc35vwQlkuTwKypyHxefu4fDXvfdiEBpsOPNW+\nuzDAhRoXqsKn37D/keJS3eN/e2uf0cGc/b0Z6fdlTE9j7HVIcKEJJ7d3rXvpSJOPvBY5AMw0IL5Q\nRJd+V1q5SKZroTV3+ptQDy6hqvY2XMibishG+RUwrLSpNLIvfB4qc14LL+wEnHXYIKguy4muHeke\npIfeZKgzL1YcfpyjZ75CnXjXcpXkYBwSqELqdItmOIVOBfORxkSFruFhjh5nxCcZ2bNDfwRegZ7B\n8JMQnXpX53zs6w+vYfjMcvme8vE2xSsx7URjAwhyyGNhfs9zBsMnQnjtiC4dk7dBjlNO9699gBij\nuSze+/7wmsRopvsZ2UFIMPOgaWOKKFruy/VTuFVybLYitB2tXnLp9XEJXKw9KCgfxio+S7ziKou4\nnMfM3gjI7s043JszvpeSHARcHQ6YXUSE59oHNy1MTTsDg3hAyI4tMjDks4DgLGD0hWNwblCJ6Xfy\nsfmOJfUxJ255YnXnS05h83vUrSXNdrXFn6j7SsCyz0OVqFaOVthIY4YaG3rZI5z404mz12D+Zsbg\nuyHjF474WVoc3JLqFKqvw7dPjMWhUKnxwFV4YcZnPp0ZCtmBQh9YxoOUsz1LfKa8BSL1+g1/NsTr\nOGwEYpzXh4TgQsdsFvkgvZF3fArmruByfBzJYCKFaOLI9i2DQcb7+895ND0k1jkvrkbkWcCj60O0\nOMIoZ35sUWmhjNWO6NID6VdXfKi1e+3R6eakqrHYK4CQW9Q8QzJDOMs4nGQMXgy4ehYwfX2P56dD\n2M8I45wwNIT3Z+SHmuk0QF8EhJeqOgW3DedQuTmfWNzAQKYIngeMPxNGTwzhdc38uI2upB5uri5K\nbFvOFtzCRmpb5G2/NQ9tFdSWsy4eVHPAtOk5FhYHp4RsL2B2UuhrjNfkl9Gag+eBP+A09aKbymod\nUO+34ixHqaArUzm1GH8xjuBake6HuPEce5pingwIJl55WLp329AveJ1APhJmp36jsJHlaG/Gea7I\nc8EGinRPcfl9wvyNjNH9KdNnI7IrjTjlxZqi8nkeMgrTqhufX4wZDjIORnMOP5zx+OiQ4PMYhz/x\nuQvdHVAoaOv7H2qTzQ0CbKgR5wddZhmS5R79rUNfWwaZJbyOGD2NmJ4q5vcGpIeO9NAQHKQMRwnB\n3ozJfsz8xYDgXBMVEZX6+JyX2nATgxvlYIXgzAPC+AtLfJ57LqGvtaHOEYg/M+BC/6BSVFZKtwYw\ndC3YjrMQzu5gSdiGupTIjTRddYi1S2W4AiRdoMj2Q5JDhYk9EIgpNPkKBs8d0VXBjk8sNvJ+Bipt\nGPfrlplCje9CVVk9TOQf6wRGXwhTiTgLx4z2EyZvh4w/1pVS1IX+XWy0OFlZWhVQ8HDPiwIvEh+H\n02qHDRxqlLM/TMiPNKmKmeWCHRsGUUZiA+Z5QGYVeaZxRsjmEdksZPjwgnvDKZd7A3ITo3KpjnZv\nS3cOFEpaUsI1FXH1nbE2MWyk/S5QOIlgas5AzoG1KGNRaY6+TBl+EZDth8xPAmanAbMHmqt7Efog\nIwhz9EFKrkNcoAmv/D2P5JuBwZ+Sc4h2cB0w+kIYPfaAoGc5Yhqs8DpRoAYITgs20uQjH0pMJd5k\npzKzWmZJfV2Sy+RrrAqdQW/6iECbnrWV1eagZWten8W/sk9MJFVMy9JfBLxuwYkjurY+/uFQEwB6\nli3KbyquXSGOxN6bMZw5dOYtGLMHQnLiF7Ezwmwa4WJLeqx8oJwi5gQW8qG/jt4e5ujnIToRgonm\nkwfHZJmG4pYvH8dT4HnM41kAgUOPcjLtiMYpgzDn0eSQ63lMmgTk82BhZkw0L65GDIKcUZzx/M2U\n8FGETgWdbA/idwoUViZkGyBUiWuKRe0tDQCSGQ8IeYcXknOQ5ShrEWNQSU54HRKfhwzONLP7AfP7\nmuTEoA8zhsczOIb5JCI5j4jOPTg0RYpFANPiUM7I4maawXPN8EkJCGb5WHQb1XZ9b2orbXOCiTXZ\ngSY5KCbq1BJOi4P+ZXbrChPbjiJK2U0tXon9MnaLd9XvTar7LZR5utI2q6sd61aGQjSA0uYPLOJe\nWDDFycuVE6nO+TB2alFuPgrI9vyD8Nr7MMyPA5IjR36aogKLyzQuFdTEj4mJfT2SgQsgPXTYkWcx\nVeEToTIPJDbVqJlGZb4N9UAt4TBjOExxY//9xfUIgDQtxlocGIXMFeG5wl6O+cwKp8dXjA7mzJ+F\nBJPihKhVi4J70J0BhVYTHbRPMFV4vmkNgfcZF+sInk+WgaRJ9d8KhZLMM9R1QvBCMfxMcxgHmHFI\nchwyvT9g9nDI/IFBjlPiN69xbwhJpsmvQsIXAeGlLB2rLm+EFiuoK+29JHN82PWhBgXK+uPJWAtK\nYWOFGQS4wLOe5a6XjbziqYzfl48Ki8bYFcK4Qs8VknvgsIEjPheiC8fgPPSOMlODnuZezHBumSNp\nnqtYQyuiQ5eY1xyvOpnGuNT9Kmy9DW75eXneo1amiwLMKCA5CslGimzktfZhIdene4rpa4ILfMzL\n4TNLeJUTXoNkPg6EL8gtfXYoXKy5+Po+k9d8YJjRY0dypEgPPIeAAnUeYo8yH2JOg1Pau0pHYMuj\n2oc+GK7kCn3hl1p5tJpUIxPtN5mpIz0QbOxvrTJKkRGRXUUcv3aJc8LV0xHDTwOKvY/hHIJr/DkR\nDddvCbOjiMfuAHMesfdEoTIfZDdSxh/f70l3BhTcpt2suYNGAS7wCiaVWR/qqrlLrduhmr85D0o6\nt6jUoOaG6CJgeBYwOdPMHgyZ34vQJwmjUYIaz7kcDTGDmOhF7Qr5MkRZJiD+pqb0QDBxQDB3hBMh\ntPiArAW45aOA9Cgg3VPkA7+bqWwBAjYqztTvO1BFfAYBAktuxa8h76WCWH8UOdvz90VEV5rhc0V0\nnoRG7TMAACAASURBVKHmDc+W21I4to1d81lbPZssKM1YD7WybaDIxgHzI002FnTmUHOKMPNCOHXE\n5943IJj56Nje4uOtDetcym0UkMc+0nV65MfMBt75CCA699Gp7RexD7Z6YrHHGakEBNcKFQrZvvMH\nuQA182OUj/xxbhnluGmAZF4Z6c8++LJd4PyR80zhAktmNFHgj5CPP3fF3RT+QqBgZjGxYvLAe0Xi\nwExCVKqqiFX5UEit3mqc7wwodFJjcpWAYKNCXMg9IEhT4Qab2c8mMBSKLMkNQWbQU0V4GRCfRcyf\nhkwfaKavD7k8DRkczxmOU9woZXYce9HiQirXVKe95tlG3pWVAx+GLY6oYjA65RVZ6WHA7EQxO13c\nL6lnXirwB4Hwi0I5HyMgsOih8RGUy1fNFS5R5HuWfORvqFapEJ0LJgrYA6Izh8obepYt6MaKxi1p\n6axFJWLUE5SKPx/sVqeu4rCCmUMnEF1ZwolDb3InL78HCjvQuMBzeNGFMHxqsYGgU1k4QQ2930N0\nAeFEMU0j8gPjA+YMijkQuSrupBk69P2EwTBlcjUguNCYsSVXkBwL0ZWvS6VCct9iBwaUY3I5IImM\nd2O+dgyeZd4JKlRkY830VDF74DcNjCCxwR1ZphKSHgv5yPB22OfqqwVtBAUR+Rng3wCeOOd+sHh2\ngr/z4T18IJUfLYOzisifAf4EYID/wDn3d7dqUZNqE9gFygNC7JstZmFyXHEE8o3pNfGXd40i7Hbm\nEKvAOMLce7yF1yHRZcDkMmT+QJOcpoz35xwdT5iNMuaDAcGLwDtBZUX4c7wPvhk5gmtBnBDMNGKc\njxMQeJ/+8iCMCzwIlJGIKlOYKc5RxBYVG4ajpJIvTa6R0GLFYQTUMCceeq5g+nSECwJU7hVTg6fz\nRb/sEiviZQBDox2t7tD1tLXw6TpxBDNHOLGFTkf5NlqvYAwnPpxaXUSoymn2gXOVbkplEF6X5w+8\nGFdeTGtiih1bYOBFx/BKQDx3ZmPPyUkR4dppsPs5p0fXXM9jnBHMGwlvPXxBajTP56dEl8LgmSM5\nEpJ7oAfG+x6cDSAyuNCR7CsGzyDb82Awvy8kJ9aDT+bnlgotNhfcQYY7Ndw7mDLQWbvtt4P6cAr/\nDfBfAP9t7dlPAX/fOffnReSniu8/KSLfwEd2/ibwBvD3RORD51yH1m9BrZrt6kdvXXBxiI10cdTV\noqZpNyD0oE4WstQ9lHoH4zmRwTQjuggZPg+ZPAyYvD5g8lqIHKeMxgkHD69JTwJmlzFkivhxQDCD\n5Li4aAUftScbKZCgOCrrFWJmWFzVVtzR5k1ZniUslVN6LtiBoANLFOTkucbkCpsLKnD+X5QShL67\njVGgHOmhZTZTOBWg5xF6nnsPvl36rA8g9AHjHqc4SwBaOXWJgBIk92BQuo2bWPmAJReWYGKXdBY+\nXoNCCv8EKRSL0tBBOSl0ONqPSz7yHIOJ/ef02N/ahBGyucYNDCo22FQjc406Ux7gbSFCWsiPcgaH\nCcMw42IyRC5DxMB35/eRTDF+LkSXhdt1pkiPFcmxIhrnJAODMQoXG6ZvaJDIiwRHMHs9Z3A6I00C\n7DQA4y/icVbQseH+8RVKHL/y6A2Gz29R0eic+z9F5L3G4x8Bfn/x+a8C/wD4yeL5X3fOJcB3ROTb\nwA8D/1fvFrUBQugdkkysKY/bqlK7DovzDuu4hT6ms9L6UR7OKh2E6uBgDIPUoGcR0VXA9NzrG64f\nhowf+HBfyd6U63lM/sWRD+A69r7yuXKkWWHLVooyHLoNCl1EVacUdfrdprxVyQWg5oosDDk3avFq\n2ptBBBDliMOcMDCE2vA419hMeRNaKKgsYnCuiZ8VdvqX5fJc79eS2vQHtfpLDmGdWdSJFNyAd+EV\nY7wnq5SWF5/HR3RSy3omVSvX2lVA0BozDjEDRTjzwDx9HZQpLq6Z+EhaeaSQoWFwNOft43Pe23/O\nR1f3+M1PHqKexFXk67y4q4LIMogyLmYD5tcRw2eKYAImVkQXMH5sCK+9U5ueadL9iPQwJBkFDMYp\n88/G1UafHHnlaXLP8vYHT/kDr32Lf/jsA7798UPUVGMlAHHsn0y4nA6wVuE+GTP+vD9buKtO4WEt\nOOsXwMPi85vA/11L92nxbD05/IJumwShxsY1kSEvAKGuWNw0YfumgRVwcEpWOYfMEKU54VXA4LnX\nN1xdBEyv9/nk/oBwmOGskD3IUYlCnSTYTHl350SRZP5gVDh15EMqbsAGHg/ELO5gpDg6W94zIAbI\nFC60qMCig4W3mwgEgeFkPCUQS+6Ul2ETTe7ABYqpEWyo0UlI9GJJ5X+7Xo5N2iE0XCWqLC1sIFAr\nlg0for7Qt0aCU7o6ZKQKa4NTtTFuq28QkA812Z72OoQEBs99PMTSCSgfCmICzFCTiGOyFzHJY94a\nn/PF8T5XVwHxc12ZrF3R1EGUocRxLh5cTn85Kdpl8XdM+M4PrGP/u4p8FHIVjJDjFD3z4eDSA4c7\ndqjc64w+f37I385+kPPLkecSDrNK4Xx5NcQWnrnjz4X4vD9neGNFo3POifR1AF7Q8r0P+20JcIHC\njCLM0DdTpQaV5n53KNJUf9sGus0Zpi84lF8rrqGWNzfF/Y6WKDPoeU4wjYkuNPPTmPQgwgwdwcM5\n8SAjDjNmSUQc5uTjhOvBHuICH6VYy9KdBqq8UEVASXm2vgCoQpaWTHCJxipHGFlUoZlXyqLF+QtM\no4S5CTkazZhexbhYyLVjjsaJEMwCf8fDdbq6m28LDn2sRmsAvMkh1J8vlVF+LsCZwrPTj82iDp0U\n8R+NKzaboixVvJ9raYdz3llp4LkLlXu9wegxxJeGYGqL4C+adF/Ix4rkasCj65Bn98a8eXLBbBah\n58qbPa2PKI0TzCQgzTVvHlzyfDQmH8eo1BCczz0XXDhIuaDwibjM2P9EYbVmPhn4gC7izYuSemWk\nnivy+YDnz2MkE7QFF/gTnU6BzdXyZrMFKO8KCo/LUO4i8jpQXn35CHi7lu6t4tkKLd37EL/m6rDi\ntMYcxCQnMflIoXJHdJH7460FojqRhe6k2kk2TM5trBFlnvJjJZoUO461XhlZWSoy4hcR2aP/j7t3\nC7VtW/O7fl9rrfc+bnOuOddl77P32fucU1WnTlVOWTExRCOCCQTUB0UEEX3xFsRA0BdBKBUUQ0BR\n46MPQRHEUgoCmoSAqQKRFJpEEyuhKpWcqpNz2/e11ryOS7+0iw9fa330Mdaca8+9z65klw0Wc80x\nx+i99TZ6/9p3+X//f0V/atk9ES7nNcZGTuYtJ82aRdXz8XoFUW844yElbYTBoKlZ0HiUXI5sNLcQ\nZxMaMgNSRcQk5k1P7x3OqMdgTSJEQx8dO1/p6zZBE0jGEGZCf2Zo1wbXVUhI2G0/HvfepZkkGB/K\npfCpo2A77kgqHrv2x6XmZFTqrhixZCWHDIIMOZQKJSdT8gfcb/BGPo89aYoJCbZQ3QZMiERrmF1A\nvVHYs9sq6nE4cao6fltT5YeyCApLBIzhdjPjuQt4b+FRZPPOjJM+aI4j5iS6NeM1z14OSILtraE/\nAYlatkyiMO7qFqodDHODXwr9ieJXkoHhPGBWmmhOWzM2dD10fF6j8OeAfw34z/LP/3Xy+i+KyJ9G\nE40/Dfy1z3LgZC39G0tuvl4r+MSSWWstdmuUKFNEy3NRFA9/54ESx7v+FzqmZT0PEqNiHNqB6sZR\n3da0TyrabsEnveUn335BTELbV9SXlupWDUOKGneWXvtjYZPYJM1J5OQWmVm4OGe7riZGoZoFUhKs\nCZrR3i1ISRiCUS4Hk/LzYPGLRP9I2HUG01fMOr8njX2Nl3BvReDTSsCfoQR6b+Vh+n1OG8Ngn1nP\n4YHp4z5UEMYGp/Eac9XhIDxxmq9qzw2hFprriPHqdk/nZIaIRCE6S3cm+Cc9Zyc7rp6vaD5yysZk\nIYyU8wn/eKAW+Pj5I9LWYYHbdw1Jliw+GSjcktHt9TDMkLC7yOqDRHtuMxJWy6DVJmB3Ctnfvtng\nF2owTK+4B7MasC5gbaKravUU7hC8vW88pCT5P6FJxaci8h7wH6PG4JdE5I8BPwD+JV3r9Bsi8kvA\n30YpMf7EQyoPZaSmYvf2ksufrlh/I2qM1BtIDtda3MZpPmFqCKYegJHDZONn2cnueu9d7itHiUhQ\nryHJmIw0uwHTB5YfOGxr2KaGi7M5MRp2753w5LtQr6OKjk4EXEPFvhMvZjewUrryk/Mtu22D7xQv\nXyTWKhcImYXHR4NkJeUYlVfQe+2mNyaCE0KWju/PBOPVHa5vHXYzMCIeC6joKAn4hY47ypD3nuvI\nICSjnpXt47gD+oVAboQajUR2HsUnxbKEuL93jq4vVZbkhO5MaJ8l4ocG2ykAagw/oh40WWjPDbu3\nAydPNwzBUn1S0VxoKDicZkOfcSZ4Q38xo3muZCzt00j3JOHnhvZJo/mODGf3RbszNzNVt9pzESpF\nbIYaukcuiwcpwM0vNDeVrALbXBWoqoAxic4oViZUX2z14V+5509/9J73/yngTz14BuVzAu3bS15+\nu2L9sz0nTzcI0PWOfrOk2xrmLyzVjexjwuJyfw5s/2eb3P3G4SDXAJl/XN/ndgnbC3EWubpaEnvL\n6n2D28VRVi4ZCDPtwAvzpE0xgHhGyDRoeTGh1YWUBJGEsSHTUCSGYAnBjPqIKYH3duQjSNFgbCBQ\nQYQwi/SPDGYQ6nXNLKQse/87uI73eCF3Gpz7Kg8iFLlmk41CdHuJd9NHpbvLPAm2j3sEY5wcu/w/\nL1acOYalErTEpoQnaoCk9ETkvE+YGbZvCNUbO955dM3H6xVxK+OOP6wisVHsQBKQnBg0GcGISwyn\nET/XcE4nrtUmP0/EeS6besFtDPXlvmkqWvAnieHMKwV9m/Mqi7z3RqGuA001MARtnFP5wt/58OGL\nHQLd0xkvfr6i/Ye3/MxXnvNyu+TicqkhgkHFNhYKaxYYv8x7wTTlybgHfvupzMl3jTtCkle8hvI+\ncpKnArMciJuK+oVl9V7EdYq8K9npohMhQUaXUyyj+jGdZXs917KjsHcnUGNhbdTSUxZNjdkQxGhI\nUZQMNQniBDIiMnUaRgwLoT0z6oX1IcfAn3NtPsvrn+VYJVwwObzID3mp1BgB2lyaNHktfak87DtI\nJcZDgzA5VwE8uR00zzVMFZ+ItRzkWpLA7rGlfTvwE0+uWFUdf/f6TWZBd+3hJBHOPLKzuE1Wz855\nhmqj7M2m3cf4/iQrWSUwnSHOA3blmc177YY8tfh5TaojptOJuLe2/JGvfw+Av/7RO6yvFtTzgapS\nTMM7Z1dsh5pNr95DrNOIiXnI+FIYhVRZXn67Yvvtln/k3fdYDw1XNwvk44Z47knzyHAi9MsMYhri\n/e7scQjx0HFfXPwZUJFTryFWmqW2HbgfzHRHvta23oJNKLuPCWoATG5NKESdxShIL6RkwKmUu+R8\nSgyWkD0Hner+/3ot6jVgkk4rgdSBlDPTqU705xHXGuq1U/KXPnwx3sLxMe7AI5T/f+pxMkpx/3lN\n0Ko6QoIkmKA5E22bngjfjszeh+c/nqcZAm7jaa5c9kjAesUS+LlWagox7O5NoXq647zZ8rJdwicN\nw0liONPOWrYOu1EvrP2KIipnz+0YzphBSIOWnUOTCPNEqiJ2J5jeEbyhlURVaSkqPE6YrIQdg7Ba\ntHx1dsWJbfnh6nxEtnpv6NuKH16cM2+03VoWntRXn4mn5EthFPzc0P2BDT/x7JLLbsGPXpzBD+e4\nTohPE1IPhEHwS+VdpJ+EEK8bD+mBmO7+D3Rj7z1d8RqcEr3YTm/S1Q81E+467ciLhaY8kd1TRvGY\naNEvP/dOpCppsiwKKSX1FmwuT0gawwWRlP9lr8Doe6sqjMbCD5ZQGqjqSOqUumtYwe6xUN9UVNeq\n2PQ7PR4UMhzlGVKUYhHG70wSI0rR5M+MLr+g3kOcEAIfdIbG0WhI77EizC7VQheKNFA0o0QNJYal\npX2SeHa6wUji/YtH+p53W+bzAe8N5vkM46F/HElLj72oqK81JHQCqdLwp1qrWx9vFdFa3UpWxjZ4\nqRWuXCWq85YYDfNFR0oqTPy/f/TT1Daw6WusjQyDJQZL8oaurbBWpeZc7fGm+kzfzZfCKIQG/tA3\nvsf7mzN+9OKM9P0l9XWOhRPM5gO71jEsFdVot/6wJPlp4zOgGX/ckYyQ6opYKd+/6TRhpA99GjEJ\nBZcwJsMyRj45tFPOsG+Akvy7TRinJUaBke7bmIizEWsiPhpirDAmYUzgZNHigyFEQ/BGy5O55pkG\nQ3LKAWh6w3bjOGnDnUjH4zDt3p3+eC0fYl9eZyBiGsMlKS9nD2DqCRyWtPO9YxRyLLDHJ1hIgf1n\nUwKb43IBtw00Jh8jqaEvoKhkYfvMEN9seWt5w3po6C7mmGcdbzy9UQKU750wvxC6p7mE3JvcDQn1\nTtemUH1IYsRDxFoYThP94wB1hF71LkKTMCYxm3W8fXrDwvVcdguutnMuB4f3hhgUtapJB4idpa8c\n0iTqOjA0UcudDxxfCqNAFfnW8hN+9TvfpPphQ3OzV/yVrWNo9JdYMSoUSwRifqLg4cnG+7AID/ns\npxiOZASsJS4qhpXLBKLavRetup5+JvgsHlok2Pcy7JpPiI3GgQhIpnQTFxEB63TnNyZRuYCRhDH7\nnILNf3P5b8u6Z9MrWV8RECk5B5933tAY+lix64Xm1mG3w0GF57UsTNOfx2t5h0F4bY/LXQCnEpIV\n+n7JSMVRWepoHqI9EcnotUnKfAlxcvxSzs45p2TtCKVPVnAbzU9Em8OSbGQkQHcGZ2cbfv7RB3zQ\nnvG9J09489EtN23D+uMVj38bunO9K93WINeqHTFVbypGxs/2l9mfB3g06BJeVZpwzl2wMRgE5Wfs\ngtNzbWYEb/biOUGQopxlEjEYYjRUNmBmnlA//FH/chiFJCxMj3u/oVrvDQKgVrZ0mxlGvb/Pva8/\nFP34eYYx4GyGZms/fnRKESYJdudCfyZ052m8TtsWY6dZ7+hUak6Pt98dC2qxGARQHYtZ5VlVPS+2\ni7EFxGYPIgE3bUOMhpgE5zQRVdc+JyXzTWUT/iTQ75SfoL6qcNefg9xvun6fNwK56zsoeYGgYjEp\nl38P35N/ZtUpJe0p2Iucg8rVC428Judxhli7fdiBrl0hd5USteQNyJrEt2Yf8dSt+XvnT7hpZ1x+\n8AizVc/Ez1X/obrNeaEJL4Ttlak5zBXxOKwiYRWZP93StRU8b1h8aHJVSitSw6bCushtp8a9Gypi\nSSAXoxAFJCJVUui7KXNPVI3XhOkDx5fDKAThNzdvMXs5MQjFxY6QgvrcyeUs6hF45d4KxEMf8tdl\nzo+QdDq3exa4dHMazRlEBzjwXl3R7lzYft3zla+/5KPvP8FdW+okmUhlL6BKo+4jQOosuIhzAec0\nRAjR4L1hWQ88nm35qdVzfi29Q+cdm67ORRfBGL2BRhiHSbz56JYhWG7bRlWMMESJpEYYTiLtE0Nz\nXSn8+Zgp6bVu/sOW+rXHeshnUjqgTTsYZv8+OZ57ef34b/k7w4iyYzWKAIyVfmfGK3sVQHJCfQMv\n3jvjf1j8IVaVGs5dX1HKkbtn+h6J4DaJ4SSXm2fo6wnteVnsVaHcaU+7qTHPax79lrB4HuhXyq8R\nnRCCo7U5IWqilpqDqCGYJJaNS9TNwKwe2LY1i6ansoFumPA5PmB8OYxCgpjkUMsxL7Lxgk9oUs0p\nrDNWBtPL6Aoe15xfPf5nWJFj5Nynvae8ZCSXxMxexsyI1q0XGgr4RYI68uZizUf1OckZ/CrnEowm\nFZNLav3z9RMEHNS1Z9n0PGparto53eAISfDJ8KPd+SiA+qN0xhBsLk0yYhoATMYz+GgYvEVE192Y\nhDSBMDMMS8PusWH23Cmx6ese9s+ShH2I4T3+/u4CosV0wKdwp+htPPrMsQeTXjUKsTK5Cxf6E8Mw\nF1yXcK2KumgOSGiuEsvvO3578y7pjY7Zouennr6EJy/5jR+9RdjNaC73ZciROSvrO0TDqHeZjOaP\n/KbCXltOvm84/X6vnI3JMSyMytUnCDtLXAh1pQlEb7LfUoh2ir0MahkXs55Hs1afKznMuXza+HIY\nhTKOw/0EpkN7UPMCD0stE9lWwN8TRhyXJaexbrmJihDI8bijW/Ig1r3r76Bls9oRFxWxNiNYxC8Y\nhUjdFsKl429+913ci4pkE2GW9niEXFEgqkuv89HTLOqBZ4sN/9DpB/yNy3epl4H3b07pKsdNp8Fp\nbQJvLtbc7maEDG+WjG1ICXwwXKwXxCgEb0d0pGkUIo1oTiPMBb+qMmVcUoDYXQ8Y7NGP94wHISHv\nSvQ+pKxcwGtJE68FqHXQNzHxZF6bz0CNs58b2nPlZpSX2mdQlLCTgWoXWb5vmH8itB/O2b7T8Oub\nhsWqI64rKq/JYlXHFoZlUr7OXjQ0LGClsklYwAvNhaG5irhW+yEqJ1RbVdsOczDZc7QmgoPeVBRU\na3luUhSG1nHVOmw2Hk3lNdT4DPH2l88oyOHvthUYBGaR2ESGE6XzrtYGIdx3pDuOnQ5uhAeBl+66\niV5Twozziv6sYvOG6lfaPnMYeA17VIjUMHSVGoJJnjQ59RKkiaTWQpUwdaBuPMZElnWPIeluHy1n\nzY7eO7ZDxaIamLuBq37OwvXUzivxBsWWCSFkXMPGZbczr0OQnLlWrgaTUXjD0lDd2EMyls/oGXxq\nbXyaQHxoBSjtiVFSlMPv9TiMTHsv8lXl6/3nxKt0nNtCqI32PQz6/ZUSZ8lnaf+BznXxSUKSobtt\n6OqGplWmaD9j5NWMlfI+2FZyKVo3tzBTsSCWXpOIzwzGG4xvmH8yZMVtNSgF1WptpHaBXW9KkiNf\nJ8g8sFh1WBPZtVp9avtq9Bq/0N6Hf9DDeCW2CHOlpPJLGBZCUxtMy2EF4tPGxD2911P4vEOE7knD\n7TuO9degvoLZ+/rFFQMgUVFtJgjDKhEySEYfCDR/kisCpgq4KuQwwPLxzQnbeUUbvoaRhJPIatax\n7WqezTdjfPt8t2IIlqF1Wr40KBtPa5FeFZyJktGWuXMwKfLOZPQdovoGsbaYnX/FoB6Mh3oJ03zM\ncXXhoeXgqTGOETFmn19IaV8xOZrrK/M48iQKRiHGhO0siCIaTRaZHdWgi3GYPGD1VaK61ZKin+mu\nHh2E2SRhnEwuNauUXWiy1uMgJKOJwebrLevZku7McvKDmuYq5e9Ajxdn2iK/7Su8t5MOYUDAzQZ+\n75sfsPU1H6xPubhakRK4Kihm4e9D6/Tft2G8egvBG82Sz5X9NtQGZz6l+f/4BvxxqwvT4xyHE8Cw\nzNz/udtRhUnAV/rFlrjODIzupOS8QQCtoXcGmkjVeJ6cbtj1FZcvTuh7w4YlN882/NTTl6qcLbob\nXHVzdr7iUbPjBy/P6XcVeGUnip0gnVW03CB71GTQG87PE3GpdWwrWi4bYgbS1OYzN0I9KOF7bARe\nKWUevf+u0mVkv6AlhDnKHdyJoTg+flJeDMRjcNTXA6G1xNrk3hNR0pbcsET+Oep8uKxElR/60sQW\nm4wxMQlfJy2leqG60RA4OpWPkwTzRceT5Za2rQgr4fK0xrT6XcVKqxMyUyattq8UqORzaUq0bP3s\nbM0/cf7bDMny54ffy5VZYGycqJ2/+rXcN758RuEohJCoMTmDQK2NJn5p9Euzogi+Eve+cqwv0BO4\n79hj7VuoNoFQWWYvlfI92tzXYPWmCZaxPbooAsW6uLCi+g19Iq0Ux24lcbOeQ2eoLi3+NNLuai52\nCyobuNnNGHrHx9cnOBd4Lz6iezlXjLxNpAh2bbGtegFTNW0JkFo9Z+z2dXS3VWi2JPZ4+U9bx4dU\nHvKDn5whNg5/UjOssuZnPr662RG79djbbpT8e/V8GeotJjcSpb3WZOFHfF1i82hOY6nTKHGLyTD6\n0Fh19WuzB5uNn81JRJtzMXZiELKILC5RrXpCMBq+bdTFCI2WGplFTBVpXOB6p0b+5GxL9eSW5y9P\nGFqn12cTzVI5L4ZBJbVFElIFLdcneH614hf5g1QmcrGdK1DNpEzwUx0m8T9lfPmMAhwahrLjdobY\naPOIn8OwMNTOILnufGdZ8ne6e7JM0SqpbHG9k8ktrbucZc43jV8khkcar4qXvc5f0v4HjYIEO/OK\nP6g7QqcZ8ZgZe0mwG5z+2ykUtm2VKFa84NZGRU1bIbZGmaV79U7KXIoHU9Y21PnGrhlVjMZrmSJH\n72ipLuNBPQyifJv94xnrtx39qTB7qWQmBcglAVxXUd/U1BctZgqkChFCAJv996NwQeCVzaEYimQt\nWBk9AxmCqoglzWkkEbAaUqb8sCfLWFpWJKrkcEJGIwCHPwutf6ojZLAYkhhyW3NJQoZ5xM081gVO\nZy0fXp3iqsCbqzXfOv2E/2P4JuFEqGzg4sUJppDoWP0Zg8G6SJeUyNe3FS+uV8yaga6rmC16ahdY\nNj2bXf273FO4Y4jX5pHoNQbzc+3ui7XVDHm54Klb/7rjvS6X8HmMSAbFJKs3k9uVY2VPp0+0M2E4\njyy/esv65UIrKtd2vKEk6XUaz/jFn9ZtbpVG3UQvNAtlWhJJajA6i3SG5tLgtrnC0ei5Y6XZc+Ke\nTSiJJj4lqAFw2/1lDKssgPJIa+rAPsM/AeC8cvkP3JVTZRlOGzZvOq6/BcOznvajCrs1o96F20Lz\nEiQYbKuYfdNqaVRE1ChkslbBvCoiJFlzc1HjlxU+S9Nrgk9GXgHXJurbQHUzKKNXn4mARbLxk7xG\niRgU3VgMQ1mXNNm4Dkp+ucTrKq3qxLD3EPqT7B1m3gNjIpfbOaA8jh/enPKjqzN220a9gUWHrRWx\n2nvHct5Ru8CQEYvdptYqkjd4Z9l4C5L4PV/5mD5ahbcPVlmkHji+vEZh4i0UaqshCLiUkWAKgAIz\nTQAAIABJREFUNKlGINPRRd/VLVnarQurb/n7fW3W41zueV1EUYx1RVxUhNqo3sBVGo1B6fVPmf1o\ncztDtpbURPxpQHqjVjwxglFi1B3im8vnfOf8GZf+BPdc8wLbpzPoDXblYWexO0N1a5g9h9lFpF5H\nVYiai4rCFKPjsweQ0uhKTslMJSXSDkAOPAmlRQ/799wHFHvdmknh26wYTiztE2E4H2hOOvxFhW33\nHaLDUglFwlwl5RthFP6xrcf0A+KDuvqgycbJiLWjfzKjfVrRnmly0GatRj8ThhWZLk1wO0O1cVTr\nRHMdqK+H8VrLNYgXjFWMDFLwJxyW+Mprpa9lHpjNB1bzjvWuoe8s0usHwrxMVCtCIsK2VaRi21d4\nn0uPLhCDYberMSYSguCy9JszkbPZjvevtRmLnVarqtrjB4eRxKrquOrn7KIlJfliE433iMH8F8A/\nB/TAd4F/I6V0langfxP4u/njfyWl9McfPp1y0vyz7JBJ8QqmN8T5QJyX0uQkr8DhTVjcwldQeV9w\nSJGs0Rt+pg1Qdkg0txEzKLNOrDSEqNZCmBtk3ejnelHexSbqZXpBbK5Q2MiT+ZZ/fPVb/NrpO6w3\nM6qbmmqdkL/TZP0Bg+0M9bXQXMDJB575BztMO5CaivbpjN5bJQoR3fGKd3DQXV3g0ylLq+VOzWmX\nof49Hfx80NoYkxWXHMka/NIpsUgD9sbRDwtcbhsn6txsWz6bY3QrhFVNqIXZhcGFhL1a63eYCW1G\nCYB5RX9es3nD0j1WA2B8XtsEwyo3HNmEdGpM+1PJ5Uf1TFYfBNw2aOVB0Fb1DKxLNq9d9gyikbHF\nfSrm4xaes9WWxgau17MRnWqy11byNzFY+mimlWniYBTBC4jThLNzgdoFmko/6EzkJ09e8r3nT7B1\nIF5VxNqzmPVsgab2/PD2nMZ5Nn2tXbJfcOv0f8+rYjC/DPxCSsmLyH8O/AKq+wDw3ZTS73vwDPKI\nn9LNYAKYTsCppNZwauhXhoU1r3ZM3pfFLkOmVofP5yWME1OjEHOvfSH+CLVy/SWjMWS1huFU/x5m\nifrKMKREOAna875TOjByE8tp1fKT7oLTqsXYyOwiZcUj2L4lIJr8ai5UN2D2SYe92o5xtu1qbG+Y\nelsSk3ZqlqTf2Iylvxufa/DZm1BU3j2e2KetkwipscRZhV9qX0F/aulO87kGMAUf0WvYIIGxBJds\nJiVtKkKjNGmxEprGsrha789RWeK8YlhVDCcqv9c+FfqzhF9on0G1ljEEdWtLmEXtDj2LJNGHXolP\noH1imb2wrD4Mqi6VvYDpOiKQ8noWUWDtVdCqw3LeU+WO1aoK8KhjuGpG/gyJGqJEL5gqIUbvfmsT\nHkhVVEGXXD0IweBNwkVD7Tytd+xChR8sq1XLTV2DaE8GQO0CL9cLZvXAejtDDK8tHR+PzyUGk1L6\nS5Nf/wrwLz78lA8Yx/dfjrfdVuiCQeqIX0Tl56+NGotAdr8/xSBMD1uwCg/tlCxAm4ODJMJcUYy7\n89yvYM2+90FyP342amGekKDagSDEuSaKwgwlTgFCNKyHhg/CCe+tz7QuXWCxVnc8m5OYi+eB+Yse\nd7VDBq8tstmlNr6ER3kNR6OgO34xZNGpiy0xjTf9dD2SUbDMK/X+16xbyg9sd16zeTMnBjPmxrU6\nqWTUEFXrggmAwQqpUQBQ+1S7Sk2A7dsR2xlCJcy/V5EaRziZ0Z3XDEszJgULYtB2olWrbPhCNjbi\nc9WnVCmMkOaBuNJKQHdu6N6o6B5bVu8ZlaMbL0qXJuaHLFntayhgpDDTMmTfOzauoveOZycbTpuW\n78/PWYdTojVjG/yISATta7GRodd8kZjEbN6TkrBdN8Rg6HvH155ecrWbswsV1gXOFztu6iUIXK9n\nGbquVHybYAg5x/D3G6fwb6K6kmX8hIj8GnAN/Ecppb9814emug/2/Pz+o5cQIuqOkrxQLT3DzGoI\nMdO4WobJw3qfiOh4zOwK/zjgpUlTVvekZvfYcvsNFQ8JGXRiOrKcWZ67S0rE6vQGNsPefV892pGS\nsL5Y0PWOH1yd85dOf573PnxMai31bcwPtFH58iyg2lx67E0Pwx55ONJ5J33YILv9ScMCk7IuQn6/\ny2W9YnhCrQk52yU1Ms7AUax98HMakqWkRskKYabIzjBTdmLjVfvR9FBVjA9wtVYV5cJBGJ2Sp/ai\nXJJmEBZfv6H/5IxYC/F0znCqbNndqTaUja32MeG2MkLHY+YXCfM0sl3FOpEWAVNlT6BXLksBfuqd\n57x/+YjdYkaYVcxeWubP495DOMolAPp9FlyCiwRvR50Pa6J2qJpImgVFZduknAmox4HVZrXVTPVB\n/WCxNnI667jczEnB4DNxzov1Eh8NPiqM/WI7V2NrEsOuwhXIOhCjYGzA927fuv2A8WMZBRH5D1HW\n5v8xv/Qh8LWU0ksR+QPA/yIiP5dSujn+7FT3oXn33Qc9nbYHaS0sB3DqHvqlob4xJPMa2PNDymWf\nd4jg54b+kdC/MeB22jG3+LgIxcpYhYg1mkdwiViZ7KJrzXmWb6Bu6eg2Nd3VjF+Wn6F6v8ZthPnH\nWiawraPamSwll6huesy2y0pDaTRWpRtQW4jzXIuWAXknDwkJBlNYP2I2KKJJUmBs7pLXrdMRZkNx\nGQp8sn2iudaHyrWKQyikqKU/pL4JVBtPMoKfNWzeSSx+5oqE7njtuuGNkzXff3qKBOH2Gws1HE+M\nchIYxrIraJa/NCRJVN0Mv1JDiM2Udi6yWHXUznO7mSkEfDC8f/kIayNnT9bc1HNuz2r83LJ8X70s\n7CTZmD23lPEoGJCcDAzBMBjL1W7GZZrTe4edB2IVqWoVjx0Gi+8dYbDsBkvb7hmSqtrTZzLeFCU3\nxkVubucYk/j1D9/S/hWj12JcVD3L/GU3uTQ5qod9hnv8cxsFEfnX0QTkH01Jz5g1JLv8/78uIt8F\nvgX8P5/3PAfnjGC3hnCmfqifQ78yNI393IKprx0PWUiTd8EepDcUMlZbyFmF0YWF7BlYBbjMXsDs\nY0trZuxmA8ump2k8w9WM2UeO9cVjTr8PzXWkutxBSri1fmWpshSIrvTDK/OVmDBDVCMwzcFmo1B4\nHslqW6WqEK0g0ezZi6zkkISHdUyK7ElLRDDZKCgwSUlUkxPMoAA05ZtI2M2AtJ7qcYUEe0Aeszht\neTLb8KO3dgw3Neu3K9wuZZGUXCkR6E8Zczi204c1NKoJmUzS78Hp+rtKEYK1Uyr0FPWL213NQODk\nyYZnj29ZLxo2bgnJMX+uhmc0CqNByAzMq2H0+FIShsEyDJam0e9nNlcg02LWYQR2oorhKQrJG4wE\nmtlACIZ2W7O7VQlCcut9EoPYgN85fNaMrJthNAjlHLULNOI1F+Ht+P0+dHwuoyAi/wzw7wN/OKW0\nnbz+DLhIKQUR+UlUDObvfZ5z3DkSuI3Qbh1UkTiLdGeWxXODWz/woicPzkFO4b54+XhM8grJWZK1\nVJvI7FLwP7K4DWNNPFYZ/poNg20Ff6Jci2GecLtSbrVsh1P4+o2yItWR6gZOvwvLD3uqmx76IRuB\nAaxFuhw8xqj/jnkfgjZPiT9kKCpYhWS12jHtMgQVG7FDJOZ24mRl35/wgKalZIVUGWLmlbBdRFrl\nfRzLfYNoJak2hNro33zEbHYs36/pV0tu42P8XIVwVu/ecF5v+b3vvM/f+Htfo33qOP87GieHeZbW\ny6AgTQpmgFFGF8Y6t6TXUXfyHLNv25r1ZobvtayQgkLCCbC2C+z5hkXTwxuwYUmsHc2FGvwRwFT+\n1ZFmPvBkuWXT16Qk9J0+uMtGE4+td2zamqeLLdZErt0M7w1D70b6fj9Y/JD5EjqLdxEz98TWYarA\nfNGzoyZFoZ4NfOXRLR/fnNBLIniDlUTvLYt60EY4b3OvyxfoKdwjBvMLQAP8spYDx9LjPwn8pyIy\noPvKH08pXTxkIiHJ6Oa+rs3T9CCtQeaeWCWGlfYc1Jev68x5TULsuDHqOF5+3cglNzNkRuQrLfu5\njBz0i4INQOP7Dn0IjWSZee2qU6Vkw7pZUZ23mDoQGpi/8DTPt8iuV8hvnldCj6NyaOFwvhl8IzEh\nvcrsSekILPgEK0Ss3ojlMqc7fUjjnTHySb4O/DIJW1LtiHM34h+KiOo4D6AQAZgu5zmS6jiKs7hP\nbjgTobmZKdHIG5b2ac0uVPzBsx/w6/O3GE5qhqXiKdKQIcZZgBcYOwtDU5J/cXTtTaVfSEEF+sGS\nekvhwUwmdyZ2htv1nOWy5dnJmnk98KI5IZmG+fNSisjr40DqyOmy5VuPPuE712+MFHgi8GSugr/O\nBH6zfZNn8zUX3YIqYy0Ku7YpvxdGpah4BZLA3DNf9Dxebnke1JDEKHReeRqtiww77Yo0JmIyWW/o\nDXij3tQDx+cVg/lv73nvnwX+7MNPvx/x09KjkpNQNaRK3b/obM46s0/8HWPb73nI7zQEd573DlxD\n1NgSZ4m1zTqGieYmMS3zxTrHuh5sq910w4nBn0Z42rF5e059C/PnkeYS0vcd6Y3A2cmO59+03F5U\nLH4Yka5XSG6uKowGolxD8Vwqp/Jn5IdxCOCjvj9GBf3k6oTMKlK9f3j3x1GvIdZ2JANh7Cm4Yy3y\nusd5ldXBrT7oQ8R1AemGvQKS2b9fcsRjOq+/FzThrsV954bT9xbE8xX+dMbHLPk/P/g2v/rkp3Ef\n1jRbNeRup//8XBjIZb5MbefnmefSarUnjcjQEpaIxuvejAbBNoG4tZpz6AyxbbhpLatZxz/25g+4\nOF/wd58+4+q3HrP6gVEqvWI8W8uLFyf8yuXPKiI1J5BTgi441sHSWE9Ted5bn7Hpa3wwxGBIvYEq\nMmxr6mWPqVTkJnmDbyvcTLkbh8Hy8dUJw05zD1XteXGj4rYXmwWLZx3XN0uq2nPNTPskWr0f/n8H\ncx5FUyoYTiLUahXttaO+gmob9w/IeAOnHy+BWI71umnlRqhybpMJQ0Ol8zV9To5mjsYS+6Ymslx1\ndCczJAr1tWbQbQu3m0Y5GBMMSy3rfWpgVK61YkwyMugDyTDVicyNP0T2DET7o+vDq/83fcDUZhT0\nHddjyo2Yw4rkDHGmZVlQg2TaIROs6twkxr2a13Q4s29gmpSTU99j1i1OhJMfNtjW0t42NNnvtL0a\n3gIcEnW2xqakVGlCcUQGRbRz1EUiJidO87+spRHzDi053CMlGAwXt0t+u37Kad1yOuu4eOTxC21v\nNkGrSNIZkqhBSbVWChSuDi83C0QSXTbYQzT0Xj21ZjbQzDTs+ODiVPkzoxCNYB51Kv+3rbEzj8nh\nRfEkwkw4O9nxc2cf8hu8Resd29pTVZ6YZNJJuVcsf8j4UhqFu8KIkkCKtX5RMgiz54b5i4jd3SEO\nc4xmnMbEGer82jhrevPe5S3kBppyrlhrwkzfZ0ZFoIP5ZxdX6sC8HtgsInZrp88l5pOa9WAwt/rV\nxJnDTMqf0zDglSnHREpJvYMQkF3HyCeecv6hBsmhw7hOpUKR9pUK0wdsa8ZE6X0ApmRl9Dhk0BDB\ndB7pQs7UyyGdeipGIn8HvmRgs7y8MUq57j3sWsRpOVa/L+0riTlPM5VDGyHGOZSIDm1FN9kw5OkX\nxbFR5tzk9vUkWh6cBb3eQZDBIJ3Qvpzz2/0bPD2/pbaB5qSje+oUHJZQKPSQiNaQJKpHlY8fg6Ht\nK5wL+KC9CL134+20aAZq52msx7nMtC2JpvbULnBzM4feUJ96KheyGpgQO9V5WO8a/srH3yAlwQfD\no+WOm60yb6WMpKRKo0fzkPGlNAplSJoYhpzxlSjQaxXCbbXMVVB6d8vT89k8hrsMwGtKcdGZsQvS\nDWSXuzxcGWLsU25IArcW+t6yaWtSldSTCLrzKe2WEHdWacEDxMrur2MiVT6OsnOXefeDPgODh34g\nFaMw6fdIVTZoMjEIMe6NjSm5kESaWqxy7uIdFUShK2CpiHRBxVyjksJKOjIGISqmImYMqzvawkSQ\nqiLF/XXZLuA6odrYXFVRY1ByNfq+nGQslZ7ca0IxCrn6UC6j3CkiOYY3CaJgTwZSEOKQm7EGSNEQ\nQ83H/SPOHm9wLtKde7q2orqVsbRMVoZOUT1IMYnKec6Wu2wMLD5XBOraU9nAqulovePFdjEmHEmC\nmw37JRmEoXc4F8Y5z047QhC8N1xcL/V4LlBbfU+/qUd4teaY7r6F7xpfPqNw6NHuDUPK8XmfqdPr\nRHcm2M6AOGoBuxtIPj6opv6p2dgHZNpVmkznWJBvYiFKvlF80gcohz8C1NfQ3lp23Uo/d6PQYtdp\nB51tBb9S1N1Bcmg0DPbgITswGID4AF2v3pCf8BFM3a5J/qVoIsj0eKU/IgNrRl636TD7sGFsqhqK\nkEwEH/bNSkeGgRhJ/QApagFbDGINY4OZtcis0erOrFIPJIDbRTW6iRGwZCm7oGTDkPb3j6DIwRwe\njGCjIBo5eKO7uklZNyHL8Q0WyexUpOxR9lriuG1mfOXxjZYNe4PdOb0vK70OLeZoMtguIrN64K3l\nDbf9jJ2t2HU1MSiU/Y3Vmq+vLvj+7ROu00zDF0BsIiYhxJxArBJ+59hEYbHsMCaOWhPd4NitHcEa\nnAsMUZOnsrGjsG3y5ndnTiFOCCjvGiZA8hqfs0xajqwTYW4YlpZFI7it18TVEBAMxM+wEneNB4Ce\nZAgQLcPSjvM0Xt1Ytc65jyBb6nqdaC7MmB9xO/2720aaay0VDicG02mDkvg4ytAlZzVJWHgAiktf\nSob59eTD/tpLdUIMB1yIKeXuzPKgloXORtMYJETlIYBXFaKs9jWERudWyorEqN5LSnrucq5X2JQi\neE8qno414JwaiKYm1RVpXhPmlQKhYsL4zGcgeY1FXX5VdibnCERDgxxLT1W1SoiQotGvNqsqSb3f\nRtOoMZLUIJZp5zAh7JzyXKyEywT+YkVzJRhfrtMQQiJGmD/r+erpDf/ss7/Fr1x8m5thxvOblQrF\nZG2Or88u+HD3iNqHUaxn3gyIJFwOFdJpr2mRQb0MVwXeWNyyHSpEBrZRw4W+d7RtxbCtNPQrQ/S+\nfOj40hiFcdy3OUd15dxWadT9WSItPUNtiLXFLw3VdkZzNeDWA/Q+J7de9ZseVHk47nOYQqcnu6Zk\nlKBrNZlj+nJDGqU8qzIMN+XSo4fZi5S1Aw2u1Qco1oLbJepbVF/gOjG/yDuvMQfnTJlLgBgPMQSg\nsfgogrJP3GGigvZHjyLuH/RpOTOgOgipoCHz36fFIRHSTEuPeqykZCjD4Z2n6zw5/sG5jCYU28w0\nYw1Yj8xnYA2pcoR5RZg7ZdkSjdvx+16SIvwybVgCNRgxofV5KfZQBWgR0SlE0apEnahmCvQRwO9y\nwsKgOYnJTiVRkJ0lJMOT+ZbTuuM71zOqWyXYabIWZGiE4XR/+8xkYOs1HFGNR9WKuGDBr9++rcjF\nJNr67BWVWLvAvBq42cyYL3SNKhvYtg1D7/itl8/oBse86fXrzwzdwRuVqguMgLP0uzV8GLskJzFi\nGWMtPWjyToIgWIZTkEUgPonslpbrrWPxkbB4bqhuVPJLvogqxB0jFXdXcg7Bp+xqAilhC02RaLNM\nadghaaej26ngbH0b8HODb2Tsh1h8lKhvI81l1l3I55KgVZaxjCiTn5m6LB2AsCZ3QtFLmORZZCKw\nCuzvYrH7/omouYKDIUKslErNhIjdDZi2z+eYhAEx7BOcZQ7TcxmBFDOaUO8AcY60mBFXNSlT5Zem\nLQWacaDDqclFfRhH7yyxN2IlvpskqCQ7pclFpAlUVVB7FY2iB8vySUKypuSoxRHBkPg9px/x/u6M\nxeMt8X3lNTiAWnfC5fWS3lv+Yv3zfLw9AaDv3Ei+EqLw3voMayLbrmZWD3QC81rzQid1x2apWqBD\nsAzBEoKiJW9u5/lrlBF74VunwLDOUHR4td/l9V748fjyGIWHEtNHcDuNud3G0Z9awvmALDzrrxn8\nwhCaiuWHwixn4Y8FQF6r+TB9qIq3cPzeUorL7zddoAppxPtHZ+hWls27qroE2ZBF6DpRePNFpLlS\ncFFaGLozYVgJzUWi3iWaqwHThf1OPaEeG7EDohDk8Vria7aD8hCW7P60IlDGpFqj0ndWjV1e93Kc\noqgkQ8R2AbPp1ChNE7sHOYSJp3Cw3ubw/9bCYk5cNoSZVjSS3attqfIzI3VbtHvK9GIURrhL6fYU\nBQVZq3OJopgFokClicHdpiZmTkOtHORj2KSeQsxJzajcCxe7BW+8ecOPduc8O9nw/vxUdT02md8y\nt2mH54pz+KvdN0ZPJPQWMQnJQf66q3FW26zPZx1n85afO/uQv3XxVW77hmXd03qHj2aUnC/aILGz\nyGxgvugIwbC7qTE7FUoau10z2/nvPual4lHujfmdHsP0/caDbIEkDKnCP/LYpx27hSNWqtfmdjVV\n65G4RwOOh7gP4lxGMQYPDDUkJvCR5Ay7pxU3P2EIP7tm3miWethWyNphLPiF4HdambCZmMXt9Kau\ndgnXRTUInYKPRi7B6UNcvIck48OXYtQ4PqVXd2XndBc2oiHVVIX42JhkDkMDRGcmHI3qCSSjbEwC\nSO81qRhze26Md4cL05/lfFmQVwhI5ZDFgriYEZYq0Gt8yoLC2RvIreha7dkbhJEJKTHyIAKqneGy\nQYD80Ov7ivuZopAGA0EU12DyTVjEeExS0mBDbkITXr5c8eKrJ1y2C95Y3PLD2VfAJvozQ30pmbAG\nSIbQVvhrN85bgL4z+GUOWQQlQUnC3A08mW34Sn3Dr6V3CNHw1vKGH96cs9s2WorsLWKjojCBR8vd\nCKFuhyXVjRkNQhz5Qu65x+8ZXw6jwGs8hcRoGA7wC0ktcrVWq+w3FcPPDJw8W3Nrlpi+ZnZZ4a6t\nusn+NUmv8VwPXLiYNNlX51Ko0wc0Npbbd2uuvwnhJ7c8e7ShGxzeWexpR2cToTMMraPaCH5hcG3A\ndIn5y0C10byCbdWDMFPwkSlNSflapqXIYgxeoZ8zo1cjzkFTj6jIEeTlFYZ8YBz7QT0eY8BpQs8U\nw5Oh3RgZCVA1rIl7D+au9SzzLEajSMg7p4ZhMUdOloRFlfsucu9I8QgsB+hLlVzT/MvBvWEgOgUv\nmbkfqczKjWNMBGcIfX5KveTdFMRF7MIThox0RCsBiaiGplQaftTwV9/6Bte7GXM3kJoINjGcgFtb\nmiudjOmF0Mvo2ZDnFryGAV1tx8qImMRlO8cnw8v2p3m5XqjCF7DtasREmjqy660aMUCawKru2Q0V\ny7rnuc2NecVLQIgpfean/MtvFODAMNz1NzOoceguGqqTLc1JR/vM0Z4b5h+5vKuF8SY94Gh8qCE4\niNX3rvGeu0DbobszYXi35Vtfec5VO1fJ8KCuaQoK1rGdyqWHWuhPHW4XsWuPWerX4XZhrOdLxhmk\nMa8ge1bjMp0xtJjs0sUTKIbBOYVBT+dfqgRHu7kMnpQSUllNwAv73d3lZier+IGSyxgf9LvEXSa4\nhoPXkiB1rV7MakE8mStUutJcTMw5AiV/EUZVpHzDT6nRRuBS/kkVs2we+EGh1yZ3R5oUiaEi+el8\ntAW5mQ20qSbEpN5DLLkVna/xyo79wctHWBf5eLvCnmgiIYQMP17rHBSfokQsBY4voYQnRpW5jCIv\nk4GXrLhpVAJw6NS76HI7tRhVGzd1IEXJ1+K5bmd0g8tycuolmUxpJwMYhGAm7fMPGF8ao1DGQQhx\nx5iCmQ4+F7QN+fp8STPrSStP+7gmLLJQ6oSE5TOTq9wFZgq6Y5vW5/4HFWfdvp349tc/5A8//Q5/\n5s//U8yeC2EG/aOEaRKmE2wP9W2i2kU1CFuPW/eYIRCdwbQDps0GIRYvwexd97zbJu8ZGY7hCIJM\n9gayl2BzzB6zZ1DeO439Dxb0cL0KXLnkE4qnUbyEvYGRVx/+e2nxDNI4zSOczAnLOut5wJT2vpR2\nR/KQYtuygG+5J5LN8OY6IlmOPUUh7lR12Z70KE16oh/ngN50LtHMBh4vt3zijRqNbg+skl4yhZx+\nxl/M8CcDN2bG47M11+s5sWuob6C5DcoCVeXP1Cg5jMtM2wU4FbK3U9rU+5rOVRq65MpBtAm78NQ2\n6NxdIHiLqzzzRqsTQ++oag9VxC8z2Wzm44yAkS+4S/IfxPg0w3Cf12B6CBuHzHtME+gfJfpTR3VT\nWo1l3wfw446UMmrQ6vdXg2sj9aXlOx8949lszXAeqG7dCLaKdcRtLHanSEy3Doqt2HmkG7BDwFjR\n0l6Y7PpJw5V0/ODGnAg7rjhME3gh6OZajEE+3jimFYxxIVEDVAhWYtrDpUXGfIz4O8KWKQjqLvCX\nMRM0oyGtFqRFQ5xXueVaP2N8qRwVz060SiHkqgd7xGWpRBQ0o6jbv18D9TIkC+7u55p/2oRkTMDl\nds7QOcUrJP2b5ir2+QsJ4G4Mg3XY0x1PFxtutzPcVpi/jLh1UGX0WjBBS9MhJqgnc81o0hQnJdWk\neY1kITZRr2MwBG/YNRbXBNWRQHkYQu2JxQvNVQh/qky4bieZ+avkQn6XGQUB7ZI8yh8cG4ZUPEjz\n6uvjzbCzI012mCf6E8O8thhjGAUipliD+xKNd43p50rCbIynDdX1wOp9x8WjJX9z8Ta//9vf49dm\nXyNtLSMvX1SDUG0i9WWLuW21RyFGhfxmF1/borNhsJMHqZw7TABKuaR3MGLZbZKChIprX4RUJCf5\nysM7xUJMqhsYgYF7vKV06J0cG4EpKGrqjRTPp3LE07kSshT8RFJEaMpxi2RiRMleiBo4GJuZxnMV\nj2I/laK6PTRhdL+L2O4UlFRipH5X0X+y0HuwjiOQS72uRGwiYa6K56YXZBDeOrnlq4trLldzrtcn\nzF70uF0gBm3N1jmNT70a1XGZhFj4EzOWwHZqJIK36vXkuYhAGAyht6ND1kqtjVfouVJxgyqAAAAg\nAElEQVQUqCJhpfkY2+q/KXjuIeNLYRTgCKdwlyeQXx8bXyY49yQQG1VgSlmCW4wSbAwLlCxk2hcB\ndxuCqYF4iLs1kpzo8dxtx/nf9jQ3Cz7iMT/7T/8mj3625TdefoWXlyvSdY3thWoTlUbtZods2z3y\nL5rD3byQp4wPeEEKRvUaxlLfER7BZPxBIL9v4nUwaG7CWrCqIYlVVOJoHIBklCRFgVKMBvFAAGV6\n3Al0+pX1PW4uqytSo/9GmLRRD+CgCc5BFDN+7+PrebcttfhCXa/KWzo3tUGaWHRN0FAiQYz54RFy\npQH1JEyGA5f776770OTQpUmjYXpnecWz+pbGPsN2KCGOkRzP6zVZG0lS1jMdhj0FlZp/jJD+oFiz\nOI/IGA5p52UIhtirnsO86ZnXA723bHYNQ3KkRSI1mfreGOqbL55k5b/jVd2H/wT4t4Dn+W3/QUrp\nL+a//QLwx9Bt+d9NKf1vD57N0Rdy3BCFMLLrDKukyr6LOOLbC6R1tWjphoqtaUiZAeizUFwDeyDP\n68qWefeTGElZilh8ZPGDDc+qFX/hZ3+Obz5+we9/9h7XZ3P+2ne/AR9YmquAe34LN2tSyQdYi/ij\n0unkb2OsXioN3o9KSWO4kI1DKnH+aOCOtgljNJFYMMIhZKqvSWWiLHuRWJt4SZpjyFWQsbw4fWrv\nCCcAnCUt5/jzBX6uDNUmKLJyfFAmFYbo9spMkj2Bkkgsys8F/pws2qIeQKIQB0PMnoJ1YfwKYzC6\naUhCXCKigKXk8/mrsmb5Biz/L3Oq9OYssnqP6w0Lq7kKlSHw2u4u+nkjahCsSSMjlwSd64gVy6Qw\nKec3CuI/GcBpaFM3WklxNtL1TolcM/JxysuoyEaDWwQGV+GtxW0/297/eXUfAP7rlNJ/OX1BRL4N\n/MvAzwFvA78iIt9KKX0q8nqsPnyKYfALZdPxq0iqI/WjDmMSQ+8IO0uMlpvbhS7MrcFtlavwQSKo\nehFHRuCeHS8nAJW4xCpICtRIAKsfbLn8v8/5f7+54OmzW87mO1IQ7ABuG5C214aliQVPoIbhOLyZ\nAJe0NdofVB9eXcxS9psmHqdAIdl7IZbRqKSCcsydi6U6M5K6FKNRcBmvMzzTkcOFNGsYni3ZPVVx\nl/o2Um1KWTdLvTst4RUDMRKkUnbe/euQY/OyhBMvBm+ILgI2x+FJ+wggF2ny56LsMQmJEr/og5o3\novG4QcbwtXRoVhKoJGCKAQkJjBqDWObsVOaeSf6jcEtKhKTtM1k7AtWybDRcKXOrKu2qnFeefnBY\np0jMxnka5wlRF8TYSPDK9OxmA7EO+LUlNA/fFT+X7sNrxj8P/M+ZwPV7IvLbwD8K/F8PnhEcuG4l\nVIiVthZ3T4PWhXNnW385gwimNcxuTH5/RdUJ8+eJxScB2+Y+iMML2/+/oAMn5TSZJvru+lx5yHxA\nMo1QqtyYNbabnq/+6o6rD2es33nK1SqxuBJOfhCpXmxJfYYFTx9uMXuPphiA43Am3ZXc28OVx88c\nX2/53eamKmv0fHckA1PlRq6IkkyUmIh2EvtnRqeS/NyHyXfEfiKaP1g0tI9rdk+NEshYMN7uQ5Ni\nACZrIHEPcT7ALGTdzqLpOH5uEr6nYIiixDJTT1EjkkyqUvgUciiRBqflz4BqQpgETnMjEthLCUTF\nIXzcnWIk4STisySc5OSuAWJhxcr31/T6NAEIeDBWtSnSIIRpktQLMk/aCGUit23DMGTinSqw6Wo6\n7+i8pe9d1nnQjzoXgcju8UB7tmeK/rTx4+QU/h0R+VdRpuZ/L6V0CXwVFYcp47382itjqvvgzs6J\nqXTA7W+qwn8XavDLRH8WcU9aYjTEy5r6QnscbK90Z811hhQnsH2gug1UNz2yGw6z+fcNY3SXFMno\nwEzeMgX3TBONMHHxNXE2xogxUn1wzdPrjtMfzBlOrDIbX3SY9VbDhhDG8EFyH0C5Y16pNAAHXZ93\nIC7TkTE4PoYUg5eTjBj76rEqTXamzJEg/YS5yZl9vmwISiY7OZccr1FZ06zKHWdufChU40Gp3k3P\nxDOYfP85pJCUxh16JErNlOpFTUqJW5MClwoVWoEnj9ePNkYlIYaMZPQCTb5vTNIILGaXnpzLSUDm\nEC1hjLbyC3/n6g1OnrVEhP5RIpw2uMstxOzAVObQaOUciJ6QkUgX9tHKmGzPKEtBKeN9NISgLdKa\nMM0J9UkiJiXRsmUQ6jpiTGR+1tI/qnno+LxG4b8B/mRerj8J/FeoKMyDx1T3YfbOu6m4P8CYWIoV\n+CX0p4mwCpnHrsLcOuYfG1bvJeYvBlwbEJ9UgbrE+X7Syptd3RGsdMcDp6InSk2uBkCpyBIog/I0\nk64XsHefR8BQ9jRMgiy/Zm62zK43zEYkYiANg/IJhH1MnoxBJOpNUJKL47nyiUuVIab8UMfD903C\nhjT1MCYPmthc4TD2bih3ZqjGGEU7dpMHf7x58zn8kZGarg3sjYMxeV21bDu7FKLLupWZ4n08zJD2\nicVsKEr8rusEB6GFJTM2k2v+R1+sMPIlTqeXguybnyagKJnkD/RPAp1WG0xfQo4yV+GDD8/55OQS\nQ8I/G1h/bc7ZdasbXGa2Tk72ILeDiWRvQbQnYwRiFW9HgKSCw2BGWLS1ceymNCbiTMSaROMCXc5L\nbdYzesAYw+myZf1wm/D5jEJK6eNx0UT+DPAX8q/vA+9O3vpOfu1Tx7GWZHKorsNZJCw1XJCNy4Kq\nwuKTyPyFV0+gU6afsXW3ZObvQOsdXcjeA5jcyKV1eMwviGhcLYcQ3f3klRSV0uacj71nUVaDkLzX\nfMDgD7wEUJdT4XfyKkf/eA3xlXO/il2Ih6+ZLMBbSo52wuR0xzgIHUofxfE4NiSTucjxsaXoRmRE\npk+4Nh4ZGA5id103yakOPWbZZQ/ON9mBk01joq7kA8QqfZm2K5eHa5yW0r5niHH0KuwqesoRCIVN\n4AV7Y1Ruzu7RlRLBPa+5+YkZ3zh5yUePT7j5+jmn362R3UCsLKFSGvuD9u4cYur1Z3uUcw7j+8Y1\nKVgG1ZQsZVWR/e99NBgTmVWeWeXZdjWxtdCA1JmN6f6v/JXxeXUf3kopfZh//ReAX8///3PAL4rI\nn0YTjT8N/LVPPeDUxUuqcehnMDxKhLn6Ye7SMXshzD9JzF966tsBu+4xrT/wBo5v4j2t+D3GIT/8\nEnTnm97UyRkF2DQWGRzS+Zx0y9RExuwbkHxOHmYilIMRMwtS15GKQTjeyWMkhaBhhLWvfL4YhDGG\nz5UHEdWRKF7HKyGDtXs8gpHcSLVPGB68t650/iLqJbTDgbGUmKnah+IhHQGlODIMJRyrK0V9OuVE\nkBCyilSxAhwYhUIBpwZDMCTdNHKCbsw5HOWdys5abiiT1ZpE0mgQxgRjZnAW0dwDRYVp/O4TMgu4\nxjNsVKAG9p5E+Wl3wgc3p3zz5DmPl1t+9OwR/aOaZgjKTJXbv6el1ug0yVhKkGrUxotX78FCzGQx\nIplhO2jVaLqXeW9y3ljogKby+vc6YitNRoakIfZDx+fVffgjIvL78up/H/i3dcHTb4jILwF/G5WT\n+xMPqTwAI/NSMgoH9Ss1CJIEd2VYfiAsPwyqnbjzmNYrAckEe/+gWuyxZ1DGZEcXINaaHwiNJVWZ\n+WfnsZseuh5hUjkoJcKkpCSprg5zD9lDSIN/peJwPIcUss8k5jBsGKcv+cbI2o9l3jHuWYym3oG1\nmlQsHsLRQ3ww3N6LkCHsqw6TdZMQs3EIe1teznfHWqcckqXMv1AqSgS9s6e4h7G7UXKoUh72xEj0\nul8rXvEcIOcqJHsAJQlwzxiLTFH2//L5EZD/j7q3C7Vt2/K7fq33Pj7mXB977X3u+ahz700qVUnE\nFJFIgaCiqNEHnwQfIj6IgbwEBBF8SBSfhIK8GPFVCCiiMYGI+iKigmDQRKwYKatu6ta9VffeOuee\nr3323utrfowxem8+tN77GHPutdZe+9xbcVeHxVprzjHH1xy99db+7d/+LVgqEFHGs5Cb02ZcYczu\nfoLLyzXpY+Gs3ROfTWzfb2huRmLnSO0iiwFz1iFqLg3Pz3yBdyZIExByBqQsAs7ysZKJFOU3MPeL\nAKbouDjZ1tb1SYWn/Zbrn6en8DZ9H/L2vwb82uNPYTEkhw1r4yHgwN861p8LZ59M9F8NVeGnVj7m\nmPw1j+Duk7t7m3Ljy4OeH77UOFLnrbt1EERbwm1H93VmIg6jmT6YAb7FxCwehE6xhgz3GYSaDpTM\n2ls8zMvVv06+lKxiMfMWNKbDlftNBuGYASk5behc7WNRr2kRAkhUm9ApH6sYhGKEircmMnsJXSD2\n3iZHwTHy/bFnezEZ4YDEVMqNEanvV/AxLdh6ZdVdGJk4eCRk9aU7jMOBQVi+7TDVrJuG29w3gS7B\nCnSbWYoJfNZ6TDcN11NP70dCPzGeNqTG2/NT6hqWRmHQBfA4YyM1FZ+3k2nGIgxyyJkSZg/IvurM\nxxBlSo4n3Y4+TDxpt1wOK87bHfunj1gw83hnGI0xGeswdmYQtEm4vav4QfdyxN8OVr9fMgkFPCzj\nmDTzmHHEwpMp1nhXvWNae8YTx3AmxFYIW0dcOVY/FfwlR/0KFlmKHM7oOGYtwtzMpeIdafYGUmER\nznF8xRUWoUhJI4rmSvkSMmSDoEmBaOBYmajeURmRLIzG8f0RaohAdHOtw3LbYjxLRuauUQyD92gT\nTP698Zl7ILV2oHgJx95dWTUle42ab1lJR9bJFcGRZeKbOxyC/DUcyFIWnkK09Ie4LLamLGYtlC5R\nsncwZp2FYD9JzWC4UWCfb1sSrseOXa6StKZFjtgvQgeZjZcsjEBpK2jXx1wSnlOtEk1IdpJiOyPe\nmxGwnpUm06YqNCGy33bE5Dhr9jVVeuIH4uljiTrvkFFIKtVLSL1VerWXjtUXSv9isgakY5wFRx4K\nFx5rEI63zZNHYlZschBbYVwLu2dW7ej3QmwDEleskuLSoudETjPKbqg1DOU12//iiymTs5Q219PR\nQ05FMSZ1NT4EGzXH9kXSDMiyYpMtPM5Zz8jk5j4Vx7RooDY/0SxGW895MbOWxqHoQyad97s0ZNlz\n0Lxilm7WKYiVFOSJUiXkc8hQqL9l1S8TqqYiy23LQNycIrybyqt5wluE5eZUZKYN10a75aMJhAXu\nALMbr2Q1Jqq7D6DB7uc+BuJknoT60vkbk9RnnvyFgFUYmlKuv/SsaOcO2RYTCCkGO3YLImYYiuR7\n10zsBjNI4xD46dU5v/zsay6HFV4SF83GQNVHjnfKKMQ+1y8IhI2j/wrWX0XCTTYIxylAeNzfZRzH\nvUfpuvqaJAMVpwx6rqXWVqRc+rrZesKmo91Z/FDj72mqLr29kd14Z4KzlmVIdyP19dR1MVnFDE0O\nK2xJOWIsiqMWe0E2Es54Foxo8kgT5idQMvy9DEuKtiIYrjItQp3MYHztjlZD5F4PzXKKNwWXOznl\nieHE6gzcwmuwW1oxhGoICqYAle5cyEoCR4ajeDF5fgt10tstyQZh740Q1Ng2zqt9VRWAhIpXyOL/\nKGY4q2Rb3kBBOksLJpUDOXWJQFPOUer1iTJXLQYhlVBCIIVifPJ9cSCjQ0Wxxl6emIu72jChKtZP\nIjkaLPy9ve55sV6TVGh85DzskOHxoMK7YRTUSCXTyijM1g9BWH8ZaV8NVlo8pZpmrKDT2xiE8voD\n6bg6soiJ20/2kHlIzVwEk9osqbb2NJ0H10ITzEMomQCw17rWzjUpIpMReTKYWIxCBQtLViLNq7+F\nAo7alqW0jj/arq7+s6+MRqjCK84hhTFZtnV+Zvp1rbn7WR7tYJIv2Z5xGS5ZGlWjeQ0yTTO2IFIn\nAlBJOuW7M66/Ta7lhKkU5moUpE7OagSyYbAMBnPdQB6imXhUV+EMOJQMg1JTkeX5A0ykpI+wt54J\nBzH+lM+ryL6r1OehDCcLI5Q/WxWhMsGqGIWSfUiilnFi9hTUs2h7p8jkLNuRrHw8EoyElVORTiyE\nAGiayO624XrX8WS1Yzs2RsNe6Im8abwbRiGPuFLjjW8d7Sss07CbDr2EPB4l037MPrxr3OUtADJF\n3HakuY240SFT7g+4lcxZNy+ilP1KUiQ4ky0bmFfxJuTct5pBUD2okwAqLbYCkRUfOBy6jONrqHC0\nQpe/i2FIziY5QNuYhHpMJq1eFKicm5vTOmB4Pf6UpGjU19vzGVqXs7QZeFSlphLyxHCjVnwglTqH\nEj4sDMDSIBykHMv/ZbtMWootr4u2lnMWzQQfJakVFllVqHkIVagqCnjFn4w2qYYe6wXqZo8B5hAi\nhxYmkQ86CUkFLwnXpKy7kA2WK2GThaIIphVRPKS86BhtWw1XaBVdRXwXQZS4CTCZLoNEQQfHSMPW\nJy5Ot1z0W3o/8fntmYUUCYbJXI2YHN9pv35Yn+RovFNGIXmQUQi3QneZCLfTnGnI4OK9WYYlYHhQ\n0MShcVhuc192rgBpw0j7aqS9DKRGmHrrZeiycpLPk0dD7ksgYhMnpTqx1DuEYNkHb3qRB2deiEBp\nriNAnKWgXjuvI2NxnEG473KS4tYr9KP32HznlOZqov39r6H0XCj3Y4oGsI13p00rqHqsobCs0ozk\nArFUhV1MtQlzvXFZ97G4zHIQLth+Fov0kvRD3qaAcWVVLUpF+bN3pSstlABp8vdSHqNcRu1WE6vV\nwGm/5/Przo45LPazPLcszVa9oJyh6P1E241M61Ut7Ep+Efrka06NVI+iKFVbN/WMJ/SRZjVyst4T\nVbhNQhoVHZx5DZOg6tjTMfQDN0NH6JPpgWZjkJIjqRB85INw/YezwWypMvN7obmG7jJlSbLZINyX\nSnzttceECI8IMWSK+Msd668aIDCcCWGn+L3S3iTCxlZ2NyVrXNLb7XRTrAVVkjR7EjOifxA2aJpd\n/OU4AiBFBJ1e9xQWGxxe18JbAJCTNbffPeP5nw6cfhK42D/B/97ntq2TXO2pyKgzmLu8J0V0dXmM\nY4NQjln5G2mWcsteQU01HoUKkOdZYu4RWaCKZawv2UPoFqGEr4u3QSUxu9q6vH+Kyy62LpJEdv2m\n3dj4yNWmN88hGr26nFPpY2oe3UJCHcyzdZEnzY4vTk65XJ/XXhUly1C0Josqtba5/V0uhErBvASC\n4lcT/Wrgg9Mbnm/W1ifCJybn0a0YGBoF3Tkur9aMJ3s2Q8PttrWCqHJZOU3Zy8jr6Zn7xztjFMCA\nGb8X0y+8vTtsAO43Bsd/14mxeO84XLgrxCh/TxG32dE9D6A9zcbjouJ3prjs9jErJNmXPZ4GfOdo\nAb8f5l4IrrAc7+BxZcKSLkKHg/x/ET2Jh0Cinftdrs4dGQ5NaN9y+5FHf/WKG85pNmvOfxjt3JKa\ngnPJcKQjTwAyznJkiFQPVvH53i2MeG7Ik8Rlhp/M4UMB2JZjEccfvFw89+xZpJLSK2FDJjkVQlE1\nJst9iBkHFZm/bgEJyfowRs/2s1PbbsgYRNAKXDIZ58GNVLe/aDis/Mj77TXn7VNedDp7AN4MiB/m\nz5SQp35j7ezxqChdN7JuR95f3fDlzSnOKb4xKbb9UC48A5CvWm4Gj+8nyEAnAjFaSBNV2OnjKyTh\nHTEKojAmh4vgd9DcKm53GDa8hm6/yTA89NqxYbhvnxk0dNc7OiDcWl2AjAk3RErzlLQKjGeB3VPT\nxgPoXwVkt4fgZwn1wjlYpvuWKUsnlbMw35zstZTsQ339cDup1Gh/WFPhBI0gu4HYC+frHVfunP2T\nwvHNnIJpsoawWdzVzsfxmrFcemGZF/HaKGBrSrPIbHabU5OFU14DB5mxgzzBD0qpC6aQQ4fU2odq\nvl8Wi2ENIQ69haLMXNcBQFDEW5ERgNvnku6hkIrUwMUpN/zNz+l9+hwiuriWQ7ASmEOlxTUZoGh/\nSz7fUiA4Ro/3Vu3Ytol9yAS35HAqyM7SlXEUpDN1KQRS9OymwDh5blPH24AK74RRALt4iRavh53i\nitrPXZyEt+EhPDQqqeeekeNn2Q84VWTXoN1RQZEXYh8Yzhy7p0LnHH4wJh8i1gE6FBBP6sNUQ4c8\nanrSz9TWqmVYzsV7SAvqcfls7v5UPAvJgOZSu1GvrmkvlZfXa7pdXu3EWQah1G80DSVTcRAulHPJ\n72nb2HFqqXg+Re/mVvMx06SHCdcGXFQTGskPZyX0RA4QegRSBitLLL4k+Mx1D1pVmDT/X1mPxXOQ\nWah1WQxVZm2R3bdet95KkVPWhdTZIGibbEHQOWtgO83nFJRJHV/sz7keOvwuW6gjwHTJtzhIwVYV\nKctGjKNn7xNfbU/rKddMQ5OqoG4CfG4ZEPHGRRDAKXHrue1b646td7G77h/vjFFQNWTVD+C36RBL\nONzQfh+HBXeNuzILx5LjpZLxPhyiGIZSPk2LdllsJMxMRDct0kxBSG3AO4cOo9VJwNxncVl/sTyX\nbACkyLovCplKWE2MxkHIo6SzRASaxvgG5ZpyJaYA6fqGs0/2vPzhCf3XyvqrrAc2xnqfNIT52HcM\nSYq2zprLnraonMwaGE5IrWVh/NWAu95YinackGHCDR7pfMUMapxe/q5Yg9RVtpZG5/qAOsnUVvLU\nHnInTP+Q2unJ2s8XiyOmz1hsR35dgTQ59tvG+inkF7VR0irhzy0eT9d27rVVQJ736iGtlKjCV/tT\nXt2uaG44SFdWDkLOkpSip2oMyt/JOn5NQ2Av8DlnOJcYhoCq4L3pPRIUGmGUhpQEvzEvJk5irfAE\n2Dt22xZNwqiz8MpjxjtjFC5vepoRmhuluZmsXdpd2YaHwofluIvteGwMyniTgcmrpiHpiURPOgvE\ndchsPXKjD62NZNO6wTfB0o0xmWHQ7GVkodRKZc6v1dPpO/MuslHQch9StO2GIRsHNS5DMQylnbv3\nuGx8NFkWhRhpf+PH/IkfncIwovt9FUnRXIMvYl6AFA8l05VNZyKYetKqYbjo2L3XWLVflhIbT4Xh\n3OLncNvTXZ1x8tOB9qtbZDfipVRFBtJkYUTMHbkhG4F8H5eZiMpnWIQRLtvY0p8zdmYcLCOhtmI2\n6UBYSlWIg7P2842tuGY0gCikISCTWSmJYtW5wRquDNsGOkUnqZ6NksW5e6X/8JbTMPDp7QWbL0/4\n+POEG9XkNdRSkbGDaZV7YmajkMAMhLMNRbHS+U1gGBzDpkG84jJfweTcrclNCNHEYnxiCsHuxWj1\npOXe6MsW9cp1XN3/bN8x3g2joDDtA20EP2SBlMfiCD/zsR+xzyPascSYJzVMa8e4FrbvOQOMtnYN\nxtzLMbqWqsY0hwQhZJddZyNeRFi9q+3UTAfSKvWqsnJOa1b+gffWacl7EMesrOSQcURDqFTl9OVz\nCxeaBskhjoDhEJpYgpulqEm7Fu2shiGuW1KpGo2WcpvWVhdSZfM6YToRYtNxGoTu+dYM/JhwwYRM\nHTbJY+cWmggcMBqBWhl5UOyETSonGF5SQrISn/tcOLQoGEqitf4BFVNlKvH+0sVXywr4rSMCe+2R\nfeYIFF3dsmk+7w/Ob7gIG4Ik/MbNnAy39HgWArSTHS/zSs1TcHYdErF6i/KuUHUaVc2TSFEYoiNl\nUJE2WZQ45puXoDbFFcxTeIvxbhgFQIeMKUwc6iMufz9qAr+F4Xhof3cClMmAwHEyYZd1w3Di2Hwo\nbD80xmP/ldCVXXi3qGrMruyi8lCCxeS6lEUrI3d10kJ+KoKuLhsA52DMqkhNY7UWIdgqvzjfwja0\n4DgbpRirVyEhUHUdy9IafA2ptAnVIKQ22Gov2UMQ0GaRZ69GQRnOC1mnRYMz6XMFN6VMLnRVDOUg\nTMg1Em8aUuCS4qaXyePMKCxjaEtHJlwbiUkQn+bwoci9C2herSvOoQ4dLKytadLlcMYr+OjkipvY\nsZ0a2lcOJOtFlMzI0qAle8ZrDUcxBtn7kEKnBjQ5NGnWVRALTcUb8aqcjwqhn+j6EVUY9g3TTYPs\nSlgmvJhOWCpSv2m8G0Yhu00umgteGqG8dXu3N4UMjz6fh0MJmSJuP+KGxjyGYJV0brRW5GGns66h\nZCEUZiFWAVvJm5ABO2ZcoyD3S/zBLUIOh01m7+YKSL8wFGUfIjb58wS3hiNmpLQYjpL9gHl/IcxK\nSUsthKLPCItVfGbqpYa5us9D6pRBMMqxC/QrR3s54caEi8YmlKRFPHleTZfMRJ0nTJmU8wrMTGzK\nk06zQRCfV1idU48u90zQtnBFyBSREsJpBYIly7Q5VUtDJjN6tcoxioUoCeJ55KP+ii93Z3x5ecrJ\nF+ZBxqYwN2eDYIVS87WV66tVmqqz9Fw2VjqBLld6r6QmWVgRFJHE2emWVTvSuMRt1/IinaB7Z23p\nJ+XT3YVJyT1yfNO+D38D+EfyJhfAK1X9M1n1+XvAb+f3/o6q/sU3HoP8RaRyk75hmHBX38Lla0tA\n8ZjLcN84JuwUIZbdQLgJ9C8aK6neWCFM/yLRvppw++n160hldYrzir4QNtHSIaqAm0VAppRAqz9Y\nRNV78yDAVKO8mtewLG7K5y5k7GDZAHaaUM3bNq2FE8HPZc+drzTug1qTciuCSZKnNufe26VOAKRG\nGZ5Yrn7qPatOjLq+zwpOk6c0j1XgIFVXhszHq5ezSFUe8BQqX8E+VCjOYN6CybLlFfgoXcki3Kip\nzvK1BbsWPwnHIOH62YYnYcsLt2Z/2fPey5wdWPIwhKqmVNrPLXUnX0sM5IpPjdbQVp1Sc64O4yKs\nJ7r1wEk/8Gy1YUg+t6MPpL3HRZtPLgkv92v8nkePb9T3QVX/tXovRf4j4HKx/Q9V9c88/hSo1rew\nvnjIMDwECh6nLeXISLwJUHyI5bj8O0YYBbnd0X8huKFnOrHwJ2wi4WaYW7S/tq+cIizNYYOvxiB1\nOeWZcvy9t1ClnntWRi7nISlrHcYExPm9YnDK/6VLdfEqjg2n9xbKtA3at6TeMjYF+Q4AACAASURB\nVCwpOFOdysKqy0rJmb6b3e8ySQPmwucJHnsldmqNY4MDAv3zsVYKFlf6IBQo4QDMqUtlDjUWxyra\njFoyDYoxGh3VKDhncmzLOogDg7BwxQu56CBdWowVzK59AE3K+XrHLjV8enuBfxXwQyR2dk8kmUGx\n+ZwvoGRaPIeGzc8pVnLjmNLGwO9cvifmkaYErOCkH/jw9JqLdsv3vv6Ay+u1ndze1a5ZlU/xeEfh\nZ+v7IBYw/zngX3j8Ie85Tr6J9nMPYen477c6QFkFFp7CXYzH5bivwYkaNiC7AR8T/XY0MRGfvZ0i\nZbZkYx57LEWoVQRxidQ5I0Gdt/i9sSVxwHqW4S3q1DJGU1l20YLSUpmnlonQJlB7Tw4jr7FCS6aj\nAJohoH1rRqEN1ui1m8uePRbKqS4qHzOAZvfJwDMJeW75PEnLAx+UoVHUOVQcKg3ttdVEuLFM6rwi\nuhlnODA2yoFncKCvsPQuFIqSksvYQXCJfQwH3sFBZluo+oya27kbeGnfZ2p0YTjIGQUldnDaDny2\nO+fzyzP6r02ZOmZQqUivlfMtz3dqZuenVnzm6yj9I7VLZuCCItEhY1k0BZmEae1ow4QT5bPNOS9/\n9JT+c0/qlKa0u1czNh+vL/nNtyA1/qyYwj8DfKGqv7N47Y+JyN/HvIf/QFX/t8fsqFQeyrI0Fw7/\nXk7opd7A24z7eA/LsTQG9xmMIs9esgqDn0MC1bnd+/LzlbFoVGZVtcxCqU4kT3yF2AfGs6YCbzLZ\nBHJDtJ/Gm8BLjOiYVTmdn8OOcg1LKfYqD28Hk6YxQ9CEhUHwpNZUiFPj8gpdGr3mOLcUMQE17o/2\nt0q+PMQ0AMotWUeGLhFXntQ61l9Yhyi/n72K5HOhkLdJfcBo5GhldcU7mL2JA8zDUb2EAipKzkCk\nukNeE1gpxVWqQJ+9VoFwbcCom/ICFgX9aMd7/S1fbs/YvFzx3nOdsw2yCAsW+MFCWnEmX3myAdW5\nuKvgI00iSsDtHG43955gsIKnpGJ1Q5I9g31mXooZ6tQIrZtyu7vHjZ/VKPzrwF9f/P8Z8EdU9WsR\n+VXgvxWRX1HVq+MPLpvBtCdPcaM1BZG4MAz3TeD7+AZ3jbf1LB5qf3bXvova0pSxgWP69B0Ky6/V\nLGSVZLedaLJhjOvAdNIw9YIfTZAlNeAaIRTdvn1rYijiLBxhQJPpAVSl55g46E7tZE53NsHYid5l\n7EBIwRmr0kudcBrEGr3CQZFPvczsyqcur3THKj/OHu7VxZ7dqmUTOsARG8fpZxNuBOfzhAvMDV7y\nZCkqR3U1XSD6B+xdIafvbPJPozVhLSXUB55CsrQkkyyyFsx1Dk6RVcSFRBodetPN6URndPzTi1s+\n6K5xKLLxrJ/Hg4xDNZIy/28H54DmXUlX5foy7dnnys1daJnarHUxlh4Ujs2+Zd1krkmbUPGzgXaF\ntZqP4f8hGAURCcC/CvxqeS23i9vnv39dRH4I/Emsi9TBWDaDOXnvu+p3QrNJVo58TGv+Zif4upfx\nJr7DQ63l7htlm6XAyHJ/i30Yf6CgSzITg0rvRlXYRwiOqffsnzimldDcKGFf9uNIo+aUos/AoIMh\n60EWfoKUeL8E7OXjLTSGHdAEy0Q4zLX3JpsWm5LFmFe7WdRkISaa7JxTI8ROiSeJ0p1JRrFJJoq0\nibYfef/slqtm4srBdupIwbF64fD7hPe5AWuRYj8OFZaZhoMW8dTqyCqIshRQAVJmgBbjIC4ZYSiJ\n4Q9gRsEt9lNeFiXufL5HSmpt8Qob4WK144P2mp9un+D2jrAZmdaunkc1Xn42psvX6jYLL6HwLFw/\n0fcjH51f8zlnbIHklLR3iHrcIOz2DZxCkIRbTahvDnQaymgk/nwxhQfGvwj8A1X9pLwgIu8DL1Q1\nisgvYX0ffvdNO5KktC+hvU64XbxfFPQPcjwmZLhnHPRTvKfx64H0mvfQtaTzNdNZZy71YnWOnZGB\n3AirWyvRLp2TUHCjMSvVS85e2EOvk4naineWmVBnrvOyBDuDiXrSz5O7SIMte2mmnDotGZNsEFIz\nYwlVHxEymzDVc6RgBH3E5zTg17drGh/xITI8ndj5wO5zx+qFeUcuzoxBWBiEOpm0vg7zKmzJBslY\nguRJD0XYtICMZTinJKfgbXU9UHNWi9sZ7fzHyQ4WO7MUbtCasjxpBjo3cj30+B34fWRaudlLKOnZ\nzOVYejclpVpKplPACq9y2ND2E2erHR+urnl+c4L3ieYkMjaBNDr8rTDugrVGEFidDAzrnuZG5pAt\nG55R/c+Xp3BX3wdV/WtYd+m/frT5Pwv8h2IdVxPwF1X1xZuO4Sbl5ItE93LAb8e7J+XPymZ8yEt4\nm5DhwUOU2FXq/yKLngjFk2gC8ekJu4/W3H4QGE9lzvEvV0aF5hbaK0d3lQi3kebG0p0yTMhuzE1e\nMykpewU6ZZCxMCrd4vhZYcl4BzLjIlAFXETJsmtkboSQnFSNgCJbXmJlF0FG8Dc+P9xaV1vXJJp2\nwvtESkIUR4oO30dSk9h+2ONHZwvCZG3lLXws53yIHxyInlQMYeHSZO6BZCzBbnk2Jgfwjlrz1ybN\nRkHL8RQZHZK8dYlKmJJz5jBoMCPhUD7dP+XlbkVzWwzsYj+5dLoCicy4Qqn9KEAsLnsJufV8CXe+\n2p7WSsmSUt2HhtQoug1sxwbXKmerHV+cntLc+AraL+/XW9RDfeO+D6jqn7/jtb8F/K3HH96GRFNs\nDq+2cy+HxzIY7xt/EJToe8aBaMri9z0bo23D8N6K6+8ENh8Jsdc5zswgkzpwoxB7YTwRxhNPe+1Y\nBbGmulERzZ2rxVXykU5ZnWmaDEh0QmkkKyVUSYrsprqi2EMvGehNGTGfV5biJcRsFGxn1AlLsnPV\nwf7WJj/obSI0kScnW87bPS+26yoTFpqJ1enI5bebzFcwergbjQQmLQsR1mLQF6/lc1AxNB/P4ZOf\n9RKPQUZVa7dWDIn43JC29H9w2QikfKBUjqMItiqnRhmfRvow8v2rD3hxecLF10oqKWBYgI1VXbN6\nVTULUYDGgGUbFpN4mhzboWGMVh0ZY7DCqGQYiDaKDMKrmxX9xUTjEjwZSS88bk8t1iJRGy09drwj\njEbFb6MJfdynsvQW+3qw4nE5fk4eQhm1hdvDG0ETGM48u/eE/QfmWvtbZ0q+FWlXYpjVpKdT2G+E\n4bRh/dyz/gzcbrC0YtuYt9CkylnQGJFxNPZjwQgyrdqyI3F2Ke8479r7wlk8bKzFhZcgpn4UO6ly\njJK5UYWhSBSm0XO16dkNDSLKOHmcT4SQuFhvuX2/Zbs7we8d3SvFj2rAY0mgFHe+YAf569XcsyE1\ntrpW1H5hs+q1aGY0ivEVVCHFQi3XWcwVIKSMNRTRXA4mq4oZPf9k4Czs+fz2nPSyY/V1Mrxl4fHN\n3/nRM1ABSOuSndqEdIVZmus21DAD58Ls5Car9MQp2iZwsL9tuV23JIUnFxuuLlralw63pSrGTeqr\nQXrMeGeMgjHcjlSEj8dd4OOSa3DMVnyL4//Mo0y2RxgGzS3YUwvaRWTnaS7FWGjLOD0TaeJKLbd9\nVnxyR/Idq5WnebXH3+yRW1+rKtN2Zx5D7l+h05QzDhmcPCJ5aVFfDsZcTD43RHVmBFI7hw41rx5g\nXAvTOsvyLzIFaaXoeqqViMO+YRxyeaAK/WpAgM5PvPfkls+3DdudqV53r+z63Wixu2TvqRQviZbQ\nalZsXnIIDr+S0kNSqoiKhTGOOC0/t8Bc8qNkUvLp4D31WrUhz092nIQ9Y3KEa0dzM9q98gtDUsDZ\nYtBKKOQXP132qLqJcdPaAtkZYc16R86zuWAk1ciEhAg8/+SC7tmWk9Ue98GOgR6JrlaTLlvVP2a8\nG0YBc7MeXLnvMwh3/b5rPOQlfENjctC74SjLcG9fB7VmK36vSEkZnY+MG0f7Umg2GJhVaAaNTcpp\nBdNK0axPOJ4IooFp5WhuWprL1lrZNQ3OCfEq1pZx0jRGUCqiKMu26M5BcKR2ZjBqKGKqBn7aw75I\nDeZ6h2IQphOtMWxqFHky8N7FLSftwOW253bbMm4bxCmhjQRnMfOr3QrvEk0/MT4LiBoXoLvUObXG\nHH+zxAPdXc/D8a2WGpsLWM/F5Eg+vc5ZE5BgJdVxDHNR1ThPcu0SmkzMpG9HbqfO9BMurZu2ti4b\nAbu/yUtVnLZzno9VSVmFF5Esa+GahM/NZaZxzlsedrMCWUX6THN+/ukT9tcdqkJoIvunA8PY0b2U\nt0k61PHOGIUHx8+annzM+Ibewpuauhy8l8Mi2Y+sng+sP+/RpmX/LDKdR6ZTaK48/VdCe6Xmjk+K\n7qC5KqtLQY5sYkoUOPXEdoV/0uE3J4RXa7zP2EHfoadrav1EqZrMs0Jd1k7ssjZEMQgwo/vL1F8O\ntdXnmoe1ktYJGXJD1Fa5ON/wz338O6z9wG9cfswP9FuMNy0I+JAIPvFstWFMnlfb3mLe05GBBnXW\naq25VQMwE5k6nUOGugLzGl+iFBWZFzEPEa3yZuX/qtSUqccSlNCPvH9xw/NwyrgP1thlFAMbm0Rz\nMjK6thqf7738kM2LNU9f6XxOrixwCzCW+ZxLmXS5FomWFp22RgfVBOPocc6A2ZLhdnmV8CFZyTRW\nEbnfNsjOIwrDJLj1ZLhDrZeAKf2csw/vxLir0Omxk/gujGHZBPUPCJA8yDgszyWLnjRf3nAhQti1\n3H7bs/0gES8mxvcTmtsXNdcLvT8/u6JuUtyQtScSlB4Du9MA7zU0Fy193+Jf3aDekU5XJoILyDRg\nzBbMaNQVSCsoZnl/uz/17uhi5V4i7Dk2lpgbrzpl1Y78yvpTLvyGH96+b55Bk3BBcS6xGwPtaaT3\nE19en6IxMxnPBwbfoM46VIfdIpRyeqi3UADZRbwPGB4wQXLOFuSM5FsY4TLfbGY02m+D6/t+5Jef\nPAfgq5dnjHs/b5dk/pxTrrc929uW5utAe6VzEVQJc3IdT2mCW8RkCqfCWtmrVWHiqlpUGrxdVzBy\nVQJTmm7s5qfSFEaFGBWmrG06CG4fmBZGM7Vvl3Uo4w+HUYDXaweW46HJ/dB7PyeDcJyKfO0YxwZC\nFdnsaD+NXFyv6C5PuNwGbqeG6SIyPZ24WTnal572CvzeJkOR85pEGE+z8vWVsvraHphp5Zh6UOcR\nXdOrIpt9beBShWtU50IZVYgmU58k6xbes6jY58l0X8XvjF2ZhlBTbalxfPXqlP/sJ/8Up+2e55sT\nbjbWR0HE8AVV4cc8ZdWO7PcFpYS2m5DVyNatEA24r+YuTMfFUOVpP8hGAKXkuEwcAxlnfCElsVh9\nKQEvik6O3a7h73/xbXa7hmnwkEukZXSQFB1a+wpPJmI0JeXuhdDeRA46WR11tbL7bAxDN1L7VRTt\nBhNYEeN2ZDn8NGZAMRmnIiVhGjMuM5roi9aqTuM71FEEYfJLnZ/eyjq8M0ZBi3bAQxP1Lo/hobLn\nx2QCHrPdvR9/hEt23zZZ99G/TKzHiBtPCbuG248Duw8nuBjZrxKxC/QvBJcNQ8y6BQiMpzCcCfun\ngdWXiebW2tPHVphWjrhuCJs9si21EXdcb2mmO4K4HAI0bi799UfXUOZRMqpv5frnc/Ibx/iy5/dH\nnwlEWAlwUJp2Yhq9KQeN9uilaNsh5kWsu5Hp3DEkIdwGwtYmjpVXZ2Axu09a0oeSezQUViJ5m+Jm\nLcxGSjKn6NS2kwA6CdOu4Xb0pNHn/eqC42H7l1Xk4tkN231LuHG0l4rfJfOqyu31haotc01Lmn90\nUQ0qcWFAcs0IpTDMm8GOArsoFjZE64YtKWNXOfOSes1EsWQdpRbGaFx2w33EeGeMwqNGMQjLbMNj\nvICHqh0P/r0fH3hw3PeZInqyPNZSnyFagZK73rKaEuF2TXPTc7MNbH7BoecT07dGNn2gfeFobu2h\nmjplOkuWq947+MoRTu04Yau4zFCMfcD3zWwUjqWryz2s5bWSJ3mh5C51AaRiCwaeme5gkRgj6wO4\nmElMg7Op6HN/xmaqFGbxSozCLvvULnfDck4JPnK63nOVHMO5x++lrq6p4cAtqASdnCQQEcsYeCV0\nE97PGgrzNZtbrtlbEGcqRhKs+7RuG1uFl2Qpb8ane3/LH33vJasw8v/88Ls8+cw6mblRZ61JR9Zf\nMJCx1HFUj2eZNq3eGgeYjam0UA2eeTzW39K0GGV5OejpRHe2Z9WNXN+scDee5soRdsw8hbcY745R\neOi87wIav8nkPf78kVH4RgahjLsUkIv+wbKQ67h0WxVGi+cbVc6iEnY9bu/ZftQwPpvgvT27dWC8\n9kgUpvPI048v+c6TS7ZTw2eX51z+3hnrTx39CyXswMestrSsx/DOGJDLU/UZX3COpWLystqvYBop\nd1A2QhVMpzpPVLWGJ8lTW5/VXFyeiNO0rAKaY3SX2XptMBKOa0f2XWB71hGvPGELKTddIfMfLBNR\n9k9uAGsT2bUWg3eNdWUu1YQpYYSmhJGRnHkx4hUJyVrUQ56g5pmIzvv9pfe/5rsnL/l0c0H7WcPZ\nJxG/S7iY0OBnjlX2FEpD2WXJ9WGVJxQp+HxLZoNRvAg4EiCan1HJBqs72/Ot81ucKK9enNC/ciaq\nUio8XTz8zt8w3h2jUMZysj6UdVhO6Ifc/7tand2z/YPYwENj6RGU305qf4RyHhLTYZHUkqg1TkhM\nNLuBcNnRvTrl6lXH7bcbdt/ycBKJ5xFC4uLZLafdQFKp9QTxj9xyfdGxedGw/txx9pOIy+IoBF/T\nZKK6SPFZyKbeH2QeKtCI8QQsZoXYWD+G2MF0ooxPEuoVGbI7i8muE9Qak5TOzZOgkzP329kkThn0\nmynIwm5o2I8NPisWax8ZT62vgR8wViVqT235irIAqxbdQjBZ89Fc5sJPKF9NoQv7tbWPv91YKk/B\nJlybe32OliKsIUuT+MXTF4zJ8+OXTzn9Caw+2xldXHWuEXFzs5vKOSm/IfMfYO5NYT+1GCprN2iS\nmtGZLwCqq6SZPt1HztZ7zrsdL3cr/IuGsFlsL9a96h9WQdT/P+ObgoPFGDzw+bc2BmX7otJcpNC9\nVS5W4RURZEpoFkghGwdx2UgU45ASTBgI+bnyZEw0m47NlWf3nmM8S8QT4XbbcnW94qdOia9a/NYe\n4HZvFOj+udJ/PRGu96BK6oMJs0yzQbKHNOtGFgOhs0GQZKt+FRspv8pqF0DXEd9PxG2AjUcHyaXT\nidBGphiMRjw6q0ascTwI5tq7zBmI0eF9IkbrU+Cc4rpoJeQbob0CN5gHk7BMRCE02emV7xd0cqTg\nDJ3HDM8MOiptmDjtBi76LS+6NZfbnu3GlFH8ygQTIlj8PjpUFNdHxuT5f198xO0nZzz7acTtJsNf\nGjNAtdBpsdqz4FvU6siMT8zg6czIdP3c7CfRWMPekCjNbcgNZiXrOrRnQ03vvrxe01y62ejn4Ysq\n9CPHu2cUvmmm4C1Zjd/YK1gebzmCR9sGXXcmVJL1CTQ3jCkaEaY2FM04jNE8hCnOTV1VTQPyZksz\nTpxfday/XLH5oGX7Lce0DkyrU9aX0F4p3ZWt1uPKETtoNon+hUnCAaS+wQ3Rjl80H5cjd4WWMebK\n4WU+n/ykM7MMc5gQbgRoiG3A50KhMjdRYdp7GBeMPKX2WSh9DEovA0RrebNJp8E4BNpuYtc3xF6Q\nV2LAZk7NssiS1CsqszIpaXKkIscm1nYtqVS+wnZsGKJnmExzQXNocXayYz8G9glSSUm2ifee3vCT\nm6d88dUTTn/k6b+4NoDWYUZhkXGAQ2BRcq/RJd53zAHBK/504sP3LrnedaTkuB09mrkHPlhINI6e\naR9IOw9BeXZ+y1m74/Pbc/aXPafb+YYsjcOdZK97xrtnFMp42zZxbwonHlOstBxvSnOWUUIH76Ft\niCetcQMyu21Je1WxoiPjGSTcPuI3A+xGe5aWhiH3lpAp0uxGzi871l92TL0Zm7CJhNsR9+oWXl1D\nishqNcuqNR5tgzWwGSarK5mKTuPCgGbvJdc1VcOgheC0eMgLbdbvDCeQJLjeJqpVD6qBYAqM1qBE\nG5k1FnwxxPMKnnLc7L01edVFSaFzVs+RgkedqWSn1ujhpRv8PLGKW334VZkmo4UHwSVicgxTqOcx\nTd4yIuM8Yw2ctAOoV1ZPdqybkR89f0b3uz0XP5zw17v5+2cR6iu5sEyqp1DfX4CM9TUpzWusK7YX\nK5+SXNCljXXE7rqRvpm4ir297kCaROMSU/JEtaxECljIR3nmqB3dHzveHaOgHE7Cu9KPD43j8OBn\n0Ed48DN3GYQcNqQ+kFqf0ftcZlxbki80DRX8qPidp2kd/sbhNmK6i3HhNRRVp3FCtnvaS0+zKH3W\nbIik79DLK9QNs5ZC8VD2cTYI992zKVrj3ChYP0grxIqdMHXGMFzGxWYcjJgTtjPKHgVrzJpTiJIg\njUJaW5xeBFQ1AxeFJ2DQxqyMVF6fJm8AYGYv+h00kjs6L8G6MknK15/1E8Qp3iWGMSCirNcj3inD\n5NlsOjuXUh2ZQ5vLV2s0OlNkSoL0kZN+4MurU6ZP13zw/cT6kw2yH81wNn5+VhRctCpPmDuA1QzO\n0nDobMdKWJai5+ubtYGjmZUoQAiRvpn41voW7xJXvmfvyOp6QkJ42m/54nRi810lXPvawd2NcDX1\n+ZweN94do/BNxnHIUP5/C4Nwbxry2FM4NgYpzQahbdAukNowr1yYm1vboxUZM+zhmFRwKyH2jqbz\nNI3HbbyRjdLCsBXjsNSDnDysukxlVWpfiCwXr00wl3XKPTCX5186V6nO5dFLERYtHaIz36GXKkm+\nTKGV7IS1W59TbyhZEyHvL29vl5MnoWSB2ZwSDCGSknutCawm4zek1gyBm5TukorTjEFNV6A0Vr0n\n85yS4L1WTyH4mI1GvRxK6bSO8+yVPrI62zFMnu3zNRc/cJz+ZIO7yh2vEpD7lBSNBInU7lXJZ6Zj\nLhabD2ZGk9pw185fk1GXgYXBNGO5HwMvtmtu9y3jEEiZBboZGpys+M7pK771/hWXNytGXeE2Ztxl\nEi7HVRWGecx4jMjKdzF59w/zJf2nqvqfiMgz4G8Avwj8CPhzqvoyf+bfA/4Clm39t1X1f3z0Gb3N\nuCtkOM42HI3jKsbXDMJdYUOdUHMmoYilaNugvYmepj4rKGVEOmUNgpLTn/eXn4Xe3ps6IbaO9trT\nxIxkFwAyd4bSlFvpEWa15n1CNjv0dkOVXMsFTpqSeQt5W2UyYyPmDVSq3/L6EjOKnsulp9W8olUd\nk8wZKB5Cak3KPbV5g6NqT3IqTY8UkFJyBD8deAqA9UuU2YWOvSkaxVY4+XzKtGHHdALpJJoUWRJ0\nO5dDa3RMI2wVa9vulNu9VSbF7KmERWZi3BsorDnr0D7Z8+z8lj5MfPLVU05+L/D0BwPNi031uqpR\nzbqaltmxpkY1FCs1FlDDBxdBpxlzULV7ps6RSLl82pq9aKZXNyGyHZqqBWFaETBMgVfJ0fgzdmOg\n70aG0JE6kGipyd20kGl7xHiMpzAB/66q/j0ROQN+XUT+J+DPA/+Lqv4VEfnLwF8G/pKI/ClMlelX\ngI+B/1lE/qSqPnha8tCKfl98/zPWLhwYhLv+vqtmoozsIaR1R+pD9gqcYQj2NMxyXAFSa4pCKjKr\nGQUMZGsFxKG+we07PMwAJNT2cKo53owJkkm36+3GGsbGiKywCU8GNsc4Zx6SosR5ohYG6V0jUclL\nZQUunkIK2WD05W9Ija3Yqc2ZjKlQevO9yEVHOroaR/vc/zBFZzZEybJpBWtwKKYfIKuYAVbBjYn1\nF5Htt3pSAyfvbSo2sC+ai0puMe/NmWtM+WnK3kgxPgXkbJrI5M1ziBO41cQfe/9r/vTFT/nbX/wS\n+tOeix9Eup/eWCft5XOiuiAdLd5Ss9M2GbUCttVTiEfel1MLF7ydT9+ODJNnHEKO8Ox7nUZPSq7i\nHjE6hsHznBN2u8YYojlD4UYDhXcx/HyNgqp+hqk0o6rXIvI94NvAv4LJtAH858D/Cvyl/Pp/nUVc\nf09EfgD8E8D/8cazeVva8RtSjItruONQ9xiE43HsHSyaxGoXSOuGaWXoc+wWyH12w80IMD8Qhx6y\n7ToIUw9ucsQyiQuvIF+nTBO6vN5oWAHDaNqMIuZNREt9auOJq4bUeQM0AdkUqXe90wiW2gY0KyDl\n+garVsweRDZmqaEi55XY1OYn3IuVAg92zRKByeX0p4KnAoyhiTQhosB+36AK3ivORasvmECcMj2d\nGC4bxvPA6fcvaW47UlC+/eSSJ92WH7z4FvtNgzSKDtkwZrZizGpPpZTadAqsUWvTTZz0g2ksRNOS\n8ME4DH/vxXf5/JNnvPc94fTHN7jb7eGzsfQ4czghWu6VtbXXBBoxHkJmhiZAArgoRM2hT1aJcpnu\n3bcjTYjsfWK7a2acIY+2m1OX49hwfbkyLyd3zvaTI2wtdRnfhrnEW2IKuSnMPw78XeDDbDAAPsfC\nCzCD8XcWH/skv/bg0Icm5jfxIupHHzAIj0lHLr2DRXPY0m9RnczEH1dcwoyyZ+BpKXCaGlMtLg9O\nMRbqra5hWnncEPBRIXmb6KVlXAYe0UDVX1y0jiu9IWWMpJNA6jyxc7ihVEgagCkxc/UP7t8SVwCZ\nFD8sHvrqPczGoKyG9X2AoLCXOkE0708jCAuRkPy7ayb6diQmx37fVE/BZc2FFJ1N3vOB8Tywfeo4\nU2X1PNK9DPzkxVPO1iuub1agYpLsRefQZ+1JFeLkEZfQ5EjJiFNp8ExezS2fzFC4JtH1I59ePuHV\nZ+ec/3bg4nd3hiPYA1V/S3m+UsoVkeVHqk6iMK9d6iFlluRxQkCyp6JqgjDvr2+5HVsaH9kPBpQ2\nTTL8cxS8SzxZ7UgqfLkPVu/QJKSP6M4TboSwMYNcxF0fOx5tFETkFNNfk9y6CQAAG7ZJREFU/HdU\n9Wq50qqqihxf5hv3V/s+9OH8bT56/3gDnpCPywH1920k2Wr6cba8boz4vSPi0BwiSDEEuYt28gva\nMTlfLQWYk4XghgGPcbDaeufzasPiO42Z/JSl3aVrQXN3aTDDMBlRyW9G3OBw2wkpvS2TYvFAbkHv\n715FJC6MguQVbmEM3Miip2LGEKKvhtHvZU7HFfZeRdu1TuDyYMMSFhJWbWQAJp9IybNaDVyvV4yn\njtQGVp/e8uTsjKvpjJdPT61KsFNiljVTdbNxdop4CMGYkuPoGffBMhtJ2G7bKvXum8jNyzXhy4an\nP4aLHw60X9zMfT3LiZb7mHkeRJ1DgggOrRRnI4IVvCTvouBKAE5x3grGxtETo2Na6D+UpjaNtyzE\nZexpQ2QVRrZTLrrIeg9JhXQVaG7mhegPJCUpIg1mEP5LVf1v8stfiMgvqOpnIvILwJf59U+B7y4+\n/p382sFY9n140n+ksnSNXz+Bx3sLjzEIvtDh8lgakzd5D8WglNZrZNexos+ae1eA61yWErOVIcFc\nYlyRfzMaJCE2mrUQHdJlQkwCV7pNOc0py6lmHGgaMxibeSWTKcJ2wI85XVbwiZTvcWLmKixG6fx0\nnDqr9Q+F9RjJjXvy9U8gUUg57VVQ+Npw1i8axCweUBGl8xNXQ8cULf5vWyucmqJ1QCprTRsi2iXi\nypH6QPPZS558H9rrEzbve/bPHPsLZToTUtYv1BynE5QkiRgdfbvHOeNEgJGkYhYt8U1kfNmz+jRw\n/qPE2e/vCV9vDUc4SHfnv6Pda51KC7yEy1mmVLxAMEMqzFkp4fWVW7QyOlWF55sTnChjNJn+xlst\nx9N+i3eJ1kdebNfErNvYne8JITHsA/4qcycypvW02/B7HY8ej8k+CPDXgO+p6l9dvPXfA/8m8Ffy\n7/9u8fp/JSJ/FQMa/wTwf77xTO7jJDwEML4FyFg9m1KkVPABHMuw4N6RcYRKZc5t2qd1w3Qyi3G4\nSa0ha2YvwpyjLthBbOfjpJyDjxnAEzVswbwIT+PE0pAp2TWoomPmHWQ6NTTQZkNRjMA43W1MH234\nzOW0dOPsfkoyI1D6uVZBEQUdZ0NR+h0Y6wn7QImJY05nJuHLm1OGyWjNT07NsO3GwH4MWXnIUPbt\n0FS8DicwTvgvLzm52dO+OmX7Ucdm49hfOOIqcycy+Km9aSA+Pdvwjz77AoCf3Dzl5WbFOARrx+kj\nKXrOfhC4+MHE+lNLPcpSXRxmg7DIdklKpkeRvcRC8qrdqJwZQFlWK9b7J5SmNOPoM55iIc3y64jJ\nMUXPV7enTNExZlzkdtvRdiN9O9r/tysaB7v3DfyNJ4lfOfuM/2v1xx/+zhfjMZ7CPw38G8Bv5B6R\nAP8+Zgz+poj8BeDHWKNZVPU3ReRvAr+FZS7+rTdlHo5ZaMD9RuKuB7qAf8td3mdMCkgYvAlR2LI9\nN3F50DCISaRn8lBqjNgT27ljdmWuFbEPoSL5U28VhtOauuIWKmpp5w6SU0kmfAKgwSHOSpGlCQYI\nZu6CBhNrlb6fsYVjrsby3hwDjEt8xVE5C8WIae73UGoeLCQyAG8usqKqMVUJA5ir+tLCIJQ3c6v1\nYbKeBmf9nvdWG1o38eXmjFfbnjEbhtBM5jGUiTR/ychuT/PCwjo3NYSNZ1pRxWZjC9OJY4jCK5/4\nafcE7xLPb064ue5Jtw0yWBVl99Lx7Hsj/Wcb3O1uDhlquMDdC1FMMOXWf9Ghk2SKuIGIFWyG2Ygu\nOA0yCWn0xmvQRIxWTVo4HIWVWbynpILLlO2miVyst6yakctdD6Nj/HC0Gg6gC5Efbr6F2z0eVHhM\n9uFvcz9M8Wfv+cyvAb/26LMoe1+ubG9iNB4TlR7ABl7DESDjA2+BJ5SwI7eMJxNo3KiEXSI1UqsS\nDxiNvmgU2IM6rWE8y70NRlNVAjMKEiH2EHcmne53Oh/bmQ+vPhuIyUICKThHk7/Kev+OOAjlXi2b\nw9wxloBvSafGZqY4l+alKSPmVYKMxYQtIYhaTp4xC5uUMmEH1koF9ruWrreKz6t9D8C4aPNW4uk2\nTKbNkPGN+v1H42o0qvhdT3tp2aDUSpWmH9fCdhPY357w/RcrQ/p3jubS0dxa6i5slP5FYv2jy8Nw\nYWkQ6o3Rw79zo1+JAZksregWi4G4QzhFomEyKWTMaTJPIU4O56XeSKuXc3hvSk/7GJhKqOMNjP34\n4oqn3YakwuWuxz8ZaJpIjMK0D+w3gf/9d3+Z9U8fn4F4dxiNyy5GcLdFflPI8KbU42Ifr7WKv89D\nWIYN4RiLUEIG86zjUj6EMzJS7IyLXs9lMmMQbsxIuCn/5Hxy2bY8zJrjfjMy3uoYkkLwSAqHOMry\nvEqI07WH4cQ4WbhxF0chYw1uSiRnxq4ApX7koG3dcOYYz2A8tfjBTTLjCIXZKJl6PIKPJkBqWpJK\nen/g7HzLL5xd83K3Yjs0fPXyjFK3LTDTlH1iHJ1pMWQwcDwNtG0D+8wZiAm52eJvtnigA6o4bf7R\nriGddKQuQFLcbrK+GaNZO7nPEygeVP6+62vlnpcu387hFgY3pbwwNOUUcks8wYzGKPgcYknuxmX7\ntsnedRONj/nyXCVaTZOr2ZlxCHxxfcqLzYp/7P3P+Je/81v83dUv8ts/+JjV7zesX1m9CKnh6Q+2\n/ObdT/hr450xCgcpyfsMwmP39SbAsrrfc1x4Z6xdVuHygBVikM5dfyA/UFOq0ukqczxeK+fUvAJR\nxRfqa369hhILACoFQYPkDtBWniuD8e1NINUd3pOUFiGQpSxTH2yiZ8PwmrdU7ms2CCIpE26sB4Xf\nJxCXY99inMybGc+U4VnE33o08xlIFscXMZFyfRVnyP833cQff/acf/697/M/fPkrfJFO2dFaFOjB\n5QmgapOA7DIXbQENmco9jA+He0sewW7AjROuEI4eIwT80DO5XLxiqqlgGR0uCIgzVuNyDQnYTRHm\noqnEQfhsYq2OxkdW7XhwyD5MvHQrgk9c3qwA43bQwWebc77anfL9Tz6k/7ShuS74Frmt3+O94nfG\nKDzIaLzvvTtChgcpzGWU9N3SENxnEHLvBA3eCo28WGl0KCnNhXmoC4nOWILM/AU3KmFvx7VOzXll\nzcd2kYpJpMaEWP3O4Sc1ynJd4bVmJl67R9lYyBRxm7ySTvHwmjn6XFF1VmzVcprFXBUdbAIZ6UYP\najiWeokA2lgYtCzdFbC8vZs5AwX5/6PtV7QuZnw04xOZn1AuJYRIGyam6LnaBjR4O4cmvP793hdy\n5muWKd5tRB7DVykeQ63/OAwhZCrFax5pMhEpb16qlv1YrGRms2q5h7ZR8YxiBhEFo2S/t9oQJPGn\nzj/j1+WPkBBeXJ7YJSf4pacv+OGL99huOvrf6eleYr1DYm7FN4H7w2gUDr7Mn5G+fO8ocfVjOQrF\n9XQWs6d1YxPEC25KmaCycP3yH1LAOieZXix1mzrpQ/mZwbryuxQaxdbCELfPVZMZV7hv1dKUG8sW\nGa/94prLtR71fTBwNGVg1M+uMmYgJKllCyruQ47Bzer5IRN1MmfBXmfGiRYAWwEKtzcdP/Tf4j/e\n/0vcDi032440SZaAXxp1Y/h99/wSgB8kx/BlY16Il/uxkeNQ9Og+3TmWK/89jE/bN1RZPV38VjV+\nSDRvwT7ias1arrqy6lGFcbVgumZQ2odI100MQyCqcLUzVahvn17ytN3yZ89/k8/2T/h6f0Lce9h5\nolN+i4+IX6zovzA5vuKdhb0S9mbcZZgZkG8a74ZReGj+P9ZLeJOH8EhQErgjbPCkNhDXjbW3i4qk\naM99AsJh2ECmN9ecfqbAljRdbGFam84heUKFHQfkF2M4Wnco4ECxqV6rd9Xw2HXlWVeYjy7ec72O\nWW3pDZgKBTCjFgCFrc16N8nBZK+ahEuDIFQJc6NpA1cNV6Pj5rq35iYLok46yFIkvEt8vL7k4+4V\nl0PPT/ozm0zFa1o+H2U1v8/7uwtHeZtR09q8bhhyc17GiHiPK3Rmb7wDmSwkS5PdkNjIwfedHQiT\n1sth6m7XoMlxPfT0fuJVPGEfA692K9h6wo3HjcCXgT6rU6FmtF0Ev1frRJZFdB473g2j8JD3dhfw\n+E0bwy5XgOVkuAtPyPG3FuagKm6fhU+i9b4EUOcqIl5Q8dJ9uNlae/WUtRRiRuoLqj+dqM3PAcLO\n3vOT1klW1IpNLdmWnNqAF+b0KgkZFZLVEJSV8s6QrJR8F0bNEnTMxkzv+D6Wk92NmBhIXJRIaw4t\nwuFnitgrUNOvMgoSA3obmEJulipqtgyPayI+JOLkudl0/N/Pv82r8xWvNiv8Xg7vQfmu7vq9/PsN\nHsCBcb3v88tRQpWlYcqVrTLGanc193MoxkHFmeZCZkC6aPqTceMZpCVOHlXY05i6EvCTF095uV7x\nX4z/JL9/9YRXlyeEK09zLbTXNvndqBWfME2H3Cwoh4FvYwDfDaNQXcyjm7wc971+9Nob5dXuiqmX\nxy7Du5mTkIlObpeR6sxmq+KbxSCULkHOtvF7LOMgavRlyFWFwnQC4zObUc0L+/IPWpXnIiRD7GWB\ngCd7GMsxC2hWUmeSjHfhbGWW5aQ/IN3ovE+xsl0zMnfcshxC1cmdsxJLo1O4/kQOQo1iBEu7u2Ls\nCh1fIyZoItn6CSRxOK81RXe16fnt6X1evThhfSnzQ37X5L3P7b/nuVB3bBju3Ox1r+ouo1SwBe/m\nayrYk2KGIistSXbk3Ah+KzTOEUchdZ4i5FrUnHdfr9hddTwPZ+g2EK487aV10PI7xQ8ZVKz8h9K9\nW+u9fhRukse7YRSYY+oHUd4yvkHdwqN7OizITZSGrJC7YqcDz0Kdt8xA9hCWGRRzCWeUu7YQmwoI\nJLiNI62TIfdkuTEPZCDP9Bggdh7fWvUkw5jvhVR84yCkyISZo4s/9AhgJik5OajlgDJxjxD64rEk\njGEg5h4vC6RshxSZxoMqytofQsFNBlqiYk9gmTc1Y+FIIdWTGYfAOARTKs7NYQ5A1rd44OstOcYj\nCi7j73jeFjehGmB4nSq+5E6UZwVM36KAzTGRosOPShyEsFHcIPh97kTeQexyi7zFPQdrJ+932Rhs\nc3gwzGBirblJs0GQZKB20Qp9zHhnjMJr475eD98QgCwG4Y3GQSQXG82cBClpJ7gbxFrmsrP7lki1\nC/GszziTf9wE7StH2ogVr5TYMtjDYAU0io5mHFLrrZEoGF4gAmSJn4o1ZC9BEuAPr3O5yi1X1eNt\nUr6W/HBZKGMTeElr1vJRybDCHfe0GIOSpoR8nRMGvgqURi5AVQfSBtJkYJ1GIWKMv3ZnRCPAqN/H\n38Fdq/fxOd1jDA7+viuczK+/5k0cHzd7C7Xjmcz1G5q/MpmS8VV2NpkrsNwb1uQGy05UNegSRqbs\nWexLyGAZLTeaZyAZS5ScYq6n9JZG850xCtXFeeykf6SX8KgU5XL4GUfIO7DfdyHdmnPyeeUu+Wei\npaFSR9YfmNN4flT8CPo1TL0RXPxea/PYMuFSa+5lEX5VNxseTQnJlGYRgWkypaWk1ctYXPTRdbgZ\nQD24jtJcNqs8RdDkaj69sDVF5vhb1EqhS4n0sVbE0hAsCU62sa2GU5dDCyV7UnaduvcmfY4zQ3Xw\n2Xuu8S7D9AB7814s4o6Jvny/rPqvH2zhrWWWI5nNKBRXyeHHhO5krjLN93TaCX6fn4ucsqxq0E4y\nnpVDt2jPkpuyp1AwhXJpycJJUQjbWDGwx4x3xigAjzMI5QurBU1v2lwe/P9gv6X6sTAXi4ewfLCO\nP59K8QI2aWNR4lHAV4NQHk7LXFD7GMSO6iqWTIQIC7kus/pLZWCSoimCJsR7dLK/VRXRYlUyo/Cu\nay14QiUulZld8Aaj5kqRGcuhT82sai7uqSHf8j5ygD1Ug5CZkZJXRvVC7IqhyiupV1Br/24qsGaQ\n5qpNmX9lnOOuyfmgN3Df6xVslRlAXMitHeAxshDhZWEgFsZEoonVVg8VEC+IJktYJaxYKy8Gmvt4\nSnLWJs8vvn9dhlY5PIjU4itjn87emB1f67YS1cLOR453xigcFLq8KXQQmdl7jxiP7vHg3KwvUAxC\nodmV45YvuZxPIq+yUAt2klX21dZrSzVfKd+s7TJ2RyuomItIynFiNghGcU4LFqYxMnUcFyIr2aUu\naF5yBw8vUJWcbPZaNqMWNuXMg+kl2iSQRHZh7ZzVLyfm4idfP2YL68ru94uVbWAGHieIK0jriFtP\n1kEqA2tukBmPcPMtc2MG1DSHY+UNHhkWHI87MJbX/r5r26Ms1vLYB0aqcBfq/xZOutHubwWSvcxG\nYbK28lWwR03CT/3c56KW6ScLGcozAlTvoAq+1IrdP6yeAtxtEMp4ILx4CCt4ozEoXsJyZSgr6eFB\n5o9odm09dSU5KAiqacESc2eHwol1OZZF3JhxiEIOXDYNcRmwNFWlxReb1Iqi4MBAHngLukwFgIkQ\n5pLrRfahrGrmIbjDkEtnwZjSPl3JYZFflIEv50zJyqgZglmX0IxlwrABmQRyN2pthOGmtVBlzPdQ\nzI3WbCj9YHwONy4o5fcRle57bfn6fZP/GFO4i5dwz1BXVveM/JOs01R5r4Ax5Tv1Lt9bZ0YhKhJn\nF8/SuAvDU0JUnd8/OP1sSCyMLV7gvad753j3jMJD44Hw4qGJ/0ZwsYCKpZ4gLdEvmQ3VEZBV9Q2W\nx3J56Szud+G2SylD5v9r73xCJDvqOP751uueWXVzcI2EJQbdQC45xSCeQo5q9rJ6yy0HwYuIHjys\n5JKrgl6FiEIQMRcVczUieFOjbDYbw5qNBnRZsxoxTobJdE+/n4f6Vb16b6ZnZl3Cey31haG7q9/0\n+1XVq2/9/lT9KjsdZXF3XnbcpdsUk326lzWhHyWwuN7eysgDFOsQVpEE0pJoAFv5jNQWN3Lygs4h\nNVw1maMdRMF870ZbLGvOjtLkNXenarNv8bi3IpVbil7M9mD57xn7+3EQNLuB2a5ofM2GzcAOoukS\n9mG+Y8x3W8IiRSaKQXpap+NxJLKuPDmS2+MJoYtKdX2XCdfi7smY0DfElGwrw5rW/6eNxHAQ/Tc5\naW450Yi1S7k7J3Bn8kWtIbH4KUxzx3RIoRdyPLrih64t4+Q+8I8jgLVmhNQ5GMsHrLxPaVNCDota\naXtC5wyUPBsPORVXDt8ByX/Q224dfGC5TyqtAzBX223exHyNWaNpD9epaVw1BUIbiaG1vhY0TM91\nVP1KMym3h8u3JT9dOu7fCEtcKzBWTSxLnvK0iMYa8sGr5rbWbFdsvx1YnYm/3+xHR1uKMJS5CMI+\nzN+F2Z6H+1bWk/PQwC9n0JzlKnh/kb8fLvAy6fDEOhxQvbYsCKggqdTPOc8GTt4huAkXzYasOchD\nzCthrR1tDg33shV1zhGHpCUkk9O1z80khYTjvMUnYLg70gakcSRKQkjOyyM8z2XMvmdDmmFux+Ur\nWpC1NIJ2JYKfFNXljaCwGeNrTOhJ/hEL6pEG6TyJECL55XslUiFrLrRtnI2GxADRG24WtYXytOxU\n17Z7uHJxtmUt+xfShq7lWWP+rmg81DhbuVPS4nLo2Z5vrGrike+JHOI2bWNWnH3YS9U2UIvDQbdC\nNNvHQ3IvoyqZiENcJzAL8fSuJi7Q0oH5rkb31RRhvEODrfz94f2g316HTIxk0ztZJPJtQiYEU3Ts\nxnBwyL6G3uQ4uHf0qRRtYN0DmFbdJqLXcGfsCZgGKQSxOHeGeWGH92auNj2QniQzOdzW2Pw2+JxR\nzn4Jvi05OsZW3QxEZxt2oSh1ZkboOqMkBC1b8oagZUtzkPbVi9K+T6vPojz0YtEWol9hFWJ69TAr\nHr4j2u6OjteD+JA0w9hl8b1ZzNKctBX5g3aQQlwtzSKwFFlTmO3Sxd3dJMrLby2SiBplckjrNWID\nHFZeUrskFTo4QSYZZK79KLh5NTAh0m84KbTzgM0Dq3nwZjPfk2KRQNMK1eH/5wjN4TYqPnSECh0x\nWLGuIQ1Qt/MtRdCCayZt0hgsMXxPo+lWtKY+pNBW+6JwSOb2jp6RaZDCquXMzZ2cNOPIhBclEWS7\n30ngONXoCKbtmQ9NEwdJ28bzE5InX+oyJKf/L1T0tHxYnoClaRq3CVPyAMudNp/P2D67Hc9h2Ooy\nHodl6+v4E+kVzsatuE1bi7i8Ouy+l0+DssUCWyyxg2WvjTLZecpgpUFTIJ816bIpmT9yogvRRGma\nhmZrjs1nbM1n7geJbW5Nw2z3g2y/M+cDtwPNomX7nRXbb++j/VW8zk9MyrI18uiOvyb7GDyXZYfe\n3osylLs4QHsLtLcPy2XPdJJ0mOhS3ZqGMI8nazVzb9flCr23jDkZjppkhs9eT8A1Gmk58PJp21GT\n7JWlttagf4Jivoc08QxNk+G9h76UcoIoJ9UQsJ0dTgud+hTm9xGS/gHsAv8cW5a7wL1stvyw+XXY\ndPnh/a3Dx83soyddNAlSAJD0kpl9amw5/ldsuvyw+XXYdPlhGnW4Mw9ERUXF/z0qKVRUVPQwJVJ4\ndmwB7hKbLj9sfh02XX6YQB0m41OoqKiYBqakKVRUVEwAo5OCpM9Jui7phqTLY8tzWkh6U9Irkq5I\nesnLzkn6haTX/fXDY8uZIOkHkm5LulaUrZVX0je8T65L+uw4Uvexpg7PSLrp/XBF0sXiu0nVQdID\nkn4l6Y+SXpX0VS+fVj+Y2Wh/xD2GbwAPAlvAy8DDY8p0B7K/Cdw7KPsWcNnfXwa+ObachWyPA48C\n106SF3jY+2IbuOB91Ey0Ds8AXz/i2snVATgPPOrv7wH+5HJOqh/G1hQ+Ddwwsz+b2QJ4Hrg0skx3\ng0vAc/7+OeDzI8rSg5n9GvjXoHidvJeA581s38z+Atwg9tWoWFOHdZhcHczslpn9wd/vAK8B9zOx\nfhibFO4H/lp8/puXbQIMeFHS7yV9ycvuM7Nb/v7vwH3jiHZqrJN30/rlK5KuunmRVO9J10HSJ4BP\nAr9hYv0wNilsMh4zs0eAJ4AvS3q8/NKi/rcxoZ1Nk7fAd4nm5yPALeDb44pzMiSdBX4CfM3M/lN+\nN4V+GJsUbgIPFJ8/5mWTh5nd9NfbwM+Iat1bks4D+Ovt8SQ8FdbJuzH9YmZvmdnKzFrge3Tq9STr\nIGlOJIQfmdlPvXhS/TA2KfwOeEjSBUlbwJPACyPLdCIkfUjSPek98BngGlH2p/yyp4CfjyPhqbFO\n3heAJyVtS7oAPAT8dgT5TkQaTI4vEPsBJlgHxe253wdeM7PvFF9Nqx8m4FG+SPTCvgE8PbY8p5T5\nQaJX+GXg1SQ38BHgl8DrwIvAubFlLWT+MVG9XhJt0y8eJy/wtPfJdeCJseU/pg4/BF4BrhIH0fmp\n1gF4jGgaXAWu+N/FqfVDXdFYUVHRw9jmQ0VFxcRQSaGioqKHSgoVFRU9VFKoqKjooZJCRUVFD5UU\nKioqeqikUFFR0UMlhYqKih7+C7/prLWrBhqsAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.imshow(conv_img_mean)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Now visualise the first 64 filters of the `block5_conv2` layer" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABH4AAARiCAYAAADSoTD5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmcnFd95/vvqape1C219l2yFlvyjhdk2TIwhGGxuSZj\nk4VhuReTOGgYsk1uhglZJrlkMoMJTAI3EAaTOHLgYggGB3MBG9uAMUjIkvBuCcuWJVn7rm6p1UtV\nnfnDrReyUZ1TdZ6nq57n1Of9j1r9O32eX7W/OlX1c3WXsdYKAAAAAAAA8Sm0ugEAAAAAAACMDwY/\nAAAAAAAAkWLwAwAAAAAAECkGPwAAAAAAAJFi8AMAAAAAABApBj8AAAAAAACRYvADAAAAAAAQKQY/\nAAAAAAAAkWLwAwAAAAAAECkGPwAAAAAAAJEqJfliY8z1kj4lqSjpH6y1t7rWd3T22u6eqTXro73G\ne83isLteGqw46/bUkPcauWA83ytr3V9e8M/8bLXqrA/o6CFr7UzvRme7fgPZ6Sz22Akdk2v3OewJ\nhSTT2RHQ5RnXGBn17N/p36To/p43I5vGk5vqxAnurx8Y9F6jMq3XWR88sqspuZGkTtNlu+Xup46L\nuus93cm2L7vPLEmynuxUu4qea7jPA0kyJ065657vg+12/xswVX8Pvts5cHJPc86cNHKDzGjWfZVE\ndmIypJMascP+B6Y15O3MMb7HKBX3Y8JY1PP4WCX3fW7/yAHOHDQsyZnTeG66bbepnRtTdGdckmyn\ne4xgOzyPXUuex5UpvDzF+I4t/0NT7x6+x7e26L6dZfdTr5f26HRfY2T77rrOnODBjzGmKOkzkt4s\naZekDcaYe6y1z9T6mu6eqbridb9Xc8/9V/mfnE96wX3Dp2866qxXn9nqvkDV/yQsC0xXl7PuG4YU\nJvR4r1EddD/Jf8DetcO7yVk0mp0JHZO1avHNNferPPu895qleQvdCzz/aMu797r3nz/f20O1z/09\nrz6xxbtHUoVu95BiZOXFznrpe5u81zh+wzXO+oYv/Oem5EaSutWrq80bQy738+t2uAca9pLz3fWS\n+56rY99xbw+Vye4HdQPLJjnr3Yfcg0tJ6vjxU86670GAvXCJs14YKnt7qPS6v9cPrP+LpmQnjdwg\nO5p1XyWRnZistw8Gf23QmVN8S+0N03hsWnCf4cWJ7vuZSn9/8h5yoDDRfX8qSYVpU5z1e7f/LWcO\nGhZ65gTlxvTqmq631tyzMKX2/3A/rTrPPWc4tcB9ppya5j6T6nlBiDxLOk66n98VR/yTn9KQe03H\nCff5PDzFPW45dKn/do4sGHHWd77vj+s6c5LM0lZKes5au81aOyLpy5JuTLAf2gfZQQhyg1BkByHI\nDUKRHYQgNwhBblCXJIOf+ZJePOPvu8Y+B/iQHYQgNwhFdhCC3CAU2UEIcoMQ5AZ1SfQ7fuphjFkt\nabUkdU1wvzQSOO3M3HSX+lrcDfLkZdmR/0caAYncIBzZQQhyg1BkByHIDZK84me3pDN/ccqCsc+9\njLX2NmvtCmvtio5OfvkYJNWRnTNz01nkcIKkkDNH7t+FhbbR0JlDbjCGMwehOHMQgjMHIRrPjUn2\nxiTIpySDnw2SlhljlhhjOiW9U9I96bSFyJEdhCA3CEV2EILcIBTZQQhygxDkBnUJ/lEva23ZGPM7\nku7TS28dd7u19mnX14z0Ge28vvas6ePXfdF73f/84Dud9Z5D7t/GP+E59zuHVYfy8a5evnftKk6d\n6qy/+P4Lvdfo6Pf8pvPP3uXd42wazY4dHq7rnbtcyjte9C9Ksv/2neO6f1qqQ+63jK/nXbt8pq/d\nl3iPswk5c1K57qj7N+n73oL81Bz3/1UZnu7/v3Un57jf+eCE503rFt/jPi8k/5nifd+DTZ7/FBe7\n3/1MkgaWel4Vut67xVm1KjvIN3KDUEHZGe93lfXs3y7v2uVTHRhIZU0IzhyECMqNtc7HfZX9B7zX\nLXoeN1bOvcBZH5wb9M71L+N7q/VKl/sa3Yf91yiMuh8BH1vqni0cvdr9POKWV//Y28OfzXC/87P7\nWcLPJfodP9bab0v6dpI90J7IDkKQG4QiOwhBbhCK7CAEuUEIcoN6JPlRLwAAAAAAAGQYgx8AAAAA\nAIBIMfgBAAAAAACIFIMfAAAAAACASDH4AQAAAAAAiBSDHwAAAAAAgEgx+AEAAAAAAIhUqZkX6z5Y\n1gWfPlyz/pHt/6d3j4v+v+ed9fK+/c561XuFOFSOHnXW5/312iZ1kpwxRoXu7pr16tBQE7sJZzo6\nnfXi9KnOeuXoMe81Cl1d7j36+717JFV5cc+4X6NuPRNkLrm0ZtlueDLxJcy6x90tJL6CVDv9L5nu\nqdsUekiq8vTPvGsmPd2ERgAAQNspTvU9znY/d4qJ6epUacHimvXKzl3ePbb/7sXO+ql5ZWe950X3\n/nPX+p/fFX/wU++a8TbJ89yrULnSWV/TdY33Gh943aaGeqrZSyq7AAAAAAAAIHMY/AAAAAAAAESK\nwQ8AAAAAAECkGPwAAAAAAABEisEPAAAAAABApBj8AAAAAAAARIrBDwAAAAAAQKRKzbyYHRpW5WfP\n1awX3zTLu0d53/40W8ot+5rLnfWtN3c4611ThrzXWPSOJxvqabyMzujR/l+/omZ95mfXNbGbs3v2\n81d513xw1fec9SsnbHLW/3r7W73XGPybuc5617c2uDdYeamzXBgc9fZgdu11LxjxbpGa5ecd1r3f\n+ELN+nXz3P+O0J6Wv2pQ9933WM36rz3/Ju8eA687lGZL42Lrmlc7690Th717nPMx46zbDdm4HwHa\nnVlxibv+sx3OenVgIM12gKarHD3a6hYyY7SvQ3uun1ez3vei/zn5lW99xllfu+l8Z33xl/c46+Vt\n2709ZIEddj9Wmv559/PUmV/o9l7jqk/+gWfFf/HuIfGKHwAAAAAAgGgx+AEAAAAAAIgUgx8AAAAA\nAIBIMfgBAAAAAACIFIMfAAAAAACASDH4AQAAAAAAiBSDHwAAAAAAgEiVWt3AmeZ9Z493TbkJfeSB\n+fFjzvqspauc9fUf+4L3Gq97+39wL/j6Xd490lAarGrmoyebcq1a9v/utc76997y1949uo27/u6f\nvcdZNx+b4b1G1wMbvGucHnnSWd76cXeuJGnSjmnuBX/XSEPJPNk/Q0vv/82a9WX6afOaQW7sGu3R\nh/ZdUbM+8LpDTewm3LYvXe6sf/PaTzvrb7v3973XsBseaagnAI0rLZjvXfPMn89z1jsnD7vrGy91\n1ud9fK23B8Tp+U9c46x3LRlw1hf90aD3GpXnXmioJyRTHLHqe7H2s+rub/rv2w9+011fpvXOehrP\n6c1V7nNrcN4EZ33CN1r/GKY6NORds/wD7j531nktXvEDAAAAAAAQKQY/AAAAAAAAkWLwAwAAAAAA\nECkGPwAAAAAAAJFi8AMAAAAAABApBj8AAAAAAACRYvADAAAAAAAQqVKrGzhTedv2VrcQjenrDzjr\nHzl4kXePQ5cW3Qu+3khHCZw8Jf3kiSZd7Oxm/91aZ/2+/3i+d48PTNntrB+6b76zPu8Bdw/NcO6H\n1nnXnPj1q5vQSX26tg9q2c0/bXUbyJnBzdITV9pWt5HY0nc/5qy/7XO/56wv/8AjabYDINDzfzPN\nu+aF137eWb/wcx901ud9vPWPMdAa56zvddaPHDzirE9727POeqXhjjDezPFBdX8z//fxdsOTzvqe\n/3mNs37uN9LsJvsSDX6MMdslDeilf9Nla+2KNJpC/MgOQpAbhCI7CEFuEIrsIAS5QSiyA580XvHz\nBmvtoRT2QfshOwhBbhCK7CAEuUEosoMQ5AahyA5q4nf8AAAAAAAARCrp4MdKesAYs8kYszqNhtA2\nyA5CkBuEIjsIQW4QiuwgBLlBKLIDp6Q/6vVaa+1uY8wsSfcbY7ZYa3945oKx4K2WpG71JLwcIuLM\nDrlBDZw5CMWZgxCcOQjFmYMQnDkIxZkDp0Sv+LHW7h7784CkuyWtPMua26y1K6y1KzrUleRyiIgv\nO+QGZ8OZg1CcOQjBmYNQnDkIwZmDUJw58Ake/Bhjeo0xk05/LOktkp5KqzHEi+wgBLlBKLKDEOQG\nocgOQpAbhCI7qEeSH/WaLeluY8zpfb5krb03la4QO7KDEOQGocgOQpAbhCI7CEFuEIrswCt48GOt\n3SbpshR7QYqGF0xx1n9j6iPePdYsvjatdl4mxux8883+m/P8N2c56wu+e8RZrzbUUev0/ez4uOwb\nY27QHGTn7Jb/hw2tbiHTyA1CpZ2d4ePd3jVvfObfOetL/n6rs15pqCOMh1adOTuvPumsT9OzTeoE\nobi/Oru5P7atbiFTeDt3AAAAAACASDH4AQAAAAAAiBSDHwAAAAAAgEgx+AEAAAAAAIgUgx8AAAAA\nAIBIMfgBAAAAAACIFIMfAAAAAACASJVa3UCjSnNmO+vlffub1Em2lb63yVl//+LXe/dYXt3orO9s\nqKNwplhQcWJfzXqlv79JndRW3r3Hu+apa7ud9erQlrTaaakl/7jdvWBFU9oAALSxF/7HKu+aZ9/3\n2Zq1ldcNptlOIhf+8TbvmsGrljrrlYMb0moHyJydf3Gtd805H1nbhE6QJT1fX9/qFjKFV/wAAAAA\nAABEisEPAAAAAABApBj8AAAAAAAARIrBDwAAAAAAQKQY/AAAAAAAAESKwQ8AAAAAAECkGPwAAAAA\nAABEqtTqBhpV3rffWS+ef56zXvnZc2m2k1uDN63wrpn0/WfdC46k1IyHrVRV6e9vzsXGUXVoqNUt\neA38+2uc9Ulf+Yl3jw/PfsBZ/1xDHQGA2+CvXO1e8LW7mtMIMmXJn6zzrrnuTy6vWXvWHk6znUQq\nh/y9dH0nO/2ivdy35zFnfW/5hHeP953z2kQ9nPORtYm+vu30TJC55NKaZbvhySY2A5/Dv7XKveDz\n9T3O4RU/AAAAAAAAkWLwAwAAAAAAECkGPwAAAAAAAJFi8AMAAAAAABApBj8AAAAAAACRYvADAAAA\nAAAQKQY/AAAAAAAAkWLwAwAAAAAAEKlSqxtIm92zv9Ut5ELvtx7zrqlctty9YH1KzWRAsa/PWa/0\n9zepk9bqPlp2LzCmOY0AQJ16vh7RnREA5Mx18y5vdQto1KlT0qObW90F6jTzkaOp7MMrfgAAAAAA\nACLF4AcAAAAAACBSDH4AAAAAAAAixeAHAAAAAAAgUgx+AAAAAAAAIsXgBwAAAAAAIFIMfgAAAAAA\nACJV8i0wxtwu6W2SDlhrLxn73DRJX5G0WNJ2Se+w1qbzBvMJmZ4J7gUDA81pJOPs8LB3TWn/sUTX\nyFJ2hn55pbN+8DL3P4VFn/ips14dGmq4pyzq+O7GxHu8+Y4PeVb8obOapdwgX8gOQpAbhCI7CEFu\nECq17FjJlsvj2itS9Oz2VLap5xU/ayRd/4rPfVjSg9baZZIeHPs78EprRHbQuDUiNwizRmQHjVsj\ncoMwa0R20Lg1IjcIs0ZkB4G8gx9r7Q8lHXnFp2+UdMfYx3dIuinlvhABsoMQ5AahyA5CkBuEIjsI\nQW4QiuwgidDf8TPbWrt37ON9kman1A/iR3YQgtwgFNlBCHKDUGQHIcgNQpEd1CXxL3e21lpJtlbd\nGLPaGLPRGLNxVP7fK4P24coOuUEtnDkIxZmDEJw5CMWZgxCcOQjFmQOX0MHPfmPMXEka+/NArYXW\n2tustSustSs61BV4OUSkruyQG7wCZw5CceYgBGcOQnHmIARnDkJx5qAuoYOfeyTdPPbxzZK+kU47\naANkByHIDUKRHYQgNwhFdhCC3CAU2UFdvIMfY8ydktZJOt8Ys8sYc4ukWyW92RizVdKbxv4OvAzZ\nQQhyg1BkByHIDUKRHYQgNwhFdpBEybfAWvuuGqU3ptyLqq+7wrum4/HnnXXT7X7p2uCvXO2s93x9\nvbeHGOz7g2u9a+zrj7oX3Oj5+iZmx6dnR7+z3j1/qrM+cMNlznrv19ojN/VY8q/u7/Vznq/PUm6Q\nL2QHIcgNQpEdhGi33BRedYF3TfWJLU3oJP/aLTvtoDR/nneNHRpyLzhV37US/3JnAAAAAAAAZBOD\nHwAAAAAAgEgx+AEAAAAAAIgUgx8AAAAAAIBIMfgBAAAAAACIFIMfAAAAAACASDH4AQAAAAAAiFSp\n1Q28TD1jqK4uZ/nAv13grB++3Drry75eRw8J7fqTa71rCiPu+rxPrE3Uw4mFVe+aH135eWfd/Z3O\nluoTW5z1mU+4v/7kr16dYjdxs5uebnULGAd7/ov73OoYcJ+tMz+7Ls12Wqo4Y7p3TeXQ4SZ0AgDN\nUTz/PO+a4fmTnfWh6e6nHRO/ur6hnkKYjk5n3Y56HoDjF/i+p+ZT/f5N3pBSMy307D+u8K5ZfsvG\nJnSCPCnv3uNdU7j8IveCQ/Vdi1f8AAAAAAAARIrBDwAAAAAAQKQY/AAAAAAAAESKwQ8AAAAAAECk\nGPwAAAAAAABEisEPAAAAAABApBj8AAAAAAAARIrBDwAAAAAAQKRKrW7gTJ07j3jXnLxqsbN+/vs3\nO+uLew476z+96EJvD5VnnnXWi1MmO+ujl570XmP0WJd3TRLdh/wzv2vv/QPPij9Kp5kc6PvRC866\nvcyfm+rj7mymobRwgbNemeHOpn306TTbQY6Yjk5n/dfe8wNn/Y5HVznr0zZf6e3BFo17wQN3efdo\nhsoh9/0IADRdoeiur7zYWT41p9tZ731hwNtC9wuHnPWu3R3Ouu3t9V6jMGOas35q2SxnvThade//\n0KPeHvBydnTEWa/8271N6qS1lt+ysdUt1M10d6l47vKadd9zXZzhmlc5y8Xndru/fvYM7yUOXOV+\n/qY6jy1e8QMAAAAAABApBj8AAAAAAACRYvADAAAAAAAQKQY/AAAAAAAAkWLwAwAAAAAAECkGPwAA\nAAAAAJFi8AMAAAAAABApY61t3sWMOShpxxmfmiHpUNMaCJOHHqXW9LnIWjtzvC9yltxI+fjvQo9n\n15TcSJw54yza7OQ0N1I++ow2N1Jus5OHHqXm90lu/PLQJ2dO9uShR4kzJ4vy0Gdmz5ymDn5+4eLG\nbLTWrmhZA3XIQ49SfvpMSx5uLz1mTx5ubx56lPLTZxryclvz0GceekxTHm5vHnqU8tNnGvJyW/PQ\nZx56TFMebm8eepTy02ca8nJb89BnlnvkR70AAAAAAAAixeAHAAAAAAAgUq0e/NzW4uvXIw89Svnp\nMy15uL30mD15uL156FHKT59pyMttzUOfeegxTXm4vXnoUcpPn2nIy23NQ5956DFNebi9eehRyk+f\nacjLbc1Dn5ntsaW/4wcAAAAAAADjp9Wv+AEAAAAAAMA4adngxxhzvTHmZ8aY54wxH25VHy7GmO3G\nmCeNMY8ZYza2uh9JMsbcbow5YIx56ozPTTPG3G+M2Tr259RW9jieyE24ds5OHnIjZTM77ZwbKR/Z\nyWJupPbOTh5yI2UzO+2cGykf2clibqT2zk4eciNlMzvtnBspH9nJYm6k/GWnJYMfY0xR0mckvVXS\nRZLeZYy5qBW91OEN1trLM/S2bGskXf+Kz31Y0oPW2mWSHhz7e3TITWJr1IbZyVlupOxlZ43aMDdS\n7rKTtdxIbZqdnOVGyl521qgNcyPlLjtZy43UptnJWW6k7GVnjdowN1LuspO13Eg5y06rXvGzUtJz\n1tpt1toRSV+WdGOLeskVa+0PJR15xadvlHTH2Md3SLqpqU01D7lJoI2zQ24SaOPcSGQnkTbODrlJ\noI1zI5GdRNo4O+QmgTbOjUR2Eslbdlo1+Jkv6cUz/r5r7HNZYyU9YIzZZIxZ3epmHGZba/eOfbxP\n0uxWNjOOyE362iE7ecmNlJ/stENupPxkJy+5kdojO3nJjZSf7LRDbqT8ZCcvuZHaIzt5yY2Un+y0\nQ26k/GQnL7mRMpydUqsbyLjXWmt3G2NmSbrfGLNlbLKXWdZaa4zhrdpaK3e5kchORuQuO+QmE3KX\nG4nsZETuskNuMiF3uZHITkbkLjvkJhNylxspe9lp1St+dktaeMbfF4x9LlOstbvH/jwg6W699HK4\nLNpvjJkrSWN/HmhxP+OF3KSvHbKTi9xIucpOO+RGykl2cpQbqT2yk4vcSLnKTjvkRspJdnKUG6k9\nspOL3Ei5yk475EbKSXZylBspw9lp1eBng6RlxpglxphOSe+UdE+LejkrY0yvMWbS6Y8lvUXSU+6v\napl7JN089vHNkr7Rwl7GE7lJXztkJ/O5kXKXnXbIjZSD7OQsN1J7ZCfzuZFyl512yI2Ug+zkLDdS\ne2Qn87mRcpeddsiNlIPs5Cw3Uoaz05If9bLWlo0xvyPpPklFSbdba59uRS8OsyXdbYyRXvo+fcla\ne29rW5KMMXdK+iVJM4wxuyT9haRbJf2LMeYWSTskvaN1HY4fcpNMu2YnJ7mRMpqdds2NlJvsZDI3\nUvtmJye5kTKanXbNjZSb7GQyN1L7ZicnuZEymp12zY2Um+xkMjdS/rJjrM3Mj50BAAAAAAAgRa36\nUS8AAAAAAACMMwY/AAAAAAAAkWLwAwAAAAAAECkGPwAAAAAAAJFi8AMAAAAAABApBj8AAAAAAACR\nYvADAAAAAAAQqVIzL9Zpumy3ept5SYyjAR09ZK2dOd7X6SxMsBNKfTXrdnQ0+UWMcdetTX4NSGpe\nbiSps7PXdndPrVk35ap3D1tyz8d9ybBFd7aq9ZzCnhG9qXi+vFxHfj1LfLfDev4JyVevw+DhXc07\nc4qTatZtuTzeLSBFTT1zeJwTjSGd1IgdTuHk8iM3DejpdpYr3UVnvVBx39lVPfd1klTtdNeH9jXn\nvkoiOzHhzEGoeh/nJBr8GGOul/QpSUVJ/2CtvdW1vlu9utq8McklkSEP2Lt2hH5tI9mZUOrTtbPf\nWXOv8u49oW38vJ8O9724HR1JfA28pFm5kaTu7qlaseK3a9Y7jgx6rzk6vcdZtwX3ffRIn/uYHZzp\nf+FltdN9jc7j7gey3Uc9kyFJhVH3EGxksvt2VN2PtVXt8D+WsZ5vxaZ/+sPmnDnFSVo17ddq7lU5\neDC0DbRAU88cHudEY719MNHXN5IdclM/c/Elzvqx8yc6693H3PeHw5M9d2aS+he576y2/I//mzMH\nDUty5pCb9lbv45zgH/UyxhQlfUbSWyVdJOldxpiLQvdD+yA7CEFuEIrsIAS5QSiygxDkBiHIDeqV\n5Hf8rJT0nLV2m7V2RNKXJd2YTluIHNlBCHKDUGQHIcgNQpEdhCA3CEFuUJckg5/5kl484++7xj4H\n+JAdhCA3CEV2EILcIBTZQQhygxDkBnUZ91/ubIxZLWm1JHXL/bsygNNelhvHL1kFXunM7HR1TWlx\nN8iLl505BffviADOxOMchCA3CEV2EILcIMkrfnZLWnjG3xeMfe5lrLW3WWtXWGtXdKgrweUQEW92\nzsxNZ2FCU5tDZjV85nR28o4FkMSZgzA8zkGohs4ccoMxnDkIQW5QlySDnw2SlhljlhhjOiW9U9I9\n6bSFyJEdhCA3CEV2EILcIBTZQQhygxDkBnUJ/lEva23ZGPM7ku7TS28dd7u19unUOkMiQ7+80lmf\nsNf/NtZ241NptfPyfRvMjh0dTeUt25098XbtmRdy5pS7jQ5f1F2zPvf7A97rmqr7rdL7F7n/r8nQ\ndPfbmPvewlySTs1xv9V6tdvdo8r+ixRG3WtMxXM7iu4eevb43859aJbndgRq+Mwpl3nLdvA4B8HI\nzvjxPTadvDHZ/l0F/9u5j7zf/Rg7VKtyYzo63X3xGDnTOG9Qr0S/48da+21J306pF7QRsoMQ5Aah\nyA5CkBuEIjsIQW4QgtygHkl+1AsAAAAAAAAZxuAHAAAAAAAgUgx+AAAAAAAAIsXgBwAAAAAAIFIM\nfgAAAAAAACLF4AcAAAAAACBSDH4AAAAAAAAiVWp1A2iN4u5D3jXlJvRRj+FFPXr2v15Vs37eF/2d\nljb8zFmvDg423BeyrzhsNeX5kZr1yuat3j06Dkxz1oevvMBZf/t7H3LW9w33eXt4eOe5znpprXuP\nBf//fu81dHzAXa9aZ3n40nOc9c5DJ70tbH3vFO8aIMuG5/dq2++vqlmf+KLx7jH3zi3OeuXwkYb7\nStveP7zWWX/Vrz7j3eMnLyxx1s99z6MN9ZRntq9Hw6+t/Tin6zsbmthNm6tWvEtmfG5dExqpj53c\no6HXr6xZn/j0Ae8e5W3bU+wIyI/CpEn+RUvmO8vVJ9z32VnCK34AAAAAAAAixeAHAAAAAAAgUgx+\nAAAAAAAAIsXgBwAAAAAAIFIMfgAAAAAAACLF4AcAAAAAACBSDH4AAAAAAAAiVWrmxSrTe3Xsbatq\n1qf887omdhO37m8+4qyXm9RHKqykUVOzPNLX4d2iMDiYYkPIC9M/qM77NibaY/iyJc76yGT31w9W\nOp317/70Um8Pyz/g/vfsU0n01fUpfe+gs16tY4/lt0531l9ooB8kV7z4fO+aaqf7YYR99Om02smF\nQndFXcv6a9bn3Gm9e1QOH0mzpV9QnD3Lu6b0L+7/L/jtJX/trC8oTfRe46LvXORd0y7OX3xIP/jH\nz9es/9L73+/do+tbG9JsCTkx0me06421/73O7Zzt3aN32/YUO0IMTt200rtm0oZdznp5955EPRx9\nX+2ZwWmHrnDfp3YfdN+XdZz09zHhgPsR7PTD85z1pN+HNPGKHwAAAAAAgEgx+AEAAAAAAIgUgx8A\nAAAAAIBIMfgBAAAAAACIFIMfAAAAAACASDH4AQAAAAAAiBSDHwAAAAAAgEiVmno1I1Wbe8WGmY5O\n7xo7OtKETnBa185BLf/gI61uA22q9L1Nzvo533N//UMvrHLW54zaRluKVuXQ4Va38JKebpkLLq5Z\nto8+3cRmzq64/FzvGjMy6l4wWnaWy88862/Ekt8zVSsFDfZ3164/5j5PJMlcdamzfvy8Xme9786f\nOOuV/Qe8PVRe767fotd69/BZqLWJ94jFk8dmaMm/rq5ZX/4tHgPh7ExF6ug3Net99z/j3aOSZkOI\nwvFF/if3TdT/AAAgAElEQVTsncfnOOslz33N8XescNY/+OGveXt4/YRtzvp1d37IWV/4V+u81/Bx\nP5LKFl7xAwAAAAAAECkGPwAAAAAAAJFi8AMAAAAAABApBj8AAAAAAACRYvADAAAAAAAQKQY/AAAA\nAAAAkWLwAwAAAAAAEKlSMy9WPHRS025f18xLNsyOjrS6BQARmbxtyFk/dOkE7x59aTWDupjRiooH\nj9Wsl5vYSy2VZ59vdQt1GX7rVc565zH3fa5Z93ia7Yy7ru2DWva+TYn22PO6Sc763L9Zm2h/ZE/X\nzkEt/+AjrW4DOdS556QW/Xnt51aVOvYozp7lrFcXzHTW7aan67jKOCsUvUtMh/tp7/AbXuWsHzuv\nw1mf8/BRbw/Vxzd71zRFT7fMBRfXLPef73+kMzSry1k/b/N0Z33a2j3O+sfv+DVvDx9ZPOqsL/6+\nu95uEg1+jDHbJQ3opXOlbK1dkUZTiB/ZQQhyg1BkByHIDUKRHYQgNwhFduCTxit+3mCtPZTCPmg/\nZAchyA1CkR2EIDcIRXYQgtwgFNlBTfyOHwAAAAAAgEglHfxYSQ8YYzYZY1an0RDaBtlBCHKDUGQH\nIcgNQpEdhCA3CEV24JT0R71ea63dbYyZJel+Y8wWa+0Pz1wwFrzVktStnoSXQ0Sc2SE3qIEzB6Hq\nP3OK7l+ui7bCmYNQPM5BCM4chKr/zOmc3Koe0UKJXvFjrd099ucBSXdLWnmWNbdZa1dYa1d0yP3b\nv9E+fNkhNzgbzhyEauTM6Sz432kN7YEzB6F4nIMQnDkI1dCZU2Jg2I6CBz/GmF5jzKTTH0t6i6Sn\n0moM8SI7CEFuEIrsIAS5QSiygxDkBqHIDuqR5Ee9Zku62xhzep8vWWvvTaUrxI7sIAS5QSiygxDk\nBqHIDkKQG4QiO/AKHvxYa7dJuizFXtAmGs2O7evRyGuuqlnvvHdDGm0h40LOHGOMCt3dNevVoaGk\nbXkVHn7UWZ/18Li3kBuHb1nlXvAPdwXt2/CZMzqq8q7dQdc6rbRgvrO+9YPnuDdYMugsl0eK3h6W\n3fxT7xoX322QpN1vX+Ssv/23fuCsf+H+f+OsLy1c7u3B/Pgx75oQrXqcM+/vNjrrtkl9IFyMj5EP\nfsBzPkua88PDznrlmWfTaidKrcqNnTPdWT96UZ+zPn2ru17p72+4p0aV5s/1rhlZOtNZ33GD+wdh\nlly4y1l/+2+7z25J+ujDN9SsDf/VOu/X19JwdgpGlb5OR92/Rfch46xXFri/33aj+wVJCz66098E\nGsLbuQMAAAAAAESKwQ8AAAAAAECkGPwAAAAAAABEisEPAAAAAABApBj8AAAAAAAARIrBDwAAAAAA\nQKQY/AAAAAAAAESq1OoGssZ0dXnX2OHhJnSC00ZnWO35jdrf88X3NrEZ5EplSo/633xZzfrEr65v\nYjdxKy5b6qxXtm7z7rHxv33WfY1/aKilljrw5nOc9YUrdzvrD150j7O+q3zC28PqZe911n3/TU5c\nMd97jdKgddbXrHuts77026POuvnxY94eYmNHR1rdAvAL7FuPetf031R21iv/fI2z3velnzTUE9JR\nfXyzsz795BJnvdLfn2Y7YTr8T2kLDz3qrC8fvNRZP/Hf3NdYPXmPt4f1r6r9vf7mhCHv16el0lnQ\nifm1n/Oe862qd4/O/lPOut34VMN9YXzxih8AAAAAAIBIMfgBAAAAAACIFIMfAAAAAACASDH4AQAA\nAAAAiBSDHwAAAAAAgEgx+AEAAAAAAIgUgx8AAAAAAIBIlVrdQNbY4eFWt4BXsOWCRg9OaHUbyKFq\nURruqz3fnljHHqX585z18u49DXY1Doxx160d9xYOfbLorE+9wb/H+Q+/17Piz+tvqMV695Wd9ZHP\nzHXWr7v7cmfdl0tJquze5l3j0v3NR7xrevv6nPWu/gud9dL3NjXUUzt44aOrnPUlf7yuSZ0APzfr\nxi0p7JLsTML4KE6f5qwfXjXHWZ+wbIazvv/qDm8P53x7wL3gkSed5QO/5L5PlaRps9z3V+Vu99Pi\n/qEuZ/3Z0ZPeHn60Y2nN2okR9/6pMlKls/Zjx3ru/5E/vOIHAAAAAAAgUgx+AAAAAAAAIsXgBwAA\nAAAAIFIMfgAAAAAAACLF4AcAAAAAACBSDH4AAAAAAAAixeAHAAAAAAAgUgx+AAAAAAAAIlVqdQM4\nuxe+/Cpn/ZpF2531/av6U+ymxaykiqlZLk6f5t1i4N8sc9b7Ht3rrJe37/ReI6nRt6xw1ju+u3Hc\ne4iNLUojU2pnp3DZhf5N+gdT7GicWNvqDjT1hq2J9+heOzGFTrKh6zsbnHV77WXOemnuHGd9+3sX\ne3uY9rOFznrP19d79/CpnDjprE/8avJrtJvRGeVWtwCgjVSOHnfWredlAgML3U8nR6ZUvT0MzZ7g\nrE+cM9vdw2LvJdS7r8tZ7zw24qwv+NCws7562X/y9jB9UrFmbe/R5r0eozhi1bfDfXuSKi1c4KyX\nX9w1rtevR7Gvz7um0h/Pc2pe8QMAAAAAABApBj8AAAAAAACRYvADAAAAAAAQKQY/AAAAAAAAkWLw\nAwAAAAAAECkGPwAAAAAAAJFi8AMAAAAAABCpkm+BMeZ2SW+TdMBae8nY56ZJ+oqkxZK2S3qHtfbo\n+LXZfv5p5Rpn/TXd7pnddbo8xW7CpJWdwog0cWft27v1Q+d7e9n63s86648Mjzrr/8//8W5nvbJ5\nq7cHn47vbky8RwzSPHNMVSqeql2vPr7Z20+1jp6RjjmfWuusP+X5+jzdXxX7h531keVznfUJB633\nGt2HRxrq6ZWKUyZ711SOHU90jSzIWm5Kve77o5HrVjjrnfclvy8pLlvqrFe2bkt8jRhkLTvIh7zl\npudg2Vnv6HefWVOeL3qvUXpwk7Pu7kDqe3Wf9xo7F01y1ud+a4KzPnHt4856Vx3nYs/0aTVrxYEh\n79enlR0zPKqubQdr1n3f73pUZk9x1osnTrq//mjy+G/72Cpn/by/fCLxNfKknlf8rJF0/Ss+92FJ\nD1prl0l6cOzvwCutEdlB49aI3CDMGpEdNG6NyA3CrBHZQePWiNwgzBqRHQTyDn6stT+UdOQVn75R\n0h1jH98h6aaU+0IEyA5CkBuEIjsIQW4QiuwgBLlBKLKDJEJ/x89sa+3esY/3SZqdUj+IH9lBCHKD\nUGQHIcgNQpEdhCA3CEV2UJfEv9zZWmsl1fxlA8aY1caYjcaYjaNy/04DtBdXds7MTWXQ/TOgaC+N\nnDnlU2QHP1fvmcN9Fc7E4xyE4sxBCM4chKr3zBmpOH4BJqIVOvjZb4yZK0ljfx6otdBae5u1doW1\ndkWHugIvh4jUlZ0zc1Ps6W1qg8ikoDOnNIHsoPEzh/sqiMc5CMeZgxCcOQjV8JnTWXT/ImvEKXTw\nc4+km8c+vlnSN9JpB22A7CAEuUEosoMQ5AahyA5CkBuEIjuoi3fwY4y5U9I6SecbY3YZY26RdKuk\nNxtjtkp609jfgZchOwhBbhCK7CAEuUEosoMQ5AahyA6SKPkWWGvfVaP0xpR7UWnRQu+a8o4X075s\nJv3l0itb3UJiaWWnUJYmHKz5o85a+JWd3j2WzPotZ/01FzznrG993wxnfekfbfX2gPqkeeaUDp7U\nrL9fm7Aj5EUz76+Sqj61xVnvmD7NWZ/+0Cvf1CN9lWPHx/0aWZC13Cx992OtuOzLVLZua3ULuZC1\n7CAfmpmbQk+Pd42ZNNFZ7316n2cD4ywPL3E/hpakQq/7R/OrJ92/s3HqDf7H4VO9K8bf4NXn1qxV\nf+T/sb20smNHRhM/p7avudxZP7Lc/eNkU7oXOeuFHx319rDvD6511rf+X3/vrF/91H/0XmPKF9Z5\n1yTRzPlH4l/uDAAAAAAAgGxi8AMAAAAAABApBj8AAAAAAACRYvADAAAAAAAQKQY/AAAAAAAAkWLw\nAwAAAAAAECkGPwAAAAAAAJEqNfNiplBQYUJPzXpl5mT/Jim9jz3yw1ipOGJr1su7dnv3WP6b7jVH\nZs501pceXOe9BgCkpXL4SKtbyAZj/Gts7fsH/KLq66/wrik89GgTOgGQlO3r0chrrqpZH+31/z/+\nyY/ud9bL27Y32tbLDK2Y613TNdv9OLy67WSiHtJQmDTJWTfnzPPusePXqzVrI0833FIw092l4rnL\na9aPXzLNu8fe17nve4uD7q+fuMc9huiZ7/9+lgbdPfzLCfds4dCr/Y8fpnzBuySRchNnG7ziBwAA\nAAAAIFIMfgAAAAAAACLF4AcAAAAAACBSDH4AAAAAAAAixeAHAAAAAAAgUgx+AAAAAAAAIsXgBwAA\nAAAAIFIMfgAAAAAAACJVaurVikUVpk2tWS5vfKqJzSAvCqNWPftHxvUaprPDs8C469am1wzQpooX\nLXcveLo5fZjuLhWXLqtZr2ze2pxGIlC45IJkX3+037umvHtPomu0m8JDj7a6BWDclObOcdb3/bsl\nzvqMz63zX2PJIveCbd4tUmMGTqnr+0/UrHcOD3v3KKfZ0Fn03rW+5T2kwfdcwZwY9O7R8+z0mrXC\nkOe5RopG+kra/ZYZNesnF1a9e3T0u18/Mu1p93Oj7t0nnPV67ttnfM695pPH3+WsT5ns/56PXLfC\nWe9+yD2/qA4Nea/hU5oz271gb3378IofAAAAAACASDH4AQAAAAAAiBSDHwAAAAAAgEgx+AEAAAAA\nAIgUgx8AAAAAAIBIMfgBAAAAAACIFIMfAAAAAACASBlrbfMuZsxBSTvO+NQMSYea1kCYPPQotabP\nRdbameN9kbPkRsrHfxd6PLum5EbizBln0WYnp7mR8tFntLmRcpudPPQoNb9PcuOXhz45c7InDz1K\nnDlZlIc+M3vmNHXw8wsXN2ajtXZFyxqoQx56lPLTZ1rycHvpMXvycHvz0KOUnz7TkJfbmoc+89Bj\nmvJwe/PQo5SfPtOQl9uahz7z0GOa8nB789CjlJ8+05CX25qHPrPcIz/qBQAAAAAAECkGPwAAAAAA\nAJFq9eDnthZfvx556FHKT59pycPtpcfsycPtzUOPUn76TENebmse+sxDj2nKw+3NQ49SfvpMQ15u\nax76zEOPacrD7c1Dj1J++kxDXm5rHvrMbI8t/R0/AAAAAAAAGD+tfsUPAAAAAAAAxknLBj/GmOuN\nMT8zxjxnjPlwq/pwMcZsN8Y8aYx5zBizsdX9SJIx5nZjzAFjzFNnfG6aMeZ+Y8zWsT+ntrLH8URu\nwrVzdvKQGymb2Wnn3Ej5yE4WcyO1d3bykBspm9lp59xI+chOFnMjtXd28pAbKZvZaefcSPnIThZz\nI+UvOy0Z/BhjipI+I+mtki6S9C5jzEWt6KUOb7DWXp6ht2VbI+n6V3zuw5IetNYuk/Tg2N+jQ24S\nW6M2zE7OciNlLztr1Ia5kXKXnazlRmrT7OQsN1L2srNGbZgbKXfZyVpupDbNTs5yI2UvO2vUhrmR\ncpedrOVGyll2WvWKn5WSnrPWbrPWjkj6sqQbW9RLrlhrfyjpyCs+faOkO8Y+vkPSTU1tqnnITQJt\nnB1yk0Ab50YiO4m0cXbITQJtnBuJ7CTSxtkhNwm0cW4kspNI3rLTqsHPfEkvnvH3XWOfyxor6QFj\nzCZjzOpWN+Mw21q7d+zjfZJmt7KZcURu0tcO2clLbqT8ZKcdciPlJzt5yY3UHtnJS26k/GSnHXIj\n5Sc7ecmN1B7ZyUtupPxkpx1yI+UnO3nJjZTh7JRa3UDGvdZau9sYM0vS/caYLWOTvcyy1lpjDG/V\n1lq5y41EdjIid9khN5mQu9xIZCcjcpcdcpMJucuNRHYyInfZITeZkLvcSNnLTqte8bNb0sIz/r5g\n7HOZYq3dPfbnAUl366WXw2XRfmPMXEka+/NAi/sZL+Qmfe2QnVzkRspVdtohN1JOspOj3EjtkZ1c\n5EbKVXbaITdSTrKTo9xI7ZGdXORGylV22iE3Uk6yk6PcSBnOTqsGPxskLTPGLDHGdEp6p6R7WtTL\nWRljeo0xk05/LOktkp5yf1XL3CPp5rGPb5b0jRb2Mp7ITfraITuZz42Uu+y0Q26kHGQnZ7mR2iM7\nmc+NlLvstENupBxkJ2e5kdojO5nPjZS77LRDbqQcZCdnuZEynJ2W/KiXtbZsjPkdSfdJKkq63Vr7\ndCt6cZgt6W5jjPTS9+lL1tp7W9uSZIy5U9IvSZphjNkl6S8k3SrpX4wxt0jaIekdretw/JCbZNo1\nOznJjZTR7LRrbqTcZCeTuZHaNzs5yY2U0ey0a26k3GQnk7mR2jc7OcmNlNHstGtupNxkJ5O5kfKX\nHWNtZn7sDAAAAAAAAClq1Y96AQAAAAAAYJwx+AEAAAAAAIgUgx8AAAAAAIBIMfgBAAAAAACIFIMf\nAAAAAACASDH4AQAAAAAAiBSDHwAAAAAAgEiVknyxMeZ6SZ+SVJT0D9baW13rO02X7VZvkksiQwZ0\n9JC1dmbI1zaSHXITl2blRiI7seHMQQjOHNRiisWatVPVAY1Uh0zw3pw5bStvZ051WaezfsGEY876\nk0fdN7XrxZMN95RLpo7jwtqapSGd1IgdDjpzGs5NYYKdUJxUu81yOaSNl/fU6c6VPLfUDo8k7iET\nPLfTFP3jGNvd4awPnNhT15kTPPgxxhQlfUbSmyXtkrTBGHOPtfaZWl/TrV5dbd4YeklkzAP2rh0h\nX9dodshNXJqVG4nsxIYzByE4c1BLsW9yzdq6/m8E78uZ097yduac+PRSZ/3Hr/q6s37uv3zAWT/v\nP/2k4Z7yyHR1edfY4eGatfX2wbDrBuRmQnGSVk37tZp7Vg4eDOrlTKUFi5x1W6o9eJekytZtiXvI\nAlNyj1sKU6d69xg9f76z/r2H/6yuMyfJj3qtlPSctXabtXZE0pcl3ZhgP7QPsoMQ5AahyA5CkBuE\nIjsIQW4QgtygLkkGP/MlvXjG33eNfQ7wITsIQW4QiuwgBLlBKLKDEOQGIcgN6pLod/zUwxizWtJq\nSepWz3hfDpEgNwhFdhCC3CAU2UEIcoNQZAchXpabwsQWd4NWSPKKn92SFp7x9wVjn3sZa+1t1toV\n1toVHfL/7CPagjc75AZnwZmDUJw5CMGZg1CcOQjBmYMQDeemszChac0hO5IMfjZIWmaMWWKM6ZT0\nTkn3pNMWIkd2EILcIBTZQQhyg1BkByHIDUKQG9Ql+Ee9rLVlY8zvSLpPL7113O3W2qdT6wzRIjsI\nQW4QiuwgBLlBKLKDEOQGIcgN6pXod/xYa78t6dsp9YI2QnYQgtwgFNlpjeKM6c66nTPTs4HxXqP6\n+OZGWmoIuYlb5djxmjVrK4n2Jjv59PzHV3nXnP9Jzzsn7wq/fityM/F699tmX6fLnfXz1B5v1+7j\neqv2cb92o7kpFaWZjrcRT+Ht3Msv1PUO49Gz5bKzXqnje90xZVIqvST5US8AAAAAAABkGIMfAAAA\nAACASDH4AQAAAAAAiBSDHwAAAAAAgEgx+AEAAAAAAIgUgx8AAAAAAIBIMfgBAAAAAACIFIMfAAAA\nAACASJVa3QDgY7q7VFy6rGa9snlrE7sBANSrcuiwe4GnXnjVBd5rFHp63AtOercAAEnSuR9a511T\nbkIfwHiyxYLKkyfUrJsm9pJ1xQtrPweVpPJU92OQalcxcQ97r+x2L/hEffvwih8AAAAAAIBIMfgB\nAAAAAACIFIMfAAAAAACASDH4AQAAAAAAiBSDHwAAAAAAgEgx+AEAAAAAAIgUgx8AAAAAAIBIlVrd\nAOBjSwWNTu+tWa9rernyUme52ll01juf3+esl/cf9PdQrfjXJFVw347itCnOeuXQ4TS7abnq1F6d\nfNPVNeu9d61vYjdAvpQWn+NdU96+c1x7qD6xZVz3T9u0i0f0rq/vqVm/9YnrvHss+e9lZ736+OaG\n+wIA4DQzUlbHztrPXdz3QvUpzZntrFcWznJvUK56r1Hp63TWh6a568N9/meRE464n7+dmu5+7nVo\nhft2/Okbv+Ht4ZbJ7uehxU94t5DEK34AAAAAAACixeAHAAAAAAAgUgx+AAAAAAAAIsXgBwAAAAAA\nIFIMfgAAAAAAACLF4AcAAAAAACBSDH4AAAAAAAAiVWp1A81WmjPbWS/v29+kTpIp9vU561v++4XO\n+gV/utl7jUp/f0M9jZdqqaChmV016z117PHCr0x01rsOGWd93o/21XGVZEzJ88+xWPTuUZw6xVm3\ng6caaSn3CkdPqveu9a1uA8ikeT+Z5KwXdMS7x65r0uomDtOLo3rPpL0161/9/YPePcp7x//+BgDQ\nvuzoqMq79yTao3jx+c760Kfczzn291ed9Rn/6H+G1/WtDc66b4d6nkP6lN/hfiBUmj7krC/sOOy9\nxqbhkYZ6qoVX/AAAAAAAAESKwQ8AAAAAAECkGPwAAAAAAABEisEPAAAAAABApBj8AAAAAAAARIrB\nDwAAAAAAQKQY/AAAAAAAAESq1OoGmq28b3+rW0jFjt++xFnf9qt/76z/3qqrvNfY+oZJ7gX93i1S\nMTpR2ntt7Rnlsq0X+PeYXnbWF65w56LwXfc1qk9s8fbgY8vuHqurLvXuUdx5yFkfvOIcZ73rOxu8\n1wAQhz3XDLS6hehsfaJXb5v/aseKfU3rJfeMcZYLEyc664d/1f04SZKmfdFxn+e+S0ZObf3M1c76\nst9e36ROgHzb/Pt9znr3w9Od9SV/+5SzXulP/kSzOGWye8GsGd49Bs+b5qyfnO1+Hc25t4446392\nxW95ezh6oW/FH3r3kBIOfowx2yUNSKpIKltrVyTZD+2D7CAEuUEosoMQ5AahyA5CkBuEIjvwSeMV\nP2+w1rpfZgCcHdlBCHKDUGQHIcgNQpEdhCA3CEV2UBO/4wcAAAAAACBSSQc/VtIDxphNxpjVaTSE\ntkF2EILcIBTZQQhyg1BkByHIDUKRHTgl/VGv11prdxtjZkm63xizxVr7wzMXjAVvtSR1qyfh5RAR\nZ3bOzE1x6tRW9Yjs4cxBqLrPHHKDM3DmIBRnDkJw5iAUZw6cEr3ix1q7e+zPA5LulrTyLGtus9au\nsNau6FBXksshIr7snJmbYm9vK1pEBnHmIFQjZw65wWmcOQjFmYMQnDkIxZkDn+DBjzGm1xgz6fTH\nkt4iyf2+bIDIDsKQG4QiOwhBbhCK7CAEuUEosoN6JPlRr9mS7jbGnN7nS9bae1PpCrEjOwhBbhCK\n7CAEuUEosoMQ5AahyA68ggc/1tptki5LsRc0YMFH1zrrF+uDznq1w3+Ncwbc1wjVaHYKXRX1LjtW\nsz64uM+7xw2XP+6sf3r+emf94hvc388FT3hbSKzw8KPeNWVPvfelO4Tgr28lzpxwpcXneNfYEyed\n9cqhw2m103RkByHympudf36tsz5la9W7R9+dP0mrnZrMFRc768//e/d9e9cx9/3ZlTf6/2f32ouv\nqlkb/uSPvF9fS16z0w62vf1zzvp1v315kzr5ReQGoRrNTnVarwauu6ZmfcqmA949lq/eUO/lzqqS\n6Kvrs+s33fczJy4b8u5hjhSd9aVfG3TWq49vdtanldw9SlJhdJKzvs27w9g+da4DAAAAAABAzjD4\nAQAAAAAAiBSDHwAAAAAAgEgx+AEAAAAAAIgUgx8AAAAAAIBIMfgBAAAAAACIFIMfAAAAAACASJVa\n3UDatn76amd9wu6is77go2vTbKdlYrkdklQtF9R/uLdmfd73nvLu8a2bLnXWv/v8+c76/J+OeK+R\nB+XtO1vdQnNN6lFlxZU1ywMLu7xbTN084Kzbjf78tdrIouneNYWH2iwbQKSs+2GODv3ykHePvjtT\nasbBPvq0s37uU53O+sBNVzjr/7zoh94ePtlX+9z723867v165M918y5vdQtAy41OtNr7S9Wa9ak/\nONnEbsbP/AeOOOu7CtO8e5zz1Red9fIOd93n5DkTvWt6940musZpvOIHAAAAAAAgUgx+AAAAAAAA\nIsXgBwAAAAAAIFIMfgAAAAAAACLF4AcAAAAAACBSDH4AAAAAAAAixeAHAAAAAAAgUqVWN9Co4nlL\nnPWuQ0V3/ZhNsx00QfGk0fSfdNSsVwcHvXtc8MkTzrrZtddZrxw77r0Gsqd34Uld88kNNeuTikPe\nPZ49OdtZ//6Gq531Zb+73nuN8VZ46NFWt5Arw4t7tPUjr65Zn/GDTu8eM+/f4ayXd+9puC+gHov+\nYm2rW0iFHR1x1id+1X22vuo97/Je4+q5O2vWTlX8/84BIJeKVsVJozXL5X37m9jM+Kk+scVZn/eE\nf49ySr3U0nN3854n8IofAAAAAACASDH4AQAAAAAAiBSDHwAAAAAAgEgx+AEAAAAAAIgUgx8AAAAA\nAIBIMfgBAAAAAACIFIMfAAAAAACASDH4AQAAAAAAiFSp1Q2cqXjRcu8a2+lued7Dw85612MvOOsV\nbwdoNlOVOk7YRHtUn9qSUjetM3LdisR7dN63MYVO8uPE7l49/F9X1aybqj9XO24wzvrEncWG+2pU\nobvbWR96/SXO+sm5Hd5rzHxoj7NefmGHd49YzJt4TH+56l9r1r/4uxd59ygPDKTZEpAa8+qLvWsK\nW1901iv9/Wm1M27m3rTZu2bXpEk1a6Mn0uwm/3518wHvmq9dOKsJnQBIqvOw0cJ/Hv/Hr8gWXvED\nAAAAAAAQKQY/AAAAAAAAkWLwAwAAAAAAECkGPwAAAAAAAJFi8AMAAAAAABApBj8AAAAAAACRYvAD\nAAAAAAAQqZJvgTHmdklvk3TAWnvJ2OemSfqKpMWStkt6h7X2aNJmKs88611TWrjAWe8aHnVf4/CR\nhnpqlb1/eK2zXhq0zvrMz65L3MPh31rlXvD5u5zltLJTLUmDs2rPKPvcXUbj4OWd3jUFd/w1976U\nmhlHaZ455vigur/5SKJ+LnrCfeaUd+9NtH/hkgu8a6pPbXHWO+/b6Kwf/4Dn37Kkb/34G876m979\nm5eBv1UAACAASURBVM568Qc/9V7D5/h7rnEv+GJzzpy9R6fqI197R836koHk5yuyo5mPc7LAbnra\nu6bShD6yoDowULNmbdX79e2Una9dOKvVLUQjttyUlixy1ssv7GhSJ/FLKzuFUyPqefzFmvVySv0i\nW+p5xc8aSde/4nMflvSgtXaZpAfH/g680hqRHTRujcgNwqwR2UHj1ojcIMwakR00bo3IDcKsEdlB\nIO/gx1r7Q0mvfJnMjZLuGPv4Dkk3pdwXIkB2EILcIBTZQQhyg1BkByHIDUKRHSQR+jt+ZltrT/98\nwz5Js1PqB/EjOwhBbhCK7CAEuUEosoMQ5AahyA7qkviXO1trraSav3DGGLPaGLPRGLNxVMNJL4eI\nuLJzZm4qp042uTNkGWcOQtV95pzkzMHPceYgVL1nDrnBmThzEKreM2ekeqrJnSELQgc/+40xcyVp\n7M8DtRZaa2+z1q6w1q7oUFfg5RCRurJzZm6KE3qb2iAyiTMHoRo/c3o5c8CZg2ANnznkBuLMQbiG\nz5zOwoSmNohsCB383CPp5rGPb5bkfjsY4OfIDkKQG4QiOwhBbhCK7CAEuUEosoO6eAc/xpg7Ja2T\ndL4xZpcx5hZJt0p6szFmq6Q3jf0deBmygxDkBqHIDkKQG4QiOwhBbhCK7CCJkm+BtfZdNUpvTLmX\nupRf3OWsF/v6mtTJ+Jr7P9eO6/6my//S0KHpJtE10spOtVManF/zR50zYfQtK7xrhqa6/7kVR9y3\ncd6PBr3XKD2zw1mveHdovVTPnIkTVL3i8prlwo8e827hO3OSqj61ZVz3l6SZ/2udd811/6v290mS\nivppoh4Gf+Vq75rP/NX/66yv/KL769PKTmlQmvF4ts8cpCdrj3OQH2QHIWLLTfkF92NPpCet7IxO\n7tL+G5bWrE/bMte7h+85R/WE+/cl2tER7zXwktIcz+/r3usun5b4lzsDAAAAAAAgmxj8AAAAAAAA\nRIrBDwAAAAAAQKQY/AAAAAAAAESKwQ8AAAAAAECkGPwAAAAAAABEisEPAAAAAABApEqtbiBtlf7+\nVreQC3Z42Ltm/sfWOuub02qmDrZoa9ZMV5f364tTpzjr5X37G+7pTIOz/P+UTs51z1kXfPeos159\n3P8dr3hXtJfR3oL2r+ypWZ/7oyY2k0D1dVc464WHH21SJ+F6vr7eu+ZPX/gNz4qPpNOMx2ivdGCF\nqVmf9JWmtAEAAJC60lBVU58bqlk3P37MuwfPOZon6fPU03jFDwAAAAAAQKQY/AAAAADA/2bvXuPk\nqs473/9XVfVNrdYN3S9IICRsgQ02AgzBCdixTWJnIDkTx449QybOIbbHx3GcTyZkcuY4PvFMSDyZ\nTDzj5IQ4RORiYx8yYGxjE1AcE1sIJHEXCBBCQhK6X1tq9aWq1rygcQRWPatq122vvX/fN+ruZ9da\nT3X/e+1dS9VVAJBRbPwAAAAAAABkFBs/AAAAAAAAGcXGDwAAAAAAQEax8QMAAAAAAJBRbPwAAAAA\nAABkFBs/AAAAAAAAGVXqdgONKvT32wf09Jjl6vBwC7tBJxTHpGnPu5r1wtDU4Bh+WuCYvfsabes1\nzrr/xfAxxaJZL+9+uakecAZOqlpLwmVvanqKk2dPsVuo2rc//KETwTl+84JvmfWv7Vlt1rc8tSQ4\nxxtv3mnWQ/kszphu1k/8xPnBHnqGK8FjOuFNsw7o4Q/9Wc36iQ+OBse48o8/bdYX/NE6sx76fq5c\nezLYw7MfWWnWq489HRwDKVSwzyWqpuP3CPUbXzConR+5smZ9yX+21wsAaIQbHVfPUztq1jmLZBPP\n+AEAAAAAAMgoNn4AAAAAAAAyio0fAAAAAACAjGLjBwAAAAAAIKPY+AEAAAAAAMgoNn4AAAAAAAAy\nio0fAAAAAACAjHLe+85N5twBSTtO+9JsSQc71kAyMfQodafPpd77Oe2e5Ay5keL4udDjmXUkNxJr\nTptlNjuR5kaKo8/M5kaKNjsx9Ch1vk9yExZDn6w56RNDjxJrThrF0Gdq15yObvz8yOTObfTer+5a\nA3WIoUcpnj5bJYb7S4/pE8P9jaFHKZ4+WyGW+xpDnzH02Eox3N8YepTi6bMVYrmvMfQZQ4+tFMP9\njaFHKZ4+WyGW+xpDn2nukT/1AgAAAAAAyCg2fgAAAAAAADKq2xs/t3R5/nrE0KMUT5+tEsP9pcf0\nieH+xtCjFE+frRDLfY2hzxh6bKUY7m8MPUrx9NkKsdzXGPqMocdWiuH+xtCjFE+frRDLfY2hz9T2\n2NXX+AEAAAAAAED7dPsZPwAAAAAAAGiTrm38OOeudc4965zb6py7qVt9WJxz251zTzrnHnPObex2\nP5LknLvVObffOffUaV+b5Zy7zzn3/OS/M7vZYzuRm+TynJ0YciOlMzt5zo0UR3bSmBsp39mJITdS\nOrOT59xIcWQnjbmR8p2dGHIjpTM7ec6NFEd20pgbKb7sdGXjxzlXlPRFST8laZWkDzrnVnWjlzpc\n472/OEVvy7ZG0rWv+9pNktZ671dIWjv5eeaQm6atUQ6zE1lupPRlZ41ymBspuuykLTdSTrMTWW6k\n9GVnjXKYGym67KQtN1JOsxNZbqT0ZWeNcpgbKbrspC03UmTZ6dYzfi6TtNV7v817Py7pdknXdamX\nqHjvH5B0+HVfvk7SbZMf3ybp+o421Tnkpgk5zg65aUKOcyORnabkODvkpgk5zo1EdpqS4+yQmybk\nODcS2WlKbNnp1sbPIkk7T/t81+TX0sZLut85t8k5d2O3mzHM897vmfx4r6R53WymjchN6+UhO7Hk\nRoonO3nIjRRPdmLJjZSP7MSSGyme7OQhN1I82YklN1I+shNLbqR4spOH3EjxZCeW3Egpzk6p2w2k\n3FXe+93OubmS7nPObZnc2Ust7713zvFWbd0VXW4kspMS0WWH3KRCdLmRyE5KRJcdcpMK0eVGIjsp\nEV12yE0qRJcbKX3Z6dYzfnZLWnLa54snv5Yq3vvdk//ul3SnXnk6XBrtc84tkKTJf/d3uZ92ITet\nl4fsRJEbKars5CE3UiTZiSg3Uj6yE0VupKiyk4fcSJFkJ6LcSPnIThS5kaLKTh5yI0WSnYhyI6U4\nO93a+NkgaYVz7hznXK+kD0i6u0u9nJFzbtA5N/Tqx5LeLekp+1Zdc7ekGyY/vkHS17vYSzuRm9bL\nQ3ZSnxspuuzkITdSBNmJLDdSPrKT+txI0WUnD7mRIshOZLmR8pGd1OdGii47eciNFEF2IsuNlOLs\ndOVPvbz3ZefcJyTdK6ko6Vbv/eZu9GKYJ+lO55z0yvfpy97773S3Jck59xVJV0ua7ZzbJekzkm6W\n9DXn3Eck7ZD0/u512D7kpjl5zU4kuZFSmp285kaKJjupzI2U3+xEkhsppdnJa26kaLKTytxI+c1O\nJLmRUpqdvOZGiiY7qcyNFF92nPep+bMzAAAAAAAAtFC3/tQLAAAAAAAAbcbGDwAAAAAAQEax8QMA\nAAAAAJBRbPwAAAAAAABkFBs/AAAAAAAAGcXGDwAAAAAAQEax8QMAAAAAAJBRpWZu7Jy7VtKfSCpK\n+pL3/mbr+F7X5/s12MyUUXDFoln3lUqHOmmvYR056L2fk+S2jWSnp2/Q902ZWXOswtGR8HyFwB5n\nqF60677H/plLknfOrLuqDwwQqEty4UNM1d7A/SzY90GSqj12/dT+XR3JjdSaNWfBhXa+hgLRefKI\nfVf7dp5stKXc6tSak5dzVVa4kn0pc7x8oHNrTs+g7++bUbNenhL+/7a5c4+Y9Wrg/+yOvDTNrLvh\n8DkT0qhOatyPhU96NbDm5FenzlWS1Ov6/UBhas26r1aTtIEuaGbNSXR97Iw1p8nHE+isetecxBs/\nzrmipC9KepekXZI2OOfu9t4/Xes2/RrU5e6dSaeMRnF67U0KSaocsS/qYnG/v2NHkts1mp2+KTN1\n8TW/VnO8gbseDs5ZGJhi9zRoX3C5Ibs+vsj+mUtSpc++WO85Pm73UAmfvN1YYFOxZPdwalHgfk4N\nb3CdmmPP8cT/+HRHciO1Zs357bufMOtXD9g/l+Vf+6hZP+9T6xvuKa86tebk5VyVFcXZc836vXv/\ntHNrTt8MXXbxx2qOeeDi8IP7X/vkHWZ9uDJg1u/65E+a9dLaTcEeID3k1ya+LWtOvnXqXCVJA4Wp\netvAe2uOWR1hozcWSdecROcqN6i3ld5Tc0xfLifqBd1R75rTzJ96XSZpq/d+m/d+XNLtkq5rYjzk\nB9lBEuQGSZEdJEFukBTZQRLkBkmQG9SlmY2fRZJ2nvb5rsmvASFkB0mQGyRFdpAEuUFSZAdJkBsk\nQW5Ql6Ze46cezrkbJd0oSf2y/9wGeNXpuekbqP16CcDrseYgCXKDpF6Tnb7pXe4GsWDNQVKvyY71\nOi3AaVhz0MwzfnZLWnLa54snv/Ya3vtbvPervfere9TXxHTIkGB2Ts9NqY+TGiSx5iC5htYccoNJ\nja85Jc5XkMSag2QaXnN6XX/HmkNqNX6ucqw5edTMxs8GSSucc+c453olfUDS3a1pCxlHdpAEuUFS\nZAdJkBskRXaQBLlBEuQGdUn8p17e+7Jz7hOS7tUrbx13q/d+c8s6Q2aRHSRBbpAU2UES5AZJkR0k\nQW6QBLlBvZp6jR/v/T2S7mlRL5mRlbdrb6dGslM4OlLXW7Zbgm9nGaofOGCWC9u2B3to5ul1kuRb\ndIyl77FAvY4xhprswdLomlOePahDP3tFzfrcv98SHOPGr/6qWT/n7pNm/bz1vF17GnC+yq7Kvv1t\nG7vh3Jw8Jbfu8ZrluevCQ3xp/8+a9d3vtd9mdyVv154KrDlIotHc+GqVt2xHw7mpzBrU4X91ac36\nzDUPBsdwJXsboRNvCV9cca5ZP/7mOWa9POCCc/SM2I+uprx8yqyXdtjXKOU9e4M9tEqzj0UBAAAA\nAACQUmz8AAAAAAAAZBQbPwAAAAAAABnFxg8AAAAAAEBGsfEDAAAAAACQUWz8AAAAAAAAZBQbPwAA\nAAAAABnFxg8AAAAAAEBGlTo5mRvoV+H8N9asVx9/poPdIBZjy6bo+c9eUrP+hs8dDo5R2fpiK1tC\nJAozJzTl5/fWrO9874LgGOf87IOtbAkATIN3PGTWV97RoUaQKa5kX/IX58y2ByiE/694Ytlcsz68\ntN+sn1gYnqM0atdnbhmzbz9SNutu3ePBHoDYFQ+d1Mw1zV3f+rL9u1ScMd2sH7x+lV1fXQ328NOX\nP2bW5/RuMevf3bcyOMeO7XPsA6r2uva5azaY9f90/78O9jBnfWBt/Ov6Lgx4xg8AAAAAAEBGsfED\nAAAAAACQUWz8AAAAAAAAZBQbPwAAAAAAABnFxg8AAAAAAEBGsfEDAAAAAACQUWz8AAAAAAAAZFSp\nk5P1LhvTOV96sWb9n75+ZXCMJZ9b18qWEIFST0Xz5h2tWfe79nSwG8SkPNKjvY/Mr1nvOe462A1i\n4YpFFadNr1mvHD3WwW7a6G1vNsun5vcHhxhc+4xZrw4PN9RSEq6n1z5gvO0t/ND8C0/pN76+uWb9\ntz//K8ExZv/5g61sKZG9n7Kvx4bfOmrWV/zbR1rZDlpg+OdWm/V9l9rnw+lbw3PMv8++Hpv2g+12\n3dVxTvY+fIyheNYss15panS0S/XtbzHr49N7gmP0f/PhVrUTPVcoqDBlsGa9evJkcIziyuVmfduH\n55r1gYuOmPU5d8wM9rDl7y8w6y9u3W/W+3ZuD86xUuFjLH+tJWZ9hR4KjlHoD1+P1YNn/AAAAAAA\nAGQUGz8AAAAAAAAZxcYPAAAAAABARrHxAwAAAAAAkFFs/AAAAAAAAGQUGz8AAAAAAAAZxcYPAAAA\nAABARpU6OdnxE1N07w8urlk/73PrOtgNYlF6SZr5a7XrldHR5ueYP8+s7/uZc836vHt2BOco7365\noZ5ez195UfCYwljZHmPT5qZ6iE3v7pM657cf7HYbTXv+C5eb9YE9RbO++PdZWxvhKxVVjh7rdhum\nwtBQ8Jjn/t8LzPofvvfLZv3hk/a6J0lPPnWOfcDwcHCMZhXOPds+YEvbW/ihHSfO0q8+cEPN+so/\n7/56VLjojcFjvvXpPzTri0tTzfp7l/5McI7yjp3BY9A6U/aMmfVp2/rN+tBO+/pCksrbtjfS0o/y\nvrnb16Fy6HDzgzhn19t/N/7F1AFV31L7sdWJJfbPVZIGDkyY9fEZ9sPFaffbi2wrzqeFf37UrIfv\nJU5XnjmgQz/z5pr1oV3jwTHc7+w16+PPVM360uvaf3IOr1pxqLbgsa7EM34AAAAAAAAyi40fAAAA\nAACAjGLjBwAAAAAAIKPY+AEAAAAAAMgoNn4AAAAAAAAyio0fAAAAAACAjGLjBwAAAAAAIKNKnZys\nb+dJnfep9Z2cEhngx8ZUee6Fts5R3rvPrM/7pjPrfnCg6R6KM6ab9T1vHQyOMfGOY2b97N8+z6xX\nnt0anCNvxt57qVnv+9aGtvew4pMPmfXyOy5pew9Il+rwcPCYoW32/+38H1OPm/WiC68H699wmVkf\n7Os168dWzTDrU/9/O/tSutatvu0jWvnLG7vdhqn6+DPBY675/ifMemXCztaKHY801BParzgybtan\nXn/Uvn2xEp7knkY6ipj33e7gh9zouHq27KxZn/b9Q03P0ROo15EMpIyrePUfrf2TK63dFBzDr7Xr\nK7S70bbQZk1t/Djntksa1iu/82Xv/epWNIXsIztIgtwgKbKDJMgNkiI7SILcICmyg5BWPOPnGu/9\nwRaMg/whO0iC3CApsoMkyA2SIjtIgtwgKbKDmniNHwAAAAAAgIxqduPHS7rfObfJOXfjmQ5wzt3o\nnNvonNs4obEmp0OGmNkhN6iBNQdJseYgCdYcJMWagyQaWnPGq6Mdbg8pVveaUx472YX20G3N/qnX\nVd773c65uZLuc85t8d4/cPoB3vtbJN0iSdPcrPS8Ghq6zcwOuUENrDlIijUHSbDmICnWHCTR0Joz\nvWcO2cGr6l5zps5cTG5yqKln/Hjvd0/+u1/SnZLst/cAJpEdJEFukBTZQRLkBkmRHSRBbpAU2UFI\n4o0f59ygc27o1Y8lvVvSU61qDNlFdpAEuUFSZAdJkBskRXaQBLlBUmQH9WjmT73mSbrTOffqOF/2\n3n+nJV0h68gOkiA3SIrsIAlyg6TIDpIgN0iK7CAo8caP936bpIta2EtHHP7mSrN+5NhgcIzlH3q0\nVe3kUozZKe/Za9ZPXR9+NuXA1hfNeuXoMbM+dXclOMee0R6zfuyiIXuOZ7cG5+iWbuWm2uM6PWXD\nSv+4qdstpFqMa04rzPsf68z6Tz3wQbPuytXgHNWV9u/H878zYM+x3X7i8cCBtwZ76Nu6zz5gZ3CI\nM0prbvZ98kqzPu8L9s+9Huf+4mNNj5FnaczO7ndMN+t/uXKNWb+sz76+kKQrfvGjZn3al9cHx8iz\nJLnx5YoqBw+1qaN8ee6WS836i+/7C7N+zebrgnP0vmtHQz3Vq9HsFEfKGnqi9rmz3IqmIrDnN+zz\nqSQt+KPmz6lpwdu5AwAAAAAAZBQbPwAAAAAAABnFxg8AAAAAAEBGsfEDAAAAAACQUWz8AAAAAAAA\nZBQbPwAAAAAAABnFxg8AAAAAAEBGlbrdQKsVZ59l1je89Wtm/d0//0st7AZ5MXDXw22fY+oLx4LH\n9Dw3y6wfvMjbc9i/HrnUiZ8t0A3Vx59peowpm+36is3LzbrvHzXr1Se2BHsoB4/IlnlfWNftFlLh\n1PWXmfXD54cvcRf9QXa+l+V3XGLWZ2ytmPXffd+Hzfrht8wM9jDz6eNmvRocoXml+fPMennvvg50\ngSj12An9/44uMutfWvl3wSk+eW7t3zO3qzd4+1bx4+Mqv7ijY/O1y6H/8wqzvvGzf2bW95S/H5zj\nl/7oqoZ6SjOe8QMAAAAAAJBRbPwAAAAAAABkFBs/AAAAAAAAGcXGDwAAAAAAQEax8QMAAAAAAJBR\nbPwAAAAAAABkFBs/AAAAAAAAGVXqdgOtVjl4yKy/Z+HFZt3psVa2gxZwfb0qLV5Ws17etr1jvXRT\n9YktwWNGf/0Ss17srbaqHQAIqjz3QrdbQEYN3PWwWV/UoT7SovRP9vVrqVox63ZVmtF7QbAHv3lr\n8Jh2O/Cec8367G+VzXrocURsSkuXBI/Z9kv2MfPXj5v13ns3NtRTWq38d5vM+p2a01T9FdtrVry3\nv8/4UWf9xYNmfdX8j5v1s2+uJ7vZ+bnwjB8AAAAAAICMYuMHAAAAAAAgo9j4AQAAAAAAyCg2fgAA\nAAAAADKKjR8AAAAAAICMYuMHAAAAAAAgo9j4AQAAAAAAyCg2fgAAAAAAADKq1O0GcGZrXvq+Wb/6\nb37TrC/7nQdb2U5Xjc/o0a7rFtaslwdq1161+L+sa6qH0vx5Zr189tzwIA8/2VQP9Vj57za1fQ4A\n3Vc8/7zgMZVnt3agEwCpUK20dXj/6Oa2jt8qM2+zr3+rPb0d6iQdyjt2Bo/pP7jErB9+g/0965t/\nhVk/Nc8Fe1j8Px8z69WRkeAYIcWZM836ls+tNOsr/v1DTfeQJYXBQbPuBvrNeuXgoVa2c0ZLfs9+\n/Ofb3kFruLdcYB/wyB11jcMzfgAAAAAAADKKjR8AAAAAAICMYuMHAAAAAAAgo9j4AQAAAAAAyCg2\nfgAAAAAAADKKjR8AAAAAAICMYuMHAAAAAAAgo0qhA5xzt0p6n6T93vsLJ782S9JXJS2TtF3S+733\nR9rXZv68/Z//L7Pee8qZ9f3//kqzPveL6xruqVGtyk61z+v4inLN+m3X3hLs5dP7P2bWz/rSg2bd\nl2vPL0knlg0Gezhw/RVm/bzPbzHrlSP5+BVjzUFSacpOcd5cs17Zt7+p8SvPbm3q9vgXacpNVoSu\nQaTOXIe0G9l5nULRLO/95OVmff5/b38mJn78TWa9tHZT23tIW27mbjph1l9++1SzfvR8e/zZj1eD\nPVRHRoLHNOvlf/NGs/4rb19r1r+ngVa2k0iaslM9edKsF5cuMutjl55r1vu+vaHhnrLKP7q5JePU\n84yfNZKufd3XbpK01nu/QtLayc+B11sjsoPGrRG5QTJrRHbQuDUiN0hmjcgOGrdG5AbJrBHZQULB\njR/v/QOSDr/uy9dJum3y49skXd/ivpABZAdJkBskRXaQBLlBUmQHSZAbJEV20Iykr/Ezz3u/Z/Lj\nvZLmtagfZB/ZQRLkBkmRHSRBbpAU2UES5AZJkR3UpekXd/bee0m+Vt05d6NzbqNzbuOExpqdDhli\nZef03FRO2H9DinxhzUFS9a455AanY81BUqw5SII1B0mx5sCSdONnn3NugSRN/lvzVSq997d471d7\n71f3qC/hdMiQurJzem6KU8MvnIzMY81BUg2vOeQGYs1Bcqw5SII1B0mx5qAuSTd+7pZ0w+THN0j6\nemvaQQ6QHSRBbpAU2UES5AZJkR0kQW6QFNlBXYIbP865r0h6UNL5zrldzrmPSLpZ0rucc89L+snJ\nz4HXIDtIgtwgKbKDJMgNkiI7SILcICmyg2aUQgd47z9Yo/TOFveC0yy6vcesD27Za9af+a1ZZn3e\nJRcEe3jx+mn2Af/3HWa5VdkpnnKa+USxZv2jL388OMayb2w169U++ymPlYOHzPr0+6rBHn7w379r\n1v/pF+x92N9f/ubgHFnAmoOkOpUdd+mbwgdtt9dotM6p6y+zD7izM+cq/Iu5X1zX7RY6guy8Vvma\ni8368Dn2tdLMn7o0OEf//Y+bdT8xbtb7Htlm1ivBDpqXutysf8IsLzl4jlmvbHvJHr/aie9q2Lwv\n2OvS974w0PYeSgvm16y5A8GH5enLjqHy9HNmvX/Afixa80WukFjTL+4MAAAAAACAdGLjBwAAAAAA\nIKPY+AEAAAAAAMgoNn4AAAAAAAAyio0fAAAAAACAjGLjBwAAAAAAIKPY+AEAAAAAAMioUrcbiFFp\n2dlmffe/WmzW5//pw8E5+r9hH1MJ3H7lr2wz6z7YgbRsk13fWscYrdBzvKz5/7i/Zr3y3AvhQVat\nNMs7PnaeWV/6ucDP48iRYAs/9qmPmvXjS+192IVaF5wDQAsMTVHl0rfWLA8v6QsOMWPDgVZ2lFsH\nb7wieMyRC6v2AXe2qJk6uFJJxdlza9Yr+2qfy4DY9Xz/KbP+hl1LzHrl2fCVZT3Xr+YcdVyv4bUq\nW1/sdguZUd6zt2bN+3IHO+k+v2lzt1vIHZ7xAwAAAAAAkFFs/AAAAAAAAGQUGz8AAAAAAAAZxcYP\nAAAAAABARrHxAwAAAAAAkFFs/AAAAAAAAGQUGz8AAAAAAAAZxcYPAAAAAABARpW63UCjim9cYdZP\nLZ1h1nu/s8Eef/ZZwR7K218y6/O+YNd9cAaczo+NqfLcC02NUXn6ObN+9u/a9Vb8zKZ+bb1db8Ec\neC1XKKgwdahmvTo83MFuEAsvyTtXsz7rkSPBMaqB+oGPXWHW5607ao//+DPBHmIw9t5LzfrIwto/\nh1f5wUqr2mletSo/fKLbXSAyrqdHpfmLatarBw8Fx6iOjraypUQKfX1m3Z0Y6VAn+eGKRRWnz6xZ\nrxwJn6/SoLhqpVk/eKn9+Gz2158OzlE5eqyhntqh+hNvqV3cuK5zjUSgtHRJ8JgjV9ReNyXJBy4h\npr48Fpyj8L1HzXr1qovN+q6fnGLWl938SLiH+XPtA14MDvHKOPUdBgAAAAAAgNiw8QMAAAAAAJBR\nbPwAAAAAAABkFBs/AAAAAAAAGcXGDwAAAAAAQEax8QMAAAAAAJBRbPwAAAAAAABklPPed24y5w5I\n2nHal2ZLOtixBpKJoUepO30u9d7PafckZ8iNFMfPhR7PrCO5kVhz2iyz2Yk0N1IcfWY2N1K02Ymh\nR6nzfZKbsBj6ZM1Jnxh6lFhz0iiGPlO75nR04+dHJnduo/d+ddcaqEMMPUrx9NkqMdxfekyfREzE\nVwAAIABJREFUGO5vDD1K8fTZCrHc1xj6jKHHVorh/sbQoxRPn60Qy32Noc8YemylGO5vDD1K8fTZ\nCrHc1xj6THOP/KkXAAAAAABARrHxAwAAAAAAkFHd3vi5pcvz1yOGHqV4+myVGO4vPaZPDPc3hh6l\nePpshVjuawx9xtBjK8Vwf2PoUYqnz1aI5b7G0GcMPbZSDPc3hh6lePpshVjuawx9prbHrr7GDwAA\nAAAAANqn28/4AQAAAAAAQJt0bePHOXetc+5Z59xW59xN3erD4pzb7px70jn3mHNuY7f7kSTn3K3O\nuf3OuadO+9os59x9zrnnJ/+d2c0e24ncJJfn7MSQGymd2clzbqQ4spPG3Ej5zk4MuZHSmZ0850aK\nIztpzI2U7+zEkBspndnJc26kOLKTxtxI8WWnKxs/zrmipC9K+ilJqyR90Dm3qhu91OEa7/3FKXpb\ntjWSrn3d126StNZ7v0LS2snPM4fcNG2NcpidyHIjpS87a5TD3EjRZSdtuZFymp3IciOlLztrlMPc\nSNFlJ225kXKanchyI6UvO2uUw9xI0WUnbbmRIstOt57xc5mkrd77bd77cUm3S7quS71ExXv/gKTD\nr/vydZJum/z4NknXd7SpziE3TchxdshNE3KcG4nsNCXH2SE3TchxbiSy05QcZ4fcNCHHuZHITlNi\ny063Nn4WSdp52ue7Jr+WNl7S/c65Tc65G7vdjGGe937P5Md7Jc3rZjNtRG5aLw/ZiSU3UjzZyUNu\npHiyE0tupHxkJ5bcSPFkJw+5keLJTiy5kfKRnVhyI8WTnTzkRoonO7HkRkpxdkrdbiDlrvLe73bO\nzZV0n3Nuy+TOXmp5771zjrdq667ociORnZSILjvkJhWiy41EdlIiuuyQm1SILjcS2UmJ6LJDblIh\nutxI6ctOt57xs1vSktM+Xzz5tVTx3u+e/He/pDv1ytPh0mifc26BJE3+u7/L/bQLuWm9PGQnitxI\nUWUnD7mRIslORLmR8pGdKHIjRZWdPORGiiQ7EeVGykd2osiNFFV28pAbKZLsRJQbKcXZ6dbGzwZJ\nK5xz5zjneiV9QNLdXerljJxzg865oVc/lvRuSU/Zt+qauyXdMPnxDZK+3sVe2onctF4espP63EjR\nZScPuZEiyE5kuZHykZ3U50aKLjt5yI0UQXYiy42Uj+ykPjdSdNnJQ26kCLITWW6kFGenK3/q5b0v\nO+c+IeleSUVJt3rvN3ejF8M8SXc656RXvk9f9t5/p7stSc65r0i6WtJs59wuSZ+RdLOkrznnPiJp\nh6T3d6/D9iE3zclrdiLJjZTS7OQ1N1I02UllbqT8ZieS3EgpzU5ecyNFk51U5kbKb3YiyY2U0uzk\nNTdSNNlJZW6k+LLjvE/Nn50BAAAAAACghbr1p14AAAAAAABoMzZ+AAAAAAAAMoqNHwAAAAAAgIxi\n4wcAAAAAACCj2PgBAAAAAADIKDZ+AAAAAAAAMoqNHwAAAAAAgIwqNXNj59y1kv5EUlHSl7z3N1vH\n97o+36/BZqZEigzryEHv/Zwkt20kO73FAT9QmmYNFpzPj4033uTpU/T2mPVqn12XFNxmdRVv18vV\n8Bwhoe+Vt3vwxfBesZsom/Xj4/s7khupjuyUK8E5fbUF33e0RMfWHM5VUXGBde24P9y5NYfsZMao\nTmrcj4UvMGpoaM0phM5V9nlVkvxAX+NNnsZVAue6qn198EoTzZ4v6/h2B6/5An0Gzuk+9H1Q+Jqw\no9c5LVhzXCnwcLBgX/v58eausVtiSn/wkMpA0awXyoHr8IlANup4PGIZHTuq8YmTiQbhXJVv9V4f\nJ974cc4VJX1R0rsk7ZK0wTl3t/f+6Vq36degLnfvTDolUuZ+f8eOJLdrNDsDpWm6cuGHao7nAydg\nSao8vy1Jqz9UWrjErJ9aMTfcQ799wuk9NmHWew6PBOcIXtD02D24MfvisjwrfJLoefmwWf/O9j/u\nSG6kyezM/8WaY1YPHwnOWz15svFm0RadWnM4V8Wl0G9f8P/Dqb/t2JpDdrLjIb828W0TXefM+0DN\n8aqH7POqJPlVy0NNmeXCMfsaw42MhnsYDRwTemBctK9RpDo2KULXQSft+1k5fjzYQ+iasJPXOa1Y\nc4qz7WtYN2CvseXtLzU1fyu4Cy4MHnNk1ZBZ7z9i/2fgwB47O75Uxx/SGBuoDz315+HbnwHnKtR7\nfdzMn3pdJmmr936b935c0u2SrmtiPOQH2UES5AZJkR0kQW6QFNlBEuQGSZAb1KWZjZ9Fknae9vmu\nya8BIWQHSZAbJEV2kAS5QVJkB0mQGyRBblCXpl7jpx7OuRsl3ShJ/ZrS7umQEa/JTdF+aiZwOrKD\nJDhXISmygyQ4VyEp1hwkQW7QzDN+dks6/Y9cF09+7TW897d471d771f3qLkXnkNmBLNzem56iwMd\nbQ6p1fCaQ3YwqaE1h3MVJnGdg6Qau84pcK6CJNYcJENuUJdmNn42SFrhnDvHOdcr6QOS7m5NW8g4\nsoMkyA2SIjtIgtwgKbKDJMgNkiA3qEviP/Xy3pedc5+QdK9eeeu4W733m1vWGTKr0ez4npLKC2bW\nHnD9Ey3v8fXKO3aa9Z5AXZL6Bu13xHJTA++YNW1qcI6xJcb3SdLYTPtXfsrL9jtylI6G31nM1/HO\nH0kkWnOck++r/a5vftW5wXlLuw6Y9fKevcEx0F2cr7KtGnonoYTIDZJq+DpnYkLl3S83N+mm5qJp\nv58RThe6JkyqW2tOZd/+dk/Rdn7jU8FjZmxsco7mbl7HBKeS3YxzFerU1Gv8eO/vkXRPi3pBjpAd\nJEFukBTZQRLkBkmRHSRBbpAEuUE9mvlTLwAAAAAAAKQYGz8AAAAAAAAZxcYPAAAAAABARrHxAwAA\nAAAAkFFs/AAAAAAAAGQUGz8AAAAAAAAZxcYPAAAAAABARpW63QAQMj6toJ3vnFqz3vfWK4NjLPz2\n7sAkE3a9t8e++eJZwR5OLOgz6yfn2/uwo7N9cI6JIfuYan/VHqDYa5cHw3vFM/5ptn3ALcEhWsaP\nT6i68+Wa9WJ1QXiMU6da2RIi4Hp7VFq4pLlBKvbvmj9xwr750WPNzR+JwuCgWa+ePNmhTgAAZ7Lr\nP9rX2d7Zt1/6R48E56iOjjbS0o9wPfb1qyQVli0265Xnt5n1U9dfZtYH7no42APQTTzjBwAAAAAA\nIKPY+AEAAAAAAMgoNn4AAAAAAAAyio0fAAAAAACAjGLjBwAAAAAAIKPY+AEAAAAAAMgoNn4AAAAA\nAAAyqtTtBoCQvqMVLf3mkdoHeB8e5NSoWS4vm2fWC6Nls148NRFsYeh/PWnWp5btOVqhdM5Ss37w\n7QvN+oF3VoJzVHpdQz21k+vvk1t5Ts36xNS+4Bg944Gf7dFjjbaFlPM9JZUXzKxZP/SmweAYsx8d\ntufYuLvhvrKoevJkt1sA0sEZ5856rnOANikP2Pn7L7/wd2b9iw/9fHCOnvs3NdTT6/mJ8eAxRy+Z\na9ZL/9O+nw+86Raz/uO6MdjDwF0PB49BXCbevdqsHz6/16zPeexUcI7CPz/aUE81x2nJKAAAAAAA\nAEgdNn4AAAAAAAAyio0fAAAAAACAjGLjBwAAAAAAIKPY+AEAAAAAAMgoNn4AAAAAAAAyio0fAAAA\nAACAjCp1u4FWu/flx8z67cMzzfpfnb+0le2gBfypUVUff6apMU799KVmfWx60axP+8r6puZPi/KL\nO8z6jFD9r1vZTftVewsaWTqtZn1sWnjve/q63a1sCRGo9hZ0cvFAzfrYdBcco3BsxKz7oSGzPnrl\n+WZ9YOO2YA+VQ4eDxwDoPtfXp+Kyc2vWK8+90MFusq04+yyzXjl4qEOdxOOia54z65/7wofN+tz7\n17WyncRm/vNLZr3nYxWzvn7Urg/c9XDDPSF+O9/RY9Y3fviPzPr0Qu3rzVf92Kc+ah/w1TuCY0g8\n4wcAAAAAACCz2PgBAAAAAADIKDZ+AAAAAAAAMoqNHwAAAAAAgIxi4wcAAAAAACCj2PgBAAAAAADI\nKDZ+AAAAAAAAMqrU7QZa7aLPf9ysz//jdR3qBJ1S/Ym3BI/Zt7rHrA/u8Wa9OHOmWa8cORLsAZ1X\nODmmwXVba9YH588JjlFpZUM5VrnmrcFjeh970T7gcIuaCfGSq9YuL1nzbHCIysFDZv3E+99m1i/5\nD5vM+qaDS4I9TL22U98wAM3wY2OqPPdCU2MU59jnsz2/sMKsz/sLe83xY2PBHkqLF5n18q7dwTHa\n7fnfXGnWC+PhMZZ/+aB9wNMNNBSBY1fZ57O56v5jq8JFbwwes+U3+836Z+Z9w6x/+MFfMevL9Wiw\nB2RPtd9+DPnV4eX27b0LzjFty9GGeqqlqY0f59x2ScN65bFR2Xu/uhVNIfvIDpIgN0iK7CAJcoOk\nyA6SIDdIiuwgpBXP+LnGex/Y+gbOiOwgCXKDpMgOkiA3SIrsIAlyg6TIDmriNX4AAAAAAAAyqtmN\nHy/pfufcJufcja1oCLlBdpAEuUFSZAdJkBskRXaQBLlBUmQHpmb/1Osq7/1u59xcSfc557Z47x84\n/YDJ4N0oSf2a0uR0yBAzO+QGNTS25hSmdqNHpFPda07vwIxu9Yj04ToHSXGdgyRYc5AUaw5MTT3j\nx3u/e/Lf/ZLulHTZGY65xXu/2nu/ukd9zUyHDAllh9zgTBpdc3oL9js4ID8aWnP62DDEK7jOQVJc\n5yAJ1hwkxZqDkMQbP865Qefc0KsfS3q3pKda1Riyi+wgCXKDpMgOkiA3SIrsIAlyg6TIDurRzJ96\nzZN0p3Pu1XG+7L3/Tku6QtaRHSRBbpAU2UES5AZJkR0kQW6QFNlBUOKNH+/9NkkXtbCXlpj/x+vM\neqHf/tOP6uhoK9vBGTScnSn9cqsuqFnecW34z3l6hu36vLV7zLov2k+OC+VKIlvNSrLm+HJFlUOH\na9bHLlseHKNvcyMzxmvsvZea9b5P278jO4/Yr4vzc+dtCPZwx9ffbh/w/wSHOKNGs1McHtXQd5+r\nWa8cOZKskdMcP9teU1YM7DfrPXMqwTm2LF1i1ss7dgbHCCktO9usV6faryNQfWpL0z20S1qvc/CK\n6lUXm/XC9x/rUCc/qhvZcX29Zn3ht3ab9fLYWNM9+MB1zt5fv9KsV3vCcyxae8ysDy8fMuvLL33J\nrL+4zl7TJKnab3+vk2LNSW7FX24NHvP8sxea9b97w2KzvlyPNtRTJ5GdNnrbm83you9Wzfqd/8l+\nrFEdDjxIlSS15lqJt3MHAAAAAADIKDZ+AAAAAAAAMoqNHwAAAAAAgIxi4wcAAAAAACCj2PgBAAAA\nAADIKDZ+AAAAAAAAMoqNHwAAAAAAgIwqdbuBViuuWmkf8MUTZnnXPywLzrH499c10BGaNjIqv2lz\nzfLy54aCQ1SHh816ueGmXqdQbHYEdEHftzd0u4XUGHxst1l/fv8cs/6RC+118Sen1v4dftXtU64K\nHtMJvlJR5ciR2gc4FxyjcvVbzPrIwqpZ/6sX3mbWj+yeHuxh5Y6Hg8c06+QF88z6+JC9Ng491cpu\nkCeF7z/W7RZaxhUKKkytfS0TuoaRJD86ah8wEF4zmuVPnDTrQ+/Za9a//+b/FZxj+fyPmvVl35ow\n69sPzrLH/69PB3uoHD0WPKZTxs4e1PM3XV6zft7fBnIhqdpnr9MHPnXKrI8/OtOsn/3Z9j9ueuhP\nVgePWf43D7a9D/yLwkVvNOvbf9bOTWkkPMeSu/aZdb9rj1mvjtQxyfonzPJA4Ob21V5n8YwfAAAA\nAACAjGLjBwAAAAAAIKPY+AEAAAAAAMgoNn4AAAAAAAAyio0fAAAAAACAjGLjBwAAAAAAIKPY+AEA\nAAAAAMioUrcbaLVjF84y68fvmW3Wx+f4VraDDqgODzc9RmHKFHuOkZFAE5Wme2iF7f/5CrM+55J9\nZn3w2m2tbCf9nAsf4/OxJpR3v2zWS08vM+u/9RPPm/W/Pr4w2MP0rcFDUqG0cEHwGD9mrwmLv1s1\n6+X1M836zEMTwR46odJr///R1JdOdagTIF5+Sp/Kbz2vZr3wvUeDY1QOHrIPOG+RWS4en2uPv29/\nsIfh911k1g8cs9eDN//XjwfnOO+/rQseYzn38bPMeuXosabG7zwvX6h9nVIcHguO8ML7Z5h1t7XX\nrC//bHM/k1aY8TcPdrsFvE718WfM+tLSBWb90EXTgnP4/h67Pj4eHCNPeMYPAAAAAABARrHxAwAA\nAAAAkFFs/AAAAAAAAGQUGz8AAAAAAAAZxcYPAAAAAABARrHxAwAAAAAAkFFs/AAAAAAAAGQUGz8A\nAAAAAAAZVep2Ay3nvVmesbVi1vedxV5YHlVHRrrdQkv8ynX/YNZ/c9YLZv09uriV7aSDc7VrgfUi\nFoWLV5l1t2NPcIzKkSNmfcnvrTPrbxr7uFkfWVAN9rBy/dHgMWngBweCx5Se3WnW3aHDrWqnq6Y9\n8rJZrx44ZNdb2UxObLv5CrP+/L/9M7P+xlvs31VJOvt37d93tNiJUyp879H2zrH+Cbs++yyzXFxx\nbnCKk/OKZr3voalmfcF/a3/uKgftNSk2fS+NaOXHHq5Zr2eNnbVipVk/uHu6WS/OmWPWKwcO1NEF\n8sZv2mzW52yfFRyj0oFrqeIq+/fj+BtnmvXBv3+ole00hV0OAAAAAACAjGLjBwAAAAAAIKPY+AEA\nAAAAAMgoNn4AAAAAAAAyio0fAAAAAACAjGLjBwAAAAAAIKPY+AEAAAAAAMioUrcbaFRx9llmfWj7\niFn3G5406+fc2XBLQEcUBgeDx/zV7Vea9W+8fY9ZH9CLDfUUBe/bOnzxvHPMennedLPufvBY0z1U\nH3varBdXLg8PcuRIUz0s/MN1Zr20ZHFwjPLOXU310Cluohw8pr2p64ziDDu7klTesbMDneB0i75n\n5+/vf26aWT/77S+1sh1kxMhl55r18aFicIwZW8fNev/3njLr1eAM6VBausQ+YHtH2miZQweHzPoF\n59vn5g9/f6NZ/6s3LAs30eZrNcSncuhwt1uQJFWefs6sD9qX4KkSfMaPc+5W59x+59xTp31tlnPu\nPufc85P/zmxvm4gR2UES5AZJkR0kQW6QFNlBEuQGSZEdNKOeP/VaI+na133tJklrvfcrJK2d/Bx4\nvTUiO2jcGpEbJLNGZAeNWyNyg2TWiOygcWtEbpDMGpEdJBTc+PHePyDp9c+1uk7SbZMf3ybp+hb3\nhQwgO0iC3CApsoMkyA2SIjtIgtwgKbKDZiR9ced53vtXXyxkr6R5LeoH2Ud2kAS5QVJkB0mQGyRF\ndpAEuUFSZAd1afpdvbz3XsbrWDrnbnTObXTObZzQWLPTIUOs7JAb1MKag6RYc5AEaw6SYs1BEqw5\nSIo1B5akGz/7nHMLJGny3/21DvTe3+K9X+29X92jvoTTIUPqyg65weuw5iAp1hwkwZqDpFhzkARr\nDpJizUFdkm783C3phsmPb5D09da0gxwgO0iC3CApsoMkyA2SIjtIgtwgKbKDupRCBzjnviLpakmz\nnXO7JH1G0s2Svuac+4ikHZLe384mX9PP1EGz7jc82aFOENKp7BSGhoLHVIeHm52maaUli8364bfb\n9WlfXh+cY8nn1jXUUxqlbc0JqWx90awXttvLbM3ncrfQ8IWzg8e4VWeZ9aGNu816eVegvnNXsIdm\ndSo75Rd3BI8pTJnS7DRNG33fZWb9pZ+tmvXL37AtOMcjD1xh1pf/3uNmvToyEpyj3WJbc/q+vcGs\n33T1h8z6yj8O/1zLDXWUXzFlp3jWLLN+6iz7XDV9a/h31T0Y+H0PjhCHY5cutA/YbpfTlpsVv7TJ\nrE8Ebv/5X/2AWZ/tH2ywI9SStuwgLsGNH+/9B2uU3tniXpAxZAdJkBskRXaQBLlBUmQHSZAbJEV2\n0IymX9wZAAAAAAAA6cTGDwAAAAAAQEax8QMAAAAAAJBRbPwAAAAAAABkFBs/AAAAAAAAGcXGDwAA\nAAAAQEYF3849bcrbX+p2C0gZf97ZwWNKew+Z9eqx43Z9ZKShns7kyI8tNuuDL483PQe6wDm7/qbz\n7fqjm1vXSw2FCR885shK+3QwcNfuVrWTCwc+eJFZP7nYzs3Sbx6zJ3j82WAPozOLZr3YP2HWbz/n\nH4Nz/MG0nWb964/b7zA7/amjZr1wyK5LUnnP3uAxeXLubz1o1ssd6gOdVVq00KxXDx026zO/9ohZ\nd0V7PZGkavCIbBi846Fut5Aqs//cXnMApAPP+AEAAAAAAMgoNn4AAAAAAAAyio0fAAAAAACAjGLj\nBwAAAAAAIKPY+AEAAAAAAMgoNn4AAAAAAAAyio0fAAAAAACAjGLjBwAAAAAAIKNKnZzM9faotHBJ\nU2OUd+xsUTftU7n6rWa9+E+PdKiTfPCPbg4eU+5AHyFDt6/vdgtoB+/tch35bLf+bzwcPGZBB/rI\niuJZs4LH9A3buSgfdma9MBpYteroYfrWEbM+eFuPWb9o48eDc8zcMmHWh75tr3vVwPiheuo4yZVq\nX1r5chrORkgb11NSac78mvXK4SPBMcq7X25lSz/CXtGA2uo5Z1YOHe5AJ9138l9fXrNWvZ/HCWgv\nnvEDAAAAAACQUWz8AAAAAAAAZBQbPwAAAAAAABnFxg8AAAAAAEBGsfEDAAAAAACQUWz8AAAAAAAA\nZBQbPwAAAAAAABnlvPedm8y5A5J2nPal2ZIOdqyBZGLoUepOn0u993PaPckZciPF8XOhxzPrSG4k\n1pw2y2x2Is2NFEefmc2NFG12YuhR6nyf5CYshj5Zc9Inhh4l1pw0iqHP1K45Hd34+ZHJndvovV/d\ntQbqEEOPUjx9tkoM95ce0yeG+xtDj1I8fbZCLPc1hj5j6LGVYri/MfQoxdNnK8RyX2PoM4YeWymG\n+xtDj1I8fbZCLPc1hj7T3CN/6gUAAAAAAJBRbPwAAAAAAABkVLc3fm7p8vz1iKFHKZ4+WyWG+0uP\n6RPD/Y2hRymePlshlvsaQ58x9NhKMdzfGHqU4umzFWK5rzH0GUOPrRTD/Y2hRymePlshlvsaQ5+p\n7bGrr/EDAAAAAACA9un2M34AAAAAAADQJmz8AAAAAAAAZFTXNn6cc9c65551zm11zt3UrT4szrnt\nzrknnXOPOec2drsfSXLO3eqc2++ce+q0r81yzt3nnHt+8t+Z3eyxnchNcnnOTgy5kdKZnTznRooj\nO2nMjZTv7MSQGymd2clzbqQ4spPG3Ej5zk4MuZHSmZ0850aKIztpzI0UX3a6svHjnCtK+qKkn5K0\nStIHnXOrutFLHa7x3l/svV/d7UYmrZF07eu+dpOktd77FZLWTn6eOeSmaWuUw+xElhspfdlZoxzm\nRoouO2nLjZTT7ESWGyl92VmjHOZGii47acuNlNPsRJYbKX3ZWaMc5kaKLjtpy40UWXa69YyfyyRt\n9d5v896PS7pd0nVd6iUq3vsHJB1+3Zevk3Tb5Me3Sbq+o011DrlpQo6zQ26akOPcSGSnKTnODrlp\nQo5zI5GdpuQ4O+SmCTnOjUR2mhJbdrq18bNI0s7TPt81+bW08ZLud85tcs7d2O1mDPO893smP94r\naV43m2kjctN6echOLLmR4slOHnIjxZOdWHIj5SM7seRGiic7eciNFE92YsmNlI/sxJIbKZ7s5CE3\nUjzZiSU3UoqzU+p2Ayl3lfd+t3NurqT7nHNbJnf2Ust7751zvtt95Fx0uZHITkpElx1ykwrR5UYi\nOykRXXbITSpElxuJ7KREdNkhN6kQXW6k9GWnW8/42S1pyWmfL578Wqp473dP/rtf0p165elwabTP\nObdAkib/3d/lftqF3LReHrITRW6kqLKTh9xIkWQnotxI+chOFLmRospOHnIjRZKdiHIj5SM7UeRG\niio7eciNFEl2IsqNlOLsdGvjZ4OkFc65c5xzvZI+IOnuLvVyRs65Qefc0KsfS3q3pKfsW3XN3ZJu\nmPz4Bklf72Iv7URuWi8P2Ul9bqTospOH3EgRZCey3Ej5yE7qcyNFl5085EaKIDuR5UbKR3ZSnxsp\nuuzkITdSBNmJLDdSirPTlT/18t6XnXOfkHSvpKKkW733m7vRi2GepDudc9Ir36cve++/092WJOfc\nVyRdLWm2c26XpM9IulnS15xzH5G0Q9L7u9dh+5Cb5uQ1O5HkRkppdvKaGyma7KQyN1J+sxNJbqSU\nZievuZGiyU4qcyPlNzuR5EZKaXbymhspmuykMjdSfNlx3qfmz84AAAAAAADQQt36Uy8AAAAAAAC0\nGRs/AAAAAAAAGcXGDwAAAAAAQEax8QMAAAAAAJBRbPwAAAAAAABkFBs/AAAAAAAAGcXGDwAAAAAA\nQEaVmrmxc+5aSX8iqSjpS977m63jZ80q+EWLizXrp3xPcM6dJ2faPY0H9rKqgQlcsAX5Xm/WSz0V\ns95TsOuS1Fcom/XewBjD5T6zPlYO/+j9qdo/K0kae3nXQe/9nOBAZ9BIdoqDg75n5qzafdaxfVkc\ns+uFcftnWhwLBKcS/pn68YngMe3meu3fMd9n1924nUtJGpttjzG2uzO5kaRe1+f7NZhkKqTQsI50\nJDvkJls6lRtJKg0M+p7pxvmqnquuwOnG99nnK1ew6z50nSSp56RdL47a5zxfDF9MlfvtPioD9u0L\nvXYP8weOB3sYLvfXrJ3Yc0KjR0fruCo8M9ac/OrkmtPTO+j7+2s/NiqcGq9j0kC9HPh99/aaUw/n\nAk30BB4j1vObOmFfw/pq6EFi81xP7ZPAqfKwxqunEq05ic5V02qfq4qBx0WSVDg60mCXaJd615zE\nGz/OuaKkL0p6l6RdkjY45+723j9d6zaLFhd117dm1xzz8fH5wXl/Y/3Pm/XirtoncUkqnbR/nyr9\n4aCPL7QfwM9fcMSsz5kSuKKSdO7Ug2b97L7DZv37h5eb9ecOzg32UHliuj3GZz69IzjQM662AAAg\nAElEQVTIGTSanZ6Zs7T4E79eu8+B8M9saJt9gTntJftkMLjjhFkvHApfYJZ37bYPaMGJM6S0cIlZ\nHzvXXjP6dti5k6Tnb1xg1l/4rd/oSG4kqV+Duty9M8l0SKH7/R0dyQ65yZZO5UaSeqbP0nkf+nTN\nMU/NDa/zpRP2dcqp8+z/yeifaj/Qm9gR3mCY/6Dd59Dzx8x6Zci+FpOkQxfYOztHV9k9TFlqn3dv\nWnVvsId/PPLGmrVv3PCN4O1rYc3Jt06uOf39M7X6sk/UHLPvyZfC8xbta+TqUfv3vTo6GpwjpNBv\nrxmF+fbjFm9sqPzwmL0HzHp1eDg4RrNKc2o/1l134KuJxkx0rpo2S+f9Yu1z1fQd4f/oHbjr4cab\nRVvUu+Y086del0na6r3f5r0fl3S7pOuaGA/5QXaQBLlBUmQHSZAbJEV2kAS5QRLkBnVpZuNnkaSd\np32+a/JrQAjZQRLkBkmRHSRBbpAU2UES5AZJkBvUpe0v7uycu9E5t9E5t/Hw4fb/7SSy4fTcVE6G\n/zQOeNXp2ZlQ4MWdgEnkBkm95nw1wvkK9WHNQVKvyc4Eaw7q85pz1Slyk0fNbPzslnT6C4Ysnvza\na3jvb/Her/ber541izcRg6Q6snN6boqDvOAhJCVYc3pkv8g5cqOhNYfcYFLDa05xCucrSGLNQTKN\nX+f0sOYgwblqgNzkUTM7MRskrXDOneOc65X0AUl3t6YtZBzZQRLkBkmRHSRBbpAU2UES5AZJkBvU\nJfG7ennvy865T0i6V6+8ddyt3vvN1m0OVQa15ujlNeufnWPeXJL0ZwvtV2R/bsJ+Z7DStl6zPrgr\n2IKm7LXHGK3OM+t7R8Lv6rFt/rlmfXxG4O1aA1t65aHw249rbvgV3ZNoNDvFU9Ksp2vf38GXw2+T\n3r/9kN3TQOB/2wJv8ehPnQr2UFpov9uVH7bfOaxyPPzOYSHlHTvNejFQrycRvmDfz6SSrDmA1Hh2\npl9Q0Xu+Vvv37fIpW4Nzfu7Cq8x6dYS3QU27JGuOL0gTU2vXq3VcdQ3ttM/vvcft81W1167PfS68\nkk991H4XytA5r7gk/C6t4zOmmPXeRfY58aeX1XzDGknSh4bs874knaxuq1n7x2LyP7/ifIUkkuSm\nPMVp/yW1f+dn9y4Lztv/gy1mvRXv2hUSmqMQeOfbYxcH38laE4P247OBg/Zjo75D9prgHnw82IMf\nMp5pc6gYvP0Zx0yQm579JzX/T9Ylmg/xSrzxI0ne+3sk3dOiXpAjZAdJkBskRXaQBLlBUmQHSZAb\nJEFuUA9edAcAAAAAACCj2PgBAAAAAADIKDZ+AAAAAAAAMoqNHwAAAAAAgIxi4wcAAAAAACCj2PgB\nAAAAAADIKDZ+AAAAAAAAMqrUyckOHx3S7Xf/eM365qsXBMc4ODLFrPfs7zHrcx+ZMOv9a58I9qCq\nN8t+Yjw8RsDMpkdo3uj7LjPrL3Woj+Lhk5r+t+ubGqPcZA/+iovMemn3vnAPBw812UUcpm533W4B\naMq84pg+PWtbzfqe8khwjOpI+Jh2G/7A28z6nqurZn3KnJPBOcbH7HPu9LUDZn3OpmNmvfrY08Ee\n0qT3WEVnf/t4zXpxz+HgGOXdL7eypUSaPWfqUPh+LnysuSke+ulLzfrqhVcEx5gYqn2+2n+w9hrQ\naq5YVHF67Su/8qql4TF+0OQ3FFEqjXrN2lL7N7Z0wn7cI0mjV55v1k/Nth8ujs6yn0dQHLcfN0nS\nyDz72rE81R6jPK0SnKP3oF0fXmbfz4kV9veyGjjnSpIKte/H6B909GE5OuTF37fPRROzw2fcqc/a\n11r6/B119cIzfgAAAAAAADKKjR8AAAAAAICMYuMHAAAAAAAgo9j4AQAAAAAAyCg2fgAAAAAAADKK\njR8AAAAAAICMYuMHAAAAAAAgo0qdnKxQlgb2u5r1R15YGhxj4Lk+s14q2rc/urzHrC96dGawh/Ke\nvcFjsqD/mw93u4XUcA8+btYrHeojBgv+YY9Zf6JDfQBJPffEFL1n4cXdbsPkLrkgeMy+t9n1GU/Y\nlwDz/uL54Bx+Yjx4jKXa1K1fcfiXr7AP+Ms7WjBLfSaGitp9zbSa9VnPTAmO0b/75Va2lFl992yw\n63WMUbzg/Jq1l46VG+woOV+pqHLkSM26+0HtGl6rtHiRWfdj9pr10i+vCM7Rf8jbB/xF59Ycd2xE\n/d9o7np97Bfsk8XBtwZ6KNvfjyX3hc8T87661axXjh4z68WzZgXncNNrr82StO8dC8z6snfuNOu9\ny8KPBnadmFGzdrB/Inh7xOesJ+zfj7d8+sngGH/63vVmvfj5+nrhGT8AAAAAAAAZxcYPAAAAAABA\nRrHxAwAAAAAAkFFs/AAAAAAAAGQUGz8AAAAAAAAZxcYPAAAAAABARrHxAwAAAAAAkFGljs5WlUqn\nar+X/cwHe4NDzP7zda3s6EeU2zo6kH2VrS92uwUg9QpvfoNZrz6xxawXDw0H5zj/9w+Y9cq+/Wa9\n9tk6XWbd+mC3W/ih0imv2U9O1Kz3fmdDB7s5M9fXFz7mDeea9erjz7Sqna6qbH62Zs37sQ52kg/F\nadPsA3rCD0sqhw6b9fKu3Y209CMW/YG9bmbR0RX28wAqA/ajo7PvscfvuX9TsIdK8IjA7QO5kCQd\nOWaWh99l5/OO5feb9RcnTgRbeOd3f61mbWKicw/LxxcN6sVPXFGzfs5/TM95NXbTvrLerL/wlfAY\nK/7wY4EjfqOuXnjGDwAAAAAAQEax8QMAAAAAAJBRbPwAAAAAAABkFBs/AAAAAAAAGcXGDwAAAAAA\nQEax8QMAAAAAAJBRbPwAAAAAAABkVKmTk1UGpCMX+Jr1pd8ud7AbAGi/8jsvMeultZs61Ak6qbRo\noVmvPPtiU+OXt78UPGb4F95m1n3hXLM+84kjwTkqm58164UL32DWq09tCc4RE3d8RL3f2dDtNkx+\nbCx8zOPPdKAT1OvYh+zfZUk6utL+v9yln1nXqnYS2/NvLjTrC+7dEx7k0OEWdYNXTdlX+7GZJJ39\n+cfNej1rShqUFs43670bppr1Cx/5uFmv9IV7WPx47ce6B4+Gb98qhXFp6s7OzYfmnPsfHjTr2+oc\np6mNH+fcdknDkiqSyt771c2Mh/wgO0iC3CApsoMkyA2SIjtIgtwgKbKDkFY84+ca7/3BFoyD/CE7\nSILcICmygyTIDZIiO0iC3CApsvO/27v7OLvK+t7732v2nudMJpOQBEgIBAkoz0oAQfTICxW0tnis\n9ehdW86tp2i97YM9vvrC9rT2vHruSr3v1mN7tHfR0qH1iHo4cqRq5UC0UksQgoA8BQghIZk8P5BM\nZjIPe+/r/oPBhsi+rr2vtWavda31ef+TmfmtudZvz3zn2mt+2bM3muI5fgAAAAAAAAoq6eDHSrrb\nGPOgMeb6NBpCaZAdhCA3CEV2EILcIBTZQQhyg1BkB05J/9TrCmvtmDFmmaS7jDEbrbX3HHvAXPCu\nl6TKyEjC06FAnNk5Njd9GsiqR+RPW3sO2cEx2HMQgj0HodhzEII9B6Fa3nO6F/A7eRklesSPtXZs\n7t89km6XdMkrHHOTtXattXZtZcFgktOhQHzZOTY33WrhafJRCu3uOWQHL2HPQQj2HIRiz0EI9hyE\namfPqfbzO3kZBQ9+jDGDxpihl96W9DZJj6XVGIqL7CAEuUEosoMQ5AahyA5CkBuEIjtoRZI/9Vou\n6XZjzEvrfMVa+91UukLRkR2EIDcIRXYQgtwgFNlBCHKDUGQHXsGDH2vtZkkXtPM5fXtmddYX9jQ/\noMv/AKR6OydELoVkB4g1N9V1D2bdQum1m53GyKDGr3590/rQ1+7zrlEb29Hq6eZNK326pHF/23hs\nYwqrZCPWPQfZazc7MycN6vkPX960/rlf+aJ3jd++5ddaPV1mln3+Xme97Nf4IXuOqVZUWbS4ab2+\n/4B3jSVfXO/uq52G5knXBa9x1rdc63/OGuMJ2MgzDWd9wdfd96nTP3ext4fBh8ea1ioTs97Pb6bd\n7FT3TmjpX7m/7ygeXs4dAAAAAACgoBj8AAAAAAAAFBSDHwAAAAAAgIJi8AMAAAAAAFBQDH4AAAAA\nAAAKisEPAAAAAABAQTH4AQAAAAAAKKhqJ09mp2dUf2ZzJ08JAGjBoQ+83lnvnrTO+sA3fpS4B9Pb\n6z5gKvEpWtJ1cEJDX7uvMycDEGTq5y9x1vdc5L/EXfVH96bVTjIDdZnzDjctf/ie67xLnPnHyW5L\ndeUKZ722fSzR+pgn3d2yJy1rXt9/oHO9NFG/8nXeY3Zd2uesT53QcNZf9/qnvOd4+utnOevD33/W\nWa971q/3+B9PMXPG8qY1+0JHfy1HCfGIHwAAAAAAgIJi8AMAAAAAAFBQDH4AAAAAAAAKisEPAAAA\nAABAQTH4AQAAAAAAKCgGPwAAAAAAAAXF4AcAAAAAAKCgqlk3AABZqZ62ynvMtl9c6ayf9Gf3ptVO\npoa/fF/WLWjiHRe6D/jGf+9MIymwl13grE8t63XW+795f5rtAIXT9w/un5HK2Zd3qJPk7ExFU2ML\nmtZN1SY+R9e5r3bWD5857KwPbB9L3ENRVBa5v1Y62Jk+JMkaI9vf3bTeNTDgXaMxOemsz1y91lk/\ntLr5+SVpwn0Z9WIPPe6M1xc0nPVHd57sPceqv3Bfr9W9K7j1vjCbcIW4mKp7jGBrtQ51glbxiB8A\nAAAAAICCYvADAAAAAABQUAx+AAAAAAAACorBDwAAAAAAQEEx+AEAAAAAACgoBj8AAAAAAAAFxeAH\nAAAAAACgoBj8AAAAAAAAFFQ16wYAr8F+6fzzm9fv+0nnekGh1LY87z1m5Tcrzno9rWYKbvdvXO49\nZmqpdR/wjZSa6YCumZqz3v/NRzrUCZBPlbPPdNbrTzydaP1V39rvPSYv+3dlShp+qvn/xTZ6kp+j\n8dhGZ33gseTnKAJz8XneYza9e4H7gBtSaqYFZramyo7mWa9NTnrXqJywxFmv97kfJzAzbJz1RtVz\n3y6pctS9Rr3X81iFx4a855hvle//2HtM11DzPs3kdJrtzDtbc1/nIH94xA8AAAAAAEBBMfgBAAAA\nAAAoKAY/AAAAAAAABcXgBwAAAAAAoKAY/AAAAAAAABQUgx8AAAAAAICCYvADAAAAAABQUFXfAcaY\nmyW9U9Iea+25cx9bLOlrkk6TtEXSe621B+evTcQotexMHJXu+8m89or8yN2eU6l05DRJVNac7qzX\nn9ncoU6ae/iTX/Ae85s7LnbWn/kD9+enlR3T36euM17dvI/rRtyNSKqPzDrrZ/4H7xLokNztOSXx\n7PuXOOunfft89wKe64KDF/h/Thc+7j3EKa3sVGashrc23zN6Ds4ka7RATHePs951+ipnfe8bljrr\nU4uNt4fZ5cm+H6nuOdWKGiMLm9fHdvgbWrrYWT58qvvXxcmVdWd9eKP/Oqoybd1r3OO+T62ue9B7\njlyYddwO6/4aSNxfIZlWHvEzKuma4z52g6R11to1ktbNvQ8cb1RkB+0bFblBmFGRHbRvVOQGYUZF\ndtC+UZEbhBkV2UEg7+DHWnuPpAPHffhaSbfMvX2LpHel3BcKgOwgBLlBKLKDEOQGocgOQpAbhCI7\nSCL0OX6WW2t3zr29S9LylPpB8ZEdhCA3CEV2EILcIBTZQQhyg1BkBy1J/OTO1lorqekfJRpjrjfG\nbDDGbJjVdNLToUBc2SE3aIY9B6Fa3XNmahMd7gx5xp6DUC1f58yw5+BftbPncH+FY/G7FVxCBz+7\njTEnSdLcv3uaHWitvclau9Zau7ZbvYGnQ4G0lB1yg+Ow5yBU23tOT3Wwow0il9hzEKr965we9hyE\n7TncX0H8boUWhQ5+7pB03dzb10n6ZjrtoATIDkKQG4QiOwhBbhCK7CAEuUEosoOWeAc/xphbJa2X\ndJYxZrsx5kOSbpT0VmPMM5LeMvc+8DJkByHIDUKRHYQgNwhFdhCC3CAU2UESVd8B1tr3NyldlXIv\nKJhOZcesPdd7TNeE+29Z608+k1Y7wbqGhpz1xvh4hzrJVt72nPGzl7jrVy9z1pf/xb1ptvOK6s9s\nnvdzJHXeZz/qPWZ4c91zxK3OalrZsUay3ZWm9cWPt7JGdzunRIbytucUQeU1a7zHDG31HHDfTxL1\nMLhjJtHntyKt7HRNzmrwkR1N67XtY+0sV2im4v4/6+ff5b5Pnjh91lk/4+/ddUnadFay/T3VPWd2\nVmZn078Ka0ljk/uHceAC93VQ14z7e7Lsbx/09mCny/GcM6anp3lxxng/n/srJJH4yZ0BAAAAAACQ\nTwx+AAAAAAAACorBDwAAAAAAQEEx+AEAAAAAACgoBj8AAAAAAAAFxeAHAAAAAACgoBj8AAAAAAAA\nFFQ16wYAH1PpUmXBwqb1maEe7xqVDY+l2dK8GLv+PGd95S1Pedeo79ufVjuYM7TuSXd9xXJnve5Z\nv6uvz9tDY2rKe0zenfz/3Jt1C62bnJJ96PGm5ZGHOtgLkEOHfvn1zvr+8413jTP/8nlnvdZWRz+r\n8k8/TrhCB1W6ZIcG5vcUi4ad9foLh+b1/K2wb7jQe8yr/qv7PvkfV3zBWT9Yn3TWb3jtVd4e/ubE\nu5z11d4V0mNrddX3H0i2xuyMsz701fvcdd/6bfZTZHbVyc2Lm/y/z6SlvnhQh69pvo/vvci/xqs+\n4c4F8odH/AAAAAAAABQUgx8AAAAAAICCYvADAAAAAABQUAx+AAAAAAAACorBDwAAAAAAQEEx+AEA\nAAAAACgoBj8AAAAAAAAFxeAHAAAAAACgoKpZNwD4zC7u1673nNO0vvDdO71rvP6zdWf9TQs2Ousf\nvuc6Z717V7e3B9+Y9elf/YKzfujjR72nuPqGjzvrw1++z7tGkZjublVPXNG0Xts+5l2jfviw+xzT\n0233dazG1FSizwdQLtVTT3HWa1u3zXsPlRnrrA9vMt41Wtl/S8MY2Z7ml+Tm4vP8a1j396Te5f6e\nVPccctYbe/b5ezCe77unx12vHfCe4tkfvtZZv+pb5zrr0yPuX332n1Px9rD+tad5jvhj7xpFUhkZ\ncdbrBw92qJNkTG+vs9646NXO+t7XDXrPsWBH899H6tv82UtL5cCEFt7a/HeCRXf4b4spyPe9THjE\nDwAAAAAAQEEx+AEAAAAAACgoBj8AAAAAAAAFxeAHAAAAAACgoBj8AAAAAAAAFBSDHwAAAAAAgIJi\n8AMAAAAAAFBQxlrbuZMZs1fS1mM+dIKkfR1rIEwMPUrZ9HmqtXbpfJ/kFXIjxfF9ocdX1pHcSOw5\n86yw2Yk0N1IcfRY2N1K02YmhR6nzfZIbvxj6ZM/Jnxh6lNhz8iiGPnO753R08PMzJzdmg7V2bWYN\ntCCGHqV4+kxLDLeXHvMnhtsbQ49SPH2mIZbbGkOfMfSYphhubww9SvH0mYZYbmsMfcbQY5piuL0x\n9CjF02caYrmtMfSZ5x75Uy8AAAAAAICCYvADAAAAAABQUFkPfm7K+PytiKFHKZ4+0xLD7aXH/Inh\n9sbQoxRPn2mI5bbG0GcMPaYphtsbQ49SPH2mIZbbGkOfMfSYphhubww9SvH0mYZYbmsMfea2x0yf\n4wcAAAAAAADzJ+tH/AAAAAAAAGCeZDb4McZcY4x5yhizyRhzQ1Z9uBhjthhjHjXGPGyM2ZB1P5Jk\njLnZGLPHGPPYMR9bbIy5yxjzzNy/I1n2OJ/ITbgyZyeG3Ej5zE6ZcyPFkZ085kYqd3ZiyI2Uz+yU\nOTdSHNnJY26kcmcnhtxI+cxOmXMjxZGdPOZGii87mQx+jDEVSZ+X9HZJZ0t6vzHm7Cx6acGV1toL\nc/SybKOSrjnuYzdIWmetXSNp3dz7hUNuEhtVCbMTWW6k/GVnVCXMjRRddvKWG6mk2YksN1L+sjOq\nEuZGii47ecuNVNLsRJYbKX/ZGVUJcyNFl5285UaKLDtZPeLnEkmbrLWbrbUzkr4q6dqMeomKtfYe\nSQeO+/C1km6Ze/sWSe/qaFOdQ24SKHF2yE0CJc6NRHYSKXF2yE0CJc6NRHYSKXF2yE0CJc6NRHYS\niS07WQ1+Vkjadsz72+c+ljdW0t3GmAeNMddn3YzDcmvtzrm3d0lanmUz84jcpK8M2YklN1I82SlD\nbqR4shNLbqRyZCeW3EjxZKcMuZHiyU4suZHKkZ1YciPFk50y5EaKJzux5EbKcXaqWTeQc1dYa8eM\nMcsk3WWM2Tg32csta601xvBSbdmKLjcS2cmJ6LJDbnIhutxIZCcnossOucmF6HIjkZ2ciC475CYX\nosuNlL/sZPWInzFJpxzz/sq5j+WKtXZs7t89km7Xiw+Hy6PdxpiTJGnu3z0Z9zNfyE36ypCdKHIj\nRZWdMuRGiiQ7EeVGKkd2osiNFFV2ypAbKZLsRJQbqRzZiSI3UlTZKUNupEiyE1FupBxnJ6vBzwOS\n1hhjVhtjeiS9T9IdGfXyiowxg8aYoZfelvQ2SY+5Pyszd0i6bu7t6yR9M8Ne5hO5SV8ZspP73EjR\nZacMuZEiyE5kuZHKkZ3c50aKLjtlyI0UQXYiy41UjuzkPjdSdNkpQ26kCLITWW6kHGcnkz/1stbW\njDEfk3SnpIqkm621j2fRi8NySbcbY6QXv05fsdZ+N9uWJGPMrZLeLOkEY8x2SZ+SdKOkrxtjPiRp\nq6T3Ztfh/CE3yZQ1O5HkRsppdsqaGyma7OQyN1J5sxNJbqScZqesuZGiyU4ucyOVNzuR5EbKaXbK\nmhspmuzkMjdSfNkx1ubmz84AAAAAAACQoqz+1AsAAAAAAADzjMEPAAAAAABAQTH4AQAAAAAAKCgG\nPwAAAAAAAAXF4AcAAAAAAKCgGPwAAAAAAAAUFIMfAAAAAACAgqp28mQ9ptf2abD5AYP93jXM9Kz7\ngEbDXa9U3PUu/yzMVoyzbhrWvUCt7j9HreY9xt2Ep1z1f+ttX4+zPj4+ts9au7SdtkJUBgdt96LF\nTes9OybmuwWkaFwHO5IbSeruGbR9/SNN6+bwZCfaQEo6lR3vfRWi0tE9p3fQ9g4033Ma3Z47Z0nd\nRzzXCLOe64Oq+zqn3u+//2/4LpU8LXqvgyQ1PNdS3v+a9F3uzXgOkKQjR5uWpjShGTvt/4algD2n\nWDq55/R09dn+ylDTum3hdw7kQyf3nO6eQdvnuK8yh/zXx8b3O7WPdd9PWE+9lTVi0Mrv5NPLe931\nse0t7TmJBj/GmGskfU5SRdKXrLU3uo7v06Aurbyt+QHnnu09Z+W5Xc66nZpy1rsWNt8cJcm2MHxq\nDPW5zzHluSjbc8B7jvrevd5jXHwhqiw9wbvG9FknO+vf//7vbW2rqWO0k53uRYt1ykc/3nSt0/5g\nfWgbyMDd9raO5EaS+vpH9Lo3/GbTes93HwhtBRnoVHb6NKhLzVWhp0LOdHLP6R0Y0YVX/lbT+pGT\n/BfKy//5oLunvZ5riEULneUXLmzh/n/Y/btH30H3UKV61H8xPrPQPdmp9bl7qMy4z7HwOff1oCSZ\nf3m4ae1Hdp33851rs+eUVif3nP7KkC4b+cWm9fq+/aGtoMOS7DltXx8PjOi1b2x+fdz7bf/1cWXh\nsKcp9x5vp6fd9XoLD5Tw/UdIIweDzy73/X7lhCXeJTZ97FXO+rOf/I8t7TnBf+pljKlI+rykt0s6\nW9L7jTH+yQ1Kj+wgBLlBKLKDEOQGocgOQpAbhCA3aFWS5/i5RNIma+1ma+2MpK9KujadtlBwZAch\nyA1CkR2EIDcIRXYQgtwgBLlBS5IMflZI2nbM+9vnPvYyxpjrjTEbjDEbZuV+SBdKw5udY3NTn+A5\nfCApZM+ZITuQ1Oaew30V5rS959Sm2XMgiT0HYdrec2Ya/j9pROFxfYyWzPurellrb7LWrrXWru2W\n+4mJgJccm5vKIE94iNa9bM/pITtoDfdVCHVsdqq97DloDXsOQh2bnZ4u9/OOAi/h+hhJBj9jkk45\n5v2Vcx8DfMgOQpAbhCI7CEFuEIrsIAS5QQhyg5YkGfw8IGmNMWa1MaZH0vsk3ZFOWyg4soMQ5Aah\nyA5CkBuEIjsIQW4QgtygJcEv526trRljPibpTr340nE3W2sf936i62XV7n/U++lJX5StMT6ecAW/\nHLxwnGzN/fJ2tZ27vGv0LBhIq52XaTc7PTsmdNqn7p+XXhCPkD3HHJ7kJdsRfn+FUgvJTaNqNLmk\n+Uu3Hj7D/zLnyx5wX5qZhmeNLvfLoDe6vS3Iev5bsGfc/XLufdv911pdK4ec9fEV7q9DZdr9deja\n8KS3B/93Iwx7DkKE5MbW6rxke8kF7TdWMrVkO2D9hUOJPr80PC8pX9+9x7vE6t9zH/Nsi60ED34k\nyVr7HUnfSbIGyonsIAS5QSiygxDkBqHIDkKQG4QgN2jFvD+5MwAAAAAAALLB4AcAAAAAAKCgGPwA\nAAAAAAAUFIMfAAAAAACAgmLwAwAAAAAAUFAMfgAAAAAAAAqKwQ8AAAAAAEBBVbNu4FiVNaf7D6pW\nEp2jvnGT+wBrE63fisYVF3qPOXhWv7M+O2Sc9cFdDWd9wbYpbw/ac9h/TKc06pmevnL2mc56/Ymn\nO9QJACCvKtNWw8/NNK3Xe3u9a3Rt3e2sm4r7/+wOv3qxs37gbPf1gyQNn7/fWX9+k/scZ476/1+x\n/6GtznrfziXOeuORJ531+b+aS49dOKCZy9c2rffcuaGD3QAvV1m40FmvH87R7wsO9g3u379s1b03\ndv3goTTbydTMEqttv9r8d6tX3dnBZuC183cudx/wZ7e1tA6P+AEAAAAAACgoBj8AAAAAAAAFxeAH\nAAAAAACgoBj8AAAAAAAAFBSDHwAAAAAAgIJi8AMAAAAAAFBQDH4AAAAAAAAKqpp1A8eqP7M56xY6\nomum7j2mZ8I6692T7rqpu+vjq/q8PSwwngOe9i5RGPUnSnRjgQB7P3KZs77ksVynUSwAACAASURB\nVKPeNbp++HBa7QCZsFWj6cXNL616DzW8a5gB9/1zY/deZ318ZcVZf92/2ejt4aurv+esv+qZjzjr\njYef8J7Da/ee5GtEYmZE2vJLzetLTnHvr5K09GuPOeumt8dZr+/b7z2HT/W0Vc76oYtOctZ3vtF3\n4SmZmrt+5qfd12v1/Qe854iJ6e9T16vPblpP42exfvhwos+ffctF3mN2fnjGWT9xkbuHbXtHvOfo\nfnrAWV/1R/d610hq5uq1TWv23vXzfv6XnDe0X/df+bdN61frwo71Ar/lD7ivoR9vcR0e8QMAAAAA\nAFBQDH4AAAAAAAAKisEPAAAAAABAQTH4AQAAAAAAKCgGPwAAAAAAAAXF4AcAAAAAAKCgGPwAAAAA\nAAAUVDXrBo7VNTDgPaYxOeleY3DQ/fkTE231NC/uf9R7yND9HejDo3raqqxbAKI3+W8vddb3nVfx\nrlFbYN0HNNzlNbfs856j/uQz3mNclv5/6xN9PlAEpmbVe6DWtD68Zb93DTs17a6fe4azfuiCGWd9\nqtbt7eF/T7qP6dvL/xumyhqZqeb3BQt2Ns/US4wxznp9nz97SdW2PO+sT71lhbP+6v86lvgcde8K\nxWK7jOoDzX9e3aloTeWM1c767qtOdNYnrjriPcc1pz/prH/zkQud9TM/uMF7jjzoubN5n8a6f8dN\nk5XVrC3bT0u8uv75oXTWSWUVAAAAAAAA5A6DHwAAAAAAgIJi8AMAAAAAAFBQDH4AAAAAAAAKisEP\nAAAAAABAQTH4AQAAAAAAKCgGPwAAAAAAAAVV7eTJTE+3qieubFp/7rpV3jWqk+764o2zznrvdx7w\nnqMIui54jbP+1IcWetfo31lxH/An7XQElNPMAvd8ffX/3O9do/74U+4DLjnP/flPPuM9B8rn4LfX\nOOtLPzbjXaP23Na02imErulZ9T27p2m9tnVb4nPsev8Zzvpn/83fOes3/ucPeM/xuR9c7ayv3Hav\ndw20rnd/Q2d8Zapp3dQa3jXqhw+n2dK8WPKl9c56rUN9FMrEUZl7H0m0xLbfv9xZf/cv/bOz/vV/\nPNFZX/K/Br09PH3XiLN+5t4N3jXQusfGl+qsdb/WtL5GP+5gN+iURIMfY8wWSeOS6pJq1tq1aTSF\n4iM7CEFuEIrsIAS5QSiygxDkBqHIDnzSeMTPldbafSmsg/IhOwhBbhCK7CAEuUEosoMQ5AahyA6a\n4jl+AAAAAAAACirp4MdKutsY86Ax5vo0GkJpkB2EIDcIRXYQgtwgFNlBCHKDUGQHTkn/1OsKa+2Y\nMWaZpLuMMRuttfcce8Bc8K6XpL7KUMLToUCc2XlZbjSQVY/In/b2HLKDf8WegxBc5yBU63tO73BW\nPSJ/uM5BqJb3nMqSRVn1iAwlesSPtXZs7t89km6XdMkrHHOTtXattXZtT6U/yelQIL7sHJubbvVm\n0SJyqN09h+zgJew5CMF1DkK1tedU/a96hHLgOgeh2tlzKgvZc8ooePBjjBk0xgy99Lakt0l6LK3G\nUFxkByHIDUKRHYQgNwhFdhCC3CAU2UErkvyp13JJtxtjXlrnK9ba76bSFYqO7CAEuUEosoMQ5Aah\nyA5CkBuEIjvwCh78WGs3S7qgnc+pD/bohctWNq0fXVHzrrH0voqz3vudB9pp6WfMXHOx95ie7yY7\nRycceo3778W7DxvvGj3jaXXzciHZAWLNzaK/X++s19M4yf2PprFKYcWanfl2/2v/h7N+xkd/3btG\n1yme5yZ5zv1w8tWfdP98ZCkkN3ZmVrWt2xKdt7riZGd94fPuXeNP//ADzvrwrfd5e/BfjcGl7exM\nHJW595Gm5X0fvsy7xIl7T3XWa89tbbkdZCOr+6qjp80667fdcYWzvvpTnj3FWm8PqVwLlVi72el9\nblJrfvXH89gR8oiXcwcAAAAAACgoBj8AAAAAAAAFxeAHAAAAAACgoBj8AAAAAAAAFBSDHwAAAAAA\ngIJi8AMAAAAAAFBQDH4AAAAAAAAKqtrJk5m6Vfd4vWl94Plu7xpLv/e8s25HRpz1zb/9Gmd9dqjh\n7eHMf+pz1htTU941kqquPtVZH9542Fkf+uoTabYDAIjMOX/5UWf9VZ++t0OdlEfjja/1HnNkkfta\naOAbP0qrHUTiyCr/MRNnL3PWZy49yVm//o++4az/+4V7vD1cffKF3mOQP2f+2gNZtwCgA3jEDwAA\nAAAAQEEx+AEAAAAAACgoBj8AAAAAAAAFxeAHAAAAAACgoBj8AAAAAAAAFBSDHwAAAAAAgIJi8AMA\nAAAAAFBQ1U6ezIwfVd/djzStL6+f712jNrbTWa+/6QJnvfcF9/oLNxtvD+b0Ve4Dnnjau4b/JO4+\ndr31ZGe9Mu1efuThdhsCimf/f7jMe8ySL63vQCdA5731Pfc7609+ukONJGTfcKH7gB/e1plGWrDt\nrX3eY2aWNJz1Nf+QVjfZqq5wX8fUxnZ0qJP8O+33k98P9Xrqt37V/f24Ve46ACDfeMQPAAAAAABA\nQTH4AQAAAAAAKCgGPwAAAAAAAAXF4AcAAAAAAKCgGPwAAAAAAAAUFIMfAAAAAACAgmLwAwAAAAAA\nUFAMfgAAAAAAAAqq2tGzWSs7O9O03Ltn0rtEwzac9e77NzrrKzcOOesHrlzt7eHQOSPO+sJt7nM0\nxse959j2e5c56+t//c+c9W9NrHTW/+6WU7w9mIvOcR+w4TbvGmkwXV3qWtD8a9rK1xN4JcvvHvMe\ns/WGy531FTfem1Y7QEc9eVEt6xZSYf7l4axbaJ013kP6lk846wf+T/f1weK/Xd9WS1mpje3IugUA\nAEqDR/wAAAAAAAAUFIMfAAAAAACAgmLwAwAAAAAAUFAMfgAAAAAAAAqKwQ8AAAAAAEBBMfgBAAAA\nAAAoKAY/AAAAAAAABVX1HWCMuVnSOyXtsdaeO/exxZK+Juk0SVskvddaezBpM42Hn0i6hBqTk856\n18IhZ71/f817jsml7i/b5Jtf46zbivcUqp13xFl/ZKbfWT+vd8xZr5x1pbeHbf/Jug94l7ucVnZs\no6HG+Li3XxRDJ/ec2pbnvcesuNF/DPKhk9lBcXQyNyMbG95jDk8tdNb3Xey+Tln2g9Oc9drmLd4e\n0Br2HIQgN+3b+TuXO+s/+cQXvGtc/vGPOOtDX7uvrZ6OZ9ae6z1m1+XN9/farf7zkx0k0cojfkYl\nXXPcx26QtM5au0bSurn3geONiuygfaMiNwgzKrKD9o2K3CDMqMgO2jcqcoMwoyI7COQd/Fhr75F0\n4LgPXyvplrm3b5H3sR8oI7KDEOQGocgOQpAbhCI7CEFuEIrsIInQ5/hZbq3dOff2LknLU+oHxUd2\nEILcIBTZQQhyg1BkByHIDUKRHbQk8ZM7W2utpKZPBmOMud4Ys8EYs2FW00lPhwJxZYfcoBn2HIRi\nz0EI9hyEYs9BCPYchGLPgUvo4Ge3MeYkSZr7d0+zA621N1lr11pr13arN/B0KJCWskNucBz2HIRi\nz0EI9hyEYs9BCPYchGLPQUtCBz93SLpu7u3rJH0znXZQAmQHIcgNQpEdhCA3CEV2EILcIBTZQUu8\ngx9jzK2S1ks6yxiz3RjzIUk3SnqrMeYZSW+Zex94GbKDEOQGocgOQpAbhCI7CEFuEIrsIImq7wBr\n7fublK5KuZeOaExMOuvd/3uDd40lp6x01p/+2CnOem247j1Hz7ODzvrHv//rzvr4avf6a6bHvD08\neultznrF8/lFyw46I2+5mXjPpc764G0/6lAn8MlbdhCHTuZmYPes95jhjVPO+s43Dzvrsye662az\ntwW0iD0HIWLLTeXMVznr9U1b3As0/L/3+Jz0c8876/vqE941eg8l78Nl8y8OeY/53i9/pmntnd/b\n5/382LKDdOz9yGXuA/7K/Tv7SxI/uTMAAAAAAADyicEPAAAAAABAQTH4AQAAAAAAKCgGPwAAAAAA\nAAXF4AcAAAAAAKCgGPwAAAAAAAAUFIMfAAAAAACAgqpm3UCnNcbHE69R27bdXR862dOE/xwjT1pn\nffH9e531/n0nOOvTq911STrSmPIeAxzP9Pa6D+hkrAb6Zc49r2l5x5uGvEuMr6k562fe1nZXQGKb\nP3OZ95jTf3d9BzrByxgj093TtDwz7L/sqn7vcWf9xIfa7gpAQZm+XlVOX9O0fnTVsHeN8VXdzvrs\nAuOsL35ysbPe//whbw/1J552H/CWMWf5l+0bvOfo0QPeY5JY89fuHiXp7Qd/t2lt894/T7MdJ1Ot\nqnLCsqb1+u49HesFfsNb3L+LtIpH/AAAAAAAABQUgx8AAAAAAICCYvADAAAAAABQUAx+AAAAAAAA\nCorBDwAAAAAAQEEx+AEAAAAAACgoBj8AAAAAAAAFxeAHAAAAAACgoKpZN3Cs6soV3mNq28fcB7z+\nfGd5ZlGvsz7w1B5vD7MnLnLWuw9VnPXaimnvOQ6e5e6z1rvMWT+yyjjr06tq3h7+ZO8lniO2e9dI\nw5nnT+rOOx9uWn/Nv/yKd41Vv/Romi39jMqSxd5j7MSks96YmkqrnXlz8N9f5j1m6l0vuA+4NqVm\nWtBYUdf4H080rd905qh3jdf3uX+eL175Xmd98K+GnfXuQ7PeHlRx/zx3/eAh/xoolNN/d33WLeAV\nmO6qKic2v3+uTtY72E24yglL3AfMuPet+uHD3nPU3/w6dw//9GPvGkDZNXoqmjql+XXGwBO7vGv0\nPzzjPmB4yFmuP/2s+/NHRrw9eFmbfI15VtvyvPeYkz/T/Jhttvn1atpmF/dqx787o2l9/PTTvWv0\nHHQ/fuTUOw456/UFPc76pv+j29vDgmfdo4yT/997vWv4bPrs6531RWcccNYvPdGdi+fe6O/hA5/9\nB2f9nn/0ryHxiB8AAAAAAIDCYvADAAAAAABQUAx+AAAAAAAACorBDwAAAAAAQEEx+AEAAAAAACgo\nBj8AAAAAAAAFxeAHAAAAAACgoIy1tnMnM2avpK3HfOgESfs61kCYGHqUsunzVGvt0vk+ySvkRorj\n+0KPr6wjuZHYc+ZZYbMTaW6kOPosbG6kaLMTQ49S5/skN34x9Mmekz8x9Cix5+RRDH3mds/p6ODn\nZ05uzAZr7drMGmhBDD1K8fSZlhhuLz3mTwy3N4YepXj6TEMstzWGPmPoMU0x3N4YepTi6TMNsdzW\nGPqMocc0xXB7Y+hRiqfPNMRyW2PoM8898qdeAAAAAAAABcXgBwAAAAAAoKCyHvzclPH5WxFDj1I8\nfaYlhttLj/kTw+2NoUcpnj7TEMttjaHPGHpMUwy3N4YepXj6TEMstzWGPmPoMU0x3N4YepTi6TMN\nsdzWGPrMbY+ZPscPAAAAAAAA5k/Wj/gBAAAAAADAPMls8GOMucYY85QxZpMx5oas+nAxxmwxxjxq\njHnYGLMh634kyRhzszFmjzHmsWM+ttgYc5cx5pm5f0ey7HE+kZtwZc5ODLmR8pmdMudGiiM7ecyN\nVO7sxJAbKZ/ZKXNupDiyk8fcSOXOTgy5kfKZnTLnRoojO3nMjRRfdjIZ/BhjKpI+L+ntks6W9H5j\nzNlZ9NKCK621F+boZdlGJV1z3MdukLTOWrtG0rq59wuH3CQ2qhJmJ7LcSPnLzqhKmBspuuzkLTdS\nSbMTWW6k/GVnVCXMjRRddvKWG6mk2YksN1L+sjOqEuZGii47ecuNFFl2snrEzyWSNllrN1trZyR9\nVdK1GfUSFWvtPZIOHPfhayXdMvf2LZLe1dGmOofcJFDi7JCbBEqcG4nsJFLi7JCbBEqcG4nsJFLi\n7JCbBEqcG4nsJBJbdrIa/KyQtO2Y97fPfSxvrKS7jTEPGmOuz7oZh+XW2p1zb++StDzLZuYRuUlf\nGbITS26keLJThtxI8WQnltxI5chOLLmR4slOGXIjxZOdWHIjlSM7seRGiic7ZciNFE92YsmNlOPs\nVLNuIOeusNaOGWOWSbrLGLNxbrKXW9Zaa4zhpdqyFV1uJLKTE9Flh9zkQnS5kchOTkSXHXKTC9Hl\nRiI7ORFddshNLkSXGyl/2cnqET9jkk455v2Vcx/LFWvt2Ny/eyTdrhcfDpdHu40xJ0nS3L97Mu5n\nvpCb9JUhO1HkRooqO2XIjRRJdiLKjVSO7ESRGymq7JQhN1Ik2YkoN1I5shNFbqSoslOG3EiRZCei\n3Eg5zk5Wg58HJK0xxqw2xvRIep+kOzLq5RUZYwaNMUMvvS3pbZIec39WZu6QdN3c29dJ+maGvcwn\ncpO+MmQn97mRostOGXIjRZCdyHIjlSM7uc+NFF12ypAbKYLsRJYbqRzZyX1upOiyU4bcSBFkJ7Lc\nSDnOTiZ/6mWtrRljPibpTkkVSTdbax/PoheH5ZJuN8ZIL36dvmKt/W62LUnGmFslvVnSCcaY7ZI+\nJelGSV83xnxI0lZJ782uw/lDbpIpa3YiyY2U0+yUNTdSNNnJZW6k8mYnktxIOc1OWXMjRZOdXOZG\nKm92IsmNlNPslDU3UjTZyWVupPiyY6zNzZ+dAQAAAAAAIEVZ/akXAAAAAAAA5hmDHwAAAAAAgIJi\n8AMAAAAAAFBQDH4AAAAAAAAKisEPAAAAAABAQTH4AQAAAAAAKCgGPwAAAAAAAAVVTfLJxphrJH1O\nUkXSl6y1N7qO7zG9tk+DSU6JHBnXwX3W2qUhn9tOdnoq/ba/urDpWnZmNqSFtpieHvcBFf8M1XYZ\nzwGeHmo17zlUr7tP0Wgk6iENncqNJHX3DtregRHXgiFttKVr1v01N3X/F91W3H16677sSbKeCNd7\nPZ/f4wtwC+GadTcxs317Z/ac6oDt71nUdC17dCqkBWSkk3sO1znFMaUJzdjp4DuJdrJT7Ru0vQsW\nN12r0cLVeqPb049vi3ZfPqgy7e/B1Nwnsd3uL2fdcxsk/+1UxXNDu9z1rqMtXM8NuO/XpzfvKNSe\nY7rcXxPvtSVakmTPaTs33YO2r6/5dY6OHA1pI1W+3EmSqhVnuRO/I3aCqbhv5+H6vpb2nODBjzGm\nIunzkt4qabukB4wxd1hrn2j2OX0a1KXmqtBTImfutrdtDfm8drPTX12oy0/+5abr1bZuC2mjLdWV\npzrrjWH/nW6jz/3j5hsAVPa84D2HPXjI3cPkpPvzWxkuJdSp3EhS78CILnzzbzVds1FtYSDiG6p4\nlhgccw8JquP+q+n6AvfUZXqxezBZ6/ffec4Mum/I+Gnu+syp7ttR6fH8ViHJ7uhz1p/7j5/ozJ7T\ns0ivP+NDTddrPLYxpA1kpJN7Dtc5xfEjuy74c9vNTu+CxTr7nR9vut7kMv991dHlnoGG5/efnkPu\ncwxv9u/hvQfd1xBTJ7inNkdO9t9XTa5wDxnqi9w9dHnui/qe6Pf2ULvwiLO+6b1/WKg9p2vAfY3b\nmJiY1/OXReieE5SbvkW6eO3/1XTNrh88FNRLmrr6B/zHLGk+MJek2thO9wIN/76WB5Vhx39iS7rz\nwBdb2nOS/KnXJZI2WWs3W2tnJH1V0rUJ1kN5kB2EIDcIRXYQgtwgFNlBCHKDEOQGLUky+Fkh6diH\nWmyf+xjgQ3YQgtwgFNlBCHKDUGQHIcgNQpAbtCTRc/y0whhzvaTrJalP/odsAdJxuakMZdwNYnJs\ndnr7HX+/DBzjZXtOd/PnFAOOx3UOQhybm55B98P4gWOx5yDEy66Pe4cz7gZZSPKInzFJpxzz/sq5\nj72MtfYma+1aa+3abnmeHRRl4c3Osbnpqfj/3hql0PaeU+3lSVYhqd09p0puIInrHIRra8+p9rHn\nQBJ7DsK0nZuebvacMkoy+HlA0hpjzGpjTI+k90m6I522UHBkByHIDUKRHYQgNwhFdhCC3CAEuUFL\ngv/Uy1pbM8Z8TNKdevGl42621j6eWmcoLLKDEOQGocgOQpAbhCI7CEFuEILcoFWJnuPHWvsdSd9J\nqReUSNvZabhfpnS+1Z4LemXOlzFV94+b76XU5/+F1vOv3dx0zTQ08Hzzlxm1D2V/v+h+YdoX+V7I\n1/0i6Olwv2CmVDnnLGd938W+FSTreQzqc94VHGu3kR17dIqXbIckrnMQrp3sVKYaWvR08/uqE9bt\n866x652nOuv1Hvc9yaLN7td77/32A94efNwv5i619IyOXRVnubriJGe9fqL7+ZTM0QPeFt74fvdL\nXf+Bd4Xm8rjn8HLt+dd2biamVLmv6au9K9vful7UmJxM5ZgisEePprJOkj/1AgAAAAAAQI4x+AEA\nAAAAACgoBj8AAAAAAAAFxeAHAAAAAACgoBj8AAAAAAAAFBSDHwAAAAAAgIJi8AMAAAAAAFBQDH4A\nAAAAAAAKqpp1A4BXvSE7Pp5oia6BAWfdDC1wL7BkkbPc6O/29lDZd9hZr4/tdNZtreY/xxmr3WsM\n9rkX2LzdWW608n3oqrjrdf8SaZldWNH2q4eb1ldWz/OuYR94NM2WCqv++FPO+sjjHWokDYP90rmO\nbNxPJn7KGHfd2s70AUTMzNZUHTvQtF4b2+Fdo/eFVc563/4ZZ7377ge958iFhvsiorbNfR0jT72V\nHevWv7vKc8S3W1gFyJC1stPTWXcx/3y/k3j2k7zY/puvcx/wp19uaR0e8QMAAAAAAFBQDH4AAAAA\nAAAKisEPAAAAAABAQTH4AQAAAAAAKCgGPwAAAAAAAAXF4AcAAAAAAKCgGPwAAAAAAAAUVDXrBgAf\nW6+r/sKhZGvM1twHLF/sLB89ZchZ7z7sWV+S3brNe0xS9U3Pzfs5fCbftdZ9wP/8WmcakdTob+jo\nOUeb1mfv7/GuEcMmWV25wn2AMd41atu2p9RN/Mz0jCrPjjWt1zvYSzOVJe49S5IOXHOmsz4z5M5F\n94S/j8Hds856z/cedtZtzb93AkU3c0pF2/+8+XVG7UeXe9fouuQFZ33k40ec9TR+EivnnOWsP/mx\nYWd9xTr/fdXgbT9qq6f5MLmykXULPzVz8qCe/3DzfFQvcOdCkhr3L3LWT/5h8+soSere776zMEen\nvT1MnL3MWT/w6m73AtZ7Cp34o0lnvfrEVmd94g1rnPUFj+zw9sC1Vmd1nee+DurafcC7Rm3X7rTa\nCdZI6ZcRHvEDAAAAAABQUAx+AAAAAAAACorBDwAAAAAAQEEx+AEAAAAAACgoBj8AAAAAAAAFxeAH\nAAAAAACgoBj8AAAAAAAAFFRKrwoPzB/T16vKGWc1P2B6xrvGkXOXOut9u6ed9YENW531+u493h7K\nYmjjwaxb+Kmuo13qe6K/ab36vXs72M0r2/9rl3mP+cQnvuqsv2/oYWf9HU+9w3uO6gdOdtZrYzu8\naxSFrdVV338g6zacWulv+L/f14FO3GzWDeBnmN5e7zFdi4adde7z0nXqwH799flfblr/wz/9oHeN\n5/vd3zM7vqvtvto1/bmjzvpzZ3/NWf/wRf77wy23tdXSvBjYkZ//Nzf9dVXOP9S0/uilX/Guseap\nX3fWD53e56wPDlSc9b4fPuntYdAYZ33gR+POen3ffu85fOqeet+37nfWa4k7QNoaj7iz1+hAD9XT\nViVe47S/c/8eurHFdfKzcwEAAAAAACBVDH4AAAAAAAAKisEPAAAAAABAQTH4AQAAAAAAKCgGPwAA\nAAAAAAXF4AcAAAAAAKCgGPwAAAAAAAAUVDXrBjqtsnSps25PPsG7RuORJ9Nqpylz0TnO+pHVC5z1\nerdx1kfuesbbQ33ffu8xnWBXNdT4yyNN609vX+5dY9H6irPe/78ecdbr3jPgJUdPWeg+4PHO9CFJ\nPfumderNm5rWW/m+Nq640Fnv+uHDbXb1cku+uN57zO+d+++c9TsvdX9Ra/9pmfccZizZ7SiVLvd+\nIklqsGsgnypL/dc5drDffcDuPSl1A0ka27pUn/zoR5rWe9Y/4F1j5sMXOet73nWWs77kb/z3RT67\nvrfSWb9s9hcTn2Ohnk28RlInf+ZeZ/2JDvUhSRqvqHLPcNPyz330au8Sp+9K/r13abRyzOaJee0B\n5TTxnkud9Tf9vj/73V3u67kvP3qJs27r7t/Jf+Hcn3h72D65yH3AFd4lJCUc/Bhjtkga14u/P9Ws\ntWuTrIfyIDsIQW4QiuwgBLlBKLKDEOQGocgOfNJ4xM+V1tp9KayD8iE7CEFuEIrsIAS5QSiygxDk\nBqHIDpriOX4AAAAAAAAKKungx0q62xjzoDHm+jQaQmmQHYQgNwhFdhCC3CAU2UEIcoNQZAdOSf/U\n6wpr7ZgxZpmku4wxG6219xx7wFzwrpekPg0kPB0KxJmdl+Vm+VBWPSJ/2ttzutxPgo5SaX3P4b4K\n/4rrHIRqec/p7fM8cSfKpK09p3toJIsekU9c58Ap0SN+rLVjc//ukXS7pJ95Wmtr7U3W2rXW2rXd\n6k1yOhSILzsvy82w59VFUBrt7jk9XWQHL2prz+G+CnO4zkGotvacnsEsWkQOtbvnVPrJDl7EdQ58\nggc/xphBY8zQS29Lepukx9JqDMVFdhCC3CAU2UEIcoNQZAchyA1CkR20Ismfei2XdLsx5qV1vmKt\n/W4qXaHoyA5CkBuEIjsIQW4QiuwgBLlBKLIDr+DBj7V2s6QLUuylI4582f2cH/ecd6t3jbefcbmz\n3picbKunV1yjx/2tWfDcEWfdPvi4s15vu6P0tJudJT0T+pUV9zWt/+f73utdY+lfrW/1dEho4Jn5\neRXJkD3H1utqvHCoaX3H77p/liVpxfcOu8/RTkOB1vxW8/xL0g7P5xs9nF4zEWo3O3Z4QNNvvLhp\nvfcff5xGW8i5WK9zfGrbx7JuofDazY45PKme7z6Q6Jwj63uc9SV/M//XQSv/5F73AV0Vd72R5dVp\n9kL2nO49EzrxL37UtF4r+de0LZec5yxX940767XNW1Jspj1Fvb9K6tDp7j3nT5b/xLvGVU/8grN+\nxgceaqun4z3ZwjHm4pMSneMlvJw7AAAAAABAQTH4AQAAAAAAKCgGPwAAHOWtiAAADKdJREFUAAAA\nAAXF4AcAAAAAAKCgGPwAAAAAAAAUFIMfAAAAAACAgmLwAwAAAAAAUFDVrBvotH3jg876wfqkd41D\nP3++sz70tfva6umVmPWPOOs28RnisW/bIn3xd97dtL762+s72A18apu3ZN3CT5nublVOWt603nvA\n/5NkNzyWqIeugQFnvTHp33PQWV1TdQ08c6Bpvd6od7CbuG3/5OXO+spP39uhTsrDt+fs+uCF3jWW\n/Te+L7FZ9uWfOOuNDvXhVJC9c8t/ucx9wO/f1plGXlKQr2vm7n/UWa51qA2k5+TPuO/Lrv6M//6w\nqufTaieYfcCdzVbxiB8AAAAAAICCYvADAAAAAABQUAx+AAAAAAAACorBDwAAAAAAQEEx+AEAAAAA\nACgoBj8AAAAAAAAFxeAHAAAAAACgoKpZN9Bpqz+211l/zzm/4V1jaN19abXTVGX5Mmd9z8+/yllf\n8qX1abaTKXNoUr3ffiDrNhChmcXd2vq+lU3rJ/3L0cTn2HzjZc56bVHdWV+6vuI9x8gtxfl5joGd\nnlb96WezbiMKXQMDzvrjv/EFZ/3013zQWV/zqz9uu6eym7njBGf9obPd3xNJuvq/XZhWO2iBHRpQ\n7dKLmtar6x70rtGYmEizJTh0nXUk6xaAREy1osrIkqb1+r79HeymCWO8h1RPXO6s13buSqubQuAR\nPwAAAAAAAAXF4AcAAAAAAKCgGPwAAAAAAAAUFIMfAAAAAACAgmLwAwAAAAAAUFAMfgAAAAAAAAqK\nwQ8AAAAAAEBBMfgBAAAAAAAoqGrWDXRabdduZ73qqXdKffceZ33Jl9x1AJKpSz0v2Kb1nmd2eNeo\nv/YcZ33BNuOsn/iVw+4TPDfm7aHhPQLIRmNy0lk/5y8/6qwvPJJmN5Ck6lued9Z/7rRfaGEV9xpI\n18yI0XPvbn5JvmZdB5uBV3/vTNYtAInYWl31ffvn9Rxb/u/LnPW/ft9fO+uf3vIO7zlqV21vq6ey\n4xE/AAAAAAAABcXgBwAAAAAAoKAY/AAAAAAAABQUgx8AAAAAAICCYvADAAAAAABQUAx+AAAAAAAA\nCorBDwAAAAAAQEFVfQcYY26W9E5Je6y15859bLGkr0k6TdIWSe+11h6cvzYRI7KDEGnmpnq0oSWP\nTzWt11cu9fYzccqgs949YZ312nC/s16ZmfH2gNaw5+TPyk/fm3ULXmXLTW3L81m3UBhpZcfUpeo4\n/xcbi4FbFiX6/LLtOUhPTNlZ8X339e1v7/6Is778L/J//RCbVu5lRiVdc9zHbpC0zlq7RtK6ufeB\n442K7KB9oyI3CDMqsoP2jYrcIMyoyA7aNypygzCjIjsI5B38WGvvkXTguA9fK+mWubdvkfSulPtC\nAZAdhCA3CEV2EILcIBTZQQhyg1BkB0mEPq50ubV259zbuyQtT6kfFB/ZQQhyg1BkByHIDUKRHYQg\nNwhFdtCSxH9QbK21kpo+yYUx5npjzAZjzIZZTSc9HQrElR1yg2ba2XNmZic62Bnyjj0HIbjOQahW\n95z6BPdV+FfsOQjFdQ5cQgc/u40xJ0nS3L97mh1orb3JWrvWWru2W72Bp0OBtJQdcoPjBO05Pd3u\nJ2ZGKbDnIATXOQjV9p5TGeS+Cuw5CMZ1DloSOvi5Q9J1c29fJ+mb6bSDEiA7CEFuEIrsIAS5QSiy\ngxDkBqHIDlriHfwYY26VtF7SWcaY7caYD0m6UdJbjTHPSHrL3PvAy5AdhCA3CEV2EILcIBTZQQhy\ng1BkB0lUfQdYa9/fpHRVyr2gYMhOfOzlFzjr5t5H5r+HFHNjZuvqGTvYtD5x1lLvGl2zTf/MviWz\nQ+5ttmuav7NOC3sOQpCb8qpf+brmxQfWez8/rez0HqjrVbe+0LTeaGcxzLsFW5M9J1Pe9pzKa9a4\nDzhwyFmu7276V2lIWd6y49J994PO+vK7O9QIfirxkzsDAAAAAAAgnxj8AAAAAAAAFBSDHwAAAAAA\ngIJi8AMAAAAAAFBQDH4AAAAAAAAKisEPAAAAAABAQTH4AQAAAAAAKKhq1g0ASI/p7nHW937wImd9\n4qojzvrqR4e8PRx906vdB3zrNu8aaZkd6tbuK09qWq9OW+8aw1++z1nva7srAEAeVL7/4+ZFO9mx\nPuzRKTUeebJj50MytSH3tVZ0xnY7y/XDhzvUCDrF9Pep66zXNK2zHxUTj/gBAAAAAAAoKAY/AAAA\nAAAABcXgBwAAAAAAoKAY/AAAAAAAABQUgx8AAAAAAICCYvADAAAAAABQUAx+AAAAAAAACorBDwAA\nAAAAQEFVs24A8GmMDGriqkub1hdsOeJdwz74eKIeugYGnPX6a8/0rrHjje41KlPuzx9f3fCeY/i0\nF5z1F/bPOuvPXfH3zvodP3bfBkn68+eWuA/4lneJ1NT7pBde7agv8H9Nj6y83FlfedchZz1p9iTJ\nXnaBs27qnttx/6OJe/DZ9Vvur9PsghRO8l9uS2ERAADCVb7/46xbSFX98OGsW0CHzQxX9Pw7RprW\n7Tvd13SSNLTNOuvdk+5r091r3Y8/Wfqwe31JGtg946wX5Wd19m1r3Qfc2dr1MY/4AQAAAAAAKCgG\nPwAAAAAAAAXF4AcAAAAAAKCgGPwAAAAAAAAUFIMfAAAAAACAgmLwAwAAAAAAUFAMfgAAAAAAAArK\nWGs7dzJj9kraesyHTpC0r2MNhImhRymbPk+11i6d75O8Qm6kOL4v9PjKOpIbiT1nnhU2O5HmRoqj\nz8LmRoo2OzH0KHW+T3LjF0Of7Dn5E0OPEntOHsXQZ273nI4Ofn7m5MZssNauzayBFsTQoxRPn2mJ\n4fbSY/7EcHtj6FGKp880xHJbY+gzhh7TFMPtjaFHKZ4+0xDLbY2hzxh6TFMMtzeGHqV4+kxDLLc1\nhj7z3CN/6gUAAAAAAFBQDH4AAAAAAAAKKuvBz00Zn78VMfQoxdNnWmK4vfSYPzHc3hh6lOLpMw2x\n3NYY+oyhxzTFcHtj6FGKp880xHJbY+gzhh7TFMPtjaFHKZ4+0xDLbY2hz9z2mOlz/AAAAAAAAGD+\nZP2IHwAAAAAAAMyTzAY/xphrjDFPGWM2GWNuyKoPF2PMFmPMo8aYh40xG7LuR5KMMTcbY/YYYx47\n5mOLjTF3GWOemft3JMse5xO5CVfm7MSQGymf2SlzbqQ4spPH3Ejlzk4MuZHymZ0y50aKIzt5zI1U\n7uzEkBspn9kpc26kOLKTx9xI8WUnk8GPMaYi6fOS3i7pbEnvN8acnUUvLbjSWnthjl6WbVTSNcd9\n7AZJ66y1ayStm3u/cMhNYqMqYXYiy42Uv+yMqoS5kaLLTt5yI5U0O5HlRspfdkZVwtxI0WUnb7mR\nSpqdyHIj5S87oyphbqTospO33EiRZSerR/xcImmTtXaztXZG0lclXZtRL1Gx1t4j6cBxH75W0i1z\nb98i6V0dbapzyE0CJc4OuUmgxLmRyE4iJc4OuUmgxLmRyE4iJc4OuUmgxLmRyE4isWUnq8HPCknb\njnl/+9zH8sZKutsY86Ax5vqsm3FYbq3dOff2LknLs2xmHpGb9JUhO7HkRoonO2XIjRRPdmLJjVSO\n7MSSGyme7JQhN1I82YklN1I5shNLbqR4slOG3EjxZCeW3Eg5zk416wZy7gpr7ZgxZpmku4wxG+cm\ne7llrbXGGF6qLVvR5UYiOzkRXXbITS5ElxuJ7OREdNkhN7kQXW4kspMT0WWH3ORCdLmR8pedrB7x\nMybplGPeXzn3sVyx1o7N/btH0u168eFwebTbGHOSJM39uyfjfuYLuUlfGbITRW6kqLJThtxIkWQn\notxI5chOFLmRospOGXIjRZKdiHIjlSM7UeRGiio7ZciNFEl2IsqNlOPsZDX4eUDSGmPMamNMj6T3\nSbojo15ekTFm0Bgz9NLbkt4m6TH3Z2XmDknXzb19naRvZtjLfCI36StDdnKfGym67JQhN1IE2Yks\nN1I5spP73EjRZacMuZEiyE5kuZHKkZ3c50aKLjtlyI0UQXYiy42U4+xk8qde1tqaMeZjku6UVJF0\ns7X28Sx6cVgu6XZjjPTi1+kr1trvZtuSZIy5VdKbJZ1gjNku6VOSbpT0dWPMhyRtlfTe7DqcP+Qm\nmbJmJ5LcSDnNTllzI0WTnVzmRipvdiLJjZTT7JQ1N1I02cllbqTyZieS3Eg5zU5ZcyNFk51c5kaK\nLzvG2tz82RkAAAAAAABSlNWfegEAAAAAAGCeMfgBAAAAAAAoKAY/AAAAAAAABcXgBwAAAAAAoKAY\n/AAAAAAAABQUgx8AAAAAAICCYvADAAAAAABQUAx+AAAAAAAACur/B9aImyXOxTHeAAAAAElFTkSu\nQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "layer_name = 'block5_conv2'\n", + "layer = layer_dict[layer_name]\n", + "activations = get_activations(vgg16, layer, input_img_data)\n", + "activated_img = activations[0][0] # [0][0] -> first (and only) activation, first (and only) sample in batch\n", + "n = 8\n", + "fig = plt.figure(figsize=(20, 20))\n", + "for i in range(n):\n", + " for j in range(n):\n", + " idx = (n*i)+j\n", + " ax = fig.add_subplot(n, n, idx+1)\n", + " ax.imshow(activated_img[:,:,idx])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## How Convnet see the world\n", + "\n", + "Reference: [https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html](https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Specify Percentage of Filters to scan\n", + "\n", + "In this example, we'll still using VGG16 as the reference model. \n", + "\n", + "Of course, the same code applies to different CNN models, with appriopriate changes in layers references/names.\n", + "\n", + "---\n", + "\n", + "Please note that VGG16 includes a variable number of convolutional filters, depending on\n", + "the particular layer(s) selected for processing.\n", + "\n", + "Processing all the convolutional filters may be a high intensive computation and time consuming and largely depending on the number of parameters for the layer.\n", + "\n", + "On my hardwarde (1 Tesla K80 GPU on Azure Cloud) processing one single filter takes almost ~.5 secs. (on avg)\n", + "\n", + "So, it would take ~256 secs (e.g. for `block5_conv1`) $\\mapsto$ ~4mins (for one single layer name)" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# utility function to convert a tensor into a valid image\n", + "\n", + "def deprocess_image(x):\n", + " # normalize tensor: center on 0., ensure std is 0.1\n", + " x -= x.mean()\n", + " x /= (x.std() + 1e-5)\n", + " x *= 0.1\n", + "\n", + " # clip to [0, 1]\n", + " x += 0.5\n", + " x = np.clip(x, 0, 1)\n", + "\n", + " # convert to RGB array\n", + " x *= 255\n", + " if K.image_data_format() == 'channels_first':\n", + " x = x.transpose((1, 2, 0))\n", + " x = np.clip(x, 0, 255).astype('uint8')\n", + " return x" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# dimensions of the generated pictures for each filter.\n", + "img_width = 224\n", + "img_height = 224\n", + "\n", + "def collect_filters(input_tensor, output_tensor, filters):\n", + " kept_filters = []\n", + " start_time = time.time()\n", + " for filter_index in range(0, filters):\n", + " if filter_index % 10 == 0:\n", + " print('\\t Processing filter {}'.format(filter_index))\n", + "\n", + " # we build a loss function that maximizes the activation\n", + " # of the nth filter of the layer considered\n", + " if K.image_data_format() == 'channels_first':\n", + " loss = K.mean(output_tensor[:, filter_index, :, :])\n", + " else:\n", + " loss = K.mean(output_tensor[:, :, :, filter_index])\n", + "\n", + " # we compute the gradient of the input picture wrt this loss\n", + " grads = K.gradients(loss, input_tensor)[0]\n", + " # normalization trick: we normalize the gradient by its L2 norm\n", + " grads = grads / (K.sqrt(K.mean(K.square(grads))) + 1e-5)\n", + " # this function returns the loss and grads given the input picture\n", + " iterate = K.function([input_tensor], [loss, grads])\n", + "\n", + " # step size for gradient ascent\n", + " step = 1.\n", + " \n", + " # we start from a gray image with some random noise\n", + " if K.image_data_format() == 'channels_first':\n", + " img_data = np.random.random((1, 3, img_width, img_height))\n", + " else:\n", + " img_data = np.random.random((1, img_width, img_height, 3))\n", + " \n", + " img_data = (img_data - 0.5) * 20 + 128\n", + "\n", + " # we run gradient ascent for 20 steps\n", + " for i in range(20):\n", + " loss_value, grads_value = iterate([img_data])\n", + " img_data += grads_value * step\n", + " if loss_value <= 0.:\n", + " # some filters get stuck to 0, we can skip them\n", + " break\n", + "\n", + " # decode the resulting input image\n", + " if loss_value > 0:\n", + " img_deproc = deprocess_image(img_data[0])\n", + " kept_filters.append((img_deproc, loss_value))\n", + " \n", + " end_time = time.time()\n", + " print('\\t Time required to process {} filters: {}'.format(filters, (end_time - start_time)))\n", + " \n", + " return kept_filters" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "collapsed": true, + "scrolled": false + }, + "outputs": [], + "source": [ + "# this is the placeholder for the input images\n", + "input_t = vgg16.input\n", + "\n", + "def generate_stiched_filters(layer, nb_filters):\n", + " layer_name = layer.name\n", + " print('Processing {} Layer'.format(layer_name))\n", + " \n", + " # Processing filters of current layer\n", + " layer_output = layer.output\n", + " kept_filters = collect_filters(input_t, layer_output, nb_filters)\n", + " \n", + " print('Filter collection: completed!')\n", + " # we will stich the best sqrt(filters_to_scan) filters put on a n x n grid.\n", + " limit = min(nb_filters, len(kept_filters))\n", + " n = np.floor(np.sqrt(limit)).astype(np.int)\n", + "\n", + " # the filters that have the highest loss are assumed to be better-looking.\n", + " # we will only keep the top 64 filters.\n", + " kept_filters.sort(key=lambda x: x[1], reverse=True)\n", + " kept_filters = kept_filters[:n * n]\n", + " \n", + " # build a black picture with enough space for\n", + " margin = 5\n", + " width = n * img_width + (n - 1) * margin\n", + " height = n * img_height + (n - 1) * margin\n", + " stitched_filters = np.zeros((width, height, 3))\n", + "\n", + " # fill the picture with our saved filters\n", + " for i in range(n):\n", + " for j in range(n):\n", + " img, loss = kept_filters[i * n + j]\n", + " stitched_filters[(img_width + margin) * i: (img_width + margin) * i + img_width,\n", + " (img_height + margin) * j: (img_height + margin) * j + img_height, :] = img\n", + " return stitched_filters" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Processing block1_conv2 Layer\n", + "\t Processing filter 0\n", + "\t Processing filter 10\n", + "\t Processing filter 20\n", + "\t Processing filter 30\n", + "\t Processing filter 40\n", + "\t Processing filter 50\n", + "\t Processing filter 60\n", + "\t Time required to process 64 filters: 22.710692167282104\n", + "Filter collection: completed!\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAJCCAYAAADgPpLrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3MmvPFmW4PXvHWwefH7Db4iIX2RkVqlbzQYJ9khILTaI\nDQ2iWYBECQGLaqSWGIQa1LAqEBIbpFqyQixZIMG/0BsWZGVlVmZE5G967/nsbrPZHVi8JCuFRHd2\n0Qoa6X1W7i43d7Nj9xw7fu3KhfeeFy9evHjx4sWLF/945P/XO/DixYsXL168ePH/Ry9N1IsXL168\nePHixV/BSxP14sWLFy9evHjxV/DSRL148eLFixcvXvwVvDRRL168ePHixYsXfwUvTdSLFy9evHjx\n4sVfwQ/eRAkh/qYQ4udCiF8KIf6jH/r7X7x48eLFixcv/kkQP+T/RAkhFPAL4F8EPgL/APjXvfd/\n9oPtxIsXL168ePHixT8BP/RM1D8H/NJ7/633fgT+R+Bf/oH34cWLFy9evHjx4v81/QN/32vgw+88\n/wj88//3Nwkh/gj4IwAdRP/sevMKG4CYBE5OaBPgPAjhMR6IHBgLhHgxEk0wqgDBhEZivUcIgfSK\nSQqUtQg8Bo2MDFiN8xMoiXAKaSfQIGwA4YifNE44HAppHDrwuEmAAKPEcxCNQGmBt+D1xIQmtAKh\nLG6SuMAjpcCMIzoIMEgQI4GVgGBUHmEhtJohtIBDjJ5AKiapCKXh4f17Njdf4rVHOQ3S4r3EOYvy\nHmQAOJy3IJ4fS++wSqC8wHhPIAAHTgocoL3ESIuyPG+LwOHRToASeKcQ0iC8xwiFwmOsAyXQUoP3\n4DxCOLxQOO8QUuInj9AgrcSKCSEChJiwXiK8QgqHFwLrPVoKvHVYHFJpcB6HAGFRCLAOJwKEm1Aq\nwHmHVYbD54/cvr0F5fFOABrnpufjkgqhng/WOlBOIfBMWISUCAkSh7UaJSecVPgJkBIvPQiLHgUG\n0KHg+cQKnPMIpbHOgRcgBcI7PALpLJ4Aj8UrhcSA1wgHCIPzGiEM3kmEFHhhEdIjvcQLifOgrENI\nMAK0USA8VluEFVgvkeJ53GlncEIgpMRZh9eS/XefAXjzeoUcJSII0OOIDx2IiMl6tPRIRvAxfvRM\n2hFpBZPHec/EhNYBFkOIgzGk1wqBQVsPBBgFoTMMyoHSeGOQThDgmASIIEThMEIQjo5RT4hJoWSA\nUANWaoyfiPoIg0FEAj9phJqwJkAwoLTAygAhHQrLaAKUlDgxEBmFcBIjwAmJlT3awqQVMQ4jNGoU\nfLd7fC46X97ipAMrEc7gtcI7ixfyN2NE4L1BIBHO470EPFKDmxQOC0Kh8XhtcQ6UFDwfrMfwfM6U\nF6A8Do0wHqcE0oHH4rxHeoUMBMY7cA4tFJ7n3DFWgNZoLBMeNQmcdAg0EoMXAiEEGI9FIcRz6mnp\ncO75c5Ae5R0IcEI9D1nlkdLjjeTp/RMAX71Z4a1EIbHO4ZX/zfgVeC/QwmKVBauea56asE4RKIN1\nAUIYlBPgNRMeAotwoK3CByCNYFQjwgUo6UEI/q8bHh4P1iGUx/kAiQWvkMLi4Lne4LHCgfQEXoF0\nCOeYkCivsMIjnUE4jQs9wluMEGinccIj8XgsWAkCvLDPx0aAlB6LRVsgVHz7fssXb1fgHVhwgUI7\nj/ESiUMKgTUeGXrM5EE953zgJDiP8RalJN47hAiwHpATHol0CqF43idvsZNCa4/1Au8nhJDgxHPt\nlBKNx3nwgPP+uXZgnnPBPV9bEBKBA+VRUmKdRXgQTmA14BVKOIQQOAPeW7wCKRRYg5YBzhrwYKVA\nK4W1E0pJrNd8+LDl9d09yknE9Fznvf/NudIeaQDtcc7Db2qzR+OkJVD+NzVUgJMYLIF4rmFOOZxV\neO9RCJwzeAnKa2QAxv/mHFkJgQUrkB6MdugJkBrjHCjAerSUz2PUBSjh8FYghMdJwAnQDpx/LtE8\nJ4vzAi892vBc49E4Z5FK4iwILZ5ja5/r6r7aUfet+Ec1NT90E/V78d7/KfCnAJv7r/2/8Hf+hPD6\nyPI8sc0guH/NxJWNEdBXVJ3HLr8gHD4Rqtd81ANh3XPbn5GbrwjEle92HREWcbtm/qniFCXMg4in\nza9YX1Ps8Zawl4SLilOWMW1bbqIDdZ7TPiwJ3wxEXUfZzXmor0w/ScmvLe0xxr2LkePEndnTnm7o\nKk/5qkYOhvOgce3I6us5cic5pWeUD1naFN811H1PF5QsC8Uub7lcJYH3lNXAIsyYNiWubkmCz/zX\n//Hf5d/6N/6ES9kQKINTEuME6blgnxxZC1AXSTuTZDphmi5UYo3SFi9r5sOM0TUMQ4ee5nSFYTSa\nYjijihCfzgjGHX2VU8cObMpygsBUHMTALCzoi5qxivFmZOM11ywkHC6EzT3MtpyCiPU55RgElGZA\n+iO71Q3LS4fuAppFT6cSRi3IxUi4h0OUM9Mtbd1TrBS91mTnkcbkdIsjm8uaLp8Ye4lLTyybGTKr\n+G/+3h/xt/74jxnWFWOTM5OC/fzM5uTo9ZzLynE/wCnQiKfxubEWA8WYQnnk6A1rE9ANnpwlbllT\nn1MGWxOqkuHGEF4CCh44JznBCItw4GlYcqMdgwRLTX8xZIHgmAbMR3DDjE5b6Pc46dhkgrOdQ3BG\nVAvKzYRtAqQ6Iqol6IBAPbHt5qhbT9OduEvWDKJBtpZzowjCgVxHNGFGbCykNYHVDDogMRq/8/x3\n/97fA+A//3f+bRp1YP7YsmnfYuRHvn87J48bbswX7HcVD8xJ3n2m/GlH++od9/ZIhIRtza9uF6xO\nT0SrHzH0H6kyRzFq8iblUo6Ql1T7ifveElQjv3qzRHRXfiyOnMsFT8OSH133DJuY79QTCyVpP/6I\ndOjwi+9p67/B2+7/wH6TM3Qp0fbM9PoN5RjSDIom+I4hvefddxf+PDjyTnzDp9Twk8uveXz3Ban5\nObq84eOfl9zcK3Lt+WltWU479PodtDuUn/jbf/9PAfhbf/K3ydoDV71BJheiz4bwTUmtJtKdps1j\nFkbQpg2qDrj6I1N4gxxqlolnf2wJQo0pICMjcHAIFenDgXSVco4H0kmQPs1olhWuXuG1JzRXxmJi\nsIJZ6rlUM0pfMcwz+l1IqY+4zJEeEo7CE80mzKUkXnWcTYdqNty4iqdIk4WOYB+jVldO6cjmnHG+\n9syF4jxbsbgajrcV2V4w5CE+OxHXa8KrZzcLCeqK//bf/e8B+C/+zX+FMAZRVLh+w070uCljZWvE\nHMagxp0TAmFJWfAQDwSnK2qcgb7Shylx0OGjkaLWfFYLNrXhvFbko8DYjuUosGOAuRPobYnnPV4n\nyGbOKC883YQUyROp9USf54yvRuSYMYiU4GwQoWPId9T1DBtWeDXn1bVDLnKupkWGgnInGW89n23C\nl6ZDmJ7ezam7iTxwBH3MtN5zGO65jX6FOn7Jbm3IRUczJWzsDf/qf/L3+Q//+F/C+5pUSkyxxNgj\ngdzQHWpMovHDSKJ6en0Hly13FIxJThAKHs2eV/HI0xCTyBIVQKxbul2LLjPqc8+sLLgYycCAdmfm\nmzfUdQ+DIZ2PBNuO4+weezDI6MTNlNDejIg2JxkiLrOJYC8Jwx6XJ0ze0QnNvIHejcT5iUO1gmGi\nTKFeR/j+jLvOKDNP7PdMjcL0PUN6QyJ3NLEnlzf0J4WPjmTKcY5S/u6//z/wn/7Nv4O0z02gxqJ8\ngxQhdayYRkiClljN2R4aZhvF0HZMfcpsveDU1rhYcXOOEaXjqflEvHqLfzgy22gedp6FdvTrCcUK\nSchQTbjphI4EsZsQ4o5edGAvUISkp5RT/0RRzvGZIRpCpJxxiM+sri2jCzmrgFg5ZqnmeIwJogu5\nXjCYJ8ATS8FwSOhIKCPJxdUsJ8HBDawXK67mkVLeUcU98bXC+zX/2f/2X/5e/coPfTvvE/D2d56/\n+c1r/4+cGzDDnlxr2jc3hMmSpDvS+TmqG/lczejHiPr7LS4CVw28ffQ4cszrgup65AMn8kYRtBM3\nvSBZr0lzx1btSKxDTHfsNjv8m45gplDikfDNgJu/Jb2WrFafWRMyjJ7u/kRcdtwOH6gbTfHOIL79\nnvX5wONuIhM73BeCk1LsrcFvIm6DgsA2BJEm7u+xM8vnzQP21QX3o4TFrOXQekwU8ONNjrhvmPKO\n7+57DuMD27ahkA4AGZ7p6bnulqijwe8GLnNL1FlMA09RifCSh2PAMfbEsqEIBsbLSD8ecHogyTYk\n8xgfBuTyjHeCQeVcH7ccIsl1kRFFGsYzx+WZp1lASUZQjEy7JXk0Yz15dqEkbCyX2R2X9YFDl2Om\nGVst6MYHzvGAv7khERe6wPL4OmZMY8QguK8CpkPH0XfkauBiW1ZO0T41mDHhME8ZVyfm1zUH2yG7\nI3ZukO2KabzS7Z7HRxheuDSwQjPcekyYsVOKyErSJ0srFV19Ygg67E1LISYu0nGIctJshkAhlznV\nUtBNBhVbcjkxKYG/NJh5Q9/fsmhzEjlyOKwpm4rTRaE6ODeS2JaM4RLakN5bYnshbHrc7ZqbHPaR\now8MszhD+oDr2SOqkEMd0N5aumXFyQqmUmL9mahVnGqL60dkBnkZg4mJrMbXA2EM46mgJ0I+TdTu\nQhNPv82Z7lRzc3xFGoT4f0Zg9Wv6fuQ0BFT7X/K00dy9gs3PHYvFnHeZwIdXDrlm8q+ZTXNU9SPC\nuGa2qxifNohfZ+xfrbhmHeoXljeq4f1U0q1DNqXl1W5GU0L63ZkfJd/Si5zPpxXfmIJ89NxsHrjL\nU7Jxjl39nPD2LUP7lvrckU8RF/9nPH5usMsdt4s3ZC7mLzYLpp+8wSUjNsl4Kr7AVwPXDz+CqmGy\nLbvFjs533JY1VfI17f7nlCvFdp/9Nh5z5QjahCK2qKsmigWmCdGfM7p1zLx9ZHf22LMhqBV5G6Dj\nPXk5Ul067pYlRRySktB3V6YuJr4Y0IKjLFiNGSIIOQQtWhvG+MiiuxLYDN9HRKYkfoK43ZNICA4d\n6dpR9znmaNgXFSyguzrSWBL5hKwKkaFjkJqguFJIiRITppGEuzldn+LCDeK1gOQzp1d7zG6OWpbI\noWFQt7QJTLrFmiPpvf1tPOpJgd7R1hFtUnPTa5LJoqKI5hTQ9BnmmjBOjkt2oPzoGLMN7rZG3q54\n1fU0rFjWklPmWM0/Y79qoD8wmopZ0tFlPWM60kUVY/YBITIuC4P48jvEquXuPOFtht4qlE84monr\nLmc8R1xuR5rZlVRE3NewsQs2Z81oI6aLZmpD2q7muIgR8kCmeh4iy2mmwWqiMGE0EfbthZCQWbal\nUUtqf0CnNfIQclNP9CZ8rqm2hz5EXQKavsVWa4pmhw4siWpIwwWmylB1TxjN2IsLUVZxiVvKsMBV\nIetgIhjPxE7hvcCKgnCs0XGAutRMecVtFxP2gsPpTFl1jM7Tbg1KrbDdlftXjsTeci7O1GdJX1vq\n9kgwNVzUFj9BZFqkDXHbCx0PROOBXjrK0pNmEW1xJdkaMu3Jxwklex7PcCJmCF+zHAx6saY/QXDd\nYxeSdJHRFbfcugYAdX+mcxfUTcYwHzkvV9RZgfER89HQ9Bum4YS3kFRzwnbO6nbF9WSYtTVR13Ly\nn7gGLa65RV1HIi/pLi2RKOnVgPiY4A8D8VCDdmy8gShB9IquOmGbFoqE8Fyie88qeU0iHDEDp33F\nqC7o944hhHMU4esrQZShZUS0VCT9EkGP8iF0S+qT4ip6siwgCARjHGPDnNWrWyppcD7koT0zXirC\naMZl3hDw+60X/6GbqH8A/FgI8U4IEQL/GvA//8M20JEkrEcGOyeVGkGBFGuS9nuemhHnJSqbcV8Y\nLBsOcU31BzteLTVXtyecekbvaHzN+M2C4fyB9/JMGl2YSUvbRnS54ZvdPeeHE9ftERs0eDNjfzxi\nuorJLPhl2ZHdNwwostBxPaxRs5juo4bbt3TlAvn1HfWXgkBWjO7COBupyyPDO81nA8fsjF02jL1B\n9oKPj3OOTcFJS6rlI7emZ7t/QO87uvmaslsg2oA3Yoapn2cVP896Ch3jN4aGOelaUHZXplDhQ0kZ\nDngcy1tDdsrRUQjUrHwOE4huJBgvfI6eGM6ewVkyKQiHKzdhTD4teC0scTMSjJK7fU4cWUxQ0p8d\nw92JQTVMQcks75ikIahrzNkQbQRp6lnPBdn8jtUI2+OB8OIwkeD2cMK6Kz709FlFEihWd4bMORbd\nkj6wBPkMWzWE1UTWBygHN/MBNb5i1QUUeUOQS+r589B1jSCLS85pR/RgiPcj0gq20xGjIqpDTRh7\nknFk1o/Uc0u4diSXI2nVcloNBJElCA5MOkW4I+1KQWYROkFcPEI/QNByjhXB/InoFkTSsU9GXumE\nNGjQ+RZpHLIOsc7TpmfWhycuU4LqF8ggYXuIMeLEfDSclaOcLxlGweWQoWVMKo64o2aDJOxCerNm\n7xOCKsCnBUfvCEXLfjxjxInAXjBSkHZrZqb9bc5kZUbYjTRv3jD92XvqLw/8aJy4+zCyu5S8fm/Q\nSPq3S57agp9ef03tZqyfND8bHtgvLpAHPFQd07sVX999zz68cPPpFzj1jqP/RD9UBNGZsJhBLYi+\n2aM/vKL9gz/AYRGF5w+6Fn1tOWnHQVRwsuzairCKGFcPZPrKbPEl7f2VYPob3P91w+ka8u3PD+wu\nP0OeR/LHj0jXEX/4nkIekPXE1T/yYFvi+5y3dcB7fWT53QnnfkYfzPl0CJHr4Lfx2F+PcGcRp5pO\nK7ouoPUWkdSk5yeaAYqbATNGXAKLchOLRuPOc9IoRQwx8dSRuBGnMuzsANZQLu+4uRwJt4rOeIxo\nkccQJwP2YUx3u6U0GSLcI2cz/DKjTuZ0kyMfR1TZYooN5bAh1hG5WDE1I+os8ZuIZQxV6ChVRG9C\nGt0zrCzZUBPcacbkyvYxxl5B9CFhtkXLliHMmdcdyo5EmwktRi4H89t4TKuJrbojrVKKCqoxodv0\n7LqQ2TQQm4ExOSMsJLpGZwYt9mT7GYk90W1K8v6KmzJUt2Yy99hvBYFc0QVrLpXAmAK1ain3K6Zy\n4hoKys8ZbatpZc4pynG7Aqsy9ssLd8Mdc+8IX/2C2/2FpFc0SIbAk0RP1PcD49LSxidurGOeenp/\nxTx+SXjVhFPCKCVXe6VaP9ALi/oAT4MneYLQC5pbQ9gn+DLm7AdQzzGZ/C1erNknsM5TMrnjUQWM\nUUd4uiXszizXASKucPMKUwR8uvZIrwmbIyfTYUxEu15yzEYGI+k3NVOfM4QXDvew9jnHpWVGgU4m\nrkXG7Swkuwm4BgfyouZ6ChB8YBCam7VnehUR5I7TYSDKU04bQ594fGbIX3tmSUYTB3RTwaAEg62Y\ndgFd1NAfMspZj1aOLNSsZgWEj9SlJjifef32liryRM5w2SXIzuOuOQDdtWTMA4JdxzhazPueIjgg\n0VTrGbmp6PsSFS54nD4jwoBP9QfSTUO/KWmcZOkK8m0Nr/e0wRG3mpEsS0y5JclvMEVDejMwxmey\nWPPZKhINVWDJJaRG4i+Ort5zkEfM8sTDZeBwXOJuC/TQE4Yjw3Ykdz0bp4hNh50UzdOJ0+KCGK+4\nRtKYEeEKTBhgnWOIz/h2jxUTnd7R7UfitCBYzAlsyscAit2IE+r3amp+0CbKe2+A/wD4X4GfAf+T\n9/6n/7BtxCjRYo0NLA+7PafwE93uSrPy0BreckbII2PhOZuPTEXC8Oc5ftijdjnYW7LxHeXNHZu6\nZK8ksi5wv/Y4E8Mlw157ejPg7ISrI2jekfYdtxN8flNxDK7MhoqHb2dE9ZKgk2RvLgxzy+KLlmD2\nSN0dyDghtini0BNUsHl/x1dPdzxWZ758XLJWIeudIcuXFNsNr3xJ8NTT+Jh5E9HJNeU5YtFkeNNx\nE41oBfFMk0+vAFhOgrRNWMsDc2fZHR3b0iKARmgCZZiuDvlYkxWaeoBjf8NBVbTzNZ3MqN3EwjrK\nVUUw3iFSh7GOXdCTTRf6o0YYwRAFDCokEjG9b/FKM3+8IbSWY2i57Bc4L8gCgydFNx1TXzO2DcXo\nOeWadBVxcBPGpwxhSvm0IQ87JlXTLg3Ho8T7AFHuCKIQrTyLEuYyYDonhFayi0KiwDHFR6DnEiQU\nagAg3CQUscTmjosNcJFEqJ4kSHD5FnMXMjUR6mbN+eQYfUzbGYTV1NaQXuYcjwLzqIgnRRhFTEFC\neN0ycyFR2WLGFf58QSjLeL1hrA2JTciOhlbWNLOSoJsR3xjStUfJkiCbQ6JodYvvLOszZPpAnk8M\ny4gi3VMfBPOhI0tq1KIkOxeUYcGhcLShRTaKRTVwki2z3kIGKnXEdUicBvRjzLRKGPsj1e/kTFX0\nPL37RG53fLvecPq+oFmUVK8tr6MLe79k++Fn3J33TIsLkq+JdjHn8MBfi3peHfds+18Shxmmc/zZ\nFsQy51e3b9GPf84X8q8TFGvsqxNefUuy3bK3c4LVGc3/zq/dN9T6Cd/+ku/zrxG/XlB8t+IQKaJp\nRphskN0X6F2OSXtq8Ro/nXj4xYKkC4h+cmY5CFI5Ywre4Jua7E7x4QTHeKJIM2L/19DGUv2qxH4I\n+YtkRvZUci8NN3vLOvrLmSixUDx0Ey7OCdMLOuwp0okqyqFcoRYpowkJpKG0Z86Rpu9KfNpxdhO7\nGs7ZjFMMCAeNpjQRfjxwIWHyPZHwBOmCScbcpTGl7yh8wSV+ojQphBBME3AmNnPsBPEkWHqDyi9M\n/nmdU7o8Mt0cGBvodj1OKEZrkGFPMitwwtDdrxDjjrJtSNORORFxIxH5knofkncWM8ao04Blg7gG\nuKH8bTzirkC0Pa037NaORn1iVgti7xCTR00rtA7wpSH++BWHecO6BpNPXHpJ8BAw9wOX1DI5SVxv\nUa8EcOHG7GGWk1UZ+6d7EO8xSKKo51zk4L5k0g65/EixqNi+UigT4AbPPjfE/RLrc3yTEk4ZItP4\nMWI2pvTDgG8k3eqEvK7I84nT3SeMz0k6wV3bYJhT7nM2+syncMYbPeHy5fPaKv+KRl6osj2ZT3Dh\ncxMVzCaCeY2QI9or2vw18rqhsAVjvuWyMky2J5vfMK8j1nlJsJhw1QGtBC5UDKcG98lz5yN0JPFj\nwGUlWQ0Bzs1Rsad0nlaGlJ0hDBT+aUdw6ZnFHm9SJndFTRuCas7j54RyslzSgHy1RkWSopkImgg3\nnWnqnoepI5SKoOvp/RExOYJZz4qI20WIYUkTaNqgoDmNlGFKVTcMyxWXc4XJCnTfEK32qMuBc/j8\nQz2cQm5swDVQWBOQRhIjN8y1YGDkYCCfl8SzGiUEetxyU8SEjaceOuJ2BC1oXcH6+IZ1sKRVju3R\nUrgZzdTgBkX7fYiuA8JHg5gE4VOKEYZDasmilNgZsjdLVsEr+ocEPb9BrA2RtdAJRnFDcLdA1QXB\nm4juOvF0uBDkHVljcdrTJTlCh1R+S5zPiXjifC0IbyKq+ZlLo3GvPNX2CCdBfmPJCNivJf73bI9+\n8P+J8t7/L977n3jvf+S9/6/+ke/XkjCriKVmXMwJOxC3HW8/rMhnJUZpfJxztIZyYVmlA/N8xudt\nio5uiRc7ZqeGftdziH/J3VBQnFpy5uhCEs8Msqzp3l4Qdxvku4g8gn1dMMZ3rOqI2zAkax2rmysP\n46/opgTXF6ihYjhkTOcFUS9I3YQcKur0NeHiKx6/+sx1tMw/CX6VV/wiuLCTOeJiwFo+Ld+j5obQ\nHLjOCqLHJ5Addgar9pamb0m844M/ML15vn81dBEVF6ZLis1ORGmOHBWbJCEZHfs+gGhF5TRu7Aia\nhsIdWSU5aXVmmhtCseGsBHJQDIsLXZNR9xM3U8H5GmPVI3Hf8mocqAqHf+wIQ4kwLQGPmD5FRg3h\nzZnGTEhC7CwFHRD2ilPYcIkHZmND3Snmfo4ae1xywdzXDJWnOS9Y7gSbpUMUE3W1xHYdIu0ZTiXK\nD6hVQBNYwqGnTyzDY45tU4bughPPMw3G90zTFj8o5JsruR4ZyhlGGrJpRdQZoqIjniz38oa7vkIH\nHSIqGKYN0lxIRUi2mnO1nn2kmT8FiPmcNqzxVjGZI6f8nnlXYPVnplQymoHoZqLNNerasVdnTF1g\nLFTFDuUNdbpifr1htnRsA8coblH9DGElXWDJlwPnsSARluDc45KGoZQMtSftPDI09F4iC8ERw7Ie\naYKAbrWkUyH9NCB3FddYMZi/vEiquubNU8Lu2xoZSL4JSoyHL6ICMVvTqwPr64wPdw6jE4rokfez\nkIeZ47v7giL4MeIPb4lNRHjO+XFQcr8vuHt8z830B/zy7RO/yB9xv/qCX/KHRPErbHuG+C1bmfJO\nO+h+zM824OuKcq6Ib2uyeU+1UdzJmG/993x890AlIY63MNPMvvgFpf+Im77Ed1+SZx8gD4i+vOWT\nO7J+c8d0O2M2Kup2oDO/5ngTMF8FuH5Oli2RQ03xxcTi+jtF5MlSssHnNbrfYJMYxIll4zkMB9RB\nIuOJ0fb0mxLnc7S44KKQuM7wyZF4gJlV2Hpi1g0od0XLJcJKhlvPRIJrY2yacBwHOqsZxpyZylFK\n0Z4MYxwStEv6pcW2irbMmU4Bl26Fdju6xHKVOfZTSdZOpHTchmC9xe4N13bAeYWbtsh9CRtFkiq0\nmjHFKR6L9AZzG5GIC/V9wdHvWKmYMGl+Gw6nGkq95PRacftdRHkXcvURehJsl2vU/AN+3TCmhnPa\nctdbkCMy6RFJjykMTTqnzyLu+icO1zdcTiVeWA4mJ6xqPoUnSrllJ0uCpxWBz3HziVFdSOqK2WFB\nYGcEnzLiZY8sjgRlwLZecpqPJD7FhBPUjjYLuFwNd9clQx5zFTNO5UQtFAlz5OIjImhxD1+wUVBp\nwz6coaIjW7WiVw26ilj2HxGEDORU8x5bPtcQK64IVZAbxflpQI5XzHqLjQPKfI28BEifkFYQLmaY\nMUBUa8y4YtuVJOt7WC5R/jOfdp8YPx+YyyXLqEavFtzUJ6ZR0V87smzkOkq6uub6qqRmwa4rKM1E\n34XUc4VpAiwVAAAgAElEQVS/sSQbkKInTjv0SbIIFZOdML0k0DNKl1Cakj7oGGxJdpSsZyHLYkYf\nXTgYj2/3hLuJIB4xc7CnmNtc030+sE5C0nNJZwTl1YORrOLn8SHUwCVcMU0dK53BHOpRchw90dYQ\nqwB7aJkYyJjTlhGaGeQZZZ3iwiWtS7j6ETe7cJYd2IFVZgnjlhs5J9CG8KuSSmuCVYQqI1y5Zx3d\n8Tpa8ygb4qlgONYMxZ7l2xnLVjCvFQM923Gi1h9IA8uQdPinnFwuCbQjnCCXC45+YhUEyK4huLkl\n3Z/xQjBfXEguioSEZWRQhMxev2GMHLvdRJpY4t2Ad5bfxz+VC8t/lzCW1E9s9wPzLwbOXYhLJ+Q2\n4SQ8WZHTHY58qd/Q//yEfRNxnhoQjmZXs6ajikfc1yk2Sfn0VhONE7LNST6HZEHCR3sgF2uim4rT\neKScEvKoZcq35NWa87Xn5u4158uZL5ZLTLfjFJ5IH2KComBhEpzt+fitwc4iGH7FqteEWcBYfITX\n99AKvhpnbN888upbOM1CXrWKj8uBt1rzeBCMmWR3Z2BIyJMjzYcr68QSNxoxzAEo6xnb+ZV8gMNV\nkfmAYMgAz2Qr0uiKiUOM6uldQbdqmUaPa2K8h0U3Q8yuLG2AqzuIBBMBi0TSa0Xcg80WHGJB4Dqi\nriUSAT6O2IkbNrpBcSaQG7x7oNwkNF3M7NLSSM8ySzGngFnS0esQ0SSEeYeqPFW+JLhUxMVE0qY0\nXcjUTvjBIFaKtF/wyY+E6088XG+RTcXMG6wqGYUEUjrpmQ8xw3QGQG0Tzj8ZiS4RvQ0wTIT+BBTo\nzKIYyU6OczfgohqpUrLOU3ch8/hCPWpmmUKKC3rWMPNL9s4jW8kiVTTXiHTuSULPoVUkq3uqZk94\n42AQCN3QW8nd/g4/29JdCvp7j6gUvjsRiCXjUZFmW0pV4PqaMxJT35LmF1Jh6Po5Ds9YKiLTEZZQ\nBgrDwKUzLLcDYeLZiYhkH6HkgXAmaWY3mJMgzDqk/Mu5qDfvCx5FyaufeMRkOAxXSj/gvGQaXhFm\nnymTG5rzAysVwWGiTRvS7cRcGr4bv6cYW+Lmnu++mrHpEo7Sky1eEZrv+MaC3n7FTnymf/+On6oL\n764zGvuRPC9pUBz6X3L/lWD1U8soJj4HBfNRkd/O+P7Ssyw0+/2cSV8porfUoyG/vUUHn1EPHeJW\nIKs1t+8bfqFCyvgP+Zx+x9efSz59Pad47DhmK3Lzgapa82OruQaa6fCGCwGn01/WkKVY04wVHQXD\nRVIqjaznDNGRW3/D49KwoMNmIRwUblYjgpC0vRCKOTtbErqBqrKIIuOpqllkICdLvBacgGQHUp+x\nWjGdFfNAEhqPK2pO3CLlI3p7iy13bJol22nEP0qqbGAZGZogIAwcuVecbjVjo+nF8606IxxB6JBl\ngBgHYl/iyh52FiEcQlmCsSONBOfblKnrMK1AFQ2RV/RzQTYVv42H9QXpyaPimutqRvO5ZDbbQhQQ\nmwjMklmn6IFaRLTtnCLXXNuRt87RTAHBNBH4Fq8EoTQIeaCoV5j0QN1syFa/xlxuUH1Ok3QM3URW\nDoyTh3BBZWLE1JP7lssQMPMFvuopRklWxxxdR6zPjOYOc2m4tS1DEkMHBsjzK92nO8zCIa6W6s5y\n6h2x35OlMNt1XFmShTWkE08yIajuKa4X0iIjkdCennNGfZKMUUd+4zEK0nFA+IRZFPD58wF1Z+nO\nHdUkCU2AGZasYoELWlqtqD7tkCSEd4LyKeKqS+7NE1OlcFXPedOyqjynaEHiYGZKmBxqfqEVCSsh\nGGvN5osMb69cx5b04og3C2wVEYc9/pTS9AnZao/7FDNQ075+zapyqIVBHnNOlWHuI+rqBpHuOU5z\nNm8cYx8Rao9Iei5dSp+lvD9uKZchWTXRxRFxmbD/eARgzCXDbstSLjg5CKaQMW+5K1OMTThHMWMn\nMCfHlJb4IYVZz/Fs0bMrTkvqR3iT37I/GWZxhU8TVKMQQ8iHZEu8WdM9DJT3c7prx8y0XK8OI7Ys\n1m9ZiSVPNwPhx5ZLPmP61DJkFxZnS34XMxaaeWkwRhH1DY9hwcJ58nlJU+e4WqCD1+xXF8p4RhQf\neJonLCpN2wvyqWaMNON5ZPlmTXeZeD16rmlK+3RmUhmB+qd0Juofl9Caw7BmtUiR1xY59YRhRBsF\n3JRHsvOB26LAI5hMzsk3TPKI7nJim7Bzc/Y3K163C5LvA6L6QjR0ZOmOQ7zjXFjuq5Tz/An/vkaE\nX7LbPJANI/UxoJ0PzJpb2ukz8WZgr594GAzF8JbV6xIzr2n37zFOk2S3aHXiJ+FbPtUl/STx1Qbx\nYOjVkYfUYQ+e/lXIdfBclo7o1w2nYEZ8uBJeWjanhNfSEp48pBprIpwPEd1zV1wpgQhmyCnittxQ\nBS0mMjxmlt63RK1ETGfs5HFlzLoDxA0bDhSzkMBvGR409SVCqntmYoNZ9+g8Y6oazqUh9ANcT9jK\no1NDZXraZkeYHnBXQxyFpOJKP94xGoHPznjpWC17bLslFj2VUXShJ77pGeVEm6V0dotzBfE24TCF\nEHmESMnnmr7zfJRnNi5CbiNCVSHnHadsxay9QnvFace8k6jZlnX9vOjPB5KbhwwpR/RkcGokqxI2\ngWEQMEhPp3P8OiWxKUOskdJxc99xSROSaKBOrlxOMcHDLdXWoO8norhiOkuMSNCZ5GF8ZFpUxOYI\neo4+romDAulusFLT+kf8ZcZQ1ATHkjiDm6SgKBpyY0jSe+TQUid3ZFqwGa+EUnIZFH19JI4C4nOJ\n8SXu4ugbx/Wq0DpBFmse4jkbURIuLF0059Bqqu0Ju25ROGy4/G3O/PydYlz/Bf76a6bR0n5jGL81\nfOru+G7a8lZPnPUOm0zIrWT/OuXrRU2Zh2j7FW/eeK7Hbzivd3w1/YKgf2ARx2SVwUcz9udvuByu\ndOMc4QZuiXn6JuapHijfj3xUDt+/42g8v/hqy6/VPelXDrfuKeqOO5ewzmdo9x5tH0m7jlg6rj+f\nEySKZjwQ6wUPd3B6m3AfVNyVnwmqezL/ltWnT5yblnfXGa+ib2Bz4bv7j4yHE8MfPvDRSuT6L9eI\nuexIHOfMppo0OyDzlFPWYxYL6nFPdNZwleiuollcWB5LbFOgYolRe2IqzgtJLiSL3OPvSk5RgSsr\nht2VpY2Z308UscX1AbeZZFoaLsme1sTYXUtwUbT5xESCXxqCNMbddsyzK9eDIzoIEneCB8vAntVs\nh/QXlsYxC2/QYYT9P7l7ky1NkitJ71NTtXn8Z3ePiAwkhkJ1dy34/i/Bc8hmNVEHQA4R4e7/aPNs\npspF4CS4Yy+b9QqidtWuitwrst6ZBh93dLEfNmazZT04PLIV7QcMlSYpVjZywj3BsiqkSci9nkn/\nE4+4faXOFlRuM3gzjhyw7xnxcUbOI5Xpqb2a4DEj9Q2ZGXrZoSLJr96GzqsQ/hXVbLk8OYhEYYsj\n9mDDfGSLxlURo+0zHW9E1oiRFta7xk0akunOGFnM0YzcBayD4BE6xEowegOtqulOkuAeM+01xynm\nnGi8sWATS47tQFs+szM5B3XjMLrEuYOko/dTrKqnBzrtMQhBXR7xeeC7V7xkwuYG0mM87r7fIU8L\nSim8co99+W770quV92rE3iakjcFrM9Yelshjc3pwCW7c14VoJzikB9KtDeMLjbTxwoJpMZjRYvZ6\n4l6w2jHpslC675RxS+XfKXMf17nyvly50WDdobtaaC1ojIO+BtidorMlt+nG83ahvq/ol5jOPRH3\nPSa1yZXhHM5kG8U6uPgHi20csd8WXL817OSCvFvka4+bDbj9jQ/xnjCXDP4JIUMuxZ1d9J2KGk2P\nGDys6UwU2gzVOzJX5FVHZ743lJGt2UUjlfNObO4s7cicr4yVYNslrDhc5JW9NXMdGhwzMwQ9uT+S\nBAnLPWcbCob2TGEerDrD9gzaCumKCattCb5prP2GWDWs2uYUhTgnn6LpsauF+83FWiV6t8GPJnoe\nDFPH6knK5J10ncheG9pw5PwlQnQtpawwwqHZPzEVKexeuM5nBn/kLbkwhSuLbZOIkOV/kon6X76J\n0rMhHSqCbGHTHFE+2Hpmnn5BiJ7CpFz9kTyR1EsP15Y0e0Y9fyV0BNFpS3zrGIOcwOx5GT8RWXve\ne5vpqHD0jVEFOKPFnJw4fS3Z9ie0MByFTb1kGPuM/+7QfxM8zRnKTpG/ukwmYrzNDD/EOKol3nXY\noc14rJk3JW0xIY8BKvP5oRJkxcz+orlWFRMlTX8gOPwe928F1sah3f1AO4+8frNINz6WDrkmK2mw\nYT59P6rRKrEKRRH0XMaWF8/D6R10qYiCE/V+z9R67I8gmprZ2+P0F3pzwG5c5sXC34NIAqzRoo9L\nstLC3BrarY1X+yy5xN5t6YVHsa4MKsMbQsLyyBh/Z4S8ccCbzkh7YMJi3Qe8a5eHiLGimnqncdoN\nwSJpHxK1CA5lzMZp6KIEe+iZWAl7j3s/8DSWnAoL1IUxXFGBxnGfSMOOMtOY0MLSE4+5oy0V6z++\nbyey0c8LvqeYfIXXDjjpSm0ylrvmUBnUPJNJQb0vOHQzJswoLiDrETc8IIDednF2N6zTiHzzcBqN\nLQRZ8EAJjd8eSSsLIyFSA+Nu5qYbpgdkmwQTW9iOhycsIrtnHmdu2sGeRuptS25WzJgwLTl6jKif\nBUwprtyyCSKMt6LdAXlpiOWJYrbYhhO6CbjGK9g1r8vAarfMUUeQ9HjaYN1mrHuA9377rWayR4HT\nvvCz/kS3i/FfXcrNiWe/5b84A7aqcXKNMYJb9E5SOLxqQ6xCJldx/hJy/BfFrnT59uWE12/phOZt\nHul+OrCj5evzE8cXC28tcBqPYIat+IGZiD+8l3j/5e+IQjFpmw/hK+KnI940crU1Y/Q3qp8mkpff\nkW3+G2WXs5tzAnfgy+2FQ/x74umV3S3H5s5b+cTqG7zdmf99+htZPfAp8Lm2P/OW/0JaZEzNJ9Sf\nV+Zfj/xp8zem0/AbHl0lGPOFLkwI9JamHjBCI+oWT8eMx5Y6dUmPL6xNgtw3tO3COiRY0ROD8Nne\nWnqpGJqa47siNg33dWZwLRxWzLmlVTPCMqAc1rkmno+YqybaKvJQ4Xolbr9SGhujOphGZq3QKmLO\nFEZEQICcNfmaISILvS0RYce2ksQiwu1blmigeCnQtxytSzI67HGm0jBFE6qQoDRG+4x2wdby6Z3p\nNzyc7Z45rniEYI83hFdSWANfW/DCkf37nvSiaRYHMx04UpFMHen04GM70McjkzIk+weyi7H9CdFX\nvD+DzFqUV2EGh6x1ORhNP2t0nVLrLeK6RacOoXfjU+HRlTX7aGBfvFO5d1QomLsY+e5yRRA5NY8l\nIPI7Xo8upVnovQOh1MzhQj/Z1LFBrhEbtyCtJOFGsAQpYXBnGR1i60yNxRptuGubx7ClbCHTX78D\ncndZEpsiXRnGgnXxyL7aCD9CSs1sx+RWj/zwhHvreX2biW0bP07oheCxfoGyQrsTHoLECpGbI8Vk\nM8YRhUw5hy5N2hGMsFQWa2xYKHFCyZOlUCefab3jHhRB6TLFNtf0TGMNrHGNmm16URG8+AyTIMta\nRuWgK9jcfYRM0L4Dyx2xNjRVQFVnqHhlfjzInZbN0cEVgmmKKBoPToZ+uCKHd1z1gfv3MVM8Rsww\n0SWf4O2Nox+QeA86W6HikOPJ5t6+kasJf9zTBTEOG07xjH3cUg09ezOxz44sjJjFp2seqLZHuR6e\nKliHhMc6Q5gRGYvVMgza4vkY4R6vXE4jsZKoscOen/A/TOS3nvvbij86pH5IJkBoRWg83FITJDaT\n77Abeoz0eISaOYjolxEpSmwDaZBgH2wc606QrAymJPg2EtzveJbPZhnYCp/O5Ajz/2kRBfz/oYly\nBZUo+anqaJwGvzxw/kvItN2gkoxR3Xj5YhEsDbs/t3yInnCmhkQLus8jRhnmMcL5u8F6Wpnan3lv\nYc0G9o8AzxyZleQw9QSLpnVbmBaCLuC289C/Llip4iJ9/NilZWC0JOK4QvugLfd404SRht65Ekyw\nfOs5NVv8lwS3r7n1f+eqWxYRcT0sfEgT1HzAc95o7j/jPO/YTIZwnknSFD4vfGtsRAhx+gKmYHW+\nH5XMPAar46AjstjGzAMyXXg+3rHCGV8Y9vbMMAWEk88dwezbDPNKKQsmGXEXDcb0WHaNNDDvFN1T\nSDQP2MnA5CqCeuYYFyRFhj4uiE1PaXL6ykebO3mXMa1PuNWJsBGstxHVNKxpSW/52L1DZc9QNSh/\nZOlmKly6sEf2N+LAxo1iVOzxtIRUtqTeTZhhi1s7BHgM7wuD4+FXglF3jAi2VkNsMm7B9y6qXzqs\nucNeS6J5wtrvKUufOtP4m4Cm2ePuA25rwU5syPWEf+uwDoZUzzxud7z7QGJrZBkSXEMW7x1XRVhm\nprvbPKSPepopfYPpAswlhmXglCc4mxvFKHBXiwcXHvUKJmFGIQZDPi44tmBZa+q4xlgTsXER7QxO\nyZqcWZKBcrhjexOdP/KIHsjlQY5HLweStuZp2IKB6hriz4rwbcfoCVwREnoDi9n9VjPZGPLJWpBP\nb1T//W+sTx5edAVxQT3Dkv3I+G823QSL43C6lZymZ34eSqJ8InA097+VmA8KzcS5/Up4qfjzbsvT\n6Vf01iYNcy7JG3f7SPvpC9fkf5Ct3/j66ZW3umf69V/43e0J7X/ChD2W/CtvpztWK5k2Id8+l6j3\nnmj6v7DimTB8Jv3xxpNfIJ/hMsUI9mwbi8PvfuVvt4HpzSf64SPjMeSXLMBKP7LMI2OV8t+2V5oy\nQ71MWNUfefmp/A0Pf+PQGYvlIejmlX0g8RGINeG2K3mqF9SjR7cLO1vyMB5qVzD3Nx72iBOuPIIU\n12h8DOVxZqldnHzlSTgUSmKWkF3rs0Yd9xFsJ0Isb6TuxJCX2DogmiPKbCI5P0jinlTOaMsQGs16\njSirHn1ooQXaiWUNsF2X6QH3yKZZKlLjMT0m3EEynA7UZxhUQC58TmlK1Losm5Q13xE9JPa7j/ta\ncVw2v+FR3Ge2w4hsEtrFZRo3WFuLoHO4WAFfE4O1iZjDATMKXjkxuTalm1DbI7qM6eYN11KhZon6\nBYJgwM8XrsYlNxaDLRjj7rtpYuDhJw+OccMSKIZqS5A31M6DRae0OqYpn+DqoWjw4wnclV3lwBwT\nbgbu4gktA05jjxN/QVglZ/XE/LZhbj1ma+JRn1j3FdeHx12CNilxrViwSTpF/yUgTg2uPxP2Ff37\nMwDOpmW6f0W83xAfHKbVpwg8ZH9jLRrKXhAcA3btmT6NCMM9ZTOx+jm8P0jXT0jXI+vAdgWmLzHf\nZozwGG4t+3XFnRcOborrhGS+QlkJKjmwVpphXjmsI7UZ6LTPJCR+4yGGCK1tsvOOjePTPnrmYkHf\nH/SOheof1P2NPu7AeqeozszGwi8FcdrhmJWlTDiHR+JQIcsVy/ZwTi3KerCOM6ln45qY0C2Jgu/b\naGOdkBxtprymXjNq7SAXj8wW9G8dZX5BpgL/btB2j2tGbuWFJjVsmpFtHDJ9SOnKC5VK+fRxQzk6\n2PMzU70iH4rjdmGjfeQqqMeAvtG4jkVjS9aHQLkRw9ZFLArhTNRjwWIs4s8hm1TxJicaXTGOUMiO\nrptozwH7ycfYDlkzsFsEJIJ4dHDCBDY7xjHGmXqkjrnPE4KYyUsZxAmnTSh6SbVW7KwQI/6TyHl6\nnDgeTzijJg8delFg/3BDrhF/r30+zJ+QgYW6+1hOwM8rqEYxmgBbL5j+nXi683XrsdwLarHjw3LB\nag4Mfc9tGRh2Fv7xCfVs0aYBm7HjcbwhhcPGDJT5SFOVPExBxcrn0HAWd+7fQqxdg1NohnpDaM2Y\n1eLxIeIeVRxVRPVmkb6FHC2F896QyI+Ua8PJCXDffT4sAW1+pVKaLn7n8UuM97ry0ryzEzXJw6dX\niu78nWqdi4qTE/AQOY24MaYWlikoZoV9rTHnjimZYFx481tE/kCJGWsjGYcJvxuYRcB0qSlSj0DE\n2NcGVbe0w0LoDoyL4cYEdoBmYjeXLEVPMG84bQcmvaKjEmtsMfGDpdvgxR3i4II80ZcDUd6yWQ2W\nq7GNZDwZOEzYlWQ4RBR6Qk4l1+lMExq8ZUdk+cjaw81c6q7H48ruVnN1HKIpwnY9zNZg5IwZv4/z\nRd6AMC9ok2FbAeXSMIqa3duElS80zyNDW5Jpi2Ed0HbAw4So+8gYZGT+loKIvq2/m3GGNl6guEce\nS9zg2gJ5HxgvHpYdoQZNfMrxypnL7spUKhanoV8VaQj+1mccDLJSmF3FGECynNj2mmF2WFuL2b/i\n2Rbd0mPh4900x1LhrYZ063PIV/azxfIAwYpsNly4YlkduDOTMgzJhSiNsd2R1jVkT4/faubbKeKb\n2qH/+oH5+Hv0l4WnpeHaL1RdSfB4cNIlbiT5kZJ//6yoCsWhMPC8EKYHkg8Vr22HOBxITwfyl1f+\nvV+x05afwxp3jZiGP2G7XziFknBRXP8U82nS9NaEHC/MW5fNt5bxi8Xrpz/S3ixYMvZNhTNtyWfF\nkifk0WfM1eL89xXr40L0Fxhebmi3o1AbmtsJv5a8uDZp+x98iToS64z++EA9H5nML1zrlPacoyeb\nn8ua6oP3Gx531yYxLanzwAlKWD3kEhHJd9SXA+XUMYYdZm2QsiO+NIzWhmhO2DkeoeyISoX0FurK\nkArBgiGatlTSJxEjVxzqzYASgoySwXjIMSCPt8RzjKsL7LplWwTclWCtLLxV0VYJQ1BjnW7sGofH\n6GH6HVnqYlrJTY+YzMeRHbay6FdNs0woyyWoW4JQMr5JsqUiv13pXUV1NbRDS6BvjPZId4IlbH7D\nYxNqXgOPeduhlmfWrcZ906yiYasXlA9TP5FWGTId8acW1wrJLjMeG+LRx5sVqXIZVU/xQ02nBfFh\n4nCRGLNlamOkm9PMe3QXYiclhdOiFlg2LdYSoGuPyfVZqobAu+H8sBB0K62ToEyHjiX34I3SGzDX\nmUFqrkoi8wS3WdhVOfluIdQltdVzlC3r6IJJ2ZcFU1hT7woec4pIgf0Mbwp3rGgzAU/fHdzLa4Y7\n7zFHCZNLEtw5KEnSCrxNxlE5pPnIrTsx9wK/u/KMR3IRODsLN3jHtlfe+zuVo7l5Hg+34fmDBYHN\nvDo4Y8vQNvQ1rInA7WfSsqVrBzCKcTYsk0FPDerU4jszszdj9INXJ+dbotlHksCGLBwYOsGwLmyS\nI7Xosa4G0UUop6WfA9YvDWbXsxU+nrqgF5vGbLg+Lhh5ZFUK2xim+0TnTTg6Yg2/e83F9or1GFGO\n4vDcEXo2uAtOKyHJEYODLRaEdgiDCikjnGTGaQWrVAy+QbyuOBZka0+dT/irRvtv7Peai15YbYtb\nrOlvihAXL5AgQopfXxmEjzcarH6hWAR1a4iEhdaw5IbR6RE6J3Fjpv6K1yvcU8gS3xjFQNkpHtsn\nzKixLj3q4OAMEerRoscG1wrInRwnMey8Fkt4dO6VOdXoxWbZJPRjC9Z/lsFyafGYR46pj2ktxLpB\nDQF9/43R0bymHgcx8OXjyBbJbK5cCViNw+ZieN9GnHawHzXXbyEfZc/bDxq7vtHPCUFWYtcteXmi\n7Sf0xkb3ktwSKNPh/SjIO0Naa9RwpEkGisLm8HHFdQPOlzf48QNuOyKHTyzZgPV1hI8Nw0Uy7Qwq\n8CAH+fsjy19fKZ4kxhr4OOxofgfJLLmeLRYXPv/rnXc18e3fPUx+ZG/1FHFPJL+/rC13R9mWeDLA\nLW1mYXNPIWkyWqcmnCfWwSboZuLM8F46SPM9viJMDWiBjY163pJad9r7nmH3hLUMhLHEjBObbcPN\nkpTlP6Ik7or+Cea2pzlbqINDmC8Eh5hb1ZKIms5LWCeHbf4GO5eyyzjqmno8YGUX/LvBXwcwC7bv\nMiU5j+kJz88ZyolN3NDLEeMJWj9C65wsOFEX4GQLc5UTjiPaMlRxS2B9l2vKztAP3/BfIuZ55lRJ\n2G4w0ob7iicmpHNk7DuUu7K9uuTPPa4JuK8CwY2NlaG8ktVElE1NnLlExZV8FyGNgxjv7BJNsw4I\nDM3FY7EM2yWjzxqWfIJ0ZiyOmDQnOLQYEsK3lEZLHrpDTRZR5qDnlLxdydaZRgqyycf4M7q36UuP\naa8YTcN2qzGlZNcqKveGjgKyEShCFren6dPvzNXiIM3EOP/T00S133COO7L3ipqE+seA//FzDP4O\n2QSc14aiT/jX+My9ivijKhjcmvkQ8ZP9FbtJefnZIhCCkpF2t+P3r2e+xguteCYsziRjyH2u+fPz\nyK8CmH+k/fmdfO+x3VlUuqHeXilXDxm+EJu/Mnsnfv9x4V2s7G5X9Pxv3BVslUIwYFTKz/9h+JjV\nhIXATn4msl3e/ZWx+JH1rtDpib1oCR3Dt5tFtVv4t88Tt3vF858r7vOfWfevVH//5wUYzz7rsWIu\nnhDeiJU/aD8u+Fef+OVCrx1krhjimc7rcT+GWO8tLRpr6dH9Bj+4kHcZUtk0a4+9eqxqIREhzbDw\nZI8sVoauO3Jng3s785aFxLLn4UTEq+QtMGx6H/bwWBx2zY1I1yxDwND79PEN00PqjIhviuyUICfJ\npZ5RXo+dp0xujQi2KHfCrzuGfYZINLz72O5M2RhC64o4hnA7sNo9gpii07/hMesA75YzbH1SU2Pr\ngPazwv26Y+k8Th/OfPVigqeak6xZb0+M7ZXh4OG+CjbbL3yVIU92h7ps8PyMcO249jO+X7MkgqDb\nc193xKNgbypexRbHgnK/Eq4lr85nMjOSOF9YZchIBO2Dr+kLwb0mjRt0rMn+7xPjJmLn3FDdyNA9\n4fhfuE+fGKxvfNAes7/DSd8Z1I7srGmCliI6knQt3maiXUYCMdPqDrMJGJycNf+Iff2+nGLvAjQl\nc6Txs5sAACAASURBVHnEmzVfV4nl/Mqzu0NpRT6/49hHhrlArTPjdsURmlEKJr3HkStz63DyNYuS\nKJXQDAXda0cmXVozoKINoW3Trl/wqoRWaeo55pRUjAsoqbF3O4J2JNQ+lpmxupCFkICFcBnpCosl\nDej6nm0iqEpgVmy878tWerIx5onKf8fdPJFd30C+0w8SR434bk/ofmTpKjoMTevRB5Dhgyux/6Hn\n1Y7L7gBy8HhdHDaDQA0F57GEncYXhnIReHbPWNm0wmIjbeZ1pIlD1JcJ63NCPlXMD0X6oWP1Err7\nhaFvOHkrZWWz21mc54nY6tFxzyIiPvk/cF1/Zeps6rAk2HoE2ib/MhKmCW1/wzQOHj51VDFPFnTv\nmDXF1hPTUuN0GpklsBuQZUpnBGtcsFiCJICibziZjLqpOVuSoxnx7SPLe80Y+vis1Acfrf+TyHlG\nQ2sF1MrjdXQQHx78MlfY9oZs8UnnE2UNzheJW9r8HodlGdhlLsU64M42+ma4DxUvzp13tSDOId1t\n5mUfws0HYTNryZoMHKyG5bnh05NPcBXIYcJrj7R/yoi3D56vHe18Y3xTvNsj6vTC9E19z0VrfDbn\nhPTzRDL+ka5LsW8W2yLiW+hT8A31/Exo74iCEZHB1uqRk4N8ifgoYoZKIts/sszwcmxx9g6n7YEN\nPgA6mJiOM/lJM5kNbBVZ4zGOLcFsUzgzOtdc7IzbsEdFE+FtjzOBGDV3FSLHgqXuOc8eSdqSvF+J\nqoHamhFFz2gmvGli0gqdOSzeBlFbyNLG+2AQ4xbPPjJ0K362RRjFcHHx5xZx8KDLCN2e3JnR3o22\nPTEsmtLZ0IiMYl3J7oqPDmRMrNuGUkd0l2eWUXOsNZtyR1AYuiTHudT4rkZnLpPl4UibXn4fpPa1\nj+UHjNOCf4NVG8qu5lpeqSbF9OYw30aElOjCRu9WNveF8izY6itjvv9uZWDHPOSASSPa1afxjmyK\nETn2KGf7/VXYuhh/ZHRHBhEwVneW+h8bR48Mk1TfY58uG3S/MitB9GQI+5ZYbSjsmg7DJpZ0jExO\nSm9XNGtK6064W431KEj3Oy7dliyoaKySjbUSTgrjO8yyox1mlBKMs8J2ZpygZ17+2TSc1J8JbgNW\nMPJYMk5lgH+0SROF7bfEm1f+8HKjy3+PWRe+qCeM8dhcHKJqx3zd8Dd3oBcJl3+riIMb/35KqcKJ\ntXcZfvgR+8PMPs35GmSM/Eg4/Yy3HnmZnrHWF6ZdBT9Bsmbshok9KR++aIa/r2S3fyX68MTtv1oc\n+5GhvbP+4ZWXrkH6YEzDNTly++UTYv6I/ypxYhux+QuW/43ickMOEx/9gcPV0Ax/YoxK2p8j5m8S\nM1gE1j+ZKJ1fKJ09xqw0vsXyNOM0Do3sGOYd4WhxkCuyXnG/hdiTQ2D1jC8LxTgzxxVdFGDsmWid\niWVH9+Ky7nxyZpo1YZ4NTdexmASXBY8DTuExty5iI5mClaN0wAFfDpBb2FFIL1cid0XpAj1l+HaA\njvaQWZQPzZ0Fua/B11irJvAcknIlfxu5BS791SLoQG++r9/vBYzYrPcJy5w5RBK76XDFPwfLTVag\ntGS3LNhdQP1NMPYTnVegPixc+hi3aVgGn+HqIfwb3Wlm/+oSHnpKeeR5KfkmDgzbhd5uKD2Ih55k\nEay3F4Z25vQm8bqaNQj4dHOYpOLDW4kYNnw2NeFcMukT5Zogq4IxP5K1OXEwMloe82uEVDaRmZl9\nTds+01sD65wi4ytRMPAafY8MkbcDhbUg9iXbeoMvvuKp8ntGnTVizhmpimlEydoKiO+opz0AzlQS\njzEaTXC48Xxs2CYe7WamvLSEysdr37A3E4HnodwDZe+wtB6xZRHUFrO6IrIU27awrJlgNyASn+Vg\nkfqK5faN5n5hv/qI8Q3H8ZBZTetkTEtE0SQElDTxyG1MuFgjfnQjzGwQPUVnWHYuTTdxOnygvltE\n+x2TP6PClFXFKGtlOBm8xMLOB7A9HsbFLHt2MUjhIbtv9H1FoBtsuWJNMMqO65zz4LvkO5mRXtSY\n5Z1TJxmjkcJy8D9MRFIybS0cc0I4W5JpT7zO3LsFHSVkbxL7xaP7dWIjBfsPFeO1I1hLog8bgnlh\nao/sYhi/vhNHHfkxwooPNIPG7Gs2UhDbI8/tnugcsfQVz9EzWAPeYcsuOBFHKUuzJdMf2FgnBn/A\ncY4scUDthCyWQ/NFwrLSvS+kgcFvRtxa4q0juu6wA5tjZHhbYmTbsT77eF2H/rVG3kek+U8i50lh\ncRx7xsvEmn2htJ7YnA2XWlLXgthqmfzPfNzvsOsHX9uE+bDjJhaelaYt/4NcVGyzhTIxPBtJFvU8\nmy3j+zfqusCokEn3pI7FOmy51SMX28ZXhjnyybyOl/8YKYaU4l0jnhfky8im+8Zzp5B/eGO65LTt\nxKu6cK5PXN9XBil5/p1L6d4I6oX0taOfvjAJB6ycpr3wXgdcrh2q7Hj3LX6JRyIxIN09S7tnnHI6\nDed9D4CvR0KxJW4CRFwR3juCpWPMZiZf4do+8SbiOHtIcubB5xpJbu4KQ4xnNdjjllT2SGfhtfDQ\nwqACBwZJp1wGEbP2MWEwQwEt75hWcLDvpOcA3V9Y4pouWai4U0U5oRLMls9SO0yLxKs85smnyzNc\n+53FHZHbioESb7lS7xTFmMMjgclHS5vAXEhTn1tgEGvDZa/JKpf4ZcvsKtqlxQ8V9jAR/YN4UVZP\nP3nU/YA+OixJRmhc0jhBPNXIwEZaDUszwOhT3HNmB4TXcnMMozQMg8tjiVgXHzMOKEuRFQta+NhC\nMvl35NmhWwv6fkIJH9fpCL2FqLfZHgJ6udAMC5mzshpNWkzMLrSDIQ4O6ODGxmw5TCvqXuEEgk31\nhkeGv58Y/T3VtSSbNFNbsg9yRiHRnsIIG1+5lP3EuF/JuoTFmTn0FdE00pMi+38yDY/uymwkf31X\n+PlPvOevxB3Ur38jGHq+en+k6X7gr4evhGPKycmJs4gvTUCkU3441LwMgpKef/lLxE9BwEva8F83\nO87Hlh96wV/eHZJmQ3SV7L9esReHKl2xpjt9fmbzarPfb/jUh6xpjG9rrEzwdX9mFSvt30tOX8+8\nfagJ0fz97TPVFv41dblOA2H5N7BvjK895eFHwk5T2g5OVfJDv+FL+I2vYUzZGL7cvlF9+YiaPxJ6\nM59PO6b4n/Km3kiC8532ZNDXK9VyJHRtRhMSTAu2DChdjbdYhLaHmiZmGbKUIXbU4tcWo9GwTHSn\ngfUhcKmxDIRLTzgJ1icXWy+owEK4BuFYRLucYajwmho5P9EuMUWUI99APRVU1kiYCu5ri2t8vGXB\nGkbczlA5PomYWXMX/2wjKkkdudi2hyUcRBwRjiGLp7ljodsBl5x+1rgmZtYjeeai3yZUZ5H8v2bm\nlDXRhgI1d0xa4e4u7NqFo5ZU5xDV2lgm4bmpmA8rBTFhH1DuCxZnQPYNleVjVR6r5WA5AeEy0M0J\n5fjMD9Mdxy/xowGxjaiDK7k74J8XLm7GqkaK0cOaduzrgf36ALklc3v0tqMMVngIlA3iWGKvM104\nsxElx7HiHIy0IsIaf4d3D5C7CZGcCW6GoZnJXwq0t8N4Fv015eAttNsVv7iSVSmH0GFdF8S372Zi\nwzwwrwPPtqJffBoToHuN/TrQJR2zCZH7ELudcK2GpbSBmXk70ly+m3EmQYyYDc3V4f61YXnfs2po\nv9mscca0/UC1+ixG0uOhlUNiWdQXReDMWFJTGxsqn31kcEbJaB2IMCzGxvQzab7gm+8hyCZ0GN4f\nOG5OT8+kXCw3oq0E8d1lCBVsJPs0xIk73n6psZ2KoQ0Jwg1dZ8hDF38bM7c1TBlJ+n3j2Skb2jnD\nmy1Me8MZFXvpEHQ7xnXFua7MYY+ZG5TXU0Z3rMHgFg2wshQr/sawvB6hknjBjnKOKFZJ9WSTW5qH\ncmlSg1odrKbCn210O3A5K4rWw/YnhmRmUTPGc2mHB3Gc4b42PMaR6+MrhwBKNTI4DfZiMWwq/M5h\nJyLWtzN+tDJZI8q9U2hJuG5pB1iXCLMNaccIUR35uHPwnjb4jxIR2Wz+8ALLjLD+kzBRK/DtZSb9\nUOBYDnX7C8FTTLpTaLdlsRQHu6ReHwzjM35U4aw56axZmw2h7XLyJd3rE9JJKKMr07phVRdebcPy\nx0/c2wuuc+e+dMzJGe19ZtVXmtFAPrIUhvFpx/QlRDku2g+Z7GemP2w59zPt/7EyZhnW9BV/2qBl\nCx9b9qbk2zlGmR2MB96nJ9b4meXLO8UjJlIemXchOy2oY4NXDATvI+fynX3kMlFS7L4HlW7v37dr\nnKqnW0uCUX3fDFxCHpbP/h5QmwHt+ZRq4S7PBGNGomzCcUHYVxrT484ts4FycTm0G56RlHECrUFK\nByNnws4jdCRjMRCYK6fQJwsNnbJ5rBbp4vIYBKpfMKPDMm2Jo550sJCZotus3ATEfsDm+Y4ZDEHi\nkpwjXCshsiymzjC2A+/pzKkakVIQbhSj55AtLQhBdm4Z9y7VdKczHsIV6HZm6PZE6z8uQNvCPymE\nGyFvil4a1Doj1wbZ2qjuThv47CKFH3R4VoYVrugkYAN4kc3Bhq2qYLlzsDXOIqi8ltyMiKGGdoeT\n1RjXIQyeSAbIZo1qHEYdINYAJRXO4rDebNjVVIcQMeeYLiS372gWyoemVDZ3P8NebKz9Bj3CXAZ4\nVYcXGt5diZ0KHtIwE+FpFzkmDHeBM6+k73C1BM4MzWDxTS24j4Uxcn6rGX/S2B/OfI4NH48Wz5lh\n3mUM0+95nwZMfaN7/cLWfaYJzwzzlb/8lPP5c8csznAP+eVPe4Ys5i35iT/dDK4J4P6FP7wpxuoX\ngu3fuBxDpq5l/7nBKXqe73eK48zzH0M61+XXt4FHcOP19Vf++6IoEp+nbuQ1W9nOR7J1g8lWuLf8\n+PFnyCr+3gtUd+Aw/xeE9SOd42HcKxEa+3ZgXWws98Lw9sTh/3zlh/GOeLE4HUbSZMWeCx5lhdz8\n0xfJGneo9UDcNGycHX5eUraGvTKsnuKcV6ztngnFoApuWjJ7HZ7vIEXKPdZ4k0V0iGFJMUD4q0fU\n5lRDwxwvcDcItTLMDcG9wZpqhkrCNqPRHmE7YbqZbbmy+ivBI6HvNiznI6fNE54YkPHIHE002jBx\np3NXIs/C3UhGtbIzDU2TY+wboy2Zoiu7ZeLQ9XQHQdVbuE8Tkxxxlx2bVmH5HeW2pdb33/CQbx6u\nini1LSw147UC26Q0J8VO/ISb9thJD9Imu6fsew8xJHiWpi99JmtlvX/Aj14RruD5dkOJlJPXo9WD\nn7Y+ynJ5JCPWlGP//IlV+GymCJE0jEvImuRUWc/qjbidpN3kXHyF/vkFed0jdzNdIGmikblzWAqH\nNRZIdSCQC1poPHqkV9Kthvb1I5a/ULsnxi7Efg3pjKTfOuSFzToJ3nY2xlhQhiiTMv2DrTTbE8QN\n1aJZOoNb+NzbLcgId1XUk6KsFkLHMIUCz74zzQN7IZmkhXrYFH1NkRdo9Yb/PLJYOdK/wq6F4pVj\nbWBuENIi2SvoOtyzzctB8fB91GphNSPJceA8rmBGhJnR1Q07tJDPLsPJwd5PDNOIo2rcJOJcWHjn\nmYyZXjQkQ8k8Z2yMR/8thmKBa43Y2LxfXFQaMHcl2fFIXLY49zMEe9LmFWX+Md2TejwpSRfZ3KRh\nsAYqq6VyetbCxXFHdn2Ip11aAQeZ4foHbrPNzVmw2gpuBX40UPQpthjYNDmidoi+TVhOyfrrBW95\npnFtsm7l+j4hVIqnBiwx0FY78ubBZF1pe5taz4xNw8MRqMrBynY8XiWbqcYECdmocLsToWO4tXf8\n0MNEO5bNwDyDORsWLehcH5mUmMeI1VwohgfDfeRx+cIcpvRWi32DUxxi/idnov6Xb6KENPzwVbPU\nNmvXscv33JWNbxT2wWMRHf2cEKWS8fcLizuTnS26seceXvgQvDDaE+tzRYthMgcmc0cOP/I5/MT2\n9canNKN5mRGOxrYDhN2i3jS7xKKjx3sZCOyZ7HcgNh1PVYJ1v1GMHsFJ4vxvPnKWrM7viOY3jpec\n7F1wWTYs2yvKdVnXL3zcrxjzhRMZfrzhV93yHmmG9QPtpaNUsMXhU6ow/UT3acW9j7T3HSL5/lOo\nXY0oFWUCU7xi7RcSr2eKNO4wQ1OidYevdlSMDK7EclasXBFuJcbboEL1XbdnZkhLDBXCCaG6oIMZ\nt51pxURixdjpicLMDLNLEy8IqwQ3IDMT4SLQ7sBxmGjrgW68Ul57xCNnN4+MzoWu2rIZA4ZJUMY1\niVmomw1bB1y1Zbv0iCwjPp8RvqGsa/JGsjgLZRQx9dZ3d/lhYpxjhHJJkztN8D3nyQwWc34nzeH6\n1LFYNZZlU4ktxs9x7A2B6zM1Dvk04PsTa91h7j13LDZrx70MKaeFyNpzfgxo70E3DRzbECvKCIY7\nX0fFUS/0NOSBYjUt2haoDaxrw9bTZJmkiiZWFePbC30mWMMeLXdo+cRJetj2nf+Hu/fasW1HrzQ/\ncno/lw2z3UmnVHYBev/nKFSqIaU5ZpuIWHZ6R06yL3Yiz11B6AYaQvERBkBykP8wXjogvZ5Qe6jd\nnVlOrFuPVG9J5pVbl1GIDUV0RzoD16An3lbMg2ZIHR7NQGYUo7tjHx2+a/e6X8dXUzrxevkffEt/\n4BeZcCp6DrPk4GVs/zAwBxnd88Dh9JVm857ykvPw7sxgatoFmgNky1cy78Q+2nEOfsb4JX9ffuB1\nnFG5QfGv9F5A/gSqiojrf2V4/8CnX2B+27GePzDxxOYtIzRH0nvImvwn9affMV8EPz6EXGPD7s/v\nsIeE8S85V/GEPvmMH2Oi8W98yr+gPUtyjnjtXxhTF6d8z6sf8Cf/zPgnl58fN/zu68p9vxC1C49T\nTOul0P9q6Z/dCxE1nVqRCJxQ4hQrjbbM4sJxEyDtleGokKQcF82DgbAbSBeNOxsmoRi6AVWN1DLB\nBgv1smO3kUz+TCMqksZDjB5mo7DxhF8axNUQo7nHLiJxMWWCs4KKb2yVwTyuvL1q1iBDOBZ/nIii\nM8ElZ5E+biyR5xlvNJi1pM8DnNgjqgfizuXuDZwjh9wGrJNgmEeSSBJtK9rC5VJa9JrB8Kv89euz\nJG0qHtuC1Bno/IRx2xNeJDqKsU2PV4285SHt/sJoNJ6puEUefRniTEemd59JZ0sxQZ/sWNM3VFuy\nTy3CX1kzgWh85maLYYR84tvjhKUBOxGbhe1g6UzJLY45vn2vylnzFzZFh1od5M3S9Uf6/Q03jGlJ\nuDgOw/iEeQuoZEviAb6DfpoR44ayvHKYevqHmeiu2SwLqyNx7UrchLzu4cZIQMtWfRdSJ93KXJc4\n3hsbNTEcXMLgiue4FMFMNE0488JcRcx9SRAXHLc7bmPE9qFkZSCctrg5hOsj60vBqmMC7ZAIuM+K\nNrnDU4ZOc+wE4WxYfIt5VYhXgb912AcbgmqDLwxS7CnrGDd0UMbiziGogFEZkkCTt5IhzCmOC/I4\nI2IHyoFJ9PjBij5/Rj5oRJGzOwi8yGd7kIShi1fuMSuIKOKqAmhr5p2l/cfD1NiEb8uZKUjwlMYb\nJmKzhdVnEyRE8h1uX0Pa4ccet4ulyFc2a4gfxrS5RLgup06T0OFnCd3miampSJJHsthS5JYQS1Yv\nuJGD9EdMdsMtCzb+EWcxPPsOafCMuXbEhYdRAZvgwOLUaBqywjA+RbTXiemw4MqJwTVsC4+1c6lc\njbdKomjDGmdcxR0/bmjGlCUswA1JfQ8viCjEM5MTEAWg45E5dDC/1k3+b9d/exLlrILPY0QV3dgH\njzSegzNdODsXdrrAhjui5cT973ey1sFzQkwEqVTknqClZXCOhOZMvDpMSQPFjlG2SO+FQaZ8m0qe\n/prz8Z5jpELeM3y5RS8bttlvuEwJo3zFfr5xW1yavmboHOKfrnSnb6T/YejeKUyhEFFEvfMYjjNp\n9sb2S4SzVJhP8O3LBUclfP2hQd4kz8Jn/YuHN3wmXR/w5xGHJ87nLe3TGfFThHh0WB4bmuH7V2vS\n7xBehhomshBua8y9nen8irWcyIYtrgUxDKy+x9z63H2f0DW4JsXSEQ41sayJvZVh+t5P+Obd2KQJ\n3RQggh4tJ4QeCOtX4jHFFRnuSVD6HjoZMOnE0AdsZ8uFGLMapuyRfaEplgL/SZBWe3buQp+uRM7E\nLjDMuc+6G6mrFS/r6ENYmpaufEDpiNIZQASQZmx6g+s5VFoiphl/tnT3G3bZoS/f3Ub+BD17XBFR\nLC7Hk0elIuRlZnFDZrXSc2PyOjZ5BjJnskfyckN2djAqwj8Y0lqie8Mh2NGdQorSo3clfTBTl1vi\nyHCOPTolmHEYPQOzx1BpWtGiqXm9Lky4+EOLbgJiZVmMRPd3+jNoZyIut0xXifItr2PDrAr8tSav\nDbelJz5mHMeJSkzo3mJHQeQF1GicBxftO7ALmWWAf2zBXqitJQh/rfWwi2JvF56rO59uHekt4Wv0\nV1Z5IrociGLLk/jIy/hM3ocs2QO2L3hTgg/VAx5fCKNHqvHIdZD462/55bzwoTlh37vMfcFvvxk+\nVd+Ib5JvzZH2//q/KfIX/mze0dJjPq3YwOeX5orZOByKkeLlHfqsyT6e0My4NMTZiLi1mIct8Vzx\nPvsL5lbRl5Zf1BZfF4RWo2bDgsvX0yuXTcXsJ0T3CT/bIEKNd9L88s7lJXvjX8a/E+S/Hm2RD9U7\nzZTCtWypty7L4BB5McmtRJ4LyixGLAHadahsgGpcOtkzNhandVCsCO2T5wtFHlHrGC/uWe4Hnt9m\ntvIBYwWyqOimjLre4AiN43oM8UBYLGTzjQWPZZaMHui1pqBCPPYY0+PXDvKQM6g9phSY4UZvNEsi\nGdUO6Roif4ZRESUajEb4PqFRGFOzJCGrI3HWCXGPcJXGnS27pWV5l/4Tj/3N8K0MOO16TvmII3u6\n1jLmEmfsWB8tvVvi24HG+Nzjmt5dye4RTDWmeOHpnFF3RzYXxSW2TJ4Pac/SlngaxkZyP2jU42dc\nd2ZSE2HvU7bPPKAYkMzFHZPfebpbptgjlStFW7DcLNllQ/8ws2kV216yGSt4GxH7KzK8EJqYss6o\nVUqsDO96Qyzv3MQjdZgiecUUhntaM5UdJnNR+Z3H1zP+4pBmI8v2u840di5IJD4Gs39C3BZ0KXlz\nOtowx0gP5UAUKHbLxOvi013eyPoaZTWJNzMUFUKXBOWFZDeROZZ7mCFVSZi9I2m2xGKiriqurcTR\nI4G8c4tPBH4LbyFmWHH0jXGZ0MWE3r9yu1uitaUzI20AjjowNZr7LMhMi6meaRtD02qCa8TusMXP\nLOMhJzgr7rzy5mYkHbhDwJfXE81pxAYO3XrGy2LGJKF9NWTDd51pKkN8PyRFk+cK+eCigpVI9tym\nGbk9oVbJUuSEVY/VDugOXcT4tkcOFlvsEU8RybPHt58uFM6V4kOAwDJ4JVjLPC8M3sI12tB7HW6c\noen4qhtW03P2PLrrZ94VOZ7NCdYbnVb4h5GNA60G/6IQKqKfYqS54VwMwTZExhpxsfhOTpZOHKI7\nXuIT3DROMxDfazbHjMZeGSdNPb8gWovjOXQnw6w7cP8bFhD/v1nWWj5tY7a3lPNt5cF1iQ4byk1G\nNwuaybAuK0u7MJsTxy8D2ziFa0Q37WjuKbY9kf70QNf9xCZJcP/mQpShR4s4dIwfXnn1Vr6UAZm7\npeyvrNuOsWh5uZ9QY8epj3jb+Tz6TzibCvFbhyndkqgMbVJcJWnOCmf0yX4E82PDOY8YHnsu/Ybo\n9MxUbHFiSWFWkqeael+QbQai4zuiuCPWBj02uG6EXmO0qnD+GuNOmrD93o3mS0kSnpBqxhtKlPNK\nzIGyTVi9FLnRhNMDKozJEsO74wVRV9jlgHAbmpPHmmU4rWBWGu3twN2QDDlXZyCcFuYgIXMFVjq8\nhC6hnpmLFu9Jo90J4brQF0h/wvNjxE4iH1Pc6E59zhmfb9StZNy1NF2GcT2Ci8frsqdxe4rZYUld\nYhnhNSG1dZglWMcQmpwkULjTwM0uBMsFrxrIUo+gcBFeQuuOrMV3PIybcExqRD4yVwFnVxAsNdHO\np3yxRK7BGk2bSyYzI+aJzXxmVRXz3jC4N/y+ZVwTItNx9VuWvGXwE/xQkgw+RXOH0SExCeW0sHdX\ndBzRHTxEonnoHpD3GDdxWdccOe1YTIdqXA5tg4wtx4cXOt9QzwtlqHEGFzYS2Q/EmeR0sORpzmp7\nRr8jnyFwwToxSy1Yqpi9Dtg2HddaEegENVuamyEoHUzx6/z+QRz4ZYFILLzKI1vZ0L9m5H8IqB4E\nzunM7VrRpD2v+RuXQuFuU7xwS/+bjsm85/6Lx/9oT2z8mUBc+VN3pvZe6b2cVHb8nPg0u4avo0Pm\ntpz+9nvUv2+Rv/3Cu/iVP94nNh/fmD74RHWPlTvkPFL2Jw71A/O259QbTsEGW3ykSwfq6Jk5+Fci\nf8RqSTImxA8XxN6QlwOFe+fT83tMseOrk9OXe6L7v9M+zRSez+KvaPED9lrgdR//iUdjU9KXkgch\n4ask6DVmXHG9iSH36dIztyFAkLDIiUQZpC/JO0voFyy+xqk93CXBbyR11RKXJ4ZmZnmoedtbPLfD\npiUbHSKsYVfUNF8fyPWFzZKjugWlYiLPZxKK+JJBmXNhZfsWUwch7iFh7mJSO1CIhSB6gFbS2S1i\nX9GpiVgFrF6C8QM8NyIKR6Yi4b4eiCZBbjOkCdG5ZCUm9Cw2dVDq11qgKjcUQ8jTZ5/gmuFmC6sK\ncCrLNTjw+EvCZqqYp4Djyx7tHRjChAqJXRwWndASsNmv3J4CUjqy1eHuJbj5G4kY8RE8dgZxL7iX\nlvdfH9Cu5Z5JBlayas/kOezVjFNWmLlDaZ/GbukePJZ3XwlqB2975e3ZoGcXLSTx4hMuhuiHf26w\n8gAAIABJREFUb4BHfNe01Ya2m7lLl+N9YPZGUBtEE5MMlmjKiW4e6X3Lqp9YwwHz2aMfvpOoN1sS\nJA1X55G7/oqbN2TunrIzOGfF5nkgtSWeOfLSC8LzKyY+4D2n0DfIJqLUAWu3cL9sON0Vp9XDqy5c\n1y/oaMSoCdVtKEXMPnJw7JazEJjlAa1HVDxyO2gu8comHfDMBvltR/S8MgnFrosoqjP7ZIHAJ01c\nlrVmMBNB/IDXu1TaoBQ0YUPidVylw1TlJEOLzX3q+MajSDDByO1cs4+PrHNFUVt2nyKqf3y9tM0b\nD96RofWw/gfEucSpGvo5wRUBut9zizTBJaNNNUjFmFqcpsHYjnIv6RMwVUVXSQJP0Kwl3c2nFQs+\nPb1wIW9Q0UCwWjxT4AHjxfIYKKYCDrog9V3OpmP1Ynp5wM9dJAVTs2GzceizgfwoieeEbnZY3Jru\nJhhsgr9ZebtVqKWgv7qEXYqT7dE7l0skqX+6IJwjU9Zg4wf8tCcdj7jxzCqOeNj/Ekf5b0+ipLQM\ndc8aGgI/RO9W2kpwnh2GhxWaN0LxSPr7P1CtMaei5FLdsOPAIQ0I3r3yGO+oxA27fCQYM0QpCB8M\nQx+hVsvT8o4stnyYQ/S3FnWcmL8c8KuKXSR4X6S8WyMK4VIph6aNSV4znvMJ531JrFqevgYcTM+a\nweXDkcBP8cYFT4VoO+DZKx+6kWxJEF9TRrGwGc4kmweq6UxbryTxM+6qoHnFd0s+RBl7aRBDQcb3\nVvp6c6M2BeE2QtsZ0SXYyNCKBrmk1E3DG2+wKty7x1gfkXGOkyua/oDaudSdYpE+w2gxtxd2nYu/\nWjyd4cUFtfRJkNzzFKTg7gqmFtQlokkVyRKA9GiliysEDhZrFYVIUXlD3gkSPOQs6b2RxfHpHnIO\nfUVoBdYq8tjFWI/MK9jFK/J+YtARsptQ44yZC/K9i+kDZrEgvCPOUDGEMNwjfPF9XNOYlnWKMTJD\noLHJhDpsWLVBHmOaw8BxfCCuc3QYwV7x5hwxZiZfE5ImoJ5WyucrY6DZzoZ3U0bY3XCcGZyOexbi\nOSNKSbyd5mYVgVxIJkGcKiaxwNGQ9jFJPKP9M2sQU5Quo0gJpi3na07RzxjfwQ8XXDL4HLJsEuqr\nYPOt5pLc8O8GTxzoVkmvXVp3JXJHfH9CiZoxLTh4Aeu2IatDxDanu2UMza8FxD8/dhTOxE+hh32y\n3D1w7UL215j57znHwwNNduBTFvOHccH5aeL6OeD5c0z+ecNQ9cTZV5ajZf38zGdn4S1cuOQ/UPav\nvK4f0fNPZJ9/z1FueBM5v/1BMVvN6ib8fA74RSZsv274fd/Qyp6Ajr+Oj0zigS77kei28Mcp4d3U\nE4pfSLotux990unvBHrHEB7I8p9pzx6VPRBf3mOLR5pp4GMn+c3ZMlcRWkRsmo98fhn5Tf2GLyzV\n76By//xPPLbnFZG0nM45nhdj15Vw37M2A/Z2Y7QrMnIY24ZdIwhkhEpcbs+GxdVs04hwl9CHF655\nTr6babyAMi+Yr1uOq8ekQ5ZBshiFTQPmRXOwF+7ktNGKFCF3MYDSuLFPFITMS0d6l4zhQjAZrBrJ\n05khGLg0I5Gw+K7LhoZVHMmJkKtCiAntCdwyJKp3HCpB4ViIWqwvWBdDc19JKoWoXZzeJT95/8TD\nXjXCqfhWWkxWITtJuoL0Yvx1YcpGJl+SJA46v1H2J8JlJS5bjtctfrgQexVV5eOaFc+RfJERm3DC\nrSRJvZIuOSJXSCNApXwrOw7ThUh9pU0d2Mw4X595UTELAXZxabTGf/8ZPUJbfSAJM1qnJO0lQ6ig\nlExLStSU2Jvgy+NC9y8DQfRClixILRB3gVUJ6ayZHieS9iNBE9EuCm9zJ5EL2neon3IiewJAILFL\nQjD0lF6Mf8lI3wSzn9Eql+o8Ip8HKATvwog5gLi+c2oVjSlw9xnrOLGRHsXjxD4wxJuOLPEJcNGN\nz+iPqPD2PdzYRLAdCDeS0LQU6YGxnomnhDzcErgeImkw+xPmOlFMKUsx4HtPDHNP3/h4bUvfJSRc\niZSLSiwcHW7nmehecn0zbKRCHltM56PnO1JsaBKNrzU2yjkpgU0XRNJzOYdss++kQYiAtgFCl06M\n9MsXmv0GPM0h8ampkY7BmxfUdeGQOuiXLUEB1j1wnfbQn8mNoFtn1kOEk9RINZHLgOCuWYbv5Mqv\nIsxw5qhmii5hH/dcFk3QSwbvTr17JMgmzDqRBwa/PyOWAT9yGNsVzzsSjAbCV2RviPxn4o3isI0I\n1onAi5CXAfvQY7gyU+MRwTYj2z8gI49A+CyFZKhczu5CP3QMYc/6q1fnf89R/r8QnP8/1qoNp2ig\nsylq/4111WzyiMcfXzGfa8r3Bffsis8vLNuaSd/ZZ++ot+8Q1iI/C348fSURMcVjw3z6QtZLZrNQ\n7QuyJuf+ZqjVns/9V0ZvIQ4NSdpQH58ILj0nvydUCWHUcZxH3oUl6aJ43VS8Xb9RRT6IjnPs0fQ3\nkvrE/Lwh0iCvObu0w8wDYZQyfKmJExd39vgSb7leriROwrALmfYaJ45wAo33xdCJhdnMjOOM3r8C\nsNxijo2LYwTturBRE+EiENkDwe3GvF/ZZaCt5Hps6LwT7iJwW0PhVOyagUJqdCEhC3neptyTFhKH\nYnLoPcWhO3O55MhuIVtyHD2gwgy2Bf4qqJ0a4944zB5r57GYK1OrEVNLIhxGWYKrUdYgkwlz7nCX\nCUyOql2qAmynaDuLYOJyXymlZTlJzD7DJBlj7NK0Eb4S5AFM0xVaSDofe4D1/P0VufFDpOMgzUwu\nfbwgYuGVsJLY4Ya9a27pncVYMjr6xiADh36JcTzDVC7kQnCdSjbhlru2jH6Dt2zpsai25PFaMAce\nmW3AEWzlSqAPLPWF5jZhbU1zSlj3NekaEfiQOx5KCKatIi8XDp7LSRm4K0wnaM1K+q4mXGviFdbd\nDqfXqChFdRXbKaDNVo6ryxAqBuEzvjnMfceSTJytQx1L9tonSyxbOf9zz2w+l+zfT3hOycZabuz5\nrfzIX95f0fsZDHxoX/G9ryzTM/0Pio/vLLcPV16eb2y9lajWeOeSrx9/4rddTv8Y8afzSvBtZg0+\ns481/fsLfwvu/OuhxugfqXPBpt8SuIoxtvzs3/jCb3jqIrz/6Ag+/oXt039yvAmewoj/2E/I/czS\nvePkacJY4y4LpmvZ/83yl+6JPlkZ3r4xWoe3l7/jqYHXVlPlgk/DhD+VDMVfeBdI3oodWTrx9veB\n30wf/olHl2VU68ImWVn8liEIWQQsMkVvIuS8xbMvlHLL7TBRByfujWZ/dTCewbsvZH1PPBUoeacT\nMaU3cW2+G1Jax6Eu7+jsQuj6mGnCVXv0QXIoJ0oLoh9xdiGTPOGoAvKWPFXgROQkTCi6YcScXaZI\nEEY7dLISjzEq8cm8F5Rz5xKH9KuPaAPerhpd9nTpSj2NxBrqby3VakmLgMtREWYFVpUo51eN2Hux\nY5g0Ih0YgwAVbAjLnjWuaNKEXkIsDKavWEKPeWexS8RY5Vw3AY5ZYTVMhaKbLcF1Ya8MS+XS5ZI1\nHbkVP5Pccqa9pohmVBDx4h9x5wPxt4JxjtCfXnm6lZzthsgKfOFhu5i4sTjFzHm1HL4KaiEZ3T2W\nCZPeUAEkOsWNbjyc96RVyIWIOO6YN4Y4OaHSjrRNucYWpVaixwq7an7auywYcDvqYwzAobmSlCv+\nvFCdfK6RT18sQE3q3vHcHddbSOUOjJ5lvwWbGg5rjOtIrnZCFD4XfUJdwT3scJOUatySzFs2RQN7\nw+EyspY17dSytpbklBPvQnBXZJhShB6qt9wdj3SS3K+GPnuP3fYUXsjsQlNv8BOLPDzDw4COnvia\nfmWQcFQBwSFmsD3FMWKNA0oJWZ6hyVhnsL7A3VmC+pUnpcFmqGzHYVoQ7vcsQmFDjF6IwwUxVvjH\nCL/yOdwbqshCa4htykiNm0ruyZVmP9OGM17Us6tnjtmO2ygJw5DsVrC2Lo52GExHU1iS1aKdDcGT\nQ7DZ0K8O5+kVHSUc9j44Bu4+6kUTnxKUHGluljXJCd4kY7t8l6a8vnApJYl/IMpi3vRnXr82vJiZ\nQUuooMorhsnDc47IKWX6qtnZDmtqTH/HD0c2l5qNCHicelwv570TIc3/IT9R1pXY7UQYjYSvG8I2\n4+vpTp+GPO2OyOGGK0tUtcOrc7Q789muvNMXqrhm9/jAHx7eUU018bLhXkQMzzeqVZBNLcNW8Km4\nYB9HPu4OOKvBH99huhkpvnDbJuh+QcmZMdpwffiGiRveDiO7KcZrj2T7lPpTzbsp40F8ZN48UipJ\neE9R2Q3/ukccS74ULd4xg3IirA3bc8hxtKxfWrZjwPSysB4lQbpn82gZvJaXp4plV9D43zd8Fo1c\nRcWE4RBGKJnQpGcyZsRjgKefqN52JAukN0uSrMTFxHBQuGtA7QpMHqJEzfauOVuXJMmZg5F6mpAV\n6G2K3g6siSbe+IQ6owwaiqrFzkeSKcVddlzCK6fZZxcpYuXwFs0oNyZtXGQoCJyCxCt4SDLKcWH2\nbuQbTfplxnUVLGfGoKIoNwx+ThbVWDNgVg8nsETjnSFziJwFOSfUxsFLY7x5hcP3S6FXLtd0wa6a\ndr5TCEUwlDjHGZII33sk9hzyfKbWGcWwsC8GNnmPqGecYIPDBmscWjXi4xFND6y7hXH2sTuPfjeh\nrjHuqrhdA0w7o+WA3Uck3pEm9pEPFdFZ8uZNjK6LY964ne5s3IQXtVJrg94HxHNPPYDAwRiHxdmw\nlluS2SHKfJZlZk0ijHPB3jYo1ZH2kqgICJKAQPhcHYtLykMw0dk3vEDwGv16SSY/9Dg/pjB846/9\nL3ycPDrl8bu14GP7jaFVjEPDpQr4Zfgb+28uTf0zr13F4+2NarxzsBve3o/82y2k0wWfXiXfrIP3\nL+85LDn3zmGcb5QPG95+0fiXlOMx4t0Ms39kW91ZrjO74ZWfNoIf/6XjqfkNlX7gdhQIk2EXQ30p\nWWgozj7BcMeUG5o/RrxsNLvoZ56ilVi+w0sNHz5MROaOVjVzUvBL8hnR+7yOj7zlC3fzhW68YWTA\nz+H4Tzx0MnPwIsZZUSwL7rqSNoJhI0G5qAdw9IZFvpFWPq6fstuuXH3oJ4e3NGEtQtzAspsT3HlC\n9zuksyMZFPN9hKFEuz7TdcVVAyZumZ2Etnaprg3rThOZhOxaYouZYUyYvoFXOMzlmTIOKKIjc3oi\nUg+wzOipYy5nlBvRTRlXE7BdJsrYxRM12aLQjYtS4CvNxJbynSHb+sxOj3tfqYTHZTuwer/qO6b8\nlYOXstcRjBsS/4TrtGhf8En+gqwzfF0QmIgmCWjNjvYgwQqSuSWrDtwSyXt15lG1LEHA2DiMhSS+\nulBFJNeEOWqQTkKyaAozsnUWvNlnTAx0EJ1cLseJGAlmYtqNhI1CBYJxaShHwZddACIk888Ib8Lt\nJ/xopLEr+TXgxb1ic4mXakZlONkAYXOcJMaZG6J1JC9vTGPJoI489y/spSX9vOJN33WVk9ny+gIm\n9lFJx3H+xhoNRA8hKQluPpAFHeNd0iQ1V5njRHBd35jbgcUMGBMicVhIWAYH53NDMzd42iK+Zoi6\nRG9j7noFL6T2Jya/ohs91BCyjW4Y84qdrwTNiBk6omKHpzqc1z3fap+lurHfTTTNHT0tRJeSlJbY\nC4g6w6w1qQ7J3JT55BOqEflasLgTZeewnQRJMKO6LUEMk6iICel/mTk5GZN9AEAFgsW3rCIiGg8I\nHeAXF07OFqk7yoccIVYiT6IGj2nKOS4r2fWB4AI27BhObwRHjRdOOMGZSK3YUmKKDl9Z9D7nXl1x\nG4HTS9Z3EdtDDMbnToTe5pgkZOOdGIucfNKkwUwnR05WU7IyYXhVkL2+gl1wkoDjtCVwApKvI040\no7IM2HOID0hj8FLD46eV2+jTyxmnlOh7iXM01NMr1z5kcGou7Yr1/g+JOLBCshNb0nqDd6ioHhey\n9ECdGIw70HdHlkkidytuWhPY3/M4LnyOUpLXmG9vIz++vHDwHGx7wos09WAoXgPaNSK/TqjBw9xv\n9BJuRlDRsdvEHKY96VDymIV4B8nupJlvAcIsCMfB/1tEHkrM55HNSwLRxI+6JvFfkT/XLE8tiTEE\ndiJoPEKnYFUzTVhS7QP83cqyd1iDiTr32Zk7V1GhD2du9zP97OAPjwRvFeM/5tUNK74fEDVQJS6d\nCMiEQKqAeU7YDW/EyY1RVoRqQ3B5YrgIzGDouFNYgew1vltQ7Vec1cczF9xbz3rY4JmUuUuw555y\ndpj7Bi/tSCaPOZopF8swRTRxgDfAZvFY1wB3nSiuDpsVTuEdLcERNySWl0RwiyVmLAn6DWskCLuM\nSQaEbUGrKrwwRPoK92o5orHNBSXBpnB2LXd/4bDf4sVvFH6HHr670RJuxKNkRZBh6ZuJODDcTj3L\nySXQK90pol5cFu/Gq8xxXgOUv2G0Lu1oCLixVTW9GJCe4VyemJaVbOdQB1ecIKDILC8mQYQjU+Zz\nX1b6TuM7NYWOiLotS1rANWF1HO79EzbbQuPw2IWUm5rjTVM5AvFo6MIGr9YUaqYZW07dDV7+kQFj\nDcqxhMmMn0cou4JuGbVCGYfAOhSjQV8ynNFjqlx899eIg8R55ct04cOa8Vi+Z7qlXOMvjOPP/K/n\njwT+yij+iJlCUD/Q9CtV65LFhn+3e+aPHrPoiS57pqPisv2J1j9y+zeDbGG7f6X4IWdrPqIuf+Ps\nbfjP/IlRGP7srTQyJVsN4k876iTCd+8U3xy89jOelVz/ukF+/jvrVlC/u7LfCaLtC9XvA978C79b\nLe/lzDK8Yzmn7OcfcZ5H5P8UmMIh33qU9UD7kqJ/ayi+JGyLJ37nW84bhTA+4+nXMyQQHqfBZ5PO\nqMBhg0PUeKhxxE4tcetShzVRHGDTjDb1uAwSEaYcxEgwOlw1LNxofclcpShfkNuJzkIqCo402Bef\nwIlJdMEUx/haEWx95IOHWT2EV/FaarLTwkLPsncYTi5T79LeO+qwYtQu/fSNjS8QtSByZkx7IWkG\nnnYBsnGZ2oh6XegfY4IRNqvFDJrYaxBNhJm+h9KuY8gkFwLhIP7hRAM4Lzs6uyCnO3kvqSefVu0J\ndU9vU/zDwtfAQa4Cd9I8tTPPFWS9z+nB4XJcKGeYug1vY4rr5YitRyEGllIyJgopUsbWJ14V8zQw\nRd/DSJuNIgprukjwUubIcYTyC32yIbz7FGiCVWK7PWt55t3VpRxnpuuRtC1xvA1zXrOWN+6pj1w3\n6C4hf1P4hw1F3GGkpu9HVgfqpMUqHz2lyEAzyITl7jA8RHTdAYDeXXmMZtJ+Jc0OCPbEXU7bO1yE\nh/8yoKYnrOqJq5J8aumqDHdUHNOBUFvG2mEMHohZMdIiHMH7TDIVlr4wqI1CXCRP0QMuE0VnWaMt\nazLjK4emzThfHLTwieIQZXaEkaLIVl79K4edYcLDmJkiKhgWybIarFiw84q3XeiMS+WurEmNdQyj\nG3MvVnpPU20HqszSfguIHcM0QFWv6PuMmzrE2uLP3wDYastiZqLbSh2emEWFuwgekoWu03jTgjM7\n1EZz3OzZj1B3PeZBsOoZuclxdMrixIhGcFMb1ACFaPDqjMLPce8VSecxz4bKu6Hvr8xGsS4rxeQw\nLwrjKvTmQJZNNJsQKVq2qiAtdiwPDswjj+9Tht2Gqmq5jBP6MLN53rI6I8u0JXclpUrxZ0UrO+be\n5bKWyHpB9yGzchj2DcMwsnv2IBcEMiQqFP9FSdR/fxLlrYJpHfgaaMTpe8S8U73gvWac1IWD7+I9\nCW7BSjyFWPeEU6zkrc+0E0Q/uOz2R6wseW0SoqHEu8H8MBGrEyfXYlMXX7lIDds0wr+7/FREiKRg\n/GHh7sKXX16ZpgbvENOFB577HefjyP2Th59t+HaU3ESN3CrmoSAqBduXRzw9UX/q6coOOV3pdzV3\nZ8TeDMvN0ncZ64cj612zxCUf7s+o0SXIDV6SsG5m5L4lO31/WT+kJUUGk/ZJ5RXCBqNiHHFB307U\nXsiYb3AOAvYNa35HErL1YwL/gIhSZDOjpWJpfXLvxmoyuizDNgNxJGg9wSa13CdYesspjzHKoLyS\nyumxXkfovjA9lLTFiduackGx2gNV3IJccW4Ow30lnS5sri2sI8PjBStHolVy2888FAkXWePkBcJv\n6O2RkZBv2ysrGdutxhceReRClKC6GSUi3A6C/Ltl27MeYmhReqEtMiYBJzlhKHC2GfPccdz6iGVA\ntjFP+FSHV9JbAGvPVp5phGZaNxx6hbUeISlLE7KeTvh9zGBGRjvzoAeCNWBTCdJQIl2Yp4TFcdDy\nTqNanvwKtwqQZcMhvjPripu7cK93nNMZaxXxMONMlnryuPQe+SqQQYy/81GjT5SEmOJI5PlcWHAP\nOaXrsWQ7+sNMajTXtUInJ2adku4G8tdfc5H+8+1PeL9L+Ltu6doXxucJ/6Yw3574ZM7k2wttAart\nkL/9kewHF7kL8Os/Ig8Ln8wT58ff8aZDPs8h/9YVLHGHe3Vx/Dv/Tkw9OHxrMp7DBzb5V353HtDV\nmT8Fd963A0E+cPjZMM17dv2CO+aYwiHVBSqLeXn/zIe/33g6W5rFYfzFZ/33hHSNkCfBnxvYPlrm\n6Beqp4hEV+jwD5yW35J2K01+h08lom65f7iS31dOPzuEnzdsVg8ve//rITKckEFD40YMU8TNv3Jy\nFw6pzxpJllCzmwxDl6G7nuO8EEsoCLgrUBuXvBboMEdcAwqnppzOWCmZBNTxxGuvMIWmO3hYVeGI\nkdaAelspugVxjrFNRCpnRGQp7EzaeAT5gHIlntAw5uBpbJawTh6BnyHPMcm4Z8x32JPHzXo4mwth\nZAnmlpNowO0pjwVNXWLGAa1HXDUSHQbEIrDNRKh/jcDItUXZI64TsWzPxPqAki3i4lO7AcltwAow\nLJS9S3OcuIqZ4PHK4zSxOwnaKSXILE44YsYaV/RAQz9FLG5JFUic48JSWVSyI1gm0A75PaAZ92zF\njHBW5uWZ9i1jeX7DOD6f5QFweJo1Q7Dh/lix6px0r7ind5alYxlSstcDpZ7IjYfajIjAJewF4VVR\n3Bxy55nGE+yaADe2HO8DPT3GSJzIoLTPh3+0noWx4TS5yA9bwnbglmhuPTiBQQqfb5lHEglKfBxh\nca4Q7EcWZ4PQGfkqiPwbgV64lhOyecHd7xgDg7OuyKBi/DxixUj95TOFm4BjGe1AeZ0xuy8E3oU5\n0BSlj5EjgXTxXkLubznp7oCcFMcgxnd2LGGAWjTldga9xXMFsYiY5471XhN4K8cgRUYjm7hHnXL8\nYcvOi7FugKsjwr3HocgI3uf46ZUsvLC036cdMpt5Nxe44ULgHQlngQkVb4NPZi3aLt8reR62UK+c\nVMs2zxhbwRon1PeVINIUXxaCeGGfe8hkx5vwiA8uX28O0VOCZWRyQsSS47mf6OxE2LloodlfHNrz\nHeVWfH29wjQh9k+YesBbVtYrxHqHegvwup51q0i8Dvk6cZo02UMJ8ZWmmZFMqLkCZ2JqDWr4Qva8\nUhQpOxughpTAe0RqQeCHJCrEu3Zo818TRf23J1HGgQWX7LHG/CHHfNWkmwR+L5Hre37OO4IfX3lU\nBzatj80iFqfFlxMnYYinK7yd+fp+QT/5RGnP9o8pge75f7g7jyVLkuzIHnNzTh8PkqSqursaA0Cw\nmP//CsgMgO5CF8vKjIhH/TlnRmaRI127kVlCYJ+gbuRedVW9MQ7fxi2O9Hh4t+O6FgQXh1Fb5OuJ\n6fbC/NYQNALl7Og1yDInfD1yH38hzOD55Y0vH6+slwaxzylOPuGXFpPONObG/ds10S8J3W8xdr8g\nf3DxP2nM6CKWgXoHugnwH26I7sRt9QnuDvfPCbskIGkkTfWIXH2dOM5g6UzD2py4ngSrwFJGC3Wf\nsQ9CVNwjG4F33FIql7rOEY9X+vnGUN1ZPEm1LdAvkrXX8zpKXDkTToZovOP4Jzxxoc4EWWHo9il6\nDqldj9hpEfGInFuE4+PeFElrCReX0A0IVmeESXCMRHsjSbzj4kuG7cwoHFS/YfAU7SahsDnXmyEd\n99jRRU0BRThjM408akxUcjY+86vguqQ83o442kWamcsy4Fy+jrGoHwIixwFhSUVMNofs5oI886nq\nEmclqVTDQS8408x5daa3HkN4Jit83syGRAvmTc1y2NC7LlIFZNuFeh0RUBHfI4Z4hkjiixVq5aPL\ngNAGYEKafkbc1yxjz82JGPOedCy4vvk4Gwj8Bieb8ZwYL3bxfI/YbgijhWyzMEUje79Hlwm50LSi\nJ+qOtApSsSJYJOaWkYsrmy7nfoEnL2SRewovQiwDSvw+YHaxf2P773vS5MBjt2J8uzJuPjL8S8mb\n31L9p4946vj2H/b8Se5wfsnYqB239Mjuhy03UTINhj9/e+S70eNfVz2IJ5aXmGGJcfqAePuFPzwZ\nflw94N8Md1+yspLbJx/WDTaKOYRvBI//gcy+I/Ue+DE1CP0rhwd4ilPC/fec3Afy+0zwzuVJWKjX\nuFbyNAvKOWI5eazfVmi9p8Hlid+4bTKW8onglxtJ7LFdNsj2zpQ+8mhPPOQl7w7/+nc83CWlGEO6\nq0cQRQgl2DsFbdnwUC8E3DFsyRZYigVzb8gjQ9tLfDEjL5ppHaLLhiw1tNuIdtrT0eE+hBRGsJcx\nyJnodONiJbUJyEuf2F3oIpe8aGhdQTJu6bM1whdcE5DhiO5dVnlMLG9I9jzdZtx+oUkst+eWMb1h\n64nzviY2A21vCKsUUfrkZsvdiTiLK6G+oI2HDWakMxNOLuupIYpC2t+JSlrp89w1NPmI9VOG/Z1V\n90RgXbb0XD3FN1NJ7GdUE2xffLzRIzym1FnFDUuyEQyTR+gkdI896TVETw7d7ordjXxSK5JVAAAg\nAElEQVRQJe45Y6Nq4vg3Wu1iA9DxHdfXBOlMMt1xgzcOMoThQO9VOGuLzSV9JtkPDvPS4eSvxPOZ\n4poRSZ84iKlzRfaWcslr7ktELSXjMtF4KWMw4soGZpcu9bg6PZfvS/L7gWye8GVH5NXo5uvz5xif\nYh1wNeAFGvqIB+0zDy6ZGim6GTfucIOeezbSPB+o7jEH32fuZ04qRiQ5et2RE+PuHYaxoTm5TL7A\nnnyeZUwdHwiKHdaZEJHL1ttw37ncB0EUfc3OG7uBtpR89o4snmblt+hXl6Mb82VsOXMmVmeSnYc9\na8xiid8yFl2TDjFeMfH2YqnElXnUtPNInPV49pXXvme9nWElQXrMbkM4vyHaArMNcLyvjfq5lHwZ\nztgoYpjfqBeDVjseRMl6vSG0O9qpp5o8Xt2RQLmc7z6zHHDShG1sKaVlSnKak8SOF7pCU/gRVWfY\naEOjfcbVFqkaNpklHyC079CHAdUIal3j5wrzmrLLIjydUl4H5tVAmjpMfY1aGZYHhR8cvoYPdzum\nMCF3F5qzwLxt2OQOTXvh3ipSVVCYz0RDQdm5GMfnrjRZ0tK+vlH2ArfXBE8p99TFk/9NfucJ4eCN\nGf0XRdi4bJaG+3glfq1QwkPgcYxzgr995qeD4TAmiOMT103I8/FE71puj1u06nkKF+zLzOkHn1Wx\nJYwcjpXPcA+51h2zfWUOO1rt8bT7wDXcMT4WLN0af+OxC3Zk7kh/UJhvfQrjUh8s4TWhGyO8zxbH\nL8gOBb8GBvnhQI/LWIxoe8HMH6itwhMK77kkeHQIP7VYcSf69B7VfcP88g76BX9TU95fGXcO6kkh\n4gsAKvGI2NC7krVICM+C9dsa5QpqK/BPT4yRiwohlYpwf8ZdRnSwQjsWWVqMp7COxGkS3HGFdX1E\nJpHyAE5MMRQ8XBx8V7FxBh5pCXrBfdGM1lDLEOdVk+UdxJZ1eWcyAU2VEIsEL5Vcp47OazA2RfQ5\ngQvPasF1AtYioOzfwJEsbs9WaYbIcqGnsh6eJ4n7PSsDaVjyIAzVeoeKXcQt5iF7Ytp83eDeUVEV\nKfOswDZ4+ULtjyg9omIFN5euTelSD68YMI2PvCtuS0zX7/DGO/PeJ9Ezga6/JojLhfZuCOeFxmxo\n7InIuCzTgMrunLSlSC13FRGkM/m2pc8mvCBBqoANEXWvkXvBQA7GRdSWVduydDOmj1jiGpEK0BGR\nzWkiSWh62FnydmEcJI5nsb2DakYMFYPK8f0R5+DxEiSkHZz9M9pL0cnv7jyxdWn3P1AvXzjt7zx+\n+8jHciZfDgzVnvgp5+P/dll+HfnrzwWx0gzRmfe1w/nPCbc5wav/yvWnA+Jh4d0XSTz+O//48G8o\n+4Y9PrLGgNPi/fa/aP2c3I/5+Sxwbc7SS/7Wr/glcJiPgi65IJbPuDZEbXzq45HL28TfwhdyXfIX\n9YQ4vfLZ+Y3l0PDr1qF4gsA27PcFlhPHMqE4fOYHcyD9acPW/kL4T3cuP1Scbjde7Tvejz7S3XD3\nnvH+8/nvePR+yzkaCNctS9SxqgPG7cS0herZJ1cH5tihP4x4S0K9FAyNxdUVy2JYioXO1RxIELJH\n9grHa9gKmPGZvZBbVqDjgC7akcUaUQtEdmdYSxZnx2unCLqIkz0i5cilAT+eGc4uoWoYx4V+TPDq\nG1W65VUO7K8L3ugih4jcjbHLwqAN2t+g9w0IQbAV6LvmadkxPEnGJGLVx2T+E3aYuW1Culqxin+/\n6v2+Z3k4410OuHZmeRmp332hDSzBW8KYJiy4vBUzWWY57zRFNlIlCjXneLsJedK0WcMlXYgbybx2\nsdMzrhPhVi5vUYy7vzAlEfX0nudEE+xGqj4mHUGUAq03LEmGil2oFgJH44QXKnuGQTKWIZGNuI0r\nqvkd9ePM3XFo6wUbOoxyZNMZpDTIcUDMLevRpY881GvKtHhsbz7uuGUyOZ0AE6fc23cs7Y6X3Vch\n9RxqOrkw1x3XzifdtlTFF+byBqlifBCYm2HaPWIRpHcNk4IAjJMhuVIeF/StYBQz+vJI3HeI7Uhw\nrpnjEJEIwmFEzSE2EGA0N3FGVyt0DXVZMkdPiPaAzWfeF4+osMH4Kfn6wn6+fHWNLjmy9emWN0bH\n5R6caKSgr3pmryNRPllqSUQCKDZRRh6M3EaHJOy5fCkZyhdcK+gGcOqIwPTY2Wfuvurmcn8heb+j\nWyZ2bFmrlHlRzGHA/TLS9Td0syKKBtapi9g5rDYd0qvp9RnRhoz4mLVHIDWneWCrWnzrkHUh7r6l\n6i84tcaJfG7zSJtrxPGFcUmo1UDhpOwIyVyfdpYwl0S+w3CR2HEgfC5Io5B8MPRKM4YJftzSSJ9q\nvtJqRfBecGkN6zgkTgL8Rw/8A8oG2Elgr684ZYtz9LBOgJvOOOHIfD/i+rv/PkzUMit8vyLJNIu8\nUI0B7vTEkGVM3RemqeQhKPkSbYguAa506JKJdamJv12xvEY46m+I1jB/qjl5CdP6xM/nK1dnRSEs\nYvxEcJ95cAvu34Lxa47ib3jbI8G1pVi5pCePy0ODrirSnyL6u+BeuXh3y8qL+WAy/MNCtRkZidnW\nHtfqF55PA29RjJeH+C8NkY15mAxe/4z5PLMMKet2x/XxSI3Bhg7J9gPmIDDRn+BvE49lQHT++kFV\n6YKyzDN4k0NPyPQ0E4+KZGqJvZlDcyJeRlAjo06R3QPq6uHsXVqtkW9HcrugigDvMHLrLU7ZEQQV\njV4QakJZ+zW5vPS4GR8/NAS9xZtWbFc+lRvSy5jQBly2lk1i2EQRVmjEJSLwDviOS2AVjg5Rvsub\ntMyTy7W5I2xGFMzITPCySJJmwUOQ2yurIfvq+mkjmjljwjAqj6GqcaeF+1Wxtl+LqCqIsXJiLCKW\n1KVuQvA8hASkwqxGgk1DsEjCIUXECsQKP1zQScO6OKAuIfWw5zpuSXclqlVs/JTEpAi3IV57FCcH\nnIhaRIR5y1lpHjaGQTfEKkANFXYSzIw4J0G4PrK+BeTtlW5OGIHKiUmTBNGFBNWE5wWYakHpFv+W\nUq1CqnvMEm/xZQDnEzJRXNeG2XeYSp/prsnlQDGfuOsjQrpox6Gf738/M+o2crwn/EksdD8VWPkf\nyH2N/2OJGFf8eOkINw0/yxv7737m9s9XwjZkShfCYSbrWnbjdyzRC79ULa95QN18z1/HP1Ksv0ds\n/srl5X9wXyq8YMsufqasez4+fCTa1TTvcoLpxofrinf5H/BuH/m0ExRNT99o4i6m3Dck+s4lDvhm\nfcPkDlOxZuVowv5E6YYMY0/7ZaKOLN9tXlhOa9LhwnQY+KTeo376nzxuArL8EfdPgsj5lZ/ejxh5\nxq7e/o5H5iZkWYSpU1Qrubk5bTOSjynhi6YfKlRrEeWCKReSVYsYPOJEY7YeydWQnltet5qhkSSD\nwYaGyreELyGidgmGnrXR6L7BCR/Y5ZLeekxlx/bzG67v40QNq/aANT6JcJmOkn4H015QOQItHJzw\ngdhoNommNz1TGDNISZN3HIwh3bsUtYt73tA/C0pzJTcRpWmRosBxJLfsSisW5p2Pu/igLOPy+wiL\nzZzDsCIM78hryCYQhNd3hCLnFvlsS59mJyjcGjl02HLkEghcpUibGm6SKXaJ1Mz2nuDj4tuJm2/w\nFkXcdoRq5kU9I4SDG3T0k0NUObiLIe0W1OBRdIbMnFnUG2Gq2ZYWNcLWjSlWd5ZQIU3IXglGdWdd\n1tgmIOstoZrQhwKZazJ3YYl9xBJjM0hMipccMc8jX95P+N4F55KSP36hjSBcazw58aH7eoc4joea\nYZ37GD9g0j7j1cMTz0xyYT7mOKNP1o+IvuK0WLy0o7zemLYDh80jIr/zzltIaKhHTZcGbOaU+uBh\nB0UXTbDvmFDU/Y0bB3bKg/RKVGzx03ck+sJoZjJ3h7p+IagNp0oxOT6nOkHEPQ/dQBNW7KYtwmiS\n+hHPVhTrDLPKqGyE566xRUfsSEodIBafYJ7pXh32BwcnDBFhRiAtWoXIOMEGIWMcABBIQXh6Y1lK\nhDL4cs2sXUwYk6WSu28QfsXt5CEGyXT2MLNDbPfk5kD3aNjnPrK8EsuIwKx4O1uCKOZz8cp9dMgI\ncPUNX0xMXUJcG5KnFd7xyMM7n/tc8noZOOkrk3FRcULlCESc8To1dKcrtq0Rc4wfalYnibj2yJXL\noY8oNh3iM+RCIMiYabm0bziriu3+QuYOWEci/QgvhNGf6bSLGHxC54luueD+/xFR//WLKBFYPLdD\n6O/I3vZ0xZVSHkndDhlOpNZyugqeP5YEwmWej7TdyO3hlct5zTgtOE2Gp2CKNE9hxWFlOOzWpE2A\n2OVc1QNZFDD/aChOiuRPWz40D8Q/bTncXe7LK+bxRP4pYvizw/kxZL7VBMlIMr6jjTpOXoxjPML5\nzm1qKCLLgzI4YUtSHHna5PT7md6JYDWzkoLKdHz/zZbf1J2tkxF8eOGwnWhki9UH/C8j4cplXhsq\n8bWICp2OcxcS6Q3ntGZc+xQqYrQ5JoF+fcGsAuoY2iHAcTpu1Gxiy6bRrLwB/zFHHBSTeWVQPnFU\nolRMOSlyvSCkpXF9SnMgFZbMdpzTCyZaEQ01t5PDg+fiOy5lWDA7ltbLOake9VYRbVxW1GjHYbA1\nfXFkLwT7YCDqTiTLTOgEuFmG8DyyEVSbUEyWYYnQycz2YaYWDtqd8Wd4KBvcbcrsWLoHn275ikc8\nTaxvml0T0fYeyQjppSHwFnZdyHwLWV98TO/g6BjR52ymkN0cMt8d7FARpAuRXoj8Fl8kFEuMmGqE\nmAn9lFaGDLlhCCz5W8BoM5Tb0DsCz4sQ0ucpS/APMbZwGFeCTsPZVvTjFukbUiFwo562n5hkB7OL\n6Sda/0LCjjoB6ZTI3DD4DTdPMHgh93pE4xHrgOChZEZRNytGtYGHNabPGU8lOL8Lh9/NCY+yRQ/v\n+fgoibyAi6r5Syb4WC08a4lcNjz5H9kPf2D9wwfexEL1MxTnvxF3H5iiF5JpJDoLvss1erJE4xvy\n147vp+/ZDb9wblPksid5/ZWtp8mnI4aa9Y9HuqRg/Dhi316w84DXebgU1JNiZ3Y8/tjw3gl4LgbO\n55n7KqEoMm5VzPocM3k+fRFz+q5giHxsNHAXHY+upL6NfHic6YufCb7TOMlvqE8/0z3+mZWacPYf\ncC+/D9ydao20OdmhZbvpKIRBTw4GF7WNCfYzKyxpkKCfE5wopHcXugrUSZLmIyZxCRePRoy4sWUO\nDA4ZQ1FiihupipgdQ+LPTHXH9XXASR1UlnNbeThFRiITwpXAdWqGJWKz9tmPhuxtTermeLbEOBOi\nMzhijVlnqOXEYjzkqeNoNkhl8FLLzbniVh0bL8VxS7SeSMsbhGcWP8JzK+QtY9uC/6jwvd9Vskt2\npolGTtGNKXUp05w5+5Fl7ukyiclDMuXidwnBvMLuUvJzDN6AG+1R2xYdlzSupRQzLCHOW83ObUma\nhMA3GM9Dty2T01JbQevBMj3gbCS100BqaIqK0AtIhECrmTI7ELVrnNHly6xZuwuDnAhrzbOT4+TP\nrO2de+YRNyNNcCJuDWFZQKIoM4nsetr8TDcHBLULbx35nJJvj5hGMcQNbTQyZx2l/MreOrcjqddS\nDYZsEYTdDZn5pOmFVGTIjUu/u3IMRrLxgUfvwuLFBDsILgNflpJDl2OThkXsWVKFW/n0dYfXS9JD\nT2cLhlaSLhc2a5+1I7iMLo/hgbjsGOvfuBMSeA7OpBBGMB1SwvclYwVRUpMnAuX5JMmKl/FMf4jI\nIlCh4ss9Zi0kMvAQtaBrNVrlhGPA9RpQbB7Q/kgnA7xRYMqGKXqkDBaGsWSqOmL11bykJMxFiFMv\njHnLOZ5hbRlPGmeCwi8ICgeWG2VdkuU9fWc4Xd4YTy+4DLhqoVitebE18cEneKd5KXvkVVNEgskE\naG/LNO3JMoczC+XlRvQouX5uiVYH0vQZloVsHRHpkKxaCNMrYRxx2OyZ7Y63tscXMLgZhUwI5zO3\nfMG9RPjZmV60mFVFF0SotqBaQuxZoFTBRMCYL9ynlsdVQNDneMXItb3w2GYo/d8ksRxloU6JX6/8\n5PZ8eMoJ/CdspTDNd7h5ynYX8vOPM4eg4G00pM8j3376SGjuxGOP3z3Dw4b9LDg7W6y03I8Kk73g\nTiGmvdKLloUOz3XpfvrMvJFc+ld8FbJMKeVV0BcOso4xNuExzwlbwa/xjfkyIvuZ1zDFXU08+oLB\niemKkMqNyKYPnH7reXafePiXDvXm8Dr3JE9r+p9OfNiDaE4knzM+/+xSpT6T8tl8KFmZhnTSzPpr\nl+BmAe4M47qEzGdjGzpTM64VYegSXSVUMUnW4U8ec+fxoBxuTIg54WxHskpy6lfMrcOq6fEvG/KH\njiB1mZTDbGaCKSXLFsZiwhsh0yErq3H1yOGd4oQkfalxSgh8D64d+RBhV6DOd/QSIU4z2vfQ3Y5y\n7LlNOxwy5tyCuzBYKKsaT1gm62A6zbJVyDGGPsLRA6tAMrUOJ98gLjPho0swlGR6BEDEC6WZuIUn\nVtoidEPjJJwuPUGesnMH7lsHZ73Q+SO5uTM7PbVv8IOYKdF0viFJFdGgsbeUWwbNdkaJBO8oOSDx\nZo+pChHeQFy55NbF3npSZajfDLWZ8IXG6wVu2bMaBOxcxqJBjyE2cpj7gMjx6R/A0x4MD0RDQRO/\nsvJbhJuhXUXSJkRjxM61JHpGtpK3aGAaXSapyHSN29eYdib3r3g6JM02fz8yWTayUnvsLuCzDHj5\nt3c0vSXQO4ZC06gVwm3R8V8oX0Kkp/iukiwPH0nnDceNRs8e5XfviP2FT01K6/7Es7Om3wqmQTN9\nq3l+f6V+P2H+WaJ3J+bB4WXOCeKCfxIC39+j9h6Xwwvvv8nYmQvFxmfcfULEH/hyj3k5XYifnvCb\nPVnfcNJrXr91iT0fOS/IuuXwmiDKgLAbKZeQhyilvVv+VD9zqzqyL5b3/R8QP3XUt4hu+gs/+7e/\n4xE6AboZEJPldvLx/YCN3MFVk+CwnDTn8E6vrhg709wmwsQQ+RsOOdTDnqRL2AiIHl2ELBDGRd1H\nZGaRZcK8uiBfPHAz1pnGbEOcemR7E6TBBlMJGjVznC/Q+8SepWPg3q0xqztedsYGEfNkmH2fxnEI\nyhbrrojUjU14ILAdo3yg7e6ssjWRa5Gdos4t0vW5iJjonrK2mraEfnOlCiV+B170e9jmbeVj7AbR\nfkOqa7Jyou4f8YqKhwomr6GxJcO94LY5Y4Maz70x9U+EXUmw5ESe5b0SrII7g5PyEmwYRY+Py9Xz\nyPoeXydMuoAm4uE0ovIGv7P0NsfpU3LrYIgYnICkWhNOLZkxePeEbAh4MxHt7HDahrTqBm5NvQUT\nTFxSQ95vKb2FKTuTLglRbFmcgfy0xxjNyslI5zV1OKC8idfmA8o4JEeHsfNwmv/7SLoBmXokGC70\nbskyPxCPhmjxuA0tftuw1AHPzhr3nc80CUIr8cOMBc1Dv8b4CWXj03YNUlwR9s7ykLFbr6Fas5Q3\n9OywqIjpnhDnHUHR0tkRP4Io3mKEQucOnj9yzVdox6CqHI1gGAOOV5+pbVBTxPbZwVEDJ79nmSTv\n9zPnyeDffc77ASfccq0M9J9ZJ3eOzon1RuCGDt6coNcpq8nwGDZUmY8f9UT/t+9QiyQaZ0wSocec\naLA4XAjdieNKUt1nbGtI8xB3Kwl1TmZH5D5ARhnn04wWPpU4E8uC8nYkvkUsoiLTB5q5Q0c12WNM\nvruzDhSJLUmdB0YVIB8fmTNDH43kXoEzfcaEHeGzYHIyJjfgtXcR5gtZKnBuX/PBriuHaIjZywLv\nMGP0gdBIbl4C9xFvkYQY5keLtRVqb/HcPXq2XN4yVm7ARcekEVh/QPLfRBPlY6naAF/3PCnBRfek\n6467CLF5y9zNDKMmymJels9siyeqyeUSaK6ZZvdhTZuUTMbnpcjIjU/57w9M9oXlcc+Rioc/P1Af\nXR5WAS/3R4KpoA5vFH944L7pEPVMFLWE9xn/JeS7fuRePaCdAZt4mEiRT/Cny5HLlOO3IW9LTR06\n2GRPPPqk2x296tF/Cbi4MUEUkYyS+Y9bTGSpTgHT2icJXpBfznwYfqN9faCLcwhcxuWr6E/PLe62\nQ4WKgImmjxiXAL9uON5iytwiVw2tTljnI49BSqMLtPW5r2AVPzJ7N7bGktgDoR9Tbj1sl2LtTK0E\nUgZ4XNA3RdEudNGK4OJwCjv83Y5TM5FGLffEoL0zc5VRbGIGb2IyCW2x5W4Vk4lIRMYDFocE/DNC\nxYh5TYOPs3RsBg+5u5FRMRufsDbcHY+ha4j3ESrSDLuFdRKxOgT0qmcTJBjva9ek84XC24MTYrSL\nV+x5mHueY8GLUFTbHHW70nYJYw+3uKBOA3Spcfoj87CQMdMz08c+Sr4hxpqoL6g4I+OZ6qVnWUJy\nt+SeKPpsRgyWME2oq4w08WhCyXweycY7w0bgaBfhLvhK4CR3dNwj5Uy4c/BeM85Zgj9dkAdBND0A\nPhkBW2Wp4hJdVFy6kMJPseuIxylkX4PWPrdwIPc3hJFlCvb4roWp//uZWY5P/PRPLrdrxXuvx0sg\nclK26V+IlwD7p1ea9Eb1InnZNIimQvYHXO/GX1eS/cuP3NL3PDWfqPbPxNcLe/UPdOsZfQv5NXHp\nX7acLgN/+PXO2+Tzebb88q1lHS582mpU+Qn9778ggy0Ch5//1cVRDtYXvE4hQf4rj7sIGfwDNv4r\njjqh6xrp/swffzoyzZ95HwZ8M4a079449po+CWAdsvMA94W/iIETG05/eM+LaRgSnz8Pj2CeeTj8\n4e94OI5GdwtlE+DvDJ0+MUYaLQJm2+A5gtB1oJX4xiVKwAvX1J7idu+xmxP4Iy9ezXLfokvBpo3I\nP0LY+qRrDz3taeIRtx64qoy9uHBTe6rHO0qf8FJN6jQE4YHGG1liw6aBeD3iTBapPNyrR5QodHEl\nAuRuZnsacHVES0MaCdzbmQgH1ELUFHTCQaFwlpRtuqCdEbeL2CoX/77Ft4aLhP70+zRVv9MQKva9\ng/RS7tFM2Flc7TP4vzGdVsynPSJp6YD0JWbMUuT2RhVvML2k7SSmNohsh+gUT7JkKN/zkgUYa2mD\nDb43s1584mih5EB8WSgPI3FsqJ46xlbQjSOR33LJbyzCo95dOW9nxsjj4F+JZI8NNI7a0l4NxqTk\n5w2RHxJ5DYveIbsVgxaM0mVgg5INRTrzIkaS1UB0fybv4DFriGaJJxUxDjL/yt6qzOPz5cgqExA5\nKCuYXA9WI94oCbSDCWYuLTSVItpEYFLma4QjN8zLGd8fUH1GUBc4aod+eGQZZvRlpNu4hNPC42OC\nSEdG19CMgvm6ZVo0R90TTA6rU0d4PlM6IYfSR5xTsnwgjye2O8NqneA+rPDNCKeE3WUDg2RxFO00\nE0w9WVHi/ibwr2d2u5huleD4CY/Nlu62ZjAhIjM4RmHlyL2LWN0t9zHj0nwN7HXThGkweDYjLQKi\nXOL3O1I3h1NDsres3TVu5+HPAW6QsGif6BhzVnfStUHLkuK+J08jdsV7/N7wjgBPGtZNzPtoQ6lq\nylFweetxomcc74pTSdJeEtYzolwYjaKaHpBlz1n7mIuDFyzspgGrPJIx4ZqFpNWZUHhMssUcJ3Tg\n08kj7DTFeSJ2Hik+tqRihahzlM5Q15DifqHYhaTJCENHXA8I3/DWdlj7O7v//1r/5Yuoxfpkfc+v\ne5f7UpFVB6rPiocQssngn1c873aMtwRUSll+YdM6yHwmPiSUa4FtPfZzwENqidIj64OL+ejTLTPS\nrpBNzWat+ElNrJ97nneCYHnCH0pmk2KKmnX0B2Z1xzw7jNuKZ864xRZbK97VLkYO/BoKnJvL2+Mn\nlCfwfijoftJ4ckHdLZG6M3xckbtXRPFCPUxcll85TSuKb3yGi4dvDe8ngXZS/MhwPAu682fi8Kv9\ntDJrGtshW42aV2T5xKZWBLLg4Cw4wwE1BxTujAnWnLsBuxtYZXcsNaJt0LXPfXpDbQxWNjxXFbd6\nwdM7YpExhRM2CphYmGfNrHx612fd5CxvDalULPOMrxziKGPvOJydAR3ExO3MLr6SSJfJOkydZjRX\nRtUjmjXNamESM2jLEmSEjuJy8RA7nzhwiJYIV3QEicD0FZ7sUXWCu7TM7RmFTztWtPKrpd9fBNZ3\nCcqYq3OlGx0+P7nMasvzpNCd4uC6DFoT5hov8EmSEfmQE8aSMPWRrs8ocoLFx0lc1m7AsLgkOmOe\nI9Qa5qykZseD37NeBG2+MFWW+rHjnvUY7WKiCW+TobyAu1jj1U8sgURrF6eGbHHx55FlO/EYXXCc\nLZMZ6ExPIxqaY4doZ5y7y3LbElrFF+ngLyOjVDSPKZtiYN3E6LiitzPLcGGRmnL5/ZHUfsi7yxt8\njHmrc8J9xHV7o5UH2vg3Aj/lzDd8K9/zfXuk+3PLq3agOJKuJOOHA2nwidnm3IMr78MU+fgTb9We\n2L7yP6qfMfrGd/Z7fg0s9U85/SD58JeIt6Lkz7cGc4i5Ff+I/VJhhvd43oXz+MiuLIgXj6P5J8bh\nRhj+B/df3tH7F3SQorXmU5jx3H3gFxNyml9wl3dM0YHDqoDfJK/mSDt/TxKeeP8SEP9U4okbdrPw\nA39Dji6/yd+Zl2Y1EycCby1hzPEdwThdiB8HjFwzFQVj7RLtE0KnQY0pQ12zKzWpCRjbADFFrAF/\n0JRZzWIl8zHBb0FVd4LxjMkLRhHhVgOdCThEI2YpCEVG0Ug65TNd7jj3DYGJsGy4TQoSWO4Lxlsw\nY0TymuJVgrqOmVYhZhsgfAFTSBdumaMFZV2urkNYS3YdLMkVd0kZc8UweJj1isSxJH2LbxWO/d29\nGfsz2c8uXfYZNY6YzkWahK5/YJgPjB8NTlih+wXhfCSPGuLawxlC5jYknke8VPz+G8wAACAASURB\nVKHdgES/cPcGzrEk2Ndk3oCOPZw2YOdWjFPNPLW0nkXvIP8scIqRZG5JFp9ZWS74ZJHPKqug2xC1\nLdZ26D7BXxscU2MzQxgpTBfQRi2mC7GNJoodWi1RSpHbMyIImWNLNe8IlwG1GO6Z4uX+gMhrVOti\nhE8k7zirrzoxqzPyGF5vkrQBNi2Z37NcLEJapOfitxZhjyDgOBhaCbO7MK5aUHD2NN6+ZaEiFzUo\nzdpr6QJLphc2K0mpNFMdoocKeb2RHzTW3vDC95h30MRbmqJguDRM/hva9MxnF5OmeHdFfXnlLnxG\n7XMNWpy4Z5WWFO4D93PMLvZ5sylRMdGtBcOlRUgJjHzRd5ykgnNPrQLiSnPpWnSoCdYrdllArNdf\nN8jgYPZrZD3TeZKp1gzGoVqPyGRCLD4XXyMeNbPRXMua+SkD/8x+G+L2kqZPqFPB7VbRVgMmrbiH\nDtLesZFCdzc255Fcp7jORCdnGptRZz7NqqedfdTKUHgtOC1LtMdrNa7b4ywRnV2ow5RJV9hbSyoT\n9C1EyhRno7meS5RymcqCzoaE4pXll4lj3OENCXFyQnoTbTFilMDEA5eNgk4jQzCpAvf3O+T/tf7L\nF1GOsUjZ8m1gKZKP5LLj4LuMi0cQxqQZ9LIj+TghbjUmzZBxQlAuFL8pTLNw2N1Z2glXFzTXNf51\n5tv/FOy4YC4vBFlAeIh4DJ+pbMRx1eB/chg2Dik1XrpiGS11VlAFJeGn91zTNfOl5Y/5GuUtfFru\nhJOHMJL1eMDtNZt/bImiC6PucL8zNM1Mej1Rzc8UPwb02pJGFjX9QNpbstBnzPZcvp+ZVMuvaYl3\nEETmjwxTB4ByLiTBnk26JfYWbOtye4TYq2mcgDg9M7cuwxwyLxecJUbeXKY5xOslVe4xZxHWjZjL\nkUvksJgtu0OO12vsHOAvMbMbED32WBuwHhSjjbjMRya5J3VCpl4gZMocaJZIIZ2IvTzjRjPNcUvP\nhdWDIDcunvRYj3tS65MGEiVTsunONFWUqwzXHQnLieNqYSoMqd/CNEASoqc961nTMXMuAqLOY/AL\nWvO1azLzI9IdSB4Fjhug4wv+qaN6cHjtNBszcNKG1V6TjRqhDLJe0NVA063o+ojajLjjhUa5OHeP\nMrUUhWFpNX0wsfF3RAp2RYdyUlQHzILR8XjWBjMuZI1k9gX1pSIvYYdlE9+QNiMSDk42c96uKKXA\nu43cPTDiiO9YRq0wryHIgGHMWBtYb0aWJ8GD8HDnCazCvVvGKaX1ILhAtKxx44JWe7j2d83LMbhh\nk4BMJnyzeYXwjW8uKR/iCHN8x3pyYfZ58XMa9Z6XcUP/Dw3fNhumc0rgV+wdl0v0nuQ6c9ps8X/+\nA0/r/82/LYZGf0sWJvw4/cx3IsP+y2fcjSCWv7H79Z/58q5Ff/6GTXXmftjzmEKVP3N+8PiPZETs\nXbLuxnkCOa/YvOt5nB+Ikje+kd9y2xj+073z/Q8Dh+BPDOnPBJeGufqV/bvPzMl3hMVPPK++5bc/\nXgmzngcZkg5v7DeWD86Z715e/o5HVi34g8PcuxT+QhOmFPEKB5dutAxNgGcC2iFE1inJYBD9Cvuu\nZ0gKtrFB+RarEordQDbsWPyBvrAMWU6Zb5FKEp9mZBqy8h2mZYXDhOfUnKYB65ywUrM/GIpooo1b\n5uFO1ija+4HS9ek3AYGZOa3gKjqGtctU1bSmw7UeN1dh5opg9PG7GTcfcLOR2jzAfc29FCS1xdkM\nNOKO4450eoXDjprfNWJ+veF8uNAvESpyEOuY3Cu550cirXl8ufGoc1S4QTYtbb/hsreMTYgvz7SB\npVueWLTiOO+IRsX66tHdAm6jw/NrzJLWHNWWUa2ZvS3boGVUDeKxw1Ybhm7P7V2JpMBZHKJXja53\nRLPLMufQTpyTiejqYnpJ1k4EXQTSwRgHrwkYhphovEG2MPkOyXFDzmdEbdhOHp6vieYO9+jxPr6h\nPoeowmUczf/h7j22ZUmOLMutpmqcOb/svUAEgEQCnUX+/zuqqxIBJBARj9zr17kbJ0p68HIhctST\nXqsHsE8QU1E9IuccEfrbC9F8BcDVdzrt4y81XuHD4Y7LAmzyTJd5yF5wszFaPiARBPlAUs+YICBS\nJXNoUWGJqFI2sqVaBjgjud+eEM2FUElsNMMFxo8lQRQTPv6G6XpmcVwSmZnmdCGZAqzKCfOYrrEk\n1pJnkuvpxNuwQm0TiqlC+yGlt+CwdrTtE67seYxGDsNI7A1QBMTzE+PSsDpkdHHE8uEJT6WUYULZ\n1mi/pogyPNfRnDWN9pCrb2+MUu/4b2eGYobXCcTMZjCMjUVLD6+eWMiGVOYY46H9GHu2RN4W2xSY\ndI2tRsSkSR4lZWaYDIj3kd6sqK3HLUqIH2IYAgifKOxEHhVIX+H2NTJ6Z1XPDFHM6tahJsnSGcYk\nxZ6u1KalqA0H3eNFYDOJyQVDb+mmEIIlIlwSx4pJNAwiJdkIuE7MyhJWGQtKXJ1iI00ZLol7D/Ux\nQV8eiO8RmF8L0/9XjPL/CeH8//AZ6dGscyrlOKafkVfFvUg4bgZGWRNkIf1Xh25SvN8tWF1vnIVG\nlxHWtbRfDMEdFpPHa3CifTzi/bHlmO0QwwZ2Iear5Pyp5MwnHg6Kpdlg0pqoTuiSkscuphzhIfOZ\n6oludyZuXpnY8Fp9phKCfPeBVRejgob7XvF9suXOHbt1nK4pp/YLvlCcggjBG6dyYvoXj7l+IB1z\nmqsh744UXkAxfEezSPGXBnOStHWPffr2SEbeirjuaU9XRpcyqJFAQFP0RIuAiyvJXIWqPMYxI8x6\n5sAjB8IpJxwluYkpwoR4YzB9gkqvHNwRz1wxy47eG6lrhxoCqkBxXllyMxNHS6rHE5d4IogCUjNS\nOkF/vrGpLpwjix0N0/ZIJJbY28A03zj2OU4O1Mmd3pxxpkOlPtsOsvrMygacMsfmFDN1GXqwROMK\ncemYTwNnGTBFG9ZjgkkzdNDxWH0DUa47Unsjh2PNOgkIwgWRe0JeBGKbcLQjCTuCIWSQM/Z+Ixot\nodVMjy2za1j0Mb4rSbIzrVUE157hWGOjnl10RdxqxqSgqxTXOiLODIV2xIuBJlAYa5mkZjf6sErY\nRw1aWe69jz4dcbrGVCnPpqdwkqFcEvcLvGWCG0LU4BNFAelS48obOgy4tpZYt7zlNY6SuA4YEw3J\nRLLwqbclcXNG9Q2xGDBj+I+c2QVPZLcnqs+SCIP/c4jb7RiHlstHx1+aA8v5M4/5Hu/7lsVB8P3r\nhdsh4+XjJ4ZjjMgHni5/JhEp+WDIg57qS4z6vSCUFXMqeBlG5g8hq9cHVi6iSnxW6SvRv/tE8it/\ne9J0F4lXC9LkM/9t+MzmF4mZfMziQBEPtBeDGS78shk4f/oXzo3j4yfJH1aaT3KB9/wjLz//G4MT\n2HLB6/6FadRM88zru+Xj3WBkxi1f4nQCpz+xX+6o7fCPeDiZYLY9aVrjnWsyP0LojvPesEhvTMGR\n2auZ0pqbPiGEwT0c6ZoIqY4YEYI7IrSlq3rqwGC1h+k74rYluI7sHxeUKkKFd/ZOU7oKhGOcQY0K\nQc6iizEipY1b1G1GFwtUuiL2Z9bhjB0EY9ITGp/NaiC7RHhlQdqljMnIsh2QmxkXO4ztMePM6KUs\nihMb/4w3S0TwSNdlxLXklN2wmxOLQfNY/urOa0JH5EVExYprJMn3PpPwCF2BnCbmdM05u+HlHTvV\n00nJ2CiihzsKj17CWnfc4wcWtwyT5Ogw5nmoCJuAz8KSJwNt5hhVQ3EUTIuKoAkp3zPuccNojoSn\nFak78nROcCvHp1hgond83ZEvU8QYE18fwY60yxZlAsbsghs6egnTc83XWJL3mkzW9ELR2JIpD/m0\n09zFmq9bRenf+ewcIo4pXmcmLNp7Q5oSgMBICq9EKMnlFNGLB65vEa0ZSDBUoeFxq5mTL5RFh19v\nSVcaUU2kgyRIQ/LxlSmbOYcBW3J6sSefz3Q5nKcjNDHpHOK/G4JBcJi/MIuY92ymijTtCL6AqD1g\n25xps8SPEoyO8CafIL6yvcXEV0XcwRCeKF3CKCr8eeaaWJa5IPY7uknQXm9sLxfe4gm598nGO3IM\nkdHA5E9oLyE2itLE5LuZDI04fWM7ujDDfylJ/YQuvFAUEXNWUdQWJsN9rBGTpG2PYCeSzRXpIF55\nBIsWc39nVSgK0WDGmbvuaKRHtg7pXyoyP6S7zLy91rRqwqmBMAuIqop8urF4iFHRGhEHpP5E6L0Q\nDDU698htQvEhJfu4w6wzgsCSTEvubxMr7vgqw3Vn8llTSkU4aHbrFD/NuRgFrSE20C5CTHQnFYLh\nbjm/n7E2ounOCGHJF494/JMIy4UY2UYht/aZ7+yW63SmFldiKzA2Y9Qa5VmI3lhfz4zFE0Zdubie\nqxjI/RjzuKSPXnFqgbmvOJ97NrRMP19ZDxvmnSFef+ElesSUN76eBJOvafYWBsfb6s6gD9SVpMxy\nOi+gnxO6cKLXEbmB+/QFrc/MdkMkjvzc1aQ/x/idoH965cV9R6t9/Peehw+CoZtYXgZ8Xsn0kkFs\nefutoM9OdPOF5tbjVQObqCUxCrn/9quc81D5jWinSP0znZG0DKQ2pumvFLVPQ8gsBdwHRuUo3JGr\nyuk8y+QGmrbFCzVTl7Lu79yujvwUcsgj6B1eXbDd1VyMZpHllGaiexzBNOzGgmjyWY6Ks5qZWgEP\nPnaG7LzGTBmiW+Nbg1mEdIEhkAH1YkDdGprWJ69CVDdhFwFVkCECjSdXzEhsMDMVD8yi5RhvqV9a\nAv/O2lo8Rugtiz6hlRsA+lVOO/Sk3gp9GLlWLaiJydwR73eKxYZOn9m3ZwZdsCygCwV92SNaj5cw\n4xQZVH8nugiiYIBhxnoh2gMjFojCZ7ofGCLFcrIcbU89KSavwt57bLAjTh2NMaRNi6zhTkMe9sSP\njqzf4UbF6eZxHgoKXumCAO1K4jCCPKZzNe1F0TSayn2zUAfTBt+zpM2RKnfkaiQRGnd1xO2Z7sEx\njkvq7Yb814HleOZH/nqf2YV/589fYvxyQ+IkX9UbrhmQcgky5ycdU+mU5MMX3leWIpao/7Pj6ZZi\n65LLtGKrBsJLz//6QaCfS55cTfC7PWN+w+YRP5067oGl7GIm3/Keacbfzfz5KUeFV8rfHbi//IVN\nLvjfT0+0TxOJ/Ini7XeUXU67WhJuX/hgFKmE8nnP+x8tp6tgx585/+jx/nzh+xCKzQIrYnT8mXnh\nsRp//rY6YtHi2ZHq1DGvjpTNVzz763TJOcoZLjm9KxC+YD7dIZsoncHogM2ckVuL8xyxt+MUD6Qe\nqE4x+xv0YPCCFUp1RJMk6RQ+MZtSoLKYZR4T3k4cghvdNWKxyfEGh7aSrFKI2bJ3E++PFc4GZHeL\nRTPEmmp8RxqNMh5JIPBPHi5yvBmBWJ7xR0Mc3Agaj1p4ZE1M5WdcvZDIkyivo5m3DCpD7xomTxM7\nh/NCstcAeV3QjpKRXzVzUXpGTBLaI8szzDvBbY4JDz7hxwFXOWz9RBtAH6Qsi56omWBuSJoF5TRy\nWV0IzQ3iCzq64XpLH2zYhGfyLkOogQ/tkbyM6elpPz8ii4FrCqsb5ElMZjyuO4/LUnO0KS89NJGk\nX89IY1HpjE17ZAyNLTkGEb7XsV749B8Hgrctj++CSxGy0Zppc8JPOhbTiaiv2HY97vDIe5iwHnI6\nMxElPuU6pYgi5uSb+SCngM0eqRPKzYh7UgQP4BGj5w3luuMiNpTeC5wc4XBACEunRno3EJoYJ0Lc\naSBLPYbunaQVBGLCF4q4i+niGb2qmaMDolyhTME4FGyais0ckgSCdmXo8hThzyhz4xI6ZN6yVWtG\nHVGVDTYfCLYV3lmhxcQuLDiPkGuQTUD9ZYFqe6bHhCqJKduQedPQ6o6mqZn7kDsd4yVmH9WcleCt\ni6kmD/FtpztyCOivM4iI1fhAdYKhnmiwuMCxLS2ygVBa0jInvOXkzLRNx/EUMbcOeoHzZpwfsfEk\nBkHgUsIx4qBHgjxgIx8J+xofTfsmuaSCs5k4VwY9d+giYxp2nFRP63p6cSFIboiTYzAenuop/Rda\nV5OmmlnBNFpaK8hCD+1r7twRc0Q/XzGE5DLhXgr8PoBAUo+SYlsw2AVDOFM2Ma26IOcJyz9JJ8qT\nkusvEU96j2cVavORMhYE/YKXy0zz2uC1Pl6w5ie/RMQdT27D7N1Rc0xQai71kTqVZG7guc5YDZKx\nCwl/+J5bOlDtD3jxgp/HG7PI2bx8Zf56w+QVPZL87wWntmPoemhBJkeMF1KVVx5DaNoYv/K5ZoZS\nzYyh4TebnO7Zcr1Ivvv0gq3f6Xcl3tPM6bJCeQVXKVl2G0w/4sYD6TwTvnqs5hXLW4Y/LnGi4PL0\nzsvLN36203fercf+CrWNKV3J4m44zgI3jNhpoHUeUS4pt5L0UOJPPuZs8V2HKAby9YDTEab20MWK\n3hNUSwFBhJdb/EXHUC0hSKnfDP3NELwaOrfi1kvurkcvU6Rdci0s85CiswC5uTG7jtGdmXVP2Y+o\ndAV2wBsXRJsH/I0C4SGSNerakrQDZgl0J3r/gvJ9MjUx+AlSdSSTIEsFt7tmdBYZa8K0R6ffKuvy\nrAjmZ+y6Y4wt2ViQpD0kMWvfw3keRQJJ+EA6CyaxJG8mstnhK8270MTSoEIHEvwowT5ukTpEaZ/O\nNPTvmjzZgmg4J2BNxjLaUr6vvlnXxzteV5JNFnKBn2W4TPNud4g25BJq7ApsBjK8MVQBodozn0f8\n9wsy8NBBjI/EhSGb3jFet1wnzeZtQi8D9OhxET2z8BnTjiZYkPcxy65CnC/Y6Ff+Xq7+yPOL5u8L\nAT/s+Jw3vLfvbJOIJMr4zdWnGSd+Zx0f/YH97Xt0s0UrwesfLD+WgvB6wv/dlfvd57wrcLySyAPh\nPuD84xOP/EChPvDb2uePY49aOxb2e8RpzUuX8eI5bPo/2Lz22P/7A9FbS/IpoZsXCP+/UW339MMD\nkQmRfws4Xjecf2ho3hI+/PUjPT37H37DWqx5rEuM0Nx//IlZHfnOgDz8wGHxG75qTXVdEz5JxMMD\n/Srj71cP78N/cdacX6l3I6vTAUxKMnbcasUlLXHDTLOICJKAsPVIvDNRv6O9ZLTbgIWp8QnwqGmC\nLUMYYDYNOr0yXAXXquFNn/BTR9EU+OuOoT7iVhPNIJmMZUp9XKEo3tfcXM91LJF1xvpds1ssCXXE\nMZjJrxoWmvIuyaIVQ7smWHq0QtEmE35RIkVIdrGEmxB5H2j8jHSosWHIWLWIaeAeDkzdhWYhsfJK\n6x+Y5uU/wjFUHzDG0KYJ3aJBzRopwdtp1OAj/AGigV2vCVRN0w/onYJwzSGUuMyxvYYk5ZUqmtie\nEmqp8FbvXE2AtzyiG4Fpt6A9EpuiNhX75AE9TxgV05qUTi/IbhlpPLEIFP5QU94L8ltO1SZsjMYL\nBzKxwU+PsBkJPMU+uJF9DSFs0NOGIq3Ztzvmt2cuIqKOC7b1TGdmsvLAxl64vVzI1i3RPJO0il4M\nyOO3Quy6HfBOipiG+ydDvJ/pTwO2OZAsjvS3LXIwcHlFSkuzVRynmqiHKIBBKTw3o9czgcyYVUbK\nC136RNIL1FISyBX9dUa2Hv75FR0r4rLDvnzE9C29cZS+Q1chgQ0xo8Lpiq4eOSyOyKVCXRU3L2P6\nqsifHxiuI/gO4zfUk6WbDMuowi02+EOHswle0uJfQm6VT2wCOtcQpE+Ydc06GFkEEaWoyMKJi/8N\nVArt8LTHcXil11+w8kC+i2E5sYgjxjxDP5Qc64nRdASmwflwmTzCUVAkEbdaYFuPjgqaiBcv5Bpf\n8XyBalas44CznGmygr6R+IuOVRQQJTGJmuhqib52sL5QrAKGMMNec+amxIqeBxRtMOCvRyJ/YJwm\nTrVjsYnBPfCKRQ4ntuUa1x7pe9hFBdmzoetO9HPHsbpjkxuyhm0wYNOKes7oBs29rRHeP4k7zzOC\nOWwxz5b/qI74c89ilgy3My6F2b/R/UGh7JmH3pHUJW194+MyZPW4pC9W5JNPIZ8I+5pAthw/OCJn\nmbw768uNcQXtmBAdQu5fKph/i1suSCMflr/gPyo27hnjd4wmwr4vgImPP+/w7Mz0YeDB/0BS7RCp\nBT+m+5ti45V8VJa5eOe6E6w0+MOSZxXhjQo/31KlCckyw9qZ4BhwD3yu3Tvz3GL6C5fzT7gevnz9\n5s5LOihPMUWYEZ9gyG7ILCAfPESSUy9q0pVHPF3Y3yxzYNFqRRjOBKsE8XXFRWZEsWbxciJxVx5y\nn2U/k0UVfh2j7x1h17CUDeGmJZ4FPgOLpcF4Dau25OQMgRVsqozoeqPKchqR4TYLAhZ4UnOSFu/Q\nEy5bMn+P6u/kXya67Z3T5U5rIya75IwgChV+6RNXd27vI/OqwRHCSRDeHGab0A4zYzVh9x6j+Zbw\ngzFMusP3wGHwd5rq1sFUoeeU6NaC9Rnlkb40TGrgdZugq5g4MMR1jT8tuTZrunDBPI4Ee8OtaDFr\nH09Dt3D0N4giD/8ys4kEUljehcI2jkKEuODIcRfRegGD0XiNQVwPCJ0QpwOqNdj5xkrFaOvRXzyG\nOORVWeLe4c8NauuxdD1H4ZB5R9kPXG2G8WJE0pEeI2gcy7MhqHvePIt9ALEQZPWvqVwPV95pWaqO\nD+Mnyp9OBKLl/u+C3xevHMKe5Cnnx7LEtUf+ENWs/Zg381cKe+Z/Wg/39APDIDiuVwzlyB/fU6rx\nj/j+lu2/3JDHK7WBcfrM7R5zbB85hhElJz4NYN86njjy9/YjVfwL9+Wal8Jnu+zRakBen/n6PLE0\nP3OKE6LNZ+auIH/Y0ActSbPh4Yvlb2rFezrz44dngsd/5eN3UO0FL/VPPLQhIvyefDxgGsfqzWdT\nV9j2mdtPm3/EI9nAk/Y5hgI9WoZ1SCpSpLviqhxxEehQ4JWa18RSbEaUEcTmzhil1LHPRftEx5pI\nzWSTZppiRCRJHzwWaUZy3lLLGdeDVTn9WJKtE+IsYyczwqkjMD2GFn93R4Sg3cDQejRezUauOc4B\nNlig0w7BTBD01F89rMxItCK8dbRTx5h3+E1EQEGvHJ2eMW5knUhkKdi4Ad+FLG4pfl6y8UpU8KvT\nKBn3FLVCTmBvmrpL8PIzzagZ/JHKU/hBy97TaOpv1L/psZNPsWiZv2y5SRD73xHPAbftGbvskWaA\nTBJUCbH1qV1EO9e0yxtm9lmOHUkWETnNSnWERUvaXDnfNHN05xYX9IsrfaDxxBl3Ax0E0J9YXXOW\nrkUdViwCnzG54GMw33+ivsao+Rs1u6oc+dBh1QI7bgmGmD4r2VUFt/2OPg5phglfp3T/yYBHp/7b\n9PGmRAYRfarZeg3lx0fc+YFhOpGngnv7wm1cMN0mtlGJeio5SQ/Pm3CVz86TYGb8OMNbGKYIlJWc\nj4px1LCBhQqYP+ToY0NnDPf3C9WDR6YF7ecRP71h1ZE8z7GD5t6kuEDiVQGTSTF+wH1pOXx1RM2A\nnnu4R+hCYdzAdRRE70cwimyVIBYx3SolMQHBAoY4JhcOc5i4XWNmPdLeY+69Izl/a2e7rEGsc3Yq\nprEBoS25/dIQyy2+n5AOGe2XhjJ8Ju40xynA0y0q0IQPKYFvWX3v4fkF+TngsnJoa4htjmp60ueO\n7jQToIiuJ8Qa9OToDydcHWDSktW2IOgV9t1H9HdcCZ6ZkIPBLhP0WKGGNWJwNG3APRdEfokSHTq/\n8jTmjNctTWNpXUA0SUzfMrWOtVoTbhpeSEniFe+TxomR1ZATPjsIItSzh/tnWUBsBcwfPOZqxWa7\npjtXDFdInyRvg0drQoo3ReY/0Xx3wak7Uerg/sTxr2+0teHrVjPtL+A5fo40shXs5xDvlxv7D1tk\nG5OkFVubUoYLup+OLNItQ9vh3lNc8xP+YiRfOKQMSIeRbq44/0HiP6QUs0YHMKiv5F9aluKB8XcD\nt9awTyK+LmLsz9DqFuV6flkekMucxWfL8eEXDqqn/I3Cs4rHYM1UboiWhu+mEvcQ8SI2pJsMgGBt\n8UJNeA+5yJnwHFLJBV7UsJaOxD0wGsc8QOhKOt3j+RV5K7jtYxaiwq8d1gQ095DmbDh6MUGeIN+W\n9JMmsga1lsz6gUr6NJmgCgTB2JIEM5FfkQ6aaNNSRXd8LyTpDP31yniZ0fJCUAqIYlzp6A4etfYw\nXkn9XOC/+nipo/dC9GNDcNlQ9AVpPWCzHn+VYA8TqT/SPiV0O1ieX0nRVIHkqFK85tsj6XKFXMwE\n1UBoHZOZsYsHtvmaOe5pZIBipOgE8izx6pqwLqkWCvsaYHTM7E54WYDlgBUGGzdsasVyiEjtkrIf\nCf0r5hax2gac2oGuu7DZjHR6oBYdVZyQzT51aynCgSx4gK1lSh0YjRkFUmxoGFhmjqXYYNXEsgxo\n/RORHyPGI74MMLnFnmuaKGG1qqnciOpWhFufWRXcH7a4XUhpJ+re5+m85BCP/8gZvzjRORj1nwhv\nCb3OeKj+yO3fZv7yv3ZkKoOrQXo9r97EXE687a78sHW08wdq1/GX+R3T/JYsdez+8pmfuw1p4fg8\n+VQ/Zfyyyujun4l/+I4iCli+viL0L/SVT2o8unEm7UC/3FgIw/2uGEyFHCv0vyuOHDDViIwKnvue\n/BKwLv7Cbf+F6GPL1+WRZNoTKMN8DfhT+xd60aK+PDE9SarnFUf5hV3RE8YzTr7y0+JG0WZkmy8s\ni181QOI9Y3+5E08SiUAOPu3YkpkUU/iI4p3WOe7zzEY98D75CA2ik/TWEU8dkW5Ry5Rzrmj9nMgZ\nhr5lPIJuNS47sVg2yEIyeRZnJ677iSn1uHhvRG6JNi3RQeMmzVgKri8wuTONnLjIjujljOp8Qt/7\nNhyWieLxTuwmvLvF8yucV8CUoYKJg0lJTxd0bEkGRxXnMATIeIF+LDHWWzF8PAAAIABJREFUIDqf\n99Th/5fledc4pFsN7O4pdhWz8V+xp0e6YMT7uiBJPPppybOSND4Mbcby3bA4QjBJ2kfITwWn9YWw\nWbAMcgI7czQ7wqHiLQmY2xVLObNqJtBLNp5PeAy4TCONn3C6F5y1ZIwD8jki+euGOahoZkU8xBSm\nZE571ClmkjFvQ0B9jUiCFu+rwy58hvqBoFd8vPcMyZXGrbhLj0O547478CiOJKKjdoJTl2NjRetP\nBCahXkRU7TcUdYt9PJvRyZE8GfAHQ2Mdh/0FSoe0ivZ8Q6UGs2xIy2ec0bS2Irpprq7GLhQ2mJhO\nHrLtqc8D6/aOfljihwZftghXsJ8E1cnykiRsboZEKfSxRj88kC0kscvxVMa5rTD4PD9A0cV4Pajy\nSjjuyfyZ7GWm2QRcGkOycsS9JQwUWdhz3aSIdKCbzgS/7JmPe4ZdzWwS6BWHS4XeeCjrCMxMEdzQ\nvc/iw7dCXU0rbvdXhF/y+DHCPEWIDxmcGq79zGH4yuSuzMmNyRMkheY8xyRthtUn3usWTze8FzOh\nzHBdzJBmVO8jdnR4TYI/9iBa9ENJXF+x7UwUrWlnQS4N3nymDSKGUGB9ReQS5lSDqRiGO+dRMZs9\ne79i7fVElzVLz+NUt0hbcvD2mMAy5HuClWKzlNzjAOaQhprOlbhpIrI+SaypKRjmmX6AcswI9zW4\nf5JOlPAsH6MlB/PO1fSo5ROJyzGfaryl5A/phkPegTthL0u8PIByzVG+8vDxGTLB9pcCH8U8bSDw\n0dEE0Z7LU8LudcZtBsJqQe9JvHjGExtmr8LFGduVpq3XuN5yjixJ8ZnLYwLbHWF95pfJ8WpDxHWP\nWcW8Jgts887ql5mucbxID3e68lzMyHuBHnqyJmZRX/CzNz7+eUV8dfjCcDRH3pszQf+Z/snx0xiy\n0Qt0fyaevl2C8T1h7jcEy4lsKRgCyWqYCM8b2ktPHAJeROV8FjsIcx+nAk5yZtwekEtBYhJobkye\nRK4URf+O8AXKSHwVUbkHjirAXDuiCUKtiOMVY1WQ3tZYHTHTYN5aFs1Asu4I7iOPuiBdCFZixdUs\n4CZZ9SH2wUONS/pkwOieRBnIMx6DC6tG4809+9XMPc+JxjV1o9H2gfZdY/DpWs1pHVFniniWbNYS\nVX47uiLw8KzirlaEsSTzNSUD3XtLNMyUmWAcC5yIcQ93ZF9ieMcJx+XFYaQm1wlBOuISn8SGzFry\nvhvx1Z0+OHFNPGI/Jwh7xtYjnX3YwNH3KGdBLhPKLsMeHSqfEGfH+X4lco9E529gdsgHCqXxrUEP\nDhHeoG3wzyWz75OZgv684RAmbIeQZZogteMYC0IZEyxPWHdH3RxdJ5icxNchtpwYsh7X/Npp2FxX\nvPQvvAyf+WpTagz/rj4T/P2FF/F31OIz28sn8ibgYVrgdQP5ceDv4v/ixTPoZ41IUhBnvENE/acE\n9adfePoqCONPBIliM/q4fE04Xvl5HDAvETbecPleIh8qGm/FNEX83gWo4b/TrCt+STq00HTPd/5t\nSMmlYZWs+byeePVLVn8zFPye0/XGgwj4W/k9H17+Rr/9iTr+wPl84SRqxusDZdJgHnLsoeD2ruhe\nZ35/Tfn08Il4XNO20z/iYUVPYLd40YI2KdGDodCKeqkIozudERQEvLzDpffY9S3Ni6ULUoy94jET\nScVoBjhrwtojiRXGScJFS4ullxmVXxC/ZWzGDjUaHqTHeAiImy1xXePimEg64jrBQ+OJABE+kPcl\n5S1GXTIQb1S2J5hGarHgZATODcxxhKoUvtSEpqUKa1wyIJ0kF1CPKdPpyjicqc2MaSqCtYev7iRX\nSbX61a2obMk9zDmnDeVVUJst6eorz53lnmnyU4tdXrD+leDms+h7ZAh613BpbkTBOzaKSXzBsL6w\nvyisWmGGgc4+IOOec2Q5loomXCHciYtJOe8cgRiwfs96fWYxWGzv0RYwPGhS6ZP0gik7Mu8Ejc3Y\nLzW+36KWM+kkiauOOAjYDYJczByrBdOLo1AFCRPhBI/nM0n3zCnOGXMwDjIf6CWrc4tYfkbXAhd+\nA9qiT2icIZxj+lTj5prGXyCDAjFbfC8h0Clef0SMMbLdI+sQddIsVjnOTzlXLc75dNmFnpA0cAxx\nxv11hKvPKMAzLbvcsfViDpmgwuHGmbXOyE+OJpI05kDaKZ6zBc8fZ8QYkuQZhTsSnQW2WRLsJU1X\ns7zNRLZDAZ4e8GzKdfHIrlEkIiNOlrjvn5Dawx0cqZOsLKyTgTjwEJ6i60rGfk36NHM8fxNFVfeB\nQOfMas+1TpHHDnUI8R8zrFezHUvKbY6sc3qV49mESTZ0sebmSp6fA+ra50V4VPmNwPdpzoYiiRCB\noq9u6F2GjCvG2eM2KtLlQFUotuGEfe9pSJnmEa+NUfNI5kGmF7xnNYNbsh4vbP0YdSwx/prk2XHw\nW/LFFhEpNnnAQg+Ys+B08DhVEf7xwsW7M6kasz9xn1Pqyzvq1LJKejKVETPg7XqGrcJT/yTCcu08\nTvrMNk8JrCHo7rhJ4TYlma25rc+Mw0A9ScZ65ux8XqcvqL9nnC57dnuf8g8bTqLFTA4/i0hbj813\nW8S6IxI+6uK4h3vixKKaG2o7c7tIHldb3jvNbrWgiiNe5gT955TCv/HQ31jP8JvXiWTfw2+3LO4P\nPLcj/XrCPZW8LBd01rGJP3IKNBvlmHimGzrOYs1peuHyaPCymf0pYvYDhu89wiWMf3tBbt6xsWGc\nFdesAuA+S6bshAnvmLMlpuI2TczRGRY57t6zHgQ5kkMvyUePVsO0Gwmt5jClSNFRtRJTjdx9yS33\nqYaR88sBbzkgi571MKGLgHzsSMKasR5x2Z1aXXkfenLn4xLDOVMc3iU2Cpk8zTBYzlIhgwvl+M5F\nSxaNIdeQzRWuBV1mqFPNuXbcOsOwHhHqRm47dNZQZiMbAf7CR146fOXjG0M0h8zFHX94pWy+if6C\nuSMaPDa95jgYzjfDNPSIZ8cgLfXoI6KK1B/Ih4zGr5F+ykMTEOoMOVpMGnN9VUzDEk/FiLUg6wwX\nq0hsjpSWipCm1fhIZqvRfYTfVkT5zBhUDNMFmYVk/YY69VCpJTd7IieZrEbOCjM0uDv0MuNsJuZy\nQVNWJHcfE9T4Lx0P1tEloAIfJ1oWLkIMNbKPv+1BC84Uwzv9peMUw3oYuNkYQfuPnHmTNxr9Fyr9\nRDkfUN/D9FQy9p/55bcBlftX/vcfQ+anT7zbCCMMH1uFkjXe9Y5/3fF7v2aZ5zSLlsuPNXyJcL/7\nO8mQo4aan6YWN52p33KMcqg6Jv5FMf0Nop8+In47IPcX/sKd/c5Q9pB82RF+jqG+8Jdni79/4svt\nRjbd+EPW8mOxJu+/8PQ+oo+W3wQ1yl8gP30k/muFetkwXfd8137m9mOGVZKfNq88hf9K9fGRz+s3\nPl4fCJ9SqvxXUHl52JLsPKyGhAqTxd9crZVDypLYLxirlCbdsZ321GHC+iBYNo7oXdBVAp3MeJGj\nXGiIbkynmWC5Rl0E27iENiHXEadsxFdbWn+i9m+sNw1y2dIXS+QmwctSBjNi+obCjOR1i5VnWnUn\n7GqGMgHfx/MzRHdn4T2iRo2Zavp1TiwuuGxkeYsIlST0HDpXOFuR5WvU4DFOkkgW3BJJFViyVcP4\nX676kIlVdcMFDQR3hmLChBkjMIkVt8eM8OBR7T/gR5ZjMTMsG6ZJIncF3pTg0+O/Z1R6wWN54HE4\nsMxaZH5nO4H0z0TJEZEHqDhAdQZT5cSppLgEXOoAz/e5BRL/nmHDK/ezoQp2BKFF3DULQp77Gze+\nibDH1ZF+lXGPPWw7c3msCMKRc+NAnhHiRhdNNE7Sez3pPNKeLMtuxnM9681IVzqGJCEPbiT2DYB4\nfUevLMOiJz5oyo8vPPmCp9WVumppN5Ju4RAvAXnWEpRLzlqRRRPH4UqiAkL3iFcnKFHgxT1ORgwM\niJ0i3jmme0hIRpuGvAUj6eXOehcQ7DTHoMF7AlUrsingVEYMvs9lTDlVd/g64QdL/K1BL0PmOGOZ\nGNQyQ20c7TkhWZSIjUdwkXiqJ+gl8i5xw4z4+MwyfWAaNCqAeRVi9yVikZNtJ9JNQ9BF8J+788ay\nxXvO4YvG547NAsy2p2sMm6nguIm4zAY9HXjxQhLp8yQDRNRStDPVWeKFCcM9xfk5rq7ZeIajO+OR\nsbCWsReMTUphWrJowgYpxQy1l3O3PWko2LiR4GXGZhJf1NQOltMTD/JO+7hibFIennvmxxbVTmSB\nYmo10nPUlUXsFGIRsS56sucYF60oQoXsQ1z4zGITET3t0FLiUWDbift4QznJpA1a/7MIy7WH/nuN\neW/JJsfRhFTjLwxyREnwe0fZpfSNYLvaEH7RpF9jVumNcBTovub1XCEWS0wyMlWvDF9zxH8EqN5n\nio7siCmHNdfFhZsynLOO8FEif7Qs5QpbDtyDr1TySPmnkKR+pJ5nPBPhbRfEWUmz/4W36QteeKeS\nMW+fTlRTSz90RONEKJcczZ3lU419sJiuIg3PzLPB1AlPZY7Xg5hTiv47duIXPiYfwYGRhl31n2tf\ntMbdDaeLIk8zhnlF3vcE4ZaoafFjzbtq8coBr7mwX16hG3lyCZm3wxsnLB7JdiSTgrSP2ekUpI93\nKtBjSxq1zIFPEV95zzVdsGBTGBqp8BJD6mXU+YLBhCiVkMmAQVmGxYTLY4QyJPWabh2xMgO3UGLj\ngVmucDNo12N2a8xyzSKQZOOIu3jYGqq3CSEKzot31KRJrc+sR1If4rkjuTjwdujyG2Edy4Q6iRjT\nnrQNwI0MeoWcE/TosPaG33jcmzWdjkijkMGLuOmRQnkkkWS/b3h8msF5XNOJSGuiW0LiD4xpTjxI\n4J2ALfPySlB4LO4ReRxyvCuq+5IgkcxBS49gU3gkEdTS432pcb0kdJLOKUy2RtmROV/i0xB5I3aZ\n4rKQ8WY5VR2mqbk0NR4h131EYXOu7YAeJLMv6coVQk0s7hlnAQ/SImT6j5yp3Ezk/ZGD2tPVP5Dc\n7/z++Bk/2rCUAncw/PHnJ+xf/gWlDefrCpNkJO8+V2X52/h/qM13vE2fePySYrzfkD1+5KdLSbzN\n6J+fcJ9W7OYA//lKtPL4j+cjX//7lbi48dOHit/+R83NRSRNzNOXv9LrmhHH4K/Yrn/A6/8f7t50\n15LcStb8SKfP457POTFkplJD1S00ut//MRooXUmVyoyMjDjDHnz7PNKd/SMupPpZQAPdF8VHMKxF\nGrnMjDOlEDzWNodoz/NPJbYp+Pn/cLCcjxzf+1xDRV7YCN1x9iYefsmZPr5nyf6I3CT494bTtEN/\n/IL4tLAJf8/FU8yvnziu/+lD5ktBPRrs8cwlsPC7CRl6KNkzNT3rZYF1xIprauEz6xKlQ+6LwIQz\n7hoiG1hHEKMNc8g9tcFU2LGiERo/eKMRA3IduOclO7GldwARc1ceyDNlceNWO4h14XEIsduMaiMx\nUYhODowiYZ0FPS3DeMfaphjeWKMYzAZ/KpltC6tWNCbCti+cfR+pA9IlIikmvDhEOSWFt7I2I+N5\nQ3cz7MU/x3lqrVGJxu48hAjYzxbtEGEyjb+OyFtJLAWTK2mqE31o0fWCfrTZ6IVZGtrJwdUN+97C\nKk7kywbaHX5lcXd9VL8haAOSqWRewDmceeg0hbQpUovjPNHEZx6jCkxEAKRTxvY609YJVtwzTgML\nAhmULKqmEzFazBwKaDJDZzb45UDiJchFcTMpp1EgeoEbKPLVw1oc2mBlsUBWJWVo0V5m1BqRHL/1\njH/V2KYh0AHO+5DrZ8197DCXCVfVWNeCYK6YBo9zP7HePdxtjd8rojbALBWxMzOFM5Pr4rzOGHMn\nlppju9IuFoFwcDuJMT1POqYMfF5pGFqD3G04a0PhTuRyxHl9xfq64qAIkpBbmlMdJ54dg9Ij/nym\n14riFjBbWx6dkbu5YuuV3j7Tti5D/wb2HZ33ZKKh7lrW8I3nsqKeJXM8ocuK7lqi84xp6Unyb+M8\nWdi415Ymes9ox+jhDq8Gd6656B7R3VAVOJHhyshXt6GNYZUpNiONNVG1OUPbElUT7Wagcxv200rZ\na9ankLC7E7oS01jI+IGyGBH2nWgY2ZkDeaeQ7xT1c8miZ16vNWq9EbgSpI3d59TiC/NbQPRsY5RC\n2AOjs7AWBuwQezSEi2SZMsovnxnsimaWLJnEGQbatwuiWRGJQ296LkOAYwc0841N8B6k+q9xlP8X\n/Ob/kyXUxDvnO9atS9xmbKOcJI55lz/h1C0qr/Dsbwnft+Er1qEmSyKWzYYpNcyhzeg4OGnOZgn5\n+Hwi9ANq/zO2sXhe3nG1O85rQzBIhieXoAjwxStrWDNNK/VvISEfkY3N9DeYxEAUL1xcxa/XlaLv\nsZYfUO4T+XTgQaQs4UJ6W9hvVky1IPKV1WuZPmukFCRWgWgH3vk26ceOu1Px4WmDZwQvX2H8EHMR\nV7q6Zd5l9MW3+axJK2SWcVomllrRpppezKxejtgcUIvAdntUDdvF4yH3saKZyxs0xYqXWJSrxSA0\n8ckiLQ2FP+M2FoFp8IKIZYS7DBgnyUMuGS8DdCBwCLoA142IbiVBZGNeNfrgMbtXgjHBzAsHa8X2\nb7i1YXwY2Vg+nRNQVLB1LKRcCU1OXMJt42L7W9yNwFUbAnycesWMPpOYCbY+JpCYNw9jr4jNDq1r\n8ss3UnnPJ3aXikZOuAls1w39oWHuaqx9TOtGaG8lCHtmJ8ezQ1TXspla6qriatsYK4LXEd11WHXL\nvGpyb6W0QpxuYLAcvMQn3S2Ym4cykFst64tHKiyCfkZPNvF9ZV4aLr1PaxlU7eCuI2F4Jlhq9CrR\nciHYjnhzzW5aaIcYPZy5vvWYpEU7Cj/OMIcDO1PjOhrdSjZ4NO5KbMPSXEjXFd+XzItgcQ3p8E93\n3uG3DffHP5NkC/7/9YmisjH3j/wo7ijpEPYDn8evzE9/5sM0YoKBpRbsyoDXe0F2+x35UIK3EqiF\n0P5E/PY39lGBxZXrr7D5P3/i7x9PiOuWfv/C2jk4lSJoHnH0nX7Zk4WG7uYxhgE+T/ze+onu/Q25\nChAu9r8s/JTecIOFp+DAe3HkvRn5SV742cuwnYr5miD9hLF/JPQW/jR95UvxG+f6Z6rLDlab7GcX\n519LfOeN+693kuHI2j/9A4/dcSFeB2z5hLBb9Kpg6mn9AeUYhgzW1WZdbJzMZ/YFhTR4ccuYBnSB\nhSMsfLun9HsqKbDtiWmYMbMmmAy5G9HXDapJmX1QxpDaATfnSroUmFriGB+RCRwZUjkWddzROYJp\nTNDXZ6xoRoyG4LohyXbEGvoixTcjG7VwVoLFjjDOwhAvoE94s6a4GqxDT5EFsNj4KuLh3DPaDkFY\nMcYO5j/pO4qTZrwENOGMuLvc/R7X7THigBvcQfvUO0MY5aRuSzSCbA/MgUurZtwlYPbvdGnCrF/5\nLbozthZEHUbVbK0cZ/C4tz5aJHiywDV7ZhfclxnTSzppaMyRunZprYppMYgf3+iSG+m+Z7kJSrPh\nVu1ROsAeQLYOa9gzxDPJAIFzJosscib0GnGQZ2bPRpx85FyTKpjtlUhrQrukiHz2eUhq2Sxnw/nz\nt0Oy9Pcs7QkVCu7XmZ3TI/ag/QPhaDOpLY0VkhSCnZ65id9AOcynLca+kFx9ZOTg9iMMV+p9SpU6\nFO3MEq/srZ5etQxLDvlMPb7xJHyCu0/sbDgisas34srhQfjIULM+VrgXj9CZ2ZB+qz9OGK9gkQlu\n7dBvOkwpKcTIPL5HtyNZ/EDj1ajA4eXaow8j1tVmfxTMtU32LiV9y8icENuLQIdcl4JB9NjBt5wo\nb5dQTwOJlbO9Tej0hH9SFGGCVBHeoEldQ2ViEkuRTT1T7WLfanrRkqgntmOKtR8pmo7TtCOMHOrN\ngUC1XKeVPF6pFgfvMWMabmxGqMqFxil5Xa74c0X9W4GyYlgVLBsyE7I6gkbNSO3R32xunqTOKtrc\nkMiI9XViE9bMmU+5ONhDQtGuWJHDVk1M95mokURRhJUGVJVkHWZuRcXDu5mkcRn7hPnXHPivKcv/\ntydRyyjp1i90dctb8srbo+K6l9zchiH3yb0UJ7lCUeO2GwZv4WWA2p8IHwTX7z/zYZ5o1xRuEu3M\nNB/v+CqhFyOWd8PJTrz394ggQ1Qbltcrjn7kazDSqpU+/Dv7UnAwB4aHgrEY6C/f0fgWxqs5TgNW\n+RuPoc3klyjvmWMbMaeKZ73FSmMi2+XoBZRKMFcBbnyis30+1zk/FSXd2PD5LvDrmoM7UtcJMhc8\nRk/sTMSYfRtPWFWIaUuM2OEcayxrASWQnYQZVlNjtIcZttzdErG6jG6Ke5rYsBDqBiFH3ObI22tL\n50pSE1Apj4EIrylZfUNW3REy4BZLBuPSpw6H2kPYHjDRJivFZOPtPKzBZSkVVedgV4L67GDZNr32\nqYxgQBK/VrhaUcYrru/SvYRcj4ZNJeEuMF1ILQS9vTKqHnqB8DImdWE7OcgsppkeGVtBV/UE4RmA\nXSboVlAmQM4BYltyqgdUG+CPLrsux1EhlZpQg6KVMwdaTJKwJcIYjwdGxrAjjXr8SBNVJyIxEJSa\naRE4i8MweQwDmJ1FXyqUGvGOK/004wYjqwrRW8PJF3jVSpS7MIMi4MXykfEO153pLzWSPRl7CjOR\njiWHOmJn2wTlkTBUNPOdzaSpyFDbGSscKeyGoLC4KpfESpgjwzSAISavO1r3n0Lq6+98fri9p10f\nGH/6PcI+IDmz7E6MqqKdQ9LwiQ/dnqY1LNLn9XHm/P0b6Z9+5ODPpM93Dr/8K39zviIffoceYzZL\nQPfTgv9kCO8f+WPXc6sj3O5H/PsjH7VhEg6yDvichtjbnsRtOPIdy+Y3/px8z+ZyYrFuCDtHXP9K\n8pbxH//xQql3rIGL9fMO8QfB4etXmk81bvSJbHdG+DnXISLfpMjvJcMm5PiHjrfuyttTjK7+gFx8\nEnfhOmZYT//pZe6i6ZYJsy1I0TTJjB0H7PBpnI7T3cXzc/zSor5MMIQEmUEELdlVocYcLJAXOBQ+\nGzFDNxHbLo1/oKsNsrEwtkv8XpJlDl0ksMoIhy19d2IyHmoaSJcJx5qwt4qwGDneF9K5YFUOSrr4\nlcEeLApy5L0DR6HNwpguxMQswuHme9j2DaVnVu2y25aMdUPYVwy+je5mLo8dJ7vA2B7h0DM1/8yJ\nejwLpjjG6Q6Yh5Iejdv6eJ0kWAP0QeJfU+phQ+e5tCPonUMoX7E+b0m6nPlomJY7wbDhSXpY7xb6\nOkDqI7deMgVnLOeZbtToyaW8tNTejO8fUHMLu4H9WtD7e46BhX+zqfMUL3Opcok1bznScPRe8dsE\nx2kZdw7+bWVsdrwp8N5iVqFQr1vuq+C2PjG7d5bC5+4MWFlF6q2EncOa7/EWibcarLVnOF2R4TdM\ngiQnmVdktSCDmSZdMMuR3hpZMoNvGiKlKVMHGStU4xDkd5zrN9G5zDTXtaVzFccsYTY9sZjYunBv\nFtp24JgkdG7A5Dp02wVtVSRryFs7QN4j1g1LIlBLwOAH+FVKFw5Mo0YWE/XXienWs8GjyFqkcvCa\nniC2iKcniBqEO2DdX3E3AUse4293rPc9zU7RSA9faCh9OBjoDIO6Yu03PHkj+Absb5KAdTREyRat\nLeaHAWu8oXIbTwqsIaCxPfowhiWkun+lagTGsRHRiHS3SDEw+h66UwSxy9K8IYaMHQYrMPg0bBqH\nWPZcLyNyWpmVT7B7xHUd4lMGq2GOA/x9wyxjRGZz72vuAsoxpRMO3n6DWgVO+YCvfPrPGnvvce4t\n7LKE+YwddWyzFh1m3EqPw7sdUvqYTY0nV5KPOUI9cAwdkD5L3BNbGpWkGLH+lzjK//YkypEW83uP\n6fiIiF3k80hISlwblt9rptnmrc0IHmvGdyFq3fHu4FEGV6xbAGXAVLaoL4aX8JkvqcXxdQPKZls/\nISefq9Uxnj8z3q94fcfD/oSYbZ5qieMYMin58v3IctHY8YnS9Rn8V/wvivUYsmwl/jsHMb0SOj5d\nnaGskNfqTvrVIb9N9NrnVzFhFsUmKrBLiwiX6OSySz+wL3Y8xoKq9DjHV56mCzEHfm0+MfETJN8K\nfKbGbI6MlqC8WSh1Z1z3jDKiaEbeXMVsafqlZL91uDg2cnZJGkWzKG5qx9b2sdca13cZ9BUxngnS\nBtcKGUxG19pU2oMZpsmwTTpm7TPPr7SypTUKoyfcsCfs7oix5cHfkK0gUwg2FdN5wywVfikRWJTh\njo3fkuLhnEe2zh3X1LCMSL2yND5980YkU2bdY1karysYXm2aAZqh5RD3JKogxqLxjwBMFIjDytBq\nSn2jkzFC2hTO9M0Vpzf0sYuvbJTl4NqSTsVor6DrLgi/odobCnPELzR5CdIsWLEgnEJG98a6Coa7\nIvI0wa0isR2cyOOaLyR+xDlWxObCTYVYtSFwevp4QlkrgQMPeYJtVWhny861aJaZMR+wYgtHRDw/\nuDCM3HtDRE9ieQzzQLiXhFdFt/ToOCNwQowTE4Ud2CFTXLFbXZxVEcT/bOWhqeHlzPZnTb0V/GnT\nw79YXFeHhzM8bf6GUA1nuYEfFka/4uNve7JzTv73Bvn9Z7ofDBpDFm2prgVTa/P6a8bLg4N+yQmj\nL8zPC9G//YT/twl5bPlZ3BhXhSne84PzC/+3Wtl8yLi9/3celkf+5Dv0wcD8ReHYLbYJKIIYX3gU\nkcB7zfnlh//Aalvs5cRu7/EynpieO/bfaxLLZv77wtPPEZEaUW2ItzuS0zHdbvxNBLzLHrB+nKjd\nv/ynTcQnkTG95TLcJfYqcLuIyThkd8GcdEjj04qS4yzYM3IrCsqbottbJMaiNw4re8omYO0qZAtt\nPmLVgt6y8OeFxFt4KSaqViHJyeOacOqgf8X2eoZUYasRE7u0ecVE0yAPAAAgAElEQVR1t0VYHv3W\nY+MZWpNTkuClHfImaPaGaDzTFJC/hpg8pzvf2TcBa+7QLwtGBxRLRr8+UTsBoyNwfItgDKhfNcK6\n4W631DL4Bxz3YSZYeo5q5V5YpOPCPVKo6MY1dOlqxSUdiN0XxE1hT0esq+G2BgTpC1+9GN1smBZJ\nE44YkbKOBgeHogdnLxCBYR/bBP4Zd7UZbEgXj1EshI8av5zpwwbHu6DnG71nc1juTK3E82ym/cI1\n6hgzj9b5ytjuCfOO+3xg3EgClXDfTFhdh86uuLMkpqVftoSiIf6ccesypFqoxMx1U1IbzWWRlHtY\neIe9+XbxqJeFWws0d/QwMF9HZHkDfKp2JfK3dG2NLSeqaYf/AMOyRXtX8kRSjyFPcsK6urw+a/ZX\nh7aYaW4jG70wWTFcV6wOktYlkA7DbcscVFhBA3GL7GvC8I7edoT3Gq0uBOPAuPbooyFNaqQjKF9t\nUEfaQJOuO+py4M17QwwjRWnR2HuC64BMbiSxTdvd6L5onLyisiUyEfSipA/fkENC3V542+5wuhPn\n5tvLi6s7qumGb0esYiSREqEdQn1FRB1iE+Apg6dbttlHdpaPZQkWK8Oh5Vafsf2KzPHRacYUwEu5\nMuqZYU2YckNFiBen7H2BnnaMpmOuZypHYs4rs5EILyHsUpgF2djjGR9Bjbdo1snH1xe8cELa38Kx\nbcclvq9E8Uwy7PF2O16FoLsqlqomSRVTt7B6HrcXn2tnszaarS1olMvz51+5VzM6hNluEOt/E3ee\nNpr8i4KuBpHiOgveT6/cLUNd23hWyXfFxOAf2C0FljMydz3f/f13FLLCc2KGIEXuNAe5xasvtPvf\niHuXTmuyuGP31WFetzSDRWI0/a0hf2n4ZLdkC1STQLz03P2Ce+GwdW4c5IajuhBPPv2w417NVAdF\n0UzMU0T/XU6YLXTrG1PcsCwFT5NHLHvu0mBlPePdY//Xj4TDJ4Qo+dpr1GnmpD5Sbx7pDp+R4QcK\nT+Hdv0Uc2MmeeH0ldwbCqcMxW6aDxF4VY6BI7QNJIyg3C+1LhogmkqZHRIJxeyUyLbmjmCMXJ3To\nkXT5luK5YRgbWFsiYUgllLaD00rupUNXt1jmgclXGATpZDM0LnNgM/gDr8udIr4y14K5dcAV7FKB\nIwXttWZKOy5jy20pqJXFzQvQrU8Vb7FWl03QYLk2ozgzBxsOm5B6Dsm2GqqZTAkuVUm9aORWcSq/\nNXzdHuhuKcd0xAkTnGbhTRseE49FtOALqrXGTC5epLHzAhnXeJZHpSKCm8afFJnMafaGRESsR8F4\nXennATc3DFyJsp43avpdRBdO1G2DcA3L/MZjMSOMRdQL5tXlpgPIJV1ocZ8Werfmy9XDsnLQEXoq\nCVaJP265SofgdmbxFd7pQmWFNION6w0s+R0jWpzOx1t9VueMvI80tcWKgzusFHeBG9hM/T+F1D/s\nOqaH93z93W98/NLyH6LnV5Ow9W5c6if+kv8Pqhn0Swtzi2m33JaVX3YCy73zRcT4f3Z5+ADx84q7\nuZJ4DYvp2bcjjR55MzF/2a/8/ItNIge25gVnc0JHZwa3JzhHROWB519KHm5HrC9fqbd/wf6tZIfL\ndvgjHzrDvntBZRM/jn+h9RVSb3lS/4bj+HifTgT7Z7ZxyDJnWE8e8oc7XvCF46+/Z8vAQy15+i0m\nWhwe+EJV/0r1ZvF4+Zd/4DEvAj3dGcsZrzfoUVIFd4Rj0cwbbCukp8ekJ5rtRCNmOEx4ycRIx4RN\nGUgqlTPInnk02GYDp5DeHTk4Fipb8Rzw+xrRXpgvKcr1aaqJnfKw/R27S4pUW8QQsrMTwq+GOzPK\neEz5jqXbYm0LCiVYT4a4n/B2ERoLazMwpw9sfUkd9wRzzKotdruVzVpgRTmB0HhfR5xSEzQhrRsz\nDI9MkyEz/3QrxqeE3rK4lBPjwWO5Sfb5M9ZbgPNcY3aa031A2BuaTBBlP2FGxWMT0a4hD73kqc9Z\neh85SVTdQmFRBCPGHnFeBdYquBeK1rbI1paQmcqfGWfJkAua8QEznjDPGY13QscjuQ6Yww5lVdhl\nw4e+p9MD9tuRjWvoVUSoA1JnYX71cJyGe/Qe2U5Iy6INBoRTUUuf4FTyOOSM7YyaHRa1IbZcvKca\nf1j5UFxJL9/cV4EwmGCiZmUfS6R08VMbNVcc3BONLpH4HMSMJ0qs0qGKLC7DDq9yceqV25ziuwb3\nIUI+DmTrFv99RrPUuHFJ8XBGxjfqJ8341bA+Xpg9l129oZgc5H6hmba0N4fel8yDQz62LOkBS46I\nKmSrG/R3LsvLQHAPwHvGGg2u70NuYQUDSf3CsCjW5EhxXnGOAd5SYNYtrpPh398Ybck6CZyyZetN\nxK8TvldzNN++ShJrSKYCpvtXJrnB8SOq00TvuYS5wkege40dR9yaiVzZxK6HiiwsvbLBww5iXitN\nMFpYeoPySoysiKYr2pMIo9FlztJLlqNAafBEQVaHdGlDNAd400rnFITOHRk4rA8CW7ck94qd44Bw\naa6GJS3Au1D4E426sTYZF8701zPRqrBVTzwkTEMEfYN3m9j5FrFuKbSgcAuCesCxIh4e9qxFwFhZ\nWNZ/k3EejsX3nuYPN4u0cvHWlOaHJ7YMDINHPzucF3BlRe90qE8Nvj1T85mx9IinmPTRMCeK86wY\nWpvYesdn64rZGO7ninu6Yu9zpFA4R4/z9xXhd4at+J6bPdMJAXqDdrak9wYnEDiTw0syMJ5bhqxC\nbz0CAclpg+t2NK+S0fd4iEOkUyMOI0WtcE8L9v2BmzPT/djQxc/UQnKLQVohfC65fT7TdxWyzPDC\nz3jnlXHYAuD3Fn0Noqux0gDv3OGvOddBQigoC0NlpQTuDr2ZIbdhYzGsd47DEbMEiG7GHj2GXCD3\nJ9bEI9sb0rCj0AHGE9TjTLoYtlYGR7AdTa4EaecgvIFrthCvd6ZpxR4GTmHM2jrEYkJMFZO3cF2/\nxfDbMuVxCUhwkGJDEC84U8+ulejyhTejwRIkvovaGpxgpFUO8pBzljumfcKr1yCzgDTYUzohqG8F\nLu07wf6M6T1kpxBzhLAj2gI8PKr1xqa2sE1D+wbtrBC1YrhNOGsNnqYoYe0zzFVQxgP6fGN1Vozw\n8JRPNLrY7YooXYJhgBXizSPO1FHtN0x7mwEb5Q6YuWW39wiOGWkd4PuSdZFIO2BXewxRh/H2rMeB\nqR3AmRg8j9KOoDIkgyCLDHKM6BeDURuEb4FYKELF1i0pV8H0dsWtQ46ORloLQ/hPEeT5r0fmeuT4\n6zv+Z2Th9ykfOsnFOjL+0SN+f2d5yDl9/8qX3kA24u9+IXN/4PutjX+bmH349LUh/DeXzeXIr4kk\n+N4iq3y2J5dsaDksFeGSUXysSawNP5hX9LuPJA8uFwPb26/4v9tS3g2SA3P5AePvuT5+oi+vfDEh\n7uk7+gq+iB/ptwmHaqAxf+WXzURw6NmuR4xtIewZ++0NPbznbT4xf18w+hei/JVm/5nCg/icUOkf\nQSs+HT/9A4942zNaBkKPITSsjsC7O3RdQRdcYL7S2StS1Hh5jJQTsopYzBZVrczbCXvx6R2Dbwx6\n80izjiznlS1guTmtDrhdDMkxJd0fISyx+hbthNyCEPui6aIrY9vR65qOhW61SFEI604cVkTuiC80\nobcQvVqUbcq4tIRhxOoZklWi2wjLGKqHAc91WVqbs+ejbyFF3+A9DtxFx1s2EY42xhvpho75P+30\nWpdk5OzEwo/niiRIKaZHnpViiHs8k9POhrIS4F8Jrj5O9gt5vHILQtbe0KsUIVzkzpDbFt7DyNOs\nyWSN7ELuXsKkJIErGI8KESzMykJkmt4ZEGpmuY8E72rs/oLuQnQ8o24ZsjqgM5vKkhROQJ3Z1FPF\nXl6R7ld6MYAQbCoby7mx9XyOzR0jMmYtUcEZcd9SzhKRasJw5OlSsm1apovPZT3y6tk0/yuA1CkE\nm6TDP37kfk2wD5r73DMuAuMp3MYliSVFMbLaLh4W/nVgkQuJ8mjNmUgamp2PeVu5fK15zgbe7j19\nZhjLmL5MkKWDeanxhI/pIqZzy5z5eP6IE7hsSws7tIm9iCqweNimJOeOVR5Zo4E2XomuijhtMCwU\nbkS4a+HasnM6OmlzD3YIqyF4btnHZxh6XCcklzea+U5VZwRFgugcnFRg2geMdCl0ggm/hW2O3RXZ\nzeSPB4aXjstLg64LpnpmXgtiJrpqZZo19r4kzDyu+oVovqO2CsvfMeU3pHnDqs+sgUCsI9wjahFg\nixDR16zaYTEjTDcCZ8tLN1JOLcKkeEFDv97QZ819OlBdK9bXAF88kruPvFhf6O2B7NhQzhPawBJW\npOmRfijYOSltZzPMLdV+QVtg9Avrbou1LixWj7G3qCFjAqzswCFMOH/OmZwb2d5h1f+1l6j/mvz8\n/8dlkHxZR3anELf9GXNzWUXH6w8h/rNGfdgxvFxZPlu444r/ryPT2wPdEhOFFWUxkUQhkV5pvL+x\nd//E0vQY/4jXnBGHI5xXJv2OUzgxWW88vBr0OhJOM0YNhEmM1XRYxqU9Vjz/BMr/xOnNRm4057Ah\n+PyBr65gZ164IHBIicc3fnvacrJmlk8HAq0RnUfiFIzWAXFbad0RISxOVUAXPaPNguevjEOGJxXP\n1wxfvuLqGwAvW401ROxwuPYru6DF6Wa87ch8GyHzaZ2O8aLYiYlxW7AsK9raUYdXzGyBH3LTPSfL\np2wWEiF41Q5SRIT7nOWrjx/3TLNhjB0OtY1yGhrV0pChegdJRqMhWmaWwPC6KGw5kc82xncI54JT\nK3kzPlF65/wmSNRCUEE7DSgM+lCxr22Ia3pbInMbvzlijEFuepzccJtLtm6AFR2YOk099DgsiMO3\n+ki0Zpp3NGGHunSYqCZqQEUuL2NEZHqascVbFc2aEaUttn2iWnLEKFgCODUDy2OM3Th4/cwgIlY9\n4vl33twEJRXqfmHZhnRiQcic5f6Iuw0Ihc2gBcosONLikq54LzeW3Y456DC9SzLFhA8zlfBI9MjS\n5Cz+TBhqSjdh11XI6Ey/pFTVzDyFkM4svkWyrtyajkSkMBjWNsbaOMSW4XXJUYWFHHw2ffOPnnn/\nrw1W88hF3Phop2it+LTc2LFh+vc/8y71yIWkDJ+w+isPec7sBfjXlfBdy1X9kTDJuXQ1zfBAt45s\n7z2VM3CVDqs7kaqINWzxLhPpM+g4p1Hv+FPQ82JVWMdHlDqxvT3z9YeStNshbpJ6KRm6COvhyB82\n/87ftOa7XPO1/USzrBy/P+KXiiUfmJyAa/GZ+eMWa7owyJg/PjuI5TNv8nf4f1+pxQl3U5O2C+dL\nhPf4C/svj7iW/w88lnqLPd7oLMHg2oR9Se+d2HgLg17I9TcLvr8qpDMSDzusxcbKRnQds1gaZyzx\n5xj3YUG28zeZwQbK651VbZh2K6fdwltdc1IrQxIQ31astMMeBG1q0S0Sbxlw0wDRD0RPFuVyxz57\nSE/imomldhFxTyX3BFy5FxvctWCHZE06ROthaZvIFOioJ9InMh1gbxpyy8XMmsk9kV0rXFtQ3iOy\nzFDO3j/waLrvqMI7p7BHDxumdMKjY7XAvUW440qtLN7ZmuUloMs8OksQj4KsHRkCm3ktOVoRpbVy\nyD2WN5d83+KPGf2DYV+OjEYwqwBbO+ymK4V4YfQtpHDojj3xvKcyEK+KorGJ4p6YkXmraJ0Dh75C\nhD6baaWWGc9zhycl+yVHPVaIwqJuIvSu4I6DUyukHWMx0kQLts6wnxXNVmI7LSsTc/sd6dKh9z2N\n+XYxzU2Grc9YpmPearYiRblnHGPxcs15dD0oQ/RGM9GhPYckTHHOz3TWinQeaeWKUxqCyDAuKcrM\n5HIlPbuUO8OuuzP6CVs3YTQuYT4w2AmeMdyaBJFJLFFQdQWZ67NJfb7eBrJDjF129EIxNRG7fc6t\nSomSiU3r8Np67GXJ3IdseklNgUpdJidCFYqNUdwii1AlKDvAnjRzPzDvBmYh8RLQv03YciWX39x5\nemfR3Qd22qd/SBiKN1ZXYY0J1ZOmrQKcraDrnnmMA8ZRUnUr9RiTPay0niRpVjaPD+jeMCnBNByp\njhVJM8Mmw3FGFm9mGD0OpNTpgl3uOEY+VjixDBNH+Y5x88p4f8FzbdbI5la3HKwZeXuP3Ax0tSbq\nS8Ztyvx2pw1uuKcVNUgewwyZeJSVoV06UmGw2po3VXCsbUrHwt74BNKnWEu8NET2h2/SiKHHsv6b\naKKUgafjieex5GX9gB1FqKFh99eR8TQzXm8c1i1u4hMePIr7I9q94e2fMdee350GnseF7U8jD6lP\n8tQxli27tsJrMsq3mp3lofYXzrrm5VXw5vdYS8TXP4yYU8LLNeRL5fOaDGhjwfdHHjYZ6nffURQT\n9Zum0zUf1JXaXrB9QZT2NI7NXGvq1w+ceWbSOb/MM+UYsiwTyTAhrXfYlYKdh1ne4//Bx0p8utML\nbdqBnbPaHnfxjRXbpSSeJIWd47AwxzYLPvYM0k1p7j3Wc0IQaeQuYZgDegtcU+JWHvbiYdU2+IZL\nYJi0RTHWWIWLPQn6WWIfZ2Z5pPUtWk9h6ZlrpVDBHnv4dpjajkuiBT0jbb0htQecWOM/lGwbTbQK\nzHHh5NdoLVn9EZYDau5YBQy7hJtJWKIIM2SgLfTSM0U9b5uWsl+RcoMMUxpTUSiB0DMYi56B/n/9\na5ST0dkj88UQjj2yXuiUogP8ERaRYoWSMZYQrYxeT6+uxPbKFHfI2iUPE+rlThva3KyUcTtitinX\nxOHUrOzqkdoYPNummgXBGjMEK8VNUZYl4bmlDgyvXU5WJQybDK0mEAbH1kg/R9YaZ7lzL320UZSl\nxSWUeF2DniYuk0UsHJQdYbKeJbdw3mwuluawLjjiTjwJrmmNXRhGBpbzltH38GaN0/3z1vQ/dciq\nNOJ2If1F0PxqSM+SrG/ZbRJexYG6stj8ucPqVoLApcgTIv0rby/fk3Qt9mvCjz6E8mc+cMAbFrpB\nYP/wjof1Ax53inNE+t2dvwcxn9YUa/+V+883TNJA/xduiaZtO5IvD0ympQtmPq6CMNjyVA806yMP\n3Zmb9x1HP2C/+z2XXyb6a8pmGvmPxeYxizj9pUR+EYRRTSdLhNlQVwO3fx3wsv9JMsB6OZPVBm+C\nz1FA2Q//wMPyVmpry6bWhLlN46fgn2nyBa91CMyNRVQs1sRt1zC5NYubMy41PRDVgmBImGaXW9tR\nyDvDfqK7LYyZxVa07NoRXUgs6XAtNmxnjb1IBkvQxCtxFbIrDE6zQdLjaEP7dSS6npi9mGWBW+jS\nigE5haigw162ENhoJlazpe4Vtm/TLg3VujIZh/vygjR36jZmV8Tcbhmb6kxjd7S+YZET55tLZLv/\nwGMdC3aTy3xNME5Oe7eJGkWTxkg/pNz2rN5Eo2qqg8McTqjrhtlVvIUuxX5m2QhyL0CODc3+isnu\nDMmMm9pYSnNLHOJlYTQ1r3NHvz4x8h61LDjS5nix0PLG47nBLJqDn6Mbm7vecJne4fYtTTYTiJFS\n9ginIW5XEmaGc0j8BQrnxMbXzPOAbQ1sZMm2gVvXkVQeQwTno8cwOXQI2uGECC9o7XO8psTWN9IQ\nLguxOuHmC9tiBAZ0HlKPK5tQU6cdZTISNw1qCpj6CFVPCPmIGAPc7hV/anHSHDss0P1AN3lslcDe\nzRycjGHwUN7EOo/EqubmuzhqpbgXKLMy5jfGqSc9KNpZ0I42H7Yhc1di8DAcOcY+1yYiWDpMU7A4\nLRYztq9YVYASC+qdQznN3OuKJvZZ9zMqGhH3Ba8pqWKJDO+sTURzVZTVzPIwEg0us/lGB3Q9kC0b\n3uwrlpzQyiYyK2KC6DYzNxNJ2XHQW96qkfP8gghCsthwLkeEKFj3e4rXnr7vCZeJbdoQVSkFFm7d\nU/QB8xePwcq52h2WbRPGNjddUD2/0cwtb9PMuKTI1WFZzLdeXAzK85DxTFHcGNyFdfuerJuInQg7\nWRHXmdfbhFE32qVCNwXWaWUOPCp7xTt8R7d7xLEdnHvLdDOIUcDskDqG4HqmzhtY/puEbWJWBpVz\nNO9wFLxaLa8bl+4wYv8y4nrvqHE4FDFjOzKJjm5t8IHaVty/TKz9yJe15vJpx2/zxLpxWHY2Zj+S\nHl2WZMEuI9xhRSmNEB9ZT79y/OtEfc7YH1zsZKG3Z9bPMUIMnCNB3n1lELCPf6D/Hx0v44IMvkMM\nPk43cWwOHF4D3Kbgg/8nGifB23e45Uh0bskniVAQbLbou8fdaJymZ3ibsD8fuMsW7hNu0hHrHQBy\nWag9CyEUtnIZVk1YSsAgO00mNVs6tLap9YhfJaj2HapNUX1IW07M64I3C7yO/4e791rWJceOND8A\noeWvtzgiZVV1k7R5//eYJrvIEpl5xN7716EFIgKYi0Or7KsxXtI6HsEtsMyXw91BFAyYdY/ZhEyh\nYXt0aUfw4xu7YuGgJdW6x6gcKxT93oPIxxsbmgdDmi8ku4Kg8PFthuqglQ7zEiLfNtS+wgsVD/0W\nX2h0FjCzJuxD9nJGGJeLsIjrQpZkyNFj27lkOmZONSoeCZaFrLFc7YAVA94+QjXftoTcd7BVQx5r\nXmOH2izIMWKlFHN8Zh26hGFM2PnIpWK0Ga6auY8Sq2PS3kE1FzA73HIgbBSztoTOwNNJUYYhYuWy\nk4JYe2ywTLol8CxiX4LZUHkuXi1JZUjtBgjdY+jwiHBGzaAkDCG13OONI8PUY/yY1SlGNg7J/MyT\n9SjqG6qqiU8h6aomUR477SEHgatzen9NWHlMocCw8KAWZLTQZAHFw+/G4Q+va1r3E9dJosO/8p39\nldo6BLXPJx1ShUe6qOcvP9+xeHwyP6CjFPfgsvOPXBefY/+GvqwovD/xt+ULn/4keH78iY+nG62a\nOLURcj9QqZ9wPMl3Wc/bv2WI55zmX7fcP4aI/zjx9n1M4kycso8MSYb5/kz5JaQOKmyz4rV+z8M2\n4NrUtKlAdIrdu4nO0/y8faNZT8yPHcsqIhA/Ev7Rcv7jlT2Ceyn5NFhux5idDTj901cW9yfmdyUn\nlf4+Q6qJdToj9gvtY0skBZvJIVh53OOFxUakc8ztPhM1C1OgCCeDqQP21sVNem4olocaNQRYsSa4\njeyNYT8kDOGMTRYaE7PzIgK/4axS7tmCbyXmNtG7GoQE11JcMpTeQRRiI43aDKg4ZL47tMmGpWpp\no5T7ShP4R8wupWnujI1iVDMHPCIRMClD0mwwOmNctZwTmJ4XmrWLDVZYp8dxK5QzcdH9P+BwNiNF\nE+AS058Ddn1B8wGc+cT54UR48VH+wFKuCe4TaVGSMNBdF4w74jkQjhl+9MYgBJWcuE4+ajbUg0Es\nHUGvuMVrsvaR901A0WtMbwnqB7qbZBxDlj6gdLaoZaFXisyVDJnP0zgz3CxtFzOfEzaxZa8H8HtG\nM1JlCu2EZMUVW3p4BPjzlks304fgbzPs0jLffTbthNh1DPdn2lWBHmJ2jab0I+biIwCTLpicM4Qj\n12TLoHxCO2I8Qylm4jEhloprPSF6D7s5IXyDig3LHOBGDq4/U2kYS0FyWMgZuVc7htLBnN9Qe0Pl\nZ7hojDJYSrqlZPFcbGAgWxEla5wl57CdCb2ZtpH42iJHj674wlt9w79fmdWIG2wo1YQfl+hxZn46\nY4MEs6xxphQvS8l6gb67hFeHfOVxU4ZUvTHVO+zgkmRrPD9k1oZmLtlV32aIOjzirAXO6OIVAqUN\najBE7ow/h2TJjcmRVLuJJN2yXdZ4S0AZZ/gWrFxzLRvWQrMMEdZ6yGAi3Gj2aoPVoMSNciNIzgFB\nv+Abg9QFawy9cGCybJcWPRRM1tKrFWluIOiZzECne6KDSzANUC7c5pgmUtA7rDZ7Hj8IhuiJ3kRY\nNGaoGZqc6SboziWD/YKcJ/wcvKAm613G8QUd9PQmoXNykP+XKFHWGmq5ZXw7si5LovtMPDmkmSV/\nfk/X/gqq4eu+JP/BQ75mDJ3LtfRw/rlFvZsJRMj3rmYfzwSF4H7L6GTI9Xal+drz+TwySEX/Pfiz\nZEOFkn+i9B4w6yPG+crTVkFv2MiK3a2HoqGaYrqHknUleffJkCV7gt6yfJwJfIdL03J5KtAfGmzV\nsDiWfkzJM4V6GPlhvSI8fuXLqaJ5hF1ccxYfsdmarC34Xno4rsSZJpz39294bBThcmPlG5pxJjgn\n1MHMYByKTYeDgTgijUNMK7EUTNNXdNsxhYKtcFHeQN9qurAiGS7fNl4BK89h8gbCesbUa06bkGqY\nUcLyuJG0XUOufPzzhboVbK4OygRINItXMt0XutAn8HJcb6HZjcSRQF1rTOhSZC1B7+BuC5bkhr5W\nXPwz0ilwA5/FaRhWhkYZLgo6KdjcOgpXUcfwsHMJw4XJBFznb9cTo71gh5CKPeDgeA9s15KyvOOU\nmrJpiE4+2klJ1cKD7mmXENOGWBTL1qKDNcNsKdoAL3VYtzNcLMNKIv2FftZ06xxx7fEDH/cuUJcL\n+26LClsWW5PlULc5Kl4Qa9jMK2rT4tYSVWt6c8EfZppDCY6P07q0/h2RTxTpK7OAcbTUQUdDw/3s\noueGQS7cAs1xuRB1C6tkwy6WpF81gzNxODvEs8S5/35m0u0nvtzf8/P773jdPvIlcvk4rKhnl5/7\nN0z3A7vhgT/8bcXup5lHah6vHWOQ8e/2kQ/5L/y4fyZyzryYV8b3C0vzHZX8C9M+pQhm1ueB5a85\n979q3N2FXvesF8Nx+cyHPEfOG7K1ww+/XvglWzGZkp+nr/z7m+A5L4jOa6xT4Mg7/3Y9snm34eGt\n4+CUyE+K/c/vaCfN6VoSlH9gkx+Yzjcun3vav6Qo3ngUI7F5R6D/zOegxZs+IO8nPnwaeOT1H3j4\nTkR5C6EPccocgaGaNtyWmbzQ+EbSuSP5usKbDbkC6c6sswW2CCYAACAASURBVJlrXmOtRnHErcF7\njFCe4k7G8CToxhahIzw94umCstYYJyLSd6JowbmPbNePjLFDqdaYvSV+uDJISzxfKe3AMrXUoSba\nRPh3gU0E2blgfdMsLymHfiHzLCLusGnJa9fiqxB50zRyIJpCwouF24LoCgKRsQwt1tsjBsHK9fHG\n3ysfdGvIn6+44jfUuwUdClJbs50y9s0Gt49xwoBaGJp1ySUz3LMS78OdXdgg7y7lPDKRgrdlM6Rs\n84nt1y3B1BC7CztHcDAzrq65r1zWaYW/PaPDI+FOMmYSTwsmR2DdFGnWnGeLN0uOg8DuRt5VinWu\nWUxN2X8gshmLG7PTcLIBfTRSOh3ZJScab0zfW8zKsBQd5SpgoUdsaszJZZWeOYweYggpHwfmysMJ\nvhFL7wDtOSHotoi6ZSoXxKAJzZ6girhVHcXNJ5QR28gh0SHDovDmC/oxZPAD7rNH32qc2kO/KpRj\ncdML8Tqn8BRmhuAiOAvDzfEJHIOb5MiVQ4xiqzuscFkWj9dmhRQVRCEhMZ2ukN4aN8/pzBY9Ldio\nYqc3ML9jmi36xYAUbJcKEQyktgXfMmceTJazd+QhDph8SxpPSF8iwldc80p218SrgCb85hHbDQtm\nkSRziHIV2/QddfKBsim47nqMdJl2C/Z1xm8qOq5ksievYBQ7sluDFBJ3t8I9aHShcZ0t53FB+Ve6\nqAJvjzcI7klHf48QtqdIRkyuCJOMxULftAStZLXeY+wRblcaFVIHGYgF/arwAge7nL6V4tqMoQg4\n2Yr2VhPLE7KaWczCYZGIjSY8BERyZBWE6DTk9TJStw7VQSCqNZaQJS143PpY+3+JEmWMZPoy0Pw0\noXYDah+wO5Xc/xxTRr/ipSHxY4l3CriYiYN3Zy8WjAxwfvmB87Lm0UKV+8xPDV1eoOIeK0bkzueB\ngO9XE+QxU9NQRXA2Ayf7heVBYa0gqWKO9YUobHj9MNEWBpM+YyKPWPtoZRCrPXWs6adXtK34uwyI\n0oDnRuD5lt/eGRZ3IihS5nFF5j5xjyzNfku8ith3C2pvsccK3d8xTwn93WcdrVCLAv1ts16j0UlC\n02k2QmOzK2G+ouzvgKFIZ67jifNcYAYPFXkE9olln3BNat6cmWkcyfc+Kz/lohUjBlFoTNUzzjCa\ngNGZiY2HjSW63lOebhjlUVaSdbLlYao5Y5naEf+4YnLXDOlCdCoI1wOtsrTFRLs4dGmAshqn1Vzy\nM5YAT8woeeDQ7HDrmSawvN1npG7w/JElLRkGh369sJ1A9gXXzlKtBLLoCNxvPVHBYEgjj2k5s8td\n1vHI4AmCQ4gbbPH8ljYvGZaeQXgcjSTqLIeVYVN7LDefJJvYy4rsvSGkxMugJ8ErWuKuoy8SgqXG\nPs1YG3N3UuR2w9kujKFPbD2mruH5YSJ8GbBvM81QMeeS4SlGZ1vmzZbk7nEYHomChdgpGKxlaDxk\nKxlvMW7gMY0+xh/ZxC5B5FEwsowpNCCymqY/UowX+izDsxNvjmYo7lj9u/JyDF3W0Z3g5TeeQ8XT\nPua4+0ovf8OsItz1GemNtDtJf1HUf03Rh45fmhX5YPj11wx9feVXE2LngmVesxUN7+aY6vUTu6Wi\n/zjzU3hEOoZ3f/mZW57i/svMu+Ad46BxrzNTJGlXPxMHN/bOwHLV/CFec71faWKX7MuKH48/kGxc\nLn7LEo609nv0zwN/PhoaI/nn4F/4jZHg9SutKGhylyk6UPt7jm89qRT8ku35YzOx6SI+5TNv/kjd\n/ekfePTLETec8fqatezoG8nca3JVMEYNihkvgDLac1lWFKNAuzt0ERNXETUBiXGZiUhsgagEh7Bi\nbjxGY/H8gX6xxPEDzkqgXEvjO8yvOwJnhbmXbOaO9FGAdHCLNd26wnEcQisJRsH6Dp4zovKZapAM\nDwN6JYg+Ks5OwPXgEjsh0ZuHTGPc80Rsc6QfszDSyYX9qiUqEhx9Z8WGWMxkJsZdFvz/I2k0GktD\nwvFZEpxc+vmR3hxYygbpzJi0YHZa1uFAWBwQ/YpdB211wDQ+k1/gFz3Z4vHus6RPW0QX8bLV1E8C\n0Rgm09NKjUkrEnEllAbvuEHd9vTuhTay6Nww52fCWdIMBdtHSeRWmNULo11T+msmpyCMMsL3n1FK\n89T0yDpCRZLYcXkylk5dOe1T9scMWywoBwozkvWC13nGEYJuGTmqPdOqxWsjulWFa0sAnC5nlWl6\n/41N3OPMkouTEDsX+pXBcSbioKLLYmYzETQWJxo49RN+qbmPPavWEOstL6uQ4DBxqQaSRWELgwgd\nmtMG1w9QImBz7pl1imAgV5Zz19D0AXaxOPcOiorq8wrHKSiNSysbDuuOZBzxPjq4/hOijbhHLVP+\nRh1s2cg9Tnjma1ez8iLuyYBKauZrx2AMyxIzXQeG+ZExGnHyhuD+yLmWiBiu+oJIv/kIrWsZho62\n1pytQfZngmkkeHjCKxPy0DIdBXbrMLUxs79GXlOOwRsrZRgWybrx+VS+IboKaxvOn1+J7MQiHliu\nAUF7JfAmdu4KEzgMpDBn6LeWKREs5hmz22FVgINkMx2oqoWnySLrhs7Nkc8ub7eJ7tGyzSCpJlTi\nY04Sf+NQv81Yr0JmK2ycExUe4RkWL0LVMc6oENsQT0B8tdi9R33rGRzBqSv4r5Zt/vc3lvsW2c7E\n9Xtu1Ve8bmH4k2CsW6TukUGAUSui55mgErxoyXub4T5IFmVxCoWdO1b7A+bzr7iZy8vtRCoP9PaJ\naeeg/Tf60698EBvcOeTv33mYv34i+9PfKboD3VQyLQ6H8j1VoLDrCfob4uKSPPkUU4VOPPJTweWu\neAxSjtpSm5BimnhqEj7WFTcnRrkFoT/RDxv62511EFNOIeVhQJ87NlmA9B+4Jd/i9ZEWONETmf+t\nGG6qwKPFTUOKYMQGG1bLTBJFNNYhH1ZYZ0BcNHJ/ZBkzZnOlva1xU40jt0hzJnoJ0OnCNnvm6hUs\nm5lgHKjGLdm2wJMzopiYHQeTOhhvhQ94S83dTbHKYzU3uHHMffTQZY0YE1S6ZdYtNQIRGoLF5RxM\nDLEmGBICvYDpEeWKyJOcA4MmI6sqgnzDoixRXzH6M+mw0C074lXLXAzUAbw/bvjqWXLx7V2jq3UZ\nxo6HraSboQk7olJTKUkYWFSTM1rFRg0Eac5bKSE5UrUTi2vI1wv6mLHEHXISjH5EeI3g0HE5Z+xr\nwxSeGRZFcU8JzY3ItdxKD2EUXqixQcASDbQzZO9jrBYk08JyEiy+Q++ekGbPJTuimhzrTOysS0ZE\nGQqUdrFpy9qVTNOKeW2x88Ioxbc4/OOVetoxm4bWXZH2JY7S3EyGiFxmd2T8P5RnUxdUE9j9D8yT\nh6yufEg+cgtO3C8+3ucrInrP2ptpfMEp/sLT64acG+v1Ge2FLP0P5O3Id+mJ27nAegX/S3+HFBHZ\n/c5dfeAPY8Mf/jDQ3CSp9HgbL3Afyb0NflMwRB9o3X8n1D8wLF/J3weczz1//J/P/K+ypMtKQv3E\nh9OW88cY5ZQ46Qt/w+Pd7oL5t5x/k/+BlSt+sQ/k7zTrzy98clveBznzH3YUauDDzTKlzzjDn/nJ\npHz1S4bg9g884mlPs2l5ExPbLMXtZ5ZqREjDkO3Q8wU57nHfCuyDA7qlG122U8c1SZG1ZU637FvD\n66cNoToyhDFTM5J4HpdgIBce99ORuM3x1B2hEpLNldKC03tcSp/H0OUuGh5jAdrj7kp8z8WbY2w3\nUK48/O5Ikm8xXc0y5vSLwesks1fjRpZqC+FiaLKU2L1hRMRt7lEBzBOkq4mzCYmimblWaCSe7Gn9\n3z1zybDB1D2jfqL2a7x2Qd4188qhbyw6jwhPKYUNCaIStYTcVwG5OTNai6N9evbsmitfQpen0kdO\nPe9Cy5dZYZIEbMsy75DzA9HYcrOGyC3o8VgZRd1bwiZjDrZoatZLiOgGlkGyG57QjkBRcO4CFhpC\nK7ivV0ziQvD3EDtXjMGCFQlCKYJzwDHtkdMKpxk55BNtINmd1tyihaB38SjZNwH9viGbQ+7Tt9qH\nOvSwpiWRIU7VEiQ+izNxlgGe6IntTN8uBHxLa85ZTjnNOEIx5He4GMZVi68b5i7iKiWOyfHEjcWN\nWG4R8nBClCkrb4OKR1K3ozllGD2QCUkaz3TXFv2ux9EZrlwYhSYZUnLniXMrmOpPPIXfUcd3vHFk\nbCKGIOBp7ritJbnwiKzLRU9s6oRzXmGeHlnNmqpKKH3wLj31bmHlH7huB/xbhBwm3jkRN//bTO3u\nFXZOCGJDOEouWwko4vFGsIGXSRJIFzE4LFLwoGsu72Lie44aDPGHhfYY8awipIwpujPBYw59SDWc\ncLwtoIkjH21anmNJ40yIzxpvr5iGC3l84C5nNj5U44S3HnhwDpyOBSJayMIAd1j48M5jKNZoA/fs\nRuTAfgpp3zRNcGBjDH7QcSdlNU302xnXEdTnAXdpyTNBEQjcMCIormS54q7eo9orwvxeYPz/9/23\nJ1FmnlkI2H++Uf0M/teF+68uDiHy5uM7ATc8klmjn/dEz298CQ07YxmKlmkZGd9lnNyOWC90XsLu\neUX5twthGFPEkAwObewjp5QoVPzweqd5XtFVMZFz5zJlWC+giUoOX3fUzwPh14FqXuOdBIOdWX6R\nlN+tCLuEcBH4jy/4Tc3d0wz+E/24wakLpocd1nZ4UuO1Ph7Q5xdGAcHO4P5mEZuWvlV0wZ14yHGi\ngrn9Ji3qyTKyYahc7HAkGErcaU+kNJ20II/0csMUDkQ2pG4ahBPiOmdWSqH1FRm4lGHFUsdkjxf0\nyZLoHUs4ETxZOrvARdHhEEcOnD10CLkzU8wR4qrZRj421jS3AndO6W2C55SMzkTXSVZa4suEyQ/A\nvCDOhjzcMDg1yjGolaJ0NLOueKh9mhhGepKTz+VxwR8zDAuueKXvQsaDy6ZxuGU9eV0S/2fY6EFs\n+d/qiJI76rpAtluEecMZ93C4cpeSByyidDBDg5QTzjVBr2ficcK9xLjrAaN8bs6Id/ZpkwVf11j7\niD5csHqDVhPRVjBPGeMwsbYdqBTdGkTg0IwOHiVlB9twxT1dcOoJvRSYg0c6lriDT3/wUGNM47U0\n3ZrIa0lUztVv6Mg4BPC1eUXVO7Y7n2w4QeOwixyuncQkAyqMmHrBNp8pywE/Eojfw1fsXv7Iev8b\n46lG2oI5hvlzy/j/xKjtSN99Tx2DTH9lUxx4Oz/iJ3BQDp9CwfvrB14fOvJf7vxyXhHlEQ+VQxdP\nJNee48HnT1OM+NGhkIZx+4nl/My7aYXuH1G731hJyf8+Vmz4ZyrVsHg+ZvzIejfx+v82vP/pSvXX\nDY+rXzk6motJOAlLJg0/9zO/OT9j9qDXNY8qYrl5PM4+L9uUSRXoMODtrzXJD+8wK0HzlwQmxTGM\nUB8P7H85/QOPSgzE14hlnnBdize3GLEwvm1x12e8cIVQDcXeZbm0rHTGtPZ4swIRluwmh7P7RjU+\nsH48slwU5SJ5MIZbOmLaPV1QsXYDuk4g8wOtPCLtM/o80mc9+7jFnA2bBM6zIBM+68RQL5JmuZPt\nfLLZsLiKuz5jGp/Ns8AZL7Shh195BEWPVLBEHTawdHNOPl5w9Bb3Kuh2EeVgkOsL/T1AZldsskGf\nGrbx7z9ImAnmBXLdYIIWE9+5lo84/pqw73HSgVjCsusJX2ZiBV8WwY6EcNY0esDd/colMey+PlDH\nPm44Mrszm5uDVpa9s/CyO3NbctRVkScJp6kh3FeYIsENPRr/Rn43CG2p3sEgFsIqRiiDCjvmMefB\nN7iFYkgW/HFiElsc2RDNPkPj0/gWP5D0qsVEAjV9geEd3Vzj9zus0xOkLWG9Zt77KA3DdY3rdsTr\nbx6gxJxxXXCGmeVxxfx2ZefE9GbEWXtUQcjSGw4PsMwltprIdMj9YWEantj4Bu2XGD0iHkO8OqfL\nB/zBcDc92T7DHVyM7zOoE5NJmNoOEbWMagfrgK6xiNwjnBT+XKB7wVkr2u1XdsEK8VXz5K143XxC\nde/xgA44ILjxxlh4iAeHYeh5t3/kqGfwFoJW0LYta7flBZ/4MUG3MV7X4GSGWXj06XsqcWfzn2m0\nMLYYW9N5MdnNwX6dWD0omlkxTDGOP6OZ2ceSSdS8dgrlDMS0nPOc+VPJeqNYHImawaQKPXvg33je\nBYxfR3rP0LcXrL/99kpDrUgfDfosYUnRwZ109FgeZmLHoRwXXNmxdvaMuuI+zthy4Cl5oh8vqKFn\nFT0y9TfsTtA6CeLljeHpgWVIGKuRIpjQrk9ybqnY8vAwUqmUHRGlkIxK0/sPONeWzFmD+q9d1P23\nJ1Hgsn8sqb2ArA2YHhXzfxTs3hu8BKzXU06afqoJGodueeCjsMz6hSJp0deM7i8tc/CEq9asuomb\n4/DwEPPVtyg/px8a3DCn44b3qcH6PtVlJvguJfJ27GLD2JR8CivyR41pV4R/gO1vCr2+EPguvbFE\nnxJS3fGS3gnrd6h1Qfx1BfER7/qA/+DwEl3oXhtW7o5kcjgGI08m4+2Xgf57B/OwprjWfJSWSVkU\nHvVJs//P9tTUWejTGa+BJdqQODOX7Z1N77O3M1Uj8dY1uskYbUV2OBDJnsvXPaf4go0s8bgh9zT3\ng0dd9jyrFrN5RQQp40njOo/YXU/2KmgvHUsygYXB8/B9y32wDHbEnjyGZEvqLqz7HqxCzorSAIvP\nPQlYM7LpFTaNGISmtjHGzVldNew6fOGjHy1RFxF7Cc3DlZ1xqaoJmyUMk8TxBmIRM/gVbj1ivJyl\nrwGQoSaNYtzXkkcn57q/El4e6E2PKXc8tBcWtWISLr4VbMOeJh1QZsIZt7TziLAGXft4FsTaYVMJ\nOpmzxB1WGIK+wE1y3FPBZR+TDQWCHbMYmDcz7QWypcbZR7SeQi4XbGkZt2u2k4tbSwYJl/jCcr/B\nFsI+Yi9qrp2l9I70esfOWSiqhqdsj40nmrND52xgNXC4HBFPO/b1mcqJYS4RXoDjrQhc8Pg9jUb2\nC7/GTyzOlX8qDvxNtMjvfiX5+ohkYpCfsUmLZ7f81nocfvx3/n2JeW53fNQ7/nU9se5/o3m/Y31v\nSWn5LX4kFymDH/Ex+JW/vX5i4w3YdkOzmvkpmqmugul/fub4KeNLmfPTRlPgEF8hnDUXZ0G9Lmx/\nvHLVHtMm4y/ehcdjgJ0j3k0j6dOBl5eCVTWy+aHD/odPnUJgDMpahiHkw/cb9F8gfdrw9teB5A8d\nm4PEBD3G6fjo5FTvfzfae14K3pGYDUZPtHohsDlpOnD3YLlLgsmwziJM3mHfHChASpd9FXFOPeTg\nMCVg6xWLsaytpdlL8mLGmU6YOmN8UMwYbN+xCxMuxzccJ8NVin5a6BeF32lWboxMbjSVwU0Xls5y\nGxZWZsJZx+ydhTn1KelQg8/kj1i5RRLTeAoVDqjzxNpM3J8EcWfpZER0OaEft4gpYRwFwZgyRTdi\nmWLq+h941NGMqzVGdHiDA33O9qGCeWLSz5iloO0FzrRGbm/cG58HnXG1Jauxx+cBo1/w/57CU0ty\nU5RbH/cq6WzG8u7E65Kz//tEtfumcNWyZ++E3F5S2oeB1ammmzZY2XFLfEzZEwQDkXdDq4ja9clt\nj19P3MMtq3NPEMAYdxRe/q0nMC84aIs+KopHS3J7wg181LpDBj0Fb3y4ZfhK0D4WbO+KtyeBeD1g\npKX2viUWK70lGgXxfqRsZ7JUMlYh7rRwqRt8bTG5pTASfUyI1hK9a1DDI0ZbeqnZvIXoXFK1Pot7\nRugAkyqeTE97g5sX4E03Mi/gfDrjpTHrPuESaPy5I7QhLROD7vCmLXZSRAxsxIrmeGdrZmSasK3W\n9JyphUtqR6rKIwsDFgYqO0Picelmtk812IBplIzpSHV/x3Yv8Jorc7TlVHfsbjtOywmdPJOIkdfb\nt/BSLXISG+De77ylA14gGIeJ+B5hxY3rfmaT7hCmpFLbb8/++NC0hsBO6CefRCm+XAZyNRAlEcIa\nkpulDwNcp0ZmgqBJEJ5m7nwyrbByw/DY4r213DzBOs3gWjNtO4TnY7SB+JVWx0jrwfsAcx7ITUyx\nW+PdBEGU0TiSp+FGGb3HmJE4H0jDmOql/FaI+rzQ1AOmtljVwTbGv57w0g1+Adf5BpGLEf81Jeq/\nvScKu3D0PHJX4ZYpw91jE0Gx8XFmS/eXFatfPQJH84WYh7TiF33ndS+ZUod4LfBXOx4fBs6O4Obc\necbFKVo2rmF3uTBtZzZvPd+9Gvw8YMFio/fsjwP1LzD/vcENDiSXP7LcnugXl2ra0ek37irAD1PC\nMMXZvnGKHOTtQNUKinOA735l+VITixu3IuKhEuRpwjAJnGDBTCHX8JVlrVmNLYvpkUHLb5cbtfAZ\nZkuVGebH/zS5JZK1tAxRj048Xp2acBAwgTUua1fg+RvWvkNCSHDuOfUBPCqi4pHMSgQXjpeQZbhj\nlYMeNvTBgZuYyNwRE3f4ry7l1id/Ssitw7q1qNLQmR7Rz4xpSrmpkHVN4ymcx44g0igp2Gw8vLRl\nK6G5jdjOwXccZDKy7yaS00iRBcjGkFwi5jrm3DY49RUjJbWjGAKPZVkwXoEtHK5vinoK8J1HFqno\nk28myK7raSqQh5Q5upLdd8h5xA01fXJDBDmt7dAbQx82nFWPqC29idDG4ssCVWfYNKR1BJPouSSW\nQXo4i2UyK1bCY/Ibal8RlROpk6JkjVjHxLPE3zV04eO3FEqrQaY4JmE7O4jljgkGXDMRzw7bwWXd\nbFAYlijDJDO1E7BqSi66pF2nFLqix0fvGsJ4RAwRYrVn7EbOgSIQC44jUEcQo2b0zgj1O4n6NPp8\neKl4LmuqPfyTmdHej0S3kmJoeb/PCPo18V3xjiP5Lz+wCxPu4sjli4NfFARfJP2qJnhyCLs/kKuY\n+/mK/OMFp4pYeymuM7JKG4Ty+PUKwawZzMChiYmVy9QX+HWDfvrK7fknqqYi7r5gohXs4P30hcXs\n+Pyj4J/HRy7eir8NPtvHEX6KmLTDrz94ZEby2n7Bqhe2MXBNWf5HwCjPuH8M+bgkJDdLF9b8eBS8\n/nlmUr8PQCebGBuPcV44JhaZPKLxuTszXrVCuzOzEzDXC7LLue7v2Kgj4cosO4QuCEYXPReEeYMr\nJK4PHiHOIpi3K6ZtSTOPLJsOIUbOF8NWOhjRko8hzgK5L8jCFb44UY0TOtOMwsMcLPYwI9cBo/QY\njhPOqSfrW9ZWYEOFnziUsufQFjiy+EYo1w5iDJl0i+uPmH1I3pY4RURqRqJbjxApNpe48ndjeT+5\n5GWPCFK+qA1jpBnrmIu7ZvIM0+UBs7KE00R0d/BYUM7IwU6c8yfEShMJH/yI+9Jy2XaYUqO8kTg6\nkx1XrM4d1VPA4hiWcGS4Rwz+lcNc4TNgVgG+WLi+v5NFPcGYsHQ7nH5gUiOb5SvyBr+tZrz4ivU1\nr0PIvK44mIp+c0HaiasGP8hIQ03UNURcQPbo0uGpCCiiHl0lYFIaHSLuKUoqirUljb95Xjbhggx7\n6q4mkQ7esIXozLhzyfMnRuuzjVOiyWH7VOKpgeUYMI41gdQEccByqCi1yzawBOEjkZiZ2oBZ7Bjm\nCdnU+E7Aue142GUM3oR2OsIlxu8O2LmmCgc0Mctc0m5qwl3JMJwJpOSo4KIaGhfaaGQVRPRxQvgU\ncV0MQWDwjzkycBHJheE6MNwtaqeIeGagRE9HJBHt7Y3YSqwpWUkPgWYafFb5N4+YFHdUeWHvR2Sl\nYLwHtGWDfhJMTxLPDXGjkus547DcqHPDy1tBo0Z6R5HVG1oUQetiogPXBhzVMh/W6ErwFjl4twyb\nDNRzyDQd8d2GqJ8w04VgtePZ7hmLgiJrGZaQgJDrsDDpZzITEeqZpewxIyyeS7LMXNcnrO0RtzOv\nvSIUL8heo2aXZRgYkw1z3XNuAg5Jwxg/okOwrwtL4KKnDrY1wRJzC3LEf80S9d+fRLlKgJ7pupKv\n8cDQv3J5Eug3xakW5N6deLkzvX7Hbi0YPrmkUczyi8vjX3NaNH4c43wy2OuVTbSj1hW9TLEipu41\nz/8rYRhCrs7CTa0YP1oevJIh7DjMX/nyUHM6XgnSvzEkFav0hUGM6GTmXSrojkd0PRG339OLF5R7\nxZMvvPcFNy/FijWNW2PfV4zSx/mS4ocn7LpDrT4TzT/jPFYE9wjdNPDFkPwhYXMLmNIRITVL9S1J\n0lwXeuWRu5LHsiC/CvxbSx9OLO7Mojxcbamx6DrguHHZFRrvWjKklmHx0WaDk3TgREilmOKKsBGs\nbzlO9MC6sEzLlRWKc9HRpoJ77FDkIC+CdB8jtMvKe2TxJiJf415yrt6W2WlRpcs1zTmpikENTP4G\neWsIvsa8re+kQYVjB2abcrcVjTOwPuS8mYXNfUFeOgJT4rUtdt7iBQbvMBF2PdIVrOeCuf22Nanc\nZWdbuv7GUgrseOXsSOZhxRM7jHBIhWa5t9hbz7ZwcY3Hyg3xlooiCRAbg2g7QjnR9xO506L0kdbU\nTDfJm0gJxpCAmUx4nPqAqXcIq4Hm7CCPCSkTNzmxSiemJWFYHGwwIIKZhQmdVVRxQqtm7u3AEHj0\nJ8ki1uyVJcgzAp2yry94s8YXGiV92rHB61puasB0AdvaoykFJGuuaUqzX2iHiGmZ/3FmPngtXnTG\nON+RjZ94MyOqNxyf1zypkRejEe3Cv24t9Sbj859KandPsEqIwpQ/mYyLDPn+rki/wldRUbuKH77b\n4TQP3ERGKeGS/ohOn7BdinDvuGlO8PIdN+8L6/XfiHTEmM1E+Xu8Y4V+fkH8qDj+uSHvd6gmI/Eb\n/uX2E59f/pXot5FN2RLKgdr8hd+Gns11pk9+IfofCZcsQx1C3pYbVfmVzvmI+jRy/7ygvYL1l57L\n88zDd4KHz7/PEDVV1KlPYmceR4XTXVgOJ5I2Y3ILC4uilQAAIABJREFUHNdn8QLC3FJ5FX6T0AsL\n8YEui/CimFRWMGqct281GuXoMPQn7maDuo8E84bcHfFfDFNgeNJr+nnF4swMysGLcwZbcuo6TuOC\nL1a41SOLvZO3O/zRo/AaelUwBCk2FYxyy12mZIWDsJZ3xmATCNgQZz2D26BOdzwpKMaZZRy4LR5y\ncwHf4/TgYe4LZW8Ypt9J1ON85/7ocrlskNmVa7xFji6JFSi3INvO1P2eZXKwoWWMfO7xwtVsySno\nkxJEi3CuKHfBLoLIG/A7i8CjjyrcQDPPNWrWTL3CXw004ztm37C8rqC+og43vHlBlg6R39A/lNyX\njF5sOG8CbsnEQ7tGnQfeQggPX+G8BjHgHB2m6wPxIPk8+WwKSXBwqGOHmYA4Shh2ID+MKBszLDXR\npEi7kGbzibAbSN5cAIRf06sUMRqGtqCyZzo/wjtdsG8lyzxR1guXVlPUMb1qmOILwu9Io55QVyxd\nxHq70I4FzfIJFSmiWFE2Lv48IsMVQZsgwwgnSIm9PTqXeIeBSl65+I88nhVeW9F5EetpZniziC5m\nMQnMipEQH1i3AbaxRHPPNNxhs+LeSZzYI1Rg1YHFzXAaxa2fWRqHw27BaXw6LYjzd8T5hPQHPCK8\na0sla/rTtyvfBR8/dCk3DV36/3H3Xsua5daV7gdgefv7bTKzLCmSUuv9n+Ocllqk6Koya5vfL+8B\nnIvsYPXVib5UaD3CiIUZAxPDCCLHY61SzN1l1T+ynw3e+zOh1/HiaTrnSrqzbMWIowRtWjJPDpsP\nHuP7kaC3JGJDqzt81+ejY7nlDd3o4vcjZnQR3cDgl8wXy8iJKbUMYsVaP4MrmVRHIAO8VYfX3ZCO\nRAxreqVQwcClu7KNAwpjacQju3mhSQ6YzOHeK6xv2YaKKFLsgomLCbD+wv6+YtrdmOeZTrjUXUe4\n07hyQfPfxJ0nteXhaAnaFEmDffqAW0n8wSFod/zspMh0TRJMRKeAzT5n/fOZh28G3GxLHs/8/fML\nrxvDjz8+kTsxxozYyaE5J+Spw5gEDM6JcfsdqmvI6gCB5eS2jP6GQDnsH0FNG6pC0TvfoVuw+4iG\nkaT1WfUdl/DvuO4ON0twdEMd/MJ3+QRJgXzIUcct89895nxB8R1iXtPLHdGqYffXLTy62HqP+adv\n2P6nz2tWYvuGXm94l48ABKmDPvbIs+RkAowfcclz+jan0V81M2/zyMapkOaGvUjeHbD+ANXIJs2Y\ntEcSamZ3wJk6RLajbWbsWNA2gvsmo/D3dMVCiktyEphpYFu5mF2KOleM9zOl1jhpiDYDVkyo6oyR\nPsd1w66GaBzZGI/Z0YwHybLpyFSEHUOskSSdxn+K2UUe/jDiLDG3KKYdQpzgwEWFQAuOQ3S8kvoe\nfXfhloSsx6+ksu4GjJGwwP1pwdMGlWqy7Uw/vnOaj5zMAZYEZEa7GOrA53Y7sjg+2+Fr7UCiBNOw\nJhtCuBhiNyaeLPpxILJnHKlxgpw61gSPZ9ogZBxm3FVNtIvx557H2uVy8Znvhq2CWYe09oFKZ7Rn\nTSQqMrbEWcx+0oRi4LkG27jMomDSDsPKwds9YcKJWc648hnhWNS1ZLsv0DG4O8MkKh7Kmadas5tD\nluuv1yYrn7F3j9tU8nP9A3a7JildgnuLdRzi6xYVpHjvZ+YFdn8x2JcTvDzjuz9RPFnyZUdVO7z1\nn0jWMTuOvF9/pri4fBxWfHNY2L13xH98J7+6LG7I34KGzd3nO2/N8faEWXc03hH5p3fS79akt3/F\n/mXmm//hov66cD9cqZ1HbvLEnP6eZh6ZHgV/+XuKWx74FDxxrw3vzSdqT7L7OWL8nKBNyRLmhNf/\nhYputJkLIua43rP9aSH++TPeN+U/8OjqlAwfIV3eby1h7mKrPcQjWfvIureY+oYqE3YiIXETBlfj\nDwv54uKdDGc3I/ZylkwQZRZ3boi6HPN0424j7uXEbCPmMEfKGP1BM2cdbuziRiNdWDPbNZlbgjqg\n3YapW9jf9ujgghYTYd/xUK0I5I2lj3DkFTn3gGa0Fa/+iJ4lRaFZZI5XZbjJiqbx2AjFECvcPMa7\nWtq8hyLCGodVHuCtfyXZughw75ZVeCcd93zgHbOe6AIfPW1RpYs/SaopxExrdu+KPqxpt4Yiydlc\nIrR+IAoWzGWNJKRXktJLmMOB9WS4TRGq1zRig+gTXBHgD0eMq+Gxw5k9rBGE9QO+mokWQdBIkgeN\naQu0dglCD3/uUU5CMnrEcksa9dw/jZRriRvNTF5OEF84pyFnuyCHEa+p6a8TjTRMZmGeLqzsjvlw\npt++sCFkTjcU5uv29n7e8NAWOEGA2SYI6eJOBf3DB4zr4OY+rpcSxQFTUKArUCJhf9LoQnKqPWoX\nTJNjsaglxtxcbq8zaffO+BwjzY1mdSKdEtrekDcd3V1hbrBUayJd0AUe86IJUDSFyxI9oVPNnA5s\nPx14Ysb6BXFygB1IscHxUg6yINsJyG+Eg0CNb4xpiElq9DLhR5b30iDjBT+zhPWNdpTcYxCrhka7\nhPIBz3wtuZ/EjEh3JNcdO+MyyTsyvRCsS0ZjuA5ruqcLfhwguxT3tWWcXK5CIayCPiG5npimGF+u\nUeHMTZ6J2hzPkejFZVtsGMxCGHkUYuLVh2FR7HffUFcZ/my/at8CRdz6qNPCKjFYa5g2KaKZcZQh\nPTTc64UHb8Ot6sjXCcqbmLdr3NFh0Tf6qqU5waWcGGOBFA5OJRDHC8vaoIwiDUO4D3Slxok9nLv7\nf81R/strohbjgOvR7nJmJ8P+sWHWAuef/kb9S4TUM9ZxmDcetXSY+4I82dN1cD6d2LQf+PCdpjtd\nGNKMq6pIH3yao+YpMVzvGVM4Ir0t00tDvk+5fy6x2UQ05nRLz9M5Zm5L8m8fmT+cEZeKJJE8Cp/p\n4nCcJ8bJZ24FD1mMPPfkuwind3l5m5D6e8RP4Kl30g85x3Rm9fLCTMjDAp8nh/13Ay/dwMdBc/tz\nwi15JyVlq3asLjOb7AiAUCH9SqPciXQBgUs4N1h/pFU9ZvRZT4b7tGLZ3glri+MrvNYjzibauSB4\nkNAl5ENF5G95ay48pweGOmFYrjiXFO+xIlgMrd7hRYbl7nLzBwLZEvoryO8Ux4Ig0tTTmtF3mHtB\nftHUKmXaXPCBaTGssoFTmbNZjThDz9XrCEVCbTXrSTLfGy7bEbE1DKWP2sVkbYEUA51wKeXM0/aR\neQGRSeLaUKy+kiirc/SnG6mEZLDMux27fqK2BX4XYNcumXxDlC5LluMtMUp21NKniz2E/4yda0RU\nsalW3NOZOQI9ztggYn1p0OsN7bVhXA/IyqI4EC81mpyl8ii9mTmNcOYWf7swtIZGtgTlgkkGjM6I\ndEpvZ/QjOOWV0vNJY7h6NdZzcKsDIr2SjRt0N3AOBQ+jhzVHbCS4TDHJ3GLvLpFdmJw1tTLodELf\nBB8O63+cmS4RDP7vEPnMMP6NvHjk+PhX+vk7gjDhUBjadKG7PbHJPIrf3wkvYJwjTvGMvBmSXUt3\neCZ+rMlvd/7ttOVfPZfjI/ybuODJnqcoQK83dP6Jx+sBPfX8EhcQxfgfC36qnxi8V5x/FqzaL+h5\nwQ2fqP/zhnB7Dp7H5efPTNO3eKrlce8SD4rTQROqlOPtlfR3G85/ioi7kVevplxK/kUKbn3Mus54\n+c0D6vgT2Ec+qIn+h4Yv/zNidT78A48hkiAKjNBEz5J7owl0i3ENntOyRCnOqKkf7uiXhTlYeChT\nqm3PrF3UqmNvFcNgccIVowYdhHhuiTO4uOaOyRS8jQybnOjWcT7MeI3BbiZUp7AK1nZBxD56OjHo\nJ5zHknpIGVyFU7o0vUC5N6ZdxHSqOIwhevAY4oVErLitFpp6wI8legoYo4pA+Ah3wrY9kZKoEnov\n/nq7Vz1b6XIyNarw/oGH3Utq37C4M89liT5C+ulM2+WkQmD3YBQcXvhKTAKHzS3k7l94kAnVh5aw\n8fk8fcMhf6VwU5zjGicucc4hgw/C35DZI6uToHro6G8D6znArBpWl4HjPubDGNJ0LeUWBtchniPc\nW4C3fkcql66JGVcj66FApDNW9oxXj8M5YkhH6FzeHt+IZofpfY+IHOzyTDsOGKcmrzOK5VvC9PLV\njWu+wbcVMw3B2uJt/gWA7aFGHlNkJHHPsCQLmUk4dyO7dUU3PWAYobqyH0Nue4t2K46biJ02mOWG\nT4CsZqzSZGuBu3LQ5YIfbSgaj1W6wit7Wt3CyuVoezb4+F6K47fQ+tweeoxzwO0UKhDY9kjvZzj3\nCuFrFi9kNDvu3g3nkrNsZqbREHqC27vLZp/TC0Eua8riC2MWkp5ahkTixluuzTtBMBONB+qlhb3g\nPk0kWYaYLszJ138kdje0l1c6L2Q3WZzRwVnv6I895JD7ilvXE4qYD7HirizjfGNrc47+mTh+4Ooc\nyKQhO/hIDy5vA6MZ8dyCPlhhl4G1NtRdwXbjcDoOGOnQql9wPIf7cmAXLLwx4DoX5H3PeaxYa6iK\nlOiDQBeS7uQzc+GyZARo9B1Wnk8vB8ZhJhl22FVHUEsm1eN6O/rjOzEJrS8I3IK6fsSbDU/rBTv7\nnP/e4/st/7cRB//lN1EGzUXXJGfDp5viw16xDQMOLz/wrVjj7HKMFWRuxLpJCV8CUnlhOwjC3ywU\nY82EYml7ROOyx0MkN7zcoXt/J5p90lryIanY5D6V4zEFPc6SMj0t+GrPz86dl9ylihfEqIm3EvqE\nyz3hZDvcT4LnuEaZkaNb0fxh4XrR1FLj+5LdBrbbd/ZBzGLfCHXJbvMR21mEntksKXfj4ro5hcqQ\n32lStWfut9ha0zxHVP+b7va3M84sGI6W5qyoPIjrDNFPPNqIILC0VpEnirz2CP0boijRsWK59kTm\ngey6x8qAxYmorSKoXF48IKoIRcQ26nD0mnsd4rcDnA12o4lTTdhn9ItHcHXZrF1KL8DNB7KuAc/Q\nSEMWato5hVtKFfjcbgY363H6jlavCbw9SXEne+zR45Uqkfhzwqrass161GI5xxGOu0cVknASnO8N\nrrjjND5OlJI5XzNNYmNxFkX/Cp2zYvCgn2fksqJ4cHksDYMTMrkJo3PHtA7RTWLEmszMNO8G1Th0\ng4XNxKwEeZORxy5m8akTyWQr1N4jGCSzZ/B1hXgwqOxKGvTETk003fFrn/mUsDWCXbQiXQa8RpD4\nBcoqdqcQx8wYP6FfJLdQo1tBdqnp5UI+KqrhzHHWRMahmSzGJsyeYNnFlJVFP8T0bo5wG7rcwS0t\n4SSYGP9xZob3GcoL4svIb+sF6xbsrgG6nqirkvOt5+Ulow/OvKiIcN7Q9BFyWXP/vqH55m98NpLg\ny4h/6lhmxW9FxN8/GvoXxb+wZeUnDEWC+FtB9PbIF3HnfN6D75A5E8uxxywn3KmkVRXRVfDNjwvV\n9yemKOU+PvDy+gOpClgfXA7S48uouLwUHPqY4nRGKIP/n5L9yjCYjmTXkO8eWFaPZMuFKnGZTzXd\n4YmxnTCipb1AGsy8FD//OkR0hyoWEhOzGj1kFJPOPuruo1O46oFcKSg1o9Kw6ZgSjZkhCj1ksUYJ\nhdlLpuWG6Rr8qsMlwSsXgscVDCuqjy47p8eLLZvBEDkG57qhnK74ykUF0C4ZTpqycc+sLiNOcGJr\nFzZej/I1rRYMV0lmZgoN/Vpg5xTHGHbvkmwOCZsOOdV4w4TX3EjVRLczNFWIfrYsqSYcrrhTh8ld\nOI1sdr8K7eebh5U+3qCRckFFHm91ghwEFTG9UeTvms7xyTYz+qBJx4FgXKgErE+aKTZk/cyb2KIG\nSRbVSLvFuDGNCmAYEf1EsZF4XkvMBv/DncHf4MYSZ6xoOBI4Clpw9Y2h1nQHzez7zF8kefiFaGjo\nphy3i+gvK2YxUu0aqpWAwztOvaN3PLyHhtTrsLOEaCTNNMYKDsMvFGxJhMR1Dcl+Qjxk5HWIJ98B\nuE4Bs3PBhiOpP7AUCqMvOLJlEAp31nhOQGAiKnciKmLc24pP6YrRi0hCMP4G/9ue1vc41guf395x\nVh7trUc5kmGQ1A7I9YgzKtadpXNcpnJiiHruiWHziyU1V/R05aZ9hrVkFoJl+0hrJUXlI8aJuMkR\nukQPltA1zFWA6wmq+atLsao3zFPM0qTEzoYlnBj6G4+xS8wesZVg9zwuDu49I2oHWm3J5A4AZc54\nY0JQQbmecaOAqX+lnifE5Y3jtWcfKlTXM3HDTwRz79GPHZt+Qz6Cd7rj2QtCWY6vN1w/Z3z06ReH\nfjziphHTkOEPgvnLQGRXLElKc51J2SDsO+8MMBUo55nhSSL6hMVfWCLJPBxBXxk3V3bqgWy4E/ob\nzFjSxTXj0WWHi5qvyFZxjhRLOjLaiWaEKrCsspnipJjjC+NwZ3AllRUoP8XsXeR/FxKlpGFxXMy0\n8Ho58WU7ww8x75sTdw1z3dE9ZDTTnXc50WwKLhtLExWoNsPxY+KXd+R3Kwo18erdsNWe7NuQwdvg\nfBhpPiq6xRD0b6zv76Q6JzhoKrnGeTqydxwy66JPkMmPvFxjIusyeTdqUbOqJk7xjg/f7En7GFmF\npDqnqNdQwFieGO4PdOVMJD6RDj/ydi4IYhdpDnTxG9k0s7rFuHND8EtF0HtE3cL0w2eUc6TZ/W+h\nbJphzMRkRkzcE141w8NAlPdMi4VhwCwT71SQTajeUj+kNMFAk8dMuqQLL0hHM84Tsp1J44DtYrnI\nAJ203FTMcrRIH0RouOQ1h3JAv2vOokWbMw0x9Zzh+QJrQsqDwp0dzCEicEtU6eFJjVYuTuCQ3mDq\nfeZBI6eRy9MGc5foGLQbMEwGlfSMd5dNqFhqixNOSN+Siw7hDBiREfRXdNtQX7+u4sP8zuLOxOsV\nS2lJrq/orUuTDPh06MhhdTEMcUF62RAuE4WseKbk5mkC94QafDKpKMsFXypmt6J6zTBqordbgnOM\nOs2kdcK6F5RLgG5ijI659tC0KXhrlKsxDwVLUjGdJ25egpdIqjlh3rg0aYN593BdjRg9dCFRc8ws\nI3aqpYtStKt5iDu8W8uoA3A8rrcJUZ/xUoVfFkRuTaMz4mBgHFZE2wXv/1g/r347sfbXRFHDf4qE\n+7rnWC98iEOcoef27cTHTyPtwfJhdKhczafnI/fiF6q/ljh/DfnQ+CTCwu2B01bgmJ+I3u6M2S/8\nIgT6386s54g/ZSNV2SK9Ce/piJ91dJ5lO04Y0/O71Ue+fw356zrnp6tkHn7gVV9I93/EOv9O4sHf\nO8l5+COmOLJ5VtTjQh9FBE1G8ft3HpfPqFoj7i6Iz7yEFtE79O2ZoCr5/nPPlBdUvuKh/g71fcpv\n97/isXU0k59QzIJCj+x7zTlxGR56bjJBCcX7dsWQZIgkxS19rHRZtwGtOOM+jLz6Lt4k6YecdTiw\nhCEivNKECoFhtgVxvUGftijPYx5jXLNlWg1MKsOZDcyK1HcwreZa+FQip5s2yClmkS5RPJFvMvK1\nhxM7+JlH0FxJE0HFmWlX0/k1JpI0ZqJNMkT4QCc0iwaxqxHvAywT6RITWJ/jUpNvI7gf/4HHFHc4\nt5R1lXAOvsY1OL7D2ltYacksB8bQZ2Cg9BfiJuDLY4e/eJiupUoTmsIiJTwPgk01cwqcr1UxhyNP\nfcQqKLmmG3zPZZ5dPF1xmR8Jh4lmyMgWQdx41OlAfehQw55wEnjvmqR1OGCxwRrTaFbbV+66RK7v\nhManWSThu0fZhKhBsrt2iNajUw1O1LISPbOT032oqB5nsqYgaGu23DDFAcqSWnpM49ecqFQuXNkg\nm5F3f2Hz4YQ1Gzx/RV98TXSvrjU3HHwZEgofQURbn6iXgvmu6E3B8CXDHQRJIkllznjWzIcVibDY\n5EgyONghRbsV3s4wuhF616LfJWHv4K4zOpFwf0pYBTVrNyDQDWZ5IW8F+TywcQW9a1CrGd+0RDpk\nTgay7RqHirko6JTB2JyMFrMTDGomzSOsH8LVouRCuCiKdgWxRm1goyO64SupNDcHvYuY7EzYBxgT\nUvQeaRxhn7bsNjPXdsbECfp9wp4gCDI6aRHLQjO+s4Q+52vCS1Ox3x/Q/ium6OmXAuoNQaCpVzPF\nWhA9fCTKAobbgKNWnOeaTCRspUfcB3inG2FbkLiS6bKg+olVFGM9xTBOTF6H95RT9gNlIIhLwSED\nYy1N+IiNQg5Dg9undG8e2dphPd24v1ii2bCtBCIPub87eFmAcST+eYs0v2ar/f99/+VJlFAeJh95\n348E38cEbyFBo9ioj4QPZ7yrpDhL1KvBvpxZOxH3IaGaDX09Ip4j1PaJxM0IK4tXP0BU8nelybY3\nGu+Oh0QWASf1Ec8/cHFz3OuK8E9XukvExQ2gcXH8icHz+BSuWNREZzaEXsTbc8ry2vESLQT6zu7N\n4S5jPP1GGq8wMmWWZ96+N9xQNP2C+5uBm+uy6AV7TGneDf73BrHJyfwN0q9ZRwrzl0/0l5yD/OpG\n68cbi2pYrw+kniYVC2b2qacDQSB5CSOErnH6nuHusiQGdRTkNiWZSjw3QfgeM5qVKxk3LmJwUS7s\nOp9N5+PMF8a0Ztc4DEHLvo2wwUKbGaQAb+szhj3LVKKrkEkNuO8TayPJpeFSZGhVUq8HopvDEnd4\nfsTSB6SzxYtaNq8vjPjobstuGXD8mWWZ6VLNNN3xszuDnVC49CvFJosZVclpFdK4NeuHr5kmQ+nj\nmoR3p0GahtvaYahKwkYx25RrWnMyM4m7pYtLrrZCazgbB1v7jNJwSQqWxpDOIKMRMUbMh4btqHAK\ngYwrumTBBC2ttvAUMM6KapjZKkOwMfTNTKUNSfvARQT0sme9CG6Nx6rq8Koe2SZcNwP96HPICrZb\nhWcEUyQwnUN0q8hCgW4ytIL1+oyNJ7x9gpftEfcYEwo6X7CLHIbSEARnOl1Sxr/emub/dea1+4Vm\nP/Pjdkf2kyTJf2S1/MTmLPmtGhHHhsfXf+ZU/wdVO+P/+Yn1Lmb1/W95+L1D9d0XfnoO8O2fcU8e\n9x8Mm/m3iGaNCP+d9UeX5ruR77Yu0++u/NPbmjxOuIoH3HrhbfUtf3jf8fnPBWrzSHa/4J49+pc3\nvIeIPPwe1/q0/YDrL+g/fIPzhz2f+wFLTZaHjFFL8OeYv+4foF7z8nGmuk18Mp/5fNfI55APxjJ9\nvJAWW+ZJ0mYtl89bhvT/eN60HhvXEG9qsiGhnzoi50KkBavRBzUS9x2rRRH0HWNuqcxCu0yEY06w\nhBy6iKns8YKFdj4QJQ2ls2e/BJz7EjYRTnfGOEcmXzBNDX3WQDiAGJCLZVxOnIeeyU2Y3ZTV4Y53\nK7ksPfrsEQ8BSIdhHJmNC2JARwGLW+EYRV2FuJ0hcHLidY7SLtYbaQuH9BywqBXttsPXPm9ZjKs0\nYSXp7cBt/Wsaq7Adgba87wTPJ48wipELiDFEewvOeWGoN2RiJLw+MDcD8f3AHDk4bk7v1wjHZ8wc\n5CRoA59s6dFhT1HtsUbQlwHPFw9pbyxtRrdVuOGdAkHiXimnHVVocJRl8/qAXh+R8YQNFethYEpG\nhNLg+oxnheuNhGZNG2bsqq+tDzLykKOiyVOoOrTdkrcNIrWMd0NeL5gOgqllSkIu/ownCqYo5lAN\nRNlXsb06GxJvpF40OCO3i0dNRTAt6HTNQ2sx+wAHh9If6ecGmy1IlbPOInIb4M4RY9yw8X2We864\nTQiMZixaZNjg1g7v+Y1y9OguMW+lZu/d6IqaQITMjuJ6r8haF30p6ZyESz8TEmNuEW9JQicrFuMQ\nuZZl2FKKhSKSDEWMPmmk47F73uGPE34ycpkc+hnsLz7OfYT3gnI5McwL4vGMClu6fGYxitpPGZOv\nwvIwd2BYWH+C4qaR7YVApTTBTHmb6YcV8X2HNyvaxKXVksh42CDhumsYo4zFnNl9cHiMFor2xjRn\nePOVZBsgMpf37kSAy25auL6/QTPiyBtb1RM8x3SDpS9X3P0euY0ZRg9/nFAPLtIv0CfJQ2cBj17c\n6Y/gDJoo3FHPCi0c3KRG9T1GWoZ5jTMmqI3EDTdUgUAeAux2Sz9pdAjW1QyfG7KsxrgvzP9d3HnY\nkfD4kW/HFdP7gv1wgcpwVn9n0CHit5ZD4PMWKcQf9li5Jkt6nGYmey7pPxfUtkB98ZCPM3v/wkl4\nfPyPKy+nlkCFGPOFUEfk9MyF5PlTyy/JwubThAolH287xj8Iir5nHn/mcvkb4RywqyZWnWJuz+zp\nWf1thAfF59TS/fhCrUJmv+Ncn2h+s2V/Dohbh0i/Ev75EVlK7FPB6puCtT8hh5p2/cq7KwnCgYsy\nCFPTTpbmmgOwjwUrR1J5N+hizmFMNGnwFlppcG8ddusRJxFGtbAEbLIF596i5oxzVOHpHkdLSjli\nnAaeSkrb0nuGJR5oHQ/fX6iTmmyWzMmCDDISrdh3WzQpTqc4KIUXemyKgGWXsaQFQ+ug4oVlcdHF\nHv00kh0TtFug45J6XwOK0/4BbSeKacTQswkVrbTs/S06MPizw6wlcVzjv/icnBHj7AhuGcqGlMMT\nAMsikaPH/m6Z1hphFbvYQW8G5uHGplvz4Cd0nSXwNmQiIYm3LJsBuRrotx57qzB2Tb/LSE1IPUn8\nqaPcKNabgUIYqA2nVc9oHcTYEMcNmxnOu5DRWHZOhZekFGZifV7IYovOJjaAjWO8JSBC8ViVEFQc\nrxva68yUWHIrkLFPG0SIQnzVTSSWex8yOx7yLSepG8Z1gDNowsZSL3ecIcTxI4LGQ9tfIw7unz7i\nzx4f5keCP31BEPMQjHy+xLzF/8x//PIdZX8g/OYXOnz2juJvmwDDO7e7pP/TBmf5AEpiDz7Jc8n4\nJcc8/wlEyDen3/PzPJGNLS/ie779+QHzcGMqXvhn8468F/ymfqH+1xc+zpLXNiT/bkf79Ex9SPmd\ndri93rHPT0xpjHt5J70DpsINJdfqG2Qh2QxLIh89AAAgAElEQVTPeNsdA2cesjM/yJQf/ynlzTOY\njwubt4mfPz7zNm0QBJg/P/DLkJAl/8kx/9VZE4mJ27RQnvc0UhNkhpCMdnCxdgZr0JXPyTQs04zz\nmqFcwRi2RJeA6dwzDhVRJmGcCaceMy7IW4veLDhRgNcawlTQRXuEDoicgHrqeWi2iGCFHlzGlcc2\nHRiGklS2aL0iiyVhaSh3HedZo/SJ1B3pc4s2EuFneNeEbjDExmBmj6a/Ie0ZyppLdSdxLerBYek8\nkilGGQVty7wNUXZE2oTsuvkHHis3oX644J8sJ2mgKdHVDqEUlWrxJ4+P0TtVnuEZH7XXWKUIBoN9\nc5muPhkWMb+izATpG3IRICaeW5fjwwtyVfD+oGhExjJb4vuadDRMw5r3VBNmBV5syK8pBGeW455C\nHLgFAju6DDbGHzt8EdE8pWzPO7q6oYnvzMLjvp9x+pmQhhUec7wmHFqWh57gtCVa+RzNA3kXIxbL\nvCikzLnmE1ORUz+VXO9fhdT1fqHLelLP8Kgcgtwi/JCmuzC/XyncCjlo/KQlqD3mOCQJfa7Lnfgl\npU1cYq9jiHymQbDZlvj1jXugeIwkt6XmNnXIJCZfl2xyy6bfMkjJsJHMB0HWWtIdtLbA9TOi252H\nOOUeBux3isdjScCBa2ORdwX5lQd3iysXVuMJdehRw8w0Kty0Rc6SfPYxdYsOGibtop1HZPqBdrjj\ndA/EVYB5CSibAdcvsO1X80HbSNTsoF8M3mb+2tnnOQTnCilcGt5QscskSpI0ZZd09O4rj7uAw8uE\nf5Okm5jb2TDaHarZo2KP2NkStD5hcOfRiYk6HxXGTI/P1J7lMfhI96hwpoJkNbNaTeT+FoUmIWbq\nb8TVA2svQm4SBqt5mAxJuqfbzMyuIog0jp4ZZUcvd2ThQDBcCdIrdVqjTEVxFmz9nHjxcaQh2yrs\ne8ND5pA+CYqux64ylPPf5DmPRZHvF+rhynbysP/vQtP77MyKbQfOXyXzVbKtEuKfLK1uSUrIfQf5\ntmPlTQxOzufdzwSvV/ogZzt7+Psdv9k/4/55YVuvOX1XEsoSOWuac8Y3eBjvI/dR8ddPHbti5Ln1\nuM0LIv6A6Qa8Q0nnKzZlyNkqssMGg09a3kiWZ/xPIMOcH6I1eVHjHCR+MNC0Hq/fl1yzG2WrkWNO\nG4N426P/ssWtB2pXsqWnkpqDXRjSBoDr+ETRBahuS+WFJP2CiRdm7eAWC0nkYi4xTQlBv6MTDo21\nXEOLXA2Y0kfPGX49kHop0xHGUuObhtwuFNOaEI/IM4hxRT2nULgwSwJ3hhHM9YLadszdQn854siO\nfJKU9wxBhx0dHpMR4pLNyUVE0JgV69FB6AxRrvE7B7FyePZivCpikR25scilwVgP4RjiRnLxPErl\nc9AR6m0g9jWTGHGbr7Ue5tFAI7i5A04nUNLFLA7iuObDHHIPK6q1h4mv8F4zi4LZLATHnPWb4rHe\nMsU9d3XDNiXVq2QbeBg3Yj8XjPRkcYBjJE67Jt0OhE5Id+5Z1j3Zfcb0HbcgBn1krQuWbYBqLGXv\noOeOzkaI1RUjoc23hLeJ7UoweRVhXTG3Ez0V62nhtF9j/A3K+OjOZewLhl3JVc4kQjPqHV5qWPCR\njuE+1VzxWZlfNS+ZyGC7cP35Bf28Ydp95Ev1C03wie+GnqflJ27f/xXn32P45hODueJUGiO+ob/8\nTPk/JspfPIaj5p7nvF1n5AQvLwvbwxfe54Xfd4a3W8j+y59xnzp+fttyEAdm/QA/Dsh1yrH/Le8e\nOKMl/OnEJ/0n/qWWVG7IajdyFD5CVDSfUsLZ8uN/zuw6h/3j37jOd8T6M+/mz/xgIThueen2vP1x\ni7vMfHtr0esfmMOOrCmpd3e0kJiy4iwP+P/z183LtejJY49VciNGU3Y5ZqlJ0wTaCXtZsUSGbBAo\nMpanktiWpOkO83RleIiYjORm9jjhQr+fcMIdZokRlxzz2pM0KTeTs+411SwotcvWzXhtDZvwjHjQ\nhGLN/OLhDxGd74HumJeUNNiyKxyUcqjHNafaI3rVdKeB3Cz0+x63zxkTlw4H6UaUl4hV1rMa1ni+\n4G4EGYKurdFOjSM82nFm3oW0nUM7N//AoxpHDsUWucBaWkrfY/lm4DrHrBJBk+dUw8x+LOnXnxF1\nzkrWyGFDvBrIHGiHlLFZM4UlY7GmDb7Ft9BnYM+PSKWIrGB9UUSey7B6QTWKRBwR055Nt2FEctpU\nUMTs55KJiXXQYh9dsovGGEGwfcV78RChwOlC1H3DnNzYNzWDcrh8yJjMiPBu+H7LoiOGuKJZCg6i\ngjLlnjwTrM70dca2i8iaGqfxOSzJ1xnihjjNyNy1nGqFYxVqkYx+wi71sPcW44/k7R7hLyz5EfMy\noG+KPoIsShlfNX6p6NfQFTGT47JK1nTFxM6JSfYbnLKjFwvT3SVIfNrXBlX7LE0PQYMdVqhwg5U+\n9WbFnQvODLd7x7t1WQ41h+1Ak4/YZcNyvuO9TAzrgPdCMfcFrhUsco+OZ8r0Tj9oHkOBY2fGtINJ\nYzNJkL3xFk4ctg17kREQYKKv/ZuxaYiclnYXE80Gnc88OQ1i47EYg9Q+3XJmMgM3M/GaONha8vr3\nCT4+EUSG+uwzyzOqESRhS3yU9GHD4MU0k+VlNpTtkeYSwuWEmlqO7Wf6s0cwOpyuCV/uJfp4owki\nmv1IeXikaT+zkOMsI9Z4qNUe79ax7WcikWEXD5tlNGGPH49cW4OXelRuyFOXklxn3P1I77hMkaUV\nI7pfo7cOdz/gXA/supz+7iHNfxMSpY1huNcEacA1X9gmAav9zziXFrd/5CAW6twQ5QVJYvDWI43Y\nYQYP4ZaMvY9pS+Lqe9r4GbU0UCWo2aPr4CoS3lRKHy34g8W6NaKxHNM7yUvP5n7FVQOqiTmGCn8X\n4/ULQzxzUluidEWodthHTasHzGePIBlYxIXsl5xrdMJkM/c5JLjNHE8jy3eaqBnJV4rExPCaUgcH\npPPOpx8N7o8F2zZmCq7sVESfR4Tya7puahaCOWIZF2J7pJQ9zluMtTfcwEPcwEtaxMaHbY+Rin4c\n8KzgZvZEU0kRGboAbuXIYT0xeAmJF1OsIvLqijQJ7ryDpGKUBbdtgbUD1zHnvi8hd4iaNWrjkcdr\nrtJSqa/t3l4Uo8zMkjjkvkVEM64jSNRI583IZkQ/vCHViUk3nNwrZuehF5fKdyhKl/6WM6kIsW3Z\nLDus7RmrDmcz0jsDfmFR2QoA1w6UQUGWrPDjFHWfaHXDOpw5RRCfBUtbs10kIQHdziKjmTgWOFlD\nFxyxxwdkAG0g6QNL7Umc28h7sSEoPEwTI5KZvCoZbYhXahIV0kwgbEDoesS1QzSm2NUKX1y4hiGO\nDXC9HdF0wxQ7TksJQ8ecCyox49gU14lwWSFbSbGO2bwrNsPAVStk5hOUmoOT8DhsQNwwq543mRH7\nM8ySh16y2vWY5dfNy+nlBeE8MH944kvRcOf/wd1J8uf/4C9hQ3Jwefr8EZUeyeRIe9/y/YdXnu4v\nHDyX+F2wOsQ40yvnnwRx7GO8nMffrdh8WXF4/gsv5pGNsATscIzL9x9qrqXFTjWqd/h74OE7f6T7\n5JF2DeU0Eof/RPH8hqx8xnDgIC0PdUxc3viSwl+E5rpauN6/Z5Nv+VJb/tB84PTlkdG5klxLHsIL\nzd3hS/obFu8zP9Qe05IT6z1qtfDwsOG7bMHd/jralFgRipqLZ7h0CaHT0Yc+/VDSzQpPCOTi4vkO\nSaRZ6RXBPUbOBbJY2HQNWWJwNFiZ4V4ly9AycKb3K/Szz9W/gikpgolVZ3E3JQw+NrtSFAH23lDO\n7yzPgt53ybua8+IhvDu1kVyiNaEUeP2MM/pf58xDyEW3pFOP53b/H3tvFmtNep3nPfXVPO9dezzn\n/GP/PY8UKUomLZpEJNmCIUdR4MAwECmB7oQAAZzAie+ixBcGEiNAABvI4IvcKEFgBIksy0wiW6Io\nUZRENtlskt3s/ufhDHveNc/15eK31b4LkYtEEPjeF1BYqPV9b6213ndhNQMTNcYoM2hr8nhEqmq0\nqk3XQ1cd0cYj8srAVQa8VMPbNEizwsP803g0vktd77GlzT6AsddxWqwYwnP0bsCUKbWlsjcclP6U\nPhc8FTZCbzjoGqpfMh7OsbUDuaUS+QlWv2Yol8TyEn+cEw8hubZDZ4OqZ3iWQe9IQhukbpCJGLeS\ndHXAfgQr02M+xOjbEvVJB1bHMR9odj5F47PRdFyrQqg9mTlh67q4RcrJM4OsM9EKhWZrou9CtmLE\nabugS6GY7PHtls0wZdLFDLVDPDVY2wGN81ycsrzMqBIHJzihVyW1ZhK3HV5dobgKvnqT4Nznkhzf\nMhiSOfFE4TRUGMyELukYlg5FVOOYR+KxROtcKFJiWdLWOYqiI+oTRrnK0VBZGxnaREEMEd0Abahz\nNKDpDep2hciuqFqXidLgTD3s3qe4cIjLAT09kBVbtNMpLRLdsOi7gqNp0OdXWIcrDFVBt3pGJ4Jy\n0Bl0F6PzqMMdU0NlfTDxfJtkZ5F5W8TR4V/pN4s25LBLcFqLYzGhvayoKo061xhkw9wV9EJBipBI\nG+Nelai6yXiSsEpXdHZONPex/Ii99ZQkcDFnBaNgRtwfUHQHoeRoro932jKSY8ajJZFm0MmGMrOI\n3B0nUtJZI7TVmqDomYgtimHQiHPqPGXvlhzLnNoPkU2A4m2o93tCf8B7NrAZBqanIU92kjavqMst\nx7HEXGlURYK2HrCsEE0esEuVQRmYRQuu+hQRHEH54ejRn3kSpRkS9XbNk3BDWAbY9pytHVGMe/Jo\nhXp7SuitKNcahasQrD0imbKZFNCr2Gc24zCk1HoyfUe3LjDaklZr2KsOcl4zsdd4lzbbSU/e1iin\nBv09h9V4IAsdZrVDPTI48UtkU6NfO1DWBn27pskuuFIhtAVpcGAkd/R2hFNN2S16xs2Cp1WPb8ak\nMiFcJPSqhTWeoWdjdlaCZuSMjg51BXtjhzhqPGtKtq1D2+1pDzmj/nn/flBrelnRj6HIO6aqynYy\nYMU22VESaz2KGTDiyNCo6EeBLyO8YsCqKvwoZHFVojswG43ZGCGRlbKtawJ1y9HwqKsDMteoB1CP\ngmlvUB86NDfDR2BlITsvwehM9k7OoNe4RoznNohGxRtMyr7ikOmsetjZkr6wcb2QSS/YxRF67eMO\nEB0i4qsOpeowZYsvtph9R9cZZJnLttsRWh75aEyR+pAWWKcz+n9lztFEjFSHpDURhUnmdNRiRl4J\nvHqEMhnTqgbJRqFyU0Z42EMN5o6qnlElEcVQYw8zrAqWdU6wH+ijEHe+QXFBOjq659BMFWylpfU6\nkmhArwxaPUVvO9BUal3FuzpSdWAOKU1/pGsPWO2EVFWYqS2d7pPuDKSS4jUN1QiO/ZFOFFjKkcLe\ncNBz5nVGuG8pnYCNTDkKaLUQR+nwqxQjH8AvaMdLjiubwv6ERM2uC8zxBmX9gNmgsrB8lkeVojdR\nTvaolxq7Uw9RTEkeP+OlpUqXSTbdjLYtqXMVTaSEdc9tS2dxcZ2lU6J9NOaB2vDs4g0W6oyV7iGn\nVzy6KlnVAeWdK1aiZnIJrYiYGzNu6DtCJ2drX6daFew3PXn8gP0TlfDeFQ+7G6ALhqcBr8spAyqe\nH9M+LnF0neaahx1saBWPtbZFbxOM45TTTcqxPiVTt8ymG6R/F7GssYoHPDpEtJPyT+NRnRRcVSqL\nKx+0nnjo6NOCRlPoT1SC+YHBhz432do25kXBZtaQ5Aaa5bBxBvayp2VDW0DrmkhhM/cj9DRArwMs\n3SbIPUy/QFEy6thFkysczcExCmI/ROtAL2GqliSVh553HFsHzWnRRILdu6SqSTCu2KcH9MKkly2H\nYozTCoTdM4wtStckCHTsccZIKekrFRELhnlOHScog08cmOjTBhGqRF1JpXxCopbnDsPCwTw7R0sM\nDl7DIZ0Qijl9X2JbJq1TMXQuZj6gmCsMcQClwe8ShsKj6iRO5TIoGqvVDKXxqIwSUU7QRM9MDlhD\nBUKlaSS7RGOfT0m1hlmZ0QYDigzQHYWoT+nCimMNRgSrMwstVAgtn9yQKJMYS+vZRj4jc4u9Vxl3\nBUlvcdQGTGUPpQWnDkOs0Qqd1EjwTB/pBrRO8tzWY9LT9ILlzsJXJeru+eBwGrZorqCuNowzQVAW\nuGOX3JjTpgV7tydzS6a9QTzUyLLF21ds0Ii3Fk2XElYamtxTNz6LXU9laGiOSqQoNKmNvs/olZJO\nHXMyTRnJhr5YEDoSXT1SqgOzQWPapmi9R6fN8cXAMStJ8oZG9PiiIVAkpr4gcgTJKkOb9Yi+wqty\ntK6hH07ILAvr3MEpDdIqJ+2C50vN7SvOzAXFMUJvFYrNFe2pi9QGtrJmrP3LaqUeYxknaLnCfHGk\ntx2k2RBNOk7mI6pdjloqNEeolZZsPMMfK9RHE0UK+h2o2hFNFnilgx8fuaw7mlZDdx1CRWFSKASG\nR/pkh+UOXJYHcuHjNR21J8n9E0pfZzxu6SNB2dc0UoGuRh5UtpaHFxhkSoXQBq6GmjxbUCs5slDI\nb3oEfUemSJy5QS96DDFgHAQ7PyWPbSptoNg/owpHjHqdYAOUl+imiUhCOuXPyWB532skjxWGVYPp\nP2LQ98xak7y06eop2z4l2Qia6wuqQ0odpihh83wwXJE4ySUbTGrvEYWjobNEjvZs0xW5ckHQzQhX\nI+qFpDGnRNxAOT9nMuqxdyq5VZMPGwar4tnew2jPyPopjhcjDgp1csrpoUB/PIVDxF5qVJtzttYD\n1I0kXp8ziTp0ryYd3QKpcOPxlPaxguGqhJFkExQY5VMGc8z4MgBrymRZYC4rHi9M7JlFqf7LhDc0\nmtDHXzcsJj7bbiDKNUKzRyxydEfQ71S2aYumVRQjE3tyIPcNhrJlo8Cw8FGEoGsg2q5JY5O2V+HK\nxEdHRh6de0EbRzi2Smb0tIFDt29IsJHtAfvgc9jH3ChdfDmhzjWSpqeuFXbznOwoqaTKsjogNhKl\nqTgcNcQgcdw91aIhU2cw32MtVXrtBGKb2DWQowRZHLH0jqh1UETPOF5RWgNiDNnFFaZ43r/P6h1N\noWMlObnYEOxHDOkOudyRN2uUbcxMpNiRT+oN9GlPkwjSeE5vFUSiZeTUqPkWYz5iY1YUVku4kdg7\nHWk2aGlFW3nYpaCoJWphM9pLmqlAdmNaVNS6Y5K35MYMvR2h50t82XOcRiCuqLoNe0dSH1PwSya6\nxr4P6TMVwzTpCpesDvDaJeUkYD81WS8TfHtA3Rl0Xom2rYl7B4HOXnNxpEs/lMz0Ar/8xEzRdQqa\nD2fMmzPObZ1xb7E/3mQSa5xcTNEGlTP9A+5eW1M5HdvEZDvVya/5jCONIbzCiwfm7gijbbmo1uyr\nI+WkY6Su8bI9u9EFun3BpRrxwk2N+kJhSE7Bs0g6SfT9JzSPNMr1DX6wd+g1SSqhb0/RvCnBcIvC\nm3LjhSdcC3xOb8UML8O1BzUze4e20HA313mwukToY7woZFosEKc+zFLaqUt/3NCez3h2cNEe6ziP\nY476mEW/ZzR8MgNkFiFIh3YaM6dk4qhUDsijg9EX9K1Lr8GAQigOpHMdMgU37NnFBU1RMzEkoSpQ\nRi1SURHlHpmVqCIjEg3CidmaBt2lii5HCKNj5elYSomUAcpe0kmBNARSFgR+Tz/3scOMRpVomU7p\ngSTGKGyaVlJUR4xCoxsqtsIh3kiUyqA71JSqT9eNUVuLvs2JZhXOM5PS0QntBOodm74g7RRS3ccY\ntZ+cqUaOyGvMlUo8MdA2Z4T280pirAbEimDQFujakdLforYTTDkjcxLybkQrbBL7Ot24pCk9xjON\nVZQxpD6uUbJqHHaNjrc3aaWFtCRzuwQvwWhVVj7U+5B1q8N+xeA5ROcR/rQkHkZE9ZHqOCXBZtAd\ndCmI6ZgOCTtcTPcKXfcxjQ7f39LFc1AtqqEgWcZ4bUlmdHT2FqOtIK8gaFAKg3JxwcXtFVnbE1vP\nc0ZHoHoFhg/OwqPBp+orBn2Dyymdu0EtKraTDTNvhhVWGFGLarRoakLlStpKw1I1ip2gC1VOGIiV\nlC4UKL1OG3VM9BIrb1jtTfrWwq9qmjrF0G9gHH3q6kglTQLfwakEQkwI8ej9CGkWmFbNEPiUzQC1\nhqEPFLVFeexpTxcY1jUGJaELHZRTQVOosJugOz3VqkEtLIZnW6pkT6kITq0TRgfoLm1O5wK65zmT\nDyPMQSUOBMO6ZaypiI1HlTbESU5hjxBzFcet0bYZTtEjMxumKlNdknoReu+TFxLh++S6z2iY0XYS\neUjoNj3bpUIij/iBSWcVyKpnNB1QzTl9XyOurqCI2FQOfjkC1aLoAqR/wmB3GHlPOfRMtwNqNzDR\nSuZRiWsuKdINdpFixjqBUmDUGkPecDwboV8fg66gas/9Jf0KiHOkljNYBaplMZkZMM4R/Z+Tdt6g\n9OjDmEhMUfQleeCQmzv61KVQE+psYGacQtIQRirHdct6mMGtIxdGiKGfMZcNNwcFWzlw9CVrx6Zz\ndGx1yuAdeGjFnNwtmQ0Jmp+QaT5Z7GLKGnOvUm4ccDVC30NsW3ypEY41muuC+SRDLCx6tUZvVki1\nRfNcrGGGrnTUk4DLvuI8cTlZH/FFxCNzR8J9NvUG5wpaITh0grhpWE97LHEgO15ndJyjHn1E+5DD\nswSAKRp2CaZTs0ZH7Wxk1zGYPTK3aB2DWitx/QA1jTjJO/rWg0TFtnNmpUuWD2S1Awqkpk7mdYy8\nEX1Yoo00pvGRKnNQ54J2rOFLCf3AKLAwZcLKqUjbFHPsUik6tXGg1U1Gfs2+PqAVIagqU08jt0Hv\nKgolxu06Gt3BaBeYScNQCnZHnUovMZIKQzvgKAHuNiRye1LREitwNARtoKEDmuHSjCK01fMPfDTY\nGE6NmAh0O8BdpGBNEIzxDA1l7FDEMBQl405FLQNa2yG0NgxtzcZPkZMBlTHZRYriz2gck3UkkTOd\n9hiyVnVEfGA9eCybBUdRkkcjljufsawIPMlx1pMFDmYbo9AjnYTW0xHHDfVSwzybYiQO0hFM+zlp\n3eJ6BVLVcDqb3lZxy4Fd0GDmGbPaxdpPUZWOyIK5MpChEnZHdCIidHb2ATqVStqU3id/TduVj3hl\ng3LrCS+LE5RDTaunTBWPqq9pjT2b1sCzfG4Fr9HEAcu+YnpRIiyTphU4yw2bYMrj0QHx+oxt6KLG\nK8rrNjvVoF4vENqI2q34WLbcClrm7oEbz1Yk4wnOy4Da08qKk7MdryQKTi1Q6mdYhwniHZuNcUF9\ndYbcaYitzZqMzWnI5vEpRiQpzUcsT0Zss5D70QWdVfPgwqdfuzwVktPIpOi3RPWU1LXZZ3Pc1EIY\nM0jyP42HKA6YZkOe+aw8D7mZ4WwDRsOBXg40BQzrnsQsKXMFW9SoFQwrlW7us9AWFEdB3bWYOBjG\nFo8JyahCHed0dkobz5FRhZyP2dGj6T52YaAlDqbQ8Y0DvStJS0FmmeRqiRwEaAuCesCeC4xhxazu\n6OsN07nPpFMJPI+x4eBZe1S/QelBFzZdX6JVB4p5iuJZ7DUT6QzIo4ZSh4wBuQ/QWkHbaxyqT476\n3G3pNI/YWnAt7gnVkkKziJwEW1NoRM1kV+CpJnpmE6oKcp+jexqOoWDHkpl1oIvH2LZAO15hFSaa\nsqGKMmxxiS3goIUcGoOhDmlkifBKlNZnmsFYG7hWVdT6bZp4RPfiJYk6RepQVD57b08kcuzMoG9V\ndCmQpYt9HKNkPhu1R2nOSJ0xXSDJu44uUVHlgGUITi9KymzBVgqy0EDKHqPtkUXIrBAstIzK3AGg\naQuCjYexjSgpadQNi0POdD8iyxL8KkCZjlCHgeL4jKoQbGuJsDrkuKYRKsNYI02nMC/ZaXvQKsZ7\n6CuBMgfz6LAtx6RBizANLGL0kYUvPDpxxOwG4nEJI41in3EwWwpRkM5MnFWJN1Vp9YZDqSGtHVmc\nU2oGdqtTayrhcY8RK4TmGNYqsbLDNHJM94Ab7xk7KkWtkVkmnim4po24TBQaZ4cZGdSbhC57Xola\n0lIrBdNUoI11YkvSWVvMZoHwHRShYBgeXZ5izEzKYs3eyRCZQVLrLBqd7WbDiTfDLFSksaIQe4Jm\nhZdNyO2SZSMZmS5NoD3fJ7hsUXYuQ6hjmD5iNscPJYEi2TYHynbAaVpse0PegqGqWL3GcKpyGAok\nIevkwGAcyKIRXROx7SsOGwNaHcUx8I8VZrbmpLLxhYPsDcT8GjuvZPBn1I5k/6xht3IYxxHwwy0g\n/jPvWC57ldFYYruCZ+cFRgNW3xBd29JnS3Q1oM4vMbwph4scOwjo4z1jL2CVWuT6FZtmQKnHDHlC\neHrEe+KgDwX6WUqvVNiD4MliTFS4dDIlUkzU6JJNrqBaJlFfon3os1o8Rj0aGInP0/OQk4XCk/IS\nZ1YT3MhJnoY4dwp4ZKI0Fvo+JRjD5sltQjbs/JBO7jCKkFLR0EcaTWsRGCrJmY8T97iPVZRB5ajv\nuAwNlB7K5YwXL55fkpmxx+9A+AFKlhP0YzYO+N2IPr9EhBaaWjBsI/KoRokVrPSIUAzKZk6l7xls\nC6dKiXMbTWoEuoNothwVGNOTRwr6xsfIKmqtIG58vGbg4DYMR5el7TF4BqV1ST3AICYoDejSZzaL\nEZctK3uOzgYpl3golF1HZgk0TdInObbpMRltULYe2zbH5cjWmNO1JZZZwiHCniV0VonoJ5RxTjtk\nJH3AqBbk0+db6TPPZFNIrFYnaDbsZhpTUSOEztb08YaGSs6w2pztANNRwoDHvk6QcoSiKqQ70IIS\nSYV30Cj7HdpYIA8CM1CY0XGsfJSoZRg69L6ASiVrCzLHwK0ktmcCCTtfEBg5MKBjEdoe1cYhdBT2\nesvYVhnUHUKYeLWPMGIudYFnObTNFqA3UpYAACAASURBVJkI1AjWxwy3jjjuSmzVouoHxlHGZfZc\nrt8cKk66ni0d/rjBefqJOi9eBIwfHbjM5vBGxY2rGrEw2XQrck7IlhHpfZVXo46LyzW9IdlcevQv\nrjHqGluafH9toJc7bp/eRKsaur3PZdhDPKYwc9r2Qwx5mztPpzxzFFb9Du2hYLPsEPoR++4txI2H\nOO2Mou64NJ8SnqjcMF7nWfKA/skpt04lTXKXtWuRyBvcflbw7OZAeaKy3HYMkSDfXXE6eYCTuuxC\nmybKcB5KTvct95wM71rEoSw5O1WRsUt/vmblKGjikwPQ8SA91PjeiNKU9GVOKFLkMMIqjiRBzXxv\nIR2DYSVRMgN1nlLKEeGxQ7F2FD2IfoG5yTFGUwbliL2N6E8NDscDo0mFt+k4TFsU/0C0m1DYAtFb\nSL1CmhFuJai6mqGpwJyhxgWuJkF4FN0GmUa0oxpDL+i6Fg2bqK9INSjrEMVWafuSTkgkglLotLGL\n5Uvs9EDHiImmMExKDonGdGbQanuWCPbbTxzLB1TazEDoO4pKUhgail3TpAtudjlGk1FEFsqFhW60\n3J0VXFd6ROEw6DlqWTD4PuZkz04daL0Rp/sDuzMD83iKe0xJVId2eslJ4vC4N6njJfO2Yih0HD1h\nbzoc7J5JdUFbzwgf6ZRBxqg3GeyeovRZj4+0nUFgbjDaMcnRxO8a6lOTyVZwNBvG3TMUzSEdTdHU\nnFzTybWEbGkwUi4xhxPG3RV1F9HKmL6bowmL3N7hJ88l/Xm/o5oPRHFBnUpyxSBcQP/sAE6I3VS0\n4ojin1EaO+ytgaWM0buSXk2RhY+6P0dTVaa2x/bK4CqUmKKna8eIdYKtd3RdR3NosUnZLQUcdsym\nCu5qhDovCYoI3VxhyAWqr1CtWxqtwrNzun6EepigLTsUbMZnBkNbchBjlF5gdiFVeMG+mSBcg7b2\n6RSPMI+p5wZ5HTMoGkvTpRUBchPjOD5FZ+N2FVtbRYrnJKodeqxpwwU9J3mIr3dk9ZxUy5kVNVpl\nY1Fhn4V0qYZ5GuAokBwbgjOFZ4+foumS/HjAsFtodCzFZJ36TC0Dggaxn9KHMWXp49qStGnozSNa\n4WIYKR4jUjWj26g0Ssjc2DI0kthSWMqAbtRiHDS0cMy8V1g7A6Z2nTw7R80k+thB6UuUSKWQCjQW\npdPQMsFIM2K9ZlBa9L2FPXJojDX9umM6GxHrgkI7IH/IGtOfeRJl6RJbyejXgpNZgS4H/G3EZSqZ\nafdI7ABRN5T2M144jJFJQaKUyFXCWC3xo5aTWENVchR9QnY/o3S25GWEPE/oxwajmYN/UVDqKuPW\n4NLassxb6qZBNiec9AWZyLmDTbkImRR7urCj0VreDm5w1VzAQ3jb33G5nuIOKpq9Q5lZ+GWC5ddU\nRwuLAi3v0MI16lHFrXr2WQeKw0veU8rSQV+Y1LnE6w9Yh+tsRyldWrELn5sHijbFtJakScs1pydp\n73NHD+n7inxsYe+2zJhRBDmxXKOIgMCJGTVLduPHRGsdadeY9kBvxTSYBFlC5Rl0SU803+KtNA7T\nA6Yq0RqBox0QvkuYlPReRu6PmNQ6TZXS2jbdsWAQEt8oEb3OITgyEgOloqPIZ/iBQqm3nMYjpF2T\naTmKMcfddhy9LTdtg7TJWGQKyijH0TrKZoyQFrookOoFZp1TGhHSu0RLDZThCMC8Ghj0A33n0+Lg\n3fcYs6He9pwoKkWrcM0+otku27jHc2uGLZhizkRNydoILd1grjWcicJ4KLkwpiwOFaU+oK8qElqu\nC0nxsKPuA276Bru4xp/ZjA8OsdMxu6jpDR1LrVH1CA2LPLuksS2kV1LGDkvLJokF46NNYnqESsLR\nhLHpMzofGIRPY+v064aqbVm2FU0TUAwx5tKlfuSzDDT0S4k5kbRyyikp6rOBUpn+ac5cT0qcW+9w\nSJ8R+yVN/EV6Gua3Z7gvdEgyaqVgU72O/pmn+KsAqexJGx+tzNFnA/N+xMmJykeHFa8FKtV4iW7A\nYhgjwxlqP8E0KrKzU67Jh1j+bXoZk2YGN+wlu8UlYX+N/e051uV15CKmpsFlhjevuH6u8NQ7Jdwb\nLA4zbo8kTz+9QLu8yWeVDTkmYr4gme2I2gXJquBUHfju7nVO3yh5ml4Qjj5Nf36JPdHYGwbi1im1\n6fBGVPLwX1vIbD8bUwc9+r6nEhJHiyjzKTIs6VqHxfpIV5k0TY7TRpTGGnOj0oiGovRwvBJ9qzIO\nag7HGcpQMhQ2Mw/qY4OzGyFTG+lUaPcLDP0Wta7QrdcIWpJsxljbYjs6bTGl6UHZKZSWBzuTbrlC\nPpiwnFYcL1Wq8BrmVuL1JYod0Bctyy4BTqjLipkqSU2dplVx05o+E9i6Qa0Z5Jlg6B3Oqi2irun1\nMXVtYf9rcu1j1tJ3Y5AenpUiDyl9/hKeumOn+Kz8gOvlwPnSZX4OkRJT7lX6NsdUI574c2Sscl1x\nCHSb1Os4X9q0Txr8sUvitrT5Du3qhJWlMCsUZNRxbMGaCcp9QDJyGGUFwpqhdhmxdYLTXfGsNFBU\nB4wD5lMXZ9FR6TMO+xLN8jEbk81whTVVaM9D1mGAspHoWo9TBBhzj91mwBmtaQ8W+VKneBLSLVXO\ndJd4VxEGEX3Wsqueq/OS/U3MWU49GFh2jlNNqJ7FHMIGWQ+ITqAyxqldclPQGi6mc8WgLGhLF0Vo\nVCcnhL1Jlab0vg1ZjDq+QRjr4I9IDlfMZg79pkNoCj0NiqfTDhOESNimS6I0J7d8qmXOULsoeoBv\nF2yKF4jWJccoxVqHxEMNgYNSS7qJidOEXGFi1dBi0FKDOkITHTgziuQCnQmaaDhuTdpQ0jmCeVdQ\nygm6b6AJgZI+N9tsZjWVZmIycOgKWkq4raAeHQ6BjdNsOdchygMw9iRtQDavUDFoyx45Hxg5Coln\noWJgZDl4HdrQUO116r5ke0uj2ylM5FMKOcKQLc64YZ+pjPWCMmzJUxt1kRCGR/bZBLVLGCKHlj17\nxSRcTCn0hqJbo3oBsh7QbnbIYUarZji9w2E/oM0KnAiKjcSMGrbjDLMYGJoADIleF6BV5EuHjg0m\nE0q3R9F/OBKlSPlDOkr9/wRFUf5sv+CP8CP8CD/Cj/Aj/Ah/7iCl/H+cLv8zX4m6/vbb/PJ/8t8S\nXf8OD5yXqfZPaF95ygubT6Hee4I2u8WZ9VV+M7F5Jz/hospQPl8w/mefIf4xhZe/qVJ/5iuE5Sm9\nscf74NN8+1Tl7KMnTF7fc19/jSIzsKqGi9c/pHv4Dl/8OODRz52TfvQQrf0CTz+15eYKXq1ifqCf\n0N3zMfOU9q2cun+K450x/6OvUWhfYn/7AZcPZvxs2fDeT7mcvr8i/+wWdfU5np29TyUdvvDuLfLJ\nxzTJi9xbhbz88v9FsvEJXvHoTx4j/slPsru5xduXVO1tbjx5TNZ+m7/9D/9HfvVX/g5aXTObKXwv\nb5nnFWrkkdkFrnqb6Wjgu1+9yySQLNwpvTVlu95x7A+88Mod/Mjjo298h6pXWegeXX3Fqz/7Fh9+\nmHI6epF757/PWGkQvIQy1WmKPYcqhmCEvs64c3adq3bFfDblo/dW3HzxJuPQ4OlH72EMHuebS66H\nb+O/GHDv3n0mdoKwZ1TrCxJlzI+d3SJ3W7bf+oDRj79EcdwwOznla9/8Pq/82FvMzCk/+OffoZ/p\njF6/RvzxXRS7Q5Me1b5h+bk3qe8+5ereY/7nL/86/9V//PdwMxs1FhSGzkH0+H1PkZtMLIWVsUPG\ncBbCYPs0qoclSvaXOaMoou/3DKVNjormg2vGpI3CeDfnQqsw65j+VKDWNq1REXXQ7A1cryU3dZxc\nUhsOvTkgyz1NPDA+iSiahCa3CEOL7brHnakYCRydjMD2qa8GVNOm9Nf4G4V88GmjHWoR4LYKpteT\nOTZ5eWDZhVwpJaqjoCQ50xrK0QnOkHKFxTJVuQpT/vP/4W8B8B/98q9jqx3NMODaBkMHmZWili6K\nUWNKg1YzMcsD+qhh2xr4hLhI4uMREdm0WkOHg1spSGOHutMxJiHHQ47ij3DbPUla02kjFD993iY4\nthhuSDn0CPuAsrI5qgb9qGHeeAzWhlw0NDsPiUo/OJwIhSbc0SgGTawTKBbHJkO1O/QqwJ+VDLlC\nb+nk+ZHSVpgqKsN2Qmu06CKBuqOce7TNgKpY2BKUouE/+0f/PgD/5d/475GyZvANTE1gqTVUFio9\nmxR6KTHGe/y9SjGS2KXLccgw2oiRNtDLPaJfIC2VK6tBNDtmoyWrq5zxLKXLlsiqJJj1pNuKRto4\nbk8yZPj9mKYcGE0kg2YjFEA7MuxVjlZDW5gwallUOn0VsBk2aMEM9ANOp9LXGk7VsHEFyJbeFfgE\nDPKIsW5wT232Fy24A5qqkbQtiz6im2gU6xZsi6ERqMGKv/MP/1MA/rtf+rs4Uqe0C0ZCIEqHcnQg\nqU3QM0wtgk2CVFy0TsU6qdhWEt2WBGuXpj3SmAJH9OyGjsAXaHKKapVsa5VI1LS6RFYD7a7DtAI0\nZYdljChyEKjsLYlVDPhqS2kr5FrDqRmx2sJkprCXG8L+hL1+hapouK3P8aigTIDmgJq1BJMZyXZD\n1CscfJ+o1Kh1C7VfoVgqbe5yFDnBZIrRXLJZqYzOHNpG4AqTWBT86n/zd/nlz3+W67/yb1LGW/zG\n4OztH+f+b30bdfo63VnMHfeCo/M2+7vn2KbG5fvfw/urt3jz0XU2Z2P2j77K8uQdHj77Dp6A6+nA\n/topj77zEZ/5mZ/m4v4G09Vo6yec6A73H+74ydvv8FDb8WwOb5zryDfPMGqVb3zj27y4tIjHL6K/\n/036z76M8d57GNPXUaMZj7LvYD/LwB1z/VNvUd77P9Gin6dLVpS6oHvYcap8nw8anys15S+cvUMo\nW+pNxf35nts7l/SlMfH9I7d/4jrvffcHvDF6h6JsOE62/Bd/8z/g3/38z/Ctr38DG4195HDcmzS3\ndLRH97nzmsuTasnyocMT/zvcCT1i+wXUu3tc7wbH7IKKHctbb2I+Urmg4jrfw7pt8YcPOzpT8hnF\npa/uEL+ZohQzlAe/w+SVL/FRr/Dq+VNkeZcGBROP0auC99aSzs5xrl7g4GxYpgfEiUt+afOKGXGl\nPcLM3+EB32LJgMtP0k5XrKYzpvc2XAYts/QG3uRDtupLWDh050fEzcekj20MUl686fJudoK/OyBn\nL5P2/4Jy/+eknTekOWV7F/+f7gm1AuNzv4f8rbdZn+cYn/5j+o9yDs5tZpsM/dGCt3KHh6tHjNYb\nJt9aI2YvcuPyFl/xAoKJiqp8iJ6brM9Nvp2M+bfmv8EP4jc57R/iHExeUn+T4x//DPHktzHe+wXc\nN/+Qk3/wOkxavnn9nBfCL6M1t7mfv8Hsa5d8//aCV+99Hae+Q/Qo4xXlMX/wwW32L6aM33sfbeQw\n+sfXUN7+XU6/GTE+K/kj5yHTyxHTpzGjd77N6Q9yipcTtIcn9P/bC3STS0Rm8sHI486XB34wbalv\nPXfofnl0jbvaUx5klyzcJfW2x1FCDONlJuGKe+813P7Ln2MaTvj6b32ZW2bFtX/ndd7Uv8TVh9+j\nKGJe/am/yNf/4F+g3LrOQES1M3jpJYvdYeBzP//XUFSLj//p/05RvYQ+1/jZV77Al//X3+OVX/wF\n/uR/+Z/4mc//Ar/3B+/yV37h53j89DHbQOHtN36a7//Ru/zcr/wSH633/OB3f5/ghVcxBpjPDB4N\np2jnB/Z2hXhtxqtv/SJXdzPS9MitO2f89X/vM/z2P/4y3bji5S9+gY+v/pj94ye89JMvc929xrff\n/x386SnrD55inc25dvIqfPnXkUeLPOnRXQUzNBile0pnRORaGAwshgl6WHEpM8xdRqsKml5guBpJ\n3zNpx6wa6LUdk+IENe7QRMhWP+dsiEC/TlpkqBXUG4/Y7VmMdY79niGJ0AyJzDO0QrCfzFFLwV5q\nnKkOF6OSQ1/i+GO8ixX7yMRbQ+ymTHSTKrskUHVSu6UrD5wap1zsNiSDguWFiEzhtFJQ0RgLD10V\nHEyTlXJgbtS0moGxPjAs5ojNJ2aKsxm0VyloE1q9o09UppVO5SjIPKSdAnJApHNimUGqY8mYbejj\nDSZt7RIcFITWsAtMnHRK4+TkSondDuhqT9FJ2miKUuUM+phVU8Hg4mcNhlSQSshulqHHLW3hkrRg\n7BcM85KJkZDVc0wtZxXm9P0cqyqwwpp07xFMK4aVRRookBX0lgLrCe5oDuURYTYkboZTjECv2HYa\np1VDUgTUbo04Khw+8drEXg70zZi2OeAeTI5zF99JKdcFcjLmVOkpmlNascXpxhh6ia4LyrpGEw6Z\nMyEU0G62KJbCMKhUscIkUBkOE0xzw8GYUO3BiKY4bYyt6VhYVKqJae2Q6ph4d8StJPlZhOeCzLfo\n0kVpc/KkI1V3jMwxYm9Sag55V6D4NWIyYZke2PQKoGEqJuVWIq4ZiOQE21rRKgNhN6f3V8+Xkz+F\nU1tSdHvaLKK3PpmJYmrStmAnPVVjI84qsk7g9i2ONSI+luCpRGZD0tYM2ynL+UBaPn+221uMxj5t\n3KAaAtMStEdJbpaMcg+j7CnHEXZWoVyTlEPHdKWx6RLG2hJFGZj6PWoOIjTR0pxxpbHp1ozDa2Tn\nV4wjhca8YM6CyycZ4VmBtwhpzjcosx5teoM8WTMaLxBpht/arFAZlykYEXYhsOctXe2BrDH3N/Bu\nbMgeJ0xGY1KrR9Wf58wHlxXGB4/57Jc+y/t/9CGr/+Nj5qcR1WHPy8U5Mppx/s277PMtL7x4mxcm\nY+4/zVkbLffS3+a1aUgdv88bby35/XdLXvnCGd94/11OLYuvrT9gpCcEW/hYXKfSP2J++hN8UK/w\ntTmT3uJ797/F+btfZT6eM37hbYywQ5R3uevcZvP1K26GEZ9/4waPv7bh1a3Kk9ENdprkrW885pvF\nmOsihe+9x93Pvkyvf0j443+BxW+cc+MzNo/TJ3Qfd7zwVsq2v0327BKUHW95Yz7YH2jpyJXH1NKk\n0J6LlxY//yU+9fKYN85+mu8fUub6JdpPfJbywRPeeEnn+DsbrkSDeeuv8mJ7yvv1FfqDxxzf+ims\n9j6vja7z7a/9Ca/8rc/y2uweX3n819HnB3515/LPfve7XP/Mi2Rmwr6x+dTkFTL5y3zvNz/gc7dv\nsXsFrtfvoxkv80Cc84Vrb/OX3v1D6r7ncfEMx/0l3hQb3n1aczpfYJ3MUbSMr/zBt/jFn/4brKyG\n/Zc/xLv9BnceXsf62x3bD24zM+HDzRUzveTqzhjyc37izOByPeeFsz3fPp/zM+OBUh3R/slv8+bN\nv89/+I/+3g/FUdRf+7Vf+39NcP6/wN//r//Br/3bJ1/k4U8+4Z5ZsHwQoX8cckO/zwPrLzI+NNz6\nuOTpbMrDlz5gngeEh4bv37hPKaZ85ye+wYOrG1zX3iW6Z/Do03fpHvlMrPuMLlI2zassry7ZTVuU\n9z7D/d0MJ/oTbrQB/e3HHD/8FNabv0l24+s8bV6njwVt+ira90w+VzScLD/grphx/wcvYN/+KueX\nLzK6alBmH/Ita8JZVeN2FiK4RIYFD64+B/mGpfYxnhsz/fA6h6cOpy18pPtkRs+qCZDnIcHofUTo\nEMiBrex47ytf4fW//AZnr77G6hl8/tWXcByd80IQP/wuRj3h9jykNTXKXnDntVfZPbqgb0zEkHDi\nvkLdwP7iI8LxHfrsIf34GjfvhATKHX7v/d/m9msLHv7ud1CD65wP30PZzLj/4B5/5Rd/gYvf+H2q\nkcAqKuZvvcn9b3+Z/vacyark69/9gHf+5l8if3Dk8Phr3P7Mp9h8WHFjEpJogjOzR3k9Ylx5yKrm\n+LilVO7xwqe/xPe++nuoB594WRO0Cw6TEj+c8PLZHfZ/vOdZdo+z5Y+x+ehd9uscL9uxtxO+8/t/\nyBf+jS9i9xGOFORJjTV0jFyLUlPYDWv6+v9m7r1+PTuSPL/P8f53fv53bd17y1uyiqZYbLJJtu/p\nMY1ZCQMt9LD7sNCLIMhBD3qT/gBBbxKgBQRptBqMsJjBbI9mprebbJLd7CLLsnzdMrfMtT/vj3d6\nYKM5AqSZ0e4+KIEEDuIgMhORmYFvZkRGaCR+CS0voTolQm2MJEmEfoEdKkxLMtF4yEpdZhoHKIJK\n3+phihUKErLMQ9FFBG2MnoMQTQkNAU3XSTQfy9QI/DmRHUAs4LgOkINSYHozkiymMAsiXyL2HSJH\noEZKQIQRa4jNEm5gAQWyHZOEFno0I/NDJMHD0tboVmXiQYdp5sO0xNKCRpqDN7GIoxDDiBFKBT+/\n8iEAF8/+YzInoUgk0jRBqlqInoSmz5mGMVmcUkQWiTpBHrmUZYGukyAmMbIkEIoaaS6gZyViX0Cp\nJgTzGE2toyAyEYdYNLCygCyXKTyNRiQwL0TiWENxQtIwwk1reGGIohkYlsLY6VKfSsSBiKFqFElC\nIaRUFJHZvMDVXcgSprGCVtII/BDFlsiTDCNKKBSZPC+TxHMUPWGapOSVGMN3mJZ8Qk1HFAMK00HO\n4bObfw7Au2d+lzCPaBQl+poMIxCMlESUKMs5yDaZ0McPW+TASI4pAhNXSBByEfQIYSIjpgl2XIdC\nJXVjRDUnVBRyUcOKAixRorBHzHsl5PmMaezgyT6FGGFEKmHqYuYJqagSmwL2wMMsS8w9k0y3qQka\neSBTVBP0wifGRdMNHGFOMi8TRjqtkkMYDNEWq8yimGk/JjFqxJKGmubEmoGi5rh5hicVJJmAs5Ay\n6qZ8+vBnAPz+yW8h2BrBPCWrKZSHClYpwR9V0c0UIYrQy1WENEaVK3izGLsyJhzqhIIPRYqv+lhR\nSOb5FKMhU8nE1ASUWMMXfaS5hFCNkX2RTA6YejkZDqqr07Mn2IVDpkQIuk0aeiT1EtXAIZ+OySo6\nsaDiZxaOPyJIVBIlRuhqWJqAlQk4qolSGBDOSSQX7BTV8DCDFLlqkAhDDkYieFMybOaSiDBRsVoW\noR8TWypaKvGvrnzKq+Vj/M4//QZXX0QsvnaWeHgDcz5lzx1TtGOy5CQrox2Onj3LF5WAZWOFZm+K\neLSEsT9h2rPohRAOuvjNBby7PuUXu8jvvMPwl7/mmLXGquSydnwFcS4jCya3sz1srcbOg8sIyzVW\nJInqe6/wNFUJ5rsod/rIx2Nq3QHpk33aywLpQCM8NaOqHiHa3EI8K+MkI9rNEYv111m0FUw/Ybol\ncexoQufAI+wWXDxxlr+aOBztjdF/dIy1XpeefZxh6FE9iKhmB9zY61IvtfjVT37KaWeZd77/Nlfm\nt3h1ZYnQrGANMlafv2DXb5E1RGZmk6a8gpNorDg6kqwjnDWxNx2Wj7o8G85ZsguePM5ojjaoN5v8\nanaD5eVvUc0O09Lb7G6OqU0W8YYdsg8sDq+5tIP7JHtl6nMZWavxuOtjPUkwj5zkuPYmVs1H7NmU\nxRLZ2pAdbZ2V4AUra6cxbu2xozc5e6GMYW6wcnTMeO8YgXqFfkNi/XSNyfaMC62YSpTTrr/GYesF\n9yeLrO91mHWWSDfvUnrjFTJUPv/FZf6L/+o//2//Pozy//sQB1IqkSTXyF5O2dgHTWyznu3x3D9B\nWfyIo5XH5G5IRZxgBovsSQn76zE/fuxSUX0u7Vf43s6E7kWJl2dE3v/j48TjNdyyS+fbNnK9YOQu\nou0dJTicEl24j9RQ+Xx8ksmLDRS+QNo6wonnR3nzTgdzsMKx3pj5G10+OxrRm3YQ5CqNt68wfbTM\nwbED0kM+9xyVf3b3JR095361z2QoM7r9NqPeC1znCSv9DQ6uneV2XGHvwj5fXPQ5uWly5oXCN57s\ncTq+wsFoldHeDHsiUQ6/CqZ48GyAbGQc1QUu39iECxuY/pTWkddxlw/xbH/CwdOHnKiUEJSMo5cu\nYUUp9649oJiMkUo6gewSTgd47ZyL5RVUpclf/fRPOBXJbN8PWbnwBqurK2wYVVa+c4LDpRbX/vRn\nVN//FufMkww7e7Tv3eb02XdpFiV6LyI2zpzg1v/65+zaIULlAoapY5kpnWqIf3Of/NAG+mBMeqTE\nPgfYa1X2HguYpQh7YxllxWMdDXGpgvlgizyacOVXT8gUhdMX3+bRF9eJWy7NE2dpHDqLnn51sjY9\nmWyUMkgGlJ2QIilxsDvC6gwoIoloKmLrKZk9QA99zERBGE8xohCzMkfrdGiYKplRpZw7yLJJ1pFA\nMJmNQ6a6Tj40mLcVPNFCKhykwGTcSSjHZUZeghGVmR9IKKMZw3aXYL5DsR8TxDJavEQagVO2qakZ\ny5KCLyWUpSUEI8aLJ8yrInkYMxA1ZFtDXl+lpBu4tsW8GCF2eohaHaUo06qMaW+PsSKDZDalKhmk\nkwYFX6d98Z2AdFYhy1SUNEYeFHgLKcncQatESIlMXvQR7BJSrYNUeKhjGX1eRbQjhHSCpIsk6ghH\nmRH7YJYtYr9PFKeU4iUET0IMI3QrRa+KZLmKKYCsjAk8HXJIjTZFw0CTZ6TpmFZSZ5xYeLpLbCQM\nZQ9blxkFFlVXwB8HzIWceuQj9yUEW0Ee6uTTGmm1zETXsKQUQV1A9FtUcRCnFg4jlK5JbTjGpoqX\nhhT53wo+6qU0UTiY9TDknDDzMecqTpYgDkzyaIA6sWjaAamr4lo2mhpjRzWUSEBvuxQYyFWbvCzg\n21NUWUSKCyK/T86YiSog+hCFDRbqkNgJYbWLNs+JZwbkJo49YFaTMZURwnSI3DLppg52pKDpKQPb\nY5D1mbY9pExCjxPsWKbTy6Es0yondDodpoXAfD9HmVRQaxKWPaLuzxhLY+r9MYxTJl6CoZZRMZgQ\nUVOc38pDrak4foami9TnEQEp6U6IKHmkosxcNFDbQ0Q1wg+6GMUMbyoQSylOFqG5FmKR4rtVdMVk\nIgksSznGICRXPdJaHWElZTKMMPow0QAAIABJREFUMAMbNdVoynVKckooj3A7Fl6/izbLmAghmWig\nDabk3gBBLmNmOXMxpJJlzHIDpayhZiosjJiJBh0xJx1nxMUBiCX0TGLiqZhdAT8KiQ56xH6DVtmi\nJoA06bEYjdHcDDWOccspYicnTr9yd3lZmfIis1i48pDk2qesn/ouT06f5h+1ThI1G8iLEe77pxkL\nJsaHt5lbXbrHdG7/H59QFY5zqHoGdz6hulRFbs9Q8wdUTr2L5Io0vvk64kZGrzxm6It0zD6PhYCl\nNszLPY6ceYVT3RbrjSW2PnvIjx7lrKULrJ4psTw0KR07j1xpYT4KefOsS+DXib/8KyJX4vovn5Dv\nBKzTIJbnjKO7xHrIUUFhs5SxXTWRWhZXpyNOtndZf9tmuHUPyzhF9qLPid4mwVgj9uqE84TsN2FS\nEsPl+uW7NGfHOTAHyEXOwrxgcOEQktIjCBUWy3dQo32eTX7FLLAI+z7yYJPya33GnUecW1HZ9GKK\nc0fw3gh5nEi88eAkK8Fzvtz5Odd7CqV3Vzk4r3H0ksHKQ526fwCd11lWFznyrs1C5wB7cgdh4yjm\n4QbPNwLGUZ+nHzSZlSe0nfOsza9x72YHbfsld74p8YNzVaS7A9a8LnNF5oZ6nfFmjNLfw57fZHTE\n5pbX5qlq0Hjkc+dgg0Fg0ivnHHMcXmQpN37+JU/6MbEY/YMwyr8xiBIEYVUQhI8FQXggCMJ9QRD+\n09/Q/xtBEPYEQbj1m/qjv8XzXwuC8FQQhEeCIPzgH9JP4gSMXw04OzqJen+du9Xj9OqLXNC+5Gxf\nYH4gc3nNJJZvc2h4nZc6lHfq/OXZkK2JwcMXp3i03oHPFvH24co3WywO9gi8Ejyw6e6qVJ4LHLz9\nJS8fi5z9/Ad4rRHSiR2eVZ/RaB5FPHbAIXeHur6Cu6URn3hMq3QNsZ9hBa9gd/qcebLNmXO7nE+6\nVMoqbyk+v3hFZlSbU+ghQZGxV+9y1OhRfP4N/LBE5482eVN5zgt7jfqdBntLuyxGM66vLXKwYPHt\npy8w+xWS9+6w/OCrrPRO6zDJrS6CmHHklRpX/re/xD1c4uzSIlppn2PfXuKDS+/z+OZ1jIrK5Hkf\njtf4xlvf4s5nf4OSDShiBU+0WTr/PuqCyvXNmxy5cI5ZWLCypHHn2i/ZvPUFrdYp9j/5nH3V58J/\n+H0+++uPMV9bQztX5c0/+BaP7t0lZUD5rMN08JD1c+9wKMnoP7rO4yttUkki+sUuG394js8uf4a1\ntsHeTz/n+Pq7PLz5K9754DzTF12OnjnKlZ99ziSRcKWY1UvHKHUN3vnDE6hvWXxy5Qr+SgXxccGg\n94SpOkacfhXiYCaZuGUZ19ZIRJ1eMEIRmvh1kaavYJczAlNBN5ooFR0tLKHKNQSpQmG4SHqDqaox\nzKakdsh82qW50SAdjykvwoqsIAoClaUFvKTNKJsws9qYukGkzXBGIVHLIxcyxlpOIRi4Rg3RGVOI\nYDkjFoMKshmTuiZFoqAnIoEXE1REvG6Kst1HqNapDyKi+RQ3j5BkjXDoURLKKHJCKkO1puDjIlZq\nDHv7SLpKnKYIcYHU/joukiCArcpk+pRUVdCcAOkAKGaIuYGTW1RqAtIU0qnGwCmhqw7oBWKsUi4p\nqLLIwCshSQ7FREOZRMieQZaLDFUPoQqRrpIORYzZGK82ILB1BLmCrk0wBJt8qNIaBMyCGulIoggz\n7FpKLMfMBAFHatDrGTSEGcOeQZhEGEWBZ9pM6xGyr5KRYVh9fF+iHickPgihgKl08a0OWSrSFeqE\njoTsFMhJTik1MdSvzVdZKUFIMnAttHiKVnNJbY9CbZBrAXmYE5cLpgwpHeyQtjNqpkVbmzB3EvJW\njGrPUOcq4TimFTioIxNZqlBkIoosYhVlBkaIEibsDobEWQlrLuPUHGqKTOG1iUcFgu0x0CsYJQ05\nKrOYgOl4pKMCsR1QW8gQdJn+PMfPRPywjyJa9OddJt4Ex3UomQ0qYkKWJWTSBEYmAgEVu85UEphL\nKXIlp9AmTMKQNCoji1+DyslBn2JwwMzrE9ctBkYHpdYgliJ0QSPVUwYVBzGtIFMiF2FuS7hWjlJk\n+MOAOCnjxBKa7lFeKjMs5vTkGnEgkXVCrKGEu6gS1kaYggsS2A0NURKIVYmi8VWC9HqS4UspkiQi\nmi1kd0qkpdRMB9I5up5TZDqyZhIOCsygj+Jn7AV9Mn2Jkd1hT3wJ4ZDE1olXl5A1A6U8JupLzGSD\nwK4wSkS8YcxoJjAYqwimhFL5ypx3Nl1DKJn47ipeA9TdCUk7ZzMoc3HhJPcHbW493KITXud7r71H\n8dhk9UDBev9tDjKP649u83Kvw52HJhuizNFXm7CwzyTeYtjr4u3Vefkg4+H+h2y/MHjFNVi1RfTn\nBvev3mLcuMutxTKNnk3/gwxv8wGjDKYjONYNGR72OHThMJ/9eoth53PmR09yMoR8+SRJOifMuxhP\n9jkmraO65/nX0m1e/vVLjMf3kGwHLdihdH6BzGuR9Xtsl/boe7voy68inq5xTU8x/QrO8Ks1oq2t\nozqvcOxUg3dFl6qoEZyKWDUG9Bs9NloqjdEZgnRAvKyzdzqhMGLsCGY59LwhT3Z6ZHaKfz0k+izn\nRLyHdKyK/eYlmocXWF2z2RjmrJLz/EqbndVNnt0usfTyIfeDj7h97YCBUNDXG6zPBV7Oh5R2fKKl\nBqeeXUdc8lmwDZy9w6TrFYQ1lWohcfXPHqMt1Hk0e8n9PZONNYlv/LDGeussj/wNLooydu08ttgh\nHCccF3TK8y+JkpBu7R6ZqfP+u5coT3bRpNI/CAv929xEpcB/WRTFaeAS8B8LgnD6N//++6Iozv+m\n/vVXil04DfwHwBngh8D/IAiC9P/U8P9tgIHM8wWDa2Ub4dA+FzdjTq3eZGtxkeu9t0mqBe/0XpBG\nJzB0jZP1LmvWFutfLPC97hZjy2Nv+QVnXiq88XiJEze77C+58GJIWTEx6lP2XykIhy7lkzGjUw9p\nDgvO/sUaF0SB4X6G151y4B3j03IJ1GfsOC7B7jmWfVh8VHDyScGHs+/xbOsQ0fN32C+pPNo+x7JY\n4nuXLZYmVYT9Bq89Nggkg6Uj93gkhdTvWWwbKb//c4+LeYQQTbn/aognFfQ8nzwu8zvhr5l86DJK\nnwMgSx532z32VzJKK4u4uotvLvHLqx9x8HzIYNhFkFPkk8ts3rrPwuEFarHN519+QdeSuPHhDbo7\nWwTyAf1Hm/zsF7/i4OYLWicaaBdbTIYemAKn3n6Nax89onn4LHapxIMrdznz49N4+3exjEN4RUjt\nzQt8eW0He1nDk5ZYPX2E27tPOfnWWwzzHuffe53xkYLuo12++4NvcvfqL6i8XuXq5Z/yzg++y+e/\nuMytz/dJ90acfe93mL64TfvOLX724SfMjpQ5mAU8+sl1vN0DarZHuixBpnJ08TW6/lf2+1rFoz30\nCP2Cg+mc5WUHaWWCOdXRqzpRIOPHEyb9ObN2lzgfMivpiGWFvDslCAtsQcccinhzDU1TYWdErWUz\nS0S8SKJXtPG9HSxcyo0KUl/EsWfYgoxXVwknGla9TLWiU3UEsknATBNx3YxhJBLFY8a5jBxPiJmg\nL6xiNhSKQZmSs4wvZ8iWz8yK0KIZaaqhairJgsROOEOXKtjaDNGPcH2FlZKCu+SCO6XUyojFFLMw\nfrtnSomI6I+paGVKcoVhDPJijFKymMk5tNqEeZkwnKK7Jro4QIz7CH6KmJiMipRpMaMpJ4zsORgK\n4yLGbM3RKzqMNdIoRDRUjDQnMysEeQNdPSBPMxS5YJTkzNQqI0mmcEY4ZRWJnCAo0OM5qjynEMZI\njSlTdMooCI6JF3vIsxEVyQMpZGrLzOdNdD8lnycINQEpC9lTSiBpiEWKaYxA8gmign4UYmpjQm3y\nW3lMZxkoKWKoMVR1svEcUaoyGw+QlAIl1Rl2UuahTVIHu5QzEXKySEDQHZRIQ1M14iRHlwvEus00\nCekd7LIY2ISySOiH1GpVUtNjQahSymakaY1ZryCPHYaNOqIbIyY1zP4cdWiSRgJJ3KZwMtJihFap\n4Q8sTN2hZrm4zYi42iJVHGRTx0kWsQIBszdhpIe4tQTSJko0Ia85zGcHBGGJxbqKYtbozS2wPLRp\nSGp+DbLLkoVslKjLZYazAY1Znb7sk6sCwXgXNZxi9A9IJyMUYcRAyqnsKEijnFDOkOM59UmPrh7S\nNXSUUKMMFGYbpZTjlKZ0CQhSmVkUE/shHVWlv5uhzSIqkoySzBCyFr6aU04rTC0LT4ro5RJeKkFP\nIhBzUk1AkD208Yhm2QShQcUuUTIyrEJiYVBDjRSIBdJgQLIXoRRloqmHqvcxQhHDSSlMB8HJqSwo\nFLZBJSro8JXjnCk59G6NaH6jDvsigWsSSVvsPPuSG598zPnGcd50ztDZjknWTBKrwkNDIvv5pxgV\nmVdP+Hz/++9xckWh4h7mrmKg4jLx5hx/0qe1WKXUCtA8jUPynKwRcCA8Z7A3ZfnIa6zbP2RV7HHm\nlRN07mxROmlykIWcXznGC3eB1/OT9FIRfaHDpfM/ZlooaKWI8obAjhjjP2vxYsFk8kxBDjZZiE5x\n/HRKdvI8Z49kVI+fReuPuZHfYdFv8XQccfHMBgPTZ3z7Id/xRrz67UUOoq/C6MSPJxRrHjt3/5Lb\nwynC0za7V0Suf+mi3m8RdFOah8Ceq7yzUOb5w3sMzmv0rmeIgzWm1yLqC5eoiacJv9vDOaEwpkdQ\n8fn8L39K44SMdVPl6VpM78ZPUN88w2tPVth3fs2FJQUx/BHKuUX0fIrkrzA8fodXfRurckD8eJO9\n9XXk+AK13gFPhS4rnTqj5xmldot89QS1c4cR22/zzsCn+VRF3oUHyQg3c7gneOz/zT0GkUfvuM8N\n9VMiNafWbPHyThtXcolbd4lO1hHN+B8EhP6NQVRRFAdFUdz8zfcMeAgs/x0sPwb+tCiKqCiK58BT\n4OLf14+cF6z9xOBi99f4QYsD2+bPXv6YaLZDS+4xu30B//oxlvp7FJ3XCX65wodLDlm1wwN7jYtb\nIyrqBpOVJv75u4wXMhrxjJvvlsh6Gb31GXdSgTXZZZrukS/f53H0Pb543yBNKhxKJgyXT3Bz9wLf\nLf2M18wZ1d2Q9Qd9Hq66/OvvN+ibFj+aKzxcc+n3N5m8kEjPP+dBUmW3NKXe7RLNqixrj3CljHTV\nI674HPW3mR4dM1pfZMuLqE7W8PNdDsczzmoT3OMDbv9+nwvTRcwFH4B29yXv/eh9mlsuTtzi6FsX\nKF7scvydNzhcPUm8H/N09wmWmCP1J4iCz5X7H3HstQsQNLn0R7/P6isbHFltsHGphDBs8+3v/JiD\nX9zjzJENVtZ0jpsbbG094fV/+g6NZsb2/YcsnFmn9+IFfbFgeKdHRRcZfHmNmlxldFtgKRS5ufUl\na7rNcKawplW4/Mtf8VbjCDWzyY1/9SliZZGlyhoVc4Of/y8/5dK//y6atM3e1ktSd8zKa6/R+tEb\n1GUX//4Tnn3+C968+BbnV1ZpNQ6hLxzl5DsXefl8j9MXzgIw2I+wFQu3WKZSW2IQKSSRxVCbsS/I\nuMmEeO5TVmXU1iJKUUFTErzZAXJDJWy2Sea76HLGvJjSL5eYNFqM4inpxECMcyAnFhwQHOShT06D\n+dxgp90nkyzqsk+Ue0hDgXExxtNUTKlFkJWRRIvBoooV5PjTmLTpMu6mZKKIFc0RSiGyIlOKdTRZ\nxpRs5j3omxOciYAizChsFa8fEXkFA2GP3V6boDMlDRI6ERTyAanzdW40I54zNgTmwpihHKKJAUYc\nMVZ1xEBiLAho+ZSSmhJmIZlnMRbqIMmMjQjdr5LNq4QiqG0NM51hRA6TzgLaaEJFkxCmCsFUZlR2\nCNOA+ihHb4uUUoVJLqFpEmIWEWUOjW6FwWzC3IopxAQ/alJMBEK5TtlvYc5mjKtzyn6ArOoIjkG/\nI6DJKqY4o6KFoPUZiyZxF2J0nEghEGR8VDJdpiDHtFwcsUCcFigj5bfyiPIFwvkUJQ6RRI1WxaC7\nFxDmBknJJBcVqkpEVSyhSiadUY5wULCQ58S5yEQdkcRglickssis46E6OStrJaLanNgr0ygVeJMx\nQuIgVAaMTAujnFJzZxQtEUkS8XwVLc0RXZeRCoKUoztLjOcJDcEi1jMcGdIoRCmm9HsihiQg50Oc\nMEZcTJlEJoHhUCoEcqmMmswQGmWikUTZXUBQVWaFT573cMsFktOklClE2tfmvFlrzKhhMAx9WkmZ\nwMjJCpl46CFgInkF0soig6yBVNZpmBbt8oSBJpJHTRLDIRJUzNEQLUjJdZ84ESmlBVk0Q/I1WlaT\nrEhoOU1GwZCF6QC7MsezHJKki4VFtCCSTWzMbI4qxBjzMVEYoU0dRMtHkpfxZg7+cEimiqQDkYnV\npZ8G2IpNOIiIXaglCZmmojoNKrUZO9qUvL5A1zfIlnMEWSfyJ7gzjSSUKPXbDLSUUvKVTO5sb+Jm\nLvaT5+gnGzxu7/I72hFO/ugwzyWPrZdb/MXNn/C7x7/Jy7ZCL/g59XDGue8fY5s9DnbH3PBlLENA\nKO/S70Y8vDPmCDmdRYVpbxPn1DpWPkBPO5Q7MO/XMc9qTGYD7vSf8KDfI5l2iJQ6Yc1h1q8xMreo\nnlV5GT8ne5YSTsb09kasiX3uPI44Fq1y/sSbHH9VRkm32Wu20bUN3j3awlv5ffrT+3QvD5mNb7Fd\nWybca1M4Gk2xySePbyFfvkvtvTM8qh9CeAn1r3K6s2FnuJsKqf0W+7dC8iNTYrWNdn7O8jGVdLPL\nzp02q2+e58vLL7nUOIb3vI/RWmDjuIlWvcBaVSN+dhPn4Zz18nW4PuX5zV2+t3GBg/9zk/yQzPFr\nYKx8k6TXJWnuU9bOcftUn7NvaPhBgrR0kvfejNm5nLE/uM6NB1UWNAf145jx/HMOCg/raMrSpSrJ\nos+WPqOafkZ3klM5v8RV/y5e5QzX11eo7NYZVsesWibrx1dxwjUUqc+xRw0m5YLwmUbww1fJJ1NM\nfZ38+gHR1+eOv7P8O/GJEgRhHbgAXPkN6T8RBOGOIAj/syAIld/QloGdv8W2y/8L6BIE4T8SBOG6\nIAjX/dDDSN5k1jrDuBWzEWxyzr5LOVxDn1d5cXFOI3/Cy0oFLRtivX+T4x+fpGGO6JRmhMdWaPou\nO4euMes1KGXblIqYlS/3sSpf8tbHDiecNtGdI7w6mjF9doHxlwIfhDMUc8ijI0Mu9a9y4dRN+vNF\n/sVbIpXuYTbfOMYHxS1qL67gJS95nuYw8TlRW+PksI/0qMG74T5KxaBbt9jIHXrqCZTlJ/TjJeLq\nDpe/abEyiVgeDLCyhIfv9ikWDNonNNqrVZ48PYvw+CLtH97n0GoLgIpxnBsff4p0tMqHH3+CuL7C\n6spJ7n38GQMnRJWWCBo2zarGcuM0uw/6fOPY95lv9ll4q8rdrRuYuy/RtjXi6jKvfe8Cv/7or1h9\n4xtsf7xJmCzx4GCHVXsdd+jR6/Y59eZhJh89olQSqeYyh0+e5s6f3WCUTCk7ZYbhFrkjs3LyEH43\nI+2HOGWVI5UGe4nPo70HHHnlMK8fu8BnHz5n3h3ynX9yienVTTa+/QeU1xooXZNgING+Pmf1wpvk\nSwVHnXU2HzzEtI/SfjLhjRN1xs/3qRxtEvCbq+eqgVhLmAsvmXKAY01pJCLKpCD3R/SEjKbWItTn\n+KMhJcukMpuzZB7Cn/vobQXDdRg5dVQ5ZTGcE/sxamaBG5NWUlRBoxor1OoiolQmS2bkqohVklA7\nI7KoTDVU8cScku/ipCpG0SftCyhWSimfMZhPcByItzpERU6vf0BPDEj7A+yahN+XCafQz0OmdhvZ\nK1GUl3BzE284RaksEWsilbiB4YNctWG2QHPiYIsNNPFrn6hxLlFKcxIpRvdjCr/GOJdxJ6AaAbW4\nYC5IaKpLHBjoeoJQGaDLPtYUQjtiIQtREhFVTBirNo41hdYBSblMVIqYVWcY/oSqoGLkMZIREZYc\nIiEnjjO8XMWNUrRKzECeYdAi6yWoYY5YS4j1hGQ6x1MiMrlCkQqM6hkVDWSjQLQkEiknEgtCpSCu\nKmSVhLkjktcCREFE60UUhkw2MDDGKmEwxfQtpoVMbH6t2vQswEtVVLOE5qfs57tksk9dnJLuTshV\nhSQv0TcjhNDEyseMxRSqAo1+h5pmIocSo0QlFDWKhkE41kgmIpO8yZIv0ZdiSpJElAlkkowc+uji\nkELM8IdQ9jLKtSYIBYI4xioSEmHExCyoFE1EylQ7OWmoEmUZE0qULYlkALlsMKdMd2+EW42xHYHU\nE0ijDpYZISVjNFPBm/Uomx3C/Sba1CBpj1B8n75mYnYGv5VHxZNpCAXVskuWFXi+TDLx0VpVcsOm\nYiwzyQfIRoK3E5MHFvpERk2G6OKUfBYzLQJ8oSChwmTfwShlWHaFIHSY1ksM5JzSvKA7ByOvMHAK\n8rFM2gkZZxmRnzAbdJFln1GlIC8MhnWFFc2iEDvoaATjfbIio1a3IAiZ1QqqZBi6TFGyKCwBf5Ig\nlBRqqEz8CEU3WNILFEYINZj6EeV8iKPLDG2NcX+CsbgCAszVr4C2UmuSbLhMFk8Rf/SMU+2YHcnn\n8Y0eJ06dp3bC4v2lb/Isgf3H1zljfp8jyxZ+qCI8jVAsFzEZUct1NkUDp6ujt3bYvmNwMa9yd6nG\n/Bf3cPRjHHv7VR4+G3Jk1UHZTlnUXtKxRmjlC7TH+zSPHGNrHPNaWeH2fhnlSQ/z3DpJ7xG2LzFs\nFewOK2h/uMR07yqL6QJfDG1GOxX6Q4Ug7HHji88Id3d4Wz/P7M3zqKMag9FtNE2HdkZS3qYm6Sjn\n3qfz+Q7uc9h+cJtd4SUAmdBju5ijVqe8VykRyquIh2s4WxUOr1o8UAJKKy5dv0t26hLecJOTrTrd\n9CWffLjF2PaZKXusHztCUnO4OpR5/sYJvvutH+ABlfM/QO4LtH2LlSNTji4OUPoOnjZDvD+i07kB\nDx9SF5a4dnefpYbN/iEdrV5hcX+F5YsGG3KJo3pMZfwKnZ0BnZcy6/kGaeUwz0Z3mZY+Ik5PEVd9\n1q5lGNaA01HOslnFPdZCXhFRJwpfCgWv9RSW1lNe/VzgvK0TPDNZjEto/L2GMuDfAYgSBMEG/gz4\nz4qimAL/I3AYOA8cAP/d/9c2i6L4n4qieKMoijeckkn5yDbXShOaxjOmUsbjfZuniwrGG1c5NL/B\nw+UfoWQKD5srGLeOYOSb7EyavJauMKdgOHC59NmblPdEnuln6R5/gWybrCkik3ceI5cyHskFzy+p\nSOU26+s99jeuElRSgt4G2s4lFm5NUS+f5kdXSnzSsriv6HxcrNPZO4firDA/fZvfnQ35dH2G+fZT\nFhZuc89XaJciVkoPuHz+Nlt5zsblMi/LAUcDi9/7OOXEMxHfXOCjjTVeuZpR3jzNWzdE2pMV9o7l\nHFWfcWP0Bon+AoAlpc/KoRPM725y6ptL3Pzjn3Br+xaHlk/T2X5JsWrg9HN++S8+YVd9yOpbTV6O\n7tGOH9PSlgiedynOnKe0voBWuAximeN/+A73vviSe94IVRc53tSYzA8QZQtD11hvnsaT2iTXBjzb\nTtnTRsQrGe9++w+wHAP1eAvxeIOtDx9QO/EWghRQXzrDs24foTxD7gyQWnX6gzlnTq/ywXvvcudf\n/pKZbXKw8xB/luM9e4AWzwi1p/RVmbq1yDSMOPPDt1HVFDWR2XrsYZpjFH+b7DdP2MOJQNBT8cpL\n6L5O0skhUUBUMTSolwUCb4zcDREMg/m8R4TGruQhlVzsqoOQi7jZPkh12r5DS58RxiMWNI0RCuai\nhCAK7O/5TG0Z5JRs7KEMdZK6TL8xQikycmzSZoZVmOwmGVl5zqwzoehoCFFOqpu4KzqVrI+Fjlxv\nUNENkn6MrKRYqogoVlB0CUuR6G6PicoSCRm2nRCpYw4UCMsqshRRrSV0izZ6Q2cv7P12/ySaTZwk\nKHMXRdZwLJ88Fcm1hHTqMFaqSNM53WJEM4qZTkUaQ5G55aCQkndEYnfO2M4IDAXVFNjPLITIRc0F\nnIEAQ4dEbSDJ+/hixqQISeYhRmlOU2pQkfoMGxqVmU5dibFKI9wmzJKI6qSgMjUouxqKNEUNZ1SK\nFKubE6gek06BBMRhhjHVQZZROjmVbEbT9JFijXEhUzY1yr6Iq4zJnYi5LpI2ICnlqObXCrBUz1Ab\nNpIVU7g+kqcjUWfkmkSpiSQqRIaAPRCZk6KXTNwWDIcSfaHBKEkYpj655lH2EvSpSCrNyOWCUhYQ\nFkNUKaNXcilFIv2xhylUEbtL9Hs5OT0CaYQwHTE/mCL5dbQ8YzZJmG8fMJrMyJs9gmaCr5mUtBl2\nPsC3ZqRigF6E1IwJ1F1GgUgW7aOVK0STBMVrgVhhoAS4+gLjsIaoxkhFicySv3pZ6A8I/5ZPVGip\n+N0ehmURl3LceobqxtSTHDOT6Dsjyl2dWqGSGwrTZIrs2mixSODmZJbEEmuomk4222exmjKzJYYH\nGbmSohcCtbhHmMY0zZAg6381H65LIYCZLSE6oEkVfM8jHpVI0wKll1PMcuqLJYJghIiJJqeEqoGv\n62TjBCFYxC88pgdj4jzDtqdMxxay6qGYGQMhoTNVUHYKKtOCymSBeahgKiG6NEbLBUZCm3rZojQd\nAbCqejTiLaLdXQxzkdHFY4x2bI40I57XLFZfJNzr3eOUMqdwBR71LvPF4yGjGyHrx4+QHK1woi0w\nXPQRx5u8fuEUcXyaD94s8TdJjdLlKxx67yI7scXevTFLSxvcVMbY7wQMtmWOPpxyYg+CIGD2p3/B\n6NZLJnWfUTYjb6mEA2gsLJPqNrXOc9xDK+y+kBBeHnB/+yal9C6uNEDovSCfvsQ8Z7I0ickXNNwb\n1xi4Oe8fOsIb5lvUvlU9JPYsAAAgAElEQVRjHDY5upCT1ASmg20m4ZjFD46z5H61Rgar3+F0PaP6\nIqJ9YYPjnTGZdcBh9xmDW/t86+Qyc7fM1au7rHfvETyqsaP5OIfe4lgl5+gb8MXN+2w5Uxb2PZzm\nu5R8nT/59K/52WyXoegxfCPHfbvM7lTiISkvF/vke/uIr55ntGNhL67zC++fs7jo0H4/ZOHLERfn\n95n83hp744RftrfpDgxKYUF/KWX53BnUQw958fmvWakdQb26QOtbI+a3NIRTQw72LG7OVrk66rO5\n9ZTg+ZQoaXB01eZJJPMgc7n66pTQDUl35wRHcnz9H3YV9W8FogRBUPgKQP3vRVH8OUBRFJ2iKLKi\nKHLgn/O1yW4PWP1b7Cu/of2dJQvgaWpx7tprqD0bwVrDXltkLUq5/7LCwt1LXFL/BHllk6OtP0ZY\nkBi/KpOfTZmKl4lFkZk3xVNfcoRtLnRecKG3gTc+ytPxD3mUH2elvcNx7Smv/ewc1U2JySvPKQs+\nm3KGX+h43RXuCmcYHh/wYatKYxsuXTZwAp3S7zxh/Hab/EIVPwPJ2ObGixZ5WaNyrId7pcXWgz/i\nlbsF5ne+4P6/V/DutsO6NuTy8WXuLZ7l3tpVVoIHOJHFaGzxVK1QHz3k29tz4t1zVMJ9dnpfTdUw\nnBH2RlTWThLcmXP4vTepJWMWDtVxjWXo3cNtNXjjH/8B/vMRT67cot/tsbJxjGz+hG+/+wFPP7rH\nZCmnNxlSi1qIY5+aVOVC8xwkPZ4GfZaWj3P5yc948nTG5S+2WPv2K6x+4xih1aa4fZ2zh9bYHA9Z\nOFRwdHKIWlJQWVuk139Iez7g0eZVbB+qagO0FaIrV3n2cJPK6Ro39u7ifuNtep2Y4mHOsVdPU37j\nPC9mfaYHBuHdF2RyxPP2gM17H2GsKuzHz3j45TXWKsdpbw2/SiUAuJpHIgkQjJF8iWluMM9nlBcr\neKGGGRpkVol4aRV/OEU1SwydhGLiE/ULRF1g6EMaLYLoo9QyvEQnoYbnSxiBz2ziMfKnqCWFDBFN\nTckWbQrJxe55WEFO2wjIzYi8F+JZGWJbJpzMaFR0gqpEadmCvookJyQlEV8XaWo+kSLSz2Ui1WeS\nlGgUGmrhIkkCTb1A6eu4eoLvj1BDGdmVMGc5hdwiimUW7CbT4QBN9H+7ZzQ/xkNE0kGMRKahhzjP\n6KVjbCEmnoCt2JTMEr6uoqsSFA5FGtErp5QrIcWoTt2QCPwAIc1BVBHzBMYDxpUUqwFSEkGviuVl\niGmVsq3jiSJi0WNqVaj3VLrigHmU0YtFOnGVwmkwswWUcsQkkzH6MgeawUjLyFQds1OHhRQrklEL\nEdUtKDIdxxJIRlVmyQzdn1N2hvi5Q1gZMaktoHsydlzBn/YoPIVkMvqtPDwpQJwGTCcyKRayHFOq\nCDiTFG1Ro0hjbBUieUDVnOPLCf6BR6UuUio62IVMpiTYxRJi2iV2QuRUJ5jaFFMILXCyMtZehNYY\nYxhLzM0x08YcxxCRZA2pX9AvVTBXVAZFG8GtkDslGs0maFO6kcBMyGg4Mp4ukeUOZWQ0aYKklIEK\nEgG665OWGsi5gGo7xM6EUdzFiSVSOcPRx8jphEyckU11MtFBLArkytfmXm8/JmlUEEZDbC3BxiaT\nWrS9lJmQUCRVdFliJxrDrEB0E4yxhmLICIFGs/DZFbapyiXKuoKvzBGHAU1VpGRlmDt99mONiqQw\n2C5YKrlkXowcDXCbJUqLKaO+jq5HhHbBgplSU3JyJyZSIdm1kBKJ0mKK4E0pulNCv0RTkEnyLk5X\nwVywceZDcl/DFQVSNUFWVOK9hIV6AmbGIJPw5BnhLGcwL1NkGY6hkswEeiMPWfhKp07mMbVFl/VS\nicwuePTpJ7y92qHdrqL0RxyMbIzaIf7lPEDdtzHjmEBosfF7DWbTLabDiK3pA8xuB8N9myv9fdS1\nLt7MoS6JBPICrcn/Rd2b/fiRXXl+n9i3X/z2LVdmJvd9KbIWiVUlVZfUWnrUPb2MZ3rQhu1XwzDs\nv8AvBgw/2E9+tP1gG3bLPRq1WktJatWi2lgsFlnFIplMkplM5p6/fYl99QMbXYIBtxsYjNE+T4GL\niLjAibgX595zz+f7lHK4w8aDdeLWlFJ0ga21KZgGi//BOT4pbfB4WmX2O9+nff0Et265HEsm3Pqw\nh/3RJokW4bs6XWfIvUdbnPzyBukrSzjzBS7pBY5fvUAelJjNXyHfEIhfnqM7ENkfCMT3U949mPLB\nl+8yvNnj+KGHaV9g69km82WRhcsBm/dWCfrPsZFnx58w2e2wdeE8G5/9ho8rMctBm6jyCu7CiJvC\nAN31WUjm6E0i3IZL/90mM3WXZrODs9rn3OvHyZ8+Jp09Q5R9wUyWUOME9V0V67NH9KMizz64g/++\ny/B2iVKpwcLMS8wLIYsriyTdPnOHF0jGZfZ/csh68wQfFnSm/YiV+TlOtl6leP006ZkJ7UGdsJBT\n3JrjzZU3SDa3OfXiiKR/mrlvhuxN5hgsCixsvY/76BFVY5GqeJXa3ja53EKqzRB2dnj9vojaniNf\nimicayNFv8NW+wfs36U6TwD+R2A1z/P/7nfaZ37ntn8O3Pu7658A/1IQBE0QhGXgOHDz/60fQ/dp\nCOv4Zz7E2ja5d/Ypg+oa9dVtKqMX+Xwefn7lFOmNV7AmxylVntCSXeKejFw4yzQQuDKsMjijMGrO\nQ1Hj8brGwrlPSEcDxt0K4a3LROLL7M4f4mYTVh4tU35W5eiTK7xiZtw+FlCsbzKtDDm6vc1i4z1m\ntT30owP8L5ZYuKkQvT/D3qlVzIdnqaVnUR5o+L+9RFe2yJZc0lMWpUcXWfrFArEpce/LIxx9cp8H\nWo96pDDV53iQhGA/RhDvUVVzHmltfnpRo1eeZ+nz+ef+zSNWXqgzjEQ+318l373P7Lkr9Hd3uXhl\nBaGT0vUnlEWL463jxD2V87/3fRr1Jk5/zMOP3uE7f/b7rP3lTbzHazy98R7zqsmJ14rcH9xh44Md\nKuU6v3jrb7h45gKvvfgKL790lNW/XkdIY77/xvcJJja/+eld5ioWvmAxrPbQLQ310SaKGLCYOhjq\nPPGxkHv3J9SqFmFN4tXXL/DL/+XHHFHm8Ohw/GidSiVjt/OEzV/+khcvvcGpkxKq0WF481P+8Pvf\nYeAKrG884PLCeb7zx9+gT0Tj7Eni9LnulVRokichTd9AEkOqFYWxM+FgN0GMCmxrDkXbQe5F1NWY\nKBwx69ksKDUiecBkPMVq5kjuCFuxKWZjZDtGjRwEzUMrxZhJi7xhECsyFaWD2mjSdHUMrcu4WGU4\ntrDSKlIeo9ZK2ArMtGVSQ8MNfSzXRkxNcmPI4Z6OYpaQKDIZl3BGAmIxhUoNUXWJZyQKaYA7iel4\nMnqrT+oq6F6ZWMmRoxS7OsPEH6FPffp6RuSExFLh78dMgkPdFillY8QsIRHqSGqKWS6QZCq65kCs\nkw4kNNMnKUiExZSyPqYUqkwmIJiHDLMAqxUSuAGCKGOrRYJSCTlO0UcJea4xqks4lRoFxSHPMrK0\nQN+yqSYKYT6ipmiUFBNZFymMBORxBwWJ/aFMPegwNlXapOSESJmFKDlU+zmeJFJUDIRDCyMLSWWN\nWEwpThOiMCIYWRhSj2RYoNTvoWcqrieTiE2EICGKvjoTJfRqxJlKLHSIxl1iT8PvxORYOAcBaRgz\nkXVSqcYgtAkFCandIBCGjKkhhWNULWXqdeiqMoo3othWiEuHjKwxtpoSRhmaKRAkHnLco+wU0IcG\n01oByVDI5kuUxnsM/IRGZtJ1BlT0HE/XMCwT+TCg5RcIgpjiQENTbUZuA21qkCoertzHTgpIsoiy\nL9KPD8mSAsooI40EprlEb9glS8pkNZmhF1IQYoxERpzRmAT+V3MqOZk7ITYy9joCQ7dLttdltmni\nRgFlqUtXcNDyMrpSojRp4IoigtJAwsXxqxTMeYa5A2pKuCcyikx6FROnbzOZr1OdSuxrAYVFGNoG\nqlkjtFv4/R54OeUiDAMPMdJwchd/pKLkIJV0cm2CWK6TDVV8s0GhLNJouAztGF9KKTYaCF5IF5Mw\n0BDqMaqQM4166PMK/aFMUNYpzorkRRXsmMa8RhZaJPGEkqOSjxN88fk/so3J5MP7dJwetZkjnLtg\ns7VRYulIiO9VuLf9MS/MzFFsdJBGHRbK1yke7TH9xT2c3QLupEflfIv7PY2dJz9ivmYR/+0I04VM\nGfOt68e5k51Gu9qkvGLR4RBT7fL71a9jLmp8eWeAfm+P3ztv83D/KcEve8wWI7pSkbz5kMVCE1WA\nI5frdNyUy+IYzv0A98st6LjsRrM87j/mdPUET4RHBLbJzO0Ru/IehwJUjlfQeuuUBzKZ3KRwSmJa\nHTPaVtCXCzzcqrLS8cn6z4+MfGTnjLQak+EeCzNLWG2dzz8ZEyhreILCyvJL3PjtM+RGyMGJq7jr\nOc3rRQ7ugECJrKKiBEWWtsZsdO9QX49JM4eXLg5oX8xIrsyzfPdD5s6pzP7RAvNujrRWwp/2eJoc\nspJOmUyOI3xtCasypGaXOLYBZ+oFjMdbfLH/iJmGwM7N2xRFg7Usp/g0wxnd5DMLhl2Xv5UlFkYR\nBzcG6PF9kkKXyVyVU3qJOhAkHeqXDZzpL3G9HaStHdbShxzoPieEszz88IDsd4C9/5D9u+xEfR34\nC+CN/xvO4L8VBOFLQRDuAt8E/guAPM/vAz8EHgBvAf9pnufp/8O7/958SjzNqviRzONXDml/fpRR\nUmL16JBXkxtU0iLOM5UXrM9Ie202VY3VB8dIujUOj99hdnPAnYWAGW8NMc5xxRJ7JZlqH8o2XJw+\nRj+9R7fxiOHeHC+qEp/EczzLmrj222ykUDrQ2L2QEOdl8tM13M3fp38kwxh2WfY2GQ8bpLOrHPlS\no31pROel22wu7qLUupycecrpZJ3B/jybXZOp1aKXBqScwR3O4sYKpeQkyV6PwlIV44xItreEcyIi\nr/6UlwfP+O5bZXJt6/kHS8t88OstljWX44UZXP0Ee1v7lK7UWXvwkPqLKyy1y/z4h/8HN7f2uPzy\nRSrdlJKmc2ThDIJg8KO//Cv+4F/9c+KNPifffI3Pdjf47Ye3ef1P/pytrXVapQa6KvP5Xz7l440b\n3P5kHf1ake1Bhx/9b29z5HSLXBK4+cNfsvrgBlurX6LLFWaWThKLDY5cvkqo6Aw2dolch8VjJzDL\nx3m8vsP3/vx7bG7dx18dodFm5HaIuiJH/5N/zd0v1tjpGly4dgZ/YYnb977gjeaLHD7YQjt7lt08\n5fDxFlHcZTB8LkA8FCc0myIHRoJYq5I6Iu2Wzcx8TpZ0kJ0ycVoiakv0cw3VLtEdHpImCQIKtaqM\n5uaEQkh32sHvq2jdDNfW8DoJo1GAK45pahaF0YCpJJIOewzH2zhKAXlySEuPMfQxDbnGaCvAJ2Ug\neJhJgYLVQjVzkokIgU5xro7V02iWUixphFYvY45tZMejTAlvf5sw8kgKMoqZcbCX4RYSpoWYRljG\nVDUmw21UB8blGE1IMFqzCGnl78eMrLUYeRkHvoxg5pRLPUQLhESlYGQUNIm+OSTLIiJZRe/3yByN\nYV8mMCUKVsY4a6AMCwhjgZbq0jZ7ZLkHkwwpSRkYIoISgzOkeCgxiCLiIEVUfJTcYyQOyNoCueYR\nKSrJ1MWpdRHlIvE0oFCAUaGEUChwkEYUxiaCEtGxS0wqJrkiMsgDJHVMnEV0UxO/NiDKVJyqhohE\nGKpU1YCwojPKdPJKTjXLKBgRQvqVGENey8gyGTnJyN0y7UqRgu5BHhJrIYqS0eiAKYPWf459KOGT\nOkVaUoxfUJCFCnZZpKCIZKaEF0wxrRmKMXiphJMN6MU+hUkVxSzh1hJkBui7UwpDkag/IM7LtLyQ\n3EgRRy4DQcf3DjFcm6BVYihEpH6CbOhMgojYmDIWBcTxGP3Qpuu4EGjEuoQVzVIqx3hZBUM2qI0i\n6oFOVOgjDHRSW8OTI4SwhziWEaKv0nlaq4SnlRiNIsgyjDCnrZXojLqkrogbqWTVOcr5IV3bJZJ2\nUKoRfnJI302IKili3KOUlSCs4DdNzNAizToIpZRYzrAaKopsEQY5pSjCwCHqjgmVlMMwJ5imqKKJ\nmoqQ6YjCIYFWIJpmJJJMv5MSORMwhkRxFZEE0ogsajPSpnSHPq2mjVKXyYISjmfRKJikuxmxDHJu\n4/WnSJMJdiCCA3qcYVQK+IpNlg9xQx2AY84G6VwL7cUKh9EOx/MC64ZF99dTtPhjvv3CH/Gzh59i\nvbPH2dMniC7GFD7qcGtBRSvXyK2UJ2kJd7zKcvFlFvtDWm++wL1aFzNUeNr16Te24FkfO2kx+psu\naaDzbPu31IqnaScmXqWO0CqinJrj1OvXWHrhNI63T9w7SqldYhjKyIMSae0S5bM1tioBh5mCnFXo\nP3jCiiBTejkiM2cpXj/JvcMbzN1e5/XvXqT5gk5kL2Fdf4nOjMDo8Sa2mkN1H2oKwtyEIz+4SqA9\nD7Sr7grOgccf6znK0xThToeTZ3JWP9tix6kzXn+PIzOn0M6vk9x7m9nTRzhePyQef8Tb04h0w8f+\nTZ81sYA0rzOQTVbOZDzopATaY+rhXYTaS8zsmph3dTqKgmE9Q2/1sR+d4U5QI5NXOTL+HEkYsXzt\nFMGJPYRHOQ8cg7Ot0+z99g5Hwh5Pnj7iD4+36QZ3mJ39OvbBHeakNt7TCg/Ep2QLItNOjW+sVBEL\nPjefzeBsZTw+WGN0z2Dg/QFBOWX34ila9jEmBxo/49c0wpBc+vfMicrz/IM8z4U8zy/8Ls4gz/O/\nyPP8/N+1/yDP8/3feea/zvP8aJ7nJ/M8/8U/ph/FjyltHWf2k3OceXCF8Ogar3RUNPU6/3N6jUAP\neS3tcvfsUb6wbURlm4ouIF9KuLR9iaMrexzrTLhbf4M714psHBly2tEImhJZ4xnl4Ayhe5VQcZmf\n6/CBfRU5dECMKK9+F4uM4yfu4X9yhoJuUJK7DK4+ZvXILupYJMoWWH81h1zhkfUqTz2T5l0NXz7L\n/nLGXf8Se0rOFW+Dk5FHd+ltisKU+U6P89WAb9VWOXA7zHeWUXcbPNg+Qu9SB/WT0xizJ3hUa/FX\nrV3y0y8B4ExFzr12hb9dX6X92quMx19QtlLu/uQ9vHJKLlnc+3DIt/7iO9T9MTduvE+audx7/Ii3\nbzzm8reuU69oDESHiWnyoNtjkXnkcJ784RpjQyQzPM5de5W07LDslNGiAVku02gdg2CP7PwxrvzB\ni1w4OUuWVFl5/bt89m9+yrhYIXvQY2RUcYWHHDt9CulgSOwd0qqU2N+csPEEyhIstFR21u5w9KXT\nNFdUhm//gqT/CGt9k2Dqc3zhEkowoVNwKBbnefD2j9GmfSzbY/XTQ5pBBwDdKSFMQHRy8p0OQqaw\n14uJk5RybqA1isRMMcURyAkDJaI0WyatOOi6jj+o4Pk5ZqtCSZxFk8ZkckxZjAnVlEZJZaYySz/y\nkC2VmlihIjYpN2yUiYtWM8i1Cp2gzH42RSjmROOUqKuTej0OnYTe/hTNdNFllUmwS6T77HWgF8iY\n0x5pbtEX+ky6I4JYBmYpxjFSFiOrKYWpgCZOGUs+pDmS3UIuFGgpTWI5ZerElOSvDg5HuodulUnK\nNok8QcqqyH6RiJh4bCKkFrgN8ixl0o8wENAED7kRkOcJomuSFg6wFIdYLTNxLXq9ItHUwkVCjVJw\nAhRZJQkMBo0OqmLgZSIEDr6jEg9D5Ewmyy1Sb0JTyGBYRCiPEBomlqhTcaZYWYqYCCSxhpOMacQZ\nYeSjWw6aGBJqBqngw9RHOigxpY6d5uSJiI9MkBUJ8pCkHaJ3JfxSh6mYk9S/Qj4oiYeJiqba2GWJ\nzlRGlmOcukKVEvu5RzcdEpV8RDtgTvaY9jNKssRB3aQwMpE8ifFejCcoZJFEFpnkyQGuoYNukgoZ\nWUmiH4h4iUkwBs8qEVsCfnmA2GpTrKscpKCIFkJuU1F8zHEI+ohyWiTRAiQ7YuynyJJDeeqTaSFh\nBTpVCVsBydHQ2GOgbRELDlltRCKXGDVjxpJGWW5izIASgiCGSJmIUtXA/KrwIDzsI/Z9zHaZWsOG\nWp1RaYw0FZErKQEZpQOHRGsiGDaSPYslZri1OsWwREEKybKIcZpAlDInq5TmdCTBoKY7xDsOW0OP\nSijhdB1SVSY4LJKoKXJSQnRGGFlIOU4RRYNUTEnK88i5iGp0SVyBRk0gW5pHGai43hApq6M5Mu25\nKUYCzVQkmw6IE+ioQ0w8vGcpUmKi+COmnQ4NpQA1kbQo0DMO0IHx2MePJoitFqXwedCwV9Vwd2OG\nHz9DnRb4t5sTlur7rFyvcP7ca6zGn6A3XBLfRjwGj5zHeEcNlMdTli875N0mDSXCbv+A5YHA9vYz\nUsVj/LmIYEskhRH+4zInV65gFhxqr5t0+0Nu+lOevf8ea8YT8s4aAzlG+82nrHV38f2U3tozTjcb\n3F1qocx41I8bJDsuw7TI4e6YP2ifYeEbdTqVAGF6lq1AwR1+zPyqx8G1Ga58/89Y3RN59NaAk5UZ\nIveQRjZi5srr/OoLDTnIcN7uUskthg83UZrPMTpLE5vZ2oDfHhgkR7fpHLdodUzE08eZ2TZZXFjh\nsPYFK8E1LuivEG9/yIc7IsXrlzinB5TrFaQzI86/dJkXnliUwzJrjyYMzgzRkj9iOEnYqD9llCxj\nvbhGTVTYPX6R5sClfiLllUWDI2cD7u8tM1eHe/f22N8tUT0SIdQe8fTX7/CsUefRuMTBfMTNt37C\nhdIrrN3dYfZsm73dR7xompziPFok4Vw4we1Nl3S/weLkt+hLCuc5z9Njd7Grq8w2LY7nHs0llbSy\nRWupzINwBkX895zO+//KcjFirvweztFHxIUDZg5SnMoXqP6XLJ19F7sccSAqrHyuseClzPgCWWvK\n8Y0+hz2Du6e3aQQi+0kfcRjhlRPWizPsr7aw9gQk7VOSmSeEKylRvYdy5h1enER0VZFa8QYXZj/k\nQOojF9/l9GdDJkaKvdVCub9IuV7j4LxGuq0yc2OFE4MqL9yJCWSXY2+FFLMNiuUhTwyd22WbyOow\n7LzApLRGrkf8T62jTCWRg9qEFX0Hv3rIsb0nlK3PuZDC3p0lZtPbnDsZcSd6XvjoyiU+uXmTF5vn\nSHrrXL76MvudHsvX3uDgi4BSbFO1+7z9w/c4/8a/IBYC3rl5G8POOFoMeHh/jyuvvcaNH7/PyWvL\nVHUBfb6FpmncuL3NjFhldwfm20WOnXyDrDjk9NWTrDQ0+uGQ5csvsPo3b2P1AjamPqdeO0awu455\nocXG+s8ozE25/dc/Z3HuBR7eeEzpmy3++tY7aI0Kr//hFVZaArOnF3hyJ0S7tsLGvT7v/OI+E/sU\nYmWW1p+8wMOf9UnNmNmzRxl8eAtnVmf5+tdJejHpTIPZ1iyqVgNAtqcotkppBvxGk7gS0F60Ebsm\nqWqQToeE/pTJrkwaC8zEKqKTE0kFElEHdUhaS0j3IaimGPU2oyBGcEWq7SaxKDPoHiAOh3ScEVIq\nEvkRnq8znVUw1IxRtAVZQlNRkWohiqFTaUhEsUwpy7DkENcpMKlJNPMifWlIPZlSrtURwyayOsFw\nTXRkhJkcTZ4y9B0cFCrFGZR2E+I2ouvjmh0U5xDBPWS3t4/sq2gejI2vVk3FVMdRXaxBiqKa9Kd9\nBmaCOtbwZ/t4cYfYzskLOeV6SCrWSQopsQuVroynCtTTGnGaoYQisu5gF0OsYka1kBDpBtWqw9Rw\n0GZ87F4BW3ap6Cpo0JQKKBWRqRci+zmZUERQLcpkCHILKekxniiECXidPqWqSqEQocgQBR65o5NM\nZOSxjUuOH+oojSJmWUArgxvGFOUumiSiSFMKgwLpMMYr+qiDMlWriDX+Kn2lDzJETUSXCmS6RmoO\n6AohBTHDrY6wcpVK1YbtIqHiMFVS1HBCv2BiSh69yZg47wIqFd0nmRYgjQnChEZWIZ3qFEpNCugo\nzRHFaIzsesjhGM2WyPYtrECgl4wRhDYHkylxyUbNXfwkI7OqaFKOGoEmSNB2cCsCul2hkosUOyZ2\nMkBOY1RtzKENuSrSD0o4hxJG2IWsShb57E76xAOfkjwlkgRGE5Ww0yHuf+WPxC5Qr1eQJJM09ehn\nu/g9lbiog6pSUAIoqSjVgJobE5s5giojj0WmZoLYk/GsHE1UoSEzUGIOpx202IdeG7lQZnY2Igoj\nTDlHFmLyuSGlRh0ld5BFjW4q0zE9FL1PPByjpweU9RhvkDLVfFJpQtGdQGqi5TVIJiRGkcFBRl+K\nyRdqRBUTbxSijyzcWMfQitgLKpquIuezBE5O3IMwFFHGPmFmQKtMooI5GjAuPE+BV3yD5JxCJWmx\nMe5yeqHMY0sm2zdZ2xXJ0ow57SXkpSm9+4ec6B6lPCkgvLyEERynKu/SXJ+nXfB4ZheQzl1DGGfk\niy4z8w7pfp1vLdv0Pn1KpfoCu1jMaiXq7a9jVU5x1TrD1777H7Mj7jGpFTkjHhJsDvnOv/wG3eIu\nkR7z9Euf7tijGD+mM1zjfCpwq6KydmuVbLfGIy9m8vGXxA+L/Hr7Lkthi5tf/ogF8SmaATy8z7EZ\nmWl3iBQ8w1a+ZOHqIm1LInc7pMuL9ITncMmC8gFeLaboPcRovIp9bx6pvUD1sw5HLky49ZFH+dxF\nJvsHCGeX0V74AcfShE5YR11P6KSbmGlG/PgB68dlNjUX5dlJlG5C9/DXlIzLCEOftnTI+rM+emEb\nUwrY98t89NEtPl1/yKO1Ou2TNfxNEbunIqQGz4ZznHFXGCxe49Ll03jlJa4OSuzNtbm1uIZw0aXe\n0Ji99CKf1kc8Sh4g7mZcmN7hldzDWh+xtzDPYqlN5XsC7UoLbS5lZtSgu7rB3d6YI7sWs/2Al07Y\nmJn1j4pR/skHUX2XfLkAACAASURBVGEhpVs/h+VapKX7RFqdVnieIxczZLHCbv0p9S8aJBvHWdp5\nn96Xf0zSeoA03KUe7vDtvkcYKPzr9QfsiGUubeWcif4NuS2x9+KIcecq7U2dIw9cnPeOcvZHJ9mo\n7bIYBExrS2zc/RrJaIkwLvDwpZz2g4TyUOL6macYH8PCuxPmnrmsLN5mkud0WgmdrIX87ZDe9DJT\nMWXlYZGFCxs8uPaMq3v3sfa/gfvKQ473+wyzjKWnLkrSJjRjWg7M9a/wqd1EyR5wuPd9hrPbJHYC\ngDHj8Ob5s3x2sMad36yzOwk5cvIk2fYqS4aJqyVUmvNUkhrewTPq15YpFlLSgyEcOYW13GC11yFV\n+9RmGxzsbBEZh2jtHKWW8eKfXkEul3j3iw0OP/4xVuU8n332DP/QZ8ms8OjhF7zyJ6/yOPa5/uoL\nfPHxx6w+uYuWqsw3rmMvv8jlN45TLuYU5maZ3NtlpXSet/7yF3z++X2USoUP3n/I9f/oVQ5+8z5K\nNqZdFGhdaHPmYoPuZ1+SrhSYDEKEoUjj/FUYjjm4dRtOLbN5s4s1O+XhwXPYpuFldAWFCBtDlci8\nCMdNOPT3ScoZ6dDEjAwyKWNhvkUwnZKrBfxOTHEQopXaKHmDnpKg7I0YdgeUZmcwpJz+uEu0ZZB6\nAlKQo88usL23w6geIE1djNgm3E1RJyK1eEwHEdlP6MUx3TDG0CDLwGjq6MouChmpZFL22gSCTm94\nSCz4FBIIPJlkTmOmXyTyZCwpQa5IRMEQv9tBtRLEsk5pv8ZAqJDGBs2mgawa2KKC7H2VwPelMcVJ\nTlRTiSOfRCghhi5RzSfvF4m9Nno8IfVE0kQmtyUcXyOatMgSmdhOmI59It0gKomM9TreWOAwHjCS\nc6LEIfVLlEcqmWcjVR1yocYocch6CUPBIXQNCBWELEBDYCLoCJUUtR8iTKuU8jFhmmI2TEQ/ZZgI\n6KGMKnuUJI9YBtEQKSgJZc0iGU5xtAmBnEESI2oyZqgR+jnDaoClqlSknIk2Jur6mMbk7/0xkSPS\n/BDP6xAOBuRSjKhVUB0P1deQZZ1u5qOae+hOBaGg4xdq+OEh6tiiWpGIhAINqYQvVskNh2JDRYrK\nTPwBRuRjTD38QYibpeSaStIA14kRejYZAZP+LhxKKEyo12s0xSn7ThO7vEh6mAMiTAUmsobm1hBj\ng/3BBKmgISoivlEiDOvs6S6tXhtjWiSdDDGqEVKQUgo98mJONkgIY40saVE3bKqWSJQqlNtfcaLM\nNGM/GZGPt/H6KYJcZLZl08xKVJKYUSwyiQSGcUaS55SFCDeAKNin4QVEFQt9rCEKPmOnR3o4Qp7K\nhLrJRHBpWCKTA1ALEaZq09/xKERl4nFGqSCjWTqW6CJ4OpOwgdk06XUCDgMNo2JSkX0GQQ0lrpDm\nKYngEkYSUydAMHJmJlWE4TbDvQyrlBHIDpZlE0cpUiDiBqDlu0wUhTwIiB2NVLTQJYdsx0WJPAq6\nTMF7vvBQgym9tZRGNMQ8O0d7eQWBEp64Dvd/xYtlm24yYvHrr/O47FJQpixdXaKQ6qBPyR7b7IUj\n4jxmbfhbHF0mvzVGeGyzMTpDvHmTrS8PcXfv8rTuU3QErGhIxTKpVSbs2BrD/X3mOUYkeXSmVQbK\nIdn+GHNmjuxXt5nfDonvPiKvnuVsegpVCWAw5ERicu57R1HLz3BKPcJTI2bSPk58SD6d5UmQcLRm\nMTAERplIa2CwocoYk1nUPZdIb1FYWWHnTo6dPw8a1AvHmXvxNE17Bne4g66lvCc8ZvyNk9xYO8R9\nZZ3ROxt47S696DbZ8LecLhcp9N/lcOEIh2qVtPgCuzPL+J/qLNsPSbQhA79MkMxxuRwx+9Bh6PZp\njU7zpH2awtM+8pkVZoIY66DKN6/q7N7p4243aMwd5YTlo2/cZidxaNWLGNk2K7UJ93KVFy5VuErI\nZE/l7p2ADUOg+pt1hufPYESbfGBq3KqU4PUFoljhI3MX6R2bnac6S19oBGurzHUtnCch88Yeq2sF\nsvYebvKVqPs/ZP/kBYj/+//mf/ivFk5dwGjvISjn0Pbv8nRFJH6vSHlGZeVpnwfHz1KZbtNUCuzM\ndTn5ac7WN0QGhQJvLTTR5B1ktUroZ0S6wObsEfrOIt/ajRieGXK/NWUemU1D4FF7jpOHMndPHiPb\nNqlUO1hTh85xnXo3Y7C0iRxpyFO4dd3n5XsW3XYdYXSUuLCJ9linPZjBLfu05D7OJ3OM0Kl4E87f\n+hr9uQl3Z8bMjM9yInzG1H+Z/vkR25N5psYTli884vGDb1M++RZxJefUgyadWCCbO8etn/+Ef/Hy\nv+KjO7f5wZvf48jZefq7Tzk46LDy2kWcOGP1g20qZxdQECidL+J9GmKerDAOPdptk/7GPY4fW6at\nXWLn/udc/cZF3v3f79LMKrAS8ujddS6fW0Toj2i/eJXNO7/i4tlzfPLwEZbU4uz18zz6+W+YnbvA\nux/+jB+8+cccfjGmbJjcHd7EG+nU5o6y9uldajMS7TNnUUOP9rklqrMm1lhAyV3eufU2zcoKJy6c\nonl0ng/+z/fRl23Onj/GpOMwXn2KcbzG8hGdObVAPLfE9O4GpbNl8kinpOd89MF7fOelP8XthIRa\nTEkI0JIqShJSkgpYaAzpoNsliHWkyS5OQyGbxlhKhmDHSPIEyQXUDC8eI7WOkE13kRttoomBZYMo\nK5iZRSHtErSbSLlP0YjJE5nQUtANCVc1SSWNoiGTDzQidUo11xnbAaIuI4sFlN6QXjTCLpcYukNa\noklWlBi7IbZtYQsBXsV+vkOjV2hrEb0sJRaKlMYTRD+km/mItk+lJOAMQ3RfIhZGUFb41c3nArMv\nnPw+erlCMknRPQHJEigoAmIvIG+qZOKEyKsjlwQcRUQjR9ehKA8IdB1hkKAVHUQPcl+nLE0QTAEt\nLCOJYwpZmcgOkJSQJFIYS2Uiz6eiSiS6iqqoCFOduOAiSwaCOkJSDWQvIFENpqJMwfBwojrFYIiY\nGXjilEgXmSQWxTxGK9lkHsjBFEktIAtTbLlO1IU417ECF0FJwYywxiWmoYaeK/iJja0E5IU6b3/8\nQwB+7+U/J1cyxLiEmjhESYrkq0ySED0MUQSdomYjRwFuqiBmCRYlTMtH9gVkU6RogT/sk6U6paCI\nUOoiKwFqoY7r6dgVlbEuY3o+ggdWUsJqBPRFFxERvZSQmRFGuYzUGzK2NWJhjBUo5C2fSNRQXQFX\ncBAnQBqAmGKIBmk6xJuaNJs6ml9gKoUUC2PMSUZoJUy0MkoeUbCLaJqL7/hINRthFCBHPvpMi/7B\niPdW3wLgB+evUE01BmFEo6ah9zwixyOSLTBTZLlCSZqiDyFAYqqIKL1DyvY8oeYx1RWkICQJJDIl\npyblKC2LqachSgk4HsVKmamjk+ZD1EggzDWkSp+hWkD0A/KGQMGrkMYOigd2o4gnuYQUMccZhuyQ\nFBXkaYcgK5O2MjIDRN9EbSp0EhUrhKKogK0z6h1QN6oceAekZgUjN1FrAlmmY9gFvMkQVypilkeo\nmsloWkAuBfzs5gcsmEW+ee3bCEJAurdNaiwjPLzBkyxlTtW5N3eKE1GGZY4I/TkWjZR73j5HywLj\nZxP2VIljCzM4hW2yVKX2bJ3pYMTJefC1Os7lAtLWDv5Lp9BH+2xqCu56n+Jyk1lP5646pXS4yue3\n+xhuwFHDZLV9DPOLHcYPD0jnMsyZOWojC83rgjRhw3WZGfu0GufIBZenlQKXdxX84nnkfp3apSoX\nF2YQBgN6Qg0pG/EsENgXU5xnOlLyBKl7nGphF0+awe2skjRa3PrJL3npT6/TfXsL7/wM5schNXGK\nKJ/g6maClVcp7c5SJkV94PNwv4cSaoxjm32jyJFMRl9QmTxNUNIDdndjFmoqlmOyOC4x9Nb4SBsT\n1E5jf+08d3pD7Jl5/NsTevU13jz6PT49PESa2rTP+ZB0iE+kPL4zYvS1o7yy6OANJmwqBWq2Q3Nw\ngv1gyMPVMWeC08xcabIzGnDgaizYI4hzqocy3acCYtjjzWsX2f/wFvOnd5nbuMTOFYHlmWP0i1Na\nJxXEhxb5iyt8/qNttqZr/Jf/2X/+/38B4oKgcnbY5vRnDXqVpxRmbF766xXmG21yx+MgWcT39rDs\nO9ybfUroHidaaeKtXkNYT7jyVyA9fpWfLhSwRhohEcff2efk/tv8XC3wNJtQrW7zt8kcXi9DObPJ\nXhTx+g0f9+UviJ0mnaTOtRsVxOEzlocVlkKD29I5rFuLfHxMB1VkcOYTxN0Z0raDfvZLwqdthpMi\ns8f7XFXXeDB3il/+fo+taZnlT3UCc49PJy/gTlzCUZOV5V9zJJ5hZ+8lKrMfosSzjINlPr30Ec0j\nEsbBcxBap9vn2p99jx//6Fd4au/55Hp6kWgqYRoytWN9nr77IUcby3z+txvMX6oTJhbjtT5iuUGt\neZruswMqbZmeafLbH97h/H94lrwdcFKpcuKbl1BsA9EP2PzgEy5++5+RInLihTM82rrH6s0PqLZe\nJhwdcv2bX+OnP/6QK99soRw7RmWkUu33GW4+5uqxFuFejuZYeKnIo0ebKGmdsbqLX6jx0tff5Orr\nV1BUi0nH5+I/+xpG3+E3/+unzM/Nc/LYSRaX57h98xGDLKQhhaSeRrY5Ze7oSUpHjgDgmwfITNEy\nh2AXeqNtwnxElmZMrAOqdRk/kdCrMklzHmsoIDRs1LrOwThjNGowECNib0qpME81ydAQid0c29ln\nok9RTI1RPWVqSFREn4IokuQziEMRBimjMEBRIsqqhDdQMEhZMApMUhm9G6J2E3AhUxQUs0HP8dFm\nqsRFAzkWMRWVMBZxg5hJ5JKILppySG8ypBb6kE3pRjaD1MCqzVLIyuxmVYotlbGlkNXq+PtfjZl2\n1CKdZMiWQGramOKYqR8iFgzycUbqVxHNA9RohNWfEo+HeJ5AFEpkyZCCIZFrNoahEhsZUy0jnkpk\nShfZMEhDAWOiEWgyiigyq+5RlQzGskeiBExkjYIoUPcTVEUlHFqMBgOGls7U6lHSMw6UjHqthytZ\nuGaEFhgokyJqWSYtCfi5SiiO6VsC+ykkSkrX7UDZRVJ84rzM1BTJjQrjxgDV8IiSEaI2willJN2v\nkA+ymiA4JdRgQlS0qenzCLZJVSlhVauIWcwgdJFFG68UYEUqcjlGHOt0dINBGnCYxQzJSG2DJNkm\n28sYBQpJIKIqKb2kh5B7eHmFwNIJKlO6uYylzFAzNUKhiizZkPeZGhbFIMDQGrikpMMAOxDIKx6V\nJMWajyiXINfrZEXo5FX0ZMp4GgF93MChG0rI1RbWWKPYH5GmEj1nTDqwoFrDRGSgpWTKDLLb50ij\n8ff+sAyFSZCjZzqRO0ZSayiyTBaN6XlTUjli4isMGYOoIUs+smwhE+CPRQqhRFhMqGgmeq7TL8YM\nvCEtS6U4TRn6CWNfIEwiQktBaJdxiyFhrKAGBWTfoLAfEohTYklErJRxkin2oQaBSK9ikkQScpwz\nNA00O0XNXJoTkM0R4dYhM/YUmhqhnaH2erTriyRlCSoGUjFlbEt4B0NqmkrCLjNKDSF2SfQioplT\n1AdoPMc+HBoNDskZnta48OLruKaPfHQOta9hnb/OoN/l4PNfsbNvo6oP2DcbRBWF98Y9Cv4c5yqw\nN94hFY5xUFpmO1eZu9xmZ1JCFHOqX8g83g0o3VjF2c45NoE3XzpNPJqSnpFYZoBdt5G1HEWZYWAs\nY2UP2b0i4whTls6ukKR9ts4aeCWB1aUcoRWRXzuFf07jSW8V56MtPuv5HGnVEV+eYeedhP2NBxQl\ni8p0EzkyeFNrMy9LHBNDls5doWpaeOIpqOgoTgV/7eD5nNrpI/7em+wOPqU/W2BXEWiM7pCeSyCV\nuPR7RRxll15phHamwrX6UU4Oa7Q7cxweOJi3uxhLPvKRE3yz0Odw7iU2pClrRZfZ+SrLbpOTpYTh\n+tucngxJ797k4nGBq50rbAu3KL4w5nHJodfJMfea7Kx3uX4lQdnf5P3fjjgZzDHzuE+2rrHTX0WR\nHxFHEYVvW/zi336J43hcV0wW5Aon946y7Y05LRUJL54i2BpzqjJLp/h1bma7LIbr/GL7fbLdffBP\ns7m4QiBsUFioIYb/uPK8f/JBVKALPDgzYfvsNtPbJvvbp+icvMvjI2+RrTbYqVq8Lj+mPFhmNj/B\nme6AaeMZZ58pmIrNk3M60fF3mP1onsZEx99eZn3xOOrKS1xeL3DsURm5t8I3Nw9wLs3jd0PUqsm9\nXOXII5mKcwPx9Qlfft2hd6TF8GCWXTPkqnITuV9jcSukfrBH5fEiN//0M3YMhYK+x0KgUi8qDIq7\nPFuq0556tJ6GXJBhttGis7TH9UGH5Ju/pnvHZuFGiXThKVKwRz2c5+nA4MS+zXfvzuP1ChT/TmA2\nHOzQDBNe++NvceNvNjl/9jzPVrewAvD8PRazU1w8dZEN9xMuvnSMBzsu1mTAG39ymb33n/D59j3K\nR8/xxd4Gb5w5xewfXcP/xQbOnQ73nmVsrz1guAbTmk4uFEhHu4SZyf5HX2DP5Bw/dgln74BICbi/\nNmCpOGVnW+Xzd/4K9ewsh4UecmGGm5td9vvbhLaMEK9z6eprfPDeW1hqFWlzTOcXN+nu7ONKU+4/\nOqDcPWB1s4tdqyLYEbe+/JBs3GN2qcS4YzCRZU6dbnHh+hW+/OldOnvrAPjTAoZZxZo0UNoqZr0B\nRZupniFkJYKdEGnokExdpDQjNT28/pDuoYRaErDNCGkiU/YzpNGQnf4zRFHDE8YoVonibooSDYh6\nDjIyomCgdO3nuyYtB69ikRkaSmKSBQK666LURviJS61WIihJRMUarj9lqjZIAolqIlJ0+sTTIYfD\nMXq7TK50EcrQnGgoaYg1alK1ZlGsJpQTGvUMs6ESCwNSUcccH+AOEvIsQwx6NMSvEAf7GhDnSL5A\nroZ4wyKiWCUWJAQ1QSp3Sf4v6t7jV9P0TO/7vTm/7xdPrjqhzqmcOneRbLKbQUNyhprRBGsMLWzY\nsJeGZchaz8o2YMiGDBjwxhtBgCFL1kjDIYfN0E2yAzuwK3SFrjpVp8Kpk77z5e/N2YsGxKW0nPkX\n7sX9XM91X0FuI8gZkWVDQ0SLBMgU7EJBisb4U4MMHbOWsCKLwlIppw75oKASanJXJx64+EkGiczQ\nGOMlLYpUQh8J9L2CtDAYC31012AOh85wilBrGHkfXVQokzkCKyJTYpL5CmuuQMoFkolDOI2Rixa2\nZNOIZyiyRSPR0CILtbRQTAmNmnJSoY1cXL0idgSkVEQWZGbi73qvZoMIqa4o5BZd3WEyKzEdn6o5\nIxtJDCVQXYXErrGULnUpcHjcZ+gENIwMM3HgeYotr6BGA5KmS1iq6KVGEB+QBn28noOSxCw4NY3A\nx5xamH4DbTRlPDWxZynxUEMXXFRdYDgucGYlnbaIUJoM7X2UxMFPcvJYYzJSkaMj1NzESgcUnSZa\nMUDVdRZkD9KCUVYw6KhMBAE1lhCVmlyJyOOIQ2HKQlxSlGMmsUjk1/9hHkPdJfccqGSCXIe2QiWX\nVK4HMwXNL7ADmVajg5ANkH0DJa+YBiqpl+AVMnqyzHP2EcMM77BmYaYxDo4QmgZiN8NRBhiKgFa4\nCLOMup5gqXN44QFVI2ZiaehygwU1JVJ2sS2TsCGh1z0EQtR2Tn8WYzdLFKNEi0zqcIJrtNGNJtVh\nEzmJ8ccKQqvJ/nBIOjvAVR20fkCbEkc3OSQmGtkcqhVOQyE7nGGnCnkGfeHLnapnJdnZDr85GPLR\nzpR5weVgp8epsEmgVawdjZi9/CqDz67Dk5zjxwdcVjZZCjrcH+/hD+aYv6xjJxpNp0AZn2Bg27S/\nss7CoMeT+guErxt4X99E3tpEXFhCGnvE7j6j2wc4H8PG6gVOr0HrosFsvs8feJtcktvMndxk/4nE\n1plXaXgN5s5sYW7HbD1TiPPn2L8+ZnP1K2xcPM35t85wcPScJ59/zkZnzEPHZvvuY3p2iRArVLXC\nUVJg1j6D+xlla0jrfMazaU0nU/GXBgAsHn6F8ifvs/QrlaUsYb1c4HnnNAfRF4hHD/jsX/2SBWuV\nwcpJLmx+jfee+myvzOilDznbjthY7zK9f4RxNGPmthG0Pa7KG6x1E3a+KND9FjPRRHqW4b3cJX+y\nxyfilGfdz7l+XWbe2aRRLLJ9O6W4WHLm3Ov8clhy9uWXWGuf5W1tyk63hbpRs74ls7OzwKZxAflw\nxGlXQ+nXrL6pIYQNtlePWLz8Cj3hGeZfH/DheMBuZ8zt3s+Izh6xd9fm9xa/T/DCItK9IUsLKcWH\nPnahI0r/aYnlf+vPef/z//W//cVV6wKrx03a39qlnLgcDreYiV0KyWJzeMyRbvFh6yKt033SuqDv\nLnOj5bAwu06xs0n3vI/1LKHqjAi6D/E0naT9HPm4Q+oaXN88orNc0ZrtkEZXeW3yIdjHHLZPIHkl\npx8dwLFHcnKfxsIQe3aFnnASMe3xYjlg/0wbXxBo3/RYtUquWy8SuIeoJ3osDufpP1pBWR+xpT+k\nPx9hP04p05in5yy692WkVYMycHAdlaOnL6K+/iuy3RUedWw+XjcZVjnK4pBP3v6YF85fZHD8nM7a\nCdbWVun3hgjDhCAIEVdPMLr9DPlEh8xoc/ftO7z41YvYiy5xLhEfKyw7Kh//9AabjZokbmDnY476\nAhtfWUUZHhLOBNavKOgnuwwOY3rbM/TVCULdZGvtMqM+KMsNHt+4w+XXzxK3G+RP+6xfvsKZ08vc\nfP+QluFwrr3M/Esb7Pzl+6y+dYndWzvUacWz209pnV5ieWOOwchCXpNZWXdIQ5+Tq+usXVzjk48+\n4dz6Ca7/5hFOq8H6xTYHt24TSBK3PrnHhcs2itTm3Z/9mD964btogUclBtSWhZH79I9C1K5CNBIo\nNAF9XqWRegxtCXUQ4C02qEuRZiJxNIOWLTGTXUwnI/RrIgskuUSXC6ZGgzTN8dQOSjwDBapYYaBM\nsTMDIYwQ8xjXaVNzgN6aIxBMElmgOBIxnABHFpBEh8AokOsIx3ZQRIuBIkGWkoxDasMjlgtqUcSc\nZkzIqbWYODYw9ZA4cClGEm7iI5QRqSmRxiJNT2EsC6jqhL+5/gsA/ujVv89QSCDL8a2cdqwzsmRa\n0xlCnVOEXVpujzyUcfIaUTS/tHt7MUFeQgFSUyEdyaj6gGEuo5gJlZNhURCkKaJuYRkFhqgjVAGy\naBIYIfZUQRJL2kVC4AmossoskBDFKYOui3OsEaQllWHgCxVarCDpFfKxSWWIaLFE5cqIikZRRqii\nSZAEiEXJzEzJCx2xMUSKPKQ8RWaCkhcMVAup1rHTGClIKWSRD278EIA///p3kA0bPz7A1CPCKkeX\nUkJfw5IVJFkmyzWCqMYqcuraRBMiYr+Npg3xIwO74RDJIrWl4ZSgxQJ+aaBYJoItMjNy5vwGZSVx\n3KxI1YBcm1D4Iqk3Q9IbeKrOOEowhxNES2KoVrhyiFh6SKqAZtoE5pS0kDDSHNoKM1TM2kKOUxRP\no5epoIxopDKh7NIWdDTDADlBmiZUc01a0wgj6hLOqziWytS2kaKEt2//FQB/cu1l7AGktoabx4wH\nI4TOEoISMmc49KYDGlqTvhSg6RF17ZHZAepsQpp3kYqUTBFpiTXIJROngZTGSJ5DNEjR5SZ5mZDI\nDRRpQtayaKUy8SBmoMS4koCR1sReiTK2kTwVo25QTUaYHY9qUCErFY6dMJ0paMqXrGKgqEj1iH5Y\nIS34yHEbIxuAVlAUClkmUhVTWopFKAVUZgNEn46s4SkymVBjNjpUx8fQdEi8kLff+5iVzjm8U2c4\nc3Sf/S2DU+OIcpaxs+iw1W7w4GnI4qkuM/qceHmNe4lCNdCxll2mw0+RtHU+Hx8TPL/DdzYu4+9+\nzGAGbv+QYrPBaLTMyqhAOGwglwHxusVgMMWolrneu8PVv7dK9Czi4y/gYt7nUNHJJB9DWGAQ+Pif\nv49HzVDxGe1V9KwBl05f5NPJgNHTp5woJXaju+zeuY975UW0T37D1e+eoyo6WOsmubHAlaUWv1GP\n0L+4x2HVwTgcEx7FPC8y5lpH3E93OZt4/Pr9T3jrv/4B02c9wh/ojLXzTGKZuPqE1G0yP7Jw/16D\nTMmIlgzufLpN99wCfuMZ9gCk1gblwwHjF32SeZXQW+byfp/3hzOG8gJGvURx5rfMNdbI6g7LuYru\njejFMwzvdV7bWGIwyaEY8aZ6gmdPhxiPa5xXdJw8RB895ahWUB8donXX8Kp9JuI6Ay/g8Mlzkvmz\nXNl0GUQ6w+0By/k8bucOe/qAcZBwcuU8O5/tcnoGixs6J7QNHpcfM/tNRd6wSOcKlhbXGfSfcffx\nbf7xf/ff/0fPeX/rQdQ//5/+j7+49uY6OyfPcPGDNsebTzjhPiLwX2VrO6eybD66kLGSPWKYNciP\nJVaiZ6wWGsviE4b2CsdmzOvymG1X4jujjKNCoeprrBUT/PmSuWcmh/o8GnNc2M74yffHJNUawVjB\n7vvc2rzGpvOYULOIizWkcEJn4x7r/T7vr26Rj01Wi7uMrubs2yXyg4zl5YrD500+XxdZapcI4yOS\nWGbu+QofbjWYf3YKd2mX8YLBmZsZYzxahyl9RWJWLLK69gT1+QRz8TG/fycj74/4xfWbfOcHf4Sw\n3uDWTz+gViwWuxL+isHxzgx3sYGSw974EdmNR1z5+5f58FfvkMs6w917zPyczuUtpuOS7svnqf0x\nnprgvr7J9mf36PczNhe22H7/IzIlY3XFQ5gNeT4KkbQmx3c/oPfsKe2VMzQVgdLJ6D+coS40mPb6\nJIrN6soZTEdktiEx/PVdrvzeWxS7z+iFDue+8RKHNw6olxyK3i4jaYL09JiPf32Xqy++xAd/9TZl\nU2NBExg9+RAdIgAAIABJREFUSzn14gb7tcL1X2/T3TyFqRpceuUV3n3vHcy85oPfvMf3L7+OIouU\nAsiTKbJrkQcyailAy0GPppRRDlVIVY9IxDZiMUMqSo5tiY4xIRrllIKNnwuIjsic62FnBULdQJED\npEwgci2CqEBQc0ZVhJKALFg4qkKh6GjlDDXSKXQBZf+QWpZJ44parBFDmamZYqczdG8esfQ5mAxY\nlHJ0RUSjJKpshETBjgoGkoZtlNR6iS4nBJM2lVrS0g3kjkY0LTDKFEt3GOQCrhCi+vCjuz8H4MXX\n/xG6UaGmGUpYIjsR1jiibrbwqwghz5loFqQ6mVAR6jaOEWFWJqKVosUOtVMTC1Mss0JPRMKgpJkp\nxKqObRckfYkgLohMH3EmoFcN0ixD0HLE1GBS5XhqRiB6lHmGV1mYikRdiyROjp1YNKIa3QtJpyqe\nFKJpCnFhEMsBrbAk1lOi2EevGohSRqO28HKBSrPxqym6rCNJNpNSp5MX1IVGZKdEiYcuWLx360tN\n1Dde+jPCPEdqqszGAs1GSiUv4JYqgj9gKtU0myF1biM3c0azCYotURYxYmOeZFRDnSAaCaqYUBc6\nYWOKSYwt2US1QUutENQSwepjTk1cu4k+skkFFUFUcBKVRO8T1TKWnOMXDqXmE1ET6h7qMIIkQsvm\nCP0RpqUQzgxcJWaSGqROiVOG+HFNqXcQYoVC65MWMaVkIxRTtLIk1D0S3aLhpOTDBFUzCYIxkpLw\ns5tvA/CHX/smhqdThRLlvELDVYgHIkZcEOgyrilTyH3MsYUYJVhdj7SyqJyMBh5Je0auG5RxQirL\ndGqTuBSQFYks8sljHSGJ6HYKhkKJFIpUpUxYzZC0RQRRQEEArYbUwlBEfK0mn4bIeg5VG5Wa3qhi\neaFBepATOhqiH1GnEl5uEqg2aT7BazfoazWKJSOXM7x4iX6WUwQxHj6zWU1GSmyoaLpMXueMfQGt\nUJim8PMbH/BCo4VyuUOxIpHeGCItL1LoPnZ/l2edkHNizdkFi/3DJba/uM5x6rPRH2NPG3QGJo9e\nN3mjPCZaeAk91Mm9AdPdXdraBj2ryXS6z3wxwXp1hXv7IctzLSo7IJYLtJ1nPCxWUVe3OHY+4cSB\nh7Qb010T+aIW0O49pHmtRaTMmPVO4EUT1sXzbO/dY0LGy+urRKcakJRID5rkj2+wcHKOG70+585v\n8enkiMG9kLb+nBMdj/GyyzlNh/M2WqnSD2Hai/i9hSt8fHqRO//2r9m88hrnbIVHH+5w7mRKGt9B\nnJzh9OKU97V5qi8ekRWv0v38c16359mdHnLFXGPUDTj0YtyuQDPROfq5zJZv8IGxxzeWXuGMMqKe\nxhy1YSnY5tQpkyqZ58Pfwuq1y1xYiXjvL32S84eczEccDwN6not5tcP4vecMtQWU2WkWpgNWGqeQ\n/Ec8OL3B6ewWptvlbGPIILyFtuXw8J0D1t6SeT43jxM9psq/x+J6SB+Xs5KHt76I3os4Eie0+hfx\nhdvEmwFbk0U+m/2S1ZOv8etfvsP/+D/847/7IOp//1//+V9c+uP/Btu/wdPpGpMQnve3KNp7cGLG\nsnyP1dBjeuDS3XvG6oOT3D5vsdS3eHQqZbU8oDXd5K4aMxpvEskpryUhz8xFjk2do0DjZD3k5V2Z\n650AxXvIG+8uEgdrLAQW2caU5eSYx4LMnJJw2A4J0xHv66fomyYL+zV6cYov1hc4/YHAb2WRP5vb\n5kdXR1i9LU6Pd1jZrnhyTuPqM4W+JnOg2bxhvEt06+tMjgzGFw951O5ir97nuncS876Hu28x009i\n1hk7bZU9scvND97h6sIJ5t0zmN2U/HGA0TpJEu8jTXrkoUZTzenNfE6d3eDup0955QdvcPyj37Jw\n/mWklkbv4DaXLy7z4c/fpbm8QDDLGDzuM3dqGU2Zop9s0lhZIDZNHvz6LqdXX2D9wnkW2hUz3WU6\nNjga3ELSG6xtLPOgt4NhtjClmHJ6hO1D2S5oT2fceHQXpyHTdS9wcPdzNq5IzGyN7oZJy1tm48Qm\n925/jtY5x8GjT6DlkeyNOHftLZquys2PPkEtVRonTiI7TW6//S4+E4oKpLVTfPKTH/HGq9+jnpmU\njoaZiVSWiV+rSN6E/FBCnC8w4jmm6YxO2WCcjkGScOwaKY2pa7CbGp4UYWgmZiHATKRnhMiaRjnW\n8NMKMpUs6WMJIq5uoiU1iZIhWwYKgOIT1iZBMKBCJ/JAD2QcXWbgwrxokBURU7HAViw0IWcii9Q6\njBOXdj7B7hog+DSNFioig3FILTjkjZxuFlPbEdJQI+xGhJqIJCvUYkw8sZAXS37y8ZfC8jde+APE\nwMAqZWZdEWYeSsckE32KUKYUJCRNIs902nqBOR2Txx6jYkSmNBAqnSiXcROfOJKYFSaKU6PWBWJl\nkQqgafKXEQh5iqE6DL0IK3fRw5iZrGBbEaFaUkvglAqZEqIVEokpogsKWTahdBXyXEAQDGQtZVo2\nqMoUI0yZSjEWXVwrRa1FUtFGksZMKBGylFapEKYioVhQqhqyUWPhg9TA0QRQa3716b8G4M+uvIFt\n2VRHAo26oFAlZkqNNFaha1I5CeN+znzTJQsmuFJF6iuIWouWWZMQ4gU5mp1RDFKkNMDRTyBPC+pW\nTlqMKf2YQMww7DaVOCGpUyozoeHkZKWBUaT4msWcpTPLQzy5QJQlsqKBUPUQfIswVUmtgtxQaekW\nIiWK7BDnMTIFiZSxUDtMwxJNyPCcHMFsUY3GuE2NodtFP05I8wRZCLEch34+w9QKhGHJT+//DIB/\nePUlRiOZhuAzmUbMUhFdKVANj7wQEIo+ExxcS2BERl1IaL5IPSsYkiJMSxpKhSQkqF5FJnuI5YQs\nM+l4IroSYDSb9CoLW4ppGgW1oGA2dKJARvQzlJZOdOxgL4jQ81EIqFIbpTTJSBCECkfP6OUadadE\nqzJcV2CATdV28PycNA+J5AQhmUNRhS+rifSaMCsp84pCW6SzIFFJCWkQUfdC4qqk0gTc0kOZy/mr\nD3/NFfUUa3/8PZQdmdFlgfkHPmM9Rzs/x4K3yvRAYkcVMewpct1hpZnin1xE8XQ+v/UhnbMGZ3Wb\nB88y7hwGNE9skR7vcXptAVez2VpqM456zPYMNs6m3Pn5e7y+dgFDa6CtnWNhep+p/pivzl4hf0nn\n0M84LjKqfpf5cxt8dn3I6cpjURnwXM3YHvfQ4gFmoeJ8ZZPdf/keqrVJ+JUG/kRgGgacuXSa4Z0A\nc20J47dH6N4FlASOHu6wv9xA+W1I/s1TTGqVs/ETdiczFrw+v/rrT/gvL73GoO0zlVTKXRvj/DJq\nM+c493gRgeJSzloYkvUTbokN5KzNk+kBX9+SUN49Zm71EncHt5CvLiK3Z5xuq9yrZLb3nnPi1XM0\n7s9x3z9Gvd/ik8EdWvMT2jcSnjyesfbqkI62xvHeEoe773PyjMyDm8+5+tpZ8mCb6cGA8oVdpIMm\niTrCiELCJKN5t0FiLtKVdUZPNao3LPirexzYPvrqWxSf/WsOtYi13hPmv3mN9z7/OcfSaVbcAWK3\npmy4OLtn8V5d4+nxIyYzn4c37/JP/hNA1N96TVRlC0yFfQIlYz3p05xanKbgZD7m6oMRfnMZYxiz\n/aLGpgu3X8nRRguMXn5G/GSdp41z7LgxxsklVphx5fEq97sCRxs14uIdFsWYvWaLn+krjLtPWSwt\ntn+/RNt8irv0a1aSBZ6eSnj5/Qn3w5hrPz7BbO0Ep+Ijrv02pNgaInhPuDJ8hBSbfF+e8m9Wt5j7\nxSk65Rf0ZYtZf475AG6ulXyyHuP5d/hxdApr6Q57GzInvjC4WPyM1idn+W/3rmO9cI9H58a80r/H\n+QebTLKXObnwEIDjMuWjO08wlSVal0/z5Le/wFjc4sy5t3CaOvKZDldf+ToH926zvLnF9X/xY154\n6xJHDx8yfP8jXnz9GjsP91ltdZjuzFjQdBrNnAe/ekLmwwiV65/eJ/rkLvbJBX755DqHk4oPfnyP\nINWplSluIpNkT9AVlTfXrtI4tUD/QKKqVIRNEyed8vDOM175wX/B7Vv3+OCdv+TVH1wgGcuM7/Xo\n//svKKQ2P/p/3iYwa7yTOiuX38QLRbKTK/QmuzytKlpnLzM52Kc7bzJ++6dceesKyUHKmflLpJ98\nAIADTO0ZxnRATsZxfIzbPqY5lXFXDeyDmrAdUOISNmLM+UXc1IawQo4NNKFLIWbEUUzlH6OkElU+\npTXtEE5CVCVlURQRiwMWViQUYZF4ElDOt/CaHYrDiGwAlbRAVOe4HQXP1WmNQorWlFowUQYlx71D\nHGURKXEJ9nqUlYYrdrAHJm1zTGWrVMfHZIGH339GGao0jUUEVaMBxJKArGoM0iGupGPmBVo/QUdk\n2VTIxr8L/zeCgMzu46sqehJQtUaMjmHqp6SuiijH6GMJqxiSKRUhKpEzQtG7zI9yqkaKVE4p5tu4\nRg1mSUc3kVWFuBqT1CHCtMSRNARHpSojvHGBoIxIzAbtboJgtDFTHZMa1QmwTI2eA1YF0kACxyQq\na+TCIbVCpMwgj3tIYk0ol7RFjViZEI51BLNE8QJSq4NStYkKi8opcUwds9BAqql8SOWSKBMYc0wo\n5f9hHiUq+3EAeYCvqGR6TTufYSgZA3+IK5a4ms5sdsisVplGMqlWEut9JgcTRFEh0UTqUEHVVyhb\nHfJxTDLnIvkqRSVD7ZHXOvQUksJFmglUsUuUl7hBzkyw8NIp06pHSoO8aGP6Ok1jgj3tErkaTium\nrCWk6YTSF7/8LAhQe5CqMfVIYmwEzHUlJMehkuZIqxGup1IkMgt5Cc2UrqqRa1DGCg1JJx2qpEu/\nizjwJ/MU3YKBvICWq4i5QEhIoB1hKz1i04ZYISSlRRsxG6HNZZS2guw1EY05+qWCEklAE/II07Px\nXJlwEDLL5giGPkYaUEgdysMufiQy3a8xGzGJomHWBpIQMyqnCPM6/lSiUhKCWMSwY9JIJKGJZQqU\nvYJabVKXc5i5Rlo+Z2CMsNtzaKKFm4TMnh1SH2fIxZQlJ2bOsyndnOwgpgiXaZUmotPBqASWFBFl\nbkAYfhlAOvF2qIsdFr5hccVb4LCqMFrLuO89JgsCqvWYxYlI8RwurY049j0Wxg3u797iT37/j1h8\noPHuTKbT3cGOntBVjlFWVvnhjev89HgP8WmF4i6gvG5x8M59slOL3P3xdfZ//jH9UY+Vk9fYOzzF\nbPs37ObQizIWls/iVCU3Bx/zjY7GfWvAbWnGNJvSWjRQXjjPLC0ZyArG3CZPhIjv7EtUXpeTUg/j\necU0GLNsxjy0K3a6HxF7FWe3Xkd6UNJ+2aaV5fjXn+AtX2P96sv08y+rbctzKW1lyAX5HMJ6hPuR\nTz1o4jx8zLP0OcHDFjdshfybr3PV3GF9MaeQBN69GRG7C+y994CWcomrz06wu3uCqdLlYrzOahgy\nOxrSvfycS6clHiox7TcX8S4vEC+ugx6wmL6KuK/TPN6hXtjEnBqcd76Kae+je5tE6yLyoY32tZzx\n0zaaVhNZV5mc9/H6LZ6tJyw2YpjtMVjWWFtbon83JTz3Gp50kVv7bX7x01tccb7FmTmRz79YQryl\nshDMI+W7BOVN3iq+yVuXXCThP1qoAvxdYKL+z3/2F9/dOs/j84d0bl3k0Xcf0hyNcWWPSWrSLQ64\ncVnihTspH7xu09l7gGG7jO/NsbQ8REmeMmoqNMYpPO/y4DufcrT9PRZnETv9FicCk3q4zpOv/Qsu\nijZPxgbK3iXKgUKg77P/Wo/6/32Z+opJRxoxshaRbzdQ/SOe5K+wbysIi7cRd+cRmxG9cJWNeyVb\nZYVlVSTZJR5cG7JvNdh4b0ArmePMjkHi1txWX6I93MbNJHx3mbwd8qloQwkX/RY3CwOMY6ZXP2bj\nNyU/vnmLV175BmoxYu3iCUb3Q3bNI77a3eLZ0R7+zg7H2QS3KEnFkigseeX3zrD9yGfr4mtguPz2\nR3c5t9BmagoIbobunubTm7/m2//ZNwiPIiaffEzn9S3s8y9x8PALXtn6Cn60g7JacKGxiZ3JXPn+\nNxBFD8dxGPZ8DgfPOfeVc/j+hN6D59z/bI/KcZmPSk6cu0TzhM47Hz/mpRfPUYwUBFEh649wX9RJ\nc4nX1i4x2v6Y0lzia6uX+cW7H/KVzTZ51kJd95ht32PzW29wdPcxUylErWdsvfA1/uaH/5ZvvPR7\nNOsVJDejmKYknkKhzCGKJvXxPorSxQ8FOpJCGFZYoYzYHSFMSmZul2k0ITsGudKQvJJhrJNUIXEJ\nLcOmNDQmVUWr1pH8JpU1oshdzOCYqVxQmTqOMWTQC/A6AkHWpBxnpE0Fc2TjtyMkNcIwuxzl+8hl\ngp45lFGAIkjUxoQwUJBEmQKRyFGRC4fEmpJVGrU5ojoskVIXRazI3IpRkmJocyiFT63PM51OyfSc\nd29+ec579et/QCPzoJzhSyrtmUKAj126mKpBKSekTg5hQcPQkK0MeTSHLA6+7OdLIhLDRJZjpBgs\nrSRMRJSZiC6XJKmIr0Gq5phKhSRnjGuHIpLItAq1EhmHInqcg64TCQb1qEDKIgTVphIEdDJCP0cU\nAxSljVIkhFqOKqfYhUTVEMj9lEprokoaQV8AO0E1JjTMmkwqqCUV5AF5XZGhkWFhKCMaZY0yMXj3\nzv8HwGtf/Ye0fJO6kSDkLjYq46IkzBTmypyR2aATllS6gpuV+A0RNbNQXQNHqRCjGqWhI5Ypgi6S\nRBGyVFGNI2YE2IGLVJe4HZm0KNBSn1me0ayazEYKyaJKkozJVJdO2qKuCuRiRi0LxFqDaBrTaUOg\ny5TCkDljhcIqEHWoswHpoGRebONXBYQOspUhKSOyfkmuFNhZl346JPJTHLFLIJXYqkkuKghigaPm\nRLOCX9z5MuLgz699l1pNUaY1jpBRLzXQMwkx6aDNEsqyhWnXBKlKbPiIkUwSJoi2hKOqBGUf3ZBg\nllLKBbOBhB6LDJwEoaHT0kTy2KaSEqQ8IWrMKLIIwTFxRIXcUaiPE9R6gmio9Gc5tamAq9JwfYpU\nx7cmZHGAkWkIbQUPkbCcUAky3aoiM0qmk4pGEVF0TbTIRDUSpNBh6jhERY6s1aS1TKmHRHJOqymS\nzWJ00WaoysgO/PD9dzGss7z+5jriWOT42R4bdoVYXWB87QzJjU/J7844GUdMUHkexDhqiX5KxJN9\n9jSVjdMLBPceY0UB4qHGorZCccmCXpNvbwjk8x0OtSPmZnMMuw0mqsXoWY9r3+5yvx4S3N1H6I2I\nrs3TfG6wUcmM5T7b03tc3J+nZ0e8KF4jn7VJzBJ1a53lxzFuJ8FBQF306D0ecmfvFo4xZeFb3+NX\ne/vo7oxEAKMzh31fxlZq9oV9su2HNDobjJ2CcjrGnlvkdvYh4uQ5n71zmzff+nPuhCdovjhHuN/l\nsFZ5Qagw169wMDygM11i94tnnN1s8tBRObQiFhqrZFFGQxWYf8Nk8mjIeDbkwrkF9ndvk6x3uH3r\nUy6IS7z7RQ+1gtVzOv2/tGhvdXk49wR5+RQ7u7s89gzsZkxLgWkxpr9a8HS3i5VCQ1nC8JbZP76L\nkdmcbUgQ3CE8nudeMuV53iNsZrjjM8grcGZwGWvdZ/uTjzCCJlfqeS5+dcDsUYauPwG1QXjWYrj/\nAY1LpxHyJT73bhAPa37zznX+6T/9J3/3mSjdNymPF9BvnWfJeIbzzkXclYjPjA4H+jJ7dpfur1/h\ni5U5zjzdpbH0GvkkxC0SvDtNbH+OuVsK3Z9nBEOB5m0R8dw265GGt1UxaFgMjJKtw1W673S4trPB\nyacxZxau8/HyNey3N6mbNf0HMcOHl1G1Y04eZVQdia9od/nTJzdZ6q0wslaJJg3y9R0OOz32nSlJ\n2Wbfkzm/b7ORPcX+BwHNy4+5fc1lZ83j6nTKatjlyCowjn2CocX5WuDK42WexRVNYRXv1EPOHZVk\nS18FoLN+ElpdBk8lDFfknPoiH/3N20ThLq2rV1H3YzxvmZNvnGZ38JjIF6kCgV/+9b9Bzp7z0p++\nwCMKknt7PLm9Q+0dMSdt8s7bP6cn+Vz64z/l2S+2USYizdYpZm5Gul+Rz1rMzJRhOODo0T2UuQY/\n/Jc/ZPvoU145M8/o3d+yUs+jLaosr7ZYdFfY0Q751e1P6VUV88zwBwED8wlNEQ5inwvzFzmVlfzq\nybuYZ6/grnocpdt0tpb4yXv3yQiZPLiPbZ7n9vYNnk9GnHv1TWazCU+TL50ksligmX1isYkoCXRq\nC/v4EHF4DEqbyFKY93JGWg+n9jGFmGFoU9JECSd4VRNjwUA7oSKZDk4DNEVD0FOmokTsCyy0TSrR\nwG8KjPrJlzqUBYlK1GiYMxgt0DA8/DrDOByS1wJyUTJrT6gPc5A7CANYZAkzdfHFiMBq0iNCzED3\ncmZRTWXFaMMBmVaTFBpNIaOa5jRthaiYkuYhcj/AymUYjpiWHfQSbFWhEn7HvNiqBeIMTBU1cjms\nXLqaQNKZYkQBRdFCz3M0ucV+pTEcdVC9DMEwSNIMv/CQQxGjnyPqFrOsQCsSUrEgyhxcz2TBM9El\nnXzSZCI1mS9HVDh0AhAnMpoZEIkV1bjGHE3Rawk1rhHHQ8JsQD4TQDdIdBkln9EvJNRARdc9EqNF\ndNjCLQ1K0UcIBbxOiZ7byBOXWVEyyiBUAoqiiRZqIPjoUYQmifi6BerkdztkLyYzK/x+gej0KKbH\nWInInF2SpRrOZEqoO4ilyiQ1sOOcSlepSgm/qJCaKv1enyhVKMcT4mZKbIG/mCMKbYyuQA6kBzll\nOGHYbCJILoU7Rp0DdxRR6xpzE59Jekg8nTJLCsSoQdlPWdIFJsdj0qcznOkieSZQDPvMqj6RZWJa\nGaJ8DB7MW1CMa4YHFYUW4WZNjuVDrDmDqu1S1imarRFXIX5YM1YqhLGHU/2ukDnXCrSsidH0YV4i\nGh0RpwF+mjEUHQJpDz2PoBDJRwKZnuNoFansMu5PUCwdsY6RkAlrD0ePGbVEbMkkPa4Q8xp5zief\nzJBlnbKQEcR55kQVZQBmWjA1IJ2r0ImRmwVFIlNGCkIfxqMSZdhGacxRRhAGGvuDPp7YxhY14pGG\nOKxRdYdYtvGzGVNpTKrCYMGgDicoeognCThxhDzJUXOZaZxRdJY4LMEdJkyGX1rYT3Yc5kdNhCTn\neXDI48djpo/fw7n5GdoY9EWLZ+4ZXnvjPLItYC13+eIvP2Vp6RqNWcXd40f0xynLC5dQz7YpHZ/J\nrRuYRx+T33J4/CBmLZnj7mCC8mDK1ecKF958lSfOCi+2Ntjb6BIsWtQjlbVLIvE5jZ4poD4zOPza\nPJubJV71hCfzj3jDWWZJPkRWXPq7I7SsxSg32Hz9DK2xRNY8gb27y2VpgenkgGB7xu7d92l0Ez6X\nC3Z2App/8gMeHRyTDnb4XnuJNPUZv11y8szXAGj1Ai4e3MBK4JLpMlv6kA9faLKzewurIVB8L6Bx\n6QRPP37IY+EAb2+DfHfCghbip10ehCVGq00l7hGWJouOzpP3fslbL38Xriacac0hZhr5hzP05THi\nTYGTN9fZ3DHp7Q+4fOhwoqPyWDmgW3m8qLRYudTmRPiQfnKP+/dmnJ17Df1Exs/zkD11jgV3mdMX\nXRpHJ1GnJ3mu7yPOjgjmt4n3A5rSInOtjLsnRKYPDMymwL1ZjD5ncLCvY3W/zZO710E22PK3qPoO\nUkP7T8Iof+uZqH/2f/8vf6F9/6sYhzG9zee8JO3iD89yMskZvrKNOq4oGxOa2YiD+ivsP7awIpf8\n8j16SyZq4wmTtM3xBjRf+IL6zgnUtQH9mQLvzLGqHhLJI84eRey0XyWRMq6/fERWVlz+/IBKgbWX\nPiFbMLhzYg1rp8/+WYP5fs69qwesiiJP41OYrY9YtQ4QH5sESs6VlsSt8UVeLW5wY+M+xqeXMfb7\nHGo2reMZ7XxGX1six+PpZZmjtM05pty/4CMlQ8I5mdatJjcXSo5G6/jPMz79/G3Oyw7f/K/+hPsf\n/ZYz3zrD3vgQooxRW+RkRyU5HtA+vcbT4YhzS5eYPh9x+sIp9p7cI79wjvXFRdAs4umAjW99i72f\nv89X33yDO5/u8/t/8jKHn93nxAsvEDy+T23p1Ls7rL31KmuNNjf/3aesv7TBeH+bbr2EuTpPkQuk\n6QErr1xl98FD3HKJpe4a2paGeHuXK2++wlpjDVGT2P7NpwRVTev8q1jhNruaw97DA3RWOO71OW0I\nDEkR5SadVsHs6W0uvvqHPHr6gDUTbK3JbHSEvTFHM7N456c/4qvf/gek+w1kcUyewFSQSa2aVFBw\nhYBRLUJeYVseZVMnTgRkz0PLUgypJqhjcqsiKwX8vTGyWFFUErLqIWollV1++Wh5R7hpRZ6rKGVC\niIdkCMSCRiVKiNkxpmAzdSo6LZ1JYJGPSryTHaxZTF4H+K5NMB2yZBjoRkwt20wlCWoTlQottjBW\numRySEso8YOM9nyHyVijNnwcQ2BSzaHlMlEnwilz0jpAzlNUrctPbnzpvnrhlW8ThQKiK+NkNbWX\noFsFQSBjp030LEVuSWhGgljHFKZIUgZEkUPHNVH1lEjXKQMVMakJJJdMMlHaAmJWMbF05F5FVcVU\njYpcEImlBpIyJMptSjfDDnMMuc1Yk8mKEqV2QMlQHIEwVXFNjTjQIfPJkOk2Y+Kywq5ihKgmA4RG\njhR4ZHqETwxqQaImMGzilhq+WCFYBaVfkxkVqmajphmiLiLkBe/e+GsA/vDyPyKzx7Q8g0JUUFOd\n2mkyC0MUbNR6hpALDOUZrpuD2cBWIPMjXE0gSHM6ZhfZqAkdgU7WIJIMxLJA8mMqK6R0cpBMZpZL\nJ0/RZJHROCKPJMRmiVhJpImEXxbYnSaKlZPVE5qGRE+N6EY6zooCmck4ShCsECWcx851pplFaCjM\niwl/N5dKAAAgAElEQVSJphNS0xVUdLfNxBIQhxpSnCGmUxTPIj4SEI0aV6uJ933KeQE5Nvibu/8O\ngG9uvU6t5QhBAzFVcKycJFfpUKN0atwwI/JENNVC1ApMPSWuFinqCjkusDBQpjnTMsG1EzJRwpgY\nlFVN2qgxioJKqRFyncALyXzomBZpMmZQSdi1jK4OyHsKkzzFYgk9Dcm0GYYgYM9pSKZAXqRIuYol\nRWR6SXw8Qs0qogWXLBBp6gmzeoYqKKiBRqYIdNOImVvh9W1KrWaSZ7TmbYoox0tNhEgmsifIYoZi\nKvzw41+xNKnwvvICz6uMTX2Z5okUaXkeVfPp1SdQv9jm6eKUuekqdVNA3HvAQbCAMzNRdp5QLy1x\nPu3z017M16++yL4p82QvxdyQUZbn+CzImf7mMecv29TnbTZOrPJFeptms2YYtJkfasyHQ/aSDsKN\n9zFeusZRUHI222WWrLPf87k71lAaz9FOnGL/AZQ332fu1Rd5mhyzOSw5CO6w7rbQWn2eHk45NGsu\nHM/jrkY0505SCW3KnT6NDQf5vs6gOmJpMuW+p7HV2USWJcTlml/+q5/w6n9+nuP+KkIuUCs7rJev\n43/6KeevvUbPOWD4eInIfMYrs/PEDx+wai8x8rbp3zCYMzXOpBafbVtc+/pVHt3cRkp2me+eJH3o\nkzsWs16IpTYYyCLG1zSCj+8j2jp7h0/Jmgnx6SnBrwzmxBJ9cZVeb8bo9h2OTl8gbT1Fmh3xkCcs\npw6LV84jP7xDuH4Sz1tmWs4YxzFNKuaHMtwfEJk2eTHFO7+CuLiG9tFn+EcGwyUdZWDj/v/cvUez\nbXdy5ffb3p29j7/n+vvcfd7Ce1QBhaoCWaRou0lRPdMnUITmmkkTfQgNKDHUUrOLLMOqgim4B+AB\nz3t7vTv+7L3P9kYDdBRmCg4Z/H+EFZn5X5mRudbsTdy+wdHuMe7vfoh+7AjNdI3Lv3/E//Q//zsQ\n29QmOpe+mfKCf4DZrvFftOewOKB35Cmr/zTLqe4Si9tjtHyJo91P+XP/Ae25LZamJZVBj/56HaEO\n/shg+V8uMruaIA4usbxyH/WvN7h6sUV05IBv1RNE7Y/YSWqoD21q1S7TH8l0jywwRIDRNpc27nPy\n+A7H7rZI5quEgze5Ur7MoOITCwYb2jHk/gnqiwqfd+Yw6rf41Rtb1K+/yKNXh3SC8ySbDR5FLaxq\ni/LUM+6d3uXQb0dc3NLYaMPL3zS4Kixw5JrGvdd3aG82eDnrES99Zw7ptXTuffQ1R997gbXfb0Kl\njnphHq1sEwg1Gi+8RJwfoFdtevETGhc6fPj7XzN3cgH92V32Dg44eHaN1YuHyR9soa1e5DfffMJL\nL5/i8gd9Np9s8vT6B6ivNSlv3WQ4sfAebvKrTz7i9LvH8NciZk49x+W1pxx16pQ3N1g8fIkH32yx\ncq7BnUff4CcHxNvbCNUql399m3VhHU1c4rW/+UtWV46w9vlVVs+8z/E8pn3U4uQ7xzlVlfngi32G\nn9/laAs2rzxg8dQblPEOmeCTLZ7APnua+aNHEbdiHu3dBKAxSciqU7SJQy5JOIGGmpaIgkZSc2iE\nGlIwIQ96mFIFoxyheB49LQE7Q8wc9AikxEJqaVT0Comsk08nyBOJlqDh5QHiQYNQUFGkkKIuYU5V\nZNfDHHhoXhdxZp5yomCmCXg5+XTAQsNAnSZkVQVF0pDDnBVDJbMNvEmLxFeoCRG6U6Fi2nhyibsZ\nYscxvUEFu6VQpCmOnlOxKww1lSKNqFgRxrhAKiCNqkwqTcTg4A85o0qzkHfIypiJJFEpUvb3LJQ8\ng9kuXvs7zZ8osyinGm1fotANtCwi8EKm44hsIKDPCkzbJUoa4dj7lKmMJolURJ94foKomdTECU6a\nUGpA0sDREuLQI6xYJLUeHSujZRlM1QMyCgaKTkNSyFQBhxGabaCrCmHkIJoVInUWN42pGynuOEWt\nTJF9gUpkU0yhNlGR1ZhhI0BIYuxQwmpo1CSdKIwJHZOyF0L1+y7SE7aoJjZlT0DtG3iViHS6gVKP\nEfMJY9VG0GPMiUVxYCAnMcOeh2pK+ImHZWkI2QGhbxAWGp4hYYsuxAWl0mQ0VVAFATEo0FMJX54w\njXw6dQO7YiOOdcRRQarndOYNsgTkIENSNMZeguIaxDOgCBXGwZhCSLErTZRahJzGWPV91ChmKNSY\nFApGkeI5FQovx057VFsiVlskjpvoYUzenpK4FSLZpbLYIfYCCnH0BzzadkYSgChnhKKMMNCpqjYl\nCvoQwo6IlogE8oQECTdWsBUfceKitXIYHaCqEm3LZurWCY0I8NGqKfOFTm+gUfREhGaVecGhkiuU\nxQ5epNHQxvSFHoKgULSgNbOEbgdUHRPbchA0HXGkwliiMU1xNJOozOnETWRNRFFEamFK1dAg0Kn7\nNeqegb6ggRqwIyRUtwMGjYgyzKnWHeKxSjWTSTsisbhDPXcorWWIPQDk0y2aL4IcWbQaM3ztLvPs\n6SZ1xcZkn9rLxzg0c5zGqac88B5xpv48i6cERH+DB84GR+xZ7gYWZSbw8acfojsS6syEcLNLJauy\nrI0RnqtS3RsTfSsjxAdIgsPksUo02kU75HLdqVCduYlw7AeMfneP5yo6xg/fY7N8zJHhhKXzGX9S\neR3D1NAtGenvzsPT20jdCvMXzpAEh+nrUHVeQDp3hvmBiiJVuLIhk2rzSKbC7GLJsX2TwdmEVy42\n0GbO8VbrBBg30Y7phDc/A2DoJwyqa8y1Qm5/sU1Q3mb19EukN7uIt6vUhQEn9jOGp2TalaNcG/fR\ndpe48P5Jdo5N+eLuJsEPtrkyvsr80QbDnYvsHfLYWYrxP9ukfWqVbj9HOaEx/ewKOy9D47kOzRWF\nC3GK8KHL7qzI+t4Eo9XAPTJguHwIeWTSWg85u7rIy6aNeK2ERz3K2ln0jSfs//b3XJjxyLr75Js6\n1pk58jdarPh9lMxnV5dJL9+n3TnNwXKV6FuD/UjmbHaY9oHO4RdnMN9/l8GHEyQlRdK/n+7//71/\n8yQqV2Oe1KY80ySErXX+e/0x7qKEvnGRe++ofDAj8+VcBynZ5GDZZjzncFeUuBev4mwsIDsa2d4R\nXtEXuPLyEDebYbQese0eJZbXWY26tLsqc819qlmdVv0DasM5dljm6ajDmfF1nMdz3B2/hdOr8Ww0\nR/SDy9QftTju/J5MXuOVLZfVTZVaZYdP3kuRtpZIdzZYTIf80e9XeC6+wtFJk1tiwYMjFRqzCV+O\nFeb+pcaFf2lQqUnsGCrVfYFnhswblWeMOk+ZjzVchjy1Iuo7iwCcOHyKekXlq1/9Glhn1lxC1kJm\nvAJF7SPWHK7cHpDvl6wem+PJ737Bu3/5ZxTTgqW5Bb75xe+obOfcuRFgmnCoM8/F937I+v1r6PM2\nR97+EeaxFaYfrDERJC6cPkaSivzg0ptc+/Ia3eo69x/v8MZLz3P506vUTjVYvx9zeOEst76+yeLb\nr/P4+jZZvkD13AlscYed/3yXSH3MZ//4z9z/9hZnfnqc3/zq/+aJa6AdXmX41QfIiwssdywsq8rV\nrzb56V/+j9y7doc4b/Dm8y9R9oZsX3uKioO9apPufhfgYtWl0jfR2hGWUEO0MxJENMNF7kkYuo5b\nUYltgV60h2CZeGMXZ1zg6gbTfIClmEjuPvk4o5jGSGWCocjImkCyG1A1Y6pqiCj5iI5JTa/gNruE\nUUnmdJhUdLzAR56roMozDCSwizqiGJCaU6TdCVEKihqyndZwpzqpuoeS7aOIVcL+CH/qUhYB1ZkU\nrIz5hkdZWvjpCNkZ4k4FjEkdux1RTj3CoqRfrRFIIdIwJ9Xrf8gZPR6iWBnVkYIlB0x8HaUaQ71J\nkpWYwhQECXGgkgkh6DF2T8CZkZGtKbpSQ3Jy/KxPzR1hVUOiYJY8T0nwkeMAqSdSFjAY2yhxTJsB\nVXuXqAgQJB2rhDJqMuj7xPoEIxappA3SzADdgKSgtOuI2pSsEFHcKYkkkktjmlKNQMwQnJwiUVCF\nAtMZoqYWqVCg16E6jilVidCPyN0RugSZ+Z2/WirPkPF9AWwqIpEP4xmDUS3A8nRUaRmtMFCWGmiR\nxkSR0ZsK1CJEJcDQFeRpRENaRCdjVGZE6RYVMcTrTXFzmzAvoeVTMwSEKCczYzJdQJdtYinDKzNU\na4+4jAkrCaYVEPVtGrlMos2gxAASQttCGYtEe13qWo3OfBVtamKpOYGTUEoV1JpKPRij6gGukiP7\nAftxTNwtGIkeWRSh6DJTxacpiVjmiHhYEu675A2Nofh9qS8yCStXmBQZobJP3tIY+gcMgjFJGlP0\nm4iehDo2sEuTUqkSTQtaSh13qOJr82SpSVw1sSSJtqRAXUToxmQqtG2gIVHu+wT7MVVbQRm0yaIM\nObKYLUHxVNTQIN+Z4AUhG4M+3iijP/AYVUu8tKSXSfSSKcbUoF9OMcoKst5g6sbodZ2R6uJmLjtx\nD78bIbhNakLOaMbB8ESiMGbi9ZHTDNGoIFOhnMLUFAijAdP/JkhtbNvcvRFQ9rbYmfZJvF0OBIfb\n1xKmJ47y9TTF/XSNu9dljq2t8vGjA/yohVXPWViY5/K9O7x7sY3Z0Tk2rVKOuzw3sNCbDT67/hFG\nA4xpwO+nEgvnUgLNRX70lASFC16L4aCCvvuYnnqGo406e6/MMPzsgPggpDWockNRcRSTh2qLr7/6\nDZdUifJ6D/PU6wwbOzz55DrqfEg8jEntJmEw5szSLHuvwx9dPIU+3Ke3dcDYOkxpxhyx9+ibBp4+\n4pe9Xe7dvEunYpPaxwF4xVvEXk/5JksxzjbpKBLfqB/yzL1Jetak1x1y9f4mwzv30doz/Fm9Rny6\nYPvyNt6XO2QrVWYe+KSbGcpmjrigc2FnkWBfQph3efzsKeefa/Dkmyso+Z/QGHToXt5kx5bIlIvM\n/MRh8eQSq8eOsHNjSHbjELV7t1g8dJ2JdJ4rd0e4zXm+eq8Kqwvcu7mOttqh8W5MfF+gfVpCvnCI\n7v27GI/meGi2SC6c5uioxtjf4KvjBwTthDfPFGgLt3n0pMrmGZUbwzt0frWLoA2pDX6IIP/rxDb/\nzZOoIrGoCPPYwkka3R/xfzqn6T1Y5Ztz15Cva7SczzmdHqBWPByrypUX9nhOKWi4MXfOl2yrh3l6\n+gmC8xVar6CflfzIeUwkDpgTYoSDkv5SxqDVYd2BSrTM8vJt5G+XWUmeIeUx01rMMSen9kKP2vYP\ncXvHuFlzedo/j9gqcNMFntBk7d4cxwZrjM98Qatsc39F5+DcFqPkPHv7PY6yyUu3tnmlt87pkYQk\nprw8fxu5XEKYG1OaHml1hPBkgfNDkbWLT0iXQy6sneDs8R4A93Z2GRFy9kevIR5bZO3+V+yvpVRe\nPsrezR26T7oszNYZbjzi9jdduu1j7D/8iq6QgjCDLjQYzeT0wsc0a4fYufIJWz//hJU3/5Qnn3+O\nO+xxsnGBjZ7PW3/952w8vYwUdhlVZGaOr7JoztA6avLNb/8rJy4t4M82CAb32ZHu8fyP/oJD0wjX\nhkyY4u7tcOmHP0SaX+b615tkSBw7cpqiP+bwOxfprt3Au9YjSNpM3R366h7S8hHGoy6ynVJIEpc/\n+yf2+xOiWYPQP8C/s0mv73Fm4TkAhEIjnPVJw4RxHlMMI2bcFNFv4EkuQRmhmU2UuIJQKvQxKSWH\noC1hliKqqjM6EMhkyE0BT9eoygmu7KMGIVHbxRIUtDgmyUUmwzHugY/kp5SqidDdJA8F6rFMf2+H\ncDhkhgpmZ0rh1JF3fFxVpNYySYclzcoAMRxjTSVsW0CTDBplDaGlIYki+wd9pIFFkJsE44TSExhO\nq8gNHcQB6sAhzkpaOEj9fZwywZjziMTvL0kKrYIiT3HFDMUwyHWDZlIg9UZMpgKuK2FnffwG6IVB\nGpXINQM3ypmEswTRBDHuocRtJpZDPmwgpgFOWmCkGXJZRa85IMpkYkIRwzTS6IdzOHpC1Ykp3RhN\nGFNviGT9Ah2bUQUcP8QNxmQExFGB5YnUsoSCBFsYUboSB7oHaooltMmtkkEZEeUyrqBQKCaDAwE/\nbTMX5sR6SWmVDHOVThqAE+JZY4r4exK1KwiItTHaboQZB0hagKgGhBODeOAzrXcx3ISJLjFOVfqu\njI3M2NLYE/Y4mFqIlQZOaWMVAQ07x1RkTClDFByMMKdM5qjlNYrdlPFEp2bIhFJJJos4cyqSCoE0\nj56IjIUBYlDg1Rtook458hnmEkLDpmhGICRsqz3STMfICqaZCWHI2MgRuzJirFBEUzQnIdbnaXRt\n8kmOFolofZHuxMDUSvK4hizaVIOceuN7BfehLqNaBpYJitAhLnPKpkVTNOnWFLL6hERTSY0JUjRF\nFgRkSSapRbQqCkpe0E1GhImIF3uMkwxPCXGlKW4kUWgKopviV6coQoY/mlJIA9q6zZScieywJ+h4\nxRhXmFLPm5SFiCGA3IY0UqlVC0hsilqBNJNhGSmuEpKOdxF1h3hrn7miRc2wqFTmvjsaaImYQpV2\nlBHN5GS2QSuz6clTdsUDxCil2ppBGOtIw4i4cAAYt59ySGoz3z7FA6tPkW4jsceFF2v0Huzxp51l\ntHfh/oMNTl7qsHK45GitzsdqRPOgQa62GezCkAPmf7bIw60Me3mF/YWL2JcuMLulsmqeYCL2+Paj\nrxD2ZcQjDfYeuzxZ1mjKMm+em2HOgrtRSf7kMcXKCnNxhUMn2pAPma4VdEdb/Ozcj/lNmrHl9/n9\n3c/pjGcxXl1Cb7ZgvkUr3UW9usbnVz5hftclejhlw+kjq2tIj27w9NEmA0+g+8E23BQ4gkT+1MJ9\nNsZt1wD40h6wfOEEwqcT3uoFyJ7Nock7CKOcdjZmQYQX3nuDsFGizAp8pdzDubyJeynnzeZpTg1D\nlpfOMbXPsOzUEY9Wudzd55xpYstv0LigsRdVeeXlE8zWXKorh6gs6Hj+HsuXIsRnJ6ivjdF4Snlx\njXq1yvN/epHdD1xeXpmnap+kHDU5r2+z89vPkZ0TCL0WPDK4cXzIkcZJppNd7gWr7Bcp4v4jDm+u\n8PjON5xxLnDkkxovTOfZtD2ONZZZPh7iWI/YvvoQ5bjBXLbFzvRzBOVfR4/+zZMooSiQ3uqzY0vY\ni5f5j1+sM3/xCj9bA1WoMXN1Dqme8Wx8lv2xgvmNxLr2FfqhLqfWEg5LD3lTmPBhcIJL40ecHOT8\nP8fnacYW4eAsrdYus8+WGW9/yynBpdJ1eapWid77Eskcsh52eNiq4Ne73OgK+Ev/wCNd5iXjDkfD\nHfTHMjPCHaT1RU7Mixzai1Gv/C3N+hYr3x6l2DrNg6bK/KaDpkecqdT4ypxDXd1g440eXzRP025u\nc3x/m43TMmIFbDXno5OLnOu5yA2VYPEO3uPvbD3mG4cxqHNMqbN3v8/cGy9QkmL1PfLRmPpJg8eP\ndrl49mVWX7zESTOkbF9iuTqDJIn85Ifv0moY/PjSW9x59BGFmdJ+60WivkvjXIdGXePx0zu88z+8\nzW9++zkbaozRsRCKA7Z2DlgPRNZ/fYuzPz7Ft7fXOawuoFUc9r7u4QVDYkljdlWmCAbsTvbY2/bR\nxARLqVEaVbI5G7crwG5O59QMlfE+0dNtiGLmhQU6OpxaOMQXf/9PvPvCW8w2msi5gbIlgDfB+NFh\n4ns5W+l3i+V5lJIODHKjilW65M0KotgE9wDdMLGqKVIp4goZlQMbNXQx1SF2HlG4CVlcgr1P0arS\njmYpHJUsyzD1JpKqYU1NpoVPYmkUsoa+sIygmZSSiqOBp5S0VBnPKWi3q4gzGrE7oNsPyPyYtN5E\ncjKi8R6qnBEWFhUtQ3QylGyR/WSNMBwh7Ug4vowj14kFD1FXyNQCu60iyhHpcJusmFIKIdbCIl1R\nR9E75BWdeN/BVL/3eQrzjMSrkQsOw0BAQiQVW5g1gXqq0ooVkqCCqowJbAdRDwkVl4oa0kp9UidH\nMk30IsCY2IRCF8uCNLAYFzCaRBTTiCljMGqUioapBlTLCSO3xrCwGQkSwtgm70lEzSqJ7pO7HoVd\nkBsanq4QNSFymhRxBVdyiMcyMRKtuIEqGCiTEbEbY9syhSdgiGOIRUzVoyXmDCMJyy9QyhZFEJMI\nBc0Dm1m3SlZYf8BjyTJREw1JDUhtgYEqEooejhojhwV4NknNoZ6LzBoVmqnM0M+xpJKGZyKOd2GS\nEcgpsdAhjzSS6ZgorpIJB7hlE6PSYxIIKOYQxR8TSDJGaDJIRHr9EfWhSXs4xa2NwBGI8xIt9dAa\nJWYp02rHjL2AbKdHOe7RCKAcTBACh4VIQ620KDKJMi+wpJiKpqKgYCYHSJJI1DbJrZRo0UTJ+uzJ\nKvWFhHo7JJ4oKHy/WN4odIpxD90HR+xjTFXqoc2+NaVpCNA3kYI+TVXFElXavswkc8mGAiM9J+n0\nqDQBuYtg6ehFhyYiHV3HLnKiaYaa6UiWTGG3yGuzCGKHflSgOgXK1KKqjtBCjc6CQxgVSJ02YaYi\nFrOgTZEyAU2RqSsaxbDKGJOyViK1ZhGkHSZlRl5mxFKEJo1ojdsI45TSigmsGrJXRR2VuKZEpaoj\nqjJREpHFMe0yxZQKqo0JAMlem+54Df28yZHeHqdffYWiNYtvyshSgWxV2N5vMndc4creFeb3FIJJ\nxgVd43Y5ZqbX57d2xJl9i/FTmZNmg0fBI+pfPKYml7RaJdeSLf7m6CGcxVl+R8Tw1iZvnVJxrDpP\nJtf4ZB3Ez24y3H+AvdakcQhu3XrA7vZ9/vjU++gna5xacfhqd5fTdzdovPYTFuoGerXk4cPPMPcy\nzs3WmXo9FP8Ix2YEvNVDVJyCi7ULPLd6iIVWA+XHM9R+8Ygzly5gnvdY27mPPysTJrsYxneNunS9\nzna1wuqPJLqNFS7vBUjhJjM/fZNnQQ9bLHiWKnQOCnbYRElWMd5+Be1313HrPreSHYZmwaki56P1\nDXru5xw+HSMsp2y3LrN4W+XBR094tH0U80TC8NF9jp+1WUlafHXNoffkFnJtizuTNivJCwzrv+Hu\n3S4bbZvf/fIKix2ZJzfusTOZJcp8Tl9UeOL+gsgSWe2GpPdEnluZ4wT3WUoTngohn4jbHDlqki72\nCOs+m2XOzu0qj27cwX9yl+1PWrT/6hSiYMKROWafa1BM/p2QqELK8G6tcmIvZrQv8svXlnggt+l7\nS+xNVRK9YP2YCPM54laH00mf/MmfMrx2gUyZcjAj05fXeM35kpuHf8zT0ybt/T0aVZfGYJuDqM5E\n0HhBPUmijzg4W+PuIQn36iHcvE5z3uL5DQnj2RHu1WwGmw3e3Zpw62KTQj/NdsMlO1SlfWGdR+MZ\n7r20T1nt4q81ebDY4L4rkV+8irGwhZgpfJuf5PgoxIxkLt5oYIm3+eXpJg/mj7DsSlzVmoijGtLd\nZfpPFjneq/DbxjIN6bsimKabLJ8+zJdfr/PcoZNk3zzl/Muv8O3Vy7zws7/myQdXuXS6jTvZwHu2\nQbm8yu2Pf0///kMMzSdpZrTrlxgIWxxavMBy+wJq6vLg1leoRcykv4598TSf/eIRr/z4TX783k+4\nf+UesQfFMCN5cJOXf/wu3Q/vc/Z4m1yCTGtRCApKZBCQUKRzbG5lmFqdvXiHzdGUUz97g0M/eIm1\nr2+wtDzPzpMHzCSrbEcSxnMnCCSbU8cvsLcXEA6mHPubd/jnD39OKsl8+/AztqY3eevv/pz1zz5A\npE8//86QOam2aaQiYRmhqBIVRyet9ZBqTZJcISxcpqM9LF8i0VKEQsaYaTLu53TdCKkhojkm03WX\nxBxRBbxqTuYlDLQupRwTixVcOaeDRMUNcYopQqZihTmm1mSo6zD06fUkskDHmG9Rr9fRtRQvCFD9\nElVcIoigJptM0hxfgTHbEC0hGjWmjAhWdAQ5Z1xaZJMAEZcgMQinOrW2ip0skFkafSHFjsYEoY/Q\nT9DlHH3y/SSqnog0tF3seEIhR4iK950gpAxFVsWfVdCcHCtRIE2RxyUEKpOyYKxArRSojit4fk4u\n76PUJLKyZCClMGNTLxxiR0BWTGxJJNYh76kkmknSdrESk7SdMUEmqYUoQwnPUBHbFaK+AUGI4ac4\nvgfDDNmMmalbVGKHgpRIzgj9ELFpUS1F5ImFLGY4UUBEALnBQSEidiw822Ga9VByjSJqINUjDpwh\npmr+AY+hKxPHFYxmBSNtY2opkdAgq2pIpoNWOBiejBT5MA0YShmODvogYGAUaHKV3JLQCgdvv48p\nlsi2SVsRqOcyZQI+VRQ1oKjVaSx1kEUD2ZfQ4pi6vkAoymSaSKNiwkEDNemSRlOCRGFa5CTDGrlU\nImMwHauUmUxSAz8bkRkx/emAwhCRjApZFjPUJRRdIpJ0BFmk5tkodsq0D3ZDwhyGhD6EmYzRCAm7\n+h/wkLyMqGOStz2yPCXTQ3qTPo1mnbgrUolDpggMdxXGQZ806BMVJUMxZCbMKDOBbCiie03KKMYr\nPCRJxRVLsskEpTpgWuSUgcF02KXuDzgwJixUJkiRQ8qQtKggaQauKzMpUpQypqJIKGKOFlqkhQb6\nLqUf4OUpdS9BGlmkWUSSKdSaDgdRhqTkeJMKu3kPQzMJdmOmRUZF71IsGMhKBjtDpMQiMUV6eUmS\ndWFunkn/O6LtLwg033mT3uN9qisnUSSX6t0+3k7AyQR+u/YRb9dFyiOnGUzqDF87xNWDJxQ7Gyyd\nWEE0GhyzmuRvzZHN+SiJw/huhdlllTOLGZ9rA4S7D7nX0Mi9mKUg4fjRC1zfG2PuBWSuQl5OefP1\n19mfDjn/wirPNkY4PzyDfUTjm8eXsQc7PJsm9Ck56OwzepaT9hxCPcYtp6QPn7JjpDQal5jUdtnJ\nO7R3Ve6d1NhbvwLGCfbkOmE/Q/7pT/ng0WXGhsLRvsrhcUFnfpX69e/i48jxCtadlPXaIXoHD7Wd\nvy0AACAASURBVBFfGdA7usjlnQ+pV98nbL/OC/YzNuoeW1/uM1N/yNMoxDi8ir9+C+PQUS5GHk/U\nx3ivz1O5e5hAFhG1MXrtAk+X1jjWvsPh1GWjL2BUB3z18FuOvtgkPTmmWcmRW+dJ9rp8evMZi89O\nou1FOL7E6z95lTTO+fHrb5E+U7FWX6VZukzqDpnXZHv4PJ2TDR5t3Ub0X+Lx1jPE9iJ/kj/h3uYu\n1zd8ekdcsrTkzcNtTkc/IH9tkbM/bdOR+9zZG/PwlsmdbyGS/3Uc5d88iRJFsK073H3hBk9OWpyr\nPMbcUbljztBZ7lEjovKLGdz9FgvBgOBIhZNz25QnN+gcfsxoq4Fx8wUGa28yb33MbLBGkB5hx8jY\nE05jbXcwxAP0NQ/J09ka2hz+2OSPH0B5+w22xAquP6Q+Dvirj23M4hV8Z0DraoNyO+LS00Wu1w1G\nUcrZ/Bkdr0kwsglO7PPSs8u8kri89rHJ8x2Fm53nqLUP2D7dYZTO8MRc5F64ytGnEbn9DZWrGa88\n7KNVHtA4f4VDgz2eeRLnBgcUfQOAXLf55T/+I2mRMX4WUL84y8b/+0+88R/fZ7035MUTb6JUZnj6\nxRrmfIf+lSf88Z+8TZbDr765h1FVuf3sE57eiQhsmAgRQqlz7NQKx+baeLLHvX+8ytmfneDRR7/g\n4//yGS/9p78iufeYP//xmyhGh3vXr7Fw/hDm8eNcefyQxfMN5o5n9G5/hWB2KQ+GOEwxRJsTzjIr\nHZPdj7+lXF9n5cVFrl2/wUvv/5Cvn93ljb99D39/ghJaDCb3GYf7nPyLE1z99S955S9/wKkTzxNH\nIYuVU/z8X37O6RfeJ6zlzDXOAVDECUlrQMXNEeQ6WTglGBiIcYrilAgRGBkkmY9f70Os4fYSWqaF\nKTfItYxEzLEOdbBE2O+O6cQ2SifCkJqUQYIxrSJgcTDRKeWUIFEwyip+4uG7HnI2xJQ0Wk4OVsFG\nd8CknILXQC4V8shEqgnUyoiuKyIWMppXp2IL1JseWbqDQgNxS0at2GBJ+OIEJU5RJwV1bcC4q+Mb\nAqUxRShczKZMI5tCa4onCoyz7z/JA60kn+qUqokVhGSRRtmMCaca4ewUxQsYWBZFbqAWEnnTRhNL\nmlkD0dGQphbdPKCctVHrNayxRaqktM0cJVQRhBitLCh8EbwMWUpwVQFByZmJdSx5jBlKaHZA4Yvo\n+RgpzaiVE4R2n5rRIJQa6EGVWHU5UMcERUDfyWhEKpbTxdRUekODQZoTzgyQyxkoFMhKhKpEzXGJ\nD2KaRkyuSkS1EZPKGFfVqIxzksj7Ax6ymBE6e+ShjpyIJCOo6zFFb8y+1EW1pmSVHhM5ZC9NcDSJ\noV7S11uoqo5ZTmnGBV5jjKA3mepD8lGOZ7lkYpss9alEAmLsUElLFD+B4QS1PiUKC/IgRm8mjBsq\nYmRQmwFbmSFPLFTDpZ4LhHlCvXSIOzVoG3iqihdC1qkylmSscRVtJKArWwi1OhXDxNRSykpI6kyY\nhAeMYh+ziFEEA+SCKDOR/IRg2EDOsj/gEesltTgidEX8VCYoNGYOddBGLrY2IpuVsGd0knkJt6ES\nz9bp1DTqeohvCeRhC2YVpmaJrIvUkwKhrOMrdTJZoO85lI7BjOzTWOowMC00UcGzcjwxxtEjqmGC\nWUjImYKcBoixiJWBmHcRnRRfLwknFtPIR1sEXysprAqhG+BUITQMlEaMoNSQBBO9NoOXjBFsA0WM\n8eMKYi8llwu0Vgd9ElOXQ2YsnVKzGe9uMWt89/11PIva2h77jzbRsoQnnw54942fsC0kLB29hLE0\nj2pV2dsrOToYsrO3x6veJqbZ5JDhsU7Mea9G9ru7CMYit71dXm3NYdtz/OJZxPTDERxq0Li+T3c/\npKXMUa/WcU5oHEyG1FvzvHVkhZ97I+a2dNbWb3FR2Obh9C7Py3MMWjkCbWwksscbHDIvog5uY2o1\njq+XrLTfYrG5yNqWyO7D68SzHvn+HpOdT7HWBMToOJ9/8CUHko86LFk7+ApnlBJ9blJbXaB5ZJFu\nIqOcagJw/WCPe/oGi1sR7dUOxuIiZf8Br+Sv0rh7wPZgRC8NsJSXWK1WGdLBfnqVmlGBoyanOxJ3\nDhR+xBxv7XtYxx5zOLrEk+2zZF/6xEOT2snXqJsV6gM4svwKYeMS2488dPbZkFwOxteZPfcuq8oO\nnrnO1kRkxcv46tYNlL073N6+S+NcxMPN33In0VmqHkZ/lDB7dI/Aukb/6T7KmX06aoogzLN9Yp7T\nrfP8d+/pVDAp5h+wpRXcOrODeDnA39DZvj1La2px9sdHWH39OSrav5NJlKCovHrtCerODHp3hfY/\nX0B6PM+y8msSdZtWeoxac55j4gZbygLa05Jva/v0BvM8TE6z8rhG95DCg9dAfKCzflyhoQ9pXWvT\nzHw2lu6x3hqztjJHcPMNXumWzIu73J47yex4zHx+l1CcoVf3+eblKQfSBrX9CWZS0Bc01uImSxv7\ntMI1ntXbbA9WUU9+inz/B3zxgxW+nJP4ovoiH0UjCnOEKe1juhqNqEpbWue14Rqt8iEX4pzNZIlM\nO8I16wWUfzlD5ajOqwOTJ02D2/9t9FztzLJwbIbJdIPZd05w+5cf8uLf/hm//PvLuME21kIf26hw\n+J0an3/0XxHqVTa0Mat/8RZCNuXJlWvYxSLLy8vc+Poa670ed651WVg6hp42WV49wZlFlcf/x284\nvnoUa8mme+MaM0sXeew/Y+FoB/G4weakRv/ra5zonMAdK4hCFbPZYf+OQse0eOk/vEE0VfniySOm\nW/vMzh1DKgs2n8EL77zK7//+E94+dZ5bP/8lNUdmN7nNsFZBsVf55jc3OP2X7/PFP/yaSPY4f+GP\nePr0Aa+8/UN++5//L95+5y8Y3nsAgKGWeDF0y4IgPMAd9ZDEAq1TJcoSoqxGjkbLqCBki1hWTqWZ\nIZUaudWlvuMjBzL1/THjQqElmLiliIlKMOwjWTPI4Ziar1CIJZWqSHWlAllCxahS1QT0sUWuBozw\nEQORpiQwl1aIDBctTNHrJaOpj6dL1JtDJElDEUZIYgsvTgnaS1Q7JbE6JlMCLEGjri4QZXV8p88Q\nAadaZZpuIhc2eWEShCpjp4KeKFilj9kJ/pAznQRKUUSXFJRYRDIHmLsO5hSksY6PxcyooJ8JpLJI\nlOiEsc8olVClFPQQQU5ppCFSEDOtG6RFiu/LyPKIXIqZ5AKCJYGcYvkN6k5CBZHQFJFTASNMiHUd\n21RQLZtYy+iJIJUWbjahyDMm1j51o4quSagIyH6O6CjkXoeRblKpu1QcDUoDLy2YijJRw6boR4iS\nht6uEGcKQpZTjVoYE5t4FBFWM9LA+AMeQWxhU8H1eozEEVpUJehrCIGGU86QaCJl2cDJaghFiOvZ\n1FOPWQKi3pBxQ2TfDMm6GUUeEsgClXCEVEBv0sXSNMamhiD6mMUUf1ogWQYkNursIoXUQylj5Fjg\nYLxLX4jxyohK1cZ3ZYJ5Hbluk8YBoetiShlNL6AICuLJCBmRYmaIZDRxtSrKcIqQ52RuSWWSEUk5\ncmeOOavGxCrZD0fEgYRtTwmaKangMTb87/FIU0ZaBV3T0AqoqB79SYRblcjrdYLAJByrlOmQphuj\n9ntMZBgHM+ReTk2Qkdwatj5ArjvEfo3u5i5WUeIoApY6QcwKGGhsr+9hiAWmJRKVNnqWkKtwUFaQ\nDJ/YEGjYGXYlwm8peKKMEXgkvW3mzApyrYbijUjkEiEckFd18kmVMvOxegq5mBJau+h5TmkW5EaF\nWdUktzKqDZeqbzEJfKbIuH2H3jjHF31UReOg8V2M7OkT1KpD7eUG3/yux7vPnaJhPENvFjz+5nOK\nT8cMPIX/cFyn8d6rPH06Ze7l53iycpK0XGH17QX+Sb1KYs6DkjEzP2T7rM21+19xutQ5d0ylO20z\nebyLPpMStH3cy1vsp2NWliLWFhWmksAx06HzRzndicA/eiLn77d51pPRegpf37rFnQ/v8tKqyG5F\n45QIZ96o8+DoIgfFA/ZmIo5srbM5L/LC8vPEz6/wYGaGWM44aoG5fIapt0XSnqcmOWjzBvPvtZEP\ntdjJXEZ3byK43+Gh0eRnL59H6t4h399F+MIhNnp0qFNVv2am2CdNNOrLQ1i5CMsNxnGdJ4aCbNa5\nVTVYkLrcV5/wwcENjq2eY/f2Pi8bKmhbSFtVxGNd1icK7k7OE2nIyUWDh/SZcS9giCbKzYTnZmNG\nF8+guCfI6zb1dy+hPW/yeFeGR33G1+dQFl+i0bbY/Thl+2KTNXeX3gcSZ8znsHSTcm6VNxZT7t96\nxoYjsXO5SnzzKfN7DdL6fcKnPuvnzxEsHeCYawRH7/F0/4DRV78m8/9113n/5nWi/rf//X/9X54/\n8Z8QZl3ePxjxq7pHpbWBaZ1nwRyR9CymnT26wxMs+QGX50WaoYZjRYT7CvO7Onn9Nu/e8LBOHiVI\ndjm/s8SDYwnL0RP2JucxKz4zBxpHewnb7wRsvuRT3zFoLX9K1D3Nc88esXhsxF5f4OXHCzw2TxCe\n3cViRLkcMrcHay/O8lht4D+LOVXP6ToZJ24FjMdQvP41lavnObVhcz9cQhhkDA93GTw4zLmxhCH3\nyZ8dockOvtqiE63BOYWNeyt8+3LM+9pdGhs5P791hZWTF3jj9VeZ6ZxgdP8LLv30db76h1uceeks\nz+5cZffLDeTDFfTmCTqdsxyyKjy6cpfRZ3d4/c0/Yr2/Tq2jUkpTTq40COQ2Z0/ZrN3ZIT5Yo7U8\nx40bHvq5BTb9p9RaLUpsHty5xiTTWShNdrYVDh+toVUaeOUm6X6K05aYXTmLt/WYjd423Z0+Y/2A\n1uIiRxYP8fWX1xkEU146coZvPv2AI8cthIbBkaNnuPrkKu8//+c83n1MdagwTA7Ibm2z9MISDalC\nXo1QxCabv7vKa++d5dHHmzReXOXzf/lnXn/pBywMOhhtj9CdpaVZBE7CJB+iixpqYGIqY4K4SqZO\nyEyVUrLwBgmKKZEHJaljYwgmedTHKpqUVVAFC9SETCgICFCbJVlUMJx4pHJMUVeZaiWJZ0ApYhY1\nskKFWoQxjplmPkYJpe4QjEQqmonrqSDJCGGJpEMsJ+CpVEcBvuvSWpII+iKClSKbU7zYRVObmJJD\nMBkipjoVN6Y0JFxXxsgLSmxELUYobX597Z8BePvcT3FLHdERCXKJolDQmxGTqYwt+uiFxFjSqNIn\niV300kaJdAy9RPUyhoJNS05JiipZolDxEhTTIFbG+KlJXkTUrAjJyxDsksgrKCmYTAJkiu/sURwV\nvcyJVBl3rNC2BZJxgBIVxKpMY1pg1Ur8IeSqgJKpTBMF3SmYujFG4qJqJZkWQKERRxMypY6pdElL\nDUvNSQuVeCKjVCP0xELUCuIswA4sIkK+vP0dHj869zZy2UQVCyTPwq0McEodV8lIoyFJGdEoBXpT\ni7mGRRREGEZOtwyplBKSlyAHM+joqOaYtrnMNI8IcgNFCzDrItKOwMTw8QSLuPAgMYgKkcyf0FCb\nFGaFyX6B2MnQUoc0DiCJCcyArC8i1gMs1cRJTSajFLNp4gkylAbCIMUWMtIsJPZ9wrRJUUlw1BRf\na6CnJlLhMpqYVOsOtaGPX9hUpyMCU8ehRmyafHz1O52ov3vhh9gTFykt0a2Mg0RGtC1avZBY9ZGE\nKkKoUtF8/j/q3mzJrjO/8vvteT7zyZMTEkAiASRGAiDBCSSLrBIlVZVKU4e6W1aEb/wCDkU/QF/5\nBWyHfefocDvc6rAsWVKxVFVkDZxJAMScGBOJnDPPfPY+e558wYiqvlL0ZfX/EdaO9cXa3399a7lS\niV5ZwsyHGGgkikIqTrFFl7EuUvQNVAky08LxeyDNMIxC0mJCTW8hN3IUN6SUHXRPJ81UrJqGpcj0\n1ZKi76KIBvHAo0xFwqSKFSYUTkkYyiiFh+hXSYwpM6WFrkr0J33sQMRfUAj6CnXZwiiHROMmSuFB\nZiDFOYNSp5xOUOyEXDIwwx62WSdBRqvHeFORD6//mrMLJzn39jF2n495vdLkdu8OUXSMRFkkONyl\neeUNnLbO7f98k/EwJTyt0XIVnm9tE0y2adZtem7G/F5EdkRjQYJHj3dQRBG5sYpdS7CXFxiPRrw2\ns0QR52QuBFLKXCGzsyfQ3hsTZCVbuwM6kczS3DFqM2OGSkJ35wnznQZvfOc96lKVfeEFjdQiO1/y\n+O8fsbxyjpmBx9FTL/Mw01B/+YLSqPFyY47t9SHKhRqLCwp67mJ6JUv2KUzrBNMvHnFnmnKGORqN\nBb5hi3s/+5Q/OfpD9rv36RkJziuXqa3nKIca0zRATCUG0SOm0QXmdJWFcpunhsXlPZnNCwEnjFXy\nZzndzTF1sQmrVdzMpKLfpXff58S7r9CcPeR+t465sEnwehv1k00kf0zwUOBYqFEsqMhLIU9ujLho\npTRby5x/pcb9e49Y1uoMF3X83gKV8w9ZsucReiNOLm8x2kiZnZWgYaHFE8TxAqP5MeJgFXP4hIHu\nUzn0OGwfxRFm2Kit8+rwKOfOznDvF78gOXGMxe4ZyumXvBAMnt1f46//3V//t58TJco2mr1L9XiV\n//hewsq45KhXJct6jFybaDYmrQacOXWTeWnAX97fQrSOorgar5qbqG9tcfrGEp+8e5r/V5wl6x3n\nH157gfVM5E72R5zr/JqTQo0FReIffjTD5oNj1H91lGdnn3LjZIOBJfHT13/ATbXJWaHOjT/v09T2\nObrjkfU0/NTj+SsKRhhzWXrB1ZMP0Xc0DHkXQXZpXNxEzo7h2/v8f/MixYXP6B0bsekI1JyAWy+p\nlOVxdo+NeX60gnlyjblkSqWzzsEbfd7/YsqXa2cw4m8jDrTIpbuxxd7TR+xEJofrL5i/2ODR/buc\n/c67nH/7Kv0v7zHe2yPauMPa428oWwoTo8r2YZ/XX7pEur7HXHGCJ9+MWKr4PN/YwSFlRxB48s1D\nfv/fXMTd22Jp+S0Ggx7T3gHNl1ZpLrZZe3DAiXeOI2gSmTJi/UEXy91nc63LL/7m72i//hqd9jHK\neEhNahPf67M5yfjz/+77zJw6wTdr/8Sxl07B6irW/BGur/2UjrXMZ3d/xuXLl/GqcPXt73D83ClW\nVk/z5H6f4caQiqrjNI/iPy/oeo8Q1r/9s86KnFQ+YIyKPCsSCyPyfgWn38SIpwyTPkmuE5Zj7FEN\nI/GRBilNx4dSQFIUnJFIEYyImxW61jZBqBJ2XbzSJJv6VGsW036KVpGoz4qoxgzVyKbdN0nFkLgz\nIbYD6tYUaTskqFRIK23yhkQgd8lsl37gIdh9AidHn1VIqgKJK5MbAqkWoZoCWaYRGSJ6LDEZqiiS\nju0aFF5JFEXUOxnpQgtflOl0hgizGXoeMQwDPKP7G84kDRPRMUiSCXFpYVAiRQK1SoSU2yiFQqF6\nZEqVWAPJnJDPpPS1grTiMpO4uEGCGR4SZiKRU5IVHnUtR450LEMmH8wR1jW0PETRJEwpQSssjKyF\n0gzJNQVBTilGJVKjJM5KtFoTKctpKAlZI6JXquhaRiyoDAsBmYDpQESqhKh1HVcy0IY6tifSqDex\n1Yw4tDFUkSALCUdd1MYQ268h6B5lWlCrSmTYiJS/xcNQGU528GoGadujU4pkvkstAbGo0ZxWGYzA\nUDIiT6BRz8mkFDVTSBs2TnWO0smIWx6pM0/Q3SENashqRm61SPcLkrpBs6FSHWdAC0NOsBomci4y\nDMH1D1GEDCeWUDQQ7DpRMWXerVOZryPtKZRFzm7ewzFK+opK6RZ0Ep1UFumbEn4hYlSPoMz10aWS\nIjQQ+mMGxRTFFGlXZZTU4zBvIShTvI6INohQY5/aJPoNHkHV4kB2GDcaTNUq7ahAjvYYpFWmrk0Z\n7BBV+4yjFqkP3rhPojTJagq5aBKnKV6oUD9QiNND9HCCpR1CIRM6AQ3DQC+a7GcC+ajEb6l4UZ+0\nsoNW6dMdimSlgBpklHoVvyxx5uZQ7CllvM80cxDSGWrNnLw6QyjJVOQWmapBaqAWNWJHph2JtKoq\n/nTKRCvoNDxy2WQ06VFWbZqBiFQTqWYdRCch02Y5iEJMPSQM6hjZt765Zl4wXReQlxcJayHHrHc4\nuVBhO5nQS4bM7D5g7fE3hJdrXLgq0h4pfLH1GasXFhlkC+xfj8meSLSuXWU4OaCnL1OdhdFOQMMa\nwTTCLNZ4850rfLmkcWN/B9fYZsVcJTzSQC2fMtrvIYkuF8/M8jAKcSbPGTkad70+y2euYGdn+fLg\nZwzubFLLRYxGh8e/CPnR773NV/k6+rFZPti5jf7gl6S1IUcli+ezMeKZEZrvM/jnjzheXkKNt7j5\n1RN6X/ya7asGRnfAwkJMetRifvbb7ry2rsJpncXiNMZaSOOKx8H2BnNOjnHEJbh4jua8hXlP5vOk\nxomNnLgqkR7sE+gZB/sHnD1/CTGUOfaVjfbVXe6s27Reukrw1S4jt4ZRPKReLuP/X09omiaVUxc4\n58l0T07x7tdw1jISe8BkR+Ofn97h//mn28gnLuKPEk7qdUxzk3I4pb/ZRdiJ2MuWONZpE2+3WChX\naKw2uH74nIpSoTtaJ3/nCufXF3GvzPDmq7MoRwScboLw3Sa7T26w2Pp95O0FfOU5x1ovcVzWiJX/\nOlPU77yIKpWYNeMlKr8AY2OF4khKYTSxklXS0ylfL2T4Uwvz4wk77z5k7W0Hc/KQuttDLVSkpzpH\nOgFluMuV/DnbMxkz/3mJkbzAMXOdF7VFtuIqg5mIHwy3OGHtUNYCvvOVzrv/cJ6GkuLGEZtmhftl\nxCub+zyYn+NXR9ukLwt0Hi6Rb4m8SESG3+gceTFl82iNst9AsGLML68g/uOr9Jc6nDds3n46IdNT\nXrtfYF94QDo64IGyw1JgU8ZNrKcn6bUVPrQUvvOkR1Jrcar6nPT0OgCy7yNqGgd7Y86+/jJPRip2\nq8q7P3qPF7dvoLWXufqnP+D5V1/yyN/i2NnjXD4xgzUfMr9ic+/2U46ef5WH+484tXoK359ndHsH\nL/FYfekadanGJ//h7zl57TXu/eRjbLWCaNscfHKHM50lzHMzJJMJ3bt36W6mvH7lFKPWHFE35MT3\nLvH017/EWdS49P4PMFcc5o5nLB7Ricsey406ly78HnPzMtMvtnHymOG+wPzV0yhNjeHulKOSQa77\n5PVl9p5skWYFjfNn2b/9Cd3pFmO9Cg2D56Nv8ZA0kBoLGL0IuZ9SKm2aTagckRhJCpZVMo4z5Fkd\naa5kNKijBGP2A41kGhLrKSOtj285KFIDWamiqvtMoiltsyCUa0zChNKIEWSdtCujhlNk44BA9liY\nUXEOZ/CNKT0pwVdNqppFNU8Y9HWMaQtKjdlZi5I59MQnDUY40yq5bFELKkwrNaRIY5oUaHEJVQe9\nYkOeItkJtiMxt2Ay7oV4Xo7qJkQjm7QfI6spC51lpHDhN5xxE4WaUlAJS6Q0JJRi+oJGP7HoplCK\nCmZeQQplzESmzEvcvoJZJgiFRFSzCDs6e82CzDnETxPGeZWpUCczU9zIxk1DGmOBZNohKzX6Wg1B\niPHjEVPfwptm+J6JqApowYREsDHLBLXaZqA6TEuHSt8k96vU0JE8D81RkTQBK8nxidGHAr1KFddJ\nIBQJ0wmOWhCFDoEhokkiQs8gTESmYZXUGRNnOhVzH7Ws/QYPJU4wLRMlj4m6BgJV4rpA1LGxzIKu\nGoCjMJVSppFL7tUYeRp6XMGKLbrKAUUYI0YZdn+K0ZbQ5gCppCq56DNNGA/o9ULS+TEqCWm9QjE9\nBEkFVaZS2mSlgKjZSO4uWdBHt+vsA76fI6kS/XGAUZ1lmPswGqIYKtP2CMfWsIcBZlaloqborowX\nSkzzlAQFfQL+RIVgRHbgM9Pp0TYbaFGTiaaS1gMK2/0NHnIQg15Cd5dEFOgVArWxgFI9xMgq2GUd\nJWtg5PtoRRO5leAe+BD0qWY5ltqg0m6Q1yu0chlPksiDBoWYIKUWpiggqAWzMtidBnahk8sF9FX0\nsoLYSlH0Q8zCoSFAQ5bYOzhgNGiiiA2qSghOQqjJ5EqGpkBWThFkl3EwIVsw0WsOearRDfZQSpFc\nW2SaNdHSkvmahd4v6Qchsiky0CcIooNouKD4xAMRLepRJt/GPuwMh2g2FNs9Dv0xfjkiGGvM7TxG\nn9WR6hkvnzzLudNnuP7hPsJOjHP8PV5s93lNeMaxCz1MvUtRl9DNDGenZGeU8fa//RNSOebh+iZF\n7wg/Hq0jPBtztvk9xJXzxF99g+XmvHXqPYRziwznFPquxx/+QQWxsUCXHpfWFaxKh43tf+T12nv0\nr1TQ3Bk+vP2Q18SQW/mQ+aLCptdmaS/k9Ooqx4/N8+LwHo9+sUm7mOdZJBL3ZxD6I3LxLPn5KZEu\nEq47zH33KOO7m8TBHt0v1wA4FAtm95ZxhOc8mHvBjevbjP6kQzYdoWU1KuUGYRBgvG8QTx+jVDps\n7KxxOpDZ8p4gCSc51O+y0YHtw09ovP0mSnKCO/kjBs4AJ8lInx4lv3kTv30F0bXxbj3j5ttHGPc1\nhGvPSOxjxHNVBud1ZvUx//pPVxEerdMc7SMebrG06qGemuN8pFGYCi/8DSK5ykH6kJ9P7nN9rc7S\nn+UUzlOOnNEY/x932D+XUW6ss/l5wuGzxyg1Cfl+zMNygQtXLJb2H3IQ1RGOHGOrOUUWfmuR+Jfm\nd36d97//T//bvzf/5BXkzRmCcy4v+yFx3wLlPg8X9pn9xqBoKzx9t2RvPEe+riItrbG8u8Svjhoc\nTircfafL+7+weCJbvDq5yQlZQXW6fJ6tMllMEItNNCPn6+MjeustvOoGwoyL2LK4r0b423B8T4X4\ngNipM90/ynISYUUDns90+YPnKu2NDEVYoCpe5FmW4rbmSKuHmJ5HZg9ZGcyhzewi7SzRhJFmXQAA\nIABJREFU7vmsnRJYSB3clX2OdjUe1SPq7RFLe4cMGzWk60vcEc+wbScYqkv65Bg/e/Az/uqP/pI7\nL9Y5evkMSxWR+9efo9kmxdAl2ZqALfHRzTXefeN7CJ02B3di5EhisBHQjaa0ZJWJEjN3sc3n//wl\nYu+A5atnMS9d5NEHv0KeryOQ0ylmmD86R+7I2IrKxcUjrN37GkFJcYMutU6LZGoin6oTPd7gzA9e\nR3Zh48lTXr54ha/Xb9ExVnj24DlmIiFYNsnmgPqpGge3XA6Y0Fu7wcXf/x4f/80HZFsxsixSuVxH\n2Brx648/5fjqZXa2hpxdCGm88h2EwZT93U2MZgWpoXDr0894c+UaoVch023ycIQuK/hJQN/zMBwL\nM5NQ8hh54mPWZJSqTiSayEaAk9gEqkM1T1GmCoGfEAkQSQENbY7RQCFNJ+i5Q2xaiNMhlazOvg9G\nElIkOarYIDAHyOEMpSlT931EReDAV+lIJVI8JXPASEPSUqBm28iZTpaOEVslmZ6i6DZeGCDINnkc\nEmsCcjnGd0XiKmj9AHeckRl1TCnFUguUUEQSRYa5gudl1CoJH1z/MQDff+f7ZEOTiaoi2xMankKu\n2yhALRIYEgAuYS2gzAo0qYKljZl4NQRZQxmApCgkKphpihhaOEaI5GYIooBgTzG1jHEMgR3RsAXC\noY9MjcT0qakgSyZRVOCoY0RJJS51RGHM0DXoBBmqECAYAZ4V4wguBQJFYqAlMmkqYCg2gTOhFdtE\nk4LAGFEP2oyclFYuoU1DioaEH1poMpRGhpKqxLqLVFSYWjpffv03APzo3F+i1zOEyEY1CwI0qrYF\naUHpDchUDTW2SPOY1lxOkWsYjoFodwm7ErqSIRYxoVRHzWxGtoUpSAiFR5ZrRL0MWVRRqxHhUEMy\npqRDg1w2KYsAyUgZ6ilW7iF5NkVSkHYEGsMqTmWCF6bUipJAgWoxxk6bhPYEpbAxiyljUcSMVLLZ\nEUM3QzNLKnqBosA0gYriIeQxQtEkazn0E5c8lfDVmEbkoJgBvbHOrx78BIC/eu9tDF/FqNo4fg7V\nGLGywHTfRRIzgoaCioBmR4RUqfRySqtGJvloWYQ7HKFmBaUHseGQtVRSbYoqiAiSSqaBMNIotZDC\n/bbYOZvIZJ0UbZAzrWgE+zqCIxFmAqNEwMhFKo5GEQmkck5R5lijktgU8b2QOhm9wsJGpCKWpCOB\n0PHRJAmCADHOUJSQpFAYGgqW3Eeo5PhpjORXsScaiSlhJxWizMOpdXAbLj/99FPmX5pHOfN9utNt\nkoNDAsNB0rpkDY/VnXM8qszw4Jcfs/Ug5tpVmeRoSlKIzNz3mX9lFqVoU86doLJ3n11lhcmtD2lu\nTlmfjJm5YLPuwfJ+jyOtE1xuzFLM7LPjd7HSjGSygHD/JncGPd448yp+ZYaaVWc47iMUFr45of/i\nkGOnLjOzqPE42OKULPCMKQszV1GTR5hqGz3dxUfi1qBCu9pi6XKLxBhzIo9xhQXirYc8HmyiXKsx\n/WbA0auLBDdukKZtakbI8wMN4T24+Z8+5Y//4vuI5ohBPuK4tIq/ovH2RkSveYKdwzFR9zzbew84\nOCZyvDiJcauP+kev82CYE5ceZ9NDkuQk+lyBEzssrsxy/9kBb1yEzNeI+w+YajpX3nwJu3rIY6NK\nR+uj1w9QHrnoOyXt+dO09/eZWVmhW3f45PObOM4K4VzChn6EqOuwujvDvZZNf/MmwlGZ9WGMcuES\nzdEQ/4yMcOuAw8cxyUqMszBDMZ7hqGUjlyO61h72w3kOY5elwxnWe1P2vT1WLkk8PghZ3pL47NEa\n/+6v/8f/9td5niJxZNhjUf2U87d9thub/DoJuLNccmlD5OSOydH7ChfvxhznkMvaI7rC2xzqKuXY\n4hXjKee/jvjbd2Tq1peIG8v846zNxqkuc+I+V4OA9kAgTuGsD8uqy+zNi7jJm9zrXuSVBzlXFrdI\nzx6SnD+NcLSLM/+A2l4NfUvildFJbh/PCGbPIaw+5d61D3BPFWTh1xy9XefZ7ArKWwOSIwkjHvPh\nD/vMjDQqBzMcTCb4okFmVgiTVQaPXuNB+wzbHYu5c4e8UUyRTj9mMHeC4Pi365oHg0d890c/pHd7\nja1vHvDK984gTiZMuj7G98+QlgfMWxp3/vFvadfaaDWT/osRb/z3b3Ll7CIvfJfBZsGjW4ec/sOL\nqPMW7qyDvb/Fmb/4Ht7hlFOnzjCOhwh1lb1bd2nq83xyZ53l711BK+a4fPoyNXGFfvCIhz/5Eq0l\nkT4b8M3HX3Hk4lnuf3CblnyMZLzLO3/2Ls+e95jueIxzkcntEW68z/GVK0hFAz875Ls/eIOX3jmO\ne9jD8kM+X3/AD/+H9/jqo4+49s5JPv1lj4//w09YvXyZZiXl5bdeZXhvCIAuNbGKBDssyYnxKFCn\nUxzVwDhImAgVknaLfE4nSTzEfRfRDWkZdXxHQoh28eyCoOZh5SOqboA+LbEyGXuhwGzExLGPWnRJ\nNROhJTJ/JMYNq3iN9NvboX5ArJaUmyKhYkCaMZNNOMxFJlpONpHZk2oURcZk4COaEnKjjRllhN0R\n+sTFKQxkOyKvNTGCKdNApDlXwR4qeBVIpRS7HFJWdEozIZt3KMMIXXGQMo9c/K2RepIXTLUQVUoQ\nFJtoJidM+1R8GVeJyXQd22mj9KvU8waZFpB5VRp5Su7HRDNTbK2gntqEQQNZz8inNUJZQc0ltHET\nSckwlQqWXydIPZx6htwe0jAMvFIlHZfUDJX9WMHXCpxyxGTSwmz0CW2BUhQY+RqSlzCNOiiihC1O\nCNQxmWHQ9WWiRGRUBBSlhMwMk0oPMdLoqRkTsaCQKqiOhJHKiPkIK8mJc52wkGm6w9/gIcQC7l5I\norrkwxFaMSWXXEgj3Bo0DQ1F2EcyBab7ChQho9gnyzUKS8dOasiWSkUbolVj9CxiHO8h9xtkQ5tq\nQ0BQQzS/itWGRJOwZkUyIcRuZlCAM84oYot+7qI3TdS4gdeccqi30SsKk7qMnFi4fpPJTErTauHI\nAmFZ0FZFklmbZEtlrpLg9WqM9mNyMafEobAdpjWHXAqY7rs0RgXWNAC3zqTqk41UCuu3ERiT0GXq\nCwwSjdA08AsoRhnqooZoNsgOXaZTAdVXUc2I3oIIZU5FBDQZ3epQOhaDYsLUh84wo3oIamZTojEW\nVSa1CDXMSJ0h6b6P1HCpJSYDW0NII4x6QUWSkZMB5lxMWXfwpn0qjopc9dF1i9gRsQ4KCidCcAxq\n+QgtMdmXp+hNiSIqqKYFmdEm1WMKw6CYdnFGCQexSpJk5JNZhKiHlO4QEWEUBVqhMpAgU7590Sop\nJvWWhaRXWHzpKNfmVxlW6qwsXiD+/gJnV6ssvPUWf/TKRb5qVnn08yGFV6G1ZHP/yRbxps/2Z58S\ndyoUN6/Tuvgu46vXaC3C/tcv+LfZK2SVJk8Vlb0vvubRRoZ3U+PE2VPYFyp8Q8z73znD9d27nPp6\nQPR5TrW+yP2vPdDa1BWNwT7c+ukvmQYF+06Fs16LF+Ee1vI16B4idEVyfcx7rQbWpk+4JiMrxxkl\nOpK1zp4Fy4sniTdN2pdkGqxw9MIqSydNxPfeZ+n0KvLTEwDsPhHY2t6gs3oe9taZP9zgzobKfWkD\nU3WY0xqc6tS5KC+x/vVNnpyzGEfbvCNV0NqXuLXdYWP3IbGwT3Ex5fDwK84swN5olf7tIePFBSZP\ncj64u8amv8isOeb6U5ONtVXyUxEvFi4RdRz2qkvc9H/NmZHC7GkV+YTC7m7E2b2I+fABn1Z+QTPf\n4NIrq5x6+iZvn1wk+vuPkVbOc/anKbrwOouVJofjEyzlZ2g6n/J0Z8SGlnDMnGNUFpycaRO8lRB6\nzzjxap1pnmIX+/SPT9D/K9XR77yIMvC5FGV8df4q6kTkuVvjqj3m/MPTbG+9Rb+V8diZZzQ5wfxT\nEc9+l/cPE6KVgnPmBhurErPODOdHPmbjHa7/acwr5gbLNxwa6S7qszGj5nfZLBe5c30JbdpBfMPi\n9NcjWso3dM8KsNMmYY/CFxl8s0qrv0/v9I/ZqMvcUQ8pPQd19RPWbAVv1GGx2GJ5NsE7FzPvhpy8\nPsW+N6U+ySh0j/uXRuxeeUI4n3Ltb3Rkv89Z+zOab37Gi06JJD5irVrwNPA5d91hYTxm9OLbLrCo\nryCFAWrms2XWsXEwFhepLdQJ12IGqcRiMU/lpRU6eUl9VuPcH55m99fP+OWn27x5apnZBYk3z5wi\n+Nk6x15/k3C8ieyJRLceos3Oopxoko5ihntPsPUZ3P0DFq4cY+3xOk2hYLK3j5cecHz5ZU6/9DJ5\n8zgHGzd46dVX6K7d5ti1i4TdLisXKgyfuMyf1hkF95ltzTCaczn98tso0iaWXbD7t1/y6MNPEQYx\nNaNDf8/j2g//nP6HXTorOi/GIVKjx7tvX+bDr3/Mvhui7Y1pnP/WI2bVXKqOh2aNaTottMTHt9vY\naULh5JTDATVZRhAcFLeJItiobZlEyrDTMZZaxQma6KOCab1CUjUwpRkOpYByV4ZeHdHwERWTItQg\nCXG9KfqcT6ucQVnwcWQdLTnEKgPUqkoiW7iWj1YIyO0OspCgSRk1taQUPdKeT5KHlFlKVOq4ccQo\n6sNEwegnuJJNxY3RJJO0ESPaIlVTQEAi3p+SHTqM93dRJRlFSVEs6A93f8MZy1epBj54MUkqIIQO\nbbFNrg3IaiIUIpmYEps5fT1FHNSQBI+cBLkVYrsZDBV0qY9gghZbKOkBpqXiOjGaluO6AqUTUsj7\nlBMRb+hgDExcwScOPYrZIQOzRKCETMebWmiZQKWooXkTJLOCSkpswFQYEkUNcqNBoto4WYEZ+9QL\nETPJsfWEcjogDXRsL6QyTSmqKkVRUvoSfbNA8E1SIcPoSxiRRtAUfoOHsJQSGwXJdIqtqGSmQRIr\nFBMNq9AYTkS0ikI2BYMSORMQypDc19FNjzRXEGgRCTUyL8HLZeg1SGYHxPmAqWowES0kItzUopaB\nvzukRED0GtQ8EzOTKTUNUfOJIxk5HKKVBfVihFNKCLmM09BQSChGI3p7CX1DRPUswljCzCfUDI2D\ng4w5VaQi1xF8A6scMFI92lKGX6Q4cwl5WyAVDWqNiCxWSXUB7b9ItPeHdWLJo+2PEQOZLM5IzD6V\nOMWIwdINShL2phkVMaYt5lgtkVyo0It1TEGjP3VR5uaoLfZJdY/IVOmHIkwiWgcJMyMPTzUZD1X0\neY1qUiVXTDo6SEGGOxLpu0NEu05lrKNJGbFYcCD1sI15lFSEfIK+IFJRW+R5iaTO4ekF9STH9RIq\nikDXVhBEEbPUmIQqjqxiOQbzIhRTGa2tARWEI0dJxyphI8dcTGmrAUL+bfZe5/Eh2/v3+P7yEVrp\nAl9uDhE/us4tXyT8v6+z8djj+HjC3d490n5Bxcy5+Oo82+cs2kYH/YLEyBPYWdvh9feOk3ZeMLnx\nHHPN5/TCKe5LOV6SYvYfcSsccc40Sa6J/N3Pt3D3b3Kt2SGQj6KMfbwzNW711tndWMPJdrHUnIW3\nzyIeTche+yH6oxZPfJ9iOWPBnZB/vcadvM50rsVS5rCtj7nv3eZ5e53RP31EoKQID4YsvjJLc7LP\n8VabujSP0Hd5GDegUeHnd3/M/Q/+E8KJfQBqwWOOvP4St3fXuMmUgfwab7x1ltgRMM6qbAf/yGSx\nJN94zuJL79BJNzj26wk3J3fpPP+IU3/ucfHNS1R7Cc8Lmbg8S6C2cL8aofywhTawWP69Jhc7y+jR\nHmNE1LMZJ8193J3LXFuZsnXza85cgsOPMq7fG3H8cI42JTOhyMbBV0xZoa5UmJ89xi3NJu2sE2r7\nXDktMlJucDBfMJAecebEed598pyPNv4BWX2d1uUZ+t4+gRDSaYtkyR6TwXXmQ/ButzgsLfxZE808\nSSH8ljP/0vzOiyg9kylzg5UdiRcrIxx3jluTlyjlgFCIWWpvU128TXr0LjsLOm70jAdLezypH/BY\nabBgbPPsldusPKmx3vTJhSnDUZPtpRDZEbjXP0fbuInGkNPzs+xdXePS5jfcXphjeizH3TmHLpvU\nKhU6z6YsXvyCnVYH8/kfYlZO8Zo6ZdgUUL6+hLw+w970FTLhkPXiHGu5St+e8qQw6f/FGo7apL1e\nYPQPeP+DOuLuKW7+VcKLN0ZIowvsBDpSfBPx0UWkWKJ+YYNl+RH9/QWWxBCA+unTfP7FT5g/fZ7s\n1jd88fFP0KoSrZkWFAcc1Rd4dvgZmq9w8+5jDp/dwQgd9qo+771e58PPb/L8YJfnozG1Yyewsl3K\njRKh4YCtc6xq090WmColk2GFdiQTmCGT/jpvrZ7mwWjAk6c7yEeqTNwe0Sglv3+HI8sv8WDnC17/\n03/NZ188pH76PD/+P7epzUYcnX+HIDD55v5DarbKZx/9ClVu87yXcuLt7/PWv/ljhDkH53yLvGwi\ndwdoHYWkG9J9fJ8jMxc4mKa8/52LnDrV5leffMaFxQ4AWVkwGhoMJJ2u65MkIrocUOQ5SVQgHG9R\nDoYEexm7yYhBeUB3b4g/TshLi9SoUoQB3ozFTKVEiwtGUg/FFzHEQ+yKjFg5Qj2qUZWGeFqJI9sI\ncslemSAOE0LdQphkYGSMggnCaEDDblGv9ZF6I8p2jZag4YcKgSoxbNcYDAfkvZhmxUKmhjMjE4US\ncRFTmaa4Ngxe7JPFEmkImu6QWAukeUCg+JStKvJCBz0dUtMVnPpvRUOq2+RagtrRySUfUXbx1D5e\nKVJmGoLsIUZTNE/FmtgI9ZLMEZgIMlFu44kOkTRgv6hSpgmhLDJtViERaIkZkZHSLCuUaUBiiuQN\nlUyYEms5lUkb0xSQxgZ24WJYJXqaoZtjIqVHKYZkksM4c0nlHEPq0EgUDH2f0hWZ910GuYesaiiZ\ngqpPiZyMSg4VVSZqaYyqKVq/jkCIQw9Zl3AdmZ5sUGmmDCsZAr/1RPnbAjOaQk3qkKgOVS+lKCI8\nO6QUZQQLBrnIkRmRoVphEE/oqDqJPKVM6riWhxf1qHsjhJpONd6n6ihYBxXUUkQauUgViSDMMRFR\ncgF1qaAdxviSxLiQGCk2WCqS2UCNxgRBhuybuH2LRAkxZIWxGhDPqthqhUrTRZNAFB38WIBxSr/q\nYtarDKsTEjFinCvIpo7YlRh6LhXfQxQEQkEFBYIowx6VCCpk0/+iW7FlQp6QiR6ZP2Ixr2CndSax\nSSwcIhcuKDa1TkGSVSkHBsNIopByrLikpwfMmw0cz0UaziJWZ6jYPtRCSjtDbI8YN9poSh9Z1vH7\nLolaUOQJoTQkyWL0joJdyODEuE6fqZAiFiWmVWecjJDlEjEy6I0Eiv0pw36BG0qI05gsqFKTMw59\nDSGGWjxgrKUYbszU6JBbMT05QS5q6HtDrKpCP4wpoz7JJKDw6gihjHY4AMBNayz0Le788ufox0Lc\nKx7DhsJCUmHDmHC+KnO7WXL6O+dZCAyqLY/nDw44Ma2Rj0aMwipXli5zYnGO8W6VvacRlSihdXKF\nJz/5gmL2kPHJI2RSk8t/dp6t7R0Wt+s46gHIp3hxoU417eHYy2zu3OGl7x9HvXKK751eJmaOw198\nzdaTpzT2DzkRPuLlrYyqfoLn2QFbow3eWoH80IVGDXE3YCafZbytc+qv3mfedTjx3lX6PZW7g5Dp\nfZeDrMHD4XOuLR1w/5cP0Hs2glBH2P02RqeoriDoOa8NrrHE+1RbsK5ssBotMnlSkMcnqTtz7Jc+\nWTVk+/EyD2Yc5L2Q2eOvc2q9xpM7h/TmVjjaNrh9f49gsM7Lr0hs3LMxpz5y4XCncYfaeExHKqnu\nSZTzp7l2QubGvV1efrfFz372kCsXXyOPt/CfRRjcJypzRrMmo9UD4gciWzeHODcybCVmczSC6TmO\nPn2D9rGSK1cW+eCrB3x9NOYH772D4fi4d3xm5hyc3QGH4QDvtMli+yS1RYPRyoRTSYH+eBNBayAW\nv83e+5fmd15ETQT4/FqX9egF3Y0l5sQ27y7dQCibHFxMee6v0lWh7CzS9Ko8OW8w/nKO9j+fwOxf\nIotshF9dYjIX0h7vUvusg3llm2MPTnHQ7qCf6dG5a/J+cIOZ9BbzN47zeHiKI+kWk4cC5dmP2B3Z\nhGONNdNG7r+Ldv4h5eo9ZosbTBY8zheHeMdvYITHaQdd/I03UT6GVe+QkxsCM3On2X6yiqUfsrov\nsTf/x9xe0aic2mX17pTNw5PsLA2Z226S3f8ulhDBg5zBzmu8UOY4K/6EaePbT+X6d6l3VslGGUtX\nVzjbfp1xP0UxTGrHV3j27B5n334ddfbbtna7usQv7n1NcWeX2/90B6tS5eobq+TDQ05cmuH6kynR\n2OfRlx+jHdF5uH6dW198xbGXTyMOx1hHjW9vYEYdPvrwEy6+2kE/YTCfRxzXKwiFxsqF83jpkCsn\nfsStn/8dreV5jssyRrKOptf46rP/SGWlg1LErN8PGYx77G0+4cpfvsHaZ58wyk32dgbIWo1h5nP9\nZx9TWViitbTM6aVzEE6QBrscPN9k+cIV3vrRd1j/6a8A0OQWwryCJGgoNTBtDaUwQJVIjRQ57dOt\nSIhVDa1d0u7M0xRyGlWLhBCTAWAjjWRcz2CKSKVynFTJ6NYN8jSgLgzwDAndbOH4Dl5YkvWbzEgu\npTqL6Q7QajOksoFgxMh1g30v5dBooyUFZD5eCBVdQY1niHc2qcxqjOwZNDdESUXEXKdeH6PmE8bK\nGKlWRTV1KuOQIojJRAM9dalnKoKdMiPbZFuHxNU6uVnBYfY3nJEzH0lTcMsMc6QQBxqqYFPLTFBL\nlEikjJoUckDeSVGmAn5RoWEUyCMZ23BJtDZKGOAYAUUSkQ0FxGjMpF+S5Sa+CUFq0h7IUFo4isBU\nzvGtAVMpJw4zpNAgFQ2mQUAZVbFTnZEUIqlgywbtVECTPbRIR7IqxIWAWxNRMNC1HklpMS0d4kxH\nqsooUoI0FVGCOqWcUwo2ilklycfoTDB9iSDUqYxLxO5vRWVdjUmiKtM0AaEHrYQwL2jlAqZURw3H\nWKqMJ9gYlR7t+RmmioiUVLHsmDTVSROLXmbTH6RY2iyl06WUNDLZQDAjzImLYEok3QFJnGKGMkmR\n4zhdJPmAVjQiGiaYmcgQFaljEBZDGrqA6lYZHiaQCjS6PplSEGbziHlJWRuj6hEyAogZQiog+QZh\nCW1phOD7qKWFGCwQVnQm1MhGFlKSkwoRuayhxA5q9bfho1VpCrqNoJuIpU5PzMinIkVcYWLZBNE8\n9dxF9GZR0hTZnCKLE7yRRXVWYlGxcN19qFYIpQOyomC0n2L6EqKv0d8xccKEUdpCq4oogkJRxAy9\nmHJc/XYl7O4z1DWCvoGDia2pLMzWMCWoKzUCKcKv5JhJRtW0ySo6InvEkkaZSmRKihOWtAyNrFND\nGKdEZU5kjBkGOk29QjiTITYN0Dwa4hBxTsXQHfJ0SDwaEkvfVmn1ygEr11q0XnuD3Z0t6lsxr333\nPN54n3e//z6fP3/IvKXxz7s7SONdDvs+Qe+QT65/ytLqVbwy4cncLmFf41lb58zApvKny+yPtph9\n6wLPbt8jTvocmb5gq6hR6AVm5wWCZRMo27i/OqQ7aPJ4d4RtLDC5NWI8VPlku09e7tKtSVwVLBpt\ngZtnl9io+Dy+9zXV1eMMqlX69xLk2SbB7BLS0ZDnsx5SMWH3m1/y+dYDbqx1OTswsFdnUU+klN0D\nypN11rYS2qsGR16b582FY0TRt2eItjzL9S8eMjX3qX5Pov/kFoeeRL8ecNbxGaQiCw9Mjh/kdBU4\n8gcPsFGpvHWJr/7uOp9PHKwgQPrsEcXznN9vtZi9dIV73zzhT65MWd8TkDId6esa3TMnyR6G7CVN\nil/8hH5yj9xq8Sw3OTJ/jcxpIqvHsFY83P02/dSjvuuz3DpBJw9ozo1oi18T1ldYLE4RL2jszY8I\n9o4yeKpw/p1XOHJY8GX8lNvdhO2kS2XlCs9evMTZS2eod7e5fUvgSXOXE3nB/eGA4bzNXDchEX/7\novVfmt95Y/n/+r/8z/9+7m2d9wuX3sElbHWdrFqgD2rcr2c4pcy7X1yl6G/xxK6xurZDuFoyWTCx\nTA8lPqRUUmq7MmzOMbGOU05muXVpjatPJJb229xruqDa7M5roEzo1nXm9wSsZpXHjszkpEB116Ya\n+cx4Ge39kzi84P5sgPnxSaJonvUFCVPYZv/kHV69kdJsjtkyzmGoEXuVELtyF+X+VcROjd3pmNYL\niVvzFmX/FPW9EbVml35WZ/ZcyK6xhdU6wit7dxmcFnleOU/90ZSfr33KywvfY3HlBFvrW2xub5C2\nTbSKSm8QkO1tcfy1qzy//RleMCTMTA52Rxy7tITerhJnY+aOn+fZB1+y3D7Cr289Y7kzQ9YwURYK\noqlDxIDXF07zqw++4KW35tgZ9jhysUNDd5DdgungkJ31EVZUITgKg91ddrtD4tRlcWWBzsmXePHp\nTxhOdjjz+/+KD3/+Edde+z2efnGTC3/xQ5YMmfrCPKld4eCpy7FXV9m/c5f6mdN88+lPmS1TMqXK\nOJwiCBkbm3eZGksoSkI+MthPYrzdkml1ws0vbvDmtTcQe8q3gYN5wlSeIpGQ6wq60MIbe0h6ShG4\nKGoFTXXR1EXwA9RMJBcsaMuU0ghxWmBVHQyp5P/n7k2abbuuK71v18XZ++xT3/q9++69r67xUD4A\nBEGChCQmJUrKZDrSkdlwy337B7jtH2B33XA6nKlUZKaYAgkSJEHUwKvr+tbFuac+Z++z68INKIhs\nOdRUaP2EGWusNWLOMceIBIk8meIFAoYIYqEi52MiMyVMY6pCRm9UkCoZ1oyFqqVMhIRW3GIcF8j2\nlNmsQlZW0cnxsoBB4VJTQNUjpAMZdaaMO/ExsglaArIwi1eJSbOCORRcU0JTC6wVqY40AAAgAElE\nQVQcRAs0UyV0FKQIpNCgF4wIJwamKNKb+vz+3gcAvPXmX1NSfKZUkaYyUU1FTULkPMf0VEJMECbI\nWUGp5JKMJbykoBzoRK0BDJrYmkdmJmiZjmu51D2ZPinVpowquUQhyGGGIOgkkU+RRqA3SFSTWj5F\nq+QMhlPqSoZiNhlGI4yqhZwpxIFBLvlIQplUg7GZ4Q41KqUJ48TGijwSs2BEhuEX5JnPWBLx3RRZ\ns6koMYIkogQ9FEtmOglAa5GaHRJfxLI8Ulnjkxv/CYB3z/45aVMkHLpY2Sy+3MO2mvh5iurH6GId\n2ROgKEj7BmMUVC2hLCZMZR0/k7AqItooomyL9JMe05FOmMlIzZB8rJNEBYJso0ghWjKLa0l4YQTj\nmMScQ3I0DDnGSwTqUgCDgqAOhWsxkgJkdUKzCPFyCd2USYoJ4iggDTIkSWdQaNRKGkWUYvgxge5T\neA5yNqVsOkRmBoWHLpj4E4+aUqCYZTyrYBqMERSB3934FQB//tpLCElKnDaxrBGTyAZzjFholEwR\ntZSS6h6yFqNODTLJhKlMVsSY2og2FmlSQiHFVEP8yEesz6PmMjlDaost+jk0ykPMccpEL1N2dVwE\n8paAJZqYxKh6QGQExJFNksQUQcBIlsikBMk3UH1IbYOp38bSSoSRjazGBLGAFhtYTeiHBYoHiVlm\nRo0JrDJWKOMPInRZJfQ6qPkMY9ejIkgogUskgFc4RA2Nj774LYvlZepHFjjSKGiUm4xLAvZgienz\n2xyO2owjFXc/5aV5i2feiCPGLPoRjeNvvsnje7tsfX0d6grlMCfc9InKfWrqEuGTdXab87yxdImn\nd6/RDCIOyipnlo+xvjFg6fJldrY3OF9R8Lc7rGkNtib3mUl1LMfAOZMweTZh7dIbPEki9sIOV2dn\nkfwmo9GQuT4cWXqZg85d9pohS7FDowH+73aw8zmO/WCR9RtbSKLPTKNB7mRMpYhS26ZtGAjRM+ql\nN0geBiyecdn1VW589Bv+p5PvsfTaCfzDhPZ0g1Zzgedf9imO6sh7GSXmKV2tElZ8InEDs2tjhkdY\nOjXDSDHpI7K2skBTr9J51kOLfeYbHgdpj80jBYpd0EkgbCxR2irokCCpDzhz9BITtc7JxX0GHz9C\nLc8guTdoSBZaMWRr1iPoXaFZbnL/WofxTJkjyoDq2bfJxFsEh4tM9evYskJjNWbhaYMt7yZPu/M4\nqcm894xXTy/Sv3lI/dyIktzj8/sF7y9eZlBr8PihyvxSlSuKib9b4ZP7H/O//i//DITlQh5w9ukS\nvy+/T/P05xycH7NzuMR68wXVfJuiucMH554TyMc53o3Zjc9Sub1Eba9DI7yD130bS6nQP92lOOnj\n232E+mOuPpxh05xwjSqLE4tg+yjR9dPoRZdkFDI6P8f2yR1e3e7ysy8PSAe7ZLUhX16FwI35HJuX\n71YYvmKwXbI5Ppkw3anQun+BaOEo1uKU0vwWg9VZliYBl8cye3MR6wct5o2HnLp0h9P9NsLZD9CO\nNBjdqXPpESTbO0zrGtNRwrDxFve0ZaTuGHvlW+HwymrBbrSH9WqD7199j/zxA4406wz2dgh8hT/8\n4hfMv/wvMOSTTNqb1I4WFLlF536KVLTY/Oop1YVZntdiTr18mXRZYdHJOGi7rJSbCJnFQyPh5//z\nT/A3RI4dexV/L8IyWjxPezBO+N7ZV3mRblH0QxYWdc7/+GWCImT9yztwOOXMz/8doSRz48O/4er7\nryM0FE7PrPHoxmdsTAccqc+xdfs63L/O7v3r7E8PUNyQqlsl7XiI8zrKpIfWmuPty+dZtA/YXN+n\nlwsUe5uo8i7NM5cBUAFHqdFUS8xkM+huiXJmkQgOqifRtGxaXp0SMlk+5XBbIpt2GEkuHQlUpcAM\nJsR9GbOaIZgCyXYfezrGNBrINYm0LCBIE4I0QTy0iSQFz0nAAdO0wJXob8fE04ip1CYTA8JEYGfc\nR2z3Cf0JNbPMrKsxUWNUr4a2IhK1QyRRoqe1SO2MieQT9wIETcUPbYwiRe6XGJczxqlMlmYMDqdo\nnoziTMj1DMNOUMSClvodlP0sguEcpWGELIDSTRA9hzwvGEhTpGabsiGizTiMOyZyY4racokdAWPk\nUJgpkeJiTCUYREg9ibwBRkthikoQtEjiMpmRkkoj8ppEnpWoqhNKYYQUC4jTGpVyhUFqEYxGaJZA\nlgUkyKj1DkqR0TEV8o5HKiToooyQW5BN0BwZfIW6XCap5yTCDI4WMmen5OaQgIjMHDHOakzGErlQ\noZGHWMMGkq0RRxVKUe+P9TDnQpxRgFmDoDRCMWqMo0NUVSTVU4Z2j3S2QFMzKBc4+YR430UITawx\nLIodKkmCZoVMkgwtNHAWG+hahiiXkNKMsuJQUWEsOXiNHprYp8jLULVB6iIkEwbTnKbgfrudV7Ip\nuRXG5j5zekHJEaDUIJtxGHsmFdFEimqEhY5o2Ci+xiAMcSSHQkmwFRVBzUlLFkEek8cqk1RAHHSp\nWNBOLIphF8sNMKwEwu98s0YdsHMHwRpyMBUwDZ3yxMRTJjB1EeMJWbdGnucMZFBUn0BWsKQhRVFj\nLkqYVab44YjDrkRl4lCOB0zCKXlc4CZbSLmHEjVoRwaC71JIY2ZrIsLGGF2DxLYJ5SaEGTXDIBmJ\nhLUEIR5itGW8uEfJ0hDSKYU+S+h1UZ0ORRhTqAGxuU8bATXX0FOZWiSxG0ypZxHRZJ/QlJCDLpK4\niFCOkS0VX6ngFrPkWUGpGVFORwDEJ1y8SOXaTsr+tYSN/3qfr6Lr3Pcc2lGXk0fKHLXKmIbCj08d\nYb26wNH5k3y5/jmj8CYrx9awn1SITi3h2h1Wy5cp1F3M1x0Gdz9ja/iU1fg46utnie6OSZ49Y9VU\nORD3OCHIjBtrLJ9f4omzTjib8WIpYd9/zN7nEZcFAU0eY/QDWvISUTCDYkQYRwySasKdJ9dYOH8K\nbWuPe8N9Sk9dJn96lKKa8vmTjCN/+T6n0pxde8Je0WClfoYntU2s50+YPM1J7n3NiVLGV5sW3H8C\nQCJL3NjxeXy4QT04Rny/z/ybF3l3J2Bm3mf+lZxdQ0Qad1Gv10gmF+gv3uXDX31NvnHIa0sZ6q1t\nbr54zOzcC8qnW9yYLONY5+j+0ma60WRm9ylL2T3qF9Y5/6aJIl1leDzhXrfD/pdlvMUVLkxTbPMS\nXamPe+AyftLjUtihWBryP/4s5cevnWBrUOLD4DZxbZUVM6O/V2KpV+Lmg4Dfj9dREokT53SaVQ+1\n/CrP9p6xHlTZux8T3znJS/plbn35H4j1Ea84mzTdDvf1IdfOvEBQvsPM/9/5J0+ipppBL7nA8l2P\nmXCeudxjpyTTMmC+mKPlZBzre1xv5dw/NotxfJvAmRA6MzxZOkPYV3gerNHTCg7ynDXpa3bvX+Da\ngodXS7h47L/wLFllcKRLI+xxdmOGuSubPPR6nPxCxRm8x92ZFYYnzyK0ZrgYfYkbJ/xowyZeaiE+\nPqRx/CM20wrvzmb4Mxq/O+Pxm9IV9EGLTHnAk/qQDxZ1ynpEIbVh9DJfLwmca22zenuZEzsPqayE\nTOpjSlOdn9/ROBprTEYur8VfoJ/aRt//1gfomycua4uLLA0Vvnh8nda/+Stuf/icwcE2cr3C3JzE\n3f/4IcoxFdGpsTB7ic1PfkmtFGA1Fmgul3gaTlhurFBVVeyDBumkTNxpcG/nG8LBHsfW4dZ/usHj\njVt8/su/J5KH7BcD6uYiR//yXT7++kvsxXkQKjx6toU62SdNy1SvnOba179i0n9CqzlHkNawE4P2\n3UdYl2ss7Vfof/6Cr59+xIm33sFvmVw5+gqpKvLs9i1Of/8CpR+eQ9/cotKY5cHvbrF1e49ep8TC\n1WXqepv9cUqgNWk/XAcgVxUmxh5xHrLrh5RnMpBKOOGIkR3ie312xx3SrKAezCBXcvy6gzJUUJUJ\n0yhhlzFKPWbcFog3OqRSgSeA6rkISsFgT0YwNHRXIDc9JD3BTB1M12HYd+nTpbGkIEoyalGhZoCj\nFMhCmdFcC0OokxYZHcOmGlqMShnTfQctG1Ku5lTSMUV5llAbIQgWjRgkXUTKZaJ5k4q7gNJN8Q51\nFCEgziLC/RhVlzDSnH4Y05G/E0Haoypp0sV1TMR6RKHqpGqXcZFSUWVKfYuxpiB6XZSmRkEDZSQQ\nhj1UGYpihNKTCE0QyyCJOh4FSaB+G+As9CmrhwhuCVGepYxNySkTFAHFNKIbWPQjkelYxaJgmisU\ngQVxBO4YOiVUP0KlhyA7SIKImo2J7IRmkRJGFkJcYZymyHEEeZ8iVUkMk1TQKHkyRWYjyAWC5UIq\nMJwmRM0EzYuJnTHdSvmP9egOBTrlBMWr40YRamyg9k2K7pRMTbBlAy9VGIY+qSAT2xaqoBE5Mm7R\nJQ5lfKaMajZVq4qsq1hFRpaplIoY33AZCn2ySR81SImSBF2qUShDDLdEDY1YB0dzOSxX6WYqjjRA\nKmcoooyo5sipQRJ3EbZjKkLOIHBR5TaK4WMIPo7sYWoWge4hRxnuMMEo6WhShSiyyOyEuj2Lllt4\nyDS0gGRmFi1SMdOMIvrvjQNlxKZB5iY0LYGpmOBVTaySzTj2GUcahe0RDkX06RBf0akWGUlsEzBl\nZ+wROQKaUYNcpdsALzKRazJKFiG6c9TCmFxNmTFEEt2nqMjEboJUkei7fQbBCD3IKAIYR23KhU80\n1JjP5vGzPiXBZBR0kNycSHKJKw5lQaDetJhpCajaMnVFx1ZiknjCWJlQtRsUvR5GYwZn6lJYJlnj\ngF46xBQqlKYShTgkajiosYJofntHTkYmTavEz+bWeHC8z9l/9z4nlBJvfW+FBekqD768T5LdJO90\nEIMy3z98xmS6x8LXBie1NRxN5+xfVGnFEXrjIqNHu1RSlXh7m7+69DaqcZbDs2WCrM67V5p82g9Q\n1nskro4rVFioO/zX1COzQ76/soIy8agPlqjODLieh2RPdJasCsHTCVtPf4syN4MULTBfehlteZHN\n519xefFV5vo5t8b7tPYmrHsep91D+ht9hppKaweavTajKOIvW0cpiirxyRrteMjt6Rbz7ojixycA\neHHcZO2wzexby6RHBLIfHKHlPYWKTt6/SP+5QHDwd6idkO6bPaxzIe27Gi/P5VxeKai6B/ivpbz9\nhszt9nkCYxM5v8Gutc+JE0vUZgy8+g9p7ogcfnjAzviA5eV7jG8cEO7ICNY2VXmPeE6m7iQMexGq\n8zKnz/1r+qMO4bMZPtmxeJR5lOZ85uPjlL80+TSPEcQho70eF0dVeuIDhulFsvmIYLfBeLtDb3CR\nt+bbLL8lojs+txf3mL5mEl1r8/mgjj+cEnyp897+CbJU4B9z/smP8/7P//3/+N/O/bTG8pERG8KA\nR9JF3tnc4JH/MpXOKmM/4+nRgh9eh82zz4h7MFeJEAYG84hsnkxYkB9QPTAx+vMoR3WW5THK3VPY\nrkNzWeJhQ8PaVhiW92jZQ+5VLSp7BSfjCr9rimDk6Addaj2JtU6NdjXnwY8e0Nk8xcpQI9q+yLHD\nPSanumz7p3C8Pd7uHvDCXWWvAbWDAW+168iegzyfg5mzclel61g4D09x8/UxViRTNvswOcuvmyb1\nmXtEbgdrusZeeoZntR3u/O5j/vQH7yBmHQK1xkvnLvL0tzcojkcUw4CZZpOVtQu0XjlF8mCX1WMr\nZIrPXMVk5dU5DmKRyWiL2ZJEb2tIZmo8e/IC43SFo7MNujubGInNXinh7KUW8+++gdrZJdiYEIwH\nyEWAN65w6WqDF7+5z9QNUTSdrCNxbvUMvU2X00fO8uLRfXZ3My68t4r7ZJO1lXnaLyQC/y6lH60S\nbutsPn/Cuz/5c3772cesXDjO0ulzKGmf9qHGuYsn+ebZAT/+s7f4fPM2F8+9wa3ffczy239KKS+w\nQwXSNl989TU/vfQDkj2Tkj3FFkJCfQ5V7tMWJEg8DKNMlKjokQV6QVnQ6CUDQtVkRqtTxAG5VSPC\nJgk08oUypqwTiD5RauAMS5QWC4LtBLFZRSWjpCSkRRkzSyhUEwoPTRUpMh1DNQnbHhZVlOCQTBGQ\nRRVvGONYBfFQoZJDkLoIiyV6fR1ViAgzl5pgYrR0uoMBXjwiL2YIhDFlO0QzFLpTn1q5jlyJiAyB\nvFeQSw5pHpHlOh//Q8zJSxf/gqAK1cgnm2SUCg8vlCiXa/QJUcwcUgnBF8FTkBQBX9DQcgk19HFl\nnWlskMQJiQ557FBOClTRwyVDGdskaUQ0V5BPZaQswE18QrdB/A/bgoInU81lJnlCriSYpkWEgVaS\nCFSVIpGpuAahFWIoPq4OaWHjTRUKSUE1XBLFRxU1DNdCk7+1ihB1iSJMUbMQvzCoeDmaqiKVQzQh\nwPXqZOIIi4hPrn073vyrd/6ceAJ5LYRUZdyPye0YK7cRCXFTjYZRMMpcdCMhDFUkNcLNMsxSFTGT\nUC0PJY8ZtV3iNGOqKKiVKeHBmGpjhki3yNMxgZbQNGcYTSTqVkAQTDDlnLxwcE0TI9CIQxVVUhGz\nIVZY5yD3CNQYtZ0hayLTxKRieSS1GrogEmQKw9inJeVIUshIMUh8EcMMKIScSTpAMVOCtg5Cili3\nCXSwfYXDso/cddAEmQ8f/h0A/+bKDxEmKrFVMPZt5GxEPBaJsymt8gzjdEKeBFgmgI7iFhwyRrYs\n4shGkRNE18dUbYQsoFRSkMUUPzHRZTAdlcNwTNSXKeUpoWkj93Pyakww8mk15olGEYoGdrmJX4gU\nkk7NmjJRRIJhgZbZ+A2VSB2iWXVmYpM4nTCSdMxAJlVkRjkkkUugC6hWiSIeEMk2eu4jRDqZrxMj\nUx5WkKoTBEnCtyUKAvKxRSil/PLr37MYNDDfvcicabCzuc5C/RQPuneQJzXWvQHz751hOtygm1fo\n9g5ZvPQSe2GKeFpkFAWsLacMzTnEYZmof8DMlZjDay9YOLdGd2aJvVvPWT1e5/HHD5nWmsyXJZ5v\nBsweM7D6Hdrbz8n3Emaqq5ijKtdv73Fp9TSHczbzXZvS8jZhrUWol3jjKGzd74FTQZ0bkcQRlX2F\ng2KCUhxg1mfZbzQxe3vI86c5NQ1YX5zDzBLs5hyf/+YTGrKB/2qDVr0FzUVaBwM21hy8W3vcv/4N\nx+ZPMzzncaYzIC81GD8NqB6vsL4zYdO7g3tKJf+DzlY1Y6l3HH/zLmunYh4PFjh4PmH/yjmOPTrk\nS0mhOTNDS17i9uZzsrGE3K4TXXzArK1xUDuJp8ss3GlhyTHb8TIvVUVi+ygaLqWmQTcc0zGXqcwq\nlD//hLtLi+hxRq3mkO89xWsb9DoqtZfmUJ606c/YHC471MslTu+VMeweS0XB060Oe4tdamvziBOJ\nqQrpsMA/UqAFR8jcFrUTCY+TVeor6+z2hjy8/+CfxziPIqD+8BxPvjlHu32BWnKH7vIJjpy6j2/8\nnrTn8eZEpnu1S+vWGQz9PM+iEFV7hP6oxjt/yHgaHEPbcZlVYh4MTvPYzel/71Pqx17QbU84f+MO\nZ5QHXKXE1+VVxGnCT80hm+UKp4Ix4ek2S62beOEc/9eawpNmi9ircHEnIbZt/Hc+xTvjIN09xflg\nnfrkMt58QDUOqZj3+f6dy/SrBVu9E6jqPhtKle1Xn9Nv9diYfcDaukQgL/Do8DgDwWV17x5HdwKm\n/gqZ2GRU2ee9m08B8HoiUn0VR8n45tE2x0+3OCae4fTSKdz+c3q9Aw4+XOfY6VP89tdfsnN3SjDv\n8N/+45dcnNEpL81z4rWXWV4tsf7VF7z607Nk9x8zWu+x8v3XuPovTnPl9WN8+qsv2H3Wo3zlLc79\nxY/YKSYcP7LK1ouvmBoWV3/+r7ESl9U5hfoJjRc71+mrLuOTOedPXuHyhdOIQcZE14hsj9KxHPXC\nCtaGxtzKCo2jCzy//zErikPacfnmoy/ZeN7HYZtUd3j9yjLX7/6Wf/nSz3n2/BpLr77CwUffMDb6\nLBx1GP/DtEZWFMKGTaxI9Cci2f6IoiihJylleYYCkXpFJrRklLwP4hhbKGMHQ8JJxETPELuH2Pjo\n2gSt5xJlEg0UGrLAuBYw9GXK9YxCOKAjJchpk163Q5gKmOWcqlLncBBRZGP8wwPsZpmBM2LoaMRB\nQn/kUTYEUr3AkLrIFQOhGVLsmswbLmlRJU9zOmFAfyshl6o0LAVZ6lOPczzfYpSPma1FhHEMURl3\nkCPrOWGWQDXArI3+CBnbGFMRbKaJzbQq03XqGJKJSA9FzchTiziKkEQd2SjoujlS0CVhgleuoFlT\nUqugyBzyzKJeGhGIBpEAQijgqgOwcpqRSFiJkFQo6RZ6y8UUMipaTKXVo6iG2IZERZbwohGxBIXr\nEyNQsi16DRF9rCC3a+ArNGOB2YYEZpuJHCJFFUpTgWx+gOIZpNUUCRUxE0gciUwe0NMNRoWCIlRJ\nR2CYQ2qGhhJ955uVDxIKNJSooO5NqMyXaeZleg2XvKxhaj554VFMc4IkJHdTclmhISoQJKhqShjO\nMnJnyfQyDXmG0jQka5dQbId+O0UYgmRJLFhlDjt7JEqfVGsh1RqEwSyaMUTtxiQJGGrGUO7QTyQm\nqs+cOINEg2HDICVD1AZ0hgLyVALRJsgELFmiN/QJRlUqQkhVU/Fii/GwoKzmFEkDzfLxqiZKKlHP\nA4LQY36sobck8iL9Yz2kioZck3D8BNseIAdV1OKQohxzOOggBxUEo85YtBiXS8hVUDGphFOUpEdu\nCci6ilQSURWHPIoYdiPq0hBfLgj8BPwGZV0knRcR/QHDIicfxqSVEm0/pNIsEcc+TPZxtBQEFZUW\neXtI85iG1MqhG5CPLIwM4qRP34A06DAeHDIVUiwvxPFzauOE3E+IBAFZNxlmBmkzQrdValMfyegR\nTavEIWiBRzGWSVsR/uTb708TJAxvwOF9F6yzbE12+IH2A46pLd7KFFrTMok8R+nmc2pRiy/EJ4zv\nbLGkHEVoWtzoVShFKp8//IR4InL/M4tEO8mzzyPUe5tUaxtsiC5XX7qANc6QjZS5t1us9k2eOrMc\nRHXs+YDN8pBw8ya66uLJ+8Rf/471lsbtrw6Y2RRYXNjn2qcxR4U6zqrG7jc+26bEqryGMPB4vtGm\nH69gfNHj7Xd+wE5ji/HqItLjWzyrJCSDZ5x55RRf7XnM3r2BvaEwGD3krugQTWXmnG+jtLS1BSrN\nRZ5P5ri7HfJaILOxGbBaWULuObTEeS4tldCcGLPVJXePcfPhAqePTWhZMaXrW7SPGhwJdKoDgycb\nL1BWFvjJ6eN0529R7cksyPM0+x+SZCrCuSesSz26a7f5ujViqNzCyJtsPYq42ZnhVeMeh5O73Cur\nXMWjWhmQJSn1VMSrS7y6vIY5+T27b+UszOUsfhXyTBkyPquyIVbZezzDiQLe83Ocr9YZtfZZHp3n\n1qHJyUdjaksBye5jwm7BXPdL5Ic5kxA09Z9J7IuQGmj+lEpb51J1C6e0xLSX8nxQxXj7CfpCk3Rv\nBvM3a+j9HV65tcfcVMVO58ilnM0TGyy3C9bfeJ1fX9nm9P4dLrsF2mKCsm3QbRUYMxLrFQXFTzjS\nK3P6l6+yWSyRO+tMllx+9ElGNvkRnujxk62YCzcEVhITN6wyVTKG31xh4u7QXukQLG+xp6fEzyts\nn53yvWcvc/cvdnlSvMbBlT7GgwrRJGX8365y/vYc7fkFklMB7e1DjPI2l9wRJ+wa6/Y5Zv0TDGUP\n++mQh6deByD0A8Z7E9qmzemVeQ6/fs7W3peIxxbRK0fZerDD7LLInZuf8IM/eYfyqkxnL+bV8yvs\nZQHTfY1f/fuPCFSDY+eq6FKJF0OP2mvzuL+9Rac9QpKqzOYlRutPSPs+H/3tDf7s/Z8Tqj2OnjlD\nMfV4unWb+vunGGdHMKfzNF66QCXOePQ3j5mWNXY6XyBlBTVVR3Cr3Pj9Q6apw/bt+ziyzUI0Rima\nNM8fRc901lZPUqgWkTbLcLTOk9+vs1I5yS9/8+859+rrHI1AO1/ntaXL9GsOivutx8vEE5gNh+h7\nGllTIEt9hqMJdtqEwZg8EeiFU2rFgEPHpD0SEEOdwKiQWRJ1v0SpuoRyEGHkGZKgk4xGZGLEwcjD\n6gfYow6xUiIZGZA5HE63EZKYfnLIoDcllXVaqkxFMxCMMlk4IUdHF2xKpkZN8ElkA6MdIVkW40lA\nkir48phemmNXA+r1CpU8pSn5SE5Or1OgTmUOfRfPj4hik2IqUdJ8RrpLJZWIsyZx1qVqKgT978Z5\nkgkF33qsVYfJt35Fmoc7UpB8Cz2OKOsG47qAaPRpFQMqUgvH1CjCDlZoUjFc6mqBlUyYaCImPfy4\nRCuVUSgRRyK5qyP6MNQ9EneEmUhYRkqYJ3TCGTxxgiiPkGQbVdawwg6GISO7ArnbIwlEhJLMsAwz\nRUwgDUn6Lma/hhG1kNMhw1REGyqMJAmvX2EqJHg2iKMSplbHLCQyMycvYtysxTQS6cYKgvzfaYAC\nhUQJ8PsOqdNkIh4yRsacGoxzUEZ1/EDAqdpokxJKRSWKTdKRRhzEpEGA5EYk8QDVifGqLmEQUjUU\nKkKNasVHi0Kiac74UKBR1qgWZYZJBkMVtzFmtF8nygxSf0JZl7BKBs1SRtko6BgdTNejFqTYZpki\nadCsyBR5F2GQYZX6xNMAzZ4nLEl42MTGBN1QseUyQblJMXKJ9Sn5eIR/uEd3VMEzfdpJgCdPkNTv\nNo2GQxEvz+lk4A4VapUEcX4BfVLG1jVMEwR3RC2TaU1grGY0SiaeYDNVbNKBhFeYhPu7UA3xYol6\nJcANHRy3oD8NqJgSg9DjYC+nVpqjJamESUFDK1FoQ7yBQrUyQ6EpjHc9Iutbo9Bcs+i2FQJEGrmJ\nU9WJRz3a44AicVCmFklhYAsCRiUktMocyCZBETPjzJH6fRJ9AIMSPWOAJwZnvB0AACAASURBVCSk\nQhXBGVAqp5SEFo6oIe9Nadrf1iMvmoyPyWyfc8gPHnBmZPLbnV/wuJJiXzxO3HuGevQ4z0yLeGmD\nJWGeV95/lX7ygHrukBwo3PnyS/762AKrRxOkykO080c4fFtn/OQ+09ZFmt9sk0f79GyN69e6zJbr\ndAWTk26LN06+TNwdYP3W41l1BqW1xpNoQjzRqdVcBgMLVxhzayNjfLHOi3AH6UaKfb7K7OQxD049\nYPGnP6L82lmK/kcU3zvGvf1NfjRtEYxCvnf0e5zcmtDp97hwXGLt9RXuOTW21j9lbjfgQnTAghag\nixEAsw9S9O2MkxfgtSbcOG4yJza4uX2X4NyExmOdG5lJK08xFQ27EbPiiNz4bJ3FN+eZ9DO8m1tU\nj8ygbF6n1jlk9m6Ha/kLqqUae62E+5M7SItLmIcBYe8I2kvv8PJdiYvdkxjNErtlC/uiQ8V7gT+c\ncKlynqWVKu1IpGN2udBzeDgwOBvVGD/awt87yvlfzSF/uov0qkyWbTBzVOXlUKN5ZpNxWuXZsCBY\ndTHN89zd2EE8+xy5/j3y4ZTKW7PEJ2SWWqtEFZmSdorA/cfFvvyTJ1E4E55e3aFx8nOeWkvMPQ15\n1GxTMfss/9pCG4RMX/mAymmFq/MF6qVvRaun11d5cgyOHaSUM53GbQ85niE8s8YHrx9hHDZ5LtQZ\n3G+iHM/xn/+U375ZcEuUya50uH1qStnZxKuqvKh5fGULVE7fwVbqHNYyhLFEXt7nTmcGaWJiugvk\nypRkd4UT7W1yI2LtRZsvUqjvvszM9DFnvpB47sC5YYx8BfJDnzcOJkz3Z6k06pTTS3y2OE9hZUz1\nAdvLCYvPp9ROhcy3NwE4/tYRMiVgcnebr278nlP/9sccWTjDjQ9+x1zjOGFa4smLDZqrLWRRRLAc\nSq06Uc3k6d/f4NJlicsnl0m3u+yvC/zu//5/+cmf/oyvP/iA1mvH2fr0Ae0bD6i+comFpQYPPr9O\n4+gsW48f4sUrWIXGo7shxeMcXV0kUVNu3fiMfCdmodnAWTUZfvqClbff4bNffU2lMsOTB/u891c/\nZPibT7nw1z/lD7/+nNHaHFoY8fjmBitrZV48f4QpCax//gUVZxZV9XEWCpTlkzz76u943g44UznH\nf/4Pf4Pq78FVFYBK2cYrl4hMg9lRi6JuUaFGR22jSgnJCGarNbpZiapfkGQhvj6kFEyZpAGTikgy\nSpAXIKqmQJt4vsxgUKEqi2TlKn6jYCS62IpJRcvJkypNRUI1dHRLJRWnKEGdSMnIcPHFlGiUoIyH\nJCWbgdNA1xIOJJvOxGWcjKmZNrHukxcNyD2E2Mf3q4zLIguRg2PVkAWBajGD4suIcURfq3EQZ9RF\nlaKlk1eGzCg2eV8GyfkjZNxewTDLSVKJYVHGiBMCs0xcL6PIBeM0Rx5Pib2IUJQZSzUSM0UoAsia\njESfPJIpbInIFnA6CmkJisTgoJJRKVI026Kbxcy7BebYQilE8qnOMM/RhBJ27iKFNnlk4Y0LCgKo\nqBSRiapmUNJRspjILygmBUmk4ScyYT1kYIeE+hBbVhBTjSLM0cmxZZ/a0CCOZPrKgHgoQ95HM/pI\nAlQqCQ1yymRk8XdPmzor0hiDLviMxmOcHEJnhBSFpP0CqRkyUVOEdgCq+W1nqjJFLXvIyRhfNok0\nlYYM4lRAngTUnCZROMUfT+i5OWozIpdqhEKIF9Tx/AKpL6BkY2q+gGmKsBThLBSMjT5m2mQ8Soim\nMrVOGdktyGlx4ErUhJyJX6XQZUQnZNQRUawWuTumGvSxUxNBnMPSZMbyFDORqLcsckEmFwqiuYxs\nJkdKCkxiSEDL8+/eVHuI0eljiDEGU8KpTukwwVB9dKOEY4sIrYLMGtMv9SFVSKUeihmjmipNOUAO\nhkizZYSuSKMcIyQmJfGAvJxjaAqh5uHM1plXA3I/ZVrxEWsNsm5CrSchKS6dxCPviVhiEyNJCeYV\nEiS0zEeOhnRnPSK9QCsLSDMqtamJtFBQmBHJYY8s0ogmKfqMjklAttdnmtsocYmhIKAJoBRzuMUI\nYy8h2R8jKgXedEhlocT0H7LzSqsHLBhl3H5Mw0s5cJ/ygyvv8JJl8OHOOpOjFcRf/oaf/Ohdhp7J\nVPD5xW8+QymdJbixw7stidkLx9jyTHbFAVerb+PrL2gZATOtVwgPhphhSDsyKD29iZa2ePb1N7gP\n7nBPusfhbEjtzGu0/kzFnR6wtBSzWBxDthMOvtzDfl2kc+shP7DnuZDPEElzHKmbTH51nZ1Wk/Ol\n1zC2nxAyx8rSHJfHB4i5jjuxKBUuX9kHOCdMnH7KZ8MOl5cKLrULUM4gjjLyt86QV03EyQoAVWGD\n4nHBrcki3zyWmM8eoEgB5y+/yexGyg3hc6r1gmPOG0SbGpVjywjZAms/eQXimPDolJK5zL32A578\n7DU25l5CXTlGtn2GcafCyt9mzG3azCZ9jgQFeSIx+PADZvQjNJWnKO0qpYOn9OKCbNnl6WyTdP8p\nS2KOnNucKLe41rnBxcYs31hTZn4mE7h7iKcOCU7/CdqTNsKTKjf222zOf4NbWkV/aYb85JsEk+Os\n7PRZ/ulJ3j+Y5+bkY5YnK7TEOeRbBofBBifyhLXyENnW/lEU5Z8+iQok5v1tXjRmkfVtwtEC5243\nWNdO8PjsGkertzjy9Q958tJT+pOMx7LFQfIu3UWHXnmD29p71IwDKk6feGeRQfqCtQ9VLnd30FZc\nzq908WWPuRO/pNnxOKK8gNEJrL2E2c/PUNwf82h4npXhNtven/D7Whf36jfM3D8GtV0uShG1I0/Z\nV6b0UoHZ2ZsIVov9aoRztsuJ2ld4K3ewaltUVp9w6vwzbjRrmAdbeFdTno5blMJD0r1ddlMD/4HM\neihxbKuE7N8gXL2Dv7VE3vgW8HeerHN89iWC0oCXLl7l6198gptrnHrvIteeXkeZFbnwymme3H3B\nODpEvzNF6/o8+3CLN//t93n83x7TrWcctmxOvPYWZ197g7//5f/Dwswsm4/uceH9f4Um1/H6+zx+\n8pwf/8lPObnmkO6POX5ylvVn97lyUaB0TuLBf/4EPfd4/V++xHhyk9uDLsLuDmf+aoXJr+/zoz/7\nIbfvfcTi8bN8ces22rlXuPXRf+HSlWOsShIdJ+fSn13gi7+9wWsnTqPqApd//jPuPPwE6eRJnv5u\nj6tnX+HEydfxR3vc3v2A02+9wrW/v4sVfnt1/ekhRXtCGHToxX2kkoErxOSezjCpMK2OaHdSnIpE\nkIosmiZMc5SKhhkIGKHGyG8z6IkYuwp+ZQ5nf4hmihTlCMMcY6sWeqYwUXLGfo4+5zNQU2pyQTV3\nMYYx8YxMvpMglqt404JaojJtzTP1d8jTlMmgT00bkVQkDNmg2x/TMOdIozFx7NCJMqRaQizZhF5M\nKGcMCp2x1CZueTQwKHkxM7LBZL8Eboai2AwkHyk3EWvfQVnXBRqxgCEUmOUEeSIj+QpFOiUWMwrb\nY2zWkC0BsaigOhN6ks9g6GAnLk6uk2QFRTok7tbxBZ10WAEtRw4lwrqGNnGp5SJdUaBk5fgzKpIi\nYGZ1ppnHJKjglcbkeUFkDBELE6lrgDpFyWJIAiRHJGupGOWIcTkjSgUyoYRjlhAHKn05xLaGyJqI\nKw8JVJOxNWImlVCCBk4zJBYk8kSgL40Qkoh+WsZVBXzxO1KpT1wGmYFRzplvNDEHCmIvYFKOcRSL\ng/6A9CBHrdQJjJT+2KcxskmmJQx9nlBX8C0Z8jKRFxFEAqkFqe4zqBS0CoupJ5DaHrliU8tC9MYY\nSxjhl3IK22IahrRym0ws4cQRkiSCXWWQ+wSVEUUlIVYTTENgUJ0gVDr0/RwvLKFIMakUUJmJ6asK\naTFA8DOSgzF6AnQHuL0+2RQWGxpy5iDuHJJ7BlKpoGQ4JGXrj/WoGCLyfIqViDiOhiImxJpKyS5B\nIrHj9Ql3NdJEpHAb1GQLyRcZjPtIxQQlsvANg+SwwDRV9rIph1QYChZi30cNFJSozFjKQdQYFDLJ\nWEF3h/TTGM+UKaUG8aSA2QaB1CEQbLJApGGKODpkYZXSYZVaUkKQ5siGNdJ8RDTMkSIBVajBYIg6\no2G6AZHbJDWh8CUY+7SSCeogYKj7zMYGiWThLc0yFMZUzCbxrkjxD2aKrlfl2Z1HRNnHHL/8JtPh\nmGt7A/b0mJawzyjImBVqiE8fEe/5KLf6XGiV2Hp0nc6czPoXNxHTBt3wMemWin+yg3jDInzUpDge\n4k5HHF2tMTmhkRh1FsUHqNU5Fl7/HmfEM6z/6h7LD0LG3ZjUm2fMImY5xJLrpJ5HeXWNewZM7YK7\n0Rg92WDPHjGcm4MvMv7wi19zy8vJig6VxhovDiyk/i7q+Rmi3hh738NsvoLzvTVa9zJu/vKAYtZh\nUMuY/x/eYS4qsxwWqNa33dtrBMjCBmFvmzXvEdc+S5g0A9o7n7D46lVSM2LZURhsbLDe22f96RaP\nj3zO7oaHf81Diko4x1q8X16i8odnpKe26Oz0aSQhraMhG2+eZbtlcHfjAg/Lu5QWUt459S7b4+ds\nuQ6ra2tQqZMObjOXrXLUWmVHVfjo8P/j7r2a7DqvNM1ne3P23sefkz4BZCLhDQES9BQpqlgqScXq\nqOqaiemrjrmY/zQ3HTEdEx2amK7uUqnkRdGIFgRIAASQMIlEJtId77d3c8Easa8q6lLR309441sR\n7/et9bwrpGXZbB0EXHlukdbmPpcXR2webCIac2zXKhiDPsPyMeaugrE7RUbArx3hz37DxnifC1af\nvcdH+Jsfcj+dcl5d5PHRPR67PvLGU9bPvslXtQ2k5zIEKfo3WZQ/exMVk7IfNGg+8zjbTkmt28yd\nfcxfb43wvikxi9fo/PgG3pbO704VGd45y7naZ1w//j7nrSGZr3JvZchksce7e/fYcmpUzo/pTc7T\ndCM+5hTpf36dykQle3yZmm+zefo2lj/PR697GO1TvDZ4SsXuc7b5f/Py7pALdy/Qrqj0hPMcnL9P\nYbHF9MqIF6YK6efvUne/4rKR0vmmyWD/Jc5/1eOb8BXkdJP+528grt5kQayQfmJwTvNQTixhiRcQ\nxFu8O5+yX06oqV3KKyp1W0WY1pA2/8UVD2Om/kM25pZ5/PgZV86eJTraovtoiB5YXLt6hc2t2/zg\nrXeJx2PKSw0OHxwirMh89v/+mqt/8xM43CE9PKK1t4Mmpvz1376LPihx4upZPv/ZewjGiFanzcXG\nZe5ufUZ3a5O11QZfXv8YbRxx0MrxpgPe+l/OM/36IYlnYmgbPLfaoJWNaB/tcJiNebz5ObZSZNfd\nQ72zyeW1RVRRZNofcPRNh/bXW+z2Bsy/scTNW/vsPd0h3O9zbPE4509LqE2LL379Ux48fMCb/+s7\nmLFN8+wFEjlkaenbYDhfaRJXYvSaAAsl0oHwbUhkGJMVPZb1RcyGSO6K5KMQTxRxhAbeLGIWeszC\nPvbcHGk0YyiFWHuHjFKJmdJCDjJyrYQ0LGDqRWaRiK1GFHsmFX0eKZ/nUI7w6lWCZIi6vEg4CFFq\nS4QMMaOAqtrAKkyIjAqDxMeINcJgRCmroEhdVosVUlcnd2Um4hirF6IvjrEKU/S6AnoNYeKCY1Fw\ncnp9CU0dEdmQt/o09TnkmkHS+q5d49s6ruwhVSWykQHVCF2ZUpy4FAMPZ6ISKUM0X2CWDpEiASNV\nqBQD2sj4WYbo5kz1kEopJiyKRJUQy+9gWSnjlkJYEZDmFGSjwDTIKBzNSMI2ckFEzlUcdYKQiYSm\nhhNVKHgiqhDTH2cQGgQFldJIQBZ7GLlGcRQiqw6Zn5CNx8i5haRKzMScQAZb0VDlAZaXM6zlJHpC\n2htTNjWq3RLqVCSeitTLPeodh8Dp/kkPN5qjUp6STlxSv0evLKBk84iozIQphgqKrhNrLpKvsoDO\nLG3hFkRG0gynM8YMBoRKh1q5SVTMGQUimtNAJiUQciwUpDHkUo6vOpipjdyQiEWNvN3BUSNGgyHy\nRMCbqjDzIfBw4jITv4YWJBiTEMEMoONQHCgYhRpJcYpSqCJLEYlfoirkjCIJsyGRVURwZMa6gKio\nzOcqadvEVkMqJRVz2aQg28SjAbH43czcpFdh7GakZs40h0BIwO4w2hsSGiJVLaFua2jkaMUYN5iR\nBHUEbRHdLeIbCYavYEoWE7WPlhRQFZ9SUSRZMMiKU5QEpKFK7BhYQoeaWSQQApRGGQoKR+aYXM+J\nuyGiU0TrHyKGIwJ3RCaXiApHTEotpq1DZr2UhjjGC1yKqo2cF4n0Mb05h3QYMQwiRGlGO5+h2QNs\nqQDNGF9oUA4U0lpGxwhJdgPiQKI3G4LlYhe/3Ud6GO4zt2TwtvQ8T+/sUlwvceY4HE80jqdrHHv4\niOjyHF/vPuLkqw7th30mU4cXnWWO2RptU2Lrd7+gUznNJOzz4B+eMF0R0PIJDx9mrK2cxfOWCT7e\nZM/fR5hVkWSH959+gJKnxCs9Hm9AeXcZe3rA+PYXHCvHYJzmxfPnOP4AtFPLiOKAk6GB2Chw+zeP\niM5XCI7bxGlAs7xI5TBgTy+SFlK++UZk8zfvE61UmVs6xq8fPWPQ92mtnUfYmGBuOlx6Refop5/y\nh2zM7Tt3CM9/aypXpcuce3UBqZBhrr2G9jcaXtul3Ftj3Brw4xOv0/7DR9xdCXm+4jG3K1LX5zm3\nO+J6nFFbfMLt6/f44IOvmM9jxJ7JuKgzaf+OpJ/wUkOk5LcYT+Cdlzd4tPmAzw6+ZuIusnmQ8mTY\nZzi1qGV1Tm/UcTd3WDJXeaV+mUr1G7JRlS+9ERff2eBgfwO9f5GdUxleqCOsWqyWd1j74gQLL15h\na1ZkgSaiXyUeL/Nkv0HNXuPB9DJOPmTSLGCXptSfHMDWCp93OthjiwfbHvm/zUP9+ZuoMC7xVzeL\nbDaOsS8uYChVpocJjy4+Y3wcajsm+x9fItF7vH0/xHzhjyin9olzE1oapvaQ59oj9vUVZlGJ83s7\n3Lt4D6Hd4GDrNC91joj/t68YFceEhS4hRU5NBhT9CWh7NPVnVPM++e5fkI7fYu/kBUZakWVCvjkx\nZa3fY89fpPK0wifxIps1D2F1nu7OVbT5JuK5XR6mi7zx5SYD8z9ytHjIi++f41k2x+abAw5W2kye\nFtHKt8gvr/G+c4ASN3hv/SL73SPe2/5rMmuX3ivfvqwXFRUhNAjCAXJrSGfJoKDaWCWFtTWHR7+8\nxfCZwntfb7H+3Bpt5Qn1mkE+1Hn979/l1nufce3Cm4z2VJSsz82vP+feT3/P/NkGX/7zMy78/Q95\n9nSCUtb5avsTji1d5d6Wz8fvf4lZnUNds6lLVYrNEuNegquUaU0OUTWPz3/1W374k7e58YcpV958\nh5HkkJQWGXfGzP/7N+ns3GT5x6/SWCyz03vCYu05Zgf7tO8+4/W/ucZio8Ss1KO+MI/rZmgnbOzG\nMRYun+Dh9R3OP/cy27+4zVpjhQePvp0sL0o+eE0mswJRlEFtQmwqFI8ZJIYMygx91mdkBFRtETmV\nUe0AIytTXKxQrzso4QDJtpivyIwaOnYxZd5ZZVDUEfYGCN4R496YYjnGSwSG0Rg5FHCnbWSljtaN\nEeQSgntIXrWpmQm2ukTgZsRBRo5JZTYml5oIbkrBWSBxRuQYjPGYJT0cWWJ5VEW0ZWbBPH5QQhy2\nsQoGhcocSbjHNBMozU3w1AhHFCgsLZLGIUf7Y+zad2tOCm6GJRlEEwnZaBMEE0QVMlNlltn06kWs\naUyUCuRCESmVcPKErpYimCETN6SoKGReBX/oEuhthDTBL5j4aUKh3iPJDAZhQCi4RNMikaKhVgQG\nYQsxqmI6M7KJiTiU0OQhgangZQE1dAJS1IGDZw0IPZNcT4ktm5wBipATRCqC0SKQRKRJgzyFXCgi\nhBEhKepYoSyE6HaRo1FCpmSkkoNUj4mTMtn8ALH7HZ5c0hKm0xpGqjMt2cRTMOZFKkOLYlQGy6QZ\nCoizImo2RQx0NLFIFvWwyjZRyUBORGSzSE/xkLQCFX9GfxAiyDJSxcNTcvJZwFwlxI0OQZ6gtQtY\nvocnzxOIOmrqEictXHIOopBCVmdWGFEthoxNBdmSSeSAYkVgqgkUYhkGAkovI4wDgpnIUNUpOCH+\ngcdsECNmMnOOjRjEeJGOZ3RRAgHFUAgHHn44xk0jYvm7yAc5T5HCIr5TRcmquFYOQRlfjclaXcKO\nwFg28XONSDDRMxOVEZVAxstHDGUfwYzpGSKSZ5MHCY5RQAg0Bn2N2HNQ5BQrHKOIIqFhMjbbqNUS\n2uAIeaRiCTqCUsQtJpQ1F2e+iRCKpFmT3jilps2h9KoI1ElTj648wynXyHpjtGZCkkY0Ix8xSanW\nE5JIYkFcoKYYTB2RUG9AaYhcNRDHPqU4ommG4Ko4EiihjBB8WzMnmyUWn5q87xyQzlqMNIWDLyJu\ndLa40fkY4ZVTPPXG+GWT2qDE2n98hUEa8MfrdziqSYxesXl+bpFGNsORNzh9+go+cG0yo3TqiKJw\nwG/lHiV/xsZr3+PKjy5h1WI2JjrFYsbFyTlOzBk8PruLIKi8+cabfC1arLyc02oW2Pp6jwslgUfj\nMlm1yL4+z5X1VZpHz7iy4/PqS3+DOntC1Fhg8NmXSEGKc/k0ZmtEELWxlTGn/Dtk+TpOVSHuqXSu\nLbL52xHNd95i3TjEp8aO+u3aF+NcyD9vjwhvqrSfPGbu0RgzDSm8vEd4ZplPPrtOaf4Ca27GrVMv\n0f5hlfK2ylRbonm2ypnqq5RejnCvOmRRC0tyKZ/okV85hZd2+TyacudOn2l+n199POTE6mWkrRrH\njh9y5tyYb27KnDwxomS7dH8RMRrk+MfHfPjwNtLoIkNjCPaMUL5D4WSLnvWQ2sddSD+lMpfhLJ/i\nA+eA0ebnXFWu8VFvwMULz/HA/hxR3MS4+ojjhZhZ8Rz74xssnP8r3NfrrEyf8v3qASfV21xtREjG\n/yRrX8wk54trRa7av2P8TKE3K/LV8SpHBxu8PP8Fj58bca61hbNT56hro+FhfnaR4s4x8sNzJKfm\nGO39gI2vXHaWKwjDMld3IEwCvNUjjGmI1PXZlBs0VrdwBzHNz9fZyZbpJBu0LkTcXXyDydWnuLOb\neIdP6EZ97h4ZnHaH2PJZVnZ1nOVd1pRNlCWb31bLDDeu4wl97k6W2F2e8vQll8/XdyiNTQJlj4PC\nPka7xtxU4qme8njvGtO+hlDaoVK8Q227TVM4xhXlLsulHEleBqD2nMWDzhat210W//1VNn91k4ms\nYK2vk7j71H90ifnKKvNmgf/+f35BxTyNoja5eL7Cz/7Tf6O4UOc3H+6zvhARhSmF9SaprrF58Izj\nxZS9D/8rq2cvsL74PKXjdYQFnR//5A2sUsTBnQGxPc/+k08YbXY53N/mwn94hWIu03macO2tv+X9\nX+5Q35D46PdfcGxxAzoJz714CffIw65fxN/uky4K2KsbDLMJh+0Bp7/3Ol//9B/wCxtMHwd89eEW\nw68ecfT1JhvnLvPgjw9YX1/gd7/7hGvvnMadzKjr3/7M5XJOGPXRCBCiDH3mo5cK+FMZfSbRjWPc\nXEHAIKsmaLUiSThmqom43ZyDXoKmL2A6FjOhxoIpIgcZYtghn0Ee6/Sr8whGxDScosUJLCySxFOG\nSYCESJ4OyLstRrENXkTidpg6QzREPC9FninMTJ1FW0NUwahG+N2YuO+STWbMrdTomxkjVWKAj6Xm\nGI5LXBEYd/ZJkgGCUGc6ixG8DCuv0566hL5HJA3R5SniUetPNSOGCZ2JgKvOSLMGlbQOeUyUZGiq\nixn4SKJOOY7QRZEo95DyGDUoklkKdafAAAtDjtCrFtW4QIJBUQywohhZ0tFFhZJvY9ga5eYRplhi\nPGygenXS9IhupmAWAhLbJVcd1LGIkSnE1TFYIbNqn8KwiZpLiOMYN42QfBlTydFKBfS0RDEtI+dD\n8lRkYgQYmCRRghck5LFKP9dpKDqpNsNKU5SxQjKbMQ5qWP/DCvZoEtBoiISmidwKsSKPrB0g6QMG\nlQjj0Gao6njxgCQscFgfEsgFajjQ9nDVGZJtMWlbqNqURmrSjgOkhkQ6FmEQIiIjlebwRw56E6Yp\nHOg9hrKOJnmYaoaeiviCiFMqk9sz9LpI2bdRsxBLh4kdkQo2QnYEU4Nh3yfJTUwDxHwR3/TAHxFM\nVIS5MbnhosYh3VFEP0kgB8+s484E2n4ZwpSZq2JYDlZX/ZMeeuajauCkIqbao6RGSIrMnLSKWDTI\ndAtLG8NAopBltHsD/LpGJ98jiSx0McSdmVREgVnqUooThMkRodylWA6oOy7TcExUGJP5EWYIaa9C\nNnbRG1W84gxZzViYCDRFnXE7ITkaopccPLmPWuwyYoooC0wcSGpTFGOZfNgDS2EwDsgkm04ooRoa\nQy+jOu/S0zJ82cXSE9SDAdnIJtd9pHiRtDxPq1pGEEJGdYWB7EL0LcH5ZGvIwbxLY7+N+/Y5tn+1\nw3i1iqGBZp2DoYOTNFlXF3jm1Lj+5AlBa8zFRkbsTai5JocXZOK8y1R6gpdHGP2Mg9Vl6uIKfUti\n4cGIs+dfZHc3ohM5+Hsl1jZMrt//GvX1gM8/3uGFLZkzl9axWznL3oC2qLE4L5BxQKFxnqkb0Gxt\nsWgd0l+fcpgvs3j+FHfm28SfD1G2PmJxcYHhLCTXXJKTp1myG3zZ6zOOMobGEZctkV6WMzZ6rMkz\nvC9/i/TJDLWf0hyvATA3W+BKT2OtEiKcdLlUu8zpqsSj3xfRf/+YppZSyluYfpNC7yHTDzdpZh3u\nTh9hVpYI7/aI1RrR3XmShZe4NGrwwgOV9UOLeWeet9wOy43nOf3ac5w/E9I9CDj51pRtVedUvcmP\nTtyg0xL4cHyMvq0wYETSh7UTBrWlO7yV1Yhupnz6RGJ0d53yLGRnenez9QAAIABJREFUzaD88Aqf\n337IB/0R2jET4ajIHwfPKAoZ/+UP16nar/JkocDeA5nh6T2O9h7w/IHF9q1tes/ucHhyg4/cHnej\nJexxBTmP/00e5c/eRKHkrH+1ReheILl0gLnUZ1GyEP2Y/S9XWfp4wsGGjRMtwyself0TTE53iY65\nPGlsUxhPmFVkHr5WI+hPmFePcZ0Gi/5jypUem+ppHjw5S9p5hZ27ZyiEC3x9xqB09BXv3HrC1bt1\n8p0A5b7GI/n7eKUjXhkdks71CYsWo6X36fk2w+s/4t6lJqe+ETh/o8r6Zy8TVHzO6LeZ8xqUn+mc\n/2MHJb9LKC3wk26d1ULEz4tLzD8d84N2zNlkh/LU4MW2gz4vMIuKfGye46hsM9z/HQAPtnrMpw5t\nH4ynAsdKCsdUg8nHn1AobOAedemVt5lfX6BUb3Bw8xNWVyt8+NU9Xv2779MOfBLV5+Kbr9PUIPcM\nVt/4HkVxSLJUx1cN+vfe584Xn3L17A95+N//CyPJZTbMeP0Hl5A2H5AgYZkK+DKpr/HV5/usrV9i\nlO6iLI5p7W5zZtFg/HiHbviI7btfUCmW+ez+L9nZfYLhiSwpKV6nzw/f+gGeYbL27kucO1umtrDI\n2WsLfDNJ2bBWmGktio0yweGYC+9eoP1kzESdIgvfItvyRKJQnkekgGILzMI59ERB9AdkxZx8IMJY\nwdQ0DvZUjsYjommZ3OthJBPyUEYex4zaXfSghzhzIDUYtWMqs4xOKaAZTKhpBklHoYCEuTOg74TI\noo3a6zI0AxKlhFgKKApDZqmD3jFRKxllWSONx0RezqzVx48zhjMRlnQytUixriJMPOZiByP1EWY6\naRCQ5AXK05x5p0ISZMTSjHojQIs0MrVFXRHxxlPGukk+VyRTlD+VTG6qCMUQhSqUAnolj1EMhVDE\nVcrIcUhcsumGFlE2IJUNZlKRwmzM/MQk8QvIRoqtJmRexkgVqCoig4LOxLMwBgnu1GPADD0XyXoS\naAmpOECIRki2iS5UMRUJRZGR0pxh2SWTVfKBShpJ2BHEpouu+AyEAqJRpFKeEY8EMsEjiEPcQYyi\nl5A0C7unEDoCRlHCUBWENCGf5oS5QOKnhFnKII6ItSIV+Qg9+W6Q2lyckUcRipxjViIi20LIQCwv\noTLEW5QR5AG6USKUhlhuiu8mZLmKWwyAAqkXUXSGSG6DkSxgV1TS3TElVUXLDCI5JwoippUEIZln\n1s9w8iKlSMaNCwRRRpBkVOUMTxoy5zu4SYuhozAbg5dVsQSLcjdDNBo4Sx7lxZiKqODWBVTGmIGL\nbzQp2DpGR0TUVlCKM+Iopm5oiAyRswGJEmByhJQX0Esq+VRDcb6jFWXZoBsIRH6LVIL02ZQoFwmS\niJmbIVdc9DaExQyGIXnTYdBP0OccGmWXgukwnym0RzM0IcfTHWaJTMFbwh8Z7B5OSCoZhqGTCjOG\nZYNciHEUg6CVM9eXUJIyffokURddmCeoa+S46HENU3OI+xFGo4fgZWRdGWkUUVgsk4kGJQxMI6IW\nSniDEXrfYRBD1XUZdYoEkYNQSqiXMoJ0wqziMxt20YIhWj1jObaI0Ogp37bAK9ESV0tvMV1dxxQl\nzr/xHNKzD1meM5hbq3F455DQL3DsrWNYRw85XtV56QcFPpdzXhnpKM/AyhyOn7rCiYvPob96EoTb\nHMQ6s90tdp9qvLTR4NPwCY00oKm47DVaPLnb4YWXn+P2nQy7H/DUH3A7H3AndZmlY3a/mrHzyGVy\nsoYxS1FG8LBUY8E4RntcRux9wa/G12kMA5TTJYrqaURrgSCKWfdbrJ4XOYy7GGOZ188cJ3d1Ntsy\nG6c3KO6NyI+rPFmzKK+f4K0fniIdPgDgvUe/Y+7VszzJRVxCPnsKH1ZXiWyFHXWX1rEmmnWZbwYe\nfaONPScQF0JevnaW8vXf83Elo/xM4fi5Ju1c4uvdfX4/eMbhuYjZwz0+rp2idCbl9n/7lLpksHK1\nCl8VeK5c40HwjO2WjnY/Y96+Txp/hlI5zZOBhCKeYXuQoKx2WWi+xDWvQml6n4f7J3m+u0FY8jlf\nv8AZr0GzM09zXuK1WoE39iX+99d/Qup8xtWLRTRO0bplcuqFVfaTOVwHXogvc3GpxCxdYX2ty+Fu\nRJb+T5JYnpo5/3C5yaEIlXGHwszi1CTn3w0PWNB8dl5SmckO06vX6e+XuH+xwy1vhZNPQv4ifcwj\nrUOht8k0OqTaGiFsuZT789x9ZQP5aI3XuzscC21e2fkZpwSLU41bXIlSpGspXx1foX+QUp57yvl9\nj/NPA+RFjTvSZWZmxMmZx53DdV69eJfwfEj5921EWaNdavPgRY8zH1VY6K2xWeuwvTDDbu4RKicw\nLzzgVysuT5/U+HvrFtm7t9j6P95jc+4IpXaKr8fvIO40ScYu80mLwr6I+C/dGikIcefgxOoi929+\ngLy4yKOHzxBPWtzofo1j1vneC++w/+knnH/nPM/SKU8Pp1z+8cuMt/uM0mdk/oBPfn6PvbJBlQKJ\nPCQWl5BNk1RJcJdP0DQK/Oan/8TK372BGmtcfuldvrqxyfpb3yM2DHa7fapzx/j6F39g/o01traf\n0v78DgtujdOlZR52HjKSnvLO3/2IhrOM0g4RehZvfe9txBi+ae2jWQr3Pjpg9sV1RE1n9/oTWr0t\ndrd2Wd4o8oeH32AbdZjq3O7cI7g/4NHRTc49v8bjf9nAHorfYvlJFlENJRaqMJju46kW8SihRonK\nYoTpTmlKOULgMS0GlIt1ZhQQKjKzbEi5XqetyhyJMcOiT7lWI27GlGeQuQlpLFBeFImVKd6CQlGt\nM1+V8bKMRrCMEctIchU3LCMTEFT6SIHH0WhAVJARBR+9kmAVJAqeih4KaAWPzthG8CxcI8CtmGBO\nGWkK05ZPa1JgFLmEUUo4jomnBUZeiCLWiN0GRdnE6YVI7QHR/89rAxE25amH7LVRXJHCUMLSDEal\nlGw2xk+q5JM+jiqhyiDECrOJyHDOocWAOO5DkDCIU0byhMosYRoNsRKbPEkYSjqqmVBLNIRhhCSA\nPHERMpGiJaL2MpzpBMkXiJlANMEeQUDGpF5BKyVMAonQFOmmRURjQCGJoK+jmWV8ScOrCSQln0Dy\nMGY+g5JPGoJPgiRHjFMDTe1jOkMEtUriqBQyHeIpHalATO1PeozjOpPZDKUc0fESiomFL/bxOkeY\nYZnQ7ZFlIlohxbBSBNuGfIRfHFNFpTmR0FIXb2bhuRlJ0EfrJmgoYHgMc4uSloITo+z2Gc962NUK\niR6imTNkO0BTcma2yahfJp7FtIKcSG5S7Y6wGwJJP2dyMKMfTkk7Lv5RiXBPQVRE5OkUuaqSlyrM\ndcZEGPilKqo+Iwk0FhyTtBQjzxtUTQ0nL2MkICkeBalAFuV01eGf9OiqPrmaIluLTKKcoFwm01po\npRGmomINJSZFj1IqghBS9SMaRk7uSUT9AoNUZ1DvUi7bZEoNR4xQqgmH4S5SGCEpJvkkozd2QC+R\n+xE+Q6JZSl4RSOoKg8hFVB08v4RcTNHFEmFaoVicIUga82KN2UxBzUY4qYalh/SDBNUN0eIReSrR\nK0zRl8sIczE1t45ULIDm4QUd8lAh1wKcKSTTHvVyATQddxhypIjUrCpJ6VuE3dvY45c7W1Sqy5zo\nPMK/OyU8CBnuanTtQ5oONH+0xpdj2HFDIrVBpVBmaf4CT9wqvfYzzH6HzocP6WQR2Se3WDRexK5Y\n3A4ETrg7fHgYIFJgOcnZK2dcVBPOX1nks9YDTm+o9E6WOV2pYHkNnIrG1khFoQP7AvNPDHKvTaRI\n1Nt3cZMOZ+cDrqRrzB0lbHckzlYvYtfqXN/5hONSxKx2EiMvEaQCp+aPsScbrJxaZtppMdg/YtH0\n0Z6lXK6a9J8E9LMu3voxAF5Zm+fx6AZnLtTw9qf0bIWL+RN65ozj5yvo9yXen+5x4pyFGJ+hP6/z\n5W6BwP+Cg7XL/GV3me25Eeczl4LzlMVFh794+wrJ4yJh4wKVf/yU9vWI5aUColDi3qd36L4zz840\noV68xDoWD043sWff58lakRVNJijc42w5YDRSeX++gXTpIduFk4RKGdl6RGfV58W540w/vIFsthif\n6fNx3CEg4ufC17xX6ZIMLxL/PwuYVsjJ1OVEaZlMttkYN9kZ3KTVTVn3JB5+2mJ2yiL+LjXmXz1/\n9iaKLOTvZ0/Z6LuEocL+6cdM2kN+tnKMvFVn7tZpXvjkKcmXS9hnQsKix/I3u9z0K3ywMsdK0+Pp\nTyJWng4p6WvE5x8juce4/LBDcjzk/sY8deURm86P8JMRvz82pu88RjXaeJLBzsmMZ+4J7rzgEr95\nE9c0kZwtrowT9qKcVeECdzdX4NGA+vw1dvKIueVHPHFGCJVvqO33uNpPWB2tY2svUBs3MPb3mS/3\nkecUPotPov5f16h/avDS9Q26pRusRN9weHrE3LyKev4Qde4TLqQuAHONJRxnkV6/QxyWMQKZmS2y\ncPwkc40aycNtbrz/KfGCzPDBlEZxgXtP75L0LPxWijyuceX7f8lYyVjJi5y40mDvk21Orc5x75MH\nVBYbDPqbtLQex18sIdyNeXB4iy/3rzNK2tQaDpqfUYxVeltPKRzLKbYiTl46Q9HaoNOZ0NoPeOf5\n17CTIu/955/Rj0J6wiYX3zzOw+sPkOyQly+/hjhoYcktjoKQXK/QGe/zxum/ZHLnkFqhimnU+ebj\nX3L+xRqX3v4Bt27coXrmLI36MRq9b/XIEgGjUEPQLGYjOHrWI07nCUMbIwPP3Kc3NZFmAcMkpjlv\nYuQpnuYjZi5Wr4tfCkiSNk6cIA9i5GnEKJmgzHTcFYdeUmY0DNH9GFcEvSXTH/bw9RmZUeAwdZkI\nAnm7T6YHqJ6OkjXp9GVKlorTF7DMOrJWZ6DITNQeUSARZRk2LkMnQhZSgpmHIinI0xw1K2DPGyA6\nVGsVFN0Ex8JRIZ6OiasRdl1FrGXEJQV59j+8mqQJQqFKlIuIro5Z8ZkMp8SahIqMHrVQc5E0GRJ3\nFezkW8ow80AoVpEdkyCeURIK1NMqnihgjGqoSUiKhKmoaKlNbk/wsjGDskhcTxFsgSOzTKSKtJIC\nvVghDGQ8uUJYNxEqLmo7weiaZEpE6HsIQUolahIlPrktIiRjrGRALTbRgoQ4dsl1kebEo6C52NM6\ngixTKkaYcZlJYuHFMbowISnPKMk5xchiYn83EyUHLoJZYLIf4eQlvHiMGoGhO+j5hEagUpF08vEQ\ndZwTdwWcRQfLLZOE0IlSRMekVg4oyEOKekxSFYhECU80SROfqRtR6RqwVMYohriBS6xaRJrJdDqG\nwKE8tQjzIQu2hlmHUpgwlCLEBGr1GbZZQjdTMklEMrpo0hhfHCFLBtqBRJwFhKbPZDhhVlBJ3RmI\nU7JMQUklRocxSTuA4pioYOEHBrNsgJWPMXrmn/QwCj52btElIuwXCNWIjDnw6+RmwFQpYhRNsAzG\nqUquTIhHGnVXpVfwmR9KlGKBkbdHMk7JCiZG30HNTLzFAkUtIIlAq06Ipgl2oqPMN5kYBZRgTH8U\nYrkChdxDE3MG6hAxDjGtCa6b0Ys7JCVQRRVLKCCUEtLJEN+dIRZjeloTPQqR9TkkeUicFJlZIpOB\njC4LOLkFdg2hndOPY2bMoQKz/ph6bqIcHRGOW8wl3/5m50cCqZfjtQd8dG8X+ULK8tJp7j/6I+el\nBqoWMOl8QPv9D3hh7TkWPnzMH27n9D++gbEYcOKVy2j1BTrmScbvbfNx7z5eZYaT9in3msRumcUf\nrVPZ7LPZnVAbVPG7Jr9+1GNNU3C3JhgPZtyrO4yyzzDlTXS9inrYIj6bI15J6PhdjPkdKs4Jhvtz\nPPrZE7J5j+PrVU5YOfeOWohFn9OLG0Qvn6Y+GvHxrYArcsSzoyl8foDvDnhu1WKykLG7O2LXXyT7\nOmB7ssfYSij/4z0ANu8NyEenOdTvsbR2nKX8gNv3AiqPVQJJY3hmH0k8wJ9tY9eXMTtDKlc0IuUF\nLlgJH50+oDA5xuPMQd3eZbls8mi7jmk+Rdy/TuK8yNqZR+ROwqeHHrWTb3J2uo924iqHN0fcOyWg\n+feZ5w4v7/cROrucFL7HJDF564019Pe+4vF7VcTZhNNXZJ7PGmi+zO/v36DyxnkOxB3Eu03m1l5B\nao04frrG4M4Ef17mSe0xvhOiVlM+ePoUdZSxVeri2C9g3B/R7h6x9sIa4q1nSNp3gb3/2vmzN1FZ\nBr9eXmV7dYwVvEh373ss+g4n8icMrBp5JaDXqLHUDGi0VS7cKlOd3+dsbYfTzzKEr66y/qsFovEl\nlKvfsOksM4wTnBD8xjbKrE+sqszq17n7/EPOS0N6/WXirTp/t2chzO1Su3SHmVTAeCSwdmBjLT+j\na5gs1XdQjRvY87vYJ306l79k8PJd7lcSfnAj5M7yC9zjMtNkQkGSGOz1uC+btE8d52R3D0ndZ/kL\nDXO9xOO6jpS5eJ+9w8+N42j7GeFBzOz+CP3mi2yNvqXR3O09KuUGZ64tMFH7tOjz9stv0Ls/5Mzx\nBs7zFt5hh7qi0PcOWD19inf/6iz7N99n/to5zp5o0Du6yQ/+8mUGYkTrzoRdt0VUSDhT1ihUX2D9\n6jUKczpnTz5H393j7PwS7jOX4CDg3s3f44p1midOsD064uTxE3Q390G5S7JgY0sDrr7xPDc+/pTn\nX3uHd/72bxAnY1T7dXavH7Dd3mdrL8MNDIzXn6Na2eDi1ZPc++d/Yunl43zwwS9Zefc8eUFn48U1\nSscvEB0quI8PePO1t6i7Af/0n36HdvHct/dD6DIYtKk6MYG0T7UmIzotqk6O1IiIkhJZrDOqOggr\nC/SiFD9xCNsT7KUypYUGhYGCN60jRCpVxyGRNEIpQdMd7HBCrZgSFhOmkkTFLTOqjlBlE/nARlJy\nnIWUsjRDsAugldHqKX4qoYgqjmDTW0iJlBnd0YBiJyIfxEiYaMOAiTCkMOij5wXKSZGKo2HbI0Sr\ni94JyLMJ3jhBDEOiwZBQExhoKkka47VmSPoCfsch0b8zUeFQIwsCpFIBQQ4Zd0CzDJxhAU9TEWyV\nWCuQSBGJqdHWJCiaSOEUwc3xTBG9KOEFCT0/xpJjJsWUWM4xjQBBTMmIiDUHQwbDqzAbWFi5Rrkz\nJnU0yrUuUlFFj3Ukp0eZDqqgk9emjM0hmq8SxTVMu0e/2CG2EhJVJlKKmGqKIOeoWkKuWPRimzzJ\nid0GU2HCWIgZjSZgBKSpTaqLKC0VI9EYFIvMIpeU7+g8QfbJMg2pmuMlErHgISyYiNmEliQQF0p4\nnsyhA2pBQTdirCAmsX0mfoyoRHSPYiLVIUImESX8aREtG1KLQvSajzexGJR8othDl2XQUlQEIsGg\nUKsySxO61gyaIiQK5a6CP+piiRJe4nI4MHHDNkFRJLESkqRBbNZRTBEpdug6I9JIYhqoyFpE3k7J\ngibJZI5EjBkEFulSDbVQJpjUyAcGDiJ26BA3M8i+ozdLAijZEXk0prkkUhMV5GBCy4gomwqR2CH2\nSvQnPaqSSD6x0es5iSEjTCO60ZROP0GxK5QXIW31OcqGmGKGNpmiYIMUY8QWtu4RCDFpy0OPB0zj\nmGapxLRWYCg6dPUxwQzSPMbtuky1gEXRZDCdopMj1UKiKGWgKMgliUjUkaopY8MiigSijo9Fh8K4\nw0yYYNkWsp0hCGNmGmiaxKKW0s8s5sQSQlnBnrdQ61V8qQxAwTSwKhLq9AnFY2tY9jJ74Tanyy8x\n6dhExyWkvTKSYnI3GLEXDzlWNni1eAJBFbBFOBiWeHFVIV/XuSSqWP48dx7e4HsvLLG/bGAdPWT3\nezaj3hE3e79h8expFs113Gc6Wu0EV85VuJhWaC7N8+HjDv44wVpfod/dR75f5MmJY1gHNhNV4Fnd\nw0919iYOj7aGLPkie9YtOvkCS07C9u0WHbPIsdVtfvWVz/b2kMlJndPlGrPDMpOPPRY9G7NiY7y0\nxsp6kV2/wePkWxztlb8+z9gbIujPEQsmxXaKc7/L7KVllMZJLoUmsr2MMJ6R7wTEso3a61FoibgD\ngcUHJqce5bQOjxheuMCsMsTcvcuhkvL6qyvsF+9SqJrMlQSq5gRTOuD9uz7h3qcEL3YxpQqXBzXu\nrubcfe0tVlfW2FIecrdwh/cO+5xZeZtjl5osiC1u3FHI9ClOe8C1c9cYddpsPHoDvfM1/c3fowo1\nRgcJ0UOXfjrhucvHuH/9KV1J4tTOEdmahvHsGRIB/vMj3j6+ysEzkx0theA7ovVfO3/2JkqINS7t\nGSz9epXC8V/wV1ufc2vRR+jobL/wCxSpzeGlmE/TJT5qutyZf4acXeB+ZY1jroJd7BGMF1BPblIi\nozIscn79Dr9bFZk8EjgqDnjgzfN2v8O5j1YY3HuR5dX7LEYbfJDleHdfpNtep5AGZJqNNJYYLs5T\nj26Rfb6A0V3hZLeGsqdjP3GpfXIB57NrfPC9As0vCuy9fIt+7RotDJ5mx/nx+B9QdkQ+Faqs9+ZZ\nWrpN3uzSra2z0zxCLkm8lXTx1ZxgvUHtYp3yiS3Oug0A1JOn6G1vMjuU+OFbr2Ftw3u//AJ/8yZH\nE43ewy6V51/GX3FId/fw7nf4+udfc/byEoXpLsEsZ37jBX7185/x9MZj4hNzLK8+z86NfbbyEl/8\n48/RBjVWqi/xu59+zNlTL7L7+R3+9u/e5blrlwh2ElYaIuVFgY2VFyCtoF0yufPpLvayTmKvcOv6\ne5y49Da//cOHHH71lGl7SG+4Q+PtU1w+vcTeg016wzZXmnW+Hn/Ks/0Rr7z7H4jcDFEMyeMyt//r\nfZbVJneu3yavF/GiAWIukYQS33/lVZ4ePPv2gjhFlmtFGCfY2iKxIpAYc7QGPvKRSDnQKUUZsQD4\nAeVRkbIwxTRyRl6fbDpCrRkYgoqhhvTyjKpaIBmaxFJCkgVMUg9plKDpNkLRxVYalI0Jh0KXjITZ\nQKOXeahugDQdc7iv46ctcqNL1zuk4Ylo6BQiFd20cQwVWxyi1JdJShW6so0vD5nGPRh6BP0yiifR\nr8kQlbHijMxuEOsjDEuloRexR5DMNfFTAcUBRRz8qWb0cooQZvhJRpz0KRoFFCEjqsTYgksg6ZhM\nUOIS9TBF8SEYhVTzHNUPEeMcQVdJgm9/A/JJRFke4YcejpcijQWyqYE0U5CMjLE0wa7lII7xrAJJ\nCmlfxh5G2NWE0RjGY4lpkiGlCbEsQyoxL3ikmYmcyKhdkaw7xRckBoJBX/JJRZsgD2lIXaLaHEI2\noZQ7FPQhhl0lmklEbk42FYgaAaHmYwxGyKKKGX+Xi5TIBTx3jOJFZHKXQryEe1Sgp5cQRwrZoM2s\n6dIIRQSryUiVOPInJIchiCFqoUalmBIPWhSLRUZDBT8/Qmk0GQ8gV2roSpf5OKeRJ2TPYhqTGqU4\nxhNdojwgL0FRcFGlAl5XJBEVRloFQ28y7C2hSDOyLMOZWshRkSzrgTgm8GeEuYiuCDhpim2LlIMY\np5aTaYcYuUiuBcwLAvUgQDB9Ei8mtjI8UcY3J8RTmVwv/EmP1CuTBs7/x9179XqWnXd6z87xn8PJ\nqepU6Mrd1TmTFEW1SI1EjW1pAF/4wrf2xcC+l7+AMYAB+1aA4ZmxZ2RKooYiRarZ7NxV1VVdOZyq\nOvmcf047Z180LPrKI8AwIMz6CD/stfDsd633ebHyHCHOGXY8hKCCoecMHRXFAW2aUwo09HqE31DI\nxAmBHVASQqJsiiLkZL2MbK+HkGc0WvO4JRsr9ymECL3SQFAFjkKVTIwwVAUnaDIvqKS5gj04Rhwd\n0S6ZqGIVx/VoN5bQwwaiWKJcDghFn+EkxFYV1FqDDBNV02gcTkgUE30c4YsmnmMTWVUsu0pYyGgj\ngSg1yWcGpVIJr6Kg9wbIlsHgMCbp5zCLEcNvnwT4skFwdIy7tYAc6xxsP+TK2ltMF3WePL6D8qVI\nuLxOgsSBs8+pk5dwzR7Xz8oYezKffzNl8vQ+1z75mLmoS3/tFHuNCcnoBJad0Kg1eH79Pu/VX+BE\nq8Hp+LtsP92i3E6Zqvs89hy+UGLiNKTna7yx/iabGzn1+iKnNi5RyaY0/vLXrBynTOser67EvPOH\nJxDmJSpWiYNsguyvkfsevVxk3a4wFVLiYZvK+io/+P02uSxwc9LlOPmcH//Jm3DiLPaJGV88uobm\nTDh/lNM6/+3D8q1rB6htl2KwjezOuBe4uO+fpda+T/6TlFtendNLDRrSFfTuF7yxuYoiaTTTLjf3\nn6OIU/QzBnN1KDEjFi4wOD8jmcmMOnOoWsTuI490+yXsbZ+ltYJZe8rKyROcjHWEezbpFRE/P8PK\nNztcnwx5X3qDpmdS6rVp79xkV8x5JAYMsyGz4jzHV1r402/Yeuyy0/CxbI98rPNNKyF/eoHylW1W\nH9zm02AbbbXKuneEUFkg6F6ndFmhUDSqaZ1Pyo9ZNl1Wel0S4T+R7jw5Czhalyned+j/+k/Y0zYw\n9EUqvQEvRQt8vDph7X7M+6lM5V7AD359Cf1xg83RXXrSGbbaKtNXXTxng/GnMtPCJJ/7ks2tgjSA\nNVdnpRFzs/Y2JbugNukTpef55nsD5hspl888QfJ85OkrTF44ZFjUGDwqsB+vM2zrzO8t8fcLc6zo\nT5k2yrjZMe8ln/LejS5zRs7yVg2z/CWB5JCfe8J+/AG1c3dpzqlcP23xZHSaXe85//nwBqW8yfpM\nZLy2g7S+RdZ6xmhWYfebdzkszQEQZIdE+wUbl1/l2Bmj/+5F5t5USM68yOHdHWZBRnjvJuzGSHMV\nurt3KV9+nWfTMo93OhxOt7EmU1qrVcx2k2ef/Ir5VpnGqw2uXD3L8npC39klenqPP/ivv88vtj7h\n3B/+AU+OHyEcukiVRfY7Rxxs6UjnbIZHU4Ydn7BqY4ll0s3TKxkhAAAgAElEQVSUkevhHj3n0h9c\nwZdkFlbaGK7Ps1/dwFx5gZd++DbFzj5BoHC6fZrLF+a59tH/SsM0CPCZdWa89acvc+PpDq+eepux\n0sPvj3CbY4YOTE8qzE++rbzEokISl+gXCROlC56MPBsjtQMmFZGDIoGKR82dkgy6uHLOuKQyclJK\nRRvP1ZnIOrmQUUQLVCyZcT6iuaAwUh3iwiZ1RBpWBT9S6AY25aQgmDQomQZKAnolYC6u4vkZuuUR\n6UOUVKRcqGg1iTCymE1FrFJMVgnRGjqO2EKQwZZCKm0Tz49Q5sEtTAxrTGzlNIKUVPBIZI9J/4iG\ntEoeSwzHUyRhQtg7ohxEpHGApv92wyeqgGtPQRVJ2vNM4ymeomAWEq6ioCcOvlnHqYmM1RJmU8du\nh/T0AkEPMKc61qjA0A1y08HNNYZZhmVkdAybTMxIaw5oAW60wJykIo19JN9GCybYI5XQLOFrAUKa\noiRtDDOl5KbYE4F2IVCIKYXmUUgBoZSh2SYzyyISoN5LkEQdIUoQwzKTrEExK8ijGv3WDC1r48oz\nEinDLqbo9ggpKeNJEoKYkDkhcuz9No9egNqq0Lc1Gk2DsZVhlEOqqk8hGIyzAjUqmJk6gSIg+Spk\nOXnDRhE1dCEmyE3iSgVvNERIBbRYIs7HRItTVGGK1mriJwKDoErcVugEPjNDpllk5PkUbTAhkJpY\nUx2xESCWumhpwMDPMOU+oRBTzJVw4xGiNiSPcgKtiiTm6GpGNBSIgxliaJJKLdK+R67LFPNTkpHC\noe4ijnPCOEPQc3JFoNwY4Ws2aVrDEn5bqQyUEZoA2lTicJyj1wyiho+UzojSHoouMhYd/EZIPJQQ\neyFZP6GUzcj1BrJtUi0pNBZUxq0m2uIamiehODqubxGbFtpYQIgLFMWnalQIwh6S3GUs5sT5lCzL\nkLU24khBkCJCT6Kzv0c5LegJGUpmoE4aFJrNyLHI5BlqNCMbDcgWmlSdEWHcJ2vUUVIIdQmvf0Su\n5fiZROyJ6DWfnuMw2/eRMwlnOEYWfMbVFK2a4srfdiy2BmWunn2R0x+scLQ/4Gy5wVN/G6nYZkmf\n42lepuVs0xRKnK+8zsP5lGE3Rp6JuKsOC0aX1VdWeXHxCp3jZZaPEvzsgLc3JB51dsgOvubypWXu\n/s191l+Y45BP2N032F0QWMwNXq15zM/22Z+vUHxxwM7hNbJ7AUdeAV/skr5lcVgP+dWCy4NnW+z9\nfMzUarLzJGRpanB/8pi1WGLSv0eNMVGSYR/dZ/7cCvqhwH2/zfBGjzNuk4XE5tMvnnLDv4Yo24jj\nTZbf/wH+0CPXuwCYqkXTuUrn4wPSk6dZKLWYC3pwy2G6EdM8cxonyGkVI4LTV9mJy5hhwlBfRltb\n5qC9wV56nzDaY7wFRtfkYnGRF5MNhjsDNnsm9XcqaE9vUGqXOP50n9r2PN2bO3R2DPwaTB4uYvzi\nV4idLuWJRjD5Bb1rLs2mhXv+FKXux7wlX0CYdBga3/DKgQnaKhftCvuP7yFYr/PK918k7l3Hmvua\ni6U1NsRNJK+O3RlReVbiob6Ff/4K4fM6c6LO9k4POzzFnW0b9YN10uAfJ4qS/uzP/uz/E+T8/73+\np//lX/3Z+TfnOFZ0mifvcbToMPdVRLIQMYrbLB9WoNnnOGrSf+UJhDVC1UI4u4LnDwjGfVxrHyfW\nqNbajDKF4JsGFCHmnES+vU799D7J8ZBx4wW8kwUn5Rv08zY9acr+mT6bD2pUx8ek1Sajag/9787B\nK2PScZOttQijep8vkivMfdnAvqiz0zLYXoegb7HXWuLE9j5+aHHu0MH7zi7bsoHWtVnP93minedd\nccKv7JP0DJ3A9DAGCq2tlNr8DsHRO9Rf/SvUJzY//+ZD3nv79xlMfQ7uX8MpQlpJyPZon83aAntH\nfS5/7x3Wz25w66OHXHhzEc6c4PlHP+f9117mi08/48XvvcnO4JjkecSFK0votTJ+1od8AbCQc4+R\nf4w/K5Huupy/sshHP/sl1fJJHrsd3ry4yLGX43Secjic8uIbV2jVV/EP+9x91uHUxiJi7hDXlmkf\nytgvzPFw7ynTgcPFc1c5vHMNI13EuNTi2YcfIpSb3P7yAY3mCh13SKM9D1RZqJXIjZx2tUyrOUdn\n8JT65lUqNZWmYaJh8PMPf8qPL71PnMiUYhvfcZCVEoqmIg0zZK1MM9XIBRlfVGBOoaGNMQPwNAE5\ncKnUqqjpDM22ybURgj9CiGVmQoIuVrEEBa0akk5sUueYXEtRcdCrNoamkg58SmJOJ4ek6mHLOWWz\njJ1kBKFFbqZkRhlxNmCY6FTKZYROTtxI0JOIMDMICpFyIWN7FZS6S68vYckRsh4jTnX0PMeSJQRv\nythsoIUzlFIFqwahaiKEOrIm8Ldf/Q0Ar574ALWkUeoHxIFKKsQIroARKkRxSF4UpLMYqeJiuwpO\nHOFpBq2ZilNWyaUIybMptAGFLCCULGpujptXsdIZHgqRVqIyVRjJASVRpiPFmGkJWdMJiohEjpCo\nEHghYlqgp9+CU1arMEtMqDtEYQs1S0inNigG6kyjRoQQg6zZKE6AWQuJzRjJEVCroEwthqrAfKqQ\nmBGymmLKMm4uocY6eiUiDwsiGnzxzf8BwH926QfojkGoRZCliFGA4ggURYWa4iArAvGsRLUk48cd\nyAvMJMMLUspVEa2wcUcD9FAhE3wU0UZLMkQ7JokalMUyyfCQtCSgRQGOZFIuBxCFjBGQuhF228DP\nNOplmY43xRZt1FhGUAPyUoWy7BFObUqWRa5mxHFBKhRIoUEUDEhqdfSKwkRPKEkiMzFF0OsUooaY\nZmSaRyTbCNMIv6wjBhNmSsK8qBDoPqqs8LMbPwXgT1/8I4K6QCBbmJUp0jAmEwXSqE1TA8evUNJd\ndLFKVhPIU5fC/NZAXtYEqpmEVEkZIlMpBCJGFDjMyJm3dKahS9XU6Q49CtFCs3wKqY1hGfhaijwp\nUZmvk4kxglFQihX8aEpekSlrLhPFIxzVqc7NiNyCipBTEWIcRSQVLbJUpfAEqqsliu6IoKIzLxZM\nBIeSaqNWDfK+g5rLuIJKpVbgVy2qostMrVCRdEbHPlJR4W9vfsji2TrWSzJKFPDirE5UnrK88AJd\nv8pSZUZs71DNV/CdPayzazw6OuCivUJuakx2nlF5402mT49ZOddip/iaE69+n7lQZKu5RO1xhqEv\n4NYEjvo7iLnF1tYI3RQ5c2KTcRzwOCnzkufhtiJyv8ZqniFc2qRSpAx6U2abNtqxQh45rLYW0LxD\n8r6Kuy7ilSe8QpNnmsSrawad7jILxgAvXcY52Ke+lrMkZxTJCreSAPfeLtGCgpR2CdMVXji7ijOE\nJ89/TSpMuPPpY378wlts9Xq8fekSo4c5j9TPOWstsls7ydWGwfxUwT/u0ElcTsclng1vs6aeZ9h/\nxPJwgefdbdy2gWA10JUa9yY3qa3IeCp0NxV6ahPL8QkvnUOYG7J/64BTV2xa8lXi0j0utC7Rse8w\np1zgob6DUIoZXDrB+kzgfm5RdBKGWsbuvMOZV5dYddeRTgjcPnrKUtaB8SrB6/DwZ32uWiu0lmp8\nsd+hL/ZZH52hM5/SulCjLCisHVjsDo8YCD4T1UN/kLH4vTH+VwH3Ht7lX/53//3/8B9jlH/yEPWv\n/sf/+c9++OIaOCJBr0T23KLYHDF6vMZCsoTRnlAKutzXLvDDwx0GxTrPr9zj9aMxX/oGL/clVqYq\n6kFB/uZTSr8qMN/fI1+2MTpLPHzzgJkhsyTqeGJMrX2NQlYZOCZ+Z4P0y3NkSgd1UWXr/lkW1DGS\nFcBgmVq/xNX5T2jvz7Hc8pk0dnCzgsnxeTb7B/jJlI3JN2jT16g6i5jvTOmN6rQ+F9g0Yq4la8jm\nlNL5xzxV6lx5NKC0P+RpcZK1yh1WHy7SHZvURjZVr85P7v4HLp9b5OwPfogylmmuFHQnS1x+eY1P\nfvprvvsnrzK4t8d212d+Y41nt3vMtr7mvf/iv+LIDVggY39rC6W8yeJVhSLSuPP5I84tt6lVF9je\nu0Xj/BlqYoX8+Jgdp4e2ssni6TX2HlzjxOo6x1uPCAWL9/74+2yslfjZv/sJjdNVKs1lzr38Ateu\n/R0XTrxM3h3w8KCPM3rGyoka5qjMsKWzXBJ49PwjFs69TPNMi+5Xd0j0JuacxitnrtBu6lz71TcI\n0pDusw4sKFRVhUprnc/+/N+weuIM027EzZ0b3Ll+jd976UdMZ6CrDoglkopGkfaolETyqEQWh/T9\nCL2ZkucKutAk9XKkSY5plPD8GaEXMHILKpZOTwyp5hWCzCXNExLHx40SCs2gbuZkyGBVGQYzZjgo\n9SrjCTSTAEuxGPoJkmHhDXwqCzbBOIMy6GZCmqcIk4hUtIktgeB4RpzolMoFJUxCdYhzpFFfKpFO\nYwKjSZqIhOoUqzbHJPQRjIxo5uNUCsSJQVQMkGcBoeDx99/8CoDfe+9P8WYqQj3DzgIkVUQpdGaN\nAlMDW5KQjCrizCfVbMriDCnQSGsJtdxAEWaIqkDsS2iaTuAqpJaBYU6Rc5VAUFEjhSgRqFk50yIk\nl0Kiso88kJDrKpGbo6s5aiaiiQEzuYpu6RTTgkKWqQw1VN1BntUJyxMswydSI2LfJm56KELKVClR\nSDLqLCEVNNJ8jCHPsJ2cqJih+gaSpZIQkoYpkaIhJQpprFBTIj68+ZcA/M6Ff0ZY9SibFQRVx5J8\nkHOCIKIoEkQ9RpbqKFFOJKk0dZPcKSG2MpKxTsoMoy3jWDohPg29gqgbCI5A1TYRlJRQqhK6EoIS\nUx375EVOKimU+jnKShmpqODEMZpoIGYWjpghlqb4fpVGUpDYCUVuUY5zhoGL3jCwpiYYKUqpQoiE\nJoBRJAiZRlyMKU1l0smYSCjIEKjJZabTCXUzJFFN6kkJVzeRjjxCqcSvvvkJAD++chk9LmFmAmJq\nM4silKhCWcrpegPmxYxULiMqGVmeEMQGUlmmPBCYGTJqonPsw0JhIGY58cBhktchmiJWUkyrQr8Q\nkaspmRNgJzJmNsWf2lSCELFqEUWAN2MsxMSKg1lahURnllTRAh1D6ZGFCnklYWz4VFQVIyihphNm\nqUna9PBHHmXdgqHDrCQjqSKkCZZjkGsDqOYogcfEUVGTCGYaRVPFKXrM1TQyyeCnX/2Kk2KZ7N0T\nbIgSUnWVX28F7H/zKW7ZxTbbqPkQsb4JDzXkBRv7yQ0Wzl/ClPZJvx6RDiNm1gTTjEiVNdzd3zAs\nNpHTGUH/NvvHT6iHCmffeov70VPa4xonr64yi/u8pLS4dWeP9YWT7PZ2uHj1Cs87Am1FRT+Gk2+0\n6N7tk+92yBotFjfPodlrPHh+gLDpUntqcnyxoO2KjFpVbh/s8urJRcKRz7PxAHnWZXCuhvh4TCF4\nbKxvkMY2S40X6G59ifXMYbI2Zo6YvVnMo68e8sZr51h63WWiRwjlI4LaZcLajPhoyMXc5Jad4Jhz\nCPYCFek2O1vnaRc2j+cN+iWR1mWbmbPP+uo8xj2fomHj6DFFW+eyOoftP+epvkZ7bZHsww6V5irX\nR3WM5BGyscbN3lckbsyo0cI6skn7Oba8QDc9YvPxddSTL1Hbm7D54jkeuvfxnhp8tnWdxbNrRMMO\ndiXHvLtH47sZJ0+f4K+6EuWVVcqJx/rbq6x3J/h5k6PnBbXgkPnvrDGHTZHO03jBJmOIGJ/lxtZN\n/uV/89/+RyHqn/x1niKI9AQZOi+yOIUL4gZLyRKn1DWqpQxDPOSgXqJYus3HDZNT4h1qe1W4pyLP\nl/HqD/jNWQPvhEH92atol9c4desdeorP/DDm3Y9SFsYO17x1JqlJc1xmK2hh+AfMn7+JIISc2BxS\nVAza5z7CP3KIiojMfoqip/xG3eC66rIdHXBZCFl4LLMZXWekLLMst+i8fIlPL3ncf/MbZtdW2E5k\nbr5zilsnPUq5wCvFl0wPTrH5XKO1cIR4cgP5fEgs/Jjnlx3Oixm9dsy1088AkPRVjn75H1h58wJH\nDzzmlBn+85hGofF8p8/uaIqR9Cm3UurVEUKjzm8+/CVm1WZfK6PWWpycW+beT++jGzrf/cMPcDMR\nq52TpCOS+3vUxlXShQbNtQXGd59SLppEjsjaRhm5UGhsmDz+8i57X+3x4z/+LxGPXITC5au/+7f8\nzqU36MVHHD98RnPTpHL6MoutTeYuL9F/+BmN+RNM4pNouwP2b97nxOZZ4tEMo2ly+GiPQGzQXpWo\nOjXMhRWebnXpbosMmdJeX8H2YiJDRKt+233VzyXmFJv+LCRSwex5lMYQ9xNcZwdr2WWuZqBTwY5n\neL2MiShSWmsxcMEpysiWjGnOGI06tPUVuqUhi9oKamBTi3M0sYykxUzUMhgVxh0fU9MpdwukSMWs\niKjNBWa6zZw8h9CJsJdXiJUUQbcwBg5qBqnaQlhQSSsZlWkHXdKQi4hw38HpjZAnDeJln8I5wsx1\nigBqqDQEHdwRJX2BmiBhNyzo1XBVDUluEzVVDO23MkXchFpDJBxXGUptCkx8SacydDCzhCkFrhaQ\nqQ0SMSK1dMQsxnEt+r7PBI2ppiPmKl5coOguJX9C5iukio2lBFTLMXmtSz+ZorlVxLhMPWijly0i\nIaCqeOiuSmSVcJsZzTRhICZMBJ8k9wnMhESR8RUBwTAZx2WKtECrdoiGddJ+hh7HZCOXTIhJNBdB\nMRD8GhQmU6XCuIiJ45TCNxENg7qeUXIjSoqLmP72ejPSdXKnwD/OCA77CMyRhxb2vAKJhhToTLUR\ngS+SjHUGB11SxcXwZeISpEUNplXE1KNBCU+b4IY+ul0i7Ic4/SmWNkRsachag3RlAa9sEOo5abVE\nqTCQxwmaoJN5OWWhT0P0MWbztNKMI7GLms2RezlJNmReruM7ZeKKz8zOyPs+c7pLkg/JxgmSqZHm\nCv3IpdSuUhZTMFUCpwNyRqLZlMUcaari9lP0hkHidP8hj1Eq4BjHRAToRorQjhCNlJklYtWW6Bdl\nhPKEsaCiKBambJLFCqlQYM5SgmJCI4M8CukJDtQVVN3DFKvMPBm5qyPILpKjU6+liGpET4vQazH9\ncsAsHRMVRwSxTtUviF0DTT1A0hKs1ow8ktHKZYq8huLOsZbN0RfqzAqd7kwnt0bUjxL0RCSbKAgL\nZdS4QJnqmF2fmRQiy22EwsaTVzBqLnIUYa/ZmJMIcVDCGVWY+C4Aqdvgg3CeL6MaofOU9TeXuPjK\nWa4mq1AqM+60EOQZ45qBGt1nXniJatLn9rjK4Mxpzr9/nnTgMNTXCOKcc+IpzrZ9vGRAMEs59/4/\np77aoPPsCWVvlaE3pKWqzPbLfP3pR7Te0PHEgChbZDA5Yjh7xkQfsGu4PN1+ymJVZtouY280UR/c\nRpze4rXVRT7wN0hPN1hy3qIRN0jDDNPb5v987DDTRC6t6ywMm8z2DthuF7SFGaOGx6R2SKf1jMrF\ntzFWh8Sf7iA1zrA83wCgU+SMv66z8Gid2Pd4R5+gbK9w4cR5nOGIvaPPwYgpp12iskYyd4Ts9biw\nLXHl+Bj7VswL4Qs8unWL2dkdlOkBmqQyfOZx78snTL1jLko9hn99g+fWEh29TnN9wPFsnY1Sh5cu\nvUWuqazJT7j0foVO2Wat4WIqm8zabdYXoNAlbnVuUImrnFrb44N3NE6nCrO3TiJrGV8OQqbjGke+\nwI98mRfvfIE83iQONcbr86A+4fT5szwuj9i/fkiCwMkT4Doi963L2CcPkMN/nOPgnzxEBUpMfO09\nzk1ukC+Z3HvlDn9brvHlssK2P2A0WOJeteB3RofMb+7w2fkWzTzmqx8FnCqesnt+kfnFO5xyH/Hz\nRpfY+pL+xueEdxuE1h3unPNwtQav3Tvkh32Fnfx1jvZP0I5PUtxconx5QvqswvRgjvInNS5kdWQx\nw645rCoezc9OMX/9DNH9H3Jb0zAaPSbqGWq2S64cc/J6RqbZLF2vsnO5j9IMWQifs80Zzh1u0hO/\ny5GT4z2vI9zb4NOVAxZ2++RuSHrrHe6+sYWRJ6R3LgFwPN1h+fs/Ij7cA3Oeqdrh1qND3vzdP0J9\n7FFVC4ZFmaefbbHyzvcpkfO7r32XZw+fcGquQd2JuPbpX/H2a7/H3oP7fP3FV2Cc5dGTfd5+9WWK\nKGU73mLFSDlly0iqwv2nd/nOH73B3//iAVM9pqKUuXv3OfrrK3x86wtkz8TXBc6e/H3uPukhKeeo\nf/dFoidDdu/f4dbREfmizWuv/xGfffYRL/3gMs+7u2xcusx9r8elNy/R+dkBy69s8tm//oqTC+e5\n54+4dKLEO5c2eX7jb7n9yQNOvfA+v779HKU7xdTPAVAzRfrJCJEmDQtkQSEQcoKaRrNu4+7ViKug\nCwLpdA5TOaZdyfE8n1ojQzZjfLmgKthUlTrycMDC2KDrhqRyTFy1yGMHaxZiyxEz95BiLkaaaXit\nOcKkh+NPGcxmqJ0ekhUyli0mB13CkQ7CgLDSwFMqLJYh70Ronss0W0WvK5RrJXQlIiwLjOQB5qjN\nKG5zVB1Riqd4osdM1emEkFRHSEpCSdOwrQLZDMmjhPnYYvr/kJqo5YwkFygqAobRJUgVKgWMTZFw\nWkUVSlQ8BVsoqAaQjHS8ZspcPkXTwVQqNEYuseSTiCJaFJKZZaRARspcjCil501JpCpWpuCKHrYx\nZeDP6EnH2KGMEM8zqTiE3hRGLbp2jC15KEoVOxTRLQVdzMiMPvX+DC0bUXNVpGkDqTUgbEpYSUCe\nl7FCkyyWiYuUniYQ1Ke0lAnlcoonQJgUJKmL7+ok8rcDgotS9A95+M6ISnsOU3CxC41M8DGMiNQB\nr6QxC2MankE2F1PKj8jaFSwzR07ADhPCSofEjijPUpxCwU4N0rLEkT8hsQq8hkHfr6H7DrYwIy0C\nmkUFYValEHKyrkgx72JWQNJDZkKFiZeSGiOm8zNKVo18tEfTDhB1g0E5xBJ8RNOj5goEtRn5yMeY\nNijkAi8bIhgSQrlCNy6I9RLGTEBrzGMstYmFlEGuElePWWgUTJyEaqX1D3nYlSqZs4Bh+LjhgDlX\nIatnZCFYwpRmvUCdNajGKq6XEbrHlLxjFEVEEH2kUKco23jpBDmzyPKEqlqi1krQ5YxR2EOeFmQy\nCIMa7lBAjzTo+syrKsK4QmYUNJZSqFjIiUA+LiGrIYGbIjdD+l2HjIDIdehN+2STHoYbs2xVoaci\nLWnYtohfHxFLOZqik/oyTlkkjzVSXJzcw47GZEkTSU1J4ymxqLBoC0SlCQ1dAiBdGPN5QyC+9YBh\npLJRinj2zMc+ZTLZG7N2pc69L+4yP+eyPSsov6Exzk2Uict00uUv/vYRr2pt5lsFc7rNY01k956E\nK+dEWs7BbMitfosgOkCx29Tefo3ezj6ut8/mlWXk/RkHvsm7F5fw11SSjXWe/GaPbfWY3kTCFxao\nbbyJJHVp2fBg3+eGvU3WNNjfivFrB2TpHSapxQ/rb1Fqurxwqc5YXWf8jsQV621MNeBRlGPemnFZ\nOEHlvkn+zV2ii9/h0oUltuM98tUXAJBEl/MrNfw5iWDewIhF9rceo4kB+02VF7vz+PI+jeGEB+Ml\nTp1uslvJiZwbjBfbHDW6pNYjTkgVzvsvc6lusPRkm++ULtAwtplPPuDwToy0cIKVkkp5sMNGaxG1\nLPDLW5vk7jPOdSz8ryP29xLeml/EvS+zP/mUSfVtPhs8RrzkctJp4s1CHtyt4XpVPrxX4OwegnuZ\nlStLOMOI7d6nDDspW++fIZm/Tj+O+eZeSsU5wa34JqWLP+TcqXPs799jZJo0uiHL/3aL21slYuk/\nFdlmqKIsDEk2C7r+mNJRhbc+Dlk+1aPkVXHPPWRuKNA/fon9rfcZ3ngTNz7L2r0QK9CJb2us/es1\nitl7/OFHBgu77yNHAlcnLcb976LpF3HMOUZvKoSJg3+s0M4fEE1H+PNrOEXAx6/klM7+jPSqwfNG\nxgunOmhxjc/WJ+QvfYHxuzHqqo++exGvucTuuoJ6uM/8YQPz/Nds3HuCsFJm4/kR68k16ltN3ny2\nx2FjzO6Bhp2NWJqDjpHzR7+OMAKVYPqU7qX71O9rrIWXuNr69k/yjHaWO3/1ER9+8hteuHiGpfwK\nc8tt/uLnf8+J77yNpdbwug9Yu3qV5EGIX6pw4+YvmLk7xFGIc/YkRvksk9qE5ZVL2EsSTz/+Fcul\nKp//5Au6Tof1ldN0O2Nmxgp5tWCpPkcRxJxdkSmvXuT2x/dZPFdi989/zdVLL2Gv1nj+F7fZ//RL\nai+dxg2Pqa1vMClPeOP7L7BpWnSeb9OLn9FeOcGjX97g1FtXMfw6dbegM+zwzj//gJ//h7/l3X92\nkvDokHNnX6azP+b4/jZKtc2mvcj+4BEX3z2NPz+m2/0EADn3KewCQxfIXR2xFTKtmXhRShxoRM0h\n6WBCVoxJ6JLMVRnHKaKokNsK85ZE4SoEcUoceQxTC0euY8ke7WqDmZZQKhtMA5voYEJVWMQOSmTh\nCE3MkGcNqoGO1TZJmjJHuUcjHSHXS2R2TsWysD0J+3jMaHCMIJkkpkFGj6gfIRZ9Ig0Uw4S4hGo4\nGOUJcrhAWCqjNEJUw8dQbTKngnsgcFRomJpAbRBQ1cYcxxrN8LeVl4mb4eBhJwN8Z45Ei0nUmHJR\nIq0EBDMYZJDOBETLRBJckkRhaugYE500m4FaYOcR1URkFLcZxiJJzSMII7KgSjNX0OMxWWhgNETS\n0TyVIqeuATOfIWNsNSOvqyiJiCTFBIik0hBHFBgNMwLJJPKbhI0msWVDFcZGgjC2KOcaqapDdUqh\n++SxSWKIVCSRJLRInQq5UUfTDcgjFLNERfBwbRGnreP/VhOFUk8RZ300WaYQRdRAYzJWQFWpSg5R\no8qspaFIFlF1iZJkk2gKw4pMEoaIxxp5nNNNbaqxxZx+qjcAACAASURBVFDTKOURMjZlO6WcGwii\nwyxNmYzLFIHOzD9CJsIwPKa1AfQ8pvsHTKUU3BlyajONFLS+SNyJkcQaxDZFFmFkErkvIk5kIqVA\njlZwynNM4whNrOJGFjoxmusiWiLo3w7gTZyUggI/hbKvMqPNUBxhZArZ9LeBJLmLFHcYyQITSeDQ\n1qklApY3YzTJmUoSntFDVDroqkeRKwwbSzi6ReDn+IrHtHCR601MIyZTQOwPmI4ChLRCSVIRNYVM\nToiqCfliRsVRGDdC+rMCoTElDVTSSGIU9ilkkzwYkwYaxjSj4mQs2VWEwoSGjmKVsLQGaiNnYobU\nTYPDkUQSBOR5BT3zycWQ2MyRJRtDKAjiCkovIlHKlFUVUTY4SiIiZYybuqiaRlD6dqzHcFjnRdfn\nlR+9zpbj4t+/w9UXF/i77X3WB4d0HqW893uv0dw0ycvL/PSr6yxoPdqrC5ijER+0q3xjC+zNRLJO\nwn45IK4/QvTGTKoyk50O87pDfAALUofa7Sc831DxWhm3t6eMdAFhbRchlZg9n+ftpROkzSWaUxFt\n16fSiNCGH1L+qMPH64tcffcMtXCF590R7yoOzSOPrzsBg/s9uvYyReeQYXhE9vgQ8cmUu70d2p9v\nI8kdam2ZnXofMRjTP2ej3X/E5LiglG6Q3XwMgH/2PH/ef8LUGPGSWuFOOMRqyVQOUtbdDQqjxbxu\nsLe+RE3fZtTrIp9tQDNH1PqcMQWqS6ucUgR2Jrf5xBIQfZHjzhYPT53gM+UZ519fYHbz1/SrD3De\nXuLxVOHw4Q750ghT0JksPWXnxZx9S+d6fsi9i10urrcwju/SXpUY6wZzJxtYX+wi1lPuHy3yztV9\nrs5KrL9vsdBZ5/UTK5wNbPo/btD7y21cu8LdG1u8Ez9kbGucr5uU3COOha/xz7/Gc6fMrBbjrTVZ\nWFygCIN/FKP804coQWTU7rDb2mOp02ayfZZbpzLsu4eo528ipyfwhCYHrR3q2hbnGz9lqXSPccvA\nPOMRbyzirc/xbOkY+b09hHybUVNFULcYr0gUvxlw9vrHaPohD6I5orNf8sZMpa41UQ+POTHKkJ+v\n42810QOF7c0mH2slOrqNNz+j3j4mNhIOV58zfOXv6ci7XHr8gAfnTwA9ps4HnKlY9E92GW6dpbHz\nfY6WbII0pUiesbEwxVBPILo58caYcauKn1yie1lGHhjUwzrPxSlJ8q1ddzY/wdxQuPSjV7nz1U/5\nevCQ6ok2Fz+4yG/+t/+dpKFx/gevcfDhX2OLe3hbXTbfPUdZqGEsNZEf95kcfI2q1tDmUyr1Derl\nKjs9D7tRZTCVieN9yqcusvfN15xcPcl8o831h4+Rli6y/dV1XvkXP2Da82mcW+fxjWtsPXuIVWvS\n+M4CvZ98TUNs8fm/+fe89Mr77P67J0TRhN7nz5g93kVdUHGjI6bbu3Qff8bmS5dobyzx5dcfU+6X\n+Pjnv2SwuYz78DrFdIYvpaRxBcMeszN4yLNf/IbD6yJr5jIA0zRGoYKoFUx8H8HJaCcSc45NVp5R\nTDXM2CKbVrDaOaNoiEKI5s4oBiFTsaBVk1DzmKAt0zQ1jJqPWqpweDSl0ksICw1F71MszpGpPcJg\niKtAnDnoDQFDL+M5EUJUpSY3ydfaaLFBPi0YFgF6BTxS1LJJaOTMJhGmrGAYBt6sQurVcboRhTnB\nn8gUUYIhBUiRj+5LOF0LX3EpJSn5oonqOKiay1DTmTki9bkEUXP+Yc/IpkbDi/FykXk82qGBns4w\nSVAUyBo+mhQh1Vwc18WpQzMqEKcpsjZBm5p4WoCsqGQlkXYtpSoNMHORVC8RzvcZlyuEoky1NaUY\nOcjNAWJaxu2VmZTrVIsCZ1DGGkVIJRf8nEooUPVtxAaoLR01G1ErOWgTkbxv00emFsvoecrYD3G8\ngiQr6CkglhLkvs3EKxANFTUt8AMHP1CITA1tmhHkKdJMpi7EaPFvD8BFZYFpVJAkEUqthpd4SA0P\nzbCYijKlmUO9I0LuEwoOuuPhDHRkd4q9IFEv+3jKGEscEzOheuzjxTq1XGGQihgUKJOI5izCaEl4\nQBG1qQY+U0nCHjaZmCuIxhINXUWck5HEgGZag6ZAYy5lioKr95BqJVx3QtrUUWITdxYTKR2iPMEs\nZYSaQst10XwLWS4zN/HxOgEoFRI1Q+p5GD3I0oiGMUHsZLi1nNz4baVSmkbkYhO7b2GlNVaiKrFj\n44gGeSnBFhLCoEY6LRj1U/RFifqxQwUBQS6TqAWGmpN7KvJAw5ZFxnMtAsNAcAX8+ZzADyg6I+xR\ngOnnxG2DSmDRsgXqiQAzkTyPmIvKqEmPVFMQszG+UcWtCIiyRqA4RFGOl2ZIbkgv9Cl7IplRMGca\njNU6aRRiBzp5J2OpECkJImJwRLlw8LUlsmBIoOZgVWhGJZQM8AqiOCZy/u/v45CjXEFzCupiyIPb\nDrcOR6wlAt8kQ9wHj7n/6DaSotNYKKFoEbNgg5OlkHNn32X3RIMzrSUGsyc0tQw5DGmFC2iHJnk/\n4UqpjHimwu7ySeyLpxFXW5yihNASOLUm8ccXfpcN8xI3D/vMH/yG3XtfcfnsGpZcovryMo+3nnI8\nNkhe/AHqrRnTgcCbSsbeM4fDpRVu3tih9PoFXskesndOYm0cca9fpluJmXv9ZazZPtrZNzhz4Q8Y\nLsnc+7u7uC80qE8PaaUt4stVnm49pXziW8VBc6vgZFxlKxN5+k2OPwh5961VDgp4XInZm7i0vhzQ\nd6+jH8zRWtqgu/MJ05VLtPN9Cs8gfPyM3U6O5aW0/Ve52ym4Ntnh8s5LyNMRx18e4b3zOq+vvIpy\n6JMe/5zFMzannAkPvjig2trk5DWV5Njl9198kclfdTGHQ5y507j7FdoPn3L46QOqVspoFFCrmPBk\nhev3VT777A7ilTtsXRfo9lu0/n2PShpiiQofeHVi2WI8u8H2xz3ioxp9TpFOCloPn7L35CmNiorZ\nSDDs32pB/t/WP3mIqiQxb6RTtqtnuPWOTEMe8v2bJc56YAmnWLxzijSv0oglwnvnsI/fYqtchjii\n+zebSJXrCCtH9Po28ufn8Gct7hoOhT1F33qOdXnGo/RN9K/OM3z9a07vlDluiszMCaXNgM5Kh9+J\n77K07pLPZ9TjCd/9MONU6SHNUcLx56+RakPec45IigaSPiO5KmAlh3zy2ir7zQ7xZIH6J/Nc2fyC\nQu1R4RC7NUclOcV+85gkaMPaiGF5mb3yIkLqMiyPEYcFwxM+Tm2XbvMpAMZug43zb7P/mwPO/sG7\nzBUi29c+paYHnHzhNaqmx9Zvdrj6vR9x1z2i/eZLfPnxE6bdDluf3EBePYGlKHz5k79gdzTCvX0X\neb3K4HEfS5J59f0LBDsKT754xsLpS3TuPCOYbvPWSycZHd6mOl/j6C//hlfmXkOeW0KfO8V6rYYk\n9ZgdZpTLHksrAYvNZW7evI908QRifZO5lxe4ePUi6aTCudWrKCOd3cN9MkNl768/xTI0Ni6s8r1/\n8aeMvvk1wukG8fw68+dbSO4TnvUTfvSdD7iweZbu8Bn/F3vv+atbft33fXavT2/nOfWe23udxuEU\ndpGiaItCYCuKIyABUl5Flow4tpLYgqDEsSPHMYwEcaIEhmzFdgJLIlXYZoacwrl3Zm6Z284t59zT\n29PbfnYveTEB6VeygAAJEfDzF2x8gfXDF9+19lqCuQiAoOYohB0iwUMWIw5EDz8LGFVlnKCBFKlQ\nSmjTJZBqmKJFNBZwKxlCzWay1edwCEpSozIukGoQCAEH6QFzRoqwMIc5Sglnl5BbPu6gTElXaEoz\nVM0ZPL3LQJmSn9pUyxMgJN2LmaRDLH9ATZE43PMRyiXo6lStAHNOwZRS4oqJWBAplwNSLYLUIJQn\n5PMGJStDdCakRYGSYGCFAV4IiTsgiQqM4gBLz2HGEb4TMtGaP6oZPZmipCK2YjEpW2BEOG6BTE3Q\n2xlCKpApLn1Xw04dcq0MOcgjJwXSsEQcO8SaRj/WSKUxkRvhRwk9qUAYC0SdGZLQoSJLTFINLZHR\n2hKOGJHZEpHaQUjK6HZImKqEYw09KiCqJmIpJZ1GmF6HQCyTpClJMmWmOKTiqqRWRFqT0AQTpCmi\nZSEZOZAd5Cxjhhg/g3A2paprGIqHbUvIWsKUPHJRBCFhmP64fTXpH2JVa2RFiY4ToJoKwTjD2U1B\n1IiSPAMxQ+nH2H5KqOnkLRkphv1BzDCnk/oCtmnjGSYTMSUYhvRksLoeLfcAKa3hV3NkwoCKNKFY\nTxhLNSqHMRNpj4KTIufHdLYPcYYivpWQ6PsE+0XCWKRix4xEk6EToUYicpgQBTG1qk5lLFFWQ6Rx\nDiuDTErpphpaMmZqiIgU0bshaihi6CKRnEdNJVI/piSImLFJXPxxa8KuNUn0AUpNoihGtDq7ZOIA\nXRGYCWukh11yQR8xX0Sb08ilJv3AZZweIOSnVOwG2aFHgIMUSzhOnVh0yUUJdllBbhXAK1Mp5gjL\nCq5VJokGpEkOL85w8iIzNZO+apHZoM01sMqzuCbYbh9F1MjUBMG3kNQxophDjHXMvE6nOsbp+QyA\nVJqiFm32wzFT2yT2p8RqTCdnM7IMhEKPfF3CGHZwBj5xycCWFES5ieVKiGbhkzekKCNVjvLRd65z\n/kidE6eOc7lWonjMJZFtrnz9ItqtfQ5utCDSODr7eW5t3eJPv/+Qp5s71JP73Az3KE8DHjy8wWLP\nYnPvgJmLCqdzJ0jPRZjSAVd3FSbOCnPna+z5E460jvFMu8jOB/fZWLtOfr6EYIUMtwdoyToHZsTq\nuw8px2VOhzZHhYDlIw65bMrhuZM0LpyisJQSVKHgBJTL54hv3Kb0wgu8ejJitgIPxwLzozwPZ1sc\n9wNanUPOVi9x7rDGXPcM3UaJp+0eecEgtD/RQ5mGvHLtPOX1fXL1DsLCS9R3ctz88PvM52OMlyOi\n2S7njefwDYNDc5WLyQLCJKUVHydY8xDPnGB+2WL96IsYyyu88PXXeFFvcLi+x7npPG4xRy3f54M7\nPTLrkE/nvk699oCVqYTWfBFtNQevlDnRd+m8PeILcwW2Sq/w2sIDloY2gt9gQ6/ysHmJqy8uMNP7\niM1jGbXLUKkl2O/E5F+P6V1ssL1ks1B8GbPn0bFdVEVjq13DKwdkx3OU7zmoziHr/jYLyzXEuT2c\nbAL/Wpr9Z/ETb6JSPaI3Pc7827NcuJUgn75H+xducetEzODIJv2Tj3j5yYBVs0r+gsPNssj5Dwoc\ndBaZKT/m3Jt1ttUmuhywcWmHO790g4WVT6PXYOYFB/NZwivRhEptHXWQsj6ssbU8Rd7Reby7QG/v\nDEGksp7pWM96nBINbj8fsa8tMdVlZq48Il4VkR/Uee2bfRYFmcYzm7nWHIvbI7xNA81NcI0Bvf4c\n71izfMpq8UHRob3s01gRUeWnuN0axw4OmFU2cM7cYWmsk11q89SWGe0cpbH+ySO43u1ijIdc+JkX\nGa5sIdRNvHDA4wceQ69P+/seuXmT6cThwoVPcaQfoTh9pFmDc698jiePbqA9N4OSzdP5zl3GI4XF\neo3Xv36U7dYh22sb3Dm8yZe/cAVb20c9KnNjZ4dv/ckKtm5Rt3J0yzWE8iHL8/NY8gGPH6ww89VP\n4620Of78K3z4+w84cabOqU8vs35njfbdO6g0ubf+lGPLeY6fbdJ6dp3nf+5nufW//xHzz7/OzHyT\nhq3QenyXc9e+jqTmePDhCrmgTvNzL9JwCrzzz7+Lutzg8l88zbMn9wFQcy6S2ESSA9woJD/KkJMa\nuhbRkKa4jQlJKpEPFNzDIfKwTCSpqLt53MjDmCtjVzVc02diecR+Qur5WGORUaqjjib4cyLRKMHV\nTcrVLqo+g1TzcTo99EMbIUow6+D3ZZThlDieEocyckGh56TEikKSOqTVhLbnIWUKWU5hMHEJpzKJ\nlSNXMUkMlUY+j9/1iUIVwaozmHo4coJh5PHVAUlUIc5ciqFCfLAFUg5i8Jzuj2rGVUymhoEZD3Cj\nIVHoo0sxXpaQCgpGmGD7IkJuwiDJo+kxQTFjVO8SyX1cI8IehyhJRpIIjMOQophRGgRU5YRiBpWJ\niCcWUQQFRy4glgS0uoclCpQGBoFxQCr6pMWMothDLUaEE4VJN0d+kiP0dMaui4iNYDp0ohJRHKOm\nHnhTIimmUBCQhh6aHFN0ylhqFzfzMDIQQptha0QhEJh2TAQXBDVB6fi4/QIVJ/6RHmOlTNs7ZOor\nlIQ+XcWkUppFzUJkN0fe8BAaHpEVYCsKw9GQSTREi2Vqpo42DMgCg8EoJhwLqGWdQs2nmGUoRomK\n0CQRfbLJCC0o4acRQ0+nlI0RG3m8JMXTHfyuhlypUXU1wmkVSa2BIeKkeaZ+RM3JyIYhsW0yVVqk\nRQ9jbNAVigjtAWGxSyA5SIaFWhwwbaSIqQw1l3bOw9NlBpZPQ89wJJUkrtLR8+Q8D2ng/FiPVptK\nptEZHTLpB0hNldF0il8cE0VtMCTS6hyiMUDxPfaiKcpSFd2oEg1Fos4htmUROgbhnEY2nVKPTYZk\n9HoJqrTH3MwAUS4RBSrGdIrigmh5pN2QtDuh18/QvA5hz2UYC7STBPuwwrScw+gLpKMx9UZMltQo\nTH2m9hhnFKN7JYT5gLg/QlJjgq5PWa0QBQM802R4mKAaAUU1Ru6VkLI8E1HASIe4myMOpxmJEZJk\nKqXwkyiqEOW5v/aA50+Vea9vsjDv8HDtDsXwec7OnuTe2OfqV79Iy9ineTDkuKpz4I45wiIXv1xn\nsrnM1WiAsFXh8mc+z7BUQZ/NcezBhMenC4w2D3HfaRO+UsR93yPUSgSPV1h+foZe5PL4cId5+wWG\nb9+k412idH6W3vtblPWYs1eWUPt9Gufn6ZbXaIhneZhIuLfv4Af7pI9GlJ6/Snu1Tc8LaXkZH689\nZO2PnmCefZFippG91qT4yOGtex3CXYdjdZm7ew/hRJEnt7Y5+mSdl06dRrO3AOgX1rh15x5yMuDR\nEZ0XD1X+efpDfubnz7Dxhyuom3Uip4H67gE9UWZmeJU3d9ZoNtv0G2Xs8xWe/KsntMoRNUPEPvTY\nCDd4OqNxMDdGWNYZpQfk+vuYyhhR7ZBKPR6vnuaFawq54YhudYPhaodCY58dfkB8Pk+irrH2nUW8\nUwW6J+ZIwzW+9HyJzjikM86RPdvFelhj0J3yXrWK9UzhqqigDK8TL99iLZ3Bk9p8dH6BXLCDFEZY\n9332FhaZLTZ5rjTHkcoZDt9S6LZsvB8/IX8mP/EmKkplVlYz1pc2eaNpkzw7xc1Jhd1IIPvBSe73\nHf7wHIjDNvH4GWXz23xz1ubxqYg7wnE+ermKtT6i5mfcnGlx8o0G/jThPTNifFskWmrxkbbHN4+M\n2HeLeJf3GA2W+M5wmRlhm0K+yzv1OuvSMe6URf74ocujwMRdz9iIMnbFOusnu9z9uVv87twF3lo7\nQds8ZKO5yYop0d1V+dOjIaVTWzy8tEZlaPJer4jyyCTYvUH1dEbXb+C6W7w1SRDWyyjrIyoPEur3\nj+C/VyLM73Cj8gIAF47WeXhvnfH+I6Z2xNz8MpWZk0RCj8pn5vGuRBzPLfDRg4dMJpA+d5YwaJDv\nC/hPPiSfypxrniKZiVg8/ylSv0MoeXzwe28zv3gJR4k5dvIi13/wAa1wSvsDn6vHFjCDElu9HdT5\nIxjugEbzPN3eTWKlyMlXnyP3uIN2rc6DN9/ES2WKsyfpfrjO+ctH2G5PmD+hc+rMi6STIZN2F+/k\neR7d2iE7Y/Dg47sISZ0P+2sEcYYibuNtbPGVv3yOG289ZF6u0mmOWHy+wuDONvu3ppyrfJK8GH7E\nvtsilybUbBnV0jArEno0pRdPqI10jCBEERLEUCEtjJFyJlgTTHeMIQ5IJjJKXsfsRUTSPoI8T6HU\nRJN9Uh3EiYcV9UiLh/R70B5uM4wNYj9BM3VsW2GnHeHYBdpuhF9TqVeH4E4oRQZpPEE0dQqpgkye\nqN/G7+RIHRk9nuCnIHkJRjtl0hcJ5RzTMTjOhIY2R8nwkXWLnFhAS0P0LKGbhij1CpLqkuVEtIr2\no5rJixpqYuKgUfUjRMUiSkViWaFjAamIKpSIA5VUHeNFBsrUodFTEWWLcmwSCU1SKcTuSRSsPFGS\noyc6DD2XpNKmr0dokwCTEXlhjNDLISUC4nSKXLDQsxq2L0MmMSjOMPQyArOLpkwYKSFZIU8tNZhk\nY1AtcDoYZYdES0lDCyuViMcpmplgjGymZsxAr5CqJWJRQI5SCtWUvjcipx/QzcpIusJAmyEo+kz0\nHy/bTKSAmmciiVM6UUrlcI8gEkjoIvs9QivAiyZMRgbjvIBYqVDI27iNCsnAQo5naaoF9FKEUekz\n9jvE4ypZ1mVEgi9I+OWEoFzEE7pobhHJczlUbPpCQk2p4cc+tt4j6gWkjRhLdmg7PVBTVLfHKE3p\nxypJAdRAoNhpYjp5JpkIUkxHmSUdJgwlnYmuoHQrKJ5ErPiUeh5WaR6SDhXfZpSKJHURPU3Rpwqp\nYaEp+R/pEddr9PIBuqdiz+ogl4gzkYZQRZVtXKvEoD1CHkuoqsxsP6DQy/DbkEtz9IWU2NFIOUAb\n+QR8souqOYmo2gJpY45EVJH1KYGb4QgiUWOBnGhTyJfxy1USuYftKDiaSqXnUOtPsIsK1ihgkG+R\nyRV64wGGKSGaPlGmUfN9lO4YNZshh07RqyIaU8JEJJfLyFkhjbJK5qjEY4NQ8+mlQ0pyHSXLU1jK\nk9NswqlAkpik6Sctzq2KwFdfvgpnTIq1jAf3Iy5ZVxkXMva27zPrDvno2R6t6jWK9UOC8piiLaLO\nlPjwW7uULwsUqxfQXyqzW+3j97fR0XnWVPjcapHLjS+xfjTPqQ2VZFnm3h++w3PHvsC9ze9jf7zO\n4onz7Kl3aLkudX8NzZUofO1lKpUqCAr9wgJ3ci023xB4P3yfz5oy47LL64MOa6lPdbzN5YWjHBhF\njjkeF3JVjE+dQopGLNQS9qYKF55fwo3HzJw8yTvGNucvnuBW7hmJeZdJs8nmk7vs3f6/j7pvaVSt\nGs58gxcPPkf3zHXiWye4G55kc0ZlVkq5t9HnyZfgot3GGe6x+PMnmeSPMD8wuCuJLL/wWSZry9j5\nj3g4mSU6cKg6PpX9hPDZDeaz1xncVHHNDOVPU8QjKVn4lGnpLK1wTNB4hY4VIKmX2d8/y+hejniz\nRO7kOh9d7yM8g6OWxuqKymJ9kco1BXdzQqXyGF/3WapPUJQx24cB4dGLhNYcn+9qWDPn8NYmnGjM\nsNQsETY6XFl6TNx7xmR0yP3ulOhrAccLj0nCH59K+rOQ/x85nP8XGLoOtzqPufg7Tyj5H/B/ihZ5\nr41bPMXjxvc40UtRFmBfctmSDbTNV5h3/jdiTebessb5/2WPZ198GfHjHtJTl8PsbXr7JsN7ItFg\nB/fNAvMnvgX/9BrJ+RHi2vt8/PxVrr7lcfPlQ+aLI7adK1ibBYrhkGfHTE79QZFte5PDMxZb8i5X\nV0V2to4hmQccyi1uHndZbzXIbcZUn3/CqeETfi8v8tXrGqP0HXZO3GG0W6ZrL9D61odM/F2ExW36\nW1f43qlnSE8ivOIu+3WDV8Y+/XtFjn7tExO1ub7G/MsLdLYG7HoOti5TMYYYScbDb69QkyXuZqvM\nvXSRW2+/xdEFi1OvFFj/2Gc/7WCcMFjbW8d0SowXI5rNWVb+6DrnvrTMg+/cxlYN2uUaoihhB3PY\nxpjDG0+pLKfkFs8S3N9m2kt544e/R7l4lW7rCbujAbXFPJpdRLRsJBxWb90k3yiy1VnhVGOBrfdW\neex3ybeHjGSBc5fOUJop0b4dIpohd6//C85+6iLbKwO21u4zP/saj+90mX9umdt3/4Raco5YGnMn\n2eTcuSaDx58kc0lsYdtTOk4ZLRVRtIjeeExhmmEXUrrikLpkMwpDclYNMQvJIp9JbKEWQ9SBiZF2\nIKohyBZjM8N0OvQMHTHnkUkB/kBAKeqUEpuOrlMojZHCMf5SAaIUCRE1C9EHB0RFlUq/C6UyWcHB\nSxLqgkyKz2E6paJFZAWJIBhRUjwG7TJSZwdN0SlYFol5yHioEWkFJF1lJzhEFDWqkz3aRkqukMMP\nJarTgJFmgJMSZ1Oyf61d4w8jNH2AHiVM9SKxAXlJwCNBkgNkxWIUjjDlDNMqEyRTQlHAjxJiBYqW\nTUJA0TLoDFQUcUCxkIHvU5gWEcUpJV8j1PqoQpnESBjJE8RMIKuJqNMxfdUilgLKQ5+RXSEXDRnL\nJrE1RXQTfNHATVPwLESlTYrGKHERRBlbHpAaJnG3QDx2mIpd5ChBqlTIrAB12KdPAdstITbGCIKC\nInpomUdUnaJOcyT82ESZqUDfVCm4NaSkTTinM/H2Mcoi42GK6XuImYZSUJiMhuiuR1tJqVUUQttE\nUkIG04SCltAZqdiJhq9GKJ6NowNCF8PIUJyM1A2JlRxSDKI+Jdofc6gJKFqeoqcyVkYE0xS7VMDr\nu4i2S6RVyLsqk/QQM1WZehmpotI3A6wCVAdDOq6KVylTjlJcacrU9iEyyGLwqhr0XGS1wFQaoPlt\n/EmdRO6hVsr0RI1C+8czYmbvgHEgoldNRs4UMx0iCSqjbgc9KyKGU0qiSigKTBxQLZmWf0BDEgmb\nBTRKyGKHas9EtBMakk+QhIRVC206ZRIpjASdxqhPpkQoI3AnAnrRhDIUBn3kqEJf6WCFCmlBxlFl\nUiXGNCNCt8hh0WH2sEoitxmIPpmdEBkRU6NGsRXgWhKOGKMFVVIN8kmRTJyQZQVCaYokBpRTgVGQ\nMXbH5ASfHjo5pY+qWwhRxCDLAfAzxssoGwJ+q0roDzDyFTK1Rt0UeKIvoLcz7GhE0ThA6i/SoMeL\n166RtDostC12TZPogydwsMcwV0BljqDxAIKT6/byQAAAIABJREFUqK8XeGf9TzFWG/Q+I3Hw0R4z\nUUZvMUTqzHH1cpuN8SOE+UvUjA8xzl8m7PVQVxVmr9VZfX+NF1+usZ1YIO8juxfZNnVGT4fslmqc\n2W8z7Bk8HvfxUp1PP3+aN00QP1rDnt+j2pqnFYUULky5eHaeE6fn2HnPYiVcZc6osJQcIbM9kpfO\nkH3wCIDz9cuMX6oQXL/D01dV2G/y8heKlMOM7md0+qMy+ZMXOaZW6PQeM1upsZtrYO5n7AcbNGsS\n4eQhL1XOsBUdwQzKiJdtpAcPCf7KVarjCkH0DOPKUc7cjph+rQk5mRcvnUS8dZ3KtRoHis8F4xSt\noxKvdB3SL0Sk+6+xUY74dBSTPixQuPIKtf0Ntsw+Ua/CyS/M87Q7pnTWJu4ss+G4XLX79O0GPfcx\nRVNisFTgyJ0im9ISxy64PPF77D/TkV82OP2ej78Eyx/kmHn+MmbxO38ujyJk2Z/vN77/rxAE4Sf7\nA3/KT/kpP+Wn/JSf8v87siz7N05G/cQnUfNzTf69/+ovU+sb7AUCaVlE8dvU0iahMaQ7NpnVDFyv\ng1E08V0PVy0RBgdYpSbKfhclD65RJgxjAndKrmKjBBCGkAkScpIxFoYUTZj4Fg075WAkIUQqZpBS\nkKYcNnLowpBcJ2BaNDCQaXlTyEuoFEg8yE8lBraPHqgEyhTNK5ArTBAdg6neQx9oZBY4OCSyiaxJ\nxA7k/QKGEhGFAWQjRmWZRI7An6NstKFbJtEF/uZf/S3+xq/9GpKYkF9cYK+1R6ZJNKt1bEFkd3tK\n/UgJZ2ebxtxpkqHHyHGwliWcPRepKjHFoiQpaAOTSTVmvPaQQCghaGOUVgH7vE24uk+aSCxerjHq\nepDGTPs+ouoijGWMmknUXMbdvM9c4zgb/SEzMwq+U6FgjxkcOtizZSayQTF2iHyd/YMOXrJH7Jep\nWA62vIjntElEmK3PsbG/xeylY3SerjFoJ2QzMTO14ySxReJvoE3r5Jsauh1ysHpA5qj81v/wX/P7\n3/gXfPThQ/zMYElMUAoah6ZD2Hc5qi+x3d3lyJEG232Z0JkyP18gaW0QLs3huRK6GNE9AFFwWDyy\nyOGDdXRpSmTPkmvatFrrGOYMCCr58ZBeGoMgMZtPGakRkusxCgSCkcJsEcSxiFLWcDMZv6xid3JQ\nTOn76xSyIh4FKlbM2HExEdkbtJkpFqkszdL96CG548dZn8TMFSUCb0BOLrHpdqkkGc40YbYksjMy\n0BoFzIMNTL3C2I3QZ2J+5Vd+A4D/7h/9Y3b8FmVdJupH2KFMNHCIz1WwOz3a8YhqscF03McJJfJa\nnc64TbEYUzfmiNwBu7bETGLjbbfRTi4iCDKjbZdiWcW1DUpeh0hT6A8OEJQGaShSsGVQM0InRUpg\nFEZk5oTK1CapB7haCXF7D0sxEYo63WHC8pzE1ppLuTGDnaR0RyHj/j5ZIWEh3yQpyxwcdFCiDNG0\nqFVtBpMY5VDCz48Z9FwWTs0hdENaoxYFvUpiK3iDCb/9278FwK/8hf+Q0nKR2E9od30kdURej9kf\nWTQqE7rjMgUtwRnG5AsFJNVjP5XJDSQm+j6GOkPsBJQsn3hUALPNVNGZqYgo04ihMkc87iBXbIb9\nEbNyjt2oSyaYmEMfZbnBZDKl6uioxghNLTGMB0RThUJOQdJdnBa4WoLpykiyiaJpdOUYrSgjdXvk\n1CL9gYxTbnNcqeKIKY4fIWQC4VQkU9sYao5RpFDxYtKcQep6aFMVue6Sak1++3/6bwD423/zr7F/\n4CBbGuQ1cmoZaX+XiaV9sgVf6lI1BCKziiK7EAUcBDYNtU9OKOIXBKJEJgstPMFB3PKwZ0wCoYDQ\nf0RXaTJXFQgnBr4WUpV0xpM95GKN/nBAwVpEEFKkSZsDdUqu55GzLYaSBIMJRy8tsz3RSbafougS\nsfXJFnRdLjLc38L1ZRRJJYjHLFaWkGsZfc9A67TILzTxkzGjXkjsjVFNCUtaRFdThgcdzLqCJpR5\nMn3MEanG3/4Hv83f+/u/g1XISA4myDWRKCmSD2K26CCOTGaOCiRikdH6FpZtEBkSRgrDToR+NMUZ\n6lhihpsOCMQc9Y7ItJzHNPo4bciKBroAYj6PP/bQZQuyA1xyVM2IUStGzxLCfJ68JeIHIjnJxRmK\nqCUBNXOIsgqTkUhBlojkHgOpgB74WOKE/baPUZxHKSnEUQtbm2HYaxNMoLCUMN6Uqedk2s6ApGIy\nbxh4okawOcYwLTL/EG1hgV7U5r/4j36ddw4ekWue4UjWoiekWDQZENJkQoJOhIlLyIAABYMZfLpM\naSY1PMknwiJjDxORMU0gIsZBpsSEHktIiHGRfXmEENsIcsgcBmNGZGQIiYwq2GTiiDCMGKtVJDKs\nMCBSJSIUAhwybHJEDKIuC0oTGNKhSJMxE3JoQA+BBEjwEZkyj8AOeRqJzEDYxxRt+ozRkCkywxSo\n0mFEla9du/jn8ig/8UnU7FIt+9W/8+/S64tUxQMCvUbXaaMINs18ib7qUs4s2uM2iZqQGAozkcXh\nSMRS9rHMPB1LQiYhClLKUQnZSkFQ8EbbCGYZ0YuRtTGqWiQUZGS/x8Eoh6YPCa0GdjBCys9gZR0S\nPyULQ4Rpg34jo7SX0LOG1AKJ7kKeXBrhThVKasLezoSm3WCSDAhyOhFTGk6KX0xw+jamOCDftBjv\nFCkUhpDX8VMNORUYewHFfIFssEXbFbC7y/zmf/lb/PVf/mXqr12hUqmxcec2w/0BRy+comeUmC/l\n8XY7PGr1ePncBba6z1goWWy1WhxfvIioO0xSg+76AxZq55jQ4eGdm6hhkSTvcOXqZxhmGts/fIuI\nPEdfvUYtG/PonYf00jb14hId36VsFGm8eJpH3/sueR26XYlZu4QoROSNIttOn/nz5ykfLSFvi0y6\nu+h1mw/ufZ98vIA2W6N81sbopDx+/zqVMzUGXsjFI8vc+7AN6ZCiVce42MQ4cLn56DG1osbyq2dw\n7nbY7U/Q3Qn/4J/8z/z63/hNisfLlCXY/aiH9loFPS2Rmir3vvWvuHDqJe7df8DP/swXGU0OaG+u\nkatf4v7DO7zwhVdYXdnh2vNHeXjjQ6LRlNr5l7Bbe8RHC2z94DZz184y6WnEtRbGRh8qM2hUGLaf\noizmmW00sdHodQc8XtshyemcOnsFfTTmwf2HHK01GKkeGAskjs9cNcbb9dGPLpOJPYbbY6arz1Br\np6i/WuXW73+HL//SL3L/nRucufQqb/7+P6NUO8GJKwskE4VOYYhdnmP75l3KxTKRLyM7D5j2Ev7O\nP/4dAP7Wf/5ryKUTTCddLp+4wO23vsHVr36Kd3+wSVGdcOErP8fbv/vHfP4XvsjocAdP8plpzuNs\nxKwF9xhtRZz93AuMnDHlkcDUiykIAaudAfJeHw8RtRqQO7NIQT3CjW++zdmvnGShuswH3/kW5z/9\nVa5/459x9PlXcbefINXzKLLB4uxJnh1uMOl7hL0WR1+4zIPvf8Tnf/krvPFP3uLisUXysybrrQkc\n7JK3a1TONhGqFbbfeBu31GS81eX4lWVmywZPHw0591KTWz9sc/E5iwEC/TfXmVoSC1++wF/9uX8H\ngN/66/+Qltvn0pfPMQl6KLc/acUm2w5apcb+sIPvtZELEZXyPBXZYOj7WAWJ7ZurVE4sM1lvYxQV\nhOIJ3NvvcfSzn8OwLLbuPyNtNlAnqwhWjYposrK/gZXL0Rk8oaA3kQSVXH6RpaM+D+/2aRZT2lrK\nstikl1WpGxkb+5/UpJGMOKwUSTsHtJ+tMpZKfOa1qww/3qFVbpMlBpk7pXL0BGJnjYF8jIag8XRn\nB+hgKBb1i7PgBDzpDTnuBHjHF4nam/z6f/ybAPyP//0/QmhUmXo72NMGvqlx9/q7zBypMt48QNQr\nnD5TorI8y972iES1qScaYl1FFEesfNRjMuhw5dp5Rs+2qC2fYmd/hWKzyvbHWwziMbIXUm8eYenY\nacaWQBaDrLUIxIT+e4csXVkgVcu43YhSs8fapsv+ZpsTS2WMWOXxxiqnZs4SHSlQyyfIsYGbmUSR\nS+SHiKJCyTB5unmLncEBZT+Pr4TU6ydZOlrj/maXqlxkriaCpDEQJQpyj8k0Yef9hzTPnUL2M/6T\n/+xX+ae/97t4GYQalJWUeOKAYRIOJjx8sM2FaxcY7DoMiyGn7TyJodBtd7n/aJ95U0OQ8tSu2JhK\njdbmGt31VQSzwKlrJ9hamxJMn3Gx8Tz9IyL2yMCWJA5UEXU/INQVinmPjiySG4W0Rts0qkcRdZlH\nK8+YO3qUqikQtT0CZ4hU1omjGmXNJ9I9ZCHH4XafghWjNuaYxBmy1Gf33Vt0/SJKccr85ZcpKgFS\nX2Pr5m0QDArnVWQxhz4zx6Nvf5dceYHylRJ/7Zd+lb/7n/4tNsv7LO9XaGHRyJVI/BbjBZ3+x1Ny\n8jojdYZAdhh9uMtf/PoVtkYB2WKZwTtthGpGWfEZ6bNEI4HPzzV4uvUx/vEZGr7HXrXOcVHnyZtt\nkosGUzHiZG9Autlh16zw3BWLtze7FBYVEkcmXe9Tr7zIptAlWfY5Yhwn+MG7uMdrxI/HyDMnWSwL\nPIkGLHYzus0Zxh/dpLxoMVc5yaHqY+gR4lbMYSyjlCxmbZ9hXqa8/Yi2XGD13iZnjSo5O0CeuUjb\ntvidv/sbHI7a/8Yk6id+sFwiRbQGpFqffq2EW4JasUrCkHgyJu/5dNQUa8YgEXTSLKIz3IPsAFkW\niSYSpuxT6LmUfZ+uMsGd+ownCWPXAk0j0nJExiy9iUEvbNNymkiBj10qkJcj9HEZvz0hSQPEkcIw\nSxEKOloCk3oXOW0wCjP81QmTkUcSTJiMbCQlYiSEWDXIZ1NKPZlsJqYoCsw18wSajBMXKFYkoqhE\nOgElFhh1+5SiCMHZRTSKaEmJqfzJRenMmkNqLNKPU5aufho7b7Dx8T4LdojCkEfr69Dfwi266FmF\nQRF2diN6UUY3KmD4OkWthGBlMM4TD3QmcRercZ7r37pOMYo5df4lcsmUnQ/uoAg1Zj73KapyjkLl\nBFevfhpFSFEmCS+/+Bk6bZHLX3iJ8bTPet9nLRsg2ylPP1xh7c4jnu7f5vb9m1DK88q1n6M8V2Fx\nRia90eL2xzdoHptj694hx89fYGOrxRCfs68eo370BDMWbD3Y4YXXzlKtn0Maq/QSgRdevYImGgDM\nzhjE4yGtZ0Pi2TZHixbKnsvdP/4GX375cxy0nlBoLnD9rQ+QOiGtxxlPn27z6osv8d5b3+bMuQZr\n79zg2KVLNE8voGgmNx88JfJhZxrweHsLvRwQvrXD0me+xOq92zxeW0HJ52g9HTLupew+cnnwZIUT\nCw0uLVxg7RtvMhx2ESoWeiKys7qC1R/jZOvc+v590kZMN3YYuwbG1GRcX6B+tMD42Zifff3f5r3v\n/ZA7K+usbK1y7toFgsGAvF5l5f03ufcH73Hjj95kMZ9xbOEYrUcfUtXmCbMfz7wsNBdZ33oPo5Rj\nbfMucj3P6odrLFw9SzyKefD+A86fmee9f/l/sDcdIYk6uzcfsXuwzaLZwHL6bHzjLebGClG9zChY\nZf3RfYyShvTcCTwdrn36i+x9e52FWZVI7qLtunSFBN1cZPf+D0Bs0tpcoXqqil7NY0w8brxxHVdU\n6az3eP0Xf4GnHz+iWq2w2+6h4FA/Nou/43Hl1SYTxUCeK1E153j03jvkLl7ENiP0oo59ZpHvvfEe\n4mSP7nrE1efmIFfj+h+8S2m+xtKF03TfuPkjPeL2CmrWYvud2+RDFeXlswRPB2zf+ohefIhlRWRm\nysXyMYqtkCd/cpftdz7m5rdXqJ6o83hlA7Uss3BigeOLORovnmJj/BRbSxlvPGR3/x7xJCYaj+l1\nbhM/fETe28bddzhcfUYgpjSWQDebFD2H2Jph7709YlOjNfohaBH1C8scjm/xoPWI4aMniJLKTPkC\nR48cx3NVRjmJogsHj3qsP+qz9afvMmzl8baf8MzbwO4PmG4P2L1/j+4HO4zv70JrQH+SMRcUWTJO\n/EgPsVJm/cE97n7nOu/e+z7P7r+NVYxJWyMEL0DKTYmEBfzYYNg7YO/Gh7QPt+mNBvQPPVq9VepL\ny7RGEnd2dvlo/UP2Bh7X792gHyfowyEz1Qa5hWWG6iGRkLF79wlPb24iDMv0Yw+XIokb8GztAQ/e\nW8F9uoY2TsjX5sjNNqmZ89xv3ycXaGw9CnnrrXd5+vAW996+zs7tJzzdfMz9779JstUmP43QPA9J\nDHB31mn1OvDxNoO9h4xdkSDVKMou/n6e4Z5MrxiwunqTXvJJzTx682OczpjOnR1aj9eZphKBO6Az\nTNjprTEKMqRTKsVKhQiZe289ZutWBz2aMmVIUMtw2xHxeIfp5hrDgUCSgd8aMHywj5Es07EDhLUM\nMfAZ+ns0ognlpSF20SNLBPYfP4NwiLDnI/shHccj3nrG6ofv8/6713n6zg021m6xfnuPw8keiRTj\nOwUiM2Pr2UfceusmozBkGHUY+BZOSaWQONi5KvnJIcpuzLA7hCUbtSHjqyaV2SZJDE53wnh9G2n9\nEz2apxbIHk1op2Mk8wkzgsJiXWFBClmaXUZUq+ROaVwqvsDxz7+GPpGhqDD5QYfCpSJ+PU9eOMas\nn3JVNvnu3XewTp+jZugE2mXMGxOC1oTZ0j7iaMKlpoWcV5gKefKVjLVWjVMHBY5FL/DcxcsoCxcR\nFna5aAcse0WO7oSY9WMUtnU6vTY58SH9PZ8jZpmhmzCzVGf+3Ekunl5k6+4KttflZFjFblR4YTnm\nhUqDstIk/eYj4vg4ly82aFwqkjtWxK2fwrx8hKX4EKQ/346Dn/gDxH/vH/63v/H8cycItAIobcxp\nQncoMj+vkWARZAau7OCnMclEIsMhzVvMCBUcc4SRagxDlWmgU6CIbfaRojLeeA+tKRONFUw7xXNi\nhHhAnFYoyQJ+ySSKAnw3Rq06jIYJVt7CER2CSMY2LPxDh8zMkTdTtFoRLZeA6OKFYDs94oUGOCle\naBGMBKxZgfYQ/HGRsTykGBVRixqTwR5GWGRajDHihKkbEAsafi7PIBDIeSKWF/LWWx9y7eI8hWPH\nGG1s4nsC0VYHRwxonLuGJelsdvcxBj7mqVmKah45TZisPWXj6SN0c4w1O0fU7yLPWGSWTTzeRRJD\nGqcWcNa66MdOEBRdnI8HVJeryK7M/VtvMHfkLPv7B1jzBYqLi0iZgx+HjJ09ynN19h/tEZcDvIFP\nQzcJhwPcVoex4KPkVMJWTFZIyNckCkqVH66sonkT5l78PJKboiki8VigdqLEIErxNAHbKbJ+uEIi\ni+z1dig3TZZqS0SSz8qjZ9y9f4err38Wsz1gv7fDi596jSf3HayqyuDZLp5lYPYCjn7uKmvv32Ji\nF6kt15nG67gHHsdPnObOux9gxh5GvsGdj9YplCOuXHqZ1e8/4qVrR5hs7FPTbJzaIqv3v8vxF/4C\nBx+8xcVPX2Auf4q1d9+h1+5w/mev8f03rsO0TWNmFis06d9foeW4vP6XXuPxoEVxT8JcbGL4Ackw\nYHP/CUnZRd1LGO/tUHrxCnsP38fZ7fGZr32eW7cf0jk84MylGdz2LrnLLzAId/nS88/zdGOFw5UN\nLn7pZxnt7CN6KT+4/REAX/+Zv4I5c4L9773FxPU5cfY0/XTE5MkGF7/yGtH+HjujFrXTn2JndwNn\no8f8Fz9HMNkgm05g+QRqvsrqo4fM6XkaDYsHdx5RPHKE4bTF81/5NHdvP+KVL7/OD/7g9zl+8nXW\ndtv0Vh9TPK1xev4kQ2+fkydeYvvt9+kPQo5/9gWmVo/R7ae8/O+/xvf+12+x+Nw8iRoRhj0q5hnu\nf3yXfq6LP8qoxLDnDJidayKnIeOVNTZX2nzlF7/A/uoqr7z+GpUlA2/qcuutD5m0x3iEHPvUVR6/\n8zZnvniZb/7LPwLgxZ//Ba589gqr1z9gZX2baG9K9eoCjWMVcvNL5DWNJhLPtp7iTyTy53Ua81Va\nnWd497o0SjpTPyA3t8Da6jPSrX3uv7nGnrjBbHORUmDT93ZZvrCEYTXIqXlG8zaVwKaQk0hyZQ6/\n+4Rxx8OVUpxhgFkDK8lQ+garP3ybg2ctuvsi4tBhe7iFkA1QrDxbt37A9q190v1tUjvD250w01wi\nX7KJGPNs8xlHYx3TsPFSH9uE2oVLDJ92mRUtzNMG45bBJNrmu996C4DFpWNYrS5Gbg6zPsuxS4tM\n45DpOMHrTrHiiNoZnRvfvoM8jjHqOU6eOU9/eogn+JSCOvK8Sa1mcOLYEmtrjzl1+QWa9QbB7h5O\nKUe7PWWwsU9uvokWZjy5d4MjcxUe721Rs8vU5+Z5dONjSrZNazzl/PNnKJ8/i7gb89HeB5Rm5jkz\nf46J2Kcz6hBmEaXqCU7M5VCXKngrfQZCjvNXTlPSq3jWLK2BgxhI9Lv7zFw8R3f9Mfk5A6Ekk0hT\nzDgH4Q6jh3ucvXYZKZb47hvf4y/9B/8W7c4h20+fMXvuFEwydh9vsHbYQhUCji+fRI5g8OAJH17f\n4djZWTadfU6XGyyfaFIRTKT5MhO/zM7uAFNKcUYx7c09zGTIMOxy+sqLqEUB0VEQ8xluK8BJCmSi\niWlEqIUKaRyRWz6GYvqEgcHy6VkQitQrVUbBLo4nkqgjikYRuWSjp/D2924TxC3SAE6eaFDKFQgO\nOtTFIkvnz9OsGzx4sM7u+hOGo8H/xd17xEqWZ2d+v3sjbtwb3vuI573JzJc+s0xWVVe1YXcXW80Z\nDjkDkYAGkjYyGA6HpHZcSgIxBhCgvTQz7BFnmmKb6mJ1+cqs9O7l897Ee+G9u3HjGi2a4GglEpAW\nHC0PcPBffMABPpyD//cjOT1JIBklFklgE6twVqVUL1KXNco1ePHyIb/+3jc50kpcm1lA6rZoRxPY\ndBsByY0/aaHWdMaaCuagysL1eY4L57jLWVxvj5DdUvF0wekxSM+L7AotzLSDoCNGcaeJ7WwX/0wa\nUfCTr3eYujTO0cYWoZZJN+PgdK9Hr3dK64IfQzMpfvCKt759Df2VQcNZo6TXaUeSZOQ+sksgcOc9\nQr4wzlkPeqlE2Bzy5d0v0Q40GmoPw6/Rto/R33tBO6dTOOugDUtsbx8xlFzUjnZw6g7Glvwc7bTw\nRoNw1ifcr/Dpxkv+yT/9Z38jgPjvvIn6V//iT/44+/Y0Qa+GOjQIKGE6ZpuBbjLwaGh6i6DoQa3Y\nkWQLm6YTMDT6koNB04bm76KIAWTFjrNvp1avYXlFhr4hPiGI22vh6Mk4zBadgRdXWAKjiLMJfcVD\nzOdkUFERbX18vTBiSyKSDNIyLbpSDY9mUOvawKzS7Wh4anYCsTBVFUxHm4DVx7AJBCIGvXqbod3E\nkDskh3YM1aCLiup0ogQdDAsDGs0muinjTIG3K6PYHQiajm75+Pyjr5iafpORSJRwVMHrCiNmorSK\nLSJKmzO1wpg/i5BIEnRCfvOIkD/IQHRROi0x0J0EfS7272/iSSeQnTqttTKNjpOZpTjdUpN4KIgp\nD2lsHeCd9NF2+iisVlheHkFciHN2/4RsNoikWbx6uU7NgLRnjGKlQcYXoF9q0xv6cHoEfNNZsv5R\nEsl5qr0ioakkXsNGvnGCUevSGVpMXsiiBP0o/iHF3Amzc1m2726hnZ5hm3ST38ijqxKueolwYJxW\nSODlh6sEoi4e3L/P99+7im/+Ng7dYDVfRt3d4Xj1kNTbUwwKHayKyenZGnZTZnYkgtgfMqjD0ruX\nePwXP2bmez/g4MUaln5GOn0d7fyQrqrg9laRZJH04hRrJy9Jh2V2jwRSwShL18f58c+/QhN1iGRJ\npWMc3d0ldmkBo2bQ75S58GtL7Gx28U1FqJ/mCSTGaeXOsGIudF1l0Oti+mzMiHFKjhrdkEBm6Kay\nU+HCd24h+xT8SgOrF6I96CN5BVTLRcTwkn92wuzKCqjw9e4q86MLaP0eHz+4C8Bs2kdg0EeaX+Hi\n6/Nsfb7N0hsLvHqxgeBwEQ8lGcmm2Pzqc977rd8gFPLw5KPHSJbOfq3A65cm2fzqK+x+P3W5yv6n\nR6z88H1OX+0x4/Xw5JPPmRhJ8OzrYxbfvUFx74D0/CTNQhNfRCHizjJwtKjUO5g9hexSjPs/X+PG\ntUVaZwPMTgO7qSAOZEbCNpoHEv5Ik4mZCN1cC6eoEx4ZY+bGCp98+DkTK7eoO3Rm3r7OvT/7BEe1\nzPHeOWfHTdq7BW7+8JtUhnXigpPKXoOJpQXq3QIff/Ar07Donuas8IrX/97fYzQYYKdyRFCW8HoD\nqJtn5JptDE+U2pPndHtlcvkaCEmm33qdyTcXCGQCFJo2/C2VtjpAiokInhAZK4XgVGn3z7EFXbz4\n8VO65zWS784yKPfRtSKVVhBJ6+AbDzOaiFIR+izPL7Hx7Cl6SMYznqB41GRuZolIxkFgYozB2iG5\nnTZuv4TWbnL7h29QrTWYHF3CPmbD5xpgqBq6V+TS628TS3kRRic4yle59ca71PePyYsVBrKJlO/R\nllVmUjP82X/4MwC+cX2Jimogu5qExqc5e/CA9qlEz1YmKLnRA0Fqp+cY/T62nkny+iWON4+pHO0y\nMz9O4+yc3tY5+e0TIjMhqmtlsqMhrJ5MuV8AdYgzYLJ0cwKnM47RzRG9doPNnXVs1T5Ts1O8erLH\n0oUABHy0qgWcUgiH5GHgFQlGBbKJDKbZ4PmnT5i6MUU130Pq1qhrFVxaGqPdJDk5SnF/k26/TaFR\nRbHs+N02FqdmWHu8w8r7d/A7I8gdmYOvHnB41iDXP0X1BBlPJKkfFvn84T1uXnyb1v4RU29cRM91\n2Xx5SMWlErPs4E+RjSXpCCZ2uoRsfdyLCVIjywRdTvSqwuOd5zTqZ4QicdKyn2gsQ2AiRjY7jTI+\niRKQqGwWaZ612Xy+QbnUoJZvMOieop+yzFR1AAAgAElEQVQXkNwBHO0udl8CsdvgdOcImSGW3YtD\n7FCr1Wn323SHPuYXLrG1u8FZuYgSzxAIGQywk/ZlcaeSbJ0dMu5L8cWzLzg+btJv5mm2VRJzrzEx\nPkt+8xnHT4/Y3l6lcj6gX67gvLTClYuTxAw3H3z+EZe+/R2UloTTNNnzgr1+youNI9r7u+j7LUrD\nAm3ThSsVxjgb4HI4cc4N4KSC7pDY295h6Ahh9AJ4pu24tkMMinvcuH2J/aGfjj1PV98kMhyhUdZR\nLusUKjW8BZH05DxixIVgtmg7I0ghH08f3eXCyhiOQIp2LofvaAP6QbY3j7EXzlC3W1A/x2+XcLyX\nZeTaMq7wAvWTTQ6PO8yLIOhDXJdnmbwicdId4M9Mk7kjELnyOr2tIsFsCCuzQP7FU0qtEif9NM82\nH/AHf/AH/+mbqD/5l//THy+/k8XZcGD1ByiihqS6sdnaeHQ/er+JUw3TU0/xSE580T5t00DqBwi5\nXKi6hdUaogl1uv0eQ8WLYgeb4UMxKtR6NvptAacGnaSMWtQRNRsOX5Ogp4euOtHsNiS3g4ZXwuPW\naUoGUlfGkHVULYDUH+AWIwhuC7uqMlAGePt2hqKGW/QwqKgEXCFqQTeZhgdvMERVbCCqNmz+LsOG\nDJaOHNLwSD5Uu4NA1UXTX8Bd6dLwtwjqDj764CHXLs4xfTsOgoPm0MLRHrJztod6qNE90nGG/Jwf\nlDnZyRP0eEiEMmjykNnpafbXi/RbJi1PicXMBUTJjuq2U8ntEhq7gCK7GUhekk6N8KUspiNNwCty\nsnlGcmWagy826A1zVM+bFIttNFuLhdfeQJc1zI6dwGia8NIEF2bTnHaLXJ6+hjMjY5gmc+NTuPom\nLx9tEh1fIjOVpVPYoXRco/GqgmclQjA2i6IaBCaDbD8/QhzaWZqZpHyyT3pkBE9olOPjY7KXRym/\n2OTp2irvfOcO4Wia0uYLWp0a8YkU6ZvXse9XsQlQ6peYm5xj6eY3OKpW6do0HC6D+toGS7/52zz+\n6C6v/eC77B2dMbugICp29h+s07A6BOxOPvs6Tzgks39kMjUzTeHBK1x2DzPTVyjnClx86zIaOvFU\nGqt0jqV4MEWRo2cvUUZDBCaS1Dd3SKbnODvZx2t50KQWimueZNCGIEg4HU5a6y0GYRuTlyfoqz1O\nnq9R0YNMjCj0hj2m52+y9fA+S1cmCQR8aCNBbIoN9SCPW7dTK9b56tVDAN79zhsIyQm8Xpni820u\nXp/l63/9KZmrKcLZJHtfHNGjxqXv/jrl1VUasoSYqzK2PMFAFCju1NDNGCGth6C6UVM+sqabja0d\nphYnMeod6qpG8o05Xn74kKg4QB2UUMMmrq6MmLTR3C8ym75AzzghMrXMsFsi7IojdE0it+dR3Aq7\nhw+Zee82aw/2GM2E2D/rIY2PMb88y92PP+fFZ19z+cospZNdwqZMOOhF0Cz2D4tMXs/Q2O8xdznL\n1y9e4Rn6kdOjOLwCXbeEtXvGpw++BmB+/jbpaIKCbuLs1knPT6MrIk8/fUKxXsbd81I8rWIOhrRC\ndmJdB+PZLIXaBoo/Q8w7yt69v2Rs+SKb5zkGdRv0j9D0GgeHfd64fAtLEiidtBhIFuLQAWYI2Z2h\n19sge+0GaAXyOwdcvHKLQWUHu9PPyZebZEezJCb8BP1hVFRqrQpLV5doHRxzae4KJ3qdva0cmQuj\nHD3Zo9A65nyngDDqobxXxWF4cLgcvPpyh0jEjyX3kX0B1r54QE/3Eo9nkIMSgtHgJz/9CID/6r/4\nr9k9y2M0bJQbBfymH89slGw6g1Gq0qKLqfZxDZy40kEK+7tcujmNsrCA7hDxJoKEIz6aZhtT8uAL\nuRn4/Chhk9rzMpM3logtrKAVBqw+f8DshWl8doPaUQWlrVNpF0hnI+w8KHLeWyfhyDJ7cwyr1WP9\n8Dn1lsLJ2Snn+2cYgkz51SaCqDLoDIhFFlDmw9CskcvvEMsskZnKUMi1WL44hssd4vjsGO/8BC5n\nANHo0jFqZKYzVJ5vodo9OMQW6ckxSr0W9z6/yzs3X0fTbXSsHvu5Gi57i/DYEumVRaZTI5yVD7Hl\nmvSrVRyXRulWbfStJgwsNK+LfG2fbkOhuHVA36hz1sgx4Q9wVDim+PUWLW3A8tUlPDE/zqk44xk7\nwZEZnNlRqHbZOn1Js2uSlRJIikLP1aZ074T9yjqxQIC11ROSio+Fi9ehnsPouvF6LRK+ELFwHDkq\nkpoMUNs+p7NXQY54yTVOGY+nODvsIQ86uCUDPWIg6AYttU16PEb20m3axSbnR1v09yoEEmk++PgD\nvvOP38LWajDwZVF3TokF5pjyTmN0zohM3yAwmqTnKjM7cYnC06/IJpbp7+ewuaroaYukw6BTryON\nhjl9ek5oxInd7uXMrSL1OnjXmkSvT7I1fIzH9HJ+EGMslCC5lEGoHFF2hXHGMlyRg+y0ihgJP82W\ng0ixgmcpzZoWpNHdR3jrIsHDDhWfF1dE4Mzdw12LcPDz+6TsPToTcfwJCzEdZikVo6L46D3YxjUX\nIJvTaJ80MBQnjXqZ89oph6eHOL1h7HMBIi0bj1af8s/+8Pf/0zdR//x/+ed//PbNedrxEKqzj2r6\nMSUbqmzh7asYPj90qgjRFPbB4FfQVz2DJTQpOqu4ujrOjJ9O00tSNnCl3Rh2O7JDhbwfS+5iFzSc\nQSdmsUk85aNVUzEcIkZPpl9v0h94MQYq3qFByVBx9Qe45CZ9Q0F0d/HbonSFNvZaA9FpYA5tVHUb\nUadISfUjpSyGVQPJVaYs6oRwUKvWMd0m3aIdMdTGbcTpGDVsaoSg0MaUugxNBcfAhhIV6Oy7+eKL\nB9x64zqyfwVLq9NsGRy/fIQh2ekoXZyqgKDXyAsN5qbGSY8lMWxN1j99yl71GEmzuHLzAqOpJFXT\nSfP8hOFpB6HWIjCZoNCvIYXDGC0/Dluf3fuHpEdDuJ0m26926Zin+G1Rpi5epbu/j6baWZgLYhke\ndvdfoB7kCYZTdAYdimt10pkEZ5tbnBeqKJ4WTmeI6t4r2qqGZNSoWQo+twvTMkhGpwjJLWyWjD4M\nUe4fYlXaBJcXOTvcoTuUGJ/wcn5yTj1fICrb+PLxU7535/uUTo4ptfugKkghkZef3WV+NkPZErhz\n5y0e3/8Kqy0yMj6CLRBlJBhje/UE14SHaKdEXq8STo4gng/pOhJYTgcRe4paaY+F/+w9evk+AbFL\n3zYgGhFply0y0zbyp1VOmjma7Q7JsJPo6AS9agU94sfrW8BSLZrlQ/xzF3jwwb/nytQETb2NVh0Q\n8zoQBZmW2OPgrEY2myC+NMLJsx0K++uoIx6CPRElmWRw3uL89BUhd4aeUeUkt8dptUkv3+HyzVts\n7d6jrvZ4tvarFPd3bn8fRRcRLR1nRiTXrpO5dpODR6eERAfjb0ywufWSkDtMSVRp7G6TnlzgaC+P\nURNYem0Fq5anIxucnZ0xNTtL2Vbhyq3rrH6+RtdhkZGj5Dt10qMBas0aC5evUdk94vR0H3xp5jKz\n6ILG3stN1GGPsGBgmT76fhFjO0/XDre+9U1+9q/+PZdujWLZw3gTbvaebFNXSyxPZIi9fp3Dnz5m\n9rfu0NgvYI+l6fdPmZm+xIMvtrjx9y/z8uvnBCOTOJI+zh9/gccToGuZ1BoWjx99DsB/+0d/SOHg\nIfntMof5Q/zeFKtrX5MRFKKvLzB+dZoRl0hL7BIPKqRuX6Wu6QjHQyp6h81Hr3jzyuscHjyh1yky\nMTVPNhJl4eoyrVqXBw9ekMlc4Mb3bzK1FKJT1qgLkFoYoVWtkXKF8UQylNQyR2dbJKLT7J9Xmfr2\nbewOieNmnUGnwNFpEa89ytnzVXohDfnSHE7NIh7J0teajL59iUzASc8VprO1Q6uk4+2VadRFEiMu\nnj17TPnwlEwoS6lVINxxkIynONzfpFGHew9+Be0en5hg7vZrJCbHEVQdd9Cg0Fep5jpotgoud4Lr\nK8sEMot4RgPMRDLULJWdX3xCyDuG6Dd49eFD7K0+rr4Np89Ns7ZPQPATGs8iO7qUn69yVD7h8juv\ncbp9xPnqJm1dpBPxMXd7kbOCRm1wzrXUbeJLGbafHHG69RLT6+PqhRnCqoraNHBYDbpmhMvff4vR\nbJJIQqKcb3BeLzBQTYzqkFarjic7QsfqUV9dp1NpcX7epL/3nMPCKdPpOXKFA5LxKfpuHVn0k5Lj\nOHrw4ecf8YNvf5NoagrT1Sc+mmJkfgG3u0W1cMzZyyOCgoFzZYS9wzadWovQfAivJ4pi1OgpNjKi\nH63cpuMoY3Q1hq0+XU0mkLTQOgM6lQF+hw130EbuvMXe+jamH6q7DSrFU1KXruJMhNnb3+DgOMdS\ndgnnUphYOsxhroo46GKr1DjLH1Ct1MnMLhKYU4gRoSD1Kd7foXR4ysDUsCICYcXHaPIyesRJzDmg\nb/NSzhUoljoIxoBqp0VkGGf7dAu9c4o6kFh65y3UYI+Pfvwhv7P4u1TlQ9RKnYX0AoGgxVFZRbkq\n07J6WOcGMWWc7fuP8VkDGu4G5aQGk1kcBwGc8jzVoEg8t0Oz0kW3fIRvLjBWH+D267TrHo5rA9wF\nB371lGozT7tQItcZoJ83GQuPM5n2crh9jBwvcjU4jdnt4JuIs/vLddwzTlJmkujxDvsNJ2FXg4lb\nVwjcU6lI4Oo1OQv4GakeIUgJsrrBjttPvNqhGdMwjwsMZsNI6Sh7q3eZN8ZotBVcTY352TgXk3P4\nbGU+efSSf/L7v/f/AxP1L//kj6+/No5P7GHixWFJ+C2TnuJBasjU5TJawIHc9KJGbVianYFbwHIr\nDCo9RMGFQ9YI2v2cNKrIri6etkS9M0ROdejYFYb2PlLPoOP04HR2aTc9GB4Jl89iaIXAmccnh2h2\nuwg+JyG7xTkqvm4Yue9AdOYwnXZ6VhjJOcQjKxjtITUfOJUBTrVDf9Al6M/islq0XBLhgUnPsmOG\nHQRFP/3uObaeg4bawu23EOQBdWmI7tFQNYVBU+PrT59xc/wWmUt2nv/kIXJHotcdYmke3I42hs1H\nR9UIdGSit5dp7ORQok6296pcmJ7krFfErTcR7EE8kT6PP11lOMjhWEmSjAaR3XZMPLi1Ho1CGWFY\nQkikCNq8HL56TkBUqPT6pGaiNHSTkfk4AhY1vY+z26fb6hGfiNAu7UPexOv1c9ApYdTqnHfaaN02\n3YKGOztKUNYxw1G6h6dMzE3RbTZwKFFqYgeXTeP0vIyp6oADvaHiFPvkKzW86TRaw4bVO+f+izXu\nfPsd3BMuNJdBPtfk9eU7GIIdmz/E+bPHDJ2QmMxS1js4HBaemsHq40csvX6bj/63jzHCbvz9ONmI\njecPT/FEJGanHHgTERRHjKPcKfmt5wyrbWKjo0SXRtnaO2LzxSGXLo+BINMsHaIqHqpNDQc6xkEB\ntd5k4cYFzgo5BhttRm9fY2CvEAimKbSrVF9tExr1I+sJJkZ89NMufvm//giHfcg33n2L/Y9Wmbw6\ny8GzLUYup1A7HeTUCMOBix5+XIKEeF6mLeiohg3V6+f5g3sA3H7nTdThkL39HUI2P6VihdZxi16v\njgeddqPF2O3LNMtNwv44ptLDphqoIQ8z8Sgf3X2EpncJx+aIJjNItiaG6qCTq5KYThFy+Dgq5lm5\ncY29r9Z56wev8/yLl4y9OYsxUDleO2KgFdl/fM6V3/kWgukhEBIw4nZMvU12fpTN3SLbH37M67/7\nQwqP94iNjbDzYIv5a2naLzc5qaiMe92M377Aw3tf8dpb7/HhT/6UxSvXWL3/hNfeuc7mL+9jJHxc\nvRDBZ3fjDgc53q0SS7axJz18+cEnAHzr1jfwpBykE0EGVS+2XoVLFy5RGhqcrL7i8MELZO8IjqRE\nI3dKQPbRL9bIDwuMJlN40iNsH93DFwvTKMi0a0eEZuZ4/HKb8OgkkbANV3DIwfo626sVhtU96t0m\ne0fryK06HY8fXm7hjGZxqi28bjepCxk2f/QV8QkHa3+5weLiBfqNJl6fDzEpEQiMs/3BfUxVp1Y9\n5uLKNJXjCuvlEl7Nzsz8NRrNDtnlURLjKXLYUdQ+2XSSjrtPpGWgjaQp5LeR4yKToyv87Od/DsD0\nxGtkgg7CNoGDvS0KjTKBgomlyKA4CYe9COPjnFW3ONzYwahUiM6miE8nCAQDPHm8zqDSxvQHmH5j\nkkGlgtnrYqbC9NsCDtVCHcq4fSGGtS7l9S0keQy10cMm9cnYUjTWnqHLcXLFLYqHRSIzWWILk7jE\nEMODFlbEh9QXmbx2ifDKJNg6bN87Zm+tDMMCreIQoddlbmUeydOlcFzAbDaYeOM1oiuzpLJBEjMR\nOhs6G81tWm2TYaOPbVDB7ZfwxbI0/TY+/ouf8P73f51BSMRu66OXm7x6kCO/fUyhPkSvWczdGsPT\nsZGKZzg+2GfGF8bmtag2ZQ4evEDxh/BNJ8ksThObnGRu5gLeETcef4hoJsvoRJbdsxaV7RyDkz06\nupul+Sk0o0ilU2YumMRpdyMmdE6e1CgfbqBqJqlElMPcLhElwlmngSG4MMMS6t4+J7kuuYMKtfo2\n52cdzICTxYvLOMenURxeth8/xCFCYH4R21BjduUiekChfriOu++jaYDDFFCdGrffvcTLV49wD/x8\n+unH/OC3r7C33gSPRLEF3n6Z6ewStcY5Uq2EMrmE6irQT+pEFpK41BSaz056kODZToXERJ1Zn51C\nOUrJFHBpB5TvHXGS2+JkLU9iIYkcSyAM8jSSCRpnLSSvn/DEHPVikaG4SX8gsbk3ZMQcUHp1QqlQ\nJ+mLMDm3RCWoYtPcaAkvjskGkuSlIzpx2QeEYzZstyaIt0wOCl3mJ93UHx7SP9kjG4vT9bp5+GiL\nob3B0pFOYuVdHqk1PLcEBpkY2/ubHFcENuw29p495Pd+72/eRP2d/52HYVK2/GguF0HFhqtRpDS0\noCcgBfooNhtSS8SNRsTeplMVcdRLOI6b2BwR3IYPW1Og0muQcAbpCwlqQR9uQUFsyehVEZ+uYFoD\nbAEnuWaDZFzD09Kg0Uf2m4QsmcawiD7okmgL6IpGqOxB9rToqxaVqoBddCL7LYail0JVw+MScDaG\nhCUbhjuFYCRomxZyJwk5kaE3gdn2ExTtiBULWXLRx4czIzPsiLTKcWTNhafuwG9zkgxLAJgRJxuP\ndxGlBP7xIZ5ADbezhCMQZajVufjWOFPvzyE3NfwzKao9C8GQcFlDIvYBx6U++y+fs7m6jdfy0jYz\neA5FxJKCo2VHqbQo9Q1c2Smil2/idam03TX87gC66EcOyzhVk+npcag66Q+cpHQfo4tXufz+BbCa\nDEtOxKDGiXaEtyFiR8Ph8tGsVBiZixBNR9h7tYdiiPRaAqrg5jS/TnN/HZ/mYWB4SOhh5r53k3jQ\nRtfqMDQSBBx+qkdH2M0WHV8GALery+HaCf6mj1Qgxv7WDqJR4+Xz+yzc+QEj6TTioMdoLMW9//NL\n5Pkozsksqx9/zT/8/fdZnL2F4hPoFPsEIhrls13WHp/zwY9/QtvbJoib6Ogcl1+/ycTVWXZ3D3FF\nA0yuhJGsMH67l/nR11hIZqgdPyewOMfZ0Smjdxb55Ec/YnJmipb3iIToo3hQYr+wy63Fm0RHI3gi\nQR6u/oxiTif/Youx1+e59v3v8uFnj4jPTnBaPyJze4Vf/Nu7HOf6RONxhkab8s42PhkqqovO+R7L\nb1zGE/6PI9Ns1rA3a9gdKvEbFwkM7YzOzGL2DPzvvEEksUL+F9sEJhK8+vljxpUR+qZJr13l2ctt\n5hSD+KVJyo8+oTOocLxVJeS0kWu3ebL+KelrUyBolEUVSazy7OO7LFy+RKKTwqaHeP+7v44kOJCD\nEtt/eQ9P1IszHGP1P9xDGWR4dneX2EiM0GSU/V88Z/7WGJXCJjfff5uob4K2mWDp9iW+/uIlfb+P\ni9nbFPItXrtzhS8//iWTt5d5tvWYsDvOlaujtHxR9h+e4hmfwDduo7dvYB23/1qPVmRA1eZiEIgw\n/60sTbuTzeeHKIM22dgci1duUs89x5HwMhe9Tr1hIY14eOsHd/Bmo5wcfE0wESUsBYig4Ot70BR4\nY/oawukBA+xoZ10kZxjzcJdzNUpP0xlPOClVDIqrL+HKJKmYHWFmElVqohVKjI5lkbppggkvnUKL\nydkZ8mc1zreHyI0GY/MZ6toQ20mFWkPF34bWVo297U3M9hkr35ui3C5wWtygsrbPoOeh3D7B0zBo\nZuxMxBWC1pCrC5cJRv4jCOzSQpp+SOGzF7t0ZDtOOUA1pmL6dUTDRvV4QLt6QrPQRy2KNJtVXu03\ncVSTHDxax40DyaUgm2Vyj87Y2mkQCC7w6pcvOD3fpp8NEon6mZ+aR8nGCcwusnh1gY4oYFfCfPns\nU4xQGEetiM0RwznqwZWWcAgwKkd5WTvlyeNHbNWL9AQbymGX5tYOLfWAiTdnubxyi9m0n8S1ZSSv\nF8WbID2/gK7r7H9+n+LGOmcbuzg7GTpSk1h/yFQkgmRzIltuBLuM2w/tTgGAB6cbbHz4EQcPNtha\nPSD7RobM20tkrAHpMS+GBIcDlQf7T+iaXe49OUErG+S/+hyHoeNQDPbuPadx2KFXamHKTQItH9uf\nbyAOBRrn5wz6Oc7rZex2Gb+3ycbze3QPuti6EuWWjmw5GJWzBDIBghNB5kbS6KrEhYsrWGKfKzff\nxuNRMGoGznSciKqiWS2SS/OM+ESiVgKHFcQs2FDcItErk3hCk5xub7L/bJ2NLz4j7fWQnLoB9iGD\nAVjNGllvFHvXjWMYZ2Tc/at5USy8l2cZjY8yHR3BVMOcPH+CeapzlFM533+IpjgZKftxFjysn96n\nXWliN+y4c7s0ykHuH+eoDF8w2q+g2iG6rDIVmkPwjrL6fAPyx0gDlTuxLNPvzTL+jThGtYnvapiZ\niTk0Ycg7707RXAzTHpvC5ymTDs0yTA1pP+ywt7GBv10nU/IhdjoED19iZPw8Oqyy+rNX1FsurNkg\nGzmLE6/GcAIa0yIts0nyW1dx9+08lOs8W/0zjC9eEn1aYH4tz83L/4CAesSdZhV9oP2tLMrf/U3U\nv/if//itWxdR3AKG2qHg8JF1eem3czicNoayHb0fwAwI9AQXhrONKTiRHAG8AROj0QVTgMgAq6nS\ndTQJVbuooRAu043iMhk4LYZtBwG5z9CuYHUbDIMRrLaDdrnGUPFi4sRyifS8Bvach364hSkFkUQ7\nQ1nBVh8gawNoGHi9InWfA7ndp9GR8BkVug4Bl0tHAqxum2pDxyu0GFpdxJiDTseBT2wgqybVroZk\nB48mIccC5Ls9tEqAux/fY+nGdciX6bm7aMc6luxHdwhI/QCuUJ/9pz16Vpnx5CTDQhtFH1KsFanu\nt+h6+6SXJhmdyVKpD0FwkhkLoHZKCLEEbo/O0yePEQ5PGKpdYikZve3k8df3kUwFrapjtbv0bUP2\nz6s09GPGlSnOmxou7xBbTaBRaJIdT2JpAzwLMarlMt2mnbErCyQnJum2wepb1CpHFE+LuO1edndy\nSIKNngaHuR3iE0HSMQWz7UOzKUhdgWL7gKrDwdWpFfL6AXJrwMNnz/j+5ffIrEwiVXWGHgvzpIgU\nGGHiGzd49uAr9h+fs/DaLM8/+oxvf/vv8+f/5n/HbA0IL09QOD+nUcgTmcrg98TQnQouSSabcbF0\nbYpnHzwi4MwycmeM7c92aZzWGJ31oXhEdu49JbuY5vjxMYGLCtVnLSYnl3jwp3/B+D+4zaBrUi3V\ncASH3LrwNqs//4Cp6xdotA3yuQbexTi+ZoT461eob9xloEmk0xM8/jdfkZxNUNXK9E8dJCWIpkYw\nTR17vcfu2hrz81O0AjrLUyPY22Ee3H3OwOjy8skzAL579SK1dpfR8WX2PvmC5Mo0iipAWGL/7jqp\n1JDAyCSy3c1hZZVea4CrbuKICUzGIuy3GzicDgLXLhGtyZhx2Nve4Vv/8Lv09kUw+9SoY+V02sMh\nc5fneLDzHOQOicWLfPSLnzH/5mUar7bJfONt1h9/xMzCFfxpHztf3MM2OkJ5bRWnM8XinRSf/XSb\nK++/y97uKwoPH7H01hx3P3jBxW9f5/kHX7I4s8Czh2s0zsssv/0a+maO+JVJVJ+L/F8esPvwEaFr\nE7z6+lMyiovMlVn88Qg//fFfAJCOONHKMt56gUefrDLQBsz4Q0xduMmwlUePg9+0s/b0gMh4hPJZ\nHZ9kUal08JctOmiwm0MfieB1pfEoLQqtGpZo0RRgcH6OPeEk92Sbb/yXPyQc8TOZCPP8UY7f/u//\nEUKvgTxUKa6V8M8u4e5p1JNjFB484axtcPXaJIZ1RkPV6ZsO0lkfvVE/uYfPcIlhNKfM4XGVNjpX\n7szi7/k53T9i9yjPeChAeaMOKZ3kRIKIL85B8wSfP40jGeHVvVU6Zw26wpBPP/kCgN/8nX+Eo1JB\niEbp5M7pqk7E3hDV0SU68NIwq1yaneHguITNbdFuOajX9si3jujVq8SdSfJ6A2d4DkvuMzc2Tk8J\nMDmdYtTlobC6hcPv5Xj3jJP9fSYzC+w8/AX2TJLrixeIjCeIZUOMji7jHQ1gCwQ5/mSN83KTWAIi\n0xFGphL440lK2xtsb51QOC5iCgqaVkSSbWjNBtHlFGZvgBgI4Qr3OTkq4hItctUOUm2ANmIg2IcM\nk36i2UuIskV0ZRx7PEGjdIC+WeGLRw+4s3yH3tDO8juvMXElhb3qxW/58Sb9nHXzJOMxNtcec3l8\nBb/XT8/qMZ5IkBidJXh5ioBdJRRTaDdqICiEA1FKgw7Fsy7ZmJ3haJaoJhG/tsjQ1GkM+wiyjcU3\nVrCEKKGoD6+gUPELKKKHiF3E0H0UcqecrZ6CYhIdSxNNBKnkz4kmM1QpkgxHmBxJIU8uUiyVaWl1\nUiEnmH1EU6faOGXUkyF7aYFav7+xW+oAACAASURBVMDWo01GI0FGXlviqHHExRsTxBeuglnlaO2Q\n/kDjq6++5lvvvs/Edh23J0R3WMPyRzg6K3FeOeLbv/GbSA2JzafPSTYH7NkMXIEhkaxMs+Im+GtJ\nGg+OScvjZOdHaU5Du+/h+MjCvB1Akdu4RBioAw49dYZKnOBxm5MndRIXJcr7TeznAu7RMKdPX7Ks\njKIqAdYbGnJjnfVXayyOTdEvNJDbHQbJCYp7L9k9sRNKWkyPhhidD2Bu1pFzCrr9DFlfpOIKUXqw\njt8rkep1Uea/STaVJt+2eOc3vkMxG+DUZqPzrEwokaK6pPH0o03+6d/inPf/KrFcEIQjoA0YgG5Z\n1lVBEELAvwPGgCPgNy3Lqv9V//8A/OO/6v/vLMv6m+E0gojsVujqZXotOzY7DIQGht2LJtkRiiKu\nQInhwESqh3H7ZTRbk4ZlI9qTGEQ0fA6JmiARi/rxNHq0kiL+Shc1bCC1h3hlibNAH0H14lZcOAUn\nnX6PsKFg8xjYLA2rJ2DzKEiijb6tj9NhYdobiE03TrGGMhKhv2eg+BtoShhvCRopF0HLR9kewGe1\naZwayD4NyQdRa4gwtFG1YnRbOgG1hV2P0Iv0CIY92GtlGh4BW6NORNMQOiYANlNn9I2rvFp9Rivg\nQBdEFE1Ea+1jofDma8sYpkapvMNxvUg0FWT+zZvYSk1erO0yao5Q2j9kdv4i/cExe59sUOsa5PkS\nSfcxdFoMdYHtXI3tgwMioQCSGKTuMnDaDcyGk2q3jZ5XCUcUmimVbMbJxsOvaZoKgrNFtwnpyxco\nPHyGtzdk5bWrPHy5ymI8TtsL9Z1NnMEUFBsoCQV3vUzA60YQFKzyAJc5pBN0Ubp7iDPmZ+zNETL6\nAsc/u8v6/md02zFCYg+AviKy/uSIGysTeKsaeatN4+SYpeCAy9kUZSfs7q3Tt3x8/OgD3n7vO3Rs\nGvV2h/L+NnbSaA2B4417OK5eotkqonQTHJ40yaZTCJEKD75YZXF5hE65jEe+wN1/+yMmbi/z8OMN\nxhJB9j/YIhx1ghAkOB/DttPGFa7j8So4RS+5R4+Y+N51XF3whXyc7z4gGX+T57trzKcWKJZMrHCX\n4f45Y+9f4eTlK5KySCvsYu2kzlAdMLoYYufBQ775g9/gpz/6CT/83e/x8sEa5tQkga5B87T51yNj\nCyZZvOzhyd0zpFgUl+zh0cMnLL5xnZpp8vgnT1j5b7KgiYxH53GYHarNIo6zMOvNPV7/wfcovdpG\nFN2cuRqUCgUGTTflkx4Ov0Zl85CgT2LYaXPz+9/i3of/jju/+dts/unntFkj5LTz6CerXHz3dXI/\nfsDi1QTDTp5Hf/4ZF/7zdzj5rIJumizfzLCf03B57LSfHDIxHieHwNaTHWzOPlHTgxIPUbPaTK9c\n4uT+ZxhaiLXWl9xqJLBFZPS0QNKVRfGJzF28ScjhodAwiNg7f63HxPxN9P0qrpkZJloa+1YT/fIE\nVbuBY2kOd+6YYr/FO9+5jdXV6IQGNJUkEw4bJ9qQ0/VjvIqDwi83iC1OcOnKZUo//YJBxMeF62Os\nHVfpbexgdTXWf7lBziqCw0cyPkrjNE+xrrCQ9LHRq9DKP+NCfJmQWqcQtRj2C+w9OiD7az/E321w\nuvmS8nmOzMQsEz/4FicnDUKGgRyN8tFPvqSvDxh2NJLJcd64kcSW15HuuBisDznRhsSTbsyWhNE6\noNa0Y4+5MfpuYrPLf62HMcjx5dMDbFENSzEYMSBya4XVrzcwvAaJ2CUO9g7w94aEE2GkJSe+1iTm\nSJrjl59RbZXxVVT8qR6uxDJH5W0yDh3FcLD2NMf4WJa1rT3azTzRbBLJZ0cJuslm0mAXKN19St3m\nQxafYLfCaMaA9KVlOntb5IcBCi+f07c6XLv0LmVRIeirIPkDVLEIxiZJBaI82WyifXGK02OHpEiv\na0CrS0XWcMgRDIfE2cEJZqvLjZvvIlgG7lCCnce7tJsHLN96CxZ/lTVXt2kEgwkEA/Sal0G8hq0e\nQ/Z6mYmv0HW5mLt8BcnmJ2r3sHtQZG9/k8zVRdylNvVIEk8nyGi2wenhkGG5SdIVxn47gKo70ZsF\nojMOztcbnJ0fMxocYebGGGJLpl3ZplQsceHGa3TOTQbbO9ivzdB3Oxjs9XFGPQwRkCUXpbNzhFaP\nydkY6REnNjGEKtrx9wQmL8xjOEzaCAS7dtx+C083zbNH2yTn/MxduY3D8ZC2ECJQHWCrmlg9N4eb\nW2SmZwgIuwTFKAChWJytV88J2UHIC2SWHTRfh+lait27X9IvdvBfyHIcNzG3z/DURmk5XfiKNU6P\njolaJlLBYjh7kYhq40D6isnlBYZP88ymlnEuJcjtfIqvP0VrrYcxkyFx3cPmX+4yqzvY97mJ7uvU\nEyFe7B4QCcqMNS0a7SH0Y5wlOoyM+TDcFj7tmIdVgQvjQ/IHOpu2fRbW4kS+O0NWcrB3X6GQ0AnE\ndcT0BaKlOJZtnRndYD8ZY9ZnUPrLDxlZuURyt4d9pYclhGl/0sYS/3aHuv8vsC9vW5ZV+b/VfwR8\nYlnW/ygIwh/9Vf2HgiAsAL8FLAIp4GNBEGYsyzL+n58f0vJquMpDhpJB0OGj5pBQZJkeGmLEoF9P\nEpR1hl47XWmIreEkPDBpCCKG002zWMHukBCcdtpyE23gZ9CxaPZljEgLVAfBlh2HaeGoNziT7Fie\nDoOEk6HkYdgW6Tk6xGoG9YAHuxigZw5wt2QccTe9Rov2kYSa6dOp+EnIXXoJC6sj0lEbBCwfNamB\nPJom36pi1cJExqpY5zFC8SaVqg/d68Ls5vAM01Qw8GDHYXfhbffIO1UigV8FoXXVIpI1zY2ld7D7\nJE5efkmp0McVHcFmCDzc38PrhtBEkssztxD6ZTq2Ae4RD8pjA4fTTXRyioZ2jOhKEfTl6dmGSLY+\nk9eucfD1B9QVCVEzCfqTmNU6fZeG09bDnQjRL9tp1nSm7mSJ9aZY2/uKWwvvIiRDXIqEWP34ASed\nPuy1mf72HBu/+JrVfA6XLrN50GTu9jxj1xQ+/3CH+ZkljivPCM3OUT7M8eb3lni5fkzzzIk+aWKF\nLF48WGe0ESdswtS7r9M9zuG9luT+558DUKVOJDvD1hdHzFwO8rzX5OK33yKgWQxDTgaVV9hqOr6g\nSZJJOkaF9YMCcX2Ar52lHR+i7b0kVx9gvbiLPBBx3Zkmf7aBkBih2OgSNmI4eiIeaZSv/o+f8d4f\n/hbdg2NKVZ297hHZpUV6O6cUyvss33mT1n6B0rMXXPnuFWp9hWPbHv2HfQaizvvfeZNh3U7HqDJy\naZLj5+fceud1bEGJ/HYBeU8lKkeRL8ZwrG8Tmx5DccboSEMy37rJvX/9Z0hjab769D5zi0l2vr5H\n9v+i7T17LMnS+85fRNy43vt7M296n1WZWS6zXFdXVXe1meZ0D80MRYpGlLCSgAX2zb7YT6BvoDeS\nViuKxIhDcjiOM+2rq6vLZJbLyqz09qa93nsXEfuiWz0EBFCzS+gAgXjwxDHAP+KJ87hzzju3cK9t\nwi+/lhiLIGH193J+1s7SkwfUkl3MjE6xt7/KjetnqZ/v49UPP6P3vXMI3SqstDl7awa14WHhy6/4\n7L/8lIt3plic/3usuiCupoXBS8N89rMf8f1/8Wc8u79BubnD+cluVn76CUrNQXXzAM/1GRrP4lQl\nPVfOD/Jq5SVv/M4NPn/6Oa6XJW5+/20Sq0UsdjNdoR4On6zhnLlBe7iI6ipSL8voS24q7Siz50Yx\nmGw0OwoiTTIv79E13cXGwy/pHzjL+kYeqzvB5BvX+OSnCxTKZXxWC51aFMvgCFZz77d/kHo6RrvR\nxGXTkO7MoEUPIZZjO7aOwaGRieVw9wyTWWkgeqycvXSNn/3VR3hmerH3BriszCHYjWiY2dt6zOm6\ni06lRMJQoLPQZvj9K8gVlWc//oyT3WOCQy5y7Tzj/WHKuTZq+piNlpXb791k90WU5cXPaducVPQS\nQ9MX6DUoZJbXWd9NEBk24dTfoCSeshbNY0od8fwkTtA9iNer59L0WVKlFK2mkVf3VukYi6iOEN2h\nMIb0MclXTxBqfqqKiNskEPZ1o6pNjucPvsXjeLuKy27AY+ihmCngGg2x/STHhdnr6CSR8tY6xWoV\nU9CM61yI5Y93MBubSFuLjN6+w/Ln8wy9dRljo8n2/Dx5E5xuZ9GcaS6OXMcx5KM7vUvgznWMsoWK\nUsE/OMzp1ibGmzdoiXZMmRKOsz0MnJtg+9lDtl8+QLWD6aunNHQdnCEbrx7Mo+iq+E1dOMcDHPz9\nPRzVEl8chehUTyjpI+hSB3TiOwhlHdWwjVvdF2nbOlhlG/uHR5wUT0kcHlI/PeK4ZcDk6CA2dJAu\nomsZvpYXe4tafpf0VocjtcKAIOC47kfXKVPZ0tGWNbY2XiJrNmSTCS0XJVaT0ZmcWCNdxH7xmLK1\nyfSZabz9VUr6CCapiqOmp2A2oMXqdPRePGMinsoJR4ldOk90NM1lxiYGKKX9FJdOMHQ5MPYFUEQr\nwYZEccrN6aMnVJoyuVwSFw3wCGy82KGv9wxaj4VOs0rl6JC1vVN6e4fpvehDUg0UWyrOoIWpuRCr\n8ztk2zGkzSaOOY26Xoc77Gf7eIdiUo8unaP78ms0jbmvP5D0MVrfWRrZXfZbCo21DFK9D9+UhWql\nQ/CsAkkLe/FFUgUfil8DIUNI81KpGvF1+zkdsGEvJ7A6PVS3u3E5N9kJyny49ASDN8DoayOk1hdR\nukP0O1KcfvSIibffZH3zgAFFIldv0pby+M9f4GBtjemJMzwvPsfS70bNpDgJ92DRH7FRcBIcncbY\nSuO5OUMzmeDgqEAqsUf783nM0jSD4yqmYg+WbpG0amA7KhBz7eP/PEFVdmMbOk/MZGK9eYhPG6F5\nYuXc9DnEX/7iN1KA/lecnfcBcPMb+r8CXwL/1zf8H2ma1gSigiDsArPA/D/WmaKJmNMd8oIRo7tM\nIlFEtjhQEgnMXUZKOT3WloJqzlAvtjHIMqWakVZXBX9MoWho4jH7qWkCWX0ac1VF7FQxdhlxigKG\nQpi2sU4SK0ZHhoaq4W1bKHdU2vVTKidG7C4jjo5IwaynmZYwOMDSEWma22jJJA6zF8lqoK0J6IJl\nEOw0UiomQweX204jX0W0CZiULF6Hg9NmjULFSEBKkM4oODU9mmRAdhppCRL6XB6T10ysnKXl8yMX\nJXTtr19VQLWy9eAF13/vJiW1RM3g4sylXjzBPsqNBgefPiLVZUJcz1EwxOmOTJJJpKmt51B9NSpK\nGk01sL2wx7UZL+2AF7VWohrvsLbwFH9FAodIXFdDMUr0Xz5Dem+R0dlLpFUJRWoi7Zxi0ry0+zV6\nbedomgrUX+2zPybS0hwEFJWiGufZUxWr5KRzfIpJcjF3p5t2uYpo96Pqt3GYQGcAz5CT1N4x5WqO\nvkkTDpMeTWfAPdQiv3JIJVunnasSOlulOujmuFjC7AkA4GtHSOxkyLX36c+N8f0//B6f/+QxjYse\nwrtD1C0NhoNn8DocbLz4lC5lEmezg9PpoOfcWY73VhAaFq78YIjTl49IHmR49skKtv4ufPk6YX8A\nWW4Ta9Y43jqgZ6qfh//+U6Rgi1uz77KWDlFc2IagBa1eZ29ni/x6nP7zZ3nxdx9iHB/BbR+l0Yaj\n00U++vArJs7d4MUXm7z+O5O8erzIQI+JzS+2UBxBxmdD1KJJjKJCMpYnXtITCDVxD/bSqWnkz49w\ndXaa5c+j1MQupudGqZ6scNxsfysze8u7mFxWOo4Iw2/9Fu1YnbpcYxgX9372Bedvv4VlpoemYiPx\ndJ/xc2HW10842Pmc3/rnb5FfShLdSDI18Sb1nWPyjhIPok+ZHI/w5LP79F2bpLpVZXtxk27PAG1Z\nZXNjHz9e8p04TZubg0SJoUAPP/nJl9y59hrSRQcrn/8dQqCPppDhZBPGhyZJ3/8Vk29/h4O7L9B1\nddDUDv39I6h6iec7O1x+5wqL/+ExY28PcPhljLHvzaE7LeM/L1LP+vjsv84z98dnWP7VOpXsKQ18\n3L7tI50/+BaP02iR/tcvINZ1KCaZsbnX+OK//DkGNUCqniIcHkTIVNAN29GqSX72wwVkW5Po/iK5\nhQCjF4x4sxG8Zxw0hD6EQBc25wVyj7Z5sb9HurEPop4z77xFuZ3Fi4Yx1MWzX3zJfinKmd5pEqen\nfPH4LjfeuEkv4zz42SP8OZWu4Q4P1zapNsBu7yAEh4gdn9BQZNTcAYWGg65hPwMzPg62JFaqVdoI\niCuviIkCZtKozyuchNcZm7uO7/X/jec/+ZDesJuKro67x45H5yVxnP8Wj5K/yYRviJ1XK3TdGCEa\nLyOYsujp4eQoTnQ7xuS4l+2DFq6eDhfnRng5/5CRy3Ps3l9Gqud59KsXeEI6LE6JYFVHwVWnmDOg\nm7BQyXUwRvooxoo8Xdmn7Cng7NQRtQGWP/oEt8dJ351LtAUb1axE9/g0Qa/Gyc5j8lqJqzeuYjDD\n4VaG/aMc/deG2X/yBFeXkxx1LNkOZquN4YsBkvou7E0HotwmvlPDNGzFUK2Timc4zWxjiHjYTRzR\nE/YwOzyFxQiqHtIrOQrpKAD6JHQEI7l4FtWSpeMLs/DjJ3SFbLTUOHXJiCR6cJTS5OUEzbYHQ7tF\n9OkihrUN/L2D1A6OWJxfYu675zhces5uLIGoKdi8Z5m80UN0LYrPZqTv0ln64zZQIth6q+QbfqrG\nJInEK8oxF91hB42jDaqZUxRZBrsbY0bG0BEY/t4FWpoLTyLJaSHO4bMo+qCRRjoDOkhsPGFvS4c+\nLHNpZoh020dIb2PojVm0ZpWyvENqdZHuK7cxSSIXLs2w9uUOHX2HvegTdI2v8whLLYVw+oTVtoOI\nq4LTPMLq2gHJ+2C0NHE45jg0FQmlhzCHLIy0Jew2gee1lzhDDowumVqyBIY4HX2IkWmVtbiZG8EL\nLO4e4PKJDMRqnFYV7AYRtynM6UUD2XvHzJiqCMM+CocqtwyznFRP6VI77C1/jjB+Dn3LTG+lylor\nTbhoJ9QU6XltgtTqGuZkm6+0DtMDbbLzR6QuXyCaKuPTeTlsFBnPycT2VghbAyQ2M9iuXSLfqTNU\nljk6LXNtZBBFX6XWq6fw6Bil9ZvlRP1TE8s1vvYovRAE4V9/wwtomhb/hk4AgW/oLuD4H7Q9+Yb3\nPxRBEP61IAjPBUF43qg10UwNxI4erWFC6vHjERsYDQ6sih+joUA9WEFXN9FxWrH6bYTNdZSYSEPf\nwpjvIDih6lfx67xYXBHaih7KHSRBINmJY6jYsbQTNBQdklEj35ARsCMTJujSU2+aaJUVTC4Fwa7D\nboNGU0Kq2bFJFhL6JqfmY3JpHZ22hdOcQkc10impHNVPSTtLqKci+axKsa5il4volAZlgxtZtCL6\n2+RrcVTRiqmRw26BeqyFQWdFLSVxCjX0ja+VqHSjhuiws3Z/iWcfP8bRtNBIVVlfWiW2EyUfMBJA\npJESyCZzvFp4RHlzg9PWMZevvUVZtLO/vUOtWETxVVBDbronLzF+fhyHVWBy7i16wlfoCYSYPDOH\nPehDEnvI5PWkv1qhO9LH7NtXOTjZw6eC1WjFULOQrCvU1/cYuDnB6KXrdNp2vJ4w7pk+Zm6MUilk\nadR8lGsmMtkTLo+MEN3YQkyBU1PwWevsvVpE1JuoZCSoNlAPZTQRuvvdDFyf4+H8M5Z+8QhjMUFH\nXwUgY1Ox9TbpKB4S9g6LT9Loh7up7lWoD2hE+odZXV5gZ+MZVq2Hzd0DdBaF4OA0Dx49QJ44x6vY\nC9K7LzBq3QQHB7FZBMaHrFTdbvL1JrLoZuneNpeuTNAu5Ln1u+9Qj9f45a8+RFJz9L02SjIfR9Ub\nCPsd6JwWtl8u0TC4mJ2+TF7Noq8XGItc5Ob5MZZfLPLuezfYWnxBv6FNrVDi+us36LFYePzZY1Sd\nGaNooDcSwTs8yGYmQ/Sju5hDVpwmH1KpTk3d4+kv/46mGebnt2j9OnpFStTh7Pfz9MsfU9rbwu8W\nsBgtxFsCjlAfVBVKiSyGQgw5bOPocB+bf4BAqJettRxbm7vkdTWsBhFdn5fua6/harQZnXqNg9QO\n2WiZVK1I0eXFeWGGRqvB9MWLVCwGLlx+Dd1pnoYK2LuwOwRqXo0nz78gcmUWf78XU11h8noXldoa\n3e+/x/17n5FW06ytviQ4Fqa6s48klVELJ0Q/38DtqdHKCURm/ey9WqNa0KjELBy8OsVobVKvWNAk\nCeuNC1g8AjtPdkjESt/iIemsuMs5Or4OXg1ysUPOn7tG+HaQif5BbFKOVtvA7v4JmlHE6C4x3tNP\nJmeiKZ7ikiO8PN3k7o8+Ir6bofhigUquwWB3L2dHBwj0X8akiOw+f0A+XSOXbaMYK9SNLeb6pihq\nRar1AtlYlcPFGMmdPfr76xAxktWbMQh1hs0ar7/1NubdOBY1T+HwmGLmlGZ6DVnTEMsmCkt7pB9t\n0HNYRbaacZZKhAxnufpHd7jzB3+ERfDQajSY+v67aANnqUXT7H60Tv5YxZT6tRLVbw/hnHAwMHcV\ng2Slu2nh4pmbZGIHVGJRzBaVbKtBt7dJOVbi1WGWVsvK1qMFag0d5v4zDE4aGb9+hU7LyFExiVgu\nI9UFlp4uo9OqxBopllZPEShhruqoVxzU0im6xgeRurqoH6k8nf+UXCNKuQA5Y5mm7IJOg8Jhie1E\nBTnk49qdayTKcSIzNzAGrUg1iYrJQK5oYm19h8OvXhBdWaKVTFLPb/F84SWFokjYH6Gra4izgzOY\njS1OCnHasoLW0dMRm4SCRuzOHgAGb08zPvcmkdFB/O4ptlMxpm8PM3Rhgu43bnJu/DayQyHn8tMz\nMojbUmX8zSlmpi7TbuvIpTZQtDbTb56jUFQJ+/0Ezb1cuHKLoREzmVaVockhsNuRMkU6bQep9DaZ\ngoIsK1RiJxisfYwMdVGv1hAbWSIX5xi6NIMidcCioMoy+qyZV/e/AJsOW9BJ0G9CS2boyB2wmaHL\nwdx3LjFx7ipC1YPD7iFLFUe7jaXlIh3rIBU0NuefUT8qsfr5EjWDSrZsR5ENDFw4D0DstMp2sUm3\n1YlaC9ARLYhXLcwErIS6L7OTfITf2yG3u41DLbMo7dA0Gqgc1AjumhFtbaYkB0L4NVpbDTJpGPD6\n2Hj5gD5Hi4yaIPVqmxvnzuOPizxcXMC6f0irVmRdb+Do+S4RucpW6QnFaIXkeAvd4EV8xxVyS1Ge\nR/OMVkN0TEOoJYEvF54QO1ZZW3jGmGwlPmoh2XFgT5XpliKcdJWxmQwoOhc2xUEjrhGPpHnx6VPc\nT+apH+1QK5VYmT+GPRnLnsrxWYl2+9eG6T9W/qmeqOuapp0KguAHPhMEYfMfPtQ0TRME4f/zCcea\npv1H4D8CdEWCmqg56JiaWBGpxSBdE7CGzdSqcTo2B36lRsfnR+5onCabdOuCGJynqE0X4CZdaFJr\nlInRQRQh5O2lkYthsCiEFD9Jex6LaMVhdVPWTjFa6hQdCqV4FdGrIUkaddEJZLGkdeTUDg63RqVZ\noOOGsGKllewi7z2moPhxa1Uq1iIBbHRsXmLJBmGLTNGcQlE0hHYvHvWUqihi0CSEnIi+40IyS1AX\nyAsaHWMZX8JFq1dAPWqRE78O55lUjaYm09N/Bldql1gmxaFRhynT4crvX+AsU9RLOYp6J2apxtLn\nDylLNkKSjcPnR7hcKt1hP/H9PTJRAS1YxGzS2OvkOTt9mdzOMUfJBn1nIqwurzJ26QzlyjGB0CDC\niYOq1KZea+NoeujkRNJL6+x5DBgtMrouN16zlbJoxNU7Riq/x6R/CkXsQnNuEn/+hJpDopbQOPOd\ncXqNgwhthbKgo/+NWVZXj0is79JqSZw938/+zilSxITXFcZk11AeCejdIl53L8mTZQA8Wp5Csoy+\ndIJBnEA17nHt4hzptsLd//QThq6PMfvaOUzBfra+eoRWLRAYvML8g4+4/sFvcf/vn/H+n/4Zn//F\nJ5w918DstdM7FST3SsSsRdHZetlYX+Z3fu99MsUDugdH+OWf/ye+8y9/n4ONTY52UrQ7Gr/9/T/j\n8V//Z5ZjSWZnP6BqzRLNLDO/+oIr5y6RltbYrRQ5+OtlrvzJP2dz9RMCM2PknSYOcyqv/upXXP6T\n97kz3MW9X36F/aLA6kkMn0mjq99HV7eT08003SOT1E5PuDN5lYe2DX75Nz/k9//Pf8vzhV+fFffO\nexP89L99xFvvvM6jn3+Js2wjYcpz8coQ6YMWydoJ9oFxDvYSGMpxbBNTVPaSjJ4JYNaCyL/r4snD\nTR48+Qq5KtHefsybb87x5OOXfPAHP6C4dIo+0kdAabH1yyf0n7GydHceu6fJwosoc2/fZOHJZ+w/\nWOL6O7/N/Z9+xlv/8g+59+EvsYsdvOdus/6Lu3jHQsS+eEx4bIhp7wj3XyxSbRkY+b03mP/rnzD3\n5lWOshUkxxCV5BFNscXVuTvkjmM0xTajV/tYvr9HwKwjVS+jrMcYmYlw8CxO9jD+LR7OSBulqvLq\nsMpIsUOylmT22gyOWpy8TaCw3sE+oMfescBujtnrb3CcbxIOxilYfCRKB7RSeWbPXaRk6tDp66X2\ndJktcwXZFKI/7KYdBV9kCN+knbWPj1ldPGDgvT58QQ/1R9v0T77Obuwh0fUdZm9MENNPUNjf42T/\nS0bDTrqGJ3h172NsESv+kgvBa8AQGkC2GNh9tEPqJMq5P3ib2MIBxnEP/cxQyG2Q3yjz4Fc/w9g9\njqnLjHNDxd3l5HT3CCXiRUuaqbuL+IKRb/EwmuysP42iKzXwTvTgvWijoyl4/WdxhG28epxDaSuc\nlKu0D1aRXGaCBg9jd87SiNsomGroa04CchP54jT6u0UUgxu3LU5oyI+qGbB5u+i93oMv5CFZSrG6\neszYxCTdbgvFcomSzoS4dnFJewAAIABJREFUbsQki5h10CzU6D03gX5ghOXDFZq7LSamp1j5eIum\nRUXpk5geuQhjHR78/TqSPUs1E6AtWgCRjRfbDP/umxirOtxuC/G1Hcq7adSmk0DZS+TqHKYKnChV\nWDzhcTVFv/L19KcvmtEZYmSqGQZGhxlpyAgdC3sv16jGS/i6/LhMAuV4ivKWj0JLobdepdRsUNPJ\nBPQ+gpcmsegd0FaQPF6sV1uUjhOsHe5g1SlYusfJahJGexfuwQRN3SimQpWD9QNqcpmaLNPOnqA6\nbIz3XEDf6FDu2BCSGs6QQKdW46BZRMvpePBkH5PapFZqMDpyiQIFXC6JtbUoO6/2CYpuxKkQKx99\nhVHK0R6bprfby7hpgOfZNeJaCqNLjztjJ9epcf3mOYq5NKLJDYA3ZGdkOEC+rbJ57wBLW8FgKFK1\njVDoT2G878D6qkl4bgrRqCe7ts+9g4eM94/R0tc5SZjYaBYwfnifmQvvMv6D77L14ZeUrCNs6QRG\n8zYOJytsPl8gNOvF2bxKSmyTz87jT03SFAusm604Do6xW/3oLL0IQo6KfEKPyUpuxktxe4nDnhEm\nlTLNaIPPGkfc+eAWlnaddGKHbrGbTMSOQwnQXt3mqG4nnzxmbPYcmf1X+JY6qGcanCiztHOnlNlC\n8XgphFVODp5zI/9d/lLS/0b6yj9JidI07fSbe0oQhJ/ydXguKQhCSNO0uCAIISD1TfVTIPIPmnd/\nw/tHiyp1aBfT6C0W2lU3Xt0J5XAPdHLoSkYkU4taxYXRWkZrygQVkYaSBYsJyW6BY5DVJpLfRKtZ\nx6930dDyCKqXTPkUg8mKrDNSUepYBRFnxU/bJGJP1GgHrTRLRdRSAYdkpBoPYPHVsYoy5RgogRbZ\npBW7oKMiH6MpErpKgqoi4rBYaWoiDQHkVpa2aqXpNOOt1amqeco1kUavhPtUQRRtONx1tFyblKmB\nwxxGEdO0FBtaTKbllnGXv9aKZa+VM4PdqBEJa3iS9kf38ClVahY7uoaBUjpDwxGEvTjVcJuh4Qm2\nV9dIGWzU4rs0VSPj/UOcmXwTedCOp+ZGq+bJrOepxuNcmPXjmG7TFOwM5qqI6SINowfdQYmzr01g\nVJq0ZZWAHEQztYnXj2huudB7RGxGBcXjQG6WmBhxUkoMc/jylLZ9F12rTbrUxipKVBpFdrY28EUm\n6baYyO6UsA4FmBgUsNmcbC0/Z+lXCzT0TrSinoZLRO4IjF8Is7x4wqN7S7iCX7ta21UZzd/LgGOQ\n6O4eYZOXpac7yMUav/9vfp+jxTjzH+6gc7xk6PIotqaES69i9Qyy+MMfI3uNROef8PoP3ubVTz5G\nszo5Si7S73Ew+t4VTufX6RmycbCzQc/Zbh5/+oTZc3doFVUMXT2MGPVsnZxSfPyY83/8J2jJLGu7\nXzDR9zqTA6/x8uPP2Cjfwxc4izmfxHThPNlSFanuIPeVgrVLQFct47t2nf3nq9ibFi5dvMRupszN\nd99E1Wks/PgBxW4d53tmOX68TaF5wsvEMdd/6wf0hXs4mX9GM/5rz0uuYeHy7FmOHq5z8998n+cf\n7tEVdBF98oK+icvEnmfoD4R4nK1hdAfIHD9F1lkYd77Gk7/6kLpOo/fCGZptC76zevRJPU8XsvS8\n08vSn/+c6bfvUDlZJSfb8V2OkNqNU6wJdJ9/A11tn/kPf8GFN17jixeb7O0uY+vt4tnjD3n9e29x\nsvgY6qe8+2/v8OhvX2EZMVNfL/Kr9o95893bLD16hDMUZvjO67RyBZJrp5y9fYFkM4epbOfDn/wl\nN7/3Ls2VEmIgjCgmiUb3sV+dJRPdJFdJ4bvkx5L2f4vHVO85XLYOhf0MtpFerDEdm3tFDk6zZDeX\nmBjvxak6SRZzhF8fo9OQMO1uo0QGKMyvM3ilj9Cf3kBdTVI+ShJ7eJfxoJuUzcje7irNkoxtwMfe\nq22ePdcYmJjgzISfZ/dfsJFIcev73yWrhwnfTco9Go9+vIAh6KJBh2vvvEsu+oTt6Bp9N69Qlqsc\np1TUxT3CXSEku8BrY1NsPX9JaadMKpdj62mWkUtmHF3TdNR9bg0N89X//Sumx+dYeLqJVe/HbvNR\nL2cITrlJbyTpmXB9i8fGoyW0jkLZLpN8ekK1lMatNxC8M4nBGcHrqnGU2sUYcDN76wqpeBpnyUPh\nKI/ZaaN+sMZ6uUnFOEzQbKP3jetYjCbiK0v4/C70moLX40Ktw92Hq7QbGTw2A/HFReyXznFUr1LZ\neEB4qA+dq59UPIpNMnH8YgP7mUHkEx3T12do5JrUKk0sTj2t3QOiJRXzgAVBzFAuK4xcCiOXyiRS\ncaavnEdpC8R3HyC7Z9CNRBiftFE8zpAw+MFR4uFn29SELL0mCxNmB0fC1+7bk8VNOuYsGX0d8Vmd\n4emz7K9vUjiq0NSX6fGFCfrnWE4tU66fIIouLAaJvVoVnV6HPBzC2nJQF1RaQgOhkGZv/jmNtoue\nYR9Bj4wk+TBSR+fsUJVs2L02TG0Ni5SisJGhnrdh00vUcpDUJ0js5Omd7eL8P5tFX9ZRjCsEnQqj\nb0/w8YN5jHiZmutCHezBXXCysvgIW0aipZbY0NVwfXqEGnJSPOzQPl7HIhRoecJMT0yxuLRApOVl\nX0tgaMo09Sb8ITctvjbUbdTYzJWgVqB81steKs2Yw0SyXKJx1OGcA9b0p7RiIg666HRURmxOTvwN\nGodNAn4B024S8c45CnsF1v7DD3Ggx5Vpk6/LHE87OWMY47gusL2cYEgsYqodUPH1Yg3Yyd4rMzUx\nxunYRQyaRuJ5DUs7Rl3noDEWIlhtkswIhLQa7ZsXGOicEP7gMtbNExYWN5kIX2Kvp4g548QgnFIY\ncRN4nKCh6+bZqxeEXArdb19noKWRPFgnL4TpnrrFyeJTum0BBsf+BUef/IyO+r84nCcIgkUQBNt/\np4G3gFXgF8CfflPtT4Gff0P/AvhngiAYBEHoB4aBp//TgVQRvdWLvdlG0WdJiHakdgtqbYoGCaNB\no6AmyeRkZKuI3FWj2JbRZzXytRw1bwZjxEOnqGBqaOSaWRqGOm0lh9PnQra10dIiqtlGp5In3lHp\nFIo0zSJSIk2nbcRjMqG6PDiMMlZZjyXbxhGoYtMZMelTIDcweL3oSm4MpgBa24RUcFAspLGUqggB\nBdliQaONKHko6GVaYQn3QY12sEFRjVPW1Sia7TiMJvIHGeoxI1a7gmBu0yyW0Uxfr84LSw5sgyFW\nPl1g5xcfYTKKaL0BPAMDrK1kWDnZRtDXcU8HCAQC2AettFtmnJ0WLcFCKDRISW8nOONBLcLTzz9h\n79EWjXyWwWCbRKxDcV/EeFDB6LXRVspM3JyjYTGy8uUpmbUChZaJld1l1pf2aTtMOMIVDOkq+1uw\n+/FjOlqJVKlMPJ5G0WXQkm3qDhtyf4OJG5PYDS3skgVVK3L3V3d5vn2fg6+W8ejtSOY6kcFJSh0z\nk2OTuE16MpksTaFJONjNyGQXqlJGVYwAdFw6Rnz9hOx+8i9XsNuCOHRGdD4zGVWlpS/S5hhHOASi\nk71cG1FnZ+B2BKHfRm9wDktPgEe/fEK0UMTe68HRN4BB7qZ6KOMNOolvFvH0CqQqAhfffx1Tf4Oy\nmqSyeUi81CJs17gwOcnaw8+Z/3ANV88Qh5UVDqMvmfq9OboiQTKONvphif6r09RPlhieOsPMWxMU\nmy4c0/3YygWcdjMtpcJq/ISBLgsbexlazWPmbs7SURwcH76k1TwlOBTGf+YtspkjksdRyvEssvHX\n8byeQJB2q0rF30ZXa5EtraHvtiEFezA5PdgUHxsrj6gXyxjkHN5WmBFPgGcff8rolSv0nAtRTJ8y\nfLELX9WMrivMSNhBYmGDkd+5wearFWItO+5Gh9Uvv8IxYKHZKHH89DGegSBi04tkULnqcZGpSAy5\nvXi9Xax9co/Eapp0rkQ5dsT4xSA7C5tYw036e7t4+vMHBMfH2TspEe72sPhwlfM3ZontZ5m4PIVp\nyopPHkCQQ1TbKU6Pdhl4fYjybhWjrkaP2cHq822y+3ECul9bkYLLyNZBGl9vN6svljG0kyQSB4xZ\nNQL9kzTyEmsv1hgc76EjiCgBKwWHhG67zuDtaQwjI+iRqFglVCmDvb+D0humgx1dQ0OJPqW4doR3\nIoDcKUIjSnJtl9feOkfk1ptUxBIWQSZbl1CeRumJBAkEQ7gidppCmsPNDpnjDIX5DD3ZEMFsFjNt\n0qtR1JrC6pc7HGU22KpWCPhFunV5yg9ekXj6hOPlQw7mDxiYOk8hkeby1CTNhohvbBRVEgmMnUXC\nxJOd2Ld4yO42BUseZ0aHXWvTMYvgUnF5+nHUKjRVBW/bTajhJJc6IHp4gmQo4x4cpWUxoq8YCetc\n5B4+o94+4GRjj7X7DzjYj1NQFTSfnY6qY/3xAvbqIVevXiZ3VMRQqrL/YInily8JmIIMOAPE1uYR\n4mXkviA0VNyVIu5+jWx0D8mq4OsXkbQGyUIGj1uPLOmw28J0+VxklndYP9lH7sDz7XWEUp7T4ypb\n8X1W736BqmokcxmUkwIbnyxjMBkw1CF6amQ10aCd/XrvvX1hH80koqacxKwayXaG44ZKEZG2pGfl\n+QGLdxdQ3FkGLs4R0jXY2xVR2xXsQo1ytEo13KKebWMXa2wdHSFpDYztBNsHedbXcswvfsHu6peY\n6hl0yRZGfRVUE12dIYz6CAaLnZLJyNj0edx2C1q7SfUwjr3oInmUYm1lmaOqguT0os/7sLs16o5u\nTKvHaEv7+Fs1Mv4ODbGMu14EQwl9PsfZ88NcuXQDa/c4rViF7egeep2HnFbAOz5Kp6ngKJaQ9Abk\n3NdzTKvuwpkK0Jl6jevWPgZ7Rugc2ZGqpwjNOolChy7LDNJwGPqKhGf62Cu36Dqo0WVy42l5ELst\ntF/Vqef3qWsW4m4PiQuXGHrjGpWtLHm7jv43e/jOrTfQhUG6c43IwCABu5Hg+92ko2mM2xvsPXvJ\nFU8IwTPE7OQop0/KbJZrFC6K7FrgdOkxUdsy6pcntMsgWRwIpQ3C1yMM+cyINgH3kQVLqJuJyw5s\nHSOO4Az6ho51h0giqcdx3UdpKYqlMUDrXpJcdIF22IlkNv5GutA/xRMVAH4qCMJ/7+e/aZr2sSAI\nz4C/EQThXwGHwA8ANE1bEwThb4B1oAP87//zlXkgCgKJTgXVVCNYMtD06ajmypicDsxpkfoRiNY6\nercOpSWSLTnw6jSycgyxqUO1BsjWC1j0Fep2mQAyzaM6Free00QWi92J0a/iFs1k0jn0kkyzKdNy\nWFBKKqKpRcblRKyk0UwhtKqIIrep5wyYawJqxIhcKCNmHCghGZ3YRm/1kFTjyC2JmqpHrLnJ2DIY\nmyHipRoO0YjVZkA1ZigdGtD5Nbyil3T8hJLSRvNL2OQ2jaZGqWPFJqgUv8aZODqcQglZLGCw6zC2\nHQh1M9XkLqHhPkrpFl6pSS6VItYQ6DW50flkWpka9ojGwfEu5wZH2fzsBSU5gF6zcVDNYfP4WViP\notX2UF0S/TJYwiN4PL2YBBMNc47japIXmQQD5Min9ZjVOCGHg97uPpbVBZRUlZRmofF4l8ppmeEe\nF8mcHp1QZPrcGMmVDPmsCdf4NMGgldO1PG5fgFDQzt6DZTxjXlIbMYbPTDPzZg+yzUz9lUo1eYjU\na6VqthLfOcDVraeY/Fpp0Cw6klKenWefc+OPfkByZx9Dr4P1j55h3klhsrq4/tpbmExloodxzpzv\n4+4v/gaX08bc3B0e3n2MKRVh/KyfWKJDl8NKavkFOU3B1Ahy8vgJt/+Pf8XHf/H3TN0e4cGHP6fb\n6iMS9ODx+PDYVJKZNkqyjthxMvmGnfW7K/TfmOVUS+BYr7KTrzFMhfXWIcntTcaDQxwkD9l/8pSb\nt66y+PgLDFULZ+7MIU/pSO/niO4vYSzqiNcCCEMZBmfDULewvLDB1b4eyi+eYrSPk0tVuHw+zNGX\ne9/KzFdfPQCpwdsfvM9HP/mI9+5cZv1piWYxRUCqEm+c0HPjMsLLTfSySF2fxt9/nperhzTdOgr3\nddjGQmx+9IjL793myecfEvEEyNdFXj74krHrV2murrN9CtffmyMVrfHe7/4WiVKa+Haa8fdusr/5\nkF5fhGmHm8XiJnORq0QGh0mdHLF5d5dN2Ui/J8CtP3idpYfbdJ33UUypZJdiTF+ZYeU/L3Drg1sc\nJpL09Vr59C8+Jhy2MTl7jS8++hEfvPMaD3/4OUGrmZnX+zhYiFEP6hjv6UEURJLlnW/xqOYKmCli\nyBu5dO0GotCktXKfV7ECs+NDVE4EdI4RjpfXcBvtHJSymEwWTGO9pOa3iH7ykIoKZy5dwKy5Geu/\nyM7OFleujlOYiSDlm1hDNl7ux+kaGGJnYxmLIcj2Xz7i+utjcGxjP/sSfcpA940pTKYMLzYPEE9F\n0uVdwl166vopVHuJpydP6O09Q08gQkPKEt2qc3J8j3xcYcy5gXzjDJZ0F4HzHRI7OS58MMP6337C\nxB9cRZQuEFvd5ORVCae2zaitm9arRSqOOtrKy2/x0NdsXLv9Bs12Ay1ZJbUyT0u0YkolqWk66vos\ng2/M4gjInLzaRpc5JaYc0t7eIXJ5BtfkAKXH65Q6JrK7Ver7ObqvXqSn28arX3xOKbRPoSIgVBPY\n5m4iVltcuXOOjWiaVDrB5bMX2dtdIhY/RpAdeJx+Gs9LxJJpOo4q2WSZC5duYTfWscyM0m7JPNvc\nRDabSC4vk0o1aTabdA1HeK1/mt3tBL5sno3Fl9jrBryCh8HBCEJdT2GjiSirNHwSV2YDVAmhNt10\nYmkUpwb/D8gOP8FgF94xJ43TBKcbRzgEkXagiqT3Mjo3SKEA5k4bQ0tmR7VgqscZmJtDLRUoKSa8\n+TYZr47qcYZGIsPFi3c4qR8wFQqhy9tYevmcimpEZ3DScOhpdZqI5SOev4xSc5RwGk2QNLG58hk+\nW4AOFSLOUQyeDmrNTNtWJ/FqC3ZPGL40Q9CmkFKMNLsU0vESSS2Ap17A1XsZ/xkbjeMih3vbrOzG\nuSR6aZibRMwO5NkJ1p8/hYbCWLcXq8NIzdSglcnQkexfy4uisZd9jviphGf4BqkjkVrjmLHvTlBZ\ni2MdmsVUrnC4Mo8PBb3ejaHLzKbbj7SVxdXdy4hripQuz85JjXHPELWNPXqvFlncfoxPJ2DfOyRp\n13PUjNHTcGAu3UVvD1FuW/F096CF8rxM6PH1OHlcLHG9T+agfMj5K924NY34VzoGv9vHvRfL1Fsy\n++YjGukq4bAByTmG8ZeHZO0N2mkrstOIwVrk+GEbpyRxvPMJw40zFEIx+mauUbu7w8BbbowtGw+X\nU8z2DMLhGoL2m2Ui/f/2RGmatq9p2vQ316Smaf/uG35W07Q3NE0b1jTtTU3Tcv+gzb/TNG1Q07RR\nTdM++s1GaqO3CLhViVagRaci43LboCVgdGeRgw1URcNZr9LRt5CbTbJiDlXrotFqIuVyOM0KbrEf\nSVNo5I1YjTbqlgBIXTgsLhDzZJtlLGoQpDYVpwGSRQy6GrLFgKDkUKoSrWwBs82MsdLC3+1E8+Ww\nSxbw+mk7C7QrZcolPbXjDqGsg0ZWo6FvgGahHavjdmSQQnoaJh2FSpWcOYDgq2OXneQzVTx+K3aj\nGVkJoS+KNPQQcoM5nKH1zQbMHanMwf0jGvTS0jtp6+uk1AbtsgnFaMBSUmgbzCiCg/xSEYtow9Gp\n4jD66EhhSnKRTlUjm81Srawycr4Xh60bJRujo28wMzvM3NQER0dFfG4DWseMVE6gqhK2bj8WQwVV\nlKhUY7QrVnovnUffa8Ws9mGxmnFUSxhiTToOA0dNmcvvnEGvOrDioV6JEVvZxONy8PT+Y46zy0wP\n9ZPeq2IwyiTLLaxhPZ1mi2g8Tjt/Sq4VQ7Q12DrMsHkYY/TaRWjY8A+EAKjuNwjbDUz3DfH0bz9F\nKYrUskkGzBF6vA6swQ75ep3NT7bwdo/RkKvMvv8++v4zPHr1mAvv9dFt77C2sEP/aC/HrQJGTcfI\nd96nnnrC4J3rPPvVA7rmzjH/4x8x5gkT8pmoOCPsrW2R0ddJHccp+jMIVFHRCDn9qPkijWie4/IJ\n16cmOTDLXJ97h05e4DincHJwjLVUZeGLj7BjJXJnFlUwML8ewxeKkErXGbs1i8OhRz1UKS+cos82\nePPGFV49mid89TrHX0UZ6x6kcXBK0ap+KzGz1y4wNjrN85/cpdfp4qvlp7TTe+SzRbYOvqBncJrO\n6S6XXp8in0hgG7rA8nGe4YFeKlsHRO6cJ71WwO2OoJY0vLIe2eLFlEgT8J5l6+5Dhi6eZXLKx9qH\nm9gn3Lx88ghZ0dHf100zfoDn4hRSoJtkKcbV19/l7t/epbB9gKWucvuP30c5jJJP53j8k03cfjuW\nTphbU9dpNRrs3XvEwO0ZPrs3j7HQ5OTJCha9hZ5rMxwlXnHr3Tk+++gpjolpnm5tEl/PEafDsGkA\nvV3mJJanrpi/xePoaZSC3UdBqRMtL1OtZFBb0Of0cfAqj9kxzPStPmSTg2gpT7FZJVmuYRYTtGa9\n6OZmeOtP/hB/T4BmrUxHyGEw+Hm+tEjquETJlGf15xsUX22iG47guz6NdbKL6xen2dzZY37nJWNn\nBxi6dRWcCk3bBD63A6NVJDx5AedohFzukLysILcq1Ld2adQlojHIqxXOvP0B7/7h96ib3GRXcnTN\nnsXoGkM6c5at6AHXPvhtYrsJ1j/5CLffwtVzZzioxHm59Yi1fRXjvsD4+Rvf4mGciZBtJDEaOhis\nDoK6fryqxOL2EveX5qnGavjcNnLbBQrZBnMXzhM5EyTTbrL9bImT2AEpQwWLQyJ6mMR1dohgnxWp\nUEEfdJBKNLDW21x697v47BFEi4IgixAr8ebFawjWGuAEvRtFMRItL5E+ecnN3/kOdt8ZzHo3G8+W\n0QIuMDg4Oa0xPnqetlGH68YMvXNjvPe9t4hMDNAUHHgHe2hERGRrmP733kaOmInuvGTvwVeErzg4\nd+csvU0Vh86NHNfYebiM4qkjpAoAXBruQwlFCMsqwa4xps5cIZUtUchD3dpgY2cDk86A0eLHFGwz\n9dvT9PUY8Eoqbp2BrkEXB5kcC/e+xOkf58yNd7D32rHa+ugIQSweOzO/e5u581cRyiU6xUO29l+y\nVa8wcrsPn9PP4NgQo+/MMHfzGpG5QSZu3aDTF+DpjxaIbx5ipkyrolE1W+izmWl1C/j8GkaTntGp\nAYYn+jH0GjnIPOf5381jifSgb6j0GELkCjWKRyesJ47Ye77HxPAofpPM5of3US0G6jYVk87F0dbX\nhkdWd4R5+Co2Yw+GWoxRo8D/y92b/UqSnnd6TyyZGRG575kn8+x7naW2rqred3aTbJISJVHLDGxp\n7AEGMAb2eLTMlQHeDQxLsj2ALz32hWGNxiOKkkh2k012V3VXde1Vp+qcU2ffT+77FpmRGZHhiwZ0\n6wEMAyN/f8ILfMCD7/d+v0eOd9j5rIrjuUHdOGR78w5TE/NcXv2QdrbEtOnn+mCEkOSgtd7m7x7d\n5eHHn5IY2tTOj3CPxnhxJBHJJ9BCc5wkfaRGo1yIjjCZTFM34+w43UgjJjs//5hs/ZAVw827b11k\nZqrPV+UBWU+H2tlzHq+d05+VuTOo8O7qW6hVgQvuCd5YvUHIu4hc7zEYF6mdWuz2criuRIj0Pegz\nceTXI5jhBJveIwbhVX71xSMEocMXP3vC53/zHC0c4X7xPk+eizhF6T+KUP6Tbyz/n/6XP//hpctX\n6fYbGFoMu9rBY7RQwwqDXhtVV/EKUVqSQFhwQR8Ec0BE84PHi2306fckJF+HQDlBKZRHGIQRK2eE\nYwMKR048so7dDaCqHTyqiqMn4E5IVAwT1xAsRSPlDFPzm3hrVSQhRr1ao2OHcakOBrZO7byNGFXx\nCz1cwSZV0cLtGOKXBjjtJpLPiTgMoehVbBFUbwBbqKJ0HDTq4Eh60coCLcuLyzawNM/XbbyyhGT4\nUBp+fvn5TS4nV3C7m8xeCJDJDLG6FZpdifAFB/FoGL3TYyQUZf3mF0RC4Bnx4A9GyOkSRu6MXl8k\nlQ5Tztdp2QaDmpfFBT8TN5YZZJqIeo/1ky1ULUBoJonmBV3qkXmRo3N6irq8QPFMJ2gNcIQcnLaq\nhHQvLs1i5vIKykiMzMEZYykvtmRTrpVpnJ+T62ewSzY9h8DU6BilXBVbsMnuVxj063jDSUIzQdym\nm8NujYRTpWcJCPkBbZdG3yXh1UVGXwowEotyuLPPo4ePeeODl4iICZ7du8f4W+8zPS2ieWL0PUMO\n60XUuo/Z6RRnrRatQQO7Vmf31mOG9TbXVi5SqfVwxFJ4HCHytkGteIgz6qNYPmXMPUfz/JB6S+TS\n2CyiMMTpDrOf2eW8UmR0cYVBwebKtRlOCh0iVoTU1Dx5NU/m9n2ufO9Nsg/3GVuZoXiYweMbIzQe\nw1WxCF8J0jMUvFWBUr3J/uke8cAY0kmOqksnGU/j9voxjArTkwlc/iRC0MPp3lN89SFhr0R4wken\nes7Al0aVLT6/9QUAf/D7/xmnd54x8v5LWHWNRvac9Ntv4R3R8ARDmHYbIQdfbh9jDwxQ3by5sIzq\n0ni2dkLSJdPs5JlZmWLYgqnrc9y5eYur118hU84hHtURwmk0jwd92GU0NUaxYtARSpw8eowVSGN1\n2rx4csrKygSiQ8Wq9ylV90heWKUyqEC2Sb3RxB2UcZbbFPLHaF6F0OuvkVvfoFjIc/H6EsnZUZrn\nPSRFZn93H6PbxBeMkD8pMjEyT9vqMH9xmdyLYyJvL7P9069459c+ZPf2E+6tPwbg26++gaWXGH3p\nCoO2A9sZREmNkn3wnHZYZDzkYnvvkGKhjdtUaDtruKURvP4ASt+mW8/jDwuYziCt4QBLUVDNIaGg\niccbIqLM4kiLJIOObVCVAAAgAElEQVR+DNOBInlJeFRqpo5UKuJZShNKXuDs6W0azR5h0c3WxkPU\nBkRDIYxxJ6vXX6ZSzOAsyVR1nfagQKVZYNwaMntpHufQwenuGg6/H5fXRaCukCvtcf3qRUpVHfPk\niEQ6RF32k+kbtDfa5HLnJGfHSN1YYCBW+cVPPwPgv/zd72N0PIhWD9nuER0ZJx6NUDPq6L0BTsFF\n9TDH4tVpJFqY5hBhagmjWSSWDDI5c5GjrTN6LZmIs0+58bUv1OuNEhAHtKsZJt5doYdO/uY9am0n\nYW+K0GKEvYMn9Do1urUixU4NWRBZnbhOLDVGP+4iJSmoYpOTswrBQICIZ4ROs83W+V2q2T5+NcmY\n18Xus2MymRLJuTAeh0CvZxFTh/Tjbk52d+nWVaS5KPHECplnhxQbGdq5Jtv7J8QTLjoVAbMtc/ve\n5yzG0/RNAdn2M/Rb4IK+UCShRkhPXkU1AwyDBrY4RNVC7H+5y2m+SzKVxOeI03IYZL58jtnXSC0m\nGahOznaO6ek23pgHXbUJNoYMAi4GPXBHkigRL42HWRqFJsQ9TIXHebS1hYpNKBIHs4/Pq6BXSkTG\nUnRqLtrtHkatgEUfl19FcQ6w9xXWDtcwNzJMv3WReGCaVDzKwK6QnEiz/fQYh1LDKWlo0wmMZoVC\n+Zzoymssji9R98kMC2UaYp9kcpxP/ubv+Gff+CesBEWqU9B5vg2BEZSyxNz0IvpckszaOiNXJmlV\nnTgmZyirUaqVcyLzHgI1nV+dbzI7LjN7/XXG0qOUEk06Ypl5K0VhUUM/2GIkL3MunhHwjqKbR/RL\nIUYCElv3KyiGi2GnieEL0N7oYtRbRJoN4nNpjm5m2anDlWAITzPOz/a+YiEUoeSo0+7WaNVz9Eoa\n/lyVotRAmJIIPBR43N9kXh0gx6NUalXUszr+gYUeH0U2u3gDI7RieW54YowHpvANT/ls8zl/+Id/\n8g9fQPw//Pmf/fDSjSWCkz60WgdF7dLwhbA1EUHScDUkiqqBV3HTcJQwRDe9mo4QqKL2dbrhCC69\njN7s0433GZpR7FoTn1ui6fLi8zYpOxSGDiduo0EvEEQ0KzRFN0OXG3e5w2DoY+gCFaiKAtbAwBRb\nxJUQomhQZ0giBO2GG4dl0xLDSBUHQ8FH12HQkp0okkSXOpoi4OwFEAclRN2k0uozlopjlwc4hhY1\nioRkKPQaCC6wGzZmZ0B94OWrz26y9K3rxKQI5/kSDpfJ4suv0M9U8cl9YqEpspvPaQ8D5Mp9klMT\naJ4QqkMlGkjgGfMRGfUTMmMUygdohKjVhkzNJmiYXSZG06zvniIQYXFsjEgkRrc9QOgP2H6WRdGG\nJMZ8jEzM4Jsdpb6dwdHsc1SoEUwkEEfCJFUNT8xNMJKmuFtDKFWpOEUmwn6SM1ewXDqNdh65UcUZ\nEAhOTzE/M054ehwVDVvVyTw8IBJJcrq9R77Zxq8G0YUCI4qbkDZBy6hSrVk8vHeHb7/y62Qtg9Ep\nlccbTwiEZ9CzB4QW5pEUhcOTp0Qmp9BED6WtXeyoylvvv4ZzbIyvPn1G6/CU6ZdfQleLzNkjPL37\nBb6ei5XJZe4ffcFU+iXynQzN+jELV97m+c9+xsvf/BDvcIBsO+m1zsk/3USVwxTPt9l78IALq++T\n+sYCax8/5oMffJfnX75gYSXCra9+ykggydqLQyZHp/CbFmVfkWHQTXAkRaWYJZp2cP/zB4ymZzg5\nPkb2eTg6KlM+OkaXdfKHVa589wqf/OUt4jE/7YqK2W9BTebmw5sAxCcSzCyPsHb7hJG5AKomcZ5v\nImWLmN0uro6CPT6JbVd5+9vvk3txQHGviDMaRAhoBDSVVMTPZrHH6V4BRRR543sfsltoEl7xcr5+\nytjlKN1ci2Iuj1OMY/mazC5PEmxoaKEhB5894e1//CGPdvc5e3iPniwwMhZn88stysenXPu9D8DR\no7aTZ/GjD8kVyyRH/dz+yS0+/C++h66bbD9fo5DNoYsW4UCEarvP6jvLbN7LMbu0itWocv3Sq3z8\nyY/5xu+8R+7+JqH5UfInO9QlhYf3bgPwu3/8TymtbdBrdKGR4ekXd6l1Srw0dh1NlOmOxUnbQQJx\nkdX3FsGKMDkVRJCLjMykCI2m2PzyiLpoEnGL2P02sbFZivUh8kAht/EZtJ14riUpbGc5qjzB3Q3R\nrvRRl1eINxtkxD7xyRncTgcerUd65QaBZIJMaYvOox6bj+8T8KUZvzCBcJan6RJpHxVRUn72Dpo0\nmnkcLQFfwsvzL894sfcMq1vncH2H1u4+4aVruAMeXvz0McmwA1fUjZB00TnJ4Wh2qW9WuLPxEICl\nkSucHDzAdnk4vPuMav4Uw+/H33LS6BeY9oZoOExOTjZJpKcJeIPs372PLrVwWn6erh9iqU0Uy4mk\nKrSUApXDBieFXXIFndVvXkOSPGze3wXdYOHyLJ1ODdsbQxV89LJ1DHPIUIwQCiZQNAN51Mfezhln\nLzYplZr4/X201DiCraHGTSJGFKmSZfLqAus7z/BbMPXqEpmtI4bNAkFXgo3DGk61x6I6TaFRY3Fp\nDK8gkGvVuXrhZUp7GWTZQGz1KXSKmJrB43uP+cf/5A8IhOP0bZHy5jq5ozOMfoW2qTE260MMODDK\nNgFV48n9hzidTpa+cQVPT6Ij1FA0ldDEJCOLIRq1PDv3H6EXeniMc3af7FM73iEUDSKqHdroVA4t\nLKVGeiHJ+OgKrk6Dnc1NHKaD8MUrmPYAodXgwc0XmLpOLrvPhYsXGHtlnNTkPM60TEgMknvRwfAa\npF0TuK54sJ1xPJ0OLZefs8+/5DzTxK/2qNVbdHQbvCrJcAorV2d+dJJsIMP2p88Jup0EOjJrT89Y\ne3aXb//g+/zozn3COYXEa1c5PT6ksjJCb+eEhArh6zFy1Ta9rkYkrWPUOyRnZzjN79FULK792kXc\nhNmpr9E663Fh8jKduw0G7i6euIDTZyK6gwwCMrWcgjJaolzIcV7rMPqqSjy1gmMmxMGzMq1EA3cs\nTDXuJSn7cKTHmbm6QGFEpbJzyo30Et2EjDoyx4ufPGF2ZQqfP8iBbBGZX+CaoLDX3mPu6qusnbeI\ndiAwl2Q9v0HQEWbK7aIWUwh6HUSnlsh8sYMYHqU12+XLnzzmj/7V/w8g6s/+zb/+4dxvzNC1hzhU\njW4T+s0OQsOB4lXImkWGloJR0/F5g8g9EdmyEB0u8MoobRWX4WAo+egVaggDL25bxZQ1GnaboK3Q\n1HpE9QB1yUbpiQheG8My8eg9uqrGwF1GLNloXREUCy3gYNBp041o9Noy5kCnrRuomoBTb9EVRMyO\nhVfuoIlBNNlGIUCrMqQvdtFtP0PcCArYEQ+lZp6B20XNVSdmazQUP2FRQwuLtDoW/qDNUNf54tNH\nfOvld0ldv8zpxjEhSSaSnsGlyeR2S4SmYhzmSzTsOpplYYgype1jlKiCW3JSNw2EM539TAWpViX9\n3kuE/SaVmo2STNOrNam1S1yYiOGbi9EwFTz9Hqom07ct4i8lqR/p9IdORgIqz17sIpsGqqOFnIwT\nkMDVcmC4ffQ8IpFomNhoknLWZP7qLAO/gtup0D3PEnrpNTSHhjbixumTEHEiuEUEh5/DJ2ckbizC\nUQXD1WNsxEvXEkm9Os2w0GJ7bZOh4ObRwzt86wffY9ip0HF6WHA4WXuyhjZ/hY2ff86w2GBpZZ61\nrQ3CPhuvP8Lxfo4Xj49Ih4MELvt4bek1fnb3r5gNJDk62GDqyhuEJlIcrT8mvfo2xfYW8zde4dEv\nNkguiuQFG7EtIi8mePyjW7z3/g1qAQc+LYhoubnxmx+w/+Q5209vcfn977B58ys0R5sXuxVefflD\nCs+fEUsH8fq9HHTKjDjCZMs277x0hXZfJRDyM7l8icp+hpnxWZ4+/orIhJvLF+boyB7aR/tEJ0dZ\nfeVVbv/4JpdemSPfq6JXstx9ugbApdlZDp4PSSoC+ukBhn+coNEBV5zQfBqLPPVihZgzTjF7QqQ/\nIP7aCpmth6zMJth9usnG1hkzry/jSwq0OwL94jNypycUbu/z2q+/TanWpt8Lo01A7uYTgqoHVy3I\niV6nPagxOTPF9mGB/vku82+8Q+1xjlzW4Bs/+IDuMMP2L++hOjSuXn2Ho0dPaHsgs17m8rvX+fwv\nfsHcR++Syx4T8aco6VXO93Z56wdv8fjLDG989zVu/btf8Oq33uD+vTu8+f2P+OlPfoKjWqWR79Jp\nCYxfTvCLv/3aKhWaCDOz+m0aL07pTCS58vJ1Kp8+oOFVMKoVjteO8C2Oc3xyQrd5Rtc7SSCeJNAP\n0KzoHD96wNS16xw9/YrFxWsUNrJsrj0h/tIixeNDtMAk8nKUjU+ekloZw+/zMP/aHOv3H+M822f1\nN69z7z98SevpKZVmln69SatlcbhxjvPkEGuyz9ziJLufPyb96jzS4izNrQMuvjyPoo2Q+fwm6vQV\ntKURFMEgOqEwOuEmEJjCHRbotYPouVPyHQfReQV3YoV2dpekOol/OoUgybSGbe49+Pofzz/6Z99i\nfGWW0l6OotmkYcnYXZ2W3abarTDo2Fy4cR2xbREJz3Kw9ZT6UZ2GKVPLFRCxePPGDaauzBMZn8So\ntahVqwQdFm6ngtStcbRdxtNt09F89OpZdipFJnwJ/CMqB3s1dKFCJDHH5EyQ0/MMZRyMxYJ0hj0i\ni0nmojfwKhbNXha/nKLvl6mWe+yvbzEslkncuI7cbnwtfneHcbkEppdSpFJRKodnxN9dRe4WOblX\nxx2OUjzcYfylJWKzSbCcWAOTWCzNzc8/4/vf/V0G0SFSpcVxM4PVqJOevIaDMlvPysRsEfe4n2Gz\nx3m7hnh2wtHuMYHFOAGvxuHBIaKi4FEGGH0Tl28UyegTeGmShHMM0WPQc/noV93Uj9ucnXxFcGSZ\nvU/vUCxmKBeqRGMzjC2MUikccX5nl1zuHKeo01FtVt68AVYXnxam1a8QUkfoCQ3cSgrLbtCLmmx8\n9ZhQII7tlgn6OsSSs4hhJxNXr+NOjBCJhHH4HYQVHSMdoCOJ1L84xeEqMTN9jbJgMzYt8clPPuej\nK28wGdDI61uMqSq3727w9ugy4pKX06MqtYM8Me8YrkCVTKtGVOuTrAw4y1m0tAwbn2aQPA5GnBMU\nnQPGTky27C06NghVi2EoSaVS4VVtjqC0xZ6kEOwn6fl1kvsGlZMeS5cWifs6HJ7u8mr4DcaVBPs/\nf0ZSCxIZreO+W4d5iXY7Q25Xx3YO0FwWbnWAJbkxwqNkP71FtdXCvTSKsraPOTqFbmUpbx9y463f\nwhEYo2zvMqZEqfXKpMp9YhfGOHNkWBKT/OSL+/zhH/23//Ah6k//7E9/+PL7F1GaCvVeEynqwbZ7\nhDxDSu0+CbcLXE28Lj8duUe3bxDouSjrQ6IeH1Z1SE7Now39BBwmHq8ECYlWK4cjoCE5dEJygFKx\nhweBhtuBcyjiFjuUik40qUXQdiE5RYxYk4HlZdCpMvAFcQxbaF0vzj4MbJWhKjDogsP0Ehw26KU0\nvMMBhkdj0O2Bz4O7p6EaZSxRRPdZkJMR3RBW+njaAi21jy1LuGs2xSE4OuBUFYZVuPnZQy5MXsC7\nmMZq9KjUimS6GcYmoxznj3DEJ+joba4uX2L/+QGTM3HCFyOc3Twgp29zvlvAkRiQjoWolGBkBE52\nM3T6A9y2D1WLMrmQwi+qdFs13LJFXZIRRIPMvQNmZ5fwjyk8u3MPdyJKcujH1FoY/Shz0yPsPjzC\nO+pCH/Yo3vkCf3QORR0wsurmxYsWpecvuLC4TDg4juXTifgC1NoDTu/vI4aS5B88Jvtin/jcCJ5o\nj6Dg5bSWoWeJqB2RTKFC9qiAy3AiDso8eP6cly+/TE+okXaFydo6H7z1PRrtU7z9IKMf3KAzKKCf\nS4QvLtCTy3iNGtOjUxw+WSORXuInv/opK94gjaKBw2WS262RvJgme1Bk6dU5cje3qVslVl//Bpau\nYGdOCE5c4tHPnjH5dpzN8zPCoxfp1S0y+8+ZXRjh6Zd3ufbqJR7ffIipwaUPP8A838LlVRj4nPQy\nOtlmgajkYf9km9V3lvj8L24xm1QpyzWS8TQ//7/+mujrSfrrB1z81jfY/uo2erfBtY9e4/btFzj9\nGuOjLtp1L42+iDlscf/B1/HVf/Uv/oTjxi7T15eJrI7hUgP09QadTI7JNy9T227QG3ro2ybOmIPO\nsInTHaWSyXB+OmByepKr377B3tEJ0fEU2Y9vUdItKNVZfeMGz+7vono8SK0eS0tLtE0VUyiR7ZW5\n8dpbbN57xEtvvs3RV79g7je+Q8zrp6Jk6ZznSAXdhGaXKfRrRBemKe2sM7p8hZA/Qr5zxNA0MbM1\n4pqb5l6Z9FiSgT3Aqys4JdDifs6OnjM7f5Gff3qT8aDEaS9HoCdTbDdwDTqMX7uAbLT4+OOv46uX\nA0tUTvfxLMdQGgLpdIiTQhax1Wfq7VdAbVHO2YR6VZqY6C+OKUpFJM3N1pMDmmKHxkaFiMNFbCLO\n2s01iFn0OjLOSJPs/iEtvUUKB+5AkpAcR2pUaaoOumcNdNtNtKtje4eEo37yuQHuyXHGJAvpYoTy\nRpl2Q0UMGZRzOQKNNmI6BjWbDhL7B2fExB5xJYkxDPDgk58Tik3gDKQ5+XgNBiZFe0hMsDndLuEN\nCYzNB8mcnNGtdxhfHae0vcO9p88BeP/7v42z4WV7/4hAo8/Q40DRBPTWEFvqY4eijE8kiXpGqIWH\ndMtOZLPMpXdmcIeDJOIJjvJ7mHUPprdGIpnEZ7tpN4Z0rSazqSWilyZwhWaZSpnIskJh6whhRMCv\nRTBEjW7mnOXLU4iDHorXpnFeJj4eZzoxyuGdR3SMQwKjIZ7tlvB2dPLdDmNeL6OpWQxFZizgpWD3\nyd/5CimRotUqIvojbB8c4hsLE1GhYTsJ+0329x5RqXUJTU4Q9ARR5T67JyUs3cGDR1+wPJrmJHNG\nOBBDGw0SkCNkNzbJyx4iToHQ5DTiUGRgVAgQx0opLATGkJwDRNHG6jQoPNhHW1yi+WSNet1F32gR\nDik4FTfeeBhkB86Yn2TST2DEg3TWoD1UiMWTlKtlwhOTWHQoPjgnGoihOzv4JufQMj2aTgfZvSpO\nTwBH20NI69F0upB8Pbx2H+nMiRKL4R2NUfzsHif7OqYCB8+2SYfGsDJldnY36O6ds33Yp3G+i8cJ\n7qBKu+sgODrG1uYDmi2LB1/d53u//0+xpgT6tklQCqMEOmwedhlpy5jhGuVSm7ZSZoQQQqmD+7RL\nK57g4ryX4dQiSr9FKJbk7NY+76QSGJZK1ZMmIGcxl90E+j5Siyr6w22MqQukpkfor2dYckXJj3sJ\nqTalrftUW04GRoJq9gmRoMTg1TS9rkjx9JCG1ic6CbIrjiAKSC4N9/4x7kGag8YJgbiDiDVKaMKB\n5Jvg4KvHfHTjMvbAprKepW8OyNfyZPd2wPARrDoo5ndpd9s4TtpsEWb9yU3+5R/+0T98iPqzf/Pf\n/3D19Uk0bYCr3cGtOjB1g2ZbZyg46HvadC1Qm0M63QZyt0fL48flV2lLHTTNxuPoUVYsBg0/Q6FO\n29EjqIA7r6E3nVQNCbcm0ZFV4n0b10Cm1eljpwa0Wl26AYs2HQLdCIOajGw3MGwNtSnTNYaIniEe\nzUmnX0QRXTisNi3biyIZ1Dwqpu4As4/gsui7WzjdJugm3kqXbqjPsPs1JGEaDHoKtgkOFHSjSjwR\nQayVcQxcfPrLh3xw+X3c0R5HmzUUpcvlhUWGjhHKTQvnwECpFAjMxCjk2oTH4xzef0LsxgpBt8rM\nxcu4RpNEjDiRVYEeMiPpSeRWC7tdotQ742TzCDU2hyB6EXs2w1qBZlOhWM0ysTRJy3aRe7KNR3WS\nvjSB3+knf57Dn46QDEk0tRhB2YEtqghahVJ5QPWwgWE1kRMS/ngMp9lBUQ0Gwyjl2y/odXLMrS5x\nuLVHq99h7uIcLlmm7rcp7HZRHWH6foNQRCMVdRNailE4a/H42RN+8OEPUEQNt8dJvZzlxelTqls5\npic81LI50vEQ/riNkeviH1tk/7RCpVNjNpTkvHzC9d/8NXZufkVicpZ0OsL9B09oWm2CagJXo4cl\niggJhadraxSfbJF67wNOnj4heWMW9RQqmTrDbpHlyXEOunXahQMWVy/xfLfCS1dvkDs9pPKiQmJx\njFzulAnfONrIKBZZHIZIYPYVNp/d4oOPvs/DL27jqA7xSBEuvpZCP9Xp9D107CIJJYVkOdjfyKNW\nW7QbbYahCfR+BjcSmuHl8/ufA/DdX/8u/p7Go9s3qZzqLFybpLFfx/NKkAf/6xcsr87QY5/5q5c4\nvf8F/vE5bFSS6UXMfpfnD29TcXQYFob4uh4cQZm+GcKVipE93mHmrRn2HzQYn/TSqDZwyE0GpoJD\nFXnw9BnvfvvbPPybz5hYmWP7F3eQrQEDR5KlhVWe3/+EwOgYkdgEGz/9lKE9pJQtMKhXiI9OMGg3\nsBWBVr6NI6lhmDbplQt43Cbrv7zH/MplVF1iGDSJKhrFkgNP3YVtSFz56HWaPti+eY6g6Hz55T0A\nfv+/+28YBIYkR+Y42P2So50M87Nz1PwmwXyF8I1phvVdSj03M1fewBcfcnZnm+LhOUvXl/HKKqOX\n4vTlEVJzAXyhJOJBnfJBHqtnMjkdJeYKkbi8yMMH9/BHYX+9SrlVw+Nrkzk6Z+HSDGLMRzc2xWw0\nycH2I+RRL06HxP75CVcXYhxuVDB0m3DQQyEvEH5lGeP5OqvvXkOoizy//Uu88QhjyxMcPTqjcbJF\naM6PEUrjnw/gC4nceO0VNAk++ctPiL55kUhylK0nhyzMX+Gnn3zdNvO7f/A9JKeLUCzO5PIczVab\naq5Df1DD7oTxDx1YmQxb5ROcWYNeq0lwKcjeV3uMTY1yWuvhLQ1ooBOSHVQKHRoti/HL4wyOuhyc\nnlA6OaXSPaF6WGS70CKxPM2CZ5KO1mLt3n3kls1ZMUetINKu5hm/soA36MbpcuH0qciaSP64jGsg\n47owSen0nLP9IwayTiySpO0KsfN8i9V33qR6dsKwDM5hk9p5k2rrmNxXe5xsnTHUHfQdHWYX5wmm\nI5w92+T5nfsEbIWoL87nD37F1Oo1Wp02LllkbHYan1NCjHpJhX2YwzZHB3vQOcWbHkfxulm/tYk4\n5SepTSAObcyOjHNKQxEVgmOztAu7DCoFto4z1DJtwsEo/lEbxXDQLHXwhlRMXeXkPE9FP8cnuynm\ntznbruJ0NRmdmmB8bpVOKUPO7hKNy4QDfXyhBLXNDcoHOTQ7TssC1bLZ2t8nPXmB8hdfUC+WqaPT\nNxvERhc4f/iEUvWU+JtvIAwq+G0Dp3eUk71j4pFZUpfG8biHxGdW6B6ccfv+Pd7+4NvUfrXGwOXn\n6c4JF0cvs7S6zNbOGp1El4S8RHIsjIjNkVFCvRykmD+j4nRzuLlO0mjjLXeQFpKsmRnyExIzcQ/i\nxasU/vfbCF54vnFIn3EqHPP4+TqdqQQ+v0jzTpn4tIjRSmOnfRxXtzmVmuStAVY/z7Cxh+BdQT85\nxxJCuE4btLJZimaO2YVl1lqHLKdW6A0bXIqMkunLpKUmhyEPZjvP1kEDYVklMD7KRMxJxBnBPXSw\nuzqkHw3SuLPO7kBg1GVxe+0Jf/wn/+r/EaL+32pf/j8/Q0Fg0HNjlGSqUZlyo4PTGwZcOAYW/pYL\nT3VIy3aBKBCTxwlGoV9pYFkyObNNTQ8QLYewx8CIhgmLMqo9RtYUaDsdKI4hOFxIvToFj0WbCs3h\ngMjAic/24K2mcUljWAzwhvq4IwGQJHo9F0NHm47Upa9niLRE3I4AA5cLWRVo2Tbeag2fKNB3WAQd\nGgNDptnyog1DdGIqgboDn0vF51dpDGVEoUMo7qITr2I7ZXK9Dqeik4r+dcVB1d0mZiew1Q6inSJT\ntSjuneABqr08lbbJ/XsHvPHKKnFRwRdy49ECWBmT4s45of6QQSCHTpIntw44uruBy+/GJE7QNYrs\nV8kWD3AJVfazOxw8PiabzzII+Lj941vs/Oomr753ndxRnq39XZ6XDnGNBzBtHSUxxqBR4f69u1jZ\nLi/u1DBPDzjMH2P1ulxLrmIWTVqWixe7x5SKWdxvrzL93tt8+sUvIeXCH1YQawJ9KYrVFpkYjxJw\nNKhVGvQLIgnfIpJzFMnztYG9nHBgSU7ORJ3Lq+8S66aQfW5yRzncy6v8+C8+xiqG8EeiPP3RX3B1\nNsbYxSuctBvEtVEyW7u8+ZvfZfP+IcWCC380DIJB6qKPh6fPmH1vgv7BGR++dY3Z779Dwq0TUwME\nil2CiyOoIwJzryxw69//Da9efAtNlyjXW8hym721faLJEUILEwxllfnJMfrhIFa3TXPDJn5tlcLa\nBknvND/6P37Eq996j25KwLYrNDomfmmE4LIHuxXHdvnpuSz8owqjH1xFVCwUQyf3ok9HsulUT/7+\nzjSLh8RSfqyAxMLkBJnjLVJX4jz77BGT713ks1/cYXTmVcyiwXG9AbU8nW6DzYMtvCthovOLDCsi\nly/PYzV16pbB7LQT09ciNRmjeyBx/dev028XOc7rnJ+XKHUHRPyTBFoNTu88xBOKcNpuM/W9b9Ez\nmow5/FiVPIvX32Hj/jYepY8SDRFIBtlrn2BPpLj/7HNKxQH1vkhfMpBHJLxik4d/9zG5cp/xjz7i\nyRd3ufv4PqJrHLMF3oUEh+U1Rr6zTHZzi5SWJBHz4hJDfz+P9uY69kEes1VFTk/glcbZ3c0ibXYx\nY3HOdhwUyn7GQyEO7t1l4/MzRBlu/Oe/jeH1Ujos0q07caldjh41aDZ3GLl8g0jMT03V2T3YI7t1\nSmOvzsIr13ClRxh/aZzl9BiK5Gd2YQZpJA5eDXeripFuk55/BWfT4GB9j9XFd3my1cMdcxMwTexQ\ngEazgHN3FwFT/HoAACAASURBVHl8mkqjyJlQpu93YwyG+KdjWP0mPsPgbGgis4tUO2OoiZTlFvR0\n3vu994gUbEJ+HwtKn1xl8+/n0WnLbHz1gKefPuU8k8VsnjDz3hWSiUUE2aBJnpKho3dNIrMiE5NO\ndvbreMMqTVtjZX4M3W0TdSqEk6P400701iHP7z8gK/SQxQGCSyPsiGDI4PKD/ijH7QcvaFZt/H0P\ngVk/SX+I1W/Mk3r9ZYovmqz9+C76mYnkDtOr6lhYjCSnOdy4B5kCsZWLjF2cx5kKEbFNepkyjcMd\nfOlphMQIUlijrx/TPYGaFSEdj7Lw8gLyMMZIPIpmtTFEAzE5jSUB2tfqqNCghUMKIglDWsMa1b6f\ntDuGFk1TOKvjlIZ0KhJOcYgodVHSCinFg9nrUunprD/8EkOL4nGA6h5Sc5m0vA5cQy+WqdMYNhHL\nFr1aH+dEgKbTjx3v88qbS1y4fhlTKTNoePF7TWITSYSQg16/gCyYmIaDgzub5J8UcPb6mHEF/8IY\nL15sESyb2E6N2ZVpnMiEF6MMg06mI7MsXL1KeHyC+e+/w/IrrzHiD+L2z2MM+5TLOhfSU0Rn3Ljq\nHgZGC7NQwiVEAQhrQ+zFOaJ6i29+8BYbnSa57C6lbo05bZHzUI3yQYOjZw8QvJM4KqO41jostXr8\nzuLroMeoVbqkJn00czrzJzmaX+7g/Osd3Ddu4NLCjIyPkoud0pOdeAd+pptdao+OOZtvcOc4Q61R\nw3PQI6KaXBKW8JteakkvzfA0Z7unVDs6TsvGfWOJvNjF1wpTzvfo9NvcevwZxlaHY1nHjgvsD6OM\ndyUCjQgzkTF8wzHGD4rUN7Mc9w8oTXQZrsksOvo4ryzgieu0vSFES/iPYpT/5F+i/sf/+c9/+K3f\nWqDbdROtq1R7VcKGh1bSIiIJ2CEX3b6LoCBhD5wMYzpivU7f7uN3Czj1CIptUXV0kB0SmtNJO1vF\nGCjYXgPF26VnN+gYDVRpgGoIIHgh6KLfa8Cgh2C58Xgl6rUaXjSKTjeeho4j7EGUVBzlMs2AA204\nQlXtEBO8NHQD1XLRanWR3QOG/RZWrY6zF6Xv1OkhYskSHY9Ax26glhUIOomoYQSpD4Uu/kGEoauE\ntxfHdoT48uc3ef2ldxG6bcpih+WFCVwNkeilNOnxCLuHBXwzo6xcSCMpfiRb5PS4SE4/IBEbYyv/\ngtPndczeAD8S1UyFptRhaWGBM1knGBzBqYRo7j/GkPyUdmvogoQc6eAdeulrOqIpMLo0jhzxEzc1\nci/2UMQmvukRnj/ewTw9pmdbFFsNEGo4rT69toGu2ExNLmL5e1jI7D86onxaZdwbYH/zmPnRWaZn\nkxiGjhwZo9/r4nMYPNvZ4MKNC7QrWS6MTdD09vEPHVQz29x7+IyP3r6B1+vnzk8/RXapxHwelt6+\nzOnZBt1Sjw/ffpu1w3Umb6TI7LURNRfenk7tcJ/IUpizwzovHt7h+m/8Oi6rzuz1C/RcsPPJE97/\ntW/y+f/2t1z5zvdY//e/ZG/jlELxlMXvvo+kOdnduIepmhTv7HDhd3+Ltb/+P1HG0xiGxPjKNIN2\ni/jqJRQjR/7Jc+SJSfq9U5p7WYZKB6ljML0wz/b+U773e9/kx//2U16+doO+W6RWzXNqZnCVHEQu\nhAhbIfZOHuCfmcNRKCJ1LOrnG4x+cI3DnbtoHYk761/vRL316jvII3GcBujikFq9j1GzSM/MUr5/\nj9XvfsDG335M+toYYZfIyckA/aRJOGLRXM8xMJx4Jn0Ih0WaVo3xWIR7dx4Rdk9SrlisXl/mi//w\nlyTefY2+WSEqyRxvH0BT5MK73+To3j0C7iHdToPdo2Nwudk530OajnHy4oDkZIAvf3SXl95dpFks\nsvT6r/Hsk0csv/c28WAcRxUaQp5rl95C8jlIBGeo5V4wNj1FKddg+XsXGHZsohEnTbPJ5eQ4vUaW\nsYUUX926S+rqZU6Pcjx68PVi+T/6r/85OxtPyD54gasq4p8ZMDOfxDke4fzT+3Rru2QybZrZAqbd\nJ7oYwBVaZJg9JzKWxjOdYPPuA9REitzGLeLpWSr7a9SrBUZfuoTPN0d7e5emVGPnwTaD4yrVgJOE\nN0I8vUy20KNyeIrtjOHw6lR3WuTXn3CSGxIRnHQHNm9+8xKlrInZznLQqjLaF3DEl5BTAs0zDbne\nQHJ1OM/lyD48wp2K4J26jnzaIjW5QFqbYHvvMadPzxifH6WUP2f7q+cM+rBTMNH3N3mytw/Ab37w\nJtHFeRIhPzVDxBNMEBkfIUCPgVfEKjQwFAGv5mfq0iT1gYaQPyH58gqtToHDwzLaMIB3JkCzds72\nzSMM04GExsKbS4ytJPGMjuIzvcgdmYp+xvjUOMurFznezlE269iWA9EpEBEt6qd1yoUc/rAfa85H\nt1PHM4xgtutUCn2iKyni0Qu0ajlOTs/o7p9zfLLN8vVltMULBDtVwrMebn+yyfL0NWYvLxPyGYSn\np1n70U3qikm9YLF7tE8900HxlHn5pe+SN4p8efMLfvtf/HMapRMa+S6l0zNG3SpK3IXQHxIeGWc6\nNUnPq3F23EDzRIgpoHlN7KCHnUdn4DDxFCvkD8usn52hl0sMKzJOp5fXXp1GCI+ROc+S2zujfHSX\n5nabQrNJUFSIjnk5fpGlIyvIvT5C2UklX2V7e4e6IZNQa0jDEKbbIrdTQSy1aNdzROaDELRwdSU2\nn69zuP8UITjB5OhFnMkAcb+Gw6ozOMlTPC9x/Pgp9WYFWXYzmY4wtpSkW7Lpp8Fpdun0vWh+g08+\n/pQ3Z66jWlA720eXFOacQ/wdGck2adoiqU6IuZUgouFHpMVSIoD88gjnUoijXIOkJiDMq5jBENG4\nH0d1gHJlhW7jHNcgi8cIEZqJE2srrAQTxJeWGZpVTD1ALKvQsKsIvhEKrR3mU3P01CypIwuxHCaX\nKzM3PoV0LY3Y1zjdyHMhAA9zA+q2waJlE730IQtDB9VplerGJt7jAWv1Er1EA4dnHK+U51zNU212\nmVFv4K1UCIp1mnab4OsrLPuvUSuUebb1iH/5h3/8Dz/O+9N/869/eP3di1hSjYHTiU/QEHx17JqL\nnl9kYPeR3Sp1h4lhtfG2RbqKD78zRLkwxJMSadgtpLZOyPRiWC0MAoTRactO1FaLmB3HcMsM9A6S\nO0C72cP2tPH3ArQtG7e3RbPeJOlNkG3mUCUBOeSjnWsTDZpUhxpOZw/LduBExa2JCM4yw0gUX1dD\noIvZjWCafUKal4FDQlR62HoH2+XGL/SwbTfOXp9Wz8JpNRDtUWxvD7XtpGEWcdVi3Lp1k3cvvkbX\nVcXySqQWrlGRcwSECC09Q7/hIC0ZmIkYKDbioEaFGsK+hmcqwZjfD908Y6uL5B9l8U57SFy6iFsy\nOX/0grg7SWrSh9sdIjzmoNzJY7Y72LLJjZUbKONRWtsl5IlFVJ9Gz+nCNIrUygEmogFOM/usvPka\nvZaTVq2MoAzotBwIAS9a38AORnD53AzaLrq7azRcLSZGLyKpLRLJKF3vALc6DoLByYOndI7qBHyj\nKI0BfVNBuTSDsw7FvSznJZ1n6494/5sfclo6YXL5Ks+/WMe7qmFaKiPxSQqtAieb68wsX2P97haT\nbg/h1SUaYod6r0v3BGbevIRneprooMPGo4ec6If0N1zIsRB1A3zRMQS7Ss3VZSWxiDaxwK2/+ndY\nA52JV98k5g0QdI6x9stPmf+t30LrGSgLUdb/apO2JRATygwnZxgJuWl73OSelAm+tIzQtnFM+mg2\nu4yklmh2yvhcGr1GDa8cILeeZfLaddqyTHF7i2zuIa985zd48rO/IjS2RE8a0mlZWNtHTLz3HeqG\nyb0vbwLw0e98yMbdDS6uvMnTzz/hlYsXOHle4Ch3iGWqOM083ukRAo4EB09LELSp5nUWV1aQQh6a\n2S6dbIvUdy7TPuuRmg2ROSkxP+2jVj6g27EREl4iLR+n68+58uE3mZ1fYKe+jV+oELj0OiU6XH3j\nLSShz/nTPIvT/zd37/EjaYLe6T3x2fjCe5eR3mdWZnnbXdOePYYzQ7MrUQtS4EKEBAjQQVzuro5z\nlBlSK+migwABAiitRHIpDsnp6Z7uqenq7vJVmVlVmZXeRWSG9/aLz4QOvXddpfkX3tOD9/29z+8y\naqOEf2oRfafG6M0Epd0uU5OXyWSfMvvB+5x8+YyB3CEZTVDYOiGeTPDkm8fMvT2F0IFwagJJKPH6\nq1dUC0ecZgdMz6d58OwhpbqMrDq5euk6j774e25cvsjP/uEfAAjbTpJTE3h8Ma6+c4PwwihdW0Ap\nOwhdCzG3soKsO5hZmmP/4Bw7n8MeSLSEOsN8hfLaASORcTyLYQanCm/2tkjduoun7WIg51kZWyR4\nZRZLiTG2PMrSpSXoOjh5fAhig9rZAXhd5HNV5hYW8HT7OCWLoQOmL65y6Tsz7JzXsQ8zBINjBFwB\nnDdD9E/z7H/yDUavjBhNkT8pMvv2PNfmb7N9/JKuZLG0lCCzfcD45UnOj5v4psKUsnkigUkkdxij\ntIsx8OB2SDx6861wM7WwSj67jTXsM38lSbcyZOPXT9AzFVanZim2FXxumdW5OWg42Lz3Et9YBDQV\nc9hluLGPRxwSHRmD0AjBixEuLM4SHXMTlTRUh4LerrL1/ADPdJAr6dvk2ifsFA8R7QKpkQihuWWm\n/SGerGdx+WpYvS6+5BzKMEzC58fp0dBCY3jCDtweD3GPTXkrh36axaUmaXQyBOeXqW19gzc0zjf3\n1khHZEI3p5GcOq1amwfPtlCdEa7evkX2IIe3VsGRTmLpLYqdPF4bfv31A25eu8ug36LXKtPve+g3\nTzg/beOXXWyVjsjsPEffK2H3e8xeX6J0dMrGVh47e87I7RFkJUl995TTtknC6lARmzj1BDd/eImD\nXIHK8yf0hD7h8TGSY7OEXD5a+VMamTLNfJ7Y3UvEZIFBp8rsrZvoms7SrWUmY2ma/gizy2nGZpKc\nH+5Rc8hcv/EugsuJwx2lU2qSKxwztAJMRkX6AQvDMeTJrx9xspOjNuzQMtr0hCErb1+ihgO5Bqf9\nDoFkCq/d5vmTbcrlLXp7bR6+es53f+su/R6MLnioGBAPxml5neB34o37aDR18hs1PHd0BkdtBs0s\nxl6RfCzAbDKAJbYJdIJ8mX9Et+YnbrhQez12+8f0HGGsNMgDGWUgs7m5R08V0Iw6Lk1BF0XEis2U\nL4QQiLPvz5KKzpPv6zinonz8nRSbT9a4lFSwlC7FgyzbJ/DBjxYIq2N02j2CJzs8HJ4QcNUYDiMM\nnGF+9PEIpsOg/qrPRnWHqdD3GFkMcxoQOTk/oTeXRsvEqWxsERuP4k1E+PQffvGb8Z3303/z3/5k\n5fZlhpUGXjWIOSjT8oYI6gY9VQLTSa9dIVB24/OG6Hb74O/RKg1JjbboWh3aVQPZ46I1aGA7LVwu\nhaapk/AP6dajtFxVLMOLS+ii1ZyIkSYeA2QpRENuY7dlAhEf/VoNO+ymO9SQzkoge5C8DUJeH4Yo\nIxactM0GTb+I1XWgDSXq2hCzPUBWBZToEMXZp9NRccpNbMGDv2bTc8oIaherrxJICJwxIOz00fLq\ndCoGIV+KmiLx8OdfMn9hhFI9gL/dorm3j8ujsXu8S/FlEUUWaHXLRAWJgQ26JLP/9QneYZmAZ4Jw\nzEXBtGidFXCLApLmRJVNOkEXuw/3iF+bp17fo3JcI+6cQXWBZyHByOQy9U6JEG72inmWJqIYVTD3\nt3GYLgxfl9xGnnZ9QLdXY+r2KotzYxTWakxevYRilZm7eIVcdpdgYBrRyHG238R0ygjlMpHlS/jc\nGoOOwlAQUGURQ1FoSTqReJSDwxPSl1fx6yamJvPq5BifJfBk7RE/euv3yGayLIcWmF0J0z+AL9c/\nJ+BNMOGdIdfJI9QFDnKb3P3hO/zt//qXaGGNRnVIZM5Hz4ThYZPtp5t0zALXf+v3sM6LRFbcREyI\nikFytkRaiLOpb1Hd3uf2W98hlhjnq7/5a8IDB9KiSq0xYN4N2/c3SY0kcE+60ESV9FKC3XvPODwr\nUC5VGIu68SsdXOkJTLq8+vwx55lXNApdFLfC7PXLnB+c0S+dII35cVfz+OeXUVsd9ks5xoOXydTP\nCAotLt29wfrD5/hiTtx1gy+++dYTFVGSzN1d5PTlMybm59neK+EV64RCKo1qnXRyGbfLSdcv0zg/\nYvb2LZwNncMHj7j5Ox8xbNcot8uc7L5BVaOctPb44PsfUVg/ZHOvQ2zZx/6X61y7fQFnSmb/JIOc\n13EabXJZFcmuUC01iaZDSN0+3VaXwEKcdGCenl1j/PIo2VcZyofnjE6EyJ51mFj1cvKrTbyRafq9\nFsqgy6uzYz58/wcoRZlvfv4J6XfeYufhDq2GSSyRptvtcGXxAvGxBPVCF82r0TYLpFdvkj3e5P69\nBwDMX7lBoGJRSgZwjcXolnSGUR+BqJ9GweToIEMk6aJebhEVdJy+CLVajss3ZqgkBNqNBpLuxe53\nOTzY5cYPriJnurw+fk67AvW4ynmpTtybJukJ0gy2CQxlSuUjJFHB9rqZ9QURGgL7L9epNNsE79wh\nisaRvsmrtRJ6yMn8hIut7BmeOQUnEZLTF5AnNOYuL3H2ch2X6aIdCmC2B1Qqp9xYmiFbt0H2Yxby\nCIqD6vkR45FZ+gMNyVNAnbiEbaj4hyL31r8C4N3vXKBTBKtbQ0lPEwv7KVYOsboK2fMKmsvJzDs3\ncGoOTFvE7FfBatIt5ymelGjVbC7/7g1k02RrdwNXrUYoPkm3Z7H11WMi87McHh/i7HSYmhqhK6vU\nN4+IeERs3xKecQ2fCh0vjEVnGJmZojPUMPxOpr0B2vUO3YCMkW1w0j7C5VTo1E12NzfxaSLaxUtM\nzo6AaqBKAdYON1lKztNq1WgWTXwhAapt8tUMltCiVCkxd2UKvVHDIwbIV+poLoWEmOTTrz9nJb6A\nYhssX7lK4kqISs8D5SbiSJz5cS+bu1kIBrm6OkOn2+T1Xo47707QkFwofYhHJeSlOWJRhbaqYTd7\nqLKM7PFRWNvAlUrQa3tYnR9F1IbkqnX6pT49s86wL3P6cpNoOogWWCY55ublF88IBALk7Rrl/VcE\nLDe5XJZ2V0cIOAnPT+M1RE7rp1iywpjfx3F3n+pxl/JOmcFxj45tkB6bpFc1UZp5+kMH8dFZ+oc7\nlKQuw3afQeOMvUKJ8eVLBCZjhMI+Pv3kc377n/8Wxzkd253AEsGp+ih3mpTubZP3FmiWyrRceaZ9\nq9gnxygdAXHqMuHyGZaRpQ80oiGmBB9RIYosFQmVbTQ1QFMrEBpMoLm7bD/coHI7hiK6Oc/XMEwD\nSygz6Em8OOnSjZe5II9iPT1g6IujNfqYnhLjt29w/LrC+qtdRuU0I8t9sg9P0YM9vISZvB4lYk4T\nPhrQPSsS9Ao8/eIRyevvoYZ9UJUofPk3SAcVhokwZldhLj7DeMik70zT6GXxHWv8YvPX/Ms/+w3Y\nRP35//DTn1x6e4q2rWMGGnQ9IRy6Qr3Txe8KoullXKIHLaZQHhQZOEIkfE4E20Gz20HzJPD0LKyQ\nwVD34HX6GfYd6HUYDgWcqoLYH0CgQ7flwenpUGoNCAkqzYGOHfAitPr0zAZSVKBf9JNyt2mpAqFu\ng65vBNnsodQUWoMBQ6VL2G4zqDtQJQHdVSakWqCrNJsidNpINvR0mbAioIf6SLIX1SEy9MmYAw9y\n3warTKchoWgDnHaTXt7BN18+ZvX2bRYuLnOWOUYfhqiWmgjBEOkpmeDURc63m6THUngCPjo9hUJ1\nE3UocFTIIEkxBjt56q08mWEJo9Mi5k4TCMq4/Sn8gx4NvU/xaJfYxQjHT4vUd5rYVp2z7VPU6Unq\ne5tIaRdW309gxs3e/jlC18K2LQZ2H4ftJF8q4W5p9K0MI/NhIv4oXiVNV+rgdPipHW0TnBkjFElS\nL3WQ1SZaTEIc9Fm7v02nfMhEepH0nB+fqKIPDUbCTu5/+RzZhlqpgthv8uzVBiu3L/PO+zfI59bR\nIh5Oz3J8/OHHfPngNWeZLSJBLx6Xj7E7S7z6yyfc+k8/5PkvvuL229/n5cOv6L3JYFoKN/7DOxQr\nZRo5i4jaoqlFONzbxT8/zfavPic1GWT12hxnG4eYwz69kgNJFZhYmEeXfdRrXVoOmfmLc7z4+89w\nzqVI+D3s7nWIzEyy6JskNBMnpUT4/N4akwtJSh2D5eUVIu4UY1fD7D1+Qb5bJmhC7O7b9E5ymF0f\nrsQIXk3E1fQghYJk8q9xOZIcFstc+fgjlMyAXPuQbx69AOCP/rN/zsOHv+b9H3zIk799wdW7CxRN\ni06jz8rlZXSfi40X67gLoBtVjl6cEVC7yO/N8uLxPZZml8nVTklOz1PdLpCIe+jKQZJjo3imEuy9\nPObSyjV+8bPPWLl7h9p+lUbmhJo84MLKbc6OTgi6w5wfvsK1NErzdJ/jtTbT783z4hef4e1LNIIC\n7358h7WnvyQwssLJZ6+5/IMfUSyc4pz0I8c8zFxZ4PiLLd7Udkim5mjvvSb+7gL9SpPJ8Sj6qc6b\nk2O8o3FMT5fq+huy2QZuycY8Mbj//Ntz3r/+0z8mdWOC3C/XMc0sUSvO8wff0F7bxB8bpWxBe2+P\nUGIM5cocflMk/s4c+fwZtRcZxlZu4Rz/VrBZN8+Yjq5QPt5ifv4mslTDPz6L+jLH4cFTzq060ZzK\nYa5A3BA52DqjWsxRNxUW3plCmhyjvn1IdmuPgGyTGwhMtRucntQ5WdtGERy0Bi2iXj/P7n3D4sIU\nX331K25e+yHelQDpapNXh+skk5d5cfiYkOpgZmKJg6M65dYOY+NRDp7vg9mk2O0QDIeQZYHIlSn+\n8W/+GoCL6Rs4hnXCq5dJq6M0Gm/IvCmjB9wYSpGZxStEfAonD96wffKMiixTLw2gZTNodxl97y6e\ngI+nT59D3sP4pTSi4MN2NGjkdM6LLyn2Wtx56z3Wnm5SOT0gfW2Gjhinmr2PO6/hmpqkf1hE0CTK\nh4eUT86QVYXMThbRJaCaFbaevmbUHYeWQj1X5eLNORKLs4iahGa6EUJ+OvaAsUCEqgGt+hvahk5x\n85xSoY0eMLhz62284SnGfH4K53k6hRPmryyT9seRR0T+8e8+5T/5sz8hNBZj+8sdjnaPkHo64yvL\ntApZtjdzhNQ+qdlZ/HEXz+4/RzCK1LabCG4PkclRqmenvLq/Q1Bz0DUdmKaForUZBmBq/G3SYQ+j\nY14kn4d2s0YMP/qkQOLiKm4rjGcyzNT0CEeZLBuv9pi6tULIMYJTdRBcnsXtEpGGBpWjAkKvTbtj\nI3k1zp5sYnTqFA7K2JjcvPsDYldniY+GmZiaoJE9xmjkacdjWGUTLdDCGQnTsfpMR10cbGXQBwbG\nwRGD7R5WSOTLL+5zY/6HIAs4HSWUTBtrs8r4aJ+Wb4K2aPJB8AKr/kUyXQfijJevLYiE61RqIQwk\nAsE0vUMJY+jDq5m0ajWOKjUKFwK8OztGppZn75stGukml91x3JUo7okYMz43xTM3qhLg2rVJIg4n\n7ckRdhtVkkterIqLutMkt1bEh04vMkXdqkEUplfmqVdqCFKdwnqbqZk0P+90sbo9yk6B9HQSQbHY\ne5Tlzu1Jwt+5TD5l0n1yyrxbxnDblEomj+99RuZxEX/P4nnuJX/6L38DIOov/uK//slb70wTcI+g\nIOBodnF0GnjSXpoWeNtNqqKFOnDjdGkInSGVdgPdHKKaILdN+oEhPcWFPGgwcLpx9xtYbgHJ1sBV\npVJvIVl+wqjUVJVQz0/LazLwWSiGwMCl4VY8KFkDPdmi3Xfhk/zIsSBavoculKmjoIxIiLZE263i\ndLrxNN3QEqkJfTp6h5QyoG240cI2ar9PThfwu9wI+S66z4K6jNytU3XYDBUbV89F29vDaroItiV+\nef8J79y9Riuv43Y7EDweoiMW4l6FutHCNNtMXL+Go9qgXDvCGhRpNh0ETIP46jSnm7sER2Rm0tfJ\nnJ3TsvuEQxHCagorJKDIKidPj3EMhgxDEWamo5SaGQa1HlZDglyDWstElF0YtRqj0RTlUolKp8ZE\nchRb82I4WigOg6ba4UJ6ESmWwM4bGGYPX8qN6oRByYm2GibmcCL73Ry9eE17s0nX7SdgDvDP+Sla\nBuU3GQKJKQqlKkeZbfRCF+oVfIkYzYHI+tpjPvrhHzDstBgKJidvKowuLnDy4mtWfvwhcqFKcjzF\n5v5LktMX8C64Ofk8y/u/8w4Pfv4Y34Sf1ctXKdXKlHNFAoaI0esyOjdN5qzL8sQCWxtf8jv/7Mes\nr61zeGpz6+4tcn2LRFSjdtZB8CUp7D0n4vUykRhhd22f0Q/fo7Ozw0xyjieffU7wQpo2FXKfPiAb\n9zATnef0zS7eiMWbw0NSl+fxtyWaDi/j4TGi4yE++7sHzL13kUa9yvHWCVp4lFTIx+GDR3hHlzB6\nXVQpQCoU4PnOBoKp8fDpQwD+8L/6z5HOFWpum3hY5/nLY+6+9x7euIu980OqBZPf/vEHFM1zKvU6\n6pSH3FmD9MQC/vqA871dkr4JslsZYnNjDOp55G4T3dNHKlYYnZonf94h5XDy/MUTUiNOxpZu02sL\nDAdZcnqe0aUw5/tVVi7dRHJKRJ0Rnv7iCVc+WKHpgKhDZO3BPnPTqxztrHPpxh0a+RyHh6+g2WL5\n6lWOf/aQs34bl5bEG3ORf3mCTxVZmbzGLz/7lNs/XCbk8SCYAq9/9ZTl775HJOmjXcgxNjvG3//j\nt81SFz/+DicP1pm9O0FsdAXbbHOaP6ZkOoi7RI5ebaFoJvvNcyb9S7QyVQqtMn4rhpwOsPfiNeMJ\nD4LdwH/tLmb+mCY92hqILhlraHDWPEEqd4j0BaSIn7LTwDcxysRKFGmYQrC6DM9Pyey0uPr2Av7x\nELuZEiBtNAAAIABJREFUMqHxNKVOjeiYh6sXr+Iascm9yLEQjlIplBCdXlTZTyO3QyyaZKvQYjLh\nZSi1MAhw+rrI8WGGQK9LT1VQWx3w+3GrEm6fQWvjgMk7V3j6+GueP/pWtvnBH/8+47dn8QYTSHqL\n4n4L9+IkSX+SiakU7nAM/ahEP+Xi8GgXDD+RRBypr7P4wbucvXlOe+8MX2Ce2eUYuUyL06/vc3ya\nZfX6BfKvz1Ddfmob+0gqeCfniSVHEIYl/LEryFMyu3/7Fe2hQv7gNe1cFXHUgzx0YJVhfCLB+uMd\npm4vEIl5aCoqvnQYo6pzerRHv1PEbBTZ3jkj+2oHVe5RXttg0I7i9Wk4ykWcMwkcFQVZton7PXy5\n/gkuQyTvMHCqfYRUkkJG56t7v+TWjz+isJPBajbxSW5uvvMunXIFh9whnJxi7solIoKP00qG8rlF\n3zfEm/AymfbR6bTYONhldjRJZDrC6PQSofAIksfP+aNdZt6e4qySZ313ncrpMULTgxoPM+hniLuD\nhMZCaC2RdqGGN5hiJB3CEgy8ikTFKmLaQ/pVi3qxzOrKHYr5Fm1MuoevqVkqJk5C3hbT47OEPRHc\nqswwZGHhJO5yIY9PMJNy4kpNUnp1TMwzxlg8xnZ+gFmtExIiOHx9Ks4Bvo6fr57c5z94//chfMb0\ncRjXhEDv0ixrr55gJxSuxpfZ2d8kc37E47U11EQCrRdkzOxhqE7CW1l6uguRMqXWF5R2j1CvLuHZ\nzhOuxnn5aBtH38swAMnA25RkEW1U4/WjV5y6Goz5RfLna2QIo4abhI4raN0mA3RmLiYY2hqCU6ew\nc8rixCLa8RaK6yKGGwITIvmqn/zxGUfdHCmPzH5LwOoe4l2Yw7b8lAsbHL3K40yMIrS6NJZHaQxd\n+PImo0k36g+u8NY/vcKbdovNjae/GZmoP/83f/6TpY8W0TslLIeEKlh0oxbeTB+3s0/TmUCWe7Tb\nAyS7gab48BsCgmjR8XuQRZlmW0atg4SJohhowwCqIVExdcymFzE8IKYEMajhFIJU+mdoYghcHQZ9\nGWlQBbeCP6DSlIa4BkHczhzDtpuC2cUrx+j3DDxuEDURtSwg1uoIcZ12S8YpdlAdHlpyADptBFWl\n0eqgKGEsR5mubDG0B/SLBkI8gtiv0GtECcZdOAybrjREM+CLz5+xFJ8kmtCIzk8ztzhGRB6nYZcZ\nG7tAvVYmFgPRrbP7KANaiCt3b2GkIiS8Kif7GfRel0KtiuALcP36LfSeTSdgo56XOFzfoOF1IBp9\nOsUSkdllfLgoK1XGlCAt5zlmt49TAr17TNQzT31/nX5fY/7tG/jn48zEJzk+PeHKO+8iDWzWP/+K\nw0aWWu6AZt4ku/eaydsXqJ90ebTxBYnJeYIz07TtU4rbBXTNyfRUmG7Nxhj0kP1+ztaf0K50Wfnh\nHRJSjO0352hSm2cb69x66yOU6JCx6DQOtU+tX6XXi9M/PGH+vdusb2+RcLkIhiRCWpSONcQuZHFN\nx0hNhjncKiLmz1HVJKF3ErSO9tl/XKbSPCd5eZWFhQS//p//iju//R7bz7K4zB7+q1NolXPanjCZ\ntU9Yfv8HSJqT3ZfPmbm8jNU3ScyP8bP/7Wd8+E++j3NQw29O0vY6ceoytcoTRAbMLN2mu7eHJoh4\nEh6ePPg1gakUfivK5LQLvxrDLlVRkhbHn90j8PY8iXCYjY2vSc+N08wc46g4ULQyuXKVtY1vPUAf\n37zKyFic0voe7ZKbq9cvsbX2hjffvOKt9+8ilCq82HyOx6sSHrlC6zwDLomUN8CTR7t85/33Ocmd\n4RpRcTf6jL09w8av31BrC4xPTZI7beIPVYmNxxjEEigdP0LvhHBawYgmkLI21VqVZsWCTo9M5giv\ns0W5WsA7dDCzuszm3muCIwsUTqp4ZiSk2BQvP/t7Vr57GZ/HxaDWZv6jZcprr5ESIuVSH/eFIDtv\n9pBVkbG3VnmzuUN5/xTPlRRm00F0KNLVvTS29nCpCX7x5S8AuOmapKLoOMwAYyMpRGyqbw4ZSV1g\ndM5LY6dEXhziGwlzVjogMBZlPLmCHKnw8lff0Gw2SM3e4uz5LvOpFOIgxHZmm25exRUK4o8nmJ2J\nU311iJ0O0c7X8NsO6u0C1aqNlz7j10Y4Os5R1wb09Qr1/RMuTI3SOsxR3T2lL4m4GZJ5XqUhDhiZ\nn6esDBjkTWYnPEhOP5G5NB6xjt4KcvBqD0chy/ili4jDNo2uA59Lx+ULMXnrHfLlMq7EKsnFZUKh\nAJOBGH/1t3/z7TzmZ+jqMBlNY8td/MEAR3sbmM0a+8+qdLNZkitR8ntVVNUiHQ9SLx7TFgUGhV0G\nbYjNjBFZnGHQsXG53Rw1j/DF5on5kthRuDJ3kVy/w+RsBFl109ne4/hsn6B3SH6njFTXuf7dW6jR\ncbr1HGrTZOzmNcaTDnSXyERSQxzEGZTqOIIh/H6D3OsjhmqPXEamVDHpa1VSosTsnQtoXo0zo8PU\n/BhKeIGpqQRDj4fi3gHO8SDlswJLl95C6LlwWAo7hwd4dZuvH3/DWChJx2gzv3KBev+UWCSMqAVQ\no1GiI1Fa5TNKusbp2hGSr41QDyCIPVJTNwg5I+TyRUR3gGRE5smvNohYQzxjTjR/CMmvIuCjkHmD\nKzSJNOnELtXYXq/jlk02Xu2TPXpNO3dKf+gjGHVTvPeErdwb9J0eNCAo2PTFKF5FxRXVCYc9JEaX\nMYUBvmqP0MxlXEtBbBMGtTNUh4Td7+MIyDx9+hLZrJJaHCE5EeLk9UsC4xEqr7aRIrPI/RMGnTBD\n08XMcoxPPv0l373wFo1qm6ZfRsr30LxOfFKAcDSJUa7il4a4lAlaqo1LLBJsd9jJikRWEzw6aJK+\n4SUSnGY7s482ukT+6TYF26Jpn+EMeGnKQ2y7y8hbEonTFlYqgCn1CftEUo4QZ5UiiaSLzZcNusk4\n7oZJJariYIShXiHoWiA53+fk4A2vmiWEYJHRokTvUZbeqM3IlMSZYTNsCdDJE52fR9oe4PKcEhx4\nmI6M0qycUKkVuCvOIWPTyu6zmzlltCfS29xB1yI8ffANf/avfgMg6t/893/+k/nr11DFLp2gha0J\nOIoKxogPte5G7Q3oNVrIYpyuITIM1WkJMgO3BQ0DhyKj6iIBuUvLLWP2/Qz7OpWOTtTRwe3t0KwP\nCYhe6vUquBScep9e2I1mqwzbIHhVzLMBmq2gWjoeAUxFoKXYDGUJjzLE6g1RBi1aLQ/DdpW6qCOr\nPiS3gu6yGA5k+o0ScZ+DgTHAEVJw2n0UW8brDtHIDQklNTpSA0WWCIoWDlNEGUrY3TpiLcSv7j/k\nyqWrVA2TxYlrSK4h+9UsR7kmI+MjtHMGtZ0DTroGPiWJSygTiCSRdJm99RP6lSKYfpyOAbIMo+ko\nw7RGTLR4+Ms1Gj2Lxe/cJNBSEFIBtFCA8u42YidMYD7E+dEpnnCUyJWLZF+3GLkYpWb1mJ2dR0TA\n1At4BBc+3xS1s31a9gAafXruLo26iKsnYIototNBlI5At3zO0OyCrZOeGGcysYwSDSNXTDBV4tMj\nvH76SzzJFHKvh+aLE0onKJjn0LB4/vIF79y5hsc1wZc//wJ9UCF0YZGAs0U4OMWDv/4/GLu+SrNX\nQ3SG6eeOCIR8HB5VsX1thK4IuSZL1y/zanOduflLKMoEnrjB/HiMF798zGmzxPTSW3z62Wd8773r\nrOcPCHQ6PDqogCUzd+U2+a9/jmMAUt/kIJdBsG1ctoZzyYOvY9FKjLL+f3/BlfcvUD89JXpzhtPT\nAvZBh8i1SV7uH9Pa2UaUw1TrBfRilt39LH4hjGMkjtmuMPu9j3n215/iXkyRnrzC0S++ILa4RPhy\niky2itLr8ejfG8u//8d/wqO/+Rljt5bxLkfQdZ3UXIq4plBsD4gEJ+l1Tik3B8RcJs2zJu26QsfM\nszw/xoOvnhOLe6jtlah5g7ROqswsLONLWHQ7HeyEl70HJzTbeUanAlSOs8Q/fpd7/+4+K6MpREeH\nhfeWONzYZuT2KGNagl5PwIwOOdrPM7o8i1tVyd57iPdCBOvEYnPtAXe++yO6XYtuv4VhS9QPKnQb\nAjPv3eXk9WOkRpWPf/dDBMHL6f4hF29dQDGS7D1c49oP32L91Ut8uk5yOUijcsqvHny7eVm6OIM/\nECTY8/H46QuymQZe1Ys1quH2+FBMm+tXL7D+4ABJjjIblXj19T7pxQXCfoHxK9cpbp9gKn1Syyn6\nIajYTiYEF8ZZk82TFxztnzMYmizcfpdOv0PmYJe5mRm6nQ6FWhNCEXLZPFJDYuWd6wyaIgWhzkp8\nhqX3rtPINOkGRZZujhJKTdBve9AzRYS0hhpKsfHiPpW+gasZZDDqwZkcMnJhHqncQPRGWHkrDoQJ\naAHKZgNXSMCd61GiizPcwal4+Kt/+1cAfPDDP2J5ZormUYnd1xtkC22qjR52ReTCB8to0RSBUI/T\np49xjC2Rf10kPBPj6qULnBWqVKUhrrYb3akTSQi83tyidlbF2+0STHpJjoTJV85pDpuMzF7GsDp4\n4qNEginWNw5YXBhB1kJgtnEKfsYujeLRRM428qiJEJrsZHMrw1H9mJPMFr3jPfKZNtnzAs62RTBq\nM/vuHFgSo6uXcPUl5JCPiWiI890ileMXRC9M0+o1SU4ncfRDrMzGOars0zSd1FtV0oJCx+vk8Vf3\n+S/+5E+JXJzl+OAEyfZS2N/HGLbJnGyw/7jAef6Y3vkutquD5kwweWOBkQtpWoenvCrs4jivYZ93\naR7VuPb+dURFpJEHb8CP1jYxOz1U2Sbti9PoNBHDHi6PrpI3BdSzGs3BkMvX3icxrXD+8pScYuDt\nejGCLbxzExS3GxSFXdTxEcaCkwTicfrBHq26k0ojwyBzRuHsCHfXhzgXwi5Uuf/1Gse5AoHCkOTE\nFF4jyIunD2nJAsnZZQLRReZnVRKhFK1hh7rUQCwO+Or5Iz76Z/8Ej6eOr9ZEDM1T2X5JOajgq/Tg\ngkptcMxRscEHV6fRRlZph3roZYnYwSaL797BrSvs/vITAmPXCAg1fIvzjCR0pLZEeH4OT7lFpV6h\n1Zyg61WgsEOo4MY+3aHYypOUlggs+Ak224wJIkrUQ35NRxRM9h6eYMUyZO5lGLlxBXf0Co5mHWFm\nnpdmDesQJmoSgckguqvNpZsLNB/VidyNcrRZwRgfQ431yToiLI1p2I4BuXtfkU25CF2dxzfuoNmO\nMRC3ePHNa/7Fv/5/90T9fx6i/uJ/+ulPrnxvmaFtkw4kKGUrOD0yAaODLgnIgw7tdJBhWUD01gl2\nRKyOBu0a0VEBxZTpO9rIpoxb9tF1tvF7hvTEIQ5tQFFUcbqD6FoJo+Vg4Gjh1mU83iA9YNA3cFp1\nJJdA07Lx+2RaTZFitYkhDkg6I+QVA4fWwiMmqBkdhnEFb8+NoIHa7yEMh2C3MLUQsiGgG36Ggobt\n6eGXHVSLCtL4AFOUcZz1cblhoCuIRhMxaoNiYJgBvvz0AdcvLuPVHfiuB9ANN4rtRlRA1XOoY1FK\n+0e4wl5CUTdeIYbgEMluv2EYsrHKDSxFxvTLuOpVfPPTiP0WQk+gke3SsLrEom6iy3GkvsHBWp5O\ntkjqegxnQKS102Xl4k1UTadUKzE1H0cVAzgDLo4evSAwOU9hbQOHVub8tEhls4AtdVB7XhyCgig0\n6EYmSKlJ3hw+Z0iPetZAMcA7EiXfKlLf2KZlNgnNuFAHPgqtDKMjSwQ9AWTPKIWDM/Kn51iyk431\nJ3zw3m/R6R5w9XvvU9hsog4NhvUujojN0BshoHTQ7CiD0z3a3hlcioPzvSatTJZ2xcTrj3K4/Yb3\nf++3+eT//L8ILQTxDFVa3gjJkRjhsIQu2QQSUZ59/YIfvHeXYinD1OIVelYZz8DP3PIKh/UdgteW\n6b7aZf6dOzy5/zkxf4jDwzql0jarN2cpF5uExtM06k1G4xcRZhT6VYXio6dc++FNFM1LvZHF19Lo\nGir7HOAKqWhaiIOH3zD/u9/n/OUObtFL3TQIB1QOfvYMv9uPP+rki/vfBqn/6Pe/T3g2Sb/YpmPo\n1F+XOD44RB4KzKXTGHqFnYMid97+PsfbL3j3xx9z1mmT9rto9cpMvH2VQrnBxKSH9MQCrw6ek1qZ\noP7mDTM33ublv/uGW7/9W6ytv+Lm2zfYeviMnWfP+egP/mPu/eofCCbmuP/JJoG4wmw6weOfPyD0\nziL+poLd6CEmvIiihi0POHqxx42P3mJ6NEKx38EbUBGORQqNGl4tRt8+J3dwwpXVOYLRIFvPcvhG\nnShmk3a5T9+oMb46zbO//Ixrv3+HvYM9Ms/rLH38I3721/87AD/8w9/Fsg0ccwEsh59mrchAbzE8\nH9A/PUWZcGF4YwScAl6lh6mksYcnnJzUOD8pouSr2NEggzeH1M91nn6xTuesgC036VaOmZpMkFT9\naCsJavsndHWLqeUEx0/PafdKqJKHZm2X8fQoSbePwtY6YnAatdVEmfPy6OtnODwjpOfjBJIzHLy8\nx2mmwNj1WVJuF4G4H4fpZtwK0BiWebOzxtneEe7TIbN3RwmnJxFzJobDZhCQePr5p1RLVaITY9jt\nQzbvv+boyOT5i2+D5bdW5+kpXjqnFYQRD5l8hhvXVphZieEPeyjtvOH5sy1iE7NcXJ2g+aZEKDZE\nHkvgE6LM+hLslfaw3+QoFTJUz+u4vRodQUQ0G+jpcVovy3TOKzitIdmnLzl4uUdwNsDoShKv6eZw\newd8EnuHR+xl3rA4t0owqmF5TV4930JvtahVejh0Fc2GqlJC87tRFCeLq5ep7h8RXI5j6Spyz+Ll\n2haKAufnZZbe+x5Sr00i4KSwnefw1RoHpyVqpwVkQ0Qz2ujDFgNlyLOvn7A4EcbZ8VFrH6FEFZaW\nbyImBHqVIZ1+joTLiaqOcPXuZRxVgb3Xz6kWsuhCh7m5ZWYvLxGN+fHcnsFxWqEaTjA0BDxDCzEs\n4pY0nBGZ7ZcFxl1O1KEXdzRANOIkPDqCf3YaR0BD9YpY7hgXF0LogQjd7XPGF+YZdE8RTwU0xUvb\nYbD+xT1Kr45hCM5WnXPLRrSczN5YwOMPsP1sD8su4G450FVILvvoa27yr7eYvriK5AowdOsMCiWe\nrZ2Qy1e4PD6BOTrGl5/+I1fe+R3aIYWmZrI46eRE0TF2MzjEPIVtHyMhP+LIKOfDBhF9j9NyjsmW\nC/XDFJufPUCJ+BCXQwRUP75CBZ87zqHkRznbpmGFKBo6kZRIoHbO1cUbNHwJWpqH7rDC2PxFDvbX\nqLv7CEEJs1LiWNYRzxokw32alwJM5OMoVxbZK5+CsU3ITpL98oRpq8P0Rzd448oz2fMg+m3UXchf\niuASQvijfYJGlc+/OeRDr5vtHQfZ7TX6S4vEJhfQGwqNtoVWKeCRVvnVi1/yr/7sNwCi/rv/8b/5\nybvLSaS+A0u0aFs22tBE8oSpD/qYih9fbUB3tIVou6hpfRwCKJEoakNGHHgx9CJdI4SDCkPBi24p\nqLUhjfaQSMLDoFRBQCSsCbRaHrwJAwc1tKGLVkPA43dj9QREqUO5L4BbRXQahNthHLaOyztANFSM\n6gBHQsQ26wxaPhxuBQcSbbGP7fPg1zxoloyqDFBcIrbRodszaVo9Ui4F0e4i9l10O32GIQnDY2L0\n/XgdQRo5H9/cu8dbH3xMr2did500SmVEVaPzep/94zZBv0ClLdEqtklF04SXPLiMAN6gH6/mxLkw\ny8hYjNjsKA7doNFqcnBwhCcWp3TWR9Mc+KMRPGj0IxqhloOCYFPaOeT8TZP+wEKYihKoqTjDThw1\nCVcUVJeTw90D3M4+2+0GjlYP3WHgNIK4fRor783gHZ3k9HSPVNRFasZPcb3Iwq0PKHdy34ZLs21K\nrSbVbhGXqFNqGezu7jAixFCTDiTZBgr4JsZYnJ1hUMvy1cPH3Hn/LqnAJdb+4edMXpml8PQcR8pg\nbnKZ4pNNKt0a1ZMM8+9/B1WWiIwEMdQhl1ZvU9jd5/oHt8iflSll6lx9a5Sh6aTftamcnbBb2ODG\n0l26ioWkiwRjMZR+h/PDE9q1It6gn40H92noOW69dZH9Jw3Sly7Qy+9iST5cYpTJKQtfP0i9VMYd\nkcnde8XC1BTntV1Ka01SMZupH9xlIPv49H/5t/icUfzxNBfeukY0FKaz0cJRGeC9vMzWV58gyRKG\n0cU3H2cyOcthKY87LmHrBr/++ttM1LWrK3TtAL2GgdMaELs9T694TE/1kn/+BufqLM4xH/p2Cd9I\nip3MMeAgFfazeXZCwEjjazo4LeqIvTOWLt/GsJ1UnmQRJYu56/NktrK4nWUCk7OEIwrDgpOg1yDX\nabIQTqJXt4lcvU08IqK6UujZI0yvhnxhGnG3Tr9iImgiQnIMhCrFvRze8STNl6ecFEpMjsokx8eR\nwyq2DdmTAZFElOxBk4lUHNk9yoNPPuXWpbs02hWmv3uZw+06s+ExVr+zyM5X97j/77vifvwHf0I8\n4GP7k5eERJtOS2L57iXCkyrTty5x/rJI167TLPWxVJFhz0RJB2mXKqj9IcNelaODHKYocO37P8A/\nJmK2i3RlGbnWpumOkc2ecPHCCg3DptnTMcpZVn/8Fv28zs7+NjiHVAcanUGf+OoVysV1RhKzfPWL\nDdpli1r1DCEaw1dukDvugmlTypxQOulihi1OX2ZZ+PAyPRWCXoFew0fCZ1C1/Lx5ksOYdZJweBHb\neWrnGt5omGKhT3Jmjv3tHNc+nOEXf/dtl+B/9Id/gOr0EEiopCfTtAsZQpEx7EiUBjqYfRpnbZrF\nHLnTPvhKVM8H2IIEis3OmxPa1RqW04etGgiiF6oy49+5xPzSIsc7r8idF9B1Gd1so3iCGFaXmfgy\nZr+B0XaRvJimWTJo986QmxLJZIhq10HUBx5hhPPcMe72AAs3lq/PaNiN3RSZW7nJMOlEcwcxu0G8\nYptOyI23YCOpLhx1HU80hq0GaSgDRohTrBVQtTaWFuTO9WuEZuc5OszgsYI8fHKfC9cu4ff7KO30\n0FugTiSIDv3UDEhPxnA7FOpeNx7bzdrJS5wOL/pARxYNxkZmqNoWGNCvCfj9fkJ+AWPQwy170X06\nro5FdxBlIu3EHFXo932ILoF8q4tTqYHqwKcbWJaNxyPQQUUWBFpnp1R2trAsD7peodkrYcouui0H\ntlFndmKavjfIxKiG0RpQOOvQ3sxRbmSJudyMXp2nVlPJZDOYio/aSR2fN4Wq9BGGdQ5fl2jWeiSv\nxJmLTyJ5Ovz87z7le//0d5gO9ChnMriNeQKCg6YgcCa58c+pWFqIhKON2+dj78sKtVoKD1Cp6aTm\nZqkd5ZEyGdY3s2w1KthNiwUtQC89gs/nIW70Wd/Zw63MEZQMXpw+Q8rnaIoO7I0Mtu4gMr6I1arQ\najaI5VWG8oBYME7yrMBmZEi1aePrKvhOe3RHITAVwS7Vaao5iocFLFyoPj+1oES1cohx0MEvlhEd\n8xiTKvteha5VRx6f49rct5+ekwwROjp1h4IW6PD44Qv+y3/xp///h6if/vSnP5l6bwqnX+L/4e69\nfiRLzzy958QxccL7iIyIjPQ+K8ubdtXVXd3NJrkkhxxypBnsLAbauZbBjPaegABBZjWrFfZCECAJ\nglYjrBY7jktyyG62r6quLp+VmZXehff2xIk4cU4cXTSga11K8y+8N9/ve98fnqdudwmZSTrhAQY2\npmoi9Az87iiaqBGojjC8AcLeIIOxgeZyIjk61EWLQN9i7FHot4b4YiaWNiI2FaXZdeDBhzKWqNld\nZNNAtR20LRnF4cA3bNMWO5haGGs8IOq2EUUDVyeGFJYwe21oaagBN7JfQir3kXsufIqEqY/pywZG\nv41iy5h9HT0g07M0aA+QtQgOh4TL0BBHMoyCjMUarjFYugN/V6Vnj9BGArGum99++ilvzC1x7Uff\nITSfJBaP4jJtjrLbEJLRmgNcXQNT7SG5TJyeCURBwBbdfP1yk42laTx9FdvUSK8uottgvzqlcKSj\n+G1MNFbm5xH9Il9/fJ9A0kQ/L6ENJJwJ8KQ8RPGw9/wpRWPA4XGBrj6gX6pQaOsI52NkXaMtuDFE\nFxsX5jnTS8TEDN6IwMHzOuNxBV96gWK2h1Gq0OrrBM0AleY586kE4qBGexBE8IgY5xqdkU1PqJLw\nTbB/+Ip4eo5Bt0m/0OOLb+7x3gc3ERI2jsQ0ZyfnSGGRdDpJs9hn6AqSuLyC0Gny4uMz4tcT7P76\nAZn4Mm2zSKfVptwZM3kxwF5xD9kVpt/p4l1Pc/p0n/fvfpfH589Iqn5whDi49xmBjTUK5x0WZqZp\nWTKRUJCIT+To8RmZVJJW9ZRgeorO0Qlj75CkY4VhJki5fkynaSFNBhFkH9HpIGf7Z4RWV9j95D7j\n7pjv/odv8fJlltmJDK8On2A3nMzdiXL46CkO28F8bJ5mVcDRtolHZTYPjnjn/cts/eYQXXPwzctv\nNSc//ukPmU3OcHJQpdDQCBQM5qY2ODx7wNLvv8vJv/+G9PwM02tBnr3KYZ4VSSa8JOZWOb63jSwH\n6Z1n0cYQu73Ik69eEZ32MhGeYO+bA8SlJKWzU2befIPtv/w1zZcF5n72Pp//1T0ufXiJk4/ucfn7\n32X3/kuMkIuIz8f203Os8ZhZKU691mP13VUOt84Qqlmi3mnCKzG656dMTV9HcsPBgydE4vOU8oe0\nxh5mPQr7lTxTsym+/Pgpb7y3iH92gvzeAb7pWU6ePyKuBWi0jnjx4pyZ6+v8+hffcqJ+9rM7kBsT\nWpvlaHebK3cu8vLBEyLuKR48e4Q66lEZGHiKQxZmJ8nWWsxIfuzugOjqOvEPXifkHaKf9LHDLtzd\nIMGpJDOBGNOX1xj0QfGppENz2PEx0smAjqZTuP8Mz+wSsYxKpDumV2yxOr3K0Ve/JBBOMX9nmaD3\noz1RAAAgAElEQVS3z8rqLIHkNK3sPvHVC4gnx7TGGje/+0MWMzG6zTL6Xo7jfAk9X0FRoqT7GrVq\nCyUVJn1lBbmkUWmc0ZhIs3w1QnV3kxlvmvhqgthgzLkJD373u2/n8Qd/hBG26OomLtmic6IRWA5z\n8ndfM2oNKRSyXFl4DdXlZTCuYQ69dLQexnmHTqdFJDxkNJaIeJ1IQZFav8fllWuEliZ4/H/+BjPm\nYnVlBU9MJRKLMjk3jzfjYXc7i36uE5kGK+AioNo09ko4ugoH2hHNsyLFkwbtTgFVdRG7MUOtVsIY\nmqiai6Urt7Dtcw6ePEQrK+ATOdp5QlhOMAwa7H/xEveSl5nZ6W8/hA4vTx98Qa7XRwpFmV65zODs\nhGZrSDdXQI4qfH3vPn/yp/8YJe5H0U0Ci0kibhFkna37jxi2NVC8JNMJOu4+4608NXHM9aVL2Iob\np0fCUQN/HGqmwYuPP6f4qsBp5Zxxvc2gr3C2/4TiUYFo3IelJhlKVYYtF6cPX5DPFVleX6EKCN0G\nfa8DoV/n6ZNnDJwuVlduEb06jz8yT2hpFd+wgt7poVsuUnEH7WaHqCgRTqwzMT9NtneEx7Jxx5cJ\nT0SZzSRQxh6OX74gGhgSW53B5ffSavSYnJ8mn91HyI2pjU/BO8Wnv/olf/C926gOD4FBGseoT/5c\nw6NYvDF1E0c9R2ycpmIKnDx8wszdG9j9UzzT0zQ/+pSRT+Xc42dCF4ndTDJ38SajiIbf68cdlzDs\nMnU1waU78/T9bgxTIzFKMHa5yWTitJUpWk/KOFWBwKsuI9nPKJKicsVPsyNTM11cWZqGrEG5sMnc\n5cu4WyHUxQiRiILR8SPHnSilKNn6Nu2Xed5xpZm4GufZlhfZLBK+kkD4qsGMUWXOVOkcGqgeN5+/\nuo/si1Nul1klxa+efMqf/0Nw5/2Lf/Vf//z2z96m3zNwDAU8SSe24MDKmcgBmYBTYSyY6G0HljXA\n63Iw7mn0TYuw2UboOxiLQ1SPiCQHcQdUnG0VM6yi5VokXDa62GBsAyEL7ziM7Bdpyjqm5cbp8dAz\nPEhmHW94AtGjQBFGKaCoY7jcDNUR/bJFTWnh87sxpDG236bXGxAcyfgcKpJniNIJIfSaeMMBBNNH\nnSaxsEKrN2ac9jKwBzjlCI6QF9voUtY1YmKMvmIjiTaf/Ooea9cvk04GGWd12j4RSddpdbPopRGm\nbLF+Y5FBYYDRbVDbyqEu+Rh6ROpbWYYVjb7WoHyyyUkNvBE/h8UCpugh4nFj6RJnlRwpX5Tybp1e\ntU7PqbO0miGemSUeWCC79xyp30dwq6iyylAzMPIdPEmD5NuXqJw2sYYDXHKDntGjV+sytbFEpZJn\n2Ggyagapdk64duF1SrXnjINpZJdEaDAguDjFYb2J4gwhGBaefg2H6QXRRbmVo1uwGVeKBMIhOtqQ\nL+99wU8//C69Uxgfn7A4maZVOaLf9TNyj/E1G+y+rONKmIxEP5PeNL6r8zjHDrTCAUsL1xFp8Oze\nARs/fI/K0xyzM2HyD4+Zef9Nugd7jDoRCo+fofp8XHj7OrVsg2gQzk7z+Lp9whNJkhOXOT4tsL4Y\n48v7+0RNg8z1VXL1FqpryMmzAldv3mTckPGEu1TaTsbnFqmrMXaePCPq9uI2Onzy7+4z/cYtIv4B\nzZZFZN7D2B0j6naRmglx9CzP9N0gEW+cnb08sel5TNHJKGATVNx8+tW3j+SllbcILaUobu6wnpnl\nRXsHrzOKYcgcv9jj/T/6Ic8ffEPUL7O8sERv1MKlzHDv3j2UuMLaXJqS1MfhGVL9rMjCtRCl4yad\n/VfM391gbyeHq2FwdPichTt38PgdnO1tceWDK/TP26y8c4niZoHwspNxR+b04SZCyGDh8jvce/wZ\nr3+wxN/+z39HOq2QefM7nD16xu5Jkembs7z65DMyS+tMXpzhN5/8Nbe/9yGNdo+2pjO9NEk8qBIJ\n+nj01TPi0VVOX25ydlBgbHVZWX+Nk+MCl1dnODg65MHX34bK6aXbtKN9BAXiY5X+pI/BqzxmRaPe\nyHPxg/eonQ0IpEZsb+aJyApyXGbsDqImXOx+ssvE9Rtk/DJGq0Pz+BWhxTBudwCHM8po7wV9MUly\nLsDX/+uvaTic+AMplt+aIzk/QfPeMScDjbmbVyE5InrtFns7zzC7CvJMhr37r4hMhYkpSYxcm6nX\nbiD648jRLjsPviTf67B+YQVffInAikT7MMf8976DpYTwCBpbf/UJhaGA5G+zYIR5+uwEyRVHD8v0\nywOkgA9Ptc3HD77liE1F5phLBcnrVXpnI5SkzLAfpdDLMWjojBp91EyI9JqKEsuQVuJMrM/TNkWu\nr08Tn7lEMX/OzI0NOnU3yQkZ93QMs+9ACFvolSFuVUR0xFH9Y9x+CcWScVgCufI+ellm//iE0nYe\nyTtG8UpoWY2RS0QYujBdI5YurFF6skunMeLym+uMVJuwz0npvEC7KqE5amj7WeoIeK0GdjpEMBFj\nKXOBsSTiMOs8fHBGrXvKRGSKjZtT6Cjk8jqdzjlj74DoOMbnX3/Od3/yAeN+h7O9Ko1hjvLREWNp\nhqVLU5TbTXrtcwy7T8w3izeosr6RQQmkGXZltl9sUu5UScdTOEWBfMlEHdhojj6docnY2yJ5+RaV\nnRzRYBKv2qS0vU/j1Tav/+g7uBNhDj75iEa2iHMxib8lYGsSM7MzJGLzaJ0yVrWFS9IpHB+h5Vqs\nfPgmykSIiJjEETJ4edJHNLskY2k8YYWW2WTmUoLx2IUiKPTjOvZJl7E/RjTkxqdaRM0ko6jMosfD\nfreCWRhhZrM83N7kzg9/hKkGSCkmZ6LFbCpD9+UelbNdInNXqXdqBGIih60qoXAIV3KWYapJf/k6\n0XGV+Yko290Kgefn7O11yH2zR4VDzrNHDNtRlhMq5a9zBJs5hEyS9fRljpxN2sdt1q4mmPu9FMfi\nmPN0lbTzAl/ufIH7NM/0QpgJxxxqrknvTcisX2S/k8NVAKNZRz8sopoSpVd5akGDnh1GcrfY6oyp\nl/K8Ne2l3QgjJAe0wkPMhgfnrJPsqE9wrDL2BFlQbNJehf6Eg0///hP+/P+FO+//8yHqL/6Hv/j5\naxtxbPcQ3zCNLbRxDBU0j0nQ6OMcu3E0XbhFg5GgIHn6DIUwGBqSBFbfT88jo2sOLFtBlJu0BwJm\ntYEvZjFwBfFoAcS+AV7QBQf9vk1kFMVoNxkGhozEHuGhD3XspNPTMV0qdneIKegM5R7BjsRYNZB0\nFx5XkFa1jRGVCDl69IwRPYeLUcONlqrgdkWwSgO6sobPa9BpDpB1E3cgRM9sIRkytlEDv4w8nEDw\naXgcYwYDg89/9Zhrb98mlVnj6cE9Th7sMi4NcSX8jCyBN+5c5/5vHzMzPU9VbzIWZJSQyumnOcxg\nj0Gtgd7Vqbttetk81y5fRTSdvLa6gD/jpd2psnh9hbGiUq0e0e8FEK0BfTNIZnUW10ggEEtREsuY\n1TIiTmRHG587gMfnJClNMIp5cfpGzLoXaTaLLF95n+PjI8x6D9UYofktbKeAP5nk/DCL3irhVlKY\noyLZShe570BVB/hkB2PNTfqtywhtjWGnh+hWiU4s4VuYpZGt8tW9T7l++/fQYyazr1+kUu1QyJex\nQwre0yJmwEMmECWzdJG430/nPEe3totHNKmcVwisX8DjlfFIbkSXzM6Dr7DiU/TNGh7ZScCr4gpN\n0Otmmb6Roac1KB0e4A56cPdHONYmcThUDh78CjE8w2bzlI2pNCNviGefPiZ9YY3mYQXCIsOuxdHJ\nYxYXEux8/QTnpJ+0d56x3UIO2pR3+wghH+mAiNMl0MrrnBSzBOQubkeKrcMT5OUUvqNvafqdWpHR\nTpFKJce1ixfZvveUxzvfcqKSixnQeswlZni09xzF7jK9kuSsuIk6MUnt/kOWX7/D3kkJo17EqgyI\nhCLMzCewsnXyVYMrt24QScTp+h0kRjGmViaJTs/xzb1NfKMeY5zc/e53eHLvS452znH74criJU52\nniALQex0ECUxQ2H7BXd+dJfak1MCITe9Zp2zJ1lufP8ipj3E7+yjBJK0jmsEggJhTwJdz2OJY6qv\nmkiJGNHwBLvfPCSTWWPrk48xl6eQOyckvJNkOyW8kyHmEnPomkajeUCzP+DiB3f4m7/8NwBcnl2h\ns31GuzFE8Nso4z49n5/kYpSAo48+dOING8wuXmKgqbSMcwJiGmcogNjYw+maxFltUvf0GRoKifUU\natDNQfaY5EKS6Poa3Vyd1tERlruN0+tkQh8irE6jZTu0tCpJb4qgT8YOqDROS1h5C2ciSahYwTHj\nxjOM05QKzF/IoFtF6qUixe6QC2sXmExGEMZ+tEGW6taAi3fuIFQMztpn9NpDli9G0CWdhcnbZFtN\nZiSDQCjN2KiR3ytTsyv40nE+/e3HALx5803CoTSJQJiYrOBRA7jTInQtyu0WPnGMXrLo59q44kmY\n8JLbO8DsbSP0XYQjTrLtJjOZJdwRD8WHp5Szp7iDUZoHXdp6EY9TIppJ8OJ39/H4Ehw8PYNBkYbV\nxzEZwhp1kCSFzIV1XIbEUB2TXtpgKegnM5fEpU5i+PpUyjp2scLi/GsoPjeeeBxv0oPet+laHVTV\nz9WLVxnrfl48/oh+sYXst3j8dAt/x8LuCFTNCna7S2UnS7tWAq2FW7HxReN8+tmn/PEf/SkOV5C2\n0MDSZMy6yeS0mx4Cfk8YfX9ApdKkO8gTmbyBQ9BpO8bk9x9x6c11mp0B9X4RNZIiFQ+jd0oE3RaZ\nS++QmM4g5zuY4pjo6iKjgcVxocWoZSKpXqh2qDfauFWByckVRk4Zqd+jOfIgBASCoz6vdnNMXpjD\nnUiTicZxKmPEsYv+cEBu+wVaByylSyAc4fHuM+rVBumpWeyhk45rjC/fg5DKqFUlMbOANfTQU7s0\nOwLBkI/sSRZT8OBMuXl4/yG/f/k2SxdlcpIT4WRE1y3gdQoYUpjw8iSpmQkcOYWq/hzneIrwozxd\nacCFaIJ2fUzluIxsRIlMj2i8oyDHLvDa4nVUd4z4OETAA+OkTr+v0Pm0wra5RcjVYjWRZJS3+Ozf\nfIIjGuZmcA6t3iQ1MyZyZYmpZhK7+IpCtYUznWT3l4+Zi0xTy7/E7U+Q72TxXp7gfGARnErg0QyU\niBPR8JAOLnF49BjPhQSzTZvdb6oIlSPiusxADpBcn8cZ6bA9CEB/hLZX55vDTf7sH8Im6r/5l//V\nz6/cnUIaTCF7Ktg+JwI6eseDf2wwdCjUQzKm28JrDmmpAYR2A9H0YskWmmrg1Aa4IwPEfg9FUNEl\niaBPZdjw4RIsrJBM224QEOL0hh3inhhW/Qw54sEUooTsMbVWE1EYMxL66CEFv0tG6RqImpOmMoBQ\nGrfPQqvUECUXsiDhlF2I9QGGx0I1RHx9AbdXQ1FjdDsV9LGE6rIZmCLQYtwIM3Y3cAoCbUPA77Co\nihoeVUA5y/DxZ59y7dI1JsIxSqdFZAuGqofLG1OoyQg+VaDrcDDodXH1bHpBLzdmrhOKC4wjKUSt\nRYcOZidAesOPy53G6/Mhhtts7x7h0AZMxFI8v7fN6ls3GPTKJBYu0do7xyONERIBgj4RfeClWKjg\nCDiZTV4hNevBM5lBsCy84QhBO4QradOXAgwreYYVk1DAz0m5hHcwwlAFLqyHmMlMsr+dw4mJLxqk\nN3bw5huXCYYUypaFrbgon+WptGqoXYupW9eJz0xgVztkq4959GCTH3znNaxileMv7tNX/KzevcXs\n4gUKzUNygzrTS2sc7mWZWpjg863fIYdmOTzdJ55IoPdExM6QxMQUX977O/74xz/m+eYm8bCHYqGP\n6nRSFzs0TksU9ku4lTjrlzJ4BiLz767z6S8ec3X6AqWwTNxUWVmN8+rxE25c2aDhqCPLkzhrLRJz\nq7h8DZgI4pcDDD024VCY/b06kdlJOk2FjRuzbL7YJC7PUNrdYfriGuW9MomJNXJil8GLE6IuicPC\nDn7XHJXjXS6+/iG1s0O6uTK2W+LrJ992gP7Jz/6Aw7NTlq7NkX35ips3blA+KRCQvAiVPh2jR36/\nxuTyCnsvq9Rlm4V0lK26xuKNZXZfnHO0/Yxarc7VjQUOy6cUD9sUjw/xiiqSrtKxj0lPZTjd6XH9\nD7+PWelR6bYImCoHOwV8cQftezusX77Evf1NosMoxVGOxQ/fIRBy0jka4/d5Od3ZZuSzuf3d7/Kb\n//3fkXrzGqNmDzOUYOPNy+z99RccdbZ47bXrPH76kMt3b3Py6QNWl97jyYvfcvXaVSgPCN2MUXi4\nx9KHlwlEJjk+2+Krj74tUv8n//F/ij2uM3f9HRbTPtz2FNXPnzLwD9i4+D7utIFv6gooOnZmSHNs\nUzw7Y/FGit3nNaY/uEbIbuFyqwR6Yyq5Exy2yd7WKYNsm+ODIj37CK2p0m8a6C4LVzhK4zSP6E0g\nRzyklhfonNVJuFx88+IVYf+Aal2jp7e4sHoDOenEIXo4zx1ydpKlWTJIqhlyT15ydtRjYiZM7mWd\nkN+mVjQou8o4LYPcvVPEqSRO1xB9VCV/2qEyGDETiVIqvMDbGRLwTuEZuvjo/m8BeP2NOwSXFcSB\ng7ynw1C2KBa6FL/ZIxjsIhsisdkk7mAKZ0Si/fwVx40z+j0X4csX8AYd+N0RRs0RkqtBv54l+cYN\nXFEH1u4RUVnBff0GQlmjdF5Aa+a58PoGhWwTE4OLCxv0jtswNcGF2CS7Zx1ev7aBZZsY/hTBkM3I\nI9Jpaaj9Aal3r3J2/wWvXmWp5HN45CRaYQ/NqTIVS7B/UKVebeAPJZm+fQPP0OT85TFlS+LK+xss\nbFxF9w6plesEHBLhK5eYDKQx6fPJJ1/w9g9u0jNNEskp+nqDXnNEJBEh6JeI+L1ElpKE1laIh5YR\n4mPKmwWM4gmtxhjB6aBx2sXt8hGdjoJoEZtdwjk7R+0wx+mLp0xcSNHoZNnf3WNiwmZ55iqJS9Mg\nDBgiUu7bTE5HUCWRil7Fa4SRgx789ohuU8QTdCIYdcr1Cvv5AwRvjN2tZ/g9OoY8iRyycDhVok4P\n/fIxciJGMB0hHg5ROinjkSWsUJrKQZ6q1mNmVqHcHKEaGg6nRHQ6zlQ6iNrp8tFXD/jhn/xH1HaO\nqW3qnO8fEIk42d9vs3uW42z7a/pSh8aTTczVSRpum0TQiZyvoVsy/dMD5EsezJ5FIwvN0hYXeirF\nQYX2bo9kQMRqOxl2bOr5GqPbE3gbESLNKPvk6eXKrP7gB6RybU7LLTRXk87uEPu0wWEli/qam8zy\nGruffcLV9Tnqe2XayyrR3T7VcY3Y9CJiaorp5jmO5XnChkgUial5H02/F/O0wv6owcUP3uXEbCM7\n4vQSAbrFHM1Widenk/RzPWoxD8/v3ePP/iEgDv7in/+3P7/y5hzjiIt6Y4jhD2BoCgm9Rc9yILvD\nYFZQJQW5N6SHjtwb4c94scw+uuTFORiAHmUkacidIULAj3Oo4PINGbtVaJSwNBVXWKDbb2MOXPSF\nHoI/hmL1kDsePPjoqRYexYWjCeqoh0MJgttCVQyGQxOPO4Du9TP0g78iIHRNhlEHQUcIySsihlXy\njjYBWUaxLCzZiV+T6StDUAXUvgWSn557hDxWaXZspgI+ZHlMuaBy//MvubN4kZrYYTRoIFgm0mCA\ntTBJ/nCTieAcLiVKvfgKh8fP9VtX2d3cxTMpkVHdDLtOPKbB5bs38SSXCDSHtOuHjA0H+WwHcxQm\ntjFJbzeH06/QKlm4GeBQVOy5CaKyRE8XUKICi8th2tku88tJdh9t0asZuBYnePpXXxObDhOQPOgh\nJ0dbhyhRg4W5i5y/KiLGLUJyHK9rma7sYJCtols6U1dX0Y+KRGczKKpM9uVz3F0/3pgHq1lm/uoa\nPpeP3MkeSjxD66zNN4/u86MfvI9WszFjURyBLrVv9hi4DTyTKRakAGOHSSKh8uJ393n3u+8htNow\nEGi7NXD5CU9GeJHfZVIPcPjynCtvryEYIRaWpjg+2MPdkPCFw6jxMbmnu+y/yuLfiNKsjpGDCWTb\n4OzgGVPJSYZFkdCExONPN9l4402c6Rj7T59xXjkk4ZskFZ9n79V9POURw1CCK+kEtfM99rb3cI8j\nXP7gOmf1Jm/+9Ds8+LcfEbqWYW1hAa9PIZOcRo2NMUU3LVlg7YP3KdSzOL0D5j68y+HJDk8ffutG\nW7iwSjqZpjFu0+81adXcrC7PsV3cQ83M4J9PUyvXcBoFrt9Z4vjZDvjdGHt7nJxkiV4Icfe99/Ha\nLnaePUbXHVhNi9WVKOE1F3LPT+C1qzx58Bm+RT/yUZ1xys+1jQxSNIppDqiPWkRn13j27CHrK7PI\nrj6trI5eGjE1s8RJ7SndYYfgxDRaqU41W6fVqjF/7RaiOcbWi3hCPloj6OY1FtMZRNmFLiik1pY5\nfvWES2+9R9CT4NP7n/Hm26+x+/wQpQthO8pEyMVf/eKXAHz3Jz/FbDTYPjjBFUugBUSq5znMgYuB\nakJYxemK4XUN8DsUqvsDbl56Dcuukt0vU8zXiU0nUBYWKReKdHsKA/8IpBC1Vo1K/pSMksQ9IdHU\nqqze/B4OWUOV4fggx4A+1d0T5PQ8TdrM+KboigPUgYI/EuXsrEq3cELfqROWBPRdDb3TwBOKEJwP\ncX52iHvkolfJYYdl5lIxsi+KDPePMSMOvO4Qrf0c9WEbQRvw/pt32CmdMxNZwfQOkMQuBa3AN4+/\nRWC889Y7uKIJhpUyCW8Q3bQwqllqBQnVKZNcmSXfqXJ2fEYyFUMigNSrEQn7GNXLRDLT7LzcQm/k\ncEZmCCoqEUlFFKNYs26UYIqgt8Oz3QMERxslGiQW8pEJTDDy+xHcHpj0kg7Y+GMycjxKt5zD5/Ug\n+R282soS98YYiQqFxi5m06Zqj/FSolvX6NgFhpqBKugsXb1ObC6MN2bidfqRujX2Hu4xGnfwewTq\ndZOZRJhhv0mxUyMlB+i0+lTzr/BZEp88fMgf/tEfUq8PsbQOPt0Beolctsv5fpXgcgJpFMA2G3id\nPZ5+/IBKf0hI8DP/4S2m1CijxgkrV9ZQcDHSB+j9DobVxeWF4YGJJLbwmCFaNQslHGScsJAKHZ4/\nfMpZt4RKm1BmA3GkEA2OENwuRrbOSCuy89k39DtFilkRQ27jKPRIuL2kVtdpn9TI97MoDp1Wvkrx\n1EB2BxD9Y2KZGGoriOjocHBaQvSqVNsHrF2/geEZ0HqUpV5tEF9J47NNiv0OY0+MT3799/zo1vc4\nPWgRmrRAcFAIiEjyMYmhgRK5wK2ZEc6VCwwOSyyLHnKXwqyNU5jDKO5Il9OBgBlMoR8f4/SnCBKh\nM+jjD3Uxp1W0Kcj3nfRPy8yvzuAaWgx6eSw9TDFeZ9ZhcaxbONsVknc2CGUkzss5VtOL+Ndu4rYV\nzhwT+Kp9tGAdwS+gryUIjnpErr/O6OURouohkAvgiGXRI16GgkB3/wkh2U/EmOasfkB754xYysZd\n7ZGcEUiOHPxyK4tZqyHKY7Z2dvjP/iEUy//7f/Xf/fzK1Zs4+g3CsTgjehjdNrbXgRHxYptDQi6b\ndrOJbaVxyiNUZxRba6J0fAghN36HRatmMZKAcASHNMSr6RQdDfo9EUdYx7Y9DFpOorJKz1lGGElo\n3RGIfTRvH6/uYxxqorfHOGw3nZSG1YbBqI8oygwGfeSRgVv3IPQbEDToDP1I4yZSV2ZkNyiVHAiG\nG1ka0VdtPIobUVIIIOHWnQx9Kl6fhcN0IDRBjDjRFBsxNyCgu/nt5/e4dPEtlj54m9rZEP+sSqPe\npHpoYndlptb97H3zkpHpJLI0jSmPONg+pnxeIrQ8Q6lwysz8Ek1DJv/Vl7w6OqLdG3J8mCUUdHHx\n0gq6puGb8aEqUTrZFwxo4TcVlmYSWIKT06e/QxsrEJrkcP8lykSaTi/L0twavsCQ48Mj+s0hUtrN\nqDCgcnLKoDEiXz5CnXDjNHWS6VmMjEqAMfJUioXlKXYe5DGkKun5DKOORWG7i+VxMXVxHtf8FPGJ\nAHLQRaltoDdKmJbOw/sPuP3+j1i4MUn5WKdf7HDxVobKWZZ0wIkUn6Ld7RMPhogsL7H/+ISE24ng\ndTG7nOLw77+mUDOJpaeJpERGusrT5y/wLUUR8nUKJ21uvLtK3bRxhcO8/vo8fcvG0XUjCjKTAYXP\n7j3g9s/eI7v5Fe7ZSca2h0b+jLKjQen4hA/+4If4tDEnjQYTgkRbDBJMp0Hykf/6Gc5pkTdvvM5B\nOYc35sMf9vKb/+kveeOnP8UY2LjDTqz8EMdCmC/+9d+y/N530Gu7CPKQSZ+HyqnJ5stHTBo+vnj6\nEIA/+y//C3TRZj6Y5GCrw2hUwSEaBH0pqrlzwrafWz+4y+d/8xDFGLBy4RpWrU3wrQ2cmhtVdoHQ\nRY7Ecc95aeZzvPvu98gfPKOnCXivLFF8dJ9rd+/g2DexfE5a1Q7H914y6NXwXryIfVxACPqIpydJ\nim52759x+Wfvclw9oHlQJ5ryYRDDaHW4ce0uQnfI+pVbPHzxGTFHFM01ZO/fP+TKjTdoNAc4RnWG\nJoRDPmTFRHCModbnafaA61MbPHmxhSI4mL26QOXkDBuJX378LWwzE/GiNkziCyH6+y0Qm4zHBhdS\nExw16gjHGh1D43DzJbWDKrHxkPpZlkBkha4xplc7p7ev0Wo0STsCzL65gikaRIJR4tEJLt+9g+da\ngqnAJL2Tc5q2xPXXZzkujEi1y/icCfrtMu3DU+xCm8sfrhNauoHWySM6Q4TXVSZXF/EbURqmhmS1\n0OwYg+IrnOaAjUvvEliOMg6C7FIwg3Eibj8zF1PkThoMGhYmXSJqkmhQotYv4TPCbO4+Ih73Mxyq\nbCTW+OtPfgXAP/njf8qTV5/Tr43Y3y5SPsij2BGu3Vkjsj5D0BtD6jSpD4borSaVWoVWd0gBmj0A\nACAASURBVEgwHWJ2eRWtV2L32Qm9Rpdxt0bhtIRDEhFDbs4eValWTpHPROqDBshhRGNAOrpEp3aM\nSw5TyJ5g7zdIXb8CVQc9l0Xu3hZiegb3uE3MM0HbY7Lz9AsuRS5S10c0Sg0sXSMSdaLYCqoaYOHd\n9xi1XVS//pLdrT5z18J8/eQhrlAcPwHo6HRHLbq5HCeb53gkC0kHt88gc/NDhhEXn/7i19z5/vs4\nRxb10isUR4LJqzeomWdQHpArNTjL7iM0K6hRhdmlS6QjfpRkiMKDZ2xXD9EGY3KNJpnJCQa2C6PY\n5XzvJc7OgKpWp5TromkmplpnMn2doE/AHYsRjki0cx5Md5/07CoOSSCXP+Xxsz2G2RMi3jnKtSaC\nPaAWbLJ24U0sv49R1yAwoRJJOUl4MowGfdZeu0jq4hJ2R8DuOkirLhp9k+PdZ5TbfcaGwWQoQiQc\nQSt3OGnuMfZHqJwWOdkq4ep3OTpvsfnsIT/56Y+ounIsL15BkLqkz00SLh/92+sspr18fdhldH5M\ndxBEvzCD9fALClt5jLBB1ThC1nsEpDCugEDKDtHqFtBXRYxgDJfWZlA/xFvI4M5Y2Od9ClQoT3jI\nLHpxlQZIAwfntT6piED+cZ7spMr6VJSn2z26zSatxj5XlSgvJ530HxfxjttEhn6Oa3U4PqKvuugr\nYTJTLU4fulCT4PK1iCcmqTucNBtZMm/Pcnn9Day2TlloQzFLZ0vHdTHK8toFxPMBn20/4j//Z3/+\n//8Q9S/+4p///M1/lAJFBmcHdyOCKdkM/E5cbZtRwMWgazAchBj7OjibJuagjuXyoLj69B1dXKaf\nsVvG67TQcDNqWhjqEMNl47NsZF1g1DXxOLqU3Dq+XgzDGuIe+fFEXQhSnzEu9O4IS5WQJwYYxRBq\nSmLk8hBQBoiql57hAYeALyzhsG06bQtHMIitthgG/XgMH4LYIOCzYTzC1AdotRGdqIeuPiThdKAN\nndjuEf22hqKC1OogEkDrevjiiy+58dYG075J2r1TFtdukD8v4jD7BDwa56djxnGLoDVAd4xxamUa\nmo016lE9brB+9zqSaSGPHOTPy4RCbkxPnDc+uISSmmTUdzHsaXjcCcyxhsfpZXJtg7ZpIfgtHJgc\nHx5gZnsUGxWwW4iHRTpIJGfDyO4E+49PiKgewpEMtDrUun1U0cIzcDEYdXC6p5ifSrF/+pJ0NEj2\no6d4xRixeZWT7QqK3Gb3UR1CI65dWUTxuRi1O6hqAqM/JuSEg0d7KA6Dh4+f8L0f/yNsVaGc3WN9\nYYJSS6RdGSHGpzh5dI8Ly9d4+avnuANuhk6F1MwUX3z8GcF0GtWpUD/fZzWyzKCVx5KHLN/Z4ODj\nfeIXl2lLVU6eb3F5YZKzx0VapVM8yRXEhBO3X+Xgs09450/+kF/8j3/P5N0Vas/LVPM1bv3sGgkt\nRP3kjNzRLvmeRMgRYbf+BO2kiOpKc7b9kNU/vE29I/PFx7/knbvvk3/ynMh0mLlLGzz6xRdoYody\ntUWrM0A7OeXiP/4xO//H/4aASDCwjhLzEErGOd57QceEFy++3UTN9xxkJmdxCUECkx7S09PkH2+D\n6iY8H+H03haH+3l+8qe/x3HjlMnJWTZfPKSzUyBbrHLrrQydnpOebJN7+gqPZlHbO2T59es09Bz1\nz18RmM1gNiyOa3lmF6PEFC+qO0iuJdHIfUl0YorAXIi9r57Tz1UI33qdbz76W1KhSS68doHNrTKh\naABtp0lumKOnDtl+/pj5xTT7tTOkmsD8B+/y1a9/wTs/fJtBwEkoEOLo4RavnhWZWZ1j68tHvPP9\n30ePG0iHVez5EEbLpLp/Tsvd5f6X34bKm9+7y8LaReoOieVr0wgjiWDIplx3Mn9pFas9YNRssXL3\nbWa9Xk56OiHby/PmS9bnosiyk8a4SccpMlQM9j9/zqjZxpqI09ov0D7Z57h0hnZSIvPua4zbXZ6/\n2Gewf0hgeRJnOMP84izR29cJtrqcdx3kn78gMT/J3PQ0z37zOeH5dZzqkH53xITbTbfXIHnrPbyG\nzKPsAZpLIuIIo/pkTMVLZW8fNZ4imPZQaZ8T8l8gturDZyfxBII0xRpSVyN8/SbxpIIp8f9ocGKB\nDDORJfpiA9nj5da125gzcLK1x6vDLN2XZ5guA0UfIo7c6KbN2u3LVMslQkqE428e4YomufydO2jZ\nHC3TQ00TMLottMox88sTRFNBEslJjosHaEON8MQ8sidB9eAJijig7hQ53HtBraCzOOVBmJlhKhDA\n8DuRNIP85gv0eofmYEi3VsVhDBDcASTFTSoVh0iKxtEunZM9zECUmNOJ3ujgtxUu3lphnIkSvZAi\nHbpAUSiyEL+EqEKp02OsOqjWejgGcO/zT5ibj5OQMmRbfZKZIE65iyRK9Doaom0y0jQkh4nPTDEa\nSHjdHrxhL51in0q9xsxkgtJBnfbuIfVKCy1XoSH0Sc0kiQQSOEYiK3eu459JE3S2GA4l7OMChCZw\nxkWcksTBw4eUt0q4Zt1MBSZodCXOswd4xk4Mrw9JEaDbpdPWqXcKtAsDdrJtivUTTL3JsOCkWtin\nLlQY1cvUqkOCbgtvfIPkRJRGNUuLDscnW1S3h1xZWSG1GKCrmSykM4Rng5SOmjx78Q0/uXOXyfAk\nX9+/R71VwKnIHE0ESXdCnD37iowlMFz0s7FyBXGnRb3coOlo4VtewS5EyHtNpnoZHBkHw1SXWllj\nDifdnRZTzT6N0FukJyN0M1G63hHRwBoTOycct4e0tuv4wzHm3UP2+yEGvSZvtLwMZQehmQX0tsTB\nzgtOC33eWEojJmzOHTKh9JCJ8TU8t2agcsCC7GV7dw/FjhIQTXKfbFL3RVGrI27efptP/pcnJOhx\nWDhEEl1IpTiDSx6UEBhFL5XKSx7v7fDP/kHANv/lP//51PXrjHw6g5GEx92CphNd1nE7Igj2CLoS\n44iOq+tHzQRpYmP6BPRSj4GewB1X6Ug1uqUBfkPDKw3pBVx4yjJicIDdMRFjIZwOD3bHieSt44op\ntEcdTFFHF8b4nEHUvkRPVrEGTZzdNoOeTcTvQrccOBUFxedk3CzSHkWx1CFmd4wratFuDvCqHgJe\nFV0yETWbviOMUW3jjQn0OyCH/eiyQqfXRJQNxLHNYCQxCgaQrTqyAZ/+7jHff+/7qKEAJ/lNTp6f\nIxlOli8EqNS7rF9fpVHpI3mjNE6y6IJMKJLA4fDQaxcZlEt0xTFHr15g6ApT37/Ngl/E446Cq40u\n9jCGbpR+j2fbn7OwsYDqDuKL+bFcPnxdJ2LKT711zo3FFfzSNIVOA3HUxTOxiG03CARValaV0OoM\nR0dVLq9M0VIMljZiqBOreOMOXLaJzx/l4KhJsXiM3uujm1Uuv3ebUXeId2KCQb1JLOlCDUYQI3F6\n/R4+y+Lw6y8xpSH91ojn25t87/s/YOvoGQvJNRyal2K5yZvfWWT70VesJ9b46qOvWfnJBbCKPP7k\nawKZAN0jA1kvIKaDXHzzJvncKfPr0xyVNUTDpu3SKBwWef2tN4gurVCsVIlvLBGQg9RPNjHEIdWP\nXjD945/yu3/7SybdbpZfu8FXX/8aNRBjuNfi0XGVO69f4bxYZih7uPvhCoFggIm336B4UENNOag8\nqhOVJSYDU4QXonz+f/0dkjeOXt3i0tvvItsyE9NLlE5OkVwtPKEp9l8d4J9KYUeDZL/8Co8rRbNZ\nRJIEnj75NkTd+uBH6O0ddjZ3Wbq6xN7mNtpwwPrNNzg8OsN2RcnEg3zx6CO8DYXg0irxkIunxzvc\nfe89jjePSK56Ee0+SzPr+L1e9rdfctIoE1rYIHhpiezmPrXmEfPL0zTODWqFLYSFGMH6gOT6LK2G\ngFbKs377Mngj+NImLqKkFiNs/s2XZNaTtJ/tsnArSf7FLmvXloiHZ+gUxsTDQcxaF/eEj42L19n9\n9AmJhRk+/5uHONwma9cusb/3gO9+7w9o97qcfnSfnj+AlwEHlQOmM2k8jhk++vzbc95P/4N/im2V\nOX35CmEg0qsXCMQW6QU6mM08jaMipXYJhy2gWRoBPwwFF+Xnrzg8rBL0uOmXqyhujSvraY6fVmip\nThrPG/idA5BNZowpIsspTg8aGKU6uj4icylNZX+fQmvM/IYX22mBX8Vql2nlStT/b+7e81myxLzP\ne07u0zneDjf2zWFm7uSZnZ3NCwIgAIIECVCWLEsuu8RPLhdFkd9cha+yQIslf/I3V8ksy7RIUCQW\nu1jsLjZM2MlzZ+bm2Ldv5xxPnz7dp/1h/U8I/8Nb9T71hudXrNBvj+gNGoT9HkqpBp5YkH7Qib8/\nROgY5DI1WmIdR6FFc+8lmVaWqCtJu5dhKiHTS7hYcEdILLs4K5nIbg8NZ4P6/QLdcpGR6cIzEabR\nFfj1L79RPlx/73VqhTSrwUWsnkX6aIOjbA4h28U/aOAMJug1R/QcfcLxJUrVXZITkyTn4nRVA1uJ\nMxr2iI7H6Rsa5dQ2sqPHxZvXkIcGFkNe7pzgHlugedZAdXZol2sY2RRj779BdHKFUaMJZ02GRh1d\nm6ErnrL92Sb58gFO5xitdJVqe4ButnBOxLF6RRYiC7TaTeYXJmkMYDoSJnwlipxTGbrz1Ppu2m0L\nxZ/A6wE120F3dNBnxkkdbVPvaGhjbqyyzELCRbvd4d69u9y+8jbV9i7ZmkHltIFLcBLxJEjMTGK5\nRJRek4ErQa9dolHc4+D4hHQ5R63UxRuWMPQ+cq+KFhIwdJmB02LMHqdcKJLP1hEmVKJeJyE5QF9z\n0SycorlVXqbOKL6qIWlNJseSDKUCmhBA0YdoYoCuVqZlDXjjnTdwuxKoqkQ44KZ8mKfrMdBrBt6u\nh2bfgzMw5MLsHE7PFDXjlJFnjHF/FE+0jzvowAU00nVMcYAimUzNTkJRZGZiCS2oc/DgCc1Km43t\nDd6/9gcg2pjZHj1PmKTgw1V3UKsdUlMiuOLgTI249/wBAa9F9M3zOBpdTn0GVqGO6u4xyJQoZDOM\nzCFLUgRzcZzKRI3GYIxodkCl8gQx60M+rmA5twnZPkI+L+aozTBgYZ2YrK+sYZ+8ZDPqYRAO0I82\niIx8tEtdwpdGRD0T9PMdBEulIypkN4/h5SGJ6QSDI4Ny2I10ZRzFVKlIQUJ4CSNSqe/QUtzYoof2\nUOGax6IWm2cu4eJFNk283OZ4VSb16Jg//bM//a8fon72H/7tT7/77Rt06hKhgEi5E8AQRvisDo6R\nhCzbaK4ejrZI1xQwrBFySEfOl+hGBQTZgaJ0cDcFRqqIEHXjliW6FRsr5KJfNhF8HixrhDug0tCH\nULGxnT6sTpeAZ4qOMsSRUTCkKgG3H60nQVzDo/comibySKeab+PpNyHuoV2vIdsmgmkiyUFClopL\nGWJ0DURNp9dpozi7eHUdZRDG9EiEug7a1QIet8zQHmA4dTw+NwGxScUOYxX83PvyK16/MU9b7dPt\nwLmrF/H43DgX5uiXO/Q6FueuxPBIDhbXZjDLOSLr55kMjBFQnZyddhACIq6WTksto5wW8CjjSB4Y\nZQ0ef3bAoJqjWNplJIgMWjVePtvDIbgZ6Rb2UGV74w4h0Uf8whrOMR/NZh1/WOPo5ACvOolT1hEy\nBSzDQJINnEsLtHYOMEcyWq9OaqfJoN1CmY8zHJVRen0s02QQdOEQx3BPRalWU5jFAtl0AzmoMKyW\nkJFBF/BPxqlnLHxih7vPN7j09mus3X6HQLHB/c0nXH9rnrtfHHP10nUq7V0uLF/j4Zd3qKZg4dIS\nmaeHLP/x+9QyOTppE71tkzbbvDzdIx7ysPHVHm9/51u4FIvUfpmzV1/SLXQ4fHmIJZqofY3k3DzF\n/ojh4Q7x8SgX3r9AOVNh8fY7TDg8+KdU8Pl5ufGQ177/HXIPnzIcBBl6POxuPubi5CS551tEV6YQ\ntSqpbJOc0WH+/GU2v3rO7He/zdHnH9GpNgjITnrZfRxigsC8m2puxNL4OLYgEh+bwxd30j4+oScO\nefL/37ysLiTwDXxIUYnjI4O52TG0uTi5nee4xQ4zt25QuP+E+Nw1OnIRr6ohJSdYXbjCF7/6ilvf\nXebFxztQ6lLIlOgJdW58/8dMJwM8/flXiIBcMzn/g3c4+OIMfdFHYi7CzsdpkjcmMUcNTLcPb1uE\nqki+btB/soPvxiL3P7hDcHGc9mEaXRY5zOVZX3+PZ8+/pqMZ9Ew3otll5OgwTLf5anublbUkj//+\nDt/9w+/QrBwwngzRtF1kv95k4uIk7sUgmy83mb1xA7ddR+n56TiHfPHpN4fUf/iTb3H26pRb791C\ncRn0sxp1qUEcNx7HHMnZKbShj8TKHEenryjsy8zOj+EOTrGUiLKbyyAOLJZX38IOuRmrCpR7JZLB\nKG5Pm8T75zFUF09ffEk0HmEiEeP42VMauoE0cDLqKWw+es7x8zbjfjcdr4P+bo1R1EPpeIultXfI\n1FLElAn0Wp3jWpnjzSZdw0YddHArHez5IOHQRZyajSA6Wbi+yvGmxURAplHp8/ygxIWpJfae7FBP\nZYnoIy796HeRZ6YR/C6ils1//vufA/DmjWsMQgJGucZA0mnT5s0Ltxm7sUxieRUpLHByeoQvOclS\nOELswhSCWyFb7WKfFYgnQiC68LtctLP7dBwSTm2K3f0NZhbniYSnmFmbZHDaJbN7hu3qExK9OM9P\nEW5YDEZ1Dg5zJBfH8c/62Xp4hKPTp22bWMKIwKSHUSiCvw2u+ARuPUIk7CV0bo1auoY16yW3sUF0\nYZmtvWM62QwLr19mf3MfX1xhfHGM1pM0ljjCmQihNB2MeQNUy12MUQeh0KE5MohoUT67+ymr117H\naSt4Ozqx8/NIkxFU14BWrY3cdtEo11k8dw13NIE85cKnOShX0syEJ8jl+jAw6HvCzHkiKJ0B3ZrG\nqJtDDqhcfe1tIqFpeh4BzauzvbuJ6IrSPTvF0h00zFPUrMGga5Gr9hlfiSApOtG4zNnZAMsekTl4\nzjBfYHo9jtny0O9YtEtVApEYuVYb1dvGW3eTL6fQfBqlmoBeL1ByNIgFp3j+0X0aho0uqyRvXMcp\nhznYfkSmk6NXKqGN+3G6J8AocPfRE9ZuLCE6PSiqCWMyJ9smitZlanUNu1HDK49zoGVJ3vguXiVC\n+qgKoyrq0ZCrl64iHklUvDoLK/O4TZVaJYMjoXFjYpKZZASDcfoRL8GMSeacjt2qYV2MEbXAE5on\nNBfkhaPAs18/JLh+lbAyjaj2ae2mKZiHmMMO1wZrfPLgS+REn/PxGWITHo4MJ5ffneBFYxdnXMPb\nLjM4KFI5quNJgt3v0e4LuM7FCDnHsT0eZiZM7kgRbkZd7HRyKMNJYvNDSp9V2T7e40//4rdgnfez\nn/3lT19/d5Kav02nZiCHvCQ8DcSqHyIqrX6VtiXRGrrou4u4XRJKqorX40Q1/AzcHQTBg2fopiIZ\n2I0BYsNPXzYZlno49DC+QBur56YlDvCZBn23RaerIqoK3YEELYNQxIM5qGCj4/AKCIMmQ1FCU5w0\nij0EWWAUdGOd1lADCUZuCasjMDKGKBEYVYbk1RpO04PQriMKEdo9GznUxC60UCM6bdkkoLkZSjYR\nVcFhqUAXs2Likt18/vFdpqfP0W9LuMOTDKngnUiQcHnJZ1OMfC4mY7MItsHIGWDk8pNAxQy1cZkj\nDs5OUesGctiDmRexjBEt9qie9nF6fRy3Tug1WwS8YZKvX8Ppj6OOitS3K5QO0gSmogw7JuGFRVBk\ntu4ccflWEpfo4vQgi0cQyJylqfbadDUZXQ7R6TcY9UykbpNMu0N4cZny2RZe1zzjDj9Hz4+pqRIu\nl0A85EORnci9GrlSgag/xkRsnFfPntAzusiqzs6L52guiZZh8uT5c968/DYeW+Czjz5h/HIMy9KY\nGpvgyWd3WJu5ycPqHcRSkeC1m1hbWdbfvEVu5w6jgMqEL8zX23c5d/l1io+PiLmnOP/9N9n4+/sI\ngRG1vM3cuQXy9SyL81cZV2O8OD1ETU7g9jfoNWXcl8L8/f/xD1z91msc/+ouqrNMpV5hZjaJO+gk\n8yrD3NUbfH3nlywuJ/GER3TO6nScFqWDInLQy4W1OIbmoVnv8N1vrfPo//wFoaXXmLu1xsbLY3w+\ngdFAxOxLLC2GefrpPbRwiJeff4BHieJNSkilAF88+hyAt777NuZQZP7cTcyzDs61cU5+/pyJby/g\nd45z9PQBkZlpDlNPufTtP+Lp3/2SytkuL+7t8e0/WKHbkpieWmd3d4dROMrIN2TnxSaH9za49D/8\nd8iNMlZP5eTrr1j51nms6oBqu8fA7nDazDI9PY/fFnn26iHTYR+9ep1i3+D0YJff++53yW4Wcd44\nh1VpcunaZfYebrO4colK9wRH2YEj4CJfz7Fyc56o4CWzk2L1B7e5+9HfMB+7TbncoldvMr0W5eu7\nXxBNBElGL3CUOURRHYRCflTdx0e/+C8AXLt8GV20ePxlGnEUoSZ2mYh78Kyf49mjzzmsH1E/2mN3\n95i4XyO8vIRV7eNxDjjrZpgQncRuxNl+8gyfksCODEmeG8cfiJBvSfTqaXxeJ9OBeTKPdiglFLRu\njyvXbtDPlvCuhfHpApJhI6sKYkQnPj9HfClIeHKW+x99TSAoMjk+zYvHW1z5nQsEawI7Jy+Q3QGI\n+uCoRnfQZGopQv55nb2nj5l46zx3PvkUoePHkc5xXD+kdXSMW9YQ3WM07QpBe0h5+wWvTg95dP8x\nADduvcbCzDkcgshZv8d7b7+G4ZIRaz10Omx+9pSRriF1q6QPmyRm/HQ7kHvZoHK0TyrfQmll2T47\nQql3Cc4vEqBLS/KwOhlDtF2kenUOvrqHKxJEjUpcuLHK8KzFxt0DTqsdNLvF5Mo5uhmYu7rGxJQH\n90yU2WAYxr6R+tp+F4G4ysnGJpo7TOrVDhkjR6vYZG3hCrGol9LhKdPJK2R3jqk0B5i9GsWXDcrZ\nY6bOLWJqXo73Npmcmad4cARWE1nxsnj9Lexgk0/+8de895PvIWsmU+cncE14kdwjJBw8/WyfqrCD\ns2WTKVfp7G/hHk8wEYsyKgkcV2rMrs4ytbKG3xkiMCHinRwnPOmnUsqTXLrGy2cPaKQPaFZSaKZK\ndnufXu6MfMlgOhanmm5gDXxoAYl6RcEXm2IiKPD846esrsVxAtW8zNDZQo2tMxJKBOIatuxjdmmW\nYWeH+YVZ9PAYB60zbEXj3Ow87dMeakOm3BEQ1RoDRaVXr2KnC4TWlvHPRrH6Gt2jNuHwGPakTlid\n5oMPf87/+Mf/ggefP0SUOzjTDqKxJP5OikHVYNQtcHa6jbszopt7ykHqFbJYY/L2D+h1UrzsZnBH\n4Vw8zMnGGZIwon/Rwf6jLWptjcOzI2LuAMFOg5N+lla/TzhioTwfsrW3iV0uUBw5eTc8wdjSKp+f\n/IKgK8rqRId6YAZXZBIvI4ZhJ4JXJ1KL8mpvE68p0M92yewecWHsJjm3yOmZzkgecdKuMPbaTSJF\nEVHp8PA0y2IozN3tT8m/2mZt9QaZ3zzk9NjFmlfCHBho4Tb3N3b5sz/7LfjO+/d/9Zc/vfzWFF6f\nTr/lxqu3sYcRWq4SwqlAxyUgWCb+9gjR48NZbGIGfLQkG0Q3jrqCfyBRVGpEzTCaNGIoG6jOLj7F\nBQGZcrvPyNNHy4MwcuLyBHH16gxbGlFnD0lXGLT7iPaArl9CQKNuS6gtFcXtIeRw4h7qSPaQRsCD\nVSgQ8fmRGzI4BYyGhjxWQyy5sGUF0x7SVy1M3cKrKAwFMFSNsAT1sk3HsJEbHuquBoNqgL6vQTDj\n5OMvv+ad6zeIh8cIzkwSFZy4ghL1ikwh94rSaYfZeJKSpFErp9jd3yJIANlQMB0umqkCdtCmbtdQ\nIl6Wp1aptBQm56bIGYd4LROvHqBttgnPL5HPnhHQwuxVUyxOhvHEp1FDKk/v3yeVOkMTS+Q7LRR/\nhEI5i1E3sHsOEtNxdMti+vo6rz67w0QkRuzmNVobKQIOKJR0hsIhVtTNsFrEo0pUUj1a1Tq94zzV\n3Ra6PmAgWSjTMYwzi0quRKFYIhEZp1tI0+702djc5K23/oDQdALV46e/m8UZneaTv/0VP/hvf8zh\nwVfMLb7J+MwS82vTPH14j8TyFI8+3uG1d25SSpWZu3CB2n6TWz9a49Und5HnRFqHOfwzQWaTAQKa\nh6gjyeadv6WV9HN5PUmzCBtfvCKYVNj5pMC7f/Aum3/9K5K/90NURwy93SI1VHnx0R1mr71OprDD\n1Poc20+P8EcjmB2dxOoKkijQSNVwuxJ0sjXagzTlTh/HvIfh3iZ3vz7h1o/e4ze/vsu1P/oBh8/3\n0GYmGDTyXL2xTvLmMl9vPSNKlKNemqcPvmmS12+/wbkfXOLzv/mEc5dXSR1to8Z05r1RToo2jU4H\nYSiy4Pfw/DefMBabQWoNMB0WnvkZCk9rjIwmqfIWC29cp3j/kITfQy1n0K4fM3XxdRqdFK/dfoc7\nf/M5yz9coVszmUpMIKkGASnBcfsYcSeLvDhNOWsx+1oCodLnOJcmen2dmaGM6vPw8eNf8eZ33kQI\njSgdC+TzG8han1vX3uDBnbt0jBGzFyd4eXTC2uq7PH/0IZOX13DaFk/u3GdxeR1toFKpbjK7cJ2N\nzz4lm7bwxkZ8+tE38tHzs1epWBbr33+LcceA0uEOB8+PSU5NMci1WFhZRzQahH0yna4D1dSYv5XE\nlxDptQfQaCOUA9gDN/Mz4+TMFA4xzlH7ELlbYHDcptbU8Tp7pO06q/Ek07NR7v78N8zOXyB+dQzX\nwEdkZpJhX2DQaVE2VYxcC6/WoZwrMDk7RbpiEvfYVJoDOv0itmkyHDTR+k4mEn5CcxO49TFeHT0m\nMCYy0PzMRRzU21lyZhulaTEcVxHaQdbeW0Qceek6QKp00cbH+c2H30zmrp+/gnt62j/OXQAAIABJ\nREFUgYHkoHKW5+j0hML2HvMXL6IOVfKtFjNLCQSfjqxKDNM1wopKYmmB1GmGiDeCqfZoDvtELq+z\nMDPNMOAiGRgxsnzUggr9Qp5Kc4RoFQkLMQrVAo6FWeSQTjIWIp09Qaq0aNVzROIxGqKB6tEZWD50\ns8Pe3nOyB3lGQY1Ro0i1kcGvDRB1nd6wTHa/jiS3WLq6jq61OC2cYFTr2GIEyxSx3A6MwzNa2QJL\n165iD6sISSdGQaXRL3P+5iL5bIsvfvUr/viffo+4NMPu85dUCyOmwzLHd7fQLAOHO0r87Su4XV5y\nlSwrixHKuHA6fDgoky6nWTifRHO56HdN2nqAETpWq4k7MkN4ehK53GI0HWbWN02j2Wb5rUtMTMcQ\nTCeTc2Ga5SJur5tkcgxVCWCGnfQGMrFwHCXqZH55iknPEqOxLqRMjp+fYPU6pF/sEFbcuAJ+XJMK\nUWmS5UScQteifbxJX20wbDSYXVuEnMHS6jxdKcaZ8YqYppAYG8M5FmHoFRgb9hjYAr/4xT/wT37y\nPZoLCeY6LnYKTVRnGv/NRUo7R0S+dZutwj4tW2b+0uv4RgkUU6T7YBv3H71L816eVtEiuTaJ7o0w\nCAj0Jzx4dlv0Mya+hTmiopOj4RBZTxMKLyM/rZKW2/QCswxkmbX5WT7928/R3p8mKYQ4Oswy45+l\n9OQRSgm0XB+iCQiBW7FROwJ2r4tuDYnevsjmpw/wWgqxRBNnV8BeDdHMdrD6Q/K5HSKJEJ2DXdzK\nCC02Qf40Q7pcZ0I16JYtWm6bEUPuP9zhz38bFAc/+6t/99Plty/i7HgwFAm1VMVUFYZCH8sRwGdp\nqD4njs6AkazQ8ut4jRajpoCiGYjOIY2mib/TpT/mxiHJFLQq1iCMGLQQSjqDdh/do9AbOBmqNh2t\nQrM2IKyFyDiqdDIWQd2iarkRbYP2wMDdtjCtBoKrizVUaIkCHp+Iz9IZjExkx4i+o4PiDzLqD1Cr\nJlasj6C4CUeCqI4+3bKFU/AhuH0YYpmO4KdXkdD9FrbQx237kSQD3AMMe4yvPvyS8+vzTL5/mZA2\n4sWzIyLxBJpoYTVlwjMRvIqXVHmT+kGebttFRcxQzp5inZaY+vYNmmenqGocV6HG+O0LFPa3UKdE\n8kcmyfEQDp9Eq1Ej5Jnk+MEOlWKV64tLsLiIbQ4x7AFuy6Zt1ZgIT1OudJgfmyYxP4vHK2Dm6mQq\nfRwjg8hEkHq2S3JiDnUkIEdN9OgM7b0zLr3/Ot3mEIMOLQ0UQUL0haiP6nQdbpRBB1NQiEzPUdx9\njkMMsrawgsPv4KTWwjvw8+jlA27ffhvPqIiRabL6zhXah4fM/ehtzHyKXl+mtL2LQY2tD55w47/5\nPkKrR+y8l5PTPOVSB9HXxzUZonCSY/XmKs8+fcHSd97FMxWhunnEafUM1e9n6r2b7P1yD1dUw+ey\nmZ0fp9QcIY5q7G0/Z/2Hf0j9wXOOrROm1y4S7DSQJTdn+SJuw0m1uc/42hqhkUQtu09zJDIq57j2\n3df49WcPWLt6id7LfUbKkPHJFVqywK0br/Hkw1/znTdu8elH/5n5y0sc3vuU8NoMH//1Z1QaBjff\nuM7GgxfE9C5ffr0BwD/9sz/h67/7hNvXrzEYFHEl4gTiTp7/Xx8xMb1GMuBDlbs8eLbP5d9bZ+vp\nFrd/+GMEu87e/S3i6+fYOk3z+z/5Ifd/cZfwlAKdMPHpKdpmmd17X2PX+9QKBYKrF9h9nGFp4RJb\nnzyg2sozuZKgUrfxL66gD2yS766z9ckGktfL8vI8pw/v0Q44SczqdHaHHGynye+1uH5znJEZYDYx\nyVe/eYzVM5mYjLNXKnN+Yoytlw/51hu/z+7zbZZeSyAn16k9eMzSW2/TrDRJVw+5tLjE3FuXePLh\nS56//MabdWM5zkxihlQ9g8s/BT4HI9FLL3/KTnMbo+hi7cYlvOdncbp9tN0dvv71U7InWYRql1Q5\nQ/zGLKVHLzBpkQisYshl5KHI+oU1du7vIkZlPDPjTKDz8otdTjoVllbX8SQ9DI4z2OI4kl/m7O4z\nHKpEu5Pi5q0r9FQHVstk7vYN4h6VE2XEcDgktjLO/IVV4k4vofkwTzdeYBSrlDJZXltbwx74qD57\niXdhGs1SqHS7TF+6Qv/4lLXfXcOvT1E1y+ROsiANUTvwyZe/AeBf/c//kpAq0KucUCo2MZptHIKf\navqUw61TjGqTbPqMSrGKXx7iv34F1RVhJ7OLaYLbHDBz7iKFwwLLyVnuf/qY4svH9HN9HBcSSP0B\np/k07ZM6seklXDMRElNJTnfTmIf7jM3NsTy/xnGjR6OaJ3ewz1HtjPxGBk9kEoJh9HgMj2BzeucQ\nx+oiK+u3MPQB5XKe2MIakZGH+NoCzz7+nOPcPn7Tw9Ttb+Gf1igdbnP+6lsEb0+iSyr7O8+obDbQ\nigKJi37GL12jvLFL3jB59PlvWJ6Kc3hwwEQkRL+U4Xi/T2NYRuz7GFsZJ/08jTM5htMtkN9J4RQk\nSlsbzN68xLgY5umXjynuZPFKYWIeB5rYpNM10EcDfHGdoMdHtl1m8+4BlndELlVgbHUV0ecgoIt4\n55OI4xPEAhaprx4zPhXHE1YIjEIcnZwwdDhAHZJ58pC9bI6Bc4jQ7+L0+gmEJoktLdDMNqk6Rhg5\nk72nTyjQxdDD+Ka9jIfXGM0HKdstfAkIWklkOUA2VUD2etD8HiRDxuke8nd/+w9cvfQ9gicpHOYp\ng8k++qgHipfKcRvPxDRX315EdUiUn28zg47kMPFenqD+m03U0CxhU+HQOMZneahVTrginmcwGyAw\nG+Xp58f4D/eZuhKm5puhe7yPHvczGTuP7e4R00fk27uM/fhNXL0sp1+eEF0eZ3/vMa5mkMSsSgof\ncbHOWK5IplGnFp+hdN5m0HcRKjmQLgsU91JMzL9LXneyVKkzE5pn5twsG9tHhIUJjMsuLJ9NPNUg\n9PZbzMZmUdxuHMEBTlvBYUzw9cvfEk/UX/7v/+tPl9ancVlNRM1Dy6ngUke4pDBObUhdLOOve8lS\nBMcQbWTj6ESwHRKS6EVoiLQwCDh08oaILPUJVCJo0RGVdhGvodDSVHw60G8xEAbYDicgMvRJ+PJt\nRpMRGiULZ6iNS9UwDBFG0ItoBCoadc1JpG5Tadu0xC4jRwtPx4VTCTMs9zHUHPJQQ3drUHYwamSp\n1IaookBLdCHaHegOoThC8ioMFJuI0qM0EHGKPrplF96RzKcffsXtKysMDAdhxwSRmJt0+hXtcp3x\nhVW0+Ih+yUSWRtSKGdyKjYwDs6ZS6glEQz4qmRKri2FyRpWh2KebbpFunxHSYOT1oUfGqXWbjM3p\n1MsVnAMF5XIEI1XCP2iS29mhmNNQzCHTa+voUgTDKVPefkRtq4gyniB2PswoV6Bsmkg0KTY6BEN+\nmm2FMd1FuVShI8jQPkYpt1mJ38A16SQ0N0c1VSDsHVIrttDkHnZdIz6l063Vmbx4gV5syLgZoFMv\nc3/jIT946zp9pxtp1sHTLx4wbFmcHTdwKn2UpET51CIys0BD0NDrZVTNhRWLUPhsh7Vrs7h0B9sf\n3KFoddi+v8vsxXOYjRRffPgpC0s3kGoNhhHYeXTGjW9f5/DsBYGKn25Y4OL0MtV8mau3btI/KhK8\n6GfON8fuq+dY/S4HqTbn3wgyvxqivpFmbGya1kEBbTJJOvWY+USUl79+zHf+yff5xX/8T7z1Jz9B\nKg2onjbonBxRFpv4o3NUKbK6cIluNUezCNHkLHpTpDEYMjsxgyVZpDMGz58/AeD1d94k6vOjij4S\nyQU+++BDFE+c5d+9zsHZDpHVOSTVzdT5CUYFkW63QLGaYvr1G7Ryhxynd7n2zmt8+quvWb2+iD+0\nSia1jVU5wtQ9jLt9eM5NU8h2oHRMd1jGFRmxeG6OUdWLw7IRK1kcLoWDcovNn3/Izf/+R5w922Us\nMoU24+H4zg75lsWt9WtkT4946/e/zc//7mPe/fE73P/sMZYx4NrVZZpaC5cSojxyIhznOT3eI3ll\nko0vNplZGWfkUjk5O+P8jVV2fvUKqSeSzx6hdSXubXwTyPyv/s3/QsOrUnx0QL9WYNiTccUD9Oo9\nvN0BF16/ysbufUKqiKUH8A8dSO1D8tkWF69cp1yxKZXTLL39HqGEk9DqBPXNQ5qKm8NSleXkecrF\nXdyhC5hSFaObZ+7SbbY++wS1anNgD1CaJaqpA2aurlFr5xHykMudoeoxJMtm74MHlCsnKFabmO2g\n2upxcGeXR6fbpF8cobhiiB2V6NosxZ0ik7cvkVxeZesf7yNHoizOTeBWQQnrnDzb5PSogC4YcDqk\n1O1RODrj2e4LAL7/k3fR3DEUT4zpxSCqHOL86hQn1R3qDYnxhM3KG99BNppYlT7iAJ7tv8A8rhBd\ncHHWaVDZf4XqFcju5+j2TM5deZPxS2towwHVsolb97N+M4oecKIGdY6f5egU0mgjD/awQWQ6SeNo\nh9jsRRK3llieSDLqOUlO+Th4tYFhFmhUa8TGosSDHrL7+zQOOyTcYbznxnCNJyi+OqScO0NyhgiE\nvcihMdSAi+mlGQLOHjvPdomdO0dInsG37MPpGKLFp9h99Dmtcg236OLO3S84f/E8zZ7FxbUreGcu\nIic05lcWiV2aolY5YXBwgFGsce7yPKYaxRmQ8cVi5HcKaNM6J6cZpHqfg8IJ82s+muiEnAGsRpud\nhy/xjoc5fnmKIlfpajISLZpPdslXMhw83qNWKrC+GKa6VyJ4aYWqaODPqHQDKnuPT2hlUhzlD+hY\nJnpbYGlmHadsMHflAs+evCC/t0u1lmPY87OwFmQsOEemeMz6yiztSpdM8Sk+JUwsEsTfEGi5TCJ+\nH88f36XbO6H+4Jit+j5BZ4APP/yY937/NeZjST49GOLoFZi4/QMMrYtfU1EKKvc+fIVYEnDFJMpy\nnr5jhV7ujFokhHCWxi/W8V99jc6ru5wWx7CFAdG4i1DUJuKdpSn2MAshVsPTTKw6sAoqauMRq1du\n8/KLAu9ce5tazeT4XhbZN+SC/yJxyyYzhOUr8yzNeXh1pnO02CVwNmBRgfnhMsaTZ5w1Dbxdm4yz\nw+BelcAlDcE5RT51RrF8xvkxL/Z4lIgsYPz6BM9YGLMpER4O8AYttvbTdKpu3OsO7t+9y7/+N78F\nEPW//dXPfvqtH11ACQep0URXayiOCINsjqGjh9a2qcoVoiMFR0tBCgTojnIYlpOev093ZJFweWk7\n6kQ0hZrRZ2A1aA57jHXGaDhkYhGdTr+B7PcwsjqY2T4xwUOzVsZ0hUHKIo7CCEM39a6B7XEx6tZQ\n+0F0XUBxaDT1EU53i27JwYTupUybgVXBDHQZin5svc9g1GGoezE0F6MxN7rpxRuU6WrgqQ+RwkEM\np4k4dDFoiTgsFceoTF2U6RVk7n9xl+tX30OXvciTDoYtkf2Nl1S7IoJt4wpJvHx8j9JuBU9Up2kO\nGTpkVi6dZ3SaIXQ1yVw8iB30EtI8ZLZTyH4nRquFWnTSOc2Ta5xxbuom9EVaxS6rv3MJSVapn+4z\nNbnKYDJGdncb1eWm0q4RnfEzFg4TjUZR5xP44gl8Lj962IG5l8cX9ON1yvhm46ROT9jb2mP+5gVC\nE0OMwoBmu4k2H+Xpsyd0DwpIepv5azco5QtMrd+g1i8zP32VZkCjVS3jk0MMR3DUSrPx6Ak/+PF7\nqJbEqwdP0LUo8auTRINjnKVP2Xqa4coPrrGz8ZLk+TCq6GH77JBwRaU/L7D/wQHa7DTe82vY6Qqv\nvXedWjfHycE+753/DgflE9aWz9FINYifO8/x5g79bpWyUWLOGefD//tvmFhZJ+D30yh1CIZjfPg3\n/4mVlfOkzvJcu3WBQarJo40UiZtX0doKrltxHv3H/5erb7+JLMqokpdXZ0ecO7dOLtMiVdim2TFY\n//ZbCDkFn3vI/sFj5HQT72KCk+0zKrU28/4AE0sBtre+pJFxIbqdPHn4jaH7e9e/h2dhim62R9/M\n46yOSCTGcdd6JOIhcp+/oDyQEIw6pe1tRqKbpfUp7vz1r5ieWcC9uIrPdMDRNk3NIug0sEYC9twc\nAc0LhRqG0cF3KYBlJhADCroHSqkmltbi5KCEtj6DGnajlYa4JpyUP9pk4fUb5Da/Zjdf5eZrN6jk\ncnRVE9Xt5PDOQ9a/Nc3dn9/l8rvn8CzNILs0tj9/xXxyjpUrHlB1XAEH0fEY9WIRRyjJoNUh2ndx\n//Ej5leuY2gS65enKWY7fPXwm6y427ffJ1YXKdhpBkOdIH36fhXDzDMWWKU2rFJp2hS3K5QqB3hG\nDqbXFukJQ8rNCqHVSfKP9rHPmhQdFu1SF9f0PNWP7uGURKaTQaxBGIdQIeido7tbxhOUiU6G6fYD\nTIzZFJtVsmURNTukPWjSEp04kzIewcWg36WYyxJ5/TLzriTF/CmdnoI01mcquoRZdmCWG9gxNwFd\nQIgPcFtuLKWBMhrQDXSxcx44LVAtF5H1AA6XjkMNcFA6I+yzuXnzff7ug78F4I//+b/kMHPK7pcH\npF9k6QXaxHxeNl9ViUWHjMUn6csWNVsgubxMI7OHe+Bjfn2SocNPs1TCdOuExCgej8HUhUU8Ti+q\nS2R7e492u0RiLk4308HtiXC8ucPR4QYBX5R8tUujWqCcNYi+lkTtO3Azwu3zsPXyOZ1sm4WpcxTb\ndQZtg4Fps/8sT0kp4BmqTN2ap1eX6Tw8wBZkbKuDKkSRhhYne88oH5yhR1WccgKzmGMsItF3dujV\nNA5PDglOjhPSZNKlOqGug988/pIf3P4jNHuAY34dhAqOiEJo6KIiO8js5el6JG7cXMZo6wRDXV5+\nvo1ll7FyIqliDr/qw3APGHONEZhcwImI3e1huRQmvAm6HgdKs0a1ozIbdxOPLiP5JTI7WZSQH7NT\nIxpboyvqtHsj2ievCC/MopsO2g4Dh2zhVT04KxYT79/Am4zjCIYJqjK6U2JyZgXX2ALJVT9KF4RI\ngEGhR3PQIJc18PXcTF9cpN5rYeYFRm4B2Zbx+iUaeRlnGDRPkmhgkl988HN+54f/jKOzl0w5XfRb\nPi6PJ5DVIZVCnmZSJrgoYpQqmF0/zRcllpfDbIcF5myVmbCbjO5DzB1gV0wmL89jnB1Ri6uMCn2k\nfpuyPWR49hxPSOXV1kPaKJSOZFpdibKdRt+uo8indNbmmPD4KYhpipsqxXINPCX2728zkuDyzBKe\nPYPDQpeWXmZybYZ2eg9uTuPoROm9DXHPElOhENJugYXVBX758BHekELY6WWYaWG8scxhY48pcYaT\nfgdv04lY2SQkjfj8xQb/+s//4r9+iPp3/+Hf/vTG9QuYdQVFHyLWRTo08NkuWg2Bnk9lYDog2Ecd\nSzCoGCiWC4feRG+qaEEZc9TBbrtQAiaOpkBZB6flpe/qIpoabpfEoNdH6ig4BwOUsE6ROhOjIFK4\nhhsnilFDCnrp9xqEGz7MMTeBZp6hodGvVXAGhyhnOj6/TVqoEmsH6ekynnoPj1ugPwwxcOiIVh4L\nA1/NzzBgY51W8EkqZbOPU+tglFTc3SFdT4+gNkBWHHjCHsSWxee/vk9ydZ1ec4ApFSi/eIUac+J3\ne7C7faKhCTqFMgO/g+FZFTXkJh5aoX68RSAaJH98RGR2FlMTkSSb9n4e3+VzCHUdbcYmmVzCF53F\nH3RiCz3OsinSB/tMu6M43VMcFlN4ZIkp3wTd4h6DVpfZxVVeHT6h0x7g9Qw5+WqXzskuWjxMI2+R\nnLuIHHFSeXRIhz5WtcbY1DTuUfib8F2Pg1oqj2AYzHz/NnrZQfYgzVDyYhglvJpAplqkVT2jeVom\nEvbTcVnUN9s8e/WAd67cwjE/S1AN4JJ95EopcvtV4hfjXHrzHXK/eUnyWxewyyOqWwXmLk1jdEa0\nD5rc/hfvsX34kHB7RPB8nPZOionYPOrIz8n2Bl5NI6uZKL0iz+5/xVQggafvR3AqVOUOc7cu0pIl\nNne+IJaUOXpxys0//CGHz05ZeO0K2tDk0b3HnFsepye0Kb2s4pNUJm5doloro8p9dtN55nxuhr0R\n0USQ8aUo9WIPs2YQXoXP/p8v+e6f/HNOjRK5nRTXv/87TCa9BDxRdvY3sf0RIiGFbl3g0ZNvoOHy\npXOMO728OnuKUapz4Y1LfPbLTZpSHdMwqbotxqdkWp0+is/L/LkLvLy3xcqblzlNnbI4P8XzLx8R\nO3ee06MSgXiMbq1FeS/NoFLCuTZLPOzl5FEVQVNZvThPt5yjUmuy4F8i266iZw0qqTK9iMHCpdcY\nzkD9cZrl9y8zOMpyb+shLs0JopNarc7a4hq5gzbn37rKxstnFI628Ptm0CfcdBoHPPgvj5m4PE+3\n3KN10iDy+k3u//If8U3M4lsLcfzFIRe+PcnmpztU0gZmxOTrL+8B8Cf/0z9DmIgxrccJBOuYfSfN\nzV386hiV0wq5QobVyRUW52LY1QHRty5y9Owp9bbN9EwYU+rjE13UDZ1rK9M83tnHzGeYXhlH14cU\nFQ3LKGG4/OxtHeKaDDGTDKKHPTz+/HMSgTiT0wsExBbh9+bpnrVInRRJLp6nL2qEXB4GXoWjgxM0\noUGz18bXdrOT3ubihVkWZsIE3lph2KgTDoOqTvLkyVcc5bMsrV7l9PN9VtZmcSVXUZIqDveI1GaW\naqtLJOShY+o0PFW++vib+lievACDKksrlwgtOmhVukwnZ4gshzDqI462U3hmxphWp3h68Gu6DRdD\nZ4H0Xo98eQvdcBNZXKRxWubC1dtYniCtQRZ3x4sy5mE6nOAkc0j54ITiZoauKvL6hWuE5qP41934\n/F5apTyB+RkSAZ2WBttf7tAxzjAcI87KdaTuIe3CAI0Oii0y5htj9Z3r7O2+JL3xEqfgxTPpxREP\nYTpr9IYqF9cuMbs4S+HpFjuHh1RKDVKpU6xjOGvusRKdY4TB/tYZs/F5fEk3H/ziQ9740XsUzBJL\niRCKo0/qpMbeVyfMxp2UK0VMQ6GW3qbVcqLbMnsnaSqCQdOs4RVCdNsWQ7FN0KWTfVVAj7qp9MoE\nAjrp7Q3Mok3yxhx+EXYzOaLeIKdHGWyXRN+QGA968fn9iEIOrxhk1LB4trFDOr9Fp9pFbfRoNTvY\nM07G56bwDxVEScASVAyph+aL4YlIpI5L7O/ew1JFPK4o9VaFN89dQVkJYxkOHN4RQ3VI9rRN4eAJ\nZ+kO8ysL1GmxtHgJmwK//Idf8bvf/X3GhREnnQFKt8Pj/Q18ez0yCtQzeyQcGkI/yfRbiwSuBChV\nQd0uY9b7HHeyCFmD2piXUMdHMXtE0+dF7MapH3/K0aDMcjJAPTHFw/oRPWGc4LyNPtBoSF1ijjbP\nBxpO9xSvzc4zyktUvn6OcVnBatYRUgq+WwkGlQrpTot0y6KAwmAiSOrhY0Tbi7mbwe/ScD7IMfA6\n2f7lJxx4bQZ9B3N6B7MYYauSIzrrxBcc45K+RjqfwbRNMqbBMOlhu5ZiZ7vAn//Fb4Gx/C///c9+\nOnd5lWG/hGBDzy0hDQP0jAauYJ9+xYHZM/B3VNptEadHgwA08y0cMS9yoUvF2cPncWJ1dCQ89IQm\nEd1JvSPhaJcRGeJotbCiNsLAz7CngOHC4e5TVrsEJB/5vES7U8IftGmZIlrbQdMjITkbmJFJ3Lka\n0qQLuyMjVWWGEyZ6s0MnKKIMAwz0Cmamjzuo4mlJGFIfW1Jwi32GXgtb9dAtNhhzBmnIQ0SxjuKw\nkDUfmdYQr9Dn0w/+P+7e7EeS/UzPeyIjIiP3favKyqysfe99PUufneThIXk45IxISpDgm4HtGwMy\nxrJ8x9sxNCNBsC/lsTG2BEnAjIY7eXj27tN7V3V37XtlVu77GpGRGRm+OIO5lS9sQJ7fn/ACP+DF\n933v8z7mnZUryFYDtBGCYGGkaqRu3eRge5/xyXGOSk3crR6BeJD560t4nXa0cpHI0iyV83MKqokr\nIrH5yRG6aSHpczEx7WdYViEUxB3wo0lWdKOFNxinUiiTPq3RF86xNNoUj1tolg69Yg3FEsB9MUV1\n55BGvYHXO42ln6VdsjK1tIB/zkHfHNIujjjcydIza4jmkIaoErH7qVYzhC7cod2o0Gu1WEgl2d7L\noVrq2K0ebHIPYWQhNRPD5VykXS2TqWcwyhpWe5uHD9f54Ns3GJoyUbuT9YNdHBY7q4uTqD0HTz76\nG1YXJ8l8+YDExcscdbaRJAd2uwO1PeDpp/cJjWTKVgOXd4JONcvW8x2W7ywiJeOg1ul1ZZbnrxJL\nKKiKl2K/TPWsQauUJxGcIp/Z5bVXb/Hy4Q5OVaWVLxGKyWz9+gvCN15Bq7ZILMZgaBCZDXL/Z78m\ntrSMNmzTzwyZcEQQ58bxjnyYAxnV2kP0uTl58ZxsocC3/vDHfPa//194Q15uXL7Jz//yF3QPTkhO\nhcgM6ly7cYn88xdgsfPg0T0AXv3WBwzFEb7JMEEzzNbdh4QuRjECJqFQEkc0RPHeKeMTSbqKQv35\nPmZUJhGfwe9WePZwk8StW7RbZ7jrBtl6nohzgpk7y0yvLqC303z1201uvfMazpAdqaJzcNbizptz\nfPbRpxijIamLHtyrEWRVQSsUCItJJu7M89t/99fYh1YuvLlKMVume5bj0gff4GDvAcG1JEYTLl1d\nI+Cd4uX9zwnNr5I9PGUsfJndg8csrywwMNuUtru8+wc32L/3kt3NLV79xuv8/ue/4Y3v/iOCMx2O\n7u3ybOslAInIBKOixomWx3C6idgS1NoZfBcnqPfzjM9fRDJVnuxvYng0tu99Qb7aQ9YFakdZJlem\nyR6Wef3919krNdCbaS7dWMU5inFOE2e3QSvvwuN3Udqv0JcrDKpQX0+jxUVap3U67Qq5msS41cXe\n5ktef/8Osmin8eA+h6dNfLNurkxNs75exyW1ca06cfcl2i2RtrWKkTtjPDKmLgKMAAAgAElEQVRB\n/9yKtBBBMfvMmGGOW/uY7Q56PMD+V3u0Wueospc3vvkGDleSpTUvhZd72EYjPvvqa/joze/fwVCj\nGKMhhfQZ8cvzGNU6hd08ucoJU6/ewR/0I0slii86eIJV9KwNhzLk5rs3vr7D6kp4Z8LsPN1Gcujo\njTov158z7XRij0dR8zlKdSuG0OTyndfYfbqOVk0TCFzGdLapHwoUDncpVhs0Tw9IJVepl/L0Bx0G\nQysrkXm6ypBCv05U9DP35jwvP7nHUDO4df1ttKCDxnqGQq+LrTyi3S+RLug0z7L0qj3sToUL11aY\nDq+RvJ7A0O24FtwcbB5jdfoJXQlCp8Wvfv4R3/kHb2Hkh3j9UYq5NsfFHVLXLjEoNqi2SvhjUcrV\nDkKvzflpEZ9gwYsXh10jcH0Ot8WN4LExduUG9d1NhFYLp0ti98EuoWSUtJrh6HGFWqdPt1vHJYnM\nLS0RTowT8I0z6qc5yJ0x6DtQc2cMxwP4ejZ87hi9hooaNrnw2htMjHmp97qIvSHaeQkpGKF31ECx\njajlOqQzj9AHXvT9Fpqlykg0SCwncQzctNQBDlFEcg1Q8n2a+TxSz06lfUT8+m2Ujkg1X+bTzz7h\nRxduIJgx7AEL87Mh5GGdmtDCOuNkwkixq5dJJbw8+eQLOhsCmfI2U0txWv0R1noex9JVVuQGeclL\neNpLsmuQGOvTnYvRrEVZjI7TzVrwNe0sTVoYby4wWInSDeiUHp5w0W2SzxY5Oi2gWQp0unB16RUC\nIRtFh0JvR0NRJOZ6XUKLrxBlHyk4jk1zkw4NkUQHeFcZJA220+ck35hmJpnE1a/ystInJocQgx08\n9RCnjTJKeEDmeJOKesTKIMFAg8X5eT7/6i5/8j/85wuILf8f+p//V55omoSiFnzjDgSHnYDdhkPq\nYkyAOHTSF9vYJQ+lpIjha3FePsdoNrBgpVTUGLi8+AUv1XMJvTZC6/bBbYAywu5TcchQ1Bt0YgkU\nzcTiruPQLajUyOkytr6fUkklOGEwERjD2pMZevuEAiMCwLBmQa5m0EIRimWVim2AbVJA6lmxBGHU\njSCqGkbBjy/sRjDttMURin2IRRyiBxSM7ghfRURyOulrNaJunYEjRKcBYGLoOUx1BIAaMBhIAnqh\njyrJVBF5/NknDNU26y9esLA6R8UiI47PUjd93H/8iExfY2uzgNzp00gfcHQ3g8thoopNWm4Zm8NK\n+axPqVXg/i8+YevLT3HhI2oL41ZMVE+FbrpLuydhWOwMrE7E+RjBpJOtnz9hafkiitZDLHc4Trcw\n5Rrrj57y/NkpuwfPOM4/Y2jVGFu4CK4Alpab8/Iho7aT7P271NodPIKNe798QneUZnF5GbdLRT/X\nOat1eHb/jMreQ4IxD9Zeh07LxGj/rR62BY4ePGOndMjN719j4DWpCSah6RiLY2vIpp3U299i/8FL\nkok1hsUahl7BnB/y3ne+QWFkI+gMMzQqyEqMW1dusf7yiP3f3Se6fBFHZ8jTX32J5HQRdlu4fivF\npBLi/Xd+zL0nj7g4vcxnf/FXrL7+Ds2Wk6YvTO1kSGxticr6EUFFJ18z0PZNsuUuV370HT75t/+R\nUHIRs61xJlbxaU6+WP8F9kifpx9vcfbpBrff/ibff+0n/PVf/xuu37iNabEh2wPc+N57WLwmp0ON\necs8p1+sE5+5jNvZ+bs/E5qL4fKn2Pz9A9RJhYUffJP6/jmrwYucP7lL9WmGa999jcPzE6amFKTw\nOIm5Vb76/D7ScITbbeDs9bDLDq69cx2pblJSK3hMK4VRi/WnaVZurlHe20G3Otg/PybsKvOz//Mp\nr334Ixz1NjYxQHonQ+MsjxyIElwU+eX/8R8Yt4cRpubZ++QQT9OCIarEHAqWno/66Qlb2/vkzjdJ\nl2ospS7g71ZITC/T9ZawVLq8fHSOZ/EyBSOL0RRp6jYSq2s8+ewJb3zwOiV9k46YJOi3/50eg3SB\nyYV52lsNMs+OGPazTL/xJtaOi37ZhmXYRh31eOXaAmuJKwSdF7C0NGq1GrW+xOcffUyz0qNweIJR\nzdAod7j30SMeFF6QHL+G4lrAGuxxmM+y+pM7JAIealoLeU4hNVognpgldOc2lz9cw70W5sIPv49L\ncBOcT2BGrFR7dRp6m8NBm4nbY+RKPo73BpTzWdRGltTCdTxTr5POn+AKWbALOt5gkH29QLtoJ3Lj\nKrZSDd3dQukKDNKH9Ho13M4RheMqtz68wcKtV/5Oj0vjq1x5ZRx3YEC1XsHSG9Afm2CgNxnqFvyq\nSqhvpd1WwWqgCUmswRDFdg9DD1I6KqPEXFhaJdRqkc7ZFmeHBawWkb7TSrbRwT+e4sZ7CZbevsOo\nVKXTLxNfXgARPKMYExf8KKMRM/4kukvBPaHiGo/hGQTx90dsHx8hyAEkcZxTyrRaJrGJRRauLnB0\nuknlcJeeo4HHYaPvk5AsNkZiHqM/QLV5mXznMqLHhVUR0AWT0EQUQVVZCy/RqxVoPDohnzUAsA9M\n2l0Vi1fFGhBRmiKC1iQylYSBRvXFHpeurTC7dJP5t97EO+ajLLXAP82ie5a+mkcwHdjVGqIyINes\ncPC8jicZwOtygmHDbm2gDYs4RZPScYYvH66zs/EV2yefUsp5MbtWqukmRZ+JpVmm73UTv+Xm9muz\n3Fm9jeHScCo2hs0R+9tn2CMxxPaIltBh/dMXBPx9knY/EnVKQgmrJHHrxjW+evmUWuYAMWDi8bsR\nui4aURsNt0xllGeg2hDTNXqohJMpAEZRhfOxNCMlSFerEZl/lZjuJlL14oyPczl4FbMiE/GNEb41\nSfidGxiOEaVeHt0/RvfBA7qmD3Napnr2ggfSgN9+8pjqvR4Xmj1yqk5s2Ysy1WG/3WGv/jtG9RYT\npR5+2zwbNR/xhWuILR2XaSfi8LEvZCkfbSKNSxiigmtllo1QmFCozZBppKM61m6OhdtzXF/1sST3\nSZqTBEojTv/iAU/+8veMHHD11Qmm3opj8/ip6WcoOpzvpploz5JKzZKtbtK0qxyc17GI5v8zj/Jf\n+iTqf/7zP/vpnVcnqdQFrLEBRl9Errcwh+ASFAZOL94RqIM+qHasYQ+qpBPyRFAVDZsyRO8puPQB\ng6SEs1NBcY1oiC4syAyNDm5Foq3VEYcRQEN1WQnoLhRZRLLWsMo+DEWk2hAZuPq4dD81AwxnCzom\nbtOJMDAZhdq4yi5kVcQIdqgWbZiDHq3gEFEV0Z1VxHOJntZHxY9FB5dspdbUEcMS3UYXd3REUxcJ\ndxw4/E46PSuetsBAtfPZxw+4dv0Gplug3xsi9mHokAmM3IhDJ7KngRU3tdMu9jGNmNdNZSPL7Aev\nMBO2Uu71adXrWLoe5q9eIxiK0ameods92OMycc8YY2E/4wGRsmlycPAZ/Z6DK9EL9PpdesMuF957\njXA8QiQUwOb1kZwcp2H3MB5OEJ4yKabrtAQQ2iZmFS6+eYmQ7EYajVAN8EsKhmZibas0DA1NB5fa\nZdh3YY3qaB0Fm8PHxNo8voSL2Zk5FIdG7sxk6pKH4qHJoF+hO3TwcvMJH77xPeJLfgaWGNtfbbEy\nGWUyMM1/+ujfcOPdGzw7WsfvjzEZDVMwerg948SdE+wcHZDJHfLO9dcIuWVevjxD9hocbTzg5puX\nyWyc40/GaBXyLCzOsXXwgrF4hJ2dIvM3Zsnmj7C6QDdlbn77O3z0v/07bv/RB5y82MPhUIj4xtjZ\n2SU5GSL74iWaZDA5EUUT+8Qmxtm894jLryzSrEG18BKlrqH2QsSSFiLeIE9+/Yynzz/nw//2Rzzf\neIpWGxLwSDx49JjF+eus39tj+YMLFI4PkFDQVZHP7399EzWzuET2eY7X/vHbPPv3vyAYDbJ8dZnD\nh88IT84jCBInjQb2oUz66SmhGzH0skhiys+jxy+4+PqHiNVDMnvnyIEAkUsh9PMsX208x2/3EdQM\nYrFFqqeb7J+UufndK1QPJVZfdVIunLL66nU2nu/RHjR499t/yGj/mAefHvDBP/o+m+lTUmvzJBai\n2Aw7Nq/E87tfcPutK9ATuPLKTb76ZAOL2iV/uosQjVJ48gzf4hK6rDAXibD/u1/xzR/9gAc/+5wx\nr0it1uHizXnQHDQe5cg2duj1Bjx59jXB/b/56X/N3WdbuHwyudMjgvNzlJ4+orxbZuXdRU7rbeJO\nF/VglJPjp3gjMjYhgSw2CcVnScS85PJ5ugONlbkJTNPCxM1JoqMhD+99RSCVJCB4yN8/oH6UY9jv\n0WiOsFZ1Uv/gDpLc5/lHdzne22cohvEF7WRbPXZ+/yvqVY2FqQu4uk3sJY2JqI1UKEpBKLJ2Y4Xz\n4z57xxkavTzlszKaZmF7d5+xsXmmL61wdv8zDHsAX8jOzVeuka6VqDV65MoDFLPP/t4+7dwAc1ji\n1x99vc5750ev0q4FSe9t0Rp16e9k6O2d4U5F0UQbjeIxWxtPKTdHqLqB4tDRWyPi0SjZyj4eSwjT\naBLyxnCOBRilhyx/63XCYxHscgxTVjGGVexmlMPDQwYOB51WiZOXadK7B5TKu4xNLDB3fYxCc4RU\nKCAnEpTyR6xcXGP6WghbcILUZJC4HCF2fZKoy8fGV3scnu9jb5skxubo9FsIxQxlTUSSRXojGzHR\niW4ZUjw/Rsu0UWbdII3Irh/gFEXSWy9xjUfo5ZsIIZUvP77Pre//EG8wTkz0ossCtVqG8lmH1kGG\ngWZh8Q9W8IsiJ0+/xBqLsbA6w8z0DGFJ4bxXwRecxVbK4QhNoRoyxXaRrmrhwu1ZiuuH9Lpter4Q\n4aGJzW2jZlXwS00CngVq7TyaUcMvRVi8M4tCnPxWDdnawOGb5vHeC/ZPzsidnNA6NTjc3kJSqgR9\nMQSXiTVso1LUyBRbTM7PYXGOoUsK4mmd50dnaEWJZiNLOnNM7qCN4DI43V0nObdMp9lDpcHs4jx7\npWPU01PuPXjEP3zrAwpbGo2D+zgWI5QEG3LDoBYSGSvVyBz2MN1edFEnUa8wpvbJtE+4ffkW8ehN\nopNxJJtIOlcmOLXGbGoOfRDgxu0glikrxcMzgiM/dqeE1aPQzVjYefQJnvMo3SWJpMOCVTogErwE\nkzay4gght46eVPA2+zw5PKGfO0GoaJiqQu/oGYbfh3ktSkz1gNyhSZ+D/V18zgFLf/xNzIuzuBWB\ne//xmG4nix0Rz5UVms0W1cMuaaOMR3awemWa0biAo27l6dZj/ul//5+fRP0Xb6L+7F/9i58mbyTx\ne1yoIwPnSKCqW3H5ZVBUGDiR7WUU08AqmUitIapk0umAYNpRnH28sogg1HE7FQZmB12S6RfdBEd1\nXEYUyeFCoke13qMr2nDrIJgVRh4FW11EHenUqg0SjiC6PsAcGBgBC/5CD90WwukDQxqiSyJdRaZX\nVWk2R8SjBj2PhKWjE3SJ2Kxg8fTxWCRktUsPHd2iIiohjHwHl6yh1w08xpB6ANTGAOeoT9Wm4e+7\n+eij+1xbW+TC3BUscZmV15c5eVHD4pFQ1BFdUWYpdZm5a1aCAS/3HzymrztYm0sxtCpUzzMkl26w\nfG0SuwfOHz6mbFro7xVp11r0i2XCC3FEvxXzvEIjbccqaTjWpiiel/C0ZSILExj9JmePcngkCavP\ni1HN0OlqvDh4hhmIMpWcwH9tjkgsiE30IXv6CIkUo3SJs/MW11+N401FCU8EMQdtBlqLFipet4TL\nHyU+6cCQfbjtXkYOcDkMxmcW8TgduKfHIOylWenwcv0h3/zONyiJTbQu3JxcQHX52ckccnVijrtP\ntrCqTlZvLfJo7y5BtxufLvHs2QlL11bol2roPoPi1gnWyIi408n0jXfZPC2glzJcuDzFy6MKkaSH\n8PgaWy+P6b94wdBvwymaRH3zlLY3ePjwOXeuX6Ci9KE1YvxqAk/QTtfUcZga1tUlIq44gajCV//+\nKcmgCxwRjnezzM47qWk2Vt+dZ2goxBJBWkqbQGySm999j5Nf3EUbCbz2ylvsvtzGHzCZ9C0yFhM4\n3HrG2ns/IP2yxlA7596Tr9N5dy69y3QMykcdbn77Ni/ublNryWQOnnPz3eucPt5l7NJljp885Por\n17j384949b01qm0b6nETOjl880tIrRbbLw+YnJ/myZc7XL55jUQ8zs7mFgGnSPjGFWRdp3GYR4wH\nEIQ+W58e4HaOWHntKs/v7xNbjaGkJmgZKt2TXYZVDbGXIbh2meO7XxJLJqBjcj5SWL28xq//17/g\nG3/8Eza++IKZi9eQ9DaltkRqahbJzPHyUZ7J2cucPn9AbGUKYWkG2S5RfvCciSuLbD94wnhkhoDT\nw8dffh3pf/PDH5B59IKQ6sUTkmlJTZaXL3BWK6KZdk73n2LmalhGNWoZiZDbRAj4aLQEWtV9opMT\nYBeQGh5iqQhCB+ojkURilqjFS7ndoW/tcfOtdzHrTXKuOjMpP8GEi3LHit5XmbCLBFJxxlZmUYoD\nJKGJw4zhcY2QFT8NvYR9coFGusnu/hlk60iTCTz+IZduzhKL+ik/q5NasyN2RwjmiM76MS3BCrlN\nCod1mrjwG02aQxPvcR0hHEUwVcasNurdIZ/euwvArUvf43j/Bf2aimj1gx8smkixrOL1W9FGMpOX\nZvAOBvSMEUuzEQrZCotXLiKWBvjnUsj2DrLgop3N0JB6dBsV7KqIGGmR/vUhmZ00bcuAibEYTnuf\nQW3AwNDwB02mA1eIzIfonRhYbHVi8Qksshs9q1KpmGjnKnvlTVqZFt12B5ctgmC34B50KLR1GNkY\nvzDL5NoC54009pqG6BiCTeDa9dcZiwYonlaQXBKTjjD5XJ7esMfhzikdI8D0dIjxxSUahQ5ffvEZ\nK+MJFMHAN2+neZKlkC7hd0noEwrJyTid9BDHwMC5uIri9CCPdHStTlN2YrU7OHh2QFk7JNdsYMk1\niE3Mcv1SAqwS6UGFTlPDHFno2HvQMHD3JQojkcCcD0tvgMspU+trTLgF9s63sVS6eNxesrkc3m6f\nQU8h2LfSNrtEAy4EIjiSSU7XHxOOWhmYFpr1Q7TjAs5JKyuTV3D4g8SXpiiWarh6BghWTKlEqwYW\nyUcvs4fkl/Em4ySn4og9meP9Oi82H3Hjxz+hWHpAPw6d5x2m3WHyxSbdgE6nM6Q7KpEIa0hdEct8\ngB3rkKHHQ+6kQaapsVt8itLS8TYrnFUzSEf7NEc6bn8S7csTzmabqBtZPE0v6Sc1UqKB98IdjNt2\n5pzw+Mk2W4Uu9rCG363jzMpgOgk1Zzm3HDDp81MbOXFYVJTwKu1hEXlqDJ/ixFvPoNeWKTTBn/Iy\n5oiy8fkG844m3b0RsZQLvT5iy5oh1fYS9qYwpwLU00csLiV5kGuQss1wfpZjY3/97wds88//1Z/+\n9Mr7F9BGGra+D9Fjpe/V6WQa+JQYimtAS/TSr2v4rB4qnhb+jgO3aUfXWoiqB9UqUu1I9PoGRteK\nx+NmQINm109rWEfwjmgBwlBAMr9OAHWqfZptJzZvh17TQmzcQs5awVUJoI3qKF4HA7uOaHVTabXo\n6iL2oRt92GTCFUSyOtBqEr1WF0V0ULUIWIc2DIsPe1ekKnZAlZFGMkKzg+zwMIxq9EcRbG4bjorJ\n0GFH0Kv4XTFqmpW7v7nL7dtXia0uEZRD9GWd+v4BE8vL1Csl/DYR/4KILrpIH/QwGgZaT0PXRpzd\nS9NtVejJViTdih714lBsVHZqKDMKscll+liotTL4PEn6Hh+EunTLfRL+CN64g/NWlfD4FJn1PUaj\nNs1eloLao7lzgO3iEp5+kM7BPmN2hcB4iH5RY/twm0amRMLvQxY0OsUhUjTB3rMTZuJjHL7coKqF\nMQMdPPIYnfY5lbMaueIRDrWPe2hBzzcZWgxevsgjlMoM2gXcLpN7Xz7iW2+8y7h/EV+tyVHlnL3d\nQybiM2x89htuvbeCnmvy5fNHLEyuYLRqlLQeY0kbFn1EQIbjShn33AKK6mH92SPCbit6TyGaWmRj\n4xFXbt8k/dFTEpfHUYcCieUoDz7bIJmK8OD+50zNvUWzvM25Y8DlsQgVS4eAOuLp73dJLLrwjy2w\nd/8I3WpSKZ5y4d05Cmc9+t4mRjOH2z2GJFYo7zRo1bMcbuUYDy7R7PRxWM6omG1iE9c4OXtOOBkk\nOhElrZpUdoo4Ukn2fvWA8Lt+hnkPXz78Gi6ZiI5x47uvYRpVTp9WaI/KJCetWCdnEMpdxi8usP3L\nv+Gt733AcbVFIOXh4OdHdBwGs2+s0lerTC2s8OzwGStvv83Lra/44Idv8/DZc6LSGFO3r5Jdf0Qn\nX6IpOsidZ7lxJcUnd9f5o5/8gN27e1TaJm9+712e/9VvGQlexlNjPPniOZOz49hDNqz1HpVik+Rb\nV9l48Jy3b73G7vanDFw20r/a5+pPfsjDu/cILsyhFtp4ZySmg1cY9pvULXVm46tsHu8zF7ViH44g\n5mb/4VOW3n2H6kCgUzzl/pPHAFy9donLr96kSxGPb5KQLlFrjXCKBidnh9yaWaDlGWGPhLFOT0Cn\ni1wasvz6ItJIxB9PcLaZp2cp4xeClCxlShtpLBNh3NE+tXaJbr5Plw6u2DgL15aw2QMousn6Jwe0\nBIHZm5fJt3V2P/4C+kPah1mMBQFbZsRe5ozwxRiSoBAJeBl3BfHGJZSxGK3nRfa2avjjQZLLISRZ\nolOXCU6FKRye4b8xi6EbiKEJMi93mb+cQOv3uH51jdN2CUGE8tYh4lDni78tqJ5NhXHYTC69fY1k\nKEqpnkd0D3D5QvTSafSOHathMD6+hDo8JXumMRkco+uQSKezdLVTikdl6qU2wZkUPZeLwe4Bclgi\nfVKnMCwyMTPN8vI4z+/ucd7LInd7uFx2gpFrNLNVDhr7HB8dMiwpGCEfLx/dZWr5Eoa9gj7UubB8\nkU6xT21YxKq3sSVmUKxOqsUiWrdHOGhnoA9Jb1SwDQUcMZmbK6/y8MUGldIW7aHApdcnkRijb5EJ\nGR6i8RSTN3zYHRZe7OzQ78Kj+1/ygx//Id6pGLvPSvTye3Q9cP3qG/j9EdIHWcRsgWOxh5bOUc43\ncMUnsJkSplNEbXdxJ8aIJhaIJJKolTPybY3khQlsbRdNTcHdGXD72i0cK9PMhRfZzJ0jDbrcvnUN\ne3tAqW7isLpRxv04KyKdfg3/8gwRdwznrJ/0cY7Q9SWmJoNojQxdVJKBaQL+AG0zTGOYptsTMNqQ\nr5cZCK2vobzdNkm/h2Izhyfp5MqNtwiOh5mLBAjHkyh9D52zCpHEBPub+0RCEb689wkffudDPD0/\nE4MEAUWm0dYIuWNELB2E+UWavS5lq5fRaR4jYOAqyxg7MCs2SC7OITm9hFoSvYRJRQ3gcUaxro5T\n2Fmn6/ai52rUiXI6OsURteDzL2FnxHCnzulmnsjyGCur89gkyBahlepTPUwzmg+y4FujiJU3l1I4\n4ouoRxUEVScU8ZNX7JhplfJ5maK4z8hIUVUKrN5eRmNIUYmx69plJr7MiitKbaTT7h6iCyPCozFy\njiFvh27h0U28/hy//PQx/+yf//P//5uof/kv//SnN15ZQ3V0GfVdGEIFoWHglUVafg/dqoyzptGS\nTWRrE3EQoi5XUXsmwbgPnSEetUe/qaNIXcy+SqfjwhO2YW+WEJ0RmqM2NtlDwOtCaGsIsoGp2Aj0\nalTcBqbLTrflZkQHIxjAX6ujqw5Mlw2fRUdGxNN302rlIO7EbLZQ3R56riKyJuE2DDC6mH1Q6y0U\nwY/Z92ATJdrOFoGAi45tiNXiQ69mMV1++p0ijqEfZ8hDu1vCKFm5+9kDbly+gIaNUDKMUJfpFqtM\nrSxwXs9T73SZCS4wEr0UDo9ILCfpFuuI7Rya24rkkQnExkifnzId9rC1/hJFbzH95ut4By32dnNE\nDZGGvUckEKFwWmf5wnV8boW20qNaqRCfjBNwehEnbRQ3q3h9JvrAgraXR7RqdH19bFEXfbeNwu+/\nYkidBkM89ihb+QpyyoLTPURSVYyAD0vdwKW4EK0GRh18Xis9EUzNgtuU2axpuBMhTHeA/NFDjEKN\nQk/EY7dy995D3nvzdSrNPILkpZw+w5FSsEcsyFKKymYD0aYyPz1POfuS1tDHcmyMw/Micl/kxVGB\nZi5DYKCj2xzYxzzI7ijV5g6BgAd/t4+W13EvRhkh0ckcMxmZR+50MCwBBIuFau6A6z/8JmPWML/4\n7DPi4Qm2nj7mvbf/gBfpLZrHp4gOA2fIyvrHe1T6BhOvX8V6IiOUC7w8z3H10h3KOZ1ap0aUEO4p\nia7WoJipE567w8PPfs54z2AwG6W/2cVrOtEibZbXUjxaf0wn08NiVHjw7OvuvH/2r/8n7n+8gbZ9\nTOL9C4zbfWQOqlh7TYrVKsGAlehUiu3nBWzlKvML1zk+24DRCNMc0i640It7tM57XFycReoM2fwk\nzc33L/P53d8xGw2S3svjT7oZnncI3Fzm5cd3eeW73+XxX/+C+fcvcPDyAT55GmdUQTuuYfVYsGsO\nVt6+jJ4fsrGVptMbUtrI8s4/eZ/n917g8jhYvXKZjKFy+OAZ33r/DtuZ59z6xhus3/0YrZjBZ0vi\niYboVAosvn6VT//mC2S9RypxmUGuw972I+J+H1O35vmb//B17cvK5AT1nedMv3sTs9dF6A1RFiYo\nHRxwaWmKiiKxemGBSN/Pye+fEUiGyGTylMwcQsiNfVenVzvFrblRXHYMtU04uULxpIAiSIRWpvCM\nhpxtPiPXqmNvNRFHFgalDlMpBwOzRmP9DHt/iNfWodLqMHnzCk9+8YLJ+UWSE26U+CSKLDBsdlAn\nvFgtVvB4yBbOiI77ePHwKQ1VpNYYgqyQjFpw2caYW0tR7Mi0q/tYrHacowDnDYN2tcTC3Dyj/gDp\n6irJhUV+9ld/BcAbb77K+PIspXaVzc93GDbr2IUQ5WyFttbFGXQSdix56kQAACAASURBVLlwRycw\nA07mZpbxJWSaD48RJCuBkZOx6SX8N8MM0jmaTzapSn30MwPBpXHjlds0tsrsbB9j7Zg4NBUhFGT5\n9g1ksYfgl6k/OUKyOOh7+wiVCjeuXkGJeDh/uI93YYGAZcTuwRH9kogrLOHymrxYf4Qv5CR1eZ5W\nrUJmM4du67J8+wapmQkqzQyFbJVWvsHayhrR1DxHn/+W2sExJ90GtWb+68YDzYrfJaBIFj75/Scs\nrF2ncVBEqzeZuv4mF2LzdPoClmEXMRkitTDOoC6S6eUZ9oucbRyTOTxgzGvl5EmF6KyF8MiBEWgz\nNpbE6VE4/mKXyLyVzskpA08IMejALkkMOibhhIPqSY1qJkNFr+H0e7hxcQpNE9ktbdFrKswuuki3\nDFzygMnpWTxuBw6XgTO6gqhKvNjaI3RtCkdfYTJuRWvCzNJFZEOmUGoQ9/sRVAHLVJSY24Wl6cbv\n8WIaOumjIgeHm1RrOmavSa484Oor15Bp8Zvf/Z6r787hG4Q5r+zRLhRpqkUCqTiZr8psbz7D5hgj\ndHqEPj2BocgsLYeptnKMNB+KViDkjZHpVzEEk1Gzz8AQSUU89N1WLtjDSBYF68qQq95vIlsslIQM\n9raBy+aiMt5FV3PMF6LURzU6PQdjNhu1bBZH22R77zGzhsl5aRfZatA12/RvxKk/aBKxCZzVN5GX\nJ1myLuHVywTUPnvFOpzb6DkyrOx7UAWZdkWl9XiDbngJa69HoXNIe7+DkqqyUTnC11/m05d3+ZM/\n+XvQnfdn/8u/+OnNaysoDhFPS6ejOtAdLvqWAV6ngNxu0Q+baLoFv2gwMjqg+RhYGkg+AZfuoqyK\nBJQ2Pa8HUxsgyyKiQ8PicSP26ighGbXXpFHv450wsFTc2JwDepYALofMMNNCilhw9ft46046005c\nPplGucjA56df7tGXGihjMfqDAT6bF1nKoRkikmJis0QZmjLmqIddciGZEjWzgBwP4FMVLL0Kii5h\ns8uMQlbsioORs4NRb6M4+5gOcJUDfPTZXW7dusZEMomCHdna5eC4Tb+WZW4hjsM3xsbxY4o7JVz+\nPoWdNEsXl4jdmMQ3lsDQ8tQzQL1Ce2Rh4tYS6lmBzP4ZZUPD6YXk3Aw2JYZNKxHxuFn/8h7l2j7e\n0CqupkEPHUkJI7g9dApnCC0RXehTEk36tS4Lr68yYZuiZwoU2x1G6gBDizEWc+JotvDF49i6fTZP\nMjT3ayS+cZvEShjPpJ3zvRIYIlMzKySicaR4gvMX23QbOrmzTaLOCMPhCBwirX6LjcfP+cH33mZs\ncY2tx0947Xvf4fy0QjJsp9Y4o6ePQIhRrJaxOqbxWQQOcxlu375JbnsD22ycd269QqnVo17KMpNI\nEDJMHJMxXvziHpELV7CZVtLZKlIoQiAww9HBcwwR0rUcV29ewrVwkcLmC7JPTpi/dhHfhJd+zYdL\nrjAxeYF+p07q2mWKJZVLSwnm51fY+M3PWbiQQHb7ESwy6eNNUHtcvLaGEZd4+dUm88th1PM2xdMi\na68mODlVGBdshNwiB0/XufWD99n69TOuvH+Tg0/28V2Z5quPPwfgmz/4h0y5JXoDG630GZZokKFN\nJRmeoacZ1DUre3vb3Ll2hS/X73N+coIRsJBIzHBwuMf111YYjY0jHFcZDUwO9BoRD+Q7ZQKKDTVb\nJicaJF0RcuUjCidlpuKzPNt4ypUPv0svm0ExXWzuPCJdyfDej77D5//2Zww1gbGxAO3aEIvHytrM\nPEeWPcqnI3yxJLuP1sGuIPb6DJUu2WYRpy7iFKGeHhJYCnL6LI1VCZJM+Xj+6D4hmwNnPEp68wWT\nq9OMBBuNRo/8wQsePP0aLvlf/Xf/FDHixvTHsUhRdCoolg5j4wEOPt8ilx2h9oe4k3OotQKi1Mdp\nj1N6sksl08F0qtQKPVoWC02phDywIzR61Orn2PtNFE+E8OQE4eU1pkNjWFM+pPEI9qCV7bM81UoB\nv+EgOxoSDvo5388yJkZxpOw4lADulJfybx6Sr9UJKHYEh4Tg6HCW7eNBYcyTQmq26DdapGJLDCw9\nNtY38XhEikMV1/mQstPBt751m+0Xp5jZfYIzs1gjLpzBEaVnu+TPz7j/t7VAt1//Hmh2RMVGpdFj\ndtHP5OVlxFGDbtMG8oBqIc94NIjD6qWrqWxvPKLQGSANmyRupth6sEVkMYVTE9nLDZmfSdFpl9Bs\nAq7YLAGXhCc8JDo1i3M5RDw8R7lUonnaxhcKksunGYw02qpGcCYCsUnccpvqiyI1W5Pp6Vn87hj1\n7CYDpx1PxMls8gJCYBKf1UKfESIKqtHGNCSkOQd2MUF8No5ks3PyPAMWK+1KnpxTxdLScVi9jC9M\nobgVXA4nQ9nCb//TL/nHf/RjTtuHRAIBAjEv1j60HBpui0GtOqKRPmdicoKYf5JiqYsr6uTGykVy\nPRWzdkJhv4TW7uJ0BbALEl3nkHgsgubwcpqrMzYXw26zMOpBdfuAw6MdXGEvgZhEfOUa0ViCkeRF\nVwcEHB6qtSaC4GRp2Y0xdGMbWSgWM1hs4wxFAyXgJjwVxaJaGJgaLdFEstg43njMaGTj9soq2cIT\njmoFfF2F3fMDyntbaC0dSXbg9znwh+M008ckFybwLXkwrfDi8S7rz57w3h/9MXsNFepFPK8E6WkN\n1DMFORhnYBHxWLrE5lbIn71gNpakNpTJFpvY/S5OO2WY8mLmQJPDhGY8OKxDmo8PUMQsOUHHrHpJ\nP9unWigxnzBpxeepj86QXQai0w2M4+/mOVY1DKGFV6xTcQeweUdcnHmTs3SWkiQwaPto9SpM+Lt0\nj0+JeKZpzk1y1R5Csx0yqNcohiZQEjJx3wK+ogNheIQnsoptTcaqRXG5XQzOtwjKNgKLCqWtDEhh\nTk/vsnN4wp/8j38POFF//q//9Kerb48jOSJ0hl2wWfCrOsLQoNmQcZkjXG4YoKOYQaptmZCgYrWa\nuBoS9a7KQKzgGI3RUrsQt6GqGi4tgNSsIcgKfcmFfWjFsA8I4GBQ69H1dhHqDUb1Ht0xE1fRRIr6\nEVsWBv0KtWYVt+7AJrdxhZw4ei4Qqjg7LnodA1PuoVZBCDjQak0CIztN2YXVJWBDoiEMUNwmerNL\nZyxGp9nHOVSh7kQSh4zKBvaoQr2mY3N6MNoOPv79l6xemSe8fBOnzcaLux/TGZaYuHqLQCiKy20j\nt3OIZnQwajZUW5PAzDSiEcJuNmnlNarn5yhKF487QO1swKCTxT0m4vZHSE3MIA2s6HKX+58+JXlx\nGtGpEHIuUTza4aR4QMo/QyilUenojMcEdjJHWOUJ/PUqgSvXmQol6ch9ZKNOfuMQs2NhcsZBeHqV\nwFyKXr1APn1A0O5j5UqKoNOONqhRLw2p1o4Qel2U8WmK5imtvSMCLgF6XWz4KNFG8HiQ9C5OxcGD\n+49549vvI8suuh0Ln9/9OVc//Dbbf/ERsxcuYnTqTN9I0UgXGU85EMd9dHbqFLQsC1dvUt98SXfY\nx+22E56eoVnI4Az70asDLr+9yuef/BaCEdwIZGtlBntV5n5wk9phDY8sYXRlSsU888lVusMOmcN1\nxqPzZEonFDM5HEsJiHp5+bNPGRP8uFJBfveXv+LtH7/Ngy8fMBcJE5yd4yyb5s4H36S0v4uiWggE\nQnQddoS6ii4oHO1vc/mDm9y7/yXNzpBQKsawoiJZ22gjhdmEn/2dU57/7bommUigNprkqhnmUzc4\nKpZZnPJitU1S2X3KTGSCyNoSxWoDTzDAyq2L5L7Yxi76uPbBGxx8tUflsMDcG3NUuyZTq1dZ/2qb\nyZkkuUqZaGiMC7Ov8uTZU97+Jz+knX1J/MIU5TON3sunOMbD2GeWWbh8EXexw06+wI033sM36+Kr\nu58zuRbl5fMdhLANOT2gaZ4TaGv4VtYoVQs0yi3is2M0D7vMrU3w5OE644EZDrezzH97ldaTDNEp\nO4mJKLaJMcpnNUp9K7aARtAX52RrH+u4n4f3vo70x00XK8kVzh8d4fbB0BRxeyZBHPHiJM1Y0EK3\nVEId9BkPOjgtVPEtxYkFZ3HELKQuzOLzeQgkowwFJ6NyEbdbpG+NM/fWKmcvdzFtMq6hha8+e0jj\nrEhlPUOzOqBjaTM5e42gP0Hh8AjN6eNCzE9WzRJNhdCKLUrnOaZvr2G3ODAmfTz85W9J7zdwGlkG\nuOj1qrDmx9GpE1ueJu5IMJuc5CRzRHEjizBrJSjCQUnF2sjij0XoqWW2P93ClVhlPGxi9p188sVn\nALz9jTuoqkb3sMholGdgdbD71RGrF1cJxsY4y9aQvBZyR03U6hlHm2cMDCcGIl6Hi85ZBsNpUMyW\nKTU1DHsO3fAwdHRQhkESfgt4vLhTCXYOd0nvHnK2m8UfjBK+MIfd1WQ8dhFJFhFEg+XkReyuPk8/\ne4Q2EP9v7t6r2bLDvrNb+6QdTs7x5pz6dgYa6EaDAAgSEimRChyOVbZKKnn84CdRHpUf+WpZM5L9\n4DdXucr2jGokesYSAUokkRsd0Ln79s3p3HvPPTmHvc/ZyQ/4FOa3WFX/9V8/rr8+iVAP4gjKiON+\ncqk4pcKAYNyDprron3Y5e/wcfdDF6Mi4JgWaX+2QjoU4Ku+w8+KAxXcWGBdFAisr6B4br+xnLrPI\naNikHzQQPX6qPY3P/t+fM7W8BIbF2voMxe0agqPL4aM8cjqAONKo1C2sXJjy/ecIWhdcAt61JWJS\nhIrewW7XUWaWcbta3Hv1iLQVwPLEEM0Rkq5wtvOSdDYAnizBRJCEP42VNmi90iieH1HfPER12+Qy\nIY52t/CoLkrtU5ReFDuaxhfTUAYBhu42Z/c28CWC5Hf2yG8/p7pfpn94wHHrGLuj4xJG9BWZ7Pwy\n3a0mveoWsi2CNcI17UHyCjj8QXaPnjGzPot3bpHqw2cUih0cZp1Hj1/yBze/x6TfZikUJNpdpGeM\noeXqZHoGPmtE17RYTWapLTjRjpqcWEdMHaiE5C5GIkXy4SFHowZO1UAIN+imxpjLTNGPBjgcFlGa\nfeJhmVFUo7sxxJkMMLc0jdb3UNl5RdkocRqyudRRGBYb1JbewNt20D43aRVaWBdizItRxjoNxr4z\nTocMrvAk1V6X1xJR7tTvc/ysxjAqEk4n8BlNSmdlWto2qu2iLlTob3XJ105xz0NAC7FV6DHnDtN3\nullfmEH2ZLj34iE/+YvfgE7UX//NX/30Wxev0dKdBJw9RtKI0MiJGA2hOnQEy6JldnE0DdySHwZl\nOp4ow4BJF5NEWKGvemmJTbyKF0dJB8EkrPs497YRhTCm4sY2NNyCgmH4kMMmaj+M5RowcDrJBvw4\nBxLukUQ1VEPRU3h8btxum67DQtWG4A4zHDjxCk70RI9eIUJUGNHVTMKmn0qkid3pgODD0TlHCii4\ne306nghysUJswsJwgyH5qOnnGBE3I8tHxNOn4Y3h0OGzn9/h8uV3CbpUKrUGtbMWQTHL8DBPvd2n\nXajh0YKIWoOpSxextSLxhYsErDZD20W9auCxipRHCisL83giATqDIaHpLKHgOPn7j4isL+Aywd06\nJ5hN4XAruAwHu5t5AkqPk+YAxZ2lcrTPwbMSAVshO5Nl8vVLJJwiT3aeMCGHEdQg+rCNe2GcSDaB\nVzXphiXMgEH9rEAstkJ0UqZ92qHrtnEPBxSLPQLZNSa9HnZ3N3AYPqZWL1I/r5HMzND1WCzHZrFj\nBnp3yL27X/P+pfep6CqBlMilzBrbn97j6h/c5OigwCikEjJ0vJ5Zjnt1XG6N+LWLHPzzA8bmo4yl\n1rn/6C4x0yag5CjlW8hKmMNXh+yUtlm5/m3a++fs7W4wM+ekrLXZ/OVXXPnBNUIxBSsiYjY3Kb/s\nEloOEVtZZv8Xv+bKlSs0WjLlwintUoXb31nnrGHw8ME/88M//zf8l//7H7h8Y5Wh3WJ3t8utN19n\n8+kG4nicyrBPdCTRLpzTEVy8+e0LlI77VLaO+d4f/T7P7rygLWl0jTKBlUl65wUMOYDWHfLw0TfQ\n8F/92X+NoqSRUzIHr3bJZEQe/OM9ktdjpHOT/MsXv+ba7CUaR0fEsmnu/D+PeO9P30WXhmw92WX5\nxgJH94/Jn22RDripbpyz+vZVamcNSvtnWFKI2mmF8bEFys0DcGbZ/mKD67dX6dRUnGEn1fsPcLqH\nlIdOUM/ZPHzG1OQUVjDJ2Zen3Hj7Tdov86heP2++f5snX35NOhum9GqLb3/wWzz9+CWXvnWF5zv7\nTK9c47xaYC4WIBIKYTgGfPHlU6RIiPLdPaa/s4QrX0B1RrBVD+MzPk4a5zx98M1581//5C+puSr0\nNnYp7Z0j6yZPv9giGfFB38bRBfoWgl2BbAB3Yon8P36IpnTxJ5OIQhRBUkkoFo7SAFNUUcMTzEc9\niBEvWVnmcL+B1dJQz2oIRhi/t0djr0CnP8DvkenYA1IRF2bPyezrWXa3yzQ7LpKJLPnNc86Km0jB\nFLFMksTaKjevXkCX3GibRbqFOh67z9ArU3txxN7mE17ZLdTaiItvz9IrCdgjF4Gkh7SUQRQNwtk4\nmuhA1s8QcqtojR6ffvaNM/fBjTdpl4tUW2V8uSjqoIZX9OCKJfAFRKanZ0lMpFgYm4PpBCFNRbW8\nJOYCRKQ+paYDO6DgrlYwOx2cUgqvs47cs/DHPURmpxk6JLZf7NE83iJJAIc7QmdwxLDmIDEVwXSO\nKJ8bGGoJs1aj8OqYluWha7YYnsF+sUi3+JBaVeZ4swRai5P7u1h6B384zKjXxelXqddtuoMGmu1l\ndm2Bxn6Tbt2Jp1niqHhIt+1hLDmBP53ArfQ5Ke8wHkhT77noV7b48ldf8e5br+EaiIytLuJDQa2X\nqbXbdBoaEzNJ4lM5Xt69g0NX6cgOQp4gtUqLjEvAjKWYDE5ghxQ0w2Q9MclWscrAUEl7ZKpCD4cF\n2cwCpYcbHG9u4h1PMKHM4FvKYfcK1N0j3Hs1iqMS0xPrdA73mLp0g2QywvHeNs2zKqXqLv3dPJHp\nLEoqQu2wTSThZOq1K1gIyJqGLAg0tQi5nMDpxiZ9wweWQNnZJGAkGV9PUVEVDp49Qmkq9IUgqZxC\npd1Gzev4HW7uPn3E6z/4ESdHLzmP9zk5ecFMUkIwTjjtymyX2oRDFvGpBNLOAYI/wXQhyIt3opSf\n9nH5Y4TWZDrne6RnLjIXjhB51KMx2MBhGkz4swyGGgXBxNZN1AsGix0XJ6bI2eEOvlKFiewFQuUY\nvUWFU5fMREKnO9rhsJwnEY/yWkhiJ6dQqJhoL9o4vA40XKQTLnZMAX8ri6GMyIbivLrzjMlYCvdY\niIFjkvGAiGPk55n6JaOyRuOkA5IFdhC3nMIIVbBKNvrggPubh/z5X/z5//8h6m/+17/56cytOTwo\nOFQLQVVp2goOl0FEVBh4bfwOkUF4iDrqEo9naI1MBLNH3ClQGSgIni7BjhdDdWNNKISaCoTAZw1R\nXSpqtY1tmfS6JmlJwTBc6PUiPt2FJEQ4r6tIXp221cQKJeg1agQDQfpmm1DTSy8goQgDhLaTaqKB\npySgxL0MtTYjj4egU8LpHCDGfBi9DlY8gNvjY9i0iScNGgMbuW1SbkvoUgOXniHT9+JxV+h1Ixh2\nC6Xo5pNP7vPm3BqqWscnORAccPm7qzh1J3bOor2zy/oHK5SH0K+WKJZt5pajCHKY7sBFNukmmFyh\n3xhwerSD6DdIpnIEej5OdndoVBtMpaY5OnuASJinW8dkkhGcVhSzuY8tzeLqVOnWSgjeKIZ5ij0C\no6HSdXqIyx729/Zo7BfZLe7iT3monPYZnjYJjsUJDbv4nF4Q07ROnqLLfvaentLqlYinxtF6NgvX\nx8iXzuB8gD8XoNxWqXHKzMU4sahEJBxnYHrpFUvcf/A1Nz/4FrMrY3RenTPyD9k4fIpTimC6mkxG\nF/AGIzhMnYnFCE8+3Gf50jQZOcenX98hlY6zurLAxnaf3qiGHTHJ37nHlT/7ALFo4xcl0hNTROJz\nRMIyr7464IM/+z1aL5u8OigyFY1Q6wmoITfZUIin/3yXnqmQHI8xnUnTs3QM1eTBR5+w/oc3KT09\n4nQjz/ff/x6mFMYnRnDVuty9+4D1b19jcLBDuSnQ7VaJrMzTcxTxOT2kc+NMLATZeXSMnPVwbfoS\nrWGd6ksVp2YhCW2sSpuvXnwDDauTF6j3G3jDUTKKQmGnwuLkOJYg4NIl4nKI3Y2XSHGZVrXMrW/f\n5MEn/5m5iddo1Eb0Xj6l064TdecwlC5O28/Zzi7eHsSvzDDURsTSPoqnT1gcfwPN1Sfz5gVMdcDB\nwSu0msz8xct02i1GtS52rc/Se9eo3CuTr51w6eprFJ89ZaeR5+33brJzUGL60irNWp14KEd++4hL\nP7qJXrKIT7l5+sVTMtgUWlWW37zMaemcaNCDT85i2l0cqSxG36BcaJOL+nAnJFbW3+Rn/+E/ADCZ\nktDrThzRGKGAhDVoEJ6YRhQrtIslRjNRFq9OMOr4Ob1TJOYzkCfHUTcPWJq8zrHaJBcOkD8rk5uf\nAyGIe2TA8iySR+T585cIlTb2UGThxjLJC34mJtcJzsg082Umrl8lbHoJxiyO7D4ue0DnkcrajStE\nViRGTpNKs0yv3SeKTA+V0xcHtM46BCYn8aVTqEE/1Lu0TyqgR8Hj4vp7C2inI57deUS9dc7gbERn\nqOHApPSyzdyti/QEB0pxgO2o8qtPvim4T2TG8MkRJMmm73ETIIji1ilunjEc5tnbyJNb+0ZQf/7J\nF9Q6ApfWpnHJFuF0gLPWEeLRiKoUZDh0kPO4yVx5g2R2HmssSWmjx+njLex6nv4oQfrya4Rn04y2\n9+nW2jR1MNUSngkPzc0aVcuNpll4bR2/T8Zo9RCDHmhYDJ0lVEMgdymFNDnD4uI0/ZDO+FSQg1cD\nYj4X869NMJFK0TcH+KaTNAcFGsYArSfTc5/TPG6StmyePjlCcimcbndpNJ8gCCZ3P3/E9NxFFMGJ\nLChYQZ3WQZHowhSJSws4PD6qdw+pWjVEAzxOcBkiWrPObqmEcXJOUa+h1yqEVybxuC32d5qI3RYF\nR5v2423ErII4nsUhGtRLPSLXFxj2CnhsH+HkGNnFZepGD5cx5GizgS24yebCjBJOBFvi6KxEVHdy\n6hsRnV5ADDoJxxT8oTUCHRPbWad+1iO5dAkPFZyRKKncBJIUwGh36VsWwUGLo943iZ9mW+fSB28Q\nmYxjjDyEUnEa5hCt3uDxiyf81g/fpSCek9xQGF/KcfiyRL/uxdksM0qMOO/ViYkBcsnLlLplYvMz\npFxeJL1FdXhKs+ViPH2ZraiGPoKh20Nj4xQRB4LsRvTMIcyqOKQU4baHuk8luq0TSGfph4Psbu3S\nLR4T0E1W19IYRoppxaCXm2Nw95xB95xBs8/K3CJytk/u6hwes4W5WaJw+hxvK8TiSpKNwx0WVmZp\n3W8ixRVKpfus+HPkqw2Gdhjp4jLm1iHy4jqdwTF1oUsisUpfG5KfTrL92Rf85N/+Bnzn/e2//59+\neu07cxhmF1fGwml6caTc+AQJzatByWaoOLDUMLJs4Rg0iLjdaF2NTjCO2amBY0QgIRDweTHdHRTT\nRdV1jjsYw+VWUBwyptlHkDX0thOHq0tzOCKYzKKqNjptvB4funuEPQpiG07oOBBDIk2/C3ddo++V\nwDDIiklq7Ta+0ICuQyRqOFH1AQNRROt1cSoBhiWdCDKDQJ2eLiIpDoayTECWcLpF/JJMu6NhuZ1Y\nHR1BHCI5Anz80T3WvvM+M0sZTrZV1m6u062d4QiFkFHASOEdSey/3EM0BFJiCOeCj9EQPHIPy3Li\ntgW8DhgWGtRGJSrVOm6jy4laR7YVkkmBZr6BuDpD+zBPJB3EjLkp7p1z4co8gnPE0CUyc3Ga8lYd\nRzCKPmpT6lRR+066egNTd2DZGuXBAKsu44n2kOMTuEYyNVNCbPY52TtlpJVwRm3skxHJtTm2n3/N\ncCCTu7xOCo3s9BqdgwpRn4IvE2OoKThMkfOjIr3CIY9fbnDznTdpltpIERel8ybrE9P082W6PZlg\nxIWldfnyi3v4nDqRN+bYfVhgftxLdmqKV8/uk/LFEXMRivk91q/OcrbT5bS4i6QIlGs9PE6L0fku\nW+UCP/g3v8Pf/fX/juwwkKYjtNtlao/qLGRj9CgxNjXO2tuv8+Hf/ydEe0C376XbqDGWSaA+r7Jw\n7QbNyibFfguhY6MOVaYWZzk4e8HRxgF+ZCYvX6Gp68x5Qzx+cU4mmaF0fsxpp4ZjcM7E67f4+Gc/\n49qNGySdQYzBCDPkIDa/yD9/+BEAt668he0s09ztsHpjlv1GEQduVClKfvshTbHPpQsruLxZ+udn\nnG6dcPEH32Pz2SauVpXcykVy07PkK7s0Tpokc26q7TNcMwpmucFUMMhZvoHiy3Ci72EOdXYfPsZv\n+FhauUj7ZJOWqlPoN/Hio+u2Sah+8oVNrt+Y4dFnu0hjCktzU2w/OGJycoHnm18TsEaclU8IReCo\neEK9VkKttnjtex9wulVlYNY4PNvjrbfe4cWzA9pClbk3Fjn5+pDkQgiz08SstqmrAmbc4Jd//3MA\n5mcWcIUN3nz3Cs+/fkFo8jKDRgNjaYzibp7p4AKFURNFDLNwe478y3OcE27m5m+Dq095f4vjch0r\nNoav7yYRsim92qWr5on6bLReFNkjk8q46ZtQOxnx8uETcrlxylYLyYzjlatsbx1TLTU5vbcLUT+B\nVofDQpG9p0ckvAGWlye5f+cZi/NppIZO4WyDhDcNRomtB9u0Kh3soJfVt2JYgoujB2Wazip4wlxZ\nfYOLP7yMqzUgEIjT7VZ59uAuznAIIyRSN/vc+/U3EPX297/F+pVL2JLM4LCG4G5RKnkYeXu49El0\nUWV+fJVavcb4pXXGl3JEBT++ILw8rGEW3HjjIoKhsnB5EWSdfGHHEAAAIABJREFUl4+e0qrXUC2d\n1tE26W/NoA3cLExKOBx+Dp5+gTHywayCS69xulvC09JxCzpKzMXMaxfIrS4wKA5pdso4nH5sBCYu\nvM3yxCROr0zE0ulKffbu7LD/qI6cMpl87wJ+NUv1+SH50zwnewf4PE4yjhwXb66hWQLh0RBnKIkR\n6ZGbThNLBjl+UsDpcPP1w0f893/0pyg+GPpCtEc6vXqDzOIM3oqBx6shj6covazSGbZx9CUMh4ke\nGBKzFdLjq4RlL2LaR05JokkeFnMyjpCT0sMSDtuFS/YwmZvh5KxM1PTgd8rkN16RXU1SL51ytl1g\nLDyFKxRgam2adCjDzsYmXpeOOuhSOj/FbXlRuwKuzh4eR5ijl48QdGh1dyjWW4wtXSEbTlJvN0Bw\n0Djbp1M7Ibm2yOL1C3jnZ0lNyYSdEYLr08iCh5FRpdEyKXz+Au+gQ+D1Zb74+S/449/9AybcDvwd\nP4PgACERRUwNMcodQtdWuf3WCpWRm/rdX2IFcvTcPYKGTSCVxXB28JjTnJ9us564RPv4iMrWJunv\nXcD2mOxv97AHbdYc4yzdSrNTaRHVPQykKEXVZMLZxTEeJvDaOtqEyunHZ8zFlnh00uTimEx8NsCj\nbp+1UBTLG6evmfQfHVLabiJdjJOemOZcO6DXqeBpD5nspREuuhF7fpr723xZzRMdGazfnsBzoPDm\n21cZBrysKS600zwJQ8KhWMRGQ+7ef8hP/vI3AKL+6m//3U+X376O7DGhauL2D+gNhoi6ilQPooRF\nBg2DmEun3VfQfTGsoYoguPAaKi7TwjTjBIIBKo4OgXIAdWBhuAWGgF5xoxgCbiUIfZWhIOPxuul2\nOiiWgMsaIKZydGyNsMON3eoxSmjg0rFdNka9jT4ycbnbCJEEnf6AiGNIU9UIS1EclgNNhbAzQM9j\nYkk6ghVmpAmEJZFm1catd/HKIYwBSKYDp1xFVsLU7TriyKbn0BHrTj795DHfXV9k7MI16vUqzeMO\npy+rlBsDClvb+MZFJFwcVkqIEZHcm6u43RLO0yIen8SwVsc1sFB8UQ56W9D343M7mbo0S/6siOyE\n7OxF6md92k9f0NAEhLJGNJgkGpB4vvWKmeuXyKS87D9roreOkdICotvL5Teukj95gtaXEEdd5MQ8\nSsfCm7CxGzqtbgM5Hkf0NXj8aBNdUrE1m+Vr1ylXThiLiqSDMcYmpvAZNm21z8Ote7QbTa7feotB\nuYvbMnApGuXdEqYw5NGTZ/zgO2/jyySgoHO+fUz4jWu0rAazXoU7Xz3AlXIRda9wXtyisD9i+Xoc\nCHK+USC4PsOTn33GhZtXODndpHBUYv79m9QqVeh40GplWg4n3ZHJ+q2LbHx8l9/7ox9x/PUxoidF\nqVDlxjsLqGEvASNIs9+gvbVPauEWiTEF3XIx0i3Wbq9S3npFpZbn4u+9S7sGyggqhRfslM947YMb\nuJoten0vzaMnrC5e4suPP+Od96/z1a8eMz87S+mkgRFWePqrTb79h9/n1T/cY/aNeXafPWThzVt8\n+U+f8GLzm5mTmcU0V+du0/E1efjRPW69/6/Y2bjDyvoySyvX2Xi8z8HRJnbQizBq4ptc4ezRCZrU\nYXH9BoPOAarWp122uf6jN9GaOqnEPOWXAy5/7zaf/ssXvP17NymVN/EFsvT1AZdvf5uDzz5HmokS\nsOMcFUrc+J33ULVDagURj1Xjzfc/YPPODqFUktpelbH1C8g+i+O797h8/RrVxhCv32TQDWLUO7zz\n+79D8bDCaaNMKhMkdWEZpalRfbXN7Ns3EQ+HRMcURobC4189JRKMEr+9zsvNz3EODb767B4A371x\nkzl3kE67T+WwgFY7oWKNiBYb9PGjTZp4qxb1VzUsoUdk9gLReAxpLEVrYNBvVMmuLBLpO0nlvNT9\nUbqWh/bzM6LXLuONjUguTfLoP/+awnGL8RkbAR/PDl+h+JKMLQWZiM/h96cRGbByYRL9pIt40cuo\n7yAqebh08zZNyUFwMcQX//HXLH7nBuW2i16oSiid4sLN66Svr+P3S+R8AZwRP2u5JQJKgOlMgkef\n38XVrQBudk9fEbq6TlL34VQH+IIia9lV/v5n/wDAj7//A0ytTf7ZGT1DQ8r5uPDuFfzRCfwZkQm/\ngDMeYevXD1FGHeiYfF14SvWwg+jWWPr2NMXNEppDJueV6Z3USF9IgyCj9yES9ZGZzuBrtOk5FaJu\nkZqg43SGUc0ySxPrRFMi1abJ5TdWiU/NYqoDZEmhUSgTl8IsvZbDPRNEDHhw6EO2N77mZKdM4WWX\nkeli5uY8F5av8uyTLzl6sYMqd9GdOiPbhUtWuHx5gqHLJCB5OesNMHsVZpYWUGQH2BEsv4PQWI5P\nP/wFU/MX2CmdMbewQEyycPckPKkgRshNffOEjUf3yE278E3MsnpzilEwhL53xuK1KXyJEE5/DHXU\n5OjBJiFLZDjycPj1FlJCwkpEEE5rvNreQMJmUD7irFSk1u3RM50cPt/C6DjQnQ1mlsc5evaKvdoO\nPUNnYm2F40d7+CWRydurdPaaCHqAiayXsdybRJ0Gz7arpEI+pudT3H3yGXrHZuHCRY43arT7Lprt\nBif5DSRRJmROE8q6cApuxGGbgwdtCoUj5pdyhDNefIKXjz78kGvff4fBMwv7gk5v5GdQVhh3wJ5j\nxFpfo1dXMZshGv0OeqJH89EBhVyXoiqx9fljzs6qJCYnMaodSnYN5VYWs5LnfBumZhM4Egb13hln\nZ06ikgN730aPWlyccZHPC6jjIerWDrdKy6jpEaOdY0KZCEWHRdRtsBKcpdlTOBzcYZJpnhX3WPdM\nMPLJ5KIJcrMRAucycmKN8+YrXJLMiy83cSYELqx8i4mrEY4+PqInOyhpHpLFAilxkZangiPc5bzf\np9yu8mJjl3/7l78BYvn//L/81U+/+9ZFynoN2RXFdug4Q140TUP3KlQHLSyPiSGC5ZcZDlSCQT+W\n7KepDggaXiyviOVQGfRs+l0T0gJKC9Swg4THxpINTMnCsD3YooDcMnG4XQhphYHtR2h3cKsWlmuI\n5HYhSCZ6zYFTdGMYfnJegU5XI+rzoghNTFXAcmYZjmxEbYDt9OBFRBsICCMLr6RiCxq6T8Tn03Ag\n0et3cSkCbVcXX9mmqki4DDAVGbfLxHYofPnh11y4+BanO3vk5ic439ln/Q9v0Tw8R3Z50OoG3gvj\nmMVz1q5exzu00DtD9jaOSXhnEZN+Xn31FXu1EpozwLvXr2Cncmw8e4rU01i89Ro+l8jm4RaCAbEx\nJ7WKQPT6JLLHQyQ3gxn24qi6cTk9OF1eWgWNvjkk5U1Qb5xgekIEs2PYwhDBXaejjlD1AaYdIhCJ\n4nYGsbp1JsYimAMXzrEkqUiY579+RlMPkklLNBqH7D3NM3IojAwXRHUUb45nn92hst+laxeIJOPc\n/fI+377xAXZLYCB70DwVYrKfbuGUqsvDrdWr+MIBCoMCE+4JZq7P89X/9S8EAhblmoqvNUScsOhZ\nI/yuZVJrk9Q/esrkhJfoVBL9zEHL0+Odldf54v/4GZHZy7RPysSuZ5nIShzsdBhbSmCcDDgo1slc\nvcCgXWPn+WPMsoDQzDP12xf55H/7Ry7/7g84LxywOD7J0fMC/X6Rpe9f4jRf5fDeEcGpEFOLEdqq\nSCg3QtEVdJ+FVROYWl9AjsocfLbFO2+/DprMqXrK1vEWojNIVvJS68HDJ99s5/34v/sTjKqJzyuh\nuCI0fAazs/NIA5mtOx/z9o+/x+7TbdrHdSLr13ANa6y8tsJxYZtSpUlodp2z41dIjj5Vp5tG4ZiV\n+St4EnW2Pv+KZGKVV893WZ57neKrMkazidhrsP7DWziqQx4UXnDtvdd4+H/+M5Kp8+Z313D7xrn3\n0c8RHS6SF+M4Yjb4Bc6rZ5QPzxjEHDQKRa5fexdLGtDonSF6/OwVXrE4tkDIHaUnVZGVNC8fPSF9\n6Qo7T57jV9LsbRwQGw+wv7/N7fdv0j930qu7+frhN7HN119foWopGNEYk5cn0LoCptvm0g++QyCW\noH7nKTOZVeQFJwG3h2h6jtqzY0z/GUHDTy9kI53pDCNd7I4f2zXk/N4DdK3N2GwcTzdMZ2Tg6kgM\nnVWO9hvEXRp1w8lUSiSbmsWI9NGHDqyyTdl0s/r6EmpdIZdNMXT5OO0X0C2ZrOlk4bUb9Lw9ppQY\nYnNAtWnR0tp481VcrT7dQRfb7SJfaCI0GxSGZUZGm2Bsgtxkhuz8NIWjQ4zBMe6lNIOdJgeVAvfv\nfQOVv//HPyTfG3F2ekoo6mFidoGMP83J8684rpYY1FpUzjtE5RA+0Y8qmoTNDOMXlggE0viHCoOe\ngCvaZjI8xfbpFqHxWUKCm/TYFOFUjGFT5TS/Qa3kJH1thcZBHk1vgwDa/oj60RmTb7yG6TTxShKy\nZdNsechkZHrNBpJP5tX2IXZdIBkSKaktlrITNO0iusfNhbFJhiPY3d0m4Akw/f57GK1z3GaE12+s\n0GwNiXmyWM4eerFM7OIbyD6DUqdFaWOPzqDFtJTm57/8kNXleRyeFuOrK1iyxGH5EPXFIVZM5Gzz\nCNsfZGZxmf27T0mMxzl7coRmOqjU2/Q6Mv5wj6h/mmDWhy+gUBhp9GuHtDQXQg/G3hqjdlrDlmQC\nkp/p+SXCK7NEjSAhb5qZmTFiKQXddKN2hqwtZ8kEcmiyQL28izM2TsSOcHa6yTCikZy9QatXYoCL\nQH/IqaESzYRRCwYju4Kj5qZfb6CKBi6XikcNEoomiXodnJgtunmDkBhFjogMSntUT/P0CnXOW3Ue\nPXrMH7z1Y3rhY2JaCiMc5IrLYmB6cIUsfN0ArlwY/6hJciGHiIFr9TpB3YnsmiN3eQKr2eTCio9G\n/hQmxxkLpzmVBBZSFs2XNrHgNPXTAuW+j+Rcmg2hw9zBOQM9TTO8i9QwWQi8xeHRfQb6COuoy2DN\nor9R5Kjh5eSgQmxWZthUGZ/x02r1kcQoxe4exb0jap4o9bqDynAb71iQl082yISWEXMOiq9eMhyK\nhNLTjPVk6BzREUROlRGB1Cy1E418u4vfO8H25hN+8j/8RhTL/+qn05czRNNjuI0hXd2P5Wqj6y5i\nvj4dwUSwBJS+g57aRVDddFw9hFYTWXbhjXgwvTK63YJeD2d8yKjtxjMmYo96aN0WhhGgKVjIXjdI\nNvhUrL6C7nTiFstoHh1JcmNJTkZ9BY9oM9ACOAc6YWTOhk28chCBNpIWpZWSiQwM1GibfseB5BTp\nhVWGRgu34kRvQET20jHqCFUT1VRw6F1GPg2PJ0fH1yQsaLibQWJ+hW5VRHfa3Pvwa26tLTExOcN5\nY59Od0D20gqpCQ/p2THqxRpqf8Dim5dx9po0o2FiwSCKIGMHbIaNHq8qeaxWD0UdIF4Zp3C3yNVr\nK3QFjagjxd5RHn+jijmXxVEGy2qRW17F7YeAquFrS4wyLjqDGqkMVFvgaQ1pDg4JB2OsXr3E+eYm\nHq8Ho+hkaKrEMlmcHoHyxg6W2WVsaZ3G0TG58RnOPn1MNhni+FzDshqI0Xm88QCDvTJmUCXs99Kv\nlplMpTnePQO/E1/Yj6ppPHrwmCvvv0ZoboYHnz/gjeUk1Y6GrhgUXuTxT6ToaR7CtodWVKZ5fsLt\nd29g+cZQ2ybR2QBOb5K9Xz9hbiLL9uYWc2/Pce/LF0QTYXz2kAu3b1JolFl66yopj5cdtcLeL59j\nRk2CYzl2d16xcnWGQCzDs4//E9PXrqCE0wwKeXoBH42jNt/+4Lu8zG/z+vIyz1oaq6k4fbuOpkWJ\nJgIsTUXZP9xH9njxKz4a5XN8sXl8MQ/66IS+2SExs0R6IsXR9gt2Kodc//7voOhdFMvgvGbjap3y\n1cZzAP7ond8mX2ujRCXq+SOqxxrDdh50L2NLM3z60TO+96Pv4GpZbD95hVcY0O/LBLI5Si+foFot\nwqEx9JablOQiNTfG/uYz+p0+yfVVaq8Oyd7KEZcj1Ow23vEcj5/eR+qOePZoi8tvf5/jj/6J23/2\nhzzJb9J6eszi1Yu0tRHJ62Pc+3STS7EFtp7eZT4zzcLtd3n6dx+RvbFKr3mOv+dDa9cYjJxcnHmD\nhy8+Y6/4kquZafZ2KkhSgv39T7kwfpHjkw3ml6YZW52lfHJMc6vEyOnAdlg8uP9N8uH2B+9yYW4G\n2TZhZDC3toysqDz5+ikdc0TY9iIFg0hhN18/fEj+ZJdgwoHH4aVX6aOfaqijcyp1Eynpp3r/CYGl\nDJYSpVEs0zoskR+dEJ0NoCsy6xcuclQosnB9HdGd4+DOEwZ6h/1qnsXri7T2DtnYvk9sOY7kctE9\n28MbiXK6vU3QYVJqjQiW4H7pIVahzshhYVgq3sw49WKbQeWEeGgOM+5iMJRoCAN84TSZsWmKls3+\nw6cIqoqkhjnY2GTUtVi6usxHH/4CgB/d/m1aoh/neZGL717CbQTZ/Wqf81ETqWHS1vwsvL7GxLyE\nI55j594OutklHhBxBEVGksXQbjKzsEbp+Ij06/O0SiMO9s8ZW4nhc/hwehx0z0tc/M4lNp4+pnmu\nIRkqxtBGHFPQPTLeSJT6wQn7XzzhvFYmv3tCUy1wcghqe490dIrgSgB9JJNIR4kHFLzjCVKLa3ha\nDbrVYwYnVWRFpvbkBUWjiq8xopjfJ19voBkDzosniJMTBMN+SpU+lefbmCON6Zu3MOwB//JPv+B3\n33uXctVmUDlG8HpITU1yWsgznlgjt64wNTuPdlZl5LfxRefwSBbegIf5yRVCmRg7T16QL1WoFPbJ\n7/dpdXvI9SZWUCaYShEUw/jnxhGKNcZv3CQWd9Ae1fH4O3Qt2H7yEM2t4XOlOTp8gaSEMRSTKDEc\nLhNfIofPYzDUHUxGV9h5+AJt2CQ57oa0yGxmgVJrSO/4mIHqIx2PMXF7lowD1FoFbTRiNCphdDrM\nRBIMuk5arjKWaEJ/wPS3bpGOJPCKWX758Yfc+ONv82I7j/v5EWGrgZWQOUInUzY4tMo0nnXRzQi1\n/BlaKIzisPCKWfybdzgsnhNPSsj2OP2ATbxbovagg0/z4ZRMDOI4lQrBqRWC8oB+WOKanuA84+Hl\n4Sln9TwXVR8l9YxaoUxI9TGaTpGSEyQzMcazYzTsFvXjLnJpiD+XwsCg76nR7GUxkllmhDpVX570\nMM1UaJKIPMIU+qT6ELFjNKIuAnU/h1qec08LfFmsYB1Jd5FJLRPMhBiGCjy7s8Ff/MVvQCfqb//d\nX/10/XuLOFsuHL4B/p6MW1VBCOEMBLBtF5bDjcseoDm84OuQ9Qn0hkMkUaJe7THqSoxcfRLOMVqN\nDmLcjV8fINX8uHUnroCOpyohOCsMBwr+1gC3MEBKhHF1ZIS2C7Nn00NEdnroDjUCkSFBU6ajFBFj\nOYaDEmFHgqHYRHY5abSGSF4F2y0yMloosoCqh3F13PgSAp2uQFx10Xa48Ph8GKKboOzGX9OQTBh6\nYnT6Nk71nF5IItwZ8em/PObq9XewfB265zqBkBu3O0U0KGHaIpnJNKVWk2Bc4fzBIaGIi+qgi08f\ncffeFn2ziz8cJhPy42gIRKYXUPw9fDGBkCPJg/s7dKxDpl97l/mZIEIvQH00xB8f5+juPeSZLL2j\nBrXSJifVb2Zi1lfm0B0Nzk9GpFaT7G0Vifh9BBMZzlo1HEMXtGoofhG3z0Ov3KWjNZhYXkUKRNkp\n5EmsLFJub6N13AwbFWLjEfarJTwVk5VrSxhKmHAyRtt2MJmOMbuUof+sxp0Xj/jgnW8RHvoZmjqj\ngcx4YoqTvTKKYhGUA+xtPOXS8mVe5u/iQaYybGGe1lCSLu59+SnjYgwlmaTRqNOtnOMTHfgic5jS\nkEhuia/uPkEcdDkr7+FMOJmwshSqVS5fv0i3VWQyHOfu3/2KgBUit5ilWXPRPHnJ5GvjLCfe5Ozh\nx0jBOIZRYn+3SjQtUKx36OyUGJ/30B94efmiyBs3X0MfqUyu5Xj1q0Nm38rw/Jefc+313+fTv7+H\nP6AgCQKtgU1qYYbd//IFw6iEHZPJRafZPmvxfOM+AD/+k/+WnqjROKjTVOt857ffxTRG6P0RlV6b\npcU4XY+X3Y1fsXr1MkbbIhL1IWbjhLt9Cs+OuP6j73L3408QNInMeICW20/xMI/P7BNPTtM9LWIr\nDiIek3hK5vy0iqMbZWwmyMuvvuTid3+PjY8+5+aPf4gshKkUzqjrKu6GRSiZxBwMGUvP8bj4kpQr\nzWikkskGOPzkCXoyjKPdJbF6ib1nv2Zu+gK9morLA65ug7HJGLX9Y5ZuzqKpCoG4A9MK0DpuE1wO\n444JOEsVvnz4TRfpt37nX6O5mwydTqpnJWzdJDC2TNipsL9xQK9qMDEd42nrFdeuraNrbtSajj/m\nQlAy+GIG51oTvVChe3rG0Ojhys0yPRFG8mWQHDYJv8R5pUYiM8PmvQdMXsrRbjrJTLnwSUle7j1D\nb3TpNwRE2SYZWcLtFinl20zcmETrKQz7eUrNGoGBSjSVxbKanFf9+DwwL84QWwvQe3VGJyDRsHWU\nYBh/v4ddr1Btqhy9KmKU28QnA5wcVWi5Wrx363cRzSpmWuKX//jNd96l995j0hdBjkeQTYGiZWHW\nTtBkgVHLi0exmBiLI8gWoyYkZibxxlKEFB/dVoHmSCdiR5FDNtowguVUSUhBnMMh0lQOzayy/7zM\nqaohnFTQ1CF+w83C8hQT0/OEJ1LU1TLNR9uUDTdSOEBC1mmO+ngbfpyig3RgAudcgu7TPUKTAXY2\nnmEGJjl7tYPfP47tUHHGPWgNAynqIDIRRW348bpEbKfGUFdAMLl86TVsM44pVDn56DmBaT+uZpfA\nRIbS5iZ3vvqa/+ZP/wQlbRF2ZhmfjiNoAsWzDr7lKMOGA83s8/L5Y0Z9B1I2STguIAsKDrcXM95h\ncf4yk9kkVm1IqVtjfXWWibU0wew6Kc+Ily8fE49nOMu3iE9LSN0YVkmjaZk4S2fIGZFhvk0kEkRx\nudjJHzG7uMxIsjl5uY1Ps+mFbI436rTMPFpvQL/TptwcEfXFMeoq+y/zaKZJQtLJvbmCaA748suX\nzF5YIzORYlTooMzE6AyC5J9vU6tUEASLVkXD5/Uguv08evWM508e8f2r/4rUqEe7LxBeWUMrH2Gc\nWpxWKnjDBq1pge7QJHJznMBRHk9xQGAwQEhegDEnSV8A9bTK9BsZalKS1v5DNthhwjVBIj2B8eo5\nA92Ps2DR8XYQAzKucQ2nHiaZnEZzCrQiGaaCYxQ7RdpHKlORNJ7EkJ2dU8L7BeyJHGX3kNDmHu0Z\nC+EsihUsczXt5+TcwZjbx87RAbXzp0x6Z2kIMcSxCCXDjd9nM52WIKYx0Qwitevo3gh44FT7NUK+\nTajm4P6jZ/zkf/wNcKL+/d/89U9v3b6Bc1Sl3ffTy2iIooxlO+n2dJxSC9Pqo3qCRPQRKSlIbdRC\nc7rxalFwDIikvNglN3q8RTISwusQ6Odt+laHQDKOp+GlFhjhaTlxRMCp+HB1vWBWEM0AXbmLZbtR\nqKMbIxC8DFsw9EnIA53OcEDYtug7e/i8Gbq1EnLIg2/UQ3PYxPw+hgb4pAG+iEBz5MLq6oyCTixT\nQJE1FNFFx7aRgjadqg+Hd8Cw30R1ubA0J+6azeefP2Hx8gJ638fSt9boNttUto+YmcjQdjmQuhUc\n2QnC9SGHgwaZ1BQ7//QAW3ai6QJLb8+RVSaQ4jmC0x6Ov9rg/GxAfvuULk30VhNPMENSHDFqWoSn\nQ8jTUwhGn0Bykri/y6MHB5TKNcJBg9jM69j4MIstTL+HWG4Bq7RHaDFOIJxFL3Zp21UGagC9pzMa\ntLGHI+bmU4TiUfL7T2kZJnIHZuevYuhlxi/mMF1ejL1jHCGNbqlHNjNFSPAijjRePHiCPrBpdUc8\nevGQ3//BDyl3LPR6+/9j7z5/LMvz+76/z80557p1K8eu0FXVoTr3dM/05A0zu+RyxaUYtBYoWyKU\nwJVs2mvIerKGSAKUbVKQAMMwRdJYbpqdmZ3Y3TOdu6urK3aFW+HmnMO5+fjBGHxKPnCgiXn9BT/8\ngHPwwQ/fQKl+gK1vAMO4RCKRZtzrY+DidX72J3/B669+lfjRJpaen/mXJ9g9SuJyT5COxfGdcNJM\nJFl6+1XWj54zN+1n7+4DnCobnlkTFuwkExno5DjcyuFbnMZn0RFPhemltXjfOkv87jPUliF81gZt\ng572cZvbDz7n9I3L1KpVms0a5ikf8fUQS2dHqDYbyNQSnYSMgekhatEShVKIcEbO3GvnuP0//R9M\nXH6FndWbXPrVb7B7cxWFATxqC9W9BMoJN7psnODmETvJLSbVGm4/+2J33otzZ+iIZcpinqmLl9m4\n+z4leZ36YRWHvkFVqlIpl5gaOUlk8xkVi4J4sk6hVEDsVbjwxsts/+I+I+cX6DZFolthjMMuLEMW\njvcLOEwK5HIf5UQUhnzc/+AOU0NjDI072UkHuXxlgZ1QmIpcxfOf3KdXF8HjZ9DmoFjK0T+gQ9VT\nsvngKUOjJ4lXdxmdmiS2lce77KVeqjBw/iq3Pvxzrrz1q6w/2yQwOkTs1n1O/+oNHn16F8/EEnsf\nPEYIBNjdWEflkrE4O8rTD/ZZurSAUmvkvf+r0P5r334bV8BOT+9gPDCD0WelGQohNYq0VQ3sdtjO\n1BDzeZQ9PdlUCbunReR2kG67jcKiY9A9SbdaZHLmIinqNI4yrD/aoZ7fwjBgZGTgNGqZjUg6i1an\n4PmzbeSxFlmdimIwSDEUI3D9FAqDFqlnInLvYw7EBs1YA223zs4HNzGYnAwFLFS8ZuKlCsQ1KHVF\nPNPnUPtLhO/vkC21Gb44hbytp5Zv0K10KHfA7FXiaPaIlbL0a9S4Fgbo7Xc52t/D9vIylqaDn73z\nRU3UjTduoLArcBvVZI+yyIU2Mk8ARVtg8OVhXOMuJEF2cTAeAAAgAElEQVSGoWGl263x6Obn9PJR\ncHo5jK2T2gzhmnJxtLXFxn6Q8VEXh3dXiFdqdArg8A9y/PgRc4tLZJIhktkO7ukBwjsZctEDYtEQ\nNmeARkOgUcqgMcioyhXYm3LiMhG1zIzc12Nw0IhBFUAydBBjDRqiRLfVIPg0TK0RJ7MXoqcokil0\nyWWyCGIJjduLzgypTA9loY5nVM/O49sc7ZbxDQsoBQtKjcDm6hHGlpe7T2/x0htvoDR40aCm025T\nyVZopPYJhnbp7Yep7IapIoGgYMSooavqQ67ooO60aBSrfP5om24mQ1GhQkpV6BTKbCfDtLf22AvF\nMRhNNFIp6tU89WCRUi2FYdCHYNZi84ygkNxk8/sUKyIlWYFmXk/qeJ/s1gEtJMx2BQGvDX+fAYNr\nhH57P16djnQ+wcTlRSqCnBGrhoELU1QOiuw/jxOY9pClhbgR4ijXQtnuERPLlFNHUMowND+P2ibH\n5h4idhDDhhLzmIuPf/4LLlx6Da0mR21yjJlWnad1JaMWN3J/gf76KcyiQIUOQjeDXGwjXzhNQSZR\nN+4T++w5upKcJz0tk/sSzeMgJdsgV+dHcLatFOQt9pVVvPPDNL1BunoDtYMgQkOPpZ3HNTBCr91G\nHdtFpm6DvIbR5MRsKJPbSmEQ7NSXBxFqcVSCBqFdJ5zOoT87wZjFQPp5mo7MSnQthH9CidvmYv24\nRCa4SdOgQNSnqR7pSalyhPNh9Ec14qeHcTdFVEKb5p4b1aSZatfJ08ef8c++93egJur3/+gH3z+5\nPEtTV8NjdlDt1ukJoOx16Wn06FoyGgolpkYOQaNDbOYR23JUdgeKTAJRY0DVboCuTbmpQatskmvo\n6GrKqLV25CWQlHWwapAVqnRR0yynKRm6aEtdWqoylpaWkqFFrwAdd/eL1lRPjx5K6hYRo9IMyjaV\nmgyVWkWla0NfUCEXlMgtFqRMgqLKgqHcRlBY6JXryI01rEY7OlGF2qKgUgKDSY4qbUByS4iNLB6P\nC5VWg1LTRiYXuPXuUy4OTtHTynC47egMEkrcaK0tNI0aG7d3GXRYKOoF+rz9FItl8qUWUqaM260g\nGSph0MjBqEct1NnfC6FQNOgoGzhlJjo6OUODdlTmEfY+vUWoWGJmzMLBracMzIxBR4fOqsWn1XOY\nrRIw+9C5tfS0OuLiMQ6fDVnHjlxuorV3jHfJSWKjgdGqQ9HOo/Vp8AaG0QSGUWs1yHJVNLUGxVQU\ntcWDvc9LqarhcPc+bZrIKgLpopyp0VF6PRkrd+9g6umIKzIgdVhdXeP6yy+g0OhJFUK4ZAo0agMy\ntQvHoB5108zKyse88l98leCDY/RDPh7fus/Wo00WX3gBaBB+9hRtpo7jpSV2t56wfPYqj35xm+Wz\nN7j52fsoy7BZ3ccRcCBu1Gj5TTjcGj780SdcOLWMclTgwe37TFw/T6MXIfFgn4nzwxylCrRkDdR2\nPStPN7j4+te4/8Ea8yPDrN15RP/Vc1RWovQtj3Hw808Zee0kpechMtt7qP1mZkdmCR48wDs8RfzB\nDpZxD0fpIB1bD7NNwc7jXZTA+ZduYFIJJMQyT558MeLgha+/jttnxaTQsX3/OXqVisWX3iR0kGR8\ncYq1SIS5E37u3LqLw2RlL5jk/JtLZB8eofTp2P9sF7fRxXExicoNtskRGuEMuecxhs9c4CC+R6uU\nwarSspvYZ2xpCUOrRv6ohtYgkJKZEVdWOfv26zhsUK4m6ZXr7O0ncIxCPCZH51ZRL4p02lWkhg6/\nx0Hk+SOGFq6BmEIqprl04yt89Gc/4Y1fegOZvEsmXyX4ZAOLbpC+5WEEtY16KY7OaEBbrmMweYgf\nJih08kjJIjfvf1EjNuy2Ez1OEg/uEEuk2VlPUmweEUtUOT13lkoG1HR4YfkimdVneBfO0+fy0VH1\nyHQ0BAbdNJtZZE4H6c11tIIG67kJ9FYdJ6bOsnr7IZlknVA5yHi/jZq2SXmnxPn/6gXmFQ7UgwHc\nA2bqx120Non0+jHGc6ex1+KUWkXUeg1LM5cxeKGLg2ZZS+8wRZc2qlEda493ia/EOfnmSfr6hti4\nvYFpSo211qOuTSJZdAwvncaudNBWpsgny5j8Kipil6Xzc6x+8hmhSJVnz764jxdfu4ahrSF0lCOZ\nTtKspsiG0rgVAtrRAcSHeyRWsmwf7hMuhzGWJGpNkXikhFpvYP7UFOtPHpJL1Zjon2UjuIcSC2Pz\nJ7GOamkWSoRDUXxLftQGG65xHfFQBJVYI6s04FFLjJ+aIdMRuXBigf4BL3tPj8CnwCAp6SgaqMst\nMjt55AEZ8eAxpW6FTjRHW9tmdnSBeDWClOmiFmRUm12mxvowyAK0O1VSkR5KYw2l0chR+JCKTIZC\nUmO2qvGNnSCSzGF2D+ANKPjg/Y949eoCWoOStadPOI7X0WlEikciHaGNqO4wPj/L+NwFhl39qLw6\ndPU2epeTcjbIzoMg5koVpcFCpJaiJW8iq1VodfXoJn2MXplGb7SgdfchNkrUOiXEXJWqkKGzWiCT\neErmeJ/JpUUUNjfJnRgzyxfwnrAjFCRU/QHakproXgS1aoSWSYne18KgMGIcslJa2yWUydAuVrEI\nejYyEar1Asl8nGKhiEbbZmpkgqEzPpx6Hx67H/PgJHp9j2a+QltuQCXIwamjUalz66OPefmb89ib\ndpyTLm7vPqYvmsPW52N4Yoo7+/uUWzkcBiVSUkIYmsQLBFf20LpmoZBGvWjCHW1Tn3UhtUSsvmnE\n9SgNjYFUfBdPVUslWCG/lUKbkzPsdpO0NegmPciyRcKOFo10kXQ6ih8PWbmRXF6OQmHAPy3hU2rY\nXd9nzNvHaieCM6BAt9chHs6haHQxK7KoX/ZT16jIi0ocfR4c376MbE/DkE+NpSdiKKswdvsoD1qo\nrGzgFHrUAzKKCiu6Uhwx1eXJ88f8y7/BxHJBkqT/p/LP/y38g27p1377bTo6A5JJjqGVQKGGWsmF\n1FRgMEGpKuEWKvSsVfIVDYLMgMrYoVtoI9U7qHQd2moVCp2AIBoQ0zUs9iqyhp6CpKfjkmFodihW\nKxj0TTR1B1ITKroCQgc6Ch1o5fSkIra6GXlHTVvWoiTJsVnr9FJOFORo9MlQ5yXElkTX0kKTbVFx\nepCUFbStOoqaBW2vg0zTplBTobDXqMgMOBEplY10KiI+n4pSSYVJLSFKNdQVkbZbhfw4wO9+/7/l\nv/zNb1MW7PjVbXpuF30BG+HVBD6NgkNtlXP+OeqSjJJRi6Eu0DBKHNy5x9LFYTbfX6NpsBO4cBLV\n8ySJahqxVkIjOXH06XCOD5FVdHCIWnLlGh1bD221yVEwRGB5mkJon9DxEXMnl+gmmmwldzl78hV0\nesg0WshlIjYBtvfSaGVqxrxWNnYfYsBLplajLeZwWqwMTc5S77Yxu520xRjbmxFy+TS0ZBi6Amq9\nm3a9w+BZC2s7SZZPD4FKTmK1wZG4hrYCGsHJH/6vf8B/929+gGdERvC4QDtawlxRIqJCdEPA1WFv\nu4uhnaCttCN32mh08+gkFdqOk7K6grVax+jzEE7u8dov/Qof/ukP0cst2JwdMiVI5puYFD18dgtF\nKYvcaSV4cxuZ08aJ+XMIyQQH0V1OXTnJ84c5HOfHiW7tYKtKSAGBWDxNIDCA7KBJ1S/QaNRRCz1c\ngkC8W0Eq96NWtFF35Xjmh0hv7dDqKZHqcezXL5B+uErH4kR+FEdu9dLnhN2kiMYg4SzVKShaTF17\nla1P7/JHf/xHAPyjf/wdhIgZWTNBb3qY9PE2w0Mj0GrRSgrUZRLdcgrT6SnqyQayapW6RqJYTGIy\njeKyipi1Lp6FI4xoDLRECa3bjJSNohudJPz0CK1Lg0pMougfoJmJQs2BIGYRnB2U5QAtZx1lRUOx\nk6Hj8GOIl7AP+Khlq8h1GY4qGVz1AFqVRKHYRFIZkeqH1LVmnE4fCbGMUqdg3OUmFIqhLmRpWD3U\n8yXGF0apB3do+6fJF+JoKSIX5QhqFXmpzazbw85BkP/9h1/sivudf/IPMMqHiKXTBIYN1GtJ5DIH\nQrpOSSihtNlRV1KofV7aSoluoow9MMRBsITMWqTV7aDtyTArFZAz09BE6bWUVFRW7O06gtVBlgzE\nDaj8TVoJFRZZGe2wD7kemioryeAevooVUZDRHZRRKVXxe6yk1pLIrDLMcgljT0Yn4KXbKSBJEo0y\nmLQ6YsdPqcosaGxqPIKWVKyByi6BvJ8OMexFHep+LWXkKPeyNB0C9TxoqKBdmqJ0EEXmsvO//N6/\nBeDX/uF38dChVhGQdauUdEqEmhZlp4bLOkqkHsNhkpGv1zC19Ig9CY1OoqOtoCk5UdoVlBItujYF\n8racSqOLQ5CjMrYoV+RodU2qDTWWPiXV/RoKU4u2vk292kKlN6Pr9HC5+9g5SmORGWl5yigOe+i9\ncjq5DhWbEmO5jqSW0xB1aLTQa+QodR10aePo71LMN2lILWw9GQpVD1UHajUPLSmKTGugXQTJWcPQ\ntaEWtJSVaWRNO/q6BC4NSlFNq6/JH/33/45//d3fQ2YTQaOmEGnQtItIOQmDrE1b4cJiTFDreTFL\nDeRdHVVjBaOhR7cgp9xWI8nL6OVmxKYCoRRHZ/TQUVRpqmtoum7EWo2C0MasFFFk2sjscsoKC9Zi\nj7y6iUInopAkeqkeer2Rbv8AkphBlJp0jztIgoDg0qGUK5FQY1YK0KjTa7fINEQs5ha5WheDUkFd\nIUfT1qBugEGSgVxB3miBnoRZEaWjtCJ21FDNI+sJiG0ZNnmHmEaBuV3n3//P/4lfX/gOm5EtAugJ\nmTNIWFHkejS0HUyVLO1+HW1RjkLWxdnRcpQsoxzWYOgacUoSYiGETKckKWhpKLpM6Vwksg3cOhli\nM0anZ6TaqiBv+rC7G3RKBTJNP3ZBjqSDZjVJU1mjoQ2g0pephjTYtUoUQhVln4l6IknbNoBZ6NHM\nQtlZpL9dJS3YKBezOD06Ss0U8owBt6GPvKGIuuNGIR3TSdnI9dL03DBUCSC5lRw322hFAZm2BEk5\nfqWevKzEWidKoVwR/rqM8rc+RAmC8Lf7gF/60pe+9KUvfenvHEmS/toQJft/4yBf+tKXvvSlL33p\nS3/XKP6/PsBfx+t08k/+zT9D6LbI1CssuwZZu7fFkVaFf8DCgmeAD37yCxT9E1y/vMDRxjrJ4yiz\nFxexYmPv/h0qdi9jo3Kihypy6W2KShWLs8OoSyoeb33E2Cu/RXJrBV00i+fkEjZHh9XdOrN2I42A\ng9D6Cm6/i4OPn1BV2zj9tZO0Cx3W3rmJ0WNGZQvgMDdQKfux+hps/ewhtvnrFI+eoOg3YeibIfeX\nP8J74wKHH28wef0KUqWEpINEtsKpkQkSRzF2154w9dVFBJWczZUMrdIR46+/Tmh1lf5ik9/993/I\nlbMXeeu3XyK4VWVsyMJeWoLgPq7JU6SPNjl77ToroYeMDvl5+osUo6MOTH4FzeMKZq+SvV6H8J0j\n/LPDGKxqFEYDKz+9w+L8AjKrDKGXZv92CPeLlxgxqtlc28EyMoZ45zkyVw794izJUJoT5kmaYpWG\nlCUVlzFIA+3iCR5+9B76aRO+hgevp8de2M7SZS87j7IoAi0ieZGhbgW5yU2wFWLYOsLKe79gamEG\nnS+AuiCylUowYxoins3gWzQgZpRQySOa7VjQkq3GKfap+cNvf48//JM/YO/uNr6FYWrlMnKznfjt\nHTQmAZtDhVLvwaVx0tLLqHcqWNw6Qh+v4bt6hXTugOTjfS594wzHG3H2wmHOnpvl/u2HzPnmabt7\nbD/f4MXll6gVFHSHDNTWomSyzzEanThGZ3l89+e4+2eYmjay/2iDZlfHwokTlPNZDusJbJKLspDG\nM38Wb0MknqhwvPmc4bfOUgg2mRxQsfH+Ng17j5mpJQqhEOqZANmncTRDOnq7ewiCDWGpn/RumqGp\nUdTFLFLLQKWZoRatUVDUcLuG+L3f/UcA/A+/8Y9RDdjR2RzEEklamQx5m4Va/RiPZRC9RYuqaUCl\nlhO+8xSL1kS4W2JobAiTxU9mI0jTXKWCAWUsgjDsQqeo0BOtIEhkSxLjXT1HUhZJ1sCgmMQ1Z8Oi\nBZoVOtEixzEY8woIPjXFVJZoTYZdUnIkhZhxnuAgE6VxnMWu9aP2jeJyyqk2j4iFU/iGvdgtXvbD\necpilWnXCAeJEHJFBWvDgdOtJI+ceKHEiEqORmnEMhZAbtEg6LS89x/fxeHR88f/4X8E4J//y3/K\n3PwgD2494cL5FyjVOhyHokwuLVIqxuhpqhibAgcbUbQLAwghOI4cs/j1czz6325y8Suvc+vDn/LG\ntWvsHj+klFNiDnjIbUU58eo1OpkCucJTjIZxcjtbKEYH8CtUyC12ntxbZXZ5hM8fPuDMi19n9S/+\nksu/+SYf/vhdTgZO4Z41QkmgmipiGvRxeLhJ8zjF6WuvE4sfEkpUmfb6ON48wuSW45+ep1BtkpMa\nZFY+R+b24ejvIx3aQybKOXHlPOlbDylqtHTNGvyDFsr5Fq3tXX7wJ38CwHff/g2aAyYcNh/NwzQO\ntZr2kANtOIGyYyOa2sY7M4VZV6JrMRDJlulW+5h3qgmnt+g2lMjVOo6TMQL9g7iMHVItB/0WG49v\nfYjvxlkGdXKy20GeJ0QajTrzdjuH1iaOhp22VCNWCNKpq7AZBOppFTqPHJfbh6WsxjThRVQW2fr4\nDob5KQx1LV2nidp6nroUw3JimkopwinPJNtrd3CqJ6hpiwhaH0JDRIzXyLtykCmh1k/jHVMQK2bR\nMoi1B1ajmpiqRbcl499+73f47X/xOyidJlp7cTx2sAX6KEYSdIe8VA+P8J86z9bKPicuuKhGJdbv\nhpm+7EKWEWjaLRjybTokSR9XUE67Map1iKkqyWdBxs7PUspE0TpN9DJFfIEZIlKOQU2desVKZ9pN\n72GKePiAwJVpdm7dZHhxmmouz8ClaW7/p08YPrFM09lBHWwQWFCj8Xi5/R/exaswY1000vYNEfkg\njnZeTZ+1j8SD+5gCE+xFQkwsT3D8ySYnTg3gHBni4SdPmBifJqMN4TRPE//sGelqkmJbz/z0JL/3\nL/4V79y6y7M//ksaBgWLL50h+NEaZoeLTuWARMXIXL+TpqlOaFeBw6ckJ3apGnS0Ig/RVQaZmh8m\nKZbw6wKUEvscNZt4ZVnqdj+2RpI93GhrFSzKDpmKGbOzhcvr49btW1y7vows3+XpgxVcFy4ib+To\ntHPIIy6OE0+Z/+UbtDNNdMouH//ph4xcOoey1cShsFJ3aehp24zoKqxEc1QOyzimxzBEMsi8YwgW\niezzfS69NM3mxzm6U0aq2eeYj0zoxu0oFHVSrQZqiwbNjpLv//l//TfKKH/rX6IElZa9d7YY9p7C\nGJb47GmUslfJtYnLqFbK1LIw++oLXBlysv34HmqrAa/vLJ/99GMetI6wn5pGZlKR3S8zfnKcqlqF\nxzlIbDtO1ynQ179APriOjhZKQ4fnqVXKyCg8/5TOhIqDDx9gxI+yV8Ng9nPhko+dzQ0OUxGGblzA\n4dTjtXrI3Tlm4/4dBNsQ1sVFJOUBgy9cI347wfHH73P5773F2udPOPOt6wTf+Yy7zz9HE/AQPj4g\nZIyymd7m/Csv8vAvHqOuuDkxrWfINkRjbROHRU1O3QPA0Gqw1+twfnaMYlfCHjCwMDeLq9mlb1zN\nTmyXxl6Bo2KWSjxHV9uk57QQa7ZYWz1AEa4x1GdDpstRUwg8/o+3+NrlV3BbymTXV4iV9Zz9xtcZ\n18J6Os6Iw0cztYbMCdOXLtOUW0jeOSaRO6Da12L1kzW8w1paY0aqoSRnro5yzfUmsZ0I0sAMuePb\n5CMKEo8fkquUsDdkRBsKpIaS0/VptndSjAz3cxxNoSg2qZXU+J0+nNM2fCNmqisFYtUkoraOz2bk\nqJ3CPmDDvFkCoHBQRttrsr+7i2tqhnaxxfI3X2B8foyhUxdQBNxU9Api5RAVhYpH736CyuYgt7FK\nfTPM6V/9Cp/82W08586x/No3OLj/jMsXLmLq6yJFCpx641tEMnGKuecUV7Zp6ErMTp1lbOYMWz+/\niXkgQKOb59FnGwxdu8riudM8u7dDbD+Klg6m0QEsviVqTw/ZPqgT2XyK7dIU9d0etkEVn/3kFoNv\nnuPK5YuEjh4QbpRo7mappMOkNlbo9YwYXUZa2wnK8TCF4yzFeIFHn/4cncVGt5niwqUplJ3UX30z\n+lNnscpHMdGHWhBoVOvY5Gr8CiuafIp8SkX4wSHPw6v4L0yjcLYYsjmQRRpEN0P4xyawim00CQGt\nzky7KCJF3HSUNcR4EosiTbSewObU4BkfwNBtMWVzkEpX2bq3RcLRAZeaQ2UNS9dF265hzj+JripD\nSLdBL9BTKZkcOotvdICpkyYKzRT5Uh5TpYdNsFBBhTGVZMDhRl3XYG/bGF2YY2ZumeGXz6J19XA1\nG6S0NY6lBqtPQqyv3kWSGixe6Udh0/zVfWhVdd7501uc+MobrHz2GRmphsnvIp0roe1JpNfjxHcP\nUHSNuCs2XNMOLr58le2fPuLlX7vOs59+wiu/fI5Hz3YRM0bsQ26EQpCp69cJP/gYUVHnOFZmf38P\nMWDE229h5WiblY8eMrU8wsqTVb569atkEzEW/t4VHv3Je7y48BqxyiZPHq4RPIqQaog8/PwmXrsb\nmcFAtRNmfXUPl6qFNKWgoiiiMg/z8NOHrO9soQgnOP3ydXrdKv1qB+NzSwwvTrB78xG+G+eoZUS8\nuSbB20+Q7e/jHZj5q/uYXJrmxfNLOCxw6esvYxkYp69pozwXoHHawPjFl1h5dsxRTEM6JmCM1LEJ\nB2xH1wlX5Bhmx7Hafdx461dwzo7REhwMzw+RTUY4ce4yhc0K0WiQnGRm0DWIzRxgt53HlHOgGTbQ\ns1iZ8S7wrd/4Dc5fv8H5b38LtdeMTe0n7alSCYeI7Bzx0nd/k74+L75BFaW1EG15G9uFs7TXjynH\ni6x+chvz7FVMi6OIRhV1qvQcVuT2Fkt9kyx+9VvM3phm++YKfpOXubE+8rE8z4+LjGjNmJptACwd\nGaMVI0NvTqEY9XK4kqWHmkZMIPDGBSIP9hnV+UnGSlRT2/Qt2pHrrKj6dIT3HlEfTLG2usvo/ATe\nVA25xoBwmOHCr18kViuhdPYTCcUYe2mRoPaA0P0QqbSJ/e0IynCW57UnTL+2yKM7nzN//gq1mAyD\neoztT+7z9X/+28RWw0g7eSRBg0xpJ/IwhXtsEMOb14kdaIkni4z/0klaCZEKEqe/9ffJl7JMzLtp\nBwWqnRYMjLK3GsNmNlG2aahsdCnXIJeuoBk1sfzrs9SKX/xTXaIOs06Lsh0nIlWR6fpQVhQUSgb0\nBoHDepN8vkJBCmObtJKJHCAvJLFPXiGjaqEsZlFWK2Q1ITJCmeGeEpNrmlo9TVI7zqTPhtgVcCgD\nmORpDrf3qTksWEUdaSx4+6cxL3pRVtsEemCud5FUVQKnzxLLHBMNPQV3C5PLhkOtxm6okLIVqOUq\nlKNxsq0+ApKefrUCu1xFtGHHoUshz4foRSLsyTo4XHKqjTTj7knywwX29mMYhrQY8xLOkpnMaRmS\npPwbZZS//d15f/D73/+tX//77B2GkBRGujQQMy1i4Q3SnSajp0aIBkts7h+wfOUq0dt7pAxVnD0j\nvUgU+3Q/8ce7eC7P8+Tmfc5MzZDYP6L/7AK1zUMkTRcJE8aJfhr7VcbPTtJrVxldWuKjH64w2qei\noTRh9PehrcBOOoEimGV4bgCH1YJ/YBZ5N03W26CeEZFsPqZddnKHCfayCeZvXMHQyLMfSzP+8nlW\nHq1x5RtnsKt7ZKJNzLIE+WMBMVFE0a9nKOBg6+FN5G0j9W6OqKhlat5H9bjCZw/vMTB8htNWiWxH\nTr/KzVYoj7MZoub1srcaZ3xhGtvEGLUnEYZvzLP98Ak2Qx87H6zj8Mioa3vMnH6R2udPKOWrnHjj\nDJpmk8OQnNGhfrRWGY/ubSNvKdGXyihdWpqtGidsM+wfRzlaf8jFb76IUqizs77H1165QU6rorha\nQ+0f5PN779HwGlBXBBLKLi9MTRAsFlHYeyg1CjrBGKgVtMJRGo4abRXMT55BLzYwm7Uw6CDxYBcx\nkSLm1aNsCex9/BzTxBl0HSXpz+/TrlapLI/w4C/e49Vfewvb6BATJ+a58+fv0dCo4GAH6/gkWz++\nQ1ulIx9/TCpUwahUMzU2Tr4Xo1DV4Ls0iUGUYzL208ulST3fYOyFM0T3NzhcFxm9sUTszhbttoF6\nOMzUpWW0xgAtu57I7gr2mQECFjs2m4DROUFk7YDkTpDRq+d5nlxn1j6JaO6RXTnENuoieW+FuetL\nqBt1Du88JLGd58K3TtHsaVn74TuUdB5GRodYfxTk1NUlinUjfV4l+aoBu0ePb8iP2gn1TJe5r53h\n8V8+ZPH6i9z/5A6GroJP798BYGK4j05DoOIpMdJnJ6+0kwqVsLTkmE5N4RvwU2lmmPCeZvyEldRO\nDs/IFJnDHTQGA12VHFFfpy0zMH/qNI3jBOVGAk9njGKrhbncxeJwkyjkuHTmOi15C6PXhkEL2rKK\n6dlx3EYl3UaXhq2O3uyllugh92kpdlIYSi1KhTqDk3MUtElkoRKJXIpKo0yt1YfM3EbfFtA6+jiK\nrlJLpRl6YYle+RhXn5N4MEvjsILZYIVEEZ2ny4jbicPuZu29uwjWJmZpmluf/QSA73znu3guT/Hs\n/ducemWe8OpDxhanCa+HkWQiO9uHOF1+bNfmsHWV3HnvHXKhMC5bj+x6gra3jklQ4pvy0zcyxtOn\n9zh7/qvEVu4Rj1eRo8Oul7CNDaA22Tj6dA3HbD+uyTE2Pt1i9vQiifgG5f0YmeAxM28s0Ovq8Q27\n0DtG8Zsc6PwmSrEE2WaB8eUp1t/dZ2zmBCabkRBaRBQAACAASURBVO0Hd+gb99Ms5AgEppg4M0wh\n2qKrT6Iy2ohvHKDzydAKVhL7a9h0NpqlJCMnT+Je9JAoZOiZRG7/4ovuvG9/6wUSRzU66Qjh53fo\naDrEyweMqHtE7hxjVrWZ+to5/M4mD+7vYnX1o5G1KRu19I2OkXv2jG42wYNHt6kXjbjtIqt399DS\nQmGRYXFrEXUKTg65kLIl5EKL8Vdu4B800Yzscfg4g33YQ+aoglYP8ef30Tc1dK0mZEofwdoOZr2d\n48dJnjy5w/5mGMtJB6fOn6BdymLoCZiHvGTldaJPHlNppFm6tEAxeExmK4P65AA2i4Xkxhprt54y\n94230fgkHt15RM9kRiHE6FZFVF6BD9/7lMvLF9GcNBD/s02EeSc6bz/dsga93kjo7jMG3xhkL7rG\ntMVMuzeBWa1BlUtSDBcYfekqqTtBLv3yV4j+YpOc10krdYx5eJbVj25z/voCoZXPuXL2Je5/usOI\nX0H/yUHE7Sq28xpST4/wXb1C4mef4hqZok8+QHNAxd6Hn3DxW1cJbh3QP7FAIfKI+kgbV2CMUjeL\nw+mm2VWhs0BHX6dxcMjIhTOkbz4glshTOEjjrlsJ69K8/mtvEnnnFq18gc6Ui3IkTdcnR1eLoRl1\n4U/pSNXkNGwNHr5zl7d/9x9QOAzSZ5gjdlhHR4K6WcX6oz2Wlk4j6JuUQw2czn52NxOMLdmwJToU\nlB2GzwzSSCrJ7R7Skct4cvOA06+PkO526Fbz3P/5U/xvLVPfL2As5CkFXBT2DxiYHMbRUxHOdXAN\nS6TyHay2BlLVRkvqkQsVOPHKPKk7efo0Ej29H3U2yUG6xNCvf5XGvR3qxRQGgwaxo0SodzCOBJDH\nI8j7vRytJJGXQxheuIAhX6Hb6RHeLBK4Nk70/SMcFx0YUwJJk4ui4jnNLYGVrft877/53t+BEQe/\n/4ffnxkaoSNoMPmrNKpdZBqRk1NXyIm7GAU3OocDT/8EG3dXsY7bMAo6DKo2XY2ZTlRBKpOlVUqj\n1XdRTU9SqcRoN00MeTXQrbEfLTPQZ6Enk1NqgRSpku0ICJEUxVSIgHMYg8lGVpGm2e5hNPdjbJl4\n9/0P6MVriBojM65harUqplaZmkGLRe5ASJaIFHZxDC2Ry8VQVrM47WpCiS65VIdEvcB4/wy1/T28\nb19AfLzPVq7GydfmyeWOiMUb9MuNaB1eMpEk95/c55RzDO+CDTGnJVsPMTc8RGQrTliX4aXT19j7\n8TsMTJtJ5UXc6g7Fgokce1w9f5HtzQSzAT35UonehJxhwwnCwTj5YJyZq/McyyTKt49QKzsYnQa0\nmQwG3yTZZppjXZ5StMW1xTGqhRKh9SSBjpaee4xudp9kr0nw8U1e/Ydf4+F777B08lXE4Ar3P3lA\niR4ah5leSUGj20bjlLEwNcJRUoF8r0q5l0LfP0TPLrF18z6jF86y0YnS+ySEyWNkYm4RQdOhVDzG\nixP1sAlZz8qtn/6Ma2evUZfLWfn4Q2avz+EdsqMbO0HicQj1qJZeMYehpqNND7tvgGhqjcDgJO4J\nK8m9IMefP6Dv/El233/K4IWzbP7oHievvEAkHsI248frGSYYC9Kr1nkeTRPwGAjeeYZ3apDjO48Q\ni3Jiu1t4/HYC56cohfex2p3I5T26qRrmfjtKUw+FCKYZLenjYySfi2i+hE7exu4JUDoIUdNqUaTC\nlNUN6tku2XAYU7dKQ62hvPGceD5BsSwSWtkmmT9G37Bw8uwo7/zwXW58+00itSPufPzFWo+3Ln+D\nSCeJPlfH0Gfn+OE2S6+dIXuUREwbMRk0uGtWovUCuVgPg7JIspLnxm+9SLCeQNNpMjU9TjOUQ+oI\nXPjOVYbPLxFaOWT4zdPEo6A3QKvUIxU8JFYpU4hs4NQPsNPJUt9OUmiqObE0z8Z6jPrjAvFeikaq\nhsIEJo2aWf8Jem4NnWoN90iARiZMVdIzOWVirn8Z58w4OzefoujaMPdkxGoi5roFCi2y8hypeodQ\nao/+C2PYzePE0qtIKjnqiop0tIavL8CHn/4YgNmhYXIrIRw+C5VoGZdtnshRidz6fUwKMycunmN3\ne43MdhrndB9yoUcx3ubMG1fYzO1jy7ugI6eirZE+iFMtqtl4eIuRiVMML85Q3T+iIrdzYtGMmK4S\nOcozuXyaQmKTegnmz83zfG2V86+9iHdigdizA8R8jqO1EDqXiWe3NiAfZuLFi2zeekAzX6eLgKlP\ni94/SjFdJX4YZvCFqzz++bsUi2nMThXB5+t4hqbxD9j46EdP0bdV1Bw6XL4vthPsZqIc3D3g/Ctn\n2Hyc5OmjL4axXrrwdeRKLZFsjq7pJDPTi2S2NzludDB0O7ivXGdz5QNSK3tIogH3ZB9mxzBeHRxv\nbWE/PYxMNGDoyOiYcpTRIU8macna1GQVYo9jzJ2c4/HDEILXRtdkR9FssvLu5/jMk1jP+fA6TTx9\n8ozQQYTR4XEkUUHGVWdG50DsqKlJWhrBDfrPLqA19GN3BPA5NKTFEnaTA5fXSGR1C9fsKHPDi6Se\nFzEMOvG4HLjMGraeplFbyyy/eQ67wk7i8IiuK8AZ2wCP7j6inuphG/Lz0Qe/YPriJG1Pj2q7Rj3U\nxmMtY1J22H1yTP9bp3jyk7uMDAUoiSaK97dpassIajliropcX6WuLSNVFOjH3MiODlj4la+y9t77\nnBwYJtuVMTU4ysPVDYZ8I7QrZiwtE54FF9FclrHTfZR3M+jmTqCyOYjc/ZSap8SpCy9QybU5Xi9i\nNvWwTrnwzyzx+Y9/QvVpHvuF8+w/e8ziqX5Czw44PfYqq/u3MernsKmN4Daw+ewegdER1lb3mBuc\npYGN1qGIa1JD7FmdiWEzB0dxRKsaTS6D023lox/f4lfe/g7hTzbQDuhRhJNUcjJMSifeM33sx/eR\nyhLdETnZZyEWv3mSxytBtFY7OnmTIcnE83YOw5wea8GMZ9xKtN8CZQl1y0j3IEKfVsn4lI2tO/fo\nzQSQ4ju0umbs9iat9QSIbZpdHZ18hb2dXcaHF3i4+wHdYQeFWIaJl05BvYg4oGDv3i6DIyNoU0Xc\n/X2kpRqqdJpHuwdYL87QSifIJ+oYbUqKcjNGi4Z4uImhkiVeSeE3DtHOt3Bb9CQqZYSqC4dShnZY\nwScf3eZf/96/+v9/iPp3P/jB9weGbbj6jGjaNvYOtjl96irJ4iaXr1znoC4S2dsmVsowG3DTLLdJ\nJpLYDGp0ghOL3wpOF4fRTQLmUTaePubU7BSVXJe1B0+QpSukqyWMngnGx11E74coNA9QqXoorUo6\npgCNbpz4RoaZi/NUVkNUczuEyHB57jQxoYy6KSG3GVFbIFsVKd6LkFN1cV8I4OnoKdbajGiMVDMC\nE5dmUdQkbAuTqBJBZEmJkRujrL67y9WvL9MWm1REJWK3S6ORYfml14jc/Zy2qc29u49R2yxceOEt\nasFVMjUBxbhA9WGCwOAEwa1DbG/fIPIkRDlZwhzQ0/Ca0WTLSBYLfreGnUwUdVtFbSuDtBzAI9fi\nGjUTyfZ4/OxnnJibpk/VJNkxoPX1sVU4wj5oYqAxjlIdI1ZSkVbXEPdbmF89x9Znj/F67YTvPeKN\nf/o2n/zwEeeWryG3ajjcLBGYsmE2+fDanJiqEiqvh9hWENV4P/WtI8Q5gdxWBqlt57hepRx5Tk9j\nwBHK4b86RF3bILW9j3nMQurTx3gmztAMVpBb83z87me88s1XMBbl+K9N8PTj++QOythLLRryGgGn\nlePNHL4zJ3F7bAiVHoYBA3KZh+OdIJ1QEcPCGbTlHF2/m3JoldFTZ6g3K7j0XR68v0PlcB2X08b4\na8sMOfrZ+/gRgfODNKlhCvgwqGF8ah5JLeODv/wxNtGKSmlBP9yH2azis589xCAKGCeGONyM0D/e\nx+57z7jw0gVsPisGu5WjR5/jdBow+gaIPCtw/cUlMkcH+C+cRS5m8CyfpLgfYm74BAM3pihvJInW\nwuzE97hx9VUi24e0Cg3uPvgiRF2/8BoWkwuve4JMJYjU1jIyMYHdr4WijGhon2ong0FootFlsKvH\nUTjVVPQmAioVe7sh+vvMuJZOU0tuI5dpqAsS8Se79EkS7kkvUq+OttpFUufotw4jU1lJRvZQyuQY\n5V2McgfJcoN2WWR0PkAsfYi9aUJo6VBXYKsYQ6E0oQ61OUo9R1RWUBfl+GQO1GNGdD0bW2v7NIxB\nTH4/tXIJlcWMbdhI9LCKwyiRL4pceP01MishlBpYO9zCbJBhmBnELBZ4/9anAJz+ylkGps5R2dsl\nVejRbR8jKRX0jQzgnB1i++4TFr52kU42TaJbRBkr43lllo/+83ucOfsK7rlB6qo6hxtriI0MSwvn\nGB3zI/R3ufvuZ5z45gtUO3WEYwVyuRFlM0MuvsXg0DLtYpjwbgS92U0iWuDJR+9x6pUT1NU2Zs71\nkz5uINRSTFy6QD2RZsARIDA9xXE0iGdmljv/+S/QuFwsv7jE5x/9mGuvLWMS+sglopiVBsxKNTfv\n3OJXvvs1Vp6toNLU2FlPMXP2VcwGG+PnR4l8uM7E+ZO886MvXuZev/o6rapE32w/xlacYukYjWoE\nlS6Ff/w8iZVH6AsW/Jf6mb08QWgtT+v5AfvxGFMnPbBbpJ3soF48ycTCEuJBhUyqhn96gEQ5j2QR\n2dxMMmoxUI+K7G09odItc/rVq6wF17HkcsRKSgIWEfXIDIaOhkwzQn2vwNM7W4y7jBxUjpi4PIO+\nJcfXN0FVKnN0GGbc5OPmrQ1Sm/tY3T4UWhcRsYOgrRL+bItkOUkuKGKfciAkOmyvhslUk4hOB8aV\nZ+RyLa69+SaDy/3kYhKf3PwZb555BaHSZdAzydjFEWK311lLHfOVb73B2vsbuEf1jE9eYPdHHzPx\nvW9y9NEjNDYjqpMnUBdqtCo23IERntx6l4G56xxsrTFo96DxSJgm+rh79z6nTy9TiKyhuTpIOtL+\nP7m7ryZJEOw8z296772prKzK8t6199Pjd9Zjd0kAhIANQApGgIqQECFAJMXYS1AgSIh3uhEVwgoi\nQHCxO2ZnpmemfVebcl2my1eaSu+9d7oA/wTwL5443znf4fBom8peFvPcHJ3DJpXzAJp6DdOiHS0D\nvL73HI3ag0ynYj++i9ChRR1vQTRFUSLGahSR2C/SNhoxpNvENnax+WbZ3H+GeVSN8BRW7s4R70Vw\numc4Xf0UkUGLVN4md5Bj+KKLzRdbeG0XsLqbnD6JoDIO8eDLr/jN/+F/ZevZPYzeOcr1EtVylo4l\nx+DECNK9DFlpH6XKjLtaIl/XcPzpOqYlH/WqnMELPvr7BepKAaFanPEbC5SeBKlli2gEEtqaJtma\nDonRhVVpQtdtoVI70PcV1IsJlFOjRDIdegIpNqsDSUuAckqDJiFC3xFh6ciQTukpxpsUIiWsiTZG\nh5FkIYWub0KsN6JptRl3eujQRZLsoO1l6SgG6CgSGFWjGHtdwudtln7/CuenQcwKA4V0F4erSyEZ\np9ao0izVWV1f41/+m38EiPr3//E//uzHd79D6OQAkdnHqMlKs1pi58UZodgJlWSQ+aWbmKU6dvee\nsfj2AiqZilKoxGHhEElTRCSXRiKU00n7WVq8Qk1koZ04YPLdFYrBDmPzTnrFOsE+LHjVyC0jFIoq\nkpEYcrOGWqaDQRJHaRsiFG2ytHyJ2EEZtVbA3M0lUoEC/u04Or2evqiN6+IAXX+EUKOPYM9PvhLF\naHdy4n9Fs2rCnzol//wVMyvXifg3kA2PIejmSAY7mD1Kjs+OUfhDiCQqOqo6UXkLVUvL06dPuGlb\nobIoQ+NQYZpeoSjsUCp2KZaPUXi95OMFDG0ZNaUAr8JBwn+IdXqa2pqfsk7D0piXQC7H3LSVSiBA\nt6+leJag1o3Sq8nQuVWo22bEhFAZhjgJPMXW7hAxten7w6R6KpaUMha+O8/O7hOKZyk0ejNTt6/x\n+tEe1kqZxkmIhs2IpVfC/tEVDrJ5DKUAQu8g/oc7TH+wwMuDdaSaIfSWQS5eHmTr04+xGcYYVaqI\nigVcujhBryoiX1DTEaXpvgkz/Ju/x+b2NzScMhTCJve/WOXC5VuIRS0CX24yujBFx6qg4A8yc/sW\niVwY58Vh3ny5QToSQWzSkYqnCGWTSAI1bnzwFr1Gg52Xx4xcG6WZ6ZGvpDH57PSbZUYm7bS6Usrh\nCIW9BEItTC5coNtMkIhHsfRsHG4FQFFDo1BhlSlw3VggJ2og1mjY//wLVn7nNgaDmb2nL6kXhOi0\nfeyLsxw8XEVoHCTw5BUzS5fJSNSEDo4RaiSEzkJc/d4VDv72EclCFf/rfUyTI0ikIqS00Ax7sDRs\n2G16pBIxW89OkCrkvFxfBeCd3/stWjQ5XNtCiABNrk5KHKcTqNPMxZHacjTLKqyDYir1IY7zJ+SC\nQRwyM5FcjUyyhkxmIZ0oE0vEaGdDpFp9IvkThBUxArGOYPUYxdgCIvEACBOo2wpStR4X3r1BodRm\ncMyNb8pIRy2geVJA7vEgHJPTpsjonA2jyEwmGqQhkeN1uPBXIhhbYuKlAkqphoarjU7RQdO00S5H\nkbSEzAwM0dRWcQ1bOIvnGLR3UPRbtMQFigoVxmSGSrNOopqhHEmytrsLwI2huyhXzLSyfVR2Ezan\niV6iSlzcQK/T47a7qaUajMwvko3naPSUaD1G+jIllZMotXSYVCnD8gcf4fZOIlUK2E1ESR/mmLq4\nyMGvXnFxzkOuVyEVSzN75yJag5NXrx9Ti5RRjZhIF6LoBWoGbywS2SgSCJxR3zmh10iy/P1bFNot\njl8EsHiG2f7qK5Zvv832F79g7ie3GDTpefTzT3n/Bz/m2YNtcqEcgk6HqQ8XeHZ/nRs/+hG//L//\nijvf/SGdppbxAQeh+BnHJy9IndY4j57h9On44r+9fVm5tkhPFkYg1RFKnxB+XcehUFFqdDCIO6j1\nOorKMpVMk6Nf3UfiHUNuzGC98T6lTJG8QEVb3qWXKlA8PibZCTF+9RLp1yEurSzQbqiYvnGXbiZC\nTJrj7btvYxsx8PjTB6xM+kgOqJlQSUmelBj2yenKq5ycNxlcdHP3ex8RaGUZMGiIPIzRKyU4f7JK\npwcSp4PWWYVRzwCelUmkEwY0NQ2N4D7FZpfBu+/jWjFRjZXoiaUonX2sCgeiVp78yz3kI1eZuj1H\nqhAh/HqVnlLFw2/uMXpxjKGlKV4/eoVBLyJcBJfeQCJVw+dTwNAAL/7PpyzdXmbzm18y/d0LNLty\nSq/C9NxuchurdCx9bPYp1OIMiW0/OrOCJ0/W0NYN5ANpjvd3GHD6qLXbCHRdHMkmzneWOH70CDRa\nvB9dYP/Lx3hmb3J8ts7K732XF3/9n5GbRQyazIhW85wUIgy6h+iWm7QFdQZHRjlZ38Mg0SKeFZIv\nFFi5cB1RvY5GLyKbEyIvV0ivbTBxdZZiN0/RIGT5wlUOHqyx8JP3qJxGECnA+f4FgnsJ1p885qe/\n/y+If/EItV5Imy6K+UnKh33O9/10LB5kiRwtqQzpsAJ1QY1UVEWkN+NTCdDItQT9T6mqbPgfPMI6\nOY6800TRdtCkgcegoCzMIi6JKZSTpAV6nN0eLUOToRkv5+EUZqmZcGQVnUSJUQ5lVQulTkRPbqDU\nKuC0uAltxvB9x4Wmb6WVbdFtd5CKIa5IY1RM0qn3ycfPqdqcuBeXiFXL2MRyZGYhnUiJdDXN3PwY\nseN9dHod5ZMAMk0PUdWKQdFCIpXxdO0Zf/yPYRL1v//pv/3Z7OgY6WwF7bCRw3gSWaGN/aaX/mGG\nklTLuHmY15uPuHTjAg8fPcQ9eplM7ADd3EVCgScsL97Ec22I5GaKdKaLydigKzDj6AgZuDXDUWCf\nTKiCMdfnNFpA51JxtvaYpR/9BK+4Q60URXX9BoJKkv3gGuO3rpOKn6HzWtnZ2WXZ66EVLtId1lEt\nZxBlUwROz5nyTjMwPolUpSRfy+FVejhPbjMzNUo1r6FdSmA2jVPqwPHGDoYxJTavE7VeScXfpWKW\nI+rJuOIcp3Ve4KtXj9E6PXjVQ9gFWvIVP41OmxmfFYVYh6hbZ2BoEH/qFEGqRaqdxzw8TPDBNgPf\nH6H04BCp04B/I4BIaqDvHmP9s0+pT7qZEHpRjLohXSMl7KGtS5GJxdRSElQjJthqobl5merTx3Tk\nDpoKC5v/5T5v/3e/i3vewfrHz2gVz+k55ln56ArJ3S26y4M8/tNfMrgwSmG3SU1bwjduI7e6jczo\nw6sqI9T0Ca4nuXXpCm2xEL+lzUWdlhcFAaXTEhWFkGGdHsfCLHufrmH0mbk8OcBZscTq50+4tLCE\n06DD/fYK+zvnaKR9hEYNErGU6OoRQ+MzyAU9Jr6/zNGj58wMTTA1M8TrvW1Mt6fZ/eoLxhYtZNJF\nxG09zb6Scj7B/utj9K4JtJY+jtkZCplTBI5BXv3XL0kkC3QEQjR6NcNLHpL+cxRiESWjkuBxkMpO\nAkOnjm76Ms3VbUwL87QSZZqZHLFKnOJpkZGrN8ier9FR6jBMOdj56hWTc4t4hrX05T161TaGoQEE\nwhZ2sRbVtJnz5wGih1EMCidtV4NKSYTW3KQY8WNUqXn03+KaFdckvqlpbv3kLRQSPaGzCqWOHFGz\njXNcg39HgEQSRFwZIprLMGTQ41mYxDkooRk9pyd0ItB18UyP0qk1GFq8wKhDiv9QQrVWQeSpMuuc\nZdjkwD5iRz/jQy0TUIoH0Wp0ZIoZULQ5KGSI7xwiMasRHedwuwbRehwgdpA6j1LJJmibapj6EoTp\nEhG5gpHBFeLZXQQ9Fdl8iaY8yrBlGYfJyWYxgDis4c3OJm65hbHZG6TrGaipaEvbLNx8D6tojCvv\nDTNsvcxf/defA3BrZQVhuYtpfJT9o68pdUCs1SNJJonlC2jESp77t3CKWqj7Zpp2KaZ2A+olOoUo\n4x8soWiaePb4lxSOskSDaXzL07QCfmzjbpQWI49++ZCRyxdxKeBszw/aHvVigeVLS0g0FgrBJIqW\njpPgLguL80yPzWGetFONJzna36OVTtGv1REpK6RaEkwuG41emXymTzbbZX5smcePX+C7usjYwBCx\n6D7pUBaNVUorU8LodWFWCEnHzsicBVi5cJtOs4hz2oGmN4B9zsSv/t9PALh25/v4N1II22HaCSVD\ncw6aBis1fYZMpkNdUiJxfkSnBRr3NGPzMqpnLWz1JmKtEtQFOidlur06lYqKSYuH51+tIjXbiAf9\nVNNJhkViIgE/4yuXyddLNONtBi8OYRQbOX72hONQFt3oGN1Mm43HIVYmJykGTsjm68gLZfaiB9SF\nAuqNPjqPCcOYG43TRTtfpyGCvlWPqqGlXQzRbetYeecS2WwS7WEOi3uQpqRFulYnuXlMLi+gZFIg\ntfbpVLpE9nawm/XUTRIefvo17829S13RYnTAxZtX+wzdvEbtKIaIAvYhG+WXZca/P8PWk03mP/oR\n2z//FElbQFkgYNwupFnTUOpWMEx5yReyeCwOOvo2nlt3CEeSyKw9rM4FrPM2qHVJbxVxzM3wausx\nV+ffJ/jqMf2ynLbXRvNkH6vNTGLnMaOuqwg9Js6Odrj8T75FcjeKYtJBpxJkdPICz7YfcmX2MhJb\nlWpcRGg/g/6ikv37SRyXfaRO98hFM8ivegidZJhzLLD/cg2FWYRIZ6Czm0a6MEWpEaL6LIlA1+D5\nNy/5wX//O2hyBg6y5/jsQxSzDWw6BwZ7h2S5i2KgRVcup5UXY7Y30U5ZebWxju/2CuuPUhTKLbRN\nNVcvOTiLxFChJh4/ZWhKQ6eloxw/pzElwqkVoyireL79JUUX+BSDpFIqnDorzuE6rayC3qKNtS/3\n8c2MwF4AmUtKPi/k6S+/YP6j75IO7kCrhmJmnma/yeG9Y6zfNhJ6/oxbdz4gktukb+tjiLRQi6RE\n6jUa5zHcFi9ZS5PaXgqZa5RYpk1L16Nh7WOwKajGWjzaX+VP/tU/AkT9h3/373720Y9+QD4ZwGx3\nMCBWED08oms2YrOpqCXFGNwSrFYjD/9um9GrN9n64mMW7ryNPNHDMGzjNLGFqepAkS3h+2Ceynma\ns/0D1Ndm+Oqbz3nr9gIG3xQ7J3HUsiqKVgXzwgSxUJZmT0CrUEea6iLvVdAZLRzuhbl410dwp8WA\n1k5NXuckcEKpVWZ+cpTjYIpLkxMcFNNs7T7B4NIgqgkQGl3o5SYePzmkLskyeneFF2cvGLMPYxwb\nJrN+yvqbbS5MXkZsFaE5qyCW6HhTzaOWlvnmyQtWfDoGPOPorAa0MgvtYB+TV0xL6OLo/ioiDYhc\nKhSxCqoRA5mtY3TOGc529zC8N03bf87A6CKqaJOjVpL3btzALhITlCbIhHvYtHL6kiKRZhjNkI7D\nhwkssgZ1cZ+uVEMvGMV3ZYrNZyHu/NYVXh8fImtUCT2I8vb/+EM2X+/TUKaJpbpYsm1m37tKYOcR\nN797m/Z6AqlDRmdMT/S0gfHyHKd/+Qscs8tEMhVa9VPEAg37OwkuXXNTs3ZJrD9nYmGBh/ef4PMY\n0dT0VPJBOoomjz57wU//4J8RLqVJP4hitTQY9c4TTp3hc08gMNk4vfcK3fwC4dff0OsZqcUjbL06\nYfqDJbZ+/hku4xTmxUkSexmMl0do5ZJYLUYsGg+G4S7psoyzF4+58ME1is92Gbl0geGpIQZdE2j1\nVtbf7DHkneB4bx+FQUHZn0ZjUWJemWX360dkann2nq3R0xS58P6PkckVjNyYpVMKUinC5KyTJw9X\n+cF3v8Xu2hn9Ro2OP0nXoiVycEy1Imb2O9fpIscml6Gw69G5rATvPSNxXsfm8+C4vUS61uDZ138f\nX12dXSHXDXIS3aftb1OSCygeRhDoWsTracTtOm2DHsfiBDaPEZPFwvrDTaKZItbOMNXoa3QtEbWO\nBrUO9JU+bfsYx7tf0G2YcapcmK+5CBycU/pcQQAAIABJREFUYPS5kLQh9PUBFaOQvkSMSmilnM0i\nCZ1gsjnZW1tHZVSjNypRWYzkTu7jGFshvn3KiGORfLeNoCqm3lMhLofRY+Mk42fYrEDZs6JyuhAq\niwhaLfy1MA6HkYXFSar+PKHjNIHyPj6blsybFMflHGaRgnA1y+ef/D0afvqHf8R54oxINIyxIMYy\nPkX4aJuRJQ962xASSZ6psUVePFxFNeXidP0lE6OjCCpdJC49nXqfvZ1dLi3M4FlxolToOXxzwtzi\nFLsv1lB3xGicaoK5U4pvzhkYmkBsteIwWQlvBYk+20Iz42ZicY6RqUl2d884P/4KmcZK6KDOhe9f\nxzU4gXzYRPzkgOGVy5g0CjrZCsf7IWYGHbw+22P22jQaKWxHjvHevsOIy0Xy2I/V5iayfUy+X8Ap\n9aLSuNk72kbr0pDeqdPQVsifNlhdfQjAW9cuYlTKGXz/NtPeIYK7G8j6cvRWIdmNEolYnw9/4w6W\njg7HgJa9z15SEBXISPXoxDJ2t3MMzkwwtDCDY9TJXvIl13/ndzEp8uyEDtEbtQT8BRSDw4Tie9Qz\nAqqSHD2/mNx5iMs/eBe7Tk1fY6EWyjD2vXcIHK1TbLYZmJ3kNHyA0TDEjbszNDEwNj1F9OErAoen\nVHppgodndKpZMvsvKYTitIxGjiNJfBoVR3txioIiQx47Ry9e0x8wMX1rBZ1CgaglQ1juIxbVUOk0\npFp5Vu+tsvD2BZTVFC2BhOFLAyR3dyiPSPANXiSzE6LhUJFLHyO3KYi82GPo9nWy+TyXv3uBvU+3\ncM8ZKZXziINpnE4Xb16/oiVxEdvcZtijR9CC6nEIx9Qcp18/paFSMjAlRKEaYO3Xf8PsH3xArBZC\nLhcgEnTJZXMMTX6bnf1tlCYBnb6IxmmRvqEKuRzLP/iQJ1+8YWn2ArIBAcXdCFvPtrn50x9y9qt7\nDN8eZOOTHVzLQwy6DZS7ci67r3N0uoNmbpT6WZwhl5pwooTWKubw+T4mqRaRVMOTB4/56R/9c3b/\n8y9QeoRYVSaKiRotjQS3FLqdEpLCAFpNhPRWB/fcJMVClPRmGYXTg6GYYnLIyNODh5gHJjjZLOK9\nOkyrFiLZkKON5unNaumfmsgblHgGhPRkSuR2F52slMSbDeQOC+JumrrRxmBKQTG7h0Qip2YyIROb\niNUqzIx6kMT6mPU1XgRr2MeUKKgRS++zYB1BrJCSFkjInVbRupT0Aj0K1hq6opC2ukKwmWagr+Pp\n7hvGRi10pQIcOTW5SgfPsJdSOM3TnVX++F//y3/4iPrz/+PPfvbuB+9RK+h48+YlIrUFoaxKXzHE\n3qsQY+/MoEq1eB3Y59Lv3GX/0QOuLb/F+pfPGbo6Sd6fwjU4SbnXRD2r4dn/9YC6QoRmRMjh+i7X\nJlZY2w8QebLJjZVpunIBCvMo8cg5pXSJSjiBaWyYRK6KZcxEJJlG3hIQDsWIJkKo2wXGbeMc7R8z\nP+TCfx5ndH6BViWGXmRm/MY45a6eXKbEWfQUgUnMmNaApNtlb/UZo2+/SydfQK5Qohq1MzE4QzNS\n5nj7FOsFNwPDw5xshlGr2zx8+gK31YdxRIlIN4xW10Q3NcbqgyM6lSaX37nI5psIioyI/oyH4188\nYPHmTRSlKnKfElVRy1kkj9qUJ642YKmH0UuHOHv5gGHnBOFsBu+Um8f7T3hbPc3mQYoVnwzVhWWO\n7m0waHQx+L0Zvvz6l0zre5QrTcrhLOJyDM+cl/NoiSGNBrVUQWAzjlisJtvtIq1I8WuFyGIBME3h\nP8yiEbdRlvNozXOkNS2k6gb5ugiNpM7Uteu8+H8eo5YV8WmXOO9VWBpYoqEXcnzvK4auj5MSC3n6\nd48YGp4kdlBk7L0Z1BINOZkQo15F9uQN4WKCiXkfWwfbTMzfwL+9zfSPfoh6xETui30WfvQdAid+\nrKZBzgJvKJyfodN1kYsaZM8itA1KhtUqPBNLfPKXz5i7coEXL76i2S3RaCjZuP8x05cXefn4PsPu\nWUrVPgJJFbkUXj1Y58Pf/oBiQczsohfT9CKx2CFOtYnXnz1APTZCcX8Xo92JQmTAbnPzem0Pt83D\n8M0JctkcRvsk3sURTteekXy+h9whR9ax0BOJ0N2exzth5+gwQejRNlKFhOdPngDwnf/pD2luxkgm\nqtRrfW4szVDS5rGMzrA4uYBvaJiCuEX6WZi+6Jzj41NUEiXqXoOytIXN5SVe72HXwU7wiEg0jLQt\nwyLUou4nqDdyvFkPY9I7iZ9s8fJBGOeCjGalhUsnp9kWkssVKTaUlMtphBYxurKInFrH2eEByVCT\nAbGNnrtBpyukIy+iEZjI5oro5Cpk43aaJQ1Wo4mN9QhtXQ5jWYbn2iSaSoH94xx6rRisOgJHb+hL\n+uh1es5jDarVAK7xIZxNF3/18V8CcOvyLOFAC92ACqPGSriWxD0zyv7nB0yOOdh+uIHZPILIYUJS\nrFNN5ziLRmlUJJyfb9M4qqAa9mAct/P4rw4onudZWRnn2dNfM3X5Ntsbr9FIXOgEIrp2Ad1skf0j\nP/m9HSx3JxGJtGicboTpHj1Jm0ggSFekwDfho6docr57glqqIb0XwnXtCrH7G+jtFuoaFc1Wm0Gj\njlaxh3HKx+a9VYYGXCS/fMxR9pQLS7dI9vq4rVaSgQzOiUmyzSziTBvr8CgGhZRSMILSPszj+58B\ncPedK2QkAtjMUJbA8J23sSjaHD9MUY3t0RV1KWbKHOey5HInND2DSLpuZO0KsXwQsVKJrt2jogBN\nLod53EPoy+cEnsfxfDBNLZtl4pKP0H6BsUtLFI4TCLMJPNNjCBJRgpE8AxPDqPtFkqEiwlYK5/IK\nvjEb/WqOYqHBqM2EWCgjUUkT3DugIR1CKi8ilYqQK9QMLE9TEdq48P5tLGoNvVAEqb1PqtJjaHoO\ncUOESqRFOmLALdOiFdfQ2QQ0ilXytQ69ShWlzsn9L++xuHQN85yRokoFiSYBf5GJmWVCr14TbFWR\nNerIBTUG3fMMOY3EcxHU3S7Hm2nGFscoJzW0azEso2befL2P22pGf2kWUbWO1GKkF6njuzFDbPcF\nBqce5/Ism3+3iXnaQalbw9qXoW+J2fvsOVPXB5Fp3YQyEdTTfY7+NszSrQs0dX2aO2kazQpV7QCl\nQIi6XoD/4SECh4rluzc4ir9h5sItgqcZzF4T5WYKVaxPsSkj1TylZVDSy+QxaGcQS/pITDJOY3tM\nDNxhb3+PyeFBPv/ia/7we79Pyu/n5KiI46Ids05Ov52iVGww8c4KuViMnsqM3tigR4OXX25y+/oV\n2uUd6koT4koOj3qOolnNgKhEuSimLumjiyrxXnMSfZnC7RWz82CfwZEpzA0D9cY51XYZicNKVSvC\nIHCTykfJdyU08lmMLhe1UgXToAhxokfPIUVEnrrJg1YvIPSLVZz2YRyOUc67MTSOi+QKO5gyQoSK\nOqd7ZxQLWmzvmpFtglJlp9xKsvDeXU5zIWqdc9KRCjZxh7pBhUST55v7a/zJv/lHcJ33b//0z3+m\nlZgYc0vxLo4QWN9BPziM1i5jxCqjU+4QyiXRloRIDBZ6Z1m2jnb54MObhMLHaO1STAYjQb8fqUGB\nWtilUBRgVpu5tDRJKRXHMTCNoCsg1hbSzeyjMwlptCT4ZqZwicWcxMJ0yRALZxm9MEz25RlXfrhC\neitGSahCrlIhVWqISUSUQwHaFhcu2wjPn3zF6OgN2gIhhdMDrs8tsbV2xvjSRdRGM06tkJ0Xh4h1\nXYIvDrC5B3n2zTbzH17gzL9Br1hEYNeilVtJ5hq8fPmISY2HD37jfc7OQxxU/Xh7WsJ7Eaa+bef4\nsyOmPCocswoi/jZytxFdtkzVM8TBx5/RGB3k+sIo6ceHaD2D6CecBE8PME0vkS3laXcrNERKxsfc\nrD/d4tJ71zgr10k9SzA2L6ZrdZB+EcbUUCKdcBM6jnNx9hKhcBWhtodUWMOutBEpxFF1m9jHRyk/\nuYdhaJbg6xf43v8JheAjxHWw96pERQO4loawRhvophVEtpLk2iV0lQbyu0PoXiY41UkQ+jtETp6S\naciZW55k/3UQs3GSbz79mHcu3eLqD64QebVPXFEjeH8HaVXIWSjE+MAohXaecrRFej/E7R/f5dVn\nD7BIrBjMcvR2KYYJJ2ef/B03v3OXRjhBW2CnWi5hN1jQ68XQVXEeDDM5NkQyWcAkVzHomEFjViO1\nKtl7ss7o4CQTc2NoKKG1OHAaJzHOjfLNX/4Xpn2zSKcsvPrbl4xpbRQbNSqSNtEXuxjnJzk92cXt\nGUAq0FBK76C9skyuVOVkYx2qPZrtDiaZAvXoFFafk6dfvESUOyG/c0K92aKYimMxWFHbTDy89yUA\ng2oNpivTaEpqDPN22v0g9voI0hEdmeQBNYwM+CawtwVk+iZS1QZ33polUoK6uEQsXWRgdpB6JU0r\n1GXq0gCVZJyKtEStqEckTSGQjiGpBnAMmTk8CaDriLB0rOw0T2iJm5jVPYLJBH2zDGG2g0HqRqsw\n0a+00HWrtCwaumUHA6NCUqEuxyf7XJ27SN7aRN9tU+qlmTQuY5m10U8mqdk1iDByeBDH4m6QK3dp\nZyWMDHsxSpW0skW6AxYcQgXRcJfzboinX//9DtDC5BQLty5TT56wux3B3WtytO/nrd+6RaVXRihT\nU5JoCD14gnVlDO/yMGaFjeRBmMmLVwnUTlCrZMT3kxjlMHVpjDdbL7lx+ye0kw3k5RKuCwbCh2mK\niSzFUh25QczKtQtEAhlqHSFigxptu4XQKqfSyjE3ZWfvxVNUHQu+5SEqgirpsyidWJpitYplXMfm\n549xWYeRDqsY9dj55osHXPzBZY7OTjGrzTgNczx/9BjH1UkOvljFNTnKG/8+Bo0Y060ltj75kmo2\njcU9QkeS5/E3jwC4cnUBMn2qI2oGJDVW762RKjSR3zBz5fYNHCvjqF0+nJODWPUz9M73Eclk6OxG\n6l0FqoEWi74Vzk62kDnN+E8ilA0dxq7PE3z5GkXbQTrTZljVBUGDkrqEvGwlGA3QsoqQ68Xkwies\n7R7Qa1eopgrkjzP05Eri0SOynRqCsgqJWoDI0GfJO47Grcc0NoKxLcd82UvhwQ7FSpHWboiD3SRT\n18c53NlAVC1SE8D5mx3KhRPi+3HaogbVjoXszipnxxWMWjvRQhy5Vsrj+4955/o04UKVZqKLx6Zh\n6f2bHD3apGrscnN8gpwW5CYtx796wXG4gd1mRbs4Ryl6Rr2sxegUYZqeJP5sjYtvL9KRqok8P4XD\nBIoJM5lyl7PDN0xMLhNuNWi3MxjEWmobpyz95l2e/vwTTAYjmoWrGGxSCukG7lkt2YdbzH3/Mlsf\nv0bfrKC+ZEcm9tJt+TG0lGTfHDH1w1skjg7pF5t4fdOsff4rzFYnVmxEjrK4LrlQiUqcR8J01gPY\nRscpps+RdNS8Xlvn6uVFko03zP3wNpU3Zb5++A0//uf/M1uRdWzKNuJzGxi6FAoV2lohNsQcnyex\nK4w0+1JM/R5yXYVALsnM8h3eZLZRqYzsnhxg9Wjppwu0Bm1IQlV20muMXBsnEq5h9Mg4evkCyXUP\n+VSCSqOKXWEi1+gy0C4QU1doSztYDQoGnFKCDS2RjR1ufXCLSCiPWCUkcRrFZZAjz7WIH4fp6vpY\nnV6EaVBNdelGsgiqPZCM0tWC1KbAgZZ4JYhxWkkwUGRo2UBiJ82iyUkgcIzZN00hEaNdtbC6dY8/\n+d/+1T98RP37v/gPP7vxw9vINWYadRUCrYK2qEKpkaWdaiHWdNC53eTyfdRVMRJPhdErtwgmd5ib\nucrG2g617W3Grl5BVu0SOD5B2FWTqoSxG/RkMVM7DdD3isiGQohtbqaHFykevaaSLROsJugGEqx8\neIeTZ35wKLC0mrQlQrRaEendJEqfjVbyHPPwOIuzAxw9WaUWqzBzcZjDww0crS5lqYhqvMzoVR8b\nTz6nbVBimR8ln8yhkMmoxQX01XJkigb59WfIBCp6MohuRpi/tULqdIfVtVcsL63gvDrI80/vs2yc\nIVA/ReqwUu+KOI8eMzrs5eVOD6cyiUrQR28f4zS9xeT3r5Da2aRbDDJ4dZLVe6vI5QMks3HGr+tJ\nv1pl9Ft3ePHLTWRdAyO3Jjl+tIlaDMoJN41+jUqrSbnhZ/6jFY7+ZpO3f/OHfPLlz9G7ZAzdvUj8\nkZ+GQ4hR7GFiwcvBmxBL3/sexy8eYl320ghWSZ1G8eiHydpKTA0pePEqRqdTpFavMSxzIfcYqGS6\ndF9GkHrVeA16LE4t2jEXtaCfpq2Lxe4lmvLz6sEqb994i0ZPgEUl4Wxjg0vff49sMk5H38frmeY4\neIJjzMH0RTvnj2K4bvsw67Qk8jEOvjrk1B9jaH6CVCiJcXQaQfycSrWJb9ZHQaXn5b2vmbq4QrZV\nwiwR0Zar2Nh8jarRBWGRTr+HWT/GS/8GTZGSdkxILBoiVT7k8k9+xPbnz0i+ecn8nUUU1gFW7z1H\nplFx9zs36ZZVWKan2Xj8iOzRG8be+wGbnzyhEAnw4Xe/Q0OlxqhqI5FLyYUa7H71jOXfuopON0G5\n2mX61iCnL1Ms/miJXqLOva+/AODi1Q9Ry9VoqxLC6SP05lH86QhzIy4erb3ApahSyJSRduUko0XU\nQxqykTA6UQeNRkUzXSERaiITdlF7Bxj1TWJQaFCqoVnt0rAN45bpEXn1SBwWmm8i+EankFgE+PdP\nKJ3L0Ug6OFd8DONDqK3St5rRl2tk6h26xhZ6lYZkYRe9yYx5dJj6SZmSuEw1nMS39BYCqRq9R4K5\noyZ4FsMusbG/E0GvzGBSWagHUsgUUqKHx8j7IiwXvEjUWmKbKTzjbkoNKU+/+RiA93/vDwjEjlB3\njcxenYEhH0vLF0nsn3K2s41n+jaRow30U1a6rQ6hh4+IvIlw7Xe+x2lwG01ZxuT8FaKhOJpJOYGv\n1xlZusPT7Uf0NXqQdsmdJ0kJ27x17TrZYp6RgVGahQ7RsxDLV6cpBvOkUmvks2JMkw4kDTl6zQhp\nZRdRQczG/ccsfvsi/rM4coeM3GGVWx+8SydSRqUx8vzXq7zzzju8efSSbl5APF5hdnGakas2dn/+\nBYt338WutaH16DG1RDx5cI93vvVPUY95aQrynIeCbL3cBOCf/eAPUY668WoknCUaKMQ9Vq5OYQrW\naHZERLc2OHjyHGWrxuuHJ3gHVHivLKOoi3FPjCAP9MmJY4jMYsSJIo1UEa3MTi3XZOXGDFatB+eQ\ngqNQDmU+iV7vJtIIceGjRTLHSQQdEX3vBN2MhosXRjg4j9FWyHFLwdTUMLTgop9NUMprSaQq1FNR\nzmM1TFYD6YyfTFqBVtGk1dMjdBgZumAkmVAydX2RlseL+CCAxDeE6eJl3JPTdOMlXq9/g2xwgktX\n7uAaF2NbWIJumXuffMXdq2+hV4+iXhaRqnc5//UjBG0FY45pEoo8uliXVgcsowYa8j7dco9mqYHR\nZcBmaSGeVHD0nz7D++1FMgcRsi4VrdMEyzfu0JfkGB4ewOyZoXWWJB9vUo5uMXTzGkwM4v//fsHC\nT39M8TxJO1PncD2I1m6ilG3h813i9MvXjFyzox2xkj3Okc+HMfXcRM9Peedf/AbbT/dorUWZvusj\nuR2mXWowODNK0S5iasbD8edPSObkeGxaCn0NRmkPgURFxL/P4g/u0MNIT9Yi+jJLP3/Kk5c7/OFv\n/jbyoBAlboKJfZRyPaqGAIG6TzNTxmgQIq7LCHQ6+LMpLl9YQZWDcFLJpFFM4yyHIFNE5TFQCNdx\nocY24KZRyVPre1BSoxUII58eJPk4wds/vUnw5T5yyxCleAyDyUs7WURdMlDud2mo2lBvYbObqNRy\ntLcPqAzIMIjtBLe2aJm9iIx9RBILynichkmNrOdCWslT1+hRKztItEKq8ga2qpyD8BZOrw+qEmQy\nFYmv36DyTdFuq9C4a5jsLvLKLhuPn/C//Os//oePqD/793/xs6Wla5RjHUSCFvndKOfFCtcv32TA\nbafdUqCoSHAsytnfeEmrbCH05hRBxUiKHNOXLxIJn1FXg6ft5k3tAENThG14EKN1GE0/Q76XpxGM\nIJQKkOpG2XvyNUaZlZxCyqjHgGF+luTqDi63j/D2K2Z++3c5fPgN1ssfIiylKEarqGxGAru79Mwu\nBlwGZD47JpWa1ycpxt6a4sXfbDDx1hJv1l6hFBlR98okkynsCh19m5NmP87AzALKRoeBS9dotPsU\nVRVE6SL1Sp1ORcyzjafYxi1o5C5Gr3jJqaUYBx2c/NVD1FOjDDW6ZLJZBkZcFPwFRLPTpCNRxCUh\nwkyfalPG4nvv8OCv37B400BXLeL8/BBRqsP45ffopZPU21nK1Spnmyf4rs9ROKywOGPjfDPChG+U\nvryBSulC4lMQiwRY+eBHRPczCIijGlpg969/yeiwhUAhTK0QQ5mQM3HDRvUoT1/UZeWdSxyEzhHr\npbz8+BVXRudo9IsUHu/i+ic32XuyjiQjQm5TgrqLLCckYSjQQIjQIicRbBBeP8AxP8vjT37NnZ98\nRPjpM45TDebvXEahVpJZ32Hsw/d58fljaskil5euUOt2qfealMM5iokSozYf0gsuLg35OE+UkLTi\nqFHTEik5zyZwLi/y6pe/ZnnlBi8efk4umMF+y8PG4zWGZyaIZA6waPS4blxk/at7mBsgNxkxuNxE\nj9YQpFX4BgdQTKhxmMZI5LrI8uesfPQWVqOZ88Ap4UgCjUSO98YMwxPzvHz4DQNeK3O3Vnjyn/6W\noUUnr79eY/TSCtG1x4wtTrH25SoyXQvrzCwtqYLzEz/10yA9aYdHj/++TPH60jy5NAzNDTP69gKK\neI5io0Mj30MhU6GTedhbe0WqUqVUKNAONxB6LAhOEoS7HSrZFjp9DXXLjm7GyPr9zzl5eQLeCWTy\nPrH4Ft1oBp3ZQjfpp1fsILRbqBcKjMyOkCxFsXjmUJ3n6GvK5HpuYuvPqVmtyKVhxF0DAX+UAdMo\nhXqE2tEJdZ0XTSNDVlqh18/g8loQKdSUymEsEiFxg4xWPMF5PslbN3/C+LfmaJoh+2yb9ISWwKfP\nqR4GkJuGEUUOaSSCPNnZAOCdH75FfmMHfzHK0soKrx9usPnyG1buvsvwzCyJszCKHpQyScZmRjnZ\nLyPQ6FGYNTjdLkwqD5FGmGKsjKBXxjA8R3xvi0vf/w7tNwfkGk0uv/0Wu5t7GOUQD0XQefQc7p4y\n8+51/BvHlMVp9HhQejQcffWcgaFRem4J/ocRjOM2rlyf4v7PX3D57evIVF7SJ7s0Cg3UXgX05Agk\nZYLdKIK6glo1iWtxjOT5HokQ2Ja8BLf3OdnfYnx2maagT7uUIBIpIUxHaBfLmA0D3L//FQAf3rnN\nycsXJI4LVKs9Jt9eYPf+CeFmiYGRETQKHW2vAWU9h7hVoNAT05JWEJQqFIO7iAbHEUZzxHeapAVq\n1O0OvvFheghZ29pGZW+Sfp0gm0yQLSXoqgbR94qkzuMk8y1W3nkfZTfB+vNvKJ0mmJhbxH7VRUvb\nJ9vrEfSfY1NqkDjV6F12TG0BSn2d8P1TJBhxOAdIpY8YnJxEmCvgnnXTOIvx4PkazpyIcDuKbWEM\n4dERZrOcs3CQ+ZF5KsUq/bMg58cxuuYu+p6STz7+NcsL18h19xF3HMS2XuF6d4Wh2UEE8hJnX5zj\n8lmpCLLIBwdQaZXUi23QNqBVI91ocbaxjWt2lnZLCId11CoZM3eG6DXVrO4/RaNU0Tgr4T/bZPqO\nhaGBK3QKEUJbQXoiO4lEGZ97iEx3m9lv3yGTjXL+6hDHnIveaRKzzMTGszMmLnlodQRIc1IYsqKR\niknlwmgcBiQVG/man5kbl9nzB1CTJ7CfwrHswWD3EHixy/iCF8vYGIfBcxa/vUx6N0v++IR2OIbM\nrkJsdfLo1w/4g9/6bY6PYghTCWQOKWazjbSsSy9Zpa8f4CDQZMLcQ0iB0rNTupfm0fRUIGohqpUp\n6xs0Chkaagt6dY/1ZyeoJ3WosmrOpUUsA30qORnjs14kGj39TT9i1RAalZz24R495xASpQ69soyu\nCZJiD7NGwfHRCd7lRShZaLd2QGdjemqeYjmIo+eg180TTIpxjOipVRNIlAJOk2Hqsj5zFi+VWBz7\n2CDxtSDNipxyK8bwkBH37BzlSg5RJU8snMTrtFM6bPF06z5/8o+h4uAv/vzPfmYftmNW6DG7Veg8\nE1hUYorxHmWbEmW7z/7WKbJOn4W3Ztl68QydVEejlWHSNkLidAPHxWGcZROvGjGW5xYwaiz4GxUS\nOyec1RIYm2byA07MXSXpUpF6pIDv2yNIo3n2t7LorELOI0E0Q0Oomz0q5wdolhcRH4RxzQxSljfo\n0UaaL5Pd2kV/6Sr1kzgNgxZLNsDWfoaVCzOsv95h2OfDOiKlHtXiEEuReG2kvnqFa+k6bx78LRav\nj9jpMR2pkvmxCYqFLA2pGBl9Hr94ypholkvf8VE8EBHbeYUqlGTlj75LYXMLs9xCziSjlWwimFFy\n/vU6zY6S6Q8vIZBUmGlbebizhnvChKLroVtuMz6zQD7SIx2I0VIoUTczCKo1FiYmKOwHcV12EtzO\nUh0w02rXEJzWSGZFtIpVCvtRhJI68mSKeECCsJ3i7vK3OKl2UdpVZKJlVCtq5H0le4Uel8cH2Tzf\nYmbkGk9//gUD8y5S5g7hZzFm33uHLz7+ay5duEivlyc3akOcluG6aKUaqBPbDuJQ6kjsxrl54yrl\nbp1Hn9/jxtIdZt8dx6W0Uj5Psb26xtzFm2yuHnDhJ4sMzc3z6ld/hz+RwLY0Q+zlGkJtn8DuHiPj\nc4TOD8huvEFomyFXSzMxM4ZVL2Zj9zUXFt+i1DniwtIyOpcW/9NjPKPjuLVSpGUJmOTUDiPkskLG\n/ukKwddJSEa4/PZFBHYDidMkrqljEtl3AAAgAElEQVQxirU0iPLUukpSrzZJBs9QjRox///cvVeM\nXVmWpved6703ce8Nc8N7x6Bn0JNJMm1VZlVXVVZ1aaq6Z6ZHoxakFwENScDoRS+jkd5GAkZS2+qu\nrq6q9J5JGyQjyGCQ4X3cuDau997qIVvZDT1MN1oSIGgD++Gsvc/ewA+ss//z74W1VC7MHTJ8S0EO\nH3zN2VOTJPJGFOkQ9s4Rdvz72JwuVh8tYmkfxb++xPHLb1EvVthcfcD+9i7XTlwgUUlSbIlYmPuG\nRJ079xrZZAB7u4bwToO8+IByocXezhbJ/QPUGSVdswYygRrlXAKFRodaVKXUkjKoVWPttCAoZYS2\nveg6nEQ8AdR6EYH0IeKUAkleTP+Mi9VIBENWRqQm0ChDKp6mf3iakrFBYmGNylA3uXQYWy3FkaiB\no5DENDJGIpbEXAO500CjLCMZjyDVFZk8O0gxlqdHP4avVkIs17D5yUN0J7oQlSp4Qiu0i9uRaFMo\nMwZiuRrO8QGkqRoyjYuUpEnQt47t4gWMNh2ff/4ZAD/67o9QGEUcv3iBp18+A3ODy+fOc+8v7xDd\nDRAr+7A5+sgcVUGSo/f0CA67hvBhgq2dVQoHW/Tb7VhHDRwuR7EMGnD1jSEP5dn3B9G2qVj97HPO\nnp9g259i4NJVsou7tKQ6jPo8tXiKVEJC27lxUvPLdF6ZwhOLkbi7xsXvj+F5tMLCs2fMvv0ay8/v\nUvbucO47Z5Hb9IhqcnYO5sn7JfQMd6Jx2IjvhOmeGkQlcpGu7+OSmUhV8px86yQv795j9WmIS+fP\nYFJa0TkVlHIibBYjH336MQC2ji6UEgWKfjMj53rI397CMW2kUZPgXd1CSKfIR1tUhDQTQ8dAaaRw\nlENSFWMaGCcd2KDsFDM4YCIU8DA+0EG9IsG7GWRgaoDSsyjCuI6as4vpW+dp19fx7yRQaCXMvnKF\n2OMFtr0Brv+LHzDgHmb5qwV8S/u0RFLEFRPJzUMS3iDRgpakL0Js8QC104DJbSSnhfjRDqlqDXWj\njESs58XHKzT1GS5cP0FWKaaxG6fpSeOvpdjy7NOIK8hVy0yfn+b5QQB7n4pmrkWhLOPO7c+5NHUK\niaWDlM/LqXduYGxU2PqbZeKqEpbjBqKbTYziPEW5iHyqhUVVRdHpoBKp08or6GlzUmvWkYdVyC5q\n8M77iRtUhLx7OO1uQuFNAqkcpjYFLVcHhUIYb1xBcCHAyKicw2dhTBNKvF9lcWmbrNzf5NJ/epq5\nP/mSie+d53DJy8BxK3T3kJ7z4RcfYle7WH+2gb5SQmxREYzu0zk4RvRxAIXaQmwvSi1WpFALYGxZ\nMF7r4eWHWwhdJoJ35ylEEuhVRmKpEJNjozx9ccSwW8WnH93nxz//L1m9d4fWlBObukospCQbD1JT\nuulwJSgmMjzb2sF0/ATx5y9xHxuhKq4hzcZIK+o4HEPEj8rodWpMCj0yhwEhlCSHFGU5wvKzdS6+\neonkfhP/4SbGhpqgIou4JSIc9mPT6agZyxwuhVHa5SjKRnLaJI1mHXXBAq0yYpOYXDJB0GpA2Gti\nH6tTjIlQ6WrkbA0kUT3+eIB8PUsulEZuN1Jf8pDSNOjpm0JhL5H3yhFJtNQCB4h1TcTJOkWjkmi2\ngVxWZW7pEX/0/4cUB//u3/6P/2bk5HUmbCq+uvsCvcVIQy1D2kyhLBRQKGUEDqKo9A5ylRbHjo/T\nNCmIhgPk5WWaRTOtSA2RLYsjr6XWEPCnDxjs7iGfLtNQSBg7YWHzzgEn35gkMveIzpEeAlt5kKtI\nh6OMnO5DGa+SXF0hqjZjTovZ2Ulx8uYALz69y6BrnM1AkLbhEyhKUiLVXeLJGE6TCJkI8okCWr2C\n8RETbci5c3sbqVFJKnjExOwEpVKRg2AEpyAgWEQoGg04ahFuZfGvrjJ86xyFUIoHj+boN/XTcX0K\nbzjGsMiO4tg4W/kqax/N0Xd1kni6SFVdIvxyiy59Bz1Ckx2yyCQiltfuMdQxi1qWZS++g0Ipo/D4\nBe2DbRwchZEkYmgc52h1diIIuxi77IS8AeR6B2WTGEs0TMbkQG6vk683IFulrDZj1ILj5DjFgwC7\n9QoOtxHf6hK33vwd5uYfosyLqAtNCjoZsniLpd3bDM+8glWtYcA6iO3cKMGVJabd50GUQmyow34J\njaKKSezA//IBovF2WlUlbRN6EMrUFTLufvgFp984x+bDI6JRD6bhTky9dsptBiy9CjZ/cYd4No+g\nNnD2zDjVHHTazEj1Wpw2N8tf3SafKTH+yhiqchk0LbYWn1CXmpjp6eEoE6WwE2H3YIUR9znkTgOH\nGy8xGPqotRvQa9WUrAKD7VaCu0Eamhrunn4+++gRLpcI46CTjV98iV6hYWV3lX7XEMp2F0aRhnq9\nQTXboKI0I64n6LlwmXIkwl5il2DEy+i5UVStCnL9EDZ7OwlPgBNvTrD3fJnY3gEXL1whk4gRzSYw\ndlqpF2I8frgIwGuvXiVSCaCMpRHb6mQiCow6FaqcCqlOzthELxmpnGZNir3fRsZbpdIU0W4yIm1X\nYtTZ0dnNiCQWTM4G/o0waWkaRa0X3bCFOhUMF/rplEiJPN9ldNIFyRx5jZo2kQqJrUjPxATxo21a\nviY5T5p2k4JaSkXrKEm6qqd/fJhcU0ZdVMXU042oUmA3EmKg/SQ7vgeEdg+YHDBhaMrZOiyR3PXh\nMLaj0anIyPI8m98gHasgbeQ4jBwiLiaQyZpIKiDXVJGZu/niw98AYGsbZXhsmAefzGFtN2F0d/Dy\n8edcfPsSHk+Q7qFutjZXGLw5wtHONs1iAZXCweazl0zPnKZ9tgvv1jp7SzscP3YOZZuNrfvLiCU5\n9jyHJFIZbrzzAz7//B5Gu57Kcw9itZKuyWH8yX0sjgF6T/Z/Exg7pMNUl7I994RTl2d5eX+JitLC\n6M1Z0sl9lFkJU7PHWPr4IduRKPF8CHVVjrTLgVZvxL/7Evv0KC6rkeePnyFuGugatkKrTjIlotdu\np+38JL7nG8y/nCOSEBg5Pcbu7gqPHn6TjPUnv/99Ok7Pom3mWPtsiSwtEsk0FW8K6ZSVcl1GPpqj\n/8wMq482SIVWSBUzlOpB4gWw6W0k5hcI7pdQdKlIpapUUCCb0OL3R0jV9pHntTTFFbb/8ilBn4ea\n0MRuGSFbChNPpklHS+hVatbvLdL2ShcWxwBmnZP9R7fpnx1n4rVriFuHDJ3sYfjCOY7m5xGrO8iI\no7hME0xPHifXyCK2mbCO2eixWQk+28akLtMYsJMTR3D3v4KhZWD6yjjuXhOPHn1N35nzaMUV8sU8\nipyY2w9vc/LCSUIb2/SODYO5gXepiGCvYJMPEzk8JF/xI5KpMRoteF+so5aZKS+uIXS0sIpa5Cop\n2jTDHIQPqde05HJHWOpikv4a6FQkQwX0zm4GZ3rY/vNVNENjbD34iKs/u8nhZhRVh5msTMTsa0Os\neZe4+uPvs/XZMv0nL7B4d45Us4DYaSO+uYpBZkWvl5AobuGcmaRL1090N0R7fxdbTyKM/3SEl3/+\nNYOzE4zeOk3oqIlZXmZ13ceVd2aIfH2PseOXMduVBA53GJnt58ntTWb+4A0ye0HufvmQP/ivvk9h\nNUNgN8ag4zSrtQCdug7q8jjVnBSpRE3RX8bgEtMzNcHa0yBdKoFCS0W+WkPc24V3aYnOdjuFqhqT\no4BPELALGjLZJH2dJhZ345wc6aXYTGOaMMFyinKbggHXJHWgXPajLZVRGNsJG2WkQy0o5zlqaGkI\nYoreMEPufnKZEDv+BWw9g5QKSlQNGZKgFnFph7LETcuTx6SQIaqnKejk5GIZNOZuWuU00qYKtSFH\nKpvFoOohpZdjK5RpU9tJleI8WXrGH/23/3Bg+f/nCxDXhAY6Z4MnS08ZnR2kkq+Tf76F0OVmbd3H\nwsOvkJoL2G0Sos/vEBILHD2dp9MhUE3JEUnK6Pp1iPJS7r28j7hNSjx6RHH3gO4hF9pEleShGHef\nidpWFL2ym7AUBo91E41vcOk/u8jSX39OQSLBfe0Mpi4D3tIR/QMuXrz/OUlpB7sFAZfGDtUMigEp\nesHIwInTrPqK7O7kcHcPYu0xc29ujc1kiYvTvSQz6whd/SwFMvSfH6GaOsJgnkSn7qOQL5F3NnFY\n3Ginu2lFszREKgAUgyrKgUNqqgKJsQwyiYbY9hw//a/f5sC/gyESpqdjEk3RhsbZh0cnRxeSsPV4\njqmf/pzFvRfs10ScautC3szQe2GKSLOFphil2+XC0atCU05BVsXS4yJmvRiVSoZbr0Kt6qZT2UR0\nsIpZn2PiB7fIeR4iokww8pz4yhbySpWj5A7msoO773+INWgipMwzYpJSfb5NmCBnHJMYKgE0fW3M\nf/YF4a8+BQ2YjxlYiVZx9o0TKtbwHQZ5WtnB1nMW/+M9tDTRaPW4x06wt3gEgCgtZuY7x7jw9g3W\n73spCFL0mSP2/nqTrqlhhFCBTpuMncVNqtkMnlqZw/lniJ1W1Cop9uEpYp4aR4UKAU+dse9eY3f7\nkNX1pwz0tDNwYhaDs59HL+6TPqrQ23OCQ+8hsfm76OoiDu+tE/WC1aZi/PgskWCWybFxeruPsTy3\nQu+tUyiMdWbHThD1rJEsx7FMWikeZfHHD7C20niCEVafbFOpKBk2dyKqu1n94gFzzzbweF+ytrpE\n37SbtDdH5/njDJ2bZn1ljzPfewuXRkkt0kQe/rtimYlQhdmB7yJyjNJj6SEp7BAPVFG4BVwOHatP\nNvE/WiRVDxOIB2iwQzy5RkXTIrpVJRg+xLO1iawjzvZXKzTEWrRNE+2GAppKlh6ljuW/+ZhVXwqF\nW8pCvMaeWIQuXSZkytKKNvAHq6gEHelclfaeXjRGHZpTFpoOFdJ6jX3vJpnVddTZKuRi6GwyOupW\nqpl9FIYejrlmifkgKyiglKDRKlOTKnGenmBnw4fZUEGlyhPcjuEWGRm6cg2bU0UJJdGIiurWi2/x\n6B5T8cUvP6R32Ire2kZxPclw/1UKZSkz379G6siL3moltBHHPjaCxNBJvVri9O+e5+X8Cw7u7GPU\ndVMti6m3y3nx6+fIRQLtfW5euXWLG+de45MPPuCt77yGuUtPqdrENK5gcfcZoroI/9YRwdVDMEhY\nuRtEZrFy7Ow1Hq0+5syb18nv7rP14WNs5mPEimHm7+2SaKgxqiXUkdE5PE5dWia0sI1KNUJ2JcqD\nv/yIG5cvkUlvUvC1yEfyGBUK/MU8cX+KyEGIK+9e48bpPp48+Ih8IvctHvW1FI9/9RFzD3ewaG3I\nFVnM7kGszk5G7U7i2xsY+6xoBREU0ug6zVg7jyFYLdSTUaKeTUTd44xc6qQVyNH/6lmsA22Id/w0\nswXGL72NvbOH+roPw2kTp37nNYxuE8lWiVa2RKkk59Ibx8mtZzl2ahwhJGP55TzFdI72DjOVQJnI\nVhS9up3lr3d59t5HKNQmPOFlAis+VtYf8PizRQSVjaOtbUKpKIcHGYq1IqGNPObDIom4Cv/dR6QD\nXg78z8lWc4ydf4N0YBNxDoS9IKJa9pszRi7wxn/3+wTqRyhVLWJ7XhxmPeqBNiqxGDd/+A5as5H9\nHR+jr71GZd9P+z87R5vUzIp3j93DAxSDJTQmgaPgCpKMDofcxYm3hkhnQrzzu++gloZZWtlDc62N\nwrqfa69e4vGfPcY6O041eIT00MfK10H89zOsPD+iFSkz/+XXzLxzgz5ZO9aMHqRdiHpK1ORSTlyY\nZeFvnrFTPcB4xcn+8gJtExo+/e9/zex/8y56c5Mv37+DJBkhkAnT3jvAZ3/2NZPXv8dOPszOqg/9\nRC+psp7Jd4+z8D/8MXxTf5iYuEW0DJ5UlPyQlBGhyvLLFTq6Ryn46pTDSfr7TLCfJJHI0C2IiSuM\nyNJhOio6Undf0hS5SeRbtBIvyUQN2PItqs4q4n4bqmovpaMC2WyGx+8vkdUrkJwaROmJsl+IsH0Q\nomfyJilHHyaXmWJ5B2Uqhthgp8ciRkcYt9tBIRXFvxnj5NDrvHiwjUohpqFSouwMEzJoUDnSWFUF\n9D0jJBMCHVoHonASqSaJULeQSXhohOqINFY25j9BpFKgGR4m00rR02dAkNT/URzln0yiBEEYFATh\n5d/rWUEQ/gtBEP6NIAjBv2d/9e+980eCIOwJgrAtCMKNf8w+Mqmc6NN1XJOTxOaeo7HLGL90hfjX\nH2MxW+gfH6eZqbK69BVd736Hwt2ntL1yFZf1PB2tKG3TvczdWyJRLtKusPD0q5doi1Jk4xMsfLJE\nNRSjabBwFNrHVzyk9+1Z2k1SfM830Irbuf9Xj3nl52/hLYepZtN0i810dto5PFxk9M2LOMVixPoU\n7bI6R3v7SJtqmo00hRpoQykko30svPgK334JjUlFKJ9DpKwxphlDVA8hD+0x/9uHtE84aJqyGB1a\nUr4CdqeZxeVPaWu0IW50IuQTAJR2igiCje5mgUxQR8sko75fQ6gpUCQ1KOpNitFFVNM6HMccpMIZ\ntLIob18/R3Bpns72IiP6Lh6vx1GrXUSeRVDK1Aj2cbRnRvni62d415OYOzR0X3HjT4tpidNkjprs\nKLPcv/0Em3sWdbxJInCX09OXqLrcFDcSDP3gGmaxEfuBAcdsP5HoNp1DLXrVMmIBCeWuHnRHBbZp\n0XdhhrXlLbpnxlCWqwzhwLezhbB5wMKT2/S02Rh/dZbsnQQVZ5PZt9+ma7CDnXv7fPbVl7Q7rd/g\nUc+w9qtlHn78JbP//AaxYIClzQyqNgvoa1hsZtqOH0flckIyRz1U58zPXqW8GaHRbsCsrrLr2UFS\nlzD2+jGefnGX6VPnMRlPcuevPice30BX0NMm1xFcf0Y6tcJwxwBtJ27xdP8FY+dv4eyXIZVb2f7F\n56TS6/SeaGN+ewuX0444W2NjOUCqnEVqMdOnsrD1fIFQNsnsq6fxV444ceEm1kEbq/5VygonVmkO\n5cQU569dx1Aucfq1SVbvrNDq7CS25Cfnr5GUxNibe0pNZyJTCiO1Ct/6jMIUJZDfxmFVUKpXUCUN\nDPc7iXtihKVFKtUCTlsnBqrYtRJUY+cYPO6iul9Hmk9SCLYobcWRJNSoJ5yMD8kR11QI7S4ODgus\nJzIYDIOc6XBRyVtIHoVQmWSklBUGjP00MhXqnj2EAxHj3aM0rUVerIegJMJtnqBtwo1V3UDUkSdY\nTJDLy5HnetB2GRGEXtS1BM1mmL2nT1lPrFMvSbF12kj6HhF/ccjxzilESjXiYBLrqIJ4LsvGZ/PU\nixocw3IEcZ2jeONbPORNLWdmT5PcSLN67y51RZJm2Yd3c5PympdYQaCrZ4q2VoP197epRQLo7E52\nv3rApVuDKORicrU0b/70VYLzUaSjAsMTQ7x84CVd97CTXuXmDy5ycFDC9/EC7SdmEAxWTp2aIVEq\n0pDHcEzY2fjoCfJWi6/+w5conXWsagu//Yu/xjHWj93RxfLHH9PuPE2rkEAsbqLPGRieGmMzEkSa\nl1BJVXANipGbVVz73vf56je/ZKh9lLShTrWuo5ovY61o0ZkVTN+YgWyDoKhBt3WAkzdf+RaPsslB\nx6kJ3vrJd5GctDNw6haOAQN9sx0sfLnA7O/9iJYUPvn1HUpjdswjs6hLXpIbLY6P9DB68RL9rnYe\nfr1NW9808Udfs/DJI6TiBg6jm5UPPqLcjKJwG3BmtCxvPEHc6sMp1uJrFakqqnjzRSKdOVYeHBKv\neRnuHScfWiNSlmMwgL4o5vnTR+QMTao9SiLtHShqek6dvcL48BiTN7pp5PdoKzdRerJUwkcEMir8\n6hahTieT189y7tYFTG43HYZOHv/qBS9/9RcEd2scVfQ4zr5CSdUCoJUuM//gM06+cZWlz5do65BT\nHbKx/at7jJ24ycM//Qta8k60KTHJ9z4hr61zsLbOo9svuXj8DW5efwP/epbQYgxVQcfJ7w6TbinZ\nXcoxOT3I4/nfElsM0Tr0YOvVoZ9Wsuvx0nvlGLJyFH2vGHGvAY1TzK0//DnJ/RUKzSzfvXWVXCrH\nQWILQVHE3FYgNRdCMzPF47+c4/xlJxJNgcjD51ixoMnKee1f/pzP/u0f4ztIcuJGO2PHpqjZ+yjG\nnnH69ACHpT2quRTWyxM4jU7WPnjMzkcbXHz9BiXTNz4j5NpQu8XIPFmEcoSyUkZ7p4FCeA2DuUKz\nS0CQlVnZjoNVxHotj0SpJdxupGgXI7MaqNf2kUujFPIm0tUawZJAz2QX6f0AUUOBi5MuDtPbdFra\nSa2oafnrqAa1JDYLaMw5ymIBW0FAECdQV6SIehzI1iLkW2FKaTVbfg8Z8wi6Qp58m4yjg31qhSP8\neQ+BgyYNQYy21EDZqUSlkSBVNfDFykhUWvKNOkWLlqwkjczZh0ZtJJ8Wo6yJCGfrVEUt6mIV1CX/\nKC70TyZRrVZru9VqTbVarSlgBigC7/3t8P/0f461Wq1PAQRBGAF+CIwCN4F/LwiC+B/ap1Gq8PbP\nfp/n82tc+vl3IVQnoysxdOoa4bqX/bUgCBYKSSWrzw8Q2czIjWo8gRXaT85yuOOjv0tBfP8IGVVk\nLRBkeeQxAUtXi6lXx1nfWaFrcAyFs4OnC59jae9B3pQQKSepJdI8XDygFVaRTuXQqEXk1Tk07W08\n+M0qvuAmJmkbh6IMmlIOi02GTKr+RpVqd1N4vkP/0HlqZiWRnTgymcBhJo5XrUZeU6CtqRGbJBw8\nDLO4uMT67gqn3xwmdPsFHS4Hm/5V0sllKspv8BBMCRoImNtPoQt7WN9d4spbkwRjoGm3k5MI1HID\ndIiMbM9v0tOrp6quEc63EA5USIQOVnP7KPIJIvEGztcdNJ4/Zex4J5HFAN2tBjffPcntB0GqxTTa\ntA+dXob4qIgxL+XsmX62jmqsv8gRTJnQKQawVcXIRDYSWxXKdQ+OqR4O1uewdI5TVVvZOGrSMuWQ\nSXLM/O530PuabDzwI4m0WN5ZQTI+Tr3LyMrCBp09QxxvmyWhaPHot4t0Xh4i0cyw896H7DSPMCGi\nQzRIvl8GgFwlRiwKY9Zb2Jifo1MloZY84tjFCfRZK6pBDUt/+gBv/BCNRE2iEmT1/VWWV1YZOXeJ\nvVAJuUxES9tAFj5k3D2CuOqjqg8i0RlRi7UcpfzIuxz0TEzT6z5Bti2KStZCFhWx9vgj5Aorj2/f\nwXb+FO5XXuHhn35IcWWJtD/L2tomE6eGMLnc2PonyNXiFEo2tFYXO9sx7LZ+Nj//kuxqCIvJgTcw\nz8iNs4jDBbaWd4krFMgrVVydJiL3XiK2KGlogkz09BMqRZEVq5TTEipJ2bc+0y0aZVDVwdqDZ+zc\nfkzVqOPFxn3S4hLSopS0RU6t20i7q5tYIopUFsG3ncAjC+LpTKMXJ9Bb2zn07ZNe9xH3lrF1gioW\nRyg2KRW89JrtHIoy2CZcOOUSLLIcVWmeaGiN4G4IqSBHPdkgaoiyEgzy2qsX0KrdbMui5HwexDYj\nTkcfxyZ66egTo7DmOFw44iC+gLjqZDeQoeroRlTRIq6L2T/wUWqNkvOv48ttI1W0o53upSyVk23I\nUB83olOoySTTSINpxIq/U14O9uPoDCoEXZ2Jq69g6B5F6RikpmhymIjidJlIZ9YIebxMfu8YDuc0\n2QMfYrGOPV8SsUWBeWKCh+/PsedZoLjVJK9rYHW2sfHgCMfoCR5/cpdiJsDw1AX07ib5lSDP799D\nGm0yffUGB5+vM3X5JGZ5izPvznL/3nMqRTFjx06iA2K5dcxWHfYpB3WLBaVcjGKim/jqOrpUkEQi\nxcDvXearX99GabPzwW8+5+Q/+xEVrYjAwhIzU2MgKvB85SmeLz8nmAuTKUlBKHBUjPDwva++xSOV\nCGCQKdm98wWH88+JpZMs/OZDHs2/YPjaBC/+5DaR/CGv/ufvYGm68D/aQqJ2MPnPX2Mj1aAuFNnf\n3ePU+V6qEjGpmJnRnn4WtpOEjl7QdnGc5M4uQ4Nn6bswjVPRhkt7RCKfYRgLo1fGKa5uMNPZzfhb\n5xkaOY5zyIj+9FXOvDaMZ83Lw737XDrxBhdPnmLM0oN0dZ6YFA4fzpGPQO0wTuIwjqeghD4Xmplx\nxi84mNI6ET/aJfJ0g8XFTwh5X+J5GEE+YqL/jde5fnWMQmibxY9+Q1ZdAUCBCKdyDM/HL9EUZXRZ\nXPj/bJ6Zt0/g39qk54evcfTxp0gFLQfJLIr2NlzlNkxdTmqpLNl4meJRmqH+LhTNGtKqgsquD2mr\nSexgl3pEQ++r00y4x5Ct1Kmna7RkauzdRSSFNNqaGrVQotbIs//RI/TtdrouXGbNlyS7mmD41msU\nm1JSGS29359FG/cjcllZ8aQQv6xTqxkw3jrHxt4SG5u7DFw7w5Fnl9gBLH98H52vRFvbMJlYjrLP\nj74sw6XVsPHpGpOvnWbijSt41g5Qi745ZJQlCWJZiQvvDBDLQKKsQGqQcbBZJWU2YTJaSDfdDM7Y\nEWVFlA+ShDc20GQy5L17pGMZhq6+QmErjl7bQSbiQVmqEllJUqmJyIvLlI1GVIKDMz8+i7a+w2bT\nS0fHKRq5LTQWO8VMgGyXhuhRGktvBy1JjJo7jy5gxNgjRtjLICrGUegHiTzz8MbvvUkoW6HP2Q7p\nBIZ8lURRQiKrJ5gqYracwaVW4+45RsuXpUPURKc0k84c0Gok6T4/wd7mIwR5C6W6hf8ggahV/Udx\nof+nrvOuAvutVsv7H5nzFvDLVqtVabVaHmAPOPkPLSyWCXif3MehUXDn8S5Gt8DKL78grymib1ro\n7O2jNWTm+h/8FEMixX7uEN+9l6Sk7YRzdUzFItin0I71otbr6BqU0Dlzg/mtRUZfGWNPocWlKBDM\nHLD/7ADZXoWnc3Oozjpwz9h482fvUjv0MHP6HK1OK1tLT+izTZDYCHL27cso5TJe3vs17U4nO0IB\nX+IQfWcnibAHcmlmv38Z2/87cYcAACAASURBVGgf9UIVW08bBlMbXS4HOd8d3NOTVGohglsJfviH\n73K65zKaIsiUXURTCdJ5JRcGerFphhCyOgAKYTUOVQzfToBwm5ipgWFCATHltSAdQ05i2RhmUZaC\nIoJcIkOQtVAMnsDnXUHRlqN3zMpwXMfUtZsUyLP6eJPBd97g0eYcMUmS5qSSzx+vcKxvitxSAPfF\nd3n4/hpCI0cslMRs70cUPcT56hTppR0e1Q+JhgLoOu1EmrtoXR3ECkWaWhPn208S3j/kpN6C0iXn\ncCfDrieGNOWnmd2Gc0ZOTVjpMun55IPbdF8fZXvfx6o/jDFU5vzvvIk3fEB43cf4rRu4Ky48pSMy\n5UMclRQATqcF2UgfA8MDRLz7DLqmsaMhGPWjs5iRa2S4HG3I9pqk9CVqWQVlXYuLf3CF9PIGep2Y\nYjqHSALJhhm9042zd4TUbobuSSMPHs9j7BnA0WZBbRc4SpTYu73OwRcrmAY76Bo+xmFsk+ljI9QV\nAZprRwxeuMrUWz9CrBcx7LZTk5XxPHzAnm+Tla+XOHmliz6HAUk0w97cQ+q6BqfOnkTraqevfRz/\n6iFKS4uTZ90cH+okX5GyE0uATc7waBcJqZayvp0h1yBKm5nRkV7K8vK3PhMwg79cJoOKitjKsfZe\n6lUJ4pqYLrsTU02JZLWMouSku/0E+myDar5Mn1GOMpYlpXZgHLRTS+cRxBYk5i5yORs7pQwWaxKn\no4NcME9weYvn94J0uHoxd0yhLpt4+HSdoDKH3qygUtQQzwdRxxqE4x5CwX3qGyk6z09j7bES9UiJ\nhFJEn4cooEXdKSGUTxEMrNB0NThx2YFUrMGkKNImUTD9aidinYVSIkMmckRL0BB4uEXvsQ606Sql\nooShthEKyiyV+N8pc6JSnJbQwnpuCN/6c2xmCztf3GWob5iJ/uOEnu1gkOk48frrlLJh7n76MbnQ\nIU2lioGedmLhKsGFHYbPXMQi66Rz0sLRRppcfo/Rt16hWi0zfe0V6mQRDSoIP/VgGXKilZvI53Pk\n/GkyjTg6rQFpbzc78yvY1BacIwOYJdB0S2nUOrDPdLLwl58xenqMUrIMkSw6u41wLMHssXG+/l8+\n5vLPvsPGs2fc+M4NHv7xJ9iGe0gLJVZePGb3ZYxcKY9Ibibpi6Jo06NSaSlVxZyenvgWj3wixPKX\nc6QVYuTt3Vidcq6/+yMQihgVRvp/fI1XT17h+V/cw7flJWco01KLqb33CSeHuwk9WKRUqxPMCxTi\naWKJCIvzn+Aa6GPE0Y5e0FEoK2mKRQQKCQxNK6svMnhTyxz4fWz/4hOCcSmNhIJAYok7v/oEg0hC\nWz7C/tw6aYMVo9bGqnedSCRJsVxDajFytXuE8ZExsoo6SVmKmfOv0ZTn6EZEwRuhzWpBqjcRFasp\nJnII9nZqpSzZ3BaKaB5XWODp7Q9JKEuYj93ElNUAIBWk5FfnOTo84OT114nt7qM7PcT+uhfJuJ3k\n4kuGX7+E6JyT9tMjGLBxsLBK75kR5sMLRBMeDNOD7Hh2cX3/CrHoIfvmQ/LRPaxdo1grFmoFEbtz\nLwhZ8+wtHTAwMMHqSpZEIo9opoPN+zFyRwlUV1x0GHqorOyg1VQRFDVKtQDh7Bpjkx08//Aea+89\nQ9aUYFPWUNkcGDX9FEI+Zv/V2xTKRRqeJhMTl5HnxIzevEVF10JSzeDZSVM4KNPX18tXf/NbZn9+\nDV9wnfDdR+SlCuR/e3uVt6WQq4yIXX0UwnE6+9oQtHp6h+0o4zX8uSL1RpRYrUo9l2RoykG3TYlY\nY2P41YvoWmnE5RjaiVmKkgS9pg46VFBIl2hTWrBFBNqsNappKc2ihHyjhTKcwxfzcfbqBXRpkKej\niMo5Sv4E0rQJXVjAUnET7VYQ3onQNT6LQa9gK3zEYEcPjbQTnULCfvwQpaSOcVSPIC/S4VKjOtih\nYUqiHxskbqoSTtXwxvxI0wbq6gbJSIxiXEQmUaKazyJWGLFVGgj8v6xE/V/aD4G/+nvPfygIwoog\nCP+7IAjGv7W5AP/fmxP4W9t/tDUbTRItGWKhyJjBSDSdxNEt5tkXm4wOT5Ou51CJJAQXX+AyaDGH\ns2j0RmyyFDlFg4KkjLWRxGkzsLkXIB+o4Nv00CmIuPcnj9n57RecODeNyzKOXKxG3NGDIVdh7evn\n6BGIhsvonV08mvuUVlBOoSmwnhdx4cIMdz57gsOu58r0LeYfPODVmzfZWhGzdeclCn+NYszL/tpL\nVIJA4mCZie4p1GIl6GxMzVxj+ctf0zZ1jq7xQe7+8n0ONF425w7IVsp0DE/QHq2ykYixvLWAsa0J\ngMWppSUfYPP5YwbMx1n79C6KRICt5SWOfGsce+d3kXRpWHkSxJJuYKg6kCzsYE44UPY6mL9/SEgj\nQVxoolSaGB2+wHw0TM0PxWaMMXE7SkkDTWcNy5CcWvQAnbGOeNyCa7YPryeGc6QTfRwG+qcwBNLU\ntQ7ijSb9Y27qdjWH3lWayyFWI0s0yyL8iho7ZT2OYoV6qErbTDfWmWHq6wfYJo/xcHWPdy69SuDj\nHSaPD+IogGpUQvneI1z5JoaKFkk0xPbeLifefos2dydF8TfKS9afZnjom1QXvep2AgcReq5MYLZq\nef71AyrrIaQdVSxjajRiA5fPjNMz3M3ae88IeXYI5iMc/+E7qMx2fA8eUEqHePbVB4ycH2RjfpvZ\ni7cIb22TUKiQ1GRU6z5S9SquU114FlaQZWusru6g0zpQaNrYiWyR8O5S8nmxaR0Eizn27qYZfPN7\nyA5qnHz1bVaXg6xueokXQkxcnETZNPPRZ79gQKfgKLeNvs/E6mYEX0wgnomTDQaYmeog7j0gU28y\nPHaOgycvaCqVJFOH7OWPaBSU3/qMJqXGpdegN1Vpa1PgzXqZGHTiaHchuDuQ9ogJib0srm3hfxEj\nGwigc/dRPKrRDIiQlIsIogpDPRO4nFJqgVXqQgCVTEy9oUEv1SN1QrZUocdep1hSYpCr6Lx2BkNa\ngrrZxcHOPlvefQq+IlmNEc9ClOzmBoJOAbUopSg0insEX+xTqSWp7gUZmBzAXpdSMbqxJ2okfUUU\n8gCxuByVW8ralzuECwLG0Uvoxvros5txu62EH3s5ykgJHfnYz+RQtdvoGe78u2+IQc2zJ7u8+Ktl\nDG3dPJ1/RN+FYyx98Ywv7/yKa2+/Q2If1p+u4f1ym3d+8hZNiYC7r5fIQhiXxY6mV8nqnXu4r02h\nUuohk8NydoLFD95H2hQRDkcpJaFUFSirlMx/dJ9aMsr1n/2QvRf3OH/jCtv3X6IQyohEZoSSjYMP\nPkPU08/mJy9QiFIkXyap1nJE8gG63C7S+TQr8xv0uvv48IOPufyzC6x88RitVc3mvUfMnD7O0z/5\nkuHeAdL1PN2Tk9x49zonT/dx8thZ5j+8z+qvbzN7/BgPN+99i8ext25x4Ydv0ym46NdqUIVqPP3f\nfsnEyDSbH3yN7+N7rO7ucurGBcbOd2E1OnEqO1AP9/Hws00qEz1IBQFTWkpEGkPdK+PyD/4l/SMO\n1tZ2efLxA9SCGN/aEkt/PcdhJszxH05xc/YHGLp76O+a5MZ/cpa1ha8QV6TM/OCnfPD158zPLVKu\niTl26zhacyfWThnywz3WN1K4T19mVwT3lp4xNN5NyZ/l9ntPsI7aCVVz6JVG1t6/w7PDeTrOamj6\n/XhfhimbZXSPdyOWiwhKY/TevMjs+XN0aONINd8oUYVmDsfwaSYuDHIkFNiIgnVmkGh4HkdaSf0Q\nKpUyohdrmIxtrL14jr19ilzZw/hQH8ZGB5uff0HP9AQiUZa1Zy+Rlmu0v3aFrbkV8u05MnEviskB\nmrstJs/1sbS+heihB4mmj8xuEOfEGFaVEUdNjK8c5MgbQlwtEt3fQSl3kVkKs33/IYjUdL37HYwW\nF65T57BPKih4niILi3n0v36IWq5HZT7C69/AddyGb28blTpDzFdgsK8Px/lJ9gI7XP/Jj9laXSO3\nH8N0fhyLoklM+s0ZoyvnCS1ukQgeUYu0aOpryLYaJBN5dDYDrbVDOsf7GLR0UTAa8e56iZOjkBfY\nCq2hF6loa+nRaKIUAgcUNTKMnVOoJWpEZgm6SRueZQ9lbZzCdhh5OE/PmWmCi6s0bCYwqjhKSimX\n8uyGWwSkNUSCGF8ryRB1xK0Ufn2cUkpMWy5K05yn4dmjpewlthJB32emsBqkVFdjlLpoVEs4FHIi\nrTi2vTIasRjBH0ZwtpEoZbDK3ejlEsrNEoZ0AUUti6fQoE7zH0V+/m+TKEEQZMCbwN/8rel/BnqA\nKeAI+Hf/hDX/hSAIi4IgLBYqZcKeNI7xM3j2Nsg920A9eoJ6LMZu1ENXp4pmM05bRx+HuTT6U1fI\nbG1iH+pElRThnBkjvJ8mGwlz7p3vEaooESlB09uGSGtlcryb+//hHohSzIyMkA77ycuMXHnzGlWx\nkXj8iPHzbsRyOWJzk1Jdir7WQNTpQhnbIpeX8LV/D2fHMSQZGeJSAkWnHVl3D0ppB54XHnKbMY4f\nHyW8dUjJE8Ci0yLJFJmZvc5a6CXq/nZCER8GhQHrgIq59+5y7vXzmPqMaFRu3JPDSJvfRP35qzn2\nAwuc/cllKsoCg65eijYzF//19zjyB1FUwoSLVQZ1OnaSIYLZBGKVGfVgLwvvLyCTGZCFdyl2pkjs\nLVFRioh89JTvvPtdhmJ6nni3kcYCeO4fUJJ2EcnXGD45wsHnD9EdpjENmqjWDpHY5HiOXtI75KZZ\nKNHeJUNn0eC5u824W0PzRC/ZSpzOzgkiSxs402A5Oc5ubgfT8AD3vtiiyzZB6G6I08cHWN18xI23\nxgjFgyjadTQFLSJZiZzGzPTsCe75Q2glOsrePGvRJbSxb36bmjUDhYaJlZdzdFwdwTiowRsK8uj2\nE0xDJooNI1ub+3T19qKwQyDxkuBWANVMJxqbAUtSSia0RCPsQTJgQyPtoufE65QaCgZGL9OSVnHf\nPMH8r/+E+HaWykaBS29c52hlgVv/6ies7UY4deEic4+f43u8i2NgkkAkTsaswLeyxEBHF0NvjbF7\n9w7mEQsycxNLXcA+3MPkO7eY//IBXf0Oxs9e4quv5jk9fYqtX95h6uYlagcRQnf2UAoNtGiZPX+N\nB7/8Jcu/+YixK2dIxGNsL+cYGe/DNar91n+a4iD+8CHu7l4EeRP/hp98SkpLUcehtGO1dFKP5Bi7\nZSJjiZFQ2BEbJYTLKtqOuSiL/aRju5TbdMTWEphOn6Gzy4AkYaKqN7IbipErNTk7NEakocB1VWBp\n/Q6JpA/LiAaTPEFCocNgapGNVamGAsiNvchVZmLiXWQFAxu7zznKNHBN9FMtGUhmjlj6Yg15vUVF\nWaBYKPHssZdWU4bxuB5RWo20kWJ6pI8OtRKHVMvh3aeoTMfpv9mJq2VifGoUsUzHpNFC2qD5Fo/h\n4WG0OhPuUyMomka6jHIWPnuIrr+PM69c4PbDj1AqRTh6HLzy+2/yqy8+pJLMoJMpWfetgSSEPAgq\nl4HDuYfk0w3Grh9j+8MvuPnDGyzc+w3FSh2DosXGgxfo5UWOnztL++nLPP76Nu4LF7k3t4D7WBsH\nX84xdr6LhijK7L/+Xebfv8P0zCBahwz7kJLL77xJ5VmQxZVN8to8bX0D2IfHef33v8f6F0vY6i1s\nChOWoUnE3U5cMz3497MMnuhne2eR3cfrfPn5Ig/u79AxaaHrnRs8/PNPmXnj6rd4ZFf97D15Tswo\nJqGz8ej5OpYfnCe1uElKDY7uDlp6I4fRdUoUcJnEPNl5wF40SptNjEOokDKYqdkNTDsmaVOYUJT2\nWHrvNpJjwwxdOI+2/zjZSICzP7lGm6GH5GKMVPIpq8/mmPNs8exFHNvENMGlGBt3/5iR/j5s3d2k\n8y2ef/4L9p5/wvKzdXYqFmavT7Lzy99iljd56w9+ysuPvkZl7qN/WImtpibeyLO/ukVW2sPgWBeb\nX60y/ftvceGtq5w/fQPV6CRWZy+RnRSal3G8LzcJiAvUtBYADIKF5fU7lD1xaoshbvz0LLk/vs/x\nU1fxKXIk8kW8ojS6HhfbHz/g5mtv0X1zjOxDBetHRwT0QfpeOYGjQ0Hw7iF9HaMcv/Y9oiv7tHe4\naBhEVOoyDO29lL17NIMZOkrQ890zbN95Tmw7RDHyHJu9mwN/EpmQY/LCDAXqXP/hmyz98jaT3/0d\nJIZeRs9NEvr4ETmNBO/jfd7791/T83tXyPlSvP6dH1OpLKOruBm8dZzgehCLvkgzZaZarlB3KknP\nrzBx8SLRD16Q8+UZ/ulZ7n/8EYbZHjT+b0glCTe7/wd37xVjaXbk+f2u997fdDe9z6zMyqzM8q6r\nu9o3u0k2OSTFHafRalcPA6y0kgAB8yIIWmH0sAIESSNwV5zlcIau2b67urq8zcrKzEp/0968Jq/3\n3n564IAkIEAzwO6DtPF0EAfn+4DAicD/xD9OnEwOVKASm6iUJKR1x8hKavKtFulUhFoJTGYnHftJ\nNL01mrkGUnL0ZgfZSNRJGcqItUZEE30oKFEabVE8SqHcTSFtiqmF88hKOfK2KgWjFb1OTKWnF01C\nREMpoxXbQaSVYRE16C21qInttHnciHRiiiojKqMRUWQLuWuI0Moq/TN9yGtHWFplCj0dOK2dlCoN\nsm4BhVJLXGOiTVJj15zFYDQSqceQSaBTryQvF2j1ltBZepF5ukitKtDUFQhy4R+FV/5DZKJeBZYE\nQYgCCIIQFQShKQhCC/grfkfZhYCO31vX/ve6/4cIgvB/CIIwIwjCjE6tR1mL4XA6cA0Pc/btd8mH\ndrn4+nWyL56i6OhG8O5w++59pMoOIo8PUamtrNxYpJaIoE43OTHfwfKLQ5YC60x26gkFIrgG+3Hr\nYqj6pqhYKhgUCmKqAMN6K/lmgufPArQZVRj7YeXLNQbnJknFMxRrEhqaPCKNGnV3D8VClL4eG2JR\njHApzdjVM0hrforeBaTiIgqrllomRWgvj27WSNeUir3lTfz5CLuFBNO2UfKLK3icPYhLVQbHztCn\nF/Ppz24R8PvwmM00kwkEflP050BBvWpBa+olcjdCydZC7ysRvnUPnbEf/+om6mSV8nAbfacHMcWT\nqMbkBMRZ2hRSDNowuukhDrZbKKQKRFsbXLzyCp/+6MdILDr0eTld5y/S3dNHbvOQ42qK1bsppue7\nySdrlI6qxHIKGooKhWwL79Jj5DUZhccH7C8KnBgeYjEoprH3AqNtGNNYGdv1y+w+vUeHSMe4e5KN\nUIATr4/w+NYdpANu7qzH6H9rjqf3vChcemQqEXnKrLRqiMoHhP3rnD3ZR8Mp4igUJ3HfT0n9m1Rr\nw1VFUqpgsasJ3Fzji199xrB1BHsWrNNTOF1K5BorC79+gPfGMhJ9O7Jmi26nEb3gxGE3IDQgsR1H\nWRXx/NlXeL/4kO0HN0GXwn8YYuOjr7l2+hrhxFN63jvJs7/5jN4L8xwsbKMwJChEcyhyWcYuDSM+\n8CE3SGjtRRl94wovVnc4/PkNJk6cY3txh9276ySSOSJr94i+CFFJSbEOWpEaq4jNOg7CXsznTrDy\nb35FqRrCet5DbD/L44UNooYap+ZmaYkrZHLHaEUWrlwaZuXeU4rh9G/9p+ivEAyHEcsUJCQy3vje\nZTpf7yfzIsKdf/u37D3ewjQ9SCiXwj3QwZuvzPH66WE8ShkWWy+DPReJFAoI+Tp16qgiJVQlPXq1\njk6XAZtFSqpa4saDLTKJMDf/9isUOj2V7TiStIlwMosxHkaeV/Dmv/g283/+HaK1Xcbmp3G1DfNw\nZZnMoZl3376GopRHpM0RlilpFrMcVjWUAxE80yfo7FJhlXhQZiFYrtE24iStluLbf4L33ufEzS3i\n6XWi28dsRHxsLT4lXEqykEtiC/4utKmbJUqyGKPmDhYf3cY5doqTr13B7TFRFWy08lb85QPcAzYe\n/uIrrr5+nYm33uHoOMipV84jIMHc2YZeDnNvnWfzYIl1rw97t5Xafp4+bHRUrAy/OUfPpUGWnxxS\nl+ppSuL0GkawqVS4ijq2niwy9s5b+O5uUDk4Jra9w9SUg3RZj8ruYfmD+yTrOYanTvLyd8/TbIiw\nSAvcvPUZ3k+fcOXaKWo6C+522NpfxfvJByiRMDA1iCAxQOSY8XMznHz1CkrDMWOeYeJLz+men0bD\n7zKVTqsUR5uB+ONnJJ88Y7hjhMyzAskKlNQqnP1tGI1yPFYXxlyFUl1gwGPn7NkJkJkpl3XMTbpQ\nlgpsrj2grNMRa5oZm5xh1jlGp6OG79EXqAwajiMbpFrPOAwu8uB+htFTQ8xcfQtFLE2zXMU2oqPT\nc57u0TkKeyGcJhkmcTeari5MfWPMvdFBpLyP4uw0pdARn/zrn6KQyhCMIkKiOBWtmjalApk+RveM\ni63Hu7QMSlpLW3hvPUcpbRLZX6cWDqE1i6md7GNoagCLzkEhUAKgrK5ivngWX8hPZVyBSNAgH3WT\nKUpoihqIbWpKiyFyyQJT/+J9ntz5Au/CF7i7BSwaK+Gvc+gqWW4/fIBOLSUkbxI/vAc7JRKxGOmF\nAGpJA/FxFutZJ3FznVArRTrv49L755g/8wb6tilw5JEWFAzZJ3ny0Ee6TcIHP/olA+dHUFXDNIUW\nz796wfx35/Dt36Hv0hTXfnCdzUfPEK7KuPfJAlba0VxpQ1TScXRrDZV+ivWjVUrVLOmNbRwn51m6\nfQ/Z5THigSC2oo0333yD9V8+QKT8TUyVKWtMy2y462pkxgS5TAKzXIyxnESUTmA1diFthcjtRNjT\nimmrtyNX28nuPuPm84dMXu7g+QfLqHMKggsbhKtxEnfWkOvrlPt6SRzsoxg7R06QYpf3k4/uUS5W\ncUsi7BW3iSgDSCNWpE0lFqeFnUSBVO4FmhEbK+tBDPIO9LtN0roOhrpaNJItjkubRHRyDGMjEK2R\nbhbpt6jZPfbjfu00qdtrBB6GMe6WkRjVWBUTKAUBa82E3A6NjIzE0TGVkhSf7JDON9uRC7+rM/1/\nk/8QIOq7/B6VJxKJXL839w1g/e/HHwHfEYlECpFI1A30Awv/0MfriDj/re9zsPAVaxvLPFz5gu6+\nfnZDL6jLetle2EJjH6OWr6BxNpg+4WBwpAO1qMxxOUo622J1M05/XYyo2aSpcCPPNykkjnAPXUV2\ndEC7YObZxhraajtFYxVpSUbdu058P0rc12IvEWJwysro6DBTPW6yXz+hHMuTl2o4+9IFAvv71Kpi\nDtcCmFEw0nudvqmXiSrqaPpHqbuqhFJJDp4ccvfGASaXg1wpR+HuC5KNCvVkluHTFwksb3HQiHMg\nbWAXRBxGk2xvb2AcGSPV/Ht+tqygcBwm9Og2eneFdKBI7WIP7W+fJLq3TV5TxTjeTmFtk2e3HuL4\nzlUOoxkKdx7S0T1B5/wMhkYMY2yHqVPtxOUmGrkD+s9PUPZ0s76xTPzmDr7cDp6zPSj3jzlx9izb\nj/aIpHyUulu4HTqCK0f0vdKDwTRGpS2NqJlhftyIPxBFncswMnYGZSREvqAh5w9y9txZCs40FVUW\nqw0e/XSZS6+Mk/CHKS0+IPDkOU2PisoXqzRtZoLHecQhGeNnr5KtGggu53DVmpSTCf7wT/+UZOs3\nRX+GqpatW6uYBsdJ5qTYTX2s7HxN1tJi8//6nDuru/SPjTJ5YYqW20mnxo6my8mRP0Fz2MZGMo4o\no8Vz+SKdF07S7enDcXqOkXNvUQxlqGi0XH7vLdaf+nBPz7Pw+WNGXn2FB7eesBs4YKZjirLQYOY/\n/SesfP2U3VSWwdlpDsJ51j68idykZfD6OTKhIyauDVBWSykLdTC6EBWKnP/+t9n7fAO7xMzk8ARH\nnxyR9yU5d+Fles9dInVYZ+L1K3QP2di/uY3S087guZc4erRMe6cEldWBJdfC2vc7t0vJKgwMT5HO\nHyJVGQgewfFShMagGsmsC/NAJzI1HCzEyT8OUC43KKQUlEfsRKoVtKYW+mOIR0IYe+QUumUceHfp\nmXRhkNgYbZ9jwCRg0LQxcK2P8bk30aT6MDQF9is5PHod1XYXjYqI7a8fUl1K031pnqZOQa1eQlaS\nYpbssXjzJt66j1wwz+SQk76LHZhsdbQNN+KmlEZLweDFCbLyBBiMeDfKbC5+xuDABG1dPRRTCmRl\nI7lKhWIxh8KhZsiuZU7dB12/C4C+SIqZ0+e4u3SPS6+doOk9oqlssfnVIlv3f8Xcq2NMXL3M6lcr\n2Nq6WPvFEvdv3CWfDBE9iHJ4mGd3/RZoe9i8t8Jsewf1RAhr7yiLR17Mo1Y2kmsceSscP13j9Lcv\nsbmyiv/mETXRAWufPCKdiTA9c47dxadEhQJDb11Hq3dTMHbh9y0S/OQxk9/9Psm1Q54vrvPg/mPi\n6wHKOjsTYwOMXh/g8YcfUVcW2Hy2g9OmZvydy/R09FGqZdh5+phzf3SFYkAg9myBnvEp0pEC6SPI\nSJI8/XTtt/a47w/jj6zSPnAaRbeC7dJzhj1qZJNtnL92ieDiNtu//JqdUJ6Eb5/9X9xnYT3B0/te\n9GNOZDoD3ofLHPkPGR7pxiHTEzzcZmV3m/T+PosPFhn8s3dwKdpZeb5PpKDl9Ds/5I1/dopiQc9x\nMYlOI0YiSlKrWpHHA9z8+Etcb0/QfaKDid5RJBk9bU0tT3/6NYf+OmrKHBynOPWHZ3CP62mEQlyc\nuErio1sc3U8xcuW7hJJhPMMTvPTNKzw7jBCMbvL0s21quRpDr5xD2Apx8NU97vz4C+ppKZKO39TN\n5Zo1UgvP6RsdQZwI8eTulyx9tYBK66DxdAdHZzvj030Eq2HW/+omJy6OUAjniBWOkfpavPVfv0bw\n8zRO1zS+jRAeiYJkuYFyWI9D4sDVdQpNXye1ZoRuJhDWpUyfu0R0KUSmlGWrGWF36xmb2UNqhhhL\ni5sMdLZQ5Buc++ar+BVSigAAIABJREFU5Ly77BcEYs/XMAwL3PjRXc51XSe3tcyLD5/jMnQSjYYp\nRzfJF9TsPjtg89Nf0vX6Be4+/Ihz0x2cnH2bmStX2L33GLmmg1o1zGj3AOVEjfR+kW67Gn88AYBc\nUyDdKBPOZoi/2KNX0cHOlpTWWSvBYpCJa6fxHuYozhgwaG3UZXIs0goWuxWL2Ux01Y/SIRAPHONw\nWNA3HCjblBjtDlrSPPuHAha5jmbSQqrmQ5RqcRg7oOi3MaByor5RRjbdhV1SQa5qR1yvoi0oKSyE\nsLabmXi5j2itjqSYxHptEENHGztbebyPbtHz6jib91dIOaxIWnq6Qi1axQKacQ2tzholo51a/ojR\nqTZyyTTBhgVH1ATRCsMOB4niElpDg2RUQ6tV/0cBoH8vECUSiTTANeBXv6f+VyKRaE0kEq0Cl4E/\nBxAEYQP4GbAJfAH8M0EQmvwDIqLB3uoL7IYhnMYu6mExq/ee0N5/gaELTvLxfXQyPf1/ME/s2Qu8\nlTq7oTIXvvkKnuk2Vp58Tc+pGXRvn0F8VEE9oqAmVXHr1kMU1Kh6rOyla7jUQxSPjtD19WEbbuP8\ne9/kIBNmZ/cFb738LssfL5AJxUj4j6Czg+2dFS4MdhKPeenudtE2PsC5s6MsfvQznhxtsBZa5/S7\nVygsryCq6eh2uBAaLZyj/Tz68ClDPXMYr02T8Plon5/mxpc/R2Zto7QV5Nr8O6QkFd77z/6MZLVO\nKnKEtfwb+ioq9yGM2FFb2jBIDGQsWfJPd/j4RzcY6BllZu49Cuk0dtcJ5i+fQ3SYYPfr+3Q7uzjI\nVcg8z2N1jpMzVQg+LKLszrKDBJ3UwurhEu/9qz/HNmfCNOymGQvj1I+wtfsI66vv0NVhIZU8JhXZ\np9fowXRgR9MvEN3M0HXlhywWDhm4Mk5484D18DqWMSt7wSAd1Rxb+iaFQoaGVMviz32MvNaGvmKj\nKioyO3gRWUOJXGFi5L/4E55/9oT54U4SogLrd1dRO61Yh9Tc2N5n/oSDhbVVDEYDABU5OKfcPLv3\nJRdeHea45cWolnHx0ilmvn+F2Yvnae6HSEUEyhE//vQhRqOH4I2n1HwrDIx0k04nIFUg8MvHqLra\n8C0/ZemTm9inzKQO1pCLUmi7JMTW9pmcmyX85C6iQp3ZsxdQ9OsglKG+4kWiUODo1KJrGLk+f4LJ\nq5OkEkH2H6xSkSfIrB8S9Pvo7xmjf3CQSL5MvphivxDlwd1VdH0OCk4LKqWcw0SA1V9/wPDsIL67\nj7B7TuB0OfE/3yC9sUZOqPLpZ/cJFqpkNQJrO/7f+kw1Fmcn5iMtluFoVFGmG9jkdjQtB1P2Dk6f\n7sccrXL9pXl0Bh3ehQcsPViiGE/T3aqzehwgXKmjDkZRG434XmygGB7Fl2myc3BAtuVD0dDhMGmx\nJ80s3X3M1tJNCpIoBrMCo3qMrqEuXnvzJV7/4+/R2WGj9HCXyI6fC4OzXH9/EMf1sySrRZyKHrQj\nZgLxMMmUFYkMKpYIDw820eSOuf1gGaO+jeZuHLcmR3vfGDW3nXLRwtzpAZTiMOWUiLmpTsxiFU6d\nlGXvfZLHv8vMleoa1j6/ReeQGcFg5tbdh6hqRey9NmzKATZ+8RhRQ0BdqeIcnsI97eHcyyMUcy0c\n/R1ICnnSBS2hjR1CWRGJRpFIOEL8IE7H6Cg7+3km58YIhx5i0LShiUspRXKc/NZJFpcj0NXCMmAG\ng4ru3l46XGM8v/URO4+foAtVMLQ7mP7hO5R9exj0eqTSFle+/Q5qrYS27k4KgSzbC1vMvPceo4Me\npl5+h0y1xbMvl8mk/cg0chyTZ3n2k4eEEwk6T1/Gt3TM3tELbPNuuh3t9Dk9v7XHgNXJyfEpKvUU\nmqgctXYIiULO4NgQoSebRLNNRKUq4YN9joot7G+9Sve1UWYGZ6jL6xTCYboc7dhnz7K56SWT3Mbt\nFujuslOoFqnvlIn8eIE9X5hTp+dxmxzEV3fY++gQZY+LE5MuXHMz9DkuIHIZiGfr6CpVorfXiBdr\n5LUSrFYTfu8uY6cGMBwckg/UMXaaefZ3y+QPtBTWCtx78AWW2SE6p8coPvQiW94m+PQp9W1oV7m4\n9J13OfFSH86WleUvbiCMdDLTe45u+zg2jw1jSwmAoV7F1dvGYVmM8CKKe2CWiSt9bHz5S+b+6R+Q\niNdIHreYcnfgam/HJyuTiiYYGjuF5s027vzoE0beGiC7vYP9tAGj2kEjlaeWElFytijJjojeDGIz\nufCpa/S9PsSz+19w4uIJ4oUSkdUlzr76EjZZH+m9BjVNkopbhCbdYOOjTzBdHEEva6HrtKDRqjj1\nJ5N8+cmvGRmbZfC9y9SycfrdE7SdNFGebOKc6UFqUFI7XuHqD15n96YfocvIUcqP+fIp6h0FUtky\nmTE1e4kgvp1nVDQSBoaGAChW6xjUKmpuD6pmjuCOH5Esg17RTv5QTFiToxjMs/9wk5luE3KHHJ+g\nIiZ2Yj4zSEd3J57ukwycm8Et6qQq8VMMK0mZpDhbDXSKKDF5CEZyaC1a2gc81KMyuk5YSWXFqNqb\npMMxXO19KNqiiCVNdrRlajot4nyVRDCBrg2OqwXCVSlGh532bg/jpgtEtuJ0tLlRVvIImhb77TKU\nYz2kC3IsDRVDY1aqTQWPHr/AMetCEQvjr+9RFMyMzngYlKvo1YyiiB3QFP5x8OjfC0QJglAUBMEi\nCEL293Q/EARhXBCECUEQ3hIEIfx7c/+9IAi9giAMCoLw+T/mHyKJjKz/AMuEiVTmGPWJMWqiHhqJ\nPbLZApPuSwQaCUTbPlynBoh6/SRzUZb+ZpG0dwebo417v/iQ41AFx5CL0GGUi394DWlMSSBVQabR\nY3LrMXVJCDVb1HMCtdUk6UCQce0YV85f4tlXz+m8+BrFYBapSktLaJH0+8hnlTjGZ9i5c0zgRYYH\nj58yMDZH77iFU329HCdTqIQiO89WKMkbdEy7Cfu9TL/ezcb+I1IHR2hHBgksrvDOD95DYVORrCWo\naJvUshXiIR996hqRowyR2m/S8WZBRCNcJBeqETM3McYVONV23nr9fSJ728TTXvz7IfJGgaWvnxON\nHHBpehLVpXHq7TFaziKPvrwDEjm600OEoxrs2hIBaQnbszj5vQ1SdSXPb+0jLzdwTKqxaHREimvs\nR6M45B00UzJqnWrixSPy+zHm509Tyn5NMipn3bvIGz94D4unn9KOgFmlZP3mLprtLHJNN4aIl5eu\newh4ywjGA1Lrm8jFx6i63IzLPRz51znbN0jg4XPeHW+jWJKTDQTIRBtc7x9h/TgFBhVC6jenyFY1\nB5U8r75zndUHS3zn5T/E0j9BIJki6E2R2HvEQeCQzKGXl959g401P+H9LS786fewemawueWMTg+Q\nURZoO2Fn/dZzLr75JmfePEVyT8OpCxM8uLnO5PRpxmdeotSIEyuV0A24Od7f4XDrGN3QKEtrDzHm\nGlTjKdZXHlE3S8hmBS6cvo60sx3BM0UxVuTq5YvIu5s0DnP0nTCRWThALKrTNdBNcj/JyJkBxi4M\nEt8/wjV7mlzomK1YjHTlmO1ny/iOU0hcUrpHRnEaurDoigg6OYbM726S9MzOQuQYWbJES6cik17B\n3/ThdrqJb++wtrdNvCFB5GmjaZCTbnlIJgXiuSOerPvRYMQ04iZit6FOmDDm7LQCJcS5A+oagdDR\nOmWTmWbJi8Ig5eK1UyhcbaTSLnrHxoiqMyQX14nJK4gaDRrHOaSmFtl4jHQ9z42P1qncCaDoddBl\nb2O0f5ZkPEfowSMKDRGqshLSefxaGRNqNw6rmLbzLhr6SQb0HoJ39zkI7BIo+Rl57zxKp5z9/TAS\neyeluo5q0YY8E/utPepCDFlnL5tPDvA99/HGe98gmI6TPcjQbtei9HSw/bMnSOcmCRX20XkcPP1w\nlfEzp3j68We45mZwO+VMXXRysbcdz8BJhk/14tvbo7K3ytyZORY/XqND34FOq6YmE5h8bZDNVR8n\nro9QDdTomjzD0mcfkKulyEVWUNcVZORyZO0yREo5zXidnf0IRk8HJ0+f5+P/+QPmr19i42efUmw2\nUbm6+fqvbvLi/ipLd79m9pSTbNaHd91Ll9tF5NZjzn7jmwQyyyz86iMk+SQ6uRKbzUL04IhEZu+3\n9pApa2xt5Tk62sLS7UZZ3CMZy3O0vk2+KuM4fczUD69x/vxpXn7jFXSKCOIvV/Fuf0H51hO8T/fY\nLxSIeB+gbSqIRiIUy23IrGYC4iKX/+VLzL97lb73LyH1VWltbFDKHZG3aqmtbnPv01/g34wQqu2R\nW/FjMFoYuTLL6PVZtBoj6w82CRyFOTV3Bi3dWK29OAbd6Ip1Tv3gZRr2LOUuOZnjPFtHPnYP/EQ6\nI6gG3Uz/59fZXrhPyiJDXvTTfJElVsug0nYyMNDLzaUHVNRqIskEDdFv6DxFRUc1l0YulGk7fwFl\nOInZ3Y+8puHAu4gosYV5QE4gIuB+w0nxVpnhl8+ylw9RfxADXYvlpSCXX5uish5lI7CMze7GdUJP\nw1Ch1chhPW+i5FCSOPASSCQp1/PEQhVMhzWclXa05AguPWfI1IZLUKOXmdjfbDLy7SuInsfIHQap\n0sBhcvDo47uceuMCy+kjmnsFKptSDv2bGIw9aDNFfB8+QKxw4enp4/DhIuf/yVvEt9YpFbJY1DLa\nkxIKz3ewhMFUqWO5cIHeE2copLwASMoy9EODmNMgPXmWvKKAylqi0PIx1gHxx1k0ZhEmIUHc5KLe\n0GAki0mpoaecoxoQUGWylFQJGgM6qhY7xcQx6poUkUZN3+WTRH/9Ak28E1WXDbnFTbkWx7+xTSG8\nj0Lcg6i+B+UG1A2MmOucaBlwdzaRBOocBA7RhyN4NCqST/2EjvOUwhJcp01ImxK6LCLYy7PuXeGs\nrB9ZJIG9WGU/JSO+eUC1kcYlKhOpB6gVIhisHpKhAxqCjGLWSuJonZxejLj1D3ZgAv5/0LG8JbQ4\neeE9vD++h16lorTwkLaRFogzJBZ3MHZJaJWb6Pu6aaBg/vQsFydG0Y/a6Z64Ri6S5eSVS0Se3mR8\nchz/op/8gzXO/ukMFXEIRaWJJJ5A1DDQTEUx2GH6+hDbjzfRDquxalQYZtrxffq3qOZ70Qx3YjY4\n6JJq+fqrr3i8s86p9+ZR6Vq0z43jGNFz+HCP1a0XmFt6bHPXufYHV6nU64h8Na6+8xLRu7t02rup\no6Kw7EeaE/PZB0/o61RzZmgQnSKJ2w47j55TLGQZn+ilIfymI7VRMDI21snARTdjLit5k5RW64jl\n/CrqiX4yt9ZxoaC0vYqsV45fJGdVLcWj6MIRMRL2Fhgf7SLxIkGiGUPycAtTsQFLaezfugqrJRqP\n4lycnCYTzvMkmGR0dhTfT58w2NnFgT+MUC8jrkgoJzMEShr2UinEL/LYKzUKgpKCPIIloKTnlTly\n+xk6vjvNgNnB0eF9gkkzvkqKnkaJ/ZSa6at/hOraVe795EtyNhX1coKw7BCNWseRL8L5t2cwCzXU\nogINpBQXA6grSTSGDACNVpVsWcXB0iols5Tbtz9l/0WKerJCZm+PglTM0GuvcvI7b1H3VTk924MQ\nS7Hwb36GXCGjFGqSCJUJhyLItAoufuMiKx/eorDV4CjwFJ1Zj6PTwuqd2+zlNonGM4yfm+f0SB9u\nt4NGUcrBjZvMXr1OvcvMhbdfpSlpY+HWHdJrm6zcvoO208nuB59hPHUSuVjKxsfrmMYdoG4nkk1i\nd5po5utk8js4LAq++uljOnoVSOVlntxfZfrdyxx8/gyt1c3Z+Qk0YjW6hAKjQSBxnMDcaKP970+R\nANX9ANZuJ2gU1KUWBmYv0fKKCSfDiMxG1FERHad6EKR6MqEElvYUg70aZNkynZNdWHvaGevuRVKO\nIutVYByGeCuGLCtFXSygU44jCdZJ1lrs319BL5cyYjWj8GQopGKUA3FqpSK3f/Ipf/N//u+EpTk6\n2i0clErcuvMIQ0tNzpZidGge26l2REINVbSM3GXGLe2ly9ZDR2cHJ9UdFLIvUKmHGB6ZYfyUnUS2\nBmIVFkWeHtsw/tU6HrWZ0ekRojkvyWQIq15EwfA7Ok8jEtEIJ3j10qsoanme7d9nbyGIrEvCTrmJ\nxlxh8runkZZTeHQKDv/dXdonh1j65D6vvHuV5PYC+ZyYg70yWUoEvI9ppSRc/NYb1Mt1vvzol4x+\nexZ/MkSqVWfJex91VYZ/awdJWY5cpefXP/8Jcy//kGTZwNF+lok/+Q4XXx7l1k9/QafTwr3P/47L\nZ4aJrR9y+5cfc/Wfv86dG1/RMzmM2irCrXFz8d3LaKUeZl9+ma9+cptrb/8B7b0TfPKT2zhnT7Pw\n+UfYtSfoudbH5BsXiYYaFLcOaYQV9EyM/NYe4oYWsUbJtbevEo5GGD47T/DBU3ybXmory8x/+xKK\nUJmUd4tmvkV6M8nU+2cIi6GmUPPmf/k+9nY5hXKVpqrF5PwVsrF10ttbiCJ1PvgfbvHT/+1/Ib0f\nRDXVifbEMOG6HIfDTN/JXq6cfp1Oh4xyOk1e7Kd9yE6mJiaXrVOJFunpdnL229fY9PrZW/oaWVuF\nrfVDOkeN+L2b1PNV+tRGLlyaoEuiwyJPkvE2UZk07PztHrYLJ5lwmUmmNBxEFqmF85TLUTa3vfS3\nWREVdzHUaojTFgBKYgGJr4pebOJIFKZmK7L77BHnvnsV/719VGYJTa2cQGSDkldM+miR2mEBS8hE\nIrzHhOccM0N9/N1Pn5KXtTM0MUKtaWT/4038d7z0ds1QDqrRdziR+lts3d1m5qWXqYgU1CpiBn/Q\nzdqTJXq7R8kk0gRSaTbuHdJ2VY/33y0j6evHoBRT248Qe5anvdpFd1cHR0/XCKqXaA14cKT6EQ21\nUVv0YVZaKTcUPDo8RGU3kozvkFg85PhpnNjyCoK5xvnvnSEqKdBqJvDeuc3ygyNqHgcATZWUmqRF\nJbWJIuvFonZROhDR8JYQWzso+9MoZU58R8fUMyUMxQJVpQSp0KLukrOR8BL3HRBYTqMsHqONVOgc\nNZGPxFHXGwh7UWZeOYdSGaaSj9LK7tCOlVIlgflcF5FsAwpNjqMpgkEp1aSe5OAoEoODlkyBuman\noe8i72xRCW4zPAzbh8toxTKa4SKWoQ4aVT8OZxsBdZGEN4ulqUbI55CfdpHxazCfG6S1p0RusVIQ\nHSBpFqj4c8SEFl19LuwxCyLRP+523v/33877y7/8i9ETZwjm44zMDeIyeXh25xGCaYyxEz3EK3V6\nO80c3j4glkjQNWFn8fEhUp2E1I4X90uDWPIxRkZO8ijwHEmhQWQnTENpIb60Rz1XQXduCplYhlyo\ncPDET9MloqPPSiDXpNyoIqrqkGoqFHdLVAuH2KQmZO1dNJsxwt5j2npHqRe26DHZePjZXYYuTpBK\nF2imQthkTvKtFjWtFKGQ4P7nDzn15iVqGSnWwX5yXi9qUZVMs4W9rZed0A6pjJq+nj4MHV0EgyEq\nIhHVdIKnzxdpmx7HaR3k6e0bNNrHSD57htQ5g5oiqoKJmFSPyaVFZTfSO3aS/P4OPU4Nx5UUTgPk\nd0okO4x0WpSUWgbqlShVazfom8iLGnaqCTrdMrbLfkYHPKijYfyFJGdeeYvVpSB98w6y3iN6z0+i\nEcuJquJY6zr0PWMEAgE6q2Li2RrOU/08XXqOKtYgF4xQcGnpzJrROlyIt7dRTw+xcxylks6y8PF9\nzr3/NrEPHiMaUGHrGSKXLyJo3UQODqmlU9QNfWSFAsND7eQkJhLxQ57efs633nyDChVy+Rb5YIlB\ndzfp2CGKDgcD450Mesb56pOb7G48x9iuwW0bIZyo0Hmuk3AsT6kQw6zzkDraJ+svsnHvAWfff42m\nukB85RCZuw0UNqqlNLWoArusws7xPoK+G5lITLMRxeLpJlMMU21JSB00MYrz5HMN3C/1UtzNgUqM\nbbKP6rMVfItetAOd1Coy5K0KLa0OWTPH0doqHa5JtpZv0+bpxSR100qVqNTrdHicHHqPOf2Nl0nu\nr6IamaaQDaM26AhubtD92knid1a4t/IUgLGecUrJJspCi6a8zvraDqVqDmOzwOraNplygvbeAfQN\n0KlqFDZjpFsaesZ6sOhLlDabPFryMzE/S+rokBMnLzB6YYijxWPUXXrCkQDhQhaj2sZePITGJCNT\nKyEUJaiFLGmREUUmTjJfQt600jY/QT2aZdIziVOnxBcNkIkJqKUSdheeIm1oGL9ymqakQtXvxTo+\ngF6ixSC38CS/SnTnBfvbGQL+IIXSEqW6GLm2RWQ9jViipXdCTz2jwRvaJJ0VMXBpmInJU/zNX/9b\nAC7NXMR+0sqLpRcYRHqkVS2CVERfu5v4+jpdg5cQ54559mgJadnEyddOEiyEEEeSKNVa3O4pdraW\nGX97CklBgy/gR4im0Og0iDVWLJ5OWrkkQjbG+Mxl/AdH1BQCBoeejv5uVG09ZJN5dtc2oN5i5PIk\n6z/+mJayxfjZabJ1BbYBN2V/nJpYisQhw2OzYNR0s7u3zOj4LFsLy4QbAawuJ7mNAFNn5qgrFfiX\nDrDqwNrdQTTgp+/MNMXFHURKBbGAj+5TJ6lbBVKBfR7c/83+OHniLLXaAZlCDkd7P4ePdui/Oo+Q\nyWGfmyATDyNTuKk2qqglavSebiS1PJKyjKxch77Y4snXD9Ab+9GWMmzcW2ZwpIdCuEyuGMLz2iUu\nnLyGTlsieRzBv/+CmTfnsAoy7i2sEFsPUBdKpAJixOoiamkL/90Nws+3KR6FsV3oZeuzBfquuTgs\nlIgs51DqMoRpYAwZELkk7OeiiM1Ktp54kcsMyMd0sBonoVNQFerICk1y+08R9U/gix1w9eU3yQsJ\ngkE/Oa0BhVSFqJLn5r3bDJ8cZfobF9AVchx9fYBoUEJkJ0M9J+A8NUx7VzfFrQrWlpGmOkXPH77P\nwsdfIpcpmJrtZfnIRzad5PK7Z4mu+FC7JWTCe7QPajD3jrD+xQZjl8YIbj8Hk4z5i+c4+PlDFLoY\nmiEH4XtHDF6fYvuTF5hfGmCkd5h45RC7SsfY1ZfJ+J5j0AzTOmGmf3YSW5uehTuP8XTpMSo7ycSO\nURgKtBoZJt97g0e/fozF6mboXBe7KR+RR1FmL0xhNWqwnPbw5NYq9UyTlHcf97kxDBItulqChknP\n/Q9v8/Y//a+IPFlBMmQmHsuR3wkw9NY0xDRkclGscj0mix3XmJpw8ZhmxojPG8I83IUqXqWVyiDq\nmqKpiFFtaKgcy8iXWtiKKiKZJLq8gru79+iZOY9cb4SWCpumyuZSmJ5XRpBIq4jqHegsCerNAhVt\nGqlGQBK0sbEXRjNjJtL0YdLYERXUSOoijhsxRIKGejpFKQPHIdB3mGhGRQxc7sYbDGLRNhH2kiBz\nYnCISR3n0eqqdHVOEi7sountplhpIM1myTTjPFp+xr/8j+IB4r/8y7/QYeO1H7xCJVrD0GNFoW8S\nfvCY3WASweBi7bNbKPV6ZBIT/qMlhLKOI2+cNrcHq7bJZtWAxySw+/UxHW16uucH2TkI8+a7ryAz\nylGSQNGqsfXpc8782esc+Q8wN0zUdXq8Kw/xjJygptAyNNTF/t4SUk8npYoYaSbGiUsXePLBDVQu\nHauRPC+/Nc3dv/4aRQHqTTkqo0DD2UniVx9Q0LfR4+hk8dEtBgc8JMp+rLpONg53qcnK9CjlHC8G\nGJ7oJ1MTYzbZ8AaOGOtxIohb3L5znx5XL9ZWktl33iOz4WOuf5S4OUb2SEKfqRNjv4Xj3A4mwxAv\nbn3J4EtX2P74E6JZKZUOCShz5MNJetptHG8VGDnbxdHhAmPD5zks+HDkzLSGRWw+WMZs7sFlH2Nz\nb4VcKk/ZH6Fab9DdO82+osb6oy+51jOPwSMidhhH16HD0t5P8OFtcLkpBVI0+iXYL55n+8ZtDB12\n9hYfcfZ7b3DjF19ybsTOfizL6zODbDYOsOYUDDkcBExKXvxoAaOyhdVkwzHjInBrEYlBScaXJiuV\n4HAZufXJ14zNTjM60U9qt4Tb40HtUWPrGyUfCbOxGuF4ZYORa6cZ8PQg01u5dfszTNQxTfYSvbdP\n0r/P3nGA137wJhvbj5h78w22dtbJ5CRMvXyRpRsL2EbdpNd26T5pYsdf4dKVCyRLOcTBNId7+4hi\nx5jVOqw2OYVMjeHznSAtE15Yx24ZoiHUyAQzuJxu1DN9SGsN2tsUJJtZXAYx6YqOgel58t4VEqkq\n7Z5+9l4sEymHOPPty+T3Eoj1FaL5CJGNFON9IwQf7ROLHzA1PMZGME3vqJVPProBwOz8aQTbb6hI\ns86FvCRBO9CDP7aF02QjFJBjyPuJVmUolWJiojpGfZ36QYJ4WEzL3aBD1kI/3kk6AC1NjboiR6lU\npJBsMjgzhsYloZIHZVOgHlfhGe4kmTzENXYBT3sdqdFMMZ9hxNNDSyZQa9aJV4JsLAQxm5sYWhUM\nDjF1uwvEdUL5GOVQHXVvD2aNnJw3QSxT4uzpywTjFWqyMMM9LuTNNva392lzWTgM5qnq4nRbTrCc\nfkq1VqG/bQRDq0BJFufDn30BwBt/9CbHKzFqKi1TV6dYvnufky9NU0o1aOt2USxmWN/foXvYSs/J\nUT7/9eeo9AYS/gj6uRkSW48xWZxEnuyQDe4x8NoVtA4V/p0Qri4PS18t0t7WTymTY2/Vy8nhQfQd\nnfi8IfLxNNlne3QP9nLiyjBt/X0sfnCDkXeuYFKpuffhOlplA3VFT9qk5HD5GLe0yt5mFrVKT02W\nIv7Cx+iZU+w9P0IspHFOD/P488/oVCrpvdCOXKakVk0i6rHz/OdfoBrox9xhok6NtHcFrczJ0Z6P\nlbVVAE4Mz5HOixmb9vB86THdHcO8eHGfQtlAKVFE0yNiZ2OdWuCA5UgcVf6YUECMTupEKRywtLvH\n8KVLdIx20lL4CsWQAAAgAElEQVRU8Lxzhp37ITrPXGJoeB5JIkMz5+PWlzskZce8dPE9vJ/fZfPO\nI6Q2EyPD0wSTCUamZwis7RFqVBl84xK9JzroODtNsRFHms4T282STfppNFQYCjUQDJTrEgwqM/0G\nM+HNGO6z1xm/5OLggZf+8+fo0stwquzEZAKDL5+gFPPjcY2SU5Qo3wtSq4mw2Y207DVMLRef3fyE\nV6amCFdKHB6v0PvGPOFPVzn/x9/g2eoDevX95JthCntZ6iN17IKaZ3/3jJPvjNPyZ9hWxBibOkXi\nnpdCXUL3y0P4bjygc+4UNkM3q9vLDE118XzxLhKjDW1Tx8qvlzGf7UXS4WL5o0e89M/fY+VvP0N9\nqgOnu539zV0qBoG6pp3o1iFNolTyOuSiANlMgPp6gYbHSj3S5OD5Dh5HN/majHIpSCwQZOb6RfxP\n7uJ22EjGlXS2aQkrUqx9tYvS3sJds7B/uEHfu28QfbiKRLCjmesgs1ni8Z3b/Cd/9n3Kq7sUBQ2y\nUpO9gw1GZoeJHObRKZUorBmO9hLUjpto1FbMGjexzQUsPUqkkSLhXI1m9phYPsnwyCwvNu+i7dSh\ncJgJH+9gHOohtn5M15CSSCxDJZSiaTeiqJpJCzlUByIEhwhpWobFrCOW02LKGolmXxDy75IVZTg3\ne5ZcwI9WZEQwgLJkxW1QIFOIUCoaCLUMyXSF/jYtjUiFQCiPvl2EXK5HXC0i09hIpiu425xsxw6x\ndHQjipYRFBqUxQKNrJjbW0/4b/67//Y/AhD1P/5Pf/HN+Vm29lawDalJBtNIyw4GXx2mwzzF1o2P\nuPjH79D0JwkWipx/7RQKtYBYVSTVSGK0j5IKHFLXqOhx9RHa3CVaL9DjHOL+15+iHXCxtLBFNCth\nos3A6osIzRxoB8fZ295AghhXp5nSszBNl4lcPY1ZpEUplMiW5bisJsZnetlY2sWRyrAfLXDm3TcR\nNYuEUgkaQSmRdJyBAQd+XwCxUmCoZ54D/3NSuyKUE3ZcJg1dXZPs+GJUq2kscyNENjexdCgwtLUR\n30tRKIt59OgONoOC+ddf4Ysf/wpXuxpJu5VkvEXh4AW5qpia4GN6YpQHP/4p5374Tb76V/8rb73/\nQ5SlIhsLPtocCk5NzBHaitGSpfBtHTF29hK7R9v0ZwXWcwXUJg2zUi2KfjvlVAqp1Ay1GhMX5sgk\nWzgseiLBGG2pKsLkMAdPX5BoJpFXjewvLOOcnCVfCFENFlEbHCiDR7gtg0hqGbon+jnY8WEWiSg7\nZRi8IYydpzhcT2M3NpCPtnH81TZz3+9Hre1BpDLz7Cd/w8U/e5/DzVUuvPMqe4cRxO46D351h3e/\n90fsroVQGXW0tSl49ul9tJoCmY0g9n4PHQOdKDQqWpkSX335FecvvkL3dD/LP/4cWYcJhUHHqbF5\nYuEI2u5exOk6Rz4/jqaBdD7J2KtTLPz1DeyuPg6XDjn5rSkq+zHkKQne3V2UI33ITGoKYYFAqcRg\nZw+PPvqCvmuXCO2kcc2bEFUsVIgT3Fmny9bJ4rPnSHpc+B/4kMkrqF1O6oFtbJ5RnD2DJItJ1IUM\ng9PTPPlojRNXp1HkVJT9cXKSMs3jDBKjib7paZoGHUa1wPGSj/vPngDwg7ffgpKEiKRJixRJf5Ri\noYBZZkNQihGie5QVDkLFGPlGGaOpA3VRjej/5u69fitBEyu/380550Dy8pKXmSyGKlboYoXurs7T\n0zOt6RlppFFYSbb3wbAf7JV3ZUMwYGBX2LWwMAwYawMr7cqypOme0XTurpyryCJZzOmSvOTNOefk\nhwakR/txV//CAb4PB993zu80K5h7vZQ3Q1RVctKVMBavGWGpwOrdIwTtLul0l8hxkHI8hUrWQKjK\nozAaaJ4m6Bt2svFkF7NEw0Z6k7pIR67RIF6MIA81GJ87w9HBAZr+EaRiI1K5DG2hQ2izRklWQdYy\n4ZlS0MhYkPRpcYz10aiDzlpgUu8hcNqlKquiscuIRk9ZuHwJu8hBpLJDZDdMvdZErRCz9eIUg0rN\nVzdvAXBucoyatMarF6dY/JtnjPzkBouffEX/mVdQyipsbb5g4fvvUBPoeX73BeP9bsK7FYav+BCV\nCpiVQ0jcTnxjI4QCAeriOlKjk2auRCtXZP6dK9z76lM0vT58U1a2TuLYXBr6nR5ktBk6N0midULs\nIMHDr75k6MoYdJRIVXLGzw1z+uwpKIR0IkV6ZiVYvJOUA1FaUgntuhSDSsSzx2tcev0yuXSF5O4J\nl95+i8MTP8vfLtPoSql1U+R3Q4wszKLpsxFc3Mfzyjy6Pi8H29vMvHaNLz/5rv/zO7/1U7znR1lc\neoBR5MJcqzK44ON0ZZWeC8O4RAZ8g6MMegbQuPpQSNUYzVV2to6o+qOkG2W8g0NEPntEsSJg++uX\nuN1uWu09qt00pWKWte0gUz9+gwGzl9Xbj9BqPVjf93FG2MdeaIehuTka0R0MF88xMzrA/p1bJJfj\n+JfDiLJ6vKOjpGpVXNcuMTA/ykk5g6TY5exr59n4+h67qQAyrwblaZPTYISuwYiukWXt2x1ajRhy\nl5L6Uop0ukkototK5yIYPWTmygKV0xOESi1qRZ0vvrzF2dfOUj1NMP76G6x8cpe5tz7kye2nnHv1\nIxbvfIbYJWTCd5adO0tkemT4Rg008pBp1NBJ5Gw9OMLk6qNo7FKJHzJ29ir+dIZMOoW+2qCYkTDz\nymWkeg25Z0tYxgxYNC3a+02mf3aDjc8/oSB24tCoWb+7hL5YQNc7RaccohLJ04w2Mc55kVklHITq\nlPJ5TB4nZVUBT+8rtON+mt08Fbo4B+1sP3yO5eIIp6EcrVYChcHD3oNd3vzeB1SqBeKNE2YuvcHL\nxa+YXPg+sUScQjAOqS7Plh7xu7/9G5StRsp3D1BqOuTSXRSjDk6X93D1SWjlpMjP9WFqNNFY2xQr\ncuzDvRQ7Rrq2KuJgB8mwBmmqhtZspEfXR7qQpyZo0dtvJX0gRuGz0vIHaLjFmFVuNEkRoeEWugio\ne93EA3mqLgHCugyBQU7rdA/jmSmU7TCpkxS6WQuJrSpdawd5qUDdqiZXCOLCThAZ0WoQOz10hk3U\nZDXEkRDdRoma2YZAIKYjbTKoFXCaLSBoSQivRxCMaUnsHSGdHqOWKbD08gn/7H/6R2Ci/tWf/dmf\n9I+5kNt6OX78kv6xebraLi8/O2Qv+JiF/+oPONxeom9kipqwja6cYzcXx6k1ksmVkAWKaDwGehxO\nHt95SlsHZmkNi86EalBFOZFHkBIxN2bhwfo+jlEf2l4z4VtPUblMgJ50NsqZM24SgU2O/WGGPENk\nT7aYmDjP7XuP8FnG2d4J4npzhOiLKIoRJ9l8km5OjXVIhLSbIpg0IBN3EMoylMom9ONGyq0sHrmQ\nRC1LvFDFqzHhuXaWoxcb1I+DiFsCdta38V6cRZKJcevBQ3yOHtwXHIz7JrAbhRy+3GDAqcEp76Xc\n0wVhneDBMdeunONBMsGozcfx5iHpeTWjRhfqRgexSMzKbhyVVYa0bEQ+ZuDlJ48xXxml3RCR+HYD\nx/QMKWWC4J1T2kNOZBkxx5V1RocvcnfzK7TZLq0RO1JZnYOlI3RnHUQfHWK8dpZhvYKdaoqJfgfi\nnh7q6SwNswzVcZ1oIEW3zwP+CEm1B3tFwYEiitYmoq3v53TlPjKdFWdXRylwQsZcRdQGU58XVV3C\nSa5EKbmPRT7I7a++YO7sJRQjFhrJA/bvx3jjNz+kkIhxUhAgF+dZP9rD5VEiNkkoZITkdpcoHeXw\nvjOGUCfBbjfycHOZHpcb/60N3B4bWp2M07wfod2JphRHqzQTFRQYvr7Ai7/4hqkrCyQFDdRKGZ1u\nl+DuHtbhHrSpEol2k9GROfY+/ZbRH79FcS3OxuoB2lEzZy9fIrKxTc/MBda/eIBKDwaPE7lcjtc7\nQWj3kFJXhLyWRjtkpV6q4H39Ivf+709BDkKnEbt3hq3VRdwzXhLZHDq9lJ21bSSSNo+efkcMeevi\nFSznHYx6BhAKrPjGexGI2uwHDhhwXMD92gC6Xju97mFkojbBowPC0TR1pQ6hrkFDVKdbg2qtSG/X\nwPZBFquuTiRygkRZwFTXUpTLaPjTSFRt8nkVHbuabNhPuW0jubWOqmSj/0IfJq0JRb1OR2RDpGxj\nMKuJJFew1jpEk1qSuS18M27m+n20rRZKmSQqmYRgI05l8xkI4Xi3Siy7w85BhLO+aULhU9R6Pcqi\nglwtwMH2Md7xGQwKPWV/jo5RR6hzwuqjVQB++t/8LsGvt7GPDxBZO0Q/1U/k5BBEagqpU0bs59k5\nDaIWiykXGzSKKVCJGJ4wsr5RJLy/iHFYS+w4hUguwTF+BltLzfrje1y4/gr+oxhnpucQVCIo7SaM\nZTW5eoeSPM3h8y1qySrtpArbsIt+q4tqKkut1uJ4dRuL1IXeamHrhZ++t6YJfrtNtS3CdeESBiW0\nGhVqch3zb86y+HiNYd8EiYifRFuB59wMheAJ5nPTZCtFZmdneP7kiNFhJ7vPDuk1GSnul+lmD3CM\n9vPp3/wdAENXXqN1ECV0EqFZLZPp1nE6jBgWrmIoldj44ikysYZMRkItHacaiZMM5VFJOojdg0zP\nzrG/ewvNwCQ2qw1Zr55WO0f3JEe3kSElkvPujYtIAzFOjvc4jGWQ9/dAR0Nu+YhIoUi8eIxz+gr7\nH/+SWD1Dv8pHJhen1qkz8+Fl2tEUpWCeozt3OFnbY/T8DEOmUbYefYtYW8Uoc2DTC2jpQWM1MzNp\n42TvmJZDQktvw9lrpRsLsru1y8Xf/Rk6fxLpVTeyjo2MWoxFY6JYlHHr5mfMnj+HftKEoWVE1aOg\nc1JC3KdEEDjAqx4ntLkMGhX989epbJ6SPgiibLVoqrTom1rmxodYWtri8twFMutxDtbWcVvNdPYP\nyUocKNp1Vp49odZSoDPD+NwN7j9dQq4S0ZF0yW6UUWrbCJxSsrthZq++xfHyDqoeE8lQiIUP3+HJ\nJ19DxYhdJcIu1FPMitBkymRbdXQOKDoNDLv62P74GT3THtxOF+FfvgCrmAGjHq2ll6WVm6gmJ6lt\nNWnJgzis40g6ARpdI0KZEE1XzL0Hd/n93/0j9r9eQmGRoVapsPsctIoVNHoROmGd7YM2k71u4pEm\n6VYSSR3qug4+QQFxXotGJCSZayF1GsmES7TaYnr6dCw/WsXksyMrNZElsogGxwmtbTJ35RLh7B7D\nDhuBUITBc0Ok9tOYOx0qrRyWaom1UBztkAm90MJpMoVL1UO7UsEuarB7UMLQqGPs6UdSTpLRirCo\nFbRFenwSJaHkAQ2znvpeme6EgtRmnoZQRjASxtE2oDSUEIYyqB0yDBol4mgDgc7C/cWv+R/+x3/x\nn7+J+tN/9S//ZM61QKVQZvLMKPmaiAe3vuW1D6cx1bUEohvYxZNkyjV6XFp2N7Oo5G4yh+uMX79K\nLhWmW+/QLNWQTUgRBXMkA3V6ZobplIU4PGMIK8do5EqM6FDphFS2dhl/4wL+rROE0RDVigiDy0dD\nI4VyC7W+gcQzz8vHnzI24WC5EEdYldA+ijFxYxz/k0O8Gj1SSQPaTlp6PcJmh55zQ6glo+QaR3QK\nMjqVIoH0KdlClbOmWY6addz9OkKJDh6fCYXFikXfIbpTQtiWcvfpHeYss1TqHXTjY+wvLTJ2aQh/\n1IpuHDpZKSKllKrITsdspGc3RkgmRifWUvNHGJoZIn2Q4mXaz3ivD6O2D824i6OdA64N95KzuTj8\n1Tdc+c232aqcIjwUIbaArJWnYxShNmoQZyvU90Jc/u0fcvsvPsfpMFCO5qlFalw9O0ysnid5msOu\n0xF4/oiaVcgkTlYKYZoCM7KhBrmNU2yzwxw+28M30QcDXoqZGN3tKI6LCwQ31gn1SDA14sgiUkQe\nAzJzndC+n9xejksXxohXm9z/5hveev0q1cM40myDwR+/xfObn2GecWNpSZANDuCyjrD4+B6ZZ1km\n355kaGwatV5CKBAn4y9xdBDjnXffZPnuHk6vlqUXT0kV64x4XJRTAg5fbFAWNXn13Rusf3YHuU1H\nS1/ieO2Q81cvsf7kEa9/+BH+B3cYWHgX14STwOYTLFoLzzc2sar1jJ0ZQKUQ8uzFBrFYFodRxeiw\nC/XEHHoRrP7tE2InR3jO9hF8toTE6EQnVLG2ekKxkOfs268Tz+cxKpyUw4vMvDbNizt+fCZY2wgw\n8cEC4oSGm/c+B2Ds3PcZmR2ngxaFoc3J1jqx5S3Gz/WzGVkjHy3htfRTCByQLp6iazlpKOPkKyFk\nTTmqIQNFiRp5Pk5bL0Xj6YGuBk2vFU1eQ6IcQlCtI3ELUcj1OG1W5LkkdtMYvmkndbkJtULKoMlN\nudEhr8yS2suRTVWpZfaotA3EcnkagjZqmZXeuVEabjvCWpDn3z4hcphCpBKRTXY5Kq7TatRodOpM\nD3ro7/NSzQpwim2ULUW24gf06hQcnxQwNrtU+wwkIztIBU1Wlr5D1H1v4V10HhObmwGkZhO1WAaJ\nXI9MVETR1eCY0JLY3Cd93MAzqqR/aAalwUJqN0q9JqL/wjSbKzsMTbsRdow8/eXX6HoV1GUtWmoR\nTrWBtcVfMXHxDY5X9mhUahxt7dGQSTDI25TyCgw+PYXjONVuGbnNg9GgZODiGe48eYhSJUcgFMNp\nlqkfXEIgEvPk0/t0RFCvtolEAuROKwwPufEfLDL0vfN0cpBav43F1I/RUqG6J+Fke5s+Jzx8ssw7\nH/yI3ed3yEpzzJ07T7rV5ttffAbAOxdfQ+bTcX5qhkapS5UGcqWFyvJzwrlTJm68TrvYILy9xlFu\nnaJDRo/HSqKYx2LvY/HWc9798btsPFslEPczPziGPxGgrFNQl9txtmss315DYTFg7R9k4NxlvKom\ntRcv0bs8yD01eqyjRB7fxtRrRCzrZc2/huPaLD6vnY2/+oqMqoP7vBnfez9gYtZDvS7gcOchXYWU\nkavv4LXJULiMJPMSpOlTHn/5AqO8H7FMweSEh+1799kp1Vj4g18n8NU96rUIEpEOaSqFqHjC09t+\nNDYJD+7e4fL5BbzeM+SFEvYPXqIdN3J4349heIBkNcHZG2fIPcpzpNxE1tExfHWKUteOItZErWiy\nuP2Maz94neUXz3HNGFDM2nAZFARFalzDOvpnx5C43NgqITQuE0s/X2Xgio3hqUucPr9Npqpg+spZ\nQnc2uPCTH3Pv7+7iuOihcZxhaOYSK798wJnfeY/s10soR6eR2qs0SwJS6TpafRt9W4PUn6GaztGd\nGMRpkLGy58f3sw+QNJQ8/Pw2ypEevFcGqd7cpGIu0TVKGBmYYPXTZTR9SnRqCU1pgXtfPuaf/uif\nkktHqEibpE9y1NoVKskyXZMFbQa6Ciep1hEldZKOwYFWl6a2K8AvqKCxukhX4zRaRuSVKh23GEE9\nRiRcwDPoIxaK0fFKiW8fMuRwsn4QwNDXy/b2GsNuB8W0CoezTkzQoK5SIq1r2T5J0jduZX01Qe+k\nD20uS7siZWLeSUlYpaHRIrIq8DhcHGUK1IJhxL5+5Kk2wgEpkfUUAksP+kqOgryCzdDhcCPCwm9O\nEdgMIO7a0DrEyKsChF09yrYMJC3uL93mj/74//sl6j/5dp5ELsN2RUP/hILFtS3SqQK/9tN32Lhz\nhHLajM9moBhfJNQIc7C2Sl2cRW3S0qg22L5/k+mzV5Ha1XTU0Fk8YXb+DWZ+tMDR4QqikpDg4SHd\nhhq52oRQJ+Gg3mHmtfPce76Pwyll7DcuYBWXWQ+uUgs1aVmMaI0jSOphBq9dwGCdoXaQx2rWk+12\nCNeVKIsJNg6rNIsZ9k9W8C/uMr8wQTXXonG8icsqRC9MoJRo+MGND7kwPcvj5w8ZGZRQ3UriyRdJ\nBkKILUY6MRVNqZKy+rs6blcv4vzsJLl0EsQO0hIlhVyC9CoIIwXKJ0HqzSMKhSS3Ng+w2Aao7u4g\nsooJJQrEwhmuvnqVfPOYeDxA62gNX02AWD1E+zTAjd9+H0lZT+ybGC6bDFdPD52KCG2ujSzYJVgR\nYH1lhC+++oQ/+O9+i+MXdSznfMy8dYnAQQqHXERX5eY4moSaAkFEwmI2wZimj64gQm6vxMTZYYL+\nF1y8No5tsIfi8irethrnOQ8kUhQLeZxpObnaMOkzNtRCHZ1NJRWzhjNT84TzMiTyEgDaegelq4eS\nUM7+rZt0VQoKu11SpRb+298SeXKLKxdnuP7jC+w8XmPrmx0KSQmhTJmBoWEGp2f57D/cpiCJoBQp\n6J+7zNmR83RyGpRyMd2unFcX3uHrf/3vkSgqXLvyGgdfR5m7foGd20+Zv/o2h4dPGJ9/g7WbP2f5\nzz/FM3GG44SAy6++jslhZePuHVa+WmPCM8EHv/Vj/MEYUqeJ3cdrbN47YPz8JEq9kmf3Nxl/d4Fk\nKUpFocQ0aMc1aiG1v4vV4cbjlSNqywkdlpDXk5RbQt746C2O/+o50fo/wP+HBzUkkxsk8jFOXi6R\nKaYxuic43I+izZrwmCxoh/vwTE5RFkEmnaTHehlVs0W6FUa5W8AnEVBqyVAKlJSPNhGYNOgiZVQG\nNTV09JmkaAwqIvU6K8snmEdHsAwOUmoVaKeDZOOrNLtSEtkag/VBXLNKJnrN5MWgtw4x/tb3uHZ1\nmL7pIYSyBrquFKPewdDlOc6cmeDMiBvbqA993cHc+Dyilh27dZaqRo1QU0Piq9JoalHL+jAOzGI3\niBDbjRSONxmePstQ79zf65HORxG6NeRTGWYuuRiZ8zI624dBYyWViXAcqBOu5xh5e4KaWMzTz39F\nevUhJquTiREThdV1Ll99hY2vV+gY6thcKvYX9+lV22jmRfzq5w8ZvfwOj+/cQ+/tYz+S4vqPL1NP\nntA7MsbQe32sPXrEwPQcwrIcuVbB2t11Hv71c0waBS21lPNvTVLVCrjz8Qp1iZiF3/oe9XICcaPA\nOx+8j33Mw4sHL/Bdvkpmv0Tg3ku8E9fQj42xtbGHpB3BNdZPoSTlhx+9R2jnATqXgVnfFJl8h/jT\nf4BtqqUCMqubfP7nn1CJxpGlsyRiBXIKORrpANtf/x2NXIaGTsDln/whU319eB0XWHjvfcrtFhf+\n8E3uf/wpE2dnuHj9IuFDP9p8E0GqyazXzU68xuhvf8RJuEGrKUa4vcLTB/fYasYotyIMmi7R3Iwj\nc/SS1NoJBbe59OolJMEgu8cCzvy3H2FU9/Dy41Ue/c//ljs//4KXX/ycSLNJM9Vk/fY3PP/sKY/+\n422ON3c4KJa5+us/o++9XsZGHDxdXkd27ipj/SOcfHqLQF5AxuGkE4+RLMTZTydwDnvo0XzX4Gzl\nukRVGYJHm7htUyS24MIPrpIMHtE738unv3qOa8zKcGGAcjJNdHUVvbGDWtbhsBNGN+Ph8DSOTSGh\nLWmjOi7w6JcvUFjkrHy+wuLuNoLTE5KnBpLZKsOv2fGODxIK7pDJ9uF43co3H/8co1vP6dFTJv7L\nKfxfb+E1eqkfHrHwh2+ws3afuZ9cxv/iMclKmr31J1z+yQjthIxqVkrbLKDokBK4vwhNJRM1N/v/\nx10ajTI/+Re/T2BrH1VdxfZRkSHrdapbVWKhEI5BJ5VHGyhbFhSd7+7UPALixSDh0320fWbsIw7U\nvW4c2iZRh42uvMygQ0Q3aEbiT4BunKojieT4iGpbSIMmZUGWbCNNv8pO+GUef8yPdUJFnyiHpKil\nrTITKeWZMo1wkDvGnZARCXWoS0rUm27aJwWs1SaJl8uMjU8hF1WZnBLRLsTQuNW0BDLWtqNUjtSY\nC12SZTVduRFJOo1GpST0YA39jIP0agSJRE95c5vW7BTaLJQFWoLBE+rlIsVInHAjjsk7Q1csIibu\ncBw5pOvuQSj4R4I4aDVb1E7jrC2WefV33sJ/ep9cs0pBI6S8U6RUq6P3jNMr1qGUqhDkVKgVVYYW\nrjP2yhQ3v/4cnd2LttqiIrLx+P4vEDSFtOOQbWU4WT9B73VRSorYzRdprgX56q/vMddjx78WYOnj\nb5n70dtIumVscjELzmGO00n2n6WQ1ows7txlbH4KW0+XSxfOo8vkyejFKAdKnObLvPWDVxg06tnf\nOEIWDhI315CIxNR1Fk4Sh2xVM3QNMqT9FlrZGiVNG4m3n4ZFyMleFK2thUQWolr5bsenEaoQcTWp\nL+0wf9ZHcSWOqeSn5K0ROtmj2pFCsEkm0aBfL6KRuY/te28icg4RO0mi6fNy+lJAImemK5JQKLcp\n9AhY21/FbVTy5V8+JpiPMNPrJBoVUEupySbEWC6eI9tp0ihs0tLKWOj38GhljcsLJhwVOQeHaSRO\nGy301Kt+hC8CnP/JNSbtQhKdJnFBHEW2xuSFAU79e6grYkSxKreXd1DLRzAN9rFysI4o3sUgszLQ\nP0ZVFaR1K0rXIOF0a5FzoyPsLC5xEHxCQ/gd8iHRbZCJxOh/Yx6V3oiqkaYSPab37CA1lZmYoEUm\nUCPbhkIqw8R7Q4TFOTw9bnT6JqVYmu//7Aze/j5K8iyFw2NE/Wrqhg5tqQzBgIDj4zhmrYbB12/w\ny0+/oa6qsr0ZJpI4wr98n/x+nt3Nm1y98RbOd84gl+gZumbm7i//irX9VTpiKTO/9S7RvS1a6VPG\nR608+foJ5MrMvzdFIriN3TXCtNtJYHef2fl5bDYtw+NWQkd5jjcDqItJbv7FVwjEIgbdFjTjfaQL\nRW5++ytq4hgqdfUfzkxeRuxxkdVPv8LSP4vZNoVYVEGk6dJ3yU58L8QX/+4LTh4/RJCFdq+Kfn0d\n+8QgbqGDjlnCdnAPgVDB04fPQNpBvX9Ex2CiLq7TY+hwXG/RKjVxGg2cf3eSjEKBP7hBPFJHaASR\nZYDDk3uEtnd47L+HSSGk1ckzJBqjVT8lebpMLFAneRjjq//zG/buPeTLf/eXdA/KtApJlgIbxJ8/\nQ6aQ0v8pCdEAACAASURBVBBXmRl28+3Tr4j7A8RqTWp1JRtPVqgfRtlafkSiW0elrzI/MEcxFCFd\nLf29HrK2htjTXd68cpUXD9dZvbPNxl/dwuqQ0TszgdslxSGxom43iW8cobZ7UV4d5yCZomqU0xkc\n4Hj1mEvXrpMJHOAec3H+nSusbp8yZOzDaYPT4yytTInAUhC92sD+0gETZ15j+f4RTz67yfXrC5Sy\nUULNKIUdP5oRBS1hiAsXZmn6UzxfXMVzbhaBoML2rSc0JSHm371Oo9Hk0ZMvKcWy6MxK0Ggw6CS8\n9nvXePzxt9Ao0Uo3kBq9rL5cZvr1MQrhUyRmA7Fshqqmy87aTcYvz/y9Hg1FFYXUitdlIS8TM/Wj\n30RrtGKbu0yuAO7LF8gXMihsNuLLh2w8rbBX22Tn1mMm55wU40Vefe89KuLvAug9s0MkT+NUU0Ue\nvNjgw997i9pSAFM1QPD+c54chHEODlItCUgKGhy9eMRGKcnQ7Dh91Qb1aAxxSYQyJ8UzY+HZXy9j\ncQqw+xw4Xr/C+Ys3mFx4lRnTECqTBn2/i9NOgaRQyls/fZuxS/PI6kUSiyGy2QqiQo2DX3xOBiHt\naJ6RaRuyrBj5oB7LlYsMvfcmI5ddRMTfrR7UOnK6L8MY3S40lgIXrw5RSu7jNpupfB1j/rUF/PUg\nFUUH3VkD7gsX2Li9xeO1Fc7MXaM34ySTTCP3TrN5K022asX33rtUlw658pPv0ZeXUSlV0V4x4ezr\noS2VsHE3gf/uKrPzbmLfBHC7ejBNedh54Cf5zTZjP5tif+8p6zt75A4PKG3V+OSvP8PqGWNYN4lm\n2MjuywLNsxpWg34MjiEEBzWu/LPvs3hrg+qrVmxSBd45O7/4X27y4W/MU3i0jclhR5MrMTHoRdJK\nEd3Koh+7jFCvJ3z83f6mzJBFI7Sgq2mIbC+RrKqpLkepq/XIA2F6JCL2w1qGz5tIdlI0k0E0nVGq\ncQXNYpxx1yQGuZBovI1q2ISgEqe/10vy+JiavI8eXQHnaB9Wh5mGWo73pENzXEBcBKntQ06aie94\ncW4laZEIoS1CIAEGuZZiKc3maQPftIWVT25S74VEqUXp8CGFQIS8TobaoKZvdIRA7ZRWOovHpOJk\nK4/gsMygx4e+WuH6965xGjRwEgoiG7ZSDcXItHoQR1fIylu4Rot0G4L/Xx7lP/nvvH/zv/7pn5i9\nAwzaXTx/fp9XFt7l5Nv7SBQGdvc3kNTlGKVmtAMagstbKFUlsgc5fPNTSKJREOvoZmpo5kdwKoVY\nLV4effsFI75JAoEgVX2eZkdOt9PCqZCjo0VV2qalEOCZmqW+FyYsFjGu0VO1W7j35de8Mj+Dplmj\nUDwheBDDOTbD6VKIjl2MpK7BLjRhk/ej1hdZuvkSgdWE0mQmkc0jaBaRuZ0EXmzz/Ve+z8PPP6G8\nF0XZb0er1lLajxDM+XHbzxDdWMOi9yGzuZC109y++4iZc+PoIgKkV0xE02kKBh1D188TvL1C/29c\nJerfReP1ITlcxtx3EUVZC50TdpJlDPIO8pEGqaVTzA4PyqqIfKeAa+A6kmCAlAisdh2N4iGWC24K\nuTLS82pWP76F1TdANFljcHKawONbOHyXCCTC2M9dQlOTcxp8gWHCw5M//4wLVz3Y5VakIwM8vvmE\n+PI6k+Z5lEMmUovHiPoGaTZz6H1nKIX3yVUOKbdtmI6TlKfdTIqV3NvYptAIoOuX0xAK2FhZRWHs\nRV1tMD7u5UisY/HTz1h4Y4GGREHi5hbJxClDC6/Sbqjw377FsFOH7kw/ldM0Wzt7vHXp+8QSq8T2\nE/T2e3h661vqrTLbL3Yw9VsJpiKcnTiPVJpDorYSDJyib9cpJFPMvP4qN//yF1x64waD3l62nzzC\nNT6JwChDqVejME/y/MvPGR6aIHN0QiqUZ+EHryBqqul/fYH9v/qSsfdfI6uQE0tncVSEGFVyjl4G\n0MyO4l/aRC01UypCeGef0nGMI/8x7XKTMzem2Fjfx9jfj1ygRFCVchBYQ+qQMzc0gW5sgk6ozZ0H\n3wWpZ6ZHsTh6kRlEdPwlMo0UyYaIoZFp9jeWkfT66LTiyHp6MFXV6Ltqkg0JoqYO04QUUd6GQiJH\nbRBTjVYQ1jvUTAay/jj13CmVRhFVvYWkriaeKqG1GRh19HHyYpXeHgX5aJpQKYPA4EA7bGNuwIVM\nKmRrK01VHCJXVCNMx6CeJh2Po1cYydfSnJu/ilys4bBUJLoVxekdIpoLIOyY2fHv4ZPayCfzyNwd\nynEBwxfHCQazNKsN7Loe6m0lEmcf2WSAzGGK1e0VAG78/of0aGz4g5sEKxHeeGce0+AAj549wt7Q\nsL0WxXBpEHG8i6N/gmI6iF7vwKUVcfz4JXaVjrS2TCkcRhCsIB32UaslEKQq7CX9TM+8zsb6V4xM\nneM4EcI8omJ0zMPK3VUUZhNnBgfJR8OYBlSoTT3EttYYuzCJbcDLyjcPUGgMFDIdEsfLzF69jmnU\nS/zrAJ12A7OrD6vNjtQkolfrJbx0jNAkY+2z+5z54DqbL444/96rVHJFND12lj5/QP/ALKfhAD73\nLMebzzlz5V2WHz9hcfEFANd9M3jOjpNti+gbG+TQf8Rwv5rA/Uf0j3uIHaVIKdRMzE4Q3Qhx/tVR\nNr5eoZH0E49KEfSUya43CAhyWOpNJOouQ5ffp/9SP7mon+zyCbohEXE66OQusuocPUIP5969Qnh7\nkWRZzZXzM3z9d59TyKu5+MNXiETyRMQZGv4EQz1enqw+YnB8lB6nlk4lRewoQ6KZZHzoDCeBLBd/\nOI+vt5fdZwFOlg9w6s20xGk2DjL0vX2BmZFB4gen+D6cRyjgOxZbUg3lBvUX+2jUSuL7NR4/u8Or\n745i0PfTN97D6b0DcoU6VquI02Qd5YgU+Tac5lLozSZSmwGqXSFaW5fpqXHCz6Is7m1jHdAhTKcZ\ned/H1jeLoCyjL+lolf20TWa0Sj2CwywZeYfI2hGacS9e+xjPXz7g3KVXyaUilKRiLOPTqFVNyktF\nrCPziJR1MrIuVo+b+QtXSe1s4n+yzuW5aQ4PI5RPVpn/2Qcs/fxTeq5d4uSLe4z8+rtsffMlE997\nm8WP/5apERf+QJutzAnvfPg9NjdXOV7fQinyoZ1T4XAOsnzvG4x2MQ9uP+MPf/hTiidFOu0ExUoR\nV1UCBi3KeoV6OUatz4wks8dqss3Y+Yt0q10cYkjnWvQqTSQUAURdyCZO8Dh66NS1KIx6upUypcMI\nAs8Mpy9X8PbPk8rFcdtFVFVqwg9WeO3DG3SzQl4u7mHWNem0hLSUOqRaaLVMOFQKXGo9m806qnoS\nk9yHMpOl1MhQ63FjbXcQGtwItF00aRWpTA6Dxc5BagWbvZ+jdhhdUY9JJ6UugGYqjUFtpZiv4xSn\nKR/U0F2Ypn4U4eazx/zzP/6j//wzUf/6X/7pn/zkox+hNimpH4UwmIwsbe5w8YdvMjXupVJucBQ6\nZPc4x7kfvEU1nWH02hw7nz+mYzCQjuUpSZIUl7eJ5I9Q6p3IJHkiwTCjIx66uSYtdy+irhBLv4aO\nxY5EoKbVBlGmhHHGQyoVJ1xIktk9ZeK193j5N3/L1MWrhIr7uJxe4ukDhvt9PLv9nIkfzbK7dAeh\ntM3exinj717GUpGxvn9Ev1eCyzGBXq4g9vIA07iZYC6PrWVlcGwYtUVDzWint9Fk+e5TKg054hEn\nEpGIeC7LswcPUQ/28sEP3uTl3ROMJh0eu4WjWBLUTaInJd6/fJnd/CFebS9JlQZNj4iTSJhzIgEp\npRppLk05nSffECI8r8dWrCGxirh3/zHCeBOBqc3xgRCNU0l1ZR9hq8wbv/MbLP7iHrNvz3L46TcI\np334NC6Wbn6DfKYHubLN/i93kSvh6kevcfD1OgNzo9wPhZBUA1x65/cIKY4glcNx8TKh4CHWnlE2\nT9fpGVJhFHlpagOYPWeJnMbpm3KzevtbPJ6zWEcHCB/n0HakZEtFTKoGraIAeTPHndsPeO/1dwhv\n7eNbsOJU29HbRFQMWjqpNK5rb5N88hLnYC+zw2d4/PwJGscAtfoJmYKCc5dm0Fq09I/O0SzA+LkL\npLbCbL9cQU4F29R5BEYZhqqIkkDA6MU+4qebZKIFjF4n6pYeU1dNeGcTUblO/+tD7B8GOdnYZ+z6\nGDt/t4h8ysPql3fQWZUI1Soyx6dkduNYez3s7u8gnxpgsteCQtki0YJQMYR9UENNrQc12HvNHN/Z\nQljNozS5SG6tEsxEuXblPCbtCAdbEULLWyh7Ddy7eRMA79w43WIWSbZEKJGk16ChGNjFHzrBlDbQ\nrNeR17sIck3CxQy2oVEi4fskgydkQ01EZi0tWQmFyIih30RaWKFSLzEgM+AvpOlVjHCaS6NAjkAs\nR0ed7edLSLtdJEopHa0KnW4AW7tM+SiGfXiClc0EWoWUeFiI94qHtshBp9NA5tAh15dQ6tQET+KI\nOlUUyOgdNmG3SVFUq5yG0jjNBlISDS5XC73IiVGRZXtpDYWiTksu4Uz/CIf7L5C0lEQDh0gNGl6s\nfMdFmnROsXawjqAr5pVrH3Dn//pbBOouCrWS7a0wcz+aJHJ3A8uwlqPNTSrCPPKukLWNReZfeZ1k\noUD6OEW8lsHpncFcarH41X2u/uY1wv4d6vE67qlpwrEgb5yfYH8rR2Brm+H564SSx8QyKSYuzfLw\nk/sM+8aQ29TsrkTppk7oPfMWZksOi82Fe2SUbDaLU9wkkY5T7ZTI7KSoCDNkTuvYetVsn4Qox5Jc\n/+Aym3srTE64ef7FI2T5Aspui6E3LnAcCNPvsbK68YyBM6OI4y0CnQSrD78zUW/94e9SXUtRyOdI\nFjaZnpsjlY6g0oyjU7TQGhXsbh4g7naxDvVROj1AYFLgcHhp1OIUY3lShRQ9Az1YpQJkLS/l7W0i\nh89ICuyYHXo2lpcZHhjHMe7FbnCzXXhGYT2Fy9tHPiuk3S5x+Z0bJEsVTu4/RF7LMXPpOtVUkuNY\njFfmpilUS+yvHuGPbDHz1hs0wwXqIilHJ1E8Xg+neykiz5/Q0EvJSxPk40rm35nl2Z9/SSqQZfrc\nALHDE7QSGbv3AuzvhSju+7GO2jnca2Hzavn2my+ZH3wL9UUNm189Re7ro9jJcfB4DXv/DPJogmS5\nyHjfFDtPnyK3qxge0FCOizlc36Wl0HPuvYvYbUo2F/cIZoK8+9N3WfuPLxlecLCXjdE3YCaWbLO/\nE0feqHDu/Qs8efCAvccbzL9/kdiWH7NGSjHexNwvYmdrF+u5aaxSJfqukeMni/jOjLC18oyWOIn3\nn3yPxY+fY++zc3bmMvc+vo96zook3mDo7QW+/refMX/1HIfPv0Q5dZZ6W4E8WsR3pZ/yXpiyKsNA\n3xzl2j4Ou4e90BLamBH3sJbPf3WXn/73v8/jTx+hO3ORQkyO0CrCZdazFznCZZoi2D7CpBsmuZ2l\n54qTSOwYgUBCsZXk5WqAqfdfI3NQxlQ1k9QIwVQGhRazXc1ROsiwWkGp5aaR2kFQrSMUQ6YoZtjr\nIJyPUA/WEId3MJyfQJquU47HMKoM2AZ0+DdLZOtVjn71BTP/xU9IF9ogkZA7aaDrFeOTmVna3WR0\nfJTk5iHGcQOJsp8BnZ2q2kVPOkdTbSaWzNKVN7FJBZzkM/iGdOQLCfzNNuO2EbL1BPefPuaf//E/\nAk7Un/3v/9ufmKfG8NXN6BfOsvfzz/i1//r3+Pl/+Pe0JTokHQVGRR6Xw0y5VqB1nGGnWKB/0s7B\nw31mXpshs1/AOthHPZgjLjKi0AnIiV3oB3rZ2djGp5PT57axufoSjV7IXmyd+bELLD1Zo1MIYqr3\n0VQZmTszyeoXXzHzo+s829ogddBAYAaXsY92rszE7BiVeILBuSlasRoah471rRPOj/rApESttLP1\n7B7ikpa6potUY8JS0VMkytrTJYaGFzi+9ZhoN8rZ9y4yPj/Hi9uLSBx1mqUMzx4sMWe2UbFZkSoK\ndPt7OLrzAp93gtz+Gm9eeJ//56u/QVpVIROISBzuUIrE0HlGKTZS1IJxNBk9uh+8ij4copvIkpLL\nySRO8F6YpbO3z9hsHwaFCq1ARZ9nnH1tl/Y3eyh8XfKRMJL+KUaUAyQ1HVSqCmapg/Vnz7n80QyV\njhT/agb5uJTTRpPRKSPZ3RBbq1sMK+x0w2kaggbC/TxHsT3GXXpSSj3Rp1vYfVdY/ewbXjlnZHUv\ny40bN1g5PcY4YaS+t45t7jyZ02fITTMcbj3C3j/JzW+/4erVaca8swhdFnJSNflkGZ25Tbdtwf/V\ncwbn+3m2dUA0GWH64gLleAD3yAXaxS1aAgu5nX0KkioHO3vk/PtIrVp8NjfxZIbDrScUdnOo53uI\nhgIU2h2Suxl6NVZC0RTuK2cQdFpE4l2Moy6Cdw6wjAygUXaRNkQYZ4fIHQTweH2gLFDdz5AMlGl0\n2py9Nka/Z4KuIks8kyO1FcM3OYzW4+NoYx9jq4nVoaQeajA1f5muVoVxUI59epg+u5FHXzzCNGhE\nKqxRSKUxDvRy6/MvAfj1G+8wPDyJRt9LQxUnnGxRzyWRaPvRinMY3C7Spize0X6kBgtIstQScszi\nBh2ZgFDkBHXWRCl6hNhlRXqUYubCJTY3nqGrizBfO09aeMLIOS9Sg5PJV0Yw2YZpD43QCB0RCSmR\nyCv49wpIbDLq5SZ9HhWn6R1kFS0qt5tWeJP+3kmSqTrJXIXpsSHGLp4nVMjSrJ+SQ0QyIKUq1mKQ\nthB1BRgHuvT0n+Nl4DZtxwS1zRNail7kyRQB5SmGhB6NIYvt4nX6pSY+u/0rAD56/yNGL/pwj47i\n37pHQ+PG0+slFk4wOzLG9mqcfCmBUirFPTeGVdVHp1+Fp+ri0eI9OqU2Q/NjWIx6tpa2qFjqyHIq\nLONm0sclYuFTpqe81MUlVh7u89obC9QlGvSWCk3/IVPzb7P06bfI9Dp6epW83N1GnKlT0+iJ756S\nTWUopMGkkBAPhsm14gxNzJE5OWH0w+tI4h20biOHj+9w/vqb5DthtgMHnD1/mUpXT341wOS7szxY\n22HEOYpmwIqwWSCwlaGt6+A295DZ2uPZ6hoALr0FpVSLTtdmdugVqqUMmo6adKGNUSMk8HAXqaTB\n9BsLFOsFInvbNIpdzOMDxHerCAxm1KkC0v5epM08mXiEY4GUoL/E4MIw+mSLikXLqNvHwcsgjVIU\nn2OSg2SEJgn63GbUHjtrD9eJrq9gnD2LwWXm6NYqh4kjZl59B4VKQDZeRznswVppE31yQM+YAaOu\nB71QSf54mXgtweT1WabefoPcwREui4t8u4BBZMYxq+dwJ4gsm+V4pYJCXWfkohnPRS9FiRZRNU2l\nU+TB3QdcuXIRRbOE5lUX2qyeVDrN5LkZwo9X6Xv3GkepJHqbGsWEm/azPQRmH5Uq2E1GbNNKnn62\nhrTQZeTcAKYhN9t/uc7Erw1Q03g5+nIdt7yHgjDEmdfmSDRDRI+anL1+hcvnL/Dor29hHR5DOabD\nvxKmpu3g0Z3n6NMniN0qypEkE5cvc/vJE2TiIucu3eDos2XOvjNKcT1GTF3GMaCiHqpQjtdoV044\n96NpRNUa+c0ydo0C/+YBfVMG0k0lKkkWpdNLsZhCJvXw7c1fUY0Lsd5wkarXePTZQ37y0T+hVIlg\nzSlRqUtUqwIs1iK1vQoNSQyz9TLRQIzeG4OIDoJ090ps3F1j6tW3SK3fxzM4Qvr4iK6oQakTon5q\nILt1C+/laTY/e4TU7cCsLNKrNBLpFDA6jBSTFaw+EeG4gMT6OiPvXSUVjtCKi2mZdYS7ZRwuJ7Hj\nPSwSHdZBC01hhmIihHN+BEGrSd2/ibB3El2+SCKdpam0UWkG2Xj0Et8HC9hbdSIJBVpNC6FchvD/\n5e69eixRzyu9Z+ecU+28K+fYVdXd1blPn8CTeEhRIkVKlCgKA8zIBoyBYXlsGJDvxvZ4MHM1Fx7N\nCLBGEoN4SJ58Oueu7q6c067atUPtnHP0BQecS+tS0C/4gAUsYOH91vu8UiMdUYmzzQTyyVkUhSzV\nQhPrRSOVkwIPXz3mf/knsZ33f/2ff/HmO+9TPN5k//ke3lsTrO9tMm0dIxY9wGlyEz+IUAqd4ZqZ\nJbS7w/jlqxT2ErTsIMgJ0dtMLG4+5K0f/JDY2SLdSj2V3SMc032IlFpC+wdofXbE8QanG37MOi1b\ne6+YvXCN09fHTCxcIJXeRWVr4euZ5sXPPqZv5CLhww0sZQmSZgOnw0Ls1TYNm5eUP0iu3UBlEdNn\n7OIoFyS5t45UKkTdY2PjaBmX3EQ9lqT/LQc1iZCzlISGqMDUVRcSqYut+6vERQUuDsxSLUAxKGJx\n+QEWuZexAQ9NgZCKsML10XM8vfML+vRe9tsZPH1ThL9ax3pjgbP8HnM3vsXT//SAbFrI+PwFTpLP\nUMVkKHu0lGI5cuICXouV2P4Bs1ffIpiOYmh1keikyeYDFMspfJ5eIggIbx2ibSQxzdkIb+yR3i4g\ncSpI7W0xOD1HNVLAeKWX139/G0GjhspqZu/TU77/P36fez//mqnvXuDrB48YnHfh6XNTVdoJ313i\n+h98wNL9r7jwBxdZeblDV1NJIp9DXkhQTpYZcswS2z1l+Po7rPzqHu995yq5fJHbd+7z5h+8S2h1\nh9O1HYxSNenDAIenCbqHVFSzFfypE66OnEM37aMS3MU3PcHx+gpnkRjlTIxSqoxvYphhqxeNeRSj\nXsHyWQiv14fUaAJBG497lMTdVZKpU9763XdZD/jx9vQQPYli73cjq9fJp/KoVQWOAll6+61ESy12\nnh0zNzZP21GkJfIS3NzBMdPF+WuXOVo9ItYKEdwpMqDzYvaYef7sKaZciWq7xsw3btKQtmm384SP\nTrEbPGy9DHLyfJmURMz026M8/tVL+nQOhENqUltZXrx8DMB7Mx/ChIROnw+TQM3pQZKqsAuJq4rM\naqKWSyApqgimotSiLZS9RsrJDIYBE/WgEJm5RbfdSlpgQFoQIVdoyNZrSGolzqRNvEIpDZGB6qGf\nRlGAZ36C+MunbLzYR94WY7aYqIWjCJUNxrwz7K+u4en1Yen20axFOVhbR6TuJn8UJyPO05bUkCkM\nvP5yjUIhiH7UxeDYeXKlLFarmpONHarCImcpOUphiEQ4jzScRnd+FI1AQUdjxyNToPFpaJf0qMwK\nTvIHPLn3Gz2+96d/xJO//wL/5gmXLr7PQShANlLA6DOTyKdQNFJ0zY/T7evl6c+/oCpUUNxZotxU\nobTIUejrOM125Kiwu7sQNGrYFia589OPeeuDb2HWKdh4EWZ42Ibc1cXLz18jqIsorB3Q7FjY9L+k\np9/O8MwI5VaLs7VjKg6oHQmRGWWM3bpEq9Ng/dVThm5NoMiZePbrp8ydv8D9n/wCca3JzuEG09/6\nLqu3P8d2/hKDKgnHy2FiwQMkdhPR3RhzN97g3qcfc7gR5mzngDff/IBgpEjy5XMu/OH3+dlf/w0A\n7//O+4jdWgoyFXJJh+d3dkgmoohLSTrDdsQuK939Tu79lyWO9newDzrQeLrxKjUk1VW6qhoqIhXa\nQoxQvYHn3CS1YpGpN+cRPlqhrO/BYmqyfvdLGrImXvcAsWSccCCAzeogEU3RKHUYfGuE+YkFSuoo\nFIpIZqcY9o6S2Dth8/FjOi4p+aevKbSLdGwCiiIlp69eEcz4ySqbnK1mGHW4ufv8Ey6ffwuBSkOr\nXSEVbbP18ghhJUtpyMrooIGToyxnkQrVWIpqNIBcaEIir3Lv/lNG5kfRazSEQkGO19e5cWWO00+3\nkH7k4OinG0xe6ubw0avfvPf+ZY6LAWzVAgfFAoJAFk23D0kjj6nHx9HiOnpJjXSti/jOCd29Viod\nyMpbCNJpKuU67aYWRbPK9s4SHqWVk91VyuIqo72j7L3aRaMq4LsywdnRCd1T3TxfeoxSAiPnrvPo\nwU9xuwfYeLqM+LKJo0dRzl0ZZGspwOgVLydP/eRbUkqVMt0LkxwuZrj03kW2f/oKuVpMR2MheXcV\nqclNPZmn2ZRinRkg9fwUhcvOk09u82d/9iOyuxky5Sinp0ly0TKmWxc43jhCU+1C5RFQOQoilcuA\nFvVaHq/eRMMopm9IyuFhhGS8Sc+UBW2zh0w1RL1RxNhlRWMUU1NqURWklE0iJMkShUElZo+J+mEV\nSUmEZsBNQVGjUehi4pKZzlmFVlaAPF/GqjWRr0twulzEA0Hij/boH5hA1ZSjMMvJ5Ns47DoKehUK\nRQqXwEr5rIKwZ4A+l5TsXgGdFewuGa+2n6HT2qg305jbTiQ6M5JmGY3KTuAsx+rWM/78f/2nMIn6\nN//2L27M9FCSSjCorQijTQSdHI6RHjTeLvLFNFqHD98lF68+e4l3zsnKnWe0KinaMjPNwgGFggKz\nSsQr/zEX+0dZOyyg7ZYT/PQxlZYI1+QgJ6snxOPH+DxutI5uvFoL2d08+S7wR5bo675ANRVC3NRg\nUnjYPlln5huXSGUFdAas7N7eYPT3r7H74iu8chu2yR46yRxbpxkQ6+ifHaRQU9Jq5tHWDHScHYTR\nMvvHEZQ1CclcgVH3KK+fv8au0GOc6yW4HMEqkSNx2WnUkzx+dJ8e3wLOCRMeUTftbJyN49eM3XwL\nf7TEeN8E6/dfcOv9BQKZFeZsb7P74Cna6w5cWhVNI+QCVZx2F+VOg+5hI/7bBaz2PgRmLQf7J6gN\nBjqJOv6zPYQOJ9kn+3SPjmBVNFHoh7GeU7O2HCW6HkM96UNylqPnyjgZoY700gax0A7T5y4xecHN\n4V+95r3/4T02Hpxw8fvv8vG951zrv4RaKyKYE1ATZPCUa2RrIjrBJK18nfkLb/LZy0/ov3mNSriK\nTgc6VxupTg7ZHEOXeoh1JBwdBVh6vsjk+DX65vsYmbpIJBdFYmmgVGnYWtrDN3EBm7LDon+ZMZ8L\nKQD8DgAAIABJREFUqdDH9t4SxoFeqvEaI/NTGIx26rU6ak2T+MkGB/sZnHYBpm43ydghho6AfL3C\n8NszxHM1apEkvp4hxGoFlZMNLIIu1Moap+EUg++cI7C5z+jsALvLy7x56w3uPPiUwHaaIY0LR78c\ntVrH/sozNGYV6c0zhq6dZ3l/C2FbgFDQpqGRYOlI2V98SihawzMyRDGUIyeVYLcY8Z2foKvbTPxe\nCJvPjNpjIHWWRhat8mjtN7DN6elxaqdZlNE2kew+vWMjVCNB+ns8xMsx6rUaZ5km8lgNsVCIXlrH\nPOEjeuKnLDaQbp1STkop5wJonB5MZi2ZgxBVWQlxq4uEME9FWESm0DF4zcYv/uZzwq04QpEFUfEM\nWZ+TgqpDInBMrpai78ML5JMxSgUFMkMXyd1jtLIMFWkOp9aHQqAgf7DK+NU5agego8La4iESUZhu\ngwf71QWMFhPGHh+ihpRONodUKIF8G51UQFWcR+cwIdV46RvrIfBsDYGowYNHTwDwybrw3rpEx1Rl\n/3SdG/0L6NwCsLnwGkXsH+TQ9nrYXQliVWtIlGsYDRK0PhMCsQSJ2MP+6hKJmoj05h7FWo3QWhit\nUoPeKOUwEEBlbnNymKDX0EOnS4/aDZ2alpFpL7l8mq6pczz9L3fxnR+no3LAjh+9uc3M1QkObj/C\n7PZRb5eJJSsYpCJ6r08SOg0g72phdffSrLZwdrupiRsUtlZJZjpox+x43JNk9wMIZTW2Hq/zjY8W\nsI2Pkd09pH98AoPbTLKVJXoa5enDRwB88/q3kdRaHG6sMdI7g9hUYODqJA2nD0uqSP0wTWovQcmQ\nQquyYlJqsclFnC4doyRHvJxDPaQguBOgX+nEHw/TKhQ52YmhHB9AKI8R2YzicfQwMD5NKuAnfRTk\n1r/4IfGlE2QCNT3WbkL+RxyEDnGb5ihUQnRLHERfHxLfeYpQq8Q+ZSeVbKNyqHDMz2JUWNgJ7uO7\ndhG7dgjTfBeoWphkUySaRY7Xn2NKtQnVgwzaDIh93XTZh4nUEvTOzhDOBXFLVLSxc5oN0WXxcPvu\n18xemKdR0SAtyZhY6OX1g2Wy+g6dVxm835sk+OsdlFfNjHkGqQTTaJodEhIhRoOWUDCIw9jCOKPn\n8a8e0j3rIRtTYesCt6NOtVqh3UjSc26EpUcrDH77JrLoBuWOBEevBf9GkKvf+Q6ni6ekqjUu/e4F\nYq9PEUvU9Oi6KVQSNI4CiIe9tKoRumfO0WyVEFRrDGpG6FYbWIocM+WcwKTWcbTrR+3RET3KkWrE\n6TeJWH6yxMx33kZQrxM8PqZj0VMuROnR+djfW2XEa6N7aJpYaZ/nX7zg/R//S6KfPGRtI8bgj26y\n/8UL5t/xkKuK0Bp1FDsd0vkcnWIJsbJIR6hHYdXQ9GcptxuoLD0Ej18ikulpq6TU0yI8IwqaaSEx\nkQJDuIgKCymREs2UDtVGg5awTbpWoiZso7WK0WXVtOopQsc1Or11SttFcj1aNJkiTZ2OSPIVDvcY\n1UqBqtKKxlIk3CggOasgVIFc0U0rtIdUokUokSOTFDG5NFQqAkKZNAaDF/+vlum7OsSZP0n/m0NU\nTk8wePt5sfyMK98Z4Jd/+wX/8z+Fsy//+l//H39x9Ud/zP6XjxD3a0hm25BpIHUqkFdMHH71AGm/\njmqyidMqoxBvYvJ4KZu86AoBrBcXMOvb2C2DnK0u0pJXyURiRPxZ5hfepHwURtojIxuNcH7uHRaX\nl5B1tWilinRsJuqRA3q7+8jndnAM9rD1y0do54x0NtOIp8cIbq3isOrJFiMUSlp8HjerD++QKCrR\nGFUYTUo0Kg/7z2/Tfe0qxw/XyFYTdAmkSBUa6nI5lXqefn0/mfAGskaeSi5LhyYjg31sZ1cQ4SGT\nSLL44gEjOgGzH1xjKbrFiNmCVO8lsZJnaMhELBfi7DiCVq/B6nSRLubo0gmoZNJIiwkM9kGEhUPE\nAjuV9CFppZ7hWS3766uMGPsIVQooG3nSYjFel5FCSo2yy4RBXeAg3cLhMXP3//kFFl8/3tl+4vdf\nIzw3SuLzZbTmKmBGUi0hsLVY+uQQ2+gIu/EOspNVCvUy0nCazWSBsW43x/kyjm4z0WaaSkNOXa1F\nEi2QcXfoTss5qJWxySWUIy3CegGhpU10ChWhXJuWTo3K2eLR3z/gT/7g9ymHwjz87DbFRg5FrESq\nGOHm5etEnu3Qc2GS/F6VjhT8D57jtntYvXPExIdXuf/zr0gdF3H1qdh9uorJ3kukGsHjcrH16SKW\n2X5aR0WCxwFCm0mmLw6i1rfY/mSV6OkefR+e59mDV2REBbwzwyQerCFAQ1MrxTMxxG5wn5nuYUye\nHnaW7rIbiCGWiNEbbCQSJVQDOvY/vc3I2ADB7X1mF24gE6h4dbjJG1fep+0zcPr8BdM3r/Liq8eo\nuoWU9gPsPj1l8P1+cqkzWmojbKbIWLW8fPoAgPmb15j+xmXizSAlsYrA3VWSJRW+gRaNpoXiWQf7\niA6FEJR6JfpGk3q9gUQgpSjskPEX0antiJplOoISjXwLpbOEd6QboVxCKQYuoZGpsRkkTTflQBZt\nrURDpqPSNtBuF+hqiYjWk8hqZkShBJpuE22lisjdx0ze6Kfa9jA01oV3YRSlQs1BIk/i1M/I/EWE\nMglNYYJyUkRFpcIrF3D8yk+2kCNejaNSK+iY1QjjHTpKA0lpgeR+lmxwn4y8zuhIPxpLF7/4+c8A\n+KP//X/icGmJXDDD9NwYBbGA3aUgqrNTCp0GkpgUo1FJIxBEOu5F1WpATU7mII37XB/p+CauMSfl\nrJxOsUrX3Bi+Cz1kYlFOD2pky3H0SiU9vgkCqRT1+AkGQxcup5tnDx7iu3KO5YfPODc3zeaLY45W\nlrj5z24gs3ZzFo+TrpWJH+/ikPhwTA6Qi5zx6tFjspUSxaSK0Zuz+Lq6eLL4AmE1je/SJEdrWUw2\nCcHHftKCPP3vX2B2zs3iygrJvRXmr3+b3dcvqVSh3cpQOcmxuLYEwI1vXUaKHrNEjr9yRH3jBIXH\nRm5/mXjNiEXSpqxv0xLU8Bm1CARSSqUa+r5+UAux6jxUihWaWg2JmACvRU5RJqB/bAKTDMoFIcpO\nhYpFQz5RQiCUIvZ0E/78KxwOM4FqmlyjBmkxNZGKzdASLrGd54ufYugfZv6P3qB/ZoT9+2sMDtpo\ny30Uk1mUrTrj3TfJHq2RWlkmGzyhtB9nPxmgXKxgr6rZKEWxTg9idOiQWZwUV/dJbJ1g9QqQ1pVk\na0mkSjPTN64gydb45PYnnL88i0NcR7ngYv/Le/Rdu4W1IccyacG/dMDc9Xmip36Oihl0IjlSfYtS\nScxe4DXuto1Gd4f121He+5Pf4zCVpX4So2mvcvriGIull6JPQvDXS+iGJnGUZRzuFLDOG4i9COC4\nNs/Zs6/R9XoQyypU8yFON5PIvV72Xy0h77aByIJBVaGjGUIeV9HYimDrH6FSrxBv18gkT7GpFGwt\nh+i/Ms/pvSec//a7nG6dIZFrcEzO0MjXOMvsEY82eed3voHebeHl7Yd847//MeHQEc5hGysPXrP+\neos//ZMfkQ2FkDZM1CwNDM0sRs0wxcM8qg6kEuCdGyD26AHe3n7iMvCphWRbHew+N5GMmHpMiMRZ\nQlpsINFlEZt9iPJyOskWOo2FRjZIXW2kLchxHCqSk5cwVkrksBBY2mD+wwUKGwmKggQjDjtZSQhx\nTk8gGEM7qSL41QtMI4NUKy1yiiQm5RjqVAml1USxKMbhsZBJRkmKpTR1bbRRHdmGn2amTDklRGC1\nIglXyJsatI/C9JzrZe0oibVfx/HDFAO9Wj7+/A7/6p9CJ+rf/Lt/9xc3Lo3SPzyK/8Ep43MuouIE\nxZcnbBXrvPmDtzh4+ZrjaJHZvmm2T/cQ6QyIJQFEcSHJnTB5WZv9jVVmLv8OiUiIAe8IsmyCvaMT\negeHKaoNeIaH2Fq7jVespxkXYBo2U9IZaQcO8Fy/xOtHGcQWE0OjM4RCuyTUSsrLa9y8dZ7I0Q5l\nkRRhoYJUrKPikVM+jpBuybD3amgEjzA6Rnh6+w5zH56jkBaTytRRasq0O26GL01ytLWE7Z1BPDYz\nwaM6rUIaic+JSqLhpBBHK2jz+PEDBromcThMKOR6BAYx+y8jSC1lrDYHZ6UwV2bPkysUaKZaJHSQ\n//o1sl4XpYaBaqKEpqufVuWQSluNVW2hqXaz9GiTurLCqEaPeUBHtVZD1iij0KqoNHSoHWrwpwiX\nQrx78w2i6T1iKjWGbJOOP4FpYZxOuk6noEDdr6QeFmIYniL64GtEYgPey/OE4sc4pEbcVTFyu5FG\ndg/UYmQCEdm2Ao9bhs0gIXrsx2Lvp9pO06nUkejMKIQKeq9cZOfFS6qCNuLyIa2Wladf3GW++yK6\nAQ2yXhu9jlkY9WB2dnPy4BmaWR/7nz6n990xXn2xztWPLpM6K6MSZ0hlzhh8Z55MNEClrUQjV7C3\nsUOvewa73kW7y0jo9mt0U4Po7B66x208vvsMX/8YYnkRxcwYS3/3ivmxIfpmxnhy+wGarh70bgvZ\n0zhybZN6vs7BfhK9UYG8WefcG2+x+mKVfC3F7PUblCMHOIfHCewdc+HDt/j0bz4nnzzm4sV3aYjS\nnG6sYDO62N4Ocm7ETeY4is07gWtEiH/1BK1zmM0HT+i75KEqkvH0vxbLR7vH0JotdEkd2JQC1D09\nWPIFVvcrlEspOp0ahUKZVLBGupiiWmuSzCfo1OSIT84Q6CXIsyJStQrn3+7lrKwmkg5CW02NNBax\nmXQ9zkHgGKEqjTgVp6qSIhVVmeyfoGyU0ZTkkTW0tOQ5ShIpkYSfeinK5NwwrZqTVCdO4OUJHauR\nw1eHDKlkpAttmi4j2dwBjXweq3aSar5GrZJFJpYhbIjIHRxilrmo7+4Syqfw9TkQpE/xXZ9DYerH\nqGxS83ajS8JPPv5rAGwaB5YuFWOz5wkuRTgLb9Pjc5CUN4ktnWEd01Est8koczjdBnwuLS931jEY\nnORSfnrnJilHdEgbO4y9dY79r5dYe/SYK2+/hWXYgnO8h3IsQDEYRWCS4RjsI/TsJSfFCp4eC1F/\nhS6RnpywiURbY+GdYe791SPkVhOCeAyXow/j9ABdBhvry9tIa9BzYRiZvMZg/wwbLx8hM6soxELY\nBq5yuvQcm05JuShk7OI4VXGJrY+XSRxs4emeQdJRsr6zCAUxh7F1xi9Mks4WWXzxm6L9hbkpcodB\n6lMOuvvs6K09HPqjtCsCiuIstaYApclLf6+bau0MnU6IXGohk83iX4+g6tNjERowtTvECmm0MhlW\nn5d2o8arO8soBp24HDr0diNapYzATgJ/eBFz9yztxhFHpRYT3SYq9SxySRe94xoShTSXb30TpabD\n3b/8JbvPNtB3WRB1hCQDG2TCAiLBNaoosTtElEXdDI7N0TtuwuNz0U6HqXf1MtHjYn9nFbNQSeTu\nMuIhNVfeHOHJF6v0eReQ6bTUOjJqqV3K4ip3v77P5fOX0BksrD04xn1lmqomj85mJXy8zfDVi5wd\nriMXC1CJVGSrTTR6LfFOBK90ksHJAQ7XdnBfdHJwtE/t6zgz31ng5fMlvAMTBLIZTKdRiueMuO1y\nlp6/QCe10YnVkLqcbK/dQaRQUwy1UZylqXid2LQNUuktrn73BrmVA6KFLBKBkrOXi9Q0dQqdCkVV\nlUqhSK6YoVaqM9DTg3jOSeDLR8z/4e+w9GqZ7kv9qFQmth7ew6gW0JGL6Fs4R/DBCgfLGwx8dJXT\nh68oliDhj9AzM8LtX3zFf/dHP+Bkp0KzJSYZ3kA5NUwmtYch7wRLhXqogE0lQivWclIJ4+wMcVYJ\noNBpSJzmEVmFqIVJMidmRq8aOVzapGKSkSo0qVdFREUnuMcXCB28xuRwEDsJYZMZ6eTEOH1qdveW\nsA97KWysU88IME5NkI/G8ZqkOA0WWoUYPc4p2h0Bhp4eaodBDFd8lNItwloxqmiAjrBJNJBAUZUS\npsiAykJJVEUSL7IXKKKf9qDuFNAahZiHbNTKTcKRMEYBjA3OEVtb597qEv/qf/v/3877R8+JkogF\nWFVyltZ2UcpURF4X6Bu6hlKtY67fTXwxgtRm4eLAPJ8u32dofoFhhwdjaRjdxR6cVz0kqzGG54c5\nPHhMRa7l1fOX6C5dxq12Eo5t4n9yj05wkzcuv0s2n8V5rpd0oEJm8QXRpojb//ljxs5b0Enr5OuH\n+Ff9tE7LeDwODrJBDN2zaKoaVKoE9hETLhRcWXiL7FECSVGDGDlHp8sMOSbYPW3g6NZx45wXncJI\nZPcJBWDiyhyv7yxRbCrxLvTRFEgR57II82lshTrqeBaAjC2BwiNCXSsSTVSRjWpQu+2srixjjejI\nHkfRGu1s7SyiXo0x8eM/BlSMThhJBA7Re8qcCmtMDl9gP/maWiGOuSXBoXCw2+jgx8DBxjGnkRJS\nVZW9L39KMX5AWVPF1dZSLIno1PW4SqAf1JI2VcmGthB5zCQCD3GYPBxvPKJ6vI3IpoBzHQ5+9QuK\nBSVKzwArZT8v19Zo9NipfbpDOdugEyvSyTY5rjTRmrTUJU0scguhsxQCr5DNe5+x9JMXTE29jbgI\nXZ4LCOz/FZRnEHO4Wkdv0rP85FfYTBpSp2m80zfYeRRBIG4jb5tw9hlY+/wFOqWJyVs3EOkV5J6F\nmL51lT6nCl/fEN0XxgmnV6kJa5h69eRETbLpU/L7p7QjHczZCs2CArNuBPWZAJGpRsNhYfHJPueu\nXiAf3qOcTVLeS3B8UMRt1TE0KidxeorUoSLkX2Py/DQzly9y+69/QrqhYunzFbKFOC8+32Hhe2/j\nnr5EW1Bg8e5L9EMD2D0e5s8PYnTa6bs5id6jpWXqJhHqEFrZ5+r5K+gbXXQy7f/mGYOB7Itj9tNL\n7ETOaJcrxNVxVBYBmvoZE32DaAUljO0UhnKVTo+RYfc8CkmVhFxBW6dHNFigd7BFMd+ib0rHxYU3\n6PX0M+uZxHljiKo2R0UioeJvsFNMkwlKiSSCrGzc5/jVEsHtZfYOdyHZgaMqopCKzH6Fw7Vtgjuv\nmOodxOlwknv6GGU1ykEogdiYJX2yxtyla1hH+iiqmtTbWWI7ZTLZOtFMAPOFLiqtfWJyDeMLc9AQ\nkkhIOX2ao1lZIn6wweF//DWJs+hv9bg8c45E+BSdQUReJyJzWOL4zA9RHVPfusVxIEBemGSm24FZ\n5eLpZy+4euUG2eIORks/K3/7ELWkxUGxzsOPnzPy4Rw3/vmPOUnvsP7FA5799FMGpm5gGOmnfhgk\nueTH9dYlRII2xj4D2nYSXb+TZi5My1/k+a8Xmf/oKiapDFv/CIfhTbb/88e8CLxgcNKFQF4nEyxQ\njomQuWSoZTpOlreRlFToPAKc5m46KgUjI4M8fbpGM5Tj1j/7gN7pC+wcnDG2MIOlaGb+xgIGpQ5J\np4thj/u3egiFUnrn+5FvZqm/KFMp56FYwjzbz7jGxsAb52ntPuXeXz9kf7nF3lKKSlNJ6tBPT58R\nhaDFdnCR0JEfeaODNF+kEDnh9ZdP6O0Cta5B1Sjl1edfs31vkWIkw8RH7+O8ZCC8Vef87AUkSg8N\nmwaVWEYhGEex1+brz14SXAkzePk8ExPnsdm8RIQClH3T+HqUuF2X0ckriPN1SoIjOvFDDpcqBJ4t\nUbXoGVBoCB2mGR0ZRCppUugIKSUT/Oo/7dI3MUxTHaGytoc8EsNjG0FTlQNglVeIrJ0weWMKkUSA\nKVOhFd6jKVVxtBxD5u7DvxXCY/PhE9holjo0NkOIXU0+/tlPmPr938O/dkCfcRTntwZYXVxjxOAg\nGoviKJbRXjyHp+rhbHufufeukWqE0Y3Z6TbZ0R83GF2YJyM/I9/XhzldIn8gYuAbf8Cn/34Rhc3K\n9FwP2cgx89dnia3GkM64kFRbjHjG0DWcnJuZZzl+yPIvFhn4oI/g53uIgmESd0+pxo+5Mn6ZUCRP\nai/BwcoybbOM/rFZgotBRi+Oo+qU6D43QmQrDkDaJMfpK6IxQrspwKwwIAjVKHmSSHvkyBRydvwl\nKl47mUAah0dDWiGgEZRQteqxFARYOg56zB2W9xIUogq8Eh2hZy/ovdQNkRjyLhkuqZDmcYZzo12I\no238e9t0WjB+/TL+aIZTzQBqs572UZK6RUMyV0HcEKFsi8Aq5nhjg/zzFwz0eVm9ew+XXIdyO4Nh\nykIgFiZWatHz7gjdJQF75g5eQw/b7Rz6BS99vUrqggrZfIbWmZ1cusDF3lkO19coGiqk+7VIpP+w\njPKPPkS1Ki3WDyuohHIG3h7D0qPlxd/9hJkPFnj+6gFlhxWP102xvY9DNkCXVcFOschheIOWRE2k\nWsUQg8WXfpzTU1hUBWgLya8f4n3Xi06nRCRtsbp/xpO1FVpaCccPtjHMOqnWQGM0cuO9bxK9/5zT\nnJh4W8rI9UsY5yRo1E5WnmxQFicRSyKIM1rWliNsxbd5FT9kYrjNWmyDo1CI/ulBjMYK4pV1moEc\nwh4vhwdZuhxuMot7xPwpdDU5nUKJ2KMDEs0GTZOZpLCGyeyi4foNbNNe7iEQN5Ho1lMtxRmQCGjs\n+ilmS1S0NWQmAxJBHufABDZbH7HNLUI7SyDSI04JOM62aL3KUm3V8L+IU9jd5a0fvENQUMZs16A7\nWqctreA1mNhdW+M7f/496h0R2WiWqLrGVitDZHeNs1AIj0CCUqnB4xkm/zKEa+xDlp/f5Y0f/wv8\nexV6338LeaLNuZkhLs31s7S5zQffvMn4e/O8/o/bnMjbBHeCeNtthGIjmrKa2kaDdpeex58/os/e\nQzCY4J0Pv83ovJWULoRSKqJdTmAI/Ibgnm2cIVR0WLr/iou/+z1e/odfkT4MkgnvcOnH11BcmCHi\n36Z0cIJucIiXq0/47P/9Ao1Yg3BAx9pnXyBWmbj/xVccP99n5Mq7vHq6Cpt+hicGkMkVnFWzpCOH\nWC/eQmFSkBKW2D98zgcf/oDVn31K11Q34c+2mbg0TnQvxPyfXsLcrnB2kkEQ1SFpCREbVAhlQmQK\nCTtfLfHRH3+fhj+EacHKxcn38DhqnP7yV2jMQvb2DylUmxSPdwg2C9z+bImXy36WPlmkGgtx9uVt\n7FNqvB4NQkuLR3tPEdb/m5U1mRjh2BkUGvguXoGWmnqmjjh/TMWkolku0lDJidgUqN0ukv4TVkNP\nMdu9qM1StNEYLp+DYEBM8eUxUoWG3EmQxFGGcLbKytITiDnQ16oUFBHEDQGNdgxRx0c02cJokIPS\nQJdCSlajQnPdjGK0D5VKQKHYRD5qZGfvlI5ITkOlJ1ZuMDo5SbUjxtiloBqKYlF7GbU5yEZ3EXvP\nEInbOMw6rHkX2YYCm0aPvK6m3mnSVEqwT3VhcQygVts4qgZ5HX/+Wz2W/Uv4RpycnSUp7Z4wd36a\ndjCH1CElvPMSq93CRc8k2WCLL/7uLzH2WNh/vsXC22+TWDlg5Po8x8eHXLh+E7nOwu7DZzz+8mf0\nOgawd1m49d23ef3zh0QjEaZ/5yJlcY7A8x08GjtLH68SycdInK2SKFbQdkkYuzaNQWOjqtPy9Ok6\nQyNXaZm0dHu6KFSqDMzOcLyzhXfMxvGjewxfmqGjEWHuNRNfOSWqLOMZtnKwtIu4WmBwws3G3SX2\nn+xit7f467/9BWMfneMotcTkxRE273zBbjL2Wz0ytQZ3Hz7EX4sQlx2Q3z1CrCiw/evXHBVPWP/l\nc2TOKUbf7aUhryAdtrF1dheNRM3i4Ql7/hJSjZygsoxmUkrRa6eshuHvXCUgkZNONUm/iFNBi3v8\nMqPfHMMWqvLq46c4P3qH06CfhqpDKStCWOlQr5moT6q4PuDC6NSwsbiOP+zn2eIKhZUjgs+ekQjX\nqO6vIYyleP1gm9ZWmP1kHkU7TVlYQn1YY/HJFwS2n3NwUsSg8tJl7KLWsvLm9wdQFMqcvTohoZCT\nN2rYOVmiIv+NZwItNT03rCTzJ/S7nBxFZPgfhHEMDiBkj6i/gMBtY6cUQ3Iux9LmIoZz07Szcb7/\n5z8ieucBhVyOQOoQo8dOQyxA3+1ELdER13ZQVZs0O0nqDSVH+yHc3knW7j1l+ac/59IPPmDry6d4\nBV5cAxKWXq4gHBWx/TefYTSqUdCm8KqIeXaEO1+vMftnl8jePaaiVbKtCVFI+Mml85SPTnjv2jk2\n78XIDguY+t5VJmbcZIDX5R0Gr17C7O5FelqirGtz+uIBHo+cO79+gv3iANmXQRz9MgBUtQYHL0tk\na2FM6RqtnArnhI94PkR8Q4BEUmPyMhwFVrFeHKAtbFNcbFAftsJRkuNIgKYoR8xmwqV2YZzSE6kp\nsZlcRDZO6FG62FpbQT7mQeuuUgkk0Wub1OJ5CiYDRpEbR6mCMLGCxKNj6fUJ8o6BgbluCkoZlXad\nilhGf5eOmESJfqGHzPMzkpIjVCodAqGYwSE3snyA0tkBSUkFYTyPoFeLTeQlHzoiG40iaoFRYkTR\nqdGS6tmS5hifOUfyOIIuWaJdbf2DMso/+u+8//vf/9u/+PDdS/R6jDy++xKVpcXA2CybX63RrXcS\nCb1EX2mjGeln8+5DZG0VZWmMAauTl58/5dLVW1QjAZQdMxKbBovIhcspZJ8CyVCLnjkHqVQDp1tL\n8ziOebKfplxNbmOT0WsjlHIq/EsbVC1qpPUz+gb6afpjhI5qGCdkjA46efpsn298+B4dm5eUf4/z\nk9fRdZSIJUrSoSxqZYFC0cTggJe6SkZXXz+7S8voBA3MXXbUXUoOlte5eGuW/UgaocmM3gWhh0+Y\nvjlH5CSMPNnhzqun6Eb7sVo76Dte7OpuQukTOgIbdWkW38AQG5EC+y9f0N27QKQRJH6aYe762zzZ\nWePt310gvfmKkZvfYnMvTKV+gF3UzW6uyDmXjvrxJtq+MbTjF1j8+Kdc/fEP2TiMYRRZsQ5yioD3\nAAAgAElEQVT2I6tqqG8lMLZk6GaHSMX99Ji7EbSSiHNSCkIhdleHTX+AUdsQjdgJ7WQYSfd1cuF9\n2voqLx/4UcvzzL77Jl0iEx6hHOeNfpY3l0lGqijqKRqCEqP9emJuI9KlDVQKG8n0KfGyBbVBRuj5\nOjpXF3e+ussP//AjzgpnqHI52ukqvm+9g6Pfy4l/m+yRH4VeQXQrgdrnQjuhZ9DuwzjaS6XRIHfk\nZ+76WzSrESbmz2HqHyK+vMXgrW6WlzZQek0oOwL6+2bRG2zUtU0SBxvkInHsg5Ps3N3g6u99k73P\nPsVxYQa1sslRLEfo+WtU8n7yhRKjV6cx6S3sLj/FOX+D9c1nuBwmnjxaRiKRYlApCJ4csH8cRqw2\nI2rXOTnY59Ibk5g1Zvbv7dA/7SF8sM/MjctsfraIyWdlz59B3qNBcFwkHCvSPari9hf3AfjTP/4h\n2aqQkL+AS21gZXeHYqZExyhDZNIgqsbIHOcY9trIl9LkNVLadSnVRJ7+Xiv6XjehJ8doHW4iqQbe\nCR2dgwq7/jjlsB9d2YBWpKDj7CJ8FGR6fI6UOkW7lMaGimatiEhswaT3IiiF0adlKGVGOi0dRXEB\nU0OHUaegZTJw+HqDiflpivEmRwcbdJIOaJZw9w4Rk2RI+nMUqnXsuiHyOT/JXBS1UUOolKEsliDO\nN8hnUyhEOZZe70K+Td/li/RWnXzy8DeIg5sXbnC0fYpA0KDUqOEZG0bakiO0a4n4j5lfeINP/uo+\nel0Fo9HKgHUc0VQvm1+sYtGLEKv0eL16dp+8wmPppyaScv7Na2zfeUYt2OTF1g6T4xYK5SbFkxPE\njlHyyQqZ/DHTb9zAPtBNpVDk8vgkodQhdbmR/V+/RiETYbHJOduJYvMZCRdTmJVunr94hknfQy0b\nZ+TKZe58/CmJXA29WEJ/jxdZw8px6IT+vnHMbjeVZArqbWoyGQ5fDzPj3dy7/ZIhzxjb6y8Yu/EN\nwuEtXj/7zUHm37/8JrPffBO1pkVyuUChoqD/zXkcXheiSILJ6+O8evoxMpOBfoeFskEMh0XaOh0X\nProEsR3M4hHcs/2kV7LojQZK2wHyzSbDc1O0VzaolfJ4RnpIbKxgdjpYu3+H4TfOsf7pK5rVNtng\nCUq7ELGig0Fto1Eu8eDxKon6KQ61nD7PFJOXprA4+/FNTVBpKsiJ2ghcLZwL5xidv4E8mSOaKTFz\n7hrVHi+zN0eRu+YYM8t46t+l1VHgsEDiVYWcQkJHL0YjtOA770GZqCMupvji8RMWLg5jGbYgC6uI\nGAoE7i0x9M+/wdlfPsMy5KSequG12QgfrnO0dcq56x+Qe3FGJXiAsFhnp3PGxXdu4b8XwCKvU62V\nKQrVFPde4H3/DWrpHP6HAUYuj7D1ehWrTs7AlA/12AUW1+8wfv0qHYmUYDGK1GimuF+he0KDUKRC\n6JRQyRSJ5qvcvHGD9afrSKV6DLIWolwd/aSb0/vrDJ+/QbCUwShQIW82qQTOSLS1nG2e4tGbiYpD\nyIRlnIOTZF4foTboKSlVCDUqunp0hF5EkFkq3P1skW9++GOe337MjQvXWPW/QumT0aoLKAZbdFxW\n1r76AstHI/Q2HZw8i+N167B4BXSSGfKSNgZPP+WTJHqjCA53QalCHBLTa9dwurWJ+uoFZNkShKtY\nHSMkSgVOAh2kQ2LqmQ6ieo1GtoVQoqChcVCuR1FbdGh8PsJbKSQ6OUqjmUqphKrZxiY0IZSXkNac\nBPfCpM1SBHUrA2Yh0ZAWpA2EWiketYdAOoxe6iAdiVLTGjArLOQkEuTJMkJBBKtthlbukJrYzJMX\nD/nzf0Cx/B/9JIp2g/huhp/fXuXqG+8Q2g0j0nZhHx5nuxJANTjEy70I2WQb6+gEqbqIgr9I2Wrl\ne//yRyx/+gC1zshZ4xhVVcHa9jPO5C5c9QLpSpgnf/uUgfdvYnZMI9BZsZt76XdIUdncbG3UMJjr\nzL41TSOWQmAeIbboR3bRR5dSjVBsp6M0cL5njEdfLFGpFMlnUzxZesjK+jNcw13kCmmQ2vB0qzg9\n2+bgYINytkrfyARajZGt/DarSxE8Y1Psh1OorQ6a6SAWi4nLb32frZVNBsf6qEmaAIgyZaxOH10a\nNSvxV/SY7UgFCq5cucn9B3e50W3m0jvXEavLSMQKFt5YYOfZKhJRmr1shbDCjX/7hFomwPBb79Ea\naVDbOWUvXUK/MMrDB69pPbnL8PVZ4odpqMboUqs5+XIJhVvFXnYda4+WbCSKpqakla4glevYzgRI\nbK2yt1rGMWqhrcwR2jpGNf8GB9okgXiIbmsvMrmUjtfGztdPyB4+JD9h5Je/+ARnt47B4QEmbk0S\niZTRuc8hOaoge+cmB0ePcCwMomqEyJylufDBHJVCEoBWSs7Y1CQNlQWna4jQ9nPqsT20Liu+S28h\nD+eYfqeHsfl+Dv52k1DilNSLHdqxCqnTHJVcnHIJDnYKCE+PcV0cRNo0cO3S+6ReZ9ldP6RcDBFM\nZ0imgojNFjqqLtzd3Zh8FgqNJLMffUDj7Jgzf5M3L19j4QffQugu0D08gD94zFkyxsW5Dwl8vYi5\n6kKjtjHc62Hg2xdoKNW4J7u5+Z3vIVMLqYus+MZHyaXbLC+/YOR7C7i8TmZmL/H44XMGf+8ahXKR\nka4ugvf3ENtcdLm7ELRMv7XMo5V18rkwU7f6sJgVDBiMmE0gS9dxigYo6QdQjbsw9fVRk5twMcyo\n0029KSV1JkGoUCI5N00jXGRgsJ/1e4s8ikdRt+s4+s2ctGNsxlZpnbxGaTYSkfixNV10O3rp+Lpo\nipRoq20yoT1abRMlu43i6XO6nHoMzQZVcwPjqJt6MIpAoqFIjaQ0zve/922ufus8HZmYxx9/wtHp\nJkOD03SJhCj1VcZuXKJUaZBX2NCoBcjdauo+IWqvnFJJy+gb50nIc1BOkOjUf6vHwIgOi1lDPCbg\n6sX32Hl4n7KggUac5dr1yyx/9RXv/HCaWEnNkb9DXd3m7Nk6MkOJbFzInt/P7uY60naV3VyIYmIb\nagLygMBj4bsffJeAv45N7iS4Dw67hZqwyrmx8xytLnHn53f4/7h7zx85EPxM76mccw7d1RW6Ogd2\ns9nM5HBmODPLTSNtULiTBJ0NAyfgDBiGz5BtYL9KdyffnQHDMGDD0J10PnlntbOzkzgzJIexyWaT\nzc65qqu6cs65yh/G8Gd/9Olf+H16gff5PW9VImJv7ZB6RUbx+QkGjxrTyCjpipBeo8nIxBTLY0uE\n7/6Wq+99n3Yrg8U8xutP76FSeBmTKxBPjnNYaaEe1lAvljnd2GDjydccFIqMXVvg0s2rJLd2CJ9m\nmbxxjterT7j+/s85e/6Kak31/95DarSx8slDzlZjVHJpFm6cI/uqxtGjrwgd7vHR3/07+loTonKF\n1ViU5OebOCfOMXrBwZOPPidVbRM+WmX922N0egn9fJFSu4k0nqZ5lqTdK9IdiFBW5QSGp1jZihH8\n3ru8evASg38Irb6KVNJiyODGP25BKRQS2t3h7XcvEHQu4Lv0PdrKHFtvDhBKFTQjZfy6Ct1KFr9n\nhsaTHV49+IoX6xuIpuzkJCkOv31E5N4mwtoBApkJh1zF+LwNidVHpLoONiHqcoq+IM/6l4/Zjsap\nqYwACPpm1j+KIgsYMBUq+CdGOX28huXOAqlIEr1DxUCio1u2cG3+A4qVA/KiDgt/+mOeRQ6Zl3hJ\nrO/ju+ZEWjQReV4mIFVy5XsfsvE/P2HQEmB0OclE0lz5/rtYtV5Oa2ekv/qMy4t32P6bu/QTfWSJ\nOpI2zNy6zunuGZOTU/RjUvSLGqQ5CQ8/e4YykcPqVJPcymJDilouJCEq087lGBIoGQjz7OycUDEq\nKVV2KJZD9KekZB9v4LbOE3u1i33BQ6xeoLYa5tx8gJNf7zFxdRpV3QuAWaNHWRdTl7QIXFpC1nFT\nLedRN4UoawMW//gOZycSUu0GBmWD7WKG07yUvLSFTi8m8fgB5z4cIx0pQiCAxjiBSJ+mpQepS4Gu\nV6UpVRKtJNneP6ZqVdKRF9HNjTJq6mPzjmCWiel26sg7YRx+OeJOmej2PiJTj2++/C0iTZ/9agGt\nUM2r5Bn5UxGSTg6Ru488Bs1Glka9g1lepnVSxGB3cVDfJreyj84jxybUU9jeZCuRQRSLU1ansKqm\n+ObX9ygLdTQKEdr8Q5l9+Zd/+Yv3vn+RdgUsfgn1nIrD3A7ldI6LP7pA+NtVDAMNZXUFj06NrFzE\nPeRh8/kuomaeVLTK/M0JYq9KHGUOGD4/j1qoQt2u4dIFmV26SDu6TUfVJlQq4ZF1aQoEJF9vEXj7\nbcSlFqJmlWJTiHF0GLtNwfFRAolaTOn4BdE9AfbzSk43tyGWxuQfRmnS0RXnSYRTTAfmiR5H2NkN\no9CZsc+M0M/mKEsbKI12kuv7OK8FCd97ieftdwgYRYQfrKDWzvA8+oaJ4YtI+22OilGeP1llzjnM\nsn+G3UKVi0Ez0VARr6dCNlVm0X2ON+k06nqN1fwWmtMwWpuQZjrBrHuW+HEDlSyFXWhHGajSi+UY\nRFLohsZRamrUcqA4OKHlCNJO9qhr9eS2jikoTVjv+Hj2bz7h5tXvkSse43SNU+1XOeuk6XYG5HJ5\nZs5NYtZZ6UQPKXfkXLgzz5P/7e9xNrME5qfZPc4jGITpdkQodRI0jhmggcHppZSvoe3GqUtrDGRG\n0idnBC/Msvm3/xczb/2AN3s1vKNuNLEjwrkiSpGYew+eMfv+JLurO2gNTiQKCan9Y+RyEya/D4Mg\nw/52DtP5JbZ/vcrwVT/R3QTiZhGxR8DMzDz9qpCD01N6tRxNqZhmMc3qm0NSbzYZ8/oYuTxF5Ntt\nHA6w2pwcvn7J+UujbD5epVlMU5aoOfnNA4YvXuTo0Tr+G8Os/i8foQ34aYqanK3tMmJx8flXj5he\nmGDE42N/65hw7JBGqcOQZIiT50/YjG5iGjXhsTnp6TScPXuJ1h7g6OUex1uHxGMJbvzkIvsPV/BP\nziGQSdAFxjD5rEQfPiGW67P++gkAP/2jfwZuOy6pFKlRg6DdJFYPYTfOoJX1SddOMReUrO1t4hI4\nqCprWCYWmPEK6VkEZPaaWNQGKvVXaAQNEukmhlKfnmUAcjl2k5FCPElB3kKLnfFlN2MTsxh6Sl6+\neMHwiBtHwEOuHUHVd6MVt1AE/cwua+l1LcS3KygybY52YohbRQR5PY5FE3aXnWdfbdMoJVCKxLjG\n5tEKi1Qwo7HaiG3XKVeg0w3TiIOi1aZaa6FXjiBStKlHutQTMbpHcRJVeL3xneLg1od/SGhtj+u/\nd569b19g9p0nureFXN5GMDAgNMrY+PQVw2M6Zsem2fh2h75FwejVBfQ2OcXn64xfu4Yx6EDXEyId\nP8fGx3+N33kJs9vBwatvsE1PEUmHOH/jCmsP7tMR5tF4zJTqeUxmO97xcbZWQtgCJiYujrMXSSOp\nZ+nV5XjeHqVd7fLkb75l4b3zPProl0zcWEAkaXO6ecS1H19GKVOz/fgR3Vyb08MQPq+daDiDy2VA\nZ7aRTtUYSOOcvcpQLZ6irBqYePsc9//Dl/ivLdNP1nn64lsAlscuojbJsDonGP7ZIs9/s4HeLKU+\n6OL9+Q8Zu3wDaVeAstln3DvLWTKKd9pJ7bTEiENB8SCLzm/BJVVx2szSaveQuEdIJjKIVTIyuQrN\neIFE9JiNzjHvDi/T6daYm1tm7dFzJt+aQmNdoLjxgBdbRxSkdtzSNl1hmY3IMf2SnNjT51jGnSSi\nr4lFjhEHZshuJznrJvBMuTC79BTFPcxmO9Gnz+g0GwRG/GgUNiLFDOG1l2zv7lAkxzuX38HZcWIO\njqEzaPHYBsiHZ2i2E9y/+4DzizcZ6PNofFIGUQup7Td450apSQsMhEoONvcRSapcuHSZ5OY+ikEH\n840x1n+5z3tXbrC2lsL+tpv2RosBfaYvjrJb2GH3UYS3/skdQutbVLpCxvQ+2s0S6kk9m08zeMeG\nOd1YpdFXItW30UtdDPQDFGcltEo1p5UU8dM8CmpItCAol7Bev0T+iz3mfrRMW17i5dNVxt+exWwz\ncxY6RiZSM5A08Pjd7KwcMhY8R3zzmOsfXCcUzkIvhlhsQC6oc/E/+xGr/+uvkV6aohTJoda3+OzT\n+/ze7/8TQmdrKEdUkLOhFSdx9FTEigXU8xbKxwk8AiVtVEisOkLPX2M3CJEOHDglAho9GZoxM4Jy\ng5LJiSxdRGUQkJPKELZldBUWOu0TFpcu0a5EyYeyLFy+QvKrHWQmLfKBACEtRHYrsUSP+VEvJ9td\nqMVQyQUIdX0UYhuGnJRjjQh9sUyisUl3OoB6N4XObsUgVVDS14knClh0DsxiO7aamVwqjsivoN1s\nMjJrJVdv4jLZodCgIchTSKyD0Ip3YY7Pv/iYP/8f/vw//e+8f/1v/+0vhqQGZAM1Wp+KokCJpCjG\n4NUSijWo5xuYvW5GTDraOjNSjYKNvRMuv32JYjmG1mjis189w7u4iDZ7xOlBhZwihs+/yNef/j0S\nqYZ07IT4boxJr4/8oE9brMA/OsWrtdfMXwryOnyChR5bmxtoHFZ8ejcSv5JezUUwYKNeqFDPZoj0\nhdj6PRTOWUYYIHG7yG/GGLo9RKeaolHq4BkdpigQYxBraJWLOMwu2pEoSz95n72//iUlUZNKS45+\n1MhM0Ev5NEM6lsAgkfLVo0cEpgKYvVNkszuoRQ4SR6fYRud5eHqMVGnEMuZgV9DGm7ViGvKSl7XY\ne1PAuTyBtNtkUCqTijXQGkdI7bxmMHYVgbFBI96hpWgyf2eBTDlET1rGIbNQSVcwu1U0vnyNzm6j\n2gLzpBtTvcvJ2j6G8SDbnz7k+j/9EEk/z264gHZEQnu7znG/wNTMdYaGtDz6doP5KS9TQ1eohkNU\nmnUy6yHsehmyfodMPotOI+Y01UVQLVMXqCi82cb97jS5WJX+2QoatYFqtoV1aYxEN83KFy+4euUS\nHp2HiYtDPPriK2Z/cod8MU92r0Ts4TGjV21sPFhDKmsjMGjxG03Yl6dpnBQ5PIvRTIRoiYwsLy2Q\nbsRJ7cW4+N5lBFI5ZrOBZC+LRaGl77Wx+dE2skGD43iP0dlhmgao7SZQOywko3kmfjfI4a/XkZ+b\nQJDIENkusHzrHI+2njB/e5GjjRDhyAGBxRF0UjGDRpeyUoo9YGHYMIS2N4xcJaQVKtNUdTh3dYrQ\ndhytSsPkj95i/eNPmbl6jufPH1Apdhixirn76bcszI+j9Dq4/+mnALz9ww+Q9PIYTSJEXR0npxVU\nQjNmq4LwQYhMtIzeYydbk9Jxd9B2DSS2HiMyDNEKd+hzjMsf5LSsoH4URdyCwRRUJX26AwFLSxdQ\niFUUanVmpscxdofpZAc8i4dod8o0M1U0Ggk2rQ69yY3IJsRtmKVxNiCjidAPZSlW+jhcVbpTDia8\ncioDKZJEicNkDO+wCoVqFLm6hKjeJ3S6Sa6fRKHq4Z820BpYETQldDp5PBOTyMsdTk/eQGqACgF1\ndZNBR8arre+8Wb/z8x+gsxoplTLUKj2qnToakxOPdZivv3iCxmhifnYWhXmEL7/6NW//4BZynYSV\nz35L46DA2PW3WT3cJPYmjMHgZX9lG4R93B4Ria0DkpUapWIF32iAg9enTF8aoRbJUKz0yYTP6PbF\nRMK7zN+5ydmLdTr5CkqdDl9glN3ddboZBSebX7Dwo2vsR07ROYKIC1l6AymOITenoV3kUgnZeoXZ\nW/OkDiLIPUq8viFafQ37r3fxjLp4/vEj3v/Ht8Cowe6Wcv8/vmbi9gwHb9aZuBLk048+AeCDDz6g\nGK4gaOyS+HqPm1cW2a6lWBw/z87WMa6yiIPoHk2rhfjJMZKcGOlAjKjQ4PAwhXB8jGGpGcGYhfKz\nOFM3p+kLs0zPTbG1uY/7gh/vtIeR5Vt4dCNsVc+woSJ9lmXp4mWiT1c4Wz1ANnWeseAo0uwRTVGL\npEjMhDPASMDM0LtXEeYF9BQqJpeXuf/Nb5i/s4D0CFLFMkoG+AOjtJop1BPnmZn2sbm9Q6FdpxvL\ncfmHPyN4IUCnpOXNV48wj2jZe/gApcPJ4VGc/N4OQvUwD+9/wfLCEte/P8fxN3tEewkmfnqVlY/W\nmPJ76cdaOIN2Soo+2UQGeb6JxOAh/3KXS3/wFnd/9QUaSx0jct7s7mG3m8gdt6jKipSFXRonEeLi\nLAuXb5EsH5OLJ4muRhkOKCn0e2jFRlyjKnq9LkVlHavbTfrla6SzY2RTCc5dvczZ3QPkUz4sEyZi\nD7/FcnERZVDF7t/cY37xPSI7EUrFHgaqVBt6Jm9cZH81xNKtWZIHJaZv2GinVORrKdJnUoyWNppR\nO+HVI0q1Kqq2ll79lIpZwqNPHvOn/9V/SeZphmq9T72ToN0t0FAPUy6EMZj9yJpFVMMBKokUbrue\nYiSJOGBAlRZSE6ionL5iEPTR2qsg6EpJRF5gVg4j7CupKtq0dQ3yxQaOKS+xcITMSR+tVMDYsI+I\nXkT62TEK7TBieZVmroBw2YxRWcZQMZBOJpHZRrAio1Er0Uz38IwP09hqUa/36WiK6MWjyKZkyHNq\n0oUMZUEPuUxGW9HFZTbRzTZQyHuIui5aqX3KmhY2oYezrpBqosX8zAiyrohPHtzlz/8/fOf9/z5E\n/eVf/Y+/uP4nd+hnmyi0o/RUcXw6PXsbEZYWJ8iUMwwSNU5DUUKbOzRNIuqVCGcHh8hEGtQuPefO\nWTDZ1JxFc+h1JobdShQGK4JEhUjukGu/8z56oZhSO0WsLMRnDRBP7DEy4WX90xcIq2WsOi/qrgDZ\nuA9tr8LO1/vk5GlkIyOkV9cYX1xkdmKOSHif7Nkh8ViLplhBqVil35KgbunI5HOIjpIMegPMWhmZ\neo5mJUe+2aan7JHtuzAWE/hu36ATzVKJpejJK+g9QVLRFI+fPybQtuF5y0EmUUGgEGK5Nc2r//3X\nmCdn0cilVEo15IcHOIekpGVyqqtRFv/xNYqvDzl4fYzQPYLcnCcmETInldGuNRBUZbhuOojce0Ol\noORkq45dK0M+7GF42ofZoGL/IAvyKm5pi6y0jUTXRX/5Nhu//He4Fm/Tkw1IfHyEeViAW6FHMTaB\nPJIhMehxuldGNwLhWh65ss3Dz7a4eWcUiVuLstZE6LlAfvU5AtdFtK1DdHMLHP36OTN3znP68gCR\nus6U922S1RSZVIimVIMQEU+/fMTvv3+btKhAZLdA8MoyR3cPmZmfph7dpVquMHHjEuG1Y9yTdor5\nFOVojnwkQnDiPLZFJ+JhK9OOCV58/Tlyu4VKqo1zZIjI9gtS0QL1Vp3yaQ2R2k61l2L6/auI9VKU\nfR3uYSOR1QP85wN0amlqMSHFdp7BWQizz4k76KYyqGAVDdOLRTB7R2FQ4SCcRi3Vc7S/z+XJJWJr\nYU43X1MblIilcmitaqqtPGdPYgSXZ+gbJES/2kU46OOdWGZq9hyxaBmNTU67UiVTOKWdL7Hy/Ltt\ntDvjy6T24ziNdnbDL+gIi1S39kDXoycaIuAwkO1mGCTySLs6hs8FGLLMMzCJ0RqG8dvc7IeP8I75\nGBo3IrGq6O4NKJzF0deg2ElTGWgRJQ5I7acwGvqEz044imzi1ZsQlvpkdSV0bSttoYTUZpjNV98Q\nqkWpZfOI7VZm5sYRqoxYahry9TzNip7QcZgJ7TAG2RAtUx5BskSir6CQSGM1jnOyEULQqaCVW6C/\ni7alp99SE1MWuD47QbRdJV9NMzPtReIb48Hn/w8Tdes2lZYAt9hFXTLAYxFSyeVp19pIrXIW5+e5\n/80vyZQyjBrMHMfjWHQGGtEac++9i9o2wKYXEE/UkTWbjEzNIOpUGDq3SLbXwBtw41mYYHvtDVqh\nkNhRlHN3zqPr9UkVBMi7CZYX3+bp179l6vaPicejyLtKWhoDqcNXXLg1iXLMxevP9/GY9Ci8LswD\nEW2phOh+HN+kh1QmTy6WQm/wkyvncI2NIlHrcRjlVDJFtC4/VXmXaizC1mGGIY+PtiBNZ6/GpTsX\nuf/4MW+efzfIPP/eTfxzNgZKDXWXkXwuxfHxKVqLHIVGTHI/xuytt1D0BiTXIhwnk9j9Vs5KFart\nU87fvkI2X6VdLWCa8ZN48IxkfYCg1qYaLzDhcDDIN9l6sgpuHZOGYZoBPYndMN1am6NWhtGrF6hG\nD0lXJRgn7RiHRhEmKzTjMSrJFpZGlf38FkH/OdY+foS40aG6vYfLH6SQ2qFS1REcNvHo8w1y4VMM\n80Eir9YJ+DykU3EGgxSvHu0TTx6iss8iSxU5lZfJHmdJ5KK4nDYsDh2ff/o5H7yzRHotj3vBidAo\ng1aVycsBDh5FkVlqRCMVZs4FWf/NNgs/v0roqz18i7NsfvwNiz+/isPr5NmrPa7Mz7L24jHyRRkW\nqxNT2YrRZ2BxaYzc0R5mxwhvXr5i/uo82ddF0tkc3lkjpy8rHMYOcJi8HD/bQ2ETU25LEVvFpB68\npDDSY1hiYe/Xb5j4g+s8/PXXuO1yWoUy8Vya8Z/fJv5oA8fFWTLxELGDGDavnxe/fE3wvI18Q0BH\nWKdbLSC3NRGqJHSjIuJHe9z6+YcobPDq6SYmnZmHXz/md//szxAW4zjRkBaUMDT9yPI9lBcsNLti\njCUxmfRrMqvHaN+1k4rW6ewn6Y/oUbQFmLzzxCNJFGYRFumA01wKm6dPo1XGKJZTG1Rp7aUZmRqj\n29WiUh7SauoY9AvkxRkMIjX7xRDueQerX+4xFnDT6RRIdKQgFaM1qJAP5OyGjlEYJQS1OtKDLtYR\nBRQN9Bs1aIkYCIVYBDrE9i5KxYBsOEQ5X0Ekd9I0Nai9OEQYnEKHnKZKTD+TYWoiwGm3waCr5MGT\nz/5hyDb/4l/8i1/85Ic/Ib+xyVb1lF64wuiVafrUSb5YYfF3f4/82j7z15boJqL07MWf5d0AACAA\nSURBVGNcWRyiFh6gL9d5vrHO0qWbrLzcJyfMMjzpoVyQoq73UAXVaGxedkM5xDYxLnWQ7HYMBDnO\nDneQe30kTw8Zv/oBb559g21SiVqr5jgXwWlzsbB0kfjOHucnrvHgaAep0o5dYyNyuINq0k0nekbw\nUoB2tchZMk9gfJqD5AHnfvIheyuP8UpGiItVkIogHvbTW3+I6Nq7JO9+hsc0QU0nRtLUc5bdRdGH\nB8+eMGwKIlH3cI8FUYQ3afTLdKiiKmVx2Ew833/JuGuUokpPs7CPb2mJvY1dQvtRhua0tFQ5RvUT\niE+KcHOSRKGO0i5jd3sbr3WKsjZNcMZCp9AiU+pAL02sUmEk6GMgbCDuW0lm03jd0+xs3EPZ9yLQ\n12gNWjglXTpBF6l6muMcDN2YRB0+oTRhRfj1a6QyH20xvD0R4Kw/oJoTIZxycnQSQauSUqueoe55\nCIVjDHtN5NI5LEPTBIJuig41h3/7gFt/+hOOv36OYtrO41/fY+7WLdxCJfKgl71fPkdhKXN2EkIa\ncOOfHmbzzRlXPrxBVaBDJ1JQTydwXL1EpxMn9jBBLFYmtHaIzikkdRRlYXEesTxPS69jaGIJj9VN\nPBzG6XKhm/GyvbaGweRG0K+x9ps3nPvwIo+/fIl9aYqhoJ9eJY1o0k94M4dCqkbcb3OU2EB/4TyV\nnU0Kgyrv3b5KN1amIS6SF1Yx+HQoeya8Ph8+1zCtvpjJ0RkM8x7qmSimnhHzqJ+OWk5sZxejVsVB\neJP0TgajwYFp+hytQodnz74zUv/swx+i9I6x93gNnX8MgahDpjLAHJxG6oDc2h5izxAjYy6qeRi6\nNUJLW8bQ1WHUF9mIlbk0Nkc3mydVkbK58S0mQx+beRTnoguFKUhzdxtJbwjbeQeJ2DGFSIV+p4t0\n3MrIkJluWcFJ/AhhP4/uUhCr2ktbFGdaPUeqnEXrGOUovMnu1jYqo4VebAfn6DwSlYVUJ0UlukNN\nKcM0NoJFZyP2cgPtjANlp0siFsMbuIzF40VmNeNutJH6dDRkatTNPlWpE615wN2PfwuAxzeEWS3n\n3oMvmZ53Et6oEJyf4DBaYOnyGF99/iXLP/0pbrGTts9Aa/2MSPmM2StzvPj0C/ZCWeqZPsKmjODy\nKFVBAt/IEvf//hOc41PY1Xo2/+4uc2/NobIMcM1cZ/2331CIR9EO2SnFSljGfGgsbna/fcrCdQ+n\npwXklSQ+/zx76ycMuR24LCNsx+KMjBhZe/SCmYVZ9mKbOILDRB/ucfHDm6zef4a1r6TbEbJ7sILE\nasEm7nO8/5pzV5eppuosjE7RzVY5Wd9j6s4ldte3sLRlfPv8KQAXvYtUNw9otbq0D88QKVx4b92k\nd7xN+v4W2YKAxPYKaYmM4beGWHrnXYzJOK06XPr5T0nu56n1OuSESTQ9Ea2uCJ9ZxlG1x/LMKHuh\nGPlylYXJi0QPHjHIiDmOvUBY6VFW9nEP65HIpbjUQ3jMOh5//IBoMUWn1Gdi4gatQZX1wxLJSI1y\nLI9yPsjMexexjemJp4SML85jc2uJpfOY5rzIq1GykTzqiRl6dg0WTZCdRIplvweNe4mJMSfqeTWq\nugT/chB5wIHR7KPcqHHv8y+4fHkM/fVLcBJDPuZgkNGy//wQ/XAATUGJa1JEcSvLsFtPpt1g/NoM\nT568oi6r4Lw4RHSthNDRRBBrMf77P+D1f/iCqasXiJ0liZcOkRr1vP67bQwzFjKvT0mlothmHPjn\ng5x9FKarraFqQkujYG7ZjhYPOquSVqOD2DLEjdlRVj97gevKJV49uM97f/ZjVh7cw3JpiuJZG+Np\nla7OSSwfRz8X5OSLx6h8VoxDPQaqHtIDAQaTGlm5hbAlIJWE470QYzcWyOzs8Hpvjx/98R+QfxXl\n/tMn/N4f/jErDx+iOO8lHW4z6paQ7aQxpCQ0m0361gpnG0lshjEKqSrKXh2xu4/daiR0UqYhi+CU\nBzja2cD/loeh9giVshGSKRRWIUWZGVVDjmvERfO0jGpCRqnZRVqtIu3XEdQa6MxTaAt9OpIOSomG\n40cHBH1uMsUOfr2B0/wRvncuE3u0iXrUz8nhDlatDZG0gKwpJCaSotUI6QlrZLbDuJcvsP2rLxh4\n1czenmXvm10ayjKeUSMioZrawRZavQqENSQiO3JRmi+fPPqHIdv8q3/1F7/QSszY3goiTIkZ9LS0\n1RB5sYPTo2d9IwKDKuFUCbXQjnLEjKIuoiNq4V0cxyiT8OknD5n/wU2mLQ7SsVN0VRWbohw+pRKR\nwE54/wmysoZaNYNFLyBxWqMla+Jye2lXowh0OqTSCqVNEY7leXqIqUQjqBR6Np+sUGtKGZnTolRJ\n2V27i3viCnNeL8VOm8STdXKVHk5lD9/4OI1Sm+2tCItXfYQ3jolXwrz1sx+TfpXGPzLB4cqXBO/c\n5tn6C+KNHJ7LLvbvx5HbWzx+uMr4kJf5G1OUBGoa7SYik5KF4Vn0571shk+YU9nQD3kobT/EEwhQ\nyXfoVVIkQ2eYhtX4LdeIFeJ0bW1e/R+PeeunV8nuPMVfUcNUgPAnEaxzS4R/+yW+yWm8PjPZgz1G\nDfPUZQL0JjW5YpPNlS8ZGlriwm0v7Uwe24QZaUeGSN2h2deRfbCPW9ZCNexGmu1jv2Ll4N429WQU\n+83LvLr7ijn9MFJLneKXOzSnggRtIgr9Nosj8xz2CghEORTVCkmZivDTDRaWx9g5qHBx2c6BUsvL\nv/uUH7x7i4FdTTFcYfSmE7vQhMJk42DrMb7FW9SOX5HaOOBwP4TSI8csNbH76Dmn2QxXvn+N6kGB\noZtWisUKs1feZ+3RHtWzNKZzi5QfPSdVLDNybo6mGKJfveDGrVnePPqW8F4Sb0COUqNARZ9mIorG\n4cI15qdWLuJx+NlLHDE+t8DB0Wu8ikmKjWO65QYW6wzdKtiXnByv7JGKJZE2hNjOBSnSpdET8vTp\nCvGNfUS0yafTqDQCNE4xaBU0EkUmJkfwekeoZOK4HCpq3QaP7n0Xom5c+iH6IS37uX3mRhcZHbYh\na6hYfbmCtSJBqdCyeG0ekyVAUlBj55tvOHp5hEMgopHu0ROqufvbvyF5ukemEWdeEyCXH4BRTarY\nRhLOIhjSM+QeRahpU0wOkFsF9LQazvmHiIdzKOUi1DozqdAJxXoBu8yBINVFdt6NfcKDuqtAby5i\nUWgxOG0cnqQhF0YbGBA5OUPQEhKcH0ep1LL27Te0pSbsNg1OT5CiqIgUJelyi3D6Gcq+kN1Mm8iT\nN/iuXMN73UPyNMaDTz8H4M6f/AnHpyHmZi7R0soIvQnjDGgIuK3sr4SQW0SIZBpKrRKR0zcIZTYW\nZmfYWt/F+94sUxOj6G0KitEjKtkikVKLyiCPTK1CWq+gUrl5uXuIStslsZUh063gGp9FlG5iPO/B\nWO8S2thD2mujC+jIJ4po1FoSu3sEzl1hc/shSoMMZavH2MwEvY6CWuiYZOgAqdCC2SlnIFIh9vmZ\ntiqQTo2w+dU3TNx+h/TzfaQTFvLbYcwqFzuhMzqdNOnYCRcvX+TFsxeY3V6MLheff/pdnfc7P79N\n1SzDN7lINpfj0gezbNz/mHCiiHn5KsH3R/CJh7AhZHftkFa/RezpJr1OhUT8hG4qzqR5nCG/nVzm\nBKvezvHODrVMBblWgS7oxTww0QxHOY6eErwxjqYgxDLnQRrLopQ6UCs1xBttBMUoTUUZi3kMhUVP\nOnOGdySI0lHDOuTkNLWJNpvHF3CT3hswPWNm4+5niEwaSvkB2aMI4WSKqan3OPzmc2weL9nQGuMX\nfHREJla+eIC8c0qjXaFRatPttRFGqzRCdVr1Bg+f3GP2xgLKGSU7D6LMjbgIh7ZIRQdMjegx6KEu\na3EWPaHakyPptKnk8ozdCDAWHGXt398lnU3RkzcZoGD3kzW+/7PvsfLZEUM6C0MOGe0zGc7fm+fR\nf/yG29cWkN/0E7l/Rt+tojzoYZ0OMjEfRGwV0pbpOD0+oiOtE91PkT4N02lmcb/9PgePH+K1TbPz\n6QqXf/S77P71YzQ3R8msrONY9pM6TjEdnKIbSyJCjMuhoyMsgm7AyUECjVuJY3mM8vExzmk9Loea\n+DbYxgIc727iHB7hs08+50//6z8ivJIg0LYgqyWQ95qcimrIaFOWCXHqnGR6bUw1ATKRgK5dRbYs\nQ5DI4rVbidVKdCQqdJIBUoRgV6M4yxCXKjjZCuF22KhHSvTtUnrZAgNqyHal1Gw22o0EdamHTiUB\nhhbzN8bYCSU5P2Fj/zRFuyelJW6jTgpoCJOotUJMEgHpwxSGiz7UHRk2rYlKpk6v14RMCMRj6NRC\nkIsR5xVYzCJkGhvlZgmtRkkvPaBJmL7ZhWhgo5zIUUzneLn1gn/+D4GJ+jf/07/+xdtLtzEr+yT2\nMwgFHdxCDf1ygUytxfvvf4+1lyFGJl34ZxTkXkcZNKWUFVmOUgMCziBnpUO6h6fYZiYpPs9inx/h\n+O4qkmkXzd0kZouebjZGXi7Dp9dwEg0zf/N7hE8ipLIZnB4Hua0KeUkDp1zD6b1drvzhO3zz7z9H\n2uiiu6gk/DhOq5dl+eJ5iJR58fQr/DcuI3W4CE57eLWZwOIfx+HrIK62EJtltDVaNF0JW6uPcU86\nKDV6aICj4zCdeI56rc7E6AKJ/TDqnotHL79hemiOqXeu8erxl5wf95EpQy3UQm50Un51hGbCQayR\nRDHpJvMgTL0uRWmTMH9riczLCruaLG5Zh/JZC79rQDfWR2Ue4jDToiCucfvtWV6VtmgmNIzPDJPq\n1jlOZyinMiSbAmRDJtKrr7k5PknEmOUgUeTwxREDgwNxpcTqix1sYgsmn5GyZozDT37LQKgibXfg\nUw6wvHObwkdf0POZkAbMRHa3uXDuA1af3kOq8CDrS6gbFOjieZpJBT2ZEVF+m7JIwajHgUrYIz9o\nIch1ePTFV3wwfweNBzzDfjY2ooRCu7RjFcYuTZJPFPB53OTaZUavn+Po3jbdZpVBscDcu++zufUK\nn9+FqCNDJJMSWV3F5G4w//77aFpVdEMeIoUoo2Nq3vzt51z58e9w96O7zC+cY+HyBTYeraH3qNFO\nLUKkzdPHd8kUYpTXCqT6aabPnSf0eAP/0ij1dJLSKYjMMuwqDYVqisOzE5rJOtfu3MG2aKOQyCAb\n9Hhz/wVXbk2QPDjFeeMig7IKYQ/KtTrtahfvqJPY2QGhkxRKi5nnD45Q6+U8ffQdSP3hP/pDQs8S\nTF5apBAN09dKKXe6NAs5hgPjJDpZfENWMoMmxdff4rAZUQhlVEQtekIRbo2FZGMPhVBDR6FFY3WR\n71RpFWv0Oxn0VkhEuxyUTlAX23RVIjQdDVVxk3wtQ/qkQbqfQl/qkDFKEQx66MUmCNSpPt3CN7mA\nRCzh7OkJrVyW01gLhVxCWSmn2XPgmZ/kJFegutdlO/IKVUONopRiSBdEbjcRfRFBIZCRFodwaiGf\nt1ArH2MS6XAPtcmkc0hPxdx99B0j9gc//BmCWolaK832yjE/+t0rZNNtvn34jJnbAVq7DSLZY2ZG\npwmvZ5i54qKUS8GQk6O7G0SeH9PqdBDq3ZztxREPhAgHXfppAd6ZcR6++Zy3Ls7wdHOLxatLJDNn\nONUDeiovrY0wEqsciUyMZcxOv+9EIm1RyxfwnZ/k6P4jtJNTZKoFTqJRTH01zx59zMjEGIqlKbr5\nGPW6EIXBSq9Y4GB/jdhhAd/FcWopCbVmAUk2Q+Dyjzhe26XfKeO/vkxy9wzbtA21fYSz7XWKrRLP\nn3zHiF1bnsdpclAv1YlXejT2D5G6fXgCE4gFVQrP32AZ97O6c4B/1k1lI8rSTy8T2tvDqQ2yEw6x\n1wqjzWvIvjlAY7EyvnQF42iAaqrJIFdFpSlQHvSZvXyN00dHnOy95jQXRaU00+n2ye1uoaqIiGUy\nFOst/P4hvFIXRp2C8PpLLNYJDjZ2mXr/MiKzhqPVLVpnx3RqKgqJFOm6Btd5O0M6L6OjM2xEnzI8\n68XdkmFUGNn5aot0dYPFD9/GNmnDVvVTN6vRpITIp6Uc7u1hNMi59+1DlpbvUHp1jM0fIHSaxHle\nh3XKxP76LofFAsQ0mOeDdOVN2j01wXEba9thes0cGq8Dl9DG6PIU6ysHLP5knOe/PmF4uEnXliGW\nK9HK1+k3eiz++CJf//1znEYrmYMjHBNB/Go51bMDckopunqH9QffIml0UWo66H0azgUmWHmdwK8u\n4bl6lZ3PPuPSf75M+NkekjEn5lyGoQ9+wMrffMr7v/Njvv7sV0i1buxLNqIraRLRA4Q2PxqtgeO9\nLQbKPpbpK1QzIuTxAuvpbSx9N8f7B4gCFp58/BU//qf/DOlRighJTFoL4qEeiaMBLVGTbrWLeshB\n/iyNzadjb+0Q1eURGi/zGE1OUjnQ2dWIxFJq2g6HL3LMv3+O8EmCgVGNfqAlkTxhauE8hZNDjENy\nGuU8daEOFBWSex1UIzBI11B1HRTKfVrtCophN82mAHVFiERWoS3qk0iUwe5GnVVRHFRp5sqIswnC\nkhLqag3ZiIVCuYthuE42lqdrHqNtTJCWWNDVGhQzXQadPLV4naGgg1i4hrjXYHTSTj5T5PHmM/7b\n//6/+08/RP3Vv/zXv/BPu4iVU3jOTSBrqjmJH+EeWyaVjNMIOKGWQSjqc7B/yuj1ZUKhPJcCY4Tv\nf4NizotebGVgGHCwn8Wo7/Pi4JAJp42aZkAz06ZSFmHzGpkan+bZ3iuCE9NkirukQwnklJjy3UA4\n4aC1t0fXaqbdrHGw94r3PlhGoNCx9fiQ6Ws3iL9cQ7boRaOUoxbKWVl9yeL0FGWxEYNTTebhGkKP\nkaawySBeRxXK4ZiZw2j2cPxym2pThEjZ5kLgOn1Ri8W3Fnl9mmTBJybfbfD48WOsE8N0BEKWR30I\nTEZ2H75Gf3GCYqlKKplEVKjjt01xsB5Fd8lEcNRNcj3El29ecf2DH1D9dJW2S82wWkNarKLal3AS\n38PvNtFtKqiIWmR3Trn99hSbsSoOl4mNL5+zfPs9crEDNGPD7KzuY5szUV3PY5eOMWP2MRDUiK0m\nePen75JPZJm4ZCf+LI7Dbie8sYfRJkR14QKHz5/jffsG0tI+NaGEzFEKiVvP8dYWSmMb46BKSlpE\n0MgxfGURYTZLtNZEfxJGMmbCajaz9XIL26SGr355j5s/ucrhXh6NqEvkYBuHUYdS6aUjUXO2/pJc\nq0hwdoKVj+6z+MFtFHYhY8Hz7H+zwtjNaRoZMelykVQry3n/VdpqCa9+9QkCs5bQ020cdjdvPntK\ny6Fgc22Tmx/eotdVce+T33DrD3/M/m+3CcXDVM4ivP9f/Jz1u2tM/yBI9U2E+HaSsqiGw2KlcZIA\nlw2P38iDZ9tIRQ20unFmry5z/5P7lKMtNAY5mbMT9H4b0XtvuPinv8/xizX61RwFURmrzUe1cESv\nL0SQhY6oi/fKefxqC+VImsdr39U1Fy6cRzZQkHr9CIVaw+arNEOTJkxKLRsnb7CZfOhGtNSjMk6K\ncZryPo0TNRqFkPBOjrp4QMAzSSp8RtB/joOdHVrlMi2RGtGgi9cYxBJwona4UFhdGHsizkJvkDfL\n1OsGpGolchqYzy+gNakQNDrIPDrKAwN58YDBcYSotoqu3UZjHGF4UUQ2XaFaalNPnxK8ME67c4bN\nICBzekBVamPpnXHkDgehjROa+SpqWw1b185uvYh20MPUdTK0YKWTglz8DYVChqdr3zFi877zqOY0\nHOwesXj1AisPNuidRRgdHuHsrI1tapZWs8HJvSdc+f3brL5YQ9qrUivLubAwicxnIPz6iNmxc1jd\nOlzjNpLROLopH0ebm2hEMrLZLhPBabo6FbXjOMLACNGzED2VmkoxQmBpjP1PVzmqhXG7h5B0xTSV\nMgpiKVcWp9CYhnHbhjl6+hKdz4Z31sfRmySByTlefn2P+fPznLzaYGx6Hm2nSTLZIxp9iUrmxBbU\n8vA3d7GPB5G1CpzFdlhYOM+rpy8pDSQszp5n9+UBG1vfMVEejZNuS0Lf1mFsNoBCp2D75S4urw6V\nVI3TNMnu+tcILEIEjSa28WuEDzKMBs/hWDAzHJhl/sI51tZ28dyZQVMxsbH6kOxxHrkmC10NYqmE\n0OEhuxuvaUg6BN79EZfPzdJNFCh0cmSbAwRuOfJulaHvXWP/3go78QpisYR0KUpfUUbeG3D4NE66\nHWVixEctm2Bg7eKduI5GVmT/JIe8dUriJIwuMEp8Ncp2MYvY2sE4E8RjHiO2sk6j3mXtyTaFzCmF\nTpjGkQANUgQ2GQ++/pYPrs3Q61WR9kU4AmpqB20KpTqdVJPrd65wlgoTP01hbKrxW8bZexXCfXmc\n3nob3bgNgUvL1oNd3rk1RuqsgbZfpdlQM6y0ke3L0TVK5GoVGukBFlEVmQxcS2N09s84q51RlopJ\n7e7T0ApZHrpKpydAVBWjlvpIvDxi+O1FFFqobR/SEWnJkCXypo7NZ0BjmKIYe8G59+bYPlzFr3Mw\n0NY4vLuFY86Nz3kNdbnGytpzPLYhnAodbTqIo6dEonF889fR6esMLTkoN/s8/fgb/vAf/TdUoikM\nMjnRRBGHyoUwGkGp8DMxIuMwUcacq5MyWdD00/TlY6jMA/R6mFkaoVsq0q3XaKbFNEsdRkb8FLsN\nKlsnDOndCIxKGDIgRY1CIKAgVCCLtOj0q3T7NurNBtNDBiQKBaloj3wtx/iFOcSxGhSLCKt9dGYl\nm09WmfFNsRXa58LFUYrxI2r+CSxtNXj0tBpqzH0Rg2afk1IapUOCoSxGpJbhVLkIrW7hsgUJF1PY\nXSNU43nWIxH8UwGysRLPN5/zz/8h1Hl/+a/+4hd3/uiPKa9FGHIqEVhtpFMZTF4BSz9YYvX/XMVj\nt6HWDSGNRth9HaLTPyVZGDB17SI7v/oU+ZgPaT1Ls17BemuZwvM91BMBOutnNK0CpvVKEokUT47e\ncPPiedY+eU5DZuPCzesIYh0enz5mxjdGMw9V4SnZohLHyCQdYQmX0YRAa6O8v8s771/n/qMj1D4X\n2892MSmN2PR2dlNxVCdZ2kYJ2dBzhJ0h6GdRjppY+fpbNAoNbouZVPSIXk+FJ6BmMxZCXBRQi24g\n9d8i939z915PtljXnd53co59curTOefumzNwARAECCaJ5FhxVLZcnrHHNQ+yx65y8X0kTZWteZuy\nLVMzokSKJAiABHDvxc2h+97OOZ4+Oeec/QCX/Oby45T2n7Cq9q5Va3/r95VDrDx6zrBthnd+dJ1n\nn3yG2a2krW4zNbZEeWeT3smL+AVJYgf7eG5OsfKbHTpdNTRzTI1/m73kU258dA1xUkS21WHUYUZC\nlVQqgnhsEn08jjJVxHPtCh//zc8QqKpIanWuv/sWxbCPVjqGvKnF0qtBLlOgU6nYPL3P8M33WVn+\nOZd/9AFPf/aQfrOAtXAEu6hO22Cm7+1bLP/0E7qdNL2Dk1SEQfY2Y4gkAsxKNaehABPDbpbGl4jL\nRcjKAiwDt2hFU8TkHcqbcVzfu0r3pElIFGThwhW2N/2sPHzOnSt3MY05qRxm0UhUNM2DhHJvMKlc\nlDt56kcJnINLaDsdytIUWrmJV/ceIVKbMCqkKJCTiIdQ1qochDdwantxvzOFpACWsUV2Hr7COuPG\nM7WA12FDazJwsLLHwluXePHwNwzcvYtLosY+5WBzOYLO7aKnqiFYS7N4bQrT+BAb957jujVBr9FL\n9iiGRCZl/PYiIrOCdiaKTCKj95ob30aI+kmOsZlBBCoJO4+P6fF26B0YZXxmjNVPvkSicxDdWkN/\naYbMXpb4SQjnVRP5GDx5cR+A/+bDf4V9wYa+10n/qJ6cSkI0sIOwa0AuVqM2FhGmteyf3ENVrkKg\ngflSP8VyGgRZpKE4R4Uq+U6BVjmPWa+i65B+rb5xNtEYlMT8GQStFCW1AH94A3GtRiwjRjugoJtV\n0jB0ULVkeGw2BAUVNFMcHu3T02wRjaVQF5qcRUIkc20K6QbeyXmMOREtUZzyTgW1wM3E4hSjH13G\n6JCx9as1ZCIHGruKQCrC6JVrJHJ5uskW8XwScbNBvQGpcotOzU6+U+fN/9NUXh4dw2mapdYqoGzW\nGV4cJBCp452coa3s0miXsambjM3Ns7W5jVLhwuAawKpt8+qrp6R8TebfGmL1eB29Ucr+lyuo3SN0\nogly5Tzji27qhwXS4iq5TByTSI1B4qDfo+TkMMD1Dy+z9h83sE7psWp6kYlt7O3tU+s2mBnpZeX1\nEyyyHp48/4qpd5dIJJOkd+JkwxUknQKu8SVEdWhF64g0KjKHOUxeHd6hKRJHRwz3z5PIZzG0hahm\nplFJBzh68ZTRW1fx9nlY+/Rjrv7wXT7+238A4Ad/9qfMzY2QqymoPvVTcTRw6eYQ5COEknkysi6j\nfQO0EGEb7SWz40fR56JeSbK9HKThblDdrnMee4NJDqV6E5moTuQkhFTTz+i0nGqxQTVaRndlAoPT\nhEmlIJmKIJCaaIePcIz0kjo7Z+zuTTSnWSy9vTguadALDYwsDVFazdPpCDBcHWB0fAl5UUKjXkOu\nsyDItliNv6YnU6AjMqDXaSjHzpEYusx+8ztoNV04TOKPBbHLBlCohEh6HNQiAQoNKVJVjYqkjN1u\n5fPf3Gd+eomRqYuECCJQe1GrkiikalR2Ez2KJnk0eHpkiFVi3jzZRt0rI50r4JiysvLLV1g1EkZv\nXubLX32ByCiiWS7QNTlJnC4zPj1LMRxh8OZlWtsJJr4zyfKDKFVdm2ajhnZgkMhWiLffv4Q0JiCS\nLeEyaslU8mydrqOanURuFLL3JEg5XqPvPTvJF3FM01IW5+7SLIfwnYbQZhvITDI6FQ09HhW6RTco\n6rz5hzWsN+dpl4qMzg+RPDgimVLSDQfoHR+i0y1Tb6upN1Ios10e3HvCH/3wIWgZUQAAIABJREFU\nn7P67HNcvSaadRE2pYrjRAjfzhbyhVG6W2XaZiXuQSsCsZ5m8BijpUF6J0JyuI/0+TYu5wjpMz9X\nLkzx9D/8NbpBI6KmiopWhVmoJry7RlOgos87TnAngLxfR8wXQG834TZI0UxNEPCfozelUVdtiERZ\n8sdnVEU1Ik0dE3dmKLREGARahLIKuWIXkWUEUTiBr5LGXrUR1fqQSRtIY1AT92CSyilKcpw/3EQ0\nPcP5k88ZfWcClVJHMlZFazNjqLQopur0iOrcX3/O//i//BOYRP35n//lj80WPTcuX+PZ/RcMLTiI\n7eSxC7v4OwqIBsgLMlCVYVOaKaqq6NsSKtUknY4MASXCvjJCkw2ltEjizREjS/NsPX2G/ZabWjqG\nwjKN97qNyoNTijojzmE98ryIraevcE8tIk0n2I2EmRmZZP/Na25cvUggc0pjt0gk62N2aYhsPEFe\nakSTOuM0GmTIMYhNqCaQOSZ+XmTmvRnebJwyZrQhHbQS/mqXqQ9vEEzVqUga5NZWmf3R7+JwGAjl\nhIi7YaInJdz9s5S6YnS1Ag8fP8E1rsOJA8egl3Imi2dmFt+qj/bcAOfBFWzBAo4PFtn5xSMuf+t9\nQi9Wmbl7nRfrv8QsEiFWSDk89TOkc3PWrVJLS7FJ+nB5aohkI6w8u8/h9j4jH15gSDRMiBDJMxHZ\nUgydxUnR94b6hJ3Dn3yJdX6RwaaZiqZM9WUGZVGIRu9gv9jA22rQ7Jtg694qPV4R+UiVOZMJ54Vh\nPv33/4m3B28iyJYpyA1UROe4agM0LG2Ovgph8mjo7u8QRUau1OBiv5691/sopyzEXuchLkUpSfLV\nw2Uuv3WVtj+N2ixCYpNhVkjo7x3A/3SLHqkN9/cvUdw4RN0vQtbUsrWzwdUPvsFxcJfYSYpq7Iy2\nWI54QIfL7SVwFiaTDdBswMnGMlqnHod9kv2P7yGoNwhGggz1DnKwG6Dv8iQnL9bJpNL0qHuQGjLo\nq5Cow/jwNO2WgPRmjKX3vChaNl588inWsUEwdnn1xT3S8TZWi5tSI8PpzhYurZGBSzc53VrGPOBC\n1z+CZ2CQzSfLHG1GGBpx4eo34ZkaIba2jXZAhU1tY+WTN3h6tdx79AgAr8NIKZlHqS5SNZqxpcqo\nbDMEggHkJSmdlIhUYgPHzFUK+1HMA+PIxGUSMQGu8SlMaif24TIdVQd5rYbK4Ualk9FrlKDt9nNY\njpMKZyip24iyXYb1A0TbJexaLcKCioQ4RD6dRCao00TG8PUp9p8c0xVn8NgHaEmKeHonSZyXkVpK\nyFVTGJVJEuIs0wMj6CZHiFRr5DMRlOZeUs0WqriY03aI2NFrFJYGqd0KynoEqU2NR6HlvJOlLdVh\na5XomTChUNl4cO/r7bzf+ZM/QaVQcnZ+iF6gYGM1xaC7y9bJKaPj47x59QBxUkqCBMl6DkWrRipa\nJXp0jGfczuV353n4q20sVhcKRExOzZD0RRDZlWh7zChkUjJGBfZOD5ntOIsfLJLNVNh5tc/Vuxe4\n/5O/Z+zON5EP2jn/zWMEo3qcqOmbMHO4d8jw0CL+HR/XLl/kYGsfsciN2mOn16HieC+GUljgvF1B\nZdOTrMaItNsMTA9TK8PMTTf+jTVaLRHuUQu+5D6pvRUGlq6ha6kolyM4JkbZfL3OyvOvBcRLfW9z\nsONDbBRinhmnvpMkWXxNxpfE5V3A61GyGwsyZxmjEg9TVSjpHr8i2RZjNctRqvScbz1j7ocfkHiy\nTU2kQeQZwX21D0EqQ6JVQx0H6VsOekR1BLZ+Mtsb1AtNguEtdKP9FONtZO5ZSikfTVMPobUTshtJ\norUK0VwYm3uEk+0dxqxTdAV5ysoqykYbubbOSaiNc2ABgbJFOtoi5d+kaTHQCbXp5A45/M0hHbMM\noahJSmfG3KOkXCli0nhoaZuYLCN4+scRlTt89uVveGdinJo0QafpwDvqoBb2Uy+2UDbNJOtJ6pku\nx9kgLpsG75VFqsUCA5ednK4FufH+OPGTDJX9Q3o840R3TrFeGESlaDM4NcXJyjkdvRpxSUHZLGJ3\n1cfIvBxr00o96KOeEjAxM0n67BSht49Q0kdJIyW2fsTNP/oA016FUCJEUyLCLYR0skhDKMM72Eci\nsE/w6Q4Km5ee0XFCq8fYe3X4XyZxDfWTfPCa/t+5w8mzL3HbxjhZeYjafonj4DEXb3/I3vYRAzeH\nKacbFC1iVOIy9z5+wZ/+t/8lZ4+zVCU5zH1u0q+PEPTIaOrNNJJddE4N+W4Ss1JOt9mikvPTEOrp\nWgzIWl3y6QI2gZaWqUBMYWTA7iBQkKBVGyB7gqAjptc2SDi/jXLYTXAvjtJsRF3O0fJIqK5k6YpU\n6PoFdPZENFtRNDNDSLKQKqvpZg5w350l5PfjvDpI9jxEV26grEzRZzdSOwhSFzVoaowEjs/pcU5h\n72mR859iHnSw+sSH44YbqahKJhBGqFCRWXmJTK9CaLQiaoYwjvXyyYP7/Jt/CkzUv/2Lv/jxf/ev\n/iVb0VOmLG7e7ATp89poGVoENhPMfG+GZCSPsqZCJmkTPErjHbejFFuJSLPMjl2g6FunFPVj9jqx\n2ucpBPxMXXybTqFG7SBKQdamFmwgrKWoq9yMeuwU0kJUlibHB1EmvjmDpq0j0cliF1l4Hdhg6e5b\nnJ1GaEW6SMxGjpK7xA985HVmxuZm2FrboGsuY6+aiRV2kApdFMu7JLstxmWD9AyLOYtU6b5eZ/bd\nCzgsExxFzlA6nRy9esTA2HtETnfou+jg+HAdS0XD/ZXHLGmHWLwzy/KT11z45ruc7+7TbdawKuVk\nTmLUVCq6CSG9V3oINTJwnCRSrnHXu0Qzo2bzdI2x/mlSRT/6qpxkJsDA1BCPTg5IHyYZeHuKKzfe\n4nQljigXQaxRUvWfoxuSEN2vMNw3iVojReuVElk9I6ProZGKcuX3bpKIRNCYpUgzfpw3brN3eI/Z\nW98l/GwZ3YwB7/gVXvo3mBF6aCphr3KIpU+F6VyMeljCwWmZfu8o/ue7mK+PkX9ziEsgoqfXg1Ij\nJH58zIXhG6TVFeROK/d+8RmXb9+gz2Vh8/k24UAW26CT7Zfb9F/sRTkxRnF7h8DpGafVJlqpgL6L\nV9n5+WdM3xintHWO0uKkd2kei1RCVW4l569w6doFshs+2j1CxB0docMNJv7w+zj7tXS7RY4eb5LK\nt+gksvQvztM/rGF3cwuzbpKsNEFm55Bqo0SpEkeih5rcSLmYRKF1Eogl6NfryDeEtFOg6hHTKjex\nWr0c7/mJxJaZv/sdlp88pZWNsLP8jMH5ebQWLRq9AF80z1ksSI9Txf6bc4ZHjUxev0p8L8LDla/B\n8u+++xaCqpy6SYrZ6kVqUeHsUaMXdAgnQ8QKMVyjoxzFDilm0jTFair+BE2VlExkm5TvlEHLLE5j\nL7Vig0QtS2wvB1Yp2VSGjK+GxqKjGski1MmRN7sIFCpa1g5GkZJotMLoyBgyRR11tYXMJEKq6EFf\nE3EWCFJN6qkXyvS6enFIHXSdGlT6PmTxNIYxJ81sCYOgST6coXR6iFpuJC3p0IiWKVUlOFU91MUK\nMrE6JpeGXCxCpWJE3jql2xLSbkiptsI8efI1I3brgzsEVnYRalTkKxlmbwyRq8DA9AyPfvmEG+9e\noGN10JZq6FXrodmhE08weH2Cg/VTdG01bVuFRDaJTttmf2WX/qE+4gEfapsDh1HO7vIqFoMQz9gw\n2UKZ45VjrBNu4vtbDH70PYpna+xv+pm9OMf56gp5dYvzozMmpufYXHvB8MXbxCMBVG4vOlOXnC+K\na7KfZrtB/0Ivkk4Bo12FVqLGPebhdPslJf8+r54kkZmNWOeGaAfKxA5DzC5N4B7pJRo4wx8NEklH\nmV26zSd///cATI/10ZWCsJwjvZGg6xAw4h1GaF3APFQj8CTB0foWvtAqyYyZYuQckaLN6IVxqqk0\nu8/XkA+Z6SYLGPu9OE1WcicJYq826LS7iPNJ4uMOqNYJvEkxWFdTKmRIxcX0WiwU6wIKsSw6UZqu\nrEbsdZqyo4XMq6dHYsFQCJE+ziFSm2gm9jjNdxhUtggHyoh6BqmLE8Tf7KO1Opm9OYDt+jwGiwmD\nQk0wnWTo5vcxa1UED+OoWsec7gWRtprkzFU8ziEa0RNEyTPKdT33n37OlZtLuK7PotVKWf78CNXC\nMDVtl3SqjkIrIhvxMX/zQ3Z+sUK9mSOSziEORRDarBz9YgfFoJzoURDv0CAegwmZoMLK/VVsLjO7\nWyHu3Jll7akP24COzLM3mK8ssX64zuQHb4OgQbJcJ7xyTrcSQ2MeokyGoXevEPqbN8iG3ew9fMw7\nb11FM6xia+uIK2/fQSrvEl/NMDQ2jtqj5Oje56iHZxGpJEi1LVL5OhMXJzj8u/s45y4ilQoo6aQY\nykKuffcygfgJuc0tagoRQf8ZcoGBSjzB80er/PD7/wNKTx3fVwGsCy4UjSoxhRy3w0o2XyZ3eojW\nKaPSkJJJpJmwTiOudKg38ihDClR9QgryGsWuCFm+Q6EtB3kVef4ciUYJYiWtko9wu4RUoqbVETKq\n0OEng7Bjp1jyoZaDu8eJr1ygf3iInZUwequMjiBHXFRk1DVK7PEe4raJgjmPrlGg1W4RXc9ivWzD\npbEQK6YY1Q1RbgkRGHJ0BGpqJTP+k+c4pGaMAwNEt1JInUoiW3m0kwt0U1kCqQK2i1N88euf//9i\nov6z174Imh0+/av/nbG5OdaP9tGWChidPbQlekxFP+mzBH0VHR1Rmq14jkm7FrO1h4qigb2/j/2V\nZaoaC46FKUrVNkWFmGAtQqK+hnl8mLELb+Ex6ci+2SHv6cM2JmDt2T2a3iz5SJqFJQuNRIfM5lNc\nZrDO9CJOws5f/xaTpIlUkiFweI6jbGF4uhdpM0l8K8Y3/9lHyDIK2ld0WG29xJsH9GjsNMM5Uke7\nPF8PotIbMC1cJrKyT6Z6Qr1cIvz3L5m/cQnf5iHf+MEH7DzfQyXopWIoAVDspBEa5PReXiIZypH2\nB8hQJB3NYNGI6VqVtDp12pk2jqYFuaJLj06Hf9VPUBLh7Y9uk9jyYdDOUWqkSYdjiHUNOE1Qrx6T\nDaUI7R5icQhpKdQ4R6Yx94yhQMzobQdHx2/YikfQOefJt2XMXHVDpkNoZYem3kPgYB8W3ufxLx/g\n0o1xEN7FlzljAAvhs8eI9k9ozarRLjgxtUxIDrKI5FBCjE5Qw1c64e1vX2XrF4dIZ+coVCKc1uJs\nJ2VYxucQGLqcPH9Kvvu1HNLp0LLy9CltkZCJS7MYNTb0c32IdUayJy8ZujSI2tnLRc0oBrkL/8Yh\ng7PDHKzEuPjtH1I2CQgHAjz47BHLH/+CUvaA4LN11EtzSLIi+m4u0W222Hr4mJe/eAJJHZPfmWPm\n2jwXvn0Li7pEStzGJrZD44x8RMid3/sRNLt4puaplQW8+fIJSqEMWamJRSxk/fkb+ucHGb8yRsS3\nychIH7lyCadrgNsffpfE/iqTH9xGgx6t2oxeIqUYibG2EcLh6Kd/aIZCWcudP/wDYil49re/oDlg\n/cc7Y7ZPITE12Fo74POf/A2f/PJzVn/7EP/6EcVymcXbI/hjUa56F9HL24jzJzjsHpRaAW69g1s/\nuMvW7jmJnV1MM4s4xt1cvDbCjHsBQacHlUuBzNHgzgffQ5KukfHHECX9FP1Nsg0JHomQtKBFyZei\n0dWR9ncIrpxR18nRVqAoClIx5zB5FdRdKgTCCoX9h4SR8eAnj5CrDOyGywg1VY5LUfa/+IpQ4g3p\ngh+HSEpdakcmydJ/zYEg3aDT8jI+0oNAPEhKKSPmP6eVF/1jPRRCCbrLHkwaD6WuFKnSgVStQkmV\nbidGt6FF1cgR3d9BOjZKPOin/8pFXnz8EOeAG5HRjFxgYPjSOOV4AZvbxtqbFUanl5CdlYjU5Uik\nEnQDE5RKSfZfP6fUjqD1WtC7xymvPkQ60ofL1GQvlkVo1TI0MsvM+99BqZAhC4qI+vdIBLMU1tcQ\ndaU4xt2o23WEiQTPP97ncCVBrqRl4/NdNDIR0c0yvRffY/BSD+e7a4jbFYLhKO6RPsJCJT//2X+i\nURSyMDVNvVjk3Lf1j/WQanQMeg3EYmlqigh1hY3lLw+Rq5Mcf75NsuljfHYB2+3LLP3oAi59la64\nB6GghaglZumjjxDkJKiSLc4OTikWWwgHa9hdDlxjRsKxIpLjU7Q6KUK7DWxiFJZxxMTRGxS0wmcU\nTDJotjg6TaIdVfDu9UUsrl5yoT1KCiPRWp5K6zVxsZSLnn7k9mFsM3b0XhmKowiD111Yx53E7h9x\n+ihM+KdveHN6xuDSIK9//jPC6Si903YCVTMD41PQkLIweYVqLYVQKqPQtVIUFQFoNbWUAxVCT45Z\nmLKS3Q5i07iJHp0gCee48K27PP30C65/NINCp+ParQ8JHwmILm8w9CfXyC3HEA72kTs4ZKd4zmm8\nxtyEi0Q2y6U786z85B7KiRoJiuQMQoTr5+h7R9j9+BGJ0y7J5A56gwrD9ALpUAJtu483/8evUCj0\nBOIxFr55ge3dOMcv0wwMqXn04h8onQVQOdTkWzn80ShDH11h//VLbHI9Z/kShVCQUiZL0SBF6TSw\nuXFMT8lOvLXHwdYmG/ffcOlf/AhP3xDXLs2SeX6MfNgOgNKcwSwwYDYaiS4HkF3qR7ByjEvnpbJ7\nzvi3Z7Hp9ciCoDIoSOoLuK5ZyBWyaLxthFEtjaQAncyKUyxHnE3S7VSQ6wScdYQoptSktVp6FbOY\nVTpU2gob58uoxAYcgghT198nUoiAtYfgURDjuBy1qsLhwTkqnYdWQU66kGTnzE86eYAq2yKWkCAI\nVumxaEnnO8RbJQY6Oo7lMcxWAb6zAoK6gZOdp/zwz/41sWyMvj4vzqszmMt6Jm8O0cqkUXnEVM9K\nJDM1Wq3/9w35/zr/2U+i/uJ/+6sfv/fh9zmNbmO1utAN6hG2GojOu8QkNSQtO3WlhApSdMIOxiEn\nW4+fI2zmweqkGgjSlnZJH5/Qe/Um4maT7PIucp2Bk+MgFmudlsZEpVWmz2QnuhVg8e4lNteW6fXe\noFEosPb0mIV/+Uc8+9snzExN09QoEApySAtSqppecvIOEmmNQihGn3meo8w2tVqHekcAMQm1fBiz\nbYCqAPQ6OSlxh95al2a9S0xWwTJgoFssUSmYGPvGCNvP7tFjG+R0c5+lDybodoXko2leLC8zNDRD\n2z1E9ThEvSvC7RhAuHuM2G0mpjKgamcxhKsMXL7Em3iKq3du8MVP7/P2n1yi4CsQDIQpFhIY56Xk\nHuwx9I0b+JZXsc/O0DdoQxoOcdqtoLaaaZ0kkAjznCbSNDVVUptZbv/+7xN7vodBI2PQquL+r/cw\nOK3kLFWke0Wmf/8mB4+eMqCyIugRo64LcTX1VE0mcgdB2mUzeUGSeqiFzNpHVy5hZHGe+PNNGB/h\ngnuIx7vr5JItzJI8xrE5TnfOEB9v0jsyx/pXL5jyuGjYazz6xWNuDM1gmHTTZ3Gj9Io529okFquT\nDB3TPqtwGqkijZdRjBmI+M+wjro4eb7Gtfe+yce/vo9OI2ZqyY3bbEVt0bB46yqtXgf+1WfoJF4C\nT3/Lwls/IJBYY8g2TCGfIZUr0tNvIn1wQjra5vjFGjN3rrD+cBWRtMrey31m3rlF7ShLiQTuMTfV\ndAjfvp+uSIx30QlxOH6zy9K3lrj/1y/Jh07IdWF3awXb/AV2HzxBIK0z+v577Kwco0WIdsLD0adf\noqw1SAXDiLVt8tEiCqeKTk3Cs8dfM1EzIyOYXUOoHGZkjj7GR1z09/Yj7+vFqdMQyogoVauk4iHK\n8RoNs5h4QsLEiINgOkBHbWFmwUOtZxRBqcru5iptiYyKL0tbkKSWb2PUdcmnslgG7JyF0oxeWaSY\nPSdZr6LWlxCe5xDqx8mXz7GITMiaBc5LcerFNuPOEZT9w5Szx2SLGSqbBbIiAaYxN3aDlsRhHLG8\nTc4fY8g6Rk+fnVr8FLFehVDRg1QlRFmL0grmCSTjlLUNhB0XNmUTvWcaSSpDtlRkZWsFgOsXr3K+\nvUssfcrlhSV2v9igVetQqBWYePcq5wd7KFQ6+vv62Hn5DEW3h1TojLd+5y6+vQDnp68ZvXSN6L0D\ntBP9NKVivNcu8vjBZzSEWWZtHk6OTlH0mAm8eYNMApMj77D11Zc0qlWy0hbVQBDP/B2GPGYSgTKn\nJ3Gs5gpPX+4ye+UGyXqcgTE3qXiVViuEWCLks08fYBob4upbl7DaxWy8Pub6rRvc/+y3TC0uEth5\nSvAkyXd/7w85ePUQ9/URtlaW6SQFzL1/g8PlfWTNAjbHEr4nz1k/3AfgxsVvEEgWuXL7OjKPi56N\nGIpZL2ZVlWJWjuWahz67k7OXq5TONonVvIjacYqnXWryFMlEkauzE2xvPEco9aKUJYjHilhdavzh\nDv3fuoZWrGB9Y5/puX6ODiIoxSrqNMkn/di/+S6DJjP6YSvGwSFM8Spbnz+lWIkhl2gRpCXMfWca\nRsawut0cvFyjbZChEKbxracpSZR4rHZO93zkNQ16tR7qmgLu2WF8vz2h/8PLjMutSDMxBi8OkcjX\nGb9m5/VP1yj5TvDOjhPPd1G7tXz16W+YvTyP1CxDarSRlx5gdPaw/tsN3v3dd9Gqdawfn3P5ygTt\negehXsvpxibmi1rycSHqsgixusbY29eJvAwTKYfo73NjVI5QQ0x6/wTjxChF3yHqfJup925j9Jp4\n9ehzLk5colk/x3L5OjpZhVy5S6cUppvbZar/Dp53ejhfj2K1ThOKHmFd0LD+6pBL7/8+h8tr1FoN\nbFote08PUBUbOL/1NtHKAcamGl27yvFGFYPDQ/nlGovvzLH6ZIVL792ilM7iuX2DjQePoFPlxaMd\nvvvf/xf4Hpzw4sVz/uhb/5qz2DHFZITgcYqWXYncX0B63cXyo02GxvoInoY52/EzNXud5FaQ9pSU\n2lmHal5OtxZCXrOh1uTJFhQolCUK4TwLH71N4tE+igENgv0cRUkKi8xLolRj0NsmF4qhkBqInTcR\n2zRUVAWKJycoFIPo2zVinRJSrYZBYxtfqoY2nUR6cxx3DfLpIsOGCU5DRwyah2kVk6SraUSRFgVJ\nHXNXSckmoJ0t0VKpqWxlGL44QukwgiRVRWlXUMxkqEj0KK1h7IJe7r349J/Gd96f/+Vf/PjOH/4A\nY66H1Nkzcikru6+2cF8ycnJaQJnyUaqUMY0rMclUoNQjd8oJnAuxy6rQbFEzuHDVhWwvrzNy5x3c\nZifxwwNq+RzGPgs9MitbwWV6DV6MHjvnJ/sIWnrk7RArq8f86H/6Az7/D/8XUlGXbkcFDjW6fJNq\nrxGBq4vLZMIot2O3DtNJ7xKX1nBqvIyqbHRdFc5OT5m8MEU1nqEsyKCISxCNeKkoJch8AYQ9dlo1\nNYHkGrqUBomwh4RZgt0kJpLMoElWyMq1vHr6FTall5F350gcbTN000ZsM8LEnctIlEoij3+NyXYJ\nUZ+J9V9v0DsmoFMpo9Qq6ZTFvNhb5eLQJAa5jKNoEf3AIq1qCKm8iaEhJtIsoHc5iL0+Qm0wkmuW\nEDT0iGQleqemaJmtZLZPqIplqJ1aNj59xju/c5Ho5jENuYLZJTtPXx8ithuRFdPomyaEsiZyg5tC\nIY1jegLThAZdsYr/oIym4sOm1lLvCKnUc4TqOZpuLanDMy5btThvX+XFr3/FhYs3GP3gOvc//Ry3\nVoLl0hDZQIXH9x9x94++T3b3kK5FztbzXSQdDcPOHgpVGYr+HqxD/QzNj6JQdPFFTsiVq3hsFl69\nfM3CdTdqpYxQGCKrBzgWpqg1qmRe7GEed6G1ilDKeimWgnREauL7p0y/+w6rT9YZs6kp5stshY+Z\nvzTN6wdvuP7ODXonJzH3W3nz8DMcV6ZQpFU4+3VUY0Um5q6h0zY5SuZRGFVEMmlqkTQTH76H3mbF\nIOwycGGIzWen3FlaRCrVsXrv1/TZzah7LQjbRaa8I4QqRca8Q+w8WWZ4wo66o0Ehk/Pl/S8AeO/D\n/wr1gIHayzWk6QjStpHA8hH1YQMGFCQSIZxqJ4JKllQ2g9KlZnB0lkQmgamt5vwgzOyli3gntIiE\nbfQdMf71bXIaAQ1pFhVVQrEWkliWbK2FsVtAZpAjdhrQC6REig084n7S2hhWrZ6DSJwsCQTYkJUS\n+AUpPBoF+WabTlzN2BUL8nINz4CCcFnM1skjlF2Ip+UIBzvIi2EyCRmCeoW+ASOl8wLZdBnbwggS\nCuhcKuZmR/BVs6iKJTptMSKpkSev7wHw7jtL9N+cY8BlQowe9YyDPreJs5evqeXa2Ny9HD36Cp3N\nTaKQY+TmRVpdBUdvtpB5tOh0BiKbu7RMWiwdPef5I0hHuXVnibLEiu/ET1skwNKUImrU6JotxBOH\nTFy7TuTYTyoWZXrmCqvPfktyO4B72oPB3CEdKqDPi9FoVOikWuTKMmqDDatQycuVdSyqPsxeF/uP\n7iHqcdA30EsmuI9KpaKrF2BzDTDpnmbzZBV5R0iuUkDY8CC2VvHKLSi1CrY297GaLFz8aI6/+5tf\nAnD9+nUWxxcRCUMEfWWKQh/x8AG5IzFRQZliJMfh+io9vU6c81dQuJqMWgaIFoqIHD2MDo8Q8hXx\n3LiCxVynkDehVAkQJpUY9Gri+wmCj54wsthP4MtdHH0ulMiRdPLUpB5qZ3kq1QTnD9fIvPYTsohY\nWLyJ0zlCdN9HuNMmdpDAU9NR9h8w+944YmGN8KsokWgQq97EUfqUHpEIYV5Eq13G5rSS3F1ncvE2\n4nSaz764R7RcQ44So1XA8v0DdJMjmC6ZaAWPCEYy9KtsfHb/M745Pku8k0CbbyFQWWmfnDI866Hb\n0HHvlz9l+uIorYaE5Y03SDRdRAUxtdUUlukh0oUoc67LLK9t43SYmb7BlpcXAAAgAElEQVRyjaOV\n53T0CoRqAWe+AFabGVPfDP6jPYwONW9+9px57yUC7TyNrp1kfJtMtIjOZUfQKWDzjCB1Snj5m9dc\nfuciCXMTZ18fZy/2GfjGDNHNFQZ1HiT6JrnTIt5bE7ScFqySAserZfKpGPFkmju/9x5pYQThoJHI\nUYXBa162fnWfC7/7LvnXCSbGxqg3BLhv2Hnyd48xjPXw9LPH/Is/+S6x3VWykQ4OmRRdukw4GsZ9\nyUFxaw/D9HUyBykCvm3Gr45RT8TIZysoxVBQCzBpLbSqGboyHXlDCpJl7B4F4rAEiUsNoQp+XRq3\nVI+sUyX6bJX24BjWmhWRqY5KlEWqFeB7sUvv8Cjbv/yS/ivXaamViJtFcpIOgtM0bYcUC1pK6jK2\nop6XoRP6FhVoDTKEbRVdYxEhUqRiM+aykNN0CkNHg14tp7/HRWjHR0mWp9ynQicWoWllMZuNFPNC\nUrUar9ee8m/+KSSW/7s//3c/vmby0hiTY9bPoR3qQVAX0G4XEdflzL03zuvgEUb7ENmAD0XTgHPB\ngxUdoqaSRAccFhGVeIaBt6+z99mXyEcHOEuE8d65hkaQJ3MQQG42shw4wWropaZq4FYpkeNB57Vw\nGtzDpm4jNsmwDk+Tr1QIn/jQS+XI02X8myf0LY6RbmdIFQ14hBIsozKOHr9BbNeg09sRV1scbaxj\ntikZvjhC9lmUq9+7wMNnL6gJSkxcmMHaUrC/d8b0d24hX1nG5B3l7MFTbJdvIA9mubf8FeMjetx6\nMXaPG2NZh1gUIyCosfYPn+D+wdskdw7JZMr0unSkk2Uy6TKXZ7w8f/icm398l8//16co+gdxTNqw\nCEu0tVJEcTX7zSqilIzj4yS3/tkS5bYAbaCOd2KAaCaOJtig0crSVFQwiCXEz8IM9JrIFrKUVS40\nIwOsP3iOTlyiky+hrHZQT7tIZEuIpXXiiTj2GTf+cACRTAyaBjqLlJqmF2mmQkjXw43hBUIPtrj0\njWtsnq7y9NEOo1fGSNDgZHODiek++uenSRmN5MJ+nt9/xqWZC8i6PYikOnqnhpEKxMQPIoyOuThZ\njROIHWEdGeDZx59z94ObVFoqPPZepDYTGpsTsViAvJolqmhR67SxmFX4TgNki1nk8iFOzzcYGV4C\niwpxO4p80IHLY6BBHbF+GNOwAnlbSLtRJ5o6Y+1NALHFQPI8QiMRwT0/ycP/87fY56d49Pg3qC1K\naFmo1DJcck1hGrWx/6sVjENS8lUFrWwSu97F4fY2Ao8Co8dGRywjm22Q2vcR8AXQW2QopRrMNy+z\n+8kGrrtLlH1ZHjz9umm49Y3vkw7kqRXPCKTqSJRtjFMWAi932XnzioXbC2z7tikHEhhlcpwDCzR8\nh3imZwj7zigUZCQOnlGttNg+PSR+mGXI6ySTLGNu2ynl81z94AZNfRNFqoF96iYyRZms2Iy9ricf\nzCGuVbF6ZlDoGnjNRi7efh+txUa1XmTeeQXr8BCJXB2bQotSLaHYdiG2VDF1mtjc12lpdaiaChrB\nDLF2Hu2wFY1+gZPDIlnfITpPh0HTJQqpOn1vXSfmy9HZDNLWSMjEUtjEWj5/8yUA781eJXR4QLph\nYufJMzQNETtPN9GMjHF+GkNpFYEKdrZOGbs8gv/hV+jqYly3r6EXd/CHo7jmR4gvbxGIRRB2mvQp\n3QQ3U8TP47i8VoYnhyha5MSiaRqlHIMfvMfrn/yMi3/8IQO2AZL7W4xdvEw6WcU2vcDu8ldMzl0i\n5zvHtTBLILyBfmiB8682CFe6XL09S7Ja5ejpE67+/nc4WvMT3Pah6xHSqosZHh3l4cef0O5pIiwp\n0IhbCOpCZm9cQSusIHU7qKRrqDQCWo06KYWSh7/8OsH91sgwWKTIFG04zCE19FMUqbFaRVSjdfJi\nMRqdi5HFRXoqCerVCs2ammGLmlJFS3D3EV6bFbWiTkZtRJgvUwwWiDvzxIMFyuUivXeniG3kEXgt\nODx6FJo6J4EcHck5A14LmVCekqWHwbkxXBYvYmTsH94noejw7uI88raUmriBMC0kF6jwZiVAp5Xn\n8vfvcvD0KWKLl1RFwOKtcbJFEWpRgVIL8vEk8nKTuk2JpSlm/eyYRqvD+OWrNBKryOJqwlsRZO0S\neaGMFy8fc216CUtLgeniEmcrRxjt04hdHpbvPWDM2UciXaCrVRFJ+FlSDHO4sUH/n76PLNai64Sz\nUBR3T5v4YZB0MYPFYELr0uG/f8DkopuMPEXqZJ/J67c42l5BYDchkmjYvXdO36SXWPyEG9duUDyq\nku1KcY7qefTxl0zdnuD1f9xDJChBJUapI8PeO0D018eMfHeK8Ooa1qG3aXRbJLN+Wh0VtVod78wI\nnqEhgjuHyJsCmkER8YIPo1KArG+OwGebhMox1AYhrZMkxVoZ+8wSmkKEL377gg//5z8jsFEhJz5C\ncNlO+7RJIpvH6BxFN26jcRxGqFJimuyjWu4S10sZW5jh6MkWeokJgdNEuVynVkxQOxDi7jezd57E\n2uviIBVGLZKTS8opGkqIChXOdk9wWcfQDusJ55polRaqzS6FeBKZpIeBeSvxlh9BUoIsVaaeEaHT\nWDE066TUdiRiCUWtktTBBuaJRYprR/iEHWoxBUavClW7hURTQV+TkXBXcaDHNmxgf+sVbpeZkrBO\n4ShFXCRCpm7TimgxTot48OVX/zQExH/5b//ix+4lG/uPz3G5+0l0Q0yNGVDKNdh1YoJSM5OeARIn\n28zNDnGwusfJsg9/MUCnrWCy10hLrsW2NMTek5eMv/M2558vI5ALGdRq2XixjvvGJQI7QTQSGbmS\nn7LfT0loQiCrE62modJlpm+WwEoEWa+A9P4ZAlmRfCWNZmSGKY+Fo/sH5E72KZWSWK4Ps7mcZejS\nBJmNYyKnZwgbMkodCWPTlzl8GSHdPiOSkuAZcKFK9XCwfoR7cBTlRA/n67uonCIS/gTKhpqkuYCi\nVuT+sxcYB7xc+eAPUJThTSmJ3GSkdX+H3rklAsdp5i5M4HXIWL63il3jpler4HU4x8Ubc0Q2TvAs\n9tLfVnKWD1GPKmhUZIQFJQYqIpqyKEaFksCJn3bXhnVJw8qjLYyVKpLvTBHe20ajX2L73jIjEimt\nPhP5kJKC6IT06mtuXLlCNVNnqs9FlC6imhphNoNPUsU2MISsfMquP4GtYQapgF53P7uHL5m6M8WL\nz7YRK3NsP31GWedAH6lyfcxONN+mLGhwtruLXKIjcdJFqKlTisLLx/e59uFFiuUkmZSMnG+dcDSC\n9+408cMkQ29PYlTL0acEeKYHWf75F8y8O0JiPcv+5gHZ8zSnazGGbs5TDKZw6O2sfPWI6eEBJsYu\nsPzlJ7S7Ao5PdzCpuujlBoohMXvL24STQRSYiG++ILWdpSJsYFJ5mLs8g01cRTY+SKMqJ1EIc+f7\n7/D4Z09Z/Nb3yCWDmMwycokSyVQDcbKG7ZqNRDIKJ2nO0gEcs5OobTpUQj0CYQ6J3EW5VmBwxEGl\nKyCbTKA1e8gdxrDM2zh88iWGoQEe/ObrhO7fuXOdqkRCQSbDONKL3jKI1emhFIiSbwsxq42UxKDI\n1WigoFGskZPqOX+1imVihH61DEXPIAencdQ1BWN3p+hK1Bwd7dNSy7EOzSGNF9FMjZMvC6gKI2y9\nPkLaiJDfjlPqqVGvKqmWEtitdgQ9JtKdINVog063g3NUR6uiR9Vss3X4jIEbN1CVS2haWo4DpyiN\ncurdJPXmKV7VOBlxFu/SRaxtIUZrnlw7RbcqwzvrRejtRSvOIyo2iYaqoA5QkbsJRA9Z3/06F+nu\nf/0h5v4F1KIy5sU+/Ecl3nrvHfxr+4xcs6AVy+kbHMNpcxJ8FWXuo7c4S6YIhwIkj5Ncnr/Kxso6\nU4vzWDUyVFIriWgFqa3B9NIiOqeNvZUHpAMJWvU0jpGr6GWgqNWQtup89eoVEq0Ms6eXQdsAb56+\npiuRYJeZKLcaHGzFuPTeFT75q7/m7T9+n5ODVwgLOVIdEReuzLG9uY4002H2mwuItArkVg3R1V2c\ntyeopVu4bGaMI2O4DW6+fPhTRkdvs/rrrzAvjHH4JEDvhQWKRz6ePn0EwPvf/+fsHG5w5kvgXLKR\naidxqdyobRrUcy5sdhfJ7TCJ01ecVYoEXp7S0ZkgW0FgldNpizg+jKFzWqifbuNb9aNSpansCJBM\nGZm6tEjk1SqKqREG+jWodVZCm6/Ry014xwf4v7l7ryZHEDS77sB77xJAJoBEJhLpbVWWt22mZ3rM\njl2SM9JyzSyDWkpBRSjElRQKzpMeGLsk9aQHUiEFtaS4bqa7p6e7q7q7qquqy1d6nwkkkEh4773R\nw/wBRSj0Mt+vOHHjfvdUyhnUHTsOm4yzl6+RiwcEilGuzCzhm/axuR7EpFdQJspAPERrVsasa5Ri\nOUeiWGL87dt0801GV5ZoHeUoh/do2nTk2nnGFB7ehAJo7QOMchHWu3cZHR0m/uk9ur0+56dFukMC\n7A4j9nEzn/z6cy4vv8dp7RyNs0S518R/aZbYiw20nnEUFh2aBS21YJg5111O6inGb09RKuSolwuU\nK+dotS5axyEmv3eF4/1dvHNXefx/f86Nn7zFyUkA79wy5q6H9egmI14L00OrBNfXufQH73J071Ps\nY34adQWVwjpiuYZaooXaraCakeB/awiJ2Uk2fopMMsr+bz7mnf/+H/HV//4rLKt+koc76Lweqk+f\nIzeo0I4qST0+xeIyElh/g6o5QG0RITNY2Xywg0sGgmEVrZqMvDRBR9wDoQWXSsvmiyRrG8/5sz/5\nMxKh5yi1ZjJZAfZBE6lXB8kmKr+ddqWBtKOCQRCVyoh0L4S038O0PIEIMangAbb+AN2kCmE1Sb2n\nwdQdUJ6EeuIMQcNBu/YajXEYm86ESgynsQimC3bCnz/GZtNTabaxmTwY9C2yIj2Vz3MYp03oTC2y\nYg250BaWS6u0TzZodUew6FtI0jkkTRE6twN1pU/LU6DXM9PMFBHWmmQ0BgzdJuFiGLXNT6nYQ9rq\n0y1K0fTrnJ8XEVmVzPhtNIIyvlj77HcjifqLf/0Xv1hduoNpRMzZ6Q7jY0NIMhpevFlHOWnk8IMX\n6F0zyMwC4hE9IkMCucCI/cIi46ohXu8+wj/n5ygVw6Vzkwpm6BFFrZejVyqoVKvIHBY0Nim5N3tc\nmv82o04fp5Uz8mshWiKYW5wmVEgwOj1P6TRJIpni7u3vkDhPkD6MILNq0PitaCothFdXaB6nOQsc\nYB01gt7GpMtPthCnPGgiz7YQXnaRT8YYkoLdu4xsWIQ2FeM4mqJXKzIsM9Fs6BmfsCEdcxM9TtMt\nNXm29oIJjx79uJ/olw+YvnqVvaNj9HeWSOzvsjC3Sq4aJtN04qjk6cyZGRh66JVaRLt59lUtDIoO\nwrFZhMky+dA2o8vXSJyGaJ5l8KxeopoNoVHNUFdFGQhV+Ixm4oIq/fUM2UgHramGyazDtnCRaLqE\nTFGhcFTG5tFyVlQT399neNWHICnn7NVjXN/w03uVRGZoUH0N5tEhOA6SH1VSraRQ2MfZf7rDhbFp\nWtk449M30DdaFGUVBs4RrDoR4efHXHfNEnY2mb1k4PjVMS6Lms8//ZJvLN/ENGbC5tbTaRiZve0n\nHUzhml3m2ecfILfp6Kv6dGJCVHYL269fEE+HmDSNUK5UuP7uMg8+/BCJ2Ipu2kk50mV6ycLHjx+j\n0MlRqjTcXL1G4MkasXSDSDzH+394B9/UPJvPNzCjwOgdYv7uVcKxOBqnhrVHESIHe6ysOCmG++zv\nBPnWt2/x5Sd/+1vBbSKLtJBhanKBo71ndPpOrB4dZpOMlZuXOdiKknkepFJJ0xVK2f9yA6vLydaL\nTXyrE7jnfCTCNQxzbvYeP8fvXyEXCfHsxW9f2Jev3kWjtqJL5UhEghj1UnRtA2MX/QhafcqNGH6j\nHa1/HrVVSTt9jsfoI9ppYhTl0RqtrAW2GTepUYl7SM1qhod11II1zrIHDGQtzIYuAr0K4WmUk61D\npP0+lW4bQVeGsaPC4NFRyRcIRmKYLC7kSGkpFYgSGeKVHpJqCpNfT3CrQutsh/3UMZnALpqFOUIv\nY8jDBaRlEwF1jjsrt3GPeTlPhQi9OMBsViIQWdHNOLGq5SSCYV6HI4hEfeqtGs1kjcULTj65/wCA\nG1M3ODtMUsyGaYjUCCtVQuk4VosIhcJBDyFvnt6nGY4z9+NrbG6+Qd/so5JbGXZ3eLkX4vqdBbKN\nKpFEFI9/hrEJJfW6gf1n9ziIHGHTjyLSqDF7/Hj0JjpiEQ7nOLvBY+aml/E6ZziIb3L2cg25zYRT\nJ0JmtGNSi3DOeVn/cJ3V37/DZ//+b7h66Q5SqxN1R4dEVqWSHDC+6KPWLHO6G6Gv0BI8OME9MYXd\nrKSUqHMUOyCw84ar17/F0y9e4nBNkDlYY+F7N9n/+hXL717gV3/11wAs3V7k9twFrFe85NM9RIoe\nNpONfCmKPCNB3s9Tk3UZGprCYlRy4Z136ade02mqUFsUnGaOGL9+lWI4TDxdYXR1kV65ytjbPrSJ\nIo3QPrZLd+hE1ylHhfRzEVpnFc6FTfK5DKaqm/3Dp8SqYmwmA4IFH5Z2j42Tdc63O8wtjHF2/Bq7\nwIOAPMngHlm1BaVtCKVIAbkmnUCcs1qY0nkZzw/8nD4pkE2dcS6s8M7ybY6CR9g9y/RPjwich7Ff\nuEa02ULc1TE87mdUOUq+0ePzzz/h6o0Zlr7ze5wfniNuyJFoUlRCCoTUUM15Ofx3T3Bcu0Jq54js\nyRrj3iXEkXPqhSJmo5fyYZCx966RenTIsG6UZDlAywxqlYDA2gnZUAupEdAr0djN7H/yGPd3FqmG\nt1EqrLRFA06enzKzasYxO0M+m0JX1HG2nsV4aY6dz9/gHvZSP3uN5dpF1v7Dl0xeeY/aTonZdy+w\n/9ef4P4nP6J0eEIjm2NocYLo/dc4fnAThcZNeeuIvnrAsNPM8PQKLz4NYLBl0Mq0mC5M0q51yCWy\naCYNPP7oc77zo/+a2L0XWK+MI96KITKISdaEOKQujjZfIO4IoCEkfFRnSK2nWuuyuxNmaXWE4OYe\nnaIYzcUZomEwCETEonvYZi8RTxfRFiQo1HpC2yFWxlf4cus11/7oOzS2Qgg7WnotJUUNDBoDfGMa\nts7kmCpVwrkiZoMHoaWHsWFAYzOSrQzolEsYO3LEbhNlRROVXMjBYQzTkJVF7zLdVA75qJXU2Tb2\nUS25qASn2k6ymWB81kujL6Mj6CLQZFEp/EQaDab145yFz3i2/4Q//10Y2/zLf/OXv/gv/ulPyR0L\nGXb3Od2NIGo0qdTUZCJlJqQy0OYQNHUU3zxFPTVNRVzk/Mkh4bMQRomGeLRAKVvAf2eBzfsbqLwi\nooEK01fGGDVNcfLpBmqxmnRXjNvsJFLJ4bSbSJwlkOvMlGppJryLPLr/NRPXlmnWzonsHPHeD75J\n+yyGWN1D1NITqGRZnPETe3rI4lvv06VEsyEi+PRL5m9cQ+930DaYyL1KolHlyZnH8ahg7bNNZn/w\nFundx+SKRaZuv0s+dopU2mbr+QaX5q/SbNR4+PQhk+JxjOoB0rFR5OlTKjULS0ND+JxeHm+sIxuV\nU9yN0BNI6DkN9NIDVDY5a2dFVrRtjBIP6VaRxukRav8sL7e+xjvnQeXUEIkFkJaluK8Zqb/IExHU\nKQZq6Dtd7CtelIMmaOw0YwG0RhPZ4DFdiROf0048W8Jhk5M57mC0qDmI7nH1T97jKBJh8+EWC2OX\nGb51AblKQfokyOXV26QHKs7/7gEujQOxRMnAICIfCyP2C3Gp5ajKQo7Ptnnr+99lM1djzKJj+00A\nbRl6E1Ye//Iz3v35z9j5Yg2RUMbi9WUe/OoDppavI0jnMC1NIWz3CT05oJLO0He2MZnmuTh5lYws\nRavQJZ0poBD1KGQaSEUZrtxcIpFoI5DK6RTrNHoSyo08F68so/FocA8P8ehXL2knTxmb9mNcGCZf\nrNKpN7DarcSebzIYFCl3RcQKeRbcY5gcZjbuvebW763y5NUhBpOJ1bvvcRgI0ZEWGJtaIBoukIod\ngMCE2dnBojaiFrbRibSM3XETOzrBpLUxPjvGWShJOZalmQ4yvbBKXSlD2xfy+cMvAZhancVQHFCx\naFleGmVn65xSYoO9agKD1s347BT9ZhthI8vo+CoKtZ7HL9fQmCxoWioaVi29xCHeqWuUtSoGuSRb\nDwLEqkEmHNNIBD1yZR3tsxNaZiu9vAh5q09LoWJErERua5EIJhG5nZj0PRSdAs1uh/JBEJt/hvrB\nIefxKM12HYWgyPGgwIJplpNEEZNJi7TSoGtoEk+k0CtNtA0JnvzyCc3jPIJ6m4yui1PTJRyp8vjN\nU7Q1EeJakkamh315lgsXryGXwt/96gMA5i7dZP6qH7V2gnb0iFazgkCow+20sf74MeYRHQur1zHK\nZXz22QuWpqbROG3EH27guH2D9Os3FBJJluYXaJxlebG1QSYZY2X+Cn2bggXvChsvjrGZVeRyCWKt\nBM3zcyROKe2MiJqiilWvRC2VYXGOUw5nGLkyx+GrNdQONy/uP2f5vSXCa2coTWoaxjbJRASDpIhz\nYp5GtcxG4ITFlUXC22GmZ+YpZE+oBvocHZ6jNdaZn7lCOpXCIrcxaOQxTlrpVDOIaxnmZy4QOnzK\ngy9/q335vWs/IlfL0I4VcU+OINZYqKSKqKb8NHbz1KppVAojEr0Mi8PLFx/+J+Q1Ky19g1Aoz3BT\nRiWZR1qWUxFJkVSO6UmV6JVuwmd7JBpqJoacVMsRNGY9xViCfLpEPF9AlW+i1KooqHQIkTD/3gqm\nZpKjr7ZwuidxThtZ++gN+gk/BbUI44gVuV6DRQO7O08gUELZrlHyW3AbjVhUPVKHVQbdMCvXv8fw\nQEGhW2FwFiV63sGiVqPoKrBqzZiH1Yz5PQRODhGMNKmn+3z16D5Xbt6mGD7CY9Uh0ptJ7Wap08Gh\n7VFbP2borREUsSrrh+vMfPsbnO1sEAzGsIxPUKmGUaun0egUlPNxXge20JmNXHz/LoG9MsrKAKtH\ng0yqQKwQ0DxNMHLjG5x9+ox2z4BxeAip0cHURTPdCOxufsKF2z/kyVcPmP7RZYIf3Edn1lEJNwjF\nz5HLRdz+znU21j6jnW/Q7lSZuj1D+OsjxNEcGsMkZ0enLH1vhvBfvUQwVCKWUiBSmhm7vMDh6TYL\nI3r04w7O9+I4NT1SJ3FEEpAO1Hx173P+wT/+A9qBY0pxNZnEOtabi0jSMQReL9mdHOYpOxppF4G7\nRaKVxe6dRCjJ0iz1UXt8nL56intlGrpJlHkJQqkCqbqPoHzG6NUpIqFNbnz3hzx7+RJJq49uaoJ6\ns4uiI0CoFuH1dmiUDZwd5TGJlESLcfyX3UTqWdxGF4VMmPJpGMX0DDqXlqZIQJU8FrWXRLGBd2iE\nly9eMzZlpy+FxmkBi2ac48IpHnGXqL5Baa2Nc26E7tY5NUEPldpGqZ9HluqSkWdwOSXc++oRf/67\nkET927/8y18olFoatXNkrhXcqmGa1QxNpRqpVk1bDaVciWGfkUK7g0XlYNjkRhhL4Lmmp9mVoPd7\nkbVERM9OGFXq2DmOc+lnP2T/rx5SN9uYu+4iubGLQqVD47JylC+TCp3gcvuoCyO4tNPspaLIcjVK\nO1Fm355G2lNzuBfGuXiH3e1HpOM1JubGOTk7RpwscxQLMirskzdIqCalVGp5AuuHpEO7rMyMUAg1\nEek7uMxOlO0sz/ZPmZoap9uxETh6jGV6iKOdJCOjbgQSCdHeES++esOIxcfdt9/haJDCP7JIp3VC\nvVdm72gNuUpGbjfNmMFL1yjD0lZjsWiIfP0Gq6hOpiOjEU0g7YswLy8zONjh1vvf4NFXn3Jl4Tr7\ngSzLv7fAq/VTCo0cIyUtrkUFQVmPcZmIaL+JLK3AtHqL6rMTHMsalLIWLYsNs8NJKhVmeNyDqC/h\n4pXrbD3eQC0w8a1b3+Lj9XvYnEZ2silmTEY2U0XyH61x4dpd5O4uzyJJbFoN3cQx+SEtSpGA1ycn\n2IZGkanEbD7dRVtVIBmzMWox085Wefj5A5bmL+C+M86Yyc3mWQhROEVN0mPIqebZy5cU9qN4Jibw\nzo5QTRc52IlhENQIvtlk7qffpdHvoXEZcfhGGWppKEqabK7tkolH6RQaTM8N4/a5+fRvtnF7rXx9\n/zF3f+8yWzsnLC3N8cX9V/SqMhSmGuGdM+KVBv4xDxPjFlRGBWtraxSPE/TMNrraDguTPiwDMy9/\n+TktcY3RER9bX79E0hkwvnCZrUe75PI1dMMCBI5Z4sdPON+P4HJMoVMqKCQyuCY85F4dINUJMJgN\niLpQFxV4+Nlvd6L+6Mc/Zz+0g981RjFZQ25tIXL50FUUKPVWWuUEusVFkuEaNquBo3QEZbaJwWfE\n4LSx8fABNpMTiVuKXF0j8XWMrkLI6LSb0GmRcZ+GciyATOdHnShRGmSpmOWIhHqQQkcHYrcTTTSH\nSmRAZOoh7GopafVUmgmaCi3JQguTXE1foKQfLTB60Yxc7qEZLeK85kUl6yKZmqJTatFMN/H5L3PY\niNPvdOiVu9RaDWqlOi6hFNuwn0S6jndihGqpjFZv5Mknj3mz8xqAn/6zH5NvVekG9xF4nSwtLRCq\nREg12lz45rtUz0vcv/eKdF3MpEONwafjwf/5CTd//kPS2/tML91FaG6ztZWlZ5Vy+d13cAxr+PD+\nBwi7YuIHMaZuziPSKqnXGlhyoL/oIPb6lEa7jXV5lL3/+JByLotpyEUiE0YkKONzzxLbSTBxeZS1\nD18iEIoYHdLidpkJRVooxG3OXh8xQMriFR9P//oTxlxunn15j+lvfhutQM3SnQnCrw7In0fIFyAp\nbKObNDJmtfHowTbLl5f56IMvKRYHbG+vAXBxdoa6TEw3XWXt1YkOlWMAACAASURBVD7JtWf0Ug2O\nDhMIE2XCqhirE6scPnlBKlnG99238NukNExyJjw+DMMjSKwtKgMRrWIJ4bATh8PCm3u/YSDSMP7e\nMsnqKbldKflgiJZAw9jbK6zeuobaYaImLZKrZvBfu8jhp19QVKiQOtyU1gIM2cRoLFpEvTTy4wqJ\n+gnNbIkuOhaWRump9Kgn5rEqFCS/eMJGqYrWacWnniOxt0kCITpdGcvFO/icKlL7STRaCYfFLcSZ\nJpmDPXTUMQgNtBxivvzwHpcnrmGZ0GPwzfHq+ReYnHPoLUaqpjp6p4FuXslpKMV7f3qFk+0UlfMc\n85c9NOvgvTDP2te/pmnUkKlUGZ6aoFfOIDKJERSaTL3lIdtSAC1qgQDqiWmEtSqJzWNGR6x0A3my\njTSnO9skJCXufus9PvnNE2YWFhHuhBienaOyEcDmG8Zp0KEadFkPHOFVOplavENVkyH5/AyVU0lP\nb0do1mO16znfPiRZ6WAwjqLziWklKigjXdw2OUfHHZQWCafPsogXXUy5phHnq+Sbcp49vM9/+/N/\nSip4RokW7USetlJBKdJhxq/gNJVHbtGhbyno1nukQuC5rKclhZO1BB5hH43aSUslxyYpkYtWaIzY\nkc/r6CeKEGuSO25imHOiy5cR6Y00u1nUqiapszJ9RY9210Z20KSTLDMQFhC26mimtOgVaooHL9H4\nPZwmU5j8TsQ2G6lqEmMiTj+Roi1ToxzSsRd+wfDMMI26glK7R48YxUiWickF2kottaNjhC4zKUEU\n98CAWFQh0e0zbx0lF4tSrdR5ubnGv/hdgKi/+Mv/9Rf/zT//A07v7yFwazGoHCjGVGRiMZSBOJIJ\nL+JWnFJWSlPQY8Rg5LzSpZbYYnT8NmcvnqKVD5GUV9C0ehzn0/zhP/sJ0c83qKtrZM+PEThMKJam\naBydUh9RknpywPWf3qUW2KGpMqNvdUjv76G7OoFSV6f6OEp9eARpq0yitsP18VuUhGUa/T7qUp6u\nVoRU2cdxfYnabo2ZqxegUASjHp9YSUomJKUScNeyzN9+9AHtopJJi5V4IY7dP4nFbifw2TO00hZK\n7witjhLKcR4/ec3Cwggj3lFskhKJehmprAcdF86ZCc7Wz7n2k/fJdqJQlRNXCkAQQ9fWob3yNt1m\nnb5Mis6g5eFnL9AO2ajXBly4dZn/8H99zD/8yTvc/+gFkmaTC3dW2AzvUlYLGYlUOB2zIgmKGbE3\nCOzEMS55qUkrFFty2vtFhLYBwj7ImhVUKgvBwxxGq41kIUiuGEdhNONVGjFozbx+fMj0JTkCr5RM\nYBdxVkpv2oZoK83cW9fYeP4lY4KL2AQqWo4q0fM478xdYDuRoq7J4TOOEJInefHB1/z45k3qJQGn\ngTCiVo+hSxexjbk5D6Qxlzu4vPMkM1WKogzuOR/CloBEI83yj7/L3oefIVPayb8+Q2nQcH7whmJc\njG/ByOBcis7lwLA0xs4nJ0y+ZeN4p4BdI8Xt86IatrK584a7V96lV4uwtxfHYJIxvTDG4U6EUqLA\n+LQHu3OcYZsTz5yBl49PiIZ2ENqsWC76ycRCTLpmSUVOuPiNRTqdNjKvgFnHLL2eBPRC+i05Gv8M\nw0YlG8drDM3MsPVXHzP045sotAqOnx5j8g0hbyr47LPfdqIWJ504hmdZS76kUmuRTqcZnXKjsQyj\nE9Wo1Ks8ffyIcjpPMrONvKvHdmue7vY54VIY+UDIlVvvkGy1WT8+pdJSIhE0MV9aRRkLUZdr8A77\nKCVO2YyfIZJqMWpFqARyiokIhWqN0n4QjR6SNQWZbp5kNoGk0aJTNFIvHmApyCkUD2k00/SNfuLp\nFp10gp7HiEkgJ5OS0O1nUZRSGMxjyJs9ZO0Osjkr+VAOmUiGpm0lKWuisOjRtXqclU7p1rqIPENM\nTmv51d/8tkjt916iVDkHmY12FxrlJnKhgMDmEfWjMPNXFsid7VGnwfLMDU5fndDStNDYrOyurxHY\n2cPrchPPJ6mmEpy+2cc0rGHeexOHS0zwOIK4rcOsFKHp9zmTVRHm6kxfmCP2Zg2/389BMoBIo0A+\n5kUaq5Mp5wiF0zhnVSROa9T6Ra68tcTW60NaKi2Z00PaGhlWrQrdnJ+Nx18ztbJEZPcQiabDwtwy\nLz/+a8qdCkvXr6E3a/Fd8rH32RsGKh2DfpmVCxcQ9Op4pnXopr18/re/BuBnf/xNjCPLOG16dg/j\naD1TzN+6gsZcQOmR41x9m2Y+wsj1i9hsCk7eHKFpDSESQXgzRN8opbCRxK20ED3bYs49QuUwTdsx\nyvKPbiIsZegEpaQC2wisSszDPga5KHTNCPUaTDhwX19GVqkQ3D1EKRhQjolwX3WR7UmQj5nYX89S\nTpzSKRmReq20uxXGxkdJb56Sia1T6/YRa8QMS0YoF44JncSRNDvU5DA8c5HIVoij13tIPHr6Zi0d\nkYrzZpz+eY9yv41ybpZGtMRXD79gZvE6E9+Y4tVffcQ3//SHbD9/wNKNJfZ+uYf+op3K43Psc/Ps\n/t0n5PtCJpZX0EvdKJqQSiWx+eYQDnq43VayWynKZy0EViUOnZbTV7sMTA1k5S5al4bY4wiZNkz9\neIVCOEN7VI2yWWHEMMOYdpz4dpDl2UtkNuPkR5VEAo/Rmyc4CscYmpjiNLrNyLuzZD8II7C0qIs0\njC/7SZ1EkIYFlJU5GqEIwo4Ey4qL0/MqEkWLuSkLcp+W33z8At/bLtIPT1H4FdhHLaS2QpwkjpiZ\nnuQ3H3zM9/70D2ken5FIV5n70XU6hQ6xSgiVzYPDPEb7JIh9XkeGDJQEiDMVqp0eg0Kd/qgTlUyM\nvNclvplk+ntv8fDvnqCVK0ChwuAcQalSkWi26A4kGCRl1EoDxgk3u58e4nx7CGWjgEJlQF6t0Vd1\naAtEKLs6tGIpyeIANSICgVMWXBOcxw+QB9P0RTYkfQEyvx2lsIDVdZ3GRoZ86JCeUoVMJEPX7ZPX\nWVHHEgTySRxDE+hqXfrkaauniKw/QTFipNXSo+mUebj/kv/hd0JA/K//7S9czhv4vjmLqNjk9fYW\ndrsXYUuM+eoskRfbVEsCLKYRCvsZ5KvjaJQDDH4n0c0Nlr5/mUxPydT4MOXjMEgkxBIhZld9JA5P\nUZYtiDU2Dj67z42f3WLjkxMuXx/ji19+zMr3v4tdqCHbrKOdnmVSYaZ+dIp43kpuZ4fxqzcYmC2c\nRvNMjk8hjCZQOwVoBmPsH59hNQlQC00cb71ApZcjHJaQK7Ypt9OMJ2WE9C0mtcPU5SIKqTyySQuj\nQ1a6pQKJWJNGFUS9HgZ7E2FZzRdPHjJhm0R4ZxVNI0UkX0ZmtyFRNWlWeig1as6qJ4QfRVkYctIR\niegK26gnJwmsn+MbtpDNndESGFFOddHI9GSFPQq1IHdWLrPVSGPNNxid9pJX5El8HWJM7sF7+Qbh\nX75h3AvHSh2TUjE9A5yfxZidHSEsziPZTSMZKOiO2RBVWsQS5wxbFHitYwTFOUwCA0KTkFcHG0xI\nWuSNEqonCcbm3qLUSSOJlikujLP/8Ji737zN3v5XyGaMtA4iSGwmSiIF8mSe9JNDfG/dIrmzxvNH\nG9z54x9wtH/I0qIflVXD+ZOvGB/zs/5mj2KjhEWuR2GXMupx8/jDF6zcvoBcYeXoiwcsfmMeUaPL\n6KVFXr55wvz773N6dMzoxUWcOjVim4LgF4+5/s4irz/aQ0oBkVKLwWDm1f115lfd7N17gMU7QyXX\n49YPLtPptWnmUvhmV3jw0UM886MILAK++PtdHDoZ3rFRUrEUgf03vHXzCi/vvUCqsxEKHtLsiJia\n8rP7wX3EYjml0BFiSZP6bpqGsINrbIHXXz/Ad+U6xUIKcV/E+PQEmw+DyJUNHj58AsBP/uhnHGUP\nMWeEqEQNZNUmqUCVgaSAfdRJRSLDIBzCIJbgcI8ycIjRSpr0xFU0BifpWoRELIqqPqDekTBqtxEO\n7mDRQXswhLTYJNntIBE1KUnAJzWgkeoo1XJkCnU8DgX1rJghzzQaVYtqR8m034PT7GAgyFLRWWg3\nW9SsNqrNNh6zEZdtFHoKBIIMOy920Q0VEVQERGljVtTZPTumli5TbGcRFToI5FrcY0pq/T66joLD\naIV6QwFdKRLknJ7v8/LJbztiP/vhD3FqPShlchKnx5ikIiQjfsbn3WSKNXa/fMCN7/+AYiDL8XmQ\ny9cWGYi1IOlhlUhYvrzM/c8fc3XlAvLhMWZnVkhtZdkNPCOXbjJmHCNWLmN19FGI9FiMbtYeviHV\nKDA2McWrrTCD8oCFcS9nz7boG7RUymlMSgPJagKHz4TGoqHc6GFVGzk932TI7aUfz6OTD9EIHjI8\ndpHDQIzLV2bRDNs5D2S4eH2Vw2ACiVlCLFfj9ae73P0v32ZMIabcU/N8fQ2zQstJoo+iLuLL+58A\ncOf691h/8hmHoTO+9527ONVWIof7pI7ytLJ9zH0ZwlSfxEmemriGuKegXisjLgvpiUsIuiYkgxwv\nd47wfe9bHJyH6NSrmN1OIg/DVGpKhq06Jt9bZHhsklBwHalVxc7BPsKKgHDigP55nuBhkqlvX0Dc\n7DI0Zib5PEjXKWbjb7/GOz/BsM+MY3meRrRITyAkmMshlZYZ0U8RTZ7QD6YZKKW0ZDYMnjEETjse\nr57E/iaDYp9MqYSgK8SlEJM+PePK8nVaUhGgQTRQolWm+ezeE374rQWOPj3m5s/f57N/9/dcvLtC\ncT+K+rqO+ssihU4LhV0Eq278Pi3C9QYtEcTEJ6hEVhrHG2SiXdrZLFqPkNFLSxw/20HQqJAudJEF\nBRzHw5iH7YzNjJM/2MUmtqP3Dyi/jtET6jhMnDL7jSmebQfo6VvUFHkMrSblSAuL0c3ErI9aoYjx\n8hzV4yLulTE0Ni2x5xsIyh0a5y30121kvlzDMjVDz2KknDpGEqpgksqoyZu8/s/PufnO+7z+z1+j\ncztwi6VkWkJakSRezwShXJIXD5/x85/8V+QOT8iLa0iFEsYtfhqHafL6Inq/DGldyv5mkRGtHKtR\nQ0ytxjqmoHd8RttkQhUvIDLpCCVbiD1SJKkgJ5sBFm4tkEsUKGZqONUGBn0h5/IivYEJ/YSX9Bcb\ntBfHEJ9X6fTkCO0ypq0eNvOvUI1Okg1naeRidO0KFuxOmtkYhZIQlVaCpqugqmnQ6OSx1MahdYhw\n2Eq5UMKxuoTgfJe+TEpoPYH9m1bYb2Gb1rO2XUa2MkavGmLe7qKazCBq95F4TTx++iV//j/9LkDU\nv/mLX9y6tko7mKcjqDPl1PBie4/Jt1bQJlvopF36rSxavYdSsYzRJyP04T1GXfMkwgnkEh2xbJh8\ntks0HkY95CMRytLK9Fi+McNmMYJaPsKku0ckXKVWOKHblSApdFFrWmzvHTE970Qt1BPMpxnzK1l7\nksZuVLAbzdBMt3G4FEh6SQwOKydhGbJRDU4TRI56RMunaPTjdApl6jIDHpOT7Pk2fcS0h8AqalAS\naRgb17DzxQG6WQOxV+c0rRYue8YJNAusrC6Q3Tvni5dPWBldYmHCQqaiYrhkopWr0BUZEZu0tIRF\nJJEMkyvXyApDKJVd+pEatUGUaihAzG1lZtxAIHGOeUiJsiSnl0vj8l7g5b+/DyNmelUtzpkRTl6f\nMGV3kQieU60J8d7wMZjVEHicQuSXsf3hQ1b9LmLCBrKKkwmPgmenW3TXiiimh6kfnpCqRimNKKjs\nHmAWjbFbLSJr1BEY56jsVjBPTyGLNVFr6shGPJSPUoy+rWP90XMmZ2/RTDRwjy9g1Os5Wk+jWXEg\nEbbIpJPIhrU8+fUTri6v0m0pGSRjFM8j+K9+ny9//WuGbFbmV1d4c3SKf9ZL5GiNed8Uu198SSAY\nQaCQEdlPIWvV0Fl1jAwZSZUSTDumOT15RFPaIf1wi9GLd0gnU3hmPZyenqDx6ail0nhXLlOJlRFo\nVOwcbHLz3Xd48rcfcd4s4RDpkAwpUAhktLQmDu+9YunWTcQ0sQw5OF87xe6a5c2XRzhWjehmPIza\n/ZyXTyk9j6O5NMfR6QmNQg25c5rJK/MkEnvk9lMYDEZK8TieqSVk3QZvPj3knZ9eIBNI8NXTpwDc\nun6Tcfs8xWYHhWRAVdxiatyFsNrn5fEB8RcRJqZEHL4+Q9GW0y03ib+OUx+yEd85xKZV0Qp2iOaz\n9GVllJ0QFM1EIxF84266kibiUpeSvMFQVYf+4ijCZhehrgFCE7FimsVFN+eRNrXQPsM6I4Fgj1ww\nj8RhoZLNYpgbp5hNoO2bsc7YmHJN0B3UyJ5FqOkHFJIaFlZsJE56tAolCvUurikXJr0C89gQI241\nyUGRQcnEiFtBuyZGbe5hMLs52fwKca7Pm4MNAG4vzdKUZilUUwisWkqnDaTSDq8evmJpwktPLETY\nbDF+9zL9eoM3X68ztzpP+mgdtXaS0/AOt6++j0jSoFVusfnpB4jaQmbuLGOyjxA8OEbd7XKyl6Va\nKSDyaNHrZaibShpVKbnzc1bevUHo7JDZOwsk38SZuDxDrV1kdPQy6y/2MMvrdBstQmenTF2/jVJu\nJJtOUu73yKa7xM8C3PzhZUIvX9BJNqlKFBw/fczM0ioSwQClUIO41CGXOKTcbRLbS3LzxjLx8yMU\nUgnJ9Ve82t0D4NrEMkvfvoRixkYu3+Xg1UviqRwSvYZrd6c5frKL1NUgGAoyaGiwyDrsbx7jvuwi\nH47SbPWJZ5qsvHeD5PYeokEbn2eEdrGA2juMZ0jJzsY92oE+nV6D860jJg16xG0TiXAOo8vI+cE+\nvSETio4MGhJUIhGakR5DEi/jt+ZJ7hwTPowil9sY9XkQiBqUjhKMq73kOjlcy1cYdNukxRLE6SYu\nvRi7dYhyLExeqqFxmmDh8iRe9ySb8SNGvWMkChUie+uYjGpKiWMkTStfvnjAxeUpnFdcBA52MLmc\nVAptGpIBhbU4HbecyYvXOdl+irMsohDI07drKFaiOORmwgevCJ6J0erBd3WVWrmFrNlg/80+Dv8I\n3Z6OarPP8u/fIH5yAoMWbs9FtnKnhD/cwjzro9fMYBSqSOdzaEo9TBITuq6KSrbKxZ++z1kwwNiK\nm2wgTKIXo/DVDoYZJe2onMnlK7xYf4br+/MEX66x8t3vM+ik6DQaDBl0yEa1FGMKLCYJJtsCoWCQ\n1W++RSO1h/DiColHrxEodNhmR+hmRTz66gv+8X/3x0QeFTDpBaROEjRcMmpdkNQk+GfmCAaSKGlQ\nLTXBo6UkrOP1uJFFB4hFcjKlBJqWDPVIhVgozcSNSWr7KZo6D5Ht5yjNbgYDNUZzDmFeRL8/QD/Q\nkDOXsLW7GBVm8u0TtE017VoTm1yNTjVModdk2GhF1tNRrFd5fPwCh3UF20BCTNnBoZ4gvRciXw8j\nSIJtSs1OJMbIQIVCJ6drGGbYJCUt0OLxzRJIpNA3FChzWXR9PXWVELPQTEGmo1QP82Lt9e9GEvWv\n/uJf/WLZ5afWbyARa1CI21Q7LVJPYyQaBxSPW7jn59l69Qz/Wz7axSrCETOBcJOBWU6jk0XeLDLi\nn2PGp6dYTCNT6tG0YS2yx3dW3+XF4T0kMRG5QptZ3yJ78TXe+e47pI6SyJxWevk0+5EM1Z0AQvcw\nKk0dr/ci57ET3Fot+mEJIqWG8l4Y27iMl48eY1UPoxhRYqtKCSQOWfz9GySe3iNRzLL0nZ/Q64gQ\nFcqEkkJ0lRqK2SmkojyJw30GbT3iwTnqGRt2t53Nwwj9bJUnb54xOiph4t13OdqI470o5zCQwW7V\nEIvlscvViOtdzk7zuO+MEXpUZmppEaGqj3rkEq2vfgM9A6ZFJ86gmbgkind6mMB6nOv/5CbRr18x\nNuxAgpJsOIrm2hjtng773BBHT19S7te5M25ne++Ei/MrFERqVK/KlCopAhgZyYkZ+9EMR+kogmCZ\n6z/+h3zyv/xveKenQKrB6lBicyqQGgecv3pNNJ9FzQCtsIvgooXX/8cHSMtmRHI5+okRCttR0t0w\n5wID0lgKSylLBgOzF2ZJhUI8e/iS1aXbjI8YUc+MIzKqyZ7FsTrVTLjnSIg6uIcNvPnsNblqjuEZ\nFyWRA6vTzahCw+ydawx0FsL7z9l5doKkVUFrNdCJDZBgQ3d3mMizM8Qk8IyOEAoluPHeN1j/Ypta\nIY9u2Y69akPpkrO3to//mpcZ+0U2gls00zXG/asMihlE427qB9uEz0N4J+YoqYUIOjLufnOcsyfH\njDsW2D09wGGfIFs9xenzMurx4PGOEovso5QqkQ4kNLJ5ZlYvYpu3sntvA6lSzfzVRTaeH2BSdrj/\n6BkA/+Bf/M8Y5CJm5qYQuJSMri5hcvroY8X39kXmbCZUai9a1LSGlDAQMOk1Yh7W4hgZQy4TE4pE\nGVtyIxC68fiWkM6KuPLtb2LQytANOWi0W+i8c2hdY4jECSQjI/i182jnfFh0EiobISQ6uPHWHczv\nXkajFqOXdujXijgXrVxZuMCQTY3ZIaclbLD+YJ22zcCMz8HM/HUGshoDg5yVxVsMpE2U5hGENQFK\nj5pmRYNUK6VWa+G95sbomkMmquEeGccyoefa9cu0NU7u/+a3rri5K7eQ6c1o2g5sTgMinYrY+j5G\ntQSRuEO2X6OdbRIOnqBGhsrmZmhEjFRnRWVUoWorON7Z5TSUwj83jshvpdYoYlQMs/f8DT2LELvb\ng39yEoffwO4XTxjoFAzNLdHtpli6uohcLKU9SHP+VZFr37nDVx/8PQKtjbYwy+LVy2w8O8U1OYpe\nrCC1e4Z52cKEy85A1WV8ZZhSsE76IIxtYRah1U7q+ITh6z5iwSC1nhDHuItYJoGgOCAW6TJ8dZbA\nyyhCiR3bjQmiZyE2Xv8WKq//4fvYFGpUdQVypYxKKMnAZ+fSpRvsb72gJDKhk2qQiwfIxi3QU2Mc\nttHrCamatEiSOdQKNZZRIcJBD0ktT0nqQNlSo7GbGQirCHJtVDcv0hc0ECfy6KYnUCv0OL0j1Pqn\nOJYn6aS6jHtH8UyYiLfrpL8+ozdjIZaIYfXP4r02g0sjZufkGEHHiEGnQDkkpi+3c3S2zvitm6jK\nJeTz89jNOmqyBPWqnVYpTk3cRj5qpnGYwTTswCopkhVkmbS5CEZi2Oa8mM0CPv70AdPTt9Hbuigl\nQkZ8EyRjx+j7dqan5imVyzQDVVZ+ssDe1y8QjM4w7vIQ2z2ilG7g+9YdHLoOojEjR08f4Ji/RfTT\nfbQ3tOg8HmovXzD3+7cQdvpY+iIKbUjvxbkw7cM0OsTum23Es0MMTEpK3RzyyUnUyg5PHj5g/LqT\n7L0EdVOabr2LdMlK6uMQ0z+YZO9REJN3QCKexWDVYxwMGLHOU6nts/7oFEkX+jInxrkxTh6/QmrT\nYJ/x0lXWebO5zcjIDKf39ln8R1ep9uNYBTLaUjFffnKfn/3kT4hHvqbTAGlLSrLc4eLKGPlSDY2y\nQzN2Rt09gWogpCdu0Tw7RzftIbz2EnFPiXzOTi0agpYQ+4QTdUNKXzWglevRrwoYclZRuXQkthOo\nFHp6jQ5CZ4dioEy9I8R1QcJh6hz3lbscJ7ZpRXJY3ArEhQLF8zjucQ3RTI5B1ozEpqIiyHDx0hLP\nnn6GdnIGp8FG7CSCdsmKeGCmH6mQ1dVo7YL5fSOdj1LE1AHMYhPiQQStTkNFPaCTOCdS62JSVBgx\nevjk68/+X0GUYDAY/P+IQP/fb8huH/zzP/sR0bqRTjaATu3DrFGQaEWoBeuMT1xAZCuRO0mQV2pQ\nlFPMzc2wsbmFx7dEodemu3VKX96n1u/hvnuL/lEQmU3N9uE+Y45JitFz2iYL7WAIiUSBRayi7YJu\nV4xO3Udun2L38R5qcxZtUUbLYEJnE1J5dkpDLMPi9zGQgDLVJi4QYhjpcbbfwChIYLl0lWo+Q+4o\nzoXbt1h/9SE65RROj4bd52tMvLdMOpJHkZYhtdQ5Txapa5TouxqEwjRCsQ6JSoui1+V//Jf/knem\nvfh+/iNqhwFMo3cpP/mU0W98i3wrhXi3iN3lpb9gJvHZJxTrEhQ2Pd5LbrInJwzbLrH18hOm5xaI\nNvOYziwohvKkqiL6ZhmVr1+hWr1CuXGKNd3hzDeDYOsJwqmLzJbErHeLjE2qGdfPcljapL+fRKD3\nkxXtISiNUG+lmZy5SvrgU5wGM5XaMM1qEoNniJKoS2v/jKykjFu4gmGkRFNcIyfxUDp9g8s9QeI0\njOD/Ye8+fyTJ8zu/v8NkRkZ677O8t91d1Xame6bH7XB3uUuzNDjpxJNIQZAgHUAtyRP0YI8gKB55\nTjqA1OEoHSHoAU8QueSSY3b8TM9MT3d1ta3q8r7Se+8zMvVghXvKeyTxiHn9BV8EIhAf/ALx/Qhu\ngsMWDo4KTDidHMe3UeeG8eettN0NTIkUpyK4hof5J7/+A/7H3/2faMTjWB1jtPQJ9FUby9fn+eK9\nP+fCT/8sT+4dUzk9YW7cTVTT4ZJb9AoaY9+Y4On6EbqzGK6btzh6+JCJeR/plMKwVWYg6IiePMTt\nuo4wo6P56JSxN15m8+23mFuYptHpk0okmZicIVlp4Al7eP7+V1BJIw5HGA2HeLzxBItbxTLwYnY4\nUcec2MoS2WqF7fuPcDoaTH73dTb/7cdMvfgSleQB0nCQVixKLptg/uornG5GibVKjNgUgtdnaD5I\nUMofYJyaIBlrQ6mEzqTgEQT+8b/5XwB4/PAIyVHlXDFBqomnWGdgt1P29/F2WuhVO7VanXKqjOTq\nUS+LCE0ID49SiZXJ6mu4jC2k1ABtWEUSDBRPGoSDIi1ZT0O00zfEaFZ7eCUPJZ2CU59FbduI9we4\nFZlc4YS+7KaezzHm9JFXZWzNHiVFpd80Eg6lafU02gkRk7dNK2mmYLKDAIIjjTFexawEUVx96ikb\nSUMSq9FGtR5DbYxi6p2Dw4G52CGhDRAnw4i5JEpHxt428e9bPQAAIABJREFUULDkeW3pFgD/+o//\nGbqKib3TXUTBhC8gkyjoUC1GHE4r+XaddqpEOGAjehYnPGZnZ7eJe9FNqK6RrDfJVOI4vXYCJheN\nfAFNZyZzfs7EKzdx6AwcfnmHwPJV9j/YwPOGH0Nb4eRwCynVQHN58KDSMsp4h9ycnTyhnjMyeeEC\np4UjbF0dw3MO9p+kCI47sSgeWqkCx+UosqJCt8bk7BUMvRrFbodkuULi0T5O3wjD88PkTzdxBcep\n9XS0k2XMugIdScHntyBLZj7/Yp0LP/3T/Pov/iwA/9VP/wNOdTVGKyKaqU1RNmNv5KlrIqaOl6JD\nRpB6mBp1NGMJs6TSzkJHFOhoTdoWG+aWjpq+iakmodMrVJUGg1INvytEql1DqwL2BoOKirvXpCJZ\ncDol8kUdpk4P2SWSFNLYWxq9no2OuY5F0NHtq1iVJoWSGbuSI1W3YXUPaA9kzP0iTs3JWWWAwVVE\nywRp21qIooyrX6RrcmMuVIg2bXjdOSoNEwZzlUpFQN9v43EZScb19IfKSFWZ0fEJ/uUf/iH/6Fd/\nBYPBiqCoNHUWtG4TfVfBptSxLzrZ3Kqj6mv0DSpCpo/Jnqet2Kjvy/TNbVxuDX3HjmYQqNUkdOY2\nuoaOvJrHW7VRcjUIZfV0Jl1En2/h63uQ9HoSziYjqoVMPYdX7ZErWxg0e0hKlbrZi03MIRetaCYb\n7W6KfgtEt4Da12jIQVqdKH7JhE6wUagW8bQlTlUjZqOKp9wh4wBbvY5jPkD0kxi1WQdyJ06n70ZX\nFZHqZRRJRt+pojntdB1Nfu/7f8SPPviMu//7BzivjUO0RDFex+b3oevWMOmb9G0uWrUjOgMvPovC\nxhfnBH9+GMtWklY4jJY3YXZmyJ0lGJkMsPHpLtp8gKmyTMKk4W0pJHRZDAQRlR6d0gCnz0v3pErb\n20EdM1F+vMXES68Sf/cBreHwT9oNjgtYnHEcjkWS+ST1Up9wGKo7BcI3Q5wfDBAMRvwmE+mzI8aW\nFznejTIyG2J/7xijlGHy1k3SGwk0s4ViO0nAOIVW36elaMiyG4vg4XB/Cynk5n/7139ApVsV/qaM\n8rc+RAmC8Ld7wK997Wtf+9rXvvZ3zmAw+BtDlPj/xSBf+9rXvva1r33ta3/XyP9/D/A38bhc/Prv\n/A5eY4d6z43doae6V2Iv/xyzZCRXbWLsitz89ms0WwWMooF7n35EVWtg901jCQYZ1+lJZ3Ns5GME\naxJRUqg6B6+8dJtsusCTp4957WdWOY9GqZw1yBXr6FoqHVuHF9+8TPu0ypO9HcLTQyT3jmi2RMw2\nA37ZgWEpgKEhYApL7P35fVSLzNkgxa3Lb6Jzuui2B3z01x9gFDr0dUY6BgPXJ51s7RaxTAuUjrtM\nW80cnGUJXp9H69c4OktxcXie47U1ql0LPb+IpavjX/3Pv8d//t/8GldH59jd22fk1Zuknm8g9nuY\nZCMlPcjbCWzfXWH/s03MNZXL16+x9/ge5olh/BEXd3/8LrPf+BYusnz0+RoXr6yy/uE+Y3qByWu3\nOc3fY2jsGmtPvsTpj9BeP2Hmu69SPozjXTRz70/ucOM/fYNUK03/NIcptIzWSPH40T088xOM2J3s\nPjvDkKyy9EuvMKjkMQQUjrdTFOjitoXY+PFDXnjtNo+/2uHmz69QPo1D0Mvze4+44AzRmgph7p1y\n94M9lq7P0Yn12cs+wiLOMPOyiVbHTYEKv/erv84f/eCPqAfzWJ2T7L39KYsvzCFLHs43DhmM+AkG\nHdRPDshkkhRxYfS2qcYgYtA4FtvcnFrgwcYTgk4RUbODzU0rmWby6ipbn35KM6TDnXXQC/lo1nfx\nez3oNTulQoN24piC289cSKHYLqG2HeiNNvYO9jHKFSJTt9mJP2XcMcygn6UczxGeeYFHWxsMz4SJ\nPl3n8vVlnhzFmRl10462OD/IMPadlyGb4sn9x6z8whWefH6Cvljm9vdeZf3BHg6rimkoROEgjs/t\n4NnaE+wjfv7pP/4BAH/yp/8Xha5IM53DtRREPi5QPi1jCTvJdwbYnXqsXkicSWRzzxlzuBg4nXS1\nJnLdiMVkRvYItJs5pIwdMdDi7HkS82wApayR2D3EENERsPkxK1ZyOhlBnyW+18End8Er0HxW4Fgp\nsOS+hd7ZpG3VoyVUHOYedY8O00mNrL2KUlGQBkZS9X10kgoDLyGnDsGQpdNysvZ4A7dHoZxTCHgb\n2D0jhNQQcbtI7NnnGGs9/IvL1DczDCIC0USMkeAkLpPGf/b3/yEAf//NX0FfK9Dz9dDyPsyRDo2B\nFV1CIyUmCGkyUdFI0NCnWG6jDkx0hkFOG2hbO/SqKbxtG8awjlS3h9S2Y3XWaJw1qA2M2IZ7lDoN\nguUgp408euooPjvVvohcGTAQqljEPoIo0svb8IQMlBNV6sMGtHgOW8cLhjyy4qQsdenp2rhkkWQF\ndBYVRyNGt6VS79uweApUOgPmIhdJ7G+iBRTMdY1uqU6i6wdNh2zR8Gl5ZNlHx9SgktZweQT++Ed/\nBsAf/u4fUpJKIFYZnIq0TCqiIhN09zk5qOJ2+lGs0M30iBvzEOtiC9updTTsth5On4VipkMuphFU\ne9T6BfJlhenZSVJHGVqyCe+Uk3Jjn26+h6VVR7MIdBoqqsePmCvQbSoIYpdso4JXPwAlAto5ja6H\nvlzFbrVSbCcxdmUkJUitVKRUaKJTW3hUE7WgTD8pYgg48AUMVPcbNNpJXG4bWaWFLBkwDjrkjtqY\nbDAQJMS2FbEPg36DjqOP0dDnBz/4V/zWP/w+1dM9/CvXcfuNlE8SJNJVAuNjPPzqDh7jEKEZsFkc\npE+aGFQ9er/IvU/2CTgDRKYlDvZKONUGqZwdg17CYemj9gfsDDIEjWYck6vsPVznamAek8dMVGsS\ndCuc7O6SKwu4tD5T1y5zcuceB1oVW6+Dy6LQN1rRLwwRGkhkZBlLL8+j52nUgoQyEWQhLNCsODE5\njZQrJ3RKJlp9C4PcU9I2J7XjHRyCGbMugGVuiJBZ4DxfI5o7INR2orvqw3CkoxeoYe/Df/dbv8MP\nfvM3CE6NUa7p6At99tZ3WHo5iFKz0bVrNFtlAgMDd5/dw6S4GJ2/yFd//RmB+SDNeAzTuJ9OXU9s\nd4egV2Bo9EUS1SyiDJ6xaTxmPblok6PYPjNL0yj2GraCk4ajQSlbo1gt4NPPoPQq9G1tyhU9p7EH\n3Lx8mS/fWmPl6suYdHqqSofkURayJfaLMa7NjmGcGiN2f4uCvkk5muWlb1xBkANo5Sw72TguY4+H\n63FWvvUaYl/CY2hy7+4JSrMMcpewZx6Py4kWUPjdf/Sb/0EZ5W99iOr2NKrJM6ZWr1NplGgUczw9\n3kENQTyWwdAVkBUTkqmHThbR2QZkNQi67DQooz/X4NIEif02pkIO00/dxPKWRn+8S1ZscJz8CrvH\nRb2j0aromZsL8cGT97G5hqjWixTOqpTPoujkPm1sDA1Nc544wK70MHgFqo+TxAwNxpxXaegNDE3N\nktjIoJOsNM9jyH4Bx5CTEatCOt2k3SlTaczQ10r0SkbMVGiOhUnnzhEzUZqxHPUuCGGF5sBIcFii\nkGpglooAmI/K9C9H0PVKfP5//JhXby3B3CiZgzOW7Brn7REevbXOK7/8LT75t+9QLOcQZ0xUdzfo\ntldRzSq7n73FxVvfYOLyy+SSB1y74iNdLbEX/YDgtdcx2Np0/88o4ddXWTtI06lHsTn6PH3vgLHv\nrdLL9tEEmcePt3nROYzH7UWoDfDiZu3BDi+89BqqET794Vd4dDXcyyvYgyFOt09ZDlrRvjfHw7c/\n5rVvvsbO/jNaJYELip4R2YGyOsaX/+uf8MJr32V81UHAY2Z9ex0546DtLuOw+min9SSL9Z/cIM4C\n+2sJHP0aZoedUqFKdOsBKz/1Os/uH7G//SHXx1fRz0yj29piSj9FcVymq9YYNQhsbj1jbuUG29v3\nGXUFKNePUVcjvPOnf8btn/lFnn7+Ft4b13l8/22uvPht1h5uYTCfEFQ9WF5foJcckOk1kGQ3p6dH\nFBIVXnzxRc7TCerF5yhajZpB4XyzgUuxcBR/Qr+UoploItjD3HtwjKr02N2uMTw1y+LyNHf+7C+Z\nu7rCpZcvs/HOl7z+Sz9P4WCPd//4h3znv/4ep5sxmjtZun0d0eg+c9++TurZ+r9/ZkS5jNOkp6R6\n0JVL4O6wf7yJcV/BFb6AR7KDVKRdPSf2dIeMX8JU8uO+7MYhKbTrQWoOmW7JRPfsFLnnJ5WrYiuY\nMLfAHJDomzyItQFVfQE5K/JkN0krvovrhQl2P6zTLMbR+hrVNw7x98ZQKlla9mGEXJVu3kA+0ENX\nslA1lzFJBpSODaHYoaY7J1m2YEsIbB19gmTs0zozMTM1w/l2Cr25QkY34PivdsnlcwQiYQwVC41A\nh1o8jXaWIlUrcdYw/vvrMXYpwpTjGq0rY5RjzzjaPuLK8CyGdp/9kyGUZA2dPsPorVuERCNV2znP\nfrRN5KYTi87P/sEu/ulhejor4fwmep2FXm8YZUThPLaPacFNe6uA+ZUV3I/SWK/ZyHfyhHBx2ugw\neLSFd3mUiatX6ckDzrcP0WpdPG49sbSGpasSL6WYubnMyckunt0oysVrZJ8+wDTsopeaxDZmBsVK\nt1jjqJog97jFyLfexGBt0YkZMfSqROQC/ZIFnVnF4bdSO0xQqPUZullFcvng/w1RWVOZKe8QXUWg\n7qmxd+cresYOzdYUFn2FvYM0rqAehzfA6PwFkuW7JPINrn/jCnt/9uccHnaQXWYuffO7tB5uUe/Z\nmR8bodBrYDCn6Mbq7B5WsQQi6ASBTElj+BurOG12vvrRx9g8Jnr9Gt2OglST6UcCOF8cxWKwsvHR\nMfqIDV2hi8WgI9uyI248ILy6hGvBRyOTJFNuIORUXONe9p9u0KnbmZ5dRawGqHvzjDSCHH75AUmj\nkfHb44yWR9hPbBCa9mIMBTh+9wv0fZlS9idfajTZzOTqt/B6u+yWBzicJi5PL1FMbrDy2pt01Brd\ndIVaTcLqFYk93EJX9bF6+yIRv8Jpos/QygDaC4xZTwnMXMJnFHiyucMNaQpxJszm/b9g3h/AcNPL\n4KBMRDBzkM/gNU+w8KoNoQbpgyLNoIFI08fEgsSjjQwOj5fmWY2qwY3dDrLBwsJsmFwxQ/M8xVf7\nVQauJvq7Ai1dF0ffhqgacc2oNLKHvHbrNp8/eM7cKxdoJqM8229gGNWzoizzaOcppkMdQa+CV5kg\nuf+TZayyaEdpWXA6k2Q1B4HhUc6OS1Qy61x/7QYuu0o650FRI7jcemw6ka6lRsivsFtzcJpo4Cyk\nmZ0LUOj4qHUyFM7yOJQa9rFlJEGPTRenGj1Cmx/GeW7n/tYXzN26hX0g4g+oFFJVMlIfrdnCZLbS\naJvYuXeK3xVg8+AZV5dX0HBiG00gWUfwJTX6kkBLgv1mkqDoBEeTXKxEqneOoy7R6baI9/vceukG\nNk3PaSpNayTAC2+M0TuSwNtj76sEQ+MB8lqL3n9gRvnb/3fev/jnv/3iG9+lb+viTEgUBibOUtvY\nMg5ky4Cr169QajvIZ7OcppLET5JYRJGBEqBymqVRyRLbPWX21RsszI1jVducHtWxS32ShTrjIT/h\nyBQHa+e0UqeUY0kwewk6LORKGiNzHryij161TEsqYDJLeGaW6NfadCw6avkczWKdXj9Pp9TC7TNz\nshMnMqHy4CjP0eMjMNaJZWoIpQReyzTZ6g56vQhFiaaxSH/7HM3mZ2nESHvg4/qVBaqZEqLcoJWt\nMjS3SD1Z54sn91gYHcGmuKg3oJxOMn5plbOPP8EtedBEHadnUWxWCXO7wZBvgsBKkMfPdmlVYPHa\nNI1yjJ4UodMzo6skwKDiMPvJ5gcoTi+7f/6IVrVCUzJSK2aZ1bl5fnLAkGkM3dIkZ4cJZM8AR82E\nZGzhtVrpOA3sH+RYXArhtjrZfPd9JK3O8rcvs/HVFpImMhUMkth9jBAJsvPDdX7657/DvQfPWLky\nT7vXpllIMvLCBT764XtMTXlxL7tJZOroGgW8Uw78MxNYaPHhX9xnZm6ertLik7c/4PU3XqXQyLO4\ntEwuekLVYUSSa5iHPchanYWXX+LOnWfMj0/S7IM96Gbzq4ekkl3mpl+glIvTGQgsONzkzvcxhi1s\nfZTGNeJk/qIXq9HNwVfPmVwdZf3ZOi8vTbEXPyWzV0Ip9JhccfP00zPUYoaC1MZqNXDyfBfVLKCV\n6/gXV5mweNjb2GN6fpJCq834wgzmgR7R68AodNGZIswtj7P9yRPmrlwk9nwXr2pjv3DO8uUVUqlz\n4p9sIg9NcJKL4pr0c7CVRC5FGbp2gV6+SnE/z/3HDwCYG7tJ8aBCqrzJ3sERHjWEx+OmrciU1p9T\nGyR59vyAqalpJhfm0bmMeEZtyCXwhAMkpCRP3j+gsvmQ80GXTH6PK5cvUDvPkdzJ0jK1yD7aIJXN\nsH2QIZNMsDAUZGZ6AUckjM05xujSPKrHSf20z5Pjh5w+jpF8ssZxMU2+eEjyyyjJ2AFOp57KTo5q\np4RrOoCj48Q9FKZTblNMxzBZfLjtASo6E0OTZkw9O2aPH9f0MGO+CLH4MTgr6HxuVIr41THUCQ9S\nQ+HTLz8F4JtXriFYVDb2viJbLnJ16XX2Pzsgn09gU7qUiwdUhQByvY9k7WLs+7DN2qg9L2EMW3A2\nBKLVIv7JMdJHXSyTkzx9vkEykaAvOHEoMlbrCK1qlHS1RPx+DKdWxzAxB1qD/GEc/7CVrR+t88FH\n79E7bRMJT1KXqlSpclwtUt58xvbmOsJBHe+3b1M/3GZkeY7kyQC7Wudg64BYKs307ASiRSMcNGJR\neig5K25jB6UtIZgN6HQaYbufekNAtlkZ9dnpnVVIriVZ2/3JS/LWzVvsJw6xVxx03V10egtO0Ui9\nkKKTtSFYKtCCbMeAsdlDM5pw+VQsBRnD9WFCwxeJPy2iL/RQx7qc3d2lU8rjGZ3DoY4RlaIgWbDr\nZIqdOJW2RFdfRsiXqBY65KMtJiMWRl+4iO2FJcI+J4X7DzktFphaXqKzlyMll+hpPoqFKF2bQjRW\nILa3j4AefVdCdDqpFw+wmASUTouklqNjGdA9EBikU/TNDXQFNwZB5PTknOphlROpRacsMDc5g+/S\nOO1ikw8/+Yhf/LnbmCemkJ1Wok/WSSXBNeogPOeFbgubO0w9rqGzt8lVO5iMVvIpcM9LFKpmhkIO\n+mYbNsFHqSUS8jjo08dtc1L1WMmfPaWcSqKOjaHWNfTjAUyaC0vATDOfZH+7yvR8iM5EGKGeJZ/I\nYXSPkny6xfRFP2a/lZ6ph6y3EE22WLngo9UrY1HAORLA4B3G4LTicS8ihfSMOIZwGmTSMQvFdomp\naRd2jxudKGCY9jKmt9BUdAwFVMx2C+fHeSqlI+r5Nmubz1i9dgPR7qWtkzBIffxGMI7CkH+O80qW\n3FkFOypnO88oJrtY/GZq9QT1ih3VApcuXsK86MYvjuGcdZLfLzE046bX1+H0OKnGo5yd/KTrsnCS\nxxKwc5YvEM3ucZ6v47B16fY0TKqF5LMThgYuwjaJusOLz+TkOHNO2BfGYmjTkUWybYFa9JxYt8ik\nz0gtp+fSjRGi8RrpSo8bF65jHg/T1PpcCq1gGpXoSy12d44obm3jdU1htjVYW99h0BSRQ0Y87i6f\nvX+P73//+//xrzj45//kD357YmiGfrOFGtahL4mkz9LofBKmETvlph7/hRFOHn6OlCrS7JYxD2y0\nOhU6gyqaVaal6zJhGuPh7jblzRMmL85TLKaIn8SopEvUqhL5chaHXmSv2Gd1YZHn+X3auSZL0wt0\ngk3aTjNP31+n2MkhZgdExqcJBQN0xBo5pU4tWqNWbdDspNBkIzZFZefxGTrqhG3D9KUBTa2Bw2ih\nqJWYmJ/EOzbD0JCTvViNhlxhxD3N6Iyf3FkC5AbJsyziQKahNyG16nz+8Cu+8/O/QDS6x+q3X0Zw\nSey+8wlLP/cmcl0hYS4RMLixu0VOPk9iWwhDIcfUrI9e28f5+l1GLt1ANvbwW3t09RaalSjxkwxD\ndjtb9zeY+eYKx/spJicV9CUZ82qQRDxFcC6MUaejVZDYv3OHnq6N1zLExsYOviEXVhvsb2Wxeoax\nqk70Iwpio8LZeZrF+Vna9LDYw3TrfXwjAQY2I6VSllA4SPKshF7WiJ0VGVsOk0spPFs7QG7WcA6P\nYDeKiKYud9+7z8iNKTZ+fI+xxRF+/NZ7vPLqm7QqHSr9CiMLYc6PSjTbGp1YkRQDxBNw+NycRjfx\ne80Uz9sYL44xNqzn8Z0PGJlcoHD0nNygiM48Q98i44u4GfJ6ee+Dd9CyeoyjVjSjTPosxcjCRVrJ\nEku3X6IrdHl85wk9c5Xrt19GcrkxJlLM/8wVvIEIu0c1glb48KNP8BhlzCET25tPCF2cIbb9jOPD\nQ0bDi7hGLOy88wkXv3mZjb/+ksmZK4iKwtRChN21zzEoJtyBIWauX6BXHrD94HPe+IVV7GE7n/3w\nc4YXI7T1Gl989JPal1/+pe9QLycYnbmApdvhbC+OdTxCUHOQb3RI5VIMambs9gGKT48+YyOZ2SG0\nuEAml8GHm0T8GM1SZ8TuIDgzjaGv4zi+w8DW4drFVdo46AWdzOh9DPw2TlL7DBwGLJIHdaBRanaw\nOkFsN9BsUK90UfQNmj0dVg2QOwxPzmKbXeJ84wkhzwSl4gnqsBVdVwBnjZquSzdTZmAOkO0mcQ2C\nNEMGzDUBTelzfpgkeXTEyI1bGFMiNa1B02FDp3qRNJkPP/jJxvJf/R9+i8ZYgIhZIHDu5C//3Y9Y\nmLDhXbyEzmrCe+sFphfGaAt1yttF1o/Xie9VGSguumc7uC+/ilFpUM3VsJt11MwDLl+dIG9yY3DW\naUtmEqkiDqOLgN3GyspFqpY2J/eLrLx+hdnANIfpc2YidgTBRWDGRmF/j25eJvpsh5dfWsYdDnDp\n8ipjk9MUHmephjtsvb3D3EKE3WMNm9RjyDPBvdOneFUHI8FxDHoLe4e7nLe7oGsxqOlpZbu0rXF6\nNdA5izQHA6pdB8qMkzsfvA/Ad75zhWyuyOn+Ce2n5whOE/pGG+PUCPqATO6sjOAMMDx3Eaepy+nu\nBq3NNI5ZHe1CgVQyjVlrIJIll8hh07kpm/Scx7coGQzMjFkI6JyYZ4ZYujSL68osi54gVmOEg8oB\nL716k9Ozc87XNhF0FcR4ggebewSadp4/3mDs5iIjk8O4mhW8I27qZQt+W4tmy4UhFMBl8TI+5MN9\n7QpmyYx/fInK+iGkdUxcHcI1P0n0+RneiIHhWzdxjyoEJiIUtvdJn57S0rLkniXQyXo+/OITLn3r\nZxDrFdqZODW7yKXJUapClfizHGtPntOP5qlba8wFVjk6iJJMtzDO+Tj89BnuvspOLI9cEukH+9QP\nz3i2t018v8j24RYBm4vnzx4x8dLLGLUaB0+O6ByXaMsiLUMdMdEma0iR/GKfXqqITJNYMotU7iKb\njVRaAqOSB0WDXKGF1ayhpQsUD/TsNXZpnZu5dNnKQO/g+NPPkC09poZn2M4VCJpFbKKH7Wgad6dD\nJ2Bl5/4uZrXB8U6KSqHK/oNNemYz87dnCXqdvPX2R7z5jdvYDH2efr6OzmTn8Vf3qBY7RGwRYien\nKI0edtVBpV1F0USyNQlzwEv1JI7W6ZMqJnBoTtaPtxgdClHv9hj2TWN3hei3iqQOzyg1epjsQfrG\nEvWTBn2TxIQnTEWA6sYexwmYueDhKH1MQPXCxDDZvQzhIRG11kAKe8Cgp93rIksaWrmCoQ0uqxfF\naUYtClgNNnRdDb0gIZhrWHR2ZHOf0gBKyXNC/gXOcwmm/G46RpXI8CKn2cfIRhc90cm9Dz7mN37z\n70KI+he//9s/9b2XkEQ/5W4FtyxiGOpSzvUxd1z0i0V8Q2FOY1HsoRBdUcYw68HjC6HvC5iDo3hm\n3ZTPDimSZ3JuGS2XYu8khntlhvx5ATw6nD0HFX2c8ds3eXr3fbo5E7MLY9Sp0JP1mE66GPwOer0+\n5aNznOEgVaWDzh1gxOdHcAvUTrtYBg7Map+TTIuOqUQgMEGtLKFpGVzCBMVak5IA4aEQQqxFT9E4\nX39I2+pn3DNMIVvA5wuieP1U8ue0Gz1MxiblfIG1Z08YDdmZW7rJV+/eY/XyPLHKOT27lUfvfczY\n6DShaRf5gyMmbrzE/c8+Zvbmi6x/eofx1RFMqpvMThxxxsP6x/fxe60MTV9h/9E24y9cIrg8jXBc\nYHolCDWFar5OIV9l7OoShf0khcMTXKMBKpUkktxGsqt0q1XiqRjjSxOkd1P4ry3y9PO3Uc0iitND\n3SCx93wNk92BOHDTUDtkdk9pDdIYBsPkojHMXieppyn8sy5MA4FkpkQ5n+DF28ucfnFAQ7UT/+Sc\npe+9wOH7DwjeXkHR2/ng7bd44aduMhjkGZ28ztbWOvq+i6uv32Lz/kNuri7S7pZJNjNYK11Uq5VS\nP4XdEyEXLdHXDTCIPYLmIHVdH7OpSeLzE8paicL5Mat/700MLitCv4C95EE37+P5u++wuvoqidg6\nRrPKyMQ0/qlhDh8/Qe3bYNbBFx89wOccw6oISO0m3gkr4aEVulaNYf8QzbMmrmCI8aUFktEoiXoT\n7+IYR0+fMLN0gc3th6ROMvQ1lerAiM0VQtctsP7hPVSnnZWFYT77q0fYJxexB5z0zqtIHY1P79wB\n4IWffQOtakCVGuQyGfrlCu5giEytxPilEN2CRDx+wCCkELAuU1drCA0BkzKK2C3T8/ipV3tkkiX0\n1j6jZhtyyE98I0UxLzLsd6M2yxhafSS3DaFTwGMLY7EaMDmNVIQKOsWCLJfYXD9mfHiKo5MTVLoo\n1iD6MRPFjI6hizM46NE6z6NbHqFwkCbonkFvE6i85bWFAAAgAElEQVQnBWyqC++IBZtTR/YkhePC\nEErbgGATKNVEWq0M/nEfboeVWiWNKkLxrEghW8cxb+G9//uvADDrJJ6+/SXVWBI5bGTsxUksEzfY\nXPtLKkmV/NEG9z/cp1Pt4O10aAoaS6FLeBxNMk43j+++hdewyE48wZjNR0dV+PxP32Hx2jBD40sM\nHu8h+1SGL45RKiRYf5DCp3cxHTHzzr/5E9LJc8y2AJpsQVA9yGY7vusrSEoOu9XP7rMo7XSU8nEe\ng8FOZrCPt+FjdH6eex+t45tUcY44cUzY0FugdiJwdn6PnYcpZq+P45sNIOjb6Mc9DGYMGFo9Evt5\netU6Q+PLeB1e+rUE7334k4Lqb/7Kr6F1dBideqYuvcTR8TZFi47qcZZBKU5gzEViL0sxdUa3lmbp\n26/jsgS599Ee1VYLfaPOxNICDqeHQlNjZCGAzz6NNzCPq5vjwfu7JHJpvAYfyWie5v1Tmh4bA7MB\njzLg0e4WYlmkLSvozwvkDQbGx60UTAPmvvsGT/7dXxKyODHYI7hVL8NzQew2I/7pIFJV4ji9zcjU\nOIWthxwfNRAKScK3r2GYtiE34PT5M1p+mUolTfQshUPr0XHrsep9zL68zNFBHJUyNdXDl59/xMqt\nW5RaSdIHHUhniB4eUD6O0zJ3GJmbZWZ0Dik4RDX1lLbYY2TKikcWGQmGKMdjuH0RHMNGWg2RgbGB\nV9+m3ugTCJqIF9JMjy+gK9WRCm1GliN0TTpE1UBLGCBZy/g6IbwL42S1CpvbR7z80uu4590EF4dw\nRDw8fvKAs1iU2Nkhok6P3TxEsvaQTldmfC5AslGhED9mfHWF4ZEgh41DloNjuD0qzWoXZ8DIQfaI\n7EEFUyCAzlSntJfAMeHCe2WOUa+Vk60C3VKaO3cf8spLt/EoZhLGCjbFhpgrUHKoNBOHhC6vYne4\nEN1WYrFDuqU2nVqD0eVJfFY/jWycfr7KeeqUsNmCy+cDh0hL36NnEhG6GkWtipjT47oyRjmRInh5\nhimvkd3Pn5HJphioIspAYHzIxaAbYH/3hLGJEPXkEVv7NUYWJ2laGxRP65xvHjM1EQGrmYNUBnfY\nh76vkW/rOT3/inQLOqcpXJEZjo6fYRQlyjUNvRREdOYo10pEJpaQSi0kY5tusYnF3CN794zn51t8\n//u/8R9/iPr9f/rPfvvv/cx/wXmtwPH6FqHRMKIcwICNajRFz1Uk+vyIUt+EzywyYxuiPmhQ2z1G\n1Ddxh8aJGLx89ugh3UqLiZdeJLH9hJbowuX0MrEwjpMePZOCri8ztThD4uyE5bEpbAEDRw+zuPQ+\nnkTXuDR/gZOjLdo6K5PDLkxGO4m9c6I7+0xYJnAEfZz2s7S7MrJBj73rJnjBjqLr4LKMs3n2mBdv\nX8KkOlhb26KKRu/kgKougMFWp5dpYJOgbzKQPTrBOTuHyyQioKfcFXmw9hWvv/oLOD0mKmf7DC8s\nc7RXIdxXCN8OoShent8/wXZlhqODKCaLRu40z8VLtzk9eI5scHKw9QSLrKPRq6I1FUS5giQ3KZ5n\nKaUbGMYF7v7VHTRVYfbyLELXQGX9kL7NyHHhmAmrEf/ERXQOD6m1XVa/u0TiUGNv7ZSVb98g8+kD\npi+PMDIzwcl7aSxCE0U1k0+2oZok+nid2Wtv0OrqSezv4Q64SDzcxjk7jBI20ZH1nJ0d8sab3+HH\na2uMG924FmeoqhLP33rEzCtXkD19mrU8d977jJeuvU547gJ9Rw2nzsqAAW5zj3SqzLONA0aWrqI1\nraizOvoxhXrtlMTjHLNLk/iMCq6JMda3HrM4ehnH9Dj7mQPGw37C1xap7JTY+vJLZmYWKbfq7G09\nZHRqFbNBx+FhjfDqCHc+/TGiyYfTrkPFgNPop9UTKK3t4r2wjL7dBSHA1id/TWRskXt3H2CxwOFe\nDCVdJGMoMTG8yMGHG4xfGcdsFtl9kuKln3sBeySEbGkQjScJDgUwu9ycH+Vx+cY4jj2iNWjiikxj\nNNU52I/x+OFDACZDF0kN9snnYyzffol2z03f1iH3fJudtTherxOr2CDVVNne+JRitUUmXyYbK9EW\nc8TPU7gNAia9DZd3iIeba1gNEZYn5vBft9ITOqimAIWTYx48PUK16AhfniZ3VuT+g08ZHEuY5Crx\ncoGF1ds0jSKjkXEkzUG0FMcs9xkbniO3/Yiz7TypQpNw0AoWE9v3H1DqlhlSXGSKOZrtPJLPS34v\nxe79p9RjafJtCTV9iqi4MPjC9LItOqk6fbeZaCFP5niX4vNNnmzvAfBr/+1/iZZrMv/d6xw8eUpb\ncyIUjimfVrhyaZhkKktPrXDz1duMf2OehiJSTOWR8iVa7Tw2rUPdOiDU6qPOLGBuVpm4tIDidHO8\n/hydrs2g6ebOn97lxmvLVG0NdAYXKS2B5PBgdtvpZBqMzTqpSjVKaeDxDtaOj2z0mLBJwbsSpi7Z\nSWpNdIUiomFAzxNkbsmLXw9do46DnXN23nmAKFbwLl9k9vVLNDN1OjsF6hWRaDGO+DRGQ/BiVVV6\n+Syio8U+Z2TqJtY+/gCAC9O3MFTy5GtduqcF9J5hFsbHCYxGKEt6qska7XoOTa8Ds4HxcBhRp+Pk\n/IBm04ii72PwjHN4UiKXOaAe19HoRSHZIF/K4pux0B7Usc0sIDcLHPcy6GU/SjxLtFBALLaw+hQu\nLV+lbJRpymWIa5hUM61Ei14phjLkwxgMU8hm0OtsVOsaj3ceMD49gtbW0W7FMI+M085tU6o0kTUT\nOq8D8hkmFudpVczMehfpJHJU6SBE+xyenFDOnTM1FaTZH0fUZbjzyRd8Y2ERSj2mVqyIPTfl6hn5\nhg1VNRFQPViNPY6SR8STWbRaFkmZRJAGJHYO6QoC7qUQkVEzmrlPM9MlLzToVZq4gk6qWo8p3wg2\nhxdzQKMhGQiF3BQ7AqGREIaeHu+ih0ZRJLq3gWKxU9g+wmswonVNlJMiIY+RiGucgc6IyWHDNaxR\nUUMIqTqOiUn8eh9yvkt7AEK2z9zSFfp1gbLcoWOr0s3JlOMnFGoQCjmxdiOUjF3GhvwIFi+Oqh21\nr1Apy3z54FOuvfIa/ogHnxyi2xvgQEKsl2gpXYZ9btR+k+21p7Q6DexhFanZ42B7hwvLk2yexPCP\njlJpDph45TImfY/KWRWLy4VDFsn36/gNAY6jWyROt/F4IrRTFTb2j6hUGnStAy4O3SCePGbM56fV\nb9Jvd1F1NRzjQwyNDtNW9XSaOhqFLmMrNj599zFKvULvvMd5M0NeK1NMnpBNq7jUHkMTAe49fk5H\nlimfDIhnd1DaRXwhLz6jm4ZeT3orQVOS8JnMtAZeYrVTjneP+O9/4+/ASdQ//YPf/+0X/sHPQbRB\nqpJl4fos7VaB8/2vUBSRvt4K0gCxrTI2Y8EVcrP59BENh4Fcvc2UO4BgMnDwLIp51MaUaZyT/TMU\nZ4tBsYElEuTZvT1eXJnAM2SnrgiUj46IR5tEJiIkjs8YmJz0Ww3MdjutfJq+YMQ5vIRTkbm7/4Bu\ntcVp+YzwqA+3aqej1bENbFjtTpLbT1lceplKp00+sUsuUUAztNH37Vx57QImSwihlsZlDJJv1zCZ\nh4g/3KNYKjBzZQSlb0Xo6mnkE3z5YI2puUt4fBZyuibdeJ7RV0Z5vHaPwnGFkC0IlgGDnTjhsJeD\ngycg6HDpVdphMxGfysHhCX2Lm+DUFL3NNO6AyqDRIXIjTGx3n+Hxi6juMMmDPLOXImw+38HYNtEY\nlLD0JHzXQtx/9zkT0y56iCRaCpcvjZJJxSg9PcK0GuHkOEXEO46kVqk0+6zcuEGs3Kal1RlbmadX\nqJDSGly9GKIRbzP6s7M8+eAujiYc7W5y8+ZN2qLIwpibrlpm/6ttQr4GS9cv8uVffMSIwYfVqOfH\n733Em9+5zcajTTJrh4zPjRJ9ekjT6qJ92iB0NUwutkEhtYfF7qaVPECeu87czCTH6+9j8l9i7c47\nGLtu4okEx18+YmbIQTB8kS+/+IQxm5OLr7/C5g/vYLs8xsWxCGYMPPjwC/yr4yTvP8TsNuGZ8JE9\nOWJ364RC+oCFxXEMQ0OcfHoXbSRALrHJ7K0VWu0S4YkIZoOEbcTB0Lib2KGIpd/A7rUQmYmw/e4T\nbnznEm//+F0K+QKNsz46amw9OWRq4iKCoY7eqSGU3HTPM/idHnafHTESiPDxpx8B8MILk8zPXKeZ\nbaEGwkguFVkaIGp2RnwyjhkPZtM4blOHbsVEv3dMTxOYnBwCux9bvgatDqVcl2IyzUAyYp+0IrkU\nHGUb1eYZmsPA/nGVvtJB79YzHRrDYq7j7Pto1gqYI2Fckh2HWSZWi6LtFVCWg/gkA1ORBWrdKHvb\nCTq0UBwOkOJoDeiYVVw5IyWhhabr4RIiFLJdDk6OmBlSSbZ6rA6FaXvcdOU8wZaMoV1k4yRPvnhC\nsZqkl9fTk/tsbe8AsDoyxZXbk3z5l5vMTa4wO6tSTggsLXhpO4J4nRIRa5iNd97n3gdfYs0aCH5j\nlcBkAFOthz50ifGFSRxGOzsfv0u1baSqH7D7F3cxtPPYXphGyybwriyw9tY7+Kxejp8+YvXCHJrc\noS7ZcYRslLM6AiYRlQEdRxC9p4xrboz9QY7T7V28piCFkyI2xxjNfI5O+in5wz7RXBKn1ULAOcnF\n116ha7KSXTtj85PHVGw5fC0/QrGA1Cgy9fq3OTr7DGOiysj8FQqxJs1onulJP2//9U+68773zdtY\nb1/E5Y6Qjh8ha21O733B4dEBPrsLfB5uv/ltBtKAEfcYmf2HVLJ5grN+fEYD6UGHdm6HADo8IxZq\n3Rau0WmatSKJVIFuPo3FLCHEBJrWLt1Eg3hxj063SCbZZng+TKtppViqY/NCIdYgPD6EZDLhCvpp\nKm2axTyJZJp4tMDZaZZyMUfYv0xHKZDfOKOSqnPw5Qbh5UUC1ycYGTezvXGElhM43trAJRgpG7s4\nxy1YgkP4XR7y3Qa5SpTEWQVF70I2Vbjz0V1u/vJ/wvLlEDvvPsMSVDHYA4wPTRLw63DavBykEvw/\n3L3XkqQHeqb3ZP5/eu99lsvytruq2qIBDNDADGaGwyVnaLQSQ3u2oVOJPJ8jhUiKoYtQaBmMJYN2\nHEzDtO/qLu+zMqvSe+/Nn6kD6CY0d/F+r3m+TrGNY6Qhl2tQzKVxmDXM/OBTDPoOmfyYRC1O+Fdn\n9ESRkMFH6JP7UFcQ2PIi6/WoDIrk+ipG9RSDsorUcYT4RRGzqkmzo0A3VjERmMO/6WVqYYquXmAQ\nSxA5OCa4YOUqV8e1bGZueRZZvQEDC8P2EGdggrYILpkaUdSBtkqnCcmzQwR3gFaui8u9gNMZZNJu\nQjXWUYpd0RiWcapsjLVWYjdhsuUKQ6nCm7dv+PjuB0hDJTRzGBwuXu5+Ta4hYTNrEMRlxkYlxuAM\nfv0E/jkTCp2eZDSDoNPSaTfZuLOIV+Ojb9Aj1QccnO6zPKWj0VUyUqpwWkXS6Sa1TA3XtB+H1cJY\nZ6BWSaIzWJmdWkMcwVivodsuMzIouE5cYA94UMiU6CUVPY0MhUVOfeeCwkCBotxDpuvRLzSRt9S0\nxx2cGhsjU4+p1WmG2RzG6SCJbISxfMyg1MbnmqMqqhlmCrRrQ1ROKwpFF7lWz3X2iJuLBP/b74OI\n+ru//dtf/uHmx8RkMVY8PmRGPQq9Hqmt4SR3jaot4vVP4dOLlKsNVAtTZCJJJvVWppbv0VNr6OTb\nCIMMdz78DEUnR6FbRNN3cF3MUU1EMai1OO0BEpk6gkLi8M0FY3mfSjqNut+mNK4ja4yZfOglYJ/B\nsjpNL5tH65ChU1uZ881Tvwpj891m0M4zCMfoD5sYg5NkStfofF7aFyns27Mkq1l6FQ3vfbBEJdbl\n4vwZZv0kZTHNvdkpzs7DLK57aVerDJ0TSOk8pV6NbC3Fu519/ugHW4jmSVrNElaLhZtkFo8+wOqd\nTwgnjil1i0SOL7i1vEle1sNRG9LzufCMTDw/3mH5wQdYNSNuXp2i9xk5PL1EoVaibzrpaGykaheM\n0yOGrS4WhwvPmotMs0XnrMDqLzbJ7d6QTHWYmZ9AJxrJXV6QvIzg/niBYgd8fgvJeBSbZASXSP7o\nhux1lo1723RabWyuCeoqOaGFAHvPviLw6Xsc/j//gXliE7E7xjo7Bc0uktGAoOhwfHSCoe+gfBGj\notIw94MVmo0GjXiZ73Ze8EeP/5xWPsVYGNMzqAnNuVCOA9htoO0ZUcvUmIMObNpJ5FaB7JtjUrEj\nDHdWSUUz3PvgfUqZJFuPt0lHYugDPvbfvubTH/2UF7vHaEYqFEtqEs/fYHbM8+6b1zz8+WdoR3LK\n0TTmtUUO/vUZExtzaGxurBoLGu8cg2KWjpjHqvBQqcTxTQQ4PI9xdRRhZeU+58f7ZIpVHEYZyRS4\nV11cnO+ytv0Zv/lv/8pPf/wIQaXC7A7Svc6x/MEckS++xTUTpDICjcKM0ubGoFGQiEfotGDn3fe/\n8z75+Z9yfXVEPVfDKoLP6URQSkxYnJzHGuy/2KdYq+FZnseqGjGx+TF+q42xQkNlL4xglTO1sohR\n30WYdCJF8sSPr6gXU5zXbmiXzBi0DhaDBkLWIIIWKhdlCldJjNMBSqU00esqolcgk02hPB0SrZbo\nXl3jWN1iUD5HGOvYuL+Gc3EVjdmEz+FD3ldT3o2iNvaw2QQuwmfULq8Yq7roUVLNNtGZRxxfh6k1\nCxh1syRi+xxdXaKQdEze2WbW4sQxZca3docv//WfAdi6+yGtcQ1Nq0Nl3CF/06IVjiBqIJlJUjTb\nCX/5mqEjyC2vBcVDB9WLLIeRONlklaG8hcvhYqjVMzPvpiFJBHQS1sklTJ4AlzsF1JoBqmoJu8+H\n4LJimHCSO2wixa5pnEbJNqtopA574XOaSoH1RRuv/2WPyO4btkN30C/5KBdHqG0V6vIuM74pcoIZ\nhVyDay6IlKmzFz4kO25iKHbo2yUEsxJrUktgy08qfAgBL9HXUYI9N3WtHIXTxuTtCaxBJ8WWwJf/\n8X28+eNffEohVaNw1SKo6mCxeElLY24tOWn1K7QyJaxBDTatiYHQZahyoXNOcvH1Ce7VVdydPkqT\nwHEiyqjUxjPtRFYuo2hpkAk9agoD3Z6EZXYBWWdI+ibPez97hKgQmFleZdLnQ22BwMYcA6eT+aCV\n5NEFZ4dXyNplHA4LkUifauaKXn1Mr9WkLyvjWVJBXo7Ks8TcbTMFVZviVYlBownJJvF4F4dzRLEG\naito20NGjQYmu46iSWS8n4R8k/4A5G45vY6WV0+/5j/94BMuM8eMtC5y4ROMNgW2+SDD9piKDLKt\nNF63HYUEo16B4OwazUIa+VhG4qKA2jCi1R1y++480egFymELr2UeWb8GvQ7J5ghNU4nC0sGsnsKk\ntNMSChidSjrZClpRgSXgpiiO6IWLjIdKzq4uULuCeKxeGpkE0edv8ZtcdNBTOU9g9pg5SZ6SKaeZ\nUZhQukQUvR5qd4h2R8nALKNQvuEmfEolfEZdSpPM1hmlKuinbIS8fi4SaWqHMbLkMKj7mJfsfPur\n7/jp3c+4ONzlqlikM6rhtkzjcnqZCDmwmawc7x6jdo3oiSaKN32qiTgafYtKqsjqg1soNHZaZi22\nTpOxzoh23Ae3HYUop1Udoe2rOYmnUIzrLM8HUaqMWLQyGvUiNcHM4pqRvtGA22Ck3VRh83qoJev4\nHIuM+2VePdmhJ5RxOIOYpu04ZDLU84t0+zJ6vQoDk5HHn31CMGgmfFrAM2vj5LxFt9zA3K2hn/Kx\nFLrL870D2v0e9UiZwNoCCjM0RS39/DXKXov9g0v+6q/+6v//Iup//+u//uWHf/wJ3b00zg0Lub0w\nzpkJ1FU5jCSmN2fJDWuYXU5ilwkcwUmuIhds3l/hIhJGftWkQIFGu8UglUKrcnNykqXZ6WO0a7BZ\nrcj7NQRRz2UqiSmgoNooccsTxOf3cdnpI8j7FOstJteWGfZVWDUCpzsvGXQNWCaMlIdN8pURCoY4\nLWZ2M8fcev8x8kyEplrEb3XzOnpOyDZBudFm3q/EaPBQN7fxOKfYP/gSg2KSisaAS2ajpM5jNzq5\neHXORSyGKFPRF/q8e/kWndLK3P01XGYP2cs2KruI0JcTP3nD3ISXm5so2xuP2L0+YaKnpNkfMucJ\nkS6doBI1yIp5BJubareBx26iW20hc6up5GtszAeZdHpRaADBRPP8AKfbTLY9RKEuo6obqdaV6Dad\nZC8TNNRdNCoPFqUatcvLrWkLn//3b9h4/6f0LXJGZRmuWReWBTMnb95h9Vr49ldfMmN2YrePsRlX\nefL3/8gPP/2YHhHC2QiyhgbH+6uc/Otv6NRkdAGnQ47q7hatl5c4VA50Zgn1WM1vv/2KW/fuYHCZ\n2V7ZolYbcfzijEHyhFKvjXXRw0gEaTxi9+0X9ApqFv/8Lh57AClZJeiyc7OzhzewyNuXz9AYZPhX\nV2iV2pw/fYle6+fkXRj0MmanN5B1WjjmA/zuX/6NpaU1xKCa2Nssk0teYuEidmuXUqzBxdvX6EZD\nVAMrocU5zHYXz3/9DrNBybzfw9W7Ezybt0kf7jK3/AjzpAXFWEbh+JT0wS4//ov/zOFpDN/CLLVG\ngnS0QlUxZnLDS0NUIIs2MFj0nJ+9YG56Eq3SgszY4+nX3xfL/+inP6WZGmJdcRByroBNTbHRRWHX\nYtCO6V7lGPTyjIYSM7e9oNQwUmmpNSsMixXMOhdlKUX9vItRpyOeP2fl3l1mpmbw2NT0SxIml52a\nEtrDKvq2nfP6MY1hn1a6gUJrpdtM4DQuYfMJNGp9XAtO+jYFIbeWoUVFNdKg0emjGQ/p08Mh8zJ2\nyEkenFJ2WSgPStRKHUYmO618F3NgTLfcxyCIVEUBuaDEO+HCbHJTKHSpVvNMB5yoVH3ODi7oSmVe\nf/sKgP/y8/fIl9y4P3uAijHVLkytLdDrG6lVikgXMXy3p5H1u4yHA2xCgEGtzeKnD1DRoN4oQ6vP\n23/7FWp1n0GjRmrUIde+YVTvMDPnQa3pUSo38D96xFhjZFDP4w3IaHU0rM5v02/kWP7wFsq0iLo9\npCGkschAvbiNslLm4HAf59IcUzYHpkkNyq6W1EESuU9CSGeIiDI2pwIorxr0dAWcvjXmH66jE2oU\niz2qCgmX0cvs+25UawuUe2nquxe8fLpD+F0e1zjPV6+/x2B89CefIN40oHuJcX0du8aCx2rmstLA\nZp9jSqOlWdOTKNTY+/oZS5OzpJphrKEgFxevSSTKmEI+Vj5+Hwp5SuMenUwV9UMH+rGIzAdr9xcw\n1UfkOm0mPghh0CmRVQycXZ/RShfI33RRKcrksn1Ku5eY7y6yMG8gshMj064xkrUwaG1oRQnvogmH\nzEqvL2ckCKR2XmGZnsYy4cM4bWJKsYjcomM0HjMRsFEZDYjv1+g3k8RSeS5OY1h7GhrjKoJmEuOk\nF0UvjqJp4+nrL1n3OujJBqiUHfDaCJ9dIyJHkjQ4x120wRBHX7+koVKiCdoxaDw08nlc92fRG0wY\nBjY8SyFOfn3OxN0QGo2D6vkNbXmVcixDaH6SQjqPWCthMniRCX0EvwNZvofMPkYfmOD1028pHUVJ\n9pv0BwW88yGakSus014GShP+dSuCMoAQMqIVlbQ7RQwqK6TiXGbrSMou2qEbmUFEJbbJp9sYR3pU\ngoB9woPYB0WlT1NWwa7WI9oMmO2L6OZEHOoZQqtmNM02v/r1U1Y++4RUNoNea2B5/TaniSiO5QnE\nuhKF2CYdTeGYnkenavH24BmiToXeMEF12KBTN+LWtxgp9TT6EuVKHGXDzEDeoNUX8Wg7NMpDMolL\njBY9QrmGZDQxEqvErxuYTTKcAScnz99QrKTotsqkI326zh7Tc16aWiv6bpNePIva4aFbB42mw0jX\nYsLkxzBpYm5qFpW8z5PvvqVZLxG0z9HIVHCotGBRcWt1jnTkAPVgQO6mzN1VD8lMlvYoziCTphPp\nM2wOOb6J8Je/F07U3/wfv/xg8w6xap5RsUKqqsQ6GPEyH2P74TRSV4lD5iF5dIygFYlHMpgMSjSB\naYpv94g2SozrKlRjPXWNkol5D9HwO6YWDGQLAg6DHteshcjLCNomXF2cczf0CMumD31XSbUVptox\noq43UZhFWrkxVouaZ/sH6HsjpHybUuoKRbVAqdpCUg5p9+rE8lkGhQatqoDOGiRViWAfmKjWujQ6\nPVwzQWStKsOiSDx2jcLcxWx30shFqVznUKnMzM54cVtcBNdsXL9Ns3f0lo8+vYfcoGX/iy8xBb14\np+Z58fQJD++tE4klWfr0I9LfHeL/YIar07cYvZNExCLR6BlGtNg9VnKnabYeLPDym1PkZjNcVggG\nZymVKwx6fWQugcz+ASNXgHq+x/yqk+NwBZ1Dh9JjI2hzQD/JqKJHpekyv7nC5b/8O4XTKsGtSWxN\nFXKrlnA8yXTQTvwkhu/hJldvEzxaXmPnZofuYZVI6gaDc5JSpsHCzCaCTYmYk+MxK7koZZBfD9na\nXEap0tKKt8nlbhBCBs6f7qINavn6q2e8/wc/J9e8RjWoc32yz8LjD/G6A7RlLbqtJirFmLOjazY/\n/RDTSMG4NSBxmcS9NM/+u+cYZm5TGOa4/3CRbANOv7pEhQzFtIPZD1ZYve2m0R1hNSvYfbVLNdPl\n8R//mFzimOZVgqnVOcKRM7Y+fET6WZ57P14lYDSQa8qZeTzBb/75KbliFrO2ijVwl2S2jHfNTfe0\nzL1f3OXm9Qmn4R2KxQKP3v8R1UKFUatJtJYkF09S2Lvis//6C6q7N7QFCRMO7KEQBzsnvPd4lTf7\nO9RaBWQ6By+fPAHgh3/4nxlWM/RzMixGBUJfjkiPfkuB0aqjoVcw0LSppEsElqbo39SJv9vFNjdL\noxmmaxCpxovU2j0K/RpdSY1zLoAOBdl2hY0klWUAACAASURBVNmQD0kq0WJMMh4n1YrQuuzg9Fgp\nxvO0jW1USicapwm1UYfM7iDoMiKMmzSqY+RGF5HEO6ShnYFBIqAw8SZ/yLTTyd5VGqHRQxIEtPkq\nNqsLhXFIPT6k0mtT6+pw2yeRNwUMjgEGr40RAqV4BrPGzVChYtZrRa8R+e1v/z/EwZ//L/R1KcL/\n+DusYx3OhQByvZxkr4Gh3OXBn/45SrWI2tAhWZHoiyPG1Dh9d8HkbICqAcSqAfmijfGwhWvzATrZ\nBPNLk2SHHc7iMeYdc5QYs7fzFYOLCxbvzGE2W0igRabuofcKRHdyLP9oC5PdRt9kZ+7eLYJzVg6z\nHXRDDQ6FiGxY45t/fsvUZJCCts6K00bdaUPbKNMyiygsNorVNtcvdsicxpm6e58CXRwtBVp1j+sn\neQ6iO2xolpjetCIrVvHMzlB2GHnx5ffF8l/88C+Qq/rk9CNUCgPRRJZev4fL5UavVyEzGjjfi9BJ\nnzOyehFtY+wmF4cvjln7cA23wc3+l0f0lC0swTWK2T441FQKTXSSSDGSJbKXZGjp0b7IUzm5pJPr\n0tYNkFpNOrUuZkeL/cNrRvkB64/mGItDNG0L4uIKSl2HtdVbSEM1E+/dY0Iao7l1i55KS+7VLmid\nnO2+YVAtkn9X4yqzR/msiMnZ5NXbU2ZFDSp1j/5wSEfZ59GDx1TNY/xOP3K/kusX5yxvr1KvSDx9\n8Tl/9j/9Gf7b97D6p0j/9jUbH2zhnNqm3Trn/DBLLlVjbm0KR9BF4aZKLRGnqKgidMcYzDZMfhvp\ns1MsUyomdX5K/RqH4QvUMjPT20HS52X0BiuVeh3HrJOdf/oCea6O6cES+pyOqlpgfsFOaCaIf8qC\nSamhWxsxNengyddvmdZZEfQB5JUuYqdGJZOkUJTALLG8NId9zo/O56HQyCO1uux99ZJ09IbF9Um8\nVjdan4WxZZaecsiU00puLHGZTiAb11HVB8h1eirXLdK5G16+2udHm3eRjUtURg3a6QjNQZluZYBv\nRkDbdxBJJpHXM9TDRSSpQznWZ+X9W/SKHQIhC3q/DnNPg6Quc7WfIpO8pC5ToiwVcWLjMhwmW6tg\n7Gnp9WQk0zd0myoQuqyv30fbU1EsNzD2NCxsLiOTFenFCvTLVRx+Gzq3k9N6mpDHTr8qkTw/pHmT\nQjftphvNYNKb6Zpa0O+TTw9Y2VpGPoDAphmn30Wto+AyEWPt1gJKqwylUUE2ekW6oKTQbIFURuWa\n4Phol7/8y9+DYvn/+X/93S8XF9aplMq0xSFDlUj9vIqiX0OlmyCbqNNtN4iV4jy4/wFKqUm/3sJi\ncXJxGCGw7GXl4Taloyj0JPLXVzTpoJF76I1qzK7PIZiNnOztUpF3UThg7oN5dF0F1UyLs3wBtanJ\n/NwW1ycnxDt5FMkajsAcc/emebu/y2ikRRyqefST96iV+xSydQJmB16Hk2K9iVpKUhyMuPVoi2jm\nEpfcQCJ6hVqcwboskkumUPVsVM7LKANKZu+uMao1KYgt8qU0zgU7sVSFvVevCHmW0Ahy1pY3ybze\nRacuszz7PtKEmko0j1TvUu4o6F4WUG9N4BAHhBZX6I/lzM8vsrezw/YnG7z9Mox9wcGqb56KusL1\nZQL7op/WSM+wXMdkkVM7iyCnRjh8zd2PPsNkFIh8/oSJGR9FaYzfPEWmViJ39pbZxQeIth5X9SGD\nTgNscvJXCZrROrK2CrtFhtQRMa25Cb+95NanK9imlhFrOaRRBpsziCDJsC14OPr6cx7e+wQx2OXq\n6IbgwgKnN6+xe+aQ1QQCCy7SRXjz4lt++Oghy/518OuJJq5pZvuolzz4DXaK4Rah1QDXz46xTE9y\n+fQM57ILh9vA6e4pSxvbFG/C6HVGVJjIFs9Ril2W/3ATVU3H6cFTTAYlTssEz789wGvT4ZtY5vTq\nOdX+kDsffMjx6+8wOObY332B2z3PRSSKZdXG1OQcB787o93pM+ubRu8z4bI7aUsNDJKGSOwGTc1E\nvlrg0Uc/5Sp6ijvgRieKSCoFixt3mHSHyNBkPAC7Q4vO4iEfjxL/7js++Mkd2o0q0bM0K5vb9Nt1\nnj75fp1nsqgImAw4V3xIQznh6xJvXr/GaxzQFsdMu6aZVAcYjzokzxs41yYpySuED8KIbfAGbzHj\n9lBpFZB1x6wur8O4TikcJXUSpzrSozM5UOQqlGp1/MvzODVq2oLE6v17zExMkrk4pnAWpZCsI1cW\nEWt6atkeu9cHrARnccj0ZFpxiqkChVIKe6/L25N9FrbWWfl4nYBqElfQyqDTxe9dYnJiGl/AinfT\nSTp5yexyiEgsQzGTQ1EV8E47UakaJJs9UA+xy1z822+/Rxz8xc/fRxx6aJkkvLo5ulIFi2DGVKnS\nUQyIvTjn4PUBhr6WufXbOPxmRMsY61iFWmWAeIvZ6SkmrCGksYWBrEPkX7/g8qjI9kd3IFlAcFpw\njMxonCb0Nj+tayVn4RxXz16j6ZVId0ysTy1T62eJtaoM1RrO9vbY3Tmgs1PAP6Fi8f48kWuJuQkH\n48yYQfaaoqjCJ3S5eRVGhYpUs828y4VjcRGtT8XwPMPRizD+rRCyvoKsuopXOUFcn6R/0aCjtDJ9\newKHqce//NP3xfL7H95B7PWoFds0Kx1sHQlhOsiol+Tsi0OKpRJCV8Du8DO3aUdjU9FrjqlXswT0\nk9TbLYr9KzRdExM+N0afh0axRSaSR1YeYXJrsTn8yOIS2VIelcnG7JYPtV7FzMoywWAQnWEWp28e\n3915kNrIqk2uI2FG5RsyiT7x/Sg6uwmDb0y/2CHfKaA2iaxtbKI2NFDbbUgjE52RHLtYo600UM/p\nGCs7yBUqumIbRjbEahlTUEbsJInBZkIndiienuIKhCgXejx/9QWffvIzcrUyN//8irJxyNrkLYqy\nOO2uEpnCjtVnQlHrk9o9QWp1cGiUKKbN3Lq1wcv/+IJ+oYH51iJmu5lSs4vHbWLY0KH3dPDp52m0\nqtSjFRrNay4vwswvbKOdk9OPSuTqQxr5GlcHB9zE8mTfhalU2ghTHirREpa1Wa6jMTrNBGqXmae/\n/h3W4AxdrQKN0EGPF6XfgFM2Iv76nJPYMQavG3FYZ2JhBrmjQ18YYdL3sTSUmOem0Uz7SF+nUccl\nCpYugroB2Sbjlp5nu8/5yWcPWNlcx+AJ4PDaMI0cuHQCQ6MO5ciEc0JGR9IQ2lhBIx/gdxrwTFs5\nuIpRiLSoNXI4jBpUIthmp5l1OXB4fSg8DpLhCFPbmzQTBZraMitL72FdnsQhDUlWalQyfXTBEQtT\nU6g9bj5/vYuuPSbRG2FUdqilUsgDJmbGU5hcOnZjcR5OLqOb8PH682ckSiIrm146rTqmloboMInH\nqcfpUlPM9dCZg8j1emL7lxRyWaYX7hJ/+w6rzcxIM2JjfQHP5CJyv5rXXz/nr/7X3wMn6m//5q9/\n+d5HHzHMS8i1EkqZEuWyAZs1QEUDRo2AIWDENzYj6RQMByLx03OSxTpGhYY7m7dRK1TQ6jDu1Kno\nR6gNY4RUmaZSpNKsoBw5EPsSjjUXfs86hd0IN8kB8VEBnaDHG/Tim/Gxd3LOsjlIuVJn+sEGmlGH\nXKqM1KmiNI/pu9QYZCNEZKz41xBtCnZ39tj8eItuU8AwHJFvXtEtiYQWZ7D59cQyWYaXOTomHSOZ\njPWNINVaHY/HR7cuMOqNMDvNpK6yvHvzmvsP7zF/O0SmkgCnj36rz6gfxxtwsP+6xN070wgBJbXT\nGisfBvn2dy8ZdQRMkoPeoI7D4uSmk0VrtaFrtQhHjwlMenFMLXBw/jVTqiDFeguzzkZwfRKj2oRT\n7ePkIEq+HuH2yl3evrvCKzPy5vAbFj9cx6CZ4PKLz3F+9Cmxb94wvRlk2JbopvLITHJGjSI9l4BB\naaV7XcDqnETZUyE6Ja6zWTRmA+jcxKpnKLJNECbZOd5ncmEFw4SRnS9f8ckPPuPy7BCnXc/Ia6JW\nzPPm+Use/eJTkpdRYvtHbDz6AypHuzT2zqnLdTRu9ukbrSj8duLf7DP/3gba7pjBCCxGI/Q1xCLv\nmL57i/Dut9xa2yB7WUfeU9EtZbEKSmRaK7GTE2atNmKVMt1iCploZ259myd///c4Ql6yBwesPfwA\ny4wHOl3yZ1fkK3m6hToffrLFqJmn5bDRqZRJnL+lXunygz/5jL0336G2ODh8ecrGHz/g4h+fYFuY\n5uDsjORhinQ7w7RbT9Dt5TTdoBE/QmjKCf38D3jx+dcYtQrsfh/YFIwO83zz7iUAP/z4MQV5BbtW\nS72hQVaqUdGWmN94HxSt76/HVg+dEhSheSxtOUppSDFdxu5XYXZM05SNEUxjZt3zDIYj9CYzomLM\neTWFzTHAMumgVxxgUDswKMz0hB5zIStXJzXktQpUqnT0bfRaN+3WmN64RWnUotXKErTOMlQUKF50\n0bRHBIMWzpMZrHUzfaGPyzRJoV7B4beB1OG0XqMvlklf5vGtesifpBkOFEjtNtqhCNUSLVmPWqtF\nr1RifmmGZCXJt189AyDw3l3O3z3h/upd4tdxrFYnqWaWdq+B2W6jHVSjd6tJDaBx0+E4nKWQKFFu\nREhepjHNh9jb+y3XX1+gnDWR2Mmw+j+sUx0Oyfz6W/SijpZiSL2dxCh1yV51sdpazBg92Px2Nn78\nAP+si91nUdL5HI3UDcM3MTyeSSyyAaHPNilEi7z96oShUEOltVDvZJD15bgMfkSrHJlMYChTINp7\ntFRgKMpw281UOhqmlswU3hyTlgooNX40OoFOeYDOZsVsNJIrRJG6Ar/74nun8uM//DnteIVqrUmr\nFMdg13N+FUbRGIBSy+rjVTrpa8rDIonra4YtBQ6HlobcRKV8wbg3xKE1oKhXUMgHSF0Vg0YYqQW3\n/2iNTi2LRvSTa+TY+NED5pwrvDz4loujJpEXzynV80iDLvHqOc1YEoPPR7usxB5yM7WyjtTX4Rg3\nCawHqO20weXEMYZqd0Dl6Jy9qwLpiwxyrYBaI2Pr4w9xT1joy6p4tQaC25tEzqPYtqZoN+ScJFPo\n1EMyx6fUowk2H91l5+khFuuAb1+84uOtx9TrLaaWp9HOGqm1slTeREkXavgdAxxoOY5mmLyziGSF\naqtP5bpO9LKEY92LbFgh/h8vOT1s0mgVKceyaFoSprVJlGIdVXWAd9uDMOFibXOLWluJ2WTm+cun\nrMwEKdXTCJou8roMnXOChbUtLiNHzPkmEHUaxpEEY4OG1kWJ5YfToNXj6IyYXlkkUTzlxX8Pc31x\njV4rYpvcwuq10r4o0miUiJ8PCWodlFQCJ4l97FonT/7vL5iddeCbNhJYXqZ6EiXaqCMby9nZe8Pa\nrR9jVooU4nGUmmnkKgOH8TBrJhf7b59ht8+yf/aGdnOM17fIQKdDJRuTS8RZ3VzBEzQyVCk4+SrC\nsNdjaJQx6EnYu30KogYXAol4lTEl7DN2rJKOlxevkSlEAvcDZC7bBPQW6lQYdUvIFF00Sjlj6xTF\nZgWboKNrNlJrxujHixjnnaRKeUq5Es6AmXq7i0v00RbHNK/iqNUe1E4Lp3tR3JNmeiiJvX2D0qxH\nbwkgG+VR+hfJxqKYTD5K2QJ2hYdnz77iL38fYJt/83d/90u3xoFJp6Yp6JBEFSt2GxIu4snX1CIl\nxo0MnrVFwtFzTpIZvGY9qlaLaq1NqVmglkkzd3sZq9eNyztB/ShDe6hE7xlQy1Sp9lMYVQOCTi+d\nXJeqqo2QqiDli6zMbnOa2UOlNFKNRLHobVzLMtwNbsC4Sfykjl4j0Eu1mbq9xagPDocKjdtDjwHN\n6zozy/No9UPOIll0QxuiFMc8O8np82NKmRxDQc1oWMNntVLPlplaWyGbzSBJHYxuO+fPnlHp1jja\nPeb9qQXaPj395IitxTVErYQz4KF0WSb44RrHz88wzQbJFA7o1yroW1osahO9cRiNJMM4rUY6HjKx\nHWL/6TO2H/6Ib371OWsfv4fcbGWwFyVRLCLWs1QTRZKFMaGlOZyzdsZSHVmuT1fbwWHyY3lwi9q/\nH9AS81SVSspHER792ftc/O4ZC6F5aukm+VGfWf0Eo3iXZruKMuRGiEaRfG5KV8fY/XbGbR3XV+ds\n3Jnn6W/DPPg0SC5Vo1MKE1qc5Wg/TeToLYsPH6ASZPSEHs2RyJuvvuZPNu+Q7vVoSxVcPgvmhXmC\nmyGSqRTrP/mUo2/e8fDjh7iXjSjUY45P3lIctIge5lDPGPEvL2GulElXx9ykS6xsLrHz4gUypQ/7\ndoBKskGiUmPm/jSlQoP1R5+QPjwlX7nGensbfUODUjHCG1oi/fURGVkHv99NY++S2fU7nJy9ZiR3\nYTdqOXwd4Sef/gy5xsGL3/4TK++voZQENh5vUU/2qbSGKP0OZAUFrUqMxa1tMpEKpxdRAr4JLs9v\nWL33kLdfveDjn6wQ79QpPz0l3+qimnfx9DffxzX3t7ewGiZQC1DojVAUK2jQ4Vs3oBc9fPPbd5gV\nfbTmaVRjGCkEWoMiGr0RRQ/kPjlunQWHSo3M2KelHCAzqFHr5fiGHkZuO0aVmaasgUvupNjPYHEb\nkPATO3lOr9GD0Yj20IJC18IlF/AEg5TKBbQyLfpFA+O6mq7Yo6gsYgndxqk1MTExj1ZlQq6Q05AK\nDGJd0ldR8skrTDIRm8OCVT1NohqlVa4iH3XQK+1MLjoJX8aRYWJ1JUC5PyCxe8Pe0QEAP/voAd4H\n9xk0aojiCK2sQUMmo7pzgX9tmWq0RTOf5L37DzDpdLSbHVYnp2gKXYxz85hSoHSIBLcWSD5/hlMr\ncnN1iFWmZ+0nIXS2JeqFErppGw71HCq7FmHU4GjUIlCs8ff/8Duudk4xTWmwzQUxG/3YHwZpdBtY\nHHKud8MY23q8Bgnv2hQNqUFoYYW+3kOtVkJW6qHRyFDafOjUFgq7l4g9OZVCgagmQfO0ycqdORLJ\nNNpcgaY5iFboI8vnaQkGMhd5xhaBZ18/BeA/vbeFfHEKVaWCe26WYrfM+toE9ViPtrlF8qLA6ocf\n41px0u5aaGRztEtJhuUKSu8U2nQR0WVGmJwDYwhZ7waXf4JIqs3NXhZB6SF0S4tCEMnErmHYQu8z\nUC9WUBlEjD0/SXUGGgJCW4VOr6ASv6ZVznN2k2XENTfhErl0g3osSb95SWE0ondToi0ZmLgTwiBr\nI5XLGHxmkuFrhj0FhUwcKZkmdxXGHVwkf3PNw/srBO5ts+qYxXhvjVYJDpOHCDYlqkGQZ6+/4g/+\n58e0BRVBv49OaUQ8eklNEPArzQx8dvKxNu9/8j66Vhe71Y7PqURlnmftB7fxdiQKZxGWH3+Kd0VH\nenefvr4FVhGja4lOoc3Rfpaj8z0URSN759eozT2qlRITfh0tox2lqGdjJoA2tIzLZmNUTzJOVMhq\ny7SuCzgck4gO8IVW+N03v0Yaj6h3FXQHI7LfnOPZ8NLIpBhpulRKSapnaUw2I0KnSr7dpxQ+4fyy\nzJIzQK9yg3vZhr7q5PXeAQGLgf6ohyzVwKo18c3bF7z/+IcojBoMQQ2CUUeznKNfzKK2LZCO5wiG\npkElkLiog05FNPMGl9lFsyDgNBt5exFHp1dSuC6hX3ZwGT3ntm2NrqLGRNDOTuQQjcFAO1ZkrHFj\nd/e5qhRQNEQK+Ry+sZPj6HN0tjkMYxtH6VPubT6kfnJBr9kk05ZR2wuTaTTxOadx27W82blic3Ed\nXcBMNppDr5WhM+opl9rYPEt0hSTJbA1D345VA4ZFK67gPBpRwmj1sPP8NRatnuCciYvcFVPWKZ58\n8yV/9XsR5/3N3/7y8ePPSLQyWAx6VvwhFMohb04uWJxaodYo0lEZaTcyqBJltDozhVIfU2CA3r7E\ngt/KZS2HeWkeeb5Aa5RFY9MS75XxyYwU+goerH9ET62mPlQRTSXYntpGFfRjnNMSvYkzofGg07Vo\npurQHCMOJfQb0wx0A1qRa+raBkOHh0T0klz4mk57wMScm1y6wexWiH9/8RXDchexKMezPkkt3UU2\n1CGSR+tfZPv2GpMBFed7BRoieFxuTnI5bi/MM2o2CZfzmLo23uy95MHWx3huebl6lgBFEa1JoFlu\nIZfUGNQG9t9GqHbibP/oJ+R2jpj74GO+++1/INM5sASM7J9d0DDoSH6XZeuD25ztfMXMnccc7+yA\nVGD1zgr1dguPx0NC0WRp0k9d3qFcr5LPF3FofCjnfAxVTYSGQKYSxvfexwxPrnA/vINurCB6GKWS\naaOenuW9RzNET0oo1rSE7FOoVEbaDTiL7kPHyuy0ir29S/QOAW1OicWs4OqmROjeBvnTK64idaZc\nOkLOaTRaPZlain50gNPq44sv/p179+6wsrDBoCkw1o2pnd3QR0k+eoJlwk2lmyZ1co4od3Lx+SF3\n//gPcE3Okomf4tZ70OaHXJyHca+uoVBKKDsdtrY/pRE5olcosnT3IZBmHJcT2Frh6a/+G/c+WSId\nGzM1OYfCIlHX6rDpjCjGDSqpBBOrszQzPYaGCoa5FUrlBH6Pj06qhFzocxw+YeXxD1ALI55+GWbC\nqkGSVZCpbFQvD7DKxwgDPbVGnQoSH/1si5M3hwRCi2Suw/jvTHHzzSmTP/iQWq5DNlFBr9Tz4tk3\nALy3scj87XsIrRFyTQkh4GMs9nn3+oR2NMPi9iIOh4u9kwPixyc4vAp0mlkSxSSJWIX4fpyryDFX\nF4dEdmPka9fEn1yhH8mxL05SDu9ReHWBaDSjM+kpv93j6DhF6fwcp9OPcyOExe4mEUnQSEiozBrc\nJj19o4mrV1dw3SCTTmMPBpkzLdJOXlE19GgVS1TMVfwmLza9nv13b1H31YizdmYWPGCaoXp4xWjc\nBJWFZkeLalgnOygQ8M4wbXaSzBxjXwhgFQN88eQ3APzRR3/Kwb/8O4aGF7fRSUKupy+XmLUF0XqM\nuOwy6lYT8USDQb5ISVWhebqLx2QiMBfCveZEZXXS6Q/wL95BXDCicW4y557l2XmMcqPB4KxEqyaS\nkXJ4Oh1qPTmMWvR6IxQbZgbtNo8Cy1jNCto5iePzY1r5a27eDfFoZegXpyjIOkj9LuGdUyJvr6mJ\nMJ7UUqnLcC54GGi71IvnaIxuFj96j6atRP/NEKupQbPaoKrRY9J6OH8XQasYo7DIWX28RXmYwee2\n8pt/+wKAhz/8BOmszkhvo1aTKBeuUelVhD67R+7iEpUEMqmFXGEnc5SmmanTzBfpt9oM22o8QQu+\n1XXUgxaF2CtqdRn5fIFHPwyRb9Uxm3o0Dss4ZyyoV1ZR6nqotD6sXQW3f3yfnlnOciBAPppjIGqx\nhwyoxWlGViel8C7DvJ7mKEunV0bXlqNfmadZaSOO25QTWXrDIlv3f4yqVWOY6tK3WSkdJfDNL2Jy\nTxBrDEmGC+gKDfp+LUalgnpLybh8zfX+GS6lnlubtxkWK3z16jsmnHNIwyEnb0/INs+x9/sotUos\nU37UDS2VThqj1UppJKE3iNQkBXb6DEsDIud7mJbcKEcmTDYN7XaBKaMTw8I2zmGZd6/O6ShbWDxq\nNC4Z9q4a15qDequD1DRS3svQ5ILZxVW6UoPD1wc0SzkSbQnH0IDY7GLwWdg7foVZa2Bqagp3aBZ3\n0E87EaOuV+DV6Ki1Rqi7GpbWNxCm9NAuY3Ra8fiC2DbXMcuy9O1azOgZj2VkOi3WJpeJN1JcHHcx\n6HQYrFa+ev6EH95b5fXzHfLFOpMOH2NVj1GygndljtTxOwqJKMnakI/ubdKVoBmrgEGLd9OP1iAQ\ne/2Oq7MYtz+5g0On5ub8BpsvyN6XTzDYlSQjEhMmM9lhk1vza5TrWkrVKHpRyXggR6WWoTDYqB9f\nMnN7GfuMn/zeCUuzH2C9PUvjukZPqLOhn8bmtKPpq5lesZJMVfA69eRyp3itThIFOe1kjEYlRz5e\nIeDwEo/tE3sbZf32BOpSjZZVibw3JOAP0ilkKOaa2JnE5pHx5Mtv+Mvfh3XeX//tX//yZz9+gHXO\niXdxGavRjNJsxiIaCZ8dobZJzIe2SGZP6Krd3Hn/DtH8NdNzGwTNKsbqDv2KFkW5x2EyRv20xsTC\nCgGVH6vdia7W4bSVYnlmEZ3dik4lIZpNXJw9pZEeUK/HKXfH2Cwemsk+cnebWk/BhNeFVaXl5PAY\niyRQ7bd5z/seva6cmjyDN+RHbVRQum6xNj+BS1CRGqdwjCe5KVwxcHWxexbRdlXI9R2kQg0s02zf\nslIcynGhpKJUUGxLuHQWpGqF5zuvWLMFKNXaeG8FSe8mkQXsXF4k8Uw7aIoKPHNqQsYp3v3Dr9CE\n/HhCRoTmmO5wiNoTQpWvc3vlEcJwzHXkGaH7G7iNViLv4hjN8ySir9H5zTSLBWYWZnn58pqOMk9P\nsiDVkuT6NeRjA+mdMBqHl0zqnGWfD43KiLoskGsXsN71UoodoDM7QK7GYxmS3M+QlBVxKwUyzi6q\nsZnRKIcQmMKtEemcFzGuzBIptPDZjEQOdln56Q+Q6yQKFwU6gwKCzoZW18ShsVFQyPju81/xJ//j\nz3nz9imbn2xy8uIE1911Dl4ds/2j99j/t33cSy6MDj8OU4dEc0QxfEP0+IqHP/yI/RdPMLishFa8\nhH/3HFdohlFzTGRUYKDpYptwU6l2yEUK+LZd7P3Da9Y++pBIYYDLZ8Y0UnP05g1z1mn2Xv4apXme\nSff/y9179Uianml6V7gvvPcRGTYjfWZlmSxfXd1dbMNmc2gWY7ia3dViIUBnOtn9ATzRgtoVpJ8w\nRyPNzApDDsnuJpvVpqrL2/Q2MsNleO/dF1/ooIHV6R5IgDDvT3iA931vPM9z3bePWrGJxqvBO7vO\n3sP7LFxd5eA3r4l+EKCgkjGaKvCpTPSbPRo0mDYbnJwUcBvdSPUGkbVFsmKL2MYFvE4dm3/7kBs/\nvUv77JijTBz/8gJ6o5zEF0cYL7oZ+wMdsQAAIABJREFUVOqIfRmv3zwB4P2VHzEWhpjnvBS6Y7xO\nD6qJGqNTQ6cswygf8OZ0m+GkSafRZ+JSYdaaaB3FGQyK2GUisbUbjBsTAtcukCvk0agUeK4uU9ne\n5uA4g1zroKYqMalkkXk8uH0+Ep0UY4sOp92C1euDthJpMsEd1GOKWikXu2gVLTz3NnBYjdQ6LczR\nAMNck9NyC72yj1GwkOvUGVcrGK0q7AuzJN/s0e0Z8Tp1CG6Bs61dJpMhg5acTqtBbzyg3WlR7I+R\nplPM5hmamh4PP/9eNNz9y09Z8TvpChZa3QTZgwLv3buLckbg7WdPyXZESs+LBKwm5AENK74gI7WA\nMD9L6kGcrx//gYOXe0xyApWjY44Tp6gSBU63XxO8EkKmMVDpn7I46yOZijMxqhl1K4T0MUyrC7jm\nQsxdvkSy3mbzyTFLy05GmRp3fnib/rwOudlGX8ziMpmwGVYxiWP8MTXRhSD6fAdrJMzus28RJDkz\n64scbW3y8PMv8Wh1RG9eReeIUMy1WL28Qs86QK0bYgov0RIb5Pe2CI1nSZxnePrie1rxL3/815xl\nM7SlPIpchY58jKZlovT6HEVTzkilJVtOM9k9wb5kZ27VzFguIXlcGJCo99Qkz7O0xnlsaie1TIlJ\nQ0a1MCJ0cwm7Vkm7Xye+XUaqFTjcPkU6TtH2QamoYJgsch6Po3OEcAxqnG+naWW36RbirF9cJ3jr\nAtFIjKXbN1HHZrB7DbjVAQwxN7Yra+hcdmrpKtOoiXDYjFamJ/yDG4zTdQyKFpaVWTYWQ+h1Hsqb\nm5wd5VEOzrC5b+G/HcHnDjNQysi2yjx5+Igf/fgWzXgL3ZyeuZWruG1zLMwuM7TK2f9uG4vBS+rF\nGya6GsePdxg0uhRaQ8TJBLVBy9nDLc5kBaxjLeGrl2ko7Az3Dmn2LQR8flzXQlxeuERvqkdjNFE5\nmdAoNNh45yqOiAWTx8vTZ8/oJcv4TV7GbiNe55jjdh5NX8lgKOPSvetYbHZaxTyioKZfOGfaGbJx\n8x0qrSqyjsCVH1yk1elQjx9y4drPmJhVuC02up0xtaMmWr2WqX0Gk06G16GlXs3TUmhQlAp0ZBrU\nqgrfPX/N1Zu3cGj1lMot5JVzZuYC5Ko57L4Q28cHGDwW9IIFcVxBH7QxM6MhcbJPSPLSQYZMZkPV\nq2PX61FPdaSPKkQCszSLDYLOBdRT2KvGuXLxGn3HBL1aznmhgazVZNjt0ajJmHXNELt7ETkNhk0T\notxEOXGIM2DFFlFSyOZQSANO0w3Uy3qaLTWZ3ecEdEuIajvtUZvkyyOcfhMGQaTeGNBU1FA2xwzH\nU2YXw7QUTvRSm14NjEC/OeYoVyayaEPhNfLwi0f/POi8X/2n//xLkz2Gd26GajKLS2unrRqgFqqc\n7laZW3FiMTg4yB5x/dYd5JUC+cMSA6mKYHOhE9W0jG00oo3uqE1BVmNtfg2ZxoxcaiA320jECyjU\nMsZ9EJUyPDIBtWUG60QkW82j12owhN2kU1mEgQlBP2FhNYqiaibdbDKsdTEHI4ykPMHlVcxqExOF\niW5+SGP3NRZnFLlxhNoeppstkMqdc3vlJpOBmnY5izLkpi/TMOM0U2pWqJ7uUj+oYPG50NRqNDQ9\nxrkJT14/Inb1BvaxjgW/FWfsAsN0CZVeQ/bpLsFLAQZFgezWK9Z+dg1NVsH+w1fMbiyRzaW5sLCE\nzuhF1q9TCxopxRN4V5f44v7viQSWUIX0lI9zWAQDJo+DUVdibdnL1oNzLDMThMwYb0hAoY6S6G4R\ndthoymtonF72nx1T7k9YjDrQqCZ459fYe/E1a2u3qY4kRsYBnXIDlVGPuqkk265ia4+Z98yx/XSb\na//yDlsPX+FZCuD1+RgA+mmbaXVKmz6DepnA2iKp3Ry+hSBTxnz52ecsXb+MzaRiopBTbzQIaIxY\ndR7U3Sx1uUjz/JwLkQWKUwtBp4ps5oDA5TCq6ghNwI3N5eDx/T9x84M/5/Ef7hO6d43yiyNWfOvs\nP9xGoRWgq6aSzPODjz/l+e8/IzbvQhz1aY1rCHYfB5tP+cFP3qXa6PMme4K5J0NwSTx6/JIfvP9z\ndl6+5OaP7zAsyzl4/oK1SBSVacjRfpJ7H3/CzssEY7mOufUoklZLphxH021QyOdR2vR45pzs/PYR\nXTdcu/cp6X94iPlCDI2rz8w0SL6Rwa2z8+DZtwB89P77VG0Cdoccy2SK4PCimfRRtvWU82d0ylPq\nYgm5aGHaV6Kt9ynG29SFHKOejoHLg9/hpl/pMmhmMfbMKC1hHFYt+bMkA/0AqdlD1h3Sq/TweFdJ\nHR1jHGsYTFoo+h5cIQVKhQpvxIDC4SPTLmGVK5AN+sx61pGqPUrTMs6Bjky1iWHcJJUaMfXqCMjM\nuNwupiMZA50evzdMyGmjoWoxHrcx2eapFHJ4bTYGhgG6lorGYABCh1mHj4lDh33a54vPvqfzrrli\nSNo+1VYenz9MeyLw6J8+4+32W/w+P4qhSHB9jnqnwLTdoNTIYTTO8PZPT1m75iO6cR2bwoguCKGQ\nBYcngvnOMms3PcTzJcZbFXQOP3a5RHhmHovFTKGrYW/7IeUnCZIvN9l6Fccsyrnw4yjnu+eIyjHl\nvRGNSpyAz4xl4iEXz5DY3aKrbjLuaTl5lGYUsnDyeo/I6gJNQUvl6WsW7YtcvHgPS3/MiVRD0+kz\noMegpsRnduA1aWnv7qCs9rGGArTrfTBaePTd92asf/0/fEz06jWk/BjnxjpCt09/VGHqcSHMejA2\nx6x++AnWxVnUJg+VnQSRlVmcDhWiWoNK2cevMOKaD1Ecj1mNeYmGw5SSe2yevqaXg+Ddm2Qzefqj\nInbfLKPmgHpHTfkoiVJqoJiIyAcdQjc26FgmyORgsHhw+D3k9sscH+3QODhhPDgn+e02Oq+D/LdH\nbO/HGT5/TbvWopPLYTBbGdTaHO7nKaTzmB0mAgGBbKfONOCkPxCxMUTsWuiNDqmlq7zc3aO2eY7F\n6+PBt/e5eXWJrrJLN68haByxF09xPs5zcP8NlkUP3cIhVqWeaceOd8WNbeUi3qCcXLFIZywwu+Ik\nNnMdo0ZB5qxOxCdic5l5+/mfUFqm+E1KMpvHxJNxCidJbMoasXdX6FZrtE4rTAZt3j7fx2Q2E7u6\ngCxVxnEpxtriHHkMRBb9nMQP6Z530brc2JUKBv0W1XiKpkmN0axi880RymmfVCZDriJjUDzm7YsX\n6LRdGqMaglpD/eiEubVFms06mRwoJnocGwuELocJXIjQPK3y8Nlj3t24SfDmKtVMHu/GOzAwYvIG\nsAt6zAEBiz+IXjIxUCkp5bJEXBYyb7t45t10hipmIgKqSp+axkkzfYRSkPDM2HDGXAxEAx1PD4/b\njEdt4dFXT6ge11Dou2gaSqZmCdVAg+2yG31HZCoo6U9Ari/jX/IzqTbIHp2zcesaSocRo8WAcWxE\n0ZnQLCRoNEVm1hc43NxFIx8y7DUwz84gG5mJzAYpj5WI2jZ2vY7O0MhZfpP6Toq20og3ZsYhl3N0\nUiUSjvHtl3/g3/+HfwadqP/tf/9Pv7xx/QpWu5uzrSOkzpT0yRZ2m5NhT6Q9GTAT81I/SGCaXUBp\nM6JgQiHZojQ+Q2V10nicxn/RgsWmRGpMcIe1KEc6uuMKb3JnzHmXUY2L1HcKDItVbLEA5oFIrdlm\nPriM2W9l/+gUTauNqO6i1NhJ7+XIypJoJTWK8QCjQaBWU2CPWVDWa7zafkw22yRfynLpdhi5xo1c\nVPHszSFWh5z2aZ1CZYezWo61+XlULitjpZzTp1sUKhpCF+copYocVBN4jLN0aoc8e7XJvZtRLr+/\nwsu3GU7LefyrLgonGby3LiJmemjmZ9BE3Dz8h0f4VtYRNQrq5wXmNmZJnZ6g1ilROkZMWkNG8QpD\nSY4p1STw0S1s/TKnbwuMHXKkqkijrWB2xU5oZYXk2xNMdjf2ORcmoc/FG5c4+G6b6OIldh49Y2XZ\nhfHSEpuv37JsCXF8GGfj5jUef/5bDCEX8d0DPr7+IeV4Hbdbw3A6JV6pYPOGaI+7KKoqjDYT4eUw\n3339OZJHjXmopyTVWLv5LmGbhaN4jsWIl35nytnJHs9fvOTu7Z/jiNrY+80+dz75IYfxIpnaPsEr\n75BMpgnMLHP28CHdgwTrd65y/PKYVqfC/PwlduNxBIMdvcxDTxJRUSG0HCJzvEuidMDytVXKjRrR\nNSP58zJNtZzwfBiF0oNS0WT/5JCN2WvU82eMFQYWLjmpHGbReezkyscMRwJ2QcE0rOG7L79l+XIU\nrXUGeWVEpSHiinipDWpMsw1m31nEpGkxRo/QG6GxWDG6ZGy9SBGds9OzuynutvEqoNgsYfY4OTno\ngX6MsiuSH7TYfPUCgMt/9ikG7Zi9h1vkT485ySewWXToLSHGGiXrsTmK6Rpm4xijGubeXSB4eZHx\nyQiLV4/L40dlcBOKChgiUdRuLeGYG8Ggx2ZxMXdpg7VQGNNyAIvMjGwC63cu41t0MWM3k9p+jEHh\nJX1Y4vhwl8HwnEV9FMEukTstcJbLMZJN6J5kwW2lmNojvDFH1BNCXpiSON8ns3vEoD0lth6mNumR\nO9nB6wthMwbR6OQYA05OtnLMr7hwX77MpJ5j5cICB8UaDp8bo+ji95/9BoCP3nsPhUuLXpihWymQ\n2c8TsDvRq1QsrM9QG1aovt7h+LjPws1rDFoqtFYL+iULBqWZXr9DK5unUy+jUFh4+zqOcdzm/t8+\nZHVhEePiRRwLLmSFDqf9HqXH32AwBpn9ZBmr5OPWTz9gmMqjlTVonSsZi1Oamio+n5d+YYLbbqQ8\nMKOxe9CbRGzqEC6TDdcVLZqpG02zTbveJGyN4pzKMc14aJlrGCULaoODVjGNPrrA4pqVzqRPsiOh\nM8jQOsy0smdY1uaxuAJ88U//AMDtT96nstXGe8VEv6EhOjtDv1jF63Vhs0ywzMQoViqcxY/onOXJ\ndSTyiQTJ3S75UoN2RcTncJHc2qadz2O8s4GgGaNQuhmLalbX5/H4TYwPzsiKfWRZEa3aQGTZgtar\nZHX1GhVli3K6SmQ5iENr5s2TCkK7ynlrgmndyeKFIMdv9lkPXyR0Yx2NWkurVEcuKjHqJ4xVBsxd\nUM0torIpSO9vM+kMkI1lCGoZ9cQ5XlUQp0mJPhpjIlfRGbdoTBSYlT1GTgs2mYpvvvuGe/euoBra\n0Lk1DMQRHUFDv1TF4wuxFg0gSTLEsBmT2oZKrgZ1BVXVTkMmIE9laXd7aF1ykM+QPjkE0YpS3UQw\nCOiCMfRdI8ZVH1q1m0ljgNohQ+poyeQbHKTTaNVTQvPzWGQODva3EKIz2JQGBqUejr6B8niEvF3h\nNJdDkcpjv3Wd7OsyffuY2IUrtLplVIksdWHKxvUoCmUHecyPTi3j5E0Si07H/MYGLq+DcqbEqxe7\nbFxdpCiTox2OsMgGMBLpZqp88+wx7/3sJm6Lh1yhxIzXhUFuQlJAddin/PwAg86DQhxxkt6ml8pj\n9EVJ5VNofDaUyKE1IF8Xcbkc5KdDeuUiA00frSHIyzdfEHC6MQtyDlPbXJyLMJlzUDnvEV1Yxmix\no5j0mY84mBqnPPjtHtVxhVIzz0RlxaQzs7V1hNvpRqGwo1VPaGp7JE6OCV65jj1kQxrIKOTzyCU1\nPUWNyOJ17At+Tp4laDUT6GVKzIsbbD16jLVrpOYSuXQxikGaQRVUY9NN6A5Fnj55xn/455Cd95//\n469++eFH72IyOkj1MyysLdCTdIxldvK5HBfXL3KaLpGuJWgdVFFoldiFAFNZma6kpFSP00dkkC5S\nyIqsX4rRG8koFnJo1XJUViOzHiPH+2l0qyaCQS8m+RSZWo+oauLy+Kn0xqiKNaqqFhpJjScoo9Fr\nUD5oM7e8xNRkwOzxkKht4jCvMHSKjE+LCIYJOtGOqDcw0KponhZYeseHw7NIuniATWegY5oQMa/Q\nbxXY3T1GShZwzipYWlri7ZNHgJVW/4x238T2m2dcX7vH2GViJRqgWxCQV/KEwut4Q0be/ukBgfl5\nlKYhhUQJlV5A67aT3I9jGehwqdWMzXIeff4SVU+N+ycLiCcpbA4DklxLUztikp4SsX+PLaubfXJn\nBdTWNi6Fg+1MnqjJxLN0Ead1BrNVYn//DJdFRm2kZdKtIB+KdPI9ojdi/PpvfsvGX37Ik8++5MPb\nP+PzL7/mwgdLHD46IvrOEjpxhE2mRj0Y05RaKJV2Xm0+46M7H+I0eNh+8Bqj24rJ6aJ3Xkcul9NR\ng2woR2W0881Xf+Ddv/iE/EmDhZ9e48mXzxhWR9z+6Abx795wY3aVUi7NlZ+/j8Xu5osHf+IHv/iI\npaVZvvzd77HLLeSPTphZCdM92SFy7w4P/s8vmf3oOrFQFFHWop9podPYkSYS6eQJK6tzfPfr/4vY\n8l0SeynqxX2WrqzQSRfIduUMMhXCG/Po9GFifiXpV0mGgzLzsxHE5ohyponvgpdXLx9RPBvi9tsI\nR02ohTHn2QlB35TXe4dsXF+i8KTGygde9h51GZ+ec+2Tu6gmHdyzRsRBF43ZgljM0m+rcFllPHj8\nPZ334bV1FGMVVs8Mw9GQfllCqTWhcjlAKXDWOcJj9aOf9WFyqjFOvUyEIpSmJIUOumaFeuKQ40KD\ncmqMz2ljalSQeZymJs9zelahnWuitxrI7DUolDKkCkk0gSCG5hSFKYzJY0VvEhmma3RFHU1Rj9qq\nwhLx43IZER123IsetE0RnH60KgnlSElLJcM0hZZJQOyMkLfbJHNZZKKS0Lyd6qhB8slLUqkcw+EE\nu8dNvTWkVe4z67BQyg3wzRoR1Dp+9+vvRdT7t99HU+8yY56n1qsjrGnBq+KaO4zo9oFMgXnewGzQ\nQ2mUw2Bzcvb1fWQ5SJ6eIzVHmBfnCAajyM7OscaCDLtNPM4oaouGb7/6B07uP8O4JBCNzpLTSqiV\nMtoP3jCcVXHwX74Gtxxf9CpWl4Gp28u8MURrqkCvg0ERRrU2hcwpa+9e5/QoRWpwxqBlpyqlWbpz\nk2qry/72PoPhkPNeH1lXTjdTZWf3ATZJz8GrZ+S3zxn2kiwY5vHOeTFa/BxXCgw7Jeo7BzzdfAvA\njUsXGXaK1BND9t7skNrcQ7ZmppeW0yjKySdOaGVfITU1mAwalu8so3FbcM7Ns3E1gswsYuhPqPdG\ndDpaCpkTRvtdlM4JUV2AcmVEaaeAa2mJi/M3Uc8bUOllKAewsnyJ7Ue76Bdn8dldvH54ikoxZvXd\nVQqZJCqDnOP9IyYHVWLLIbYfvaWSP+fF2zconU4GyjHy7gCnxwgykZGkwWYzIaspuPzvPkFMtnj7\ndofFC7eoD3ZJHzbJFI8YdFoEXavoI3Iq2S7msR2dRclX33zFX/zZf4866MHn8CC3BHAZjdhXZonJ\nffS8IgqlF13fSMcw5OC7E6zmKWqDCZ1PhzWqwYKe7GYSydtFKgm4r0RRYmTS6VFvdPCumHny998Q\njcawxTS8vL9FTSyjag25dHuB6VhJfVBFa1bija5ikHps7lbJn+zQtU8wDSXilUNUgoAgt5LfLxJY\nHOCPXOK7/+M7avUyw2GXj//ir2icZZE0HtyOGaRyG2NwCcHpRDmdkK2kSb49YeZyBN1MCIvYIZtM\nkau1mBaa1HsTnrx4zO21H+PxWPG5w4wsAtPcATKDDZsw4FX6GGOrym6+iGGoZjBo0y4WQTIzih9j\nMTsoT9qkTneIXYlyuLOLWj+gW9ci9Tu0O1q8AQvPX2YxVZX4Q6tolQrEgYpoxItgHqF1ujAMLOQU\nY85ebzEcDBnluoitDuNEF6O5hcvkR3SOEPtytk6yXF8M05YN0TQmqPQyrDEjMxoHHQ3MOy1I6hbp\nzW0Mggv31SuY5RKzbjtWu4Cg8zOajJmUsvTGBiZKL+Zxh0dPn/3zyM771f/yv/5y9YNLiLIuYlNO\nb1wjdmkVp7ZJajdOPdklFT/AGTQyH5plJ/0Ch91E7SDF/OwyuUQZqTdibeUazUkBoy2CPNcnWT/C\n43NhN+nR4KJR6eL3BkCrZaS2IQ4TpE7OsSxFsUwqHFW69Bo9TE4TzUITnyaEStHGbBPo7yeo18aM\nVSK10xqhpQBapwevzEWh0WAwLGOVzOy/fUjU5SO58xSFpGc0HnN1fhlxXKBWrTBOVRibHIQjc2ST\nTRbfvcqs2YXNqqVROuf167dcdV3myrUwqZ0ahVEWtyfEQfEIBWMU4QXyhTeUvt7F5Z5F7VTS3owz\nc3UWSaFgLDUJLi4xVNvQlavU2yK2yAwl0YzHPuX8sxMctw3s5xIoz8ssvvceW48eEFneQAqpaJzm\nQK1mIRSkWIlTbWiIxRY5OjzEaFCTPu3ht2spDcEqaFldv0gtn8Ix9GEQhgTCfvbLTSr1EsauCimi\np/EyjqQDKapnlElhUhhJFPbxm404Ly6z89UWVlGFdsHL/ts3qIc1NG0DFZuCJ1/+kU/fv4V+IMeh\ndIGvT6uaJbV/yNrtNXI1GZ6wieM/fk0mUeHORx+Qrfd4+c0Lrl67ii/gZahy4nJ42Tk+wGUyMGo0\nsKqNpHbPcJkvIEdP4ijB2p13qSSO0WtcLN508+TRYy59fBWjzoFGsLN5UsDcEfHfvUD9OM5hZpOY\n+zoyY59WX8S2FCF5lkfvgfSrOP4bCyx6bRwU98gdHOO/8h6nx/vEt4959y/e5bd/+0ckxQS10c6C\ny8VIp6XRGZBvNdG5PLx89BSHQ0k0sMBR/RCdWsejR9+LqB/86Cf45zxgcKKRRKZaI+GIkalawjnU\n0sl0WV6aRXBpISNRSu0xqprRLGmpJE4ZVxSozU66jSTDVgu714HM4UDRVzOsF5DyRUxuO9ZQBPW4\nSEvRZzawQr15Ru2ogWaowBTSIfU6DOpdis0aZlUN70IQtcKGaiDHZtSi0KkojarYJnXUgp/C6SHm\n5XkcbhPtrQzSaIrWYabXaDK7cIueoGBYbnJebWApN2iNxoT8ZqTRGJNhgjPiQec2cf6qQK2R5enj\n73eA3v3gHeTRBeKTKmZbD6EJbquRfUWVcmpId1RHpdczdkZQGyTKf9hk/soaY6edYEBPp6lDSu8S\n30nj+KubyBsSbo8Bjy+Iximgmyq4/e4dyvt96vUs0Qs30AlDdLZZxrkC0WsRmo4IuZdpUt0CM2qJ\ng9GA1lGcy+9uwOUYU6+IQdYnvndGr9fBZHRidfiIBUL87r/8DZ62gaXrQawqHY5giPPDPVRhDRcu\nRfD4IlgssxiNRvoxHYOhwNvffsXm0XPmTWGk9pSp4Obxy+/Hm//2v/sfUaps7O48I3xjiX4/y6QJ\nonKKqCzhXvRw+fY1lG0lgWAYSa2i3snRvB+n0u0TnHUy0asRYi5mLxqZX7hBz9VEfjpiap4S331N\nf1ynmTglXy6jsyrYvf8SlVxLafcY7SLs3t9FblIwkonIBBuFszMWYwsMDUbWQnOonD5aXZHYsh/v\n1XmWb9zBH/Qyc9FF+MocjbM2vcmUWnoPjVaG8/ZFMl99SVOtIaAU2N17ScC5jFOw0m1KXPxohWdf\nPELZ7eH1GQks6SkXZXz33VfE1uco7iXQ6qxwtoNlPgyFHlVnAbGnoNLOYSz3KfSS3Lh0FadngaE4\nQSxlaFcs4Jxit8iQTQVCl93U3jZo6tIYpTAzwQhfffkZFqNIMtOlq9UzkRpcuH4Z38Zd5MkxTWlA\nyBZGq1Khs5g5Od7BEHBx5cJFZE4bB/tZnCYNzoV5ZhaXiK2FKDdkaOXQzhbxWCesX75AOpemJug5\n/eYRpVwL3UqMQSrL2jsXKbx9QnwrS/QH7xDUaMkeHlOrKOgNlJgqEknpDKtNw8MHz3hvYw2Lc4ZE\n4oRGKcVxvcysb5aGoc9gLCcQWUZKFWmop0yVXQRtjE4rj8WhwHPnAtXnWdSSEnN4jvz5Kaq6FotH\nIFlpsDwTRmvSEFzwYAzaGau7NAZNwkojkn3A869OmYg9Gq0KDqOPQvqcgWnMjKRnJEyJ3Fimc9xC\n8NuQiSL7z5+ibI4QIi5qB6cIIRtmtY3a832UC2GU4gCHVoVKY6QoSpgdOqL2WbJ7O8i9EaReh9RR\nmaWQltebJVwxI/ntY7ZO8iTSh/9MzDZ/9R9/+cMf/RsGMomNSJBv779CrJVR25bp5/Zo1ZqYFBqq\nLQO14Tlz3iV2dvM09U0uzS3iNlgZl/L0Inq80RgWUcGXT58zN7+KSSZDbraTje8ihKwYZkwo0yKj\nWo9S+5x2q0F9r0Gn3aNT73Dtg1WUNQWiRYZqNCIYC1M+l/Bd3kAIC3ijAYJmD+qplsePn9FvDIhc\nsNCsthhUihg0dlB30WoXEZUSnit+5HIX5XqLeiXF0js/pxNPog8H0dFDZzKg0guoLTqOXuyyvbfL\nwq2LuH0GaiMBTa+Pbd1I57CGPxbC4VNSelDG+/5FRE2N+laSwL+4ytuvH7By4R1qZ7uYnHO8+dNX\nXProMkd7CbpnbULXAjz49X3MKx40PQln1Eqj0UXblbG4fpXnb/6ITNTgmIwo9FSYJBMtZR03Jg7O\n3/Dx7Z+zdXyC1O2yEllCEAUy7VOkkUS5VkbhlyPIQa1X4YqEMFQa1GtxZlQutg+zeOxB+pUCpUSL\nyEyUwPwcu9++IuAI4Zqzcbj/mlIuh9ulZmYmwtAhw6Zx8cXvf817t96nK+bQKoY0ijnafS0XltZo\npbOYDW6mDRnjQY2SWk3qRZqhNESdyRK6eoXSbgF70Ejym2csROdIpXcpFyb4I35SiSTOFR0Ghxnr\n1QU6hUPUGgPjnpL9k1cwdOFXOxg3exwfn7D+aez7Xa/EFoZYCENRRqafQa8zoHT42PviOXd/cYvd\npzuo/FpUIwUGUxCLZGNhdZ5HXzzk3g8+IPXmkKleztr7nxBwmeiLTRqSlVG/wMK6D8tETq3bR3Yu\nQ68a8uZgC18ogMZk4tsvv/85rrr1AAAgAElEQVQkN27+iMrTU+TdNrHry+SSb0h9c0ir3kDhd1Ip\nnXPcT2Ea6HD53QxcfsIxG+2+mVWXC5VDz9hjI7a0hNEG5dc7lNKn6McjFm9foVFs0MgmSR6ekS00\niHhMJLd2MC7M4DGoEFUSB0enNCtneCJz6EwijR5onD761RZHT59SPiwzVmuIuA20jD6Of/97ZCqJ\n/Ok2k/EQudOF1mvgaOeccaOJf91CPdPDPlEgqRro19e4eDXI/tEhmdQ53XaTfH9I+qAEUg+bXsaD\nx9/HnMwKM7QSCVpnadR6J9uZIyLRSxglJb71ALlvTsjtNdE3W1SPG2i1AlaLE49riHw4pFXN4J13\nMLbJqL7uInfKKZVbNKhQiqcYK2xUZUVMfZDGKho7W+gNGjJih+CCH4vRitGtYvFSCLvfybgnYe+0\nUMypkYZ6RoUE+1uv0VZkmM1LtDIplLIe6vyAFy+f88lf/DVmTQ+NbYaD00OS2RN0dS2C1cZ0pETn\nnaE7SiOO2zilAE+ef41qquTOJ/doFVq4IjrUFgdffvkZAJ/+659Saw0w6GqcvcygUk6Y9Oxcu+bF\nrHRQr5YRukpenyQxehyoTAo8Dh8qiwu7X6QhU9PJxGmm6ph0OnqHZ4zadsaNHrMX5hh1B/SqHfRr\nIcJmP+q+DJXY5aRYpCYJ6AUvqx/OEhZMGI0Oyq0GlmkHl8dBKluhmD5BHJfYP0rg0DmQ4cIiDDk5\nTCE1VDREGWp7GL+gYjOXpFPo4Opo8c5Z6NVPSbdUOCNOrKKEdC2Af8HE+ZsKi39+BUV2ytHbfZoD\nK2qrxMOvvuXP/9W/BIMOld9Gq6dG0cpxUCgwqneJusyMZR4cUQXVpJ5i8pTz0yPsBomD0jGnb3Kc\n726iVwvIemoOvj5CtzhlwTfPwwd/IF7IYCgZ0Phg9sYGMcGPXqamV2kgdMq0O03SqQKCScRpczOk\ngTi1Y+rUKaYPOC3lmJYTIA8x7IlMZFUKiQHnb47o9o9p6ccMJCWVXgeNJUjvYBuF2sxUNmHWE0Wy\njajtVEjuHeH0zqGWurT7Y7KTHFcXZjFbnPR0MsxFiUJ/yuvXz7h352eoI1McPiMdtYTmSCDbTBCU\nh8kWz2nXqmjsdsrTCuqeQFvd5tqP3idgtGDS6ZCFvUjNLM6ojZPTNF2hhduzSrveYGrtEwg4qFd0\nyFrwavcR45wWs8+ASnLiiwkYtF6O42lCbol+skLX2Gd1NUCz2GGSazFza458Jo8m6seClbpFJOCL\nkDhNElVpefhml3KzRiqTJugwc5wX0Tsm+GR6ZFodKkOXk0ycoMHOWX2T1Y0NJI0OrdbC2WmZtmbE\nO5cWePDoCf/+v8EnSvn/nfz5f+fI1AL51Fukdp/+xXfQaJXUpyrmpDrpoZx7H6+T2U1gk7lwr9pR\nSCGm8iRmwU66qCRb32RqguKzODXTKbqegFMhoFWCWnJxVi5QS6e56F+iVqvhjjh58eu/ozvV4HNb\nEFstTgsdXDKRzRdbXLu0gbWuQjNrR6UY8PY0z3BvitUoR3t5DrVBRXlcYtJTsno3gKRyk+y8JWQw\noOqbGDr86B1WJlt76HUX0Rolzo8TDIYK+toe+daYYe41d7yLNBttxGqNM72I0qb4vh4mNYeVPmFB\nQ3MhSnL/HK3KxOH+IZ2ikY2f3ubgs9/iCy8yuXEV8WWGdz/5lPJWHKtjg97glJu/uMf9b5/jE8a0\nRyNU0hSPXoVHGaLQL2IdmMjlj1lbGJIUsthCc3gFHyeBCarTEqPZCC7DTcbFY3RigD/96Td89Oc/\n5fTwiOdfbXHjF/foP80RvWhi8/OXWOsCzG7g6cpIPvoO52KY7Oc1ZublXPzkJr12BqfOgaCw83Lr\nLXd9VygNW5yc79Otw42f/5Cd7+JoHVO+++YYlavP6hUNAI2mxMrd9+iixF+wYbC2cIe1vDot020Z\naHOG/8I8zt04oZ98yKhfRbq5xM7RM2QNFbLXNbouMz2XCw9K/IEaKoOJtbkYL/9xj9t35tj++3/i\nyqc/QaVps320yYx+juCNebaOj5iZj2BWK7CNLbw+fkLTqGIdD8ObKtTuKKe/fki1f87Hf/kuif0c\nmpweg0eHQxFlmK7iuuzhs7/5NTd+dJsv/u4fMboE5mOr7P7TAxKNMuvvv49HlFPwGbl//zXGXgOF\nBt77N3/F1tcviV0Nk3uZZHbN/l/vjFcjENc10M64GeSGjBQuZJ4KcrrUU29QGrzoxw2ccolUpohg\nFSnn7WSKh2SGU3TDOs7IdRwqgcNiEcOMgYvzd9k/z/Di4TOKmR5Ge5Tgkg+fQUDertH0DVHEx4hB\nL9XTHPnCGS6rD7E+xD0zg1nZYDrsMzAomLpMyMZy1NYpHaMFVyXHW7WK4qjOFdU8QVsEUTEi2W3h\nnNQ4t6ihosLnlJBaU8SEiNFYQq9ZZWX5Jk9yb7H7lTiNfs76aaTiiEKv8V/rced/+pRyRSJcK1Ke\nd7NaCfHo8VvaXRB/85T5jy8T6pjReXs4SwamxiFTn53tgyLzswpk0yW6U7hwyU87n6WvVmJvTsm9\nPMW/eIV+64ReV4ZqYCFyLULdvUziy22iAS/PPztEquQxXDdRPqwy415GbRrQOB0QMVp48PA+6vEE\nny/EwDnFd3VE33kJh6hAbqiyXHmPB7/5HYHYAsnU75lxhbgcvU1fO2UwLlAvyai/uY+2racdkzh9\ntceti9ewCEPSwwomr49S+gDV9P95U/f+7gW6NQeTlhGtzY1CUcR0wcDzb/fQ+G3M3bnBsDlh8ZaL\n+P3nyIYF+jgILlpwX72CRhoSXrjI4Z/2SJbG1Ctp1m8t83J/j8Q/nnDr1keYb69x/uo1++M6xeQJ\nbq+Xjy7dpqkfI3aylI87uBcuYbUlsG23kG64qOucRNdMKLUhHN451isVSq06Z0ebNE5t5NMlJNVT\nxjU5Y8HM4iUDP/vFpzTiIqlOiu5+nQ8/+DH+fp7df/wO489u8cXf/gNGQYtMq8G0q8d03ca7c3/F\n050vMeMGoHRWo11rsfvNDrNWO18N48wobBzUJCq758QWLSQIIlaLhDecBIwezssitZPXLET8uOau\nU3qVoKUZE7y3gkwjY+c4zp3bn9Aup0jIR6TjWfSTJKfGI2btTnzhFXr9EpVJksBlP52TFl9/83eE\nVxc4L/UYTRVc9jq4teylrXNgDPlJbxdx2cJsZu4TXvCjC1xhyapBkhqoBna2d75A6Yzh7lUpCBNE\ndZdOvE6rPOLijz6g3cqiF5UYtQ5Cy9cZHCTZPzhEnMZpTu0YzUYAVKoy3YYVRX9CLGTmhVBE0GiY\nqhr4VqPUUq+Yd8awV+RUrDVOznIIOjMN5IxbLYwjM8bbt2n2+5inU3pDDdGQlkFDT/5lk1qki0lh\nw2BU0asKDE0JguMwleIBPd+EzuZLzMKY8SCIct6ILgvWkBuXZOHk1Q6evoJeFVJbb+i3VMzOhVB0\nNejkFiqokPUqXL57F61Mwm4N4Gr0KHZrqI0D7HIvj/7we5o9NV+N9rH1VDCn4cXDb/HEAvQKSSQL\nPHuYRBxP/ps0yv/vO1H/869+9ct/9S9+Qb3coaVM0Zb6qHBQOt1EPVIw7o/IlKos/fQSTouZicJA\nae8tY9mQoKAh35QxUAiMR1NMGgMbf3aJ87MM0QvLjPVjUk/3UWoV9Atjdg/eoOmJVBRy3rmxTF2m\nptlOY9eoqdt86Bgw6nVptjSolRY2n58SdjoxyjukjlO4glakyZBJb4RcXcceCOBwmTnONrm+voDS\nG8DmM0JezkwgxFimohc/pzOq08r3KSVyePxjLJoAWoue49MiozrImxnaGhdvHz/isiHIykaU5kGC\nsc+PUM0z1MI0W+H6R8s8+eYRd398jwePX/POhTWOdrKMGhrkNj2itU4jLseudGNmgMs8S2Q9yMTh\nYJip0U8lWf7pPVqDNEgCk6mdvlBFqskQLXaU8TLyGQ/ZP3yJRtARMc0zKCTIFYa4bG46mTLGj2fY\n/uMjXIsX6LVLrHh8DEcaNA49TqcH1YyZ6qsd5IM+xpCfcS5H6yDJyG3HEwvSlAQUhTKBCxc5PT4j\ncnmFL/7274ktrdE7y+OYtaOqtzHNBPjj7z7jhz//gPOjM1QTOW+fv2ZpZZnC1ilNQWCQS9AYarh+\n8y7xk00cMS+nxzvU0klKp22cS15WLyxxvPuUyI0Iz17dZ8F6ibFGInIpTLmwj2F5lsbQQKK6T7fZ\nY+XTe+zvPiMc0tJLtHBc9KKeDHn19UsW//Vf0qqfk46ncBrtFHcTyAQ1gQsxXjz7jsjsNawBOfGz\nFIp+g2ZJZGRpouq0weJFZrQzZwiQSxSZBky4vWEGQpe21MTIAH13SmgjhM7hoJNr4LoYJLPfoTPI\nUG4Weft6G4Bg0EOxJOAVBFLNBJGNJaJLIWaCl6mne9RyezhXr9JWDFDK8uQ7HbTdPg3VBGO1Q2g9\nxKs//YG2TsON6+9wnoyTf53jyo0l9LMrrBhcKDw6TvYTZGo59na2mKpdGIOLeGMwdrgIOGLolTZO\nGwc01CNmI0EsWg+ltycYJ7B0eRmpUkfRH5ApJZhxRFH2dCQKCTL9FN12i+DsOkXViOuhEDp9EJVl\nSk9lILToJ58aU66cE1jw4VlxkM3m6J8OaU36BK/OsD57h3/6/NcA3Lp9lze//R2+qxeo7vXYTDfR\nrsgxRoJIjT5qqUN3OkXRS/F8+5B2Oc6k46DeOST16pzW4Q6SSk+rk6SRH3HeamOe6hiKbUbmHmVx\nyNnhgJmFGYpeUJ6LjPoKzLMCNv0IudVNpTgkLNgJuBxoFCqCfgOlvoaPf7LIZBokoFHis/pIxRuM\nex2UOisurRV9e4TDaaHfO2NUHjFK5DGHPDAqM52o0RmUzMZuURrXmex3WH73KtuvN5FpPYgHXVLH\nzwg5A1Q1Wh49+p7OW//kBtpKE2ltAeOgiMsZRV7t0Kt26EtdRpUi9VqZaVNkNClz5eN3UMSimCYa\nqpoysqMqqpCV5FEZMddg5J6gzkwJzJm4+qMPqdV6DMtpUqdpdJKIzGlB2WhRrUhoGVN8mETwy1F4\nFYzabSZDDfJcFbtKgbJWQ7A70QD5eoazVyf0SmksTgnkU4ZDAUXUh8ysxNAR6DkUWINq6uUqo2KT\nWnZMZVqm3TAiVhssXf2Y6LuXcYUi9JqnpF4laWVLyHtd5HoP3z34ip+8cxeN0YNoV9BX1NmYW0Nv\nVNConqML6WjVx4xbPWSjOru7Fey3IqgNU2RCgP7QgLmrRlSLnGYy1Ictwos+9C4nWrkBSepjMDeR\nTAKepVUurC6j7csxqwz0NS10Bh9OBSTrRSyrIZyuVfTWFieJBCcnKUy6GVwRH2eDClpRpFYtM2kZ\n0aCCoIlJoozd6eDlw28xKU3ILHbePHrByoIXI14yO6+IrdxgmGmjm/NQb53zcjtNrzDEEZahm0yx\nWoNoLBImnY0HX33Fx3dvEz+O87a4j/xYwcxiDMfizP9NynsFWXJkaXpfXBlXa503tdZZlZmVJVAC\nKFShIButdrjbOz3DmVmSwyc+kXzi4+4TuTY02zWbnZ3u7Z5tTKPRDVkoAIVCaZFVWam1vpk382qt\nNR8AotvG1tiw4TELc48/3CPMjvvx+MP990Ail6OOiuhdbvxZH+urh8TzAi69DHmhjrEuUHUoyZdk\nhI93OFhYRZKvYJE2oZTmONrxk1Sn6XYaIANxU5bE4TEquR5NuweHXsRYV3C4U6Rr1EEl32A37KNU\nLFMRvYjSMsf7x3h1dtyjOqSuPggdkt7IMet7hkZfJr/jpyRV0tw0TKIUwRc4RtvXiqNR5sHHz4nF\nszS1acgJMkzRAppKlrbeNhLb68iMXmplFV0TnXhaOnj84P53EpZL/lgBQRD+XhCEsCAIy3+AmQVB\nuCkIwtY3qekPrv3vgiBsC4KwIQjC1T/ATwqCsPTNtb8RBEH4LiRKJjQoOKQ4htsp+AoMaPso+LeQ\nqdspygxIlDUm+/sQj3L4kgrKgQx5XRmhqCFVkJMpZhhvt6FU6siWTSikMvJykWChQN6fpP1EP9V0\njXDMh93poN3bhySaJXUUJrsbpJh2kFXYOT3QSzZoIHGQptBIkK0fIhMSNI2oWS5FMA1ZqJcK+OJl\nZIICu76T3Zk5Dh7NoCvnCIUSbC1sIAklOJ69RzWTp1rNIFXVSO8nqcllCOo8Jyav0NRqIrqSILo+\nT0waR63WIYulAai0llm5t0vV2I5/7g52QzfOoTZyZQmFbJUe5wB1lZGuU+M8/vRjhocHSezfI7Fz\nQOgwwebKMjHlJum0jJAmhUwhUj2I09N7kpbXBpm/cR2LzEv74AkCe7vYJRKK5RQGN+hsOrrHetBr\nWkgmZDydXiZWsTB4qZ+6CtKxEraaHbnWTiDoJzJXpmKSk0knOFwPM/v4OdEFHx2TI8RsJQxeNzvZ\nKO3XXkEWqPP0d1/R79ESLybYWl5B6TDj0krQqmwsPX6AydaGylgnEK2i1VcAUJoECvUymB24pBYE\niRRnswvxqEj7v7zCmUvjfPbOP9Dbdo76UQrpDpgSIt//yY9Qq5Qsri5ycvwq/pkU3U1XCOsSrM4t\nc/edewSDGhZ/u8T4GQeqJLT0uHn2s39EK7fz8Kt1LF49gb0wB0ubXHr7RUIzC/SMTeGyWNhenEOl\n1GLsbsd3b43Lb7xN5NE0FbUMR1lGXCHHOWIks5fHfuFlUkv79LWoSXsUqMdbOfLPET3YoBGFajTC\n3uwK8mEXoqKV/TU/675D5MUK8vomHd29DA6e/DZmGioRhSpC3aon5Mtjk2mJr6SIKYvYexX0GCdp\nrUlQNqyoFBbaZUYEkxm1r8hhMU0s3sAxNE6Pw0A5HqbdY6fgrJCs5TA00qQdalwuOYJwSK0iYBO1\n1Cs5ZMUV5FEDplQNjaZCJjjP6MAo1fUwvrUIiUIY72QX9oEmYlU9druLYi1LKqdEaIjU4scYBzz0\nDY/RM3wCGmm67H3ItDqyRj81WRXRUuLh/BOO8ls0dTYRihSoCTbEvAytVqSvx41J2YEExbf+SCxl\n6J28yJ13rmOSxeg+ocZ7WEP6fJvXXnmN9rOTDF/1ILF0MXS6E4emmVapyMB4F2f/+ofYDVZ01RJt\n7ibaBpz0uEyk6xqMJj2FnRwOuYoLb3eTT1cJ3Jxn9eEdlHIpxSe7CNUGXjuc/JNzOC52cGhXsBMu\nUFMX2Vue551/+zENbZb1fI6DnI+ePgWKuo3EzDwzoWOitQpbpWNs3gH0/V3IHVa0mQJFocTi0w3u\nvjvPez/796T3N2kba+PJ/ft0n+kgV0yiUGUZmjpJUCzQLcl9649xzxg5pYBk8ZAmcy+H4U2K8gSy\ntjotOi3NJhcnT59l9GormXyZG+/fwj+/yv76BtvvrSO3ixyuJbB2CBSsUpq8owycG6Z0JGfn4TMi\n6QxCKITBZiSfV1E/iqPr7KdUXWVh7gnSbjVHS0kKyRwGo4uaQsOOVM6t+/fZCucJrSww/c5DZj7d\npv/KIFf+7C/IZnV0nRil70wvQjXLxalBGh4T5qSJzFICfbGOtqFn8vIwQ54znH/lNK7uKeZufMHh\nwwcE7myhMQ/Q+/oAvW90g7mZYvHr199mbY9UMkhzj5pLo9fQDLio61ScefMFpq68yekrE5hO26jI\n5PS5HMT3j/DvHmKr1ugcKiA/14Shf5hXL17lxfM/ZvPWFk8/+pL5W5+zHo2i1k7itY+w+OwJWw+W\nKVRjzPqn2dwJU60LlLJGBsdeoLAXY2lnjt1nKV48/RLXfvgaRU2eRxtryJcLKJU6yv4qjhdMrO0v\nU5pZxdnRzKeffIZobsLmtKKMBeg6P0U8nGd3/y6uiREKxgiBwiaz929TXC8xoBdxjGrxx2PE9Bq2\nIxESIT+Zze1vekgV7/hJJoYvYTltY2ZrgUIlTrYBUnuZokxC1BfB1tqKGAlQigj4DiNs+NPYKiLS\nepGj6BFtXcPotHYq1QB7q1FKuRKehhupwk2pzYGybubkpRdo5OXY1EUaqSKbc6ukVGkEXTNL8XX0\nZTeiKLK3tcX+0hGudjtz8X3KOjnSeghDl5GsKKG/xU1Hdzfajlb0bjPJUowWUUkkUKCxH6YkBUEv\npSJs0+oYQIwGUDpd6C5fJBHzY7tykQ6HCbNYpSaVk1fVqde+E0X54yQK+Dnwyj/B/jfgVqPR6AJu\nfXOOIAj9wJ8AA9/U+Q+CIEi/qfMfgb8Cur45/uk9/9smgP/RARwX2IvGKVnkyHtMDPd24rCrkbV4\nSIUDHMQbxBcfEMiFEQoKBLOcSjmNW+mEhhtFJYtNlqBa1pDLVth7fpdnizsIyJE0ciAaqGeTFDVS\n5FU560dhBG0Nk7ZOd2srmXIIr0NJ1+BJhs6M8nR3EYVQopAvY88pMes6SM4WKG9vka2l0KobJEow\nny0ydrKHTMNIKrwNZZGoWkJWZkTi89OoyXH1jFOrGxGzEqKJAAfzy+ymlpCYraiiZZbDASTlAgA2\n0UTvxR7KtRLdF89TKIeZv30fVbMdwaggoCxx//P3GBzwUKeJ7cAe+tHTyOwN5FoNGpWG9VsHiJ4a\n0WfrLN1/hixXZePpPZ7cWMI4PMjWrTssf/E5wy+e5/DmJm3eAQ4/XCGhS1EN5DioSimk/BQKfvom\n7Mx9NYvNIEXRqiYTDTFyugO5fx/7lSYOqzXKKi2XLk0QTh4Q2Q+QWk5jxUR6dp/TXRP4gkHaJ63U\nPHqC5Sr2qT6cCg1T42Ms3lrh6htnGRvpZHNundJyDrXdSuDZEQC1cBkxW8c/fYO2/26QJx9/xN2l\nXYyTHejjUnRqAY2the38Chv+DF0vnERyYpDPP/yc4uIRmricSlZCXZaiu0nB6pNZRl88gUJM8f0/\nexFdswJZuMzgyVGWHy3x9k/+EqJ+Tp6YYN8fRq1U0HxyjIdfztLQJEhtBrA4WlFpDOz6fWzvTNP/\n6jhLv/kKnwx0Dei4+DK5eIVUoITF4UQV9aPus/PV81mcFGAlRrngIReLY9fKcLdZGXv9+8gaaq7f\n+JzOE30UQhG+vP0FGoONskzH9uP1b0OmLpTQq/RkQzkGB70cBwqILXY8OR21ihPniBFEKwqDwPxX\ns/gzWUoaOcFcCCpVpDUtHosTk6UFqVimljdjKkpYnN7k9swCkkQGIVRDkEiRq4LURA1nTp7G1d6G\nX1Ukm06wsbiMfKwFmd1CIZMlIfjYfn5IXakEhZm6vMTS7AwyqwOXfRDBbqWurGHIZpDpmzHanZT0\nZpydCko6CRRybG1WqWcryI7rtJrdWI12tGWR7IOnVNJBqvIAWpsOeSHBTu33pKH3ZQtVbQ3rWDvT\nAR/LH8+QiSlpGRjgF7/4gPn//CUf/Id7yLVWuts9pM0O9isRDm8lefRv/xZtu4eBiZOEkxFWt/zs\nHx4hTezj6WnF8norqbJIdG4Ry5ADZ0c35155hVA6TqxDRb4h5yij4uG/+5zIIz9tFgdDFhVJf52h\nC8O0nZlC9jyE3ilHntMzfWsNkyuMxiHSXdAiie1ydrgf39wGoj+K2zNKw+pCn5XT0WzgwqujjL/x\nOkZ3D0mjSH9fO6K0BX2zDM/VbqSGGhWFk+X679fzJPoSQ5P9tF09h2pEwkjvCQbHrtBu6CCdSBPc\nPGZlcYfHn24zNXKRV//iJXovncA1OYT3chPJuQRdHgdqsR13l53A3XuEd1ZoudbJ7mEYIXdEzqWn\nxeuhv0WN2uOlGt5l/OI5Rs6OIyhgsL+d8HqIw8V9avUoF1+b5I0f/gSjrMzidgaJMkzXuR7W7mxw\n993foWsy4o8cEQnXeeHSC9z7cIOj2VX8x9PI2mxIjSaMXgUf/+dfM/30ETMLtwlll3B3t5DdinAQ\nX2B/bYfkQZGns8fYXDKkja8/TD2lHizddTp0PRTtNSipqKZyKEUvoYU4OqkdT6GNssWAeWIAhayF\nHtMA68ENbn+wxfaHT1ibXWdh4zGPH94hrahRV9Uo1/OEF3dZnvkCvz/MySuvoO5rYXP6mORTP8Xt\nPZY+uc7myibzX/6Ojh4PpnwOi6uG2Ctjc2GB+uYO+oxAuJyi1CTHeXkUcVnNa3/2U6puL9f/4ecM\nn3iBpvE+EvkiWpWOqYFBcr4koZ08eaFGdDWFwW4EqZ5yl5NiUgoHUUTRQHY/AOUMLm8Hpv4RAHKC\nivRGEpfHhFKvwSQYyU5vI4Ry6NGiUORxydrJ7mVRu+VMvT5KNB6gePCUrLSMXC2ir9pQqlRUelSk\n5Fr6z52mo2cQVYuEXDyO6jiIulGkrszi0VlJhRSsr28hNuTI8iqCO0fI0hAlTi6QQtKIYzOLuDo7\nUCTjqBIGiGlxSjvBlKSWkSCoHGQzcnqcTSR2nnFYqFHM5MgbpBBJkAhmyTU0PL+9SMGtZaDfSXPd\nSHwnhjSiJV2Pk6gdEXm0R+T5DhL+YA38/8P+qCaq0WjcEwSh9Z/AbwEXv8n/F+AO8L9+g/9jo9Eo\nAXuCIGwDk4Ig7AP6RqPxBEAQhF8A3wNu/LHnC2UpR6l9kkktdZ2caMjP6Z5BBGmRpD9DPBtCJkpQ\nr98jZ5IjTe/Qe/FV9MkUK0tztA73IHXqyD7JkymXif3dx4xf6SI4d0Rvl5nEwREJSQ2bTEU+XUKp\nktFoUiOkC6TDBVq6HOjrZWaehRl9YYisL8Xa3SUUATMRXQO3FHJqCfGFLXIaGdF0lcziNvWOJrxO\nCQlfHIf5DLWwj6zMTa2eQlUXWXvwCFEo0tnVi1wWQeVRI0+WefbgGeqajkZRpOHWEclEQSmnkvp6\n5qVS0pEPpnFMtFFNFGk0GoxPnWT1ySobyyHa286xVWwlF4viOaMjNX9Ah/0EeyU9kkM/NUOet9+6\nxru/+5CX3rqKL14kML2I9sIw0pVnqI79VLr6GTnVzY2/+TktF4Y4Wl9n8OpZguv3ULRGaXqxnei9\n51z58x9w5+NPOfPqRTYgrYIAACAASURBVD55/wOmLl1h/eCAsV4V2pZOQqEKpYUDXvrLV/j4735J\n18kpBvq6eTi7TktnL8sLz2jSNkFcRqbZS5dFTamUpxwoE4lFMEcCaE63MPNkmaYeG+ZzTgwGI6mt\nMGWX6uv+UVfROdlLuC4h/CDMydde5+jZI/xHUTZ21ukdHqDlhV6q2SzL1x8haTWhkUvRy02Ye/Qc\n7e/j8uYJ3wtTcOmgqiW6HKNusBJb9VHYjJEYbCabCEJd5OHzD9BMjlBq0dCetfBgep6RU910tNmQ\n12Vs7SyhOHGORDEPRj2iP8tyfhdb/yDNuQOefrXBxX/djiobJRMN0Tf5E778rx8y+acXOTxa5OHD\nZbQGkfMXL1NO7VNSy3jywTKnz+rYP16hS19DpzQhMRuwawVMLYPMPvoEvUf3bcz0tjrZnItgUhXQ\nSk0gpNm5/YB6+yW2Zr6g+sIVDmM3aZOb6Dh/lUo8xPGtDarVGmZ3BwqqyPQyPp//hDaZB3tTP7I2\nA66MCgMltrNZOjo9TJRGWFtcw2gw8vnD+7S1q3AYJzGOeND16JFWJchyEgZ/cBVDusSqf5Hbf7uK\nbchFm+0U9Ley8uksYkmFdURA7XTTZu+gUS4xvbxPeG6HZquXokrF4MVR9hY/Yi2h5fwPXicRX2V1\nZR6bw8mxLkr34EuEj3dYnlvgVP8E7uLvNVGJIymZXIns3BE9Uy9wLK5xWN5CmlVw+SUzB5E8Xc09\nhBae81wOlnQUncaMxCgy3j5OKa6hlK/R7j2LUDimqitQyO9SbXXATA6Lzoj3dB8KpZLjdJWMss7Z\nqQn8oWXcFi0pSR7X/3IJZ9VC8ijOfiaBWl9g7XYOvT6PXOfCU9FSNIm0Kfuo5atE/D7i2hKDV6+R\nNBVpeXWY4GGG3P4GK5ZmcrNBiukcr/z3Z8iLMo7DOzQKaoRClsO1DXRn3ERn9ijolORzIVSbR9/6\nIx0qYGxz4N/dpZgroKw0yJekoHdSs2Vwjg0iMVjQ5PyUQhnW5g5QBPTUFCF29iI4OkxUk2GkrSqK\njwoMXbuMrqFiY+4QmcHIjs+Paa+K+9QU+iELS7fWqRTT+CMRFAktB7590kIai6OLYg42VnZwtXQQ\nzR2g6uphSLrM1mqKdnOEQrxBMpAjuPsQvdqOKBWJqGV4BrRENusEE0kGVUrqggXToAe1rZNMeJmC\ntJnqRoqEsEmxZkdVqtEkWtCJOTKJLIpmJ410DABbk4WqvIX3f/ZLpr53HlerFVwOtFU1igkzX/32\nYwwYEO1FJPI6MkWdZLBMyVhgxNFMpi4h79uhxewGi51UIIGx6xyhdByFsIu+yYJUVqK6d4CjrYOk\npYbS2oPElMKTVVKQVWlrG6MiceMxFTn27fHos7s0sir0Yx3oqjUkoTrJcBm9YpGDuUXymQ5Kaine\n3nbWpmfRb2aJ5fPopYOE5c/wnHIiU7gIJQOIhiI7y2X0DgVGTQOhx05qy09X1xD27grRTRXSNGSM\nga9JgUqHw2kiUaxi1hoZHrBRVI3hsCq4df8OyPIU4lJkBi19g1Ms3tnDrVdSFjrJCBrU0gx1c5Ud\n3xrlowAOnROdQ8rS0wB1fQXXyS5C8QaKoyXEehMb2WlGtTZCOQFdNoBRZ6NxHEGBA8o5TM19JAsZ\ncooEiftp7HYNx7urJOJ7PMs3GBm+hrlZzfyNDxmZeIWnj29zcrIZo8uJXSMiLca4/nAZr9nM0LCX\nUqXB4rNDyuMVNKU0YqeDRHUFh6AiUiki5P00G3VIZVK+i/1zheWORqMR+CYfhG8UeuABnvxBOf83\nWOWb/D/F/5smCMK/Af4NgFqnps08Rri8Q7e2m3IjiMrpoHIYhGKFSjFHvaBEIvVgaTKyM7ODKbwF\npRojl15Glm2gUeSROeTk4iIenRqF0UaLu4HS5eHx9DMcOiOp2Aomq5NN/y6DFidHmX0adiV5X4bq\nlJdY0UdRMojCqMFq0FII7NPU3EV5I87wiUn2o0dUw34GBwbJzK9S16rIRmWkSlIqmTBJaZiUPUnd\ndAlrj8DG9A5hsYBkb49jaRFZSY7OpWdc3U0gnOU4v8XoyDDaXIHHT+5icKq/brBEBuO4m4MvZuh/\nqZXb7z3nxT9/i+a+QTpkOkoaOX0dXlZuzXLitbMsLG0i9OjQbCTwrwY4+9oPmPndI06cvMbMZ6sM\nvNbPQ0mZgb0cg00tbM756G51sbs7T+fABC0KHSlLge18iLgfZCY5DnMDRe8Qic1FhsYuIRHrGPXd\nHPjDSDfD7BRMtHT3kS5GUPb3MP/xY+yiC7XGQCSVI3MQJFo1cHHwDT5/cgeztUBB2Y/R0kLDZiD0\n/hek5GruvD/P9/+HKRLBApWmOr22Jq5//CXjE73IKkYATCYJvqVF2ge7SFk0FOJHePp60GXKtA6e\nJbp6wMHqbdT2Hl77H/+EwLNt5u7Mce6Fs6QKZUR3CzufP+HsW69w993rvP3jV5jdPqDf42TniyiX\nfvJ9bv3mXU68/io12S2UmW5MI3Yii1ukklnO9wxTFKFUq7G9NMPEm1dJLafomxpl5f279L32OgW5\nn3s3buO1diOoZdz+xX0u/ORHRIM+fvvr97hyeRxlXoYuIdL95iXmPr3HwsMPsHaPIj1eZmD4FNOL\n9xgdO8/OwRLShhS1QkmTp4eZWw8ZONtDcPXg2/gJzSdJmmPIig28g52Ed+Kom9sxGKp0j10kqs6h\nkuuoFswYtGU2V6MECztoK3ViMT+FXABJsEYtriLaXscgqaDIi6SlZQ4eP6JRMlO1uollcuQrWXRW\nO31SFVq1nVg5gKpmw67Sk6jmkQlZzJkGx0EJmXyVskVAbGhY3Nig32tFbTeRKCrIpWV02PWEyyXc\nYhmbRYNyuIm8kEUSz1Pc9hML1qhKfKQqCeqiG1F2zMFSkI7+LjRSB5JkiMLxEdVuDQWt/Ft/7KxO\nM9Q+Suqtk+jsWkwLBtznXya+50fR3IZxZZe56WlGtF6U9jJ5STNaix2lwkK+kCHtgXh4hoNPanhP\ntOPMVDFZzNz7v35J9wuTNI008+Fv3kMfyDJ2dpxlf4zkkyUU3R52cnrUZoHs/QT51iKpSB5Nq5ec\nNE9nqwGH0QADRQ6+3EdS15CsRBh9/Qru3h4SdQl3f/ZfKCvk6G0ahnvsVG0yGhYZzj87we5akZXf\n3idYCaMq5TD069HI2+h26Zh5d5a6PMXAidPkdDJEc+Zbf9RFka+uf4W3XUTSKNN35VX2r8+SEQpI\nZDWSO8cohD1kYx0k7DUcx1YijRDupkFGLusIFmLU4gae/fIRtjYH63dWSdX3GJyaxG3yovJ2k9fn\nyUUFMs+CDE962b5VRimVENrfRFY2UdQbiKRWMOdcqNx17vzuPabOnkchy6L2mohG5WSTESiXGDzh\nwXiyF61CSTWYZuvuA7pPn6eprx/J2jYzD59RL0Auo6FrqI0D+SDWSojSWCeGsIzAfJz2tklm7t/G\nmuqjt70V/2EIW/Lr11ayWuB4bp2X37iKutVOdHqD3a1dapokll01tZKE1ksnUWkKFGo5intVglU/\ntqKThtOAt1hE/VI/cl07gadz9Ex6Kcus1GsNEtiQNbXRZbXz9P37NCo6bHY7cqUafxjcbRbmdtdo\nj1moiUGSwx0Y3CKd2naK2QR6r4zQYRm1toFMLyVdaMHyshKdpRPFQoCD6GOIq8gpBQYGx3H19PPw\nvZtIjXXcnXKkriZytQIveu0UCwVKlSrZuA/HpQEOcwdk53Y4CsY4ceUNjKmviba01kBikFPP5okV\na6gVDer5IqV8Br1gIbgawtprp0aEhYUynm4Hx7EkI93NVI4PUDS1UD6qYlLLyQ120q13kRdUGHpb\naYQDRI5y0DhA0+Zg68tljDUt2pyannPNmCNtFOwmRGWd1cXntHSPUi+W6NM1gdTIin2d6lIWtURJ\nvubBXVaQCWwiNbbQPjBFMZelUCxRlrmppeLEyROZSyMmM7T86BzFWoSixIxO0kJDZSIGrIZ9SOMl\nPCODaIsK6qKaclZNrVH9Llzo///uvEaj0RAE4bvNe333e/4t8LcADrujofaWcQU06JsV7B3YkEer\npIty9G0uFHoHh0fbuCRVwjs+9FI9+oiS9bifq9158h4DjUoJQ86D2hVAUiuz9HSNgTPDEE3ikBkZ\nODPC7N1HOHUtHK4e0HbhBDmVmezKNi1jdooSEa+jA90RBDJBVo9itJwYwdY/zMInNznwz1KVK1Br\nTJQyAbYiIS7Lx3gUnUMr0xANNgjO7qOTudCRgVINl1dCLGOhr3+A2tZDslUzRquRsLyK2+Bhb26W\nncNnuJv78bY7OQh/3VRVWZLjeALPSxdYvnMd/WQ/2aIKfaeTO7++ydT5MUwSEx0t44Tu+ugYvkD4\n6Q5Kl5TuqVNsLcwx9v2XefroC3ovnOLpZ3c498rbrHzwMelwnpFTL3O0c0y2lGRgpJWn9wL0vTxO\n7fCQmrqEf81Hy2Q7orNAom6nfrDL3u48DmcrJ7qaef8oxKS9yr1HXzL+vctM3/wVU3/9U57+6gm6\ngwh0yHj1pXGmd/18MfcFp944S3AmSPrxHhqdEn0ljOrNixR++QWuPg2F4yIZW53Wspzo3i7n/vIN\n9h4+R1XJAhAu1iAHEaWZyMYKxvZeNtfuce7UFCurT4jsg21gmGanjdx2mPTBBmdfv0JidRFrt5uS\n1ENuSs6DD55y9q3vc/fTD9FZ7Hy5PEffC2/ywbu/5eyfnqO6lqXnpSHEhJWn716nuacbiVZJwp5B\nEtWgV8uwDw4y/fkmudQeJ90vUmtzU1GpmLu1j6HZSe+kF6Wsj7nFJT7+T/+AXa3h9Z+8wq0P76O1\nKBk+f5rHH9/le6++xhc3PuPocBUHclw9aqYGXubeew8wdigJbq/Sd+EECw9mGLx6AnlBQ2vn73fn\nqUebGRJNJOei5K02ytEAPbIWypUGh7UtDGUD2qSSijyPQvTQ7tVQTToQ+zWoZUa2D7epbWWpCWVs\ndj3FZJz9lSOk6SjGVj1Sk40qUcLhEHW7A2fHCcr7S2i9GvZWV5DeyuEXGrQPOFnbi6B31ygXMxit\nSpo0bgLJAOpaDf9qDtVkByqFBFs2y9b8GiaTlbrSisEuQ+I2UQ+WCavjhMJJlDoDXpMVuVJNORnH\nFwySy0pxFEQkJtAOdmLJ7VN3SDGJvydRzrYmQsdRlN1G9maWSaUafPU3v0WizOI0W2j3dOBpcWKw\ndJAuHDHQpSc4t0s2F6AgltCIGlrOtyE1KDF1KLBhJqqp0tfRif/Tj1i7/YjBk620fK+b9a0a9lqC\ngWtvo5DVieVjHDx5inf4LBFLnEZGQk6ewp4y0fCoqJsjxFLQd+YE1UqFfKSNGz+/Adk0Op2E3n9x\nmiFXK9lkhsdPZjG42pEHMjz59XUmr45RG3HTZbOgyShY9x0SSYbQi0Oo+up4PaeJJdLYCkoyLZpv\n/RFrxGjqb6PZINI4kjL763tUjA0SvjQDvXaS8SCBvRBHG4sc5UU6er24TnSx9GweMdxAXmvgtrcx\n9HIv2eUNjuQl2gomMhthFKcchPe2KAUUZDUFbJkqtf06SUOO2nU/peEmrBUBhVCiq2+SdFCGIq9H\nbTPg823R1tqJwdpDuzyBxeNEVAjc+vlvWdn0Y9ApaB1sA6+JZx99grVngrYzVtqVHtRyPRtffcT9\nR3V6Rwzsb0Lu84+IG2W8OHWGtMmBfaKDfls/u/szKA1Gquavx5Dy3ho5vYDgsLD0dBV5MkzYUKe5\nniIgFWhytDN97wNkaR0quYKBC83ozGPYh3QUjrN8+egWI6+PEpjxoW5yUK/bSC/OcyBkMKkF0kdR\nfIU9mibGWbn1AAlS6qIS54SGwGERfVjBV74VZA4nzswRodAxSf0Kk997jUSwwe78NE02Pc32Uwjh\nECs7y5SkSQRrA1vvOZTDSeyKTsoqJb6ZTcZOj6C21Fn47DGtXf2gM1NKZShpKjQicswnR6nsbbOX\nzuARPZy4NoyuDsvHqa/7RzpH8ckaXSOd5KRS1EodS4t3mdKPYmk3s7NeolRKc2pwiEpOzmZgFXmw\nwH58B/WYGk0hy5krfdy5cYdTbRMgrZDK5WhpciO2NvHVrVmy8hyvWjo4yKUpCCIauQKtw0jZIKcY\nLrK2tkK2EKdJIuX+3gyOiQliO1E6Btv5av0+stguekMbNWeVZl0PB0/9WIY6UGjjTJwZJBg9wNTb\njDSnwzqgIis/RKnOs/ggTpMYpvmEi1y2iKFcoa1uw9vZxN31BxQzeWSaMj2nTiD5+Luonf75JCok\nCIKr0WgEBEFwAeFv8CPA+wflmr7Bjr7J/1P8j1qDOmHfEbm0lH3fEmcmT7K3G2Z+b4/eoTaUJgON\nHT85pZQSBuyGKtJuNefEs8wubtM76qWeEylRpXJoYFcXQKyIiOUyByv79IyNokxVkUjTLAQjjA0M\nMP/lCt2DdgqeCkWpyPbcMnZbnfXkAol1H5YuNye9fYSSNSKNKB6Zi4NsCo9oIrcjRalSIFBDbWhi\nsHOCB7O3cZgF6pk8M58sIKiPGX/1NQLJIsFoErnORb9TR3zRT7IhISI9wJZRI/pzRPNrdPd2cxT+\nWtcfRcCpaiF0tIBzdIySPMPB3DzWkzbava2sPXhIQWXG6ioh15bxzQRwt7nRCB42Hz9k4LVXufvw\nEW6ZiUB8ndeuvcHOyjM6PZ1Ixpp59t4trv34NNWilYP766Rre1S29GhVCmzNQ+zv+Zm5Ps21N4fI\nKLKE0xIaKhsOr4fN2TlefeUSs/dvMPzmKPv3ntE58Qq1qgR9h4XBsU5ixSNuvr/Epcsn2W5TMvO7\nJ/SPTbC+PsOEfYiywUVx5widFkaaT+PbXsXutCBziyzfXkIWrSEqRKqNEgCiVE9ALJH78DPO/k/X\nmP/NY2oJA3euL2LpNNN9cZS9BzMs7/ppbR/Acfk0ySfr6IfdzM0sUI8osTgtNHWIyDQFlEYXTRYP\nyb1jtMkiV753jrtfLCICyu0g5bKJ829d5fZX9+ixW2nk9Ww8m8ZlsNL8wyGyiz4sp9o5PgwjNLQE\ngzEy5SivTL7KxuoR+3Pz/OCn3yO6FsExZECIBZEIWfDlKfbKMDidbK4+4PwPxtjPl/B/MQ+qJJla\nnpe/9yKP7z6mYi+jLMS4dP4CO7sLbK7FENXf7u3A62kCVQV91cvG5/fRSHU8K91GrumgrauT7Ztr\niGYJyaoErcWOwuVkUGvCtxtGZiswPtpHZaRMYC6Fa7iVdKKESi+nqvSy5d+gepim98URLrw2wU6q\nzsqTR7gGXczf9XPt/GUO6yVW5m6Tnj3G0zpA6P4qOWUdc08rVLOcvvYCwX0RiXyH+FqEgtVAOV/A\n++JJQncfs3iYY0jVhlFhRtZnxasQ2bv+Ce1mB9r2dhZu3qXzdD8Tr49SPI4S3i+w+/QhDZmKlqtT\nbH50l3j892OIqZIj2d2JbzGEoK5x9qWTxDZ2iKrlaBRV6kcyRl4Yp+wLoa3piCpdxDrzeGMNsjYj\nxgzceO8rbIjsfqWgdaqDfDYPe3sYWls5cfoMdXmDTKFCcvMW+VKFnHcPeUlL6qBMbbyJeHybtuNW\nDmUpassKnNdUlA60FBMluge6OPKX8RhVPPz0AzqtDsSxQQKbs6w+WEDqzZLKZlDlUiTnI3SMNTM2\nPkZZZkFeS5ANNAgfp7E2Uhi9p0lXd9FEXMgcFewGLSqlHIfG+a0/ipIM9WyZQMWLphwiGi2hqdgY\nuziGWMizFNmgKqqx65yYCwkqwQpP91dQkaO7d5Q13zr2li7kNgslp5PWnWN8mzsU4wl0oSL+HT/5\nkoKOn44QX/DR1NVJJX6A9V9dYu7TOZTqAoWUHMVLSpxNdRQ+LyuzD7FqXJR34viLVXQyNxH/KrG0\nDsfpNroiItN7swR29vAYBxn5q7OUohUKsQolXQq9RIPdNEQ2kOFg2U88nWbk5AX2D/xE0lVcTRoq\nBhMLiXWyu3EshgZ6mwGAoEqgR9NOWS5j7PQQe0tH9JWqaEU1pcQBOnUMo0VNuZwhb9dCVk6pusqX\nu4dk9pVMTjaxvrhHT/cg3jYr4e1F/FUfjsEejDUZh3sJJG4LLa4629okEpkawgfkj9pZWH6Op8+K\nW+dB4rajKGfIJ9O0D3oJJisohAp9zU5EqZTVhUVkggJRbKKUa3Cqf4pctkreaeHpR7Po2uWMDQ0T\nKcvIPd0mUlDT2NjB6e0hVc6zuXyM0ayjX92Ko7sJ31aYVOKI6mqGw2QcZeNriQRVAyfOmJCVizz8\ndJqz37vAifGTSJJSpJY8apsabTyPpaJhteBDOCzgfekSybgPh7kFbb1K/liDRdvB7maajCbAaOsU\nSk2SfNaMtnxIvVzjwbM52pvdZCJhEkKIzHSAYKFEb98JTAo5assJGgU5tqSI7+4K+/kSI+4RLk2e\n4cHsLNV4Fq/GwZ3Fz2iyNGOwZsg2dCjUAvJag0hBibKQRyq30ukaoRY20mWMs18+pBwQ6LU1U80X\nUPUY8JVjFNMqtPYKU0PjpLVG6t/tDwf/bBL1EfBT4N99k374B/ivBEH4PwE3XwvInzYajZogCGlB\nEKaAaeBPgf/7uzyoThWNwUvocJdG0YzC4qJRz2BwS9g92uOUtodWvQ2V0kyjsEUpB428lkohgSxe\n5Ms7t7BpWzEbY6TlkMtX0TsrhDMSjqQ5OkxgELVIyk5EcwGZTiSbDnF/S2Cqb4xnc/MoFDXEUiui\nTEDilOByd/B8bR6FxkuLtIlgPkmToYqqrwdXWSC0kyEbT2BtcaMVBNo0TuSSFjLOJPJsmuq+inSl\njkspUnKqid1fJdPvJNckY8Towl8UONyUU85nqVdTLAc3SFfLAOiTcsR0AUNXG4FACo+jA4kni6Wi\nIpjLUmrSUUxVMLQNMz1zm0mXlyO5jNDjbQbP9rP40XW6LjTT1jnJO7++QWTrd7x87Rrz7z9Af9Bg\n8GoPj37xFN2YlbS0xukTb5Nan6VsrmLsPYU14wFJjLVHx+S7nYwNmyBbxWQyg2hkJ7xMtVTEGFQS\nVMnQVEroUlm8Wi233nuHTuMgk396mfu/+hl1wUL35QHS959y5vxl7nx+AyEtMnztBRBXuHH7fd74\nl1dYvp/D/GIzyY/v0+ssUQ/HcEydAOAoHOPFyxeJNXT8+mf/lWtv/YjiVzMIcjuDo0OEV/cxq/WY\njSLGNhOHz3ZRuNoIr29z5uoP2Vt5QvfoSW78/U0UmgCefj3LDyJoh7sI5gME3jnk1E8vc/dX15n6\nq58Q3d6mXpAwNTxOfnsdk1Pk/NVXuPfVPaxPoyTUMgZKDpxDFubvPMPmLHDu1Fvc+M0zxs5O8fZf\nDnDz3V/TP9iLf89PbLHCCxffYDu9h04SJZ7003t+kFt/fx1L3wnyxgot3XZGRT3v/eIdpv78HInb\nB4SDecK+W0hUDfrP9RHdLH4bMw1RSlkAiV1LObRKeneHckXC1Ms6lFo5bae68B9GMKjSLO0fYGt2\no48EyAg5jvfqSDYiSGVaNEoJFYkVvd1PLSnBt35A10AnwUgV2W6Fsk5PIx3AKJWSm0ki5vapSgax\nlBS0WEeQ6hWE96JYOt2E9yIMOJoJbfgIPgpiaDOTVyvZqR2gKSTpbZmk6NvGNDiJp5Sibrey+mwN\ns1ZGe58Hx8gUiXQQr8uMIt+H0eqmmmygKEkRnWkKa3uUWxrkdkO0TXTixcCvPvklAPNLJdqdh4z/\n+ByJaJQbv72Jp5InpbdgVTnJeg0s/Pu/p6V3gIqhhnx5m4xeicxuRec0cuwu0ZOYRJLwYW3pQiKG\nsKHH9PoVbC0qbv5imlRtD6NJxeAPz+BbyyItxRmw9ZO7IKMc2iXa7iU9s05ZXkYy5OTj//gUc5+e\nk1Yzj377GcFgGpm3jmdAT8uZs+zcmMHlNmApOdBbOnG2F8mainiKDh7feUyHp4nF5xGQ7jJ+9iyH\n9RKCoY4oiSNWvERkWQLpPNLlBHWnlZIu+23/GGrv4ciQQlrL0yh4MFUyUN1mdXEHV9sYAxc6qW7K\nkAn7OFsNJCp2LlkFck4TshoMiRoKxX2Sz/3s70aQGkSkriZUoTiH88s0XE2cudTF3PQabomO1ec3\n0TeZWP7gDq2WXoJCmGaLh6XrBwiqAs2ePkb+1VsI4RyaWJGUP0MkukzruQGkGgGLRsNm6pgL194g\nk80S9a+x88kRKnkGLGqkxxmC+iXsXcMo5BbaPV4UshrHvijihB7fIx+ZQImqIYsulKFlohe1zcbu\nytdL4Aanm2JVwJKOs3WcJrUfo9NrpFCPY1RXUDndqB4LDLzQyWFgg629JUrRHBZLK91X2lFKoM/o\ngVqe549uUo41OH3uVbbm1tmLlNDK8jSLY+zdnaW7Y4z4/haVpnZqZYGO9k7kEhXRUhThwR4NvcBY\nnxe9y0ApVyeZOCAvyHAoVagSApoONa6GG5vXzc27HzLSNUb0Cz9Ks5TY0SHzWyUiqjwOtYqRzh7C\nhQOO0itMjF7Fdr4VhdTC4ewaRYOUQngPfesANqrUIgqKwtcfpgZVjWChhDGlwaBzoJY3uH/rGQ6N\nmW7JECZJg7LCTtliJb2ySE6WY/PBOkaHgv3cHjp7P3X7EdLVHEe5fcbbXiR+tMJGoU71cJregTYK\nvkMGW7ysHq7TO34Z0SxDnzayc7hCTVPFMeTGWHMQ1iro1V4gUqtRWdrGUNSgUqiRJBJ4eocJFUOo\nigKKSo56Wo9YTiOx2em3qqkWsiRKDXSaJLpmA0ubAUS1jgnTBHGnhLwkjihW0MYyzD7aQqEoMd53\ngbQ/gs4EderfiQz9URIlCMI7fC0itwqC4Af+D74mT+8KgvAXgA/4MUCj0VgRBOFdYBWoAv9zo9H4\nf/ncX/P1Tj8VXwvK/6ioHKCGhGR4FbNJilvbw/Tzx5ycmKRSVbF/kKEkzSA2y2h3t9JcbWZ64RmR\nrYfMJYqMXHwZWuZI7wAAIABJREFU6bME1XAYnbGFUn4DT+8w+YUI0chXNOQikeVNZL0nUWqOsfe/\niEGXRd4kxRA/QtHUiXIuSsPgoqaVkVWGcLkGURSi1P37BOtR2i5OUZ6+RzQmJfHkKXq9nHooiev8\nC9hlJSqyArGNDCMGD1lpjvB2DZ1TwfTNGV57eQx/uk7d08zh2jxmpw6tw451P8KRWKKCDEEnRaXV\n0uT/en02pdaTNEmJ3r+FRd+KxKSgZLMQEbPsF/2odTpM4RhuiY7+ictkDtfQu6Rs3lsir34bT6uN\njc0DIkk1F04Nce93Twl6/YgGF8GDVSzKIZRNckYHWljwpVHKJFTkErJJFQ//0wcMvzHO5NnT7Dzf\nRuc1kzmQUDdI+fSXv8Vi9jDxo0EktjoLc89pHu9h5rNZfnDqh8w/2cI9No6qUSL6fJHOiR+QyWwi\nHhQRL48zvzTLxVcvcvvj5xi668hvVnB7rBz6q1hGVGzNb3Hmwnnmnq0gsYJ4qATAbBS4+dUGiu1D\n3nrzFaKhON6+TowVFZ//7n3Mng46zG40miKP3nsPQ3s7FBNo+1zc/flvGP3xWVbvPEWU5dlcXMWu\nFdE0CzT19ZI+rHLm6jBfvvsO5//kDe7/3QeM/niCvZvriK1aUko5xZ0oLbZ2RIuTg61DLpy5SFab\nJr0eJhePsLtVQ4we8uZfvsytz25yOC9j4sffZ+bmIzJ1Az/4qyvcfvdLJl46w0f/+I9c+dc/5sHn\nH3HhL15n9cN1zr55jWe3/x/u3iNG0mzP7vvFF957HxmRGRnpfWWWd93V/bwZ+4YjjiRQjhqZFWeG\n6wcIXHBmpIUECQIIAQSpoaSxb16b97pfm+rqspmVlVnpfWS4DO99xBfxadHCQAsR4kILUnd5711c\nHNx7cXBw/v+zzVnmlId//12OX28zYh+lJahw+iZBHFAsV1H2y3/3ZvLpY5TucdSXFarHKdSiDJ1N\nJHORwKuwcb69TxsV/U4Fpw0USQWl9hCrTkenmKejN9GIFvHNW7HQR5Z20lTkiETm0E7paSry5DMn\nXH55xtT8Ao3SFX3aeMfuUSgIWENtVH0ZRnWT4B0/+WaVyVE1MpOOWq1PXRVnWe1FdTUgIvOg1PUY\nSHIuseLxG2j1JGzdDn1VE2XPR1fqk66mqDayOAthvG4fleaQSkfEbxbwCyqOZAP03RIHGxm++4Nr\nSIL67/B48P1pULn48//mv+fu3DgTY1NoTSJzopX2pJeLn3/C93/nuxx3JGwpOYXpKtddXl5tbFJ4\n/QadUsnK8gwD2xijqyr21i2YHSI7W2kKf37BwnsLLGgm6A9qvPyzJ4yZ7Iy/e53dzXO8xRotScfl\n7s/5zr//a1z99WtGQgZW/tPvkshnaPTaBLVW3vmH90h+fYQhMsf6//A5fZ/A0rdmyKaMbGx+hF4p\no3k5ILtgZ/n2AwrHBXzTIuX+KGevilQ9Q+553ZRSSpKJIybml+nXBoiPugzPmgRvXPs7PE6eH2Kf\nm+Xoy7eoVHLG37tD/OgcK2ouNjYZfN3HplXSM42ytDhK2G3iV3/+V7SaTTRmNeq6RFfvRmfX8+DX\nHvD4zQbDcgZL10h+xIQhVWLnrz+npjGic5Twaa2IQxsjawFMNi+mixRXtQLLt+Y4rp+Ryl2h/PIU\nnSZIdlDD7lBzuJEgUY+hoU1FY0dd73J+foxUrjDjn8N0y0/p8BjxokjDArqWiLI9YNCp8fT1ayK+\nEC6PD0NXy+hPRnn10Rd4rjQoLWakvoQs00Dd+6Y6zy6KeK6PU9/ZQq5SYbVaEQLjZC5OyafKHL/a\nxj5p4Sy6ibqtxRAaZ/quk1rTgMYK8YNDZKkrhgtO5KUWw7qd4188RVToUY42GeR0fPiXf4UhaMeo\nkjEUVIxMj6F3WWiWc1xdZBko1TRUOVanlzlI5+DNBt6+hGlsDV31im5PT13epb91jBQZ5eNfbLO8\nep/oQQKd0Ur7YJuaAazDNpKhh9exgMehYliJUO4W+et/9b8xf2OJQLCIvN1H8Mp5sPw9KroOxmGX\npFaLUfaNfFsXi4yLBrSeFtrdHLLKGmGLmXy9SLGWxmq7Ra61ibohomipMKFgetqO2aOl2m0h9gfs\nn3a4/v40smcD5A6J43yW6vEAt0ZJ3xNCKhdwGC10mgoGiTgt0YvcJOIWq4jCEEvdQ6afQJsDZXAS\nnzyDeXKaK6nEqL2JyuCjVcngnhulnqhRLDQIDduITjtDBQxFG91kk6fbn7A4HcASjrB/9gRf34Fw\n5xoBUY1aZaWBiEzTxGYbMOgo6JV79Nx2iuebIPx/ZCyXJOnf+9csvfev2f9PgH/y/zD/Gpj/NzrV\n/20okMgNNbgFI+4ZL1fbx3QSBTLJFjMTYyTPE/QLKgLeLvl2HaGU4WogoVJBUGfE/OA2xfQVspaS\nhiTxaHqKTw/LDLV6hGqdnhAmnymhr2ogl6Gd8jDpXiKub9BJNrg2f53tZgKP28aLr08JriqoygWW\n7z/kOJ5Hb9Kjv71A6ek58pacjr7A6toan/7tp4QcDkSvEpvXiTniQvc6TW/UiEZhxN495JP1rxGb\nLW7OPuLo8oDWgQ7R0GH34BCr2Uxak0dZ9tJQ9yl0v7ngU1Y7UqWGXphgcspKdO+Q8NoKsVKMkNaM\nPbhEd7bMR598xKNv3yend9A9beF9MIHD7OBp/iOcrtvULjP0ZUMW3pvksp7DIZiZee8hyb0aSqeP\ng2KLEZuK9F4C84QV8VzG1PceUnqxRTZ+Tihwm9zpG1z2VSIzJjZ/Ce4xG/H9PjaPEnPwButvvmL5\n/fdJHsSZuePi8T9/ydjEGO1Oi7GFMiGjnbyyibPapjU1x8Zffsp333nE6//lAxZ+7QGnh0domjXk\nChdvPv0lC6EbjL4/jeLlOTLzNx+g3Cmjt5Pl4e//gL2Pd7G/t4i+0yBxuclqeBJhLMz+p4+JrM7Q\napqJ6Mbwj1tptZIoVkM8/7Nf8jv/+d/n9RdnhCflvProJRbDEpzkEIQBjYGK2+/c4OzpIb/5X/wm\nP/tnn+EdFbFJLsan58hLh1TbaVbCU5wcfUaqWiDxYg/fdIiZ/+AnXB29QaEd4Wf/40fc+d336PbS\nDPINavUhPvWA5N4Osn6Zp89fcH1yidrFCQqFiuLrJE06pE/2sBk8jNwIcLi7y907P+bp375CaRO5\ndSPAyz97CuOTaP4voz2AVjGG7CiFwuHg/R9+i0pfhc9lIVsZoHL0mLzzAF0zw/OTKDrNACx6Rl1u\nXj1/ikEy0FfIGZsIIrjGKKQqZDbe0Ox1Uch2YF+NIXST++/eJZ/pcbB7weTyEt3+EK2+hc3uJpW6\nohPrk8rt0+krUU+MoiwkKQzToCriHr9BVd/BP2YlJTVoCRoOzp/jdo6QfPaYyfnrPPvsFTLNgEtz\nH29jBlW6zZRvmVI2ylAnRx/xQr1GujNkJ/aG8KPb6C1G7jRVvHy+i82Y/zs8zs7StKv7vPu99/BM\n2jmPJ3F0XZxX01Q/iOG6OUV02GdYFIhlSwRtPnY/Xsd0Lcjo3TE6zy5QeqZx6TrsPz4kc5igPbXM\n8PQVSrlEqrZPrmqheZDAp9IjWtTEUydotG18vhvE9RVCFh9XxzUmlr20+0MOz7fx68fZOz+EtonT\nn+9il10R+xcbKIIG1pZ+ncsG6BpJVt+5RzVWpzetRh3Lc/LqGY1aAaVulL5WZMxtwdBKE8+oUDRb\nKM0G8lSwaAakPihhu7dE4vmbv8NDNeigb2vQizIa+hpX2yn6Yg1bJEQqBV7bIq1mmm4uyn5awl/U\nMnPtHeKVLBY6BH1zdFxqBo4esY23aE7q5Htl3K4gC8EAvek0OtsU0Q9/RTLb5v1rAb56vkFk0ok0\nOYJbr6eZk7H+eJOJkJmcU00/3yHXquCsy6kP+qxO+pFcSuJXdW7dXKNajjO8qpJRmVGHrGhNQzpD\nBe5/8A6Jf/GEXiCEyqZCrxpD0atTr6cpjoVQ6QQUdZH5G++T2XqNedyG3qhF0xeRNb6x8gp9A2K8\njck9SS0bJ3Z1SjRdRiV2kHX6OGeCVK/yOMNuSuU+o54IueIZ5ikvpswFZr2XrrJOLtdBr3cjSQWa\negO+oJ7L9QZGi4vwdSc6TReTz8PQJ8Np8lLIpXFrtZz3RBTDAsZOn4utGOVyg4XleXTXQrj7WTI9\nkJkcjMivyA88oA8QGtpRl0u41xxYa0oE1Qy9eBH3+BSybBlR1eUomqXTrDKs1lh7uExt+wrVUogx\no56P/uoJI6M+xv12OiooJqPU0t8oLyac6AxKFOoBdWMflTmDbX4cy0BFV9XEOO6kV14iLwmItiGm\nrI56z05iL0ZbSrHsd5Cr5Eg17VRaJVy5Bnfm7vE89QSVbEhxfYN6t8lBOcqYT0mnEqf65hLzneuE\nVlYZytQUGse83j7n1nvfYyv6jLBhBZm2zdX+G7zah6irGxSyCjTVY3qA1BGRGeTIszEE1Shak4RK\nVcKhNXN51sBwcopKdGJcDDKKlp2Nc+y35zHKlTzZfo3UktFVK4gIEj6Dkag0RPo3tHr/W9+x/E/+\n+E9+Oj49iiBKGO0uWpU8mcQArXLI3N1J2mKfZi9L8SRPPt+lNmigEwxY3B6S6RhVmUS3VKOfq9Ns\n1XCp1eS6F5QaRhaDNlSKASdvXjC6tMrO5SalaoXxG35Mgp1SvkivLDIzNYV8oCO+v0uzXUMwC9jt\nLgaShl7ljEwugbPRo9foM2zKKNV7mGUSh8U0lmqf+Vs3UMpl+IJeoi+SVNsi6NQMklVqlT4j18co\nZ7UUyzEcjyZwTgQxasAgyNBY2oQ9IcqdNG9e7nLz+iKqcJDi2Tbliwqi0Y7aqkWw+zlNZQlaPBRz\np8yFHLzcviAcmuXJp58yrKoQB300gyHu6wEOd3KI1Sxyuw19z0ZkxkMx2aHRyTGtt3H2chPH6gS1\nXouIf4rTw32q7Szhnzwk9vkm0+9dZ+PlKf6JAM+f7XLvwSPOkzvciqxydFjArgCba5KD15uMj6g4\n3a1x+9fvsvH2a8YWVmkX0hxtHjITWWQgl7DZtfSHGg62D7n2W3doqTUkXx4QDM8xtCgYjXjQWU00\nRBG5yopSbeOzTz7gW/MrjD9c5NUnuwzdPexSi8PDGKq2iUq9Tr9xhmvpNomjK669M8dx/IzKWYam\nykk+2+LWwi2qmTon0W2Uei/L33+fk70D4ucXjNxaQF7QUi4lsDtGebV5zPUpG5m2gO/6IrmzGKWj\nPYrNAZfFKGaHguTbJKEVHdlsjfTrQwIeF0K/x+rdOfbWP0XVtiKXdQnY/cSP3+J6cJ985pzp1Tt0\nz1PsxXPcvn+H8nmCck7CPhqmfJ6h0yvici2QuHiBPuTh8jBB6zSG8/1J+tE8KGQ8ffk1AN/5z36C\nVOtx9eol5VYLwWjDajDSbGYQVFbkwyrRzRjdVBWl1kWzXWQ46OH3RmgO8+QqBZRKB8HlUZqxdYZa\nqPSUjBhHkUasUB0gGHyorGYqZ3tUDWbi0SIOnRKFy8ZJLE070aPXqiIbqpkZn0Sn0pNNJ7ApbER8\n43SHQ3QDiWiuic1iRO90oy5XiV6JuEMjXB1sYnSpWZ6/RU8voGlrINDFozOSEmRkL6MEzGG2trfx\nD50002mMgpa2CM34EXmlku2NVwD85B/+Pt6ZEMVsiyc/P0Dv0jDpm8OxZCMvz9CNNqk1ZYwJegwW\nMOq7+FYD2Etyjt5us7z2bbYfvyK585rQD38DtdGMa86GV2dD55JzY3WN6qGMpQk7PZWJRqNE51hk\n+sYsH/zFS3pXCdrdOplElWysQaGdp98qEZgZxWI2Mzvux3trHnFEydrkA1Q+L7XjZ8RTRXojLhJf\nfIWmIYdmEjGTI7i4iNxhQWWWUMsVtBRxmj0DoMRpgc55DkW2gX5gRPPAB1YztfqQr774BIC5ufuU\n95Msf3uJrlJHZCqAqOiSTddZvPsukkHPxIqFYinFxOoCprANwarD0bNwnD4hHmsitKt0C0MsIRXh\nOR81m5fY/lu6xSi9SpnKegn3nJPZ8SmS6RYjk2FkoVEG2TjVppKpOR12p4Zao4dBq+Eyn8Muyela\nrBROtxA9Sty6MF67AZQGXj97i1RI0lE5yRwVULfBbAxSOKrR1yloVIsIpQYX+QI0lTQ1Tupfb5G6\nyhKNrtPY2kPW7BFN1Whla7Q7A2T6Fo8/f8Xy1DJ1nYSoMTGq1aMLGBHkkC1doNLZWFkMYFueZGrS\niUsXIH6xRavbR8yUKcfPOUgVkQZDXNNB7KYR3rzZRCc48PgNRC+OMQtdugY5xeQQr6CkXkyQPD9G\n67UjV8hoqg00Cg0iD5Zw+4z4vQHKzRSl/WMyJwlyAzPNiyRTgRDmgUQyW8HQgtjJKYnoCbHiGYo+\nzEyYOTpOU8/FiFyfIx8tYTYo0N6cpHzepaXKc7xTJVVIsvqT79KO13m1t87lVR5VS0AwK3nx6jV3\n7iyiFXzU22k6ZQNKS5DEToqWpoFF48BRVNNXdNBgxGHt4Fu5hUkhoLFLxJI55C7onOVxhE3Y/KOY\nMKPSDVDoBExKC0q5hkg4zNmbC6av30LmsHNxdUGvkCfoHiO1tYHNM4ZTcmD361F2JLq5Bl2HHJ9V\nT9PSQT4QyTb7hGfHSKWzmEQRi83PwUYK37QSs0GiIZo5Pzhn+uEY/rAfhV3BRChC8jLHeSVD2G9B\n3xTo1+v0OkPsSh1j190MJRlb22fEzs75g3/0/56d928/ifrTP/npf/0f/R6OqTAqo5VCOUepkUA9\nlFDp5ZycHyLveym2kyhMZnQ9O6MPpjGHdGTPowx7A6ZG7WwfXqCVJEb9K9SkIlJLzcrsPAc7KdoK\nLW6lgUynT7dRx6XzcnFySbR3hcvnQRzK0FiGnFYyeIMudDIDXZmBw+Mv0bXsmK1O5NgoqmrMzUaQ\nWh30HidWjYF0LodkalE6j2MecXJ2+QY6bTp6DaHQCGafGU2/QStTYujuo4nWoWXk8PKK2TEPG68v\naGYr6GRGXm6sMz0S4trdGxgcWtqDHpV2Gq/VQDF7hdtnoiOKKAYC8UqFO/M3ePPVX/POj34PTa+G\nd8aDiMjeJ09Z/EGE9tDC9IyHs6dfEFqM0JYktr86JS/Fmbm9wMUXr5F1CmRlcqYsSjr1AoXjGrev\nrVKsy/EZHRSTxwzSLdLKNN95//t8+D//SxZ/+12o1kkmD7j7o0fkTTriv9pHUpWw6kYox6KY7Vps\n76zx+Z9/gE5hxqZXkIoXMF93Yx24efbRp8gEOQNVA53QxOkZ43Bjm7V3l2gXu8jVaT79xRMe/fCH\nNPfaLK6N0e826A5FhnklU+9co5g+w+qf5c3jJ9xZXOL84DW5eJfV76yQ2Tpg9JYbtbJNLnlIW1IR\ncTv4+ouv+OH772NWqLCHveQHJaRWD9VAotuOYTV7QQ/7r56xdC1IvFuhVW9xf3WNYrHG1PU7pLfK\nCGYRhdyGZXWco/W3HG6nmbgexKhVsfVmnYWpO3RMcPxqC73Cjitk5Ch5iWswQNnT01Q1MbkN2FUa\nspk9ypkew14B6+Iy0WevcBsUpFsl7KKC0Nws2V6H5199E0DsVRgwyAzIXDaWHy5Q2L3k2cstWuUO\n5eMoSp0K9405kEsIkyam/EaSuyWUOgU2tR1FNc/INROWlhKr08XuTgmtbkg2XaUmprFrFXRkLY43\n1tFIOsrJCrPXTNgic+x9+hk3bk4xsBlZ8EzTpI0m4GNg6jIxMotizEH27R6Jk3OaBj1Ko5Ho3gnt\ntIRQy+ANGLBMj+G7MUmjL0e8OsetNCOFQ3TOozz+coN712+jLVuh3cB4fZqTzFtqFTmhSS+J3Akz\nDx6iEhx8+aufAzA9vkYt20Jea9Gvdwg7FRyLfU63jpBOBJSjStSoaTQzyORNSpkh0dM8Dr2b6Ykw\ntX4Bg1NLXqPl8JM9GhsvqVTboFJQyGdJFDKMTTpoe/QMuxKTvhD6STPb0RhTPg0DoUNkZoyp0RB9\nowpzvojl1k3ODteRhuPk8wn67QHKrJlso0Ll7WtCy7cIWlzEvvySjuRBI29hnHHSddiw6nS43X5K\ne+c0pCYjKh/OkA8p1oTegL2Dt0xec1LUyhDbBnLZDJZaj8+efQHAf/Jf/ZdMLM7RUw9oVeKcbkWR\ncmnqTRX9YRHVWZHLQhfpqkk620YQrGSO3zJAjyDXEnQM6PVymGZmMTbrlLtyxO0ras0uK//gJ8TX\nswzEPNleHZnFjn9ES12j5XL3Jea5ORwKDWQt6FwCA7eR7HmBsNqA2qbDGVJSKjXpJQZYvVbOL+OY\n9SFU6iqhH/+IMeUA/byb/cstRoImrHoFjtsejK4wsf0kUm9I6MZN+npIxC4ZWVzC7bTTrfWRvH40\nggbblAOXc5JMLcuLL5/zne/dYSCXMHkEpKsOtqCXQqmCsdVDmNQj9JS8/viI0mma+NEGVp2fek+L\n3y5iG5mmuZdg7vYKJp1Iqwlerxd0AsqODoXdzaBlxGAK4XH06PVLdCxO1Dorxogbi9tKv6pkRGtE\npnciufRY7XqOX+xQbEmoRsbwzhuxCxYSsWO2jrJcn5tifWcLpbzDyNgIhkCIgFZNx+iloc9jaAwJ\nLYfJFOOYnHK0DicnL7ZRNFW4/Dqmrk0hFKocvXxLo1HFatdj93tw6318+vgzvv2j2ySibVC7mRhV\nolDq6FqrRL/cxTMf4LR6gFfrxyTJUCv9xMQTWm01aquWKX+Aza8u0HSaDCoV0gcHXJyfoLf46FmM\n2J0OzEY1ogiZfI6ZMS8arZxEtITUbOL1GzipdBFrfUY8cqomFXLJy3bpaxbDAQqCGU9DxmWmjHzQ\npdfSMx5yYFtZRalvYVlykUuVeLuTo5euMr/i4vLshJAryOHZDrqqBu+MjUmTH0GmY6ioo5n2olM4\n6cSTBAOjVHtFUkU4O9jmj/7wj/7dJ1F//Mf/9Ke/83v/MXVJQTWbpVNqYFT2EJUu7EY3/XQdjVqg\nU+9hqddQBkOoiy2UfSVXh5c4Iy78nllqJ3FURgUWp5pmskW236GVr6DuF1h6dIdoKo2i20SnkUik\nG6zMTVPIndKOFpChQe9xIeXOmfKvkOpn8A005BpV1Pkm6aso6XIRVU9OqdSkVS4RuLHEwf4uSkFJ\nLy2S7qjQOWxkClVAj1Uhp1jIMh5YJpvpkBnGaZQGzH/vPTQDBY1qE6tPQSbRQGmXU1B12Xv+hsDk\nKp7lEcqHCWQ2EcNghlyzw4RJT/wsjU8NuUIRaTCgP5QoDdSERjxoJv0cvTqgL5no9Lssh5bY+PIF\nclMf7/U12sUaylEH2moJtcpP4fiYlR/dpq23Mci0iJXj2CduUz05ozduwZBIo5s2svXiAK/aj9Ua\nInuWxOd34h518OLxFoF7q6z/7S8Ypvvo7T48txZJfH2AWy5hv3ad5x9/wMNb73J2Ekchb+Ne8ZB8\nfUo702J+OsD0u3PsvEoS8M1RK5xSK/aJHsWxjHvQKId8/MHnvPuj36TWLXD4Zo9aW0+93aMr6nGa\n26hlPi7jJ/jmRtHIDHTloAtLpPdPCK5E2Pj5MwrZLu47UwyvChjcLsx2PRt7G3hWbvHFx3+Ly+Pl\nfKtE8MYs8WyLxbUFLuNppmcj7D9+ws2p++gDCvafv0GU+alHDwjc9iDoI7jHlZw8ecONyXtM+OyY\nIhE2f/YlN7/999g5+ohSscP0tQUMSpGtpwdYbHoWv32fvccHzP1wjav4Ke5gELV7kpF5D92rLKnc\nGZLSiK4Bs3dvIxpg42iLvtRh69kmAL/3nd+hG+qSvehjDFmRW7RUUhXsbiUzKyu8PdiHZByVWiD1\n6hShrOJKXcDYBoVrhNNGFrMygM5nRya3YnEakXXKpCtl1B4ProCX8mGSolDGpjFT1na5Sl9RqbYZ\nMUTouRWYq0N2ShcoBw1GvBEElYNh6Yyz8wtG9FYck0H0CjMmo4lGMktoeZ6eWU1Hp8Zs03O5c8VM\n0INe5kMcGtGZRC73L1Eix6CS0AWM7KWTRHQayimJoUFC2xfIZ0XqpSMCfjcff/gRALcmI+gVEpJU\nYW7hGq6gj0ouyfijGabGnfQraSbXbuGcHSdxXqeVkbC7PJR7NXLlEr14FPvMMhahjA0Ho6tuGqom\nPtsovVoOk3+SdCrDMFonp2yR2DxGEDWEHy7RUEiYPQ5Osk3SsRw6h4qWY0ghdsnK5DRdWRuVXs7u\n40MU4glFBVhnZ8i2OmROEiysjTFxc42uQ4kiqUI2VFOtdUjtbxOYWWZYk3PZH5LP5TDftlDr9lC6\nDXBaJtGuUU/WCZhN1KUiT75+DsC1qetETy/JJct4p5w4IhZkRj/X34kgF53snuxinhhjfiJAtlmn\nsXvC3Pu3MWjlFOKHjC9EqIlyTJKWjefbtDo1Zt+dwTc3Q/mX69icJpyzBhJHJWpXNbL9IROTXgxd\nNwe//CsasRax01dk6nqkbI3pdyI8/egN7ViafFLg3ve/QzR+wsHWOlJDYFBOI9cMUUgDNG4V2qQW\n40BJNy/imhrhYjfD7ufrTI1YsTi1tEtJRmZnGAt7iX7wBQ2VHKvfS8ikxDg9ze7jr7gqXKEXjTx/\n9ZTf+vZvYJyaYFDpI9mrFNt6dFIZWVvNWGCGzPorelo1toiC+9//DTRGC7ZxDan1NPHEKYpRB/4p\nM3KdHalZQ6bRE1jwUd7aRquSYxnToekL9GtdksddRtw2JO2QJx99wsGr18gVbSzzo3gNbZJHcdpn\nXQzOIL6ZMGHnOE6XG6tb4NnGPtORVWxjOiYiK4QDo1TabSbNFvSBEQ6fvqJWaKDzjdFIl6jtnSFT\nqzh+vIVWUCD55Sw9uI+mrUBStxGVQ6y+Wfp1BWt3F2k1Y3zyq2d86+672Jwe5KMazl6e49d6KYhQ\nb2eZC05gHdoQ0NPpxtDYjezsviQUCBJ/9QKdR0+hkCWwMIVvchajw4su6CWkljM029jZeYNb6aZi\nllNKVgg7aiGTAAAgAElEQVRMBOhqNLQaAsGlKVQaG/lYjPD0DFqzkvXjLXrJCqW2gM+rQdPs07fI\nKL89Y2nmBmnyeLzjDDV99EotgxYcbb5lbfUWtegWV7kBMqUF07gS8bBBXd5DcHuwqGtUdQN6Bi3Z\nnTwjRgGdY5TzaIWu7Iq5ST9PvnrNH/7BP/p3n0T9yX/73/108dE97MMW0b0ETavIdGCJsCcAugbp\nsys6XWhrW+Q7Ek1Fgs6wDY0BveEQhdeETunmStamr1QQHA2SODzAZnaSE/Ng9VHYu6Dby9KRrBi7\nMvReOWVlm6Apgow2uVqVibAVqWklnWsSjUcZHYsg6w8RHHbqxg7UjEzcX6HQylActllzjyOXCwzF\nBvmBhEkhkksXcIt6muU6fWUdg0/P9JSTvb0Lur06OrOeuYkIF/Eo5okQ8kqHbDKJQjAi72p48/oF\njxbn6GRSSKKNsbsRvvzZJ/zgx++wGUsyNrHESfSYscgS7askJr0PoVxEETDRLA6oCm2GlRpzExNs\nffmM+W89wlBtISg06CJjXH12gGdUjqxtQBHx8/KzJ5gb31SHVbNDRhbNlHptlDU5R9EUEZ+DaCzF\nzd9YYfciiToTpWx0EotdEDZ5aJwnWFy4zdv0Oo/uzbLz4XOsS25cBi8HlTwjFhuBET2KUR1Voc3J\nh3G0mi5jj65RLF6w/kmKyKIDh9tG32wlc3KOVa4hW4+hCVj47G++4PaDu7isXuSCidlbLhTtLtdu\njrP5wS5YnZA/ot0bUtxJEJicQ64ykYglGBmfYDqyyFXqnNjhJVaPi/2jQ9ZurWBX6Th48Zbrd+fI\nnvaZX/bw/PEX3P7WFLG3CcTjOnJtC8/CI7a+fol3aYb4cZbwtQgTawHq2QGmWgch26TeaPHm/C2e\n0Uk6jQSxTpH0RZp7jx4y7g5yFD/Bo7KgH9dSTbZpn2TwfucuZ+tbLD1a5It/+QzsLTLJBKgVrK08\nolROc+O9Bb5af06n1+TBt3/IcCvK483XANz/D3+bXltGtl1FJpYRbGqEgwqxfBOTYcAg3aV6VaCZ\nq9G0QN+oQFVv0vW7GXGbSZ8mGbGMoLdAWTEEuRJdR06+2ULQNDHmepRaFQTJQL3cQNfuUi+38Jp7\nTN29R703oCmvU96I41110ankqJ2eINcbyWbqOENB4lcxrk7zmGcCdJtVxqdtWJ0WAnobtXaL3Pob\nukEdUr/E7uVLukkZA5mIZy2CumNiqBkylOqM+CdRqAY4xAGZtgy6ecwqO2qNkk8//RSA3//TP8Bm\ndtHoqikIDVJvT2kqFex9cky2FoW+g7dfb3Lx0SZjfgeOkAG9qYrv3jX02jyu6TClyyuEppw+Vwy1\nJhxANiPD6bGiHWa5uswQvrvApHuMYntAcGGUl//TX5BOp9FUwNzuMu4eRdOugdaOcSjxYmcbS0mD\nSmdgas2E3rZMKdFALdZwFnqMTa+QPj3mtBglbJ1EseKj1cohbymptiU6p/so1Rpa1Th0BDpvisRr\ncSL3F5C5ArQFBT6NgpBLi8Ws5m8++iaAeO0HDxiftFDvJzh+muF0M47Jpiab6WHSisxPz3N5tIlt\nJMCw0MIoKTgvVbHJexh6Vp7svGLk2i0Sn29Tk7foJocIdRWJSo3A9RC+kBaVxoZ9KkJ41k0vfkIi\nnyR+FcdmVjMw6TCOj5MvVdH0zymeKlmYHGX8B/ex+gxcPttjcfYmfVOZ0J0xuk4NjvERNv7yCWeH\nJWbeceEemSJflTg5P0LrUONY9BK2L3J5ViIrXFI6S2Pvq+ibvdQrLeRKCavDRelqn5Xbs+gjiwjd\nJo+/+IIH71/n8MsdylcVutE+Cq0Fh8NKX13j2bOnhCeuY1sYxeMM8dGf/YyrUp6r5DYhp4nQwipj\n4zoy6x1UXRnpUp7eUKTwPE7XMyQScKOSu6klTjnpxFEr6/QzGbqJGtMzt5lacaB0BxicJ8mcFlDY\nLbj9AWw6AZfbx+aH/zutsxL7F0nm5+4wvqjgfDfO/t/+AoXdhX8qQOIgQ6FWpZYTmV904tOpyebb\nzL97g8ujBNalSRYerDFuWSRzeEK6luNyN44gqyGIada+v0ZpJ0Ynpeez9c+5ufI90q00kwY3GTFH\nuVwldrqO0OmjC3uxabwM7W3MHQsDZZ+Tkwxhp5lYPM6oK0K5VCUYiSBTyTEY+xi1fsRGHkoSqfY5\nxmk/YZkfxYyew909gko/vqAdtUpg46tXNEQt4Uk7rUEVq8tFp9mAlkAuV8Zv8KOoNyheVjF5/YyN\nB9GqW1TTIs16hWKsTrFawu01kqlXUOYULK/MYB6o2Djdp2uAgMtAvmdFleqjFuHt7mu8q7NI8j46\nixpJIWBUjvHFrz7mj/7o/wdK1D/90z/+6W/9xne4OBE5jD/lvbUbJPMZ/B4LO/tRylKBoSDDajUi\naRWoCyI6g4d+vcj492/RK/SwqOSIl3lm7oURGzqquRb2yDg31hbY3znFGLFQjuexKK30B20qxSKl\neoNCrcn0tx4iU9fodtroRQOH+Q1sgw57xwm6nQZanwaPfRKzrofbp8btHKebbGDTOkgqe/TLcbrK\nGsOhnNXINYrlHboqKzq5ibBfy/7XcabvTzNiXWA6YmCQ15Ku5tB3OxhkCqRiBdHYwqTQ8+zFc+5f\nu0Vw+RZadY3nf7PFym9eZ/fjp/TLXRTFGs5rCxy8eIYv6MMa0BFLZ+kVTqgprLg9ED8p4p8fpUiS\nvkZD8qBMrS7HoesyNm/n8d+8pBs0s+K0UCsXCd2cZXg1wBKeYXhVoFtrE1h20M7IUM8FyF/kqFf7\nXH8QodkQGWpstNsduvUWXUUDm1pNb+AhL+/jcVmpHF8wMjNJOxZndMrF+hdPCQWu087JmPrxXYqN\nMun1HRxjIRYWXWQv27hUTjZfPmHp/RUq6SaOgBvV0Mmnv/iQH/32D8ntH1Ct9AiEvWRSR7iMk7Ta\nDSpigakH75M7jqGbcKAxtdHodcSv0ly/dYNWMUHmssT7t95B0OrRCTLKPTnKoUSsdIpZb6FVTmHR\n6aAtR6zb2ds5weZWYDFOcXD0Eo0goPGM02umOXtzjORwYZ+MEP/kM8a+tUJPp2J1epKe2MbusDNm\nGOOwdIlqKKEPejjeekPk2jVK0T6eKTW5WobWaRa1rIy6rMQzr6N0WWdqdolCvs7p633asjbt+IDF\n67e43DsjUUiiQsfTly8A8GgDWIxGRkfUOHRW5GYzkZUZPAElyHqU4h1sMzO47gfR1NQYRow4/CNc\n7e8SO0vx4M481jknw1obLBpapTZmQY/FryFg9ZIcZrn+7fdYWvGh8YdxT8wyM+Hi+G0KulU8wQBi\nDxzzdipRI2H/FE29mdDYGKGJMXq1PtPzXg5OrzD21QzFMiqVlvSLGCevt9H7dYws3UalMOJQOgjO\nTpOP56gUMrSvyuhnp3APzSj1Ck5fbSINBQbdGr1UkpXr71EyNdjb32V/65veahO2WxzsXyEgR6yI\nuMZtrI6Oo6NJva5g7uYs4XAYydylmM1jsilJxzocZ/fpdV1kz1JctU3oqgKymTEG6BhfCdNtJlBb\n1ewfJjGZg5i1Ht4mX+JbsHGVgMllHSHPTQbjAoq8GnNEjcE+gc1WQzk6R2F9m9C9EGKlROVEYHNj\nh0GvxUjYhirkRGyp0U84yK4fY9Q6ePZ//IxCLs3s6gKyVhvjcgirTY93PoLtuot6V4Y34kOeF/n6\n5x8iqMuE70+gEMK0w14+/Od/BsCNhTVUDT1CtkZf1sFh91FtD6DcxCrvUg8E8PQkVAOJSitBqq9g\nxuFCHnJwtrOP3+xGQ52spozQVCPYa1AoE5iIoPRCV6lDSgnENqJk83lsbgPiURH/rSm8gRG6Z12y\n3Sg/+u0fI3PNYVlwM7SKiOk+3WaV5NEZ/hsmZK5prMUBtXaWdnmAaFPgM+oR5WZkwy4utUBqmMWP\nn4vtMoYxLa5RkbnVVeTyIaXTOoJVxBCyEwxZsHn9tNsyTEYPQqpAOlPl+csnvHf7W+jMHfqVJhW6\nrD2cQmbQoa5rKHQrpA5jFApXaLsttDod/pASpWSh5TaiUcooFER6miK761HsJh2yoUi/o6KcT9Lq\nlTg8aYK1i6aiQ8xWaEomFFYHDo+KocGIUJJx+PI5+WYTs2BDPeWnZzNQfPGMar9HojFgacyDb8LJ\n8UGcbk3BaGAKuaZDw9lD1zJj91jYzbxFnhSJNRuE164hUSS7d8Ig3eU0dk44rEBn8uMy2BClCibf\nDLnDHHvRLNXdFOVhhc29t7zz4zWCzgn2Xm5SKxcYnfEyEXEj1UT2tjJMRKwo1D1SDYGuRkUrXid+\nkcWgbdNsGchW8uwndijupWidlxjoLfTsanSCErnVSLtYxzxiw64YktsoovLZkYYCxYN96rIaBpWI\nta1G6bEyFPSM+lxkT85xXAsxHBiQW2z4PCP0BTmSWcFQrcFqVvBie5t2sYhba6DTbxG+9w4K35Cd\nLx5jnwnSoUG1UiE4MkM0HkWMH6G0TnJtbQaTvIXQ09FrN2m1DKitEl998Tn/+A//8b/7JOpP//RP\nfjqldVEv5BkL+7F6dBh1JjoWLRsv1jGJEubRMEa7DrnKQV+tZT40T3MwoHJRQiHIcQYs5EotPGNT\n9Jtt8le7BOamaagb0BQYmxhDUeyTVeZAJsOpH0caGBE1cQIqIycHSSZGp9je2KDUbTC68AghF0Mz\n6sIs02C1GrEFrKQuYridVg4S56SrRXLnFyhMGsSuhNOkQjCrEfN1HNcWyCTeUhOcDDsVbJMhBnIZ\ne0+2KAy6LLhHUXuhr3WRypxTr2gxi/D1m1csR+5QcfYZuTZLqyTDYxvl4NUFIzcmqJSOmL85T9Uy\nZHAc4/DtGQ//3nc42r1ixKWlZXLQ3D3BYgsz7p/hYuslY2MRxGCRcrJO9lLCt+Qjn6ninDBwuSdS\n3d1HmJokmU0QmfRTKJWQF+tYQ1bqR2cYFsdI7m7SzZTRhRx4jQHK0ikzgQX6YgXvzVF2DteZvz7L\n4S8foxj3Ia806LlDbH/2lNnVu7S0VZoqDaWtCxYiYbLZGL2uBqfLRLcvoxArUWs3Wb6xwNtXm6Rz\nMSyRRb784G/4tfv36UhKuooB6VQVpTLA26dbGGwtvOGbJNY3wWHHPR4hVymjqotoen02n51QLjeR\n+UVOUntY+wKO25Psbx4xEfLjtGmwTYdRDqCnHGKxeth+84oxjx6/e4azjV8SXl4iWsmhSiWoDNss\nP7xG/XKX0vMCOSQcTi9v119xfHmJqd1FZrWx/uWHBI1ejC4VO49fMv+9NaInOUx9CaXLQE+u5MbD\neTJb58RjdcJTcxTKLQydOue5A95/99fIFPK41kIcfrbDt3/3EZpuC7Fb4aun3yhRP/n1e9g8Qcpv\nT7HNBWHgQCqXGBqVOM1BtN4uQtCAyaykiw6zfJQRj8BRMYvUrOONeLAIAaRmE7Qm+u0ue6kNPNZx\n9l4+p1vr4x8fp11XI8u3MKhFNk4uqOZrLC4t0LQ4MBZyxPYq6K1NBJOCvlpJp9hGqRU5KSYwKrRc\nxHYZX11AYR1FaxuSeZmigUC70CN5WaA/aJNoVymlojhddnQjWkJjEQSLgEqe52ArgUKhQZAq1IxG\nih2R4KiV6OkJsqSc7ZNtAH73t37MdMSJPajE7XKQaJa4ePocw3gYt3OM05N1dl+8ROUwcXPhHpmO\nHPFyH5fFiFYrUauJzMyOYzUZyUkHtM8VPN9/jkI+gdpmRzmiY2Jqkoa8x8hAzsbHB4TkXYKLDzn5\n/C9wj0boa6DmGPDq2Vccbx5x+Hod9+oE7dMGc/cjpHMS924H0Xg0KLtN3hxXqW+sk4mfcftbP6Iu\nXjF7K0JVLUNtlehmWsiTeRK6NqnLOql/tYdZraLd61PWqQlM+rE63RSenZPe2WHrydccHJ8AcOO7\nq+imRmkpO/jmZjDNmZgZs6EN+imJJuIvvySTOCcvaVBr9IysLWLpDigcn9CU25BXKpznu3iNOu7+\n+Hu4rTY6qTpb5xvYtUZkZQeaOSXlXo7AVJiBykF41kPpPIlap2Q440PfL3OxG6VYqNB4u4td9GMy\nDihUZcicOnrZPAqFFvuIE7/agYCSXrwBRiv+hXHKB1UOLr+mfppHrOVpdEuEvE4y+R4nT3bxOI2k\npCrVt0k6sSinpxlal1ES0RKN2hXtUh+Dvc7nX75i5t5tOp0Cur6aiXE/J7EGbz77EmXIhMsQwOsx\ns3ptmp7dikLVoxqrYVIZ0HXUXOzF8F2bpC4I9NuXVMsNlpfHcY/NMrowhS0UwrM8zrCgRBXUoxh3\ncmNmFde4ho3Hz4geJ+hVa4Tv3WVqbRLBOcL2L35F6+QIndnExMoS2ikXqfVLbHMOtH0zoWkVhqAS\ntddPIzqg0CkzKJyi1UUwzLqZGouwvbWJ/KpCzqTDENARub2MrO7k5x/8r4j5MubVVVK7mzT6VVYm\npzGGnUhuM88+e8yPZ3/M7skb2jqBxbEp5A41Yt/CXiXNotVI1eKk25Sh6TaRKUDW7SHUOywuPSB5\nfoJMpkZqdll5+A6VVIrLi/+Tu/dakvRAz/SedH96731WZWV5376B7gYawAAYjCGHsaTIWGoVIYXM\nKZfU8ZwolityeaZLUGglmiE5nAFmBkCjfVd3eW+z0nvvfeoAEboHzV088X3v+7x5Zpb9lHNNRIyx\nO31UC1VGbSmx5BWOkJ3k5muUwUVGpQTV1oCzdo5OrYG2KmUwrlBBYEoIMBbEDAwypLISiUQVv1hH\nI1cg2msgKuRZvLNArhCnXVejsViQC2LIjxlW+iQTRbQDKcHZINevXmFZWEPhGVErlBG17GDu0Bn1\n8XtcSEp5nrx4y1/+x9+DYPl/+du//rnXN0XRJGdu5QGvt75lKuhEUNlJvL1A5lAy7ZkkGz9CKZWj\nrDcweMZ0kkkMei0DuwyUVuTNBAaHk0K+An01I6mExMUZM6s+ZG0xVydZpudCSMxqphYCGOc0SDJq\nRgYX7dwVuXSZVk3AJEBoYY3zdhZZa8js9Cz5oYACBT1Zi2pFQ7pwwbzRTKpZQDtQU5SMUZnUeNx+\nMpEkBqmedCMFPRm35ifQSI0Um20aiQQS7RjLopl+W4mKNqKuHJnZQbx2xf7WPvfW7DgmAmQ3L7Cs\neEhuhVmZX2T25jRbX5/jCjlwazVsbVziWblB+6iA4q6H/NYxouSY9z/9lIPf/iuiKRUykYfr4wj6\n6SXSR/vYLWOu352iHRox2J2YA12iF20WbntRlpocb1zgCDopZJpkNuNMfL5M7lWc22uP2dx9R8ju\n5igRZdqip9fvYDPM8urkBQHjItlXx9z+4HPsq0GefL2PdcqKTGjiWr/B0asDvB4Dua0dRrUBS589\nRG2V8HxjD0XfgtOvpDYec7W3y/pPP6LVKEF9yIvn3/HhvR8TeLjI1c4bpCMp97/wMn3TQSw7Ihnd\nY6wS41kIkn/5G2RdG4KtT2h6iumJRSqdNA6pj8WZeQ6fbRDO1bhx/wM2/vUXuHVzbH/3Dp1tjuzZ\nHkqpEvftEP4ZB0qdmI7Xh1EhkDlPYZpapt8WMx20ohibUITUBAQnO0dvuXFvFs/MLfKnBwykQ3pK\nAfv8Cpl0A28oyMnJBZ1EEt38BLtff0NAN8Hm6xMcE34W7i/w1T//irVP1lCIQBhP0tGO0MgEkKlZ\neuznl//wCywT86RiKTbffl9jDzxagEGHxFGU+sCAecJKszmiel2h1m9SqoqR5WIIWjmR786ZXfCS\n6cq5erWBeCBj0O1yFLmk1mmj1ho4fPccw1CJOuDGr1NitLiQaaRozCqGvQJH0QssoiElSRGXdgK9\nWEe1WMGsM9Fs5XFpQsgtPeTqPuXrCmaZg6IsR+5cgstlIh49Jb7VQDEvoOt1sE9acdoncdvkiFNp\nGqMBRouZhkiHfCRCkHTpFRSIy2POeqcITT2VXhlTQ4k6MEUlcYnWKeb16x0Aln64jKzQ5OJpgcPz\nl7SrSvQTU4jJ042O8KwtYnqwwripIh8+pFdqY370AKQNyseXCDNaItkmw3SRRlrBzT9co3EaZtS5\nIp254s78TX73b1+Sq2aoiVvMzXjplUdsvvkNK7c+ItxrUNvZJhdJsLbwAbOLqziUWjwLa+QzV5z/\nOsfI1KK+d4ZhfpF0K8GHD++ifLCEViawffod3Y4Py5QDi8dH+MsNPAtuim0p/e4Yn0OMVDRE6/Qw\naEbphRNo5FKy2ynMags6s5b3f/Ipf/9//z0At+8+pHcaRjwwcH1yTPFpmOjZEeGtc8S1FvKRA01I\nhk7vQSNXEX7zist8mrWffoHQaWAJ+AjdMdPROog+38Ll0CDWixhVtBxsXtFrFihm0tgNHs7/+RuS\nlSRX28cULisY1HOgHOEWT9AYF+i1ZMiUNS62Ihi0Kiy33ZjNOq72MqRfvCMfq5OKxem3uxj9UziV\neg42nlCu51n5wQ/xTC6QyY+YmVxANhhhm5JzeT1ArtHjVpuZnJ9Fo9XgXFtFO+thYTXIdSpH4J6X\nWr7Nd09e8EcPfsjczDTK9QA6m4mhQYPaKsY/6cLaHzIy+hGJFegGA7558YIPfvoF8daQjrJMvpWn\nd3XK9fND1u+t45ufY2trg2I8QzHWoBm/IFeqIu3L8WgsjHqgdWspj8T4jW5UYgneB7dR91XIZAL1\nxBHB2RV0di3GKQOtXI+DZ08o9XqI20OOspdUml10AwXJnSgX+QNUQzGqKRuCTMqExo+gK5POZLCv\nTDMTnKR4neH01xH69QKeW7NM+j3021oCfhuzIT+FkgqHXYZmLOdXX37FJz/5AQVZiYfr0wh6CQqR\nl5ZihFsJVr8TpUYAUYteR4/OqEYptGllWuh8FjKRIgajkl5riNU7zzgkQ1rtMKEN8GrnKalEhjmf\nm5OjIibrGK/FjkIY0+qr6FFBGMiodseY1Uak+RbtVo9KX8ba7AxybQNBU0VZ0SJqd0nn9uhZLch6\nA66yMUrNJtMzE+SiMlanzeisHZKZCOa5BU7yWzxc/ZyMNI/L5MSs9GK1Qicz4PrqhEI8QuQyQ+Qq\nQr6T5myjSixyzF/81e8BRP31f/67n//0f/wRq9455FI5+7uXyBQCvaaaRqtDpZtANjLTzCUg06Ot\nGRAKLGJ2TFGqRmkWqrSuTqhWq9QybSTdLuedC9Ydcwz7dVqxFi+ebyA4VLR6KQSRlK5qhKljwuy0\nsvvdNs3+CElV8j2Rj6QU2nXk5RJdZZdsrgitCEadC0m+i8kvI3VU4LrZRDeSMPfJh1RTRZbvziPW\n2Kkly5QTe3imHxN8b4luVkAurrLzdhuL3Ym4JaFfECHrCJicdizmMSqZkovoJYc7h9xZ/YxGscra\n4zvoRwbevn1Bp5mnPeqQb9WQdYyYrUYyl1m890IUYjmoibB7fSTGBUT9Hs6bN3jyD0+weQ24fAEC\nWg3j8YirZJQv/vs/I9aukopd4wvNYOj1aabrGOenESlkBJecbD49Zv7jm5xtH/Pgw/dpjBLQ62Gw\n++gMx3j8OjYTBYxLesaxBG6tnv1wEZfdwEAhx6OyoFN30AxEHD9/QfDuHa6fbjC14KO/aOb6/9qk\nKR/x4NF7vHvxDLPLyMJUiLfbxwT1MvQ2M32Pgqf/9Fvu/uzHaEZDLJN2ildNctk8OuMk5/svmX/8\ngPJVgcpRnOUvPuT0dJtBLE2nquW6copd7SV6cYREa0YsFkhe5Vhanub8+IDJkJF4MY/bbcYyM0vk\nyUvOr6PEY3lM/mnikSvUWj0er5l0+BTloMfx+RUWj5eTXz8h9NFdri4TSDQqMrlrUGtZnHsfOUp2\ndp7TbKSRDOuYzTbm1x+z826TmbvLKEMaZHo55b1zpE4LhXCEbkdBq5TH69Oy93If36qZvd+eENBO\ncHpexGpUMCw3eP3u+0vUzdnbqGROQpMO7At2rq92MQwVaERt9ve3CE7NkYulibwroJ33MEpVcWjV\nzMwHscyFMKmD6Ax+mqUDaldpbt6/T65UJ/fyBV2jCZt3kc1Xv2P3xSYBQwC/OYhxwofC5CT2ZoNc\nPEuTFLGzc6whK4dvDslfxNBZdRRzHYrdDp6ZIBadgV5zyPSkFrPbRbFwQqZRJ10ok7g45ewqSmtU\nY4yRy8gJvpEWj89LtVKnK1iwegwsriyhN9mQKbTUk2kUowY9q5lEKsvRzgEA96YWiOUKPPrwAZPv\n3aWbr2O0SWhKxUw+sFAoZHn1X39H43SL7KiAqitB16+B3om4BP1Kk4UFF9F8F4vbzDf/9R/oKYbM\nf/ATQlYjsc0sQ0GMpKViXG2jMlvxLQZwmEMUjRnKWyncd2+wsL6KTpCTOonSp0/uMIorYKOVT6Kc\ncOMNLsIQtNIB4WoHoSihrgNxQsvsQy+DZJ7zV2mcN/zUduNcnB3jdRrRlow0DDam3/eiM9iRiEUc\nxM9Y+OHnjMZJUCg4viyx8fL79ub/9D/8L8TSJZxTJqY0QfLdFvc/+hDHkhtxYUzN0GRx4SHn268Y\n9tQs3LnFksPLSAt1rYZmLExl2ETTV1KqX2ASTGCxMjCIoZ5GLNGhHndZXFtH5DXj9YS4jEVxWlXY\nZo10B3mS0RIztz04XUbkMg/T8yE2ts4YyERIZBJsbgXdRhv5jBWP14prbhpZUE+r2WR/M8ykW4au\npUKrlSIY1IxNVS4vUqhVKmSaFkJRg1GvoWHXoLaLKDXyaKtDsv0exkGFNmL6rTJPn2yw/vktTF4H\nnUiJWiWNrqrD43dQPO9S9enQj6CUK5HMpjGKBU43TxCKMW4ufUy6O6Q5ViGRDtCpXYycLpTtNiKN\nAbfbznhZj35swxuUInKqGdeHdJM9qtkwu99t0VSNqTxPEpXGsHUktJU63mw9J7J1TWhqjeNnG4zp\noJeq6MubtC/zGAN+AnMLlHMFpkIhRIoawkiCXm/i6jqPqCin161w/G6brlqFQupgwjGGmUkcojbl\nvik3gDcAACAASURBVIhRS0KpmaQzkiKV9Dl4FidVzLC9s8n6w1VqRwmy8QguS4hw7BSlR4NRMYG4\nrUQ8UpBKVRA0MgqVa1QyPQqtg6G0jdYhQ+X1kak0sM45Sb55zdT8JF29CI3BiqXVJVIu0KjWiCbO\nmfW6QKlB2lMiCHquSxUWbs3j8KiIHGfwL65h0dvodJoIRjWZfINiK45MrcMumkZiFhCrBEzKAHaf\nDnm3i3nCgnqo4DdPdqlGRDjnnBQvWlg94DU62Xi2h9ih4fTtNqcXZ0xPrpCrJnDPeRGVuwh9EXO3\n7Lx485a//Ivfg0zU3/7dX//8/sc/YShrINXoELerVKsFyvUak1oz8laTYj2J13+LSOsSk1iKY24V\ncafD9sUemXqJ5kBJQ6pD7zMztOjQ6gUsvTFD9YjsYZa8UMWp0FEvyyi2W/QpoJv1IYjEZCpH6Ewi\nJJ0uXWUBo1yLqBFDHrAxrw8QOzvn5up9jgppjg6PmfTPodJ06RW6iPUGrCYzcwE9XZESc0HO9uZT\nJD1wfbiKPSUh20ohGgwoSrKEfAau36ZIt7PUmxmcc0YaXTk6nZFavMzrjVeElqaZC0wwVIlp5bvU\newU++NFtXr/bwuP0o5lxcvnbTVwPnOjHOkxG6HRBMBooRaPoZF2ysSEzn4XYfr7DyqyBUvWaltVI\nJRxFYZbid8+Q24sTWA6Q6/ZJ5sIIRg/akRaRRUlz75Sx1Ymk1SW8tYlvbo7LrRS5SJG5T+7w7tdn\nzAW9vP77r5l7cIu6UoLVJabeVuE2S6gMqlQyEvwTNnI6I/HdU2784D4b325yY3EW9/oU29tR5Jox\nY6OMobiFQSxjLFLhX5klvLWLzWjiy1/+lruLsxxv7pOPSwh+7KErKNj89RNu/vEfE/7yDSoVPHj/\nB5ym8xjEaqKDDH7bNBqFndT5FvM/+gFbL37FdGie0P05YpcR1m/c5d27HZxyBceRJBa5gPXWbVZC\nM6hMekr1SxY985wcbhFanMLuCFGp9bEKXfaODlm59UOSjQy3126SPbpgcX2Fs80w9WGb+O4b5m/f\n48atO1RLdexOM+lYntU784xiJY6evmMlsESkW8XIiNDcJBaNFbXNRPLsnJk7a7z95Qaznz4mtb3D\nnU89iMVWei0Rz158X2H/sw8/waTTc0GfaDjDsAQqupzGYsxblmkPqoiwILYNaUQu6Y3alCtS7GsB\nyskUl2dpPKtezDUl2lUDfbWc2FWKllyFTDvGYVIiqaup5SuYfTPEKmGGpTYapQaLUYJlehJRT490\nIGWgNpAsRMnTQJyRILdLCKqlKKw2ZAoJlZNtFDYnb775jmKsys37M3RTYsadKgNtC6N7Ftuch/FO\nEkEnRuawMxh3MZt1jMsZRHIpqqaUQitGONxE63UQ0OiJXsc5PPweohbm72FQG0j3B7z56jmm+3ay\nry+ZmgjwL//HBkJFzs3JGRSTS3zys8+w+6Y5SjWZWjDQFkRI2y1Ozs5ZWHSQPYuwaLfh8tk5P4sT\nKXRpdQpMLPlQmd1MLvgZiUukI1X6Fy3G7TxJaZnGwSXRTJ6dy9e4luYIGSa5IIcUAb3NilltRmOx\nom5IOInmiWcKxLbfIM+0UE5bkeQHJHpj5J0+ZZMMq9KG3Gmhl6kyDPnQj7v89l/+kXxOgljVZ33p\nDtWXUSz3fYiTTTQm9f8XtA/azOhmglQibcY2Pf1SloP9TWKXHYxBKVKpnUE8jEbpx7s8STR9zFHy\nhGakQuvoGs2ME21TiV6koNQt0U9JaNTiFMsCjz56jHtWSsVoI7x5wNnRGSSjqPQ+EBlBPkBr8GKQ\nayhtlTk+CTNsRRALY/oeDfntPL3w9w4zz+oq5+/ecH4co54dkDs8RQhYcTit2OcmkBXbZCRiqtU8\no2yHJmlsITca6SKNVovTjRdIpDBojEidZKlErkld1hjZQNUSUx/LefnkGX/y4/8GsVKKXGNCJ1Uh\n1WspReu0u0nG6j6nv96jJ2qiUzeZvX2LWLyJ//01Nr/8JTfWfajsBmbeu49Bo0JoNLE7dLSrSkaj\nHAa8aC0dshloD/Lkkx3G9h7bT97w6PEP8S04MU/KsauViN0CKpkTh0OC/+FDhlfX9CVq/Dfn0NtC\nTJlUBEJ3kWjtKAdd7GY/V8VdAsEbiMRD4ud16oVNIpkKjXYK9+o04kwTtVqgqR8T1Dq5aGVYci2R\nOXlG9riETSOgDgUw3HUybo54/uRb3lv7A3rSAhVGBGfnUMqUyFo9so0uVv2Y9iCHSmWi2xtjMGsY\nygeUxz2kUg0SWRcHBo6PN5nzeylnC6gts2hHXeQGJ9qQnbPXu8inBAKedWQqCdKeDI27DyM5Z8l3\neJ129DIb+UaNuXUbA6HF6dYuloCaja+3MNRH2GbdyEYKTvPXqGojJJ0SRqWGRLlLu9jAbPMQTl1z\n/z0/avGAcb5KNd/k6uSYrkbEwtoSLluIYj3L2sN5lEYr9qENvapPYGqJnsTMq2ff8R//4vegnffX\nf/M3P3/08DGnG3vUszXMagXpSpqQ3U25mMYbWuUymyUUmkQ7llLo6zC7VAylFQrFLhalhVFDTGeY\nYWl5Ftl5lXw4RSXfJjbI06g0cOntyBwWxEUwqFq0x3Jsdj3lTBohK8UUcmPzW7k8y6JoDWlLjMxM\n25AbHUSKdTTdAYeJMyZ0XkxWLWPxmGY2S+DWEsNCE7nNQz8WZ+8oTKPdxDe9BDYFTVmJ+GYY/YyJ\nXqpNb2QgpSggaER4Fu9RKuYRVVsc7iVoVCJs7R4QurWGV2TAM2lj72CfYUdKX9CyfusuO1++Y2V+\niXFIS+ayAJUaRus8RwcvWPVOkG83GfVdFK8jGGwjVA4NWrsfYn0c8hEW8xLbp9d4/CPcFi/Pf/Nb\nxGM1TosVU6tHStnCXi4xDk3RI0ctn0KwzlNMnuC5v47YayDz7itC9xZoiauokl1UrhC5i2vGTied\n8wR20xwvnv4SZUfG0WGYG7eczEzaufjqAPGclav9U4SqjpV7QXqxC0r1ESGbh5bZCYoem0/2WQ5N\nkBlJefrlVzx4/DHLH8xT2YlhD3oYhiPMfvwFO9/+mo8/+4SqRsP5l1/hWwuytfWaj//sc+JbW+SK\nDUL3ArRqVfzBWxz/7hWF0zCh+UUur14hcc7in/BivWNl/90ppXgDtVlN5eiAQk+Jd8qPXgcbu6eY\nbEoO965Y/sEa3rkPyJ5sk6kmUepV5PNhjqJn/PjTDzjZ3+fBZx/z4ts9PFYTJ0dH5No1+tUs/VyL\n3ZMU5rFAsRBBUFjx3bjN7vk5wqiFFhHhfonoaYHpR3e42n/Fo4/ep37Z4zx8zaDd5c3mSwA+/sM/\nBYUIcbZB0GcmlTglV2/QryhpqRIMMz1mZxfJdSpk8z2qRegZamiFMZnLBr3qMc6ABqnLhkIhhrKE\nUuEYWVeDqlRC5tBQzCWQy1W4b+qJXyRxemyIxhbMWi11bR2VYoygkINsTD9cRGM1om0qESk0GNc9\ndCsdxjXR90ZlkYBQHLL0+AESwUQxfUZzJKU9VCFRtwhaXYxkXQyT02iHWiSSDoWRiOz2Pjr1JE3N\ngFwigbQ3IJcrYpkzUE3k2dnbA+C9249wuFSYNG6mdGbyiSr+kJ1qs8SjP/mQbH2IZUJOq3LBxe82\nSW/FmF/U8vJoB5fEhdqtwu1dQefWUJGIUU45MKgFphesKLtW7DoXzX4NdQOS289otga00wm0SyoG\n6PAEXSw9XKXHmDsrD8mFk3z76hdYVBaUCj1Wr5M3X76gK60hpozgD/LeTQcdswiVdZI5q55Y6hKP\nx81F7C220pBW4QD3jQV8QQuV0zgaX4BOd4hZUaGrk9FtCQh+LU9//VvqHTEho4d/+fp75cPtR4+o\n1FMMCknS10f84N//jMlVF5NrS+jMOqK7YZrOJpVEk+zmc2pdJfJuk0KxQEc2opGTE1oOcX58SvYk\nzfqP7iNrKShmDzjKXCBTeDCrVAyrWeSBEGIkrCwsUJBmiR4kuUoeIM6kUMy7KSejIJfSiFYxqm0M\npDLkejHFyBVlmZ5Hj1dolutoPUbUEgXRdzvML/t58uo1p4dpOsVjltfeQzaq4p9fI/KuQ6H0Gu2S\nG19gDZdWRerNHhLxGMWqiekbfuYcM/RrQ4pZEa/ffENgwc/1SZar3SRXh8co1R3GvSHO6SBH3+wz\n/6crePwBjBY3O3sXFHKXjEcd3LNLSLI9zl/v0tu/RGXxcHV5xcHrS7rODr6JaWKRGjpBiVYm4uTr\nl9gkCnZ2Y5im9Uy4LWz89g0WvwElfkRaKeVYg/TmEbWzGG29BGdghnq7TezshGg5h9rnJZ4/53r3\nAoVFjKFhRKwZkqtUELeGmG+soVeIkWvN9OUDKA0oDup41FMcP/sKFAK6ppx0fYx6Wfu9fy434tmX\nv8HYlPBq/y13P/uI0kkKHRDNFSk34mRLHQb08XiVZMdDhoMip0fnBA1GRCI9l/FjbGo1A4uOwaBN\nqlHF6dWjlgZoh7dQzNqQj3r0B3LyZ9eIxhIMJgPZ8AVtjZS+VI6oPMIqdaBy6KjKR8woHWRbXcY9\nIxqPCMXYTLPZxOExIZWaKJjlWLUCl/tvKLfqCLZJrrffkm3kUI9A4/Cgkfk5+foN1+M82nIXZCME\nZR+VPYCqP8Ru9PEmdopXEaDfq5NvNTi5eodMoeDN6zf81V/+5f//Iepv/9Pf/vzjHz8mkiphnzKg\nslqwTS4gHvZIxwrIHDaU8RLp/ICJ9Vk0IwFkMl4eb9KojDEGVAi9McG5ed5+t08FuHl3nfN6gfeW\n17ion7O4eIf8UYKuscRs8A56jwxFS8qb1294/7Pb9KoOxD4JtWyB1QeLdER9ZHkJb4/f8un9Dyja\nTXgsBhQaB9cXUcK728z/4GOkFRnx9jXGkUChLabfq3Dz0zvIvZN0BjlsEgNtYDSyMmEwEmtec8s3\nidliRzBZyW0k8Lj0RKqXiGVdNt8ccn9uGuPMPN2GjJpcg8utoLixRSSeJDi9SvHwgOnlBQrnORqD\nFkKtQFdkoSKKIBZmiKW3mV90cH7aRappUP1uC8uHt4kfJhl1Wth9c0TeXGGf06O3T5LOpnDMuim+\nO6TU7pEolxgN0jgW3+fq62Pufr5GpdCiUxxgMfS5jmRYWlni9T9tMfmDVRSSIY1eFcEgw6DXc11P\nElq0UzeAsl6hE5UyNA5pdzSYjGZW/DNchC/x+L101BrMdg2NizzlixOGDjWiZgqDVkmzKeHpt7/j\n088+xdS10uoU0TqDXCR3sOstRM7iKHt92q0B9hUvyqqceilOs21gJmBlqBGTikRJNYs4Q0FatTLB\nu3a2Nw8QekoavSgytZ6gPUi52CVfOkHeq1NoN5lwTjIQqTh6fcLCLT+Rf3vH1PufcfLsGWN1G92E\nB0mrjbJrAIWZ8lkCx3qIxNEZ4VqfDz8N0Wi1KWc6qOlza2kVtWCmVm3w4I9WONq5oNVpIUk2cHs8\nxMoxzPOzhHfjLD1+H+OwRO08g8imZOvdKX1pD5/fxTfffF9h/+JHn5Pu1JB3m5xcHuKfX0YuczHj\nNGH0rdMqxUkkqmjMCuTlOHOzc/gn7bTiPdRKKX6Xk9N4lXGjxOXxOYWymBteP+4Ht9B59PSELokY\n9MpJwsdXLC6usX99RD4Z4bh8xqBtJHwQJpaOMSw1mfvJY7LFAqJhnvKgj6ii5PI6Sa5SYZCs0xq0\n8a1beP0ixdSUDaciiG3VyYTXy6TgolaXsX9wTLeS4+R8j2qijks+pKtTs3d8Rn9YY8Jj5KRY4rNP\n3geHHoczxK//6R8A+OkXX2CSKHj99XdMzAUoV1NU1VX6Aw0Hv/gWbaOMrD8gdO8mbYWdlmlEb6TB\npVBSypWxBh2IIkUi9STWgg5RKESn3uQiXaWQuoJqkWIrTz5ZZ/HP/hij2YBa0HL1MkG3JoBGz5uX\n31KOdxEPChi9fu588iljwURZ1ONk9xk+pYh+vITj7gTx8A6X2TGydg+xGFKXSYbJDM1kjtVbPyJx\ncIzJNsVI1iN6mWPUHGJeMlN5ekld3MStn+Ayk6BxFmNKO4v5votctMKzV9+/8/7D//zndMINvCEX\nmpadqnqA3eIldnSKrqNHP6nFYgsSCjoYVKU4AnquMzkcgzEOhZmaSkqrmmJmMUhZVSd+0qKsjDIx\n+witwUor1aMQLRHf3yWfa6DrqLiIHNCL1xkO5TgNPTJ9MV7BSy6aQ67yEPrgPlqFAeeslvRpgls/\n/YKJKTfbm3vIunWuzvNIjCI0GjnlQpc7H/8QvaqJVKamUCthXXIgzckQz5nQ2nx0y22ggshvZyyV\nE76+5Mb9u/QVDnq5HHWdhOE4w7NvXvHe7duMxkWsZg3VVo453yxXmSvy+xH6LnDYDHRHClrXWZQO\nJ06djXnHElariaHeAMiReAw4Jh1040WSuSgz8xP0mnp8fgmRTIrmGDx6MyKPDWm6Ts8sZiwyUY/u\nM1RO0Oz2Se0/YzQsMpAakK36cLlDOPRSepUWhe4VVtcMNpcem0iDyqZGZtbSaMgxWvropVZcDj1m\ntR6pcYika2HarGLj8pxxS8AlkqD3CKTDPfTrs4zLJWZn5mkoGxwcXGHBgFhbZmP7gId3F9E7vDiX\nFxh1c7T6Y/wWFybbJO1aG7lMx9FOjLu3/EitbuSDHGKDjX5+hEypQyjXSZ5VWZwLcX28S74yZHLC\nR6M5Rj4a4VixEdS6wKNBLXeilzUQiyGbuMYQsqEuqVGUGoxcCgSFjOThCxQmC1KtksbRNZZVD9Ke\nikGvx+Y3z/G7Z5henGRoVFKoJJh2LJKs57EGgzjEZc7qcW5P36dU6OJ5f412vYLHbkA97rEVjzAo\nljC4rLzdfElf3kWTklAptDiJnP5+QNTf/M3/9vPFu59QP92no5Bhcrhw6UwMRjXiF2kCbiV9kwa9\nX4Nd46YvqaNT9tH3dPQLLUQWJd1SmXmPl2q/ykLIRrNeI1e9phIpIxiszLtn2bzewC5SMLm+QDic\nxinzofXaGA90JK+3mbJOkqgU0EkshI/e4J+fottMMRLLONp8STWbY21xFp1STTVXBkZIDDbktRTG\nBTM6mRPbnI3KWQyFvI+620Zvc6ExyXFq5SAYUHuNWK1+kKgQDZu0kjHEXTXGCQv1oxRvDw7xWoI4\nbsxy+vwFM3dDlDcvmf3iCyr5MiJNgwYirncSaFRtsvEUnruzZOI71IYm/O/PIGTz5DJFNCIdkwED\nzvt3yb86Z6Qu4bw9xe6L3zA14UNn8tGQDtCIlAxVYk7Or1m1h1i46+BoM419KKKjGFOK1Vj8bIl6\n/Az5SE8jP6Av6zGUdahfRrmKpbEEppjRTvG7p18yJXWTeRvBsb6McWWa8xebVK8HLP9slSf/+luK\n2TyCWUarPaKX6aCfthLdizK2K6kcXTN3/4dsvtwkcGOR3/zin3n0yYdED0+4+fGnPNn6CmWyRaXS\nIDi3xGhCT/PlJqPsiPCowf379wnH4+i1YPT4iW6WuPHhQ1784//D/cfvM1RZMa8uIx+PmfTc5OIg\nTL4apZZvc+fzH9O8SOD64AGiTJej600CcwuIKkZcq342Np+yvvCIVGqfbnxIvddmLJYwlDVB2eXy\n5T6P/8OPaJ6nudq5QudwUy0lscyuM2gOeLv3Cs+8i+1nx0z/6BEhlZJisYzGpmb+hpeNf3pBaH2R\n+PURyqEcg8fBxeYmQkfM8h8+oHJyyrPXbwH40z//b9GOZYTzGWSSKmqFiUH5HHnASjR5zoTZidqu\nhHYPWjIuexkkehVujRzZsEPHrKZXFTB61Kj7YiqpJAbLBLlKkny2ztVFhlLkDK1Yj2rKgSB2oHb2\n6cfbzE/Mc3V+zGCgwqo3IPPLCJgc9EsNEu0MY+kIRbmGSN1A21DgeOjA7vBTLucoXB4jESAVqTDQ\ndTHWtMjdcgrFJpVEHGsgwFChpyNtMmRE5zJFrZZhenWeckWPoZVHFtRgq9iojjt89Yt/BGDp1gpi\nuti9KvYSV9z78C7ivpGlCSPC2IjyngvRWM3Xv3rGMHWGNN1FOWNk0NQxdd/H1VYD/awTiUjDqFJj\n41+eUbq8RjkcwNBO3TLE5lrC5LDw5P/8JbnEId73bqJT67HotNSqGULKJWwuDTXEJMNnhPeeE353\nyJ3lNQSpkc6MAbt6nnK8iv3RfXwKFdV3J/iCPpqlDBbLAu1cj56qi3cliGjdhqUtxzQzTUOmIrb/\nHVM/fYBQ6+Owz6ETtbDdnaGq6SFrjzG7jPz6l/8GwJ/87L/DMK1Bg5G+PMvO2x1O3sUQNdNEk2Ey\nlQ7ps016mQaCQ4xSaWNqeZG2xc3EqguH00F0Z5vobpyZoBfHyjITOifnz56SOUoSzSQZd6J89Gd/\nyPrKLYwOI5P3lvDYjLi8dlx3buJZXSV7FkY7FDGU5TnZeEU0WaKyEaGqqlGOF+m36xhmjViHZsZC\nB7vJTCRVYjLg4uz4jEmLEZnbytl5hNKLHKlqlFKpgSRaJT/IID6O0MtVcbn8VKtddp88ZXgYpqJ0\nYB/q6TcGfPv0G27dWGVyZR2FbsQ4K+K83OD+6g2EgBtNpUBsM83FcYpEvAqlK3YOdyj18/TiV5R1\nCvT6Mdvf7NLL1CBoIhDQYZfpaSQ7HFylGVROsbtt1EVlcokGToeU1fX7iKQSRBY9EpmSTOEat1mL\n2LjO7NIk+aenhGOv2HxxRnlcYsqyhn5WgjwHXUFEbn+HvqDBoDYxHreJPN8j3I3T7/V58i9PmLq9\nztlhDENVQmhdS/ywQ0+t5Mb6FINOA1PQQTbXpBlLM3Fzng4JOu0BW9sH3L//Ed7gNLVhjtZ1h05f\njX1agaYlwma2UafOxfUxKkGLRKNh+10Ku8WCyWqlsrVBK+jHJeohtdnwGNXULSr6EglWQ5uGpM3V\nmwgKl5xe30I/H0eu9FAtV/E4puiOGpQGLToqHaV+FoWkRSw9wGqWk0ldUM7E8E946I+UCOoO2ZMw\ni/PTVPV2lIU6mbMC7iULkeNtxvka5aESz/QcdtOYcLWFP2CidHCN2GehK7MQvUzi9Mqppku0u02k\nYj06pZG2esjJwQl/9b/+HkDUX/+Xv/v5nNlG01jH2lagc6vZe3OJTCohX8nTlUvxSidoKwQM6g4K\nuYb8YMSw06VaSmGx+8GsZDiUoRsJ9HR2hkMIaeaRKkoYHHrGoh4XRxUEmRyDIONiL4V7XYOkPaQs\nUXASOyB+HGYsKElkI4xFVupFEe3UiE6njFo2RtM3kR4VUGhMiFsKTHIN4fQJyWYKvcJP9DyM3C4n\ndxFB21dinQpSijeIHm+COUBfLSYdTaAwa9GJxQylYs62swxHOeRKN8lSnL3dA7744AM6gxbrn93h\n3dsL3O4p9L0SjZERjVGMT1Ay7JfQv3ePwkGcubkVrl/us/7jG3R3t2i2R6y8P4Oy3+L5dpbqdYWp\nT70YWxYuc1lkKjVyiZGzjVcs3VyiVi0iuy4SvLOCRiSn2m6hNzrYjB7w3g8+ILfxioOXF1iXbaSf\nH+L76CaJ3zxlcfoeUkGCwqWk8faaVj5PaGmZtlxGR9OjdpDFoXbhX/HQ6PRQo0askrMybeIgdYlt\nZoGL/R0GmRQWqx+/V0HX4SW9t491ZobBWMKTX/2SBx+8j94xwc7OC1Ympxm3W6z8wfs0CgXOXkUY\nql04H8+iG4ipdMSUTi7IDMfkX77hgz9/yEU8iU41RKGVcPrsmMrRORV5D4/bRVddwWmboBstUGjk\nmX10l8KrTS7LOdSVGlq7ndjxcwITc3QrKSrFOJVihYd3HpI8jWFSSQgFgtjlKlyuCd7+wxPufP4h\negvEryooHT7swoDwyT4KlYng5BK5RA5tV4bI46LXhb5Cyet/fMrarVV29jYJzt3n/OQtyqEJkd5A\ncHma06swBruHb7/6fhvtT/7dv6emG6CUW9GYp+hVe4SLdaopEbn6CahtWB1KwIHILyd3esmsfR2Z\nYGQsVeF062nolRhlEE50EOuMmCbllEsxCtdpWvkhn33xMSOphK6yiVEMWpeFyskFxht+BIOZ7FkM\n86wNY0fKuCvFOaPGaXFjkUyQyVZp5QZo5gLY9Fa64wGp0ySLd5YQa40kUxlChnmy1+f0DV3ErRpi\nQcmUW48p6KF0sEddrKZfFdPUyJA7ZXQTQxqtJuKWFP2kkUK6zjdffj/78vntRcQ2J6K2jPZowPnv\nXtOTmLm8TKIZj8kkkkgHNnwLSozuJYr1IiJa+FQawptbJM9OuYxcQjXNUa7EzZAL850Z8rUsN5cd\nHJ1HGJ+fU80U8N63Ms4oyZyfoirI6a6rEBuchM/e0ZOPuPf4Ni63g1nzewR+dIfdyzdoSjUujk/h\nuoVGDTsbh1glIvQzQdLZMwSdC5vHRc834GwvRfv4jMPdXc6vYtT3zihmqgTuvcfp33/J1KyBdL/N\n+eUZresxCxo5wlDP3kWErXcvALgVmqUrtWAQNaiJJUzY5rA5BdxqI8E7H+PzKKFlQiIqErj1MadH\nF6RebiHKZ6hlWjQTLSwTJtRrdurpFK1UlkQqjk7iRizIGUh6aJR2IidXRC6iaO74aG9kyXRgKMoR\nOzwk8+YYm0bEpaSJVKHDszSDzaZGY2jQ0enQtQ3ko9s0wgK56DlKpYFMO83c7A1qtPEHfDQNRrTj\nNt6JFbxrITSaIc3LON65WbRaCyKlk3ErTqRyjnLoRO6UUzNIGMTPKdZzqAcjvt14xR99/gHOlVU6\nqS7+hVXUZhPHb7doFA+JJUvUdW28ihGNYpJivkFgYpIbH8+j6Wk4O9onnWox9/EM3tk1Gu0oA8FA\nP5LDMW/BoDBh0BuQ1tqcnYdRSzRcXVxSP4szaH9/4dHpTQR0GuoiOeXtU9KZE4qDFsZJHbce32Rx\nYQJqFZrhDLV+n5asRr8loBm1uT4IUzk7JNlTYLJOoesU0a4uoi7HKVznmFzyUUo0qChSTGmtr3H+\n6QAAIABJREFUvNmOUjo5p5g6pdAtEpqYJJ1vYzVMMD2h4V//7Vv+4OF7xNMFUrFTZC0Zo76E5NkR\nUqS0AmMaiS7ZiwTeUADzWMlV/hrPhB0KkEpdYXAaEfRijl8fYpSJsSkERuI+8qGCcmNE/PiKdmeE\nUmlD7jfQ0wxQGOxkqm2c4w5nJ3GMdjU2wUq2MaadKxPyeDndzVEd9vAF/Ixp0cbEZfwC28Qk4lGX\ng9+8YWTuMjGxTPMwiVajpZHO4XXaqQtVTHodrfGAwPwyyloDSXmEZ8KOyeTAbRFwB3yk8lFsgWmy\nsjpXu8e/H4qD//Sf//ef/+Snn5E9TiLVy3FI9VSadQqFKBKtjMZVCpGoTitaRa6xsr/7FKdGgUpr\nQW0UkzwvIS02KeZynKZz6OQd7C4JZ9uvGFmceByLdA1j4ldJbBMeLDIlqXEWJGJy1010iiKScB2J\nz4i4OsamETO5FqRSSNGSD6jXu+g1RpwTNrJXDXTWEZJekfNSkakpG2KRDrldy5gO0rEem+ChLU9Q\nLsDBwSs6+Ty9VI6T4yOEcodJq5dossR1eA+hMUQYq0mMUiAysvv2FXfuP6DXqTCxsoxEq+F0+yWy\noBOztEe50EJrddMUScmfvmX+xirFjXO8P/2Q6O+OaY0ltGU6EocbaO7fRtSt49EaKGbrVFQDZqw+\nhJqKcTdPSyJGq1Iia2hJ6wfoND1UBhcXR5dICi2My3OIzWai16d89tGnnIcPkIy9FJNFFj+Y42Aj\nzOLD98mnCkwuT/Py7RXTASOqQJDzgwNUMlBKZZSaGUajPr18CaEBh5dX3PmjnxD+53/CcecG42qP\nTC1FvWUmuOxi+9kmhfM61vftfPf3v+LRFz9jqO9zf9bP26MoqWqaVLyC0RpgOeglls3TSuWJl64I\nuY1MrK3h1mrYT13imfCw8c+7CGMbdssEjXIVldvPpMuJVqZApJAyzA1pawbM+zUkyz0sLjvBYJDD\n6AGL733M1eEFcp8fv8NH7CzHoNdHFpjC7xQYiHQ8efcOi38KpV5MLl6hdBHFMb/OWNTDoJBzGjlG\nJ8hYv7XMyy+/RRvUESsksNtsFK+vMY0EXDddhLeTKKQiTDYP8+uriLsieuUo+yenhDxuLhOX7Lz5\nfvbl9v058htXxPf3yVYHMBQxZbMQmlEzc+MRwkBAYVRQHg1IPN3Av+JCbhYzsilQ6MYUOxXqu1Fi\nOzuMHRa69Tbj0gBJV8HUjUks0wHO3j5DZB0zKCpQGjT0JTLavSHt8wwB0wymGTeu8Yhoos9FeI9a\nqU2+3yR/FmX11jJ1UZfSRYTUVpxiYY9Mo0w3W0NjUdIs5Gk3T8E6QToZJ3IRQVr7f7l7jybZFutK\n78vMk3nSe++rKsu76/0zF8+AcCQIUE1SbBPBaKkVUkcoFE32GCN1EKSm0qQjFIqWOppkowkSwIN7\n5np/b3lvsiorvfd50pyTGrx/gf+wB2vvvda3euycNtEqY2ITk6izTRa+cRvPhJ2ISocmEkAr9Nh/\nlSKdb1NI7bCx8TXi4J//8Z9QLMk4QwL99STT927h/2AOu0FEjEdx4KPU2WcpukJNbCP2XczfCXKm\njFDKPZyoCDvtVM0hdOMagkpFt9/DbHQgNK2Y7QZ8vmUcbjN2rRmDzc1YHNPW9lh0LZN6+wh3wkln\nVGWQrbFxkeGsuMvJw7eUkkXCNic3b9zDv2CjNtQQ8OupqOxU3m1Q7huw0cdssKETTYQTLoyLMRr7\n53j0PiZ8VuwfhrGodSSuLqOPODhKneMuqdBdT9CRZPrSEebOiK/efF3I/NH3fojWLNLWy6itTtae\nvEJWisj2OUqVY7QqFRPxIDW9i8reWzJnEk0ph2JSUcuO8N40YxYNaBUD5q6Oo90iXW2LhlzA3Icr\nN+8RuTWF+boPr2GMqmvAkLBz8XwDSS3SSDfo12qMowmkbpl+vYuUzyGKHnLlAsOcnivfmSFX7DJo\nFqm2yqhFLW1BopU6pXMxZGp1keOjFEaNhtO9U9yCnZHLykTMQ0kFRwdJ+hd7DCbmmNV4GUcNnF4c\n4e/KaNQCzboZ2aTjxaunJGa/QbWUYdxpobb7EeonMG8moMSwGcbYzUGSXTVTETOWkIuRKYTVEWFr\nM41F78Zi8+PwiLz55W+YXF0iqPXjnzfRTJr46sHfY1yeoqnoGY/rmCUDWoOB0NIEe8lzytoWUZeF\nvKJlWM9SVcAVdSAPBbwT83j8QWoFHY1uh7h7kpJ2wLCiImoMkdf0EFRNhEAEj93Kwp0440AEfVNP\nqj9Ergq4lxxgc5DPZFA77QyrCv1aA0MkzNWFOxy9OaTezJBNr0G9xaPXW1z5+EMGgz5iXWHUKxDz\n+jHZBZxBEaEXxKrro+uZCMRm6elLeM0BzMKQegVsNh/Hx++Q6iJqR5eL9Tpn5WPsU0tkNl4RiU+T\nOz9lemEZHW1Oto9pnWWxmExcvDmiKVYpJEtEPWZGVoWDB7tYTSbM7gD+hJlEcJJc+piRIYxL08bh\nsGKzqCken7L0/ntE3BY6Vg2lYZ1IbI6m3oTZbKfebNEs19Chx+t0ksyncE1PgNBm2Bqxd3bIUKPH\n4wtg1NiJhi08/MVX/MXvArH8xz/+qx99+49/SC99hiRoSKfTmEQdw7aBlfgs6XGJyN37DHqH+MML\nqIewd1FnOOhjNLtwx00obYVBvUvf0qVd6tLdzZEdq2g3a8zF7JiwUcttUTtuoWlqaYgdRs0aE6EI\n2xsH+C5fwh0NMmycUC3I1KnSLhoYSzUIOZhJzNPqDqi2FFburDIcC7jNHoRGDUka0jxv4puZJpXf\nRxhqONw/ImCKIZtqjKQYot6IRINxVYcjYMAyMJI8TWHWytjmFtD2uoj9Mc9ePWXFO8PMt99n8zfb\nJOYT9KtlrOYQycdP8F67TPXpY+yhBGaHlbZWzWHlhHmvSHjJQWh6GrNrSHzuCrXdfXQ9J+eVIjW6\nhOIJHFoTinqMyTREbkvsP9/HEhihGUfYPXpHaz2FKWxHJbc439kibBVpZdtIqjH2xAS5tTUGji71\nVh9DWMP21jr3PrxFVqjTKra48kGCX/xf/4WplQ8Z5U+Iz87y5IsdDCE3bWsXh1HAoTeQflfBe20G\nt1ZgUJAwCSJWjcjal+9YeP8uSimFxu3lyWe/4u4n9xEtdh78w2+xRw0s3/kQp8WNVD9jb6/M5GKI\ni4tzbt+8TEXqc/D6GclKju988g0ePV7j7qdX8URCPHrwJUpPw9yHSzx//Eu2nqeYicQZNvsYnA6e\nPN1EV8+Ra7cQHC6CUZGd377l2999j82Hn2OIOzG5J7k0sUD6zXN6ASPvvnzK0rUlxIGK5++2sXg8\nBK+EOPjVI3y3puiOQLQ7kSQ9mw+esfLxN0i9Pub2e5dop5sEbs7RbJTR4Ae7gWg0zNb6a1T9Ia9P\nnxK/cwehNWRiaYVBv8/jLx4A8Mf/6t/Q81tppM+YDUbYL6Zp6weo+05k2cDGi8+pl1vIlSK6Rg21\nPYbNEcemsiDIbdo9FSGjn67GgspSI2Z003KqsVliCCMV+28/xzk24ZubxD0yMPR7CYsOGsdJCrKW\nkdDEptPS9Vvw2QMcnW0yt+DDohiZvHWTgQs6rRay1GcpEQetCbvOg8fjR2XXYtTpGHnCjJIlRpUm\nosZP+P0lZnwewj47epeBpspCs5zkYDcFQxHRbMesUlM4yWNMGNHmZF7vvAZg5fYP0NkrVHYUbvwP\n71MqtXnzH39GptHm7NUD8t1zTB0920fvyLzp4L1m4vHPHzM5HcQdniI0M4tjaopGu0wkNo3b66A0\nVtD2a+gEF1avjWGrSt4uYFZaKBYXarFAxx9k4+0rbi/NYNCAaAig87uZXlhk0m+lgp3E1DyjQY9H\nT7c5Pe9hDNmoPCsSco/xhiZwOn0EV12MBRvDXoZXn68zTDa48f07IItINiOjmkCePM//7884PTji\npu8yC/c/JH3xltnAPLpQAMFi4bPPPgPg1uWbnCZTzHh96JwOnDYNyb0RA30N5/QEw3SVyjDLKDlC\nJUmotGom70xz79vfxRoR2Xiyi8dgxh6exBTQYl2OMWWcxjY7Q6rdpVXP0GkolDYrOCNT6L0u6vkB\nduOQsWzB4XZT7eYYqbuYjTauXZpDMGipHV7gu76Kx2Hg3eY2K9fv4/pgBt/cJMuXV4nPrRKaCaBN\neKAyRuNTaLTVyOoRhb1n1J4dUx+LmGI23D4d8clJjIEpxj4DglRhZfEmm6enWCe9TF6JopYMPHj4\nG77/r25jbLWxePUoLRn/5CQd1ZjdzT3aYz1qYcjKog2DO8Ly6gyRoJ9eqYpRVUYd0lIp7NM5r3B1\n9TY1VY90rsr2L97SNI1YvnyPkEOH4Lax4I3y4N1jTB4Xo6FIa5RmSpxhIHp49rP/hnVhisTdK5w+\n/JJmRUEq1Wglj1HbbKgrTbbSRfKHOVTDLgN1h3K6ybiuQe0Go1PDi9dHSOfHjGUVvtU4074EudIh\nufVDppwz6NDicRlwTUTwxGY4LW6htsio9QFsWi2SMMGLF19y/9JtLspton4bVbnP3O0YXV+Yk3SV\nQaFOIBZBE3Nh7ssMOwqNZoPqsIVLp6Wl01E5O8OUsFG4uCCwskzA68YiuFArOkyKheODbewOK4LG\njt2rw6LysF3cptFpMUzWufeDT8BiR623MOwMWIrEGQtDxiMHLVOTw80K6qNjNpMpwtEVDL0BpZM2\nba0Kh8ZOpdFmtFXlotakkqngsYxJ7h0TnVtl6/gNYb+Pd6/3cCp2Rg4HrVIKt+Lm8HiDqD+OyqZA\nfcyXX33Jv//3vwPE8r/+8d/86NN/9glGvQaDrKHXHWPwiMzPBlFbvByv7zJsdwg7Y5gQKB7sEV+Z\nwTi2cV5Zo1uzsHIzSLkn4ojF6FaKBOOXsPtc2D1uTg9PyZ9m6NRrVMU+oqgBdQezYiQx52f3tMKl\nyzPISgujIcYg22CkMmPWa8hnBnz88W16PQ2yWo1cP2f38JCgUeTx02ect4u01B2kjkjrNEn7Yoh/\neY4Zc4i+UyZ3WuTGd5a4eLPNWLGgU4Y4zAaqhh4hj5VSc8j85QgOOchGapvNtXeEL01jFO1UOnUc\nbjuKDEeb67gvrzKRiLD71QvquUNMgpv+qMClG6u8/eKU050WfruRUr7N65enTH00R+r5Y0aWER98\ndJ39J4/RuZ3I1RQZrQtj3IM6nyd0eZHS6BS1ZCTdlfE7rTQdbW4kltl/tcHi/e9w8uQJw3YZVdhC\ncPY2ha0t1CYbtz/4hC/+8//DqGzi6ndv8dXPnnP/mx/TU3qYtWZ0Crjn3YiNHi1pQFfu0EVkaXGK\np794inkpjqpdY275fY6a+5j1IRzTAj6Lg2atxNOHT/gXv/dDDrce0++p+MZ3fp+3//Ur8s065laD\nNgqJb1ymvXHOeXWIwSQTc3mIL8fIZKsIozrVlw3cAQPRywt4EgbqmRZRb4B845x2s0jiSoznD7b5\n6I8+JX2RQ5dp4pyewoGRvdcbqJ12GvKQzG6Z2aCHza2X1MY1RHWQwbBP8NYk7RHEjBpkj5WwKcag\nr9Cvjjh6vsW1OxNIFYm7f3iJ5w+2WZycoTzo0TnJcVjYpnsxJhbTky8d4bSaiJpdqGwaRtUulqEf\nj0vkaOctckPDs1dfv2sMJgtelY7p1WucVLLMhqYJJrxkz9PEwiait28wMx1CGfSZvncDd9CJVG3w\n9vg1jaMq2cwZW1sZBIceoS3QlQQiBjVnr9bQOQxEl6+xu5lEKheQdSYu1o7INzeIXrvGlZvTuLx+\nVGMTr/7pH6n1q9z6ve/QaGhRCg1Osru08hZm5maxhIKIaiP+oBebFfK9C1z6CWSzGaPdiiccQFI1\nyXcqLEwnkNzQ6uQ5PeiiHpSY8oaYWIojGwwMuzKiy87kvXlGqg5KtsLzja8vc1MxN/2xCX0xxXYz\nT+nLLW585/cRBIWQxcjlxduEl13MzV5GpxljqY6ZWL5D6fCQ1sUJDZ3My1/8I53TDM75AG1Zh0kj\nsf/0lOTuPh1BRDKLeMZ9GtkCO2/WMLZtnB9kuDMfoaA3kTzaQ98WqRyVKJX2yL/dwSD40FvVpNbW\ncE25cTQaxO5NMrFo5/mbAzrJAoomQ7ZqRNJV8VmcTC/OUiyfE5m5jm7OQ+UijdCvozrpsPDNbxFe\nmeeklSZ/lMPs1tMtCKgqMse1Bi8efx08+Jd//j8jNfdIVgq4B2q6spVeN4XQaaCW+oy6LmYW4vgn\nTaiNIZK76zjGJs52tlGpXXSKLU5P0+h1EsmzEu6xQGqYp5jcIyq5UE0IJPwONl/toJW6SMUTOmmJ\nmtQg19lhUGszdecGcf8l9MM26YssBVmPRbAwu+LmIHPMsN5EPRphq+kYD/soDRXlUZ/U+j6qbJtC\nsYIiiEwHApwevaZ/bMCyouF4v4i1BYNqH9lrRKdtMu5JmOwira6F6M15bG6RzM4pA6OWp59/yX/3\nB/+Cwt4R+8c5qsk8g7GCx6QiuZMkaHGwODNL26BFW5Zo6vSUq120VguNwpCoK0qjJVFIyxydrNHe\nzzK54MWgFrDN+bCjQdaNEcc9MmWJkM6BzhfF0D/l+KDEoFnDa3Mi6AwYR+DVORhHjHhCUYzTLkSr\nGuv0MrvP3xCeduBbnqZ0ekG/XMZIC6lrZHo1SK0o4fKPsQUXsfot2M/VlLvnMDIjzjsRu11QW9g6\n2EK2a+kW9xHsLia9NppdHbnSAfqxwss3r/nk1rcpDtIs3rpJZDoOQgCtucHJ6TEWlR2VzcHZu19j\niYbI9tqUCnm0FTVnxU3cvgQTNhP5iwrDhsL1pTii2cXB6xdoFmfA1MOq8xCZNfP6yRrZgwxSX4+g\ntIhMXcKJmmggQQ0tiqqPT2tD1ncYiUZGsoJV0+d47YSevo3LM4F/xkGrOERnkZCVCq8ONmmlqpjU\nbeqNHEZ5QOLSDBf5FKEpL+lMCtNQj0Hfo9XpEwwppHIpgo4EzV4HndXBWGOiuv2Wd1v7/OXvgoj6\n8V/99Y/+6M9+SEPpUdovk69DXRgSmAyx9WYd0ejm/Y+vIEkDMid16shfb4r1LsmTMorYZXQoY4k4\nsWUL6K1Ggj43emMfnUGkVxOIT0apHbYwGUa0pRpGlw2lJHEmtTHrXTSrXczqLqNul4qxyezyVXrV\nA5SeQsTixSIPaGhU+MJ2uqkSJ+Vjri9OUc8N0GsC6C1DFFkm7LWx+3KTw2IWjyPMsNugJujwB8Lo\nQnpycpZepc3UyiSC0Ump0ebgxS692hHySObt+jpXb9xg4dZNsm/WMAgGjMYgcqtCd20L09jI/Oos\nBn2YccSFSm5j9TkRNBpU6hK5kYzR7UCjqqHKdXBfu0Em18UhOnG5/eSzeTr5DoZSmUYlhds3y8bL\nbaajE2h9AlfCEV789iGCHGDcFTFFEnj8avK6Lm6VlbP9OhG/n8JJHfWoymDQI+wLkM0NGWeGDC06\nrHNRal+9pqZTEYob2Xu0hqCMWXl/iZg2THtYxqKXUJtCIFdoXGjJtza4eX2B/mBEN6cQmQhyWsnz\n6uFT7sxcY+Jbt5kSQvzys5/y6Z99j/rmOk2NF73WzNmjF9S1PaRhkdWVS+hcFh787VMW5pZooyO+\n6GB9u8zxy5e41U5UBg9SrsHy/G1qx0fspM+5eXeRnf/2nLZdhX/Gz8nLbfLFLLc+/JCttUNm5v0s\nTl9h89lv6RlcXF69BkqF2JUZjv/pDV6/h/Nkh3brgN1He1x57xKZt3tIdgMWvxGXzsE//vwXfPv+\nPd7uPsJt8uAImaiuZVn9k99j4xefMXnjEudneQS9BSHqJX1+zkDX5WjrnPj8JQxNic9fPgTg6vR1\nKu0aqqATn1ahXmky1jkIB3XYZA317C7bRzsMOzb0cS9jjUgjn8RpmiS6ZKRvspI7TKIzqHDY+gyV\nBg5BTzJ5hqTqk6mcMKgrTN+YothsoVe6VFrQa4yI22Lkx0P0wgiGY/r1DPOXlxlXq6gnJwmKHiIR\nHZV6F1oX7GweoTWq2WklKW7XkTVdXHoT2fMagjCiVG/iKLUITi2R7hQpl8t4DSrMcQdan4uXL9bR\naUR0ThFRp6avVmHSDSm/O+Tl3g4A/8uf/RHWvhltQsecxUro5gKZt0WiUQFh6X2y9Sq1XIsnP3lC\ncH4GSd9ArQwY+0SGWhMuf5SlyTn0ER+FYo/c2zeM1SNufPMe7liUWqPG9JQJh2WWOiOWbl/G4HVz\ndXWa/cqI0e45dEZ0RkZ8HyyR0Nmw3rvPs5//BFfHxrUf3CX/5oT6sovUr97RK+eYCi/iWYjSkYz4\nxAHH2TN2Tw+oV0Z0qgN2Uy9J/nadyYQNqybIsAtjexdnS8Qb8XK09gZdfkBxWGU8PsJfN/Ortw8A\n8HrcTPoXEBtNdvYzQIvFuSCajgVVt0OhVaTUlShlz9CGbOhtU7SkLqgaWJ0yol6D0xWllS6g1Ru5\nKB2hkyQGRgtDoY8wUJE5rhOcilKpFYA2nXwbmzhC7XAzqFdo7tVIHz/H7I5RrF0ATfoaFaqWwFCr\nxxWYxqF1IES0tAslHn71Gr1UYGAzUSjkadXbeK1RNDWJ0KQf90czqHVudAM9Y7Wd87NtTtYOsbVN\niGKfdKZBoZhHSuaovMvgmgzQzBd4/vQFiwtxaho1qwshpt6bIuxNkGynUXUaJG4uoKn1GA8GjMxu\nnvzqEUp1H0EvoIuG0HaKqIImMI9ZvDlPN99l/2Kfi+02jeoZfV0fmz1CP5tF7MgoNgHp/AhrcJGQ\n2Ul0NYzcrpFL79EwSQyqDYJOC9a6g8OXG4zPs+y+3WLxipOtV2XSm2eofTrUow7x4ATeSzPU8yNO\ndjYxNjzYNGNKnTIbu6e4zH2MLisGgwujzsrx+TbuoBO314lpIkzUZ6El6YhFg3hEN3K3xMPnb3jv\n7mWcjgSRCQc1ucreyxTeoIX8SZOJpSimnozarqOQ22fFvUReXSfoj+OcXWKg6mHTWtk72Wbh3j12\nD9L4vAFqvSaV4yq+kI7TVBdLIEIsbiWZVrh610PlQsWN2yHqYy22qJteO0nuIE+pWaHd0hL0gtRQ\nGAytuFUS9VGbsHkSU8jB1tEa06txXn61Rr8/wiHrCMSvkB5m6CoyE4EwOsyYZDWZVo+w14Va7cbj\nE5FVHuxjKxj1+KYiDCtZWi2FTr7N5skBf/kXvwOeqB//h//9R3duXCNf6KPWygyGMmrtCJvLRfaw\nitFsZFDv4BC1NPptVEITV9zCuGtAq9Roa8Z0lBrRiTgbqSQzlml0ZolMsUP9rMHCp5NoMZFN7xMI\nTiGVWywuXOEi3aPWH+GZDCGVS2wVazhELU7FzW76iMXVy5hCBlq1IRelI0rlFkG9j5yqwqgqsHrn\nDmI4ikswc5asYw9qcascjNpthuo6k1cXMERCaHISmcNnVAodbFYNfdGM0W5g0DBQ3dtG0sgIZh06\n0cLzF895f+oqKlOLaysrqN0jUltF3GE/QmKBVvIdfUcAVdjA4doBcVuQtiLi8/hI1Vr4OlZAwG5R\ncOpFbHYRvS3K8dEh4VtBZNFBeidDodkhduky42KZ0NQVNnZ/SSMt49BrGTQ0zNx0oBMExrUe+bKE\nz+zDYHUQsduojovoPTHUFgVx3EUx6tD0u5zXDjHiJDzq8fZkk3jiJvlShYVVP/njNHa8FHoFOloj\nfpOJbLpBfGWB/nmNXqGIZHFjdQ+42MjhDfTpW308/NlnfO/PPyWVLtHvFVn5zrc4/eI35DQyyzNz\n9AYXyEYzk3dvMznhRN3Ws/6zX7HwrdvYFTXZozyZQZfFSABzMMrhu0PkcYbIqpmWWovPk2BixsLp\nbp3QtVnmJ0OILSsaRwu7wUe/b8TuFtjZ2cUU0RJMXCa9/5aLxhmypGFzb4tv/PEPaKbyyJUSdsME\nt7/3CU/ePWZlbhJVq4To97G5v8fqrWukjs6wj3UszF/nxcYD3vvX/5LP/s9/4Js/+AGf/+RztEYr\nk04XerWJsNeNYlSz5PPw/OlzxqLEizdfe4BW3psmqPZhMwhowl6sZjc224ixysDAbkTdVpPaKBBf\n9iGMRngEPc1xG4egplBTkI4q6Ixd6m0Jo8tMX2um3lAQYwJxu53UQYXpxRUUh0jQpMZu1uMLu2gc\n1dDrVRQ2n5DPjFEaatzLYQw1kb4J1LkudU2akWLEo7NjEE0U9ncpyTJLCzF0QhifyYQt7kHfqqP2\nCMipPpWRwshUZ/QuT3DhKm+ev8Sk81I5rZDrHKDpBjEIIih9Mu82iPtWaVsHPPr8EQDhyVlQVMzf\nvkt9KHD+eIv4yhJVAZ7+/WM6mQx+RhhWQnTkJha1BbfXhkql4mhnl47cRJUD94yFjjLC1gGTJ8jO\nZ+vU2wXGigraKl6/eo41aEfK5ulXehzUazSSO6zcX6Bw3ES35MPRl3l1+o79J8/46FvfRdCNePrg\niKWZOIGpGCtTy7TVLnCZkcUezpWrnGwfMRu6hcFpw6pX0+9UmXQuE5nUMxyIZPJJhmOJcWiM3G1x\ncpAkvhjHIBpxeiNYXBGMdpF/+s3X77zvf/IB+0enTC9N0R+3aFYHDOwu3FEXtqlZHDEnzXSbcT1H\n8riBMjyg3m+jt7jxXIvRLtaodIr45hNEfH5a9RYu6ywyRkb9Nks3riINtagyJTwBG8R82EI2FLsf\nzVjD9EwCtShi7Om5GJ+wfHsRoyXC4lyQtd0DLk0FMZssqFUtnv/kHe5LDrrCgF5Lon9SYfZanOFY\nhXU6xGHyBekHu1TTElPLbqwTcWwGidgHc1CBbrdJo5HDYQ0RW4xQ3dhBPZSYXF2lkBzz7OVv+dPf\n/1NCtxZ59LevSB1VCUbCyCo9SyuzjGrQyOcoa13Y+h08MR+CVWCk93P2bBtVR8Yomlm+OoNQFogs\nXiFq9jK5ZKXnsuMbR+hJp5RHCv2sTDWTxPveKl6PFzkRRacDbdTD7PQcnrifgMXKVq7+xioGAAAg\nAElEQVRNt51HGFm4GA8QhjIDBKwmO1fu+jnLZrlx+T0yowqMRhhGLazLswS9DrbWNtCJPTrdNu5I\nmFFbT79dRxpAvnyOVhRwT3tJvShTKWeYDs/Q72Y4y2ZQCkaerD/hw09/j4aUp1NOsr3VxKGMSBeP\nqXaqzEdDmNwGrN5phoqZTr1MfMLDUNHj1FZY/+w14pybRq3EhNWOz+zEpFGjc3nROy3IzSHDdh7r\n0EBFJ1MpnTMRmiGVeY4QDpE82cRgGiP0tei1MqLFRsgfo9KscF7YI+HygE9NNJogmcvgM1hJHuRp\ndFt4zA7aqhEtSeLOx1OcXZTQDJ3Y/QnGvR7H1T08Iz2+WSejfp+36xfohjp6ksLY1sDeFfji5ROE\nscL0nTAPP3/CX/4uFBD/9Y//jx/dmLnPztkFcq2Kolcw9h00Ul1m3wuiM+goDbrEfX60Ayu+uTm2\n3j6h2elSUalwjweU02X87iiDRp5352nCiQVq4wyFQRVr28XO9hN8Ey6cU9O4ZhZ5vfcKq6IlZvaw\nu3uEQ91jYBjRHFbwuV2cbbYYSBLWuIfU3ktqio1OpYknEsWNn7YphWs2jik74Hh9HdnQxqmz4Fz1\nk02f4FK5KDfGzE9bGTpN9Ltlgm4n8lmbpakbPNt4yu0PwgxHaiauzOOfmOHs3T5vN98ytxphNnwZ\no9uOSeMkt7WNJDRZWVxkb/8YsTzm9Hibqcs3GB5msMb8PP3J3+I2RjBN+MidHnG+14WZEB69i6e/\n+hkO0Y/0OoN+woeg1jIqlwnMmBkZzDin7VSrZVaDkyS7A658dJfnD9+ga47xTvgZ25ok3x2zGF9g\nt3bBYnSBnQf/yIf3v0cum6SzW2D5vXt0Ol0G3QpNfZPrNz7k9NEaw3qKcmPIKOKmotZS6w9or+Up\nXrS58ckKrx9u4P8gTGvnmErlnFHDhutOjFeP1gjZPXz+m1/z4eo3waqnVdKQ2TshvLJK0DCJY95J\npyYxYY9w8m6NTreLx6Cn0RiRPDtl9maYrcMNLn3yCS9/+oDFyxO4ry2Qf/eKcCzCwaMzEren0PV6\nrB+sE/NOotVLdIw2RpJC8vyCWifL5PJlxP6Y/OYFycMc/plZvJMT9DJFPr70LdY2vsA+M02rm2f2\ndoxnf/cPXL/yEdnjDJopPz7rFFvvvsJhCCKn06Q7LboGkc75CX57gnJyk0LmjFvf+SHZjZcYHH7a\nhjrtTJOTSolSUeDmrSXK+Rwv3nzdnfc//dv/leawQS+fYqD1knrzHJXQYePdBsWnWfbOs5jQkMrk\nic/Osn+SZNS3EogHUZlNmH0eJq/Mocv2yR+e4bs2hSngpPxkg7xaz407N7nonhC16DjfyJEpjMik\ns7x37x5jr4R7bpqpuQm8HitKW+G8uInsmCBT3KbaaSJWbaxnviQw7SF26TbzCwnUxSZWtwrVeMzO\n3j6VXIfZiXkscRvW2SjW9oCDcg6pKbHw3nvo9HUYQqenwTwe4U1MEjI4qY267OztsLg8yT/95OtI\n/ze+/w3aFy1QSlwcHzDhSlDWt7HpxliiQ/QNBWXKzEgl4lBLtMoZzKElsqldfC2Ry3/wEVWNyNru\nLrkvD4iHfWhXEqTPytz56FNcQQntrIt53wKqYRWLL0KncUBV1cSzECP3NkUiFqI0qqPRD7BKPfQa\nI/54hLrHzKSnzVmrysH5iHy6iL4kcXz4JdVOj1GhSyOTwj5vwqiTKLZ7GDUCHqvCWbHA+XGWmTvX\nCDojuFp6zBENhugc416FyssLhv0eHq8FvT3IT376twDc/fQGI6MdweuinJewXwqgLUFy75BuM4PZ\nHOTicANVt0u3PcIgTHDn5h1CKwF63RZR1zTjkYBW7pG5aKPTQ1XUMDo9RrEY6PZkohYF+XaU05MS\n5fVTjFqFZr5BMbmHtaWm6xDZOz5jYXKJSqmLqmWgp+sxSpXRenX0LU4MYys2n5FeocuU1U5jqCVg\n9JBX1Umv55h1+Vi4MUFO28Haa3JelKn2ymTW9xEKPfRmMx3dmEpLxt5VoxK86Fb9BBJRWodZWroy\nTx8+5Tv//fdxyk2UtkRrPCaf2WV0lkPpmNl8+Gv8H9wn8+wR0/dmOd7L0ysUGGFHHxUJJqJsPT5D\nY9OTe5nEplNQWV2U6km6yQusXhc6o4/2oE7IM89AGeAWQ6gFEWHQxtK30c5U2D3aJJcpovXOMm4V\n6DZ76Ptd1KKaqXvziHY7U2EHGpuO5MMDhFiMifA0baHOWKXG6p1g0KlSblRp1HpcvjmLUR3CPNXj\n9cvnjKQhrfoYa9CAo6VQzB8htD3oF2Okdy/oq0z0+2VevnnNvTvfYzSQOW+k0Yz6FGt5VB0PPtcU\nxeQWXm+MdCWPzwibe8foTGYqR0XerB9y9727uN0GvG4zw7YdrbNL8uKEUctAYf017SxMLk5w/PIx\nqUYesafHVG5SS5fwOSLMRJbR6vScF5uIshWNvoxR7vHycZb49BSVYZ2D0wsMfg8+jYbfbHxFnDEN\n1RinJcqUx89QL2DGiWcxjg09Fn2Vk6MNZi/dwWEK0ZAE1F4/o/IhM1MBnu49o3p6wQg/wqiMyW3D\n4grx7PNH/Lt/9zuAOPibv/mrH61eu4rOb0Rut9EMFMz6DtglEu4lgtEI1kiYdDrP2u4zVmfDtHMa\nzJKKTr9OptkkYPDhnAgxuzyPXyvSbDUIL11Ch5HM6SsMohf3cgi/xcyorSJ/voNBGXLR6xA2DghH\nFzlPlxFaevKHBQa2Os7RkMHAiLksMmhXiCx4CE35sNrHuIUor15sEJ6IkGueo+7ZKYxKKGkd590O\nQUsMU8SAbPWj5Ps0OhX6ySan7TGx9wOEJDtae4DCxSn5ZIq418xO7ZStF5tcm/oGLZeEqq6h3qsR\nvbFKcjNFOn9CfGmJ/fNzPEjM309Qbxaxh6yUagLtfopm4ZyFb36IZaxmKhHh5X/6//jwz/+InSdf\nELsxjV0zIlk+IXHtDo//7gFjq4aIUQvuKR7/7CtiMREdNnSCRODqZTbfvWD21gwuqxW52waXja03\nz5i9/U2Sm18Qv/sRh6fn9A19rl+6RCM/wNg2cXqSJzLhoR4McWUyxOi8xvylaaSzGn2djHHGTPYs\nj63VorRbZ+F7HyFrFDJ5iSlsxKxhMuUqT58/5A/+7LukTzPEJ6IEzRaGaoVUI03x+Qvq5S4dVQ5r\nyEu/LZA9zhFbDnHpxn02n24R9i9SS9VRtEW0AQPZn27x0R/+KQcPXyFbZIqpGpVsg4X7l3n5xRMK\nmQ6aah7BqcMfWsYaM3H0d8+Zu+Ilv5fn/h99wMHmI8ILN/BZfKyv/RNTsVmqhxn8Xj9ytk8OLVrr\nGPPUJBGPna/evsBridIt7TAxeZXYjesoxVNc017W3rzDeX2OiWico4O3zH/v27z47BEadRWT6Ob6\n9SvsbDwkOD3FRUXi7YuvieUf/fGfYBNg1NMzPW1ClgUyqRIurZm2qcpQlsBoRJLU1JpZwj4XDp+H\ng8waxYMqpe1DUKnIjTM0enWuzyzTqFUoHFVxK33OWyX0J3WMYTf5Whe50kOt1+FZ8FLJZZEbdgYq\nAzpNne3yCVLOiHMok+7kEGQZw7BLuQ6++DxOHeQ7FQxuFeO+hfJYRa81piyXiAV9CHoPKm2V7JtT\nfE4Ho3ae5OExmrTC8eiYUa2G2+ch7AgwtFVI75xhx0Cj1ODRs689Yt+8cx+t2sHA2Kff0OJ263iz\ndkajL9GsGLFFJzAwBnqM0hKxxCwXr3fw6uwIXiPP/uNv6NdbrASczEzGqVj6yG/quK95OPyvr5Bs\nBvZ+mURbL+N2u+hnDxEnF9Fe5Kmc1fA5LOxl80zoRaSTBp5LS0SCq7z48qdIFwpLdz9AHbRxe2Ia\nMSxRqtdxRaewqH0UTl+zfH2WykGWg3SNiMFJQW1CRQtXwMF4ZOIwnWWQbDOc8HGUKnF+cIItbCQe\nXkHjV1MqNUgWDnj25AUAP/j936N8JtFKniHbZa7rE1inrHi8JoxRG6LdDfkCI/oY3W40ASenxwf0\n1ur0Wlm6GQW/w45rIo4z6Ocik0LdLaAoIpVsj864SOmiiZRLc+vye9iCJrLr50SWQtSbXaxzPrRG\nAbld47jcwFato/h8aNtaap0h5eQeu49TWA1FPAYv7UaTi6M2wVUfltAES2Yb8VtLnBydUTvIEfCt\nELL7aFYryFoHOrUBQc7S8gRZvBSkke6gCXfpHJUovNsitZ4h9sk8pZya5w9/w/du3ebzr17j+fAu\nN1emcHsSKAkXbrcV3ZSPca6ErB1SL/apZiU6og36bTS6MXK6h2dxkmH/kOC1Ffpyg162y3mlitEr\nUHi8S7k2pFHMMBsO454TyZ0f0laqSPou6093SK/v4DTYkQd1th+9w2AzYwpOYjQamLlxi9L+Pkpb\n4fCizrBeI7F6Db1vTG7zmIuX5ygmG56eiq7ORedsH73XgMO3jM2so7BeZvb6FbxLMcJRHTqfn/P9\nCiqzndHgjMbrJMlMEWPpgrHGzMv119y8dp9kao9+ZYjV4+bGlfcYNLtcXnCin0ngMDo5fv6cybkF\nqvo2M54YheMSsfcWCfnUVIYim+8qTDosqBQLmYMUjtUYpeQ+TbVEXypgUxmZCsUYGftYV1bJ7KXR\njMeo9WrMgg4TCsfZt3TOu1RbbcIBC71imUyui6FTQJcbY1iK0j45YSrxPl6TnV6rylbpgrt35ujk\nVEiijkIug9Ct0VdU6CIJjNoq3a6aVOaQdnFAaDnAqFqmklaoqs/wq60Eluew6Iz89lef8xd/8buQ\nzvubv/7R//i//Vscgx5Sa4BvcYZSS6LfraO2yGxtX2DUCzj6MkVNDW2tR7EPodgMnWaDXqeDXTMg\ntLRAx2hEEUfo9BZS9TpBrZHzt4e0ezUcTg/JnSLOGSetwx6xuA2d3kmq2CKw6MUiuqn3cngDQVqN\nNmphwMhowztpxxfTEwsEMdo81EYi4lghc3JArVhm6dLK1ywLtxeLycdCZBLvkplWI89IgM7eHpnk\ngJE8pNcZErg8zWCkw62y8WrvMVpngt5eir6s4u3rt8xMT3L5/avkNvNYdCZamQqJiJ/c+RlSV2J1\n5TLtYh6XOUgqlcbgEKnk2yg1GYsjRsBu5jh9gtun4jRToJZUuP/Db1E8PobOmPDKJR7/+m/5+MNv\nEVuaovxkDde8E/vAjNYxQfY8Czo7Qr+FWVFxsVNBMOpJn6foOwyo5RatvRPC0SDPn5yh10loNAHU\nIT/DagFJkLjzrRU2D15DX01mI489oCJzWMA26SZ8NcrbZ1+yMjXPwcUhCx9fZv35F3hmIsgMsIsW\nLAk3RouFX/z8p6yuXMbpd9EftNh/sUVP0yVksNFV6embnaxcuUS/30aUFUx2D4VBivROl06pxdSK\nj9zhG1ZufYfDt6+QsWO2tDiud2iNe0Sjc5TLJ+QPD1m++23a1SzOxVWaO4fUU0cIqJh4/yqb77ax\nBhaxhnSUDys0L1rIwRo2exR5KHL6bo+Z5UW2117y4acfsrF7jJxqcrJ1xq0bS8h+J7Zqk2FERin0\nOVhbwxgO4Z6fRDoscnGywViy0TrZZvXPvkclmSN1mMdus+CdtaH0NJhMIl/8+ututH/26e8jedyM\nul20oow/ZKM9KpMb1ZjUeunKYHNHUI/6KC0Z24IP20jifK+N1OhQbWcwDEGWK2iNBs5LGgpvs4yN\nPQTRTV6pYlHrSSzM0deoiU74cSp9tt+WkNJnlAUVulERtThJaGzGb3UhThswq3y0swXCi7cw2sFk\ntCAPtGSqDcxDN13LEO2wh1pnhFwKVdyLTTQgVxTGRjOWSBDprIUhoqZdbWDVThJcCjIZ99G2GugU\nB9ixY7ptp3pY5Nnrr0XDt5fv0xoV0FiCGGx9NPYgRs8Il9fDrEWDoOmiNjSYCERonBY43N9lKuzB\nvhLBOOlBL4hYvQbUDoG32Rz9bBX7DQf5fYXle1ZmE5PUW2VEu4lgLErRqqb6uoDDF8AdX8E27yAR\nmeGiVqCgE+lutGhJZyzev05pXObFf/kZh68KrP/2EUo5iVtnZTDhQG/vo/QkDIMIzrAJvTHERa9F\nQD9AlZYpqnXEXFqW717GNDeBdH6Bd9aLVG7CUZX93DnWxQS+65NMhuf4+//0/349H//mD1lYuY7i\nG2M9l8mWM2jbQxSvj9SvHqDu9IitJBh3Zeo1CUUq8d7Hf4BxfsDpizOyxTQXmQJn2STVzAEOmxOV\n2c20M062VmTCHsBq6lOpdNh+c4LVHcK+MIdpCMG4nf3dI3xLVxEDDlxjmL23gN7nQGfXIyg6DH4P\nLlFFuSkwEmu0LHo0KhUutQODs8dxQUWplKY/zBNPXKa2/Zrzbhsh6MMiDZm/50KncWFTGpztXKD4\n9dR2ytSlOqZlL76Yg/LrLGjh6dOHrN5cxeqfpZM55eDzNUY0CBpdyBqZ5C8fcJivMDflZ5zwYkbF\nyoe3sNjsNHdeUyilCQbibD5Y4+jdPp1eH4fFitXvxRdYxjARpFtJcnX1Ax69fsG7R0f0tANG+SJn\nL5q4I17clx3YI3MEpxMo5h5Xl2J0RQun2xsIFgGdXiZfV/PJyiW0HhcvfvYZKqnHuFJHERzoZYWT\ndhaz30p80YJ7agZSErsHT2iMm+QKXRwGO9XDAr2WEV03T9coMPvBdXR6J11Zw8yH72MNOPnNz3/O\n93/4PpbgLLTLtOUmiiSg0jToatyU9jY5OMsytZBAM3Sx+/gFzeMk0YkAqIYMcNNMHpLdLhK5bqes\n1hCdi1M5O6KcGaAfjfBN3MBzKYzdoudd+gxXSkJWRoS+exOv2o5Gpeawtklmq4PWJyK0FeL37iC4\nNPgVNeV6jkarTiARY2+zwtJ1F2qjildH60TGbryRefrdNH2DHufQzF4liddgoN014feKqIYSycMC\nYUFPq5THH7yMZNSidDoMBkMa1Qw2yyyPHv36d0NE/Ye//qsfvX/tBhp7AMGgI71zjij36ddahOej\niO024YiNz758iUHjRMqUCH6QQCypydbzOA0iLVHh/+fuvZpkTQzzvKe7v45f55x7enIOZ+bkszki\ncBEMFkmzyiq5VLzQpWTrGncSSUv/wi7KpEgABHax+eQ8M2dy7O7pnHPOvlj9CeNfvPWmJ34RpRZK\nMMjUCcePEUp1hkojY00Bm3ke99QkMqOSVnRMrhdCa1pm6pqVajyDeXIRv1NG7PiSTrWAVm9iJJHR\nyDToteSEyzHC+1ncgQna2SIXb17gcNqodJVYNAZmZidpt0VM6xPED/c5DR/gtF3jzc4TFIU+Kz/1\noVAaUAyqhC/PyVSziBY1jUoH79wk6YsoBpXA4xevuLswh95vwaINEldF0FiNHJ3v89bmpyhMA46/\nP6QrdBGCLpT9HuQ0WG0SMpIWNArE9k/xWF20ChXUthXK+UO0LjOtfBHXiot6vMisz4Ug2vj+H/47\nwZu3ODzdx3pnithxlCm3gnymglLaIlLuIpfXOTuNMmUw4XZPYnXYqYt9auUxa+9uoBTc7D/6imnl\nGKmoRm7wcfJgG9edmyzPGjg8CNFsD5BM6WgVmzjNTgJKJw8e73P39jVij47wLt9mf+8R73+4we4f\nw5ztbOOY1fHF77/mJ59+ytXpEUG7g76kTvDHHyDKyqRSFQJGOVKfm5Pfb7N4Z5GT3cdMv/MxydgR\nzVIZqdAjl2tRioeY2rhFJneIc8mHSgIT8/NkH+yz/vEal+kxNr8JAzriLw9Y+nCLXrJCoVUjtFNk\n7YaNUjmHa8pJ+DSH0+6g31WhDHjoda7wmeZJair0JAYkUh0ySZOR1kgzm8TuNdDI5YlEUljNAawz\nZoxaC5evDxikxzjfn6F9JTL3Ux+pWgPvaEgvJtDV9QmarLRKZfbeRNAO4MGzH5wXASXVdpXla8u0\nlXoabSlu3zJy2ZiAdQnP9TlEuZ7ZhRmksiqkB5iCNuRKAzqzASHXYfG9u+TjKUZaNfqhEpsoYl4w\nMMwWYWxl7fYaj/ZeszLr49GjlyTydVwrFiatkyjtbipHGc4OHhHt58ins3SSdeq9DlsfbjJudDh4\n+IRMOIzSIsOolLD96AWZZB6VQiR9UWSgalB9kmU/s0s/NUBprpKLXTJ2aJhfWMaxso511Gf/VZTo\nRYbSeZz01TndVg1VR0tdKuP5kx+K9j/91WdMrl8jV8tSKpQhVkBRUdAem6m0K2gFDba5Kco1CT3F\ngK2fvY3K6iIRu0QykvHm5SltlY5phxG9VkP3rEs5nUelVlBV1Hmzk8Dn9mG5vcLLf/4j+VwdQ8BK\nu5/FYTAwtk9SvspTvTjCbxOoG0oMhhIo1wlO3kG7LOIb6FAqR2RFM5JUmasnbygMqqzc/DlDaYZU\noUN+P4ap1yWTSSKajWhlNizqJmclKbmTBIVklsPtFxgGBnwfrzJpVxJ/niCWKXD84CFv/idL8M9v\n/W+UkruMNS7SjRianoG4rI/X6cWy5MOoMJJNF1BYJjCbVHRHIqZSG5k4IDscE3AHaGSzDHpt8jmB\n5lUZuV1JfpjE3JQg0TQJx/O8984vcU9bqA4TiN0WUq2E0l6VdCOF0O8xoTDQMU+gafRJF5KM+mMK\nwxGyYRnTyjoyaZJit0dwfR6reZ5QcheDTI2y2SCSTKO9UmHZNFKsNUmFQ1TzFSyyHgaHi35DR0Mq\n4eRFiEY3j1bXp1GToRipyB9fICqVGFxKvv32ER/94hdYfGZsMjkSt45QLE+3NWbQuKBZ7jPSWJhb\nXMTucVG7zFCvpTkL7+E2OJA1upw1GwTtErRKFU1RTzV8wGBYxDtpYqzV0Tb0yV2WGelHuOamUdUq\nSOo2Jid9WM0m2q06vQqYVVDPqHj9/ILYy8f4LEFalTjatpVE/RDBoiMTLpEeDFiddSBo9Ti9Ovqj\nBpQEzJ4ZTAYPGnWdnspCOV7AZgtQ71XQVdvEE3ECq1YMMhV6nZVxtk9b2UM3KmELWLl8cc7zl0+5\n/slPsAU0ZI7OkXZEkKTpjdWMr2KU6gL6oAxbwM3Y0oW6QE85oNJXUYqH6MY75CUJBJ0Mj8PI2f0X\nZDNtwrkL5IKI1eti0mrj5fkZWpMSSaLBSauI2buEwWUkX+nQUqW5+OoQ3DYGSgGbVkRjGjHOGXlz\neh+9xk61P6RXLNNvDkilE2jnZpnWz1IWqqitKuRKAzJRgUYcUI6mcC7cZu/+lwTsq+we7ROc95FO\nlxmVS1gXZtHVZYwlPdxvb+I1TDMQFDy4/xX/6U9BRP23//q3v7abDahnbfTTfbqqMtppO1qZGkNw\nCdEg0qlKkVXaNHQK5jcWKF0UKMkqbCysoBl2sa1uYbHZ8HgNVE5K6K2TqDQV0tkaqmoL+ZQblUKF\nU21nMBwhmtUI+SKiWUnlKIq4bEStVdHuidjdAjaTlatUgo3FdWKpFB++NU+ynGHCN0u6lEUuqRO8\nMYM7YEMiKZO4bBKtH7Ew6SWSikBTT1udYZRoUZHBxp1NWlWRZL6AcdimW1NynrtCbR9hGgQpZ5vU\ndTV2nu4QXH6bOzeWeP1kl62VGfZ/85K3P/2Y3eff4p1cxOx10m5LqcROMF9bp5tPI0GPXdqh0zGg\nds5TjR8jv77E5f0vYahiZcNPvCOnmmwg+N0Yx0q+f/WC+ffuItVpGVQHOMwOlCMjqARaGi0Wg5l+\nr8JoQsRSrNFQannxfA+TUsA8KZKp9+mcHNIwVrlx7xaH9/eRLwToX9aYuOYi+/0V2fEQ7bSa6Zu3\nUTcaOBV6QqEkjUqVWc8E+W4MpXOeXjeNua/j4PyKmWsBgjY3BfLc//IJd9/6GV35AKd1ktRZkczO\nKxqVBrObyyTCYc539tm6t0TiMs/83Ws8/f0eywEX6xvXCMUOuPfWu+TDZXRzSlymIC++3yFw7Ra7\nX+/gW5rkxeFjJpRm2qYeZztH3HjnHunDOP7bbtSNMf57ywwHWnomIy+++Y6V6+9ytXcE4yjSmpJO\nJo55dpHXXz5k9b1bxE738Sj0FC7f4N9cppkoYVx3kYn2MSxqOfmHh9SGArM+D412jVGyRE8iR98d\nMohI6AWgeJ5lYcnJ2c4RosaBL+Cg2JLw9Ol3APzNv/93tMdtas0kyoqCXDhD6CJDs16imU+jbPeQ\nTBhIXYWZ0pipBM0YuwqMMgnSQZ2+TopCIqNQqhHQWYnkEihKDTQzi0jtRnKXYbrjPs1xC0NgmWa9\nxcTASLlaJ5nMYJ9w4HYbKMRqKAQVuXwWq3OCwLQdtUpOadSiXk/Q7I4RilW0biMGpQaDzYZNBdmD\nNxQ6Am2lBrNWRq9dpd82IxVNBKxB5AY9g7qMcqPBxIQb65Qe0efEOuhRUVoYSeQM+l2eP/uhWP7e\n4haFWhRJb4TWF8SuMOC6pSOSuiTgnKTX6VI/yRHNxjHYNJx8ucPlxTaiUUU1Wca1PINdL5LNDNCb\nh4wm7TSMEoRyAadyEZ2uTaEg5fjbz7mxtcHS9UUiXzxnYsLHUa7ByauXjIpp/Cur5CUCC6teRI0f\nudPCzvYbgj01ocQ5m5tzeKY8WG+tY560sr58ixfPv0XaF7ANBzDrY+36TWQKkX53hKEjYzuZZlwZ\n4/GrWd1aR1UaIrPKefnNQ9ouP5JmjZFYRWdc5un9Hx7tPauzqBpD3HotqiUn5ikd+YMk4fM089dX\n0Pr0ZO5fsr39GLvRR/DTW5y3kpztJ2icNWiWU1z/6JeIKyJz11boCGOSb44ITnvR+Jaw6w3YLC7e\nPHyGRhgSe7JPPZYkeTFg4KwxvXgXQaMjGdqh/PiAvKTP4o1F9neeYC3XubqIEj0+RBZro7C5aO/m\nSberiJoxFoeKhw8vmLD7UW+MkZSaDA2TeFcDdMpjyooG6qGJvbNj0pF9Pvv3f0nQNU25pcM34cKj\nN1CpqnB5bIzGMr578D33Vn/EqJXh8PU5rUQb0SYlOL1G+igCVjs2nxWrxU4+WQoaMQIAACAASURB\nVCUUPUGtUOGxmOhbNHRHAnMLExQ7Q9QOK2qJAeOkH4mgJ3nexWW2o5GPcdgnMAUtTJnMGNx+6o4e\nF8kixfYxmryDsV7EqNWSvThn7R0XTvMUZUWXoNnBy7009z74AEm2xEnoMZvvzCLRiLjFWerDKvpp\nK0tTc1TlCpTDAu2OGXW/S3R7G5V+iimHAYnCgWFzDlPXSCk/InVyTL0dB5Rog8soRjmkrTbfPnjC\nz95eRz1wkc5lGQ5A4jSwtLZCopRgJChZ3VhD3pZS61dx+XRo6hICa05qsQG+mSkymRAyo4eDnX2m\nVz7EPadmlJVgdk6ztGLlu+0H2BsCMleA08MDDDYbW+t2KoU2BrEJbReZVBHTqI/UpkdertJTBlB1\nh1zmY7x19zoVRZV2R45RrsLrtmDtgyAqsaoMDKSgG2vQSaCpF1Er5SQjccpUGbQLyK0ORJ2cdjFJ\nr6tB5RMIXR5i1qrxu4Ioei0GehUPP//6TwP78nf/5e9/PXdrC91YQLDqSddjBOcWcE3Y2P/jDiO9\nAYNmQDhXQtupUa00kbea9PpKtFYlZu80aEQa0RjZ0pDcoEirXsNgMFGXJHHMzmFu9Ciq1ag0LfSC\nSD9cI9y9wOFcYL+a5EZgg0ahgdmhQioE0FpNWBU93IFJDhN7iFIz4USClall6q0ksb0cs/7rjKVj\nCo02xew5A7mVwVEU05KDKfc02UgUq92J12BDtI+JvDrFfz3AVbrAnY/XsPg8xN7Emfe4qediIOny\n8uUbPrhzk6tGiTufvMXuk+9wbM6zd3+fiSkPPb+FcjyCdXqCUrbA1fM9lu+u/WB1K1poVVbsbit9\ntwWL1k93IKOjKRMLd7h5c5ro1RWiVMHOg/vce2eG8EGdi50XbN67SS1RpCev0cldoVYNGA4c1DM7\nbN69R1Opxjc9z1owQDp3RerRAdevLxPJJZi1rVKIt5hfnad8FqFgHpLYSaDeUJI+O+HWR5+RP7xE\nrjdTP4pj3dri8OkTpKM+iXQdu0VKS27GqmnTMsixeVw8efwQn2ear7/8hrc+eRu3TI3ULyCXarFP\n2TnPFGgWukxOrLKyscLpqxByixVJvYlodyDVWtl99Q3uiSm0Gi0ai57QWQSZRMv1heucfP8vFKoS\nbr2/ibxbZmZ2g50v7rO+cYPqCIxeNQ//+RGWt7Y4+fIJucsLVIU0Ux98jNAqM6g2mfxomZFUQSnR\nRD3ppZcfM73gJ5o6JFNrY7I4MHU19EU9ke09tj56n9J+Fv2cm4lpG2qVEfO8jgFGpMMSOo8ZuUdN\n6MUFnvcXcbkCKOUSpHQp9wQa4WNeHu4D8Bd//dcIPRXqsZpeJ01i2OCawYLZLSN0kqdq0TKlspC4\nOMc2O0NyP4Om36Qm0dIupDBKNYwkA7Q2F/1WnX4yjTk4j8/hQitRER/HUDXk1HIyNKhRlZsYJt1o\nAxYKxTLDUQefc4Hd9GuoNjDaXKjMfWT+AIJ0SCMqodBMo5D00an8qJ0TFFsZZpYCnD3JUi3nUUmG\nyNUSlq6/iyVoolnsMBCTtAcColDj5PINvVICx7oPaUOO1KbAoHXgcWtI9sO0cwW2t98AsP72GmqZ\nDkNDSTJVJxO7pNuSMvfpBqVSmmz8hIFUj7LZoWeyIzfasRSbaGwb+O640TXMXGQyEI6STyTxGdWY\nlU6CwQXqqjG9sQllJYrCYGNgqZN/dYZ36y2ymTaibczcOxuoxgYEOiQTWVKvB2QzDTLNCEvqWUre\nHm6DhnStQb8lp1ep0LLpSH8VoVVMopSp6DkdWLN5vrz/B3TVHhaPlebUkMGwiAUL6VScg4M3LGx5\nkfpWmf7xNXyZGm6bA4XVhtYk46vf/LDO++iznyI3i1QybSLHFdoXYax2H1PX5shcHXHxXRb3rIXx\nlIpBS0o4lkSZqlEvNQmsqVCrDcSOz3EYVOw/eYm6nkHn1VMpd5hxBFA5FZRkXeZv3qbrsOMw+3Ev\nzjJ/5zpXe6c0Qima+ShSuZ27f3GbBn0S2xesLAZp9rss/PhtTFMBWp0ugkfEPuEiuXtMeyihnKlj\nmVag9clw6gLofTb0AxXSnsj0gpO+aCb6/S4//XefYHBbePmv28R2TlDqu8QO8+jHHVZ+fJdaJUdd\naPL428f8+NNZRHeAfCuHRGyyOX8XlUGK5s4CE3Y9E14vhVyCYavEQG1CO2cnn8xTPOlTbzeph065\nd+1HWBVyZD0FKnUJOmb87ia5Zoedf/6WVuycVLlPb1RDavaQebLN0rUtZu7cxTLtwmRSsfvyCeJQ\nwLa8Qn7YRshViHTyCM0Kk5PzJCkgH+oYVwV2tp+RvAwh2AOoJUpebG8zE9BQVxs5+v0/EEskkDgl\nFOPnyKR6HFYn8fOnXO1fIVjVXHtvEbl/EZfNjqyY4uCkgrat4LsXD3j//TsYnFZKyTTeSQfZHFQO\nD/A4bWTKaYzT05y+2sPumEVTkvI8tEc510ajLWNSeLlqJjDIx9hEF16PkvjxEUszS5gNBjpOLZFQ\nBl1TST1yCHIBaW9Er9Oi2agwSg8ZWqE16jHsymin0rS6TXLxCsFZD6VqDbvHj9niR+MOEN2PMjt3\nja5iSLffA0HAJJUjUSlpSEqIgoxhR0LxKoddryFfqeGY1TEpTCJ3q3HO+xBlGiStISavllgqjk3j\nZlQf892T7/hP/+efwMXB//Vf//7XP7r7S84LEfqNPJ1EHr99msP9OPLRkFYihdKsIB/OY5N7CY0z\n3Nv6FHFSiqAZ0KkUqJQz+BVBBrU8g36Onq5HJVaj1eoTcM+zd5yjdn6B0B+i7Oh4FQ+xuXqNFkPm\ntH7OU0mSkR3cpnVKtRKjSAqrdY68ekDlso5VYUMiaWOYmkda73FRD2NyWGjnUoxjUnoqKWaZBHvQ\nRPRNh1jxmGm/m1FjgMXsQPS6kJmkSEZyepEaKomZ5riCrDyAVoaYuoZRcPHk6WNW5+dZMTpI7mdR\nuII0DnOoAnqSmTz6Wp6WRIG2WUbnsjE15+foD6+4/fYNioKI2e1h++lLbq/P88evvmZ2XSSonyea\nvmRKtJDMy7DNOem6lKjGei7LMa7dXcOgEDk7ecNVvsjc3bu0Sz0UzRHL773D7/7pv6ORD7EqJhhb\nlWTzfQx6F9VmkYFORfIsxjiXQbfoxj0zy6DXQ0WRKdsG2oHA8dEDXJubPP2//wdzn31Msd9iTq1B\nppTR1Glxbc6SfvwEjcdD5yKHbmWRacUk+VaMh98/4Sd/9Q7nO2eMmwKdYplIPMW9T99FUsxRuYxi\nC9pp6H/4LsmlsvQlItpBl2gljcXkp9BpQ6uBw2glfb6LddZPOVWiOxyiEUUkJiepTBVRMSaVyNHp\npRCnvJRTV6hkCqbevo3D6cUwr2P/q4dYTGNsczaSX2VwXfOho0JbIiKX9wg//Iapu28jFUCvtjFe\nsGIYKSkkY+j8Vl5//woZZdIHNcr6Abq+mVSpiqgxQ2OIxGoktXPE9JyLB9+eU7pKsvj+26QbZaac\nbj7/+genYX3zGlfPdujrtej0GvwKK22/h0w0x+SsG4/eRWOYwuxd4TKdxj5po167wmCbRWHTIA0a\nkGhELmMHmIdSjP51zk5PiI2ipEtt3l/fRCkTsfgdWOVjxlMa8kdX9EcFOlLIX5TJlVMEPF5ufnQX\nu9XFyf5rSlfnRFJJBKGHY2xGZprkqnzOON0EQU10+wm+lVnm5zYwri7SOIzSyJ1QyLZQBHWY7bMM\nezWily2Wlzy0wgOujs9xTdqolZTs3n/NRfwSsTXEPbHM999+DcBPf/k3FJQpFAolrUyS2U/epzwW\niH9zQfYgjmdrkaA9gEHZwrqqw2bSgrlHNZJB0lJwFAtTPz/CYjFy/RfvUhQlRFIxeqkEL3ZCtNIH\n5BttVB4XGyt3EGeXsVq0VHsdpC4tlc+PsPjslMdlZqYcuLw2yr0x4iCLc8KBbWgmKxWYtXt5vPsc\naavJ2dfbqJxODL0m014f3rfWkLcMyPwiGrmMeLrI4R/esDL9NiN5Hff1eQxaOVI1lAtF8s9POC5F\nyV2VmJ1woJLK+O1v/gDAL9/+GfVyh661hl+pJl/JUu/XEPslrOszJAeXYDCTPU3RHVW5sWHHu7WM\nbWERs86Ay6phZDOiKgsoi13O6iCTm9HoXHT6EgqJEqlminQyjc4gReuRIVeZkHcE2roOvY4ci0Hk\nLB1j1JQiz3XJZPvorF4uz8P0K31cei1OswqbxEq9VKCWTdOXgcfpI3t+QXBqneJODJnUROjsjFwn\ng2B34B1KqHT66HVqSqMu4Z1DPL455O02cmOb/EUfeT3LYMZHK9Tg6YuHbN37c2bmzXTiJSzOCSx+\nBWqLl85RClGppTwYoNcqOAlFuL5xC7NuRL7ZwU0FqXGM37gI9iEDq4aL/Rdcpqr4F6YYtUVMEh3F\nahzjpAn/lJ1uR4rN4+Lg20viuSiJJ/ucJ18TfxrFMqfEMbNMrVlDb5JhFzxouxr6SzJsE5O8+f3n\n5LISbH4BEyOE5XVU6g5DlYShUo5XNk1L06bZ6jE14UTtc6K32hi1RbSCmna3isFhxDrrpVoJk9++\nIJO8ILh0DZMDTk8ibL/Z5qPln/B492uQi0xurGHotwiTx9bVo2iNOT8+pNWA6ZlZGsoWuUKTNZeD\n1NhGOXfCWGPHYA/iCFoRdGp05jkQWlyGdlCalRT2k9y4ex3DmovQZRrRJcWl9uFfdSKxwt7DNLJm\niFtLd2grqtRLPezimN3oKVJNDad3lpF0xCBSptcto3NqkWmVdAUVZnkXtc1Ns9Ph6CKKVqdCr+1h\ntlooZ3JYFzzIkkPatHHKJ3l5uYvZ5MRs9nB+WEZQ9DmOnJCvhrg8jfIf/4//8P9/EfVf/v4///ov\n/vzPfoB7uhcI5Yo0GykkuQaiK0CzVSeXyTM77UKh1VI4vcA3q6Mq1VBJ1Tk4O6GWHuHaCiIYOpgF\nLS2NnK3lZUStlp5SSi2RQiU06BmcWAUYSioYdEaq2XPUooSDkx2EuolGPUE90+GyEWGkFvBZVQw7\nAw4vL5EX8ixNelDLJYTbRcZNFZXqiFTmCJnMg33Sy5uTGJ12E71WjU5UUOy00c1YUAttVAoN/S7k\nO0XSnTKRwzNufbBGvFrFUrYibRd5tL3Nys159E4Pco8a+5KLdrNENRyChgHXkp5ouEs53sKyMo15\nZOZk9xkmrRp5W8eoVsBsd1G/SKCcdjBogkqqZGLOzNe/e4Rpcwp1+oJx38L24we8v3QHvUHP+eEF\nkZMstkkv42QEWnXMASPh40NuvbtJtavAZLOw9/19jCuzJN+cchY+5Ue/eI/HDx5hmJ+mnhmT2jtF\nVI84PUoydjvIHG1z+927FE+LeLxWTr57QPDmXSL7j3HcXGXO5OLb//cLZjYCXO6VePtXH7L9L1+D\nLIMveJ1//e0/s774KVs/XkIYW4lmkxi0JgxKBZHjbfSLDnbCea7NbJIetRCFHmbPmFjqmK3b70Ax\nz+HJIVvrNwi3MswuLZB6EsI1O83kppOrVyGCM36Onj9j890NlHoDl+kcXpkNs8+Hwazn9b88Q+kf\nsf9FCGVPjcY+h0wYoTBISB6HiB0ViCaOWFu4idJj5Owggm484DRyQfwwxMLSNLuvj6hlIrx78yPc\n1wIopV064SIymxqNQUP62S62STdysxGpSk9k74R3fr7CZShJPVFBqVKTq1V49uiH+OrTn/8V8VSB\nrihhymykYRoxbZExdon0OxY00jqpTI3Gzh6dVJxILIHLoEfjn0Cnq/P62QGFZB5pvUY0V8XnduOw\nOskVCoxrDQLTXmK1PJmjS9RLcxhbSjKChPxllCEiWxurePROzAEn6VSRjqRP/DKFZeiirZBTyw8R\nqhm8FiPx5hBNv0cpk0CmMhOYmUSOgE7fZTt+SGBmibFURbVYJKDxYh5BppHCGJwjkc8w0o+xz6xj\n1opcZQ5pDmp4rWuIUyLf/OYLABY3Zth0bOK8aUEieKkUt/EFLLhUSsy3bbj1RmK5FrYbKxx/ccL2\n3g5r9jsIag2HL04YlYoo/W5mt+5w/9F9Io/2uPPWB6QasHFbizDnxjLpQjaW8/0//I74oxc8Oz9E\nKVTJnZ0wf/MaJ1+9QD0/T98g5egfv2AwamDVWxiXW1xWC/SHEpLlE+b9NzAJDpbuTnL+/ATrnVuU\nyg32HnzLae6QRdHOyCRl5v1VNm7epGEYMtKaSf3+K7S+IIpyk8TOMd2eyK1PfkJdUyR2UuLi9RFv\nTg4AuPnZdfrjIcNyg5Nagq25OWxLN8nGj9l7EuLGrXvoOgJ9BJwOFZGTLoVYhXzmCpNeSafaI30Q\no+eRMrfkp1MrMhq1EOUVJD0J/iUnS+Zl2qMxiZePqJd0VGNJmgYJNrsLvWSEeWmWjlKCPJpE4VYz\n1vep5itMr60g8xjpVwbkk3G6Cj02t4Plt9YZnfTJnsbQT6+gbPboaPqc7mzjc0yQbrbJvn5Gpdtl\npOkTPSrQzB7jtfsYVIoIOi3Ou7OMdXY6pTr6QJBWL86T759y585Nev0ePY2S0M4FzfMKZwcR+uM2\n8Z2XXEbPefP4HKVHSuzylFdf7aKodhGMMBjJyIRDvN5O0ui2kAp2XA6RQbuHqlckfHHF9c9uUi3o\nqdVaHF+FaO2dophRcH11gb5J5Jo5iPmGHnlzilRxD1m/RuYUkq0rIrULVhe3OPryMZ6ASOCmF7Xo\nZ3J6HYNcpHiVI12uYSqP6SvLCKU6ao2NqdVFVIIG49BARypQ71eJPXvC9MItrvYOGOTrdKRjbF4/\nofNtjnYOEeQudnafsv7ZdSgIbNxbQSkfcfQ6QXBxE9uEHdWKg4DNiqI7ROXwURjlkYfyGG0WHG4n\n8dMyMrWCdqmE22mgedokGztC6Z1F2u2gGMkwW02YdCCv9CjkU8jG4FoJIJdYOM8kUZZzKDpqHLM6\nGokm8rEOSW+AaiAj6FiFeh6zUYfWZaSUSVOuJjE4rLz44iX1RoSBUUu3XKHaq2Ky6tA03DT1air1\nJJ1anmZFic3pR+aQkDkKkdo/oNbTMnfDgFVrweqwU0oWODsL/2mIqL/9u//2662bn9DvFXAvekic\nXrLy8Udg1xAO7aIuDOgoxyy4rxOPRuhaWoQiJTSZLuFMBk1jiFCvUR6naITGOL1BuiM9BmRUdT2S\nl3na9RKG5XV8Ewbq4z7pdhW920w2KxCrZhirpNy7O8NB+oIbM7eoxCJsLN5G3uuSjtTp1VNULDI8\n817SiT69ixAr69eZnBboW6xE00UsFjnCRZiGSYpNKyHTg6mZIIpBg2HfRyN2yf7BFZu376GXtyhJ\nuvhsLqyaAFqXjGSmw4vXT7lx6x2sGyvsff4lw2qJJe91hnMiujkL568ivPXx+5SjcfxeE6exfZZ/\n9BOUfTXn8ddYJkVKp12O4wfM3dki8eUZ8qAEj8NL8jSObWqCShPUnTJzd25TOrzgInzG8jvvYRUl\nWBwi8VIaWU4g10kiVWlJP4vTytXQGYcY15fZ/+MXBCYWMbZUhFMhJhaW6YwUzN6YR6JV4pmZonIU\nwuzWIhsMqJT6WNemSPXL1C+6+P0eeoKUYrKINuBHITfQVJSoteXYzCKVyhUytZqOqOX733/OX/31\ne2x/fUI8E+LajS00njGvv37D5k//kqPzPRQ9FdVwiFo5jkPjpx5uo9ULRI5O0CrMLGyu8Oa7+8xs\nbNJSdalcxrmMx9Bb9ASDK+TLOST9Fn27hejLY7auLZFpFLGYx7z53Qnv/GKN0DchFAY7W7+6jVNn\n4Jt/+gPWpSlCr8Lc+Pkd1u/dol0rc/DNc5beeYuzF2dsvbvElGeSZq+AvCRlbmuV05d79NxWMvEo\ntlvXSD5+TjGS5dYv/gyZx8DRv/6G5beWSLVH1A5LyDQCK+szhHJFKq0oe89/KA7/6Ofv01IU6EbK\nWLxW9Jpp5IIWDXKa7SiRlwWG6jZjhYyhFIaqBnnViH5fwVUqS/3yEtmgQb1sQderYnZM09VWcY9F\nCsMC6UiX8lUWbafIqC9icDsImpUMjFY8XjvDHiiCWg5PQ5S6BXLnZcwyORLdEF2rQas/ROaQYHYZ\nyRVzmDQ+GsMmM9eW6IpDDD09Z/U6+eMsWoeeab+Vy0wGqcuC1GzBOJJwGdunGi+wODWH3manWE9h\n6DqpZuqsvreGQZDz2//xWwD+zc/+LS+Odjn4/GvU2SLjVJPtN0fEBzXGCi1H/7qHspjhxe5DJEYt\ngRkL6XAYvV+N2a7Bcm0e04yR3d8+ZHrOz8biKieRK4RylubOiNZ5iFw6hhQrq3MzeINGdDobt+7c\nwaLWET6KoZUYIR4iftVm9eefMJCoGfrUNDR96odZAk49JocHt9ZEppiiMOxxb32L1tkxymEFg1uP\n17HCyGLkNJoi9+aC5y/3kSUH5Lf3UNnN5LJptFrY+l8/opvt8fB3v+OdDz9EYZejbBh58OJbAD7+\nN3/FpFpLXaNFWzMRybaInb9mYXEN2WDIq/uvyOdOGY80CKkinV6bnrpEOtwntbtLqQPqvpKro2NK\nSoHV1Qm8Vjs91zxXzw9pJgocVt6grckY6O30knmq5QKVyBXlRIWOWk4pmuPGhg/jrJdX+wm8Ngsa\nhZZM8hC3ep72qERDoaW4F+Jg9wSzw4Dn+gyJXhK9Ts/syhSRTInesEzDrMBssXDz3XcRO30y8Qau\ngB/XxgSDrsDi4joHtSjTWh/ikolxvUk1F2fU6fPk8TM237/HWCZilXXRL5lwrM+gt87gmzEjqk34\njEsY1kTUkS7Ddg6DZxPtnAe1z8fcxBLWOS2meT+TOLBc02KwBXEJFiq1Jv67TipXGqLJAwRVm7m5\naVoNOY4pB3qnDpfDh6BusvOHXUqZDIaqlmi6in5eg1vhQOvQcHH/CLlBwGNZQN3p0NLZaJZy9BRd\nrnKXyKJR5JNGRsU82f1zjjMJauUC7UiO0zcHyEsJmuMurrV5IhchTJYhyvVbeKyA2kQ7J+Ba32Rq\nUsoffvs1n9y6TmacwuoMUk+W6LQbWPwupCpwdHpUrWYmPV6GUimXF4/pD1QYnZMkcieMDS069RqL\n8ybGQykX+2HKgwaNUol4NkG02MWg0GHxG+j0JFyclNH7dLTrZdzWAJ22CrNHRO7Uoe1rOCjmYRQl\nXumx8MEdLE47dbnAWD2gmC5iU0/hmnYiK/QZ+yyUQiXGFTmmuRmMNi2DipGBMoqg6GEZqtF3AqRK\nF/gn5lAM1OidXlL1JFrRxoRfQ0etgZYei1nJkxfP+I//4U+iE/V3v/7pe9fRr9soNoaUz0MMEg2C\nNju1cpW2VkRv1uAJamkkE4gKHxaTnWY1x+LGOp1CE9+d9yilYsz6/bx+9IRZp4FweJ9UUcKg10Rw\nWahfhXGa3Lz4/iE/+miLfqlIc1Sl0ayjLhpxeGyIfTldp8DpVZrFJSt9lYxnu0/Zmn+LklDEH1xC\nUu1znGigUtYYFC0w0oC8jdb6A5piMO5jV5uRV5XIpX2evDpmw+vmPF6g0x2Tib8iH+ujG7SwSB3s\npE6g3KZWz/N69w2LnpsYPUbuvDXJVU2Kut8gfBShla3hdMixm+2UNUrysTQaq512+JJ0Ootva5Vu\npYLdJWc86eL82z3cARHLzCLadofDqwjFTIXFrTWkNh2p7x6CUkVwzUf4IMXEvI5Sfkg3kkezYWZ+\ncYnd5+d02kUUGgH3vRskXh4iqeZwbTnoCDCsSTC7bQyVberVJI2dcxzTfvpWJYNXWaqaLvMzd4kd\nHuG3qtDoBSxqAwphxJvnO3RKZdS+Dqv2a6jMAqH7r3BvfErq4ICpaQ+//+3nvPveZ8hRMr+yxe6X\nT3H71zCoG1TP00zd+JCpGR3HBzus/vRt9r96REnWp10usDp3k8PtlzRaTbK9KhrRS2P/GJXSgHNx\ng5OdMPnxOQuOGxxcPsHqdxHQGGmO29RDZXp6PWK9Snlswn0tiMcqcnT/C9RjE8H1NcwyMwUhjlTl\n4M32fXzqWVqSHvKeisCEjvDjfZzTPkInCSbeuktPXWDk8qLNDwlMTjJKl3BPLROpHiExStBK+4y1\nE6irJVRqDbmDE8YjkVYiz9rmJvqinK+e/MBG+18++UsUKi3rq5OchkOUxm2SBxdkEk1kdh31ZpFh\nt0vQ58Timifo92DrKClf5hjrRtj7UmQSKYtBO+Vem1b6DIlBj9ASEEU11nULdsEFLiMdpUjy5RFq\nXYnSQEqr2iJ1cU728JKl2Qk8RjU2vYKxVkRiGZMZ1lm7tYZyIKHT7iFqodCMsTp7i+TpBagEyvEQ\ncrOTu7eDyLGjs1rwTM4jlTUQu3kuY3FsPRfmSSuJWIo3e3sMzhK0y0P6QxnlbBLLWMkfvvshzltd\nXyZw24r/7Q8ZCn2cNxfRaYPMu6bInx4hVWmQ3t1gaXWGfLxIvlRlemMLndxO32BFVs+Tq8pZfn8K\nu9NIXhxSj0Zw2qdoD+KYby/hWblF8TyFSaZjSB25y0d895BEvE5dKkMx08VxbRHzUGT3Hx9xmT6j\netXEHukx8+40vYGEcUvJ7ulrzM458ocFhi4ZhdgVvhtrqCcXKJzFyeyfYTK3scws4pb2kdsDbP7l\nexhtMsL7KaanV3j4dBvZpAfHhJ1qZI+rvTSmsYbv/yf25d/+73+DZmjk8PkrlFYVw2EReiITM1Ok\nSkmm1t7GMZaTGuVxuNZI1CKMY0M+/NX7LCyucp6KUClmUUutNJJpGs0x6XwfmbzG5Na7GO7ZmPUt\nEA/tUclKkJUL2KwW9CoDC+sblIspIscnlPsWlJ029UIRidDiKhWiG+8iCnIayhHD8ywS04BmuUBw\naR4ZSmRtOb1GiaK0jjpbxeARqe410baG1KpXhLMFuvUcZneXTlFkKG2gVusZHkQIVboYBB2GKRej\nSgxJB+4/fsZnH/4Ys98IOi2BUYBatI5ol6AbdFEoNJS9TWqJAdK+nj46Bv/SMgAAIABJREFUjLMa\nvHIrnZEClapGP2Xg+DhEuRrD73Yj06mJRwqYbFYSvTJe3RCp1IhrzohHb6GdqWNw6BFKHXRuM1W0\naFQ96noDsm4fmaKDeWYa66KPZm1AV91lXBkwszRPrdEHQcHuq2/pVVto20qG1iDuCR+JYhWT3IrF\nYMezPIHLPI3KZ2fcA9eUH8tQwtClplys0zqPU23rqeVq6GdGtFNdYtEUr1684JPPfkFgbg0tOo5D\nO6zcvo5BPmbUlHP/2SvMOiOnD7eZmPKTiTVoix1mN9ZoShu4J64RsDkxagI0OiVymRFqbQtBOabV\nEwguWpFrHEjGBXojC9YpLRaPm0gkiqCRYqjkUBvVGOR2lC49V6eHKCUK7BPLWPoNLs+OyV81mHHP\nsv/kKSpnm/3nB5inV8geHdEYtFDIG+SOLxnkBbzzcupFDQP5kDffPUMr6ZK3mZixW2hKx7QyKZyC\nAc+sm2q+jNlmYjRQcrkbZe/09Z/IY/l//ttfX//VO3QupUTOdlgJrhJuNHG6TcQvr+hKpNTbNSYM\ndoxTel6dvyYwHaQ8KFAIlxnYHfg9PQZpkJqtnJaizAW8lOMVsrkBt+5OMmiLjBpVbDPzaJsSdi4T\nxCsZ2pd1ZifWsTk90C+RqVQZXiZAKUUQNew9OWDNM4/GriNyXmRciVFr1WhLWkiLUtLDGMurQQ5O\nDtC5JjAqRSYm/WTGHWrxHLLpGWT5DC5fkHyjikqTRQh4sPsnucrm2Fyew+zz4tR7yIQuebH3hmW3\nj6mVaSJnNUxe6NTU6Gkzs3CD/Z0IjtlJNI0SziU//ZGMQjSB2mzBP+GgkFKwGzlgyeyhLm1QqRap\nVLLo3F6CGxaGiQpWbZvBVZurRgaNzkirVCXfa2Gz2lHMqKid5xmZxkQ/D7H18Y85yh6gNCkhXcXr\nXMOxtcLJeYhybsDCnQ2EbA+Dzcm4XUHtnUboazj4/D7iNR3R8yorC1oOD05JlxVMbSwzFOVkMns0\nalq8gVnKmTqxszDWtXlih8fcWJ/B6bcT28vw4MUD3r+xQU0vpVWK45j1kjh4wXDkwLUpUotHib24\nZOvnn7L3T49wTy9x494mseMzTI5pJldmUZndzCzPsv/wGyRaA7Y1N0I6Q3A5QPMqRiGXZnruNgqJ\nhOPjA4R2h7mPtzh7uovt3jIa1Zha+Yp8KIdzbQ2DVUEhO2LYTqJfmuLgN69Z+WCTXrbHZTGNutkj\nmrtkfX2LF09fMPHBdY4//w6jqKHw5DmT150k0yWil69JnB5z7dZPOH8ZRlCrGcdqJKMRiqohGx/d\nwa6XYJh1cfj9l+ARefDtD3Hen/30PeRWCcMONCMlLBYP1UGY/khBIh3DkBpj8WkQbYv0nENUORU5\npBhEDWafDYldRSZcRC6oyZZltLQ6Vv0zaOZljNtDlDIVDqsHjUoKeZCOwhgXVtFqbagsSmzWHraA\ng4qigUkrUinU6ZfaiC4rbqWX8ViPQiGhlO8zZEA+qmLx2ix2p4HIfpS2tkctnsc9aUKpgbEcRv06\nxp6Z7HBA902D4C0t+xcnSNoSxiOB6fXbJKt7qHQNNtc2MDl9/NM//yMAH9z+mMR2jPjDKKI44NWT\nExwaLyVJiYmJCXyzZmStLO22iMaoZ1gaIxnHuQqPiIcPEKodirEzXv1un9DOIc3zLGsf32QUtCMz\nq0k+OSP1ch+T04HG1aBnsZLaSTNU9VG6dGjzY5QaFbntJmpxzOySluDCu9z5yQJa9yTRqzBnLyLY\nVxwYulku8m1MjiGGsYaeX0+mNODV//NHJq9tcn1ljub/x96dxEi2Z/d9/8aNebwxz1POY1VmzVVv\nHvr1yEeyZZogLJpeGJIAW9JGpAR547ZhwWzCoizAEmxoI0GWbbVJN0l3s1+/od5YU1ZVVmVVzhmR\nmREZ8zzdGG7EjevF054GDNtC433W/8V/eXD+539+bg8225BiuoNZ0nD3w7uYBkNm5+fp18+YubNB\nd+uAYV7F6okx94ObmKJG/vInX3fmLifjHEkXBFwBvIKNsUlLuyJjQcUx60IZCYjBKJ6phknYzsal\nBTQ2Iw2pQUVqEA8vYJ1OmFjNJBcC1PoXdIdN5IaVYe+QzqM8Z/U0l0JJGoUmSzdmmFgmaM1umuUW\nomtCRx4g9ySkfgev38/M9dfo1CQ2fvN72NwWLEEQhhI2bYjQm69z8tkzKvUqSytWnnz6jHBkHgMK\nI8lBZAm0UQeRpXWiKxs4YwHc7gR2hwgjFyaXiD4GPqeHzC/vc546wBsPoY5H3P3sAWtLl0gkzXz0\nr39BOntE9M4NOoMW055KxaRiUSY4vW769VP0Nh8zizNUpT65x49oNAZIuSqKVsfctU2q+Tby3g5y\nv8z2x7vItSFGuUclk+fZyTk7nzyhpgFPPI43YKOWrmCmgUmNYLV3mI1vEL20ysFX2wgjheOvnuBS\nXcxcvUruYJ+9r+7To8+VmWuUmj2u3LrJwnqU3Y9/js+fYDTR4Fyfx63C3r37dG0qic0ZWt0KfY9I\ndneHxPocV24scbz1ErU7oZwZ4Dd3GfYHPHqyzdXvfZeAw8lkUiVoTXD66THZ3AE2px2H3k/1KMXc\n7Tjd0ZBgPILNOIOtm6ciNZlRBQSXjW5Hx97+HtdnFjiXJEKhK7giAg5DgsPUcxr7dcS5GRwNsNut\nnO4dk5y/gmT1oxWGaA0erGYdL3JHGCUXgfUEqewzhJ5CcCaJKS6Qr6h0ykNmbodoP9ljaXmednPE\n/MYVBlWVQjfLsGEmErFzfLDPqGpl5kYUXXOIORzDrJtgMTsZjQX6UQvt8yyKU0Rn16Kxu3l89xN+\n/1fid96P/+hH/+F/+ruYFA2VZpZGs4/uIkej2sMk+liIRlEvZDqNPqPxCJcQQLTYMNsjVDNZmq0M\nneyIK6/dZtQ7RR4rBDVGKuUhPptAunyGVjJhWfVTeLBLb9xjbSNEIdvm2sos2oANtTOlJ4gc7z+h\n13NgbFTxzKxQ7NewWux09BOamQ6SRiW6ukRrJ8vmu+v4HHqe7B7wzuYtBN0Im9nI7meP6NRqhOdu\nYxqWOW4WCBtc9JopNLYASX0YbcCOIMHj/Re0Tk9o1kuoI5WHz7d59603kcp9zCEbg/0mU6HLZKDH\naPVjFrtkzisIRjO98xJDuUMr2yaR9LD/xRMSb61Q+nIHmTKbr79G76LO3MwCudyAaNCIzR/j/gdn\nLL0aJ/+0RHR5HmSVZuEMr9bG+eExs4k19N55ulKe8SBL4vIdijtlLr1xnVQth3M0pjMc8er8JXYf\nHmBRq4zqCq36BfZEgi//7E/5wXd/yMBg5c6deb7813cJXAkzt/Yah58+5eT+IzZeuYnLYObswUsW\nXrlE9I01hBcdJtoKo+GUenHM1CLzxRdf8Pq7b7FxeYmjoyomwUzwUgSHLsj+1i5iMk61fk5cnCfo\ndjNoFtl5nOad33yHrZef4DK5qUhjwu4BWpuLaVVLKO4nnXpCci7E850So6mKYdZDWDRRP50QnffT\nLwvMrczSHmkpPj2hnm+x8M4GmU+26U5GyK0cFk+U/k6B5V+7RusoRXJ5jUElRSgoEl5eZvv4mNBM\nkPP75yx+9xW0tjDtgzNc15JkDnp4JjpuvHGdn//iU771229RPJMI+wRMq2uMtvd5kd1naIzgnWg4\nz2RRbXYefvn1xnKnPUruoEO7WWH9B2+glfu4NEZiKxEiEyO2FTNPHx6iDFrUMm1GkzaxpQSqWebk\n0Tk+7MiTAYFLSZJxN8OTGnuHJYwmEz6PnUqjT78k0VIGOOadFOQJSkPDcHxB+X6K2kmXfL5GbD5K\n9nEGvSNE5J3LROUwmUqR08IBtWaZZMCJWz+L1O+SqmepZy9YmbtMIhgF0YRxYuWLP7mHYBlhNbvZ\nOcszm4iTTx3w/DiHZ+ogfm0FS6tG9viYwcCJ1m5C6xDpnBa4++/2RL23+TbOORMOh5fj/QoLsShO\nax1prGH2eoSL7Tb9fo3iZw1Oc0foJl1cvlUKx0e4sBLyCMQWX0NolXFHRIwzYUzHE6rdDo2aiiPg\nZGb+KtawQn4/T2jgxfXmPNaJSv2kjmfdyLilkpjz414RcYaXEVxa8sdn7G6nsNgkku5FOs8PCS6u\nEjAY0DFk5pWbmM4lpL4O99oSk3Kbw8MMpfQRtXQR22wcmyQxUrss3YrjSfhweW8ij0ZIXoVX31ij\neFggfbpH7jTDs0dPAfgbv/cfI8zEEM4ayP0JWmsDU7eJ2+1jNLGglbr05QzZepteq4ykkVDOK9AZ\nYdDYOcvso1clJqMeUktPqzMibLQRMn8976LTTNDkZHR+C21ZYmrVUD0o0GyUUKUWczfmCJhmuWjn\nmTitGKp5pA7MXfeh7WgQ9BZ6Q+iUz2hd1JkP23B73UTdHhrlArMri6SPjqkUsjQsdQKeJSqFMdVi\ngYhPIF8eIe3mkXJ1zmonWGxGUmcH9MtTjCEDhXYev2xBMwryyYOPuH5thcz5lITfxOrcEsq4g1Nv\nwuS2YaqbePiLe5hKFRw3ophFO06tlmGqgWwSUPQN6qMWU20ba2NIZC2GQadFTPjIdhvYJhLGGSPN\nehcxGSAwe40Zhw6n30Vv2uHFp2k00gD6bQ639hHDfoRhl9D8ItmtL9H6bKRPz7n59mWG9imCaCUx\nG0bWiyjdESQtMJbpKLCWCGGy2aA94myURpAtXJ+bQa840XWgdXRBa9Tj0vV1BhcW9LohYtKBJBXR\n+zzYknN89vMP+PaV1xmbx+x9lsEftXKc3UXSmnAHA9QnPQLzIdqZBq2hTCAYw2Q1cfT0CFodxt4A\ne18+ZCr2mI3EmMb01I8PCS0t0nr+EuPUyPL6KnL5DL3PDyYTarnNuNMisBbEaZHpqTZe7h5zvLWL\n32JkYLWjr1ywGbtCQcohzicJaiecZmqs+2ZRglZkaUAgOIs14uBw6ytefe8mcWuCdmMPZyRGKBmn\ncLKLZ/USLhGevdzCHQhiFibsfvGIgC9EcmGeemmCRW8g6hzwwS8/4/d/FWJf/vAf/9GPXpldozuo\nk1i8zNnZLlpfnMlAxWSf4gzG0RhHnDUyKKKFoH+e560TooE441GGujxG6zJgtHg4rZyiyUwxR5fI\nVjJIbi0ag4lrczEmuS6teou+Vctywoe1MyCjU5iLJGkfn3JePGVx0YXgdbGwnqC0l6GmqxILe1C1\nIt1Kiqtv30Db0pCXBvSlKamXWdqtOonLG0zcfjx6ldJhHWXiJBiycz+1ha2pQ1DaDEwqgYU4e9uP\ncXmWmBdjuD0a7PENhK5EXq2xs/WCzdl54lcjtOtdDPKI2Du3aF70kDslHBEH45SESZzi8ovMzK9y\neJrHYZYZtSTOmgWW1jdZffU2L/7Np7g3/ZiMMsVsld79Iy6ULhu3QzSnJnpdK1i6DGoGpo4Aol8H\ncgvNgsjpgxSR1xLYei4sy0H05x0s5h7WaILe+SHWSIBubULEZSU7njB3M0Y728Pq1xF2bZI730fw\nWrj7Lz8hcecGJrVPLZ/HY3QRvDXLYKTFE7Iwu7JCSzuk99VXtKxuZhY87OfPqRTzzL66wi//5Of8\nzg//Os8++ZRrr12lP2nT2NrlvF3g5g/usPXVZ8wnrnJ0fEA2m0Ua9nn7t97j7mc7zDsChK/Mc/Lg\nMe6FGE/vvsBm7RHfSLL7/AKl70TrFVm8NMPRV884295nbiOJpLXRze1wkJEw9E4J3LmEYNTSO6oT\n/84GhZcv0Xu89E4qeF5L8uDj53TaLfQBHZaJn9N8iYhPh1/nJLo8R2sqoNRzHH2xw9KvrdNLNenl\n6iy8v0y5VsPalXmRTmPzWJkGnex/eI/knU18kp7BeMLJ4R6z79zAqtNz95dfz7x86+brrFxy41oJ\nMsBG6vkh7VQdv3+ZodCk3QwTcllIXF7HazdzlCpg1umwBV0I4wsMwRCHxR2Wgov09GCizUjpox23\n2X15TtIXQhs1Iat9Uk8PMTQG+G9fJoaPqc+CRSczPzdDJOzF6YozkYd4RtAVp7z4+V2mwpRLKysE\nlmbo2Qx43AqxpJ9SXyURdzNyufCrI3RmN2eFLOGNTTRyG12/jn2gwZsMEAnHsTmiGAQ9R6fHmPFi\nchtQjSJhp45cfsrjp18XUbe++z72oIBDtjD/+gyekJdSroxLjPKz//0X2MZWbEuXeOO9JEtXFuhr\noFmssfCbdxASVixMmE6HzLy5jB4nDrcF30aMqWGMqDFyka/RV3qoZQXNXBDVrnDvpx9Q77W4+eYV\ntH4H9aaMWs+yddZk9/MvqV3sU8n2WHvrJrb5KI3P72O74mJXLmNVjJRSF9x7+jkn9SGDUpv1OT1a\nl4axoY1H9uN9b5WgdspFbcj6ylXS6R1SJzKpDz5mIEsMLvLcu3fI9R+8hmfGgdcX5IN/lyV4ae01\nqruHJJZiqAwJrq4TuraGIRhh9DxNtikRjqxhH3QRvHHsogffnduICQ/OgQ2LS+D0vMf69Ts4QhGS\n4RAdUx/b2jparYseA+rlJvbFK2xsLrP3dB9rKMhI0jL/ylUyL/JU6xNuvn0Da1CPORyiVCiQfraH\nSaOyff8rtGcdXGY/qteHYjLy/Pkz9NYQxaKM0pnQN7eQWxNmXUsYDFYWQ2GI2nn8f3yKMDXQreex\nLrlQZQvxuUXEcIDzzDPazTErxhjWlRgIQz765C4//Pa7BC5tMMpnqeo6jM+76BZmsbsMlDpFrCED\n/quvMnp2weFFmqHehHEtgNttonqcZXExxkpsHrMtydl+HSUWILvTZN6roIqLDNtjQptXiLmjmNwy\npoABkxIiffdDYq9dJ7nswziJYXQHQT/h+cs0pRf3ePV3fgvRNUcymaBT1vF8Z4tauYdaFNg9ekI1\nW0ZXq+OyO8g+OCa7c4zWrsd/fQ5aU+YDHs6PO9SOnyFG52kPYG7WSqs8QtAaOTpMM6wOWH8tgX7k\nppXf56v7T3n7+5uYtXZM2g6CRmE6mGILO9A3BWLLEYaohBIWzE4/WrOWYXECmib+lXXaz55z5ZVX\nGNfHnKUzmIc96LuQ9U28thB7+3vYkx7q3TyzHjeCVaHPBMHmw6EVqOtEjAqcZJ6yuL6ExWbBt7SE\nwWChbu8z6bZxL65gNTpxuzRoPCLOqRfRHeLs/gPCqwFGvQ6tKShmA+kXe4hRJ43aGXPrc+hHAzpF\nHTO+GEPJxkSZoreYMdnsWJQRk7HMWFennu1y/9Fj/uD3fxVWHPz4v/1ROJTkotyjOMwSFD34h1Pq\nWgW7XU8sEqdZb+Bymog5l1D1RUrlcwz2EP3zDBq7lXDSw9FWHue0A2YnftsESXEjGrt0BxIWr55R\nucdwOEVntOF0OnlwkkZT0RC5PIteB3m5wubiLVw2OyftC4bjKaaJi0FbxR520cqUsC950TkdBBBI\nF7P4BAvNcYfr15ZpZIsobiuCpsegP+IkfUpsJDARHWi6fey+ReoDGYskMBOfY6wZYfN7GVnr+PUB\nqp0ej+89IHwlBhY7l1eusHeYxu+1UlEaJJZucu+DL7AFohhNI6ZliYlHj0Zx0q+1aWl7vHbrDkcP\nn6JKGnTJAO7EMhrZhL5jhEUDtewpZM0IrSzmtQQ+t4dBeUS9nsfittOuNnAZ48hnRfxzUQpnMp5m\nH+31IL0nKQaZCUO5jj+0gGHZz9Ofb2EzdOmfykxnPdTvvcSf1LN3KHF5PsrNH7xK5iSFUtITf3eZ\nk+MLNKqBi+clYldmMU61tKtl7ItrHP/sY6xjJ52+wttX75A+2+PeFw+58fY7OMMxUp/fZXnpGvvF\nE2ZWbqGUzxgMHCwsRuhcHOJduYnVoUHuaqmX0gTfvM29P/+A6MYsh4dZrr/yBi7By9b2Xa79+vvs\nffYFd26sIGWaNKdalr+1iduhRzop0bc5GOvKvPHKLbZ//oTFeASLc0DltE5UDGH1BPHF9Bzf2+K9\n33wDu3WR1vEZ9eoxgcQ85/Ucgs3H4eMzQrNO6rkuN+6Eef6zPTwrS2TOT6lX66yKSfSLZgwFmfy4\niCWjJ3RtmdzTA/zfXqf64Ve88x99n2FDYm/vjJ2nTwB463e+hzseR5Igm05TPEmjOMzMBrx0NXqC\nrg54ghyfbhEIJqg8ecZI0eIMhqluNymXKzjkIe6NeXRGK4JFg92yTCnVpG/psbJ2h2H1mMxZlXa9\njmtxnoDLxkjUI51kCbpDOCNxVFXH2KrD7jXSrBUYNx1k6g3CM3bEtTUcXRNqoUb1NEevBGq7jo42\nxfKAiaiSeb6DZmhlcckMIycGtxurRcGmmtAkDYS8Wo4Py5QHDaY2K4mAhZtra0yROD3ZZmf3EIBv\nv/8durkOJU0FNTdGtnvINy+YJiPEnSJ6p5fKwRbH2y95/uEhJotEcibCyd0v8ZQFHCEPx9UpB/e3\nMPhEHD4PH/2LnzIc9xjkWizOzqAkBSwtI+WXVaxOG16njqQjzk65RvnjHKsrUaRkHGt9AnKPRCRG\nUOfm7Nkjzh/vsfbb38EKzK2u4rTa8KwEcfkChIIJLm+IFGoC3VaPlUvLTNx2nv75J4j6ADPLEY4f\nPGVmJYo7EEZySVhEG/HZWfx2kRd/8Tm7jwrYRgM+f/gAgF9/6x2GPQ06/QAxOceLv/xT0tkmlcIR\n9sU5SqkGs0Ed9ksLVI5e0Mx0EYQucrmKc9ZJW3Xgc1lxmlwUT8447xZIrG5w9jhDt1BHERWuvz7H\n4//tMQe9I95cuUx4wcfcrTW27z9iLjSD9pLIw3/zF1Rf1Dmtl1nfmCWcmOHko6esXklQb8PQYKJw\nkKF0XsLnmGIzjzGMnVRMF6w4lgnfClLYOWU6qFDSm/ApAr6EA7Urc+UH76FpyqhuEyePd7GoQ67e\n+i7meIxytk7tPIfNPObjLx5we+kGDz57yCu/cRtrfJ5pW8t4PMBwMcVmsqL1+jj+8OfIWi1St45c\nbeFt2dnZy/DK2zdweu3kmuC02OjKGUzVCYpGT2RtlUDCiNnmQbC0EAZWLl7mcOpMHOVfcHnzKraw\nhb2TU3bzz1AlLYErS1T65yy88X2Kj7ep1csMhhbsEQGvQ8SciKI2G3hCZpLXZomE1jk52mPqhdir\n6xjDScoXGTw42CkforeFiV/2cVjPs+Cyog+HmQyHNIZnqBofY2ud4/MGysWAwXTM1tOnfG/zr+Ga\ndaC3+pC1YXSChkvLEaw2hZ0HJ1htI7ySg9FQg0Nn4fmz50TnL2GxGenaDFg0Fg4O99DLWvbzF6y9\nusp0oOdg7zlrqwH0cohJp4bs9JDZOqRTPsS9sEZL32VSqiOPWjSLMkvLK9hEO1ZZ4nj7hE41x2g6\nYtKyYHE6qbdbWKsTDos5YjMeDH4rF8UO3pkVTCYVqyJxdlqgXR/RSp0zt5gklc5h8cmkUhmyF3vM\ne3w4PB4GZgMjxYiiCqhSjucXe5weZfmDX4XB8j/843/yo+vXYnhC8yj9HtHgOtqkGU1hxPrGHOVG\nmsZAx9qVRRT0PNl/gS0/Ru5J4BSIL8QYV1W0kwalvhZl2mHp7euYYkHiCzEK53WKhR6hO5v0+z0W\ngg6ePttDg4TPHkG16lEFCXNZZRq0Mqr2SD/NszTvoK/X0yw3mAu4qJYrWAUttomFrLFBKDiDUOug\n6o2oyOh9USYTDaWHGfqijMnQZtjSsXQ1QLfjJDrnpldoEk746XY6nFT3sZk1TDt9dvaPMY06PNh6\nxurGJqLbTnUng3lOy/4XR8zNxcgfpXjvW9d5svecSkEheucyWz99zqCRwx5UcU8tvHhc5eblJErc\nwvDsnMpEYpTvYF/0EPeHEN1rXDzcpzHosX5tlWfbX+FeiVM6PiE+fwlNL49LL9IR2rTSA6I3Zjjc\n/oRwIIrDl8B2xU2zUkUq1cl8+RnXfuMNFIuVVPMYgzJh/a0lxqqZUvECk8XJw5/8BO2Mg2u33+bL\nz+7iE6MEZpzMxyI8+fwuPneSrz64yys3F7FeDbL1ZIvQUpj7nzwgcvUSn/38A95+/ya0HXQtEqVy\nDZ3VjXfdTePRBfRqeN/cIP8iQ71ToXFWZfVOBKM1TPP5EatLi6ROK1ya99FuSOyeP2UteouzR/cY\nGRxEluNUO1nW1kPUchdkt1PYV6NYFRutM5mj3Dnzb97i7MmXhN/4PlIpS28ko1HtlNJFLr39Fp/f\n/5iAxkg202akn+Ca99F4nCa0fpXwTACNNGRtY5bTcR+fS8Sc9OObjnF4BWS3Brt+BhULFqOAfznO\nqFinnGsR9QfZz9bQ2VwEfR509RqfPvg6K25zLUBmp4fBoeKUzbz6/qu4l0I8OXpMYGGZTHqIPywx\nH51FbzTjSmzgNRppyzVsN2bpnZyjdxhJ7eTIpi+Q8kWOj3e59d51ljcX6A1amCOruMM+NhdvUqte\n0K5NKKSqNGoVzrXn1F+esP8iR1UqIeXL7B0XiC+4WL20zqBdoi+BxjDA4DWSTfVwJmKsLbrxrF5F\np5nimoDOFuM8d8rhxQXZzAUtQSGsiTJA5dHPtni+ncZsNqK36rkTukxTa2ZsGWA1eggs+/jFT7/O\nEvzWr/+Qdi6HMzCHwTdhUmiymLBQfrRHoVRGzjbwz/iIxDZw3BIZiwtoK0M0CyYsYw/tto5B5yXX\nrr2OZ2YOw7iD+/Y1TNYQRq2W9sUJrW4Vq1bF53UzODyiITlAqOPXalmaWSJV3aL8p49h2MbgsxLd\nvE1fU6SniNx6cxOjXaE1qNE463PSnjLcqXCSOkepj5H1CqPTfXyX5tn/sIBJUFmOJTktpDAthhDQ\n0TT0sJiiqBobZ/tNurUMPrNMewq/+de/Ty/u5qOf/BkA7/3dv8GgfoixpSL0dfQVAwHRRbtWQ9rZ\nxeWPI02NyA47cZOOicZJdZhhNhKnNdJj1VTYu39GPOKm0j7BYnAQsItEw06OKgeM+yVGzRCqlMWW\nGzA1uVFNIrJsIOYLY3EJeMdGAisiy+vX0bWnKHUNXavClds30JjvFDEsAAAgAElEQVRsrNyI4ogl\nGJr6BGZXmJm9jDviJP9oh8TmLQwLAdpyn87LC/q6MQ6tDp0rho4+xoCW+qN9jCtObCZYXVll76RJ\no5/BX68QfesW/mUfjXSBz+4/4Ns/fB1PYoGe0CeacKMbTZmgpWlvMVB0GGUjuXKZpUiYtkGgVCkx\nP79GWDuh21F48fgzso0LDo6esCD6YNZHIhli/+4Wp8MWgVkR88iAzWDA4u+haBw49BZEa4y9Z1so\nezlUrR6tx09AmdJ8corN4saa8GBTFaqnz9jbPmLz1WXsdhdys0/5ZIRkrLMcW8NmHuE3eIkGfJiE\nBkdPKxQGHYyZKuNelcD6daYqTPU2gk4rI82QSX1M2GdmMukzLmkQTAI9WeD58y2+/f4aj7df4p06\naDRf0uqq1KlhiYSJ6QwgDNh+mEZRFMwJLQaDRCihp1OZ4BZUOuYGuaLM3NtJ+sMa874g7rGG4NIG\nhmSQjn6CMChh8IRoZrMYHTGCFpHi7jai107ms6do9E5c9iFWh4etBwXMlKnkZVzWGeZvBjn94pja\nySmVixMaMniTGlS7DaNdwCzrePLlZ/jCsziSc8gXNUyaIOKsn6ks0as1MVqDzMwvcC6VOS+U0Kgj\nNPUcWquD3cdP0TWHnJxd8Ad/8CsQ+/Ljf/yHP9p8/RaDhpXJqMz68gpyY0Rt2kTvmEUpNRkbJazx\nGI4BlE4OWXnve+h1Y6xGJ7MxLz3BiL7VRSOYuDSzQSaVBbVI0ORhWpli0ltJzvkIBwO0W1os/QmS\nXoM61JCpHjF38xUEZUDIamY61ZEaZCgflRi3mgx1I4rVPEaHkVGmTjpTYiKPGEptOu06doNCtq+i\nydawWGU6A4m1+C3KUo3kzauIoodeJktu0GXShUZjjEkxIBtUSg/TdOQR0riFc6zlyyfbLEQWuBTw\nM5maMXcUbv/uLT75Vz9j6TvvsvXpR4TWl1nwx8kVt1laWEMXGpN60eCVN77HRekhUqGHoa2lVtZi\nsUP+2SEeX5RP/nyLSqWM4BnjvXYJu9HOqDxFrU8I6McE4nM823uJ0RtBkVvo0GGeC1JOZzH6kihG\n+Px//TPW39og4PMxEaM8/PNPeO3SMnp7lN5FjlGpx8n+iG+98Tr2JR8thwmfkMBjbCBPg6ROP2ch\n6efJLx/wnf/g19je+gXLV9/j+Pg5/edVVtZuM+P10ZMLzLnn+Ytf/AXfeutVYlc2KBy94PLcZSzB\nEYXTISsLl1AdDrb/7C7L715jqGty+dYap+U8AYefDqB2L/BFIzz85CtuvvsGjWGNSUUmGV0kFPCS\nevoA2+osB4/SLIgLxK5e4fFXd0leXccUsOFIzOCxuLAJMkpnhK3jZuKcomDH5IDD7TQzV9Y5SO9y\n884NCmf7YLRi9VtxmESsMnRGaV6e5fHJJjyRGA//58+5+tdu8+mH+1gcPnbuf05nWCIYj3LyssGt\nmzco5svE4zEmRi2aUQdJkVAaOj579PXz1fWNK5hwEp91kH6RwT7rR6xP0agqVvMEhmbMOpX6fpt8\npYJNNyHXlwhrTMi6KeeVGmqjzOyrS8zPbBBQPYTWRbQTL7g06Kwm2hcdLg7LaMZFmo06WBy4pxO8\nSYVGyoa2ViW0EWZpMczT7X0ckhZveA7VYqXcaKPJlqg2GzSOq5QGdYa5AhO3A9Us0q68xOdbZmoY\n0W5l6ZdlrmyuIIaNaIZa6u0cJrsVBAmhrUXFiHfRTtDswaEfI9gFsg+yfLn19YzYjElk/fptyuoU\ntvNIljFjgx3b1M31H1zDIsbp1CpYLH0OzlOYpRqX334Na2KZmqWKRlXRDwMMp3Ue/OXHHN3bRTjK\n4FFdmNZDzCxFsUz04BCpdc4QNmZYvGZBUgPIsol8uIKpqWH1/euEF+cIrs3xIn2O0+zG5ghyUUxz\n/FkKkwj1QRHjRZGhyci8xcLc734Xjc3L2pVNMg+28bl0KFM9uk6dtiyx9/AQt75PvRkgf/yEzotT\nNt/1IU6SSF4Ta1eu8ct/+xeMslUePvu6U/n2xh0uz97AcWsNJWanWMnTb1S5/OYmwatriOtx/PYB\ng6NTvjraYjDqIqh9Wk9GnKdeIE2tTId6vEtGJKMWceTEFguw/8GnXP/Odxk0BwzTdSyz6xgNPc6O\nCrQKx5w92qJdUuk1u6iGNidfFEgfbZOvtRlMGtinCrlKge5oTOrLHEK5T18R0Jf3aadbaMcWHK/Y\nUfMDRr0eFtGPZJxirFowm/WkGyfMhReRJMCgw9LQkLs4JnVwzkzSSatQ4tlhnlqrwPCwTVfQ8/DB\nF7z//m8jjafIxyVaZ3mkRhELIhd7+0itGofHjxEFC8Vsj5jPzXxoFZ1L5uQgjUFsk1j+PmLIyYoj\nhiEUJp+qcJaqgtWAXWrimDoYDLScHNQ5yNYJDsZYQgG2vvoc5CqG5AbX1zcQxkOKVZXKYIBaOSK/\nc0pPCy5/nIWFqwxHE7Y/3qFczTK/uszCyia//OhPGHUsHJRfEDUnaRQ6XPRPue2OIMwscrZ7hrY2\n4MXRPYYtLeeZZ4SdQQbtFmosgG5gYuX2FWaXZnBMBvzi7l2+/eZbeOM3OHjxGe2WEVUqYvG7ESUv\nDbuMUxURZwycFZuEZqIEDCEamRx2k0Amt4/ojdI8zaCdNpnzxHn6RYbIrRlUJnTHGkoHx3RSF1ij\nIkLFxNCqwxU04dc7qHQl+qM+42EXz9UbTCcjUhcP0EgyvkSQhtRj3uOiZwadOqA+7GPX6IiF18DQ\n58XPnlLNKchTKy6TB5ffjtsskrG18ScW0GncBB0RxKgPs1ck5nfTKRZJhn30WnZKhT2mYwtdU5tc\nuszf+1V4zvvxj3/8o+R8kls3AxyeVkm6Zun0JKLhKAN9mfRBmmZHh9ZpwzzRUEofE12dQ2uxYnP4\nmUgDdMKE+OoCgVk/I9FAa/cZC2+8jVAeMBQ1+L1WBqkhE+8Q3dDBzFIEq2lMezQBtYt6XOI8N0GI\nWNn78BE+q5tIcgmNKYqoURG1Hhz2MVOPn/jsJqGVMKpOZD2ySHgxzqjTo12oUakXkCdOHHMC1ZrM\nvGpAqU9xx8M4NVOCM072S4dce+cWIUOM+qCB2lbAaKNlUXj21RPeeO8qBusCtUKNqcHDZCBgGevI\n5/Jce/819l9ukTo65cbq96js7pG4Eubi9Ay3qKE28BNdi9Mcl3AuLtP8co9OVMfV1QUa1RMigpb1\nVzewqxo++egh772/TDpVJBadoy5qub0Z4PTBEVffu81JsYyhpMccteKfytgcTtr5Ju1Bn4jXztlp\nB5uhg9yZEF0SST0vMvaL6GxFipJCwOTA4ujw9MvHnJ20eHVtFp3Fw8HjE8TNK7RPTklciVDpj6ld\npLj86m16ap2tv7zH5Te/R3Wa4e5ffsp33vkhg/1dwq/cxqTrk35wQezNDVIHLwiveVmOLyNbvHSf\nnzGt9nGub9ApF6gfpZlNLvPl3XvE3l1B223h00UotQs4Qi727z9h6dabFF8+Ym3+Eg+f3adQKHP7\nlTfZff6UmNNGpbDD6acv8C7Pk90/4byaYWl9k+OtD5EsBmzGAXF3jPh8iN30GZs33yWY8KM/01DP\nH/L8+RMW7iyTfXpIo93H2Bxw9bfu8NX/8jHXv79C5nmJ1YVb+P16tr/IcuN76/zsJx/z7n/yNuWz\nE+bmYxxsZTBUuzQEM4+ffF1ELd64gmmi0Oq0qI7qhCM+JIcFfc2AoA6QqjnGokieEUqxSLldopWu\nUR8NadU62OxB5GaP6OoCF+fn+BYC2LU2yv0eti40D/bZSR1itQ3JNIY0ei300ykYRuTSRRwBGz3P\niGFXhxibo59qUdUpaAx9ct00mlQNk92Awesg26lwdXWG3Pk5neEQtZwilcozcQex2XTYvSHmnHbG\nZh+WYouDXJqOXGc8FvEITrrTIWZNHbtHxGgzUdQIpA4ydFJFnh5+HfvyG//Z3+T4q5fo2n0SN+7Q\nfLlLpVTFYQ5ydu8Rjck5U0wE9Q5sjlnEgYnnf/oRO19uox6XsDS6KNMOrbEDz1KE8GwCQ9hLflRh\n9+4zMpUSDZ0EDS39QhntUYHz7SmCPCR7sot2LDCZ9DDljXxR3mfnp8+YGY85fvmS0qBNPOhHiSho\nNBoCcpiBwYbPl0ANOHjwr/4tzWyJ4xcFxl0NY5+GRltDeM5BrnjB0s1XGQ4smMxarsfsxH7wFtnc\nOZWRgjo44/FP08wmw3jn3Xz00acA3Hn3LY4unpNJl1FOdrGoPmr9AjtPXpDfLVFvNtn/6jnTSY/x\n2MxUb0bf1zBwaXFqJzgwIA0vuDhoUcsqeNx6cnsZYrdWqeVSRPwRPPEkRlOeslmEQZ3b17/D0Gek\n18pR0lYZ9HUYdC2UqYub77+GL+ghLEY5OZbQVjP0HCqWUZ2eVY9J1XGqL1I536ezncOdDHAxylHJ\n1FiLeGmE9CiZPkprgjAc8uxgj1Gxw2AyQLF66VeKaC0KRpJ4V5142xLVURX91MCDrfssX5shponQ\nMxkQb8cxeGx0KwVil15jZNYQjAaIXt5k885lvHMRGt0JAU8Yxd3H5VigUS0SCOlo6620U2XMSx78\n+hFRnRf3a27UgUyv06fnU7i6FMZhcJE/PcLgjBNKeHDYo/RF8Ih9VFlH5M0YYc8l/BER20wYrT+I\nSz9lUMpjtBnwRhNYYiZK2SrxmWWcugnzG5sM7DUqgoPZK1cJe3S0MeL0OsDqJOj24t3wcX39NQrp\nGlO9SOe8yFBpM5AGdPMHmEIufv5/fsQb77yCw+GibhoTic5RUGpshLw8K6Uopy4IzoqcH3VRhwPc\n3lkm4zEHD58z1qkE5+MYmnZOKg3sDT0ezyLJhAmhIyB7TAzaIxiZGTnt+CIedrIPkQcGkpEAY62X\n5jBPq1Pg6p0fYOkPqD8+xWwKUZMlDCYT5s6QYPQqDq2Fi8MSy4truNeWOTtOo7N5MJsmVHINbr2x\nzPHufWKhEFbTmER8DkGeoAzKWMwa0nuH2Hs2FM2Awn4H/7IJv9GKJhQhW3iJWQlzcrLH7//9v7oT\npVFV9f/FEuj/OY1G8+/3Bb/xjW984xvf+MavHFVVNX/VGeH/i4t84xvf+MY3vvGNb/yq0f3/fYG/\nSsjn42/9vb/DdL9N/7IbT/mCatCH4VBBTejxDMZ0+wMEBsgY8YXnqTbrmIcK424BcS1EZX+K0TPB\nrh9SqpkQ7T2EtpZBYoVRuQPDMoregdXbppXv4nT6GDUhtOmgd1qmqbgIyQq1kIlxtUBQCNIVFcxq\nleaZDdcrBnonEkOrHqGrZdgBS1iP3Griiy+TyW/j8IRQ0xrsMQOK1GXSNaJomww8Aww6N7ZsD9e6\nnU5aYBwxUs22cbsCGIULpNIUo0fkH/13f8jf+Yd/C7EyRtCaCV9Z5/RBCnE9hKWap6IKtGUzE12W\n6PwrTCu7DCcmXDo9NcGL0Dilb4owGbdxTprgSWKqqrQDffqZHtZoGOG8jBr3YZ5MkIZNbLNxus9a\niOMpWkeDviGJ090g/6KFZtOM+bSJeWaBXnqCIhSw9ixoQ27cDh2ViwP0a7NIWy0Cay4KpwMcGyLa\nszI6lw7F7GBckNG6tahDPUpniMXno3ZeRye1EXx2Kv0+EbNIdZBh9vo8pZKERmtnVOjxT//Ff81/\n9Q9/TEk9xpCdsHA7Qeu0QbmjxRF0Yp9PUt455dKtMLVGnfzWMYvfeo/ykxQOu4zW7KTUVJgPeknV\nitDp4PCOEAMxDHYthc8HyCtGDEYbvZenDEM61EkDlzvC8EWJuqbHxq3rVPJDog4tZ+ky0cUwxUwT\nt9KhbtCg85lRU3WMwVmkaR1xcZbihy+IxgKYVkTKH79EXjRgVuxYo2EapR7GfJ5YbINheErh5ADQ\n4O7rOexOubns4yQ7weyrEV+N8OgXpyx/6zbnD3f45//Dfw/AP/rj/4Kxrc20HsQqDNCOzJgY0nSp\nTLBj1TWwnJlp2m0osTr9kcDiqZH0egt/dkrR7yXxQqQZbmLt+egpCk5zkXYziTKTRtMxINsNjAdG\nyItoolWmYwWrAxw5mZHZj835EmkaoS2YCboOyU1duMoOjLYBRccIk6ISPhY5mNVht5dxFbSYxlbO\nPEYcAx2OUwuydYpf0nFy6Yzo1gb5ZAWNt4mm6MCs1dG0abHoahhlgaptTLJsoGZwo/McU87P88//\ny38AwB/9T/+ArkZBO21hqNuoWCxYeh2s2gF6pw+jUcOwaMQojygOx1itXbo6M1K/gdMdw9GWkEUB\nZSig2Ey4pibk2oCuVmY0NeC2g844pNRpYTcksY0LnJqMJAUFw9RHvZvD6TJQUmwMRzlEfIxaOjSM\nMYXsdAsV3EkD7bM2Vrsdc2SI0LdTZYKhNEUStUwUCZ9kwWSQadschGwuTrJZtPohDC0IioLdNULr\nF6lUJRySF2WSQ+9wg8OFmJvy93/83wDwd3/0T0Eo4erIaL0WZK2WRsOJ1l1DKwv4NQaE8YiW3oit\na6fkrePSDWnIIi6jjHlgpTcZYNM7mEwbNOsKVnuArr2IBy/1sYAwGqOfGLFac9AIMVYE5HgdRTbi\nbotU6GAfT1B9AqBH2+zS03npC0N8xiHDqQ6lbwRni+nQizCdohtPEe1dSp0JVp0Nm05DZSSjVcc4\npgoNG+gVO2a7gr6soTzS4xcnaBUHHecEV0WhOjUS0FQom2y4WlV+9E/+mL/5B3+bSquD3tXH1Pdh\nVFRcbgtyRaApFREFkX64Sr/gIhAdc15tI/pC9FsyDKyY6KPTTrCZdAw6Opj0qIeHzHZsnFsUQh09\ndS24DDASbKjGUzB6ECY6NJUhkuzCP9ExsKq0aRExWWkbihgUA7LVg1QqMPL58KkTxJqTTKiNKa9H\n9TTQyAb0kh2TTqYetBGQZbotKyOpgs07oiKr6KYijukYh8dP67yKXiPS4QyP1oEr5uJAU8M1EjAM\nIvyz//EP+c9/729jSqfJi0GURA3beJF+q45GtOIZNhlVetRmVGYMUcwnEq2RxKm1TsJqI1uzYlsc\nYag7oapQE03ccRYpDKf0dAN0hWvMLmSpC3o0nQbthgm3OEFWhiiByzQLBYwuO4uWKb2TPCXPJcyV\nFG3bEKUk4gtDIWJjuSajpE4o3LpMcFxgMLFgMHqQGtvMuG6wVTom6gsyNIzoN/VoFC1Nc5rl7gIX\nLhm50EYfCBAcZdE1ZdoOPR6dQFENIxuaOAQTf/rBB/+3apR/74sojcmCuOxAaWhRBhZaVS2b67c5\ncN0jiots7hhLNIFp3MYfS3Lw0X1s37+MfNCmpbdgtXkwOcpYDG7qE5m19SUm9jG1Z8+JxC1UpTbK\nUGaadDGji7D96AFyTMUlu7ApUc66YxxGGDkEZtcvc/wv08R+L07j3hmFiQVvVMOgWATPCkvri/Qe\nPOSwUiZo9CF4nUjyMXKvR+CKB22ziTcmUNnz0x/UECNRCuYSsWSMoXKBbiIhjXvEZjcZdSVmjPA0\nP+Hd77/B07tff082KlpmXr3F88/P6Oyl0N42obvoc9wZ8n8x915Nk5zpmd6VPivLe/d5193f1x5o\nmAEGwDiSMxyKIoMbq1Dsyeo3KHSsfyEpdKDQamND2pW4JJeDGc4MvGsA7X1/3pX3VVlV6VMHUGDO\nFHM4+ROueO83r3ieOyM3fvwusaMn1F7myIrw8acj/u6//zFfP3vC9OsH7Pz1X/Lw95+Q3lzn+PMG\nP/27Cs/qj1jf2KHb2WXz8gq37Tqvr1T49uuPufTmde78uy/52f/43/Lp//Zbfvj2z6mfPON0f0i7\nN+NvXr/Fs16dXHGB6f4Tbt36KR9++h9456/f5cHvHmBVyoiNEVpcJL20QJMR5fQqz3s1solFnt37\nmp/+1z+i9aRFuBEQPJpzeHyP6nu/IHj6MfOcjPh4in7rAhtegdYXX3Dxz97i4YdfU1o0ABjKPZbC\nC4RrLvc/f0Rl4zpib4+JnyTx8Ah91aP1zZjNa8scqlPkWITytSt88+U/s3Gjyvj5J4yz61x574eI\nzpzf/J/vczUxI71Zxs7V6DyecOPdnzJe7jC+85SLmyVGjz0UYcKNt1bY/fSYmd1n/d/+FYODpxiP\nLLKXEsScS6ilgFHgE8257O3fZWPrFQYHTZIrC+wd1FjNw6igcnH9NZpf3iZx7Q2C8VMOo1OSwhkv\n3++z8FqOC9s3+PjXt3HsCd8+HPPuT68gzpaJKDnE2T5JeUpFNL7PjLn9FGlQYaE1RJpIjKWQ7rUG\nphSQxEQ8raIqaRZoUosesDSIoiejTEWNvVKatfocLfSozia4+UMczUc6XiZdfcRxVqRshpwoErnK\nbZzuj9g5G5N2Q57dPEWsJtHuVzCjIeljnfVewPF2mdytLwhPfoIWP0WcLjJYmpOSWizFz9GGDotP\n3sYs9im6BlmvzjySR48PefCTE1K7BRbFl4S9NKHcoVzTaCRFQm1Ko2SytidgLJp4yQ6eIJLr50ka\n3e95DL0AVXdQwgl2yicvDtASEqFmMet1MR2LuZZGjvbJJXVmkTgrHZlxYoKaGtF2GqSSadxMnJQ+\noud1iZUtgrmAkQmRWyp2KUVUNIhPT4E08XqP82BK+uKA3DRK40SkUjwiGMWZB11K2Ty9zJjRqIv2\nLsRnHlPXJaTLZBIhlR6Tkub0VQc1m0WczdD0EE9QUOU+NalNpqMTS0UZhSbhok6yGdCYTChcTaM+\nr2GkfepxE+esx6SY+J7H1B0iXygzEWZMZyU683OkYorMfEgnk6CZkHCaLmokziwToA+zzKYhqtan\nGV9AG3XpViJE1BH9cYGkMISSijNb427SpNyTGQDFxRSSnMQWj+iVVhBqKkGhT002yIgzRtEq9WmP\nrCggpMtEtBAnU+GpP0Q8FYkva4jjGfO0jjeIouVPeBlmiC7ahIpE3zYQhDGykqIXqjiaBt0Bx/E0\n6lBCWwzYNwYYExtfmfMyKVOYqbjKAvOchDr5blOjGAbyZpTqyGCqG8ziMabZJk5LJmtolNvL7Edf\nkqpq6DOf2OYaUjZF8kwgXBVZOBUYp4/pDgKEuAIdldiywd6DNtVYFv+9VSJPdxmXKxQZ0R2/jZ+u\noSRWmDkTbqYCWqdp9FyD9tFVzssTlrNL+HePMKNrVJc2mclDagWVniuijHSMxSSjpYtY3SmabaOU\nYhS64Fp97K08hemM5tJV1u0opjjACEKKZobCiszeqUileouzrE+ynaZsFmhWdIqLOvzP4A6fsv3D\nN3jVV+nOrqEoU9yLOtGzBMHSDcYLLxDnGsWozPCd51xtb7NR6jIxRP6ye5lm4kuK2wbP91Zx9Jf0\nF5f45ekWJ/IxQlRGq17D9hVubZ5yUo4y6uRZHZncPY7zk+VFEv2A88wBC69d41I8zomUYXEhirSn\nED6x2M5VWaHJ/cgtCj/Ocfkrm/+wHeM9Q8c4vMyEC/xcN7Ejl5CSxzwuW/zN8QqfvPIastkjvb7L\n6/fLyHaBu+tTXhHL1Ps2/UDj4jyDmoijDfb5VTH2RznKn/46z3MY9hO04nOs1j3c3CIvPvodlmow\nPukTX6vQm5ySy6/RfHCbyz96lWWlhB4MyS3ozD5voVRD3KHIelmjPX1I99Euke1F7OcvUf0B6s0q\nC5fWqR10MWIaZ887GD+u8sHn/4XFVY9pd5fspQqZ0ZzUTorh3pTxeIbnOOiLRYKmQa7nExv5NFMG\nvtwlMi8iRwRou2y//kMaTw7R18v0xzYtbZ+WNmNmhHD3DP9Fn56RoHc8ZzjXEQYR2gcebdNHk0IG\nYgimB4CQ2eb46WNso8toz+Vm9Q0e3D3i4msXuff737Gxs4C26CIkIyRfLbP3okfKCKgkthBPGyxl\ndZa2smipJMZaloQWx4hqRBIuLz58SiFVxCz4OL7A/sGIYM2gdv8FWiTFsCox6sG077H5xmUe/l93\nmdFj79keEW+IsqyyuHSB2//LP3LtnctczhUZHIwovn2Fr7/8kKsrBXbvf01FycDjx7zyg1s8/egY\ndXWJoZUlUUhiibC1YlM/nlJVCjihx2JK4tmvvqXw43eoP7hNKnmV5vPvqnKZuUToHGILA7I/2EHx\nLa7+5B1SvS7HTo9I3cBZEHl82MXIOvSOmiSVHhsbN1AP+6xvbtI4FxHnXXAMSvM4mXyFZsvj/MEI\nb9jD7j1kWU8RTyxwNh+SulBkOoflxXcYiVOSKZfhxycsKDL7tOgZMXaf3CW1mGD/w9sYxiqqmGa/\n84DcZg4hneDC8jLyWYequAITGVuqUn//I/q+wvWF12mEJjN/QHIiMxuHbGWqlAsSQtxi7sTZe/iQ\n4eSQW3+1zsf/xz0Grvd9ZHa+LLD9+zUirRB/vU8ouyx8u0Z+rNPUEsRmErXVBg92Tgi6q6j7W7j6\nhKQVUokeMk97DF/dY6jJPL3VR5MchGkSf5Sn7HRpRSMkp6CerKIt1QkDhxolvINXmZyvMHpjn56x\nRF4Y0CyZXOj69B++RVY/Q7r3CtokycX7Wdz5nMRxjJNYlb03zzh1SsRW7zLPdTHVNLGBTfakgGJG\nqa9alIc2C88y1JYHlLpDokdxfvzbDGEYwZxF6DhLGLaK9/gKs+cb3/OoVF0Ec0Q8l0eYePQyKkqg\nEupJIvqITD5JIeaQWdAJA42EMqdfHiB6VYaOSKYKdkwi5TcZNB0ks49ulohOfNRhipFnIwdnxAcR\nxgObDhYVNUEpVyLdWMB0k0TzQ7zEEi4uQjlNPW3hOyql6CIpq4wlyBTUCkY+g5gt0sVi7sosZbbQ\nJkmqiRiCFjIYSEhdG+VEJlE28ZZjpAwZ6RD6ukhamaNOPTolg2MzgnseJ5RC4sy+55FZ8Jm7PrNh\njGHLRTJTpJUeXiWBOomS7QuoiSpFQWJN9tA8H5IZ2nmZdl9GLqtIgxSKK5C2VTQpxJYEzInPsmmj\njnSSjkh35jIazeixhtI/R1iYE/gV/MDCCxPYrseCHOJ3oqOhJnUAACAASURBVHSkOI2ZRGQwJzRt\nFEVGrU+Y56tEuy5l6QRIkZi5pCIakqmhexKSHUMcx+j0ZBy7jpqLotZP0dM29tAlOQrxZAe7FSPh\nldFzAlQUnF4dITMFYOhZ4CioRQ1bC5m7Lyi2MihjC1v08ZQ61cICdjFNmEqhDSKIX9coJeuMRi6D\nXB3/rIBqQuzxhNLlq5SMTa5u3GR8aZn24TnJlU2ijkNNEFDVI5YDmZk9Q+83aO5reNaUnqCytOAT\nk1XOn53RqmzjG33G3WdMZmeUtCGZQw89pSBUQqrNCVtKBCmexalZ1ORjBlqMhUyEub1I9Fyl//w2\ng5FP88CkFnpM8im23siQWYujHoYcDE9obofk03EipgLAwaDC+SWTZ5MzAr+NFT8kbmRw9GccTA84\n3exgVyYoQxNrUuXDjRlNUWTBlfHaMxLHAg8CqCQyjEsSfznK8cX6KQsbIbM1m8n0OUvRHq1mwO7z\nGjdORI7PItwSTdRYi4Hk450n0HwNcTjEHWe5dTtF6anP8KJDJXbOpzmIqZCZjPhossBK1aX6xZQv\nm2nOwi6RuI4o9rEepSmu5KnFbPx6i42zHG88i/Bwx6dV0njj20vU78UQ9CzrJw6FMw2/ZmOPi0j+\nH6dHf/oSJYSsySFZNcJoLkD7gF7EZesXVW4/f0C+mCHj6UTVKaFQou+ZnB/tkjJWGI5jCOsKo10V\nrVzg8WGHVGSd46M5S1qeRG6ZsR9nhQyP/93vGA+7XHrtEiVPJlH3eeXSNaJSEm1pheGxT+vwGSMx\ny4cffQwljWi0SHxlm36tTunCGrc//UcSUgbNL6H5AsN6BHnVQKwfIaVVTF9imEhSFTbRJwNKK1ex\ngwxuGFJICThaleL1As4AMm6N/JUFEtlF5PM2Tem7l6QyeoSxcQ3qI3LbBg/uPSB3sYLbalMy1ph1\nLa7cuEX7628olCIMDo4ot0O8ZIzdx3coX9lg/E2bwJ4xGjmcdjpIwwbOykXOJn3W1src//sDctoS\nhaTCdn6Vp896rO5sc+8/fUjurRTKaoiljbGGA0qvvMtGSmSYzdI5cwmkkEQ+R9iLoZmQXc0jzMZs\nplZ4cPc+t167wEkkhp7ZonnQIL6V5ujXn3C5WubkrEUqs835x30Sosvj58ds/9kGv/vnD4i8u8D5\nB6fISzewE02s1Hc8TCfJ2M9gTeZciy3QOzMximlGQpn1n73Bsf2SajbCvH9EnBSlzSL758+JCE1S\nr+4waHbILeSov3hBY/iSzEWZw/0x1VmUTEngz/+Hv+b5103q0wbXf76D2zJRs1O01Ri//82/UE7n\nufHD93j+8gG2LaO7FQLTZf3f/oyTv/8db/6bd9g9rbNwtcS0Z3H42Uu2tuLktmTGgULsYpJnL55i\nSXUu/nyVH968xuGjO7x55Sq//Ou/ons2RQ4dXDFEihR45b3XCYsKvVSMgZVhZuZZjnmYkcn3kelu\nWuy+9oSkPKM/yREbaRzeeoZwnqNyJ4NwtszCYwNNEYhKDrs/36WTmbBpN9HVPt1si+OFEDMqU35a\nRM20UYQJCa/JXjTObPWQjOUxSgW0llo0lCrBhT2SQo9kO43uQCa6x/5ml9WBxDN3hWwHmk/eYrJg\notkegTij3EvijlcQMi20sYRVqTNNWPTkBPPCIZ63gJhr4xWHjDaf8eAXD7jztkN0EKO/ZTL82/dp\nXj+nrDRJ9lXiXZ/si4volspi6uB7HmPbx1CTNKw544JKrDZkLij0T2CgxpkEE6xSiknEYOiOOBlB\nlAQdLWCWcZkOMjh1kSDUUFIqs0kSNzmhT4A6GyDYMXpnUQLnANsZo4YKbqVPKhkwsRvEEgLTyIzp\nUY9Rakw8nBLMA8LRGNOZEIQiI2WOPR/SnggkAxM5ERBN6HjjFklnxihM41k5CpMJjpHEWEgxzxkw\ndelnohhRCz0pIuYMfB2qwYTYYpzFcsjCyiru5A/92JFQIjl16CPgSgFq0MeXEgxsD39+znQSJz4P\nOLMU2nURdVUmkW+zpBqsTG1MM046PkQ5FRjLXfq6ytC1MRyPWcSilhvgJH0sZ4glDNHzbSKZHJG6\nQzAdkyjOmAldjEiN3lTDX+iQiTpIwYB2dEBOlAgzLp48Ied1mKaHWEUVVTJJpQW6Zy49K8a5IKFn\nEqjZkIQzIBIIeKGFrms48hh3wQPbZKAWUaoz1FKPViZFSxYp6Hm6s+8ys1auoiVHmJ5PrnZEphml\n0zgkpUEFj3FUZfziFCEAP+gS+ibqUprmWCS3vwuPBkgbLtV1nejCJvLplN3uCw7jbdy9fZYiBdqH\n9xmkBlTnKdKpJaxBHkUWWReuIC6nGHgWeluk1QvI9F2MaBzVO8AigbxVZVJYZBBoxNcyeN0OyumQ\nsJKjdmpjjI+IyCKbYgI7G+F01kW7FiGW94ldXqaYzLOUSSN5x5yctvi64XFo91GXQ7yKw3VJJuw0\niYj+dzzMBv0XNs1L4L9ap5x0uFdpkC6+jiHnucllNnYjmNEZA9snvxZSSBd4EFM4UY95uJNhFDsh\nGD9j6sw4iA4xFpOYBz0erggUGpfoFwVkOcG1jQzz+UOklEqwLpKoVTh66xPkWciB7tLKjrlqF/i0\nGTLKx7kwvUHv2xlL8TJxLY+/a2KUuoQ1i/pVl+kVkQuhSjO2xZ4Ucvp2l/WvFNzpmKzd4/aFexSb\nERaUAtqzgG+XjjGrBdbaHc4vypxfa3G63GPOMbYd/FGK8qcvUaGE5U0o6CKLpVVMQeVHv/xLnv+v\nn7Mo+WhaGjOb58zSWNsy2H3wkMyFLHdevkA0VPIbl5Ecla0fgJQucfjb37L07gqn/QMePP09Ra1L\n7XGdfGUdwVGwL66z+ZM3OfjyHtGtPA8++pitrRvUX77gLJ0krymsXN/k8qWL6L5J2uqQur7D+ekZ\nq8XrKFaNRCkCqYBIxsao2RzeG3Fpa4f50Uv08z7jfIzrf3WT/slnJGIBo3mX/K1XSOVlnGcSxdVV\nFpav0Dg5Qo/qPJxaVP+/Az4IsyTjMHd8cimV3r0ma5d2aLXqpK8bHJ7BweEBQfU6la7CwnrI/ftP\nWH9dZex5NMcKs+g5165eYfeTJ8SXUxzVTdoff0X8wgqP//ffslSOERYsXt4+w1LSXHlnm2nzGN1J\nMfjshExYYv74mJs//wnzh1/Ss1qktiKcP/mMzdJNrGyGxv5LmpNdMsUIhqTQjUWorC/wT79/n2sX\n1pCXJabBHCMWsvbaW3zxf7/P6tUspdUinYHLlffeIe+pKA8kysXL3DQ22NrK0rjXQI0YCEMdgKzS\nwY3MiWeTkMkxrroIYwsx3yCqhLz7zjv09kwu/vQd+rLCV7+7TTyxQSK/Q7/xFDGRIVfN0jxLoEoT\njEiKrUsGh9TZ/ot3aU9SxBckxKMhL+6/pPTT1+jd6xHVi1TWl2gfPOPwo6csXN4ic3ODN/71JcRa\nn2f/6X20d39G7VEDzTnFsXTyr95kogX4tQFSYRH30ibHX94hsWSQFDxmdoUn33zANJLh+ZMWH334\nFRf+9Zvce/gNmKdc36ny+P4T7n/xmOVrMmb7Hk8efcvRZIyP9X1kYkdVinaS3R0Pe/mEs7fvo4xz\niMIEnQieMuFsOc3qkyqD2AFLrQnRx+/QrF+gPrnMjx5r5D7fZhwb4egzhNoGB2+f82LN4dpHy+z8\n80UyezKlO1XWrBbD7RYHwwqDS4fI2SPUQRxxf5tOAp7JKaKXvsR47T78xe/htd9SdDpEzxOMUZhc\nf0HONrEjY5ZyJxT+y2tUT2Pk+iCOJaL7BWJHFVIvNwjb68SzR/R3akTmLnZtneCwyqAbI/lii0i7\nQLM0wXnjG84u1L/nkRoFBGkoeylSY4FJymCgjUEZETOHiIqB2jrG6QVErQjLqRkzf0QpZiP2LGx3\nRiou4egWGV3CXzbpD3xyKQchG6O8KiAmh4TWEppVIa4JRMIs9daM2XRC+3yXir6CL80Q+0UGtkRc\n8rE8lZTXYXA6Ijs3mOpDtITO1DTJhzLRIEmYUxBibWadNrrdwpVLmB0T67iFe2pi+FPUQwllwSCw\nVOT6BLlvYWs5/FkTU/Cxm2DG/tDcSIc9LDFL0okh6xZ+DoSpTMmAuLGEE7TQxSZeYU62GkW3fEIv\nzXwY0E31MZMhkwD8kkYslaKgRtDrOvqyzdiPkxgECLEkq2JAeD7C6aWwuiOa0SKWm0A98JlLELgy\ncynCPJQxagLz+AKpQRY3FCj2fIx8jPOgjBnPoY8iGOECtlfEXopjVQZkBxb+rMkZHfSsAYJCw7ew\n/STRmUiuM8MrS2TrXaJDhZEXJ3keEJ0G9BMDRO27FeesXSddvELghASlBbqbc7ySSG9dZXjm0JGn\nHGdkopkZJ/00wlKBmnCIksww9l2U1SxmS+LQz+CKEpbaI9kKKalRrm5t07I9KgslVF9hKDTQEjK5\nTBSxI3MinqKMTvHmY8RJCjWt0s1FSecrbFoVtOmcfs9nRchTPARP9pH8NCeCwPxun1A6JZWMIWsu\n02yU1c4ATe5SH+2R1kO0ow62+Zz9+QjTq2DEA5TBBLHp4w5HRMbLPD2JMclkMaNtAKxViEVHlB4u\nMwmXeVYw2Py4zcP0QwTlPnuiz35ijtsokQ1cZo9kRmdjVg9SZFYcjMOAC89+hiALzFJrHFNG//cO\nd9cjvNt1+eC/MUnVnxE3BFqzKAfaLdKOQOTJkGdynUvHcaqvzGgrDVLRgLspm6VlAdEJmC99yctf\nbtDtnVJ//RB3K0mxbnGte5la/DI/60t4j48Zfz3Bu9Rm6cVFGqsOi1KIbehkjgJux8eUHhr0lnaR\n8llW7w+o95ZIn3ps9WW2WwEL1ysIL6Q/SlH+5CVKVEKGmkpkrYhmWGTIE06mlLwFemKEWRiSaDTo\n4dLshWSvXyQbvcBqJsLVmMLR3ZcEaw6ffXTOhbSMvZYitqwy60ZJxy/gri8j5mBpOYdSLKLWn1Ha\n3iDILWB+2UBbSiEualiyTrbVZNoZkxcDWjUPOwio7R4zjfl0T5sERQ2r5yPKAvcPbhO7maFtSDhL\nRRwxgbOksGu6VJaTHB5H8Zcv4aUi5KQMWgMeHdeplOZo8xrugs/MmxFvj4n5U4ZmCoCco+G/PKH8\n6jVefLvHxf/uGuM7t+k5MbKGQCDbcKLjWR1ejlrolEhtb3LnP37DD/76LZTaOU4zRCwqLL2yiDDq\ns3PzJlMhx6ViitNIiUq5xLwtoucyOJ5J7TfPGXTbRDZt6vtHrLx3naEaoVcsc3wwZP3KezCPEsnn\nePrZrxmbE+IJhdauSWE9zzeffcPFd27inkwoFDY4f/mU7tmcMFRIB2WswEEca1QXrhI8OWXnJwW+\n/O0HVH+wwt7+AdffeZ2mrnB4dodqFcZBDjny3dGd2BJJK8r5szOajz5lKx1n99svWL+0xr2/f58g\nXsI8r1O/c0gmC3b/kOHn33IwPGJ1/RJjdU732wdkclFy1YsIE5fTgy7Ngz7t5imFukkQygjEubya\nI9qYMJia1GoDuqdjCnEDS1a5+Np19j54yjefP2XjnTWmw4BoXMOYC5yNHKJLWYqjOX43ZOaERA0d\n72hCIZdA6HWJXalydv+E86FHQe7gJSBiB7SfP2ctt8jDoz6WNSeTvgJ7x5TmG+TXs4QtkZ/9q7+h\nFKx9nxlz9ZzTxSnGJGTzgYzy8hI7Z30GeRW/0MCrnmFff4BS3UWTo2gn24SayXyxRu44yvFwmVh0\nRFYeEU+OiUw9Yscpbny2RpAboSXPefSjGvnsU2K/+hk3H0oYKfAqNbw0pIMxmfMU659eZGkq07xU\n40TIQXxIX86S2SvgiDru/iLFgwSmnyHZXaDfjzFIxSk8rKL0ori+iBy6xHe+olEdEfcdvE4KS5tx\nsjQn3jYQiONEDUbbuzjTJHr+nGEyIOr+4WprJiy6yoAjv0UiJZKeqniOR0QIODmPMZ/NCY0NipJH\npyAy6OvEwyR1KYkci6CWDAKpgSAVGI1HRGoqCXVEOMozPLPZ2z8n1RYZaDWcDEwbFqd1H80wIR1n\nZqk0904J0yViQBiEKGKcaiogjGtU8gbDUZ9MTiPhmbgpm+HpjHbHRJ4EDOYqJWuKKYMgDckmp8hr\nKops05l28ZaaeAc68jyFtSRDe4I7bqBkqriqiMgJut/+nkdwFmEy6dP3LNQM5IUsln9I6IaMK3Xy\noUY3kSF5PGbUd2iNBKyJhGQa+FYGra0y1qL4HQvZHlPvgZYeEMx1CqcymhOj4PRpRUKkzSSpucdE\n9ol2T5CLAlM9Rj5cwZINvJJDsi1xVm4Qd5uM9B4JP09P1TAHY7InExbnOubYpec3EMYmpZZAeBbg\nRyPMRypJKYvfNbDnIsEkRcxQmWpzyCTxTAM3WcDVMqT7ELNapLSQ0A8I+xoAvlamMTxnhIJtK0gT\nn2jLI/qiT6DkyDR0tE6PcVcispxAjEcoywWKpgLLObJOHsOSsZ+fYaW7DA97BDmJ9vmI3fkhaqKO\nrfnE+xnWxCVcc0TL7REfjxkbOWZKEs1RSI0PcTSbqeczOt6lU6ujpTK4gkGrdoCzaqPsNoiTRRwN\nsK5OEDdWqVkGrT0PDvqcR3UWZxfJzFboNVxa22lG4xJWLM3QaePVdBJLHlMlZL28wUr8kMT8EcJ4\nQNjMARCZezzN5wgud9iciEifT4kW4swiIypeGuMTmcCdUTZqTF6BK8dFYtUytirS8xX8Zox+8Zhe\ny+LtpsPVdof0ikX4skw7kuDP+3lGS1d5oY7ZHsmY1z6lUAnZ28pgGB0aS68zs0e8MltHH5eJ3ZtT\nyzxGS6XwWm9xqVZjdSFDZTeO82DO+M0Ij8YuyecCB086zCtr+BtjkqeX6S9H8QYdnGsh9vMJckUk\nXPGZKCbJZgY7GieowtF/1WK1MMdqGrQCH+POAPHKH1cZ/5OXKAkJ88vnEKo02y5SNqB+vo9zI0l6\nJ0t2O41mVHl7M8VJ65TXV1ahf46y5PNot0FUczEEDf/xU5yizqq+RslJMG76eOKEWD2O4ZYZ6x7W\ndMDuscA48EjJY45nx/j2FhE3QB33CaIi2paLPQgYukNkXeT3nzxjZ6tEcCNGptvkvDah/JN3WYyu\nUAzKTAYmP/nZGp/8T7/nYvEmy+mAe7/+DZO9h+wsrROpKKhvbPL8k7tUqmmSP9hkr2MSNvqIY4HG\nXMZKiNjBd6Nnb9XkYcdkaS1HSkuinge0unMK5Q127xwRRhwCZUZMH4JvcOL2UaUYE6YoS9vUug1e\n/Zu/5fG/3CcSm2FoOX79T19w/b0dnrz/CZd/tM3Lr/bZeb1IODJJvLrC+tYaejSNdL/Nyt/+HSf3\nv2DtQg7vmyOUVBkxUEj2arhnLQpvXSaTjVPeKOCHJlJpjZhfYjL0edI9Jb+wBE0Ds/eAtUtvQbvD\n7MljLv3dZT757CM6uS7Wl312Xv8Z5pM2WqlKvX3E7PYjkn/2KrU7NYy4hSbbAPh6hHbMY/uvfkS9\npbOQ3yT34x/y4PePWS+WiXZOYQFOn9xBC0zefO01YslFXr34Co8++4pqSkepeOhRjye/eYmxvMjC\n8garm6uMB21OO7uUd1boKkPEjXUenfUorCzzyr/5Cxr9JlI5hj2eMjh5wsLVCtbBhEFXoboV5/77\nv8KK6ZS3owxq55RulCiv+LjaFKfTZeGHMs3jHlfeeQPZNliMGbz5i79gaia5cfkSK798ldpgSrQc\n44e/uEI6XyV2fsbyL67z6NuHTM0k5eUko9MTpEvR7zNTDxOIpxGUaRxXSVHpCnhxkaW6SUq2aG81\nuPS7LE+sHeYROC4McWYaBUcitvaEcPklhXOX9LcXSDVD+uURztXnjBNz2rMSiUaSpTpMBktEk+fc\nvzVA3/6I3IMdZG3Oy6sjjv/Vb7FXdulUHOyXNxF8AWYxbt6J40QFNNdk1dgj9miZ9X+4SckcU3YS\nOCOHL38x4uTamL6sUDqLUOtus3R3hfzdKkpkiNatsrCb4OK5zUwJMZZOCVtlrM1TMi/K3PgvKczm\nwvc8FrwIYTdOajJjkvGJlKOIYpqpYJF6LYIwkTB1k/E4JNWxSVoqrfaQaNAm0pjCTGZgRgmcGW6o\nE1U0NDFCUztHi8XIluNM1IDsOEkuM0fKichaH2vqEyZTRHN5CmuLxMcj5nEHMRHDjLnMIiFCNI+o\n+oSkcYcKKS+Ka8g4epR4OY6cNMlV8zjFNbLxCran0B3GGB3McSLLeLkohpdCDOf0kh1EM4tZFugb\nAoE/IVQ8unYUQ/5DSdbSVcSMTirlo58LHCYchHSWmR3FNnNMNBGxbuIuLyBVIiQYIwt9GqpDvtzF\nTU5IqxZCrkrEybG8qjOLB/hDjX5pQkdVOO1beNM0Az/Fqe7gxJOkjWUWpyGiZuEkPEauTaQ9R1rU\nqYYqRKNkBgkGVgAJnZFepLMx5HwyYhwdEczKzDULMmOihoWkzAhSAebAoU8DXYqT803CiUMOAc8M\n6AdZZFWgG46J5ERaizGGzT5xNyQXfreuGQWnuP0WweQAr11DaqrEiBHUJxRWA871HouXbtJsdkmZ\nUzqjDn2pxJlmEQ+XuTt5jBBtkagaBEqUSVFiIyphKGP05yHZchx3bsBCQKMq86Ixpz+R0HImon9O\nJ1QRl8s4pVUKwzpLsshsJiGu57ggCegTCV+K0DsuM0r7VNcDYltbzGp51noTVLdB/pZKJ7QpqTGG\no33oCfSnFsn5nOiwTtg6oKS4OJsTNC/HUiTLy5MzBnKeYTyFSINi+rveXMcuc/3JdbYeL1BraMil\nG5yO80jJAnJWIP3aQ2bRNT7bTLP1okQohLgHHqmTPnpMphQUSeyGrC7uYIhJXgwn1BbrvGlohH7A\n0XOXS5/2ceqXiHTnpGsXaO8/IB6Ae00m4o6YCAkCz2PwIIZX9TCqEvYrLxkUn9A8tHn+zOBodcbZ\nFZOlhwb5Fy1GnRHZ16McZ16wKU5xBy+pxp6gWNtMv5ji/CTglbaEemzg2Q3kSpXK1z7O0CX/2zT3\nTwq4soLhzni40sQP/9Az/f97/uQlygVGWoTAGdN9OaR66yrjqY3cnVHJZ9j79BF6Ns4047OeXuPe\no12++Pop7ccTpvUzNq5kGNwxyb5ygTv//j6F7QpHH36MmJARC2X2R/eobMZZurCAKEpUUxnk1hBH\nSpArb7K4aHDng6d48pAYBUYnI8LyJg8+/QD1B7e4Go/w9T+ds2kkGA3ipLYkHv3zbwiUGaMalMQl\nhocRxHyDoeggPx+yurhB0lDxjs8RpTLe/Q6m75BXknR/fc7M9ZhNTOJvX8CdDqnUo7jhd6Pn/HyB\n2HKBR/98F1YSxLUUXdnilRtbJPxV/D0P1w+YJxfpNk1effNtEm6PnKUjno+Rlrc4vf2cnZtrvHx/\nwJV33iYu5nnx1ZfIaxssJE36zhDXVaimbHLNOc2zA3xBwBxAZXHCYB7n4rVVDmtfsHVjk/lsTHNv\nQrRU5PjOOT+4cZnPP/4QdeUVDn59GzsjIHUPWU1GKBaixJwBnnyRSjXKseRhD8fIi0kaD2yW13fY\nHXUQSmNsbISdHP37x4zVOQnRoCfNoS9g6991POS4TEHQ0JsjchUJbzKnc/icUlJhWszxzTdHZKsV\n8js5Th+3ODsf4qTi7NUfQbSAF89wQJnpqI+fmdM7PSK9FuPJN/ukkimaM490N0Lu8mX8usV6yUWy\nLCLTI8pJgfzyMrPsALcxYWnzOpf+8jJ0WqzcfI9IQ2ArvUo8foGKVCQqrlPV1xCTEaSIhRiWSC2t\nUvvsEf2BxLBRo+edEi+naHxxSj6cYfc8vvinu7x4cMpoPKKlqKyW0jQnAbu/+pSEnEG9msc52vs+\nM2nbx0wouGGaxnqD2fXnNE9f4fnFDi/NVZa/usZRQeXtozGZszyr0z4502V4XsWaxFk8qdAwoni3\nTjkqC5wlfSZBGmOmsyh0aWzJDAs+/bCMtThk5Vij8OlN9GaM5qTM5rnDxq82Ke2V6dkq2+0pquaS\n6VV4JC0S6GP8zRpHwTUGmk6vGPDRD2x66pSNmc9SZ0TenjAq2Ai9PNl7a7hhgoO3m9jNChf2VWrR\nEu2YRr80onhgcGk2oFI3yB0l6CZTOOM/TObacwg8izAoErohQcOnVPAIvQ2SfRmRMaWBznSmMV1y\nCDQXueohqFlmnkpkHJA1XAIpjSDH0FMBAylJshNDL2lMxwGiIGFKU2YTD58ZwiRNKrWA0DwnJURp\nTzqE7hzPiDJ36kjTJsNuFLHdwJ8OUf0xZmxKLTpH3ZsiDAVCv8dsXyQiOkSDAQ1/RKYsEMoBMTWF\nYPlodgS7M6aTmJD3CjD77tc5mVGOVMdGHiZRkLCKf7hT59IcTQmJdfrY2RSFaQy9N2ciBmSnJsnQ\nJJGQkHodNEEkSJVBmFKNuEyOy1hGhB4OHS1EmNVojFT0PYeJNCYYBkS9Ib5SICm5iKaAlpyhhjpi\nasSsecospxMdnEAgEO3YhKbC2dQnnMtMZAcnOELqCGSnLupZklh1hhotUSg2iOkRnNMo03GZUTim\nK3hIKYN4OU5E1FGMJP3KhForiaca6BpMJYtsRKXZGJO1BMx4koit4CW/W4Grygqp+jL5CylG2zHy\nyThHqybVd28Q1mZslbdpTE5JWRKtfpu0oVDwZwysEW7nBHWq0lB9yiMwnICsmuHQnpCW1kgVIuz3\nLaJSwHw+YlI7IUiOQXY5b02QPQn5RYdopc0gO0e2VqkNT+klu7RNj0ftffSkRmpdp5xtQt1k4ghc\ndD3U00MawZDN5DrnT06IlbOMxQbSwgXK1yZI1Tjt5+BdWOHVfB5nOYJ56DJLCMytGoqchr2Q2MiC\nMMW5mwZAiIwpRF4gVxVeRhpEEzX8iyFbX+d52hVxvrjANBZyy5XoGke82GkRrx/iFSXGjydE35IR\nfZfn5zZ9Z8D4RxMGp5exm+d060fIV/f5bGfC1rrHeP1PMAAAIABJREFUyXmc6Z5G5WKFs9Fzkq0M\nGjPEnswLaUhwJYIRmzOv32Lz7gJar8NCRGdy02fp5Q5mG6ZDl/3rQ9L9HpNZiOZaFDtr5M9FRk+K\nLDRCFD+PpRh8cT3PtZMUs0SOcGKRiI5x8xmQZWZRi/p6hwwCmXYUWdL+KEf5k5coRYD8LKDfmnHt\n8iL1X3/GpDFFK9tMm1MO736Lf2XOt//wlPzVAjE3QgZoTSyyNxcZH7jMVJvVnQ1ksY9ZDDgPB2xc\niDA66ZAIAtx8hEHokYjHGXl9PvqX/wdZUtm+kscWWiwWEmgLZQ69XQ6/bVKNO4SSQnTPIrtxnVTE\npjMMaazYHBwf8sbCu9Cekov1mHZN+s1d8gtrxBSZY0ch3NF52R9Sw2X38QtGp3vk9AT7p89oOnuU\nFBkrvsaFhSRToUdpJ0Ki+N0n23MzgHqNtasbbP9gi71vHrN6+QaffvwrtNcLUDG4sGMwG3pcvrbG\nwft/jxnNM8hkOGo+puT2yCUEJvsths4ZB1+9YFXukjbKvPfmDZ6fjhkGLTRtiVMLvv3kAcrFbejW\nSL6tcPs/3ufin7/G7sNjMukKqtJBmkXwKymMWIZsOU/tWQN3aLG5k6Rz2GMzGeX4qzOil1+j/eA2\nTV1j9VaOD/7xP6PnfLysgXI+5dp6kkUxiaUNKabKdPfqvLW6RNvQuXXtCo1/uI2SX8SSPBR7AIAg\nj6hUluhZbeaKj5AsEI1XqffnJIIkpUSck68OsccSy9sF0moCz7IJ73sUJJ1pbYTUPOP88Ih0JIu4\nVGJS73HhZpH9zzssrFeoz1zS6wt42pSOGKElONjfBGhZhdqjRyjFFbq1GWZJxDwUMRR4+uHnbFyv\n0tNHFGWRfbfF7LjDRPVoHPbYrwsoLzro60levGgyvX+H5K0dRl9NMPJxHj58zLPffs1rr5aRJIHV\nv7jGB//5C9785Wso/QhrN+KESoSDl4+RgyyzmfN9ZvoRhax+QlI4Yflf3sB/tkNO6BGJ2xTWvkIi\nZO0ghd7TGTdX6RR17JzJwlgl6sskz7MULj+lXj3CHCxhjHNsfbBN7e19BsaUeEfD7scpLT+mNVqj\neKqjdOKM0gKpocNuNkUq7vLt6zPy1x4w2BgwHqQYeALjxRGCIBHtxslGmhz+oE9T0kgdZpnNq1ie\nwfmVJvsXILp2l7GQQYx69PI2g0KLUkdiGMbRlp4w3Tgh1R0xeH6NJz9/xqNXbZo5gVZWJrbQ+p6H\nK+TRqz5WNmTQUhBmJnZbQyr30VWFTCFCmBshxwckj3UiQpT0KIY+rJPb8IhkYlhTGAcWQ/MYcyjg\ndh30+Bx35CKqc9LRFVw9jevpFBwDdW3GTGtTTCyg6C6hadM2XJKuT3wQxXZzhNqUMJ2lJc0ZpWx8\nN4I2UJDSm5ipCfOzOfPVNHvtAVZPIdab0JIEdK1ApCCQ16YYc4tiNkM2ELDMMa7mkYhESGgKZx0T\n169TjUl4Y/N7Hon5GFW26GfzeJKNN+3T0UCdmgy8gKEu0A2zJMcWaveciTBibsapaQKS0iA1c0ko\nOmF3jp/LEesMcFQJzQUjXkbPKSStFvbEJJyNsbo+MWvObCChJhWsMGBuptA6BQYxn7rlEEtHMTMw\nlRSi5RiZqIAWGyEpDqYtUXJ1XDeDHLGYZwaEokAYTxCr6WT7IqqfZt/wmYwE5KZBLGqgGjYzxyTQ\npkyFOMVCjrkDObcPWQWU73qmC7ZH5e080guNxYSAPRaJHld43t7DKq+w3x0jWzpKZgVRj5J8dkTK\nlcm2RwwKFvKNdQRBpXvRpnvSolsLKGPQrjWZinGKrSjNo/+Xm/fqsSxLz/Se7fcx+3h/TviIjMxI\nb8t0dVV7Rzd0kC44wEC6laDfoH8gSAIECJA4I0BDjEi2ht1NdrOnTXWZLpNZld6ENyeO9377rYsi\nunQ1mEuC6ye8e31rPQv7+54FS5E8tiuR629iRh2uvnaJvLPN6toK1ecyiZhFN9VBb5fIzHdwu3Wi\nusBQPINeAsVdp7uS4Oh0ztn5ACudxMld5ak94s72V7D2wyxrIr2TM5pHImP9nMSdLIvZMY6uEFvE\nMbZTpB3onA1x/WMSl4oUyimiqovbOQdA82eo2VX6k/usSgPGnk2o0KA8bnHXUJjaI4ydQ446DrqY\n4F5tiXEiR6s8QHgnT3y/z3Q5zs1VifR4SvFkhTXD49wHrZDDPU1TqX6FTvsRz//8FXmpQ/fVOcY1\njRcX08wbcUJjg7kfYeWsxiI55OZRDc+usnANnDeW2P5kzKvnJndjIr28TeqiQXTdAbvFVFpmZlvI\nlyEtj2jExjzwA8RhnewwycMbLrlzh/4Ehq0iac1Emw9Zz8bJjC1Sc5GXqWt4OP9FjPLPHqLwRM6s\nAZXiDWp2n64cwon7xN0LTH2bb/2b/4rq374gc+kyB+0OiWBG9s0rSNaCghbm3WePuHP7Kj/9P3/M\n5W99nU//l48pXf8O/fMaCfqUVtK8+PkB7/1P/5ZS3uLs3ZesbJXou0fs3m9i+GFG7Rmx6CZ6fc7K\nndvMbRFCCZKvCThawHgyZKIe4jYm3F6+jj/vMSiv8bJqktQttr5eIaaUqP/mPrlrMSrHCRRPIJJJ\noEZFIjurjO0aYQzU1auM3T5xecJ//B//niu/f5eH+zUU558mBRI2lmWgZD1e/NVvWb6WISEILOVj\nqC+OyRbC7O31ePvGNWTHQ1jfZHR0xtWrF3h1/xHp11d475cv0bIhtG2d/NfieLk8flRk/7e7hLo9\n3vreV3n24x/y2vXXUHyNfCnLsGMyfjxm7eolvL1zzLMzBNlCX0nw8je/5N69mzw/P2DtG+vU6w3y\n+QqjgYoR6+Kv+IztGjFd4vn9Kbf/7G12f3aA4kbYSawyi2p4EYPOVGKmCBCEqb6cUn7jJh8+3KWS\nTvDeux+z/NXXMBiipgSsYeqL7eFl6LV7tNsBRw/2EGSbqB8QLy4zP24S30wyUh2czpBcYHAeG7Jb\nPUF6bYVBpI2uxXjtT/8APxfF6rbwImEOdpuI1pTVtRLtx8/IroSRP3+GeTLhq1/5DuxV+fj4mLCl\nsn71TSpOmY7kYLQDtFiXo/MmhQthFrGAvZ9/QHgzxlYyxuezU45/+ynuIE4qs2Dv2XMyQYH1i0WK\nb6zxyYe/YOLuMnzxlFAyRf7ea9z/7JCd6yvUP/2U4lKI1qMPOWnXiUxUtpaucmFzib1/+Bnu1Ptd\nyWzWRbZ/eY157wZm+oxBSuT5N/YYeAXazZv0FJVZdEg7KZC3R1z8fy+hH8c4S4TQ3r9MdW2C8pM3\nGL18k61ak5V/3EAYiuQ+ynL5NMFgHqZoOzQnRUZv/5bd5YBayqVWtPFSLpWny4ycKJFumhfTDOWD\nOFvJGn5sQMwKcfaDxzTuHiGKJkm/zkpHIrGfJncSpvmv/yPi6Sq5SY/M4RLTpRYpu4+jLlg+NIi3\nNSJHaeSjZawgSZAS0JZP0HoKl39dYDaoENM6uK0vvVlGZoiES6w9JpUE8UKUrmQROpvQtzvII4Oa\n72PKKrP0FFMXGWRiNFSLZg16wwFmOUpJhvxqGmF5hmd1WFTKzKbn6MMcZlAjkLsoiQkdX2J+PGU0\nniIHMnNXRk8sEYpksSYeVtRBn0lEo0kmpoo6T5Ea6GQHNjFZIyFJRGURV/fxmzPkfoC95NPteqit\nGdnFEKtmczZ2EfU4J6MughNhbtuYsTa9boBaXJBbjyAQps0UUcz8Lg815SMvNBy5RWJaZZqKoQYK\nwhSKWR85JGNPzhmmSrQXPsEUBgURFja+L2BZBmLdZFVJ0DqdM1MFRD2DGsQIdSy8YRr0OFE5T6mc\nRa7E0foCvbxKLXAJ12bMwjGcXEA0I6F6Jn5nSGXWJpBDOL7KNNah52SJlWxClkfbV/DbFp3xgkBL\nU1GrhGouZsXndGEhaFUkpw66jqS4jFUH86xO1nIIB5AUG0zkFoY1wg2rtKo+c/eLS/JE75CcTugp\nUaRFjIg/I7UyIdf0OO2eE4n7+NkV4msigaijXMgy0VWkywVCWET2W1yeVzDHCsKGz3Kyx8F4QeSK\nhixPaZbGrOwY9DULmwTCWpesnKF/aOLIJvutJxTFFMFJBiOUIXbNgJFN/o0U6egSKSODPXVoLo5J\npCW2wjrtrICqhjCmC9bcBK45x1N6TMYOk3ybNSlE7JnKvOFQyu5w3uiwt6gRNT2m7Qb5N+8i5ML0\n1BnSzMbzPGTlnxqpj/J87I7Yu7ZF+SCJaQwRpwn2VJ/PmZP7M4fcJyW2tTRnTWhe/BzdF8iGSsR/\n3OUn62POtDCvBk3qqSXyRwMW7VNy0QTJI4WoHKJbmCPNY7x1tEXTCqgWs5TdLFf3a9SO+vSu2dwq\nSvwoFCbbfR2rmOODhkAytcT8o2PUaYjst6ZMOlP0fo7Ebpz6QZqYcZXUK4VF0iZSi/P0mkdBaFK5\nXSfcukX/bIr+0uHlhXUuRDOU7rQ4zFukIwX2p8/wYh690zgXtmsozpdn6n9u/bOHKDeAb/zZ7/Hh\ny58h+mnGjWOuVlbo7T9mvbzO/r/9gPKbWywvK7Se7dO/tUmyZBO6XiC8eoucqqHmF5QzZSLlLPEr\nS8TNLnt7fcpfeY3w1gZSdkZiPcqrOiTyFrn4GngZRuMBi7lNpDgllRhSXt/gtP4BRr5AJW3gDGz8\nQZNu7ZybF26hnUzJ3rnNuHbMVsSk+fwxuZ3LUJ1ihlqkV2IkJ3PG4RA737rCZ3/9E773ze9Q3f2M\n9Suv01vMKCYihCYyg6nLW9/4CsHLIcZcwU2sAHD65Jib3yty/Is2XKjQc30WzinHezLBtWXi5xNG\ntQWPHzyiFRty+t4puQtpxBWB3O3r1P96j60bS+ztedy7eZPmJ/s8enGEUkoiv1ZgbCwxPvSx75Y4\nePUMZSXJyYOXNAOZ1a+8TnbSY+/Dn7Ny703CE5X9v/8MZSPG57/8hFBXxp6aJJPQaHYQVJOg5tI7\n6LDz59/n2U8/JLm9w9O/epe7f3iTeD7Fsw+rrBRWOfj3P2Lj9RS/+sV/5Ob1i7Q++wxhXeHqZoJ2\nrQHDAdGVNdxYiU0rRxDtAxAP5ngdjxt/tEkq5vHo8IDqx3u8/Ydf5fxol/f/+j3Km9skt0ocSQ7p\neZm7Fy8x/9XnlC/vMK9aOKcNLiRTOJVVtlZVWi8e0H7/kEhSwrQ8pEtrPHn0iAhh+pqDlhfZrGTJ\nxUMcT04ZJ9pEMzIH9X26D/sUohsMHtQprV1Ht6JImsTZ1GcjmiRcucyVd3J89qPPcaZzogWRkZBA\nXblIPrmFdRBQN0Xilw2yFzTmszHusMrlt96k2lvw8rTPqwdtTL/BtNAg/s5V6k2JUGj1dzUTPYww\nTC9Q9B4ntwUuyWe88aNNbrwy0BKnRK49IGQ0mLthhhEZdeMAywiRSzzj8JsPqK8OaKwPudYMcHpb\nFNNNfMPDiwfUkzKj7/+aZF8j3vG5+KPbmP08vcqEQugUtXSMHKlhdZJc7w+53NbYu1lnZiUQz3PE\nnyepn27QC3Q+/UoLYXeHzmYbNeQgD0Xi918jVF9G0WTkfAsxOuNVKUzWbqPWoxwWipxe7mD0ExRe\nlTi7WaOalpmer+F5IllrCJVjluTnv8tD6UVZ9DXETYXQOIxj+4QHI9SNNYqpBK30jNIwhRYXkdU0\nnUGXpFllNRqimBBA8kiaUQjreLUpIVNFk+K48zGqq2ICglnC7YYItzQ0Z4AjgrbYYKrNGU4sxr0h\n4emQvjREMpJI7pCFrCH0x8iLMeFohlm5hKQN6SQOiAtJ3CBHJG4gRqIsukOC1QjpSAZ108MKC8TT\nGjNLRY0EDCMOgjYiPjdIGF1OeiGEqYQ7GiLPJZiGfpfHdJpD08Oo8wShaIbsAiJyGMUL6DbmqHWf\n1YLPAo2coxKZx6mgIjlxYnIG1XMIZipCtEYuLhIqLHAEiVlWobvex8Kl44yopk3ciUfhdEKnOMav\ntvGtCBRU3Ewf06kSH8YQVQtJiyB0HCqCizeNMnBSuNoAhRjxiIFod1ESHZxhHgE4EWKIRoyM5qCk\nLKxpwGZPI9ZrIkSzGLaOKcWQ9RlmXSAYyESacVrFEoNpHFM0yf+TNkasTzn/+JwdwafXW7C4KJFU\nE9gVHT3wiNkxipNdms/7lAUXJhJ154xZa4bUyZC+kOW5t4cp5xFVqNo2elxhtt/FVyzKexlEu0fQ\n8snPeij1gEFIQoiEUOM29EKExBaj0BHCywPkR2dI6zoJN45nQXgywk1DJqeSV8scDTpEh3GmNAmf\nnXAYPqGfqJPUljh9GqIgr7K/6CBeCxMTJbxnB8RDIhUviSBdQDc8euYAYV9gdHJEKxkjXiiSSSwA\nCF/wiefaxD/PMyg73Hm5gn60j0YOy7lM+pcmnXiT2lwktLxCxPY5joTYOWpjhGMsJXTKVoeiW2P5\nhcOv35ljojFbWiHbtzHVOGKnhpeLMHgyZ/NaBOHMxuzqDD4OSL1RYOtghtcXyG0brE76NAZDlLyM\nmjCJxQWC+Dkv8/ts5A1OL1QJzSMkMy5K30bY2MSxLDJzk0Xe56Bp4IUvoqxM0ZMi0VyKi+0W3X4X\n4ZnH2bzFrttj03kD6UTi8z+Jc+GHMxz5X4gnKlA9jEwctW1z/U+2Wbpa4uTZIVf+8A79ZhMrlqZk\nwN4nRyxf3SZz3OfhXx1RVlNYkk8hneLocYfi9Yv0zkY0H1YZ1c6oxKKIcoKxl0K3LURfJsh2UHMF\nvO1lJCNK32uhVEL0+h7iQMINZdi+/T0OHu+z9vXv8u7PfsLDwyq/98d/wcnnPdyQQDEboiqEmJUK\n5DOXsESXgw9qxGMlzk7OaE+zGJkJXtMnowRYnk0od43O8CXpKxfo1qaciRJmXGJaFGnExqiuzWz8\nxch28cYaez97SvT2El99Zx395SHdqYdeXjB+dsrTyZzk1U0OPn7Mmhgmf7kAgc7zv7vPGzfu8nw0\nJ3pnhY1LIp/8u8ccnwa88Y0bdA9eUZgYaJEhnZN9lsp5Tmo11nbyxEWH1Ws7mKgcHR2hZfIkNlYJ\nXyrR73joKxfRDAt3NsCugeRGSVRK+CY4hWWMVIXw2YRwOMdr39tmNOojai6iPeL46JjZ42dc+Yuv\nUPuwx7f/9F/x8NUZufUsZ3uHzE9t4htFtIJBfzBjQ4nzdPcMRykCMAgGtMcWBz+roRRzXMgnuPUn\nX+Xjv3mIeLVAMnCJxDWODmzKkTBecU6/9gzjziZ7n+4yrcyY6iE0J04yHOfJR3P03Dp1LUZ1f0J0\nLqG1pijxGNKyw/RvfoFlRVjeWaJeHxGxBAa7Nne+9Q2C2jnRUoq26jC0wriRHn1HRgwVSE8CUstp\n3v69DZ68+xn3/uj76FsrjOQZKXPCpLFP4l4CzRC4tFmi+1kXrzvk9u/fYffFgm5twfLaGqvGRUq3\nSxz0xwjtGJGCgez2Ec3R72pmnBYQemnqxQ7lUY3qsIizVKOx1mdl4XIW6MySApPVIZGrH/JZvogm\n9VAPtpBdhyg9xG6OYdSh6yU5CZZwuxGoHDL52gcYu5scLmkIxoxaZY608RLD8pkJUQaKwO6myej6\nMa9utdi/0qf40RoLe0b6JEc8OiJpqajVLbT9HHebPUL1dWJ2F2eny6IbRx95zMSA42SY8foxRX+P\neuMecrfM5tkUe3lA453njC/WYZZldTTmyl4RId/DLncQztcIgtTv8pASDpIRYebJuKEa8jzMVMoy\nDQbYVozsMMHMm2EELpIUR9QSVCcqgZUnCHJYkTDBbMa4v0CSNDTNxzJm5L00Q8vHVOv03TFS1MIM\nJsznLmtagmjMRIsskAIHJWoxiikk4iJiv4+ZTOIfdxHVOWEdZqMxomZzosgIAwklGBMyRJSZRYQR\noghZe8FYcunsz8hn4ozPHSzBQhxFcMYOQkRh1hYYTXRC4xpiPEQiX0KRBZYqg9/lEde+6OEzTY2R\nGGEwVJmFdPQVlVKijFOW6DUyxKMLZqSRQjC0JiSjQxaGg68PcPJDgmkCyw6RmAQoxhxDtpnb4MTq\nZBMhNKdOIzWiH41jzVyMGIRCHqrkIwpZKr0U/eiQ/DzNTDCoF5OIC5GYv0BXmxSGIVqnEp32DCFr\n4w4yuLEWEalHWJWJJReoXYHy2EFQDKaWhRBViJsDLKGFspBpuxLycpxBIkzYgHity1KgYZQ0fP8L\nsFSvhRGva1CeISfCyMcBJ+1dEvommcwqIWuXU8EiuWNwno5S8/uoQpGMpxLL2oizMUvLMcJqm2gr\nynK2jHQqQX4DT8ljquec+GXMUZ/KtQy97pD44IyhdUbNmVG8WmAeC4jVJNBzqKMOy7VDzGdTJpM2\np/UmUrVN9QUsdhcY/ggt5aGGA/qpBFFfJuqUyDBg516elDUiv3mZcXWEI/qMZZXuPIfjF5iafWJ6\nCPOggf56mEIoxnzqcdQ5pjr64pfvYGhixeNcqng0tqY05THH7WXECy4X60+pShqbygXCWZeu1YX7\nIVxf4tfrZwT9KOoDhWO3iackGMUsYif3yCklhsF7dC8ssfFhg97FMaklESmZJOaXiBgmw1aY0lKK\n1O4rRrlNDGXK5nmLY1UhOjC4kNwk/n7A2eyEk1yct70rNB9tkN+9hBZ6Bcx5tFJls36f03yYw0iE\nH7ynExRSyN4c6dEhk02TFVli7E1pXQnhSTkSgzWWb/WYyy3ajs3lboyn9xKg/AuBKMkB4WDOVBGI\nSXmsQCJS2OHl+RAn1MOOytz/WZt60KWQ0zhtBFx+e41JB5ovDhj3BZywhDsfs7Slo+t1WvEI/vUw\ne0/eo37yObWcCoJPbponKKTo/x8/ohhz2YqFWMwjpOYmHz064bj+gqyUxSgPqVUfsRTeYXkrzEBs\nIDdGLF1b573/7a/ZupoidHLMNDGjv3fOcGLjpwwioYv0Ry856vs0FZdQocz+r59yaXWFSWtAFpFB\n7xWL1hMqW8tkHcifLwiVV4iNvrDJOm4XQQ6x/bUtXnzwFP3WBmupHNlsCr9xTnEzxuZynHRyifTa\nG0ydMf0XM8rrm5x/8pBv3NzBHrRIxOJI4YArd7cZPTlET63z87/7D1y48Raxe7c4fu+Qmz/4NkfP\n9uh6XfzWAfvv7yK9+TrleJLhyxqz/T75r+VQFZ+QbVC8W+LRx78isnOD1mfnJK5l0RMCckrnqN0i\ntxri7MF9ileL3P/RAy5cu8jm17YhFGEwEekHQxoCaMcTot+9i+v6hHwb+5ePWWjL4LlMVoboYYHc\nF48mFEUiXbCJbwSMng+oj875zf/9Q27duUzeiBJdrdB4fsbrb2/y6NMzyssbRFfXSFdMqudPcQ9O\nsOc9TvVTmn/3c6IFFWfi4cdCOO4ENZXg/KMDits3eP/nDyhfv4ocdPjHd3/M6r0i53sBhXKa/Q8+\nRa+sIwky0VwGK+5x9OSQ29+7wLOPPyD6zav8w9//hg/+8tcsX7jG7t/8BNepMn7+Ga1OFUPPI/RE\nCtl1yls7VLYLSGqZ9uMG4VKC0w8+ZXU7hxiW0aQwF9Uw2tUwjR//nJuvr6C61pc1M4lguio3XyQR\nJiGiep+H8TSRsyidl7cJDWNIn90iWjyic3iT/vUa/Z0RD2822Xi4jlDdpnfxmFxrTCI+oL+9S+NP\n3yWwZM7ma5Bvo6y8wvBN8p8sEfKSpB+tUH6UxVdttrsWVmxCMIjw9V/GGA/WMR7fI+76xM4zFE0I\nh06wl0f84mISMzKg+WaVjzc8FoZHd+eAqZcgehJn/WUWqbXNdfeEeOoQMYiz0bdRmdIq98lYJifK\nMh9+s07tYo0XV3ysw6vMgy+hsidKlFSB5CBAjyXpBCNUaYywO6c6qdLW+jhuB6QiC8vEjLUJLeao\nYpihUUdxpliBQFSYI07m9CcpYk4F1xiQSYQoCzqiYRI1VvD1GGo+hZlTsLoz/K6IITYwegKKmmfe\ndZkNU0Rmc/IrJmgFAllmpidItHUK2pisY2CKeRbjGaoGYWmJxdSkF7jM431sKUdt3Ca15LIIjdGX\nPSKaiqZmSS3rZA0HN5yF8QxnDGJMZeJ/CZVBUqSeD5PIe3gtH6/QJG+PCFkGA9VFmnuoSZNJY4BV\n0VFMick0TuAVWegeRtLE1VTm8TZDWtRVFcma4syqhPtlcmIMwUwQH6YRpg5zMcaSaBAexQllk8iO\nj+EO6EUnWHaIbmGMGmqR8Re00z3kmQC9PN0Nk9xyFy2RRRmW6edGiLKNL+YgcOibBlV7ysxViThz\npFQByTaxZVCnGtHIgtJIxJ9PWDoNGLbHdHWRab6NaGvMe180UkeODaxIBMeVQDaRSiZq/Aru/n3a\niya2b3Ajsk32wYyVtEdZz6I6rzAyeXoLgZkWZzaMkt7VEGMOJ8MTIuUMEcei82qPmJXG6XaRPJVn\n9R6Jy5cQhS0iPZvssM3ZeY+R5DNQJqhZh8lrS5irt1kspYlfirGcukI4rxDKtzkNHdLMRNBnh0hT\nkbkRIn9k0B/uYoezvBrMMFyJRW3CUmWJZusMQ5XQ3CbJwZwlSWWmZtkpbjGsezixKU4qhp1Ks1m8\nDIAR+Nz8RGLQfkHxvSTtZIistKBZaHGqdmlfKXOQ/5xws0p4saAfzvA9W0Ww77K3EiURk/BLcRqx\nBJ+9cU6Scyr1PkNhnWz3gOcXz1hrZ5BfriO6Pp/HP2XDXaKVPeTJko86StA6lDl7WuG8GaWZmRDJ\nn9IeOny04yHk4uTvbfPg7/eQrlfZUQQeRDcIBTa3ncscLylsnpscXqozHc7wb8+ZuD2U7a9x51cT\n9rQ9NkkwfFwnJtbIhBvkf3ORcselZG4QeXZGsxFF/NJf/J9d/+whCg2evHrEpaV1/v7f/ztW7q7i\nVve4HF4jMY7TOXzG+ndXyY4iVA8bSNIUpTdHiYgkzChBwcY6PmA0HjF1dN767h+ieCXmZx6YMU4e\nnLAVLBPkZabdPpuAsbWBOwTHXWUSTOhsbbIiYa/9AAAgAElEQVRccHnzzhv0P/sMserjiQGhhMNG\ncovD51UeTZq00xNGXpfJIM5U01GkIYrlc7poEo3FkctDwjOPpOqS9UR8T0FOKNz/5KdsvfMOYw/K\nOzvEWCOmLDE7OsdMiyQlm1F8DECok8Zb9OiezRmOLQ6nDaoHXfqDBbqeRuu0+WT/jIvbeSa7Bzhe\nlthaCUO0EHpD5HwS58in3Thk5Q++Sr1b41VtxNUbaSRyTB68xFBgeNRnY2sFRgNyt3LYIQcj8KhE\nCkxnOu32mN1+g8Q4hjJq0GrMEHSbnevXOHz2ITe+W+HVP7xP4W6JirKMebBPEDVYSV6l936D1//k\nu8ylMIupQvjq6yyevMScTUnGIkwiLpOXh7xzeYtet8Mo6WNkbHTxCG8oEYvadLUvoEEQdOzpGH2e\nRkhrdE9tktslHh98Sq50h53v/4AhHZ7+8hOIKASDBV0Rnv/lZyTNJOnLF6l/dMqKcgkHgag8J71u\nYyzGrL21jD2ROG0NKeU9fvD9b/P41QnMY+x8/R61jwTWL8bJKFNcCTRjmc2VS0izUy5cyhOdVlj0\nzynk1oiO2iQTYa68cx1humD1yj2uXP0+tSOVt77xJyjxJCe9x+ydnGKrPtW9Axj3mD055/a/+QaK\nVCARyzNM91FTMsNkgdZPzhjHk5x1OhD/8pLsZ1v014/ZzQQYtQrDMgjL50zWTObffA9ftxmtd0i/\nrHD7QYStH26TacOd3ghfnJNc+BiFOuN8QLc0pqTUWduLILUSXDgLkzpK4YkSozUXfWNKK9tGXKtx\nWEqxYpkclRzST8vYgsKTSojW7SesODVqN1pUX6sS3c9hNrdQ43OMaoxoLyBSX0aLmXSuNJnmTJJP\n19hpaxymUgwu9QmmOv0gySzT5+nGhG5vgwvvXST/7jValRFXnyZZ+ahCPhgQkRs44srv8sg3xwyG\nPQQ9y3ikkpAUXG+Ev5kmHK+w6OnYyRzz2Rh/NqQ4FRHsDFPRI+tLiHGdxXTBNKMgG1lE2yGsu7jt\nPGOGBIkIqUQKSzhFG04YOzV8W0G1bBaDIS0/C0wR2iekonlyS3PCeR+zG8cajBBTErgWZ96AoZMj\nyCYYOD7pvMKZFkawRqjFLJFpHKsfQpA1wos8nh/gmwq6syCZSyIJFuftLu2mTimaYORmkI0Gmuoy\nnnwJlZNhDKMlMbJmJLISGTnF3I3C3EEKQshellE4RDK1IDPvYXtjlEwfW3WRZAlzGkdoKrSkAllC\nhGYznFgWNRQjYXpI3hwpM6Nnu+gDjZS9oJaa4m4o6O4CZR6j64UhlkBHJWI7pFsx2gPQvRSBIpOI\nKigHDlK7giPNGPsOniQTiRYYK1PccIJ5d0o4FoLIFF9Ncz6ZwlKMsSpipj1kUyRwXTLNMabkMElo\nKKkIA1ckPNCRsl+cIWYhxNRO8Nw3sfsiQcPHN2WiuTWy4zniQKd5skDfEOlPJkx0CMdKvOzuocSz\nzOs1OnSwNBurapJPVej3O3jZAnpc4TQzRkh6qGWHdMdkGlYRyxbjykUWyTWu5zLQ6rNy/Qbzkc7R\ntMusUCM88ug+lckXYqjtDuvWGoaf5FomhxHsoBaSlAWPRnTMIhGjNjtkMz7i0+icaWtGUHuJ7GwQ\nWbNwrueQsxbmvEtTmBO4A5YHS8RMg0hvQHEmMjn5wovUXR5RS1oM1+Jk3DWiYoRwWcecrJJZT2Ie\n6ujNJOakQMqLkHINPo45bB2P8PIm08w5b526ROJxfvBcoai1aKRsVgYCo/Ucfvp1ps+i1OxnnAvn\nePUQnulxSStQsBSEXIKs12c5NmawdIqqxOlby3RLM3bCItmHGdz/cEDk99fRRhrPvKckIg08ZYne\nvsikOcTcUFnx8lh5uHFuEegKKfmYo50GWnOVV8oxi+9EiGk53AORWaTKLBZQtV5hRQQE7SWC/C9E\ncRC4ArUuRPNZQhspEuoyVgrmmDj5HEouzKhZww3ruI0pTqPL08kYR55w8vwB2cpl2s0hupDk8P5D\nlJUC8rRDeDrGnszweiOSGYfQ8wB7OYoUkQiVNOZhj0RCZfrJc3aWc+jaEpocQtjM4LsD3DOTUDbF\n1Ooxt0x27q5jCDqKPyV0N0RBC9F+fkTuBxdIGGv4n9aIb18ntrTCbCwgyxLDwxO2VjdgKrEYHCAu\nHJS2gJKegbNgFLZYtFxqQxuGX2xwqQCzkYbbn9N7PmZr6zXcjMvqVppSIk7roU0xpVH9/CnPdt/n\ngpGExXMcQ+Z0LtHqv8Ic9pHcZQYff0zESbCQBogRGUIe02CK7824+Kff5N3/+YdEVjY5/ukxd7/x\nOtnXt5iNu5yddjib1PnBt75Lq36K1dFxfZGlK6/z7NlTLry5hDOQcSdzVtMXePjiXVIbV9DaI35x\n+pD1P7rG/Z8+JhjVodvEPX2GpZn8q//hL3j0v/6Qa1spOj2Rp3/zgqWvXSDkKtxZ2WZ60iQUDGAU\nxbe+yMOyFebjEad7Q97+5j1Cno17ZrKwE9Tre5w8f8ba6gq6rHPp1mU+/M2vCcVkpr5HPqqzVVom\nfSXFi5OPCRjjnE+JqZeRB3OSZoRYec6tP7xG/dmA6t6AnZWrrN1aJyfmabgLIis5TNljNh2ykrU5\n0ffRc9sInRkxw8co5+l+VGX/18+5e/cNAi2EEncYxm1Gr15y89v3ODv+DdXDl5RHCt/57/6YJ795\nRuVeFnOuYjPF/PQJmjDCPhzhmRqLl2dsJyus/PENOo+P0OJF7P+fTLF7scFKpoqByKJoMTbDNGWD\n3LGGX11C6OWxRIFRfE7nrTrxTgjHVOnV19ECn2lcYVjoEeQH6EiM1RDD3gaLaQV3oTJKWoTvr2J/\nfINGpkvm1/cYKxrq9kOc43XkagY3PWFctAgGOVKNBL48J/skhZE5ov6dhwT6nOILjVj5FZuMiA9n\nXHb2KLYdcn2V8mjI+8UohtygPzb46Os281GZkV8g/tFtsnUfTiOcX64h+yre3V9yuGFx9+dFsvIY\npWP8Lo9JOiA882hqDmF/wsAeEbViMGrgKg5CRgVHJd2ZU7RjdCyPuWcx750zOXYwuwFGQcK0Z7SF\nIVEjhCx4iMKIsCUiDVPMjifkpBRafBVjJlPvHjPLRVDCFVZyAn5BxdYltPGAtidycqigan100WI0\niGMINuVsiLzbxZn2KagyihXgjrrMQx6iJhEquRQNmTRjVHnO2HdQrCmCHcW2qtj1EAklSSq/wBdt\nEvEAyxZp+CKx8Jf25dh4ihd3KE0X1MN9RiMfQRjio2E6C+ahDkmhR3es0yeEqvnEm2COA7SRiomI\nnVLJts9oJ1RMW8F15ox6E9SgS3Nm4DAiXraIFEKMHZVgKjAe+8zPfCb9KKmFTm46Q9YEjEUBeUkl\nky9hdTrYXh15NEBKxxkpNSo1yPddYj2FWWARn+hE2i0k3cMZZJBmAk6oRyKnY54MMXoCbtxEksPI\n+RxTPUp9OUBSR6TNLjBHKMgo9hd9lcGZSmXRwq4FIC5oiQKJiEuHKFo8T/WCRW5ljuI4aHsxlMUp\nWSlBsT7DN08IcmVUu0yaOe5cJtrTcOYLMosZS6Es21KWeHYZfZ7nWITFeR1/b0BJ1LGsFjWtg2Ym\n6R88J6POiREgft7iPKkRySw4DnkIi1Ve5DW2oxL7JwKnC4t51+HYGiPGMiTcEClZZPDK40qQRtuZ\nMnPLFFdV2t1VQrbNOOLiJR3C+pSjVouzaBN7eYl8kKApBXSFIwC2qgr5aoJ9rcnhGy12rBgDJ8Jy\n74T+VpbXZ0MqPRjpU8R0jNR4xFXpCEmyyKd9OBryclzgdLnFaaDTXy5xmlVwkxIP5IBC7JQLRpRZ\nZMh60md1Oczw5pgj7yGtoYTeP2IaVTlIjVnqWSQtk7C3x6V6n/IcWkYcL7Rg6OmYroCQCyOdrSIl\nBih6i1BcpqnvMZka5EYGk/MM8d01eCaTeZwg7814UcrzWtPhRdeGbAm7N+J8USFIFZCpsuwbCLr6\nX8Qo/+whSiRgE5e+s4/+zOFn//v/RfniNX7761+gT87YXL6EeBaQiEWJ6AmMkk3KnxJLKowXHvmd\nNYy7G8zqJm9s3uaDX/0jRGXG9oRRSCI68WieKAyDIeXNMq+aNoEUwlnIdGJTcqUcT377MW55ghP2\niI9NxrLG2kaKxuNdUutFlpwklzc3Gb0yKUcvsaLKeKU8cWUDwUghLw9wjDHVnz7BCOUYNz6nefAJ\nlXuvU6s9Jn5pjfP7x6DrPD97yJKeY/D8M05emHR7KtlwhrT/xaeSZYVpbI6RSvDGf/tths+esZyS\nePJhCyEdxZ4PWJgJhoKC6gmMxTAvewsC2+HtP76D9XCBtpRl6h+zc+8iqVSHW195g8d/uUskD/pO\ngel+k4gyxg3PqHztNdKlLLt/u8/FpMrp54+4cjeNe9aia0iIlSXUlTQ3b13k7O9/wfr1bZofHdNe\n6Bip69R+ukc5tUFrUsdMaURPG2CeciUv8MHPHnH5z29zdD4hevkij/7hp2SXVuntzSgnw1jSgtpY\noUCSZt/k5ft9hEKFoaYjzr5weIg9gUhkg7XrMfY/2kdRDNZvbGFOT5icNohf30bvJFh66xYze0Ax\nl0eORJAyMn5Y55Of/orVRBrJyBNZustUG9CctlHuXefzV485as3Y/eRnOKUY89M6Z4NTtEBiONVR\nfZ+wJiFKFfLaOr/6238gHr9E48NfYJVLZHe22d/d5Xg6Jffd19n7+Se0fIHO2CJsa/jFJCgjxv0Y\nRtUgv7nKg5ef44/HpGZJPvrwXb723/83zCYLnI6MkhwyGc9QYjZqYUYxrCFnKyiuhON9+WoK+yFO\nVqZo5oTYK4NoLc9b72Z4dXOAc7FF5DhFJ+fRv9Kg9mqZ/p1dREcjqc9wYj6JaYcbf/dVUgzorVYZ\nZD3U0iHepadop3ESrRXSh6tEEnU2GgKnb57SvHRGP4Cak+fSfpr0LItRNZDf+jnujUccXB/TKAbM\n9m6R7o5xi1WSxxnq4+u0JxkG/XUWYhFhGkbD42SpzbLyjLOVBdobH5NvTzDUOYG4QI0PMedRWm9X\nMcttwqkTxEmWYjDmgz96xdGdBsfJL8eTzZmCll9BqIEfqEiiTbyYRy7mQO0QRsDxTIJCjlouQLA9\nxBWFpJpgGiuAIiEPE8higVQuzcwcURf76NkQZmiNkdIiUhCpn/dppJtI+joVN4+tTJDzJt0giuaV\nCOyAuhXFcaCShX46jlBMEJ6d0Y1A0wZTi6FEQ/j+nIkcJU6UsKugCS6il2c8sPDzEdzElGSkRDjj\nUzdD9PtFUjmXREFEE5J0Zy3O61XUaQyvbWNXvzzq61ICSx7g+xqxeQQj1GeiZzmL9/DjcXzZoePF\nqIQkouYcK6UhGh5Kpsc47mHN5myMNXp6nOgMCoaAX48Si4YZuCJR2WI0jTLzNRzFwZKqZIQQWTOJ\nlYEo5xjigqozw9GiKCGV7shkshCICBnm+hKLpIoWcxGNAmeBxHy5xywsog4nhPoiw7hE1PQJmTZz\nMYbb8Bi15lhpHTtukPRKdNI6ojVl6EoUu1EUf5XOIo3hFjFFEXn0T/KsooAlRKhoLk5jQKS4xmgm\nMzEnWKJO7pXJ/brL6WJMEJvQdy7SMM+xjApWd8bCcnFbbZrlDIlCjFZogTgPM+GM80WbYTZC58Me\nE1cgll5lK+kgrDlM1B6Z1S0cSSS/LjAwU3jFKIncCkpym9xJk8mswbz2DPuKy/LLI/aYkwgLCJKL\nlU1weTlMu9emIYOUDjEPFWh2F8xkDyo2I9MmkYvgHPSx01FsL0T8sELx6nVK2pzudMBZuI90GkHV\nvphGm2gJPltvsd2Pkj6RqWUmpLohSu0MVz+2ONLOmeUVuKSiJ7scFiO0nYv0/Ari/TNOV3SS6TEr\nHQEtVKHzdyqJ1TCLWpT/+tMu/cMUg68eETNEwtciRNou9lTiyqsNim81+TxzGzvxDPduBKEsolmv\n2Nsq4eajWI0Ua5MJp+k4vz+t0tjNsgjSlFSZs3AZPWnipQQuNi4ROhFpZ+u03tzDqPQ5UaLUtnU+\nVE+40Fki8smcYUZhSXpFI++w7tR4zS/ysBQQUlaxg38h03n4EqPCkP6DBerVVfJOEifqcP1rb9P0\n45S/s8GTzhmyJhJJxgiyy9ijgHixwM27l/ns/3mfRnUPPT2i/nSfVEiDbov01XWk1oDyzmuMTh5z\n5d4FJClOxI0gt0W0oQB1n/zyGhFpQaG3ib2wUNJFDCHGwNOwshH26g1sTWUe2CQKKm5O5HzUx552\nWRRUsraD5Se4/MYVQgZ0zCZrl7+DH83jdRro0UsIgcxsajM+OGXjj97hJNYm8DSEhEn5rTRPJycM\npC8UB269zYa6jNOrc/rwMfbC5/hjm2/eu8Pu4YBW3EQVBPLbBYhuUEwMiasX6N0/od8YYdsNsksF\npjOXhZSjOxCwTmaU75RYSudY/PQlw/GAlXwF5eZVZscnjMQEa5fW2N9rE05m6fejCPYXDdHrCwOv\ndsa7w2dof3CLk/dO2Xr9da7eKtNpvCIIK+hUkeIyuDUMdYVMusijFy2W3rjI/H4NUZ5SkioEgoTf\nbxJ6J0n3sIMf9lBiCr0lif3nr3jzL77Kq1+9REtPCYwmACF5QjKrYCsl3OkcoaJwUKuzces1UmOT\n+f33GSeqxEYOxiDM2vZ19P6Ea9e+zVmvzd1//X0++fEuZScOWhdJijLbOyafDMitZFBOW1zffBPB\nsziaj4nOZRq6ibn/hIuFIm5CxVCjDKwFlhZj/6P/xNR1GPUa7B/8ko3UHS5vq4TNBZ3JmGRrSPWw\nitXahdmQkxdVnIWDqY2x8gY76jqxyJiZ1WZj8x6fffiI6GoFrRzjUbvB3aWLPN8f4I/jTGo1tq+s\n0GzWCDlfjvRnWw6JoxLTG48RUi5rnTHGQmPnhUTumYj99fsUw4cYfZ2gYNJL2UQsBblmoDsh4s00\nsYGA9fIemy/CBIsMkbMKuj7BMaaknDZuZYipWiwclTt2HUeRSbUMcuVd9jMurm+yMrZJ7G+S/tm3\nWP50B8UJER/PmbeXyX94l9RiTvTKf8K/cEYQDZgm+ow3+4i6Q+nxKsVWiuTHN/8/7t7s2ZLrvPL7\nZZ7Mk3ky88zzcOd7a7o1owoAAUEgCWqg1FJLlLptd0Rbb3bYD/Yf4jdHqB0OO6KtVrjd0ZpoiaRE\ngQRBkMRQKACFmm7VvXXnM89T5jk5+6E6CD916JHR+09Y+e3c69t7rfWR/at3oJdhrAW4mkl65lLQ\nllz7eY7dxRBbkpG9Of40znBRxe5uYPhfacTiS5eBOSIbTvBsn0XfZhF40PIQXQdxHpKwFYJgSNXz\nCKQ8OTGKG06IJhxiKYVhYkjCnaNYE0zHR27PGS0EHGGAlivgyiMiqzmKUgwhnLJIOMgdF9PX0cMo\ngh9iFDbwlS4IQ4LEklIgE5OjiNkssa6JM+3DUqZRH+FjE+uBnzUJs3MsJ4u1OMcpOETFHloziu9p\nOOMExahIwm4Tzkccdya0hD5+M4mgS/heQOhDX5h+hUewJN81OPNdGESY1G0c2oh2Cm0yIt6SyPUX\nzAwJs5BnGV0yVnyCkYZzLpLSfHw9SiLioRbStGIRclmPhRMlHnWZG3m0mUJmqjEeLikHGxhBgo6x\nJO6qTCMlFrMWekTDkmzO1BAhrRGlx0DvEyYn9McxIv0pQRuyjIiMszgpCTes4lUEKmIKuRKQKI4Y\nlydYikEtdFFUjywtlmc2/nzBeDwlrozxXYXouI6flZBsF2kwIZBNACLL55zX24zXawi31lgVXVKz\n5xjqCCmE4s0867MEXU9GSxbBtRjJAuWsjXLpFqHRJ/NKFX8q4a6qiPk8yWtR7HGO9ewqyuAFt3Yj\nDBYj7Nlz2mbIcp7HG7aZfXFIqqHSn2RxylPcuUZ4ZCJGYLIVY7mA7KJC/bRDmBJInTkkjAjxDFxS\nHNpHM3bWL6CczGi2NfzcnFmuSuGegzgTUXpLzh+9wLiWINZrY3XitNPHeKMJ7b5NRYuwkcoiBAui\n/0loP5rNKQwzLKcayq5CZM8ntAIeZxzulxuMb+WpLBVOlw2izgRRmLEihjTdLukVA6vv0dkQET2R\nqDVCuxYS24tyQ7b5eRk2OiJn9yPYl2K0fpzFf2jRT/Q4/laM8IMY2WqH8mmGZd0hdOM4O3HeOC8j\nTWGvsOAkY1BWBFr9TVYvjqCiEYxG9ModgtMYmqGwl9ojY6j0GLDdSdJ8ZjNZddjsr3BjeRXT/xjr\n90XWYk2e5EKGVyuIF20OjXMi2jUSC5fIV+NI/7PrV59EySF2kGSseBQIsDY0Is/2yehZMt4So+ux\nWytS281jWXOctk+3ccL6WgllRcGZjXnnld+jHCvw8OBDdq5fw4tkkAORavkGpt4idXWd/UYU1ZJ5\n8Mlz6tE9Fu6ARMKhEYPIaI1m/oQvPu/QrveZzKPEA5uKExCcLLl0Ncf8wxew10VerrD3Vx9y/O4L\nvvWtWzz+3s9JxQROj5eYnSapZUBONSgIIc86HTLlHF5CIpUukBdEVrwB4X6LtX9xHZs5gbVC3s8g\nR19qXqyVLAfLOlolZPq0y/Vvvk7pgspnxwdogsTO7l2qGFiPmiSrOX72/WMubhfRrm3x7Ls/ZvuP\n3uLRP/w9xp1tzn/8LsODp+z+3jX2fvoR01SGWCGHntzg2ePnXIwmGB42yc1NtEqG1ugAbyNHo/sl\nX//df8FPvvePLBMGT8+P+M4ffpPGv/mAN/77P+Rn//bf8ez4M4ydIrJn0lVtlg8jtI4zLDcdmvMx\nfs5gc+sm75/c44//x2/z4O+/z5Xbr7AvTjDiW4iJPE5ulclPP8Ec2MSSScxRnDe/+SrLfo9i4mWC\nu6mGDE6GRGoCzsQhU9rES4YMPvwJ47zG0wdzyvlLRPMio8YB7nKIF9cQa1HciY46TBLfHNKSTGQl\ngNBElAuMRwrT5w2mQp7hmcO44ZBKzOlrA4bHHqNuj8yVJPe/ew836+LG26xerOIMFsR3y9gvIJzn\nsSNN9GSewfmM/CsFImqGmT+ip0dpnj1DTpTZunOR9V+/wuP/61OUpIm2WqFYKTFQztmtrLF8UidW\nmpDZuMDCGfLq199EVXTGpTTtj0658+Y6i92vNEDC812MVoT+s19jPx4h5bt0RiWsRY5wsEPmows4\n7RrL4y2iTgYj4fDwG5/TfnPO4+VFBjmLF6/0OHxzH3m8Qvp5mu7WDFsVWbz1EV/85gkd1UHdOmWR\nEDho7bJxWEY/XSGmT5GvPaB+54imtQGY2DkH00uhWXOUaZzKOMmG12CYTlL49G06RQkrXLLzF9fJ\n//BtQlGi+wcP6SfnVFoOmgXbi4DN+BkLq4bcLZCyojz42pjgP36DKw2Z/mKd9rrJujdh53GcnP9V\n+KgTSWL2Raz1GdGKg1o2ECZD/HgadyFjpVXsgo2kJ5GdBdqGzfBkiIVPuBiRCm3SVpxZL4WdFDHC\nJFZUIIxPSZoKojlC7QmEtGiMF8iagedHUAsFEgOfsNdjkpMozm201U1qkTixUGR4YGGGId7EIpXP\nkyPHtH5GeiXOcqHgJk6IT3WiboX0coKeSqE3DXr9AEdWCXvPyOgivj1Cz9cYx3IkE3Fqdh49qyLM\nfOxMlxVJp1r5Kn3ZV1S8mkdqtYag1SnF06w6RcqzEQt1yWSryEzKYbcdpPNzMkuFtC0gCktWa0MU\nTWeomwwFG2UxRe4HCPMZrhgy0wxi/TaIC0aGTElJokkL5raLN4ogpEOSWOjZNFY4I3SWuMcW6aWP\nPRPRHQNZtF/utWWJeWbJQDJY6KAOPAIzxPJbmL7L0k1jT2W0aZG4HmWiJuhZBZazElpJRkn7LCI6\nlqEw4JShUWW1eYphh5iKQivycuqBJ2+TsmDdVqnYQ14ETTpOkdiiwHl7xGKsI1/Tqe6k8ARQRmeU\nTzT25DjFoz7BI5dl02WuW6jDIakvj1DrCtY8SlOvIxZ2uTfsoCsONSOHEJTwzuuk05dJZ1aJZuMs\nFyHxwKc77iBY4CgDFiOBWTxE2lyyoyrUrRUmtRyzxJhze4rwZQNVtTCnI5KbDiEj4uUU1mTCo3iC\nbn1CtrTCxR2D1pnDVLJIrzUohWmm+CTXUxh+lqApkihpLPIVAFZmNWbLBv7tMaF/QjoSxYkuSbai\nXFvLY58MOV00uPskwcNojeIgQ2OtSen6Jk8zIa+d3mYqDak8nRJYWVZOFxRTEvuRA0QiCOKEcrrA\n4rDO6rUowRpsnl1E+l6SflFl99BkulFhdX9M7qhA57zEoX/OxxOfStrkZmnEVKsScS2kLzT0nk83\nZ8D5BO9mFydlcXX2GifJe/QSlzg8qLHMJigu27Sdfc5XDVLFDXpzk0kjQ+1JwIp5RnBmIzbHlFyP\n3lwjIgT/JIryK0+iBEHEmURY9X368zlyv40qV7n/4Q8ICzXe/7PvIm+v0TozMb0xfbODULrOwspx\n0jrk2lsX8Q/2sYo+UqJCp26zcymH+3kPv+CyJq2y9+U9ysIYeW6xfd1jM3kVZ9lFKK+S7I8Z1frE\nW1GMyBk717aJ+mMm6oJuNE/oRaFU5qDzhLroI67F0YUCF2+9zU//zX8ge+cad+/ewvz4F8iGQh0B\nrxbgR4pkb6/x/kd/SdnIkRJXsLarPPzefS6+8vt0f3zERTXNypZNoI8QjZefKnMyIr1Z4/4/PEW4\nkeX0bx8wz+RIRX3mjz9lTcvRE19gp5II5SHbV1Ue/+RHDCSPzdfe4fnf3qNQWiOfXuVktuTim+/w\nvf/lP7Dym7dY11SeTSZ4URt/6jLudvEjPpMVj6edfbrNCDulIsniBZoDk9Vcjv2zh6yXNvjpn35M\n5Ooun/7tz4i/+jW2okVKcZe9Ryek5hVu3yySkDqsFeOcfDjk7m9tcv6Ln3P1zV/j/LNjhDtX2PuL\nf2BVyBDqMs6sx9tf2+Dpsx5vv/omkWP1kZQAACAASURBVIWJXxa59/0HrBauISzGL/GYiThhlNbf\n3eO1/+n3Of2bn1HSL0BaQY5qVJU5zfmQDz78kNSVi/jxPLlklvbDQ26/fYX2dMj53OHu218jfu01\njg/BjjWpbKVRlyq5G2nUbYut3U1u/tF3GNw7oroh0nE9uoctKpltEoZC62RMuVijFpVZLe+iJ2Ps\nlNcwA5fTkxlqYFKO5pHe2aRcN/j1X3+L8s4rLB4cMkoviLsSStzjo798Tu3K17n/iybLgwEffnCP\n+O/cYTgxOPib90lUUsSCKC27y/57HxBL2XhzCbHzVSL18e1z7t0Q2VnOON8Y01Qz5LNdDNmkXDjG\nVCMopR6nqzb+xudMdYfLP7tGsbXkkndINGoyKgzQhQl2b5WdhzUqH6zh1TfJDrKsDD2C9QHpsxKz\n3Bzx5hPWH2rk9GN6Z7tEnm6hPdjg8iSkd71N+7XnpKQB7usPOc+7nCV9XqQNmtcanGw0GJW6pKtH\nDCgy/vaPaFtxqh9fYrbbpPeNA+yrJ5xmYE/MIn3rXQbrA37+VpuhnSedHxI9LbL+aY34wUWckcxI\nkkmMvwqXjMdD0vMJ82kGt1tBDQMWSw1Vm5HsWRTVCZJq0hpPWIRpcs0UaTlAoEpWT+E3p0Tyc4ys\nhzPxSSkOurZNfCChugFzyUeKCBjCBpGuhHTu4wceQs/DWpVIxEX8pc+J7bJcDBHQGVlp9HiKhB8g\npRJ0ok0iaQm5vIJl9cjHNZaKxDI+JWybzPUctG1mORtJ9XHDJXI5xyAc4ZkZBl4PsdsmJ0cZtQeo\n8gJVFwmGBsO8DGdf5UQtNBHxeMGsO6MX5IjEEpwKUyK5GOl6jtTYpuQ6SK6GW8kx9zRmoyyuHzKf\nVaGhoZxaGFIcJ1wSFzM4QoGknsfL24wVA0tXsP05YUym74+RhxIZL0QKbEb6mKEb4Gll8kOPSiWK\n7wRk7AR2NEbMqxD4Y8SSSEFNoghRvESPYjyLmo2QnawyD1x0sU1P8Yg3PVxvTDA3Qe4xLZgE0wji\nJEkqrVKdFgmMCp5+gims0Laj4EVIBS8dz7WkRjsxY9CsM+qZmKHLzgWV82GTUirN0D0iPJ/gPD6l\nczgkdfka2ZUs655HsJ7mirHJeLSPdNyk4RVAXSciJ8gHM+JHBab1CbFcjk21iu+HqDmVoBSinnlY\nzT2CuEvc6KM2BdRMkSCXRhlr7CoJxPgmMT/DrFbjUtFD7nuEjwPEkc+gEEUNLyIpBkpdJJgMsT5/\nRNFusZOdUM5KWBmLpmKTKkvkWx6KpKL0ZqSkDotBkQ9PJ4SGS1XV0LzjlwUSkyhv5hg3TZZkOdzq\nk9xME0YX3B96SJeiJK1bPCnYeEmBIDIn1ZrjtAeUggn7v/0Jv3Ve5rywRl9s8fRuGqXjILQM3M4K\nrbU1Wt5TguEd9rogD8q42Ti7t1ooxxaP3pCZZwMEO8t5HNLHUaamivfbIgVJ5Wgocf2FTNscIvxa\nSF1YEM+foJsh6e4VBkONXrlJ+kTnhjaneWvBVnuCIWRRI1eoDZqEUhzVKCBegfJaFa15BTFqEMQ2\nGUtDatUJPv+FPOeFPmiZGV4hC6GHIJbJ3LiCJWSIXVhDvnyJpDtn9uMPmc5GVHZusqOJPP7gb0g0\nazhHC5Z6iRcfH3Hn69eYOBMyly7j5xTmsxZyPEIiXiW3XqF9fA7pMrJYojOV2LpwkdPTKTvZW8xV\nG8kpYS3GzFSd2qUdUrrAUpyQ0zXOmx6JyACr1eb2H/w6x/YxXlQlcC2GXp+5ByPT5cpumQ/++ifM\nHIdXvnadgrpFQk4SxE1ybYdoLMPney/QCxKp9EWknobWy2DNX4ogh4kFpaQMkzY5TSP7+grOyQBX\nidHMKDybd7i8tUJyu4w+FfjyszPe/p//gNh4hpYeoGyoGJ7CwQf3qN64RSSZxKmWWJFqtFsmmemC\nV79zjaendbav3aX7vEfBSBE1TTbXqux/+DOUikI1bdAOdSKLJTHLYHkxye3redTOEZf1MmPTwexL\nhLEZU92jPrDRNqIcNhpkKj7mYMb4YEha2qJx2iNanzFaSeCU1tj/fz6lWk2x/94Trv3Jbe7/+IfE\nKz7nnzzmG3/yO1jqgIj8cqCqo4jM1kzMyYzlcw+lonFy+BOClSrN508Jdi6yOkvxm9/5Zxw8/pzW\nT76k2T3A2Nri2eE57eMnxKwNBlOfWEzhwvU8RlhipVij7kxZvbbFs0dtEtU81rNjIgkde+ESDCIE\n2ozLq2WCqEUqW6b54TMi27ukL2hsrGSYDacM22O2rl/g0eMDRkkZt35O6p0UHz0+I0jVMMoicWeB\nP5yTulHBSTXQFn2kwgIvqbNxKUf3ozaVzYtk7YDzjok1NDl+Xkfp6eRq13AiWVznK+Fw/lmW69Mu\noj2nonZxt055tDXG2jzCf3oVBJn1H19ic2Kxelzm+ntFDnIJCicJbCuPk3bRBYv03jZK9hzx0jOE\n8jnF/S1iT8qYP/o28dIj9i/3MJ0kvrnk7FqXYVIltCcEiTm5EB7rAamjMrFxjvu3RjinadRJhsO1\nkMiNU5ZmnPG1BqsPKzzKZjFGMtpZCfHSc8SjHPEPvoX/yesoWoPTi3NGdz/GmkTZu/ucyFxEc3Qc\nP8PzFR8XESlwqQoOS23Bqf5VF+nZFqM1H7/Xp28uSOsyywp4wwkIFcR5CmkaIzUxMQWX3nKBT4gi\nzQh7Lp1YyHC8xF/0SMZkGl6AGztCmiVw8gsisoZXjuE7JmF8zNA5RCs4OMKQyIsewzCO3z0jKYao\nSoqO7uK4XRj1ODm0QITKmU5k1MUOJ+hyBTFqIbcF0n6NheKjto7BnpOYaKheibERQTCjFCY1ZN1l\n0o/iFRUcYcgiLdPGYSWukVxTCaMj3PJXN1GJ7gwnkiEaE9FskV5UoaamkOYaw2yftm5TxyS5Nsds\nRkl3G6hpCzEewcKkQR0pk6PUDTClBEJhiKmMcWcOqisQS2uwNNEHMuNuG70qocg2ptSns8ziGyJJ\n06Mwa2HndCR3hC/MkIsOcWtKbzAHK4sSTgn6Q4TihEInSW8yw40PmWbnJKJR2kKSnJhgtD1nImSx\njQJBJI5o2UxiHgm5TSdhYua6GNoQOZZhYPtkJQtjFBAzBgDUvWdcLG2QvF5CNzMo0wJNS+Jq7QKm\n3Wfh6YyjLqxUSYQtTh836Den2BjYB3WcNVDTJfL5FEbOYhpZMBAPyW6nkOMZwkKblYXIU+cYLRaj\nVT9DWZYIt8e4pXV8U2U6ydJPVtEkmfnpKZOywYF4hG7B6f06Sb/NWfeEiR+wlCRq2RJWT2J/MUeS\nOjxZxNjY3WKxliX0RFqeiTyUiM5C/KmALugcVTK0TnIsJlMGgcfFUEScnPFY7xCkJMyWCoCt9+na\nHhvmK2RPi8RnSR7F94lsRRBGl7n9oyofpk1uGFvcbe7zmTGgEyxRDAHtIMqF4Tfpjl2O1SH56Bqv\nWA7zqUe2XEC1Dik8f4g0vMR6N8HK3OTTrZDg/jO+OHaZveGS749oZrqENQFfnHJ4fZ/1eYrEdEj7\n3OPF5SFPrg24kM5x9pmLES2Q+iKHK+f5LDwjI8ZRZgqDxBUCp8y1VofDaobk5jn5gcVhfBv700PO\nUx7mcs6kc4pfX3BkLmhkHuHlXZR9BUFW/0kc5VeeRPlewFSsMDqrI27G2L6hcnz4FIQ+kcdtatUa\nrY+bOJc3yZd28I+fM3ePuJh9ndb8gJ/v/ZTkqzqSP2f6eEQxVeTx33yAVZ9QXrtOfDtDKSlQvnmH\nVu8Jr95+lfH0F2xslvn0f3+PN//lVVo//ge0fI6N25c4+OxThJqJ1p/g+j20eIVlKHLljQovTmds\n72b4+Z/9HWor4O63/xXHx89RbJX9cZcb3/k68TWPxCxBcW0V8WhJaiPPwdEprcgcdSODWy2xci2L\nGc4ZRsZ8Vt/D2z5H+k8aj7EQkOhnEHJpVq/c5Mmjhyh3EqTFCOmNNPbZI6aqQcztMvQX3Lmww+kv\n7mFLNlQv4BprLCdjilKWnUKaF+99yM3yNk9nTRb1ZxRv3eTk8RnVmIRvDVlfifHk/hOqF2ukSgnk\nIE711OTBB++yVruEXE5yHmmwfvUCriwhv/E6H/zo7/j8pIMRuMQurTI476Ftixx94rFcytRqr/PF\np/sUL6/h7p2gFdKMzs658Zu3qKWjiIsB/b0zBkkH990veO2//U2ef3HG5poP8pxJX6DnvOwSIokM\nmUGGG//1m3zywx+hxVKkJjWquTR337mOd9jgrPkFn396wO3dN/FXS/Qe9/HCgNqGguE4MGvSaT4k\nufAZnyy5+fZrdPZPyNytwfGEhKEy/PhdnGiElbfWOTpucfudbZ5/3Gbqz9jft0gUo/SWJp3DJ+z9\n5BPuffIZse0F855HtmYjay5F06Bx7wRxJqMd9YiNjmkJKQqr29x/9pThKOSb3/w2P/jz7xGLb3Cl\nfIP+owZGSqaUThCr1UgvI9iyidOoE7Fd5FSblWqeXPIrC7tw4QTLT1CPFwh66yjpAYbm4Igew1oD\n9AXnuyd4B5fQZksMCXasBp+lyuz96w9p5ERqj6q0ZlvY6T7nVo5OosRS9Dlfd3EuntJfrpG/lyMz\nDKF7nebVDlMrT7hj4zd2MRWbK7MB7fwCnQnFVho14eHl6lxajLECByVuUXv3KtFGnsrUo6AuGNe6\n+I1NohL4apOVwqc8Mi5Saohc+8UupY8uU/nu18ndu0GuAXuGRFE7pfPOfXITE1u1SW7sQ3z8Szz6\nmohjywS+hFqc06NIwoxgdbO49hJhHBDGJoz9NHNpTCwhEstEMfUs9VCluPTw0xJaMoE/XmAt2mgT\nEUEPmZkBHgFiV0RIGFTcDdRqjmkoIZZqqBuQDDtIchm7E0FhSS6I40gxxJJKvOwhzwTcfJJYdoVk\n1ECYy4yQiGsZWv6Avj9mbIl0kjGiWhsrGFL2dEb9Ae3UmL7VRdGjhJ6L68YQ/ThGS+fkbIrQm+M1\nNKLRr0ilH4sQzQcUzARpw6E4swkmI44WTSLpBLIzIVCjmK082dgCv+qz1GPIcwNf9khVa9h2h4Fm\nEVM0+mSIJZOofh0lSDLXeojJDIIeI21kmIoquCq56BxNH5IZ+7TzMaapKkvBp7mIMZu6TJdj3JSL\noHmIoxaml2aKgjBTqDsuWd0n2VEZBSZKf4AuSMw8iZofJ932sUWXFbGHOjfJzupIbZ0SCkvfwAcS\nM5/8ukmzaDEvDOjEXh5/2kGO0UCmeagRW8tyIeszaHYg72AaGoLnooojJu05+bvrvHYzSyLTIVty\nGF9MU/fa5Byfs6bIxE2gxU1KwhUeBA4jaUSkX6IXnXFBqhCkQ/TmlIV5yP7SJj46pR0dEwn7XJaT\ntB/3UVQf9dBi1vHRZRMxJ9Psa2jlGJu5HKmVBb2Mi6prrK+rCEGSdGrEs7NzdKuAWI1xPZNh6bg4\nLZPEUiIf5Ch8eoacGeNdypIxFc7TfXLbq8TNIme9FnrqJWlwdQE31cbu7REZw0g759VnOuPPQ76W\nOOb+3WN2UxIPXrxgOr3CVkYhe1alMBgz9CzE4hPOtm2C1yZgTnjmBMhbAkvLJlPeZhKPM7szYXAj\nYDYPedMPOEkJyK/FuX6o4CZ1fv2zJR9fGlHMBtyU0pgli8jnWQLf4OaTTWLtQxofBjz9oxasPOAo\ndJF2JOLji2w+bjJuD9huDVi0J/QHYyJbBtEfbdGIxbCEI2ZvGlz+foyd+wbnr6zhRjU2TJVbyxpX\nHgXcV22E4CtJwH9u/cqTqCCA9Y0i7cMItbrIzJUxxxPssw6RlSHatE5P6JNrRth8pUSilEfOvcpI\nGFPLbaI5CczejN3/7r/hqbzPSlEllwyYFjUW7QbHH52grN/i43/3N3hbeT767gP2H83xYyJyZUYs\nHqVw9QqpM4En7/2Eq+98jeQwzUKJE7MLqCMPRwlYznMocoaBJjNfTjGLMo7dQZIUIlqRysY2Sa3C\n/rttwryAO50xaTUprhVJ1yS6D6d4FRdzojDoLXGPI3QGp+y+WsWZK5TCJADaCwkh5VNJbbBsv6Dx\naZc3ars8e9ZD7oFavoM1WXL//pJc6XWe2EOily/jTIsIpoB60sBezZPbqfLJu/9IbCVJ86MH3LxR\npiXKBKtJFnttirdv8+D5Y4YJCUks4MezvPj5J6zXdonlCtjjMdlLEZzDMalUkeWTAw4+7pBITgkx\nuX73NZanYGgySWLsP5lw548vcmPlMu5ZnWxEZRHrIMlLtIlItFojNfYxD/po72zT752RW6vQMlb5\n+L3P0HM5RHWVF/94QqwcJTV7WeBuL2AwsbHUJHZNQd6s0vWazD7uslq5w85vX2DcjHB+fMqh0yVq\nHhNNZpHGz8lsXMIvbXLjX/8ui57Hez/+PvE7Go8+/5gPf/glETPJ4aMT1FbI1jtvcPz4CHWRoZQu\nEXqQrGr0zk9ZkTymXzhkCmtklj63X/826iWZiRkQuBEe/6JFkIrjXM2gGCoLe87JooGop6jlfb74\n0+9SzZYQTus8PxwTlGLMgzZj/QW2LrL3g59wcP891r51gfd/+kOkWZeVq7e49fU3+WzvmGAyBOer\nm4bp9hJ1lMFP2JSHS5b1VSS1x9r//W0s0vRv7jFwS/jJKF05TjfM4Y/z1OZt1g9WiDy5w/3XZmRS\nxxyUJ4wUla3ODP9Sg8GFc7Juh7jfp787JpYZsLGvUP75DvakgDxTicYX+MkuD782Z+cgzmlmieYP\nSNTjpCWZF9cGmK0rqCzQbrzPLCmwsy+zJ2hc+9ErqNVT7NUDMtEhk8Nr5M90tHGEsVUlUEOcgk3C\nmLEQQ26/EGnpOoVemtHlPofzLQ7jCYK0+Us8lIhCap4ifiFFLnQx230EbUqpNCQim9j5EQvyrGzG\nULwigi5xPBujT/rU1CX9WoXcfAXJmTGZyqzaW5DVaIxOiBcqBDGRbmCRbs2JSDqqa+OOHZJjB89K\nMXITIM/R9QjWWMFdzMh5Bv1ZhKRnM0j3MUshw6NDOvU2YfIYZz6nbnjYU4WasYIXDXC6IxxvFcXM\nMdAWiJKEMbGQtRjlXEhKyzIRx2g+eKszSgUVQRbIRCTs5uCXeBjWFDWmc2JbtCWYLE18zaMgpxDO\ndOhKVPwkrlSnq/qYXgE6Km7Co2qGeKM6WiARijkG4zneMMCOdDFjq4yFgMhREX+skci2kdQJ8ZMo\nYbSL5K4yPvYQpQxxM8Ii6FA5nlN1YogrAou0h76IEbND9EySQmSMq6ooI49cMk1DUVCjFlKg4lQj\nLKwBhrokdKFb1MibfVyzQpCNYkhptMgMwUmy6E/Rz1WCREhoZygOssgjn6D1MmxTzfrU4jHCnElz\n3qA3iXDJndAfqRTmaVS3yGyYJppNYQ8ifP6khRfLYHoypW6fyX4M0mmUapo1I4rVGTJYPuKSO4Vk\ng6SuEMzT7Gsvbfm56Cr65QL5A5vixQqpXhNzHeYph1DpU1HWKVxSuVm9TlEoomzE0aYyagTq+QlW\nUmMj7hC4ClM3QuN4iFpJIaUFEv0XeC80vujosFmgZZ8hCAanqot89QLOzESMipyEEWx7jO25VDtj\ntqY57NTLdEn/PMVKN048dptUe8Ast4NkVPF/Y8RZb8aNp0nChx2G/5WJaY4ZHETQ1ZDe0Ma6Gkfv\nJ9GPJYIvOrg5g52OzhdGkmRPIjS6RLIpNn88Y/P8mKerGe4PY7yhXiJzT2ccz7H3cYyjaIp/7sn0\nGjrWwxUGMZW0WMfXI0SmfYraDk5R5dXZBttfZonoA1JMuR4c06jESKlRntzq4Zsmg+Vd4l+cUjcW\njHIel9w+63KEbMqnW/MZDs4pbrsktjS8moQT5knnfAJB+CdxlF95EiVLEfx7h1z+vTf4+fNP0M+G\nLIegXVghNakhhkUymzVa0gLmAWduFC3qUe/1mMQjJOMSJd8gXHbIS1Fmvoc3SlLIGzz9+JCh6yA8\nP8VNqYy/POfa11fQBR855jEwEjQ6A0Y5k1Yx4HDvnFlRo7ya4MlfvEtcr7BM6bQePSMm6shRk/S4\nQJhUUToDIpdWmUtZTp4+xEmp1J+dko/n0NUlY3/A5w8aRHoC+s4OietJPv3377NWm9G9f5/IahEl\ntcFkT0GX11nEX1q2RSmFXIrR9wZY0QKFnRgHv3hMaj1BPxiQeD1CceRTviwQSi8odxa0f/glKc1i\nWj+g0e0iVmUeH33KK1feoJYx2H1zg2c/O6bUdlnXPIxoBLtxxqQ15vWv3yGum4x6DuqOgT0747PP\nHuBev0Rr7DLz+izbfYyVKudPT0ns3CEtpihuGZgXHfrLCJV/fo3y1ipPvvslDw/rJDcEwtYYM1Yj\neU1lr9NFbjZwYiuMIzaq5dF3o0hNmd3tNP3OEeJ6lZP6Y7q5FrvXr+HwMgdoUhwR6EOe/m//keLN\nbernX7CcuYw7Qz548C4Hn/YprxVJKDapyYjGqcivvfIm3Wdzxp8PiQcBh598wfrdi9Qu7TD+2ZQr\nv/NrJNwlr72V4eqr6xyNx5w+qpNO5sit53GNJa6oMPRtUkaSLx8fsXt9lYLhsf72N/jZX/41W+om\no/OQO2sXEaUpq0KaguugS2OKXOCt9UssZ/sk8gVqr+9Qe/MyiXgeQovX7r7KqrOOkTAovrXD+tu7\ntKdtohmVarTAs+c+/eNH3P/s71ktX6AVUVkM/3/uq6dFVNen0olRGCqcViysSYKTHZONpwbVv/gW\nd8+7zDceExulSXhdVIYcJSrMamdkjCOYGCyvNUn6UeL9kAcrMdzIkuzxCt68xryzQ2nhMSwEtH/j\nU2LrT0hnDlBGGvuv7nOS0imGfcJhklvf3yH7okx0GWDu7hGZhSx2Dih/vI4H6K7Hh1ckyvqICS7r\nH2zxNFOg37xGYemROckTHaaI3/iEcLPORvwBh9fOyK0/wdICCocpuqFG6kykNktTeqozK/Z+iYcx\ncxA2oigvFjR6JmU1wOzomCSI6GmW6LhHJqNOSAGXWWdKubqFpMQ5b8ksBha9xIyRLCLaCzrRPiNL\nQNHXmBztIz5bkNLLDL0lvUWdsVRGJkY/HTIVpogxjbyXZlw9R4gH9FSXftRDj0RwbQFRklFNi9hW\nGi2XxWmU8JMCORkKzph2e05Kj7NRWEXqOpirTapqDD2fwgwVZNMiHIM6dckvU4i08YQs82QZOW7Q\nl0LcxFcHghhVEY5alKUZWA5T2UWQLJSIjqr2SdV0XNPGs8qk7CWaNiJVGSM1DDquTsxYYRzxSSUD\nKuKYnBCgD3WGkwjReUBWXyBwitlMMWz6yIqJFBNZGH0irgxxF3mhIvcreFEdL9onEwSoQQlXHrGU\nM4y9LNMRyOESOZ9iER1TtdrM53EyrQh26JMU4gynFuOpT2TqoGbiDJUu9DNMUgGHkkF0PCaRyOCG\nMcamjag1mPpjvEySSOYlJsGwy1kaSs0Oy3nAvDcjzCWYtA9xrRPW4iZG0UffP6EjhVS3tjixIzAP\ncbs+1E6ZDx3iZ+cc3BvgrV0gMUkxnJos7S3SxBByCuF8hNh1yJQKBIMp8/UYz590oHSXvFBEDQwu\nb6jsJ86YBxafzfc5iXlsjnTM7JSEmyLztIPUSDEx80z0FuPeU+7e3KT6YEEqFuM0GqN8Jc22OoQz\nh3yxTDCeIfcsRIromyX6ywTrmXXKMRWnM6YdS9OQ53hfvLytVHMnnJUPGe4+Yj9pUxzJjPQxm+/t\nMFtsYSoz5FAiOt9lmZhSK4q8v15n51oePslRPwHeFqhwg+HsEfdu2lxpxHgSn/Os5JNenDJORmHc\npJgfsL3b4HHvczrpCH6ny+qtAaEUx7kX4qlDsuoeZX/E8kIGrxbjuZ8n+sIkvyIwa5sMtCTCukiq\nL9GohzxSitirJarHCpMLl0k50stJB1aX3cmMqF3jwTCOlRwiLsdE9QKzvMFTJU10kOQ0myW7aCAL\n/4WMfQkjAVZSYPDxB3z97m8Te3UVKTqmsrPF49YBMw7IpnTCQpyf/PufcvlmhvrTPbIrBsIo4Naf\nfIfT2Rmf/vn7rKqv8N3/4//F2/ahp3B9WyVLmedfPmQlYZBdzXL65Jja119jPdxixYgx/AimB1Py\niQXba7vEH/Tp22OcUpTYmwZ2KHBy2MBOyRilVd5/9ye8+i/fIpIv0vnBI7JGlsb5F1zVDKQVl/lo\nSLfjkZRKrGaXTK0DgjOXC0KStBVjWg9YWyuxuZkhO5YQ5lPqDz8m4r10oyUrBR7+1VNu37iCmvIw\n1jJ8dt5ke2udhLqGegxPXjzi2oUdzI5M7MYmHVuhfPsVHj58yMU7uxTLGWJ9ldwlGTUf5f4Hj7n5\n9h28C2Xe++4PmF/dQKwm0WMeX/7p90hsZ+n/7ADzMCCTS5Ipx3ntldskD0yigxjrr10i8sUZV99U\naPziZ1RzBX70v/41d2+/xRYxvvg/38N+0YViGrc7wFxbp3hhjZ1kmS/+/FO237hKtljl2bOPSeYd\ndHOGGB+Te13n+KTNBTmBNhfJG7sU1A2e/ehD5PLLH2BBkEkm1jC0IiuxBGubN3n1f/gmk/QCtZpm\nMHLhikwQC1muJljJzzmcPODSH/8W9b19Pv/0M6ITi8OPHhMqKeZLh4/+7O/IVkIePXF48lGbO2/c\noPekiSvOefL+J1TSlzjZ+5K3f+MdfFUgn8yzdESeHh7i1CAdqTAdWywSc7x0yODUo7H3kCfff5/z\nh12knTiPo0OO7w2ZvThj4MRRJwuCEjhnh0hCBCfRZPpoihJJ8/z+KZGFRzDoo69q+OkxF1+pkE1c\nwGkF4I9JlFK/3DO2rdHLLOhfeMbztEyyXuTS2EOTfeJyn2Tg0Fle5+KnWYxulNHkCr3XWvj/6i+Y\nRDzaK6fc3CtxZqYRieLc2CeZaZMaq/iddc5WPfxyn1FK5Xh9iNqNMfSzeGeXCULILmyCZQH3xQUi\nwzRpZcqTWoxozEI5l5mrKa6eNzXZhgAAIABJREFUeQz9JMa7b+BPJV75RQ5rHmespdA8h5XBGPP6\nKQPJ4DRj09qx6eUC2k6MgV5h9WGBzsFtJpsuowS0dm32dkTGN39K3Cyw9nntl3hMDAVtEuA5LuFC\nwY3kUYoawqjHLLQxhioxdYRnDXFlDyW7xHRdFvM2KzWF9UKC1MGAxCCFm8+TVJak7QVGFVLGGjMh\nysTqsNREQk0i47iIyxkrWgRVknGDc6yciHkoEZgBWj1LSbBxqwnkaBGWBnEpzsCck/MUgloUeynQ\nH85YViu4Wypjc4E7aONuhGjSGv15HTm2JCa4xDMSdjLKLLTBEdCSUJp0EBpjxodLhEkP1/qKRJkr\nEQYJEMwRhZjLomQQzKIsUi5RLckIg57YIyvFWKoiettmdh4jJ1qkvCjaxGecWWFsRvBtMNUonj1j\n3ZsRijbjyYyqaRDKC+LlEnYiRcMuI84KrOoao4hFYPdQqy4Lv087oTI515kftVGFLElrgBYIeFIU\nMa0hKlHmUoreHNQVh5gakGuGICjoRgLfWpCKNpEGCvYyRdSIYS99jGISPysysyTciENxrOBaJcRE\ngGhHcRYvG1P94i6Zp4f4dQf11GLtepJBMoIWrVBKJukvIYgW0NY2EK0ubruDVD+hIzukrqyST+QR\nU1GMXYNLmTGL4yc01n0C28dy5wwVkx07TnIooMTHOMUekWCbrdwGimsTS3p0zzsce8/xmyuoHYPw\n8x46EqleBzMvkgGezPv41hDTXqI+n1CNaOAkuGeZHOfShO0yeS/FnjPmhSIiXdHoTxSaYgdZz3HG\nU9yJh1cf4B6/oDmOcmWljJk5x/VarN18WSMzJYF7foPpRMa/E/Bw9QFrbQ+vUicyPic3qvKituR3\nPh5SdpMo1oK36ga9U5OVWptQe8Fa38W0HcqywUqjzfPMETsXFa620/xcnqKtlGl1LrD6LEerXcN6\nSyEW+RLRspjHQhrXp0TnIdKrFkaqxnghEB+VOGx1uJAscJid016M6Wh78OYpF/c19usdoqtZvt0Y\n0H0skM3k2T4aQd6kVdF5kZzx4w2Fo0SGi1KV6V4Od/MO2lmR+dDDFJ8RtY65cHaINKgQ/NMCy3/1\nSZTvuFhpGyWlMUvadBsOnalNKqew1HSen9hEr62TNJYECZ1otkg2laE7G7Lx1irTRwdk3QLxZR5R\nVXll/TKyalDM9pDSUVxpQPryTXLVK0QGUYoFjeZRh0lVpt/sYxoW9dMWUvIGfj7O3nRKvT4n4xqc\n/tVH5AyTlOhR0Hy24yuk1zRGh31K61eZ7D3jws4q5lKl70QJTiT0yxrCuE0xF2UWS7E/GBIU4MUH\nT9n6w6ukNxOk5Qzm82MW6Sa9vQbXX38bZ2oB0Op0cDIuYyHK2f4BjgmXcrvYE4EiCgvZQCtU6I99\nhl8+pTdqcPn6Kgfv/4Bbv/sGS1fh4b99j9Xv/H/cvdmPJfeV5/eJ9cbd9/3mWpmVlbWv3CmyJUpi\nq9XdGncPZtqwYYwBG373k/8Gv82Lx4AxGBuDsWfa7m63RhK1kiIpksXai1WVlVm558277zdu3NjD\nDyWIQnsw7od+GPgAv4c4sSDwRfx+cc7vnPM9N9j94Da3vzyGa1H6u19x9qxMKrnCZizF6d0nGF6U\n2ve+SVGukFjJUr16jsd3tlk6u0Dz7hOOag5SeoG5XOL+wQmHoxa1ZIJuWGXtTJ6ffvxLFN8m7Vjc\nfOUGihkgh3RSgyntvWPKxSh+bQG5vU0ktkAkCHOm8irP7rXYfOdbDHQFd0PgZNCher1G+5fPCfdh\nYk8Rjl5Wo7XnESZql2Gyy/Mf3aGWjpAVBaLjOdF2mrLis5pPczZxi91f3WXz/T+iU5/SeHhK9Y0N\nXrt+ltr5dWrrZ4nNRmTkFm9/70+ofvPbTPbHhFYSTActxoGJfqxRLMSIjo6JFcq0jh32To4I+wns\n6DFn1tYZ6x2ytRChJZnkMIlVkVh99zxiPMl4bnH1e+8w3T3G+Wifb/zTf8T9h89RtAk9ZOaix9q5\ny0QWCvQfGdSubZDXDEqVPJvrF6g/7OAtRAhmIodTh73uEeaayt79+0y+jtagHC1ibNiU7y/S/taX\nSJWn6E4esQ39SIrZlQdE/TnmrMLorEG68IzjcAqxE2LMMqm0g1HZ5WrdodzyOYzmCO0UcfU0Sr6H\ntPaM1EmFiVng+h2P4p1NrHYJIT0krkuo0TGrmc+IvfIxzWQIYy4ScT2MYQ2/vcm60eSrRY3BRp2g\nckxXiLFfmRExBdZGOtl6itVBmLxpov/pL0jlm0SHcxZ/scHbByby9ip6ROLwj7eYqV2KQ49kd4ij\njih98BrHix2Oi1/zRGXGfTzBQSuFcLI+fhQkRqgaOGOLobPLyAgIlvOMHAdHyuH1VeRSESHSwevJ\neGEFU5IQbYmBnkMzS7iOhZ7sESlF0WYKbghsRWcW6pGaZjl5MkDuhbCGGrLQRz0TQUz1iC7N6XYB\nx6Fp2cRMCXNcJ5dahkAkWu+QFWAxlyHmD8gpUM5aWLKM3/eJNk9xogXEboAbVjB9kbgYxjRkvKBP\na+LSS1nYcgx1PcfimVWKxcrv8FDdKKOihFhcZpCMk5oPaZtphl6Ihjwlo4iUFkLo6gGaaDHQcvhJ\nm1ZlwixlMrDGFAYOwnSMJIcxpSleLkM/FkaQNFTN4DjqE9ZsRl4fj2MkoY+Xa3Ga10kSIC64JEIj\nvOU0asdB91wWxSpNv4fkxWlHLaRZnNmoh+jrZMUmMdWj4yi04j5+PMo8EPC1MCQNJD+HXdFZSyoY\nfp/YwEJTPLqtMcmphRVykESDUWyGNpli2VPk6EvH4+BFC2s1TmseZ+HdIo9vd9BMFyc+pmGcIqck\nZG2COO+xOsnTTrRIXiyijg32D48IHTQQ9R3mnShqUiS6nkLURMx0ilRGxFB0Pt9t4lTihI8SDOo6\n7mDIHX2H8NU8+r2HrC2e4YyZYSj2sIsuwdtRErkZU3/GrNtGjSaR3QJK+TzJQEAPdznojJAHBtWh\nQSokYCRcwqEI6dAA5WSO/ULgQqVNEh9rt47ih8m5LpIt4GZV4vUBrfqE5L5EJmIhmisAyF2H9dAE\nseOS1rKcCy2yFUmRtBYRApVR5pS1Vx2OwlO2xBxzf4HoOMe8E6HdDHN6aRlx7lJKdJkmKgj2kPDG\nlPxuksZgj8X1NLZ2TCTV5eGCRKHeYLgzZia/TuusSL6psaD41L+jkP1ZjgN0qqbIQc7km/sm9+I9\nrhayWOE7iP1bnP/oFXZjLuu9MOPzA/y4RvDKHGUs0TjxSbtPqHGPWO4PKN8bELdCeHt1moUUTMbk\nz/Vw7x9j52I0vSXsuMZjKYoQ/P+l7YsocmF9AzOc5vTTY0Q5xPlMmk//9W1yqoXTqZNJ1HDu7FB6\nZ4XRvUO2RsecP/Mmv/7JhzipgJA658I7F7nzyY+IrpXRFJFxO0Jru4Hq61SuLvPp7j2Sqk03JCIK\ndZofPaYSCchnkly/sML0578gF7bQZAXjdIQwF4hdLrDdOCKfW2E+HGLO6py9fInp8322Pvo/mF86\ngz1vUJhLxIohTh58Qaa8iJMtEuQSyL0hEWGVcm+Av+rj78qEZyFsOWDY6OCHbSZJn5BpMEy8DF9F\ncw7ZqIax3SSX3SDwYyysWTz5+SdYYYeaI5JI5yjkJU5ti3fe+zb7w2e8+f4/4vhXe6yVwqxcOYf0\nfMLRVKPSsThfXKQ1mLLb8iGVQXd7FOQI2WoeKzxkdmxwuLPHPDtF1BxOXjSx2h2ku4ec/eYSoaxB\nbWWVVyp/QrM/pjl4hqSGkIcBmVfWyV+/xcdf/Qh1CTKbZ/n8F7cRomXCsQj59Iz65yfElmOM2gZP\n7z/FVE3iJY3G3S3SoxhO5gKFQMF9O87jJ5+xVD6DGH9JyS+aHqhhVD3O0p9/n5//8Bd8+G8/ZfOb\nN8kWhixeuMDzO0c0HIPS5WWOH26TTSrg7kN6xuf39/C8gCDiEkQC1v7wXUajHZKrCm19n7NLcahW\nuP7qDarnVWw7j3OtQmljE0dssL5U4fmLz9FGBabelKhWYu/FGOXI4PmXn1DIlDk+fczNv/gTjBkI\ncwdZipO5cZ3wskQ8tIwayyOqFgUpxfMXfba3txjGAp49OWWULTE93sLfWEYeR0g1XErJMAsLNaKO\nRGQa8Nr3v8c0Kf9uziyafXIP82iOi99YQDZEnGmEaUXmOBnCMArktGPi5V1CYh9Ldohvl6l+8Bab\nT1xUd4o3m/N4VeDJhsp7T2yUXo7mypB6zMU4voqZqXP2oEt0+ywzUWUsxcBSaW6MSLaKzIwqwv4q\nwso9nr/nwIVjZn6MXMciuZ0idqhxZUfiIFfGfe83ZKIOthpllIRWLMmzcA67u8FsVKB9rotSaEPC\nQx+u4md75Hoaix2LROWQlhJGSAqcO46RMiMstyNc0L8uT27HXCxrji+GyU/zCOqImaAzy8aRZI1p\nOUImIZOVIWEYxGYi4ZDJ5NSmG03ST1uYEYXmuE3YPUYsjtHWZEYNCDsSnNrI3pj4IE5WXmQw1TAq\nBmZKxVccwoKNYPTImynClsekb5JKK4iSjC2dYM3rCF7ASJ/imT2sbIKJ7mGPRQYNGX8W0J1rDEIg\nuiruMIrcmDOeT1GGIulMCD9wyCXjILtkvQRzdQGLFpbfZq7PaFgvfoeH44ZJOSFaco9aL44lxQlh\nkbJ0CoKOd+ox8AUSUhrdk0gIOlEtgyxHmEZlpGgEwxKRbZmWLLAohhEEHU/rIQxN0qmAvJskNFMp\nKDkkI4IuRdHUDKt7MqFtCIwKHStD3kqjZA2qNegXZXKJVYa2x1JURjHrxCM2/iDBtFFgKqVINXWS\naoJWECD3Arz+CYYRJVAG9Kcp7NMTstMwfUVi7E7JBhHiQodEekw/HyNrJjD8FE5apOzUAVCqAm60\nQPJ6mqEZ4pXXy0xDHsEsTjRdobndRh+P6SVLGGWLNU2lORYIghzEHdzULbLpDTZEjU6oSlaLo2xL\nZCSNkCmjdpJEik2i7gwzLyGGCxRKIUp7UfwXh5Bb46Q+whddxmmTM/Eco8MAYzdOaDYi2JshHLjE\nFgeEMCksyMQjUS6sxgiLSWKWB6kwWVdllOlhbiusxM8zTPg0juaMJQkjF6Y2kbDjE5SLAcnSEq1r\nFfrVJLGMSmO6xI7xMicqUYtjBRqR/gqFL038v/Qxzn7F4+k+/pURpyst9owcdqdEKd/F9hS+uqRQ\n9sYo5wzOHSWI7CwwPTUYnu9RO8gyPJBfro/ueUqfVVG/9Hj0aobLO0cMvSh+xaOmGiRKAolelMnf\nDFh7sMILrY1RzbE7l1l9mKBTm3PeKbLz3CHHMrUljc+kU3ItG+myTX47yoNUgyRDwnKYijzlFxcF\nUrpAlAmHl6KUA59RuUPV6jPKW+jPPMJ/5hO5l8KiidCUETjBkb7OM/2PyX/yRpQsqFiDCW5jm7Xa\nOrnFJG3HJB1PMhF1lm9swMkLovk8C84azU8esxiPEq8MuLBSxOy7uNcvcdTqcPXtd/GNFnd+tUWk\nLHB16VvMMiWO649IRwIeNBzipEi6CTrOMZGVBYy+gaHFmaoZSjdTDB895NrVt5m2TiiJFTYXzqDg\n07nd5jRqEYlDNJmjFD3Dhe/eZP/ufeRrFaQnU+KZJNP2jMuvXuXFT++z9qdvQuSIzx7vkT+/hDGz\n0EtZ+lad0vdfQ6gvUM0oPJm2CCY9ABKuymi3TvFahq3ffMbK5ib3fn3M1R+8jZlK0MdhevCUz7/a\n5+prt/j1z37IUuVNfvp/f0Tt5k0euQLTvoVcVjD0Y3rlFdJejvqdPtV8kc4XDxntDCldSmKLOvN9\nMOMT7LRFNX6L3tBjZa2IdqGMcUFhZ+chgS8TLWf47Fefc+7KeVxbQfShWFY5/PKE/Uf7bNYusRJZ\nxXl6wsVvvM7i2TP89b/6NeXLr6DeuMXde4+QyiLJ5RTf/sEfcfDBfa6sX2Hy4JjX/2SB0/091lWJ\njTevcto0GFovOV4yvk/yREL2JcLSISnBwNUlwvE0Tz48Ii5biKUqRn2bS+deYfJ0m2ef9ZGcBXLl\nKu/9k/eZW312Pv8Ivx6w98MnVGtn6X3xgjf+8F1iSoheo8UgCBi2JhyefElcjxBZgZM7W2yPR0TV\nELuTBpP2lMN/v0vhzRW0YhGtlOfDf/1XXHjv+/zsf/5bKq+vMAhE8peWGTx9xM5P77L42hKpsMbO\nrz5l79EhpasRKtpZZm2P6eFztj74GJMFKqkih4eHFG9dpdmW8Y5N0u8sc/jVFjNBoyh/bTQcqjWC\n3UUO4jXWOxb6xhA7FGIWMZm8eRs/0+XOHx3Svn6Ef/0rTr7xjAsdi4kokdKjBKMsjM4RfVHg7GmX\njh1nUpyjtSKsPclQ0LaxchbzxTaDYpqp6vJqw6J46pLZKlL9+Tq1X52j1z1HpR8wSZ6Q19sIXpiD\nt9rIW1epPFhlSyiRrGcojWS6Z9qk5nP237nNUUwjLU9g6ZDy0zzrHy1wcHnM8Y1t9jds1g99lKlC\n/OEKmTurXN0qQj3BXK/SvnTAMVkaoa/xEASZ2CTCROzghQXmYxlzFqCE8wiZOIlTBzVXpunrSNEa\n3fYUaezgBTOEqYOmGmiOjBroSOUYcrTISAdLbyPqSTJlGTsWRS4OiMZM8raP7VhovkQomiZiJ+iJ\nRcZOj/E0jqjPGSUsoo5MMVZFr5xlmpTISTBbiSJPJ5TiWVpznWTCpXE0RU7bZEtpphGYLKggijgG\nKCGZ/T2f5nEdNA3dL2CGIGsFRMcO010XbzQhcL7uA+b2TBLNFNlOiGa8T1ZSUDSf8WyK2EnT8B20\nI4Fjd0ZcscCo4OoHxA6m2P0mw1iXXGJMP+yQ0AO6szH9WZSQoxB4c4RZGr84whNl1IaHXnBZmYl0\nzAndmo8RjxPIOjFP5KTTQRAWcR0Laegg2TblxBh/oDBXS9gzGwozEl6dsAyJrEl04FEU5rgrLmZm\nhXReoYVA0rdopVYgqRGXbSzVRlFSHK/mCawz1LwZot0njUVVyNEbvKQFGYgCbjBDfn7EccPgeS9K\nNciS93X0mcXMjpKeBQTWIRN7TGe0zmopj+O1Ue0ao3Aba8/kdrpHzg44nfSREy6nJx61qcvQHCGo\nKsVSkUomiWAIHI50yJjk1m8xC7qEN2SOBl3O+cuITYOx7jFX0uRS57ELVcY1E22i0ptanG51iEQU\ntvthVFPH1Syaz/aZNJ4Rt+fEi1V2o49JGy+YlRPEYjWWwidMgjSedp7O3VM6Dx6Qbjc4nwRzMCQp\nzai5cwB6E4nHizrx9GN2L+uc/OE+QeQiq2KJfnTGinyBmz8dMI6nSEwFJvMWJbfIvXgWZatK/Kt9\nHuQf4byxhNZeppONs1jUmSRHxAcqmuxwJllCkZqcJmbUEksY1Qzz/SnLW8uI/pjMhfMcTbbIXb3A\nIHFM4bpBTG7SnLZoVbpkYwpqLIP2+AnRPRFnVSUY5LCfz4g5Emp3wpeJJ4ixEP/MzvBsvMFe/ZTv\ntGFy0uUVY5V+36Sgdrk4yhP/LIojHXLvB6vEtWMab6oowteO6X9M/pM3ogTF5eTEQxLTSG/l2Lr/\nlPhEZPNP3yE2tKF0hsG+zeqFG5jdz8hcqqIqS9z7qxHJm1eYPurQ/GIfa2SzUo3w8MUDQukJmeXL\nnDbvI40GrJ29RGQ2Za2kkXYDrF6auF3keG9ORhRI9mAUSCBX0HMhsrdkzIhGY+ay+d7rNEICdckn\nqkNejCEqKiwY7P3NvyNXfoN31s7RiU1JxxX2Hg+RLJFzNxZ48MFfsrF4i1gXrl25gW28zIOJBXl2\n//3n+Gf6NKdttFISii/LT/eDEWe//y1Of/KY3GKW/hePcJdEfM+m0J9w9Jvb+LkFBDvOyqUUWjuF\n2TyhejnPJ3/zMZvnysSyFi9uP+LyH/+AW5eq/OzOR7z9ZzdwBJ388iKhZZnTRwqJUJFpaMTouck3\nXn2VoPMJclrFsma4ByeExRql1BKP/pe/QtYEyMYZHQhImkj1zUVi7jKj0x3cWRej2UfLZ0ltVOjs\nviCsDXnnu+v8+p//r8RVaB+ccuHNq5y+aLL3yRPWL62xc/vHvPH++xz+5CmqusLTT+u4ozmx0BAv\n8vKnYAgek2DCXDIJeg5qYgN73MGSBNzsAqPOEKE9IqWF6DTqyFcylJdUng4+5+CDbcynHQrna6yF\nLpB89yLbvRa9F21cIcTpL+9j+AryfMbJpw/Z/M413HmOwccPmT8+wi9qyE91jEKCm2vXicgW528u\nEe93IO6z9upZStEEzoMdlt/aZG/nGU5MR3e7DPCY9HUCvYtYyIJiUVqKMWo2SVUVYpWAciHPrH5E\n9mKOh7/4Anl5AanR4PxbrzB0R1TNFGavg+OdoMS/7hX3qnFIzp+RiLZQH99i5VmI1hv3CZb2Udtp\nRs9vou3UiD45z2R7jeFgmVY8REXpcRjLM9u/yEQIk24kie5uEkpMKB6oZGwHplEG3UVC0zjTZR05\n3UAQJYyBwixvcBpIRBQRN+4Tjh3xvBClcj9PX8yQrR6jhx145StS4RG1sM76XhTtV2+hpdp8+id7\nxCyN4bsPsC49pReWKdoKXgAX//IymTsXWJz26SZUjFe26bz6jHFZ4Dd/vMvFgxTTW4fUiyZx2cVf\nHf4ODz+s0mGOoy5hRgQy8zGrmTTjkwMCTyKiRBlKJqHBkFBCoBj3MLNzigsRnAMR53SIM++hbpQY\nqiFSMxVrKBAp5wnLDm21jyJYKP08Y9um5zvk0jWStRwDYw89qpD1fHw/Qiw2xi+nEQ5GKLqFYFvI\nvoHRkHhx4JOYxJEFi7oHITfEIDYnnpWIjGNEjxUE08JoTfDFOOUzC6SiLgnHo7Cg0ZAdlHSImK8x\naR3RS5aIn0nTDoakvMLv8HDjJ0wZMMzIhJthZsGUgpAg483pR+aE6CGVcywkIeHUOJUHKGqecSrF\nolojYSkMonFqUgY9kiI5SRILDxmHTSZqDkuZMldEuiWV2ayDNVVxFro4fh57NmWaEPH7Pp6joYUE\njMBgKJbxF0focpsjReRQOqCw4FAMVwimoCdF/GGCoG5iuja9dJpCPYyi+ETnsKgryCEZ35jQEw4w\nIgGy4XOKTshIoEpD2saciSsgahWmGMhLL6vz1roDlEdNUldLbC5K5ENzmrMuE1fHPe6zsKGRyq9R\nsCVsaQlLfE79zpBMNiCpiuTsBCcXXWIDkVnMxz00EBywLZtD3aKctNiw8uy2D2nM9onljlmNWSxU\nV9g63CMTKpN81OasVeVFymeYsVmqZlkrOzR1iW66Dr0MidIGkagKiTxRLUzRCBEUk2hiiUDyUDdS\nTAubpBYdyqFllGSF1VSZ8XGX8cCjE/aYjJ5TuLYK0grdURj32Smh1QSJhTmJ4ss1ZKT5VLdDrByV\n8Psawl6Oy7enPC1O+PbtSxzcCdGQlhCtMLGmRpDJwrMBkfk24Zu7SGh0Fl9DaI6p7rks2R7ceYNo\nv0BS9NBLE368vMWyJjAvX0Q1O4T3oyRKMofeC56JOnO/QSMaQ5lNeeOjNaydDGJhSEm/gqoEGPEw\n9T2frdF5Um9GSPtZNDQGIZ+hIBAKBSirAa11hXstk3OhPmlL48vNCXLYwtAn2GurOPslplkDU1zC\ndZd55UHA7jDOdblGIM//XjbK/6cRJQjCvxQEoSMIwpPf0/2PgiA8FwThsSAIfy0IQuq3+mVBEOaC\nIDz87fgXv3fPDUEQvhIEYVcQhH8uCH+/+kEvgMi4QTWT5v7/fpvrN5YxY1EGD+8QT69w+PRzSlfP\nMg1EfPU8IaNFSgkROwOzT5+iKztkboQZT+YYG0vUFi4Q9UtEqzG2TnsMZzMyyTC2Y1BZSPPwo09J\nlsbELpcZTXQ0weTx010Wv7VC3PAIm2lCkTDNucuKmCU6sygaXcIJl6Urr/HwJx+zci1JXr4II4+1\nmxqDXoDlT2lZNa5eEBg/a1FcTSPEshgJiW5OZ+CE6CoB1TezDBMyh22LG9HXSUUvgjUmxkseoOBQ\nYHUpykC0yC9uMojqVEYqpXwW21ZxTY3a9TzVFZs7//IXJL+7gOdNWVsss/ROji//+nNO6lMEEeQs\nPHtxynr5Ikcf32H6833maRHj+ZDD/imqo3Jj4wZmro8c9Rnujcmmw3QafXaHAmeCPEZ3wPraK+w9\n+jVvXctzePiEjdItJjOf5/WHeCEFJRElv77EF/f+Pe24g6wVsdtRPvvZbfJLJZaupcivlBjcbVOL\nR9hv7OMWVnFXavz4p/+GC2/dYH6wj3o2ydrr1wmZCtlQEwAnHQIlwcr6ecbHKpXFAkkhRq/VJ1Hy\niC4sMB/VMUwdpTOjHM+TkSOsL5/D6MyxFl2e3N2jZ06p//Rvub60zJF+jLhSptMR+M1Hn1DRFqgk\nEtz/0UcsaQbJb13C6Uukp3MiywoctTG8gHj8HGI4x5cffsXnP3pKOZIluZ5lu9ulEkuR9iv4szSD\nJ1MWrq2QWl4gevEcx19+QObMuwyetVCOdbqjEclYjuPuhIy6zFK1SjyXw8tJ9ESfYKnD6d3HPHj6\nCe/9yfdwrTzN39t5/sV6gsZmg6eXZozevIvSW6HYE9A8l9zzMnLaQn2xynzzEdY8xfInqwiewNGb\ne1x2n6Of32VQmRJdecFgpUeXZSaXW2TbEon1bSLJFiu7Ljtbr9OLTFCuP2fnv3jA3FEJRwK+eq3N\n3usNaj2PzE6cYmOZ3LMyoYlM9UmZsVugc/0Ju4s2/ZRF3BsR2TnH5q/OY8bmnJm30Imz0jvl5OYT\n5t/4itH5I8ykTbtqYCQDYs0Imz+/TD9QcD2H3ZJI9cNV1psea6Muwyc3fodHYRQi7EDOdMmKJko0\nTFu3iPs5qh7MQxm0Ew07WqW7e8BMdbCCGJYYxZHmZL0QflBF1WWyhx6qdoxTPSGINBmoA+amytj0\n6E7aaLpNRJ3TMtpYhk4ISG8SAAAgAElEQVRkGiKOwOzUQzJ9xvMM0UYItarhcYpuxckNu+StEHGp\nj6sK9EQB9AkxMUxqCvZIRevPGVVs5NCcnCYiOTqCajMLUgxV8yUD+qlB0B5w6LYgvUpqNgV7Skpa\nQO9/zRMVcaroqoI1EUl4BvYgy2Q4IgiW0ewkvp3G6M+Y6kU6EY+gECIkdLFHc2bmDFNMENL7dPUm\nYmgKpRkZI4YYEllVAqbhHDFPIC2M0WspyvhYzQpBpE0iDLY0RZNMRCYE2SiFiEzU6SIeiRgTl6wh\nUJwINOouDg4jyyfVi+BUugTpBWRbo2BFmMgOrtvHFwSUnIczmRJkLMyBQsrKIXsxkBwUwWeuzgkm\nKupUx07oqKKAM37ZHK2vpckslOhM6zQCgZYRwklliNUi5Gou3UBk4j6jmS8yHM6J+UvEVnTCJzPm\nxhS53yTR9DFTAobdp5yPsn4zQXnFYxC0cDSBr0ZDTC/LCWk6Y2icZBn6A+RhFSdkM1oJYS+l8ect\nhqE0k3obz0zC2oT1eQStNsZt99lXJ+B1mNsaCxse8UyG3mxMBIlqKsdCr0fCVhmOAsR8jpHXIR5x\nSMfOsVmOsRlawtn1UEMtrl9aYjcvMUgW2R+anB7/luW/IyElVD4/B4spkTNWnvbKGa6bIvdGfaox\nl+m7HudnDxhmkmjzNruax8qZi/Qm13CKKS7dC0je96n3XvCppJEojXDREFYHTOcTVtvnKX9QJD/r\ns78054ZxhlOvSVfVeLWyQi7hM8oHHFkC6tqMT97YRWqso6lDIs6Uy8dd+u+PSay0mB7vMWlP6Ybq\nLJYt0uF15s1rOCc1BHtCKnaRJ8U20bSP71qEN31uM6Qc2WJ89Slabk6ms09SDjGzJlTLC5R/M0fy\n/uF2ov4V8P7f0f0cuBgEwWVgB/gffu/cXhAEV387/rvf0/9PwH8DrP92/N1n/gdFQMabGNQNk40r\nRQwrTTijcXLXpLK2Rk05w0effERn6HDUa6HFVzh88gUXbywx9OfI+ffwnwzJXMjxyV/9JfFxjOuL\nV3n+m3toC0lcLYs/izGN19h68oK1f/xHjBMByvYOC6UcjxsHrLwZZdkYslXvk1nXeP6rz1i9WWQs\nHjAc2/S0BarZHOGRwqiQQT8Ystdtcf4ff5uPfvlzdo62EFoC5xIiL1qws3Ofz36yTSTQsF4ck56k\nEHuPkUo1siRRhmMWrq1y7/A3WJ1tvEmBiP9y52XtlRU+/Df3ubhykcGPvqR67lUGTDBiKq3hnIvf\nuc70iz7eYEiplMK8+5SFt26y/8U+pZbIpXyO+XGPm//sL2h8tMP4xR6ht7L0lBmxiznUUZTIUoVc\nVka5KXDa73A+eZZf/+U9Nt7/Y/JWlFFT5vs/eI9PvnzAyrU1SufyuHKRvqZi23OSVy2E8YCJZPON\n77yLVErQGp6QmhcJD6LMQ1Oeznd478/+jGS+yva/fcD6NytsP3xO8laZ9OYCdlcnNsqSvXqeX/5f\nP2dkdCimzrP/i884UXQGwcs2Fm7bIWUb7N++Qyy6x8rGMpe++z77Jw1e+/Yt7j67zUJpmbPf/j62\nKpOX1znEY35vn+SVJZovdtmsJCguxaicvUi3otGrt9n6P7+gtOIRVwO6CZ2mPSZeWyZ54yzjepew\nLKBoi2xcu4AUzpFISMTFOfWjY9757/+Cb/xXr3HnxX0O9m0qlTN8/uOPqWxGkNsjKq8usZRaZdqd\nEJtE8WYRxp0GuTNL7HYkivEItptAjQrc+KfXaN55QEJSuHRzlXufHVP/4TZrZy6ysvkW+tzgjBzF\ns78O11yeDcg106w2TOI7RWwvQ+FZhcqPXyPRD5Ev3KWa3yLyaIPY4pDBq6fMX79P+cNXGD2/SO6w\nRuTLNaS9TcLCjFT6gORoRL0GpqUiTxbodK9wra6gBBrTuE7is9cRY2NWph6z2g7E9th/55BaukWz\nOKGz5PJotcvSqYr85Vm2ShKpps8wHRCLygSHK5jxIaG9Fcy9s3TlgPmLt4mclIg/Wyc3jpBsTZjY\ncQ5KJr3zY5784RbyuMJrP13FK7YYLQ3ZWpUYVwxi6tfko8O5RaTs0231UCIBXcVD0wXcxIjThI6c\nURBjc9yTCamNZdxUgaDVx90b4ygis8UUyrKDZw+RKirTbh6tY8NQRLNlcvOASEojuuYxHk6JJLJo\nrkJ2aOEnHEZem3DGJ6/kqOZS2IugugE9x0MZTfHVCqN1DYoaendA1FcQbRiGOwiZKEHFY5CYkesb\nJGchzLmHumBy4rVpz11KpQhOss8oGOIoAYm5R8nsoJaTxLw5iewEo/o1b1YQ9AlKCtGygCmJlKIm\nQUnCFzsoeZGEKyMWXEJTh9y8geiKWP0UyYzPTJGoeAPCtosTVsn1Y3T7GiPRwDBi6FEBuj5aV2F6\nEoPOBEV2GNVcSk6SViSGoCSZhm1kS4NRh5Yn0It6BDmJlCGAIzIqSEjEweiQKIEVS6E1PEy7i1vs\n0bBP8EMay8SwPR1DzCIEBjkExLJGvyJQmAzIpEQmmslMSWKXXOxoCV2PMq4bqNZLIyqVHNOSRoiB\nityVSHhNfH2GIHmMpCQ1KUR1ViUjKiTMGbp9iixn0dU0lqwzShepVRWcPaiIRTSqTHvQ6yZRk2FG\ndoqNlQJXpjlKdhS5sMBcaXMysBA3EkwnIWh2OZo9IyUJSLpOI2xx2mmRO9Z4lhEppPK4T7osmOcQ\nUhMej2dMnST7J/uo4SjRqcrUlHjamXEwOEUenaApp0yMOZ7n8MLtsHU0Z/dwSHQtg6dbWLv7hNoQ\nHY1IRReZZl9+I6FSj3LU5aJXYvLcQu5a7M636eugroY5fHfAjXstjl5dYfDCJEaZi+oMxRtxdrBF\nONFgZqoIQYHQK3G+GzWJP+wQMacM/DSOkCK4NGOgjTGcEJFOlZGiUzBKFEcuxlcSzvEcS+6yHBbY\nOm7x57df44gHvDgnM9hb5cQxudhdp9ZvMb8qkzkZUA42OY3O2aib3Dn/kPWBQ8M2SPd3WZmEcU0B\nr17De+Hy3ijP7GCDo0ia5wqMN1OsFSakT2xyMQev38X1/oF4ooIg+BgY/B3dz4Lgd6nrXwC1/9eN\nvyeCIJSBRBAEXwRBEAD/G/CDv9cbEnCsZrj2Rom7d79i+9GniF2d0BUVKW4xax3w+o3rJJwGm1fz\n7FlHZDdqtKcWoZjLckTE6B3z5PbHvHLhDXKZMKObBRx9SHqQIJcQOd1tU63EUJIJjEfPyOghRqpI\nEGoityaUMrcYuVkKuRyBF4J0lUhyldmhzyilE98fUZAWyRRNaM2hWmPgHCAYM1bSZ4h3bcKrPh8/\n+IASDlJRZ1SQCEWznI7AiAQ09sZU/DlOOCCVKhMeTujvu4xiEMwtZCMKQEOdErse4St/gBDxifkD\nYgmJWb2OYRxjxySGBYlaPM6T0znFlVv0P7xP6uwKw4LAkQPKrYvc+9ufEkUnemEDeeBztnKJB1+2\nOPtake7QRLSLODsBo1/cR1iOU14usN97ztO9ERvvvcaTjx+QOCMSDQW07j6hmBaIBwGTySmJ+DL7\nvzzg3X/y59z96YcohxOS+RSj3nMuLW1w8mWDM6UiRs6grcl0222Wc2ukMhaCUMIOQshliZk4phaU\nwE1Q/MEbBN1nSKkQYSmHo7/0msTAJFSLIqxWMcnR627zdOcuZxMBlj+mWCtxf/spJ/c/QtZ1Hu1/\niNU65cSMsFSMEGrq+KZBIbbI3sNniDsecihDIBtsfO+bzJI5BicDBHOGJ/uEI0XcGczECV63iROZ\n8q3vbXBv9z5DowsJn0jLQt0T8IZJkmcDtJRIWLSYuXNOuo+xOwa+PyZ9bo3mh7fJvb6Esb/N6rkL\nFF4t8csf3kUwDihev4YQuFjhGJ3+Nr3PnlBjRO1amVF3QnPnNkZW4/aXDyjZsd/NmBOvxqlQJJAj\naCYcxQIUQWD4n/2cRjaPcP8Knc4GJ+Y6e2mPqDJh2DvDk5vH2MVj2rbKSqiOIvfp1S8yOV7GVnOo\nfQGrXqN9/inO6gERycKv9Yk9uwyzONMr+5yQYaGhUXZlZEXkN2txSsKEeKZDxIpx5/0jQpUdVh9c\nIKoECNk2D7/zjFnWJtnOETsoY1llwu0M3ZiCdLpCerfIoHGN9vgCzrRM6STLdJTED9voaYfegkvZ\nmWKV2hQ7AqOlQ+Tk3u/wSBUcBlNQVYejfZWQnySQMqAXWbDChFs+USdAi7uIisvcs0gtJ5gmBiwX\nbFzbYjIYI6IyUk0s2cKUfGxTIiPn8MUkfqdEEFSZiVGGgx44HifGhFAg4WdreDK4mT7u9BhhNEYL\nsuDKaItJGp1TEkc6hVkBYTbFtVSSQhh5FsGaeyzYFkGyyFhM0I9qZAsxEnaCpBsiEh4xFyzKZom4\n6zMJdEJ2GjuUx4uOkLQiXggS7eTv8OgLGQq7bYqOSTcy48iNIoddpkGZuNtHkDWcEx0h1ydoZkmP\nbUZFiyCcJuRB24ZTOYkUjzOy6qQSY0aDCFkrgu0LhLQhPXVKPBnDqM5xh2EyukPY1BF9m+RQx1I8\nhJxIKrVIeGSwXgc1FEfLJ5mrMq5URKx5+E6WyZHJOG+gxj2csEYQhJGECsOpTd0MIc3zMBfpx6PY\noRSBBKmZwZFsYbwYEt2bobomGRe08BhTOCafGuPnX27fTlyPQkIl3BxCFuJ2DONUQWrLiPMMnZjH\nYfsAfSawsBjBPpEJRgJSSCQ+jDEMDzl8fkJM1Tk5mFDXZ3QPDyjG67idCInuiMNmg8faiN78lAg9\nfC0LokfCmpKQTlhPvMrC4iWUzpSlaplyLoVR7jE+K1K2Ezz/4DHhVxfotR8xPIyy7IbQzYBaegU3\naxP/9iLsz1lbSFHOy+SFddrDGOdLV7CkKFdLKwS2SZAfE7eOyS6vcRKT8aQ5ggthScRXX3KrpWYh\nnusq7jTJM1lG2IRbCQc3MuTkssGVrTAHRxdY6ntEXtfp2HPqdpcdK85WfJVP03FWVh/SKYTRj3zG\nnTq91TDtG88ozMZ01wtEDsfoks1sJjGd7LG/+oLudYOglGLLh9DQJ6p6ZIphynoWfdzGWrtCqKFy\nznnI3eUYtX6bx/ItLvwwi/d6ldujLWp2gv1uhGvHMeYTm5NqnGhJZFCYE6v0+YODHMnFKB3fZTKb\noLYXOOfncK0Wwn4b5+0W6A7DhTDO3zPZ6R8iJ+q/Bn7ye8crvw3l/VoQhLd/q6sC9d+7pv5b3X9Q\nBEH4bwVBuCsIwt3ZZEowahPKZwhF0lw4v8m9h0/Ipxf49Jcf8c5/+Q6nP3rIJBsmIxZITxWWr1d4\n/O9+xvFXxyh/kOZ4JvP60qv0jnZ4qn9F/4cPMFSf8I0EsmTx5PFXtJ7tsP7693j+4pieqRNPx5lr\nYUqbl9Anz2h8usP8qyZiY8LlWylS7SHD02c0f3MfzoYxMwccmwbxfBhzOiVakWh+vMPBkxcgp5g8\nG3Lz1T8k/e2LCLJGfGzRfvyC5UyUVE6muzUicekqe391j85gxMLNJVS9wztX3qWcEGg6L3M8cp6E\ntD0AS8DcPMf9Xz/glT94h2HL4syNHI8++BkJWeDp81POfOsiQXiGoAQMngxZ8nLMm13erq0Sd2Qy\nC+eRtp6RnPtsP3hG6htrmM0RznSIG+2SSFnMBLAax2jrMYJn+2gbI0w5YH15gwgpfvPlLoLoYQk+\n83wUJZpgYEURNlXaP75H5foN4usJeo7AyiuXmU2esVYWifgiH/6LH3MhmWYcq7BzOiAsrxLub5Mp\nOJz85FcsZFz2PvqEG39xA233mNbAYmFhldKFAprzMjwRqUZwwxHyhsfJzoy5I/Duf/5HnGxPGd+Z\n0x0eka5s4AguW/U60Y2LRLJLXH+9zP6dRzjZJAf3jlBWPCLXKsycCW99900KaoVme8hyukJkHmMW\nxOjtPefwyV0se5+j40MW3v8GVjvBsTnh1oVLyNEkUS3Mlz+5TaSWJbURJ9h2kYd1ljZvokYu4GtJ\nTg+GCOcuYneOaPo90o0kqeUbHO2eUpJMNH8C5TjltMPtz56TP1PiZB6i0dEREwX8XhpXMyFdYtyY\ncen9Teq7p7+bP8O3P6bz6kNMT6cXpEhyiCRKRPYXWfWfMHlll4Tp4pQ71J4u0RFjqOVDyk6d7e8d\nkrr5OclxwPGiSWbpFCM/pdNfJWFKuJk+6Udn0TSX5zd6cJxDPvuY8MJz1n5+kbVZA0fVcEdxFj48\nx817WR5sjnGCOalphMLP3mAQD1GZduhefIGf6lPoBsjWCHNpj9AkxvnpCal4iw35S1TfQ84MiGGw\nMZ9TceokZz6pQYrUcYFI6iF7rz9FfLRIqFVB3b7INCIwynztRdptm3gphiTIFII2SX+KlpWYRxyO\nGVL3jrCkHnFJp3d4QDw0JOy7RIwSWiRHUc+QHkvEPZXYIEPCdcl4GZKGRiMAdzwiXjKx9SYFySCf\nzMJAo5RbQE4uUmr0QPCQOjaDecC87xLENZDBsk9RShlmskTdnzNL56AKpuighgbEZZMT3Sd12iWs\nQkbxME7HdJstZn2NUJAmH16hb4CdK5LNVwivx2lNR+SNONMTi9nIJJX6uoXFQkzGUxUs3yIfqyFH\nAtrNDMlCQM+Tma2OyIYVmorGVJyjiT0COY1hedhynXIgoI175OYaiWQN3xAIVSEcPyUxaKOMbaJT\nicBwkf0IomJh2TKGIJIbu8juiKS2gGgLjCeHZOc+jeoidtMl6qgkMiEKHRvJEVEtj1Q8gVhXmU4L\nKPEkgjVBiZioOZ9Sv8NYaqCKMnl9gtaSyI8DRqaJK5RxzyaIVOaIcgjmSwhCFMWJ4GsRor+t4Cwo\nBUbEkFfSJF9YHE9GbKzl4f/h7s2eLUmzK6+fz37czzwP99x5iBtxY8zIObOGrEGqUkuUhFoIo2lo\neMGAJx544ZU/AQMzaAbDkAQtVJKqJNWQlZVVmVmZlZkRkZExx407n3vmeXI/5/jEQ2RXiTZDLaDB\nMPaT2/fgbrbcP/O9v732Wn6YoKyhNWpwMURYcGhrA0qvRhirE8IlwIzxoi6wHN5jmAkRjc2IRGUi\n+SjeLI9iusjLcQLXYj1vUM77nJ+7JHMi5U6M44MqvY7AaXZKb/9TTsYF6p/fITopcyW5gvKsAv6I\nC29cA99j48YOmbU8Z4MDOo0xxrxGYmoyea+LW0qxeNDh6XtnqBmRghTh08f3uL63zoe/fJ/IuMX0\nrElP8JHHCgzjXIhnsUSNiSeSVp8n2uLCRE/rVO2fsNjoYXoq858MsEN7GPcM6okwjd+u8EFCofDQ\nJqq7hLZjRBsKnUjAb1WSfBLcxO0MqFw8Qwhdp9QSkA5DVMJlvnwnRGySwMiskGwdExcNsqLG8vsJ\nPlMhfTGgnUvg3yoy/es2wws9JpfPufLIYyXI8P2XB5QuZnj8sMzldIOaOePo6YDiqwpRojx7uUro\nXKRjJLhyIHFuBViti4THET6cVjk0bEzNxFieEDV7nNWfMBViKL7OZFIgUhQo9BOE/lWdRP1dIQjC\nfwa4wB99sVQHloMguAb8J8AfC4IQ/T973yAI/usgCG4GQXAzqpmkYyY/++BjLsSXGOsOhHziOUi4\nUWa1AU7SQDppgDtBKCaoHDvESxm+/e99h87b90hsmHTDNeZBmNTiArs3VrCbC668+ApJ2WPW30cc\nw9qyTlzJk13fRIppzzkFiRC9uk75ShThgoQayfHZhw0Kb11jv+7gKynG9WNmbom773xMKqYyeVKH\napKRmGam64xfEKj3JiSuaNRuPyQj5chkVWJXVrjz0RPSpTRWMU739CnxsogbmiOnVOwlAz8nMB71\nKaTzAITcBdbCwm/32dnJE7u0zsOfPaN99IDYRCOmZQlLEYTYGlc2Stz99JDJfErm6pTHDz6ntJLi\n+z/9U4rfeIHj9z9i4nXR4wVE0+WVV27y/nt3KRub6FMDIZwnnIlxetagKIaYmyZ2PyDse9RootsL\nMqMeHbvN2pWv4hw2cKYBUr9DYVFiqEgEzoj+oEvegEfvt+m5MTI3b/CwZrPx+gucHp9g6AHzyozU\ntsLHj2uE2SSxW2b4CKwrOmYQ0DupIE0nSCWF/g+fYEaf/xSGnkv3+JRZtcpL37xO686Ie3/xIX4w\n4fiXP0V7GJAw+7z0O98hklZwGh1yqyaCXsbQfQR3idCKRrvuYD1VSUW6POnWGGgwePtTPHvKza+/\nREaykM08BaPAWTeEEo0yqB4zMQKcvokQilOr1UjZPmyEuN8+IlnO4tHk0b1DzOUEu5tRdvJ7eLMz\n5ocP8ZU5X/6Hv8vD++8Ttme4+QzVI4+Ek6C0scO0MscdG4x0mYyaILESo2kEHB7cwdGXeOPrX+Lo\n4CHzfp9ILvGr/bN2kkcSVbqJMFNVpGav09Nd0odlplEVOdrgs9/e50anT2HWZOqHiD3L4Bx9heRB\nmPHTPU5XYqQrMUaTKOHMM9SNA05XHfI9EXMypTMzKf0ywZLQ4vDoGsrDTaarbY6WPQzHIfJ4m7Ya\nYazPWb69ykFQhHaIUcxmoz/H8qOMaluQH/F4WcAd52hcaiGtvY/V16G2hdNdpfr6x9y93qLg1wiH\nGzRffIKz/TnDxRD91ODKQYFLTyW6eoT1Zz7VnQZB/SKKl/kVHtNYhNGoSiovIO8U8SIGstjCa9k4\nC4eYn2PkxWkRxotpzOQiC8UjHB5zflDn2azGxDGQTQ/RntF1JwS+gJQSiI8loukQgWLiqwHNhcto\nYLOIDJnaHXrzNq60oD8x8Zc80rMiBjH6I4eiEcUZxrDbM4KQTS7hkldsIrbBUOggCxqNGrjegrno\n0RoF0B1ghXSipQJGySMkzWg1OqTjEAmJyLM2nV6ThAo1S8HYVjECEzs5+xUek8CinyyjDV2w6ySm\nbXKugNfsURilyMo2rWSeZCcg4o+Y2AqznkW8M8ePRSApsLS6gp2RaUgCiUWCbG2CP/FRlTBDP4Ul\neehBn5wuUO8oxG0LaZ6GUIR5Ls18FDCYDnBHEaykSGzmIPkiBz2F4XjARGziKGNcIoznNoucRFxt\nEdCjN1tCqw8I90d4S3kyQZKF6NAoCzR1F2IiKbHARlrAlpJ4fR+v7xAoZ8z7YxJKlPl5hrn6fFin\nFWhMOgGuK+PpMbJKkY7o0ZgraK3e8xbf0Qy7fkzPTXDsQnk5TteOMc93OBjm6KQEwiGN7lhFGoTx\nZzGSSbDVHBUWqMkCB4LJ6SyOv5REDkl0lxukcyrr2xoFt4c6WWZ5N0pLSNDVzjlzYByVyJzVGFUO\n6N3bpz89JXnokZFU0vEaJ94SR70xbimHWbmFfC1DqrxL5eyQ3uIAxbeo12yi69cpv36BiJvDn6jM\n5Q6BpXHUFVkVxnjnIPNcS6wTChAedumbad6caTx60EV58QreyYyu3EH3RFKjGtnYKYuhi+xLTJ0s\n84tnxPdd7ktV7PVDXoz22Hhg0ModUHOa1DOXeMOpUxt/TtJyKIQmzGNQfe0EnSzDEvxOO03y9JRw\nvI+yIdC7OmMyu0B/4DBetXAf1QhNX2dlf8pqYo5/Alo3zNnmKsLHQ572PYrnCxRxnVfzKhdGEotk\nl5ihU+2Y9P+hT7t7TH3pnPV+nFT/jKVWGuM0Sm22Tq8h88SL4G6Osfl/2DtPEIR/F/gHwL/1RYuO\nIAjmQRB0v7i+DRwC20CV/33Lb+mLtX9pBKpHZnMd+Xaf0IvL3L99nyu///tUvvsBihHlBz9+l8yV\nLaK5LW437yJ0OkwPD1h76U1u/ffvsnbhAsMGRN0UozsHLO8pfHDvhIieYTEdcCJkSa7cIF6MM+sM\nie3laT44w2t5SEKcwk6OtCDw7EwmjoKYs5iOJ1Q+P0P0RigRcPIJlN6Ui29+GdX2ebxfw+tVUM0e\ndttnLWKQv1xgUk/gBwkkzeOzd25jXEwSv+KQXimQjjuo2phaY0AymuTnP/qUtUSIkSYj5n1GXzCH\nB5U6S195DTGTIFSbsKzGUAthRM1iupdHDMmopTi57QxP/+rnJHJZSnt51PMkgaPwsFLnYukqxlxg\ntALLr3yD2+/8mNRrbzH+6R0KX9nBTPtYaYHxR49oVKu8+gf/Gm9/8DEXvvwWiXKUn737p8SzPuFw\nmMP5guVvv8bRBz9gYYkU4hmatSdU8z2sw2PiqTi71y5Re3TO5pe3KCU1zj/6Bd/4dpmlaUCr1efV\nP7jGs6fv4WYE8kJAIeTgNQSWr+wQWqQ4//yMIHQRISxjDLO4usj0iy8313QoF1OIF8o8/MVH7Ly8\niYaERhFZLdFSF0TMNQafPWMtcZ3MegplrHNwcBd1/RUatSfsXHqF4aBCrpSjYVuop30Ur8rab14h\nk07x8PAp5s1V4tkc2bduMBu1UJodGndb5MUxw4lIv94HV+X2nfu8vLtH4dVr3P+zHxGObhHtegye\nNWm+d4/iVZXq0RhJSXJ8v8XEG6Gk4zzp3mfNFNl7awfvQpr+kzu0zycsr2fIJMLkVkRi0SS59STl\ncgJXrzPqt8l5KWq3TogFv2aW26MYsU7A1ukce31Avh3lflmnm20yahXwT/dQFiYnlV0er4LsWFAv\nsddqkr2/TG5/iaRxh5YpsFQNEWRskrnHGN04j8sp5OoGF/sBqWiPymCHkGyRHTiE63GYhhnPIhyH\nUyj5A1rXWkTGUdYeRHly2cNc22dg55Bzp+TDp4gzjb3jBLPUmHJb5yyv0/zSAZvjGbbi4wwTZJ+t\nc2vd4CQZY+FGcIQs6jxLUlpwbMRxT7YJmWMefvuIpZbM8nhGuPdrobzsXCHupmi1XebnEvbDIYup\nhBOaEhIlfCMgJIM+GqHXTRKWg9JTmRoSc9dlVYuTyA44Pm1TGYtEJlPUmIY1mjHO12iaLpJuk+4X\nMdI55MQULRWjv3CIiQZtbLzMBLGjEgnLuPkOsghnc4FYZEZRmiKPo7RDMm0rwjxw0Qoqw0iSfMpA\nzoVwokss3AZNEk9R444AACAASURBVCjxGbUzH6GRAkkhgcJ8MEBstagPRRiH6DHHERrMRxbTSIyg\nm/oVHoph4GsHTIMAZwauEUGUW3iZDLZ2in+oEnSbhPIeXlpFNYvohHFiCvFamKoTYTgcoUzHhFSL\neTJAyhUJokWGksjSBszDCwaiwdhOQHyGkB4RmDZ+aIoy6BGWZHxvjlI0kfoakttjHhaJZEKExhoz\nIhhdh0W5jl+aEh8NsSMlrIbJTD4nnniu0WTJHSR3hBYWyZ4p+MkpfsdHjAYcd2ZEAgc17GG7JkpQ\nIIKOmpwiBRP8/nOF2t6zMV68x1yI42xZiCseE93Gl85xxtDWXZobIWbRAlunfZL3bc6bNlTrzMcF\nJHmfyNAiJyRYLYeRYgeomsCxO2VFOycUWlBQkvi3HqF0WlyKqqT7cfJyHK/ap2LlUKwQesYiZB+x\nHsliMGJbVokZEaz8Oo6eJ/fyJdaTGzwI11F9B7nrYJtP6WsWKOeEtq4j9yd4qoWxG0HpFRFFkYZZ\npxQbM201GRVEYrbB3I2xEhoyk6ZMxShzU2JiPOcRRvUBelQhvn6RZ0cJVrZ2MWcKcrKCse0zq43w\n6qvI0zzWcoLhSgijNUN9ssD52pCqI3DBz9CbX0Lr7XDeivH5b6UxU9AVn/H5dxxO95p8tj5BKuxS\neLTH1QfQl9ooShvbKqJKASVlxnB5SiY+wNtOot4Wef8bMl8LjTiZ6hy7T+gpKdpfX3A9dQrSFptF\nm5a+hbFV5VA75ah9Rud4j+6WRSPe5B8cFfEzaQh0BvMWk9oWn8RUQlmLR0sP2S0Mma+fM6mdEajS\n3ysX+r+URAmC8JvAfwr8ThAE1t9azwiCIH1xvc5zAvlREAR1YCQIwitfTOX9Y+Av/z7P8n2J+Mvr\nBF9dZvzhLdY2X2DafcBY9kmuamTVbbJxiXv3v8vF3AscjET0tRz3/vh/QbqZ4eOH73L58h5mcULo\n4ipqOo7GKULO43T/BHGu4isiG1sX+N6f/ATtUomIFjDwXdKpLfYPGjg66MmAW2+/T/ZGicqzOrO6\nRebKKpdWLrIYK6y8foHG6ROOlTGEZyS+9TqjapvdV/do1BUurnyJ7rOfs/DqjKs26eIeqi+jT/M8\nfe8+/Y7DyvoeVkxCL0nEKyaptQt8/sOfIQQp4vJzBea+ERDMfDSxwDDsYHUq2PUp7fs+60t7bEQM\nHv/xO4SFKPsTn3Iyy/nDDvv9Y1I3TbaXMmxeWOe9H77L8t7rhLQQ455N2j/iw48+5itbl3n7e3/D\n1d/5OsPaIcZOkr/4p3/N7/2jb/HTP/ofiRdepHzpJt5jH1sVuLi6R7QfZdAQaEVdlq8adD8c07vn\nkr94k05lhpZc5aTbpBSTETIRZpdX+fSTQ84njwjHNT5+7xEvZm9w+lAm/5ULvP1XP6d4PcfdZx+z\nu3GB+qSNsuYSLuv8/PwRwkocL/R8cmIo+/TrDqmdDPFr1zj6/D3YXMbKWPT8HtsvbfHhh+9z68Ez\n3HKG2i/bmNspkkkRvd1CU3VOHjyk8NqbSN4zosISZ/fPmNtxaI1pGx5ZcYZaSiNMPNzzOrEgxs4/\n+kPUmMThDw6Ir4CxnWflUojr29eRw2PCpy203BqmGSN08zKKanK/V6XbWnD11TTN+x22ilFGj48p\n717Hm7vU5AZv/3c/Ymk5QyFSIrUTxxh1mLdH9O48xZl7yF2d9iCMdDQmIog0qsfoC4e2dPSrPTOO\nNlHOl5g3M+iLACHU5/InaYT+Kvbr9wlMm8hwxGz7jJU7BdY+L2F0DG5d8KhfGvH0n3yPo0KG8HCZ\nZymPtunzibHMJO6Rak5Jyj2a56tYfhp3s4W3/ICj147omCr5jkb+nSvErQW9ySaXH0u4Vx9y/FIX\n15gx7iWYyCmezfcovrdL+vsvMog1WJqcIx3GSFmwcEwmyR6N37iPn7YYjUXC0S7G8mPCukVVGxNK\n9DmLKYSlPsHeJ+TOfTZ+cA1Fb+ILNnP11ycvrWGXiJIlUlojpOsIuQi+FyKVgHDCwRFmaLKJuJzE\nTnv47R52LM5sPGc1u42VMhHSWfyMScj3kHI7WLUO5aUi/kQl6wxQgik1a4JsWcjJTaKTEOGYSGcx\nJ+JGEP00taGBn1TJhSNoSh1p0KU6FzGKqwRljURPIsiPMOYhEm0RtT5izIJoFVJOi1SshCg2WXgZ\nchtzLHnGWLJxIxatjgDZGKtZDc0Lkw/lSBsOtrdAGGnEreBXeITOGyjnIRR3FS9SYiHPwBugTBZ0\nnBxV2SOtyEhnKeZDDccYgeoS8kHPWTieSE+WmM0h1Opgj/qMlDbj0xljG3rtHlosCa7CuK8S1QV6\nfRNFaDFp6kwWEYa2gyFozBse03AH0Y4ihkewGOMXHUpJHcExkWsF4oMlLClg1u2RNhtkvYC6oKP3\npphnEdqKQ6st4IQttHmE1nxMb9Jg1RQQOjJ1rcByrEdk7oJkMBnMkKI+qvS8fZXYdgndVVlYAsZA\npyeM2KgIFJaXqc9auIaHMyiT0DTaWoZhMkd5EMFLCoxOzxAUg55fYXFco9XuEgr2UBQBta5Tn6t4\n511wJFR3Snqs4lQCqgkf9xFkbu5gd8dUgzonSpeJp9NQKlQkk549wBJkOpEJZ8FTRvfvc79tsVK+\ngJrdo38pQmHqcW0lxkKw6donOOqAUH6JLgpuakEms4nuu3TcMON4nO2QiJpZECye4goK4fGQzkzG\ndBxCJ88Lj0UTmhMbGjO8F2Va5wET/xS/v8TKuymOUi7edZ3lx1ManTDHe/sIUw0wEPorLAcXOb3d\nQIjYHCgPuLSWIf+9CKJxj5/sGbzxwSVGHxZJ1DMMyw8pKCK3fZuSLvPssoNbtOjfDhG1ImycLtCM\nR8SPivzylQWXXYknD+qMMj3UPZmthMnWVMM6lyjqp3xcPGSVOvpRgpapIl4x2OSIxO0xa36c08o+\n6cfLeJUF3bUJF4wOpt5huHrGWsJAGqks/UTnUXQDmX9FSZQgCH8CfATsCIJwLgjCvw/8F0AEePtf\nkDL4EnBPEIS7wP8K/AdBEPxzUvp/CPxT4IDnJ1R/m0f1fxySR/Nnj1AJczwbk5qNEA/6LJI+547M\n2rLKtDelP8/i6DY76SLx0CbJ5Rhrm2+SJ4U0HDJy8wwcgVBGJG9lWGWVcaWKe/iIyIZPoJZYXw+I\nHz/GmcskcgL3vv8h8f4YwV+QDzRiyRRJP8y8Xudh90MuXt7GVwxmgo0mqoza54hChvDmKpuWTq64\nRHV4glxtUrn3EVI6wbBaZfvlPcoljeCjA2ZCi9LVGMJC4/TuU9LLUZ796Dbyyzqmk2IlGicsDSD0\n/IUaQZLu6T7RkMuzDz4ju76MHW6jZXxO9uv0wxFa3R7N1hMK62s8PfmEl175Cr3TBdEbF5CTMj96\n+22u/9ZXmbdryMqQS1fX+PSdNlf/4E1+9MkPKZdXefTdv0D/0gaXQhmCsMLgPlgNhUQ2zvT2Q0Jb\nK0SFALvT4KBTIaF3Wb60w6MfNNj6w+uUdQsjYTPqVrn1P/wlv/md3+TDn9zh7vuPGb17QmzjMuLm\nVVa0MpFUiFv3bvPGZp5nf/oOL731bc5aFW588wbv/eg2uYubXLq4S7s6YjtSxGmPSE5rz7/PlEZz\nesik4RFeNWlWXFKjYzYubuGNptRufc5r3/o6miSzaLc5rezjdyE00Xl29oTcazt0HndItAcIoSVu\n/u5rhDIGb776Bh9+8ATntEl/WCcTLjPuTZHjLpsvriLXHpHcu0pVD6i/85RgOMF+YnNkjPGcgHav\nT3ocIHW7bBbyCNsmZctHXcqx/7CHVurw4MTm3scViEFkNcPk0RlrJZOH5zXC5T1KqWWedjQav3iK\neHmH4Yf3SEo6exfj2EWdwaDBRmmV9Le+jKQYv9oy0+02oUgPMxWQmM+JODajYh89eg5uktOSzWh4\nhVjXxMoNmUYnnCRkCocx8rUwW3/zOoX3yih6HT/ss+iX+Na7ClL5KdPrDR692iMTqTGQdXxxhvZs\nh1wlSzMUIjEUmKyNmEldJHXKorVE+vYqO70B2tTFznaI622W1HPOViGZO2a1FiKtBpytivQyMrNy\nj88KIifRFKYjMrpxxuF6lxM3jtSVidUjpIIuwTzBWd7lNNiiW1xQ2Wlz+EKFw0ia2Cj/KzzSK1HO\nnS7W/AQvXqMf7SFH+6iKhNxRMSWZ3nyI6/skbRW/FMNTpiR8lb5iozUmCP2A1FzHV0dMaRMxV5me\ndgkWBuq8yKi3wBRqBLKAc3yA45/hRXIIPY1+JIZYGSFvefTFESOnhzgqIMU8NBcWlQZiowUxyPZl\nRsEMqyyQjScYtzwCxcfTw3Q6J8ScBVFDYVafkYy2SM4z6G6cUGyO3ZgxH7soUkAzOKXVFphOFkyH\nJ1jmr6fzCK9gxkIMMlUkusjKDFEoM+sOcU2bXCJDBwtkARIK7dqEeK9D33KxWmlKlouihHCDMImC\nQdjNM3cUrNUFOg5aoUz8pMdMGEF+gtVT8RMyZ14SPzWibPrEwgKa1GdaGNBXCpx7E+TBlNh4DJ0Z\nYzzQLAShQktfIGMh5mNYsxLNSIK47SPJ24gRiYShImkzHHLIg3P8vIxoFZkKUeaORImApqhypEOQ\nkpBmWRzJw1ef//6E/gx5K4oXnBGMBoSlBNWtNGcnFtvJ6wi9LIbqICw8ZqNToso5o1GN2tQhuyeR\nnGbJRYo0tICJHKO9Necg0JgWemTS21xSVSYnQ5RiBmNtnVFIYWXwlHnJ5LhaZ7Vg4rTLbE9X8awQ\nu/IuxvECTwwxr3TRzwXKvTR1Q6HQGjE/aiKWHIRJGqsZED03UYQl7FCKcCKH2ewR16OI/gJzv4IV\npJi2jsgpYw4GEnLUwHGX8HWLxbKCI1UxZ1V884vzEGFBdKPL0sYRiZMmxbUJR6yyXuqTKjpshzz8\nn8ZwwzkEb0r8eJdi0UbMREg2DuFgwQt6mop4xpIZR/7sjFJ6wsazItIPdjibVtHU5yT/7eGYUNAD\nP8bZwmCn1WQwN+i/esrBhRyn03W6gyh2akJRDbPbFtk2VgnGM4JQlFqjQcX6HCnd5PZuktw4jWoq\nPNSq6I2AWniVM8PGFqKcSyYb8yi+MkIS5kx3s5wfPmWS6zHQd9EHOg21ibOi4iAge78W7P274u8z\nnfdvBkFQCIJACYJgKQiC/zYIgs0gCMr/opRBEAR/FgTBpS/WbgRB8P2/dZ9bQRDsBUGwEQTBf/zP\nW4D/0nBV7r3/AUtbaRLTMGpcxZNSREc5tta3eDKeIZUjLMcCwukIkj/D6z0jkkvBcIAkBTwcdNHP\nF4iByuGTLu2QQFeeUO3NcEyTlFnEUubMlzb4+U/apFaWiPkiwyWfzGsXGcUjiOoMOZHmg08ec3ll\ni/gsyfFI5Jef/5hsXeFps44fSCSR2TEMJFMgQZpFzyVcCqNOh2xsL+HEVompBeysgp+Kodd8XCeH\nGZ7i6iHmd0dE0rukxgV+/uCHzBIC9lxnYn/hBZbKcvLpiJWrMUovvcTj5ohxc8aNf/sbHPzsY8SC\nwuZv7zDoumxLCrl4joXXoVDyOPnuPczyEkEuDpYF0xGHnVM8wyCWSdC6dYA6VCm8uQoTibS0w3nd\nZzOnc/jZPSKSjNc7JnK1iLZQuHfrEStv7jK/f5/d73yT3mc1Ytc3mZ67eE6ERX1AbM0gseoTCpvM\nHIWtr97EUvqEJImoNmMWCWHqCbaWl/jzv/we5X/nDzn5/KcU8gVkLU1iW8eUTT74xY8oFksc3/qA\n7fVdupHn04qKECIsLzGt76O15uhLSVqnM9Jru0yKOh1VoX/ssnK9iN085MbvfIPD6m1CssKlC9cY\nHHRw9YCTgzazcZ8//y//lMtXVuk7x5hRhfFxHS9nYHVa+M6YT949p7RU4P7dOr1Kl5e+cgNLFbD7\nI/qZBN7hffZrdRTfwTGmhG6u89ff/zFGPMxC1Gifdrj+xg2skYChDNh99QUqnx/CucPlV7/B6kuv\nYX/2jPe++xeE1gIGpxWWX8mxEjZIri1zfvqYqS+zFb+EMs7S682Y9Meowq+rplmtgJp+xlluTPul\nh+CZTDMT7n3llHTd5lqrQ7kaYyDGSPozlM4S6emMeUKkq5useE2mORjkOkRj+5jdCHMvTT3l4daS\nzOwQ975eJTIXUT55mY3+gs5rtwjZGsMLVfa/cZ+V4gFSz2C8suDkQg25WkKMDYkeZjgQBGolixVr\nTk2K4UxS3No2cZfO6CyibP7VFa4+iZJ6INPSQuwdqJSPdZz8gGY8RHocp9PaRtTHzGI9cq5N380S\nmfhc+uAKxX2N6vTX7St5tkAPFsho+HYS+UikJ+VwtTizvMxU7qAMh2jjEWZ2gX/WJdGW6ak+sbDG\nMNykH/VRYjEkSWTaDzEOtxE2QVEUZtMuMTONkF5BSmpYkoCklSjKKnLGIj518HMRsuMwqg2DkUhf\nlpDHYfxMHGW5SDIXZdxzqGtg6WNGDwQsZ4RZLqGUBar6BK8QoPigDHtEYxm0dhZJ62LJGuHxCEsJ\nI8lhOtkO6tAgrUTxpzLz5IyG0PwVHu1Zj6g/Jb4wQEywqEr0pDmLYpqCa2IN2kTEJKoaoMdMQmqe\nxZJEYNjY5QBPkTAaCiWlxaSVoZsUgQCjOyEhzpCGQ2apOb4wYdGZYIUF5GBEvDeg0FMZyqDYEvZU\nRZVFVgLQRBdLTtJbiRJESgiix2ysY6XLZBsqnpgh1XAYJQ3Cpo41mDF0zrEybQQjzGLmEMQ0EnqO\n8MJAyVlMwh1ixQ69Sody1yEdbeMMp/hOj1YwR/+CE2V7Mr2nY8yBRqQ3xrt1yuTep0RNBT3vUL6U\nZt500L2AVVVBCmmMUjnW4wlW5RLNSA3H68BsigBIDxcsu01yZpFe75iz3DLDnRmWK1CvNzG6cFdY\n4XSwYDlk0uq2MEoqYw9izHnU7xHXbSqKQiCVQZ8RZDwycQ1zs0R/J4TQOafbrTF/aY22e4LeWpB5\n3Kd66lBNOghSG+sYzmImeQ8SssJxVUW1WgTTAbOEiJtJYIU8PDPNNBFj6j8vxBLFLJPqJoUf5xEW\nLvfXbArxLr/sBSQ6NofpBJ3UmKH2kMtSgwsjl58OZEK5KPN9lfbvnRHsKxCSiZYM9vUG6QtlPvcU\nLqam2FKEtWmSxeGE1LMyI8ngxH7IurugGZ9zmNvH27rG1z79hNqKwGStzKVWh/gHNvfHFi2lDos5\nbnVGItqms5rhxHyBm8+KOId5li2HFS+FErYoWWcM4xsYxSfkBjEevjDFL6aovaby2mtf4v19n6j9\nGyy9PaVWMgkvdORBm8V2n0Xw/xPFcslfkApJpMxLSDER5fpN4qJKeGOLaeUELIeT944I7V7i4PE5\ntWYdrhXoqyKPnt6jdzhmbztDvT/i5qub1B6ckzMyjM5HJMYT4nmf6eGcwx/+BeODPl/6179F8prO\nRC2SSQQct1toaAxGA9on99l9+Q2Uksb1L11jNrMxiXDYPUXJeeRKMfxxnZE7h57Eo9a7bMRyUN7G\nyGc5/Gf3uRG7yOHRGWpDwDtZMN4sMTk75tKLN/FnczoLi6995zoLY0y+Y6D0DExxDl9oeISUPl/9\nxut8/l/9gNHjx8ijMcvXtzn9y31WL72MdatJ5Z0ehVKcs8mI07MThlEB09e5tJyifesZiWEfBwfN\nNlmNX2E8nRBsOCSZE3MFnJFPyMkwjk8RB1UcTWU06pJayWNM82iE6QzusfbiKzz9n3/E0tfe4Oiz\nu/gPPmX/wT4br8oYpsbTap2N7cv0+zA9d1jKr+A5Uzb2rnPrxz9gMo1Qaxxg+Qprv/Eyl1a3uPXf\n/A03/8k/pvugx/t/+id8+Y23uP3xR4yPbVZv3KDpQ3eyT6LxnPQ3WywwQy7rb36Vj378Nmvba7Rm\nxzz6Z3/Fl7/5e2ytvUFzcIyxu0ezNscIh3j14puMbZ2udcirb1wl+tLrdFoH1FqnlL96g2d3H2Fo\nMewuaPEpISuPL8XZ/q3Xics2d358i62vv0Wz+5hcMsXKGzs0nx4T98e88PtvcfbOAaI/piSv8/Ds\nGDmmMv/sM6YRn7N3b0EhQftWjZkeJnFD4fHBGeFel88bVVR5xPbLW6yvxpicNckuyUx1iZ+9/THp\n1TWWvv0N5v0BiS2dRXjMzW++ib//ELn365pk61ilfGeFzGGcCx9t8OG3T3AqS+w1Hcg28CZr6CsP\niG//krtLBoPMGf6yS+Vr72LvPuTHl5N0ds/QUhaxhkH4fhE/v8/Qy6BFLTa7IUQsWL+PfvUDelqE\nkeCyV+0SzKK8+JdXObM2keN9nHkFPxZQScjMzQErrYCC0MU/2US3h9S3OlS9FMlDjbgEmQc5TrZa\nJNsGVkIhFZzyrAidaIjEZ7tsf+86Z19+wPDyU3Y6HuYowP98lZ2nYSRXJX4W4/S3PkG/fOdXeAT1\nEIJkEQnF8FsVsssG5rSK05mhT2zEWREnqjAIqYzOA4bmAnuukIup9IY9SJYp1BTkABKmTi4wEe0x\nrYM58bhCN6RyMmmg6z6zoUYkus7YEugdnCIrMaJLEVK9GeN+B6cxJhEPkzUszBURzQoQZi7jzoKQ\nuyAaS1KcG+ibSaSIS7TXZVxJs9IvUWyJdLUVgpxD151ymK1jzdIE58cMohL+0EL0OmQEGb0QII01\nkuUV0r0k4hc2SQBWMoTSTSCNfbRggbLQUAOJWcRjzghPkCgxYDQ/Rxi4zFM9poTRrDzh2gltrctI\nG3EQyzHV25iCgxjEEKMqc0QG0QUoS+TdIunBnKgxpy8t4YgaLnPstkldmhPYPmKlgFs/QUvHWZJN\n1IMhvmkzasMsrWOfC6imQ3zUomt1KftzNEfAWY9ih5YQznLUnB6GKDAe1lkYLnFRIdM0iDeiNE9i\nJNZ1jggYCSssUhqCNCM+UJj1nhemqpYifM2ilp4yvpBlsRLnwsqL+OMqz6ou8fYUyhOMkolgmhTD\nJtPxMyqSQXNikB6K1M/TuAUDT6kxV0ZMU8tQW+BqAYbepfCoSoI0JB1CZsDV8yH66ATBmBHO2kiV\nAwbpGbrjoSk2g3wK7fMWc7fJIBvGUR1s3eP0cMKkadGIwGbkKtK4STeXR1+WGO8ViCgSGcelpyyT\n3RawfZ/pZEhSW8L1fczEOr6/gh23GfZD5Gs6F/ZrqGKA/8XE8+TIpRhzqahNHkZDXPwshH42JelW\naRo76E/r7IoLovoqShDCHn7CG1thevUeyqsexe/meXerwtq5TDBqsTRfxvtFi0BTsPoKw28MuX3x\niNxNnaEjUZnMWN28RCiY49ZCfO30BoU/s/kgtMXOLRGLcz5yEzx97THFG2nyVQF7bcG81aRb3uBC\nbZsL7TZv60+Zf9PitOLy/SsLUrE4IW2BYrWpKwqR+SmnzTylRx9jDgt88p//hH/jW5uEFxVCNzQ2\nns6oezmebKjceLaGIP/axPzviv/PJ1GIKsL6GpHeMb6exe07DHIBjc4+Z1WHorxgce4TUyKEKwFC\nSUce6BjNMN2zHq/8R19i8rRHLDVBGrgUi3lOlDri5phOeIE1SOMNDiG+RHjdIGbXqN+e4Dw5JxBj\nbOo6mb7DRIpTWnuBxGCBh8GDx5+i9cZs5rPInsdO+iKzZJzzWwckv7pHX7QYjhXmmxL9aZvi9gpi\nSqEt9Am8OnbS42xSZ5kc81aFWDaP6EYxgwyDZhNnOkMzUnQXY/RoCc16XiV4QZrm/jFeXmb3N1+h\nd/+AlUsXqTSPWL0gcNKoU768xmzUo/akzfKLV3n3ux+y9uYb3HnY5sbuTQIlTvezQ1ZuXsbtHqHF\nsqhBilp4QSMZQl9K4cQPYP+UebSMJ8QJp2N4cZdPH/wCYyuJGqRYTGYMS6vou0ViWoimrLJ2NUel\nImPHHYpLee4/rVDK7PHoux+y9uo2SbeN37eIrGWo7t8hvrFNSenz+ftHKEmRWLHA4f/05yhLYYxg\nmaf3jyn5Ctsvv07t6R3yU5Gul6JtPJ++MntzUttluHPOytVdOo8eM/FSDMcRZG9A7uIyZvWUwz95\nn9ByiJM/fYfuWYvE716gcqjhKD7zRx+Tu7LFXvF15scTxOUl7EIWvzRi5cJbCKZIv1Nn2mmiXrqO\nNPZpP7iFOJxz1muxo8VQA5WTx2fYNZm9P3iLyfI6d3pP2FNzXMqscr96xvXf/xpeIkRQPcHBZGth\nMmsr7K2Y8Npliu0F46MZ4VKa02GI29+7SyydpPLTx2iKwAc/fwdxvGCgjDn9xR1cIcJ82MPyIPi1\n6wuV16osTOjIWWpRmxu/TJPYfsChqRF9/ypdUmgnRcZikqzfp9DRGc90CvdXuXQvw8s/TxKdWCyG\nCkInx85kjmxFyVtjwh0DvxrDl0MM4iGGCRFv95DSL96kmTCINDQWkTZCdEg3HuWokEC8t0KseI+0\nLXB/Z8FokiYVOeB0Y8EiOiS0fpvEWGSu2WiRMZc/2+RxRMcIzVD0gMy+yVc/jaOnHjFKj1i6G6Ho\nzOksCpxfmLG4ekQ0eY7RNPFLp8S0KbHzX9uc9A0RyRNx2i2GcpFeN0XMXmIiWwyqcSLSmEh2mWU9\nSzPhkAmpaJqKNYsR1n3M+Zy5NEDSXTp9C21VRjGTZFbzNJUWph9H16IM+gJZeYEQdhEscLJJJoMG\nKj30jMLcjWCW4/QDH2fSZHgWxfY9+hEBIZwisMZMJzMm6oBkb4i9iNFL6kRWwM/79NQyRmzO1Ivi\nLxaIbpQ2M5qqSiKaQUsaOLGAaSjDcOwyXAtwhTlKckgsv/UrPAp9lcXKFC8lIsZkVM3ATg9Z600Z\nDeZo8ThIBcJGEkkf4Y0U1JFNPtxjMS8gVFRyyTYlXyDlRZEHU3SxQVzP0DEVHNdgMe3Rykp4uRje\nwqW46GAHU9phmWwxQmlsoW0apJMDVG2FkNxiMp5gankWE51YXiRneuQVF3HRoZcMUyjEqJpzrJHL\ndDxATIwZmedgSwAAIABJREFUqzYFRUI0dbKmTqjWY9E2CYQqXqpJXNFwpzMkyyLbeExq3GcmG+hL\nSTzjueFuWU6zOVXZW73J9GRBNJfEa5+yky4TExtUOUOtuNTuH2F6c7xbZ1wu7HKpcsZ5pcGZHEHa\n6XNjvsOqusdq2MCZd1hZi5CU4lSeyBjLe8RSBlmjCLUana0k1zYuE5aWUL116qUUzsLiWWzEbNlm\nOeKSzmrspsMkGiJmJIeilRiodS7F4+SEMrLcJqqIxIY250ci7meHtBwbdzDh8sMR6nkbbSlEbCHS\nbnaQaDGfHdGjii8lCTXvYmbWOXKWmahT1OZzTlS2eEpND/PglTArlk4zEscWY4wLRQaZMy439gg1\nR0zVZ4xbXebeBQYPjhHEKbmZSDczZ9u5xnEpzUQt0H51xk9unCLsnLPYi5OtD3izE2H+4yyB4hEP\n57kXfYJs53D2VR6VjrFfCFGyTymVR2TvuISpUgxvEBo5GBGNdKVEzvHxJYMIB8Rmy+xZ19m76yBm\nXV4tjlEfZqkGOcInOhvGNRovTLgRHTN45SLqYRWupIkYYYJhg8FCQ05Z9LQUV08E1PACSfx14fF3\npij/d/Kb/zfCUzyKwxyd2ikpaYaa7jBTVaZ1i7UXizw9bxF8KcP9D24xfyVCxjOpnz2mlxuwdXWJ\nZ3fqpONphrJCTT7FGfsE3RaRRZxruZuUTJMaIzqLc15eeoHTyojJZIRWjiFOXbzCKqfimFRsRq1/\nwln3GKUgUBbKuO4CycxiZlZoB13CsynBS2WkW3UW1hGFwi7tzxxiE5fKs2OEjMZ55xBfMunuH5JR\nomS3HBZWnvP5OV2/irBuMq7bdPcnaFfm+BGNTq2LZH3hBSZN6UfGZDevcP+771O6vM7xH71D9vom\nD9/fx3EmDPwB42djcuk5ofMqm+tl9JjAxd1tbp3dJRaXmdkqH336Nk7gM771S8xQjIwYIaQH3P3r\nH7L21pepfVzBjqhEJw6yBkFxhaKYJDmd4AgTTKlBdlfh9K+/T2btDURfQzuaYj9t4d5rIWWyRLsj\nAi1gkhiQ8hTu/OIRQnSZLTNMUs8Qrh9hNWT8aY3aSYtYJkTIiLPqpwjMOcZWlOXcEiePfv7c5mY1\nS1rzyc6f4yGHQxRCPudZm6XtArNige1ygWxOpL3fQql0Sd18g5Y3Jqk5xF69zEQfkpwPSTqgBQot\nb4HdaxO7lmXQ77MVNZnLUOhE+fz0FvnLmxzfPefowRk5RaOTL2CMVNa/tMfB0wpv/+IRzkaWtXIS\nQYfJzz9kQwpjz8d0lxdkNlMkCpfY/2WN8kqeu58+pPxCHkeP0m78b9y9V7Nk+XXl9zsuj0vvzfW2\nfFVXoRuNhmkABDggGQTFiZkJaV4YetCLPpFeNJIiKI44IocULQCygTZoX1VdXfZWXX/zpveZJ/Oc\nk8fpoRloPU3oYaRhzP4I/4j9j7XXXnutZ5y+ALfpYuUNat+/weGrY+5dW8NwAja+923GQ4Ef/5uf\nUsnqqKJNOjAYtC2an36IVYgI0yKW+vU1Wva9OwyiArcWJ/hPv8NqK0KcZJBFi8M7PWq1T3n54/t0\ncmCpDrm5SOkow2iwxhfFJGe/+yGFdpE7/SXsH3Ja83hWiXPngwwrdp9hKuTqn7yJ/HwHT4a54nJ2\n+wGNN4/46I6NuIhTPcgSWiHp9SeUpAnd1QVxvYWbEMkrQ9YPNtn8bJvtx7sYn3wXOzdiOksTput0\n1/vYd15y/e9riO9+h7Q/5/OtOce3ZNLqnGQ4p/yrDcYJi+/9TYnwvMbDdYPl5oSHd2TSf/Zb1Mtf\nO5a7rsJMF1jEBaTpOZPsgEVmRGEW4pR7TJQI6tD1eiizJKNWxDxj401hGSyZ92UEOYfnx6ilNVqN\nE9yBhdIeIHsVwrLL3HPQZOiHITlRIptyCOQOJa/GpR9hOxZ+ZkQ/FDDlPIO+SLC5RHDGhJ0eQWOB\nHwWUZwKWpbCwJfxpi/xsRtRus+z0iIsLjMUApiolJY3R8BBibcy8wsheIshDZnMw3AjScaS6htEC\nKZZgcVb/zXvMjSnDiUqv7TDwVNSEREzLMI4bFLJVBqJCy4jozTX6gyWKPkdURI6TcbIVG3k7gRuV\n6U+WtBcKzCc4qo/bldBTPkZ/SkyLoU+nBMIIW6ixjAXIlSqqkKHrDzguiYhBnLCrMCq3afdiNNNj\n5ukh8iCkM5JxLyyiTIRfLqKYGXrqEvlyghwEZJwYWt/FXQT0rAoGM9TZAjtYwVrzWUgClh3HSXQI\nxVUUKQexAl3fJuF4dCKHeJQFoNNpcOgLzJpzYmmJZS/ipD2lkdMhyBCFcarlAlzZ4PNwSvPuHi2r\nydFMIzJirJbSrLkhT/0LGpd9xk2d8IXKh2cvkf0huZhE25NwvBDvyOLstSL2zOf+bEDdOcWpO0jj\nJV7PIxDXqb5aYfmxxfSkjqTCPBEnuN+Fhcm6VeLVQYvLcYuZkSYb3GIWU8lUOsiuTDIxJqYr1JUe\n57t5qs0I1y0yiSVQ0lmk2QpVUSH5wie8dZ1h9oKS0WPdyFGQv2KzX01XuKb0uPtQxL9wuVV+RlM7\nYl9LsTfwOJXrsB0nONti/p09Cu6QZS3geWVJXHdpX+8j3mwiXlgYgwbxkcV3J7t0H6xTObkk+dFV\nxvEkVqLAs9cX9FYf8Lq/xfHtLtZYoSvpbCQHFMQ0/mzIZC3NIDlnc+xz/NkRnwoLttUJD7Zfxwvm\nDOYeo7CDOL/P2WWBp4t1au+7pA2B/Hs6wttpzl4uWD4X0buXHHhtTnZ0Xn8V8lFnyYKAUWlEvJdF\nL3l0I5XgYsb/Yy79T9Y/exAlehEX3oDHzxZMZwInT1so3pSNQh5DV2BmUrj0qOZV6n93SViOUw5X\ncIYB2Z0N7C8naDclcn6Ri7/rsswpjPsQv7bPceeQUamDb82RFwkWmTZScs4kqqNmCgTlOP4Xhxwf\nHhAk10iW1jl83EEmhSfohOd1vuyekslGmL6O1gkojJIcD8dYgsSqniZfMWE+JurJJDwT1RVRczKF\n6g3chI+xsY0rxIifjlg8u2S3UqLXbjFZvCToxjAnITM3wXj5ld2WMwLD89nUSiwUAzGrcBnzKZgK\nagnW9/cp7yQxV9YYTyXU713DaYv0Rgvun39O5Dqc9wd88w9fo7BYYT4akv+ttzFtlYElUU3WeOvO\njxh99IJCNU/+loHXOqZc26Cqq4hRjKcfWTysX5BLZ1FmEoJa4+F772IEPvFvbjFodxhKEZVbJmOh\ngyktKNX2eXr0Bd2TBbs3CzzrNCh+6waWoDGOm5jrMqvpErqXJNjZ591/eETuxj7P/vwd0lf2UYw8\nRx98xHfvbdG6aDDPf8U0CIJFdzhEOLaQLlTEgUvvxSk3vrXFxas6D179jLPZAVdW02jbV3E/f0K8\nkODVR08wv6Hys//5L3jr2o9xOz1++SfvsbGS4UW9QbZ3QbQhsrZ5lcmXL/jxv7xLPmeD3kf2L3h1\n1KGWTyGdHJJWFlz8+ina2nV+/h9/hrixitt5ztrqJuYsT70zpzizKGUzHB01uHVrl1yhxDI9pzaX\nyRdksnIf9/CCqevQfWUjpEG6eYvDX35C6vU8H/zd39Ia9hk/eY5qpNHXEjjLCovuS4x4idxO9Tc9\nM716gXvnEfUNlbX1T3n4hy85rw1ICxGSBseZgOyTVdbkJsnjCl7cIJbsk/zmL5EEi8XiKpe1CWcU\niD56i/neQ4p7v6KVLNC0Nlj3LNrZgELhMcEioPzxt4jLCplPrqFmp0y2xrz6g+dIyQV6p8rz9QnV\nj++xGKzy3acyz97oM15KnCZ0SkKLxrUjlPNNsrke0V4dx9Movdzg7KefIKkOheEK5uEe5ZOIZXbE\n880Yr+JJzFYM1ymgvfYIFw39+Tpb7RGWk+bKxdegMqUG5EUFV1NYVKDajhF5BjMjS0VOoDkZSPVZ\n1jXisTmJTZlBL0QOekhOhow6oy8JaC2f0XxEQkoi5kQapSVltYf7YkLNVRELEX4+5OzCYSBL5Pob\n9PI+qanEwluSV8oIiy6j5QhJVQmWc0xnQeimCbYjHOJ0nT5JfYlSzJFNbjLLlokVy4w9l5xqsLRz\niJpFZ+YTzy9QewXUhUlkLbCaPmG7yDToUG0uCLaGTPQFQz9FGPv6PdzRDCUdofkL7JHFjIjFYEZM\nGOHPRLQpBJMOWr6JGa9SVg0iY0G62eTETeBNTOJTm7Ji4eVVAilGfLjKLBiR6FZwMwUWmowcE6ho\nOnKzQewyTnQUos0hryZRxyOEvkpc1VCFCmknRyE0mSlLvIKCmlgyiUlMwwV2a4Apw2RgkhDLzMwl\neiijpVWSqgKpIaEUYStJRmZAVvBZ5kUSdo54kMdzp2RMg3lcgkWBIRqbsodsfSWRqN7IkpnYZLwE\ndmJBst0lbWTRx0Mcz2KCw+FMIEzIXClcI98d0E4pZK4o7OhJLr6Ychov4G8VyLodijci/PKYYq6G\ndWYzSGpIFY2hX+d0zcY8E6jZIVF6RHywAHeIPR2xklsjcT6hG7tgcLvKdKfIheJT0WY0cZl5U6KU\nQvlKRF4XWPF1hmqbsuwwdVfwv32bkVrjfLykKcYo2Dn8vSQ6IzL+GOwuuZtJpicj4ukLJoeHpEYF\nJlIGHInL61+tr3I16L0/o7+tsF0qcnThkB/fYj6cMuhV6fgW43GWUE9QOmlyeW1MtqexmSny6KjE\nbmMN+0jAK14g7XyDWH+PltghWa5TXy2w3Jpz3Lrky282uN4Mcd/XQTpj45HI1WqJO3PgH3Kc3hjS\n6+SonmVJV1PY0z2kVZudWsTLYYO7aQ9DnVIYCQjTJBf711nZMNnJtbmo5DlPhWg/cMjWdWqDOcnE\nLrPuFoKfIj6a0MsOKWpZKqaIPHxCe9slP+rT03qIsx6i+/+xT9T/bxUF/PgPN3CKc+yFy55SI6fG\nyIt5uvfPEW96WGKAK8pMR8eUKln6WZfscIlpzhioMuqwQibqE4R1iptpitkq5fGcpaKTCDZQnBXy\nJDj/xWP6Y4XZOeQVDf2LEcNCnM1SkZSpkLdsVtIinj0mtRfSpIMc2ViiS+vT9xBiGQJdJWtPcUKf\nC9FnOndoTaakNpIMzxsc1o+gWGFsXZBYxuj8+hSLEUEzQ2VrG/V6mXRWZaP4GldW1kGZIociUe6r\nrDhHGCDpWZrLCbbbJ1HbZn13m947r9i9/TqrGxmCgYAZqxNfSeB+2qPf7ZBbT2MEGdZyZdS4SMta\nEBVjtCce84aNe3YKtSSD1oCfvfcrEldv0vPm6GaaejpCXVlnajeYKwvsdo/f+fZPeP43D9i/co2l\nrpHLiwz6Q9YqIZHu8+0//BH9v35OJKzz2ZNjbry9hi/HuPfT7/LZn7+DmbqFNw5IizGiwwuuX3mN\nhwcnOJk2dE5JyD6mmyK9u8Ll/Ii4lUTV1rg8u0QK8yiDf7o2mhVZWh7GtT3azefEaxkGrsPwZMGd\n33kbVc5CU6VcXGH27nPWf/g29bMetiQz7sLCcBkeHBDP3CCp9Bk6E1JxAykySIZJLEwaBw9572/+\nFsdL0A1Eqisb+HGBxx88pxckSKZqX0Un5AWyukX57nU+q1+ytpFkeHrEzk4Gd+IxW4lI+HPkQomZ\n1SWbq9CaCih5D/32PUZzD3Fxyd5GiSd//RQzF7J3e4VFC2xR4O3/7t/y8NEZxwfPufXmTygkJ8jx\nFaJUEkeY/aZlctM8uWcZ1FGCo7hKvJEjc7SCO95mZzBl66NtWm82aOgx5mszXn3vET1DhJdvsbja\npZB5jrB+xlzzmJeX+E9fx3/4NmbpiNBwyPddNpgQBjFk2SfITjBbe+g7J2T6AePFBtWHWfTFmOJB\ngmJfY3PYJ7Y2oLW6ICzOiG2ckym+Ytks4y2qjH77XRpujeiiTOdencV6g/zTEnqjxNQJKGRP6fc3\nOe7vsfFwHX2nhXDrCa38jMtEhpz5HK3c4CytsPjpL1mkvs4SDMUF0jhEa4oYsxUscYbDHMP3EIcJ\nxFQLW5OoJhzGKZPAsVFUhSibwR7VmWngaUMaQZt5JYttTHAsD8+SubTyKBsyajlD4sJjdZpAjKYI\n7TlDc4k4By2jU85n8JtTclENeRmjXMxSPF/iGBGl8hjDk1BzJgnNRk+kWXR7XGrHLBjiLy0ks0Ar\nkpjoU5SBAlmRRbKGlDZIlSNilTVquxViuS5qTKJNSEISUJiRdZdk7K99xORAx+6IkIwjJpbMLy7J\nO3MGU4FGoUkycY6YjAgmCeZOCF0Xr7OK728QSTbpdBcvneSyZ5DSz4irIf3uCYmFg7IywOwPEDyL\nhBjRV2RWtkQmuk8+6CBlHegp4BYJ1S4DJcRvDghcEW82ozItocbaxKU8ghOgzyLMlMloBrWCSDca\nUplPIeEhT5YkcxEpR0fqOQzEJcvUHHnkYV0UkG0P1+pTyoTMhSaasEQU4xjFGJfRhCDzlbD86YsJ\nI2mFoX+OFqwRJUvoZshElphrBUrxHRb9A2LdAcNxnVEqxxYr2LaDoo4ppsdUXZPR4ycEM5GjFyMW\nqTmjMM50z2fT87GyffxwyUrOIJ+a8GzUpzI1CVf3idcc1rduEI93aORmVAomMXfA1lqaTXuVkaog\nSiJpq8cwadA5ijFpzhgmLbpzeDUJUXMy/vARwqsJBWmVq1WRpvWSV/ePaaV1lpqI1tpgePaE4Ooq\n5dwttlMS9ecPSawWWAgzlMuvmKjYywxdfcG06OF5fbaia9ipC4yqgHWjjWxeQUs/ZTDp8GUsj/np\nPYSNbaq/7FP43iXudMT822NuJrfwLtoYtoOurrD7Ikk53yISYuylkmw86uHdF7F2tnCUGR1nk6Z6\nxjKq8tiN8Wr+BqtjmQ/LDTxlg1Z9TmNnm8vcJq+vF1j226w8W+W0taSlnfLWq3NefHFAugwZL8Rv\nvyJyUxxseMTFMe6dIWoY4/qDDP4wi/alzem9FnJfQlndIXbgkOyd4CR10tf2EP9zWRz8l66QGOKs\nht/oEd8ycFMCckMidSPgonHCarGI6Q0puzpKFBA2QpaiR3KZRZUy6HGTv//Td9Bu3SQqbFDUVllZ\nV6kfj7hRLeDM63z3336fWFLl2UGd175TJVsS+eDwF0TXVtncT9BsjhDSMsetA8rXcpj2gtPnTfJr\nV6lFZa6EaR7Upxg7EpbZ47yl0XtUZ2Vbwj1rUMnBwJrw2Otz695dSoKDN1ZQ7iQ46w6whAnzOx5S\nKcCeRriXWQxZ4fNn51we2aRvyWStLgCqWGB9+wrt957x+p3XOXr2hPXdFabmCu36gPm4Q/+iw9lS\nxtdL2NYpGz9a58v//W+4/p1b1O8fsVL9NvJcotF8xMqVG/SiM7oXQ0qqh31ywOs/+W2a95+z+eMf\nMP73j3lj+zqtX3/C7KM6mTeuEtbyTDIj4pVdJmc+0vGI9P5r3P3t7/Dgf33KvR++QePxOfFqDufJ\nE7I71/i//vgddu5sk1MD9JjPrqaQdJ5zaUikblT57B9ecvWNCqmMhudbBMUY0mxENlkmaMZRVywm\njS7pjQR2ecrM+Mo5w4t8po0FlYmCC1TvFNHyBWaLCeP7n6MubIr7O9x/dclwZ4XPfv5nbCe3mbfb\nBGaI4Qv0TRlB6ZPW10hm4yyjDM8/bbL1zTWKuSXjpsvqMoN6DqmRSFAf8Z0f7bEUVd747/8FHa1L\nPubhhRamsYl/2qBQ2+D0eQdfdKAfkLqWIu/prFe+QWCPGUgir55+wu6bG7ReCGynq6SzPg8bAeqs\nT/aKwflHLTSxzLVMyNr6VXTTJMiF6DOfvuiRvHWb8SdtSmIK8fxrh+7ZaZ7o9AYzY0oujJCWMcxA\nJlhOoF5lutjmyi+KXD0UiLsS06TEaHuKZUaUR1OOJyUCc4G42sC6doZkgrnygssbQ9RrT/jlH73i\n+PVDpImKq/mItsNQ67OovGLwrTql7MfUEyadcppYbIkpKZzENoim8GwTbvzZt3h6xWcq5Wi5FfbL\n75O8qPD9v0gxO/4WptlnNM3TSNS4vNuD7ClDM8TIjYknl3SvXUC5TdirktJ63PygRKTZjPYPyX18\nE0lfEKlf+0Q5noIWK2B6GkpKorQRx12ETB0V1xgQW8oYypKWrFAZCEz7adKzJiOnhRwl0DpxUm6R\nYirBqiMRjUMCvYIumaQmEqqfwol8mmmfrm1jBhFqPEcxaaHqLp4qMuzMcb0ll1aPvC/TunQRN4sY\nYZLjgYS19BHkGGibjFyRtJbDGIukiaN0RjjjkLTXJ/LiTJUey04X43ROFM4R2llirSWxroqolhDr\nAko+Q2BHJHOr+BkJctpv3iNWDCiIKuTyFMIFGSWiH6Qpiwtikg6iRK6XwYySZJSQdq5CVHSYldps\nCjpD30TsuSi6SmKSYDKWKMom4zWJoa8QzxQoLQQGAx3vwqOFRMKfQk1g3M3TU0Mk5iSmBXRdYhgv\nkNSHeJEEiSmJhUm+vyQraPjhEtnuUu5YjFWHvbyHnMrjqR4DM8NEmOM5MfrLBGtemsw8SRgzSFc8\n6qUQKZ1lOkyh2GW60RLJ6zIWXAJBwP4ndq6mxIkyAqamoHYahBsRPXuKM9BRhEMs+ZT9O1VSroZS\nKVBeSMyXYyQ3R288xRRW8aIxO9UabX1EYbOM7m8htV9RkeLoK0Wikxb5ZI72iUBMFHDFHrFJjs6i\nxWgYEFxYnI3zvF3L0Xo1I2xE2JbNQhVx+yPkawZ6uoIYLigmRNKagKTE2M4a1Lw5fiTiqSU2Nzz6\nyQWXA5Ut9RuocYVk45hUYcbSiJgaNxEXAoPDE45HKTZvVOg8f4B9OMWr/lMqRumYlZV1tiYKgZVg\nMmkTuDXG/VUuvADvxxPGU5/i1Rw3Cnl06TkHj05oXi2ychijm2zw+l8JnElDPtwLeHVHQ+6FHO8t\nEC6SVPsStl0iGJsc/K7LblDCfvBNXnz/gmpDJHbapRgfc20JxlqHG90qNz99RTZ/wO0vfJAOeWbp\nxHJxzhYfUt27wWUwICwoyLdeI/V4lfNOmdZWGrEvE8ZPyWdNJp84VFd7qJsN1vwUj7Zcrhzt8HmU\npPTZJv2ajLLIMNqYM5g/JuI/k8XBf+kShYiDDz6jZJbIpnW6HwzRihleHkXIqRi50h0mCRHdSDGY\n6qSSS1QnzYV8xsd/+YS3flqicDWLemsDbzkkvHjJ/YfPUKsZZnETtz6kkE2gJRPsbFcw3DTVcgHn\ncZLV7Qwf/E9fsPvmHuMn99GUGrOWydHTPuNhj2u/+9ssG1P6qy7r6T1MdZPFscMf/I8/5srKJkN3\nilPWkdduMHOTrGzscvXeaxyfn1BIlTGbcW7vmVzLJHn588d4TYnkhcsy3eL9Bx+RVhUyqSSSPWUi\nfXXSn1H7fPLwA9Qf7eHHHcpemV//u0+pXJ9x/OmnxFfXqVavklQK7McTJK/XmPzjE2p3v8PsuI6U\nEzGNJKePPsXs5sjeSBETZLzClONfnXPvX/03eGePWLhj2i/PaHYOCFbWEdQ+Y9+mmNEI4xKmsc48\nPidaPsVIJmnef8yLjz/m7v/wE55++QVmSWeSGjMLp2R0nVpiH//5OUdPBrS9AG0nwbwroXRG5FI7\nlGp5OocOyfEm2UyKpKrilIYs2nNEfYreN1GKE5x+k9VAQp5+NSXY5pzk9SJftJ4zHsLRnzynEvc5\nO6rzpHFEo+dS1PtUYzGuVdNk1RovrWMcP82+ukXx7g2ub2c4n0vouRmKuCA+HnDWeUE0F6iKFarf\nvE1sL0uYF3hcP2apLDi87LKWdjl77ylyu43xzTTTgx6FrTKOVkScq1i9AaWMTxSzGIUpHvz5XzGs\nzHj46ICr+R08SeHplxO+90fXePfdz4lUiRu7+xwOXdL5bV77wR59v8Pzuo3sqMRGc6SBxM3ff4P+\n00cEkz6v/9FbvP+Xf8qo/eQ3PbNe/RgqddLDkBMpTsfQaP3oE/Jf7pOcKcRiA8LOFnPdQOnqrHy8\nQTGYkg66mJcFbrktVn61hvHrG9BNUUyd4aKiP1llmh2Rfv8eji/TWoWtT9bwdy9o79j4qo72yyvI\nL26ghAJ5tc6s7BO14/iRjfXgB5jqGPvqKaJscPitJ1xuLlj4SY42Qtq1CHnrKcUPsiRDixv9JWbo\ncPL9MYWXScSpyPzu+ywU0N57g1QjSeJiFdlo0cyKzJ7fxs/IvPZn+wztrwMSZHFCu7Cgr1ikTAdL\nSCJHWRTZRHYL6FYO0y2TDHW0RJyUlEBUcugW2LKK4ETEZh5SSsTSBLStHQwW2JMBIackpDnT2QLP\niSiaWdxEBttrcnoxxbI7uH2fWMLFlYesphP0FgvytQS2rJCpZjHjSZJdi6l1CaMBSlciWAyISUns\n4Zih5hBbSxAGJWpyDN9YJZkzCKIpWUGl79YZpgXG0x6zWQ+vFFAQIuZugpg8JXIlJOVrZs5cKpzV\nBAp1G7kls1AL1LI5WksBUQnx/ARO0CdWXtBy+4gIVAWfuJoinDVgOUCSZwShSEsbMZV9olKcjaFG\noa5jhRHTQMLIqqDp2JMs/XKe0FwjF4rkzBZqpGCttpGaR0jLPm4tTQYFyYlQhYBm6EGtz1Ar4SdT\nWOhkL+BsUSKwRgw7ScKUSxjE6WemlAyJpSwwG01o2QrBxEQezpCDAUP5hJhqsRxpSPkMOdUiFdYw\nY18d6xjxIaHb4OwsIFILGMKYeVJiVXbZitcwRjWWZwL99BBTELGWPmYii9R9QX9NwJMmqJ0+1smC\nzOoa9XafjGCzXy7gWFNOli5GvkrMT7PZiDjwR2ScCj3rFYmSSX6ZZVqW2JwtOTsfsh5fpVou4z1X\naR0fkOgVsASTRuuQtdGE7mWbC6nE3B0yeukxXNq43hm2DY6aJcsMIR0xbp3gWwqWUUby18nPL3CG\n5xzYZ0zvFJCvSkSRwqZWJPd6nrXgK52pNPSJdz2O6x2Ob8T5wjxFXbE5mQ5Zqd9g53/zEHZXCZwp\nT6cBwLNiAAAgAElEQVS/4pPf1dgRiwSpAf6BRmKtRveuwDxt8XrP4fvvJ3CLJ3iqTHNrzizfYhye\ncvadJeXMPaaHv2CnkuLKgyQ/e1Miu5rGS5UpnnV5J2kipkNOMq9RX68w7XmYH1c4v9MgM02zXI+w\n2jr/Or1LXakyNaaowgsU/YicnWVaaPHDv8zR8goY+yEv9xfMm0mevOWQvpsl/mJCxVjwYj0iP1tj\nYUhcHV6j0LkL0X8lTJQgCDRiCvf+4IccN+dYKxFPnz/g2rcM9vJ7vPjkPSbzOQPRI5meY12OyF/Z\nRBb32Ly1x6f/OEC0bXL9SyQnxcOWRX7s4U4clNkZW2+u8fCzT9i6mWLaDPBSOd5955I3/mWNi4eP\nMK8UkRYxTu/XkQpJhqdP2NrMU9u+Rrozo5MV6fx8SK2o02l12aikefTHv2bmTNhJ7JHLBpx9eZ/c\nVRlJsWg8HrBoTOmEc8K3djk9fcFEWidjFpmncsz9Dl0Jru3v8ujgOddv7zA87+DbX32Cpl0hHCtU\nM3D64YDBvMMi3kVYbnN7Y4vWxQlCWUAdjHj60T+yUttD399E6l0gbitMxBy9w79j49ZVZsqIeEPn\nxmoehySWPSJumkw6KTJmmeV0xtYPr6MPZwjxNdS4xNnBI7J6gvOnH1LcW+P+ZZNFTWLQbxLfTPH8\n1y0ENclkOGItzNLsZ3Ev+xS+leCVPaE5O6F6tUL9Z+/Te2qT+/Y2i0GfuTNDWM0iXDVo1s/Z+62b\nDMYeekmk/aSL+Y1NDHWd8YMZ7d4So/JVOGQMF7eV4dvfvY1pdxDfUgncMfFowdaVN7h15TbRPMN0\nOeTplx8jSUv299fYWIsTy1qEXY3LZYzbahz5+pvUn47I395BUxXas4hnT76AcZfV5Bp7+1fJVNJM\nmjZ6P6Q51ViLEhijJLVYAa8YRwdSikI0HjGezWlYIoe+hBvW2S1kKZoFnMaYznmHW9/cQzAXPPr5\nIXvlBLoXJzaPCGwHba1EqEtkA5PQHtFqHvDyuM2tt9+i3zompZoc9C/52f/yF+Ru3kEe/iY4ALWx\nz8RZQU4LGIZFpp2jMNDJaQ2GyYi9tk944xnHJZfTn3yKfO2YSXbOeKvOEzNNRxfQYgbDrMZIytFU\n8rSLMbqbQ+Lvv83utA+DNTJCk/MaPN8USPVB+3wfLSGxXBbInu0gPLuO/fmbvLwVocoSa5KNMF/y\nshKijkP2XQd184SuIVB+GUOo7zLvFzkurBAt4jw1ElzEdMo/v4VXhNLUI2NnWD+NmAgmEzVBqLl0\nghTxUGB76ZBzelxeGVA5/pp5iRc1gnHImlZFtpME9R7G+ILiikeQucRdjhh5DSx7yLA9Agn6gYYw\nSSAZBhM5IqiNWApJ/JmNPZ2xKIaUShJOJY0XmOjOhGJMo6WcgWkhFreJxYtUUgakE2hOHDW7Qj10\nkLUhsVlILJgjOCKLYEKvGpI1qoydBFpqjlxLQhAjFy9ginHEsE6IxSztobgzJN9AigKGkYiV1hFa\nF0zXQ1IopMIsXdekKMyo1ydMZw7T8dfC8igep9oPmIYh/WpEQRRYxjxULUl6YiIS4ldUhqd9yoky\nmT6EbfDnMtO0jLCsMJ0vUeSA1dEGSyPGYABOwqO9dFgwI8gYLHoNhCgim7FZ6wsI41O8hE+9X0bS\nTKyhjrNTplROIV8smcpzLlWfRiCyWLWRPJM1ZYgTmzGutLBEjZwYoOQKSOEx0nyILkWoF2PO0y5z\nb0zV9InHLul5PsWlQzJZJi2WmQk21YSNNp3QP9dYtufM6l8Z9jYdkRLbrL+eZjR9gfNqwHfkCpdi\nwDDrc74cYUkFZM/D6jeYEWPYa6Pqt1g/h/p8CbkSrhzBRhk9shhIU540WmjzIosHfZzzOuPzA+zd\nJrTiVNZ0Nlf3Uc+SnBgS0VJisQN2UuXZbMpQmOBtBCReU1HjKtnDNtveGjFcbpVzXJ+06HYnaMUl\nVrGMljKoiiLLkx6zVIFdzyBeXeXK6ibVTZWz1iWjFYNstMJVK4Y7bCKNPbruEl/UWAp5nP5XTJRU\nNXhve45ehP3YGcuVCGstIPf2gHj+AGoymx8PeB4u8BM3eG2uI693iT92OCmUKX8u8PzRiNqj26xN\nQ7q7FvJLlzu9dZa9Fl3BRk7ssOfFKLzzioGwS7nxBdpQ5mo9hmFlEP1zTnnIWyM42T1m1TnjbrLH\nTEpTTQz4ZmeVxedTXlRvY656NF9OaPZO2D43cEYe4WAHbzhhZibpallSyWPMpIf4IMnR74fc/Uim\n9KsZQXXBSINvP/E4yoXkW0uyRyItZYgSfK0j/E/VP3sQFYoCSWPC47/9NcrlKXqzy7WbV3h+32Fy\n8YpqfpXLwz6ZtxLcvHUVVwoIJ3XCRAdnfIoXXGBNVBpTH6EQkvMXVK59n88/eY/qlauk16/jOlOO\nX7yiUK3QePYF5YLF1vqbNKc6iUwB1z1g880i17+zh5va5ry3ZNwZ8fgXn/DWW3us72dpXFxg5ERO\nrBHPZqek3/gm7/3V5xT2trj8YkySVTA0TKdBaaNCwrdYiRwmvRJ3VqsMHjxn49YmJ+1zstaCfD7B\n5lYFQYSZu4Gf/mpqmmgd3rx7jdb9DpHVY+3NTdY201T2Ij558IL8azc5//lDetWI7/23v8fDX3zA\nbOFycDQmTwirAapfovnrQ177V28xy7f44J373P39N1j5ybd48Le/4PTpJ3zjD+8QkwKsocSLX37B\ntfUqt3/0L3j6rEElJ8ClhepOmZ3GqOaSiBWBm7/72/QfPuLmzSucvvJoh/DaT15Dzk7oPlkiuwFb\nlRVsJ6C6usWCIdqFx3wwoIbKViXBF3/6BbW7P+Dlsyc0nrcppEromxJGVeLRw0eYv7/OxnqVwP5q\nSvBiWeI1h0gxyJYzpOc+/UKOgROxvq0yiUfMej309QJGfUZtvYr7yqPZ1PDzK8Q3DSa9FuOFRzYw\nCCOLwfEpr/1gi8uPnjIeDwhSt3h08gmNL+sIfkR5ZZvL4Qne+QmlnTWWhRKP7zepbN3Dlk0effgL\n2uMOr/3e7xCezakaArnCDg0jwfL4kHJk0rPHPH14REJVGHV7nD3+lJXv7zJxG6SLKqLSZHE0g7JE\nQiuwU0wiW212r6/hDCscHc8oJxS0QoyzX73EX73+m545mZcQBIFWaU5hGpCVG9iDPCf3GowrPhev\nnyCebrPuWwgvbjCYJtl/dw+evk3RVpiIJpe9a4zXGuSNV9RODbKPNlipnjO6fYDVqrHzVGXcvs3W\ngxyV//gWO2OL+XSDWL6OXq7jvPFLotU63Xtd8od5xOvv48gWsXmZwrLDpGjhnJao1RfkL0uknCrh\nzY8px6esdQ3a6322ukP0K0+Zr/WJj2G668KDKwTZGPM7R2TSpyyyHv1gnWhq8OJmn+bNJi8TqyS+\nTqMiEgyiucOJeMiZfck07jI2I8JWREqqoaQzpDSTfDGJsimwyAlsZXSctSUuI3xjRu+lhO65REKS\nlNjDO42Ie+sY8xA99OhLPqI4ZRnqOJ6EP5xSUn3mJxD2T5kbSwSzR4I0YSrPYlFnUp/RkIfo/TiJ\nZQHsDjlzzGiqs5xJmMqYYbuO6ITIQZXQ8jG6MxzRYbnsI4QlwumMRFxHXdXYcTRSYpqlppLWByxk\nk2K+ioCDZ36tiVrIERNBQMxYqCcK1nJAZI8pig6qZNMbRfQmOtTSDJUljieiRGOqdAkaCUqLGAkD\nUqkZ41SXnJTDzfYJBR1F1sl4EmEvhphMMklJjOYWU3WOY5ksp10SmYggK5KKbGbtGIuLAcuqSGDm\nMGyftOKzKubQemPGMgwXJWoDmawcRxp0YNojyqWo2OCMXUJphbITo6wtmck6oaOwZTTxpJDFImKp\nKIRGmoaSx02GlBIz5IqBpny1ArdmM5rLLxi+HDFZWcPTPQ7COZtzjfThjEQYMg5HRGS5ECPm0Qnr\nlQBlpU9/fwtPytA5PcF3RezRMaEA+VYVkyKdSYubezYVuUJyt0iyXkbdc7k0ppzIAdZyiFrosxpK\nqOcxttwMd9/yECUJbxLhLTzC3JxS4RrduMKXJY1ZaDDIJNgYJvDsJcm0Tr6fRI8ncTcyBK7Nk7DN\nVGtycfSAZC+JkU4wkZK0vHMuR0kiZYe552I4FSbJGWHjCOWfXO1fDTx+cgjTlEnzSZx46yZKa8Bs\nuk7eWqM+7fGqFuNet8jYtRFaIr1QR9euYS4PsA2B6/l9MsULzt0NnizOOLh+k7pkc/1ih4t2lbMr\nx6y/OyFuRGQ2urySLdr3EnTKIYvaC+K7ArtChYuixo2Pr2EGEc16nLJRZ2wqtAYl9PU2P354iNJr\nMIvXyHgZ+m8/INzaITlq09npU24NOZeatM5WWJstSSVcwoMCXY65SCdRshVutARevj0gPazj1XRe\nzJssixD8v0RH/+xBFNGSmBiSvL5K23LxhCzOQsEvNxmaICQU3thbYfZijJLI4/kSi5ct1tU4k1aL\npFFA1EISuTyxtsdCApMZBRSkq2u8/8kv8NsGhd2rKOsjnj55gh3L4ecX0GrieENeHotkV79B/+EF\nKbXHUtTIFnYpVHP84t/9I9kfvYZoKZhegdWVDOuZMpVYktW7Ck/+/UPymZCJ9JL5yxHjwOLR0SWx\nKM6wHeGnAvqKQur7a7x45z9guFkaxw6VvZtkqjqffPiIK2WXcNwCYKbFuOiMGLYGVL5b5OTdz9DX\n7jB+HuFvF1kejLDGNveu7fPO//E+ueurrGds1q7n+OyjFkosiSSPEWoe6RGIRyG52jbNPzvCkUQ8\nUpSNGJ3uObvbN+i324Rmlpf+lMNff8xGKFIq7LA0U4xHEak1CSNV4vr+Bu13D7j6b67x9D98QOG7\nebofv6KwqiFmtugP75OurtB9PkYazpGrEvr3VhnoMzxV4GljzPnZISs7SZ4ffEgx2iWXq5Aru+hV\nk4O//ojtu1dQn7SoX06Qha8OUKMhdM5m/P0fv0fmW7dwumMCR2bt6j2eHFwQupdYYwe/77Px+g85\nfnHBYecl1TWX9vErsrs5DH9GXtBIJXUiV+Kw3+Xhzx6xc+cafqBSM0bU9m8hiAt4OiG1t0I63GaZ\n3+DdL98lL8yxZwEIAzb28rh2mteuvMX05Svu/Ot7/Pqd98kWsqTTNoMwwaSapGpqVCprjEd9YoGB\nms5gPz0n6mus3dzi8S/PSeDTc2QS1zSOnowwEik++D//Ei/ooycDzJjK7t0fYpSglhr9pmXM9BxR\n8VESHYT7bxC6Kom+jvZyC7VwSFtT0fwFxosymdBGCFNoSxvzqISUH3Lr43VyMxtFCti/cJnfeUGh\nJZD4k58ymWfIbh8wr3QpSkPCyoCMMMU93idYiEixJc/eOmfYuE7MkshV3sN3VSaxBJMCJIwWBglu\nHunMH3+XXvcm7WSc3HMDGQHzi33SywFipHJ8LaJ8mmdy64yLn35IM5UhtjKmvdcnIXR4VMqjLA3i\nko9TmDAZX8UeblCuHNBe/fprG3UjUlMoh1kYC5ixgIJcwrF6HE8uWIZj3E6cwJ/Tn40p6lMajkVZ\nTCGxJB3NyGRtQkUjnZuyDEKyksGF2ETp+fSWMTJSjPgsi25n8JUxlXWDhuUTVNKE8ThSV8HX8uRM\nC8MXCQONYj4GvoQtzpnbIrFqkVEA8/iEqSYw07Pk1QqLkkzGsrEyE+y4SbmkI6dL2KtDDFEjNZOR\nLiTOFw69uYPcnyEKGSLVoz3pouQUGH0NovTBDD3jMsxo6NtzkuYS1ZBYzkS6C5+teIr4YkkmUAjC\nGSnFoV8s0mtXUfIqba3HYCkh2ha2kcZMLYgFMfQxpFcFRtMEoQXzhEXCmVAiznQ4I1hdMJcMrMWC\nuC8TmxUpZPooKR0GNuFcJtSzOOICq9HiorxJ5McougJWXGDoOUSrWdxYBWXg0QgTlLMRUSais5yi\nRCtIYx/NzHFihYxSMUbJLtGki+e3UfsScyWFo22SDGJMja80L/p2iW1pg2ygkW2fIcYyiCOFvtiF\nfAk9CKgWIuypzZW5wOZEQ4lSnJ1a6L0jTBWkXJykOSE66pBOrlPVdLKpHH45x/mkwLCUZ3rWohGT\nsF7KFIc5mPnkZ21Wk2tcmD4n6pBn8UvG81UiRWRzJ0v7LMHInTKdBsw3XLRkkst9k4xlQyWN1Y8h\nLGeMXr2gUx9jBC5x10Q8XiJ7A4zbVzhTXhLTYH04I1Wco17PYA4kJClOtD0gb+YZi0lGw690t5uK\ny1/fmRHXJEqxIrN1iSDu892nIYeXh/hvx7iiD1naZ2zaEXOnzmmqRVpzcPJbdN6Kozee8SydYTU8\nIb8csbOMWBNkFte6bF294J51m2FBp3sSItgmx7+3wY0HS6RIRLjwCfsbSPpNJGcFrRHj0ggYyWNc\nRSDdzFA0m9iNOEeZ6zy42sO0XPxdl72T12mFcxI5hZvdFRa+xO2NHSSpi/1wB3ttQs0METZBa+Vo\nHT0nqFUYiA7iXofDbIfsj0Qy3T6h/F/JOg9B5PDhIeUVjVJhwVSdcN6ccPzBUwbdATPN5aAlctaY\nkN4rsGi0yF0rMrMkjNfvYD8bo+/939y9V7Ml+ZXd98vMk+bkyeO9uefauqZ8V1c79DTQcMQAQ44N\nkQpRDIVCEXrXs76CPoD0MmRIlIYzYgyBAQZD9gDoRhfaV1eXN9e7c4/3Jn2mHkrRzSfGPE7w/xFW\n/Hfstc3aK431SY/lqxW8FsxKFly9Tu9Bh81Xf4xn2Myfd7FMnZ3iJjula7y4t49ciLMZGsTTZRqn\nj+hFJugLiBouO6+v4Zo6iWyKD/7NX2EUZPwlifi8iJoUmaYGBE0Zu9MlulYnr1boN3sI+iaXSnUa\n5wcsFkNWpAzdB78gHy+Rj1yjUE1z6Wae49ZXEJHI3I5x1jtEfHnShHLTZzQX8NyQ+qW3ECQL1erR\n3X3C73/nbfYbD8mubXLxn06ZSg6xcpULv4YzVxgLfQJPxbtcJZne4lHngsF4wNLaJt1+m+9ducWs\n1cRbKpKXSvz64/co1IqM52doxSSTbkjltVX2f/EF8fwKsYRFSVxi/LsPGQ9AioRMjwbEljzsFwes\n/OEKbvMFS6s+s/MITixC8tU8eSnJ8+cD7JmJ90WT4dmU8mUXa5zl4F6PV9Y3cCwbczBhOPcpznXm\nTZtXXrnCR5/NSNTXMcWXShJPb7GyusJb31tBCU2Ma69ze3mFlbeKCPstbm7cRKoHJG9ucfrVR1jZ\nKGbYI7V2ndnH+5z+7QP8bJ1nwphT/xDBsxHmIZ6kEtv2uPzuWzy/d4bi52mVdDQxitfvsPGT68Tr\nU5KTIczjXL1VpHlwzif/19+xXInidk9RhARORESP1OjPT5GtBOuFJTZWSgzCM8rqCpoXUL4uo2Tq\n+IUs06OHtE7OELsjWkOX0b17FFNLRLQRozDG8q1v0e+0efvbNynFNhEUiUJthVH3m0Vqp/qU1GSA\nf/8mkatPcc0U2aM8zZ0m416d6N4OB/UssU4Zt9YinjrC2T4lVjlhtijQevdTpBv7vHo+xbUqKGYM\naZzkIh7gDvL4rTpyJ0fw4hJmTiId6yHnpiR+/EsmvQTb72+RE0bYvSziyRaVTIcr//57bL5XJ3F/\nHffJFaLHOcTiOStb97DWj3jxx3dx2+uQOWThlijux3HKJ3hmmsCVye7mWP3SJDMdovgLAkdFyB9g\npc8oNFVK/Sip+mNicptgd4Nh5uJrPBJ6jMmSj12KkPKjjKQQWxiR2IwT+jp9J2BaEJF6M7SxSteb\n4yVd5q5FwYvTDg28QOLcdvAsj/SiwCDwiSsp7MyMZAY8W2O0aDIbztD9FI5pQmgQM208XSeaSGCM\nB4ycKVFHJxot0RZDSp6HoMgslQTCpk2SKZJRpKALRIQhveKA6XHIIhslNSmiKiLO4YKxMMSb+3iV\nBd2Ew3zNQRMCjHySpj3iYtJiNp2TE6N40yihH/0aj0B1GRxYCA2ZOVH6YYyBGaHnCoShw7njMVYi\ntJISuhpnaJtIkQ6p1BzbhrIQkEaiqZaIOBF8NYrtuJwVJWzOkdJTZopMKIcYTgpJEAiWogitPIm8\nxoriM3c6SDmf/jiFHZWJ5zPErS5Br4XYrCDJGYqTEEdfMMn28AMZMdZClExsK0QvVyiJFv2mj2Qu\nCOICF6LFIqnT8z3qmkjMz5NrxbAKVXxLx4pPiA1D1P4RjhSQmLzsvGRtFTMloggtohsFPN9lUhwx\naS84TUawNR/7LEq8ItET87RWsuyeu6Q2spTqGyyl26gTmcLVa+iZApI44UA6wR0HJCwDY9GikFKR\nN/OoiTPqBYNFakCKY1I3XqHX6WMLE4ypj3dgM3x8QAqDxdkehStVIn6ajNbEHptEDruYu2MW28vM\n5vsU5Dlis4kTyxCsmQw9hy5TlJSC6elE5QiLwgbO3GNqprlcfxNnekAhJaAGKrGOyF7PJqGKX6vR\nzjIVamGBxfMY6sYBaclieSxyr+OQSq2jCHNGH69iztLsbZqMVwUuOxIp0aTa6SM+VYlaO+i+R2fD\nxt0q8Vm9gTDuMnPr7Cs78OABL96ZMX9rhhevsvJelEP9gusv6njCMif+ExbzNvLZKY8yz5g1JIST\nSwx26nx1LcR64vPgepNrmQvyT64zWFj0DA9HHvA0f0qksiAy6SMWDU4eNUikEozDFk2jysaLHuuP\nryGZY3TjKqcRG7FVY/HeKuJRBcXK0tCyRBD+QRTlHz2JEryQQmGTxdMhg/0MWTHktT96jbidJxH3\nyPTTFAOfyvduMmu0GORT9KQITjikcee3CJUsG0tFfvfopyiJLCtXFZyzAdMXT5gLU45/9T7nz57R\nNzuYvsqDx8fMlD7P/u4ul374Gr/8j/+Bb/3gBj1HQ+jOoSBidi0OZheEWQE/H6KIAvGtKsWRRVNw\nEHMCvV/2EI0JhWtLhC2FzHKFq7e2aT34EPmNEurqOtKSxOEXH+Maqzx/9IzsDws0TxpMxhqHB3uk\nysukJxpzcZWs+/Iu0sEg5O0/WmP5coXdhxfYfRkvtkrt9jp3jz5ltm/w6p9VsSoxXr/8Fnff/zXb\nl2KARTV2g0I+TdnKsvhiFzFU8FD46tcf8/3/6Y95+B8/J3Ktzs0//Kf8+i++QDRhIsdJVg2SU43Y\nUgLvKGC0rXH/g9+R3NhkuRjnwZOAeOUmqZtrTGwVJRpFPJuQlkp0L+KYLQltXUCcJxAMld7REzY2\nq4Rf7rH87qvcfqdOa3fBm39WZ7kEJx8ds6jJ3Fxa5rjZ5t7ec25+Z5NHP/sV1/5lHeX4CZb7ckcs\nmS7zrHPA8weHHPz2UxYPT/n884/REiJqIcWdr55w9fq3WdIV/OvL+O0mul3j/KMjUj+sMRucsqbL\nhIM5a6kNIlqEN9/5LpoA7f0CdnSIW0xw9sHHLCsuhVd9XFSyoo14ZBK/XkX6YY3TOw+4+sotylev\nsXfYZK/ZIExGePQ3D1AFjdwiykqtyuGDT6mU63j2Eo3FkFq9yFb9HcZTOH36mNZoRCxbIb+yjrHs\n4TSH2I09Iusl4gWHZAWiforj1jGPPv4SxQzpyz6TYurrmEnkbO784Yj27z1g/2qLxs4Rj77zGPv5\nGzjeOlrMYl14xEASMb0K01mWx6sWTzanrFuH4OXYrww52/SxfvAJ5ystzm5fUAynbHVCZloMP6bQ\nrOq0RY1jIU1u0kX44Cbb+xqTpR6HmwHDW2fYxT5O5jFHt59w9nv7nEpZCvMp+/NVYmvPOFsbcvXD\nOPn7JZLJFrNlE70Txdsckwwk5lvPcb94hXbJ5cW2zrgQYWHWOCuLrO3mOLh+wf73vyA8WKP+cIMZ\nRYyugkzwNR6mbOKRwzrRiRQcon6RmFVkcGFTHMrIOYPiYIKdXUJ2Y7jjMlIvgmRB2x9RSkRAiVEU\nFlz0VUa+RW40R1J1umOFxbhHoQCx2DKZoksimaJ5eo4ybBDzE4jDAFFYYGoZomacMOzRDVuEXRsn\nmJGUo/iSgkmKSXaJZWmEZGk4ikh4+lJJZy1mdASffmeB5JooTZ2ZWGC6sPBnEhx5KNUsoTWkWCmT\nTTtEtCKj0ER0PbLL39gCWbOQyEqCRDmB01oQxKPkBBE/VPC1Iimli2zPwFWIz300VSYMsjTyMq44\nZTYTaQsC5ZmLEe1hmzPqpCj2RPpSGmU4Jb5kQ6fCwA2xZgpBNM0sH0H25gwmMUZWBnfsYebmJGNx\nBoGFnhcoKmDmG6iTCwS7jy5m8M/zxBAY9VXOXDC0IfasS2hamKpOrGAQ9wwUwSfhWcQnXZrZKpO0\nghTOKUynCHaZYkRl7jng6ozMgNn/71GdjlgEyYCGqSLvQVArkh57FK4uod5fkHR9UAKUUCRWTSOd\nHyA5ZwxaBgeDFqNuAbM5pDedMpFSnD4XiTpT5uY5qCPa6wXae4/IRmsEToLBVKI0XEPRtxg3Z2TK\nMbJ6BFsSyK5cJataPNhvcBZUkV8MELtNBuVlUudjBCtg2VRJejHSYhFZ7SIaEcqFAhxYLMcMlqcR\nUvYER3GwgiaXj9rogUSsonD82CISVLmYPSOdlohjYUQk4pKAUn9ZqVcdhQou8bVd5n2RjHzK/aRK\n4r8zaBcUVn9aQVixOfzJjGS6yFu/zpJeFPkLdUo/D9Hkh4yum6SfeYz3yyj9Bn/6cBVzbYHZP+Ta\n0z1kyUF/lkIe1HGOulRHIzYiNo+u9bGEKG7M5mhtyPLlEtuhiHEry5YX5ejzAbd2+8hei8yoSDMe\nIb/UZSmpsT6oMHsxor6roaolnHKXwZlKRZ4wDmOMZB33okVQyyEUntFNLDiq7VKbp6gfmHSXPTYH\nUWJf+syqHWzpv5JOlCBEmFxcIFd3WKnqnE1V1FnA8vUC2uZ3uP/ZQ1ZfTxA/dpi1QmRvRvjpCZlv\nv8O4OeWV76T57H//W6TMEqetZ2S3X2Ohx5kMOmjFNPG0TNIzWXgaKT/BymqV1bdXIBFiHx1SEAB/\nVrQAACAASURBVAqcPTzju+++jbewuffxI/QrdZZHEWxjRnGeYztRwrt/Qi8RR4t1ObvzgnbklFEQ\nY+v6W9R3RP7uL98jLtRxPZf1wgax2Jx8UsW7lSUa1ZgPbKLdKZrYZ7acJZJaI6Yk6Tx3qF2qY6df\nmiGK8wadR3vMnTZGdUy0KqM1WxxOTsiFKdZupvj5v/6I/Ns1WpML6DoMlBhjY4aflTF3ByhVkHIy\namvK+k6R+tUa7/3Fv0WvybxaiXPxV5+TXY9iVEukrTOWXn2XZ3e/INiB1vmMRa/LjT/eoXl3wHn3\nK3a+LdD+7A7DkYCod9Cz11hZXWV4eoSkSowbFrd2XqPx9HdEBZNgRSdWrJO7Uqc33cWdK6CFDE9F\ngkwIRhzH9Ll72qSWT5FJVrjz5Akr37/NqmXQEVQi45dJUp7NuLKaIBMtosQ32Hc7TKcBo4GHG0+T\nbI+wPIuz1hM21RUkt07+pog5O8EfTdm4fpvRYMCtWxXs8RQlkDk6aaGnVfTaCEYBb7y1SiQd8Oz5\nE+xcDnPU46u/uUvmW+/Q+mTOmlDGl8tMTg4p3FxDH89JZnUqRgJvIqIn4wztCJ8/3me1dome1ae7\ne8j16+ucHxxzcvYpm0sxFicBb/yLP+H46QHLyw5+P+DyH7zJo7FMYaZiNUwODpqcdyckU8sUf/QK\n0/EuCTWCrnxzJ2rWTPLahzVu/uwG6r0bLC9MHFXg1mQfcehQPvYZ729RqxyTj1yg5k+JHZTIPl8m\n1limEZdJX2yQP1XY718j8+lNEvqAYdbl+M09Bj98n/GVh0j1j0mnDjESQ7zWK0SnyyBBI2FR6C4o\nf5plHuqcrbjE+2ki51e5dhrBt2Jo2884q4L5i5/Qd9fprvo8WLcoHRosKhMizRK5qUPbqbM8iHL5\noxTrBzLzfppr5yPWxhNONzosneWpKH2UXJ9WzMFf3mWuaOQX33RexLlCXpmCNCWMVFCHAvNqE9e0\nsMQxylRETCVIznVmZY/kdIRY7DGNCeT8KJ7vs5hHmas6K0oM7Ai98hzOTap6BncR49iZcpFq0mmO\nUKcOWmwVKblOpwbRpEnfljHkBUJEwNKKiCtxWE3SVZYR5S7HHZNFtoOPzblrMdZc8qLKUA6YL6sI\nfQhKLVKVAnIux6IoIxtTyl1IhAJpA8xeH0nW0CYW2iRNcmqR9RKMxzbO4D8b52Vr5PomUnCBIleJ\nt8ZMIzbpaEApsIiEaVISRIQxM8lmpsXRXRknFIlqNlHfIFMwCBJjxicCsgVyMkEzC8VOnLicZzwd\nEa/ZJDyFkTBDbLok+y1cNyTu9ZHDMU6oEVpJ2mc91OGAllzDt17i2yFGtxSQOTnDQGLuTinHUgQD\nOA1yjDMJxHwFPZTItfrke1GigomtGcjlFEHYQLBtZnGPsNtHz3eJhR76XMArQtJZkHdeJsnpwMKw\n5pQ30piBQWpuIRtpmq0uuYrAIKrQb74gOAg5mR6RqV0ntVpmTevh9xQoDanc3mTwtEVs3qJ4VcIR\nHNKbMfTzMeX9MV1xxsGDfZKROIqRYbrmoCiHGILK88YQoyeyWa6SDS9wllLUSiHFxAxTDJgmNOwz\nk+x1nWjNwZFCnKbNUAvp2wY9p8DuoYmYVjn3NY6cNpYWYdVPoj4JGeXzzCpZ3BenuPkZa7UFS1YW\ny13AWME3GzjBENcdAdAZB5y+UFmkbhM/HvMsNNheucLT//UvCS6fkY+f0U5qGBOVyAuFqZPm89WA\nf15Z4tS+IKa8Rbcz5jTe4OKf+AySq0RVh18lVNamG+yHFc6iS+TydbJHAqWNIn0xSVsFfbeFvvKE\n+LjA2HcJGiolTWY/NeMk3SazvImTchDjCrq/TXq44FHOpXejhffpPgm9hlma4DxcsK9YXI8r9DIL\nLC2DsaQS01Vis3MiozQ7lRwVqUhc7HEuH7P6ZpZp3eY0JZMVryAOv9mr/C+9f/Qkyg+hUFwmiE2Y\n1fLUaikOPv6CUSfK9a1V4tdVxNQqfilJ6+ApYrKCg0Dv5HPA42wqM64uMHxIGDEu9h5jTW0S6S3i\niyRJZYO2k2X84ivkchR5Q6H/9Ax3EmFRMJhdirD+rQqP/t1fY2Sq5K2AK+si7shh7/4hgeqRrscZ\n9ERSaoASZgjyCsvLJRhNkFYEpOIm66UCD55+COs7WOcu8jDk4KMD5FQda/+Uf/bf/7eMHp1g5LYJ\n53u8dbvE4wef4Ygy1VqS3Pzl/L5y8ypHixClfJ32Lx+z9e6PefrZp9AwSKc8gm4fLQruiwvUjQBP\nLqFMBcw7B7z7+iUUeczDX3/E0sYrCDtxPvzwEeWbVfSyTiZf4sV+H1e0EKMeBWtOqKZofPQhxTDB\npWCJpNynsP0K3feOyN8qsberc+lbN5Cyq/Q/eoq2UEEPGRkqLx420SoSo8URVtpB0Q2Gnz2jsv5j\nFrt7zD0Zu+PQET1Ewcc5aTMwA7QbKezzC/TLUfbaM+SuTH3tKnffe8Zuq02YF7AyL32N5mqc3sGQ\nwA0YBSfUlzLkLIdJ06F6KYkjubR9F3m6zv29JmpeY3Ju0OteMBlGaO4+pm+lsG2Y7R+TWX+VYDYm\npa5QWb1M44s+cirKyAzxGwElrcbuURfpss549ALLCPjyF/8vlR8aNLttvIspwitpdlbe4vOTx4gL\ni/PmQ6R8Cm3c5Hx4n2QqxCgYnDg2BWOHSxu3mRcN1GWZw988JH0px4M7XfpWSFuIsa3pBAJcWAHp\n6iWqkkLzyw/YyFR4eO+IybMFdekbbzRtr4o3tnB0GWXlK56XdLbbEudSlpvnMo/LESbLI1qjJN3T\nbZIzEb16grN1n2AkU//0Ms4wxUVMojSYkpY7nCRUIoV9RuWAjhFiLg3RolMWUTjNWXjqFK/6nC8v\nG3zvE5ntj3N05DpV04NZgqhjI7tTwo1nhKFBWRuQGbhEv/85g7Uz/Ngp0alGpxKQONHJnsTxmkWi\ntoUriAyVLTrFFqUXZSLnRabWGttnPt7dKzTEJK1BDTHZwRmXCNNdBk7yazzUmMtMkkgaApGEy0zw\nmTl51FUDW1xiMvbojX0i6THGIoGx5KP5S6zEHLxSCmuWZalqMh9PCbwIo1iXclpDdsdYgwgkXFJq\ngvIgQKwUCZQegu2Ty3s4rTFGL02QE2gcTRlKU6IX52QnAl7LJpi1cSZRKhmRgpNCnilE3Sri4IKp\nnKBaK1EUNBLRkFq/RnvW56JrYvTnKKZMMA+wp1OmiwKuBQNXpCOFeJqHLHqYikc25eIa35CoceOY\nRSXC/CLNTGnia2WCQYpuqDIcTBjIIrarYy8yzNUISujRciW0UZeF4xKGInNrxmSSw4uJtCWH41GX\npKkwVMc4MRsx9DEvNOJhi3R8TCz0yWgKlhRHTuQxQhEz67M5HVDWFuh2inRvgilGyccylLUUsZ7F\nTFEZT7pEEwbjnEYtSJAeeKidPovehFhuzGAaEFREzgSF0djBmQ+JzdKUXZNEI8TT85iLGGcscJUW\nmpalF0RY9F8S7bPsgqMzlf2OgLmzwGwm8WIGc0/mZDxHrKms1G7jWR1q8QTSWZvCPEHTdEiXU5jk\nOTsxWcoFyLOQedMik8kjnQ5xc2nmxRQ3yjtsXlkmtjjF7X9FezCh6yZoHT2n5JnsdS0uzk7pdRMM\nBZNOV8c9nKNqCp4YY1q+YPTUJ9bXMUOPrCKRz2VwIwKbmotxaYjghQRPXyCcu8xX64wjoBaS6IcN\nLp1MGWeqCP0ppzODkzWHvJaGRIV0NcVAjzEavhQvJfWAdKbItX2b+4sIt8cVeh/epfKvvsv2oyrv\n3whQXpj4DxxSiT7Dqs3VxpjuPQnXWiK32ySfvYZ5O8r2vSi3PrZ5In1OzS/QNNtMvzuhKko0ju5w\nkgdDO2O6ekT5YEGVa0z9DMbM4uo4zYyn/FoIWbrfZ/7mEZfXHnDnqk1UKhFrTjA7C5L3DS6qGSLv\nanyVmxC5JHM2P8Mu3eAgdcGWf4tRy+FBcpehUEBux9lbVrgfPqfwIMDXNIaxGyR+ZnO4ZnGp3cZ7\n0kOJflOI/ZfeP3oShejCepLoYo6nuPQ++YzVH9wikZNBnaIoSTrPx9z/y1/ye9//CVkxwC0X2f27\nIfn1S5SkGSuVKyxpMcqbt/n4zlOEXIbLlxI8ufsBJ3YPw5C59ea7iN6Ek9894rDfQN8pcV28QsIr\nM33ewC6tUU0WEV+vsJh7PHx+xFJpi+ncJv7GKko2Tm9g0pYFxOg2hq6xWb/G7gcfocki5kJC1g1+\nfPsVzk6PwfdYLl0id+qgv1li8OA+xxMRo5xhvbvJZ798yMVgTPYNldb7n9Mb9QCIaBKyPOfs7+6h\nv/YOX3z0HqOZTeqdLQYXCQZ2l5ou0/7yAZq1xZoyQYiICKt1Jo+mmKbNzrt/xP7uE2bvPyOTW+Xh\nT4+5VlimdfyY0/0+0wpoxTqTVJrzozPK37lNY3ABgYCTjNP56GPkt2rs/+YrKt+t89P/7R5rv79F\nbNmiPc9w9MlTYqFBcmeTyZct4pksB799RO31OnIxhcGCR4f32b+wKG5epvfxb6h++1XcqEd06iH4\ncRJhnKvFLdxnfYaTNttbWVR1yvL2a7xZr0Pwcl4dcy8oXFkjXoojHdgEE0h9+zs07r5HKXmJ2NoN\neNbGVcckUy7mqEVs1OdSeoekvGAq5vHSHTxLY1EqMDy8YOX1KpPhnPFoQE6WGfoSkaRLqSDhyR6+\nMWG5sEy8YXLr0hZ9J0H/7hnC6ZiHj+4TUzL88qf/Dze2XiOTCRFsn+bHn8DmFS56Q87u2VjDIdN7\nByw2kzz87C7PP3nAtRvbzCIO7umEnX/+OiPBR3X7TNwxB2abgjenbuts/2gLp7zCl80HvPPGKvlk\nh92jxtchEy/NOf/eMUdilNIkgq64DB7fYufM4PHKAKm6SyrXxCicETMWhM+uoj/dJr4QePHaCX5+\njw3xgK0jg2FS4vxqm9LnOaaewqv/5+sUPrtGqR3hwK8TP8+h5Ubs/clXtG62iTQyLLwl9jdUslqL\nTr5B7s5VhEkSL3/IV5EyoThl/ugabfNVrvwsz61PV1ma6CTUE+ShjqObKPMQzjeIvf82/tW7nFzb\np36URb50j15OQzzPEbbqKJeOkX/zLkUzRGrr3HhvjTA3ZbE6+xqPsSWRdCNYkonZNdECHXG2QHAc\nsoURsUAjHRvT7SxIOGccNeaMh1MWnkjkxGSW69IaKZQslXmqTVoqYb9Q8JQkc79DMLMZT1ymtRKZ\nsUfLF0ikJU47E2JRldB2iJ9OEaUQp2ETqRQRY3Gi2RgSDmbGYxTMMVs2/ixE7LksEgIRV6R/EhB0\nZeZOjCAmUtTzpGsq2WyCnBClfVlCEGPYtRaBFsU2pqiixMhXkYQ8w7GEFeQZ9c6/xkOoFVFmYzKl\nC2SpiuYOmCe7xEIFN29TmYsYUoChNYjYIdHREGl2QUzJkJPrTMQZMVsDT8R341QjIkuWiO8E6COX\nnuqSU1aJZCY4XgQ7VsHMSti9GBG7hxvvEo/PMRsug7TAWTLgKKbTSU8YlRRCySaSmTEu5RhHA6KS\njdkViIQ+o7iMm5TJKC7WkoVEwCgTpTkMMcIBcnWK7i7jTBX8gcNJXSZwbaJxmYQTohDF9NuI2ohB\n/OUfuTLOk16SEGYzIl85dL1jrCfHbNQTRFMq2rnESfOcqbeK3irRKjg0zi+YSUm67OKOu1xOJyjm\ndkhtbGKuxhlFJshmktl5k2m/xbHdYTCzGC8X0ON1VgOJXEyEZJZIKksxsiB/TSYqNViO6qTXFzgb\nVcZCD1GWqDnrJK/miUbjOBWLidVHcTpk4yVmaIinIoqokMulMbYEqp+0CA5OSE8V9Lev0U9OUc02\n2XSG6FxH7RnYJyZfTFsEiwSBZSEIL0e+UmtCbjWg9XmT4Q8N5tMXpDc8ttQJsjqmdrFBMgyYX5VR\nWhP2bsQJ2nNayS9ZFYucS6vkxx1if7+EpFocShVkZwPP6tG/NWTt0yR93eGN/mu4yoLRi2W8XsAg\nVaeZnmAsXCyhxODsnG7ida7250CNrZ+/Te8znXcGa0w7bU5vx8GSqPkD1IbJ5kmK7MmArfdWSCQD\nrAVsd4ucD7/kSkxia1pCOrOxnRZXFJutQYUHrz8lmzjhW66Iesti4/0Fn2ghzdfbeP+1GBCDTOPe\nZ4zMFGknh1bc4f1/9ynepsGXf/Nz3ny1yoNnv0NdWufw8IyupqC052ylZbKSwfP7x1idBeNyQP/h\nFyTMJMmhQH86oiZF2JAcKkvrGKtlFtYQc2Cx5MQpaQnuf/Y71LzIvS9aLBeT/PyjDylcu8HB/hk9\nhtx8o06n2SAyWUKsuzz+zR1WLIVUYkrvPEFrPoZkjp/9+b+mumag5JLcvf9bhLjJKBXFXYmAJFDZ\neIWeIhMt6EiBTTt/hNzrkFI8rhiXOHQDgtzLnZfu+w9Zu/IadkFhe6fE0izGpe0KtcGA7sFd8sU3\n6Z366Hqd1Gaa3Xaf7Y00CSNNY+8eFFVaT+8wL8Upv3mT6o5O5XqE44sO82yZRDAmsZqg9+AQJakz\nb06JRlySeoK9u59yeesmiWqJ+EUcbSJRSTjcurXO3X/7U87uHnP9+2nGjS6pG2XUYIixIrJ19TW8\nbIWLL+/ilpeZPNojkl/n97dLfPrzO2y/+SOkj8/w2yPUYorJ411K3y7y6L2v2FwrI2wvE84NRjMJ\nLavQ/OSE+PBlZ862cgQtkYt5n80//haqmuDKm3WGIvzur37NLNJlXpZ48IvPqV1dwypEcW2T0eSA\nyNYNImGfteWbfHnvIf0vdrn2P17i0a9/izVx8BsmA6uN0gvoXUywrBS9fpMlQSSbqnA0H3N2cUZM\n8Eldq+H4BtGhjZDRkRMG/fMhw1SM37u+RTCE2PmC0upV9HWRnbev0XjxjIKs0Bke88q1Dex0kV7T\nRY8kCUYBVzMacy9OWE4jxSqoSZlnj37DxfNdvIsmt1av8/RgRDG3jr76zcXy46UQWZyxFG8SbSlY\nzy7jXXlO4/oBlX5A5PAaF/MCzd1bJD69gjdNk5a6aJ/dRlYEZlKKJ5rCWTaC3yux8yxJbpqDSR3r\n0hmj2RIRUaWW2yVtDyj2k6T2KsizkPD6RxzdOEDPn5E9TzNS4tg/+op21KcTyRIfFmhtnTJ7/R5y\n7oh5PMpxFDp6jNCJYZpxSPpM6lPm6Sli7pxOcUiJOXbVo1PQsLtlTD0ClT7W1RdoK084T2iI6TZ7\nf3KH8zWThPVNK16RZgiWTHTmsMgJyMUB6TDOaO4wVGxE64Se5WBUPBwpwlKokNFMFC3CIOMQtmNo\nloiSTOEuNEbhmOGSS3feJ6VkCOMSMVdmMT5Gj9ikrTKLeIREtYA0mtAtR0AxqK5loGbQ9FzskxaZ\nqEFBiaGPNbTeGDfrY5RcJss9koLCoHuBY9j46YBE3kJNmUjzBp4chwC6ow7RhshC65A08/gTm3zT\nwpqKiIgMEw3ykRA9Macmx7/Gwzxt45oaXVejIB7TyWdATBPMm6T8Eh29i5qTSEtJ0kqCTnmBHC0i\nSmO8oIFakeguYpg6pPUIDT/FLLSQXRMz4qJJM2jt47dd5qk8Y9Ek1p3T0WZMxQzCOKQ39HFjY4xB\nBMXNICldInqO0JexehbnHZ+8JQMa6nIVuxwQn3mQdLBnLmpPJnsSx7bS4E8wcn1cMY/kSqCekE9P\nkYMpRsRl7MtYs3Mi+TSiHCc+yeAmosS1l+lvrukoah5BlihlkpR1m/D6KtF5FKk1xDNcKt+qMtMP\nmfR2GUcznHs9InGJdbPCQoiwbza4e/Gc+XxK/cEu+nGB5zGBwvJ1/LbNvBehp0boOUNEb0HnxQn7\nQ5GakcHxXCLqEvPnKud+jamfJXGRwTq9YNkqkhjpnA4f0NuVOLEVVnMFLvI+D19MGeY7aFmbdDaN\nZ2QxImtsepeZfW+TSvY2zbzEw6MRsrqMsa4zikHXHxCR25jVBBVnzLCiYngliu5LPHr5CLr9FQev\n9smEcCaJaF9FOR3VEQYaE/M5L95WeGevzqixoOTL4C8j93WevWFRDzs0JzD77qc8uxUjzF2QDTX8\nowhOK8X6JY15NskL7wmZckAt12F6tUTaFUnvTnlhahR8lba2iS6/oF/3mDcdnIyLWl3h5NBj/22P\n68MZ40WCix/IVM59ng2WcGMa2VSe9s6M62oMJylzUQto1Z6RP1wjOezS+77C57ML5qUhK91ljvU4\n/mSXp/MWJJLsbLTYuJjiy/8wC+J//CTKBymRoxd5Tt5wQTOw5Q4b4zzhIgPnWWKHLda3RO59dp+d\nisJCDZjnwBWyyKbMxF1QLK0wnookX43ij04RU3GayRjN511KG3E+/N0XqEKM1M4y4kYZoxuy/ePL\niEmB6GYSQR6wrkWJjHX8/S5LpSx/96tfkYj69KwZp80xQSJPNlVmooT48R5pJ8KLD454dek2U9sk\nk8qz8AQ2ll7h5nKd2Vc9FuUFf/9v/hyjlCHoH/Oo8YSSmeMo5bGI6Qz6IxKiiym9lJ+KW1UOP/p7\nXv3R97nzi/+At14gsVGneX7AICZz+/XLTHNDFtUcicaYcmGDz3/9iP17u5T+9CqLgY4Xpghdn6kk\n8PTkgn6vg7uzykqsRm8Yo3//guV/9gqaOSSWCPGUAvvNBf6NK3gaDE+OODr7iujlALsV5/z4jNXf\n+xaXtspcPHzKt//lT3j667tofpz86ts07nzE7VyCQStOLJbGqubIxBJ8duecnTdepxlr8rjT4dLv\nv4GWj4Lo0/roKeq2zvPPvuTb397gzs8/pFysMT254DQ/QwpefvCo5DG3hqzn8jz63T6z+6e8+OSI\npcIG+i0VbWJTy2epFFVevP8B9ZTBkeyBVkDY7/PWm9/h0V9+yPb6Cg1pTvPxLtUrV7j8P3+f+5/8\nFiUPnc4J7/7JbW7/Nz/Geu6S/sGPePjgiPLmTdxBDzcDwiBJfi2JqMYxlCqx0jJH9z9DQWGeLXD5\n+8s8O7qPFk9xdreJkVgl//YGndYYI32Lx4cNivkQY8XDzMzIZxy+/OIFWVWgvIhQHVocHnvkly/x\n/OyM/LW3OXx6wY3NGsrWNtHp/OuQST9PUxhFmWgijf5bJKUBfr+KMsyhpaek5g7VYIp95ZBo8gSt\neMpADyFm4z5+neq5xMZuhvGsTNF2OX3yOva1exiBiVUak1v7ilGQgrnMwc0J494SlxoBc1UielRB\ny7XJdWJoqkfxwW0u/2KNiRHn+pGE2FWp+guc+JT4cQ57uc2Wck6qlcZfyCQiYOoWZ68+Yljrcv1E\noPDpu/SeXkULzxnOI4wqc+zt53hAulPm/JUO+gJm5jrKQsEXxuS731g2zGWVVsJjommoYci8r9JN\ndlEDH+cizkQRiRTqDHZ9xskcfVklnPp4pwO8VIK0K7OIS4ymCxTNIScWECYqYcJjVnBR/QDdMRD7\nUQhnWOM+MXeA4y0w0pA8njNwF1idGckLiVRmgpzPMD6+YOYUUQSDwVwiYcxwJjIrkSyDposzhbrr\nMugssGUFz7IQFEiEU8Z+i2wlSk7M4zaS2BkPxR8hZhSEgsZ8ENA5d/GCHnokifefXSzPFlSSwoiS\nBD1boTQ/Jxb2yFxS8MwhspHCjSw4m+ichw4FWcIToCcrjFMp7IlAvOigewLRMYSag6WJzNSQTCqC\nLsTRA4WyGkHTHOTnFhEtSjHrkBVmzH3IVjNkUyk6kkJ2qJOa5JHdBa48YRKzCSJJZK2PamSZtSaI\ngovdPWY+7yPRZBqJQCTAUTRqcpLxUKTgL0gMDWyljjQQ6MtZEHXUNZ2sKeGdxuh6C2aWSmbq4Y1f\nmrp3JguO7t5Fy49ZDDu0hQja3KPfPiSSUagGIdPBHnp+h0U+pBB22arfIh4b0pZNqoGKFAvQbIfJ\n1Ga0nCBTi3PVmpL1TeqvlAiNLiuNMyLnOabE6a8kuOEJTIRTjNgqmZSIYAa8qY+Jdyd4dZ96oULn\nYo9RzidmbBIIDWqBQBiFYKpQFxzcXoK+LaFIKSYvjhmVO/TGfYqzJg9nY6KaQDwzpXf8nIW5wD1b\nIA5HNAOPSeOcgZJi9ahN7GJOd/7SgDhshlzMdzCKdfKHOcxVn+h2ESJwenCErCZYXhrTaDdpvLGN\nqgcEyRm9VIXtO12+2jwjnopw4z8leferER3/nCczk/V+jsnNDqetPeL9GWv6KqV7Cs8qcy7NBfZm\nOkZtwuaRy7H2OdPVKMvDNqfDV5G34qhph8a5R2q9R+ZRFTtm0vmOxMr/rRNJLaHJewyGKazgjNla\nFHnPYTg85GJnk+WjKY3oKUHOwOgUWXlyg6fCBuNWib0ny4TiMhfJPPX1DVLPDKTzKBH3H0aP/vGT\nKMXlR//Dn7GxWOX4wSlLV1NkuxLdVJt2H9TtJIk3rxKNXSJZS7B3PySadGDRZ/3HW+RFEbwB7mmX\nwUGDem2ZvZlLZfUNgr0BVmpG/nqZxbNDknqGbCHL4lEbJ+GjZSps2Aa5iM/jg4BL/8ufYg73cIMk\npY0c/myEcmOJk9P7LJq7xNI6i8ZdvMcCMX1BUzzl9XcuoaxW+ORvP2ApolOJb9N+eJdn5z2eNE6Y\nCWkqr97AHYJgJ+nsHzJeltCdArkgxf5wH0H28CcvA14VQ2r5Gud/+z5aOUVz/zH2ao7KWpXK0iX+\n/t//BWVpA3UyZJIT2MgVcGMKhUKG40/PwPXQpiZhr8ng8IB339lh0lywk1vDXyzIrmWJeGWYaXTb\nU6rraZTdp5Rzeda9KROm+FORW6/ucH6hYQgmcjHP4O8fYV65xUQp8MFf/ZbaO0XMhMLhnV/R1bL0\nVIXlnUs49x/Qnc0RNZ/aGwbi+RHhixhqZoVHf/4h/bmFvy6juEmSqSyFn/yA3/zqE2rbVcpXajz9\n1SH4Lm7t5bzaCyBby+ImDObSEP3tColYQGxzDa/p45+36c3OeOVf/AHl2japXJ3XrqwxUq+vhwAA\nIABJREFUmU7w0jKnvR5X/tUOB8ePuV5dZdrMsvvZLk//j7/mtT/4Q4q5HdLXt/nigy9xxQbjXofV\nZAy726FWyaKu60QFl9q1El/e20d9c5Unf/szark0l//JFp7dxR70eXpnRCprIA2mZHdW6Yz3mT0f\nk1AVotoI4fCUJ1+MMZw8ifGco7bD1puvMf3iPotrCTzDJugc4ckChhvh5NHn7O7vMnEszk8fQP2b\nnZfe0iHPL80Z2Fms4oBoaY+N3oKiNUEKFXa/1SXiheRPc3QLHkd5n/3kKonCczZv/JJIIsROuWjF\nPSwzSe+dY14sTzjcsHD8BbreYT8aR3i6zeondfLiHielOfWJTf5gjciTIrsrUx7sdPEvf8jslV30\n7Yf87rJNzhYIe2sIj2+SPc3iifDL741IHUWIVfbpbhwyWW1QHOpsnyoMqz6GA+XyLgd+nSWOsLcf\nkC4dcyIUGIc+iugjLB3hhCFZf8h3/vomjUX9azwi3oi06CD6BpYrk0+C3POJjDTEtTiqF6K+OCGp\nlBAnHYSYi7dw6S4E4oc97OQEd3aGbnYQBxqm3kDRFPIzj1xSYdr30PMRMqFIa1glsSRj9tOkpyPs\noYNVVgmTMbyZiB8PsA6juHKA5rpo5oJhukU+phENDfzkAFMUiRdlRC3kaKzg08OZu4hxEU80iIxj\nMFeQPINetEUp2sc+j5FbKjFrTYnYTS6Vp6xradxYmaZkI8W/USsK5JmkigSegu5FgQQRs0rTipNU\nIhgM0YMsenpCva3g2i7FXo/A0cm3XXBljGkHxTjhLOVQb+tEbIFo1GAcZJi2DVrpBOZUwdYElEqa\nwdQlcOsoUVAkibElI/Q6aOkeaqWDG/dQWJBrNCnOFIy4hDlYYji4wM/GUYQqYaxCYeHj+1mihSJu\nxGTYAdeRKAZw3pD4/7h7015JEutM74ktIzMict/zZt59q+VWVVdXd7ObTTabbInUNhppNICBseeT\n57f4P4wNw7IGgi2PZWkoUsOlSfZC9lZVXXvVvXX33Pc9MiJj84cW2PokCDBgCHN+wsE5wHsO3mWS\nHxOu1ehJc2RlhrZYkKqLtPBJyDPSJRdZHBB4FpL2FbHcmnR4dXOHZHgbuRxlNb2Klu4QqoQZ6SGe\ntm2mpoJQPSPkjlieigxfXCBOAnJLgUjeQljmEco7pFdWKI7D1JYOL40Up6LPMpIipl4nX0qjjbtM\nZzXkdJLW3OZcSNN+0KFKD+VGlMO5QzsUx3rpUW1W2fpWntxwguLbJPyAF+ETJg2ZTTmMGC6iHlnI\nX3Y4M4/x15YsxSLhzJShIlKMRHAFAQZ5gvAmfnyDQjlLKbLDxmWMTS1GOe1jn/QxnT6F0Fff7Fwk\nYBQsOTgcIshd/tXxLZ7U+mykL1hupbmRTtL7kYO2D6/UZoQeNyDjs9dp0varZLUrSAs43VnFHw4p\nrudJixkqhT7JH13nrrhHcbNLX4bP1BZ1rYI1CTH67pRgnmEujWjO8+wJDs8jBQryJUv5EX7SRA66\nzIwilVKJVtXhzqCD/80l3nELdwaxb1ZpZB2EeyKDrsfRWp/9fgNPi5HPnhDLwsvjKQnhmNTynMri\nhOyrAl3rGW83djh98IjO5pQH38si/PPEef/yQVQQwG/+/kfMNxYMtw2iuRzTSJ1MPERlN8vHP/kF\nRttEUT1Wbm1guY9YvBxTuXqLyVETOVVBy0eR3Czqdp6LZ8/YWssQMyb4bQfHL/L0aZ3U/g53vzwj\no+aoXx4zFuZMevDh0X2yyT1WLBOlM8Zx0+SvFeg3HMRRmLNnR6TXr7Ie3ebGjQwzVWEzDvJoheF4\nSXZ9G7XZJpErYu9mmB/fw06KBLpMPCmhKwP6z54DA2KyznriG/iDJuVXCwSmx9WtEkHLJucvAZiO\nQ8yWErlylr3YLnrdZdNVOXk5xmkM2KlcJX4ljafL+KrM58en7IsKO9eLzJ83KIc82uqEue6xdnCL\n3gfnFNf3OPr5T4lkROSSxxtv7XD/R78iHMszDZe5/9kZm99ZodoSePbRXTLfe41RzeXN19b5/MkZ\ndsahdOcq6yGHoi2xumXgPeriT4ZEvnmL9svnxHbWiDTmnPcddneLTJ/UCYwkR4sBqfcKVKJjnEnA\nemYNwwlTu3gErRHK1KUiJ3n090/QtRjZbxhElyqzy6/UipY+Zzi6ZDE75OBmhXl1TvWTLzDPHHAS\nrL+5y0ohw8VRncBQCRkGpVs3CBKQXE+C3CLoiUjFGNWzJ6yumbz57hso6RBqRGZ8OYO5h9tK4KbL\nXJy1WYTADDwatR7YSZLqFRqfHbKVLXL0/k9Y3TZoDE7Irt+AjoB8Y4PpbMju7/8RQlIhVQwx/dUF\nYcOi9sv7XH37DXZfv4FGm+ajLyjePGD46IysEeWkFWbTTpO7s4N+fYuXn33BrX/7O3iTBLHFCKct\nUwql6T84++3OxIYK679YZX39A2a5PvLZBkc7YfpBjs9f77FRc+ipOn05SXjtGb4sEZ/3EaYruCf7\nPHz7iPHtGgXZYcUzkddfUpZMxFYKRwox/uBt3vk4R0Ncoa4ruM0tfCfJbHANZ/+QRSTHtUdZAj/E\nsr5LY31GIlYjnTknubTZGZkoUpKMe0lnuUbu6S7Pf69L19tmnveoTyuMz28x6lboGBMu/81P6Roi\nazOLRWcH/TKHcakyRyXxeJXX3l9By/VRrj/gRCtwHorjm8Zv+5GeSoh2hEVSQgwspp0JDmHkkkhy\n3COXT9KyRAbbYeK6S3wRJboSI1gTcCpx8qEo5WkO8imcUgRx5rN0RLRsDNm2yFZ8+mKfQVREirUJ\nOipSukdoKaNEVzEVkZjdQQuSuNmAqDCj3enih0IMk5CaFhkXknTtCXqg0LMkhLmBUUgSSgyo5EKE\nhwaTDgRTuOgNiKRVlh0PFglmnoqRnWDW2yiRNbJWmbmnMHQl9MICrX3JvPV1hIUQ7mH6E859Fb9o\n0g1Mum6N9CJMTUsiVNMMpS7ymUUv0iDWlQhSSZS+xUB1yBsBw/QGw56BZomMyj1sZYE7uSQRC8go\nLSRPp2242KLBchYQLTj4vseMGF5KJh7poaEyc5LUzRBhdczCS6PlDMxgiWo6eGafnFdCNAYEQw9Z\n1nFTcVboQHdMM6FSSjSQLINWWmcrtkS+0KhvuuQLa0iTGR0hzjzbRFnkCbwJ+kjGzTgoQxmEr3iV\nRkHjiS2CfMqp4HDkntG4G2V+LmEMG2zFLSJ1m1E2wVTeINif499KEQ1tMRkazAcWg/g50WaTqG8z\nysXQ5lPs0RCp20N5OmY5mFF9WsXPrbJx8xr7Q5lw1CKqiIRyc2JPTbrTCOOJh9UZMl4XyaeiPJy7\n5Amg41HVA3LR2yhLj7EoQbJP/t11pjcNCvlNNoq7xHpPORoN6bcjOCGJSBAiGn+B6gxQ2i5PLx7S\nFxscehFeLj2URQK+leSlNwXvq2ighqGRHhd5Ep3QT07o8JJKvoz6KE7UWeFJu4Fy4zWWhRiJ2pQj\nJcroaE4yWUQf3yL1ssVMvcf2oM/YdmnNXkdZnNL0Da66E242B3wR2qYYilMUUyRiIs/rcNCS6CkL\nnM093towUPwp5ZpPVpvT8e6gfDrlmj3h6vyCfvUxtmYyam3yUu0xTE9JRvr4zgH54zm3+tukvt2g\nbObpCDqTtsoovYfd8Rjta1yu+1ypBrz4QcDB5SnG6jay/BEv39GZRXZJixN8++vD45+qf/EgSvZF\nCGl89teHrLo6itlAJsn5FwMi62HCVgKxXMG9rHL+/DNuvvIes0Wb0tYB3V9d4klgyBWiqxqSHEfq\nLJi5Ar3WKaq4QMwKmD/5DbFMjDtbFe4//YBi6TrdozqpksCspqAtHMSiwcf/6dcY3ldGl7o0QHc8\n0kmDlYTKNJ/k/HROP5whiEhkEj7rlSzTkYukLNjS80zeP8a6HebhT5+wnVvn/PFLStfeZHExY+/1\nPZb+gq1bK5w+bJApHTCfOajaHvNUjiCU/6ohMVhUzyjs7/C82kF9+wp//z9/SO7OGpIg006rqKZD\nXhF48r/8iDtv7PFZq03YAitvMDQceqMxO5U1Gh89pD3yMVaLhLaz9Oc+QSLO81qL0sFVxtUjVFcl\nkwIpFCU267Cbu0b8rEXi1XVe/vRz3v33v0dqOEUKznj8l5/i6DBsBWTevopsaywfPmDnm3t89ud/\ngbo55a0f7NL44CXeXpmKUSRbKGC/OMQTC1hXEpinj1maE974d3+APRmQq0QZHza58vtZfvnzvyYv\n6gi4ZLQFAGMrTONQoVh5nac/O+aVt67w6r97j+6Dn5CrlDB96C7D9M8fEyut0D6+5Jf/x11UMULC\njzIdLrAiArFQHjOdoXMsY7e6uOMlC6eGkunT+Pwhd/70JsbQRJUcdG/KfDnAPH9JplIgXPYIbuxz\nWjvGMxXcXpZrf/xHfPyXf824pBA5qVJ5Pcflf/4xkcDHf1BDXk9w++A23r7K8eOHjJsOwxFouRzP\nf/0IMT3FE320bZH+4JzTkxrZGFy7scHTzx6y9bslHFZozCe4RY146WsfoGwvTrSdQ+tX2IvdpbMy\nZ59DhusjQoGAF++TH0msnZtUJ5sUlguSyohE32d+UkH76F0ahR6K2KUu6SyDgEF7hfjqCaadIrs+\nxIyfcOuFQqqeZbY+IdB7CIFFU9NYHNxlZoapjOYUtAvSD2+gPj1AnSeo3+pQm2dYGVX5xe9N0LVL\nVuYOwyDMXm9OsqazKZxy9fmEqADKVgt7UKaWVjhbk8j1Qjh2nK6oY916TOv6iP5qjcksTthz2HXr\neG/dZVM//20/Bk6Gcc8mNdYRQyHEco64mEJyHKaLFLYlE9oJoc1nWMsKcshgErNRGyFkoY/Th0ax\nQ1BzcIIWwkxGTC0Y2iM8M4U9z2A7SzTLIGenkeU245mH4MexZQGha7FIxeiXITyPI6c0lHQIwfOJ\nqBb2aEzZVYn4YbxumOSJxcRdEuqYKF6c/lLDXp6zcG2s1IRyJYUzWdBZd9HjUSzPw2xFmEXzTK0q\n5timby+R5DlRO2BKkVhy8dt+uC2XhJdGsSdE3TTyNEfJiTONnCNcNpjnNUKhHHrUIxLKc5lMMTQt\nvLKA4ySoDqMslgPW7Bi6OmR+qZEolokl4lxaAnZKRzdEpNwId9FkGQtQejrYC5ygid4L4QspnEgC\nBIvwVGA8DyFZC5xxFDsDfnpCvJRkVvCRakkSiS4NY0R3rjGIJBitOqyMlrjLLGKoxboZsDQ8kMJs\nmGFqZ1PGK1uwEJD7NuksEC9i+iuEeypDNUl08ZUYI2fIbITaoBZwLmdIcpLtWw7Zq3MyyQi+lSa1\nvY3atylJc/K9a/D8CL0/ZThrYB1FuBocYO6ucTg7p92+IEg4sKki3txHybRRFiLyqkCqIuN1LLpj\nm4S2hjbts0zF6a0MCeICq+KS7LqG0ZywdIc4oxEtRcFLCGSNCl27jl50Cc6eYl/GefGrL9GsDKGk\ni34qkQxy3NjZZ77oYQdt+pMnzDtJJrkQHh7ZvSyVoUFyb04lpDGbndM9ltFfT3NU+up76y4M0kd1\nwts5QiGVyDCL8ZuAe6t50uUGx+kE4vQhL5wOtY0eUdMgE97k9KVCcR4wdF0EN89h8QZtJU8pP8Ky\nFEZyn8tKiKJqkLw3A3/JYhKmMjS5qYnUZwJRfJ5rA7ROCz/S5WViyjIaZy015d4bK3Qrm4ROdwhJ\nZbRAISwsqNQDMoltyO2z/5shnyZl5GED7a/C9B9n2fNcqnvnKA9d+qtRdpZFNlopeuk08b8J8+F6\nj4XXpDPX+L0nMYaDJKX3V3C/vsP+yfoXD6IcKaCYEvEbXYrbKf7u//wbdv7sPS6Ozoku5iiyRTRh\n0gxHSEZ3WG4V0TY2GWsgxJeEtlcJQlPk/RwIdfbefIWtK7d52Zmw9v1tLj/9ktUfvIsUXeHJ4V3e\nvPZtMkmH9fUyH/3NT1ANj7E3peUrXM+VyL1agn6NvqaQeDXKd298h8e/+Am3xBSDu2dIaCgbPk8u\n61y2otjjNpOkQi/i49+WkQOFtd3XkPZcMvkSzV8/5tYf/2ve/+sfEl1fR0dAn61iZHzW1iOc/fp9\nHN9ibH/FeTGIYxZX+Pz5F5S0FHnFIB2PkdwrY1Yn7L26xZO7vyH1+jWCsEg4FuHKZoF7Z6dsvZZm\n1pwTtct0XjSw4yk8dYJS6yB4Lg9//CNu67ucnT1jba+CTJqlNyWyVeH48T2s/B7DwRFOeEH74a8Q\nV1PU//YjJskEDz9rULxaIRaESK6WePx39ym/ukk0Gaf5+Tnf+Df/imW7RG3kMdwu4Dx8xod371Ep\nbtCdtRh7FwjNFj0/y5X8G4zOx6xdiXHywUfIN+KslQ6QJQMxtY4R0/DnXwXMKkHAZjHE+YcfEdku\n8OD9T7BtncjWBhsbSbzRmNCoRVzIEtZ9XhzX2NFEbn/3GrNem8jWLo37babmHM0ySa0UePriFEuV\n6d4L6D5rE5ZExJFCvd5n6w/f5sO//DUbN1dIZq4RCwnYkynL9md86/u/z1v/4U+ZLM/JChLLmYY2\ns5n02tS+7LBMqNTPmvhXytzY2ETJR5FGLuJyyvYbO9ReDunNLvnm979PaGHw/NEXmI0pi9UVUmt5\n5iGDJ48OUUZD7HsXFA4SxKQEeAZxee+3OxNUqvRiCcb7h8wTAvtDmXFkTvPVZ0i+jR+2aFpJAkFh\n9yRJfxGn4eU4LqqYbx4RWX3Eyt+/x9M1j+LAovw0TTsrYAkOwuYJh5Uaz274zK6fovsWz9ZMrJAA\nl1skjxKI0yLzzAilvs5xsMnhwTln14acVBwy9pzh//ATOq+fk+4KXL52yvSVj8neXUF4dI35IE/9\n5hynLOCk+ygf75McLkmPLQx3zjItUTbHYMw4+NtdMp/soj+/Qdix0SJhToQ9sg2Ry2vj3/bDiAd4\nso1p9UnNAibdOoFpI9oBC62OEIuRVwN0R2AQuWBitghVNVRjgTUOQ3wMrsIi5bJwK2iZAglPQFsa\n2IYLZo+IHQNZpRcewiwgnUsSrPmI8xPcqIUh2ySbLZb2DK8tERvGGCLhTWLMCzOWzpDhIIYRjaFX\nBPKKTTi7Qi4hERkkGIXCuPaSdCRFZybjqAn8nsDCnRFbj6LYPuGCx0oiwyi3IBbWEb0Q/ZkO8Q49\n+Wu5thnOEpJNQrEs82ZAItRjmbXJTULkyzI96wRfmOA7AvZoBt4QSTcoLHVCYYdUYJEcRAjWZYRU\nBiVvILouUstBbYrMpzqB3CPvKcjLFNFRh3F6QH8yRiZKO7Zg0BzTDbp4fozFMoLn9pD9BO5cw1ST\nBFOXUWuEJVrYSY+BE2a3p5IPyZiROG57QSPr0EkEjNMFcA1GnSJaWuJ8EEcuTMnIY9a0IbMgzSQi\n0uueMbUCIs6CZHJEI/SV+mrSDdGNq3TaHgf5GLmpzcWXGsdTAdPPQVqlvqiyHguhh0oo8TFWaJPu\nWsCevoMfjWNOJ6jOgLy8z87BVaJKHl0ySLoL3OUOicQcIabSPR+xSErM3SFmt8Ewt442c1DUJLnT\nL6grImeHI0LLLJF0lHjVY5oYIns62YcNltU6fssgs3YVt2CRPqgQqfcYPunRlAbM9CT2NMyW5DJ3\ndcxkkcVmioyooIf6xAcymUSCzV4eP5ji1HVUMYVwf06289Uhllp2GN3uUnNNYrMyPXvJg6tV5HkI\nz2/xWipMtj+iIjlEJiphxULVx3h7Lk+uVXHekmChsB48pJfV0F+4pIUiZmLGzqjGwg6Y5evMFQlX\nn/BcbjG43WZHaEK4g5U28VZWmLTT2PkQUW+D56NjbsybDDsSh/0WsX6V8VBjsQeTjElEUxgkf81k\nVSWlTTj/E49wVCMab3NpS3iFbfrv+Wy86FI9/YT7d5Lsz0z2b4isvl8h31CoFyWG7TmJaMDA7aGw\n/GdhlH/xIEoMBGYzl5HTx/OjpEgTkdPktRx+ukg8HeL4eZM9X4fwguDBMSHbon/+GXoqycPfvI83\ny3Hyw49BCVjEfTJan+woxNm9MQldQfIShCMSm9sFaic17JlLuBBgWlGceYBshzGrn3OunZOWY5gL\nAWs0wosnqUpdgmiCz5/cpT9ssLMdR7ZSKJ0pa6Uerdolp0+HGKEQO9IWzcMWBxsRctMw9f4UfU+i\nFErQfzlEUUbUHChcCehWj5lLLsF6DF+LkPoHtVGo1MO9PGPj5qsgTWjPBmjvhmn9b/8V7Z0Kn//H\nD3nlu7/D5dNjzHSSWWvMpNNhMZ/jdAXqz0/YeT3K1J/w9lsVkpkop4efU1rfxkutIiwXbMb2ePof\nf8Ltd76NtwBh2GanvIUZLFhqJqORhy4WiTgyJ9MB2WWB/MoapVKJqt9k1urjBFMSsQiDIxFxw8e9\nGBMkXDp3z7i5o9GdCvzBn3ybFw8+Y03ZZ1dbw6/oxAWNQBozePmMTx9Ouf7uDpn8CtXTJnF/SdLx\ncGsubv6rAY/IJqezGjPLIWqNMSoavrkgXolTu3dJ9VhmPIjStNuMx21ykRHHUZu7P7/HWX9M7cdH\nbP/+Vdz6MVu3rnPUPeHalW8QC0fpXhzx2p/9Ga3WEZHcgO5vHtJ/0eLKD97jvO5jX5wgyQvqp1PM\nIMb9Tz5n8tk90nKMs5+/4JV3dgkPHTqegD1rYvQEZrUpzgLaqsyDyxrj2YJhN8SjB8+5+YMD1kJr\nXC5a1OY2vu0QnQjUP3pEeOYw6/WIRZLMxCzJ3atcfP6S8qtrTD85RUgMfrszzslVxsaM5/M7POvt\n026t0ohmKT7apfBkk044jVOxWR4cE8Q7aI+3yPRlEvIpMWFEInaJ+dYXHNQChtE4wz2Hg8mMxEgh\n4Y1JDtMYD4rE/SHdnMjtSxAv1vBMk6g+o4VOchQjnn1MSW6w88M32HqQpaQds6hmmX34DmbMYXXs\nsfNCJfj0u/iVGo+uhlCFIY5jUytYiBd5fCdK6sEuCbVNwXJYDDZ5ub6kYFnIiQWtik14LhNJTHGt\nJa98mOLJ7RFq82vQsFBnyMqU6GTBUvSJ5JLo8R5zRyVwYpj9CaOXS6rOkqATxgs02kYfcRIhRArJ\nTxKOpInGRVQXRrM+1iyJGknTP2sTp0hyFMIph5hPoozVLKOTAKXlo8S3SYkqYy1DL6WgxAwEoY0a\nHZMV8+SDEGuSTguLtDbhPFzFC4ssrTxyz6UlDOgVJxSCLLlEgdl8ijidknHnaIqBLs2xJRtBVVFn\nEcbRBWrSAMFgZIto+hRJWIHW19mKkWUXV7GJylME3WfkxQjrSeYxD9NUiclRzKaGkNdZZBQiqsdg\n7uJfLliYFqHsFNcbMTb7zDuwmE0QgyF13yatNFESI8yqRLeTQurWETIG8VGCpZ5DbcXRlgJhuYQy\n0kmIY6KyihdLk1y0ceRLou2A6czEDgVozhRx1iQyc5nmZ0zcHprQRItkKA/BvZwiDJqcij7xgoUw\ndinlVCwxxag/pq9ILKUI07GCIJRR0gLnkTCSqaL6X4GorDjHeBxmKM+ZxBa4oQxZeUluFjA0HZbW\nmHJUpB2eUw0NcAydjVs6mZbCxHqCmRtwanQQomCrbS4efMHzukdJVplWl6gZgXQ0ydSvUCwV6NsN\nytt7sKqxG5WxOgKmpdOOHJDJZolXXPxtl1ZbJHfzgNi8TMo64/xWmZ2DDKbXpKEqzFsWinfOPKTh\n2xEWQ4lhYkjXXOLl0mxm5uyNksScKRnNwJQs+j2du85LjmcLglAEL6/Q716yfXCFUuwrOKDFDSap\nEZuugBODSL5Hci/PequN1Nim9X4MW1HYsvZ4lFDI7C/pYZJZmbLZs4lKZZ4pbSLHaSbmcygIvEh5\nHKghBnGFCwbsFQ0WIxFzK85mPUdwnOLxZMQyG2PdDVhmBeznAv2tMtH5GZvxBCeuQChqI4gBihFn\nPRJm8rlFNJrm0+mEjS/y1OUpy9E1suYO1a1z9FWBiG+Tb6XI1FPEhwqxyA6F6IypXMCqd4iWoniG\nRW7uM7jjo9UbFCJAIP/zMMr/J4Tz/0NJPngJl1TYwOlOaSwEBG+KII7QwzMulgsKb9zmvPOCm5lX\n+PF/uYe5VebJjx/Qk3y+99p3Se4a+MGSiBfBfD7guFqj1bvL9r9/j6HoY5RE+p+8IJlbJ6yJOO6M\nqpVkfcUhHQ9Y7DvEahqVicb5/S5dxyChbRE8riI34yx7Ovlb26wV91goAwaCzryxJF5ZIZuPE8Qs\nclc1vvz4p4jJVXqjKc/ef8Hu7hX6L0TqX/6Gtc0coVkYpQKJrM60FWVelVBbbRJRkbn0D9loLxy2\n7nyDUfOSbmdGhCnKwOLJZMFmKMPKHZXOUMCo+xTVgJG8wJ/FSO5scPzlhO/8j39K9bhNTI/QbVzw\n4P6A3Xd+j8MfH/FG8QrHv/w7euIJB9+9RXt0xrw9oFS+jRN0sec1Ite2adhTxv6Y0hubrO7nWR7e\nw0hKPGjXsMwshuITXF3h0//0S9be3mRV3qM5aGMKKplohmDY4+Z7r/Lzv/wr8t+7QuvFSwaxAoHr\nkPhBhWq7QVc0SJVFnHEEdzHCsFz0/Tc5efyIatljPvrq1yot8pimQG/ao+dpBKcWk2fnlNJrnEsD\npmaN9Qqs3ywwupzih1Ks1RTW0ymmszP8qyrnf/sR6XSJk//8Be+9+SoBJq/80Vt0nQat2Qxt4zoP\nPj7C2ciTToep3/0Sag6pGytEsrtc+91NsOL47pRnD45xXtvj8NHHLJoNbv3JHxOrrBBJSLBZJvX2\nTRpffkI+FiFbSeMsFFa+tU4yZ5DZjqHsprn4xeeUMzID3yd+INN6OWZ2LPPanW/TsBoQrqGGPfKv\nrpKI9nnuHTM9+zo7r/nmJdt08UWb3CTNyuoDbn2QwxJdmknY+WWFd54uGAhxOjpYYR2kAE+K4hxd\np69btFWdxmydyvkAIdKipwoEikz70Z+Qbeikkj2elpM0b7zAXEbZ7/vMri7wXJGB0ucAAAAgAElE\nQVS9ByXkRZiztE47taT+3efUUy7Ck1eZVhzy0SrN9ja+4rBYbBF+9ZfE5SVe/oiy1Cb60XuwUydq\nDECcU71+SPLFdXqSQfXb99h9tsK5WWIRX7DX76P7c6a+T+tyk/ZaH6ORRPpHR6QxEVHUOO6qjy0u\nSVshBMEgK8VZl2KYaQiFoiRtkUQxQSgYkrZVwptRrFQNe+mw9GEeUvG9CWEhiyD3WcRDuK7JyGzj\np5copz20YgLbMUmHRTqigid3EEcWftWnoKYI9eoMdAnZybGYDTHTE04kE6NtMsrqCEuZ6XmL9uSU\ncWJOopdhYxljvj5mrIxxrTR+Oo5jOUhJD2coEbZzZOUx5tmCyAiUnkTYmyM6NrKkkFFdtNWvY4GG\nmSTLapzwyARzji9EMC+qKGOf+VJk5uQQ82OakzTG3CasRsnGBYxEnEo6haOGcFaiqL6FI0pE9QGS\nArmYgZvOE+klECJLNNvEyUYwhBgLdMolBzHs4YcTKBGLrKESH2joThNNnTFNlAlWSsj5ELqeJqan\n8OQCMSMK3gLBCRMaibj9KMbYQ5wExMIGohsnPxzhntcQCnN6DsQjQ9JCjGBqICQkkvoFpCdokQVx\ncQoxFUn9ylzy0ukQLY3JZUTa9Rh6fIR3kEIZesjHNRYkafkyshEnWLbpti+xJh7zfIyaFGcrSJPt\n5ZGfTEhOBFYzN3klO+dS7bJyU0Nw4aJtE86bmPE6yizFs/4xAyVGZ2GT2gmTDk0JSxNGyx5bWZHI\nMoQ/tBl8ckzTbnIxjqM8s6gqPt1CDEZ9jPUIrlciiATMhTqjnECv3sNRBhTcAoYVpx+MUZphupKP\naufwXJO1jMqs9wxtqCJHFsSzYS5rQ85bJwDUwg1mQhnrqU/8osqpskbuvoeTtfEl8IxHHO+VuFh2\n+bZbwr3X48s7InI9QcbdYDCqceDf4GevePzBMsGgW2PtzOO5XkS6EMnEVqj+Yo2ZXCNi1znTLrlj\n6mxzlfrZOltnMZ7fD5i8O2CtFcKbuzSbM+K9ELnslPJ0zuEaOP0m9oaG04bs6pQvE2mWEZmdaIXE\n+xJK/zYcFtH1AfqoQzc946yYICNW6Ry1OS6f8+s9FSMl07Q8KqVVos9t+m8YaB2RIPhvJPbF8wK0\nUgk3XCS6KWLkJYSMymQoMbs/ZT6ycQhIhVf49PlDbr5rkHrUZe36NpVshvNnH7AdX2VzY59FJIw5\nGiH1VbazbxJrv2B9EkWWBbqqR2xjBVUTeSl0iekyp5eXNGwJr60iluM0VR9bHrKYHTIdNlGSO6iJ\nJcwGLAWf6TV48re/Zi2fpa8sKKwVmY111kt7HD8W8KIFNscaM+uEUFQEu095S8CbzplHNMRijlwk\nRLU6pRSbsrqeYtByWN/PY6SSAAxZ4Iou/foJV99eYxnscP7QZHNzm8WizdKF8dMH1HsWESVGdmTT\nGnyBIrms2AGTbo/XX7uBEyrx4FOfgjVCNyQigUvj5QNSb6yzVdni2X/9iN3tqzhbcZZNi2rPRiJJ\n1FPYTGQpHhzw4FdPiRR2GUcN+jMT97LJzs1dZr1jdq+tYg18pA2BdlzEqzfYfm2NfCVJo9pnODJZ\n3XiV1gfPWWzoOIdPKWxdRfnUYvDkGMv1SSg6x48aTEIC9+8eUbmzTrM75Bu5CkbyK9LfIlhQWEmA\nJaFIMNZDPDh6gqnrhCcmSzmKGI6yubFP53TO5lqCxZ0Uo3CI77z7FkYszngZY2kLtGly1m0wyHjY\nw4BsIoz59JjdqMKg4VE/ekh3dEliLYpgHTM8P6HTMWmcLwnXTzAKayi6zs7VHYxXryI5Jq7ToTRN\nI2cPCLoNCsU8ldIWL89esF3aQByNWNRmDKpNnv/qC0ITDSlRYiJpXL39CmpXJnslh+r3qatj/Fic\nkJ3AsscIToz3/+Jjrl67Q4+vOVFuJ4ew8RI/PEfI3+dcN/BnMuvPi2Qyh7SuTPjJ96r0C33mKwuu\nKh3irRTzNw8Rtu9ReFbhdt2k8LJMS80x/NV3EB/cIXcSZ9+8wGHJ6qeb5B4kcadxJDx643VSK59i\nNDMcXp9hCCPisQmVww02WyMmcYeY3yfR1QjcHHdewovNOfnnafj8XZSJhzyUaAplvHKdhbWgmVBx\n7SxF0cFwbXpZCI9h/Lu/4uqJQehZiUksypNv91n/4BbXnxnYhQ7JiUZy/PUnKqy76J6P7AmII5mL\nWhNr7OGHBizDJuFYBJshpj8jOo1hygkiWoTpvMFilkR1NdKCiWyaJGQNwRsQSSpYoy4laRXKcVrV\nOd5WQEQfoOsW84SDo7s0LZGR4hC4AkMnYDhLERtFsPQGptSjU5+QbmhYW0XiUxkxLjJbzRLaCfD7\nNoJr012ck6yFiPVEdHtEwVcYOgLeuIWRiaKOPIb+gvCmTTBZYM4HRMYR0p7IeGAx7HQJ1b+2fCi5\nLmJuxDi8Ql9WWQod1Mg604jGSilKWjgl3suwJi0ICS5uEGU46nEqzKjPznECm5A/Izwu4LpNshj4\nSw3Bn+HaA/o5ASHqk6kElD0dbTkhlPHoXrhYaQHNB1sJWCQiqNkoM1fBqEZxwi1C9SmxiUNUNQkJ\nE8TJCKFrM4ok6ak6ZkgnsfQZFUT8XB5dn+LlJNwViX44jN4Ykph3kU+hJ4eQNIesayMqq8RsMJcj\nTEOj2beYDvsArKh3CNtxpocDStMm/SOFhttCiOcJfWONxajJcDpiJs+YDTS2I0W8R5eM+vcIh31e\nelX8XZe+aFJfD3Pqn3EUXXItXKTf8em0jjDCMvN2l+ldk3LBQXGizJ4OSWgqsxcO5ijGeBEgWFnq\nLYFpYLC3sYZ722YtbyDoIxZGi2A6oSKrWLJJtTrGN2TszpTMToyCAmsJhagc4vHwjCfNCWlNJTI6\nxOnUsaImMUQuOiI7mzfxkxojf5VJLIIzDZEtfsWJKkslXq+usnjNIDnYYe8kxnKuIMQ9hnMHvRwj\n97hAzxzxouSSU1bYbCwYR4/45I0J4qDEcqEQW/hUNQ8lW6Bb0Hnt4QwzvUGiVsUrj4iPdpgtcyjb\n1/l0/QV+0SaInLIsT0lPHVZfbpM/1JmEJpRchZI4Y1mHhzfLxHpdZt9c4WCucdFL4WZEZHFKxD9n\n4nzGl98dUVQHxJjzMuphZNLEPp6yMxvxtBihklthdx5jW71CKzLCDUuMH9U4vGrxqjVAMASEL78W\nY/xT9S8eREkCZJwsqzFgJUVeLZPoBHRYUlNDpNNxipd9vjz7nL1rOhlzheHkktWDfbqmwOPzBbNR\ni7mnsJTGRDdF2tMG+u8WOe5bpMu7TE9ekFZNGv0FrXYPNZIjeFpjb3WN1YKCYnWYn3ZYaDOi6yuk\nMjlUp4WyNkEN6UxjQ4RBh/SlRzi+w4KAwpaMpNtkWdAbtwlJLazHzxn7CqHIDvGwTuC4uBcG3ppO\norMk2rcwlmnMtIOvJjAiBfa/8U1mv+nQdf6BEyUkSK5X0C4inJ63EUczYosWfr1KIpFBqAm0xwK3\n3trBGp9yEYtj9wXsTInnwgWbV7Z49Ot7FIQUSXXCcMdA9MYsdAE7kSUtbXP2uMf6d3aoHn1OcaHx\nwn9M8hIKeZ2TX76g8t0Sn77/U27cvEbt059z47/7Dr6jIloKs9YzlNv76L0w8nqEF3/dZPzknMzt\nEl/efUpiPcPzT7tUDtaxNJml5PPatZsMj89YUwu0Ji+o5VTe+eNtGv4CJR5BVHOs7pZ4+eMfs/7G\nGk8PD4GvfG/UtIA1dxFUldVCkjXdYOPmNebVMzQlQknWmXbn1GZ9ysUpFzOfrfw65uU5MxdurO0T\nNyC6egV1HiNdymI9b6JOIJ9LomwHdE2VN/77N0mUykzP56gjBX3msdRDLPQWe9c2ULZukQ/r5GIp\nHvzsFwjtJV3H4ajZ5l79Oaldh5Ggcf+HH1Bz27QuWoz6I0rlHJFEgs13v0f72SG94y+58947hL0e\n7docL52gvL5L6pXr9P7Xn/D6H/4R+asFTu6fIbTq5H/nJpc/+wXp2NcxJ0lnyEUQJXIRo1Bf5+aP\ndxleG2EnL4jU0sTLTylPZIJlmHceytRCPmahyfRynbNChkhtldHZDvPUBU7Mp1A1uD5qcbLTonHz\nkkg64PitMfo4SnijSi21xNp+iPz8gEl8wVbsBY/u9Gm6Gk1b5nTyLdIzl4lXRhR7xC9nnExWuPPD\n13n5h59j7deJdneRR9tcrU/ZblmIZo7q7WPkqEUwD3NSWLKybGIsp/hfvIrdLBGV5sxufELWHvCb\nbzm8KCoUz3P0Mz0u/1HMSdP2CBJpwmqRyLpEViwwLaZpV12mtRCJ9pJ0Lo8bXdCNm2QUHddQkaYF\ncnRZJG3GmoeIgj/ymUay4EQJYkXctYCkG4bdJY4Jk3aIaRDDbCoI1TFafYibEojuGCTHDumyjJQI\n06lqKIZGuRTGLjkkjn2mSkCuaiMvRiSFTQJdwlNUjCDEImVipx1Gdoi5bSGUVGxBo+n4UBhDMcs8\nLNNNh7DmEkNZpOb3GU0MjFKJwPlHDu49k5ml4SotCu6EWDzEZOYgJbPUXZGZpVDLDOkbDpaRJJiN\nSGWSlBcy0UUaPbBITENYcpPIzMFSfczQkiARpi3Fydg2MUGgNXZoeCGqakDoUkGORVlKEhIys7ZD\nSOrRDNVx0jEm+Sn0wgRlA2mqISxTdBSRyCjOYiWFLEcITyfECn2UzJR5NWASmqIJEQJryHA0QQ1H\nuVjJQEpEK4UQLRtNjNAfhVDdOXPbIro0SIY9ZMVEKuoANFqP6WtpsgmZxUGF/O6S+NkCvBHGUEcI\nbCqLCklhkzUvwXl1iJktsL9cQe51iQghrN6UZHoV4XGV1WGYcWvKF+dNpN6c3FqOtDQjNI9ilnbp\ntFW28mlKRohn3ecsYx2iW2EKiQRKcQBBHWlwzNHkKcPlknA0Qyi+QSG8QVzO8fjFDGO4xJd1sorJ\nSjrF9GxK6MzibB5GimjEVyrM4wrnPY/ZzVVCqRIRRSe8GSXr92n1LZrLKmm/y76WZsufUu19RbTv\nzwwexqcc/GyFLypPmYROMZKXdD/I0Xn9AcFGmv15D68rsu4POU3WaKsa9VeucGAXuWpfEoRHLJMp\nNp6twtihsNvBDCWQnA6HqkwpviSpPyGyBPnkBfujDcyGyOqVAO9yF1ZjzNw+k6SIG1IpCToPVjNY\nledcjTap3nEozTsMhQlCbMD2vTTR1AT1MMNRRmD9NIIRnnO89Ll+WUF92Sa1MDm6kufK0xL6ywl3\nrQqjZyMa8R7bZx5H4SX61gFMFc73p3iv/jfiWO4p0HtyiFRJ8/AvPiSeNmnf75DaFAhPZbJDhS8f\nV8kKRQIpoNMcoL5R4vnfPaWY6pNOzpg2+jx/+gkFcYNhdcbOah7vgxnquY6WWHD62QlCfpXTX35I\n5dYtlIhGbTTEX9kksIt0oxPCuSSlzAr1F8eUywmSpXeJTAx+9uc/Z+eVVwl6EzxZRcgu6J8+JtA3\n+PR/f4QlxIgsVFZGIlJ2lbW3w6gxkRfTYxRDpWFWmdfCpL79Ov3Jkt988jcc+NdRZz0+7D5Ak2Kc\nn5xRUr9yHJaLIt0vTrnQFkT2ShgZHSchUfmj73HywSE9p0VsU0GOG1hSjMKeTkbbYzteoHznCr/+\nn/6c5De/z0n1M1LXXydeMfjyQQ/FUEnmHT796NfEVjQOj7oc1jxK7xSwzmT6xTzlzRQdaUHazrBq\nXCURzFn0HUIzC0exufH9G0hdH04vabdl9M0wQcSisp7HvidQWS1y9xdfsPvmdQzXp3b/F9z40+/y\n6LNzSt8v8/D+37K6U6aUK3Lv/+4gd1eoewPaD+9jqmk6nSp7a7tExAz2P0yu3V0y9Fx2MhkG3SUN\nAYqxGK1awLLXZ/s/HPD0Z18SsmXisT2Ws1M+/i8/57Xv/xmHP7zPox/9HHuxQJ6eEytoXFYbdEcz\nnj75jPHLFoV4htP7Z8hz2L9zBdc2Kb67ibZXYnPjBuf/1zk//6v/h41KjrOBxbzX5Jt7t8Hw0fev\nEdQtVilQSd3i5u4q6+t7pI0rxNcNnv/oY5Kv7jOd9+m//wXxxDUSK6v4gYM/SdE/fIwtttCMGYSH\nLJIpDEVhHIjEEyonwZTosz573/m3mJmvQcMwJRNHoPjsCvkvC/R0Fe/lbe69aXOilQmeXcO6WCMz\nkMm8yKAHNgkfhqsD1mse8+99zjT6/7L3prG2ZOd53lNz1a49z3uffeZz53u7+94e2E02u9kURVED\nYzORbMOBgCCx48Q2HCROYESOHBqJE8hGJEFy4liWZQGOJTuUZEURTJAaOHc3mz33ne+Zpz3PNY/5\ncQn1P4tAEJgI+AL1b61VhYVvVT1r4av3s6DhMd/cw7z+PveaLqbVoPnOBucX76N5Am5eYed2Hr15\nQHmxwSgoshyu4rx9k+ZEo3h/m7yfJ7n0Dt21CZPVc/SGS1Yx8bcW7N5akB1VOW5Okbsaa6Mu57QQ\nlYRyv8zF16qMFI38wGTj/jqrv/MJxOkqtuATXzvCaviUfudznCabZNIhqSCRPyqTVxzs6ofQ0JAT\n4m7K0UHA+HiCXImxDw5Q1us0VzJIaYGZHaOSpzSX0WOLxE9IG3kCIcM0J+L1JWLLZZCVCfsnjNIF\n5skBvuOyUGc0aFEUSpRcAVlbEtemRNoUQRWg12J8tssyn8eSp/RDnfa6R6PUIbISlJ6BupWjFM+w\ntQ7pUiIb2VSrJUaGTVJwCK0M4TxHx9BZxhaqpVPOldEslyDwiEcCK70CoqxRWPUIPZdKJ8+qumT4\n6Ih+/cP8DkOGmpFFjGBalxAikWJBphaMqU9PkDyBzbFMVphRES2WdQ9lMiQtuFgtAy1pQEEjFUKk\nioxy5BEJCucj2F66LIQQyzWJZh6JolHvOYjaMTn9nMxeyMSakCmlnB841Nw6JAKKplI0AzLzPlbU\nRdRGbPR7ZLZGyPOQ2J2SnWVxz3KI8SqNikriQTRcIAcZEqFGIUjxxzZ4KtNgjqhV6PkeWnGEOHeJ\n0zaSmaDEKfXIp2M/3ohJhSrqYZdyrcVG6vPoHYnG5Qz9QOQwG6BtlZkKB0h3ZkhrGdYqbcT4lPuV\nmObGDfSOyeLOksHBAy4k60TtFa6EJjtln8XiiEfHAaepQzWb4VLkUe1HCPNDZvEZFW+TXKeD0NVJ\nxkPWpgbzgyyxr+GbKk/nWjhv3UELp0xaLp1AoNAROBiMudRM6YYlzsyUSlLEMiyqKRhDh9LCxlwO\nafA4QTrtLciObJyDuyyyJbZWSjgrZcoG7HfvEaUBGfVxjCjFJcYjkYOOzBPJCpNQ5VE/pP7pBzzf\nu4p14PJ67YQrNZHTRzMGB006t2ts/FFA+O0J526WvWmOp+2QO2bE+nzIO3OBs9UJB5V9Cs/XWB6O\nuH9JZ0uUuHZnk3FJJWhGLO7HPMzeRisdEWQT+ppPKzRJgzzrY43986cZ72ZYuX8J34/5VgVK2kXi\n4RLhPGSxqVFbNGkII/YWJS7qDmNlyu2PJTz6WJetqchpO+DNTsgrjbvUY4H1D3TuPG1xSyhy5d1z\nHr1bgXkOOfnw9Pbfpu97iJJSoNpkbjmU5BJBRifMTNhROzi5JZZ/gnApwdcEFm4B8YJBNqqS/9g6\no+MpzdJ1/ui1b6FlqzRECzlKiU5tkmhMV19QeXIdudKm1UjJbq1xevtdbt1qk5fquF6PqupzvdUg\n66fI0xWkMxthfY1Ga8EydCjkHUo9gWy1RtFUkcZNnK5O2clwfLyPsWqS10IWH7lEQsLJmcjZwzOc\nkwG+KvPyDz3PsjOh0wlwhSmLwYJxyyEMsqzpIl8//WOEJy9gDR4veHmWMDzfY2W1jTEpMu09ZLP2\nPL2DPtpWg+nRnIvXVhkNxrhqQHg/hLJOv/cWZlgnubGOZim0N7ZxT3dp2gXq5Tw7V9oo7QyOIiML\nLsK4y3PPXkCfqhjuIRtXGhz/62O2Nq9x/+07PPvSdb6xa1ExDb7z7je5dKnJu4/62PePUV65RsVw\nCM50NDMgCE1qaxW80/eQswblssG7r/4++Rs3efgvvsX6K3Uku4PQWefbX7rNla3rSNMBqb1gp3yD\n2XlMRbPY3HyS1778Fl6ugBo/riWYFDwSy2Ky6HHjhaexHu5TaqwiF89ZefIG/ddHrH9mh9tf73Jk\ndfGtVTyxj1s6oXZ1jet//tOYhsiRN0MNVHx3jtLOMVz2uPijP8x7e/fB7DHonlOa2ZSv1Ai7ClS2\nKK+kLBseTT/i2O/iLU+ZSyqTRGKzukk2H1K/XmG0vM1iNmRv9z7j5Tna3OW5nZcoyWWW7z1ipdlm\noRg0OzqTwwOs5YCw4tBu5rj31ojj90a8/sevYQ/g3d/7Q4xyiQd371NwSuwHLvOzt1BOP9w1Ldo9\nfLHCRtTFrPRpiQeUvXOeOp+TyxwiTXaQqxZB3ua22UZyDSQBckFIhEHlOxsEfgvDFrjw1mWig0uk\nchNRP6e3MUf9+kdx05jsxS/TP34e084w1WJMfLwf+SbyU69ydPYsLXVEGiREVpbNcUL53nXCoxUe\nfPwRs9o57ZGNX7LJeyJHn3qTmZTl/k/9IUctn/PLffKjMq2pR3VsQhowv/EeTmuB2e6z8UGZ1DHY\n3xQIEgklzHPVmfDGc8dsfvsyzz74EBqssEGYt1FqGuWVFqmjI0kSUs4iSUOms4CSP2c1X2UeqaRK\nFWk2J53PCdU1WgONYrXERJZQLQm5biLOYwxTIA4CFAPUsUeUTtDXs+SooFgiubROttOhqM1Zy+dR\nzo4QYxPZSzlxPQb7FkE/wGrPmO4dIRkJQt4lKog8PIuw7QUZv4o9M0kbMk4J+omFWo1x82OcRymu\norPISaSpwKTYo2SL6LaJWokpqQ0mmQzmThV5+mF8pFHIzLGwRzokMpFg4ItDBqHOoKhQqbWYllO6\npyucpTGrx3mmQoteEFI4P0GYCzj7Iwx9kyBuMsmmCHOVNRQcISUjNQhME6NSoxKfImVqDJubTGMN\nYdMh4xfQRxHtnMquqVHwJVzHZTQsMBc6dMsFZnGdcwyE/TpJJk+j6BDikC3qDJKA2JZgZDFrxBjL\nLPVcQq86Z00GwQjJpBvEaRc1XlCYQFKIkDsjTuwZXhSBniJoj3Ne3KJAf7tAbyGSThusr5WQ9l3K\ndZPt/SNco0Q6VanUc6THMpPlB0zqMhdydc79I+oHE+KOwU59m901GWXos1vK03UU/FCgsJEhqa4x\ntgvsZQ7xhQFBlKOpdGiqJqO9AbrhMG/FPMobGFstJEUgIxSxujnE6xeZ1QJag4jbJw4Lf8rqCzcQ\nkjby2EfILilcX8VebZJ0ZSbViPOCysbWFtpWhaS/JE1dHpYcjFyJ7XqTw+GY+v6AXTlgFhWRtwqs\n6C0AGtOEsNGj2ZphHzWYZ0WeuJInfaeDsy+S3c/QPl0j7vggr/PKDYG8mKdyaPPGxQDxikDlqVOW\n3i7uJ1VcO8/zrkf6HY/j0g5XpyFTqcYTZ3UGyyxqOUWfp8i3s8i9BrkLNWT7WcRCQqX2gJGncCpZ\nHMZ98ukurdljL7xRr8R1xyVURvjZY7raBfzOOU9oRfb2IX/eY39RodSvwmCfuPws2Q8UoqTPjy07\nvLs/4fRyQPHSkvO1Ct96ecqjRp/8zZhycYHkf5gi8W/T9z1ExVGKyBKhIHBvNES2Q44GA+ZmjrI9\n5OFwyBMvvog/PEXJJ0xOp5y894gb+cuIk5C4YPPJ5z+Balk8PFHozl3Ga23OCglFt4A1Bz2eYBo1\njJmNXi/z9pfeZe3aKo04y3wzw5d/6w7KK1eZpafsbDcwjsd85/YB0zDgwl/4DznRjjhNYkaBCk2H\nOEnIPqEi0ySsqkBKa+ayiBxyXYeTPQ9T1Gj7ZdSSS9xPkc0M7769h5a5TubAZm/4DmG/yfB2nyef\nbOMYj6k4ReFgmXLjyae5/fr/TVZTaT3f4uT1t7n2kadYefYyU0ckzQqYi5iT5R1W/swW3qOU5fEp\nTz/1MWav/l+sFqss7H2Wc5nw+JRZNgZHZuO5i1gPltz4j3+Yd/74VUYn75F9eZvxl99ieqnG4OyM\n3LV1XvvqbQxxhqA0EI5DzIZCJevgtxrUpwLH33qNm0+vY7+9D1eLvHv7AdNlHqXcxE+7hGzB8TGl\nlQLLN+d4o0NurVxCy4sokoRjDJHUIyqix/aWzuJ8wcpGmfHuMXonTzR/bHGgajINYwtbVTgajqiW\nCliSw5X8sxzfvYvTHbJ9+QpGZ0l61KVSnhCKGtlpFvFYRxh5ICiIQ5uTzBLNMhAXNjlbYTruI3g1\nbl26TrAcMXcXpPIK9vAhgqLw7t0DOtcvIF+usjw6IZPXqG1UMdI5p3tHbHWuMnq0ZP1Gg+Bgl5Xs\nFqvNBr2TU3qHd/HllNZnrjF49YwwG+JvbKA9uYI3O8OJoai1IR7R7HSIJwny1YjOj91i8d4hot+i\nkUuotlaY9Lqk4od/X22MZFZfb3H88bvYfpkwb6EyZy9vYJSOKIbnSLVzdFJ6L90mVRze+niP9tDg\nqBpx+9k++lmV250RXqbHvD6nPgqR3BKDq0N0LEoTnXvmKtFLf0DjOxuUujLSxQcI/RLD6VWsT/4+\ni8PrOI0ZW86A9tsNyuOI6V/8IkcFmZVeDmfQQnx/m2xjD0WI0AOD+tJAvb/DpdsSe59+B4wZuysh\ndz/zHW5fWbDljai/tsl+0yO2Wsyevo1XWyCkS0YrXZ58o85wsIqlZv5kPtRYxB8NqcgJ8VxmhIe0\noZCVUvzMlExhST8EWwhRnBnh8pCx64JjUEiX+MU+5cmc+hyqKxaqW4S5RL8SY6shzqDEaTIlJ9Ww\n4wApN6bmJzhxiiEmmNUM4XjBJFvACiQk1aM5KxHLS/qSjXyWEJR0puc+kZSjuSyz2lkyHsRIzRjf\n8NF3JXKSRK1johFRckziqo0iOoQPPRR5iYqBH1tI7gTvXKQ3ekBx5lKwVJm4vYMAACAASURBVHLm\nh2VfFkYZIzIwV7MUphWY9LGCgHI6xncizvUpilsiaQyJehkcNSV1Etb1KqVAwA8n6EaNqebjyyMC\nIcsyTukbGvNMiLZwiLyUINUJ7AJGrCIPI1aSlH5g4URzZmsi4UqHqu/hrQzYkGp4ggjxgGIwYzIc\nYBYCvNUuuubjizpJPMWQPRRs5JJP0igTijArLjE1jcStImQrGKcugdolVAzkuMpQrGCfZRGClMIk\nZNhfIVDqzMPH3lmbRpU1V2QmhzxMJpyWIs70lKmY58BYp7WcU0glxkcPSDZsDtprXKw1OXQigorB\nA6OIsd1Cres0GGMtHaoTWMYO6c08WUvFHw/ITO5QLLYpPr3Og/4Bw05A3/bYuLrBqT4ge1SgYinI\n9gxZKrO+sFGnAUezQ8Khz0TPkruwyTW/w2RwTCafQS4u8Hrn9HaXaGOPNNNmka7SFlyGzgh/uGAu\nNmF9jS1kRouEQ/8Qhzn9wx4bqsqli01GpsBR/vHpbZBkaeTqWN4e1lPn8EM2zsBilqvw5qU+tesi\ntt7jDR3cp5e8v+whN+7yBy+VabXWmCcRY3OAJW6yc1rALzjIwg6nq2M+JRiMHgr4qcnJOEW96aPX\nT5Hfus2DZ0IKF3Io5z7q3ts0W0tGdY/D+pCiGfL80Tp5Q+fkEymnjfeYruo0523s0oR0dAF17ZT2\n8Cp7q28ye2Ub74UGzhNLFoUFkfdJXnh0zh3/hE6S5yA8ZPGiSt12OXkjQ053uDHMoSoiy16PQa9M\ndPd7YxTp85///P8LxPn/Xr/4y//w8889/TRZzSQ68Qm2C6SyTEmJMN0MhXwJqSozPheQizXSw4cY\nN1vkTkUeTR6iZFRW1zY5vPuIm882kIw6J/ffYueHruK6EeJgRNwo88EX91l9dpuD1w5obW6z++a3\nydx8EuutR9y89QzT9/dRCwrjwEMWbVpiCRGR2f77LM/ghZc+y/Gj23TUFlo1JpmnCK5I5WIT7yRi\ndDLg7Nxj45ZIbFo88fwVdt/uYlS2WL+gcPe1AaY0RZI61DIKJ/2AUmIg7WRpFTuc3HuLtz54nxc/\n/nE6aZneex+QKWZoPvUi799/l52NDRaDIywty2R0ivXBMeOlxVquQyOVyAUG+/YBplShfH2DyTsH\njIIcpVzEyWjOrbVVxq/vUVtZY16IKcQVpEyJ+998wPM/9efYnZ2y09xETvvsPTigulmnukx44Peo\nbF6g++oJnpqljoY7dxgd9ll/5RbH5zEd0WH9hSfxehN2dJXRTOPC9RbGRGER9Yi2qgSuz/DuIyRJ\nJ8krLPsDcp98mQffeUDzievsnwzINzZIlids1G+wPD3n1fdf48UnP83YPSGrpwg5iXolz0Bckg67\nnAx9Lnz8Bd75rS/w4tM/zIIEZzyhWNrgrDdncPYee2cj1p+4hHx8woVPvYI/nnL55Uu4aQWt6FGY\nmTzYvU0ue5P2hsH+yQOi4xB/9gjT2ETFovHCy4y/8TpX/swnOT+YUN/sEC4PyaVFTvozDCmL024z\nevcbHPQjnv33n+TB7TG1goiy3mbm2Bx843UKuSpVJ0JQA568fp3gqTq9N08oyxqxBC888zzeaMJK\nMYNZdGl9bAfJzTE3Z0Rpyre/9ioAP/wXr5LpFzkjz6xtQ3nJycUB8nCN0r0Ood2g92QXKQnZmXoc\nBhvYaYb1N1okqkrt7k1U22WnZzJtx5iNPbr2RWqHVVojFfN8BYkZ02AbR1LZHOqMrwzo5StEK6c8\n8/UW5TAin7cZr/XpDW9iOSWMSQWp4BESY5UcCusHZKtzzgcbKN94EaHVRWrY+MsUvyhSfPUWTjNE\n1AN8c0n5Dz9Fa5jy6rMxzdM8NIZcXVjkzsukSZ7a3VW8fISSWTKzMnz5ja8C8JnPXWdgaijFLL4V\nINoRnuYgnxWYMiEqt4hyC+y5iyroiKaJlqkRODFqKKGqC+Jphl7OwbGyNN0BSduh7e8QDOZ4/ogW\n6/QjiLIiYydGUy0KRpMos8AaByg1DT8p4HlTViIb3wgIQ5HcRpFAMCGATKGEMlowkOdoVpuKpqAJ\nE5ZWnqgSoNoJM2bYdpYsGdJ0TFFuonoZUk9CHCkEeYEZMZ7hs9o2sFJwxJDUHvPNLz0E4MZnP4qb\nhBQimXkpRkir6KlMEuo09CJLN4sULUjigKLiMcv71FKHQaRjFpr0dZ80q+MpkBUrBNkJOcEimCmU\nnCxyPIPchFiMQfUQ8jr62MWtl1AtDSdaspqTSeYRUaghHUcEgYpLD100ifMeq9MAWaqRCDrOWYgQ\nSsyFGMWpEdVUwlClpEoEC5/issDxDBrNBcFeH6GwylIQWS96DEc2xXiCrzVJ9DkMNbySjZIrkx1a\nfOsbX6X5zA5ndY9oKpEmAVIi4Og6onOKnqQYrDBSYuRKnVk/hEyKcyJj+EfEZRHzKIOSDkn0hIUr\nM67aUHOQb2cQwzK+7BOOI6ytOs5tESHts7JqEro+esFGmcq4qoZzPqa5riBkfGJTh05EtxRijlu0\nhQGjQh3j4JhR2USvlQji4eNYsIvUqzbW0iab8xAEF+nUJ9ZUpKJCNhewnM/QJRmx5TMNZeqex0Kp\nEGV9womAG04pFJu8/hu/z2c+00Jtv0LlZQ1/R6I4uMpZeYuX5znsZ3Sa0gYrRQHzCRl9Xuey9nHc\nrsZ1tYHxHFR8kdbDChcybfbVOatBg9HHtlEqAo1Ch/PNd3l68zqbYsij9QZiKaWQz+G+sMJznkmv\nWOO6ehXTa2BslFnjErl5m+71ImJri8auQ36twjV9h+rmBDNXpnvVYedyk9apwrlwk48EPruXYlZK\nJdxcmU9ldjholBDNMtqP+XjeTX6kJ+BufYRN38Dq6NQ2brFUVVYvFdHLCV+7e5f/6q/+9b/7pzGK\nkKbf25HVvyutbW6lf+0//VuEtkVdyjPJx8j+EYFeoq77uG4ORZyBU0eoi+zvdlmplogDDUM8Q69e\nwl5MmKQycjkmmYI87yNXakiuzNicYuoV5qcuF1pZHoVTzBkoJZ0yEpEnYschUj7EX/oIaRNbCDBs\ngawpII8GaLUyUsniLILCOI+jCRhqiuRFZEKFpWTjiRBnQZQFxOUCaa2N+M4ZYruFisEoTtCZohQl\n+l2LjVYHu+siiilx2+P8a0f8g1/9JX7l136dgXeGfWzQ6ugEgYdJRCwJdA+hUXdYlhpkZudILRNl\nKOLK4PRVsvqYeUVGtVPSkkp+qqOaLn0i8vMGA+eElYbOTNMQ+z7ZrIBt53GaFqrTQO+dMt8ySE5F\nau0QZ7LArGWYpg2KywWJYDKcH1PNVVmOU8JEIrtapjA5Igws1FKJgW3SWBEZji0qxRyLMyiXMgzE\nJQVC4tggiqYkWoA9l6iQMDdzGLFDYKeEqkalVeH8S/f5e7/5D/gfPv/fEIcqdlVFW9jIaZWGbPDQ\nGnBhs8KgGyIFDoIQkRNUMms1zm8/IN8w6IU5mA9Q2irhcZ7SZVAGMulaFXsW0nIUHHXCWT+moCUk\nWoRUzyKeLVFwiPUWirGEXIfw3jGZlQq91KLiDehZKoVcETGfpSoHnKoS+jjGtrqY+gbTYY9iYuNf\nyVFLZZJxnvFsnzgtEMgBK9sruMMhaVCguJ7HHg5wBz7lrSrW9ARFlBjaFcqrEaqbYikBf/tvfB6A\n//kf/RzqXgmKNueRRm79Nv6yjDSxsCaXaK5PmBg5zMkhaViimRlxx1tFrQ3JHm8y3hqzdpoiZfKI\npwKmLnBcTfCMhNWzLrs1iYuTlOwyZfbkCC+4wGCmUM2KTO0RlanOspEg5gzqdxNUfOZNg9Nqj52R\ny7nVIRU9KsaAgdihKsuUu2O67RU2zvY5N8sIlkhWsblnNLkmP2ISF9CtKpmsxLkDG+4Zx+0iia5h\n7UFrLUSyVQ4LMRctm6yd5z/5ub8JwP/yT/4Oy+mCei6ml8aU9QLzZE5DKjMdDciumsiTiLNiGS0c\nU3JkFm6ELelUnBi3DrmZg1eV8MMmdXfAVCvg6TpGuMQfawS6S1Fc4vhlRD8kXZUwl2O0cPVx7c5q\nHle08M+XVOtNImdMIinMljpZc4mZZkhyM2JbZGTmaboWi7mMZ8gYpgLTkLRUxh+PKatlvNoSwZHI\niFPmcw0nl4W5R1qVSK0ZBduk1KjhizGDxYTcxONv/eyvAPD3f/mXmLhj7DCLoldx7QVNecJSrqBU\nHDSrTuzMmYgBHTXgPBRQq+AsCuQVHcOJSDQPwVVZZGMEOUMQDtApYoQxztwjn484XaTorQIle4Ho\nJixDA6tmUkxF5oZF49hlWayRjRPGCw+xIJGbLhBXNQLPBzQKrslMi8li42k5nNjCCg10QaRpG7hl\nG20sgeIzMRaIJOjRCnIUonhDyOcYLBbUSgJTNUGdVshUM7izU4rnAf/tL/xP/OIXf4VC8Sqa7XOc\nzNDWMghJjvz0FMFcxRf3yWkyabzCycinGQzwCiaFqcVUq+DWXMR+BqM+QbJz+EuF2JiQVERUcuhn\nGdAUosUBkdRGymno+gwxs8QZx+TDGtPWiGqvwH7NQFh26SxVRi2J/FJm6BcQqhHl0ZyxlFDOi4Qn\nLrlMhkVOxxc9BElGUwxKfg83LeLqKplYpHuq0GzBPFGom4eMpuuk2THiiY9olokTjVopZDadkJc1\nfvpjn+Vn/8pf5amtGyyMAGk9g+q7JF6WJCiQOdvjbOUC+bmFfzFCFBXC4TH6QYCW3SZYLhhfXKF+\neoR7KUXuC4yjDivlhxye5jAyFjUzYZ67QGNs4fZ62OUGnqFhZjMoyxFlQ0MLDCbxKTQbON85o76+\nQf/kDqkCXrtJdpwi6BaLWRtJHlMtlDmfjAhTA7OdMDYsmopNc5ChX82xkCYUTyTUixLjIxFDWaGw\nbaFGHkdfkeGGjnCksnLjlMVRldFoxj/+7f+VvXd3hT+NUb7vIUoQhO/vB/yBfqAf6Af6gX6gH+j/\nd0rT9E+FqO/NkvPfoVbaLX7mr/wEzqKOFSbo0Yx5voAijzHmWURjTrYgMImLyKcZ9KaLOzDJZWbE\nacQolikFAuOsSmwIGKpMYbxAKwgI84ReLSLv5nEMm+xAYO6kqEYFpxETBi6aZpG1JTKByKQYYloK\nk8SkaqRIXQFBToiMFMUxSXOnTAsyua6BT0raWCD7edyxQUZTSLwQVQO/6pIbBYhxiFUT0BZNhuGM\nfFbE1R3UKGYmrVIeTxi1QBvmKBRc/uu/84t87iM/zqVLV5mM94gdHVeWyGUVJiPIFDx8bYYermBl\nFLKxj+EukawyR8YBz1x4lt0377Bx8Sb9e2/Tb5nUbInxwsJAZp7tU7n8LPSPcZcSlXYOZSFyMkjp\naDKZayEH76ZceKrO7N5tppJCEpepTcckq2Vm0oTSMEWwfUaVGvl8ipDNYXdTSvKI41mOy9dKHN7e\no6oZJEmRsBoxDSyMgUSqJqxs7eDMR0THPn7uDLdoIrop9sJB08pkyjYVpcgknfHP/tW/5l/+2nf4\n8nv3aRezHAXvoQ220VcLzOMjaui4C5mxD5msQzyXaasSjuUzb4KQFjG1GCeYUJRkIjchU8siO1n2\nYw3N9PC6NtnZBOcJCydXYf1A4jxbZuUoJliLcIoRzYcjhHKG+8KU62GRbs4gM5gRa6ss8nvovQpF\nU8NNfaarGrm7OtpWzOw8R0e7i7yMGeUVeu0WzbEI2THGwsOyDIxxm0C7xzz3JPWNAd65S624QOjC\nvGFSOdpgvn1I1O3yiz//cwD893/tv+TEF8nvxBTPHcaeTKYtUxayHB5aaEWfkiiQqmWicwFpXWIw\nHNIUMnixy2xqkJM89CfWCYM56WyBIObI6Cni3CE2HCxRYS6XaHge/VmWWD+m7IhIYQavLFMYG4xb\nY9DapGKCvEwRig6xPwby2F2fHb1IKMZMJRVJHpNVVEZTDbPmIc8N3MDFnENcz+HnZjhBliYWfcuh\nXS/jngiE2ZRpJsCYAeUIL81Rjn0Crc7P/73/DoC/q3Rx4i7JRkxibrI6NJknQ0pNn74lI0yLTO0z\nNs1NlnEfs7yg11uhXRziCCbeWoXs4Az/3CENBFq3dugenZBZqeKMVcL+HuqVDWb9hFZbQxT36Q0y\nXBA1RtoEc1HlrH9Gpl5lYqcktkLxcplivMfiOKKWEYjSy5wFFnE6IKNdIPWOqJbLeGnCcJpQXokh\nybM4P8FsW+TSG8zP+uidJulsjFOQKVCgpJzhFFfx752SRBOmK038iQDTE345fQGAz/3UT3LjSot3\nH91lU2vjtlcpzhyO9IALmRbv/NGXuLj1Ip2rAR/cfoCXXePiWom55SGdL6huZtkbmgzH77O9eo13\nvvIun/j0VR54Pva3HvGRH3mJr37tK9z61EsMTx6SzRdZ29zgt3/jt3nqxqdJqxPGHxyjVi5Qqp+R\n1m7h3u1TanssA4eKVsC5PyFstNj/4ANu/fhHCd7qcm5muHGrwdtf+waX6yvorQ3kwpjX/vm71Bpb\nFDshcXkNSbRZ2id0hxFmWGT7msbd9x/S0loU15rsH89Yr6TsShFf+IV/isCXgQG4XS6/LfCxoyzR\nuM9v/eTT2C0LKAFzIA90efzZLADxd6/s4/5oQBXYByQepxxvPG4TzUGeAwawBgwBi8dWLTagfLe9\nQvlAY7LpIhxVMAIP50IISFzcO+XqvSm/+xNlQAdy3+2nAiHMYygI332mIpA+Hts1wFCACdh5MI+B\nxnfvdwa0gBnSnkm0/Wf52//5z5KUdXLZKVmvQ2K5hNWQQbdEbnWX1IHBQEYwNOoFFUsNqZIjFBVm\n3RF6KUZYtJjmjmDUIVMNULwB82yRljZH7+WYpQ20so8c23QJyCQehljD1rsU+gXMTeA4IBKL9JVT\nouo6up2QG/s4oQ47AfPUoXDoUEvWEI0TfKvFYeUUWanQyGtEUxlzIZDqY06LCuYiwS4WaZ3HeK0B\nfiIgnFYRGimGe0JObDGTMriTBYas84u/+fPfE6N830OUJiSg+zT0M7JeDkMJuWg9JJRWSHMLUn2K\nP6lhVM6R6hqK6WCvmLia+9haABNNkMn0QoLNEyr7BVTBxDdCLEdiM7ZYFqZkhjUkVaOT6XKsp6wa\nPpILfqgySyOkjseVI5lFzUO3Y+rGkN6qSS0UcLJZzGSIaykYskVYmWHOE/KuiEMGf3VK6rpU1BpW\nFCPmPHL6DGnRwJBDBGNBLjvC1rLIgYa5ENluDDirxTRsk6wQYM0ee5pcvHCDyD/hp/7mf8HuV044\nLYxoRxKtS9ucPXybwWxBbiIgXtpB2e8zL/l0XniC4tdPUCKHz/xHP0334C7L+SWe7uSQ9QJP2hKR\neY5Q2OabX7nDM80LRE1Ia01cDz6+HSKKEYdnj/joJ18inPWpfvY5jKMqVnOKO15h6WpU0gylH3+S\njlvg3vQOh/f32Mq3uPaJp5j7c/LHI5TliL/0M3+BBJH9swFOHDA/WhI+pVL0VazumPpGidm1HIXW\nU4xud2nFVbL1PA+SEcnYIZMYhKdvA2BrYy6qffp9myBZx2RKqz/EuKxxJtjkqnmk6BzDvk5z8QF7\nzhbCxpAb+xneXJVIJJUVcwOpt2DQcNF6EaFm0GjepXBgYgstlhdNqsMFqiDheA3apTGLywrV0wXN\nRcQjZYWNOOWZY5XJy32UkxihbCI7ERdvXyEwZIz2HLIBk36WrOQxiCfoVo6DDQOzu0GhMmXTF3E9\njfK5Qu+6SbNf4M5Nl8b71xCCCfZgyWhSAa2NXzmnPCvywExQzqrkh/t/smau/8TTpN/5Gjk2Ga47\nXPCqxPU5eU+kmm7w9XvfZq1VwjISKp9usl6s8trbGq47Rsq1iKfvsLsI+OiVj5CZ1hnUj+n9YZ8T\nocfzty4wyja4Okn5+vEhaSuP0htSunmTdlngJL8gPDnA3tZYvjqjeaOCXtlk0D2kKdsslCKruSpv\nenc5HLrsbG4ws0asbFxH9xbk1JDcSpvDZED5yjbv//obXLi1Qs0Cq10gGFnYBxpyq8zK1Qa33/hj\nMk/dZHT8Pi89f4vXv/wqtZc+zfzdRx++RBIPrrSpNftMDh8QbRYoehm6tVPKgxxkIqS0S1LRyIYn\nnCQGF68nzB6GhNtvUxnLnIsKhQsXiPI+D06/SWdtlaTiEk4fIn9CIJM8oN3x2YuW5J1NhNxdDjJP\nYWRl9rLfpHXxMr1on3aqsqisMrvzDUrXX0AIbY4L+1wuOXinFu4MPHVB/bqP49wnW4lp9gO8rU3K\nziPkJ7bx7AKauIeXkyB8jfqVNvnigNMPXOydlKocoV+L6TbLRAcOjeIZdfejcOfxdKxdfY6WadB6\nZYU/+Oq3eb6dECkNippKNjF5/hM/SlguspAtnlvdZCzICMqMp6tbPCwPULYNnuknDHcvUqnm0f7S\nK3RfHXJ57QaPLh7Rrm7y5/+GweGuQb46YfXCKiZ5XvnLnyN4lFAumdx64RbzjTaZk4v07C7vn37A\nhWs/zlYmxFB8do9mhFfhc52f5I5/j+JagyurGcpDg0+99CnEGxne+Vf7bElF1j/9PCuX1nntf/83\n3PqhbVK9gXYWceuVp3BCm1Gw4NP/wQrmYgPRkBCap9RDmd7+t74bII8AlSuDFk8+6FGcxUzKS2r9\ne9hOC/QAxAkgw0wGbQ6aD/OAFW3JWViDgsdjKLkHtB8P65xB5pDcTMBYRAyo8BiY+hBGEKTgxBSE\nAvPqBKhDf8rVd87ovxbgHu+S5E2c0xXoeLjygtGiQbHnMWvY4Juge4/HdBJKxyFTRORhQlQTgBTi\nJUgnwBYwR48dPA+kuUdcCkDVgSVgoJgOETBfnVKZtnCGMY5xjNCyyU1UyoLGYqlgnERsPLvD5g9t\n4PzemPe6I87VQ5IkJmtmiQsyNb9HzhOwy33GgwpKJ6Ya91HtDOP1ANPdZSm08ZYBVcWl5GfYbZnU\nJjLz3JT4YIVpW6VznqAVi2TjGQsD/LqCfZpCsKTZbRDJXYLU5qzWoljVaGKgLAKk4RhDNjjZ8KnZ\nIWVth4nZQzw8R79YgmMFsejQ3x4QDRRqYRZ9OSC/3kGvTDi3IgT/e7M4+L6HqDiFrFXE1SLyks/M\nyjMvGjQmI2YVhUysYnUsWlNYJAHzfh1Xc6kvWwhbpwyWGRLPR18VaA10eqpApXOENmgR5mJk00CK\nMySKjVbtcRyvsO74nLkaWn5CwQLDFKklId1Mgby1pOJ5LAoZEtMgtCQCVWAZqchZmdrMYNCao8gW\nclrBZU51UMauR0yMgJyjYo5lRrksZjLHSyooUkRkZjGSJTlPJ9QtwoGCLjioFQVUh264AkChtcnm\ns69wcPCI999/k/ZHN0g2tphZAbK0jj6+Q/Z6jcg5JP9CEzMw6B9P2XymQOZ8lWHvHmqxzDOf2OSo\n9wBCkUEt4ImdF9k9fpVso8VJNiY8z/DKU5t8/Q/fQH96g8HZB1QvNfCsI/TWZfwzj6n2kOmjDO7t\nB2RzReTLGtLbNsGahjwWyS58hmf3+bq0oJCpIHQXyFd0vvT2IaszFWVD5uFX9hBKE4xlgvDyCyTj\niIufeJH+mwfMvn2C7SZMWj0SU2BLSnm4DFiEPo7y2E02skbc1wqEoktxnKXR8XjPuYb6aMwVV2C8\ns0tOaeP1xjjlC+QCGV3ZYnxrQXJm4eR93G6E5fvUnBSaVfbjc9q3RbzrUL0bI8oxs6aOMvLwKh7Z\n4hLuq7iqgbWZ4gt9HrqX0SKN6u1VqtMp91cFLuXm7H1sjrnosvLBLYSyQmnlDCYtSjMTV3epRRJC\nuo9hl+lbfRJzhVwawKMUr3TGxeUC5UJEfK9EVV2hsWZz2F2wXO2gL1Tq+hETNabNh+66d97fp7J5\ngYxUZPilb5K/co1ZR2L23hK5Omf7wkXeO31Idqlxfevj7L5xyGajjLK9zdHvvo+cmKw0cihpSKWi\nUpw/ycr1XY7mCtPdJVs/8Ryh79Jp7tPfHdN42STYvU/uk5/kCWmNg5MpyxMLK1NEzgo41h4LXAx3\nwVZug9fv/BElqUY2rVLM5hn3Bxwej7n0Yp7eq32qvTWMJyO6v3fEte0SsisyOX7IE089x/5bS6pb\nW4jCOYtsm4/+2E/y1mtfIJY0qmKTnfpzpGFIub7+J/Nhyx7Z2pzgwjH5ywJTfRd/eEJVzCOvC8Re\nxMxUmAXv0ZRr6FGPs/CQ7Mc9UpbMrydEc5MQn7Qg0RrEzEtfx4vrhDcfUZFiBDfPbsmg0Y1wi+/S\nSDV6kyEF16G67RP0XbRZxKQ0J+O+RfVlHVuOKMQV5uIhh809Sk9ncOM5HTlg+rBB/uaU7qRCuaqj\nzb9KWi6hm33mjSn7pznaz68hBj5T4Y/JmQ3iypjUXRDLI9QNj5pWx1EktLHBsflhHZys3MNeamgy\nfPzmc5hymdDwKG7rHD3KsDv+DleKVzjc32Nv4XCr2cKZtjjOdOkoBXrnQ8RlgZNckfH5CRfLn2Ln\nhxW++Jv/jOc/+2exiiGKXGap3OZq4SK/+X/+Pq/86E/gOTK53DFtbnIeDlHuhrx+/jrFQcRnf/ov\n82u/9Au8+LGPsLFzma8cfJG//u+9xL+5+zXW69eRiymaOOZ+nGMzcggebVMOZvjHCs9cbXLPg6ee\nvQi+QLCuoIQbeAsZx7nHSqnG0Qc+F5sCPd8nH5e59+g2C68DQH4ZkJ8JfPr398nYHdzBEU/ILdbf\nHbL/Vp5JZkH7n/cZei7Z35hytFNFnghclB2kWYlH0S6NX1VwtRgFgYNr+ywNj5V/GbP9T2Rmv5fQ\nmIz42hfhGfeEIz1k8vo21473mOaLSKIIf+CRWmPMf5GnEHYxZ6vkMyMwHM5zQ0b/6IzW71p0BIXO\nF0LqyzFp1ib5Hw2mF6H2v51wvLmK9Ksa8hf6FH7zESOzSOb/qND9gxgveEAkq9R+3adpzZntdEmD\nGqe/EyNqed643sdrPq6KcSF/g752SBCYaFYL5/AOH3xwn/V2hlJHCIJVAwAAIABJREFUYWzNEYd3\nSb4wxhICNpsms0yR/rGObhrovX2UuI2bMdGdB2xcnPHR/+xnyAtlvvkPf4Hznoibm7MqZFDqIcsp\n9JsLVnYTzlWNyFglmwuojoZIao5SlOJIGu3jhNMtnRU9YNytENUEdNMjXmbRj4/J75TZG+XYnvs8\nPO2jiQbZpo5V3GA67bOdreB0Uiz6nNOgYoPuNHjlzz3NZ574GHe5w7d+/W0O76XUPAs3cb8nRvm+\nh6iUFF23WFgyGTciWu2hTUp4Xp1kumBarqH3bERfICOH5IoRniASii4Lp4qshBSkkFFfJC0KqI7K\nMClRCJcIccLcSdHUKmlphq1X+X+4e8+fW/PrPO966n7a7n2/vZw+p0yf4YgUSVNUIyklomNJduwo\nCGAYgZVADoIgQABFAQLIMRw7iRLICRQ7kCWLkuURqRaKFGc45BTOcNo5c/p5z1t37/vpNR8GID9G\nH5X8Czewfr973VjrWvnRiG49oTDSKIwrrMoSbVHiuCtRMWao+YRxUsOcT1mXZBym2LGJQErb9lgV\nQrJBB80vM92a4jsl5OqAwgiWookoLplVVmyuTOwsRFQdvDijas/xxTxRfoY3ryC0IqyVwcxcUg1K\nmHwMU4xtj7f++BtgL9k7fwl3eojgq9w/nrP17BZb2xscjLroZoODP5ly9ReeJ8hOOfzAo1aTWHXH\nVFpN3jr8Hpcql0iKIfG9B2RPnaNo1Lj85CXij26z/jc7vPkvv07tMxdolyOyXof97SdQtBxnh0Mm\n4xNqHZ3T7Igf+VvPELkJ1dI+6ZbJ9775AWvrHW5slglXCXdndzn57pjN/Rb2N45ZiBJbLzxH//F9\nQsXg+o88R3IoUNwqE49kvvHq9ygqOUqXChTyeazJkNIlg5a6ztC+TTXIMbM+7vaWxQ5Gb87Wscbx\n5Y+YJTU2+yE9TyXalTAPayyMEutLnaHygN7uBo2Hxyi7GVuWQs/PkGmQrKlM1x7hnMTUD+v45SXm\nvYhHYgFrFLGlP6IfesiWzmLWIhAkNgtjcg8quInJjjLmtnHKaSqzWxIorXY4PTdGfX0ToXUOaW3C\nsJJnq18k3j1glUvx7pnoWUyuc4EzHrM/KtATdezzGotDnSCIcSrbqKsByfUM41aIO5fQOg30nk+2\ndYgsihSGIYL2w09yw99idTRgOOoy9lxOh8fUl+uIssdfvneTTz79AvMzmUyHdw9fRo93ODoZsSHv\n0bhgcXosMvdVng9GHLyfUN9pcEpAyZCZuD533vqAJ59s4rwRUbtYopnb40h8CyFUEGsp+U/scfK/\nv8PVp3eo1i0G6Sn6cMI0srhYVpCUPLal4s089s5lTG9OKC0MInudxYM+b2++xTPRp6hchOxKFeHW\nQ8zOJkLcoviCgVYycfoahXUbf+ZztfPjuM77BAWFwLI51+pwEox+oIe0t4Us/RlDLaRTOUKIyhhb\nHrNChbYScdZPMHIJ7VnCQeEEqbYiHIV0rDzWKGbQGNKoyeQfJqTVEU7OI0aCxKZaHZMfbXAsHFDO\nQClA1u4wWgpsSYecyFUK5S5mGTq9GaeZhtvWKc6nROGMaGObynqGK9hMhocoRQ9PElheFHCjGaVz\nJ/gP1jGfDpiszkglCVUP2djXWSR3mJ1sUG8PkLIVmuVRdnPY+UNC38L0EsLmgomzzcXwh12132/y\nuv0KX6p9mQdLj/HhPVqmxp1xG21nwaeeuczxSYFRH770xS9z+/Fb+OISozuh+ESVqi9yEAdcV1Uq\nn9rH92KkssnVn/oSyvGSpFtFeaGBeWhy1FnxU7/0ZX7nn/+PfOEX/hGaovCPf+PX+ftf/jLjhsZl\n5wrWRZU//uM/58r152ntFfEKNp/7D36eOx8NeVq7wtzuEzehIDzBV/6v/47qf/WLbLgDap+/xHSR\ncPd0wSrrgSOydWOfJTLnPr/Nt17+GjVzm3gaUmypPJzdInZjzHyVtRsa6mvDj9+Q/BbhJMJKFuSy\nOX69jhuoiO8HnC/4xIslq12XwkmdaqNI5aMYlQ+oeQrJYMK6UmdUFpHCGXrZpvB6g8ZSRVaGlE8U\n5pKLttnkpQcfIojn+OzJEKk9pm9nbPhDGkHIQG/Aqotp2GSNDpQfsJp2kPM+HecRlTigNiwgCD6N\nOlSMAMeX2NQPmd5SGNfybJ8eULBb5PMmwp0yraXLonWPyyd5pEzibHaEUFmnbiWM7+RwVz4t0SG9\nOmZhaxyeCtjrUOhkRB9pCFpCvEzJ9jX2Ll2nkVSxHsoEV1U6c4/7RoioZYiyQ/BoRiMBz9omizdJ\n4h66rCBWSsx6p/yf//lv0pEXJJWEmt7AG7VJ1444ODNoNj5GVWSCjBIKNKSUUW5B1SxwNJHIRxWM\nVsZQP2Y3MunHXYxyniyWOBnk2NR6GFIdNyywHk7wNlz+3j/7LZ5H55sLm9d+7b9lZxfk+TG6ININ\napj1GNt3UMoBb/3OO/zqf/Yr/H76ByzGJu1MJthyyfFXu5331x5x8D//03/yqxefvEJTBUeAGXkq\nSxNbSqjkPPyCjpIJTDo+OaFEr5hQlTLSAMr+nGhRQrUtirrHNPORihLFhU2oWMzyAjlZQAhEMsmk\n0HdR4hp+JhHZCcuqR2yX8FqnkI/Q+nW8vMxqnhHLIbYkU/UUfDdHQ1exA51AEJHEBUk+QZ8apJqB\nYmfMiilKrDCqyWiayzgfoc8KJE4BrxniuQkGS1yjgKSH5AWdJJnjEWGMY5yozDe/+wqf+dLnuHbh\nHLm0yPDsAeP7xwgtE6VaZfbhPbJmhZO7C7qHE178uSd47XduMTl4SOEsxaj6GOt1zL3zFCKXgaeT\nM5bo+R1uv3tAPB5zcuc99p66zr0375LfaCHKAm+89RqbGx0ev3eHbtclGR1i5SViQ6OuXWQpqCRi\nyKwfcPPP73N5V8R9PGcgBVBTkO9FPPnll/ACBWUvoLO/ycyVubS/xblrO3z4Z3fQWw4H790hmHSp\nNzYo1PIcvfYmZ+93yc2mnN3xIQ0pJG3c0wNWS5fXPnyX/+jv/UNudc9YXlzRjddwmgNMa0EW1rDr\nj3AXJUrKgkNLIZYMmveHiJdUzDtlapHJsVpGNVQyoUz7VpnKKMeynuJIUwy3SbN6gGPlODTmxL2L\nmFEPrT5iKQsMoxIzWabuWXRrK4yxgrxZoO1UWeVLSJJFI3/ChDwlYcJKbmMbZzSPCwRJGf3aA9Yf\n6dw0fM53UxYamFZMMl3SljbwJiOUpUq7veChLqPoDtZkDcH2KRQPmasRUqyxfVYimXp84+5rALz0\nDz5JEA04HB7yyWeeYmqPmQ88krKNoRUhy6g095gcDYknMvXnS8xfO+Ds3TvU9/boOgc8s3MN8iqL\nySHl1OLg4fcxjCrblze5/cZbtCtVcu0LYBSxKgrCsEJ5rYa+mrAaiWRtifazuxzce8hmvkbgipy/\nvs282EF/7DCZzKnoVc49+wSnfoI6dMivVRCsjKKTJx6c4AkuxXNXGcwCzCzHcjJn7dI5igOBQAtR\nBjZGucC4EnH25gH16mVG81s8uHOfcsvk63/+LQB+Wv8HrFpT1Gs95q5ELt+jGjdYOCHz/BhzGuCj\n4+WGCGkRzVeI4zFaCIu2i7xISSUdLefihzoTGUKvSsUKKA4jJkJMVDZw9QhThKwv4XkDnLrMmrNk\nhMxqLBJUVpirECkXEkhFgoaPrM3IRS6+4ZCpGeW4TmY5xLkFZgiyb7DcHCHmE/KGRd43mOgBeXmO\nPhUwCyuSpMDKDahGZZYNKGd9fCNmnnMojl5AynIMTiPeGPwmAD/3N36Uc60m42jI/P2H7KxfIzWq\nLEoT8m6Ltw7fpyjD/ic2McYa7x7c4UJbornf4S++9y7r7Rt02j6vvNbFKMsoixrR3OW4P6dWrjA5\nu0uxEDNLdLS2TjM22bp2hbKQoHoR13/2byCrVSi2mAzu8cHoXV64cJWd3S2mLLCPPRrrRcQFpGkP\nNSqgNlTyQZMLVzcJ9S3+4HdfY3/rPJOPhmw9u4XlBSTFNh99NODKTsrX/uVX2dq4xrmn9ngwuvkx\ngboskCvqeAaIoki0HPLG2+8j8AXW/m7A1YNjcpMSgTrC60+pVFPEVZVUnrMshMj+mFJOJ3LPKAoK\nuTAi54QIRoJTTViPViR9nWwRYzVS7LTGpOzTUBSGUkZOCsjPIgaVGGHq4JYjGjMDWV9jrCyJGj6N\nRRF/HGHrbdrykvxQZeYUUSsJ8czFjHPMKj6dQ4GSVsaeO9iOR950aLoG08jBCStUshWOqpIpeWaB\nSyOaU84qxP6MahRTLsyp6TKyt+JkN+GD81UWa0Xg39JY3yLw12iUZiycGbqWUklKdKcSFWFFoZVx\nmFYRtQSxFFDotfGFGeJ2jmIyg15GcaPG2fgIZf0yn/rU5/iP//7fJf4X/4Zw2mUlqCSFkPKwSqi6\neCOFYjLl0DXYbMskVY/5cI6eCqxlsNRcsmkXb6eFfjpHyemomUx/+IByP6CPx9hXMKwAda7Tm2l8\n+Mw/48d+/osMX7/JfFki0Yr0Z0vMSYlgXiRLjqmoJoUjH6U6Z1LNsSnUyZ/TCb05T/zMT/Hqy/83\nv/wPf/n/FXHw1x+2KQrsaD6+bVDMMhrzOXOtR16fMs0U4pVEceVRPbbQYpXGYoTrRyzNBVIgU8/O\nkGpdZkWduGSSLg38Uh5FlNjqFjGdOrKUYI40RqU841IAcUS1omLIFWrVMfqjJvWzDFvqYo5AsVQK\nSQclNydOI5qpzUoCK9AJpgpa1qCsrpDEBMOdoSgxalxATJasRafU/DxS1GCRFtBjH8NNUWKRRdhE\nW+pUJgLxXCYTRRpOxqoRsSiuAIjHEvMzh9P4LnI7R+vSPoJSwzheUBcVbr7Vp3nDol5LWfbvk7+e\ncelSg9Ln91CqG6RVk9HNt4h9kWV4RvRY5/GDmxRSl/z6JhduXGCcBIjbu/QPPZRll12pRWvvE+zu\nXKaRz9F44hJ3bt1kfnOEb/eoxzniWUg4nWHs6Ty+B4klkB77mPYG6y+t8fDNA8otBf+2hXvLpb3b\npBeGvP2122ydj5i9cZOCn1DevUTcm3B6e8b+c09w8bOfJNs6h7yUePjWhOXimNZLzyDKLQAeN09I\ntntkjyPM0hh5IaI/2mZnOaU9MillAdmGR3FiUFn65J7YQjyt8eDTR8wSg+tnXXw0qs5jgs0RfqOP\nv5PRGV1gKSWExQqKZpFuSJw3HCp6m/iD64juiAvjMXuhh78WcnmeUtA+TtK8ZA7KGF0ZcJC7QGYX\nua10aA2OWH9c5FY+ozLp4/ZbnGzMeMZYsGyaGOUS9BeI2R7T8op6uk+8p+BjUFkUsRYhSSshUaYk\nxZD6ic6oOOHhpRmLXPqDmklvm8irlEvieQ56AqZURCppLL4/5rknr4MbYdV8JqWIaHFG223zUPDJ\nVQSETOW5tXNE7pK77gKxeYGJKrP1mc9QvWrx0Z9+m84zL8CVC0jWHPNcnuUcwvkAZXLMgZCwUDMq\ndYnDR48oeQqlXJ5ioYYynLOTs8htrVNtCqxWXezpgrXOFdSrmziHA7IgpnGjgbedxzlbsHz7VSRj\nwMFkRLFV5/3f/Qrj8QPagUdeFZmdzMmNA1rVPM19lZM7Iu5Jxt3bP4zi1zt1ZDHACkXW4piFltJ3\nDoi0mM6ggJQPKOVPaRVllPwM1BxrtQL9xpJ8liJKFRw1IZVsklpGXV7Q4IiJnGOkVnFrBYRQoDVI\nODMTlmsecUXGW1iMadGJUzoNg/JgG2etSDnIU6iO0IcWmgCepVIUdNZTD7EREOYSopyM3VIZrskU\n7AqlKGE1GBO2VxTzJjPWseWU0A5ZyCKy7DFS+5S0FMEpooUq+aKPMSjR+eBZgrutH+gxX7l0kwII\nJb59/x0O5n3EHYez/gFdd8mmfoHQUoiWMf/6q/+ayxs3QDlPHOl8vn2NuTIjm0dI8kOE/Br90iH3\negOapoQThGw93+Erv/WHzCcewWsPeOiOMScLBssei4LH5I0DskRCmL5PKFss3nqEmBX4/h9/m/zC\noNwycW6NaJoGoqUgXlPYlnf53373N9l+4RkQM578yQ0ijhhVBiwer1BEnWgx4slWm//j17/OM888\nSyz7DL5/SpxCUDGohGVKjkl94XD7nfskycdp9s98o8vf+ep9vFVErK3ID2U6Voi91JHaK1aazd7Q\npNTYJBQGRJUa6mmJKC8wKm8xdENKcwk7bBLXXCINRolGbnCIkZRIciFrsYDUz6F7KzZWJkpdQTlT\nERKTJAsphwJbgxZee8hCnFBYLfAnBgsZjMwFv4Gz32JUM5EkEyHtMDMnCNUYMSdhLbYYFDLWVilq\nmvLYX6AFHp1AIJcViJopj0UFec1iPG8znkkw1oiLCvrMYrM/Z//NJQCtUoMd84h42aa8bmIaVdxx\nhXpDZiXXSYYhwcQhNotUT4pMc/dYbygU3ApKIDIqusyOVpSzFn33AX/xjbf557/2X/Lu7/0vLI+P\n0fo2Zk/gAQNaXhFt/4wn/s5/wf/6P/03nL9+iWXm01zXyNaaTDOP4uXztF+4SO1EwI88Qko4SsBk\nkeNP33uVj776Nu//yct4ywUroUizM6O695O4Z1WKs4xGWSJcyax523iWTck8Ykuq4CYWQ01gYGg0\nFZXeYgxnhyjCGvFHKUL6/5Mk6jf+yT/+1ZeeeRpXB91ZMG5IaPMWih5iWi7BQmZhGFAZIQwKyFnK\nQpXRJyWSmo86NhByHqYPkSHQGQQEZY1EC/CtFaGRoK4UxMzFNTIsO6RUCnGjDMvVmQUaDiGSCnIx\nRfDLqL6DXRoTRGskeYXEkFiJKbrQJzHLiOmEWSxRcWFpWizzHqazZJ5rgmrgRSl1J8BuL3CdlLCs\nk0ZFKAnI9JGDPCsRcpHEUimzEiXSSYNXX/8WP/HMM9xf2NSSlN3N69y9c8b4Zo+NH2+Qi1Se/pvn\nmC5c6qqFdOMFJrePefRmD0Ypj+7eZvHeCkEpoJQFLDFj7PR57hPPcCL18c56VK89T/ThQ67+xDUq\naUAYBowcHXk4ZyL1GZ0OKORcjP0WjabE/MzmNO5SDIvImybPPXuJqTbEsmV0e8J9e4k08VA1HcvU\nqGxbSFrC2TuPcUIfOVygSwrP/ntfQC5o9D74gOqFKxzff8hh10We3+XiJ5/DkaC6Dcc9l52XbhCe\njvj6m9/g85/+JU7shIu2zPzEQ+oY+AWX40RFK7t4mkJt3GJSdmiEEdIgJj3nk91t0KjaeJGFbcJJ\na45yL8PJYvYiDW/7MS3F4XF3jebCY9FWeLDjIQ9cwqhP1c1RDHdYxmME65jFREI2x7jlDE/sEI0m\nWPKUpK9SMc+Y5ctYE4VBQ0WmSG+9Rc4/o/CRwlhZQ1UGLMJNpgSkgc/xxhSnGaCpAQcFhVxfQFcL\nuFpG7JnkDyzS3RolJaVnZ1TmU167+TFs8wtf+jzTQYaq+9jpED0WWC1tYmGKvr2NpzdxPpiQDw0e\nr3o0iiFG7gpJTsO/dxurdIX377zL+nYe/8PbJF2R9pPPUdXK3LVD9jsWFQTen88o6C2idIJ60idb\na+A9GBLNTsnpBdzunJ67JN02cU5XCEaVNC5Q8JccTw6R9QJBr8/OZpt5PuPs1Q8Z2CIXX9xBmWsE\nnQaPb/UxGnusRmPOb6+z3KiSmTFRtmJkWyjmhNRZcOTHNEnIdz6mhreilFff/1iPa8LfRlo7QdTP\nWALGWKZGk7wgYWen2KUG6jJhGsSISx21oqMtF5Qi8NUyhiNQtAqk2Rx5qhPYMnpbRApkfCslCRyM\nQsisUKIVllgM5+hGBoFBPXE4qXksJRO9EqB0IwxFZLYUqXUclEEeOxyTX5n0JNDUCTg1kkWZMO9T\nH4zJF8uMQg+TlNwqwhMt5JVDWsjQqxm5MMHTbVytirB00XM5uhWdVBQIJgGqHFLwRf5i+RsAvPTs\nF6g2cyi1gGeevU69XGX88B619WtMhu8jCU2iYUqnUGMw65Fu5og/eoBplBjFCzzdxJNyVNae5Pid\ne1x/ooN3MmWZVqlHCk5gYF28yPmrAqN7U6R8iFrfJx/MOD09RSlcxI5XnD0648qnnubi1YtURYMw\n57HMasz8GWumwL05iJOQeF2gO4h4/kf3uP3119GWK6xYJlfWSHsRBVOgr5rkpCK+eY8Xnnua0p6G\n89GAeSFGa13kO//uj+hsrnP41reIVYsLV28QD4947Z23+aXnPsf4JMZsdPAUC6vQJSeWyMkJB3YZ\nK5VItDKZBsKJj6UGRHaDM1ehgUu2tU4oRdimSnEo0vRWLOWMjlvFLczReiqSKTLSyoSaglm0kMIZ\nlCqMUoWC7jKYq1hqxFh06FTzxOKcVZjh5h3sRgnT6xEHIjnHoGbn6CVDTC9kXDFoz6t0w2MqjsSi\nKSPHJpacJ1ulJKqAGs9RDR+GZaRFRG1vxCTn45GnIBbJD21yt3I8La/47h/+JZ/6zI/Ts2W0Wh/J\ntuiKKvN4TNZdYLZLyDOJqFgmnxvgDl1q9QhRXufMT5hEMcZinXox5KS4oi2WiXoLZpJIKm1g1cZ4\nqUu+HKDaAqdBSjRTye59i9/+4os8epxS0+dEiUZ2W8EhIjp9l/7tFOFCgyg0qNRzSBMf6dwWlzr7\nND//Elv7GxhyhaI/ZVJTcCKJNcFi2NKQ+gPCjQCzbJNFGyzbInNxRinzyKoS+uMVge2zTDeppWMO\nlybCvMurb7zCr/yjX/n/fhIVKTBNXUhmnK2llD2JUHZxFIWxK5OzepS8gOowQ6uGDOtgMkNuDTB7\nZYJixtgS6EoKQVbD2XcIBiZqEOCnEgWnQKoLLEo2pZyDXCmTCwNkQWVkpQjunGplhCEYpKaGK2j4\nmkx+2cAkQBNGyP4UKw2Z6WW0VGBZCTGygDitEWUp8lggykSa9pDYSKgJS+Y5nfJSJaxlrPdckoKP\n1FuyEFrM63MK0gxBSvFTl71xjFL8+PaVUWyxlpcQtDXuDhdINZHP//JTRFMDu6Rx+w8eMP/uRzz4\nsIf38l9wYaPJ9SsXEbdcrjzb5qUf/wRJ08fWJUpPP0/jSpVv/v738D9YUDl/ncU777DKF3jra/+W\n8dDBLF3jqZ+9QWEnpPv6AZcvnefdO6dU5i1W84DSE5cJuhG2OWN8BN/+1pskQ7A++SRuJY8+PyIs\nl5Blk0cn97h7esi9ex9Qs1wyUcA1fD642ee7336HO9+6g/riJfYuXmTzU3We3t2jaF0mu+Vx6UaN\n9fN7XN6o8N4rr/PeBz0ASnvQ/qCEF864vEhZvx1hZxXkyinCaZXMcLjZDskbOcLKhEmm071TopyY\nnCltks0CO4nNcwufzcAkuyAzGMEya3HLsGkrCkZ7jD6TuPxaAcEUaV4IcLeqeJbNaKOGV+yQb1u0\nA5OtuMHCGnHOjih4deRGjHumcalXoNsI6CxtSvYZ528+YPMkj7+2ThzmmCV7mAczmqFFc39OfRHg\n91t4XomcM8JIhgxWLvI8ImiHnIo6uhBx9ljhwtEmw+0fJi+aojJN+9TKFnVH4mH3lNVqiKOK+AMV\nJTnBLWic/3SZjaee46PbC8Sqw8aWyqnikTBB0gJyU4X+asm8NKRgDRkoUz6xu8vDV7/HN19+j4ZW\nYNOXKFfrqE+cx0tPCPc8BpmCo3g0cjLlszFiX+Xq+QZy4uEtD6ERUQ93qe7JdAWPniRTmlYY6jMc\np89bf/Qd5NqMXCUhO1txRRbYO1eEIrRWBcxJhLrao56ZZMFF+rdHGDrgB+hxxH4tj7lW/oEes5wE\nx9sY2jVKDYV4M4erHzEv9kgDC92VkAyVjtihJtgowhEnnsSpoJIKKxRtQJIlOMOYkW8wNQssPAtF\ngBiFYqxgjGo0Ext14aFUKpiKBFmGUHQp2jXWvBHR4wS7KdMlo6gFjI/qLAho6CqxGJChkqgmI9Gm\nbEbsTAXGpSpdWUByJRZqg3lTpLJYMhECEkRmThE8HctZo6zNUVSHiTdEnJ8S9zXi5oDcpWOEnR/O\niHlxwjuP7/LeH34fIajRO/JQ9Sv8+e/9DnvPXOKN7/wOF2+IDP0Ze9efo3C0wrh6Hd9q0xDr9N99\nTCMs0J7OCcIl99/4EPHcBm2nj5cmLKcHSKJHYaIh6Atqqsbjs8d8750VzeY+6zsKeuax3d5h+PL3\n4DjHb3/1t7GFMRfWtrkgFOhORdo5kcpTDRZ3Q6JCjhoNvvnd7zIVq6zIc2qveGLzSb5+6/tIizlm\nKcXWzpMuUvpjieKWxp0/+Db1lctLX7xCIRa59sWXEAsSgiuxjD8+lbQ4lFgjpCoJNM8y3JnC0ZmD\nrRp0woRaa0ya9YnmEWK+RaIWyQsCjbLOsSah+EuyZEg2jxESkSNhk+K0znx3Sc2NiGpjxpJE08pY\nX8xJjgSmJyUkt4uhTEgXc8qxzqg+wVsZBJMajgHGWg5D1cgfpeRNizBvoYQR0/QRhXKInhdI7RAn\nWRBWOszDOg1BJcsN8WaHCJtDckZAKKeMkzryXpd50Wdgm7SiBlopx7E4xmpW2dRkNu99/IZ4wQF1\n8R6j0xWrVYblTrFyHaQLefrTGaI6RC6DZtcoVA08d5dhL0cllbCUIuK2h51IqCuNyeMBniYgLzrI\nqoP7eI1VyWKyUlnGIYq+IG9mjCplLh7ts+E7aCd1akmZzufrbP/0eQ6WMem2jP/gES1jwlxaYJs6\njdgh3F6S64NkVTGUClIzJbR96plGTxrTyk4RRY21CMZeEVG4z+bYQFUU1EULhCbDoko5FKi3JixS\njUbksZidEkT+X8mj/LU3UWIqYfgi5GOscRtBDEkFATlWiOKQUrRGbMb0ywZpXqLez+N6BpLoM1Ry\nTAyD6vE6SaqwYY8QH7QpKkesnJTy1CDxPSLNo5wJeFmKMYpwbZl4EGF6UFZzCHONqSKT65UIcwGr\n1oq5MkNazZE8lYWaYQ7y1OwZirJi65GCHJaYrB2iSAJFEma8nbjmAAAgAElEQVTNHHE1Q5ppTNIS\nduYQpzKlQYXBRkgtsalWBfLJhMpcx88FLMoCHcMiLHrk4o+3r0arFXKtSbLrIRzepGE2CB5VmEUu\n5iqPFwxRL1+gc6WIdvECYdfjg8ePWG9eolV9kdu3T/F8l1qSY/rOd1BpsPG5FkenM1R3gCHC6GDK\n4JHP3e5djJfyrF69RZB1ePYnP0fXnPCL/+nnKD9fYTb0cA+OkFKN08EpN362ztp2HeYDnOWK4loB\nQW/jTxLu3rzJhUvPU0laNFovsjQSclslLu58hs6mRbGt0Dh3heTunA8//C5qd52gMqNwXkc6V0H1\nFd7+s2OyVKC8u8f1ix8jH0bmiEnpGB2Lu/WAbOWw7TwicIrYlQGSnmevX6P80COaFFAqNmb7EbGR\nYswdCicO3RHc9wyWGxJrSxWhMmDrzoKK/wK+NKAbFNDmAquqTLDKk053MLQYr/g2zXsxyUMb7dTk\n8SphcZxwNZR5/2rIPPSxRgFBnHIazFmPM1ZrKrpWIGuKjHydgpajHA4RVgOM8zNSP+P2pExqCVjV\nOYq2ZGssUY0usOVZhGpI9XSBXFpw6h2QF3Rsa4U60H9QM82rZVTTRMwahC9co9rc5clP/ihXn/oi\ny/Fjjh52Wd9rcf9BFy1e8OQnPkcSd0lal4myGsPxEkncZffpLVZsYQS7fO1ffIX5y7cZSxbN/XMU\nM4nm8YR3l6+Tjl2izTzL4h5aErN6fIb7QcAiKyKulxm9913QLuNMprz5+jdZSdsI62WMxTqILtNX\n3qWSm7Oj7KHqTa5t73LrwyNUo8Ki7uHvtxHqJbp/eZ9e5TGPb99HtqB7NsB79BbZ9jrl+wG+LyPH\nDvcP+jw++qFpaCZNSsYCZXLErO/DZEyQb+EOOghyRDEdQ6qzlMcM5ISJWKKji0iGQXQiEVstornA\nqmjQMhOE/AjDX7A0lqxHEo6dMG2eMXNbhFZA2ZbRZjKpZZC4EiVBZI5BtL1C9wQazNC8mKIyRrZC\n5nGeWQWkcg51VkfSauiTLqkPWwOBRFqhFqak8wm5SGW6XmCt4FCe6OiOTaIqCJUz0lWFsWwhmlu0\n9SqqItLKbBa2Rzz/4baim+9x5cp5zv3c8xiFOsJ1naU24yd+4ueQ3+3z+c9/liRI2Dln4saPKFzb\nIpseoUxX9BopP3pxj7en77DUQ7afsNh9YpPX/vyPqFy7jFcx8BKNxf2bOFHG2osv0Ty3wUvnLvCp\nzz6BpxRQDpYcJT3eOXmMtrvFWW7B9UsvYWr73JkNue+sEIyIaTZnLAlcXmuxM3V4+/59/utf/6c8\ndV1l6nxEXrrAKB/w4pUfI6dntCstjBmcjhwUUUPZKvD8l3+Sx6OHDN55hNRy+Nrvvc35SwViJ0bw\nqwBImwlBLmXsnXAmQFmq0m4YmNOAqOEyPBMIKiW8nI9gyZiHS1byMY7p0i5niIaBHbQRohh5s4+a\nZaS7U2ahwHwaYOTaKLHC9OgMLyygqgOytI+0EmkmBfy1PDMpxRcM5LyFZJ+SPxZIZyvMlcV8J8JR\nbKozEPUJLgVMY41k3qCYMwmVFpuhQdqE7GiOIspU93M4QY1ju49fbyIsMpbSOnmpgmBanAg2s+4E\n2cqYTB/AYklQqAAwFxJefvWQV9444Rvf/pDsMENddKl4IqKYsCptkl8tiCYRs7qBZWXkBZ/V2CIp\njLFUjy5jWqsqpWoOc02lwwRZgmLDxDgMSbUWT376BpOZii36kHhEOzbTygSXHNkk497DPv2Dd3mx\n8iyNakKxso2dyninK/RVxPLIw583KRpLnEXKzE4YjDvI/hbmWUiqq4izNiN9yHiekpo2WqlAVOxi\nHVY5XBtS7i/ZSE0e1UCZ6eTdIkZTYLK9jvBX3Lv7a2+ipDQhb0iEpATpDDUvEHTmLDKZfEVhYWbE\nukpxZpA+ypBrM9QsYjJbQ00cLHHFom1TSOYELsyqPlHUppjoCDgImk88zTMqFAhPqgi5CD0vYBVr\n5KcyUm3KiCY5JWFh9WgkM6qnBoJZwCxmzPUC4qKMt+4zLVQhiZnncqTFGXUJvHTJtChRPG0xzylk\nCZQMm0jLyBKXaGNFupTox1UCzcH2KpxWYiJHo7nKmPoyiVJkWvp4JqrWLLDojVHHTZ7/918iyo14\n79G7HP7JmwziQ9a2a7Sru4xHC/yzPqOzGcXM4uDbr/Cd115H2SpyyaiReiapUGV2v8/l9Q7bz57n\n4J0e7OZ54gWNKy8+y15xC+XeDL1Y4eTDb9N3Biw8l7e/dsTNrz+gVDCo5+u8+PM32Lee4ruv3CYc\nOeQubPDWv3qZR2/dIlexyaSAc5++wvjgFuc/2yC2IkhMyneHlLZl9i9c5sGbR7iai7Q4I0kLKIVT\nUi/EyXwe3Tvm4MNbVJ7SOJyf0Hv/HXrvPQKgZNcwS3VWqyKGcY3JEzKP5SbriwprNiiOw7A7J6hA\nvjTC3VkhhAVGnk7m+gSJQEHxuTJKGYYmWrIkDvb4aFNna36XkALMZhQ0j5oWs6753JMEDCcm8ypo\nF0HTC5ztHrPa2CWSQ+6t+lyxDU7WYZE7R32vhdQMGesllKkO3hzcNYprUya9mGm1ToSKeOLS2+iy\nG1qsPeiQm+nYhxZeu8qpKvPgKQXXWkKhQ7LvoGcy8yQhakaIWukHNbM6GbMvmZysTmmuekz6E77z\n1lv0FscUFhniRIZoysnZHUaPHvDet79O+cLzbFU8KtfXse0QWRPor8pc2hcoXSiiZhKesCQO7zEp\nuIQ4zPUK5cYmUbFKeaBjRhLJ2RrbnU02dwtY25ArrCPUK3jJCUZxjywpsRb6rO9Z1J62SI7ynEX3\n6S4TpPMt5LiLtbZF98EM41aMIXQYfvd1rOEKqdFk12pg1dpIZYH8BRNHzSh6EmHL4p7l4ToxQmnF\n/rMXfqBHsz3A7+RgPaTUVGh4AZE+JJePCM0qlEOkQsA0zdNqVcm7GokEhVQjWfM4O5QRcn1Sx6AX\nxGyFOVy1iTd2IG/TEFzkWZ7MPGSc5vENnRMF5MhB0WXOopDiKkfprIATrTiNBU5CjXRDRV+Z5IsK\nsu/SmDk4Skx5kDHLakxbNkPTJRcXUEd1Kp0V6UQgmoYI/hbzisxEdlFxcRwV2dZoxy6OFGOHLp1y\nzDzRUYQWXf34B3r45RINeUWjJ7I4vU0jFKhmArF7in6lhCsrTAWVOwdHPLv9NMn9FHm9zG//wW9R\nkQSyVsxFo8Si59HJthDimJcunaPrPaI/HVN9YpOnrlzjta99HQuJu29/j/ffe59bvSVlQ8I4L7Mn\n7PLihSpyVSURVkjrW+xu7fPoja/QKZUoxkVC2Ub2JF7pf4C0rmB0V5wsp/y7l79CvXwNc+Lz8KMB\n5RYIRoP56JRZ7x76lV0cx+bB9x+SGC7ruxbP33iR+MTlmV/4Ir//l99DtKbMigEAxWXIopzRsksU\n1JRxSebMDzgIVdylQiCvIfcyNsMAI3CJ1ztI5jqV2Md8uEQ8iagvIHRXKBmU8y7SkUNRqTJOFIbR\nBG28Yq1UwFmbMsRjrQV6tcqkkmNxlKNVXGEmNWrLkHjHwDfXyOsKE0mlOZMYOxpiDqRGhtyE05UN\nEmRjH1uOyJV75K0J7vkaZb2KP9LIMSK2dlGdA0JM0lUPG4Uw69KyI9ZKGcW+xEqHSg2Wqz4AP/LE\nRT77Mz/GL33ii3zh0y9gJVNOej6+MiVcVIkHc6LQxdXPEDMZjxgtGRGvh4jTXfoPi7SaRfzChGlq\nYj3Kk5wzMa2IiTNEokJ8eswbf3mP/JpCXtlAOBGYBQ+IEwevcUpqTFC6MF8IyMKc5QMDIZ1BckrZ\nEMlCONMyXrixS367za7mYsUyWbFHZaUwaU2Q5wFabURp1SDTZdZPTY6zkGwYYgoaVXeTWV5i5rls\nOetMqgtcPeIs6LPtjvF856/kUf7am6gIAW2WUR6XkKIKhz2d0lmOjjwkNVNCbPJ2SlRdMlQkxMgi\naydIhSlLy8PwqtQnEVEjIpVXCJrALJewSEBUm8wVFSW2WXMyko2EUcXFD0q46oShLnIqlCnkA/Jh\nglnK6Goa5iqHOdDwlCKthYq2Pkd0EwozF8NJWFgqhtPmcNaiMi9SFxfk0pDIKSKVxpy60D4tMa3q\nBCMdXRbZnM5YZhUyOYeCQly3EBcykjUniqEwbgDgjUM++VNPs7Fu8kd/+CpiLU/Bm7L9Mz9GdDBh\n7anzSNhMJ9Ad+qx/okltr82Tf+tv85mfvsGFMug7l0A1qFwuEaYSr7zXZX//aZ78yXOk03Xyz1yg\nfVGnXt+kd9Ln6OwYc62FlOrsJVe5/lPPs3ehAOoOkRdw7/ceE/XvY33/hHdfO0CfL6g+uYb5bIen\nbzyD7Ad8+Np3OBgecvu9x7Rq62RyxmRu88FXv4mVU2ntqEzeOybJm9y/c4tXX76HtrbJ/T+9z9nN\nm7i2RLiUCSKF8+U2hSv7AFhBjijSyLVi1OQhc6XF02c6QidkLloU+uvUrBKGN+TWVpVlX0WwItak\nh0wynYE6IDcdctqMSStTln2dabNHwRhy6ORJOwOC8hrhmclRNOEwsLG6CcO8zFRISeYDZFOllkSU\nTlMixaBekOn6Ek+8vo+v9+gj46pdCgTk4ikP13O4hQG5gkmuI1AOzxg/FXJ03WJdrSGYR4ytMds1\nj2xjyEQbs21/gOnbiKHPIFmysYiwKwq7wpjQE9Fngx/UzKImsdw0iDlkrjaQGgXi7hL7Zpd0t8No\n1iVZxiwOdRp6h2UzIBo95PHXuvzIeofV8ARPP0B59JBcWyWRbJQNlQdRF8uocqmwzrnnrzC42+PR\nH77P4Ptv8P6DE9bTBXbb5/HgAcp6gdnQJk+CPF9wd3jMznNVrnzpHF7+lFde/iYjxyB2TwjHFQax\nS0tMqe1t88qb3+PixcssMxsvnGBPM97r3sa6nCd8mFHaaGBrc6KGSW3/KqN5l6tPdlDenCMqCrNZ\nBVOY/UCPfuoxsHIcT22cZE64IxH4JYJFhCZ2EV2R5UkesQjxSIRcRM8XsEcDvMig0nBYzDQakkI9\ntemJMeYc8rk8XUekt6EQr2RqYR7ZGxBPFpiiQMmc08u5xEGOXG7KMi/TlhWMloHYUXDPQGyInPVP\nyOl5lu4Kw/eYaXOsdkqRCrEh4PdClmsOy7ROUJrjZy5n0gBtJKOXd0lcEz+oIyYLtEWC5syYqgW6\nkypF7wazeztYWf4HergHR8zHDn9+eMrpZMx8FRLSZufGdV79qIc9nBHPAhrCBv/DP/lXBFsC9SOR\nX/xPvkA0k3j53zzEnoi0Sxt8/fXX+O9/7bdwamWMSRPbPuP+O3/CB92YT/2HXyY8HXH3dE7lwnV8\n//+h7k2fbc3v6r7PM4/72fNw5nPPnW/37atu9aBuCak1S0gIYzAOCIfCOFXECUlsQsAvUqVKYaeM\nDQSbcmKSOFQFKoBjBJKNkEBSt7rV3erxdvfte/uO555h7332vPez9zNPedFV4mV4Cf/Cqvo+z6q1\nfmutd0iGLs8/t0DJ71OqV5i7EWk3YVO4w9X5y5x7+hOkQh/FP0EJoDgK+eD2IxzHBuufbKMPUh7Z\n+wxe921OgmtsnN3gJPYZXj/hdv8+506fpn9wg6PrPWTvFDde2iebb/DM11/A92P0YMwHyw9x+vL7\nMHX7PTwqDoq7S7KUMNdCpPEKyYrYblZpmHNUKUEQXfpySlwryJkwyj2krsqs3uFEXeFXEvRdl9ur\nLfRSwHDbYTGbsXlWIj0R8LbKiCWDaiigaCKCu8doNUYSZKotlf6qTKVIIbCZ3o3wqjquWGHT6TLW\nCzaHNaLZlIO7a/jegmozZL51iC1ZiDn0cp3ZIGBx1+WIEepijqWblBdHCKLBuqBgmttIpkDsFYzs\nNQ6cFVlpQlvZ5sgJ8J1tANx7LkboM/XfYtS9S7TzEJOjl7nx+rsYRY/wVImpXCLebJKkOauRSabE\nNPMj2qUMY/M+9iBBU1VUvYzSiVjFGf50RdWBsgPvePeRfJ+G5+OZIxIrYDRpI6rrrF86R+jLlM9k\nNBybW7mN0XJQPnKOj/w3v8Z//6V/ymf+9f9IsJrzb37zV3j9Wp+ZkiJu9FgjZ8SKfFilLRwTvzsl\n3Ruxlo5x1w12U4VAbdBbC4lHU4qxQ6Zo+K1DOoLIpOzhGJuEik7Zcv5KHOWvPYkq5IJDp0KIgpkV\nbGoGkioxqNgkdx3iImBZFsnyMmbNIyLHzAtankNHUkiMjNARyZIOke5gSSGOFmJXV4hGSEsMEGqQ\naBl6GuF4S2aNhJWsI9cGlGIXeSkiKEPEkU3JDvGcOYq2Ig09Dh0ffaAjRzm+luI6NlXFR3NzTK2P\nQkwuVxHqYwxzRRFIpEaZuNNjLclwzB5KkeBRpTUIKEshuWSRD2TubQQ4eshKFQmL+wDY1Sr9AvZP\nfNbLlzAGJrJ1lvWTnI/81BdYzKrEvQxJKJDrS5b3cgp5wNUXriJpGnfu53znq6+hVhcsb81pXagg\n+Ut2dyVW7RZSY5+TF7q89UaXF7vf5c7VAXanzoXL5zn/0BWGyYCr/+4tugcn3Ln6CsUG1C4adAWJ\nuWDwwE6DxkOP4MRraIsaB/GS6Y3X2bba1IUq7VDHqcOlKx9DEi1mgc24JpGGNU5VTMZvLzhdN/nx\nf/r3WF29y9nzF2g8eZkLTzzIxm6J9vo2x+MhgvmefTXxXAgTwvs57nCb9UhkJcQoJylqxea+JeE9\ncJs7tRZK2uDifk56VKa33uJhb4y11uZkY4vW5AwKAqN2giw2Kd/dJHtYpOKWGK/NGSo+wU5MR05Q\n33+bIBdJ4gcYzzfQ7S7S1RZbwYiK6WEuDTrJBlcffZ3zN1VO3VoiR5cYBRLHK5HmYoOelXNVCCnd\ncRGrp7l8x6C91OnVl9SOLcyazLupgyfr1BYy+52UzcOcinaG2mJC2t2h1HO4LZcpalP0Hf/7N2P7\nKU79LM3Gw3TqBudaKpu7DRJ3wii7TmNP5OZ3vs3OnoNddyhJTdrb2wgbU1zZQlYd1rbfz8lKJZ7s\ncueF13ECDUe/wq2XrzETFJx6zv2iS3ND5dL7PkRJHtGLbdbKDmZRZ/9rV4mPMrKL61QfO0vZrvPm\nm8dcCByC0EaUYmrZECOu89TfPkM7D2ibTbbWLiGdHHOhfpF6J6NtLfA9BWlYQhNFlrZNtbrOulon\nmCRQtgmDJd9+oUu/EiGeafLoQyWydOv7eCz7Epu3fLSZRprrRAOLrQy06opFAYnZoaYvqGVzpkyo\nDVI61SpaC0pCjbkYImYSXkUn76RUPAel1sUoSmxoUJ4ElHQo9DqlWhVvJ6ZQNIq4huhVWEsW9IM2\ndQRCuYZ2pLDuS+jYHA1Vcr0JyZKw5iBUpmSmjjIvIYkj2hOBnYYMrg1aguUVkJRZR2CRD4gOxvj5\nHE2Dlbpg6qyh1qE+UUmTOeEkQi33UI/L38fjVHaKIE340LqFcwo0qUsgjnjm629w+bFtSnWFq+N3\nmCDxM7/ww8zuTsllnW/92z9EVY947LObfOsbX6fYy3j83Dk+9cVP8UB2miPrOh879TiecJZLZ2vc\n+86fc1xr8fSj52B+RD7vMFVLPNCSyJI6i7f7RLpIcSqhO7ex5TWQc95+J+N+p0KjaWFsz7l/e0Ss\nzhGWDa4dvoXRMDj72FNsP3SZb3/t35NnCybGXULPIw4UrlTO0zxbQg/H7H3yHEJ0wiNPPsndrE80\nL/DVJvcGh4jTAwCi/j5ya4hQLeEWMq1ijuXWOE56iP114rSMxBqYCuIiIuyppLUVA6OC6Ig0xCXm\nUKQTKuxO58zHCbsHIZ2GgBZbRJnCVLiLe+uI1N9iVW6TtSWSvEBeTBCHGp3SiHiSMdooWD+VYyyO\nKOIx++MG9VSHjUMiIWSvc0xDaTIK22TLKhOlR6u0IgsFpHqNjZpJKY7wrTbiSiTxITuxOKiPEYM7\nVGeHVDyH3JrSibbRkh28bIbQC+hkR+99P6w9nvvWW/zxC7d5/uAW98f3+Ohjn+X0xc9gtDaQj/ps\nNiR2I5nO8Qyndh+piFhqEmo4QQ3XyJ2U2UignI7pSn1WhyqVSUKuVsjbGh9pPUayUaXsb9G6X8aP\n1tgUWli3QDxc8IGf+BTqckJ410beiN8bsfnagGd+63/iV3/5H/PHv/obnK6d5+Mf+zjm1oqlXac/\nXzEAduQl7bMmjQc/w4F1Hsff4thqYp5krA5SFrrJerFElBtUzBNEQI3PwzAmf9dHnp/gXt/HjZd/\nJY7y1z6d969/459/6QsPN1lhozg+/tKDSkbFD1haGvWpTpY65MkIo6gysTRKaQETkWVoocUJ4/aU\ntaOUXCgRSxImPkslI3YrKJlBmM8pconquIJs+JQim5QFPjb1ccZSDBHlEsQFhehReDZeqNMSRMqB\nCzVYRimaXcHwA3JdIViqqGWTWWlC4q8Tayvaow6JHZIuRWw9YzEtU1Yc5AA0QWZaCRDNiDRPaAoi\n2VxAVEOqyYw0rvFnz32PB65c4Parhzz4iEB2egtdd5keHJPUS7x+5wZCEDNy4dKFXYxyBy2Cu6+9\nRqexx2g4xcxCRu6Y45dfpvJQHXVYJy1L3P72d+loHcKSxr037lOv1NC0iPNn2hReyL3hhONb97h4\nyqD1icscDO7zsc89zua5PTJ3hN3Y5MJHHkNI5nSP7rDxiadYPPd1qppOef0svlFG2BIZveqRj4b0\nlysapwTEtTb2YZ+abZAVPu3tEnkiceOVa3TKbeQtATV2GVybMO1PUMI55QubxH7IMy98mx/+3D/k\nuN9DO51RGxSUljaBJGFX5wyGK/JAQgt8KtMYqT4jX0oozZyAnP3NGpY0RR6pZIpMFEpsySJ1oUd0\nzkO7v8MtdUQnauKXbXbeXmHKEsfpGhduVZHVnLzTQ7uzQ7npMzMdbDzmBuy7CZ3xOZaX7iEmMnpU\npbq6j65oOKGB2zI5N2qwEo9ZqRbOoU+v2kEqCoZegOuI+I0525FL7Z6CuN1iHI4o7oBfCglOrej0\nN9CyHHnewAvnvPzK8wD85H/1j3DfeZHMquCevM1OY483376FJ7ao7ke4uoigK+yePo9j5izuzeic\nc1gzL8DY5UZ+i6rmoZ7SqJ7ZQBEdOmc6NJp7HI+vUb1wCXHeIEiWBPacU+oe9jmTXu8OqtvgePgW\nmqHjjzxOPbHN0rM4u90mGd2hvHeWGzcHSJJPpDTpuUdstE5B1kLbgihZkMYx5qNVlmKdu/cGrIoZ\nhSlSVm3KnV0Wvav4nU1W/ZCNYkX3pM+l9z3E3Tu3OSs67C9DNrYtvvIn/xGAvx3/LIsPRdR2lwhW\nQlyYeEmOU5mTB3ukScikWKKl4EZlRGNOHKpkUk4tHKNSwmz62MMFs2WHsD3D1su4wghJNMgKETWf\nISUJ0zxhfVoiS1VWeQi6Q9K0aK96LD2bWSBjagH9dIpWy2mUdFy6tM0W4iBhuYiQ1SWiKDJc1aET\nMAtXBDmoUgV3VcJxXKxRi4WdoOQmJaVEVsrxlzXycErDL9CUFRUzR28pSPsaovgwfzH4FQB2LlZp\nrP8A96a3WQssFrlOtaTQ3tWwRiX+4P/4PT7/4z/IV3/3D9hd30MuhbQvVtjeu4ih1kl6Q87+xBMk\nfVDmLvVLV7i+GHJqt8bals3N27eodFp0zrRYvHuMUiojlBzS3oDw4BjRavLQD5zHaxskNyYUE43a\nxRIv/tmfsmVusffgBt/73a9QXX+C57/+Dk8+ukcUlnnxhW/y6KcfZyiLTAcrCKc0r1zk7W++yqc+\n8nnWO7sIswNieU6UrljmCvZUwheWmIZMbOuUs4JwLaRjaRzMJV5/4QU++beeIjiWiOOApitQKCFZ\nzcQZLRjYOYowYqWuiMM2FW/GEhPdM3BaC8L7E7R2GzfUSZUaVtlgXpvhpS38qYRmqOT2nCLWSc2E\neZyzNZ4j1FIyU0LXSywKl3xeI9jS2VrNOD7xEBunKMcxTXLc5QAp3SVsOijKGESF5jDDDkTMVc7E\nhsCu03FzPBPyqM40lKBqU1IMLH31XsJYzsnmTaLtOVnUJp/vg7Kipm+hGg6iFvONr32Hrb0NHr5y\njiceaWBvPoKJznxTw4klpPkx1Cp00xGiVGejDBtPPM3up36S/rtX2R8XVCowPzZRd06QRnVMz6MY\nThivmYhLDUPv4YUWG7WcQ2tGpKqs2TmF2eXGeMGffPkPGHztFtpDVxC0JfY+JN4+E3lFizbp5gJL\nWRFIKuWgQ31aR50nbDTqiCQsopxVuY9yQ0BveYzDglKUcWKdENo5kuqy8rbwlAVWs4WQjSmMFYNJ\nmw/99Gf47Oc+zyNf/Dz/u/nr/NIv/ZO/+ek8QZDISyKGuUIOBUq1FXKxhLlGbCa4G4P3hoIbKYGc\nogtjThIT10qwGxFDJaLU3SFcs5lFEtHAJJQV1JM9qsKIQF0Qlyp4MUjyhOVcp+fKZHmJraXAsiZj\nVwRmckaoBJjJOrqZ0WwPCFMflwokTcqZidKHou7hyQKmOiFJF9S9lLJ8QLFcpx/HyH6OIhuMlDJJ\nSSAfymTKnJGQwNjGXqlUBjZRICOLIV5XQXXLZI33lJfNssMHLm3yxpd7HP7ZS9z7yhsoSci1V1/h\nQw89wOLubXRzganMMUsaG09vcebyx1HNgts3XyaepAipxkOPfxwt67Dx4RqNdgml2eSVV5/lcP8u\nipuwvDvCmeqsbImsZWGXC7ZO2TjWad76s79go3yGd//4Lt/6t1/F9QRmd6eUhBW1Bx/h8gffz83/\n8BW2PvkUr7w1Y/PUHkKi0eYcD3/xEbr6jOO3TtjvzanumoRjiY2nziKJFU7cOUJN58LeGY78EUcH\nY84/8kEqjkCtcxpDanD47JiTt68CYJyaY8hnGPoTZL3Moe+hOO8ySzpYzTUeqR5SygX2rRKT2xeZ\n1/bINk+YVhOMV0LSQ3BTONAnpFKfkdRBlRrM+wZa3+4Ql5QAACAASURBVKM6DGnnC6TxHXhAYZq1\nOS9O6GZHzFr7NFAwlIyrgklaOsC3K1SliIYqYYb3afcEbu/5qOYJvlZGrKbcCcYsxRXhdECSOyij\nLuL6ijXhPtbYYz3dpuSv4FadWRQzXdSR9wMqJ+tEVdhxzjDE4VjMWT16n8yekA6a37+Zk/6EebHk\n5tFtbl2bspyvePyHnmZzcwe/maCp2zTMDtJei8MTj0CUGbyxYI5AX4Zte5P4yGQ8i3BfuY48PELU\nC+jNuFA/z9GXv0qge1Qv2ozvJhymh6QnKfvdOa9df4mK0SBeZSiqwuIu7JQz3vjq1wgNnck712iG\nU4KVyGlb4tMf+gzvvPAui9ef4c7Nu9x8/ib9QMDb91n3Mqw8peKLpBOR0BRAWNH3RQ7+/JtsKQq3\n9iWa7W2SscfFz36Mg5FPnC25P/jLhu59dGo3Z3SHCqwWVJOIJMmYRRViMyOWTKSshlwBq1mg2B0W\nqcpqAUUsMfU00onFSFNIajPassyBt8A4AcISsiEzr8JSjxClmMPqDCUdsa4taDMiHwmkZYWwrKFt\n9dBlG721iyBlzNMZLXGHcJVgSRZ6VSJ32phlB60e4aDRFoz3UsRKj4qRobkZI0aUqhaVuoSazllO\nTlD1Pq1aDV9QmTdTpmLOycmERR4zDP/yof2uvUWnDctYQrnUwpob1HcbzE58hFbK537ux9COdH7w\n73+KNc3mkStn+I/PPI9XNPn9P/z3FJVdSsImhwcuPTMnu38diRmmfprBNCdYndCOJb76f/8RZy+1\nscWAZ//f5zj9tz6Kub6GXZIYj2T2n7+HarpojSY3r7/Jg5c/SFm1ef4b1/jIf/k5jr1rPPHRbe4G\nPcIb1/jBT/woxUomPzxAlF0KX2DTVPi7X/wcR905N0evc39lsUo9rk16mAbETYlNe49V6tGIGkwD\nHdsvePFOl41yGwDroIYhKqh1jWm0JK5XqOomTkdgjTmtkkMy2uCMcEweNYm3hzgKmHmA3d4hPJbI\n149YakcMhC7r+w1U6T6KMiXKjwl7JmZRIc4NTq10TnY3keIyzSRDHMco5SVGZYaV3+fENSg6Bkow\n42BapiuHyLZB0cwIk4DU1Vh5C/qKxViyObHWCN0AJTliPA0YZTO0wKOhLUmnLp5o4FZC0o02lr6H\nrok4txVUf0kzOIdrdDhWXNx+ThC+l2gttduo4YQDz8KeeaT+GA5WKAf3QN3EE07QtFOoao87VocH\nLl7k3Vf/Lw6eOcDIEpZzA1nQaM4r7G1ZPPX5n+S6HRP3Dwn6b7K8mZKUc1ajPmFUoZxphJUym08+\nzE//F/+AT/7oFzn/Y4+hT++Ryy0++s9+jJ/7N/8LP/tf/xOqH7Iw7tQ5iXewkpS+vKLQ7iCXPA4O\nYqbTCH83YelJHKRzjpcVNlMPIbUwvG025hUESaTVyqnPJFYJLFKbuVZH1V2u/odv8Tv/6p/xf/7W\nb6Kq9l+Jo/y1V6J+81/86pd+4P1nqbgS4VJB0OsIWcxJ2sEq5jQmJdJKiCKm+KJFGiwpiT4lARJ7\nTl0MEFSNQpvjCwaSOMWUVySyQ+pLCKZCosvoc51cSMi2XfIwoB5kuJmB5TuMNZV1ZcQ0tlBCCzky\nyE0JISljFguypUYgJyhCiDZVsRY6nlNgmi6L0EGb2ThpQd46RKdB4YQkUchm4IGqUZRlysuIWCsT\nlcboU5MFAgUCjXWD+6UFybzJXzz7HB94/2fBKNjbbJPpLWobDQRnk898+Emu3x2w/sEncPIFt2+M\n0ZQWZSPmoFghn6SUyjFL3UcsPPStEoe39nH7RzRSAV2vsfHYw1i3cs493iKqrYMmIs0VDuZ3aA6r\nDEdAGZaDgvFhn41zIuO5yOj2IUN5gSY2ubd/i/WWTKjtED8/4BM/+Sjd4QGL3n2qmYP5oMlO6wE2\nn7Ap6XWid7vMGhLu0TGrAoymwCoWUU4KHvo7V6hpCvuvuuBLXF+8gl1bo1Yx6NgOf/bKs/yd/+yL\nzPbfpqWU6HZmJMs6tpnh7e7THPsc108xLcrsjOdo2pR6FuFONqktctaaKZZaYio6qLmBWrJprWDq\nHqA2K4wLg3Wtjh7fQ2x3OAmGxHOfqaLRKGmY1RT3ropdMvALhXqucKN1h/TgLDvhPbLyZe7seNi9\ngooEfvmEXlFmLxTZWa5zb7uLUGwSbffRNZthtkMlMLm3lhAFFTYkg1oIbm5Q03ymZZPYrLFo3qIy\nFqnEGWHVxR6alLQ533ntWwB8+qc/w4t/+iLn6zq97op1RSWvV5H6XUBg59IWa1u7LJ+9ymS7hDb2\n2b5wGVMXWcYJR9+7SuPCNr37A0ob57CinOB+jzfvvM3Z91/kZDJkcHifM/YOa+U1kiLg/rPvkIlV\nqo5C6ykDlhbNtRZFEb/3oxZ0VqHN8Oo1SlvrZP4Mu3aZkpLS7V/HlltkZyoMTiY4jkZ5Q+bdN97C\nefAhciVm5XiIeY2tImSRNKg5JobVQMrvMBUKDsfvcvHMJQrRJ1lqbF8M+NM/eq+x/MPN/xlX0Wg/\nMMKzLGRfwE1laopNzRAwlgneKkD2myTLiJo8Ia9lNAWJpSfg1OYMDQ1RKHDGMFqFCFoDX3Xx9AVB\nkKIPMuTyOpoSo6QNLCehH5QIZmBLCjOlQC9cUr2FqMQ4coF3CHXDYOFO8NpVpnlEuwiYSQbh8TGN\nlUd3oRIkNn7FY0sRkJczVplJKBgEjkdzoNEVx2xubLEgQxUURv4Sa1GwlEzClYg6trB6u3x79RsA\nfPCpK0SRwSN7myy8ADGfMnxtwN6DW/z+7/4nnvz4E1y/9RKZsM2sMqN/b0DHrNIoaxRbmzREn2f+\n+GvsPlpmY1RDMRK6Mw8pFhH8LoZYZuRbPPbJx3jj1Ws45T3aW6dZSVNWxxGl0w0mQszD7U3evX7I\nlcsSL7xyyKNb67hJH9PcpVoJSa9N4UwHS0041drkxpvfoVy0KYx1eoMhsmjTXBp8+bk/Y5nlXBB3\nUYwxYbnDedfg+rFL5VyDV155lm1jne1zF/n9/+3XaeYy5z6wy727h7z20st87seeZCZAXVAxSgbu\nJCAbJ4R5B7tssohgsyjYd2QabSjSKoVwQk+okbsShdXHl0WMqUqeG9iWiKtFpHZKK1ZwSwWJmlA2\nO7iNJQ1XAmlBOjUZqx4lMccwN5iMy6wncxDqlJYTapKDZJVZlBSYRWQItEopwSJHFcuUzJiaNWK5\nlNFMiVxckS6bhOYcXW1i5i7ePGc1FVCMCfNRg2rziEItYSwqLDUPdVgQ6RZtYYIyHfONF1/igQ+9\nj5OrR5zqmBi5zpkvfo5f/Nmf5r/7w98mOHqVsb6OefuAsrnGOA64/ebbXH/2Rd7YfwnBnWEnAfGy\nYCRKGAubXvgtilqDtbqMSoVnrt9gL0u49JmfQcmGLFhRRD7J1WPm41tMpzaBMCZzDexlSv94xI3L\n3+Wt3rNMRlNmvoAfnkC7wD4UmddFBDNntahSd2w0XyNbWmzthXirlLwwGVQypMqEsp6ReVscz1dI\nioO0vEXHbCMei6wSDa3iES8Nymqd51/7Dr/4j37h/1eJ+mtPon7jN/75lz70gUcpxDmJKrKMFEqG\nSsXL8QpYrWVkvRqUhhgLFWtRRtZ8hrbKSoe4pyHVFMRphqL5pEEHbaFgZjJ+KaFYxcimhygqmFkJ\no6+TGR6zcgVb9lhmKuVkwiosEbR8nDkMpZSoucBKfI6cnFJZQrLGpG6bRHcRGyYL0yPqW2iGTZQW\nCK0VTJuo0ZylJmCmFXwnRZmJzCMLRZ0hhQJSaYUYaWCqVByR3omBqRjIWs6f/sWL/NgXPs3cDdh9\n7CzB8Jj6kw/Qv36do/mSSlVEdcdUa+vcPFpwdOMW/dtd9k61SfQ6D35kB9FZo5RW0LMR2DKan+Oa\nW6wYI7oKiVUwnccE97ocTLrUsxXGqk5mLFh/0OHN7+7TaQrsPLhBvX2K3ffZGKJFO20yuvEqQTwl\nvJby0MfXKUoZL778BltPP4UrT5CPJV797hukPozeHvHmSzeYZwG2WaaZVymoUalUWN/awWPJjbsu\ng5fn2PaUsC3QiNeY37tG5Cy5tXR58+pr/MgnfpzVXQclXGHdzzFaEXFWJyVjKK+zilSqgx7LrTZJ\neYbjJciqxfREpyn1mNgtqkTYikQ/TyktSsSXhsjjBlNrQiLHqE6FVDSYLZpsOodsHq6T1Sa4+hkU\n3SVdWujtEV71hHC8TlJPsDOJ/a0TTr/Z4EgO2PCgttqhLOvobYHJAaznEv08YWe/weFSodIUSMYr\nYiuniBfMnDFqX6ee5fidHq1Bm3zjDqtbdUrznFlljY15g/3dIaU7I7577b1V+n/wiR/H9BSWY4vd\njgqbDY7vHKE5WyjZITdGPcxlBV+VGd19ByMJ0E8rBLmJomjc6I659FCLxeSY03WBYVQgmSJGKmCt\nX+IknqD0JZZ2ztHiDo3OGXr7dwjKC4Tc4lTlPOM7RzSrLaS9MqWez+3uCa0dnaS2w/hGlyRPOX3m\nEuPpAScDgdKGQeAvYZnQiFqYRo1SOaLSEpm/0KPIXSJPQNUlbh28w6XdB+gVAUoo0+vO2XQjGo0m\ny2JOfquPvOfw53/8Hol6MvnHVB49RD8p466FCGoI+gxFjljoOUrUx0chXrPIs5RlVieIVyyrBS29\nzmIZogor6qWEAWtUGiKSkZBi0HChqYnMmhr6TEPRE0ylxEJeoKQaqyhGq0tEioSvamyKIcEswUpk\nIt3C9WXyaMJaEWHMbeayiFO8150zbQtoikiauGxHPvtTkdxuEWYxuiYS2SKFnaCtTCJrTK6BOrPx\nqxOk1RalWoA322T9SCARz/Gt8b8EoP3QHhclk1kQIYtjfuePvsEPfvwLHOHz8O4m3/yTq9Qfa/DC\nb/8/PP6hp3FCkazdZv+7r7OxtUXSWOG/fUj50iXy7opya5PQlMn2bxNWa4SugGFr1JQRVcNhoCos\n4zv0j4Z0dhrMgNF3u/jRu3ROX2Exi5DLdbbPVJif+NTbc6heQMannjtkxTprF9rMJ7B20eBbv/fH\nfPLp93F36SFLI05vXKB5aY20nzBqO1TdHopd4eYbL7FunGe9do5oQ8U77mGtX+DBH7jE3eMeBzeH\n3Lr+Nu+78DnCikVQnpIMJBqpwyQ/oSHB0djGiVK6azMy1yUQHOKJhidFKEJMOXSRpXVMYYS/ynAq\nKUNFIZw1sJYRRi2lYsiIYsrCk2n4CqncZUaT6kpGrClEYkSSy4STkKLqkeoLtKhDVJZAiImEnPVE\nIasKaHeriILARDAI5QOcZYdFe0XD9CkNtsgaOeulOsLBClWdIWoF62GDbmvJeqZw1HewbImZp1FY\nKe5mRD43cOpTkiV884UX+ewXfpQ1W2FcVVG1OtHgDj905QO89L17BCVoZiKeVkYUZNqzISvFwdnc\n5Er5EXa2ztCthMwaMpokMG1qOP0mqZXiu02amxVKWwXfvHGdm7//OrZcMB+uWHkC7laBINSIqhaS\nIVDMDWrOgsgsQVlhEevI4zFOmFPpOGjLmBIrFmIbwfWppz7jaIXZqVN2NfK5gVE/YepUqGU5a4cG\ns4qBKvRRZ2U0LUUs5cxklaW3RDAkbMtgmZjMGy5vfv1F/odf+sW/+XaeiIyRj1B1GzX3yUURnzmr\n0pR61UWOZdRygBg0WWQyhS4hSjVKQ5XKQEY021h3Mywtx3Rb1JWAk72MabNLSY1ZtsAdVFnkJoEa\ncbK9AMNBs6ckgUEJAV/UEcorxJXEJLfZ2PBQhi0mgU51LiAdlRgM23jNGUFVQOqJGAuZUi5gTSXU\nioc/8qmKYyTDwVqolBZTkmWKWhsiVufMWEMSMryxg2BlZOICP4hR1ENsb85w+l4FfTB1ufzwJQbv\nhqi2zfClF7GMUzzy/ofBjZDPdyhKCuLhdTTJpVASFqshvekhz7z0JsObfY5HXQTdQZ1ELG96cHQD\nQ9Yx2wrenesIkoexXmJn/TzVzmUWbQWzVqde2+Bjn/0g8vom4/6A/mvXGM+bjIQFXgw8fporTz6B\ndXGL/dEhplnmwtlN5v/pm9SrZ1n/QpvH/vPPs7trwHyGmQesGyGlIqR6eZvTFwvEROeee5/u0V3G\nb7xI87KAl+us3l7QH7+DaJ8jLhya+XuR/liNUfUl8aLN6EKTfKkQz4fYaYCQ5Txx8x5xfhrbXdE6\nkEiTdY4tjc3OkhuWReTfYDwJsc27PCh2mZVmKNdUejI4vT3C8IT8ToGw0tnVXeS7V+hWDI4iA6l3\nC3tZQZPv0K+O31MuNwz0wmMxjikFIvuPruhstBHTLd7dkDCjQ161Z4wuxIxdByESSdoyG50TesMp\n01REEQLEtkphZsi5SyyPGcXnSJIj9MEF2u2ImbTORjdBFu6jSTpo+vdv5kZyk5tHM6Z+irj3MFax\nzuLd+2ypMSNfodJvoKwdcHNwE7laI3yoyuFzN3nt3ZcxyanXbaT1M+zEZzCtHaR1GfXsGdYf30HT\nFU6JdXb22sRv3OXDVx5g0zShVfD47gX2ygK9hYS9AV15gpqk7EsBxe0DSrrJtmqTSiaxoHF79Sad\njXP4tS7H0yGdc+/nwVNn8CWP+mkNY/dhauEGm088ypUf/RkSSUITXc6USsRizIaeUW1F1EcndLc7\nPPPWSzTzEv3CIL43/D4ebWVGrVwh3bpJJ5mgOIeopoXtLjHzlEWtQ0ktUx9PSEODdSOmE5cxDjXi\n+RCxriOGOn7WJjPG2MMlVVdhS86YpRZToYK2yIhKMqt5SN9P8BIRY+ajlkTckYgzgdI4YtBLiBWD\nfJFQzeaUkkOsLZFVNWMmu6RZgVFRmMnbJEsBYW4iNU3GicH6LqBklC2I1ILy4QJ7IrOUwPQ7KJkN\n3hJpVKVc8pEHIYJxiHjJIKr+ZY/YxY1N3hp0yRyRJQ/w8z/1cyz0nP445ZWrMx55+MM8+++u87M/\n/8tEt1P2U4OmmPD405eZiiH2LGX7saco340IbJGRHtGpNVn2hjx0ZpczVZWqGnI8sChapzCHJ9QG\nDT5w+sOsr60Te1N2PiiBqrPRdIi1Naavvk4/Snn+pdcRWru88uffIts8x37Pwwhc5rdDNva2kfRd\nHv74j9CPHG7tP4frSGRlMKYqQy9ADDzmmcFBZvH45z6AfUFHOm9zcnyTlaRiteok6ZzkuobSes+u\nWav12J7rCL1t3KxMai+Jds4RaS6N7RErp8Qa2+w1HTTdQgldHH+NjWFMKiR4ixhhWqNc3sGci2xk\nSzadGX4iMpZLHN6zmXgWbcFEDkLE7BTx6ISxM6GrzlksmpTGS4T1Eukwp2adIhQj0sxDtyb4mstt\n8YjiBO7WE8yOhd3waOhr3I1ENE8n7W4wrkfUsoLuyT3k3YzD5Rp6zWF2dsBpsUAJfBpGgVeMaCm3\nkSsSZ4cqpdMzfueRs/yvP38WAPfVF7ntGiwXIX3RpTcLGHRszG0HaeyT9CZo3hLHEBmWK9hOQjE+\nYCLMGPZidgm47IooUgk70hml+zRll0KYc/vuAfHc5MknPs1HPr5Lflrn7LZCu9qkKcs4UcHmaMl6\nf0pyqszIjZnGBd1syGrqUSs/gFhXuPLRH6EoneYgPU8euZjlDZZqm47UJogivLU5B5pAQEZnNSca\neeRtg9LUJQ1iSmqBuZzj5yU6UwPd1ukoAbHeRdP75EGOYZl/JY7y116J+le/9i+/9OADH0ZhyrSd\ns7WIkZWCVeig6AqWKjBNCwxRIdFn2CuVqeNRdTRiOSaOcrL6ipHRQFR6hNmK6tJAlSoU84xUUsgy\nFT1folguTqASqDZqbqDhIXshRaHiV3PqgYNegKKuMGYScUlAEk2meUTNUFHnOiE2am3Kyi1j2wmh\n4GJnNq4J1qLORFtSWckIQokgNpFUjdJJDlKOmqzIUZGjDLeRECsZjlYnJmbCNs9955s8eeqjDHsx\n98M3EA8Vgt6YYjRj/841ojSh98pt5lOfmmpz6bGHserrZHEAioPbXXHr1Ze5dOYc07fuYz/YQGs5\n2JZN0Et48/nvUu7solwo0dBbFFqPRcfhslrFuXiOo1dv0T0ZYy5GiGrO0iuQxRO2P/A0/edep3Oh\nyeEiJ/YUommX3mJMQ3K4FsT4bw8YvXlA+PabdG/3aT5yGVOSqe+dJWfMZDFkcPWErBURZQXlbhUl\nmiIGbVxjzKUPPsraU6cRuylrTYeb19/mrbvX+MJ/+0vMXs0IWj2kozZxZrG1UFkGGrNmwWxqI57p\nc6em0qjBraxC20/RUp9SbLM62qKhjMlzkeLoHI3mgPkpePCtNr2LLoG2wWlpRCTWyU7mqMWKILPR\n2z7zWglXjWkv13CFOUk74OJNBS3wkKobJEsHx4W53GUhybx/0CPyN+mdXmLNdNSOQtnK0dI5+kkZ\nYWuGmG+xVDzEbo2HjnyUukkjUgnKdQabZWzhDn11g9PKbWbnI7IDF3mxwUSc8OarzwDwU5/6Kbxr\n17j4w5dRFBEhF3nz5rvUaxXUmo6jyXiuzTJY8LEPP82mvsPrb16nqW3Ren+Vxe03uP3dORceqVNk\nAZmvM3v7Le6/6xG0LTS6BNU2/tQnLduYAwuhpGCuncat21T6B/R6Y8bTMZcv/QDVeMmwKKEhE/eH\nSDUTK/GQZZUbt9+m5ryP/Xf6fOqRTeZVCalQsVSd0LaRJ3eJBJftjkSjtMGz33yRw8Wc1qk61kab\nzAvILJNyIZHdDVm/3GS0OKE7XfHWG28B8NPrv8U7iw9T+YElcUlg2tNoZCr9JMO1w/cmRLKEYFGj\nstUl8VaoleC9wWF9k8ibkhsqRiGgyy79UEGwdWJ/gqiWQRwQChuIYR89kqmIEnJYY9yeYqURbSWl\nHwQIjYKyWSKXfAIrwV+WEEopnrdGYxEwbsi0VjVG7hjPtFlPPcarJoIdY2o6wrjOvDSjbUqshICw\nYVGkISE+paxKaLsUuUCwJuLOC1rxGk3xYe7e3uF0KPHV7q8DcPl9P06rqRFEAWstnRuvddGbW2wS\nYQsxeWnGU6ceQ6nO6M9nBO6KK1ce5vmr18nHLqrWRq0m3A+GXL5QxVFbdLu30BsWx3dGZLWQTF+D\nWOS5P3+JT//QFZbuiGKtQjwaot72qTXPsHteZTLVeO4rv8cHPnGG4WTFWc1GqDVpd9pU1ZTy0sV/\nYItJNiY/nJAtZnz5K8/wxCN7PL51iVSNiC2NZDjmgUf28Hq3+dp3Xucjj52ltm5id226R3/OvGuh\nLhLkjTLK0Rj50hajwYLrr73Ekz/0w5jyMUbZQCxNGBgKtdhgkqyQLZlwNEJ3YtL9OnZtyCBT0ZY+\nSd3GqflMSKg1m8jjKYZucj8qKMs6larDXCkwoymBGSH3JfS0Sub3SY0KeVaQT1ckFRe9nCIoMo3c\nYTQHqe2iTTO6WpmK4tAYLRmZArbnk001DG/KWPcQ4xnpYoNmMSYVIxJRQDctNNmgtghJWxWEyZzD\nk1NUtGNkLcBM2sSKhjoc4m2nTKnwp0/WcDcqwB/ysQ//IMoi59HNNRbJHD2AUCixJcwY2xErTYJa\ninE4IYhj5kuL6nTMsmbz6b/3KVrJOlfnJ9S8Fn57wFpaIhtrXPpQi8/+w1/gE5/8LMVv/wqf/Imn\nmIsbZG/e4jhRMeYCpZbOQBwzZJMiDDDjJpvmCDmw6Ac5Lx9+nZe/fsKd/a9w8YyKMuozGqqYyy5T\np0FbnjGJhkRBjhwEiGZOGJagVSD7Ln1JA9YImgcMayW06ZBBaLG5KXI8cfEFFTPKaelzvvXMy/zS\nL/3y33w779d/7Z9/6e8+WUceb2AvU0aOySqrkpY9SsGceaGRrWSqnLCgTEUKCRwV3V9gBAJeYGHo\nCcHQQrElXEXASVTUKGGgm3R0F8uDfG2BHOnMViVK2QgdmOctVoKK2PSw4pwxIg3HouunrBwFy1Ww\nMhc7XDGoF0SNMYUF+izCLkQCR2ZVCYhdm1BOSEQFpz2jp0mYfoJeW9LPTWr5nHFUQ6rFWEJEVpUg\nUEhlEE5gVVNxvRbfff4b/PBHn+b42ju0Lm4T1FSI1njwU1cwPngJtQi5cuUjRFlCul3m3W+8xY2b\n3yMsJbStChevbFDeaLC9cxpO5USjKesXH8K3DNLpfTrbZ8jaBatvT0nuL9j6oU+x/+Wv4jo6k3e6\nKB0Rq26g6rt873vfIxBVNs6c5/i79xAvWNROXeDcaYvKqR3W7Cqzt/bpiSqPXT6LVakhW1Pyos3W\nqbO8cuN1zjW2ebX3HW7fmLM8GBCXW5w8d581W8J0VDRrl+qDTWJN5OTmO3jXXc48fR43tgj3r/O9\n29f44t//PMvbPlF7SrdwaE57LLd9Sict5GSCLQ+ZSAqbgo107BHtJJSEBccndZItEVud4lab/x93\nb/Zr6YFd9/2+eTznfGc+d75VdWsustgkm82hmz1I6lZHAxG1lAixMih2nAhKIEtxHATJQwN5iY1E\nsmG/2EkcxEkgGbKkji01Wj1TTbI5k8WqImu+99Ydzjx+85yHBpRH51HOv7CADfyw19p78bhucy44\nwg876PaAebJBrOxjVys8XjS5Vr5DutpF0AxkJyOJfaSTBmlzRSeAVdFAz3bpqwJmUUNIbJRaiJfW\n8D0Hp+ExLrdZRglrj2RyecBCqVA98fn46YzytM7Wsccij+naLRLnY6SjC4xrXRxRQgpuY4wb9GWN\nvUcpZQQsJVS9hbXIwX/EW7feBODLv/FzrF2+QFzOoWXw2h//S3YvbVBpy3zwYB/nfIfjwUOqZQ9z\nwyZOxxw83OfCV55FPcpYjRZUmypxMUcsQNpc58HHH4Bl4wjrpA9POXf1AuMiRhmlvJN+wNals1j9\nkFDOuX94yIWNDcJqiH1mg0QROXupw+DxlPfeGXHtM1u8tf8ubpiQD2Ke+PQGc12gtdZhNlxRejmi\n3oLVx8wWAd3eFZZSSaQb5Ic+i2LFauCxLFO2GyMCmAAAIABJREFU7S6SNaFR6fHB/JSKLnGmuYcZ\nenz/7bcBeNGJEC+A6J2iFXO8NY/K2MCQZkRVgbzIqLs+Wj0gGrYZ1zP8lUwFBWWpoqhViGZMFh3M\nqoPtyUTSgiYaw+qURtRkKZ0gWxukpYdfEWgZJvJxBSuy6HdixLyK4JkEuow8lCGE1I6o5hKhWzAW\nWmyac5ZGFdlX0VkxX9YodmcwDyGXUdAQPYGh4FPOQoSkgxG69EqH3MjQ5wHjSo1mv6BUJUZKhn23\nR/owYTar8pr79wF45sUNevYZ2pUIP5jS3tghDmMO9/cxLph4iwX1PGc4KRDENnuXarz10SecUUyU\nCwr3XrtFb/cKLavFcK7y8au3aVZt1rev8Nbbb3D1yvO8fevHrHfXufTZHv/0H/0pV5uXWTYD4mFO\n9QsdXv2zHyCvLAa6xwtbFxjXTDprbe6uTrjcOUtFjpBmdQa1JfP+kJ64zQ9f+x57F/bQt3PatTb/\n6//+T7l67SJ7O+c4iTy+/S/f5lPXz/Pc+ZcIhTE/+Nb7dOQCZe0KW9sdvOEMrUjRNmpQTpBOfN78\n8G1e+dLLzOw1wsEjkkCgPc4hGhM5FsEqoOiIZKsWTn3GSMlIbYuKomAUJY+TmB1nk4NkQYJF3hYo\nU4sg8LHDOWHfRlJNml4VWR6Sbc4Jm9vkWk5zsqKxYeEuHTrDkpU3Z+VorEUjjlYbGOmKTNBpxANO\nXYcqNSqdBX29SbJSSDwRwdykpxzS75YkmoWXx7ROQ6aKxKwyp/Y44mhdpQxLFlpMIGm02g59PaE2\n1ZEUnwfrBSfPpET/vQ38C5742i8zXdxn9OhNyrlAceUiMEIIXDpWgbTaIXMXmGKdatoi7/ncfpxx\nfzTkh//wn5D5p2DbNEqHVaBiJC7LekbwIOfue7fZ//R17r024cN33iQfnzCpNNkVJPR8zEwyKdOC\n9VSjrZqkm8cc53W8aEajteLZboezVz/DlvAkg8Smdv0pDtO7BIsjnFzk1Kizaa3wa2dJVyalVrKV\nBGiZizLbpEwHpNWctrFB7M1JY4syn5CkBu1albwSU3GbyG2T9z+6zW//F3/r33yI+r3f+92vf/Ha\nHmldIDChmo/Q4xp5kRFoTWJjRVkNiGMTrVVSDmosNANdyfBnDRRxiaTYYE4Js4JmViVFI88KAkXH\nmJcUQhVSlbFssKGOCSoyMzVC16eIpw3EyhTTbVA4AkVxQHPQRRVGpEZCYcWkHYM0dhGDLu08Jp9L\nSILKpLXAmko09BivmmJkEawEDCqMioTU1OkYLqdVg6YQ4cl1VmZC6SlUipAidlAsAV0ZMZtt8Nqb\n3+HJl19i/epFHt94l5qwx1ZL4N6tAZ/a3cXurHHy0Vscn3hE+ZDnvrRHNJSprzJc2SY+GHAwmRIW\nOfu37zMPIzQloTpd8fHtIZ6xoGluU7RXPP1LTzM4HHJ8K0IrSvywpDQr4Hl4+2PWrl1k4/oe6ZuP\nGE9yjJlPOTvh3uEQ3YbDH73G/HTBhZeeJYgzHns+ilrD91LsrkoyPCKSBeJTFztus3Vtk53zKuFU\nwdrtIAohsVmhutnj6I0P0RtnWXlLjh+M2fryWaRDme++/x1+9fP/Me8dLBDpIsS32SwlPLmN6hxg\nmBr1zEEzBFR1zmyroHerRt9zOCMKmPESK2ug51BRZEZGFZW7+OI2+SLj0qyFX+hQmxOWBQ+vNKkM\nfU6qOrpnoW6K6CcrmtMluRSiWH1EO2GQuSBU8E6rKG6CLQmYE4Wy94j1aka0YxNsHXNlIDONq1xy\nT3lsZOhpg7w1oD63sSKZ8bkRcjghQMJzUqppj9H1I5r7BqdPbSI9FKiqQ+KeyjgXuPHedwD4T372\nl/mof4AxWGfy1qvsXHyGiR8QphW+8sU9qnKX0b3HpHJGfXeTO3/6Iz73ykus13r0332b7pUXaNdU\nOPYYSi3uv/ddntjapLJzifp1jXe//yZJLaBZsUmnI1bDJv1PDmmsV1iOTc6c7dH/5Ijzz1zltW+/\niWUarB6FtHYhdyYUrSr+jQfkhowjy7T3uhx9sI+s9cjGDxh5R2xcrqCc2EyWc+y2yPgkY1dJSbIl\n4ljm5a89w71PRijNDvbMZ2Fq7O+/j2cI1AyJmurwZz/8SdD+lzq/Q37pLvOdh8RFQa1mUMQTQkOm\nItRZeA6KGLByZZLcp1H0SAqV2DeIun0KJaRptKk0ThmME1q2QRA4pOkILRZZeg7d0EGScuyVRq1i\n0F+u0MoAVQFt1aAIp6SbOWYsUAsK5jLQMqkHKWwUtP2S49RETTyQVLT2EsHPSQ2LjpJhpAEeCXK0\nQCgcqs06zYqIvpJJVZOysWAiK1RcG0GdUVcdAmnFTBBphhktV+Oby38CwGd//gUyLWVLOMf333qX\njtZGyyPsuo2dlNSEJrUXr+Fl99CaIrNlxkvPnuOP33iDbdFgtJzyfv8BZ3Z3kawEpetgFCJFO8Jb\nttC9GZ/50mXuP5igyRpPbF5BiuekaYbmNLn7YJ8Xn3uObHnMnVv30LbX8aIhtUODzkYFU7CITYc7\nd99D39niU09e4nT4gCev9UhyhdRUmB76/MwvPI2kFNzdP8GRbHqtOrNRyunBh7Qr2wiiiyM2GZo+\n3oM+8hMior7DN7/xBzx74WVujo/5+IP3+MJXXyBZzqlGNlNVIjNSnLWSiRrQ9vewFJnSW5Iua9RT\nmzw9wlzVmYgZui6h06djCjhTi7k6RpQ1urKCt9DIz/h05ysO9AZBtCLxMryyQa/vMSlDwqwgsrtU\neivmTh31WENWPBr1JceGTcXwEBSHth8zMVfk0y6bmcRMO6TrqPScPkO/R1fVkE5jFFfEswKcxQZF\nvcbYS1mbpWjbIY3+JrW1EdmDjHpTZiUsKcw6Ow99WvMG3f8g5MHvf5Nf/S9/g6//7f+Ws58cMf4b\n/zn53MV2FywckfnpJo31jDz/iSW91Ef45jrX1gXOqSrNl7axrE+B41OvJnhxApsmHX1BYVU5WqjU\n05hK02ViryPoA9R5RlwRyJUOcqiQNzTUMQzWBmhThYpoUc0STicFDEcUayITLcVZiEyDY2wpoKCG\nXro005ys0aFYPkZOHUxlxIwdpGbCMtRphx2GbYkIhcagJJMdZGvKyjMIooRyAEnRZ1SOePT+Ib/1\nt37r33yI+of/49/7+k+/+DSxFBBOq9Q0EdFKyMOc1lJGCatomY5cX1KPclaijqblrNQlnVInaK4Q\nZxZ1SSLVV1DkeIpMLUmQ5BWLsqBsihSNBfWZhjarUSQaUlpFSiIsQULzAk5MG3slo4ky4zLDNiHX\nFfK4gXNcQys8DD+nlFP8vMLKDhAqKpW+SNAU0MsEI5bI9QrSQkDIdaSlglybIoox2WSbtPIIq3QQ\nCw1Ti3CRkYqS2DXQbfjWD1/n88//EkR9yqLF2jkDfzhHv5IwuHGTh3fHiFYFZ6PONBphzEq6e+c4\nsgY0hE0uvvhpdtoV9t++xdVnn6N+ucrsLZeTwmB3Tya/43E4GvDC3uf44Zs3YD+g87zC/MGY3Zcu\ncusHb/LiT10ik9a5+RcfsJnoKE+20YfHNF68RP+koKLZjPMJdV1D02vceXTA4+/+CG1XZ/nhAXan\nTlcxWRg5y0lOvdfiwpaGtN7BNzT2zCbHj+c4nSbLvGR48g6NzatUkWh1RExD4eGrH9F/cJ8PHt/i\nV/7rXyI6zBnoIcagi9AMqEYtjvUmi5lFcXXIMEpwp1XMacHIscgvjFBTn2IzwxRVyoVJWCa4mydY\nrkWqnGIONKbXRwRlgLFso1VT/DsBpmbQX1viVWq0j/vU2ja6KDHLL+A+cUj1noqQGFT0Ei1NKboa\nhntI+mSFw5VD4yOHoayxklQsv+DYCVFlk1ovpDa2aXjnSOsFw3FGPY/wazKaLNKcmxjdFdbNBlJl\nihk9JlbXcTdSZn0RiznvvPsTaPjpL73M7OMB62sSt09jxEaOve0QDgd484SW3mXMjG5dAcchCBX8\n/gHCcEx88TL3X3+PjafrHEkORrLg0a05T73yaWrtDcyPl8zCOeLhktY5kyhqYFZCMkHmfE/C3lnn\nzo/exJcFtva6TO8OePKl58gffUzZ6ULjHNqhy+O7jym1LnvPXMKeO0RWSqMbcTiYQiBx/dIlLLPH\nw0ePObjp4a/ukiYOy90mww8fkgc6a1WHD9+7SWKbWKVNdnPGMz//PMtBhdaOyDe+8ecAPC/9Npr2\nMcvdObZlkQYych00sck881GMFMVooqlTao5DZA2wUpVqb8F00aVXRIx9H7tQ8RUbJyoZizG9VEEt\n6pSFi9GdoWklR6VAtjJIlRDfNxFyFdseMNR11IGIb+kImYRs52QjDa1eISwykqVFZytBGInoGz6y\n2KFaEQlnPlJZEsoCnqIj2RqdwkCTFMaxxDwNSCSFYjlBEiSKLGeV2CiOSyWv4fg+M7lA06/y7f1/\nAMBTT3+Fbs1GCUuOD/rI19eoTRUyY0kSVJCqGne/8U2qzXMYiwo/+pM/4u33P+bnvvopBimst7Y4\n0+uQukvsUQyNAKVpIJi7lNICdW+DH/6r73Cl0eajU5ctanjqDF0TUQofu97hW7//p2w9tc3V7TY1\nB1aPjrn3cEC9u4lombz+5l3OXf8Ul7Y0Zh8cslINFo8F6kZAOZaxzqW8/40H5I5Dr6IzmCWk0wHO\nkwbD8RQh2KDV7TDfbOB9/BHG9Yvc/9/+lMvPnef61bNEnoYqPOD1N27ymV/8EprQwnVzdqIay4rP\ncixj5BnNpguPl+hihTEui8wgrhZ4vsfZXEcw60yEkPHJGsqWjzVWSCdLppUYVWvhlCInukrXTeht\nKZRqjJkn9DWRulKBsEJD8hm6KedWLqfo2FsJKxxq6pzZJMN2AopoA9mv0WyO6OcLOhtbhK5FpEVY\njo28yNCSKbPtHnbZxdNOaY6reNsJhVUnkEAywZOb1Jo64hi0ypzJsY5p1mk8OubcLOA7r77GC7Un\nefCFl/nec09jxy4TbYnRMqid5sRxiCGIFJWCpWySG22k2WOKaYpWT6hPNpjLK1JRIbFBCOckSp1g\n1WFsDTmrygxnKxbrLVouOHmVLKoyKia4ZoVuumTp2viCTLYyyes64njGUZRjNULGiUnGGmcmNWiu\niESXza0nsF2Zu/49JK8krdQoMwlJc0kbCflCoiIWjGMNLZ3izCfI1SlK0mS0NkUNK7zym7/Jv/vL\nz2P9DyX/1m/+Fl/94Qf8T0LBf/X/Bzvv93737379M1f2kLUapjGgCGqkqURa2ixqE6S4gmu79KYZ\n/ciiampU5mOisIPSPUbs21QqLkWhEVQFaqsGqlEwqQfU1CqiFSBNKwS5SHWmI6sjhp0AqYyoJBqZ\n7jMvtlBiiU6ZM3Zr1JoR00hBUBPcsiRTRQJNQnRy4kKnFqe4oo62zKnYBkYY4JU5ntnGKMG3ZiiK\nRQ2FwteJKwHORMOXDbREoRYpzGyPuucQmD5iZnCyUvjRW6/ztWs/R0130LsLPvz+MRsvb7L//g12\nn36WtUaNe+ER+zcP6Go15o8mpN2cdH9Osox48N57KFJOrVnlXt/FvH1Mul1HFE2cZ/ZQtursnd1m\nfHqLc1e26T5bYXBa5coTT+G6U879wme4c2fE6Y0bWOcdwsUY1T5Lnlu89+NX6X76CebFAHGqI9d1\n5GqBGHe5ev5p0vExX/yFf4eRP2akpWRDj4ptIKKgCTYf33uIMvbxtZLdz3+Km9/7FmtbGrOlhPrg\nIZ4s8vjkHpneYOf6GYR5zo9uvcYrX/vv+OhhwKacUu7epggM7l0YUmn1EfOUvqjxzOMUw4TqXKcu\nxviSj47CUqgSjxUOdmdcPIyxpC7H0xTfbSH3BLQHFQa7K5RsRlkmbIYVtG6Bs+6ivKqweCLGXGU8\nylOy7pJzP65ydC1g4UQcdQoCLMzqCdKow2JpczEE//wEfVzDkiTqc528G9M7WnDsWuBIFHlMWoko\nYoPogkXt/ZyJ3aLdkTkJlkzVKr3CwxW3iSsP6fguZihg+wNe/egNAL74iz/F49UBxfkLaKc5xeMJ\n9o7K6O4Bi3nCUg341Noz3N6fos98hLUc/8GSO6rLp2sXSBoiRgnp0ufIvcvm2jbZ0SmrpUqieYjn\nN6jlNWq1dd7/8X02PrvBp6922T8Ys/jkJvrlNS6deYK6miPHDqkXMdMMlv4pxYNj2leqhKpOfv+U\nnd0d5utj5IVDp5pgr0Q2z1wDaYF/dEKkn2GtmvF4PGTLtNC3bKyGxKPbA579zCV2tip88PrbbK63\nma0eUN26gCa53Dw54J1Xf2Ln/Wzn10mfLXCCIyJJRTHnGJlP6GcITom8XFBJUlamRDHMqIQpnlAh\n8ho0FAijkkyUSMoalEuWNZmNxCQvFJb5HLdoE2egqSFpJtGJV8zFKqosIrdzipmDWLWo1QaUoo+p\nB2hLh7CxAGVBHLn4gkC1qOBbKXaoIc9lMtWnkFMqbhUh9tCNOoISEgkCgbpEkue0nJKq76GUXdIg\nJ9pYse63mK/mmNWMmZXRxOHobsJbg/8LgN7eGlfaHaZZySePPmb78h6uUiWzZbzxmE5PxLlynqPZ\nLSptm50nL5HrFmXlHGI4xy8kxKTKZucsj8L7NIsNlCglkz2EExXPdXl66xxiXaVJiCglKIZJf5ZS\na6i405A1yaJ5doMgELhxa59LX/w57MoEM9wlioZYUU7dzsjEiB/90Q2aF0VCathbZ5iehKRFSLte\nIWrI5JM5O88/xevfeYPPfOEllKWJdVEgOl2xoXssPANHjbj44peRi4x7QYxiVDk43eejd2/y1S9/\nnlLLmYcOy+YxsiKxnW1RZDPKah2lCJlZ62zYVRpBSp7VKdSUsRYSpQNksUNDD1FLgaHpkmki+bTE\n6DQQF6ALK9RmlbnoIafbrOYmZjggtiQaaw6icEKQOdQKiUUZkMw0tGXIbKWy2ymQSoNZfUSnVIgF\nhUkcEXtzeg0L48jEU4WfbC2LEq+sEVYeUl81WBU5JSPisINpJZilSaQuUSYaYTVivAwoez2kNKPQ\nl+T2Gb7/nW/yxc8/S9pOUfUWZrpCl02Gdo+qYBNV5uQrC3GZ4YgV6soBek1i5NTI5gasBxQzkV5R\nw5zE+IqBLOW0Yh15NGRoqPRKGcscoi0Djv0mkZKhtkE4ton9Eabs4GdLhGJAbLlsejq0ROqZRsta\nw9dOiIoJclRHry4QhSXDicNuu8ncqCIJK/LYQy8DzNUa89hHMDQMXyDbWZHEFQQ3I96W2PEjVgcj\n3nrr+7zzHz7ku+9+i08+9xT3v/Zl3nj9A/723/nXQ9Rf+es8SgXDSZgVIgtlm1gIEVyQmh6drEAX\nRQy9xBMayJmFNFoRVlXyKuSHTcJGgyyskRsh2amK5HpMcyinFoOFQCEmJIZKqZWseimhlmHrJbnc\nZVjGzEWJljqnw4q+I2LLJatUpJvaqDMRS5ZQwgGGJRP4EhgCI01Bb88xmxkTcUUxF4nlLnYqoKkj\nkniNME+QnWPUVCLOTRYbC6rhDCGcMWme0FJSwq5PoeRkypRcKQBYqnMexj43bwx58tpVisEKY7rJ\n6fsx02CC5td4srFGaYg8+2s/T6Nl0TlzlZ1LKqtOgjefc/DxiLOqjfD0JokUU2oD5Lcf0/Q99h/P\nsc9fgqDGxx8+YBEcssh/EhZPP7pJcrLk2vUnaRZVLv37P0+rJtCfnHDx8y+w14DBa/cY37/H4k5A\nkZoY3iFDOaH31NO89+YnkDvk39+nhUAp1RiIx7x17y26u03k9lni5RI/nHH+a7+Ist6j0asRPHuJ\nLNJx+xnxwYj928d42QyAw+GczWTKUWdK/8ETeJpJY1WSvrVOTTzL9dznDdvGVzQGuwVqESO3EujM\nmFUjUm2A0VgQ7LQZ5gbdC6dsdud0WktOzxxy/sBBqEjkhoXQGHAj7aPf7xHbUzbma9zbmeP0ajRL\nmVTTOONpXO0/xd7jGhfyCeHhNpXuMaYYEm7OeeRAuT4gnUss85KlmnHrMzaprlOgIrVU7DjD3ZgR\nzTK0+hh5OuTkKEOkSe+wIJYUVuTU5jJ9cw021xiXrb8cmWRRIT2K8P7kh0yXE4aNHG2mEoYSpVEn\n80P8TZHN56+RzwN6oyrG00/yuU+9xP6jCRWhxjyIqG5fYDfYohJFtM4+wTS8x6MPbuEE63QbTWob\nG1z+3BW29B73b9ym6Bg8ni0wRIGKITOMVRxLQQxG1Osm+qjBvVmfR98dcaFTo7O+xc0PTlmXKhzf\nvUtxqpPIJkXHZLIIiFsC9eSUDw+PeebTzzBritx7s0/X3qGinDJ9dMpimXKmYpNVo5885a05jMUx\nUrT8Sz2a57eZHM2I9QarWg5Tk9V0E7kVEoUeK9WhqMYoUYS43uJUapObQ+r1x0xUlyARqGs+luhh\nrkrqqcdhUKLIYNVSCtMjW1symLdIQwW3olDVPTq2izxMGG4cUk1PibRNjKSBqGv4SUF3UmMVpOgz\nB9u2Gc0LmqXCyULnUMoJYoHSU3jchUKuM3EHWMMmFd1klWmEokR6khDpLagI6HWXXigg904opTVm\nUw/LE0iEDSra2l/q8fLeNcZli8M7h/zMX/8pStXBrrl8+vJZPo4OWaoCr37vI+5/coKvNDHUDtvn\nHSzhE1pEVAyd6prF7//h/8zlK7t0n9xjJinM7815/dX/g15e4OoeBx8/ZGW1UCs6nYsW67qM3ldQ\najZZ9yzL+y5COuHli5/l4R/+BZrc5sB7Fd9dETgih57M7HbEF/76cyQPl5w7X6ffv4euHWLOZBxH\nxLgHztXzHLz+CV955cuM7rjQ1lEfncKOwWIWo1o9lp7LwJ/hncwQJznWssBImgDMpjHpkUNT3cda\nWQjBBvh9Mncd15NIa3XwhgQnIXE+QewNaacZvbBEzyTWlQFaXMXLx2SDkKoeYgsJsTRg6MKJnKCe\nhijHXdzggMrZAZX6JuuKw/B4n3igoDcmPAyWiKlDcbZA1up0aRLLHfZLAzOVuB9ozPwB0rqDoa4T\n93XSakglhKQ6YynJWPFDtEWLZXWOLkq0UpHSfAjjFYvTFZ1BgZqf4IUpay0TXVowUQ1Cw8CcHwDQ\n2mpz7Zf/Bt3tJom8SbGQ0MpjYmPGJL7Isn+DQ/d94nsfMPlEY95/hHEvRzIDxqlG5mvcm9/gdhFh\neTP8QchcPCTea6OlDY51He3ROU6729SCOXo8pUwmaNWUsNwgSxakIjSbDo2hRqmGqG4LwaxwvBqB\nYVIKPaq7MrmukPhbdOR9DHHBjguyI2BvPY/mnOFO7RE7bQdBSMmUIbZUsNqQaYi7LCKPQSjS7Tjs\nrnXRDwue6LzETvss/cVZkrj4/4Qof+U3UX//d//e179y6Sq6G6PpBZqVEMoR+rKBIGTkyQrb0sir\nQ4pFg6qxILeq1MczQjmCUieuF7gzg4Zo4bbADldotkLhSSQVaIcJmrJklWVIsw1cq4q+DKnmOYa/\nhru9QopKdH2OEppEKmSdMaGakQgKhgiKukKZtglyncQMKBYWtUkVVc1wyxJNU4n0BZq7gRRM8GWT\n6rwkquVkq4zEsqkqGWOzAoMKbpZTdTX8hYPQVdDlgj//3tt87uoVViuP68+t83C6JB+E9JpVrHaC\nkPisP3ue9vWLlAcKR29/iBLZpDMBIXZZFzYor2zSFEqchog8C2Dh0O5ImIbDUnLJjTrhzbfYvfYc\nrYvrHL11m9mNKWcu12jtXSSMBsSlgNaxcG+8i1kPUTprLKcz/Pc/wX7xJfTM5YlLT6Kuh+TtHdzi\nkODxHIoF5uGErZ/dQtIcXNFnr7fOk5euM/toRKWlsBIMZu/cIBrcIXgY4Z0+YvD4kN7lHXrbZ1BL\nhXa9wtFwzId33uM//aVXeJQFbNxWsc94TBOffHiFM6pG0fB4PFe46gos0jGbg10O1uusDQvGD3eg\nf0p91sMTHHxPQqmVPNDm2BORpXaWvdMQ99wYXY8RFhZBqWC4kFs2pTdiK14xE9uM23O2ZnXE6oyP\nky69ZIWehDyQTZyoj5Z1kM0T+nRYFwcclgl76pLp1pSduw1GZo7TdyDNMUZH9EuBZkdjxBQ76aAo\nMt6FgPp4wviMRlUVWNRl2tOY6WSDPjEd6zZvvPkWAL/wm7+A6gfINZtH0yN6jV26ly/QfH4b5eaU\n4cSlI9YQVIFqnJJbAY5XsGyB3s85TG6gpDmOEhLZHe6lC7SoQhQcE3sdNncd3DRB2LaoCxOSuQ9D\nhYkcEkdVNr94jZv/7If0k4RcgJlVkCURrU2bwa2Eas/GaGtYYo1g1UeyHVb7E+xrPab3Is5WOgQN\nnYpX8CCW8c2HHD/oc33vpwmXR1hJQuo52L94HjX3eLQY0rUvM13qlI0R+nKPrpzx5z/4SQ3OS2d/\nlZoxJK4NqAge9nrINMmp5QKpZdISPNy5ScPrIQiPCQoHtTARFQdzFuMhYNSBREYoaviVnFycEiRN\nbGGOVTokgUAZzdjoZAxVsIsQWTdRBIEk6IARog1lZLWC20+JaxOEPMVpNDHVGa5Up1oWFOopZa2B\nrSyxkgSpatNcufTzJnIXAmGGluWYOTiFxFC3qM5j5EBG1X1WlQZp6iAXI5rmGtGshrraY/WJyBvz\nfwzA9hMbnLVqdC+fRbwX8f0//Bece+opvvln3+GZnRfQxses7+1wbuMSzBL6iwVqokEe4ws9vHGE\noKr4rs25zQqHH36I0FJZ3kn56m/8KurmOocPIsyeRDtaMR4XTDKVH934C6xNDSvqEvpzbAWi5iY/\nvvkBitOmlgVstbfY7z9gq7qFsRpS3xX4wZ/c44Un9vjnf/AmvY4BqU6gmVRFjSe+vElyIGO5fQYL\nk0p4TKXS4ORBn6p5luamjp9LRN4cO28gFCrLeIJyXubB0RF33r/B81/7VdYoOBEFNoMUxa+h7aX4\nUUTu+BTTDHctR/FdCrVLYzylqFrM7JDgnBK0AAAgAElEQVQqbYIyQvdUEBes1nVkTyaL2pROhKnI\nOFR53NOp+CnLSkhrWkcOY8auTm9ryqS2jbiS2Wi2kaoyrWOTsFzgCQ7hasx26TEpDbRmQcvp4WUy\nZumRpgtGlk6Zqzh5ibdh03OreKZB06gTeR6VzSarE4OKXiOWVapilTyOWBUdtCRkmZko7ojUthGj\nlB/86HWubD+LMBwRHCWcqC56V6S+n0C5QS17RNu4yKagIX6hg7BbJUzW6dspZlaQobKeTbn61/5t\n/pu/+Z/xj1/7XxDCkOPTE7YFhTxKaLkRQS+m3h8ydwriwYqos00pPsbuQKue47t1CtWnJCY/Thht\n2qwWxzhZSte2SbGZzhdktoSj1VDsKgdLG287gcTGGab05ZTzsxy37aILm6hZgH5q4uQmQzGiqJmE\nuUFkmUhahBlALJ+Q5jmWMeajG/v89u/89r/5dt4/+N2/+/WrP/MccrJCT31EqWSq2tS0KbFfI3NS\n1KnKTGhjlx5jrSSMchqizkmvTiaOKacVMi2nUSyQ9Dm+IpOWkKcRnYnNuGph5xppmSKbBclUxmxN\n8GULyQoJJiqFXmFSWITGFDUUERcZORuo+hShMJFGa0TZDKXlEy7q6OKIuFYQrzIME7z6kvpCZ+4v\naVoCvlJB0lyUQCJ3EuyRSalFeIrNWqYR2Etcu8QOx6i+ydJv8N03/oJfeeUruIrApc9+mf6btykk\nCbmRYxg5xx8XRKf3mR7PePJL12i06zS3TA7kAxSryeYX1rj5xz9mfbvOVFmn/nwTZ6JAVwDRwmit\nI1glmdKlfzwgvj3gzFM7jDyRR/t3ufPWuyyyFV44RpsLzAYWg48eEQ7ukDkdTk/6fOH6C7jJgnsf\njFisUo5uvc14f0Z3+wpW12HuSMSPZbZ2OqTVGuZcZDU+pJzLuHqfC09tYpgqzbUWa595CrpdGpu7\nqNMj2nqF1lqdRWWEErm89u57/Nrf/Pd484bA0groazXW5zm63afI4FFsc04actD0SFSTUpEQ3DpR\n+4BzFZemfA7ZUYkXOZa1xHRzepmO105xsxlJopArIsqsSyMy0Oc6WtECc8bE6aIPm0QXFly4UUIp\nMJRWrM655OWK2VGL87bHfuCRt1MqwzrOuX3cx09iD11q0xqVpc6jjRZ5mLOTnLC+tFiS0dy2CbKM\n7sRnGa9jMKY2WicxfMp+SegI2PsxVhFgbk6pliL+Ysg77/8Eol75/Cs07BqDRKKeBkyWffbsNs7Z\nGopqU949Rl+vsW3tsLJCTDMnff4atXzJ8XRKsRxSjk28ZUFf6VPcjzC3FZxDgUY9oHiigS6EqCw5\neXPGLNUImz4tR0dNV2ytXafZsxkMTtlqXeXxzRtUek2yR/v4psTe1SvYbYXH91yufPECq5MJrjVE\nv5dxPx+jXW8iHCfMihpWOaBWf4Jm00DZSOhtNJmlCXdPbvKi8yLihk+8rKMPSpxnUqIPM44/vEvj\nxef4zjf+BICXmn+Hxt6Emb6gvhHgJRkVrUE2nWI7FisJfKuCrPuMZIOKVpDLM2ZGQt2yWNZ14vEU\nJVYpHBNFh6hfoZJNUIucWFMonJwyjwgrBuZcJlMyvKSgVFXslce0qlLRM0aaQMNYkMkyab3AdDU8\n2acYLzFsGWESooR1Yr+PlDTRlDFpVscpcxqagJ00KS2FNB2jWh3yhUJRBqgCHHYNgmVEqszJlBJV\nEKgUOgtR4Zx0jn91/ycvDr72y7/C6SBGLWqcuh7Xnt/DY8w5fQcvl6jvpnx09xGKpmJXXUJPJNnq\n8Pq3/xwnz2h9/mnawQNWKxkrVLD0kvw0oL5VQWtZ3D78mN0s4pPgGLl2nsHxkJbeYP3CNg3XRj1n\n8M//73/GF37qaX78+jtce/kKly+fYf5giSj7zIYilrBCaPa49fhDnvnyVzmenXDmytOsETE36zSW\nK2pXz/Pj791j/YyCN4swagpZ2eW9/ntIrTYXLzeI/CrvvXYTu9bFbE5Zu3ie3JD4+Juf0Dtv8vYP\n3+bzP/ccSAnVOMBYU+knEuY0wSjnYOtUFzK5Z9CyuhTOISOtgzQp6RQ2RTshEwpO5jVqeCT5GZJi\nTG+tg7lfgzSgj0xDUqloEmEwZNLuUm30MZUqj+Ye+dQAY0GpiyxOC5oNH8FoU1VTHLfOw8YcZ6LS\nKgImS5uwOiWddSl7IWuyDLJApGUorke2bBC2R3heFdGKkIYVDOMIo6GxymWM6QzlbImYeiyEDpvL\nJeka9DTQSpFvfe9HfPkXv8pCyqHl0nEDRpGMlNdx80Naeoewa6LNavinYMlLAquGlcQ0FwWeaiHU\nVPJbK376led4//u3ubuSqRcl02VMntfQFBgtZWbOgGb7EkFF5/PVPeSsRqJMWKQ9Npc+wVYbmR5F\ndYGVl1jLNuH5JXkq4S9GaLUaG0cuK0NkcTylF1rQNAhXIyIxomPMsIoaUVAhimVMe8ncmnJ83MfJ\nF8xLA320RFk16RYhXlBHdefIXYdQdnj/nQ/5nd/61wfL/8rbeXkhY8UTxLrGJLM5im2cLGUqWnhp\niV0UFPUERxii2D6GYJKZIstMZ/d4hp6KpLJJI/WY9mKEqI1uxBRWRjcXKGouhZxSljaZW2CFCc7G\nMbqfkokiqNAQBJRoQH0poqhgSys8Q0PXfHRJJJjpTJs+klrFW1psEdOWSpyRg7mdo2ci7fEahVsn\n3rVIiyo9wWflGgi2gj4viXQf2RLp5hLHZoCup2wdtfDWNFZmwajxk0ZpvdJl74lLHHz3NtWra5y/\n2qHX2WK+Kml9vsvNVZ9MrXPr5hvcvn3CzVffpZ7q9B8F3PiDtzjz7FM87K9IGHLvjSM+vD+krCik\n5ZzJ20dM//gG4WiAYsecbiy4cxRx/eU9nnjuPJ/7wgt85sXnMPoyhljlwpNrbDfXOP/MK+i2x1Nf\nfYl3P3yElkoYZkAQHyBWRWpXt5Emd6moK4yVQ3HO4PW3b9DZXGManWJUN9j+9Scpojb+NEJYRDy+\nUyNZRJzrNJA/GPP4cIpnwPs3h1w4+wVs9ywAwbBKo2bQKmT0YcG4W2KmWySVgAvxjDLVCPPzFPUW\nrXlAFi2ZN1U+GHe46y94mIs0zp5wUK2RZQWlMcNUYsy+RkWUKTKF49Yxnzg+9+s297Mc+aFKN1tg\nNEc0HrYZizJ+2aYpmlT294jNHYRrp9xuy1z2LxPMmghuDXdwjSj7hL1QxRUVBlZG5eQBZxdzHmuX\nuPPZGLeuMloaCKcjIqeC8Kl9huswbgr0YxdDatMLWySaSLRew5/uoqdzqrOdv5yZG2/fItjepblR\npTTPs3v50+xnKa//n99npynifPUqmbvC1wIa623CcQ15WjLxc+xKhd7WZ4jPSuw9s0Z6GNOxRU7f\nv4W/YeF8+WUaQkRuWQxdiwf7J2ysryOqDvcPj+me3yR+/yF3hiM8WWSlD7nSOo/0yYxQctjdvYRY\n9bn7+lvIZ5YY4gKhSFGGZ2h9dpO2uUE9q/P6a99meHcfS2+z1aihCBYP/uh1NL1kw15HkXv01Xuc\n/HiF0zPJLRWrdg6zo6Gu6dx5/dW/1EOSt/A+lOmkNeK5BccbLLMVWW2TLIXQ7SDHwGpBS5GQ+yKO\ntsWZYUE/GdAtj2hGWyxFnZoikWcT1hoD3N2Efm8DS1lSHNdQ2j26E5/UkEBUCY010kWJZkVs9AsW\npU8+UVlYGi01RfTXCVcCqqAjievEUkDaUgjXVpgb55gzITRb9KsFSmWIm8kcR0tm3gmaV8PNFhRp\nznjbYNrVqLgGlqGjLyyU0GIq5uQLGe9IZOj+v915QqrS3t4lMQ6wWiHJfEVVOUt96yJ3Xv0RS09h\nq2tRL5okyyatpy7Qnvi88vP/EdcvvUDw3fuUYYdqA1xCREdDMx3MdYuPD28hzUVGTWgkDcTslMuf\najA9PECJxrwXzzh8+x5/7dd+ndOZy5devkQnKrj5rR8SzB5TWAnXLm7w7VcPcM4VPLP9WeYfvU7L\nc5ClewyXJffevcH2C7tM4z7Xn9/jnVtDhLaGuqbx5zf/kKvnnqZSrbEITkmKhDPPXKRzVcdYFQj5\nnNXtIT/13BXmyxQAL55TnmRo84L8wKbiHaFVHRStjTjMKGoVWpLEo1VMIEHXXaCfX3G/NCgf6uSu\nyPpeTlbZppjfo1u0mB1kFLsPGRhT2sWSppuR6yN6Qpud/YzcK6FIWWsoSFIfu+gyy6fsdkfEY5+4\nWnIQj6E5YW+2TrqdMPfWaNlHGPMcpdZnPRcIRlUmA5mFb5CKBomxT6Ia/w937/l0a56V511PzjvH\nd7/55I6nT6cJTA7MMEO0sWxshLHlksq2LMpQRhT+MCVKdrmAQthllyXjgNGUjEGABGaYZqZ7uqfT\n6T7d5/QJ3X3ie964c3z2fnLwh1bNV/MR/C/c9Vur7rp/11qLSMiJZlOiRkpebyGkSxqlFIom9ydt\nzLyMRkBGiyz1mJ4IRKuPFhgfPOij3NjDPV7RN2oIVQNpa0lblRBKKvZqRrD5kEjM2Td1lsdTMk/F\nWIfG+ICCNoKSRzyrUa1Y1E7u887NPd753mV++Od/iud+8WucfiZiPJtTyEc4gs3NvTe4M5whjHWU\nyYKs6mJ0J5ira5RkWMhLyjtzmrMG8miFU6iiC0UebG8TTwpYnQ0mRoJ5W6Uw2aI9Nem6JeYLkbim\nUqn4LISYZSxxa3HMyy8dcXz1Gt6uSclc8mBtSUXLGayfwXqoM/Z9hDj+K3mUv/ZJ1P/w27/5jU9d\neAwpnuPYPtpCx0OkUJ/gSDlLM2OysjFzhcgVUIwlhhyTiRYn1RCmbVqFCd2sgFoIkQcqczOiucpQ\nVYGllZIsVVxJJK1NsaQaseQjIiEyZZ4UcWwPZa6ir01QYh0ZmVJSYTTVaUkhRnFJOIgpxkvsYkog\nRIiVEgNpRBjXKCdz5l7OzDIojWWyoseEApq7JBMreA2PHAvFshh3F1TJiYQ6k5pPiyn5AISozHde\ne42LH/sq9194n0/8O2cQygYLRWXvgwcM9x4S+mUuPVfmgz97C2e7zflPXyJfetx92OfSl57FaZR4\n8N5Nnvr4U9x/6bs88iNfQFEilichy/sBpm1iNxLu3rmJo+rsv3jC6OQm8kBkHmmYZ2scv3WVZudp\nbt09JOx+iHnhDJ7b5bHHd/BCF3X8kFmnyvZugUJ6mnWnRv9kROfR07h9qFZTVrMRUqvO/Xcus1Mr\n8Nb9Acu9Ywppk4M7r2PFNs/8rUvcf+8OeZQgXjhFNDwmOw7wUTn8YI9B8j7v3rjB5/6Lr/BguKCl\n9vGrAXZXoCo4OPmMu2tN1ELIWndGuAzoaiW2vQX3ziQYvshukiD0iyR+AyM9JhJsGl4DZT5F3a0w\nNka0PZPlahdrlrPU5hgbJtbCJ49DfN8gY8gw3mBpz2hmNQbSGD+xWK0UzocFuqZMo7TCUCVu7ni0\nZylG0UEXEyQ1Q14u0fQ2vSduY94LEIoxs1WZvLRGZiesjiuohQ1G9kPW+xrC9piDQYCstSkuRCbC\nEXIRxiufd6//m5H+f+8/ITu4hiBpUJpzarOFTQ6OxuFJQiVViHwVTQ8xNk1u3h5iVMdUujpjN6Jq\narT1IoLVIpdUppM9Oj/0caolmVhXKXcVxvUV6WrF1imVdnUT/ygmTUYUd55nKva59+EQZzFkt3wa\ndio8WB4wOMp5or4Gq5wrb09Jc4n58T6dYpPR8T3E1qMMJzc4Jypkqkzmi5TNhFm/S90pceXuB2iu\nzIPgHpUzm6xVNIyoQM2q4otjirUyllCj4FtUazYvvPRdAP6D3b/LveIA1gOGcYjeGqLNRdKywupw\nhRXMKHoVlNgnL9QYBy6ONaCfa+hZlfkUhI0V8dQhVA6IRRFPrVJBwvbHsKpQlJeovs/SrmMqEQYN\nlid9mmtVBiKgRCRmico0YFEsI6xCViFUmmMUsYA8jwhjhUwLcdWA/PCjm5pWbJBmEV7SInFA0EbE\n9gax67IqBFAQqT3M8chJLB1F9VmNwTQclFXEcpWzEQtMj8p8f/C/ALD7RBNHdUDWufteD2Kdrdo6\nffctnv/aZ8iOB8xLMgPfxmrHvPdnL7Be2cWTBhy6D1lJNQbxEDszqZopQ8lkJY7QEpn3b0zopD5e\nWOLsI2d4+c+/jyWto592WLNOUwwjRq05cRgzOZSpNrd44f/8Jhce+yrdRU5ejxnsu3zha89w+dY+\ndrGAO0+JN2Ve/tMH7Dx2iseffpq9y31QHEo1HX0tx07mZIKFYe2yvbbG4dENitMGjpFhOimqphAY\nRf7Zr/0fnP/8Dp5Vwe/e5d0rNznzc3+Ltz4ZoI03kZ2cVWCQRQcEtQjdbtKdKViOQq2uMziqEq8n\nKJmDKI6wRIkIh2h2TEFSKfsiPSHDFw3kRMMyA9TRGpPCAyYziWhhUy70kYWUk5lKXFki2RmtKGCi\nScRmSmlURSSm7M94GNeoKif0xx0Kkkd3EVNab+IMQvJxiUz8N+lqKNNWbWaugzVTWDdXrMyEQr4k\nmYrokwqxOSdOQpJcIbIzNP+E6TrkK416VGLiqLzy3W/xM//tf4wTg9iUcPwF6v6KmX9MZpxCW66Q\n5Rkrt4hZXWJNDZarAmIyYSLoFH2ZUZwRmR5hPEXPV4i5iLZ7irPmDtf/5A/Zv+fhjgeUcxXpZIma\nTBjXTUTJIbMECsEYPBNjLvGwqFPLHIqJQGQq7BsxrXgLJwJ/GRPTpxHY9MxjgmGRhSSTkFGUIiZ1\ni9osJvImuIqNcZRR0NZ5tNZh7exjWNUOxchj6JXZWFaRbQ/F7LGvWkh3Zrx543V+5Zd/5W/+d95v\n/ZPf+MZnnr1IQYd0IpNoEnF7heDGeB4omY6ipli+ypyEVCjhJUVi+pTTjOJCwFU0tDxFnIUIbYHC\nrMhISPGjOqVFgZUdIWlz8rxKMl8RyyYTQSQWq1hDB1da4GoW+jQlC2xGoUlu9ND0nOVYwxMqxIqM\narikbp2JArbpEYUpZuQxEwsULAFxtcJxZkwtEWc5Qqql6Ks5YVhAEgUEz2Vh1DDqfcxFSuJLJHEd\nVzTBiXnhxbf47Bee5/Fn6rz3r29wtBdzeOcdsmxBY7NDuWQyGU+wd07xqPMIN/vXmV69j3aug//K\nHrk74+LXL9G9MsW0drj5xj4HV48QpkMorAhyCEKDZqdBHtRpty06z61jKQlTZ4Xw7gF4cKN7hSee\nOIO1aWBfPIP/0MOSNfJjgbvylPl3jxkdPCQsFpDLRc41ThOMZSLJ5J1XXuThwV0+9uzjrJ05w+xo\nTBz6hK7Po89vEIcNdF3j+l+8SZSbLBdDju68SX39IkZLol52WG5PiQ6KvHPzVT71s/85he6A2b5F\nT25j1HP2OiaVfEZ4z2Ri+7SP1zguVxGj21Cy6BzmVGceU1nB2Bjj2COkVRWpI5JXutxf+iyjOuqB\nzaHmIc1LCJU+Sdqk4EYUHIGK2+DOloPnjCgkJoI0QVBFvNDHnOi0YpcHtSWPLEUKrsjeSMfo5bia\nw1ofVumIO5bE2Txl+viS/OZZpkKR1jylU5wy8uash0X6p6fEYchze6eITqvE5gRjtclCOGAuTAke\n2cLdlzjTXfLi3Y9Mw9/5D3+Ky5cvM0x6GCOVQRdOFXbQ6xa9/QdM9+4S2Rvcu3eEe2uAaGo83NuD\nyGfDtJkcjJnWM7Bi6sUlq+OMnSeqzO4PSLV13P57uPMpaCnO2UuUJgaBHbC3d4XaQsWoOnB8QNFY\nRwkSrs7e5Nzuc2jdI0aTD9leP8d0PiQfJMSByu4nNlGjErJyBE6VdmsHXS0y06ao5xQevH9A4+Pb\nLA4/OvmU5HDW2sYX6gTJCWG1SMMR6LkZ8lLgKBhg6AVe+O63APhE6b+jIY+QN5eUxIQgnyKmOpOw\nQLMMwbKMsLbP0qkRSylNYcWR10IRHUxviNByCE5KOPGSKK0i5xWUdEg2i1gWREqexWxNx80lNMMi\n9TRG/pjimkM6GJEtA1ShjYdLySow1x5SdFVc0aMaK8wNAcObYUQmfhLTVCX6hQKoI5RQh8WKWjBi\nrrqshRK5r+M1UszIIT0WwSiQOgs6csLseEaax5TsgHmljrhsUDySaeaf4V8d/WMAPnfxs2QkpLMq\nzUck1rcK3Jm8x2btDN/7v/4Ix2pgFBuoUsa9Dwcki5TKpoCuJzTEUxhPa6yFOgs5p3rKxPBEksDB\nqxbpiCuK1R1CxWf4MGAaDrn47DZCotEoGRztPSSLKrRjn+qGwv3A5cufeoo/+Oe/yxc+9zxGN2Je\nLKIFOTW7RbklcOvWdTbXz7N5WmSNTXwmXPmDb1J95gxi4HPv1bdJyh2E/TGFzQLdu0NqbRHqIn/6\nrStsPlJmbyagWiHn1lvUii3qrswHY5+b717m5u//OEdbWxR+aYjdtyiFMyaVNtJRjbHtUXMHyIuY\nXjCjWe0jHEG+rFD2bA7WctZsF7fosMRgMJ8gdDq0zCN8MUayMjwhY1H02NGKzJUZI61J0cqZLS06\nUoNCT2dgqxhmysxfI4smpKLLpJRhVRIEPcFeTckckVraJAldEBNO1iSyuIDY09BZEkcG7sYJ+VhB\nX8soHWYsCyaKE7OIV1hhyFQv41tgBBalsU2/YpF7S8ayh1aa8sqfv85TO+cYmCKtVcT5Rz7FhV/6\ne1R+5zzvvXMFuSpwJAs0ihWOFzalpkB/8ZCaFtEYFVGaIVmrgOWbjOw6YrdGnBofrYpIx5QfOc1A\n1ykem0TeAO2HvkTh4qd45rTAgysB9mSfMCmxjAVmmoxcdFFGK4ZFnXK/TKqcoBQ1HsRHNFYmq9TG\nlmQm8pyas8JaTEAoMlsf0/Z1usUVjWaGfKhiNzLiio2nBZTjlKEiUDEVfDliUfQYzofkWYNYKtDO\nQ64+uMMv/sL/D5io3/r13/jGT57bxTUlMj9GlAxY5KykMhXJI9AtRF9gYcTYtkGGh7z0EBwTLWwy\n0XTCVKAyT5DTGFdJqbmQLQtkooCqjVGdkDSsgTdF9ps4rohSGWEvDfJiSHOW4ZZ9RCtFV0PkRCcQ\nEyRtSWxVMIQZZWPMxNtkvn5EdWqix0uC6TqxYVGPxwQli1Xuo0cyi5GDVyhgDWy8ShkhUMkrPSpz\nHdUTkF2BSSmgnobMliXUJCNUG/zlSy/yTOdpjoIFTT2h49RpNqqsEoP8ZMlmu8ZQTqjPl0zCHFHO\nSeMpalBmns8pb28x+tDnxvgdanrK2ac7FCpwMhyi1UQOjgakvZTKuQZW3eJguKSe1jh8cMhh9yG5\nVmT77KPsbq9TO+swfV/n8GROtsoY9Ho0zz9Ke6uCb2hkFYUnHt1EEEZ071xDf3qLelFivdPG2D6L\nlK3w3BTv6hhzdwNdVel+eMje8Rt4xTKa1GFt1+Zo1KXdOYWWieiazbW3r2HnBra65JW33+InP//L\n9PbGeAK0NBsp66PHAcZCYX76GGWe093N6BxrODUB0bOZVsvMNvoc7dbwrRWrfAttcEDiephJifZq\nnagxom0OOXLKnPYFnPQIMV/jsBXCQqEcwubJio5QRNBCvLlEMc5wlIzRuExZhlpFR+KQ/n6HthNh\nZRpxW0Ou9/lwN+bMw9Pc1hzkrs8qLrJb7aJFOYtKHWVkERxJbBgl/JsSuZMwSkT8uYOxuIemRzTT\nnOVihDULaWYuL7z/CgCf+fTnaK+VWZ1UadQq2BtFXv72S6yZW3wwOODM1gXOrm2wv/8mSzHi/Bmd\nzXM7dO/2KT1ax3y8inkyJ7CrCMoGtpZQKiksThIcJePdt+8S98Y0apdoWRnucI4VCly5e8yUFb0P\njkGvs/vZJxAvZJgDjdr6BrkzRzHKuB2HzEgIRg+4+LGnMGomEX1u7B1Q7mX0yzXqj1dIfZfouEqQ\n+RQVC7Fo0Wk/xvonzyEHM6ThjGM5ZXj5FQrNOuKJz827V8jMCXJo8L1XPzpA/Ez+aywbv8q4PiRo\nHVHNakQVl9pyTt8rUaxELFYJVuoiSg5hptCkRzqNmGzo1MYFymnOop2g5BmqKqFmU8ZyAWWWkjsy\nYZ6hxw7KMifWPHLZxx4WyFSXxKygpBmerSDEfUSvROQUKUZF5LKAEgpM0yKquEAo13HDBQ1tidjT\nEFoeam6zVIqspiUKwQoRi+VYQazLlDUPaanjhSK5PMJMVXzToJorCJGAGBfJj03mhykvzv5nAJ76\n/BNg6BQFG9MuMRiDKJUp6wbDIObSYxd46/3LnKo1KOkG+uMNZHmJPD+FmskISZ+b7z7g4ice4cq/\nfoOtR7e5fucu1XKBdJGRazFtAg7lHmfazxMcHdM+a/KX373OqY6JkorcevddjudLLq1tcO1yn/M/\n/Fni+YpupiAoMqbpkSoemejw3pX3aZZaNKplCjWf6+9c46l/++cIRwd4kxGnHt9B7CWc3LzBxtZj\n/O43/yn1jsF3//BtfvaLX8O1fPYHQ3Q3oOk0ee2tQ+TCMbNkwI3LtxB+7d8Hipz6RZFL742xGwIl\nZYCj2qg9n8QIEbMIq2EQhG2cbMxxLaRanuC7K9JulUkqIM2PKRU0SpMlWqlBL5/hCwJi1qKTVJjE\nR4RWHXsEMSaVREMW+qwqMyQnI5+3SJceqlgjFVwMNUU6MhjNNli1lihdH1tV6VoRq0BFnTkkywGc\nnbEKffL2hPZQJxQF4jFME5NcLGB6LkRltJJAMtOgCkn3PrHcoiCGVKYBvuxRXmzzne9/i9Zzz1K7\ndYCZy4wPA7r/7ncYf+cqbuZjZCH2zGfl99D9AbFgkEtlukWHyZ2HjDYFWr0C41JOKCwwinNCw0Sf\n9DmunUHxDbyTfebbMtNoiLFY4g6O8ffnOKZLqqVMZZ/NkkbRMVHmhwwjHUlw6akJwrRJVR4gLyVO\njIyapDNKFTRJQlbK+I0y4VhGVcYMI5PMSyhIIeNaA/d4xHyckdfmuLpMHpsIXkwQ+IjVOpt9hbEu\n0HAnnCQjrr9+lf/qV375b76J+iMBhzwAACAASURBVB9/69e/8UOPPI6RSUipgVsXMKM5XtXDMlNS\nX8LMBfzqkiU1ml0NwZwiIpKbS4JEwPJUllKIbQpIoUFeSYhnBXIxJiImczKCgY1TyrCmI8ZmSuYU\nYJGTrGzGkYWUQNGFXjWnONBwQpF+Sae8zJhKCcqqhGn3UaMcMc7omwKan1Gfq8SJiVaYkA53yBoR\nZXWONDNwlRkGHrZkkKs2x4UZqq4wGRfpFCGKC8RaCqnEPPJ46bU3+al/66eRWKe4YaNJO8Rti7os\nEKgBxkaVJGhSTExW3oxcj6Gxw+L6NU59/EnevzpCDQ6xdovoxhq3X72L01TZ+eJnsGdQfHwTwVLg\nzgTnnMTZZx7jwfQQa2mxtXmaY2/GcnREcbfBB6+8R71j0VpXCPpzsk6bO/fe5OTqkOrpGhtFk8MD\nn53nnkFbtehdv8m1d69z7bVrtKyIKy9cI61W+NzPPAdpQqDOuXX1FttPP83aTouGplJ8UqcjriM5\nLdzhCGVzk/JjKqvLESMh5933XudH//ZXmBztUS3FBElGFhoUwyaHzoD4oMnpzCRzZ6jrDsl4RNkL\n6U8tzuQ9okkFHI/GbIY5Pcuyo9EPA1YNCVtzOD5cYQUSDXMPIX6URXqIwxry9lWUcZtQ0rivrvDE\nCrpzjBjKdO0W570T7F2FvTsi6obIvCNgt8fcqCScO5Q5MucUFgqUJBrLHgujQVNx8YUpZX+N41KP\nzGvQaAQIRwpaY8zxQmGXPdRQQCubjFclwkgjcnZYtxX2/CHvvvd9AD5Rfg5hK6fSslDmAc1Nhyyd\nI25Cd++EWRyz/jEL98ERTbtKPMw4SadI+hlKtkJtqWBsySSpStyfsvQ07rwxRm4kSOtrHL/9AZ5T\noDLqYl16lmTNQ1dyrt7t0loqPHHxEuWLZerjCmZo4Aoui6MJchyzPBQotxo05xYPBilrZzX0lchE\nge4oI20FVDGwkpzidpPZwKO8LVFr1Mn9BQ/v3EGttVG7GknFY7stMrwbomytY5gW/Ws3GMsyqqjx\nxhuvAfB17ypCw8MMD0lIiYyARb4iiDUMOcRagKtG5JJCHiuYZsRYbrBwQ4qlIsz7LJo2YVfCUVZE\nk4TQalGMfUpBkVVoURclmHoIa30SzaSkCAwcidzQETSFaCQTuiP0REIohCiRhjgVEewx3qJG6Pkk\nTQkzthkrRaQ8JpQcSmHOqpijjVwy1SUSdMJSiCHM0MdlBHeIvCaxXM3Qk5xpoYyRL5EWKYG4wIyK\nhLNHOTqZ8M7idwH48pe+xqaj0t6p89bv/z6dwimyVY95o8ATdZ3DAKxmlXCyQMtzBqMjiDapKDmB\nJnLltW/z1E98jst/fIOnfuRRYqVE1daQ+iuWeYMHq/tsb58imEh4UchWNedgNOH0+ikm2ZQ0KyE8\nbvPk5qdR/DFyNcSaiFwf3sdsyLRmOcWqxpvXRni2wI98+as0izndmcb3vn+N8+cu8sqb3+b84xu0\nty5xf3zMxEuoaCX8TpULDQe7us2Tz32BwuPr9G58yKmGTvOxx3nhD1+l3pAoly/Qm4+49fY1BL4E\n6Fx8ZogtdxFGDotIJVuJSE6IFlkYlTYnuURsTFn4MpurAkOnSGEsM41UjLKCHCXo+Lh5nVjtodkS\npXGKnXuM9SLRQCZWcoxAxi/OKcsKS8tD0Opknk+8mtNwEqyRjZCmZPUaYtklVyM6koNXcFnGLTxD\n4lQY0TdGtAsqliAjZVUWsyLl1GQSRnTsKqo6oVAbsDJCYs9lLpuodRPD87CLVdzpHrJqMquYJIM6\nWjvhxRe+zU997pN4azsI1ia5GHBoZ8ylNuf8KmMzJlozuPDFrzB/OCMMD2mURHzV5ax4DsG1SOMp\nVU+lNDYZyyuKooIftYg1n3g2QDZlMq3AeU9kuDIpyGPS+JiT1QzxGqzXd1iVphyvPM4+/zy/9Pd/\nkT9/5VtE//UJ9wdDZouMNBDRJZVsPMHkNvnJjL2HI6TMQLG7mKmEapbRsjm5kFCPVzhKjZVkwzxD\nWi5RwpiW6uHoEVFWRookmA8oX6pz6Suf5l/+zj/nH/7qr/7NB8uzTCAsKOTynOOGjJbMSVZ1qvub\nSLGFtFDwHIX6ccbWZMVRB+bKafJUJxhbmPKSRFCRUp1IzkgklSwyGbdDLGScesw4L9HAR134xNUW\n9XqGFghoRY1a5LOh9IlFjX7WoDYt0S9lnJgZ1mKB2FzSUATsXCQSmiiLMnqqIOo5qzM5vUJMUsnB\nl5DXekhKQM9WCeQp1YrBnBLqok8a9Nndr5JGCs0c4lVIqARETo6lhQjKR9Bfev8+G+oczakgnrOI\nbh9RyjvYVpMPX7/P4e232J8fkG5l5H4J7yCi9OR5Rgcrnv/SOaxPnOLkxYcE7pgnPv4kO88/z/LO\nnGKhjDgQEbwVzpMXONqPmN/7gPkHH+IVRxw+uI+drpBXCd3eQ7740z9GHsaEizX0tsXB994mur2g\nVbE5q8BU0IkllUUS44lDJp7Aqa01dlrnGAUuazuXaEs2J2lAcPuE5Mjny//Z3yHte8xuxrjHXXov\n3cNs19h75XVyI2P5zjX6l33kCwXM4KOna7oZ2TmVaTPEnauwgqI4YCMts352wD4KZWuNrtxltl7j\nWPU41dC4K+4wOzcjfaPOoJIgZyfUV3cpRkXCxZDOh0eUvDVaisr+To4394l8A7l8h+z+LqUTn64+\nJ9nxULOcqanDhSlBCPee1ZlOXAqNAcV9AW3PIerL1MZjjp0E8+4WS81jL5qx8ls0GocMii4DzjEV\nXYwHZYTth8wkh73GMXPbx9kao483GVgJkRxQtiwcy8QquFytRXTm6Q9qpvzTZzn49gOaTYmhaDHN\nZpR2P0FRXUOvmljxQ8gqCE/sUKk/SXKhhXBrQWs35/arL7HoLwmyGve6M4JynUc+WeGRLYnmlknJ\nl3n862cI0hF3EoHk4QPkyymKWObLn+5w+rlLFNaqRIcm/eFdPuxeod7ZonW2weXLN7i7HOCYx0xb\nMi0nxSmrzAYplbZJx85ZK57FGozo3zjk6h9dphxLnLcc/IVKrVojKay498IV8k0NrazysKehXKhz\n98oV1PUqhbU1ntzZpVUUfqBHvPMU/tCkXHepVDWSYkxtUaaeeLgLicyKyM069bSJU3IZSCU8JaJT\nF5hPMlZCDscn5PaCedEmaYaYiz6GZjCRFrj2PuFsyEr36AXrhKMBUbdMPdVZuj2qBwmJfIBiZEhi\nmZXfxLM95p0Zo7hKgIehQz2CoRuxkR4x7+YEzoyJCebKYmoJhGaOZrs4WZFVZhM3XIY2DOci9ZZO\nJnRwRilyIuNqDl51DWU2JjL2cNYu/ECPyZHMXA+5f3vI7pd+lmUQ0D7X4LFySObYvPG9b2P1AhJt\nxbBQ5kzhHOvmkL6e883f/Weo7V1W45SL59aZX7tP9OE97GSDV176C8RwzKmdi/zx//0n9COPttrC\nFx0EqYaxBEmq0iimVG4kKInIX159j4Kfo9or1lQ439D53976PU6GIj/9udM01zKCuyfcGY7ZUWPC\n/T1uXr/N7oVLpKUS/+S3/xFVo4gSi1Q/v8nD730HuWBAM+fl1/8l3Teuc+f+jEXPpffemFOPPs2z\n6zsUdJH2+KMe8txrFj/68nVO7R1iR3UiXyQxLcyqghsouFmfqPcQIQ8pTJq0izV6ah+r12WRLdkS\nFLL5DMnKGQtVWlZKWd/CX9aRgippsYR3MsDWc7Y9m1V5gj/J8ScSyUENc3xCShmlWie0fNLtHKUc\nMs/B7ceUc4dpLGPP1/HdB9S6XfZXsOkXEecG/nCFNRmwpfU5UGXSrTEPVikHfs6Rt4sTbFAqFTDC\nBYJ4hOkvUKdLnE4bPY0JI5+SuMdc/GgvUtGrsjkvEacPkJsL1mjQKs8Y6AM2shA5hNnly2iFCqu8\nykpI2Ag2kNcExM4RCxwWkkHX9NjSa4zGY5qyizCcE6IQZTX0yYSVXaNarFBIt7kzznj7hRlv3bvF\n1J6x8A0KTsyDy4f82q/9l/zOb/4jbn97RBOPTNBpltssN2Kk7Yg/v32Xb71yyFx6SFV/QBo1Ufx1\nKsUlYtMhClQ+TDQuj3tMxjcQZy62VKHRchiICofhDrbqMk/v09UN7t+ecetb30Yzzb+SR/lrn0T9\n5m/9xje+8kOnWegr8jjB9CVEa4lgqXTnNs1yH2Ye+1UDT3eoLVIUZYiQC3imhl/x6fRCEr0EWowe\nK3jSgmrqg5mT5QXswZBuMcJMGqSOy7xfxZVF5EIfSzI4NhIcy2RdG3AURjSlJU6mY0UWwiJjmRTI\nc5ck1IjCJV7NxglkKn2Q8wKLXCD2U0IzQ4otZDMjVEU8T8IIdRaFBEMU8TMIpRwjFMn9FXqYkpsC\nK3NBFgp85+W3+PGf/I/wxB4rNMb3btB0Nrj17l0K+ZTO9im0zOa9Vx/w8a8+j13PePITO3Q2VNyH\nPjceXKNyX8D5zBnkwZJjacz7V25R3rA5fmfOu29+nx/9u1/h6No9sqVKNgnw9AKPnz5H/fMfxzIU\nPEPj/Omz6LaAna9z843XsAs+9XaJRqtApVjh2p0jog/2GB3NuP/SLVaJQbQ6wfBjtEc2aZ46g3gq\nwuk63L53FaOgE6Qq+5MpCjaOPGWyUPF9Bf+9fQrnN3n77RcpXjqH4yiEoYu+cnnl+mW++g/+AdHb\nOd1cYU1aYhguQ88kdh3ywEXrTPGEgLJewEsDEn8bcRwinpaQ5g5OeczOvgRKh245oWQv0f0d3o9k\ndjYC9nsZO3sGd05rSOKM9eOEMGwin1+BbFHYG1JjiUEd64GN1NgnO1awlxHSeB2EGqMkpL+x5FS4\nIowFDEVCNVuUpSmGJXOURKTHLSx/ghRJlGSbcOaDnaP2YrxN8C2fuVQj2yggiybOwSGun+ImVdrp\nXST9iFcvXwPgZ/7+z7O832XwcExno0KltInYkBB9kftX7xDOZDp2xjywuH33L/EPFbY+fgZ5ZGPJ\nIu/ev8la0qa3N+WJ8zHjiYQotiGQSM56mHcMQiOk5lXRdw2k0YS9CXS2bUJNphyKLJMFh/09ynOD\nkRihnBIRj4rUtxMc4zHG2n16o2N2zp3m9miK9/4h7VPnaVUTfAF6H4zplceUWzJHHwzQJIHoOEUX\nPFZLaD6yQ3BwiJgOcRoF9KSGoixx9BKL3OJk/4i337kCwE+od1ieV4ifuItmp4TTKQtNIHfLyJ0U\nNxVRRJnJ4pgwXccQDjFPCkxWEzpBhq5WmTYs0tyksIzxdBNDLTEr+CRpiJJvEFdF1NDEj11qgoOq\nHIMUQmgQxwalkstMXMdyBSJ1QTMqYMwEiHQcZQxWiCJVictjZoJEJdfIbJ3GeMLKM6m0UoxZiJYr\neGGCpmVkVkZs1LAGc2KthSvOyWozArcM4hw91pA0B/FoizQzeHX/vwfg9GOP8MRT27z9B3/Bbt0g\nfbJMIse8+geHnH30CYqtM8zZozISMMyYqSng90LsfMHjF5+juXaGG9/7HkKlDHKTrpxQ2zRoFTI2\nnbMshdtcaj9F55yBbHfpjQPWqgX+5Op32M469A9O2PnUBka4RD57kehwysKqsyhmeEnC+qltzp57\nBlSHl/7p77G9vkN/FrE0Q/TtDWpSg42WxYfv3eK5r36FkjBlUynzx//iW1x65gJZJLGaxay1t2Bu\nU34kR8gt5v6YrY7HrW6MXpHpJglX33idLz35PE9NlphBG6mfkXdkpmqX8iKhr8dUgzpdU0Eqh2Su\nz7jokfRiGs0S48hE3F6xMGpEqos4yfCXBlJpHwcHddFjFNYR8ghLLxIW52Sxjh0WiOSHFKw5ip8h\nh1VO/BVhlqG7Q3J3h6rWJTUqhOMFpaZNPDggKEFRlSlYRQaJSqUR47oxQVtH9TWERhddOIstHKAV\nHDTPZRmPcB2RueUhihr5ssHK7WEbDeLqgmTcwMlzksTl+698n5/6e59lEs9Ylj1YlcGNmc1NoniB\n3DYIljXssYc7HZCu1zEzl9DLmGkRYreNpYfYtTFZqjBXS7TsmNAUcWpTzEylo/QYpxqrqsxqnOCq\nU86dP89Zo8OFS1UEtUmcFJC0IoExZSG3qE0V9KZAb5xzZiugGxrEkUnLaVI/Y7O18wgbFQ1bLVGy\nZnRnEhVliDbOOBZs1mceu488zZOfP4O/u4Z9JyXVlgySOsX6EdqiSdS00bwcUYoxrBLX33qPX/jF\n/28m6q99EiXkIB5pRL11xEzCrRp4RhHfXVJvzgimbeSow1Zgog1DxMhnNWgzNyTa+Yi1ecSsEhOq\nD5DEBZNWn1iyGYgZvhGymOVMjE0cocw0mCFmMiIBNWOEExrM6COvLFJ5xFQyqdgFUr8FsYi/vmBg\niyyKLlO7SilImTcFIj9lbuW4koysTSiIU/S1DHwouQLCMKeRGLRVkTTKsP0KulfBqc2Q1RmKOmW2\noXMiiRiphLGQSOwmAMPDI47vG7z9ncsEK4mH00P0so9cXae61aKzJfLz/82X+fB7b+Ify3z3f/pz\nPnj9NrNKyHMff478lIHozXEqBTr1Jp/44jP4wKkvnubrP/5jXPu9t8maIs5Oxqg/4OJ6jcnxnNuX\n/4zZ7CHFSOPuW9f59p+8wv03v836409R6KyRpQ2MRocsDjm1ucmFr32BH/qFz3Hxy5doV03OP1Jn\nlvgM919j784+e//PA+pPN9hpXqC7TOjfv4d55ybC8T7X377Jo196ivalGubXt9n+dJ1z25scfv86\n7r0DpIoK6Ufjp5XlEm9qsibOwG1xu9nCjlyarSHVqUq3u4szCdCHAru3ZGrOHkbHYPlwyO5dgblQ\nYqpPWBgfYuLhHDcZZQdsyTb3/BGn1Tqe0SFp+pzxVLS0QlTIOZYlFG9EcdPgducjQPrqMxqDmUbh\n9ASxvYZ0UeTG5oC1+jFV1SfwTpFIOvPT+xxVBpQOShxkKZ2sT8UCrWJSCmNM2SPcjFD7EmmxRPGm\nxvYdmc7Awn4XCsIBptdCzysk4op40cQNd39QM8qgS/5EFUVv4ppV5LrMwf2HxB4oekLaipANmdvX\n32R5KFJRcwr1TYLlHuKnniKlyUH3fVz7A5K0QnL3gFiIuBsPKI2aJBfanDn3OK46ZSmY3PJyivJD\nYqMDD/u8+NIVYmtKpVkje7TO8fEHmLdGqLUQ5WiFXtc445rUGg2OVmM2mhE5OUI6ZqJvIJyvs4gO\nSE8WmEGVnjsgHJkMkhu019e4UGjx4a1XCKsmSX6Wgm5SrtlofsLwwQHSYo4Wln6gx1Dfwi4/BG+C\nIGVIWYOKmJG1Y5LjGW1BoOL3sTSJWnqI4uVM7QRBcZjrMYgDJG9CLqYEiku732O2ivGPZ0RhgbCS\n4Gshij8kF1dEogLeNkJeRAxqTFghj3M2lkeIu3McV+FQPSYRZsTlHqJYJhqk9CZH1EYB2bDOeDkj\n8BMCVGao9EcmPQ1GUhUxqqNoAebRCrHfIyg7LJZ9NrQM1V9HUlJKqzZBECANcgrVJe2B/wM9nt3c\n4INX72Jd6qB86ln+7E9/j+ObPp/5T7/MbHmDG9ev8/1/8QHDIviLjziigpQh0ubWa68RhlN2z1yE\nYkbREGlbGqO3b7LMz/Jy9xVKfYsb7i0mXZGJW0SflFlmU3744x9D29GJd3R6t444iubYyZybkyMi\neYVhtsjldZrzKov5jO/977/Loz/3k2Razru3/4zlUYCznOF0Frz+3avIgsGGJRPlBt/8kz/ikz/6\nw9xczmCrhGyLlK0G1q5B9SjFUw2EYsQoy1kzIBQj3OPbANTvp4jHLXqFGcHahEEwpD2G8dKglHkc\n2TpquiQOI2odl05URXc2WIk+Tk3GP1BonrioRwH5ZoBcPWRy1CYZecQ7p5DELqkIhjKieFyhLcf4\ndkh5vUCgOvT0c8ysAVpVZ62g4VlnCFo+C7eGFPUoNpuM4wl2YYfO8gxBtMl8EuMUZuwdlUmTnLCX\nMogcdH+D5Z0QXamjyTHjwMJKy5SUEjv+aYzDiFKWY+ttTuYzxsIK2QJFhar9UU/dv7kidMvY74vM\n5jfJ/APatoK+psB9k/pkThxCIrbZuecwPpTx/TLOKiZLHrJcioRKFTkOWYZD3EOVk0XK8k6NkiZz\nPzlNwTFo+z1aksS6HDD4cEHQPOHAVdhTelS9+0iH75Ltm7QEmOcyD7Mukl5kddSgLhxTXp2g5kfE\ney0E3+Tsj32O7/+rlzlZajzzE8+ykC3GVpWK5vH26+/zv/7jf8iv//I32X/xKoeFmMxQaYoLFvt1\nBuoDsqOAtmmQ6hLJh31Qlb+SR/lrn0T99m/85jc+9yM7BLFMwZjAsELRlxBllUgfEi6KCI0VfTWm\n7MX4vkllbUSSyWQzBXKRsVOihIe9aCHOFTJnRk3KsA7XyK0hhhEx1+bIpk86rFEtj+iJGs4qAcOm\nIIosuiXkfIGou6ilAGHisXIayAk00oRstiTupNQXGrP6HC1oEsozDK+BXh6hH5bJbYGTYkTVCRgh\nYfkZcSThakt0GeZiTCTLLG0FU1QpeEWC0pJ4LjB0arz67Rf50ld/nE8//zxpK8dIAyYHY2qNIlNX\nxL3To7S5jq03aH2syuDlCceLLtNIpRM3GA6XpGlAtHeIadWYkFJ0FZb7U4bLmLdfeZH2dokH+y4/\n9OWn8MU2paLFwfW7pJJB/s6c8cwjTR/Srm/wxNc/Qc02CYdDxnMJzucMZwsSPWcaTciuuvjSBKEs\nE0nw6CefxZG3ufSlJhWKlLdh/NYYJQoo7tY49+inGfbu8PxPfJGwVSA+ucODKzM0a8TRgUf74sfw\nAxdpPiNa3+D1l7/Dc1/720yTJVFeoVuMscd3qa40bq/7GIZIKgrsK006YcgdwaajNhhXRvTtJl49\nQBuMMOcxo3qTldGgMX2AwgZs9Cmm0KueUBdyIj+k17aYtYY8OhCYKjYzNcJKy4wNB8sQqYxVjDBh\n7OdQzFmcVIgMH61YZjlU8Jkglea0sgJjA+apjJ6auJJMYtgovke/GDF6dETzww2O1jRM3yPeMXCH\nAvpaD2XthFVxRc8oMdcnpEmF6rhEcb7Pyx98xESd+fhpHKlA78q71JrbeCceN777BrufPYWTDBnc\nz3DFJdu6ApU15FrA/btj1rdbKFEReXSL3bMXiZwqt9/dY+fSM6RyDzXUiDMQFl2KgkpFNsn6J7hz\n//+l7k1jLkmv+75f7VW3qu6+vvfdu9/ununp6RnOTg43kZQIyRIVa3MkwzKSyAECKw4cxYBhOXAW\nwPmQxImdhIESO44d2Y4gibIlW1xEiZwZcoazcJae3rd3u+/d76271L7lwwxIQRFiwv6UAzxA4TxP\nnQIO6qD+dVbWjsNynuD4KyyxxXQ+Yn7Yo1bYIp/ljIOY3cYTvH80JHy/T/zxA8JFlQYm/VMZxhHW\nZhnzfsD8eMyl59vo+UcY9N7m8eaTTKoZq/UIs/44GDbzl95m74nPUhNTpqdHjIdTxI0rzL57xOT4\nOruPPcFXv/FBdd4vPPbzDIt90uYC00qxV0vWUQVWOYZVRTNHhIlFUWuTmkvUtIC0DqjrGuuWSe5L\nFAWB0PEwvBhlt44r9SGRKJWr2I5EyczJrQAp3ST0fMJsQlaIKZgxXrBkZW+TJw52quDLGm0rZe4U\niIsmYizhRRXsDQNnlGGaYBtFSuIcN7XR1QTTnuGOdmmUwLRcgmmMoql4lQ3aqzUmGWu7jOyK2JpK\nYk2JAwlDruDcNtH7Xb68+sAT9eRnLrO1uUlGiuopbGycp2w00K2I9FhgtyWxs2dC5wLj0wFniUuJ\nHSTlIZtXr1LSmwxdn5K0Io5SzFVEqvkUkhX+bhGhXKQmn+fCQZfpvTmhOifxCghilf4k4+7rr/Po\nj3yS//N/+Ps88tFt9qs2qVtHOlrT3SwxVDWUvEdj7yP0X3uDc597ir3NDkoCkZEhqCmt8+fpVgzy\n8YzeGydc/JFnCCcxreom7999hQdfe5/Hdh8hc+/iWh1+/zdf4ZFnL5L2+2zWL3I8vY/iZLz13nt8\n9rkXoZCRGB6ruU5dT8ldDz0qEaUirdaIglVD6K8Jixr2NGRsFimflZg0eljZglViQzUk8Qw24iZD\nY4YaF9GXPZZChUQwKFlFAmeBXCrhiA7VCE7VBqHfo+1uUbFGrM9E8qxPtRoTuxH6IicppkznMnar\nyKGZoy8WhKKGKEW0A5dp1aNSkEjNJYZUwkgnZEHKmdNASj0aos1inSFXFIxZytmWRZisaClzXMEg\niEPqBZ2Tgsirv/8NDj76GYSZwzvvP2B4e0TxfAFXT9g2LPrTgOlGQiXTUeSYUHlIRelgMCRSc3TX\nork9ZzFsUO061M4EbMVET0yK3Sm3VYH9mUHfM/EaUwLLoTSQKWV1ZlXng6Htygb3X36bV964R+3R\nKqXVgEBfoJ8JeOUQOU1QE4WpmqMvRMSqS84C/6ZPY9vGt0X0aw/JlruUOGLRDHmkc4Hajz3PM5c7\neJUFamxQlUSmukO4zNjOAqJmFWUa0SmH3EhPuP3WLf7TX/nP/v+fWP73/s5/+7cuP/sYsuEQzFrU\nE4GJ5aEIwKhJqX3IKpcpndQwCxKzNCIMM4IsJ0oUPKFINwyQ0gBB1XDSImJBIc49grDEuhUjBzKB\nKVM60amLaybNnLIjcKqX8dWUdFKk2j5DjjPkqMpEyQhqCawzDNkhd7q4tTnSPGemGuQUKAgDLMcg\naU2JFwJRVmJqSxRZI5wV0AKDVeqiFVMqSKCNCRFojXQEWSAKBSRfwqsaFIyQeGny9W+8xBMXPk8e\nHzJxA6ywzMXPPcNUmVA+qLBbeZSj11/h1nDJ3TdnRLKP0Szz6NObvPXd9/Anp7Q3LnL5Rz7Kq//8\nW2zUH8X1bqHKAoKQE0UJk+Wcz/y7P8t7X76LMBvRi854dHeXSaBQKirsPPc4or5BnOg4375OWg4I\nzkxSUu5+a0gyWeANfKqtRN9n6gAAIABJREFUDpalsZhHNCvgDGTS8YjJOuDae2eUwyXTU4fp3OF4\ncUw0WxOdrVAf7bJ6bcato1dJH2bMZAfPESipIeGtMY1zRYqWxJ2v3uO9k3f5ib/wVzgdXmNu2ey4\nS6ybuyhmgL7QODmncm6sUB33GLd2afoOw7pH67aHKp2xEpvoM42StI/raoT6gmBDZVo4RTrbQvdV\nyhMDRS5jqBGrsUh1VOX+ZpfiMETyBIxFTiLdJhq20CWHoKwTWzHapIFmL4jmE4xlhilrKJlEVJOZ\nFxpU+md0VUiWuzj1iIpgYgUT9FET9WwTtSiA5dEvJLT7a6obKtE6QU0j9KRIWh4irC7SFW9Qqi/x\nrDHf+vYHHcs/uv0MeVFnOPWYODfYqD/BdHCHe6/d4NIjT7Hb3Kd37QHi9kWy9X38tYu59lFmPq0n\nSrz88gnLZMCFT1xh+pWbnH98B4pFysxgbtFXfMpewLt3bvD4M89SOtgj1XwOe3ewNJ1Hdy9y9+g+\nlz55Fe30hLV8xvjhguL+Fm4wJNdXjI5m6Ks+y0VMqytjm2vuD2JS4ZSHYkY88mk+1yU4mVASDfRi\njnVwFf+hQ2O/iTuaIO3U8Ksu73zpLuvYob0bcHJ4zFrOsdQtvvnaVwH47Og/R7tcJvHuEOMQNUNW\n4ZKW4RErEaqcMFt1kWoz9F6TWWqxzDNozQmXNr7ok5o12smSUd1EW8xArlFJi2RpH7KcQHQJ1SZL\nf0ilWqBSUlgvBRxFoVFpkgcD9OoHw74dK2a10kl1FTXRWMUhlqmihqcEkYhZdwnyCH+pEVdMhNkQ\nYhtrUyfOZNLZGkmLOFPLZK6Dp+Us6xq2kzCvjlGmDkneRMZkYY4I5htogcUfjL4IwBPtF6moNbb2\nLjBc3UHP1tTUBDeWycSMQBLZr2/w5X/8JX7kz34eP1hTDhzSJCdQTUajOyzHAdlsRuniBRaiR0KE\noBrIY42W7BOEBVxhzMO33mejrDJeTFAubXOlmXGw2eSN33mDL3zuJxlEKWaniLxdIXQHWLGGEniI\nzQajQY9LO9tcf3fE3a+/h717CTkvkcUCIgX0mky0DhhtKagLEWESEWhDLl9+kc3HL3PjcMw6j+ga\nLS5f0tA0gz/4+ivs1Ls01Qan2YJ3vvMWn3vx84SZRrm4oDJsQjXHSiqINR3HkREbLtqxxSg36ZgK\nrMBdzSm2VOKVzdyxUDtj3FhgYyJyknqIRYtkaSJuKbiazmZhhtYziXeXxCfQaVY4SX1qMjStgGQp\ncDxdYRYDQjZITRmFmEFHJD3MKTZ1xPkhTTUgKEeIVRct6zBnilCQ8Yd1GsUVU81ioU8pViQCe0G5\noCOxIlzJFKM1bi6hjXWS1pKRlJLGOvuKhG+AORL4g5f/kOcv/iiNyyblTpGrT9bRwzpSxcQfLdHK\nCXV1TWrXSY7ucloX+fgXPk2exTgnOpNqkeUkpFTKWBsGg0WIXZ0QlOQPWgFJM+KRRaeoMPMCsv42\n6XZGH4PKKsdMDJr1lOali9gH53isdpnn/trn+cUf/kv87M/8FMfLPhuVAl6xQnNdYN7KaCgZTrYN\ndojZ8CjFF5myomraLKsBNV/ALbq0ex3iNKLsd6mWz8jHK8aCxH4OftrE0DQoGTgnA+TWPu+++m1+\n5Vf+2r99OE8QhH8gCMJIEIT3/xjvbwmC0BME4Z0P14/+sb2/LgjCPUEQbguC8CN/jP+UIAjXPtz7\nu4IgCH/yWX8aZaRUZjKoGRtxxKCYU9F1VvaC6obLOKuiOwmWKrFMV5jVJQUlRxCKdEWLzXDFVE1J\nUpWFVkBqhEhZRqonSI0ZRXysdIY4UcjrRcZ2GXGgo00lyssE0bGI26fggRB1mBUiTFzM3KAchYiW\nQJitETUTt1GgUZ5gLFfMUgPBmiNmOUHFZLGzoDqdoQ1E1rJFlqzRLI2CqnAiC4yUCtG4xqChERoB\nsQZyPScTp0RTi5X5gWtRjR7w+rWbPH91k1KpxJ1Xv807/9fb9L/yDi+/+RtIVw/YrpS5cGCzVy+j\n1APe/+YpTz93nspTWxzdecgr33wH87yBYfWpfPZjtB+5yoMb1zj/wtM88mibb/zfv0UlmhONx9St\ngJueT8Vdk6s+hze/hbtK2bnYYt3aZelJzFSH2XjOlUc0yhWbTaODVYhYBFOK9YzqpefZOm+wPIoI\nKzIHFYs0aKKVajz62GU+9+KLnPuzn+Pi559ls7xDWFvx5LnnaHc3eLr2GIpZxSxd4eInNhjf19G0\nPcr7FQAMaYwtCHSuOywKOfYln3t2mVE5pHy9yw1TRipJFO9ETIIWRFusdraZ7W9S6wdMLwTMOxlb\n+oxH3SUOC/YGZYrNNe7KJq4oPJQ13N6caq6hVD20exP2ogmrLMEWp2wJJdLtQ+yBTs2YEd/eYNJe\nMbJT2sM640YdQRpQdkPGcZWVf5s8sXBbIWePvk1xsmapRahNk6xWJb8yY7y9YG06fHQ5wvZ24KSI\nYu0xKF2kV2ngj1LKfkI8fQzvsIvc637PZkqtOufVEnItZP6gwlh/ixd++ofZ/akDvvraq9yZf5fN\nZ9qMFx7zMGX38gvU9i7SQydyGrxw/gK+CEyWbH/mEseDO4xmA5bSDk59TkNfs25t4S0tzkyXQIVW\nXUGdGyxdk2F8ilg2yIKMefUiadKgbMjkQcC5bZMnf+LjaIf3SI5lIm9AUW8iF2ych3eYpQbh9Ax/\ntKKW17n43Ed44+w2q4VK8N275Pi89bXfobLf5nhwTHg/pqAnfOQTTzD4w1uklRClWcQ1vt+hW3p0\njZPOELMqvtnAyVMUNkmzTVZBjcC1iaMp2VnAQ3lGsTWl0I7I5kUK4oKWn2BHAkfVlGYuMBML5IUY\ntThAWBVZSCKSW6GQO2y5GrNYIlzFyIWQRuwiTRKSUsp0MkOYJpQx2fQ0xMQhtlNMaYllCkxWm/g6\nLHONtR3g1zVasxRB3SFur1mfBIgrl0KkoGQpOxQwLY9clegeKeSCgbpoYioSmi6j1sZ0p01EeY5c\naH9PHxs/VMPvBLx87SFVPSFbV3l7OWU59dnZP8/suxNen13jU7/yHyJpMkkeciyuWRkqlh1SfPIK\nB5eLlJubKMkx964dIcRV0nWKKRoMlhXcYAqqxt7lKq7YonLQohGM+Sf/++/gL+qsG1Xu+QmKkVOb\n26z/xXU0VEbVnLgr8PJv/BMKbsAw6YMZcuGFCpeudFmv7mBWOvzmr/1DVmGCt6sw+dJLaGFKegBq\np0ixopCOxlza20eJVfq5hxOWCO/O+MKP/Ti3br2DmITM5iEA81QgU9aIqYBiyYiLGScFAz86IdvQ\nwZEZlRw6W1OGpz7LuknJzuh5S1ahSLfhYwjbNLWI0OhgGRql1YhuOkfJNfRQZniskh+4GMcxwt6C\nw3SGqa+Y9iJGY5iUXdoXC6z9jAoScZijrLp0Di3cmoGyHjKo1Fme5hR8C83p4pmHVIoa5SRBVlT8\noE5b7KEcV3H6XTZ6Mmbgkwo5wWZKVhVwywpqRcKYBJSPSyhBg3uOSuysiBL3A1CQvcH1d9+gMQgZ\nCudZqzmNcRGDGsk8Y7yosYrm3Bn3uH7zJl/8q/8lN29NqDdkWlMfW8tZazH6wMbUtlgUzlE4rbMO\nY5r9FqHi0tMdVGfN1sE9GqMpqjkg78RMJItpb4GbZMi5zsKd8cZ/9U/5K3/zP+FYMDln7RCKItVB\nStCMqbku9x6GxNMxciYT36nQ74+opTEjNcCdCmTFkLmUclJMcNYL5uKC41OBQW7TrphMsxJqckq6\nfID5ENhNSAOFgmX9IBDlB8qJ+ofA5/8U/t/J8/yJD9e/AhAE4VHgzwGXP7znfxEEQfrw/BeBXwIO\nPlx/msz/F2VyTlSN0AdVfDOhoy+YzVJ0w2c9m1Od5ORViUlzxEpo4Bm7ZGg05DF+GnFcySgpJlEm\nklknqNkp1nCOFUmsRjn+SCFApyFquO6adb5GKYVMKkWK8hLLWWCoMWEa4dcWVAIQ1Iwstpk3M5L7\nHTQbiisPUgvynCyT2RwYRMsmjqOjLHXi3KSs1om2bER7yKoiIEcyp0JOUdYp9U1k2WRn4eN5MrYX\n4Dgp9bmIHcoYvQ8qJ3YuN/n4i5c5G0uQrlDKJX7qb/winVqTXCoyf+MmlSfLnNy6R14Mye8WKS5F\n3v9OwM2vvEMiqxy/9oD1cI7jqUz/5Qne9DpXHt3Ade/jyG0024BmQO1Kg1btEZLD+0i7KV5XRZzF\nGGFG7+QthPQI2zcYOSFRcoZvS6Rlhc3L26xmK9yxT6NxjngJs7VGY0cmev+Ew+/e5fU7b3N4fUwk\nws3+CV27hWRHZLrPaNpj9NY1kiTmjW+9RFZRSaI7jKnQ3Anoj29x6hwC0PcM1nGTHAtu6DjDJba8\nZC42KEf3sfYmDNPLDCo5YSLQ6r3PSXFBe3UExTl62sObS2hRgpPWOTi+CEkFfV1FLBksowXu1nUG\nlxI0W0GfllEejbkniijdBC8KGUQiF+7tcf1ZDWctcsGYo5spmX2I0tHolB9QdNoMKrsoE5uuEqLs\n5SjXLXYHHSpuC7O0IOotcNrXUW4HdG5pbLkV1skFFhvHJJWYfjKisPCRXi5j3j3PXBrRf7TP6SNT\n0pr7PZspKnCqWJhRGWFvypZfouxV2N/6GLXdAhfPnaMaddmUz5BPBHYqBs7pmMc/tsd3/sU/Qn1C\n4Pm9J3n9vZs0rjbJqh0aSQlTV6nqNut3ApJ7Y64+dRXvtZjj179OfGazX99lNbqHpO9QN2OW790l\nGb0Fax/1uW2EToSl7hGHEu0fewblqRYOE0bxEddeOuLJH/8Ui9MZ+qSK361w//a7xJs1Om2L7k6M\nc+yzWa7zyCc+hbfdxHv5IZViwDhxyFdrnKbFx578HHv6HpXA+54+ktIGTUelsq0gexOKoUWeTkmM\nE4r+krS6JJZVVN1gK07IFxWa4pp1bhFIOplooSQpuV8gcldUKi5JP2BylmFvBhTNIpHq4SwrLLYc\nmqqH5ogEgchIrHKmR9RHGl2zwGkhxhQ9TsseVbNNfSxQzUrMpTmVbMWeZ1F2RSrrDjuuTloKsaU+\n7rJGsRNjS2OC7SmB3SSc+/iCAU6IZy2IqzGhItMLJILIIYlkMIuISY1Mlb6nj+DekHv37rF9wWAp\nN0gDk7Zo0GkrfPmL/5jux7tcjHc4+f2X6L37LnPH47DvIpVtCnqH4O1bNGsd4o2QL/36qwzvTFCK\nNUy9RZRMMcIxWSEkGCoUrBqUXALHx1/ZfOYv/iKr9ooXfnKHr3zpizxWUzmqapQutVg1BJqmxtkf\n3ePjX/hzvHr6LlIssPWRbWht8tq37zDtmxz/0Sv8+b/+F/CchPjNBd1PfxJTDQhiHaunMHrllFW2\nwu0NEC0DVTwFXKYUGZ6EXH3qR8lrB3SDD6qvuhsylUaZxdhglp6ydiwa5hmJblLUTtFVD9lOOTtJ\nsSyVgueQqAZBVkNPhijzMmo8wYyaGJUVwjJBkUpkB0u8RUJ7vEQ9UHF6Y5JcwXNSCmdNxAcp3Y0q\nhrRDqVgnOykhRFWixRlGnrNMZmhqiFmq4AkG5XmR8XaLVcFh5TiUTveY+U2i8XnqyRmFdEgYQVCq\nYqgOM1KYKIxLLpuE9PSUirbgOJkQdnaxCgJF3+Nie4WVlJDN0gfvh13huasfxW+qZKFAIY/oaTlW\npqI2FESrjNgfce6Z5/jh2jP84l/4GSrtjDuzCUMTFlqN7FjD8E8pWvcQei6i3CMeSQipx26yZFOz\n2Ng0mZyKCJlCpVAhPTXxTR2p2yQLerRLR0z1IYuuQccQUU9HWG6AnbU5KxjMpBHitMjW5j6dpkJ8\n2mNVN2h2c6RGmbQwpa3FCLMCrV6JrcAn3RZYizPi4iYbnQBpmHPsHhNYOzy4vuC+fcjV5hNceXKf\nNMp/EIjyrwdReZ6/BMx+IGnwBeCf5Xke5nn+ELgHPCsIQgco5nn+Wp7nOfCPgJ/8QQRmCBSdgFTN\nWJdykjCjKYZI6wq6WEekjLmWSEKLWnlAJXFwFQ8/bTFu5ShBgcJMQUkbLGabqMMCq7TJur9DyVKQ\nCyG+VEcJPGoFlxZl5pmNVp6RyGXUjSL6gzqWqqLGHktzgjYzyU8iZAeikshEiBFXAuIqZu5qNPyU\nQu6gyToFpUhmurSTNWFthM+ESK6SzSuEaUh5qlJ6KCA3oKyecWQm7Mw1BDmnVV8xkeoo6wRz4wNP\n1NIxkMUSw+tv4espZqBy49dfI8gCrI1txKqE88p98h2J5TKgavlsXdXZrac0Kztc/dwVPv3jm3Sf\nvYp3eh17Z8XWRy4jbV3hiaeeQRwGtCp13vzufe586z2yLCSLQZrWufzCp3jq88+xnt/EP/KpyHC8\nTGgUFARBx1EiNnyTh4O3WKYuTz72JPPekDf+4Cs0Oj5+f0Xj/AadjzyFJejIW2VWYcTGI5d5/Ztf\n48u/8XXW799jp3aVg088g6tUqW/tc+9L38F7WKD/6ms8ePUdZn6VS+ZFAAqFOeeSjMKlOVweMX8k\nZSa4PDM5ZX2hjTHssLV5yKoVE3VT8qxEozcimLWZKhV0T6eovkVSGOM4GTf3hkyaBtZ8Ssc7pXI+\npdKr412/QLheMtlestZGeKmCdbLNfH+XcHaR95oxxZtj1qUKy4ZM3Y0w3r7KmSbgzSWwImqzNdtZ\nj5V3BeOuxUm5zXj3mJONYxbXN/FyBVMtk2tbHJ6bs9BOGB0cI/R0/KMyig9GX6dkSETPrNiNW7iG\nReeWiVCafM9mXK2FVRPpP1hQVnTcnsg8DfDu3+F8sYVb2WHxRBfRr9B+osSZJaHvNUmUAnrexLZs\nxPqc83WR7/yzt8gmt5BqCovDN1nMApZGhbdeeQ9f1Gk+0qS2sYdkzEgftzi3+wzv3f8KF198gtzJ\nKdNBemKL6PqCgiiQFmfIa5lifI6D/TLFROfu28fo+0XMUOLZK1eIDQ/v9JTjd/pIx2M6+x2mjojw\niEAmakSez2aQs26FOPMy9Y1dXr0/QZVU4lIZu5Yw86rf00cVnUgxGRBTCJsUaSCWZTxvG1e3SI5L\nNDcgtwX8nZg8O2S5MiiHCnKgIUghggt2bCFZRZaZiJ900eoCg1nMOoqQIoWSs8CM9yCWOZVdpJVB\n5qiYsxmuXGeoKCgrjaPTnGY+gfyYMSFnjTnaMiHKRGa1NbPEw/ZWkB0jDET8WhvMGdP1ktOChRDU\nkbwlka3Skpu0k5RUk4mWS3RxhWHlqGFO4C85yYZY+YqJ0P+ePq73lgxnfaJVRtuqU3tBopyYjMOc\nCy/+MN3dXQL9DP0RmYXUZmtZ5keeeoG7b77HtWvHFM1N7jy8RcWr89M/9yK/8IsfZeegjJiOsC9a\nPJw+wG48hZ4FTEMBeRFRLaoIsc/68AENs0RwT+Mv/09/mzNfxxr6BF7E/G04vPOQ2sEBoiLRrpi0\njcc5POlRnAq0NupsPN3i4rMvEty+i+T4jDKbvNjA0+uMBgMmyZp+5pN6Ekru0ZRD5NoO3333Bro0\nZXvLYKksyYwjjtMPdCKOQvLlQ0S5RBDriLseS8dDEGsEQRNjLFPwVOqqhV0s41sakbfmQvGIRqfJ\ng2LGpJci2AvOhhmy0cJXGqQPdmnqfaLzJl2vQFXexs18WoFCVhsQFwoE/YdU/JzIlRkbIl5JxRGb\nhL6GgUWihOj3AqS0TsWJMIMx5qxJnGTIko8XpggX7uFlKpoHs5FFo3bG2l2Q5xInLYcsa5MNM7Qz\nl1Xss+OLJDOBvjJjERscSw0CMcRVP/hRNzigfxZiuiV209sE+Sbb5glOZUGYValNV3i6wOr6e/yL\n777K//h//BoPb5xg2xLlpoQgaTQPMpatMv6ogV+IWGUrsvNgdor0FJFRKOE7G2jKNiO/zXB5ih+U\n2NHuIIUgqxHr4wNaZhWvt2SSWQitKlNBY7WKyNx7ZJM2E1VFcsbMFwqFThFhOcaRQoJszEa/TVYP\nUJIENQpx9TGSU6BVANlc8oAYT9PpVh6hUh7yxMUuN7/xbf6b/+Lvcv13f5MoDH8g0PNvU533y4Ig\nvPdhuK/yIa8LnPyxM6cf8rofXv9J/p9KgiD8JUEQ3hQE4c1w4RHJRTIpQ59arDFwiwpyFCOu1kyq\nMAyb1NegJS6C5mCpCuW1RyfLsUsjztQ1Ua2PZp6wKufYInidIzwdUrlMrkf0dBNBqpMaPZrLBamk\noq9SWM1xpSnJsoGrqEiRgkyEYWhE4gah5lFLQpBLBJJINUuJNIlQB9X0wO6jSj4LJcOZyDRPNhEm\nc6pllziuMS+tGLYnKGciE7FEEm8wqSUshCp9wSRUIqbbK1z3AxBlzDPeuDmh85mnOfnaTUI/oNRu\nENX32RKXCLrJabhmTyngBQqFLYHhbIi9f56PXD7PnTs32Dl/nv0rj3Pww59m1tP48t/9BqvVMTff\neYmiGpIy4/LHn+PSlSvcfLOH9GyRuOrxzktf4ejuOxSfv0gaq0T6PsW2TL1RobzbZvx77xHnKc3P\nP0/B0fjm69/k+M7bVHZkQqVK56Ofov3xq5hPqjz+VAvBz0FQ6L19jd0rz2E0tnn5tfvY+wqHUwe5\no6K2TH7oz1zm+X//4zzx6Wd56j/685xrJUhRD4D2scSdtcvRjU0CT6Ehr6jPW8R2m+LrS9ZnC8Kj\nKk0nQh09YJaL1JIA/eEWe6slB4PHMbIrzMZt5G6BnXETaaYw0h3u6DAZiMjBFLN4QqqHZJJMvafS\naHjsny7pVyP21hnnRjEb5z303hTj3hnjVUTnyi3yBx7q7Rr3og3U/AH2WYXctekVMg6s+3RvW8h6\nTLfsIu8U6Qc9Ek5o3+1Qeb9JfqQgqAEV7ZhYWfD2UzCpXsPyykiGR2us4z06wb/zfVPOWz5v/cs/\norqZ8cTVZ3hXnqHUJZxak2tv9in2ckpTn0W9wOk0oLYGTYqoKgFCPuf133uN27d7UGkynT3kjW89\n4Nar9xgs6rhnN9jZrFA/sNHPhwjmjOqZTW8BDDL2L9fJnIBwLqKd22f9WAPDSpBaCd6wRuYV6Q37\n6LGAzBJ3rGAIIWa05NV7b6OVXF74madpXiyjHNjcH8yJ1iJqSUGp7nI3mKH2ZcIgxpA05EZOp3qA\n4AvkuYj27jGeLxAG388WCB2BML9Gukpw7BXzyQli7hPXY4q+hCtnCILJPAuR4hIDv4Y5L1EquNSK\nGZlmMKxPKOcZwVxDySsUkpQkgMqqiMGCTI4+CAOEKdNpRLbRppSHmJKDSA1DnVFMfPTKkk1VYrDY\nZajliOICe55TLEC6n+HO69RyhYdoTJUaU6OIcrygcZIi2i3qSxtRtfFWJvLa50wTCRSJOEpJDJ/U\nK2DrKbOCRFrSKC4VYqkLh4vv6aNb7fDU5eexlSqKMOVf/fbX6dcjWCeI1Zi//9//bRLZRhWbFO0R\n4aUybi/gY594EvO8xMPVCVrbxLADFsuIVV3i27/+Lyk/eQlvtMG53atI6Qz1Qps0drnl38EPNBQ1\n5cHDNc404eilN3ntt7/M7/361xCXh2Qdj69//dcpW21cRyRbLHj83J/hdD3iamOTTJP5zV/7BzSC\nCYJyxBIbsTHDavo8d7CJusgoC026j11mdLNHM2njaFVmjkhDiDl97z1a3Sf5J//wn5MFEd/63Td4\n8nL9g+9NojGR9qjEKooA1aWBF0I0jRFimbNKCew1bm5wezUCx6ZkSKwDmWxyxkXBoS6XcbMmu5sz\npnpI6t6jUEi4o22is+K+MuFw/ZCpss8900SNdZaaSVQ06e3EVNUJanlGzXcpikPygsCkLSPr2wja\njFg/ZlkZ0dZV/GoBqekT2zKGMsGONcJKg9PuHjVhxXzSRuqW0Btlzs9LpKses0JCpbSN7KpM7TGh\nklCzmlStQ7bvjCnkMZb9wZD7g6sC1ZbAanfEOm9R8DP6scakICGOczQ5oyUbbD3zAj//oz/LT3zk\n59grX6E91SHJ2VL6xO6U9TwgV5eUNQXkBlXHIRjIrO0K9bMBldZ9bFMgUQKUdJtycYIwbRHGUJIO\nWNV8jpIB9bRCt1CnNjtCrruM9SVhILM5nyH5S+btFY3aktRQWVdE9DGEgw5OMiFhh1jfJC+aLMfn\nUElRlTLlhY6ZtNCENdViysOFwZ0OXPzpP8uP/fxP0N36Icya/gMBoX9TEPVFYB94AugD/92/oZw/\nlfI8/7U8z5/O8/xpWzeIWRHKBoZ+QtF3WegS67xFVLVJooxSsobmhKVrMmITfQauLiLKQ/KohhGp\n+KlAc7mFJ9qMSxLNRCcUNORhkVUiU/QE3GWIstCQrRQj0knLCoblYpclliWH6jpAVlJ6lSojYsrS\nIWXTIRMtxOqaZuKzKIKiRcyUIvNViH64jexIhG6Jml3guJ5jmRKSNMHKXCwho5WZxEWf6kpBLzlk\nvkbdldCnJu2FTyImqOkZAI6cc/5xOH1vhHyuilAocHZ2invvNu++1sM/GlPWqpyNi0hHMV5hi3lg\noRge14d9rFqJ4c01k5dfI7k7YHD08INBybczzt7wKDz1OFHP4PL5AtNGgd5yiPtGwtHbd+kKIit/\ng8E7E4ZIKInLuWqJ6o5FOL/LY89cpPOJ82SHZ6i2gJ622L/6FB1jn/svf4dbx99i/pU3OPv6Kc6i\nyXo8447zgPbGPs7Lt7la3eC555/n9KZHeWcb/6TP1vkyp32Z13/rj+iHMU0xxCqdo/mRXQAe7O2A\nWqP07AhRvMD0ZpfJVso10WZZFym2LW5duUFBGCLYe1QNiWPzEeLNdxDlDfqtVxksT2mXp2zMT4gf\nrnCqZ8xWBQRzifaggBRasOsjygvaiyP8WoLQrxCUjinnZ0S7D9AYMZuco7a8hCd00O+fQ3j3Sfb2\na2itnPP5kqR0QPLoA0TjDG8mcHgWc9TxsCcKSpSSyVO0sy5+I8APc/q7NVZKEbG4ZNlRkLtTPja6\nhXk+4373jP7AZa6nvlvCAAAgAElEQVQd4d0WSNXO9+znglTEGrrkiwJ+UaN61+faP/06DSGmcaXD\nKLnGg9O3eWqvy8GVj3E2yNm/2mVQWJBdkIg0k/BIRhZjqonNCwcfh0ThcHidLK5S2EqofvQRSkkR\nJ4Kz8w7h2TGL3n1e/8Nv8sSnP8ut79xFbchc2NWQT0w6JZvO7pg0H9PWbVjfQvY2if0Vzf0rJGuB\nFy9dYVbXMe9F6FKLxvYGjY1dXnvtbYpSB1mYUJx73H3wCmatSuiIqF7GYuVSHYyw1DZJZnP9zrtc\n3q98Tx9JDkvlUTbiAhsFG1Er05ATOj0JT4kpbmh4a4FiGOJJa+o1ibSZEaZDEnnNMJZJdQmvMqAg\nSUjSlFibYyoFNMGhtErwkyWj04ho5sFmhXosk2sKVXtOtBvhigrzSYIY6QStOTSG5OkOepQQBlXS\n3prScUQizfDsDbpyjhALqE2YUma8vYvlj1hkEZOhi7Af4Rd9WrELchGCIt1oD7GQkKUSuW9QQSAu\nWYTWA2ri98N58mSJMZOYLM94767DD/34Jzj92k1KhS7h/TXPv/BjnCgJTzcfIcpjyqMztOfqvPL2\nNer9mHMlAbNS5avfuYZda/H7f/8WL37hJ3n4jdd596Wvcv3GGerpCa//7j+nXN3jaqPL2Z27VMr7\nmNUxuT0gfarClrHPF37u30GrHDAbwy/98n/MVJxxoZ4R5SKn0oTynsuNs4fY7U2eff4cqeAyc22k\n9ha3rznsxRF/9Ad/yCwd8uRelZPjQ7Z/4kn2Pl2n9fE2jbrMjSOJX/rVXyVMbvLMjz5Cuoi5+rnP\n8GD+QQj83vYUXVhCMMUWY2IpR/Q6iGJCKZ/jjiTc4xpR7LLLmqAyIypsoVgqo7hD4LpMt3usjnNO\nPYlaIaQuKCy9HtZEZzrQ2Zl22Gi1sDv3qNsu5XWR842ERBZJvB7eJKc4TVCbKaaV0ghyOt5dxsyR\nyjqF5BxjQ2EW2YgjD9UNUUsLNLGOe6ZQEE5InR5Z0mJPSJHOFApuwrwocuB3UQKJfCjgRls09Bab\nfY8wG7NUTdyyxb1Cwmz1QVuQ+e2HGEMXN88RPUjEATWhyYW1RWtnxrEps9Z0XCEmG/QZbFSBMx4k\nM4onHkd5RKC2kRDxtyVWQwPDXqDPdGBKfb1gqZpMF3XmwpA4W1FPE1auxaIUUzEX3HaWLCcPaRwL\n9J2MyeFtHDlgsAjp2mtqdoa0UcMTfMqRyeGsyiIPMJUmmRkxynUmxQwjyukbQ4R5jGtnVEMFNbOp\nZiaWEFNQbJh52DWf3XiD8voQ88GQ8fHrLObfT5H4/6J/IxCV5/kwz/M0z/MM+N+AZz/c6gFbf+zo\n5oe83ofXf5L/r6VEECmnAuUkYxJVyHIVcepQMNcMbIlSkmI0XQZOGxMLyZmwrKfIgUvsmKz1HEmd\nQ2oxWcuosYWdheRTnxJLijsnKOYZK03GEudIconMyJgsfNCGjD0FMbCI1JCFLaDKNsYgoR4bzLMu\nSqLhGCJ9LaKQBRh+Ac+QKZc0tFJAbI9YZVBRhriSg7FMEEQR1yww3vDJV0XCLMUEUjFBijPSqsdM\nTKkWp+iViNq4xmr1Yc+KUpXEEeiEBo98dIftLYu9C3vomc3zv/AcW598imVHIZFFaudtGqFIu14j\nVS1CZ445HvHG4Tu89/YJY33B8594np1Hm8T7Ap/8iz/Nnd/+GqXHNrn5+0P80YJHn9lmyxLoXmiR\n9VOamc2FRoONepXVpMc3b9zjxnfPsOQ9brw74/WvXOfGl77BQsjZ2Epo7e3hbM7ZubyBXrMROhGt\npobVidlvdtjr1nlwOsZsaJTOB6imSqdT4tpL3+HKi/ssco94OODy809w/atvcfOlW7jeksO3AgDU\n6V12fYfyQ49lbQSNkA1/ymONY0S/QunOnN2bNUpZF7lzh2Um06ovOJ40cNeHrLmEVa2y1Dc5tWNC\nZU2lp7FrJ7TnVcYvLJAbbdS5wGp9mciD+ERENCxmWyaFfotl3eXtPUCMQT/FPDenbiXc353T92Js\nt8vKWnOq9chHFdqHJjVpjbqxRXUaE1qbnCnH1G7ZdIsxUmhTvrBksbGi2nYgOMe4lFM42+KeegV7\nUuaJP6xSEC0u3NsF0aQzzb5nM/2xyf5nP0lF75AtXWbxERtPX0LtrbDKAoMbE8pKFaGxweC9U2LT\n553vXEe7JiN6NT7yiU/Q3RXg+oru013uBPe59KMXeaH7JNp+hevvP+To3TcpVnJsyWPt+7iuRzRX\niXdSKnmLcllj1X/A2UvvEWoKN944puA0WBopZ84C88IWf/Twqzzzwueo6hLbWxVyYcFWUMaxa9z6\n9ncRe0eoHZdVHOAZLg+uTehn76K2LERN4uqTbSaTe1ysSOiPNynv7tGrrai7Eg+97zvEbzw85oIK\niRUSDTISO+GENktZobzZJ1taqIlLmlZZjwoYvs4kUvF1kWhcolD0qEwFSqcmcjxCme6wkfsYq5Rh\nqUsvrJDUyrQzjfLWimSes5yNmNoQjOsUvRWZPqW8l+M1HMRFlcqkRnPZI9k08GMFuWzh0cTeqiJ6\nM7ykgJyGMOwjbiRUhjOW65xUizFjmcqwTl5NmbkrhHKO0sxIlIjKbEkY5mwUHUYR1C2fThriVL/f\nR8wsb3Bt/IBgGSMSMPjqazz9s5+lsVlGO/AwIoUNo8JvfeV1yv0WkVrn8Btv8uQnn+f1NwZMHQln\n7vLR5z6Gs4r5+L+3y9/7X/82tYNL/NCPP8ve+V3icsr5Z85z/fYrLEdtrnzqGV76vd9lz36O/jWN\nx9qPUX3a5kv/8xfxpTNq8kXUPrRmdVzRID4N2VhBPT0g6g2Z2jKziUh/CvgDLDthb7tGkNlslTo8\nvnOV/tTFKBep3hwRzjy0tAQVWPePeP/aN9EWTbY3HkU6Z9ISQPQ/8ERdzHLqcoIrlBm0WizKArY8\nQ247uMUpF7pltPaabavA3LYJhxmr+Rl6HtKy5kyVGjuxhNJ02VS7lOdjHE1gUdzBM0ZUKiNEe8By\nuqI9zFFOXNadMW5mEaUrUncHq1Bj7Vqsj3Vit0geSfSHIk1xTFoQsWs9iqZOEBUoJwXq8QGHoYUf\nnDCu5diBimDYBKU+BANiYcogN0hmOgPljGVtxXLHx9q8y3AxY3AhRBhahGmZfj1j60wksZYAZAuX\nNBCpCxJyERbpJmNP4DjRWPdl9NEMV54yObnLIF3i9Q8JnQy9myCYc85jk+cWWnGBN1TQxTXebAsz\nKbO2FC793Av88n/9V/kbv/o3+fN/+T9g41PniRKLminAfE2aaNQGK5itWZR2qe7ZFLsSplzkil2j\nEEisOxcJFmcU9R0Ox/8PdW8aq0l+nff9aq96q9569+XuW9/unpmenpXD4TYUhzspURsULZAU2Epi\nJ05iBAgCxDZiJYiTwDAcKIgdR6LtIFFkwYrkWJRmRHJEcjj7PtMz09vte/tu774vtW/50BSZTw6R\nfIh9PlYVUIUH/wOcOuc5z7NgU5oShmXcscHUM2mSse9F3JoYbM5cDo0Ge9MlqCXad2YMJR/H9xBH\nCsvMR/E2SfUp86hMsF3ltOziTH/Eq/xXxf+rIuoHHKe/iJ8F/mJz74+BXxIEQRMEYYd7BPLXsyzr\nAHNBEJ78wVberwP/8sd5lyQluGmAJp+j5BaktoIulPEHIY2zgFQHZ1BAkmFsJqzkVZaICCUBJa0T\naB6eZZJ4LoYRIOVmkJi4toYipiwziaYAVuYwL8q0C0smgyY5KYccl6iqGvPGjEjXKM8FFuMcScVm\ntjZAFbqMxga1dEhxrDBLbJaCBjOb6SLETmV0Wb0npumsEKg6DclHdnVKbZPSQKGgOwj5iF5+gpYN\nKYgLwjCHZPksRgZpqjBuhNQb9/6sxUVIux9zfPoO3VemfHhjTFJKuPwTm5y/OeD81pDVYMQnP3KZ\nQT64Z7IYZTQwKV+scvPaLbYfuY/7n9znvW9OSdMOJWOFS2aZG8/9Obv1FYQ4ZPXKJWoli2XbQazL\nyO0C3331HZy8wNsnfYqVDPsTD9GYKyR3P6C8onD5sT12GmVEZYvTd94m0GNi0ePo20cMr0sUrS1q\nhSI5OSV2ApabHtog5MpH66i7Cu/fHnD29juc9w+4T9P59h98l85332Pl8U3eevM98kkTR0txZn2M\n6r1xzbq/grPuYxytcfmNBXJ7hY65weFyDTsdcbqxyjAxkdeGbB/LrEQW6aHOx8UhhQSiNI9dO+e4\nnBAOt6lcCDjZGnOYsxBXM6rHDTrmCUJok7U9pjmT/YLCUdMhR5Wz4jn+bIeVTMYLXDJRYnxHx5Db\nXH3TJLQCppW36BgFshWTM2CYqQT2CuFsxnKiUTroU8jnOWwqnC8ykkhgFASUOg7aOynKPCEcBOiF\nIhvzIxp3TEShhnXplPH9PqFU4XznR6kcJicUH1LYeaSJnS6gLuCMJRalFbbFOtZ6kfNUwdFiPva1\nLZSjJSIzgmoX9+6A2c1zUlSun3U4vLYk6yik0xmBPaWpFDDdDUKWvPovPuDs0GX54YwwXWF93WKz\n+jj96ZxcLSNT12jNTZpyjFzc4GgsUHNX8Q8Pee7V75HOwFyJKVzdwX1kDUXa5Hw5ZTq7wea6xejc\nReoJlHdLqJ0pi8EJ4XiN5M6YztEJmzvr5BpXGZ71MBUNs1Rgd6NA8+oetmr+EI+d/RG3B+dMlTme\nMGI5k6kvR4yshHFaxGWAXZyAMsWUY/y0jeRHaIMCkhaji2MiuYIvK8S1EqJ8zqlZY1moouCwKnnI\nozGj9ZTorkTR9igoJfxlirKtEU5VbMdm1CkinK0w8n0Sq4srKRRGJUyxS7woEMcTam7GVFWZWzN0\nL8KJVbSeiO6HpNk6Tc2mUNNpuT6e5xNHdUZSjmSwJEpmTKWE0BZYLko0HIXpdZuRtsny9OSHeCRm\nl6QXULBCFNlAWvs0Ztvh7p0T/uB/+OcEDzS58a0XWV9RGZdSRiRI1TwVJ+Thj67hRQriSUj3Zo/F\nzGf0vs6v/+zPcuPObcKWQro4RiuYNNaabNg6iaExfrHHo1/6OO3JG+yszJgc3CE79/n4r/wMhdJ9\n9I0RH85eQKvEiI0VVvQMpary8u//IQ9dfpiaWePS2grl2gr5yjrRrWOy5i7X3r1J4SNbvH7nXdZN\ng+z4QwIxpdURmfzZ8/inCaZWxxyazPOnOJJHOA05mMyxsntUX39m4jsJ5uaUvD/G7ceM8xuoy5hg\npnJnuEQ/zXM+GyL6Akq8Qtn0maRFhomKzoxkaVN3p5wvzzhr5CnHMpJ6THOgcTiOmAUaXgnSjT2i\n4ibT4xRv4dAs5KjOfby0S2F3ymwnRBFc+nWFtKpzJqzgiQa33RDrYIK8nJHGDuG2QK2fsl7eITeu\ncZYv4i8D3LDJUK7ScDXqWUhe1vGFFE3coub2yGbblBo63iTPtGlSzS0wRiUCfQVtWAGg8dRniPUY\nWxZx8nOEok9ZnlAWR4yKBbRmgJkY5D/+E2xf3mBfaRA9mEO/qTC7q+GKUzTngHBgIPkFJCFlHAs4\nG+cIjs0b37jGP/5Hf5v/8rf+a/74n/wpk5eXmO6UOASiInfNiGvTmHdvv8dr//S/4fnXv8ewO+SP\n//QP+fpzz3J80mP1zoe0rCZqaU41sUjzVSrZOUXFR1+ZE9rnxNRZqS1wpnnuq/ToyDFnc5+VaglP\niBCXDkEooiVlLDFmMBMwSyVseZ37FtsUCoUfqx76cSQO/hnwCnBJEIRzQRB+A/i7P5AruAZ8BvhP\nALIs+xD458B14M+Av5Zl2V+Yev0HwNe5RzY/BJ79cT5QSmSilQzdVTEXOk4+ZKEt0WRQ93qI7hI5\njanHIbksQjw12e4LRMsQVWxRWCboakZ+JYdnRsjyhKwYoEoGybAMfoWs1cSsBgRxkZoXo2UuZm7J\nuZqQyFOMQYPVuzaCU8D1UgqjNovEoKBDMfAYqyrk88RpSKrFuJqHbYv0EhGv6CHnZyzjHkqskBg5\nUlVmEdronsFCspkMGwSSyrhYIpnnQdPJxTG2HeO6JrY5ZhDeU5M1WSCVl1hrK5zNeiwOHF77/vsc\nLTzMqoS0KxCkDeRYZs/Ic3x2jnapyKHTplSyePQjF8imElNX5ImnL9MfpyymBufX7/LAfR9Hb2hI\nps+3n30Gf3xG0FKwhRLn45d46CMf4cwbUtnUWNzp03vjFmsXNqk/9VMMjDKjukMkjLH0Ik/9/C/j\nd0RO3ruJbhZxwz7unQNudgXef3nJrV4H3k2QZxbH13063SXJtQH7H71MLtjgbHCHhz7/OR7/jV+l\nc9ujuF3EvpRHzmxGosOsc4/jodViire26D7s0d+vIKgxTf2AB2dznOoUXWgxvjBk/vIqU0zS/B1k\nz2Rah0VdY6VzRu6mys7YZ3t1wW11FWlbw9yRyaKMoy2HndslyvqUuChSDksshjb6bMCtlbvYZyVs\nYUmnv064saC92SKlQmwvefOrEcp8yUlSRdRC8r0uhXmRpDrhQicic2EjtYiUIoqosloOeCCso5gR\nSaHBqtIgvZQhaCEVVSB31GW6GnJzq0TkORweNEkmMap1jJjr/TBnZFkjd1ZivMx4/psfUravkM86\nCO33WeQi9sslgsl7jN++S/+2woftm5zcibnx4Zja3j5Jf8msLXDx4R22H61hKR7u6TlK3sZYaRBd\nyDCmEvUn9rj+1vsUhgZ6VaG+XmP9is5g0kUvmtSv7HLrxod4/oCLV9bYzGukax6TUpWmXsIuScyk\nOWZLQ2rbLB2ZrF7mTnfK7n27bDz1EIt2yOa8xqxk8dT9n2TPrlP+qaeZHNzmmd9/jy05QKxp2IFF\n7c6So+tQkqrMxPCHeDiOjPhAhh70mekeK7bJQBbRcShnAcYsIeyqGLMc1YpAVm3gV0dkG3kkMUch\n3cE3YZFNmYw80qCOGCuM6WAsQsTynIYD8aQKpQgjnuIkczaSOaNTESHLMR0J7JT6kAiUkzJ5xUST\ndOL8ArMESbWPjUbfy1BCgQ25TFBNSUWL2BRYNEIqiExCB1daUDJiNlQRu+JT6I2wM4tFV8BwRTSx\nCKKLls+YGzGqUaReqvwQD7ei89hjuxSTNZTUJNW6CKmMWZlQyG8ixm2uPPoURbPGwk/pTUZUSNFz\nBhITSkUVL1XIrelUI5NtU+FPDj5guyJw2DijvLvK6LDH5PtdNtav0qhFPPv6q3hCypUHHyEeheSq\nZb753PfZuZyjf/QGVy2F4TUHKzMZ3znhzBnx9o3b7H7sJ/A7Cr33XyeWhuQKCVG2oLB2H+fPvMj9\njzyJ7QVcP3mbN158k+aDlyg/sou4PMLYzvHdowPawxvknqoQjnVmAwNFyCP7Y7zcvU5Ub57D9+ZM\njuaUxwppaYXiJMDUGyizbfY0D3cvISwrBKMIN+/T7WaMMzBCgbFVJaubhHkJqyqzMoK+4CFkK5ib\nU1YrIqYZgJjHDX0m+ozyhkXkV+gtm3QVhUWaY+gY7Kglss0mTttFUDcQjSnBSY8VUSa4sE1SnDLb\nSphwgNycMhTGlLM5luHRzCIiQWChjjlXZRSnR7DmkHNkxKFKZ5gyDlRyWQ6NjPWeQZTM0OYxcf4M\nw7zHiYqlkHm84HwSMjmoUJJ73Ak63F4ssVKRuapimFvkPZnaUxd47N/+HHbU5O2sywvRs4RaA3lW\nREvLmIVjFCmgelFkqRqkKy1WKjZCGlEIeww6KbXVAV2jhGlEBI0J+ZMy2xubfOznf5mv/NqvceXB\nfWS7wWc//XP82uefpFBbo6WXyY4XJEmFXL5Ez5GYLpt4RR11uY+X2yRTDZLuCKG2wo1BA2UjYGdl\nSBSO0Es+41gk0bu0q6cM9BOCqcJichcQ2fyrP4Vdyf84JcqPtZ33y1mWrWRZpmRZtp5l2T/OsuzX\nsix7MMuyq1mWfe0Hnaa/eP7vZFm2l2XZpSzLnv2/XX8zy7IrP7j3H/5gS+//MQJBZDatMcuV8NMS\n5bsymyMBWwrpdnVkewIll9jsEQ2LLFcnRHaZIC6zmK+TdxMiX8aJxngmSHOLZCSBlKGUesRSyiSX\nMdUcjIXOWLcQcxIzp4KeLlmmdaY1h7GZ0qmPKTcXRKLGlrdkdlqlq5ZouhnSMMUXXCLXRZcV5GmG\nJpRYTEXa1YC4liGFDqRTXNPD0ZZkypRIT7DMFmUZ6gORSXNO4dwhDDImYoyu+hitHJFqAKA2Mh6+\n8nmKeoXHH7nK1S8+wuVPXqX7vRc5efOIPSnP6L33ePG979A7g/Wrm5z8wUss3nkHRVxDuPII963a\n1AtFrt08olhLsYwpsiRxo38Dx8yjDSKufOajZMsylJecByLa7i6eGXK5prNtrXD/048wiTOee+k5\n7hzeQB8F1AybUKtSv5jhxiqj+ZiqZlErqWxfLHGzfUDJWXL58V0eXM2RWWPOml3UskfiKUxSl/7h\nCZG6gPVNwg9PufGtW9z32atUoyLNlQ3uvv8ilcxkUVTvHeDBkOVuiH8jY+1cRdKGjA7v592ZwjJt\n0uyq6O9fxLLPSKQCo4KMX0oYbfkE5xrzLY/312zGiYUznbO5nGK/E3KaXCdTdVYnJcJ6AHGdhtlB\nKS4YxzJyqYkwbbIODFtltosDIi9jnjYwyhm3xas0Z4dEYcpHTwuU3D5K5xLRWkAxnXKUVykVVpEr\nLnZYQnnN4/g8T7vSRosUcjOPXOuIoSPSlsasLTLCQhHp1n0Y0Q3GRp3LWp7sNMCYNanNf0SCnMxj\n7rbepLYhs7m1QylcMtR13rnrYNTWuBl7fOyhz6HUlxQrOtO5xhOXdwnGRda+WuUsCZlVY9Jlie5J\nl+KXLnDz4BrH1/p4HQe565GrrmOJPrv5NcQrNh+/cIXUitGmdVTZIz4w8N1j9kyVu8M+Sn/GSet5\nXvo/XufRz61x+2hBNtNYr2wzP7yGrh6ROnep46J5M8auRZWEgmqzcDOiswB7M894Teba97+J/cRV\ndr68y0iWSBoid+NDOutT9GxG7WqBfX5ELB/HCuLbfYaDPOtaCdddkjNVBGNM0AspNXXalohjlonP\nPJZnCnV/neUgJMyOWMYRojvBr2pEpk/kRzTlNsa8hJMEjGSFliqzbsLYlhjLJQqyz9SoU1rvEash\n/p5Hp7dDIV0wKcZM5jAPXfqeTZKT6aoNOvkFy0imXJFIuwIjpQb1KVLqUujmSMIOwTwiHvYZl+ZM\nxyqRv0BuNIh1E0EyGTUSnNMJaZznvJfSkKeIHvTHP9rOU2/59OUucU6gesUgoYQvzpkNLX71b3yF\n2WHCNDpH33WpFqdcyCpsP3CBf/YP/pDRooAslqg9ukXRFTk9fgUjJ/CVi5/hnVtT8kmF1vkSx4LG\n46u88tIJ0aLNz/x7P0UWtem1EnpBiKxZ/OLnP8Uz/+sL5GSFju9w9ac/gSeFyPUAZbfMhVoZqSDi\nmhGJPyByTW69MKLbShDGd9h9Yp2gYfC//U/PsFK+xOP/zmPMHI3BuI8Y5ekszvnaVx/n87/4NZSg\nQi5bUvFnNNMRh8seyuQeJkm5RSivopgKnUhkTZEwywrzMCFSO7QSkfEio6p71FKZSDqlVpdpBjmm\n8oxtJyNeDNHCdfyTHKKm48y2iU0J1y0ykNYRFj7ZwCFzMta1GjNvQhCluOYCXYwR6hpKf45yu00v\na1GugBQuscMtLEPBGsZ40wTNLiGNZBRfY9wqUu7moRISdUXalS1wQ2pBAS0bcSgUiR0XkibTzMWr\nbHChFJF4LiXPI147J0y2KBRnzOQNxOhezkxnfQzWcZcV8tG7/Ms/fR7vTo/333kW585NkjMJ87jL\nyeg2R3/yMt/73T/HH93lU5dqfGLlKdSjBYE4wk2HrFolBFOi3w+IYg2RiPiOg58YyPEOO42Q9kkF\nKWgzc5dEk4hy0mNzLaTSTnCUVepWHbG8wXxTYrk00K2M2J3jtt7n937nd3mr06FgucjOkq2zE6ZC\nF2UxZ6L6lHQVbTBjL5rRHJWYdCUsX6IoOGyrFQy9RHigMXxeoOD0yHfKjMKbXHvuz3BGP54owb/2\n3nmqCOZExVEkovySmRrjV2QcQ6QWlVHHMn7BYjlTsJUEf2qgxDPKeQGpNiMq5zGtJaYmUidAUiRK\napdYTJk4eZLcFMn0saKEeamHkjqI8QJ7OccMKsi5JaWuSc1x0QIZNcoRFubMJJtsFVZqXcaRyMQU\nKCcVrEKOZAihJRCUZqj4aAOZ0kGRVCywNCKKsUjFEIiDItUzBSkyUPoWM1MiDWW8Uo5IEfFjl7Sr\nMJAjTOdezdlqBZimgVdMkB4wEdc1SoOM+3/+C2x++jHk5jqlwmV8J8QbdtDVHpHaxLMT+vMDWp0e\nd0ZLujePuPhwlXFmMRATbn84RTVS+q0OiAYn37/F9PwOhco2E2/Kxto6H/3EZxi5MQN/wgffvU3c\nPaJeT7FtE1WQcd8TKJqw/+lHkNUZq5c2aekunjcnV6ny+Cd/mpOew83JCcczj3hoEFxbMDkYkx+2\n+PQvfozb8w7ZxGN0/UOyUp3YC+l8+wZjKUYdLykFOu+fvM9DlS0ATvbXMNJzlmaC6nSJChXk/SnF\nHYV54xS34NPcd5h8TKPnntDubLJzd4Q92WZ6ZYE3rXL/eMS0J7K8IBBUl/RraxTff5LI7FG767LI\nSpysG6SDOh8sFOr7Lk2xR1lTGMUF1gwXtxCy0SqyeeyyypBicEKuVcWqFjgsgCpYpKpM7C45Y5+d\nJEd2OGfeWcMv9Mn2LKqWj1KCqeqwHCxJYrh/oFPN3c+NcoFsOaUkH+OPofzoTW4WTokbOaarC6bJ\nj8ZX5ftkXvn+NRJrgG0WWWyWyUdtHnqiwuzmnFgymb/TZtRxOX7lOdauaFiSzOUvXMG9FfHYkwW2\nGzZbexJJ4HDVuJ9mrkFhx+PO+TXqpSlrezt0r4/oFPrcbQ+5fnSMoa5x3DrmvvomN6avog5n5LfW\nmZxqhGKKqX4rtKQAACAASURBVG0jSSIoeT62fz96x6EdBFxjzsvPH+CUKlw/7pNoFsXVAt0gITZC\nGg9XWGannCzaVDF5Yn2dcjbAuDtl8MIbXNraoaTtUpmmWA2D1/7kFdqFH4lLRv0l0dk6e+LjyIuA\nmWeiJylukjKVc5y0LdbGeVI3pldrUsl5pHqXUJOY5LaZx0sSoDmyKFkl8mkeLVFQ9TySpiP4Mrls\nHacjUBJy1IYOWUmh7IQMlyql4hKtp1HcOkeRUgqaRJbmSFSXkjQgO8uR601YqZnsZD5tN6VTbJGO\nFmzO82jlIeOKjyXJ1JtFprZO0qqzlFRiKcdw4DKrCmS5lFUto1ZOyIUDEqtKX5fxD0Zc2Nd+iIey\nW2PdKZJ4S/70H36HzB+iZCav3/kOy9EaUyUCrQrtc5xek3S9wPdfPebiU09T3qlzePwaxvEx7mDM\n5Se/yMuv3yIMFdTRMZ2DFvmNMlVrl7f/5DmsnRivsEU4jYimFu/cfJVLjz/E7/yP/ws3FhFP/ltf\nwpfrqJmKuEw5fekl1hSDs9ffIre+yXuTm4jFMt/4p8+wc2ED9eEdttUlWq7Md37vzxFcgWKpwc6D\nD/Ot/+obFBOwDYPzMGAz3kLrWLz927+Ht2iRq+8yEnTenp6xutDQGhcA2EybuOUx0ZpC/VKe7rxH\nL84YzcesunOsFY+dyYicUme8KrCjKOi6QrzosN6U8Ctj0PIciz6eagBLLLNNrh9hjgX0roITFPBX\n82hWgpu0WTGqbPhDto4GlBpjOImoJDKnOxbarM74bE4UzhmoLkns0VvfJhu1KDhT5GqXNFojUhxa\nWUpkFaiv5jC6Luv5jJg+TcFkd9NHlxdIFZ+VDYUNNeWgdUwap4yrPoFWIXMlpoKFbgjYg3u6WeVq\ngdJlgZLoEOZUPvqVp1m/epUnv/iXUK48zqxe4FARME5nLJcFvNUxoQanS5N0d59WbcaSPMGWw+Rk\nxDxdoaimrI2HZLM8wxWPsDckmJ8zGw4IrLtUyvc66BvRRc4KCq1EZNoUWPT6MG6j3B2SzQtkQ5NA\nTSjli1Qe/iKf/esf5xMXNIxOi7xlMdnbRpy5VAo6E1fFL85pFxTcrM/C7aFGIQsKCEkRxSog2TGP\nPL2BfTnPOwL05ucE5yOEVh/F/pH/5r8q/rW3ffmt//7v/eZTn7tEGg0RZQU5tfGdGDuUmEQygm4T\nCXMio4mg+sjzIp16hJaliPOIma7giwnSNMMX8yi+imOA6woo+TmFWMNPbcJxhTTxyewqhTjBMTzm\nmoAuh2SjIqNMw0o1JplKKOtUIhFJSJmQoyxEWJpPsMhBJCCsTYgmOaJkThKapFaGrs8RjCVRr8Ki\nHOOkAlZlxAAF01dJhTlzX6NEgJtZWHJGxVHo6DGiDpKX8c2XXuEnH/0sHx68BjWRwfNDbh2fIFp5\njt49ppkzcLwznNaAj//Sp7l7codBYFLcLjLvWexsFnjve69yenQbfUvio09d5eXf/iOcXEq5bjLv\nzyjWTURvgba/yzztILUmsBhw0OqynPQRvCqlvMD9n/0kmxu7WFGOwclLZCs6uw/fx2H/DupyhdHh\nXdLQJPKGyNIKx7M2plJhvVQityqyLmyR6pC/bLESVojihGlfQyzn+eRXnyT1PAIpQZyCfXnKK994\nnVE8ZfMr93HRXqM1POPlt17n1//aU5x/WEPOpXQDl1wmEgQKnrtgfc3naL6H3Q4IljJKSSPWTPLl\nA4aizXpcwFu/wdy5n0ZbZRGlrPXq1NOMsHyGeXOF4WWPzOmRLgzkrETdKnJYuc2ACgouBYq0Fhor\nnQGunWLNK3zY0IiHeeTckkp/i7NshpmmqIWA2sTHbvYQ1TKd0hyWfRx7l95KC8VQsZMKMS101cfr\nrOFaRdx8RKV8wqJXJrcpIXer9IIeebmC4vUQrE0K8z4vvP1dAH79i7/KwY1zxPkqhjHCOfdZvZLD\n8NdJVstM+wM6vRts7n+crjJGPQwwTI2gE6HtrBA5IgXR4uWTN7Eki+m8g1zfYnbzkHKuSKhfYu9S\nhpiBP0mgc4QTzehMjqnpMmIUM3yjxZQF+pULyLcPaH7iYU7mQy7fX6OabnJnNMLvDZCMHLO7CWEi\nUx6NyLkizijj6s5D6Os5+ucHWFUQkhgzKLGztss4GdPY3Gfqhoxvzdl5bIXBwKXRuED3fMioM2Z3\nN8czz9zD4z966LfpeH8F9/6buPkxedHBU0WamspYklCjCKU2I+9FhMqIQJXIfJuC6CMvUmJ7QS3N\n4c1dtHDKaGOJNNYwigtGCxnbnFMslBGXPr25QZBTmQUOEgle1UWOEkp+Dl+38SKTRBrhOHksu4Ap\nJaiCyrLoU5xXGGU++YmAKlSoGB5pOEceKmiFdQRhhhLKpAUVXeqh+DKRmUOTR9iujxNbzDKPglWi\nK2RYjoHQlCl1Q+bCFt+7+w8BeODJzzM1bLb0KRcf3SFwHcbUKE4k0v0SH91fIRdodFKd1FySkrFp\nypi7O9x64QbrNiTFBmaQsNRmbH5klYM3vkNhb4c9pcLQinm4eYmh6rIhC/QGCww5Yhbp7F/KkxoC\nV574JKKnkfkTbn94yO5eAUcs8t4HbzGNIi5t7dM/GbFT3OPW2Yd85GuPkxZL1BMTp5hxLsInth/A\ntGe8906f1YJB4eom/ekUApugsMSNA2ZFB6tiYI1F2mHAZvkigrdk5cL9XH/rTa7f/IDHHrtMMlHJ\nTfNkExlJjNF8lZI1Z1ZbR/YkevU6xbs+olzGF+ZoVMlmOSY5AUFIGaYm9ljCX8kxzRI2vRQ5v0DQ\nMrTlAtNwMZZzXEuh1F7iFnLowpTzYIVEKSFXU+RSRmmmMMgcSusCmeEh3V0SmkXqQUYcmySqT+iG\nREGMUksxKzmGA4WR0qFkhiiRiFJpcKqEuK5OkAnIkwLDQUDOlJBln0LFox+UiSKTsnJGGkJObLFw\nBJ5/5Xm+8HM/TXA6Yp565Av7GJaPnuZozCY4ismOk1HOz0hjBUeokyxjqqUSfpYgiEPiXgNzO0dN\nEcjUOgPNZXVikjWG2Pv38+v/7r/PZ1/+Gv7fibn0Cz/Dr3zpVyj83b/LB24Xbdpm7hg4YwklidhU\nBc7KTQ77Ls3IZb4qUGnXmK0OaCo+ZSlleerh5yrMZw6abhHqeYz0nLwwRRpcZFqeYVTzKKUC3jSh\np4YIN3ssazrx3ZTO8BYDN6QuOCj7BmUv5ORswuvvvMnf/Jt/699877zf+vt/7zc//9AOASJmbODH\nKroV4QsheWvEtKAij+rUjD7DQQmlPsTUfYR+CH6R/FQlXGp4pkxhvMTQJzDLYZkgDYoskgUEIYIa\nYpg63nSOY6voakw8yWFFOYS8i633IZVJgwLYPrLhEcQqVXfGdK5j6HN8ScIMBUZqQljxKfUlhFIV\n09WIEgdvdIFytiQKBMRsDFGNnCMT1jNMN4eopAy1lKIuEk9ASjQUYUFR1rmzqPLiq8/zha98EWcx\nxznP89Ff+BjK1MELJsiuj55KnN/qkBRUjl9fIGYZmRdhuS6JoCIKCcWyRcUTqD34GMdHh3zyp3+W\nsK+xu1pn/+ENhMRmYmkYrRn6Mmbvs59nY2WDo3dv8JGvXKbXcjDUhHcP3qRSLnM3bZFFOouBh9SP\nMCWXyWiIureNmMiYW+ts7NWp1Mqc/em3EK7s0xvcojOKaRYK5LMcntVn94FHOMnusLm6zajVx2KD\n2B+TWjbIFZR6kTCcorgTBA9uHHa4fucDfukn/2NOnWuUM4mlX0NTHNT6IZa4xfy2iRl1EVIBVSpi\nqglzYchQqJHXl6SBz9h5gI1hD/9BFaE6JuysEasTckKAsHDorBiIWZNLHZvRTgv7uo4hryIEXZZ6\ngh95iE8c0dZ3qLd1bj80www9Vq0Z/dTE2TtAVBqs3Rhjqi5zfRtNmuCe2dgTHf1hlag7Y282IJx4\n9CKFgWlhLxSSkoxcmrIcx6wcL0g1EPwaVFrsd00yA3KuzzyQWR/e5dvX73nn/eJf/RyBLROP36Yz\nalJfU5lHDWa9D9DUmHzmoFgW1V2NtdEqN+70qT/V5NQ9p2GuMPOmKHKNzqstHrn0KFnsoeYbHHw4\n4FKzQXldJ/RT4naBntKhe5aRKDKlQgqbe4gXLnHcuUmaJQRLH1Ww0B7awzs9ZZHJ+IjUNjzMFRPb\nK9O9fZ1cLWXjS49y8/1jskKMVlSZqVP8aUZzbZVsEjK4Mad8JaM3XaKzQNbXCfUZRmMbS42J/T5O\nTqDfn2JWVL7z7XuGzLvtGyh7CStGl8G6RcFVcaMx2qJASczhFcDRYnJ+jJjlEC0Rt6dRDBYEoUkp\nKHGWF1EUl6wANTEitWOiroWpBOQEOBNE5LKMaLWJ9CINN2KqyNTnMoKfIokewayO7scscjPs3JwF\nNnJOoZN1KXaayFGfQdMkL/cIIh9TUlmWYnK6QOjHaHHISW2Ov4wpyTksVUGYqpTCBClScSORdUvD\nwcBeKviWgjVwccUtln2VV86+DsDnvrrHtmLib28y+N6b1KUdZs0z1qslTAdGRyfcPHuT1ltDmuUK\nDT9A2s/z3P/8T/jI5S2aKw/w5gvfp/SJMifH52xZOeTVBnVlg4PxKZ/YX+e11gmVepm3P3RYezBP\nGuQwJB9Rt+i8e4vafQ36rZsEQ7h/b5ebh1M2Kx79WYmPXX2cciEk0iI296vMZNhnlbee/xarWw8i\nLnRmZyNyFrRnKuXNTRwzoFAyeOv562xe0EmzEE+22BsXuf1ai+2L22xd0bh95yZpElOqpiiizQsv\nPc9Hfu7n0eUK5SxgGKZoWQ+9YaPkJHrZAlMoIp2mLIsahVmGZw3RhxDHMWpqk08TzCBk4cypZZAr\nygiOx7HYxFen+EsJ08shpSAlIa66hW+POBNjmrkilW7MfL4kX1RYSCNW5RzeZIWqOiTRG/hLF0UV\nKSYOC72Gu5xSXasQehrpTMFw7pLLSxiex1yJCc4WCJJBuWKwGCk4qyFbtoKqKSiKzqBfZ33YpmJV\nEB0Rw+gzDS7i5Cxe+e4zfPoL9xMnBsK4iJ2XSNoiQmPAyNZYQ+WUOZofMipICHmLYilCHwpksYtt\n5BEmCyRlRCaK9E2FS4rI4biFnOZo+WNuPH6Tt77yGndOrnP6TIvvPf04b40OSW/rjIszNgc9YvcM\nv+AgWDskPtRKXWrWCrm+wbCesb508S2BYbfOTNXJFUXipoTrSCSDjKWyoK5XaQVgLKZMtBK19pxu\naYRynvLVv/0beLJP560T7Np9bDykE9wWiPNlTGmN5iWJN154h//sP/8b/9+98/7/DlGMcYQ89hIW\n0ZKis8QKFiwcjYW6gSqMyDSX6SxHcf0uuYlBclImMAVSKcOpBagNgc3RAjuLOC5YpCsJwUAnaghk\n+SoVIQ+mS2GwQPSqaEMfoW2SVBLU5RzDz2gttphgEza7+EAYyIRmSqiViTYTwqlFfZkRZAHb5ypm\nIqFjsvQ9hs02umtjbffxKiZxbkYmiyQ6+LaA1AuZxRqLWGNlniN2ILEWCAWBXKbgCSpSdm/9NBuI\nfOJrP8mXf/Z+stOQnKRRtlOe+NrnkZUZtXqVgrqKKixI6g7SAyZ9YcL56QG94ZC0pXM+nOBef4Mo\n1Hj/hQOWo1P8fp+DF9p4LZ+zP3qR4l6J3K7Ouy/dpbS3ypf++lc4+9aMhTthehiyOpe49uohwbsD\n1MkY3xli7m+BssXJwQnDk9sMT95nO+dw84Uezjst1jdX6Tz/PIuJxrBznde/++dcnx4TLTzeevsW\nyfmQ7q1z2sOQ86NX6Rx6JPoEw4soFG0erW5QsfbwEgWxcG9+f4sM0ZE5U8rsRRr9yoTF8EGcvoul\nO+hBk0FzgxiHluCyOqnRPLbJLSzmukGlFxFGPqW37rCMYbp/HUM5oXBSYnhFwiqF+KJDN+pSDedE\n8pLG0ZSCrrAx1GhqFv07CUo6YmjbJFMD61QlOxFpdC1W3rRppndZ7Lkssgry+QnuXGQaWWj1lMWy\njygEnM4rDEUV+lUu9/LMW0UiZclyXMMrLBjYu8wvlemaLoqi09VSjnPrMLhILss42V78MGemH+h8\ndG2N6KjJfHGH6+8fI4QDGo99nPPXrzMPcmwKVTp/dJ0T8Tb1bY1KocIF8z7qtoPYlykiYCsDbnRf\nYTgtosYihWaNgarxxjdept+bMnowpfXaARsbNT739KOcT2L2bIHp995kd+0JHqpuMZ4s2fjcQxw/\n8yyPfOppaoaKfXJM1dgj0W2y3SU+FrOgjZovcOmxh9hsNrn98gE3/kUXzRNYXFswr9nsPr3OB88d\nc/zKgJZgcu17b2AGKbdu/BltUeJwJDM9U8imHpMPf8QRUx+FwpXbzHMehWFEXGqhWwW0xEAQfLSp\nTj0t46gNptGcxVmCVXRxVkO8tSGOB5uLHtkohzKJ6dxVWSYykRqwTGq0NYmCD26UIUbrFJcj2uU8\nqpshhXUCsYonbRALRwzL56yZJfSRgTQLSTyJzYmOsObRVgTyJwmGrVPVTfykiBna4KsETkBSbtDs\n2ei+gLbMM4xmCFKEkJq0gzmqHOGNRQoezJoeiuGQzgOKLY+18aUf4tF7PySyBLLDLndFlWBjSJqt\nk9ZE/vD//N+Ji3ke/uQnufiZh7GqNSLb5e6xx+WtfUYFkZlzjS98+VM8+/Vv8olLP0GsbTI6kPnw\nzimP71/gbJqyJgVIhQ32L8pIgyKOaRBGS0r5Kn/+7Issz1xWlApK2WJkd5gMbiDv2syP20iTOd++\nPqRZ2OLbv/sd6onP15/5be5/+mO03B6vtJ8Da4InJNgliT/8R/8tn9q0MfISH7/6BFPfJAg8St0c\n7eohD//aJ7l2q8M3vneHk8EJpQsWPT8lPL6XM6v+iEyb0TdA2PMZaFsoZy0G04i9ExG9fcak2CUR\nIkJRJC/tEZciJmWPSTinnYUslwZls0qQ04n8IccVhW15SpLqmJlFd0WiVY1Z5tdIg5T8XZN1L0ff\n7XO8PkXfXBDfmaIsMoaLEGHSoy9uMA9stsI6E9tHaBQInC6rFTi/K6NLfYpyiqyvIosGiVKi6e6C\nquHnQ1rzCc3GjHxWosOCkTOgn7Sw9GO6eyrdxRESQ4LQRvaA7N5ySnY7ZDYR8PannA+GTNMc5qiM\nH7ocCSpRMcO0RQqCRd4NSBZjZA2mhsswUSg2bYxwG20WU35hyPVDmVpNxzJX2VwuKMUJucEEVS0w\n2RZYVzW0syK7lQl/+T/9K/zq73ydN17rc/3gJuNkSrXUZl25SKCfo6y0sEcjukHI7ETC9iVkecJ4\nPqF5NqehtbnytYv8rd/8L7iTjSkVzzGMEDnxIXLQ8jbCJYM3/+AFjl6b0vUPeOH89+m9IWDs5NlM\ne/emOd0Coq7+WDXKvwGdqP/uNz+yfx+6LSLrGa5VxNEkcnZIPusTGDr2WMJdm1A634RaiO35DBSb\nUBaoJA5ZPOesmjLNVIxFHcOH6XobaxwhuiJy6KIpNoPKHCsUkIUcopYSiCKqNCMyMiJDwjcEGiMP\nV7PJ6w5R4IAnUE4yRFmlneRRKtDXJFaGEaOoSFT3kOcJ9kxEUmIkcYAnr9FIHfR5QqqHpGGAmEuI\n/Yh0KyB1DeLiFO24AARoyYTxqsl3v/U6T3/5Qd7/dp8TZ8ig1QE7h5bE3HrnXXwvoXbhAUbJKfqW\nzuSlNpYhIe1uY5kiVnWTekmk+fgGw4FD560Wcj6mZBa58PSTHE6nJPKIsr3PzbN3kTsi+19qMnzz\nJq/cuE7j4gOoDRFDsRDXC1iXZNZVm9yjj1GobXP92e/QSrusLnXEGOqbKh9+4FCrZIwMH82ssrqq\nYZVXKGGz++QWvqiRrzVo2ALqzlWqj26xkplMx0soO3TaAUU7YIqP3plTX99lkDhowYBX3/2Av/RT\nv8HBBwlFRUHt9TDzGjUxz9I0GK6D7I0otQ0a6phRYxuvfhfvvEDRtRg0OiybIt3GkPmgxg4OraaE\nNqngpxI9ucOl11apAO5uiZY8Jm9ZLBwFe8UlSNcxHJFmlEeMqpilI0yvjpnPYSpzerkcPHzAkfMA\n4jyHtXWCrNRw1+aY8RlKLiQqZ8wzB2W+TbExYcN36YcaweMj1A8SgoWNno1Z8Yf01jVyiY99awu1\n0aacOhzla6wlAZPI4+3XXwTgy596grhxkZkqsRpbjJYjLqxe5sVnX+Wpn/4y6XyEXKsjXFzhxptv\nUdgvs2aUmIynlLM6enOBl884OWmxt7ZB122z/8QF9PiItfsuEJwnnIou/XfeZX3jU1TreeKFzgMf\nv0C8VOlFUzq3xuxs38fi5JDaxUtMWgMSb0B9YeE3KkSBginFzFONwcE1StsrVMs7TFotKnsadsNg\n0hlQvFTi7JU3cayQzQcepjccY0g+D17ap+dPySV5eicuV65cwIhFFu33mWQd1nYrfPf5e3j8wsV/\nQGv0l3HXRJr2AaJUR9EWdAIZU0r5v7h7s2dLs7S87/fN4/72PJx99hlzzqrKrnnqqq5qukUPiKYR\nBJMaBLqwrbADYxSyLV04uHAYAlkDYCLkUCgIBwiQAIuAVtPQXd1V1DxXdlZlZuVwTp5xz/P+5skX\nFQG+cvjCERZ6/4Q31nrWs9Z63ufJlIyhGqBN+xSjOv66SqKNsYcyUZYhrDv04yJJxcd2NRJFRjBt\n8mRGNapgZGMGgk07FUlSmYmdsXkYoFVzppmHX4+QcgMnlJgLa0iLjKwaEZgylpYzTVTMZIyQFIir\nOYYI8SQHe4CyCgitJq4F6VRA82Uiw2RWkiimGooaMWaObUO6kkHwmGBjWJBLIrlYQz86wzSa85e9\nfw3AxtY25xoXeXXviMe/eoXe/og1OcITBIJZh3NXivyHP3iRi4+tM7t5k5W/SeHggPXnH+ONN+9x\n35Nn+f3f/BO+8PM/zMnLNxEVBTUbsNGuEhsaRsUizCKseUp0IuHhEhkhW61NfL1IZa3MxQc7LAYe\nV9+/RfVMkft2z6INi2ztdpCsJflakaCocXDjlMJGncuPPM5qtUS4FhBKNtvbZ0jGKVSqPPC5z+F1\nc44+PEbZWlLvBTgqKPYSti+QiBGX2tss5gJn9RytsIaxzNmf3eaDqx/y9EOfJwhkNtZ6jEcOspcz\n215RGhcQkhlTq01BqtAIltBOOB15VMwyi1lOYV3HHmqkyZS4XMMs9OlHOTUj5VQJqC4spLqOJQ4o\nLRwWkkajoZBFCivBxhcS9Cyg1FNQiptMpx6JnaCFDWKvj2M7LOhRN1PEw5iUDfxKATkaottNwmHC\nPJiR2SkJHuoiobsWc8ato2spYSYTDmT0kkgpXKErNmbeYSEOKQcOIy/FMNdBllhS5M0Xv85P/tc/\ng+cdk82rlEoK2UpGsIeUjAalgwBPDCmpNseuja8fUfdLzNUhtnIOYSkSFVcEcxNXK/JudkC9VKZm\nVTid9cnnOcvSMX6QoEUqJRS64xPs7RTZbHLr66/yrS89Teeph3h4rU41UJFXMb4uYfY0VkWXcG+A\n9YUvUx1nCE2dqD+nUHLoKgquFxJePeWDv3sVxWwz2Q9o13ewDYF+UaV17GFpLvHKImsN0Jsd2tUW\nB/498ncWzCsOUusMDz33MK+88C1+/r/5+b/533n/4p/+y1/6vr/VZJxrFIUV2spmaUlg+CTHFaxU\npacrVA9s+nWfYKYgShZC5KJUDeRohRsX0JcmQppQrgxglkPUYCEp6EpETytg+xMS0cBwU2ZqjCOC\n4uv4Osx1HWMh4msZfpIghSIrKcdZiihzh17ukEYJpYbIMpWIdQUrV5HjJWkhRlkWGG3EVIYwF2Us\nfUzqKUyLMSW3jmRPGWsJHTtk6JVoL11MOyYKinjqDMmWcYdtvv36X/Lk5rOM5i5FN2AwPMCb73P3\njRn3f/8642mVw2s3uXz/WRZhgdqVM7TtOluxxZmn7mddqnB3vMdu7TLd6SE/9LNfYa1aQXGLfPPF\n7+AEOVd2q+xefoDWYx2WvVOG3ZDTeMHZapOlO2PpKmRYdN9/n2peZmAl3LnaRa9NUSybtcoWjU0R\nzahiKQq7913kxtXX8U4U0raO0dWZCRFaO6LTfpiiEpCM5hwfxoSra0w/PGSUZiiORNsoIYt1ahs1\nlFSHSCJRZUxLhyOdFz96ia/9zNf4qBdRTo447uhoJ03mBDjCAZt7E1x3G2frmFt5lbpxE+GmhVAy\nqFf6KL0qrbsKgQLNAWRxha25RFcawlkL8WgduyywTAYow5BipHHvpERdPGLa28BMVsiVMUq/ybQR\n4AyqjO0p+XFCpShg2R7l93dYlPaphTaC0WAUSuiHU8L2Gkl/iWVBdLOFUe1Ru9vBM2t0NzQkbYii\nN7isRswLJiQq4aLG+sBDa42ZmTrLtQXKxzL6IKMQ9nnpo9cA+PHPf5GTeIhtFtloNTg+2aNzqUVn\nQ8eXcvyyQjhaIUULFv6QSmGdgrzGrBxjpUv2pgrrjYz9A48rz36K2Ydz1OmS772zJFwGlKsp19+f\nUSmnXLxSo9efE+Z9ti5+CqtsE0w8ajWPNCpiXdpA0Yvce+N9jgcup8qIJG+gBRGx36PdaBIWbYRl\njHipRDbNEYnQYovg1gFCuYVUXFIelRjd2qfVKDNcHRIfTGg9/CC2kTPau41Zv0Q4uoFQ20WcSjh6\ngxde/TYAu4enXLxSJeUOo7MmgdAlzSSUzGCez7GKGcQLluk6tSRGcqaUBg1OCwKx2MSPUmwvRdQX\nFNUIMUoIhSplO2cRuSSewRoSR65AIHmsjWfMGxbLNEVEx+g5aJ6P3xAxpmDEYBoBeh4wRUVZrtCN\ndawkwlYFhEWA3AhYndrQLiFqE8y5iZsmjGUJJ10guBMWqYtsFhBmFnNU1lpTZkUbabYiXc3JbJ1o\nWSadyGwuH+ZPer8MwFPP/BDz6pQvPH6Gb/xv3+C5Z34AqVgk7UdU7zNYF3bZaV/iO1//d1y68gVq\nso5fOG2I2QAAIABJREFUXed3/uDX+f7nn2f68YKdzzyAdbJiWVcoJVPm7Savfv2bOJUH8PMAo1Ll\nxkmXojylVKjTSnSuvvwW89tdnnz4WX7713+NzccucOXBda6/9gYlc5tbkz0qdpHuoEdHqrKxvcF4\nOOKsUsCLIxp9k550j/srG9ixxLvJlIe26wxnt6lsisxFE6evITk+E0OhttoktwX0Wc77f/rn7Jzf\nYlkrkZ64yB2Zk+GMa+9+wPNf+VGMgoivlnE0lcA9pZOpBH6EZhqMVj4Vcc5EjiB28XUPaTWnUNUY\n9cY015vM/JTU1giOUsKai3BQo5os0RsyWbBCCdcZqBZ1PWLiHpAVViiDhFri4SdljDUTWZwTaSor\n3aW4amDXZwxnOZW0iF92mKkZq4pAGp6SFRPcgc7KGJJ72zSbYKwsTuMMcLDCiHQ8orCMGbRUyqpI\nmHu4uYw5zAiUiHxWIV7PCZKcf/ucw9GDGcN/9XX+1rNPY41qBKkKeYSyPUTuORTEkHtiiWQGuEsk\nMyO7eQ8jiAGd0lLAdiz0oxlqXaRczNgQqyjKkp6dUx5UUKo5ybTN8ewu/dWMnZrAODSQZYf+eJ9c\nb1MzSkyXQ0qlGD8rgGsgVXos5DZOXuDGWzd56bu/x4gSW6HFTB5TCwtImYDiKkzUOubSQ3GPyMUy\ng3xGIi1YKjaLchGv32ShhnQUicJpSC44iCcSnZ9a5yf/3n/BrT/5Q44+ep2rH+/xC//tL/7NJ1G/\n/r/+6i89ed8Z8kKAnEOmRESehzGtoqoqibREFFRWjoQ4lck3T3AjHWNnRuHExsdEDhX8aoKcGkRG\nSJQbiGUJw5uyckq05h6BouKEKmEekMYpRtLEKw0Q+ipmZCC5AWouUQ1icslGDXOKmYGsDSGsUCj3\nUIYZuQv18pgwNxmVM4REIowEdscCg6pKc5YxrKi42NiayFJwScUYJ+ywXHnYIQyKCitDRh0ZzDdz\nkpGBm7X4zuvf4vs+/+NsV+psft99GI0WimRjyCKT130Ws9s4jsT6l56jWC8wOr6FeHtMvlHi7qu3\nKZ+rEqsJbtol35PJjSITx6bPAksPefCpy3z00ZSS3eDo/Y8Yzj0uPnYeEpNrLx4yXuyRdU1sK4d2\nzJ2Ppwz2biPnEdF8hRmu8G6PoH6Gm2/s02hu4joSaAHIBdpZjFJREY0G9946xkHh2ofHjO4cEEku\nkqhT2Nzl7jffJ6/VKLYcJvkhcgajaI64zOnfm9BNe1iVMi++/gIP//2/w74E9DdIMolcEDkx4VwP\n5pcztIXLoqozran0Fm1K+YppxSWyKsydQ6JOzCRew+xMEBorZlobJUuRwpSieUqcTUnVNfpakaam\nYLljqG/hNQ8Jtmyiey6Z46FnPSKtRjyV2ckyEAwmsYgpT6lnIqtWCUUKmJgLtHKAlVbRN2KiA508\ndPEck1L5kPKRg1uSWR9XGAkBnjuiNHYw81OypIwppBw4Mg46d/fLXEJksCayGmq88/EnjiI/8k/+\nEaof8eYbf8q53UtkeorerGCfevRVAe/jBeMTj2KnwP6HHpcfeZzenRuUYwexkrJ/Z0y81kKWMuQ4\nIT/X5GR4FU2uUqpprOoZsjvk8mee4uY33kfQNLKJhlqOmCsFCpnAbGoiShKpuKCopXTDQ5qf2uXk\n1SGNtU1CoYtaFQnsbXRFR1wWaRdF+tKEwStjWhubHHpL8rsZpWKH95d3GOZDlFFGUYm50Q956MkG\nTdPhtRs3qFQ1hMTEfGgXQyii5wnffOnPAXis+NMMa9fRmveoWivsaYGpWqaSRtgLG1V3SJYqa5FO\n31pizGwoKcwKFmtyj3QGCRLiSmaykCmIVczaMVlWYLhISbQZWk0ir+i0JJ08iZCKJayehdlIMKoz\n5ggImY6TCiwaffJJgpCWmBsjqnqTAVMEVyayQ6IwwhsUEXSB1HMwpARV0LClPqZYwDAsFnENM3BR\nJJGiHyGUbITFAtNVKJZCKDWYn5pEN6osb1ZJuhIv+b8GQHO7yMP3PUw4nnP/2Qu89853qOs6r+8d\n0m6cJ5x/zO///u/y+b/9UxS1OYejkN2HI5qXnmZ+9wD7YpNirHLSvcV61WKclagFNp2LBSJzhXma\nMwlcmltt3MkUbylSsMoYD29QK+7QHbxFZfMiklXmL/70XR7/6qeR6+tkIeTyiGrnLCgCH7z+Mlcu\nneP9vSFyJWXCkMrMIt5S6d484MnHznBwcEDuNWmXW8TahLWySpI6DA6HpM0C2lShH9+gsXWWsbdk\nnMQUmxaBmpJ1p7z9znv86BevICsCwmTEKIowVJVeJrLWTggsibrgcapbNMjwfQO1rrL0y2iyjxPa\njOdj/NIaG8EB3WLMml9iGsWsRI3mKmDfzjE9BSvoIxIgLDYgKaKbIQo2C6bomQlOxCJPWRdVDucW\nQlbAoEsvTpEXIYI4I1FkbDln/aiE15oSuzIYIoIqEUcGZTmlLOacFEV8y0HSZaRxCVvx0ccl3HyF\nXVqimxryQgY35I3H4N3Plhh21oDf5dEffZpkKuHFMoWWQXaQoSsJniqglFwqeQW/tMnX/vGX+NoP\n/1f8s3f/jBeefwGzFRF1dY6yBNsyGB4qSIJGcSrjyl1MP8N1lowqPrupiCOdx9ME0rjEMpE5267S\nl4bQV2nkFouuDmbGII/JZlAXRE7I2Nq8zP1PXGCntEZfFUmSmDQ3mG2COpuj72pkswA8MIloFmr0\nxgEdyadolrGnMav2gGA/QxYzCprMUp4TBCJvvneb8Sv7fLf/Jt5I4Bd/8Rf+5pOof/Ebv/JL3//o\ng5Db1EcOmePhJwlBOaKardASiTyxYDUjlSVEAUwzwpo2GakzFpUMe6zglUOyDIxMxa0sUQYCoatQ\nNGBYTjFElcCY4ooOqW6SCEtQPNJVA105QSsKYOcIyYqyG5E7OfgTYtkgljWmPojVBXJUYRpCgoYT\n+7imi0pKIYyRpZwoqpLEOUJqIrsT7GKRuV8gFlbIhZRcqlDQfcrTAnGeocoLFMdl5jV58dUXeP6L\nzyHMpxx1PyY9GdN44D6aF8vYVkZvavL0zz7B+NtH+NOblMI6lU8V8dMJi5HP4Xt3OHUDTr5zjQef\nf5a91R43X3ibKxUTrVHgjT/8kMvPP0RaGNHZLLL5WJu//Dfv0X7EJqta1Iu71FohrZ0d+t0pZ9bb\nnN+6gO9nPPrZZ8nshELTYXDPZ+fZRxHcfbrTLjWrReLIiHmP+bSI3JzSvHKW97/zOue3zmNcLlPz\nmpiZwGl+l0vPfImtYovV0YhqqcpgmZB0e+RTlcJzO6zvG3SvfcgbR1f56R/9B8y/nVApvIG3GZEJ\nOsW1FaE1w/O3qU095MhA0XrYronbGLOxX2ShSmijAP9gh4t+jGWvsVxEuGmf8iTDmm3gbC8IVJ2T\nZo4x91BkCd+ag3hIa7LDwJbxnCJHW3eJxDbOYI6+OeR0XmZk36UeSyjViNMDg7raYzbpYOorkpFH\nUO0wjOr4woimU+PA8JCsNh93TNQ0I9q8TXlaZGavEck9tFxHPeNyFEhITsC86iInK8baOiJ7mGaX\n19/+5CXq+eefpRAWuP7WkI/3btN5YJeaIJJuOYyuvsfy+IRgO+GBM0/RqkzQ5BLLdIXYdDi8tSTo\nBSTiMdvzAlev36IhlcmjAqvhR1x8+mn2XztGzh3EVGY5+hinWWMxdjELZylJfZZX7yDSY7S/oH2h\njq/OiI88Lm9epLnTJB37GK0l6Xidg/euMTjaYzly6VyxUdMat9/cp1oNEAdT6msCYadF6dTn/k8/\nwc3rfWZDl4qjUb5whomiU6NIY7vN3offo1SQUE9PmYUSL77+AgA/9/i/Ii7+QyqXlmhOl0MMqv6K\nYclANE7RtSXDrISnRmSzCYnoEVRyOkODkW2QFUSSdEpdL2NFOqfaAbX5Ft1QRcp9WqaIqBtIxwHT\nqsBclHFXfYqVIgtpwKxfplkUma1yfM2jZPgsA/BFh/qogCuPCT0X2xTQZi7DQkYlrlCIJ8ztDMUq\nM49SZmYVZ54zq/lUpxNEQWCsF7GaEPZS/HqDgg+rkkrS76NqBSpVn53aRbKxyLfGvwHAD3zpJ9i8\n3Ob//O0/ZmLYbJXOIbczKmKG7hl89PEpD376AZRGTCo1cbZMbr5+TNw94tKnH+Sj998COkhqkW9/\n9w7P7JT537/+W+yev8LedR9zZ5Nl732y3gIp2yKzciJOKBkFjo4+4O03j3jg8edw5IjO+bO88hev\nIZoSD7TqZJLBy9++jhz12TB26OoxNdOkuF1By6r4w5QzzzzIIhpx49qIatOkEKcsChr10ERoVnjj\n1dfZbDkU1nQ++nCKKZtUKyadcy0SLSIh485vv8Va3ebld97liw88ilzNmM0M/IJD2R+QLFUm8wJW\nEuOVC2hqQOzaxKmDpk1huSLLVWalEkog0LK7rJYOeSBRcWT0ukUk2qRVhZYIc03BkHROZgpOMkcp\nj9CGFe60Q+KyiLFIyL0KVRJyVmQlD68UU1IKGEKF4prAUIrYOoDJvEShMyRI16mPBeRWRjTwaQQi\nc7HHtJ7SWmYs+xaCOCQpxYiLkLFgoUkW8nCOECnMSzZ6S+BYKnDnjA6/JMD//AdcLj6AZKSUdYXU\nkKhYOf1gSL0UsFQiloMM9GPu/cc3+fIXf5h3H/k2u/p5lkkFNTyiem4DsZ8i6S7zWCA4q9OJDGZF\nBeW0jiE7FIMSJ2sLOj0bbS1Fjg7J5zW00gBDKnCiK3hFjSgJEAwHUx0gVxdIxxphKjOfnCD5EbY+\nIS41ado+vtynlbRIeg7zYkytbDKxFGI9IZIT0iBAOuiTSAuM2zBvzigic7JYUSnVEUoeuieTlys8\n0HqOv3zjm/yTf/w//mcgLE9FrHxGceoR6yMGUkhDttBjg2hVIJ4HKKUDJDFDbowhiREHRVbuCj0p\noGYSxnpIydMJiwqWL1E5LKFZEakesVIkCscq0XJJIvlEQYo2NagEKbFfpy6lTAoFkkQjEabM2SXO\nSiyrPtOSynRVJQxi5IqAPdUIWVBMCiTOgmAhsuXFCLN1Elq4JYhIIdIw9B5ypDCZzdH9OXYMVhpT\nSXrM1JTDskjc6WEFAvZKQKh8InJryCW0isDumcuozjqDl29x94UT5ik0z5znzh9fZ7GpQKOCP1hy\n+50+tfIWD33mUXbPdnhk06b1uU/x8rW3Ka4ydmoZB7fuIK1UHn78Et0br/Pxn9/ipT/+kG//zos0\nP13A/3hJXbLwdInliYHrxhTmC+7cfplsu03hosjbL3/A6iQhGRcpbyfMD28wkCzyhcrtP7tDcrjH\nrYOYvTv3mLwypDaPKbcdzj1fom6fx3pqB+mMzdn2o4ze+4AkO8TbNVmMeuxcuYBhaIxwSWd7DKQ5\nzWfPATBbOGyKt5CtdYofSzTTGfXJkp68xfpUYXZmzqw+5TSVEcsniLMy7hWoH+qsJTvkV0JOSgan\nS5dyMEGVM1YXYwItZT/ooH6vTenNJqVRDWvh4486LKQmw7PHRN5NKstj2te2OXvskQoaWfd+ih0T\nK6lzHOp8HFkstjzcRokwkuglIXVFx+2lcO8uzVkDt+dy9nSXgjJh9+gelp9h9QqE3QQrSKgJNTy1\nzXBY5MJxgJ2VMHsdLLGIMUuRZQtz9ddCaqko4uszxGRCeR1Wozu4uzX8kUBVO09SF9Byg1Ey49Z+\niimOaKRV1KGJIM8YTveQshi1FpBlJZILNTbOeGw+9jgrM8C2x6RbBeoPyYxmCne+d4qfJDiFFdOB\nTxBWmOnr1Laa3HvzhJMbMQVnE3MK9UqV7117kcHYpl5qUirpyKcQn3yE6JkkXo5wPiNGI1hmKPYW\ndbtI1t5EttbYfPAMyYZISbOJ50uEecpyv8fRrbus7TTpvzLk45nAvfivozlNJcZW9jkZiuwdOmwF\nFlFawZ5nlHKbkdwmDxICdUxeK1Bes3EGJqPSEnHfo7IvsqE59FczusopQk0lq45R85SGXaabBwyS\nFFXIiY41asmMvNRADJaYqyLtksbSnZEpIwI1YzCXaRRkyvKQ3vYSOynieDWkqM60LiLRYSLnQAGm\nMuN8hJSHCGMI1xLyWEVqrzGxmkizPomUEzg6iXhIGI8RM4MsKFIyXZSFgqd/j0Bp/lU/Wq2I/Y8G\nPPtjP8iVlsiy5XNnKTOayqSlMePhR5ilKi2lzmp8xPjaaxj1EuWtXQQsKlsdFsJ1msWUH/zyE3Qb\nBj/xUz/LH/7mv+fJR6t43SEPPPVFWo+dY+vKnN7Nd3CknNm7fYriLt//957DEz26hx+yOhjxuR/7\nIhcWGtOuy2xm0tJmWA89zh+8+G2MyGclaFRzmZYp4+yGvPed7zA81olFhShKiXIROdgn6IXcunqL\nB8/vIJzd4fXfe5ta3SS3NU4Tnfe+eY2jVxZUjhc8+hPfx1j/JH9z2jpHNwqZtoqkPYWT5XniWoiz\nU0BapZT7OfaBgNmSidNTci0jzHfxHZWd0x6OsGKkOOhJGSX36Gpl5pmKqE1YTmSOb0tYygB1KrBl\njtDOxUziMtPNlB1XZW0qIIoZZuZxK8hYzm2WaQ39IEQ4EZk2Ig7CU9pTh1yrIndclscJM3mAJpqU\nuw5OLSPIXPJqidK9hGRhUtyOqRfqlIc+mRFSKijMVZGRVkcMY5zliO7tJVf6K5750yM+9+8+GV7a\nupAwV7tkah9JTpm5GS2/QsB5guMmWuxjK5tM7IxJyaaxZTAPMrJFTNoosj8NGXGXYTBgPg7Qb+5x\n5AU0+iFx/S61sctec8nGLCAyjmB8wrgpkDSPye5YjEOdncKQC1pM7qxIFye4E/COd1hZVRIhZa3Z\nYpEYuGzRzhQmcpU4uUgmjVh07mImDqoeo4UzzHCCfjtFuifRXTlMlyvO/tRZPv/E36F5f4NSOyNZ\nhsR3argzm3J7RnkLNOX/HT36T55EkYkgqKR2zqwWUQ01xpmPF2a4pRF+rYOy6iCXq6jjEpahkJGx\nUjREY0njcIkbCohCRGOskhUTZHGCpgYUrSJiGJFLOm6q4fhl2rWIrLpkFUfktoyfzlnLdaQ0Jeht\nIJvH5LaEcrdE5lt0TB9rY4QgJAw0CasSEgoL9LFFULPJegUa2ZyePkD2DeaNLqYko2YF5FxFzU2m\nZpXcUznx6gzSDaoHDtLSRJ038bwanlRDGoYADFYCxbUyy5srjg9uI1+uU3m0zep6j4cuuhQqEZtt\nndP3uhwP3iFSJY5uTLn6zTcJqxKTNOTgrSmJENA9ukfSqjJWRLzjI9L7TeobRbaeKlPf7bCaapRs\nHTWK2drqEL74XVx/QBhMmcdTrjxzBW3Yo2U+yP27NQRBQtMTxh8fsbVZorY+Z3l0TP6IQOA56FLC\n1u42Z59/gKweomxt0L3aZXLnGsHdq9y40SM7WJGgMZ30aXgT6uc22X/zNaKTCeP5HsuZS6Pc5qD7\niZtsqTVCCGWGS4FZ1kTTCwx0g6k1IYnnrIIt3JlE21bofFhDnlWo7JVQqrc4bkzY6IGj3kVsHCLt\nNuigMV09SHOSoGQL7jw+ZLEF/uaU4/ISpbni7KyDOBO4GNeZplXCogCdBf3NGdXwiP5tlXIlIzZT\nnNE2Na3D8b2cgrxg685ZTsolpIrLJcEmrYqMzigsvevMj0I0e46R5+zbDRx9iRxLHMg61ryPo084\nvCSiRAt0+SoOKmk7phE1iIO/PiSPX76JEc9Yr3R4+pEr7H3QJX5rRtCbE+zqPP2Zr7C93eL069e5\nr3Oe7tWY5L51rIs+l9ufwgxUZl2f43IDaX5A8L27ZOPz5P2AwqFGrpVQjz+kEMtsPNymsRYTSAO0\njSKlcxuEjs/2uS1EQ0dXQqbdOYvlCj86Ya6sWN9eZ377gNevvsbm47ucfeYyl//LL7F8f4FYyjhn\nbpCuhvjrPsF5j9nykLMZCPemOGdMnrxyhpvxAN2sEQQih+mMm1dPKRdaZPqEyZ332fy/AeDglavU\n7Aqd0hi1JJDEA+z0Hnk9JRgvKXahmH0yqSWvKojTCmkKdUKk2oKlKMBigZwssVsRoHHadXACiSjo\nk3ltGhMNV1wgt/p0i2WaMxM3yRknK/x4iO5mxKZOZRlScCqcWhpZ4rA18MkskZIQ0s26NAMZU01I\nbY+ZvKDo+MgrmYXu0yhOcZc93GzM/KRHoueIcgdmK4KCiz4CUTfwpgluu4pkmOiTBpM791Mt/HUM\nzsF0SpaprJYeqg61RZWtis3N228jCtv8wBM/ihLNWZ666NkaS72AP+8RrVyGg2NO7t6m7MvMFwav\nvfVd9HszwmGPn/iHXyFYBZx5dovf/41vELhLVkcWjec+hS6YSOdr3B2+iYnIwbvX0NufolkVeesv\n3qN431km8ilCdMD28+c5ePVdfu4f/BDBUKIc+pyspvyzX/lt5EHAmeY5Gmsh96+vEScqMylDvhPD\nboo3gOsfDFhPbR547ssUC12apRJSNGU/2GN7M6SnFXjr5qtEi0/WSDULWA4r5LMxDU3GNPZoqyn5\nrYRMzFk6OmlHZOXPyOMys3sGW60F7dThVllD8YvkSQ01vosYr1G4m2O5PYSTgLXyAuHsFPXI4CTw\niZWcoFcnyyTCZYhkj9H9HGURs+8F1K0S46JKpZvRFArEuznpXECcbiCLGpNCn+o0Z5J3cPyIhRDg\nVWe4epnpmo1MgclmC6OmM5IiJKNHvr2NaRqIziGZP0ZM+gzasIyLOGeb2OOMR94p8tToE0w91s6y\n/619enad09mAJIPB7pz5qYCTujgNC8FzqQ52KN4ZcDQ4IBqcovn7KLZPrT8nbp3jn//z3+Rnfvm/\nI/vcJQJRYUmd5qDDtC3QyhzisEHctogkm/WxhjXISJsWdjpmcKvKpB9TmbbQ3QbKbh2l1sUszFC2\nVcZKEV3QWCoie6EHwwW6ekpgiyReQrW2jyfOmBRyrq3mDMd3+aMX/4iV9xpponHtdp+Pr7/E4LaI\nKKgYjRJRbYCUnDCbFPESCd35/yj25f/vyhDpojDPHKyRha8YGKbKVnVFkrVYGj3iOCZQfBJjgT4S\niWQdJw7QT0S6hTJjaU4vsVg073GauAzMDqugQxAqRImOlieUlQw3z1gdF8E0SEoCNf8YvSLiyTPG\nVKllU5yVzbC5QjJkskhlXpaZr4qY3gInX35ixqmv0L0Vte6c2DLwG2PafhFxpSPJRXzG+IucrJVT\nEEJKWo6rp0iKhyr3WAo2LfeEcUFlaUYkIx2lOPukH/mUG295xG2F7SeepHS0T2dtgws/9/3cfTuk\n/sRDvP3697h08SKFC58mMUNUKUSUy9x88RX23zzmzEMNzlYu0TsF78jkyac/j3Bfjb3/4y3eeXOf\nfD+m/liV9pX7WN1cMqeMkgY0fuDL7F5qEix8Lj3wKP0/v0t/eJODd9/mrWsHaFmKdflh7rvwDNff\n/B4f/umAJ57/LJfNdeQdk89+9SsoaxW6kcv1P75BQ7C5c7dPYsv0eylr9TJrW20e/4knOff4Q7z3\nwgG9OxOcagXxTIPnfuyLPHjuAsfdMUVXBsDvB8zICSpT7k98Jgcl7KjOzhsGp9szltaU2qRAfGuT\n7gWbhjpg3x9zp1QmrCwRnSMm9SVFOYVewpEBV+ZTPl4zkN0VZxdLKospqhdTk89RuW0yYcisozEM\nQljEGC2VqX+WVFa4Jm0iPjpgkK5REjPi8hGni9vUi0ukMKD/sEt1WMbpaeydG5JGe3RGOnlTIrDW\n6SkdxFCjeXeF25QZFo6IrKsoaybX12u45oLbfRnnaJPZSmVtoXOnLmHox3+1Z4x2Gbe8zlRxefPl\nBQ99ZotKQySScyTJwWeG1jjLXeGUacNn7HW59gd/QhQVyCsBrR2Zy9WHMZYDhHObzLtjFGOMs1PG\n07vM+vdwWm0+ePeE0pkrTOYeql4nPDrGlEY4hsbdP/oLJosTmk9voUgxeZYR202GN5c8+OTj5N4E\n5XSJZVtUrQCnqbISRjhqTnvLYDxxGMyW+Hc0MqFEYM8ZMsRSbMzOfZxrXKGYmDS2Cuyc6ZDbBiNt\nQLm5Rmd3C/Ps1l/1I3UuMJw0EEdlMnOKK5SZbdZRFimjRhtXTvAqKk6e0sim9BMfuTQnW2ksFyKB\nHTOrt8FsIh7toiwT1lsS3SzFylKyxoJlpqOIBRi1UI8Mls4RnjAjzaoMlQyvqLN9mpCaa0zHOc5J\nQCbbHIQW8cDnZDPGFixGsoMaTqipM8K6iZeIRIpLnufMxw5xYQdr3sSpCLSWXazUxS+1cNBRY5Np\nMcaOp2g9H4Yj9gQVu5SjOX+NqUXzHIowQQ1FInKcROG3fuXf85Uf+UnkNY0Ppx8Tmga3py5hU+aJ\n1qOIlo7SkAind6kbazhFjbc++Es+89RDrLoed68fwEcrhEijQ40f/9oz/Jv/5XeYhHPUe2M8IyLP\nEz735S/x3n6fZ599kFde/i5DXeL+y2u8/dZ3kecO9qzK7/3qd9l5Ypub0yPqpkvaXiMalHn8q5cY\ntWxee/8q5zcu8/Vv/hGferDE4d0BC2mG7/VomDZSEU4HfcLCPmr1EVJTompqfP6+51HiMoaY8uSZ\nv42jfpInOLVWbBcF7LJJUOtTELcY91uoaxk+dQrxktNYJu4qFNoritU6RwuR49WMjbDN8a6KrBwx\nU3aZiF1k6whHE7ByWNzWMA8bTJt1UhzU5Q7imkAcw6qSkQQFhJJF2PLpFFQYuNhDC2VnwV5bwT8a\nsykI7IQKJ8GASLVx6xHruolkJRQ6Hl2tQsuTsVWJdF8li044iFR2sohsuclCPqLnGYz9baprBrWq\nhjORUVs5y8GcxbpMfUeE4Sd5pM2KwBNf+yoqE0TVRgzGOGhUN0HZsIgHSwhEgrVTtLJKq3ORL/1P\nfx/nM59nPAsQNl02Qvinv/LLvPLL/xr/nT1Uc8JKO+LehoGh9hnNY8yywNxfx/d8uuo2gQSBkhLk\nA3UDAAAgAElEQVSqOYVKysz1yRzobAbYJxK9QQetsCLyU8LRPqWtPnIusG0L+IZFGBto92o45llm\n97bR7+6ycWpxQanQfPJZfvoXfoTGIz9A/YJGcLriZJYgJB7aaotktUIVNOpZTCmeEcUuefLXF4//\np/pPXhP1a//yV3/pS5/ZJJoH6FkZJVhBXCZYidjmGGlukBUSSplIuCqSlTNKvsvKFgkFC0N0ib0G\nRXOM7aXkC52sMaM8EhFbA7LExDbHZG4DJB3HgmS+IHObqCWDkZZTndmk4grRlAitIZacEY9UzOKc\n0YkNO0PsXEEKSkQYrCorzNBBKsQI5Zw0rhJqMyx3zlLNUb02Vpjj+wazFjgnGtRGmOMKQiEGIUXM\nbArZkEhZUbJmTFyHb7/yOk+deYitCxLJOKQqh5yu1bCTkI9fuAO1hP3bU5rDFd3BMZ47xZlGDI+7\nOOsa0uYFbDMmKVroBHx46x0e/MzD3Du9jXMUsPnZByhHGvIz6wzf9Tn58DVk0UYt2HhVE7O4IkpL\nuNIcq14j9iu8d/1dtj71GEmSEZgeRVnn+q13Uast1h47S0cv8fJ77/Pwp7dRIo3h3S753gTZlGl0\nDOIDH3EzhJnONDqgVtli1e8yPj2l0Khxcjhj9/4Opdzi6PotvImLc6bA4eke79/4gL/7xZ9iNjDw\n6gX6pyaaMkYZ55jtE8J5DdOUUEIf/zxoeUZv1OGK4CMZLllY4I4Vcd9NmUVaprLMsUSfkV/F0fcZ\nLNdYhaCacxxPZE+MibYDZnLCA1ctbGdBXrM5nhe4OFyy0ps40h1ES8W7qiOUJ5R6MR1jC3/psSwt\nsaYldH9K95xPMs8pZh2CRMaJAiyjz0ksMtse0Di2UKwxalTELK0xPezTUlLswwruuoOznBNbCYcV\ng90PQgT7Bi+9+y4AX/jCZ6ltmVTMFtuXG7z99evYz3YwRJng1bfYX6WsbVdooVC0K7zyzis8/MwT\n2LbK5OM9StYatTporoFdP09rXWae+0z2TpAVgXxRY76ToKUNao2MjfVHyEyNj197kzXnDEMJ5nt3\nMMsZ3irn7KevMO+6yJUxezdO2GpdRArnxLtV5A8/YpnPSWWHDz68Bv0jtu/fRkgqZMdjFDdAMWXe\nuXaLy5X7ccpFxEzENCVu3f4zJPMis3tzRqfv8OClR6hvbaObOppf5T9+6z8AcKn6VRrrE8Lme5SE\nGpKlYw9PGFbqtLoCSdilXI+ZKxV8q4gqDphMLcxUwtISpDxgkfhkkUG1nLAaBviZg1JOWblL1sol\nfCNglTpESkjFSZHnC+xVkcRwIS5iuBHTQkriiTiihi76LKoaBSXEJCCzQkS3iSgPMDSd8axKQYiZ\nF4voY6hYGuJiyEJTsPUpk0VC0qphJEPC0GcxKlCsJSyGJpKTk2g5ccUlHy2YHJhE/SUvDX8LgMef\n+wJSOcabL6k0OnQ1n89ubqHGAfdef5szVzYZnA64st3i6lt38NKYYDalY+0SaQaP3neBj/pLknlM\n5cld1ASs4jlOKy6ds00+unaTplXhUw9eJEhWsP4A6qBHZJjcfvUmz1yo8nu/+23WqiIN+yI3br/H\n1oUzTKURQh6xeb7BhlRia3sLodNC6d9hjs+auEvSUpi8vUd9W+LipW2++9KA82smQpyQBh3WtjxG\nocR9j93P4CTjwxfe5fIjdd785nXaWzojLUGPY/zQwR2+xVsfXOcHn/8qog1Fd4JhtokRmcZHiBMb\nUTYJmzL1wyGDtRB1XKUui0zyOaV5C9XoYqses6GOLMwJqkUSI2DirhOac7JQJzUkHNug2pgws1dI\n4ZRwXMWYTig1YgZywuqwwlJxqGdTEmGInss0HJmkrNAVu5hlASO1kEsjFkmRTNEoHqoMUChLPv6J\ngBsqzNU+otSmHO4z6G9ilPcpCltYfspkeUhH1wlVi2Tpks892oU2kaIynXfZbAp84xsvc2HzfgxV\nwZrmGLUCC91E25eRZ3N0b85orcx6JvHwzz7H7ud+jM89/Vn+7VoR7+6ccqWMGxaIo5RxIWJuL5CT\nOmVlSaGsUBv6SKbOqhAiJ2PqkxInTYEGYOsepSCGZEVyPGEmH7E2TwljjWFZJJuc0jRLKMMFk+KK\nqaYjz7u4oYIsWWyMTeYbdxEJkeUZQ1Ui9h0Iiqi6wEBesTlZkdUTam5OMWsSOwYjScEu9PCWKrbS\nQjUKWOqUl156g3/03/8P/xloooSUTA0IywVycsYdEy1KsEODLC4j+DnqpEwYTUhqC1arhCgPKU+K\nCJGLmUjYUcBSyMizItUggF6VVctjOBWQtAkTVcJf77JKFxzFEnKcozcjxssYsRuz8kRUxWCVh5Q8\nDdH9xC5haVewK7B5p0MYiQglEcVbsuXBKp/TU8skwxTzOCXzDJZym3hpU6x0Easukuoi7RcZ/V/U\nvdmvped15vf75ml/e57PUOecqlMDWVUUyeKgkZJsyYPcrZaH2N2G44YbiQ0ERnzRdoIEaOgqdhK4\nlW4Y6ADOhYMk7k535EGKbVm0JVIUKbJIFoea61SdU2fc++x5f3t/85QLBvJdO5fK+hMevGvheZ+1\nnrU6I2xqpCunCGKAbOYo9VMCISBPNBxnnbzx0a+pc6aAb5/ldHjC994ecvCdN4hEmXpHYHHjIY2S\nT/PnPsn2536CsmGiPNPlzEtneTzzOVOucOknXyLMFjzx3EV++su/wuTRjKurl1AvPsm9u+9z+PCU\n8f91n533brLxmbNUr9RJ8gmj2x5vf/0+D3c/RJvX2b3zkKd+6Ro/84VfYHH/Eeeu1VhfuYw8cqg+\nuUqhnLFSKvLee6+w8WID972cb/5vr/DkC12SWhVxVWP/3gT1TIHT6yFnvvIiL3z2p3n73ut8/z/c\n4MENB3cvAtvnwTducBINKJkllLMbTMYhkfnRDJBrKZSafURxRn4pZ1guIsk5qmlyxtNZHLnMcx35\nrop6YNC4cMiRrbDEpllZ8MxelWWnxCz1uf6sygfpFkXjGM/aYrWoUKzGFI2Axxd8VGvAuaM5nWWH\nD5+YMncbqKFE2+uTHdjI84yp4VJ9t0T28YSFWmJ5ucRdRWC2kmBVLVZXDAI/p7jjUKk1GRQXmGGf\nsVpm2dVYm8KV+wWOikt23RwlcknjKU7L4FRQWUYO2/kjikmEo6zQLSfsto/I08oPc0Zf3+S0n2JY\nZZYnC0J5ypmZQbXcZoeI+mJGKdOJQoPxVOXpq58i7YYU5gZH04RCpcDtkcOpEyJkc3ZPQoaDAqe9\nPkW5wVF4k/qgSiE6pSS3kVoRW1qCHcKNm/s8fPM6C0VHMQuIY5XF3QGFcoHHjxec11aJuEv7+c+y\nub1KJq8xuhmhxhazfYHhw5hAaROe8blwbYuZK7FU4MwzV7l++mekRDjCjFNZwH8Uc/rwLc6u6tRb\na+wfnOJ7DsEgQuomP8QjHdRJzC6jk03GA5P5wuegY1IbT1BsiUApMnA1stmM9lykjIoqLDhVVWZ6\nEy0OUItN2sEUVRNQxDaFfE5ZzJHXGsyEOcbxnCwSMAsC5nzMRBPorS4p4VIpxRhdCU8pUTBj4tIc\nr9EhDoeMU4U40SkN16hLIUZaYqYVaLspc1FHcEbouCyGOlLFoDAbo+cBcdsiH4yJlzUqmUHRCBk4\nCVk9IQrqhIUls8EGhU2B9qZOPZJ/iMd07vLhnYc8u3qBb/7pn1KtRPzZy6+wl8PWj19kMavzt//L\nn7AczWifVSjkKZdWSixkj/lsxl/8yf/BmubwpWsX+fa/+l/xIxVd2ONj9QL/7vf+iG6ryX1/h0UP\naq1LHL/7t7z55i0aGVhn6zwY6Fy6fIXnP3MJWT/h2uYl4smA7dIau28fslFs4/dmPDoeMnQdTtQY\nL9JYCPdwdu7zmV//cbxYZ9LP+NTmJu/1HlGpNLGEOYs9k221y9/+5S0WE4/PfuI5/v0fvsWX/9Ov\noFRbPPz+Y7SBh7PokTY/qqni0SH+xIO4ysHREcbJHmvWOpIxQy7vYBwGROspZ7QtGitwsBBIxQ6T\nM485rNuEc4G6bmCtliiPFfRUZEXYpboMKG2YeHUBeZTjPDZwfYmTTEU6J6I3NwkfGlSFMtb6klrn\nEbEcoGYmR0LEoyBFeRjTmm8w8SZIKai7Nbr9IeXAIdwK6RhFrJ7PUBdoN0I20zLCImJcb8CWw1HQ\n4HTq4bgueeccsasiSgFSE+yNdRbTPnKyS9nUCYYNAJ7avkTMmHl5iS1k1PvHiIbPWKsTr4OMzq4u\ncetP3+Hffe1r/Kt/8bvkbhGhOyOdHGIM+gjFBZY/ZGUCrWCG7RXoOQknmkMiOhS8gHSxRWYvEBcS\ncjTHdUXEUYHBSGN3dc6pWuZB0OCIKa3cw66L7BsWR2YBe5mT3Tn5iOwR03JdxiwYeGXGc4Oxk7Ne\nNqm197AVmcHkmGKaEdXanA5tzv/DK1z5zz+Oub5OrRxAZFGOcsZKn31RIRxkBGn+/4mj/MgrUf/y\na1/76seuXqak51iuiDkwCC2RUEwJlT5yOyV0VSIpoDYqMGuEiEqBPPDQFRmpmDGrTJGTMtHCQ1YV\nojwlyW0KdoKeyIzzHGlqUC46FHwBK/eYhzlqMkPQVHzNInNc/KpEKa4wRSFNVBqTJUYtYc8K0Kc2\nnhZiTgpkBRUjiiioHnMqLOpzKplGaovkiBQkH193SM0YOfSphkUiSUCYlSgvFkw7Mss4RA3P4JRE\nCiH4SpWXX36Z57/4s7RSg/nIpXtFRmx2OL5xgJkarL20wvb2ixy98oij49uU6xu4H9zk3MdfZDTv\ns3v3JvGdQ55+8XOMbu+RDmMuf+kSb3/jexztTugaG4hPWSiyj63B7P09ap0K0f2UytM1Ln/xSbxZ\nyvDenO7FOrdfv0Xt2jkuXLa5dfMuwpFL7KVsl7egYzBcHhPtC4x6C3o7d7jys+fp7c4JogAzVNn5\nYIBY0GnUTe68cptHb96kZCs89XOfoWNUeLx3izNPXmJl3eDDN3YJJZuLl3QKcczkJOWd22/wld/4\nZe6/XqJSHnJyJHCpsiRIPA6CNarqiMDusCkrhGqFYOqS4dOaWhgs6csG0sRjUlJZkwtMTyWs6UPs\nSo3BzMEYhSzaKUfSJlsPTqgLF3i4NsCbSJQmJk6jiC9HNP0UzQgpZBMKqkE/tAhOZcqhi7ivshEs\nEDSRecNBerzgoC1RypvUnQmH1ZRKFep5zhFzkrDD7JlT5AON+raI35dYUwuUkImECDnQaEgSUCOq\nZJj2h4ycDtnM490PXwHgF3/h50j6uxwe7SKrBv6jE8rNLeK2gptP6Z3skbaaZGSMHoxpnrGpJE1Q\nY/K9gHSzg1qasHCXZGqN+b3dj+7XzUX0eszAT4mWY/xKl8qshDBZ0u/OOVNpUCmvMDh+QHvzCQxd\nYXmaM5odc2nL5mjusnJ1nbsPjujYdaxQwTUMdke3yIOQrJNw9qWfQnGnVPIKx6d9rn7+AtlMQw6X\nBKrN9PXrtM8+DfkRvZ6Mc3RKMIKSnCC0VRQnYZL4DCeHvP7qmwD8g+bvkYqPcZqHrJ3NEXWJdCCQ\nmQI5LlYpprwAwTZwJxGuJCGVBBq2x3Iu4aQeuj1FLohIcQmvekhlHJH4AYWyweJEwy7VkJc55YVH\nFkfkZGRmFZY1ssxn2M/RrZSkaGI6Hk6WoWUmq5JDtGyxqJ+ydIvE+RzNBb8iUvZ8ZGRi2aBiRghJ\niUhaEDoKoudhmRmimTAoaYRRRtYssrKQSeUlYVbFFjOSaUS6s818UeW1yR8A8BMvbnC2eY3DhcBT\n19rI3hlaz7dpn7vK7o0eQZbw3FPrJLFGMisRnSnyF9/+Np/cahDLBZpiA28skghl6p9fwY5DgtIK\nFa/J1U+usev3cD8MsWurLMpHdNIuG59+EdmOUCZwa/9Nuk9cxVMg65+iVW1mVYWol3O5u8kff+sb\nrF7pYPSmvPuDm1xZP4/mZRipSSUqEKaQChG3X9vBumpw9dwai2jBNG8jZif4voFSPEU3ZDRV4eoT\nLZbHu/z5d27w4qc6ZPVVbLVE79FN3v/wDttfeIGW2GaqR3THEY90lTz0ibo+ZWEDRZriBjEjE6K9\nlKU0RcqmxLMzNEs6YTClpAoMAxGhtEBVbUw/Jeqscnqc00nBrAgkQxnfkzkrTgjzKqbVQ6pb9B4q\nlKseyuE6pmaj6FPkyirhckhB1YlLS0r6Otl0Ql/XmFJmpnqU5zr7UxGhm6KGJoXllLRuYnkZDEKM\npkcnjJEDhWknZlOSODnWUIOMgrkkU1zc2QrWLCMt1Vl4B7z22htcvLRCs1mi0PMJF0scCQrdFGcR\nIeQWpmwhylNODj2sWCWunGLECWIQI5crhHmZymKKrIqc+C2EUhHRKzBrjlnR6oycBotphHRGI/R6\nJJpFo1JksSwxD0OSVYdy0uW8LeGdSThfWieSRszSnOLE49KL14iViFdffh9p6xzVioI4XuAV69Ry\nmTjQSNdH5NkEf7pJvyKwqS4Zi+vMhBGSPmHvz5e8ded1prd2WWYyo8hnaTX5/KfOowweE/kR19+7\nye/8V7/z/38lSk4z5GIZe5By2sxZrI1x8wGTqkhqlAi8BuV0jp6IHLUV0kkdeZzg1WFa05nmE1ZH\nCtpERjXrLCOdViVGN0+Yk6CNU/RpGUFRGE+3GGc2e1UJWywhSw2aM4GKJ1AURXLdwZFCEivF0nVG\nhsUoyejMC+QbfapxjLO6JLAc/FZMrEokypT2acLMjsmHDk03RYhjEqFMmGtU5JzDFijjBZkL80xA\nG8bUUwPVHFBPRsSuxGA+BCAZDdC0gPLTGotcxJ9NqMYhZz/9AjVhjesfvs/O4m0UK6G5WuLJf/Jl\n1DTHEjQuP/0sYVbk5pv7SFWRXHB5+y/vkmdL/HzG/v4OyY0HeGmJyfEC2ShweCgQrkXUFBHnuzdp\nJyLrz+l4t/YpRDbtGki2Rql4AcW22LpYZSZMSK4fMfjeMe0vbHH50hmeferj7H5/gpRJFIcjvIeP\n+KmfeZ6VK0/ywc51Gg2F7Z+/xgtfeYnxwz3mjz7kY7/2FcoX15BFkbOX69jdBoxNdscBBeOj9xEK\nBkpX5uigSDWCo70C2ZaJbh4xjIpcWPR5XzggtR8TlCLGmx0mccCjzpwmh6TzNRqDNqejlEvLHu28\ny2A+pZ7btKUSSAJP9h4xXS1ROAhYHW3hPZFydEkhmseUvYTjIOWeopJqE2ahjqU8oFM5IFkpkD1X\ngA2XRZZQGdVIVAtrVqJkg+HEaP6IdOc8u4ce3UcGtpdReqNObX2Jfs8iUFbxhio7bZ+SBb3LFYZ+\nidloxsBbcitvsFJWOaOd/DBngoJGapSYLhLufrDDhedX0cwE7/EDOlKLWuUcUf+Eprrk5OSA/rtj\nlsGcIB2wG55w8/pfEPqQr6ocHL9Jc/M8+jhh7cVnee+vdqlFRfL1Et7NhwzFu7z6xuucfmMPo/Ek\n+ANU4yzVc2cob1r0Rj0Ue4WJcoEnL58j1gOygc+kd49X3noZuT3nY9sbHO8GrHTbxKc/IHdt3v32\ndezEJZvmSFJIODPZ2jjPLWfCd//8OmtbNQqCyZMXV2md1dgL+0hBk3sP7qPYdSZp/EM8tjZ9gmbC\nipDiqS7SaY9WnqNORYQsY7aMEOoFJMlFbznoxQqWVmMotJHjAmraxsxs1CTBcfrox20cGwYrMc4g\nwjZj4tkEZd3loF1BXlUwJYVGOEdrnDIVUwqrDpLj4o0dYi3CNl0qqkDfFzC6KYFaptE6RqlWEBsJ\n3mTEoLIkESqUtITQyhFkl7raBblJKnUIlhv4soq0p9FZLlBOwdF95EmClfUpxiKmWcM4NyQNGj/E\no1F/ErGSkz34AaaxwcFRD/1mQHKrx857HyKWZOLmClNb5cO7r1Jb7PFTv/QT/MEf/g2R7eCn4Fsh\nsi1y/HbA8dzAWS5wnLssvFNWpQ61a9sk9ZhL3Ys8GrxNNL2Pf3eGI0354k/8J7jjXazbIbFkEIsd\n7v3xt3lw9D597xaff+JZhss6DjkvXX4GtZbyyvfe4jjRkUoBy9xhOZpx8ccuMp4GvPdmj67YwNJH\nOBvrlJ9ZQY0q6P4SOVP5t3/9DQISvvSpbeayytI9Rc4cZtUCAMvLmzxo+4wEkWVjFUuvY3cUCjTY\nN4/Zs1aIpmu0AtAknRWpAM0q651jwoMBkdHheC7SLY+pyAHJJCHLdNzxIeeiHlFJx5NGOPaAxtaY\nhbmO6z3i6Ehh2h8hWAe4rkTOPkHphHi6xjI7wJTrhF6R9Dhn/+SEXuSznomseSIrmsy0C6VGxjxW\naYsBEyR8aYQnyCzXffyewG4hI4wSCoucxw9nlJr7jNwiXlJF3ovJxH1OJAPD3yHiI+VFFlp4eolx\nlHKnPuXkYYR7sIIQmPi+hRY9ojrXWGsoKGsT6oqCm0Q4oYa8tD9yeHYbzAc1yoZOHOwh1hKSoIWw\nb9IyhjRWi+Q7U5RShS094eFgghGMaaxlrIx1NMvC0TqsDuocj+ZYE5WNWRuzrjJ5fJNouOQrz/84\nq7M+dtal9rnPsG71GYQaRstjs7/NZGhgiUds9UQkpcWmf0BJbaF6Rd7Vhlz/6zd59N49lovHbJ9b\n44ntFXZ35vgDHykvk2V/p2b/x+JHXon6V7//P3z1i09tMTAEjHmE6HQpZksqYoQ/MWlKUyK7yLgU\nIA+qdOUhlgLjvEprMmKedlmYPhV5CaUAYglcn6UlUlo2WQoBNSvGUCTSuYqdilTnIU5NxUhilkrG\noh4QFTXqvTKxDNbUJS+mGPaYVNIpjqfIaZskyIjNJeKkghTVMHUHd9bETiWcIMfURKaiCpaKaE7I\nFgWiTMROFGQ9w5VS0CpIZsgorcFQxPAU/IaL5dT41g++x8//gy/TP3IY39ljtXGBC1s1UqvE4OEe\nnTN1DHNG4G+ycbHO3of3OH58n5N7LnVJ5uTeDld/4SXUkc+o7zNORly8UKK0cQ5iD/t8k1BKUZ0S\nV69dQbUTjKLEWu0KeeRhf/IS2UFG//07VF94CtmTGbz/LjtvBzx6eJd6qvL46BitrHPpi88SSSnT\nvx3RGx+TGR6NLQPBSZCFAs3NdQ5Ojuid7mOlFp2LV7n/nVfx3uszDmYYWp2H79xmcfsY51wBZ3RC\nbWiyd7xD1oxY5iHvXL/OJ3/s1xmcDEmqFpt+H0tucJCllJciy3bERHdRLQPzpEhSrNFc3CePC9RK\nESBRnk9IswhRN3l8NmXQGqBlTSpIGIMBt9eKWH5A6WQN94JDPxTQJie0j0Q0XaMXLNhWgETG0ySq\n+zbJ2Ri9boPnsMzKTHyX3G5jRgJjPad2WkSyTpDslENTJXlyTKNURjhsUch7qFIVP0gYiCKxVSEr\nL2ktEyYndSwGRJMBy66Is51RMjzk7xUwtB6v3HgbgH/06WeRVZmJ6DO/94jq1U+hTkeEUcg4OSQq\ndDCZI1om4emSxosNBvMJ775zE8tLuPrJC4THIecuXGBxY4dHoz1Mc4Oi3Gd2OAC9xFMrzxMwYjSa\nE0VVnniqxQeDd5DUOpmZUFvZxsxiipWclSur1CKZW9fv0a4ktIpd3v1ghpHYXHniKu4wJxmOaHzu\nWaIThXLdJ/YNwlrOjVdO2HymwtKZs+oFHJ1OsderlLMSq2tFdjlkVd7m2HPohBqHs5xr2xssTqZ8\n/62P9madnf4mZ56OWbRmmIUly3IZzAXzpYOi6dRTWGCRLIro8ZLI9AlECy1ICVWHVJgRKBL0dUw1\nQKmbqA7U9IThTKLetMmTEaKuYQ0cpGKFoR8hpBUioYoVjVBjgUqjgOhnlBIbN5aw8gxFaDJdjjHC\nMvM0w/BFAsokRka310awUmRLZT6NmM2gLEkovkOeJ2Shh1QrUcg0wnZEzXEpeFXG0oRINkglkIaQ\n9m2UVOa7vf8ZgF/8zV9jNPQ59/Qap8c3KGpllKKNow4onT+LHKTUvZSSaDB3cjItoHcS8Pznn2Zj\nUWKijim2t7n+gxtcW22gCwHf/fo3eeLiJxlKOsVI4vC119CaKtFixoN5yGbF4DtvXGfz2md59P4b\nqMUyIQp5pYiyf0qtvMYzH2/xrf/7JuaFc4Qzn/J2DSWu8vqNN7i08SSRLKEHM9K4ipcskUwX7d6c\ni5/6OEPnDplZZP7giDtvvEG9olG0W1jNKlcvNjiKDayJhuXHFCWdOFJZzATef/f7DP7gVwnWx3z6\n1SlSQUePxgyNEvqpR7TwyUKPelYlFkZM5RrT5phqModlh7ligj8kK+oYI4GTWUTWgKIJ6UBHlg3G\naNiHRaTU5DQbolSKqFaFZORQMCV0rUKg+ggVhVM1YGrKNCYy1UmG0I05dWSkhk+NVaSaS1AdUYgq\niEsNQzxC1y2WgwSjW2HhxniBw2o1QYllvFil3g1YBjmtNIe5QWlzjOK0EEWVk0SipOZYBZ1xpvDW\nK69y7R//FIJzguBZqL7G1ZbMoCuyrubk+ZJCqsIiZU9vU+/nmHTIBQUlCQnmBoESUdCXRDWdSDNR\nZQ0znTPrSZSTiOncRo0MksRFEStM5xJaJUatR7i+gJQr2KWA5dglbXtYos5+yYORiRpmTDyHipwQ\ntOCd3WOO/+ZvufHwOzQufZLi0S6npzZanmI0J/TKGVK2wJUVekuVWB4hJTJXco1rn1vnwtnzlKoF\n7g99and3iMcOs/WcsZFw880P+J3f/vuVqB95EvWv/+Xvf/WzP7bKclyiK5p4wEJV8IMIqyiiaA55\nKJMOqmBmmGHKUPeoJDITI6RWdIjTMnIxQXaqjAQDoapTXpYJoozMlImlFHVqEhVmLMSAwmqAdVTk\npONiCDrFTMI61vAkcOshcWwgSzrqVMOU5wxLNeJYJ851smKEtYhINJ80LVPwPZRcJRLnqEUFJZMZ\nxRm+KuJHJfLSAmmWgKsRSyFubUw8KLKuDqAa4YUpeS6TpKt86/WX+Uz3x7nw5Us4C5dFb9IZEgYA\nACAASURBVEjwcI7Q7LDYfYx+ZQt3EXD+7Bne+MZ7bG43UJolqsuUoCFRKWxy6/r7zMUZG5smTgqP\n3zmgpZYhzNE6HWIBrv7EWQ7TIzQ35KRfYXbYR8wXVPUC4rZCUjRxH4+hoHAweITYLLJ2/jyL6oxw\nd8D+KMF5eIv5uIpecSk90URdFlh/8eO0z61RuLqOt8xZ1HW6KzVaHYPDhce5p59CFRPKeYJ0tsiz\nl1YRTYcP3rnHSmpjaxm2JOMJNYzHKd+//zr/5Jd/gUH/IWUfgiJE5pDN4IhFtI3oQ6CewbrnkW3m\neIOYwnrEY8GjdpqwqET0Wcewcya1lDYJjb7PchIxvAiLkYbeKdKYy4R2iraM6TYAa8pyqOI3TVRf\nQS462FoJdWHSvzTBC+owGqJnMcWRjdZeEI0dhJHG+PyA2PZYGglJyYLumPTROYQHEna6ZKfWxhQs\nhkWRYupRGGYsWwMccQ0mCZVGDyPr4IcRHXeN1VtwUswoL2Ne/fBVAD7x0k+y884HNOwzeIMxlzY0\naCoMD5ec7ki0ogWTcYAoREzCiFa7S3UmcXJ/h0CVWCom3js9tp64ylztI4Y5vcMxx32Bi0/nnIgj\nwszn8rNb3Nq5T6eWsvqJTfb/qo8rLrm8UqbaWqOyESFmGuWuznweMVt4WIGB+swValUI5gfcuT2k\nsQq39h8wu+XysS9c5ujtE8SmjCPELEbHaA2NRqgzUxTkoIbuedirCovYJHcz4oc9VC3DGQ4ITQd/\nlNA5f56/+qtvAPCPNn+VIHbRL99jGMqoo5SCmLKomVjjCoJhE+s5mefgF0PcozLZbISpiRSkGC2v\nYQwzZKFIWk0QlYjFPMcwK9iiz9KcIljrLJ0+Mz1m7itIpk2oKQTLY7RcI7M6nKQOpt5Gny1wtQBp\nWiJVZeZVDVkYYyUWs8yhMs9xFwZzJUV0febajGKgU28nhJ6L1FoSSAaKJhP1fZKCRDSak5dX6DVy\nVqIcpaYTZQNUeYPg4Czzpcqb/X8DwGeffZGDySlKuUZBqTA42mVy7w7FwlmWwZyztSaz4zGTWo6n\n67zQvcDjnbcoqCleFNBZP8fh4CFr5zTc0ADtLLGacemFaxzdv0OtnKMUVSKphBCkXFk7w/7OQ1bL\nXY6jhO3WKmM/pKQuSDSoqyLDYgppjacuf4Inrm2hzR/ArEZqDGm0OsjzOUK3SLKUKJQm6FMJGQlq\nG4TeLeK4gKFIDKMZ2xeuopkRIz2nWCqw9/03aStwEigsxQBZT1CaNpkn8cbrf8Py93+Fo6/KrJ7O\n0YQSziJnTSkQaEuyqI1YMyh6+/hCE0lLac4z5OoaqiqBPUGLahTHS/xKHcmdERtNfGPCMrEIlBKp\nOKPZjDjwIzShStgfI4YBNcMmU30mUkARH6WnIKXrpImLWGkwLYwxTzQaKxM02rjqPv58BUPRCY49\nBHvIKKtRHE8YdzxMJyRQdHKhRmwFhH6ZRm2KcaTQy3XkbhnHXDJOO5TzPQJDptj0mKk5y1GZasPk\nu9/6Fs9st6BTQLUSNj2DoCEQz2oMJjkr6x7LXoRn+PhLh0S0ccIeylhnLKpUlJh5s05nqBIJCaLa\nIxGKKLJGzRqQJFUsPcExB4ipiNkZMpdzmqM2ZtFm7PcRyynpYwXVN5FKBYRDl6gUUarXGRo+zVGd\nceBT9FSobbB+pcV5+1N4gxO6X3yOX//nv4H2Z1/j1s1DUiEiUBooRxNaBZXG0kEIO2TrFQrZEl+R\nyYIO//S3vsQ//Plf4/e+8XVWtrbYvbPLg/dv81u/9fdvLP+Rb+elKQSTOlIBBvYRuRBRViMKRsq8\nOOMkXWPhlIgLHsUwJqvO0J0GcphjqArRQkVf+AShxtQV0TWfwlwmFBMEfYqRBxTiEsgLVFmlWggJ\nd9fIpRnqYQtLU8mMAccX50zNKXavglUQKIRTHDnDo4oYLykuHISiizHMmZQ05FjE13XkkkK/GlHs\nesx6Bq67pJGmVBcqlcUSYb9LUdJxNQHfr2GlW9AdM5hWkQQDViRKqs8w/8huqWwbPH7rXc6deYIw\nEwmftpHdUzrnuxz276FrFjPPZ7WhEkQj3v36IdbFNbqtdaw1kdVaDdtRkFKJdORgbFcoFGzWnmzg\nH/a4vLnGW9++x/TuknBosbZmIEQ9jHqB3YNH3N/tU750nq0vfowzV8sk0zKa6dPfvUu9JzPSU+LY\n4XQS0nhSZ229zNaz67TXtrn17vd54/o7vP/dtxBODxl/8B7+rMfkfsTBm3eQAodZFDLrnbK4vccb\n1+9R1S9xztQZSBb3P9hhUl/F7I0JrY/2+hxv2XglnZ0WyI7B0XSFmbZCNTnAbC05u3dKXN2kpwts\nNBJa74c8vdhiHqQsDipc8B3y0CGzQ4JbNvurbbLaBTbuWFRLFmePj3CkIQcTm5OoQdofEcQW+YUy\n1mBBJyywZ7bAKXJcLxPdjdGHM8JcY5Q9xSiNEMIUTajBtsm1DwpU8wj7nsV0v4rzYIW1w4C0ccTh\n6grr8xGlwxPkeUZ3abBmdrBOLyLtLBBrIV6vykKR0GrbZK7LfsvjfGXBYqX/w5yJRI+VaouGaXHt\nJ69wczLjYE+je3mD0BnRVxXOXNqiNywx7AtMxjOyizGNK59go3SOdP+A7jOb3Bq/j1p6kovFM1QL\nPj/9qy8wU1ZomBvExxMcReRcvYtSlhD3U668dJHtVpe33z1BFnrMexluqHNy8wRn/ABLtkkUD+Nk\nwMqaQPOLT7H9iXMMoxldtca57TNUpQXBdgdn7pPd6nFZrFH2AvYDFdmasbUWorYdupsXUbIZjU2b\n1k+t0L6yhSzXqc8bBIQojdkP8TiWTArrGrFQoDhPKaxO6Rds6t6ExJ4ShDHu0Eet5GRKhTVrTMXo\nQuiQxDo+LlJtjlU8JSNC6lfI6hn7WoS4rKGMRSZhzMIpURI6KNGcFU2lPBSwJRE/txFFiWJsfORE\ntOoYRpmZFDIQ9jnTU1iOEiZMWQXGSUpFmCNqQ9y2SqrlWKJLMI1ZltoEp3VKKczkhLZiIAgqnWKX\neWEP+bSPLMkIvQFFb4Wx5KCbGYH7d6V+f+c+g/E+RfcxwuKUjZUznP/kBb71wb/nzOU1FvNjTqY7\nFP0GTyoF/uhPvsnVn/4Skb7C7mBIGAQ4yxg32qAQZBy77/FjHzvPN/76GzTLNtnZTdLCE8yXKUkj\nYYRJ8aVryEWD9bbCZCBwptXltZcfEJzqTNOE822Tb379jzl+dJPbN64TzGtUWqD4ErG+ZPcYcKBU\n79BZeYY0By9UcSsD4mGCG9sEucJm8wJKsUQuVbiUajx87TqVy5/h27fvoVdTVmOVkVLBPF0y8O/8\nv4jsgOdS1STiRwkdKWP/+BgVB1tO0U8VNFWjpgmExTmeKOIejyA8JHFVxOSYJFPR5jHN9U1W4pT2\ntELXrpHlIzQr4FByySOXsBFgnVtB7LRIUhWZddZCgem8jF7NGUeHmDMXVw7Rw1Xm+oQ9uQuOS8Uv\nUm30cIYn2Kt1xukWdcFFWG/RHGuEuUU51QiUCbWhTt0HYdLmqN7mPDkxfWqqSj2aMU0U8kiCscz6\naRNRHuA+3gMgLjWo37SIpwZ+Q6TvCpQbIWZtRHjaQdjoYAbnUYwuSRoib4VMzxe4v7jNseZQ3Rng\nuxZFU0F7JFFdnqJ5R0xlSIM5e4pA00qY+m0mjyrogxqn2QP2R3M6oxz9pEZmpUQrA5zhgr5Rp+it\noeYBwlGRvcJdZGXGrCBwYStmEvpMixH1lRY7d97l3/6L/5F3fvcP6chFaoMMfX9KtbTG41MLN6gh\n5QfMxYxDIcfrG8TTff7D7/yf/Je//Rt8/Wv/HV//xh9RuBMSZn83EvAfix95JeprX/vaV1/6wjpy\nMKYUmKSyQiJOsc0UFmUUbUCWWjSLQ2YlyOWQuR0g2QW83Ed3TWRRRhsZSNYpZnlJpkfkwyJ+SceM\nJ8wcnYK4xIhCPFuCgkOmJlhZgLGIiDUJPZaxvRTkJXm6ZBJZ1BHIkwxBEJipKqXlnFQtoNpjXL1A\nKZjjDw3skoQ/0ojaPpJSwI/myLlCPV4wF3RUe4waiJQsASfOiCdFKOroCw28lJlewQ8rvPr9l/ny\npS8Q9WeMvRlLRUZ25jy8sc/i/mOG0xHebZ+J4yKslOnt9am0ZY7v7DHdO6S83iZey8h0mbET8umP\nf5LxeMnB2GV/9IiPnb3AKy/foLnRpjjPOertYq+UmIt1pm++z4PjMZ3YZ++DHdzbfU4fzPn4P/0s\n9Y0SarXFwkhZyVqkwYznP/UJRtMT9kciykGP0c4dKmsGtVqXPJXwDg8Rz5XY+WafzYs2Z37sY6xv\n26wVVyjWVukfD9DaFYaP9zkeZBTOylTbZ3l86w1MS8Uodnn1ne/wxZ//Mu5ehh6Mqc7O0V7JYeyj\n6QmFURlRjAjljEJhgVP0CXWLex0TegmlNZdZ/AxmckT1dBWlFpAmIueWS/YWAr1qhGqpRHtlPib3\n2KkZJIWckidQWGosMdHVJZXlgkdPHFI7yKjpEvqWziRtUolyusuArKaQmQtGwR6tfo356pigoiEY\nIfUoR/drBLlNWPBwihZqqCMVfGZNj7tXhiiDCdXGgoWrIM9q+OUPWTtIKDQF4oebnJQtzt0Z8PL9\nj9pX/9kv/zPeufshqV2hWojJ8gbjd36A0dpEUDwqeonQSChSJgscVuoJer8Jswn92j5Prj9DrtrM\nHn9Aa63D3Q/2UTpFLFHEbrTYve5gb53h9K6DWDMon6gEl3TWkgsoeUTx0gZaluMpddwH71Ipl3hv\nOMFOTlmUEoZTg92dI1o1kZXtVfbvTlAbBbofX0VMKliax413/4anti9wZzZgfb3FOPSRtzocP/A5\nfnCIWVMZeBoffPsGlWeaWGEDLug8vPcatY0Sj+4d8+7b7wPwK2f+Wx6c3qOwfYRVyeiNM+yph9do\nUskEluEU0RAxc5GJniHrKUkhxzBSMt+naLSYehJ4OkZVZGbPEOMqzUHKqSUzFWeUliaN8gzJEZCi\nIorbo1cUkTwPs1WgOAZ97qPmOmgzUk8lEyJ0oYvfGFP0GmhVn8BRiPM5bk3FXJTQlx6hUsBTilTN\ngMF0gS2AHDmUVRVPLCPNErJ8QabVKIUyQnmK7LSgnqEdRejpNsFOiR8sPrqdt9Vd5/kXnmN/oeJb\nOapi8/Kf3+IXf/mTOKMJe6HNpU9/lpPZ27hBjacutukoVb7zp/87rQvnWDFNfvDtD9m8YtHqliim\nBbJCgVpJpfvkWR586zrNShtjuse0UKMxE5nffkxjrUKcDplPi9AQMM+uorkmieWjTGM6z72Em2Zo\nso5kzhG9BM93KS7atJ4QGKhzymmBh+/f58Bd4MQiVlKkcbnN/Tfe4rVX7vKlz3+Wm9df5+wTdZIA\n/uRP/pLPv/g0xZqImnm46y2i228TrXToPUi4festnvn+FyktWjz5YYShHWF6FfSzLqfxGnW5x2Km\no+QVVH9IXq4gTYrUyiqjWUpk5qQllVoRVFnm0JSpBnN2l1O0qomZzNH8lOo8pVBuoJke9ZFLLI85\nVXNEIyEr5Lh5zFKW6VhF5MWCXAtoWEvicpvSYMBYayOGGVo5IwsstEDCCeYIeQ1H15gkEk27z5Fk\nc744whEy5oEM6gyTgNRYUHis4icK4iyltmqzlCB0wVnzqDoiVn2Nb//NX/GrP3ONvlVmIy8y0hT8\nco2ip2IkJql7ShI5RMGCRTCjvp2iZDrScYGVUk6pkuDaElHTZnYASkslmUscpxplVomzMXHZRhvm\nFLshMlNy00dpGXgLgUm5RsN0OPEFxKKAPsso1zSK7ikjKcAQfYKDIu+/+xZvvPaA8tyhZW1y/kKR\nB4/3OCNrzNI5xcomvttjZLdZFcoc5/u0QhXj6S5Kt878YUZc8aj2iwRRn1mhzhPPd6lttFiTatyc\nhtx46zX+m//67z/78iNPov6nf/27X/3C5WfQygnMNDLVR3MzAuqU3Jwk1lkGKlFYwRJ9smGHJK4j\nyCHa3Ccw68i5SKZn+O0Z5sMqopoyskKquMwXTcoFh0O9RlVJOZVtlGyGKxiUghy/4XMiQTVVSe2I\nbKqxyFvQXmKMbE6lkKq4wLJ9kA2WXoFUt6ksIwQURGLMxGXut6knBmJhhpBK2JrHlJwWClEiMTLr\naF6AmC6QKwnaWMRTQ4z6jHwSMs9KvPr6d3nucz+JVkyQTZ+Ln3iWYm2Tpz/9PMNxTu3KJmrBQtIi\nspMp64ULuHWZF3/2x1F1g3v37iL0ZD720qcxGyFvf/NVJjfHlJ6usv7sBW7ePeDFczVCec7+/RMa\nLzxN/16Paj7j2j/+PGc+8xwr57eJilXCyRKjWufR9e+x15thLD2SWKZRhnQwg+IKjc0Kmm3g3puQ\ntVtEYQc3OKDz9DOkkcGFrQ5xOebO9XtES3j46g6PHixwB3cx1y0cBYpTi40LZ6nmJoEecPGJSwz6\nOoeHu9zcvcFnf/Of4b8/YjCqUjV65IJGqoc8dLaxyh77ixwxd4lHbYzqLpNyheaeQNaukkdd5MkA\nr5Uz9mfsn5UIXY/mSQmnO0It2dj3M7a9iAMjQdmOUe7MUIItPGOP7rSMvLkgbBvUTjIyN2DvnE5F\nEoiTHmK5iDFOmQ4dSguBaKjSy8o8caoxFtt0+wNCX2SkgdCOMawZ8UwkW5uzOvQ5lgvodRdtehbn\nUMEstOjaMaYvEGY6j7QQv77A0Aek6ZQ33v3Ijfazv/5LZEqBB6/fov3Ccwi5zGH/IZcrLbLVi+jW\nlOLqJid33yBKIrLSGmlxxoOHQ8JFjc2nzyFbQ9654ePmHoVYRQmWhMMRKxvPsXpuQTYeMMt7bIg2\noSVRXbYxN6skkshweoQ41VHSPnE/Qd46w+73TyhqLapLBW3bZ/DBCaYbUD57Bkm0KdcTTu/tUl/d\nIhGW3P7wmNQfEwxKdGttCo0K1mxG/dwFKnKZO733WCuuUknreOMTDDvj9NEA9dLTPFk9R5aLvPLK\ndwF4mv+C7noOGxG+20MMTIp2ijkuciCkRIuAcigyUioI/oRmLiJNQhIjwRJlskgiy+a4iYfmtNDl\nIsXRMZOOhG9L1KQYe5GQzlMmtkotipBqAtasgxmGnKomy1LIfCJQFSwEJYVRlaUxw1WHaKqCKTig\nScwNEdGoUjFtXCuiLogUpzaF+pRZ2MJWPWbLnLxdwRAi3DxlXD6lHLVRxRzPDxkmdaqeyrIgs1BA\nvi/RaV/kLx/99wB85bf/OdJ0xvzeY8SBj9SKuHp+Hd9Nwck5mymMhg6NapM0mtE02rztPWD7/CeI\nfRs/lmmvemjqVZLc5FgbklgRJcdm5k0plgVks8Fg9pgzFZmxEFGvKrxz/yaHpyrbL3S5d/M+zVaN\nWnZKQcuQZen/YefNwizJ0/q8NyJOxIk4+75m5sk9s9auql6qeqa7Z2M2BgY1IAyDwKy2/IBkAxoh\neIQ9tsQgs5kxCFvPIxDCkgGxeIYGZunumZ7eqnqpvbK2rFxPnpNnX+PEie1E+ALfD3ca+Zn3+rv4\nX77P9/99P8SAQqdxEymdYjoTScZytB2faDCDGtaJT5ewQiMiyTSnz65w+SvXUNJh5tMFvvrmizz/\nqZ9kXG8yTMlMDnrQC7Lx/Zeo6VVGRpwzp84T7OqMWWWhbFAz97j15m0av/+TdH+3w3taXQbHAqGQ\niRNIMW169Pwhc7h0Yx5hRWDUDWGWDTqtNl4sgd3tsiT7jIZhZiGLkTIkOXFIh8Hxp1imS1qfZ1hw\nka0mx6MZ6UEUPa7gaV2sbgZnbKPIMjk3iRIcomhRTCFNV22jtA0iEYfeOIySDBG2PHQjgW21yCTG\njN0BRmtE0IozLmQJ+i7GbExfyZJRAsT8CP22ySgbZDBwKYRi9B2fQTtIUhf/tqPvYQ4vKEPogJdf\nvMLzn3yePhZazGY6kBClPqoUw4k28aYuvr9C0lPR5pO0JUhN4vSmxxTdDP5YpE2E/OiQqJJDcxrU\nxAK5Ug2jFUPPa+QnMoHiAEYubjdP1tKZJOcojGoouSAjLcZcIIrV6jHLZsD0adsKpUCMiddhLh9F\nW17l3LOrpJbijPwgrVqXrnWAO1ZILXo4EwtPipKeuhyGDun0RuyMe7z4H/6Y5DiMdzpMHA9hKPL6\n6A0ar97glTdeI3Q3yrHuUlILvHXzFX7+579xT9Q3vUR97jf/t898+9On0Q5lxlED30qh2WGsxJh2\nKEIiMMGXbYTZFCliYQZcsu4QBAfLjDLTYDb1cP0Zkq+gBkY0vTBp2cbwZGRxyMzxUEIzDMJEZy6y\nOMN3ZgT9JF1UUoM0pqHjhGdEAnEGgS4L4wij3DFhKU535uOaYAgavirAUCQgiQjKgHFEQnUN9GAM\nfdYlGR/R80sEXJnALIYRcRlgMef1mRQCBBwHoRWmHxXIW12OtCxC0sGcBHnltTd49uJT3H/9gPBc\nGWk0xeofsnPrGMltsLJwAilmc+9LV6k8s8z27cusLkXZulVHmsiMmw20uQWOu0dEfBPJFxFEjf6D\nLpIuUKzMYc7FGW7LGMMps+5DcskKwbUsk/ERu6/cRzrqIAkCyyfm2d/Zxo7B8KFLOl+gKMtkNvJc\nefSAWDBPczZh0jSYKSZKIcz1h5fJr5xmKeoTwOZwt4UcCZBQfGTBIreUZnkhhFBe4tHhkHJQpJfw\nsbs9hpEo0bSM1wMpFiEgSly+8Qrf/QMfoXo1gb9wBPkgsVqStmHBiS7DkcaaP2CQqjDKHTL/UCAs\nFehlx2QPLCKOQ0cVmEk1wpEFVhsaenpM0FNxI0VyPQ8rMITMBFVSSR+Bvi7STfSRZwqBtMZw6GMf\nhpmkwsRGHgElgH3YQVUqRG7azEoeM1HGsoL4p1KENZO7nkpubPBwwaHUnJH0JTrdAGHPwF41yF5N\nENC6zGQF406FstmnuzkmHwgwbh4ipmyCUYgPywzcGYtjDatjcHnrbzNR3/vJnySeqCHMbDLnF9C9\nEepDYDFPsmAzfKBw5/LbrD9+kQUkissLfO0LtxDkKKvrPrFkhaEeZma3Ob90EWUjxvaVe6QyAro2\n5vprY9T5MpNxG8VLYz58hJWJoeLQnAYw9y20UoSqZ1FMZqh3dE6vBNmbTjFNHS2VZ/4DJ1F6SYxm\nnVQuhjeW0JJJ+uMu4UCCndducPbcWfyAwr2dEaazQ3A+QdDQCT5ewBuEWVpNU1zXsIUh0eQqh5ff\n4qlsgppwjJSXefnz/59EZf8R0eQQu5lgJK4Q2M8RPFhHFWPEHAezepHRMEjYCMHDKK72NJaUYtyt\nEBsucNCKM/FShBpB2hmf8BUfv/AeGITxenECxxKj0SbK7hKJ8SLdjku4v4o7DKN3Fil1IhjVTQqZ\nOTp3Z8T1IoIuYE6BRBRjO4A5ncN0CsjvQDp0ktGWSd6LIjcKNBpgHwbQETCqGxT1NdyDEQ5rDHYk\nNDfFoOYS7pVJxyKYLY3GSCF2nKc4LXEwVeFhia/1/1aiPvbJ96NGTSKJBdzlEu9cvc9C7Cy94ZS3\n3rmMHp6i5AuM63X64z5HrT7lnErUzpOqHDOwdeyZgpp1ufXy66ynNCb9KL7m8xd/9h85t7HCuG1g\nuiVisz5WWMNQE4xGM57LnUDoCqiSQTaewhzYNPeOODzy2FxZZ3p/QDTlY05MUjEJOT8jH/a59eI9\njkNd1hbCSJJLrdnjyU+cJuT7vPiFL/DR7/uHqMKQwb1jls6vE1peZjA5RD5O4OuQ92dIKxGu36yi\nulOskMJ0ZHP1jbcR+Hb4p0EuvBOkpLgMhiapmIAuCWQCCmEkBm6PsZ3ADYpkOiaRYITA0EXUJqhk\n0ZMN1GaY8ECk4Q4JpYooRxL+LIxXnDDsZ3FCA/xuCnFuguKk6QdEvM6IVMTCIwBSGztUwZA1Rv6E\nxcaEmjdPOBliGBEJWxOOBgEKCZP2yCc1jRPKTUj5CdJaEGskEw/XEKs5Spku+lSl1WlQJoQhBAmF\ndKzekMnSHNKkR1fSmahlQrEBEf+YSUzg639zhZMrTzNfGCGaeXTDYhqYoExdjG6C9kDDCLSZCQH8\n0CNCpOjoFmLYZFidEk8VWftwEuvAppftETwMIykj/HoKNdHGaCoYUhXtUZeBpyEEHSxxyLAOmj+m\nXRWZmvuIO01C2hzHM53AwEbKH+MMOojBGb7TYzBOk7PqzFybnaMmzmGTW29V2Tg/hzv1cBoBZvIY\ny5DxRIvVmMqCX+bpx5aJLEWYjvvoThpP8llKneLcXIGVS88RO6OhuRLd+Qbbl3f52Z/7xpmob36J\n+q1f+8yzj63SEwJ4eRMzMiJqCWiSijmwcAIpsCZk8g6DepS4bOOZIdpyiITbRxMSjAMN4o7MaGYS\nzHjYfQekJKo3xhzPE8/pjNQZEcPGn0TphhRyY4uR5BNMtaEdQQmGmch9jIhCYBjFsEVEJ0WiN0RT\nZ0Qli5kTJOZbGGKImTbAH2SIBHsITgh1apGehjmaZAgnBvj9EJo8YCImCUZcZpMw2kgFFNTEkLAe\nwcgryJKJNBli6Tm++ubrfPT9HyQbKdLU60Rcl0k0Qyo2ZWiodGMz1ubDRFWZd167xcrJEyyde4JS\neR5pOcngnV368phQTadzaBC7tIa2mEZKzTD0INTGPLhzi2xxCW8mEjbT3B68jlp3CS6eoHLpFPX9\nLoWSy92/eA3bmCHFFE4/UaR7fY+u2iNQFVlaOcH+7TeRJyMuPXORZEqj17cJDJuMHrbZ7xgMtAnx\naQa10WOST1JMZ7h3vIcdmEcaSZz+QI6smgQ5QD6X41hv8O5L1xAKNtmoh9Kb8PKNN/jUT/4E9w/G\nZIM+ziSMkvTJd7qE98t4wgTzlA5uA3WywN4Jl6TeRxXA6i1wd6lG3BgSOFwkOD2iPUuQCIwxpDSS\nYdA4eYDkyCy2SkyNOA9zNp4ZJhdt80iUkB4lUEwNaV0nedzBnxUJuCbKNMzx/JhCSZJTyQAAIABJ\nREFUq4sbC6MnLBTLZnUf9h9vEJqlMI0D1s0koZyHJ7QJiRUGxjH20TJRq0c9r9EJy6gJF40xfqlB\n5GEKfSFB/GGWXc0jPLAQk2G0sI3l1rly9W+/837g5z6Oc2ygOVHEfZ3dO0PUgs3wxiPym88Rmw4Y\nByYcPtpGyZ5i68pNcjGD8aiOYKmklhboHByS63uIJyWy+VUGx/eZNWdoqTRuacBguMM8UWIZlQcz\nndUTYaRyAE9zUC0fUbFYTy1x6BxgmhKhiovaCjPoH6HkioSdCBFNxogG2L61x62bVzi1eoapPeLN\nF7/CifJjRC7GcXYOWb/0LEFXIRXNceXqFm5fQskF2Tu4S7clErYkRiOF2BmNkFtm4o0JBR2++IXX\nAPjByi8yPWjQHkyRvQWWBhu0e8CRS22ssTBKYTzYJKDbWJOnmXPK6Pt1wl4BsR/AvStTOjiPNlYZ\nXy9QrDzB9FYYowrGjSypTgondAb/4SJuIUi3lkUQTzFyijhjF/kgRsiS8WYaytEq3SMPwYoy6cZY\nDiyivxsl5qwzvGkSG5wlfHcNJTnheFchHI8h7S8RrJdZEB5nYs9DzSYRPIs/Vhgcp/EIkJFOMarN\n6PTzONsbxB5ZKMLTjGoNVucyiLrFl47/NQDnn7vAzdu75KIKgUmAzGqFZMxFFWwqSydJhGaMGzNm\n4RlJ8kTmTUZGEDk2RRlG2K/dpZSOMfV9Nk5maTsJaE3JxwX8kYcnzSEnpsQkj6OYhDqwiUQ9xq06\nr3zpa5QvPIaS6ENtguRZZNU4xQshPNfgal+noMWIWlFafpBKLkW7odN4UGX9vc/y7z73EsFwkEIl\nx7/9l39MpXKahdIqgVgDLb1AMKEzUlX2H+7zyh/+EaXsEkOzT3Ajgv5ogD+NEvUkUiWFbn/AO6+/\nxaVXv4uNexapW/tkYzqOPY8iNlH1MBFtykgdQ7xCQmwg2GmYuYTsPooYZ5wR0YIzehOFqD9mND9h\nquVJzaLsDjXMnEVsEMOI9QhFEuRmE1riHMJkQslIElV0IoMwEd9EjaTQOsdoXgCxr2JbFnLWQfF9\nJNnCaSQpZoY0/TRJQ0AIhAiOLQ7ECEJ2ih1QUIMuQysCsxFC3CLZ9zHnfKZhG1MuELfjqOqMsJIg\nGdcwjvqIao9pJ0Uwo/LVv3mFjzx/BrOmIGs+o9ARJ5ee5uz7N5HWwhjDYxD7LGwscu2wh24MOLea\norz5DNsv/zkv3PwK4r6OF6/w5PlLWGdErIyGYO7QH6ZIP53g/R97ntCzJ/jpT/03/Ls3XsL+9RM0\nrC3c1pTTpys4Cxts+/c4aPf57h/7Hj71o9/HhRe+Fz3z0yQ3NvnE9/8Cz7z+l+TOrbD42DKx7BLb\n3Q7PPr7ATEkgeGtsPH+av/+j/5jQf/o8hnxEIHaKxMVNQmc3SWeXCK0kGdcbCI/ahE4pUDrPqTMh\nJEtm4neY203x4tUX+af/7Be+oUQJvv93a+X8z8XKfMb/7A/9EG7skEES/HqRbFLEORohSBr9gsAs\n4JDvepiCjppWwVZBbdMz80SdILPgkKgjMCACkwZSLEJUnmLW0oSEAZ1shJDVx84EmZpT4nqIvq8i\nxW2CzpioXcQfTQlmujh1BcIx+toURfaZOA65iEd/LJInzJEXYc6cMFQhRIiWMCHmiRhWGkfuEvM9\nJrqKnO4xswrkRiKHmk1eGNLOxMgqLTxdYSzHUKQBXi2BnhM46oj86i//Lr/96d+kERLw+l2MoxGe\nUEMKQzDzJGbARhiIWP0+jtUje3oDtVen3bDJBjX6uTKD+i1WE3NMkgmM5gSKAeYCOoYVwbcdgjOF\ngKJgpxo4RgVbr5H2RIb6AHOkIq0nCPtBPEPBEUSO96+Tjq+Ry0aoHXYJKz3kcAQjIREOpPBqdUiE\nEFIOvpskYI7Z7czoHR3yvpVL+Kkh48M6emSBsWFBvIkmyMhti95IJLsgUZuqZHIqjudiG22EQRaO\n7/J/vPoCP/srv4jT9lgf5rm/1CJsLZDvDNgO6WQFFYhhmU2mcQu3ucq6fIAzCzFI28hdFXvhCL+V\npDhcphNvIYVMwtMpHSFJPOBgeC5R1UVpTfH9CHvhElGjQ86NYAebdOUsgjNmkDJR9DLZY59Q+BiS\nMj03RrSvMF5+hNAMEhVjVJ0oQVkgbo0Ipy2GooUzlZi05oiv1unqKotoyMqYkaxiW1OG4wXy4oi+\n5yBqfXy7QF4aYkU7dKJxAuMUtjHhtz/3GQD+8P/8Y/blDtlRDiepc3DtGul8CiJBomMbWU4gLknc\ne6fK+bllHrVuEiNDjTFaTiEeW0EZ+Az1O6wVn0bvjqj7fWatDoH1MLJQhJ0WitshvpBB1yVakx6b\n7zmPeSBjNW/iVyr4YQGjNyYxEIkuztCJ0hsckYuu0R+7mNfbSGcVNAXa1Q5zYorY6Qz33joktJyl\nkIrRu3wM5/NMx02iyxnaX9/CxKa0sUG3NibdP8TMnCOutzArRQLhGZ5Vo5hY4R98338NwP+63KXj\n7+AcpoicjmPtKvgLFvbxAWIyQ3DXwk6NUCZruKs+4a1tJFFALznEQnGavkZQmBCsaoiCxmRRwx9V\nyQhD/E6KUaZPyksyCOXJy1N2nSbJQRxfskhFUhwf7JI4fZ6jezVEpUHRXkaaDzOJ6qQJMNAidI93\nSLkFkqEJD9tpUoUg5qDKZCKD10NghVwYkq6HEkmwo+0wP7Y4LA4pEyKkFbh1pUNwNciSHKRt95Gq\neXypT+JMBN3o8j+++zgA3/bR7+DS2WWwLeyIjRM6xXGvTzGRpZAYYAyCqLks977yErnCHLNBB6Mg\nEwoUEEceO602wXgXQUuzeeJxWpffIbyWpVYfEMgkmT3SESsm2alEa2ayHlzGTXaJJyV6rSLFQpRX\n772MqbtIkxyx3AwvEGJ+TmM+PEdz+waddpxwRKH83CKTAwunlOL49l0WVucZ1u5iyzLGdosAIebP\nR9nf7pBZOUfrxjZqXCC8kcPc3SeQDhGKLTE4qKIKEaz5AuWIAo7DG1+8zf/zwr/hR//0F8m97ZJn\nimtJIK3hZO4zlSSG7gorbg/HMehmE+QbPQbFNPq4QUleYKRJiPaYQTDKHPscVF1Sc2H8WRhpOiLp\nLzDQj4nHx9jNIm31mHJqnf6gyiAXQ+qNEDIpKq0AyEO8yITj/gJSoIc1nFDUsjjZMQPTwVcXiFrQ\nG7lknCOkUpzJYRtBSzH2w2hah/QsS906IBNbIeyJOLpNzwugFkVkr0b7eErOkZiqS1A08PaGdGMu\nqZmKYyb57G/8LN/7936Qo52XSAgZvJGJVwoTTqdI9WTsoIs5TmAkpyiaRSacYVZ1kfwpjiPQKeoU\nDI9tXeV8VGCgigTtIbYTYex7WFoaWxgw8xyCtoJiT8kaBuPAAnaswc5en0J5mYI4QB9a7Fy/QTXs\nc+7UMulpGd2CdHBCV8rjC0Gy4QnThEWsY9AMZDg+6NIX9jGP2gTWszyRq+AKKumIhqQazByfTnuO\ntFRlHMlxMHlEoSsQD62RyPZ5YPfoVaOY5oj9vVsYvi98I0f5ppcoQRC+uR/4Lb7Ft/gW3+JbfIv/\n3+H/HSQq8I0G/nOTmSvyfR/5CZJzOl5VI+eI7GwG8F0HzwhRDg7R5QjBxiMUQ8AILCBU9ujuhVjL\nqzyU0xRHu+jiKoY+RcXAYIy0KBHvzEiOLG5lCiyKA/pinoBXR24ECLkqg9KM4ShNIm4T7g4YJ0rM\nH0wRc0M8ilR1WEjXqXvzZMQ7TAWFZHKD6S0HebGGp4v4fpm93Da5kUwknOWR5VKQmwzbEkvFHNsB\nC68VR85WCTUkQjkb0Qhid0O4toA/r5FoSEjhFJ/+33+WlCgQVcJkUjGqjkVxJcHwwQBlM05B85ka\nMRwtSUmZkCvm+eJfv0hYKKBNxtQiEdRsn+k+eCWdbOQsm2ocM7bD0ZFLIRmheV9EEBy8SIADv8pm\ntESjFyYQVVG9LbzUSWwkVF+gN3vE+zNPcf/BNUZTC30yRIguspmIUJu5BJrgBHZw4jFMr8dsvMli\nVqEXPWCyLSJKDrlwCKIWmUyIXOJxvr7zIhW7SMvdx5YWyUUG6C2TWDyFGsqwXz8kpHnYyTmO377D\nF968xeDoMtnUe/mTL9xkbjZk7b99knt/fo3CQon/9Idf4cf/+Xl6e6cJPhGnfPAageUy+oMah3+1\nRS/s0t0QmVU1hkGV+ellnv6BX+Z3fuF3+dSn3sfxRobuqyM+trZIw3lEKLyGVIoRyd3kP/zy1/CO\nW5Q+coFvv7jBH/zRl+m/YRI6vcn7lzfxStfp+R/nvU92SGjneOW338E9Z3F93OTU5QfcTp3D7Jus\nZ1TOXRiQDnwPgdiYX//df8X8uY/xo88XuNVa4fLDq8zeeInKeMC3f/pf8G7fIPXYkCv/9hrPfeLj\nVBSTT//iC7zz2mcBuE+X284BjwViDN+5z4PDY4Tzcdbym0zrGdrrx5zGpN1dwU1H2W884GxBpcmQ\nmbmEpA7p3brK3OwM7WAA/+CrTLILRJ/4ECeZMGr2GHTDrCW6+OYSf3rzGpGTYT4kpngYTaHJPVTi\nWLXrtMun2UzHCDWnHIRcwv1blBaepfOgTkR7hOxX+NNHt4lMFji3lCW9ksIO+dgMiVOlvlXAlQ84\njse4YE7Zz4nYvopfT1I/fpGzz36KBE1SLGIaHbY9CAYM3HvX+Pj57wPgN371lzlo3aAezBHd6VCq\nmLjdBNn3PkZdb9Dbus3cdo+TP/xBroRPUrJy7Nff4uNrUT77q1/iR/7FT/DKb/wu3SOT5z50lud+\n/ofxDhp89f/6N3ylOWRzGuOTv/BjxOQwjw46HA2HPB6NM7Lv8QevvMJ5b568pvGGt0xA3iJlnuQH\n/vmPUL9+g0FijjuHL/GRZz7Ib/0P/5J/+J0VvuxlyRoHhOsTbrzWZO57znHly6/y9OkEiabNmd/8\nHL0v/DmytcGN46+Qnv8OkpLFNXmKGBxSfqvF+eD7eOvJCB+Tx2yvrbD59h4f+vHnAfj03/wC7lqQ\n/PAeYkXgyu0LVJI7ZDZVrqIh1x9Qmsos93V0P4odnEO/2OT2YZuAkCF5f8hyKcutozKRjw4425xx\nKIcppN5lqs9RuOrzpZMnWT5+ncOzU5auPI56KU7h5fvcSOQoCU3KzgJ3liTMnSlqboK9kiDcHpA9\njNNzgxwsS3Syb3D+RhrfjhB/SsD8m3mWEgku567wbZ0iL1xyWfv8PVZDF7HkKpRc3kpBVN3gqHWX\n6OgkZ2ZXafVP8OD8XZTtIifcefwzOvHXqrQOn+HXfuq/4w8+84tIiXk6oT6em+XwRoPps0NO9w1u\nexukS9fwXrUIbTxPZ7rLkwc5pmqY/YHLftnl1OQagVyYrUaDj52Dyfi9bHfukJsmubdZwQu/hPel\nJSLWAdPlJ0gOjhAGFXhmCqrHxpUM1VMK5XaHV09t8ckbAsL0fbyt1aks2rwb3uHjHY/L91d5alPm\n5dJ1Pv7aBa6YddbPxnn9kYBwos2c66K47+M4YPLMzsu8tbhAMXiWlUCXV668xXuzH0SL7vD6VoH0\n002Od47JnbIo7l9Abx1g6i6/9B9/hx/7n36KhJKiM1tifvI251If4I70AkeL53nfFwUsv8psZcbb\n0gUeT76FkblIdfgm9pXzfKhywDuVMq0vDlgv3qVpnkQ+a7HytRLxWY3JMy2+eu0CT1YaHFTmWY1c\nQxtucEMbEfurOvGNFTIPH6Cf+Cjvin/D8vZHyIn3qH3HAcsvPMbWWpqocZelYoBYbZm/VMYsbN8l\nIH+I6tm/Jjf8KGdXHvDlHZfFVpzC+S5+9Zid4SeoFL5I4G6ch5cGzFmXSKsd3N4jbva+jYL7NbqL\nIS4KAvrtBF3Z5rdf+L2/k6N802+iiumC/9//yPNsyEmMsEBb9ClFBzTuPGJu6RJN/R5KoEIj8ZBQ\nc4Fps8ZaNI6Ri5C0ouybVSzJYMEN0B5rdGbw+OMLHLU9+tM7ROZzZA+m1EYlLLVPtCiwEkzwyFXJ\nSS3kI4l2YJ8kqwSifaqdGYWESLcxRXMNYmefIGTXaPkiQylJrtfFEGxyahipH6KVCzOwpiQzYYL9\nPXbvjii9J0pynKO3J+CYu4RPgtbNUR3sU0g9jVrcp17r42hllgM6AzlDYhLlk//L/4wgCPzUD32W\n2NM68aFOX4+SyyVoICGYBkUb1LjNrqThtYJ4doOyOiNMhF3HJlZSsUcFbLFFKOrhPpBB0KDioj9S\nSEvHKBGbWSpFZDqmFpmRHvu40Tx9pcNyJ8XeoI2Qd5i3VtmPNMnXXXzZpeGYzIWimH3oCxmisWNm\nkwoxpYfihBFciYGsY/qQcXqMNjxmpMmYPQxngXBPYKTqaKKMH4RA0+bAG8KmiNItM/UmzLojEss+\nv/Uzn2PoW/zjP/krol+5QvzxMpnbO7TEOPJyl9n9k/QublGqJbg9TnBq6YhdU2Ctk+ZuIYZlPSS3\nE2G82uCkvIK8VWdrOUkl69I96LIw2OQoEiQn9ditW4QTNp2VVVbEEU1/h5Ns0r++T+ipKbeqNunQ\nM+ipAwLtHGKyT8jbJ+KXaLhJ3HibxeMKod5DLmMTzVaQEzvIsoJby2GVp1i1EI/3Dujocdz1DO1H\nNZbPJjjUR5zcNznISnQ6a3hnmiw8ypEJhNjtVzmxWea6fcBy/jQ/82M/CMCP/+avcCEU4bq+h//g\nDM+sNNlrTklU5rHuXUN5ooB90OCRHSZuxziTKfPm4VVi2QTKQopRr8UFPcKbrSPyZcjMFxhcn9Gw\nOpyppHFDK/idI6SgT60YwXFFtGmI9LCLIE4JjRNUM1FG/nXmgyJHu+fQVu4hzAzWRIVtq0I2OcB9\nILC/4SPcG5E5t0Tv6hFzK2kaoRTTnRERSSLdiRE4vU9/P0L8XIOOdxrhUCe00EZySmizu0T1MzSO\nJlSiA7qNEdVN4I0DPvf5zwPww//sp5GMk3zYN7j2uMloR+W0HOPuvsp7pHfpXhDZColcerDGg/qY\nplrj0mNPsVd8A/vdU8z17qJeLDJ86w4N4STSe6cMb6a4cMbHEQ6QOEMz7KLMWrSNNJmXHyAlz1BY\nbFFL5ujX7xOxTjLLOFR6fazdPrHiGs5TPvdqt7gUv8B1v4H5+iqT5ZcIHD5FXJ0id+7Qe3qDU8FD\nwvdl7mbHnG+VqYUOKU7T7K7MsX6lTveDDZJfX2d0rkrTKSFZEsEHEvfXwpypXmO4AIfVEb//r/8C\ngBU0vvOnvp8TbpnDTRXrXoRmYgt92eXsG8so74/RC19lRV9jOI6xrdynuH+Wh7GrbJYc8lfOMCyL\nTC1ILT8g0G7z2tL7WJW3ybfTdG/ZBDdb3MxNeeqdCkeBGmEtyPGBQCBQJn2uR8AW2JZKVAL7tNUT\nCJMRF7aSvP1cjdlVGTU95JweoJcqc1ia4R/ZPNWOcU+/wmTyFIurPrHsNm9fPcvJD2job79EdOUM\nW/sPkRcDRPtlCq0B9RNjIodDyuUS18Q51sx7OMY6+b0I7zw14Pd+6uf5vZ/+JdTnBHzL4qF7iqjw\nGsdfm6NxQmN+O0Y5OCO8+ICtaxcIfaKGv7VC1H6H9uPrJJ171NzzeMYWyXtVqpMgp7QsLW+OjQ/k\nOa5dJbnzJPFEk8jxLkbhNHfPfI34X4eZPHae1VyDtw+XSIVfpRL3CbaWqRWKaA8nGFqWQ6/Jeucm\niWefYPfmAaPFI87t5BgqGvrCMsfVLUqnLrLZa2G/6fL2M7tkG2c5Wgrz3O3bvDErMfdYkodvi4TP\nXGV0rc2qr1CMvh85ucvRwkMm71awNytoV3+fX/73b/PvP/f7vLH3JsVeiIULLjFrgc9fhWeDMrxH\n4HqrzrlUDOuoRV8PM/M8AhcVEu0mV1WXyq2TLMzn2Fl7g+P958hkXuXU1gWGLQ/Xe5fSdznsv1DG\n/ViLbGORsdrCam0y0q4w8Z5nc6NOqHoZXd2gfGVC7WyHdGEO4YZHN77P7YjN6dn3kh6PaG++Qne7\nwop8xCsPQpwqV8jpVcx2HPXUY7zUu0OmVyS/opNdznD7qw02xS0ern6IzOp97tzoIiycIjprM/9g\nwJ3TZ3j+y1VuvXeFP/rMp9nv9b/hJuqbPlj+O7/9K5+5+LFnyIeHHB3Z5NQm+2jkF9L0GjY5x6Mm\n28yrOcaNKtH5JVQ/gTI2qYk1tITHfFTGcOfwCkGWAkWsaRMzqVPxgzhyDnPsslDyCSg58Ccc2XtY\n6oiMFkWPqqQ6Ilqkj6nMkTZU9GKEiRUkOb/MzN3BGqkE9CCaJbEj7WMGwTYtxukF5j0Jo2/iOI8Y\nd/KoJ2bMHgUZ42GHRiTVIJoOh0KFmWzgZyZMjTKJqUFAdxl6MxgFUFci/MkLr3AiIfJt/9XfIzNK\nEIhJpDo2UyOIHHWw+xapQRYGfWbJHFEsCqqDETI5FKLMdZOoE5+G2UawwhTMBmreJOz6mMMUYqpD\ncBrlOCEyjrjE7CnjQZi+7JHw46R1m3piRraXIuk5HE4tzHGEKQksIU5xLkrDbBN1ZrRXxuTaEvVo\nmnjumF0xjWpKNAs+wihCshzC7+YwNJHhvowUGjKjQS9iYnSGtKYuqXCJbrrN0jCGo7VQNQdKGXwv\nzMtf+hIAX/iz/5v7H/9JdrvvML9uIWvrjA9darEgaiqAedTFS0sYgwATsUv7YIn4xGPeaaKkIwz1\n0wzq94iVixTUEpJxjMx5HsgGCXOAH0mzMCgxWQiQdn2ciErPFzl+sEPoqTz6kYUrPUb6YEquaOF1\nE0RkG/ueizDROV7Mkz2sUtKa1HIioaGG6lcwslN4wyc4m2C2c5T1Fu1pgUG0zyi0itSxSJoF5GSA\nw2iFUV5lbiGFJIVY3bnPdqJARLfYkpN4eoL27stcffcWAP/o4+9hclfCmdThZIl9qY1tJOk3xxTT\n64hylaigMSwvoikZtm2Dx2cTVFujKk0IVvOImW20iM+cV2SsLHKUOiCmzpibLSLWtpmuF6l1D4k5\nHdY6yxxqVWRtgcD+gNBU48DbZaWSIbYFlhRlLB4ROzzBttghYWQZ6C1KyyfIPmpB+iSt+gHRWJr5\nvSIz4QbZlQGaLtBzo4hyhMGcS0acEu4cIsV0QveXSHauEz+aYzIcIcZS3C4OmQWXOVlt0ij3ePuN\nhwC8/wOLSGWbvXAQ9B0yobM8bH2dp57Js1V9RG/uEuVRm63GPPPLb7Mcfo6bN23OJJtMXAEjJZN/\nIDMLmvQCazyhi9jGNsX+Ga5LIY52HxF9FERrRUgchUgEFbaeSKOKJgevthAfS3NmdwfFXeB4z2Rw\ncUC1VMXeqdPJxRi95RM4WkZ56gqx4wrnlz22kxaL+oTkcYzWcIi8LFDR1vn6oMok7POAVbxbW3i5\ndcKqw2U3z+xelqEeI1neQRkPWF7NcW85zcqtMv4TCV79wisAnOYSm/9giWZGpf4gzGYhhLvo84G2\nwfG8QCOygv/VDH5yj3hS48QEht48JH1WrcexEvdpFcJMAwZSPUVk/3E07tHwHDo7Mo9dWic+LBII\nzbMT8gkOLiBVA8S0BGaszCyukKr2cSLLLIRTnNwzSMlt+qU6jylxjqIFNuQKoXiTxkGT5XoKozxm\nIVAmGElyAhMv1UW/OyW+WGHpxhW2vAuIZpCTj0/Z6Jio5S7j9Cb9+B7l+6dRRBmjAFhlVuQo1fl9\nxH6by197m8x3LrFTh6XOBjeiPaK10xRWD3jSsHA1mX2nj9VZILj8CrWeSc+SWTu/zqNXb6LoG1y4\nf4XqROLiSZu1U08i5kqsTVW2M7dp3TvLcaFK/bSCOM6jzo05CKyzsq1xd9Mg/9UxGycPEWsfZJa5\njX2njT8zudE2kbgJswPmcyvceOuAk+dPc7x/zFx3BdlUeaC+TXjwLD3HpboTZ3tllw9GVKoPb7ES\nGqHV57iZdNnMv8Jka5NiJM9TvRZvnjjF8VTjYL3GqdfXuF6acXrxJrckuPPyIxLPf5J0QaK+9Bir\nByq3K0G85WvMxwK8NW8yb51h+96E4lNJcnc2SH3QpfVF2B1dpFI6JLFeYfZ6klzmkMWUyc3hAnMn\nWmilENfkx2jEHBqPLVC+e8j80hnc2yVqF5uIRyLh3HXq3Q2KQYd3czJb5fMsFm6ya3+QQPeQXOoi\n6bnz9K5/mTuhEMU3Sxz0uizK7yXzRBmp8hDtoI88l2W6fZ2p0uT8h3vEMl0mOyUKSoG06nE3WOCi\npnPPO0Wh1eCsf8SDnsqZcoC7rQDTtsXtnVv8k3/yM//lX+f95q//1mfOr5eRAjMyiswoXGSsDyh3\nbWYRhVrSR7JkkuKM0SRDxVKYFhVcA8bzHgmtxMH+gLI7woq6SLMYw7CJ20qSKKbptOvEzAh74yPK\nuRjtIWSFOQIHIZRUh+6tDNPAkFl2iXq1z0AZMpeS8PMCmmMgZjw8MYmRCDGtHpAqnGI5auIIcVJd\nkxuNMfKCRt6epyOIjOwY5YUIkUaQtjIGK8VQzpMTPbz5COpxjIkwJF2eEHRMYpkcI69JOJngT/7y\nNVKJMidObDAKqQzqFh2hgx8LY3gNCOWJRAwmSY/GzhHlkYWeH6O6Gn1XISeN6IYh7urYxQTeIEwk\nEcGLSvh1h5g5o5Y2ydJnNEtT1HwC0SypkU1TiZNihupPOTKTpBjQl0zW4zLKtMlYDNPv6yQXluhF\nBYJ2mTQa3bxMWO4w37XYNcMkIw5+ZIauGHiKQ392REUpMTE7mIqIOUxiBiEolHCFGsVuit1kkPQs\nghedUTiccty2eeutv728+vud+/S6b5C2De7GwujVEeXslHjeJrzv0Q0UiOe3WUtbDM1NNtZCHO9f\nZ+xtMk3XeELpw3CeoBhje3aTag+SzRiip2CU0mQPH3ArkECJW7RqD8j4CmokTyQygp0hAW8FNbPH\n/rSMk1PoRx8R8sosIHAvW0aoHRAz8lRjERJWFzOqsrznYwwSrM0fkVM2yIgUpIxuAAAgAElEQVQj\nGvMhorMMcyUbveFwTuyyd0Yj1qkiun2CAwu/miM6vk5zRaPUTyIkq7TSCvFyg9F0mZuvfRmA+Qvf\ni75+H1tWUTsjzrvLBIz7tEIryMpNGjUZdT3O3OUJTfeIol6nXUxghXyigQwrpTiz7pDO8hpSo0Uy\nlGR+FKDgxKinVZxjmaYwIrCYYiE+pt6bESkt0tl/QHe6QPTJKAu7FmKhipwr0sMjNGzTOW0QnOYw\npX2MxAqh1lUerUNimic5HBM329jJIvmIjTfu09FscmKG5OGM7lIU329zoJQZPhiSPKXQUOPYRp/O\nhWV0Z8jj9THh9SNc6xT9+n2u3HgEwKXCj7Hoz5O3s2SWm2hHNo3N07i327Q3POYaIUb5HcTpKjUt\nTd6aEozskTZP0ZwcMrOGPDytIocF5qM5dpv7FLsSzYJFVnlAuvQUQ6dBMZEmYoeIFfcIagqLZpGe\neY0nRjq1uMrUGJDNBajkdApXZ2zNJ/hwN0+8m6CQELDiIpV7Oe5JXbJpkU5EIrvUJV4rEutleWTd\nYDxXIjpReU9/l8alDzG794BdcYmI2SO16hIZh3nY6LG0eYK37HcpTIN0zAV6c7e4+ufXACgPKxT/\n7Dyh+QXKps3YSRI7zjBoHdNb6VJgkUzwgP1CmAlRjt06VilLEouYmEDPlQgOVMpHYxonHIz0jNqj\nAFmnTShWYXw/yJ2Eyfq0g9yf0j7VIbI/ZlHJYptvkB2cw8v0GMTG1MdNJkcy85ym0fZJeA0K9QJ7\nR18jsvoYDSNBOxHjdH8b//4e0UoCeRJnu7CPu5Fk9ShNa0EnXQkyiieRNYnRsMWjiIV6bYX5kEVu\n0OHNjTXKt30WK0kcsU46Nse+5fPui1/jyQ99mETC44EvUryaIZL9MrdLY0Ipj+u3IyyVLcQLSRYt\n2J6f5xNHNZxIndSwycZjIxpymhNSkmlS5d39Ogd1m/0TDp3dE2Qf3+NE28WMhRltedxjm4+2egTz\nCxwVo5zcNPF3BORpH9ufsNVcJiGIrD41ZfmOTGthHeXBFqsffz9t+U1KWgGnOEYsHrI4fYZMyESr\nthBCB1wsJ9kbxSgcnEVS28iXuqjDANdi7+Xi3n1udmSqp0dY/TqpoYvfWGH6ZJJ4b0b7bpS14E1e\n+nqNX/quDAfDOc6RInpPZaucQJ8OOTlf5+ZXn2ZxYchhIU3DTLN33GVRu40bWGL+zFdYv3qGdx9U\nCXz3u5hdgf7NFeaMMTtbx1Sru0Rb25zebRGdOtyflAjM3kF2dXaUEtniHlrro1QT2zTlARceniC4\np1ANLBLzD1ESKW65hyRfe5uG/DQRpczorIHVPsmWM+DU7DWuaGEqcx/GH3bpyR4nO6c4WA3RbpzC\nKb7EwbUjKqfnyWmv8dI4z1PBBGblMmHhI0QKdVZv5HgntkOyNc/d7a/ycz//6f/yJerX/tVnP/P0\nExdI+T773SDR/Iiy5DIIpRlFPCKuSlqaELDLJJMRZimfMAOGnR4BvUx/0qC0Mod+rBFUVKqxCcmo\njt1NItkK0YFA3dpD1GIE/Txi/Ihe28eXasTMJJGKSCcxwZz6uJEUWmfITA6h1GY0giH0rSP6RgA3\n2MU0RPSQxqymkQ9o1MUAiVKMhD5Gt+7jRgyiIxm9/gBHEcgrKmkRYsUqM2FCY88l4prIToiAOIcz\nGNGxDHpxG1GK8Zd/fRlxMuajT7yXgGWjOgaJpXmSvQk9T6NiQrcTZjLzWJybxwmNMJxVFNtCTej4\nLWgODJKiymjokMy4tPwh/Y5OUolSTcQoST3qrQq5uIehz3BnbUR5jBHKoXaP2XNUAuUmU80m1oDj\nyphJexG53CLSH6NjIGgSZsNFGBvE2kOihkc7GaGgdul7Nv8vd2/2K0uCmHn9IjNjyYzc9/3k2bd7\n7la3bi1d3VW92GW3bbBn7BkJCRmQsAQvjMFjnkZqgWSQ7QGDeOVhpAHBAxgzbtttd7eru/Zbdfd7\nz77kObnve0RkZEQkD807r3j+i5++36fvk8JhvOdL/Kkg6tUIlzHHwSFgqYT8IVyzPn7PGMOdx15Z\nYA7n9Jwwdgsi7iWjlQyf//UPAfinH/xj9CM3rqZDzSsSliaElzlGnTaX+ioZQWIYEWjaY3YWBVxn\nVdrKOvfd59jSfS5SHZrWAJfixifbTEIGW1IKJaVxMT1hNS5QiPrpZ7qYkxWiiQ5Dy6Zj5cn6oBu+\nxGPdBd8JA+eKnVe7+P1dDhd11GSe+PCM0N6E4im8XoZxpbIMgwOMmoXpivG6b1Adlrm3XAVxxCtt\nyY6rz2Ukhe7tIGgh1FKesplhoQxJ2SPOzNusTJ/wqnuPN4tHnD/20v/sMSe1IwB+95/+MsteGEft\nogcKdE+nJP1T5ukhhdAWKafPtZLjWjzBFVynOA8QW+vSrmXI5o6QDod0ij7kmwkut00rHGB6OuR6\nvYZ1WqAUEHAlmgSvbcpjB7W/oDdIsxvxMkme4pNByTZ4ffk207hK6vSMaSzCzqRPqlPAKQ1Ydzwc\nXSVJrORovGwT3dToJ27R6zzBkTa4aqxgxRdkpXOaaz38X/mZZSfQmxIPqNhCCnO2INQ2aRfKGKqH\nXBuOhyYpZ8lHA4PLl79I5u5sP8C93sbszMm7wG0maJhN3ij0yFd36adeYdTfRewOWO+EaCYmhF0T\nPK4y2ckey1tpYpTpWBl2DIlZd8RyJ8do0MNMbnAznxCaR7kYLNjkOV9HHVqfFqgONTZ3h3ymuInq\nMaqKDedzznslrH2F9Bcp7LyAqCvo8wWHqSt8qzahZpy8NuTaWGBXdsntR/l502Gr1Sfr8dKerTIN\nq7jjL/FdCeyNRfS1As1wiJ1RhfDqHfyzY4JiCOtkj6nvpyTC3+Sj/1dvjv9bme/+R35UZRPf5JB+\nNknfvSA2O6Ww/FUuzy856Hk4cVrMuh58SgOx1aWtbzA971K5aJKrd6jMqgwTEm97o5yrRyzFh0Sk\nKMvwzwiGxsTLeZ5qF3zDqxKv93ladFC2U3TsBQebU/SftrkdOSCzEeKiK5LZraM+Nuklg4S23XS+\nTBNMvkY7rlNctXitbyOqKtr0K4JuC+f0IS/0E4o3bSpCCKvzBOdcYpmYIclZcukoyclrmslvMfzy\nGf5vXHN97WIcC3Mxe8YSmcd/83P2fv0+u7ERNzdD3n9gUfWHCb6YMr0Kczc+ZrgeJHX4gqaww/Jj\nmeNAmUs9SXIY4IkoEsiuMjg16MyTbE4LzNfDhGsa0U0fZq9FvrqJ0Dgh8d6MVOoBnuxLtK/SZMSf\n07ox6Shj/D0X3fkHJDljHtOZJt/Dk1HpzRyacoujkxY7/juE2lEex7ys6T206JCzRpK19hMyu0E+\nf9WlPu4ReatKObDN8Sdu7s4nOHKTI/WAgvuKB7VN9MA1q/MWodkdVtM1lmsa48MEzbUpT//mJcs3\nfpegPKHuarJiq5xG/o4PH3/A51dHfFNL46zH8IRPGX0V4faah68OHdRUhbPaKk8TKT5sXjCZvocx\n9XPVqrIqp+i8m0EqhVhqGZxci+bVNh5XmGr5HrfmfVohidRnQ7LZIPXyMXsjL5nABa3ilLce33DZ\numIY2EbsxPEZO1xYEv3YI94abuF552MeWmd85d0k7pSY9Gt0zwbkI/to5jmnXZs7Q5mrs7t4HtSI\nn83BTFMNSFz/vIq6fp+BPGA6CZEJPyJ59H0s5TUvql/x+7///z1x8P97iPof/rs/+8HvPNhGsMJE\nkzbjikDL77A+7jHuJlBGMpari+GAE5bwmEuG1BlMVYpxBRYjer0qy6jAwhsl1rYZji0KskRvPMPt\nvaEYldGtNdT+iPlySSmeRRIshk0RM6ehncfY21TwqB568pI1f4LG3I04qCPm/ZTcKXwNjdh6BLdr\ngSm4uO52cAtDVv19pksBZWIQyAaJWW3sQIGh0CU122KamTEfexEHColMGkFqEiguOGzNmaxJLFtx\nPIaDx97lLz/6a3QhxHvf+z6OpkHaQ6/vMEqa2GOTvmHhLYlklD7zep+5rLH0BxlMVFTfFFWMMFWy\npPwW7aCGe7QkEvAhu1IYNsiKzsg1IWcF0AQNyezgiyQwG34M54aAItKfG0hLgfwInKSNToRlf0Yg\nPKVrb5O2XISFIGK4RdurEg0NafYzTHN+eoaLgt/HqGOi5BZU3A1i3hUuPV08ZCESh+mcbkYmNNFY\nFFKkK5doop/AZIxiSUhiFH3U5ZNPPwLgv/ijf8Vf36QZ1w0C21OyRzZl/4B+dxV7a0ROCBKxZwxq\nECvCV80hSWMKuRHljIhl1dhzOyTrOV71gtxPayzmVxz7hmz5UygnFl8UbHK1Cb56hWFnSam/gj26\nwjWG4WqO9csbHF3lYOU2SvYV5SMTK6KxKvmJjZI0akNUcQ/c14w6MTYVP0UlQsSn4iQCjNxVCq4J\nx74+B4Uwj6UQfgkSkySp1pxX5THrUZto+JTL8zQbty7pSj7uuP2Iiwb6rTzy8zO+ujkDYLuQwzAz\nbE0H5ESNirBCYK+K0gnhnAexoiPyHhF5NkLtuXGMKNMrH/XiNS3uU1kMyU3GtJ08tp2iK3iJRDWG\nkyw54xneHYellMesNZlF7jJdLrhdaHJ66kfTQljja5atA6Z7LrL2KTc5D9OTDQZFgYBL5mZhM/bG\n2EOnHvKTFCb4vTo1b43bhoQlpzCcBdp1jGbKT07KUfa8YqscQnDlSLWrXFgZTHlOOxfl4YsAN6QJ\n4qdvQ9slEWg/5vHhDQD3fv1D3plnMN0dBrMir/0X5G5uMTEqvKq3iKy/S6/yJfPNGtG6l4Dg57rh\no2w1aN8J4X9+wmXEZutom8lCxzfy4NGO6I1zFFYS7Lw4QkreICQ2qZkBHsxHNH1DNHNEVNhif9jH\nGUcR1jcY98usSn2c0oTmiszcY2PI14R7aVquOcknQ9qCwKWukd4ckE+6OTrpISYHSBEJtXGLtntC\nMurFGGcwTJMbT5O7jSkGGqO1OA23m8NrNwsXxG/X8S9XaMkDvvyLnwJwYCYJ/22Q3FM3h6Vt7Ecv\nkNe6qO57+NdkVksCZEZs1nME11T0Z32C95bwyCCrlhgFeoTuh9nd8jJZpqjZT9iO3mG1NuLJ9Cse\ntj5gUK5xue5g32hMxCyufoydQYl5RqF1+IjelURsZZ1o2cWnsx6bB6d0X7t5GugRbBucrcd4e/IY\nb2AdbVRglpzS8wn47TkvDRfrlwL+1SHbAYunVprBfoeV7jcouoZ02SB+neSme4QY0ZgNN4lFG8jP\nQvgCVbYbOfTAACuW5ss//1v+g2//Yy6/SuCT71AMLihPa2wloeiSOEvHiX6+Sj25YGqf4VnVcHbe\n4VuZGK8vQR4n2Ag2+Hp5zKxrkl9PkXrex7MMYfSOyHpcVLtdnPEBL1cHjP/WZKOXpPntFpOhw9F+\nlI7QobZb5KHuoZcvkE7WOa9EWXz9BQffFPBrOqtBPz8vT8mbTcwNP4HWnI4cxegeEXrnHRqda9ba\nPgrSBG87zkXZRyxnc7VfpuUc8G5qit31IX/j56R6C9qjAMf3DcSzddypLxgGvUTMCz758Sm/+eEt\nGrMGD6tbPFIeMz7N07+v4kNDX/iIry2ot2vs2WvkNk7xuPtcJ7Lc8TaZawMmmzavhwHuZgP4k09J\nN9O8CF6yVW5xvX4fIW/R2gyizx/z70pTDrUBb9zz8OX1fcoTN4XYBlFPheebWfw/GrL8DRVdM5hv\nJ4i2HlPRgnz/gybKsc1x+zX1YwFXfoWymmCs9vGr50z3YgSnNT5V67zrwPPGFd8SVVr6jKzwHlYY\nzrpp7s1EbqXjNM6jDAsevILAcfmY3G/G+MlfvuYP/+A//4cPUX/2x3/8g+9/P8EgkmTZFNFiAt6+\ni6llkpc0Imsqkw6MpSRav0lIHDIZzAlnZngmEVRzihRfwWiPfnH6u9JHFUPM2hLqWhNF9XNsC4z7\nNXylPmkxymDQ4CakUfRMGHqWzOcx5J6JIlyhKHHOrUukRQgl4EbyzbnulwkTojlVcNtRXDctYukB\nw1GB/nCOeyvHVAgzm7UxuhEKhSWy5eNw2mGZSzHqtNCcMa65jc8ZcDb3Eu4FMfVr0gERT1Yin/Xy\nv/z5T0j4opRufxdrGcBcDFguFQojByEXZxaZ4T1ts3BbeDwO/dkWWaWJ1GtjakEQQ6iRC1z2iH4n\ngjB3YdoqHa9EMSRg6BZBV4KWZ0worNMLqig1nX6yj9z1M84UydoBBmqPQGAHux5HNYPMPD4CusrC\nXrKIq/hVk9YN5P0BlgGVnnuIexZhy+XG6F3RifiROlEWQgCnVSUUTKO5pkQ7dUQrjctdxzddw5TP\n6fvymOMQAdUmqhu4XBbeokDzdEyzX+feP2vj+9LFcsMh115nuTunMowS914Rrlq07TZho03ZPyfW\nl4mMHPQHCbSrAbZ/xGKxg6MNEP3rzNwDmmxRSSe5J1QRl7vIxTKGGWUciuJPrTD25hnv9diqFjhz\ndVCnMuNZEc3T5mhxRVK6R8y5gsnbXF8ekZE0zJUZL/UOSjaES44ySk1RAlccKlH2Dqukd4ugLil7\nRRqnRd6Nz4j0vPhlh3akzrY3zblfxfOqys4baYxjN+JKikHNjbaRgGqQzJ27/OhHvygO/8aD38Vx\nZBbbKRotD6nhAtmT4zwYQbXgtHOOmXaRjQcZSyqJ0CsGSpiDjJvmucD22GYYyOIuShgxh/vNGVIp\nzXTYwJe08R0H+SoYZbUXYek5JDwPc+ECXzrMmnpIljyjQoX4xZROZETk1R1WaKLnu/io4Q6nWE56\n+MZtPP4Ry2ib6LFJMhrnuFGkPmmzvXvBYFxltbWJkj5DM/IotEkHDB4t95BTEzbiZVY9GhexOlud\nItPVU+LiJlpzzKU7wdnTX4yP/kYpRTg5pjHcZGa0CQ4d3B8MWLzKoYtDOlUdxVkhkh4w2pkijm8Y\nGTbbyQ06ikS0uM2a1OSxc8mBLPJxsEtxxaBc3yUf+ppKKYq8iKHXnhEaCVj7c9DewI68QAxuEmmJ\ntMMLmokXSEaSQNukMnmH3YaApE4ZjHboDD5FtdeJ7KWozE+RO2/gqiU4dUUQJzP6izJ7kTWeTybc\nVlOEIh1aTw2WQod1MU7v3gbC1TNqnjqyZ523g0OK500uljazfJ7hJ02ePfkUAPW/zvPt31nlqG7g\nzErsP3jBacBHax7jxvGgt54ye7xCxLXg45MEKx6V2bmCc1dmfVTmxh9BPYzz9ckNyUWbzckBei/I\ncs/LdBBjvBNm5PdhxGXc801U02H9m895Mp7QlZsIwSDj+3G2Lwd8UYrz7RsffSvDSfwVO5lfYixE\n2ZrqXCTvoPQec75dZNyv853FhKfrCT4Id3nm3iPZEGjhI3Tbg7VQWb+qYsQMDGlJJHCOTzI50R/S\nbfyEu+MIvpjIiZ6nWOojmHsUnj3i/378jN/4vd/EuJry4MFjHptdhOAm2rDIJx64t9jj3B7Q6fsI\nVxqkJgOKmourtsN+SyfnOmZceINpccha2aApxDHcKt6Vx3gMA2vbRFn0aO222JEsQpE0voUX3zyN\nvDAZDveZn4tI4SjW6cesx69pv3JzGRfRnQjbapJnyzrR/vu07hXYiV1wOtQhGaM1KzCaVMARSaoK\nqhZneD9CJaKw7EZZffNLIh0/bl+Uq+dDnIMOp3//Aad3V1DXG7zT6xKW61y82CJllHgWaHP8d0/5\nT/fuYxTfIqGNOZot+J66QAglWZlWuewr9K7aLMJ7WMWXxHtQSdu857F52agy2xCp2Qb/RJizeF3l\nem+bwzsObitOML6D+fMuTvyKVa/E6DOVwEEdzd7n0mxQ7AR460Dlk6iL8cs43tcxMr+aIThz87Sd\npxQPE4w3WE0YTP7OwAjpaL/yTd5MvyBYFvGdNXj3RuVlNUcy1mM53uHhoMdHwV8i528T3V1D2hhT\nDj4in3yAGPqMUnrIV/UwkcpHrK4fYv7ku9x5y0b/+ZyPz5/zz/9tgKg//pN/+YMP7+4QWfTpdOsY\n9pAVe4pLyDF3JehNRkTnE3qSTsaZ4/MWaEkDGItI3ijuWIhav4zuzjEPthkvXASmU6yYSDASpzsy\nsCwb2ZtDHMnIHgVx5sFarDJb2sS7MZaOhZOp0h6Hcdo2CdHDaFlD8EzwBg4IN0Z0bRlvFISJhAsI\n7wTo6lFWlAbRmYgws3CFZHyWm7FbpzoY49vfw/XkhpCiI6RSDILreHUddziFKrlYxv1YQoXCNIJ7\nmuBf//RH7G/d5oONW1hrdTySgMfW8YZjSO4bksMUzaWOGFfxery49RCiPsZt+BkFZnj0JW01z7A3\nYFtZwefzEem3GQgOkfqA7jjINNsnLfrpiz5Wlg7XIQXX1QouJYAmj5lpHuRgnIQ9YO6bURvIZKN9\nvJIPR7CJDrvMhh1SGRX7WkcYTFB1FwmxwUmih2oU0FoyitjCWQ7xyT56sx4bpoERzKDlFNoBE1Md\nErU38ARczF2XyKoLl0+kFfGwcDX44sfnDGdt/sM//hP8h79F/VgiHHyOPAkTuLqEgzeJzASutouk\nWGHRaREr7GFjc6MuyboHdE/WSGSqbB2vcuy6YSOqYV3FmWfn1BtdCs0C85yNfWGQDIp4r8f0vWUO\nZIma3mAw1/B5oiSyJumqyWBnjus0RmSSJOA+xr8fpKrlKQ5lasV9rLMGlikS1ZMMZIvkxORIcOO+\nURHTC/qXOl5jgisrc3mtEu75ic3rzJUQ7pMxMfeM5/keo+k6o5spW5kT/H5odb1cfHXMs+NfQMP3\nv/OrdErHeCttxmIOJfWKstXmnRa0Nk7ZSPuIXRU4abkI+abcnO0zm9ZZVmP48jfEBYPZuIoezJI6\nf46iRLheHGPGB2Q9XvSYwsaRgRC9weXKE3Ym1CZDJpqfXmIV3+KE88EehtrGNHQGkWtMyUu8alPv\nxUnKVTrB2wwCBqqk4xy+w7G1pBIUSWZMFuksylmSldGM1n6czk2YheYDdUl3scau+SWVrk0hGqDr\ncZM/VRiqJpOrLu2igtYss+rq8/HjX+i8f7TzO4RLGzh9gXKoRuTBBt0rkb5/yX4khRrWieR6WL1N\nooMBSk8jsvoGs4sRd8w0jd4X+GtetKlA2zDYD75B7Uxg1e9nkV8gfKbyunWJtNyipMcJNkOcB79G\nmgTxjiVOpCOC3iEHkSShQYML7pO5/wnugI7gXSdYfkKgpNEY1Qk2LVa1AudRP9t3BApumXP/Gd55\nFM2WSOpDpkUXR49n5NeHBHx5LowVrJobIxsjpqYpBUSUqy5f3l5DsEzawwWeZZqnn/1CgcvMif7W\nrxNyOtxaOuBeoeB0qIYn3C5nWIlf0JjEOH4YxLkwibx9ycXuGlvtx5S3HnDr2QzxjhtPrsP2UYzz\nuYyw16MsLAk4HWLPl2wVyiR7I+Y3fvY9Bj/W32Bva4TwOsU9QyLR09DtJNNBlNemTWBvTvjZlFTV\nob19TuvSz5uihJSoEAuG0BpBTrYgenTKtPyQYekJhUILxzYJ+1MsmxLV7Anz4pissEJ7NCO9zGHO\nmswKMrmlj8PdIgH9mmP/hI2UwOkcPvnZ53ywv8JUUnhkrvFAiHM2egWvtthbnNO6OsPYqJFd26Q2\ndSHF32W8FeVW4BPOJ0l891XijSFSo4n+YAE3HYJBg1d2Cb1cwtUQyEpxpqcheq423uYtIu0lz73P\n6XnDxPwqd7a/wP+kwfH4V8nVNhEkkaJ2ibZho5+eEutk6a5cM3vWpZcysGWF3mGC3fQM2TZYX+3R\n+3uL8gcOi+NzpLjC0DlnVo0xLyeI346yOorRdV0zGxZ5L3XMYd3BOfIjLW+jTEJMvjNEdv0VX/6b\nJu9/d5+dep3PjTbf3XR4ln+b2dFLVt19xJ0xmasV7Ls2SnOV4LMFuVwe46zF5ZqbX2pu0kg3Kfff\no9l5Qvu+n43lNU7rhn13mmwvhOkq0ZsrpH0XbB7vE9yLcz304810GS9tXJcxDjSTp9/r4PrqU+yS\nF+nVE3T7hkrMZPJK4OKtXarTCA9xcTiLkm658P7yLf5+I0vkQsSqrRAz/x6P9BZ74gIr0eLz62Pi\nQYVK8zZn1RaerJ/QR17s4CFW6pscv4bZG49xXaV4dnDB8UdV/st//p/9w4eo//HP/psf7B1sIHb9\nSEWHyHyfbnyBumzRXkrYaYW0EEMeXyNt32bineOftZiEN5kuKix9Q9R+mKjsoRCZIzfjzAMzHEHH\nGtbRBx5MxeZWLkK92mYcl4nobdqmQiC64GbhIZO+ZhxIM6t3yYur1Od+SsEFdm1BRxszXAkiz+oU\nXBFqySFh06F+PKaUb2F7ltTcc4KYDLtj4isy3rmLejOKx9DIiAtGKQGXBLnGa64nebZVEUE+o1ke\n4PUksb1ATOV//8ufsHr/TdJxFbHrZzaOUnC7mSVqjBoF9HmPvOynIpgsul7GkkgiN2cekgloMrPZ\nglCvQ98jogQWLLs6i3CAZcCHO+VmEGiydi7hiUYY1N0MhyoRzxCfW2XoaRFnhsfjxj2u4dVCKOEo\nsbiFMNAYGwNUXaWyaCEUM0zGBrZ7gNtU8TpeLiUPS8XEaswIltx44zpqq8REkwkEY6iCQ2OkYI8k\nMsMh8qCAs5hQd+kU/THcI4u6k8AyLlGbW/z5T/4VAL+89z8zs0yiwim9bJ7Apc7h/hzN9mJEzijN\nBzBf0m27qDTGuGI1Zt4V7NMs6XSFlFbEY2uchVYxGqds33MzeTQgMT/A/+AZgp7GaIaxgh5eVJrc\nyks89wZQYyJqeod6fUEofoSd9xO42KPnlWgGJCb5BfOjEMPYFSMZPJEeu54svugR/ZMkes7AmSco\njMMEdnReLtrc6iRI+6eUIxKl6ZRxIIw7mkFMnHClRVhsbeKrVRhIAgeihUfzcbhYkq07dNQaTx8/\nBaD03i6L1gHjiMiBNqJVTBMa7FKzW2TlTa4vPXQ9HrLaCbGtWxjWmEQunkkAACAASURBVKkTIJ2s\nkVhkmK65SdomHv8KTjbIS/OMlYWC4exgzka4l226uQKaMydRTPF1KElB7ZHO1bFmA5r1+yzy16zX\nFoSmYaxxGntFoa/YzJQC6xaEEirJWpulquKxRexEDyEURH3uwpSrKNMEEfwQfk3tJsSef4DlN2nP\nfER2lwzmU6SFj2bIwVVJI80uqG6toy5v2NPu8zdftShXf1Gk3rqfJrX1axj1S0JrArm+TGV4Tbjd\noBGX2boGedImPXCjDXYJ7W3Qd1ewRgUm5mdoE4W2AtKdAPmbGdHWgmt/ieXep2iKm2HGxWZYxV+Y\n8nw1SKd+SsS9x62IjB5b0ra8rFyu8rQ9JBl3kZxeMlFUOj4/+rzK/MJN9mDOVfY7zAcJkiWFjeUc\nuyyhaX/HWvce2XSf2eqCgAITJU/OqBLcF/miM8aQVcK7nxHqbzIMudAqNcQti/TndTK7EmtDiLle\n8lc/ew5AjhAP7m7gXH8T5e0OoivD4NEZciPE6cac4fNVZtEXzLomb+xOUIUx0Sdzgp043nwfQVR4\nXVNZSa3ST8/wCl7U+Cvanxyg6jMmyhn1xF0iyhpm0KSV9bH57JjHSzfmOMskPOMiMGV1tURFPGW/\nl6US+5yx/jYz6xGe8XtY2y6uzWNmV1uE8mH8p18xu9jCv99huLrCQ1+I8k/3SfqqvHphkznIo5QF\nTiK3UXpfINaCRFbbPHfnWJ7ZqEqNnGSjVDZJN695fBGluHXFj374gn//wQO8vjq3iwY/0oNkK3X2\nSjvY4il2USf7LIG/r2F8a4inE2QU7nP901X8wiPsicZnjbcoH0QIa2nkrTyHNRl5zURvhIm8VWPW\nnbO9vuTCCtHWD1lL9xDHBp6Ul6EyYmLJnNq3MO8suWX8NeIwwdMPA7w9rrLcSNGt6Cz7GxhjEas+\nQvcO+eXxXa4CT1g+eY+WeMbGVEbvSmT3slx+EaI0DrD3lk1Uu2L44pIjdwG5obIRnvJxeYA4nXPr\n3i1uZp9S/Ta4WEIjwec//pzS9i6X72cx47fonGVZCxwRt4Z4D3xotQKJezWSR1ucnXhJbp5TGWUQ\no1kKep6P7XO+dSTR711xe6WA+3KPE7VHdvArBF9dcbl0kN79kvTHN3hWv8OrDYfEiysi5oCKf4cH\nTz/FJMhn96eEJy+o9z+ku9VCMB+QWsbZ/9KgsxUnrHQpSRaZr0Mk5hOelRrMv04jVl+xMbE4WvWx\nrHepfDPIUe5rUlORvcSvcNKbEHmdZzv3lJWjEfp7O2RetEArMXzzEe9H1uBlj/RVjK8aH/P7v/9v\nwQHxf/+nf/aDf/TbOeq1HMokSszVomL2WRFLjEST7GLKqNegF8ngGl9Qa48ohvOM3XMC7g6OFWRW\nCuGqqJiDAWNHppoYoSkZAv5dVEFBGQVBP0VWFoxHCdoJmZWkn941BB2ZiX+CeRMlvT6l1mthj/u4\nFwXEaBJ7fIGVUFjprtESwOUVsNwzSAUYDtzMJzEW/gzavEZRUii3Ba7tBbfXo6TcQy4NmfBAIxHc\nwzTdCJYbIdnFQEIQfHjsGKJ/RnjY419/9JTq5TEffuchnRWL/FJk6pFxOn4EeYTq+LiYucGXRs+I\nbHX6jLsyhAVclk7PdDEoLohFEkRqGouQi2lowrypEI4IuIdeekU30ZmOMOkTXg6IWBLXvhphNU2k\nH6M5qVGUNnB55ug+hcX5Ga2gSUgPM3J6qAmVeT+MboioM4NRcYEqRAnlHLJzCWWQRYq60OYOk2iL\nnBGgMhuxyFkkIjrMO/jcPgbanGA0jG/Sw68HuLAV4mEBaR4gvKLw9OjHTAcW//H/9K9ot15QqWmk\nBwJVb4Udt4ebl1EGizSIMoNmn1RQxLu9RXJYxWOOiIympBzoiVOCtkO1PSft3+PU3yUbt8h7Lhl3\n3kBfAN0FnjUvxbGfx94c288WVPwzUnMRud4glraoTUs4K3WirSmCvGA9NOVKq5IdCWieGLFBgMZC\npmpJyPsBbnmCNMcnzLQjGMeZ+DWyJR+2p028F6E7tekPREK7U861IO50GO3117hTb5JzWbxuXKPt\nJTHMIpFilx//7afUq3UA/sn3P8TXsdj2zvh6bGH5LGIVEW7fIDX9+M0rDI+Csb7CYDJF9flJ9QwO\nDZP+MkxPikBqgrxQkGYjVvw6y3Ccweswm9EqLjuH4G6S9oZYVBRq81fYySTJ50Gidob+yiXRqxlu\na5PRGxW24z6Muod0389k5yWaeECsdUE3ozGbgyEW2Fa7SM0RiVANb+UuZ4FHSJseWtMu7rnKSNBZ\nU3vEClGW3QZ+X5jOVCVdadIT00xvGSyMGbn6FvOoi1igzyePvgTgd763jtO/4XVQYDhfQ/YEaWsO\nRmEXa+nCDM+4jC9waHG1sBlFoGRf0BmW8CJQDM45nhlsTUMc+aMszBriYokwniKF45hKDpc6pPH1\nJncWT1FWouQyI/qminUYwJDPMfUaizcVWvYtrMkaa6MucUcH/xp2fB3zmUW/18LnK+MrThlc+DgS\nP0cXi1zmewRDC1Ifd5iNb9HoyzSjYyRhhDwukXYNWNPuM0hcsvFEYLmTRv9iTvU7PqYvLph0d1BH\nI3749BEASSvJN75MErO8dE4aKIwZLffwrA0x2ynGpRq7tTnbqsCiauI6jbF8J8BXWgvP+ZiUvCAx\nLlHJ/RTx6T7KwzFfG7uo8xPmJQHnMsva9pjmoxCuwDXKizonnjm3UhuE1iyK2iuurjfYzz6hpekM\nOscUtO8STVaZ7Yr4UlHWyi666TgpzxENPYtXjNFae8WdVw/IxF/g7vpJ+GbM1xdIwiodakR9RTbN\nDs88c5TePY66dVZtkY6q0toGx/Ew7b8mtnePlVsd/No3+PO/+j/JfvPXSPi28CRrrCqr+FtubnKP\n0S6W1N0foIZf04nP8VYNFlaf2bMGmTxcR+9iS7vcLzVxXT2in7nN/S8dZnk39nTG23crnMvrZKYq\n8lGARLjO9uZt+q86OA+DLKVTlCd7XF4pfH81SPboJ7gMkboDsajCVWiE/GyHE0ek+L6EcHxC8s05\nJPcZhc64Pp2z+7afs/AVXus2enOVJ2cW395SOH3wCvnnB8welpicZAgqN+z0huh7bvrn2zz8boEv\nzj7j4TJGzTRRRxqX9qcc/qTKb/8nv8alUOMN7YbAKM4r45SL2jZKP0ignaAaP6PpqpAPefnprT6m\ncEVg6OVZJ4B41qF2d8SDN/ZoBDZoXH1J9vW38JkTyto1w3mM7WsB+4N38SwckidP+eSNIPdyaV57\nlrCSY6xPubV2giO/gfhaIHb+nFTiho3rBJ7v5xidFTg4esRQyTPtnXFjRRH8EyxVo5jwsLx9yL4S\npRjXKA1CaF+ucdQYM4s9QVwNsz3s8jIRI6AIuLwxvrbWifY+Yn9tybi6SUvbor8n8Pqjz/hnf/gH\n//Ah6k//7I9+8GD3V3DkJmtxh/O+hV90c+lxWE/7Ob66wbMaYUUrsdDCiFEZqe0l6NaxwipTOUJW\nb2H7lwxifqYzL6rLS6bhx+Vt0DSahEIKA/ccx9piPDlBkgPMr3TM9TnDaY21dJxcLAynI8ziOrKz\nQC15cJsTNKXEFgMmS4WUbdO1l+ghD850wno2gdyYIQoeVmWBhhLAihuk3TnsmzLNrkZkd5tQaMDc\n6aOIXZajOIKpULXdKIJMItqn6g1jmR7+4qdfIggCv/pLv0W61UaQkzBb4nYkLGdIeDVE15qzNu8R\nI8SpMCdoRRhZFSJGimbAR07sYw6TGDGdQTBC1jbQtCi1wRS/2ESa+7npt8hlC/Tnfrq+AYGJhRod\nIYwHOCslfK02tmHSNRvI/gijXgYh4SegtGA6JzYJsgz7cBcnZDolxsELlkKciRzBYxpcL2VWR21m\n+jqdmcFqYIJ7rtFXQfPGUNwugik/C/kSwedi4WmTWjjoCwnvSMaY9/iLv/gxAP/iX/4Rh3d/SKXS\nIe1dZzixmJdWINpBjJyTDqS4yeVJOCMaiwbpxR30iJeR28tFvEb0Jo5rd0GhleI6ekgsqnLljbO8\n9BMqnHNxqSCkEzQnn1PU1zGWxwS9dcb1LfprN6i9VaaxOLLmg2UbM54kFX3Fi89DFLU0N7EFMzVJ\nqeAiNazgcjusHrf4srAkaocI2TGaqRj3tQH9mkRfHGP0M4SDGnnjgnHTi169QktM8WlraEGFUVnA\nE+yw0ttlZr4kVtnCWonx/ItfzD68c2ef1YTOyWSLwK1j4to+yfSAbt/H0DOj5pQQhyIx6Zrk2OZl\nsofrpo0m3WLX+wT3wCbTH3BY1ll00ohChGA5Rdrd4Ho9zEJ0kKouqpU+SF1sYRf/BPzGBS9mE5zZ\nFvJuh4nRIDvNY8wsnEQc90oNubZN6fiSU20bp36B4JkTmbdYxqa8fO0mb+e4FMt4CjlWhyG88SY9\n2U1MyTKPwKtXC9qjNQy9grlU0aYd1jYL5BplFHWKr+nD64zoNj/n81fXABxEv83k/SU+5Rah7BJl\nfoQaKjH0NwlMQnRcM/a7awQGQca5FaKXjzhLfoP7m2MCnUs+95TYGrZ4JZm8X0hzlrvB7dplpgzI\nhuJcLSz2HQPTlWZe8RMzenz9ak5bn1DyreGfDAnZE0RbpiRekmi1OYwmeB0LEg4cEv6ii28ninbl\nZUNd4SxWIXZi49YPEG53CCxXSZd1DkO32Nj5inIjy7eECWeuEkk8GI6XWOqQo69ElIDDTPXR1vyI\ntQFCfIetzJLFpM5fPnoMwN3f81F6eg+vL8Ri4cO7lkMceVENHx67wuokz9E8TXp2QeQbBq+6Il7X\nFXfK30GMZhFGAz7VLJz4Cu2DGf3Hbg6Cx8guH2t2Cp+i8NjXY9fWSLsv6Shz5IDDBiZnZ3XK3vcR\nnQmnNYv7uw+5WZ0TCs84PK0QDVp0OKN/OGSzNiNAlPZNkl56SUEUeD7zcZZcMukOkQddRC+cHU+4\n48rhLvS5WMS43z8jaZWQlQDV0SvsUBRPx0XfVDA6K9zcalB9XiDomvM3P/khv/6NPJPWhNOmiHwW\n58SXIah68K/dYf36mtf193FWvOzVG6Tf2cRZdrBdXe57bhOtfcTPzAiz/Ijt7pyBV0VZsVBNnXE3\niRl6jqy7kaJhPrUNzp+oCLtJSqdjvsh7CStBxoU2EdJ8ErJIXPWZ5nVma7tcPdtgsubhl8wqVXMK\nygGEyvik2wT/PkB494bnls23BIOvwm3MyGv24z76r84ZiHuEPSIvow2ieYkNq8PnjMmF3IRyYWZn\nn+KpBLA/8NKtlvCGAvizP+Tz/2PCb7z3y2RrPmIRCzO4hurZZMNTx3xgkrluc3h5wPwgz2z0Bd+s\nBHh6rfEuGk+bOr/+OwsOf+RDEI6xPvay792nuvUl1Lo4H8Lw/ByXRyXhDDiXzpA7BuOGzYuMw689\nv8GSZFz1KON6ne3UJaHRAP/696hJZU5q2/R2PqV92KJ3+3ucrTyj438fp3mClA6Rbxhc9G3KosT+\noM3fHTusvRsk9CxA+DvXmG0/nNzGJWZYanVK1CjX3FQL19SCTcTev0Pz+hm316KMJzpfP/sZv/8H\nf/gPH6L++E/+9AcPDt7Ea+tIrhYTPcTIMdiNqgjXGgHVhV+d4/bVuDIbRL0qvtwEs79Av9AILge4\nBzZWKos68KFJGo7Zw1p0mOgSfmOENnOjdvKUZR2lkEQdyzhymeIgzExOogaaXDsKjYnORqhHzQvZ\n8wgYU8azG1Q9hR6y8IgOlcUNYdnBNS3SWc6ZTieEvX2mskrFcrFdTXCTH5EJFWm1+0QDFs5ywUlZ\nJh+Jok1DDCMasltC7i9oVQRSlkZ8bYP/9f/6W97ajJJ8+B4u34yuLeOP1JAVEcsrUL2Z4wm78fUs\nDFknFgNjDEGPQiPQZMUI0WsECQgG+sBGdsJM6i5GQRH/ok9stmCeB78TomU2WaR9JN0hFDPFYNJD\nTBfRLmXC2TFSxEZsrlBL6wizARmljzHZYhQTmIYXzEQPHj2IZIxoRueMrocknTltn06x1aLtWcFx\nOeR8U8SMyUgtodpholMBvengTrqpVgckxiWW8T5yN0M3PSZud5E9Dn/10ScA/IvOf8VHF7+H5G2T\nC9hcDmcEWgv6iyh3gn2OHvfJNmZcmVMe2iVOe1N0u4sYjeORFEJ9jUo3SeytAWNDwGVk8chTPPku\nbuk+EWlEf/kMf3yVRNmgu1YnKu8RLXlxvbjCG7EJin1OL20WYhStZxIOCkwSJuTCbAxixGp12r4o\nlaWPXDCMk66SKm9wKXexjAq3UzqXZS99z5SQJ0g/YqBSQ2r7KIeK7C2D5OwwI88Zu6EkXt81azcR\nXjsWO1aM6/Bz5PYmXzz7Refld3/zt3EldGbykvlpiRJVHgVNQrMW3eAKa2oTPVWEeoB6/AYlZFE0\nBPq7IrWRj/VRkKeZKNnNCNmYyKUj4Bo/xpdcIeQ/Y9xfsAwtEewoud4SX9zFub+H3Y+w3F3DTrSQ\nFC/LroW0KeB0WjSNOtOTPMGoxSIUx5XqMujuIEfmTK0dPGU/44DESJhhrM0xtRWqkk6rYuNWPKjL\nAeGxRjy4RnQ0or+rcavnZhCdkvY4lKsbuKUc7nkHZb/Iz1884fy0AsCt/bd4/80iYX3Ieec5Ue8q\n2UqZXH6TUOiQ3ssgtcKYqWvOrfCQ16493h+POCoLiIaf0PYll9YtIrkyurKH3LxiFL/mYBhhIA0I\nyRFq55ccZKacDqZc7ih8u9AiEo3hTZepoXHhSZKM3sZz2OTLhzlSPT873QE3gfuEA0FaUQ+NcJNo\nIsKsWiSn9nH50iQ7LgKTEN3pMUqgy5XnLYIbbjzXEn7NwvaVERolWpMU5r3HIOmsdWCYeU1RHxJx\nrXGcr2NOB3z08S907/YfuJH+t3+PlZ1LJisrND4bsXn7Eukwi3bLSzryhIAsMk71cX/9IfG7MpdO\nhSO/RH/xip4rQW5XYWv4GvF4yF7fxaRbZ+BWSNUG1N/w0O9dMzTXWQ4XnEsKK4l19MUqUyHOO8pn\ntNIDioJF53WfW4LMdaVA6R0v/iudUXqLh/klr7QEYjTDsHBNtHqK7drBji/5wDvi9HKf+uQ1pez7\nRLIVDCHH4NGEcVCgGuzgj/d5cbrk3XfCbEQdWvUmwWIcs3uF5BPIdI4xPGv87Gf/hu9sf8j8zTU2\nifFoXGFuuv8f7t6rV5bFTM97qqu6Uuece+Ww114775N4DsnDYRwONaPxDGTJ8MiAbcA2IEPCaGzI\nMAzwxrBHWbDvfOcLCzaswURK5JDDk8M+5+y8V069Oudc3dVV1eUL/grzP3wXD97ne7+PjcJTIi/H\njLUkmxsuZ4EY28EIPzE8LGyZ+xc5RGuO6CRZE59T7q6w2B+ij+D4pMcw5+cNJ4tqN/E/y+NulojH\nJPYLXkp6mYWwQ/tlEiktsKibELviax6Lj2Nxuu4DnLMPyXhOyGq3eLaYsS1tExPb1Kwi48+DTMVj\nchUXxX+PZ8+X7BIgE8/TDR6wyQ0WiSVnZyekp1Mukn7MR9vUgzPq4iqNdIVOQuPtZQvH8w6Jeone\nyTme0IJPflom8ftfJ3F2ybD+HYqln+GLFZhVgjx6kaX3fYnJtUtuVcD/1MGNZrC0Fa5jLwmObKSn\nHhR1zFXnbUa/6ZIa/4KT0dcJCDrl4AXa+gPeuLborkeZtysch9/itmkj+w7wFr9NxGMj1F6w8tZt\nPnsOM8/bvBR/ws2QQN6vkxNDWIMtalIJbXGD1enHvNF+hy9vHZG48pPYm6L4XPyHu6iLHB9cfMTl\nO1ushqLYNR/llRp3YpfEEgn+6lPoPJRwP7nD79w9wX4l8mpa5TiVY6884r3zz/nDP/w1uBP1b/74\nn/3479/bRBP9VKZppDUJOxXGafSJp9McN7oYXZdpNoTqSdNwbKJCkFOnRSGh0x95IRjBOOuhh6IU\nFn2a3hn2PIcV6JDMJfDVVIy8gh7WyH3ZZbgvo1omM6tIaClgJlfwnYjMtQk+R0DRVgmHq9hzibHm\noa17yMQsrj1TMj2XkaZi98ErSiQiHrq6g9jTCMUyBKdVFosYdniA3e/jJG6gziSGIdAbU4TwmIhX\nRZ3ahKcNPG6cyG2d01mHn/7kEdnim6xu32QRkJnWwkT1KBdKG1mdEplojIw4k6yO5l8yPukyUFwM\np4c932Fmyyi+Ib6ZTCDUxheTmE3brC/G+JhjBnQcJ8kifE2mmmTQ99EbmPjtKn5jQTs2Zar1CLRW\n8MRDXA1B1TysiCJmwEbxmUSaKv6eiZicEjdbLKUgim9JQnTweLwYiozsWyEYKeHvJxkaHnzuCHXY\nR2ovWGaHyOqUrtpHqvsQpB7NuUrLtUh545jzIYOZl/7TCk2rz//4z+DTH/4uUVXntJ3C6+qkDIXZ\nSoPY9R1GiQBO0oPQWsF1yyRXB6wuihj6jNk8hGr2qGXbpK1tIosZ14sqN+c+rl7E8Y0lSHkYSjr9\n7hz8SRoTL6n+gt4oQiEQowF4I2kmgXO8kTGC2UIN+7C7fcRpk3HOYdppsG6qWJ0GrhrHK/hAUwgu\nvJhyEtQS7ZhMgjgzo02u0qUbDzLf2idV9+BXXS68hwzEdQrXA8Zum7Jzg1umSn+vzjJlYMz9PPr4\nrwHI/Oi7TNo6UnxC37pCs3JMgzPkUwl9y6b1JMaaprBMV/DqN1mfR/hK9rO8POb1nJ9XUhAldYY1\nKEB4wWIxpW2KaO6S8rmENvbRGQdZeFJ09CDLxSuSEZG4b8HoKMj2uIzmXxBRXV6dbJOdDRHtJKvF\nDhojFlcxlIHM6vIRockGl/pTMkqEQHjG0M6QshL40gq2qpPwpdiuRXEj0EoXyUhP6AearEm3MA2J\n6kBhrRplGKySH9apxTLEll2UE4kPz58C8Dt/5wEnY5VoKIM3mEZYnkE8jHXaxw7tkozp7Bse9EmA\ng94pSDkK+RCnVwbrmycMXuh0X69wv/46raHM3laCcK/AdaXLciJiXau0gwpZW+c0EmC7leMsss6a\nGOJvumky5SLyXYmLsYu54+WGoROJnyGW7+PqIvXEC7Z6KmvjArPJnNLVBFdboS6/xLO+wLwa0A/e\nphv6VZNSd8+4GoYYa3V2WnvMdr+gb5q4TS+qdwWRDr7TTeY3whwXjtBchZ2nS/7k2a90Xv5fCER/\n5GeQ/xYrlsCRx2X1ukypaCC6Fh7fPU6SDtPHLskHJoOrQwLnaZzVAA9DfqztFMFnPtrjK87uPiBe\nb7Hcz3K66rBuZJF8fazuTZydIzTPCLOSY3crx5k+4pbziGrrIaVWj3g+hC+hEyrkoGVyOi0hFlfx\nTySc0wTmDYmLbpVvLHJcd0+JL4PovSVflFyWqx5Cd2wGxxKn51FG0Rc08gIrsR7x03Wejtu84d7j\n/XqdRGSd4WUOVS3h38kRPzfZ2ChSnvT55IP3ePu//a8p6kFemsf4xw+RCyoLx0vucoPF3in6uEPp\neY5p0+ab8RZPrvw0713y0pS4MSpy+g0fiVWDFW+K8stjQsqcvcWYX3hUUi/j9P1x7NiS0PUJXykG\nTnOXjc3PidWHGN4CuhViJTDFmCsUh6vc0p8gzr5J4HUD828OSY9dYk0v5V6NlhJlrSex+e0o8/Qh\nLz1XJLeSrIbmnGgeqAY4ySmEHj1j950HPMkPWFNMpEMPzvIQeSPNa0OXu4ZBJZnksjdnZWpzmc0j\nDF/x2cdl/qcfrXJdjbMXbnJ1Y0HpdJuV+ZTlmz9DKN8kJb/P8MjBTIqoopcbc4NZMM/t8n0Ofsfh\nDB/3d55yRZDLxG02/TWizTnlm3nefZTj4O0W7uMz/Pob3DzpUlo+w+69gzrWqeeWeMQZVy+f8ED7\nHqfCI/TqfRJvGCxf6bx3dU3MOkXJ77A/VahXynyhSPzOoMck5CVv2nwobtG666Wy1+Mtj4ivtMno\npYXzQCf0JMbBOEDl+IqxniEUW6L432Ol63Jw5zZG/w7Ry2d4gw2ePD3lH/466Lx/+m/+1Y9v7t0l\n7GkRjnspX0n4jRlxd8S1JODxx1mTvfT0PAm9TKLkZdqx0LwadbGL6VnQrbYJZLZoz6tcTyQCko6y\nMmGtKVJvJxmGmqSjKuODFpObM5yZTpYoI0tl6XOROh0mwzobcRtjnEHrN+hac1qjDPlglGrlCp9P\nxxqm6aenRJUcyVAbf2qNxvkhqrnOMOUlEQhS8oI8qCNLcbpGiHCjQi1rsx/QOZInBDp51KTDwF3g\nGYtcWJdYswS+7Cp//mf/gbU3ttld38K+buMrBAg2KwieAIu+h3jIwEz3SHZMjMEccXWdiGETDC1x\nPDpeQSIRMVjGg1T6IUIjA7/qQSj6mCxiyLpJS+4T6kRoKH48yTH6uMtsO4g5WiHfMTHEHF29SrAP\nwaDJeNalFZ7j7ZsMlis0xhL+hMFA6DMxdjDmHtRoE6m2zbzvMFJ69MwpwUWRhXtBIDJnqeZwrC5O\nWmTSEzDmfgITk2CqSN+ZY2fG5GtRxr4mii4iTqL8Xx/8PwD8I+Cz7/4OvPiK3VUNU+zQFaq4rRiJ\nuxaemkC6GaAWO2OzN4JhmOb6BcZEpBD0YYhZjKaGs3jOMJ8hara5bneZebbxewcEJQftvIqdVull\nrrgR32JqL1ikXxC6GNBUAiyEOcGTOIPmCFe4yaDpwTdZxSj4mE7i9LJp2k0B9a7DwJrQltJ46wdU\n+2tIrorYnTMcLInkmlyd3yKoqsRmUaxJGbPv41mhSqTmwSr2OfH32Sps4dR1SkmT9dEJ7uAd9InB\nLx79CqL+1te+RUa6pv9qgxXHz8FmiK2+SlufkQtZWFqDXMJhJPrQzwzwVGlN0rzutHlVm+GRY3gu\nfRRlm1pnxLgqcT9VQnW2UBdVBo7KKJVithRIDcZM77WRZhFmUQV3uMS5tYYiXWM19ijoNY5ibfyN\nJG60hygbdJ0B+maUay1OO3RNMbjFi0WQSGNKciEhujqngwapTU44AAAAIABJREFUShBZf858OsQb\nGDMQFfrLBkuvQs9Y0u9eE/MXqG55sNUao40krj9D80mLR2qPy+cvAHg3cxst9F0Gvo/IH+gIcS8X\nJznqxhXj4JLcROZ9dcTWqER8ILLQylStFUbxF6xefY2rnUPEqwe4bR/GLZf4sYe+/ymCcBv/rTh6\nY0p8v4P+co/C1EXuVkiPn9P2tllcx2i/M+TB33gIWC9YtRxKOQ+vaglc3xmN+gDbGCN0vfiFF5x2\nJDLpGKne+yQ28lilBSV5SUJa0KTGze5NzJhFbTKjYFs4xQPsoACB+7RO4kzvPiY420TeChL0DZlU\nBPYHOS4DWX75wV8AIJHhb+/9xq9eW/gbyOMgHquFsJOhWVYJnBzgRAIEEnOWnzepGSa7mQzLwgWB\nfpbliYp7r8qqlkV+3qdfFLmuWjiLMe5sxPCyy430EG10n34lhrAS4fpFmf6Wj6LkYEaGFJJDUs0Z\nL073MXs1judBHnZDFGsDKsE6rXKZTX+PKQG88w7XVo7Gm12kqzL3QwabWoyctcHhZYNvJc84uHED\n6XOL4WUQQ2tRnN/jYvlzQq/do8aU7dlzeqPXCW5c0fZatLuXdAsxnv7FL8n+3o/YftxjM97hydWS\n2/HnbL6E3m8cEFne4aNnKt9+Y8YLZYaZzvHN7RlPT13ipTjazZ/TFveIPT4gWLnLcWedxY0AieMB\nXgKsRSJctG3qgkAoFse5uEEofcCZv0fYu03heEKudYg/HmJeXeX56AOeT9IUtA6Z49tcCqus/PCa\nkSEQSTbp3bDZO83QtRvUr1bYyq1yMH/E5dBH+CRMM7rDYvoZX2vfY3J8TT8ok//Ix+RvHWIeZ7G0\nCMVYiIuYyOzTBvXCAnGthnM9Izj8kvcfD/jO2/v07SRPth/ypu1i9weUs4+5N1vH2Kzw4nMD/61v\n83AeYuaOKd88Zrdp8zepI7Kf7JLc9+EZnGI+s8jKKsHHDc6sO2Q3P2dqueRjR6wd79B+a4jcPUFw\nbfTtJkerAXYkaMyv2Z39kKNig9qNEf6jZ9TWt1gMHQJKieXktyiNKtgx8PaCKN/P4wm/4lVvydmd\n+2xFT7k30rksLcimvcRMC207QeC9D/G9LRNufIH7bpyHER13liKb7PKR8U3ihss7oc+YSl1ag1We\nlh7xR//41yCJ+t/+1f/y4z+4scGps4KdXJJNVGjNFQRzhLHMItWGdPILYpcV3J6LlRnTpo9siCij\nKXM7j5ILEPXUscYTXE1GciJYxox2NkvGGBK04rSjI2LimLCgYTPB0ickQhOGkoF3qFPILRg2V+jO\nJYaSyHDRYm1FojM0ycUTVL1zcgGXQN3CCCosQgpuuU5LUNmMBfDrcwYvK0QGDolNmbLlYtt9tKyJ\ntxZGEyXEspe0amO0TAws1LU08VkSQb1gPsnzV+/9lJt6nO39CIY/g+UX0WYOpuBHlm06skJh5DDw\nx9EYIykagW4TK7uCXR6juV56gzEzU0cpetGXXgZigFpzgT/aQCqHmGLhdcJIKQ/RdpdoJEF3MGTs\nLPAKKqnZjGBqSteOYIlVcmqUiGnQ9AgkBxqhwpSKrBBqhyB+ge1TSA3SjJNVQr4UfkFl1B2hSF2Y\nu1TTOQJGi1E4jib6sJQ+oZHGVdrPqDYh7qTI9ryUNT9uwsU3ChEwurTnZ1QbE/5LYPLDBxgxkfPO\niJQQZRhtcXN1i88tk07VpOabIXci9NfWyIc7XL40iMVDNA4MvHGReP2U0GtFyqMI2VSVRPlrTO62\nmKfjpJZ+RsMzwolbpM0IpuVFKl8S92p4RhpqSECPZmjFZsTHPfJKlKCpEUrNkKoNfGtD9uUqkf42\nVmeOdy2PdPwZfiOI4Anjyl/S15JogWuU8h22lWvkqMXJ0s9MWrCdXWJGKiRW7yNPY3TFAeMjl5T3\nGG0zi3QhoHLIZ6/e4+VFBYBvbd2jtmeRrWio3kucsklVXnBvfcLBl3k8MQeporO8FJhmo2j2kEB9\nzjg7ISV5Gdg6yS2J8+MDnOIWDEcogxxB5jTTEYo3HPwvjtjRyxwGRXYiGlIrQHjWp4PIzNaJTQNg\nGPiUMRUjQ/9Wm3jToX61Q3aywrPUkHHnjKWzQ6Q3oTAIMNgPU4/XWBFCrDW7nDh+/PEUNdek4wlR\n9BnEZ2lKz9vM4nuYShlHnbMT6RMxZ8yqeQpKB7+3z/HBkouLXyVRf3fl60Tfvo1bmjPZaqF8pXCa\nKpENWdjLMSX1mu2uTK+YYBHK45QCBPcO0LMTLgSH2CKIt9+F+1d07Qqr/RFWW6GTnbL6VYWl1+Tl\nIM9or0nU9qFv16hhURq/iW0seEdMUFKOaLFDv9lllF8lWg/T2ZRZ7QtsREZ0tRu0nAkzJ4SqJhnu\nygyelIkuc4wKZbKEWZ9l6eiXhCND1g48BOIzzo8sHPEOA98nqOkgdxoWTyiyezrhcuKw67+g251z\nedvDl//uV3uED5BY/e27mDMd72jI7a0By6sHNDMVClcrpL0WJ2MFdc1D+SqBEo1DJoAdSKG0DgmP\ng1RaQ0qOTXavhFC36cejZEIdzM11xukeQ9VDoj0nGxWoLcuExwtWI2XK/RTalQ9FX3BWv08s+Auu\ns0GEDZWw1Ee55+VlZ0DEk0AJJJivCGyZF0iju7wWGpMKzzjIRhFicTquSTfdASXLoJtF23vJN+q3\nCGV1Zh2FTVmhOY+R7z5jui9yM+5juqiz+comX99kbavPn/zZJ3zn/t+j2HQxIxdUzAeMI31OrD12\njAHPxU32tCEXlxaZFYNtbcTzn5/jldKM7zdIXc4pz9e5alpE3hgQ33qMMTOp39mhdyRwIFZJpSa4\nJYm1jTInRYVO8Ajvn0Ex9Rqh1Roen8QvhQjrns8JpH5Admkwn7j4dnpUOh/hl9Y4DutshmZ0jutY\nviPOAwPi4Q7PD+f8sLWKbkaIRAJkzQ5iPMfnhS8JRvKs+HfIrL9gcP1NGltz3iq3EJsanz2VmGy6\nRPUzrpVdIsV9nNyXfPSnDb7x+9/jZGuFwqXIk0WL0t0F33y0wXlmh3LqOd8ehHBaRQzvOed9nTd2\nb9ITD5CfL8l+I8R5X6YYtzhvvskbvKT57V1yni8RX8hc3LvD8L0Z6jt7zFoRvjSHdN+9S+9qyq7V\nZPDyilLuTcx5h8pFlEjVQn2YJVC+pu4PcP/IT/QNH/J5n+2MSENTCRgtvOVbuKEq33TrvLicYxXv\nEpY+os4NnghR7pY/4ydrfa6MDtkHSSoXtwkEPmfjeZVXG2/wxsLBzQqMT444CzzE6xnz1fkj/sk/\n/DVo5/3xH//TH7/27hsEA3WmkyvUxSp6T2IaHpMMaaRUP9Zizng6JBkMsjTzFDIp1KCImNCwVA2P\nEmN6XkKSAuRyIlFLgnmH6DKOL2BxObRYUWKcj118Qg+PliJah0EkjNmTmac9VL1L3KCfpbFEmk0w\nV8HrSeFPz5k7KmlPmNaoRjChMH5msdRMFMHFH56jXQ+QPALNVQndCmF2DYJ6mpVFm4AVh7jIqTIk\nFkox1Rwst4kiBAkMOhwGJsTsGD45xP/7y5+x9AzYf/trBHUDYT5GGc4Y6AaJpUh7sWQw8uPENGRn\njEdL4IxjWJ4BEW2Ix1XRFQct3iZybtNNODj1AZ5wGH1iY7kqVjiFoEnoNrRmXUJqjFjCjz/YpuzY\n6IqJG7YZdiZMA2HEZRIxGGXm9OgnDCKDECm/zGxyhX+iYEXzjIQ+dk9D70lcJCrg30JWR6hhD0Ec\nrsdRwv0pFWPERE6R8oSxlTJGN4iku7QifsKGl5TQYOZXaZkdPn3/lwwN+AMDej/9ba5qTcQRtLN1\nls17lM/6bIoW0dA1SXNAuyCyopaQKutkpSjT4JCpKKNPl5wXpwSFIp3yK/zXtxndP0FwdNKfTRjH\npoRie9hdi8uzYwbzGsWVCI2Wn9j0mtHmgJgL5mBMPrVAzMQ4qll0U2NkZ5VQLEj1SYDQ+gmObFKu\nnZFIeTkD7uQCNMMp/IEJaXtJL10j7M3SlwaMGgHuD7wcb5qYX0QQtStKZy3WRvcp3qjy6jJP025Q\nvxNmPoQnh3OqtWMAfvBf/YA1hnRlGS1xE9/sEjsrIJpbZFaOsF6sY+9WiOTW8QuPeRlfICaKxA9V\nmpExi7Ui/tEBQe8+oVyF3UiSq8ohZ/d2mPpP0T9Z4nhdxMgaMhLTdpBlMUignSU88XCpG1hBH8Fr\nmfHGlKmtsDhz6CzCeB/EkNMCSq3JbDuM04oTHlygpvtEKgYX9SytXYGBdobaWmdj5OL6jylmHYZO\niKEZYHO1jWzO0DpJjFmeVGjApZmASJvu0yDlfQHrs0ccVX4Flbe+eY9Fok4jkWLr4zgn2gm+9Jtk\nQxpHgQaFpyqqv8MsvsJJ6zH6rQaFR+8Sz57TlWZMejL78xyhUIP81MeitSS0NqcnaCy6NQTJy0pk\nlcR0xGflOkolSChxl0vnFaHNFRbOV5zn13jYj9KcXDCPtHloVZkcRFlICaQ1m9KrAatpkw01THRT\nZHbRofzaTWrBMO/0oLM8J2kXmfoj1C2BkgnS+AE1PcWiVuKO/ybJ4wsOOynubYz5NOxlc9pAauVQ\nMhF8vhg//dM/B2CDLL7Cu2zfVpgVStiNt0hNO1RLUyphmPQOSG6uc33RwnO3ifdwFX2/jzzqcj7K\nML+pE7osslgXWHo3uXBXeSsg4akUWcsckTHm5I4CqE2ZR511fJkX1CM+JGnMYjJC7izo3LiLJH/I\nWJF5fbGC/LyE2FM4alwTc18nkPayaAZJdQ551dUxgj5asRYzV2YrZFI/yJFQnpB4tYK8MSb3wst0\n0Kc1m0BSR1yI9OU+jYVOypvh0mqQEpqIF0Xk4jZfjVr41tf4yZ/8Bb//H/8etR2X9vycrFrDDrgM\nT3pU0nusodFPiwQWBgeVGauVOd59na3dMfrnCySvxo2bZ0S210CZMHrfobQ55NZllsTdS/JGhtOj\nCMa9M/TqLaZJh2+5SZ4XmyyfTzE3gwSSl2Q/LbBU9wleLan4KoRzHsSrOLOUhj9yhPLpDmPngvqN\nIPtyhGXmTarJM/a7e3yaVMnee4oa2uZ81qCne8n57jAeVji8OuY0lKPlXHOjs0njZo7qxUf43nF4\n53DMRWmb9WAc98sul32Ll5+9IPGf7RI5FFhzSozTOlO7yNHlAV9TU2R6O1x7vCxMnWRkQqS+gjd1\nwfL9Opnv6PxVpIb81KC8jOAxB8hyE81/SvmTH7H1PZ2Q8BnetT2cFz/h4HTC7+W6HMX73J2sc1gr\noW/9LiH5jM5JjHeUMzKKwau1Ke9egkdz8O7H+KoboftGGNMKk3s85rpVILr2If5jg37VYjPxNrnO\nAivg53IxYbX/nKa8wE1ssPZ8zoHahoFMzXHYqjxkcPYznrVq2GKI1iLGLkUaxc85//k1f/Tf/Rro\nvH/5z/75j+/evUtkGoa4TrIeoOM7JBC5h2WectWVWDGqKFs+liWZxXaI4bKLMBhzGc5Cd4xi1iho\n20jJCKYkUGl4mHjDeNwBjaHIakJElSTc0Uu8qzKe1hxhMUQaZhkuZviu6jiJOGHdwSO+IhUvMhJE\nItcS3lkPnTh2+xk974JZNMdcshEHIVQpw0xs4pPjWKM2y1Ce8rwCSoGmcIQQKdK9KqMlDIRSEG+z\nTE0LM27Y2D4LjzXGFJLElQAdxeCvfv4Rb978AcF4HE0Lg6AxC2hI0gCfHSCORBeBNWr0PHO60yWu\noaMvDEBi5oZY+hbItTnOholVG+NXBcKeOQMBBEHBKznEawZW0EUK+bE6ZdSZTrefpGBrTOQEquWl\na2ssY3HSNiyVY0amS7QUJxhocjKOE1jO6CeTZCSR2XmH7Eyjo8hMOhrC+BJ7lCUmdfF4wQhOiZoT\nrEAYSxvQm4lEnSA2M0ZzhcxoQmS54CITJ20O8ThZ/t0HPwUL/sH/DKU3f5vAzTb+YQp56GXDGFOQ\n64ydEY6TYlaU2JkuuIhu4ot2mJQjWEKQ8IZNTu9SaqS4GY4zE4JU7VcktQi9wwDKRgPZbnPsJElm\nz1gNhHC0LoehCUJ1SHj9HicnPgKtBdF0ipc+L+LLE9xYHyEyJDRect4os6lJOEaEVniIEnXJna8S\nWG/TrrUpLDOcC+eMlwar3SSn9SExw2UpeBFfD5Bs1bFuhFn6e2QzMA+NOT50SHo9ZF2TlVqW4dCi\n5WpcnXwKwOprv8tqWaJHl4upiLgRZL2URss/plG1aI4GaOsxEs9PsPJx2pUIKX+M1mJMdsNm+WrJ\nWNYIC3X8/iAlTwJfPIB62ESt9hmE80TvDRksvDTyDv2Rj1xIoH3cwRssM+gOSafLCN4J/YCBxz/j\ngcfL9VqenOcQbRlGPR5SdNq40S7x9BrT+YwnKdjfdKgbS2ZahjvxpxwG/cxMGXOu0FYSrAWf03OT\nJAYhRiML0dKYqC69yyRyvYXxsIU13GTqnnP09BKA31r/Ph5ZINGLM31zxtmJizANY105qOUlWjjB\nMBchP3ERRT/bFZVH+VNqQxvJ3CecO6c28BLu3WVgl7FHA77srLI7zOFaCx5LEXZWR8hyFkcaY8RG\nROQRzkqc6GODRBoG8wyexZDMwzwTXad5KtB3M+ysHHAiyVjLDE7wgrA/wUf9AKnrKSuTCHvaezwL\n67RPBtS1CYVCnFL3BdsLk1CwykVgwLuDIovsNU8CMsZYRTMu8UoZkrEzXsaSxMMOR4sSj/7yV/Nx\nzYL7/80a3nGV8mfvIHDCsZNnnjZ5bVhAMkPkc31CRZPQV3eZfPNzSo/G3A5M0Y6jhHYjSOKXjAQf\nS+UIn7dCaQxu5YSkdZNFcoVPuldU3+mzocqcXAgULYve0QP8r+UpZU0SFYVLMcJrkxmV5YzafA4h\njTtJk4u9PPu9BV/VPmE7/g3OPMfodpA1cYtwwObLn/sovBVgYKyQLtpYzTAxmriLXbaFFLS+oD8K\noKxIDLYV4lc6+f0az6si6n6BiiMSvHIpK0E+/8Wf8tvf+xZeX5ONy3U+nMpsbGzQvFpnY/cx0biP\nzMVzep7bmDE/bf8z1pIzpj95BykWJhgKIDRE5pM6yZgGL8OMIzvkX32OuEjQXr9keT2FqIg5O2L2\nfIx8cs7yRopmskfG0dAO6lzeCyGIHZ5aIUbzJiHPNVJ8Qv1lh7K6wSDe5v7+A9K2j2blFG9Ap/Kq\nS9K/xNEPUIxvUV0c8nprhVfzOaulIMF6jYdZFb9k4eg2ZrtD5kQm+3aA5EmAn9t1vvHdBLr5CYWG\nxlfrf8PJzzr8/dvfZf+yxC/eNrhzPmK+JrNyPWamXjKdDjldRCkUBKbaCzp3ElhPCny558fQdPjK\n5LU7N7CGQ1rCGFkvcmBNeMNziP7Mz8fJfd5yFlSiDq2NPP75krUDmWbRRXejnBc+YHk04+EwyexH\nTfzNCsknLn915y432jncWZvTzJdknQnt6yyDtx6zWY7R3BMQ+zaNd4MUzzU+utGj3T5kr9nHDn2b\nqT0k8GIH7be8bH55l9yDBIUnImcPO0ynd3iNGvEHWySPYrQ3PsR6vs3x2Xv84R/9k///Q9S/+F//\n+Mf313Zx3D5zZ4E7kVAtA2GwRAwkWMoaqdQm1fMzhGAOUzpEGmaRJ16syYBN00Jzwsybp3TVKOLc\nxh24OPEmwtLD2C3jSwlcGxoRZvRFP734NpbsRRrVsFUFMdjBMaZMhTaeWZZuQyYR6+HPWxh1GWE0\nYrSeIe2MMGsLVvMRopqPK9+YPEPc2pATUcUORVAHMpN+g7gsMRvb+ONL5tEYcVngctojF1Fw5SGz\n5YCRFmItalFfzFGNMX/+4RMuqqf8R3/3PmJ5yKQbx+lLGLIKoT7XVRnWG3SaSUIhg0A4Tys8x6cP\nsToDtKVA3btkmDIxhDXcUJ92YJWxumQyTSDEx1g1Hd0dU5NHuMv4ryCMJS21jCZKBAYVOqpLVO1i\nN2cYgxqytsGgEsTcEAj4gyBbiGGH8CSI1yuymI9xFjoRySRu1yEQJWW2ucpvkBR89M5sNLnIWHUo\nGhoLyUNnYKNpIzKxCc34hLFp4mg+JiUfAWFKeWTTrpdY/ut/S0F6wnl9m2X6GHE8Z7pnEWykCa4n\neZ6UCQ0jhMwqZwdL7OImtaBJIa8jVXXcWBfXY2KpAfzXDrJPZXraxf9GF5/sx9OSGcTapJUI4/aA\nQl0mlRTxO69z0Wyw5TURNmO0xBHLM5vGXR/LRpy7SgCvMyEhBFE3y5yKe/RPE9wrNrhWI8RfWHQz\nYXS9h+2x2PCFeNYa8TA/hZBLvN7h1NvALScY25Atb1AKgN2OkRtLNPb8tCWXbPGMpLzNIi7w5Qe/\nAOAfbD+kfyPIZaBJJumj06/SSyUpnVjokoWkbzI+THO+1qNg5wmZY9RBF8Wqo5/fIYSF7jQoB1JY\nXpVCf8lCDjBtOywCPUJynnRvRGmhUHD7BMoChh5gOTpjqm4wj2jMQz7iowLONMN6ecaHpog+VonN\nZhhmnWutSC83pOvadE8z9OZnfM3KsPTY5C/rZG0vg+shfmGbYXWC0He5kzzgcK7iXkToD3socZGN\n7pzO1jXRvEYxK9Guq2QbSS7kc84fnQDw+7duo2/9AF9yzlGjjn8iEMtEKAkmD9QStfZN6vUFnpmJ\nG8jzqnFBppAgPg4wRCSULjA4LDOM6Vx1JiS+8Tobis5i6wt649t4zA6OO2RunRCK7XNd9dKtr+Df\nOKV+HWfSLuDxukxllejJMY2LNNbNLjnbxh9yMJ06494VrwdXMYQQe9ESr6bbiBtnhJ+HmVQMbPcG\nb8xKfBKzWGncwslXqA1WWB0rXD0M0SmfokV9LMgx8VrstlIomUsSYQ8fvufnRlXkp0/fA8Dla9z8\nWpBies6VUmBtAut3ykSv6zyLZ7j1xoQry6T+uU0jUWF4bXD/HjQe3aT5jRM6RpnFqcBep4hj5FBT\nazR6Q8SVHKlpi1/Wj3ltVyH412s0Z362xwOk1E3m/S+Qytck50OsepDbLZGm10uimeX8OwM2fQov\nn/gxmi65lacMVrJcxkTuHo1JkIDic8y5hHY7xqTsIya94MSaYGeThPuP+XTNS9h+RNWrErrTw6No\nCB+lOE0YZEoXzMU1GucTzJUgKxM/ju+ED37xId9/d4vGpEjTF+Hrni948Rm8kz2kO15jKTep90Mo\nN6IEhx3GiwTXyTw6n/H5oMp27i79nQMcWaWh7oHkQRcf4Uxt/MbXOTCfEd3J81b+FonljINhkU5I\nZc+zTfXzK/a8u7ysXBHebVE/KvJ64jmDfAw5JDE+2mArmqK5f8rdw1vQ+4KaeUEmv0S1mwh8h4gn\nRKSfZmResVO/weWey41ziWnAZCUlUn3Vw7OwybXayDu7GGqF81CC4LMoWcacu170gg/5fB87+5hP\n/0OVv/2D3+fTO+sU3SxbZo9k1cuTB/e57MxoDRd8L7hJe+0zMgdbPDnwsv+gwc3okqH/KQ37Phuf\nyEx3EyRzFm5vla93FUrhKsGoyUTIMHDeZ1AziFw8oOi85GjzLktfHs/0Md5Hm3wnFOXwawarxw85\nGkJ10yJRe4WvkOdF+gtiH6W5X2rwfFbgN9WX/PV+m62fV3kSfIfEyYD0m0MWgztsLguIa30Wdonb\n+dfIpGU+nneR5ef0piGO3QmBSZb59qeM6haqckL9yua4OuWuHOf9V5/yR//9r8GJg3/5x3/84//0\n7Tx2ao2Z4aBnAlQEP05miD1eIrdd+nOZcDSDz5mxUEV8fZdSV2Az4WOWjDMITxg4GyS8floeh7x6\nhTVKoLU6CBmRbOAm+LqEQzPmixCCMGBF0ai0vKQTdYL6DrbqQaut4XM1nJsiyR70F0uGkSgkZwi2\nS2c5wfE4aJLFZNQmq8SxTRMjnkSsS+zmRhhih3WPl0nDQF9ZR18kaJSHJNNRhoEe0WaUfhi26mu0\n5AsSSoFp1SG1pfN//+XnIAg8/OF3icSgIcMKCoJwzcAXxvV2UbsQyApIygrzdollwEPkKs11ZE5s\nPqPnOhT1CI6lMO51kYdRwlMddQyKMsMfH9Hyz3DHOeKawBSV8NxgFMgS6pcZeXMoIx+tlEsmJOO6\nc7yLCf55kkS3gWssaZkDkpUlHjVCp3aIkg0gJy3GHgPRb1FNpLH9QQLXV1x2ZQqrKo16iXgiRKVd\nI6RFiYWD+Jo+FlKAYKVLT0/g+Ie4soOTFnGuqhxdnLP5o+/hnhTR9qtUrAVe+3U8F3CxvGI8X5Kv\nDbETcSIq1HtRJsWX+IQm7vyK+tGc8szHKG9iDW2kZJIVvUFbtHFOxuSd21y2BcRwhMKrK14E1riS\nV4j7bcY+l8jYx4U2QKr2yGb9+LtxwvEeI2NIcxLlujZnsC1Tr1qIFxUcn4H/yk/Vl0LZXBI/TuLM\nI+g+lfphgTWfyeFEZZ4boEwyaHIGY8tHzFfDdtrEx2t4UUnmKwjKEq9roTQ2GKz2OW1WOfz4CwDe\nePvvYDhVbpnbVL0jIrU9hskuSQ+4ao5M0Eto2CKyCDGNiXg8Hbwxh25EYxJfMJEv0XpJ+l2Npdml\nJ1bohxZI/iSxiMh42qO36LGrFFlmOpiqQfOiRGTjBt3oEt/kjJXwBj3lgm7pmnM3w51EhXRogNyQ\nUGIui5jOtuQwuFRwkwrF+BTFk0CRYoy6Qw5Vh6C+ghZ6STyd5XL1EuwcZlhCW/bI9BJIwzDVcIVB\nJ4tVaVDxiqz0kmRdkc8//jnX9SYA9/5gg9XfTvLLZ5+Rubbh7RSKGKKof8yLcIZ7iko1XGLUXUXu\nHIE6Z5LaYLWsQqaMYv1KMWVmVRpikmbFpperEPCaxIYV7IJL7yRE9cacyGKEUeoS2g+i2jp7lwGm\n9i9pbKdIeF4xYp3U6iH6UZ/V2y4ToYc58CGMwhi9KaNug8H5nLFWQrTTHJJhf+UY73ybZQDWbGjk\nXiE8vUNtPUIxf433gwmt1yL0DtLYfZuU38tyY8JpTaMRSSghAAAgAElEQVQpbGGbcxIzPz979u8B\n+P5UYedJnFfCbfYiMZLOC169EMi9vkP/K43q5VMa2Sl6/S0ibhe5YxL33ODlYo44TbFxsoX1dS++\ns2P0TY3OFy9QYg7h0zjHN+Osz12aVzuMEWiH20SSW3SuBbSVMrW9r9MKVNhP7THbMGhlk6jXh6z5\n1qlaeWJ3ltzNH3LZWaHrmRIdriOsuLTPZK6ULo3BTbzzJrPTCEHDy0I/pv9SZeIovL1VoOz1sTu2\nmV7ojAI1tK0me+ETDlbepN0a8Zpj0modoaUdNnsT/uTjT7n73e+zmhnRdnLkWyVqX5/iyXyLbv1j\n9HaQ89QuO0fXxCYG/fka85URsWGG9s0UM+0J07+0ONJ3acdDbKp9PFaD+PgOjycn3E//BsvDD/jE\n2yM8usN07X22bIunK1u4G3N2nQjeSgVlLGFMylT798F9SXcksBYcIK2HCX5gU/FdMh5pxFctvjq6\nxfXyDYo7Hs5bn2OvdsmuuFQWKmp5hJMKsObO6ZyX4ZsuVmIdf7GM9yuNfLhMYljF/0aN80SSJGGO\nQ5vMmx8zNF/y1Uc93t34L9hZXTB99QJfKMFHrX0eJi5Zae/izL5kPhY4uBjS+941hO8zOXkfNyAy\nkBW+WU1wvFrHNb3cOO3Sei1NsPlLXlZExsFtWocOt0ZhVtbndKQ+o1SA2TMPo3SP9LJKMN3ky1mQ\nneMzFMuh418hfP0E1bxJuOFyXtjk3WGTwfYPUALPeHy8xW/eUpCv7pMa6yhv5gid2jw6MHH6Xbrz\nE/bmYfrTY6zuJdlgh+mhQCJ1Rix5m8zaMfn3NsnOBOp2CP/Xh2Q1nW4wwfMPH/OP/4d/9GsAUf/7\nP//xjTf3kEMG6eGUyWiKHp2SsH1IipdQaIwyuuIsXmEhB7AqIu3InLV5mMOhhtyvMPJNyDl+Or4+\nnk4TR1RwhzGGxSjRqQlOheXER7MEGf8cqTph6brMxCDBkUa33ceIDxiqETyGh+iwzMR06Ks5osaM\n2bJNYNRnXvQTnmcI9tr44wXMpgdLMhm6ArN4kLAdZWl1aSxWwTvAZ88xBx7G4wGKX2ZcjxFIOwie\nGJ3gjM0wiL0ws/mctLbL//nX/x7BI/D3tu/RXm6AosLYJSD6sYwQotslEs4zcpKIV2MEW8WZy8xT\nDSQliDjTyFsKYrjL/DqMrzAnTZNKbIBHG2DaYbpChM35FEEdYbYaRJUkpYXG3DvAzhssowna9gjB\nN8MQBWbjAp5ZmPk66KKAK0TxpkUczwhPN0KdJctolp7QJe6J41hBDKmFNB2geaIkN4L0lguUuZ+J\nsiTjiVLRqlilBYGdOhXXITxbY6GWWev7CMoD/BWdf/1v/w8A/vInf8n4P/9PGD9+jjKWGO+6+Goi\ne5kQF8NNdu5FWYxlhGaDpl/jHSmMv7yJ4g4pF/YIZaIsT08hFWXxagYBL2o3he5fogt9PN4Fo0Kf\nq6ss21GN/4+bN/uRJMHv+z6RGRlHRt73WVn30VVdfUz3zPQcnOFwueSuJFJeSoZlCwIMyNCTBVmS\nAdJP+yZYIkz5Qf+A/WIJligsIe5yyV3O7M70XD3d01fdVZlVed93RkRmRIYfFuCr/WADFn9/whf4\nAR/8jk9sWEUepWm5z2gnbNYm61iigKkpnGWucOwp2s0mRAXeUIcolzkKA+jcFbBUDcYFvH2R4bxG\nZ1Anu2XSGExIy33sFY2AXqHfuks0pzIZa4SHNsetDJJ/wlm7hJBM4tJSlFoRDtsq3mGTgZrk6NMv\nKV2eA/Do8B2CowCVvSbaKMxYqFG4juCJpVCvLC6zS2JmHI/fohatofZizIljTuekpils2WKxYtHv\nlFlNL/AND5kobsbqBOckh7h/zEp7g2JnjmuRpWT0UASZzsxFUnMwliso4zK1epgtZ4XC6iWuXgAq\nfp4ISdyDJAPliFRjyeVAQZIjDBppZm243DtmdBlm76DFdBLCkBXUpYuEe8b1TCdcmjGsedEe+dFv\nXrNhBMg9TKCJVZLXvzL494Iq85MJrxuvAPhg9yM67gOCVhWn7lDISDQ+e0XpQOP9z6Pob80IzSIc\n8hWKz2a2G0U6qtBxr5KulmhOYnQ6ZeSkwmb3jEm4gN1T2bPzvBDydKMxhLbFfm2O4tM5Ryblz3NZ\n/gafZ0jw/oL1JxOC3ihOTiDzKsbEEjnPCfhcc3LRONlMk+tLDT2b4M56G5essem0COe9WK/q9Ldd\nhPpDvjqYceeZl7MNmbfUU2ZaknrHRHcKvL38FmsUprf5mq3ZFu1rL5NlFRdLOu9pPP0PfwrA3u87\nhC43uHe0QqJ2zGnyAcOsQueoTSD4HM3Zox2so87CqBOBjd/c4OToHCEapiBNKIsW+dyIl7UA5foV\nt99Nkj7zU6FLw/WSN/oKT/eb3IlbKPqcSLZI1XazWlZY25mwNrT5bNRk/GKNcO+GpWvMuFsiqFV4\nLe7TO4qRHkQJtaOEdIdWq8Z6/gyVFdYmJ4R724Tf+xJXxIUWLzB1HaHdesCLeon8qULX2GbhtahH\nauRkiS8bMs43FquzFm1hn73DNK91P40NN1/98V/w9//B3+Pqq1Oc7itKa79NwY7DJx6G3j5GuMWH\nEZOrwCnapoF5/pL11Bj7skLy1ZTO1I3XWKUnwhvLSxovfAiCF5d2RDYS58lVi+5vz4leCBjuFLvP\ndZL3RabPYBBXGF01CewMGK99SCx8SFeWmWtrCK0NlnaRRX/K6f09/OE+Gy2Rz67f4+5+k8iln5TP\nYeDv4TE9dGsHaLOn3KQOKaaXCAGZ2fVLtNYhT85OaW/lOeiKOLsJ6o8FLlOrHDxv8qxoENr1Ib0o\n8O17OsV//5JHv7HOk1KL3v0kkRA0X/bZPINfvtVm1YyhBFxo3h6Zl5sMRjazWzMmnx3S7Oj0+lMG\nD4fMhA5PBxtYnadspr9LrnHDKXvo70YZuS65TG2x3atTPyqjfFin9ThEIPs+jbMg707L/PLXP2R7\nMeS50Md6cEhn94TW6IqNpp8nO7so9QGJ/Q127CiVJ8/pLSSs7ccsv5CRDsG8jqH6Q8w8axyrMdJx\nFzexMWuXSYxokG7GS7n4nMAXH/D4bomD/IjSZM5F8Da3v+gjBS/59NUR/+yf/zX4zvuj//lf/PD3\nvv9bRPQh3ZCBq+mD6CqjQR2/P8nRVRvdXJDqpIh7u9hyBre+ZFyQMHvPibJOxDZxiTK1wTXhYBqn\ntcDrNehPvaCWmbND2GXhdkmUJn08wSy9eQd/ZoXTxQ25HQ+eeRipPmXhErBtP4OJjeZ3YfsXjCoT\nwt4oxnWPVDrF9XiB45tTq3VRY0Hi1RkZn8aFd8jYGyYv1FB6GrPAEGfWQ5IlnHAfcxxAjxr4zSAD\nt4oxu8IzStBVpjQ3bH76x5+SSdzj7q/9GtPZOVnPjJGyQBfmJLxj2mocc9xFi2gosRaSd0Kk5yAp\nMTqDAWqgh5IOcNLVWXV3WLgLLDsi9kwjHfQyGbnAdUkzbqMKbjrCLtpsSWT9GMUVwGaJfzZD1Hsk\n2n7mXoWC1GNpLdGXJXwLGVmVMVWRLga9qE7BLyPpDQwtSrg6ZjztkfWGGIgTxFkGaVnCHPYRs1P0\nnoWViLMcCYQDYzqihFSWSEh9xNgKXcUioKZZBGf89OfPwdbZO5rQ7v4f+BprzByZnXCFbiFKoFhk\nuRLEujCRYxfU/F62JzleKRplbFKBBSN7zsrRjJWxH2fusBEuEsjluaneULVkZhETr7kNnjLxqJeI\nVKTnBKiYNTJiCH8pz8Lq0PL68c5bpKqQMqaMd9JEziLY4yVSrkQtUyCwvCQi7dNIP8cYnOPoe3iz\nDuOigVcOcSlPmJ1A0h2iknJh+sssSyKBQR/lsIzreYi9vIW/GONC+QzvYkDMKmPehtOnsJbt8/jL\n1wA8+G9/m2ZqyP5zFdkV4CrlYTC8plMf0tducLQMPmXJZHrGhl/E50lSrddwxmMyegltvsRf9pC7\nq3E8PqQzfY7W8pFX0ni7JYLNOzQFh7X1Dn69ytg4ZKG4sXMD3Nc+vBmL5KmE7h5xvRZhEUxgnYBZ\nCBMLBsg4ZyRXtnFrXnztKoWgRTM8ZRoc4jrzIUfbdK4dnL1VJq4K87HJdLjE3ZGIskUyfEm3pWHG\n9inNalwqWeRlDckocOkfEm9d4JMb/PL4EoB3/kYO3QmwJ7tptWWq+TLLvEOhLuHsL5lVDWbFKAMn\nQVmpsifPmNcN1t5Y4/mGn7ulEDcBhe2NFs+KH+DZsUB6zVUyys6Fw1z6gmT/EONBH/eLJL3YHvG2\nSTBYwnIMquYHnN25YhCR6I0r+GiixnJcdq64PYfH/U3K1SSPvDncN3081SDPZhruvp9A/YRJIcS0\neYu4K4ha16gvtvD0SvSvPVjhOjvaLXKqwZVzwFpqQeVKIjBLUHY9ZtcacWvFYq3h4j98/JcAaP9i\nj/CjN3H2TS5DLmKDIrPMglteGZP7eDc+J6S8QdcB0SOBecE8eI+lx0tckdnYbvLtn/mYZK4IHlgo\nX+xhfBDipvkt76XucbFYJSItkf1zhq+2KdYVUvcnGMMCpzmbRtXDXXeckbNkarxC2DaQZmkCahj9\n5oRZMElu7SlO3iExnSIEgnRmHbqdJfLubaSJxXAaYq7mqDzvIExnqIkpk2dRyrfmPLg14ywuEmNB\n9Is0g1GdjcQ2147Ain2DujLBeDbHUzris2cv+O7W30YNXLGrFliRz3BdFZi/Y7EqzfF6Flxcubnr\n8bJMJDjKBTgt6ozv6vR862yf5xAPcxyEvyB4ukbIU0F96KdS28DjlpjdTmIuUyTOThGNFZ7Gg6Q6\nr8iEMlzUO/x6AI56SbS5zOziORtrU5reCh+kZT6P1Nm78dGuKGyd9fiLjMH3/Rd4NYeu4cbfiiG3\nZnQCRUq9DHs3V1Ruydy+bjLQ3ByshDH0BfuHA4rPBIYznSevbyOEU2y6dbqTOvc+FOi9OEMX+hT6\nL/j00wp/59bv4h7e4Te8xzx/bZONTjl+Z53U6zyz1DO0FxZZo8Dn37/Ffs6N86cjJKFF4W80CT1t\nEbj8kOisz7oeYmsw4yeV18i/8136FxKhCx29UUQo50lOA9yS4VgLslR0eptXfG9cpqnskn8R5fOH\nLb6XPkBwbtB/luGgk+NbZ42V2pzWuy7kb0/59PAp4fJ7tNI1DpRb9G8fczMwyU1fEUyJBBavWOyd\nU3T3eSjt8yMhjDuvs3MkkA8NiURSeASVl9I+ERv24gKfnw4IvWvxy8en/I//+K8DRP0v/+sPv7MV\npTqzCLgWWG6LzmBIPDymOlMIhkx2/BGarjmSY+KdT1goBortwTOx6RsChT0NozslOvASsU3qYRm/\n6ODKjDGEDEa9SW5R4GJ5TipoYcyjjANh3HoPJQSqMaRe8xJzTwiJEwzLTVqZ0p5GyMRcNIUgIWVO\nZKIzcscJihLTGqztB7kyakj6CjVVJuoRKOg+nre6yLaP0XCMFlrBn8si1SNEN25Y9gVCvjKDlkFq\nmcaSxkz9blatAP/uJ58gh9Ns7oYQpklkj8A8PmDSiDIJebElGUUy8J2ZeEIRKuM5c9VHr1ZhK1hA\nHS+oeiW8wQim7UWWKji6jN8f4FJ2E5LGZIdhApIXp+sQiXXoDMY4op/ZQCUgubkRUvgaMpq7T090\nmFge4nMfvvmcseMgRmpY8ziKOSbRTnMzhqAUZWw4LFI99IWMKPTp2graxMHyLFAXSUwpjCPArG8T\noYYqB9HbSVQJOhJIozHCrEM34karL/npJz8BYG3vHnfmFzxbqeCPbaMacYLNCa89IQLLAYt16LiW\njDsjtBUXruALPKdDMn6N3HjAy7Efa0dBUCpcaXnMaYU0FpnhgMbcxXC3j/cySbjqxy5kiY2rdMa3\n6I+OqUcMgmNoCk0yyQHh7g5f59MYiz5OXKTffkkwLBI8zYI6ZuhcE6rn2TyIQhf8Zgvz3pL+TR9t\nR+UgMOcpBuueFk4li2BWuFhuoeVjeFsljhw36YlJUo6SnI1w1u5TXF6jrDtU/vcqr9q/mkT9w++/\nz8Aa0AjGSbQC1OcXiLc0Dv0WwlDBmbjoKgbpvsDlWOIyViRcgdV7c5rJdzi3NMoeicC0jDn14pFG\nBPUo006ZWsKHa6eOz1hw3VlS2j3k0HyOv5Wgn26TTsO80aYVyOHrDUjNDUZmjWBeYdFVOZ8cMxwm\naISGtOQpUgkMZYhTnyBJu+Sn13Tnm0TWNwi8buA2NwlVvSxiM8aBOd6cwKR8i554QUR16Pfy+Hov\nCK9nKYdcIAYZhW2Ez5/xuPqrdd53Vr5DzO/iOFlBL+c4SGcZlWZsbNhMKiEuuj1W3E0SC5HZ0M+L\n6T6+PZ3waYfuskE4MyMaW+dzb4z0msNKZ8rahUCicsw3d+bE/C7K0zSB2WuOHJGdhcRSnHJ+K01a\n7bClGRSLbzJ3DVmxB1xklkhnAinhAc3MBumYg3Ix59ndJbnOJVX/FsF+kXhihm9vjZFnhVjySy6j\nETavygS2TcrZKWY1gb08IN44oRGKUjGvSF+ZTHY3yDkXRGdxevsZIkj8bDjk+S9/dVieZskP3gui\nzpfky26e+iLkBim0Fwle5qfUlRUOqqc01qLsFa94uimz8FsobYdwROZxz+L+bERATzNrL1HjBeYv\n5hhv15i002TLA84SI5RhDWtfIxMv0rdyXN+c8aYwIm0JuD1NlEwFj32AxxEplPMMgxf4Kzopd4Yr\n1wzOO5zMu2gLHf+duyRkjeT0hlf7PqbHUW6uS0iPaiSOf43+5JSE5MfZCFO8PidbzTO2wzipGAfq\nBsu9KVtOlLpcxrIPWe6dYqw+4ov/+CM+KoR53o+TeDtE7+dDXn50Q722zl7kKd/oh6gXS15WV4lL\npyReTdjcSHJ2vcPbV8+w7QOW4a/xnfg4SubQc1mOm10Gq3GaiRBO0839b6cc+2+TvfcNqeNrAnGN\nX4x32Nroojo1vLMV8qMln+9fUXoZYh6OkQw+5faTGS8yW8xuX3EZ6vJhKodWXXAm7FCp3WDZLkZb\nFuFnFhuBPMe3Guhf7qM/nDF5NuXV6wHBN7ZQzq6Ytw64Dqisuj8huLvPNPWEYkjkuh6j1x4SfnNO\n8jLGT558y8NHj3C+6+NzR+L2LE5tVWVv8QxOfWTCDu73JygnC6KDFicpnfc9O4x9XQZnERTdjZWu\nESlk6E7SfBVIIoW87KR+xjReQY5NsUsRAtoFG5JGSV6hlSrz3kub8lmfsH+PVz43y0mVzGSbv7B/\nxv65Sex2nuuonzuDIXnvE8zsNjM7yzudOO3aS+q7A9pCgeSky1lslc2VFr3HA1Ye6rx+meD7ksCf\nfJXFdivce+Gm0d8hGixyac4ItXrEGnNi6Rd8E6iRrhosl1l++dVL/uCf/tP//CHqD//Vv/zh6v4j\nvL4xirpJe1pDFmSmizyqx0TKJlH6ErNUHNML43icWVlGj/rQvG58PpPWUGEakdGTHtohgULby7lu\nkfZPiI8mSHYYW67i6YTwhlLQaEK3j9XXkUJhhMsJZEfEQkmu2iZZwYMQTLI0BijOHE+3wyDkYdxY\nEBF1JnWT5a5F79hBmEcwV9zEZnXGjovJzYhw1MFjp5CXNVx+gfNzg8K8jakucPQFLSVAWs3gMka0\nxTjpkQsnm+X//NGfoo/bfPR795HSeaZVBaNlk8l68VZv0P0iRkMk5NORxxJxJNxmmxjbNDI6vU6M\nhKHiacyQvDLeXhxLmjJcLMlZMlpXZ5rx4p51WOhhXIEeASGB5p9SDQ2QbIFExc9EajB3xTDdEZaB\nAFawR19U8BgO82kWvx/cspfytIVrbcSo5yMzExkZI2ZahqA/wbwaRYyZJDoeXJElbr3Hsjti5niI\nhGFgZfBEuizlCCHlBmu4StPdIypMKPsK9P78x/Qch49+8PscfWvwsJAjUmlRvomhe6sEJgFUXwTz\nVMC2W8TTXsZPqywy7xEfdahWB4yicYSDMIH5Ga14Cte8ykpPpKzeZeqy8YUn3LoKMFyP4ghVxgk/\nQ0VE9froLL0ovTR7Wz6y3TYd6Raoz3CHvJgvO4hxDwGvhF+JUkw7tE4rmLECdPyY8QDL6xJJR6QW\nWSder5EsZiDsxdMNc1nb5c4DGaMbQzY8LF03IAdI7Qo8Q8XSQzS1AWrDIV00ibqz/OhZmVb3V4qD\n9Ie7bIz3WIvOeeFr4+93mAzcOIMA6Bu4ZJFoxUvF58XpdZADCUzZTV3exrl8gjLtobcnRPNhKgOV\ntWSSyahG/pabxUKi3TKQIhm2Qh3a5xp2Jobp6hEwVhHtFpKygd/lw4zNKNpj4uM0TXeCRmuCeGtK\npj0g3ndhJdKE62nOhSzBgxuE3oSxfo/Qg3P834pMxQumMZPanoZ92sfoRzCdKtYgy/JwiTZOk9Rm\niLaN0FynkHLRM/zcD50wEHQ+fVIC4G99eId7wThfai6WxSsyrX0ChVd8WrzFXnRIPLjP1yOHTbfO\nmbPNfecpHs8ST/sA1zzJ1G5zorc5LKncDN2UFiKZNRd9aY2lPsIeH5IYXXG98oCPOq8IxmA5z+Ea\n6yRjfcy5zvrcoT9TqMVNvIsHbJ97WQg2rVyRZVnhaqPE7T4ElxKXUojQeg/9IsJr74iRK0jaVSHk\n6XGiHDLyXyFP0txJquiDTwmk77Eo9mh1b0jGAsjtG3zCOhe6i9Vej8ryBo93yuOfPwfAIcidjRT+\nyXe42U/Rc27wX4rY2mseyDUM2yItjIh1PPTv7iMfn5Cfb1K//oZJQ6PgT1Ju9lHu96hWD7kzO8GO\nFVGqd1jPnyNPYqTqGYbDGQPvKh7XGsumzTLSZ7MZZpYKIHQVri8U9u/WaDwPEHRfcXOYZmDdxW6Z\ntGYZMo8WVCYKOaVPwIpzpH9NtXSP7HhJ62ER9WyDt80kwhs2/XOJeLCL+SqCcavGMuOiN7CYeo8Z\nFWtcq6tc6KcMbB15rcWma0jkdZo/+exPif/jd/j+ZouT6yw7mW3QO6zZcfovFaq+Mt06pN464fLm\nI5Kr53zyzZh74TA3szsoW3/Jq0Sc1LWXYeIF/aKE4dPZPa/hMq4YtxNsbhsMlDDNiyvsh9ssNZHJ\nzM3sWRcxo6GlSjyPbjEPDXmYqjB1FAKSwddqgd2SSqQaJpH3ciafETTmpOZt7L4L932w/W4K2h7+\n5QmO/Yi58xPeKt8nNp3Q/mCBbL8mar+PT/ahvjOCTh+tsUopf84Dc5f8kcjN/Rmy+jZXvv+N5z/u\n8w//yRbTp6sI559gLNdI9m2qnixHhS4HX99lWO9ztLKOuZlBlOYkXwsk1Wd827Hw/c6AlXKaP28G\nCe4NWVRMNN/n1BMphF++y65RpH2vhH30gMD7PbqdY95evcWTYpLk1hJd66Dk6kRe2sgeidsxGJUa\nqOkanAdo3avzjXLIoz9bcvJIpuSq0FzZYbPj5uGszcdNg2TfwFtRuUmt4RMTBDt7vBhVSAoJdtWn\ndFL3OO/9mKO1MTHXhJ68gTx+zbP+30SWN+ipEnudPl/cfMn/8N//wX/+EPVH//pf/vB37m6SMmSK\ngxpiPEOi32GRiRKXFviuetQTXcR6D8vx4Tg1wrKF0DOYLwzcQh89ksNdvGE48RGIJxkrLWIxEW0c\nwAiKBEQbI6BTnxp0o3H0BETTS0KjBf14lFRigHW1gdtaMrC8aMI1NdGPnASXKdEai3jRcNZSmGFQ\nxibL0QBxbQ112mMmWoQkjYDZxhsMMzQtAvIASY2hhHNIYotuYotIP0NVElAbbsRBB1NoMu52EMJu\nrL6fH/3iz3n43ls88L8HbRs1ITN1Gci+ELJiY8sGkZ6J2xfi0qhhBPLokSYdxUd21GYgNRHlMYro\nRR+OUDZHDKU4ifmchleGucVw7qG/kBjFm8SvNmilBizmbuxLGVvzsEhfI7jmjJ0pGX8CiRFTfYE7\n0GOgRcjKbS6v5hD1YfR6bDmrLF03NBNBVNFHlC6LSp8QHcRxGNu9wJOR6Hht3IILUgZG0yQ+ajMk\nQNoHlZs+NgKybKB7dwgbbpSFi5fXp/zgQZK0sIXb+YRJ5g564wgz5aUeh2nQTaxSxXXLS66dpWap\niMIrRO0euuFnoJ2wrRpc2BHWmwnWjRrV2S0izSbKtMp49z7hsEK4c8l5WcctDzC6LexiluTGEd24\nm7zl43g1gPlyQceKEg1P2BxvYI38NIYqdd8xca+I3E8iqSOs7RaRawEppuFONbg8z+CSh/i3RjSY\nIqxs4PUIGKdFXCEfnc0m/mEbwR2hZOVRGl5msxLLzSR1J0G0l+LMeopwsMPJZ58A8L2//18ycZ1R\nvUgQV202phlU4iyMJbnDIarYJh4vURrWWc7vsDqUSPdMMlmRyfUQy1Dwrq7jnMrE0gq9gUEgMOKF\norJxmqafH4DLh123Ca9dkxTy6OMIIV8VfRJjkWoiDQLENA3DlKitNrjbTJBPzJjUU7j1JG3nivHU\nyyAicCczpasarF+t4ol3OXcFEHM9xvIuigjOq0tW3xDJDtcYL8qkDjNMB0cEvAMuL6to6QOq7lNC\nZohFskLxyzGDlsKzk18Zy+9/sMtsbQdxmGd/mMW3f4IhrWKPvuV8mWPtuoPfX8aVDjJc0+iPBZKJ\nCIZyAUGb0LWFkQnhjWZQpjCgiefyiis1jUu/IMgNq+0FufkFz24dEB/PsOUhTgIuv9YJNOI4h11G\nPpmHz6v4F1Nm4zLTez5SNypnfg/3zlW+3b0i0RxRZMrdWgB1p83Ms8rahc2Fs84VKR55Lb69HPF2\nasKFnaYY3GTD+AxjsmBv7SFPvF4ELcGZa8bI/wprkKQR32VdC/PTn/wZAKtMuPtf/BPOzTYr4zL0\nbjOf32CvZRitVFn/ysXHqxtsR7yI3Q7zwAZju0V65zZZs0gko1MNLalJE+KLKwTP20hGgo7yJT5r\nl69vV6iMdN7olEm3+sTjLgzpDM0zRN70UWkZ5G1injYAACAASURBVHdkytUwgegmPuuc5p1N9i6P\nac11dsRTbtQ8nXKZdwq3UX02j08iWJKNXBAprI/J9Es0NyN4XENqpzodNUUr9opV0SBy7XAdS/C2\n8pqS5wM2Cw6LroR4VmX7wXuU5gmSv+hRlZZ88vkn/IPv/td86d7gvYDGj4uXPLR0hr5rvhkcUrh+\nwRtaCJ8d4eLwAu/jd1n/0M9Fdol5XkQ/HBL4qZ/eBx3uPJlgSSpD8YrMrR1eDyJ8740JwqJOIz3l\nzaM+18FDgm03+eg31OtrNFcqeNijc22Sbjd5VcmwLoY5qhgE6oeExWueTo5J2gNuwhFKX65gTx4w\nu2XTTR3DYIo4KPG6dx87XOdhNsanmpuVeoXd/Cq10oJF81v6S42LjIYeMciVsujrKmtPqqApiK4i\nt0yd82mKFz9/RlT+RzSNNm9/t4180yR98JCy+oRAvMzUmyAavWRQLuA7vyEjBTiWf8GZK8rbmxrH\niwPc0w4HqQHH3zSZvJfhPbtKRNsh2qigKvcJBwZkH6T5xS+fc3exS+n1MavvW7z+4jZ3G11ObtI0\nPlpHX4vh1qdk1mV+9hd7aMKE4t4CV6nMLLlCK/yYwk8yuJJh3igH0LN92q0tZvshkmmLXn8bfWAi\nBNv03/Cy+u2My60B4o3NRyu7nNe9vB9ao5TW2Yi6yZ/eEBOTzJINZrNVfvH1Y37/n/818ET96z/8\nFz/8u4d3OAk6RJIeQu45y7CMNB5jCCPqUdhRd5DGXsbKDNGbRpAKWAEBoaUyU4KgNZjMHBKeJSNd\nJTCo4agBitU+I5+N2G4iylt4cxLjUo81/5xp00GUCvT1OuGRRXM1gi8i01xMiIsW5tiHb2Yylkw8\n7iijRQV1WMX2mOiiiS3t4130WLh7aCENqkG6qRCtMxt3MEJiMaRm9BkZE+bpPPPBhHl8iFqF2IGP\nqltEtHLIsSXxZBBDmfKjHz8mrKR48P19+v4Oc3XIIjIjft6nFJEwGjlksY3mHiGMBILeEO2mRWg5\noRK1yBsWsigxiul4TJ3lIoY2sBFjNdqKysSWSbnBlWzhu1insXNFQHKIkMAJdvG5HBJLjQ5uwqM8\n9E/Rxm6aCYVcLcy8N0foTfGs+xlfu4kQZSB2SHZieIYjXGj02z5SoSb1oIoiddGDJrq+IGkrLIZp\n/PMpmsfHLOQnM1DodtsElwW6souA6JDy9Rj3Nf7Nv/03sFzyh3/5C352f4WeN0hPmlCYppnE/dyb\nd3G/kikuI8QjNqLSQTUtZDVJuVHCvaVjOGGagTmb3yaZmi9YiAmKcQmx66d1GGNbKWMOFc5HKnuW\nn5gewJ0NI61fEjXWaE8DZENVarUIsTsdlrEZ4caQSiRHaNVCTNYxrzeQqk3qTodEPoYXP+5Eh/Ny\nAXWksD8vUg3eJmZUaNb2Kfi/xgo4pDMdrk7m7Jgq8WSYm3mZmWuFVMEmKDeIDlXy0decmDXuxFS+\nfnFF8fQIgHfev83mkYbs7lItWNQ8WfScgB2bMxXiSEcGy1yKeCaDGLHpijbyfhKh9IyieIA/GccJ\nXZA3BCquIflQCcNaRwm5WQ4v2ahHECXoeF0YvRw9xY3cGHDadpPaG3NzOSDds5lqfizLw27d5Hi/\nhexNoPo9qNkR+fEAc8NLLnjDzTdRtIiCqi55JUt4Z+e4BwKusY/QookQn1EdHNJNjHGXZbp2hHxw\nANoduqkmZrSNuTwkfTUhKPYxPQKl2kvOzqsAfDf7iNJdBb/8gmQ8hfDlMV/dLHB213mrfsJNJIhM\nll4qge8TncQDmy+bFn4lzkrO5tNUhOTNmJVxC9/OBRvzAqcLH494SSMskigvmay9ybUrg22XmHdT\nXEsDNpc+KgMV94aXi1OBwUhkyxowS2YQxDzWokRwmGZcsig8OkJppqk2YT8eoOR3yDZ2CG+INOQz\n/NYKq/Frrr4W8dy9wZkUyEW8aH346qZI8vA2nkoL1+4Zqb6FrYnI8xFrkyjx3jXdlMYvfvxTANYR\ncP83v8auHeAbtUFMF7GlBjvBOVdf7dMRPcy3BBx3i+PZGiOljC4m2fhS4fW7cVJTkePhax7UNKpp\nhZv4GfVQEXX463hWhyy+XGMz3kcP7/HZMIfYGaHWbtONXaKWvVSXA87nJjNjwtL8llHvfepRF73L\nKrueFZ6Pt7m98ymx9JzRosXSK7DVSeDbEckObih+vUolc438Ik52kKLhSASiVUaRh7jJMEy3cfdW\ncT+rERvGiMUlAqqLWkWlktKRRs9puqY0t9/mxZ/8e363EKYnZjjrfc5maBPZH6D8dMnhnSecut4l\nPl7lteea73c2iSebLNzPqfc3Ue9v0fnLCJvRJKPFEvf0IZnlOYHI23ydOOK3v22ie4d8URoR+DrJ\nubKLc/hzUskVvvSZHHiLNMcB1MoB7z308bjnhp6bA1XEtWqgbJhoRZHuqonQ/g7zrsS9tzV6+oCx\n6cLX65LvxbHnO9SmGm/emzJ69oJG3cR23sLe9rEcnKObD0isG5SLQT58eoNxb4Wrk3NyThtj5S6Z\nqwVdZYfk9N/xZ591+Ef/09/DJEY61uFj3cssmaf85BnT9kO09Cu6X8Swbp3SuCNz/zOB44BFprmK\no27TfyVyT46ykDrQVdkUe1yfDFg/egvXYZBT9U+p6o9Y0cbsmRJXk9fsufJImUO0KxfP/m6U3wyZ\nuOd9fOZL6vo9RmaGN99s8zrow7jyorh0GqcRIlsZag0PucOv+KwksLsaI90/pXw2xZVKEJt9S2d/\nnfrNp+wPm6hbb2PYOeSzx7Clk03E8c8GZJ8XIfsGfyH6cfRPuF+NUezqfHP9ij/4Z//333mu/w/5\n5/+VMpcy50aQQryDPpwi6hkqPYixjmt4F0/fRj9qMx6d4Iq60adjQpeXLOZDQuk+bq8foSrhW0kT\nmY3J+rr4MgVMj4cdUcLvn7PYTaCNh8SVBNq8T3UkMI74qIYFoqqP4tRF4qxE76WJN+/DSK6QXR3R\nc2KIkymegsSa6ia05sYV3mHkBImszqkL12C40MYipahJUFQhPsY1n/FSWOByp1iPWcivu/hRGdwI\neHNe6iMXS6dHPz1l3F7SqZVREgUAhNkZ15ZFshIgehYlNFiBvRC7GgRWT5FzCyRVw176GEbG7IQj\njJYLNGOJZ5rBJaSI112IwTheV4fuVMUeR7EHBot4D3EhsrS9eGWLQCOEY60xdTfxCxKzosiFB1yW\ni4VUZLblYpSx2KlrWEKAhDtGZG8VwdQIutsoskNSd7OIFpmHZOaBM+bCHEPYI2jmGSziBMNzLJ9B\ns21gRh2q6RnDZI+RFKOUWTL0ZJlnukR9XbSpwKyzykhogGUDoAN3dt5gZR7HGdQ4Gc6Rn874TBkS\nfVDi0b5NPFRjLnq48E+JKT3Y2EY4X+A6bRF/HeAsYhG4k+HKo7HXHbG4Z7F/UaZ6vkvRGtBfG/DV\nagLLp3J1HkWoTbmpLrjfO2b8Io+mX3H9coWcZ0DAm0fxl7FvSggLP9qOhGAMUXe9nDkxAvUqyjTK\ncu9rLkcaLd+UyIoHJgHEN17BuU1tVOfzr3ZZxrdoL6uMbINeysTdnqFf9ehpd4nIcGQobMy2+awv\n8MZvff+vemZkbXPi6XG8qbI82mD3eox9PiLzakLv2ReUCwW68gTRnqA99zMLWkRew4n4BulEk6xp\nYzsCndkYU/BxWVXRlCiTZ0nKboNazGAwE7HrIr7egsDlKTNPH+GNGaH5mIi+wclGiBu3hDq5YepL\n4D2O0HApyLMiXslmMbhNsN9BmmyQyZwgyW2myytiTZXkNE06pLATqqKmw3TMAtnUU3JVkdu5Fvsb\nC0qKzuRqzPYQlJNVgsaYVt7iIuxhthllLkl/lYddmJBTIVYSsD5XOLkdxD5cUFie8ywXwvIMSETT\n6INzVmLPOR8l+I18nqlyTrVaYf/rFOVbG5hrHqqfu3FiMneDfV6srXNwucQWBOptF7ejM+6bMzLh\nKtGaTv/6hNz9a7p1D/dXhvi3MzTvrBB+GeZIu6BU8DPiDEec8curAPVIkGR+TD3rYOkyz9cuOGmf\nMUyuszKaU7lepfbgW9abIoH0nG+LN5yIJndid1m8mvHYnWNszXEnHFb9MlZmheXGhFeBNi7F81d5\nWK0PMecTJvZnuPIiWwchYlKGQTSBO3/Mjj5Hrg0JX0dZO/qYjOqwMzRp3T3jzUGT4k2ZvJqmuJZj\nFh7wW9avE5AjMIQzzzmbyle0LxbopS/4wC1RiVRR3/qatdZ3eRYfsxaU0aY7JN+Ysy/sMDHO2Rn2\nSdx6m7NcCe3RhK+fx7ipbmM0bzOu7PE69IzLl6/oTdxEgn4m3vdJvNvEHasQHH1M25rg+/wpw8VL\nhJdhNi6WuL+3S/ER1ASdy2+ecS/q4o7/nLerBcIr7/Jbo8cAvHr0exy0VELT+2wLp+gnLXa+V8cV\n+Vvoey/w/MZrCtKUTw9+yfG4zuujRwjWV8w/Nnjw6JcUslPe6rYoxq7wRDN0Drp8ZJtUsw5tdUTB\nesS993TyMw/bNzYvWs/5zdc1rqIFohvvs9JeMr6Z8XsXZ3xwx8PI6aP+5QGrP11QCSSYrd4hl5ix\nl3/BN84RDe0F7xpTEr0VaveiZO98TsRV46euLnpnh8MHFqnVx8xqOtfjAf7bQwaDCe/feoL0Toba\nCzfrUppPIlm85Z/y2FnjmXfBT1ciAHwyWZLzVlAreQ4PbtF2tfk7vvdJ3FdJ1z/C9Z0lj6xt9j69\nYBK7xH+9zcayzU3vFZkPv+Dj7jWlwYyLey4M4xah73p4cfs/4XSOqBYyBN0K7cVrTuwGK/4EPf8c\nPn5J9/tXvHnm8Pr5kKQWQv44xTvql2w8vuRnPwnz4FjFtTjjjdoeUWWOfvkF3ru/4LK7Tmr0NfV6\nk4p6i6WsoOgi55M7xEbnhAtvEZZ+gP3sht26n+NEiLPXSbrPMjSdOsf7Cc74jO+lBGzP7/JlqMj+\n75wTn5r/jxjl//eTqD/6oz/84e9+b5Ogk6bb6NKcjhB9EcauKVO9SiqZIagFkQMRltaY+WTJPJnB\npfeRYz56wpAtj0mnY5HQUowXZZZBE39Zpy/OEA0f04aXqR2gPDsioh7iUerke3FaUYNVJUY0EaU+\n08lpddpyDK1ZZeD3M/IMcFldvEGVK2lCwIoxLp7jiSYxzCGStk0yl2Tpvibuj2N1J8QTDfo9h9VJ\nAl/8mma7QFgyEUw3QcdLbXlJyCdhlA1ciwTrwy6D5BayZ8Af/+hTluk8b69+iDduYYxNWm6L3tKH\npy/itkP4i1Hs5JygZlLtZOh3r7CSS9bmWwyDKnrrEj1RwK21GFsasSlYmT5BKYin71Af+AgOFriW\nZfT5EgItgq04jm+KqI1Rhg5ywE8cGX0Yw+szKDsC9sTF2HXOwJnhzLy4UiYhzcuNq0IklKarjZjO\nkixDNVTHZqSZBKJDrOk2brdE0JAYLWZ4ml584wgTvYuDyDLTI2uOcEXWMZdN2mGFcNjm4//0q9XV\nfwe0f/ARp/UGkUqCQtjB1vz42m7aThpj4efkssNC0hj4Q1SnAg+GV5QND7cepPBVG+iuLEGtgx2a\nE5YyhJ6NKT5qMeyP8ZYXBF0Gt+w4jn6JfDuA/xWwk6DZ8xJSjqn74JYwxrmO8LSVJuk3UP2rhK7O\nCVU6DLYe0NIU9o4cak6cruecxat1cnsqkUSW80EVNWtj9MNE3AEiJQlCDXoLC1cozrJrIkczrIf6\nNLQ8G1df0Z+1UNIu7PKAPd8+H3/1b7k4+ZWh+/6HO8zW76IuHbanGuqoxzCs49MjNO8vCJ3FMFJX\ncNljeZDGfNHAOQgxld1ERkH6ySnhkyVX+1PEbo+wlMRbnnH9lsTb1w0M1yaeWyIhn4YSq7KwvTTi\na2z3h7y8ThO5e45BmDslF56xh/Pskn6mybZepTmdU7zuUJXjeEYNpi0d3Z+mZ7noqwcEzSbRkQWr\nMsNz6Kbz5PoGyX6X49iIrOphbDYJnBn09teoeGziuk5eD9JOCEzqY+ShH/dZiefXv8rjo7UNdrnP\n18YQy2UTaW9StzNEc2v0i2d0Mu8ghr5iq+/ik/YOGY+JMXaI99yYnS2OY1+w61fQGwLBWBDRWfLF\nOMWbxTlNaZvFqpvW9JR8xGQcsfnqJsSq6mO0sU3FjLJth+i4hnjaTULNIGeFBmI1idQwSPYj5Ffj\neJMJtNenLH1hLNcS92mHceg++dAxmt2le2WR8s+IpW18FwH6ZpBBzEM0cYLT7tF3D8j6zhnW/Djh\nELocY318jGLrlJQC8UiDn//HXx2W7/0rm7/5gyQvrSTLYICN8zZqNYfuvSLtVhmE53jd23gXDW48\noDa93IzLCN0EntmUeTtAQxMptARsj5/OZRAjHcGOtFm/ztMLDFl6RezVIJfZZxi1Q7LGnMdBFY/V\n4U5IJ5CPYv/skkuPDz1bIramUn46ID4eYkxMzLv7SL4JaV+cefoJW/UJxZiDp7FgY91k6bmidLbk\ncv0209wqS65JP3iINHJo3DJpyAOCrhiFYYNFaRXJLxDeEKl/ucKLbR/u6QKlXuYnXzzj1n/1kGTe\noXV0ynNlBVerQzx0j3F7hPXqgOPyc0K9X+ONmyFPoilCD4q4CHJrFMGyE3y7cHPtD2Md1CkcW7yM\nJxgNG4QvVcREgva8Sm99BXZ8JIu3EC7LTNwrZC9ETL1IMPWCy3GUi36fuSvCZXOTRGZEZF2luVlk\nb5xj/mJGz55gV9/lTZ8XM3jK1/EZAbPD0SsP92YJ1sQVztIJMqaJOp/xeTdNduX/4u69emVbs/O8\nZ85ZVbNyznnlsPfa8eyT+nT36WZ385AiQYowBRC2r2yYgOELQzYpGr5p+EKyKdGCZMC/wYZsUlKT\n3c0m1ef0yTunlfZKtSrnPKtqVs3kiwPw1r6U+RcG8GG83zue8Q6NbXmBJ32DTzt5ags3gw0b01mD\n718LqN/R0XI2YueHPFnz0vyL1/zB735Evr7ip+sCzZ8/xExvEO6WOEkviEw0Fl9HudxIcaMk0VnM\nyPrPeeaNEqVHUY1zeZBFvnTjqrTRv53Cdr5ivbzOcFPj5ie3+TL+KTuffhslvUnl1hAj3+W6LtJs\nZLmrN7DNcjzq/IrGToRDbnJm1PitVICzewMyX5R59tGI3NJJa36LH0QKpD9+ydWv/wDDnaQbeEj+\nfII696ByjLXcAek5xaDIS/+YVHdCYNPkdjSIO9JGPzI4GoV5u24wdErIvTBHzg7Gywe8Pvsp/+0/\n+XvARP3rf/bPfvw7H+ZAVeg7Yuzm5zgUC12ckQlZKPoQpWkxm54xKOvkbzjolGrgWOJqjPBGZmjk\niGtzLuUZHjlPy7ST1hzUxm6KOYv+UiIas2NmNpifPyUguhnIQeIuCa1yiTgzWPnTjKJhsq0hdkOh\nt5AJNYf4Ann8jjiSrNGqNxCdAunhClcwS2BYZipOsK0kzkZVkh4vvYkT92KElhiDtc3SJ2Ib9ums\nx1j6VZb9KI5xCZ8xRVjBKLrEK61wdaL8m88+ZjEYcvvDu4zCYWSfm6VzQdRaIA6m9Kca2q7EcB7D\nrK4I2h0k9TgLvYNfH+Lz9LE8bgKVBc2gE9QIenyAaCVRcRI1O3QUD35RZ2yfMdHteFYeJks3ISa0\ntBABQac88TJIdNDrcxQ1T3DVwcrrBBwxJgEFm31OshqgG5LRqwIu24y5EiA+1DFNG7rlIhsRUK+8\nyPYylqhw7Y3iXfmZ+L8RqwJefPEp40qOiLJi3moiJPzMHA6yCxc//cU3o4n/4gKqP7vL9XIdadsg\nUltxvNMn0Gwju3VGEzfBZZ+pexOHvc9uTcC2dRNv3Mb1OEa8EMbureH1t2hcZgkuzpiuhcnUdok3\nZPp2mZBscRyZEJpvUa4+YrGfJ/d6QcVjRxJWFFJFunqE1X6ZePqM9sUazYzCpUegGttgc6wi2t/g\nzLmJObtoJyFcsRB+6xkX4U3imkWtuyCzynAuefAaQeJbKpGZg1y/RFcNk/B0kZ1Z5pUes5kPbU3D\nL+Xo2wuch18xfpjlsvZNk/zD3/8tks+uqa4ExJVIZC3AKnjGMixhN/bwN79g5shSXCtyfmkh2KIY\npVPSzQHVUIct+4ASe8SwcHj72KchjPs9vOYQV0tHmQcoFf04nz4maIuzdLjxdvq00ypa0sOubjBZ\nyEw9DnTtmogwJ3U6Q1uX0HQZcblgJ+Mm7MwxkXtMxhbbmx2CgknXEyRQNKh91aDvThFSL5CCKRoB\ngdjSwn2tMi6uMJQQenVOdOVnrnXw72XJnK8oD0u41zdxrWp89fwEgN+KPSD5YQxH/YKJY0gha0NI\nS2iihm++ybj6OdkrF57tLYS2TC87p5+2U7kKsvngBEuI4zdD1Msa+aafwUoi7O/w/EaO7cYZp5EG\nbvkWrlWYZdjDAgPNU6Z7LLDXanGp+UlrKcTuNc34PvlelcKihnoQ5HWjjJVrMaHMaGPF5DJDwelB\nts3IdftcCBuILzqM3AEGt1bMhRzWVYXKwuLmMI0kOIh1Csj3Kuium2COGAZy7D0a0F/eZGJPEao8\no7DI8uef/RKAO9Moif/9Hpn2Nv30lI4jSLcA6/Yl1ScSxTthOg/neL029M0soXSMHepoOyvC53Eu\n7W+YJ/2kyZKoNlkky8Q8dXw9g9FARk4W8fSqELrPdFGDnSpFOYcz/gyjtYFiDWjON7Evg7SFMinb\nB8y4ZurqYRomQ5/JzZoTX+cS1/ASX3oH52iDwmKdo3tZcl8+o7r2bdKNAEbgBYXjEHq2z+5XUwQh\nxby5YGenRKAkIellHL4L5qqHir2ILTNiclVjuX1M8szg589f8Yff+iEr3xGXr24SiS7Z6c74zLBI\n7G7iKE84SBfo2EQi1pxZyovxeQfJlyQeqHMyd+ArCHgv69w7usHrH3Uo2Cq4nicQ4x7CkWsWrHA+\nzJD01OmXB4hvL2n0nEhMSK+8nHtNxAOLhStJJDNiw7ITLM5ohh4TaMZovFlh3z0itfYhcvEEr30d\nyRnB+9LEWLejbd3lbPiKaCzGVqnFk4MozUCXVC+IW3xN35Gl/riNb1An1q5TSCxQpT6J7gErl47S\nvsas6chLjRdfHPF7niyvvlNhpydi3Rvx4NMUWvw5vciYrek2V7cvSf/SwncrxdP9PvMVvLvuwfk6\nwSjW4frzQzZ+EGbZEBmlHKynrvllNEz/qzJuS2bDDHDhWSBGdKofNwkNA3T8NayDKZvqLl/eGOMg\nw49yE/xhO/v1EpWrLvPaHpGNBm3DizqZ82uOJMrrMQ/lczLrduZ/+4Tb5jrC8i6uTIB+sM3etYFz\n4x6nSon+Mk0rHqcqd7AmY5yva5Bd0nDaSN5UCSdjuJsv8NgclPqvOWnU+aN//PeAifrTP/3TH9+5\n8V1WDZlkqIy28NKWo8gzJwZLls0wtk0dcSbjKAgMl15srihp1wo5tMayP8P0JnDWJgw8brSFm4Kg\noHs8KLYB/YWD7bSNC9WOfHiG5LRoWyk0+wXuYJqyvYMm+/FMKgi6gdfyYc3S9HYWmP0w85BMW68w\nPxwTSe6T8Eg0NB9Kq0VbGZJKZRgNBliZNN16i2QkS2tkkXVbNEwZr7PLMLKOeyni6vWZrZoUikE6\nhhtt7gILhB4Y+Rn/7q+fcud7u7yzcZ95o8vM62WjtULR5gy8SezJBe7hANln0A2GCTmX1F2wUlck\nfFvMxAlly4WciOEsOdDtGkszgHs2QVUUqkOTAAq+VAh3xIPqS7LoWHjXq/QsF862j66hkkmCYs8S\nNBzERRv+3JillAPrCrqbhJY9bKs5Y5+NjDZj4rBhmAJ2Z4hVpIVz4aIz9WGLWDTncwxlna2xiUdd\nYdnt6EYEAi6E/pLE1Ie4tUIWfKiDBLnOJZ2Al1/94puL9P/V/whnZ/+Q6KBGdNKlJSuoVpJsKoKY\nbKCMkvh3BGKXKtFekfrNMj6HnePHYxw7dpLHbhRlwsx1h01T4irqoOcXWde8mFszmpNzFHGKywbe\ngIljGGfSUNH33Yi5S+oNH7V6B8WscePqHs7+kkYkQsqpElCH2C4aKDMfHV8C+TRCVZ6QdOVo6TUm\nrTwb8jU9+pA28VlpJsKXDBARoxajapZppki668dpvOHUG0az62zEIyTFABe+IWp1TLAco3/jFeef\nf7Odt1/cJx3cJCSvuLY5sXd1vKqIZjcRZheMd28RWdU5bGo4bGUSzhmZjSzuNZN6L8fCF2NbPMJ9\nrTNy2qBgUh0W2L6aUtvboxMt8+6zMb6NXSrZJYYZwd9tMWwncUlzWFUZjXYRzSv6epzA0kvH0cJX\nWUMPRhj2U9hkB2ZaY2JvQShIoxFGl5OEqy84P1/DVpQoCDXOsyaCFcC78tIJL6nW/WwlPdjtRa66\nGomtEPOAQle6pLEMYwt3yVTGDJQZj15/w4h9+0fvMvjoh4w/KyP7c5w1FmT8DvqvLPT0iD2W+Odj\nXsQ2ac1KvO/Pkjj7mslBHHGVIDj0og7mrO9f0fRnsfwSkh5BfTnkzY6PwDBCfmPKWfQCsz8lXlkw\n999HM1rEfB7K7hOkdInmDViEPcQDO9R6I1bVArEHFRb9OPnRGragjsudxTobEht0qHzoY/ikS+H2\nDp16iUK0gNPWQS4d0I0fEcnZeKlLNOs6O0YfvbWNtdOjdxhjPZzgdeQJoXyQ0ShMaH3Fv/vLb3Ki\nDn68ju3P7xAIvmLgD5KNKKR+ZfJ10E/8toD3l31UeYNl2EcqViH0Ny9p5u007PexF86xV97nXquC\n3/2SX+a+hcc+pxpdYfPeZkMZUddqWJkoHqdCtBZi0t6kUlRxfHKD2DJCNm5xfamhqVMeJN28cp2w\nOr5JweVichBgPtmk1bwm+kBFzd1H1l9RCzkRmg7E6ytm2Rxpy48urdgbhWAhcGEUGTov6ey4uJnU\nKbegZe3QLDhonoeJje30XOeEY3X2BBfjNisdkwAAIABJREFUoJfI9DY/++Iv+U9+/4dUP76F6+Ax\nN+NhbO4bBLdb8Ogl4bctnrR62O5dseqr1Oodbr+/QSDwmqFkxxfbRXccMzvfI/KjJYufOkhMoPJW\nk/yjCL+846RoJhl327wct5jmHHSUA9yONLm0zqUY5+3cJkolQKXj4l37CZ933QiZExKKBVE32UOT\ncHOd5cEl9p7Os84Jzdd9dv0BejmV2S8sfuTapJd+Q3fNRV9swYs8hv4lY/EWeekatf4WV6E5RmSb\nWChKy98inRfxhRaUT/dRYx1SvmM++bjBP/rOB6yKIhGXj/qqT3wtyKPT77A3LqCftrl1J8WjvRVu\nj5Pkl0X8777m4Rs/y60NNrt9NOGHdAN2unKM4lEUsdLj3csWiXcXfDFrsPdgRNDI4zn7ggdikEnS\nTa7/DrWVgudWC2OhEY92EV8siLwO4A5lqIzsDIoa/fwGAS3O1F1jUvAjd4Mc3DJpNSv4o7+BsCHy\nRKhxo/KUtVvvw94c7VEPV3JAIdplYSZ5S9lE8JeYDIJkhHc43fFz+9MO44WXL4UCjM/4IPYb/OTp\nL/mTP/p7EHHwz//l//Lj/V+7hegP4Ov0WKw8hHwC8kRmGvag2jQy7Tr6XAExgajLeLzXyJdRxNkC\nZ2DJ0KqjGjGSI4OwVsElhTgPTPCNV0wlJ8vBmEhLJZQFNRhmd1pl6tnG49JwuRJYrhFRK0Q9PMY9\n1ih7r4mrRczxAtMOyXCEoDVnFPazVJqswnkSrQWOQgZLmCE4vIg9N6HgCMw2PodEZ+yhoPoQJQlv\n+TWLlJf8pMdSW6NpH+MLiMhZjbQ+Y+hLEJqZ/F+fPmZa7rP7j/4B0bmA1LeY6yNke5xl6hrXPIIy\nHaGPVqSkJdY0incp4fYatEY21GiPYFsH/wJ7NEJEHOBz16Gh4SqoOAfQj4n4gm3sp3MGoo+8OMDm\n3WAqtwgKDtxzE9GdxLeymNrHyB4nyiiI1NdQJCeJlYOGYiAgISgGY9sUdVpECNUImXOccwey3Mfn\nElF0BwVVJao6ULxTLlN1zKmboMdLq7MgPZ8xTnUQHDG6ehWfNMKRskEpzlePfsYK+IN/AbPdHO63\nFzxNrJiXJXwHTezHGuXrEOlwDRp+AqtrHFKXS/U2RWcF1cxhzGQcyjVKXEZ3XYDpJiUbmHYHteGS\n1MKPseYj5M/QKAdYZQWS4xFeNcRkW6d4HMPlPsOnhlgv+Ji6T5Hma1j5VzTGfRxqnoTUQTnwM39z\nwoEzyDTUweg1WQU2Medj3L484UqLyGKNoPcxvrMgkc0xC81L2NunvPQRToyZ5E0mh6C0JzQmlxT6\nPUKtKH25TtAT52/+z9eMRtcA/Ke//dsouXNsZp70eEnVccpgvoMt3idwliRVaHAo2Mg6JLauZZqp\nCfOOypsAhMoNsgmZ1TiFvhpideasfEXsjiPUwS4Z+wRNs+in43TeQDjhwf5izmpnzMKVIGQvocZu\nkdIO8dS2mRUvWbXzLP0rjLUEo/aKm7bXCIEBlUGEpXPE+tSiPclxu9rnRFNY24/QnpxjLVN4W3Z8\ndFAWMbi2iETcDCtRpjmLhamii05WvQmh2TZFx0um3fco3BnTfObg8fk3Z3Ae/CBKOvmAVf0c206O\nmdPGlRTj1raPkBLgXK1xIkTZVmcENBX7WoqnZwrmVovmK4HYlgd9vKCf1rD52mgnI2a9JPY1N3sj\nN5b3MfZ6kVjdRTLV48nwBjemL6lOIrTnM/J6mL7rNtlDP3tVFW+6ix5tctnd5a5jjG8Z4Ll9zpAc\nSe8bMtcGZ9tb5P0+RtUybTWA4CtQ7zfojWL0b/vZvlrj1Gxzr5uinxtyuX4fZ0Rh+lBFdy+Z2vr4\npCzz0w79UB6Po8QvfvaNU7n+Jw5uH2bwbIiE1Jus3jSJuhs4ZzpDW5qqmmQ79DWmI8+LQZXirskX\nq12y3Ydkeh4qtgVSYpc39UvS8x6Dosq9F1lc/hEXlzL3NQ+BrIL8cBPb7ed4rRy52ZATLYbx/pyy\n8YxUxIYldqlbmyyacw7e00hqIcx6n91aiZz0LZzOAY5JnCeLJptvUjyNgrdVQ3DeZBKb4nih8jri\nZSKUkfIWDk0mYDlojkXsAz+3hAveTK/ZtUzaCT9vjbPMawr+2Q3U9BVDaYsvfv7nvPWdj9jRL0nX\nRLzlHEb3DBU7R8Uu1utb2IcSxvacgdglNwoynVXJRQIYfQ8BxeCke84ifM10UWRidTiK7TKdXlI6\nGJKUP0R48xm7d2Rsxe/jOvWi3vkFg1GC/CSAIoP+dROLYwwtStc752bbj7i+wxdHRcqTCWs3+pwf\nOLloB7g8TfKtlE7O76C8nWf0eIJcCDLRFMyNFNOHx3Rli9uGyMJMEdvokbpw8Tj9nN+tppnaD5nM\n50zOY7zxXWNr5JnEXpI536dxcMTjn9S58Qe3KKoq3r8Oc6x9h7j6kOu3ukjHr9hJ3uXirM6uN8mk\ndEw8CfEXIh1XgLL5BWuJH+HxfkpGjxExl5ibEwKKm8VWGuNREXlni8XFmJa9z+7Qwxe/5qfxUOH6\ngZd49YhqPIrTr1L7agt/+Iwn5n1OgNC3X8J4wu3gTV5d/g3+/gHfjid42Pw5XZ+MNdmi+UbAM33G\nByF4dFdh/rKIv9fma1+Tlvsdbi6z+IS/xffch3hrk8TphMEHKhPFzUV0h0H7ivfuHpM5THP0jocn\nv/wV/+S//+/+/w+WC5qD6Egl2jrGGttxqA2aToMOY3LtEP6hH0XboKI5GGs6lm9Or5dh+pZAz2dj\nioZZTxHOGZyHJ1DwYKgBjDMnE2+M8DLKaDzBHg2gBpOoqoPXsW08cwVHp4Jf8OKfGdi9KcSVByOd\nJO68yXQ8JJQeM140mbQ6lD0zLPuS/iSL0m6hyTOEkQBvZngmbgK2Bh7LhSDvI1oactJHVWtRD5oo\nega5JPOKIBHfiIOojWFvRnoUpTtaxz/pMYy7AMj6N4mWRHpuL861OmK2yEiHzb5FwiHjiRQJynbm\nkRSmT6esXjNygT2mY9NCKEEvsiKiXzWYdEWWlTTkV8ylIs6YxE6/iOsyQcm/ht+coSgRymYfY+KA\ngUg/laCCilxXMHwLxqsSuu8KKzNkZahMaGBuhJDXTEJJnagZxpU6RxZDXPhXNOIzVu0o/Y5FpttC\nXUzoOQWkYRjvIk9gGkDzagSCJsfJJG1HDCom4VGW0iCDvhAQPCtW3m9AWQm4ftvFs8d21mo55MQd\n7HMni/lNvPd0wrLCpTuKjkA1vk/IN0c53SK4KaIKFaSAh1VtgNkLcGR5OTtRqM3r6G0nx50Tmi+m\n6I9HCNIx+ycdStqKqKtO+zOJ9s6Q5WoD210bzmkBqf02M1lGKWm8pQXo2WccFVJsv3Lx7fwO5o05\nkeMCldSCWxkd410/tpHFxf0ItZWAqG/Q9XmxN1KkBRvNqQ1BeIrUm2B04oiLCu/fWxCKiXwWdjHZ\nLrMV9ZHYEAj+5vrfvRmbkMQ0bTQqVfo3a4yHItktjfDRFOlBFWVqIIkbTIwxXV+PWceGqefYUzXc\nbHMyXNBVK3hWGcqxLRTHgO3uOzRCV7xmQjDhRPcs2cNgeFbD89ac2cmSXa1Bcx6krxgcd/bwvTtH\nkG+zqXXRxgs88xHpsY68u4YwW+NgdoHneEXr2iK/LvJF8YpkwkY1KHEv+IBhNkc+5WCm32c5mFLY\nsTAUBcGwY16D31Vi4leZhYpkvC+oTbfJxmycq9vYF5//XT1SusiGLcMyuMXIsjHphvGJHdS/uebV\nUEMvu7BNRziCE5JZjWntJVtvp/G9cLOnXBCfl3HsKXSMAnLJQ9dzh2XogmL8kIFeoxuUaVsrZjcX\nmF/eIpoqc712n9vv+zG/q7L0RzHcp6Q/kBB2S3wpKISfC/xgw0JqzniR6fCtnRF3jhzMJyanOx52\nfS2e1AVMv513RnG2k3Z8gTQ/9NpYf/iG1e1zVsaKRWzB+6MAv9bo465MsQdyPHAU8M/W0BqnBMZx\nvjVYYJ9P/q4eLa+bS+Z0Dv20z3qsQi3MyfdJ3XOwfdnEm/yKR6rKReBXzE0Nq/sOecVC397lb7fT\nDMPwOvYLViuZ9ZHK22cKrViCrhhgundEzRQ5fzVG933C/GKDUUZlEV7w3uI18f4XzB69Qzq0i90d\nwL/+FK+2h+tzi8O+wkT28jq6pCF2qaQjPPSXMM8OOJlUedAesmvkqXd+TuLKSWg9hTSZ0l8PsNM+\npdDS2e83iYozbiX7iN6bbA0+wj28y6S4YFy8wOF3MvbXqD4zuBV8DoC9mWMeqfOYb2E6H9N0uIlW\ni9ybWbSiGqb/JW+Xp+gnN8klIG38kF/ZRR766jwUjwilorxdFgiVB0RqZT6aNPlNK8t3TDfrPz8h\nqr7F/Gud0b+fUTFqSKfvEZ6cEzj4OaLbxiArsClYrLa6DLoZvgh2WPYXFPd9bMyjrLrvkDzxEXt6\nxZ30mCeTBn8bd7F7fYRou+Z+zEQP6+jlS9bXbPzDLxKMnR3y/Q1ev+nyaG4S7+/zUj9ikf0WnY1d\npPemuAcTnCEFm+976PvnmHUJgNiTPUz7Pf797xTYe+tTFnvv89GzKIMDjd5bLuL3R2gXb7ie2/ik\nVmR8v4fDs4U94UB6828497f5WHNhnaxY+6WNgXRIrT7CND9mceJDXO1xLxhk9N4es3qGjZ0pa9IL\nGu/f4Dtmgduv3+K72kPC2d/gvtNGYXZK9Ov38R3eo3/4Kb83+wdo0xIz718j+32o3T7VUQr9uwOu\n1wt83Zgw0i3G2wqlVJbvJCf88KWLn15XWNrh4W+VMJ44GL6j8eh5legbkfxFGfLv8Iv5GpfGTVzi\nHIep/3/SKP/RO1F/9mf/649/c91PMLBH2S4yXszJeWLoIZGVdYLL7CFnDcxVgaRHoOlakKr1qE4n\nODUDr+DENw8zGjiwqTPmKzutfoOUN0KwryAldVKeMFZngisk0fbUsGYDfE4FV/oOVaWOY9pGrHXp\nj0PoTQXvtIYzbKPc9bOW0JGMOUFxDa8KenKIrLfxCTcIOhcc5u2okxWy5MK+SjGfqPRdXjJOHdvc\njmw5cE5nmH4Rez6B4HZy2jeQhy7ESZthMUZAU+jlDP7mL56w9/Zd7t9YZ2A4CHZ9BAyBiDSlrBTw\nxkYs2iJDWcI57jDSZYLFGJHRNXrTj2/lxhlfoXVWuFM2usiQnTDuiqTqY0yfiKaOuc75iHaayPEF\ngeSCwTBEMBil05/gSDRYt815ExXIjTTCKxd2zzqeyyqreZCFQyQgNrCXirQkjWFUJTNOI/bGuBwx\n3LKBY2nH7bJYpRxM7Rlizgozn4beDGOlL/AKERzDMr7pjFQojCF30eIxcpMm55MUiXSZv/zZKZa5\n4A/PSzz/txYPnE7K+SnRSIzseRtvKEiqes5XkTu8H5RYJSMMVm/YTlqcBS9JnaQJRHwMlRGzgJvi\nsoFNz9PdbLJnM8nV7Yw8Y3Y2ugz8czyxPd5kOtwfZjgR1rEeXON9vUnWK2GF33DdCmHOH6PmDVrV\nFD28OPIKy/YQT25AT0sgGH4GtlM09xZqxYu9dMwgOuKt6oJZWsB76URwOXmVWhFrpghkAsTOFNpO\nCW02YLISyawHsSl3IN5CPbRTTW3R4phmT6Px6AUAB/cKRFNZxvUWymKdkG2EULYzTUlEzH2Ujp+Y\ndIW3lOJic4O04WTo1GnY66R7aWybI4beEaFlnpm+wB1uEA5maboukeq3abU0tsIy16aJfxCgvjLZ\nLgqMykGM3TY3jpoE4zLX3hLblyHaIR0/QWJmhwtxRLC5zeHIhcPfJSSFWWZ1RhUVKXGArgw5WEVR\n3RrZZpnRmotMs85kz0dVr7MnztCnV9RzTvz6kmQrxZ51Qq0nESm2mcgVOs+dnNYvKdVqAPzaB9+n\nXbzJvPQCzWphrp2xfHaTghSm5LrmfWmMZ27nqjegv3uftNag5NS4WZ9wun6XUvOUtVmItkfEEb8k\nfRQmoR1zWYOMs4mihNndkGi87FPb6WC4bXhPmqgzH6HujPXbfWontylmr3gxfhe1UaVol3k5UqnH\nvSQv8szmdcTgCivuoVyaszGM4E5qeEs5KrtfUDmuUrg9o3EoUkyOOAnskxPK9BYa2s0gV1+DuKyg\nbXloHz0n84GJOiowtR/RWDjoFW7w8K/+AoCd/i1+cGrjaPe7ZGdfYK0+pDT+lEApQetWlZS1h7TW\nQarfZr8exLVocJT0s94/YdASuZ2yqD3b5VasjXbvFq1Ylgv1K3afxGgFc0SGr+nLKqvFPTIHrzl+\nLRA7N/j6u3ZyRxmMgA+fZnKcDJCbrHBFnfQrR9y5u2Q8n9CKbhLdDOEp9dmN7ZIavKB8J0vE3WWR\n65JdL9LpPqEmNLnj6hFWthmkY1z2L1gLvc/TZIjr5YRSq07IHKJJV0yuooSXI0qRHYLyc1pZk9Gn\nd/nq5U/Y+W/u4nrupJivoqw5eFZT6MdqSFsSB65LSpnvIXmGJDMBSr5dIiefsszPCTpd2NoHFMUc\nx1spOkcy8w2L5o0iua9b/CJnYUw3cL+j0x3YaXtLHIRTBLe7RNMm/o/fonGni/9pn/KdGZFYlHeP\nk2ypLzjfmdI5LLF2O4/b/YbGqzjX3zpl+VREjrlYli6xOT9AW/Spn5S4aXsHuavy2Wif7vct/I8q\nmLEOdwpvITSzOE0R4wM/a1aQdu2Ye8k8tVaQvBFk7/ArQoMI/dQlX/xtjQf/9UeYzpfctXXpfBlh\nW3xK+1CjEH2fskvm8usaka6dxEGCnbaN/9CW+P6BTPDoBheNGJnbdd5OhPgsOqOkFbh+x8/wlcp6\nYY/x27+km5lSeLPJZd2gpfYZV1s8ONPY3N7D93pKuVJjnMqi2OIQmRMsLFAzMsHaa7TJDR4vGsw+\niCA1Uty+WSSt1mlkUriCz9gMNBCM20yVBt8r79ASfkbj8G0E5QVvzdKoHZXCNVzsW3ieVSDxXcr5\nL3HdanLnly7Mt3SMgUT3ROL86Ev+8f/w/+5E/Ucvov7ln/2LH3/0oyJmyMakJpHfMjCvncxjC3rt\nBdHlTdzMEYITJt0+SwRmxibySCG0LuKq2SgbEyRNICkEGXmc2IoSoYGKmvJS69cR5Sxdm4olzJGm\nYXRvHiss0xpeslXJIQp+NFeIRb5FwWOhz4OYSw+J9RndroVdgEojiOpXMMsxgiGRUbdM0pfGverh\nTWaxnZaZzmV62pis5UaTBfRun5XSQ417mTpUhHoZzzyGHHAj+ztM3QrFdAS9F0R0Cfzkr75CdvTY\nv/Fd5lqLTMzDm6kTv2OGHK+hjQ2GRhxpNcKcrfDHbYxmNvyiSCvQRlQ12nKE+Uxg1Y1gL0wYNXRC\nCKh5lbotQjIq0i71kZPrSLYQnZpC2j7Hmo/wzLMs9S523Um4ajDPraE2Fa79Bq6BhcfuRfC1CYo7\niOMxUqhPSDOYyH5mgg6jEUYgTVgwOfPPcQ3jhEM1RnUfg9kQu9fJYmQhO4YYST/MVaRJgsm0jTyd\ncp71k3fJlCsjvv76EwD+y//tX1E/SDG9lWdxpRBHRalO6aplLt+KolW9xNs1nOY14emK1kxGTzpJ\n+ESObQ1ygQjXF02aO0vsnhXyoQELL4NdP9sNnbK6wdSeIOpv0v8qwPjuBTeuVJIrA3PRZDkRmLFP\n0pS52OgzXGXxLa6ZFeLkzlVik5tUpyKedglnxI3uc7F97MPhm9DyJNgJiFTjCsXXcSr3R1gTJ9vl\nSybrTvReiXYkTEfrsbOzD7UMmqHQq3uZhFaEWTCSTDZKOmpM4+jjb37Wd+/do+USyXcP6Nyss0UE\nuxZD0iaYBTtG9QjbKku0oGA7nqImXBSHFxiVA2o7h0yWWXaQqGQaxKsSq2iEzvMha0YUJepBEvv4\nFQe+vJOZdUGxW8WhF7Fu2Yk91ulnRdx+L6GhxtkwRXrvBHdpzDN7CnPhIHTbS8ctsZwkSI+XDINO\n0rEkyvgR250wT1N+omKHcmBMc9LFpycwowbKYZp53secLIVAl8S5wqW/ga1t56pYIDF30JQDZCMq\n1/0yV6dVAO4X30K9WWIfD/0XdSKRD0lkP8GY1XE6+zwPLInHbxJOjrmyg2mbsPHlCGmvSH56ylk/\nwM5diVyvifBlinJkwCj9Njf27SjGDu6WxDgZYxW54G4lRV2PIsVFYhci1jvg6SRYTz/jtZZmu3xJ\nTtSY7N5D6S/pdz2MilXul0WE5A6VFwtsuxaVcpzx1CQTsRGQ7Wzfusmb4Rir2eXcv4FU1TClCKYz\ngK91QndtyL61yTxj4YqrzBdptKpMz5qw7hmyO2/xf3/2EIB3/6nI+NOPyCk9tJQPSfSiD8Bxy8/k\nuZPmpMX42k93UGc7MebLBwHu6jGOxALK2MO6p8tgfY3AYMV1+ZJ2qYBjNsT+nSJCRCVZbWK7FcS/\n4edze4c9cUynucPaWKKnlhml2mwZEq1uALEBoYjOcrjNwIwwjzV57yqKfLGi7C0S7A1Q8hvkGzKv\nI28QKgfM7WDvrLixEDGMbZwuD83ZFywn30PNPMXXCDEYzREDOZbxBTeX63i3r3idOsA4PkFv77IT\nneKJL/jFX3/GD9zrZDcFvL41xuUA7rUbqLMe+55dqucB2tdO+idVfOsOsjaDN3Uv9eWIxEmclm+N\nzUGN9bMs+r2XhM6LrFFHsB2wd9XEP73m1XCOKidZCn7GuxkO/sMjtPV9nssLbrcDSLEXtCM+Nn4a\n5ZNQk1J+neJ0ijHyc5XP4/z0KVHXgN3TXyf0u8ekxgeEfQ7OJR8urxvP2EQ07MzuDIhP6zgze6TE\ndbSFSTjd5tT/nPDGlM3BOj/1LYmEJYxSmU4zR3ntY9aKvw79x9RdDb76pMXvvRPk669/h3xhSWFr\nk+YXU6RwgIvAFFnr4jnYQ7icU7rqohgh9n/zET/7KoV3p09uEifuLjD/+FcsrBbvuW8glF+y7jQ4\n1F+QW+a4rt+lJpVIj8/Y2xgRs7+L5nYwkhccHcYZxx9ieKds4cH37JBDp071610aYYnbgQFOj4ad\nDRrjI05dcwQ1Q/z0U9IbH3Bx1SDaKLJf3WF4y8FxG2z3CvT8ZRx3a3T0CF3vHusLJ0/eSxNIzJCv\nRO543+fRVZtELc/hRgvhbZPDnzzmj//k7wET9a//7J//+KPv/TZnyordZRTV7cEptZjixRsNsOrJ\nLFCoO3K4lDlpbxA1YeL3GwyuY7jsQwLpHUaiHV3rstpIsTgZI20tGMxT7Ok6bZcXu2onJToxWiWy\n9gT6SMOx0KmkgjTth3gtCb8vxbjjoWfNWW3YGdkcbMsTZD3NStDJ5FQiywV+yYU5E+kwxsiEoGYy\n9kWI+CrY8DGdDVg4IZfLQHeAzJKgP0QzMiUoB5nZSnTbGuuBBG1BItjqMwkV+auf/oK3f+P7rO/v\nk1kuqY7DFJ0TOlEZWzeCkhJZ96is3BLufhxh3iUbm1F2+0i3DIQIZG09FDWFZp5iX3gJahYdr44w\ny+NxLln23BRyJvqshrvlo1+UCLr6TBdxPIE6Q08Iw+kiNB4ziIxYdTQ2HDZmUoTa0kJxzom5e3QW\nY4SoTHvoQot78LedRAxouJz0uk0SzgCRboOecwMlqhP257CkEkkhxNANpmYQ9BiIXpWKlMW/dKJM\nx6QNMAhwWjlEmSj8U+D5b71NYD7GIc85iTkwXfvENmS29S55K0DdXsGT9bO4jHIm7OC/GuFM2om8\nTjFe9+KLDdgyZZjPaNkMcqsbKLUaUe+Eq3mb3fyYvpHkrstGRd4klRbRagFebkmM5nH6k1es7QTR\nOg1WIz/xpEliOKejp/FFXzHsyuykBE5kk0U1juv2JcOSg4TW4sLWwOf1c2VzkeoN8CUSuDx1KhWd\n4L6CdO0m5lbR6yt6CQet6jVhUriiJyilNLF4kNXGkEE5zOFXnwHw4e3/jH3LTz16yU47xXXYSWRY\nQgkH8NUlplKPtneLcb+CLbhNsjLjMDPDkyqSGC8QrgUks0f30stGPM1Zy4W80yCge1GTS/YrCoch\nAfN0THt/nXlkhD2TZDg9RA/t0IvbcHU1vHqC0GpAXxojpywKQRtLc4J+aWdbvSK6OcLWnvAmN8D3\nxo1tYwtn2k3ILrEY1FmEk3iXeaLJBlY9QXwpk0p4acfAsoGgJxACDmwzN9nlGFPQSEkzHM4Js88N\nXtS/Ae0Pfu8dio4tHiqn3Glt0Au8ZHj1LpbPiTybsFgLst9NMUrF2H00wxLmNNVtXvtqWK0Vomkn\n4ZY5Dedp1y7ZeS+CVA2gC340/wXngyUeY4Z0OcWuihTSLVQtwOiGhvIsSic1QlQlfCMPgyJU004S\nnwRwBu34Njp4T2Uibp0XgzOUrEiiptFbj5CaNpjdUxk1E8w8dfbrU6K3PHhNmWzIjqU9YSyP6V/Z\n2ArtQwkawRL50gazSodZoclOYotK5YLR/h6f/uU3ieXn/5PBf76/QRgHXWIMEiq3KXCZUFkJU2yd\n22x9L4a/ksG73+CyKuBbOdhxP2NezbKstCnMDpGdB2y417kaP+ODnJ1FWSc9dBG4KyCc3aIcqJNv\nHJBxOtBVkUh6RO9GgbXAGt4uvKlXsb0XRjvxY+2fMsles3FZ4FWrSzwdxbCfkY5kmetf8PJNn5Dn\nJpqwINrp4U+m6OdhUE0hbzxFXn6Iv6PQr6ZJ3iyzLq1hc77EdMYw4qcclja4NXrGxOUgvp7BNR7Q\nrNzmi8d/zu/+0R9z0oFox+R6YdCYO5gnrpidOVmf1Rnls9zetAh9nuJhKsS885Rvh10sfV1uRYb0\n10JUJgqzkkUkWueyU8Ogy7FDIfyDBcVwnJhwDc0hXb8Xt61A/CpOqfQEW3eOM/IekRcNHsYmhMIF\n3rdHcQgvkAPfYz/cIBGbMOytMfN/yauojXpdJdLdY3f3V5xcreF50MWKRVDPdNy1DkIuRve5SSb+\nlOYrO9FtL+LjKd28wdi84nu+Bq150dkuAAAgAElEQVTuGvHOFbZRAWe0SrVn4/MDkcpfnHJv//fx\nfejC99rOZ70q5v4lubKNje04YvSazvU6hvs5MWcIt62LmXUxS2yS7H/M81iM5oVKOfIuYZ9EYOtj\nzu1ZVkaVgf1bOKIK2dfH7GYjTNUeg963EUcBwnIHdzHKRsZHWA/yMjviwuPB753TXIawf3DEzVcd\njMEBxv0Gw/lTvK4QQsDG5pWM91YGqfGaiW2HufSCa2kdr/Jvidx6i7m9T+D6ithaiqpxj1HkMRVz\nyEdPPIQaKsa1hSvwkktZ5vqgiOfCg+we8PKTx/zJH/89cKL+7F/9zz++XdzCuXAyT1xil3Qm4SWu\n2QxxJhEOrXBrPTRvHz1fQB1ZrOtt2noCpzQhmPdjDGY0hQYJKYY6FilITsTKlF6wjCOdYCjaECwR\nX/sK1846AiqWYmIt+wyCOmnHFnJ0xvRUQp3NWAv4cFtLhKMmZibOebnEupBiPOuC040hGMzDORLR\nGeq1yNTbx96tIUQ89Dw6IU1BHXip0GNuCyCGZcSuwlJZIS0tFA9sKhvMVktcgoeBsSSdt/g//vxz\nTFXgIHcDcTxHkKYsgjHC7ibOmYfIuMupLYpHXOCbuhmtRZivbOgMCDoXdB3rdKoSVm6IoQfQ5mE8\nUTdCV8G0zQjMVELTJW9MP/rYxTA/xNH3YRcWhKYm4iyEMuqSHkeZhzV6ioYRtTNahrFTxyX5Wfct\naJUlrDUTRlkWth7xvoCg9Rn4BQL2IR7RjU81uC6EsByXFKsRKrFrUrUN5GCDfjVIaGLDCtsQGwOW\niobpbpNJ+xkoESTDpDt+Q63aIVYbs/nJgs+7VdS9OYHjGUw7tNxtytYBQiNAPT2icTYlF9kjMfia\nqa+AtzdG3PAyNAX8zwSGlp1ZJ49fKuLKXBAWxyxsIWL7c2YDHzFvm2OHzubyCtdLLzP/DH8uQrRy\nRPGBE6ufohmNcdPdxn9qoiibWLePSNlv4NoUeYOF56pLdGeJJAWZLYeUxlkiuxITWSBytSQ4NaiJ\nKQZ+mVTSpHSaIxm94k0yjXEdwBwGie75kAMKQjWJKfWwh6+Y2m7T/1jl5OoTAPa+dZ+mbLKZDXPi\nHLP+ssJlJoBvMKI6cTO4keeuq4vXtca1usDwXLNr5RClEpdLg5zlo2IpbIhujMH/w817xMqSpXd+\nv8iIzEgf6b293j9b9areK8dqtiFbbIrajAaQWWk1CwkczAjQitCCwEAzoKSNtNIAgiBgMNQMh02y\nTbGrukxXvXre3Puuv3nvTe99ZEZGZoQWTTS5GsxCC44+4GzOwdn8cb4PHz78z09HuuNjTfVw1HHj\nVI+R6DP0BPD0BGKlBaFsHqFU5cLroH96glpUCWhLdOdQ1Sb0LHmaioKm6nh0G3WnRDwU5NJm0C/b\nGNMlFLOhHZzgb+SQQyUWPZWRJUm6cIFoblOZlrDmTnh14kCYuxiX7QSWB7inUwzJoNr0UZnBMLGB\n56nA44VO4fQZABvJ3+d3dnw4Kn3O1j201QF7dZmqfIFzy05j4OSyU0C/VmHQQ02GiVSrVD0xtKwH\n48qkPkiwfKLgf7/KyRMoxsJsCRccVEu8FfTyQr0m4F2hn/IyDjRwH4/RztPkPC0UIc2z8xPcN7tc\nPuyynL5FU5A5DtTY7PU4sHe4buu4k36WQgEKXYk7xTM6kQSqdYJ8ZEEQvBytOOj1khjSNe5xDHdh\nzNkohxxYpjWx0Hvbws4iQ+viDSXLHjenQS7CRRzWOeZVmi8f/QUAf8CM6Q9uMo5ksLvnhIcnnKUX\n1H9xwHTjFtu7X9B9aMV+s0F9WKMrb+F0SMhPr+jcT2DjkEDkFrr8ArXcQnQZVCs+bLEciu05um2P\n8ulj1q1NFv0UXeOQ41yZS8OKfxLD2lZpTp8xHObZdLzCPa+TvbQyl7fp2hs4TS/x7RbuQgYp9Brt\nmUhHWGXTf4XTYSU8baIOVfbJEt1z8Uq1UYl8i3qVxysZCKsHPJsqSH0nCE6a35TYzIwZzFLoXR1l\naKPi9KAmVR799Gf83u9/DywCYjvC9D2d5UqPzo5EbrJOz5ojMXnMSWKFrF+k89hk3d1k2Ftj8XaT\ns+sPOG66WApfsbxb5DSr4phZSW8YiI04k95bMHVzcnaNZk0y6ZW46TukZLFRiY8J2+vMNxIcNqPc\n9C04zF+QfOXnjcNLN97EHLvwnSR4LA0YxA3uP9MYtVKMHww5Ev18vydhKmc8ebnCLGVgD4YZdFsM\nd9P4/GPOzxe4l96C2D4BMkh1hW9Gcza9XabeTXbHZ3ymioTeDbJmvODTf1vkxo8+5r03Ik8/1Pjw\noEanE2EaWIMUvNhfInoGsr2JlBnxYmsV31mY5eeHhDsz9HiEjeIlZqZNN9fl2edRFmuXJF98F7k5\nRBK6tFK/RStzRIAhoUGN0D2DV8sZajUP8yffUO3sMlmtsnGRJL8t0X8yIWZs8iTq4HbiS75o2dEv\nvTwIguN5mTff3UEqWjlNFhEerzK/W2exP8O/vCAiDFh6YyP2VoCv/ryOTy8wLI95f6Dy1bKLUKdI\n616XykMrq4M0kSWFaHVMJ3PO1S9f8of/+J/+x28sNwxwzwxsvin2cRyLFsXj8tLyLiE4NdojjbI3\nTMBYYXShErD2GY5j+Ct1kq45k26bltLEE16mHheQRRNBa1G/HUIcbBAoORGMEiFrnfJKGmwqtGWu\nIk0m+QyZuo3AUQ8GbrJLbawhFVm0U5o58cdN5hM7HneWU6WAIIYplweoOEkqJY4uDIjYsbmC6EYQ\n99jB8mBBzRvAIqhE/WH8SzKDuUjRsSBtX6dpuvCUBQbxJl29w7R2gRowKNZ/bfobn53hDXuwOYKM\nohLBaZnhfhICNarTOQmthGfepeYpMWqa+DtDXEOVS3WJ3KxIXBcxTywE1RnW3AVNl4g8k1DsI+SI\njdq6DCGYzhwIrRiy0sCwr9Kc2hmvjtDCXoYZEU8nhGn4wamh9Zw4VRGHs8vUItAOZfHX3TgWC5JO\nibExw/BkCMkiUymJvW8yC4+wHvkwZhKlqYW1CyfWuMZklkbPNugGFgxNlVJqlbTFgs8T4HRuY+ht\nMxFGNNseAN5NKXzqf8Ft1ybJ6i5L7jjWiYis2wlVnjOaFPBZRdyDdXS/jdF2CGGph2bXeN3vA32U\n+0VURaPjvcTMnOBuTpDMGS7rEqq5R+/CwH4GHn2JF0YEPVNHnI2Rn7QQBQ+WxQaH1TL2gp2+JYcN\nG7G9SzyOVV5eitDtslIfInvzqDUr80dFBE+LQHBM+3rAfCYRVL30ghJ+rY5nEuRovsBUrbzo78Dc\nyninxeLdIrWWjUU9TMBpZ8kWwXt0j+XpiCtv+zc5s+XVWURN6pcuzHKLqidColJjvJsknHeQvHLw\n8GJO1TLA75hSjnl4rl/RLPTYafUwhgZxQWA0C9AR63SuD3hY3WdvuUjVEWO+JrF52cLBAnnhpHJ0\niNpzkdpvYGg32L2jYXedklqVkPYU9JUqa2cF/PUean3I7aTKcKQRk0xa1hzZmRNvVWXp1pzCzpyX\nbwzOLWOyF6BLaVhUcKx0Mc4ekDckVuwtlhJVxOEFnWCIS4vOZj5IfuZkaJSQ3VFw/S2he9P3nLj8\nMVZ9h3YlTdi9Rdt1hmsXzp/qPAgU2dV2WVuv4/2+TtDto2Xp8b2MA6ld49Y9A9/oBUe7M4zFA/Lj\nG/gSLb4+dGPZ3MVij7OztUai3sPiniA+DFG/v07sjp2hw8ZRxIFkzdGpuuHdVUzKtHrf8ltCkgPv\niPuZt9iU32ez7Gcx7TJ/S+HJRzdx9PdJizC0FJjnZrx34aZZfI6nt8R1pc5h1EKMI2K2Nqr/mq3i\nGU8uTSShj3/zS6q3Ttic2Sl5tuisnv5GjzNukTzX8UtW4ocCh8crrIxz3HAt8+7gmCOW0L0dJscL\ninxI1HFISjKxxAzWe06aWTenT32o8U2G9rdYdFzYJAuJ2AVfjSNQH7G4l0JQ7xNJXdOLPiCvBUl2\n5ti0NyizISnZjZYUeWoT6C6nOfWsU7xy0E34EHZn9L7NcWSbMTPeQl56D6vrOYLjDodjB8XuGoP0\nPfaGM2Klz7h39IrAgYeP8s9pu58iXX/Ex54CTYbcuX7Cu98PEj69RaDSRE7sYluy0hJniM5f1xCl\nAC3hOW75lOpPu6hvvSD47RmR8wHjfJ3LyDqh0gV0f8nOhwsqezLe97vUi26M8xlvlXSkazvPfmoj\nevk29eR3sV3ssHK7RFwp8MIqk1xx08u4SfRjPIkJzHN93EsGue0M/aMLxL0yT+IhAvVVTt+zsn30\nCv10yKsTDz9TXvLb/lUsBwovl3+A8Fsn9J++xHM6ot0aYF7dJeo64n6xRXOUZKfnZ/aLn/D4pcGK\ntY//dAxWP59cXdNznPHDFQcvQnPOV49pPdD4vQ4k/7yN+akMgBlc5U/fumT5FxIlSxBtplBSXtD8\nNI7D8oagt0l51cJVNUfwZwlyhzXsniGC+n1Sj3tUM3261j6jK5UfzM7ZlTZIZpw48gMct+KIwQI1\nYYySepcn9z7kZ5/boFfBO/kzLrU0GfkbPvzyLjEVfrzooU+apE5PCQTr/Czn5J2UD2klRykuIs5+\ngOtbKynJR/Avd1EtJSxffoeEJ4bt+Q2q2gY/bZ8ya/e5vZsnaYfNtIeZ/Xt8MDCYb05ZiuRxGG9x\nlgtSqv4bnO+LrKhjLJO/rSH/vvh7P4n6Z3/yz//o4w9v4rZYcIdsWMZV2oUZvqaMY7iguhjgdoap\nDM/xuUF2eLm0XqEFZKxaAKPrY+6ak3APMAc2vEOJoa+H2LIxFntYPSopc4yLJSbnbfz6mHO9iJh4\nC7kyRjC7DOM2xIHElaRgkRLUKgO8wpS6M41X6KLaIrjkCb5mFFEYYiQWlKoJBLeNgCBQab9E1kRM\nXUKye7HEI0w6bTpaDU9rCYkyXiHClX5OKp2n7ZaxaEMCOKnbM8TrbRIZO//3j3+FX9kh8zsb+HoO\nvG4XWkNn4VOplWYs8gs6koKna6MteXDPq6hRG66yxMQ/o1d2Egs1GSTCePoy/Y6D6MxG3dMg6Mkh\ndHVq4wn5qYAz1WKhBbHOHcwsI/qJOrGSHcMawd/rgu5ilrCR644ZqFP0JRFzoLMQs8xmXeTEEKnc\noWObMxBXcIxN+okFsfGU0jBA2xIhLJ8iD7x04zXcRgRboE/BqRGWhwymfkKGiTGrIysitoHEdNBl\nHE6xPNf5v/70/wTghyOwf/kHDJJnBIcOXlb98M6cxKmKNfEOk9kB7sAuUUVDGWlU63aqixhBv4+2\nOCM08NOtiWiGBXeox+q8Q1u6hb8d5/XaFQO9T9LoIA2cHNYt5BchxCUNcyCj51zofgv1fpXJapyk\n/QCvZcKBK8fcqdB48ZxpMI9RsWDTBDojL2qkzGINot0VXDEXvvMhRmiNim1Ke6Ygxg+pVerMqhNu\nkiSnvGF8tGBtIHNpEbiXdKLVJ/iGZ7TfTuMp7zMa6LTe6JyUf+15+d4H/xVOm4mpXeOKj3HqYUKr\nQS4ubUzjMlnXS0raCl7rPn2Xl9QgyUj3EQx4kIJJpNUQclNhatmnc2eVlasmw7SNYldFsvlZeenj\nSbKOzzuCkYVWeglH7wDNDDPQj/Fb1rD2DMaWNwjnDRKlNOerXRryJlozSWd0RigYovtyhiG9Ir20\nQ6F3yWy6SqbjpGSYpFJeqsoxZc+A0fWM1kwk2y1iBLKMvQfIYpphOYc4siEFBZxnXtzxQzR6TOZd\n3I1nPPobT9R3129g+2/s/LR/TWLwBqPvpr1jYPlihUi+juM8SGXZitVcZ/7aRi8UxJA6VOo5tpsG\n38ZSaLURa0KBl9U+va0DzCMHSWWOvXCN01imOKrRsixoe9eISCpCp4svEEGbe8jZrBTHr7mXyzAq\nzlh7HmJ2P4s6eIZ1cYPgU4GReE5hd0a1IKK4o9w+sNBPpnAG3zA7y7MejPPN8ICbNZ1qfkpDy/Hu\nWo/R+CaXGxekH9p4s5rn3skjqqm3CdqtHE76CJUpZiLBhmfEX/3bLwD4mAHB//od1CdRRrffcDe4\nQcH8nG5pj6InwoNjnefuOdZOHPmGnRu9CC/rbc7Su5ReVFhuQNGWIKUXuQjuk2mE8Zsu3qSbeNQG\njoKKKk1QpkmqiddU1SgxW5SiO08mZGHe0DiojLm9t4FT7dJ8o7Dr7WHEDhjVMlQdOpsNGEfnWM0J\nxZMR5n0fS4+GpFezzKovSToCDMcFlOg9mqEao9kmzdg5KfN9KtVvCF8O2MppVOof8nBRIL48pNo2\nWIQvOK+LfLQUo7w449GPf8U//IfbJA5Nmo1NvHf6HBecLK1+xLVUo6Vd8Z7V4MUoQNI346vLBOKJ\nwOR6nWlaQLw8QRf3md9ZRtirMfNGyb7YR82t81W7QfhlC/eoSr/xAfciCmJmgFMLUSu3ce0v4xod\nolrfZXLaJ7p5yXy+Rc3yE7ry+wwdBhHVRXoe42GyQ2K9gOWbOdsRP+qyQd9nklKylMLHDIwBw3GG\ne7Uy5++muVF30L1TpypscaZdovn93Kg3ufTOqT3J09OmvP/8Jv1CksHbJk92gxhdG98+fMR2ZI/v\nXmfpvf8NC9GNeVFiM2KnuiWw2uxxcsOgbRsycw54b22AQ6nzV80AhVtJhruvaR/vkQtUELTv8Hy8\nxjx7gN6Oke4H+VYOo6uPSAXfYTBxMq1ckgom2Ouf0TyEWLTI/O4NrtYEXtcf8vt6kv1wlkuPHbm0\nhT0T4ERuM3Oa6J9c82bZy1T24T36C4Y2HXUpRtQ3wTfXiH/o4XT/W7zxHlfxIcqlwtlyCS15l0lb\n43RdwFE0CbZVjgWTd25FeE2I260qXxX6XOyf8If/9P8HsM1//s/+pz96+zs5zLKVUtTDcNFBD6fQ\n7dfoNYH5zjKmPkAfDFkSIxgDO31Xj1Q3guioMbWLTL12PO0sjvGMQlAkOjVpxRysWgZIRZXyeInu\nYkxuuUrPG0Jx+xkfFxDjI+TuHNWMYZoKHleFhK2D4NBoS1eIkRSdhkS6LTPIuWmODcKDazrtIcLc\nQ8Z1hrZwM5HCRM0Qi4GAvt5i/KxCymJn5Jmixhcs4eCs3mEpE0F8M2YianjHTgZWL4tSgb4zgkuL\n868//zn6zMN/uv0xF/4JZuUCKW/iKqcJOExMOc7EpiI6gsjTChOnB7HoJax48Q4Eht4ZwkAj6Ivh\nnMqMEiZel5VwWaKIjFVoofTcyM45l6UsEQWk4QW6GcYqzdHtNqZzEdd4jJbTsPRkpn4JW9CNU3Iw\n7dgJzZrMlSGDVh5rwoXQsBH0jmknhogC2Lo2PHYDJWLFMh9Qj7kQJQdRa4XOmYWAHGHQDJE2rFjc\nHcqig4hup+/woQcWmM0putXH55/+BID/8Y/h8Ee/S2vkRNZHrC28BDMOpLMB5VmM4WJG1n1FXZZw\nuq7oxNrIaplat8g7ww2ExiuMDRvRkEj7ZR5TCtBpdrBvz9EeXhOOb1NQovQpoLVteO82uCqFachV\nWv0Am+o1tfQqwrdDFIcbVW0REkPUijUEq42UCinXggtfg5umSGzWQJ0YWPQEF9ES+WoGf7+MHuyx\nMpIxC8tYFha2gys8DzRxWcc0czqOxRobNiem4KTcAX3mpXXtpCeNaOWS7FhE/vr5r4nU//nWe/jU\nEw5XUwTPO8ykVQTmWLw2zNcOPBaJpvcaS+g2samV8fk+k3gFy4WPWsbO0kxCF46oZWMsvy5StoYw\n7Dq3/AEUW5tHuLHU1ulICRL08dsaNKxZJoEIelhGtxm0mldMs3nk9JzqeMhctmGrXjAJ2klac9hq\nRWZLYyIpk9kgiq/tpZtoslALbIzzqCMQ9BZ4bmF3V7lRi/No2YJtFEGK9elIFia9Oj2jwko7iXjn\njEe2baKTJP1aDWsjytfnv+ZEffyDTVz9OO5XxxSkBbp1D/Vap6/7CTb6zHZ61C5H9KUoHctT5v4r\nVhY3iSrnPPHofHiSJr5u8Go5TLTfoHthEt/dIRY94qDygJT1Sw7FMSh9Jq/KiJM4BfrMZxGGkdec\nl2YkK2Ns9hAXVlA2Lpg8HXOmS9xLXnA+6tGQGyQGNuRJlC1N4WDwS6Y760Q+PaeWTlLWvazNRzxP\nuEhqdXpBHyfHKlstB66lCGL5NdtmBPHGkNKhgc8zY2qLMLOXWJP6OFqr/PkvfgyAt+jhoxf3uPJ3\nUHpWXncUAo0uI+WUfNBFMySyE65STdrJPHzKr2JjrPMKHqcLbS1NztzHEy3y2gHv2+/Q2n6D25lk\n7p3j3G/jXZZpZO9wNf6SiGmn0o/jkifc1i94aDthxTCQLAEixxX8mxGGrRZvHALuWYSZ28rb5TAC\nfS4TPRLzGApe2loDy5aIpfma1/MgekfFtZGiGzplNrqFXT9DOnZhz4SwyB281mUmXpNWp83WzhYW\nw4veSuAlTtLd4/wqgTF4ybdfveSdP/hH2LoaA0eBXD2Ldi/DqP2K5lURaZzEI/vZSL7mIpYiNdKY\n3qviOnqMbNxjRZszcbjRRgrp2jkv2wuslTinVzV+99YKTUMht5lnbply7L1mG536ow6xPQdBdw6O\n+ghdLzu3x/QuZJanA67UKWZnFe9AgKRIynrApn+dF39d52YgjX4xpbW9SfZVi7mzgqNgMN7WWTEA\nbRdx1KGdfErr+AH3zTIbt9ucfGYSnPjI5QfUAx3yBz1qcScnvQi6YcVZFPEH/yWff9rjv/xHy/hK\nfqpnGcprS0yXRmw2XcwPkkzzQ6THeyQdAxyHcFx/i0hBZjH101gpsXZ4m1Z5wMImYOoj1nYWdH6Z\noKx8yZLownC/RrsO89YjjUjdQ8+rspJz8cSiUJ2l2DGczHuPeNUIEXaWiEQ3qCifsVazc+Z9zk69\nyLS2INoUcEzc7Myc5NUW38RXuNucEsm0GaR9eOvPqAVOqRofcsuVwCO3OczssPKXAS5yBqPCU8bW\nNPXhlLOLCO/vdLFOxvSHRayju9xIdfjpo+f84z/8J//xN1H/y7/4kz+6vRzA4XPjH58j9J3kpk3K\n0zzenQGZjsl11cXN5TQz5wJabWZWD1bbDG83RUmyI1StjMYqsqQyrak4Qg7SHTc9zYbNK9LGJJDp\nI5ej1JpT3H0/U9+UgBrHQEUZjdAtTro+DVs/Tn14TUAO4jmf0PO0iXonaHYbCyyMXF48CS9Ov0qp\n5SEhVJmF+zRUiUCsS8QMMbLMcfQneLIm7XqcvqWLO7iMyzlF8LsxhS7ThYjb2SWUiCJKXWy2Ln/6\ni6cIAnz/91YJjacsJjEmbieCOGVs1lkEVYSaSMTeYGb68A7dhKMSnZYNLTBGGwj0pTTiuE5ZnYKs\nMmzJBBwtGl4fWatBpb9ASTqY6yIer4A5tzNS7TjcVfyCl27XxJ1sYEzCSH6N/tROvFnB4h3QtPiw\nRieMrvwkVQu9aAef30J57iIs+BiXQYpriPoUXYZqLUy8KzH3y9QsLlz9GKVgEaXfxOXtMbJmmAyn\nOPsDTG2GZ6bQGk7IKmO++OQLZsBvA/rv3sGUHJwPSgzdMu2LIeVMjJnc43ZmRstYQztz0apMcXgV\n8haVaMJkUemjO+bMohNmlg6SdUi9HSS8N+HoQiaTdzK5OKS/qBBI3mBXaDC5zFBPlskYcZRKiN5K\nDfXbHt6VHvOTPL2QTFuowtCPdtODJ9TlTd1AWk4TOK1xuhJiNgAjJqOeSzTMIvqqgq81YMoKJ3dN\nnAUvI21GMC1j6ziZl53YDCuOlErv4CXd9RKaOGUzFoYAOAULLfc133z2CID1e9+j6Qlgr86YLBIs\nT9qI7Stamhs5MccuX+M695Mce7k0JnS3Amw24iRsYbge4LFLdK7KaFqI8G6ODkNWWiaXlTiGEca3\neMWaGSE2LyGLCRZzH32lSdh/ietgFSWqM0xEiAxtOEYJjFCDZM+HPN0i3K1QyVWp6TtseDTK7R5i\nP87CUqRSXaKdtBHOuqj0rdhSM8xJkXEjTkwLYc5FZoHXqIMQG1IMae7AXokyE02EqoVFdETcOaaj\nqzw5fszV3yAOvr/zA+xXY6wJC/o8ys2+laFDRNoco1Rk4usO8tc2tKUj2sdZjH4Pc7zGJH6AZ3ab\nk9EJDvOC6ZlE+7aPW7qIT7Ax2Z8yDlWxLq8yfKmx5lDpJzfwxCPkhlEi5TFd+xl3Lq201kJEU3Em\nNTeWowuuRzOkhUimHsYy2MSdSeKqF6hGJaZ+D8oEvG+e4Xa8wzTfwhge0Zu3ybk0js9uczfrIiao\nnPjHGMdjVkIx2kKI18EQK8qQ6+EIf9OBXfPhLduYjXT+6tGvKf+r/+2H6MWPuPtCpWp10Nw5xmPx\nMKlOcCU3kUZvkMUZ84c17O7vESkIZDc1Ag/rKGfnhK3f42G+xA+6Qwr7SS79ISbNa1ZHRY5mOUrz\nG1gGIxLNKpfbb7PXWFAtHnJgLPN2VKT56CZiukN1HsMTqdAop7gRsfJ6XmaolFGqdmRxSv3MxEmM\nQquKvBRGNq541F9lqRdmlmoRvVygJK6gt06jNSQ+9DFXnrBQ9jAvLBzkz0nW7rLfnzBQbMTyU57Y\nOxC5piH1EQ0HT375DW//F9vUrgso4wkVi5tNZ5v+fpC7cpppzEayLID7mue+DONBjfUvW/SsOS7f\nEpmujpDPNyh9uCB8ckXZHPDuigNNyNGVJ5wgUH14gGlfpbxawuvcxCiUyKzF6H5zjju9zCBgR5u8\nItCwcnBXYdtiMthX2Y6nubK8wTd/G8fsSyYNhaR2xtfBdxAXrwgm61QHIO0GmQwM5AsrytprnJdR\nFnKVnH5N8UYe10/2CP/IjazMKdZ2SF7XGOvgU+Is37eT737CVceKxdXj68+v+OGDHTp5J29sZ2y4\nz/F6HBTrXTyzTYbpU7Y9l3wR8HD/wiC2WUNdDRDwfE35UZCIpcHsRwqJ2kvWJu9xuTQjIovcXJEZ\nXk1QLzNk72n0bhV4VoGFK12t1NoAACAASURBVMCrkyeE93p8nO4wQaHmEshGUwRVhYnwgnNVwlp2\nYW10ad7+XZTnXnbut3mcaXNZytL46CFrVHjhusOmZAdpwOvwNj1li+8X5zQ2DVzPQB695Ny7hL44\n52PHgPoRJAdb3LM84pkW5Tq9T2ucp+nQiZ9b+MmTZ/z3/wG/8/7ee6IEi0ZCDWGzKnSrTnzDBsfk\n8aU0yvsLTF+EsFijUbvAxoKFbsUlGFQXI864JDY6QVQceNMi8nhK1u7DGNipOnvYrEfMtAimo0Gl\nnKdo2DDtEm2lTbMbYmarM3cnCd0LMx8e46lZcYwbbDvSTI0QU2eYkCvEeJpGbloISjpe7QqPIKMP\nRohxiRPbHpM3OqJHZRHd4KTTx+IMcRnTsFujrI7LzJt+XN0hxTcinYkbbdLD69FwFMN07QO6Tjvi\nQgdgTg+7fUw5aKEh9BHlKWWfF3ERxHrqJubtUne6sc+ndLQR55U+Y3OMT2hjOhQ20kOG9hhrySZZ\npxXBXacji2x3zunVBDKiiVquEg9pjCdDelMLKX1Cv7tMc+BikVkwvnJhNgYYCzvpUoVjz4zalY1g\ne4B8FMa2PMJwNRAunMx6CnNbj0VvjFPTqVtGWL1D9A7kDRFDrCLqZTLXQ5RwH0fHgTsVYDH0Ui/X\noDOm7Aqx8AZxaDaWrWMqskL85jYAGUbIhRXOr50sZrvkQhrTXBBhUWKhx1CFIZy/ZH2nixBYYnHq\nYNBWsJ5GKCcDeF1rTLoRwqMtIkMBx81Lrl5ZcYZdHA/nSJKCrXgL/7hEt22jnnFiG2S4PDGxTw2C\ntjm2d+J0WjGa9yUU/YxgxEUwPOdt/ZKJVedu2CA661DcS8LYj2I3aR0UyG9ds21MsF1eY5NyOPL7\n3DRbpB8IdLc9xEv7zGJD1EWCgGvI4SsPZ3GYvEmwMbciSWVs5RGNqZtLLfubnDFzbixxC/ndEkNP\nnVf6nKJ9leGahdxY5fU4yNVbEvvLZZR5j9ShzEWvARO4cDXRpg3CD1bZEMtYvu3hv5hAt0l/aYwn\nIdL129C2BzSXx1TjI4qZCwa9IO1jhcDtEoVmmeh+iZloUI2+YVjO0Kt4CUwMFLeC0HPwTuo5E7WN\nqxhk0ilTCWyxZBmwdqKhCi/wrU2JDTOkSx68dKi595l3TolWBKJVD2L/kvPKKereJa08OCI90l0b\nk2clsCdJOcO/0cMZPOGVbcKrySY+f4GvJk28NQfTh8e4IgW6r1p8rkvkvt0juqshBCPkeh3kyzD+\nqoptz4OwnMJzF1YLQw7aUVqXMrNQn71ViV4jxDTqxx2OMgmec/3iJRHfMWaij2dgo/9gl1SwyjlP\nWWvOGL2zYPXjNI4bFl6mc5wYR5SGYzyrN7i9sNIRGkRzeYrRDKIT1uo6Y98tfJqXqDWP4j3g/EBG\nlBbkzkvs3O5Q2ujRWquy0TpCfN5kpmvIt99Q2r7m67fieI3Eb/TIDq5JPIXpdoDqehT/F0ncbTe9\ntwRqjz+jOPZiaecp3HdxtXWGM6XQ8lg5TEbRHmywGLYJLlZR4wskcYYm9vEZNlr+7/NOosVK4pz5\naIIR0Qh/OkDKeRnqOTbmbqTpFvmYyfGJC3UJikdOuuHnfPXCyYfLU7a/0QAn6q0+y4LBvvaMmLeD\n6NXoWZZ4JxnB/9EpiuBlkVzmrPgd+sELhr4MYr6F3+Fm5YWC5p6z9assF9NPiUW+Zcf+OdVPn8Ik\niP6JG2W0i2v5JgDpN13W1O/weLzK6rKf+iRJfPKQv1zMOKn0EB1entdzeP/dMTaLn29+lMD8XhHL\nqZva6xG23acYP7fgWV3HvOvAnC/RLE45C9aRJgESsSxX1R7LF0GOvniJ9sEGv6wUsc8mFFc1TuwN\nuvXvIKfi9FspnF4Pd97P8cboojXDPAtccJqdYHmwQ9v4mFutIXatzujYYFGP0jOX8H77Dr2Inefj\nG1SSdirSh3TfThByq/wiUcb8szJD7xLB3BXqdMiJW0csppEHBqPLOwzvXfB5VAXgjRRBquX43pWT\nyMUNGn+2TSg2583uaxLnH2AqC7KfyNhjXfbnLY4WHfrPg2zkJPKiH/fla4qOHX42+gz94Rx5YVL7\n8whKN0lBMpkXrLz47DtY10XCsVd8fyGw8+oevxxEmB2PsQk+RgN4/OaUJ74fELXexu8Zkf9Pfo/s\nJ23kxUNmFj8bk9t819UkPPgh1dgc7aSN4Jni8ybYG865eWjwi4uHHH4h8U2wzbIyR7GH2F16QMPh\nJXjHihL8grrnPsG2QPIXJrmjEu8POviCI6zBvwXU/vvi7/0k6k/+xf/8Rx/t3iEcMplYRsjeLRLx\nFs6uEzkVYqHNcCoNLsYzJM8Uy5LCfLzAOVDQnD48Ni8DSoS6Pq6MEpPYmMm0TZcm2iKLmjlErEjM\nAyPWwgLNngN7LIxlLpD0aRRFg35TIhhXGY51Oq4EAblKa9Qg4WoRdHoQrTKlcge7vUAkfpfWaYmu\nMGBNjDAsHuNcciLpdiJiG7s1gVC7xqOEMXt9TnUDq6ghWaNEBJW65RpNVZhnfbhcTZozGbNroqY2\n+Omf/5y3wuvs3L2PuxPG4VdoFwf4jCpNh4fpbIrN48AzGWBBo2vXWQvHEDxWym4fq7ML1EqQoLvB\nRHEwL7QQnTLdYIi2bmU46NJccxMeJGjax5iDAS5xgiBEMZQq7ZGBWbHgCk2ZT0LU2jPadhGjsyAd\n9MB0SEtqY8o5XNoUvxxm5rvGYrdguNpYPT6SzNBmU1pzFcGvM/Io6HOFwbSOxTkn2IowcrUYzQ1C\nNo2gNcgwpGJt1qlHJEZ9O0p7wPnZa6qNNn/MH3P4T+5Rr5+xojTwVpIU3ALrkwxa/RnX7TCbzhzF\nzjlWqY99u8fZSZ6W7GM7XaKnzrFKCrJewO7ZhYoL+5aPlKNN7trDONxkLTpjpk6xq3muhAU7vQ5K\nsMwFcSZGA3fLRiw4JFs455QkPauJfTDg+jDAzDZjrq5wZTbxdS/xRgc4DmMsnB4ENcVFMId1PKbh\nlxkrC5JnHuTuS/TBFWdbJkMpQMgm46ZAPDZAFiXGeQ0aAu0+FFwdMs1zfvav3tAenADwD7IfEBAM\njN6QYC5DKR5Fnh+wcT2mEjPwl+JYyhLLLg+LhYt2YEzW0UG3t/BOZLzhFAv9ilk3wcmGC3fKh6bZ\nGRlDxPEA3TBJyBYsVwanUhNTDpMvD3CMnBS8MluhNqaQJlq+QEwGqTtVNn1l+hEVweZhTpkD9Q4Z\neUrLvqCd9nKrbOVwo0ygFmBid2MMjyhGLPgtDeJzg1l7DSIxxKSFUdOP4jERV1eYdtsYZ3ZmRhtv\nN8vhdhmzJHFSesn1dRmA/yz8AaEffox+8hB/2crEUKkqVaKpB8zKfSJvZ7GK59i2NM6v/djjYKme\nQfg+r+1dwu1zZoqD6GcaY2WTRKRMbXhBN+RjMRhx1ZVJxEqcHwvsXqmM4grhZIp608+St8hx+ZKs\nzcXQ3ufkUsYhjOmXkmhX56jBBPr2NSs9A2svjK7M8Tma/Eo8QCvsoN6zULis4c/HsB2eU08qRK1e\nrhp9xpJEPbiEPsmRPh1Q2y8gjCVMl5fpYAef/5qgucrKYz/25Tn/5pN/B0Dlf9O487HBfH6DQH/B\n5G0JUQ6zqniQqymyoRLO4QoVfxL7l4dISzFqZTsbPR892YGy1Cej9Rh+maSXVBBsAlrUIL7vZ5CB\niTwm4vQwfyNg3Jty3ND5YOJgcvcxLw4TnHhO2EyfYTvvMQk0SbU+ZDzrkNA8DB7cQdNnNJQszbSb\ne41rZP02YtpK7+KIQaXJm1STUWONVe2Q03ALh1FiUlhj2XeKfqDy/ONTBikTcyrQDriYXAkEHDYE\nw8+W6aaQjhBRrewuPuf/+flzvrt2HzPjJL3nYSRqdN0vaS1ZiGzVcMlxhLMwHpsD19uwwTnZoYL1\nV5vMmmd4E2kcdhFnP4YUC1OREmx7NdpeHxF/E0dExPYywq2PLrFfXxFwD5HTO/jFPs2wht/lxBYd\nUHA7KPGId88EnugTYq+anATD3NgNU3eVCHzSxrGIcrX2NWGbj6slk0B/h1O3m/uXIkejTwjfe4cp\nXzEOK8Svx5zm1jAOFXLrX3Mc93L+8grf+RC35T224ptcbT/EfRXj0R0/Gccmq96v+eJfV/jRP1in\nabVj3K7xIpFnGjJB91E7iBDYEegW7BTee001MuVub0bmwsWjdxu8Y7nJTysm74QCOIUO+mWJwf0o\nzZdtwq5jZEHFO9ToB0o8qISZInHh2qNolwiEHuGudBmtlPCIAZ486ZD94QjjkwE3KlW+feDlVt9F\ne+8rOmu/TcyQeSM+pdC6xS3lKyzSu8R7r3FOr/nl8wDj1BXa9T6352ssu99Q0dIsn96m1rWzcV7j\n9IafYrlANuynujrk4tiP746NdKTC14Em7uYdnvzqG/67/y8mUYIg/B+CIDQEQdj/O3v/ShCEF3+z\nLgVBePE3+zlBECZ/5+x//zt37giC8FoQhDNBEP5XQRCE/5AmaiYIGPY283YJu8fBoDHhsOUHfw3h\nqI5Ak/lCw9+aoopZ/EcVjHIb7DpRycARBYQg6uQly/I2VsNKyNSxOEKE52OybKKsrmLp9jG0EUvB\nKyJVHVu5wLWmEhP8eIURtTOTaGSViPya06ITYS3HVHdTrts5F0Yo2FmYYYYnPUauMLHUOmKri2Zm\niY1DqLMxdatIpV9BswbxdAJct3Xsop9cJoTHeY6cMUjHZdxpAf8bKz1rD8uiQdSv4GzXADhunWA4\nLJxph7SrJ9gtDrr2GI6QihkaIjvnTN0pykoYcW5lLrcQXKcsrs/Q+rAINdFHNnpFgwoC05aL5FmV\nJaeTFStk2i4W6XPkyzay7qTi0hjYDCb9PumszLqth9/tIOAYseVqkF202cz5EZpNioYbNZREtB9h\nCiIjz5B+H7xnSZy9DH4LVESFfnETp99B2BUn21JINUskjGUaapSRrKMLCwxXnnkUakkd+VxhkRPJ\nXgZIG+DNBVlbeReAf/nJp5S+kbkXMvFLHqbxMduigHd1THCex7WjYckuWE5uMVjsMXt8g+ydIjnO\nKYjrlCNdwqUihxWRjn2BXiugaX3q7SFz3z4eb5qLVgBXpI+4t2BJqvDGk6cwmjNbOkFtpPH0Uli7\nUcZiHknyEHJ6kPoDcukAjvMQ4cYL8l2dvOsmjq6M5b1TGskAi9wJRtQk4F1GHg5wL1yUswaX/RSR\nfpLAs2US30i4xpdcdXaYjaP4QzkWfRN9pUtw6mFlLYfdyPHd/+Hj3+RMIxPmtXbBi+AOZw8nCItD\nVhMRnnjX8Pq9BHxDxmkXx6Euhtkl6HPRDazTDVu5jMmU5Ec86+r0PG0C3RdMWhP8AtzNBDGDAbRE\ngKszH5ezTUKXEbLFFsVEmkvPnEV7RKfroTd00sHN6cTFci/BqeDgypJGdh8wRCbuf0zB4WTkbxOv\nx6mHHWxfr3B5u0xTLzF2CejkGMR2GHr9nK4WmS4qUIlRCZb4pifQ32/Tc+uob40IulY53z1jV7Wy\nofbYs97+jR6GEuJAe0EzlcSytMeSB1aiS6ym6/j8KkffKEwsblrXKlv9PltmEqfmw16skL04pWff\nxnqk88jmwh2/Qmp5cChpxrUNysFbPHAIhK7XWVvR2M84iU+TTF60OXUd0qjLLN24w3UpwKLyMW+n\nJnhmQWKuMjspH3djFcQpTFds9G+IXKgLFMsSa6X3cS1k9gZdZskN/JdWRt/f43o/wAupiS08ZjGQ\nmUceUnZ/zjdyEcdvJ5lHdlkIq4TuP8T6SmB21OYq+SWn4pe/0SOJjNq5zXzwc3LRZyiHOt3DOsdP\nShQCbVpTkZn5gpH9U3ofPmAoV2lNAlwEnXRirzF+ZWVi9zIOHDDxPeGWMqGlt/nVDQuzroVcp8+k\nD82PcszKPrLOEb/MnmOp3+C9GyM8TYOT4W/RT9yn5U9x4H7NYqXIhUNh9lJEWFogXvbpHT/lZGWV\nTuQCzxcDdmZ32VtR+EFJwiUc8GziwPntLpWTe6xvfoq1H6K3ZaL8/ENu7O+Rr2johS2WYiEapyqx\nZp6TJnzgPSYZ+oRflD8CQHW0MJdPCI5f8fxZne3HPuQv4mw+C7HkadFI71PcbWA8dcPT36HFHi9W\n7BTFKb2rBX27h+z9Dq9fauzZX9D5+bdkzSfEMcj+VYvkbIBWDlLKZlECIp2qzkjL0Ze7hEZZ6n89\n5He/fc2d1G9BbMR2fcbjuBu5YOdZ/4IlKc32NE+5fEKgG+JgxYd6NSF1w87966f8NHvMe9/xs/94\nzMp1jMwvT3mcz+P98c9IR15jkR7wlq7xnfcbVN97l1fbBRqup9Q6NznINlnt/YSNzz7B+RfjX7+P\nn5qIL2VOnlq4MX+FrenF8uwMy2SB8PUYS3SficPFBxd+Suo6J7Ee/hd3+UWkzWTpGS/mAtbxlPsr\nCWyfGcysXto7b2NbbHG11meyFmWcnZC5/JKUWiHg6OG6nPPE+REXXpGC6iO5s83ys4/o/n4EpzHG\n2rjJn3Wm5B8tWHvu5uWVwl73Pe5df8HTchyl6aIY93Lef5//l7Q367HkSPL9fhFn3/f9nDxL7pmV\nmbUXq4pkk2z2PnNnMA8a3RdBgCDhQtCTvowEQQIEPehigFlv355udpPsJtks1l6VmZX7dvZ930/E\niQg9kMPuK13NUBoDAnCYebg7/ghzWJiZm//0Z37cR2Hyd3/Gp2/DJ24PMeeUf4x8jj9cp+90cuf5\ngPfMP8F8tYzlSRKvTSEST6NZf0CwauJc6SA6Jt/FRPlO4bz/HfjxHzM0TftLTdOua5p2Hfgb4G//\nSHzxTzJN0/7dH/H/J+C/BZa/ef6TMf/fSNMkTL4Io3AcbegmbjQg1C4oHJtxbBi4yvfo6VbQDHZ0\ng3POppv44+uo3gmj1ojmZY1Uf4bbe4tz2wDLJMYwakFXtuMVovQqJYxzhZDdwlnVzry1QHbeI2ry\nEGmbcZsmNAMa3kWVkn5CQ1vBvxlAmFUYznwMBBumikbXaSE+9jN3NzBPbJRe59m1T1jenCHJeRwz\nD6P9Eca+SDgqUBJ3iY4l1hft5CsqVcmJygT9KIS1HWOg7KG1UwzrIo7cEYLja3f8ciBJrisQDG6S\nCvvQJUU8jTlOVcXhXiAvhVFlExFVh2xKUzgbURlsEA2u0XJ5UWyQdSkoLgfhgBvN70YXnTPUFym6\nMlhaJnLiMo2QQikiEK2pNG0VfLFFSlc6BhErJzknZ6Y+1YSK4jXRyBrIhZKYEz0WygJKZZWs2cV4\nIrDQlzA7r3CpNqRGGeFIIGTU0asmGQtjOsMz+kqMUlSPxS8zYkS0YUEsSpgFAVOrjy7epHsYoG++\nQvN16FyaefP66xpA84yDWL+OUFjlxWQNfcSM11dC3FeJAJuaF1nTo9ZOyURLVDMj9E0zbp0J2+M8\nzuE2pbQT27KB9vNnlFI6EpM85qkfrbFDVVcmYVbZPVymc3KGPNfY0MF2TMXYtjKzhDnSm5gEg+gj\nOmYdgXi3hOeaCR1lxqlTDPi5NHgQeiImo8LuFzv4xs9pDV1ITSNHCSPe9JyE7GQ0cOJ0ubG4zXiC\nUbLXY5iDLhzuKcfuI9ROiVBtkXFjFdf6Ffa8g9JKksZf/fpbnYmOHrNtu024c4g/5saR7VLv6nF7\nx+jFMRYhhzbKMZ/5wV3GMRPRvchi1Iws2nLYikuodmjYLDh6BkSjwIU/xMHAjHQuEj8dUlRbCKZn\niCYDh7gxmbosbGo4WgKFRhLfWhFdJsbdeZPTiYnhYAV3LsuFmiBuW6F1ICApHoKOa4S0l+RNIyqC\nkVQ1wY2YAbnyEMewxeB0TDEbYuvUilPpkTNUWTGNiY7qTNYEtu1x7lSKNHsdpJGMJehibghRWTv+\nwyaXrLJ9NuC6NcGz3mvGWxMGzSD1pp/6zjapZR2Lh0EGg5vYY2aev5xR+dBA5bqHKO+xMjknoW3y\nwbKBucXN67kXxSMQSdYw9oyczII41DyGPSMbURem2RR5IcX95JT89g3s1RNOMmd0L/aZBCucGTLE\ngi6Mly7evE6TKKbQfWajcCmxNPQgCaAP6lF+2GbWt3HdcMbc3CD1bMIHay95J3Cd2yEF3bUGty3v\ncUvexJb0MBbdOBMv0A2mXFzdp/Jwi+zGMs2lMJGJ/Vs8DATo2eqUbhn4XdCODx1+ucsoYMZaDVAp\nSTwhzId7Dt69OEPvseEffMxO5A1b+w8x/GDElWGKZv8RlsEWTz5VSR4s8/3yKYJsRruwM7Z56Flf\nUE20sHaW0WwLvCpV0J2/IbFi5oOxCZ9Hz1a/xjuzAemhzOS8gbKqoNb0CJdOVourRF/2ia5mOQuo\nXK1d8Vg34JOLGcmyB9VxgffmC1KBBv3971HTu2kkDZTfzdHrDniVcfL9zCsKKRtLSwYuIm+4tn7O\nY/NdRMeHLMozABIzlewvNL5qxRCu66n9YA1vUGTXW6X1yspox86Cy8/Cu2Fa6QadvsgHdoE//zdz\n9L4GAecFw/6YTetneEdtGpYfYCwaOfoiwKuMnvbtEgPBgf7cjv5FiFiuQ9n/ipUvRMrGAqHpTQa2\nOxxMfofWgNlincl6laX0bzCYuiwpj9lfczH6kUC54WCczfEjacyT0116D79H3KLw7CRMWOvw3Bzk\n7L0Q97/6iLoq0yqYyL+Z8JVFpPmPd7F+3CVl9yPHqwSvcmycNSkGNEQ1wK++//WPafb2v2HJUmI0\nfUj2t3e46/x7DLeuseO2cPbWp+SdfgKFdbT5kNK2xmbPR083YnzhI9xOU7LJPJvI/MayQTAY4JrV\nSv9Fi/KPP8aVmnArP8erzMnefguvucFt6xYf13ZwWGWW9lKsOGfM948YNQukHx2T+wszJmeehzUj\nXybfQe855aFjirZrYi/oQNLBZecXJEqrtIP7tD56ibrW5e7xOctPe6RXd8gFCsw6Gh7/FULoNe17\nlzzy/RLb+IT2Az+ZRSO5fI6n4ye4Te+yajbREf6gM/8c/YtGlKZpnwPt/5zsG2/SfwH8+39uDEEQ\nIoBT07THmqZpwP8B/Pl3W6CJxryJuQqmtkQucoloMqIGZM4O27iRMUwb2HR+jAYjcaGKMjlDtnrp\nOgPoZjO0cJCr7iURlx65JaMKAYRIg+7kHLWxzGAoMzLZWDFBLWQhPspytmahHvNxke9i3jWincjE\naiVs9KmVG4ynbuaKGadygVvtsmKukkt3KOXaBGMQ3IrhnaYpFboM9FYsE5VU2IzZK3BecRCNOMlF\nl6FvRVD6eF0Sl00PU7lJobiL1R2grXXYFiMI2gL+tgZAT5iSmrXoOwdMzCq2rJNmxoGtEiKUU9Fb\ndRjNJaqlCobKnETSRGrUZWIdI7h0eFpOdJ4AYb0Fu6bgsI4wW9N0hBiSa8wkPiPMFcrEiG7Wx+Gx\nYZW6tI+rLCcNtOYyRruBsLSAfOSnUzExcldYMSrML0Lok2183jYmi4THIaM5PBQMEqqrTXbgQfFZ\nqOjbRBwKqqLgDjuYGLoEBi1G5zPGkoFiKEpgs855OczYY4Smg2TAwjAqUXX40XSXZCd1ADw6C/Yb\nYea3rrjplxFrAyoS5GNXX29g+x76ujxHKSuX+SbGS41hOU3bqyDoraQGehauksiWBmo6QGoc4/g4\nhqrrosWrNCZOmkGN0aZAxzTCac6g5IccTVNELHrci4csrB1i1R+hm1SQ7QZeONd4k4+SHQbZGRow\n+gxsTZx8Pj5Drwqs3Skymicw1DUehLoYx2U85/D0zQGB8mPUlsDrpIfpsI94ViS/N2TWmrKRt3HY\n0giqNuTyIV/u29gbTZjbcjRb3T8ozaKHi9ETLPogLu9rxNnb9EU94ZM8R6cp5NE1rA4zZuM5pfNb\n5HRXdNMN3GqRQfY6stXHzTOB0KjMlUGgP5VJdo5ptQ9QXXk6Fj0PjGnG/RAZNYR91sGSNeC7quLb\naELsgOxrEwcVF29kO27XE241FPqimWTVTtfQQm8JE5OO0Oet5ONeFvpXdKYieWeOsWalryvhLQ/o\n2LI4l62c+NOUPC4SsQGFsY6F6yKLTZmDoovXrluU3W50Rz6O1SX6iTDRrvwtHNNThci9MIP5I+yC\nj775A1yjI04KR4TePCUf7FF/b0wzM0I8WeZ7ljajtoyl8wLj9idYjBpliwkt1sJcP8OTeY5fPqOV\nu0I/fcwKv8V4s4fTsMWR6KNgH1F2PmJ/BouHu3x1pef25B3mWo38IIk//BxJ9NIXfGijNufeI5T0\nFJNtn/GNM746k7DbjNyYanw+MDHa3UarmrmytGjolqgbf0tlPELZq/PqssReKEv3qYq+KNF5coMj\n+QnvBj9lsBsgWGrzoL3M49Pr3+Jhws4tg4h3vsrD1govQkb02gbvha+xsHDOtVUVl2XKvhjj0UTF\n8aaKORXmd50FLmpDpucmNlppDiIqo06fh3c9lMZuOpd+CosqpYdTFk+eov/YjrPVYGZ8wsqLPX66\nMyLfs3FcuqAhdLCLU87DIQayRnl9GU2M4pzWGcwGdDebeBYtDPUuGldB9J4ggZcZDF+GcNiWON2x\n46jZOPRbGZ05uHr/GUHJR/JXm+i/rHCYusRZqXCpu0709y76xlvk3Tqe22aYXv0SSdrFnf463Fu9\nv8b6tSm2SzM66ZLJs48YBKOo2Q2K98uE/qMZ7fCcxv7PeTKykUl26RUMHE7mTOvLGMdJXk9dKLMQ\ntpP3GcTPMQxHxENF3p5c0C57mAac9NsvuTS58N1+zNp5muKNP8WuCxP5qZX2Zg3D/jWmQpGyfxXt\nYoX45YwPngXp7L9LZxhjVbnLjVUbE69AuzIn4PeQvTST/D2INRP6myckVzysFC8Q4xMe/HQBU7bH\nfWeAzDiN7mYN/81jxNYxVs3NpnkFaecuUcOHfLGxQ+rJ17UII71HfLazzl/eMRF/95xfF4KMpUeM\nPApzk4vhx3ZW/ft8vXaEygAAIABJREFUtLLDB1+EOW3F2NmeYI+06TQzvGt4jLD6gO+rA3xkOas8\nxnFXz17/FobcPfpOJwdhIxfhS1TzhL/rPUf70SveUR4xX1rnzXkYSzKNJ7PI1Z1Njv/eiKGj4F/O\n038l8MX5El9m4fytY94NvI2uP8HH27xx2blrCRC4M2Ct2KUwznCx46P+1YzQKMNPQgJCZINuZsS0\n5EVQ3qcQLvGgn+WZ5Uucz+v8RHub/TeH7Md0GGaj72Ki/KsTy98Bapqmnf0RL/1NKO8zQRDe+YYX\nA4p/1Kf4De8/S4Ig/HeCIDwXBOH5pD8kNnIylfo0lRw+9zo6QwRsJvxGA137NdpTJ9GgnmHJwtQ5\nYxT20c5ncdlFfHEv/VYD+9IAQemjpFUEWY9F0ZGPu5lxQURfxjl00lSdKFc5cqspNMXCIHfColck\nYrfhuHGTViRKuTLD4RLY1A+RIxribMDIHKNomODac7JmyWCWLhiWNKbTN+hdCpo6ZphsIAoWrN0w\nHkObXmmdm0ErRmMJm1XGbpwxG/QoSz7iW1swUtEsbiYBF3Vngyvd10ZU4v13GBqjuHozGqMAgu8E\nx1WbugKtWZ95TaXWNRBVDES1c6Z9M1NXGak7pzduooYH+CZd6k0DDUsMn2wne9lFq5tJk6c4bVM/\nDrEyNqOWkogTlch0GX8gQLdcJDUak+zpGfiyBHReTF4Pxp6XWbFLKjilYJlSF1VMVgsiHUr6FjYx\niJyfY16akrIY8OpNNNAo6SaI8hBdNEjXP8UVV8gswkxtcnnhxutoIokJtHEf0VVhJMWZqGWaNpX3\ntrYAuJlaop1r0VNSdA0apSuRRl0h3shgdFVRN6cYG2kClyNG3SF3RB0L7qeIrQb2hJFu9SnqWhZ9\nM4FrIuGPj1nd9BBlhM4949q+Qn7XznrdRLy7ias8Z//OhKnWxlSJ4d9fpzfwU9MF6UWSmN2vufdc\n5V5CJYODvsHLtKpDW1e5teilZllkZhrjsy5g8Zk4lHTcOzRx0ISVlMbZcJlmbIrFNKPgm7Fua9Jf\nHtDdLFDdcJN2iHQHAoE7EeR3wgidJslijvCdPyQOv76wszF4i7Z5hM64ytKSwuDYjnd1A7dU5qnN\nxnjUJ/lojeTtXTING1tikKycZKTfI+A8pBUTcbnnqNYMKbFDo6lwLwBSahW1NuHJ6lfcNZQo3Qav\nUaQdOWYi3cLUuYbDtIZvMkUfVEi0u3gCIcTZSzJRE9bVS0KTDglHi/q5QrXawOmaU5dCxGwHLKs2\nsi0/tmYeiSJmZ4xZ/RlWaYQlGKTU17g2dnL0Ko2RAfFRm7FLZcF8gHdbZaVdZhIuUZGG3+LR0TfQ\nTzSEcoDZahztyya2+yJpIUndlST9VCXfbZDal+GuwmQxxMpLN4r7Gl/4PkBVQ3R9Nb4YW6irtxlU\nAlRGBnzea9zu73DoeJ/ZbE7bNOSt0hVDX5nu6wD3rLc5vL6FJ65n6tqHwHXMFz44X+S8KJCPF7E7\nwySVW3i6HYzGECdny9y+5+TUOSerjXgoVlDf+RQLbxikfTiaV/RLq+gKa9x4cJN47YLFL/o4PhDp\nKi1Mdpl3HxhpoWNz9ARfSuB59gu+53rxLR4XGFCsNTK5KqpzxH3TM1y3+rQPR5wGXbwo+Nm0t6kE\nj1mySAQKa8y1BHqxhu6tHiW/jkfHddZnZaLTKl/sV7G+M+bo/ilaXSI17COL29zaCLFV85JySlzY\n3+OzuYuiFmapfB/TWKa9+wbDvsiRc53rH4Prgy7e6Su6rhiKZObY/Bj7dp52P4ajfkV2OqW36eB2\nY4T7zQnytVu8J62hrTX5sBig6NzH98MLRj9UCPYnCHG4cs8pzU0IMyeWyJR0wYB67UP2HNfR5K8T\nqeNCDbt/hYyvxQPFSfxGhlRojG0pxOAiRsMyZ9j1k1v/GT/cesor3eeYA1MuC+9wMzygdbLL9eMs\nBp/MSPcbBkqZ4UKackdHO+BHNgkYnz/mQVpFjIbYHacoOw0YxAueyKc8/yzH2AiB6ogvXX4s7Swr\nySqXf/Jjju+WsDuqXF+WkXdf0NB1ee8iiVGfIuGZ0m8fYktD5lqfyulPmP7HJs3+Gt52GvvvV9EM\nEX7p6xI9z3KazxJ+vUzO8B4vz7aZTloUB59z/PKKhcs67tRnADyZ+HEW4R8neRzZKMG3UqxJm2yX\nbIhWN663A3hlhfDBG34hf4ZsGeMVVcJvZtz84BWfPvlL7Id9ftkqYV+U8Wz9GKPXR7LTwRh7iTX4\nmuqzEYuaCo/aJF8so7ZMmPvvotg+xxD+mI0rkaPGE4y/LrN8J0bTbucTzYndqBJbPGHN9nu6ooBY\nz9LfFkjlatx0/QMDsc/fdkVam29xvdgkfXDM0tIVvldzXmXvMu0ZUX9uoG9sI/5WRAp6ER0qvspf\n0Dck0fkGZJaX2DwbMEf7TkbQv9aI+rf8p16oCrDwTZjvfwT+T0EQnP9fB9U07X/RNO22pmm3zXYr\nbZvAxD1ASK9Tr4DGMc6Si5Fzjm8uYnUMyRpcrJhlNLOJqVZlZ7LBsHjAYX2M5m2hDhfQ1VxELHWU\nahu9LcY1g4Xhto6jgofKSENTZoxWwmwU2shHjzCYlzlUZcxRK+XyEc5xh7jOit4RQlBdmOZFdMtL\nJDwiwlTEwpyeOudgFkKaVUktuQkKaTyOTaKlDXpCh46/QXOmRzO1Odlrk+uL9Hoqg8MIjoUY3ukc\n92iGyRbGLYwZWlX03hlrwa89L5//1V8zNrUQzSMWph3sOj2i0YrdUGa2pDHvXqDZxlhNcdp2Pf2O\nj8Fwg3BTIFIJcowTnb5PYmFKEJWO5Ry/2Ypqm2IoBRD0ViKGIdVlHRHLiN7cgcycuVSkaUuSC7so\nxFo4KsvolRkOJJyxLm1ThKzqwzSwYjH68AyGzMtuBAR0Qo3L6Rz3RQil0cHoNbPSb6Kobk5HEZxl\nmYWeHo+oYRzK+CtDfAs96Gssds4xxsdcdI2IhgYe8yoBf4Czg10AYpjRu6B6YiCkGbAkIyzrPbQX\n+3j7Mcb7Ja4MTQbDHRJr2wzT5+xO/UijRSZ5F+f3YwxeKlirVkzBFkNBQnfxiLPWIgeTZWY3Y8yv\nX+I7c6ElTEwsWW50DrEJPvTxHrmtFtfEFvqBgr5SwOLM0PMNybVPKY92mXVDPNuwY1HbvDzw0hfm\nKGKQ+VWWmVjAcFomb8hjs3RwDi1YwyOcoxLxfQ+W7hSLexGP3c3WSZD+nsLZlUpXN6M3abMwOGdL\ntID2LtLkD/F722hA1S/SF+IYLCU03T6hhzbOzmTCnhLedp502sNFrItr14m9V+dZ1smaUENOL4Fs\noBL1c5X1cdNRolJN417eQi8vMOipGEISnr0N+lYH05cwjU2xDlIM0jJlVWJ8piBtq8iFOp2Ijnzf\nTOfmdc7aWerSLQ6bfgymRYYry5iVEe35AttLMjYliNUr4nId4bTfotZOY3O0kQcrmFInJIYKoYZK\n3+ljtKhQTEoEF40sCXPmiorN0mGS9VDbL+BxvvUtHnrZjWAxMXSNsM9OiRlEtOwMZwrk/IwnEQcP\neMjpWp5n9hwzMcf5AxPGy5d4Kx8xosTqqwH6vIdxtow/oRDUx/BPj/n97JhU74qLOshSnxeRKa7O\njB3DiDeTK2afHDPpDNk7t7C2ecKF7pB1d4+F6THd5THdaJvy6YxqMIPDW2KlU+LyiQ67VGZyVqHg\nyNA23OX47jobrVNsUZm1gxGpeRbhszHuJSPHi6sstpdwRNbp3TpnrzjBNpSpLAjsPxtxp3GdT81b\n3+IhU2e3eoffrvgZ/OYlDkOKqxd1XJUnrE8mrN2rUbTdwVczIwgDnjwoYtQP8Ulx7C/GDJ8HeOv2\ngOOxg9dWE1PJzEKrwvvze/RKB5yrAk+Db9grjDnzLpPbu4NX94at8oB008v4g6+whYd4dE60gZe7\nQZlPVmHyLInOpOehbsLsrIo+a0arxZHt+wQ3MoS3d5k5qvzOtIlxZ0bAPmF8Ukc1mDk/TWBOafSv\nbrL85W1WpCU8iXdwjF4QVfaoi028TYXLwG3CZj2W356QjfcAOFLN9LtuhGiVnrjNrw4XGCkOnPnX\nCKIen/cpTpONYM9M//F73B38GMXQQ+y8YU8qklDWaL3V5atIFFPsHt+THJS9IrGWlXItjkUp0nxr\ni08X7jHS5TDIA8xPX5GfGrkzS/D97TOmT434Fq28rbUI6G30zQ0yP/+YhSd1ZvEqg9MZq1suas5L\nPO6nlEZF3oxEwlub9HJvYSo12J6cs5wyEZ4L/CLR4+JaE+tPPRgOfLTeTiGM/5SRK88NaUbc83t6\nN+tYym4WNoLMrM/pT+8CcPdt8BbqePvHdPXPaeyeU7yUyFtnmH+Z5kHHzK/k9xhFLdhMKrpVHU17\nEaPso3kSQdv5a8TRJ1jSdfohC6OVLylKRzgCVxj33Xy060W+b2KUnxFd9mJNvMTx1MLuShvnJ0OS\n4p/x8f1d1h+YuWFJ8uZggGo65tp5gdmDKpvlCLrOh/yEC740JrnzvMR/8CnYd7+HetznxpsPUGt9\nDjJ+yimR+esUQ1nDJY9wn18Q3LFhfgLDwOcsN3WcjY+4n/4VeY+ZE88V7fqMo+UUou4P3ux/jv5/\nG1GCIOiBvwD+6p94mqbNNE1rfdN+AVwAK0AJiP/R6/FveP/yPHMJx1mOUdMJ5SLDwQR9J4puAnLb\nxdCWxWsXGVayNMIhBjqNaX+Nx6MSKZcFr5hAaSwQlC2Mo1f0JkHkmUCreMGs7sLcHuNxghbqYpnb\nsNbLNBd0JIO3kOUZaxU9HXWGVdYhCl2sEyPC6JJ+u46x5UDq12lLcxwdF1W9ld56FcFcwba0RHtg\nRcjlKNZLzNYH6GRwSwKJZAPD1IB/SWDacLFgCCAtFlEdMmOPBXlsQDJ38KsK5tY++oKRatMPgKoH\nYSIx1GtMfBLjsZuIVMbV1xMczXB77MR6aQ6DMmZPBkXOovlqmNIKjrhK8LyO1Bep1sdIvXOG5yp2\nVSRZ6TOM2vGiYbB7EAdexESJmnXE0DDGJC3hc4I3OyRpsmKL5ThLjGnIAoWWit44xGPS0DnCeFt9\ncl0HdRnCQytmc5yltIt+bEzL3qCmdLgMmAjNR8T9Ki1bGUwq1aqOQ2HAyCDiLATohyz0Jg7mozWw\nudF1I8yybSYtMyfVJgBf/s0FF+cZ9MEqL4tteqd6RClP4JWBabCAPWhlhEhwc5+cc0jhWIdpy0vR\n4MFk2uPW5zJ5vUhu84yGJ850qOf5oo219BmD6gmn4+es5Sy0IxME7QCjCq/cHhKRGSbHIcK4xiNt\nTsR+QkCnsP5qisORR5JcTCNGTtxNIhdZLA0PVu2IJblCRY4TtDXQ8ikaK1OU8HUWTNcYukJsujOU\nE1OuRlPkbofj1pSMaEFye8AnsHN3hdbCmEgJ9EfXyRlbuGcym6EffKszsZmJrvCIDd8hjbyOwqGO\n1slrhnerNLRlpFCfuXpB1DlgaKjwOrPOcmqO1LcxFzw8HbgIvRCxLKaZma1MrUeYel0k7YzF/nN6\ncZVFuU7BlMBsqzAa2ciITSKnL1lqlQhOJPSyyka6TFeDxVkPfadCJqkyF8akx1ccXDoQ5gOS7hiO\n/AipYyKfqFDKRRkIyzSSEzKZGb6LCYFVL3ElRT+nMTAv4+gaWKhYcTVDqEYJW2FIqL2I8VhCzhyQ\n6d0mVvnD1jaVomhXAYqBKVKuzX6qjKHexrebZxuVpTMbR3yFvZLg+sTPVTtK+EmAkPCQrmUNweKG\n2wUGLhNpT5C2JUE42aLQNxBcX8a6VUa8uM1BYMzbZ1t0vHdQnGNiT2G+0sVtuk5g5ICik7RhHdVk\nobTkYVtQuX++z9wJ8dkbpJGLrGUIrjKORyUk8Q6FcAnlwso076QcfY+cLU7ZV2ceD3HuPmdv7Mfk\n8uPNzpioYP8IpkYDg9ANJqY07kUvL0J5IrbLb/HwMsB84xW2spczb4JPj+Dmuxpnbyc4PHAROXRi\nv3jJzep7mC0Zgg0bkUCUVtFAfjlEM/A5vz5uEnKWcPTbZNbzCKc2PhLf8NB1nbH7Pg9bPfQGkY3w\nDFPimG17n4E1hmfTQvrFj3jk0HEqjtlYyPPiKMj7UouJ5SOeNR6g69f4YMuNuL2IQyewOfiAV199\nwl65z0rbwXvxQ+RjK2WliTN5xcaoS0/TYXzj4lFKJHrbzct0kR4v2bLcIJRu0mz7yNc26Lx4ynGl\nSyIYIVC4BcDG0W0cb7pMFlY5qxwyrwl8fqyjZR1jmy5gu/4WlzMzHZ5gnVc5Of4Vz1/HsN70MbRd\n59GNKRt7sHp+wiP7C2byIvrCS/bfH2EIt4n4XfSsE+7s7lO6yOEUAyT+RMG33KQ1qfOp9wby+69w\nTDM8WkrgqMu0FRNfqg6Or7s4fdGlIV4iqGF8v95BDetIZ4Ksj0343E12DY+Y9VxYrwc4Ngc4uuHE\nUh0wMYkM/25Eautj9uUv2VJesStm0DovsI0ULt+MWDAFYNon3/0+Kc/XF3bvfZRi1aNneCZwPNok\nPm4z1k7pm0rcm8gUk59g9n/E/bCNieJBN74ikFUwL2kwfsSWdJe3vmfl/umfYK0Y8Pxtm5uKk1cT\nE6Wkh1RzzFv7Mjf3hnwWrbFodGBZCuF9qdH5aYwvI//AvcMtftMwYr59gS5k4YbBSG/xAQuvr/h5\n6pia38i0uE7m7ZfYlz14yiNq7884MCww9H6C2rhiPZpldcFLScqyEIuh0wdQND+DocZhKMZCYsgj\nj5VxPkBbp6E9uCLbW+eDHyS4dlSB8Xe79uVf44n6EDjWNO3bMJ0gCAFBEHTftDN8nUB+qWlaBegL\ngvDWN3lU/xXwD99lEqOop7WyzIKgYXOpbLnL2BcCjCJDzGEBm2mCsejFkzJiqOkZFyfEWqcsp91U\nzQoDt5O2LDGeHNJvzjHMVGaDHgvKGtmxjF+XQg6bSDbs6MxdAsMZusKEUMxAYt6ipbjxSDps2hR5\nGGJoaFI6MzFwpEEx0M/rqFmNzHxRfK45I9xEFAe21iGdih5pKwFuAXWvjtgbU1BNaAM7tUAOaVhA\nWcnSl2z0K2HmlzUWuaI+PMDc0XFe7XDRSiKKQ3TJGgD6uQ+zL8iko2c0t2Bw+Okt6TgPOqhWxgQJ\n0XUViDeKqOUKZn8aV1kHJT2FjgVr3I7DOsaKleJ0Fc0aozuq0/UbmY8LSPYZbV0JXbWI4SKJmQHd\nro1BsIhUGWHRmzmb9VEGZjySDiVsRL9oxGbyYlU7WGoVigYPC6EKJMbU1Ti5sY5Bt46762Q4X6E/\nHBDqu+i29HR0RmZDEbk8w6E6Sbs9hBM+2sEGSzMffRM4jDoWOi1mlhmxhITVXyYjfF0HyB8Z4fzB\nkKHqxdofk7z5glZ/znBFIXk1xLXoYnEqMHxmIF5yMHhbQ3xTJuC64HDFD8t1onfMrE5X8J56KNMC\nWxTljY2HzjDGwzWqgxGubpaBdYevBouETQrFmojYu841y5QHl34EfYrfZVcZL/d4XQyihKLMa4vs\n2IZoG22elBskVAdfyR3S+XPEoZOdWJHr6hT71RlC8Jx9c4F5u4Ne2+Cavstc1DPp+3lWa9OJd1C1\nRfpNhRVpyuHwJnaxjW11kS+jB4zW/1AXyaBvMAyvcZJdJpdcRoymWV3UY3vaJtiRkPTryPINrMMy\ngvQQ87iNmDVw7peZ5Rskm1d04nYq/SGNMyfXMqvki1UsTg/NhI3IiZtnt6KsKgqmZh/PfMAzj5+a\nGKIRS5O5ecRYGsPMRuIgTb/hJesbYZQ8zGdWsgtbvGM7JdpQUOwH5HywF3IQkDxMFmZk9krcFps0\nijoazbtktRbt2gnFoAO/+YLy2hx3+DkNZc75bMQ+VvIxP/pMlMGpA7euxGgl+y0e/bU8o1gV44XC\nWvIu9zoxanfsPNIlyK6kSZg/YtUMyc0ar/b30UpZuhaJp+t5dvInTELLZC/e4sNzG7PYKf7JHo1S\nhnkgTqj/nNpnFq7dLxGPJGhN7NwrlvE4FtlfaOA5CZCzn8Gog8wqocAMxdYgpMuSe3SDrl4FZQ/D\n4G2yJzpcDh3mqAFh0820dMTayxiudA+n93dMnn7FueBGMW2RTSiogfvonH5SpVP6i2PuqkdUgku8\nM/PQPVAJ9arczObYsDlw1qzf4mFlwPT5DkltxuhOH/lmh/aXHTLZBGPTCZ9205wkbXzy4JL9JKQX\nDbiGX/K2qiB5IDNQuau5EG0ySWHOLLaJYXXAarfOJJmjpM3pC1vsbMcxtC/xr/p4ZvkeDWOOSfQx\nb2738Xx1RKZu4Swcpv/w95RqUzJLAizUMFinHOrPqJ2eUzcIfL5VZTtsYNOyhHchx4t2goLHgvsq\nx5VjQj7vAKcRZ9WJUO2gFPv4nNdJimkujuY8CS0xWdzDV4tw+8YDFs5KTEdtlOrX1yS9mspMiVKQ\n/ax3PIimEmqwg5xZxLJyiSIes6w6aOhv8+vvS2R2fsJ7tz/G+UTB3i7xg6MELwchBhv3iNdEHg80\nUrXbeD69R3ovSta8gXniwSb9EPv121RLK+iOPkT3wknu/IJ3T11cf3mTr4Q671QbaNOHvKuILN8d\nseWIcX9uA3IcPrcQSuj5xeMGL8xTXkqnxI8cvDNd58o1oPMLmZ2Age3LE2IP/hSzfYrgs1BWPKQ7\nP6G51kVdtdMrbHG+/xY7jptkhyq6QhPDTMfvTNsAqNtTripeDGkDJuUFkR2F7ZmVZP0VhT9Xcezf\nIXTxM06Z4ol9j8uhxpFym/1+gVb/L5lFiwwrcRqbj5BUJxfr7+HBwNqBE+GNwLTzU+yru7xe93P7\nizkfLc6ZvjExi8apVtcIT5JUQjr+wt/li/Mp+mwBa91Hz61RqOsJj3wcOv6G/so+pb9b4E2oxlgf\nIfykxrttO6HQkHLQyy/LJmLDG1yP6nhu7OD5iQHj4HeoXZEP79yEeJzYZRpLsUHQqvJO911kyxmt\nv/8NT9pJVMd3KiDwnUoc/HvgK2BVEISiIAj/zTei/5L/Z0L5u8DeNyUP/hr4d5qm/VNS+n8P/K/A\nOV97qH75XRY41wt4XXnGQwvuoJtZzYrcnzPWOXD3vMzVIDNGNPoaTaPC6pJE3bqIEFaxFpwkLHOs\nuhaWRByrI8Gwd4kpnsYTEBCjIn17gV5zijqYcNpzME+GsPgX6E8aCIoPtks8n46pJLaZCBYiVitB\ncUq9N8ck5zE4Tcy7fVq2Y6bdCZt9G/Q15HGcxZUgtVGR0ciKYHRQtcTxKTkGgQChsZ+eN0hs4CUa\n1og4RVIjkXrDitMZp8WMTWEZm2eMPpDEIRsBMNKiIxgJ2A34R1U6vSwNeRF73UxcJzLtn9E7n1Hx\nr+HxWlGp09SpIBUIB4yoBQ/6WQghOGPZ0cBr7CAuO7AaHbicMpaGgt3lQLcokk3NEMUlbLEmzpId\nXVRGiCksOMdc6Od0THoC+Rz64wwDpYKlY8Hhc7LQy6JJFqTuhJB9TmJqxD+J4Rm08YYbWEd6hqE5\nae8Ud0UigQ055sISmVJW+siSg0BLR7OcJ22akLV10BNl0WBGOhkymcy41BoAdHM1/Hs9jFdT1nUl\n3uBCRkcvO6RsW6bfPqQVqeILrJEJmshoRqRNPY3ONs5ShvHlGiXRjW0cYDi3MjPaiLXLNE1xZrU2\nN/QBFuQ0j6NWHIMC19Qh86dRNhwZjIM6slHPeHUKbROknzF3XGd9u0K3bGK+2GBc32Jylsa66qR5\nK4x7YuKyOeY8JfFUfIuD0TZzg4U3ugn2i2U0VUA/ERgsqawNfFi2z1nuzYiejliTRqj+AoIyQ7A9\nxnpbh/cqy7XDKb958ocj7MdJP+6zU9z2LuvVl/idMnsv1nHfsGHe8mEsXDHs6jlS1nFfk0ldJuh4\nxri7Q1ytJnV/FF9PwTw1EHapKMcjojdtHD8NEXsC4sjDknxM3QGWgEgoZGfncEx0I0PO0eD46hrj\n0ioXDYmWdo7DMCGixSmrArbpOeJsxn5UxeZ2ky8ZcCon0MhyfhbBMB6T27HzVDBRFyekPS1iphZX\n422k8gnFBQ+TYwMv5U0y3inBeRWvX0UqKPQGYXrLBuo+O2K28y0e5raTjHQbcyaFfmCnJ3cwP77F\nyFQj+KpIhQUmWSu9zwPc3XJgSSSI3FNYf9bnyLzK6GiGsFmjcG1K54mRVuUm2c4VW3MJ9m8SurfA\nV78vMCkYsepfI8UlvhjreT9kIpP0okyNmJIDKpMB3ciIam7I6GkcKXXMm7kJ72SLR5mXmDx6yqqR\ntEFH96rB/K6DqjolW3bhqb6N2xzHNdUQG23yOYXy9Bk7Shk1vMqZscunjxTmGQsNrYExM0Rzjfls\naZP9RJhkOvUtHqmrbW5qbyjozVxrb6OdJXCMF3i5dE585w7vrT8j1dnAmTNw+9EpwsevKJnepxyb\nYnYU6C1uUXAtc23uIbH1A1JfHbLrNqP3OgkeD1lXnUyv9clezTioWtC/DLKkXGB9vYjvMoxjfw8l\nY8HyzgrbMx1bc4HF+22eGHxkahIfXfownQf50eY1SuYBxoZM0bjF5cUAwejEI+QI2m7RbGcYP1pj\n7LrEHPgtwnoV0WNECvQoP3rE76p5XKsyc/EM2yUYlx/zMneBQzSj+czYl77OefH3iuxuvmbb8All\nbcaa38Sm0sL3vMJUCDH89T2Ob5RwKg2Mgzb6Xz+hv7uD1afj7aCFzzO/oT4yclvYxfJyC0fEzXNz\nAG2tyMj4nGqvwEL2jP+w8xtU0wFm/5jL7kvc7T4Tn4/e5VfsJqwYmhM6ONnd+gTTyQKnjff5/MpH\nxRwgNf0Qk1FCE7z8QO9gPmmgOW/wYuUf6UY/w2NMYrm3yxv3MwaODGufX1H+JMzIq2Neb3N1+Rzt\n9EP8rl/R9h4QDHtopT4lUh3gqEQQnQo3+RUA2/MvyX6wS8044D3xDp7DH/P7d+9wsLjE5WmWvdKA\nVfk3DM8iTC87vP/+AAAgAElEQVSvcKoSO71nGOI+vjcfIZ9YqD5rEtiL0JUklutdXr0WMQ9Ayrhp\np17y8dnPGEhjHH4DEdsUZfmCSfYISdsl8EpGXHLy+Oc7+ELXuZu+S6TQZX74GuP3A0xcMstDJ87Z\nD9l62ERsbPDOShRrNER10UIttEnCLHEt76L2xTFPzi9o42P8i9f8cvRnlKtDflf7a5pdK+3tPld3\nf0jh8M94VO6gO1ujEfTjef9vME1N38VE+U6n8/6tpmkRTdMMmqbFNU37377h/9eapv3P/7e+f6Np\n2uY35Q1uapr28z+SPdc07ZqmaYuapv0P35zS+5cXOFdpHARpWM+oSlFImfHYOiSuxuhCV/iEDo2A\ngs1rxO+s079apylpmJ9VKCxZaRd3MUajTBp20DpYbVu4zJdUtFMctjKDvJuFQImuMOS2d4pYMZMv\nV1GGTtyrOoxHRjwDjXghDx2Fka/N1K9iKl1QydxB9A8x2e2slDOoYh9UBS0ypR9s0mx/hbE1JuIw\n0I8ZUMQJM98qzWYBTTORrMzAZqR90aTm6tEIurF4IsiREUoowGTBgM1hB7VJr/d1+GqMD4+gp1WR\nOQ7YCExnrM7OiPmGdDxxBDFANKojnTtm3Dei9eeYx0Nydg+ScslcnFLvS0jahNJUhxoOw2UN0XaB\nfO5i6J7hlEZMWyKhroBdKmByhmjq7djzEuV8AuNMh63jhUGTbiwMyTE6i4mOo47WnVG02MBmRzcz\nI/faOCQDuahI3zGm13bhsFhxVvJcFq1gnlL3WmhJBmR7hVgvxHQ0pWcW0K+EmBoirF426Yxz6LJ1\nSkKGYdfx7ffx9NWnqEMPk4iXF+5tRNWIFL8BtjrNXg25dwfxZM55M895Lo9tuIin58YZe0pGkBE2\nxiy0X1GYXBEIvcQoVsloARyZGqeJOAO7SGVlnztXFQazFlqgjy9so3pQJZuucVx1oNuvkdVdYjvR\ncVCe8bplxd3Nc09QiHnOiPk02BMxSK8RFS/pBTtrHSOZ+RHBgp7cDQMmVcA2uWI4rDAzlJHbE9zJ\nEwITAdd8h2mqQ04POU3FFbaAz0pvJlFfinGZvE/M6f4Wk50LAxF5h0gpwuFwh/pkgKaOcBp9NF+I\nCB4RpZJnXoF6Z5+ifY+I38q4voCw6CEUCRLV14mXJpwNzxgMJuyfFYlgR1iW6d1QcL9IMjRKTJM9\nLJ1VtJCPI1SW52OWbS1CqTKq2Unw+girqULDWka8GtIbZlizVnG7ZQ7sfVL/F3fv1XNdYp7nXWut\nXdfuve/99vb1Mr2QQ0oyJduQzcSKg0gQkMSBEQgwpASWEyAAgSBFiWwZOUt+gIMgTiKJsqgRyeGQ\nM5z69fb2d/fey9p71b1yMAc+zWHkv/AcXXie637uNzZJTAPg6fGa9YrGKI8wdJB5KvDWvhNRnGM9\n3GX/+hhHwM1i1SWYMYjPPDzrrbhQNwg+DGLuV9CTKqHWEsUY8LX3387DTkz4q2WVI7fKifWQh03I\n3LSI+AbIb/gpJ1RGvh14K8VnchaKflbPVQbOIwIbSabZAE2hxTDawp/Ksn/xkNAgRCvWwF8KcdJ0\nIt8vcmcu0ri9wI7dxJAiPF/7OZlmyDeGaMM30Daf0x9KFIsmeiZN4eomm9fneHZHOE83yeZi3HdZ\nWFzRs9/EH9IwYiZF6ZztpMymHudu9ZL0DTdvBkMEYwVelEVWc53IL/d54+51DoOXJA79TL/OkZCK\n3FfXvLkWEfz/9jTxeHNA+3ae3cIXiE9HvLk65uroGfqXaZovllRqQayWwco0cN65RettyBsWwUuF\n2IebZLoBSskZP5v1uJgM6KoKIeuS5AMP85TIxmmf888jXEsq7Lg7POmVickhHJvP6aheYnvvMa9v\nIn7xMfWKwLglcH78Jr/2WMNnh7h+GCK0MjHNFc6nJsLcJties/yOzJefTVkaPuLlAZuOFfLWgpx8\njUzoDh+LBQovDWJf1njdneDac4FJ7JR3nkUxdmLsJR18Z+MKIVnAkzaZBQoAdO+0iaZv8fX0Dbbv\nw6v6DAkRj7rmxi91HN9pEBzXcFUqBJ5MqIRzvDiySPXdnKsiNz52Yn9P4LOv+1y852OceY7y/ifM\n+mH8vI+jNGJ13oEXc2aVHJuyzC39Pp2NEG+uDc7fyXEz8oi04xXhsYf74+/yb5YTXt9Zcdd+QnbP\nxrhR4WzjUx7uTfhRNk4m+hu8e2FjuEKYy7/LeeQJs9MPSH1S4jhv8DA0w5PX2R9e8u74A157I0j5\nfY1K9fsUHWsWNxtUot8iEZXIRJN4hA8Zqd/oy6vnb3EneIud07/PsD2isvNjVs8q3LIOSRWCvJba\nwQ5JSLU+waiH+VaIzlWY3UmOj988ZekvUXF9wF9OtjhtxLDSPth2Yq/DJCW4ObyB67s2B/aSDztv\noDoXxOcSnqM+38n5qOd09jpd+q/9nMIp6Gdf8OyGjrNdwHcSIBh30z/9Fbp+BcopCo/6VCJrHgzi\nfNkccfWiSCUpMv5gweevl9nOunCFn9IrLIlFTwj+Oojl96DWJOOV2X/1lND0z/iNschRz2RVijCv\nhnE6/785Uf+//1j+R3/yxz945yhJevOASfeE1SiBW5mjHMkk6256nhUZV4Da2GbZmTOyRfxoBENB\n0uYaJZEgMJ+w1p3E8iEs5xlhU2Tg3CGg66hrF3J/iR6V6LsllLGfQirNXJ1TV3xY0pCpJ8FCUnHG\nYamvmY7nyDshXLMGedZMjQFidEgnHSDYj9AUbA7FFJLZR4juMFJqLBU30YCGoRbQ1zpCJ8QklKS3\n6OJYO/DZGZLCjMnQpqXYHIxd2O0ZndUQgSX2xi1++H/9hJvJDbL33yRt2vg9Gra45Gq9hWsgMFDq\nyJkVQUcSO5IFr07Y4URfyoQVHTkuspR9RIkylg2cRgfnIIQ/N2alFOmqAVL6GPw2uirgjtt41gbN\nsoEaGONQ1jijfZZWjrkO23YC2+4QGFn4xj60rItZ349Q0AnPDaKOCLY4w4oZuN1LxmqaQmJNx9Un\nFYijOTRGspeNjoGe7pIYHXCl2SSGTfpCEJ84ZTroE7JszGQaYSExzi4gpfPk33yGCfznP/o/0J8/\nQdJ6GBsyN0Qv2osGUnFBqSPTXJ2wuL6HuNlECeRYzM/Y6Qh4LI1OYEr9YkLAaxDMeJgKNt7amnLK\nx1ALEXL1WAhzvAsX3kCQs/6C5JbN6KzC4EDCKguU1lHGd/yUalC5foBrusJnDhGPbuLyTHhubqDE\nvWRqpww9G6QzKWqrBMtlm0lmjW91RbwusBW8SThQoRX1EjZjrNU2tQnMG1PkQwO1UsK5vmRQSeEr\nLolqYcpVC2lwRUwPUR2suHj6CwDuv73LWNZQjDR7cROPp4ItD6k9HROUI2wWYogFH3K/j7NTxO9I\nUDFl8vkG036OZbmG7loyi6iIA4uJS8DlS9LaGNN3Otk+D2OUJFyjJdOlglxb0s4sCMh9muUxdSMP\nE41ozCRkbCAKbVJCCdkTJCEcM4g6qfcVbnm8uAdlWnMvcs3kLA/XXGX05opVOocvYPLMWjJzJtj1\nTbAFm2BIoj9ucBjwMA4v8Z5PyGXTxPoThgkfS+cUcw69+gXlizoAv35wl8ivFmg+97LVLbPwbZKo\ndWlqI/ylPbT2lKScRsGFfdlixy8RiVscRw2CfSedYJO3XgTR4w7GWoxhPokZO0F+9m1CeYOL9TE3\nXymc5mugCFz4Z+ydtlkEQ3iiFtdyBealGRvVNeOeA2V6gJx9hU91M3S7CF0GmN/0In0Rppp9Rv0s\niuPmCa9/eUTK0Se2zPJT/wNSLoOvXBZXizm9pEXGmWKrOePEo7ArVpEthSfP94j6NRL5Ic8HW7iM\nZ4ymp/grU/70688AkMjifxOsygekVYWz1V2W0oDl3A1vz7CnaVxBBQZd2nTp6UkaPouKdMloo814\n28+q0eK6e4IZj5JIBjmztvDkFJRH9zkr1LhnFajnZ3gnt0nOLjheB2jVR5TuJOj/QiF3W0YSlwRk\nP728SLofpCF0kY0FD+sd9IMUgnvBvFnkmjPFlyUXLsXPG/s6Z6aAM28yMCxMX535/BauyBfYdg3b\nm+H5ckrNeYPJUZWlz6CuZshofbSLO9iql2hxzOVXVaK+PT7867/gP/7ef8TVoydkr2k8mMq8e/MW\noVcan63HOO43OPxJhO6NOxjuNTuzfQL+KOvBCQ/yx2Tq93j5Zo+D0xjLwAHJV8/o2wekTjPcidbp\npwr0Pvsa30Geu8YtIo4FjoSJOvcSm35BTPlVGo1PaCQkSvEDBukW7V+kcHhdHMeeEz9x8Qo/arHP\nYLziDb+HnGtBJf6U82GfzLnEKNRlpxhATSSI9xtsyVW0/hh/+w7KKs55qMxZROW+s0XzqsHCF+au\nb4zwysVJTOalZ0J+L0f6mchPvn7Gf/iH38I9+wUF4xX+wbuMN6Hd6SOkZjT6EdINH88KXTw6eFUf\n9VAK/70gT11tio5Tur4eqV6L/G+IzEZr1JNPkF6PssrsU+t/xWv5HIUnZ7QmEfZ/7RmVkYN3S36m\nzThT54iqO89Z7Ws2R3+Li/c0rr8yuUBi+J6Pu5UiesSkUS4TEXI8Dn7KRLpJxjkiftNPKveYySrG\nXjPC4OKKRCeFzIJFaEzH9z38Zpml1iV/pJB0DJHlCBvRFFq1jxJJYDVCJN58TFg44sdf/BV/+Pv/\n9d/8AuJ/+T/98x+88e4RSymBLfvxSQuMlBP1yo2sXaLFRJyyC7e+wu9wkImodJkRt9xIsRnLVhK3\n00RJiZidBleWF101MbQwqVCAQXjAYB4g6VJxrDUS8QiiVmGVEgirDfrjBJKrgrCEbSnK3C3gjZiE\nm2lcIYmG7kXULaKmg3bTTXDVRs55cdYN6hEX1jJISRzTViXc6xQb6TkBqcNSW+LLJnDPu9jmDJ83\nz6lrgifsYW4bqOoVZj5CJurBMmRWpsWPPvyMrbfDXPNn6WxEcE9UJqpAfCVgpUZkkkE6ziJTV4Pp\n3ItvIONUPPQKDgLhNQt7xniewam3SZgJzEWEZbqMS3MwarvYKHRxLCNUZzKR+BwmUfq6SEy3EYwo\nQY9K2JQxxS6Z4IRL20POWNHPxfGqNi2fxYZLJDJ0MB4GmIg9ZCGFNdWo+wZEZZCmDub9IJFom/k0\nTEq0aNkyMXtIX10jpMJo8Tb6BNYekcxMQxF9iPk1hhAltpxjjxU++uU3Zbvv/je/Q/J5j1m5z0bc\nw+nwFMuw8Ul7OI76dHIZEusMshQnXHmK1nEy3Y3RTE+Zu8HdihJYQivrx3ZpbHeTrFdD4oES8lxn\nXk9AIYpRD5E3MzzZKOOuZTGCNgm2Wfc0AvMrWtfyaGcK0USF0VCkWNZJdPqs105GY534Osemp8rz\nxYTboTHd6CFJO0kyk6UZ1LHkS3xXW8T6M+RYE4/Lpi25iFsh1E0PUnVKO3Cb3exzpNohi+6Ia9ke\nSjpPUb3g6/NjKhcXAPyD99+jld8lmnAgeapc1b1sToJMszFytp9BuELzLMq+4KEbOMMlzFgWfJjB\nET5JZR3MER+YuOc7xN9s4gu7UJQQgbGAWivgjE5wjMKcJGcErAjOdBfHWEUJ7mBmDbKVLOsbKlZw\nhtXR6YhOnOEm4jKC05difLogvLdi7L2GVIXwNRkt6MPZm9Bz3aZwkGFw2iDsmaBMSnh8pwQDWRzO\nNGtpQbRiMZVVAvUSW5s+FqpJJxxBPa2x093AKDRJeCw+++IbUfbf2/l7dGUJ07UmU9vE0MqcaX28\nr1nEH4VJTtcoGwsu5yOuyS3m+pgv/QoffJEjHHvK+GUX0R5gR1y4214iVojUaItoYcBHAZm4t8tl\nacFd/X0UKcG9wBItsEnJmSL8co3SN5jLjwj6biDsVFipcWJSDWEzj/FqQNpqEdJEhkctvLEY1086\neJu38Mlrlts9nm1I5B+IvJiPOTBsHD2bcNoNXzQxHBKGqOK9E+MsLpKpxUhsunGJTWRzRUrzo2ez\ndFslPn74jYYaJUz63TTvpxKMJkGcno/JSXvs3HPR+lrjtbCJVzwje9tPyfUG8dCEtVphOM/gl33k\nH8QxspAbyDxIBbG/GHDQKOEr2ujRZ+Ry13F6agSqbo6nFbzrEYmdBQtEYmU/l9sVWt0krVmZxVDF\namRRJ1d0d0qUvVk29DrK6SaK0OT1RIauZHNvNiMnLOg/moO7yngyx3vLx826RNqqclncJW4kiZGl\nXnlJfM/BhrNO18hwKz1iGlowCDeYt1PUJ+fcleOItPmLj78k+naWpX2d1xNNgo8NXBcCxs0F2U6P\nk66bF98dIn85woplKCaGfFy4ZGE6yJw4WKR7JGL3OVs8QY0ueMMbZ3gQYP/qa37+9pDXprt4rtc5\nGHtYakVOrn3FqhbDvuPmWbfH5egC557NG6lfpWdHCf40TyFZ5zSmcGO1Sah3xPAdBUUbIhxb3Fq/\nyXD8iGk3RLj4NjcDh6SlMr0n21TUEb5UGaF6jVeDGOv0hMaNx2Se3+WG4uTT8yHxtMydYI9fuJeI\nqxu8LYwpTR5j5nt8WX3G8YMu//A3/xGrr6aYxbf5eOcVvlCQG22VyMCH4U1R878kOr6J9noZ1fRy\n13WO/GGZhOpi60mIaVakqnrZWNepPnPwvf1b9MpX3Ow0qN1ZUnk24OxGjJs3S7h+qLLZf5eKveDZ\nwZio703G/U+IlYvYB3M8n0h0c2eMxC3+diHCi+IFly/rfDt/A8fOY5afGijRInNlQuyrOBfpI+L9\nHp3tl2SKd4nEPufBTRPc32I99+OQBHrGHd6JvsD/WOCT5IorfwrXuYLncAv/cIi3E6GS7/DVx1/x\nz/5dgKj/5Y//6Aff/5V3yKwXyKMmEy2J2Ooziy5pB9YUhSiiCf7FAvfUQU91EBfc+NM2utuP0Jsy\n1/towwSJgkxODOB3TWiNnUyVIYaRJ6qNSeezyFUBy9+hNssSXrmoDxSKt9LM+zq7YpKxaeEKOVhH\n3WiLCquAl4jgYD6MEw9b2O45C2eE2TJEX1XwTcCXF8EVJOiOos4mCOaMdl3F9AeY+zUEMYgRt3C3\nxqwcEsp8SqmpMoslscNjRs0Mci6ImJzww3/9AKU8Y+d33mGrrbD0ZtGCLubLJdGkwMT0ElBczPQ4\nsfklsjSl7xYxAyPCc5hPwsS8IxxWmpY+R/NDvpfgXF+RyAVwOWYcrxPgm+CsibhMFwN/HHeyTVoJ\ncLVpYtkiSV+AU0eBtLZG8k+ZjPwIqS655QwllGA9MxBKXibKDNXVR8uuMNRNLMcScbjGz5zaNE5U\ntah4bFwpicSlm6ppkhiozIMBgrpIzFI4XZeQ5DiB2hynqqB7PcyxmVwq9Ocd/vf/7n/l5a+9zdV6\nm7FmciT5EZYb2NoUo5vEoTSQ7TDScZf1xi6LXozhpspbmpNR6xrhiJOx10ssYtKfx8n2YtjLGK/y\nX2KIMgFHA193Disn4ayKdJxlfNTn9eQQpRFGvBOnLkbILbukHAKOyg0cYphqUaXmECBe4NZ6ymqv\njksMU00kiD2vkdQE3PELhtqanVYa70UPO6SxdI8pV+5TM6YcZTXKI5WJDiVxxqQTxCM1ORG7mJED\nMsM0p4UZ1YoHu6xzXH8OwPdf/10GCy9WX6EbF7i9TlCW40RFjdPoMen1Nqv5C1r6hNXBAVLZRAwO\nmLl2SNQjTIMGnYjFxDkm0TZoaXPcIR+FZY20loPtILXMQ/JVgaG3jffsJldeP7IusdE3uJjFyPd7\nBAQNNWQiumAp3mfeNHCsFeKbY9bcpN56SnQoc5mso7u2OGomGGQ6zGZTcjs9Qn4H1H1gbqN21jQX\nX5Gf7BIqeXBZRfRtBWUu4g82EKQ1emaBmFgg+Q84/6seL6vfvMH49X0ZOfPrnOgNkv0pSSGLtJUl\nrMGzW0UM3wVJp8WoK7LZ8tAyC8iVOapYpla8w7XdGOXsDTbPHYwCx1i6F8fmV7RiKWKrJV3BQ+ir\nOcs9g3anTu7lEU+nMo3dKjn/cxzmLoOKgLV3Rm2RxXv8nPa+k+DUS7Fg88XlFuIqgVI45s6rCRWl\ngBGYM+cCpalyTSgh3vCxuXIwjUWojUb410UyiTS2MsbtiyLWZjjn1yk6f8ZwGOHyZJ/A0gK9h5VW\naZsv+PIX38wjg8J3fus3WbmClGefsxV+A2NtsVIfY+6LjOsj5vJ1lCcaC6eX6FKjNbzDzOtDMOrs\n7zTwRWaI6i7RZ48RvutmumzROQsgxYqo9TLjVpVpxKJpzJhKaSq5u2jRKeuOE0XYZG9Wxv+OxLpy\njeztGHlvjZQssTBcuHqwJ58wvq2T/zrA7DUP9fWUZizAcKESkiIk+0kcK4lKO4vDHybiE/CZFzib\nIWTfdVKhC+qvYmT1I+pXJ8jHO6ynQTY3HcTnArVIgunMwyef/ZR/eP0f43N4cM2rmKEdHsyHhMIt\n1Ote1JjG7Ycy+qGX2gONfuaCG1+IrJPXie0lGGbc7Lr65D0L5MCYT4dZ5FOJYHrC3onEp/Ue/dgm\n40GbLWtBXz4iGi4T67+kuysRyd0m9mQb356JVOvi9VWRp1dUN/ephiNEfJ8hXOVpzg2kmExi1KRS\neYfCe5uURYlup48rLdOOdXFPvbizMTQ5RDhvwSyMFilz/94OU+NnZN2bVHJ9coH3CHd6VLU+g91d\nioMavdP7DLNlXn5c4a3MWzxJjWnNFrx7vMVD85yjnItLz3XKq3Pe8ynMZs+orn8Na/qEVSFK9zzB\n1sYAz7xHNilxo2PwxB3DCCRJrwQubldxlBRufujl5LUeWw9zDDePqVfmPHvdQ0G6IOd4i/rHT4iu\nSySiFebVKaWkD29wn3vqhHU4hqCm6XtMutUlfu0mxrVt7nUeU2tfJ+UdUq88xJzd5nZPoRyGVWjI\nt1ffw/joJf5Rkp2kiRB6yKT9HuFInsGrEcVoA73XZzAfsNK6CAcCg9ktqj/7mH/yh//F33yI+hf/\n8z//wd1CAi0f4armp1TUUYwIsjrBEsATSILVwlZ36YgqgrFgiE1gpmJ7Eww0jd2Ij+ZKJ6w2CIRs\nXqy2uLZj4556mY0Fdnx+FL+DwWyFnCigGDaxyIqVJeK1Q7hCU4b5BBlpTluNkmw48C7C9NdzNCnB\ntjBnFXah6Dmi0pxAUmAdF4glkyzPnmOmRUYWxOJhrHKNUSJORhbIy2HG5pjsWsKyYhA22Uyvmak7\niAubdF4kaYv4nCPq7W1+8tGP2bn1FjfuJzE8fuxunbCgEosJtDoBij4/bhyMHV3UgQ/H2iYsBCEU\nou8ZYAoKjo7MasNBTLYQlSqmquK1fcxGYURpQjSmk1gumUsC6/yUVDOED4VBYUL+eEXfSNFdOdle\nOjBna4biGkmSWQRG+KtOGkKQtNPJeDQnuIyhihr60IG40BA8C+LTOFdGGDSJRcIiEhXx0ERwL8kA\nbc1iQ16AbdJyarhlG9UA3YSoNGOsakRdQf7VX36Tafg94OT1u6ijACP/BV2CSMkZUbfCq3EPv1bE\nnDloHdbwXmQZeb8kNx4z8u2jBDpoVzJBv5uMN0a1ajB0P8R9tEP0ZQDbfcmm7KYzhWk2xOWgxca6\ng55ZIaklvEaG1XyNeXlO8+AGydMVpr7CPHQSlC6wJQdKbEH2fEVrcIO+6CLdP0MnSicbpX7lIlQo\nU18UcN7MY5k99PEuvYMx280lx4LG9uSI7bnFEzuDb8dFthoie3PGyuHmldwm3ZpRzOzxdDqk/Oqb\nh4rJf/wmhX6PREZgHRGoezQ2ZI1+tUGwsIM1WuLubeNy+fDma4S6efTFgJxzjBWKMTLdROYVtqwo\nlZ0ei7MUk40cqs+JHtAZNp6hpbcYVDWCiRLZbQ9By4lDOuNcFdnLLqlGYnhnCVqeBaPLQ9SWgc+a\noG1MGL+EUL9Lf7XBotggIkRxKEPqgwrR4iaukIHQNTi/cOK7KZNYNTjbTJAPSCwEN8tYnZdjF7GL\nEHL4JSshiruxxD8dEzNzWOE1D0aPqT77JtZ/+ObbWHd7mOoudf0MT95gUZRoz91E1xX8jxWklI9t\nI8RZqE0pG6IQsHHvhFhdqKjHXjLFCm6ly3jpZKy4qOojdJ9CVogRHLqZ3GvR70Yw4zKNzBS36eDo\nJMaxNMK1yMDOmI3lFouXc8TQEXdXAZ7XTim3guTeyJDardNqpQn74oz3OvjsAlZzTkje4fmGH8E0\nqGtDlt4w1/0ads7J8FmHhCfDuakTTIQYti+RD96kPz7haN1ndhiiXVQJtTbZNub8359+k0bbN1JE\n/rcDYssEzi0vSZeDLwevCGzmceq3CPdUMtfTLEiSC9pcCT20soc9qU5UcLAWTVbDW/iGDsrX4kRt\nhWnQzVHthONolG4tQOCggCqXeV1XyebyKNIz0sH7HCQfEPUnaDT9JHs6wkEe71OT4b0RM7fM+kGC\nTTlNPZzkzuM6D2/qWBUJrbYiX1uyZ1S5zNzBf6tNdDWmH0/icJk4H3d4Eb5F7UAkMVIZjgssMwKb\ntS+YvZPEW0nSC1Y5vHKwcs8obS2JVDz86YOP+Efv54nE6zikDOU9DcN7wJ3Ha65mW0SbU66SA2ax\nKbe2Evh/bpHYkzl5XmMzY1B+sMBsrqiMBzTC13kv/5DIi32s6DlW+ANSaRW3HkIalVjuPKTq6tDz\n3yJm7uJvdShYe/juvaLdWWJdanz9epzIVoZ8oI81naNU2iTT11mtRW4PjvlyGMeynfiUGd31U1IN\njbJHZKU1uC70SK+7JMUyv0wcsEyccqC9j6P9IwK97/Gk/xL/pcVp00YJb1Dc3UEbv6CT6TNPHXB4\n8uf8+NGEf/Der7DjPCBmBDBKPTKpAR85RFKnD1m6Jxwtb9O+W2ewesWvnL5BqOzHCLqQb1Sxz+N8\nrt7Fpxzib6wZvyvgLH7OQe8OlYDKqavI3zFjPFw70br3eD/txDVtktob8Nwdp/B4i8nohF5+wc3w\nt4htnHDOD74AACAASURBVOHvzekvBSrymvlHQZLjON0jH+9dfYjuy/FV5pygd4Zx1GZveZfFr62J\nvExwLEmIxSpW8wXzrEE32OGoUsPpv48We8pDp4PYsEpsw4uR8dM9vcE7u4dMquDcfcCXP33MH/zT\nf/Y3H6L+6F/+9z/4rfevMbNFwu4W3o4XW1zSWodJiCtWXhUt4MFaijiXc3xyATElI/jd1Fc6SbeP\nGU3CsRJCVEebOAkIEuNpg3lqyLw7obD5zUaouRzhGSm4ogr2sQc5mUJwXTIx4ujnVYKpHGu3hkNc\nMw9JyLoLV0JnrFVYdNcEUgYRf575oo5rraCeS7gzhwwbPeyUn/lgRcqVYxpzkwjI9GyZoOZgUW4x\nmk0JbBxSverhzQ+JzBaICw+GPkFZRJFLLf7szx7iGDe49sHvEBJVYoRxhLLMCFJQRVaywuXwiq2p\nTSLixy1FWXjWOAIz5JEbPerF9EVZCCN0RSEW2sPQPfSWDaTcCKlvMIyWMMw4/ngIpTkjEnbSlFSW\n8xJe/wrRL5JRljS1AAuPjZAYE5HWKGoe1TmiZCsM4i7csyHrhEHSVnFJ4CjEmQ+SGGofrTAltnKS\nnDWwJn4CGqhLN2tfEkfWxWiYQVIiBBNhwt0+kYQDp+XEzigMPBZLPcrlJz9mAfxnKnzy9fdIbSTY\ndp4xWDmYRwtE3RILl5voak1uG6Sen3J/gOd+nPjIg9AccTTIk85dMMpd4v9iwM61EpXwmvhohqK4\nkRcrlmuZtLRFpviKSs6k5LiF3JI5LlRxBsIY8Usi9SlJMYm2eMXgVo5wyyKDQXaoUwwKPHCHubao\noggjKvt+iAVIPmswiFqEX20RGBl4ug8YD3yMUjUyV3C+o+Nw5BhfCxDxXWFpKRKbTsrFZ/RGNoul\nQSY9QcOHz9vjeNqg+vCbvrj/5Hu/jSvVpGFpdFptik0/w0mdfK6I0p9R9Ct48hZul46mT5lObbq3\ndPKrHMPGBBWBnWIAyxAJVjbYuF9FGCfwvqqjenuMzTtEVS+OWY/AZpvFyo1ZdmHlMqTLSxp2jOvu\nKs8HI4IunfiBjGfxmJi+QnX56acdLPUFlt9LMp0nf6zgc+xj+Qs4ry7xxUYgbRFojhjkx+S7PmKR\nMcJJHkN+QuPlfeLhPhPhlKBwnUGkyjyqgKtEeRYiOVeZXAx4fnEMwOZvvYvUycI4wGvXfZzhIf5p\nBJc5pRNKkL2xpH2WYOb1sNScZC879N15Go5Tio0NLvOgNp30O3M8kX1Sh2MOYkkEq01zlSR9FWYz\nm2c+iPNe+SGNgEZk1WW862SQXBJ55WFrs8bC40OnREw+xp/wU0ntU1ybFN0D7PMdYqM+zUOJUmXI\nha9DOLJDd+BEMzWM2TOUq2vcn50wjo5pDgUWG5tES5fEDRv9wmLuTaCWnzO7eZt1RcHvVLjQWvRz\nYa70JY8/+saJiv63adK/vYN7d0CvPOVylCDqmBK4vMe5sw7ZJIvPz2m4Z+z4BF5clrl+6KG7qpLe\nOWRRmxA2gujJCY3hE6KXMgtTYxY1IVHCnTJxh89ojO4Sb+0y9BhspkK0zk9xT11UpgpHawXvrp+I\ne81j2+Yg6ORZuUr2cBOj8SHbWxLGPMDVyIs063H41jXC3hMWN2yawxiJaYN19DUmo0dM002mhoeV\nEsOpXLLODLg5KnO8XyLZE8mN+kTCCxbpIj4pzKv9KaNfOAjfLvLDH/0Q529/H5d9nYVgsdH1U31R\nJ/Pta7gcLpy7M5yOPG95crgvz1mEvUwCW7xl+DHb2yS/84DQIkmt5eCOECZxeptTbcLyjSZVvYmh\n3eaqN0bN/ILMuQ+XohONZwldnHOpjElaLpyqk2xf5zN1H6H+jPS0zqP0+6QXv6QffZ+YX6QT/Ihr\nGzF2qhOuhBXKgZN8cETc/zraKsG+eEIjdA+9bjJtvEd+v8vwU5lVCY6FNI2rr8l9a8p+9gNOZq94\nrXvBs9UOB7bGbtXCG87yZ7kzqn9R59bv/y7u2le0owk8lRHhThKjYNLO/CrFUo1TI8fmzz1EUt/h\n1d4XNGsS+7cVmn99yEmpi3JQxuytOPU0uFkp4Wpv4LRizLIN9rjGS+uXJF96SElpPrv3C17rv83c\nC/mverj1Hu7fnHDdZ/LTs7vMXY/wxZycurZIer9imm/i7sXJLS+YbL3LqvdDXKXv0n8eQDo5oZ2P\n88HJlB+Xxnz35DH7O3+L6PkB89MUh7LFX+ffQHlSZxCZszm7zeSwxOSTFbrLZustqDx5ws71EMpP\nbD7qHPOHf/AHf/Mh6l/88Z/84N8/+jvMZj0kPwjRJD0jRC7mQxF6SAsZtZvA45wSN5I0rRdEXStM\nb4jZwocakQg1OrRDJm5zxVKwEFsRVN2PYsFBwEDvuRFCJvFxh7k/zSDQZ+UKE9ZUeo4+AUcQDImx\n7kKTX+G1YiT9PSbBEW5pm4hjyDJ6wHA9Qmjq+Bdh8A4ILkXKSo34dhxBB7uvEcxb+AKgnyzpO5Zk\nvH4sw03mMMf45QM8O04ygxjWbE4/40WZjAm5dMb5Ej/61x+zWAv8B4e3UX0JKsqK9EjGHTpGCMdZ\nnMmQmjBKhVi7bBqjMaaxQHaLdPwe7EmPUmuKZ55Hl0w8Zoua02A/EEUxfbj8WULVOuv4DKPtIR0a\ncjFO4M9LFKsNzGSeYEPFsZ5g53u4FJ1kwKa9nrKnx3GbXjxJid65A//KpJ8bY/r20SUD51RF86xx\nL6JElwaqd4jijhDGxWIZRSu58MhzHJUByxSsVJmwPOByoTEMe/ENdXoLJ/LaS6yk8Vc/+hJjbfLm\n788pHJ+j2S85k9PEywuibpvmmcxy4SCXnDBMwVy0KK6bOMo5KorG7s0NBt5LnEEvirWJ39VFmy4o\nEEdceYlH2jzZiDOxUwySA9pfC+ykRCxVol2IIlMiNATfRYeO+zqTnpNBSYWAzKDho2G1GM08dMIz\nNhN9TjMh5FdBVGmM01Og1eqRuH2NYcfE8nTo2vfQDzUcUxkxFkALTElbMbQXBrPZkmWiRHe+IKUk\nSI4L7NbmXGSSuF726EW2eSta4sMPPwQg9/ohw06EpKQxlmNoyzxpI4kZhoArwWAVwHF5DLMp54ED\nAgET9dk2PeOY3e0MZuOSnlthOtmk4l7SVUtI1Ak4INtLE5HO6Igl5nsJ9EEASV2iGGsSwxPM6wUm\n6wvqQpqC4SWorplUAmRvTJksb7E2L1HUNanx60TCUeZDkelyTGP7ilLMJDRzcTHZYW4FGOhNXIsk\nrqKb7sygkxwQG8RwOB3oHieH/iRPuyOsxR7+S4Wqnia0OWMS6DCfPuf5kxYAv+f5VaS7SZYnT5mN\n09gLB8Wgh6vQgIOLMu5khFedCtNhn+vXDS6uZHKvp7kQJerJFddnYwpHFovaLp37dbJnUb6y41x7\npdIsSIQlHfGsysWhh3lgCun7LOpXzHU/b7xw4787YuDepfxFgIPCDL8V50njlPtakGXVjT4wODl8\nxGgRhqqbxdyHZ1akIV5yUyviueZBPC+QfedLOkOwhCK3tgLoVZNLwYOvVaX0zoyr9IzYKkxo/pww\nSx71VN4U77PlcDLRLD7/2c8AuIGTo+/9Per1Ea/XbUKBHhuUaJlBrk+/4GrQ5a7mw1I7PHCoHCXv\nsQrViKXD+KoKnxsh+pstNNcRWnGJZ5AgwyFGvc6ONsNzBnnbphvu0g6H8L14xsLlYafj5KtQhJha\nYjnocamFMcenuA4brBsOLPE6+eopNaGEK3OBy/AgTTsk3r6B9GWPT/0KveX77EdBqUNhamMnDgm3\n+vRMnb3RNpODBuLXW+jOLP7aV/RyJbRBkf61LQ68lwhRgdnP/EiHOU4TKo//9Ef87vb72IbI+VIk\nZQXw5k2ePzK42vmCWx9LGP0UF+nHJHxvY/o0niIziTxlcsNB8Re7OD2nhBJFModrxoXnbEV3cD3X\niU6ylBIL9rwPmYhFHIkQtcY7XCv8jHnpPbIeCcdOB/fPJD7PzHD0twl96xjB7WLxkyFHs+8w6l5w\ndvqC3wjrDHsRHtkq35IndOo+7q2KVBcr4toncP01Ll+p6Hc6aB4f5Y+fc7SW8NgyN/IvSLmzVKYS\npbCCFVmQmmocxC9wxd/gwlCR5hF6FyqnDx/yu9FfYXWtS//kCMs6Q/+ORN0Fhz9xkJvHCJpXTA43\nmVofs3i2JHwvTKNfw/3eTW6aGZJGhe2LbXayt1knPqG3e4a3kUdYlJh9tcTFgJ6YJJvWSE4tepNN\nhNTXrN17mNN9zloWZuEIxyM3u7KTs859EpcKy+F1dgYlTnWT2cYabeZFdefo2W2Sq0cE5QybhVd8\nmL/Db0Q+56tuHP/zNv1Il6juxL6/Q3H9hJ67z7eFOUGzz+q5n1uFJC8SOUZfvETJRhgZTZarDY6f\nfcIf/OF/+e8ARP0Pf/yDGzd3ENxjChmbiws/uj7DlXYTEvwoYZts3ACXg3nIwjsI09WCuOYOzKSL\nZL/NyJ/E5U6jDOKY7ilKLoJTPSVupHFoBvb+Lp3eCT3xkOmwwuYiTMIK0Qi48apetLaGmFniDai4\nWz66yyjdWY1gP8PQJSMuTRazCUGPhNFeIsl9AttePAE/mpHEMiPY4yUuc4HdnzK1VdJbfpJhL5rV\nYrCYII4dOAyTQCrLudxh6PQQHflY2RmCuSkpEvyrP/+Iu29tcG/3NRZWAFtYsA40aDv2GC0kUnoX\n3ZthsRqh9udsiwk07xK1mUZVZmy4NzCNOTVRIWm78AairDygTzwY+MhOe0hxk+HcR3blRp2vSAoC\nor+HoEWoLSaMYwaiaOBahAjIUbqNILpHoCcMkENhjNqMaKkDWoJEwEtTmuFdmMg9A9uxJuEb4w75\nsVQJKTpjEnURDQ2wrCkDMYS81JjPTeykiKM6JRIMEW25aez5CXRGuPIJHIMlpW/f4euffc7fvpPB\nmCSY62UaDifzSQ6huGQgnPNaeEk7N8dYu5Dcm6SUFt20xZY7yfOWiS27mC918ich6p4wI3FN0JdB\nCjj4PASvdVbEfCNUVUB029RiGRY1jTQNxGc2VrLJrLPFXvA5/jsaMSNGhmNGepFwwGJrvSImB+jW\nDZy+NZmlh7mYY7v2FI93Db41R545F/kgd/KX1ORdHAuVrYGGtNzFOXxBOpZhsF/ACrwiaE8Yd3Rk\nd5ZKNslMEblxmEedNXhQHnLy9Tfnmt/7rf8UQfQSmnkZ0UbY7LAxyFDOWMTnLXyWgxeSk5y1QBw6\n2Zm0WV+vE8iuiQo+gtomTctDIu0mlHzFni/NrHpFL5CnuxuExoTNqAkXBjldojqdkd8v4YoGEB+3\ncBoHRDUdv9GkH7HZiIR5MfIT2FqwdEvst0P0767palOKtTN6OYttaQ+WfozQBbph4ne2SXpFOqkA\nvtMWwjgHwQDCZMh4GSaz5aYa9OLKQibSI+oIsJi6iSe95M7iHHemnJy8BOA37xVI3DIIKxHOb3RI\nVnRWt2bsTyT8FrTrPcaxNwiu5oyuZHa+neD8lw3M8Bx5eURyM83APqZqdIieXqNwVMZR1pnpQzrj\nBYnQDperMKniE6JrCf+TClvO7xBeHnPsCWBEHFQuZBYHKmvfOca5wUqI0/Qm0XKfspVbYCmv0U/X\ncC42CHhCNG03YUPC770gpmoki88RnznpKjfYyk75wnATW6voyQHbosVPGykiZynazLjdl/n86DWu\nDRI82VRoHnt5/dor/p8/fwTA0dTH3f/zNl2rT+TgECSZ5Z5AYWYwmc5Y7CQQDhTOxRLfay4pd/xM\nk16sZ2viNyWCZg/Ru0b9Mo7g6TMoZdFHV1TfiNCKerA1m8yNEbPjNPvDNIVYDmV+js8fxDsSEBWJ\n6M0S66bJmbPK9qs91msB5zzGxB+krg/YydyjmVcYq2P0V1Oee1qkt9/nRqKN3bikXMpyXn/FZrZJ\nO7OPFi3Sctl8y1SJqjWid4PEjQzj8yAHqsx5fUy7FaRX97Lz7oLN+YClOOaTv/yMze8XmOzcxJUK\nMksPyA9rZLdPUD+VcAsTGpF9tvQrPnE3sUd7vNe/pJqfsem9gej9GVdaknA5jg8//l/2KGtzGsMd\nmviJJT/nceWIWTFJRwxjbTkodUx6L0Z0ohFe/lz5Rpwfaex4a5waXpy510kFGozzXea2jR5/k4E7\nQamRZTQfI7/5GqvSFj3fJ3SsG/imY7LDCY6sF/lhlngjger3swoc0vHK7ERqfP0ox2uFJj/58hbr\n+Q6z63kiTxt87BgTc5uouxb71SZ//eAZG39/i/ORg23Vx56Y5/TRc+I+hctrUQ7FGD8Vy9gbE9SH\nMvZ7NuH+BtEND4POgIUc5EyD6RshBmmJvXqcWl9g5DznMHLGZ2+LZF9GcLy1ZnhWI1ldouqXPIrp\n3JmtcPZ8aO8v8UwHWPYxzUqP5fyKe/fv8sj152hSkG/tTbiaJokdlQk5j3nzIoAkLcnaXj7KLvm7\nT9so0Q/o+U7xkqQ43UKJGawTD4lWAmwZa07uHBF5MKV8s0Bv+HPS8R1KlS2Kd+NYwRc0XjZolI/5\nJ//0v/qbD1H/8k/+xx/c/f63KcQHjB/4ca4qbAkZ9IRCmBmWEeH/5e6+eiVJ0DO//zMiIzLSe2+O\nd+Wrq6rt9FiSWLpZcndJ7IoSV4IEGawggRQ0CwgQMNCFdiE6SFe604V0KS5nl+JwyOH09Eybqe4p\nb04df05678NnZKQu5lOQ3+KH58H7vIKtw2jGpDnD2IqQybUJxryEX5wyK0fIJQwGdhfF6ENknS2n\nTdst4k926faKhNo2TjBDBpul7sH2uwxlMFsaghQgLp4zr7yF97iBlZqykkMspTyZeAsZg45gsqEk\nEM0IE7nHaB4j6o9yoU8QkjkquknLN8OXSuOm11HOx7jWiqsjm7ErEVd0VokJ5nSDUUJkZ6BRckos\nadPN9LGPZkgb2/z5X/wQRYlzZ/tDZsUOQTUK3jGMQ0QRGTkBAlmV2TBJNgiWFAYijOJt1kMO46mF\ntbZCiYZxLAWf5TIVp0wFk0RCYOyOMKw1gqKFaGj0K3mcpEakt8mR6SVUCVHRLGZSmngkQCMyRvT7\nELFJi2XEYIdGx8XUJVRhhbwMYVgGoanLcpUgWfEy7vmZDfxE0jGkUJTVRGZh6synWXKihT5bkInp\njMc5hB2VqDhjNonhN0WS0TQD85JQao3/6zv/C3OW/PGf/zXff/+X6faqFEq3CU+nhCmg5cMo9SzS\nUY55rkpoZPC86RLJrxMQm3Q6RXJLg5yZBK9CarBkHBJoRYK0/EPil3MuN1r4vnTwBTYYZHrc62zg\nnR6iRpZMJB21vcOex4u2n0B5csmVKjCOpVBEP8PUDCkwwCuVGGpg6jPa3SgHwRRHhQJSv8Fgsk2l\nW8dbjvLcGhLtDCmqcaSDHhd9ncnegtxqi2XnkJ0Lk7S0SSefYOtK4GTipbT7kobXRXw9J7WR57O/\n/TsA0u89wJHbxHI15tMtrtWSONELjHMPnWsO+WiDilfijf8mO66PE8XE33MYKluokw59tUhgeUi9\n2MV6JBMthDkzZtxXQgwiDfK9Fa+VIt71KlJjgH7fYe+NH08+QM+poYbWyOkTendVFuoGadtGHMdp\nzgXSqzBH9opoYkFu5KOpTrgez+D0Ghx2VqSWS4qpJYeiy/p5gkFsiWPeYCxfESjkGA4zrPZEeh2b\n0PwJ/oFKu7aPsz1AdDXmiRXu1Yjphc3L+i/QUHz7d/kgXOJs5adwdMWJM0Gvjlls3+NNJMA8HGVf\nVWlcV3jfLNFIR/FHztiabbGReE5NFzi38nygNpgNJY4yNusXLS4LD3ALKbauLJr7ArKQpVpvUZgc\n0L+jsziaklMMEPaYqyNKrWMCaZGGN82tSY3TUZOsfpeRqlPv5ljZJQ6iVYbbR1y3AlQNEeFeBm11\nzsvqOsYqz41sm2akwLp0jFAYM/ssRmglcXBgEKqBN79gPNklJXc5vz2k9ChPNLNilvXy0fc+AuDm\nv13Q+q8L3L38ZQLWKc21Ho1On9J0wPOvOhivfKzFCsxOQkw3IoQsC2Fyxs6mzhPpOvFIkcvnKZTk\nlDulPu7TJs5bEuWPE2yNPVh3l1ycZLmWLnMYsemKHXbEFo1ehenBBarlQZ1fEE5u0l+bc50JT4dh\nfDuPUTdWbPoEToQp/bqH2XLIu7vfYPtKIBo947PDNZpCB2lQRiym0fsVrCR4Pp+yXvFx3Iqz/XaN\nxicdvkxY7AaGPDp4Q54J3tWUpHxKLpinHjRwFwV+8jc/4PY//32++XdXJENponzOp67K1qvfov91\nl6vIFgdhjShQtWK8Lef4fmRK1r1GjgYXbxQ2UzZP16ZU5hkETDzzJa0dCX1Tw59JclDf5ChkUIqe\nsPeJwc9uqFjRECFe49mf8f5BnmGgyZeVD1j6W7wXHKK5Hs5/1uf6gyGicZ3rJ02mcobg3QIPw5+w\nr5YRf7pN9/rPEQNT9NGKq0qI4VWP/topxkGXkL5iM+Qh3C6QLcf41JRY9/u41TzjuG+i3JIw87sk\nSCMvPEyk/49PftTjN679LncyJlr5gqYvRPorI+IPDxAvogycMdt2kdfaBt+4P0R8E8YnXjLvDHE6\nNwiWr3g/ekxRrlA47PLzHQ+5TAjvS5tPy3f53R+94fNiktx5j5u3PuTyYoehE6RijMnc1pme3SGh\nCdQbJaq2RCGZZ9/p0Lp7yFr3gLNSgoDdxNvOc/PkJXP/PTpXAzacAwzjNbdu/iaPOn2GZoH89AZ6\n55AvzBa3fiWLO77NNNPiTeldDi7beMUAhtoHbZNTwY8gteks/CQ7DXrXt3jxs9d85x9Cnfdnf/Kn\n331v4wC557DweZmlQdFCjFYS3fGIrNBjpo2JJySkZRGXBdlAjp5hs7BFYlGRFTPc/gGG7rKKVzEu\nFqSTBTwrh+XCxyTSJRUXqE+jrK+HMUZNBL8HTzzDuiQjJgvEpl1m2zaOlWHLM8P22/jPFyyCMdxR\nENv00DNqpCMR8q5DcBLCmU8R2zO6UoKsuURYwHSioq5nMRMtdrIuy9QCQQmhrnII2TlrTpS2z4fC\nECWaJFrtMdwqE1uF+H//6kfMxlMe/OotjLqAG/XiBHXC4SVycIbqU8l3BeaOFyVrIHkBxUK+ymF4\nRBLLEW4iTHQaQtMaBAnjT/aQhQwTN4CkJ/BEdLxygFlZYerMCI0CdKKQlBYIvg6u10u07cVVGrRN\nk5AUQYrMSDRMBEkiGJ8gBSPEExFG8pDVVMKWDHTfnLkZIblsMS3M8A6XLIYObt6DYqaQRjaTlENx\nEcSwp+S8DtJggSzZNPQCdkJHsxTSUZuq3uHnPzrFQuO3atD6ydfxHVzDV3/DSlkxDJ2xfVJiKYt4\n9zXwbNNd1tjULS4zWxQu/Bi5Dou4RC94QVPNMCh3mQ47uBsNNh8GkFMriodzFG8cJ5KiiM2L2Bz/\nfI246KOeCyNNVgQWl5ipKXVV5tqBzpUQYVqFLS7oX5TYmOgE14Ms6zNurY1x7RiR9hP8uW0WqWP0\n2TtMhBBvn5WoHowpL2osOxniyQ752ge4/R7BygTSBbxpD43lCV33imTIZna+zmb9lNWqwDPjOScP\nf5G8/P5//LtkO2d4+/eJxtr4gjFeRAWmizbZtsHp7B56vceWMEAv+ZjPl6S3DYqCTrW9w23dy5lX\nYu10SC8tsrkMYHXiqLMJop0jLZeIbz1jPCrinSYI97zMUzKieEyyWWISriN453SDBnLPAm+PZCBM\n2rXwLYIUFjJpn8VkesnSPoDEhHYnTfxdl3BCxxIktkyL6cECf3uBNx8nP0gSb3vJFCZI/pekUgsa\n1S0ScYd5WURuNlHGNpWMwKRo4Tn5ki8vfvGe8+2vlQne/af8/Oj7eBISqVCYA3uHRvMJ5jzO5rbC\nYa3Kt0oHPFM/Y+kNEJ5vc+nROXNb7FjbaM0X1BcpvIks/uWcVNiiZZUpdB5S/TDBuk9m8dAEq0P2\nrSWvLzus9vNMagL7B8dcFlLkExK+QZrtdJGP9054y7zJq9yUQucGN1JdQopO+6qDPlvHSZ5CykA+\nb7BiA7fTI29rnIgzhuUFOXPK4lkQr/8Go9UFKzlPbVLHd6tIa3JIQA5wJ9DCObhEmxcZqWm++Ogv\nAOjwdd5//wN2uGS+HWb6dMIykUW7tsvecYHmZotZ4BrrF485v59nr9aguruGqUQpNsaMWmHU3udk\n9Dy9yJyBViaVdFC0PPGNIIPehNj2kvb0AjkboNO5YqbF2LVFDnM+dgsGhVKBq1fPyOzsoKaueKsW\nR4xtkFSmPOtt8tVzDeFun7BdJP3qJer7OpY4Q+/I7Kdk4nOH6FaUbu4j8s0BcihILa7xfvSQj2of\ncGuWpJDf4GHoOTevihyvCdz37yNVlnxuh1mz6hSnG/y7n/4l/1Pu93ly5zXxN2scD0Z8K/4NRtYl\n6jCM3v+c9Z08P2qM+PXWhM/WtvhaIUe6GuRjzWR9mebqdA1fIYUWekNYuEHTuyQWL9Fqxdl66qH7\nrR7vSgO0ExNBnXLQmKBkXeLNFeevD7BWayy7CUbaKzK9bV7oMm+Vb/Ha0slILlo1yFp8nWoKFkce\n/IstXPcjKnKO9UmLJ4M9PtgB63WMLVlBCA25dxxlGgpzeNXHkxuht8Ps1DukN2ecCSrCV/Kcr1K8\nZ75CbtXpuxLjykt+/u/6/Kv/5B2ee6pcZXSslyXmFwd4yhl65gveGgaIGCH8BHnuCDAG5VqD68qv\ns/J7eR79ku3jDG59ysUdgfnDIt03KzbvlRkHP8apaYh7DqnzEefRKfUbOulbj7nM/wYBhjxfrkOu\nR9H8jDvtMufSU0bfyjI9T3BqZXFMBa08on8+Jv4rH1B9MeXaNxv8rFDFLJYYd19RvvwGzvZP8edb\nzMQBqcIap+qEervP7UKM+t89ZdAM8Uq1uPmNEMGOxd7dMwIti0Bli2PhGbv1r/Lo8Q/4H77zD+A6\ndK7IAQAAIABJREFU73//4z/67m/91i5heYTpjVPwzjj3ZfCEBIS0TEwT0Pxr6LM+vnKJVDDGuNFk\n4KzQ5ys0XxiltWDinXP9RojxPMzWXEXNJBFHIm7SZbEKYl6dIm5KhFUZORllPu+T8SbRhQEzYUnA\n7yA/y5Hwzjgb5ElMxgR8a9SsKq6/hHfShqiBXy4x131I7oRQQsRnZvGLC0ICLPUmtj7FGRhsLELY\n9QXNaBCDNIVaC9Nv4szmhHoONc8Ca5XAUMZ4lmHMzIzv/8XPET0efvs3vs48kmDNF8TprRCDaaaM\nsNAZjRKE5Bq+VRDJSRIwRey1NsNhlHBQoRta0fcqhGWBOSN81V0GCwfLaFAWFpiJCaGuzVRPsuUO\nGQhzvKMJeX+GaiuImpbRTQctbhC1FGbaAnQFfCnGSMjdHB59ghjwYk6zBL1Bko7DQIqxMwxipPwo\nUxknumARh9l4TDLrwxuyGehzRCPBIjeiNsySUlKczxIkgh5SAQNjeYXWtyhFtvjo7/6CBSv+5z+D\nyz/4ZeQnfXLJLbqrQ7zjAsnEGYYURTsckYh5cC4i9K+7LI5UNH1BMqcRSRdoyU1ioy6LiM3m4ID1\nxJR4dsQrU8FvegmubaE1fFg7F3h/doB04xmxN/uUS0vC1SizVI1C0aZm7hGSAiTHPjKcsMpfJ2HW\nYDvCvN1hcaOE9DTHyI5ysmERX66wbBs7HkBqz7iIudzw9Xii3advTNCyPkp+kalvRnd5wMQckpGi\nuK/W2ZMWxHY1iuEBj5wka9qCSbPC86MfAXB9a59qwEZJ6cRbAoakUUi26da2kbQE3J2w1/DxKBMk\nO0iT98moIQH1zENagbZfR/DE6ay77GsVWgs/W/E+SqZPP5MmOD1kuLpGehnmYtZjLz6gWggjhaLI\n/TDpmILtF8m6Etl8nGZ1zliM444GHOe99FsWHddAWltSjnjweOfETQ1/J8DLfoDoUsXM73L00qDo\nJshk+9QiOkkhyqFyhBwKE9NcckqU7kwk30oSH2nU3irQ6CkIR1l8whmfvboE4D9Pfx0rprPtKyM7\nHWZXc87WXJY3b+Ocx7hW0NFO21wlukRrCyazBX0pT6n9kEn7LhMxys3bVRJTFVFIY+sNeusHcHrO\nInsP9aSLqY+IWyLD2yrmaofbU5UeW9zUoLo1YOPpCiFZIDXQWNgD8jWbdtaHGxFIteKoto3sGFQ3\nwCl4GD5SiKdVYtodzomQDZfQKxM2cyW6Y5c5G4QzLmtunPpBmcXVkHhpD8+LIU5lQXaxxWW1RCG1\nwoqN2Oum+N4n3wPg17ki9mGCabFM5ixOfamQ93bpu3POJlMy9h1uPBNobC7JXGQ53jsjKWQInZep\nBp8xjrtEQgs81xYoDS8ZVSHiXnK1E+Lw9RzvZgjv5xnEmyP2fpzDjYaZ2kmc5SHXwjGsQQhvsMzl\nmUJRc4m/3GBQGeP0HMLlKgeeEictiNkpQoETLkoir6X3SZ90uHrgkH0yY7F1jbMXLW6VdjlseRBW\nGW65ItWMipQYsBA0XszTlDxB2rUiDzqvmM1zPO0lCIVUxJqXoTvhxz/7hN/5HwO8UO5zED1D2r2L\nHRaIdr9gsVFCna1jDgS8yzjj9xO8147zs4caqeUP2U3nmZ320X91xo7Xw7MXVyRDHpZXh3jvnxGP\n1GiOB6i1FG9aM1BTlCozmq7OIvyPeL06ZWN7j/CLM85mdUp3BeZuEc+xh168inXV5sG1Ja8CFoM1\ng47i4/3EGS+jn1OuXkN/a0jIamBe7hKPZmise/AZaQbDNTbIE9UG+LIjIsVNjNacV3OBi80Deq9t\n3skNKD9N8WlxSlXaYetFkuTilL/5aZW1B/+KRjXCB6MKhQcK5uyMyPSKRanLz60tRPmIiiMS3o7x\n8vhjWgcVeoqNdv4Q+fS3kPQ2iYN3eDh8iORNcGfp4dwf4JavRqpSQP7yGuFf8ZPt7VN45HAV0JFD\nPRYDi1vRKP7YU+JykEY+Q9e7z3BR4b6+IjM5pnzNZcUSsXKHmPmUwmuBn1QGfPD0DsGcF6Wd4OlG\njUnHZtN+B1MfsDNaI5eIMcvX8Js3cYYOPPDimy45ThiIuT6n519BKzVRP00xr+RoDy6oPn/KH/5D\nmDj443/zv373q/fehk6B8XxAyJPDmi0pizXSoxzD2JTEaEDTTTOajkguhrSKJoXxHKcYQKk3mSoq\n6eRNmlMDKRhFjIs4jo1fXnBlN9hXQthTEymdp3pxSjmdB2NJb95FXbMpdUyW8yGWJDJOQim2olWU\n8EamJLtLKos4gQ2X7sghYZukdJlJfEGsUmYwGDHOuMSUKtNMGdezYi3ioTOP0t7SWWvncBttBrpA\nJrDHOBjFN1jiChlER2Q0FYmKOtv6Gv/3Rx+R822z+WvvEnaiWOop+kIlP5pginE8PRupkMUZxInk\nRNpDFV1UiS7nFGIaXZ+KOMgSmjt4l2H8AxvXIyMHpkjOnKgkYngiROYWS9UiVFkxUsLIKYup6RCZ\nD5AdD36vgtZSyDo+vJkZgWmaiNeHQpNRKUQ2OaPfcTA9ESJBl7lXoez6GcX7TDxRhnoLa7zEL0XJ\n+TVqVhJ1MCI1yzNZ2Uj4KXua9Bhgp9MEnR5+x0N4nGaWXTF1DD756GMA/glQv/l7BNZWeFcNmuk1\ndi+GXBRvYjbfoN4BUWyRrcWJixFyfT91aUDAMRhcCDjBHDeMEM3mBmsHrzjvhEmPTELtdS5XXaKJ\nDFXjCeXeklyhSsyf4lXR5urikpkcYWOUY1WB8UAiLJrEg0Ger3IUnVOO1AI5s099vYLcDOPJL3C2\nn5B2CpzJCuurDs2uTlgMk9paErysMFyvkZ35iLoFXPEp7qjEbHzCKhBFHdQYFpcIOZnVaEJHybCr\nLjlKb5PKN/jkx58B8MH7b7Nt7BBcCrS2/CR6aVaBNXpjhb2bDrHXVS6yWbL1CW8CF/i2YyzP/Sx3\n23jDMqMIXEueEPfm8LQ8qPs9DLGBJd8kLS1ptxLoxTHtl0nei7XwbOwjP2vQ9Tt49QmCGCPsODwX\nR9h9iaWwRiHeojUukhhckf8gihiLUnld4cXomEJqn8NhiJzSI5q36F5kWAg1lEKK6GCF3UwSW2/g\n0wZ45CjikY4nc5328ZzJ0mR7I8bhtp9bXwxI7ubp85pXUoOLhzUAkr/2Hr+e/kd8MnnOZm6bTmPG\nVkGne+lF3HvJhpRFjBbYOLZ5Gb/HVq9DtgiX/hJ3tRZFSaM5znKVmtNYaKynDNpXUYLyLpFrbyCn\no7zI0JAnLMs5yv1DTqdrzHc8TC/7XKsUGZSmuK0+rhRm0OiRe8dP+xFYmwm2Ltp4lyJHNx0KShG9\npvE1eUEyotEPjdjsXVHfnLFzlmAu1mlGBN57fc6snyVoZREZURZ7rLwt9OkGzPJUxl76dz6jHlQw\n3iTI21G+97NfJFENvsKH9w7o5eK4rWdE4gXOVHhnkCF4cxe59zmGdEFz1+D6mxm96Rp2p0F7P47j\nWSMz6SBdCFT9GmNVoJz30owpRF6sobxrkRcDpE8+IVpOM0jqTDoFsnufEph9Hdf7lFVU4mR8SXTv\nGmHvMcfJAJPUBuu6RvXcg9wfcvbhAPV4jrEpcf1Fgqb/nG70OqLeZr6XIhWOsxYN0Xrs4d07ESKL\nT1hVLBLqJsEfl+lGcrxLA04U9nJHvHywiX7+kqhVxUx4MW2B/c0s3/v+D9j88NvoR3nWhwN+UmzT\ndjVOYjbvfpqlwpzTd48pddbYKfd4bo7gdoHheZp4u0dIzpDd96CY65TFLM9rz5j/0jfI/PUcv+ce\nmzd2kM6fMdhRSKanyG8e4HlnjfOVwV3Vof+mhquE2VlfUO/dIJb3sOUuqa1KfCUnsfTdxy8KxI0m\n7mcXvOy1uTs8QByc8sLyIVa+Ritp4B2ZzFQNNXDOuzfGNFwvydw6E+s57uMVMalDIJVDNn2UYgKp\nscAPHzzng9cSU3OPunzEIDDk6cen/Pbv5ViGbBoXL9nKuFzki9RD28QmPh5Ej6l6PiSc7TPxn+AT\nM7w/rFA6qlCYq+xUJJat17TXz1gWynztk5eYpR6D1JLnP76L3w4TuXeBpK9R83ToKRMmhyUMNcL+\ncsKTx0WG1STbvSrdOwXqj22ku18SnVS4rHW5FdhBVteRczaTJw95kZwjLFXOrQoh2sjLK3Z8WbZP\n6zR629TGGTpf+4yG5xZ3ghN+7F6xkWpz9Pk+kezPeeeZzEXxHl9/ZNNrPOHtt9MEhS9YC875u09f\n853v/Ou//4j6P/70z7773nv3MDweUgkTcxElVNQZeFSEiUuvNSJ9K0q65cUbztCKRPG0FRaZFV6n\njBlcESqKyJ44am1OIB/Cbgn45BpqWGbhBmmLftYsF19Mx85USI2GTFoaqUKY6DxPZ6TR8ahEpSBS\n2kUyDUYnIzr+OdlwAY92wcwOsJGpoKXgUOgTl2P4BwIL20c6beCz00xqV6RiBXTRAEVG8q0YejsU\nZ2ms6Ii+z6WkrdBEiWBIJzRckZJkJsUVJFP8+X/4If/yv/mv2JEdZk2ZqS/Ltk/l1L9kMdUoJ3Zo\n+02KwymroY6SmjAwvUgRG811mV+J+IoCohIm2rGRikHmsyVhVOK5MBezNKXwjKGYwZZ0TCNOSVEY\nz5IkpBH95Sa+pURK86OlRbzBEZGVQ8OeE7ZNFpESog6dWR/vYgN5dkZ/6cWWJMLKJaFuBifvsNZZ\nEd6ymddyLCw/+dCImCvTCCvkQnPojVlVJMKRFGFdo66MEe0oZFfgCZFotXj15RtULP47QP3PfoVD\nwYu0zCFd+DAPkhTaXtLDPqavTDkg4jCgkdjA3+8yuOXD9Q24uZYkLZzRkg0ct41q3GNtOGBUTpOW\nZdRIB33iYRXPEF36aW7GSLQ1Wn0dj9/PesgFr4YmRklfLnBmMu1wBDnTI3+mEUpsEAmPqL1ymcg6\nyfCMpC4xWoYxqi6OPeW2ZNJeCORDDQ5rPgJakKUyJR+M8+Ssj+iZUNj3YZyl8FoFpN4c1ZmybORI\neiSO9SJ+/3NqqsTLzz4F4OvXHtDbaDPwC8SEOa6vxbG94C29ge3p8iy9RT5tM/OqxAJ7xJtVhMSC\n1GrKm9EBCb/O6E0Soxsmt5qgjnVy4yLjeJLLyz5Syk+qM0RZnRMr7HI5aBAKuST6RTSryywXYCmM\n2ZzeRjNfYfocoMhM97PYgPCZB6kWYbbvoSTP6I808oEmTeEm3mGH0No2xWgfeTminorQMDXmnRVx\nMUV8VKUb26EZ7FPKd0j5y/SHQ+z0gpLQ5Ogkg2B6EKsveHHcBuDXdnJkD+6gpJ/y+amFZ3sDt66S\nksfcrOYZlLP4Ql7OBq/YTsypmwn2xgGW2yJj7xXT8Bq9Sz8bQpmh1CY4jpBXdtgSn6BKOeavKgz9\nZzy4l8SZtSgrIm6pxH3fKZeX6wytHiH1OrVmlOHWgL2ZzieZDL7FnPWZwAtjxdjbYTMfpV/XkLUJ\nL8cxCskdMr0w/fIQPTojFwkw6QeItQq07BbDrescjWpszjo8nZTZsdu8PNgg63V5tXPB/Rfv0669\nxh1dQ6ss+emP/gMAGXx889YB4c0Rc0tnUJG53WthWiLedofsWOKlbOMtzomdPyD1jZ8jlGXeatYx\nT/KID0poWwnelXWqGz6m7hY5n8OwfITbauL3FQj4/DQT60Q/TXMkzMi2syhjjfqdEkZ7yO3akrNg\ngOnVGeWdIKrfQGqtMHd2aI4UVsdlKrfa7J7P+CTzPpFRmruxxyyef8jm1YLDuc7euYz6wCD06QnD\n3ruMOCWSLCMtH5Mo5ZHqx9QTSwLr1yg8usRI2ATKcTL6DkMjRTWr8Oiv/j33f71Iyr7gUrlJWjOI\nfSlQ9l+jqUqMnEfInhTT2zli/77ASdnB4zzhvfMdnvu6PNME9rdVTh57EYND2tevs7tUeFV/huHO\neFV7zKZls+mx6VkRWsURhcCYmLtkvbpPzJNitF5goyqQvWPw4uIxZWeN/YjE80WaaeoFb4YZ8rGX\n7Bxc5+jlTa6HT/g4cIvsepHp07/G7ZSxsiFicRsjGUR1++z0h3yecshqXQ6/8jbZboMX7RUkq+DY\nGIU50mGGhlpDEVosxwv88Sd8+fGAD/75L/GWNqUT/CZeHhEM6NSSaT7sf84PTn8JIh6S888xOr/E\nQOpQ3mzz+VWdF1vvsqq2OPzGJu9NLHzaeww3HRCu0dO+5CvZAfKqwKW94Fn1IaVSit3X65S+rZK1\nhvx0/Sa+u5+iaXewPRcUsGj0RL69FSJe7bGzX+a0YHEsTvH9OIC9FSbYiRAtewk6e9jRKqnSL/P0\n8wDlvSFX4xyJ9CHOxgED18PiSwljnoPMFuuVNvWSRa69y9b6z3nqvSK58Q4nuSL7x4cMFJunj6/4\ngz/8zt9/RP3Rv/3T7377IIKuSSguaJsundGS5DRFa9Vix9lg6B0QzYWZTDwYAx3kFoIWQp/72Cna\n+MwYocsJYVfiSr0g4vcjeyQ6XYtb8wVW1EWOpZHOLzElD614mtx0RDVcomvVKaQMRoEyjhXAFfv4\nlxWiAYmgnmbgtwjZcVqeCP3pa4xRGKmYxS/MmDhtxKGI5Q3i+DW64SXpWZSO1mYz6acmLrmhSIhK\nGq/QIZ6J4enWmasaRnRBLJDAjHZZ9RU0VeD7P/0J8vCK4rc+wD/042am2G6GwERH99nEDD8zcY6T\nT4PaxOscUM40aTseAvMwwYCOopn0GSDmUnQHTYKRHlYphLbyUepfcRhawyd5UFNB5M4SU2uTXwaR\ntASp+BhyKyZLh7yisZxbVMMVdqYJRvke4ynMxQVrCDTtJol8BG9owUJp4lzuEJAMhJXMUAshqVMm\nqS6mPcXjyzIcumTdAErGyyijY9pZNKFPt+0hpGZxKgukgYk1V5j7Df72k48B+O978Owvb+D2R5jV\nMaPNMcJ4RDASxlfSGfaHDKsHnCViLNw2PiFNYZyg0bCxMlHm2gbOMIURv+KGMmSysQ6OzVg4pdBW\ncBIH5FpjhguH8XiIakQhtsf1ehTj4DVedjCtQ0Y7ZQZ6k7EkcK87wtJ0muqC4Y6LEje5dp7jTaJA\nMj2h/WTI/WsT4v0EneQ9JmKIuCoy3jYxMl5CyRTW6zpx9xbuW3WStQO84gtcv070ls04vMItumQD\nV1zORmQyOj/5pEH3/Be7SG//R2+TPxfYTotcCVH6oWtYs9dYOyVcVcKdTZhpUzYTFc7jJywXFWpu\nlEhrg4xkEXFOEZJzops+zHQeIjP0yZS8MWNjJCCW6ri+HJlAkGpyQjihoFgeOpkCAe+QZCDEWaxI\nSu8T8aXI5uq0BJlkoEXB0AjmIrzJv0TuCYSjKoO+SMa/JFuUeNMNUtQ8iOMUx3oLKTzDc2lhRsO0\niiUSzoBl2ovlWlhODjPYxxtJYJgaEX2Ols6zUEd0Fj5OXv1iofsb+W+z8XtLvj/Icj+gkQ/rVJc2\nsU6K5oMGwsMOlqBT3rmDIBxz2b2Lp+jiqgPWMyZpJUi3oBE0ztiv7CPYG6R2/oaXzTWGoxDBAz/v\n9Bw+W/MSVX0kz30ksTi2hnhiDSLJNMl4m0Lvgq1AnIedCnfkJQk3zHm3z0raZLYdZ//ZBQF7g1U8\nwu1UloXkgk/jdaJF0nyH7LMTXD3C4L6JZ7tMzOPwdqDKx2v3WJivSGtFpj2d0sjPeHVJ85aP3bDB\nRr7CM+kFz3/wMwA2Zzu8/0RE87xL/3iLteCUghXks+I12hU/favBnp1hc7RgkhtgVZNc9KcU61tM\nCiq7mcdUjqL8Tb9CYPqYcicJwRUVeY+B38ZuFhEuA/S2VgQuRQp2lVKxxHHK4cYbmcC2yOPFHu/O\nFGalHgN5TPZhhPC+zJsrg4j1isidBMPTfUrRNmeOF98wyHq7hJT8AlWWyMZt3iRmhN0jQvkSM/9j\nks1v0LkKUsvIxJ2fceGWaUk+TEXiqKkwW59z4O7jt2f0gjWcRZZHH32P/zbzHtO4jN01uTXcJWYu\neXn3GfFLl4XPw7Ab5R1Pg08FL278lMVZhmFyyXDtiO1gnEnMz+yixVRMs+NR6F/+kGX4V/BvV3hb\nnfDRVz6gc7jAnjk4iZskw1+iqmuMbn/MRX3CDV+ZH21LmJFHfNV8j1fShKn7BUPNolTsE2z1Uc8M\nSoJKpdhituYHq0n7eIuvXN+ncNAnMbtgfHKFyCba4xlP0xt8eNThxTu73H/hxZNvsPP227w6SyOu\nJdl7IRESupC3aKXf5av6DGni44ePD/ntf/EvCf0kQW50jLvnQVbHJAcRvhx2KNw9R04vMapfpfD2\nKW5sg5e+MsHkkoNRhM1dhbNwjcuBQqHTJOwrEnDP6RrXiHhmzNDZ63fw3ASJHfp5nTdPq2SnPlbN\nBLfHdXJ7QezNCNHzJqVb97iq5nG0QyZKEt/xCGsjilx5wvVPC1x4bay+DyH0BY7wDkvT5LL5gsL9\nGPuLIp5Yl239NTf1PlYpRT074etGgNNajkxeoP9miqc0IXaYZlENUop/zF+NfoP0LM4XRz/lD//g\nHwCi/rc/+aPv/rN/vMWULHgDmJMFS7uHbPaRyzEmygAxucGkIZCO2xBNkpv50MJD3IgHtRdAbFY5\n9ouwGLBR2WZsGSgrEyfmwejZJAsJrHkDMSFSn83JdCOouTnDaojNrMhVy6a0GEI4zGzmZRZSmDQa\nZBI5AiODjtFFig3Z9IZwFgJRacBk6hCRyuiOg2328TkBRKFIIN1gugiwquWJJ/pY4hanx3UivgJT\nI8rcXlBagmTkaS3OmWl+stsiRUHg//nbz5hqNve+9puYUQNfx0RKucxDIRJBFWeqEBtLeKYC6WiQ\nQWlBxJNkavqQlzEsN4FPirIYyBiCRMQvovgXrBY2rhRnmFiSq7YwM2nWzzroskpCtlkYJhfhAGbQ\nQ//EIh+VOYt7iOpeIgMPWsJPaq4TXozxFEWCNYi4MeTQmF4vgaL7mdkCSbxMzDPUjEnUiWDENFKD\nPAlrSdvx4F/V8RljVkObUGyK1c6RcXSyO2HU2YpYLIIUbmF1K1x88QPmwLf+qIf/wSdoZpzpLYk9\nv0DCDmNGDhGEJHELTnNd7sYvcE/CrHkvOc8sCRoLNsYNtIDNPN3gWizL8tRg2BsyEjTs8AOcQoyl\nVWV4Q2YgjqjMU0iRGZIc5+LgGWonSdZzgmHKrJJ5yqMuWsTG8lVw0n06wyCVlsp5UGbkjXK7L6Gn\nu0SlPc6mGfrpAcFEHH+nhxgxCF51cEYu5WECq5JFndXJjzdwZ0+pp0US/Tnu7Cb+uU3W9NPsJXGt\nHaZ6hUdnD1HrVwA8eOtDpre38L5Mkm51yM3T6LEofk7wNRas5RQsO0/v+BJT8nHTnCCuUpDr0lgl\nmOlzki2Dp60Eaq9OJrGFJ1qj5UvhhhQ6Tpilv45PvkZE7SG9WbCSN5nHzmkeLhFLWQ5ED+e+l/Qn\nMnpqG6MZwIy0GeubeC9M7G4FTzHOtK+wVukzujDRmyv2HliIqTjT+jGKvEVFLmLbKqG4iNGMMNzr\ns/+FTVfb5kC4Itnd5PDSy1uJEM9SeUIvBQLbx5w/XHFZfwbAr36wTfnWN3n24jMakwKpozKT1AX+\n6G06zRXj2302gyqGbvGy8YD3sz8k5ewQ3O7ReLUkVavhqWiMszFK3RNWRpVngSjaUKF0ECfYP6KT\n3SSkJSi/XvLJvRDBWB3v/C6OPoWByNFlnnDwBhf6lPWKi90wiG1WKFVnzHbPKc+HdHbfoeWx6RYG\nDBYK/uAzWt02SecDxs4CIX+dq+KY/GCD6PARWmTIVcThw6rANGliRQt0Eyd0Ch0+mAQZvN6nnvEQ\n7T1lc/EOf/nxL+o8778J4PvNb5MZfUkw6GNaOmMlJEi8ThDNPsXubJK5k+Xl5JJp30srHkXYUpga\nWfL5M5xjAUfYo+d+zgfBJf7NJMoXLwlaGYzSa3Yfr3Oc1ijkXzL3xrm8LVJvhonMpqg3/QjKFJ++\n4unyEUpJJGUoXNVLSJkh4ciS4kaSq2mGmzc/5exSx7MvY5lDEkl4PKqg3opivKxyzR0RYQNvq8YX\nCZGdjEZ2QyWT9zO9WnJxS6Xk9SA/k/C8fcjmqUJfkjkrRxFGKcSrR3zx/BG5/+K/5O2ORiOex3/f\nx8jzM0ZPdvHc3yTunqEm3yIw6bIe9OIeKVzfahGoT9kbJWnYZQLVKGZ8jqim0ZUJWWeOd+eUPh7e\n+DaI1MO8d92H/1aEzdiX8GwHKW/Q/uGSr8TyXPRdpNwF4+VbTJ98zrVKhdZRjcTdayidM7KKD/3q\nGi9GDbIZhYdH95FTbbKuTt/4AifWRTmyGBTh7b06prrFwVzm9dY63rMZb/ptymMHV1nnutRHDabw\nRw2mlzlyVgWv/ZCTt+I8Cl9w/tfn/It/VsIonPJZcg+LXcZfjilEbnMrdwP58zb7s/u8+EaHwatj\n7pcS+D/SiRf7mD6L8WmEcUjGsTa4bTX57NoF2pP76OsfI6w2eDlP0Zh1ubvzawjqX/PmooX9dhI5\ntiIyjrFKtvj8aYdYr0zYkvnipkBYDZK9ek1qZ8az2ruY/TZqakkil2N/9po3/l125TkEQ4RmIv3d\nEslHYbq3Tmk8uuTRfS85s4DQ22I4f8aZVuOrow2e1oY4dzUGjz6kGnvDrW8usLRvUrU/pjW5ztmL\nj/nOv/6Dv/+I+pM/+bPv3n1ri7gwpVY3KS76xPJewqkEtmCgziJ4BwaO6Gdu6HgG5/Q8UTbX40Qn\nEerzU3ZvJ4k0fCzjARRdQi5pzIQxFW2LuqIxXkYJTHWGYZe0mWc1lTCcGNHSkpY0QjENLE+agh7A\nm3WIvqohlGTMSQK7FCWSCrAaDTF9S1ZCGFM2ICUxXCjE+xqO7CdYmGBJcerDJgSLDK0hJV+JnvcN\nW4EIWq+PFW4hliXEVQQxHkVN+JmPNBbGlIGyxt/88CN23r3H1/wZRhMNjzjBHoYwvSt0y0YWYNbz\nAAAYUUlEQVSY5TFQyZUULoIN3I6AdzGDkExsOaaXNXHaISLrEtp8RTk4pduIk4hO6DXmOFMPuVwO\n17UQswIRNc9FbkwgXESwmsS6KkpQpqXaSIEYiYAHwfWjJ45ZaRIeO4kVX9IIR4mgoS+KFLQGo6SK\nW86jrTroRoGMZ0HdMAiNC8zLHuKqhuFJky7I6AuFeDbNQB4za3vxyEWCvQl2GiKCgWWlcVNT/uoH\nHwPwf/JHDP/gP0VUXOTnOmfhKcNQH3/Py7BhchpI8l7R4rKaIOwtE/KJHBdt4v4yl8MYTnnA+tjD\n6aGEtO5lNZ+wWuRQ+mEKeoPWlkDorMn10h26mSWrqklFCVG9mnKtk2e02Gdi6SQndZp7EdYWPqzA\nGVdimO1smIvNLJmlytT2oORWpMZ+QrUFw9QJOzUXpZ1HqgQZecJYoTY+wUdnTUJU5whCkFH4kN7e\n+0yXBoudCINlBG92gSb6UKYnJKQQ8ZJBMK3z4pMXAPzuP/0d1qsL+sEx7XCOtjQnkDtie3EDuV/h\nNGSSdFsk9RQ7gQhPOhaxRZfL5TarnIHYymIsYTPtZRgdsFn1UlfCpFMpjMZz5mYY1dhi4D5lOt5k\nHpIo+IJMFwZ3QiKnWoyefMjuSRCj6GFz4WJMPJSHO4RGj+jc15E8HSqCgK/tYagv2Fi7R7Di8pnf\ng/GkjR6MM0lfsroYoVx3mM/3kCIu8vCKc3+Ae1KPL6ISfbPB9W2XRb2K6Fuhbb/GOUpQn+lUL36B\nqN9463cYDd4gJUesdRwStyIcvTknvpNELVTZG0HzeB9jt4qcGZOLRfmRmmLwOIUmxQnf2UdwVPq+\nfa60HqH+V4huHJHOpwmYbY6eK5TCC3r9IfGbh0z+//buPDjO+77v+Pu3931hDyywuEkQB8FTPGRS\n1hmJUhzLcZtWiieRE7sdNW4TV0ld1WpdxZ1xx3GjTpt24klaO07GV1zHlmM7tiwylixKFEURAAGQ\nAHFjsbtYAIu97+PpH1jKkEaiQSY2IOL3mtnBsz88z+5vP/g+i98+v2d356PYrrTS1B1lqHGAfvUV\nAq1aQldyaNuaUKUV5tpBmalhzQo8Xi2LAR+mhJVIPoTNaGbAM8FaKsPCmot+6yT5qh5rcpKMuYM9\nmTz6Rg1zVS0NJg9XBufobrud2dwFbC4zPWaFlxMmrKY4cUMWK36yhnHOPL/+pd3HqeK7x0yt+yF6\npgwohjxiRoercQTVbA8lv+DKqI17KlVsbUukpg6yd1cJe9WDM6wj0qQwUh3nXkeB0sJ+LnpmmKoI\nqkYrrXONpHvDxLINtNtamMldxjCywnuKcySKbvLWV4mrbsNhstCqWiQyf5hkyEChyUapNI4z08Bl\nk4HmsBYxVWO1sJ/D3kk04cNoG3JkzDPsK7TgWKmS9VVZLndhX1GTMTWT92qorgRJ2bLoVxvRW9fo\nGg+gNNWIjcRQN4GtTU/+fAPx1ioml55zp09zb+8dODpmWbT0QvRFwgSw5acxagWTop0jMSsjgTE0\n6T7a14Y5rREslWz0BbLkb0vjsAgqzgy2liH2OO1oh9cwJO4mXM1izRvx9BuwFhY492oz6o5RWoby\nrNDAvmNVzubVpOPQEeqk6kthy4WIL7SS6CnQMdpAxV0iIlopL06Q1FopV/X0FxSuqH1oijVU2X7w\nCXLqJvbF/eQz+1DHrnIh1Uu5uMZRcZ7yXi+LET3tNSOz1SCNrSqUl5axeK6SFo2k7QscLerAmuTs\n316l8Y4PcFV9B9UxO7nQq2SdGvR7X2fE6mZpdIARx4/ZY0jRvDvOeKSBclxhITfK8eYK5vYxjC8J\nalEo3jNH+9lDNDUPYpl9kIh3gWPFYZYCHeiMQS4OduMJaNEsDKB1eOnWrPBKe4L9wQfoTVxiyGmi\nO2Nnj2eWiL+I1X4Uu36J1SU1gWgWS6bGqMfCAV0rtT6Fxeg8/R2z9Nl7mHXmUTRFWsc1pA0VxtV7\nKLSX6XGkWVndS8oWY0/LMhFbkkO1AlUcvOrNoFSXuC+qYjYwzuIrV/i3n7gVPmzzv3/26cf6H6Za\njaE0CtJLKtzWblKlKlVtGltezWJtGbPfh70My2UbreoQIbee1NISbqOF+aSTWDJNTuPBWVilWNHi\nqLQTTYzjS5coOo3U8jZciTQ1X4Vo1oO/tkSxmkFkbbS5jRgtrWiSglKtSM7iQJh9uPQhqlNJXCUF\ns1dNtNxE1eGkaitCQYWvXMGuzqLXmkC1C3VoFK9NRyafoKnNjsivYjLqWUwXcJe8pLQFnMldRK0G\nDJlJMstxOnQ14rkuPKYFvn1mEKtHS2/3blKNGpxNNqy5NYwqHWlrgoJJhS9vJ6SaQuQ7MSRTWA01\nqkUbGaMNX9pKubRK0VLFsQYldwFrXEXV50WjTlJ0+9AtqFhsXGFtOQ9GI96ghiVnFWPQjcW0QlRt\nxiPKiDUHGbeWUm6OVU0NVUlNzuPGF01iLNgJN1qwqSIkyybsRUGgqkFT1VL1g5osZW0AVy2MFh8x\nR4Jmu4FaLkzFrqGmjdCwBvGqCkcgTM1aQaOzk4tXwKyQvGrilcnnoAB/AHyl65eYWVlg1RWgNK/l\nsNOK0qBCXXBTEUFm8nuoFZeJqqOY7XlaDRnKwRoWXxq1TY9nxI7G1MBsqxNNaolKPoenRYU+30be\nMEJq9nYyjrN0jGSZOFDESTO1Tj+zrgkywSp5dw5HsxNfpoMlXQjVUDsDyTjlxS5iq1nabBZWppfp\n6sywoDOzkvESj+fwHlRj1geZjzmpJnU0Z/NUq146EzCzNkWq2UjDvIWYT8d7zAoitYLa3UJmbowO\ndTMjrWl8gTBKzM3slIsrl9bfnbf/RB+lLh+qrJVda4JEqUKHZo2lipuF9BguQw2Vt525pSiZlB9N\nWYux3U6tZQzfZA3hsRC3zZHKqLBVUgTTWrpLFVTzTjS77SRnHRQO5FAiHdRSq7hdFmaWLmJrTTEe\nDeDoqlJVIqjmnMQ7tHizy4RWysSsMaw5FUoBrMYKpmie2b1uAtZFcmkvNa+RNKBtMtNmaaA5X2Es\nMUDJ7cdiDhOfibLP5UJZ2EXBtEzKbqZm6aVhLM9kgxfHrJZYUVCxd9NdHuYnw+tfg/PgPfcz0u2l\nEz0Fp465CQW9v5eeogr96zpEr5aZZB7blJpcpZviUASDpoy3liKgGSRkCxO/2kVTcIyGzi7Me1ax\nPt9DxSIIzdvRHBmiSdfErFVHaUnBEugiHXETshe4vZYmVGnE7dSxkGxm39HXEGE781NhnAeirPhm\nmFppZe/lVaYrf42tyUS3AYoqI9OTzQRn4nR3DDC2MkfRr6dPq0a0VZmdNtExvkot4WM8t0xGBDmW\n38dqTKE00UVaY6TFvYI60EPmgoWUEuf8y+vTedbaPdz5fBXz2G6i+lXCmhRrBQVrs8BhCOCYHyR1\nh4vCXB6LoRH9sRrhjBrHXITIfkF8dBbFaEZfsDF+OEuT6hCBog+raY6zni465teodV7GWzUzO5/C\n4yoxU6mwq5LEFj5Gc2qcK6U5ok16DuQXyZa78KizrPQl8V3O4kp34OwpkYnOEfLEaLY5ydZq2FMJ\nHNYE5qlFSvcbiKdzBDKriD1q2uwdqMbmqPoK6F72EjRnWEvGUfcGMM0UaH3PLhJ2HY5LekIiSi12\nBWdbMz/53g85sacfb6Yfe0RLa2qFnBdsvVWqr+kxqhfQViMs1wqsNgZZ0N3GIV2RfGIVQ8WIK7qX\nXGWaXLiZYsRIuiuApmeR4koL4f1qdLMhBiLnuRQ5wP6OMzguB9Ce3M+8oRHr4AxLHSE6hJXVrI3e\nQo6lVgemtiSOQQcGj52WSSserRalGKTjlJdqTEO0+Sr5WII2/RIumxdiQcqpPJ5YE3kTvNyp5uDh\nPIZFO2t9DsyZFtRrF3HtNZOxJpnW7sYwn8PVvp/XStOcTPiZ8/cQvfgsFy7GOPVIL57SRfo7gtTG\nDmI40UB3sMCszsjRRQ1th0ZZUB8nMNqGYfIcg0cL7DYf4NLFKg3TWYKVNrS2WZou38krA8/RtHKA\nYOg8c40ODs+cZDBjp+LV48yMk3WcQGWaxRa6wIWpFrrH2mhuv0Ls7iWsywXmSmkGG4MUg52Yl8ep\ntgZg1IRNcTHSfJXDhV3kvGc593w3re4ks6sWBpfD2JXLGGJuLrlKGGLHcDic+OZzaGtVsj0T9Jtc\nVNKN6FQ5zmeN5GxuvHNRCmkjUaXCfU2CH50Z4uObOLFcKIrycxsA/WNoD/iUzz32CLr2MrGMhpo6\nhba4hjVWIaLuRW1M4HFYKRcTlKwOVGUdyYXLUO7FVRkmu0uPb9aKvjtLuOYgpzhoSyyyFm3C7ypT\nqCUIG/R0GrJks4LZFRsDhzNcGirRvbeJyKIBDxmyOg/6tRGSphIuTyfh+TX8OiMqU5lMKcGqNY/D\n2AmTZSpNWprVVjJrOay1AlmvmiWzAf9KnLjdjD7cQNy8iDGrpZCx0dE6gz7ZydXVcQIOhRlvP5bJ\nEcxt/awVpjDGBM5WD7/6iS8ihHgjGxVQAwTgN1oJ59Nvm6HKBrXUT68bEBS4zt9dBbc13048u8j0\nWpD9LUaGg3m6/P1MR8becbMGfTOxYghLWwc9vhYunH8RACNg8Taysry0fv+aZgqV9c/wGWjoYSQ2\n/tMbsQJveRiHuw/y+uIghhwoQLHerigK//X7L/LJX34/UODkwKO8PvI1TEc+RNfqILGIielyCarn\nGWj/ECNz3+XIkV+n+Noq3p4m3L1evvatr4N2iWbPbnJhI3FXBdZ+jA4o+e7jfSc6eOlvfkiChTf1\nydH7GO7SGRamFbpdp9D0hYhMmYku/T86DQ8zU5gAVtjFAaZI4dvVRXRqir2dZkp4uToTw34wSnIw\nQbs9QDKpI85PALDRQoog4ATi9La2Ush7OfWhD/LsN1/BpFKYmv8u0AnMvNGna/uy6DfjCuxFvTxE\neryC1dGJoxBEc+AuGrRRVo0lYmutNOhnWTw9wclHeyhm/Az+aJ6udguTBYV99ikuNvlpNbRRXQpR\nEVVCF4KYu4+hsw6RiVox5eNYdx/AqBcYQ2WGL7/GLksj6oqbq+ar9A7sZvjHMdruEjCsQ7fbT5c2\nRT4fZmLShUE9Q+2uB1l+7oe4fMdwtxpQp+IMrtUwlcfJae20qRJkVxrAUeP4rsOsVBcwFNZ4YdjA\nXbc3YyrWWPUbSL86g9LtpDg4QnNDE4MzC2Su5bHvCPpimcc/uo/vvaBh6ntfBKDDCb/7356g7zfv\n43HPv+JT3/lrfuu9x/hPT32BE7//AE898R8ZGLzIGV+Kb//wdQ4JF49+6jf46qf/ioAdfv0zn+OP\nPvbvADj60K+wMj/B03/ye1hnLXzwI4/xg3NnOXX8Lj7wp58mdu4rvG/v7xN5oMrpD3+E+x/9F7z8\nxRKvLH+JZz75JT75xGMU0BJWllkY/zJ39f5r/vcz3+DxJ36N0xd/wEf/6ad59v/8Gf9j+G/Jdk6y\n+pcB/u6bn+YPP/w4//kvPs/T9/8O+Yf2Y7u7gWf//QuUF59jcHSC3/j4HaTUHjp1e3jmM58B4E+e\nfpLy0h4aO/NUUmMovhp/n+rhjmKB5QUnl+8r896gE004zHRLmgZ3I8azw2hNJxirqchYTnNnVk06\nnWfxgSaSy27UJQ0HXbPMzPYRUxU5mHKSzqi5dELh3hchfNcUizE3rXMxzKoY501a3mNqZ2aiwkJb\nFb3agsEURD3jZd9ePaurq0yVzbjLCVR2K/62MubFcWLtsHrazYBFz9lagNrtBoozy2iUIK1N+5mZ\nEBxtCDPsKLE7lWAsKFDlAzgbQuzryPB8rMbe2U6ivir4zfzxx57kv/z2owT70pjzz/FC+p/TMrBG\n93cNXMlrSdx5lq5YllThl3jQscjZdIr4wQHck6/h+76f1IEk5nSeJEYW7+2l59IIjfkEz93jpBhX\n400eQWucJXWmSO7uNorWSzw02s/S4ZdJzRzikHOOc+oCrqqHXe5pTn+/B1eXHjEfZMFcI2AL0u/e\nSygzx8xiI2FKPHQgxnh6AFXRSsDqQZ84RyWSIXuqiXxyL00LEV5cu0BycICDH82w59tLnP1lN0cr\nXsZeMhJuMdHuHmWorOGexgTxRC+VkVFsJ7L8+W8t8o3f+V2W7H1YDypMKi/Bt09ROD5PscFFx1CV\ntoPLhKt+qspPsGke4Gz8Au05gd/iRH91NwXbImVnhLLXxFy8yK5hDS/d3c+RH9eYuD/N/uVXWAiZ\nWShV8R8yUvvuUU6e/AGrCSvFcR86Sw9ucY5n79xD54Uxypa9uL1DuJcCnDFf5VD2IIr9ApoFDdWS\nmpzNzqThJB3NeZLBIC3pBQbDVW679zj51As4Vlq43NdHUXWGVo3CzMu72ePJUbVOE0yrSIz/GkeP\n/IhFV5zbVv286vXT9IKOZ771DMHlhZ/+w30H234QJYRIAxNb3Y93ATewutWdeJeQWW2OzGlzZE6b\nJ7PaHJnT5v28smpTFMXzs1bS/Bzu+B/bhKIot211J7Y7IcQFmdPmyKw2R+a0OTKnzZNZbY7MafO2\nOivVVt2xJEmSJEnSu5kcREmSJEmSJN2Ed8Mg6s+2ugPvEjKnzZNZbY7MaXNkTpsns9ocmdPmbWlW\n2/7EckmSJEmSpO3o3XAkSpIkSZIkaduRgyhJkiRJkqSbsG0HUUKIU0KICSHElBDiya3uz1YSQrQI\nIf5eCHFZCDEmhPi9evvTQoiQEGKofnlowzb/oZ7dhBDiga3r/S+eEGJOCDFSz+RCvc0lhPiREGKy\n/tO5Yf0dl5UQYs+GuhkSQqSEEB+XNbVOCPEFIcSyEGJ0Q9sN15AQ4nC9FqeEEP9TbPy03FvAO+T0\nOSHEuBDikhDiW0IIR729XQiR31Bbn9+wzS2dE7xjVje8v93qWb1DTl/fkNGcEGKo3r71NaUoyra7\nAGpgmvWPZNYBw0DfVvdrC/PwA4fqy1bgKtAHPA38wdus31fPTA901LNUb/Xj+AXmNQe439L2R8CT\n9eUngc/KrN7IRg0sAW2ypt54vO8FDgGj/5AaAs4Dx1n/YoG/Ax7c6sf2C8jpfkBTX/7shpzaN673\nltu5pXO6TlY3vL/d6lm9XU5v+f0fA5/aLjW1XY9EHQWmFEWZURSlBHwNeHiL+7RlFEWJKIpysb6c\nBq4AzdfZ5GHga4qiFBVFmQWmWM90J3sY+FJ9+UvABza07/Ss7gWmFUWZv846OyonRVFeBNbe0nxD\nNSSE8AM2RVHOKevP6n+5YZtbwtvlpCjKc4qiVOpXzwGB693GTsgJ3rGm3omsqbdRP5r0z4CvXu82\nfpE5bddBVDMQ3HB9kesPGnYMIUQ7cBB4td70b+qHzb+wYXphp+enAM8LIV4XQvzLeptPUZRIfXkJ\n8NWXd3pWAI/w5iclWVNv70ZrqLm+/Nb2neS3WT8KcE1HfdrlBSHEHfW2nZ7TjexvOz2rO4CooiiT\nG9q2tKa26yBKehtCCAvwTeDjiqKkgD9lfcrzABBh/TCnBCcVRTkAPAh8TAjx3o2/rL8ykZ/tAQgh\ndMD7gW/Um2RNbYKsoZ9NCPEUUAG+XG+KAK31ffMJ4CtCCNtW9W+bkPvbjXmUN7/g2/Ka2q6DqBDQ\nsuF6oN62YwkhtKwPoL6sKMrfACiKElUUpaooSg34c346vbKj81MUJVT/uQx8i/VcovVDvNcO9S7X\nV9/RWbE+0LyoKEoUZE39DDdaQyHePJW1YzITQnwYeB/wofqAk/rUVKy+/Drr5/l0s4Nzuon9bcdm\nJYTQAB8Evn6tbTvU1HYdRL0G7BZCdNRfKT8CfGeL+7Rl6vPA/xe4oijKMxva/RtW+1Xg2rsZvgM8\nIoTQCyE6gN2sn2R3yxNCmIUQ1mvLrJ/kOsp6Jo/VV3sMeLa+vGOzqnvTKztZU9d1QzVUn/pLCSGO\n1/fh39ywzS1LCHEK+ATwfkVRchvaPUIIdX25k/WcZnZqTnDj+9tOzgq4DxhXFOWNabptUVM/z7Ps\n/yEX4CHW34U2DTy11f3Z4ixOsj51cAkYql8eAv4KGKm3fwfwb9jmqXp2E9xi7974GVl1sv6ulmFg\n7FrtAA3AaWASeB5wyawwAzHAvqFN1tT6Y/0q61MFZdbPp/jIzdQQcBvr/xingf9F/VsibpXLO+Q0\nxfr5PNeeqz5fX/ef1PfJIeAi8Cs7JafrZHXD+9utntXb5VRv/wvg8besu+U1Jb/2RZIkSZIk6SZs\n1+k8SZIkSZKkbU0OoiRJkiRJkm6CHERJkiRJkiTdBDmIkiRJkiRJuglyECVJkiRJknQT5CBKkiRJ\nkiTpJshBlCRJkiRJ0k34/9eGDEXqa7KrAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "layer = layer_dict['block1_conv2'] # 64 filters\n", + "stitched_filters = generate_stiched_filters(layer, layer.filters)\n", + "plt.figure(figsize=(10,10))\n", + "plt.imshow(stitched_filters)" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Processing block5_conv1 Layer\n", + "\t Processing filter 0\n", + "\t Processing filter 10\n", + "\t Processing filter 20\n", + "\t Processing filter 30\n", + "\t Processing filter 40\n", + "\t Processing filter 50\n", + "\t Processing filter 60\n", + "\t Time required to process 64 filters: 101.60693192481995\n", + "Filter collection: completed!\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAJCCAYAAADgPpLrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3HewL2le3/d35+5fzuHkfG6OE3d2wobZHECGtQzCBiEE\nWAJjKLCqbFEzyMIyOGDJAoRUCErASoT11i5odjbM7OzMTrh3br7nnnvuPTn8ck7dv47+Y1zYpSoZ\nvKbWctV5/ddV/dTz1Le6n/7000EIgoBjx44dO3bs2LFj/8+I/18P4NixY8eOHTt27P+PjkPUsWPH\njh07duzYd+A4RB07duzYsWPHjn0HjkPUsWPHjh07duzYd+A4RB07duzYsWPHjn0HjkPUsWPHjh07\nduzYd+C7HqIEQfiYIAgbgiBsCoLw977b/R87duzYsWPHjv1VEL6b/4kSBEECHgDPA4fAVeA/CYLg\n3ndtEMeOHTt27NixY38FvtsrUY8Bm0EQbAdBYAP/Gvjsd3kMx44dO3bs2LFj/6/J3+X+JoGD/8v2\nIfD4v7uTIAh/G/jbAJIoXc7PTGIPx2hygORpWGEXsz8mqcTBG+KGVMThCI8AyzAICWB7AbILijsm\nCHTMwEKNiLgI+GMZTZLAdxAEGV91cAKFkATeSEKQTLwhqKqEqAaMFIFRtUk4XkBGAMli7IsovoqA\nh6874Is4nkgQOBiijqgH9AcjHD8gqYZwHRslYtCp7hOO57ACCV0PsN0Ay+wjBwlkA3RljO+rBK6E\n6JsIqsbQDFAjAp4tIkkusiTh+D74ENhDZCWOLGr0h106jToAhck8uqdj+SaG7IMwxrRVXMHHdyTk\nkIfo25jDgPFIpzgRxzQF5PEANS4i2Spms4sfM7BDA6K6iG8mcUUb19EIAnCFOkZIxBvoYBsE0pCx\nDZGIgCXJ+KMA3RcYhwOsVoNkLo7vufiujDsWkIoxhrU6kVAcyxwxGntE4jrBUMX1u2RnYvQ7Doqg\nI7kBZreDoIcRDA8cCUmGRtMkngljBB7tSgcjPYvMANccIUUg4qmYPRk5ruNJMpInMhh3iecUAq/P\noN1Fk7McVqsAFKcSSIGG4Ah4vkzge4hawEB3iZkaQeDiywp+IBE4XbSUwLjcRp0tUL/bxc9qxMIu\nSsdBNmKMPYGILmHaAuVyCV2JEc6IgI3h6PjJKILTxJUdgnEKSZbQVA2hJ6EWfaxOE0WM0W5XsS2Z\nSCiEEpdAB8eMIgY2suni+T6B5DF2PZQgjBjq4AYSRiSK0ANBlOhaMkY0QPA6+IKIFjiMBQHH1vAY\nYCgKzkjBlwICV0HzBca2hUyAEhaxAxk17iN4NmbXwGm06TB6r24TadSQStBRcAQb3RAQNZFR00QL\nqaBqdJtDRNUlrBk4so89cAlpBpbnYtsqmuQRiqnIkoA78mmYPWIaSF4YW3KRbRckme7IJpKKo8gy\nZq+DroVAC1BGHo4Q4LkWYkhFHkkEskVgOjiSh+M4JFNpxmqUfr+DKkvojkggg+uOEccBQlRFEhw8\nU0GQHHxLwgvLCJKLPPZwAwF7pCBGxiRiEXxXpN2ySWRiuGOLABur30X0QE6kEIURQtdHChvYvQGC\nrmLqGs3996bB6clJ8FRM30aVRTwERMEjEBxkWSewBcSxz1gWwHVQNJBkAfwRgScjSDq+7zPsB2gJ\nD/wAEQ1ECQsTodlEL2ZwByKiLCFaAwIlhCp5jEYyciBgSh6a4mOHQLds+tYQQ82AGSBHJQQRBqJH\nNAC8AMl08ESBkQP98ZjERI647mM7DrR8XFWCwEaUBXxbxlfGCLEo3XaHuKjguz6KL0Ag4yHi4uGO\nPYJQCMOQMXs1ommNQcdB1Q0CL0BUA1wXGofvnafpwhT2yCGWiNBs9EgkDWzVQW4FDIc2CUNEUkQw\nZBxTZKRIKL5IBAlfcggCibEsYzsDYnoEXwRpZOLLfUa+QNjR8RUVxTDpjhzwJAwk+oGKIDioIQ3P\ncQlkn/7BgOxUAl/z6FQ76EYcw/DplmxCyQiyHhCIOoFl4asymuPgyx5C38VCw7J9fLNMNJ/FDcmE\nxh4BKlZgvnctG0vIisRo3CERTeGaLnagoARjBFHAkx3G/gjNVZD1LGNPQAu6uIKB5Af4oku58l7d\nMuk0oZCBPfaQQy69/gBPkImFo4iBi++o76UCHwLBxe51CScSjG1QQuC5PvRHCEC7bRGKpDE1BU0J\n0EICitOnddAlWsziOgGO7yP5I4xIEscUcFQbMVBxfVBUl8ADTQ3heQNkN4Tju7TbDSIxHcVQEUcm\ngpLA8h08VUD0QBEDlMDBdEEZucQLeWyvhzeGsSigqwHWQMOTR2hqgNU3UN0hUtZAtURcycN3JDx/\njCLLjAWHsKQythwUSUNQfOrtAYFlYo5t4S8KNd/tEPWXEgTBbwG/BTA7MRn80F/7CNqly9S//goz\n55/CS4+xNiaZmirj39GpnBQp4PFQXifGh9nzbzNVmacp77DgdRHk09zbuknytEyyJbMdWyA1aJKY\nc6lXLUI9HSbSZLQQnbGAZj8g1k6RcNeRcxl+/WGVi2fmyW6OkMInqI8f4AcSEVkk9+n3EVx5lYN1\niZmPz6P2XHb31pnNenT9ItWhyLJRZDC9gPXyb3Lm8t+h3rc58lKM2oektWm6J0scrKeIFwKiDw4p\n6MusDa4zt3qOrrRDzFnB6WyRiy9x19nBK/n4lT7OmUmWR23a7QVu/skXOfmLU/yTn/4dAP7zX/g1\nRLdH2dxmwY8zO9kh1B6zMT1iVH0OrbnDqPYW8eU8iZ/5BT7/m3+K2pvmyfAuoQ2JjGWytv4WzpRL\n/nSHSC/Djvd++hkNQzEICT7KTAdtWOLKnw1hNsPKR6fpbRusrPiIqUtYX3yFriGxdnuTpuvyuR9Y\nJTisU642MZwo7uIq168+4LlnnuYPf/7v87Gf/kWUxQmkmSOsq28Q3r1B6NIvUh/2sQ9lToRu4F6a\nonani91ts73nkv75J4ldr/HN33iBT/zz/4HWhkFr+wrhoYCer/Pcpc/Q21X45pVtls8Z6IuPcBC+\nQvz6WxTOuuxE02x/c4nf/eX/BoDv+dXzTCsrDL4cQ728SOJeir6xS+REiD3TZbkepz0UaBUsnpV1\nvGdMjvbfJq0/zvY3dDZWLL7n++5j3eiy9dpjxIwyaSWFY8iYZpb/OezyvZka3laEs6dG6A2D7akD\nevIthjuP0miaiLUS2cE5ku/zCZl9hIFIKDtHf6uDMBHBX6oxNTXi7uZHOWWPiIlt3rk/QSH8KtMT\nJ3n99essJJtEnjtJ896Q6ft99lYX2bxaRI7eIvOkRLE2xiv2MbtjmkfnSOW+TWwxx/62S6aziFMw\nkK+qtHYOkc/bjE61KSaLPHBb5EIytbU5FjZn+K9+85MA/OQP/ygsL2C+fIPEynkmeutMPr/Cgxtv\nMiw8w5E4R+temcnoJkunFRo7fUKdDP5yQCF7jm/fdbg84SMcvM2+tQ3yEutbIR4906JROUFn8QGz\nFYleR+Z2q87S8x/h4I0dPvqZAolWhncbbS7LNg/2a8Qvxxhs1tmLDThVE2hVt/CSyxyNND7xVIRv\n1GNce/V1PvahEzRLMkPLQUlXCTcDeocxTOp8/NQ0UlDj3aCGMvkUkX6HWCxOrN7k99fX+dTHf5BE\nq8La/gPWehLpqVWeX51kaF6huZtic+cOF5/N0O6kKcZkpo4GrN+9h/25i4zDH+EXP3kJgL/10z/G\neDNHYqKGND1B7MCiE/bYGcGJYYloMcVOKkTaDBPrlamNZkhd3MYu6wTDQ7oIuIML1A/rnMxZeGGD\nYNDnrh2ikGvROayzXAgRqxTZdovM5rfY2U1yYbWFbSxy/404Tn6NEz/5OG9cfY2VOxuMM0+SsRZ5\nML6CNl5g5rMxru95ZB94rBr7VKowNRhwXzzLdfeQS08rxPU97n9ph/ln3kesU+eBkkDSFBb9eQbe\ngPFUldtvBUzGNc7k9mlunsRat0jmIvjDBo0pFeV7zhK5+afYlszqyiLXbkbpt6/A9AQJr047G+bX\nf+IfAfD+jzzG03/rb7AhbuPdHtCPZBBub5JdvoARk5h45SvItQJ9aUx99jwz3S3Wn7jA5J6Ns79J\nYabMG7kl4pU+G+vvMFt8nnOLHeRBliP7JlLVYKtgcXlgc+oDS/zB//Jt4k88TmRxlkRTwBy6pIp1\nduRzPDGts9fZpJs6RWvt22Rn0wR2gpX1PvvuaxRXl3n73TOcidb49uwWT/biMKvjWyrxOZ2v/297\nnJ7u0FXOsJrsMw610F/tEZt/lJuhDaL6RYZin8ThLlt7a5yZfwZGOoO5h0zoYbbMAoc7Xycb+Qyx\noyG26XH2B84hteu8fP01LjnT/OR//9789i9v/X12fuMa0dlTHB45qBhcczr84LNPsnH7Oq2xSCII\n2GjusLiwiL1WY5zewVu+wHgAfk9hZekGseEBr/6GwomP/HU2Uiv0SjeRojv84IdXGLxmcT9+QEwR\naI4SrIz7aMYl6uM47ugt7BmZ/X4CqeaxPCFw826L00aO5pldnG2DE6kTlDIura8cElt6SIY52pNp\n7O0ufTnJdMxCSA9w9noI3THl0Eki0RFmFpJ7DklHIHPpEdrtl1lzk8QdjcmDO7g/+iMc/O4u6fe5\njJs6wv2rdOQplmcTPLx3l/2dB5w79ymmplskn/k4/8UHv+8vlVekF1544a8q+/yFXnzxxTjw2Rde\neOH3/o/tTwL9F1544Y1/X5tf/eV/9MInvvcjqEcxhlaI5FSegR9iu75OrBsn+nyI7S9cI7rscvRA\nYWTKLPcjRPJD+sMRgqDjZSpIBMy6cY7cNOlQHKp15tQcwVaNYHaG0LxE614dp9sjFDZpJqYJxbMo\nxfMcbQbYxgHBmSJDW6RZLTMM6szKi/Tffp1w4gniZhmkCPffesBE/Ax9SyBkJAiFJEyzh2H5SLpB\n++Yum5ERRtxjv3QVInM4a1tMLJ9EHsu4xoi2LZB2PU5MyeBK3Hzbwp8IEN0aRWuB/HKTg3IcrWaj\nnSiSHsGZWYfJp57ky7//ZQAuf/izDNst2uKIZVFGSMdoi206jQK/89KrrJ67hKyJ7Gcccgcd9O6Q\nUFiFjoYTWmXuk+dR8yk6Fy/y5q0ap6ayDFWDUVJHKelMRdvs3zRRqkmWn0/iDXPMjE12X+uw3XuA\nsesjnBEJxQW+9TubfPLRD1DZ7dCqjVmZzlOtmVg7VZ5d+iCacodT8zp2Oslub41nw2ka9Sonz/0A\nncMdxG0RXWwwkltMZmSG97uEwyLnHj3PN3/3D3EwOTF7DrlWJprtEI4uMR+fwMjOMOi16e2I1N0q\ntuEj5askb2xxyBRC7TxN+STd2xXu3HodgE+s/Mfo747xz0/QH0UhabG2c53F2SKpskRjEDCfClMV\nTbaEm+idCPt+muEr6xxKOg+/9g4Xl55lz0pRsW4w7raZnEgzFuGPP/87JP/sJo3tTbTGPuGoiNPb\nJdh02HxTpNfNcYoh41yCVqvJ2pdehvqQ9IzGqNSgeAp6Vozu9kMG1ioRb4CodahciyNObGPf0ehp\nY/YaGyytpBncnmTn4R38lM9kOkRlr4xSj3Nqbo49r0mkniJfF1kPNtmv6lycOcu9Nx5i1ySQC8w9\ntcK1u9eZi46ZV5c4qoqI4TJZK4yUUkkcvsFLV64D8CM//JNcObhLsvA4zXYL++A+BwmV2EyeO/VD\nIopAqlUj4dokFZXS/jbRC7MkeyLv7N/g4iOLDGrXkfoit28lUcM2aaOA7s8iOzV8b0A6HmZSPsm+\nVEUVlsglorhbezRMkWEqYIRFfKggx+qURZXpWwJ2SkQdxGEhTTCh0fBAlQWCgzLjcZx+3MQYga7N\nMtodoizILAs24oRBRU0h7FXJMU8/I6ApTUpZjbCZ4n65TDgP0y2F19fXWD53FrU0RMk6mA+7OBMh\nxFqaaJAlPhKpmAfUTykMBybh0Hm+/oe/BcDpk+9Dc3XMSwmk2ghxFONOqcJqqETPSDLulDF3hwTm\nES0NXMOmUUniT8jI71bo2T7tSo90ZICVSNNQKpSjBotpHfQWX/i9L/L43EU8zUGrZ9hLj/A8g41b\nJa7d3GXy6TTj0w6dWovozevYwiUyJyX8WJUv/NZLXFpaIj1dwO26oNzHfCOKPqtRSfa5uVvi2Y+C\nH2RR1kXSp3zsQwVdDVF0mygHEtVhh76kEuRVkk2bSLRKvTfJ6ZxNeGmazlSUe927vNJ9m6ezCwxG\nRxRnz7Nxx0XplAnni6hagDsok2rKvPrttwH4sR//CbCvkIlOIt3wYCzwfiGOFrtNZM7FbPvUk1kG\nUwaxcYNxSGMg2gj7PZZm+nQWp7FuXENOQfe1O/zk3/xxDt5+h/LYoyrPsby0yO1/8zLmwgyz4cco\npbokO6coRPboHukU0rvcJoNt3eXOu/cIHYDq13D6YZ7JJsirFvce9EnX8mzRZH7eId5MEBEh1ekh\niT08RyXc7jMjZBlGTrA6A4c3Qwg7N+hZAuW2hLaoIgQ6K/IuXUXjtJ7HzyXxWi4DPcphLcp0cYpn\n5RhbXRs1VmbBLHOwE7C9c5fi0xdo3bjLt67fAGB16lNkT5ykYu4SVgRqaovPffoRvvTaJklhD0M6\nSzAeEdFmqQw9ZicEssYFooiYWphzM03azSfpbBh8dbdKOxjwvrMhDGeORFvF3ilz9e4VQrVJjIUT\nZMcDHliL9NIS4TfepFcM4R9lCMWSZN02YkVhodgnEkSZOKhz8jMf463aW6RiDoIERzspfvgX/jp3\nm9u0TQtVtnHiDqnuAOfRNL6fwtk4ZOVCGOVIITQdY2+9RKjc5cBziG7eQPNhK32Shes9EtYIJTig\ne/eIxNk8rV6IaFChTZbv/8x5gpbBw1qFttPj2itv8nM/9/Mv/kW55rsdoirACy+++OKXXnzxxRHw\nj4FffuGFF+r/vjb/8B/8ygvvf+xT7FUGGGYPSWhSHTcJR0Nk/TjXahIf+c9W+fyvv4k63uPM06cY\nNwcIMcgHE5T32iQSGYS4zqiboH/KIHRYIRzrs3OnRfyRWe421kgP+xz6TZbn5qhaJ3BXQuj+BP/i\n5X/OgjLDyvsW6VTmkXodvLkemdVlQp02zmyK/fv3qZ4WMaouoeIk6iLols796j2SqSgbrTpGq4I0\n8QSFBQPRSHHv2j7CTIHHn10hVFUw2/cYCV0G62lWzhlExlG+eesAezCkOFcgVSkRiWfZlAUCP8a5\nGY1kJkFtK0TqlE80NMf9N3+bN68dAvDJi49gz/roo23U5JiyvIMZP43Y6dLta1x8ZJag3WWjFOXe\nRoncySk0KUrh3ASH99ewr7xLVG4zHJY41Y+wGQ8Ty3skhgqisk18ukDWWwR7ByuWxjCHmItRrv7R\n76JoHsnZs7z/U0tsbzRYjWTJPnGK8MqjOM1D0qKKERlRyBlsHH6bRFzBHxs0YyLlt25TLBboNTXc\ncZJKW0SQGiBOcef+VYKxxuxjC1j7Pl++/1WenH+WQdLnxNIKfXtAa6vAqVOT7DX3sMdd+iGbUthA\ndsssJFXqbYvRMEt82ieRkfCrbaamInzt5a8BUPjgAYn0HIelMK1v36ObrGCrKfKZWYYHG0RicwwL\nB0SrUfZElXy4RHTLoJ3Nks9b9EyoSUcwrdG4DkupSfqqwK2bKaSoyoXPPUr3LYW503lSxThyUqPm\nxpl76iL+WZXDnTscPLzJ7Jk8H//c91Ed+7x59Raxgczc5JO0lQaNDR3LHDOM1hjthegObORqiIl4\nnPJuj5nlPOP9FHeDr1IIR1mMrrBxp8toyWPUGWKXKmQzQwa1BJXAYSW/ghjYHAoKhaUs+fklcoMw\nqXiBemeTfjxFKwXhk1kam0OsWIq99Sov/epvUMMHwAgLTJ2eQAntES1F2bZaqLlpgqRJsXWG+u6Y\nigr5LJSPRHLONF1jRLmqEReyPNivot4rQWrES996wDOfOUkipKMuC0hdC6MTYI6nKSUfcmbxKRrr\nLb72+heJyvPMnouw//pb1Lv7pPIrBKJCT/EZphoMRlFioz0KKZFuWEWRFJJdl93tIXEPMuU2E6dE\nhnKdhak05YZH6PEVimKCB/ZdinOPUc7qpCUfPxdhuhdDzRm4foV0X0GNZijkLpFM5Hh4/yaZwgz+\nvYec+viT3Ny8gjQrMQg1qA0rqEaeb/3xGEPb4crr3wLg08vnOUyVOZddRqrusJ+00ZMGejBLIFvU\nttu0nB4v3X+d5fdN41gN4s4IfRQniA7o+wtc+vDzmDEFYd/D64QI6U3UqEHXyTEjVUjHHsHMDzlQ\nq+Q3M+TzcdJnE2QeXyCci+K+/Rqd3j724iPMxGSOhg6hWoXF00uMwjJDqU9lv87kuEDP2Mf2Y4xu\nPSB6/jyDfojkbIJ2ZQ0xvUi9BS46h77HUfeQmlvihGKg7/R46/4DlgyNYdQhhMrB4RAt3mEuXOTR\nk/Ps7Q5JCR2saoL0pMdGos/JTppOEKbZlBHDId58/VUATn/A4OgrW8iKgzd3moHt0Iw9JLxWYL/U\nxD2yUfUY6bTJoJCBIIIgjZFTPg++/DLzk0MS0acIH65Tj8m4Ez4Mk6wZqxy9/U0uPreA8vQUT3Wf\nYm1tm64HkbBJqx9w0nIp92Q40ihqe7TNM/h2Hy2zRL7ybWo3Y3x19y4hZ8CILomnThL+2m0256MI\nzQPkmM5QNag6Ecr7I5SCiZgM4e6qBFsPadkREpNZfG2SmN/jwa6PcCTS9KKMQ03quwqdZJcTrXna\nuTHqfo2r5SoJBsQcg8GZPGrXJfqoQHfTZinc5Yuvvnez89lLq1TkFOPqQzo3t5m8/Bjdb+1RHwYs\np4vsem28SJei7HPjtavYTgY732QzOoFSryBqIdT1mwzvCMwnJxC6HtogRuHpCEouyuJqkfGSQK4r\nYXiTrN38NiuPniBR3aScyNKgRzqvMTuMUJgu4COSFmLc2LrBwqNJJp5+lJtv3sIezpNzBeSMxFc/\nf4VizKIpu4R0iZ4s0LEUcveziPU4QTzAHho8tDvozoi5J07RjFucf/Iicl3APzHBsF1is+lTeDKM\nZKv0cyIZNYklOqR8j+L0AmrEQI7n2erfZ64e4ZUbN/j5n/vZ/7BC1AsvvOC/+OKLD4HfB34K+L0g\nCP7k/67Nb/7af/dCdjGLJHeRZmaILQyIdT2icQ1TDTGs2IweNCkuRbj4fY/Tf7NNNztG3B+yHR5j\nzCbYHd5l6tBFVAt4gw51q4WJz8TSHHqlT9EQqIod8sNZbKGPflIkJ09Q2dnhhyfydOv3KT7zPHtb\ndwmRZlr2sWo24UQIJzXEIMcgmUYSIjg3S/SNNFsPLS485tBWdbpH8+RiTe7e34LROvV2h7hykTl5\nHrG9RTSZJTC70F0mMlNEcHt0UxZGpUL+okKLAfHsBaK7Pdo711iYzmJbKTrRIYKyhTaMcrR/n8n5\nM3zl668BcPJ9nyAT7XO6l6Uv3+NcXmVcKaAhsv7K2zzx7Cc5sTzHdMFDq+VQ/DTVRA/pnSF2LI1h\n79ApihyVGmQuPkrWr1DZy+BlLAwbooMJ2nIJoSPRiGtECyE6poWoC7xv9QzpeIjJUAo1KFAeDEg3\nxkw1BTKpWap3A7yZLBsHPg/9OPm2QG97yMn0PM2Vs3T9EHb/OsNql0RPYNIP4wkVpNWL+AtF9g+v\nEW07xE+eZODU0TdKVIZjMvk5VuOT3Lz6Z6TyRQIhYGLo0Bx3KcRybO8+YCozSyhXJ9zI0rbDBGoP\na6Dx2qvvhai/81OfIdmZRA2pVFyNZLVHq39ERlukFNGIGW1KtoAfqNSMQ7L9afREh4Ndj4KXIPHU\nNOvrGlOnDCZqCi1VRLKiaAsWF/Nx5L1JpKjEqFHH8PIMe5OU7A5Cp0F3LUo2N2b67EkeOaly+PaY\neOg0F5JxLCXJxNkkgZpFnRQRhjsMRycg7OPqOjHrCMNpMpyKEaw1OcreZWpvBfOpS4wOSmjZISfP\nn8CrV2FQJ/CT6BNTRAYdhmON2uAA5cAkG7epbcFh7ABoM7yrMTsTI6eabDsw7x6S8nuUdipMnftP\nuXX9qwD83R/5LNxrcxizSLoJSoJIMZEl5Bjc7e0wlNaYNEzubw4RMiFUS0RTDQ7eKRGPhAhSHtZR\nDycSkH1aZdRN0PNCzPZderJIOSKQHAYkkhGORjaDUouVk4+wcMGiHjlJbmKWU66EbXZpRlpIA4+p\n4QAvpGJ6BfRoFKkt8s4rI+qOylOPZKgGEabPpni45pPQ48iFWeL1I/KhOXb7R2Q1FbEts1Pukepa\nVHa/xUTkMo2OgNbbJZuVuLp1wPRiEXv7HtVJCbvfpBzrcLSRZDapoA8H1NYPSCdXOUTm6adSDNUJ\n3nrpSwA88sjTHD0YYiw0yISmies9kodDHvR18qKHFZnnXEZBfuwE2brLRN1mPx0iWRly5VaJ8Lki\nRn6MXfk63eQsRUuhkuiSchNMJySMlccpDQbUdlwUvYc1jnCUD+Bske3NNr6/T2c84Pzq0/iNJrvt\neTK5KioxhrpCQcmhdEfgV5mQTiAUp0lU64S1KexZjdRTAaOrD8gvBDQON3nn5R5Tn8gyH/bIWBFm\n8o8SaC69ooNizeDMpsnUZ4iHqnSLGpNKipvpAc3AQpUekh9P48UaWLdtnGGekFNmJzMmmZzFkCRe\n+8a/BeDC6tNIuQXy7+7QH+4zHnZZGkZQTqXw+xl4tEm4myc3mmMrZpOyttG2miSTSWKrK4zLKrGz\nJYjlWX08izDxAXYqO8yF73I2vUj4XBZzVObrvRbJ2CmeebqPcluiq3iUCwZTxh4JwUERWkRLAquf\nvoB/54Ab10B7/z5RLcJFUyK81KK2G0GTpkhHTcqpZdKNKdyJLUznNJGqS9hfJLG3wehUnMFSGDNI\nUMrFaWRDGHaYXPqAw3KPKV2iqofodCfx/RH9eJjkYYjeII1+dpLSSKc59kmYR9xP7lPpx5lOKOyZ\n03z7Gy8B8MHL50nGY2QSXQb5D7D3bolOr8dIDrOwmkOv9qjvjxgPFplRXVJhnaliFsOVscZRRlaT\nqZkcajj90VAQAAAgAElEQVRLfWgwOZMklhBpWxF2bzaRa7cYDru0JxPcf7eLrmcIzC1E5xJTCwWq\nVwdMTvboNUbo+j6Xoz6nf/rjvPOhr7Pf8Lj1rSp644DT0Sw1BLxxm7iQYXV+haCzB0dFZiUft9el\n3W7jrfrotyZo+QPiDZv9pktRqdLaq5ITDR6INQZWmNS4gKTZbLxj0qs0iScM5jMFxtsBvguaO2Tt\noU8yGLK/r6Apda69e4+f+/m/OER91/8TFQTBvw2CYCUIgsUgCP7hX7R/zxEoRE7z5MlVkiGRkZnB\nm7xAfXODqCLjWuv0PJXmjSM2Pn+fo9feYnS1h3iiSKiTJrarI+1ZmOMk4QVIuTpnMyqZeI7A6FPS\nFDrFedTOWSRrlpGhE6pO8WDrOhOhDVrNPX7ut3+J3lv3yIRaNCdbyGGDSFFE60ygbidJLaYY1AYM\nEhbG4ymc/VukHklzUMtSvaYzn/exvEVOvf8sUfsM9ktrJOeGyKN38dQUDxyTQEmiOgIF4RbjVp+I\nlUY/uUr3YcDsyMBUTfynNM5+6ALDLY9mqUHuSCE1cQYhusPhYECj6/2fdTZa1P00/VCHaOFDDGKL\nBJ09+nKeNWPAN77ye1ilAb2rMlWliRg0mF0LUYkkiGfq7LXqFNw5xLNFtp0yTd9lFHIx9xRiM1EE\ny8awREozFiE3SqMlMn+tjLQJ/rsqd9Zv8M/+xW9T7fwe850KamkDpd/gqLeBGmsRdQN6gsinP7TI\ncCHP1I98mLfW7pMVbEabB2SnT3DhYprIgYm7v0HqUpF971sY91vIYRlLmiQ1bmHaPtmlZTLWLA2z\nxsH4DU58OIfXHHMkmbQrAyaKHm7TJ3nuAqOKzZYdpywLOJMuuzs3efKHPvLnddvyDa5Uozgxk7mM\nzNQnzqOONczVFCeeXaSxNMeymqFZuMvlcodRpE5gpVjqlLjrqkxcqzNBmMjbDUKXFtnfG3C/ewVD\nNBh0RDraq4iJDLNnV0jqHmJ2wNy8S1ZZJLPyOrPf93GUmz737xfQ6zZr6y9zw+kTXckzeLuLeHUd\nZVxBOUggjsqUrq0x27MoNAvoQQqtnuDQ2uSl/+nrVOYdQmKF9l4N1cxgr32bp35sFeFcnljYZLNd\n5mhijlFUYe+dHiOxhtmA2HKFVS2EshNC8Gp09SYnPvVRnn9EJzqfw1p4P6ee+ijyzsM/r1t3bo7x\n5Amk103uShZuo8++d4DrJjk3e4qcNYttzeMHGmljippp4TgdLn1GRJszWVRqKEWFpZNzrCRXyLTz\n3Fvb4ahdY7DpoKztcnfzCvboPqP9CqHLBsGwyStXNvDMBq31O7RWpgmlA9ySy5Sus2UWEc0AI9dD\nGc9Qnw1YfixK894dNowQiYGEnLFJXZiknu4z8u/QSIncPiyBpSAJGs3dh4QN8MQ5klNP82brJVIx\nma44xeZBhZVhmuHtBsZ0nFhqngvpGc7NTuMmK7jVGJuKQ/YRiUipw1m9iy5rzBZKf143by7OY7H3\nPvIY+lW2RA9vskBBajDckXHNCkfvL3Au7ZAgQnVBoKCMqUVl4h9+mpWUSrB7hfDgUYTmIUGwhnYY\nwu3WaRQjrF9ZJ3tUY2ZGZTEVY/K5PB98fI7D195kUjrCjHpki2dpO02GokhWvkepk+WOHdB426Yj\ne4yECkY/gXmnz+1/8K+pNUY0kg4T82HE3UNSdo1GqY66dIK/+z8+gZiOsBWeYEM3OWruszWooqhn\nyEwr0LQod/ZwJwpMupN8/n/9Ahl1mtA9m/CoyJ1ajIdDCYw29tQa0mKMc9EiycYeyYr153Wb6P8Q\nk+OnKM08RtJ9HDIKw2iZ0WAfYaZGqrWMRhuPPcLOLLvxeeZXNfSlGNFSAXFZpblbpJ2cp15Zwmi8\nTSa7z8DbY5AUUKQsR9dMTiQGLE1usVPaZuvyHtnUgFNaDaG+jDVI0LJOEUp2ufHmO1SSHT7ynMw5\n6wkmApFGy+egpyFlG/T2XqF7ZBCs+RyNw4RLpzm5d4Ok6LM+fodDfZPItSbJLY1sQ2QmqrLarWLL\nDkd+kkuXZwlyOqkdFcm1iQ4yDKQx+UyEfLaKcHNEoEHKmCAIG1w6fJrZrkCiMyaqdf68bumMxNC8\ny9pbbYrafWJ2B2EuT17scn/rkOvf2ABFw8zto+SydFNdBgcV7F0POyNSGC9TWpunFEqQXZlEmxNJ\nRwv0jR56usrunMqJ6GVmKyKpCzqRpMpk8gTS1JDq3Ton5kfs3tZpPwh482f/Ff/m3l3++J/9CixM\nEVnJMLescy55gbdfv4c4ahMOQoROVnmltE+nOw/BBt5wRK0yQbWn4rfKJOY9QvkeuY9MMP+cRDnk\nMr0QpTIcIfRPo3gSTS1NQYiyMimQncrTbBxhuD76eJ21gxu0bq9ROBvw7v1DVs5N0YtL4Jt/qUzz\nXV2J+k78k3/6j1/41H/0PHv3D2jvHbF0OYFRVhGDFkFER4jm2WwILJ0tYC/lkR+9TKdUJnMyhNms\nEs7kyU9n6Q+OaMtDQpJE0+sTMpNsbh8i2z1iVhxx4JJsVDHMOAeDdaaTAwT5E7hbLts/NeBg4yHb\nlTpLvoFhuRiBhZ0OU27conAqTlgw8BjTG6nYE3mkfZ+GqJMc+oRoc7OtczmYx55KM7Fo8dqr66Rm\n8jzoGqykl7DsCqNpH91ROer7MDNg3ErRjIno3RTZiIe5b3Ov2cTM6kwVwlgHHpLRQXNDxOOzXHpC\n5Q9+/72VgUsfe4ZoaJXuUQt7V6MzquF94INceu4H6TdhIWzzra+9weL3L7N9r4dQmGN97QaRnIM6\namMkU6zf3+LphUcRyiWcRI5C0EJTmsR6Re7Fdnhw7V0SNZuWsoweG2OXV7mkn2B0ZoSUzBKak2l0\nEujiFWr3vkYyscxBucT+yjz3tm5y6WyC6tUx87kO19Y3yXQOORk7j1Acob/bxbUFvDkZ63Kaen0H\n96COOoqSS+v0o/t07QiupDNllekN68QGFbaUHlIvhR7tcxDymA0maFo5tKUR8raBn+rQtepItsH0\nuEb1/gp3r3e4ce29d8lo7LEsp7gtpFnb+iLKboTRowViVozOKztE422sxqtUQvuES/OsPvIMrYOr\npCMqgWZyty9wzh8jJDS217d57ocu8/Y3/wzN0nGoktmfwJytEtY11qwItuFQRiIdbZEQJbrf7NFt\nbPBwDGpzhy4a58UQQwWcCYFR2KO8dRP/qXMonXuce+wpdg8fMJMfUA0cYt06SieD+MiznDt9gts3\n/hV16zyjR22SOQ2t1KE/EnGqeyxGZ3hQu0cyl2CWJM3TKpneFDJxYrcFDuMK9+7c4dKHp1Heb1P5\n/jH93TF3X6mTaGY4OVfmy69fAeDC0hPIOyL5DxTYf7PKB598Dnd7SDlex/EahCWXRi9MXJ2ksV+h\nsNpGC5s0hy4ZcxlCTXp1jcOJKQyvgaJEScdNut0+dqmOG51iIpXBlM+S9tqkOl0qZoMnFjPcXr9O\n3Jli7vwEW+MDGqaMqwj4pk5E04jaHhV/yGgrSm04IjfrMl+c463tNxmt6RSSObSjMoo6QcKOMR2N\nEImItFojGlMap6w0nZRFQUlREyViNYdsPI7k7FOMnMGZ1+hpeab3JQadMqJpINjztEbbTAQ+gZZB\ndqsM6wpuIkfOm+ULX/ojAD7wiR9j86HH/GqMg4hBb+eIaH4Zr6zR1Afo2TKptoOxH2U/HUMe1Dmq\nn+booMyp5RWqpTK9tk4rD8qOxlBOkawP8ccVjHSRETXcSJ9rVx8SnzlBRtS5f+8eYzNgctImsjsk\nGAU0rAj5zDyt2x6uWeNk2EJfWWJxSqZ/a8BDJUJupYj8+JhwY5v0SpaSo6Kt76DGZJSMQdYWKN9t\nMGhDb2tEa9hhIjuNPmwhSyK/9l//PT63+gN4eR1/1+CGuM4Hf3SZ1J0q94RNJqMGiYaPlJlmqIAa\nm8MbxeiZRyynPEKpIV/4ynuvz37uw8/gjtZwo2H8C3lUsYdTKRArO3Sl09jhCuEjFX/O5XC/TiEe\nwYnmaWzE6WRFdCnPYTXOoqaSSDRQtk16B32GRoELno61GCW/sc2mqLCjRYiOoqiaTuD7bApjVqcl\nRokF7JBK7/wSiVs3GBnLtH2BG50DUhMqD+dDSI6BNG6wHLvIaKKMfahwFP0GvtKi0dBpFB5weWkS\nLdCJdkbY0U2apRAD3aItmviSyOyBQr8xIqsr7E+NUGoDzigGIb3EdjTMfFID44B0RqbWX0YV5xGs\nI+zpBQZWiNTkdV76k9sAnPvE30ROr+BnhkQOZ+jlCsxoB0Q6Y1yhzzA8w0TaJRaMqPo64USRuGqg\nt+oIsoQZPcLTRjghkXEzj5DtEXVtsoGE0HkLgziW28bSM/iCTWe/z3Qsg71iY4wtDvQ2saGKUozw\n8EPzqJksg1QCU5hFNxbxQn0Ov3kTPxwnO6cj1IskxCjljS7C6RiNLR/bdsldSLK64GC1ZpHie0zM\nRandfkitBNryBYJSCF2IIKXqeOMkdt8kpHeY1EMEUQfvzeuMT52BeJSCEaedPYOy3UY6GSej9hnf\n7XF3/yE/81/+B/Y47zvx3/7yL73w2fevYjcMjroGkf0RrUiFe7dvknjkCdJHIVLTFgelEn47xqKf\nRkzJnFjN0dh5ndLWOrnTCrsPN4h3xxzumEw6q3gRn0ANI7giUtbBMBtUxjr9+DS53ABrlGXfHCPJ\nEg+O1jj96JN85Y9+henpp4iIJiGnR0+2KcTP4l41KWXbLLcEuq7L+J0DJooigVgjNBMmElXxezpf\nevcPWZDCCFacXGEVKxYmGoxplcq4SQnhnsWk1qMZVum2PCxxzHxFIxPPIVUqHCRDJGshTOeA+Utx\npGGSsjNiUHXRIgfcvifx9pvvPc779Ic/jqK0aEUH7JSvcnHySe5/8W3+9Jf+Kac/VmTwJ19l7pM/\nwcN6mWxG4mShSs7XGez1kBQXX9SJxhP0HYfoCrz7ztssmjmsvIjVtJgK4oSL89iTc0wlxoy0PDHx\nXc6qIVITLkFUJG66SPU+iadz2HMLDNtVymoUeeMWwoUp9rcMvOgdEqceJ2iMaKzZtINtEr6MvTBL\ns9PDuXSaoLnP7rs3cFdKuDkPhBAqaeJhg3TYYP96k8iJNIPvvcRMsIruQKc1QtrIIE7Djn9I7N0Y\n6SUVcd5AG+vEHJ9+w6Q182HGWo47r/9LAH7oD3Jk40+jTrp43R6z+gSafoFh9T5v779LNrtCNpTg\nfckEV5UW5aO7GNkuZuYEE3UPWw2xU9JRPANpZNNv1ll6boabr1whzBzTxhBH7GLe7nMo1SkUo3Sa\nHlHNZuG0SONwQPzkGYahNkX3FJo8oGsWyZlHZMZFjFSTwmqU8XWDcUZDa9rEhwkq6QHOnSPUS0sU\n5k5RbpT41T/8JX78b/wMxSeW0eUxs8MHLP/QAvJfGzPsthgk4jz//Ee5/fIblFyLAQpaTMZu9ZCW\nwbRLhLtRgpUJ9n5sxMMDh9b9PjN5iYyjczQ35lt/+t7x9uM/+79z914/s5z5nd+nUldXd3VX59z9\n5nByIA85nBmSw+EkcUbSzCpawVrY0C4MGIbXHq0v9sJjW9q98FrAChJkw8J6YRuyZe1oVtoJmsBh\nHJKHPIeHJ583x+63c67urqquKl+cf8Dw1UrPn/DgwQ+fH77h+TS9fo/qcQf1vICxWyWyqdDyAiw5\nPj998phX80VCxoSoLnB2phEpxkmWlgi6Lu98eIxnzDg56zLd9TGSAUpqgEQwTbN7wNL6MtZiikTM\nR4vb7HRdspUUAdXHP/I5W6zTeCxgSEnGD28yqOiIOQ2pa5KNFpnuHzEvzbCcGb4ustE2qVwsEi/H\nkOpzehcSLEsywjxAzRvScfdonZxQvlLAPu4wqocRNZ/VnEyt84AH1Vtc076CuNLjcHrA3PMJhWdE\nUwV62hHBzjYWSbJLA1pnIiv5Mt1n1hmIDZ7cfofbNx8AsPbKP2BRvs+xGsI4m9EOTdCreWyxheeF\nCXtBIpbNxJphuRn67TB2tcHqM8/Tj23z+K2HZJwQ3UMPJ+nTF03ctEBGDDIxKuw++AROigTLIWKX\nY2wdC0w9GzftEI/omEsiC+E4sfou1WmQYeEJq14EcTNPr2kiJ2VGhodec1AwedIUefkf3eBElhg9\ndulFHWp6GFeEaTrFkekSOpiwqpeJ5yIUtADZz1xGG+h86VdfxB0/oReWODY7LK6otAYSQydMPl2h\n3XFp5cfIYR9XkEn3J8iyx+igylkjzeOTGXfuPYWo/+Q/fZnjdIhAPce0pmCkurQ6M8Y3ilz2HGY7\nD9hX14iEe9jJIYJ4gqsMqXkTXo347AcP2RzVOOi4hDtBAl95nt5Om/zE5M70EOfjFnphg7BnIUdq\nlMZhFOceYwXO6Qn2e1nOjAiz/Y8oLYmI2kVO2z1SmQQ3rtjUt1OsxFscHAmk1s5jOBN0Jcey3mMh\nv050f06oe0gmdZ2t4T2SQoJtO4p812Xt8pDhwz6q5YOeIjze5WA4YzKsIoyWuaK1sI6O+N7Wn7N6\n+gTvrSMs9xonB0GW9E/YmW0xmBawil2WD2HQX+X1t5/Kx59bLuO5q0yGErFJE91oMezJiMomwlWJ\n1XGGWrCFNlgkPBoSygzZO2zRKRusm3Ha/S6T7SpxJYu7AqY4wCrKHP70DSKbn6G/28aOGPjtOnJG\nxZkM2WoIzOt1DEEi34hgizmm7phgKo0bGtLbDjOQdglHh9gftFkIX8Nr7SCFrhCNjTnMN3Akn9hD\nGysboLTQRe9keOPuEZ+6tsFefwKezXQSJJeLYHaOCToiYsMlqo2wHAF/auJIMSYRieHxNrNYnOho\ngt9JcRroow08xMUITteiut9jFJHZuvWAf/J7/+TvPkT9i3/x333r+fPrLD/3aTx9n3nEJqo8Q6N1\nxsKpT2EzRH9/zKoqYYTDtMRH9GJpmqcNqohs/c3bXM48z+b5RcLTEqblodFh2B+ixnWKZMhIy9Qz\nOrWdN1mOFziN9QnpY+ZmHzs556Of3cfxR/yXv/MS0paIX0zS34kTFLZJzBQOgrvETxRGpTb5QoLe\nvo617lGZ6AS2ZH7lv71K86d77P5wl/SXSsxWZsQiKaoj6NsK3dvv0gjDquJjaTbOro6oZOl025TO\nlbAaTeSgiVrKMEk3McJpxrcl+vP7VHf3Wb+yTt2L0vr2W9xt7AOw+uyXCERFyorO7OEYa1ViniuT\nSWS5nPKoTZKcHtisbTiMD0JYloaSk1BnNj1NQB70KYQi7Dxqsbkp0tk1EcsFmkkbo5GhP+4iCSOQ\nJaKTEGK+Q+LumHcP/2eKUYVmIEI4ZCKeaNzfjtCp2siaz0zcRI4XKPpRhuNTItevkx+MmY0M9Nhj\nvEQesVugGnbRkTgY79La6nDpM+dw8uvMmx6u1EDpZOhafcZjgbv//k0CX/oMK57J8DhFcAzjpS6a\nHKE1OKHkrRC9ZHIw88gcRfFFm/BcI3NxgzffPODrv/2r/PVThuK1/+xVOKgQ3xGYyqfI9nm+/Nwl\nnrQecfnSVVJSEtE/pZXJk64d0g4FiXfmRAt52uMBfrOK2NOZje8TTqSwhTF6t8/KC8+SD52n64hU\nUxlmmkrQ38YQNJLpNOX4iNZdl6jfph/NYVTbSHMZUwqSvqQzCMxRExrNJ/uos3WG7hnhsUNVrbE9\nmVD7/tsEMs9QiWjcto5oHW/xK998kZF2lYthge/ev4OtdJC+VmS2qNCdjGmemsxuKNS9GHpAwD9x\nWTQF4nqcQW+M1PfxEmHC0z0Ojgbs36oSF0JoWh0mbY7fvMnHB0cA/MKnvk4iGGJo9cmZIlUxRioh\nM7K7rORSSJMhDTmKeFJHXrPRKjLaqAjVOp8c1QheTFIfdPEGMhvnsxiNIcXrn6f9zjb65QKt6gdo\n3ROkmY0vhInGogRGUdzPXmLoWwQkh3kL1jWTuRik37NZnEpYYY+t+S6rmSXquSH+zCLcMHCvZLAe\nnNDqGswzDaaejtDpM9tI4+Qy7L/RZGHFI53cZBDW6NpjgqpJz18kL4RYWi0z9uMI0QJnP23jhqKs\nKQF8a4xqx9m6Y2E8L8IkiJRMMRwmGdYfcftHpyxkE7z33k0A/qPrv8IkXsKrjwmv6+SOc5jODnY+\nxGI4QC82YnQSJXRQY7qWIDeao355k81clHYDikEH3S5SjTWR+yrrSzq6m2cqJikkHCZPasjlEPlM\nEM8eE9l1kK+ukY71aBzEUd/2eXhUpxuacD5tMZIMbMcnUnM4O9shYDcJqy+iBCxOj1r0goeEdJex\n7lDv7vPv/+aQZxcUokqYhi8ROJhTFnVa2QTzoznh2SOaO0nkpSB/+aM/J5FNUhIL5As2Uddmclxh\nVazQ6gyIuFMyuQCxegjZ15kFRsiCi73ZozBOE9R13nzvhwB84cavMZ76oHRRHYlW1kMnSOqhSCe/\nS0DPUxwE2T6acuFCEL8VoNwMUPCa3HZVVidZxqMGsfkR739YY/PCJoO9McczAfPDA4RljcnhhNZq\nESMQYOd4m9zIoRJaomooCG0LaSXC8kmIejREOjZF1k0itkJIj6BqIi3vAmsJk1ijTS0aYKBNeXgi\nIR8dIkazmGsrdNJzhn4eK6gTC1XxesscbO9wLngRVTaYvnMbbSWPOA+zvBhB64Wo5XXemd7klUKc\n1Dd+g9N6j0xqiD8dUzp/jahSRBo6pB7VaKc0Tu7c4c72bQCuXv8yifwJpENIoQDduEW4UyZuT4jl\nVfZ3HpELrGFKY+RokPmJTvRza2z95B02YlF2TRkh0yLKAv2xhTLewovEeOXSS9itj2mZBabTGFYu\ngzyZIM3m3IiG6UfipFWRmebRWQhyppxhqh6lpEj9gYmXXmKxGUNNZVDz27jlNDtvH5G8Uka4U8fL\nioxTMudDMvVZhVa0w6Y2wR22EPwTwjWfTmaNRV3A98cYjsejZJT0IEH8cMhALVG6JLBrNXn8/m1G\nbY9epE96YZF5cIAbMQmoLu22xOaiRzi9xPtv/pj/6pv/gaXz/v+cP/7TP/uWqSxgemPU6SJ3t08R\nEqusxZd5eFQlpkzRzxk8Vnq0rfugXkLwBpjNNJ9ZirJ4eYNR1+JHDy1WciZBVWTqlcnKIdLTPkZ5\nxKn6gJgYwxhPCa5AxrSo71vU7h2yWomwuBLBSqwxeVhjOxFDb54hXpU5uJuiNzhg0p+hDOJogzC1\nhEvcsjCkBHKgQO/4bR6/d8hGaUBKv0LvQgB/16IVCKNOWpjJMaHnLhLyIwTXr1NfKGO5LeJ6n+bJ\nkPmDu6zEI7z3YIuJESDZXWCSVRAUgapsMg9HyFhDxHAS/Xd/kbf+9f8JwEY2i5/5hNFpk+VIiLVI\nilaoi3Y64CSTJFpaIvj4HaLLDpHJnO98609JXxRJi+fQzS79gEucJMhTps0IWilMb3+OooZJkCWo\nTZnmBZy4giWGaB100XIO5zZf4K9fv0Xy8gUanwjE8x57Z3G+cCmJaA0RwyEicogQXcSzPnEpimQO\nMVIhquIA48DASKaoGAPM7JhM64RUrIgjeDxs91kTr6KU4szSS+y2uhxVJ6xev8SNxjZWN8Is8SH+\nXhN7FEIrJWhpCqKYJOaE0Q5nPPT3ycgeA7VPsB6gkmkxe/jr/PC97wHw+dZ5PC1MxggSM0TcqIIX\nMqg+sVgx2ljKCOV4haDW4SPTpJyOIo9SzPo+k4cC0uVNiprKg90Rs3gAdRagE51w/6P7XHguSiSY\nYm/gITchG/FxggbBoE6vnSI6G6JZSwxNhVx/iZDqo6hxco7GsR3EqbXQRxbjazJr62sMhQG1A4HF\nWpvgCy8hxwRqx0dUtTn5zRzbn0icff8R5naT997axzAuo7davP2kxkTx0dwp9++3KA+LvPne90lf\nvEQymUdPS/gnLRQnys2f/ju8coRMLEpgo0LQCpPJpbF9meQvn/H6n+8C8A9f+accOQ9ILznIVojg\nZYHQ+BhhkGIv0GM5uEywWUe9uEG3pSCdqrxz/2Okn1um78Jc77LUD6LqHplikW6/zchuY3sOkViO\nYytE7TiLqfqkjj2aqoVoHKONJcKXVrEOA6QmCluCSMQdM9zvU1BC5IpjOlOD2DiN2x6xMMsQHJ5x\n2Ohiaz7lzyrILBMINkmpi5z2HXbuHVJO1IjPk+zuCZTCQXKIHDktpuqUQDTAsNuivTunGRKZehaq\nUkcwxzR7KRpOleVVHdcG1a2Q3gzz4ye3oRchqJ9H0ww++NnfPn1vN86hzqZsaBPsQB/0FEZ0ES2m\n47TaZLoKtpahNxkRCcboperEzRT9R7uYo2OmVoSO7nM+PMYOZ1kZ92nvPmEWVtBDDpMraWRnidv1\nLkZYQs/6LEXAjReJ33I5k/O0ZZlKfBnDKKHuacghmZmnM5vN2duW6e28S1LewEqcMctniTkz7r79\nPUqDAkrBx9JKGLsRWr0GJUOBUpTORyLnojbjRJSB1yLSalB5fgnTj6Jl5mgzm3t2G++TByQ3Zbz5\nhEnMpjNOo6f6BEcNgq0iQq9NNidyqqqov/oab/zJnz6db/o61zYKxHIefccl56boTRzCThA5JDAf\nTGkFJG4sdgn8tYxfkJAGE1pKknEwwX6/TrFgMshVSFZkZq0ClcqEqj1CWbhOXvYIjOcY6TzO4QP8\n7iKzcAylccp+e4FIcovO4z4jd0wq0OZ0d05gKtLID0ie+khnR5imDLMOuq4ykjIYosFSNkD0eoTT\nFQltOKd6zyWpBQh3Y/ihKSsZlePRgFPSZLJdQhsmDwIpnsmus3+xjDTewb0Y4ovpz5OJX8ZM72O1\nF8hdWELZ96ju/y1qEizOaI9d7r/xFwTLM+7dPwTgn339Szy536BzfER4WqZiQ4cx3XmX7SOPirGG\n6X6MXgnin4WYnTsgMB9TSr1C9rk18r7HnbM9dFGjo3hIfRe/r3H64DGRXBAhKiIpeYq9J6QNhUly\nzqsnD8UAACAASURBVIAMTWmE6K0xip3ihJMUU0XM0x1UdYWQvs9gW8VW+/jSlI6fwzvb4dqXzjEf\ng5kWYBIgvzOgEw8TdUYExBlDOUzEiHEciVBWZNSYw67poHgxpqM4xQ5o0SYT3SP/4gXqVofh9pTY\n+QC5L7xE432FyGYSde4y9kLQUtmMhtlqt8jG0vz09bf55u/913/3Iepf/k//47d++9Uv8qQ5wlqO\nMO26xDcVtqYNLhRS7M/ruP0W69kUkeGcjz/4EdHuOsvZLpMDibp3xEEqy/UFn5NnrzI2g2TbE4wX\nbCbHLkIJZPE56lEX24hijVLE12O4w31+5RsvwHGbdl8jG05iRvMYYoj+mYWoemx4Nu/+6HtUilHK\nV3N000GG90csXo3hHVhkigK5RZXU5U2sx4cM7Dj22kVy8QCHd9+koEnEpBB3br7JiwWNzlCGmkI2\ndUra0Di+/YDC5QQnXpzN33ye23eOSUUU2nXQCyblwAJpW+JskMDeizNSbG5+72nY8Qu//tu43Qwb\nN36Rh2/d4uNpmYqi4SYVElIMV8ziLsb44H89ZeHz64QuraKaAktLLju7TeIvrGDuuFj5NJFSiMMH\nj+lacy6qSfpOh/osQ7qbIuWD4CaIlbuYj4+pSUWyz7/MpHdEQelhrHyRk+n3MUY7uOEiE08hkHII\n2zZi0Md0fJJuDtsZcuTVmD45pPWyTagpU9eCqNkkWrlCKFdk0n1MODFjIdMkaJ2hmA5XIln8yCnv\nnzwmTIxkSEDzL3HSreHUbOr1u2TnAjPjiIfCjKSg0ekNWdCzdNUhXTHL0prNX33n6Yb7pZde4/xX\nPsfeyEGrW+z11riY86m9d4r77DJ5t864nsCVh4h2jFxBID7UaPpRREkl58BwPOF8SSE8jxLLDij5\nMHJKmJMoHXFKJhkilZ6gZXP4cp60p9E/HCG7SQRHppWU0dMmxlBEyZs4T04JmlUejmWWbzjs3mvT\n2m6Qs2bkegK75RxriIxcjWLAJZVJc+6ZT6OWNK6dz+BHTcZOgK+sefQXl9nspxAWIH0+iL8eRTye\nYlwKE+nZrAZWEaY+fkxH6kzwKHD559awJiJz28Su2FSGAgWjQaUs8uf/5i4AmeUXKa9EoHeX2UEW\nT4xjV8JUmmd4DZ1pqo80WyPoj0ln8kzTUKoYnD78mMJZhgUxRme4RyVikCossd9uEDcs6rLMofmQ\nSKLChVdUdF/EroSR5i0MU0cYP2S30EeawrkXl7n35jsEMiK1rsCknCE+l2CYo7fwFkE/w9Q8xcnG\nOdptkK8sglkj0AwQCc0QfIV+YxslXqdixyjaSWQngOtYDPwQY2NI4ShHYN1A/HjC7Z1TvECDtQWN\nk8cGlXQQT28TGXn0hzIz18CKj/n4ow7r8XVmC1ly1T5v/PEfccZTs+/nf/VrPDnoExnIeHIJNdwj\nOBHBnjAttnn09n1KuTGRcYmh1EeaaAjKGaeRLMVZCm0skr9SotHUiS5OOXwQIBwJMx9YjFQwPtCo\nXB+xfuUcQ2/OSjTP3uCAdUmgNnRw6GHoBgm9xa6SJB4+oBWScGZBnJJKqDAmX9lA9H2kiIQ8USh8\nJsbCosRz//AGm1qComGSXF5Csi2iuolxIhDPjXELGtFgiOPmEf2cRvLIoXjl07QRCSRLqMcKhVyW\n3plNH5X2kyPslQwJe4cDr0NQaFJt9CgkMvR+MmCnr/DgrafzLb98yFrmWb7/w++yblicLkdI6S7J\n4JDGJIPjF6j04tw1Z8ySItaBgJMew36fqW8S7/mMY+tMzCBnUo9JIMSgkyfufcjKSy9RbybQLk+o\nBed0Hk05f6FPpuAxSISRLJ90L0C4sIKhDRgcb7KQqGFPwlSGq8TdXQQ1AbZG9yzE6LKCHurSIc5A\n61A1gsR+esCpWOHapT7m4x5uLsb0NIKzKTNJhhDOp5HVcwS6M6RIkprwEE4VzK5Pbp4jLD7iVjBN\n5raFEGjhH58xeybB4ekB7tsK3mTKXJK4/h+X8FIq7//gqSdqsfwyk0KYr7z0GstXTD5pj7AHE4JL\nGWTJoKiegpQlVfKx1SSZ5pTmcRZf62OdtKlPu1x9JotTT5FzZ+RuXKTblDBCEYyhzzzmUJLbNOUS\nkuIyFCfMaznKvkA1uUdJ96Ezo3nvmMOtML4Gm3OdWG5OKacTmEUIh4+Q21HmIx2rVQfrgKmfJfBM\nFKc9RdBlZkKGqW1jhsYsNB2E0lVGwwPmdZOu3UcZzJlVBIa+h3sqcd/usTeYsnk+iTGM4Z30SeTy\nqKEGyv0EgXIchQ5dqgTPRI7tKg/vPPn7AVF/+D/8wbfO/9bPsZDtsFbeYOYlcDvOU+luLpFeTTDw\nRKoDAbuzz6IVJiCnmTkDxpMmZFcQtBZTy2X0ZM6mbnPYsBjFGzw+7tAmTyodYrDVR4lJPNp7TKB2\nyChYwv5EZKRZBC+GMEcK7jxGL2MyfLiHtuRxWqvy3DdewpwGGehlAk6ATHEJp9qkXdKQxDqHtV20\nWYxqWuKk1WAur1CrnVAeONytV7Ffucz11BKjSZvItkNUlclNVDqjEQP1BDG2hJMastvXue6PMb0C\ny/Ij/F6UmX2MaBl4pSSBcJeEOuPH33+64f5a8Rf5aPeU6ysXGQy2uPrcszya7TNotxmeJChP7pEs\n5FjN58HzmZR9kq0Fqstpwn2Jw/0m2bSM4nqE5imUrQHRygo5UeFBZ0asMEV2BgxlGzczYbkYxv3u\nT0lWnuVgZhGWg3S0JbY+eJOXLl3kf/+3/wfzS6sku0km1px6qI/fqpCvJPFiDxkNRdLJEO3umNBg\njXEmTPFwxOPhbXrvVpkMBywUz5EcTPn2mz8i0whidzQEwSUcK2N0Wuy3JuiFFW7uPCH56jW01Rix\nUoTh4ZBIokhCkIh5LkpAI5wQqA1mCCOLkBnge28+rTh41Uwhv3iR/r338IUI+dSEZkcnXexQvdUm\nXFgkMHoC0zXUFYuDJwplT6IqWpyzHQZOkoBzTDAOp0mDqCPhxDIkvYuoDRk1O2QwAOvOHr3eDCHt\nEOmNOXQOEVsxdo0j8v0CWmxITW7RbWvcHu+himlsJcnWURtla8YzL9+grip4rok+9kmGwoyzAeRy\nnlHNJ9LuMDBtgsYGnVs9Fgo6+/snJCJBOuIx60sldMUgtpNkGHYJhAvU6x08FOr1PspxEC07JfdM\nj4+2egQri8iNGctSEtc9YRzP8vDjPu++9bR/5vmLF3HPO8z76/Rbb0A0hDstUR+aWKkZbKcIr1cJ\nCatMqVKrTlldLWB7Kl60Rb1XI6kkUM0SR1WLfCZDPT0kFY0zP9jFWJbpNFsc9AW2qz0ufHqZw933\nEXpN4tMC5z4X5PbrAlfTURy5hJ53KM/ixJJQMI4Z7laIxDz6cZH+aExJ3CA91dhthJjVO4R6Y342\n6aN+JDJ3fBYuFDjqjnHCHs0TiWD+GHsi0zJsIsewkFigudij8+Yh7kSjWDSQl1ykcIGxGkcTh4yU\nAP6szkwU6N8Ruftv/i1Xv5wkcG6DO7feA+CZq5tciGmo+oShngIXSJwR7Oc57h3RMz3U3CqxsEUk\nk6bdjxL2Bdpbj8lHQQnJ7L7dYmXllO7DA9793utc8peZJ102rTztUJ/ZUZxk8whF0Wh9sk3AM5in\nXZaeX+V+y0VXVQa2gnL6A/7sD/41v/Jrl+gESziHYzLzEJ42IzJs0fugi9kQGAUjTA+zDI4CdA4O\nkWSDB3/zMQElQVMy8cngpSrsPdlj45kX6IpRwo92UEsFToanxDLnGd075NHZE1qyyIf/7nVcccBm\nIUTQd5jNF0iGfPp+GiEwpCuWiPkjQs9t8M63/28AvvKff5nDag8xF6d78ohzsowe6fDJbIrkhVmK\nNGnJp/hehAIOZtIgvFMgtFKkU+mRW4oTJkA5GkCKPQPTm1gLJ0TET9Eqd1D8GklFxdZWyC0k+ei0\nhbhjo1bKGF6OvhYh1B8jDHsMDJ/W4xHdmscoDLv9MbNEnEBsH0sSOD2JEZ86CL0jjk8KLNTuMT5L\nIZ29j7cksthfYKg9Qcs6nDQhvf2QopdCrd9nHi5RndpcMLoEOwbR9B3iFZv6gxk5Dw6cM/RljdYH\nUSJxA1XzEM6fsbD2AoMYHNbXWau1+eGHtwB44fIzpMtxNEPm0G/R2vFR1BOmlod19yblZ17jTLqF\nd1viYHWA3s8QHh8jjTVmnRbSvMGDToi8ptAVgmjNMaHSHsNmAS/XJCo52NYCuhPkZ48fs3qUYs+9\ng1rM4z0+QWknOS51mJtTXr6SJmjNeOcH75OYJllVcnQb2wjKBjN9SthSGCttDncF8pUp0fIV2v0D\nQvMFRL9G0NWomBGqo2Mej89w/ShaaBkh1GKm9/FVkYVZgcFIJ3w25MMf/ogXb6TZ7R+g2gmUmcvK\nXOFs0kGaCvR9kdbUR1tepEiJdz98h29+8++BJ+oP//iPvvWsPqcfSuGFVJzHPcKOhzdXSUdtKhUR\ny9YYH47pnDfICgbBtU32t7dYeOnnGDr3CO8lWfn0Blsf3GPmxYmoM6Z9jYmQR6ukCc1HDGrbVLJp\n8kaEWzt3QYhjFQxSK4s8/MkTsq+k8c1tRvMHpMQJuhVCisfoamF0JYQVnyIi8eCsSSYXJJgMEHgy\nJrJ6iXtHHlZHZf3SEusZE7seRI/JfPZrXyHRcLF27tDpK/jzCdF8kPqWguscce1zn6I6ThCqpplY\nNdyZTHAJlJHIWFsmddJASwcJpmJ41n0e/6DGJ3tPm2l/7oVrZLQe2RcTNIdzbu1/QlIUiPhxckWX\ncLmMHpeZuBbd6pT1cxZW1aIz0Kg830ONplDcQ4JXv8DerTdYQsa4ss623eFaoMZpyCYXLSHsz/F6\nY+yVDWpHPm/9+A3O/c4vo8wPOTno0FV9lJHLmRsjb7xKMnKHkdJleRSksxAkbvmcCjHEvEV6FuPe\n3pyFhQxCqI4p+ATiV1icDAi+sMHpdohwZ0xHKCFFVba6A84Vw5xF5tCYsXhpmfMbCwwxiHSqmIeP\nWNm3SGYWORl0KB3HmSz1yc2KnMhjUkKPaDHK6djjZ28+LfFLLGTIX/os3sIi1eGMdH3CY7nDZv4c\najKDEa7TCPqIjx/TDZTYyLmYkwKG00JQioh2j9GiyKySxOwFKOhnTN9YYDjeJx5rsF9tEAgbLIsO\n6qc2me24mJETYn4BJ9XGj8qMBz55K8NQ6yKpLuFUHlH0uLJRZuiN0WN5mlUFaThk90TCeH7Ctn/I\n0QMHUWixnPNRRI/crSDEExgzEyvQICIqjA2Rye02Bj7WVgjFNenkBYZPLCahMB//+HVurG8wLM3o\nxmPoyoiooLByLYkSajKVokRCXaaDHPUf3eajw6dy3vKrzxL2Iax1aco+YnSB0PyEn3xyB6Ofxkn2\nkeRnMcL7nLUszPwC6kgnv7bC+995xOdfqhAYLtIuGASmdR5tzhCHFvqdfeKLr2LudUiqSdLTOIZh\n09mZIlQ26KdCBPe3qTdXSFdSHN7/gEJIoO4HKZT6eN0UvfYpz376JXbvVYmG5uy/c8RmZZFtaY4X\n9yjM58wNiVw0z1nM51MLixwfxJnOJaz5Ew62H+Clg1itAateCHUiY7oykUGL7DNl2uYulWfyWKcJ\ndG3E9Mwi5AQZSwGyWgVTCiJZN7n02jkWYxlil0P87V8+TdF+9Su/QCwXpz2bsL52A5wQnXWBugIL\ndo7I1XXMkEZcH1FrdknlVYYhDTVl0h9FSDoDTr02M9Xnyuoa+ZfyaO0ZekHC8qMkhV1ipNnO2Uy7\nGv2oTSoSpr5nMSvkOWmcYTsOxx93OB8J8Novhshnv4rasCg8t8x2t8XkNIrfatNxVYJFm3h7iI5L\nJ1dhOlrn46M217/yKQbmgFqnhSIvUaju0i4JzN88JVkSiCQqPDjYxg9FCEn7yCJI8SzhTYXLrzzL\nhh3CLG2in1k8ZEzMcBDtGMXzKyjOEPm2jih2+Om7rwPw9Rv/gGy4jz+PsPDqBpWJw65UwPUj6JMC\n9eyA9uMsWm4RvZXAz2lYn/Xpagssimm++xd/wXj7B9S7aYKPbpIL5Al0DZ5kPyS6+xJxYpidEf34\nHoV5ie6kR+dsjVPziFDXxPUjbF4vUz0qE31ug6VkjOyvP48+ssgk9wkEDebDNINCk4rbpHqQJ1vr\nYSemBKZRZKVAJFWio/QY3avz6NZ9fGWJytUqpyWDktXjdOBysn3Ec9FF3rj7E9KOxFE/gih7PLlj\nsf6lT3N6V0bUQsSVbT4YSJQFmfQLV7jZeIyWMclLJpLR50c/+gSAL3+tRDS9QPv2IbaSIxL0URo5\n4kqH6NIztA+2KdLHT01ZFK9Q0+ZEvQGdjoh8TsUWsiSMAWnRYjScQXBONyaBYlOyHb7/3k0KQ5le\nZUQpl6OQcECeM9NkyhsCQQdGrTIbcoU73U/QQjZa4kUW1scEvXX6qQHBoYwpB9D6GnZaYHEe4cIv\nJWn+5ZukbnyJ2vETxKTCtCFxpnT41FIZtTNkbeEKk0mV0yOfxfVFej94j9nCAitlaFtNFi98gbwR\n5+ZbH1NWZ/iZOMHJBDGYwcKEIVzKJ3CFFGK0ys033v374Yn6V7//h9/62i9/g4wQ4f/6/f+F8mei\nPJ+K8N79H1FeVIjKS0zlMPXJhFJuBaF5iDgySTsyw66Pq0JtOiR/ocRoaxdtkCa+niSVauBcSaOY\nQ5T9BoXXinzvzYdY1QfEzq1i112MfBhVWuLLv/8b7PxCk7e/s8/jW++TXPkiF1cValYe8VCiH5ky\nHXUJhQOsLoXx75modYneC3n8jzpYxQhS1+PDv3odNXOeeDROI9PAacZp5sHdb3CpmMUdPuK1f/7f\nY0yn1PQ+vd0e9fYCctYlH9IJOQqTj6r0e9sYkSBOv8ZID2K+fZ+OscbkmRx3v/9Ulvr5XyhRmjRo\nJwuMblVJGgKh0CZCWGbaFxADDkJrykemS8b1ODAnjLUmCQT0szDzszhto0h4v8FkJLMdOCSsBBns\n3kQuXiLd9zgc+ZhikHishe/HyV5YJn01xPCDEcLDE0w9SWLUoviFqwwPO5S+ep5scI/gJENjtEf2\ncMK4PsCLjZgciZyMxyyHxgRKIuGGQzAYpW/PiMkuqnyOidMlrnvkgxuM8xo+G0z3DxjMRqwslTBL\nGzRPbxP3DLSKRsAao07inHSzPLugs7Xf5szsEFOLOMEa9XYJWRwQEU1+8vrT7yS+8QsvsPWzPTZ/\n9TNkdkWeNE95vqRRr6m05Sf4px2yIY/qQh7hYRe1HOdcLo8wqzFtd3CvLaDYMnu9O1TERZq3J/z4\n4RuohQozY8rEHZPuFQh9usS4I5EPHzM9sehmNLoTGw8RX9qj51vIokouvMZIkhk4RxxLGsYoj5To\nE42LGOI+yuke+jBLOb6MUBjjCUW6kkftJMxW6wQ7tUfCd5GiOlI/hWufoWRzEExyXJyTYkakGSXq\nxOlMJlx8toLRcbEHI6ThhKykcE8NYBR8hNKYXLWN1EvyceeAULfC+ztP01K/9Xv/BdM72+z7FhnO\no4R9xEkHpRRlw1AwL6rIcbj/SCf30iV8c4+C1efOvSqvXEwRn+o8GXjY+g565jzZswZGW2c/uISj\nuGQ7PmcCxDtJzM6Q2qzD9OUN4m6CYdgh7LRRjgfMxwcIsTi6J3G2pRIwZMRCkMlBg2a9w5qc5mDS\nYxb2mIa7VHzYk8YYPtQPqmAESQZWiOsNrL7J2K0QHt1lbm0QnstYMQvXsQhGFPRYiZntkXY0wuIU\nc6OCZkQx/TTGCzHG+/cZrwdR3z5ELrZY00KcPGpyPKnz0TtPl50vfm4Ds+lyPIgyjhyRjSr09iY0\nup8gizGmlsJqzWEaKhMeSATLASLDKa1QCWV0wMb1Eh/84e9TPv9l7gaKlDpReuU8giEztdu0J2nm\nsRa1ap3w0MYRdK5fzbO9f4TtT1iby8wKDjGrSnZNZ2Hza7z3wRaan+Nk9Anl8iqCZWP7Klev+IQD\nOsga3vk1Ul2NxeYTzl8sca9zj7W4RHxwgwXZph2eIqRjCIKNMI4Tci0cTcebWbTjE6aHOlfP+Thu\nD/tem6HYB2ORfTEI5ox0CNJuAi9r4J6O2b/3GP3cVd54668BuPGNl3kkTSmU4cwO0bRH2B885GCn\nTX49jL4TIXdugYO995nFi0wyD9C7ItX6z4hGeviBOrGXoPzVV2hbQU5P3yNw6yOkw1P0Kz5z10aY\n9VjPhXHFPvH2Ggv5EK23PuDya68ijz9h2i0zDZwxP5sx6n/CCAMmZwSX8oy6bYRyjvQkjNWQiV6I\nECk6pOUFtk+3KOY8RvEc5+0FphsOa5WL2P2HSLMi41MRPysTLpQ4n3oGy24QbMWYLUrYcxNHWqPf\nOEReKBBvHtIwO2QrX8CbTtDPX+L4/RGp8Iy+qCCol2maUz58/em3Vhe++GvIBxFGlTGhXohg9ASn\nIOBMszSSW9z8zk+5dv0CkZUcR/fjWNs9GvEkaqLF1uE2+cA63mBAa+bTPn1E8KKBe5xmKdRiaI1Y\n3zzHSdxnOFBYiKXJZmS+/b/9CReeK3AQKbF1EkDbMInETES9QsXT8ENBOscmZnCbUdOmWRgzP+oR\ni81Zm9tcm+i89I8/z9prb3DUcrCsGspBlF5yTEop4Scm/OTuLt0THzcfIVLUCNsuxa+9gtA6Qe3H\n0V2BeLKOZQ5RbJ+cL7F6LkG3KxEmir8xYabJSHmoyafoOzLv3fmYb/5/KNv8Dx6i/vm//INvnSt7\nHOTh+Rd/iUJO4SQQYnO+iNAVqMcGuGqFqv0hwuM5VaXCyJ9jF+pMo2nSpQLBeAD/YMbRGwdc+/k0\nd89axL088rDBVOiTikGrmeZ6yKe8+RmEQxXVm+L1LSaKwdlvblHdmfPKL22woBZYqCgcN1v0jmeg\nqhiRGXHTYhbUGeoioj/hsO2RHlnIKyl4EsCI9chehMLQY2/ZglsWgfUo0w+PcaZtsskAzlTjw7/4\nf9h58JCz+wnsYIrw+SGqDinziLY5Q1lPsFTJs/71V5jbMDg8op4McdCKEdnMcec7fwXA77y8SuTG\nz/MkITD3ZpxFLrIshggFIDw646F0wOZiEq0j4EY8OtMx65kiraNtBi0HN1CDlsJY30EOu+w9PEYp\nGoRkj/5gzkxeZ2HiUrcOCUYVts72yQtzjmZFPvva8/zZm9/hua++TKSWxxd0uuM91IbJR7dkKvrz\nBC6EieQ09t4/IrSq4o1EYskRrpWjb/awjBKKN0IPjwmvDFD22zz82QHlz13AfPBtEC4iTZ/QvL2N\nfmmJl7/+O3x08yNyZoYj/z7KA5nBQGZDUml3ziEkV7j2uTwn47tMCjbykUVlWeJs12TkC3zw7tO0\n1O/+s9/CPxO4ueqyqWr0dk4JOSDHJuRlhcA4j6ItQ6uFGc7TmDzhtOdw2hAo/+OvUt36kIPuEXti\ng5NxGnNYZ+UVg3wuhLY0ozxzyT8rU7s/o7w4Y292FaM1x13YIyn3sMpt3FKYklhmbM6xRRfLG2GF\nNLJ3GyTPT7l5U2RpVcVK5FBzXeZOhTNvjqpLnFv3Od0TWNe7KBGTzomEnXSYT4OkRJu2JhI8FJga\nMiv+gMaoSEOSEQIS7ljm6o0cB6aNJVWJZ6GbNFCTU5R5BKWZxzsM0DREcmdpOpEwN289hfbouS9i\nFNapuU0YWaQlm041T9FwOZ6bLLZjOIM0fqbEeOunzOQ8ymiPjJ6ksp6kNrGYZwqE4jpLoSNaRxNC\nlkzKPkPqRjmeH7Oir5NKNThyR4S7CdKOgljWWLLCDB+P6C2I5AJhRl4BVA1TmRCYjJjPLawsCGaC\njn/AERnikWVSGZ2eMOVivoI/D9MvzrH6Q66ur2P3uoSkKR1nQEjZZFjpEzFEXDeKkbhGetPAfHTE\nveEjlowo7USG+U4Lo+9RTW9jVme06zGSCyWqR3tcXHOYkCJzbY3uwm/ywV/8CQCf/9IFutMWXk5E\nlRVO94e4xzbGqkd2b5/RbEa73CC8PYCkhBVdQvGaOPUWLWuOM+5gbj0mc/0cU2lOPzLkg50xy8s6\n+ZJAbDSjHhdYi80xC0u4hSDqO1Uai5coN/p0kzb5kz4FYRmjsM5P9msEGy7C5BTB8vEasPC55zAC\nKiPb42QWY1ZYRNhrc3b4mEBvyMnCmMwkSMQI0R6NGTo1BnkDZTdAwJ3ibbpI7VNae8eUcjbyQRrD\nuY+7IuI2jnnU3OHcyz9PJz5HP1LRfYuZ4uG0U7TuvkNYLtBZG5CoZHn9u98F4JmLBm55kfaex9Qt\nciE/xvzMGtfPibh31xjcPyYvzehUliks1YhocTq1LmulGI9lkbK6wixUQfrER2x3ua6XGJdLqJVP\nEbeTdAddElqE6Z0Byp0d7JxIO/khxRWVPblP2LnNJ9Umw8O3qcTH1B6myTvv09Rm+CERYc9Ebk7Y\n08ARofHoYyJOEz+2RDiziBepE1BStAQTsz2h3RFJZAv01REXvr5M550eqlbkofWE89dUdh40Wf6d\nV6g92OOl55c5V1bpHqi888GQc1qQ6plH6FqPwP2H7BoqcsSnqK2hU2AecXn3b57e22999fM4IYdU\nesZB/Sb5xTzmVoJ6KsIXb1wkVI3gz4Mcf7vN2fSQ1vUlShSoLg4R9jSebP2EtZd+HqfbZ7EYwtyZ\nYwUktGAM+zSAGJ8yb+ukFUgWZGZHOtOJTSCdYJqwycdcYmMRvZ2mFW1jnIiEIj2iuojnq2ijBEsz\nH8uPkOrmCWhl7lZ+yD/6XRHt/DVwXyafyGOrKhr7WIMmK6kwy/rLmHKLUW/McjCI37E4uf2ISuUc\nTUWmcFGjJs+wf3KMtLRCixBuOYy/N2GWtTEUjcQwwHF9TKA3Qc1f4q13/pr/5pv/9O8+RP3Jn/zR\nt1Z+8TfwOjbx0IxaN4D2/3L33s+SJfZ13+em7tv5dg6vX3e/NG/ee5NndmfzLhaBAIhEiCIl0CP/\nMgAAIABJREFUkSJFomjREiWCJot0le0yZLFsgQEqyrJUdplQyWWBNEFQJECkxe5ic5qd9Ca9eTl0\nzuHeDvfe7usfRv4jjH/h+9O3zvmcc+7btDt3cGWizCZTurZB4o5JPLDCQX2Hs5pAIh5mLJnMeR3E\nik3wwT2CTo3EeppyzUVY2cUWbUJqhK6uE/TnsFsVRvUB77x0D/eSjpI6Q7VxC1uxcYW9zEozhjuH\nGM1jcJ8nuREmGXEY6PvUVBXfwxAN3wTPUYKhDxwli9LaQ4mkcE2beFUXUriDLSeRxSq9gynjWBvL\naaJLYYTUGv5YmKops/7JJULDHfziKcTDAwJRP8WiSf5CEMcl0bxfpzcdU7PPMfVaLCym8bRt3n7l\nUR/Ip/7JE5QN2NNNkuMxPm8NwcxCZ8pWtwybU5YKXraCEYLBHqndEOVwl1Eiy872Fl38SEKLtfQl\nunaScx9LYHRNwoaCYA3wRUP0NZhTTHrhAm69w1D3cX/zAVvvv8+LFx7n7gc7eM/LlIMd5up5hLv3\ncXstJl4R/1YfSgKO5sLUY7i1IIOOxJ36MR63ip1wGM4WcDUC3PxhmdzUIfe5j/H2B+/jDVqkU8tM\nsyFufv0vWB7VKco6mjxmUJvi0yVKLon0kspJI4S84WN/0qOV3OfCoYNqCIRcYWbDMKkVD665CD/6\nq/9ir/yvC1hyh953Isi+BvErZ2ncdZNUJHCb9E2ZY++IOUkj5UmSDqvsNwW8uRau6zcpGxoNd5tA\nZR3p6CGXH4/SFlNUu0Vc4xTdiIo28rI3qOOexgkJMo3gHilJZSQoxDYy+E9ixIQ6LbvJSiiBYTSo\ndQ7xmZcoRppcTg5xUi76wh7Vig/cUwqjJLMZ1DsnZHwB/MMEugqzxl2EqoPoEqkoIpYaYqaXmYkF\n5InKxDDo1WU6Qp2cv4tZqmK4Z0xDPqJdFUXwYws9JochWp4TujU37373TdZWTuNfEPnh9x/NcDz5\ni1+gu9/lSijEft3F6ukZEaVB0YjhrZfwr69SCZk0h0PS+TwzoUbqJMj7O0OScgZ70qdzp0l+PUBp\nMMI0wXILHIy6BIMTetMl+hEB/0KXyFSlHgVZbzO/lGPUnjJ2HZGomox8GSYlh1a0SMxcR9eq5KZR\n3EE/wr37TArPoq0JtHoTMtu7tIUIc3oK6HGy4+VKcEgpbnHnf/pTnv+nP83unRLMOqTMDJFphLl5\nN41lgfZmF6P7gPT5jxNYWaS62SXvDlKNiLSLQ05VVJRQDXUG3r6Dhoed610mYg7zwpR3v/4NAL7w\n68/RkRwWKjJ3qwccb41YPXeJQi7Ae40AjjomfeeQgR7Hmd1l33vAYCuGRxoxHdbIBgsMjSHRzzuE\nUsuULJ2ViZte2OJw6Gfq2ebD//Bv8BYep9PtI47zaG6b+p6JGgNty6HsmLgW1tk+brN2UicSGSEc\nehl6J2TDSUr7FfYbFkT8RBYV1BtHDG9fw/aGsZZDHLXCuJ0KwsQhp6k4swRjax/NPcKsWJjxNUJ+\nN4chmeBDCPptfP4pmaciVIdHtMdBZk6CpFlAFbZRXHOE0grDeo9hakBfklnYdSh73Lz/X9jFf/j3\n/oSsmSI8lJjrxSlrBrFeg+b9S5iRGtZijOqDFh/LBWmXgsTCY+ZXIhx60xS2ekSf0LCqYXptk5A1\nQRmkaFnbSLpOZXeE7NLJeuLUAg3q01XEYIQ5OcNk1meQsljs55lb67KUfBIjKJM7LVJsNum2Y3Sn\nXWbzJWa2gDlqc+ntJdRAm96FKO3ADr1YgKQgM4z7ycQH7DoSp8wmvv0i/l6F2fUQ+bUgrYrOclXj\nG7ducdp3Gfv+NcJekb27IybTs3TMNvv9u+Szl2mdbhIvJdFPrSBHq/iGyyjpMA8efkB8KPHjHz9i\nZS9+/KfIRNPUNkt4zy5hh9Zh0mDnjfdYMMecjWxQbzj0UhLBUJpkLMB2XObSoIt6RiW2ohHebeJf\nzmFPJHwdD7NVE6MJjZUAHilEwDAwrYekUleYGCUCn7zIUT1EXpCxxiWEToZIWyWhG9QHPpRckOMb\nAlbKRDHauLJrBOai7FuHfPeNb1Dpnmc7msesqLQPGrQOX4fWQ3JSmOLJhBd/9Z/SKr7MJCGRD/g5\nuF8iLXvJv/AUgwdbCHE3veoOozf3CVx5GkHT6CtDFu0cm70DrFAAw+zTmYRQI2WieoRitcOde9f5\n3d/5CQDL/+gP//VXzlw9TcxZwtZPEA9sxuqQsDqh7pphnEyI9d10dkxiS0m0vsJwvEM/u4h00sSz\nPo9pu3n99/+Q1f/uH3N00GDojtLwBfAbHsJzq8iml+7u6/ju1/BvLJPIXcGnmqTODhnbMuqVJS75\nMpi1m3SCPuKuJE7fpHqwQ9C4zyQ8j3E8JOX1MXnYQVZaJNcWGY92MaZZ7g6uISdM7KaX9KIX/9GI\nza0AH33sFNnlEcVijr4hIMW97I4PCblSlEpvoa4X8DaOmQ8q9EoOwdgaver7tEMC3d4Rgm2yJCWR\nIlGU/pChsMu7r7wNwN//Z5eZbUboRc8j3f6AaSKNXxgQkNpM0+d5YmOO6/t77G8fMTxssHRhhdph\nC8EfIl+qk754kdVzlxBSE0bqGF8ZdOGQdPo009MZNn9YQkkquGc+op0exyeQ7HmpVzf5xV9/knUj\ngTLtIHVKlL89ISTfJricIdHzU3IJBBbnqMf6uDM56tsPyPr99KNR5iUBzR8iF9VxJjXsRod44gn8\nI5kbtx/SjcZ47oVl/vI7P+Lge+/x2d/6EkM1S8xzmqBrHknsMPR5cPl1pv11WhGFkSBx4RmZxrV3\nkAI2bk3HkUL0XUd4Gy5EIc33/r8tM+VJlr64xMTap2x3WbA1KtEBlnNIT5FB9CNEx1gEsPZqSFIf\nTzaEJYzwk6He3WVgzDjjukDOP2QgjphGZuRXW5x/UmP60iEPClmMnS3cMwXb9MJ6imtbN0jJUVpD\nP5PQAW7jGfRDhd22gSb5WV28SOngAe6VNBNHwJwdszAXobpdJJOU0AwHb0ADvcBw0mTlC+uUgxNe\n+fZ1Hv/Si4h1GycSQtqt4k8s4au28UtVJjMvsqfKerSPkFAYKyrusc6CoKLHHCq1MO1Gj0DQQZMv\n4UvLXE4KXFfuEfQt8PL3HjW9J3wFltZWmUWn5I9GDLNJeg0fXp+P9p0Ocy88zeh7JQ633sVYGLLY\nPfOoSXpjysbIQFdMHvulT/Dyn7+GfRLFNGaEt07wTQKkpgmin1ZZrI5Q9qHsA2tZ5+wvrDK75qbd\nVRGwmblz2P27iDGNaG2AIIcZ9Q2mmRFCSeOkJ3H+40v0XmsSs1s0nBA9qwsBk9hHQqQGEQ71INPt\nQ9SVy1SOG+SeSbHkW8ef6tDS4gxaCstZmyPfMdaRn9j8iNGDTRK2xGbzXSq9OJriMIlmiYotSlqS\nuYGL2kqcTNohFpQo7lzj2iuPmt4f+5m/zylPi1F/jlT4CsuXQlR8Ov2ugzu7gH/cw04EKR53CT++\niqSIhLwxOsE4A1MhlJHZUhqcW7mMV84zJ5XRQjJ2P8JCuk/0S/8N46ffYFJMIV1SOGv4sDN9ZF8F\nZ5am19wj+5FPUBzvs1gSqY9sBMPHvfhD8qpKtRXC5+ozVHxMuzd4WG3Q2L9PIqohPhVj5ksR6JZJ\n+a+w2TYwTnpYz4QRjzZZvPIJ9iYB3IEmpckxs2OBfeUA4wc9/IsSR4cTJvU89WaDWMjLg+4hHiHO\ndOYiEc9gHQ8ZmjO0QoxA8nGsQI83v//oGShcLrDv03FSfoZGjZTt4sATRLVbxKwi6nGMdOCAB2/v\nE10/5o1vbyPulREtBf1ok0EN/OMm4rBHQMtzGDtAnJ5i8SOXIddhMWBxoIdJxU5Bu4we1JG0CIFe\nj+DUpi2eRrRUDMVGnMthbIepqRHEdoVAQMOzrWE/PCYixbjdHpL7ko14S8UJtVCiQbyKzlDZR+ub\nRKU27c4S9sqI8uwq85JFzX2d1rUa0c/L5KfzDMYKfrXBYCrgbx6Svvo4hWCKU9kBw1SVmVTD8Ki0\nZlPOjLpoqSGeByJte0io9R6vfvAAgEsf/TiezRMKzz9J5Z27DCsCcm/IF3/rF2ke2ZSPTPZbGoMz\nA5KighiuI0y61CdxlOMZYs1N1JdDjwYIz5kcNYuktPOUD3fRWjPaPhGfKJKIPkP5zqtY5hqt94eY\nyQZH1+t4Z17EoZeuY6AvqgwmJkZvQsTT42jb4PLFNRqaF7xtJqUpgfQynflVgh0/06lD0inifmWd\nSaPG6Sc8mFtT/vzrX8VV8bB564grZwKM+36Ey2MOjBFBxabkGBQrAY48OguOm0okyKB9E+Wowfpn\nCuTc8yhuH+3yHro1xY6dZjF+yFs/usVv/95PABP1h1/9/a9sXHwan3WMuzmPotdIrgWpSlFS4xnd\nRRm3f4vuURPvsk2m75D9/JNUbpRJLGiMj0RSYYPM6sfQ6x8wHU/wjRUmvgbReYlq94SsHObBX2/y\n9rBIbGWVxLjJ0DOgPPSy0xc45XTo70rYeg+fOEaqJBgtjhGiJU6sOdw1AymXIuIVmWgNZn6NqOSl\nLDXplNrk/VlK9206cznSV/PsfbiFXdMpKRbCch5l1iethbBdHcR2AjFgMj4WMd97iBZZ5OC9LdZ/\n8TwHJ0cELpxmctNmR7JYETaoi1v4ii0MpU3CF+JHL70KwG8s/iPM2B5R94zu/SrOYMrKXIIt2cE3\ndTNx1fA0veSjQUhcZff6mwRCG2TO+3jnB3eYu3IWyRfhVt8ic+BGdEpMWgqW3MK7YpOfi3H7w3eZ\njlwEQw6+tJ/xJExpYuIMPXT+9B20FRnFF+XC332OjKuCfHuX8fo8uiDjnbhZHsaZaOC060S1FN1I\nHce4gDM3YdKV2X7lx0QvbpC69y533ixxdOsOT2YW0aV5kql15pYKVG5d4/CkghRyM8k3UJM5SsdB\ngrMBLhzUqYtQt8vgpbdRZiOEqJuxf0yzO48nEqSfTFALu3n7m38NwHOXl/A0FlAUL4F+kJ3OgMT8\nJ+lxD3kgYEZ7eAcuetMegiSxN4rQDJVpvTEk7pIZjWI8HrO4/3aF3EIM9+UMgaCX/FKI2veauDZW\nEK/VOOrFePLSIgf4ye81iC9GUQYCRr/IdNeD7e8RzASItiW2j+8yGUgsJ8IcqUXWtQmjaQFTEZGq\nUcxSG0uSkaMioiQh+hRuHb/Eckcjm7zE4GALy5WgP5xRm4wJ3i9SDrjxWfOEEjUG6TZTLUGnOUYw\n27RyNsNOnLDTY9Yy0UJh+rrFsdHFoc3qxTzj8R6uV+/w0oNtAD7y33+R3mttlutNRpEkUb+L1GiI\nVjzh9myX+cQCJ1OTsBTG14deWue830TuKWw6IrrfpnXwAflAhnSszoNX3mP+6SX03DJOrMvkYELg\nbhvhd3N0Lo0YPjim+Fcjmsf3uGtMiZtTxpMh3aaXne0d3Bk/AXUBY9lNIrFBcWChXpTZ2hzw3Gez\n1E4MbHFGOJJiHOnifNhDEiEYHtE7fo/hcp5oL85Ucmio+/SOZYZmAHNNJ1qos73XQgx7SCUKHL5T\npp6XCTyZYGkkcyIUCaoawVCV0IlFfxZGbXUpTXo4CZMDwc297z9iVEbVBU498QJZOcg7jUP8YpvY\nThJTHRKaDfD4RJx8hl4hh89KopWn6MKIsb/JQmBCN+wh2/Py4G9eZvvDAYvPriMJRzSHbTqaG98v\n1wiOWty5s0lPd1NOzuPWJY6GIlXfAZ/5vd9k8927eF+5wVHWwoorGFacy+oikcYpuukyH17vclqU\n6YdM1kyT0AvP4UgF3i3fZC4+R0wIU51t4581sNMC07GOqqUpHxnMRY9wdQeUjEMC0glpzzx2dImF\nf/ELtPdvMXOPUJV55EQUu1cm7vYwN4T67k0kTeBwc4fSZhfLJzLy9rn20msAXD23RCLmwj+J0U6H\nSO2OsZ0RlndGVIjjcU2YyUmcj4xo6R7mfTIB8zQzbxfp7BrWLEVs0Q/ldXrRALnggNXkMu2GQ/Zu\ngTIu9M6UU0+eolcWCEouOnU/gq9HN7DGtHTEoLUMvja64Key2CcR7zPOpjk7lWleCHPp51Se+9Kv\nsP+LAnff+hbzcpdKIoj7XdB2/YjyMSflSwyGM6yJTn+Qx5q/zUQIMepFyMbcvHPrBGVRon24TSV+\nBm/YR/4fLOM6l+eNv/1rtu7cw7U0wXo9wmCqkUxCywjx4E6ZlXMjlPIRUifFj269C8Ann/sUk4KP\n3u4Dyt0m8SceQ0tD6d4JrvAhd1oOOWsfRbGZmCmqDBA7E6ZKHaunsgCchDXMnQdMffO0h30sc4A3\nNaDVEZFmI2YjP07YwJt5jMr4OrnMCSfWPP6dJo9FrtJdjaMGGsRaPlwjGyui0PE4nF2MYoyjJPT3\nMX5wwkFszI+EO2QzLpZDHuxQh0gQjqxbvPBbMvF7D9mJGmyE01RW50ieChL1ydQ9B6hOGqHcJ9hO\nMYmL9KsHdA78nLY0wq4opge61/dInrpIZc9E8T7EI+SZEw1avglDO8T1W9f4nd/8CWCi/ujf/fuv\nnI99FKcrc9h5hfNXzjL94kV6d2rc2h1izsqMnCWWggWSeoNGDYbrI4bNEI1Sj1B/wrf+4iHC2ohG\nMYm9ruEV4gS9Ir1piamRo+VpIwp5zuVsSre7BEKr1AJ+TF8KyRbwjr14l3Uy/UM6TY3ipI1b89Kw\nBQL6gJbTJif6qOyLRNJ5CuMA37v1A56ZnGOUVUjOzRNN9+l2domfWiF7ewf1qMlcKE6vKzByx6Cl\ncu7LOTz7HQ42N9GHJh1fgzl1g0DExuzsEUpF6I8tpt0q4Qa4TZVIfMbxSZXclWe5++omN+89irK+\neLHDz/4PP8e/Va4RzKa4cGWD+z03ki0jSyLF9ghvfMCtxhh/eJuVx6/gtcO0hmX8jk01JBHYbaNU\n9+jJAxJjh5lfIVoIcnuvyfSgTCT7BP1wBVlIUgw/Ru2D13jm4x6SeQ+DSo+mkqUpednq1nC7Iuhu\nSEwu0rCO6fvHVB+2SdoG7dYO4pU0yeMgsnRE8ZZOV/NxOf4kGVkg5QniOeVFiZjM0iFWUvOULRGf\nCpELccRlB10sEt2LU/PKFBI1PIMB06DMeDYmLpYZD2tMCgmqPg19J4Z4fhWhNqJe0wgXx/z4rUeK\nypnYAvcoMVm4SOmgj9bL0jKPuBgvUCqDMtbRhAk1yUDyijB1EzywmL/kIbw0pPbKGDuXIj83I7g+\nxXPaQrs15l47yCgaQhwO+Nq/+XMuPr1AUFlHiZfZw4NrFKCpH6GUPcTOuLnxdgVv5CzORCRZ6nMg\n7KNNNaLKhIERIxco0mq0UMU67ZMEUXcOOzBgPIIIGuIoQ6d5A9diF9U6g2uiYGQhfzjEdX4Z2TYQ\nfE0meS/LmTiVI1ClIX3HZFUVCbvChCYZbh9vsuFJ4t7wkxDjGM0fM7UEChuPIbHE37z8iLV44amf\n4WwkSe90hFOZFsGyTrFlsZWJ8vhylpvvfYOz2jotOYp29VnotNBbJomlEIe7XU7uHTM3t0L9wYhI\nV8J/5jyx/AJdfQvRqZMMRTi8WOA7P7xNc7fM2kGIqS/NyCORK0PbFSArH/Le9jbrV1LkbTeuZIhC\nWMFSwShfw7WtIK0EUI9abB6VSCQy1Gd1gpFl+kKIUMqhRQNTfY5qvYcQg6xgcqy5YKRQPlD4zO9d\nZvuN72IpTzPXi1M1qkjBBS4vz/P1f/m/cPrqU0yOfXgyQTwPJPTRIVb1AJ+W4mD/AzLP/Sz3xw67\n335U7vrb/9v/yO1mmPHgA/xOGZeURDsTZqzH8Ws38SsmEWNMSHCz5xzSa/gwYyoRGy6fe55yUYBp\nDE9inYToYr91k0TQ4LgewmP7eH+zz+q8j049gt+fYFFLIc4PWYwMWVLO8OMPv8NSv8w2Bcy5MEvG\njMVCENk1ZTfQwVNsEQzHqeS2eOurf8vH/+U/Qe2HGcbbXLCWsQJFHt6pEsBNPyBy6rBNfs1k9YmP\nobRvUW2cYmR1WfmNX2Wh1WFceJKYMyWbnaNz4GWn2iFwPo7RTOIeaQjRMvamja3GKLVDrC3Ps7K0\nTDwvsXf3LTZvPFJU/vGX/g7c1PH1ZqilA27GRqTvz4j7Q0gbBUa9YzZPDDy+KIG4wjC1zEgvYdai\njIoDgs0jhnKGfq5OZLdETS8hv9rnOBLCqwlI9jGxqJdb720RvaSgqD2MXBi7JCD0HDymSGNRJRMK\ncdzqM76uYb63h7exSNc6ITEpMPkwyb3P3GBPEBHGN1DPrHBm4aPUBrdY/Zwf+w0/7jWZXlQhfTBP\nUnJT9wdBvsfEiTNKVfBYa1hpWLvgJ9618CplRtf9ULxJddtB+1Sa7iDLxUAHI7CEr/UGxWqX9cCA\n7lijJh2Sdnp8971Hd/vsuS8i+MA3i9COCrjLVVr1Y/oRlZ0Ptig8lcQ90cjOUvRHRUbDAhunbQqx\nCDGfQWW/TUvZxjqeEXJF2Sq9jZT24W4WiGZ79MoDCj4fenTE2aHGQdWiE4twMaTgVloMkxNyiwV6\nezKG+z7Zp9c5uXfAGV+SugSCuYcWPEXH5+CaK7AUkdH6iwyCXhINF51Bj+w/zPAbzyf52WctlKYf\nfzLOuiXS8i1w8vBDzk3PkToVpN8Lc2I1SLoUokt+XC0N+YkEE6tF80DEnkok0g6DXoODwQjZ42Eg\nL6H1D7jTKFG7u8eXv/wTUHHw1T/66ldCy0+QexyGbRddz5DOB2OmskJhQScczqAW3ey/9XUsY5/5\nyx9hvCJgFhWWVQW1VeahMWRh/SIKUbJWA8lpoRhxmh0P4YUE0cM2MVnAe3UNJIFAuo0nuoB/p4dY\nLLN2Icq64mXphSjfevmvyGZewOPqogQlRhkXgWEBM+Kw5OrTl0W6ypgnz12ls3sXseBB1Efce/8Q\nLRDmqO0Q/9QCla0ZgbjEUf8GgVSdsTGjWFfpeR1mTS+RQICZEaSvlliMZxh6ZGTXBY4GA7SoiC5H\nkEJROh+WmF+PsSIafOw3foH//V//OwDSlz/Hg6dtgq6LPLj/AP1Pj/G65smmx7g7AXqtO5x94hzd\ncA9n28f9rX1OLzq89m//AywGUG0XG2c19EmCSL2D5tYxVh3KDxssJTWmixGU4R4ec4lbVpOpoJD/\nlbM4t2/R6E9IPLmE+9wGPUnEPnmX2KXTvPpnt1h7wUEpa8RiNpOgC48LhOw8a+kMmztdLFMk7GQ5\ndj1gRVzEwGQ/ZeCKuziljyGQp9e2Ce2Vmc0G2I0Qlkug4JKxG0fo12okN2Y0dqqYnigxxUUiOGXs\nPc206iXrSTOaHRCZOgxLDn2zRfPWN7m1fwLA0mWVNSVG7cMx4zmLmBRAHxuI4wN8yTpv3zyCwCoX\nnDFCWCIw82F6/KTEGJMPB8SyErYaxR9WsKw41bsxpMiUtlxl589epquf5VO//inCZoL7m++zFF0m\n1R5g6DrZgIdbtkguuc68JNPYvs9K7jSDaZ3o7BRyocxMV4hN+tjmVcxeE+EoRGfeYuOKQvDNEDpe\npkEJ26qRSZ/HGrvpeEaIuQaHP+rjZKpciOr0qyHmlzSclQi9zR5eo4rtblEaJal2Iyw/tcG7pfcp\nb5lceXGdgVlkNj6howdxRxRu73eZBJO88d1HCt6Xv/RrvFf5Jq47TfqqD3HjLGb1ARHPjLAQJRJ+\nnu2t7+NaPsYTFFjTclSOdki4Q8QfW0BrT2lFOwTaOtOoTTcxw2gaFNtTeuNT6JnT/MXXvsbnrz7F\nOV0lfPYM0rbM8jhEO9oiEPIxa00Iiyt4bIkwIXqhCaIso+zvUw166UyHZPtzSMu7JIbgGE0W1grs\nv7VJIBUmrEhIjSHBFLz8f/+fuBZzZKY5XIcPGVszPnztb6gUOgR2gmgTjeBghGzmCY4q3P2TP+Hv\n/cGfIGw1sRYNTo0DOMEyJbvOxJtkVIiyWIkwGO0wrt9l8607AFz8uU9zzi5iM8CpS+jdObaaLVYS\nFbr7LR5Uvk/8uI624CbunCYU6CG9ZhMiTOhShDt36rRulvB4JYo/6jKuVchnEo/UAX+aXMFhzjlF\nrdlDWG6jjpJUSjOiQYfyD17m5ndu8/jnP8loNOI088ySh7hWTuE4Pey6Tt+aEOiN2XdVMVtT5l9c\n54MHrzJ8KDIyTMLVI6z5LM3WDGXnhANbZ2hFcdQJer1KMnue1pFAuA2396JMZQ9DVwfn1j72S2V6\naobLlU9gFFvkPB0cM8UEi86oQyCbYpiSOFNI8eEPvsncrM5rm8cALH7hCYSHDoKqET6bQZ0sUdlq\nU2kO8N3ZohmeMhc8RW/nBsP5EO4bLR6aZcQzM+bKTdSVKL7qDM0RcdkmlUKcij0lIk1QG21qXon+\nVoPZoE1XOib0oYdx/w5+3JQmVeZmYYYHO/iFLutDUP0e+gsqfbeLdM6i08mQDEy45hE4rXpw5tKc\nYR2jaCCMTUJn/mu633bjcWKcefo5fKExlnKDULhE6BYIrQj4xlTuy0TCA47elsksH9DoxWlOLYSg\njS+/iLU9zwXtmNL0Kov6Ec7IQjt3msZ4iWPtPo6TBvUMr7/6KABy9rNxVi2ZYFTnRAlwOgC1vRYX\nnngWdgxm7SG5vIubnSKS3aLTO6FbUGhKOcIVP7ENh5KQYFKFTGiE1lc47E9wZ7vMqWmq7jkm0yjJ\n423GsRGNoJ/QscJwdZ6jRo9w6AxF0WYwuUm6s8R24yFr8assXojT7u4zViP06jLZjkR/2qGQWEBv\nVfCPA4SECkpOYjBd5bFbf0bm+XWENRlvyqAdmUfvv8JLX/8hj//y5zAnPeQODMUulbZDIeNFVrzc\n3dpHXpAZigquXAVRSGFU/NjBHkHZpPnG6yz8V5/ho/mz/O23v81v/iQoUX/8tT/8yuVzGu6um0rI\nYSY5nJ/zYRQlAvk4E93EFWijzX2S0GKO2diPOxqg2BsROPqQuVgOYQnkxBxGqYFbDGEWvuHiAAAg\nAElEQVR7F5hNykyZEmmZHMgCclSkfaQwU73sneic6vspXHUzeD7E4YM2b79a48EOzAcu8eYrt1Fj\nV4n3q2hilEHSwl33UbGOKfRSqLsVDncPudXqUXBFcOQhpdoJ/rkruKM2rnwMTWvSHxZA13DuN1Gf\njePf6+EdeVEuOMRElbgryNwlP5ODEIp/ghw7wd2vctJTyNsbiOYOD0dHrGUcTowpHtr8p298H4Df\n/OznmRaj7FounvvcEoH8PJmWyfD9D9g6fxnfKT+u8Tae8QK+9QL98S77R7fZSH+aQmABdRol2ZrD\njs3QUXnZuU3JDuFJzWPqMw6u3yU6DSJkRVy1NKtXVjF2DmlbE9qpJLZPQZ9fRHk4YDGzTU6PEhcr\nSMUR1fk4Qi+DaZVoBXvoNyXC4xlKXsBp9PCuL5Hav08l72XvwYjsgZuutk1bGFAfDyn8cJ1aaI/i\nAkwci1T4hEbdQk+eRg32MTse9LAbQROx/DW8nTDWkkTMbLLT3kWY+tFyeaxphfgZF49dDPOX33ok\nd895fUw3PsFHP7NOaMOkWjzBH7aZd/sRQ1FSZJGQEGIT6pMsAWqMGg4nag2nsIypd9BTbk6Ke5jZ\nOuOuiiK6ePh/fJsLn/kS1LcYd6DZMrm0mmSUnLDrMsn2yxxFPMxLQ0rNDBF3HWnmphGqkPGnMcQ9\njPYiUnjMMKMgOV30Zpdb+hY+l4Wn7aUqWIxSERxzQKSapBcXaLT7rOUiDHb7WLYf9/GMgZYnvRyk\nrk3oNO4yKQvYIRHXXBhPS2Htk1nefu8eCdcywWyBmGyxvX3IbqNP1j3Pia/Hckfl1vdPuH/46G7r\nH/kIzesDIu4s63N5GkdFXFORmekwmR6yteNiPi0R832Go+uv0ynPiG4olKYCGXuRbvAWD//jG/S8\nccKLPqbjKaOuhXguzv0Pb1Ia3OeZz14mvpEieX2MtHuHej7AmBYNd4Cta9cpLKmoqSZRr4dKVsN9\nYJFb9nC42yTiUxnETVqOwPyv+qnSozhJ0ylaOPs3UUppvJ8WGXWneO5UCbyoIclTrsTdeIQBd/U+\nhfPP41TrRC68wLTyGsFggfiSzOjYZuN3v8T9G+/RSXSQ60FiuslRr099p8v55z+JcdQilvHTOVTQ\nc2e4/aNHDN68WMMdDhDRPegBBdusU7lfIqPa9IpTxkELIXmJ5/7ZL7H7xZv4G1O0BYNS4wSnNUB8\nMCJ+JUAkGUbN+1j6fJD9yg/Y3umwXFjF1Q8RXnS4/cMtEtEZ/oiEdyFFminG5Wf46X+wQmWrhC5m\n8OzdpNxqszznp3XjBiXNhx4aMw5pzMUcdvtFomt5Dt+8ibngw2o0CC5PqfR3uXf7Jqc/oRHW5pnK\nLZpDN5mWjZRPcfP9EtdP7lB5uIVZ2kaZBYhk5+j7Jox2DAL3bhL4WJ66UWTYfpOJ5Sd8QcbVGZMV\nNfbKb5FYXGOQivPmDx9Vanxu/R9hLIeRE14Gt/bZ/PEPWH/WQUucx/v8mGk/TEWMs/bCAriWiU4E\nIk8mMKspmss9Wr42kVwSuT1hczzG58owm1m0pAmeUQ9Rj6FoFWZrblYSGvftGYOkg3PkZi49xt8I\nwHqA46MD9Ks5ph0J9yjL0moFrxxlHK1iSTqGoJIzoCyrmK02tXGB0KHD1od36ck2zaNdjna+y/Th\nhE58D7GxRFlO4bdF0t4UsXMmVmmAcGWZtL7K0cM2Z7MhDo00s5DC1FNEM7rUJyU8p+coO3GGosDC\nIIVcHNPt+GFJ4v3vPArO/N2NJ3G8GVonEklHoObUSXrP0K4fM/X70AcpdHsXJ+ywHMzjDE1SydO0\nijs4gQib1SGeYodUWGKvGcBlNUmvLyBujzluqTymJOkKLUrqAGltEd/xhLF8gBhws/PwBo40JiAP\ncEkJpt675ALnUNJTbm7uEOuk2LV28UVd1MRjJvk0yVYJmnEiA5nDQI3b74GcUNFCEV56q0JlZuIl\nyGxo0c1/hOfP/zad44c8/FaXW9XX+egLefqam37HZGTJJDSZQaOLELRJeDQmosLAW2L2sAzpZVqa\niPXhDu9+8C47N3f5rf/2J4CJ+tqf/PFXUoUXsObOktWCNEcjhvUh7VCXaL3HSc/HOLpIfKRTDZ8g\niRN2PClKh4dE5lcxXQ0+/ju/wd/8P5vMxSzGZouCE8DQu0wdH8ZghheT3IvPYjy8zjgXJ2aEiOfa\ntGJePGacXt+FkeuSMDIkE27GcoPsosRD/RjhcgHf1pRIesr8/QV2gwpmUiTgjbBw0c2WbbAYOUMw\nPo9XUtFlMN7axvpkhJCj0OueEA1nOCrD8prMvYMWwdKMQ6uHE4COt8P+sI5H1Vj49AUO3mkxXQgS\nkA7xSBAcSbTnz3C8fUT3Wo/X7z6K6l++cBb/GRXLN8BVVbCdDp2YTXwNnL5NNNZiLMX5/kuv8kzs\nLLPNeyxeOM+OK0kymSUoSkQ6bTotF5fkNlu9BMG5HC6lyWMJBW16iXatxfnFdZbPpfnhf/4ej7lF\n0lGDo+/ukbeSZKdBIt0G87825IP368TPBDi9tU1tDgKGg2bFePBwi1RyHflKmgdv66yeSzBqdMie\n9THddRGZtxjZM0JdP73tCnu7cZq5XTRXjqjhIc4QO5plpiwT8fkJTweMnAL7J11OBeJsvyEw/1SK\nH39zh8CFNO7xEpNQn8SxhTcT47VvbrIWf47//NKjOYl/8T9/haavy8M3rjOn5MkJpynN7vFn336f\nS2fOU7EOyaYEhOAaUstBa80exf+bbQQphmL66bpE9N6AyxtPI835qHzrL9Fe/DQTZ4BjRrG1ECF7\nh+56l0A7RkrtM9TTiIZIIOgicdqP4F8gIAyQt9NM3CojK4MnXcKoeshrCd5sPqRVHOF3D4l+4jSu\nWxYftGuEzRi5aA8nNsbdmdCf9pncPqKfnmc13qfwRB7bpWEd9xH7BgPPFPvEpO9WiIZm4PdS/1An\nHmojijbKbMDCqWV23jngbKSA0vQRU+JU6iKpcIM3blwD4Cnr45x+PIp7AUrVItadKm1zj4C3S9Oe\nR1KHiJNlZEGn7xfQlAzTmciptp/7+jGdrshy/DSmM+HcRoGuG6TYClFd5t2Dl3ns93NMTgaMHnQY\nJVwYMxNzJGIZJpbm4qoawHA5pC0JcVDCr4TwayI0/JyMBDqDItGMj2jM5P0fVRkdyczXLEKqwtVf\n+gKGfpdwXES5aLE165IQFpk2B9hujaF3hM+TZ2f3kI+/+FPo96qU7CmaWqFqzRgcHNKSfPhFN7Lk\nZy00Y7a2hlsb8r2v/XsunzvLaFikG3JjSqfYunfMwf1H7OL55grZxDo3D8YspKJUrt+n8v0iqRc/\nSVcoEaiaSMEI45/fpfeulz1riNAO01Jt3CGbql0kMVJwvCKexIR79ytMjOf5+V/4ZWw9jNF8SM/0\nklxVAIG+P4LRLDEjRGewRe2myly2h9IfUrRmiFMZ18YqujriI1+8QCo5QfXNIVPAXysTkR7H/Ykr\nyEWFtCggeNyIF3LMudNc0A9ZyTmUpydcmT/FjaFDtWTw3LJNNunw4mPPkFmUyMcjNC2BoNBgLXuG\n6XMnHNGhaQi4M2eoV6rMdad4vnCVw9ffwVJzaLMgpVCYa3/7yHa/+tPn8NzaRpN3qSgzWH8KORhC\nHGmMI8e0BjGk3gkzw6TfNjH6bSwVwqkZ9ZKKMpMIdLoMtze5W6xyKdplkl5lwdulPTPwamA48wRr\nJvY0Srvn54I4oBuIoasylZ5APjxAa0WZGhbK0CC20EI98GH0TJSKTcusIVa7OK5TzCQPvqlKaK6B\nmujgDnVZiOYIPtmhrhdYEXrcrHjw9FqIuoixnuZw5x45I0o67afyjsW8NqL46m1y5lU8sXv4pm4S\nrRnjjkQ0vcDkxojGbB/XyTLtwLtYwiK+xSD6+1Vu3HoDgOTPfIZzufNU7pRQQ31iTpSmt01HlxDV\nI4KiCp0YBzfeZ+PJn6VSPqThTZFY9dFUNc7VBjDvJegzSOUjaCM/jewAT1qlf1wk/NgptnZeIy+n\nGOtRjmMOakjhqF7hYvYcbs8IpTZjaqdpOxq2c4C3MSW0FKBxCGsbEi1rSqS0SKN9jKRP2dnr4igB\n5OUsbN/mOd9lBpMZ49MtzKSCcBBAjmqY/jZvPThhftykpRTJBj3ElSD2QhbvAShuCdXjQxwmyWkK\nIWcJczph5/A++ZUlAtKY+awbK6IQq4V5t7TH73z5n////4n6o3/1r77y8Y9cxnfOoXGrzbl0Cqkd\n5UJgjcNZD8suoeZsenINvEHUmYTLGZBcyvPgnTE/fvUHVFsRvMMB82dyBA+P2Gw+JCz4aCYEmAaR\nw0l237qHop1jWZygVFtkUktcO/yQZiOMf96H934H1bdP1GcxtFzM/FEO9Tusy0vofYNgIkB5ckij\ndkIyu0RQDfKOOGBF8dNqdlCLRTzWCfWISXrhWYI9ncOdET3BSzK6Q/EP/xLx9BKSEUCai5B26Wx9\n/zqucJJL+SmlYhBJb6JmbepvDun0W9x4cMTymScZ+lRQprT+r1e5MSoD8POf/QK7rttMjzUUs0Jp\nJDJTXDBy83rzA8biiLAd56lzVzjUewSW/dQ7LjyyzrTjZjSr43MFiOklxDsu/Mk89dU+F+Nhym/s\ns7GWoejqM6412d8dkjub5mhY5Ec/vI1lz/CcDiLmsjDd49Yf7NCaJnHGBXoeE6O8irmsIkoWQU+X\nWhSEY+gM9sjYFdpbdbqyRLi1zeCUl5D3LOMLIvZsmeSCSiIVYVOWWN0QsRoqlhWiGxvBVMY7M5gZ\nQ0aWn/Q5DWFcxjNLoXgtsrkI3cCAU6M8+5UblLQAuVNjPN27fPf1R9tSL/xKkDvbCaLRJ+kToFTa\nxkWIn7myRmQjg7en47PjnCg6/uqE/qhBRdrFkOZozQZs3rnJUnqVdHjGN77zHxGlhzz15WdIbTU4\nKoYY+dqshHt4siquUhQ1LGCbEpPyDDs5IhlwcClx+rdNtt0H9Dwq8ihCMN6iaYxwAgJ16ZjxvT7x\nSzGuPhvDJ4xx9iTii0HGskLDGOGpDGknVIKdGJo9w/FGkGYCcs2huncNWdI48Rn0vSYeO0gwV0R7\nQqPf17Cnx8h9m1lUYHSzy+FmhUTCQzU9I6NFkIvHZKMJHuwXub79aPbl7/zzyzxo3yW610VObNC3\nVGKXI/iEZXbu74JqIjZ1uppCQNEJGj0Cj0kosxCxYZu0E6AWjuDv96gMNXJihMFmkc0V+O0/+CKl\np/8Ta29ECXsCGAMfHU7TcxtsVasMMw6ODplnIqjudapMmflsIt5Vrt/YxJvyoQbzjFSB8h0vUiGB\n0Z0ijbOkn17l4MEd3M4SHzS9+DaeYtQ2CI8FwiGBVlBm1PWykxwxf2We7u4OD/UWC1aQgdpBjfqJ\nubOEJwpCuEz9SKJsiGwZBwRHYOXzaClwFQqM7u2wlGiz/lNR/vbPHtkrv/bHv4njCTJL6mQWZORn\nnmP5zDrz/iB1W0ZcD+Bry5yEVSKpBBFPAnXeT3PQQ1ETJAvLSBOR/5e7N/+WJD3IM5/ILSIyMyL3\nfbv7UlX3VnVXV3dXt3pRq6WWhJAEWgBJ+IzNMAwHDxgwNh6fY+t4BnMOxh7A5njAmLEBHWwZIbS2\nlm713lVdXVVd613rbnlv3tz3jIzIyIzI+aH5J8y/8P3yPed9v+95h/N+xKaXcDzCwqzBOzvv4ZZj\nTDpTJEVGF5wkHWHMpkUyJFOp9FGDKfSYH7cqYG35kYUe1ZBCwYTDhkRtf4Nr+0PyxxZHUo/JiRtV\nKrL5Fz8k89GHKWQbdLb7BLQFxs0QbrPGS9/7LueeeIRIKoqnIlJNB+ketRhOQV802a8b1N1TkpUa\ntVCW+XCKg3feQU7NE4wHcTltcobC4vk8/c3b9JQwkm7gClVJXS/y4u33of3xszGe/pWneLHmR+n6\nSetO0ot+DqQKU0cPBYPJJS+xkoNA0o3mqJCOt6nVVwiINapWjyfj5zhyP8+assWm9wG2YnO0W6Pj\nbTAN7/DN//Ajcj9+jvvaKWrWz1hPw4NNPAuzWK+76d25Q3mvyrHfZLJ/DU0MYAxMNHzYFzSCOyk6\nuoeBdEpqo4apVog4YpSGNv33HsCKh61KmEjDZDcpEUoOmPEtUQm76e+N8a1PwJwgWhYpx4hBXuDM\nmofXvv86jqeynGmHeev7b2AnTFJNC3uzSMe/zsJDUw63i0hmh5PgIp3Q22y/9H59/Pf/7Zdovfyf\nUB5ewus0Oe2YDK0Jk+op+XQcq93DoSSo2wLRUBk7oNMNuhgeOFCqhxwOhohCA8GziJnwYU07JDZP\nEcxLiF4Rb6VK059GyPkJO3U6rjt0XtvioUtLGOUQGioTs4GupGh7Dkl55hjPxpls9WiGerhOFLqB\nQ6SSTXtsoURl7tU2+WA2SyFVYGGxwBuvfYVxagWvEcKdC1CJryD+0hf52vd+i+fPLaAXZGaaYdxR\nk5bhQOjdZ3zJx8HrAhFvH8MxQJ8q6OYI0ehy8cl19OKUihRC0lvY3TzhoMmbP3qVX//Nf/o/P0T9\n+3/7u1/+pV/+GfbbZdoHRcKuFNq7hyhLPvrX2wQvqgS6D1Pf2uHMlz7E0ZtVWo198OR49Pw83rxM\nUPWQz89x/co2+ZUkzqkTt6KjWhLV1gNUh4AUtDiojXGmAoyTE5761Cf5+u//Nnoky7A3pnDJwH8h\nx6t/9N8JpGfxb2cYDx2MAgMcSpB2H4yoRFi2CMQset4pEclDUDTR90rIiRGGukjx1duIFkhKnVtH\nx2SSc0zKQ2p1nQuf/jj6wQOGkokrukBOjjBOeBg45sgc7VMbxAhnVezaBG8wTDJdoFTbwVHVefqF\nj9Icj3nr5vtx99Jzs0ztx0h5oWQFeTjgohkvUjOyPJqO0T88hUeXOLxxjUErjq/vQfW0MfUEsmCh\njuZw5wUswUdrVuVoYOHuuun4NHpSk+DOPlLFR+pylPq9W4gL6/hGYbzqgMd/+vOEYy5Orr6Bv+0g\nHInQbo1ILAXZlwJMhSpyr0nf8HJ6vY0pxkhkjonOPEKx3CZ9McpANckkV6HcYaO0jdEvIGT6eCSZ\nTvkOLAaZHwzRrTH+YIeUOeK4+Qab94cMKONzj0lwTGz9PJYtM9VKjPZs+vEqjo6EdCFBe/cO2ekj\nEJ7je3+rOPjMxV/CZ/upDzZJLTSIZC5x/+4dcKYQ1C4H920M3aZ32iGZMrBG4ElBOrrAykKB2ZyI\n+Nc79NUWX/rUz2HPeNFfCXDzrgP3eYHoOE7z+gn5vMUxLaYRWAn36QdbBDWT1w6beCIh7m3tMnKa\nZLR5srFTJq0mczNJumOJQMOmc87NUysp9rdlvLeCtHNVTrvzuL1thmMVfRQi7O8TH4oIsxNOQh4m\n4wF3xUPWzn2Mm7td9lu7ZIMzuJnDeaoza4zx7guMs2N8XQ9WROOkqLCnt/GsBRn1vVSqHcK+BL3u\nAen5KC++/ioA5/23ENc/QSESYyiN2Ny/h0+9TEppEPQbWOYqnpu3aI19TOdd2B0P0boLOxqmnwjj\nVR10vS08+giPNWCvsouZiOK+fB7zi9dZefsyV1pjWn4B/1Gbrfs+IjGFA7XIwuAcgXAE6bBFsXoP\nrR7FHtv85dW/oX6wy9r8DAmhS7/uI6zGcR9v0zr18oGza9x66xqj4hGJtMbGoZ/g423GD8a0rT6i\nL4FrX0aI5YlNKjy1MINwa4Pgup/bG1HiX5gw9sVQKy188zOMT7eo9G1mNRnV7tG97WeqaNR3LPpG\nH68/Ri71JK/91n/jVuP9uZzgp57jqKxzYTHD5msDOsZNZplwIoWY7pxwemBjx23G2wOMXh9nzEfp\n1haR8zNMimXwKihY6D6ZbusYVZb50RUHzz92gY77CGN/j/sv9TkbFnnr1j1GngGuuQzmVKfZayOO\n/BTGBlPJwOh4COGkqsTwua+ztbFLNOwh0PYj+SzUoE104QKJFZHjq7c48acQKxGEgotdq8aHf/wX\nmLoMRt0EikOkqOsMbm+hdDLsehtcmr1AuVLDnAw4lg3k+wLHCxU8EZuAEWRi7zOqDln8cIbxtR8x\ntXT8wyZ7zjoPOc7yvb/YZkO7B8BPfK5AoxIhiEEv7GYwG0CwFFLOIbWdLiMXhLY8CGYVn16k3XZy\n0k4h+SccXt/jKc8MN902geQePTkIHh3/2EMiuIzStum448Q8GcxQiEu+ReLrS4zqJRRXGvvemNT/\nskqrqqPOXCIzN+W46yS7skB6KKBVOyxNVTZCLuy8QPDeGKewSaStIzp6DB/YLDw+ZmevzgXnFE/G\nYNzMMHc2TmvcpzXVGTlGBKIq6XaWorNKbz7AjSs38Dx6lmIYVOUDaO4xra17pM4JdG4fcb/a5Lnn\nz7M/7jEjFlHcKzz7wRRXXv0hezf2Afj4E18iZj/DyclVfLECZrlON68g5x/CKVcZigKye0p4aZGj\nksjKJQWhLeD3FNlwnjA6KiMRovCJh3nnv1zFlyzitVYp02d0MKYt7ZFdkxElGYfWJTyaRXedpXmv\nRHp5Qtx0YAUU6oMJZtvHodqmfRpgKb1Hff8E10yLyECm6ZwQyaTomTVypsSxXcbqHUIjzoVPxpFH\nCuPGgKa9y+Gowcd//SLqOQWrkyYzVDiV/SSVMFlPFw85zr7waU6bZUQfeN0K026bQRCY7HH7xCLm\nAlFz4BAHtO0y2tw8Gy+9wT/6u+CJ+nf/97/88sWf/hjiy0M2WzusRPwIZ8e8/pdfZ+3RJxkoTSod\nF8ELYQ5+VMTKqQQaaYicEqk4qUw1IsE8I0eFcm3AGReESgkCoSF7hgXpOEG7SkAMMrOUZFK06Y3C\nPNi+y2IiRSzkYP4nHiOe93H/q68TUB/Dm/dilEukHo7gnkzQnX1csoTScVMOxTh+oLOIiN4zUTGx\ney38kSSpwoibUQ8eR4igJjLoasQKBZShhd84JpdeoVkeYiem3O7U8VoK7arO8eY11GAM7WkvVitI\nRWjQckn4LQEFGYM4bseEiHuXb/+tf+b80ofRuhKclbigg+aywOujNt0nEYvhjk0x+n2MqYzpiqJ5\nXYQyDdp6FWUEkb6XQVQguOdBHEyoLFeJ6mEGBwaZgYd+0KBxCotnsnQrXSTTgxIfE/QFePBGjZre\nJ8SAoaCjjjPEVvL03U3Uph8z1qA5ziA4mkT8c4QzYeSOBzsQIFzVSK8r1MsyV7e+zdLaQwyDFgOP\nm0lrF5IjusYIubJNej1F1zrBvx1kp20z88gMqm2zeOEFRnEFxTXD8ctN+kkJ6dRFZ+JGaLkYmlD9\n0QGBixHG0zGh7jLfee0rAEQ8Y2J5J2phjdPOEilfDyXsZ3w4YNqukFCiaM4x6twSq7PzuCWV0ThG\nXb/O4LUdbjeuMjEULlxa4L4hYZb9+Jpemv4K3sqAtBVnWjhFnffQ3I/hyARJJAYMNmSO1TCB+1PO\nrq3gn3poHwuktB5FRUbN2pycdHA86eGk2MK5L6IUJKL0eOP1Oj5fAbHmIltwMfIG8RU07HIYOaTR\nLQ8oV6esLkYp1WVOHhwRlqo4kksM+yX87RDWgkjYI7E96JIveHEtdAjujXAEJQrRAMLelLTiJWZ5\n0a0JkbRAW3iIl1/5SwDSSzMs5V5gJxVjYurYA5vQGoQrEx766Y+ihdqYepht/TXi2gL5pMpUdKOZ\nfY53LYYBUA/bHIgTVhZiCIMQqrJGOOznzq0HzKwVMBIZTnb2mfPN8KPjqzz3vz6N8/SUkBLBOqrR\nHmk0TYuMmKKQ8iC6RZLnH2Gs2jwwVZK+BseVE4L+MCexeUZKmzFxxr4T7OQsTz3rY/ubXT7ysIPD\nahhRN9BDZfIRJ6JDRnZk8YRFblQc1LubeLPniYyqTJ1BTg5POb5dJDPMMgrInJxC6IkhhWwUbWOT\n+ceep6OXGVU0Ln7hC3zta/8fAD+hnCMbFOi4nNy6+QqXU2fpVqcIMRUl7SI9G8c3ClI6rhIIxQna\nbVp2mMW+gIEbrx3lqK+jiy4GONHKI1Y+OI9pn1K7corPPWD22Xn6ShJHQCVSha4wJGw6yKkJAqJE\npajhj6eohi3EzgBvboDLmuBKhYh6ZcbRJnr1ccaVE0z/EvYoQyUMQWeWWMtib8PG4xvgFUP0pACW\nr8jeOMl4nKC/eUClXeHx9BkkQWF6pDOyBBCCpMZeYp4ht35wk9RqjO32lJjL5v7bd3nd1cClmwii\ngC2PWUqts7L4eb762n8E4LNP/xiumRrt8iz5SZHYQYLqaA+tl8TwwcpoQN3bITwXo2oHOLOcR588\nQL/tJL+UQZVVrP42csVJsSmSqOZQTi32dl7EnchiX9mG88+g6Cb7hoP1pswf/+5fkbz0FIWZMTeU\nY+bdYcxClGTFYDrxYKpjSkMd+zjAUDrGbj9Av1qiHk6w8KkMzrKXolkmNj/DrZtDwg+lOJpoWGIX\n4XSXbj9OXvIQiq0xHLnwed34M3F2Ojvk9jRCRp73hF0+99EPs35mjs7Rt5AWniRUGnCQqOG/+Cks\nJcTNP/o2eTHF8socr718j9XAbV5+qwzAUmQNwy4xs3qJ3caQ+AAaWZEzRxYTR4RO001PTuCSW4y9\nE8YbBjE1j6vYRT88QD4zxOg1KXQTdB0CyWgWPRrGE04QqxvcKB1QD7Q56z3LjStd8L3LzNiH8Eic\n9l0fmrzFBVGlfyZH91ttNt8ps/zoo/zEL/w8wr/4Rf709/896fRlKq1TRsEw45GDpmaTnVUYrX6A\nyvGInGvM1rDDeNnBoCmRTKlkoz2kYYPkZoDWZQNHp4h8zsAdj/Ng823e2e0S8Sm4v97BrQkIcxEc\nJZVOp86wZTKUZin4RgzFKc3hHquZAi9/94f8+j/+O5BE/bt//W++/ImnPoXm6NOb+omuDEgi0/HV\naYUFkAK49BlmZSctpUY4F0Mf7OHY2iUYiRIyLI6KZaTH1vFYR3R7Iay1MIftY2KTzecAACAASURB\nVCgEUXpFVN8F7N6YWnQba3iMa+8BytfewnkhgTuzylt//dforh7ucgrv3IRwNcNUatGwDOKyTqAT\nY3tUxKPV8HQslucD9KZt/LKC47aB79wSh7t11PSzOPpbEM7jmUSJKg4CHomE5cU9alNJ5ck7NbRU\nCm/VSTewiSq4mIkEkHxjtImL2vW7xBoh7KBOcGbEuBVDs+9ghgw83z7l+/vv11Jf/PB5spkxo4MB\nh9oBrrGJOxhgqSlhuib0qmCHbEL6DMK0iMu4RfWWiX3vCqH8lOrxKSXlkFhfp+f30bROcBoy5aUE\nzmQPGiJbxgYnThfDr3wH4RmTGxtH/OAPbnJpoFN4aBGnE+bkIM1pkL1Wn1mfSdxvMO1OyXk8OP0p\nprNNbMMP0yodD1SlEVZpmx+8+Tq/8Ls/S/1P/hT18TwrwQzavT6iz0dSbrMYfIx6YwBvdbHDCuJ5\nP3WXm/CwDZMR3nsSjvARjjMu+p5TvJIB7hyFGSd1h0zsuXXS9TgOI03Itc/XX3n/Qf6nfmUVc7KA\noE8pl2/RuWLi84cJNDc5MrLkwxr1rRZ61Mvu7jsMw26EuodBy409m+Fh7wqTHAwkk5HsoBoQeXPr\nOufWAiiywsHeO3zq/13k5mMbNFBRow70xpj9IzczhRwVt87ybJj92immJ8+0MECKn5CueoifdTD5\nRhdh8ZDHn0oh1UQ235zgzCm4IouY/glzikTj6l0qVZucPMItOhiH5plNgS6XWZ0XGcW8PPrQM2SC\nXpZWH2G38jLLvRX24xV6/VOOKwOcLIMnxiB2QOOOE4diU7GmRFIKvqrFQBkxL3X56g/fN0j/6o/9\nCpXxZebam9SrDqyrbzN2L+JwB3n70KA39rF0Qad87KKmWUQiI0aixMSeoLoMKt5TPvzJH2dYvcm7\nTRNVq+H/hIJ67Qqz/jYnep3YqydogpNS54izZ9eZk1uo7hCddpWIQyIYjlA5OmZlfpamaaIpIxJT\nm+KxmxcW4mzfrTDTTTEMGKR6PoK+OithB5rQYrvfYKHppOHRMI9adO7XuH/9PVYcy0ycArbXzYON\nXXzWDKbH4tl/+DSDo9eRb/o4NNvoRwOU6Dyiv022eUxH3yEYXafd6SOkQgRyOVytHouzMW7Vdnjz\npZcAWP5UlhVxBWF8Snr5BYZlE2PGjfvdGqH1OJXxKXo1hNyK4x7J6OJ9dottwnKMqTLFinQIdvbY\n3j3lJz/+FLWpgFV5wK3Xr3Eu7sGVSTN7qrJ3+wr2ukj8uMvm7juMKkN8vgL7wpCZhQhbbzRYuDdm\ndz3ANJTDezhF89ZJnuYYHvmJujscTwJMf/gOd77/Jm5BYm+jTqfyNvKRFzllsDeyOCP56R2LDMcV\nznU8OAILzK/EaWsDdGeVkrsEkySRjokkqSQ/f55RWyWjGPS8ElvtIMlZH8vqPPMBFU8qhXO/w6k8\n4Y//sEel975S44s/+SSjjQwNdRf/xMugc4uAI4liGtg1L+NBgKRvlv3abSbamP7bDU6HDp6ILlPx\n1+kVDwg7nXQ7DoTVAmJoSCtwkWOnk5zrIpv5GGfaJYaGh0xOox9Q8BUe44UvGlw7uUtLLyDHupTu\n18hcXqUSDfNj5kUEPYj78THDdhwpfQkpUuWcOqbz1iHt5CKhqJ/Fp5fwlRw47R44ilxc+Qix44uE\ng1NONqY0ug9oN1zMaDbD8AlzFZVrIZ3JWRO/FcAduMSJt4u1rzFUengHGSKSydC0MeVjwlqBix9M\nctztYLdvYC/GeOXF+wD85CefZ+irUCz1GRhj1EUPcrWG1ZPYrB8SyWl0jwYEfbOYuxaF4YQbiTHP\nf2YB684+TwXSzOQe43DcIaMFkQM+WrU+yrhOI9chMHTiyp7B2i7jj53ScoZxigoOfYS7dEzk0MuR\na0Cs2GEzZeBMednYPOLKv/znRBsumtIBkSUnoZrKmvsczvGIaCaPs9dCaIEp38PWo4xPDrGHCSLC\nCaHmBK1boi4a7Lz4Mh63TC7l5M/+xwaFVZt2zYESHODJKYRbKtbsKeaBxKT+Dhcuz+FM+vG6Kpw6\nRSjWCTxxkfJmnftv3uLX/snfgSTqt//N73z5ubVZlv/ZP+fkp97mlW/sM5l/iLOZJaSBk1DXh1xs\ncyzY+CJZQp0TamaZpcgM7oqOQ4nSsrrkMwLd2pDwezrdGT+TF6/glHKYkoG32UUJ5egO2qy6/Lin\nBYL1DVwrF6nWDtg8jjBR+riiUUYVB2ZjSvpclEl5zN5eCau/zdyjszQaIVxRN94Hu4QTUP/V30P+\nhWXMlB+1Oov1ZIveewcsJDI0xqeIRZ3TF19j/ckAbdOJxxzxrlsgbLZoZiSWhwInGxNCrWM8fQ/e\n6hEtvw25eaY9HdXhxNtp4HPZOMsKB9Ih19/bBuDJMx8ifKGAbAzphWw6tw6YSgZuZsFys7V7ymwi\nT0fZJO4VEcJ5RvIsoUfz+KUZ3I8EiPcWaD46hzUZ0r97gFbss6C2qBqLLEanZLKPUOhGyfvOYSqr\nrNh+Co/kiVxO0Cs76BYmVG5XGfYTnMvIHLhaTCQHjd0ETtHDqG9QKbvISCLv2RO0+23UpRTizg6p\nxxdp3C9jd0RKTZW5yNNs1YdM1SA9o8FRx6J+pPNI4AV8s0MO6mMcoT5Wap2g0mDfPGWajuHfrjM8\nCiOaXRKDIRN/mE77LnKtgdVokPLESLyzzV88eL8GvZhXMdQoYc1BfuQhUgDjTpO9rszlh85zpytQ\nOtxlNq7ib6WZah4y4Q7xdAxRGTHNTrn73h56SuOkJDE5vs181EHpYEhLSzJKbvDYmz/Gtxav0M+I\n5CtpOttNyoMx+1e/xfbLfSb6IcXTAwIzC/TevkltnELzGKRyKbSLbU427hKrjjFumoRCFmXnHAuB\nY/KjLtNsium584w9Owi5BIrSohkIoQsjWvehF21h3BR476DB9W98i+ZRm1alhruQJzG6gNktsTif\nZevq6yytipz/1OcotTfxeQU8W02KtQiOQhiXP83GyTtcvfr+kO7lX/w9jvffRAyrDIdDohOJ0JzB\n8QMNa7xDMbXDsbzB+exDDO+UCc2qjKwI45ZGbSRytt8AKYG+YePKOAg7hnz322+QLixy+J1bHPZ1\nEqE5FnKzeEJOFudnGW846ZhDOm4dIZ1E6hZZicxTG72OZyLQqnY5GRmsWDabHi+BXJqJbqA6j6n2\nyiT859jsauh6kqnuxDyq4ZiIBBxxpDUPStTEDnrZbR7hM0/JxWA7MiKUCjF8fRdHy82DQ5XQ/oDZ\nwJSB28XEc4SSfpz4mSAD6jhdAbR2EuPkCrlkhNOkina0wdtvvu9zOz98An9yGTWo0zW6hEIeYtIU\nwSFS3n2DYGyB6Mgg4YTMmSljj4pVqeKfhboYonn7Fk79DI9/9Bzv3HmN9J0Bu9ePWU65Ca4/gVOz\nMfCBfUzx1pRHHlnCctvsDnvsdXeY64Y4DrbJREKMixPcefCGgpixDMsJB+VtmZFYoq2fJeHcQ1yP\nMbM8z8q8l5mcyIXlMDFFRI8J+OY/zv7RgIvTEZNvhil6bjARExx4u8QO3GgfaeA0fUh1DS2ZZCId\nc+vbB/iFNt6pjzo9on4vQsRHqywydxnEvM07zTaS9zJP/OwM3//KfwXgqY9FMGcb0F1HnmyxEyyx\n3I8yyswSjsBxWsGyFJJJF5m2wHh9lUdiEbqCSVcS8QsjjFiWmsfDfDnIjXuHPPahCI7KFPdcjseX\nUjgyFgMzRmtP4M1X/4ro5yz2NosMlCihkYDZGJNZLnOrt0lmPED3OBiEJUanHcSuQLJ8Qkh+nNqJ\nh2PWSU/e5SgSpl69RZw5Nqs6l+MFXn7xOnZ8SP+ahtvcp1Le4exynGt728TsHvNnV7lb/gEhM8rH\nL77AjSvf5qHUOvWdKQ29ifKwSnPPj8s9S20xT+PGddy+JtpU4c3vvsV6PMp3r7wPUR/4wAJOZ4Op\nFeJsYkKzWycS/Ti97j3MaZDMZz6Br9/i6stfwzuNIHhNIo0mupIl257g+0CaFz73a3ys2uNEcnMy\nlFH9HWKCF3HiwO2MQWmEW0kTTnl5UCsRSfth4iUaN2n1PEwDTrTcPnu//xXmLiwzk1eQeiKqHCOQ\nvMDU0WW4G8H5xIR+X2bpjIoWhnr1gO7QQhTH7Bg62ZkcxwOLqjYhuyQTa+6zcvYcLU+XkaNFYHaE\nv5TGHvQwqi2EoYmSG3CyP8E1deBYnIWyQbsbwClWGNsRZj8QpXUN3MEU1975Lr/xa38HtvP+4A9/\n98uPFBQ2PrzJo+fO0Cs3GLt8qJaTUL9Eq32HgV9GGCWw601mzshowT6BiULJGcDuNAiey7NztYyU\ncBLx2/RbGrEPLKI7NPyFJd7dvE9YFynoXrpSjrAyorYmM3Tm6DqcbDX2iA/nkBJ+zgZrOAydqt7k\nobU11KUwcdbpPOiSV0RUfNTtCiBj/+w6AxSmzVn8vgDH5bs4ZmdJ9R+wUzzgtf/wH/nAP/379B0x\nnKjYviiq5qHd6mIV2/j6Ax7JqxQ9Cvvb95g9/wz9ZAbDUpgbHBGX3bz3oyus/vQXOLz+JqnVj/Cj\nv/06/aGfv0DQDHAoj/GaLgw5Tv/IibU2phOJEBDL9DcsHhR9OD0aIW+ARMBNthwA4YR6w8FkcIij\nFyIUN9gPtfnw/z5HtdUh3A3Q3teIBXUaRoWW5sWMmTTRCIckmqpM1IJhK0o02SZtG/Q8Iv6KC3G3\ng+BQMX0NJt4RE5eAHbVxtTXsOTfPralYbQe1XRNpJYwazfLiK/ssBBN0wyZCXeC5pxJ4f7TPqpjA\nKSrcPLxNVI7RC0QQ94aUfVNEI4T+1hYdBWr6Ce3IWZweN1rbjytUINIJ053xMLz9l1SLb/FSuQXA\nTz9+kcV4AtFr0ApFiIpu2qbC2YQfLTBFrGySv/wojqoDI2lzWhvgtQz6jgoudYo+GTD/EQeGo0qk\no1I5FUggoCZnSD17jtWVdXp/77+zf9ODeNrj4qdncag22fkwLi3Dx39ikQ9+9lm64xgXXjjLMNhF\n6ZYwPTUO7tzm2tEdLmcfIRqZY8eKcqe+RWwiQEXhesQmZk+4+6qOkhuQLTfpn0iUuzchHCc81yJp\n+ckIBWZiCU4aAcRwACUYJxYTSCugjkVGBiSMMP2xzh/+2X8h6rlE4qxIMzxiYNWpKGGE7oD2u3e5\nffA+tC9GVln/fBi79ldYB1U8kwjmSpq6WSKZeZSxP0eun6O2e4Xnf+5n2bz6bc6EI4z6Raysi3bb\nzyASoDu9j+IoEBiKdF/vo4kzNM54SeTzLORHDAYG+5MykhZFdx4iWC6MYYvDq99DW14gF1ZpuULU\nHLOsRhOkwnXccQXxuI42OGEho3JqrqBOXQj1Mfjv0mlU8KZmCUk2MTtOfm3AwcYxjuwiuYbB33zz\nmOceOsOgLRPSu8j5S5i2QHG3yVzZyfycD2t7TFUpcuYf5GiMZjFuCRgqaMUBMwGJ4el7HLJHoLyM\ntyDx0nfeT6K+9OG/h/VwlGOrSed+n645ISDFUHU34fkzVPYPGdgSg6mOP+GiNK3ja/fpDTosiSJu\nPCQfSXFwVGKk9XitOWL2i8/jiYRxdw45FGWkKTQtm+DEy6C6T9A1RV7OkJxbxhqAua8zcDcIXngI\nc69B0OEn9kSC4fev4xjHiITDKPoeR9IMXauGJCdxBLuYosFptYsw56E0SjN+JMmC9yyxo2POFTy8\nXXLjmsZYCRzzcuslouIcmi3glp04zA6x7AWacoOVlAt3vEm1DCm9T1ux0YY2WxvXSKfPYn1jC8PV\nw7YVXvvO1wHwZ76A16UQKQ7wEiHhD9B3L9Euj6gnbyM6YSj0kCpO9L4bTzPO0LXHQapDvKLhPZPj\n/l+1STzxvjBVOa4jK1AfbpLJFDDMKtb+kIgvg1EA2V5kzlek7JR5WE9SH9c5lx6xP11g2ZfBd8fL\niTjGO77PhCxHC7u0YwJeh0o7JVAYySB08XlUWj6B6vaAbMaJ5m8zzSwztzCmoknML64jFlLYA4Hs\nyKBtJGltlwmuB3E04kw7N3j53bd44uxFtOt3CM6nmG5blApdcmefYbB3QCwqcfv1+yyHfLTPLpN2\nZ3nxzVcACEx+kXw3TuRinJtNA0XJUmIXz50GyscLNF/fo9fRWO2fI2S3mbUaDCQXt7x3+c3f/COU\n2CpfDuSZXMgx6iyzLBvsCBKjMyP2DqeoqRaGHKSg7LDfO2Et/wy9fZlWrUkdgaJk4krIXPqVGCs/\nX2F2JYOkzJJoWVjH+7hdXd54s8q5x0vI/Rw+o4EojumdnBJTZSK+HKWaTcoecO2dWzz+0AcR+0fk\n534c33jK9SOF4t5tHDIk6yIviUX03iyS109Im3L32OSZn/kM1jRAu6vTDehkjR412YHLlWBy6xrV\npTRrSo/Xv/cuv/aP/w54on73X/xfXz73f3yC2t4+p/cnjNdCqFKRG1dKPPr4BXpZCV/Lw0xiiBJw\ncTS1yOgmg1oeNTzPZmjCfHQFueNC35iQyXkISlHC0xaiHmIoVHA3eiRUkbHgoNWRUJUkPp9N7/Zd\nPvl7v83001eJRrIErBExxxghNUumMOXWq2WUeo+RpdGcQDLeYSRMqP3lCfaigkuJ86O3S6zIPnR9\ni4N3TwgkDR575iNsXTf40r/6RU5rAzrbB7QyNlboiJHSo3j9iMVQip07e1RrEmKkyNnFz2I1TaTa\nNqrVIfRQCE96lsxHH+PB25t0ygbOxBxvvvTXAHzosSdpNC1k1SJYGlOyJpipDq2bOud8Ae4Ua/hm\nH2EpqZJQnVgdG2eiwcSo0Al6mBEilM0g08I+9aMJ+WiC07slJmIKPbGJHIrSFZxMxABGp0E6EsK9\nW2FiZomPDhloYYzgHpF9FyNfEP/JA8S0TUN0khB7VD1RpGSAWCCI7Axiu4ZkTBdH9Sj9jTKv7+/R\n6SUZ3rzB/Zvv8syzKmaswJ9f/TrSdSfSh9bBTDDwHDEahjHHJdKyhB7yYeyOabd0hFk/87NZPM4M\n6X6LselCn9YZT9oEDZuh94Bg/MOs/9ISf/6f37/Unv4/44yWlxiVRUK2xr6uk4l18Skixds7BJ94\nDLtYJZD1MNjfJvvwKp1IgNYDC8vXJ1yxkIwaKhlGvRayJ4Ha9CEmodce0Zr22DwOMpF8DGWdra9u\noxsKpxtHOOtObL9NuGlzv3SEozdCHZhcf3ubTzz/CaSojzntDNfe/iFudxn382cJM0CxDHyXFjED\nOlJymd2THY5fvMsoorD27BpG3sQya9x8vUwunCQsz3BYdZMSbyOvzuHQQyxOonTVLaRaG23GRquo\nDEIRfFUvQSmL0+vA0+qA5mTePcHnGhF8fJZXvvn+uf3Cb69y7y++gSNxmWjTTWtmykzHxCmMMb0T\n2ls6hlumoR2QCAgI+oThlhNz6EEOZhGHD9DcIeSihasiMO5u0nlkmRlxjKQUiNthysUaMY+A4Qwz\nNMYcPGggzYO/2cL/5DPEtTa0LProxBp+NN3DsVvF6CmUa7soCwtsWjoOtUbKNUPZquOwmnQH56nU\ndnEGLc5ll9Fv3yL16ArRgEXYPUU9IzLQw9haBpfPj5j0cH1nk6WQwfREQ6+D+cIA8zMqb//wJr1i\nAk9Jx/tYksa2m9i5DkfZBTItJ+LRt9k/cnP9/vsJ3jO/fJn61WtIRpC4v4nmHNC/uUmxeQ+fU6WY\nt8gnRmwedtkttugNG8TPith2hk52BqUvciL1cEk54mmZi7lz0Njm3ns7CF6b00mEuquKce8BwYCG\nnLOQXSJZQri7bSgM0OI5EiOVdtlgMBJoB4+pTBqMigkcx0fIZhAz7cDSZPzBQ05CBcYdHXsypJa5\nQLheIpvx45kKBE919is1BDmMnOqix2P0y1d57tM/h6nZjPdbtJPzoAsko14m227+/D//P0SmUVw3\nvbRGThaybgSPh5jc4rC2Q9LyoAWazBdDfPOd9+vjD33287gKIf7s668SX3ORupSgdO0Ah+jEGGUR\nDAdnXX00NUPYr9I+OSK16kbo5nD6fRRvTZjTBTRXEMHYQ7kQ4pw7yu2NXeY9abRXSyiZNU5/8CZN\ncYp36QShv04gdkDjtI7X7+PU2WftBNrdIxz9Lp5UhfLEgVhtkjIsmkce9EGYoFah5XZQHyQIOg5p\nt2KIjzUpvnKIvn6OFSNHKeDDKx9wXxYY+n3o+jHD88v0U/tkRiVU3wrvGq+Q9syykp2w/g+e4c2P\nXGfTdchEVUnemNJ1HhJ4b5fMI3G8q+tU3QucCWoICT8vfuv9zcHHZ1eYrMnYfTdT0U/KO2DodnFi\n38aBn0gL1FYHYUbGrN6jr22S+OV1Su8mUS+eR9DHBD8Rpn6c5M+++i2KzSarH72Af2OL6XSO0HSC\nWxnhCl4gbc5TuvMmgj+Cmi/T1oO4HTbxfpgH+TLesy4KMwG6B1Xu37iFYzjFcigELipIgzV8xRre\n1TUGnjrhqYeDhoeWbhFTdAJCitjn12lpI2adFvXqKad7FdLLXpAUpJkobcnFTN/DciQLayLR7jKW\nEqBX3KIz2CKUzDJ58BbtTIbpSGDBO8C2BAbNFv5ol1e/f5Xf+I1/9j8/RP3BH/3Jl/PjFNX6CcKZ\nFTJTqBWeIljV2NHGvPAzn+Ybr/6QS/ML7N9uMm0naKUGeEdlmpMerlGT0dGEzkIV/9CPsb/DcNzk\nmDbGSKY7cGHU/GjJDMXymLxe5lQMoE90diYTrF/exRWI0C9rzLlMDpoV3GKU0nSAq+LDHfRRXw/g\nciYwTvfJLKVoqMe4DBVpVSU4WGCUskAY4nYmiTpNdm5M8S170LdOmZZ6CKqffTlCwjeltiWyGs/h\nFCx+/D/9Exq9Cq2pl3jGpqFbdJQOPZ+HkW+V8uFdWlWLw30X558OM+cO8dff/isAPvSxn8fsbVM8\nmiM4O2LSS+OPmFihCIphkPav4lf38VPB1c/TmxwzvF0i5E8jMqXqNim9+EOC2Yv0phNuvXmfsR5m\n5ZMyO7s1/sd3/4YZr4Il1Ml6gkj5PnedDhyFGj3TT01rk2v60ZIKuuWnNzNg1BdJ9dOcdo5BqDM4\nChGYDokkTbonPsI+C6vfYPWj56DWILF6hhfOZrDXT3hQbDPd3WP9c5/B2a6xRp6JY4/OUKcVOUF7\nUOFYNihocfJRk2paZrq/z933biOVj3CYp5wrPMRAdhBoOZgYbqzMCsGjLuUXLvG93/tTAD7+wYdp\n6R4mjgjUO2Tmcmin0Duw0bwBWoZBfmxwVHWRCM8xaW8hHJ4yDfmZdAwai1kUoc1xN0WzobI01CjP\nSWSdJrocQ6o8YP/uK6waMQZjBxfmF5CfrzO7OM9J8xh3MI0vGKOrJKFi4RFtDnw6kuhiq3wbrTZl\nZfVxls6MKdeqpASZSUREikU4ebtH2K2gOtPsdG/wWHKFmrGLLjcYHKURpyH8cY1w28GS6sNhmvga\nLsyqg0m/xfZWiGqnDOk89R98HXe2QCruwxkbUxwckuleZORNkJ3ro66OCRVq/M0fvf/lXAzMserN\nkw372KwKWN45XEEXhpxkFJyi37zPB3/qg+j+i/zxb/4r/uFXf4p3H/4+2aceJu2OsF3bZdGMIcw1\nGTlCXGvfJD2UUeIyfn8RRyVMMR1l2t9n5YVnuPbaHVShQr3TQFgLoIoKLnvM1JBpN0yEUYOIt8mN\n8jVyVpM3DkpcTviQfREMR51OX8Tp1nn9v+2jxKOszooEYy6GP3yN8K9/lq/81n8l7VjhSmsX31GI\nuCXgPhfgpQdvEZ+MST+eQPvat+gOXRgPX0RLrtAvu0ndCRJ0pVDc75F1+KiEBBy+EH5ZYtiTMFx+\n9JTK9TfeBuDRpedJSrO0QieEEueIdhW86g6JaQyt4GDoUXB3XTjmp1xWF2jWKqSjKdIRg+GOk5Zy\njDjtIflFRtcrOOQx+cefQ4yFSZluaukKT4+CVNMhlMlZ3Nk1pIKKNxHmptTASmeIGC0O79wjFLSI\nP6UgBzQab5XJKRKV9oT+aZ2Bd4wWuY3oCzM1OvQnA9y+KZ5NHbwWxd6YVnGCLxBGcHWw5Q6OZJh+\npYgzUGCk7yHbI5rRJXiwQbdyRPfAw9MvuPD2VVxjmYanQ7ruRxDBTtmMPFkoRhBX4kQ8S0ymEi++\n+l0AfvYLl7HaaebX4ngDz3O0Y6GeW8I2Wkj1GhuTHZxtkcKJj/3ckJw4oGLMUk6L6Adu3AkvPesN\nLgST7AknPJ2JsT9qIW0NqOaDRA5KnIRtnr0YQjb9mFkBWbvF0cmQ5a5II5ZiZ6NP06thuGzCrRj+\nQplI9kPovTb9cJKaNCQ0reJWDJR+mN7p65wurnDGfxepvMzDz32A3g+22QokKXj2CZ9ZoXyjjz8d\nZ6qESRgavlwb2Zeifr3H8CGB0H6f4caY+bcSWN/XuRBdRjlocPpUnDTb1JoKzVCOytRBxFejc7LG\nZOTi1Vff9+A98YnLLIdKuEwnobFB2fQz65YRXQa5Zpiu7kb3S0jtNl1jwuUv/AyTmsbRORFv+gIP\nXzyL2NPwtAXmgyoeY8yweYeSTyVY2md0xktb6yNEY4zN9yhFfBRUEc/dNAfGXVbyK0yWzrDrOWHq\nhFF3jPQnTR5ayNEKLmDFKkytKJlJg2prh1AwwLvXjxgNVc4UvKilA+rhPIfmPlkyLBQWaGs9Bpqf\njK+NOxBA3mnRimvkxgZ6Okm/v006l2LjoETMKOF1+8gmFlHnTE7eucqMGmAkeRkOFRKqisuXwekO\nceWNG/z6r/6j//kh6nd+519/+dMf+9/YefM++ZUgrtCYrFejb03I+Xw0vXVyHg9CN4jROqbmH7I0\nEtjrTVA8QRyiiCI68LTihCdtln5qHlcrzIPSECnoJeNxEokHGHnajE52cD2dIjtrUbvf52hSRJ5f\nZdk9Znr/lI5zQNDnorS1g1ayyGb8lM6GSHeh2emQW1qhUp6i9L10bRcX+ma+/AAAIABJREFUn/og\ngyz4x3WaEydhp8hYcxE6L1A8s4Z/o4xrUEGQoyQEJ16PSGzOR0N3oJS91LZPkAwNsR+mNumz6o5R\nOyix5lug6t1HKM7jy6n0ey1SgpfRgs6Lf2ss/+ylS+SzScLRDpvdOt6+i/j5JUr3DknPLNA4HDC2\nBSr9Gg05Rd/loXn0HTqjHPuNKWe6ZcYffJa4yybp9jH/AQmz6WL945H/n7v3fpblPO87P9NpYk9P\njmfm5HDPOTcHgAQB8AIgGESJlGyJWpd3JUsOu9auJKvssrzBy9rSWiqpSpbL5dry2t5debkWSUuW\nKGaABHBBABfAzeemk+OcyTl0z3RP9+wP1/+E/D+87/t8up9vQN445Fr0HF2pQVKN4LsQ43EpyHbh\nDWZJMCpYRBQbPSsjyQNcoTEdY0hUytGwIghTCm1VRI7qdMMB2oUmnrrFplpkEgoxKE/h7RYQBC+N\nyD764YC/8fJvUJ95RGgqSrLrRU25aDpj3N0AtnqG4VkZfy/OIFXEY0iEgj4OA25eubTEdDZBrarS\nrh/RygU4E61RkrxstxuMpi/wkxvfZf8n7wNwUtkiNP8iS9oSrbhK7f09xG4fT1xl7HKTV2wODAFn\nIuOa6TOop3ATA62G87RNdGIgyhLtvoOvFKWX8OBrdmjN5ch5+ozSa3T3HIRIjXUfuKdF7Lqf09tD\npPiIgC+OtydSqx3i82jcr21wNZMHK0z5SAffDE35kHQzSvVU5vP/3Rd4+PY++x9XGTZazF+K4fYn\nMG/eQHotQ96fwHCvkLYMvLE2DFPo22W0F85SPgQzViEw16HYdnBkm03vJuGaw9qri8SRaQyGtIcC\nB3sDCEwo7Zsobg+j0ITm4zu8890DAH5p/Tm0+EWeSiqOUiZacwgLXZpii5WojMeSuHN6wku//ItU\nbzuM/3Gdedsh2LuKnj/gwd0KobNDDD3PeM7FubYXJTCLPZnC8ITpdD4mE+jScDwYhpvJ40ekE3lC\nUwGi82ewjro0h0O80RwJVxcjaZDxvMjVK9doWlU+/bNfwd62EKwJkj6kg8qaP8hqIodvNo473cZf\n77OrxnDf+hD/p9aYFT3EklFGEQuzNqRk1DiXh+5unLxTomibZDOvUbt4Fcd7m4Of3GTKiVE+2Wf2\nkkZJyyCcSIiWgqp1USomowM/Z3PTfOvtZ6GRZ7/0KcxjN6ElgZg8g7wwYX4tSzsoYcfiCBWNktBH\n0mcJrMSR7+xys7mJO7DAcXtI22lxNbWH+IaBms7SzcTo1MFdesBHlTbtuoXZ+i4P/rdTVsuztJRj\nJoExZfM+ajlAPCtS+Q/3ubD6c/QGBUaaQgE/nq6bkT+DGU7iylVwvDaXdT/u4zFuaUD1cZsrVxbo\n1eogJ/FWSvhUm2OzirfvwztVZ2wb6ME+JhbZmkbNGJM2GhiNfc6eXcCSw0QFDdWXZbd0THjuEvlo\nhnavjaeRJ3fGy3AyYj77IpVaiH//O9+gaj1bH7+cfRXLLuHOaNQfPGKm1UVydPyqG0NLM/TKpIR5\n2p0uMSnGafUIVSrCUZ+A8THregahPKHmFVmKh+jMfQGjJTIVTzPyN+nnbRzFw6F6iOewSIMJI9XH\nNclLLRNgJSTR8c/wvJNjyWdQSpp0DvMUju7SCAo8r0WYinSRtkaMWxn0T0wI5xeJHO9wOBwgtqtY\nRxssvHoNr97AKgXpyA+RxhbMz1I93CAkmtijLKd+DxkNCh2HWCDJ4MxzLGaXuLFhURp78YUyONIG\nreIUcnwHzeNjJtPkyDZQ3TKid5e3v38DgC//2s/S9liM0iFU4SnSUZfIJ5awDkysmTajhofxrIxW\nD+GPzNDoFjmt9oinVhAPeph372BLBhVpRMwXYfSZWT7/4ksMdwzKgRDxmMh6L4nad2g5Fgk7S7Xm\nYjpQYyJk8QbaNKIecp0g+mjMnLJOzZmlLjv4hgJDv0G3o+B1nqDPLNO812MwH8XulykUW7hmr5Bt\nlTGG04S0KKNyASVRRCyr7DQr+Ahz6pGQRzIxOUTYMrh5tMfdP3nCF7/wGlJihbv2E8blHu5YlEFX\nJDyfQ2j2GLpEEufyvPnG1/Ceu8DWOzf4jV//LwCifud3f/+rr/43l5h3lanZboJGANGlsX+6RfSF\nAPlgBuvAobW9hUeOsX9yh+l0grO/fJXWjacMdl0IqoZfbWHXBaxgm3uGwMDVYlofEz0KsPvkHtpk\njLyeJabFMWo9Tow+fmuByygE8waVvbsMlTDTV56jffsQ31Sf+FwMvdhn90BnMTjh8KBNwqdTVYdc\nuHAWZ0bmaKvL8cYQj11h3NpDGHYJBLI0ulvE9oM03V1OE8e4Wi52Sn3kikXqapC9lMFed0xXP6VW\nFsmoIcrNEt7eAVaii1paZZABw+hS703QVkz6Nx5w46Nn7rxLr0whF4c8tKO4eymc6ThqeRvX8jpP\n328TnSrTG9TZfPIBeI/JnQuzsPAqnYGHgaChxyv8xb/7kGW3gx4OYIkexOwi5ZvvYo2zdD0ZRt4U\n2/tHHN1P0unfZLqbxJ4+h5QQOB2W8BZMrJQMcgC3x42GRrVsUj7dJi6OmTETyCK4hi4SKROfGiW7\nlsEonZD+1FkUXeTj23e5lsww0jL0Pyrw0ZObPPoPD5ibSuIRfOzJY8KjFmoCrGgGT72ENe9hUveg\nDQ3M7V0WFpewvDrDZJJUp8dA91HJRxE7fpKVd/jl/+Ui/9fvPtNavPzaz5Iizwenb1P8s/sM8ONf\nn8Ez9nB6XMK14qbr6pL01HAdqIh5E49UJtUMI8ZdHDoepI4fLapRtlXaxWPE2RXykRE//JN3+FR/\nik6whbun48usIRbd9PsKRtJi7LJJboc5GqsoLYtjxyYXtjHKXQJFHTVlEVNMJsgUZS9n3B4++PaA\n7KU1PJMBwbkM4qEbZb+LnbQYtzTMxSZ6c0C936HTDlPql5lRfNwqbxJx6tTMIE2nh23pvP2DDzj7\nCRX/hSTt0ygho8LQN0ej3uZ04zYvr77MqUcnLqhEAmm0msi333wGn0H3IpP1ISdhg9vfqhB7QUTT\noelXwMqRmZ8mfVThm7/3r1n46xcY1OHMuSU+3H+XsSeEe+DC7MmYjsCS46UfrzLBRTsxRyI6wn1i\nMm6a7J90yHUqKJzFs+qhIAZQ7DFt4wRRnKW5M8FjtTmZLNM3d9gfjfHXjijfvIWwsoZXlnj8g/cw\ns3kCfoXGo31cUT+u5oRJoofknYO+j6o4T8gfYd/eIjl7kVGxSbzn0A7IhPtdTo5rmLOfgJ+6SsB1\nytVmlWgoxebRgKlWh87UCol2j5HSJNhvUuiGccltrMshfnyjyu7Ws6H26isv43FOuZiZ4eHeEaY4\npHLcp63KhDpjBoEypuMnK9bohYYUbvXwTQVY0kycpSVCXRtPdI1KzEXQmLA/KpFfuELN3yCVsogL\nHbwVjRdmX8Fl3cRZW0B3GUwLDtvdAivRS2y3m2h9m0Kxw0TWkYwmppXBNW+SahRYevUSvqGG5+yQ\nitFjYCfw+H20kRnfV/CYYcTzCzw+7rOoKFiJLHvHd4koIRj2SY5naXnb9PEROFJJ5RaQgrP450Tk\n3TDbjQrrc/O4n1Swlye4umN0fwmjMyEdusz33n2TjzcH/A9/+wzf+v6zP1HLg3lEn0Io3UMNJhgE\nRHZ+/JS1+QQzz60S+7FNz2kzf/GI+49PEc7naXtGZJImfu86bUXBzhh4tD635DbNusnSTBJLrKJ6\nFvFsuLhvPuBC7wwb2ohELcGM42A2g7hDA3pbHboCjL33aY5HRFzQGE0zr1qkJy5uHlRR+0N8GTeF\nlEPjQY38UEIM9xgXlomcqaPmZukX7tKpHvE00MeemGx8OGZp6h7xkcJW0yQ2VqDfpRwYMlsOYvkH\ntE6OOCkdoIltBsYE0drAMm0OA6fE+kH0ylvU2z48hQFaMsNIr3LjjWf39JX0F/FPhnirPeRkgNy5\nl6i8dYd2XifayjKhTbrZQFC6OAsS3apNfMHPvDbLfnOPts+F4h/R9Aow8bLu07mltDFFh4nfQbpX\noJldpy5KxL0Gxw8MGuYTBnENv2jTS0fIiD5qzQEjdwpv0kJcG7CU0dBdA2StQSk4JFFLsrxmY5kO\nMeOUWjvNwrk0LWFEweMlle9zPj7PqdwhY+Z4FBYQhiru8mOEwzBnfukMrtO7BOUmZ9MBfFdkHt3r\nQ0dl0ZxArIdnAI1+ByeewqtGKBXbuEyBxFyQXM/hh9/5Hv/wt//Hv/oQ9Yf/6ve/Opsakpi/QqCT\nIyKbOCWb02CNUDOKmPXxuHFEYbeI/8I58rkCckKi9I6D17ao92+j+hzu/em/x3vlOochHXnSRntS\np5VbRFVlPPVjOmsJTGWCRYBq0IPP72Pj4Q53dg+x82f5wj/923zv/B1WPavU8ru4N2VO3iuydbzL\nykqYaNCNPdxhdFAh3I/gLjqUbr3HsWRx/kufRusdYFLm9j//Oku/MI8SuoS314aCRMJewR+awuWx\nGbpV5l0hhONDJMGmi063MiF+JcswJiEZR2z+4H2k+TV2CjJTgQyrRofO7W0Wp17mz9/5FgB/7eXz\nPJZNdDNHvHOCsqGjrAdYaArUkwVkpcPiuSzD0ISphZfRin6O9BbHm1usiiEIGkwUmHYLBOQg7z/o\nc9DWUeMa0iCAKY1Qh13i2XnKm4/ITFRmXlgjik1r5EaKKuTaHkYumUS/hdmdoWRZnI1WMVwVXOpz\nlOZ13IcCt2/exV7Ikqja+Dsxnhbe45OpF1DXMjTeV7EPV1ADT/GmOtiNEbP//c+gJQya/RHGSEeZ\nRJj2uUFxwBlTxY1XiRDthynbCvXiDs1+n0YpiR7XkXoRnmwf426fcO1zUR79jd/kzdqz8zbllEjG\nLuKS4pyb/TThwAhRmaHh6iPHfeQ6MhNZoyk7TNQyiq+H4/fRLQngz0DAy+DoEUPHREvLxFrTOPku\n5d0nDIIRIit59t/b4Mw5kePKgIAs4nb5sMIjNHIchmyE8SPa/gSrU02GxxZVw8GoK3hGJZRxBP9R\nBHspTL8XZmquTq80xh1PE3CqOLIbIdzkz3/8Htd/ahWzd47hYZuwz8Fp1MjF3ITzMrZnyPFBHWfg\nYezVUWd7zH0pQWlnxHzAw1CJYvcrFNIV4oqPTDLFtS9/DqN0AOdXSXQMCvELvPMfn7mlfu1/+m1O\na018pz300yGXkjF2XX7mBy4wZNymjqQ3WHklQMHIEf7yNN6Pj6iUu+DXyK3PMzA75MJNPr5dQFT9\neLsWE7vCbrBC/pKH410fXjmDlRdRek2cczYLf2+RzRf3ycoL2O0TEpZAZFGj72ljl11sDN5FLA0R\n/BYldw5LHhJ195iP9zEKXhpeF576FsV4D0G6wCWPyX6gReh4THF8QvQ0QLlzjO+kyeVf/VUKP/qA\n1JkJcWsKeTmN6kQJvf8jNsuHWEcLXIukMPOwEJuibsv4+1VUZY5uZxPLm0SKKmQvy7z7H591mSnD\nz5JOx7AEP2a/gRmdZ2OjjJqWWTt3l/0nI1wFkYYvhX+soEZCjH74p6hfcHH7vRJi1s9SWEc+VIg9\nVnC1XIxnRdztFgHvGh5bwfF0Kd3o8OTuE1Z+5Qy295iJZNPWK2RWVrF3bW47B7z4d/9rhL0yufl5\nFqID4pkIiy9foe7UMT7c5sSncubsJ6lt7iHGRmTGKfpzMCWCOqjjCAOOAgUEocvy1BmMuhddKTIq\nh6i6u3j1IYlphdawh22ZnFZsBNceasBDdSRTNsqM4wGGySR4HK586Wd5/OFHvHPjDa7PRRF7Jd78\n6FkO3ud/8cukWu9hBGcRe1V6godoa5fdusx4Okp9w6RrWgSvh2h//wRzfZ7XnAAPDgwenm4zCTfw\nTHSOjhZYSrZZHuv86fc3aT84JhQds9UJcz13ie3mBuGUQ7fYo2IP6GhpIrrDSJlFWbUYmCGS9VmE\nyQTN8nLU0hBev0bj5Da197Z4vJziE7JOYmrC/aCC0JzhOLpDu5JjWA/grPQ4OW6iRVcgpZBb6GMe\nXmISPmItNmLfmeVS/zoBn58TfUx64qUUTrPiK9F1ItiKQnA6yFBWkbpJQtEg7ZTAylYGbX2AvwsB\nQ+U7bz/TLl759BqtscHzV6+wXzhluzOk67aRpXmEp/eILOSwghI108dUIM5h5YRmpUnqFpzKLiT5\nAJcrQ8t2E+1NMDsJqnafQd/LpwICvUkOX8/AJz+l59MRnWkCXj/qwiwHxQGJqI4tj1A9fcLjAyTb\nj+Y7ovBoi2HLxJs5T8cbJJCr4A9eobHhsOWxCK3A6d1DeruHiKMRXSWLPWwixPvsHmyjVToY0S4+\nIYEzOSVZuMHoq19jaq3Go89n6UpfxHtXwtN36Dl+9so6rpwL11QQ+WNYuNLnsKMRdQyavQkf3Tqh\nXK3yW7/1X0Dty+/93r/66qc+92VcW08oWz2YCGy33+Zcdpn+0iU23/mQOWLMzPiZjDUGHo0ff6PB\n2c+8hilFkVQIyAH0fpT8+WXkrRpmN4QWmsU/LFM/KjM5m2cpdoH3D2/Qcwak0wrqMEzgSo70ZJZe\nzcb/d+4wF1T5k//ze3jjMqGoB306yMq5depOlM64g6dhosTc+F2z1LefEjwT5pXP/gLdtz/m0a5D\nNKiy+Lu/yo/+6DschjQ++ZmXeTicUBSPiAwf4wzrhM0JWzUTMZ6mJxZI6FGUuMWwfULIJdJojQhI\nKvMLcYymQLv6GOt8Au/167z1tT9m8z+7pdZ+6xLmsE9i0U0iGkFdG/PWZoPochK9NSJ+cZn6vpfc\nzhLevkErPKF02EXSTAKZCZ1xlGsvzyAXW7TWV3BLJ4R7XWLuOu2tKjPpFYa2yHRYYSbWZD5zlgox\n6kOZjL/DUc9GP3qEpKjUtFm6w4ekBjJ9R+CoaxCbc7AaIwa+IbF5H56mhKlNITZ2EJopKkeb9JQC\nkWSeLUvFk2vijnYw9zXsHYFbt3exnCm8aERmOwyGccTaMfs7ApoXkm2RY7FI9ckeuaBKJ+xCI4S3\nZ6NemsGWatQPO3gljTd/8A4Ho2fn7a/9z1/h4usavk2BZqiNW5zi9LDD6lyVsOVFkRQmvjGPD58S\nGCQIT0SC2hipNaLxuISdTmDdfkJ32kN5FGLoU6kPB1z0XiS7HMVXcyOeCeHseOikPFjDAUmXhL+n\n0TTD3PvmD8kuXyaypnHcadB84MWz4EOIzpJ1XOiuDA96T0l7ovjGdaRalr4rgEvrYe0XURyVbb3G\nF158ncO+G7HqIuWuUzIy9DMuAoaAMAwxbLWphXZpan5e+c2/SaHsx9ZriAcuxk6IiHiKOVCJDTPE\n1wwePqoyubGNE/BjtwpUDrYJtRu88c6zDrgLiTaJiIJWHbGcmkZNaRSPTxDmUyhUqY0ExJDB8Ri8\nN+/Q6o7Y7k1Ijx204QjPpM3BaYOaHkc76DB35hyGEuDI78YYxej5PdQHLXJFOKrs0RpV0S4rxH+l\niPuxzNf+3Z+zmpklORehqtWI9oMMB5skKwLh7IssXl4m1VDQhAjukwbHyQUiox4LqoAo+5iJRei5\nCmzqHpKal4lS4KhcJZP9BM3eLvmpJB+8uUV+Zh6z3SXsG3K4u8vYE+X+ux+zem4NyV1k0ihSCPRx\n52Pc/fhjZp9boHn6hEmrh2FWmeou4Zod8uOvP6t9eS7+RXLnNTwhEcV6hNl2Mdj2k+34CJRqqEAr\no9CWEsSadcZqAt+sSUBZxj2MYM7GsBWD0I0RxvdOMV96mWigw+2PD8lmJ5QjAuG6TmM5zsXLK+im\nxrHLTXLZQ/u7t/CGpxEaDRTi9LpbyO+kuPXWNvJtA6N4ipBq8v6dKO7VFe5Hp0ntn1DuFJn4Y1S7\nE0RXhQfDAL1yC/81gTknQjawzK6lI3BAZ6cEM1WuR+cp3N2mv7xGJJ2n4oiY+wcMlxTKJ0NSbRdy\nKoYxOCTlCtAmwsnWFnMhlWxS40JnwujwmO/vPQXgpV//FWLrn2T3+99GHflpLbU5FwgxdKqkH8uM\nYxMWf+4c1VsOk+fDrMzMcs91zNPv1Xh1JoLZ8GKlz5K2BjSn0jy5X+HatJfUZ+I0IrOY+TbVcYvu\nro+R47B4yce8MWGojtBEk4HuJ1Q+paIsMLQGdOpg6EWK/R3GsQmh3lmCSyp+dwppu4gUH9DaBPds\nkNlGlfnEDMawTLBdp2FNs5iu0RnFiHYkjHiVifExzsM4ygc2RycPMI5G7B5X8Zt7zAxiFKeX8AyP\nCbZ32K+fEL37CMm0CJTdCMUw+8Mdmt0JwfqPGItufvDefQDOz1/EzkToNNxohPAk3XCkMzQadGcu\n0CsNOHPtDI4a5PjGh6RTOeQ5iYOkSDAS49QYPJu1NYtYx025v0Gm0iD5+euM7rUJnIsS8Q4Jyjms\nvTAt6RYrV2fZeThgfNDiwtULPPeFZTa/cYfynIQVbCKzgt50E3hxGq93QK/loXynw3C7ietSm3Bf\nxrzncPUPr7P7e98itHARvyjjEYeMj5qYgTzl4pApWaNT2CIhX2D6hTXaX5oj9NN/i7Pr/5R/c/6L\n3PneT7i0MibW9uBSLYQTiGgHuOIW9XAWzTzE3NMJfHqFgdzl6Zvv8o/+yW//1YeoP/gX//Kr15c/\nRzoP3mie1t4Bv/l//x/c+6mPOWx7CIVDGIM+lfY+cT1LyTkg9Ol5Zqmzs3fCZFwjo+WJ+zuMZIdu\ns8KpIhGMtfB1prCiHhSzxZAK/uVpqnttllyzHI7HPPlemQsXBEaPLPTTEncPN+GVT9GvdYmoy7Rj\nXSryAJ83TLvcZxBIED+fomy2yetpBN2gfDSivS5wdLKBM/kk7s19zq2s437qoEcSTOVc1L+7ixJa\nZNGngHFIa+JDHhp0TjpMiSqCFKOoJFl0RfBaEqu/8HmefPsjAmfOkD03w913dxAnEfxrY25//1ne\n0QuLX2HyqIUoz2DW/Lgkg0B/TDCyjHnSoba5x1RziCcQJd2fRg0G2C1VyekytbGKezlN+QOLq6/H\n2d3ewdNK4MQFjGGC1cWzHFXv4Oq7+fBOCXmoY8heGloLW69yVDEJTDaRTmUyfgXdB0pXQfEEsbQY\n6otZ2sk4nYc+jqoWvZ0SVz+Zpd7zorrBuZpnKhKmuO9hL7CFGAvjK44JTIV5eiBx97DG2lmZ0HSQ\nWDuM7IZu1+ZJp01X7JBLe/AbbYSYQGxhncYoQXhG4kSpMwwHMRoPiUTjOEE3tVSAuekMH3zw7JF5\n6cwI+1RhcGGRoGzRrEzIpY/p5/wUBR37qg95VObem++y9loE1T1P2enTmBJwjBzZKBgLHnL7KcZW\ngUhijFsROCpsUBvqnPT7dNsn+BIyk5QLXzlANRvA2LAJpFtk1DncapvuvWM0S2DhukrYlIn3R9Tn\nkzRH9xHEJDF3hW4yTkT3Y/RvYugCYnyO++9+yEJqntHIZKrnI/icykejPunzGepHQwblFgezbgKB\nAIY3R032cfePvsUlWeVwo0x0PYlXUxBLQ1qhFZRLIY72f0Rn65i2p8BY8LE0H6A9mkVJ2/zoL5/B\nwC/9nc9zJRijlF6n/WgHc7VO1JoQ7SVoGD2UoxqpdQ1zPENNjaPsRfB/xqDTfcpM5DxNMUFnd8Ta\nqoPiHqFLbpSxwFic4B0ccO7vXkD5vSrcGhOPxqhnNJbkJMZ2km2jyXM/9TMs5QLsvXeTc5/7mzRn\nvGghDxVDJO7k6G7epXlGpdk7pGeJpMYWPZ/NcdxPNpmlMBySCmV5+tEpGe8MQaXHbDyDlF/k+at5\njveeMpWLsFv2sNOy8U17OBm20e0+M8vLlEoHZEIXeOgfcPnsEnIrgCq76J0ekQ+t0C66SPo22T4y\n2G/EefzRM7eU5Muz6AnQOjxCMss0Z+YZbdaYykEtp2NKXlyzCzz49htcnF7E2xiy2/BhBhMMSiaS\nWOS8y8fj4Rmq130Ez3kZTLK4mrt0pAp71Q0iM2XitgtpksdZWyUgVqh3XGjz6wxTIyofG0y7i4Sc\n5xC1HWrzYao/2Sae8RJYm0ELOvQqVTrbPc4kGog1lZBTw5r4GbsFVsNtBlKMz/6t5yj+8Qaj+Q6e\nSon2TJ7p/DzzoRU+/Mk3yGsvUAmZaHfaRFwm0UiAnY1bxBYC9Dwexo0uqzMz7HQmaO4trL4P0e2l\nf/SURn6a+NDgLx/eAeD1M3+f0azNqOOlbjXx5ULopxPipofGWRWRNh0hwuNKC2UQR5LLzP/iz7M6\nHSJYbKLOZxkqBY6lDuNSESWxTDPQRttconHaRZBt0vJZ/FMlpm0NfyjHh47KUtciUNUQOgnGMkSa\nY5Sxg+HL4PeKqAkRdkymnCrGoEN2mMdydykfZglofVS1gX/kQVdMeo0MpYSJpskcPG2gpm6jNRNU\nJm6cyBIpKY9+rk7VkyO7arC8EuRwOkvJLGOWd4gaIVr+JMFynQdpHy45S2hVJJjLIuTiqGjYngiT\n+Hne/MF/FuT/5s/haXZoHW9RqvYIXs5TLEwQcyMyGnhCXX74/iaZkEHDvUTkoEY4Poc+LlI0q1xa\nu4j5/oSwpLAVaBPxdJHXpijde0Rz1KbotnAdNumvxqjYYyblEN3uPssLY2zFwD0e8OiD9/GHz+Mq\nnDKqhHCX6sjJAZOfFLn99ATb5YLRXdpNA19wlmCrh15tMaWcJabmUWa6mC6HybjAXiHA0N8jl57Q\nH7ewRxkOEg7WXQHzsMFfNOK8+6tfIfBRlU9/NoP3UQ3/ZYfoTBhJKiJWVugEDOpmiE5jgt6yWMkt\nsZRz8/aNG/yD3/iHf/Uh6vf/2R989cpXXqNbdUgJNscuKF/f5vZ9Ae9UDl9wSNjfJGmM6Mgi6uSI\nmfA6J//mG+hoCEvTTAYacSfOQNxjauU6UwGZ8dDFSHzKpNVnFJxl6DQQjBDhUAjJc4ASjxNb7GJP\nLGp6nKff+hrnZ+H59QvoOwdMz6QYl8eE9vsoEYNIKMhe12FKgFIXtOLfAAAgAElEQVTPg+br0Ozq\nJJb6ND15RjuPuDjvJuXxc3r3CaNAl9/5ox+y9CvLaMUiHStHatWkMsoy4/IRDLvwhkM4KQ9G4yEz\neZGTdpWEb5bx0QAp5uVe14WeDZFSw4jFJop1wgc3nrmlXvvKT3M+GiQgiJBJE6rJeEyFerdOWalx\nzZtnMhOm21Po2fcoahkioQDxTJRsN4A8KmC0HyL3Va5dXcF8LkblfhKPt0i6FsP0N1nIJgkenrI/\ndIiuXSFm7nB46KAIYxZPIxROC0TPxWkFsyjBDslYgmC5w17bjWPKdKfiSIMD8p9UCHmHDDd1xjE/\nk56fgnHCJDphRptFuX+MnoL6oz7uFYVln5/MwIVZF4nJTQ5cPozdHdrDNjHzhL2qiWs4xVG1hmSD\n5O5g3aqxpOVJu7b51tefQL/O1eXz1G+KpLISP37rWct56NPPU6450JdwjTJ02hMSnzM4fQs8Zp2A\nrdK3bXYfFVn25MnNtTHqbk7HJrk5lYleJbyZoet6xPZOk7E2g9e8z8LiC/g8Ntr0hPn2NJHzy3Qf\nTVjO5qgNdbZ4gCBrqEKU2JUEhSdDkst5Bi0DXymBqE6oHJQo3N8icSXPlONBEUyUdIPjSYbDgIu9\nN/+M51evoabWqLYNRK3Izb/cZdobJVasUjPy8PSUO/9ik7VXPkf1RzUefPARn3rhv8LZrJFanCE6\n9OJpJNgyvKSRqDR+yGemLyHLaSZqACUqIVpDBidt7u5U2br/bL3y0pWfoeUN0tia4HopjDMR6Usi\nvm4d+dOLqMsgvHnKqSaz/kKa8rFDM2iSmPokk43Cs9VdOoge85IMpTm+Z9JdGiArBr1YCf9viLhH\nIdpGl0mqz/hEx37lMntv3yKaNDlruDk66BP9hMGbuxb/3+9/k9WLrzEMFBlqOpqlMDMZk8r3kN0u\nBqoPJeshSZjmYA/LkNl+4mLWpRBOh9AthaYxoj94ptHpTVqY4RShYIPE2M+ND4tcfyHDUJyQOJ0w\nGKlMsnv0dRH7tEnPpaM7CYoREw4KHLUeceSZ4ernX0FM9HnvW88g6tf/9U8jnKuzODfh5o5D7nyU\n+FGfznqSMW6GWR/qxhHBK68zG1HYSWsgDBn73VSdLmJHpTcTYaXnJbA8R+FuE7e9zdW//zoPv/EX\nzOSncWyDzh0vRqqOe/OAB5wScAQS7jhBj4M3cZaNhxWSl2HvNIk/BReuyZT6FoovwunpY+LFAdZ1\nN91tH+S8dC0Tj0cnLsr4pWkabpHCh09plE1kr5/yeMSg2aA/LmF8p0C0pHF41ke0F8cV6mIIJgMX\nVLqnFH90m6vr11AWEuz2D0gdnVIKarjDYxr2DrY3xyqwHRZ578azj8Rf+l//CYc3tjn72hmccofp\n3DpdO0Y366DYLt57cIQ3HGMuPKbbPkBum5gfPOWd3/q3pGc0DkWdWDOCXmoTiEnEBm5Ohg7xT7jI\n5g/wl2U69RYNR6KvqLT9B2hPCghhiY1RGLNvYKfaxMYmjyJ1pjsOYfUxBcXHXNfmUD9kZilLt6AR\nn4rSDzjk5iUe3y4iKT46MZWeoZL2OyiSlyvLV3HfDrC54BCemMyGPJgPumzbI5IBL6d2A6s1ZkGf\novnj7zA4XuTjHxa4lnQRuabQKb3A2lqeneYYTy2KWKyizWrsOOtsbz/gyZ0PAfjilb+H44gMZ/Ko\n7iGW38FWJkQ32iies6iyi/bIxD1OEDJOsP1jDoICSrWFd2NIb/cA4doynV4VSUsglkaszs/iV4KI\nZohYUMap2ZSfjojVjrHOyhhPW5xO3GgzMaQxPNpw4TrZZPb8PIKrTyESJYTISIyz/sIFWg+fkutG\nGbmiGHaDqJImNupQy0S5vfEUcwweoQ71OL6kgCwGkB7VGLjWCMTb5GWLauEp/+lpn+mfOkeivYcQ\nkqk7GjPRMupI5K23vknTPWKUP884YtFrHDPpRYmeT/PNH34XV8Hhzu17/KN//F8ARP3zP/jdr55/\n7nNkxi48/QbNWQeXpLBx40NSL+QZmEfMy0k++NpDnJAP3wRCzgI7kyP2oj6C42nU7Xd5tP8dcC8w\n6rjRJyZPtod45jTsaRu9esDBRgfRV8Irybh0Cf+l5xEOe4iNIulChf2bbyA8dx2h7eeRUWCcWiMe\ne0JHl1GMM+x0PuKlz81R2T3mtGsSI4EnrFHoRxC379FVBfIZN6IKxZNDWnt+1j9hI4mzHN+ZUNx9\nTNDXQx1GEKhjzQooxTHdb5dINvysqWuUHGhMWshpGd0lE0ooNAdtXpw1edzbQC1JvH/72VB7/vUL\n+Gsyp0KbhY6PTbNKLN/EH2qjlgZwLYq5W6G3d5dpVWPL6OMZTxG/OuRIbTKuZ1Fm46jTE7zvOGx8\n9AZL5+YpndyiL3cYDC6j5xvMLajsToLMp5owlElJOrO6gLnaomOmiGe96KKN1HbhrrfRnvcz7DVY\n793C1z4mflzgZ3/jF/j2T/6M5aiIvaHTD+cJDBwKwxZquYgZ7TLZKyGEuyzEFugmAihhiSlXiCfu\nIFm3n/7imHgoR9mBaS1IoeTBvZYgYmrEYl0Yu+mcTeMEvbhDGsOAhNBqkozLiKc/4M07BQDk93e4\n/MInSWem0U5Mpv0BnOM6jXgYO9wgJTRQ515lVNrF+3NJzv/MIuVfU4kqNZRgiIY1h918iJHNsTjT\nZPr1Ne61WoT2+/hTGiO6+KeHJLoijW6JbqvH0ckt4mcvII5LMCkyOwoSWPEjYVFxu4nrZXohyIo6\ncy+HcdlT5KZb7CLx45M96A3wtNq8+oXXKZT86PQZ10eUE30+dcZNJ+Jlc2AjOSVciQGfzV5i995P\neO6XP8PFy59kXrDxR/30xD26FTfJ+RbCeIg3YSLoDicHVXxuiagoUmw1SAevEIkPieyMeOvxs8f5\nF//ofyf10iLzCwliNYfC/QMszU1kNIXnoEw8eRE9XKNMiIMPy2hraRaf1kkQwhFbjJdmwN3GF5bp\ntnVcGEwGFsHMOYybj5GyV5GmV7n/vQ28vlm0yBzTsQX++Ot/ws+/tsrm5m2MKw56yI3VFkkc6owi\nLaZ7YYzDAae+BHvHHxEc6hQ9GgmXSK1XZk4UuHcYJRI1qHc7vHBhntFkk6N+DdECKWLhMKFni7hb\nQ4R2l25Qwuj3aN1qEfZ4UUZhLF8bodtjKncGj39CL5LEl6ghdKYJizqx5WXc+Qzfvr3PWekKb/3o\nawBcuf4ZhqshOuUBfTHFUkHkbqvOuVSYiBLHf9mPQZ9a+YDjEx/zwhiGJk63z7wvSqNSJ1B3YyQP\niFSDqPZjgrkw5d0enngQT3SGrHIZw5Wk79aIe3N44ibB8YiTQp+0JPONb26w+svX2N1+TCrswpzY\nTMtZ9IrCQK4xGLo4qW7RCcQJlbeZLYqM9raZPRthUJbZdVkIqRDBoo72UoKYotI//ylmmnGe/6Vr\n1Lvn8Hp6zJzIBNerTEpDhusSakfh3p0HrFx7Hkn2EjRb1B2DqD9Ht6MzK+eY0YJ0ozGksEB8dpZv\nf/2ZVd+/cB338oDRxi6di/NsdzYJi11MV5eV9HmMwwbOVRdxb5XvfbPMZHafo6Mo3liYwPM+pswJ\nHz8BY2KSlr046Qyd0fvMnWboPnnKJBfBL3iQBm3kk32E6jynp8dk5hfoPvqI8XGLwDWb0hMXuYmI\nkS3g11M0dmp0r7XRDIcMK/icCpYdo6hXGH/QRwgvERBSKDWdoOcIEwn9xIfUcOOsp8ltnqJcF9g9\naeIKSsSZZa9cZHVK5vaHO+jPyXhWUuReCDB/9nVkj8ODjSyJzF10LKzaNJLqotncwdPMcSoMSAsT\nbn7wLGzzs3NZyimNgBgkJgSoVIp4LQO8UVrWJqWGzORpiRQqHXFI/0Ri2RdElcIMp9YZrObw929i\nN5Kkhx3MuSF84HDi7dCRihBM4YxsytExr/z1z6I/PCGYz7I0NWYgmgimyuWX1vGnHJxRlopfZrag\n4ovGKIyPCXpTPHjzMemZPFNhFTc6okemO/ZTj3e5+fVdrjzfYNmW0KxNirIHITZAL0isfSLKVqlC\nVsgzPLHZU24wP7bxmyt4rRPOtxscKBot74hZ8zJabAoBN47gJosb0TdEGfeJnJvnbMbi5s0NfvM3\n/8FffYj6/X/2L786qoVYm5+j3fNyVD8hrtQx3W3StohtBsmbA6T3ttGWMsymkrSDh+w303z+7Ayn\nzTrel6+iORptWwRpwsDRmYvqiHWIlnuMnSDrCZGwlUQbz+LJxGkUDnn4eJuF2Bpj5z5f+vJrBC9c\np96sklqJM6rrTC+msT/eRPe0ENV1vP0e/UaPfD4CYgP9dp8Xfl7k/eMfkj77MjEnwH5DpdVwsfjT\nnyZgBQllUgj9h/gdF4RE3NNxJpk6d27aiBE3yqSNFApRKB8QMHsUckFUM0CzX8G/toz77RvYmQhO\nX+Wc/Yg/f/+ZJuqzC5/F6kxQBYuRN8DG3m0imTwu3cEMS7z5n8qkfG0SL00xmLEJ1hoYS2mCYomW\nOIVQsoiONji13NRaMu3EGV5cyFPcnjCKQXqqjH0aptr14fgkuphEigMOTqtI3TDlQh2jZuBZDSFX\nBAJGD30c4/F2nWk5iLB5SP5z8/zpB0+YjUhUdyUu516nVdvjzsePiV2S0eoRGokAW4d1Vi9eIWtl\n6WUtXA8FrNSAjlciedjn/bdusJ5a58lOl5WlBFOBMKOMC7sikY43MV1zaLaF5dcI1i10JU08ZGDV\nvIjzIWav5/iz/+cdAF79b3+eVL3NS1+6SmW0h1kX8M7HGVtNbu+OGFVyBMQT/vD//bec2T3i/vMH\nTPsDvF8tMd6fRy8+QG7rVGoqCy95iBs+2jNdkpkpMt4wiWyEccKiev8RruAURZeJZrmxJQXDV0V0\nO0waNbreMe1KhHHYwuszEIthMLqIaxncVZN7SYmnW3+McWhzYSpK2DfFrhjB6tUIaDKLUpWTkwKp\nUYJJxuGcFOOgLLBmSDjr0LEN9A9uMYoNEI5bjMxDIoMIrnCFUEPm0GwTC3hozYDtksmpEQaIBEU3\nhQ/aROPn8IajfPedvwCg+6c3CI4ztE72eN9pEZ7KkzmxcAUUDqwW4ZMKoZUgmw8HjCMuHC2IOTZQ\nbx8SXv80756+gWuvhyEl0IZ+wpKFqxVnITgiHpvCf79Iz1EYndwmHorgCw2o7zzm89fPcuctE386\nTaTlAXkb45US+a+8ytShzpGUYE5xIwSKREQFIRzioBigcqbKmXiIWzkX/cgJk1un+NI6ciADrNKt\nNuiF5zkvWZjZIJXWKceuJC1jj2SgjarNEF334Ss1GFxRcCotzPlzCPd2SLhtJtsSxkmFQS6L5E8y\nLvsR3CXWvSOKW3f5+MFdAC5eOU/jJMnCbByf7KdujNHMIFMvLLDTGWKY94n2TQr7AfxygKEToc0u\nUSHBuQvTKHMxLD/Ylo/N4QPWvvQcY0HnOz+5SyySQi316BcN4jmT9qiJ7B6xcxxHkmp4fTJbD9s8\n9/J5vNsG2rkz9LsS0VgCT8BkJIFjHDKqh/B69kjGz+MLqWzsvEGmNWLgaDjSEMsTRpm4GE3LGOEm\n51PTTK8NeFjZxDSg/86HvGFsM3fBwed2cWRPE1fGtFtFgmtR+vUiw5xCaChTPVbxBYo4jRDyoErH\nXaS5s00iPc29XT+3336Wg3ft+hprVpVxZBVX5ZAZe0KlomPrDr54hcc7BtOSjd3UEFIbJBcWONP3\n4AsqNGLnScnzqIqNsZJCsHXiepeAq8OO6Sd8ZYnuk4cceE0i0TBNuc2MX8SVGqJUhyiX+8zN+5m/\ncA1NVekBvm6Snczg/+fuzZslyc7zvl9WVVZmVmbt+3b3vdfpme7ZF2wDgIOVNCmSICnRlMPhoGSK\ntGzLQdFCOMK0ggoxEKZlSzZpkJJDgEhQIEGA4AADYNbeZqZ7uvv27btvdWvft6ysysxK/9GfgvwK\nJ+K85znP+yxEAxrG1GZqBbAbXU5MkUHsGNepTWswxQj5EEQVxxRoz40IyTNMvCIH3ioTr0qj2eJX\nfv3X6XzyATcnAusrG8T9LsxNhZmnHBbPHMYzi+D0KSYc+tE2117Mk84/Q2ivyhvvvoc6aeH52Bxi\nckjArTMzM+J7f/GYaX/1lXNU+hYz7T7l3piQlCCozSPa0Iz5ECM1lPoMx2sKs2j4XS7aw4e0Zq4g\nUGRUhXnLQXlpHdetn+A7tWl63PgXxyz0ZnlYPiV97iIxKYN+/zqFtx5y1vdj9RQ69S6ie8z4TGDQ\nOaZ+CG6q3Lr3CFcqQnXzjIK3yzP5BL2TJvZqGE87Tvdchn54huvDHIJvROvrFstPz/DS33uJfO4C\n/baGNO3iJF2Ua37EepvpGlxwXyUTadJMWCRCdYaTIKLHxbibwIWFNidhefuIE4W255DtuyPcapKe\n6y7R2izXb9zin/zTvwMg6mv/59e++rP/8HOMekE67Ye0zkpc/PjPIif7mO9WcScEwrEozieu0Pv+\nR3hnB7j8c/i1FIEFH8Vhk35ljOxScCsjsocnJFIZ7HaQusthpEs4zoSpmMXr9BiG/NRGY7LnFnF1\nJizbU4YdP9/7znXCz30KbXrA6ZunTFYd7IGKNV5GsLwEx32kaQh/uMH0RCN95SoVr8he4RHPXN1g\njjWOT0pYcplJXUA+GDNsVJDn3HBsEs8ukl5RqTSPMVyzdGqHxOM292tD5p8IYanLjMYaqmIwNHzM\nuBMYOZ1mrUvIBHa3CDyd5y//8w0Azn/p0yTTFY6JEMq2iAY/TjFWJlCco1ESOZeIoFz0U2r68VYS\nnLkdGj/ZxN9KkusNkD2b3No7xJt+BpkySXePnqoitQuIko/R2Id3auLuTXDKXWSng1d0o527TDwY\nJhDLMnNxDSuSIOdPYOdUJL+XYLgLhoouZCjWNeTaiHYixdG7Ok7IoHrcY3IwYe3iBYrBNsnkkOB+\ng1g+QkdyIRaahAMmqmASO/PRk2c5lxbou/vI7h4zU41yYga5egfHVNE7FXy+KENdRHY28XotvA/H\nBBWZSGaOR7sNwq3P8b0f/zsA7AerfP7XfpE71w9ZzL3MSeeYumNyWOtzeekFcukAZ90uo26aa0sv\nE07lsPPr7H1kM3POR84bRXgyRloMM5O7RPz8EcXSiO37daR8iP07HbxvntJsTGgeuFDVMM6CA/1D\nnrqYpnja49wnP86dNx6iejUWXHkGQg0r4iP7kkbpJwV250zc4ha5RpLLgRcJSfP4PBIJ3eKoto9P\nDLNjaHhUAX0kMDq/gOKqE3E9QjwXBXtIgBrRZR+dcY5wX0bw9ukPDZxZiW7XgxizcGst/IduRKFJ\ns7VEIDSiJ3RRTgSGgQqPNhXuPnqstXjuc/+MfZ+blrBH8WTIRrzL1A/uepgY0M1ItEsGqQspRtub\naGaEQNCF2xvn+LRD/nwSyaPgiebxFaeUFwMMiiYe/S69VIN4KMndO/eYT+WQJAkhOGF38xC/kMMj\nneAxYZwS8H9uDbHqpn13QOvGHuI4TmSqIKsBvD4PkjZhYmtM8xMCaQX3thulHiUXGKFrGYYTH4FB\nl8HE5LD4Hq35S4RGCn57iGmlme24aRsi9V6fUclNSwoT74o0gmGeWzAoVhKMJjVEO4EropKQFG5u\nX0eI26xOAjS8CicPUzzce7zO+8yv/TLR5IQkoCzHcYYT7MQI56hLf2SQHU/Z75qkWhMG0TBLnm22\nt/q4Uio7N3ZwDzrkVYGDh6dcCa5Sqbf5zr//U2aXn+HJhRn2umnEiUPf7aEnaXjEOK1hBd00qO+c\nEr98FYUu/cEUq9dDyqwwOtmlI4SQJRfdUIKnFjx41SyuuSBTbQYtnmXxS/8FjTuH3PvmN4g9m8KU\n2rh2Q3QqHvrdHUrvf8DgaB7FP0dl0iG2ESI5Epl/cYH+oz3k+RVqAnjkEdNCl6QVJfOUSfU4RkF1\nCAs2ui9AfGUeOTTm8s/8IrLh4Tvf/CMAnv7ELJ2YzECK4O66CE5d1MIN4vISlfE+W519lrzLVOc6\naGYOyxemW4+iK13slsGtszdQ5i9zzl+lHlUJOzla7hixmSHegcJokGaaWCDv1jiTswS9RTyDJ2lp\nFucuxzmK+jis+IglBeRQFL/Pi94Y0Z/NIRyPmZ1MuZuecGVyiYpgMO9VMeYl0nGdiDjEuTLH0NDw\n+ST6RpDLMx5UwYM+B4Vf9dA656NTLxP6sx3E/e+yt9JBP8jiBEtkGxOanTgb+/sIDZtTTxP7u6/T\nWYsjjnaJ/ayfUmmA0LlC16VwLIb46DuPPzu/8Yf/iN0P/h8eOSle/blnufvRHYy2iOkPMW7JhLpV\n5i+kEScl5FSG4cDh3CejiIMWbcvBE+0ST6ahtYtHr/PkFy/hf+0CR/9fBZ8QJT6cMGwWKdc/5HAw\n5Wd/+wvo28ccrY3JLUSZKhOG3QaFoo7um5Dvh0mtZukfjPEvplB7A9KORDRnslUfk15qMl3JQjhF\n3enjG4zxBCMkOwUiH3+JG//hTfZvXicUWyDq7tFvemikT0GwyabWKVsV5r1TQuEknQGEp118xpRy\nRGfNSaOPRKpam2BtjkkuSNJ2IyYiFJUpB2/f5Z/8d7/xtx9E/W+/88+/+rHZNdrWEI9q4U4vM542\nsPo+YisSxjse6uMkYtxPPVGhZ49JdYKMhm129rwsLZ6nYByhSS5SLpWB46ZV1+jKPUZCm4yio4Y3\noH9EIhtimNTp3oPAq6tUb7xLwg/287OYWYlmsU2z0yH1mQ3C9pDwtE3EDlBXLRYkAavlw2MvcSqq\nTPR9CuoUl2ox7vXZ+bc/IfCVeapDmVwzDqsuVpMJ9IpBSG0SzmbwtI9ojiEwsnHcWYTOhKmTYNDr\nEw9q6IKNyx1hXKzinRtR2T1lttZgoPSodBZ45bkrfP1P/hSAX11+ivHz1wh16uw+rBFzm6SjKscH\nJ0hPuZgMgnRaBRTceNJ9miGBgDvPSbdIXHNRC2TJXnkOqXqKp9dl6k4wbtkMTYWez0dAsRCrKif7\nb2NkHRaUHINgEu3UxaGkY04Nave3mRgjJsWPkHoyx/sdxgL0J2GUVBv3sUNkfci9U4unkjLTwjan\nXYOPv7ZIsbfDoj1h7A4hDdboHD0in4hhFT1M+hW6oQRyrkJDKTAeGiS7JoNghrTPwt0q05ZM4q0p\nR9V90tEGI88pveIqfbFBu6sy9nU5K7dY3/gYu+/scvvR4yHzX/6zX6d62KXcGlDdLTH74iyppkUz\nIDEu6JS37nDwQZfKgwdc3HgBZdJkYHlJNackwm12RAWlmsLOtIiEfQzff4c6S3TGN2l9Q2RckVhY\nn6DF8rhTErJ5xqhXZbZ/Hn1kYLs7NA6atIcZDkp9YmGZ9efPcXFhhXcefpsbD3eQglFGQ5tV3xJ1\n0SJmdxAUHcFpsV+tsuZ30cFiNSPx0BRwhglmnk0z+sEx++1HCB6BhJ3H7odYzY+pjrswY2PJIbSq\nh9vDPSILPsSxyFbzlLXosxTMFr7eCNmKokdNQgUP6Usa3//R43DXr/ziF7my6EccKFyRcxzYHV7/\nw5toKzILTz7NkWSRag8ZDwwyqTzdd7fRFYOc2+He+y2CV5O4tWWm9fdQJY1gb8Bg7yHdVpPjqMZs\n8Bma3hKV4zKm14VrItMPtQkJCXY/POT8l4K4Zhbx7o3Qyw7HzTKCeYHg8ghvyMv0Y2MG1pj7w1Ny\nzSSNZpXTlh+XZcJmEVFV8Xsv4dnr044N+aj3FuJxiFlXnYANLXw09t7Ak1sntmwTTXponRQo3j+k\n3R+RW1ohSIvNeyWqe1W0aYNi3qLt9bIxs8xX/uGvcutb38YJ5uh7q9y/+ZgZWEpJzNxpcHA8QJ0c\nYd4L4Oht7pkq8yM3nmSSo60zMuKU6EBkGp8jqExZ8KkYag5Fz2BoIDYk7nsaHP1knysvfRJtpkys\nUaFXP+O0UmMaU0i525zVJmRbBkLPZO2VS5wWNeZHCfpyB7/ZQSzcJxQX6B6LRC/76G2+x62tLeaX\nUxwcjHH1S7jiIrXtGs7LWeauvQjWIdqgh5L0YUdHxMp3GeoVOlOH+Zlz9HY/gOM5BtEz+rcO2Hr/\njEFegWOb2vEuY00lmkohS0ms80GipSb60iJrtk595MVdOOTops2j/TM+vPk9AMJDLzHnACHtJnSq\nIdgeiqbDnCrjcuaYHAWwn14gn5DYfu+Uc5kVeulD5jJ+opkROXeO01aBgSMycQIUBzK6Z0S4MU9F\n0UhEqzB0YYxkprVd+lOJ3aHBhXSQN97bJziCpfmLlDsprn/jHfxPw2g7Rd9pkQzNoPsKeAYqnUiP\n7DMpdgM1pu4xvth5ZJ/E9ofvk7Z8COYJ1YkHdQKu6AT14IDb71aJ+eOod0RG3iJGLs/GYhTVEgi3\nFcqiQi9SRiWN1fIRaO5iLIUZO/eZnwdveQXFfQU7VKPrspG1CR/8+XcByGhxZp75DF0ngP/DIqFQ\nDa0vkQ4e4zMVhPkupY6H0WjKwG8xPXMo6U0yrNEzVEbClFYkw1snO8TTPXZ7Bb7+1QN0RybaOUKM\nN8h5uzieRUbtbcJmk0Y7TKqu4LeTnEgtqo02tExETxpR6hCVQlRdXhSlzNj2s5wNM7G8tPxzuKwh\ncifC0fAY+fRvCJ90SV4xSV5ZIjeb4PaPb3L5ixfZdoJUzRaJBTCVJ5kbaJydXMeKXqDUlTgqbjMZ\nd5Fzs+jNEH6xi+ZeQKvv0dwD5zmLSXWILhuY+oikq8/9d+7xG38XuvN+/9/8H1998tUNrIOPWJAv\no4cU8MeZnBVJXLhE6fMJtAM3k+UJvqzDWJ9QcWXouJKMA2Mk22ZD1fHqGQZenelGgIRjMGfPUPYU\nkfwrnLXrnPZ7zM7MIUfilK0x62E3xtF9QtorDGsNGPRQuhcYak3OzAOknhtP1cQX9OMrFzieuHCN\na4yWo+SSQbbrNbwDD5Vai4hc4XhzhH3xU9Rv1zGjbvZ/8DRRMvQAACAASURBVB4XZ6NMjQrLr15B\nrhR4aAeISWHEszKjlBtp6EObOoyfWMKRSrTlLhFLx8kn8daa9BpVwnaCw9YtZgNPMOo5/NUbjwuI\nF2YusODy4Is36U28pOIBjo89PPm0zcS7juU+xe9pMnCmyL4gmTMf05yHzLjJOHKRqKRRGoMz1ME6\nI7ByDrF+yIP6KWqwR6DrwzjfJX51DWHeT80BqRHnSLnN7XfvkVEuMMzbzNhB+sKAkHee4cUgG7aG\n2vZRLe3hOj8hZvqIGzallBevX6LrGpJdfxY9MeKgGMAdVphaQwLRAGpApqHvorFIdNglOB1gNqq4\nYnNUFzXmGPGocko7Dms+HW8ix45hICCje5LMzcVQuhJCWsfxVnFHLrAxcrEYyPDNt78OwNWXZ9GS\nbgJii83Wbay7UyZXRJ44/ySeVpf7oyorr10g5PWxdmENy2yhmqfEAhcx7TA+J4nsv81O0aRhqBR3\nT+l3Q4iuVcY33uHqpz+PpkjYjsDRnkVq5ZT7Z3U60oSNL6TolWQSl1bx754xSS6Q6Up0VZPh0SF6\nWyNxaR73QGRB9VOaNpkPC5xqKmJjjrbhw4qvMH9phuLhTQpzBTzeMKffeJfYRYfVWY2aMaZgDgj7\ndYYP9kg3x7hyS8h9Gclpc2K68aaTTPwhJFknfebifmMHUQ8QMCRk28A/sjCEGZoP7vDO3uMOuEtP\nL+FNBFGcOncOTKK2yuXL86hGnf2OxnyzxZnhQ2g1MMM59E6IjnjC8oXzPDi4xYJj0Jp4CQyqaNIM\n1rl5Wv091PACGUHAfFClWTnBMJKErQzpfILT1kO8gTROf4pf3EAs3WHYE4melyjv9smFS/R0nZDY\nRW5mcY9E7ltbzAYlfPI67mAd+aMKjbSIRznHqOHD2rlBal6jtBdi8bLD7Mc/S7/hkHBGJBIWtUiL\ndkHDcARqTokXVq5yJbWOcjXO4V+9xVd+7r+lNNfDK8dRxVOUkozPV+Dgeo1eo0ZTnxL5+DLXv/m4\n4/LnU6/QfaaB3FzClrOMGj06e2HswQHxrM3hmcnGqy9hV21GhTonFqx+6mWmkwle4xjv1KKj1Oka\nFfQ3ipz7yjWsRoee1aX6sImZlFibFRkKPtRpFdkI8sb//ruc+8wKluVl3Koi+vbwlCO4pgbtFR+F\nio1fr6FbPqRBkKrfYfveDjOnPhLnLxNtSHQDJu1+BiE2pXVWI/hKHPmsR9bbwjATNEkRbncpCXmE\nu1VyP7NC756CIcL0YpL0Ezm8bYN8IExbaZPPTDArPfLWHMPuAT3RhVmMYSyWOTzcZRiMcEHM8Ndv\nPV7nffl3v0zXVDj/UGP4TJCS1SC6soJW9lMa7TC0Wzynaej9Md5uiw4iMw2b0owfl7FCQ66wEA6h\ntGtkUzouR2ZavY+46EaTDbzePG1lysB7D6u5yml/wpMvJTnaG+MbxdAMP/5xCePmQ/b8JS6Yn+Po\nYJfxhQjGWKBqJVAWerQfGShnWXpDg5VbXlrxHTz33Lz4+S/T8p/h205iP/oJnqRKszNhMF7i/Csq\npYdlIpEp46zMc9EkDzvJx7VG0ROatRWChoBP3qEnT3HL56i3vSTqp9TGM0jBE0R3E6WxQNLXJHa8\nxetvfQBA8Eu/Qn18THTaw+eZ4qnN4Y0PscsDuvEcMfqEfGG8DZNnMsscD3fIWD4eVhyqm3/FXCRO\ntwHtzj6vffY1bu3n+M4f/jGB6QrLV47JtdzYGixLMg9uP+BRNcLMuRWyz2XZ2ylh6gprw1mUoE7Y\nDNI9HnKmj5DmoiwYA2r5FPFhDbJZeh6diWripA2s6S5xa8gLK1keTk8JRTXMrQK7tQHS7CraA+iH\n+6ibXbxHUxorNlO9w3zfoS+2Gd/cJNZK412Zh9oewWSeTcMgF4+gqxVysSU6wglL3RT67ITZboe3\n3r/Db/7W//i3H0R97ff/zVeXP/FZ7r99n/Ars/g3BULSlMNqm8bWA55fi3J9v03HhLjbTdDa44df\n/wFXnp4h1AzTHRaJb6Sxtorsyw2iipfIuMvJyCSei+NYQQKhIg1bwEuYZmxE/qSAZxxGl8e8+f5t\nlHaI/OpzNJ/u4HKSbH7wXWZnLlM+nmLWDvH7/cyJHqTQOnftDn6hge1OsjEfxxMfoZgLnH/pVXy9\nMTWjwsWLKXK+KR/cfZe9Uplv/09vYYVPEK1VKpV94gsRvH0/laMxs1fiDPZdhPRDOj6DD/7kPZZX\nXLx5401mZ1+kN5ekcK+Frs6y+72HPKw9dud95e+/ytmkxzs/LjG35OUgKDGkRq25QI938fWW6NUs\nXLMWtjqlXhXxRzw0Dqr0piJuU2emWOOsuMNYfJHZTpydwS0SqTzByDyyJuCzZEoVleh1i1ZfJdAd\n0/IGuRizUJM2ASvKODzGUiYw42XcUrA7TapOh9hGGH8whH7g4YcfnHBtXaYejCL5BYTxmIaYx1st\nszif5d6tU84o4tnykn9qyuH2Ac6lOQphF75L17ATGTKfuka7VONg1oe8IxKfdrCrBq10i5D4FHqt\nRG3cpd1NEggIeMtjQh2daWiBtUKef/fhHwCwsjFEdM3j5Fawsja5lTxiLc5064Cm4iNHhBVrQOU7\nN+j1ZIxki2DVz5a1yTCjEDbd7J3YKEEHOZ1iMNAZ6RbRlMil/BP0zSoDvUpZ0bA7Ex4UWpxfvsK5\n+WU6H/XY36oinzfp9NK4NQ+xWg93Lk1X3qRSd4iFJgTHCkq3TFQWMLoZuqM4+dkwZ4VdsuM99oQ+\nmWmMgCvLxQUfreMGTq/D1d/8B1R++1+QjszQ6p5jOilxvJZg++6QStCLZzjEzoqsf+YZjL/+IZtH\nuwT9IXRflIQqsD1pIbYbeJTzGFYNa+lp3nn7sdD31371NXJSlr2fNHCkCcs5ido0z3H1Ievn5ykO\nW+iTQ5bHGu2xjvpsnhkrxM6Zzez6s1SqOwS9HoRz89zd2+bGe9/lsiLjyq9ghiWMaYaLrh6eRRXT\n4yZcNJlPZlCPjrj8whNMqx9SFOKcimEWvQucvnGEEU+RdMtUG/P0XdAZdnC/B/LEYRKJsmRkqeNB\naUkE2xJhzyneuXkSAYum0WfsgdIb75POPEkzOKIRHyJps5xT6tR2ArwQXWKnYeBVDjGCCk7CRbNj\n8vD2LSJMeVRr4HPaeBoVIv45Vs/naBxU6AoSH/zgMaPy8qfmcZqLuMIepr0xfitIL3PG6q99ien+\nNpOqiHxQobOc43Z9B7ccI1TrgVLg0aDDKBgiIXhQHBdzz/pxjos0lt0sjtL4GgFc4QxRvY+bIcG6\nj4N+j8msn9ziEpvvP6TUrXF6q0MsVWA6E+Bq9iVCZh2fy4t3aUwUiakrT3Tdj5jWkMY1ikoR/VhH\nyDUJ3BgTVs4RX77G+OwUp2wx/9RrqJUMhraM2ndR6tm89PwTTF2HHJTHXFn145y5MMT7tPMRiqc9\nIs0xitei+9RFSvUOue0WjdCA/KHARw8sXsqFMaJtfvD641yyl/+H/4blswKFpSDBOixKJ1RPirhf\n6JO/5eC6GsJOC8TrDmd+gyuiC5fcgk6W1vE262Xo91S86hCloyMnk/RMCN1zEzrRmAzvMR2KWNkj\n5HCBq8OnuHXSYCg8Yn5xlfb9JtPnJXa2ILqxxNb+HcRrGapbx8wuyJQHSQo/3mSp6XDmZMhOVeyc\njKEYhKYGhzfeInjrPoGrs4ymu3iDNULFEMTu09xNsxiWMMIFnImH1iE0MlXmsjmkW1XqZoHkfJzN\nqsV6MM0w2WFP3OfJ9SWMU6C8QGegEQo/QFtZJjmu82d/fQuA3/7ZJXJVB0mQaQkpxsIBHTOCuVPB\nio8wp15aHTemP8XZ3o8YxRcZaSlSSp+Ov8NabIP3jftMCTGYu8ZzP/cz/Pmlazz/VJh5M0ki58Va\nC/HMLz9D814OYVEjuZai+vpPEDQLVx/mPi1g7mcI+0ok3AmmgSpLlkLJThJs2fSUIMHqlJ5YQ8VA\nbTZY9C0Qimkkn/gEH/yv3yIXSjCNZTmmQbR7THjFw+mjAj5fnEh2QlWbYaXSpdGPspxwU4q5iKVX\niWshrMCAvhFA7j3AJcSoDSqoqRy12gAhGSDT9nJWWuP9t7/Lf//P/w4UEH/tX//+V//rL34aKSPj\n7o7R3WeEj3wkZ3bQLm/g3i0yMg9Ijudxd/tUXC6Gr5dY8c0Re/EJ9DcfMgpE2NnZI3jWIp3wU22E\nmXYnWAUTv9fPnqoyVqMExSyW0SPr8nLnvbdYT0XYeDXOyP2Ag7HFbNXANrysX7nK1IkQ9XXQp2PC\nV1PcLJdxmzN46ztcufAMerfKYc2hfeph1Dri9N2HCEk3a+oxromb5KIMFzfwbfiJXJMZyn48/hCK\nDvJCjNC+jnfBQNCGuA2LHTReWL5Ifn6Zoi4wn1YQPIsYgxFqso/ag0/2f8ifF2oAfO7lL2PHEojZ\nGcT6GaZdI9tZxo6esPNnNmN3m/2bN1j1ehnqEtFTkfbQi5AKIQ49xE0JQ4iiBlycdy2RGPYYvF1n\n3NtFfm6Z9q6JFJRp3OkweTZKTj9iKI3wySGS8Syri09w8OObZF7Q0IwUdAKMuwM0zxR9IOIaygR6\nZ7hXFtEuzGKdThD0Kn47TaeusNo/ILnkf2zRf9IPiXlWN3oc10IM50McCk2s2zZ70ohIsUehaSHt\nmwQfjAhl0mhxH42bVbDPEx2aqEkP5WmZoKdLVnRjpKac3rhBprxH4MIF/t83HhcQn/spN3pOQxwF\nWJzMEFY79LI2kiDD7TrCEwoxUaPmjpO5sMC51RmcHYu6J0tKMLHo4O22qYf8TMZFmmaXeP4q+RMf\nbz76Eb54jGFpxCBqErsQI2j0OBuO6YTbbFYNLq1YNAWbmJGivG0wnFpEOzXsxTV6N09IZA1G0wNG\nnSBh2YPpCdHZKpDIm8jxZQg51JnBrh0zaY/R4s+gHVf5cJLih1f+mEuJT5ANLqAWRI7CI+aqE4qS\nwdJcjHAwSkzNs/X6XZTnIvj9C3z0rZsk59dRkipOxUN7ZOK1Slhs0LOOuHX7TQCywXU+KHZIzV0h\nNxtl2D6i4N3H0SPEDC+eoIhTz/DH//YPSH3iy8Qqu5iBBkq7hL/dx5rzI8cWMY5krPq7GEdBVkJL\nTLd3mAk4BEWToeBFFwTifZHhgoPSOcbMzVH1j3hvq4507Rc4vf4GkUci5xZyeGM6mpVk3DpBMz2M\nMg6KKLIYDdKNWpj9KoIs8if/8vf58n/180RKMYzRGSVcRMYGsqEx6rgpB94geM2DNbIZWD36U3ju\ni0/TfOTj9W/+IflnnkCtgeLyMNYbxLJzhNdEAr4ryI19AsMnOKgesFPY4vknoKrvcP2NTQBefuXn\n0InjMU8oairxGRXn6Wv4Th/R6djELJlO+wyvYXPhyipn3R3ily4y2fGh5QPYuyr1YQWrrbP+0zna\nZwsMtAAlu07+Wp7zr87QeRCkH5YYNjzEBjWaUoBL7iyZ1By5xHlCT66z8uwG+x0T8UGJh+UzDCmK\ncdpAjCsIrQwut4VL2MATj5ChQ0wL4zT6WMqQylChtZhE7QqE9iecVQzEqYVu7uPNKUR3qlxaHfPW\nW7d45eUNimcCp49kCp1djEKG7dv3iF4SCHpiHN8q4alDa8tLxlth2lRpWxLzzy5z336PO3/z+Nyu\nESMop8i4NcyBxd7uAI5rxPeTVFIFxm9UsPpFxPcFzIFJD5GGoRI6eoT+KIOj+/DkCignQd4qnzHo\njMlXJCYujSP3NpN4BA6qnBbGhN638b72NMb2JuOGxKvXLtH58C/xfvIio7ObxB8pzJ/P4Zs7T3tQ\np32zhqBe5wviGo8WTFQtRlBoU1LTeFsCaWXEhY/NcKTpaIECZU+IlUaEo2SCmZSA0j5hZOYRHoUY\nuEbELi5g+HwobhvlxZ9mFNxlcnGVZsiDFnXQAzZp+zLNXhT54iyVwiYXnw+x/d4p7u0Tbn3jJnfb\nj9+Fzz/79/H0hgz9HiJ1F71cGp8QJdZNE8VP0B8kMO9h0LaIDVz0zCKCMiFdzzLxi/je3yFf77Fr\nTFG1CHt/73eJ5NZYXFKJyDHUsMhOf8B//KMfM7t2FaU3YOv0x5iJNB1ZJa+5OBtb3Dl9l5XZzzEc\nNYhELD7oephEzxgHgszUFbzBPi69jzy7wclDBak/oVGKkpxsEskvMAkHmBRDPKGlqcwHMQs2bUfE\nFMvMXVnm9G6T5qSJtZqhdDJkMSoyCoy4f6yzzixVeYJtZRnYQcR8mNbJLcTeLK5AH3cnzGbhP7K5\ndcBv/87v/O0HUb/3tT/4auLpNQy3RudsSt/VZVA4JrG6gOZao+8Ls1uL0U5YLETiLHlUrl6YYbPn\nQY5WOe1qOMk6l5/WkIcC4dEcZbuJ2whQKhwQXx5RlS3k6jHL2TnMaonslfM0d4/JZpfZ/w9/waIW\nxmM0EOOrOIdjzqw6SanL0C0heSK4w2H8E4fsokK+s0zh+hk91wHhfJ6JUkG0ZpnGj/EOewj+LqP2\nkLEc5fJXXuHhr/VYqMQQMhqy6iHs+HDbEU7e+wvM+STmUQxPQ0GYHCBmRayOgGlVeXTsYqK4iF9Y\nZ9GOYnjrzH5sgW9+57Gw/AufjmCWU6R9LfoJNytChp4mo5RkxrMmuXCI2DmBqHQVxfYTzHvw+i2C\nx0MG4S5W3E/RVUTa7tMJdxBWZwm9MsODoxMmcp5ay8azJCI4LnzWEXajzMCXYmI6VMN7fLDXwtMf\n840/+hae559hFGgj1QsMOiGKMYPp9R1OdB8TKcis1SDpj5POPUnQ22IqKNQGRW7+TYfkUzE095PI\nuo5W6XFfAjVsEz8RIOgh/Z5K8EqSyY/vUtgFX3iBM2uAJUdx/DMk00fsPirTdmeZm3S5sPg81aob\nI+Bj7ZlnubVzSuDRPb59+Dhs8+W1ESy/TN7bx6366FUCJIsyUumM440FsmYE10kJ92oQ1ZYotE+I\nBT0kIl7qVYvw/Ax3Gz5W4/u0W1Pa/1mn0y8TOR/l0nIUc1fHVFLEfSqx/oizQJbXzj/Jo29tsTq/\niHEwIVZT6XVMRrUzTCWCf05AEsf0tfexgyEaLRhXEoSULO2+iuQSGU6HlG7ukr8YoT8SyLgz2PYp\n1p0hO+4JKd8emWCaqeimewz+mE1GEGkvaohOgIWRzmTuPJt7HzJthfE+LCFuhIjMLRI1HJKxER5F\noN8Lc3O7xhMLMlH9AX/z4RYAv/jr51gcLWGmW1SkDpP9BJbUQAsnMXsuhskoacnL7OVV/FaH7qBH\npW6RvPYyLbGAmVlD7lZpbd8mm7pANgWu8xsoGzmiAx9etckdy0c0keFw7y4La2vsHNwm5VnB7Aio\niVVM4zaRt/q8VXodd8bNxPAxaHXBH8Nw1dg9uM26R2PfnSXtWaOabWK/c8y1fBpxfJHWWhVXfcz4\npEj/RQ+R/jzTTIuZT8coV7IMG2EmbxeYm3uCYm2Ea/91Xvn4k5iTBUon7zH0THH5DFQxT+XwlGrv\nmNg4xKOAw3RPQRNVPGKAVuuU6zd3AfjkJ59CDTXphdeY84+wFueRKu9RHpyy4MrQs2VCHpNis0bS\nHSSkSQyjOrHWMarLojnu0Y3HsbaHbP7W/8Ir//hXMLoaxWCWgzs7jNr/iZFZIevN4gpMacQkVG8W\nI2mTYYTz3Drl7/0pxiiOHfaSOLdItD3LDGPObA/pTpLYpEnJsPB1J6SNNn/ebHN8f4QgpDD6BTbq\nY1RVZbTVwemPsPoa98s76OEgsqgwm/Hw5lmX5LUvYFdEJiUBManglx3CtRgvvrbGyUAm40yxRhIR\nzYt2NYpu50jqJdznZ7gXkZE9V/jgr/4TAL/wL76C9DDNzYKP5fQBA2uGwJqLUNZLJ/IUs8YA0RfH\n4xKJXbaZWhZGX8bNJVa/fImx9iETI8Q04yGZ7OMliMdjI7lFtLkQIbWM7PXgWZplzuflzffqfOLa\nOq3RmFRAQ4vqzC3Ps/WXDwmtp0isNKi+WeL48IjPP5shHw9QFTrkPFnGmhtV2SdiOJSTEmPHw5YZ\nJ1zpcrvho1exaSlhfP4Cx/dVbN2C7DyRVYPuwZDF5+eo3Btw8m6XeFQhuF3HsS+TNybYgQB7p11y\nfhdSYYdJt0avPEZTL3Hr7e+TkdbwrLt49842ABtP/gpneoeSu8lcOohre8qws8lW+QHrX1rl7R8e\noc7kUXoOLbVE2PHT9ScJih8Rnk7J//RLFJse3r17g5fOqSxM3ORUge1HNWKvqrzyiy/x4RdOmdcW\ncfolpGmf8MxrjCIagZ4ECQfPyIvWeRYxeUohGaTncYiFB0yrNuGEzh5Vhp06o6bAd7/+XSaRE3x6\nijoawbxIz+0n5tbwOkOk5QTbb/4EOyxxnhTNg1MmVpCM7KeXruAOe9gQJSzNh7sjs2h2OFMNzMIe\ngYSOfHJGIu/FrSlMtBEV1cfB9AE/9UvL3PvRCf/4H/0dEJb/q9/7va++8PlXqW6PWfh4iJzuwpxJ\nMRRUNvUjrEKFtWeCBI+m1AVwfD2cjo9UPI4xN0O1/Q6pmEjNzHFwWCbgF9FP9rDmEhhSD6kaY2ZG\nYKgLaGIN10jEkR0Gn32KB0d1Jt0xmtnjw4/apEYeJj+VpfXRAa7RiGyvwTiuM5pKzKRmMCcj+q1D\nbr73FpK3y7XP5Zn0wkzaRRIjF3HNITNZp/P0Oq5GkXvrxwR9y3SHA0KHUyJ6jlbNoaM6CAsSirSI\n3ZMxV/cxnSCNhkGkDJbfzXI6iktvINR1RoswrBs87O3y4VuPL8uVF9bJ+hQO+yqGHqNXUJFEEVut\n42q1mffOExxvUB6bKNM4GXWOM1PgqPwRqr1Bo3wf0S0hzc+y8OkVJvEIm+8fMnBLrKYU7Bwk+iOy\ngza1tsz0/R0WV2dxtCJ6U2bR7yeAQuCFFYIphfBpj7LcY8EeEEoHGC6auC/4yD8SaOoxtgdDSg++\nw427XRR3Bym+hqpOWVl2M2nfwNUt8zApMKncZbAbxszMMzOC9WcynHRG5CIrNFpjrKfqOOM+vh9P\niF2AVtWLPxRj8/CEZmpIWxxwr+rGM86xOelwtJzDvpLh9l8+dpl9+nM/zzOXU8Tqi/iMYzr1JA3n\nkNnLKwguhdLDE5QXZxjuhejYQ1SvSsllk98P0eofsxiJ0IhNGZfnCRLAfdVhxcrQHzVhWMYVzuAK\nFxCabozoGcvZLDutEeVOASuk0xMnhCYG5dou18IXaQf3EHwXobbDyieu0r9TRe3pOI0pQ8mHLz4l\nLiS4c+NNrr72GW5+6wEn97ssn1fYfnsHbSHCuLuO3xWk0a5QnDbpVrPISpWDYo2w5ENeH9OazFE/\nO6Pb32Ume5n+sI06NEmYbt4+3iKnfgojFia9GEEVdfzX1gmobr7z/TcB+AX1FQb+TYoHPVYS66Tz\nY67fLBGf82FME2juY4YBiVzTpO8OUJ1zE12dI6mEcZ0JPJ2/wFbxhMIbH5LJroBrik+XEEuHSHKT\nmiEjTeJomgs10GNiBig8UEgFesTiUw6XAmROTIYLOivjFUxZIq8pWJ0BIbvCzJrAaipCzUyT03UM\no8Lyc1epKdCc2WDr5EcESRO7FGJaF/EMk4wXTWZlP+bix/DeKHDQr3PnAz+f+Ozz2HevM5p6qAgq\nLa+Oy2/TNLt4M6skxSHDmJt4OUXJ7ydjdplNZfGfz9B72CGz8Gm++8ZjA8irX3wOp6WR8Q2o2SPU\nqkVmzUWvPaLXGCJoPjxBA9sbJKi7iWaW6ZQF6o6D5IBl6rg8YTL2AO1SmGgoSWc8wCrsMVVbBPse\neNCjqkhMKx60nk23fEQsfZ4TdwFht0w5qHNuOUa17XB2IiA//JC9UZ50pYD5wy5KNEBnFIBMkb42\nJBCHxvEOKhXsbzc5qEw4/9xFnKCNNqPT61eZ2EnEZoeGOcXv96DICYr33uR0S8cvV1g4iaB5QoTC\nXkrbQxZnZ2m5Fmn4DTwRg6wZpZnu0zZU4kt5jg8HDA4KbH34IwCee+YpTldcLPlFml4/cd1Pqb2O\nXJ3SN3VGWo/2SZzEWoKH26e0tBi+kJem0qCmyyQaJWoXPBwbNZa7K/SyDU73DbzrfgIP2hyepZlZ\n0IkPFYaNJGHJSzdrsZhP8EHl+/TXnyB45qIfs0ieenGvSIQOLfqXHUbbEJgZ0+hKGN0Ei94WRk1A\n8Mv0GgZjfwDdWyHSV1EXWyyzSCwloO5EaXm9LGYVJsca3W4Vq62RbqRR+seEbxmYgTYVYxFT9PDO\nN3+APFAQrRWCUw+GnkZNPYdPvsTRTIvgYpbai/+AdXeS773+GHy+urLCxVdXSDs9+oZDXzfQY0kW\nHZXt9n1yVy9CR+R4MiRe0HEn11gNFWjuwEfuNh+/+Aqb3/5rXFcNvMMOxnthulqHzJzM7qDA/c/f\n5/2Ptpj3ztJzNSEzT8mZcLhbwiN7mNzfpBiP40qZWBMTr9fBNxzTkIL4pl70rhffWQ9TTKHMLqJq\nXrw+P9MnEvilQ7ZePyUdX8cV8nC3+RCOCqTVpzgsPsDwr7KeTlM8sZhEWoxceVKVLgPRywSFVEBi\nvzpGGOuMPSHc8QSS6uH7Hx1z/uVP8eikQae+xQvuDR5uitz9znf4p//z3wEm6l/9y3/91cXVWcoP\n36d8NkBUorikKsZJnWGtyuzLn+Dg4IisnSOieXjrvR3mVr10dS9z/RIx28YO+eHDEbsn90n456kH\nJsxLAfbMBr7ghHZDIp40OS3VSaoCJ50RY6uMMI2QcPlJXFqhMcgRCOeZLEaJCxXcpsnIMZifnGdn\nu0sk6KbWsGhJKRbmmrSCKXRGCC9eRq86xHMBdt0uqkMX4pu7jNcEBg4IxT2iBTe6r02BJgOtiqio\nzGTg5o90nnghw8FkyLKc5+KXz/HgWz/ClxJgJsVxoUtfLBN31ogFuqw9NcO3//3jIfNLv/XLVBtR\nxJREShfRzT69DVC9EsZ4ykatR1uVWXayjEJHHKnXvBvH9AAAIABJREFUmTZ65M9FqI0GVLa3Mb0l\n+l0348iI/nALKznFLAw4eXSDTC4LvSqb1gyewhHP/+YvcaM6IBnIMZb8DCSTlWiMfm3MwNdmPbmI\neTihfFlBbD3gRmPIhugiEZ3QcfXoKDXOh1/k0meThKw0/ryKNzDhozc72HMJpqkIaTuHoQSIWxKO\n1GZDS9CelOnWu4xCOhnzAS7/LNFSD6f+DuOTQwKBFGU9Qm7Oi1M+Rj4q88S1HOHngvSOtsmMN9nu\n/g2HP3lMdy83bHwzF3l0b5fpUpZgQyIcURHqA8r6FgNZQJv6KBldIgdFukMbfypGI2qRONM5edIm\nba3QiG1jxDpEzHkGlyok7o2wV23UthdVUgjFMlTsJezjKe7JCWV9THevz6DncDrwkg3G0S6mke80\nCV5c5v/6v9/Cd2Ed0Sdz5/o2G9o6/lCb/5+793yaJbsP857unp7umZ6c87zvO2+++d69dwM2YBeL\nQBAEKBKkZFIMNklbslW2mWR/oMooySrRJZKg7JKrbIkuwCyRBAMIgCAWxAZgd+/Gm+Ob87yTc+iZ\n7p6e8Yfrf0L8F86Hc37n1HOex92MUC4/ZjyfJjhoUezFmfuxKdwUeFo7y/ZhCfdahdRjCzmgcdov\nEZ/P4rrk5plLL5K4nOTtd27iXV5DMTOIQzf+iRvTchKOubDcDobyCI9hMZ5GqT/e4Iev/ZBCIU57\n5OKdN5+EdNPBLj73GZwOkeLcKaX3jonGxizoKoNcFsUxx7lOF2M1QLu8TfQwSCoWIOSYUnSM+fiD\nE0b1D7jy0o9RHQ1YyoXBaFGV4NjqghFDmVUwFtvYh0n64y4He1Xmnw5yPLEZPqywVy+xPl3ADo1w\np5Pc6tzB0Row8mUYHu2z0ctSd7dI5CbMJh563Ue4z+c4tk7pDrK4FyW69RPqqp+EP4Db6iCnBSpN\nhfrGPuMbZX7mn/4MN9/8j3RT30f5pI+MvEpjOiBxoDKUu7hsDx4xwvb1RzhXI4zQiQthTh0tTk/K\nOLIrfLz1Jo/uPwHyzz3/ayQmfeSRzJQEB0cWHcWDy++h2p+hiVN0z4y8MGBvXMIMtAl7c6hxP/tH\nFRa1LhIGqz97iZNtm/GFKSfvbLGQuADHKTw+F/6zGSaShuHvUy0dI1Z36DsSyOMpdt/BqCyjBRzk\nBZvYxRxVLUBqdYgnmGD7gsok7yOW6HBcmVAYjTg+VhgMx+QTXmJnckip80TiXrp9A3dMQTxokCZM\nK2mzltVwBQU2+yNW533EU2mKpw/o7vtwaRrD6A5bzga6v0Ko1iHsEGkKZyAxITiI0Z+HYu1jLrNA\nf0fn1tbrAFxb+XE6HZXq3gghNaLVTRLOjMiev4oondD0Fri0ptLv97iwlGPQjBGb+OhG5rgUE2hu\n+6lpJiFbQFENpNo6Ww/eJagG0QwBkhpVeQGXW6erNOnhwdMpoQY9NOUxR2+8i1NKsPP4CDXY4eg4\nh0+sEtoboD5nUS1GmWvayH4XZXcVBIPJMMl6wodiKGTHEbrzCmK7yKx0iXC0gShkCIgddqvLpOQK\nVltGuGTgV+psGk5C8wMmK16CkV2CnQ7zER/HHhmBAF5hQkvz8Pxnl3nr/iHuUB93w+bcWpCW+RFv\nfvOJbPNXf+cXeLBhoVge6p4qIbcLyTHFOWkhWGvoByWcwoRr3QBveTqsOIsMlbN45CjWrMXWbomz\n154mvF5A+ngbqb/MYH2OZNdk3HORMn1YYpoL523sboBaa8qnXrlMtGPgi55SSXgRt8Kk6iMsZxxl\n0GOrncAZaODjPIHFLn1zgOdKmOD9G2hSlmwyg9Xtoelu9oYPEMkT0HQaJ1nc5oR2VkL2eZi/mORw\nr8LG3i0iUwlv2kZKJTGFIJ6qjUPSaMhDlnQXUzGG1WuieAXmvAF6H5VJOIZo6TVSE42aLbH1+Aa/\n8Vt/D4zlv/f7v/uV5y7/AwKfnMfZKVNYucruaZOxsYk7skLAqzItDgiOe5R1i5SjS99nIE+g5p+x\ncOUqQq9LrTImkDlH0BFjIvbQguCc9QgMFDyuFKETgYFdppWXWTLz3H9XJ5kLEgxYnG41iGldHqst\n4qdTRE+L/g8U+iWTSkpmOdqk58hgVPo44xPM5hh9/iK/+N/9I373jVe49l9cpds4RQ2eITwTGEZP\nqbxX5VXfCs3NJnf0B7hS51jMqxx2HDhTU5LBAr5JhWZzRH7Jy+GBxbDmIFMIc7dSZzQb4J55WPzU\nBUaNLarDJrXKOh+88eSr/k8+J2NqK9QcBqR6hEIxrly8Rm23x1NXnuXN73yEP5vECJ0gxXxUujUc\nksKGZeMUYP3CMk3bySdyF8gFT3Fv1tB8Dq6tRAlQ5yg0xiGFWXx6jUWrQr8/ZW/zBqHlBPZghC8w\nwFacPGgN8eBg0FRoKRMuJDcIFV5l4pKZdx/y8DsfcunlNZyjF1FG29w7vI8mNjGiHvYPDNZoY4xD\nuJQppx5YciRxB32se59FDnfJRnMUBZHRR7tM3QHc7hBNv8Dj7g0Kn3uFpbkk5YbIuFfHawSZOzdj\nx9Kp7w/wTRLE0h7OOYO89r0nTa5//i/+JVo3zl6rykidoDpcTI8UPt69wfzFCxQCGcr2AfGJi3JZ\npDDxM1VO0eZHOJsiisNNNNGlc1dnzyUS1qtEe37kuTaxSBJdGPLatz4m+HSavNXiWHDTs8ssLISY\nm7fwZMOc8bnIhzM0PnoLZ1IlEVsgI3kxewssnJ2S7ZtYhRCzI53dtMzCWESOrXLv/et8/peew7Gl\nsZ1oIUvHXFg/R+kARhcyODx+Yh6I9ioc92WGx2Umsx3yax4+Pm2SuruNbyVF5WSXQHkPeTGLfQBn\n4nHCqookTtDrBpl8GMG28R73eOPeewD82C/9CsPlGKLhQrfmicdTNONztKcy7eKQ1qRCUPMjRIe4\nUwt8NGygxZ3gHmP0KpSrBqF8AqvmJp9w487otO1jxj4RrTZlV4gyfcpHoZGgpk2JpOPMeh4Gi2mK\nPxyScvhQkyLd4wHRTJxn1paZd/iYLMgspLyMTI2ob4VYt0SnGuJu+YhFI0bfvE86PGPk9iAe6CwY\ni/zo42+zVojT1gMUrp7jYN8gbwk0VtZpbz9iOT3DzOXJJfMcizOygwC7swM0x2V8tGkabep+nUwy\nhTKK45PG1E4tKMg4HjRZebnA97/zRA3xdDzKfC6FGV1FiDtxHUtMpBljOQSZKLPqDll7GcPrQNAW\nKL29TyjkI3l5kaE6ohoL0nYvIHkjKEd3OKrOo3hmJI0Qljakv6UjOuIkbT/dYJCoWceOAdko7VgG\n33hMMm2SzERQvQ7+xR/8S+JXPsfjeohI2iJ0p8fcT8VxNktMrDwzVKy1McNRj35jRrQSZJzuM574\naYomNiqViRspPEVWJRrWkKONDlc+u8yd27fBZdEaZplfj7MbLLPTOSamZigkPJT9LtL9Fp3pkOHI\ngegyaL/3HosjJ4d1J+G0xtsfPAHyf+5TX2S7eErq2Rb2e27OFGQef3yIe9zg/m2ZkDrA3NUxfVPM\nUoqafkC17cY1ldnr7iAtD1kFUrLCHWXMUrSNtPgFlqYOOuMWLjnK3s4ugQUnmjdF1acwcM5oTTzQ\n6XDp7Av0kyEipp/KgoHDNjhQHDjFeSaNJL6SzuxiHldjRGzswSFsUyoPmER1nK0tKsoMbafN1OfH\nQwOjkcNS77I3dJLXHiK6/CjPaNz48B1czy4y2N1jkA0RnwYpTQzGzRSqZmJlBqTKJ/S1Lu7Hj9l8\n9Bitd4TqbiIbIyaNe7zz2l+xu9kE4JMvvYjzoUUiL6KpKiZT6noc57RB1/bRHt7GWbjI7GIKQ71H\n9bFIbDHER8Md4qMMxsyk25A5efgxS598jiNrykqvxGgwxBp6CFHB5bIRt3XUVJ5QZY+WQ+JUduPY\nGBI+zKIEx8wWj5gpAcT5GWrvkH//v/4RZ//bCV/4qV+i+aXbdE9KeEPziAWb1iTIsCtgJcMssUij\nfR/dcYll7T6TmYbhHdI9rKNef4+1SJzpxSnLzvPYdS8POg/QvCIet4P7Ox3S2ToTw0VgmsAhTTH7\nLqLBFIeVHXTJh3c8oO0dkI94efe16/zG//T3QHHwb/7V//aVT59fYDUcwdqcUV3oo9XyDLUx8yEf\n/cMSriBwt4ZPDzKOyzTi87hjGcLGmL077+E4qCBOc8hnx9gdGSXcppNzc7zT4dzCMmbXSbXyFoUr\nzzC5VaW2o5O5ECEdE7l/UiG9JlOpx8k8+xJ/8se/h550IYlN1p57lkGtynTcxtNVMZ0Gk1wTr7dA\n0+Nk9N/UiTz7KtsfNTDv7jLOpcnGg4zvd3HgJuCYEoicx+xBPNTG6ojMzyfoFTWmw2OcqWXGAxeJ\ndBXDfcj+fhL3Fy4h9ycUnH6G/iCJhs3RRwLiuRCnbzd5tPHkxpF+eZ7ZIIarJWAKGb5zuwadA4qV\nQ7qVMtNJD/ckQVcJ4VsfsN9bJOe28E99DPoW97/3A66knsM57+L6owFyssDO9cc0lSTGsEs6UWD/\n0Qb+BwbhuMxcLsD+vZvYrgtY3ghxpYk0TVOZbsMohd0+5KwzgOSo86gcQROeoTFaYmVd4fqbj5Fj\nQYbOHjNrhD+QovFBi7o5JHrNxl/OIKgSmiViOHVqB7v09m3KGQM1F+bjOzVqdImvSwyFBP6Zh1So\ngKt+nccVjYhWQMVF/cqMrdMh0YkHh6ySOpMD2+YzXyrwf/7bJ2qIy/41HmsS60+nydsKxYFGpVRi\n6flFOvf7NK0EvY6O0Vc445FpOyWcqpvFpTxm+5iaV8LpUjCiA9YJo6JjCmPEBRG7f8z0VOb8Sy9i\nymO6BwYxoQ6dHH11gkOf0hyOCSkGAb1PI5akU3UiVvdwn5M43e+ipAyGiSjuTpmex4dPlqh6s6TG\nFsGcSMfVRUzP8LQieAItDnZKuNcLxE5LeM5W6Hd6uMI+xkteUuejLLsUjr+1BTtDxheSOIoGqVAW\nx7yf2eNHqIERTscSRb2Ny2NxOtK5vrHF8pmn4cwOP/rOE/P2P/uZf8oknsOJD6eo4BKjNM1HWKLM\nsb3LxusP8UQUTtMe5OQ8rd0tXKYLp9dmVptyqutEZ2P8Z/rEnq7ReFjElOa489YjcrkX8LmbyHaY\nnkOAlsm4JTJMG/grHiahCo6kTeXQyVPXFpkem+hanXHQhVDyYYxg0nRTM1ssEiewHGSclDjdPsHX\nbRAeuEn5VjBHPWTbjXcSZMGRY2NsIIZLxB5scmoGWFJFTn1FDh49ZGXhs7S2GogjF4772+Q+8QVq\nB2/ikac4Y2t4zp3nR3/8LSayijszojQakWjqBF45Q//tb/LDu7sA/Gryy1yae5mY4Ga6vc2g9yG+\nqEhky09p1MMZS9A39sBUidtl9GyCUcjF9dc+IpDy4yqOEGZ9xP0jTmbLdPUN1v1jHn+nQiJ/Bkvv\nk6rnGD8Fl//BRSqNHs3jEo1GFmW/RLdZ4lQQ8OUd2E1I5F7ikiTi8tksjeJ0WvfRFw129RrjY4tx\nbB9924Mc7XEmGiGUiSLLPiJKGavTQ4vX6Zza+NZlNva28E085GIGx6MGcmoNudllJnZwf9KHuwj/\n4ev/gbNpkZ3d/4RregbF5aKXCGP3vejFTd557SaLL73C1Law4gLvv/FEUvrJV6+SXWlj1IOkpS4t\nFAorMt5tH6mLdVS3juhawr+WRo/OKO3V8CebGIFt5oMdxvUYR8UHyJ0MjWCI+rDF1t9u0HGCUw3T\nEGwycgg9DqF6BedsHofdRfdOWE2k2evvoo2axM0JxtAiPS4wUkeEFMiYDqwVL49ONogeS7x397vc\nvLfDC1+0qZ0kcLlLDEo36IoBpMgE36SPr1hkx5SI2R0mtkhLrFA2DYbFAS8EspS37nCo94mJ61h1\nL/rclH5oj6RDRI6ekD6I0cvbTF13ONKaLKkTHBEHWqBCZm6e17/zhPn8h7/4C4RXJIrFMVVFYTwa\n4xPGnCgLDMJjouM0CeGQB40HBI88yEtBjAMbB1U8yhzJjAkVF8ePbqPaATS9g52Z0h+ryAs9BlqP\n1o6TeqlC4pKXXkVhGD2he1pn6UvnOJyUUb0SY6eJuHMDszYk4PNx9aWXUDcmbHz5JpPcZUplB5YA\nSavN/qZNVh2zMAf2UMKLjGswRB5pHERN/BMPoXiTmG+OzK/F6X9dxJczMewhO28XySfCFA+bXArM\ncRoVGeol3J4Gkq0ghgacTCyEoQ8pOKMXHeKsa6jCHd7+YIvf/u3f/s9/iPrD//3ffeVLz1+m7Nmm\nrY+IDzWkVYvkVOFgy8Q/8xPEgTeaoHumhEN10Rx4SEQtTLWO/f/u4zrb5+aoxqCcpDLrIF5TiG13\nODP1QyOCg1NsfUx/YHJ00+bqsysUQk6mXidC0sWo2We4OMf0toXLW2QlFCYSzVGTOrjlIOGQH7db\nouYWqWyXEA3QqxJeo4HfqTIeTnFP23SDdSSpyrjiwz0fw8rbtGs9hpIT1dVCDQV5585dlhIOJqqT\naX3MWsxEfGzR+maRQjzNVJQ46b2FIYfImzK27mB70OeKL87grW9wo/qkAffCf32B4MiFoR9QM4a8\nHMox61cIjHyo2RjZc+vMDrfo3P4m1o/lKFS8NBCRTQ1r4qLc6ZLMQbetsOQe0hhKeJwpVH+ba1eu\n8KM//5hnCk8TDjrZD7rYef1DHJ+9SKIdo9SvMJKGnO7pGBhk9ouEMx7Ohp9mcN+mbTuZeIpMG0cU\nZzYeW0HEwLmSxa+MqHrCbG5u8JmLGfzkUY0hzUwfX7mIFVewQxqnLj/1WzcQOk5yfhNHLk6h4UYI\nGpRbXRYKYcab9xgtrrG0skZZLCJ5u7gwEdRVQi0DMyGzu6WSNKL8yZ//GQAXLi0wGpzh9o/ewyss\n8fGDCudiWeRJnbbiJThu48ZC7WeZums0fR5ySQcPrD3ESY29usDFkJ/lz51j0Jqh+0IMJBOfQ8Xl\nUugKERpml1i7hNXJMfAF8WT3KR40CQbcdDwaou6n4YyQEqZY2QF6fcph32Bes6iOvZjOKEFnEV/I\nQtb7yJEm+oGGc6wRd0O5XcLvWGJ8sk+/1aPmOiKoxunoBt7VIP5JHl91k4Dm5KPakO1qBC09ZcU1\nR6PeQ29peHL7NP0R2qEQz/70GvWjDo51B+PDDvGgxCQERu8DPnzzBICUt4VbntA8aLFv3KYZmKH8\n8DqNB21Wz58jsHSN4JkRg7aXOYoYNw9JqkOcgRjHNlzxTHGLKspKBvN8jc4bDbZHXQq5n6Iufkip\nMeNcPsqoJWJMHiBnB2w97pNdDnEyeAtZC1EQRniaPSYBkYkxYVdsYrTaeNcMvviPP0/npMKOeMrf\n/t/v8Xzqx/jiP/4cY73HpHiAJRSIaxPEowOmQY2Ob0hoLBDTiuwLBoEFgcEbOygFkXBuEclRxmqr\n2EEbv09l48Epi/4s5dGAYWdGQOnw8PY9tLjKsCyT8U1In3Fx881vMe2F+HDjEQCJM2scy6eETInb\njRMaYe1JLLd8n9yyH0GpE3K66HWc2F2BmT9AoNxCEE38VgtbVxjMvEzbOv3hCfPpOLZ3DmfegbRh\nENQ30fw6reyM060SvcmYu70dFlsGzohMy+lC0Spsf+8xb37tG8x9IoTlO4vuaKPcb7GpdzAEAamk\nogUdSMaQ864CVmlM78plTK1ESx+gBVSaj7ZopnKYWgDbUWYsOfDkEvRmCo17p4yaDsb9OPFlN7Ix\npt3rknjqKslrM9zJAkJ+CZdDQjwe0W52eTazzJgWqurgTLZNmCnf/sHbABR+JUOwfYGmo05AddFI\nuOiNTygPxhiGiFi9jdMVIjH6gK45xB3pYo8UAlMvyukSN9X3WXz+aR5HbrGiP402OMT1+Z8gOxDo\n+ouoS0fMZgM4UDhaTlKob7KTTBHdsDnobeCWw2jDCCVjgL6Wp18fEha6NFx5Tv0Wk5KCujjhsDpi\neTXEU594me32AK1XIv3ZZQ6bi4jrFqGqzN5rFno4yMSeIsyPOU4NOeuJs7dVI9HN8DA0pe61Ca2u\nsxqP4FVnlLQmCyOFTvUiMc+UKi1GxgQKy2Q1P21fhIToolS6xDnvBf7sW08YvEurUezSCS01jlLp\n4Rr3QI/gd4+RxjJaYMju3DmyLYGR6y6Z0Bz1Vo+APof/hSjhQZKyu4meMTlz/jzb28f4FwRGAx3X\nxAeSQs7Xp9sxSGlODnwVhnc8KCsBDCHMdKPMccKLKIwIZ6Pob/0V9z7eIOFeY9xx8dffusmVYID0\nBQfxap/ygYixYJDM5enVi+iDIHrQYnneQ8NpkpA9iNaIuj9H8jNLCL19pNdv8KOyQMYN4kUv6nET\nNX+O1qCGNTslb/jRJRO1GEC2B5SGMon8CXo3QthlY8ZUtL6P9z96yG/+9v/4n/8Q9Xtf/epXXviH\nn+PWA4mli08h7Jdp/egmG4MO57+0gjrvp35vDy1UQDdUDupDhsEZlXtT/KMtki+HqMVf5e/+/D2S\n+ThKLEVEGjCqRemENRyWidNp0rQaFA9NzqzOSNo1xK4bK+XCk3Xwo00PQrGBr9/Ao8bJWUk6kpdZ\n2Mti3MB4YDA0LZTAAk7NA1E/Y5eNu65jK0l80w2MqYuQN0Mo6MbYjSKGhmgDF71skDnV5KQ5IOFd\nxbm5iVFPkF+MMJx6sMw69Y8/4twf/i4P7/w7fME96g8TFEYzGtkmU8eYSF0i8Owys3SQH77+BgAv\nrXwSR1fD1Z5xKZOlUU4yFgwuVwXOpq9y3NMJiQMuXgzw/GdeZf9mk+NRBYfYwlls45kZ+JIqeW+B\nh8aAnDAmtiRwshFA/+Amhm+BuWSDiqfDwY09yirMu0MotTbNRgUlMmVr2yQiCHz3z77F0tkvIVcV\n/DkH4n4b0wFRI057NESejzK4e4Jj5kSqD/D0/aQDI/a8GfZ6NUrNMcrrNfbVOHE7zMyRIig28ZLF\ntzimXBOZj0nogpvZyEtYnzCM7dK0IVFTCOQvIE1MDDWBfqygymWi6jpm3oEwcJEManzjG0+CsD/9\n2X9CJ9ykXnYgXdXQAhKnRh1DdnNGGdIsl9iXQgilA3KqFzk3pR+2mUYy3PubItGVKQ6Hjbz5GrvG\nIdv3QghzXhzdOlZpCYdrh8yBxVBIITlGjMcKR7fLTNdSSOaM7CzJQI2hZbZw6iOmPgvL6WS4fYdo\nOkiom0RWTUoDH0HZh6PzmBEehvYQr3+I2bLoOeZISyZqZ0bx8mWWhCRnnrnCxGhw3Cly8qBIO7DG\ndt3Et7/H4thkMXqB4DhJb1Qj3JepJGP0j0SUvQmbpTFjq8z+Rwck7D6pF3NE1Rmz+3f54a0qAD/5\n5TkKMR/CdMQ1dwY76GQ5k2dt+SrTicTh0SNEW+HCi15Sz4wwiwq9ocZ46mUylHAui3TcNm3bRePe\nhJlvASmZIuUTmLSrLEReQNwf4nA20YIyo5KTubjBwd0O7vhTuOyHpKfXKId3yYwF7tbuEdqExcuX\n2f7L1+l1JOq7uzz6YJOVK1e4sLTAR994l757lWZ+BWvaJjRSsN0jwvaEir1F0hVAFhS6Iw3xfgO/\na4HkmTDCY5PaYEwovILa9NC8XmLqjzLTgkQ0k+q9Et5ii0+88EmCK0Fs3Ciin7CQR/SuE1lY5Ad/\n9+TlM//JX2AWEhk72liNI7SYTCeYQpcWmVglBvRp1SWy57LsjSu4pRHL+QBdKcRYmzGn+gmYJeYD\nKSYuG9NsMtG8JE7rTOURotek7cyhzIro6pR+yya3FmcUclAbn3LF9JPVRBJXr/HppwJMotuE7g2Z\nfVDksd7g63/1pzxzNkPwooHD3GP4WKeYmiJ6LxBolPGLMbbGW8wt5ogV8sS1ETt3O3htAX9ojYTc\nYrpfZX5+gcIKuBa7uDSR42aIbK2FxxckeKyQOfMU3X6dycgi2NUwpCGDh+/jfvoyNTp4bZXjmJfr\n336yv/3G0s9znLmBexbBLbhw6iM6rgHphMHUaxKa+wQ3tvoU59MMxAMop1Fli6Tbw1Tc5KAaJzfv\nJVWT2LTv0N6dsOb2cWo6CZ5rwzt98vEczvkES0xpKi5GGyXmc6fEmwUqWg2tHsOZNam3aywKBr2j\nButpi9akgmn6CO+4CPnDHIXmqFYdXEld5X7sLKo6ZOhxki0PqfqXGXq/S/aTi8T1FQK5FLozwfVb\nW1x9fpH4XIL//td/ndAfJhjc0ilLB+zuN1kO12mNnLQjLWxjjkU9xKgro3U0jiUv3cERVkmgaLnR\nq1Xevv6ElV34hWsYlXk8uz9ETqp4+yrd4YiQFKW85KDrDnPx0goPG7dYmJ2jWa7TUpusRjWCisnm\nOxUW8wm0voePbv6A9WdW2X5k4hIEZp4ensMJG7qPWNyJLGqsBM7iDzS5eOUKB7UyQtBA3Hfh1t0I\nQw/tpTRP6WeQwn5S6QDpZRcLP6vy+KtVOpezjLYNpvM59NMZStMillIZTPrIpWPUVJBdW+ODW+/z\nn/6PPyB3Y0powU/pTI7YigefP0NTmOH3Knj6Jg6Pha8ZRl8Z49cWGbt1GrMGTCVqIwdRbYljS0GV\nRY5rTTYe3+S3f+PvARP1u//6D74SX1gmfSZH/cZjnvm5FzEnY8LqZWTngJI9I5CdYVkF7O0N8tkM\n2fUUtnNCYHKCvPhz9PdvsbrwDImAn6b/lJQzgHAxzfi1+0QvuGnsWVhnC4RDAqrH4NARY3uSJLds\n0txpMq5rNPUbXFpd5MX/MsvNb57izkIkkqDdgTuawkUtjmiVmRoW/qMZuQUvp4ciSrCB8Je3mVtw\nI6cVju9vMbkwx2J9iJ0e4R5o7DiPcfh9ZGa76K4CRllh294hE5nQ7eg0tQjvvv8GgRcXSUdfRHq0\ngRJTcTRTBH0mR2YQSdplKRfiL7/xhBn47Kc/T1nrMuteYk+XefFzEb7+J3+Mb2md/eo99MPbFGWT\nH//cIm/97V9RbcyIPJOjUI5TF+HO6BHZ0VlGA//dAAAgAElEQVQGXsg2+zQQmbltglcUPL0g2Usp\npqpN+c8fo11a4kwuQNg1oyw4iefnmItH8bvdGLkm8cQ58hdSdNZ7aBOB1uCY8GGSRNCB06ORK8Zw\nZzz4By4+uvsGvkQEJZpDmQ1x3ThhVpgSfCYKoQmLiTw97yndagBXZg+2AkzTCuX2PnOTKH3xDqeJ\nIErfgTHNEz2v8e7jO5jCFp37D1Evr5I+HjBwmzT3q1iaysVX/Xz9q38MwAXPHPYwyulgm4hsMOl3\neG79AnsHffwvJOBAxrWmowtdpDM5Qh6DwWaRgNvEOmiSX1rAMR4hdJaZj2Tp51uc7NoMJ1Ocwxb2\ntoac6xDouHlw54Q5bwpv0knYFqiMVWy5gxit0DOmBL1j2sljcp0k0U/FGJdbiE6BrurixvE+b44e\n8bP/y/MwzNAVupwcz+jKFrNBn53pTXQB1N4pB8cDdqY1BntO3v3237D25S8ynB7jKJ6iKD5cjiTH\n4ghRFJlOI0hKn5JDJtyuUwoXUc+GSAfCiEUX7UtTIhWToLLPpV9e5//56hOJX/QgTQAvs1AYKaew\no1vU+ia1voMFSySkBtg14njGEh99e4cF11UE9y5WcMp0ECOtmng39ok3YaOkkM5kGB1LfPNf/ykz\nn4R/UmG7WiF5KUBzGKG8/TGD0RzWNS+Jc27obdETVByeGje/fZ9LgRSf+PVfhbkwO9Uj4pfnOEqe\nI+UXiUXH/G35EdYHRyjjED61SG0kUnIOmU+HoH6CbS0T18P0hx1y7hzd1imB9RH1oo/HAVjxmBSb\nBu36gE5/xlVN443GPsW/+EvWvvRpOodt9p1jHHsW0tTNuVWBWthD6uEcg+o2P7j1ZBg4+1sL5EQH\nthDCGQ1gCXPkjDFeYZvUioNO00NXXONku0K61MI71chEdKSTu7QaFlHN4Ltv3GeQbxHrSexs7bMU\n9GPENIauPlHNR8VyYrsHtGw3vXqbi/MWpVsdHH/8FtFndQq/8wtY94ZUOnWiTQm5MEV15Ug9vY5b\nMnnlZ5YQz64ifKgyqkdIt6b0Uh5ghK8wxW3FmBw1wOzR7ReIe7q4GDEIxBl5IqSlCDUxiD/gwT4c\nES7uoHpLTPx5bt7exnklize3jP4hoLqJUsV4vI3nSwm8tRFpSyIxdVJqd3nv7fcB+NKnV0g6ZviO\nE4hTHdNhEmytoUTL1AdxjnI2br+HQFunbJfwi1F8po+ao0Gw42J/Q8V/MMBc3GB4e8Rx16Ih3uBM\nJ4s5F8E8bjCYTlirjmk1ttioR1mcHXF3s01bzqL1HLRHQ2zfjE5pj7AHfPoSzb1DnPl10uUhwpkG\nxZhOuz/k/LqXjZJGYcHJe7ffwqVcZenMJS48fZade14yZYHB2QE9ReD0jkbmqQxq/xRjo0Lzm5c4\n+Ou/RSz48FYfkEvITKIJunoGRZawZYVW94DUpQvUSnskux4quDlbyjB0PKL5folbx/cBOP+z/wM5\njx99XOLZi3mEKwlywwpWtkunN8QsadTfu8mltIY7leFw5kTSbEI1H7X9IePLMmtn/VSlAOZxE28y\nR6qfwjl8TMUzIBCVcfXauN0hZhJ0WjNGwoBGo0Xx8ID18BrTiUU7KBFyn+CserB2ijj7Cv75LZSZ\nBZtpmraK26NQZZvZwMfiaELN2KM9cOA7twwHdzn2nyc4CiCE/OS+/GWC55wEZyFsdY3yzg94e6vM\npfkgvcdNUvlFhmaJ5OJVBg+2MF0G5dgCSbmLKWaZmXeITZyk02HK4ynV2QGlD/b4zX/+94CJ+upX\n/81Xrj73Mo3MAt2qjavT4NBQ6blF6gchgr46xm4GpfIutTU/vr6XWkdFEeK0HxxwJEtIpyLF2JSE\n6qd3tE8hPaI2BJ/rALsxoZIJMd9pczSaIQTPIRhe9OEmx22VqWzw1nvf4kLiGb72b/8v8n3IFhLc\nfK9EeTRhsiIREDWm/R6DdJJu04mS9KMOWnj6A/QPdvnl//j77HOTnXdBTM7ROjimEc9iDVv4np3H\nrOjk1Cj+foaRWkLq6tQCKZwLUSJ9F1agw+pEhqezmFWZ9kRFEqdU0wEcapLcOT/777/Pg77JvR89\n8UQ9/YVncJYqKK8miW/cYvv6Easr8zw3EXn3zh5XvrjOnuqn3ofWSQgz5qV1YiLYh7Sqda7/xbu4\n584x55oyic/wKmMEK4NZKeFqR6nojxkchghmw1SkBpLowzHyoHglxg96VD1jilYPl8uFJJSRnR4e\nfv8WWmiN7mKDvbvXuX10ylpKpz23hGveZpzwMeo6WJmf0J6MmOlTFlZWmfg8RFs+jE4bQXHy4b/8\nU3R9StfYZqK7aBQ7HP/oY4LLLmrVDOPGDgO5RzYypDrN0GsL5HOvUGrfJXo8RQ9pBMQhQ7cfp9Sj\n8bXf4o0HQwCWn3qFwEqazyxrDBQvqy2TR9EqObeJ1qzTNLqknRJyNobeB+8sSHVvEymQZv9IQAr5\n8DjnOA3KPGrrrLok/K4B1XGZ0DiGbRiYkyl6HvL+NfIzhe3NLotLBXTvmAsFB+nwJarDHmLMxY/n\nX2L3BPyGSDki4SppqNkmeSVKngCTjx9Cv00wvEBiSUdIuIkP5jBkmaYRRVsTiAlhfAOJvcKQVy/O\ns31rn8W+k2AwDf00aixJruFg8KGNRzMpR7yclDZhLs1k00YbPOTiT13jzTstHO19rLFOO55Cttv8\n1dee/DJ7+Te/QCd2kfFehc1mAMFtk9kLEZ00YH6G2d3h2pV5Ko8rJObclPIjWvcshrbM4O4tkqdx\nerF51M4OjtQ6jZDG66/9Ef/kxZ9H8TiRLwbxCj4GYxf+kkz+x1fRYhLK1KCy99f41wr0d4+Y7Zpk\nnvlJFNLsdLbgwSmhdQ/K9hEl2cDhyOFLtwi0Cjh/IosqN+mUdsBeQjFPoWzSzyUoffcdhj+r4hlK\nRH/lczSv32Myn0WvVSgU/DRbE7KuEe1ihXO5C0j2jJCnSSH/Ko6khG9VxTGeoUpOXJ5TZg2N8ekO\nFbHKB3/+LtuDJ0yUf7eH5HcRGvkQtAmTnEDxzdfxxOLsmT7suMpSVmLiCeCcCgxTNkpmSqU9h085\nQb6mcCZxloX8Mn6lQOhCFtUIsDXV8cTWOdHaCPYGvsQitr7PJ66l8Sc+AbsuzMsyFxY+x/0P64wj\nURxKij3fhJPHLVz6lJMjk+Q/Wqchxxi+WaPhjTGZtGmVUhTiC0irfTo7eyhFgZEzQrs5Y+YbsHw5\nS6kf4mT7AbHkGsduBRUfxdkJIXr4X5rjwc0DsKeENYH2oMVw36I+3CZybFAsiOTtNKoUpFeGWdpB\nuRkhPtR57aPrAHzyF3+So8MGj+7VkD7hx9JaVBBxTSq4Mm4SvSLdsQcl4GbeGacZcjHQYWh0OX9m\nleJbBjXBwqlf45nzZ1lKa4QTEQJZm1nGYHLriKqeZ7v7Meb8i0x7LZYyBVyDMFZowniuh89h4OyA\nez5AvJqhHx9STFtM7zfpaBazuTmM7gnuWBr9/RKVyR0uns8gKgovf2aOv/udDXYvpdh97x4Ojxfe\ndVKfbxP1LdEvFRn3lvn+TYnUepmMUyKWnSAQpj85prvpxnt6B4faY/qv/j1pV5uTr+8x+/yzBCcG\njnKD+Pouf/f1v+GlX7vA9157kn25KryC1jXQlCrbN2TkWoflX77Erbf3uPV3j3g+fox95TzjTRHd\nc4A19LNwqtGMuzl2bWM9ShEazHgg7KKaTqxRj8GrE97+7vfpjkdI+TyWUqDtU8lERFq6gSa6sYsq\nrorBiThBkS1y1ojRuExlIGEFVYz8CdnpMziVLO2EQWTgISyG8ESnzNsTtiMSBVVl85HBFXlIVOpj\nrQfone1xXDGQbneR7DABc8pWt4sYgNVJns7pKfnFGO68l5N7NrvT2xR6Ei1/nbjVp9Ot0zkyiGgp\nrNkhO3fuc+6FGZGBj/d+9D6/9T//Pci+/P4f/P5XPreWp2cOma/Y9LNZIuNdHDmJ9bCb8oe3iXp9\nPPupVYof2TgNPxN3jVR4xsP3voFnPYmhV8j2VHR/h1A/heGY4K9OMaQIx+UKkQWZ/XIMq3bE4qUE\nM/mAdx7vIx+fEF9b5MVXPk2p1cAOwNx8Bnd2gclVB4PdIYPjMoY2JTeXZnP4Husug0FLoV06xrcc\nIWaLvPfhDsGqwLE44/YHO7ijMwpR8EZU2NjFvThhNJM5HYlEU2k6oSk1K4ZRtZHFBsZYQ1ybx2yG\nmHUbuI0CHaFDTgqgywLd9hax/Kepfnyb+w+eAIQ/cTWBMckzqYXwrU+QzDI/uFuk0d3n+d/9NbaL\nLlZ7Dco9AaPqJpxq47V8dOQMJ4dbXLjgZyFznqQnhCftwtF0slXVccRaWBUH4ewi8uSQqVcjoMFx\nKchsOqW5d0R0z2Dg7DFNSyhdFyMLFNcSgs/JasaDe2+f5GdfJndFo7QzplZ6n7Bp4RUkfBOJsTNA\nyT+lfkdgoB9hFefJl3MEBzKCr0Ts3HME3G28tsDIDhM/0+CZS8/jcU+RYncoPqyycj7BR3fm8Iwb\nrIo28xdDyC030kIUcdhke/cew+19luRLSIUv8doPnjS5Xv5aEI85IDzL4LRblMU5UmmTmGnQryfo\nOrpEF4IMBkPmswJ1Toi51rn7Wo/cM8vEqhabB9ex5DCpTAz5+BEjNczZYRqX5wTBq2DMEpTvRUkt\nDOgqYRZfVnnt9g0e3t/lu9/eIh8u4PSavPnNDfSjLbaaMl7HhMiJwLFLo3sywEDHV4hx4dVXKBtT\n9gf7HH53g+RA5CjWxuUKkxwZGP0A6bNd9hsuZje6XH//Q5576mWSwSnO2RTTrSCJXkqzDkNzhOdq\ngHKpxej4lFcLr3A067CwNKJ3PEVacLEkT+jpQfqVGnk7zl/8zZND7Rd//scpD03M6DrPRnSsUZTI\nBYWm2eeo/RHRosadRzq5eYndjTbhwJiaFWS22yf4/AKeuTBTs42kRLl/N0HIEUFT5jj3KZmqKmIc\ndnDOBni9JnvtMUd7Y5xWD9GrIfhDhB72iSWvIU/jiHqJkuJB9uXpSzqvv3VCNCnh0VZpNk4YtkCu\n7ePThlRSXuJLn8WZHTC4d4jL6KCuZxHyPmIlk8AoyOPHB4SXltDHHcKpFyjdOGEomMxI4I92kbVD\nulabsRanfUWg8WGbXjKEeeJmnDxi0JORNIOqWiXdOWXx8wLf+7snPref/NoLrMh9tk/vkSis0ml2\n8Qomk7UrhPa3GCjzBIIhrPdv44x5MKsm1W4cvyxSbB/ReZwgmUvz/VqftmUyTTToTGxUXUKyVIKO\nHvFhGiM8xSVZtDoWb3zzh0z9Hq6+uMjuhsF+2yY66eLIxgm2dOqawCi6QjeRxe8aM90aMjoOE5X9\nOJ3neDG0yIH+gIVkiAFTdE5pxrqEKybuBZnBrQ94c/Mmw9cf4l6Loz9o4Sm2yFycp9grMXw8RNMD\nyB2NsZYg5riIObSRxgdIywXEPfA+32Pn5hghJ2P1PBSWFun6krz+vSe+o/Xz/xW6GMdUJqibISoD\nN8nYBwj2Ko1RDe9RmlGig3xkMencI7V6jl5Hp/GXZUS/znMX1vCaLjoNnWP5LlqtQaBn8Gh8TFT9\nDBuVdxCCy5ypKkSvFgiqe9RaCm2vB48Oo0clxKtZhKMwgZ4TyhJb3g1co/N442cYpuLEth1URyar\ndhSvtE0o6Gd85MR+95DXHv0p65/xo427PBuSUU5jHGn7tBuP8N3cxzA11s8auL0Sz1/y8sM/mtLr\nu+jfu06xFcUV7tA9qjO2X+DFL3yO3tAkemaJx7fvkRqvUottUe/kOPcb/4ztZo4b//+6/fTFHONA\nBDvoxj8tM0urlA9LlI8CLD8TwVXNEt3REXNdGvsQiovEBQ+9uIdINY5DLrI3HrBoK7iP+sxHEhjT\nKrHVV/AtLRIqt2gI+5wxziOqNs3aEYFxmFuNDfJnXbTFNHl9j/14gllPYc41RdLiSO4L1AN1aqe7\niPE8AbVOxdnDkEa09nuYrhkzYcLpaEa00yf6xQ7WT1zhuvjXyH/zPp/+/7h772dN7/O87/M87/uU\nt/deTm97zvbFYtEIkCAJECxgMWVFsuQ4tOQkmkwcMZIjRxpzJvLIcRTLipKxlViJIjmWREukIlIE\nSAJEX2Artp6yp5+3916flh82/4T0L3znO/dc93Vf5TmR4FWNZtdH126g1hdxu4IUHQEsuU+u5mBa\n6XD6wln0lszDQRJNNOnKcQjqpEYeEpEUXdnC3gugRxzc/OAjfvmbv/o3H0T95m/+5reunP873Cve\nYhITmCm4GNhteLQ5nMIQpgEONJ3u20XcKxuEnBr5jTgJewJ5aQ3NKzKsVIifazI+NgjFNKR8nf52\nlYzfR19o0K0beFfdJMZ+2iOZ2n6fiabS7tkJLHnA6tG5ZdEaHbGQTHPfLnDR/xS7++8QDMQxZ2P4\nrQnyxy08niit/W2OBjPEx3Za/jyF3CaOs0GGdwqsfu0inV4YmSa5vRjNXhXDn+b4+weEFBU5rjLR\niyQsk739CqsXUmzVDklFbLjCcOedE5yKhAZElDakT7BaQ47eOyT6yhoffOexe+X8L7/EhsvFVVq4\npzbsSphkOMLM81mO/+QtmsMyKzNLHIt9eqNt6gE7osODZa/TaEkUxTni7hZywo+udXEXu+QZMTe2\nc7V5BDMtBCuCIsJo0qAbjaJLGimbG2MuRtg3RS57iC1UMDUnrVgWrdYhEh/Tr21ymDuF8PAui196\nifJUpuHSGIh2Ij4vW7EBne8bzCxLqKMhLiuOGiky9XWY9Kac2MGUTHZcIsftXVKOdfSQm2G7hePo\nCg7VRTMyR0AAZzLEvVGLh69/n/xrd8hmamg7ZRo+lcXap1BOhZGsa3z/R4/PBE8snyFzOU6vZMc5\n5yQm9BiMTFxGlZzs4txnFmh+cIIQMsh1BU5KKlEjjHdGZefdNvGXgwiizFJ4g6PcJobfh22URmz1\nkLwRdNNA9aYpVt6mrRnouoJvJcazl5/HsHXxRi2WL64ysPdIXfw0vniIU94eBW1Kbn9Asu8gJNco\nBAyixRhlEY6+8z4VwYd3bZWWUuLJQYJi6wBSGi2HxCCvE+xbTBIe/CRJc4AkrzMqGATMGB+PN4nJ\n0Bg4MJ0ivQf7WBk32riLWSjRzjRIDj2MduwMNvPYlBB+zxrlD7Z4e/MxaF9c/hozqokUGNPMLrMg\nOLjzoMzx/Q/4ypP/CCWho7//Eb7z86S8fkbWkFQ6gVW+g9+/zsndEW7RwUjeRzgXgZNNPvMP01zd\nvc/ooxb4/Dj1McJExvvUCpO332ThyQ3yYonJ/R6j0BM0hz3MapteQMHlmSLaLZyDBmOpx4zTy7HP\ngcNuJ2hrosy8gEMZ0Cnm8bpGHBX2CdtWEZ9QOe5PsV1vY5s3KNtDuI021/ZOWE27mRw8oJBXiUaC\nLLhP2G168a22GfqDjOpOHL0AnXQb/ZFFMtrC515gNDXhyE5w+RL9WoZhs8jb1+4D8OILz2IrX6BZ\nmhCIxrEZbsoDkUQWHC2DZrvM4pqPg56KP7GPUNWgG8Wpd/mdf/02tuqnSP6iH1v9Ku5hAEFsMbf+\nPDGrQjLgY2s7z3TGjtlNUIkuI5S2WcwmMKwWR00bA0khNm/y6KGI0ugST/rRHUlGp+wIuX0mRp/K\n7hTbtMJkLYFHPcbJQ5pxGAk29PwOuYaIeRKk2hnyyi98lpJ6nWBklq/+98+zNBNBbR1Rde3DcZcH\nW0NcoxA/+uB1QrMKy2qawZyXcfs+QWGGtr1JaMlEvWkntJEi7UhghZfwdVpI+Q5/dfV7AHz6+eew\n2b2sz/pp+iVWT/nZ1JOIWw+IzSXQnSYhQ+WkVcVWv4m70OH+dp9MLEEs5SCoZmkWTVqpErGWwdRn\nsD8R8Ef8aK0xT7+8QuH9If1gm9XQBoe5XSLzfvrTMvKLF9i5fZVzPglx3gXNMZWQh9TMCNPtx7CO\nSPfs5NQRUreMruQoS08xXDRR368S+/w8P/neHzD37GWSZRvTAzuVfI7UxgRjusJstochjCig0Nq7\nw3AYgMiQ2UyXUTBLNmdR8DpZX4zi8VmUejFs/T7KugObmED5osWDt2ROf8GLO3QO3VPlnT/+jwBc\n/OlXWHCPqMhxmqccVKUZIj2FltXBLzkRvC2OMwrxng0t7GCnYDDZ32EoNjAWSkzKfVS3ynxjk1/8\nd9/kX779Rf7dF38F1dHjMz/38+T++ioL40XazyWw20SKf/oXiGsR4p4kuWCXWWtKThWYqYVwz4T5\n6M7bLAhefOIhsi2NYz6BeHKEFdOYmw/Tr8noVhXBY+L063QOZR7t3+RgKYXvuR7+sYw6/wymZtDw\nZ+mSJhCt0bO5WdnoMbD3sU5U6q2PqKt5hG2BbGJMqWUS1k2qYpqZgxpSawfjRR96KoaxaeF1Kbz9\n1vv8t7/6t8Cd93u/93vf+sKzX2XaPWA+u47L0ugQY2+cw0opVOURRBYIyQZxuUM9ZBFcjpB76xqD\n6zeJOAIEpCTFCRhFL351wPahm2lSpTXycDQtopbtzC48xe7AIoJOoe/j/BU3s/4BFXmIaLOR6oxw\nrrnQjFm0UppG6IhadRN1e0rUcDDomxS1HiupALt5gfOZWdrOMjYphO9EZfjyk8iSg/UnBVq5IE5n\nlbmZLMc1E0XyoFVGqGtegvYWpUKdejOGr1tETMeZO/Ii+AfM6ibB0y1+crOF4rZRl+r0391l9srT\nBHwa43GF937wEQBfjfvZlCY47zqxzcaoedskNQdCSsEbTVK72aMbHBEcjpmb+ySCJ41ZaSMNJzik\nDlNfFDGgM+vRUCwXm0OTln1AZPEMUxvo+zX0O3uEBm78ixaZRznGhSbJtIDl9fOg10FcrTDyXiDb\nr3Owf4upJCFNghzeqRKZ85CwBLq+NrFDE9fASVWucdiXUX68y6W4jHMgYvOMUJbCeNQBt3ZlhL/z\nDA3LoGoFyMzHccT8nL94gYPSiM5AQ72QoH6sM73WZsE9JtQdEHfPM3aGyAR8pJezqKe+yGQYw7PW\nR77e5kI4wf/x5uPhHN51I/iXiMspDgw346obu+DBeT6LSxjSvNFCXIBw3MdJVSdlHbMrFDjV1HG5\nZjnsH9DI+zm234WySlK34yw2CdiXGFstSgMfLVUkmknjGPfwZXWyopNRAia5XVr6ANNqIeQLTLoR\nnIUjSkOIKwlsUz+ibLDfKCFMXeiZDq3NMraQRVhaIeksM6nN0Rq10BrLxKYmVrVOLGKhhk/hMBy8\n+pUNjo7L1KoHNNUYtdkdzECY3VyO4Cc9FCrHxEPnOfOJJDIDSv1HhHyzTCsmSnFCPehGc1mES3YG\nhT7vHjwuvN54Jk3rpg+WRoR3xtw5aWGMb/DU+hzXRwKelRX6WTe9H1+lFZSZ0acoiptmqEnCH+Zh\nZ4tgLIymiphWk4oyZfMv3+DMII1p2plb9NAng+f0mAdv3aLj8pOIB+kfT1h3nMYrFBkdDPCrbmRx\njFqfpeU+wrknEUsnyB1Oyb9fRY3qBBQXPodC6WGBU3NhBlIbJj6MUg9djjBjmNiaIaJOB4N+h9vX\n2yx5A8iZBVp7fQSxQKCR40FO4szaKltekbEFAbePg7vvEzU8iMd92g0NxeUlLBWRTYOD+g69W1ss\nPXmF7/3whwA8nVjB5hHw2Y5xnopQPwnSHW4RVQ2cYprxqE/Q9HJik3DXBxx7VXyGQavgIi4FiP38\nV5AX24iHO0xLJ/ijHpzSEvkjEevRDl27E20wYCjC2kGFqObhkAa2loY350fu5zDv5Rg77JzUVTJS\nB1ZPcVrwMxze4OyVdXbv3yMt+VCbd1DrLY6VIC63E/u0QacEJ2aTyLKXcctCPqgyen+fmHqJyb0y\nnetNjk2NwMCHs7+BY8mDzcoQWd+gP5zw4d0DzgcsXF0vk+oeY9mFf9mPZQSR9iU2Dw4Yaxr9Dzz0\nm7f4yaPH823h5bOE1CwltYZTXgLrELOdZG4xxu3jNnrfj802INI20ewao/g8XZeCUpjy/NlnaAVH\n3K9cg3GC9BPz3Hn0Ho2DKeP1CKMDifmnX2Zg7RDYlFAvuHhjMMWeEukPZrnojDJ09EiZzzCQD9i0\nj4hGVOKdLN7iNmIkxVbugMVqgKDkpBLzE3Vco/KxxMF4i/7HR0wiEdafuYirC48UnbDZxnSHCTVL\nlDprZKZtxkWVQbtGX5gwozX46EEXv7/HUTSGXa8TViTMyApWu0d1UqfXtHF3+21sYgrvgoTNo2AV\n8hx3DrjxV49djU+vfQorPmBOsOPRBfy7u5w4TcLRKeN8BDVdw91fZOwcM7bm8G+k8eb2adud1NsK\n6VCMsFbGfuUiKekH/HxuhR3lLFNJx/PWm3SkPp2oh2LhQ9p7JS6/+iouX5Jq7QGJnIup142jYDFc\nPcYmSrj3SmjrCzzqe9DFKcc/3qanlxl14zy8MUQ5P0PGmFJse6jVa1iaG/9Kkkv/4HOc7IepLFtk\n2y3kXoqU34ORNImNZJY+JTMd9ahct4NHR9ndR2+6OH06Q2vqJy/Y6HU8rA375D2L7L93lazDwLIn\nOLz5GpORm9v7t/iVb/4tOOf9q3/1L7/19c9+mnHdxvwlB0ZlSqd2SKg/wqY0UaoTAgON/GRKPSHy\nqJLHZpXRzRrjzWPMMzE2Np5gurmFJE+JzcscTTTsYxtioIpfnLBw8Rly909wqhKG1OZB7zoXUgno\nZVAEEe1WmfilWWyeFmK1yH7MYvrBJks1P/bADNFVP0W9Qq9RwJuTiQa9TJwTrh094ni6RV3x4Ro5\nCNh77H1YhmCPhNYi19M4rc8xK7goeoYsywqduI7SCbB43knDbLE2lRmnxnQ0k8PjQ1zyIvZhHK+9\nxfaP3uXl5c/TfHidjc+cJvdnD3h363FB5yt/779Ab/rQnRpKzImtkGHar+FRvZT7AZaXM+zsDJmN\ne/ClqsgODW0KAVHi0DcHPZGg141IljX6lygAACAASURBVOZHD2ikRiw2fHQVDck6Jjx7ATUNrVOL\nzJ+ep6bZcCg6wbSL9xtB7OPXwOZDHa/RGWuETIv9/QTZJRfR+JTNozCzFyZcu17EkUigqUHsoSmO\nQoGNc/MIkXXU5TG78hEx51PkxyPKXQ150qLbOObR9od87pX/FOePbvLh0Zt8Kiog+yYctG/wZBKy\npKl+34kzJDJsHNDLS5ykoW+IdHcset0d3M0lJsUjcrkeP9x9PGQ++/ICo3GclmPEZfsMW1v76LMa\nWnufjk+iaWmkP6PRvyGRllpM22mchoZmRGnJPVIDGf3yGN9tL65onUpD5OG0QTp7QmW8xJb8DrPy\nEZ5qg0zIh6AWGet+Wsod9gZ94qNV+v4a+Q+myMkx+cMuYcVD88SGK1Wm6UqgeQ0GzQ4XrBkknDxq\nFLF7/QyDSZb2NVKhGD5tyO5uHd+6FzFvEmkqJGxFrpbeoD1IY14KI8lHFOwDziZmsc/3GB21uKR+\nkpG4Q/9IJbd9xJ98Z4fslVnWtDAn9gB+YwTHNWpDlcC5CG+88zix/Bf+y6+QSJZYWn6WXjPHBA05\nkObbf3qbpScVDu/HSfjmiAoxykoZn9jF1nPAZI6UpaEW7EQzQ9L1IE2rTmJ+Ea0Ux3PFh+4U8eLC\nFukTGHmJxSco3QR1WUdSOuwZKurkmNQwjjfVpyPacIkVpK0T9nqz+JMR1GCf01fihH0qemHAjlBB\nvP8AyybTKtRYExeQYiLKbotv/vY/x//cGXzrCsPDFBdfALnXoeAVkdt7LC4u0VW81Ewbd+aj3Dq1\nRbS6ibNrw+M5RzqmEfeozASWEZZkjMgSim2Ayz9iMXyBt79znfulx0xUoBlADK4QFrPUwyapocph\ns0baY9JxafQ1L6KtT0Ky088PaNmrnJPXKIerTN1pUt6HOF0DOi0Lj3uCTdRxOBbwVWQmYQ+NE5N4\n1iRULBKdU+jGz3Pj2kNClsxgNk6732A8tBi5elxwCHQf9ug78tgVB43mbS6svIDWc9FfMmhpce47\nyywH/NgcBQKpU3jNJkldo204GYkS2ZeexjGM4FmMsZs/plYvEbOFGLYk/G6ZEk1WHSZeX5NgIMb5\np5YpDUW+e+fHOJ+aJVm3uLtV5Mn1BZr6hJK9gRQVaBWOCMx6eePa4xy8T/7UFXTRi7vSwBhvoQ7X\nsdd0OqrM6ZidwkIJoePFCA85u/Fp1MoZVv0jNLvGdjHPJKnQHAqYc6so9RZhNcLCF36Wn/zRa1SU\nEUHPEkHN4sbxVcYxG+auxAXveQLuKcOExeH9MYkFN8fDMrMtcG/62FG28KYFlNE2ak/i/R9dJbm0\nSrUwJHwhjrxfZPazX6MxVTn98ldYX3+Cj//iGpJTZqCtkI5MqTVCdH0tckaAaNKifS5COjJCr7sY\nr/rISCHCUgqHTcYMz9DbrbLysg/xoQ9Lu0c2IWPlDNKGndbkgHqvi/ehh3du/wSAF39uBdkuoSsL\ndF0GoWGI8VRAN4aohpOiNKW1V0CyZrAKm/i7TYq9CK41SJVqbFdKrD27RtQ1ZvcwxKd/5kmWZifM\ndHPoYydiKc9YhoAWRvJL6OM2jj2oDU7Iz7nw1odc3S0S1FzYXBl2qoeo8RTWWCMQUKDUZeMTKZRu\nCqt1yM6jFtJ5P4LLj/5QICIatH1BHh5qOOISDnsLZbpE3VdHt0TcPY1RqkZlv8JBLUhytUNO3GPx\nwovELy9Tt1n0ineZKBprByO8jTC+mRrPf+IFfubXf4NXnz/HUWSe2faUj3e3+G+++c2/+SDqd/6n\n3/nWlz/1FPd3HjKKqvTvljGeTuKxPEhZNzp9HF4T06bSFmPUEDDe2+QTX36RkTtHoAWjgkFzMGY/\nd4fOkcLGTJiDfJDRTA+nFKE/Mqn5aoQHCsGMHXNqIzkzQ6X9CP0ogbc+pXVWI29OkCZ9JvYAnfx3\nCYgmkfQGnlEVj63MhfQK3WkHva/gW7Cze5gn0g0yXNMJGOsklz2c2DS0jw2MqUgmeZlRvY3saRFs\nmASfmKO6c4TQq8KMife9AZpTpD5sclxJUNoqEF5LMBsJEzQbrGQ/j81TpatYlKsV9u4luHf8HgCz\nl7J45zQODqY88dwltHaJgU2kXbhDt90h/lyEnW9/gO05lWnFR2NcY+zwYPhcsNkmFvyIP/nD/w3F\nmCKdTXH1o3fZmGnx+m//gJmZp6mHp4ROLRJ7Rebhv7nN0dkTPPNJEE8Y72lM6zVmSik6cdfjnqaQ\nRdUzYPThVVzCaS4uJ7l7s4VUPmQiSqTdTXRriCWtcWSdUC2O6bTvU3i9QGQmRGA1xcLX13HY/wTb\nnROU9HNowh69fhjXtsDEJ+Ao9jjupAhbR3gHGWrJswxn30bWFhnMV8iiYlpzhMfHeGdHKI4JhYlJ\nIG3w2ofvAvCN3/gy3Jih8u4hJykHvVaDnmQxFv3YKqCbfc6nbByMddyOCbaYgRFU8CQGuOQ+o1aY\nodFl9YJE7UGHdrjL0bsfYyp+QtkOnrklalPQRJX83JD9qoFnkCb10inKu3YaWpvLX/s0diFEopii\nOrTRODSoNI9YDC0zI4vEFj2sxBbpNWsc2eusBudwOdxovRop3YMydqIk22ipOVxiG+OujLQxpaQ5\nkY0QgqgQbzexL/sZHU3ZufOIubllvOUpY21M3wNuXUfQRaIrK6ymwbTq9BpNZJsda+MZRsdlFHnK\nW9ceg0/3RMZhU2ne2UOJx0nTo+s6wZd+gdEoh31GQM8OqQ+HuGoi+143rnEUoXSHfaGKWw6QTC1Q\nqQ7QTYOunmdeCLM3eEjhToWVp4N49sc8NMbYtRjTUzJz5QZ6bIba5uuERjq21UUCrgTVXJNJ/RjJ\nI/Het7/LV3/5ZyhaQZq3y9hsfaZdL009ivu8DSUiEjiJM927wcpLl2jYaywnfpa5lShtOYKjts1M\nMkNj/5BAUuIor+M6u8b/+wcPOP+Nz+GIl5kri8xWvZijFQ5Le/gYMvBlMcUBcquPgYl6ZMNhTWik\nn8JYW+Pa6/8BgJ/+hd+m2amhVbu4I1F6lpfVJMik2e32UOJO9LKD8bXrjM88wcqCzGA/jzzrxjbo\n82jqwDudIjk79MuHtErzZGfmGbZucFBsE/YqqM5ZXH0XzbUk9ps9suedTPwZ6g0dQemA4uWi9yxt\nU8K80IBxFNPexx/28eHmFu3KIlHNhm5ViS48Scs5IVMMc1S9SsheR8NL9lSGRgM08wRybg56d1Hz\ncVynzjP1BhjYJA5zx0RWnHhzBrI25UgYINhjKJMR/ouXiKIwWrbwS2vkNYO+2iPuV7F1xhTUCIfH\nH7K9vQXAz/2z36c4NKg+aOLUEvSyMrVwA1mboKZOkxYl8t4ayxOB919r87BxzFJQ5rK4TvTzWY7/\n8jqR5QBTYYRvqU+96aMrPmRhLk3Yt8SCa4yj1Sac6NKVfVhSm4C9gaGBa7HBtT9+j+DXvTSumzhU\nA0f8EFM3afdXME9kFJePi08nef3ffJvs0wGcLzkRDppkVr10blo0Qgrj9gRz04Flj2HZrrLbCTJO\nDol5HDRde8gBCJojcv4BykBiZcHLpJlgX9lDzfsZVZr0awcoxpji0TF1v0TLlUA4PiH8WRuNdwQC\nzzm48+4HbO4dAvD3//EX6DYs3v+rLeSOD0l3cuh8xDPhlzngGrXNY9zBMC5pQG7cYzhtwIaKQwzj\nSyeYVJ0U230mSgD7XoHli2FMp4A5cGCPmJTe3SZ7KsYk3iRhrLB3b0jTaWd2Y4aQu09Bgy99/RUe\n3TwmrlrMLWS492jKrCYi2EYMrBb1SZZcIM+CPuGJ3/o5dr79gBgy5dkj/OlTjJptpnff5YmLL9Lo\nN3BYYyxVYqBP8LsMYp5V7h5X8MfzhNsphsIUf9XOg2KVZNiL2YFIc0BP8uG2WnQUmbHg5ZP/9As0\nr43xeXUSZ7z85Z+9zq/9+q//zQdRv/Uv/sW3RCmBPv0A3XWFo7KKGOwgeTK07l7F1ffiDoRxu5zE\nfS0c8ip5q0rYvo63ECB/6w0KpUd87pd+ls7uHvaoB7szhCvsJDGJMlzsUdqssBRK4aweMJOYZTpp\nsPPeW5z62nNIOyfkSg/opTx0b+7jWFtjpitRNUXWva/QFgwaURG5DnZPmuojmfK4gaPRxTgTQctm\nWM7EKZVcjO+NESIqK2IO5/PzDDY/5q/+/f9FZnmJztqE7lCi9OEObueEsbKKNbtB7fotuDCPK9ZD\nlh2EOwWatTaD0BqWM0el22AlvMD9vSZa1Mfdm483tX/w8qcQ3F7ibTsnu0cc73fxJnsovgQhy0uu\nXOPpC3G6H5mQFpGa4GxaXHvQpTmzRWBGIfvCJdYWo6ytzaFuw7Mv+THPCHglk7Tk5XjriNrWAyax\nBfa2bXwlcIVcJcf2tRqhT32S5GwU27hCqSujtL0oxzGUSR8x5mbQ79DNFhmcWKjPZolPdZo1Fy7Z\nwr3bwqzUmY7tPOd7gdDXXdyYuvm//+DPufJffZrDF6/ySSHFuOkmbJsgiAvIc/P4+25aU4H4FT8j\n5xyTfAXFNsalmzgJ0PGJTLxDupbBJDCDUnXhPdNn19XmxuuPrfrpSZezr36JpmrH4WxwJvkC/+tv\n/Sbzr6xDycS1NkaMrCNc7dB0edGOxtT6bhKVGKIjzjgeJNQdUi3YWb1wCY91jCN7josvLnNIDuOm\nSXdSYiamom0a5LZPODq5ye7xMZwM2Ltxk4HZR9mf4fV7v89/9xu/xKgmYqbsIJWQtCYnlQG618Gw\n0ENtxpEjMscOk5Nrt3HHVGxiFyveYdDJ04+JLJw9T2OvTMm/h1+x4XaIFCYG8rqHUbtM2isy9dYp\nX6uQyqbxqEmMRon21ELXR6S9Sxw6owTCAYpFgYTTIJqcofhgl492Hr/b869eZim9jpYO0bw/YtSX\n8NqTeMNTaimVsL2H0e0Srgr4EnZufu9tGqkAF58+x0DwURnEmPphZ7/JOJBHrIUwvDVst3o8uXSO\nrnebphIh2Aky3dPx5Ht4VySa1S5CP4saV/BOvMhOnd36Jh6rgjX/RS6+7MfI5enfzbPXrxE9P086\nojDoaOCPUt51IgR0Kj0fvkmbns2JadcRai3EhkxFbKDKTt7cs9B0g5hTJjwIsPjlM3RuvUE0PaAf\na+PeDtMpjmn1X2cltUx82GVbbOHo1ymJBsHeDXamCsnZAI29PB998Fi7ePlzlxFOv8I000AJ9vDa\nYlS2Klzf3STqs3MqsoS7AbvDGHRq3H/vHbrLcyQ7HiT7IaI+wD4/SzV/H4ozBFY1pEaI8TRP7nBI\nK1nHXbQR/KlVagf36AzHOPpV1OMKkjAlUBviUzN02w9454dv8vTn5jkyKji3dui1nIQNJ8ORhW/i\nQp5ImIUB6RWdLX2ZbqlBdzNEb5yg3t1lWPAQTc9jq+Xx553cr7/L189fxCwVSYZi6CMdddyiOKqj\nK2P6qozQh4FRImYr0xtMePv/fIOXP/8Ek8oO48HHbB6McLdklGfBX5nl2u3HzOd5c8QT0wn285eR\nl4qUTzTOq3Vu3b2Dca+Ir+Xi9HN+WgcJ1HyEWDLD6PAW2coyt+58RD4Q5Nmz5ymUtok8GlENpDlu\nFwgPE6hdjYdbm4RGPnIf32Bm/iyRrsXHf/anSEKUYSfKw2tb/P2NLNP7R+TLKfqWxkxfwUhUyEcm\nzE012v1D0qurTFYlMu836e2HOWoMUEMlZKvAStggmNtinClhlE6TyTzEfexG7duZcw0xVRctcwHN\nEJj0euRUD9FBn6VAHbwt7o8OsXSRod7ixMxCxkXcpjMKzTJp6tzf7hJxGSyejvLD164D8PTqL1It\nN4hkOkQEE8lqEzEMtnY/RNQklL6LUDSK0JAZem1IRYGVNTf5gcGgquLMTji5PUa+rmEzu3RdMt6g\njDM3pXn3Ghv/yTof166SLSeZHh4yFVUm412WTsUwXQZN00H5eIiVLNIX0rSaE8IePx1nh9HQw/HD\nCr75IWFfmIilY+vlCLlnydfaRMdRmsdDYhkLpy8EB49IZAQC6PR9fZStJk1NYWNhwms3XsM+yZDb\n7fPUU24ePrTRPrrGaibD0d17VE9u4lhOogcF+vo9ok8pdMsWe2M7NtXCI8/zzk9+wD/5tV/7mw+i\n/pff/d1vnU0/wXbeyXOff4nK3i20tMmcYKBHV2BnByPtJFqVOZzcJprMsDoTIOjWOeir2EcjAk9d\npt21kW/mWJw7i7PkQiwXcIb9TGQfT4XXyM7EGKpVho0O1splONrlze/3UVsCv/fjf8/lF72cX/gs\n/o0wxXaXjCeMIdpZjXko5UCNuymVTpAdJwTjWUpBjcDsJdbTEjffaXNOAc1+RKBT58OrW/zFb3+b\ny2fOk/x7l5kYLk5f+gSPbrxB9qyBLRTGflfFFi0wHpiMjQGSKaNmT3H0VhUzHsZ48Ab+DQ8+r5uj\nowHu2Vkujvt898PHzMCnn1tkxbXCNXL4Vk+RrR1hn59lkpil5FDJun20piq3dlpsuHMcHuvsLbfw\nc8LlVIjUYMAf/9M/5KXgFQ61GqWbxzzwq7z/vTwE1rjy5S/xnT864VImyozV4rU/LeFPGyQmSXyB\nFIl8m5JHY1SLkaTISUph2u1jTIsE/UuctE44KwYwlpP4ul32zABaoU151o895SarzJNZFTgOTtDz\nAsc3B9iNDoFLJ3zp02epG05CBRfO+BS/3uH9coGha8KX+3ns9SS9ANzY+wErl5Z52HPTVWxILRNt\n3Mbrc9F5MMK2WKG6W+Ngx+LR/cfantmfFRgO9riYeBJz6OTjQYUvfHUV+5EPV6yCcavK2WU/V7tj\n8koS4ZFMUm8i+cbIbT+tkz7acILxjEFxKlI5qBBajDPINYieWmBcK5CILRGNgjdoEHc+RdTj4/mN\nl2kgcKNU4VPZMFuTNn/9k+8R7QTQp1NYMjnZ36WeTBEUjin3ZQ7vNOgu2rCcbsbbNWZTGXw2EcXV\nZb86R0gp0h2ksFWrdHxZxg2BknqIzX5C5FWF1vb7rAY28IgqZnmMP2OncxBB9Qu0h+C0hzntckOg\nQ0XoMhs8hX/SojLpcVIbsZhM8sMPvg/AU3MvwrLBjC9B3tXm9KqHauEhw6iE5PcxdXRodwIkw06U\nSRwxanE83MSteqhv7aK0i6yIJTwLLkLNKWJE5v2332L5VIqD8BT+8xcI/89bFB44cWYsgpfW8GYt\nDr7zFxi+LvbhGm/pD+h68yjaFtHYs3j8fgxT4KGjx0EljzOcZO/aMXVB5jwOqrKJ02enXx1w5vQi\n5f130TJzZKcaD8IwjD3Au1ch4lmmLHQ4c9mB6VhhPCzRz79DJKRQm8rE7hj0pn0G4THJSYqB1KPk\nDKBPDXY2m6zGJuxek+goFi6/C2VB4K0/fwyiFqVZXnh+HpsywHfko2PvMUlHWDrIk1jycGS5Gbi8\nRGw9/HqA89oYM3kG92cdiPEyluAikQqg9SJI13WO9kZk2wWizctYsxrNfYGZWTfito3CWCZxeERD\nWWdY+JD3NnWkmTPEZsaMY0kghupaoLYP58MQzpzlrjXA7W4wqjdJ9EwsrUDLkWEl2ME7l+XVf2Th\nW85jup5EchaZ0sY3sBEKixiGm+1HNxiORW5rJs6QE8vdpVPVWVYgmezTHGqMDxvYi0NGrih7pRqu\ndZmWzcRqejGtE+YXakS0KL6yxeu3H4dGXvzKKovL82xf/RGqtoT36TR8cIySCYEu4K6UOHrzgO6B\nj8noiEa2ielscG1/n2iyiyxKpCZuajvv8eawTfxZG66OhnR6nVZ+zDOywsF8iAU9RNdVoL8nodni\ndHaOyP7SOYr7d5kLxPnJ9QrppwVCZQeG7EJxRYiU/dz1GEwyU+aCa/iNGDWnSeNeBSFbo++fJdPt\ncPDhNr2mi6E2weu8S7t2hkQL9qIycsnOTqPB4hMQGvWJKOuovgKTgYFZc8FJDMeyFytuYZs4iDx7\nFltPoC/7SWci9Gdi2LtZ8vIsHcXDrR8+zg+8cv5VwqtxBs0668FTGD43B1YYR+IMx60t/OIYf8LB\nvrtHLAeeF1zsFUuE21naAYOk1sfMDKk0u0iBOJmjEbWgxtAjYnd3EZsTzs6vYVSc1NxhfNX7jP2X\n+fD1H9P3XEKyamTrYPXsKE43MUcZYWrgX7cQWyOefulJ2k471YcS+awTb07nvm5gS7hQjk4IJDv4\nux78RQ+0DVqTIrbCgL1ygcXgWXreLsfHI4J2iZWXnmc50qSyW8cKDvjH//obvPl+gRXLQM+cQs0/\notWc4jt1hkEeuppJyjNE6VnQbHDzwT2++behgPh3f/d//NbXvnEOQw0wGXU4dc5O4eoWykmLxMoE\nIzXPbKOKrrqRXCa2YouyY5/+wy6eRJKSoWE2KmgqqJsnTJUER/s3iNQ91INBgpLBmBx74xLu/pj+\nnhdnp47vmVMERR+GpHLpyhXWRjGswQjHgQD+AOOqh2lygkaciTCmW6jiVse4jiGcyqB3HcQiKo9G\ndTJGHDnUoNaZ4JvqZJ54motf+ix9s0hg5GIkhdBOjij2Rtijz9FpD8lX7rJoXyS9kubDP3wXd1fF\nNxKwjXRiiy6OpAyr6x7ul0xqkRBnfEkefOeQq/nHLrMzn3iWhjPDxuwSncO7/P6f/IBPXpphYMjY\n6iW6hyKdeh2/aOBQukTcUa4kzpCxnWXUiLJ1uM6671Viq3FKd03SGy/hObnP0pmXmfWNKD/8gOee\nizHVRsjNW/w/f/4aL/+zn6Jw9a8RTl2hpRfID+ycn5do9QSqATuFnJ3goEkkmSWzPGWk9/DXRIrV\nDqeyduQ5H4taB5+eYrp1j+OtTTTxMunTz3BxbgNfZoMf3rxL0hZk82CHwfUy+kYPYWmGIEVc3tO8\n+YMbjCNxEgszuH72Ct/+37/L8kginugwlEzixx069lXmJhrtRpetRoknfuWnefvfPk4s37o6YvG/\nXiWSjSOqRUqbTczIkLQaoO31EBlJHAaPCI+ynDq7jteeJ2kk8DjmcExb5OxTnKLJ1CpB28Ppz3gY\n12YoBz8mRIy6GGfS7RMqJjFzFYrZLJNKENVdwSwd4BbO43BP8D+yOP/sDHb/CoLzOkJdwLd8hXTT\nZK/VZkUeUy72eeVKgkKrRc415NycRllWcUoKI9cJec1DtGNnHw8hZ5G4ewVhZPAgd8ip0Wl6RhW3\nbqejzxEYTZiYCaRkg3ZXQ20FmY73KdVldIdG60Yfn2eCJSloj0b0k118hs4bHzzWWpz94hk8VRPv\nWKTrS9C4/Ra9vptEQmSiFWjHLaRyGGdO4qD0JunQecSGH5evh24PE5RM3tt+iG3mLOpAxOZosXBx\nkUklg6GE2XrVQWR3REm24el7OMnVsa49wjnzPCc1O5m4hqj7iZqQjmToVGq4gxa9joXS7mIT/KwK\nOhGvRt1jET6zQqRlIjoO0T1jxrfL9KZjBDXCxmfP0PmgjPeiF2nTQzF4n6SSZBTYJycd0KuXiW4s\nU7uhIB42ENwJunGR2UYMJViFpSs4pyZjfcRschanz4nm8vOg2iernaNpH/HR6z8A4NmfegrrXhZb\nH8IrGoNJlXprm9BYRXKDeuRiIuiIEz+mq0gioLGTEGA4Rara6LsGOI0eVu4uD275WfxkjKkigKeB\nEZriMCUcNpHWuovxgxMaCxms5SAje5GXXj1NvzMi5dWQjDH+eYPOYYRZSSZ76Qx7VovYsIwhuYkP\nZ5h4A4TDDu73WvTUZUrdIVtXbRz/0QN2Gse0dZm1zCvMRh1MRiWwB5n0dMz1FXyhENPgPqppp3Jr\nm++VRlxSZnGh0zdC+HSLaT3GnJRleW2ebrGMz1lhMWkgHjxCybzIg3qMm9f+AoCLF76BLFSo3jnC\nV28zN+Pg7qMS4+ExG6EnKIpt5Asy4foWqS96cLRChGeeprbmwi4k2H3nNnLCwZY9zdKsA+emi3FX\nYipXCQsudCuGrz5my/+Q6UEf+4UNUnNFYr4NKtMa969NKEdPszKcozNfJblr0lcNSoJAUFMonyvh\nHJi0diPoZhWPkGNxNoTW8uGMmXTXTHq6C/tpEVmKM9qPUUvcx3t+Qi/gwe3J0rdAako0tnTCPoMt\ne5ZgWeDQMcEbdxKwdVF3s8ytPMG0ruNin0LFYuViArMqE5S77KgnrGkKb73xuPD64pdfon9QZfXp\nZ9i6dYfSyUPk2QCefpEFS6Hpi6N0bcwlE2h9E3XgxavKTPMniHPnsDU6TCWFZVFCDPeJKkG0sUpp\nfEQitIyjkaAbLTG0uWk2dZxPZ8nELfrBDaLGhHjDRjc0oic1WOjvI9h8tO536A8tjmbnsV/9AK8e\nxuk9Rqg5MawAg7HFYnuAmQG5UCU/KbOnjggvOdi5r5HJeqkX+jhSDgJ6DVE3mWZjcDjA2+lT9p9G\nVCQ+fO0akiZQExcQRhW8n3kGZ0jCGM/SN4YkR3k6uot+z0Dqt7l9/2N++Vf/FgjL/4dv/pNvfe7F\nv4vHnuDq9z9iZuMFJiEHCyEf29/fpzdq4wpHGKSm7I5cjA/DhJ0zTDoaNt1Jd1TAeyrFaN/AFizg\neu4ZHHoNz9nT7B1quI0y+WEO+zUb7vQMDtnOZNSnHw3gHcu4MgbSzDG598f4z9jQVk8jV02EQJlC\nWUYT+uw13mPFK+I4ymKk+gRPZTmKnRALdjGwUdVOoNmke79JxK8xt+5klFAobZZIJPxM+z72hzqN\n0iaZqJP+IMSsTaVYdmB4umS/fgndU2eshoh8xUNx18Z4xsbENLC3epwxFfJ1AUUo8/bd/9+d942f\noXVSoGl28PsjTFNZGreP2H13j5hNJjsckxFFnvvkWZbunka/MseouE/pwRin3GY8hHllj6jHxcPo\nA5zzGyz0ZGRVY2ElwV//4DYOeQZjZ4uIFOfzv/TP0dotBKvBqD9GPrbhnx7R9EXwDppMun0mP3yX\n6BOLSMsTzL0Iw4ETOwYjnxfTr377mAAAIABJREFUCZP9EYFphm69gJiyo1pNDjZbhOsddFXn3n/Y\nxH9qTG7XwclJndiFDHG/m3u//12WPneZ1t6E1OkLTBIKN/7tfySx/neRAjF8iUO6DoVJ3Y4nCu2e\nwTQ+pDG28+TZMAHzNt//08dM1IXTKb7+1X/Iww+u0isFaY9tjPZERlqB5azESSmNu7NFhCrlgUb9\nEGzVFqVGmzwhRuoEwx5HbzipU6dfnmCfMXHcTxFyHjNodhG7AnWzQlldYpYSpmOCMrBxXLCIBXUi\nvjM4JyMuLl3GCN7EN/EQUFUUdZ+DwYjwqIktO4Pz9Azb7+u0h02eSJo4c3acwzr25TaKMCA4cNCb\nyGTHbRq+AXrPg+mfpT3poTkHJOQQ49sS0diQWs9Gq+rDMlwEBCfefh534iK9/h5m1EW9toVzOsTV\ncHF1cI2otobNU+Kd9x7/t889958xCrQZdQS0QxMzkCQp+Nnyt5iJjZGNMwRLPrbeekQi9RQpCoQF\nk/Z4Qn3SJmBKkFVZrHtxuvoUjkMoq26aWajda7GqFOl2F7A7BcL2CT1nh94oy0RzEkrtUJRMxBON\nkjnAlnyesumg1JEpCyOiYo9BdYJ2dpZiX0Nu1FhIJ3D0DQ6GdqR7CmGvSjMTw/AN0MUK4lRl/r4P\n3bmPI7lB3yoR6CZRD5exhCJYIuo4T8jjRuipdP4/7t4r2LIrP+/77XzCPjnHe26+nQMa3WjEGQAk\nJnHEGYpisERaJZmyypLFIFpWeGi4XCqWJJp00WWbtB8kl0VxOENOoCZgEAbAAGg00Ln75nTuvSfn\nsE/c55ztB0yN9KAyWaryg7me9t5rr/2v+mrV2t9/fau+f7WDNzqm3PcheSUYNRiELYojH8KgjTkw\n2X18wLduV3j2l/4K7/7bPwDgp37hc6iOKo2pi2rzkFA7SH5nC/VigpOTAQtzdvrDFubwGK3iQBUz\nFNwyo32FgHfCMBSmUezw77drrP6dNYaTEdOlGVu1Bkr+BP2yjbZXRZv58HqcuKwZv/1f/yrnTj2J\nM3aGMXvkKjb8eohSK8/AVHF3K7y9/4gnTy/xaJTicnSB3KDJaMOAiUxgTqPfy+FWQfSo9B0hQm4f\npk/lTMePtD+gIuXpSgk024TSQOWSb0SbKSO5ii8j8NmXnuNhaRPRP+XxQRldimLP11BMB/plO55R\njdk4g30+QnegMvCE2duQ2Hj4DQB+9qVLNK68QFxZobgQRjp4TPOsh1X1FJLfjru2Ta7tp7+4AA8G\nVGxNanWD+aMTAuoQ6ZUIbUvH5SsjqTrTWICuksdndlEkP7K7T+3KWZLbdo6lFS6qKbTaEkUryxMv\nfonN8TpP287STe2SnoxoHF1jpjgwVx30Q04WJ2XszTShCyqV4AJ0BeoFjWJQRcmYlP/0MasvXKcT\nUGkpJvMLQyKajrNpMXrvmJwywd224/3+LsPKLnfVCguX89jtMi6itFpNxJ0Zh2oPfXhAeedDxD0Z\nl/EeznMZnG82kMQtlGaZUXHEB3c/Sa4XVy8g+AxOXTpLrqLj8dpxjKfYUjITxY2xvk4wk+Zh/wiv\nx0OjJmAf+9DnGsTmFtE6JpWAn+PRFml0Sh0HXWubdk5g0O0ymGvhexAj2xSILIGZDzJZnCfYb+Cs\nC7jjj4nYV/A61gjZnciWQTAYIJLPImgTxpUpQiZApJ+iZzaIDjUipo2WNqIU2WeoTRjKbQJFF8El\nF7NZl6yUxNvKok504plLFIQC1l6b+MUgXSPEsmxwlJ9wOpmgoxSJ10XSgwmzooUbPyXzYzp20BxL\nWL4ao6JM6lqc733zff7RP/lLYHHwv/3RH9wI9U2qqUXCz2iMDAfZDx/Tss948jdXSK2l6b3ZZhqE\nUMjLvp6iXxlQaokIYZNLEzeSZaIO95gmVJyPnDyYxJimvaiBDvOffxZDqXHSbTHTYgjCA6TbOfrB\nIEUlgm/W597+Q7xPhrgaeoXGvfdoTqt0fYusukTaG3XGjhYtqYJX8HMkNzF1L/oowcDIUWym8BdM\nmlmFpbMxuq4ovUEfWwEmtgU85pShS8TWyfJ03M/QLSA0BowvxRj0Gnj1Y4o7TVzqPNMFB8LtErMF\nhTMeN9NalWDVjjwQcLglwmtevvGtTzKOz566QoMcjeEAJjGWwhGiQSfOs1FqYgbTraCe6ExmAwpP\neSm9N8XeCfNxNkf6eRPF5mHLXyRhtmhmTQKuLut3dpi1NUbhOMXtbR5WZ7hiCidGiNGqj+b9bebn\nXRw0CzhGc7jiEkIkTbUQQui3cdg0hGQYe08llGhjU0Yo8Ti64uBwfx8t5sVu08jrXYyGj5lYw766\nxCxf4+CWSNdWRhJqPDh6yEt/7yWOOkX2f2By4Vd+jo8ffkQwtkR0MUltVGXWDXAnscJzEQPeK1Mb\nJHhiYYCgzDMWVTStg1uPUZVaLD6+x9c++OTg5a/+xk8S8D1B9mYdLJPTZ3RiMQ+CmUKT7Oxkf8jq\nlz6Dw6fzXv2QTnuLsPkkkXCIWWWDyZJFypqR0yasxGPUWk3mEha74S2WLupUBg7MgyJdv0q056en\nTIlipzvrog4EUmoCxRpybAxpyvtoRgxp5kcJZunl0/QCeZ5IXOHAqTP7eh7hQhNdHLDo0amtdJjW\nvdiJUUg66B640QWJqntErWIjUtEJpUpkQinWq0d4+xJdm8IwUsNoXUI5OMa9LMC4i0Ob0O75SC+r\nNI+P6dfLCK4I2dz3ubb6BTIJO76ZzDff/kRe+fzzz9HrB+gUbehnt7j93iMWXkljD6zy5PmXqd3J\ncfhoi4tfvM7Ef0BDTtJyKChVNynHmGOfwUJlBWu+wfZGnWBmDi0fpNedcM6nUfX1GTsEHDk3oz7o\nUg5feMQ4LDE+npEMzSF5e7z4z36V7EcPWUkMkB5voDKHW5igSgEOrQnegZu2OKWZrzPyTWjWG5jR\nITl7G7FoJzNyE7GmVEYm06MTRgsuomEN+8CioccZGTnspxeY68yj+XwIksH6aweM3SaLX7xO/biA\nPhihhRYZlQ380TGB2hraRT/RqcKLT59lIJq8961PCl6fSj9JN9jGpVn041V6dZGlq1dYEXWcHS/Z\nwYyUFSXfOMEeO03VVsPTnaEpBuN+GpvZYa8Q5sVPX0buzFBQ0MpRxEUVaSQRGTTRDRF5/Q1yrQRD\nscdP/9Jz9PfyNDSFmGOG0TykHw7gty8zf8XOO1sFBDGCKUk4pz7a2z2sI5WMMUfJgoxkp684sMst\nnD4T+ySC4W4zX0mTF3O0N27TuHCZoWYi6AekVh2UBA+2Yo1azY3obOO43cGbEWkfNQjqAVRpSih7\njs5EZJLpIdhMBpMenrGbTrMJAwlXReSHjz5Z3y6+8AV2NizsDgNNFHCkNTxWi5OcHUdwC2f9PMY5\ni1Oyn7xDIqD3SayGkc776fZdCHaNUAGatglDs497AKq3Q2gvxlG6gVvwMhlsMZVVxLBFdbFCYNTH\nvZgkF5zH/O4PqZXKtJsDukMP7iD02y3ORMG3b1ESl3AKLsbVCqbSoNUO4bou0ezPCOSKpF5+Fr3a\nQjqZ4XVMGA4U5NkC7aRB332e89aY4EmZ6QteIvpFvL4lcl8toy9ZuNQJ9d0+NV+SRPSEvH0eTUhj\nnlEI7FnomU9RbxQpeQUCnUW60zE3b39yzGPl1C/j94/ZvmORikzITA1y+oj9vg3/tIJndY6wFSVY\nLHHm6gXyxRlH7S0CUz9+r8z9zS0Gow66GCYWclGo9XlibhFv84R+KElgKNKeVlDVOpJbp0sdW72G\nWFLRDj/AVPy0Qkne3LrNV1/9Cr//+jf5UsKOZIYYzHnxh2wc91Vkr5eg0qe8sUEl6sc5OCCj2dDt\nQ+LHi4wjAYZdEUvqIXvB8juRzQn75mOmniVSHic3395lyT3ig0d3CDmadC5dZHJSxWspzOQIC0+K\nvPMn6/hD85jjKp6kG3EyZCZKlHfLbOYe8g9/9S+B2ebv/s7v3fj5L/4M8rBGoqUzse9gCRYpe5Ju\np0/zQ4vC4S7dxfPcHTzC3hWQNBMXIqteG5XKDr57FX4oFlmxfY7t6gDXkgMbAzqTYzbv97ExpvTR\nJnO2IKIx5sV/98+4t/Iuy08s0Z3l6dUjzIdW0LbzrH/vHosXFmlNJhwMjtHFJld/5qcQb44Qll3s\n7Uc476hTEHqoUxnNNqax5WP12XnG0wm29UdUjTbBRZl+Q8aYGCTMPh986xbPrJ2n65ahF8QmeHjc\n2ib++SeIX0iz88ZdOvopEueT9O60kRxdmsYQu5gjP8tw7uIcsze/xZ/c3QDgpRefwR1YZGevyWyU\nZdqdEAoN0O0XEPxj6IsMvRPsHxkEDDfV0j76ZYsDrUErFsSwNRnJE2K6ztG6gOGyEZ4Ls3h1gSv+\n09w6eJ+52ZS71QmZz1zBc/+IdivPaNTilBlmK/cR7tWLHA2nzLtM9OkE11Qi4gsi90cYgxnNcQTP\ncRnV2aRz5CeZ0mgqAj7FoCUlMBwdpjEHmcoDlhd0CksB/GdDxH/xV3jrt3/I3I7Blb9ymVG5gDVN\nkZaHqM4Z1fsjrvzsAqnCN3C2qozHKs14F61iYpPj1O3b1Ooy3qGDfOEu3omD73y0DsAvvvgb1Lu7\nFI6yLCyfYt4f4rjW4lLCRkubcbjewGGVKE5F9MkUoSESnfXohiS+9vpHzHOGA/mQi3KGjrRPwDOm\n9mAXd1oipzhJvZujF00Tbo6JagY23WTfGjGbWQiTCDHNQG518CwPCFkyhbGfqrtGfyDhGrcZLcbI\nD4d0Xz8msdakZ1n47ZcpFSvokSWCthHrswOidQdqoMitpkTCSBIdDNA8Loa5IpbNj01ZYjJyIkgy\n9p0yMbmMqxMjPxVZTM7xSFEIuEoUT2aoZzXkos7aypiIdp11q0XI36GV3+T1jz6x1EgvX0e1zxOU\newybKdKJKZtGB2O/x3HuBI8njGvsZpr0U/yTbdxyAbGiMUvnGUgjPL0otsU++x2F+tEu8YxIcTQi\nODxBGzrw6C141MHj1nnQ/QGBpsBMcaMpRYr7Gv6ph3Wbg+KbJYyPs3Q7MsHn3MwmTbqbHZLPPEFg\nliUsaUyzWc5dddDb28GlFKhsbpBtJgin49jn3PS3xtQsiaI5Jh2IMK4JbJcfU/3uBuc/9ymURwU6\n3hadkkU3u03nVI2rmXMI/SYBv51sz45mDhj72vR6EVA6GA/GbAuvEzizxObjEzZvfiKDfvkXYhiK\nzEANM+hZrMgDguoyzfaQSvcIIzrEPTEZ6ipaSsRVM2j99h8yt7pK/6BMubKP7/NxmsUs0YqB2XUR\niKlMcipr2ojDNYlbv/uvGV96AXsU4idDRu4etx408MUu0pruo+lRNJeByx/mZDjG289Ta/sYWhKh\nkYHg7HN48D7N4YeMr0xoVk9QKgL7u3XGszarmoetnS4ra362Pzom/Pk5XJsGXfbZe1zG8swRvx6n\n1DnAOSuSmCqoUQ+CI0y1H8QjpJEDDXZaB3z1vbdYe+E8U6GI32ejsXtIYM5Pd9ZAnYi8dettABIL\n50iGVDwHICcMpJ4HQzQQz6tM9k0+cEhI7Sa7hV0WUz7CFZG8fcz0YIR+0qfSmLBb6eCoPca1dA5N\nltGydoz4PqvVEUXXDEUIIVTHRB0taqaBvx+kNjcksFVARWb6lEJ4EKNh3kSYBeDoXY7v5Cg4SqRk\ngY67SGtggdRgrZyl89DDwOVBu7fHuDZlXD5iZ6TRqkoYxjHHvi629SDtP6ugbT/ig3mFzP6AnFQj\ne7SL5+oSGS1GXdV5Mm1jMRLm/Y1bOPJhJqMRjTfeIOQNosyJfPjwQwb1KPWzXujM8fGHfwzAT9rO\nspCJ4V51kO81aCkDhJGPxNEhR40imgVub5fa7n2KB32STy5CuENIO0/hB9sE6LHsjuPzWxRNF53a\nIRfWnsLKu2mrTdo4cHWP6C4vE287MehzWgvQzn7I+u23WHjmJb6Vb7LpDzCXzuB/eoFeeRUzFkRX\nGgSu/iT140e4Si2G0woX//olpsdtBM3HwFmj1slQNG3EAhIbDTeL5wxyDz3ExjBciiKwRipbJNvv\nEnfpOJpuHKcX8SmrCE4L/6BAyWUimxLj7oSRZaOvhQmdlbFOqnQ+tGH/8lMs9Wu8e/cRv/4P/hLU\nzvutf/4vb7hVH4sLCmaywjQn0rPFaJTq5HQvhrvNwvI8E9eYRdY4flzH65niUmd0qz0uvPqb2BJF\nHtdFKlOTanWXNf8cKCMm8oB52c/R7g6ry89TE+6zcP46u2eyPCiXmcUUmndHrJ0qEvvZL/J7//A3\nufrl55CKCg5hguuUQlxfppPfZSSNsEZJBv4dkitJvJ4Igzvr7JePEXxOFjWF3FaP9AUPxycuvN4g\nhqUiHGe5vbHDM08kqaydZ2tQRJxCLhxmzuNhsD6l0jMYajILwyl2D3gKu8yyXZxpifbjMhv7j2iG\n/EwqJd688yOfqGfO4RfTyEE3pa0SLamJx3+GYqNFNNBBMiROlD6FjddJnh5QW0oQGhqM7BOMZJOl\nfo2m4EY5UGg8uElEmWPTniN3VMNoZfEsnuXctac5E4kT2spj7/oQZSeeRQ9DwWLYUlBcUVLGCW19\njNdmox3wMJwkcMh1mhsbmDEHLteAjeoesuwmPvHR71RwmhYeb4/gNMDU6cOXTGAr1NGfnKIZfZK7\nB5x/Kcj15/2Ueyfc//6QXGILV9dDqzvBFq5Q2c3jmtY5bAugJmkfN1mYz+D0HqErUCztIxsqnYKd\neFTgO+/fAcC9fBbZrbMUe5KaMqItB8lMxnQ3DlH6Y0z7jCA2vLqCvimQ7R8R6AWoH3m5+kyKfQ6Y\nUy2cT0cwt5zU3QOaAnhtfXzZOFosiVVXcQRMdssuwn6RWm+IX45gmzV58HBAIjZivR6guDTAXxUZ\nNfcZzw0Ypl00Nqd4831Upc806iRsetCW/eSMMZqrRrOaZpbN031axaYliI+mmKcDDDsDxJmM02lj\n3B2hai2CgozntI84CwybfUoOg5nSwJo46FuHqNJl/JEm9lKN6Rq0QnWG3RmByJj2RED1pHj99R+R\ngWfO4rDV6duazIV8nCwHWBkvUjE7RIZD6A/o27LsfHyP5//eGqZ9jm5fRmoMqY51xuM9vKM5AsqM\nSajN2HcKpz5g58QgHNinXekiVDQsp4uJ3McMXEFrVpDrKkTAH+ixMH+JZEBmvbHJcnKMsD+l2IuT\nig3ob3yEobvYGzvIbmc5ffk08V+O456rU2r5GNsEQkqY5sMC+4EQaZ/KcXWDjjeIzTQZ2XzEMstU\nygcosQjH9Q2sswaCM4J3Fmf4yEIxvZhBJ3LfhlMd075jYgoDIkENddEgOpjHuNXmUy/O86df+zoA\nv/yzn2aS7mN7ZOGykhQafY52jwhdv4gzFuaoVcO9nIBbdbKTERfcEybPXmIYTOO5YKJYIs49B+2O\niJUa0HXZMaZlHH4ZqnZe/mKUWXUL1wtnWPvUZXYrLcS9MpmJh9Tl00xbLiLkMboCDilJxl5k89YW\nyabEpPuY4+xdqjtN9oV3SP3Ul1DMBWIDF+P+AQsLfkbONLOTNvJwhscaknxFxzyZYKgtPIrAqYCT\n3nGSvGiyFDxLezSmbV9Ftec53O6y+9YuzogdlSgXXrmGO5Dm7KUB9/aG+FIjhKEX27HKKGgS0DX+\n/fc/2VH5m89P6cUdkPYylCe4gxaToxiWPYo8iBAO9tFDSYK2GJrcYN++gikPETxBPg5WEFQnXncL\n75KHvvcR+fttKj2B+PQizZUOTn2G92GdzlmYHIbo2D+goHQQzXsM8zJjf5OgTad7XcXVDNBblkhq\nQzpOA0lfxNv7iKYRxy5ZqCc1xLUFgsIh0eCMqbSEHoNyoUpmKrMszhDdl5nb0pAtH06XHTUS5HLU\nTuD0BXacVS4kvJSEGke5Odxyltb7MUo392h9oBE8fUJoVcfehbym45MClLsapdrbCDk35T97yF7v\nk/Xt9JfnEHoFTuiSnC6jaFP8VpFpTMZlbxBYTlK3HCSjpynP+ZDvq6yXtnFJXnorIqN5DdtM5KP9\nJk7jCE31kKvWGZx24my48NRN7E+kqNNHqfcgCHv9CY6VM2ive5h8ZoHLP/EZoo4mUzHDUszCQRQ9\nJmBaCZpan+F6neZwi7gvRe3YQmoXGfQnOJJe2lmZhOik1RuwtmqjtNXHqbsYxWy4A138DxQKVh9H\n95jFVRX7zh62n3mWyc1N2naVRuWI2KkAlhig15RRQw20toBLncPulRinVORuATYs3t+4x2/8xq/9\n/59E/Yvf+b0bL/7iL1CsOXA39+nIHlY6YzRvAI8eYizb8FhRGid1HE0IeEsY4wpS34+pqgxf32d/\npGBvjaCZIahLRPQSbecI3Q7d/j6Wb45QRMHnnGdkzWgwwvepi5iVQ/a//QaX9BidwQ568Ayu9ojj\nPTtjWwPvxKC6N6NfmdH1hCmLBRwDN5u9O0RtEu5KFCGd4PKZqxzJKpOtLA53AMU3pDMaI7r7hJwW\npy+cQREdFIptVjMXGI0qOBxefKMWVnYXtVrG5reQp1MUNcDQIVAvi9hcSZaeu8Z4c4PcdwwuvLjI\nt15/G4BLlyc4FS/HpsCpM8/jpUlTTeGXd3EuPUXe0Amc0bn2qWXk6Cq4hsg+Hdm9hz0C4XUPbWke\nebNIXoNQxknHElBHOrkP30IeOmiUB2g9BUwRPeLGtOWwpCiNwgDd6yAoeigNZ0S8QYYDCaFeZJgo\n083ayHZzLHdlyhGTmeBmPMmhCFHWxQIee4xBZsRBrYS3rLN3lEc/b/LVG9/lwR9/jcDpHsOWxfY7\nO9g7Z8nGq1wYxmmfj7DoMan33HjbR+ByUqh1aTkNIqunmDrHFC1Yf+0DEk+cRVp9goFLYjtvsH73\nk8LN11eWuBaeo17P0ZsJVL57l7LHhuD0czw2EeR5/IMKWiRA78TAnJwhnYyy8NJ5Hu9/SPfIy4Uv\nvoSyU6TpseOblfCVbVRdDsTLItqdHq3WA6rDNLpNhbbFJOzEVyxRUoM45pvkDROPts/+oxZS14M3\n4OTU6eu88U4TeaYTzqRZCCuMzRTy0M1k/4jqw2NOzT/HzLhHc+ajPoHUSRvBdCNYTh6vn+C1qXTb\nFUZuGGbtDJ0W5vSQLafAxVML1EI5QpqPyV4LfyjJ/Y9bLEstZqdsCJMYUtBPXBEQMwa94Srj6JR3\nv/o6AJ/7G3+XSXBA/f4BjWAf+1ac/orMRT2KvOBmsG1R3z5AuRKkUehz0RFClTexRkG8pyWidjtq\nSMWwZLzFOOvlh9h6SVzRFHPxqyRNkezeBkJEJO1MERWcNKJ9zIZFNJ1mYtfwuOPsHGwj2mc0zCTC\neIoY/Srbxm0i138J8/Iy85U2sjZPSfeQqV3kTstBOZAngczuvo1Y3IcrMyHs8yEJCkINanGDlH0e\ndTHKbOrALLzBYG2e6MqLzPk18icNRi2LmN9LKVhDSqnI1gR9Lkw8V6ERtPCYBYqVXTL6kE4qwGtf\n/USWWn7pRbwnISwSNOQyvqvnUJ01RkWLyeEO0oWrKPey8LyPYdmDW3KSr/Vw2raIZC5w+NojauUN\nnIvQedRn8X6dW999m0xqjs5Rj83vHDIuqdhdKbKbZeL7AZQvfJpup42QPcG+2mTSGeD0a9jlIAWb\nl9hQZ7wUwhF2s3I6QGDVQ9j3WRx+mZ6YZ0GOYNJC9i6ybjyif/MuyQuXEOZq9A4s9ptNFkYONiWZ\nqOBnrO1gCFPchkFoOUG+/pDA6BoRpwhpJ8poiDPsobMrk0hV2J05uJ52YzacDMsTmkqJBBlM2yLf\n/t4nNS4jmSjlXpuV5ohuM8i0fYfJoxmxnsxg1sJX36PsHGDriWQVhZVRmYEJpy5EqE1dWPUgS6dF\nivk5nOEF7IkkZuY04cARIbuP/GGPdcvgydEcg7kh0ekysZMW0YCPbROa5T1i0RRu8yzZ+iOCfYtj\njw9nKolN8+J/roo1ttBVO8Nza/g+qLA59KEaMTw1H8XKMVrTTjFVYVhYZdJZx5UuI9REaqpJYqnB\nQ4+GbnZwmksYySeIaGCu9Cm3TyEFWhx+GhbOelBrQ9ZSS5CcYlkK8oKTMwtFlHNP8MyTEZ7/GZl/\n928/SXbiSS/J1BLLngXUyYd4c32WXlmD5oRQaJE39gosH9rpnYAr68K90iHoTXPuJT/5fWgqDaaP\ndfQzYVRXEFGNok2OCY191OwnnIwMyFbpREckyxbFsY+zsp90NMxha8BZ52/xt//6v+AffGmBw/XX\niAoiIblD3fDjFOrwwS478V1S8jkalsrA2aNiNAkf+fAI6xT3StiuBRieHLBXFjjldXPggPbukFgg\nwkb+Lp2hn6a5i8t2hdFCEOFxGynWZdreojKaY1gtkG/u0Wl4kR1hPNqMSaDAYVNFPqkgRC5z2HXx\n4Pt/yD+68ef7RMn/ueRGEIQU8H8BEcAC/sCyrP9ZEAQ/8BUgA2SBv2ZZVvNHY/4x8LeAKfDfWpb1\n2p8XxxqPsLl6UG9y9zDMi5cz7Aw/puapYMv3sQoT1hdaJB0xtioFnq5McVx0khi5aNarHPndtPYe\nEXdc4vQzM7qPpjhzM0RhTMM2Zib4uNjRmBp7YD9Hs7dPzX6e/uE+QnaET4owuDhDnM8gGxodcR+X\nMaIr2+kZblyyDVWbMq2EWPBp3PIViVYv0jm6TSt5BnHsY6N+wPCoR88FTvcHjHrneFRpkggvIxp9\nTpDQ5CM8p5Yp3q6yuOqicneXlrtHxzvm4fr7nApcp9n3kLHy9JsjYjR4sL+Pr/QpYtd+As/ZIW//\n2Qf/AbirYbLbDrpVlb3wgMiJj3S+gN0XZPD9HRZfbvKD37+H7NMo2BZ46aqD+9k0qTNPMnvwDruS\nh1nhEE/UJChdRk6oXLHnGdQD7M59Gcs9pPrtfSYJD092Je6ZR4jzDhzdR0j6RVxCk1znCD0wRmyP\naQYnuE8qFO8E8M8ahOb8CRotAAAgAElEQVRWmEown4zTfa+OzRumJzYJWGGUuEXnbpr0gpeJ4iLC\nkzQaTZ74H1JoH48ZPlFm8icq1eefpu3LcfGewuZsxFODLOjzLE9r1OfdaLqDtGuR1t46k+nHBILz\nSO0xTy9+Bkehwf6H38YZD/PcF57iK//nJ7CtfcnLzddGrKZX8OkK5VgLS+khGxqnQh4G7UPuCV6W\n6jK9hxMWliwGjCm/uU84nkEyG+Q6ZdzDI7qTBLSDNAPgKc+Y/2GZTZcHI/U8rnYModzFVCoMBwEk\npUHaLtFxzyGM9jhspMk12qR/cp6Drfvc/N2vcmnZwUBPE1dNVLuNOdHJpldh+k4dc+481Woez/A6\nneLbpFMhlHCG+efCdN/L05sbsfriEoXv+2jZGpRLeeJhmfGJhPdSjmJll6vPxjj8hshJ2gsbu6TW\nLnLbPiH8cRfb6h6uYYj+KQ+TdgZDytJ+590fTzdFtdEexbBPDcypQGwZlKCLwvo2B+tTZspd0r94\njaXyhPXJlPpBlWIjgLLYYt7uY1oK8lifwkjBNrM4ee37XPt5F7UTnaa7x2FQRXhlESsr0XOXEcYG\noaqDrClhmDlipRmv7x/winaeIhaNWY3q/CHKFRfnZj8HW13G323QUXss2O0Mjt0cVAd06LNWjJH8\nnBuHK4S4fYS7fophuoE7KlLCibwpUUxtor07wRhoBL/4NzG9AoX9HHJrm+ndNiPfhFZ0ilj14q4f\n0R3rKOaMXsKDmsvRMJ24opcITAS+9/WtH+PWmHlZPpeg3R0R6sWZfbxB0NlFON7iMBOh8N23uPjk\nExhGj2jGyccfPSS0GqXdluFel9n1CL3RBXzDCRc0hcGXxlzJKSgTB8XQkNX5NJvjBSw9Q0cskZ7l\n6f5AorFjMP/cGXAfkt0aotsE+sYW+cEC8TUBbbeO6JNQbC9SqO5iU/pIhsRkw8lHsdssRiM0xQ8J\neuNMn9UILHQZ1mV261NUV597+QC6o0xe8eFtRIkbEvnYGG0/x2TvLH2lRvOqifSWjnc6YSzNY78w\nZbruJTBsstXRaSsSGdOGLq1yuCxSz5V+jFv4wi/wN04t8OFX/ojli34YrCE9P2Q6aZFQMzxoTvHf\n3qEwnqCG42zNbMhrBU7ezTEOtLAtznGcL7Lqkejd8jOKTbCMEd21VbKDE6ToCpe0KQOXHceGyUCa\nstPI4cLJ4qc/h36gI15+luy/+TqnL7tpj1RctFBbVezBOI72aY6SKs6DHpG3S3Qi4J8s4B0rDDPH\n6MFzHBeGiOYTrF6zUd0NU4zl8epZBobKrl0lObbz0CfS16acTz1iY+hBqpmct8r0MlsYexG6tTpR\n/xnuNh6S8IcY+I9x5Y9oV4/py336S0WyRuPHuH366QSVpcv07+zQHEroisTsuzlKua9RnSVYS1+k\nOJ1xZ+8OFy5d4eylK2w/esDgTgtZ2CLd7NNNTlHsM2YdWBxrGOMMx6NdIukVksEY+ZvrBG1pbM85\nSVl9Hn14j8j2JsoFH+ue3+TX/85D9vZmvPTENbbrErahjm6Tmd7rozyzxmpJQU96aVckVNVGqFxl\nVxjxtPMCC7/8Cu7mHe6uqohHx2xHBJItjft8zN3SObJbJdJPLbEknqXRM5iWFETXFv6+RtXzJJfm\nDngkeFneW6AanYHnAG2sslvuE3VkmEXbMPoGodQqikf/C3Eh8S/01n+6TYDfsCzrNPAU8N8IgnAa\n+O+BNy3LWgbe/NE9P+r7eeAM8BngfxUEQfrzgmh+F829Ch5lxOUX0nz1K++x5FnE014iEVcZLnpJ\nBiQq2WNiHYmufIbEMMDBnW/gmfexrJ7w/qMhTZ9A4rQfOahwErBI7ewxPT5g1tzh/v5HvHXniF47\ni3suSSzsIDyQmZ9bZfGZVcR3LWIFN2fP2bBPTAyXwtDX5sipwbTNoQKnnm9yaL+PMxLGkKps7Q2J\nmCbyeIvpuEXonJ/5s8tEhBAu0cXLsTCB7JiK1cPq3ibXjJF7o0XKH6D51joLYp6M0cHpvMac9+eI\nHcQ5pbdwiHkmt26Sd+jsvVHnjeIDbNMxk0aJwaLvx7hd0M+z5ixxKuiF/i6iJhPdm7ItrWDpY3b+\n7w3i51bIrs7ju2bnwQ/eZjzu4O61se/JaA2LdD9JK7hC3BqjoTKeLTAIqcRbfbrmGLc+ZWIpDDwu\nIg4viYmIInUJig8QpTGOxpBRV8J0j1A+7rBtE/EsjoifkRHKJrfZ5/FGGW3BzYnkpDg16LXz1DfA\n4b/LfrvEnNtCUDYQ2ibJnAfJMUVQVihcnees3mCplqAasyG4xgwLLZqDLY5UB+OdGILoITyaEvEs\nUig0yCfHFLZKCHN5Ph4fsLiU4ULITeEbb/wYt6PXBbrzBd4++YCsbjB6JoI+e5J2MsDx1M3HhRoR\n3yn06gT/pXkGl300WyN6qSJxvwtfUMex/YC9UoxBAZLTIMEuWC2RnAiLdpVZcUqu8Tp+3WQy0bm0\n5kLULvB43MH2eMLGezkumQo/G/fhvbXBGfuQC7+0wPQzdYa2AtmTALfzYyqjGZ7iOqFTPi4uZtjp\nDHm4YNL1RxjmeuxEBYzjKqVwkIZtlfz6Htq8D//iOU6/GEJ0XmI/mGL3uyL/47/eYusbFo8mNZYu\nX0bNBOnVN1hKOuimfeS7C9y936N/d5/pjkS80uT66is/xu3dzft0NB1/VCMcl8mLEY5Si9SnUeTt\nGU9HXyB6PGH9B2NcnTYuZ4rVWIZwP8l2aUp1MCU4cxPyBzlztsXz/+pv8YPDHpblZDyrovii+M+/\nxN6DHSquS4yaGmO3irBkEE/ZGMVtnDXOULSZFOrvIrokfPplouYXefh2hg8Oj5EmML/iYP5lP6GV\nGiPbHdy9CXlRovfegPhWleSqj1r2IYvJJ8jMf4qAMKZZeYRhP8MkOuC5XzrPn33U4ujtt9Crbeq1\nAbNLPTKqA6lSo7ZX4rgeZirJHHY7TOw+EueucXRYZPZY4mS2zNnVaz/GzZWT+WhjiNix6LZBd8sU\ndjT0QRB7a8hPXElSH2bRBj0aIqS+fJGTjhPmFAzPGMYZnlS6hEp59mlQbUYp7464U73H6bCFcVzl\nVEMgOtplMsmxaY74P/7V/07U0UEIl6nkZSajCragiMtSOVfeRd2tMZY8DAZDOhvvUmvcoT3bpZLf\noprIguYja04JTSVeFBM8+dnPMG2M+c6338A2fIxvX0Rub5HogUuNM407qTujLN9UcOZMwqsGG4MJ\n3OwRXzRRfE5q7QPaOzmy5hGHpSHitIiZG7Pr0Kn6G9iNZY6a2z/GLZ3t8qB4h013glsf/zGz0TyV\ngxU+/CBLYdrmnKaQlk5x9mIV12AbT8ogLq7iKXZYGwisbDxCHrgwNkvszQ6Ymo+xrVYRtj4kqKh4\n6yUOHw0whusc2R4jaXf5a7/8Za7U7djLVXxKj8o//T1mkR4O7xz3ivtYO07C7gDCow5vdPx4nNeo\nzGT2UkuUgz66lzU+UgT24goja0DEXmAx1eSj97+JdiWH5phjNIsRjGU46wtQXLB4Sh5wbbVNu9oh\nfruF7jxktyRDeY6oPYV8PkPrgg1PyUn93Yf4plOOpRQnoSXSVpD15jKem+H/8EOd+xxG0U67oZOI\nzFGQdWraDF/6NJmF5+mqa2QNk4uX/yqRoMLOO49JUcdV0fBqS2BepS63EB5ozAQ7A82OrNu4cNVL\n9eFDDmwHcGZESNqi/3Cd6qMi15Mr7FdSDB1+tMw801SAtL7M0VjkuaSPfr3N4MEfsnhhhaHYZuyN\n0zsEj1AlvCMyiQiQ+x4bvRK5W7d4/SbI3S6RyRqhgo1KrUks9AoZ2zznX1ohuaahhZbQvQP6tXXc\ngxnCuI2zvcWjH1Y51VqkK7cxZTeLhz62hBE1I4ezsY4j46X+wzHNzSKq0/oLEaH/bDnvxo0bxo0b\nN4o/uh6/+uqrLwNbwK8Dv3bjxg3j1Vdf3Qd+68aNG//Lq6+++reBx5ZlvX3jxo3Wq6+++nlg98aN\nG7n/tzj/8n/6nRv/xX/5X9Ev3GZgt9PRFPp+nc5sg9LOLvbFEINCFa/qQ5zlMMeHjN0+vrfzOs6h\nBO15pJQbt3tI7VBELRVw7XmoZWKcc5zBaYbpJwVmxhRv7BSenTZjY8zZqymO3ykRXbShhpKMtrf4\nN9/7Jpq4gJiqEfCmUEsHGPNtBLuLQU2iN1pgThrRa/eIRjJIpRiyZ0p8bMcWtFHwDZn1+xhin4hH\n5bi2jxp3IoTihOx5pr46jUIPh03FuPkWA1lFUO0U3SqZ86vI4RnF1w74ib//92nnjxkRIXYmg7Pi\no7g6IxA8zc3XvgmAZxZDv56kmzrNzCjjtQRshgu3Q6Ga0lgJruARgI6P+UCC+avPcbSxTWfYp7P7\nPl7Lgx4wsSIqLe+MYaWObTjCNzRpTewkAVXs0+9H6FzO4s526dbqdMfzuFxT9LoD09nC4YOREKUZ\nF0kkMkTsHja3pxzeP0J36ujpBQ6LVfLFDudiCyw8H0WVjsl/MOWcOCLrGDBruhjOhgySLfSASiHb\nYc0j07Z8dKY1MG00HhXoLi8Sqs7TcLcYBI/RDYN3braxn/bjlkcolT6FSJ+wIwmtFtJshXK3xfbx\nHvd3PtkdiKxOsdme5fLZOMJul4iqMg2eoP3wAGNi8NmX/y63D27hcJY5CRmY0z4zn4ZDXKbjHDHq\n7+HFxLSlWT2jsX97naQ+JW4kkMMzBNcy6WcjHN82aSTt+FoWG/tZyj4FqdXFWFEJ6RnGbQ/O+XUy\nKx46VwVqD90sjHTm1Sj3cvfYv3+AHLJxuK1gm8IkFkC0beKpbrFR3cR4vk23t86l+NMcvXWb0u57\nsHyeM6deoD95j2F1wGubOTLOBTLzddLOBHOrQbp7DQSbwpmQj82Jneaugv14i1NfeAnpuEX4xSQ2\n1Ua968WQA7z9nU/m209f+3nOJbbJ1Q9h/gp+sUbx9hAqe8x9Nk4xr5Kr7OP9QoKFpp+GsEdxJNDL\nV1AsDyJdzNaAenZE/qBP7b6L0doy4mfSbL1/h/7AhqC0Ob2YQuxqND0C4ewR4ESvT+i1TeZ8Tia7\nR9hOXyV0TuPDYptSaZcVvx/t4X2cGR+7jQjKrpNNK0skFCA/G5Ma+DkQBcJKicPWFgu+OK3tErv9\ndXptgdC8SGzawCE9zbvvH/HyZTeOaY2Vfphb7SM+vfQyifgKHwk9BF0l49apjnqI0xH+sJ/xqMNS\nxI4438I1f53DN7e5uf6J83bkwzdITbKsv/uAyZxIeFZHipym2huhl4856ZywJln4XSKD5oBIbopr\nJcrB/btY8x7cThctVUGz9+j1SzQqNpIBma7bxFZXKaWu4O5K9IURkfoqdBz843/yJZqHX6fWi+Ga\nRFgKn6W3YbBr2HDMZO4dDPAHNRxulY1BjxflKzRxkNDbtMoLON0uLicEjsUYZrLMdCfHJO/Ed+4C\nCVcS/xcvsvRskjsnW9QCGi4jTFSYIAWLtLceosRHRCQvD5sqjkyARX0IVoFar4481gg6RLzDMbIL\n4okZU+EMZuGYZ86c4Rtf+yoAF1/9p8jClJWwF81zBW9UYaC9TctznctXr/Hem2/js/to9QOMsyLd\ndgTj+Jhu3YVoltkLNDjbHNB1ekl0y4zFMPFuF1uzjDPvZ9apEfTs0qg6CI/c1N4GtdqmdztP6ZZK\np96mfuxH3d9i9u19VrUZ+fESjbRGSZ3nerrKwz0bmQxklRL2bApnrYzTZhE7foyfFs5Ml6zgR1XH\n1O/c5qMPN7DZv83goIa9PqWazXNsllG+U6Va3qZbDxFrjyh0ypS9NlyFA7pKGX3cZOwUMZZ0VNcC\n1XGTsUfBuxwg1PMSip7mT9/4xGzzlRcWGH1Uwf1yjJ6Rw/JNcLhtDL1eEs8GmG1PEFQX7rqBXdfp\nVTsIpPEEDKquLGHnEv7dGjmviOIY47vkIPNXL/BH/93vY/O40G3zzCQPuYfbtPIwSnQwlDqX58+j\n5Zv02hqi06SzM+Fk/yFm0EY06yQausiJs8y0LRKWqrh8ThqyhFPPEpou4nTNEXnmOTZPqoiBbU6m\nOmGnhten0bPHWFZEhr5j0sd9LOcIRfFS+8wzNJWzfOV3f5vPnv55ZGOd5E+9QES1YU5O2N86JjIv\n4R+HSShOSDg46Q2Ippb4iae+zDe/+6f82q/96v93ct5/3ARByACXgFtAxLKs4o+6Snwi9wEkgA//\no2G5Hz37T33vV4BfAbC5dO6/+yZnEhlq+RgM3UQ6OdyuAEeONRRDw2aPMNWLxPISdfdT9MpF/JN5\nDo9LpDwy6tbXsf/0E4iBMI2AzEwQ0O0D1JiK79GA/P/D3JvGSJZdB3rfi4gX8WLf94iMzMh9q8qs\nvaqr92622OwmRYktioIWy7JhA/bYAvzDsGF4wUAzGmtmPLJnbMzQsiFztKtJNpcmm71WVVd1rVlZ\nmVW5Z0ZGxr7v24vl+Qfpav4wTBmCAR/gAu+d+y4u8N33cM8799xzrVUsso55pc6J1kvK/QRD0Ytj\nwk63tI/B7OFeasRMKIjtykUMxgrqYhu5W0fM2qhqD1FnFHzLNjQNB9quHafUpx1uUa/kGU0VObmn\nMBayEjjvY+ePrrO7eJHxqJtyu0ch2cUwHKdf2EFwV0hUjJRXLnFuQUWrZUavVIglk1w5P03oD63c\n/sNPiA9KuBfnMLoEcvYB7v4QuyH9lGH0K3McF6NEJ9poRhmq6g7uq1YCFS2a1hj5oz8n0RUZt4Qp\nbiTRLumwqHRELQ7+Yr3Mb16K0teeYC1HGLWTpJp6TOYmR9VZ6uE0lWoPX0uhPRknJAS5Zkkxrp5m\n+/Aaz5ufoWMfsH29jvHKAo2qFsEpIyodbBE/Z18MMNZrMP6mF0pFkiMHyat7aOoiT97J4V2JsHqh\nwq2NXebEV4mLj1B8s0QFO0fpGNqhQjMnYTPmORkUMMsqwrNm/OkBpmCFeqrDYKyPWowSfjlG6bMT\ngl90UMhJjDfztDRNpFGU2DDHWEhN89PPnnJ79tdfwayuoOqIVMYDdHUqHnz0mAunzqO7EGTj479G\nW1Mj6cOML8wxyA3R75fpjCUwttUUhl1apTA9V4MnJYjfeYxz6SwVcwHRZ6Nx7VN0J5e5HBkj0z+k\nH7pApFqirNGjW46w9b/cYuG1BURbhQYr5NxD5JaRYfUxcZsVy2yAfq/MvCrKoD+OaLxJRb2IoZmm\n0RTIqtzYX8lh7qmQElFqSyMcnmliJwWUH+9yJy5gjY6TLbzHyrNWxso7tNQj1NNj7GxUGayEqVdU\nfPzjdYxzHpyX50iXOyTulbDNu+isxYl1SlT6XWrvfv45ay/KxG7refBRkrO1m1Tnl6g07vP8pQit\nWo2u+X2Czq8z3GhT08RI5iLo1EVqrTZnPRmkoZaG3onoHzFu8/Ek3qNY6WD7eETwtd+j/d77hLv3\nqdui2DR+zP0epegEw1yXplDDN+el8qCFamlI6ZSJvZMdxgsJbA4jtY6MYPGSL5oRU0f0fB481Sja\negPXKI2yJGFsLpPpWXHcz5OLHtKzTNPdNTJrb1Ezn6ZSvk1N2MXshG6xwfTwNIXENZYsbjK31tjt\n1/jyr1/gH33zz1Gcr+Ew7+O4GKF7PMSkKqDzGtE3BPrpNbDVn3Jb+Yv/nLFtJ/MBG+VWmhFRfBoY\nrWgYdHXIjhzlR3OoCinajUP256awatIsSlFshRRdd55sckBercMbvIwoH9NryihrIhW3A4+QoKiu\nE+gEyNhuEPC+yoMH9ynZn2H/8AjLikhydIjRpmFCXSC+M2JyxoLVMUY1v0GwLNKbVRMyySiindOD\nCnIohNJxYB3ESP/IgsN5RM06wNwVEaU8qUe7GBxXENZUGNV9HtbizIYdBPIy6tMX8CT67EVsXDS2\nuPnhe4xdnePI6mBRq0OTlygPEhwzQSveojXycuft77L48iWsBx895bYcP2E7OIm5cJcaMH76PIk/\n/p+48JyHyp4K/+w59PYyo7yH6m9HWMppSbsNWHNb6GQ1J+oAaa8f47GK4vCQhfKIB+oRrvkQ3R0t\nqnAGYyqIsTXOQeRTFnQzpPIKLC0wrtdjlGepfrWL22Ej+dE2+siLnNf1aKhU9KoCR9c9SLYPOdq4\nxEhsYZJqBKaM3Nr9CUnzS1jtHcR8HY9ZR2HWgM76CmeXXNjjLyOkVSSyMv75A4KySOqqzLjjBY7L\nD0hvjfH8eAN12IUiZsmuTNFTDRjVBtgfTaEsGXGGA8zcs7DWPGKqa6Ho7j/lpkk08ATqtB/H8fUj\n2KISptSAvEaD7l4Fk1VHv2ei7quCXsA850RK9xgJaogvcXf3r9BcXiJqtKMxmUg+NvMX//xDJO9b\nOBZFxhMpzMKAbnAO/3idJ7sV/B472ZNrtK1mml0bq00rCV0CwetkUNSTMh7irRrw+C5QEOtsrcc5\nu9rHUQqw7VxCO0hywVIj7VJx6dQcx7KeyUaSzcMi/XyJ0mDEVlbh3/nai5Rt16lobtEcm2LJGKSo\nO+brv/zfkDZnGN810fnz73LjeMDoxRmmzxjpNbRY2io0wSD1Vo1ifpv5MDzau0u30Po72T9/n+U8\nAARBMAFvA7+vKEr95+sURVH4abzU/ytRFOXfKIpyTlGUc0aDHVtkgsSmjDgt47XXqY57KH/a4JxW\nRp1uY9RUMR8nSXr1RCfVVDUjSmKQscXnMFySmfoP/UiuEl2HiidFM82hgUa3S2pYZ0Ps0z5044lE\nScl2mNPj2xgwqpeJeo0w6pN+dIgLA6e9fuqHd6ns9rGkQwyVMGq5gmMUpFgvIwxnODg6waeUEfUT\ntPNtzn/tLdJ/cszs82q++c0b1Asdci4Pw50CkuyhVbUR8eoZtA9pqY00KmEMdgMXX3Ay3wkxzI5Y\n0quZnXYQu/aID/7VI8xeH6bLy7gWdGjkCMeFIfs1PZlB5SnDjfc+IRC7i2l4jLljJJtxQ8/Ext4e\n8eNP0J15hdUrr9EzqUDU4nLPImgytEZWvvbaS+DQkuk6KWv71IsgWg6odxTM3Tvodqs0D/aRx8wY\n8mYaWrjqnGJhLsQV30WqtQZb2RyW2UWsHheSbod5Cfo5gUFZRo59RGT+DKMmfPf9W6xdf5vhupW1\nEwHr6YtYC0NKgWXmfVYiHgdG6TzempvmqE83r8ecbWCeGDHqWdBoPdS3Bjx+eJ9EJsGDozIqo4Jc\n1HByfw25p8M21sGRE+k0DnBJLrTqII3TQ0LdIobdj4hczT/lpl/L0j3SkluTye/f5871nyCuzNGp\nGqj85TscG5s4V53oxiT6qTJU0pwEG2SzGfZidSaHESwTFoRkHXcqyy/9l29gVCy0BhasgxLO187w\ncLTP4ShPMqZldLBBwxEg/+Qh4naX07+9ilNsIV/QUVRSyE+OyL+TwebV4Q+YiQpmomOnUBk0OAZt\nut4ZBp4GOklFOKIwtqzh1dWv8bxvAaNLInHvgK1cn/FZI/Kkm+iYDaejj3pmjkHPRkbfx10cspDO\nc8qlR6h4aMVKNC6ZkBxBho8eI2VtTDrtaE9sZPoeYokWWqOaSy/+9lNuJ9crGMemicx/EaPGzsz4\nOC/MnSJbbCG5y/iib1AQO7hqbfINBWdqh0JjRD0uooxP8MHGbTKUqDcGrB+0mB7ZmHQZMflP2L23\nRXj+FDvmSdQnQyx+CXVsSKSVI9CvUeoayX2aYOTOoNG6SdyrEo0Z0Y49h1VawX6coO20cspg59zr\ns+jeiGJz5bm+WyJXdpNdO8F6XKdvVpC+MstRU4OjlyDsH+CzuxgmN7Af6pkYyUy2y0j5JnldCdNC\nGF13yH2vhOXsBT68n+dL3mewmUr06zO4WnYKQoVqT2AnLaEMR3TjH2CZzj3l1nq7jG7OR9tmpZWu\nsF3OkqwNEfQypf04wh0HNrHI1pGDkAWym3n2tj7jcDLPoWOF6v4kgeAYisZIJaBm5AoiTQcIXplG\nLw9pd3uYG1Vqux9iGluhsHaI3mTEYzJz8UsXERK7qJs5hJGV/aED45SWBXOE/LUbOB0eNC4jheY2\nR3sx0o0h3/zjH7D/gzQJjUx2pOLi78zQV8xM6SY5GanINQfozSHUnQ75Meh0RzwvdDDWMmw1R3SH\nT1jrV3Hfb1Col3h18kUObohsfOsDOr0GB3KOE7sKI3ushhTsqru8+R9fQpOLob7nfcqtEMqgGeap\naD3Y/Sl2YuuEXK/TjHV4rDnCYL5PopijaHxC96jCgZSg2FlDW1qmvR1AbFoQ1zQk9V1W517jujCi\ncpSjsl1Fsxyj0YvSWbSi9zS5qIpgfFGk8VIP0TdGv69i336Eo1JBXJewrvwaOWMSY71D8tt36ZUq\nlFNP6OvU9Cx7zLiG5AM7FHoK+ujLLC8VWTX0sHtEJKcW+1qNpFJHs56l+kTgf1//N3gu10hkl1gr\nzjLsTVG+s0uwPEKwZSnYz3N3K85RxUs7VUJJahB6YxRPlTHullAOB6SbefxlCwOLiUTl82m5tnoZ\ny6kzCK1ZpJkVKscn9PphspKN+yqJZq6GOZikEw5CbYi8f0JNt09/5wi/O8XVl31Ut3ZIxrp8cACR\n37jE5TetPDstoUsZiUtqYgsaVnxDVJYgy19dobkwSWn1HJVGE5d/l1QvQUox4TwZ4VKlKejbrHss\nHGduIAWzmC+GiJvsFE1Nlga7zOph16ti7+FdPvjoz2kViuw+KhCsNLBFVzk9ZeONX1ole+8aukQX\nw4GXwp0T1v8sznYizadVD5/8w3d5Z20L1WtfYPbLkzh8NpyJeXppkZoui1rWoPabeWZumWzWiCQN\nER1/Nx/T38uIEgRB5KcG1J8pivLtn6lzgiD4f1bvB/6vGSoFhH+ueehnuv9HUQsC3Y4BRSjQz1ex\nTCygWy8ycLbprWg5+9YCnVIb98Ux3K0OulIDQ0jHoncB8+QFPn5vk43PwhhPv0Hu+CFnn5tFF7JS\nrNsYlW1I7RLzlxi6xnsAACAASURBVPwozgIaV5duLMa+0OdQZeXj+w8IXryA9VyYrjnOoBpEr7cw\nqA+ojmK0irfRGVzIfhP26QCmmgmPsIxoVXHSqtOa05LfivOfrX0PMVPhi69bcRWmselsRK6MU/N0\nEcQB9q6JmluHJaAhaNinKg44uSXy2OOjGerSagyJ3XxMqWEl7FoiOeozNDUopers7u+xMLXDJeMI\n2p8Pus3loJpTY8m52GREdN7KQamG99UxZqxWcg+zxCofIkte3KZ5khYHotdPLn0DwXCO6pyIJRTA\nVmnQDonoK2NYzV1yM+PYr4Q4FRkj09AQkUY0Hu0jT8kcdx6SKSSwTnlxn55BCgkovUOiihqhV8ES\nEOn62my2LGxubVMq6onanHQsE7QkHZGpMP2xHifueUa3b1Af6uhrDtEdZzCPy9TkFlMOE7al0xSu\nddErXQL5FGr5iF+68Ov4Ziz47CHsFQ9Wl41+NMxooMOqMXJosdKOayh2VRw3W9hKCjltgcKyhdqb\nbz3llm3aUOd92BQX5pae8NI085EIbdsjwm8u8ELoeXqJIgeVHKVBmsbQgKvbZyrQ4NTVJgVdFZ03\nxcpbKxhDTk5ubPLh976HoX+X1oMG8kGJVxwjjMIxcxYXorRAfzvFwvmz9PyHSH09A42W3Gdl3NIU\nGYcOJdzFYnEiH2t58Nd3+Phf/IDy+hF6j5UZg5VVjYnSURWNNKSWT7O3tknvrgOlquDo2+kePcA3\n/wwrkov91hGfPs6g62nQBTp4G10aARUJJYloNSMb++zlWuiO/dg8ZYKCTLCnIhX/mJ3ydYTjPsvS\nLJp2mLrm0VNuK3NtjK08hmIBrcdDevP7HAtZ6kqHjU+rbN/pEqk1wZvGIOhIlhO4k/Dyb5oIeud5\ndfVNpOMEI5VM9M2r3OvoOPnkJl6LzFn3gLomhmid4ySiJ/bxFsp4keqJk3u6DFOBCVKOIUcuF4+7\nTS4MteSmSijrRQqDIwK6cd5afJ5je4vWusLd797GrDWyZDITMarwjL9OXVVB01XxeH0Za99PvD5O\nv9dgv6wlZ+tga2txDApU1G3y+iSqowNKKORcc5y+cgp7wILHqmOzdETKriITrdHUT2GV7FiHWuzl\nNpr+ENuVN0h8uv2UmzLuZDeRIBZ7jN0iMi0UqVV22NuqUp4ZQxcdZ9Cx4NDcp+Qu84zNybx6kXGt\nh+wnG4xGa7jdaoxdUMldvN0svbiJgCpF67Ie8aqZ/c4EC1//d7HGqxiiLrLCNFvVHoZkH8uzL5KO\n2RlZu3hdNhZXV0gWengvLPDh7k8wa/R0Gk2sOSeNDZk3/uvXkS+J1Pav4Tw44L337vHtf/l9vvnH\nf0Ry7W+g0KdfTGN3aZnS+0inbXSlMKdnr+A7/yKi6jnEwDjJ5wdo9V5atg7eKTv/+E//R5o9Gau2\nQXRgoy/7UfwZCtUlhEacU6ft7Lg+j4na+/GHyDfXyJTeo/HDT9D2cjT9CjHFzMzOJvLxCPoxPL0y\nk/19hO0CS/vTxF0DBK2eWdlAxT1JJKdm21jDP6Eh8pVxvJcvMWjZUE2FyW/mqI06fLSZ5FY6y/z6\nDJ6aBs/VF9BY7EwGZun/2nnKqUPmPBc4iBcRJl7B9rKXcwtOQtPznG9Z0JvaaLuziJ0DZuM1HuWd\nPPT4yW/HaT+8SXnRz5man5poo3kpwO/+1jcY9iL47ON0QgpmnRqNZxKtepmAf5YxM+j8PQrdEnt1\nI7d/nObwT39M6loNfSfOuLpOZkFgUE8zKB/g3Dx+yk3KrjNq6ykJAyqpPdwDFUq4jSn2gFUphCRI\n6F2nkFMy4rgBjU7A7rvKllLg6NYmtZiFiZdD1KxlorYK7b/eQb/dpH2s4NbvMtapUmtGSGwIDP1W\nntw9YufddQyynlnHAq5tB7FWEuNYB8fEMq2GjNe2ijDSEbbPkzquEOnGMXTruOyrHPRFBmMip30h\nrK0i+p4Gm3+GwOQk8oSFZuaALZWa426CnGihMdKjmN0stEd42z/iucGANycPuPDvfZXL3/gGou0U\nGr2fdn+cni/NI9U6I4Oex4cdtNk+UteA6KxQkhWG6l8Ysg38PYwoQRAE4E+AbUVR/vnPVX0P+J2f\nXf8O8M7P6X9dEASdIAgTwDRw9xf1M2JAL7NL236Rws1dOg/ieIIuJl99meKxhp0PS4TPmrn3qZaK\ndYZyO0/I0sX+gkJq4/v80ff+KVc8sxz+rycYSxZUqEjajHS0VfLxPYSAAaPSQkh2OU7pkINOXOUC\nY9oUPpeRg/067tOXWF50E2+sszz0MCvE6Ga3WLFcwuhq4uuqQRrQLD3BWDnB7LDQL+2QX4d68TH/\n8p/8Acnrm3gtdnbqO1R7dVSzAmLSTjeXY1fKUY4VULX0OKUQ+rITlT6IprjBtLuEYijgis5hm9HS\n06zjcJXw3Rui0q4ydXkGY0VHPnOdgerzP9yVhbNY/COOTG3EuolkPYddmaNTErhTy9JrZnhj8ndx\n2fZIR9Rorx/iTBxid0yzNxGnV2jTzspkbCIjlY5muISkVtO48Rdkvn2H471DKrV1MrN9nnvmRULh\nDm1XmI63x7C7htw4wdSq4HRN09WFEBwLDB4XOL5dwmts0lMPaBXuI9fDTFlDuGxTmNsZQlsx3LmH\n6EyXef71l4m3jJT1RrTVEkpLIDGWp7m3hsahxYoRSzVAQBoj0S0zOebEWz9E28ug/lYesRhkathA\nr/EzWk/yjCPEo2YKvUGL0h5gCb3E9QdneXxj6ik3w46FiqnPsanN4qSWwbBP6vATTFaZWiZFOXsH\nm06Pvt5F4+lgiaRJd9qY8jNQHDKMmtje1rJ2/SPGPLOsvjjDC//g1zCO5qlcGGPmYgTbmzOI90tI\nvSwt2wf0gzViH79DWFzgkyfrqCIy7tdm2Vr/GH1Nh8UgYyx5KFBFfz7CS6/7iE57sQWaOC4uYcz3\nmZJUyGtudA2ZCcFLwy0TLXnIK01OeVfI7+W5Ef8OmgqoNSqE+jYzJ050VQeiZMcmnuezThNxs88X\nn5vGedaIcldho6vlzsHblLMBvOElusMcuU4Dj6GFvrL5lJslO8VOvo1npYHD1UU1CqHkDBgelXG9\nVeLKlXvUVQ2ciVkGdZHJxWeYurhMvTnGbjyLfdnFR1kV8uMjSh/ewW56zMwrz1Pti2TWkohxHdrU\nE6YaFgriI1pChMdbf8pEa5J7d/4tM0Mzpi0rg4wdlbhBazePXjegX27TKWyRy3yM6vAxqnMmNLiQ\nRwaM0wLtkwI8eJeZpR4am5qu/Aj/coTkvV1OelZaEy0cXTVJscww60QwRQjbBEbnDJgsbrAnaW2u\nkXi0zkmzwaUvzRGQI1j6A7ZuPqSUvMlodkBT1eBQ1KNZg+CZrz/lFsgMsCbMhLZ6PO41qFhD1Aqg\nq99E2GhTSj/kQSpH+E0LAc85amN13GeWEI7zTCwFmV15iXLDjqZiRGrWkZUm3s42lZGTaLzNzvV1\nXrms5869fY4zWgT9Yxy2JrMlD7upPcZ2Y1y9tMJ+NYXdFCAZH1KOdokXIYqLVusEq+RmGAphsKsx\n3mxjUI2YNkxBsIB7VsU/+Bf/Bc/8B6/xXHQafSRAMt1HM1DIjXo0D29hNAzYju1g3NzB1yjgtYmM\n7aeRlBjxB9sc2ZO883/cwhqdojUepDjqYpvKUdMt4FNDv2PmdlKLyR99yq305BorC1UGdSNy9wy6\nBz3KvjzhcJXB7FW8LzmI+t141Frqwy65ZJxaLob/cZdtE2jVauzWHLfj1+jYjZRTYUwDG4XsDpay\nh0ithmfMR1g1wdTkGU7JBjjrZW/4DqndHzLoHnIjvU7iT/4t86Es6d4TVFcdhG1DtDcqdKImwrUC\nNZuKJ8dj2J88IfZjmTu7dygdfgfrd+/jlSU2zVPo613a/R6yIqDabCJuTdCPpdHGq3gELyp/h2bJ\niJY6/YMROz+p044PmPNO8oVDma9/1c2pt1b4qs9LYqZKu3SA++AB69Vb5J0VthecT7mZ81rkwgNO\nX5xBo7fw/qGW3TtvMx7Ucext8qRwh87OHaK1J4wEMIctqMofYrGcITrhI2t3EN5SMRHUYxGeMFJ2\n8UUkThlWKZZG7HbVBLQx+nNaAtUBvmYZd2tA7t4NWhMeUtNqAr0raEdaRMsO66Ue3cMuWsOQpq6H\nCTvtBSug4eTwXbS6caqbTeIPq0geLwHHeVQHTeR0kshUC68qiLcm0a8poJU4LA0ZUwJE6zUWz5/C\n2yvSc5pYvGzmSTzL3vb7NNJtJGeP3qGLheoMYgv08yYC7nHW2abX6FKNbaPtD36ReQL8/TxRzwC/\nBbwkCML6z8rrwB8CrwqCsA+88rN7FEV5Avw1sAX8GPiPFEUZ/qJOtDoV3USUve5tBq8+g9tm5EQR\nUNbLSFo9rZKa6t4An76HSZTYresp3bcwKLVwI/Lwz+7Sn7VgPZcllJfJbW4RTe9j0c3i1/to1KCY\ncqI9M4O9FUOfGWA7fxUx7iMfHvKj93/CyftrjOQ5epIDabzE+laSgVmEQIZCcUCsXKeWUFB1raTF\nKvENHYlGiOVLbQo9DdmHB9jsFwjiRG0O0bH7UR9bEfsxBKcNb0Vk1hZgqBnQMEoEdWbyw4f0u050\naRV8kkYyxLmyvIiaCdIPNQyNBuTREdNt0Op07JfceKxXn3Iz7XQZmYZ4Klq89hFTPT2ypUmtvo1Z\na8VvN/Dd23+JyXwKt8VOqqal5lI4NiUwJD20+mbqrjyD8hNcWwP0HQO7jgDu+V/FtuLB/cp5Xjo1\nhZzwIGsV6gd+hJLA1G+8QN3iIbd3jFG0Uqo3ycQr5IljOm3krKOFa83FnNuILM8TGLOhjA85ySTo\na4Y0hiJVXYN05wlPfvgA3W6aL85pyLeHqPst5I0AnWEIrbvOmnWNtCCwOdbHToOTXRAcp+nbXARe\nmUPUHVGtT5EdDfC4eoiihi/rvVBKst4roOm0cJ23ExU+d5Aaxw0oxSTjOh2NRpTaRobmEz1iIsoo\n5WSrXKVQ7lOsdpH2W9TyHU472lRnJQ7UMgcfa7AoIZYG8zTzOxTqKjKfiPRHfbxVmZP3r5F9ew/P\nV+aR/X1Ej4lH7zxCN/MS7eMy8+ddfPS3xwSycHbpFMc31ygnuqzL68gHXXy1bWymWW7dSbG7fUTt\nR+/wYCfNcS1D3ZbCZT6PYyigzmT52/UfERglKdgeY06oGV+8SiIrYx+3s7Rg51sP/nuOy2sU9wWG\nvhqByjGio8ut1D72W4+RonkcDg2vr7xIfy6P0D/BuWTiwmqLGb8aq3P2KbeidMD8UKac1nFS7yGp\n8oxlVTgW/ehvCaST80zp/Tx+dAOj1ojp3CppMYF5sE88ecBfvJ1k7q0lRl4bFXWS2CMHyYPPaG2W\nkBaWkGes2DURilkTxvA8umSenvNLjLQCE/YVFFUfk/QYT7TCQTHPhC2M1WrC5BqjNW7h9jtpskcS\n//q/+u9I/uQz7hcOKG1UcDrtjF14k8PbNgaffcZqUEBVVtM3F6imTRgLZQxDG7myidj5MA6NFU9o\ngt4tD2s/rNPZC7IacpPfrdN++4Tilo6wo0cgqMMk+HFNnSF+L4zommTQa7OjtJgYGz3lVg9O4NW0\nqUo6fL1V0td/gjfcZ8x3msizTaz6Ll/4YohBHuSTDiqNmmvv/BW55hS1YwPbu7e4nSlindEiO3wY\nhwaOg11aJYX8oMCVgBc56sWpSBgrXeIxI/Wjh+gjfRDcPGynyfW2CK3McShuofLVsTf6OP0HSNrT\njKFC1JgYLA+YPLVETOgxHFhIKceoukYClTwpVZllQwjX0MSwk2bSMocUnUDV9MNhkWEqS7MmsJaA\nRFZN9TBHV9XGIZoZBm0EOsuYq302NjexFzqc9vrQdL0ISpOsEmNQb7Mw1sZ16txTbgsv/GOeNE3M\nOT1En/dRu9Tnte4zeDROnvRViNcKtPrzbNTMhGafQzon0tfOo5vscF5Ms2uSmfW0eP13fwVOMvjD\nSVSDJWyeGTpmC82CjVHJhV0aYtZswfIk+eF1tCobASPkUnVG+QxuTx+jUUBc67L9g08YVBKkpDTN\nozrXbkAsD4bKNsNJFx1flYunl/nC9EUkdRrvmJczDiOd9BCtUcBklrh6+oT5L4QwSGrEyC2ms/cZ\nJg1Y7NehK2IZtHGPPeDM0gV0IxuZST/FGzWu3XtITLeG736QJyUj5vYCz0uXmEk8w1WX7ik3ldtE\nWhiS2zkgG68y62vSSqmJJyIMPs1h949xWB/RNdsZL9fJl3Xks16sUR258VlagkKuW8BRHSfct1FP\n79OcmOVe8yZhh47x58Zoyj0iRi+7tYe4lieZ+toKL8w+T/47jznrMeIMt9EP6uQNIaI6LYKvjNae\nY5TKEfLakFpTuAMWjMtnGZfqyD4rd+0qTr63w2g8j1rTwKKqEhqt0tK06EhjBFNO1IY+F16Z4sJL\nL5KQ85SuP6S+2MJvEpBqMkuzbjQNA/XpIPq+BuNylYMOqNM98uuPuSkfo8taGbZkjKcsjLq/0Dz5\nKdO/01P/N6IoyqeKogiKopxSFGXlZ+VdRVFKiqK8rCjKtKIoryiKUv65Nn+gKMqkoiiziqL86O/S\nj6hoydWuc7Hh4ZS5TMPeR6V1kK1AR2wxuaRFDAuo5mzoxTaKts3hyRF6xYxxys7eYYJ29h7RoYWt\nRo7W0T367hEDxyFNgxWvcwKmPfgMKrDqGYV0mFFTkEQWSza+PrNIVcnQNh4wezrK7iOZcYOC5kGG\n/aSNocNLeS/NCyvnkS56qalbKD6Ycm0TVPR4jQUCX5wjG3DS8rfplXKsRox8uvOAnlaFb2aOgiwx\ndI1h8kS4d3edvPMh43oXzdkJPs2fkFf78RxW2Hv0AJOk4fx5P20hhb+d4XH1E3RlgStnZ1E9+Hw4\ntydMnByb2aoMcKqbOAUnSkfGJBoIBdoMvDqM4yaqxxuUNrbIaoo4pCXcuShNpc5oNETTK6Ee6nF8\nZRL/gpdoQ8QpBiir/cQ2anwU17H1/jVuf3KNa7djaJsPsVSHjIX1PP/yFSwmherRj3nx+QAKbuJ3\nczT6XjRfCqDtWolkzfQMHkKZKAtGI3tFF8SziIZlvEOJgXuGu9k2D/M9TAc+mhoVVkGDYTyEyn8Z\nh/8q7skB5z0TuDSTHIxGdBtNRKeRVqiD3zyJ2dyA4xyyQUe5XeMw28AjjJjvaBl1C6wKJyyJ8ufv\n26iA2yKQ7SkogSJBT5PgGT/f3L5JvXlCWFpk6YKZZzwmdDYd3pKVpBTh7jsP0CSjTLoCOFRmco4s\nRaOKIlXGrtTZNqnYi43o4MHZNKAoUbQNDYaSibNfu8qKb8hwvIs/peHsFT8H6QcUxD6zv7zApFki\naA7CfIhDjYd+PoHvzRn87WVUJjfzzxrRWEPYhElcmTbtvJXjgzJLr5+lYLzC6EDDqF+k/WSLiM+O\n+viIkVvh0qu/TqlfotvLIZbM1KQQgXAZb77HhlamFzOgyCXev3OfgNOK12wmu3OCJE7w6Ccimdrn\nHrx2PUTGaCS0DCFhQMM4j+w94kgVZ1CexGmUafaa+M6eRn9hheOjA1SSyMawTjx2n5LmDnPbGXxO\nGy7hIrb5HZb0Z8hHhvjKPVS5FKMxF8rsiLrOQVZs4rfvUtMnUEwh8lNBSpymgw73wvOk69MM1Clm\nq0UGejOTX71I6A0Pv/biqwQWA6TjCtNfeYXG+Rk2y2uY9DD1kh9jVUNL22TxpecJuNLk0jI7h1lO\n/7IGabPMcLjPtftxKuc8eM5Y6Rfu0sn7uPjaGU69eZ5AaEQ708TWcDJ1SSZ50GKgS3M/o8FeMzJR\nL7H3Nw+ecvNSpzRjZnBaIZtOM/n6BL4FP4P5AN5eFGl6ilyxjtr2PCe2IYOslauXX2aoT+AP1Qh3\nlpgcSKhSKg6+8wHHtS7yPYnd+LdRLB2SRzLtB0/Q+CW6Y310Gkg3g6QzJUp9L061AVVHjT/vYKrm\nIvdIg6JWIWb9TE10OaTD6OAY29YjpP19vAsBjNUR+QDY/ZP4zp2hcVRDcvi5E3dT0CyQ0NlJZ3qc\nvpTC/lsvI34hhHHU4NmgieG0SGM2QEdl4t13b+Ife5bCoEBnKcFpdwCdI0hO7mOsDYltFVG6XgTZ\nQ/2oheX258t5zQtefNU5gso0hlOraG4fk+wc0u2UWLGMkHV6dAf7OIwio0aOlYNlBHOPzcoBVV+H\nM/7HtNhEo28T7tcw9RWOSg85+tZf0qxtU87uYtrM8f3cXeqrU9Ar0EmUmLCfZeAtsGrxY7PFGUWd\n3DmokRsEeXV+FefUNGJwwLJ/niuzMvPFGssWDaVemoXxFYbHO+hHNYSFeYRHMfrFMlK1hd1ZQT6s\ns7FZJv69txkk13miq5NKtilq0/SMCrXFBvFFFR2PhqEhT7Mew99ss6XTEcp66MoSBZ/C8wYduq6T\n9ksCQ3eaO//o8wWfkr6NZ9yFMFRYfMnA6psvcuZXVskvtbD0e1h1dhwDB/LUgOaCidLjm2jnQ9Ri\nj1Bnq8y2T1CHwgQmilgdk2iaOlqFzzg/2acuCcRv7CPsl9i27CJ2JiinDKzHEhQHGcLLAd7/k3ex\nLatwV0JYxBGhRR+hVgtafjxzYRKJNEeFBKU1C+pRgnYuS1AYElBNcfqVBQ7fexd3u0alOUbebmKk\nquKe7NOerSLY9aTKSe689wGaoZ16UMvGt/bJnXzE7fR9bGKeihwj+bhM59NH6PoDZl7RUH7GhGdK\nxr1Vxl3vUh/zISiTjPTS38kW+v99xvI/+MM/+G9/7+VljKd8pG81kSQ14iCHaWJIpZCnO7JgErpM\nWHzk7u/gFqeZnBzSsszQseppW/oUP97FbLGwcj7McWmIY/Y0mrKXuljFWVAQ/SpqmREteZP8Ro7F\nFyPkt2/iEE2oT1uYqDe5daeK5+oyw4aOigJNTQunywHHCcKTXoqZPsZ8D33ASFlnx6kxo7tyhd2P\n38FYsnL6NyYRNvs8iQ2YnC7R6empqFW4A04cJhv3bmzj6tsRQz7mojZ+8OgOIb2R0xMr6MbtlLoj\njrw1oq4w1fv7NPV29NYq9UqVqKzGP2ZgY3/AZw9/mr/0V16aYUUIkCw/wBWKopPDNC1tbI4O2tE0\n3Z6JoHVIvz7JQLBgFGOoDU7KooJO0ycYNlHrCUy2Zqnd2WZ3o009GGfZo8Wv16JxmnG0XcwahnhC\nLkZOH5a+gd2YikKsTXZvn6C6hS58nrWHD+nl9lHPR1n2zpH7yw0cX/Fi2jVSsudQrEaSWhuecoGc\nd4nOvQN8cy52N2NMuAzUmgN09jgLPR9FX5tS4hGj6gN0zjNU1SLamSBDZZ/geSeGxojNzwZojrJM\n2e1IcodjlYmuyY3RUKBi+qmuKqswWIfoB0ESiRSf3b4JwNLslym6fWjqJwzNbSJTDtqxPM+uTNCu\nBDEKLUQkaNVQaiYSohrF0GDaokUZ+GgNqxg8ZWomBVW5jlYIcpSUCTcljtUtzIqVfVed0WYD77SN\nsqWHwa6mSBj1xhYWmxFFKyFntIQ8sH1cwWgyEhaH1BJ5hLqCedaFpW6jr0sQ6CkcK3XCboGBZCJX\nLVLcPGH6uedQqc00Ng5weoeMTGEkv4S5J5PqJFE3TUQXDGzEy8xefQll7xijUkbomBk/ZWCoCSHJ\nA7qTFowqI/QaqHJDBL1IrqqnpYyIhnL88N0bAPzGb8/hjDtIWt002yOaBhVyvsS0JGBbWOW9f/0e\n5slJlqwSjx8PUDUTdCYmMBg6aDV6Zu1u6HvRpEt0HT0CNRv7rn1CqhW2hQz7FTNBf4dzEy4MlTbV\nuonC0IBP78AZMCAMCnTMh3idNtxKCcthBl1PheoZH1bzOP2+lpNPq3QcDuYkG9ZnPGjqXcprcZam\nHOwfxclsFXG49Jg9TVR9FebRAJUyYtrqoNGaJGQpEHxhjrhOS3WrSvPjO9i8MfzGVQRJh3usg1Fr\nR+y3acomlONHSK4+ljNBNm/vMjKZsaVE3F/284N3fpri4OXzU6g3FOSlAGKjhuQ0IqtrpE5a5Dtx\nzF4XybxEUSrhliWy7SHppkjw/ZvY7Ar7oy6SzkRNB+GV8+iCI0RXhvnFX8VravOkmMW68BytoZZB\nY4fDBzUcue/znW//LfrnxgkF5rF3NGTbNbQuKwOLTL3oYcaqQhY9GHoGMm4//ksCYUcBpdZB4Qpj\nSo1Ow4ZUd6E2DanIDSwFFdZxD35tma2jJLP2AJpgE2tXhXJnD5O9ijFkJ7vbw+oOUlaPWJn3QjuH\nS5DIDOrYhWOMDT2f9RSkeolup4hVaeBe6OFcHvA3f/XThMLaoJ1nwlMwyKLTHNLdMLJ4TsPf/s3f\nMFM2YTBryFX9aAQfeZOEfTyCLlLg8OARBx+WSeZ3qZ6sIMpmSj94iIFxbEIR88oKjV6RQCFMeUrD\nyxc93Ln3GSf5Gulkl0q0gXQ3SCl+m5XXvsHuOqirOcYtXm5tF2nWFIjf5OH1bRYsJnzBMN9JbXJF\nmUS+/y4xbRDdzQyHh9tMSX6axyfceXKEXuWE5CalTzR4XzxNKtNhwjHOza1D/LMubNkmD+63OGfV\nsrG5zVzPhqZaJhnysaifxvHiCn6djiVpnHq3x4ed+zzbn6T9nU/gWYnrD356NuhvnnqDpK6MIGmQ\n4m0OHxfRFotk1rR0PH7kCS8ejYqhwUxn+4CF179Iu5TDovYieQQ0lijVXplcJ85BLk+306SmUpA1\nIoa2if6kD5/OQ/kkQ1VfYjkQJb9fJSXs89XV51BNjSMfNMhYfWh7eXaqWQTJjq4ro8s7kaURc2MT\nHMVuUu5aGF+Y4SDVQ2hUMWh1hP2rxMZshGZn6H18H3nCTeggi2wwIUsB9IJCdymEaySwL2RZnNSS\nbhloSQIRYQa9x4VKOaBl0OAYiRj7Zrw2I61jOwdaEWZVTO3l6TRqbGxt8Z/+/i8+9uXvvTvv/2vR\ninpWLr5OMzAZWAAAIABJREFU9ajIwQc/QjNfpOeahGqEUf6Efv+QUr1KM5lFbPeYaU0g9tVEtXsU\nHuwzNNYJcBp0+5Rad2j+q79F14GW+jGeXp0TS41WpoCQrFLatzNtHuNH376DYcZMuiZT2o+RrD/E\nbOyie8WJorORFNIsndLiqmmxBqfoNyUsUhZ1yEg4rCKaTZLsu7n1g4+5/MtfZaWmx9pwMdTJTDp9\nNJIGxqwKGpPIqFghLg+5+Et+9sRNLH0jpoaPCytfIXP/U5ShAMUYJ+ER5kcussVDhJAW/eETAkMN\n/obCevkGi1MuLns+jxmgFOB4VmCi58bU09CpnVB3apCyk9SaaiyjIvtyi6Y1j18u0Rg5yWqKaEx5\nNHMmbmSuUf4fbkE9z6r3JSLOaS5sd2neGjDoqxgerBMZ7WKWfJh/bCGYUSE0TJyVxxndrGNZOEtk\n+XWKw20i4Tn8U34umyN88v0TTi+Yab77GI99DuP9W0Sqh9h30izIMqMnuywZ+hjW61w6c4lgTcF9\n3o/abaVfVyF9VCWsePnyf/Lv0/nJ/8xSQEO4t0tequANGvle4vd57dtf58yX3uLgw8dsfrrOnD7K\nJXWTkODF2lQjloZMa+w0sk6Gh1l0ne5TbJpOHWstS2tGxCDJlNtD7G9UIXwf10IaxTeg6SlgZ4Lm\neBnr2AnjyghDw4cxVMEu6BlIMUJqFX2vg36oSs1zH2PQx+TZDoZwha5GJHA2y0l/A/vsCdlwnClx\nA9dYAJ2YxyU1CSxWSUWOmJr3QKBPsd1AteDGrfbhUU7QDqt47AsMI00EnxchriX/qIs/aWXyGwts\nb3fRpY9wnBJpuyxIBi1mlR67Yuel5QW8ngE7vff5ja/PUTedEDKN6EfHaTg7ZFJm/KYTVG49bvMe\n+kED88t5tOdK6CQBba+K9fKH1HQ/twU4ZSY2k2FMKSB4gK04luAMnUiUD/7pdb72u7+HWynyTx6u\ncWAdoX7jRbySRPa+FnG0SunZrxJ8+QLDtzyMS35sozr6opmE5kOcTRNaRx3RqmfjsESlpcahNTDZ\nreBRVGAvkHU4sI6fwh9eof52noamR+QffoMHn/mJre8SHXrZ2xdIVdwcN8pEWKUtT7Ln8pOMGWis\nnKY3MUlx45ATOcJAN0axC8Zqg4JKoLB3gnriZX7ybo4H/yzP755a4NSXAzQyv0peo2b9+qek1hSu\nvf0ZP9xoMZpZJPzia4S0AQI36vza1y7jfs5D3p2kJOw/xdY/P89mKI1FtU2yOuJ4bxuHInJWt49n\nakREqZO/+QGBrkhvOMQueVj021m0zqBvNBjvdSGeR67cZ/32LTZLnxLc+9+wZG9wlPtrtI93OB62\nWA6oWAgHmfjiBv8ne28W5Nh1n3n+AFzg3ot935FIIPfMqszaV5JFipsWSqJEilLLS6tt91h2t2WN\n3W7bMe5uhWcUHqvbLY+iZ6btsOy2bI09GlmiqIU096oiWftelfsKJPYduAAu9nlgxMyj+2EmQu7g\n7/k83DgRJ+K75/vO/3vm12SOfizG9NHTPBF007WqkN0hs/X3+LMbNG9fp3sihG1fpVt7m0h8Hf79\nD0kNVFJ7A+RcCtt+AEO5RrWrYHmQ4czEHkIzxc7NH1B6dwfLygCb0ieYcbFxWyJxt42Qc5DJZojN\nxZgx6hFqDXbOOXD5NQwnL+DoSgy7bob6ATPx47inw0wJIwq1IcNUnuuv7/0/+/acdY7O94tYfQ/j\nEs7x6ReeYOHzv8yzP/M5Nq5cQ9/3ErEs0Ni7xfw9E89OHSL98gWOPPsJnvj684x/8gsYPHcJPmFE\n/0SUsttDpBAn1JzF/I4VoyWFLuQh2w7zF3/wPXZ6txClIYa7m0z+p4dxPPt7VPZleq/e5POWX6Dw\nxgWOnLUh1VM89dRv8+TnI2yoIpZ5ESnRIGczclvqcdgwRd0xzzNHnmeYCTPMT/CRxz6DbXGcaWGJ\n458PEprsolHuYAuIHPhFD45CnfmglZ/5gp/M9SZn/R78Wj2mhWfxV9dwPVhm8/s/pPAXV1hLbxK2\nTfPr3keZmj1D+XM/i6Xy/9pSO50Ug7eLTLUPcgcFrVhjFD6JFGlj9qtYbtcwu1Rq6RxW25BsIYOh\nXUcShvRtMrXsNby+BcQHdQ5MOIhPPYJbZyQyNDA40MXfksDYRQqGcbtEVi/uYfQ4WTJr+eN3v4Rl\nFOX791+l3b5Npu5hoh7HoB2ncESm0m+TimXpdIa8/pcXcJzqIZkFbBNOji6Zif38JM30bTB0aL+7\ngfX4ArZhgq7LjGCu0k7cwmBscKggYjisJSgfolsd0nM0mB8eJenaJbpnRLafZVw+RslrYCtRoaGU\n6B3tE1ts0LxSo3k2Ts6to63812WiNO9PIfjpRaPR/HR/4Ad8wAd8wAd8wAf8N8doNNL8Q2t+6m+i\nPuADPuADPuADPuADfhr5/2Ri+f+fBHwhfvuzv0NvWqHoyyGtVZgyHaJiL2O4IbC8MIa+10JWSyjK\nMhoJosYg6ysK7seOMWZrs361hTd1h9HhCEpG4f5mhY+cOMbFvU08oheHrc7IEmG4p2VMTJI1QLe8\ngHzsPr3EiLuGIQFRImhUGbxpRxCMNA/3sLCBbnQa26jJWuk++olp1lbfYjzXwaw/in3egcPUpKDG\nEcN69hMdtNUfcyTyHC9eWWZ2bkSSDK1un4PDI/Sjde5c2uRRwcy7rSE+6ylaJ5JYsxbKHTtnTDpu\nX72MNaQhVRM5FT1MzgfFVI7JoUCrZOBf/ccvA/D7v/A8lUemMV0LsTQxjvaxBMt/v0tmpOK46UZd\nXOfdb+zzC1/4JL7nZkm+9U22ak8RH1/mvmmE7ScNltuw+Akje/9lDc+vT+MqDLi6O2LJbaOx3kLx\nxbGFShhuNKg5FgmcGbD8N2+yuPQk1jPn+f5f/BWPB36NrGJnXNdk01+jWbcQtbZI3TuE+8kqHdJM\nda2spwe41Vlqth3klp/U1nnOffoJ3krc4WFxHIxVhNjjvPhnf8ZHTrrZqozot4+SKayzMJ1lqD7J\nmv0aLiVGp+vkRGxAZXqN7pUZVgvXCNTqCPOH2FBuEbjvQvWniRxZ5LX/soHVVuOl7/wdAL/0/B/g\nekwmbA0jFJq8t55kbKlCOz9Pudelcuc6/ofGeejTT/A/P3eGz3/4k3isHraTblaTPaSPBtBrvRz1\nGcm+12Lou0/rxhaacwtUt2P0uI8vM4/kGxCcSPDeapfqtW9y9pc/hbA1w9KSwDvrDTTpApb1K9wZ\nv4PnxK8yt6VHES2op7wIl29RrqpkXTUmh+OYpr0MaBDY8VB8kCd1ok1r7W0eiT7L6CMxvvb8n/OL\nv3EOTVslqV2mJJ3CvJcnNLTSyzlxP/EAY3ue/F6KEkFKmnWG6SBduUFPv8FE8zSSLk+qXqCl2+Lp\nX/k4V/7gDpZQlP/xf/9DAJ796v9A8i+/g7Gzw5f+j9/l7v+UYu6fnaDflNEIUV77w//MxL88givX\nRAlVufbaOkfmXeTMcyyNGRn1bnN7sIP5vQwx4zkSBwwIkXP8yb/+U377C34Cg0+zOasj8f2bjDn0\naBUbbyuvc+jRRYzLRgIRHW8t73DuxCl25Cr9b36Hr79xnV/5629QXB2ytKzDwn3WRYWBeI6t0m1m\nZxewp0N868Itzi0JvKGucOLcDDPiU8TPRrnzy/+Gy4a3+fyzX+ad976Gefcc7biLJz70GNVIBu0B\nmczFFPv393n0iTDGdJeXB68S0zyMP5JhZeU4Sq9ILP0eQ6+DwV6L2c88RXK7x7/9l18C4L/7pX/H\n8UUZ0bHHlb99D++z57ANnVz6yT7lCyM++fufpTbMUDAfZOd7K0zGdGinezQGbxFSH+e9zBpW4zT0\ntnjm8VOUvv37GI96GT/zMK/ctlA7b8csXcfjMVCJZzian+Zbb/yQ6Q9NU22YOXHCxLWf3MSz+CHU\nap3+9CTiZp1OSMXpjaK5+h4PSlPEGzbCvh+x9fXreP71l1CfyDPmf4GVa+eJF2tIwzJrr+bY3mgQ\nnTvEwOPjyv0VZk/YiS75ydzqI8YGYHPhqXgwFTaY1RspvPTv+Y6iMvuZX2ZaTGEfdNmNu1mffArL\n8t8yrhlDM57EW/0ImW+8zu/c/t8A+OqffBkRLwNPhjs3R/RTJRYOH2R0ZYXBC8eJ71bo3h+guDoM\nPHD/7TWMwU9y5+43eP6Xfp37f/8KemcMk+JB1/oR0piRe1YHHzryPO9dvIfT5MV3UkPtxbuEZx2Y\nGn52t27hnlhka2Md45MOlPUMzseihN5x8a2/e4Unfvvj5A1FGneuc/DY5yjrU3S+eYtjjx5nX82i\nJcNIW6NVmyZdFTlqtZM61CPzXpeRqifi01D2bvF0+DNcvHaB737zb/mZz52lVvFQCGmYu7hGLvYQ\noadnKKZeItIMQcqIfbFHTt+mkvQScW1xK6elHRbx5XXEAh72bwr80Td/BYCf/b1/xxH7gHt3WuhE\nCdushUL1TSJ+E6l9LebWGEnzPZ5Up7izvc/CsXPo6g/Q27x0cJD0WWlv7uE79BTDgpbVrQSbr7zE\ngS98AsOennb7dRL6KWJREw39KtO5Du1JF9//zgO0+VmmZk24jx6nuHYbyebg2IzCYP0SudkjjNDj\nK49RpkrnvW+he+YFDJl1+q/q0D0JcV2blnWCxp3XqNY1nD70CZY3RObPDFhZvYzmrX2aj2uJx6eQ\na0N2uwKVzSsEgx9nu76KtlviySMn2LyRRO7k2crq8cWnqdUd2PW38TmNdPUGmD/Gyt98mxfvrvJf\nw099sPwPv/YHXwkeOYsYVAhLjxIaKKy0+viGEmq3jkHTp6QVCEtOxmwaZN0Yo10wBe241uqseLoE\njFPYl5ZI7msxSj7mnp5AN0xgQsE5ClIoDyloc3Q7c+iWFHqlOv0xAUmnkpHG8WScNC09TIkhblOA\nkLNESWdHubvKckdG7ugQ7VYyej+Nbp7xsXO4NE3SAz/rnSqiWkPZ3cNQ1LP1kyqOky3Gm2FWMipu\ns42Jssi+asAqz2A6OIVm34fVLhBog95tQbi7T0EoY5PDWF0ujL06g6CFvZGB/u4tomU9VzLvEViy\n8eqP3g/6Lnw5TjzfRXGVkFxWzBoPqXUj9rIWZkS0qExm73Hwi0us3HhAumVBG+ujSfioqmYmvTHW\n82Usbifd0/MsZWGvqHBA46Y4SuN3ulBiM5hXLlHVniQuC7idXu5dfZdxg4pdl+L5X/pVBsMZdusK\nlbiE1LZz6LAZo6pFaJvI6tp42kG2t2Vs7iHBcT0Y2mz1S5isPlo3U1QTFZRGFLNSxdCXkW0S15fv\n07mbxz91iBOHAjj7eoSQwrBcw9eukfGVkGMncGUecH93jUAnxLbFwUTAR+emDyUO+t4Iqz2CmjTi\nnz7E1YsvAfDYMwv0vS5KShGDUaVgrmDYspNxC7hzKhaPlxOH47xz/jKn3AIRxUcxYGGtITAdbFK7\nW6Jev0qk52W0sEvIvIhfb8PdcNOUdhm0VcIGgd5Uit6RaSxLLU6Lh5DVg1BcoVa2sbYZYPLMCQxf\nfIzBFStubZRGt0Ere5Wm3EETsTEaDzNjMdFa91ErG7BumMi78xQ1DRJXXuXwuXlGIxeZkcDCoaep\nvnMPEyY84wFSlR3cxQhGRUM2u01AcDIcCFyu15iY8qJVtuhP9onPyfiqNWSdno1eEWdswIRmifSW\ngWyxxu5hI2uvvh/0/cJj/xTzoRAB51Gqahq3OcBOPcvdoYSxJGGYXkXZ1mEMOmgWciyeeQqrpKGX\n3yMbnWF44wGBopa+5UnW6yNCIQvDyxKVoUAyacIUHdHsOzln9JEcFBDDIt6Qhwf37iOrQQKuOJZT\nInJGoqGUqVYNnJqWIPwcw7KNrruIWztiv1DF8ryDsMbC3IkhwTNaHp5w4Jwx8cJnjxO0jnN76xpW\nyUtf26Ct9fP04zF8ggWL5OToE13eW2khmfQU1pbpGQ9gmmzgubWG5+EFKFqpabyYdnfRO0/Tqu8z\naneYEqdQxhdZLVTwHg/w+p+/P5v4hV/8PI2LazQtMVyHZtA9qLPlchNdNHFuRkM9KyC6tyldvIf/\nlJ68L4dZWead+hD0q9iGcfrbr/Gdb77Mh5/5KKlKDWOlwHD6DLVrAWwmAzFnhe1Om6Dixjqs4Jmd\nw1OzM7cgs3axwcljn+K9nat0u3bcESehxCX2ak3m7FW04SOMfBtoFQ97Sptzn/155N47pP5yi0v3\nUngNYc6efoTdPQ3uYJTRqEIhZqJjvc7io7PYxhU01j72WI7WZoz7e28zY+hTyP8EYzyD+NzHsX76\nAD2Dnki3gOHkcV598T7HQiHalgHdBz10aQ3X71zgyGee4Xs/er8771O/+Hlu3UwgKFYO+FWM3hH2\nhJ/w01q2L4xoG6x4x6ZpdyWaWwV8US9/fWWD5/7JU9xKVTh68BSzpLGGDfRCTewGH/d29fz9D+7y\noXMxTNIeTWECxaXFmBCpmvtkpCSv3b7OkWOnSFcyPHXcj+3tLiv5FGfOnKWx2WZcG2MxfJBapkU3\nOaJVt6CZcTEW7jASZZSXV+nkB7jsLfbdY+gHLYwOCWvfxv76Ouvv7eCvj3AdDDP0j5DiPk58/lNE\ny1fI1vr0JTejXIOnf/5ZVpvrJIUSwbKPbVuGaGuA9+yjjJoF6u/mOXkwxIXVV3hI9vLi5fcrcw5U\nUqQjDaaMp+CgDrM+zGSjxfZNP7NPnCRTqhJbTaMXghz66MP0i1toolE6koxmU89SXGbXZ6d35w5a\nVxCeXMc540UvmTn1eS/iI30C3gGLMTv28UkMsw102gFTDj3z43NoDmlxhH08/cgpsr0i8XNziA/d\npnOjRl87y93dKge8ErETMJgGQ6PBXu8Cc2dOsSb2sfQCWPV2ajMSp5yH2LEZCNZFCt48xoV5giGB\nG5ksB/yfQb+7SfjgCbyffIxSxIS/9wBjQWI0AiH+MBGLg8GcjE5vpOWawzUvUm7bcSl1JK+Gi/fW\n+a3f+p1/MFj+Uy+ivvbVr37lhceP0yiL0MtSSqYYKQKSYCMTr9IStGjujHCLBYptPa52n7bJSlHT\nQDaMI9f90LlGbaDFoXuAObePptrh6NPTdEsCe/UBxoVJGsvbeL1mNHUbSkek17cgCkEwClxb3eZJ\nIYgxFma3dgtndJohaXYlkdlam8pCnIEaQ2fPEemMcAz6yFNW1E6W4laT6mYK32eeRdy9zuTZJd5Z\nHeH7qAtR9eIyqeiUAc2gSi6xi0dwYmk2GcRa1FJOhkGR6mCTWdci9+/uEpox0V7Xc6laJ1yp0XWZ\nsZ3yEpuPYqm6+MFPfgLAP138ObQ2DUrSTr8kMtpaZfKshlquitPSRLUMqAknaes76A5PMVivovE6\nMZGn0Af3qIRNraE6ZhGlIvUHDdwnvVjbaWqVKKOSFXO3g9M1RrlUR69ts55b4fHQUUzzCnfLTnhQ\nIq906LYrxE12JuUpDGUTldQqOsWKY7yCf7dKPx7BnJIxaXZI3dxkUTyMaaCjMmlnLCLiGRZp+kKM\nwjbqpWXCHRvB+NOQf51m3UZFn6F0s0gh4EfstzDGgwTUPKVMB02jiN+nIWCQKHe3iU36UO6UKIzr\n0d1PEv6Ii35fz6VXfwRA0OUlotQxde10rA6WujZUh4NR/haHelZ6Gpn0gyRBbR3X3Dg1TQ+j5KFh\na+IbDxH80GnmGzpqAYlgr081UaJGHuvIRMBcwOQCi9tEq2NjPLeHJ2uindpnvQy5uMD0SOBjf/wv\nyL6QZI8kPsHMQMzQzafQP/0QrpQJy2aF+r4Rk3uJhvkqPdsMpkafcCdPKVfBeCiIsxVjzaigFSbw\nhFvs3czT8o0o2iS86cPYJyWSyIzbLKT6Rko7OSL+g0jDElqTBV17iU43hWp4iOVsggWngF8+TMpX\nxjXoE/zYYbyaKm+++A4Az3/xZ2hn8zhTNzBEzyKVmuzFp5hTa5Tvq2hsZk6M+Wk1SuxU4zg0Glby\nO9htc1gbHZLNEuJsH3/DQisQQOfTM2V2Uh10iHdcxLxainIVtQzSQM+dXBlBVpjKBxlZ2mRibex5\nCWo30DvM6GQvatmFt7+LtWtGCSYZ1wosZ3cJ+xsYGj7U7IDKtopZvISSUyhvr7K2M8Afa1BZ61Gw\nNlgQh5SKVYaqH+9klc4tC0PjMm7BhjEyRTNXodEp44zp6EgjEjd2cDlVMloJ36xMp5RC55YRmmXk\n6j66VpzgqM1LL71/Tl947FfYWa+in2lycF5EydkodepYwiUiwyiOYBXMCt0pDZJ/nKVSneZHzhBo\nSYR3e8ycjCG67CycPYVem2TUtqMVLITMdbZmLEzKdt7crGO0VzB5J2lYOsRbfoKuSa5ZhkzMTrGW\nuIF5Q0suJnOwLeM8EMDbsjB21slo2ECnlQjQoO4Nsp7t0Yh40Ed9OGoqxY6BGzdf4a++/jIW+z6t\n2TCdahazZ5UHg28TNI4xPzCgLc1x6fbf8vBUhPK4gD/yMA2nj0tv7nLp7Ry+ohPLlIVda4LKi/ew\nHD6Bx6JgzfWQXBHEjkwJJ+fffl98ug4dZVxrZ7XwFo7+GaZkH01NldR2lzPPH0WfugGNfRI5H3qn\nj2y8xeHIBILGzMcem2aUf5uSKYrktXP28UfRCgGiAw26h8NUk3XyG0Vs5SZR2wDXgSZmupyYNBOP\nPsxe7gar95rorHasEzbmTFEuZO5Qu/gS3jMywSNL3Lj1Kj2zwuzMBLvNBN6Mn0K7g39hDHn2KEnZ\nS/rVVbQVM+6JPhqhhKMq4XoshJLYJ9kzEfqYE+NbJVrLKxgnBmjVMdrRDs7hkOXCK1iqNjrX16kd\ns2Ev2SnIAdI3U6hlByN/hr7Fw1LkEdJvrPPW9vs9l8997suMH5ohoWjwJXREghJDjwcxFCJ1K4Nr\nxshGyofG0me95OF+tUGkP0lp7z6izcjNhpUldYNhs8xwYEFzc5uAo8BRk4v89lX8qRokPWyvv8xk\nPoajXAHNPsfCH0WRRUpXz+OK6ChcXGfm0SbunU3ca0dJGBLMp4xMuKM0ajl08wFyd7pMaUdcEnrM\nRRxU97sIxiV2qyVmpQwNOcpl5SrJ0DTilkxhIkJ5FMbijKLrl/m/vreDqnUiTyyS/O4a9Vk/OoNE\nU17C5DZQ0I+TySXoIpE3jLNt8jJmKTM0yexZGuzdTPGlX/+HX+f91Iuob/yn//Urjz7yDGVNlViz\njmhXqJZcqJSR6g0G2kk64RStrh3ZVEDomFGNCr2kl3F5h31HBz1D5LKLrtFMQydw/q03Ge2HGLby\ndPR6FsZsXH6nwKxVpZtPUbB16W6r1DZu4HlEwGxRqPuHJO/06BkkhtV13vnOBtMOK5pjAaw7Im1L\nBaGXYCDVGDYPUUq46JVN+MNgjh5HPZ/DPeVHqzNi6uVZSajI6avox1ysVyVUo5+Zmpe+cIdCzUx0\n2KZj0lPK6phwachYWshqA42Sw334cXQdAU9YRyUNDYOXnrZM9u593r3yfhXH8Z9/guF+F2dRZbVa\nZihpaK0PcJw4QLtX5ZU/+TG2k+dYTk1z+3uruBodJoJO0uUpRNM2xqKWwIGH3m+IFxI0N/uMLF3s\nZScFgxPnWA+XTsDcbxAPRvj21e/y0ePz7Fu6bL3dZs4wwZbGTScwh7XSpOi0Ykl12NI1cOzs8K1v\nfZsDj8WpOyYwF7UMfTbU3jZW00lqJg1df4LmhsggW+XeZhONs8mspo2S1kHJiNspcVvbINJpkB46\nmBjFcFmcWMQghXSL058Zx5FqY33UhZrZoSraWOy5SadWqGm9RJr30c5H8LUEHP1tXn71CgBf/vov\noehnccpZzJsGWvpbCNvnGbdOkLCO0JhNWBqbWMxaRiYdntCIreYQtR1irNOme08hhxcl0cCq5mj1\nRgQsItRr6AQv6vaQm90slmSX/G4bV2iO7rYBoiPGR17e7Q24FXsR2VylUOjgMuroZeuMrCLtuy7G\n5CH3bvXRzJiwuoyk74LenKKZt6FEG/gsIdJVK1qrCc+gRDedo9+3YmunqRSC9BtRWtEsVjGFVmOj\n0WxTbnWQZzXoClYyhi6aRJ7uoINsnqVltSAbbExFnfT8NXrnWxR28mTuVbBJh3njre8DEH34Z/EO\n0hQGOoIGN9WgH2MzxG2xhE1KEba0GKR1bLdqBMayFHuTNB4sk7PEcBhTdGs26lUvXaFHXtvEbjvB\n1vZltt7aQ3fKRFky4894qDsbNE1bZJp6JjM+bunXCWh8rN9bRdV5qR4K0t9pkek5sdq1mEoSPW8e\nW3eRjHWPoG+JnjygZ28QFjtkdUZyQy32gRZzUItRUVCaNsaG71tEO/I2sbE43cQuV6t2qup92p5F\nRtPbHIhPEtC8jn/gIZV3oKrLDGpHOTBzDEdghu0bOTQJE2N1Fz9+6bt4unEMZhFdqMIrP3j/xvih\nZ34Wv7aNdjlDXTeJLrCAc9BnrV1Hvr/BYEzD9fw+0mAaS6FDqmLHdbdAtpLCdfwM+kEL6/0BYxoL\nf/ana1jtCY78apSX//wesVCJUU6iOegQyDu5l34Zp9CHYoab2RX80aP84O9ewz8psBRbxBGpkc+a\ncRprbK1fZUtTRz7dwLLiZTuwSqgYpT3o4Wm26WsOMW0U0Qe0CDcVnE9PceDZhzDqrZwJKIxN6Tny\noTkqFSfdaBxRP8dT/yROaeDAIk4jdlNkUiNcrRGLgWnM4yKSkMDa9+D7Z4e5ciFFRO9l32DB75DR\nts3kTSJX3njfdv/Uz38UdXcVz6GnselNDKo3GIkSe14DNy4kmHYd4W49RNi7THLUIJLQsNPWoE0N\nyV4vIQbDFEYpBFuc22srNNMpmpUBYjdD98EIbVSDdaRjdaWOtt7EFImR2WjibOQRHTGCQS97y12E\nopW9kkpkxspAdtIX9ZTvgCFiwqdxkVQfsP8nr6BYnIzVdKwWAjjKLcatQ8YXbChUUUtGLAtGamsi\n9a5jJLteAAAgAElEQVQT90SbSmsNeSuMZ05AZ4ribsfIpjXcz72JVGpjOhZi0u5nP+ck5upCUYdg\n3qLjbeJt2RF7XbSZPRpdM+OzE7z4+vvi81MvfITOgw5+Ywe71Uyv2MKpSdGolRjWh5jCLgy9FMNx\nA0cMTezOKlptn5ZoJPnym8yN+2jl89RNftoYGWoGLI4clIUq3UsGlKGNwEBP5raDwVSEntIk3Qgg\n9RuMUm0mmjbc8jqZlBF5L0cjZWG1q8VuO4sai+KYt/Ngp0Rxt4i7OkLpznD5r5q0UwscEEeIgoIi\nyASafbo5K1lGTLutBDvbZO+2GehMTBjXyW84eOZMkOrUArLFRoAKEzM23N6DtFcLlOJ+opZdNvIO\n5HE7Y7kKWnMbaVjnujqgs6Ph9qU7/M7v/uY/fhH1x1/7+leWHg/xH37rG4QenUJpuuioJqa+GGHn\n4ipbiT0OHliim92jpjGQMmQZ3dESF/Qsz4Vp3qgguyKInjrd1SaewDha5xwa1w69UpVObRxZsGH0\n5hF3c3RUMxajm7rJQt8B5poZZ1tCrHfo6OzMzNqYPThOKzuiPmphtplJ3r1MLVklOG4hYAzS8wxJ\n5ltYxQS1ig0iAln7Gu6sgYJQQ7W2CZkd2I0xXBon9mER36aRVu8GO81FXBETRouJ5CiDVFYoB+MM\nljdID+vI5scx9Fq4M3lyhjK1ToNuv0us1EV/YIrXv/8KAB/+6DyRxgKyvUHslB2p68Nl11C/fInd\nywke+o/fRey1iQ/76K0qg1kNmlofXWBApNBlFBxw6/KI8KIF7d0OBVeDqeA8hmGbblOLM9BAzo1Y\nqQ1xRSQ8ohbVGKD/pkp0skqiK2Ip7WB1aOjLHuaNBvoWLek3t7iU2+CLvzpNtl3D7YRiQ4+vqyAW\n6+SGNe4kNxANVk70W+Q0er63/j3OPeKjUZtErIj0s2tsGu4z6zvCWlfFP9BSDmXYLWnwxVZp7Mqs\n755n81qY1//DXc594mn0o3so3pNs1gSarhKNPQvdkQNNP8Sw0uSNdy8AcCR2ml7pIvW8iYYdXFKA\nmtGHgobwQKaQkBHjBZpymW5niqJjgLrWYlIvc1/TQi3nmRyp1O09gl0DxrSCviOiGdlINTJoj09j\nWN3DZ/WjG9moLRlxDtoYuybsGiO7hhyqe5xuwUihEsFs71Lv6BGFITa7C025Riplwis1GSW8NHtb\nmOXTDDtN4v0Kb+azHHNo6bUctAd90LWJVOvoDDYKhjZDTYixhkDRaUWqd6m5DEy0zdS7ARy6+zjz\nJW43AkQW3WS2rlAqyRwiT/dejuvXNgl5jjB4KoJP1+Fqc53Vd68DcEwXJ2ovkLp4C33ISi6hxeF0\n4TgwRZg4pkCTW5oW7riAvudDtQax2QIsRfewH7YiT/ioaUQGGSeRkpbWrR1MvdMYwlVmWz60ZSu+\n8FXS+wr7VZlQsoIaqeOoTuGYFRiUKkw0clQsWkK7drB0CYyH6TSL7AtJipYRBq0dqaej6trFrPUj\na1Uqhm38xKkqVYqaIJ6kDe20l9HOMpgr9HY72A6eoREH57KbhCxjvHcZqS4yaFXY6Ibpl5uYbAHW\n3xZwhkQGDwokz9cIVdKIiwaGDpWDn/003a27bNVvsXD8s7z4f/4NAC1xRPzIIlq9g035CuXbq4y7\nNPStdpw2B03nDP5uhXK5hqh46PmrvLOxxWn/YTbf2aaPBatlgvXSbZY+NMNWLslXv/jHvPCrJ1mz\n7OCcj1EMD1i+s8ajpx6hf7OGx6ajMWMjlVaYnR0SNsS4lGryxS//HDsPvQa6DnsbVSYNWpQxP+u3\nLmLcGqP5qIXChcswP4tbGKJ9YshUNU/zpbvML04iuBUUqw1dKUhj9knUXQe75/u49rPYNyq0dl3k\nUxvIpR6J3iqdip+xRRt9mwZ/v8f+7jbmfRfO2UnyLS/f+9qfc9plxW+N0a1GKRmHXH3zbwF47vRR\ntvensAcKeNstEm4dJUlPJztgXDbgO22i9E4KJCcZfwFX24mhNuKYo0h7pofsbGLoDhEMQ0xrOtLG\nHlFvleLVIfrpBsed09TFETPHPOynDFTevU4v4mPhY4chkyS5vIvH56GaTWGxatHb2vSrevrXCvTm\nfdhGCqlWkUC9z9ShOaaKI7onTuHu38fgGbK5XUSom5B7XfYK93BrFxhMZnjU3MGs9uh5glSudjAF\nTQhtFbENdZeOsfUepYk445o+lrrMTrVDK5ghr3TR15s0LzT50KetmAwi3dAQ3VqGVF/PxUuvAfDY\n7GcwH9FTKA0pSXvoKx2KTTOdgIK+7GDMIjFK1miELKR23RgafoIHfKT0KYJH4zQVlazsp15rYRrf\nw5ussJwr4PBqqWhNOLw2tkYraJpGHM5N9Ek7g3KVvE1DsW1ko/gAweqn5jChChL5YgZHbIbd61vE\ndwfUDWlGDYUeBobqJM5amlNHB0yO9+iFVApCl2jDRj4cpOGxIBNBBvYqOrwTE5SbJRSDkVmlQ2Ig\nECvtslotsVHZQZvWUkiXsLmdDHayJHMOYr0kHWeFYdJDP7NFQuPlwJSN3LqVfOkWX/61L/3jF1G/\n/29+9yv/fOkZnv/NT5LrmCkJCfY3NulkLHhMB7HYy2hWKzQtc4z7KkwUBDTtPl2LmU5FoWsRwZLF\n7zHRKBoYDvq4T/RI3hxweSNP36Hib7XR9wzknWNMtTvcz/SZOhegVIVSr4ggeUitwZFzQyRNlbUf\nirgem8Tt0KNd7THzuBdhYKHmiSKXWyT6DQTbMoNamLjZgiBWseQn2GCNqOhEsg4RhhLpkJFhTYc6\nEaQe7qLpulHbEh21QMNVR874kHtNprwqhs6Q/foAm1ShTZZiyIptYCOGm3ptk/t9CfPAwDuvv39Y\nnp16CqWeY7Rgw+Se4nrpPmqmTbojYH1ylrvvnmem7SdR7qBRjPR6IyY8IxzTGpRUnpYhSvjwGNsX\nf0y+VSCm2jC1R+glB55QA/1Gi4rFj8mao5IYIZhj7NdqaI+qOBUteHQ4NXpeefX7/Oy//TgPVrf5\n1p9eRh/tYLX4eVCWmT1wmitv32d67iQbJi3t8BhuY4ao04jPakPtjhM4NEVYbZA6Y2B2foGSWsRg\nl7HphmglhXI5gH2oZTjh4HRngmuZJhqjRFi/QNvnIWzMk91q0F+cRklXkdUWgtRCU/MgDXVExVUG\nDpnXXj0PwNlTL7Cz3UEKCIhmF/r2iJZ+wFDyU6pqiIaSJCzTuFcK6JZc5Fb6ePVOMqIJpeziQF2P\nqu9grOvYN40oatyMdpbJ+/yMRQaEzx2mUJjGqeRw68JI1wo0rHEsAxPXbNsIrh6d7SpHz/qoFRIE\ntCMMJisdjYpnv4Fv30c4ViNjshLoJGiEwa1PI4U6JI0lzK4lNLtFrHoHSZcGzeVVMpINQ9uJVDXi\njWyTMrvRjEBr0GBJVBgFB+gyNYqNOp5+iHmPlq6niNIJE/J3UMsqevdBxo5qSEsSY/s6tkptTkUa\n/PjV96dv/+4f/XMulZ3UD3oZG87QJIWtU6G+UWRFLZMrNShna/R1Lmor+yTuvILDq0Ncr7JxaYPd\nTYlGY5Xm3TIaxUd/OohcrTGY7CGFs8hBGSmkpzvrZVpcw2R0YJwWKYsuxqe1/HDtL9ENH2NCb6F4\nYA27xkJa0uBxreOsHSeU1CLYl7F3+gzcQwZ6E3Sh122Sr1vRdozo2muY5o/Qa2Sh02GlWCC4+GHm\nz8Xp3ylzY1IhXPMQn/YjyC66YxNYOkPkYg+jAYLVDtVBn5yqEDJWSFvHePJDJxmqKjs7O/Q0FTSe\nhxl4srz13TcA+NzP/R4T/hEdxx6ByzeZ/PAC25UOL3/vr5k59Dg5wx6yTcdQP0W+XcJUz7Eg5ahE\n+thtBuz9LdRBit3XB1TMGR5/KE4s8hzn331ArLbEytY6os/PzPzDlLf8BCdPUhvLQtZJV2ziGepQ\n1nvIQp71n+kg5h6wk4/iCQZ5ULuFWafgzfXICk3GnHXm3TZkdUj0iI/I3haJCwUyKOifnMGQO0pl\nTWSl9jaZjX0aewkctmnW8y0qxV0ycRW7yY2+vkquYKEnD9G39ASaGVSrlknVREM0ceXb32PuoJED\nH7My7O/TeP0ddh0JgvEIb/zouwAc+8QZrPMN/AY3mmUTvYaBzdYW/skPM7bV5GaqiMGeQ8mrxB0K\nxoCOI349r+11mLLN08lVGTRdJOQ9khfXyV7eoKh48S066CYVBpNNbv34Ptv1DGP7IqWzDlxND+Vb\nqzhsfmzacdRMk/DSFOLWRbzeGUyyRNmkMgr5CEzF2Hk3i8dV4Z2XV/F8fBLz/g5Gh5G20qUaaFCS\nS8jdMaYPdamsGvHaWrRHGuz2KHvLBQzTfeptiVGxj+xpYG9lKMfcHHj4ILfeWEadXuDdH77EdOgM\nE14Bi3eS4kyVwk4EVymNfnqSjbyMat7m6tvv/+wcf3qCqhTFtXkLr+kQ5WgevXeOlfsKss1BancH\nKRIluuaifkhkViijlBs0dpwEtSZa6Tx+k8KwIdEZOakpYbqWNk0m6Rgr9IUucxt9NhUHwrwLfWlA\n251kP2VgdsJF/u46cjOAp2zEftCLYgliXm6wsnGexqkx2hfLxJyH0frNuIstrrSuMWH2onhz1G41\nqHsFnL40O3Ubiw49jdY7OG0KY4ZJhPoFTNMa/BtdRo0yZn+I9JjEhKlBe7OOM9xhNjTFTjpDLyhj\naG2guP0Euir9yTRGp4/A2i47Hh2HtUbeu/oa//1v/Kt//CLqj//sT76y+Okgyi0DGWMFm2xj0mdG\nYx3n7t4VupYlgmYnclkPbQnRYMXpDCBGJJYFCyOxj7MVoyOKyKYmhRUDjWwDi8nIfNTNhN3NvrBF\noeVBriQJzOk4+MmDmB1hZpfCCHc7CIYhoi+FclWHrlRDP2/j6ENxQlEdby2nSFxfRjLaEe9dwnLc\nhLGhYG5OwbAHPSN6jZaZIDS6ArLspNvTkbsNrlaP4WiAIZ3Gta9j5OrRc+qwWHz4Uw0sHge1YpuE\no8FYO0DZWYRtJ267HjGlo1zrUncaEDwWDthL9NYznL9xC4CHPnqamn8BQzZNs1jHV1NY9nTxh/2U\n9s20e6s42nXsXpV2ocbsgwq72WXWyjY0h72UbtRg1GZ9Oc3i0TkUrwWTu4RDqyc89RDZO0U299ZR\nBia6wQgVNcGhqBapa6KaklFHXfKeFkNNk43rsLW8w2Phg2gXIwRsQ6xWI5IgcsDVY+eOQtizjt+9\nRCEjM5J1aFQdOo2Ra6krNMMt4lo9alrDyGxCakUx5gSGej8FuY0wFAmVNZS817m5+Rpy1os9JjFd\nrzJ2wEBB1FMuthEkkba5SjAVoB9aQ/QPMOvL3Jbr3PnxbQCkiXM89sQxcqtJ0n0z420NOiGIwb5F\nORJE2uuT3HgL1TXDULXiNhpRI2aUrglx5AWXFoOxiwEwGSyYdHbKh4e0NGX6GTc3GueZnPWRe72D\nZjRk32AmP1hlr13B6plh68d7iBo/yxfzOA70aG6N8Eky/maCnqODxr6PVhPHHqlSEbR0J8us7JYx\n5mP0BxKSR8/GLS3eD4ep3xjSmzBRffAAk8mGx1Qgt+VA1QvoSm30gyIFqxt5Z4OQVSDiCNOK6sEu\noO0otAYhOpsjDDN6cst3cY1NUs8byfi3mQr6MNVT/ODN9/dt5vC/YFtjxNXQkm8ZcEecDARoFyRU\nSSFEhz5+5islHPoOPSHOwfEK+qCfZtuPEDiKdSBgikCpbcAoeBGNK/hzDfT7HarlGiXDFlMXr6PP\nNKmoKpaKDkmqowg7nDMHGM49zMZQS69uQpLtHIra2N3fY5RfI3GwQExxkyrlcM25mM4byDlUTHoT\nUUFGqQtI4XGGlQbdvELCHCSkHUMVr+HwaSlms3hdfho33kM4OA5CEqWpo7DeZkOzQ1SE9Z4Oi6uM\ny9nk5naVsTGVzOaAWkrDqCuSSWQR/UbsnRhvvPq+DXriq8/AzS30W1e4E7Cw8RMb84MxZuLHKSZL\nXH3zBxg6FYblIjZRotYF856POy+tcuikh3vpDWShh+XAYZyLTnzbHlxxK7NdiYK9Q/POMrLHy9b+\ndZTiiLeurRJyuvH1jZjrSYYFD4w7WNtqoytcQy/ZcetGlMsJwrNdUtoO8UfG8djseLsi985XuXv1\nHrq9LLjMNAd11JUUSwuzFPprNNbTOJUkuqkQo702lrILQ2OAKTBEqOR5++3znH3oeaYcbqxDJw4p\nRy3moZmroqoCneUOY0+dJRPNMchkOPhQnEY0gLlR5bX//L+wW20B8NzTp8g2ouSvX8D4dIjWao1q\ntsVRXYu7YoHDVivXVnLMHOgRHvmR5o6wv7yJO2Jg1Wshs79Pe10iPmaGiUWi02Oc1Vkw7Jjw29so\nuyJhV5gZV5yV1j6l6g75oQ/R3kcn9tFaG1xKb2KXvOQfN9LcT1DFgtIyU0q/g2m7TMdmpNPII384\nyoGGn/6RecSain7Kw04/R7ltxTYSyOT7ZKfs1CtRWr1dtnIPiDbaSKKB/eU+zoAbr9dHaXeE6NWS\nHOgYVAU0/TyR0Cy6VJqy2YC7vYtfOEiuv8pWV0bXbTH9iA7X2wI/uv2+fXwgPIvJEECQQ/THtzBl\nF1C3l+nP5+lluyTzVXyGPgNHnoqSxDpqUnQ6seh36YfjjNQuxaqeTsyDQ9NgfFhDb+7i7Gbw1GyE\nuuNs1hXcxycwqQZKPhWnamCyb0Z0y5hiAcbsIhtNDdt3qhwSNbTKdzk6dgavbZepThndE2N4htvo\ngEL6Fi6nHUMgijNVxDkKkdwxUE2uMumM0R740d9W8X6kz3bZgLc/jhTVs9lyIjTS1Js77Oa0+Jmm\nTQ5tVk9daGENgfOak6avjUUfprCSwlatU5waI7ppRNLWuHDnOr/xm/8N2Hl/9O++8hW/5EAKN1jw\nxTEg0lO1tKpNDkRlBkqVqgm8bj37vR5qq0hTZyWbHSKu7zJuNXG3miQc7bK/3MUdL2AetWh6BCKy\njfsMONp3oVhtmM1GiiOJ/fM57jxIsFYuk0508ZlqGKpBlCkrnliPotPA5o+b3L27B5LA8aNniC8E\nKFy+QK5rZ1eCOA4EfQVBCmKvlNhM3+D6e8uEotPkzTbG5TADQ5MBTtbtZQTZhDRMItRqmIsjtvt5\nZp8Zw5zrYN7tkB+aURweXDo9Jp+Wmi6PrmLEKyuYrU6G1Ra2yBw/efnHADx78jFMkRBFYoi9Nm80\n9/E5j5Our9M1JJnqqtTEcQLJDoGeSjXgxW43YvJMYemNmLEPKGkKSJEBI22a9vY8g9He/83dez9L\nlp/nfZ/TJ/Tp0zmn231v35wmz2xexA0gAAIgCcIMIiXZNIu2KZdNkyyzXC6BpuXAIi3Iomi5TIml\nopkMUhADFktiAzbMzuyEnTx3buxwO+d4uvucDv5h9E+Q/8K3vvXUp97nfZ+Hw5aMxTjmtGZnvC2y\nUp3RUdso9YeMm8s8fPyAi+cc1OZBVrwCzkufwpopsDzzUPJbGT8YYPPt0nU70LpVJkKTgiuAa6BR\naxaYzmYs1TSyC0lypRrrwTm6d87oxMai6GBCjs2XztA4eI9aYAP7WCBoPIKwC5MWX/vJb/HWb1wl\nlvIRZULFYcFy6KLvPSL37Qcsv/I6fuEJ2u5PMW2naRmLrIUivPnnT+tyfva/fBaPOUKYnGL1bbKa\nanM/KxGcV4k2vJQwscU7BJRVjGoB3dnDlVMZzspEz8vUejmKpw/pk6ZRbyNzB29uhbEUYr7rZCRO\nyN9U2Nn2UIzYoJOmvT8j7rKy5XGib0pcWYd+rMmCMcPjs1HCzmhYxO2cU7UqeKNFDioNOtkAWmGB\nhMWOMvJhl0Y4Wgbmmkk0PUdWWoycE+yfe4lJsIaZ7iH4HJwrC8zPqqiuIOLiGjuffoZp/4hCa8io\noiNO7dwvPUDy+QgIIxKqh9k0zKx3iFE7YlDawqsFeeMP3+KgmgHgx3/0VRxikYjRYBjV6WkFnJY6\nE4sHNS5QqdexBodMiyEmfpH1SyGOH3eoOz0sdxU68xtEC8uUnTqTTx6iRASswwUu/JMvUDrqEbrU\nIzA4w2G7TzUpU0kHkVJrhIZV2vVVzKwDrAIruSKdSAy32030bJT7f/aA5csi88M1bFs93NkgOUWm\nmqnizkfQZ0PsYQ9LYpOBZ0w87SBrtyNb7ZR795kvRIkW79Eoy2wLCa5l+vzwj3vIn86JT1VOLXdw\nui+xYrdhHVdRz18i+9dPkOMpFn0Kl7bjZPot9OMqfduQSEhEKrt5+/pfAfD6VoBi9wSLu0t99jku\nxC8jR8oMUFhX5hhmDLkf4JI/hdgT6R1s4ljq4HwlRalZ51IrQqZg44OojFj343Xfp1HyYHRGLG5H\nsR0U8X3OgT1t47OftXO7mKOTEenvztiq+ukKXQJShX4xzcxqJb6yTnShReqzz/M2d1k1V2lPbbz/\nPQunf2NDTIjEP7uNPXWJ0OUok10Xf/E//g7O6GvE9SaLTglhLcDkyI5rxYozVWbHc47qZMiiaSey\n+wWePPgBmV6PFRX6WhZVdjMp+5n4DTyqSv1TGv/nz/zffPlHtnjr7X2cjycEf83Lf/VPv8C/4i0A\nLm+9SDLopK0E8BzOyS83oeunMamh2cJU798gvpViPlrH0u+iyHvsKeewulr0/3bAfHkR2T9GfCxy\nZt1GW9xn0ovBtEPaBQtuF52kTvXoLos7EegtElB0TLVD+v4au5EItk0J2ddg2WHSmV/Cd79PVzZw\nGyIxi5Nc84jkooRzrqJGY4zNOuXRKTwZoXWrSGs7OJQcoZCIRT9m7jLYO8rw//7Ov+OtM3+My58g\nsDGgOTSh3CO8oyJWc4wHDao2F0veGvmPR+xeHiM0u5SkDczsiFNXHantpzzqYioq1Xsa1/aeOhQ/\n/Iu/QmIi0HTnMEoxirYOTt2FoXlZUpzElpZoOlr4XFZytgaSdIl5pEOn2qbRDrOmKJT1LpoJallF\n21mi2xthaU3w7vo5LT5hNJVQ+yO2ryjwqIZFHnBUtDJJxPHeO6VTtxDw+XGud2g2asxtEr3zS7Ru\nCgzEID57iMLRnEawhX20SKStI62EGSgyo1Ga6thNQvBTXXQxGj2mWKth923h6Y3oFvZQZY2It80s\nZFDsWLBO40S8Bs1MA++VAIcfvMeS5OIIEf1hBW/IzUhpMLDHcE9FMvY2c9XNnQ/f55d+9Vf+7kPU\nb/6v/+ybn3n9VRxLm/TSMrVsBueSF8dkjmpEEUc94hkLYiBIt52hO08SbxUZTe3YXjxLZ9agflpD\nDw+JXG8hemUm4iZrXZnsQGUqd8lXpvSNEs25l37FQ3BzxlS2ciU5xh0V6NrseOxFSk+mKF2FxgdT\nqskw54J+rKpCaZTlMGfnK7/6CwyyZWRvhe4sht0YQavFZDHGJx9P+dSXXoNigc6sQ9HfI9I0qXuH\nqIdBbKqbwlCgQQ17Q8MeW+Hmn18nGtForAZxTceYBwcM83VmbYi4ohgXe4TcC9ScKR6lH3FSLPH4\n5tOx7drPfwNXp8xpOcPwZEKj2UCyy0SGOpEtO0I5gMU/Q7JL5PaPkfJDhmaD7nTAkqiRHVdZu3SB\n+b6XUbLL0lynYZthOblKObBDYNbGd9JD8jo4vH+Af+cZLGaJ/jSIOhAIqUMOjSpypsggk2NlK4L0\nvT2ePS9TnY5YWeyxFzGodTqUc9fwK8/ScZi06z4u/MaXsO7/FaUPbjNddjC9LdEW2sT6K3Q6+9S7\nfYapS6yWBsijOqdrIrNchNpwhF4pYilkaYdaWMUBxWqL0vAUSyhOMLmKxbDhcHX4+P2P6Y1chL1u\nNOlveOM7BwBcip2jbHsOnytJ3F6gca+Hf7tC+kyZ4vGUcLVOXUtgn7c5LRXZCW9QnVUIGIsws7Am\nOHB6TQIJJ+VLMQKnFgi1MCSNVn+PeEGjbd4E9zLzQYb5sMelz02o1EXUFY3AkZOBYiHxuMy9ssxS\ndAtfuYe5oJDuPyAlu+lZo8z1KeKKxNxpoewtcbj/kEh8xonVitkV8NnsFB01PG0HntqEYLrPbHkH\n5aLJw+8c4liZM8sGqBlFXO4x2dEDhK6OprRgtMDqcwrZ/Trj9SSFOz3GKw6WjR6jQIyQU6RVbzN/\nbpFP3n5qS1388bO49QkPR3NWxgKDio11xeRxq0rooEvUuYV/aY48f4htYYX6m48Jvegm1HbwwDVn\nRYzTkbIMHAFe/snPYxpe5HIRUytxeO8uh79/k5F3DQsBHL4kB4eHXAysc3Ogs2jEaNh7LMZSDOx5\n7vxljqTYw7z5NnK6xcOyinBwgmEkMP1tivkc57xL+HcjqJMuj97IoavryO1H1NfcPHd5ROPhQ1a/\n+iUC17MczRtYtlIcjIesbjbIvm/QC+g4CwNisyRGrU9TaBKO7RJZWSFnHLAzXUZqGlQ9NiwBnQPR\njnscZBoIMYrIXPvu00iNZ1YusntW4jTyZZJmB2nBDTUP3f0q+sIm515q0DM2kM+MOT2VeOW5Du6e\ng1q+wxVbDMY+9HNutLYVs/dHxKRt0qbBTmhENQK9WQd//iLTJ48pWWTWzwYRtSLZv71FZXCKxeEl\ndiaCY2xQs9nIPdynVNtixDK1txP03jGoHYRZ3e4Se/48C9MhXXGD5lvv8s77I2bVPInXLrBhTClO\nExhuBcUPFzZX6PTcGA6JmTTC4s5iLKxC+SNWUufpTfK4VlT0xxeRTlu0F48QZ0M60UUKtjk/8+p5\nDC2F1p/x2GPB+d4y39v8t9y5Wwfgn3ztHKG+haHiINB/REi6QPSlHfRDE8k+YWpzYk952Zk3Sb3q\n4sH1IUeHNeZXZRa8I5ZTNjrU8Aoq129UmFhb6KtexqqLZcGDe0lhbukwS14ivLuJffQWTYuLWRGc\nwSRpVwNrdo44cZIe1/nGZz9P5UaR4HGflqwRsqaYOFLoZ3cR7+7zYaVG50mcXaHLw0kfm22Or+Zn\nva0AACAASURBVDgnOIRix4J5KnDljIjWk7j9ozdwRzYYqjcQBBfHf/ARte0YX3v1P+WD6x8TMDYJ\nzcZoRgCnvUzfuoh1a5lhZQ+l1GZ00sfwORBsPUaPBdzrIh+8+zTi4IWf2sDZ6iGoPfy+MMW77zB7\n9gxKacq0ew/D5WYySHJQa+Ipy0hBFa1Xw1ewY7XVsCfHGAE/A/kJLUFm4mwxby8ydsv09TqHvS7L\nzh36vQCVbo1ab4B1PqIXF3kBHzlzTLn7COe2xsZ8iHvuR75ynuZf32XkHSAvGyzH4MZ+DckdxtE8\nQPVNqSpOHKMp+aaKZvWyGmkg2y2cfPuExCUnZTNM0Cnz4d5DJhaJqDBH0peR1Cpzs4FsmZM7fYIz\n5qO470JajxGmTdsnU1JMXj97nnGmTiszwzLtcybu4W9uXOeX/9tf+rsPUf/iX/72N0MvfB4pXKU9\nW0JzpzlueOjs3UN1Wwn+1AXa2UPKyinh2JzzniX0aIhH/RGlOwUka41Bv8F4v0V0N07W4SKS7jP2\nHDKpenGvNuk03JxxOJj0YGa/jS+5TeGwgq0hM1Y1lMYJUsWL9ZkhJ8qMYdOLS2rSblrojRoEuxL5\nwJjDH9wjfXiC8SRA3DOhvNLFknUy6mssPJfg2o2/xepMMBieshTTeDjxYdcUIvEmx0OB8EaOhZJK\n7uwi3sdlTFGgNuzh6ojMvAosmrxy+TIPTnu44nHMTptctYJY1dh85jyJkIc3v/MfAPjCyxEc84sU\n799nZd2KsSuRHEXxaCIjrcfF7QiK6aWh7xH0XICLLkbjNJHAKuNimuOgjG3mxiOb2DQ76vIa1uMG\nw7iTnZaLqTuGpspI03toySQOY4AUXyTVs9DyF+g5xnSFLF1FIzW3ochjHJ4kUsOG9UKUnlljEjoh\nNLcydcQIS028gkHTH0E8vEt27yNCwmXCjiGLzRC6p0XF1yLwyQLleIfFyAtMChMKkyOSNS/DeR6r\nvsmJs42gqFwQVdLJNfRrPYIbMoFSBn1ioXRQYyJ6eC66Rt6XZrCfIdRW+O6H9wH4xn/+U0w8OeRF\nDetxHzXeotAI47AuEbXVaYlL6JkmrnmItSsh9o8qnBZOGMSnaNKQxlIcS79O+/UrhJYGjN6xUp+k\nWHE2GTVCnMwbRP0ujMljXFqUdBH6lRRji0A1Y9DzH9I3nBw+2CcYcqAJMUbCGNfMxXyq0FfPMBwW\nsC7IWAo1mv0D5okI9qrGQbXLwnSKt+vH4dOYNFWCF6e4DIn5Mza6dR/2gYi0NWbhTAzV7JL/N79H\nwQyi2HRCkQRjcR1bvMM77w8Zi01O37jN4naUgPWQk/IW44iA97hDCYVznzL56z98Ks5fP/MPsPR1\nxmEJwTEk1JniD9gR6pAdtPB4BujVBI6lIPN7XU6mMwIOH+2OjEduomp1jPYK/taQB1ffQhnMsSdC\nTKUIY1cGy1KA7XiEgcXCyMihiSo2v4bTn0faaxAKuWgOBSpX95EcPTzVKfrCAr0lDwFDRnJqNM+t\noMaCuMcdZq4R5ZqPzCODxGIPo9/DlGsclEGmTK6Vp/vGHvIPLTMpdllyx1BSCrOKg1rpBNW6TnqQ\nZnZBxLa4TvV6judf+xGuvfEOYnSBxnGa8jkvXluXeWdOYKYwmVzF2rGhrvl478/+AoAX/9EGZusi\nj7L3GU47XCDEWEqzuJRC6u1zryqxaZsj9RY5c8ZDK+vhfr7OlTU/p2YEI9rh3pMj3OtFJv4opabM\n8xfcDP1jOkMJl+SiLZgEHE2UsBXuC1xZdSFvfR3F2cXa7fFwYJLzreHbiTJIbqB8PoTiVFk2Naxr\nA5ZsE7Ymc/rNAh19QMTiphBrslp3UmppvPbD3+DtO/8e28KUsehCNbq8W75DoD9kJbHAMPeA7i0f\nWfsTNFsSf2NE9noJSXCAVmfgFejfvE7FnkQ6r5FQB+xlqiTKabRZCsW/iaILLO1u8OZ3n0L7f/0P\nf5YTv4xle0jJDLJ9Zsr0uohlbKdUaXDRHyRsMZmt2Kh9lKUg+ZBKJXYvrqKIDT7559/GGo8hbkms\nPBdjLSzjm9nJeUz0WgOTDN1mFGe9Tb/7iIXznyV37RDHdoKOxcXKMMDBsMj+kcl4OGLn4hXEkxzh\ntYtk2i6cS3bKk+s03r9DNBgj1q8SqmvseWq4pE2KfQteq8lcCeO0ebEGUnRMDbvdg/clN4dHx3Ay\nw9lT0J93oxgz6nqT4skUS/KI4MazKO0xaZuMaOkj6kGkiId5q47NPUKKR1mqGhgJHbtQ4AdvP73a\nfumzX2Xma3Hngx5xh4knEsM4GrFoHyJ6PwXiPpXKKWeHEvFzUdpOg1ZtjXE/zcC9wPBeDXM5jsWc\n4jg+xUmC5aiVWmRG5v0Czy8v0HZB0HKMN3kG03aIJp5juTpnz/4I0+gxCiTo5vzIzjk5wU7nTgvW\n+1hvOTB2JXqnPrTGE1ypS9gm0HElGLZu4ZBF5nY7DqcLW8iHfhcMv8qSL4Evp9BdUBifhhitFJj3\nDTIqDDpNHGvn8Ek1fEE/nnNRKqUDhgOJxV4HM+Kl3xLQ9if016qElp3Qj6EOXbxz/Q1++e/DJOq3\nfvN3vvnFL75Ao9XHFbZhaSUJ9o4QhQBjawepdYek5QJKq0+zMyCds9F1NJiUxnhCGo7RANXRRT0d\nkrwoYn0fripP0Fxxbo1D7H33GuP8CQs/v0b3oxwj/wy51yL5koemohNrz6kbAcbeE5p9H8OuHSUp\nM7dWkS0+wvEG5amIP+ShP8/xys/9Au/84Z+gLIxwNuJUilbW/AI+ocnUFkWd9ikc5fFvRxjMa8Sa\nY/oLLoS5gfehnbS7grWjIk+G1Evv4j2/g9QQqPtHdO42+CCzh5lpMFga4ndMMTpLGPERdeEh07LM\n+3/79Drvped/Gp81R7vrZrSTwFfSaJ52aDoiROUxzeMQc63Pjuag23XyN1ffIhI5x7Etw6mqsiFP\n6Q+LmCsGav4JoTMbdK5NefWrfmptO6PJKa49C+NZjPFSjWOnjHqnjNOt4TGq2FeCWD1J9GaIdX+c\n+qCFIgRJp6aMHhWRHDMm0jopYYvR7Y+prsR5ku0QGZ1nCZNJdsjc7HJsNOnWPISjJdz9KHuWDjOm\niH2Jiv8+K307h4oVZ9+kODvC1/IhjRLIWgVyY1TbHI0uVYedvf0s9jMzgosuAis7NIoC/cwcOTjl\n3f+4ePnVL/9DDq79OTsVnbpY41QbI7dUrO4up/kEcqRDMqAht13sDQdElx2c8frxdwM4FTtSuURH\nMPCHKqinA8rTPopFRp466PcahKMKY7eVgDAm318n7LrLOGJh6mgyM2b4fSaWVonZS0ns/QBHRxnO\nOFQsUomP6jW06Bxzy0F8qmBp+7E4FZRxF5kQLodJwNSwqRKNgsbSiyKlU4Pl1y8Tnjq4+84b3Dxo\nMI9k2C0MGExqnP2hH6FgNLG3Q1iIIh5VGc5b2PNtzNkiZ88tohoenBEXEXmKR0qTXZizGrPw8Cbc\n/OgpRL32U5+mMLOhPtpHDQ1ZlNepTXWaXQV96Gc90kad6eTMFo1cht0XNJzeEX1jiHEg07PFsJoy\njzIfEBUEFr9xBf3DT5iFh8jDPmbTSShoollnKDGRo1tDNA0sAzu7P/QZirUR5VCJiDvOk0YedXcZ\nFJVL0wgtu5vlxS3GDZng8JRqM4gmJCB5RK8wIBHzkNerVIJJhGARpxxDjAjEphrLZ9o0Dyt0aeFN\n2rDrGlNzwFBvsxtfxykUiAoWjkYVxvmPmDoUysen2D0KEUubhtfPoNjn+I8fg7iNqVkYexb4+K/+\nPwC+9tJX+ejJDNXZpfTYws7ODv1pH/mqjnzhEr76PUrVKjV7gylZDk6sxFYFPO0G3UUfwaMwev0x\nndAF1hdUisMc/+bn/2fcZz4Nxx/j3EqxkJlg37hMYJiDTBZBSBD5whb6kZOThIsdexJXYMYzlxLo\n1T1C7Q7cOqWkV5iP3ic0CNIN9ZjWo/gGPQx9iDPfozjucvX7d3ggnfCCuI7bu4NQn5CbNbisBTnZ\nHzP2dLix95ilT2+xbdrpDNpMivD6f/HjDIcpMs0yqlhiz2gTWruMZk1QPnmPM/qIT6xOTL8bLDAK\nhfGWA3zv3afvtv7pi3gUG7JFRe/nke5JHMcU6oUuvkEd9SULudachVSAVqbCBzcOWUu56d8oMKv3\nsH7+01xaSGIpOJmoEgl7j4dLHbrfO2E19Az9T1tZ6OiMlRiO9oSTWokrL7/K8EkB1ZqDbIXpSoDd\naJd22YXLpSHLe7hSGrUPTDz+HMrAQiI6RbHYqG3EiEk5Bp4E/lKf3l0Dc2lKYWIlVuuDITKe69SA\nfmnCJesUDRtGzCA/nhAZmbgX1lkQvEwSMrXjHJaSwlQeEFZtTGc6WqeIMlfozmS66jFycp3GpEa+\nccKjqxkAvn7mqxzZDPw+O7W8n4Bf4u6khN1QOAnMSXTrjEY2LCkv/uMxXX+QaL/O3OIgKg8JrKeY\nP25gdzqYTu1UOGEwv8Dg4SOGco/V7eeZ5CpYz0KvMENs22iMKtjOBskW5izLHhR3GKl7l4FPZSiP\nMQINbJkuHb+HF0hyuKjhH2SQe1EKQpozESvpfplx00XCGaSzIeGx9bl9u4TdJuCLJ5gVKrSFEc7Q\nCMvIAbMJniMdy/oOq9MBd56IJHcn+IsBSj0RsZFBDj9LY9Qh5exTCCjMi1asvQz9WAVztsLH177L\nL//qr/7dh6hv/eZvffPl9TUELIhznZHVxWBoMijr+GQPvdMQ6arOnlNnUPPjTLpp3L6LPXGGlXgV\nd2NEKZLgwk8/w243QSmo4luqIs0DpIQO6sYlvvClL5L7dprJokwsEGGcNugKYfyPdXoJg2l/Qi3u\nYLM+RxlHUMdlFGuc0uE+Lruf1KxO68EjJqEQ/ntHTNagm0zQKltIGk6aoptPSh/gkmJo/TJpSaJr\nRHFJVUziFDKn2OYd2l4bqjFg6PQgqh2aUwGro8mje2XSUgv7fEgnFuHBD454IRin2papt028sUNi\nj+ZEFIO/ePtp+OGFH7uC4kngDpYQLGEmdDCVMhFrh5wmEbTnMetObCzTtaSJzbxU17yodSdRp5/G\nyMuCOWftSors7+1Rz8jokp2D79znneMaL1w6R2YuoS6VKBlzQuMYXaGBzWsynFnxdofc3wuy3VfI\numzMDg6YhRVauoOxzc4gHEK1QP1eg/a6SqoxJZhTEZIBxOAe9q7E/NRJJWiSsjuJpXawqilygwxO\n1Y9tOEFvB7CdF/BMTqnZ4mh6lsSqjCpaCM1l5LkTf7CL6okyt21w7isLeB94kPsqj/eKLE8tWHx5\n9FGeqx/uAyC0EpxbTDJ0zFivTrlxq8ZOcB1D0wl2K5yWm7jGi9Q20rifFMC5i6/r5P1mmdJRiVnY\nTf5ojOw1UcY2Ji0LtXwV2ZRwaHVsymexbfqwFFrMt+uIw7PYuyvERBe9pkJoy4939zxHb2Wwaxqb\nKRF9oNOy2/nTf/4tXr28iijnyVQUHpQydHJpmvUwq4tWzMwKzepHJM6HWX81RMNp4/tvfpvurQLf\nO8pyZu05Sst9/DcauE2TR90AdrVKOO+m45WwzU/oOeKM2nZqSzOc1ia6ZYAn2mHaEjlZcNEre/Bq\ndrCamJkf8OGtEwAuf+UVAkacXK3E2bNnqDcVhjEYRLoMuyNwOBloY6a2PsnBC9wfTNCqfjatG1gm\nZYbaCOdgSnD3HDOXyd2rQ6SQDyHpp3k8RnOlKXQvIidF8nk/UacL4mW8sxi3+4cszdp4MzaOXU62\nvAKJroUFdczBwIFj2Kae6xM1T+nXa5gbbWR1RHAewW3rMu042R9WiDhh27pN07CxaugUZR9Hf/y3\nDF/Y5TS7gNizYL53gyMshI9NWpwwtPuYyD4G5pDc7Twb68sMByH8qyNcZhBvrY1Rl4hH2tzsZ1ka\nLZO6oPLGnz1dLH/2lecJJhdIrFzAPY/yRvk6odEpYxfYIx3Sj30MbVOSoWUq0wQB8UOW9DjGSEau\n9KgOy5SUEvbALg7RQbxn8Mpv/FPGJ3kmj+skPr3OvPiIqesEZkOu5rdIPzSJx+9x8uQTJnsRyrE+\nASXN6c3brKUr3HrzAM95jYjdIDU7j77UoP12j40X7fivrCFMwbMm4q458b6oYEwi6FsXaH7yJoGo\nnbhVx65uoNtNCuUauaM0z64/z/c+eUDsQgJdkribyzFLX8W1k+TgyMHS0g4Dj58d+SHZT6yoS048\nVQuS6KZ374id8ZiOnuGta0/17eJnvkG/1+Xhey3MaQ8jYjDzBNmrv8XqooravsLJfoVwrEbrVCEZ\n9HPktLM12kB7WcDQlym9/5jRSYFO5232rwXI/aBK+zkvJ8cHlK/WMTsj3IMZ3lSC6Z4V/B2qGQvJ\n5WtoMWinDcaCn94kwvsff8AovkHz9x8huTWOGvdxJlOUlB6u8RaziUG8MaZbhfiZOdKuC682Z7E9\nZ8/vxRG3UMo8wpyJ9Dwm4azInWQIb3+K7NC5W62wENuhs5ehs+rBncszjBzh1cMEkSiFNLSHZdpS\nnPjigP77GoGNIctPgpxzLfNn770LwMubKUIbywSbSygbJYZiH63QoxWJUuhn8I6j5D11hlVoDCDe\nz1HeXuLJ99+Es+vMxTldj45r7mdcTCOG1vE6TcLBOOWYl5PyTczVVUyrhOOgzN7BMe746+itEu5c\nl1F0TN0ZQlBFbO/ep+vxEpTqSC4Xu8MpJekBhuGiZNRQpDatWY3+yI/dFcHe6jNZU1mernF9/01i\n1jAW65zZph3D6NDWh9jNDRZlBcw6RkxlMJVJPz7F74phDam0Bh26HSsz4wF+2YbF5aLqtuAyfFhi\nHdIPRDxuEbmhcvvxdX7pv/t7YOf9b//Hr3/TlljGmthA7QhMhn3WZ0VYdCHb3XhsKtVmlfOuGMPM\nIf3yHos7axinLZyaSTOQ4qVPXeS4maNXTPPk5JSPH1spv/E+s5UpQmEB0TvHI2UohR2s63GOe0fo\nkRaDWYCYL4YkHhH0a3yyf4zPW8cb2GXy3m0WXDrjZh/FukPQ5kOqDcn7d5iIDcTTddZTbuohnfZI\nRJ2qhIQKvbmNrVCKPDqlkwMCEw/GjsD5Q5m+WyVpC5CquxjUFJzPJtggSfBSEHxOnP4AUdXK6//Z\np2jlBwQWNSapCq60hO7tk8+2uHbrqS31xed+lOZxF2/IS/80T2hqw6oaZDs+Qj4H/eMa65E4n1SL\nHPTqxHw+1KmBpDqRek7MpTS3WlU63SxxXxDJbqWndpjF/FTkMM10H8/6CF/bgattx5AN9JgH82CA\n2zujJviwWw0Krj7nQmEmiou9hwKp1TFiyUE+rhObCtTXPajTPI0HIWxLMqX+GCGj4U416SlugnqA\naSrMYfkGroBMUBkzf3iMLehCcxxzu+iAyQQlB1b/EsfjEu5umIoscnFHw9paRPlijG7pGpHYs9yr\n3yPQmZF3zJg5Gkj2VdK1IQ8+fjqJ+sf/08/R6TsRzSY2/zmkfha7NYR3xUurYyVk7RP1xBjlQEwo\nRJUh2loMIV9BpMkZaQWPRUfLBhmrULCrBMQo7qSPXjdC1lVB9PkpFgYI7x0hpgIEKzqGMsIXMJGP\nqmQejrHvLDCtFXEPo8R8MoenOb70M7/IrFQl8tJFPv2ffJnhv35IyhdhybrKaMfDemoZW2JKIz0l\n7+zgKedZlNysf+2neXJYoyV7OLs24rQ+IWS1E7e7qQ6dyNUha4EijYvnsOf36Y97zJcXWG2EiO+m\naFUSNP0WPB0f/UwZsTzkhdUtpMO7/Ic7RwB85tLP4RvcZ+q2cvVxmY3IGI9iQyw4aAYHKK0w9oGC\n1bXA8STHot1BQzQo+coEWMIxq9PRxjQOarRkAeuzY4TWBHU8R4j3MTMbGMlTzrW9ZGclxCDs+i6S\ntuUJfiLj2fTyWK9ypq8jeidkxj5m7RP05QnZ0ZhBcoirlaAX6mI5dDK1ybhsdRpCAC1gYU2RqUX9\n7L6oEiksk2500GMCy96vcfGrr6Hd+QHKsoAx2sFtB9WXwr3mw9UT0Ct9AkII9YKXUXZEx2nHI+QZ\nixGkYRTrqEapPCQ8CTFfO8azvMMbf/L0VP8zV36Sl3Y85P+8gGc2w1dpI8UuogUm5OYLBGSVuCxQ\nEryEnTWufvyE8dyDf2eRg36VqqtPfeyl2rjKwGniHAeZzz+hv3IBvy9H85YN+wa8mw2S1Wfoeg1f\n/ruc39Dw9XbpOLqkj/tENJmNmp//54NvkfrKzxMxg4h6EXV7BbHd5YP9qzx77hXeOyoTGpjUB07s\n2pDJgyFXXk9RNuO0BRXR4kVwHdHqnqBXFiiVi0CQmMuKEnGxpj5P890jOmEbe8ePOB920AmpNPRl\nNr13KZQktmI+JrkIy1sJmq0q2JycDGes2FP81ftPbdD1r55FkVRWV0KsLD2P4MhgdAaIN/3oHj85\njtlVLPQLfg4HU1ZWnTBzMPN4aNmbdGtjhHNeYs8nGEoC1ktT1l6P4mje4Q9+/4/48qfOs3dDptmR\n0K1pgikr3/lelkP3IV/9+Z/l4HYPuTvEK0/xREWWgz1GJjyppDlIpDkjXUCMDPBUZli3+sRlkeJ2\nCodU5aNeA+2Bwt6tCROHm5CnxSzmJh5/np11gTvZPGm7wadaa1S3TKROG7UfxWINMByOOddrslcY\n0rfJDDUr3aAfTju4XlxjNsuh7LXxPRcm366hLspo1Sp//tFTffv6v96gaXXTMzwMbHU6py0WE2Fs\n+Twjnw8RFVm+Qjw/wlW6irLowNObMD1/hkjtAYWmitXn5qD0MYfZMPrdHKalRm09ievGNc49t4Ne\n7jOuiDxuHuB/eZ1ZVKcK+FM9pKM5iz6VvncB3a8xSR8g2rfoBzrsj5qk4q/RVQrINoOKY5VYO4Wz\nfBOHsI1lw8BTc1F6cINm4BKq0cPsBQna0+R6bfruNhbqDJx+RmMdVfYybneJu8aouk7fEaRU9LM0\nsGK7uMm+kKFdthG3+slNs7RvpnFc2CIyaaDP7Fy7fZVf+ZW/BxEHv/sv/tU3f+KVr9D0aDjqVcbC\nGjE9RNhho3Nzj87WOr/3v/wp0plFoleWMGdTFHkHW9RDfNlJ0GqjcmuAos4YLi7SVhc4b21jcXoR\nxEXi2xVCWoLKRMQ/MplOpnQXZ4TSY5RpEq+3hahEeVCAzdRlWvk5NYdMKman3hI5MQxeevEyWauL\nlY0qpaGORXAzoINqVTAsbawrPWYnAdrlLvFFk0J0xsLdHpNlCV/ISaoiceApsL2gkj5xYGaypC6F\nmbckbmmP6Jw2CWsSG70JdYuDRyeHSP6zhBoLvPraSxwffsBQceD0qrz7/ZsAfOqZ80gTE1k38FsS\nTK0lGkYMl10iKY0wBz1OXUFiXQlRbnDiHSCbG7i9NlxyA6d0kXjvIS5ph6kWYmxr4nTsIEXmhCZR\nVIuHW8cnTH3bBMIwF3yMNBMzLdA3bchhG9rATrF8TGvUxRWfoNusnD33LJXO+4waZ1k7O+fxX2ZR\ngxssbvXJD6dYKlFCahF9cYKeV7AsDWg1pzhqIZxbXbIWP2PJAV4Vj2DD7BbZEl+m66syrA/xj5dp\nulus7IoY2wKu9SQfVg/J3f4QR30XQXAirrVZUOLUmmVm1j7Skosbf/k0bPOlZ17hwcPvENY3OJic\noksmxvYGxSd5Zp4Ze4MqoktDtKc4yP8Ab0Qhe+cmofkGN21t5pYTOD2hZddp+sJsum1kqjWs5CiP\nHcRsTZqftLAoIbKFNtvJAWFhiEd24/QF+RvjgBVBopkYopgBFKNCY2bBpUjEdJ17ZydIzRrjLz/C\nl+1z/8EMryPINPeEwWmbkHMRz0KJe60ZDmubXiOGeXqPdntK7EwKd7nBGbuHaraM1r9M2+wh+iTk\nZ1d48941ivkaqrhGwHRTHR/h7vax25wcNdJEWofoSpX9Up8jmwfRv8o7bz+tL/nKyms4kgbGpI7S\nFii5g1iODNo+AeHuDPWVIf3HBvZdBxaXhLXSwcIEa2iMpalxWx+TWjA4mLVRvTMk1yJPHtRZTSQY\nFG8wnbsJYmMWWUAd7TOzeckYVZwfScz9YA/tkj14yCiyhUuO8uxPrHL/rVM2nGFmYoNwxYVlp4iy\nIOHsRsidjplKYyzDKN7SlPpahEhVJXe/gljtUGg1CJTKzD0djFvfI9gd0J2k2HRluVvscbi8T0QP\nMXR2mPmndDICUUFlEndy/+YHJDxnKAwnnFqG/OCTv2TzJ19hdaPFuc8t8buFPyb3nRwAMUViOvYg\nJe10XXOk0Ij9D7/NzvZniSYEalKOaj7Pgzf+FKczzoXIKr1ejsZGAI8xYVB3s+CHkbbJltNLKRGm\n++AU4ajG9x+d0N15TPSqRHaUY2uhyygT4rnPrWFoSaq6k7ObHZKajcUXP4PY+ZhE+EX+5W/8Nmd/\n6Rdof9Tkkycn2MVlfuSnv0RGT9OcNljeTpD+y8fwrI35YIH5fgm572DlosT1T3IsSUUoROguuHFd\n8LJm3SMW0+h7tgg/zjA9H2bTfcqof56WWaRoG3BeGTM6L+Dcd6H7mlAY8J3jG5yd+SgsWFjRhnhn\nKt959+l/W305SlBf4K/feJNZvUutK+E4qcL2LsvTEuuTy0znDQ4cI7yd+wxkL4rsxNzqoo1thBMG\nS/Ekks9J9v37tPamrD3zdeI/8cMI3/qIwa7Ox//+XYRWD7fdj+DwEPPqbEycHMsOXv5ihNK1Np3V\nDu3CnEJtlaU1gflJhQ3nBuKFFva+i+tc52uvfZmxKTPsXacy8RK2aeQDCoOhg35eR3F0uPGDNEvN\nGbce3mPVvITff0J20OK8c53B/hG5uYtZ6IR2ukw4tMBMyaFIQfTsEm5DZ+zpMjQGuAJXSARipCkR\neNjBN13k8XjABx8/bWT4iR97lXhPY3nNwvGv/VtSS5tkGim65wR8gyDuxBKx/SZC5D28C8auIQAA\nIABJREFU6wKn7hLRyGc5+OAalqmPTOv/YqMfRNj0srsksHvZRbZoR8o9YeGclcNBhGr5hFVlkdB6\nishpDdNQiM8qdIoKynKIoe4i4M8y1lPYvQMGPZWFZoxmwcHOkouPW3OC8wmTkkxie8K+343TajIs\nhlAdVTqCH1dngBnwYCaKaMWz+Jsmg4Me5zpWcq054nMa1YmLlvuQyW0NzwtOJJuV2cMBpfGAJC66\nOYP11ZtQttL11kixSqN7SPtqj2pqxsMPP+bXfu3X/u5D1P/+z379m5e//CrG8T6TboOgKjELjHmU\n1sgc9Zh5dF788vNE1FWapQ7aqoBrWIdRg/JdB09aE2yizl6xSbghcmgccCG6SELwIUdaKMkF1IiV\n8ZMcZsSLtVNGsruZVfzMrBlaQwmkLiuuOmqji9HpMjDrXP2rLo5UlPNnvXx0vcqjxoCpZ4zxQYZN\nV4iJa45U6uAdagRbBm5fHO+Wi2LFgu3DLq6wn2hcZSW5iyfoQDsUwBSQRYW60qE/s9OT8iwpAdZP\nndTaNuxLIRacUexCgGztlMKgSad8ja7UZ9mjYjvy8t0bT/NAXvmZXYTBWSabDk7lMiYtImMbtX4J\nTRcR3U6a1TCyu4JroUepGmSpYsEcHfJJ0o+e3kNN2LHUBST3hHbeQXU5ShgrIbNKWXST3NKYPb6N\nY2Wbce8q3psqRW+DRclC3+qAZofGgsymauPWfp5nz12ml/+Q+70AS7M0e8YIracyG0scWdxs3Csx\nudLFae0hDZdp2k8QexqjgRXvvIhp2SS8P2ViwEhV8asjAosvsV+4izrQCHrm2FQng3fvoP9Qnm7V\n5Lf+hw/QH3bw7uzA4z2u/u73eOW/+QdUyyd4XQMcTROl2Ofda/8RPr/8BYRdE0fGj2vbRTmkYF/q\nYNbiROMLXHJ4aXUNNMscISiR2W9TVC4w0O6xKqUIplK0ZnZ0VSbUdRDfgXInQMAxwj7tMjiO0g+a\nRBwzJCWO6Osxz+ZxOzfp5p7g2VjgoHbAsuhkcvUJS7Y5104VrM+4GS6vIq7/GJvaDlev9ZD3oxye\nlHE0T2lHnbgmFZzxZR4Oi2SzMHMp9MfrmLY2zzsTWLoZKreGdDYFolYb9WicMztQER7SOpaRpl5s\n7m20kIKvUcBmDzK2lGm4dmBQJk+W5dQuatDH7naSP/mDb1PIHgLwcz/xi9xvdHEvgtXpwll7jGLv\nMhCWmFVvYXVbKB+0MR1NAod1Pjq4jsM1Z8WMMF9uMC6O0CUV3zzITKyhTAW8mouRO8Gf/fa/YxKz\nsWufI7sVmlOJbMXkghFBTvXpTwWkYYnw5S30cQnnoMT9PyriTtoZJKHa0NFXbfR0D2KkRdzWIxuY\nsNiRKNcXkVMWTgb3uf7wu5z7wgJTxxautRx6wIsS2aVdK9N8GeRagOrKAMeoyflcgGlsTv9Mn2FO\npO7V8QWGTIZpht4Z7qlMXjwl5ovx7Pwl3LLA/cItctNVQoEgH//RU1vqH/3Kf48/ugn1Hr7mBHXa\n5HrBoJySKPa/z8rsc4Q6FsabXhasJq2Un8PHThwaCPk2mlIjd2WLLcXGk3ILp3xMfGpnFPOxtLrM\nlVU7nWSXiXiHdOsS8WQU+zSGc88g6+vTqVXpjmNYrF26XQ9DycKlf/wVitdvUjzZ5+IPXeLg5COU\nhETkqMQ4L3CgqLhndZZiqxSlDuW/uIoS8iGlJtRX1tEyHWJ+lZitjm7xkFraovhwyJH5hKP+B3ik\ns2T0IU2/G2O+xNaaDaUvwrUGQ9mCVqxDM4cn+jw750UGzT2k1uc5PLjP9YfXAPj6L/46NrNCPBYj\nvS8jbThZFWDkaFG0hRlNyoyw4YrkydQkqnGRcwmRug7+9pybuQ6ZwZzpepIngxbv3G5xNFkm98Vj\nVh0W3Dk3UjjMC+tf4f/n7k2fLbvu87znzNM+8zyfc+ehb9+eGw2gGyBAggAJipQoSmKZkmMzkhUr\nURwrMh07FTOOEscaSrJKVpUqiR1LkaiBksUBAImRAHpCz913nu8Z7pnncZ+9z94nH1r/hPlxfV21\nVq23fut9nzfk7XD4gRbjopvcVheDywwlLZJnEf2TAwy9GBX7JoJeh71j4vjiHr/2+j/n3loLuiZK\niobt2xLZcZn6IysTdcRsfYC4pBBM6whJ08ihBofVBs0mOHxD8uIUqUmNw3oVRzKNXC2gaqcIBPyY\nbEae9AoYlcu4NJvow13MnTrDnguTIlE6uI7v2fOs3Tum5PEyE9Lxxt/BhH/6kYHRVoedkxb9ZIJK\nQcWKH3FnG3triMYdwTK2oW2L1PUigQcyG9Y4lnPLXPyFBMa5OprrDg7f2SNhXOKBWKJWPUA3d5HY\ntoeyX8d5jYMHxY9YVAX2LfvIIRn/aIVAMsRe6ZjBpEJr0CNsyOAO+Oj6Frl7/X2in9YzzOhRLVoC\nugYeYUytFEQJdKjtNJjXlMDs4M5+hYsvCTi0IjrRi6QN4pxe5ljQobkwxtGvMhzIfOnLL9Gvd1lw\nz/PcT1/lbv0myf/6LNPmTRb/3qv0S3dQLj6H9pllxPU9fJ+ZJW4wcPprn2aU1LH+vRv82j/9MTCW\n/9a/+c1v2s+6MOpiTDIVNPIFiqMyJvkxv/yn/4r7f/5ndMJdTC8maBcfMm8yYLUakX0DKoMROkVL\nrpGhJbWpRboE2xkmLoVCPofqChH7WObEDt2jAkZznYrbh7Y6wTJTx1Sdo9XJovHM4GqasLV9SGIX\n2TZLKpIlpT9NK7dLV7DBapvIvg6lBQ+GDYxDHWPPGLHopL1iYvO7t6kqEhG3h6lZA/XnTEwnW7y/\nX2BSb2BaSbNtMNH6YJ/0ImztlkjPt2nU/QiBGI5umdawSFs0UreEsFg8LNtibFS1vPGv/xLL8y5q\npQh3H/4IgGvPvIYwPcHpMnJwfERsx47+SIPsFRgZ9DR7EwLTe6h2BW8mhM1WRujVUMKrxIJ9fKUm\nmxorpnIPY1TBUIL51g4Hgx6y2YF63MJq2aLTi5MdPUCIX0FTe0hAfwqNvkMgJEFFwliD+PkFgmYf\nnXaLY+McEW2OycBJ8UCPI13DoA4wqodYZRPmvgtZNuAe6akcjGBWYMXiIeMIYq4doTpsdJubeM9o\nqfbbpPAyVidMjBYsuhD379/k9K+8iseTItvTMpNcZFTrcFmTQOOaQ5mrsfuDDE2/gKdhR+ub8Lhh\nZP2Tp49aXLNANL3AIFRh8edfIN3Kki3pOcpukBTjVPYV/C4b7+YzaB2zmCZ+vHNOBE+Pk/4Y/XAP\nQWPBmIzh6mjpaNc5VtuUanYq+yWSzzxDwOlBGY2h0INCB83VMQeeBmWLB+9tlYFfJna9Sejya0jB\nJrYzi7RaVqIXoiiFNSKBIeLmCWvpHYzfvo58LUysmyApnKLmqxAST1FXNkiO5lmMPl2n3QI5yUzF\nqODQjCm0hnjiVprNAtWdHWSjBe+ihOGhjFY0o436ETHQGvuIuhx09H6WND2aphniTReV7oC5gIcP\nrj9NSy3OPk9LZ8PkG+OVsvT8czhMPca2NNWJTH87iemKD9uuDY/QJZmKoPRn0XaHrI0dyCcqEUua\npmOIxy0QdYcZ5YIYpSOMrimSSwE6zgssmVyIxi6hkZFH7NDQephEq7iUCjsDhdGPivSTMZwmH5O0\nk4CopdnbwtO3M7E6gCDOnIlBv4beuIxigk73IdG2B0v6AqPuPA8+/gCD4id6UiCXc7L+h2Vcrmd5\n7wcP8TpeZPGVRTbDCkHDNVxXn+X+x1vULSV6zhQ2TYQTOYT6c12mwgJf+vIC4oHId//k2wzFeZb1\nSxxZ4zz+26cG6aWVzyDbc5SuHxMWhtQiY6YuxTDwEo96a1wuH6EqYe4OPiEdSLHxeAPJaWFhcQWD\nQU9WE6b+uEZfV8avFyj4GgTKASShyVzDTF/VUbToKX00i81h5ko4iKlopx8PIZ78CEs0hW9SpnBf\nSzkk07Cvc9V8DoNYoG8IcdEoc2e3QO1uD3PUgziVwtsrYXUtUBg32P/WdWZnVxiFZSa3QwSvSawV\nW0QtsDZYR9U9wVPSMSyqyC432raPsbmLf3YJV8rHSJbR51rEpX1Kq5fxc4AvGaRiiVATyoh7U9z7\n9ptMza5gVCq8/+CpiIrPL1ItWlFMXYzxObTVPWYj0xi0CWa8buSuGTQ3GKqLGK12kg2VYqNO+diD\nEEpQyd/HG1aZ2d1Cmjvmp37xU0QNX+X//scPWHnZS7P/LIL9p9EIJU4OY8yuGImUxkyvdPn21jZm\nwymc7QYHpfvYTqkcXa+w6Blh99uQZx38m5/4FS787FWS4wr3H2yjcTVICFa83otMnAofH/RJeNPI\nRgWd6YCe0c28XaHjjiFuPcFn8dAJeIgPAtTUFqdOp+lldZjqe0zcGoxDAWFygjsTJRMskOtbGaY8\nWA405M1aVCnLfrZKbAFc/gjf/7s6sBde/hqNBTcnwgxqKkhsNoocz6Eny6kXX6bqCNGt3sTsUnjp\nX/wCf2j7d5z2nOFhTeVH/+n/5ZXWzxF99dWnhevps6ijeV5M+WjV+vivSSiaPNNuO+Hz18jUK6Tm\n50iNBITmIUeqn/D6GMOgi6TGqHyY56jgJKDbYhANE5ItnPQOSHcC7DUmdA1jRinojqpoO3lkX5wq\nCvuPB7z09X9AKf83WJp6RtSoTXyIsU0UqYffVGSqY6BcHlCtnZAtaMltnhCqeFl78yEdbYfCG3nE\nsZNqrYvnzgnd3Tgul52TW1Y0dh/D6xnefudd/uf/5V/+ly+ifv8P/+CbF3Ewt+hGiOjpzEYZLxiR\ncx72a+/x8mc+zzhbwjIsMW7ZGLUt9I0q5UMDpmMNvrBIMiVTm5gJzAdQh2ZKWYFf/Z3f5egLv8zA\nuEFQ8qA93edY1SNajAxHaWQ0VNIGGid6xt1dxq449XQHRdag1kxICzrMPhuHzjbpuSRBzZjDoUQj\nKbMcukCrlkXXd7L01ec46diZ9lUwhAIEBmUqRYWxpsL+WzU6qpn14yombRDf3S6aT4+wO0Ooche9\nRsBSkJj4NIiTCRO9m0ndhOx0YlQkbNUxw14T/5l5nk1FwOvlgx88HXefWzqDQ7PMydFDpgcRLIZj\ntL0tuuM21eiYZ5Ys2JpVTC0X5agTuenCbLFhWvos7cd5arKA3tiiZe1gf2Smr1MQ51MYc2Mk4QGW\nWgtD5BTD6n2Sjmkqmhpj4wTNMALKFrhHtG0BcpUaoUiFw8Mxqm+AXS9RrUQZDI9JOX0IJZnRTIJI\nz8VAMaFXHIxng0j5CSF7H6kkQzIApi6PlSLWuA1zL4FJ58NvdtE0afEYW5Q7Nmrrb3H561/l9sMy\nLYON04tnmOyrCKExAU0cn99GyGag+eAu8deXyctaskcLeD7l5ZO/eFrQ2dL5mT4jYg+UcZ8M2Km7\nGB3VMPUThBy7tDwheq0jYnY/xsMjrL497BUnbk+Y5v6EK9YImbAT48k6Wp0Xo79O/naN4jvrOP1O\nzEtjPnzjNhF5Qvgzi6y/UyHo9rBgkMlmt9jXKZjOTHBFnfSXT5NvDYjkMijBGpUP9in+zW+jnwhM\nrFUMmVM8Ox0jqFrYHxhwpcxkJgMONTrS+yU6tSCWsYk17SMkd4jtyhPOemY5lgJElR4nR4fsbmcJ\n2H1UJYFR1Eh0IYwulkBTnqDe3CNwtkCudYiiz2AYGznabDBDE/Rmaod/zc21HAAXZi5Q6m6QTFkw\nRa1IopVSNUj8pQX2DiZYz9SZOelyYgsSW7JRbzmp9xzEImOkdgOtpk/P06ZdtpAdFLFKJgIBPzu3\n9jkdGhIYDvB3ZUq+LPpDG0qggFqdZ7qX5aDUw9aYRXNvHfWZVdy2A+480jDUmVFmTKQxkZUSTCZG\nWi4NJ7LI5ndv4FOTOLVNrLoEwlhFPxDpmfK84HoGZ9OGOWjDshThQFVZM3uIvvY6ifNT1H/3PtVH\nMXKTacQ7FWStQOzkIgv6TzFQfAxaNkZ/8D7eupbBmxLj8QFR7zJCxc+xxsfceT/vfus/AvD3f/11\nhhtGOloR65wTxuu03wGz6sc8F+AwNMbS9RC47CfUbmOrjmhaPUT8FnQZhbBxgG3BgNZSJ72yBPdN\n6JzztM5b6Hc+Yb054Na7H3Im+AqvPROgupGhZhri0TgR43NYDR4qqo6euUc0vspQ7+PBt/8IbTuB\nLqLiSK6iswuU+49IzX+azMGIUtOEYRTA4WljWPRhN5xi0KphcL6Fc2SncLLJv/udu/xC9RxfutSj\n0MwyCKTwyiYqehdHq6expLxs3bmDNVNEtXQJKTKZ/WN2du4RClymfOMDrNMhPLJIUHiGgUUmk6ny\ncPfpt9RrhjDtzT5B+4REsMvkEx2l4RBXp8lBqIt/PMPtRw8JeP24QrOYjh+QRUfSG2J7t0wkNcdc\n6CIf70+4aihi68rk3nmBf/sP/y+6v/oO+munMCTc9Mkw493D7t0nu6PHn45Tr4aYjqionhEf/n93\nuHr16wjWKj6biXrSyaTm5lz0Wdp3bpAYzGANTTFX7WMQUziqRZrRES//2lUKawfMKCZ66RaXJ3Fu\ndndIKktMzkcxtBXK5SrjpMRUQUTW2OlofRS9Y2rHBsQNG6ZdgcG1MIubMqWmDZ3Hi+jLEmxOUK89\nT0hfwqX34r63y3++/7RZ4Bf/p69TMXdJBIL09UPcB48p97pMJ0wUj9oEmzJFuxaDlGT4M+sI8VcQ\nl9z48hV8Z1L09CrGfgVPDbQDK+PZMv0bJYzOMWJhH19uhkZ2m+KNLSRxSP1uhidbexTbxxx/JGMx\nHbPhhFJRRyFXx71gIX7+S8zNWtne0+Fy1skel8i663RdE+SMjBpIkh546J80MfdcvLr8PHf/qsiG\n9i5RT43u0E3eeEJSWsS77kLUN0h5rTxoDvDaHGh9CUyPVRozNWazUxzJPtrWAf5YBXcpxMBeJfR8\nAlkWUYQn1IZhXKYuDzbu8us/DpOo3/zt3/zmxehlTv0PrzPYVDA+LpFf28ZdO2IqeJraSYmSJ8rg\nUIagBdU+wTYIEa32qF+JY+lvoFovkT4o0dd7WVYUDNou7z//EmVLBukkhxL30s4KOG0joltG6mYR\nV9iA5VCPz1pEjIUx3iswZ5zDPKul0agQGQX5/vZfMTt04TG78OhOGGpget+LQe9hfesBC0KC+Ws+\nipnbmCUt7SMjEWyoU1528iW09hUM/gZnUm5ks0TZ4kdXdRLuKLhWFygaNAS7dhpmB/quhBLKoTcE\n2bq1RiotoHWZUQ+q+L0K8pllXNlD3nz/qbfnhS/+PaKiBoNhQKU9RrLJfHC7xvQ/+hI6T5T0V36Z\n9Tf/Aw7LHDp5iL7dYi8mIXYm2LQDEi8HMay5UD0Cs64kzpEedaeAMz5m50BhNRll8LCG05ugUO1h\nVFsEVl/kyZO7JHTTjAhjERuMxQ6R2DlqLg8egwYx6mSyt4Gvb+PQ0EOwTCHtjOlWq3g6emqJAtM6\nJ1vFMtbnJxxldYRaZXqdKCtWD+s37+G+eIpAtc9Uwsu7uT1sTplqVYdhKo0qNLC5t1G0ZrZvVAkW\nB5QzOZzPnaK7VUPerqD9nI/+bhWCE8amBAmxwXtvfR+AyyszrCxM4xVmuf6nE+rqgLhdpZDPMTtv\nYjAZk9d30dqctEMhhN0D9MMQKY9CrdGnGXISuuCkdKvBurGJMjFh6z/P8qenEfwmDu/4mZlOEErP\n0Sx2qVjvE1iyEIi50U8NOJs8jzRy0SgoyI9+QHniIOhOsTmBzK13eeanlukKGqZqfibTcfQDAbF2\nTM8/oupyYc/lCJZyVMI9Snsehska56zPslG6y7y+zVbSilsa4KtbMExbmQ/bUJ1+Jsk2F7QXuTMZ\n49w0sn/zR4ib2/ie+QLiF50EPpQZU8fmsqGtqozHEVIq/O2jOwDMfOMf4e4fE7LOcPx7RfTTIlZ7\nh+b3N7HaqixpT3OkdIiumigPSkSJ4BBqZHoix+YNFi9fwNAYgS2Ks2rD7rbRkhQMRTtBvxZrcoGu\nP4Q/N2Y82iJj1pCK+BmPGkzNfIpu6BYHD3aYfdlP9/AJV9PncVkf0tHNstYX0K/tUrOe4H4s4nB2\n0fteou8qoDpVnNEJJ2UvoslMqA3MuAgGo9TaVoY5O0fdO0zHAxhadTzjR0w0E15Z6qFpaYlGyoQb\nWtbX7jBRDrDV2hz/3v9J/PIF3EqRSHIJzUkRKRLGak7TzjZoe3a588On5O2fOvuTtC16XEYD93/w\nBjqPgckPb5OcSjLzlc9TeySSaNtQnR26N/u8J9xnxRahVRFpbF2nNR1DU8xS3ehQbWyy2drHGfMz\ncUzTPpqhnq3y+vjTeDxRKhUj8zMSSf15Is8JbD+8jXrQpbvsJixW2DcNSWt9BO8d4pm3IRoBqcbe\ndgfnnInM2z9gKn4Vk/kEh1mhs7HBk3yFK2Y/vZMaSzOXSHx5CsGRYerTV9ioR9n+nsz9xyOe/aKd\nQStDY5jFLGcJ3dzj7g9vkFyIc24YRppdZp82gcUV3Dao7+so3riHyjxhTYtgeMzMzAJ/8+5TDt7S\n55exf+EM3mYNmxc+2viAetBORd+nd9QnmYgy5bJTuXeLiz+XotYM0ktr8RriOE01NJU1xskYIa+B\nys4UCDnmY6C53aR2WSV7fJ0zHKN4Zmk1CpijoHX7QHPChVctPP5RmXJryAvtGfxTJipyBPNQQ8fk\nRBjuELZoyWaciH0LjkQLndeKNtDmViaP3hWk+6BPzB6kHFZo7tu5fv8OCXWaVKBNLapjJORoj3yM\nDTKZ0YCBXCRokejptcjWAdH4iJlAElOkgFnbYxBUCE4bUA71tGN+wgYd2jsdTuLQdPW5/oOndWAz\nX/Iyo1skuy4SMozRO4qgmUGodnhSyeGM1NB80qJxqNCKBumV7Aw6Isf1D7h6dordIxVPNYwubMCn\nL1Ncb3M4uIXhMMy4r8PjkiiEZ1gKCTgVPYrlFHpLg4OGiyvRCbmIn1M1SL7gZPD8C1S+dx/1dJzJ\njXcxDfMYlzxYNc/wjNVDLBhm5NcTttfYthXxuFbxi2UmzSxqNMT+vXeZMr3KgwMHWluf8FtR8kyo\nmcvEA6fYu7vP8b0iwuaE+uom7pt7PLDm8Fo92EY1yvhoSXUCogmh6eBJa5eYLkUgpzKo9rmxd51/\n9k+/8V++iPr3f/Bvv/nFr/wEb/35G/SMNkpjG764ida5OfLyOmNZRStJLAc1tLZO8DbHRKMKw60c\nGyURxacSM2upOLTUaKEIFsZeH8laBcdcjPfefYKpOY1a1aKOY0ghDVK/zfFHZaZfEhDUCboTA8m5\nEN3eA2pZ+MzPXqKu1FlUp8mPLJi1fbRFP3N9iZmf81B6/4i9npPUlI+Hnxxw/rSd7Sc9PNEx7XqL\nyuMMcr+GYyVBuDuimzvCXZ4mNtNm6PDTHhyT25fxNXKUR2GstgIai5VusY+l7GP2mQnNcZ0nW4+I\nfHERo1HF0DdyZMhz+82n4+6vfe1zjIIZ/HoHpvqYiVll9PJFBi4v9icKx7sTXls9zUfHt0hFx+y2\n3Lw4s0ItW0Lq1MnKMFLqBLKbKOYGg2CZXMhM/7BKWdAR9J+juSxjUcY00kGisoUuJbw9HX3JTDdo\nxmkcoFAEaRnFtk1938pw2GJgt+FXFaxuM6rqoTa6wfm5Odq5OqNEh+rASdxjoFVxISs1uqY0xnEO\nwWZn4NRg709QJzIt+Sk/yNyzMpipURl8B93VGp6ta+i3H+OKBTkYSnits1i7B9gtHXquEr69AHPL\nQ+4XHnLmxQtU8w+48fbTffuH/+RzWCpxFnsWHgwKyHkbtniNK8oSis+HOvJj9zq5fNrFz372eT7a\n2Wfp9Cy3N+4gFDMcG/SceeE19O42cV0Up2FIP+nAM9rmSBNgySlxYmvSqW4wsVlQCHPlQgJ5+4TE\n1QXeekNh1OojVy0Ur8wwW1XISHt8puJBCJzD2GqRHRgxPXcNW+OHaAU9kusWVnuZuOEMfX+Gil3H\nRfcyzUoVwe+lXVtDsAbQJmdp9dpIpl20pRYea4SWzkfGbcDZdrE9ahC8+4iRW4ewLLPi0/MXj+7x\n6V95CekwS71vRS738a7M4pADFMx63r/5dPL5ytUrDJsWIgMTPr8LM2mMtSgTdZPkeJbS1DGqo8lY\nZyexGUfTHtC0aYhMLMx6bQwfK5RFlahSxnJBRVb0iEUTUaPE97a+Q8WeItIB57KLrM+H4ftlSv0a\n5XWVqLlKvw+rgc+zrx8QcLnQJnRUaloMWNE+3sbqO8Ws045cB48qoIQdqLo6lp0IqtpDFA9JxKLI\nYyc3PvqAb//Ff+KVl6eYKCpiqQdOPfVGgWemzEhNM2pzG6lnwp2wcP3h21xZtTOsC1xYtBA6baEo\njZCjfoKeMf2JCW/680ykW+zuP8F3+hU+futPALj6k2fInlTRnUtgPT5h7soih/407rU22coEm6aJ\nOPUEs+AkM8gSG6/SDUCvP8OKz47QGfPxici5l6YZSBPqxhj53TbO4hr5B98l5KsSX44Tslhomh9y\nosYoZqrcVzZI9xXuFQewv8s46IaGFcmrJ3Z1Ds1xmfpkhkbAwXzCRm0icSV5ntquRDOZwxYJEEib\ncXV83Hp4H9vSeQzXJEqWP0aXdTHreRX9yhLuiMBc4hLDyMt85XPP8Mxn/bx39w9x5YNcOnsOw0RF\n1IypHZoIuTsc9YykBnqGYzsvfv4zUBsR+FSbh3f1GEZb/ODvGhl++xtfJ+LtIVt97LqnkHvQ7FVY\nTL2A1j0mdCLSDS5wa7hHselCH3QgHB5j98ZQ0VGP6NAfTjhRTjiXjvDbv/kW05e+Qr8n0jvoIIVM\nnDbO8t7um2iDEurRHEazA4dWJqM4EcUclu8XML7iJ9jWImjz9OUxueMcxfE8u3td1HCQ9vg2jm4Q\na7iPjhCno06qN47QRs3shloYFQ3zYgaXz4IkVhikp6n+x3tc/cV/jLpznWa/hS+VJ4CHAAAgAElE\nQVQ/wq9xoA58jLU9ZtqLHGlkIm4nut0G27kdMrMWpIaLts6CT27gHRcZC16Ulhb5vSo3D/4Otjn3\nM5h9A/byY0yOLu2wh4PMLr6ABqFuYJKVMNu8HPYOcF6xYAhNEEp7GLNJWPCy0DmkcvSYpukSsgHU\nUYmJ9gX2JS2p2BZubwxsLjK1IH3ZhbxkIRRV8Z06T8jhprZgYtrjpeoeEBjmGCwYWcoc4zo9zcgM\n/v4CGu8AcdJBLJ1Q7B0ybbMQzC5xLqAlu3sD39iBkhzTdZWIyEEEtY1o0xA2qhz080wZmhgiUxw3\nT1B6LqbPTJM8MHN02oDHfJFVV5/jXReRph2lI9M+J9DPjWkfmJjYzSjhIhX3gEfvPuQb//zHgBP1\n73//97756i/9t5wKTrOjO0Q4KjP0zLHiihN4PswgN6R1KHPQOGZsdhINW7jxtw8ZvXaFeNvHjYNj\nJv0xV2ZiNHYLmJUBgjxEUuYohSY4gzKLz2iZSBAVrViiAsaqAYc3RunhPfRePe5lG26zwqAX4K7L\nxCfvjBl3VRZdZmzPBCmti1DIITwXZpazdOy7GOhh8ibRnnYzufeI84teKod7uC6fJRGyYZ6B3Xu7\n1G5s89pnv8SRU6Jt7hNyJJloTVz9/EVuPr6ByyLS97WY0q9Q05mRpmXa7RY6UYt1IY69recou0sI\nNz7hLG9+788AeOXnf4qp6hCNNoQoiHy0VSE15eTxJ9cx67RI1Qx19yylUpxTz79IU9nFe3qB8uO7\naEwKe5kC07MBSrUeDkcXx/FpDJ0gm9Iez0ydoWBfR2ypOAYq6YFCZuyhejjCuqRH1Oxht/pJLmgQ\nTEkqdiNJq4PDD98hGTpNqlniSSKCzqAyN7JQNZ0QkbVMdGYmBxXqdol+zUhw+QQXIUTfER5rEscY\nRoUGQ2eJkOjjIGtCE6qAVmWSdxBZMNKtTzPSeijXJsQaR3SaXqztASFjGf3cAt2tQ+zTJlrjNIaH\nRoZTWTRHej6+fgOAs8/9Cs50ln7JhSFlY9UzQfHYyfTMNPJQMFaxGhwINzb5wbs1nFYRZRAj4NLR\ncKSY88bJ7a2huZ9iUB8jyj0Guj6+Rx4UoY5arhEYmaj5JzjLVRL2PrU/3+DGH+ygzoWInHmNnFwj\nPRigKxSolQYoWxOaoSnG+kcc20MgGhD37nLvYZPX/9czKHesaOM/Qd7SoLXlxMwcmztrOG0r2MIO\n2sdVWlNazHIPtVvmtWiUxqTPKBDF3LYzdBdwlgJktipI6gyXzzbRy0n2Bx46Nh1Wr5FBLYmut82K\nYkPJTqhWb+D1/pDvXy88PW/P/30K1dv4FYG6SaBSbBOfknApMgcWGSojpu4WGToGNK0SjU0NTssB\nw2M3ynwXh9qiZ4hS3ZvQLwhYKgMG/R6W0y3MvkWMYRfNToVBK0ilnadVNiBE9OjaEQwJH+W1GHs6\nA2I7Sn7cw2g5hSjmCY8cGJxRZMMhoydNmpomS/OzNFwVvIM+BkeTxeWzDHN53lkv4brkZS7sYyF+\nCovpLFW9xFGnizskktA0qeoUlkdz7FWKVJUOmmCHOeEKwVNLPHzj+1SccPtBhsh0Epfkw2P1k7yQ\n4mFjh8JxnmxtzJmZKd58+1sAvBx/leXpOAfH9zHZgvQ9c5zTFunpYhgdDzBofFT7TWbdDvLZv8Vi\nOsMosIDDuUUtoyI7tXikDFLXitGn0Lp+hKXiYlKacHXVzeKVcwgtgYNMnoEuzcuX7NzuVbjYFHi/\n8oTqO0XOX36eslGi0Rmh10VIPGwhhXr4k3V6YhuvfxqxZuD29n3ip31MGRMcPLnD0JVCjTZpFsG/\nUmevW2egdXBYsDCULXT3s+h7OZqLI979z++x/c5NxFwV9yMdwSuXaFoF9LtdWoFFHJ+dZmQvMVv0\nsFMb45dVtNpPsK9O0XwSRNU8QVm18f4btwF4/XOXyW8obBpsGJ8U6Y0GzIenkczg9wiclGHw5IS0\nx4E+t0UknCZfEugabYRWfTj3bDSiRxwJbp6Y7qCLnEOz12Lhyy+yPcxim6lTDVm5PByQVy14XRq0\nvS4N0U1t4w7SkYGO24Nb36SbEhh0ygiz88QMbkZuCw63EeslDacWVrDWTNw8uIkgNyhYwszNrXCc\nu0n32IZg1FIOe1iSxmwdDhDsLcLeCJ2ujK6uku1osKlVWk4bVY+ZpeY0HdMexoyWwWiAXT/C85XX\nyRqMhJQynEC0VyYzjuPJV2h90uTZrzr5i+/dBGDlM+dwHzhwBrRoy33So8uEk2nun2yS9CUwJd3o\nxxbMqVXUvJbs48f40rNMnfOwsd3FVSrz0BHnUsKL1fWQh4odX1rGVf6Yhz0bOL3osZF2dGjqHdgr\n95C0S6iilXudMiGfDVdvi7YpRiWjcs4qIgoOth9kODFayHXWseRLNCoH3PzRh6xe9iCvu7FESmxm\nb+DZLNOvVhgFfVwRzeyoBlLPTvDILcoL51la1tDS22kFBgQTEyxmmVzQh89SYKRzgslARZDRR4dI\ngkrslAXDtkq2tE/ABYFEC6mZYF8tkX+0z6//jz8GnKh//c3f+uZ8KsKOYCC4qUdJe7A3tbx3fYd6\npUgfkYnYZ+wDc79Ow+kmqL/EolXg7WqdaRVaPh0v/4svMfzaLYTBmElujh1TA9vDG/hYYTwJ0bVF\nuLP5DsJCAFHN0wy48cb8VKwmdv/4DlVLlmmLii8SYC80QRzrSIghsp8o6DVP0F10EPXbKKgS/ffq\nVHwbNHMOzIfrHO1UcBy52JctMDlGd6LFJngxuHQkrp3nh7c+Id5MU43pEOUuVV0RdfsR9Y6CJRqk\nn7egMRbw6Ec0tgUCrREmBLp5PaZRHbfnDDXdA649O8d/+KM/BeAL8c+RmewRtBmQJnYe3N5Cf95O\n2OzFG3bjI0Ajt0OuUud//29+nlM/cZ7aX77F0i/FkUsllEUnCwdGjvQJwtk25WiVtruGswo9yc2c\nKYgvOWKQDdJzKSi9BiGXQr4IOnMIXeKEsGbEWGNgpBWYfDhgo/0nfPW/usInwyiRpoXpQJQj/WOm\nRj62Oh0mkSksgp6hPY5aOqYnxDEN9Ig6lWkhgOqzIOp7aBtGttpWDAkjiWqVSdDAsTaO78jLbiXH\nxcAqg4M2HsHC2BqmkC3QWPAwyhWIXL1I9WRAz27BobaQuydUBQf33nsqomYuvoiayWOZspMOOehO\nVQkvXMDYKCBf9BIe5BFxYzvrJLm8QrFcY7ueIVRaQps6waqT0GWDHBoOYahn0KkTHSbxXi1w3BdJ\nn49T2ykwJziQJZWYLUH9QzO6hREps4b24xoGSYeus4/L6yVxKkjENUdi9pCtw2OMz9lpr5U45ZjG\nFTFQyw+wJAyIeZlj02fQFAcYTzro5mWiQwOya0JHHmMamYh2DIw0Am5pTMYwZPski2wtMhmNkPIj\nzi+uspZvkE6cQT/oYY/YSUwGqF03gsGAzWfgYE3FZWxwx3JEqx/m3oMNAH7x134Bw14FVB9Dzw7O\nmQ5a/YiOmubEXGPkmjA6G0J/cERAStPyDKicZBBDZ2BniycVJxrqWLQh5i9KGKtDdgvrhGbm0JWL\ndCxJ4oqMXs1iGgcJBBUGxjj68oiJWkIw+fEuh0j4zUQ1LsLpCKGKmfJ+D9U94tr5C+hseYKffYld\n9QG2Y5Hl1Usc13ps1nIUKnUufuE0pmYd5cY2/oUYi8+H2St1sAhamocPiLheIm030JjsYjSpmDpu\nwhci6NYyWHs6zv+kn/1+lSXbDA4hBL4Og1yZtf4I7QOZg8AYf8iF5oyJD//8Ke/I+1qCqbGdkHWE\nsifi9DTIPa7iuGYiVUgju+w8/O42qk0muOLCu7BKkRa2agh9ykLUpHBYFJk+K/P4g31OyQ7Uw/+H\nX/gHz5EZmhnqBbJjK7pYj0FBQc4fIPpj/HDnz/j07CrmpSSd3g6nvc9z5DLj6e/x5sF1nl1t0lHC\nNH0SuZsOchsbfOG1z6PRHMCkBSE3luMCtz66T8DtQseEwJVTpPV+9ipa0oMOsidKFCtlpcY0FUY+\nFakv4Tjro+U5g3CgsiPcI+0QuPGdP2Oqq6UQNhIx6ngsa2hHB4ztY1raMhPJzpxFx1+//TQAcu3Z\nT9HtBQkGrKheDy9eWua9ZpP+WgvGLuauKrQn09y6+x1e/9Jl2nUHTUcBi+0IOQW6eplJwIy/36X4\n6BbPnvsc2cM9pAvnMUZLSJsKoUafO40S8ZrMxHuaqniEFNISMJxBIwsM2rvYp8LkxqvYYxPKSh2r\n3Ynb3MBhDNN7/wT3pXlOlPsMbPtYlhrsHR1j1RQYC1N4nQOKO1to5BlGDiuGKT1TeZH7BgmTQ8uU\n20o/1wXnCkFbkGHfTnfyBL09i171Itm6dJwx+s9pcN8tMxINWOxWypt64mYzymoQh2FIdrTMjz58\nCne94L2KHGzS7GgRdDV2vYf4p6dIaEXyx1WS0wEYNbn+4D7OVJAVxUhDEyDtVFh7523aUxdZXdLT\nibkwVz0kJQdey4iWKtI4SpOmTblipC31aDuDGMYTQmcTrI17jBdaPPfa6xw6JHzbZpyBMeokgna6\nyKX2AGExiutKmnMvv4hr8w6pX3qFKcM8gZ++QMvUJvH6p/jsr/wM/u+Y2OwN2ZGmSYsDjgUHd/Zb\nXErFyD9qk/LnufOjNUbxAIVhB7/ZzaTRwdVRmTLNERFzCKUgHUub4+o+bYvCWcyIgS62kEJIbyVM\nn/c+ecw3fu3HgBP1m7/1G9+8aDZiCrUIOq0crK/h8muYmRvg9IaRRn38WyUCr11g6/EOZ+LzCAaZ\nUbWHf1mP1jhmSlT4V61v8Bu/8X/QrPewGw+o3RtRW/aALoLU1tF1y3gcbmbdEaTsDo19CZMriygM\nOV5r0tE5OcoNsXslEvtBHAshOof76EwljEYH/aaAv21l7cb3ucMJ5tTnCA4svLF7G/24z/x5D824\nQN+oo+ZyUT1q0hwbiDgaHNSihJwyBmVCcTtDaGBBZx8RCCc5EGtYcxV0OhPSyRi/zY8SrGKYu0Rr\nChL4aR7uUTnqoGzAW3d/CMCzX72GpqpBcjn547/4Li98ZZrASgCGLbxZGU2+hV6MYY/p+dzUZTro\nqetslEdFfI1ZRv06Rd8ivk6Lo5Eeo2aBoLaNwZBi5GyjjVvYvl5GPRfAXOrhQ0Qc9mme9eIqSZi2\nrKxLDh7IXQa7OurVOrMdHzffLxJydVldnaG98wlOu8KBw4rtTgfr6grF4yLOJS1RdwpnPU+dFu6x\nlew7WcSQiK5WZ6IM6WtrnIoZyKhWRKmExzOi2PYgDWS0nj63H37MokfgqFVkLhrDEJfQ5p20fVt4\nm0bGpXW2AlbS4ykMSzE++KunhbDyaTOTsgvvXIve0ETT2KJbO+IHn9wkLemZ6M5ipMrAGqJeuoVn\nINJQe8yKKqLJQLnZx5dYwCvrcfROCHjjONxrVAdm/OEC3VGQWZcdaWSm0w5jmHRppRWeN7up1A5w\npFb44fFj/OkLNIcutPFFPrq+Q2ZdYjKlw+dPYDZWMUtGAn4ROSMwcVv48MY9AsMDauTxzikUMhE4\nJdHesDBwtQm2/WwXt3BMnJTtZjS9E+r5Wwz9LqKTJTQLCs21IvbAAEttk2a8jhxJ0b/3mK3tY6q1\nEeekKO35CcZWFMvkMp66h/e3nqZ+Tvtd1IcBwokh+h5Qm2YQctKxlglmdZiGdkQFtPbz2Bw1jBY9\nTtmPc7TBriFEuFLHMQnQkXew+2coBU2kUtBQuiixFcJ2N07XY4SIhVr2mGZxj6Vzbo7zJtIvx3BZ\nPLz9yVu0Kgr6Sobj2m2a3X3CQTtiM89au4y9HsLWv0PRtIikMyDt5DBrjYwFHbqRjOCW2Lr3PTSr\nETafTLAY60hGF5WMyOl5AY39kGyhgqNmZtI2Uk0UKLW86Ewd1ne6TKJOzs0nKVmCNIyHSF0dPUFD\ntB5ix7+NudJmLhTHFR3xxp89vadXXvt5+rohR84wQqiDNnQRUa9jlPPQ8DSwWtv4lzUMtxdIqiMy\nAQ/DjoWQ9gRtK4ZQySEmBIwtBy6lj9etw/KVJY7vQLHjpzjawdpVcWlkcDiQfD7qnRHPhqcodvxI\n2yXEC05yRR1pl0qxb8ckOTkZawhMGuhlHUJPj2VGwNDRYtTCzneOiF6w0RQh2nDTW/Tz0fYRTp2T\ns0IEs9+Lqaay+pkgh/kRYTmKJHRYrlkRDPN0/KepNfsU8zcJJ1Icjyv4rl4mNDXDcVXGJuiYpEas\nvVvEtOik9bfvkDwTJmSr8603nnp7nv3Zy2xl7qMWDsmXP2a42yGc0qPf3WP+C06qOx2mRk6MGgti\nW8JSHdFsNMmpJqZicxwXtrAHHNibNcb3beimX8BdaVMYi4SWPeTz6zT/Zos/fPMv+dX/bZeb3/1j\nZlaDNAphxEGX86fMHMa1HF3fAaHOWacL8VChYukwaJrIVfdJqDL//a/+d3zYWeVL//LLGIwLaExD\nfKoLjVHL2okRezxCYZBn1m+h1bHh8Tnp9vKsDi7Qi5ko67vMl8tsnDzEterA25wjJ8ksmF0oCzLZ\nXhvndpV6b8TmoztcdszTN5UQ7RI07dRVP85nTbz7radw188+cw3vM6fI5orMXYljvKXQbBs54/Bw\n0jLQKk8YSG0ihilcthLdSZTAbAyppGAr2XC6R+i0C3i9BbbzDVqzaWzGCOW31xiediNMezFlDvHN\npLH4SlQ9JkyVMlTz2O62sN1XaNypMPu1n+Gvf/d7GK1mxFKJG++NMTVnaLZMLAxFypoED9cGGI6a\nCKUeTz4WGRzoyH75YwYtlZEjxcKKDvO5V3jy3b8mdHYaCiNyjXUsngVq2mNWw06c2xrsxiF5XYsV\n8xxSoEJuVMOsNzCcgK51QlWeYJ+Zx9OtUjpwMIqFqEhGHr/3If/sn/8YeKJ+9w9+/5tzX/s8jk0/\nJoeWZuYEsV/DpY9jsdho5kf0zG7cuh7J2BydQZOOuY10UMA34yAemWPX2iMS1jPo5fno+xvELlyD\no0fkdfPIYT1nxwIak5nVpTRys0Ur4yHkyzKjuAl1BRLOaVryMa6wDuNUiqE0xrpTJTjRIZ3zM2pJ\nfLzxN9hTBj5ZM3MpdYl0UETv7TA2XOLaNTedSotAIIqnq6e7v8+42mJ/mGfhiy8ilDXonVVKkh19\naolYI0PYdYo8EjHFiyKNKJg1WE450btHTHYCNLXrMOrhCIWQen36l04Rm2/wvb98GjlPub5K9JqR\nw7fbzH7Fia4oEAyqVB53SKlz7N3LMi5ssmQNcVQpc9b4AhOHj8BQxKgOWA4/T6Z6G6MWgotzFO1N\nOuYiQiSKNRmj+6FMZ8qIZl9HwuhiP6gw8su4Kzm0M4vIDhutYZ35xhyvzgbQ1FX8NoXY+RB6+TRD\n7T4bu27cSp1GyceR8ZBnvyLwR+9+C79bR8Q6S7aWw3oyJJSQiRgSFMtaHKUTiod9QkIUWVXxKQYa\nh076fhGX1GfBlOZ+ucGsEqc82IRICstkQiWfo+PycsYY4fjoIQ1tmGhKYlc7xKVz88F3nxrL/8nv\nfB3NWg48VsKaEqNSj+pMD4s7iqh6cUx5GCst6pkRw76dtz64zaumZUZTA4YuFeOJj6ruId3IPtqq\nH02yxTZD1j9+SGr6c+TffUyteQ5dUMvjJ5tYT9toCTpiJjfavokjtc9MRKCrkXE0NNQN72GzFjm1\nYmc6kkIqJmkOO/z/3L33t2zpXd752aH23lW1K+d0Tp0c77mxWx3VLbWEIpKQxAJMMqwBPHiMbWyM\nmfEMWoztBWaGsTEeexzwMLPIGBCSJbU6qXPfe/vme08+dUKdyjmHvWvX/HDnnzD/wvvD+37f53m+\nn6d8L0tKXMeZUPAIbvq5h8ytL6MMxhS6I1y+JsmJxaDTZLVl4yDQQTg44vTmIUrqBOnKDyL0bZg5\nlY7VYkuwszC3TkOI494uMVZ9uJuPKDtHJMKXCM6UaGxsYmYOseIjuk6Btv+I6289tlee/BvPMOuN\nIIdlStM0VeuIvruOfzLLnc4uzZGImSyy2g7SH9spNsYI9ia0+mjeDWSng4UNNx5tzFnTzlzrgHFp\nHqFpojo3ubJwRmYfwhWNvt0keW2ZUS5NZ3zGRO6i9wb4gyECK3Wmyx5UfYtav42zb2FNuwynF+m4\n23RND8XSTTb7BoWFZ8ndOiC0MEe/3CX99AfEnv+btJsy//k3/iMjBeKyhL7SQrQNqWYjaFEH794u\nMpqvYD9YYpDfxqWs4l2rMqg1+PD1CiHdi0suELEpxDrQUvp0KwFCgS6CzUl3EuaNbz4OSH88+AKd\nkcKNO69z5Yc/Sa0TZEGJ4lxxkBk7OTD/ijvffoA7EOPkA4vG9R5lzxgzuIonXkH2eZHVAqKtixFd\n5unuNokv/BilnQHyUhHbaItJ2IlYEdi/WcQVmDATl5geaOj+Ae/tv0IgucKKI8L+2T6Xnljg3DpF\nXA9gv/MOiqDTT6RZq9roFE4Q1UsM0gss9k3cUgB1GCZvD7Iwo/OROZnvnJzx9u/9BR99cYWzrxfZ\nOb1BOLBM0PMYtYB4RvZSDavXpqUHGQXb1LcbRC/ZSVpBCveP8CoWY9uIafAq7WEY4fIa06SLt/7k\n19nef/wu/N1LP0IpMCVzV+IppxMlpDOtNEg+sYqzPsPWlzaYGHssBjro901Ggpdh1473h2zsfdBH\nUs44V3V6FTeXxRqvPnwTv7LBslwkU9hFn+yxE/Dw3BfhxS9+glatSbiyhGAamJ4h1Aqc7oeJXYDg\nWKYsTfFOZhlLMtL9A55bnmD6Inzzldf50t/+fdTCDaqFOfxdJ3Q1gmqbZ555nmE4zvh7Ffqyjpx1\ns6KXGJdj1N0J+p4qts4p9kSYG29A3OlB9hVRx0EaYZm2q4ckK/hzEuHEGp6hSKXjQFPCuONp+vIj\nmnYX7ayLm28+Rmpc+/GXqEsTNHec3v4ZoqCT99+nIdgJbRkojhDm4QyFyYTSWGX14gw5GQ4Gdzh8\n1KUoFfDEnWSUCZOdKfPrGvVv/gmNSI/k4gyWM8F0EMan9cjvt9jwdBh7oVvX8dYlRj0X01kXnOxh\nyS7OSi02ly+xuJCkqIzocErp/R7R+RjZUxmfx89ZZkTIX0c/7vG+nKBzck4nZxHzbFC7/Ze0uiaa\nqDGrlrFN50ldqOA6juOa7dLrb+CrhpGaQyYpD9m6A/vUwRlTAq4mreUZNidBHr5+zuzHwuwejgmV\nuvRW4+y99xZ//+/9NVCi/tVv/YuvLXuXqS562ZCGFNUIUdFCHjnpO3P0rRYTp0zOY8M7qnD0sEkg\n4SDYSFMvjkmZXVRljUjMRaNrsOBRkXtpdvwNLqVnmJf97Djv8eB7r/Ljv/TTVG9nmUsZ2F0xyGVp\nnDThionq2KKt5nHqEVKpHka3ieQWqQsy5+Ypc4tbSEMvrvl5fDGJE8nO249usTE3IfvBAC3kpXjm\n5kG9DgkvcWUN3DUWuxa1wz6za0H6aozcw/vcGg9ZmQnx6rdukBJUJpcHPHO8hHvFQXunSc10IKei\nJGpeVKPFOBCh9d1TriLyB2883vp5aitKS6xSax4y9tnpqU7cpoZTGWJWbEyuiHTLfTaXQljCBcaX\nejSPBpTbORJxhfxbbaKXgowrdgROsB6eIjsW6XYNZHFKRzGRwiKNu6fMR/oEvCPqLoPIcECtuUqL\nKZ18BWe/Q9jmR+nXMW0Wp40VThwPGBWbLH1yjYYsURk4SH5EofvOOQuba7SPo2hHFRJ2jcKMQF5Y\nweapkE70yIkCIbmKMvUz5/Ci2SK45HsIviAPWiP8SYlKs0N0WiGveYhtjAnkK/hibRytHeruPnI3\ngRzRkW/XCLac+KNxvvlfH8vdmy/8HHfffY2Pza1SzIqkXD7a5TGJfTeBep2u7sBxZrDuGHF40OLa\ns5+gcfg2katLHDZ8OMNHiM0qyUkaa3iGO6HjVkTMYJJBxkK1u0G7yTSl4rZ5OCxkWR6WyKsuCDgo\nHQ5JhcdM+0OObT5mnDa81QDVwSK5g7dpzrlw9bxcuKjj1E2mRRvmM0/T3B3SjYwZn+0yn1KIev2Y\nYo/VE5Nw3I80PqagXWThR19k5XMLSN8cgkdj2SNgOhwsJFfIPMhjCHdRxS7OS09gvnFMqbqMHPGy\n/6jOlS0PIVeD3FGXekdl7Cty57XbAFz50S/y4StZhLib3kkXMVFhWRfZ/EgSOZ1EuFtkzkogNifU\n7S0cbReRUIC2zaIy5ydUUSn1BUbalLHfj6fkpXhFQuzHscZ3kV1RskKXznGVXafGYs1BJlBjuuNk\nIbLE3kmNWMCDNWoxPmgwNpPYF3qUShopp8xo18mMV6RkTJA6fh4NKyTjATzhOoGygKEWOBp3Gb7v\npnt8xKe+8hkmlTQL39dj/OExhbUVEg8PqbhauGxbRKdBGtEeraLMxY0mkstDt+zGOTtATun0KzOY\nizGsm3kmT42xawOiRQNDqdO3R3nr298AYONHknRcFlc/89MkOgk0r8Qffe/r3H35Hk/NK0jNRT79\nk0/gkt4lKV8kuVnl8IMM0tljFIsreETYd5GGmWKxUeHhcZPGYB+rtIjiLPGwYXF14qXhUBnXEyD1\nCOkqll/j3D5k4aUvc+NOhiuxGOepcwLxNOfnI2zLy0QSM7zzW/+K1aWPUa7ssMwmtYiduWaHjNLj\nguWiZxM5mjPx7exxfGuAOr/GtCyR7x7i+cQFpJqdgEfBpTeYsETJOmHd22XkHtB71GRlHGUlHiP/\nSCSTPyAxewHvfodAXyYgDUjFgvTTLaS+yJIrxWuv3gLg+xcN0kwxf8hOR9/EtzzDICKxVI6Sc7eR\nd7cZpJ2oR2AEFmi0T+hddGDe8+ObNhFtMdyCjfj7DUJqmpGm0oqGkUWT1JULlHJDGuURX92IUbr7\nNllMig9OmI3M0dkF8WoSdyhI6fSUy3EHctVHR7GwXVzA/3yKO7ebLDHH8xMyc74AACAASURBVAuf\nwlsxuFs+Zem5GIWbGXoxF0uWQPcGXEl7+O7edaZ3qnzm889TuCMwtVucreqsGF3e//ABSXOGGfUe\nW88s08xFEX193PYCtaqPQNdFXx/Qafapvv8WmtIi5vBxy9ugVQqjpRvM+Hy8+vU/BeAnwxEK7TAJ\ncZudmp+gW6AZMDFyCeY6TlzdClIUDjNvsrBgMHKPaWfdeKvnjIM2dMHL1USQrFllflZheNrhIBwi\nYYugdsvYPWM65phmMEutUKOws8OKTcW+J1KRR/jtDWTDgRQagRyl//A7jNQFVoYaI7FPoutnbs7O\n7U4BV+07xC4I9CoZuvaXqK+ck646aU4s0gteztrbuCoRCmEH8+KERmOEuq7SaCuoYhe9sMA0kCEX\nqeMvWOw3CsxXVVJrBtmdLH77HLaqh0CggT0cxCzbSM1r9Adteo/g4cn7/IO/99cAcfCb/+zXv/a5\nn/8i+aM2Ma+GZhfoaRZGUqBVWYYOrA0CDKchkhdsyC9f54pDI2cz8Xq6WFWdZuyY7feOELUw9rl5\njijjzCxwGoVCscKs+ymWfDYO/p/vYnk1+pKboU1GCS+R0Ypkix38PT9XV920zAa2Eyc+h43UswlK\nwoTlUYTJZT/Cfh3NPWY/18GrGPiiMVakMsNUgKFlIMYHpAYO1iJdek2F6UaMzrmNa6thPrz5Dtq0\nRbqpEas28Ug1hkSIpjz0mnZ2JgaJlzRCPQ/S8Ahfz05XbzEQy5zeyDH7I3NkpwpvfOOxovKlH/gk\nsfkiB7su1v2zqN0UnnaZ8p6JY8FOTOhyun1G5HOXcOb3ydsTuBoltstD1JUlzvINopd9OMp7CPUA\nykwLo1LEXxsjKj16JyViNJE8JrXFeWq5Jh41zH5+n2tXfNzfqzGbCyBqGcb6EDnsRYtoHNgPGMTn\nmMk0yB4cEVGdBJZWuPtHv08kuYUat9HNrvOXb+7yzBMJpnIYt+0UX61MBxdLc0FM55CKeQHtcoDL\nl9Jkbk/oRdxogo2+4eBiKsnxZIC3MsJqGyxuzXKr1MFmPolaD1O0P+Dwbg6ev4p+2mP8rJ9X//Cx\nMjCcmWdr43napQy2CyKWzcWROWHGt8XuyTbpBkhXoxQabVxuP+5xkzv7eRY/7kWdVhnLi9x7tMP6\nhR/gXDdpni/hj2o0T/zMG1MMVUVfWqXcPSTVL0K8RWRyjdbSMjNRB2WtjxafRaxW6S3us78noCRl\nfOqQuekS8aEDT2HIdkPGUyuSL0eZ8xxQXfUxOpR4sJ0la9nQTYG6z87Ck5/mdmVAXQ9QNduEymPe\n2N0mUe8SmbFz0m7SORWwmvfJixGkmJPgToYPOg08sQDX4lOqh1P0pSPqOsjVBHs7dzGUFM76KR/e\negDAx7Z+lMFpk8CVIYrTQ7s45d3XXyFdyaKNRZThlMOej9RMBKVTYHjBQ1+fwzDyhA/6pD/9JHu1\nPVZCCZQP3qezdox4JmKJ9xij4PHWqJaC5D19Urs9lMUQ5b17uC8F8HlclKpd3KdHJBJzFCI15kZt\nlIVlEmca1rJGf2phOMBZOsGx6GF9JsqkU8G3H0Vad3PoiTPKhLDTZOXCR2jkssjXlogF0khGFMeg\nBm7Q23EGa+dYdpnZRTsWBxj+HonQIrNrM8QG8MrL5yQCTTpjnaCsYgklhicDPMolJmM7r3tMMt/5\n/+281LOM5UPEW3N0ja+z/f/eJBq3Mb94laVIlpgvTPlGn1DXRwkZadPP2sRJU5P4IFuitHeGPNZJ\nrsXJ2cpI/TSZ5SDZusmm18O82KIemcHZHRCJ7qEpMrGOxCN7A/exweDkLq5VhWm2wULQwe03G6wM\n9/ENk2TOXUw3N2l2ThgfF6nHVSJemW1PB0fAzdhn597YQVvZ5f69d9n64a9y/I3/QnLr87j0MR9/\n6ikah9dxx7d4cFome3xOqWRwP7tHKHWR5QtrHN67jjGeY3Qxh72UQhBFXMt90IOMzk4Z92XM+2Fm\nn9gilOjzl7/3+Nz++9/4DZQvfxUtE2K8u001U0U/rWLLglqzs90sMzI2sLt7FPJjfO4upQcO6NUI\nLdtwzUSR7uRBWyQYU/HX4gz9BrG6Tilsx3+4SThZwOH3Iiga6doTTB7dpx2LMT/qcOqE0FAi2vFR\nMExe3u2z9bSNciGHt+ejkDnGbq8TeH2f6pUhAd1LxDHiQAqR/N7b7NntqHad3fMznAxIuy6ze+Rl\nGD7DXq6RjnfY2TeYd3gYRkXC5iyHoQFK0UbX1kAyJBwjA3WSxri3j6JPCW7MIswv03eWMOtNSO7S\nvVUgKvR45XuPM5/rW89iBEec7TSZ2xzQboskTQ/zq1Vuq13cBRs5PYLXUuhWI4z8DZIPz7B/xIft\nvTyz8xGMWJmII0p2ssR0fMQFd4lpt4IZ+ij1FTdnBzLapMLSlRUKeofSUYxxVcdhy7NbH+Mzzuja\nOowrD0jLAjW5iMuIckfLYjRk2oNzato5l+fmGCc/wq3X7rL0rIfFUZQ9oYhLqGEt6cjXu5yrE0Ix\nB+0bZ5jhizgaQfJSkb19L7OXTsh15mipbty1FlLLzx2pRNAeQ59LU8y0Oeua1MUe5XKN6IqPiqdD\nPDiD2z7g1Tdv8st/Hbrzfus3/7evba6/RDPUIOaymFYTaE7AO0XsDslWa6ieCUJqDvl4QvzyBcbq\nlLeLJtVEB2FToLgfIKcGkUMquXYe48/yBOdF1hZ0xMEhtuSU06wD44VFpp06p0ORaekcvdDlxR/7\nKq1Olmm3j+ro41l6nqHsYyqdYbuTxVtsM9K6DPMdmi2LutgkWGkymOtis0zMWoR5W5OSpBAXG/hs\nixzZAgzbJS6uzXD/zrfwz4dxnug0zs4xVy9zdLTNRjyElVqnxoSqvYpbCjLYPuO8YOE0NGrCOVKz\nhYATRTORcudovXO+++bjn9pXPv9FnDmVdmCCVwth2u3IusAwMcE7dnBz+wjHkyu4XQJVcYDSLTEq\ndlgPB8iWpyzHTzFuWkiREEepPI72AqrcZeTXSZpzlH01Gr0hit2Nbewl3NOoWjvMzi8wOPegDKoE\n2i6CawPUSQ9D9lBxdBi1CwTCVZJ9OztGl5x/Ds26j9WJ43U1qJYjLNjPefHLId65myMgaFhdB7o8\nZeJo4hITeKYetAvr7L21z04tx/InAxQLDt66U2fG1cCVlrA6bryeEb5GmN7URas1wPvMAE9RIT1v\nIY11FtoqhyterJ7Gu996PERdmUkyry5zsGcwow0xQ6sETuex6TuEcFKf79M7njLNKUzMCmbaxxOz\ny2SzTYopD6b4IbP6OsfTAyR5THrnkNu5DuuTBuNZB4LcY+KYMq+EqexkGKlR5NVl9usdmq/uo6zI\nTPsCLorUlRor7hDm3EUqBY36zIT9wl2ccy2Sco9RwI/LEKmdPuK3fvl3uPYLP4x6bYUv/exPkB9N\n0HMRTvMNOr48QecVnP19/Ol5/NMB3WM7TCTGR1NidQXbjzxNrbBP/dxN2AnElzClKcLZhOC6h4lt\niJlx4J2/wG40hdfVwyFe5oO3HkNKP/uly5yqPbYkNx7Dj54/wv2xTbzJp8nW+3zoqhAdiEjRLr2i\nQe5hCStX4eT4EI/io2WcMT+OMi6dsiOtYDZ03JsaSW0Bc6bOpKLTOR0iWmHsURP9yWVoN/Hvj6hO\nzghtbWB4I+yf1qAWQbflmHnpae5lK9SNXQLjFtF5P/W6yLFTIXAiM5itYpuUOW5UmQvJ6P4+h8dd\nDvdLmEMXiz4fM7MjPsx9i1m5gtUscstVYbq/RKqT4/i4hrS6gi8LLcGicrvAcGLRShZRDxN45CMk\n2clRq4wUDIFmIo2LpD+W5pX//DhYvnr5kzxtTxPzVBm3NAaqG4dksKk1OJpxIt4Rsc0meCjk6Xdm\nWO46cK8Y9GMT0hOVy/Eo75TeQ5iEEQyN7ILKliLQsp9Rr2iYmpPZSgltUCFjrTPjy7JvVrDlBnTi\nNdoHuwzndVY6FV55+2VedK8gaQGKXYnNaRBP2o2lStD3Il3aQrxTZ9ZZpmYojLJTdHOENzCkPGjz\njLhG5Mo6ijyh8ugdzrsKU2+NvboH9/QBA8lBMOyhlXkHzTvE1ovjedLOVGiiWDN4khYTqcT+e+/S\n8uvI1RSO6j06nSP6H0Rp1ia89e5jBe/ST6xw9w8ytPJn6FqQEm4uLigc91JY6iGhcILSve9QueJh\npHooFa9T0IZ0RImwZ4kUFoVmGcOjIbc8FOo17OqIW90GE/OAi71z5NCA+uIKkXcnPEj3aD7q4XZB\nTtfRIjm64yptt5Ng7x7aJRm7qNDpC0R7NbRJiLnvv0jWvUFSXCe1UkU2HPQ7Jrdzp1y2p/EsdHAk\nXSRMg3jaxyh+Qteo0hEV8Eoo/hg95ZTZkMqAANP+CXIzTy3gpN2sEuhqFBvn2GIyNjGEaNpQwhMm\n9gGS1GDaWmP1gpvdh8fcufMQgJ/7X/8ODUeZhDdGtzdg58GfsTT3ESaDJOHTIUfeKklrgBQoobgj\n2FdkaqM1JkKUYv897v+b38X9U0uUBjUqJwc4N2os5LcRilPcUyfe+CnnNwVsZoyrioeZO0m6PgHb\n/Ji2z2B2/WP0OyY3Kjdxjz6KNxpFrw9QPjLH8KCDaxql463iHFwgbq3SPM7gageQdk7RV93owgW8\nDoPFxiKtcAdZaFE9nBJJuBm151i2TxnfOcHnCFM3BnS7TpaNCg1biPbEAwk3x/kPiERWsSpjxLTM\npa0YvZQTm5Wlel1gWBVxJE/48PUD/v4v/YP/9oeoX/tf/qevfeWTUcZ6F0OLMhZiCMaQXnsGtznl\nrLmNa9rF5qhiTQcUJkWEYZ1X3szyzDN+ur0wtrEd0deiedNAbUgcRb7N/EBFKLi4rUCzFcQSiwRF\nG5lykJhrSHWoUIir3Hrrj0j1w2Sds/QjMv0/fJeGqWJNNHbbAWSfj3vHDZwemVh7iWDShnPiwaaI\nREdtTO8IR9BCE+2cOGLUNZNu7wyZMCW5BgU/5pUAw9kxej1FXp3j48svcK+1QyTgR5L7SLkIhnSC\n2Jgh734PVyyCUQ/S7raRozod/zxNpiirs7zxp4+5PV9+7nN8UFJYi8cp9nKwd8qpV+NSNMB5d8yK\nf4nXX/0Wum0dXzrM7ZsPWX8mwLTsYzQsEXbYuDc9QFkIIws+pKGArSyQr6l4lBpmZYLsThEoGnTn\nG1i+Gsr6DL3DIp2swuBWGe2qRHQUpxtYo+/z0ThTsLQG2TdVLvm9nJoSwWCJzr4Nr9amkXiKteyQ\nO+KY44dfZ84V4pEwJRloIUVEYsMxQU+aTCuD3zZDNVdhTpvh3YM32JpfILwxQuo4mXUItEQ7rqmJ\nvFaicJYlEjPBG6EtT7DnIsjyEEvtEpza2aPB/VdeB+Bv/eIXyZSuI9iq/OSP/BzS9UP653n2ByHC\nFHENV/GaAqVoFYfbR8rocGxVsVp91Ok5h32DWt1kdqQyMgoU3BP871a5P+nivpwit9MiWbchpUZ0\n9KexPHasXpPmTpP+7jZbl5+mbTWYSS9QR8E4FZAcOkFVY7k+YsN+iU54ifGjR9hEnVbKRf/6Q57/\nygsEX1ynvbvPd//lv+SyL83N4V2MoB11T6E9zYDpQKvv4u+5sLwBrFgSh7+B3dNkPLzH0KOhiBZh\nyUAr1dGbCaSphqhZtE+OcElHtLdMtIJJRDJx3nqF13d2Abj00mdY7BjUHRXaYpSut47s7KDmW3Rb\nUzwOiVANrMQiNW+FlZUw8fk02pMriN0pzbMhe8Eh6ZQXzgpocY1OzUlGaCMUKlhSGqYBBg4N11Bn\n4Ykn2Luxx0Txo9YtGnZotxsoLolupEbcNcvR2w+IPq0hj2Lo1BlMvVSNDKNJlaRNZpLr02qEGAUc\nNHfstItFvA4FV1KgJnuYzrUZnCl4rBNmr36K2c88Re9GBM+lBO6+wv2D+yTCV7EMkaHtAMOtkrcN\nGe2Nsa8XEB0J+i0VsSvRu79HaDZGsd7BnDh489uPA/mbP/wC6dEiknyMKOmkFlQ6jkVafYnhREU5\neJOxoLE+C+qMk9q4xv5+AW/PS2L2mJNWj2A0QPHGa5ycd9AdFSLuGcIhk3RDw5CH3HDnUYoqrcEJ\n7eUh75/n6U2CKNYcwdUkmq9N7Hwe/amX8Hv9tO0KuVdOsS6cMgn28Pn69IVTjv/TfySwkODuCGpi\nkIBW5ZE/xIxoEJ80ePnha4QNN9aSjwX3czgHNXbdA9z1BpXOBZzTMvXjY5aXLXTZi6aJdEQHui1A\n3zzDe1ZD6IcJFLaIjSW8T2ax3Gli3TDWcpfv/vqfkbWOAYh0rqF/9jILQR9mzo6hdxk93Cab75Ew\nfIylCe4ZCOgpmqdlFlNpjHCTztCLyzElNZOgdXaEXAgzMoucBF3MCyMi65fR77/F3uaYGWmdij3E\n4CCLzbvKIF/E0L3MKRlG2SqlegKbfJewPE8pNoO/5+HkoIUYEhgOBfz4uXc2Jls7pzM6o73Xh3EE\n0esg0N/DkmqUfEGqwxAhR5D6vQ6OeRFfPkxRczA5PeLj/+iztL47ZHv6gMpeCu0FO2VjzIX6EjvF\nBiNfjnAnjUu20/TGUYUW7tAqG09eodJ4QHq8RHK+wNf/6nEgPzD6OH3CRIwcrdA819ZTaMEc7tlF\nDo3bxPVnULQ8iZiHirvCp7/84whf3iG+NYXZBZKRFnrTTWvUxvMnOxgHLt78t2eUPu3F2E5i7Ra5\n8Z9uMW05aLtanGsS64kNdmMg+UPEXpijutdhsTzE7khRj7lZTM7g8Zc4UmtInSMm1pRWXWZEFkm2\nsIW7HDlNuvIUd0plvppie77OcLvOsDWBmRFWb4OBVmK67qBePcZ2wYOphnEv5WndCONPG9gdEyrV\nEo6phbtdIZxO0yu+zd23M/ge9cmKZVrVBm5vkO1v3eNRdpd//Cv/5L/9Iep3/q9/8zXv85sUdzwE\nfRAoiVSEKbbRXbxHHeYvvYBnNc0oY9I0zxmqSUK3RBIvfgJbacThSQu118XVk5iJangXajz9qZ+E\n7TKvnYNgNBhp8+AWud1oE+m7yZ09pOKdMLFN2Hn7XZwLdqzbNqxAAy0+ix6Y0K/YCLVFekEDSXVx\nadaicargd40pUWDOpmJNUgS1PpmxD6Vn4ugE0R1HBMYSVjnEoDEk0uljzwmkHSEU1Uu9PWSvfoRj\nDqSATlXt4pBrdBtxXNYhIUukovmZc7fJZ8Ykpy7Cm348difv/9U77D68D8DnXvo8hWGHuNtNbdJn\nFBSxhnUyO3mWZ2cxgkW6JiybAcaVM46NPS4Hvo+K2GW4JRGvuwlvBHDmK6g9F9XiLoJtA2NuTEhY\nRFb7DCZ1kkmTkT2Mux7jbHvEsJtG1vJIhpd0SuDA5cXK3qcQdmGrubGpB4QXwriDLs727nDNt8lE\nOieivoDHqtPriBzdKOAJryMG0rg+5UO4J+P2HXPFY/Irf/RfUIJfJPvuPe7cO+NwepO077NUXjtk\nWpTZb15HubDGtZybDAbTgwE+2UVJHzNVZJyNHr5xk+rARWm+z1zJz93MKXv3HhcQL730E6SdIH84\nYtI+xGjG8XzKRPNZ1EJDSqkpzbYThyQRqbY47JmEPQ3ozdLcWORKK4CVtGgOU6xYEcq1Os7NeRav\nrSGfH5EIeJDTDQqCj/OHx4xkhWCrSaDQx7fsRliKQsPGidUlI71CxPYcjUfXUVwWxUGX2fkaSktm\n5GmxM5DoT3r0P5siu1vHzNnYSk7ZjIWp1fvYjgfM171YTsg1miTlDv6NT5Ct9PAO6tS9XQYTC0fO\nh0cy6ORs6LER9Wgffz/KNKhyqO8TtM/hEB/Rsc+gtyP4Kn1OFR8Dm8yN9x6vnKcvfZ6emcPtEoka\nXhaW/fRaAZR0H0vokwhO2c96CHj8lCcxTvJTtH6PobENbj89e4t1VaZQ0DEDKpNWn2GvxsjosChv\nEopX6LROMVxlBi0Nb6GFTzjCcXHI+URADxRR8wF2ituEehdoSHtMZ53Ub+TR1CqFJlj1DEZnhWHn\nCKfopxqMkJHaeGxNIksd+nKUWKPHoOgk54KtrouFF4PcvKHzyz/zTwh/YQt38Tq2/Qb2BHhlP55a\nDd3Xo/AwiJWewXfbRnBuyEjVSbtOmXhMpFaN93tJ1KQdJbiP3SHx2jcf2ytfWf8EZjKFoy/SdMRw\nDPJ49S5f/3d/yOZHPYSFGNnZFO1TB4EDC0XLIAgXCMwL1CtrDLoqQZuJx7bGNOal9crb9CevUxAk\n/KEWidHLPDrv8RcHB/QvX+BBdo4f/OyXcAQtAoUpnr5CZZSkmBmzqkc4Dxzz1IVr2KR79DpBzmoG\nWj9E5NqAJz4foVLLk5lfwCa0OSqleHFVwLNVRXztPjPxnyYQ3OTRnYcoI4NirsmoEiUcnsNtr1Ew\n0pyJ3+bS//xJxvdsnAbmcfsFlBvH/NrX3uCjT7xIR8lhu7iA7m4yqtf586/f5VI8ScfXYV1Z5NWD\nx5+df/ob/5jqpEdv54CX//W/Y+mpNVSnm6ggUks7qdgHhCZT7rbaRCo6xRmDuBHDZwpckkcMbSb/\n9le+zoziJ/aVOJFph7f6xxxsv4yx9DSNmyZrT6xxvnedf/4v/jl/8zN/g+70lMOum7N2BmnFRahe\nwrz6ERq9DgNjilKo0/dHUa0WrVeGHDr7+NjmJ37nFyn//JuUvAn8gSbR6hl2b5LtwjxexwCfTWPP\n3We+U6Cuh3mo3uJiLElv6KX3zj4nepfWuMcVzUHWiOMttREzKnJgxKXUMjumhmvzBFe0wd3ahOnO\nCeNbedRAjd7KCoojyjf+4PH2MaNZFj7tQLHB0iBJt+fgpNel/WBCp9hGbDmZGmP+/W+/xtooRvX5\n1xiuXCJ3dovDb0q4kxEka41x1oXqn0eaucbWp+zkXtZIzAQJjzUuzazTv7rJ5oqGmSiz066RuqAg\nnsKt4zznf/EfcKx8HmVOZK6ZRwlr7BXcuJpNHKID+VQk0xoz75/iuJKmpAgYukR+7xzhbIrgduBv\nd9AVg1LFRaCtIUZquLwCfUNB3euhKzUENcV8Po1UKzARfZSCEWzeMU/OJaj4auycOlhUoBhaQlwD\n5yBMwFqjP6OgqjPs7N/mH/3DvwZ23j/71f/9az/9wkdpVgWmZQFJGdLsNokYXvL1POmffZ4bf/EQ\nXTRIzyUpn+9iXIvQ6LXwyQ464oiVmSGToEAoOItjP4rSG3OWGNN1NonOXSG+1cL9qI0+k8Bn3yGo\nOElSpn3vlPI7dj7xM99PXywynsYYHWVQ6DKxi0w7NjpDB2KjSIYGbl3EuaHy5OI12hONaEAlf7dI\nV0lR6Ykk5A4nloHtLZHCxQn1Uo6xcobH4+PE26dvHeGMJlCDQUZlmI5tiJMeS8t2PthvUR7G2BR8\nmGMnnYHMVC7QSplE2yLbdzOk1iO89erj2pfPflUlTJhdr5vVsodI34876KKTVQinI1hWE6/l5UPh\nLvc+7OEWNXYH90lWVRpdhajeZCSfkjGqzHq8VAIJBtoxy5oX0TPirFRHS8zT7EwoPyzhXNrkZLCP\nvSIjuDqooRC9cZl8z44S7uOUkugXjnCKErbqiL5s0nHHyfd8LIwlqr0KPXmG7vSMZvsBxnwPu2ri\nKsWIPOngnb/McD/zkK/81K9ROjulNrnFtRfncbk9zE40fFHQDQ31vMxxro0WG3Lpc8s8eNBiqreJ\nbE+wd2towVW6Q41msEO6lUAUz0klL/HtVx/bK4v6l3Ev2FhwvAdiioHyGvPfp1E9LBLdnyPZmODr\niniqGnIywnb9DlbXjzIrUrtTI/YFB5WeRWhUxitb6OEKJfsI5eiE0TBMWzDIHwZphjus2uzY5CG2\nsYUvpVJLeMi/84j5JZmAEudS1Md/+D/+mI/93BLWwX2Omg7eufcKE0tnKM4Q+dQpul1lQ1ihM/Xg\n7R3RLD4J1SrZD200AvOkvlJnoWlRULdJFuc4c55jVicgTZlbjjAoHpF1jRg8GjFNO6EzJV/zEWgP\nGCg1hu4orpMeRsBJyBtgJMu4og6ORhfwZ8K8c+8xNPILy1t0JmtEegvYvQ22TyPMPbFCdS/LJV+K\nw30X/tiQsEsmNujTrE4JhETG0w49R5zTwn3SHRkrJeHZBUW24X5hAU+lhNWrcN53Ep6fkieFGW6w\nIjUYqU22t11sSl7qbj8pucPZdR3tQhsrmMKhZTm6PWVsSKxGdewJicquyuRqigQFevSx+3w4o33M\n8gKRVpXdkJ2pPOF5o0XRnNI/yZNtN3n6qY8xHk4JRlQeTQ1SQ53GYAVxp4xgtXD1O5gxH09O7Nx4\n7y0CoSlqTaexOeY8Y+OoccIXwms4T1p0P/kCr//uHwPwA1/5BJFGmf4TOp0zhaBvgnqSIPH5DSq7\nNUYbOv4PHnHh41eojrOcBCQy97eZ7czgE7swDLJsSxOPzjIuFliMPU2lYyBemGcSlfjvfvR/pPoL\nx6zO/m2eCD3BxsIJ3tceUm1UCQoRjDrYBl7QBe6X3sRqrPH5n/kKO//wV7kvlAjoBtnpfezGCr2s\nHd8XniNeidL2JGgZAkFcrH/M5MPf7hO6uky+tc38zIic0UP2nOPRaiTbMjWHl2W5y+Fv/i6RQgGX\nfZbGw/e4vS3RcDn52KefRYjoSHmTVOGUukNmMFLYWJjg0AI4ZRklmOGbbz9WVK4+5ySixjn78zxm\nSmAl+SRKrUHjosg3vv5XLKx/BD3UhugKTE6xj2JM7BPKXQdZK0r/1gf8xA/8An/w1uuwtkK2IzA5\nkQgk1llWp7iHfu7Fvoe75uOrr77J3id/hnRpCM+oCKEuc4MEqZCOVzexsjHsMzrtepnFUhlnKYnm\n2UaexogtXSP7UzfxTSZ03zij6xTph9qcVUx0q8nyZJ3cOIO7Z6dseRBtJtZukUA2SCEoEI5VUY8j\n+BI6xVqXaLfN/b0dVp5wsv6Tn2X7fpeN5C4nXZXu9TGSVkc2OnyYnMM1ewAAIABJREFUs6M1PQRb\nZQqDM976zuPOwd/6P38W/TyPoEtIehTBm8HW9jDo2rn4TAJvP4y9PyWxFOfMjBL3+xmbRxS3A1jL\nNbbiT5H9xrtYzyZICxOcsR67O3HiH19kUq9wf9HHJDjL/CTLoW2bWGmB+w9eQQ8s0NZrPEudbPGY\ni9//HErxkEEgypJXYCc3wGxPyDclZmaTvOBZpOcqEugHELsGVsfA7xtxku/TK5yhe6OIPgFhrDHy\n5AiIaxQW+0xvnjGQQ0zHNpKNCt14g1wth1tpMU1IjAchysUck9EiawODnCGw/tQi3YZOXjUoD+KE\nmXDvmWcpf+sb/NIv/p3/9oeof/prv/o1o5xkdjnI9lu32fxkAsepzqCvM7cV5tt/ekwsDeZCleaB\nTCB+Bacrxpbmxb6yirc0QtJVgnUPpaMhRzP3KJ3KWJJA2pMiJEs0m6dEbTGMRgmfo0fk2Elettjq\nLBD8xJBTZ5SGFEYSThmOZRTFS0sYEU008Vs5zJCbtN1GtqMzzZaQttbY/qNvkPn2EaWkQDwQYCq1\nyZQcrEZi1ASVjvMRXmEWWXJzKg4Q8yKmPYwk6ZixBpHZANqqzO5rJ5w4ujwj+5mWHyBsjMgbZUYH\nFWR1ibRvwnPP/QDD2j6+2STf+PPHwfLLl34IKxZFr5d4sHud4kRl9LTKBXnAz//dX+TH/4cfpLyb\n4arfhyAvE0t6MOdUhJ6Dia2Nvu5GepDiiWd+mtinv0xoHCR7+ybptWU6tSzVQRKPOcXmXeI836KW\nvc2VCzGiA4ECASK5DpJ7QE8QWQilcfkzFL9Vobs6JCBOsPojUu4AJ9VTYg6d+7LE7MDi0Bgzs7jE\nBA1Po0KhPoetptOLdykeDkgl7HRfu0NkJc1gVEG72WUybyPUH1KNJWjMNVBPPIh+P4kNN9qNXRwD\nP8ZiBrWWxn5xg5jUZOIN0jq6gWtxjqO8yHvv/lcAIi9e5mrMRaU8hyBscyjOUHm7z42dPvXxlINO\nldaMSntORq4NUAYyij+Jo5Bl7soc7bNjKvsh7Ik6zYGNs2oLW26JVspJxVeh0h9i30ozLzs4cxcR\nDibUXHnkmg9/pUjRjJAxJJKSE778FI7yDgHK9O/7aKX8+OJfJJJI4nxhFdEbZ9ToUj4dYfVziI+c\npLRjRq1zTM8MJfUuLqnGw2//CaP5FH7/Os1+n/j8lPx0Hqf9Ayp2lWRPpLvlxJ9VmEQFjLqC/FKQ\nvDikOwgSQ0XV4EAY4B6rmHY74VyRdm6b93YfK1ErL30JW2yeyMKI6rCE9yRDeMVLNTOlYBziHBi0\nFY2o0qYR8uBZyuGyXEzdfRoVhQ1nmH48hhzIc+5qoBt+Wn0DrdCgF1zFdNsZ1HTytdukpVXyUg+p\nOcT3lE45k2MhKoHRp31iELTFcBtNxiMLLeJAFaIkXdvUWzqWvkOpXqftWCTQ6TIfPae3f5HFRIOS\nFcbtNAmPD+k4FUyjyMLqBj2th7sbR9zXyEyTBFNurM0l1GwAs3vGovv76KExNxA4WsqTv99EupLD\nPmdj4QdnOfkpL89ujMjVUrzx2/+exBN23vjm487BJ7//xxCabs7GTvRIm0I1wIk65OUPfo8vRj/P\nuVMmMirQrFVQTS/mdgfp4iIuv0irPUAcnfPo4VvYhSa9WRMzLeMSnyYRmNC+XuP3f7hH4YMwbXsG\neVKlu79NU7OB0YLJHJONU8TuGQ4FyvkuHXeef70RY1bUqI5KfMQXJ/1hnlF9yKPzIZXXrmObUbBL\nfZ7VWmS0Y2oZGxsBD72JiSYX6O4HKZ885HlzBce8STi0ics1oV8+Z+Y5cLmvkhFE8vcEFtNXuOT2\n0DtoEfFFCLRVLLuFLewnr2js3NgltDplNzuiLVR5773HcNfPrV3l7mGW9GqcJe8MuYBA+NomO40B\n9dM8n/hoAJwy5u4CfZcd7/AU41TEWRdRHVle/7P3iKWWuDS7gCWdc2HtMubsHdz1Ia1wH/dTOpes\na7QtJydf/lvsvPrbjLQhQ9HO0tDDyobBgRWhWxJJOaEt5DkXBugHQQ7694lfXOBhbQ9vbMh5sYgz\n26Q6Mok67dR6AwZ4WHQWYSTQdgSJBkXSGej2WhTTJr2gxUyrQDE4T7Nq4usUaTvcyA8PWfjBF8nb\n8tivn9MycmSVNXzNOOaTYHNJ1EppJEeTujqgLXtYXEvxrT9+fL899WyUXFdGk1zIExNhWMHRDNCY\nb2NORmiSgFqJonl7yEs+qrYa5XKTuLLEqNxgfLBHebXL6vILnB6+ybiaRlnN4vI2WY2u4r09wjy/\nTuDKgNJ2CcHvIra5QP3sFJ/apWLqRK9+me7/nWEScGHTQpxNIdyV8HgdDIIGY73K3X6Wsb6CuZgj\nWegyjurs6B0WAgkm1i0OO17ithbtjQiNXo4gJsV+FTM2off/cffmTZLk93nfJ7MyK+u+76ur+u7p\nnntmd2b2BBcAAeySIBCmKPEQ5RBpMSybJgUeIYfDgaBEUgclMxxUhOmggiYthWhSIAgSwOLexe7s\nzn3P9PTdXd1131WZVZV1ZKX/GL0J8lX8nt/3eZ7PI7kYWkN0Ow5iuRZh74yakMVWrzGcBUk7drDZ\nDIzFJjGvlceCjhJpYW53CL4aof+Dv+DssoO73/6AX/tnv/K3X0T94R/+wZd/5V/8JI3jLkF/hvCS\nEz3qwhde4MHUYE1UafmrbBTn6KvHBI7GbKt70K1yXAN1Xqf2rIxjxYfkqWDprDMITggG7IwPCtz6\n+JCl8x50l48lzxSjH2OnV0Pp7rL62TD3vtLAcf48HqlBsBxAECSIWgjrSaSqScsyQlP3yNlSdIZx\nBtMGIU8AcVYlf2xixkScHQfTVIZcs4d/2KSfssL9DquTFLGlA5onU6KqG0VwcFSG6KRO7bmd2aCB\nLpos6wMOCjPimSArzUWG8oSVSJLZXBMtHuPBX38N5co5+s9afPeHLxAHr/3Cm1hGA0K9PIvuOLWX\nXPz4y6/z7OQ2f//yj/Ofb+3z5m/+HDsnPXJOK2XRyjIGTssAhz0OzTgnKzGMg11u3H5K+G4JV01l\n/+vfZWcSJm5tU587S37rEavLUUJJG6Ounep6lZVJm5OxiiwMSGSsFG/0KLkcGN4Jy41V7j5pMIo5\nsMsZrOqYSdyNve9g7HcRjReweuL0m2MywQUcXvD1ZjinCZY/G2X/iR1dCRPDR/l6nciVDIYosNds\n4Pe3CPjdGCELzm6R5jDIeNSlHBEx3AIDxxy228cUpicMNSv+aQCMBLNxj/c++g4AP/Vjv8Lkvgv5\nYoPuXhh3poMcOcUrn8zi0tr4A6tIuXWc48eM9x1IZ02ad/ZpFHdJ2BK0XRYGySMMWw5F15H8fZTc\ngJnLy4Vz53n+jTIb9g5GsYSz7cMYNll9K4rmEki1Bhimi2UtyJ7dxuFWkZFlwsboPNWVKdL4MsvK\nCXavhc3Nb/H8qw8ZmDYypkHAFcdiLXNc0wj2XOg5O+vNPkNrkviZd/D5c7RLBoF1PzoyTdcBlXKd\nWCFC+JSP1kduLLYCvlyAcFClLyYwWwqnbRqT/BE2a4ySfR9HwoHleMpu/yl2wcH1By9sKa0Ww7PS\nYWu7SKSyxdybV5EObfSEB8h9D9o0TG1vh+5eDKF2ROOmzqxg0Pr2LdaiKtcPD2i5dok2vNjzdZqq\nQfZkwP1UlmnIybLk5nvPtoiGY0TUCgd7x1hHAifNCrklP4NFO01XBGd/h2xOYm9iELcfcUd/yrLu\nxxfbwHt6QGiaoR6CqK/HK2eWOZpE8CaG6O5zaL0T9HyMesTN+dmAjihju3SVraMW9tAyvp5B8mIN\ny6bMVv0GGiauqza6pzaoDafUkxH0QZ1vVe+hrvwkFvEaL33tH1L5mRG9/XUOH/wFsZWfZ371R/nG\n3/wRAGc/lSKVkTmWTU7ev8OZl6w0j7fJBZzoQpfAUYFCbglvP8HWuMrafIRyPYBrWqPqbvDggY2L\nbwtsS150hxND7DAL6ewLRablFdZqEo1Hd7E6pji2yphOFX/bzjQUIGKXMSdDHH03E8HDg8e7LFxe\nYN4TgFYJn3oOvzDh2AzgF+dQNpwkg1nS1/sIDzc5CXhp9qOkpx5Oggc8+eZDzv7EKhWnSGA9Re/V\nNKJu4eP7Pb7yX/+aSXqAIV1mNl7DZXpZuXYKj9MkXBxwrLSIBVVa/hSF+jPy5SrrcgTp3BqjlAWr\n3kBR2/zw1gtQ1N/7mWWOY1cYbI4QFsP0qyYf3ynyuYCE76zOXM+KVBEJvhVHL32E9UjiUAqSeX0V\n97cOuPipFSpnAywst3Bu9+g9qbN8xYHN70QlR+VBAYta5943W7z0lkT7eEbWI3BKHuB/+xOUHzdp\nf9zF1xN4PiijDjo07z1iOZMkHN5gmghwZjFJ9aSLy7dAJTgj4VRpvrfP/FqMsuTGq6/SWEnQ7N4k\nbES56TNY6lk5KdRYGznxuBQKLp3pcEjC1ucoMKCu+Sk9LrOSjeMau6mFxjhCKgl5F1ulj1e0cuFM\nAt2RRLYE8d54Rr8Q4cNHL7Kyb195mc5gQmK2wEHxGfWhl+isSPUwg+Osnf16BdkWISAUmGl9BLGL\nJ5llPG3iFtsoqUXidSejrIVA2I6tNKMqLBCNdsg/uk0jk8MUHbTzXeYvBJE0EbfdRzYEN4cVLsys\nJHsdNDOP/bSII9yhUnezb9shl1JojWycKvmxlfawJDSObvnQV9JE7S5SkwVs+SaTDSvTHR1JSGNv\nDrFvrBLojzkpZBAcPWzhCIvHLar6TdqGidRUOdwBi81C12Ni3/axdyAh0aHWm7Gw70YuVZkS5I0N\nC0+HRwSHIpsfPeaXv/R3YPblX/+r3/py6vQyyxcshBQ7rbSdfidCb/85qdEhhUWBa+4Mfc8+6f/l\nbfq9p4Q9SzSSXhzNY0Z7PcI/0mH/1oyRJ4Mi9BDvPGZq9TALGbjMeYxOndlJhkmwjLsy5WqvgDsi\nMOwukY8uMZX7BLZPsIxDiJEao6f7iJcSWLoOFs5F0Q41BqaX1Yydk8aAZztTwh6VdOIsVkHh9tFf\nErdGkX3HNCSZNXUe27kQrb6FvWGRXibL6midPbPPpFGi2q7ycibL1OHG0FVCZZXgOMhKoMlTeRe7\nL4340hLNHZX6toppynhUP8eWLrfffw+An7q8jmJPMhBAfjlC90jk//69/42rZ76IITXxGg6efWWX\nV84v8bBbYiGcx2xFmbgN7tXLGHqLVW+cD/7mr3AmQdopI74eYfsDjfRLElI7wFK2T6AlMgqkqPYs\njCc7zAc91CtFIjYFfbCMZLPSGw/pB0e4FYXoegR7T6QntRi3LPjqx7QSGjb1mOm8QrS4iCPno6MX\niIeg0pxi849wF1303BKx9j2GERicKuF3HlIIeKhWBqyeSbIpjRE7YdzDOMZIZnfWIobJ1JalOfCw\n2NtnoFtoS0P65RqZhTAzRw/ZI/Duu98F4PO/eIl8rYs73qVrG7JftBCrtdi0D2mMbbjsZZJPZcKJ\nEE/DJko+hRCtkLMGUU/87FmrrEYT2J4naIkTjvsTPvPJn2M2sLL9Xw6Y+9wGc4abQrFBSMswc0yw\nE6XQ2ifSWqY8fsbIEScxqdAau9hYHzI17XR33cyFBuRLMgX9Puc9ESJHE/rlKXL6FE6HFzk9weer\n4J0L0d1z4Ay5MIwxO9Uos/JzjJlCTx4idnr475VxN3QmCwEG2zWcUpu4d5XByINHaHLS0VA3VYZ+\nL7OewGzBgS8vYJghxikRly+Fparx/t0PAfjF/+El1qNDAoaDWcLP4U6Bybll2rtejPUmfLtHz9VD\njqZJIWF4orhTfXpphf7xPGlzRC4aoTW1EvCfZ3PaIjJnpexdRLaNWD6bIef20DpoEnh4AEuXCM4F\nSIdf4fH+fYq3q8QyPrTNOslraYK9Cqb+OsFAkKLNTd4xJJv38lwRsXR0/vX/+Af411Pk7+5w4491\nHP4Go+dutoof0P3qQ0zfRTbWlzj/+R+n9/GH2B6U0V09xiM7454D20melqlTutfDan/O9vVv4Flw\ncmRqJJsbvJq5QlszeH72MbWSSmwwQXD1Cehu5GCBb3/3RbD86uJnMIngHxdI9FZoeDfoHF9nfnEV\n60oda3meYukh7qsBAg4XjtAivYObyKqf+a4M8xM8WxYmm2P8q1lG0ph4W0Nv6nitBYIzmaUlBcVw\nM7e+zPZtWFgyKQWdBGsuTkSBqUdEbIRJrJdxODQG82FUzxI4D3n33/0RmSsv0e9ozBseFg8t1P0z\nWJtjLhWh/mSLm7VdzNoG519Oc/1gSKTsxpoX+drtB7S1JO6pSPKtCyxFo+ipNO5mleRUpdtJYPr2\nCRQWeNCok3TYKFRbfGL5dUa+CsWtAielAZFJBsGWYSE84Kvvvrjg/YOXfpKnBZFx1s+0VeJZ0MHy\nxTzG42NETwJTVThIXqN2eJv2n28zfSNKenWD2r/8I+z/s8KZL6wTvF/D8CnUwnXSC3YeaxG0qYD8\nnZtU+jL+iUL2p8KI+QjnPrVE3+mgUuryZvwlvvHeDxhvKEQyyzwrjEidOs2qJU7PdYwvFcG21UWL\nnjAozdN9WMAcqXREHT0VoBeYI6IVCQYE1Fke7faUpM2JNivTxUXGPk9xSaZ0XGb9YMDkVJy8MCPc\nkMhE6owCIeyeIPvlEt5JiqNWiarsp7EfJPnJN+g+uY2j0CU278YM9zjSXDy89wIN8fJrf48zSxfY\n9W4RmT/DtLaPMPSSnZtnq64SO+riSWeojisc3a3hN8MMx1F6lhL6wM7ClTkK9Sr9dhDJonEcbmO9\nm8do1TkXv8LxrEtIGyKtqIy317DbNB7XHCjzApXvOVnwuGg/F4i/Ocfw0M/AEkQZ38KnpRAHGrI5\nZajXGGnr9JN+zrVMqkaBmZjGY/YYh9r4dtbozhlkyy7Eq31MLYP66COU12Rcvhzde01CkTbl5WWG\n+7uoF5MoaomWNUWydQ8ibtSLGsahl2HPgj05JnaUJhErcfikQ8TtJ1yd8u6dG/zab/7zv/0i6vf+\nj3//5WzgGppTQ97x0zEa+HwgHQ8Jry5Q328zkW3sWeewXX+PowcW4u1jJEViJNjRfW9xrufFKjvo\n2Nr47AqW4IDDwjZhd5yor8JUtWMGK5SbOk1TR/nCy2ykV/nhQZ5C/hGrWRG3maXGIaGZhLFwjvWE\ng+r+E9yGRBw35e0DBmMP8pzCBicMLRkaPjfi3iHhM3MIJQFfs43Vss7j/Ud0Z17m1nqcn7+IQx1T\nUx5wdfkMe5s3mIy79EMSeqeAR/ZhtStY5hUuv/E2B2Ka0OIiH/zRNif1Ihs+DTV8Cjwq/uYJ3//4\nRUD68ucv43baUCw1fv9PnuNYfoVryxn6ZpIP949p7JeZekHtTbl4ehGt38EUKtQlnaQtjSeSY1So\n0X94jGs1Q2IyIWRVGcYHTK0QjgrUHnbpnFYJJ7249vbYDxbwp70EKgKNoxTS3AxnX8ISj5KUuhQa\nduJGm74aovU0z9lzGUqBARNtRk90sCaGuX9yn6PCfTJHfix2GyNbGOnebe4MHhKWbFROqSQDp5F6\ndfaFezgH10i4HcwvLzIb9pjPeSnvVyhmmjhwoNlELCMbrfIufiXAluRgRRzTk2v0pDX8EZi0o7z7\nvRdV/fV/+llCD7+Bq2YBxU3EyGHLnma268EeaRLsxbBmZ+yIRcK9Iv2ZwPr+N6mEw7iS0HdeJps4\nj6o7iMR9BGcj9nbHdPcL9NeWWbj5jNC5ZfY6e0wEC+NAAGOwhXs5C/KYSG8FQRRoGVZ0ZQ9n0o9U\ndtILueiXKywaGfxBG/G4h0JxhuJyIllOqO8Z2BIFDqpWVN2DXRAwhQkzUSMcUTBkgbZbYWXow2b3\nUvLIaCEbPn8Pij6m8VMoe2O6QpmW6xTC5kN008KVq5cpHN1DmaYpT44YRwQ8QpdOe8hydIWvfusF\npPSdjU8iiW0mgg1ptoin4ScRl/C3m8TDYepxjZSuciyXsVpWsSwUkFhFlKOkaBCJX+XJUOW0c5mC\n4WZBHnFUnHGiv896TcdrnSHeaNAdCVQsRdLzZ/CERWqmijiJ4TroYp8t4QqdJf3WMg/uPKHY9TFQ\nPegnLUzDZOfPDql3/TRdXZYGC/gdCV4V38AXdxKKOwk0g2RtItkfU9C6AsWdLZ7tPENJy8yKMkWh\nQtTnwWqXKc/KiJMxl96+TPdIxu6LMPIesiQtcPbNeQ6OHzOz11kytuhVTggyIGhNIfaecaNW4/nT\nF5DSn76wREmpE5PXOJpzcPPP/hMrP3YaSdnDfuJjGMzjdfgIJtcQD7w0LPfBtNDQc+wNd2g9OSE8\nZyFju8KTNw2ifQ/GrE5cUWgfZHBYvBQzNqTqFKfdgi8qcFBR8cZjmBMdVRFIGj5iSQOpn6S0WyEY\n86O+v09cF1h+8zRyfkTgbIozsThPg7uIRoJxq0vTvYvhTBKXS6QqNo57ZXS9hrV5xLG1w9JrV7CN\nBGBA9ekjEu0Cp7OrTKcmtlybWb2EPaSAfIhvw4eqbxB37bGp6wiOCOGRC7dHoTnrsz41kPcW+Mr9\nFyiSt15bYjxKoow9TG17XPhEncCHU3yv+zH6Q0LDEZPEEsIgz8PDFoYXst9xs/bRL6H8psjzoo2H\nlh2O90zUZgjdvUl/x0lQ8dHPOTA1F/1CAXHOTdOu4ikd8OyJwMKPvsajP/1TlPWLeAtT6pv3mH99\nEePZ9ykU9lib+wSPrTaGB8+oxu3sfOu7LLwpEtM2sJsL+Jst5IALlxDFkggza8wIhWxUlwJUbleJ\nBmrsz3tZrM2o2t1Y56KY2wUSsUV2NwXsERUl7MMrTtFDGluHOvKkTrSRZf7qlEm5xbDppRCT8E4E\nasHzTB7vcG/zxWfnlQuvousFplMX3mqbsSjSCa5h90yIzrrsKzJmRCNrxHA7UlStTzElHxZlBY85\ng+IRNbfO/MqA4XsFnLEo1vkkzraEfynGVIthMcPsl0cMMx3KnTxnnQqm1SBi3Se0lGAgZtHqB6gj\nmZF7yL6QoGjILDsUnh6PiZ/zcGyvE3ek6bVMIj4vzfoBerdKzBVm19sh3uvijqQZDwPMXI/pKqdQ\nXRKLWgNZHaG+7GY+/wSXdQ6x5yLu9BPGxVTxMEvVcD1ocetulXdORahoA7xhkXbUwFHt44xdYrwT\n4cOj9/nS3wVO1O//9h982TMX59TIznNHiOlek6lcZascImwdkE4G6Nv6uAIifSnKxTdiPHm/gNwb\nILnH2EaH3NT6DKMTYuM++bCVk6rAanSZoM9G6CjPKKyzmEqjuey4ZTfayR7/6j8/ZFo1mFsYYd91\n4D3l5OJAZ7qSZdxoMg35sBslyq0R6ZwPRRQoaCccPzlma6bg98EwX+Tbza9x5ysP8XmWIZbB5fWj\nZcCiTmk8GlPRD6m2bcRFK732I8KLWWJVgWNbGVmVyCwOKZdE2jM3Rx/+OVvqFpmLFuy2GktzQTRx\niaQpUC6p2CMG733vxVr3F6/GEScxHpYmeHIJlvtRakMBbHWEWpirCRNPe0xyMMdw/BhtnEf/aZlJ\nvkvOfxnLYw2PGiIZFAjrIKzGUIJxRIsJfjuKZtKTt8hqr3HgMXGOjnBP4sj9EaI6YtAcYIkH6Usm\nkjVE2CqQv77H4LhEb6nGsqRw7BoQ388xXosw3DwmKV3iSKxgnUSInnNgtOyIShVBEAlEYwSjhzBI\n065GCWglJNsnEENWpnKT2WTK5NBGsb3D1N4htJdhNu6SrkXp6wayK4usFHA4TuhaF5mVjrGmU3SK\nbpxik3d/8MLOO/nhlDfe8FFRFpnzh9mUVITpA25eP8YSDWKWZ9zXH7HqnCBpa7T9AyZvnmbhqp/B\nSRB/usyjv3yXUL1LtdfAU+9i0wLMn1kjy2NWcjK9I4NuUUA6Z8dXcJCQMhwOmhxM7fgCKt2950xm\nXVKnP02nPmCa6OLV7qM2feizAeHZHCdP72OKfoy0C0uhRbPV5fd++//k5d/5IoGDbfRBH8d6CEOv\nMiko6I2HLC76eG4csfaqha1ndVZTVtoVH/4FkWhviN7Zx+XxkVg1EGIpKroLdXiAP+im3+lRDHhQ\nbn1AIHyWb3zlTzmuj9jeegRA7NIlBsICL+echKJupAUvuyONoXdG0yxgnYEyiuCeO02v50AfhDBn\n2wRlF7OGjImBPI3gnOrsO25z7pVLHG5/xBVPlni7SytoYdQCn1inbyzSC5tM5RjGSGTkLGME18EQ\nKGoCh3/ZwRZyMtR7TFsd6qUBccXO5KIbh2/Aq+kc5y6/Sqe2x3DyCMUXguI+2y7oiTtM4ym8YQHz\n8nnKX/shdmsMd3PKvHSOQqyJfXCCJGR57cI5Hl//r0jzVgLWADO1hFy2oNLljMPCcGxlNogQETKM\n3BZ07TbG6jq5N9J8989f2Ctn//ufxLN8mtuHVWZdGzmHi5DLi71/hlDLQnDqZVwT2H6Spx63MxwN\nyR26CSecLMXinFm+hNlWcLy2iNxuMxY0BoqE/47IypyV+kIW6cRATT5GHHrpai68yQQDy3OeVwqs\ndHxUTsoIqSkhbchHDx7RKfg493IOIz7C8WyEXdrA4qtz+FBEqhWRrs1o9mJo9TYLoomsmWyuuTkn\n6Nj6btYv2Kn4lrhSsXBsuU3/REC22pFd83jnDpGtcTpHHXzRAI6Bn8LJmF7GyY3/7wnGRoLFjBtX\n303PKGDX+0wxqUoRhrlDfvDuDwFYf/sdTg4MKvYgEblDSBgydAxwYGdO+zR3vTp6X6ajn3B6ZQOr\nbYE3Pu/h8LNPufnDIXe2bvFy/FXSEwNB8lIeTciJItrumNDAhrh6Qr2/hOAoYDsUERGpeYuER3Z2\nMVBv7tCXwyQCVlIdJ+E5Dz/1K7/M/p98C6ctT34SI34kklowcATWSK706XnvcqyrDGwtFpQYK5cj\nfPPhTfpFP3WpjzKrM/WeI1pu47Hu0B26sCwLxMNBwnkPxjWOIoi+AAAgAElEQVSTVHyFp5UjvA8V\n3HKT2cTglCvIsQCjZ3kOWxLeWY3s2gVG9z9gYMxY//vL/M0fv9jO+8KFa2jVGQmPnZYxxbXkQbd4\nKdSu8+hGlSurSfpNndDIYDF4ltbubSICSKEQx94CzXt7SPMyjuZrNCJDPKtBHAUbPzh5gM+IM5nv\nYforrEydlIBENUgk42XcbPKX7z1G1wKo7jJPd/ewWufwdiV6Wo0l2SRvEWE8ZLKn0W9p7D36LoOT\nLo5kmK2tCVOrxK50h6Dmoi92eFTOk8i2ODmpcyHRR50FiPlMdhpjloyndAJ+hNf9WPMKskek2t5m\nXvFRnM9SrHV5LZxi3GrSmtmxWZyYziq+ioteYIwWnnD75vt86dd+42+/iPrDP/0PX/7FX/oMI98E\ntxBgt/QII7bEik9hr5QndUqg2Q9TONzH2wLfBGaLcao2mLrAHQJ7v4/psSFVBBL9OuOBEzt1EqE1\nnIkMbOUp9p04Kvs8UJuUikFWXovxmbfm+dQpH9/59d+C1QU86R6zTJInP3iCY3WexJMpjxo9Bv4B\npu6DM1mUBbAXdebSEvVWmJgzjcPm5Wd/9i121Bo1n4HWtlArjjmo9ylXahhbTaznX8Oyr7N/531O\nv3WN3GKExVNzjEcJqoUtXJY0ghHGeu4y5Ts1YqqLZ+MW1kAL79MORiqIJa/w3t0XttRL5/4RqtDg\n291tfjS8iCKbuHw2rD7I+cs0fjgmJVtornspfqiymn0daTnIR195guHewHkypanVmdo2qcb67B/V\nmHbiWDcGTDeHbFx9mUelER5DoVlosDA3jymJuEQPjgrMUh2ivQT+ocJ0uIMjMY9R7nA8Een3VZLS\nWTbzuxjeDM5+AWn5NBXnFsNSibmmG3mk4l4Lc6D7CYfriKMhpu0CIYdMx/2Uphaj+WyT2MyCf6Lg\nEHS22hWcPhsDXSTQUfGuLFDoaDhCDnLzbpr9Ctv9KLLsYzh9kQXoTkXKOLjzwxeP2i/+7L+k+tyG\nx+0jHixiDN2UWwqvz80jZR5w2n8at6ePvnOJMRqyxU/3jkSwFcFItTg6NrDbIqww4bTvLM9LVdzx\nGcFml66mU21XUJphvKcsWPtOHrv3qdZGiLJBUA+iiHsErWNyF9/hh+9tIsRKeGwxXL0Z8syKZ77H\nrdIBubmX8GQGnBzaWTzdRG2MufjqrzIMh6mMVIaaRGjYRU+6OPaA+43X0CnhfNKn07Fi6i1knw3R\n5oTDPnbTS98v08v3OJGiyB4Lpt5C3G9TG9hRT5mEdu2YZ1YYKgopOc54vsqT958DMP+pCKcVLzve\nIJuNIV7rELVe4TX3Itf+wZvcf/6Eeq2OHO0wKyl4r00xBy5Ggk4qFcf35ohCo4E/3mfV9TIPNiu4\nXCvEvXl2p0EWbS4CRZOauIy3OMFYSLKyKDA4KeLCjXL3FjV7HN94E0dmht3vJRJpkU1biGVdDA7z\nWNwONLOIYk/T7uzS+nATy/J5bGoKKRViPhajXX1KPT9gVkvS7m+SXlnALTloLcjYTwU53p5iFrr4\n/DY+/E6Rl88kkBU/3cdbWJMX6XRfsIkQpuw9nRJRZI6VCrFej4EsEVnaYPq9Ed958KIA8t+98ybP\nNIELipfdb/5bVj8RRi4vY7V3kZUW3b7JtummKz4iuHKRtbkox5YSM5sfxXRRE7YZ+NKc5Dep1VvE\nAlZGnQZ+xc0k0uVJ+SFnBlNc62vQsiIsOTh4909Y9KQZ+uDRuEw2Z8epG5QuX0N7WiDusDDSa6j2\nEF4lSbd2zEmliJycIVcOqShRBFnHUzyktZTB0w6R3QF7asidwYzzhoIkydhbNyjMpqwENJa9IqlW\ngAO/B0mwYvRaKDGD53fAGdTwdxep2R5yMbBBq9Kmu/sddmcioZUc3s17hO1pHNKEr3/vBeLgysrP\nEV0aQ8XOitNPqbKJWD2LuJAgGVT5+FaB9775LRbeXqfwlRskfBI7zQk7FYVQbYdrVxY4LgkUw056\nZhln14Y+10cQY0z9ArHdERGLSHN1hVh8D0+xh+Sfp9jVkIstFj0z5kMTrGfGdHuHOM1rfPDx1zEy\ny+Q7Lo6+8Ve8fv4VHswlOC1LfP/4GZeERYSFGY1iG82n4jLd6Hds5BZnSBY3UxJIksj8RCBoCxK5\nFCPYPqGuCZhKjdHYSXF4jDAz8fdtNOMSLgVwhxmbOtZlg3Chi3nGS3nUIq1JBF9pUTH3+MH/exeA\ncDwBryzRHu0yaIE+eI6lqdIZODn7kpvC0Il3kuA7O7dwRG3Y5xVGh1uEAwqumMy0NiDZd9Bxj1EP\nJKLeEP/x//o3nL3yCeJWH24GHDasmNMmE6fMnDdDdShxv1UjsegnkfETWV9ketAivR5j6FLY3/qI\nVPYVtN3n2IYSdaFHbl3A3pngEM8jPPkulhzUAlV+ZOpFGo0JOUxG+SBWIUnx4CnDyZTaYYc7H9zj\n9PlVijctjJw5Hv7HCvFpB8fwKoNEiInD5CRfJBWy4B+Z5CdjTkcdPBoXcKoJxks1nJ4c7oKFDx9/\nwK9+6e/AJep3f+dffNmalXn+VxUy1xxMUxLJ2BxeRUAc1+keOtClKp0nLQZeF7OhA0VwMDv2oQoa\n3kCAvq/P0yfPsEkBelM/Z2IBFNNN6bCGR1NZ+QUf+6qLbf0I9djOges+K2Mfxa894uB4wvJv/zLX\n//ffx3fxC+ibFXZCI6b5d5FWTzOn+qkZI0TRi1WbMRSCTIYeNI+X2W6eL/3RP+LmyteofrfCkztf\n4XI6h1eSiXgFziwHiWQTuJ1xFHmLqb1Mxtul5U/zxzdu4pPHvP+1HqfPRhEtMrJfxLZ1i/jIwbZT\nZKqFmd8rUrmscGaSpDC3zfWvv6iyrmQ+ycKbpzm53iZ21UScRVC8WYJlnXbXidSFuWkS3dSpRAT0\n4QKTb2wS+OwGI9FG0bxLMy4SsS4iB3OEZnYqoRZGy4PV5mLz0Q6okBhN0N0GFt+E2p6PkDPC9ceb\nMJMRPG4qLhmn1WBX7KEofTyWCC4yKMkqAcJI/gERn4rvuQVppUL0pE11tQGTKQGnn27QiudIZNep\nYIhgmaqIXT9PylvM8nX8F87St5QRk1dZWZjjxBjQN6doegOH4kKZqTTtDVRnlOGhSaRfIzuyUGrt\nkey72XZPODP08q0bL9orCz//aSKpAc7JiLClhT+tE1nzoibzxA+97DiDWGYTqvox41GaMEeoS1CZ\nDQhmVoirU4ZdA9Uhsf2whPjFK+h5K9/bLbAz0fE7Ra77NOTdLqXD+yTm1wlFakyVDqdmM/qywSAV\nop8HS/sBzlGWstNPu7tHUs5hUTts3+tj706xi3Yq1iajng1/2oK7lqD1519h6e0M8yM7JbODf5gi\nPWwxNrwc973oVjtzIwd2pYdLO0N5eIQUVQm0/TTGJ3i6BuNeg11BwR2w4FR00mOJ3fYhiZzIijcC\nETuhpJsFY4+vv/sCtvnpd/4tR4MKEasXdWLS394nfXqOJ+zy/KvvEXnp08i9CePHW/Q2hnhlA3ng\nQS31eCQf0L03pDU/IdBqUdvu4fWk0MpF6gM74Ymdo9kUt6OHMXByyCHjaZ+m10ckss53j57R7waZ\nm3czHAaxeWx47HaO1Dz7ZZHV3ApF0UmjPCJuH1HcKeO15OgvNkhqHfLePdLOGSf3PuL0+o8jaDaE\nbJWIJczmezdIzzmxDAQqsoXhzh7+K1YKmkoy4eXYWcMxUokYItNig9DKjLDc5KgUI2R5ipoVGAwM\n6vst5PM5UlKP7w0LbH70IpBf61/lspChs13m/OUL2LQxJ2EB+6yJ2YnSnPPg7E5pzTScizl65Q69\n43mqhw85tSLw6N17mItBwt0iNyddvLElprqKqwPlnk58YQl9dIBa71NuDOh0n+O59mk6kxkRU8QV\nfBnT5odJiEq7iZzRiDYUXGs5AiWoHfWZnpmgF6zkIh3e6+qk4isguJBXXsIc3iMYszKoKvTWFwnt\nbdNyWphYLhD4x/+Q53/8dYbSJbpzXZRkmtLkGd72EoNZHmf8JZrjEhOzTSVk4AorWD0y0Tb4zp7F\nKzqwWns8leaIehWUlp2//m8t2s/8RALx4BgxqzFwdOBEIuyxYo0PGG56Cc6JXH8cYuPChE++FESx\n2CgWesSPn6Cfknh0VyOrVrB8eELlsYE916GFhWhHx632MC6GaSR1pl/foiKINCUvR42HhOUIo1AF\nKbFKxeeBbcil5hloD+jIJ7hs82TLZd74nZ9lUuugNMb0y7fJZK00PvtZYrMk9fox739vl4XTFkzb\nMjs7DaKpEbb+hEHbjXu1StXhQd7dZr8zR1mS6LTsdI5U0i4nWnXIzJvG8nCX5TMvMet0sXpizB5F\n6MaGmLsuFhwtOhaD+n95yvsHzzh6XAPgn/yvZ5nRR6kG6MkFgsMkxYCdVyYTOqkAaSVBiTylH+zT\nEiO0jjXK7hCh8jOGwTR3H+4xSyxjbWgkRwb3Djqsnz9P9Xgfq+Zjd1zBbp4wkUzc8wLOoY/t1n3c\nhRCTtQGtSYg1R4rek33c0SFTPcY5JUVh+phgykG172Pu1XnqzRlJ5xV6qxUcixmGVp1oSmUyaiAs\nCRzceEYsdRWbr8H+0yq5z36BUek53/lPD/mlf/Y2H93Zo+FNsTINIdgEDI8TbXgdfRZlIaSTTYTo\n9xrUXItoNgc21U8vVaFdjLOipsE54t27H/PrX/rVv/0i6t/87r/7cjZ2gfWffxNtInFq1sd7OEUU\nTKSMiMcW5/njGauLCi7BiqXZJq/YSDAjuFgl/6BKLuHjtfMXqUwEgg6RrmYwmndTH+1TzYf58MMD\nfuJnPoclmcBiTjmbXqApjimlAkwfa7y6FiCymKDUsmPJCTTLu5Q+1Fm4kmR32yShdJkKIp2xhj4U\ncVht+KUG6sRK6ZO7PNZ9SG9GcfnjmOcvEZhu0wrYCTjcuGMm9os6qXEPrWnDlrmGJxQk6/TjtvhY\nWorTPh7ii3bQk2Uk+1lK8QGnmx6myojYArDn5XjrGaKa5sM7Ly5Rn/y5JI/yh0SyDhJNE1sigUs1\nuH10A190gGnJ83R3H7/VxKy7icY1JKvOMAmT2gnpZger7uR27zZBv4N+eYucNUy130cJVdCqLpaW\nE/SDZToznVvXK1wM+NHj2+TwMhgVGKkjzIVF/J0eEUuYsVslIfSoekN4Bm3aiQz+Ro+W6ebU2iEr\nwc8QePOLOPoRNH8Uq39G9nBCQW4z7OskG26SmSEfPMrTu1Fi6c0A7QcV1s/ksNw94cQxYk6O4VD3\nefBRk1c/t8KTvQJZ3PhcYcbtJ5g2D0PdYDiwoVsmjDxDKsYeD2+8sKX+8effINYZcbRTQ+u2GHW2\nmexOmPZsFMeXEIc1lsYyx0cHuJUQc+eSTA4LxBQDoWOi4GHYq3BQPcRpl4nFFQblFqdiDdbGNqzW\nEUtalo67h+Ncmk6zj1y1Y7r89GMFZhU30tBFZ+ggMtHQHGUKHdDKGp/7J6fxPLtDaclDIOPHn24S\nO2qhJC4x71lgQI3lWIRjVLarH/Nwu8Rcxs1B0Y0zsMlSxYk/6oWqSEFLEOw6iIRV2vqMzvMyYnQZ\nzS/SaiuMFAG385huPI17KOKfWajbNWQKPP6gwiufVrFOlvmLv/g+AHOjHyU7W0HiGZGoyGLPSW/g\np6QNaBb9uBrbaLY4Eb9Bey/KkixTcdwiasRh5kCxKnhvyaymveSDHbwNE3tBI6D4OKp0EdtV7Po6\nwvgpm/KIM5++TOfJEE/lFrN6D5s/R9C2h2faQN05oG6zMGsKvBJKMGrUqXvz2CzLWItjotlViIB6\n3GbOvcbY48DsKfRP2WlpmxhaE09shfu7FuYueRj3DexTJ7LkQJuqWB0iCwEBeapSVAWW4g6EiAXD\nNs84D30lQPvxPSqjFBP9OeXiEz716UvMugO6vjFxNc33f/hCDGTFK7z1C2O0QRtfUqYnKQTosztz\nkk2pqEM3ja5OWu/iGo9pF3XWzorEI6cYPKzh8cVQRyJGzMfxYMobaZ0JOaqNI8pOk8TelB2lxYkt\nghIIEFieMS5G2ROaJGdjqocTltasVOwiluojnt2o41OSLETn6Mkq4Y0wrXstkuciuCp9yvu7hL4Q\nJOyc8KzdoWfrMXRGyBzU6WwkESpT2opEpH/EYP8Zr/6mB23cJSZmsNX3GSsQXPDQ2u7Tmh0gjLzo\nzRpecxlrQMJdd2AmH1PVbARicbZ3vCSsOjWlxqRc5b27NwD4wq//NI6QSkucRwpvoDee4CWAvdBi\nV2nyzud/nrX4GL83zviJk8qjGunTQSoWB1JzDfXgENXixBsxyZ2SKMgRKBbILSYpGW50f4dQXWV+\nMYDR2UBwtegMdGb5EQunUvj0Bp26He2MiKc0olsf4uz42Y9OSLgl7hY3UU6yfFB8RvG0i7IepNC7\nwfX/0MPrD/DFH3uHj6478Byd0I1skrbDRDxHhH2UlkLvcZuK1Y8ajEGsRbDTwG9Lok5NFj1uPEOJ\n7ppGb9zCFJzI4piE2Cb0U5/GevchZVEnvJBkL6DwqdgFvv79Fzbo6z/rQl7PIFmzBLQk7uAMQ7fR\nX+kymrfyyo++w9DIYve7CPlPcfm3PsWysMfIqdEUNS5mT9M/PGYn52Csuzn3Sp1vfvQRn0rNcXNW\nxzirIlmS2J1+hLofS6tKpBqmuRFkw+HG4Ylx+2YZ53kDsyaxctVF0FsgPbeKx79BZq7PnHWe3Fk3\ncnBCyN1AzGWZRGp8/nMXsJx6k4hnhYXRK3RjBubZH+EnfvWzPPjWN1jvxnC/fo3ApTT6nTyXbUWC\nc+fpbe0QOGNlaniZuF1k/UGOJ3amZStem0rC5iGv3iRWVhmecdMdgWqvcOP6TX7j1/4ODBD/7u/+\n7pf/p3/+Gwg7h3QbdgyHwIEyZFyK45mNULtj6rEjDp41ePXCBh9+9IioL0IjPsL+XCHc8POovctQ\nT+KXRUThgJp3gWDtIcHDDK2Andkn+9z9fz5GMyL0ZjJn0knSpQBrLp26+zR5wcLwVp7bpk5waYFh\nJ8GyUMGQY4RyTgabFqZVK2MhSHKph7Ia58HX7uKd9zG34mc1bCBICvaRC1m7wdSeoTHrMbC4aeXH\n2A63kPUMZ95+jc7tPF+tlJBTCzz/WoXYqoSzb0dVAtT3i9S0FgktgGtSwhHwYa068c3r5NddyHKb\nD7/z4of7ubc/Sf1+lUvODONZn453QHdf4OW1K/hnbe4P24hGllMv5fBYVFymh2LniPiShf4TN6Os\njbHgwlr3E0waRCYjms00o1EFx5kwM7WHEu/yvOXFTpUF4xzFlTE+S5au3sc8aDFJQ0SUqdccKI5D\nhHGW0cxKOBlkOBljGjJezxirfYfBVopvf71IqypxtNnHPWryzj9dIf/LQ5SyC/o9hu0ZwawdzzCK\nnmhjVmcYwQDP810acwpuycOz6QMG77dY34gx3fXRNqdYUipZqxW5OuXEComRkzujPGe8KZbJseus\n8+S/bQ6+8bmfwakeosRlRjYPrm0nk5Uz+PsZKpZDzua89KMSoiXN/FqTqWUeV89H3lHmUNXopl0o\nRRdT5uiNraSFfdxvvMxRq8u+zYPf9NCpHeG7IuHcbCB7FGzhFnWri8H+Lh7OE/1UAcFlo//Yz+jS\nJdL9PjXJQHkrS1OOI05kYrEQDx/6uFFp03DYsdQe4ugdM5c5z/u3qpDJcTo3pNJ0ESGAkGni904Y\nPatiySRxt/dQclM2zTwzI4LV8BDKDvEETGxhC878FoPUAvgNaPlJXbLjbpi4ymnW5s+jP5jx4PZz\nPn70EIBf+7NfQJPv054+Z1BpYZXDCCMBj1bGPdFouRaIh0dUSgoIA4bRFHFnktzESyLlYNwtoQUj\neKUpdsLsjXrYs8uIFpNyG2av7TGViygLZ5iZdsI2mcbOLeaj1xDdU+xRlUgjx54FIuqYSUfFpoSw\nhYKoeQhlurhKbZKLE5p2nepen4DfizNeph6Z4uoZNHojon4vwXQOZ2dCbFqlV5DQNgIIYzuDUoNx\nUqF3rDEzVMKxAKK+yHD8IbKepB/JYhluMnWN6XonJBa7XFpeo/H/c/eeTbek53Xe1d07de+cc3hz\nPjlMngExEECEAUmRIFki6bKpKtkuWVWkLVKkyypUOYmCSEJ2kR8s2iZZLEqQKQAUMgFMwsycOWfO\nnHzenHfOeXfv3r17+8Phr8B/eO6n7lpr3ddytkgeKwzVNo6Oi2rSyQfffrZE/fb/8AalyQHDkY36\nbohQyI9qa+LpjtGsIgEXFNtDotZ5PK/lmA2iaIf7PDmv072RwKInmTklmoUhWn+A1ZdB13Xc/Spm\n2kHDIuHpZ0htuZiPxwifxdH8KqnTA3qdLMsrLXaPQgTDDgZ7YCpDwtEhot3HWbnC1DLCqw9ptyZ0\nLEtsJrLsHneIpZ0I8Q3CT0t8+y+/hvzZdTwFL8KsB9Y+efsyCbWOq1imHLlI78kercoaNpuGrSBB\nOo/VfYnZuUk36iLst3P/6TcwAkHO9jOEhD2mp3ac0xJBFQ4rBeyhBO/95Jmd99/+6S/QGTqZFdt4\nF+Zp/90jQusyWmGe6TTB47Mn7DVsTMMmzumUSlBFqfsoDieohyU+MW8iOiS6dheTYJaJWGdTXKAa\nqJFU/aj6Cm7XIR0tzTg5I9OFk56P1XgXve3jxFoltbDJXNVk123w8P0GmWiAlTOR4KhD27PAU4ed\nvuOYUPJV2v0BNovBgmOCZCQRlKfMCh4q16bMB0TyqodRvU2y5mCnukcbmUzah2Deo9w54rxnwd+a\n4nlRoPv9WzwKlOgZSZxSj75LRS7ZsMWrSFoU1RxybsyY8zhJj8LsN/Z5/8NnkNKI4waqHCV3d4Iu\nR3hocRBonVOZ6gQOFRoPzqg9bPM33/1/iPtd/MU/e4P48zlssVf53h90qR/dRvcvMXjvPVajObzZ\nJD+z+IscdA8QIl0ubq/jUwYEhyHanUO6Uhzf5118fP97aPIN3LKG59Eh0poHaTimUJnRVWWq53Vs\nIxsHxREWbRftJMipu4HZOCCaWMf+wM771Xnyb58wOrHy3VafYEXjqNlj7/1jLAORcSTKnG1M5e4B\n7liNbOg6dUNk5LtPvZLCP/Lh60n0nQMOzxQGJ/soXgdlV5dV5yrS+gValjbxcxe7rSqFgyf81m/9\nFNh5/9ef/tGXM69MEOQa2rFBmCQ9XWAwbjKQdLqhMMtnBkurCv3DEWXTh/t6kninRT0uoPqy1Eoy\nyXCPUtlOduql2HtIOJylbLjpew6w7VhYDAfolWwYzQoWRcPqbDA59zKSM/SmBiehM15ZvcjYaBLW\nJihLC0zb25gnEiFJxnxpRDTRx3cepNl4G9m1gs8dod6fMjO9pGZdxjaQfBm6U5XH/75JuFenWdMx\nUwtYHTIfdq18/em3eSn+WRrbf8kNRwDdWSBsn1LfMQllOySHbmp9lfJIRTVGGFErZz2FjfCEiDLj\nG19/Rix/8dc+ga0QgkUb8kiikXcQIII0eIzLJ7F92CCkLHCneZ/Axedxqz2GqTHSfXAFh+RGMvZZ\nDeVKkmwoxZNbJVrmERcjL7DfOyI1iXM0dmLTa9h3ZmhhF1lLGadHoeno0c7N8FXXORs8ovheg1b9\nfWJfuIE5GFCr9uiPkkQsAqJtgnw2z/THRYYbSWzDAvfVMf0VD0fBJ3zpS59g+9+9jSOuoTgv0DYn\nuCYTBGmdqCvMcDbEIXuQ9BxLbp348mVmYTu9A3CGvYxHY9SJQXx1kW3TijiuEXreTlzUUR0mYlCm\nicz9N599zrEbr+GOqDiKCrOAHUU28XhN9CMPWvAhw3qd9qGLbiZI8+gc0zrhuNXEaFmZW26Q810i\n7y4gcYoZdhCVcziTNc5PP+Bg/wCDIR1k3CcGsmULX8uKPg7RnzTp9iTSYRdPvjPk0A6RRYNAdo5j\nn5/pvYcgqmg/eJ/jspNQ0cbq9RSJl8NsWnY4vvMUY5hh9rKOxdJjpPqJJjeoPi0gxUaIaoPqrkZl\nZDJpl3DcTHOkDYi6N3G3JHr9x1QEG0nNxkTvc+/IwnxYZFAYIE5qrC6uMjgdcpxMcF7uYpeinD8o\ncP/sWdYi9nqa+XaRmWqB83m8bhtup0hpMYGznKSZHWOxx+grFaLaBGerRW27TFkxuft3HVyRBJ2z\nGt8/u8fRYQStNOL97dv0Yh7mLqtYtl5mXtcYWMp0FI3YUOKvvvsjHJ/0cdXxIsX9IsGsjDBsoXvW\nCF52YRsm2Dn4kMWum+NQgrhXwxKdEK0sQaCFM1Lh8NiDHZGwsEI2OkX2eng6qmAIY/rjCfKlNhN1\nianNYDHR4bxikrTVscVzRMNWbBslZuMo+4/exTqwsyQuYXHbGcdthCYLWJUHRON+JmOVUlNAmjmJ\nWK/y3R/+JQCf+/VfoFmzMhY6ZOe8uDxdWmKH01IDabRG2ShyI7TBE72H/X6dUrqF1woj9ymU4/iu\nGVS2e6zEZCyDBiuuBMPRGKuningWQO5ViV2K4cnP0KYN8pY9Srf61BNj9JUI7ooX+WoP+bTMu6U6\n17ccuPwrHBSHuFZDlI81om4ZwZ8lFbXS2n9M2aJjEQyq7QpOo871z/wSs4aHSk/F3THRei4SgwJ/\n9bc/InxhiVI7Q8+cEM40MMM2dGWeeFlixy6QnPSwqzZkU2EUElhN9fF3l0mFrQgXrBSaJt3shJQr\nwMzt5Z2/+x4A6ZUbdEcVBrswbR8wU/v0eleo9lXGthNcZw2Kc3UuLG1xfucR/alAt1HE5hsSWp5R\nCPhYVezM37iJXjpFstgolpqMJh6Umpcn6i2cYpxTw4pXPSTojtNbbBNq2GjcVNm6EeR47Oe4OkX3\nigh7H+C+GGH59dcZ9Md4kzXOU0muxBzYtDMckwLWlkLFMWUhGqLVduK0CjgTGsFKEEnSONp/wqTV\nIvPaCoG1TSy+Ix7fzxJetxIVA9z8lQ0yKZnOSQ/BOf42DVQAACAASURBVEM/OkL1OKi+26OvF0jM\nvYbfM4dVc6CwzXQscdTaQ7s94HZ+G4AXbn6Z0x+LCK95CGiQblvJt5pMzy+yqgwx52NEfT2SARPP\nnJXXvRt0uz9DUvUQuqGRXl9lLZBi8XMb6HE3vYoTW/IJUVFmpXuD1oU6XTHKtL2LknDi3Vjn/jcP\nEBxXcC3UqQY8DIUBAzNN4fZTvJkWXu8KbtOgZGzjnhtxWrJj3VZpNux4hpeQik5+8vAOpj+Nq97A\nrtaIV208OR+x9kKaRPmYRGRGwd7E5oqTfCHKfGQJ48xHszKhfNbDNe8jkLBzdLLNeOrC7ZkSa58x\ntYfp9zv0kgZxuU0/L3LmHbCw4eHutx/y2//8p8DO+1+/8q+/fG3uDarHdrzWJIsxF2LtkIHiYa43\nI+fLct7apjC+xvzNGdp8jmhJYzZTkUIJAh6dwHDE40dd6vZjPNMAqtVkOhowszgR4nZmnSD2sYbD\nt4+hOLBVB4yLBi3Tj+wPEJs+JjHOMBtN6HjvE9+fEfQEyDeiKEkRnzgGRw3T3eLN7SqhjJOUHEf3\ntnEMFXqNMm7JRmPs5ujBMQtf9BNyapxuKdiDKrIlQVlx0G5A4TDPZgzUUJaIX0A82ufNew+IJxe5\n1Zoymcm8OLfG3GcWoDqmOdNJTQc0G5tEr8/x//3ZXwPw8vormM4Oa40MbVlgEHPicA1pDERGg3Om\nvkUsuklO6mLqbQaFCX3nhN0RjIMiijlPSwsQNUpU1Q/YuV3nlRevM5w4sAkynORJrDvJ1xQKlTKi\ntcF0KUvAdFBrTbhqGKwbPf67P/w9/slXbjM9jtJ4f4dhdIlo307owgB3tUnDm+Sdv/3PyNcXUAIX\nGI520daDKFIRx2sGj95qYb4Ww3fmQwkb6EWB7kaBi9YI+65TJuPrxDMTsskOohKmb1io7t3BOovS\n9VSQAj1UcUKmu0iCOm1HmNRAZlQWMedG9B8F6GZ7PPj7qx9rKMjK+iaqYEGySkx8TvRqCdUn47FG\nKfebyBeiKLZdFrExLdaplLdZftnGfDLLaWmIs5ZDNjtkqkFWnBb0YglzGsSffQW3GWDsjSF77PiX\n+zSjLq58ep5mf4hQnHCWLxN8bY65EJwE7Mx6Uwof79B3RrArM8S5ObZ8lxgmRfZnTyl/cB+6JdKT\nLdz+IbPOPK6bVoLVMFa7jWK1g1ZssiTOMW4swrIH0RA5kqtMqh4yDGA2RC15iaS8LGbmSG0tMPXB\nSJdxOn3M9BL5AwczKYp1/BGDSYSUbPI0v8PO8bN2+F/f/HlK9gG0WsgdDbs0xR230BKuUW22WfDJ\ndKZ+mCokRscMrQLRkQ9VhcG4y1R04lgJMlEEfIkesUkI3wUriqLjDm/Rzd/CqQ0QUJGIMfMmsC0v\nYDmz0ZfuIcx8REYNhFmBk70W3UoTJeMgdtGC8HwaG2OqtiDGozzDq2HsisZ2r4annuNyyovafczu\nqQtFPWbVcxGh3aDtilIxR4R1D1/89RdpVg7wejro0SbKfpDHjz5AS69i/fgjRlcuE2oHafdURj6N\n1scOUtM6KB7qrgDHpkH57SlC5jLCqpu3/uYvAMh98joz3Ubl7ICMI4ZrqNEWJKaNHIo5YNK34pns\n4VIF6mdnSNYtHvYGzEUcTPp9+qrGsvkEu9vF41GbQExiMBtRPmtSVztYtwTqRwrVpVP6BScdS50L\n6mUSKYX2+JRwwo676+asdYrRU/HNUgTtAy7GtnCelElMZpTmfeTGAiejMn17m8flCa8+56EoeenN\nDHShgjYMMhbB4T/EEnezb+zz65c/w3HdIJyoM9SvM7JUSZiHFOo2BsyQ/SZ9u47pa2G1tUgfi0ij\nHGW7ynnJg9jdBS2ON2SjVn9CsKvyww+eZT4zcoRZUyflz6K3ZyhLJrayldZol5jFzfJWgt2PDtma\n+ySH7/+Ip3sugms2AoZByDZHaqXEuG6hVmri0Ss017eY+KdYjrw8DB6g2Gw4Zj7E+Aln3Rwnx3sk\nGTCRFwjkTzhonWDKIovTKTxp01HHKNoikfaQ+9YOAW2R1uktdkLfI/jAiTF2ofdkXmKRJ7UKS/Ee\nwQ0HRz0Dz8ROp9ShdzBj4x8voQsj/PlbdFauEcp48Z9ouL1pSu9U6T82mClNNN8l3JF53H0nlmAU\nI9djWsvSevIfqEx6dMY5LIkBYylGNh7n+z95Zrv/WhLCXrAHwJG1MzVqLMaq5IvnWBQdaTpm5ExR\nHMjE7TPsy0uYgwau4IhTAcydCdF/GMfrjKGdjPBYO3hCARoOP2nLBKUToeje49LW80hSktbed3jv\n/oSraxFk94i1tkK+KLHkvk06pjA8HdHLNrErCzQedBBHVuLjIYe5MYG5KqVbD4mnw3ilU1asCSRl\nTOGuQWxeJxJZYhzqMG2ZlManCCET2z2Rs49qeNQpZ4kpx5MevoyLQSNARCiTjqsom0nKu02C/gbF\n7ATPaZS5xBodPYDR/pCrmRx5acDt79zld3/np0CJ+tM//uMv/8zrF1AdNppnZ5CUmc0cdJsituEQ\nY8nNfqdDuOVkFBvjycPDTpfATCN/cIrQjyBcbuCzWrlc0ahgoWsbEc66kN0mlofguDxlOhxTapW5\n/sqnSLpMBEni0fk2iVmfostJ/PkqtfEdDv7vYy5+LsieYOKvGrQseSR3lkMxyFCrkW6vooQUhjUv\nhmyhM57giHvwhRT8Axv+4AyzOsMb3mAoSlhPJtT6dtx9k+cyIo16ncVUgqh1hFbrYe1N6eWGmP0c\nhrVBxu2jNC2iGhbUExsWvU0xZOHS81He/rDARz/4ezLt86+y5PGxK0p4BiV6Wohxv8+yx8EjxWBU\nqDKfmjC2TZBdKWaijmz6ETU3a34T1Vnj9PRdemaMn/+ffpXg71/G2+vy2NPDN7TygVjFXQgzocvl\nOQ9dywB14EPJBqifnzBxmCxc+0d85Y9ivP2+jHFTJyGFkHyboDwm25vnnhjHNShy9NZ7PPfGJlrA\nS9or0ygXsHtDTPUGw+qM1StXGQt7mA03ilalvDvh4UIQ/dhLcqlKZFqgItyg5y/jrFrYFz9iFvGz\netjEr14guq/h/Y0M+uiciRhlczHO2eAQc+BBjLkoSBtsf+/Z8nntwi9z7fJlWo1zAq1tSFkYu+0Y\ngxiNnhW330Ko5qFWPEGQV6jXbbivbjLddVGwRygLXcJhgb6jx8OzMeOUG2Mui9Gc4GsLuBcjpM0q\nZbuNyv0ub/2//45IaAFRmjJWHcxdDtLWoPCkSG+cpCd9wFzegHSdSDtHpCqhuuvIR3lyHhtDfcw0\ncJ2xz6TSLDCawSiYRmh12NurkFraIj5Nc+xto9htLOoLVMQgi54O3oMijg0X0kGSysaMpegltm8/\npvLNAzz1Ou4FB7aBnfNhn5kHliw2GocNEu0xwcUKkj/CO+8+Uz5zv/IFbNU5xr4m87kNJsEBrYMk\nwYX3UB5B6f3/QDHtJes9w2qBspFh6Jzgdi/Sdx1SHfap+SfkDx/x6vqnCeWivPmjd3GJMTrTMv14\nnEqwxHgcxVkQyXku0mx9RH6mE0wtsD6xwqKHw7aO4lvAulZGbTSg7mFSKyE1rNh9+5ycRAgaE6oG\nuLtxsosNxs06rUIQp6PBwBSoHYzQXR7cQpuSz8Cf2mDnhz9EWnuAda/Kx8cO7KMM7lmW2WmBFecy\n5qiFS2xRDydxyEXOimU82Szu/RG1oBvhtEdwIU20WEXp7/L9957Z7p/+/CeYt6TwqGl8ni5V0Yc1\nZMNl6tj1JGGfji4HGUotmj6d6HwKh9RFmloIThx4dwrIlnXeeVDHbtRJR9eYDDQuunI4lXlCMw+l\n6oBcPMvJcYdEI0w8PaYUPCdpsTApFZk5F+g+HGG7NkfO1qfkdFDuTTnKf4R2WcPZCuPIWjjYLuJL\nOQj5Ogj2KeF+h+SuSWM3zNrATSs2Y9bRcOLHPn+RfOeIlLWOZkzwFBqEHRdQPEUEY8A4qmCce3Fu\nH9KIKrQ+OGAUBTm1Cud1XGsNWHkdR8DgpHxC9I6A+ZnrvPX1Z1yy67/2T5DzQ+pCnlE/SlK04o4U\nSamgbOXoDZs896uXObr7mJKtxStXZqjlHKlsj7PQAE8/itMVJPtfvcbt6jGxnSIF1YuqTLDV+yyn\nRhRlmdxTC26xS0a3M5Q3KYcrqDM/obBO/r4DcXmT//wn7zH/s27Wo3ZONJPxIExLeMgo3ECQ6oTP\nowiXr+OSBBwtOwlbgjOfgtFzE35iQXNPKXs9fGY1TfOBiv2aC7s7ynDqp9wZI+gaB983iC+I1LUu\nLaeKbxCkptaRah6W5gwijiizGhyGesRECaUTp6ZPWI/rNB+MefPxszn94utf4m9P7mLxX2MyULF1\nqtjda7Cs02u7cLkCdMUKqBXKdYHAtoljRcHozpiJKvP9c86f1nny8f9JzhrmzsF9dOeU4Ok8H97e\nZfFKEqObZ/tEQ2s/4cd3rWz80xyWXp6BscpCMkS5UKJuzWLFx3jBy/gpOO1DpJetFP4sj5jxE6yb\n9Ic+pikLzn0rRZcTrCrTWQnz8hwlsY913GexOaEouZi3OKgetTFDDnwTJ1pCwdExePSDEh7bKTNX\nllvFE3xelXFdZiJqlA4tRIMpJP8xfkNAPofjoYXswgLNtzs8PrrDf//bPwWZqD/6P/74yxfdF6im\nFd556x3UsxrxzSW6wh5WzyX0zjGr1hEFvYJvEMK2GEWw9uirBid1FeVqHPP9MLIY5Jt/9+esby4w\nnWkM6j78QQtNxYWrJTET3Sx403x89y41Y4hTMvHFp/QmDeIjiffPS7TverjxXAhrK8D5gczosopn\nlMJNlbNBi5C6RT38MYuuBcpCDc9gyqgmMZN0zPceEFqaYI68VPRdGs0eimeJmGYl5BCJmzU8CTem\n0idDkMawQE3Noa9skg1I9MYe4isZPKJINWjBWhLoLfbw+2VilgW0vTx545B7P/572OYLi8RXN1D1\nEvsND4IookxFasGHyOGXWJzVCWTijCtWvEtpKvl7RAMBrKqCbT7FB19/m/DNX6SuVPj4l5o8rvVJ\nr8/RbWTRkzFCyhiPRWISdxANBmg5TFzDAPO+IZs3NzEjQQ6+s893K/do1GaUdx6QXHfwn/7yfyco\nfRqtnmEttEvzocb85xeJlIJEUhMk/xIl6R4XfkXD+8RFPbaEo1ih9raO6irSFjos/v7v8I2vfp1P\n96pYdJnpwMvkwhy1roVwo8XcUEDRJrj0LFqkSfCNL/G7f/hHKBmBykmf/MPv8/zP/izaqEq3NSPi\neMg73/8QgLXAG0xfHeM3/LwztnEptIrerREZy9TiAyJYeKCdcvXGS+yMzlm2Z2gbZYZRjc5knyuC\nSXduBXuhR3whwcc7pyjNFmcCtAYWDOkYsWGw/imTScBk4fVLCIYTe8PEE/BgVkbUHF3kwJTOsI1a\nO0Nq3cQfWSJ8PiCyacHVqjIOWyifpWl2RHx7B6QUlUl9nenmjJissS3rjDCx2jSOpAquZo6MpUYn\nZbLmCFHORpkLW0kKcyQXk4zkU/7wN/4pv3j1cxxfXyO06WVm1ol0/LR6AfxjD+eDCobiwu4XyQ9M\nro3CfO3DZyTk11wv4bWHcVrPCSqXkBOXGGoPyEZnqHqH1IqNmZ6gdjDknVae62tfoDcxEDbdhDQZ\ni3uIfyHNc1ufYq81JjirMd6asqm68Zwcopw06Z1rXOdFJgtJDk4Pcco9OmUBq61B2zrBnITxDjXC\nNKg8KBFKSbTjDkrbFnSfhqU0z1SYIbltJGojZLuVhiuJfGoh4K9TUXLMmiLFbgWPaeI8thG2JwgU\nRFZ+I4sj9yX0oUh0JYYUDREbhdD3e1SCfvSLFjpeH5OxhqLOEzNmWEZdjjou1p0hbKc2Znt5mmKf\nQ/87PPxJBYDPXP2HFMMmV3MqzbGBfzBCdMoclw2s8TaGw4YoeEm3XUz7DXabVZzrCaYzD3L9KZZM\njkDZxez5d4n219m7MMc40CAoxng42GbcCrNi8yHlfUR9Q3ymRCPnwFmaIrYl5kQrO492GEfjeOoj\nhqM099/8GsQjRH0JLq3O0R/IWB0GRUVgrjKmk3ASyz1P59E5dbXJljyluxXEaY4RBQNFHdGVXSh1\nO05doNJ20YzZab7/HrZMFrsvz9mOn5jaZJSTsPYu0DY6bEiXaLvspEQrmizhLlWRg25qVgvyS8sc\nTGY8/sazJeo3/9XvMes1CMpRnt4u4s4sshnapOGwcb5jYrmYoP/kLl6pwtC8gGEtExdUkitb6KdW\nPu4UiWSv8Od/8Nds6FG2a+dsOAd0/V2CCqgVk+VBl4N5L/32Ai23l2zolLPbdrY2g4x2R5RG97gc\nc3KYP8PTXcc578d6btCq9mn19oie1XB/q8bSL/8ii6ZGryRS95sExgJp4ZS7d7uEfvMFen/7iFBv\nB5etxaOgxnjsRdjyU7mjYDwdkBLzLMvLjKZ3iAl94s7rWJMCcixOdDrB53dS6tToOhQiyTbaEZwm\nFeYTZZrtZRKWKt/6+2vQn/tHnyAw9SNkgyRqJtsn95hmQsyMBRptGJbuMDZEWj0Fx9SOOB9iOBky\nS0t03ilQcQRYGXQxNrfQql5sXT/hwCZyt0r+9g7BcQfBlmRYGRH3z1ie2tjKeBEsXi59csJ0JvDq\nJQcXL61gepwk7GMm/ihBXxt54wsEOhKN2kPingzyQGAaTzE2ZzR2j9C9cTx+CZusopAjOD0izxr9\nxocowQh16wCj5WP18oRuTaN1VOeTV2d0Ch5iKzH2z45YvhKk9E6LnCJicVkoDyusSStYeyl0bQc1\nbaM3qjFe9nH3O3f4nd/5Kah9+eq//bdfTr/+KlJL53M//zyDXZ3dbpnxkUDsZxLc+8YuG0qH2mEC\na7yJqximr/dweQpMLUnChQOCrzsZdQTiL6/ysNHBX/UzDXTwxQIw0VD1PrFhH8MRIkiXZVeKsW1C\noy8S37pC1Trh8tWrRK4nqNoNhqFlnKk+W+I80YiGml4nbVZoZRpEugvYuiYWnmDEVhGabeRmm844\nwEzKIm/I2E4hKgk8amv4nH3S+yPUiEBCjHF4tkvcOaWoWrBsFXj+2jpGx461LeOJOdh+5y7SnIzs\nDWFtHlDrJ5gIDU46sLbg5/tff3ad9/P/4BMo9SSN4ZDwEFzuPrJSYqgksJf9OGwSwWGZQV1ADsTo\nF1tMPHZKwQrD9inexTS1bYmx0OGvf/+rrL94kY8+fp9LN5/DGPyAxFBAb7mZ+KsEhQG9oxBzwSOK\nrufpHfa4/798G2I3UF/0Eu2IWDJzfHTvAZ/aXEFQQ8TdGg3nGFXQUbp5OsEAU0+CRHIMe02KT0Q0\na51WFyZY8XhEtFSM6OY1Hn3zHhvZJu5xmw/tuyy5X2Ho2WXm0BhZi0zyToRLKrH0BN2mc3u7RHYj\nx0Ldzq4yZe3pOtuNB6xYLzOV+hSceT76zrOA9BsvvsxJ6RFmaIlrRRlHrER3Cmq/QedQwClVCQsC\n8qRK/yODgSvM8ggMRWPQ6BKK2Lj8C5/j7nNP6fQsjAKgh/1cD4SIC3aUlxLoqorhDsDOCDweqgdF\nHjVrLPinNM0gg84Rls4CqdqIbi/A1mVQy2UCiQq9/BojW4u6VUELCHjzXnZDh4jjADPHHslwn/JB\nm1Kwg9v+CrZhlIUcxObGHM0svLF+idHGGM0QmQpe9Iabw9L3OLpf5ede3qRxZY1U3sHyb34K816b\nj60iNmeDmKNODAXdUkDKpHCEoaoc8tb3n5G335ibwzT8DGUrD701nDUNx6DLoV7HG5d58lTikkOk\n4VRwh18l0Nmj6HfievdjjqQG7cUsV/qHuOpjcrRoeGYETnwwazFoG3zksRJ1LlPgHGtQwxsOYp/6\nmPmq2A/dWEQNW8rHZDDmvHGIY3mReSXKLD2HWRqjqVVCSZFUw4Y3alCzGgSn8xTOHuIdqOwddbFY\nkthWRGIDlaEtS2pzhNjyY2S8lB+VoTJi96zD+L7AwlDmUNXoLehoowHdgMkNV5BiQydkaaFbgqj9\nGdZkhsbDNmdBO5WjCfM3I0irFt77T8/e28u/fJHYowC7kkmpKFARGszbs0S7Ei6nBU4bZIiiu0UO\n5BrykcYFf4myx49TMmh1goS6GjvhPGirjOMVrF2R40kTQZcI+lp0rHWSgQh7swbRl2I4Kk7sGYNu\n4QmxK0He+Y6OtO5kbnmCu+9j4J3y3JUXsKklTh5XqXpkBkKereMWljUfajVCwtkgP13B5jzg/u2n\n2BY3sVnrNPZqRObSPP3z7/DifJS7PpUryxFEoY5c1IiYKlrMS0Iq0XZ2sBVXCS/pSPtNqoLChYDG\nLUUl1XfQ2b5Pr7eHumxBFlIk7Y9582vPCq9v3ohhrryAqHgJXrDQKdbZxYIn5kWWd3HrJzz1w/jE\nyurSgIgE8UqaXniR6kmL2NI6LduUljgh8PAR9st+PIKFaVBh/emQ89QmoZbG4fEUX9AgHK0g1m2M\n017c3m36Y4OY9zIDU8ZVqBFenjL0xDFcDb73J39D+trPsTV/iupdwKXKdP1OHOVTbGE7x64eBX+O\neHqf1q1D4oMivef9uGsVMs/f4Pytb7LuW+f+D3RG5z9mfvkCzZmD2IV5bNYZkq+NeDTDPq3idszo\njeqUPGk2qVGtZfA3rfTMLn7NiVoqshdtc//Hz+b0sy++RLVWp6PZSXpKyCkv0aqCO2kQUWRKGbhm\nbtCogkfpkBTLtGUPhulgaq0Sm2/hCXhQ+imq3hYDGernY+rxU1zNDs1YCNfNGschFb0qsn20w0LD\nhetRi2++/Zjg8Tk/+Vd/hmjOUb+vYTafovaLlA+rLOhDXLKDk6CfscOK7I0xMitU7G7MYonFzRii\nLY25mGVSeRerJnDkVbAeVgl/NofUD3C2V8Lr8qIhUHN5kQcTbJEp7doZn/6lS9z5ZpnQ524welrC\nTh2xHiKa8fOR6yPGxkWyvRK1tkb2isybX/uA3/0XPwVK1L/5469++ZXLURy2CeZ0ET00QsyN8Etx\nUvqU3OaMAjJ+24io+wKSUmdQ7+N2WlG8LTR9BdNn0Hmssyl3uXnpeew2K1ErjDSdnk3DWfAxS/cR\nVxQs4pCymmIWX2XIEcVeAaluobMn4JB1BuUCWbsVZ1+k76pQacZodHTCqsS5Y0wmmGN01sQvpJH3\nevTdPoaODpalCL2zM0IuOwO3F48ssaC7aJhunKpIZ6bSUPeRk3FEr5d0Lkj3cIna8SPcGyGe1k5I\nLYU4L02QTTcM3DgGTVptE9+wgWpfJOjz8b1vPqsvyVx9HsEZxZqyIPT2ca92ODcypCtVXD6FdruK\nEV/AZjc4+PCYnbs/IPVCCEttFW/TztjdRo+P6Pfi/IPlBVKJVWz+Ce7uOS8lMuQDImZLYuzy0ZYS\nCKsCjidnJL0ShbttUoszvJesRPMGjVUvw6GV+Moau/1t4mKN5WaCSf0OvoBOy7Awja6QFXq89fb7\nTC6mifnSFBtBQokhgVodx+wqq1+8yt5f3cFWv8uG3YEtmSLrWqewP+D+/TvEX/wsUkknHmph7Q05\n/9aA3srnmWpjogc13FYHiw4RM9kgoYhMVv2cto+JLXT50b9/lu258PnXUYIGSjFMQT0hnonQ3H4A\nl+1UP9xBDmzh9BgMJleY/+Ia3ZiKJzxGbTnx3XyV0pHEwYUDZsqMmX1GxGOncn5K6NNx2qU8pdYe\ngaclpnqEfeuI6gdDrJYuE8VNtA/rhUVcjhaTcBfpVGZ51cFIdBLye8jbvYxUE81lJ3WuMd7vIF0v\nIVvdWH1l3O0pJSPLJNlg/SiFP9HEZQ6pjSWsTQX7kZM9+Yj9N2sMTk+wtz7i9LiEXrcj3mgSDsdw\nuVQOjs8I3XiR/NEuwYGHqnuKvZPAu1mjZ0/QUVq8mrvC04Nzbr39rMvsZ7/0RcrWCvunu7SHTZLZ\nMce1GrkVAe22TCvrZuAooIWjvGQvsd11YOnOSDoF+utDfO0qFvsqukXj/MERK4E1ZK1Oy5Ukn+yS\nSAqsTpzI2x48i0niLoVw64j8gc7CzQS1lptL4Qy16QSPu4q94sQsFxG8dYrtLvN+ia5iEltyIBRN\nxHYdIe6jOGzjy7oYX1rAEe6ifqjz3M0bjNHZ294mlQvQNU20qI0d2ijbJwR8E1rtIWZpl1BaItxz\n42y7UHtlMgt1pqdBSpYzQnKbhdkMa7xHRh3R3hAZGPOMDkzu3nkbgDdeeZG73Smx0RR9KYN2MsXp\nLTHNRhk82WOwvsXI72RXUshkfPzwnW9z8RUNE5HmNI5TKyItJWjP4pweTUmMLcRCacKNKWrATbrj\nwem0o7rPcDi8zA5iaOIJrs4YeeuLbN9posetmHqQaidEvyFywR2g0i+ju3wYMy9R4RFyXqe+sUq1\nUcAnmPQW1giFIlgMkeTPXMK3XaXimTJJryC0R1xYX0FpijQGVkrROvOjHjvVLAHZSWd9mTNhzKx3\ngXLQSaZpoySJfDIjUBk2iEsNDu4e4s92GH/qKukJ2O/vIN0z+eH9Z4rxS68niJ1K6GiE+iopt4mp\nWik1BsxFTFqPXCiOHNX2lIQvwI7NTTSywLZDxC55qCsdqHXxPejheFHFVQ4hRCoMDxN45t3442UO\np2OWAkH0uokyMnH4skyTfnKGyXGggbsxRNgdcuqYETbTqMYJs46Va5EwGYvE22qH+cBN/KaPkqkS\ncfc4qcoEVyII6jH13gbB8WV6QQGfPs9wxYa3OCUeyzLQerjO+6RXXUiKTm5lSmv/Ee3pMt1mnZFF\nxoirPCyeERIl/LqbbXWMjhO5O8Atd2hlc7RmKteiL/Cdb/9HABK+Neb8q0i5DnfeKXM5lMWSS2Kp\nHtPMi9hyF5GdA2SOiB2aDPw6Y+JERxpOHLgqSZo7e5wdlFCuXiA2HCMaKbLPDfAXoohXbHz33QLD\neosLZoBiy4Lo3mbXL7EQf5FgI4e6OIe9ZsOqBjSrIwAAIABJREFUBLF3rfgzDs78y2TLW4hOgX7c\nTaDiQsz2sFkG+LQW0deeZ78A0VEXa62P5rYgnvqYDB10PNtMNBfrDp3VuQmnt4rceOUajYcfIndA\n3lR42ApTcyrMK228Qyfn+scMmxmkl8JUJYXg2YiAv0HTP2JJWGV7FmT7B9/in/+Ln4LuvK/+6698\n+b++/svcHk5YzvoJNg+JyGFSssCw30RM+RBOT1Bzi8wGfYotG9n5Ad3eiIp3iysXbXz4lw9YyNpY\nX4lzVrjD7jiNI6dTnHqIT2xIUp5yt8Pw4yC+HFjO2/QG22jTGZ7pRRwFL2NLkamvTa+aoNmtYQpe\nhE6VoT7AMT9haOliPOwy0Z1kL8TA0aQfC6IYVe6+f5eQLYNLsxExajg8Rc6HfQZnfaZLBpOhTCwu\nMr67TeriOqVhm1GtybQ64nBqYOnLrGfWqR4atJUBC103c/N1yipE3RMUwUH2YhlnReEbP3h2On3l\nk58nrbSR2h6Etk5kWWaurHK6KFHveqkadgJXQrR/dJ8HkxN+43/8Ms4HUyw2ieaVPqlGBIcQJutw\noDwy8ThkYt4Mk57A6fJTRttDaoEwy9MCJV+HhHULd0Sh8d0G6wE3o3EaU1NoRIb4G1Pk1AC5UcfW\nDpF/8wnpiwJSOEV1qGJ00mjRDm67j/qjDlfXvYwfv0kvE8N7VkPv2mmse3n08V/TqbZxulfwT9dQ\nDQvdqJ1q8RT3zTSzp0PiF4fY16fEFuE8eh31uM6NiyucmCfkXC8gRpw82XsAPRc87mHac3StAu9/\n65nc/cUvvMHeoyFEzghqE461JOtb89ja53SXZWbEKXZLNMJj7n1Q4eh2Ab9UoZ+6QOQEyg+2WT7T\nsMfGDH0C14Uml7JuBmUn/tNHyN4hb90ysM8H8bV3yW2KKDs6F30DxlOZUywkh1bGksQs0GcoLOK3\nd/GOXfTsjxlIbqBEaOsa5813GPmtVAo20socat2CcUMjM8rwoHaf3KVrPCk8JDPIYV8Z8d7px6gd\nkb/46r9k69XPEvBrRGwOEv9FhME7EiG1iaZ7OfW32Pn6n6IIc9SObhNyDjjquqm6qshDmeTIQUFN\nIYpV3v7Bs06u5des8HKc+Y3nCdsc+HoyVnsQn/Mm+uQcT7uEJ+zm1g/fYck/Ry4zIpMdUD0L4Wt2\nSc8u8ye/97dkb87jbQWYPf2A7Y0akwf32PCHEaYmt562+eTPXcMRGtDbeZPYP/5nGNsf8tb38hQ7\nReIXcrR9YKka7PdPSLXXqU2rbC3nMPJ9umEfHUufrt2P02Ujb7eSLfXIN9rYYyNS7TEN2U7/8JDt\nTgEjIhGypHEpU+qdh2T7QfRikZJrlUTTjbxYw9LZQE3uM0k2GUpO3PFr1B5XcFRq+N2vcC6UsFWO\nyAse3E/HGA6ZU/2I/Y+fITWWnL/G6pUAe9E8k8ouE61NbRbDVi1xvumj39+hb3Ei6G1czSGBnJ11\nyUnygsRomOD4bEb+6Izr2RyFD7/FxHsdOdHh9OSAaNHkZPAUVdcRVRfDYZzTgMod1xor8xc5ff9v\neHpUIXppxNRlw2U3GBl1DK1GOmbl0CNAr0jadDL0WTjbfR/1iZ/VdQf37X72f9yi8bUuqUiRsprB\nqJl0pSKWmQ+Hb0Z14iSDgpBaQGw4OWvoeFNdRie3eC7yKlZnC9vMhqJ1GI2hUt/jP37/T9hgnZde\nTaC9IKH3lghvN7DNLBzg4M7tZ+/t1dRzFBZVrMzIWE3aDIiJPdxhK24ukIqWqHQsTDwS47GIpXHC\nTJrjW3/3P5Ob/wLz4y4nrQY+wYbb7qUZs5N4YKPhCrCxdpn+kyIhaQE16KcyOMIrKogzk7Z+n1Fr\nitW3iHbg57hgoR5sYTNmlEtOPvsvf5W9RovlwCY1+xDPyhKqWUS+U+JJwcPFl0cYT7sY9hHhPSf5\nwBk5j0DZdYsLXg+HnRQfPNyjbIRYWtewWBssBJ+n9uBNerkAvbbJSWcbp+nE2Augx2pooatksiKj\nwQgxMaRtmBzVLMSvbjD60UNq6oS7Hz0Llv/cZ6/h2dzkpA6Xt1Lc3enjvLlKOe+mPbzFYsPLoV7F\nJs4o2U28nXnGegm9AbGVBg19jLGWQQgOGS+/Tj+ZYeZ/zGS0wvRuh0PFSxAHl+1Z7k3dvLTuYFiz\nYGgya9c3uLd3RDC7zlnxY5oNG9lPK1Qicfz1ECdSB+P0KUu9ItXNKPqbJhaHxsOnHQZP32Pt6grV\nkoK7/QRvKITFrlIOT2l+WKTfdlOfNBHlK1jWbbw7ekLaUqOfn+Kcc5NtBjmzD9F9SU5a7+PmEkNv\nAX/QQ/PePv5EDG2WgZiD/UqbmAS3Ht7id37rp6D25St/8L99+dP/za9Tm5YYtyAluKlHDQTvCs7T\nElIkwqNbQ6geMDCz+NIVXEspPJ4pUUeO/MltMhsriFYHvUGBSdfNwkqY1njI8HYV54ILczqH/fEp\nvlyQYlHnhYVLBA/Oscy82CYW9jIN5sNWEFQCZh09meTaSpjz0xmdoR2Hb8bJT86IB7I04yKFchmh\n7iHun3Hm9DKehw/eLpP0HCH6XiKSlnCN3VT6fcZanb4pUp8EuPhfXuTRUQJ7+5hBbUA7so7HaRBS\nw+SftJmaXWaik82tBU4bCsPtAtO4B/uaQaVpI39k5dbfZ1R+9coi+aUk9E85n2/hytmZlLIc7Ni5\n9tplKjstckWTkn2IbN1k+uj/5+49myRLsPO8J8296W967yrLV3W1n+7xs7Mz2OXMzgKLJQEQBCAI\noBAriQhBIGj1RbFShEBKYATEAEGJUpBBECQREARhF8Da2dnxM909PW2rurxL793NzJuZ1+lD/4v9\nE+e85z3vec67hF++zL2pQrBZw7flpFsEp6tB+fY5lrwVd3HKKGCSqeZwvfVV9NtnmCM7/Vs94u4i\nxScqC+EGDUXA4uujJEd0pToTrUleVWi0R0w96zz3c8+w3T3DDNrpGjo78z1C1XVKfE46mcDTiFHq\nh8j3B5z6wZqKYN/RWBzoSG6R6lBF0eeo2hGVO0Xi/gTKNIk4GlIZOij88gb/crhHviMSTyjM74wR\n2nmC3SrBaxLTFqgXC7y/8wFRzaTlnHP/x08dlWsvfYWBZ0LsYIbXFuDkYQnx6xsgN5DVIM0HDVS/\nwlvSAgthlY2VJH1mXJlZ+fv/6L/kG29eImgbU4mHWap16ZXCEB9S3nVij2YpzXW+kNpkT+0yGHjY\nXHWjvJ4ntnKJo1MbmfiQg+kuiUCU1sSPIKgMpBqC00fAaDPZnROYT+nulgkK1+mcd/GuL+OvKwRU\nJ6OaHYwJgx8ECF9wYXZk5PY21WyA3MkQ11zg67/xCm6tjTzawlEsc/+4gzvlZfRQoJJ04ysEaXR8\nzNcWEFZcNPwNnM0jLPEtxMqIUuuEYcDO+fcn7Bw9bWpff+0b2Awb8YGNzvHnmKxQlKtc2phjCG7s\nvi6DqZ0XMqvszTQixz6mvQnJS1bKAqB3cQXtCKsyGhLu5RRyv8/F6wWeHISxzNYQMy7UssbUHDDx\nhunUd3EF04RDZ/TXYG1mx18qI5/Pacp5MpeLnLfTrEbC9DWZlORi2oVmo0c26EWxnRLT1zhvnxOQ\nvTg0J53YFN1cImkbkKkHSEgSR14X9R/Nsd5MIHhmrA4V5OCU2lSlLR5jtm6QvJnkdNQj/J6b2qRE\nPBhDiyq4k89gXVwg0fFifUNg3JpwLXeB7/3w6SPd7PNpJHWKfuJD8k8IS6vkXCPee+ceuWCB8VGT\nULmB3Jzgz9ehnmC/k+DWH8/Q63voVh/Jr91g2bGPy1DQr1jRdQtRZxiPGcPuypAKySjWBh4jxoA2\nr14Raf7Zv6U0V3njzSUmgQluVxrTksJ0LZIZN3lU7uPvjIkUYtyvNjCs1wnqAXIXs6jmKeWjFLbR\n22Qci4wCFgqhR5jzAeZAo9Hcp9608t67/4aUU8czVNkJSlxONkiZWzhGOYrBA/ptA1ddYzB8xK1b\nCiMqfOlLv4yxukzT4WJ8bsN61uJeL4UpzQk0Uvz4wdPDmZv+l1gJGMjtFMX6IbKSRZ9W2LPbCE40\njgJ9xImH+cyFNN7DPrnOeHKKbmaZx+boj2VCXplazoZ02GYhNOZUDjFNh3jua89wevszKt1jEsNl\nWqEJmXGGvm/M6lDl8FAjWncjrVpwGSqFuEwidpUbWwlqVYGF3pDxhQCzkhfZUcRynERxlBh4g6Qv\nDxidRDgUenx8+5xESiDlHxPfDXJoU1l9Nse9//Qn3HAG6M3mTMpBdr0qf/P3fp3mbxcpCyqiGWPF\nrlJ1aLhDEl5VZKdSJJbL0d+TCaOTW8lw+hefIm05EexRbn38FA3xt565QdmUiYplyttu3Dknm/YJ\n4aCX7miGZGmj5ZdwyzYYgX9BZO5y4xu2OJnpKNIG80oYS7iPJvmJDqdI2hkesc95QGHNaiCFRpy5\nDOztCZO9Hu3FMTeUAq7AGMN9ht7OE322gGMgE7DM2T+ZsjYdIPqs9K06j1t9/J+dor+SgsCAZbeA\ngI+U3KbvgH3VS3Lm4SSnkBiOmUgqje17rKwHmHXzOF1WrMzRTA+O/DInkzlhv4OKb4BRbnMz9CL3\ni7d41vsKcvlzjHwU9eIcKRkkdDqj1DohOG1y684h//if/CSs8/7Xf/VNS6rA+OwO0koKUTKYxEEv\nebEHPNzbbpC6PKZi3yCSHhGpLVDd76N1LIweP6YWz+Gt9OhJecyOid5us/H6NY53fsx3Hh5wYp4g\n5sLYVQ3bKIz0TIDa9jGybnL/pIJdXCTUD6JWOhRXxqT1GJaBSaStM3OK2GSDqJQGqwdx3GM2maCP\n+gQtTcbreYz9Hq5ElPjNdawJP1srWwzLXu5aH7LCZWwpHyub60ybdUZHDVLNJ/SNCIEzg7wp03ZE\nUD0T8msL7A86WGxOfP3bLC3OqFiOODhpYQyjJCYd2h6Nz9596qi89ZVf59xWZF6LczkYYbs2wKs7\n0QF51CYpwa3uhH5IJt2Riec3mN8boW0KtMcRPDt28FRolxy8EMvTnQYQI00sWpJe6zaWiYuDxiOM\nUBinVSPridNvd4lrBrXsBkrlEH/8Ip/JFSJrV9F3ROTEiKx3hn7XILeaxSL76B9FSYcvofnKeIgR\nFwQOj0boyzYcPpFY2crMIfHpo7+ksFygomyymp1yvP0h+a/+CqXdPdZjeea7GsnkhEljQPF3/VwY\nmATNY85aUUqnJ3iXBAZmlYOjM2x9O8J8AXXdoN0WUAJ5nrz7fQB8uQxvrMQZxnxEvpAhEggwHj/i\nO3/yIVfS18g7YkTNKZ1ZkElIwjmu4t+zMA+e8MbWz+MQ7dyLOBC8fTrtBnYkisMiaUUlmcxh1V1U\nW4/Jz2xE8vB+9wzV9OE6bBD6m146J12mUxNZ9LAwczIO7xGOrKGNLXzQ/hgjvoZl0KY/Xmb9soOp\nsEBEEyhjYz3UQSiGECxpFt/y8Pe+8Vv82v/5ayjWOlFzQP1JC2fUh91okU946J41eFcbstkrEkgt\nMWiIJIN9zOZzrMYKNKclct4h2VCYj97XKGRCbEQ1/JEUfeWYfO+c97af8md8tg9JLPrwXo2jd9y4\ndZntQR2CcZzVPR77lwj5dab7Q7qJdU67NSwbQ/RemIEthjkReFlIop4NuCM/5OKrQbK2IAclGyHb\nBnajz7AyJ77lRDJ6BJMDSh3wjA65a4+TsY9QXSn8GQ93m3auPNPjrDdi+riM7+VrzPtVPD4/D/YP\n8G7EEI46OIoFTn0V4rKJN+uksnCBLcMg6hvwuC7imTWZqHVygTznyX2miodgT6duTyOe6mzczOAR\nQgziBvKOg1R6GUfzM076Cl23B10SSaPRr8LjiEr/zjERVUBftvOjbz9tan/v/36JyGoQSXKRHVxi\nNhVIhtxcuhxECfu5EU4zc2TxbK2hVxawZVXEGHi9EUKLHuKFLZQP32H3YRMxEMQIxvApEs1qidym\nhPNoH4/gRg7Z0UyViKuPrSqguAIIKwbhUz8ezYbNKbHUMLl8Y4ghWyh1dRyvruO+58KxkSXumVEf\nnzKWUkwXlonttYgoTkK5MZsOP0+iPvRolu7hlOBijKxu4gldYpad8qSnkBZ8+NYifPfzhzgurRA5\nPcea38DdeoK/IJIUPay9/ir6UpTZ9DFuLY13FGA4l7H5BaztEM7nurzz7XcBuPqzr6Fb6qy9fAlr\nPIa1JlAbhVhzGuhxOx35AmsaTGYN/OFNNFefzriJLxZmzT3DSIwZtTqsu3z4t2I0Tsac748ZuEeY\ne7sY/hl/8q/f5cKNLAGvSO6//hLap21OzBNi8ZuMXOcEzkDzxpHlEIpo51x/gP3A5AO1jaG60Obw\n5rUIxeYZ23dK6P42zZPHTG6EiJxkGHp0gkIKV9RDTesw8m+R+/xd/DffwF7SaLhF7KsjkrGXuPXF\nP2J64MOcz8j4nJTfKxN2FnBZBKRpmSAuJkcDXC2N2aIfV79NIa8R6d7A6Rryww+fDtdrf+drpN1W\njms2Vq8P8VgdeOsCA9dnmKMW8nzGamQLn9tF+eghnlgGcSozXk/Qr5tcWvSRW09yUHWzaC1jPdHZ\nGZqo1hWmdp0lRxCEAIrRwNb0IG/kWRWv4Fw4YyCmsQtDdCVMrN+l5bjLvW6S1dycttbAOc9Tdm+T\nr8yIvfw8rcYYq96msj1BjWn0pzGiERf1Ww+J2DPk1hwoDwQuZSwseiLc02IUHFWmbohbTwAIhsDh\nMIm/0MV1WOXi19LY9vcYzFSSCzlsCwVSV4LopwHM0wOKcgctnyO25eWzjx/xD37rJyBY/j/+7j/5\n5n/x9beoJwXM+joGOubQSVOzs/LaBtphE68xwmnPkvQbdB0ZRukDGo4spv8YdWwllZF49Ggbpddi\nuryOZbTH3ZNVXr6+yEv5GJ1iHcFwY8bOMdUxicgqnpCfe9uHGCkf4hWT/kjHW3GjGT1WHD4mjiY2\nu8aJ6ie9ZMNWMvh0pJJNRMk+d5XT21UW+k6sBYH2PQeSeYguKHxy+wcshZJ4Zy3OJT96R+Ws2sQ7\nmlEPLXHtiymKwzZrL6xQHNmw0ONkQcI5HaIeP8TVLaLl80QtJpW7Pl66kkU3GvgXX6F/POLW7adF\n5ut/5wXkY5HU1SWaAxmLGSIQ8LDmSUDPwdnePjl7lGy3yI7PhWPVynG3hm72SIx8zONTOm6JgEvA\n1WtxJB+wkcnQC9c4W3AzPx6TupTn4Y9VLiWaKKoN1RGllAgj7M1w5jLciVV5+YuXUG6PSC3OMcs+\nXEML49Bj/v3/dYsv/e0vEnB+jmtucN8sc0EMU5X7LF1ZYHq3it20o+si8USd0rmKe32RxY0Cpthg\nOvFwJdhGU2yUSgbLL0j07r6Pc1Yg/Fqe5PkARyLDaLCLGI9h7fgYhyzEZyaHYRkxoaFaM9xY91FI\nhfnun/05AP/0f/qfuXgzQK8rY/tgzN3jx+R6Bq60wmxmULd5iSkxaj2BZWubZtdLWTrlyaMI7c0A\nzmfy+J80GAfGTEMJTk4PuCZ/lf35BE0aU5bmKKEhmKvMgzKmmMBy8Ck5PYskRTGLJYbZl9FbInJ8\nG1trSHduMEo5ENUpV7UsR645rdaAZlTDWTzAjC8QsHYw5gq1RTs331qEuz/iK1d/mYe1U6a7XZKu\nDMtbrxIJeCGhc66IiHM/EVeMlM3OsZEi1fcSLBvI7h5SvMVnd75FeLSArewjGJDZnE6pRAJMWzPW\nVZFdf5W7H+wDIH4xwCupt+iV25x/9oQjTcSn3yTrCdHy2jh+KCAO28xEWE7F2JTCNK6fEmyOqVUs\n+Ac17pgTrrx1mdCyQfFWnMFYwzqOYAvMyKngv5FD+f6nWC/mqQ7ikByhtRMEy6fYjTRmxI186wxn\nQaT/UIaFTQKOGEq9i011Yo90sXYukOr1GOTGWAMKffuM/IWLfLR3RAg746IHf2CIZTqjmrcg+ZcY\ntmWiRpibNxPMk3Hcl5aZKRUiK69y3PqYZsON1r9Hxr6COxLE7rQQnjWwKGNEdPrTBpODBslQAllQ\nCHnX+f53n2ZUhMMR7uMWTz6FTGyAUHtIt+qhHxUY7x4xNlSksBdVm7BgmyA5BszmQbTkHMdZjGg/\nxulUINJqo/7Mc+hDK574kL49SLXuJRWGVtvChavr2JQ6paqDaKRN0b2A49NTtL0Wf/hHb9O+26Lj\ndTPb0nFVHQiBEVZnhnjXQSSSpaxbuGBEqWgDMsqA7d0nWLILZFQLs5CNbnWMS7hIjlN8rjz3lDNW\nX3qOnBmmfnib4SAMyx6yeTfWoZOgFKFnVCi3O3jDF/AsZpg1RebVc8rKEtbOBI86R1Tj+ALnREIz\nKE/5wYdPg+W/9c+/wsQtUjyz4DyChqeDMyChl0bESi5CnR36/QDKJYlYs4YtN6RNhExvjFOdMWml\ncEolzoMm7p6IMlVp+gNMzCjBsJXuuzovv27Dko4x7yvUdwXG3i6WUZxE+BBlu0VzKUz8+SxiRabU\nnpLq9DkPechG62TrXiS3k91mB2lcxViSeCa8hegKILqqWGwwXsjhqjixjotIrSGpzQQ9UyVsEbnr\n03nOHcCZeBanP4Zb6DHQDYaKh/C6jnNZpDueYvUoOOQwx3Y/+vI5C6tb1Gcu2lqfictBvS8SbZ/w\nvYdP3+WEYis4fTk27H66uRTJso2mJNC5fUD36hqcRalNKmQWt6j3n+Cat/DFl+j4TSha8PjTnL7/\nPRp9SIUTOGJ9dEue1U4FZ9XB49kIfdFCaBLGTB2QyCfxVg8x+g7GIYHoxM8TcRdHwEtL9nFFVXF2\nnQxTXo6r+8yHdWzLVxgldHr9EZJhI2vmUYQskZCPXtzBM94Msecm3P10ipSV2XaPsTnWidoMks9F\nUTmjbxmRcFvZbnoRiiaH9XMmvhrLn4c4Pq+S+cI6ewdt4hMLfbGJEjJYTi0QWXHj88y5Xd+k/OEP\n+J3f/gkQUX/4+3/wTd+ywv47ELmqsHN8huGWyQh+6qVPcMkOiK1gjlscaY9p794jsnmJqEfGc5zC\nEdepvr9NwBFgUljj+eaIP337ba67Mxx17tHqJVn0u9FCAjHRoC3nkc0YSjRGWtvDPTd57vIaoqOL\nIVkwjCmdgR2xNsDiXaJnK+Ezehz7ZljDDtRih7/+l/8bv/Sf/imWf/cO51WBE/sOKVYonqeYZ53U\n7CK7dyssLfrxeqLkti7S7Z7w+tdexVSqRGdTqp4c1v4BbreF5tDEE6sgtC+ydUXDezrHm7qJP2Dh\n9FaTf/aH/zs3vxokG+nxnb96ive/9OpPsSCOsHY6NNslgmMRU7WhGSa+TIlyVUU2TxFXLhAt5jGj\nDhphhZuLcZrjMXZVJtp1Y02fczaAm2+sc6tnshC1MWpY8c5k7B4fweItsj+1Rl+sY/gmTOtWLC4n\n78t/TUH08cC2SyDaZe8TO4vzIsX+hFhwk2cuJdA7YWTtARNHFt9hA/fCAuf7txk4G4RkH5O8gTmM\nIVnddBbyDMQ5lQePMOI5Ru0+llmAMwEu9WKMekNiN2dIuT7ivEZPbjEeB8nGCpxXmwj+KZqpEr6W\nxnukk/VbQYpi+847zAtO3v72jwAwO4uc/qXIywU76ugxLUuVhP8aI98cY2IjvpRgyXmOmg9Rr5U4\nsh8SGAfZvAbBVpPVxSWmHZOp0Cf7ZRHL4waNwClbF8IMpAYueUQykCQdcdJ3tHC3SyxIX2bm1Gl+\n6yNGz6Xo1tvs73xCZHGJmC+JR0sRR0WYFNCaTZzeIN6Ixvi9NtGCh8KawsOjEkf9u8TDGxw27tOS\nPTyZ7rCwfpl+F2b2OA+q26z1Apx67dTvdPDGPCwsuNDsBebzFobaIRXKUI6qiFIcRV/GfbHB8FCn\nYQeyDpaaCo+0LqvLMUodC3c+eAo/fMP7m1hEO5rxFitJk/a2Dy2jM9YnOJKriHKNuNtPZLJFN+3k\n3u4B48/jqHUXGwsSXadCKqLz5LyNtWhgyl4kvcvUAePGlH3lLv3TDvarabD36GgfkU6lmZgTBo0Y\nrpCfuGWOFkozHd7l4eMd1hMp0r0xO6E5WXeb80oSY00n5a7T2PFz/0kd1/EYPWBhVPucTi2MlqrR\nPRjgyydZmPaYzzZxXcvyj37n19C6LtZcPj75q3uM5FOSZpRHozHLlwRu/z8D5tkGekNk6gliRJoI\ngyV860nkro/JgoRrfk7XH0cPh/joW09F1PXnf4GV/BeYF3yEg24a4mvMUveQpjF6jjSr9ilHrjZS\nf8KkWuWo7yLhsWIgE9MsyFqbxdN9Aq8tIp0msKkD9LJJyOyQjvqpdCzcr02IhiTMgQdLYYw0s9DV\nO+QIoMe6XLuQxvNqmOfiHrq6wuCDU/zzHIdP7jHVGoRCHRyeNH2hRzee5PBhi61EnqCzTKUqMZt7\nmNeKpPwBrLMmR/E4VlHiclnFJVkIRkSUpQSOeZXRLYn4rI62nqCzd8DKTGLcHeKZWjBaNvTMCG3U\nxszOSPpCWEslhOiM8dRLzxT58P2nQ+LLL/0c0cEY15kPw9PjvFiBuY7V5Scu2DnNG9RUDd09o+nV\n0R0RsgGBSNrDkV4lJATIjQ3yoof7RS//8b0f8kzyGvHQkBO1SvHRB0RfdeHxxhkJInFxQHHUA18F\nl36BmCZQTI3wfXSfvFNmvrnAudZn3hqyEdvk9//4P7D0xhe4+aabYqvNSFllGDYILm+T1BcRv/Aa\nkYdVliSD/uqA0riFRp6AoXLaKhM1JTxxgUFAZmf7Ns2PaoS0JOVClmw2g3RWZWKYBCYZSn0nbp9K\nS+/glvuEI11M2cFJyeC5nwrxRPBz54dPs7LfeO453JYw3WU3izUnzUqFpBHn5FoAPi7juGrDjDrw\nyTJJW5JmLIkpdGjtHJK9epG5ecp8203Df4A528I/m1AftjE8XqbdLi7vjN5AYCvvRXJaKJd0Ptmf\nspS1ctQeci3pwz11cnzeZakbZTcmoHtdwzijAAAgAElEQVQDRNoC/lQfu7iEtqwRDphkyioOBGzi\nCardxdn8kOBOCl/YTaM1wepTCbpyrF6bMBiVuXj1i9z5zhnyMIIjqaJlIpz8KMnSP3mZ1GoBz+RV\nnC85eC7zDA/6OeKTElhsGPoMe8PgnX/3kMRZFuW0Rtju49GtH/Hb//AnALb5+7//L775zGvP0fz8\nlJWvfJGNocz2Yxdm41PsXT+4Q6jiiHHNgtdtRe9EmLHHtLZAJNah2w+RTS7Ss8awlB9jL8v0gxLz\nhTn5Vxe4KhQQ9CnCohVn0cU0KOIf7iLNM8yOH5CVQriue2BqRYmYuA6dnE2nNAJdjPgCMz1Cp+Hk\npVduolbcBLUB1167yo31ZR4PzvAnNKS4jaCrhy+T5Uo8SMY/R233sBDDmrDQOj5BCLv40bvfBzrc\n/cjG2N5ilFylnxuR8AZYbRjcLJi0OzO+9j/8Jn/03e8RHIlUF8vceH0Ny5mDW9/6hL1KC4AbX/kN\nQrUx51UFq8eHO9rHdVikVN6mH93CmHqJTI6ZzJeJqyWkpTlJq8yo28fm1OnPF0jOjjnrK7gmCjWX\nAyk4gN0Qg5lOzzFA0fzEAmFGkwrKfI6lKzDJ+tDEI+Khl8lHZBbbSzQHXRaaNlpLfWQ9TXVfRpz0\nufDf/S1qP24yVzosWh1sz4+5WNjEXfdxShFrW2WcbqHf79LfiCDtnqAkVeaCTlZ8nvPSNi8EMpxE\nXKiNJrrXQL5tpWOzYncHIBanVN5lXNJZ/PIycqtJ+8zKMF5hON6C/iPG4Sz7tNl+++mk9uXrLzF9\nPYBgbXOc9uHxpqkMptiVaxiRBVZ26lRLVfoPThi9GGd5GsCmmeiODKph5fPygFFCY7oYodwVsakj\n5NQFcjiwqQnGzQSKITAZ9+lNvCz6cxwoMkJrTnIzj63lYNq2EFiQcOvLnATchBsH+J0BrFkXe/ND\nvNoqctPGxbAdueJCjaVZvTEjPbrAbmzER/++xvqX/RRUJ3sNG7nAEh3fGcuHS1SfqSDvdPHJbpYj\ncZyHI0bmmMSsSXc0YrJsEjzzcJiasNYQyWTPkboh8OkElCT1WoTquITPEiWhL/Pd959ye174pdeZ\nzyOk0kOenAUINh0UMkEWE26EkIFl/xPmdjvu/AzLbpFi14oWGrEVz3HP10UJeonZPDhkO6LHheNK\nEJtiQajNCPgdzGUT77MOMqUkhbiXlk9BeDBEVXQaYpbzoBU9n8I7fojF52QjEGUYieEXrCxtQqXn\nwLopEu/1eSKE0SwSknuR1S/cwMh7aOy7SV++TNylMzPjTA4mdJ94kL6UIdVt8NXLl7Da3TjtAyyG\nxqKyRNGzT8Cjc/JgwqtfXuCCvoFqkZnNNdxNA+9LzxFRarg8XeJ40Zwe1O4C8UmLt999mu359a+9\nxCxnJeALIRyMsIQVzCKEzDiCp86T+0WcrhcR9vf46GDMm5si5xYwR0nGZw4Ut4xTiDITR7Sd+6it\nASObTGQwpqhYsE4abDyf4Lyyh+T30MaCpTvB8eAUpytETVygk4fYWZhQ4jK2XhObM8DY2cbldKLZ\nvEgTkZLRxpp34Dwb4TX3ETQr0nxMO+diODhj9ZWXCMdMDkph7M4T1ksmSm6K7TBA2e4kZdHxORyI\noRjOro2zOzt4XrqMPWbFTBi4F2Kcj88QsJNyBdBVKzG/xifqIeGUnyNdJFL2885nT9egf+O157m3\nP0LOzzG1Nnl7BuGqm+thk8fiIWN1jt4H3/CEXKvDycxN4nxAwhbFNpIJbXkoahFKJ/t8+v42L/zj\n/5Z174SzR8dsyFZ+6z+/yYf7dYRrb6BuP0Yc6hw7HJg1D26vxDiapmMXMdZS7O/38dkzhKV9pIvX\nsZ1VcUpzXsy6mDyKMRl4UcZ9cuNj+udRirk2D4+OyGxNOPboaGVQRBc2QSQx7uFNpvB2e8ipELZ2\nk8Y9lUPLR3jFGIoYxB7QieXGuJkguht0/SJDaYjjUGYYLmA7LCEqCWLrI7r7FdZjbv7yr38IwPWv\n/F2KnsdcmW/S6f+YklVggoR8sksqm6HU8WHuKIRifk6jOrptn8HHXTZTX6AfAvGWAr86QC1l6bSr\nWDZ8pI9bePId+mEFkQiOhSSjk3040jgfTvGtBxj2DIRSjSd4WQYOyg7cyfsMfXZsHQensxnqWMTy\n6EcIZpTgo2N8uoUzn4l6HiBRM4nEHPjVJhNqeGcCH3Z1evoJm7rA/COFsjjF+t6Y8ZKD7GkMx8ES\nnpQGH8zwfPcW49Mm3rrOA8scrf6AuRlg4LIhjvr4fCqiL4YjaEHujhmoJzx5ssPv/MOfgGD5v/hn\nv/fNt178BaQ34rQ+nREu5NmIjphO7AhjhVxSJzQccjLdx271Er2UZuoKM5nWiGgWxsIIb1rGbx1j\nv5RjeiPF1YydQciJ9x07tcDnyO9LtPc6KJEEi3qfs45IQ7nPyrKP1V//r6if9/nkfoPyD5v0nftc\nihdwWZdxmFX6p3Zc1k84/cE27htbWF0lWoMAeVuDd/7fPQKLKqojTK9uxygPUGZzMq1zHNIixuCU\nY+b4Tl24HU6UaZ+x7QJXr3lRzxo4evu0PqpjJockxl3sZ30+/4Mf8bj+gMNKmmnshFnHRKpO8F5Z\n5MGBSOn0EQAvLGfwLriJW3V6XZ3whSyOgBMzEcDsgRR3MO3NmS/0aeacuO8LlDazpGRwKRaG8wbe\n5pipESaYzmAvuZC9dibOBu2AA6vFyUa4w7lcIeKIsmR6aS1fRW49QXME8TUaTAdR7vc/4nIgxuHI\nx8xr8GLOwqxt4NlMc+cvnrAWmtES41QXJewPDNTdE0buIH5jjCecQBGjaIrAL379Ep8VJXA4Me+7\nsFnu0vc0mCR1FjwyU3sE11jnke0u1xd8GIMFJLuT4dxP1N6g0nNxcTnJ8LiG+7qE8+wJdrfBxkYA\ny6MG7999ylH5jV99jlzOz84sh7Ov4VbnTMwrbG1akWoTQjMR4QZErc8idsBqtVETR9S7E5yKwLzt\nZfvWPWI3EzRKDgqRGL19EynqoW/4KUQj3P9sQNzRRjvJIns8RKslNgpzuqUxJ003z/7cBpqWwjrY\nJzbNUi4EEFsPOW6fETA1DKdJ21Jjnp/jEx1E1nPEvpbi9s8/IdkUSb4cwSq0yS68wXLSj6VrsLGf\nJlRIYDmy4hSnuF4NUy9/RHtljYRjxMdHbW68mKZ7nqdXMNGP3ATdPT7cPmSaDJJzeYiOdci46QdS\nrGZydPY/4J3PngbyN954lbVsHmWoYjuvE73UZqhMUZc9xCf77Ca8+DQrzc+b4BMZeME7VJmkShx+\n9wm5Z/0EWwGM8ARh4qbUGCPbsgSqOzjjCdpbGTryPq+8tcWpLUH/D/fJXU+ScxaI/3SO+cGUsaHj\nF9qMyiNq/gaOegQhXwTxEonYnLjlOtWJk8i+i6NxGSNsxeZRufHi85zqQxLdDNFYhOJMIRRsMr52\nAalygHL4iEnQzptf+FVQJlTFBt55A0unRWoxTvzmdSzlMr2ByNo1B6W9KaNnCwifDLhd+oTzE4kn\nh4+5srRKuJDmSOxw+6+eiqirL19mmsuyaDmmKdkJFmIoj+qUNxx0jg6wXN0iZj1CSi4Tvmxim1iw\ntiJ4jAqqSyGjq3RfrvJ4cEpwt4UruIA4KdMbS3gnNdKpHK0zHSHzIuG+jMPtgHQBvVfAGioyGqkk\n+z4WEjmKHRnL+1NcmQ0UdYp3KrHhMHkgmSzbLJTeC/LxnW9x48Uuo9MAbqfJamiRaBAe7Cgo9Cjc\n2EI+eUwzsUJikOSz1h7xtB1RlJHkHEJ3D2+4i5i5yOneY3KpS4iqwvGwg/vAQnwrRXXYobsj0l90\n03hYYisVQBRW8AzqfO/Tp07Ul17/Re49fsL8LIx7IpFw9pAVD/WSF9Xlx2FJoOlR4gubjNsh0tdX\n8Jslzh8/4PDSJu3zNtmVBP/fd95n9Rd/CXGsE/a3GIwqLK+9SOmTEv4DGzP7HqPGJex1J7ovh3my\nhzNow+1sMS4kSE7PsGTdyO5tpvM1bP0BzlAAhy4x7fgYrLVx+gMYJ8eUFRe9qsjVfIrCjTT9d2Wc\ns1VkdYtwW8MRDBJQMtwNHuCJLDM4n2Izhvhsab588SK73Sbp7i5h/QqsbTD7/JiKvYA9bFJvnhJb\nXidfm+CwRZnnbYi9EbZogcp723zy5Gl9+9nFNGpYwpUc8/5nXaKeKQmvjYER53T3MV/8gs5pRaMe\nsRMOpZl+PicR8jJYGiHft7MdHUJvCfvkAVdGVs56HeyxEE2PQfNOGYsg4+8PUG1dbMJlPKkG2ijO\nXOkiD2bkp25mm0Fya2EGVZXAeZhQtoWlOMf+vI3OfMSm8yq6O8h8ZYug3UVdCnFqnPDmf7/Fx58d\nUx6eMT8rUu9qbKxuMrYs0vIP8IkC83EMR9BG2XLI3KeRLFQ4qUg4rlb4qx+3WXt+zrQ7Y+ZYotuY\nk0hWEad5HB2TulAibCYZuyoEpRj37z34yXCi/uAPfveblxeiQAIppPBQaaPviSxZe7z/6V1kh0j+\n+RyTSpmM1cqpO8BZ+YzYzWUy/gpFGXKim6keZ3lmsn84ozXrsZRMMUm4sNiXKJaOKE9kxGs9HNY2\nq9ISespF6tUvoTy6w9F9nViqSWy2iOVZO6YjjhhUsNZUGvZdnDYno9ka3Z0xhmWG3vyEXvgq+eAZ\nI1nELFoQe0PWXgyiKBk+ePyYaGiAc9VFRp1TGmexBlT80iKDcovU/BznooihZ/EnVQqnNib5dcZv\n3qCRtFE3dPxeHy8sL7CSWebeUZ+KzeDnf9rg23/69HT6Z24+yzDhxm234oqtIejbnM/sTHfdBCUf\niZSDR5/NeWahwLR5yl5FxbGiMVNnnMeyBJ8YONUl9mYnhKQQo+mUL73+OoPv9TE852QsFk5OZJz9\nAqsXbchdg34ihTCTmR1McEtxHI4ii7br1BMdfHMLa7Ucnb5ESeyxpEl4NRjlOvg1Ga1nx1AtNMNd\nIqqG4ndjq02xDvYJ9+NkfvM3MJrfIOGv4F9p4EumOPp8wPPzEHa/F2FWY2A7Ix1KoGmLnM41IpYR\nk2AQi9uCNtXpiBodZ5B8MMy+Ccu1MJqucGj4+fzT9wBY+u03mX18jL8fJRpL4qwPUGI2Ik0ZtXRK\n9ZID92RO8ZkUA62Bf6SiSnkWbX3k4ohf+W/+Ns0/PWSgu7jxUp7Py9t4rDH8TYFsVMWcOzl4+J9B\n8tCTHrIcFSC1RH86oaI6yK8sYT2r4UhP+LNv/wdI+0h7ZDw9E78EiqJy0rzLlWmK0NoNrBfy9A9C\nbP1+AZ6cE3ZInAzB6l7j5P6MrB7AV1impuwycoR4LN/h0oqdTw8q5LUUlZLM+cjF8lYKe83N3rCN\ntT8gFNeZCsv4Cl4iM4nJSGLqLyNMetw7PCUnS9TyMp9+/+khw43sKvGIRGIqUlaafL79KRc3Usj6\nBF2P4dqeUc6PKMguRoXniOo17M/lsFeyvJyIUyw5mUUGOI/jrK4kUOof0++WONsYkbVlmQouXvH6\nuL09ZtEr0BtUedwoc/+ODe+nTRrhKR5DxO9zsRD2oDbdKD4H42iWWvGEqVXCW47THMh4ohaCi+vI\n9SNW5Qr6QxEUmW7k+xxLRxhlCfeog+ldRw0VWLjmI9tT+aR9Tvmexs6373Llp/8uLd3FvOKhvPcJ\ncriA0jM4n5QIFebQ7DGej5mFMhS0UzzxMNgWcJxsMy8s8MGfP13nbTz7PAXDjeq10HUlyHYManY/\nGntkt55hcypg9fV41FFJDUooeob5oE/d48S/VEdc7lE7mWE57bP2S9/gzG4jeSFAoK+y+swLCFkX\nwpnMh+f3iV9NQt+Bq/OAilIlMhsghNZpizK2pTWatgbToBf59C52dw68MaKRMQNjypOiFa1/Suym\nh43kAuKmSnm6ihIS4EGT3d3beO0OQqoNl6PBqB9B9z5GTMOqscZu5y52tw37oMp5fo3l9kMi2iW8\nSomZsI69UsK/Ncd62CTiTRK1TfA7R6xfCPGkblB+PCa86eaH333qqPyNN3Osa2tYIhUKvjjjeI6z\n81PCrwZo7WgY5SKuRQdjVNa1Q8zmjKFVgYU4+TMBFmU+uXOHq5dfYfXFGK3GkPH9Ia9ceRVH28q5\n1UYtnkAfN/CoMYysDb97TuehjsdvYPNn8GFlohyzvLdAoxgkvjlCOTUpj3UMm5ehNsUX6eP4pEUp\n5mXBM+Hai9f4aLvPdJZk9caXGPzgr/EuRRn4zxm2YgzsMoWkBY9VQykPKYqnJEZW7FmDWCCH7daM\nqqng71oZOgs0ig+xDd14G17cwwDkumhdJ5WRCI0nLNh92PNBfvCjpw/WX33jOhefj1D+2M7Gq1GU\n6TnLBT9GwE2vdEYr5mclvYVqU6DZhVQf4VqG0S03bkuT6EUfDHTC2RH9iIalJiF5zxhbbWxO3ezo\nKXryR/gCC7gCJhn1EqZjwPm4zLLdgyl6KVnr1O7qLN6Y4pfSfHz7PtGvLjAZDdiMSLSP6lQuCix7\nWtwuOYgPghTCOss3AwzuKFSNEkfHRXIbr2JabUyPP0dYzzBq+jDVKhnRijkTCQ2mWK69TKV7ixVv\nnJhZw902aIUj7DTPCYgqSUND2spxW2uS1j0YoSDZeZUTX57dOx/z9//BT4CI+t3f+1ff/OLPfgOr\nv8e6K4tyruLcmnD56mtk8wUCuk7RO0S2pJjnLKx6/HhHXnbujLl8eZPYeZNPv30LogmsGxpuMYHR\nHdB6cIiiruNOjYltphGSx1TfTeOSYXwhzV71CfbaEW/fnuO8UOC9/+PPmF13oHbm0IxhUb3Umm1s\nSS/zpI18r0PTrBMsLBG5kGN61MHp3MTIWOlpFtzxFA8aJtN+G/vonKkzhku6zpnHgziWEZUxtoUA\nSYbYpWU8pSnjvkbY6aP2TJxBR+Pg337ASWVCyOXGzBaolb1MrG3sdoHARR/CyOAH3/oEgLWf+Toe\n64zH/RYJT4vKHSc+NYgjO2XD2uNMTzCbK3hmLZz9ACGrhG7rkeknOdUP8aRCzJb6jIZLeL0miZSN\ngdbmUFXwTA3MrkzCzDDxWij6k/RDDVZOPBS7KuLimGJtSjLlQzJs2JUCit9NTVUITD3M4wHOSnWm\nHh2LLUuw7yNic1BzDTC9Q2zSDfKai+BajK7nIt1Zie0f3uCe/gnT3RlZTcZWH7C8+XMEMyGcFh11\nanDWTyCGlwjrM+6dHWK5vERXKiGFRSKKiimYBFU7p8Z9RrcEXnxzg51tmbHF4P7t9wBYCKaod/ZJ\nx3wEPQqnEwWnpwdjC+rzi3hiK6hCGeeHNnCPcVFEDEYw7AlGTpm33/4+NrPD5vIa85mHcHRMPO5H\naO3QUM8JW9M4n+kRkiNEFD8epriLDtozC2tuH0dzHclXJ7gLYWeKYcJCJ7DMIGInsXUd9Bpeu4Nx\nNoq1bqG/02L/O3/MsG/H+UqKkdVCWB4Q7NsJ1u7gfVlBneocbdvQszsILh3bfhBHbo1QrU5CU9Av\n+kkfl6gsxAjd7+J9PohTaDAtD9E37DA/xTJ0MMFLoOciJo25sBGis/SYd//4KaRUD0lsepIcC1PC\nUZVM6Ca6VcG5dANb8gluc8Cs4+VMaIO1x8zuZa0nsuN34TbL2LNpmvsDnv+FDe7VPmNgs7O1mWEy\nnSCmphhnh3x495C4N4XFa+KzOhn1V1gclZhlLnDh3IKlneL0wyfsToZ0xBvs/S91onYr4n0n7/xF\nmeDWGlr9PvZAH3XiJes/49SZAe89ehGDJSWGOF7F+KjNLNLGt9HB9Vji1s5j5ssXESpHBNxxfnTn\nPXquI94e7WEPb7Hy+hvwQGfiGBBzmFSOvDgvVfHmvCRbNs6628zsQezKfWI5gaDXybf//K8BeO5n\nfpFAzeQ8MCY2aVL6aAbXQljKZ4yLZZqLToZDB0nHGTXThWC14XaGEYwhia0Ao880OpEKG6nrHHcM\nhnt2QjY3kdmcv9p7QKWk8PqvvYBwqPBBJ8Rm0KDSbBBbEwkGPChdiUzWT/3hx3ibY+zRMKl2AfI9\nKtM8pXKThyEXyZKJ8Oac5aU820ePUT+cM7RobKZNPhdlfO6r/Jv/+K+5+tIWrQUT56BO2DGm3l5i\nVNhmeXSNg/IeWuZ5Ao/eoVUbEliX0edZrKt+VEebkd1AThSon46YClFK7RlnD3dY0z3MUjU8/TFv\nf/jU+VyKJvFuLZOOJegndebnI2yFBcySFX9qhicwxdOeIJlhVt8MoJVcHLr6LOnP8pl2j7Q+Y23j\nWco7uxx9eptf+ZnXGPoNXHdnbEf6hAywd2IIxv/P3XsG2XZl932/c9O55+acQ+fc/frlhDQDYAYY\nksPRJHAoakiKlEwW6SpRtkmpVK4CRHsklWWbkm0FirI5YvAMOQNygAEwCAM84OHl9/ql7n6du2/3\nzTmHc++5xx+AAlh2kaKLn+z9Ze+zau19qv7nrNr/vfZea2swRFTKGQl1QiTTzhBudxD7EYxKh9y+\ng4itgFFnR8mBfdpOqJ4naZOgKuDp+sgIEoaCh+Dpi9zYv4Gx28SROaSkzyEYRhkMq0y0Y+QyCpyO\nQ6+Iw5Bltx0kXmuQ7FXxlgZkjAOa+3eZjY7SO6EiSSY6ZJBrSzh8dXSDHIOOhprfRcOVRDZ1USsT\nONxdfvjmRyTq5/7pV9l5WSH+BR+8X6fYMFPu+Ina8jDppN7TMTM1QVI8YGIYQcjUaB/uo5Hi2A0Z\njKIR+6BFpppHHGa5MOggff4Ctf91nWzIgyHRxrM4iru0wL3WNnrXFsOSg1H/NHV9De35aZQNkalA\nC3VFz5prD//jC2i3jIy0TWx7h7T1DYJHc7TnbLRu1JFGH/EgY8fVDqC15ukpU2iLWSL+OBFnmZgy\nBWqFRBf8rQ7DmMh4xExPaBHc1dAYNWDXh9gXu7TcNhrdLDG/C3dwjogxRGlzi4JWxyBbRlv30qxI\nLH7Bzdt//CP+4W/91v/3SdS/+h/++YsOq4ZZ0whtW4Uy8IzZzZEZ9q5fwqbo8CgazA0zuo6enOzD\nbndTGw5xDBvUG3lKnnmigzzKVoeGI8hyKECz6sexIGFLSvTjJfqGacYem6Alpxms9ummy7z8+yuc\n+XIc8Ugg6B9DFGyYozJ2V4tQcAnDVg5zU8PA4kJOOQgv2TkV+Sy69T001iId+xkGezm0OQlZH2Nc\nX8Nob3H6mUU0xQEH7jbehkLesgWlUaZKSTRjCpp2hdOnnNx89wOMwzGKGxWcuhT6mIA6GQDNKLPj\nAbIbZfyTTXxtMz3RhKko8ubbH63ULi5aablVXLYT1FNRMsVNImfdCIEmkuik2JE52nxASeozNXkS\ngSbmUQc9yUSxmuVEwUM/FmMhbKS8pVAdrtJVPAz39gkFZgjNjPKBcBdnzcXxeI5WYgGDAyK9BlLe\nxqCexzSqx6IZZ+PBDv4RJ+FkhT3jGvFun7TQZdzXwNy0EvYNqQUM+I4KBBoz2GyHaA1a+tNWvvcf\nX8GxOEJLSOFevoCup+NO9T5jpse5XbnMH377NU48/iRRi4vq6i6eoIneSATPGQ/hXBBN/wg7LvpN\nI658jtRchMl1K1PTDVqqlfzwgJZTz/13P7qg85R5FtdPfJ7ejozsi6MWE7QiQdzWAsamAY/UZKBV\naB8dUUs2cSgxVG+UxOsf0HdpOekZQZ4O0rwvE142sr+fp9PYo9Sx0/XbKLm38NY03DeI2HugN6rs\nZ1dJnesTXXWjLWSwFIzsp5v4n4vSk62YjF1M3QFdKUq/sMHuponllgFtLoel0CUcimFuJ+j7jeS2\ne5jL0OuV2fTJOG1zrL6bRO8fMmb2oBZtIFQYxmuU9UMKARNReZT++j52a4G1YpeJ8z4St/dJOqJM\nSH4EOUtVMGHyZ9Ccn6B1PYPL5mXwG9/njVYFgJ/78ucwh/SMaDepaTQ4Oln0Sx56ah1PqU/T66fS\ny9GvJLkY8ZP0WQjOxBA0Ms5gmMiTThLNPp/9Upzif3PE5H0LN67cY/xmjuLaAt1RldORJ/jir/0K\n924dsPdhFnXsEINHwiKXUG0+7u6+w8X5GboT44xJAoNkjjNfWaA5rnDaXaHTKHEyYub6YBN7Rg91\nhVYjTVS/yECtIqktTDYjcz/7LPLBLuWVFQzRLrlhGOfPnmQzN8cdNYf/yzOceNrH1LF5zGnQ7OwR\n8O1h7CS5/vo+7tM7WDdDmBgwpoygr0ag40PeH7C908ZrsvLapY9Czi/+5JepSQWGhQi2oJFLd68Q\ncU8QHIYZ6DW0TCbm8NFT9biHHXJNmYeikdlTozw82mWo9TJdmaURbtFoNhkfNtnqSOhcXayKnpnj\nJh6+m6brLTOWKHKfPsLcKOaiAVu2Q3WqQZMG4aKdY7/wVcqOVfbNOcKRORLaP+LBy/+W+XOPk1Ss\nzBj6eLcHDKwS1SkXilXG3FCJ5v2II3t86Ruf5+jNGm5TELPkoKFTKaoDNLkhA02a2SkPTa2VsjdO\nM6WlWTZgELRYrVtUCNMsjWDoHNIwmRgTXYw6B1g1I5jGu9iH42SrJa5c++hu0G/89JfwLFpJKyba\newr6sIS0tUNxJENtT4el1MUQjtMqNMnlTOw8TDLV17GrKTM25qe8esRBf5OZ4ghGlwkFPVbViOB8\niKNuRUrbsTba1MoJgi4nZblGxFzG3RK5LZSQx/voPSGqGz9Gr4nj1prY823gkp10WyqC1o0lWcPg\n2SM26sPnqzE8kInUB4xGZsiKYziaTo5bPeTTV1nT6zjRL6PrtdGHahwVzMTSA+oON27liNTgGKX7\nWxiOncDdKqPT1Wi0slSbPayqhMe+ia5j5EjqE9bpMTeGtGte/PU8rgUjL7/8UbLNrwXMlByjfP9b\n/x79l5/FOxKgfyeH9xc99B6VaeXyhKs1FEOT+oGE1pvlMAULDhMJ0z5ibwL3iSVmJS8RjZX87DTW\np46zX93Gc85Hy51HjsxjL+9ii/Vy+/wAACAASURBVEawB1xImhJbgoVwq01js0pkTmFD0qB6LHhc\ncQIaM1pnBWPGiNVbolweB/saw3aUvP4Ij7xM1b+JPVdBbs5RXk5QoMyUdx7n/IC1Qz/2eB6jz8D2\nfg4PMsWwjl43TqWqoVUVGFOTNA98WJt2QiNQ1MXwr3ZplnfZag4ZhPoExi2YNXr2dUPOujR87+0P\n+a///3AB8f/8r/71ixe++Q0eprYo30txdGWHdGoFs0FFMfg4dNkxSFZsnSNqyhS+SIJOUo/oUcla\nQ4x5RMwjo2Q6FUzuKLpukWpuk95OA8U4pFutU74psNe/i31HxGQ0MD81TWA+TmD5MdDpCXfr2AN2\nTKpCp3uA27pMsbxK06Nn3NWkbJtlTGdG0Q7Yuvk+c7/2DKVqm7VOitZmnv6oDQkt1x69xWi5QWqo\npxAaErCfp1PYZ7jXR7K3cI0J6BBZq0HjYZcnfuYLHBn2mB6WWG1N4YpI2O7l8Ea1sK9B58+RtxkJ\nFQbIWxU8ljqv/Pij7ZVvfC2ONOrF2C3R3j5ifA5GdT2MLSMHeS+Dxh71mgdn0EjhsIk652bzxk2c\nfi32e0WKxxRi7SzWVpBD2x7pwwJmswNHV0E3bsaoS2FPxckJAg3bACp+zs2Mspk+om3ssJFuEW72\nyN0/ZOYpCaksUPa20Ttd1PdzWLs6GlNj9DcEdkUb+qGdhqlER6ngiegompf54Y8vM/6UDkm/h/jT\ndY5ZC0i9IPacm/uH1/Anaxz/3FNcfvkd3PEo6xMi0t0NGpoEyoGDRrXNlXfe4dhXnqVd2KdVVRj6\nc7hMMrLgol6t4hcN6DpbfHB5DYD5n/l1ps0buFt9rBUBo9NFv5Kjb9KwtVehHLNSu5b+aLVzUkQz\n6uPWnTcQL7qZsI6TLncJJzsEQ6O8/vYPGQZPcPHX4uSES1gPrMjGAamEmUigQ1OoUaGNa/YCrfoW\nvYaeyqlxGp0C/qWLbPz4NeK+cbTpNu3LVXQuC+6jEObmJlZdGFEbQyOVqRfaZJaOcfXP38DsXMQw\n2yCSazNsjlNavcHcMmRaQ27fv4QrYEJpd1Fu2jBKEfpHMj1KRGIBVhxRTsVCZFJ9tPEI5bUHjH3W\njXzLScN6FyW0RO2VS+RaBkbzMXonz/HazY+ifr5+/jH6ejtmaUhRKWEN66geSbhsEoJ4nO6fPuTB\nbpmTT41Cw0b/4T69bp/+H37AVnqAmtVT23ifxJkGnqqdVqJDUWeGzrNEn7ZQN1ow6VNc/+EaJWMG\n/6INv7ZJMneI3RTD7cri8k5SPUxiMlgZl0s0fTUqGoXo0MrKn9xkxi1QnLaz6JzDLKhIBgcGOYRg\nynFwqGFKMpKUQuR/9A7DtsTiFxfx+M3M9uMcO6PB3G6g5lKUg3kWRYER+ux70xhruxyWIgjaAfMX\nrWikIEOPgF8bpnmqjCMwQPqMiNDdYWH0Wd6uKqxdfxWA50LLdCUJKVjAe+hGq2tjmgxTjB2hf9gh\nGJ7ibqeJfrhDSfRT3NQy+fUlKlcv45IF2s0INasTIV2nLxkZmERsjgbtjgF7Q0PNaKZ8dMjUghFB\n4yFXUtENRAyuIW39kITVTic1wD83wuulFMU1hdxRiepulWrZy/RXT6F4DjAPbOgMfvTjFszJA7pW\nGxrPONGkh62xCpGdPq1sg3oBRpZPktK1yKUL+Nx5xGEEn2zmfl6HsxPBN6hjc4eIefdpyx60DYls\nCJKbW3gtRoYGE5mmhWowQcCmp9y1M7B30ChG3nv3EgA//Q9+HlGusKtocZiTyL0mqYCKXHAyY9Wi\nFCTygxIOewXRrKNV6VHVCniNCt09DZOnl8n5ggj6Nhf/1s+ReXudjqeFmjNw8GiAVsiQHzHgtqc5\n1MZIqynigSqUzWS9Msf7dcwpK9lgFU/FQ7fxCA82hKjI6KgWtg/YCxgRiwo9sU79Zg3XnIe9bJft\n/mXMh7tod03kXTk82RYjMQPpSptyyUw/dZ+gzcWhcsAzX/tFrt04Imiu0OgMWDvYxHZSy6AfoNm2\n0Ch4iZ200FgV6NcV5ltx+toVFL0B2/gsK4/uMuaa5Ac/+shOz53/FwhPLJCsV/EunCKksVHvpMmv\nvcnatW2mzXrco+epSmWK7Xs00k0+3LyO3+Wk4pGxOPRk0z0OGhby9evoFZH8QZ1gWSW3LmAW3Fjr\nNVquHIPDR4jaLquP+hhMKbp3h3RO1amWHex892W0Iy0c3VH2V6/TMYZILmrIC1089Rqp4Qj9cJbW\njyvoxgVmorNsP9zAakrQyxeJuqfwzE8hXnZRtr1BJzPHTNjNUK7QT1UJ2/ywuo3Fa0AKWtgWbcyd\ntbK5eUTXosWmbLJukNAoJXRDE1P+YzSkNrt1mfllPa3dHFcv3eI3fvM/74nS/E1JjiAIWkEQ7gqC\n8MOPn12CILwtCML2x7XzL+j+Y0EQdgRB2BQE4fN/nfFVoYezu4k9ZMKiE9B/eZHo3ARbTSd+SxdP\no0nV0EMYPY7Dfkj/0E7XcEg7DWfUAx6lCmTXrxMQolgZkhUFitEgRVuPes9DJmikMyczg53hxIC6\nmmGlcZ1MoUa99SHHhj7WlSPev3sVqzJANLpp9A7wtT1EVsvsdQeI7YdsTEtIdjPGF57hvbcfcPea\niWF2h9YY2I0NQo4sn5HOcH9zh2n3PG41SP/aLfqaEGMnZ7DiRK4PufdAILNd5P1SjavvrWJvOumN\n+Vic2EO556XXX2TeJiF3ruJt1Zm+YyLXGaBKFrRe9RPcTPFxet3T7Oy7efBolW/85jdpdQ4oFhv4\nug00Jj3RqRTWnJ7xE2M0Gk3M/SVSQoCaw0V7NYq87+LD7i10HS0mg4JHOyQdN2BOdMkUPXSMDcx6\nPfKKi1LjHUz9BGN1J9qWDr02RGZQwhqboq4uoTNZMVRUOr0+eOapapq00w20gRZeZ4porI4gOYl5\nXdzMj1PbKbI0o+FE6ClUh8iycJ6UvIwsD3FJPSYzElXrKVKaLpbIOb599Ufof/c/4lU7zHnP47fV\n8VrNfPPJCVb/6A7SUzE8MQfH40/Tf9DGtLWKbqSLd1KLqrV8gtvUM1EeXW4ihOocjHUQJhV89h5G\n2U9wvozulTeZWyjjbbTxl8KIqpUz6hhPyJN0t9bxRJtIy0M+3L7Fk2PjmE05Wq+ryLlRDHNTuE7N\n45R8DIcdYvpxTI0o628ccj5zHq3Rx+zWTUx6E91mhmFCy0GiT8tSRva0MVdX0ARSOM1BimEXqalt\nEqv3qb/wBY7UPE4j+Eb79Ps2Kg4v1ek1Ti4vEnvya6guAd/CcfZaUwhBP9XnW+Sd+5RFA8lEnnwn\nRlzUc2Mnh0uf5d9867/j1JnHaC1ZWBWTiLdszB1UGJ14nMfGYhSn7KQNxk/t9IwJd7HASn6LwJqB\nwdCP2T3Jo0ciW6sZCtFxBEuQ7ptBhLKPkNPGQqGD97yHecmCvlskrPkixXKApBDmvi3K3pFMYvIW\nvY08OoOEy2ejZcsgCxna6Zs01iuI8ijNcpL374vI0WkCnz+GbG5S8LUJeKLEKmt0tA2Mv+Sh9BUD\nXUnP0V4LbVnk2tsJouZ1GtUAx0Z1ZMYcTCpN9iI9upMK5VtbZOQmO7kkie/sk+EQTaBMYGCFrQ6P\npCKR1ICqPOSsrYvjuIei1EVraZAuFakN94lod2kP6xy9V0W71+eeWudzXzjxCW6ueStCroF6XQdG\nM+KEk637d/E1PHiWdKTdd5nZ74FFIFQwMzbhxXAtzYSooV+eR5H1mAqXsVigY80hDob43TKZkkL/\npEjzyIg3coyDaypKVGbU5WAju4rJFaU3NKEz2LHNBdiTDhE+vM7o2h2MmSCmM0YeP9Mi7jRzqjJD\nRG+DfAbx9hq3em1sV/eY6+lI3f0THFYz+RMnKDp9+E8NWV85QLvhYHruOPJqEyGikPD7WdTaMUcK\nNO1AtUGdURRtD9dPHSPLgMUz52jJFialFuO1AqKpxsrhNo1civTrN1EeHn2Cm6084GGmgeuwx+FR\nBN39PpaNMuOGI3JTDZJLUezuBYzDINW6C425zjMvnKfsjrFRa6Lsdzi27cWgHfDg3/1zavUcSiFH\nV9EyeiqNKWzGengPsRejH3zIGVePeiXGB9spphpu7hVFdPpLnLcsY3F20DomcZ88QUlO07zio27Q\nYSqKDD0Cnfc06OcU9h/dxDq3x4TdxMTx8/RHtijcyVGvdWk0jXjGzPjmRSILowzuq/ge1kn/n9c4\n44xjsRm4cHqEz4gmGqoNbaVPT6rimNilWVEx6evURJXhsQYtwwieZhRBrnN2/iz99Buf4JaLtLl2\nP8OFiBdv2kD3egcXS+h0i/zyv/xHnP0nv4362c8zLk8Rc41xOjjHE3/rK4zFtJyct+NPa6mWNzA/\nvMrhlsStHQs3dnPoLpyhGYPEtQLW2gZmNUXAuMzmkUzILhCruYic7fHYAzej6g5ffcLPsaKBuuY9\nrC49vb0O+htVtBkf1WyAkfYAz2WFhDuLTXQwrK+h22/Q8TZwpuO4rS261wZklV30DS8OjR75cA/F\nOsN9wcQbV/apxkI0pq0kNSq+jR2Mh04Wjw/R5srsqUuMso4fHY5xBzmhTPGSDLUAjfIeqR2oyY2/\nFgf6G3uiXnrppd8ADID44osv/vFLL730ErCuquoLL730Uhh49sUXX3xHEIQ54EXgOPAD4LsvvfTS\n//biiy+qf+ngwP/0P/72i5+7cJrMbpPJaQcewzSNXpWTJy9Sy+6yW7BT1DbodxzYqlZczgadgg2v\nLY3RGSaraUDQh7U/geztYHi0gdMyRnG4TGhMxKTro3S7+NUJNIodo8mJ3llE5+7jrTko9x6iagd4\n3YtgqtLuOokrfi69/jreryzhShsx2CepmnIg90mtldD1s7Q0FcoZO2dkL1MaNzXbJPcy93ji6ZPs\ntFoU7lSxz1U5TLSo7tSpu9K0jqwI9SY2YwRfH5TlOFf3dmjabBh8dmz2Il5Jg6bloNRu0rA6aXsG\nBMopemYHmv0Qr9/66KzFs9/6L1n5zh3sjQLL/idZfesSzvgcsegT3B8USLnc1B/pkeYMGHsWwvEU\nZpuVRh8cxiIuu42tSBdX1U18aCUfMqJTIoS1ZWRzE9OumbXUNsMFD9aNbf7893+PkV+dZlUU2avl\nOR200rWPErDlKWpEhP0j1MkAkZQJrVWHKdLEKA1oH1YJL8ySS5jICbdIZF2EnlRJ3tbSqNro799F\n6z1GK62l+XaTXl+PdsRKwOZDo87jr2UwjU+wOPUlXK0WtpkJVu7v4R940MoNHEMP9b0qO8MMNZOd\nmGpnK9Nkww3TuwOM2hgZuc2H73+U4uDcZ87idgkY9kWiVgdZrUxoOkyznsO/WeP9BxY6eSNNjZ68\nd4KA7oidpEiHXTz6ZbwLTlIbeSx5E75zbhLvtRHHQ3QEkVrhEN1ekMYgizvwNJvf3cU7P04/0Gav\nWkCcGCfRrhIwSrx1fY+t7iYTujY+OuCCw9YMPnXI/abKqZk49k4E5zfPULp5SE/fIBhsI24cEW4o\npFwWepUhm3kTYumQyq0BoyNRtI27+F3jHH7oQKvW0Qx9ULtGygyBxiH+CTP9vMqxn/4pHqWd5FJe\nDOYWunydrnCcjieC0Zqj3FVZKbzH1p2HAHzt3M+ijfTZe5BGfP4EiW6K8PhJ5IyBi+4O+nwfMawD\n/OScaQRploNSmsDo41zOvY+3GkMz22XSrmGg5HEaZSrJIQu6FB3fgLDHz91DM6OaHta8ho4wwXDU\nQU9RcHi7hMIDfB6ZbLKIxVYmkfDRNAgEXV706QF+h532kZt6KYGr00JnK+KdniXbrhOJDslq+pg3\nmmTn3Civ7aFlkryxim04RnWihyViw5QsQFPCM9ajpdnE80CPphDCdsyOwXccef2AjrOOtSfibkcZ\nVrvoel562jaPlAEdWwBLTaUx2eb9P/goNcTZY88xG3Zh7RnYDR2g1QwZ7xsgJ7Gq32FUdtLL7dOv\nNBnGRlEsSartIaTMuN371GWBSstISxIIHo2hjrRQLsk0fRni1hlqpStY4g6OdrMYdaCfs2IY1Hn5\nn72BJx5DOywSyt3EcUuDbqKNPHGO8HiTaD3GVjKCsmtBm01Q6+gJdLrsNkdIpO9iGZ9E4xgSty2T\n73aprlSpWDewVyIUU1vkjAGs+yacdh/Z7Rsoiomqo4pV6aL1BpAMElXJgD/kpfTqn/GoOcSWfEC7\npOXgynUsp0rY309iDVqQW36aoZ9Ce07kyp99FNX4+LHj2CUD6a0M8XEwNoykZ3v0imMY7G2MWzUk\nvQVLTcsgnWBcP8Zq8T7j0hEjVjfvm+oUBusUui5c2hEKHiO2hIaOmqexJTI0NEiNTmJrrtCRRTyi\nieSWCYvLiFmT5ku//RirrxUoWjqsNfJMhLUkHlXw5nzsjOVwZdyoQS9mrZ2Fi0sMNC2KriWKK9dQ\nDzvkUyZqFhuC1YihU6LUrJGrdegUtgnKKoc6MxiyCLUe2edOI6wMaQbrbLRshDVufCMSrl6Y9qCO\nuW3iwytpTn1xiBDrcVhVcOyZsckpiiYNWepc/eCjqO2nnj6NDTPujojD0iTVq/Ph3R+wXe2Qv9lj\n5+b79NcUNg4CrHx4n75bIqAGyfbqHN1coFppEt3WkZEHNH6Yw69M03rh51n9nSOWxAVCTwsMEjnC\nI/Po9Ek6+2eY6B2j/r3baGf05NMbWFWBa+o97jarSKs2tO4RtOIjuiWVEXea7b2raBecTNlDSCYR\n7dBD0GVna9jEeCSjOWmj2x8Fcry/02DCasXgKKGxusnaapwa0VPK91jSjLKfzFGrHBISTSitIY1I\nAJO7iW+rz6O2AYPoxtudxK1XSC+auBBTUe11NE8KrL2yzz/4ayTb1P2/Ykz/tyIIQgT4CeC/B/7h\nx+KfBp76uP1t4BLwWx/Lv6Oqag/YFwRhBzgDXPur3tFvQ91zllnDZTZzA0LRQ2oPnVwqrhBw+mkr\nBmh30Rh32BH1jOub6JJtyv157u3d5suffZzXbu2y1lujJG2zvLTM5l4Qt7GGtV5D8VsxJLvUJnYZ\nq9TQCC5ajQCFao5uuEC862ViL8VR/xbB1pNIGigN7/P8556nmwZ30IKGFKmtMkoYllQ3dmeMhLqK\nLaKlWS7imXqK0tqP8B9zYFGCfOGLbu44f4izcpJUKIOQabFgmKZ3UmSQsqL6/fQb15Hv1DhjU3n1\n1Q9Y+PW/z95RHoelyiZ1+kIEef2IkNqlddaHsnvEg0zhE9ze/V8yzMWsDLYEOr4E9t0WRz0tRVWL\nwyEzyHmYOTXk2//H9/mpb55HWjXQF/tYJAWjUU+3uIvUDpG1uzncXkP38BqD0Quo+iCDfhedPoFZ\nb8eU3WVVesCvfOcFbrx5n4S+wTMX/x633y2xvOCk3NcitS7TYJYRQx67FECaEdnfOosqrmN/XmFg\n2eXelpHoe3505+Ok36giTpvx6foIG2FGZA2C08cltc55sUFhx0zJaUeXzWCOj7FTUvmskOTRdIV6\nqk84aqNdusnQYKVNCOuiGSnRZ3qpRPIoR+R0iNblAu1FP6nOkJpO/gS3H3z3El/5+s9RKb1KTdKR\nLwzg3VuYzoYQxy2c6XlJeR0I+grOchKbNsh5T5ZddQa8De5vHjDsxRld9nC4v8rTFy5ypyGi1co4\nNEPC7TY71RCZS+9h/6IXuZxD17ATdcmYhxAS82w1nUyf0SNcvciJX7rA3qVH5K7cRvhlJzXFi950\nwLuVJI5HD4nOfZWQqMeyYEGf+zI3Mj+mbfAQWtvDLhroW8xUcld55tnHyKWGHPit9HtJor/wBFFL\ngGwpR+dolGNjflZf3qCe6JLraDjpkrm1muWZjofaU0F6eyXSixXOdDYoKyJybpsRy6e49TMOEsMV\nrC/8HZwLk3h2stQKq/jafRSXDV1ok+iWD9m4RiltxBJOocYtbN+8TcSno7GfwVq30lN8tNpW+kaF\nxZkBYvAE5UKTaK6Ow9wFe4DmyBB14wE+fYBayUytmUWenaNwrYwYFZDbBubHr9M6XKArD3lno8my\n382gdwiClz3cnAzkqGcNFIsqDcHLhHNIM+KjsXuTZtDAtN9GrnGC7I33kKamSdl2mHNNM4w9YJCW\nmJh7nIowjaV2xBsfFsF0F7cYZla2sF+pYJbLJEN1Mg0f8UCRaLmLtltir5Ei+Kj2CW4Op48jbYLY\neSvW9UnGDA9IDrq0J/0oP9ZQGBNx2iZxjpvJJz04PH1UZUgu30Svm2Z6xog5qOdB9gY+zxj73UMM\n8RPMO4PcuLGG0zFKrqhDWLYj7U9jaq2gn1ax/uRFNOvvkvM5mFw4zqq1x6A/jUfW4Ngbpde+w6Jl\njo44IDW5zHzShmWsT65+hdGdE/g1fpT6gJc3NjgdDFA+ZWGk+Az50AFuUwCxU6XhytAISVjuncF5\nSsfydpV385ew1S7SmHDQbIUp+x4ycsrAbH+U8FqEptWA+IQJe+uA25rj1Dta4hclfCttjn5U/3Tu\nyW9zv/4kU10DjUdDKkqdidV56sEmro6HwoxKfdCnUxzy8JUf8tzv/Lf03l2lOCIxNGnx3E5S9vqp\nZHqU5+oogzDKkoRTHrAV8zFi13IxaOG1/33ABY+DttWAUMtj9IfomxZ55w8zZAsOqIWY1hoYeGxk\nJlqY2gcY835UvYb4iJ6dZJqHdR3q1ir60z6iFy7S7TrQZwvIZhMt94DJlIu0zcR0PU1yR+Bw0sPE\n0M+aOksv7sGavIMQEol6jpHwvYUSsqNLuLjXTGN1jlA25HnuOSvNRzpyTZi1ONmIqpiKBuLH2xy1\nP7VTRXqH87E46V0z9f0KM7N+RmJPkO+6aBwdUujEcLpvocpDJmfNhINhDA+2MJpUlkdcNA/jKE+L\nXDB00Z7c4UBTZv7zXjqmPayFy/TzBfKx55FtW7gsF/Ct5il/bYnQ8i+h069yx3ee8HiDoPPrBG7k\nUANJYlE7pC7g/FqU4UAh1ZrEoA+xWj2ke2sX3eNTDNcHHGvpOGxkaF0ZY3E6yWHNRGTMzGY1Q3Ss\nx3rFw0xc4eprKaIRO6lGHpu+SsDuwdSsULL00GYTDGphlLE6zvV5sq1H2GJ3uV5JIlXm+EEry2C9\nScSZZ9AY/LV40N90O+93gN8Ehn9B5ldVNfNxOwv4P26HgaO/oJf8WPb/KIIg/H1BEG4LgnB7KKvw\ncJu+zoV32MR/rwVuDW8lagxlL6ZYH4wjGAzj6AcWDI/GqURMTMxamAs+STKmJ2vSw8KA57708zSq\nEubIHSz2DMWSBUe6g8ZlIpz1keudojgQcdnC2E0h+isS5a7M0GfD/9STvGu4CdokRo1ETj8ku3XA\nzcQGbyvQ8UZY271HprdHs94nLLsIFG0EHE62Dm5QXRNprMsMdUW+/Uc/ZKrxJNqZLlJGYujSo0oh\nJs9eYN+aJFvaQXKPIp9so3NoGF96ikd/ss2oICJro/g6EPS3WRhxo3nCSzVtQJEshJY//ejHrWHC\nzfPomjYQ/LxVT7BeH/IoU+fYxEkk7YAda5P/6pV/gtc4z62+k6rUxtAtUtO7OJJtjGp7LCceMiqb\n0RIArYFa0YhD6pO26ND4c9hNZpbnn0DMa5jTPI3ftUDvRo8zPhutXApt8QGGsg3TuAFtK0xZUvHb\nJbq+DbqiiH2jReHIytlfPkHGmSXTM9JvPuRUeR9rY0iSAntphVa/g9WYxGCT8JayGEoHhE53WE9u\nsuQ6YCfcxVHUYRxIuKphUv5Zyh6V/b4Ti81MV3tE/b7CIBVGUgPYQyZyNRumbhZ53/vpT/lml3hY\ng5l5RJdC3A/W6SVkk0ifJcbGjXxF6+FiKYZr2GL3vRvkNC5MAxmaNaRmCKFWRWxtMzaxQKMnY9ck\ncAzSiEe7tGwdhmYDoRM6Yh4doQB4Z0R05gid/H2qiRGsIQeGPQOfueAhND2CdXmaZ775dfTXtync\nTmArq8zndjAZlrjzn/4DjUiW9s0mG1KfsL2FaCmx4zQiOMdIG9uMmZ/kTqHB0aiLYMjLnUGJvVc+\n4B/9xDdpfPAmUi1KdqePaczDxHMjjJ5fpikJHPtMjoy8gktTQdV0MV1OM0i08HllJp6P4yraP8Gt\nqqyRS5u5/K//hJV/8aesPixi7vhIWA4Z2iwMpRk6C1HuZnM8fvwUxkABu2xm+oKMLxDGH7Mh9j20\nKz8mPq/hrBAifMGEUG0QSN+lFWrSsdtp1jSMlWzEvZPcvHMd92IbyXca5eaH2OZjqN02UkvP5T/f\nod6wcLVV4nPPHqdq6eDsjbM85ubsuMhav0BFvMf0WAN9+ohmT6I8yCEc1FhUbSQzbfzeTZSleaoP\n7mAYLPNW+gZHbzRJpPW8+91DHv34AVdLWYJjPeKaMhMXBW5k8/iDdro+CfdQRSdZqQ/deJsS5XwI\nt2hmR/yURJWz6xwdull9O0PUbqAu9GgKfgYPOizPtzEOjQzHNRS7edA3ODhQMPgr6BwSydEStx5s\nk758iL46RxlY/TBFOZ5j5eYKZx0KHluWStOI3agnG11n02KinrWhmGssPP5LxMa+wJUbu0Q6kLzW\no5PK0T2xRnEiTMfaoRzYwfpamUfmu6zJ91EULYogoy8K7GR3ef4zUYazXc6k0xgHq2TevYXaALss\noyk5MG7EccWd/Plvf5u9eoflv/u3sZ93oVEsWNU0VsVDKTfJtLZHOb6PLyzg1PVJpDwInwswNQIj\nuxE8bHLMafsEt0FkmrODA9JP2pGPGdHr47iHKyidNOLgEDN6ym0zQ5ORx3/252jd22T6TITqAux3\n1+mcc3LW0sF6wkJ4xAMxLWW1R9YvM++SGBzscmv/Fr4pL+nRIi2flYXZOHbzOucvmFBSIlpvA2+9\njCrm2RRbzCotLNon0Lpa5HUiufuXsHabjG6XGBhOM5UsMOgVkNhn4C9hLW0hr+xwKHlZ1AwRhz40\ny1OkSnnSHYWYdZJwIkG70afxjAAAIABJREFUa0Kj09JoSIxXAthbDbKWFmfPB7A7qggCOLoS5TGZ\nuGRkr9zB0ARFlXlwt0c18OSnc2tnyPrtAv5WlO0iZNJmqjUPYVuOXkDFFunRMYfZsjQZmVrmP/3x\nd7kUylNqhSiah5Rcl3HU3mb/wSVK9SNyXSf13/mntP70RXaSRfJVLULlHZRigs5OhiPNBvKth+QP\nLrHWHKPY2uWd9SrN/9ClZlHR663sCh6yHg2rB302v/cB9qkesYMcNiHD9LNhhOIRwpiZrPsiFcnJ\nmEflXvOAvKTBk0xiy65j0kxwXLnPYXqPpVCIBZfIiLbAzLkTOMsKHXsd946eQVqPfvUmzS54gkUm\nfUNMgRbnsk4eH2tit/WIL4WILz9PR9X/5xkQfwMSJQjCTwJ5VVXv/GU6qqqqwF+5XfeX9PtdVVVP\nqap6SrQ7KbGN0jOjDY/TVQ/4qVkXLzy7hG5pAovBxLys4Dd68AgCDyQJuTvB/l6J0uorSCtZPh/V\nIt5zcXfzEhYqWB5KqAMRh7nI9asfMDcQGHHb0R3sY6fC9vUEHx58iBqu0bB3KXc9JK7tM+Ee5252\nnwFj2IM6/M8f58Ybf8zDf3mN0Y0rnPf/DM36NIPyHmlZg+Gcwt/71reo6w1kuhmCLh/3yiIjCQ0V\ntrm/vktYPiSyH+HhQYZX3lxFyRnwdY44vP0A5babWn4On07DSMCKHBEp1vZIG+7T6vZQzH30zVn8\nLR3+WJQv/NLf/gTDa5rLJBubpOPbbP7736WwtUdUymG79pDf/7PfQxvrEK2usXs5ye30Kl//OzF8\nlS5Li01OtQ0EBkUOKjq0rkly9TzukcfYfuVVjNNt8s4dpLIPrS6I89CFYi5haj2GdcyE1qUglzfo\n2bLMux1EdE4aNgedboN9oUTRN8H7v/cmYr+IrW+i17ZzcO096j+6y/jn4xzTdXBrbGxGdYj2HsvB\nAWq4S0VTxOgYZVVroHoxiD0YYL1pxFbQoVatuEsFMqUMxceD5KpZjrYPQT/JZDTBuqjgby3QHhWx\nzh9QHWTpKna82ibbDxt4Ap+Sgd/6nb/L3mt9EpU2nY04kcMootWMsDXOYWaVh0cOHqXKrOoqmCpe\n2r4zVNxtdBo9BaXHpK/J+E+cJePVsPNhEU2tzoWpRYJzbooFH2WvE9GgRd00snbPyuaeDfXRLoXN\nAvqAmRde/Crxuo6Jf3QK3a/4+d1Xf4u3H77OH/1ghcGYnoanSX8xjjw2QVHb4QnPU/RNHXy//RW8\nhQPa4ePoygHCo20EVc8ZqUcznMeSN7P52muUrvRZu7TNsQtN/u39f8e5F75CwQLdQQtlNMjOLROK\n+AB73Yh0S2Q2dBxdJcRQdqOd0nJVM+T92kOO9ssYdJ+admUoYp0c8Kw3jG00Rmigo7O7TUaUuCs1\n6a7ukDBXGTtzjuFwG117hOG2yt6aA3PFT/yck7Y2jT00S0WQyE9cYzfzkLd3f0hlQoBhlGErT16o\n8rBW4UGqxmTwBJ6MBVulAMsTaOngRqZobON5+qvorEVOxE7TNKyxVHegODMoOyLv7aRwrWiY90/R\nNTnwTljRONeYKldoO6ykH3PhHLvL9mBIMBfGduwkcfMhsegyZkJYMjswDOK2CZhkGXFDxXTBzu71\nPZ5+JsTh+w12ygUkBsSCHZS+SFVrpDJdouA4i8Hy3Ce47W0KTMRyVC0qtz0Sedsc7hZ0W0m65hmG\nbj/OZJ/okROXWYvbYsXRNOO9kISEm/DyGMJIhKChTL6U54mffBpNcwTN/CjlkJOE6MDqq6DbBkd3\ngmlLF9Wl4ioYeRhtocgB1NQit0oWTp4Fk6yjkjRiF0Qyqkyz3CVle0RUFyCy2WFoCjJU9GRibY43\nLHSGXtprbX5c6WIZmFn8YoTgqI6KLDOsFenYanTbGpa++ou0hBAPvgeNd3xkKz2yRRfqkZXU0M2j\nXB1jP0TXUuSG2UvH4kMr7FMvVtm2pzC0DSiTn67VPYsqw5EBk7ZDQjswHRTQhI7hjAVR7DPkajex\n6Kr0g3lk4wxt8wQJbYBQcZqIxodR2yP7vIvnl2exih7k9i5GEvQTOgbJHMJgGt9qiFjahGF7AcMH\nVfZLRyh75+je7VK2VPCZRhi4SuScJpYTQcRCgB3xLuUtL0HdFl3LcZSazMrYDkunHXTabhynTpOu\nF5gxHufQq2c5IhEKVylvNzkUFWIDE5JfQ1xsYu8LmANenHYXLVlit52hbm7Tsuih0eLKSpV2W8Rd\n7zCwGJlsqAz6YfSiHXEkRFvoE8y1cLmrn86txWWU5hzvtK4wNzfG0BRHlOvoK1WmXON4GmW0+x2e\nP+lHtd/jv3jiaYI7p9DPhCnsXGN4VKXij2Py1KkvhDA4Cgw6FczRINFWhuTwCI37HM38CNvpPb76\nC09ise6SVRWahqvY3RHssohrUCb4SEYOKYyVt9BVTVTXH3FoKjCzolJXUxiKVXRbCrGDJJ2VA4L6\nOiMCPHCaOHvyWUZGD3CMalj46s9T0RjIJ1WWUjGEpsD6bRWn0wIvXyNjWkXVj7N3kET+s1dJuLuY\nk+vY7QU0r7+Pt25E0blRvnOHgDWA1axHNhQxapW/Fl/5m3iiLgJfFAThAPgO8FlBEP4QyAmCEAT4\nuM5/rJ8Con+hf+Rj2V9Z+vUGJFpcz72FYM7x+99f4Q/eexV3vMuVt75POr3KUbpOfq+GRRlloZhH\njGYIjXuwzM1RXG1x9dWrnHgsTzilR5NsMPNEkFt33iZhyKBfmuLSwzv84NIr7Nod3Bd93NQP8W70\nCOkmcCsy6bE+eveQn/zKcc6Nj+Fx11jZX2F/9yov/Pqv8OxnHLx6JYexlcV4BhyjUTw/cYobdwX+\n8dNfxlk04fnGaYjFGLd4cDw+Q80GsqZGz2Sn91QB8wkHx5QtnF4t9tAsU4YRDPo9ytYeglkgMzEk\ne+8DFk+PcLzkJVXSs18pYq885Ml/9hxys8Xtt/7gE9w+YwrRVT7ggtsDZ+eZe+pXUSsWKhdcWLUX\nufq976O/b6G1s00s5+HKW3fpjtgpHhwjf26DWneXy//mWzRjAWxTE8RGfCx9/VcxFVw061587j5a\nlwubnOG0PUrDE+Xe3SqLSSdaXxhTrUyxcIA4asXocpBsuzD2LMSf6OOfP0vuzR6Z1QNapjjTfJZm\noo3zMEGi+vvo2noEoUm7k2W16kcakagHKujPr9M2mdG2bKj+KOGtBunpA4r+PLVilr4xyqx4nOJI\nj+BjYayNFOnDKLVrWXoLJQwrHpS8FpfGR+BYlK7aggkB3alPDxDqnznkmV9V/y/q3jRWljO97/tV\nd1dX7/u+n/2ce869l3cheUneITnD2TQzGo1GliIbWiA4QRIYMBLbcZwIAYRYAfzBciQjAYIoCOzE\niqVxpNGMNEPNSg7JIXn35dyzr31637uru7q6uruq8oEC6Q+xFST5YD+fql68qAJ+eN+3nnqf533+\nLH9hEcUs87g6Zr/SxhLqkfO9iGUywZ1so2sG9Utdoi8+wTuscSbPmYtB2sIy7bMugsWJ6j9jYJF5\n//3vMvjBYwJzkWJ9znDFwmxpGbnyfTzNA35yb48ryQ4veJP84R/9Ic7MmNHJHe7+7h3EvVd5Y3qL\n1y5lCM+6hAMCK2ffp316QKCrY1uIIvc1OjtNQrEUV669TFNv8d1/+S73LacMohMGWoET/ZtYEwUc\nuSL/+XMx9L05w39+wjvf2EG694CeLUf4sYTPLxDzOlBtp0SkWzzYn1A9KBNf1Fk0fbzx+svY9kU6\n1QDH4ckn3LQhaf8Ghl1naBYZOcqcraj4bAe4tDE+L8QnYy70ChVa3K0e0y8c43D2EKMGd3Z/Qi8o\nIr99wum9tygephj1tvh8YQXvZ6aYSxIRw0JyVqJgdnBMdlCHp5iuMOMlD+5uitHTDyglYkzwsykm\nCbozzCwquxUXbfuQUUThxycHBDfdBAoRnr17hlcOUbf2UB+EePJMZtMj8VlpnVk5R2FQQ3M38AU6\nGJtPsdSP8S4YJC1BxJiGNVsnJYnMv75Iq2jBY3FxUpmQuurhRiBHqxJkVuzgOx8QUsc4pxm8B8D0\n9sfcvvqfZBln42QTHqTtLuKRBYeoE/nqApJXxzavYjUD7Kg19oR9TGOfSXVMpZNHp8uoVcO0Vrgo\nXRDq1rA9Ehg15twcOJBtLrZmM5IPK8jjMBalzUHRxbzmpRmX2CjrhGsKrBtcmcYoqyJ9i4fuxI1Q\naeAULZhmlFuf3mJUhxNrEnP3iJupFWIlHyVmdE4qTEI9NK+N6WzK47fbnNvjOPN53JfmTC4GKIKd\nqOKk75GZSUUq1jbKSMPtn1PanSDxGMHiZBLr4jPsrKkyJ/Ihiw8GSKaGMFAwV9OMa5+Mt/6Petxv\ndtHLURyJFsZwimBVMeoNXOohN+QXyJjHrGDDu1ZDFR6hnAiYIY2KtE50nsS2LfDTB8ecjqusnm7S\nn9jI2/Icu0fogxGO53scbnQQrxiUN+eE11woSwpjTwuP048156Y8bxL3rXNWuOBIr+M+iLAihqj5\nVjHGx9Q1lYkQ4L2qkwvrjyl/95i4voEYz7KWWmNUz3L3wRDvz0VxvrpOza4SNRbZzvfpJZ2cNhUO\nH6osrKhI3mPWIreQTgN0En0ySxHiihtBVJnoEnIvR6U1wFGxstJrEUzkcGRuUH7z/GNuvmCI4HKO\ny0IKy8CP1PSQX/Hyw8Y5ldIRvlQPb6wIP7BgvhXFFQgR3JxhMbrMuibz59YZlEe4UxssjAVWdnV6\n7Sl77imaouKbRAg0nxEsuDiVu/zgwVPakx7DORR/aKfz4SOSwRby5jFBu4X4tI3anaJYH3A56OQ/\n+NQtmp9d5G/8N9fI31gi9Ct2theT7F85YZqp4f/KFUKeAm1vhaE7w+//HyX+4Bt3qTw45P79CHel\nLGXTQjO4Ryft4r2bHWqrdibiBPUXV7H+3m9S+NQCwcUCd+sTfL/xc5xIMVRjQPYXb0GlRPgiwLwY\nZ+741wNs/2b7f+1Emab5X5mmmTFNswD8MvBj0zR/Bfg28Ot/2e3X+SiJnL9s/2VBECRBEBaAFeDu\nX/WemSajZd3ctL6KXkrw2q+/gXdSYPe9p1x76TUW4nH0NRfe+AOc1w4RVpqsLScptUbkHQUSr7kw\nb15iMpYIL+sEn1/B4x7ydXsC7ftP6b5zyjy/gfPKZzCdMsrRkJuf2uLyX38Om1PDp0Xw7FuRZ/An\n//Mp3mseVHmAIG1gOZ1yYbOQ/wd/m0tfeYNZsI/3SOZ7uz/g4ukZaUsH6Uu3kVJBEuYCQ9lHs1KD\npRiTRpqliyDTeBe0OHF9xDSVxDc7R+pXsW+pRDMuYu4hK84exiOVQOYG4mCO95aLKy84SV59EdcN\nK7/5d/4nWk/KnB5GPubmFkZ4Ys/zwdGQ+WfXyW1ZcTdjFOgQdj3FPt3gaTKK14hyYIxRul16Fw7K\nkRnGD18iH/kqgf/016iU3kdpgdnrMa4X0S+HMYw5uu7EMrBxmtQQjNsM7p2yXpDwCz6cnQYlPYhS\ntyM/jNK60yG+UeN4Usa9b8fqOSORvYV7e0RAMwjV4JXFAKVWnOXFK9jiDjL3PfR2xkxiLXb3+ij7\nRcKtPJlhhQvznP33v8eRs0q0eB2pZaPjbhH4cpQzvo9/1GM97WIyXMCSsxGxWbF3E3QK+xz43KjN\nbTxnU7qWEGtLJrNvah9z6/7zuzz+xu/y5E+/ybJbxhLTCIs2PE2VYrBK4HqLrlShonSYTYc0Lpz4\nMi40bxkxLDI/m6OoM/yOAI6kSMU/p79tR7HG8IVC3PvOWySCTRzLVXyffp1puMRnPr/FQcjJ/bvb\nvPtP/5Rnlae8/W03mu7DuxTiNAVqeEzUksTcvcASu0a4kcfnjvDO4S7+0wLl/+UuQvQmx996hPPm\nJV76h/8tfm+BneERVtc3+O3f+33cW1HyN1KorgB+aUYpWUUvWdA2c3h9M86jdtZvxjmrB9E6CU4t\nO7yUiBATjwmNb3Fs09muDpi4XiM9C2Pd937MLXA1T0UWcG+lcC+FKfh0REXk6tE1jAUncmCR9462\nyWt2Dh77WU36iY4zLIpxOiUopMN4p0Fan3uRRHiVZL5EzGfQu3KF+dtrGLu7bOteUrfzhFevYrTA\nO8nQcA6ZHI4ZJRWmqSTNOxq+mYVt2x2KMY1IWGEj3iIiuhHKL7Jo+hgflXA2sviCVoaqSW7qpRtx\nM30pyMAd5J67SfT5KJWkk2dKnagq0/4wBb0JZnsTb8LAL4tIbQeGy8W82kLZc1G39jAPBYajBkfZ\nLo5bIq1lO/a0gHttwEJzn8R6iReN0cfc7hw9JVD7Hotah6zvBPVmCKI+jGctZsYZB4LIqc1N3O7i\ntmlFWE3Rjg9weUwG5wbOkB9DE7A5L3MSGHESLaEMH/C44MVw5jnpXUO5vERyMYIjlgOfg0AgwkYZ\nHnsPObOeYw9OmES6XF51I2fP2HS3KJFCGtopZDWGb9nouY8IhJtcCGMq9Q9wFmSsoessvLTCoH+T\nlfgqI4dBOBtjo2kw5h3OjCKvpOP4nce4Wo9o/qhKoBFkzRcg5p3gFS2shBtsTgzmp+AY+KlWRGwR\nhZjq5Sh6E83iIXvRZE6bnvnJKVrZmaZgeZ5H92fMaioD+oyVCdduvk6l7KLv+ACXLmJxq1SNPldu\nXSH3soC59DrO8AXi2IodE9d8QLRkZxquMDazTIoDMhYT+9oxexce8maK44MeLz9v5ew0Szgg8cT+\nIZ4HTczDFldSrzIP9bEICWKWTXpRlVngCTbtmMnqBt7wJVxBP2vjHsHOJSaxLo1Slw/238NxFMWV\nbmMTX6D9psrh++d4KyM89hOUso+IvUsoA/POD2k3AgTP/bx7esjAOsPS8xFyWNBtFwimB5tvxsw6\nQZJmmJM7nDdPsI1HtNUPeS7/uY+5xTteBtZzhskkmiEhBgY8Kg74dCKH21lhvBtEW/00HW+Yiysq\n866Ox+4ncW5gzkZMNR8X1hIT+yW2Dx5ybLHi15ZJnFSpadcxvHbO1D4fPCizvGJF3fcxbLjw25Pc\n+HKYtWSAkZrjuHtCJdfHcKaYiU0m2xUa3md853zI8Cdl/vg3TUqjBCf3wwzCdWbiFepnO7RbAtOR\nD1NcYqws8NfeuMVWOsam9BJXb7v5zEtZxMgilkiOR+4hyfYavcMQ9+UpM63DvHvGsKpyWLERKLiR\nPSrL8wRCWOdpRWVFe4H7rh1Wsm7sn6SS/Vvt/3OJg/8b+0fA5wRBOAI++5f3mKa5A3wD2AX+Avhb\npmn+lftljmyC57/+KmbYT//8GFfCx8JnV4jGF7AOdmlNmzh6DTI3Xiduz/JwlOfZsxILToNmUqXS\ns5MKRKi/V6fcE7n/z95i8L1v8Bv/+xf5/NdvceuNGV7dTrI9IOpMkPb4CTx8RPBgjhQTKJdNUlEv\n3YgVe+ic45MxSYfIr37qJZ775TU2Hkwp/stvoxxWSAsOmrLBa7/2K1Tu/gh3xoWRFVFbA2bNInXn\nHo8cTqYPd5k4S8xWF0hartGf6UwvoPKohie2RlGSefLnB1TqIrOZG+HBBEf4AS5HB3l+zoOaHdfp\ngNFFjyenNl4OFBCWwkTXzj/mdhK0sI0PLZZg2Yzi6005DbZoRjLM3SnWf/420W4LayiGyztEVgs0\nZJ3qD5x4fs5Fwzrmr9svI4kFnKE6b53WUXa2KX2nRLSlMV88JZJuEhHnDMMNHJvLPDo8pqp6saSy\nqAELcnjOjr/JamIFryPD17xvUP2OwvkHWRLZffRQCtJBjEWNfiVKbmOM3RJAVEsUg0PaQYGC08P6\n6ohl3yvMZ25mzTr+6WVWUl9i6rFz+Qt9pgmJ+thK9SiOpRiGxCXmDy2YSycIj08or7ixyzpjpcvi\nxYhe0E+vrZGQxsgHEVS79WNub/7ZHdTjFXLXL6OEXsFz8ZDeuIsRT6H0Q1QDeeIeNzczPYwTnZ4k\n0znQuLLkRJ8N6Qs1UA+5N3iAdxCncqfE4u0I89AilZspfvG1TQ72ejT2HyOUPyClLBI+G1O8KKNk\nXaS/+Fnc7hU+7/AznL7Chr2B90BDqvXp2Kv0lmbUtk9xZyQGrseIBRh6fMS/4GJ8722Ev/gQf69P\nYaQg9WoY/SWW7Vv86f/5fQr9Y5w/9CEpy7icMXKda2Q/Hafg3iLYvUdiUeHg7e+iyU560QXMXIxT\nY8j5fIGR+wFLHolwe8ym1sRi3mNprfMxt3PVIGwGkFs6zT+WGZ2fYK/O0LxFks0O5XGXq/0Zlksm\n8VyDaHRE/IqEfNVgbk44Pb3G3G6CquOu+vDU84RcJRxnbU6FKM86U0Z1N2cHYd57c4fMpTcIuCeE\nXQMSPhPnzgn2c4G19JTrr25xyb+CUBzQPHxKrxrmuNbDVBV8G1FcWoCntZ8yHdup1z2oySGXXG5K\n9w5p9GU6h0MO9xW8wx6eSpv6ocB2t0fqUz/Lhxfb1D60Yiz4sMU9qIKKIN5jKV9nLWBnQbKQy2xx\n7SRLYLRB/57J7GiDmrKEuXoTR8jFieuT8Io6kBircRqXthD9Icajx+zGywySfs6FJJtlnXhqRK3g\no5uI4Hzqx+7yozsU4jd0nA8mtM7baKEB7CXoCGEWQy4W1QuSvTKbhkLWGBNRjjjvH9LfLdOxDBDd\nkCwJ2CxJ6jOJosXBUK7hFtLUI14yS2AxHAxaKfT0CXt/do7k0LnGFpVrXo4tBsRlan/2FtHMMQxU\n2pY8UrFEzxbkefcLzJpbYH7AXLIwNwxuv/YaT4wa526dgC4RmilI2gjbegqvvwmGHcVXwqYuI27N\nWJRqrAwylMMqR8fPyI2efcytl9DoyBXG2g4P3euoQTd2m8Cj0jtoORut3Cv0hznG7RDB3TqWWY2j\nu0U8xT0GLXgwtmI5P8EbW4FlP0HDzW31gun6gLk5Zed8maXUkJkbvvwLNzBmKUylS6PyhPHgEqqv\ngZS24Ym1GBwZ5MdTJr4DJvIM4TjBOCBg325jn3lY3JXR9RO60zrPzzZJPO8maBORq0co80U2hRZa\nIskVI8COe47Y3CCxUKevSLhiNiLrX+bY3MEbV0hcz+P3wFWPjnyxi+q6hHsapSS6aKd8LKxMceUj\nBGdNArkM/W2Vg/6Tj7k91quU7jZozju4nSM0r0Kg2aJWz9EYFVi8pWO9c8R545TMuY2xMSQ4lik6\nDnAtB5BSdYy2neFyj1xDI7vqI7KuM2wtsvSiwK10nnwuwA2fhjlzsSKF2YzmKLjshCoy/XCMhOOc\nLdFNslUm2ndS8S+SXotjNb0sz3V2yw85zlapPm5B0YF+4cJ15y6O1Q2O6zN66Xew71kYyS2OzVM0\nuYrdqOBPvcDg4BTnSGYr/jpLtTTm3OCmw+D62RHSyTmWiyqdszgeT5uCNYBgyaOoB0xadqZjiTNn\nkfqBzizVZO745Lvwb7P/X5wo0zTfNk3zK3953TFN8w3TNFdM0/ysaZrdf63ff2ea5pJpmmumab75\nb37iJ2YdG/z4rTOe/PE7DPwRDJcTv0PlufiE62saX1pKEg4M+INvv8W3f3DO5oKPgQ73H+wzFFUm\noS7WpcuEn7/NiqXA5/7+r7Lt/Vu8ev33mWQWuHH5P6Sw4kT22Xgxcgo+jY51SHXNx7vPdLxugfcH\nXbb/4kfsKSLdaIsfDgTefPhH/OR/O2DXb6Vwcw13NMLedoClBSdTZQF5XOAnBysoj2S6LYFztcGC\nFMVf30fb2sCY+DDqZxwdjLilZRDsdn781h0e/1DBKqlIN6L8uPUh40GF8athFp/7FU5UL0/u6Dju\nGTRqAXr6hEC3icVqJbSYp3vxSW6Ps1ZBrB/jTbsIY9I9uY9/qmN7vI3n3MFsfoFmN3iv/iHhpXWU\n1C4T8ZDQxoxJ1I9bOWVnKGN5MiBtaGwGNZJvfIrywTf4Sek+q4HXkOhz2AxycKzSt73P8rUv4Fg4\nI721iPrkB8SdKaanF3QtGsf3rexWFazOPSJRmbc/bFO4naJVfkp7OkMxzhGNFMXOhF7CgcM7Qx1U\nMK0qRnuKUbNTnlRoT1aYD3p05RZiMI1ypBCe+bCMNOKeI+YsMboQUIN9gnKKemrC4n6HoVcgHrjG\nnj3NsFPFJ9mpGyIhZ4KJ8sl4+9lf/R1c9hdYOo4wfVRj4Ps6UdsLyLpG7+GPaHzzA5ROAvnCy0jU\nGIcWsHr97BY7DCwhEv42lnGP2PQKUt7Byq3LPDruIis6WUeTg/cPuC45uSxJrL5yiTcH/yvNmwGW\nb3+elrLBVuENzsUBNmeE1zxtZk/mxJNWhJ5J9mGCG7PXmUbt6O46aT2GpxrGFlEpzBWafYWff+0G\niT+3UvsjO/bqBPd5l5PgK3hjYaxahN2cB2NlBUG7xHvdA1yDC2yDMefWF3ArS2gbESyjIsvzJsP6\njEhiQNDoMZRHjBUHPeER9dkHPB48oeb85JxI7nBEfPAUW3KM193j0blBbp7B6tpku1wktSUQL2wy\nkx1cnVopP+tz56RFse5HvWIiRp6QUSwsW1zE1iuM0xq61Y1iy7AWMHjF8hyvrXsJnoBfHKB0SjzU\nhiAuUFkO0Iu9iBF0cNgQ2H5nn9MnIluxMB77Fc7Pt1lOXufS0pxZyo0vOcJ17TmWXTGs7j7FaoHH\nrTGh9SXinWME+gxGT4kkl3j1V5eJ/LUcw5aHo/2nrKxusf+pL7D73WMsoTie4YyCbwOl4afTqTCN\nqzw6mvDssMp4p87n8+v48yP276c5O2hQnRdw5T4JE2xoLyCHX+VwavCh04X9wyC+fgTDssDmUYE9\n9mh0egiHIyzvFjnxFYlXMkTLEaTYAtPrSZoxK97wMs8/L7AcCFAOeDnclTkZjtDEImeuERVPFcfE\nJPTCc/jtKtVNBw8Oj1FbdymkF8nPPbSObcyNGcHdHspeF/PqBJfsRLGF+PRrLzHuS+iONrORB9uJ\nH7/co3r7JXzadWSwbypsAAAgAElEQVRPmZlWZHr5NsNqhfcjBlesZQ7cE9pv38HiN6k7JuSWn0er\nPCFkW2a77OHOzpjzRx263QbWyR7qzIM+HhM3L9MenXDmGNMpLrKUv4oifRJ2170yyS9FeHlrgV6x\nSKsGZ1UPncNF3PMekUMrddcJk/IH+DMbnJpW7FYXJ3f6rDwYcG2oEncnyBw1adyt8cR5xAFBvCcT\nBt0ECw6F036BitXDabVK/6lOcfQAeyqNX2zji+YYYhB1rxLwWigbGsUdg0VtzEmwTk73svppPws/\nu4nmiSHasoQiCRrG+2QOz7E3RJrZDp7QgA/2/5yRMeXcOyUsLjK1zAlebOE0NbpnKlPpLpeOVZ6M\nLYjWR7i6fR7VRC4sU8ahM+66GwSelhAfPODwmQPJGuCsN8Xbv0Pd3sIcjz/m9nIySGcSxOOwI/Yq\nzM41mq0xJ9FtNicW1P4CwXKUgi4xygVRI2N88hjX4BZG3Mv43h0cqxqr26fcyUvIkSkNfxdp0uao\nUuPgUEUZLNPuJvC0L7NvvUfJPePg7B3UYpf4kyZzRWZQWkTU7Tw5t/Dy0M7Qn+XZuMe0O+Gme5nq\nd5ss/cxlfuo9YMXMIBQ+z86TQyw7NTrvtWnZH5DSRPIhF9GtELaCyv6kyNjYwTtR6MdaWKlj81aR\nlec5u30VaZrCqU/QRCt2+ws4LCqxx3PaEx+K5sBiV0gy4XMrG5gfOLHp0v8j/+ff+Yrlv/Pb//i3\nloKv4c0mKCwFCE+vMJEsTB4O0C+a7O+KTNQ2K7Yk7q0oZxdd0mdJBrERo/kWHsFKo3rIqVRj+GyH\nri2JM/II5bhFuq/w4Qcltm13mSW6XJZeZ+A9J+Fcwt85JtHKcegqszxJI1mcJJxZcAe4tjBg2I9i\nDvtErQkenR6QDc3pOVUOyx4mjh3sQoik0cYaL2AR2sixBJ6Zh2VtihB1IE9MYAEpL/PQdYS75mXi\nmZGNXMadMElOAsxSS/jDDRCv4ZLqeJQWeiqNXVCZJqM4PU1s8oSZvYxn1CMoePjOW+8CsHn1DQQp\nwtZEpjVJcXFgx3FpSMibx+GQ4byJ9FKEi/cHXHXn2fdPCXRlLGmY9d5kuifgmOjkIyFmhRkhu4ll\n4KW0NGd544s8OuuxFohxMOriiWu4vXY6b75JpLnCofKY8MLruMYSuieIN2GjKQikFlscShMsEw1n\nb4LLaufhjspz11Mc48bSm5OOj2idOMgHZ3T9eZKmiEuL4Q4FabsVLilhHLoDj2ef2WmHc5ubdDdE\nb3AMUTeOaJCYA6aOAMLqiPrJiO6ogyi50fpR8OusTt0cpdrMjTC5RJ+GfMC9ux/VUXnlC3me7Y7w\nKQGU9AUbuSUOtk8JZWoUYpdJuTfQ0jV6JYWgKqBNO0hilG6lTjxxlfGozI44ojANYs6saIad/eET\nLNeq6I0RL0oB/BYnimuVYsfG2O4jJRi4cVEpjfC5HjBzLlG6v0vVZ8UYuzAHCvZYiF5ohtxViQZq\nFGU/g8EUj7/EbD5AsA1YDDuol99nuhJCc50SGa9yIo7pOjrEj8N4ZJF+qsVxZ5fatsyqAK74Gr2T\nPRxuG+KJhqaqhKImwkGG9eCY7ugQgmtYHvqwZuuo5pjZ+BbpboCT6hm7e1UAvvQLX0E2DfzBNUrj\nA65m3exE7RjhSzRGNVw7Ltqam5woYMl4aB8YOEfbZJwzcssBho4jxOKMxWWF9sUifXGIolxFzxXR\nnzzk3OXDvt/DasyZbuSIumLsdp7yxuuLWH98ytQ4JbN5Gb9zSjJjILYaPJJlQkEHi24Hxd0P6Cx5\nmdc72H0R/Kd+Hjha+KMya7E+o1Yd72YE9WmScWqZ5SsbaCsriDsxtO/PGbYH2PwrqOlDNi485Fbj\n2EyFw4kHZZZl/KKNwjzBe0MvC5MW7aiEQwmhec/o261wLmP1ZrH2FSaNAXff/kjLrHDri7icXSaT\nc7xPm6xfkzDFDNLQhttdJSFFGXi9FCIyEm5EBvg9VpAtnLt0XMMZsfaYI9FCZ/8Cmz+MLzjALSzi\nn3UoKQ1S3Rj66BzF5yDSTKP1NZpBE+dFg/hki0a4QV8rk4oppCx25IlMK2in2Q4Tms/xRgQGgREZ\nZYJHs1Krl1ncDNE/PyWgu3GcV5nF10lGWgiJJOJQZ8Exo2a0kYYrpDzQcOcwswbBfQFPKkfTKKPr\nFYK5GJm1BcYOibEjTacjM7N78cf71MrrbIUiWOdT/BOwrll589sfyTNdXfkKN/3r1O2njIYzjLwD\nuf+I4MzHiAws6FzrrXJuVlAXE9jeeUTMt4CiTAitR4jFKpSFJO3xAWIyzezMw3A8oWsIpFIyI8XF\n6GmfmaNJuhcimp6xHM5RG3VQqiZBr5tYNwRDg5Lupzp7gjVv4/GTcwKKj6YjgnC3xPTsDJtjyIUe\nQ1JELOkQYcmOY16k1woSjIXwpjwkHu8xcIDmGOAUZZqWGfamiJiEesvDJGFnUndhnnvwjea4ImU2\nXQX6so7uXKXlPkUcZZH1PqqYZdzsk7m9gN0Fxb6V3Q/uAPD6136D6zfmTEsxZuE+nmiTBwM/6ZmV\nSSCOy0yx372g/lyAjXKdcCDPdjRBwl1m1OlyeqFxmTXaSgg3U/qqnX51yNLGAu5FFXMXgiseZPsE\nbDMSoTmu0xuMvS4StigdyYsFB6GYTvWojiPUpZWIsJXTMO8FGac1Rkt5giEbMg1iyQUO36+yti5g\na0v4bFXS0VuktTaWwzrTtEbUtYnvok5JDzPILNM4O0HyuRl3Bvg2NpAePUEareGLHTIJxsjHJE6b\nbfLeCROvwlHbR8ymk8lMGAtRLOKU9vyAO08P+S/+7n/277/sy+/97n//W9e+8hKZW5c5PXmMc/eI\nXbWKZh0zz3kYB3MElD4XcYnVYZXidw4Q02O239cQN2KYRQlPf8zaQh5RSzJGpn2U5Pkbc86zl3C8\nZmc4DJD15tmV7yOMC/S6PcpnGveEE56336RTaTN6Lse8qaOWLqhFl4iPJJxBH0bXgk8MMSLGpS+t\noYweIXi9OMwBF08rLAciTEN2srJOVC4h50I4nypIkwxXfiZOv+vEc9zCtrmAu+/EZpdZcURQum3W\nFlTO2hGkRo8ffGeXDecU4fGMXnpMCjvNsYFn6xodv5fqiY92ROTe938IwOanFkknovRNhUaxwctf\nijNoaPhkHbk/Zr50i3kjg11SePun32IsgBi8xYq/g/26j85bDVxbaTqhKKWehUR/RlmVmF7fZNit\nkbGKHNx7xlf+4X+N9f4u4QM/tXiKdz74LuNkEGFwQLfeo187YxQakTh30k+MEfZEXE437pkHz+ur\nXLCH02kQ6iR56+wnzJxZpLRJ08yyUO4x8PjQwhWGe1ZsZQ+WOHStU47UCnFitEIORktdxLEfn8/A\nO8gRcI8ZdSvsdH3kTyu4Fy+zONSYORxMnDbmWeirbQKOKfUHbUylx90nuwBcuRQj7PVhxCsMWykm\n0QjD6jaGOScr+dn3mCglC8gKw0sFxpMO84Gb5a00x40JvQuBwoqOW1KZzuZ4gmNu/8pVol2JxZFA\n26Jy+J5MxCcQPqhTb7V4WYrTDtkZOEdk0jbkhoolrFF/oDDf0lmb6YzDKuLExOYz8aWjVPdPkLsd\nVr0R2qMyo0EBxTWnfrJDLhigUx/Sqh2TjbS5Ml3mPLdP2VUj+eGY2tMz0rd8zF+JM7Rp1EZNimqZ\npUKYnqhj68TQbCN26kWktdt0H71LO58gYnczNEN86vpVDM89PjeQ+BcP9wD46mtfQ850EUcNmDip\njpYRPRNe+IUvcf/b77KoZGiL+wx3F3C0erSf83IgqozsBsVEHn87y8H+Ux5/qBK7ksa0+Rnayoz3\nwWoJsWJE6C5ZkAjwRJdwaF4WvSLffm+b+SUnvb5EcCBx0rcgdE6ZRMOErXaOhjKHowbem1lK7x3Q\nGwaxq15sC1PO7j3Das6ZJ6Kspq5Ta7YwS3W6dHD1jokVZ5zqJ5yOptiNbV657WT6PZnjwQFCRqFX\ntOILWHGH25T3ZIaGSPH4AbHNW1htF7T/+ITwdRNvb4bdEPCN36JttxG/fo23/9U3ALj1688zdEdR\nftrE/7xOeyCSmnQYJ0RKxyGMQBXzxIZ5foY3ukhQSlIe61iKe4Sv5bh48JSWPcbCpIyuxQhfPccx\ncjOxzOmZDZJzJ82lGUbOS9+w03ebaNNFsv0Bq8ubnFSeMI0uMpRCuHsLjJw90t0EgjlgpllpGXMe\n7L3D9XmSJ4MW2du3KcpWLMKQ2eI1Du4cs/LFAmePKujlEeOWgsM5JZs+5cgaRX24jyWwTkgdEWt0\ncb0cY9qRGFtn6GUVb7aPXIsyGVywyQQ5bWWJOaI6JSckOWs9Q2KOKz1Ccet8/5sf/SR+7cZNEMOI\nsoOsYBAajNHSz2F31RgZQ7RpAC3Xo3phkIhMmWPF1fdwPjoguxBneKFz9WsvUZ71iQ1sdLI15vYU\n3u6QTD6M12Vj4G2SKeRxD2qUfRrT8ynxrJWmNCKhp6lFmgypYJ0beNQJnvklFjI5BusB/JqF3rqV\nuTWFV/Cg9WaEJx3UUYhuxsVi5lVKww/RakOSly4TcbsJqRJUnCTDNrb/1ROW/6PPYGnKBIQI7p+O\nuXSzhSPsIPHpJeZnARqxKg0xBPP3MYtjtn5ti84HJ8Sw0glUiRswNzIsJnP8xXc/KsIcyWoMTjJ0\n4lNssp9BaciybmGecrC4GUJp7TAeqhj9OtMbC2jjA5ZDAazTOtWylX5smVBmnzVBxy76WbXr7NdV\nZgUvqXqUmnyBPnURiosMlAGiR2dgPuKsfU5wJY5r1EYwFFzGJnX/AXExQy0kECxBPOfFNulSnIxJ\nD6001TaFfJJLCzmOHz0lsTWlF8pTCAv07R4u1BLXr3+ZckelXilzJZWmMVC46Exwt2tcGtqQWWI4\nus8g5kScePBrKqdymMx0ilJepNm04RtOWbzc595JALkRJB5Q2FMU9nef8l/+3b/3778T9U/+x9/5\nra01N+cX7+M7BdfLcTTZisPlRBlfJ9S/z+OnNnyBBNOFDaqnLsxoBzPgR+uNyEtlQvE07YyC7B4S\nkC4wuw1i+XU8AzeLgoPhfM78/gXnJSujpMSjvSr5G2GmTzSMVQ2Xd43RWYdKd5vi9pT4NIXumOP3\nDrCYKs0LJy6vg6K+w2bNwD2RmFuS+PwQGikcCzvEFYH52GTQP+fU1mCCRv2nhzj1PQZiAkHyMaxs\n8/JlF6SWMa0jeqdB+lIVP4BHQ7NLhJ6PEfaHqNVLSEE3+qSBbh/gWs6xroj8+V98NFm++vpX8YgO\n+kqOgOQlK2gowwydnVMuEknido10VKdpPSSnr3B5a4MlrU8n1iRbzqDGwqgjH35cBNUBvfiQiOYn\nJQRx+p8RSjmIFgR2/8mfce21r7BdfMxqaBFPd0Dk09cwKnHw7iA4Nsks2Ah2oTXpU7HUMZ0+ppJJ\nrWin0ATT46YRUnD314hFy2iHcwSbRjjnQ0zLKJ0s97ffIvhcimvrcDgasS446YycvLCVp3zUwmFT\naSkSCxtpStUBGasLxTaAfABR1hD8cTY+l+Qf/M2/STr9Mq6Il9G4j0vIUvOPefbuR5U6tl5eJdaZ\nEvdHSUdNzib7uEQvDhaodlyExAnn/QZxT59rL6+x/+AhcVuKYFKhuxBFPT4h6BdJWZdpeOqs+q10\nz3aYPWyg5wP4/atU1A6ILZ4ZY2rHA9LeALZpk0rpKSNhGflApGrOsD7XxG4ZsXYlx0mthmsiMxDa\nNDoSeT2AU3+BefYIj5hkOLGR1y2sZNaZRpI0D6dMfRm8EYGi+AS9tcDGyMnF1gLLS1s0Ds7wNGz0\nlABxZw1ZtNN7OMV2bYY2VnFFVc6LBstikI4FblzK8rDU50rQQeZvXEY/lOmFsnzrux8JXn/xq1c5\n/JMKt762hs0/whV6hnc8Rns4ZeGrrzGzWbAkLVx9I4Jn2YnH+wr9U5k//YNdkhMr9O2M4z5czkW8\nKyGMusqskmQhP8ITC3HhGmCeOpg/7tLsOzGWdEybA//DRyRDz7OV0zHGI4y+hBCM4TvYRUhamPVE\nvCkb87sCudUgo5hJMDTn5P0SqwUXfUcSr+nEcNZoFX0YEQ1xJUzKjGG3Nwj1cvhmfSxWO4fnGrOr\nLbqiCI0k4oJM/bTJSmaOdtBkyWZF88bo9YtYz5Io3j2cIzs1LcblhUXOtB0ijhVOlT6Pf/QDAH7t\nlV9G6o9ZDbvwlpL4PF5cTi+D+2Oe29Q4vLBw5baH7midQ/OCeLmEmbyC7O7QGnqxLc0JR6fosSQu\nr0YmsMXQMScYahLIe1FMg85PdWyvSaTNHGEtRn/+iPa4T/F4j6P9bbymg4Vlg452QQ+TiO2UViDH\nxeAh2ZmDWGELe19DXxjR6zoZR4eYPTeJjhPj9TTB+YyYDppbZGU1znhVw2bexnbylHL2eVzxHgVP\nnmNLD80waEUGZEpthKUFRs4FJsIJMUeemqtG+2gBOTmC7pRO0InerNBcDqJftDgobvPk3jEAX/g7\nPwPDMv2FKil5zMA7JEKLfsKH9JM5q8/ZCH/YQl+MEHxopzWMotmeYZrrtB0mU2+RzrRPrKkyFU0E\nt0bL6SDgcGKtCUwHVuYTK8/uXlD1mkT7I5RXCmTLHpx6kYmeY3bcptFWURMRvLcuY4k5sVl36R+6\nKFClPnKSUkTu3utyeUmhbgnBxhDjcYfDepf4eoCIPqdTEqgtV1DMHnJ9hNcGZjjC+YnC3BLGFO8T\nf12n37uMrApE6x3q1mdElSR2qUegOyLo+BzC0QUrSRe9WBSlBxbZC3EHyZzON//wI8HrN37+q3BQ\nwh9ZoOsTCJgujJhJLBlFoMOpHGQkBkg/N8dfFbAbKRwuO/pBCG9aInBeQzBSNHMaDj3P7niI//E5\nLITpPtFQrrpQ73WYOCTynjz1wAxvRUfX12mKXXRHg7C7yWlOYPZhl+7AiT88ZNSIY0QnmM1FQiMb\nXfcp8VGDzjSMx59iQ8qgyhc0RhFMmx/PwGCzEKFyBhWjTT6dYaK5mZ83cbmsxNZylNQWIeeQTmiL\nSH+HYHuOPI/gyppMbAqKfkatfcpyeM6h9jLS1IHl+kNmG36Mp+c8Ozzg7/+9v1o77995J+p3/tE/\n/q03fulvozlktsJXEWdW7BYZZehn3XWGHrYyiGr0hnlquxWWbp7Qs1bYWMtwddNL0y7Sm1wwrxQJ\n2tdwnZ3hMUbovmN6OJn9SYPTnkrLFkCx3iGQyZEUrMilM26urqLoXYTGjEBSw2qXyLyYJnvYxjKc\n0PXYOf3wGZH8kNymk7P/4XtsWxskb8dIHLVweERqS0ESdoFhLoFVsnPy4T5iLI68t829u02uXvkM\nzsUJw84J2dxN7j85xrSs0uuITBJ9AmONYm1M2Koye6/O1V9a4uSoSyIapVIcEo+YVNsQkA0iSotv\nvfXRdvcvfqXAuejCXbYRy/mwiC5msSquVo3swhUCU4GebOKPxbGfzMkvzukc9QmUo1hGOnI1QPiG\nyKxyzu5MZqqanIyqdNx9cpMe7257CMoDAptedj0zGvUUxC5wRxLEXGPiKRuWzhi76GPgjxJzDRG0\nKxgjHffgghgFVL9G8eSYuD+OtWngCpdRWio9S43lFBCOIHamhNIiygcTpssa/oEdd8iC6Vc5uS/j\ndNYRxzV8RhRhnMJn0cl1aswWRCxNO76LBg4pCbMD2j/9Y35h+cvEW/sEQ5eZjT0YtixG2s6j73y0\nyCTSi2S3fNgbJQ7EK9zwt5gEfYzaBh3HLoseOwHRwSjdZvTMTSytMX8hht8SZO/RO9z4YgTN/RzB\nPZl2U0RyVZCUdY5kkYnFTTARxVR1NLuViOIj7y6QjUcYiAoVdZ1rFh+SS8Kt+rl6eYuY3ce0s0u5\nBKUVBam3SBONiTFkGmmwZF3DDEpYyjLtQpT4Upui5KMdnJPcjLJshLk7fsT6QpjDbIV4P8W8VsLv\nyqE6razqZ6iGhXTLizW4SMcdJF1+hG5JcN2d5/5pkc3oZzlxPiCiGNiiAkc/rdF90OB6ssA/+86f\nAPD6rd/GnRRQ/rzInfsdhrtDElkflkd93NExuz99SCKV4VieE0nakJ/c56hU5vb6ZVa9GbTwMpfj\nl/EN6hR3DsgnL1EJjLjijFBt9Oi5Qmy9vsaUDt5+lbGRw5aoYbOHCS6bDJ8co6zkURZt+OYqumDB\nY04xrX0GLhGTHkF/iEvDGHuHGnn/FJYT+Fx+/PKIvtojdtVL/byBz4STqs5CeAWz4GQ+PcNtbHER\nuSAh2fHNUkSDCUq7dq6Hlul5V8kXHDR3XMTWRlxbu83xyT1uOv14bBE2Xv0ZHjx7Qq6VwTkWiW1p\nvPmtj8J5Cy8/j+dkD6OQ5+HZXZw+N+3AGTa1wNAzxRIroZZ8RDIevJMgDbOMY8FLQFVIqiJBYU5p\nsshiJkxoIFKv7DIdSzRLWaaSjTZjIpUG737zGFfQimC1MG66iQdaZLdu4n05wJo9TFdeQMxmqIwD\n2EYiEespwlBi1eGnffkY/dxHaO1lWh4rcmfKkuSh5NDwzgRm23tUvU2iIR/+iczs8QTXTon+eAbB\nTfyNIHbVQmDRgTE4YtK/xNgzZdx2s+iro/SjCJZn9PQC7rM9LtkchJjTGETIJrM0ZJWYsEJjOOLp\nw/sAvPylXyKsFGk+ThBdlYn0o+jrK/T65xiuLA69QVUvUFBjfGvnO6x7vHTXhoTjDhYkB14xiteo\nUnK4KApjxpUsgWqX6U0J96dfRjrdwxoZsLFmktBXMKczht0wunlKS3IRsem0/SpT8zJSqIvnSCDR\nk7EFJPKeIfXJGF83zmzuxxWYY6nPmFUanE8cfPHrr/PBj/4Fe+j0I0s4p0EMu8Qb6Q2KD/uYYT9u\nRSd/q0/laZdcxEO3WSB3zcf2aRFNGGB3PsfOWCA76HM0i2DvV5gk8riTVrzOBepyn1c3N2j/4IL9\nyhl3HjwE4D/e+L+4e7NnR/Lrzu+TSCCRSOz7jgvc/datvap3kk2ymxI5FBeNRGk4lLVRDi/jsUay\nPRGOmAeGbU0oRjEK2yHv8oxjTEsUNdJQpLg0u5vdzd6ra6+6devuAC4u9h0JIIFMZPqhFONHv9gP\no9+fcOIXJ845n+8537+LcWmVmDXDss4IT0KM4j4chonQ1Znuq7gObzNuSti6biYxg6pxRPopN+2b\nNQ6yYwYzgfREJqC5qKpFbKsZNkKXUG2PkY0xzYmXaARkacLBRwOmK5u0g/ukTJGxa4uTboNNbYVg\nVsdqN+hP3MQFneOZwcoFH/7EjKjLgsAmQ0Ngcq9KMF7lQc9ObN1Lz7hPOLNK4PiAM/0YzaeQaQV4\nPBpwpqp8cjXDgH3aw3U8NcitG0hWins9AZsVAK3LbOCl4grw8aSFabgITuYcJWfEFz18J078rg1u\n7tzgd3/nd/7dL6L++z/8w2+cP/cUZz+tkk+L2EwHXmGAMJ9RtCZsRtdoMGPSdDHo3+N5X5Alv4wo\nLtEVZoQi4B2msbm9TCQL2T+n7c0S8ohIpSHONReZhIeVlTGOXJoNKcw06CFWt1i/ksDW02gIWTip\noYfnJPUsVthL2PLx6PgR3niMzUtp7uy2CV69zNPX3KiNIGp/zkxagDoGYZ30vIwYCWO68wzlDpXD\nEf5skl2zhtiUMWUJ19DOuLyHEXbSlQRc+xWkhZegw83CHiP72TVOnAHU24/wpNyEPDMGfRu6OSET\nXmLo9fDq9/7GO+8rF1EXMJp4MCrHTJoN3K0x1Z7BypqPhxEPK/EG1gdT7DYXO7si4XCTSsZP2xPH\nPz8ksLJN88YYrxUAVaegZ5n5hkQCS3TMHkHBycI/pXbDzYULLk77NWYEcWkq2c8WaJoVBnYN7VQg\ntraGJNRg2iLpd+P25vDMTllzB7FZFWozB7pfJH3uCurDIdh86J4RM0Gh6U/x4f/0CptXVolIoHa7\n4FAoXJrxoDklFsuiTQ2MsIeJPsOtzsBKMl+eYXcfsYgr+K8/x2Y2h1oecpC9SL3bwxe5wEBu0wsK\nPPrOE0+ur3/xt+g4h5jrdiKmQX0xI9hZwu8v4p9ptKJZnFmVmhnB8E7xX3PwpZe+TvFBFXZntI0Q\nTiOL36Ej9+coSwJ7JQeO7j5LsSgHHQXRp3O0UyS5FKHsiGKbDnHVHATXk9TlIrPJCX5lijmJUhrW\nSBQk6uI5jO4Mu0snVNbxFewYPRmHL4Fwchd3TESragiOc/gXXqLREHJb4r5fIIhBRXsKXakhndrp\niE48q0XsZ3FUv4A5STHbUsHbRLHVaGSewWU30fwi28+lqJ7VkAcBxMGIUiiM6BlQubXH6OQt3nhc\nBOALX/waRtXEOdSQFnG2Ug7opOmsKNAQ0LQuGHXMfQ9m34E3qTMbruAZ2Kh7F5wbD7GNioz8BeIZ\nH/K8wp/98XdIb2j4W01C9inFuQ3LEPnZn8/Tc5c5efUn6N0xaXuWSUJkEUjRbjyiOByxeP+QWWYb\nYdPPbB7AsudxjCp0L7l5ySHhSicZ3JkQzoh0FnEyuTOOT1tENtZ49toW23qH4pFCxNvixiORsXjA\naiiP5yzEopNleWvA2oaFzefF6r7OYrHAE17hWD2l8+Ehl770NOZgwSvlXdyrMZbSJj5T4HjvHo/2\nG9zbf+I5+JvnLnEc3mZj7sfvGjMJpJnMvcgRndCih1n00+lWMUQdx9hirgdRKzEU2xmP/VV01YY3\nZccxLaHV+4SSCx5UpriHdsxFHFvlhMiyG2d8A1dCwtcbkM2c4mrmaE5llA+LDDWNh2++woXwgmQk\nQjsz5/iBwdaqnYq5YKllR7Q/wobIY2XE2mwX594c+fgB1X6R1WiA6UzmTKvgM9wcW/dofFTH88Ur\nDCZ1jPCErtNGYG/EqcvF1PDiKwlIl9rIEwVDHlF3zUk6uySTSbq6Cy0QRJmI7DmHiEUn+egarbiT\nW69+D4CP+/domeUAACAASURBVLaxAllS7To4HCiSAM0AQ8+AmCvC4rTGsDdHSdUwvOtYkSjZkUpa\nyTMatpHDTsrtHomxiOc4TtJ/yCgzJ/RujvHklE5YQWzCmaJRnPZw2+yMJ3Yy7iStaYSJzY3D1yZV\nPMBQfawYPiS5hDou058KLGe3mU/3kbpTPG4fkrVH6UIA/45MaX/ChY9FUKteYvqczWiQ6qiNpjRw\n+2aETmeoVz04bqRoBlyM20MWF9bR3uvgdjnx+YJYRy1snV0ClsVkw4u3LdFBRO8ahJ1lLKnOT6sO\n+oETcrEkr//kSXN98eVtKjsGmYhBqRPDmBtsqypnygRLhFG/iCMfpmC/wPvNN1ldTtAdynQXFmFp\nieJHD3lWsdNPbNJVe2jDIJ2Zm8yVGE5Uhh0P/kAJuybTbB0x19PEPB0yrTGV+pyNtRDaITgTIdJ6\nn/fkNJ4TG1FHiGhI487BiFhIp9gTqXdlAn6whX3cm6psjuJ43Q1GGlj1LsYwTy3Xo1C9yOPYnN6w\nzWregb2lc7epoGs7GEkJj3vEMCyT6rmxtdrUrRHzRYOky4Vmv840t0f1gYTPOWXhN1j2rnDzYMTh\nyTv8zj/6W4Dz/rs/+oNvFDZtrHpW6Ut2QmONiT+AEfZR7/aoLMBIeLG7R4Q4x/kvrTM52EPrtFlJ\n5FkehzlLi9hK4EmPkdqg1w5Jv/gl2OkiOiwGcwV5EEUezzk51YhUNTY867ypHnE1+ymOqbPmd6OF\nR6j9MUJwilcKYkuKpJwa5b0hnrwd19Iq2skRi+ESQc8A83TEW2+/gZ5w0KoJHOsniF4n16I6keVn\nMPw5wqkaMYedqHcJ++UU6eUlKqUF3pCdmeImF5txFuiScsxo3C5R7Yps5L3s7x2z9NTHSahu3ILJ\nfl+nrna48+ZbAPx7X/g6LS1IvC5RL5wx+sFt3L8c5dXX/4Ltj72MVxuhFD2YyxPkiUTi8ojTska6\nIWFkQqjBCN3TBRPDRnQxpDaaYTvX4sLWBWq1OeHFDNlbYFYdkJ5XcH3xOnrrjMxSmYUzieF2UL0r\nkDA2UIQGI+OM0HKKbq1G2LqIlW6ye1ZETAnU/DJJ+wRlHkIJFBku7CQdI6IX1mlZMV7KJ1ifPuad\ngyljs4Ej7+KsHWapECVlt+jsmYxWw7wwXUXY28Fu9+LanWHmu/gf3qctbFG9c4OqMUZwXiEXPUWY\nNMmN57S7dpI+P+/88Ikh7Lkr11hxb+GOpvGqKmK/QdOmoNhSLPIQi+Qp62UUI8y59U8Qtit89z//\nF8yC69RyURSvhXD/Pp1Fi95cQK2PiUyTmKsLvHad1nCf1PqURjeIkoxhmwdQY0NGCxG75SPpmuCp\nZJjP1tHmY+z9MzKDAkLfYLJ8jE9fx5HTEJ0S9cUBshJF7nrZCzsIuUqohR5NK4pw/5DGuEWq6ULf\na5AXZTKTBY66TECxkP1BGsMKg5YPGn3iiykTOcv0Zpv24xPMro5fCmOrzqk69xEnbUYhF2FVxu3W\n6VftBIQV3nj0JDlf+7kXiWt2xJ5KIy9Rzywhu1Tsagw1IaPYGvhUELxTclKc4dkUm30XYaHylBxn\npw1d44h8XeXsSo69RyXWPn+BxGidXZeIc+HH7S6hS0NqZwaJfo/40iX2LYNzaxKP7g+54l1m1B6Q\nSSkIl7aQjCUkXcR5KKDEZOTACqnSGfeFDIZsoRpjTjlBEg2aNRXLWmbvtopw45iDyYT5uIhgu87m\nio5Cmt7hgOGqhq19ijHwo5ZUGqqCExuuWBTjrImlhBkUegivNjh1OCjrAQo+N/e/9TaT7QIThxNP\nwc17b70DwJd+52cpT5tIcR8DGYLzIYG2g2L/EKeWZuLpYFcSyNaAfqjNMGrnfEDiLWlGTPewUHIo\ndgnxI5NaXCdcTWMRwVz3s2HvE2i6mC7mZLtxsqEu5YqfYXGA5RUISDO6V59l2lK5vBKitxhy8/vv\n46wHED99Gc1zldXxKRW/DelU5jhi0v+wxCjpZJqMkQ/E8Xvi6Fc2GNs9LOlJTvoWOWWKHA+hXL1K\n9N17xHoZKmINZ84ibnMzc95HSeUwpThq9RgHMGzqZKUAYizG7t4+KdnO1AgjZEtozSA1m4aWn3L3\nb5qdlz752xQPG8yvLhE1GvSCcQS5jz+SZbfdYCI7Ed0yjqBGeNbE7bG4Ly8REGRcM5W51ebd+waG\nohEb+yHuRBoEGSdPqPVzGO4elppGWpNIa3Zazgbd+Yyp2sblNYmU+0wwkd2QDqe5MbpP3axy/HgF\nzDGL3ilBJYxqbyAUOkydHnKOAJFEBUVqcr8S4lG9x/qSg8b0gHhUYdicoXoNnLpJfODjzNzF0XGx\n9MIV/KczuuM28/UeszsNanEfV5f96NMVFtIQr8NN7mvP0Okc4J87qashkgEHtb6LoOHgjXeeTD5/\n6VdeYsPhpS/6MEsfMLyqMhmtEbRsmKUay+urdJt9zjLLLO8fQsSLx7NEu9Nny2WDVoVB6CJht4Vb\nHyJ5TGTnI4qCyMxVRqx5KVa6WLYQue4Y9dwaQdHGaG6xbQUQu34G5yqEjqEW6RHPagRHbu4ndxko\nbhyBGNrRAdLrNkYuGzZ7ibI3jHDkI+Vs0T2dIC0tqHizDOJj9HecTHxFIr4Bst9kzoKmV0WaF+k3\ncySHI2S3jDIFQYryeNlGVvcwiouEpnEGR98lZX6ck7xMQDfB2aE5U6mem3P6kx1+93f+FgjL/9k/\n/2+/8fJTzzGSFfCMiHrtLAJxVNsRq/NNaj/9V3z6xU8j3V9gLvpMuiK3dx8h57fo98e0cGB0R3hj\nu0zVGIOmjXLlPUZ7IViM2Yk0idtAdCpogTie63PkoYbmLCIMojjrXUKXFKqTFhF9k4GnTbTU4eGw\nQyjrx6FIZEICp04vwkMDR0KkaemEpwVqIS+f/fhnGQfcJOwOsv0ppnuCegobyQ0mVplQ2yLvXqU0\n1ug+LDEviLiGAu36CbrUxemL0j08ROhvkLowQ/I4ka0FWmOKzevgh2+/g7T6DBtOhZx8yPd+9OR+\n6ct//8tkRydMHSb7p22e/qVPsXJeZO/VGh/7pa/Qezih69OYtC0CTQHGASKhOd1zY84vCkxKdRrR\nLmJxxLB3wua2i9DFVbROFXvFx4kNzKbFfCpQX3EjvH2GwgDPxQnd+hqN7/eIffl3me0YZFDpdAXU\njkQ8YMOjTKn0FxiCQbq8IOSP0H5UpZWNoA+HqH6Nrt2JMU+SSTS4//r3aPaTbLazJKYlHOZ1pOsJ\nlNoBY69OtKthC1mcsmAm+fDF6+wOg7y29wHH1QSh8HmqCy+hskw/ZqA1dWxRGyeP7pN8yUZkpPPD\nV58kmSt/5+fYuuSnWtHwaiFsKT92M0U752IcbpCdSKjSDKHeYWabo+h9ChfyDF//Ac7MOsojhars\nY1kO4/fYsfIq7967z83He/hWTR7rOr58GndqnVKtT2ZRJ3YWYKa5EHFgG0uMYyVojNBlFbuqM7Y0\nqtoUqgG6XVj4vchnIUKpGZ5jJzXTh1HYxWgkkAd2WlmLSXQZrSqyf3SbbDaFOpxQCV5gIjZx9n0M\nJ1XSSReyqNMV2uy8r5EVLhHe7OBKFggHJcoHc6yLCwIjGy01jOitsojo2Gci3kwa3+MTXjl4gld+\n8WOfxmu5eZT8EFejRPLaGtODEFJWo9u0oXg8aCGdxkmZ5778DB/VqlyKKEw6p6gBH6a4R/5zv8Ct\ng4eEoxF6iwafWdnEEoaEd9toHTushkgYNvRZFIc15c4MErvHLMwIkm2VcrSBkw61VgSpc4bknlH6\naIgRcuFxleic1pBVL9KkieV00iztUlg5zyjqYxQXWe65yDxzmdqtx2DXccaeIp11slM5ZD6QielD\nLCGIy+HDGEgctCakVtvcuHeA7Buh9pfJmHZaiw7Tuot4bMLEvYFHTqAM9/lkTuZHP/g2z/8H/yHf\n/T++CcD2z/w8i0cCYrqGqbWxKwZKaAVXJksy0Cfgkyn7kyzPZgxLJqFWD198mdmexLI/gGtWJxR0\nEDiXRGk1OFwKEHYfkDiYc9gMEPKImHGLo3gfr5HniDKx6IKaqBBpdFheWaYvS4wGYzyhJJGVp0nQ\nRqwGUc0eTmcQcZHAE4nSt9Kc38iRaqWpd5oMMh4a4yMKsQmOVhzNbeHWc7iWMiysGR55zkzVKPcs\nnJ4z4tNNbld3CE4SFMUOgfFtnNvrFHf7KOaARtqO8diDvCYzElcY3NvDObSz0rcjnj3G9WyYd/7s\nyWWcc7/6SZrtDo5hmbLdwVIzwXTkRqiWKZkuIu0R4aELfB5GZHlolTknLmGMpwRWmhQfxUmPe6xv\nfIqi+xTd0ikNDmm1QmSDLUx9E7ll4E6YhPUzAu48gm+AuxXBPZ3gRGUR6ZC2JSmuCij+MRvDy/gN\ni5wADcNOw6qxIMW06cXlm+KT+4x7Gn2XE3Ghsqo6uds+Jbu4SnkQYK1QJz7c5Cxsp7RoIakC2UiC\nnfmYw/IO+uCE/mBK/nkTz6KN3pGpzPyYExNbp8m80UDTC7Qkg15bQ3KK+I/OuBRb5ttvPZngFX7x\n4yiai+OTOdlwiqxXZ39WxSMcUxbXMXNVuqUAycQcI2WnMY0Td9c49Y8RO37C20twcsDAIzLoB6g1\nGtQHAkrczYqRpTXtcHXFRBz1mYTc5MMxTmWR6EKjuumnXxUZjXqotj0G0tP4TImF18RbjmINZKL2\nE8zgVRKXhpiLDkIiha1rQbDDbvUu80ScmP0coVGNpXqI7HNOevtdhs4cqXkb+4kNrbNADUQI5mf4\n3QWOZnYGt95F8jpBEkF3kwvOKX+4i7b2NOJal2TVjb5WJSIFcSXX8BUnfPTRR/xnv/u3AOf909/7\n/W+cu77BqvNpxvYAc5+NRzffZUGP6fllAs+s8M3/4RWEK33C+nnuKy1i5wOYvQIPd0pU5w6CsQ5z\nKYY/uUZiNuCRWSdfCKNlZVLiMqpniq+S4OTmXfS7GuXeXeTAs1jnOjz73CZeMU6tcZtup0SoVKBR\ncHIhEKbp0FkdBVHTfhKGhGfupD4/xlvL4jznQOnEGaZ2GL57RMAeZf6cTMIjERqs00+7kE9PsVdm\nWGtQnzmYDVts5dcZm3ewdRbkA08zrPfIB2Fur2KoDuauBcpYIhcw+OiDfVY//RLJXg8loFPUffz0\nR0+EvtHMBaTEeTwK3Hg45vP5TdxmhuBpl7ff+5Dgp3MMahJSp4FNqnOam+E1BI4fFvHa0ghOkd7e\nAZa3iTvrpmkFSdfgsDiho85wBb1EIyncXgOdIXNPkljch+Ko8tObTmahEIHeY7T6CZHtHIo44c6f\nvcP6xmVu2TTO6RPsjhPOcjqzexKZwip4VVLuNN1DEU9ogtec0PrL18kN7YiOl/H/TAStJFC/NyQY\nPqUv+pCFCc35kKhpw3+i89je5v03Tnj2Sx9nqzFFsct4lhT8L0RZNA4orEwpjRUqfY2rW36aLR9m\ncsgb330fgC9/4UUmJwM0T59gRKFbPwJ7GGnnCGPsQnvHS6jrx9B6DFpnzPUEIXVEJ+XB4SoxqviI\nuQ+QNSelTheXZ4zfivPss0uIukmyex5zoBPumDx48xW2t58lOKuhXe4RcjV5XGmSW/bTs40ZjzXc\nLj8hMUV7McR9zU622yPiiOJzzPCnxtzqFUlfWDCtZ4na79FpF2kIVT7xtX+M6/4P8chTxqMgibgd\nT6yLcpRAyipUd47IJcMc7IvYiJDeWqOfD+BrJAkmRlCfIdhVco4cIf8MczHCM8iSFWKkr4j4LYv4\npQh/9pc/AuCrX/wyQn9OzxEkEHDjtIrUQy4KlzxIizFn93TKpzv4zz/H6PABwamHWWdK1Z/AbrQ4\n2z9gXi2Sv/BZDM+CB3/yCq7zXmJ2F8V+kQejPfxdP75MhqntMWf9TRJnd3msNfF5fUwyh2T8fhxV\nNzPXKSO/RXBXJPHchEnLR8vhIOOWsdk0TgIWxQ87OHMSKecY36iJIDVxntbxHIxo2NYJBN3MvH5S\neR+2dw7RHVPqaQHdlSTsLSKHVYTLMr67AmvxNLN6Cl8STKvJomjH5usiLtvBCLJ53kXv0IOYM3jq\n4jXefnXEzds/+Jv/dg6162TizrHVCCDGctx67VWUVTsn9/pM3Q08JZXBzIfrYohRtMrM9FPqTRkE\nu0QiGYZ6kccf9IjMfOhOlXQvwkyYE1urceN+l6gZwBhJeOyQmi4jeZxowzqOWBjtUKPW2CEihZDV\nBqHlHM7whFr8AGXsIzwY8ig54Y//yf/Mp15YY1qc00l0UA5LBP0RRE+O2YGJ3nrAh/dN9m7/Nef9\nOsc+H6WPDC4WzuFI3sByZjCVU5JbK/hbM3IFBbf0NEe1KteWY4xiOkL9AglXG38zgjbXWd1wM4sk\nmQoCkk+Hxye8eevJAshXUkncW2vUH99H4AKTpEWl28GRTRDZURlH+tRjbab2OTbVS2ho0g7qtI5n\niL4IU+sB/qfWcGfSSCctSqMF1305qkYJXyWPpVQ4GOzjj2bo1EO45gNmZyPqrjS2tEp8SafTvEbc\nJ+Jpujie27nRfMj1iBPHpQkBTILb15mf7rI4v8WF2BiP9QIDfxRFiCE5YTD343KP0cQ03XoFy1jD\nm3JRPiuTna+hdEqUpDWSF88zn9fw+AJ45QbyIMXEkWfoG7M56lNONxBO3Qi+DN2Td9GyceTWKflI\nFyniR6u2+f7NdwF4+amvU5YktmICxvkWjYCJo9VEnPooiDlmk0N8W2vsnrg4GCVxPRWGG22mdoWx\nfw+pK3Ozts+FbIJb7WO8m2OWQy8gKS1+ePAh55zLdN06g50CviuXmRZ7RHIWA8VGtTRC1gLIl3QC\nByLeyBhj7mcpKPI452MpO8Y7fArnsMXEbSB6fNxoVBEMCcuhE/c6iYXtTI4tDDPPhAMmBwckl5dx\nLXU5GQYpfM5JZ9fHpU+sIp5OqRlpllq7tIdZvHmZcdcPS7s0PgxjXs4gu5ZInXqxPEOK2pCskaHX\nuc3bexPqd2/yX/yXfwuE5X/w+7/3jaevfBopNUc/qTK438Z32aL/CILZLNqhzkpug/QkiW4Df3GK\naRsSHSywX0qyEnQw7Dtp1G7w9PIG3Z/u8e6dIzZXXKhdDds4i+4b4a1LRK+t8ODsGPWVD0g8e5Xh\nfQdbly/z3psPkBxjjFkOIeogvxbFVfZxe/AWjmmQU3mGx3ZAPm/D57mMmrUovvlNhIBCsxLHe9FJ\nUPQhtGbYijKaT8bSNf7ij95jdE3AdpokNaoQSgRRstuMvvcTQi/GcfQHSP4WWHH0YJbkZoL5YA/F\nDPK45OErv/0cR//i+9gjq3QnfSpHDe7celIMPP/0r1A+muIzdhjv9Xj4L9/F3PDi3A4j5qI0XrtL\n9oKdiMdJ4rltqt+/z8mwgSsfRRdEjEKYveJjPAUZT+QS4bs12pkZfb+DwYM5Wxe9qJKD3lzD15zB\naY+6EebGGw+IbEYIuGWsRY+7H5aI7lewm07CpVtM/+PPkyzbUeQeh0aESL1NYmOde8MJF1dmlBYD\nBj0vhXmI4iiIT8/hloKExFOCziaVQy/2aJLplg1nw8f4kh9hWEQy4pwoM/bOanz+2gsYnmPKLotl\nd4fGwI2wc8Di2grzWzJr8hhZcPLON9/l+XQcfcPDq3/+BIMuZVeZDWa4s3G6izBpRwrRvkslso3L\nH6EcfxefFcSutNDceYwf/Ah3zEvLsDDvNpA2fUhOAXMyJNvPo4QNtIVMXa4xHF5kmO5gOT3UpkPS\n9ku4hCGnlQM8ETcTV5j0cIxVmLOcyjBvZnEoIr3QCOesRSEe4lidkogqdE47DFpLLFldGlWRmNeH\nKcosjC3O/YOvcvL2+wRNG65GnHhco1ozqJHGMj5EXNhwSTG0szlCbEh4KmL0z+gN3qaTlhl8NMI+\nc7KSkHm7XUNelQksgiziM6ziGHMYApePO3/8Ee+VnwhWn33qi5wUNXSxTCIU5sw+57rU4XQ+Z46D\nQr+KTdCxVarMZhbT/jF7Ywth3WR1GEfPLyPmc9j6GrXuAy4nU4hOF7Kqs8i7sTIdhNU4jv49mg+T\nNEtjrGSezHaeoNpkJZBhIop4x1UqvhHXhwYzAc6GIWxjhZMffUA8GccVtFPvOLnqv8RCmvHRg59S\n3j/gHD+PJyywN9+GvI3d175L/mIed3CPhS9J3KrQeU1nObfK2XyCOJIojMYUfQpO0aSS0vB/2EBc\nSqFGDMzQMrb6BFOzI/YjPDZuIb6nM1D34bkF73z3PQBe/sRTuDMBwjYQ5TJnJyFCoT5pM04oPEeq\nbWFb0zFKUJ50WWnJTENJjNMzEj4Pp2EHqXqd5PYWJSekxi52Ordx5mP0hx5GvjAJuYEc6zALTxkG\nvBzUDdYsH+I8y4lngU+1k3kmzqhjYyQ0WDTSKIcO7HKJcirM0lTAX3ia7FzDrtuwQn1EKY1rYLHt\ni1KbW1SmLq7GYyQ/E8ezn8Ly2TEHKT7s/ISN1HUk3YVf7VGuTxncr2AqYUTjkIUXtOYJ1YqGS2zj\n7jlYJMdkjB5lYYDq6eMXIa440WtHvHr/yUmNq1/4VTxhg6lNYS1pp6+BaTtG9wYZ752wcTWP0gkw\n9s5YHTrRg0Oihxq6rKOEJoyrF/EGEvRsc1ytEh21iOpqE44/A0KFRqvAs9cKPLz5Y7IoTG0SDxtT\nrq5kUFWZ+tGAdr2DvxDlzddOEGw7bPhfoulskBzlsC9MJnqERlBDsqn0P3JSWRgU52d0D3XSixHh\nFQe5ukLlZMFSrkM742EyUyg4NEaPREbnVcY5gQ//1R6ZF/s0XqvzsU9ssHYhwqO9EVvRHFVLpK2m\nUacO4skuSVMn3lDQcyk8rhlKVaS2IfDm95/g48/+1jXOPrhNOuHH6E/RyyK9jRThVpJ9RxG3y49b\njdNKnOEPB/CflIitZVF7GuGunR/d+Bb/5O/9Gs1il+WVBCllhbFtQlrps/L8p+g5j5GNi4yiAon5\nEe3tm9hLQUZhEXugTc4TJi3KODMxtLKPUM3Fn955H++Bn35lxumizHJySEmrcs6vEfL6GcxVwlGD\n9Uwam5FgGI6RTTtw9JJ868ffBq9JOrtEpOJkNiuT3FpiOjhDyPvwhKbMBlmkj0UpTAJ01oYEnBuk\nFjaMTAdR7FOtlfH7TSK1MLuTFgVvnnPpPO/ffIPf+d2/DZqoP/wfv/EbX/0ljh53mIo27JdkpnKQ\n519+mlf/9C9ZZMOkOw5q4SSzwZyJ8YD4RQVXD2xzAU+4g00rkponMJc2CW7YaQlzfva5L2NqcXzz\nDjNtyklfJ2SqBOJjVr/2K9gCbQI5k3nnDo1uH5f/Ak5TQRQq/PCvvk/XIzN8dx/jWSfxMweVSYhX\nb9zH57xI0NohlX+JQD7MLNRgctqm0yrTPu1TnU9o21QCsyov/P5X0R0652QTy+/kW6/epVc7oRAL\nUHQvUzy6i+rZZuYf0BlonN37kJ3TGktxP77VBJ2TY14pHRGVmkzWMlxcXuGv/813AEj+3DU2xDmr\n15+m+PCU6BcKSJJEPLBGlwnVmYdppkNEdWNrnnKQ3GBjpYCz2me2usyyMWOa1RFO/FxNx9hJlrG1\nFTZSCTqTCp1egrWwi4Gg4dZEPL4F8n4RFwKOqEzUPsZqJ0ikfXhWsigukUVkk/a3f4QttoqhOaiZ\nDxgnL1K0lVjUoO3PkiJMTupSCi/44i98nsH7B3jzLrR6GqmQJ+NvcxQx6S1kcpEY4t4Y+6oXxwTe\nLom8mLvO0DGk3FmwocwY9bK4pi0CMZWelsclVzlrKfSiJrkrl7A7dFTPgjf+6kmSufzMb7CSHdH6\n4S65TSgN2qxsPo3zQYeDhzsEd/q0t+zMWWP5SoGzsEjnyEk85qJuG+PXp5RmUY5KP6b5jMzC8iL3\nneiJGVu9Gb4LGzge96jZJSS3jl920cCBI9dmfhxl5/4xSjrE7T2wXHtMZJPlpgdTcDFw6CxCJm1h\nhVQqzEio0I/5iegO5mtx8u4RRzcalB7XKIx3GDzoEDm3zWtvf4B4XcFr87PsyDBtPeZUUjlQZZIv\nPMVaXmGvM6TcnZO4eJWloMRyQeB0ZCPWi+LtNRBFgUfHfUKuPscnLQopi9zL1/j2t/81AP/+Fz7P\nSbZOvrDg7l+8gs3upxe0WBtZ2Ewv1YWTqZhi+VwKvdtn8+9/EU/AwfVcmmEUJosKQS3EnfaIS8El\nTjJBzjsu0NIOmMsOzLbBWK2ztv08TvuUUcpJ5OlzzLsNPPUKC3GFUc/BuZU1hMIYqZ9FvNZk6JZY\nag3JX4wyEfs0zAHyqEt5eYQjZBK7EmLF+SJEZKb2NulqgGPHnNrUQTSh4b+8xf7uMQScjBIOjLUi\nodopvSzEZwGaaRm7NiYVieFZGtFW0yiDCd/+v76JubbM2lqLni7iOfHTkS2SiQBSzMurf/U6AMsv\n/Aba7hiPr4zYtvD63GizIK2CRaAvIk9C1PwjbHOBq8E1zISdkTlmIBksRy0kbUyLFL0Hb5OdFbBs\nZWbuNF7JIOQYE9K8tCcpiLQ5GIu4Qh6URY2J3aAiC2QsCXFd4vB771J4OY84tNOKW5xLaHx0v04g\nUEKJupADGv6jBAu5i93SSV23M6mMeH1/SCZsw5leMGybiE6T9rRLigbT9IScx0/5owOOozViviDJ\nThLtY0PExRI1UyBjuDCOPWTzEJqtU5F11GYAWRuxsELIOOk0/YiNLvatPK+89iRuLz/36ySFAyqa\ni75bYM3o41jEcbj7bKUk7u6UsC2ZJGNOjmoGXRckbANWnktTm/iZlEtUHHWCW5eQxhXOTAV3r8xq\n1I3HGaacnOKrDegPTFhzEJmcEUgl8NMhanmwbWaZegU6N1/HFbvO9lKBhNgm1PXTHat05DPUDgQ2\nCjTGdYxoG0fbQbupcfF6HiMikFEzdMwes9aEk6hJZmBiAktOg7sxDwvZwN4KsrHWwnPkRnhxjamq\n0SmJib3uHQAAIABJREFUyNE+k1karbZgPQlts4riDqCENA7MORkxyXRgUZ73SLmy/OCVJxj0q7//\nRV7IFCi6Ryz2dNwLGcWXpLGiYN91EP/KVZLFA/pSjvV1EV8+zvSRg+seg+LFDs8/8zO89f2HGJlD\n7t8YIS9tMWw/Zq9nYb8rIN06JXKss6fWOGvqSDYP6uMPOT7uMDvscVYf8oPv/hkb62Gawl0cfifL\nn86y/lmLaCLAFY+T/i8+zdd+7te5f3wXv7OGI7FO4sYJ49gq486btMyHyIklzPptnn7+GdRCFv3m\nuwwvT5BvBehmdqjfcjB6VGcQS+I1iuzdG3P8+M9Z8ubQzAoN74xsx0Sve5BCZVbjKQ5WukiPFiw9\nayed7fGD77/LP/pH//jf/SLqD/75731DeTZCPBzGvebC2+9zYeHj/Xf2yG8vM5dMNv2XqDr3aPz1\nXyNGQnjmMUbuEJLhI7YQGVbnBLMFzvbvk7/6WY4+eMiZekS1OMJytnC3bWRXTLSKi0jiPOdyEuLN\nDhdevELtozaDUYfWUQkhH6djL3PthU/gPbJY2r5Cz2OhmGuEBGBqkUyd0up+jP50h9LZiMWjJlFX\nmMjFPGePjwi7nYiGgwsrX6HZPMVWFhjJbpyZy2iHHxBOw9WXP8mjHxdJPp3Aq4J7KhDtd7BeSFCQ\nPsP7D3c4fes2A8eYS/Eo8cxnUMIOxkc6r73xZDvv7/xHOS6YcUQ9RsxzAWUwJRgRqHQU7FOL03UD\nuefCO1Lo7Q6JKdDu9xhYIYa7EzzPLWF9uM/25WVMz5TJ/ShL1yOMmz1M90W2o21a3SYRV5bxwEZL\nM/m7n7vM3rvfQvZ8ApZXKLVaWM0+F0IGjCAgpdGlPS5+4lO89ej7ZGImmegGRkuipB+RzRQQwhJ3\nd6p84trHeGP3Nnn9Dp0xaBcEBo/rjD0uKo0ZyvYyU5+bovQW0W0/97/5IZEXXmQxPsZ8MGYjMKfp\nuU6tKeB3d5hoqxgx6PenBKMulmYhmnuPcF68gG+o8MNXnuCV1V/+BfonZcZBH3IjReHinJ++9hD5\nZMHS5yAoK9hafmbhEPOhhnQw41pqhehqC6eYoN8U2fyCh/TVJaZanXq7hTucJNRW0fyrCJ5DWmU7\n7rqA+LiK5swQfbHFzrsdRG+F62mFUmCVy2cBdLVEaH4Bt7dB6XGcj/Z/yGd//nMITged4mvYjSaa\noJLf3EQ8cjI80JlcHxFrp0ifX0Gcm9zcGfHs58/RPPbgXdjwJoakoyHmwavEFm2MypRg4AYrUhZ1\n4ypBvYuXE8zBBDWzhHlW5U/f/lMSxoj8JzLMdZlYKAVbXsSdIv/69ScTvK999XkG8xTzpog3G6Rh\nyFxyCJwFVdoTGed4RNTponi7SaEQYrRbx3CVKQn7xPtrFLsGzeMemz6L6nSNlJHhNNHGtlejaQwZ\nOkp4w1mmXYGKYbKxfpFa7z7Oosjs0Ziu00RcsqhXFazOlK5jRtAhU3C1KMrrOJR9opcKhK9b+J49\nz8rKbbqdGUv7XjxahaFvijl10BYdkAywWPSQHRfx+FVKnTa+SJSQ3qatbWK/EGJupFh+Scc/GdIL\nigR6Ke6eGlSL7zFRjrn0n77MbHILXc1Tu3iZe290WT4/x3vqw7sh8L2/fHIn6jcvP41hybh8Dnqx\nIDWHxDx8QuxMQhxK6IUR3uGQoSJiqX3sZzqn3SGyrOMQTfotJ5P9PqntdZxDB6ebE2Sfi8reCDMW\n4qA8YG2tjPpozkY+SHyYpDXQcMUdeDIzqt0kFzw+1M00jTsSSlNmJTSg2dDZiDnoOMNY2S2cbon6\nosi4sI1H9SEaZyiyi+zKhGpHI3RqkA1LFDtTBjhxBQLEFwr1QJpkfUzpxhli1odjo49eWWM4fURA\nNNH1PE1vj2Y8j19s0a40ENbsCN0FITGCPlJpTg00MUBUt/OD957g4xcvRfFHNrCmDTLJIXX3Op29\nMUZWoDsSyNkk2qrE+iDCQbqF356kZYugO1YR5wGiypDRWQW1t8lWT+VM04jMY9jspwhPXUF+a0zR\nl0Xu2Sl0FgRyQWRryDBxnQOPHVt5StgRIRgXiW6vMEj3kcodSpUSZw6NWP88qfU88oPXYTzFqC5j\nOiZE5nOCkptuYEJeECnGfWhKD+exTNblJiAXaKuPcQ3cpEMSbsGgUQ1RO/uQF9YKOAIa3QePMBcx\njMdT+oURSmgLxyMLNbPDyUQilfeCucK08gHD8DoNZ42PXnnSJP7iahwjOmP24xw2pYu7sEFp0mWj\n6SQTM3Hs/TkPHBaNe7fwuOaIP7mLW3HRm0wJ4yHh62BrhqgPklwz6khhD73X7iD604SyXsp33+L8\nlsLaUxnEkZv1VJ6G3sJZyCEPVNZXY2xkCoRrCoNVg8nNKkOPDTwOlG4dZVrg1n/1R9x9pOIcz6ju\n9Rg/KFK54yAiO7lz5wHXVmW0Bxm6rSYkJOb/5icsHOcpWHnGSwLTvS2C+0ccrWa4bAr0pjNmmWMU\nzzJewUVL7OPqVBBiXX74+DU6x022w31sao9k6inEL3wSYfcuP3ntBv/wt//fcd7/HwbE/58+wxA4\ne+eY6jyA+UoD/acV1LGA/dwQ/7WLCKEY2uk++p/cZ/s3fxXnYsFUVInjIeCrM/a6yJzPINkX2Msq\nq+U2X/9vXmT62Mvln01j5gOI19bRh8tMdYs3p39O5WYdz9fO81u//nvUiyrDyCWWP/VVzIMe5v96\nnxdXVwg/P6HUfIeNRpue/SaNQA37s3l2h+s4F7eYNgyywRT6uWd4uNQnlVOIPvdrfO6//jp68oQ7\nTZWFz0D/VBhX2c6rr32fT/+Dl0iFn+Zb/8t3SF3ws+S1YRdNBisuWsvnWHqYZm3g49xTKVbO/wJu\n/zX8P/8MgaDO/kmVldXn/23ctBs2dKeN0bdfo3rrNmLQR1ed4CoIVH4lzvj5y1xZ2WASajL6DPRZ\nQbqUZcvrJbAWoVWecvd0H28siLdu59zPeQhGgtj1PYJYHNp8pC89T2w7RPZymkXqKR68dkJJcmEU\nQgSSaa68sMFL0QI7D8fk2GAe3kPsXuSf/sl/wtGaycK2QW9eRIq5WHMHCRTaRJaW8ATs/ORH9xk6\n68w3bAyzGwxzOfLPJFmenCPlLhEOqVR9Te4JL/BrT/0Suat/j2vzEHGPgP+LAqWigOLv8PyGk7P2\nc8gpgfDYg/8ffpZEp8qjQh057iTjD8Pg//GAq/RrnKpzLnosXnnlPaqPbHx6aYvW8z6U0EVqoxeY\n2i3MaJ+ucspIqGJs/jXT+imXv7zJ0tJnCF9+mt32j5ndsrEm+Qin+7gzPtbzItHBp2i9e4CQOCD3\n1U28z/iJrz7PJ5caBCoX6c+fY8nZY966w3L8UwjPh+hZfbqBXbIfu8jeq/877uE+68946YtZbMcO\nJvfe5rAnIaxdQ5Q2Kfm/w50fv0r74qt85//8l/zF4xlSekFge5fD93d583/7C9ZOGpzpCtVQl/ha\nn9G5FuOPfoAQ+gBx1MVMZajpJzQLB7z861/B/OUXOPlojOW/wiwz5M63qpQW038bN7WiUt4L8sGX\nnuN7ZwcoLoVKaIyxeYh9coRVmHHb7yD0nMbIe4x965S2b0iio3AUGPJ/s/dmQZKlZ5nmc9zP8eX4\nvq/hS+wRuVcuVZlZe0oqVUloQ6IEmqZBmrYGZAMYIGYMDEYM040YaDGDTTcNiGZHQCNAJVSLVLuy\ntszKJTIyY1883D08fN+34+e4n7koM267bS5mAKvn+r/47bt6/u875/10s46szvBS3Uv4QhpTKseZ\nHwpzGJYYhXK4diVagxV031XsKTsvr69w1JOJH5ulUnwTw8U1OpUB1pkeDgsI1gZKpsmt8j4J5SoB\n+tTf2aX97Bb65ncZr/gYe1zspY4YLyTpWpOcsKcILqioKuyVgqycijP8uI1PnNbYqT5DbyZP3p3h\nT1as5Lc1nmv1uboNOyMTZXcJ+/EGu/Eke+b7uPvuN1gfvc3cp5cQbT7mr0jkNmy0xNsM9hr/WDfV\nDwN3nq6eonTHzOKWhH5oolA3oSYPaG1OcFS8JI0CzrqG+cnL2DbWMZu8mCQXtrSZgd2OpX4Pg+cQ\n52oYsVTDLvgp1KuExj5GzSATi4WVSgzFtIsp4qPSzaNcj2DraOxn6kgHawjyFi5Llv2yn11jmRxJ\nJkMJR3cd8Z5Af1VD0FVchg5Vxcmed4Rt30RQrTJwTdFaduJLeQntXafmMELYjjZS2E3P8vgnT2Ip\ni+R6EkmjAaOkURubcQ2zuBMJ5qt1Rt0609ETKMUqtoHKgUXB7m6zeMJNNO6i08v/Y93Ss49iNNVw\nmkWGpThBYx/tgpdR1YKwrPP2q3dp2j2U5xvEd2Ts/TKh/Q7UrTgfcjFu92nrl3jx2b9kbzqHbt8j\nYLPhOvk4B2+/w9gtIcguOtYt1rtl9usDutUzlMJBjholfO4i6/Vvoyfup9ZvM9V1oHeO6JRsHHMd\n53buNQJin/HpGRonP8mex8yJf/0wpa6fvefW8JxJobobzLvBl52nXNqEWR/WC236GY2bGzcoFRsU\nRZlTl1PYrB4mKWjVYhxpIje1eV7N73AqeYkTspl2Y4fOn+6T8sexnn0UYe8O+9sumBjRJul/rJtt\n3c3C2jL3XniWyb6Ro4zK/auz3N5cwyBtkvuTVbzTVwiKT3IunOSZ332RmDPD9p1dDooqvdx9pBYe\nQTXH2B9LFLUx+rKDh5Mmos0mH/vCRwlOfRhnNo1PCHJUHWPbGXM2dJrEmTPMuZ30exINo86Z/TSt\nkYphuwMvJTm4FufNW89z5swMpw+msdofxRT/APGHHyX9fYsM29MsXvgQjP4N06lP0x+oaMolArOP\n8eipR6ibzMzspfn4sTTWx6PMiVscmL+BxdXnlChxdlxhKNmZ9tiJzN1PQP4EHzr+izw9++Nkq1bK\nt09zffVdIqsZ7v10jlHX+t/lKIKu6/9v3Ob/MwRB+Kd9wfd5n/d5n/d5n/f5F4eu68J/68w/+U7U\n+7zP+7zP+7zP+7zPP0XE/78v8N/CbZjmJ37ya8iD16mtrZKMpDAsOxH0IWsuKxWjhr+4Tdx0HiFa\nY6YmkvG42Qw2UMtr8OIdtOWf57Fyj8lSkUJ3FrVSZi5QwpC0UHhTZ/O11zj/+ge5/kt3UHrzeFJp\nTm/2eOOvf4/Ff3+Me1od02uHuD/1QRYnXSaZGM70mKxDoVEE/8YSb61+ne7wLumX/wbvRg/16xtU\npKtcXHiEXC+ER1jh+eu/z4z0NKd7i+x7DBzaFJSEl1RqgPriN+ifukBaKCOXgtyKHEc7yCI+e5W5\nn7iMz+7i4GqJ519e5eIvnCc9KlLoeUiPYrz7H36HmZ/8CbrfMPHVG58H4Fc/81MEz34MKbXO4aFC\n3RBlWmgwH/ezvRPknb//fRamrCSfmOf5IwfOUYeTgRzquo9C08exK3Vylo8xtB4Qsq1RuW5h2Rrl\nxT/8ZWZ+8BdplxsEQwayHSONcYlPqQ/Rm8pz9bWrnD++jKHgorLsoSt0CPb+gPyTH4a36pw1Rbma\n3UA3hbkUP0up8Qpb/2uU1P+eoFoYEz1V5LU3c5wJnmKqM+FW7TVCCSt95zFEZQ/xgpvBjhlDro3T\nHaDbl0kqKWK+Bt/JvQDSFbxTe/RdJqxLJnK//xpnph+grQSxuqs4xyIVLYq81Kdf6bD253eJRa/w\ny3/5OQC+8nM/QnfgxTGnsLsXYN49ZlMpcIIL6LPbNIoB2ut1fMstjiQRXzCGWZBY+fXnOPevTvLO\napbzUx8kL+d46ESIV75e4/RTaeTtDuVGlxwq1nSObmEK8fgssV6ballDp8HEoPDGrVUeeiDMjO8y\nuVtvMb50EvWlLJWzTVJHPv7mjef46CefQFo8hXhzlddW7jI7G8Yyd4J4KUtFs7FXXuV0OsLK6w0S\noRmk0wr+TT+Oi0Z2nyliWZ4wHgsY+1OE9R63jDqOZpZRQueMcJzrpiP0fIdIcIq776zxiV/6Iuy8\nyyvf3sbq95O2QTO5wP7L3+PP/+KrAPzmj/9bOo4UpVmVhZKMtbjPvciEE0qImljlRrHL0ukUwX6U\n/ZKKEs/SHUfRK7ucMJzkhv4aJ7yn0JyQHdbxVv2Yhk3M7RLTZx0g2Ll7q0nKZaR3YZq9GyWWSjHu\n+CakGwcYT5/j6K9+D/vSabwfCKE3W9S2GnTmTfhejaBgJBKxsNqoEbs8ZCbnRyhLrOgaNqOfbqKE\nsXMX28EUwaUR++05guFDiltDbB4fNAt0l05SuneEbNhjLhJjb+IF0xomPYmpUEa3yXTVIiH/KQZD\nGbujSD8TYTSuYpkyYu22EIggyTt86ed+E4AvfOqXcVkeZCX/JoSNRL1hkqa7yGGBvYyVklHhTEll\nLGmEHTr62ELZfJxr1SaPzMFmS+LV7VfJHW3yr099ijvNBby573D5Rx+jfqdJLb1CJObEaiwStouk\nvr3Jiv0kG+N5ZE3HbbCST1bwbCWY3D8ge1ii1z5DvbOCsZvncnqOcNzLpJunmD1Lz3ONqYlIb6+P\n5L6I03iDjG8KcXOAEllgPPhb0gtPYJjqsb2tUcr1OZkIMpa3sdzws+EyEHNkCYpTeI5fp2u0k656\nOdqbwJSRlLeAdmTl3a0Q4u5dViKnmDtlw5WzU7Lv8Du/9hUAHl96gEs/9hMkFx9mp/Uq+X/4E/7N\nE1FK+Qf4yf/lp/m3X/oWV37kXW780Z+hVO/HcXqJasJOOFelY57w1t++SdTX4BPnLvFnL18j9fk0\ny1dhNRFEDifYqz3P1774Mt/3f34Fz0kLc5//KwKfehBDyM5p1c78L07hFn6Aj3zyL8ieNnK+cZfi\n61d56ssfYPjcmNdCmzjqGU7PN2lsHScgrlFZOs2Jj/4AXzz5n/nG176CErnKn33xSzD3aeInLrJX\na7M3eJGUR2GudAXf9yXpV3L4DC9S+8Yu4R/9Fd74+++iHJe43LOiPe4lVa6TzfZ5VYwzN9Q45dug\nam7DygID7zTexWO8/LWf5y+fvQfAox/7IqMKfOZnl/jln/sqD378x7g4VPnLv/kyFy4/TUQeUZ65\nwlT0gO5NlY7Soxx0MhOM0KmtQ/c0mdB10n0N8SBE9IoJn0PmpTdfRe7NkppbZlcdk/u7Nj/6+QN2\nSnF67grRfg5lKYC/n8S4YSI3oxMsW7DId6kXBaTENMnaLutyAle2RqVzi632FOmwDWt9SCed4cKl\nz/Cn3y4STxZp1PJMVWepefOcTxi5qTzCcr2CuNyn/naSKX+Din6P/TUPp2YT5H33KNXmmbRfJxk7\nx7DtQNNDMBSZfUol8607KNMOlod2DoMdlFsu/uDrX/3vcpR/8h+Wf+U3vvrlxIUA8c8KjMw9Av5F\nWnKD2lSGkDxh/fUBjzzyFFpxiEGH10c72IcJaoKFqWMWRukxiy+lSJiO0a/rdMQxhvkqdaGFUp/C\nU7BwMGwy+tCY/LUk/e4cjngXzXmWB6eP4T1sY/9sm/TSj9Bsxshv1jGfjGDZEBEkE66Og8N3U3wg\noGP5dIobf72F6ViXyshI0KVgLtjJDBSG1nuc+Ng5HNtvMxu9D8NYgPwFmjUF6eVn8T/5BF2ziMvh\nZ2JwYpR2MKc1RpkaNruJMSrLVjdXHnucDb1K84EcjnGATtmC/MQif/0X38X/qX/Pysu/CsAXYj/P\nyWciFP1fp6ClGYYlakc6md97iad9nyP1bIFEqEEu6UTfyRN94DyT1Qa+1T4n5h5l7+6YUqtBzyax\nemuHU6Fp9JsagR037UCH/ZRKbGTAVo/S+uZrfEI9g2tg5B3DNRaWBGbbS8i9WSzVI7IX3JReeI2G\nfB/jeBnzagO/2Uv57hFzrRQfFz9GTGlgjLd4yRjlB6YvcuZqjum/sFH4fhcPn4/yVvkq7XGTv/rW\nNc7EP408rDFqdziTu5/FLY29v+9w7PNWzMKI0jhF0D9gmIN014ujv0jquzJF8yFH3hDVhorvlRsM\nTFE+aflXBO5F+dOj/xuAE48+hTsW40g6xDK2YHIHEd0thBgcHQ2w+sO0HQVa4xMYDU7a+yMcShrC\nEhmLiXgyieIqIxiiyNIRA02iP9XBoEHd6yDm6TOuSpgdEazDJl3viIATQqMmNZ+bSw8ncdeCvLZz\nGyFqZkEzMbSqhIQBbWeYpZGDQPwMWvMWbUuQjwSjBOZP0DQOMDmiNPsyc5EujgMnJz94ior9iMZN\nmJq30ylY0ZURkmZm7v4F3n3mbUxOmWG3QzxgZrS1hdHrYnwYRox4KJmqmGtdDq0TjtQOy9Ep7DYb\nraaBbsnM1Ower3z3OgAn/8fPEwxHCK+NyYkDRn4vrqkhO2saqlPn9Oc/i3dH4+DeHeqyi3Ehx7yp\nhMhjJI53cDbcjCSd+raLQq1DRE4jlbexmmv0swtU/CUC1SCm41PUtofgtZG3H+CxDECfpmC9gZgz\no1xYRthvI+4N2KrLWDsj5s76EY+MKDYzfluPQBjutA4JHxgxPLhA5aDLONJFEF2MkiNiUT/5e+sY\n2mbaqoporNNJCIT0Lumck5HdTVUQcAT6REpBgvEErk6ePalAZBJGsxfoB8fYLGnUyQhxsEd3NMZf\n9dNPyYiWNi/+w/cAWH7yM9zR7vDElJ9UxMfFYwZKSheVKIn7DUSMDiZnukhpCB/rUu67GM0IeKwV\nznz6GLb+PR579EM8+NSH2ZvsYbKWOPX0Zb5z9QYdycr07CzWSY2oZZrhYZOTj3sRj+Y5MtgwB53k\n7G6iUh/xlJta24ipncTt2GFJknkyLHKkSoycNfzGRVo5DR89KlUL5rGH9CMBdl0WTsYSZM5X6Sl3\neejUE5TDLeS7BbxynLNX5rB1VIz5CsbJPikk1JiHiLqL4j6Bve+g3Dmk3wtiHPqRhwayPp1EwoMY\n8ROXy/T3XLxZcxLrLfHO6p8DcOYBB9YfPk2+3OberWvMVSxI+TF+c40LX/yfWe3ZKJbyLE8/yu5h\nE7V+QKc3xCAplEYBwvYgxy9NM64lcGs9nKs6avp+jIKJg6xGttbnylM/TzHxIFdfPuLzx/yECNIf\nPkfSb+LNT2bJ9lS8rs9x6sc/zMPmXyF94hTXdkZcz7Txec9jG5RZbjZpWGxEDAlC0R8kcvlRMp86\n4tHHp9j687/g4plLyLb7sASGJM8+yd+tmDntCRNMTtGs3uZCKoFaqNKTTxBdSGD78Pez95qOwRdk\nRu9xO3CWzTfMFDvXSXmOUZAOiRt86N7H+M6amb38dToPO9n91h0AfuulPyF2IoIr7sDe7XH50gWe\nTwRJXryCdzzC+vFHWVR2Med91AJ9UqkBccss/pkijrodazTGBaOTVGABfdpCrqBhLwZ5+DNP8Ox3\nrnE8MUM9IBI7Oc3mvkhd7RHum+hUJBySi8mORj9pRd44ZOGRJbKrBhpyAUN1g5Dbj1mXMTgKKIsX\nWXScw5n8KEavga3qOQ6DXhzjAAcZjQdFD+qiD7cwZKMfxtWysmXWmJUs7PXNVPvr9AQDqmEel03G\nPC3RXqsTdUwxcMcRggHkKTuGc7PErQEaW7cZpwQaRrDFYsRNdl55+y1+5md/5p//33m//Ye/8+WT\nj3dphWXm8kZ2LSMmxjievSHXy3UupJ0EC3FqjnX6NRXRPEtArGB1uhkUe0RLM1hOGRhVNjCJY478\nYXRfH7EiYrg3xuLUcHzhEuHdCUndSTJgZVztMZtqsFZSyJib6ISoCkMqb2VYXDTi7y6w319nKmhl\nf8+Of7qB83IK21BlOZpEb9+ESY/AVAq/2MY8HKC100iFEbPnzlDtb1GVRtikInMJjRudWyxGQwwj\nCUzZPm13lfwhvPp7f8+5x1NU2nlCLgclGghWkZhXZpAZI2fHRB1OgpRxPnSKnuEb3H32vZyoj4ds\naF/0sVrM0g/NIW4UGIz7LEYvk/G/xCg64XX7Ac7oYxhibdZfzSFHdyjPXaQUvsuk1qQzuEXcXeeo\nqeDTd9GCE7SPdCloi4QzBValOuZMHfMHHqMk36KcvkkyeJq6xc/3HE3Kg7vU0mP6Qz99wUriWJLt\nnR1s/jRBv4Hq7T0sM06U+RpqzMRN9z79tXUMg11KjwfY/6QHXWpTq5UY1Q2IthhJt4eQ6MXnU1kp\naajtmygfMLK71OXI0MTpOce2tENucsS8x4YSitLyHdDeymN+KkTJYqS0nWfLWicgevGHDrjRyPLi\nzrcB+MiHPofQazHJhQnOVynXWiS6bqy9IkJxipGxitq3YbUPCQwgkTwknzsiHDEwV9dhLDMelwln\nBVojN7bBPk6DE9Fqwhdq0LZUMO+YsdvHTMY1fMM+tYMB1XgQqVGlGxARDQGsvSCqqYNi9+G1trEV\nbTQsJgaWNrVqAX/HjKoL2GQrR7XbxOt9tDbovhI9s4fd124x9Hvp9soci405GnRQxREje5GyKGEa\nbmNasjMoevG717j4uc+i3h6xFwsRardwiQWcgptQ3E6qMSSpTSjVDnB7RZxhI6NOjd6Bypu33ss7\neuADn8SQa1GbaqNhRTpcx9u+n2DfRvOUBLfHbOxsMAlraOUy06FTjPsupk1GSmUJa62Ip9NhsljH\n7Q6RL+tEkg1ctjn67T3yHhWj6MZtqFNxSay9cIvUVBqndYxgErDuedAvprAWNPqTHLHUeQLWOi7B\nQr1ooO7MYwjU8Zv93GutstDoIZkkzFUbeduIkOokoPcoezQ6r48J6AbMosrIVsUwlcZeFLG2Amx6\nMzyYhHJdZUSdTqNO5eY2lplziL1DZgLHUNdaCAMXwcmIurlM8eUSS+cWiQRMZA1rGBUnrzz/XkL+\nZ59cRhKSuJxmhh6FAiU83RFlh8RM28F+ZhXXWQ9LWoC2EkbLtsnpPpaENNv3NlDtbgqKzMV0hsDu\nKVJpM/26n7mID2GgoazdxukLoLyzie38A4hNeL1pw7/5Djarh2BYY6zNI+YnOOwiixdMWCwu1Ly0\nmbJgAAAgAElEQVQVtZbFPRfCLvhJV2qINoWxo4ecK/Pr3/gKscQSZ+ccqHfadA+bKHf20QQHo1CX\nxlWFgXAPb8mDd1xlzRJgEOjhHpoY9ezgjLP38ov0LU5aukxdF+lmuhwNM4wFP4pBYjLcoy5HaEkQ\nm7TJNI/Y3Hivbp9+9DTjJQfB2x1aQw+R2IgDgw3N4OHE6fMU9zfwpgXylQYT55D8egvFHmbQ7pLS\nLHhdDlTjEtMPnadn95PzTBj2VVp6m7bFSqoc5a5d57IiMRvXURdFegULrWGJ7FCl5xaJCLP4nphC\n+vZ9tNJh9HEfi2GNamOH474oo9iQypaL/ukgkkFG8NW59cM7UL+Hsy8hm/q0etPo1jzDupPtdpml\nYJR2620OWkbq9S72XINx2kU0k8K52MQvJPCa71LVh0iaCYfDQP2mTrOzS8LpIyRHsLr81JQ+2dxt\nFjlPwHmJt154LyH/iY9/kOpz+3Qz17DPOjHlRtw/H6ZTL9HWOoQzCo2eQDAexjhVpVI0sr3aYuV2\ngZZTYBKyklp0szNuYlzXicxOaO8d4La4CRqGNKYFFlo1egk/c9YRk2ibYt3CfnmdGf8UucmEhhwj\nKsXpbufZkLN4049hGHrg+AP03CP63SRiY0LROMIuq4SWJ0jzUYS39zj1Sw/z+n96lmMxH/2tG5gR\nOPFQClujzeE3n8eb+ABytEuwcZqFwBmMziqdQzvCfpmufIqwIlCvVNELZXK1Lu3SFo3Gm9zs9Yh1\nlmkJZgI3t3lXtrP7zuv8zM986Z+/RP0f/+43v3z8hz+DPBgzbBtJyAq+SQCTwcJMY56ic5YjrcNQ\nMjASO8ixLh6zkUJ/hoQqgb1B+foR/ekY6+v3sLoSRCSZrldhQhxjzEcs62dz/x3qoxl6morQ1NAm\nARpSmaDTyaCaZFJ0sDQvU+sH2KnUGRslKkQYTzzMnTfy0t9msGpmBEeIYVVAKQ853Ckzts4Tso8Y\nBoPYjYuYBx226zHmhz1Ua5MCVqwzSdrZbRTdRrxRw6GkSCWsOBejqIZFvva//Q4/dPaj6BEX/ZrA\nYW1CcDyLuTcmvz9AdlvoOrPUtlOsX30BgIs/++PUhofctlsZvr2KqWfAOTUDUh61IuGIpll/6Xk8\nrlmkjIGFRwL096bQIk22vvsyo6SdWUuclmzH3QiwqxzgSS0RakPVKSCOFJZMSdSuwsLiDLncKgGr\njN52UG5t02gfkV4OkLXUUMZRTLYMiUSA1rtrWJfuZ+euitGbo+GaQjC0qE+6dKoq0bSIIvgJWzWu\n/sNtNGuR/ZUyu0ID34Uo155ZxewA6xH0DRbkqEh5qCHvDRloft7d2mHOZqDa9OLJydzOvEVqaCOf\ncmLuWeloATa7+9gMIxJzSeq2Ps6EnWe+8wwATzz1EIdJG86OibhuI39Qoy/12e0eQzH3MPjs2Kxx\nYmYzrombXFbBZ53gcp5E7crslbs4FxNU2l3Kcg13aIzcH7JX9eLq2WgLcQIOG2uhHpaSQiaYoLcn\nEvAXqH6nzox5mqyzwnAs46rLDDUDWreL6YSH9s4m/YGb2LSHjDvMcKtIUxrSt3goWp0kuwUaegR5\n1CBxYo6kNcLqrW1kzyzDoA+L7sKsjjAYEkhqDA51/L4Gu1KIYbXJkbODweGi2RvgMgwYWQw0d+4y\nFucxGSI0xEMqzQJ2ZUIzEMJXXOfFm++9cB+99Bn8rl0mrTZ1swO/asESyzPs5HFJDnTdQCjlR/Vq\nhEdnKRr2iMxP8c7e96h+8za26TRdLYJTM1AMqYQOskxyEprRjtuZwqa5KYZcKOt1RqEkhp4Fb7hA\nXrNi3PEgaRNOxgIcmG7gZszk+gHaYYlS24p8xkG0bMLaslGfNKmkXOj9HnvBKLpZx98/oNhzsJfa\nwFENktl8C8N5Cw5FRNDuQ1C6HFknJOY0pjUXK0MddDOu6CLhagPl1ITyYYvwMEDTXEW0jSiGg5gt\nZeq3ZJIPeTm4NqZU2yMx7jGQDLz63fcSpP+Hhc8xcTZpRY+wqxMMFRtfe+Z5Zs8uU5Oq2AQfZ84k\nKZn9DG8ccDdXZq9axGexkzIG6AUOqOSzjBQDo1mNrZs2XC6FM8c7bH97jad++rNcXS3hN1tw9Qdk\n3qjiVVWGJ2PUDW2StTB+eZZW2kI3u4s34OdgpYsemuC2eGiNLMR6a/RcHUa7JSaKgeHATS+5xP1X\nltlcKbJaWMH/wCW6rTKvfP13ue/kHKEQPPXEL/Di0d+hTmYpbX6dBf0UkjhAxsJCXKC7lmPaGUE1\njqj3jjBFFMSzQVL3DjBd8eNvz/HuWg6zL0C81ad/zMLKy+9FQ3zuQ5eZ916gUuhiM2YJBD1oY431\nrJlXXvldypKPOe88tqJK2adjbTqJCxKiN8BWbQjlQyadPCs7b+Del1BqCsStxF0ik4pEb7yJye/h\nwcePM97xYC/lUfRb6PFpGp04YsxN4+1rtNxdRrst5hY99IR9nFYb3sgcsqNJupPE7ldJqB42PSqd\n1RqmjkwweAqTPGS1qNAd6oidCL2EwrjWxSBtoSpTzJ6KsViHSraGKmzwzmGGw5fqaNkmG/t9CoUj\nVBGkwQ4VClwK2pDsJ1Dr+5SO3Gx+q0p02oR1OoVro8LLN95b+3ImsMjADH2Tk+lkhErDjLE4gHIP\nnzFGNVglHrNw2MgS2A7TOzGL7BthnPYgVV2Y9+7xX37vDcRDieT9VqaMU6xWbiPUBQ46OqqtTavs\nwdmzIHmtqIJEcGLBPb/M+M4dRMuYmMXC373wHOEfPI69OWDrapnNvXcQD1XsBRtF/w5Vg51gcxep\nK7JvLJC5eg2DUkN9Y58//+P/ixMffZR6YpqmOMMks8dOTSN99jQDWUfZn6BZahiDZppCh+FgjyNt\nFkt/lbxgpmOWGbs9hOY9EJxGm0Twnz/HKPc2C94J5XEayWNg9bVr/zI6Ub/2W7//5QXfpwi07AwK\nKkEhSUYpoDUy1JNdQqMkg+AGgupE7tsJT03o7ov0pCM6NiOGSg+r4mNuVsS5OItP26S3egNHP43X\nPaBq2Se78TLuiQtTUsM1GSFEa/jMKtJgn25AoG2toGpt5J7EEUX83gmFwwHFjQ2aQp76bQX3Y0WK\nFTNqq03HNEXabiW4WGUyOE6nDq5xj1otj2JuIh/oKNNjRi4NWZwQ1zxslidcubJMIw/dcAG9I+HQ\n7YwnOR6+dIJGsYrX7MYgV9AsbaTyAFXsIfklhtERnoadidbm2ivvjQlOf+R/Yr8+YSmdYDKlYTCB\nUNvGkFxC9qrsFF/DJfTo2XSSDx6n19kn11VxOF2EjS3spjjNeQ894z6hThFPIEK3rVF8d4O1e/fw\ny6cwBhVc0wI7PQGP1c7d9pBV2w5984iIEiKrjBkr5+lZx5xxTKgMSkS7NvqBHoLNQLtqJhoeo3d9\nFOodbOdddG7Z2Spd5+WbN7nyZJyVm2NOLEm0G1NEp334+hOsqoubchGL+z46mKjpe8RnZApHRWqJ\nGqGGjLpkpCkakQ82cFqPYWmUKBtU7nQPuBLw8ur6HXzLaQw5F8aIznPPvCdRn3jgIrUdCTVixJ2c\nolXdZnnqIayBVbyGLkafgvFejdGoTmtaRBNNBAIKW642Se8IX8dDIDogV2uQqtrZky3Uu04Wxwpv\nZbrYzjvI3txmoTHisFPF5tBxO8wEFrzky32C7hCWtR0Gjhyi2UnCLvLG5i3M6WPY7HF8Rwc4AiZC\nDZGBpUbCbaHdLRDMtWmG5ugOKkSKffa8LswrOeJpJzVtirlujZ7uo9qqM2+oo1JkMANOo0Tab6at\nyJgNE4KqiUbbiCB0UdoG+kGR6aoFxaogGSVsphGtnobhKMBuuMnKK++N845dOE2o2aayKzIXGdMe\nisSSKXJtF55ZO9mDCWVlCB6wNiRmZjzsvVDA7lCwhyJMvDKpaQ0xvcjkXhW9cAK3YQabs0HTW2YQ\nDCHk7mKQIhj6RmZCefZHEpGMA69dZzeokQiWcDcTjFot2lMLVNQR0qU4Sm6doVsg03ZSd/k4ptgp\n9g00325wPGlg1y+RFJxIlRHGwgDNG2QqH6aoepm1DqlPiUwOdCSnmUxtA6Vfo/3GOpg8KJJIsFdE\nj85iaW8hF4bstk6QNuRo20bMLPhY39rDd2nCUdmIy3sCn2/Mt7/1Xkflyqc+SS0+ZvKNNTxRJ870\nOWYLI9R2jfCxcyQnXTLjfQaNLsKem3JmF00Ocukjc1zt7eEbzHPCqFKz+DjWGpBYlmi+tc1u1sgH\nPpHktfUu3ikbj37iEv/lN/4SR9yBJ3AKR7BPMi9wEFHx1Q3MHCuhTx0j0ywS3hoTtu0htsZ49BKt\nDZ2IVCVoTdMOGvEljIwjfVKVOJHQgMUrT+PpaiyU3Xzht7/EdjZP8bUDbMdGqIU+HZODhbMOei34\nd7/2y3iT56gIPWznYvhDZprDEdPmE8Q9VUK7NpZ+4Wn611sU9D3u3qkgDczMnBqjZ328ce29jnHy\n8v2oAxPrLZVjoQ6F+e8jPfRx/9MPYzs7x+BOifzGJqOEC2PPzsBhIelzsmk44pR3kY4xgSj50Wo5\nVssNjN4MzV6QbUVAqpZox93Yb5axTp2n0XqR/WduIPRLmAcKgr2L40Bk5fU3uLSYxnXZwuRmldLW\nPqX9AHanhUnJhfCQjLG3xs3r25iKHSaCg9qhnbdW97DHPTQdVsZOEJwKW3cKTBwjbIchhlEDrlIB\n85QX3zhM0Q8nBCviiU/gNq2hmqdo+FQQp5nII2qGCc7mDDFjmJGtzqA/h316m5njVg7uijz5M8f4\n49/+IwB+7LNPEDvWRZv1YL09RA9U0ScjxLgLt1bGPzRwUF4nPnM/vlmJTslKTzFgUjXsIXC1Z7DP\n9HnwfJp+100mk8FjhEwswYy1hDEewDQykUplmegO7NYI2Z0dom4rzb5OJ+BgItrxzplQslYOumU8\nztNcvhjHrPUoKX26BhP+XgBD1Exf7RI5+QG2bgrcLRRxBSOc8U9Tj3g5528hG4sIFS/97gTF0Sam\nn8QomvHbfayt3sGIiYgiY1z0IgpWpp0O7KMyHksCl9qhpfdp3K3THjV549vXKRosPJiS6RsjXHv5\ne3zpSz/1z1+i/sNvfPXLDz30QTBVSE06bAoirlEFtSWhyx0q+V1inuPYmlXGJgt1oY07ncYYM9D6\n5gou8T4UNYNzv0srEqbftiO6BFo2iXtvfw97xcP0U+cor64RTF1ioHWxVFV02UlnEsKRk5D8bmpa\nFlM6QcglYgz5GN1rkP7QHAmDgNVlQttx4p80CFywoDaGtJyQExTS3iCO4l2y5V3mYmfRjBWa+hCr\n5sA7EcnXbCimOouhBHfefQlrJIkSb2M6cuMOOgkZJSr1Ap7GFPVAk7DkBsVGr2KhElMwj+KEunYa\n3MM2Da/+13cAePLBM4jabdQ5DXlLJ7XgptxNYs3fwhqbQR4EkRNexsYDqjE/ud0uZ60DuuEae5k4\nnogVS3ufzo5MJOhnv9iGVBVTNMqxmWNUNJ1sYYdGP4bHMKQ9GGM9ZsJ66wi/3Uywp2B93E63f4+6\n3mJRCSKu7OOVgiA50LHQFru4SjIdjOjtGi3HCspkhF85xoOPLFIobSH6JJJClIGjRUx1IrfLZEWZ\nhVobzWFAthiJUMNQGtJJXMBtvItm92MtmRiFJPytBl1hwlDw0sdEdMHE0GrEaZX47vp3sUplZjph\nvvW990L8Asfm8c+3kGsispyn2Q7iPh2ivVanYU3jUluMZiQ85mnUHoRGfZr9EG1R5eCej/50AdQI\nEYtIxx1g3NjmTNrMUU0mah9jzLQxzRkY66eQ50QqK006q/cwdiwcZBpYE2Y8UgpTr4vcHaC1JviS\nIoE9FepOhOkAu0YdwRfAYvNgl2McVmFksTIRqiQcRrJaH0230jH46cTDhFwq1cERUeuE+t19dmUJ\nfXoex7CO466HvLGAWJERNY1it8CcaKRsCKGFe6iSiyOpTMLd4u2dNSTuxzEyUojvsmSY4TvffW9X\n4yee+Bi2ecipJcolO+n7ZPpv3ObAZGeo1ul4HPQODTjrGqFRFOPoFo5Wj5zbzVDuc6Im0HI5ORoN\n8Yx1BG+NXqWGv5zBvmBDuNslJ1dxuU4zqr5Lo2Fgvr/IKLiFadLHbQxSOByTNZuIlCvULHbGRj9e\nMY/NHcepdelYOkQNWWrVAeORzqU5C818B3/bR9+hEvCnGcpFJItEz9um1ytQ6EyImGJ4fXlsRje9\nfpZY4xFGcpjYTIjNpoZNn0Es7VKdTpJ3xVg8FSCbO0SLpDm6sUVi5iL210soaQtNi4i4v8srb723\nA+5z5y5gy+TpPxhCUiO038pycMFE6/oG3ogH34efxD3MUl5tsXo0ZnE+incaGvU2uyv3mBWg17Wz\nGs5Q+/vv8rFf/X1WPvpxbHYXE1uQvrrPrGLgxstZnvr+pxmZu0yPIuzodby1AZaSmbp3F3NH5J3t\nKlP7e7zduoadIE1fmX7Hh8MkYEur5AMNhFKSkmhifuKlM9xj7J9lt32d8M4mvnMzvPLs33IycZl7\n7ZcJ1jUmBhNGywLy3jusHAmEzs4xveggZdLIGZ04G2Z67gmH64f4bT7MrgHd6/uo/TdoG91E5sOM\nAzK6aMS0X+e1268D8IUfeZpKp0Xf1qWx7WT92gscCQ4GRx20F+9idnbZuPsGl3x+zB4b4d0WhUkV\nvyPKUa1K1NKinvYQb2nEnV76so9lA/hdEbYwIDovEPF0GBa7qMoW1tgSnVAEzemkfcrFzqGHO60b\nPPHANMrGiJ3wAIsSJzCjUWsp2MUuzdA00VoT50Cmb1/gTHTEzI8+xmGuy/1WG2KoRWgTZE0i3Nth\nLniZjq2ONFDJ728y0FxMhC3c/gHi4nFWbj1HZO4czmgNf+0kvnCVTsvNwqHOtqmI16RgMceRlTpa\nccRe6ZC+5YDMoZFr33lvQnF/2k1vyYH4Up+rzR76gYe2LCEbSuT7EgN9hKyF0PO7DPIjeuESs/Ye\nJauLwMCOx2YlZHDRNDdYW+3g8huYOukhWlHIexwMX61jrancOQghjIsYD8eEfWZ63SFhy4R6pcnh\n2znmSdF1mLg/EsV6sE7ZrmEUktjHIhZXgB4j5gZxsi4z5Y0MZnOYzvoKycdO4g/MYW1usOMXcK9G\nsU65cRsUtG6fwspdQj4PlrqZUDxOZFbmRncHjzyF0dij3NKR5+awqwqm+R5zZj81RwOrAM7IRQL+\nZequId07r7OZ2eBnf+pfwDjv1//Tr3957vEIHm1MIKaiCTVSQx+yrcfbawrScRPquI+9rVE9eBMx\n+gCu9Sp6V0OPx2iNAwgWF+E+rGfvIPcmjB0KUwkf8nyI/MCBv3rA/Pxltr9XZGybJhKUKKpuHL4+\ngiVBwZTlvmWRQu8WxkybwmECNeQmXW5gcsmMqLPQElB9c0jOEuOtMF2rDvkGYqtCN+pmpjtHxZjD\nl/Lh6XmQWg6qhjzhaR3DWptS4RDdHSbu7RPCQePQSvdonzfKO4QmsziPy/R7Y6Q9Dd0rY7SKRMYD\n2t0K1eKElMdKqKPwt8+/J1He+xqUbSVSkp3Do108HQXZeMTMYJGmvguHKmV7jFAoQjcz4fEfOsF6\nsUYgGyS8PMWecA1PeULfl8M3juFdLmFY79H16hi2ekSXLBgGE9AGBKbMjKwVsm90EDxjjp86icmb\n42atRrcAcU0nMuNHHU8QpOPIgsDRxm0MtT6JKTvGYQd7eorOOEytncU222P/oIW7P2Hss9KZ6ESd\nBlSXSmEoEHZ7CftTqO4MScWI3h4zdNrIH5mYT0U5sNTodizQlhEQcC/VsPdgRIdQRcHliKF4RKZT\ncchJDPWbXH17E4CPPvEYjYoLwkFkNYzZdIfSSp7xRRFDASyHI4T2mLraYGLsYcGAJqsY9T7pKSgp\nMj5jkYk05rAdZuKqs6aKGCwi4lET3azR8As4zWYm98p0Gwr3XXmIET1OPjKPqe1hfbCFs9ensTSH\nYTHBckSgKIItZWUtc4DZH0Ls7KOPnciNQ9TFIfG6CX0SoCHoJF0z2HYahMURPt0MFSMr2zdBUAm4\nHbgiAgxkKrQwW2JojQnS8TqdlolAcEKvb8NmriNkPXhDCrEDgVw8jdr1ELEM2TRbWPJ28LVMfPOV\nVwB47MMfp9ovM8r6MJ9x48pvU8aJapSZluq0q3Ec+auYj4sU9laRQmGaNTtOTx8xbKKT7yFJJlwz\nGkdtM2L/AHNRwhM10iqbkObNTIIgZiSsywHMEwt0+tj6ATKlHke7JVIP9DEZJgih43QOOjRiA2wD\nA+xWMHOcsdmDpFYZm12kjGZ26xNcqpP22RhurYruNNJpdGnslwklBZze4yQ9YQbuQ/RWkrLaQh7p\nuFIWalZoDnKY2iLRqSr9yRCvZxrp3irjShH/WEZUbaS6faqDLtFzCayvVkkEQ2SVI95+8z2Jeuj4\nZQrzbuZJcWevxXihjb+yQMXRpNqIMTjap7Z6yPzsNJ5ihmsZM5YeBGcajOUQ+UmPpjQkNXIQevpx\n/tAdhGidtHtAJlNheSbNW+svE3I9xGo9zyDro5saoNzLMuX1ctQJUNva4Df+43/ko48/wOvZt1mK\nX0Yf+Uh4BTzGHo5gk67biD9oh2YSsTlkwyvRr4lMnDku2iIU/DqVnoxk6rF67xUenf5+dg/qxGM6\nZ6IBttxB6BiZH1u5/s3vIbtPMNXO8L31FZS6hDStE63U6R63EHLmcd13mdbdLtfu7BL1T7Hg8LGh\nhLhx9e8AOHkiynI9ytCSZdJrct7sImKNcXdcpGE2MD3lJp100PBGMQ13CLqcFMwyZ+Umo3YEwSwx\nVOroeoEtm4TJbMWWULhblUh6DcSLJbbdFmRXEb3RotnJk1q0YbeEMPdMeKfG/MMfP8P8Dz6GIRfH\nOOzjSHaIjsZkjwZ0/UYStzuUKbLez2N2dulKlxhns9jSRka9FtmaH81RwDy2YQ632RNcJI0ZjD47\nM3N2bHi4s2/mg+4w2a0WEaMILS9WwUPVUsJmUpnQp9XzoG8NKBXW2blTwJu0IxgU1EqeZCfNnXef\nY/vgEIDpUZN6P8kL+bd54Y/+iuT0NLPKCtVShKHqQAsVMSotSoYM094YDpeb8l6AkGGMbBsxtjvp\nqB3Gvh5nI3MUy/sE2nEKwia9ko1Y2k42YUPqbOAdBHDEtmgNItScTfS8AaPk5uT9x5DiRdQjO7mj\nAcoZhcCuTmdyyJwvTWavzbgv4HFZGHhaxPtGFEORkL9LdDhDR5/gtaRRS2XwpAkKe+ieMLZ8HfOM\nAIcH1FJGDqtd9s1r3Be8hL3Yo7ecwuaQuffcP6B43Ui6h5sbKqceWKbXKLHU6qGIY+ZHXSJTVt56\n6RY//bP/AiTqV37rV7+cdI45PZNCl/wU/+DbqBYXWqhNYukUrorOrDpHxaPw/3D3ns+S5ed936dP\n7D6nu0/n3H1znDt58wILLJEJAiQFgAQoi6JtySoXq0iRgoLLqjIsl6PEsouUbVoSJYpW0QySSIAA\niYyNmNmdsJPn5tv39u2cc5/Tffr4xei931r8H371q8/zPN9QLEeQlENKRw2M5EuoQhDJ02JlUuHA\nsdj0jikQYRZU8E9OKB03kT1JdK3KYWhIqn2GvrDGadfBrCqoswaoNoLu5q7rIavLr1L83Udsv7SJ\nMDbxCzoDHJJzmPXmiEaehsfAFRyRTszwyi7S6irCrszp9AzXRpDiOzOakQremZuSodBSK1R+VKR1\n2iR+5TXi7SUe/rt38G/2seNpSHiJzppoPT/98QnihQ0G0wajD/qYsS1ygofhAoxRmdeifPs/bFR+\n+at/Hb2XodmGkujB9kr0f3DK5JMiywOVu9k0vWoe1buBcjXInW++TdYXw9iZcOINcE3u0Cym6HU7\nHDYf4dNW6M6mOGIGr0/DLoh0FqKYiofhUGZUgdClXbbjFq6VACfyNhljAUMTWRRj+NUa7cMIqbUw\nu08qvPfkh+x8Ypkjd5W27EKXJ1SGA5azIWqWQngyxX81RtTQKBzHGUz9hHoT2tMBfpeEauqUnENU\nI8NUmJCq1ZitT6jICVLHEezlI5YEBb/rGK3kp58Lsu7yYKk9jopPqP+wC6JCZgwvqi/w/9x4diZY\nvfQCjizwQrBOK99jWBviqGkMTcc5PcJRHGYhD2gGdkZiZE0ZefxELIU7332Liz6D0lmAoXrCyshF\nNyYQEeNoeQcjOSMSS1M8DuJy7mEsbRG/sEWl32dU9zGInOK3VZI9DzVFITCv45pMOb43xvaqnD9s\nsXQlizLYJVS9gPbcnMMbNV7I+agWdJTIlOhxmU50CX+kxdgT5WxYpdiwWI+s4lJEym0H91wgPu6T\n6Rp4s2Mmbh3XLIrTmmOUIniMDlNzjLQ0pGG7sWtjFuMahq+PbPixRA+h5iaDyDnf+/Nn5+Of+s8u\nYU8nOL5ljMM8seczDPMG7uU2tLOkXiriDqqYxTo713dYTHspjntoK5tIj12o4UPa/RytTpH5QGUh\ncBnPhQryh0KYpSKzYQ3NlWB0PMYTsjl0FUkvhOgLGqGgwzoB6AXpSg69eg9JLhIfrVD06WjVIbNV\nDcE1I6SkaE36EJOIR6bc1XS6zRoLUoajpgebMQFXmpp7gNRLE2BMrdtAcQZ4pCDTlQynt/cZ1hUi\nvh5+e4rLWOXU2sd0NIKRNVyRRR4dTwj53LQvTvGdTdD9caouHyuZEeVxinffelYz9F987EWiWpFD\nW8DX7aNEZzw6bXL+wQ0iVz3c/ot3mEUu4faO6cdDrK9lKT4q0tEi5LQQZuEey7LM6HxELiKiNyNk\nFhU4cTPfUDk9sclcX6JVv82w7CCGRepPi/i8QXoeFxHfGT51zisvX2dQNVnK7TCOOlwYzKnLpwSD\nAudyFGNcp2bLjOYi4vQ+vnYPOS5weE9lV6sS2ruHq2wjbxQxxmGm1pSO5Ebv+Nn1TNEOZe9bK4MA\nACAASURBVFqrJ3gLQ4IfuobpC+EOTIlrbiILl4jIaSaBPpVTg0wY6rsWdmbEppRFdM0YDRUkdc5b\nP3im7fnKL32Z8sREqg/RO1AVDDzxKYFSgsRHYc1aQJjGcbVHVEMNRk+jBBYMzlsqRryPZptMxy7m\nU4W5WMLv6OjFOhlxE91pU+qckSsOCAkiYSdJuSrSLJpM9RGh2oRwu8bmxVfwNIfUIwbD4BTuxsnr\nflRXEbsfYB7x41uOMFa6RKox/ME5xnaI09sCLbPKQldEd1Vwz0uUh9BJtpAKMrJiUpJzyJ4Si/0q\njtyk0+nQnV/ELcq4h33UmsJZ4THq1ENkucn1557n1S9/iTuPG8zbIQ7y77H4Myn811/iJz/2M/yb\n//v3ALj4X+eIPL/E1fnP87NfXGc1Ch49gGndRk4kGPSTiMUZlpVmSIGOuEBOFDkdVXD2FSTrKYov\ngOuow+HYIaKN6MX7LAZ3cCwXYzGFenaPdiBNyl/j7HgFITjE7Naxojmc0l2c+ArDLgjuGerFOK16\nE2n5EnqvT7EowaUaFwNpdLWBceUavcmApw+OsCLPM8nmGQs+up0JVj3P1J3AkNOorSZnW1OW2lNu\n+YfEChOi/TGzzDapoUTN3SA0OWZ01uaVVz5Hc1JmcLdBoX6CWI9B0odn3Ueme8C47qLYG3DnYI+/\n8yt/CTRRv/l//LOvra5/EQkH8kUCH/04bxbeJDG6gLSgM5sWqOcytIU2z9kCNEKk14ao0zAlyYHB\nKZLLQPHrBPRFXOsdWiLIjQ41I4E09SN4BEJ+nUY4zOTt24SsABPJg7isU2s/JRgfIpjPEXIVOR3K\n+PVFEnIDZyHCYr3DmW2hvpSk8/1zup98EbWSp+4Oo9dUbFHmweFbxC4GSegOw8UhC8IKR8Y+ITmL\npxFhoVni2uZP060KOFaP+oUEawGQd8+xJyGUQZBWSCaqjTl/32TNY9FeTOOa1XDaLeSeh+DpjLl3\ngW+/9ccAbDYsEj/5CeT6iPTcRaTu57uNc65uBPnme7uY2iqhUYJ2rks41yFuZqlqMhIzWi0V6dih\nk50Q8DSYj0N4E0kkr0Vc0GnpCr2Jgp6okZx1afs8TDSBtEfFL32IfqnG6cmIvnmKNHKoPZF4q3vE\ntHpGP+kg7gmYoonnJEoqoHHllefp17II2gN0RWPQrTHKXGLxsZ/81ODVaIKSdc5gOCbMBVThDHHi\n5qSlsO50qEeiTI0gpuxFrhRpL9YIPfXx+n/5kxQOThmsxpBP5xQSLd6/V8Uz8pK4HsGqpBCFIoo5\n48/uPoOBn3/pFbTlbfYah5jCBEnL0FnKEHDl0VpZRrEJdamLT1zA7dEY5HcRJwmSARUXAfTENlXX\nKaHtK1hP60QGfvITE1+yhKZcZnf/DkLG5mLOYLejot28h5qyUfYLLAg57OMzrAULKT7iuK/j3jeZ\n58KkwiqCU2MybTIY+aifndH4s4fMNjY46+vMxAaZicy9eRvp0SMKpzLSlovkQMJvydSumaQnDWJS\nhFB6iKmE2ZNduCgiigKueoti1GIhBXvtOC9/8kOUToe4Kk0iQZ3iyEdxcEJoPkWuB6mla+TvKdy/\n+6wQNpb4KfxeCc1l4lYdjhtl4j0Fu7fK8FKC9umQ/pM6vdaYtOFn/Uu/SPNukUDnIXm5hDWI4A32\nEEYqnZoLlqccuzSm9TyF4AMCL3yS+e0KVipHyPQytivIahezF8S/rnH24IypZKB5+rgbMLycpqFY\nxItFKlcd9IpBTO9jUmXWnnPWKhAJaAROI5jLfTrvvo25OiA2WyMpz0ikL5MOVbn7qESyPiaY9DIY\nFmmNCmTTYWZxPzEpSmAS5Z7ZxbBfQF0xMDp7dF37DJoh3LEagU4SUerz8NAi4HZR7g6IJEt85y+e\nuWi/9I/8DPsx9ksphps25oMKmtBHvqqzZO8gM+PLv/gqj+73CA5MZsY57qjK0kqTsHfES0YW5bka\ncy3DzNVCW57R3hN55XmZw6c2aibM6M3HZNwxKmaWl4NxvCE/k9P7yHGJrgsCkQBjaUjiiknrYBf3\nLMZ0UceQFWbCiFmnQ6sNZFcJvewwS62x6B+Qky/SvSCQ3O/wQMsSmHaRA3Hudo6IL+QIJWUyKwHE\nTITR/IBwJ8JMH5MrjEkuLzMSg2hbPh7eeBMnpDMbVdhvhohkbJyZgXBQ5gO3RSUPohVEXtvkzT/5\nXQBe+quvMNyLMfaVyH50m0G7xsDyUhF1nH1ouqb043v03r1BOHERwenhi/fRk14qQh/dCZLvtnGE\nEY7uYihHmYgbHCd2iUo2Rt/gZOkljNyUUddi4xcM0mIIV3OGazBn98IqUcOgvacQl4oMjiUim3Vy\nkQ0Wcxu0WjJ9TrAP5njCDn0rQeGggPnwgGBEZNHdxZ2LMjqfIwU8HDdVNLeFEs8xDaTJVLo0dkv0\nX46SMIPYRhS9O6AdbdG0/EwsBfWSQzq+hF0bUm0lsLrvk9kJItVLOM9t4j8bMzvb46TxlDd/+Gzz\nueb9W+w9mHIlJ3KjH8UtQJAa81dzeKUlBLGJW9ZI+r2gD/FkXQjlCal1g8QnFaQ3biCrQcaWSUZM\n0k+58NXCxKVLtFImmtmi5hfYiURx2iq7rTyRaBTV9NPvFFj1RzH3H6AFF1AifrTHEwaKSuXWDSJB\nneNQk4GTIy62mCQu4qgChT9/wmQ3gSK0MR6KhJImiUSFuSAyd+eRWzKTZALVVJiLXupTP6fH+6Q/\n0WA8eMxM9OLtCexqGcKzAVWzxORwxmy1iN/rxtUJIKyVabwnYawvMTchEd/i29/59/z9v/v/3Z33\n/3uI+kf/+z/+2nPrM8ZDlUZtiB7wstT3YOVMKHaYz2Jo9XNUbYzSi2PqHSpxL9vuOE62SN0KMhw4\nSAOJlnmXduMResrHvLdJ2jaJiBO8WQ83Dw64JoUw/XPGHQ/xZT+pYZd7zVP6QRfuKtgNh4tpg0a5\nTywTwj6aMbRd+FU3T2++ifej1wklPYgnHny9ELpQoZVVWNEvsXfnCGlVofNEQi1UMM5UulKUMk0m\nn/Lxr377BnZunSubH8du1YkuLzCoTcnpFlPDRapuYotBzKyNW5jSrlfQNAdRb+EK6Aw3y+yd/Uvu\n3mwA8JVf/W85evsWjWqXxeQm4wselteucDrTSC0uULGLONdbrAR8OPsV8vMZYuiEe++n0N1NAplV\n/NEZA4+PZcOHkk1xKOeR5za1uoC1OKfyqMC0PmQsD3kuvYkjDOjaRzzsKgSdIpUjidxcxEuXK06E\npu1icxRlOFOwkw6uYI5AP8Cdao1ArMm5W8OmTUAVWbLcDFoO0yEMcqfox9AxNHRvhY6zgBHOUzh+\nSjOcYTMXxypJtMRDdDWDaxJlfsnLo4fHWGcJxvpT2sctfrx/yKdia3h3NnB/UMd1qcdCRiUUXeOP\nv/1sws1ee42AV8PrTAjGI6SHKlOXRcBcpIWbmqeFlI8irro4+2GfwPIaY7vN9OAhdSfNZFZlqQ3t\n/TPuuDpM+haxtQxDzUtpt4EqwURJIN9tIUVqeMJuCscF1i9+hHbxTYJX1unVZtj3mziRBGI4y7il\nk1w4Qshcwpx1qc+bfPrnPkM4bBAx2hS7Q0rTE6r9AGvbKm88jqJlJqxk0zQfNTlTxoT6E6KLr3JP\nHaF2cnj6JwyUEMGGm7HPgxKKM+wIuAM9unf3aEyalN++T+iqxFnLh3vLTdcJMiFAfDzmfNpmKbTM\nj374pwB8/EufIdz30lwYEawJ0JkgrlygqpXo3y4wNe9imB7ci1XUR00O90R0d569yQJxc4pHE5m7\nx9jOIp0LI1w9h/5Zh97JAHXLoPJ0RCAZIZCJcuB6RKrrYW/sRvZ7CfUPGTJH2prgPupyq75LeBIj\nZGiEPCGCgRbTIx3NPyN/MGCaWERugBr345gWvl6fQchHYJgh7cvy7tN3qJY/4Oyhm9Bij86syom2\ngmV3SSXCmCcPWa5L1DodzgWLVWHOyeiMyFOTwekxMVln5NvEO9PJ2W5O5Dq+qUBMtikJFp7oKj/4\n5jMjwye++Fnq7TGSR8Q49eJaHBK5KGEcKng/so664uMbv/X7yCsWa94co+AF4sIu7dYmK1GVgRhm\nv+UwuKlg+h3EsyzdocSsrfHUHaZ4L8/hk0Nil7eI2nOeLA/Rzm8znCzQS7twG31aPQVVGrNyOYB3\nfIleZB/FchjJKu2ixmmzxsCcofbjmIN3scd+TiojKod5nKrKjR+/wcJHX2FcdtBTGsFqgyzXEbhD\nesvDuf2AdlVDKzsEEkG6gzZ5pY3QqbJfPid04bMEOkPmaxfZ2vKwf7iLTAisBXqbQ+L9NcrChJrj\n5+F3n+VEvR76aRJyg41uhoJcISLFQFBIZTWU16KsA8HGhOlWgtmwiBxZ4HwYRN0rYUkavmkDPVbC\nPdkiVSlQr7SgKVJ56MEmzNTbIicE6Nl13I8POS6e0Wrp9CJ9xtoWjG8h2hrJRQFVVSmny8wKHga3\n9pmXJOqtHkm9TjBmMQvH2H1nj+DIRs/6SPiDrC5d5sbuTaJKm1YgTFIfUleSUJXQT/ex10ZEJTfv\nfPt9Ni5swQcdbu6dc1XbxOVt0ei1GBFFiPgIzDcpGXAeUOncrNIvS1yaRKhZEYaVJh3vdW6//ex/\n+8xf/+8x5mEYNMmNasxffwXtsztEPS1OaiLSYIoqRukGS0i+BJnKiDOXj/iDW0w9Jp//hwbf2dlH\nvrxKemjSU0y62CTcMTr5PoZbQvZquN1uBiMbuVYkg4q8KGJ05kihJpPlOIP8nLl4RNEl03zvFhdf\nfYlS28EfD6OMHtMqm9j7Ldq7DeZ2mOd2zvGnRnR0C92scyD58SugVse4xCqGu4FiKTjhLLF4i9xr\n1zjXf4xrtE5h4MaY9ghWHB6pQzR3m8bJIZfcOcSgxuJii/7jRzRKIspSAGt3zvH5XfZPH/N3fu3v\n/ccPUb/5T/+br33u019GqbvJ96Zo2RSu0AyXMmXs36RYLrEVu8JcgN7gmJ6RQqJDfTLh9M6Ql6Jx\n7hcfUGxVWYoNWP7MDo2xC+GwQGFdYwWLo7tPiOy8iEc1aTk2mtIha4xoV4P00n02bC+CHUaWBpgT\nL/dvvYnb0RmqfhrTx9w+uME86yG4MkM4qiKOdkgG+kjpDOM9nW6uxUbEYl6PQVJH35xxpHkIl0xW\niODXPSgvr3F20cWNqoDB+5gVkXFghjkVidoq7/mKpFoSsqpRNE2WGj4qMRfR0zCP50V2Xd+h8Csv\nUvifn1nOv6z/CgvTT9HKVBDCVdq3TrECLZJhk8w8x8baAPPmCLU6Jh73sb4ZwmNuoPQGqH6Hxv4p\ndsXNpFKCtMO5dhH13MO8KtK3x3SHTwkqSwQifozNJQYlhVm+j1cP4jT9+LQpyjhJVBhjRZPELIVl\nz0tU9x8wXnJxceplFhAx5ip52c+wdYA02iQ5b+M+8DPxxjEuDhEeHSJ5AwzXLhC6cx/L8BM7FXBl\nbT64X2fZLTJMjxHNEHtH93GsCOaCm/r0CO97bVyREpW5H+9UY+lDHuqHaXyiALEw4T4YjSjL5yv8\nizvPclRe+dkv4C8U6F+6QO2P3uZuZcSaEeN82mBnOcqw6EYfn5DIrNEs5XEPbZYSBk5VxZuCODmC\n4RlyfMyaYHLam4F1zqq9QWfxFMlM89LyErMVD6vLGxR6H3AtPmMy8LB/N0sk6WfthQqBwUPer0hk\nBwE8Wz2sRpDBpA21AYIWZfR9gRtnt1mI5mh3BkwOZD50fYMiEDst0Zr4iE8HBDe3CWU8jGPgVGEh\nHKCVdFOudth/6z3Yvsrou/sEFmQmzRj12ZCV7XXKA5GrFzeZPWpyZtW5tLZF51s38WZVmvcrLC6s\nEu5I/Nm7XwfguZ98iVzVw7BSZOniGoPTLnv7A7Yua3guGUyUGobdxhV4EW84yvqnX+X+98osuwLs\nLk6YVEMonQgn0ymxcpd+N8vq6zEmhQK+RYmBIHFWkQk9fUJkvo2dyqBbZ0zPWvRbbWTVRxCdftRP\nezTCeHWb5jefcBCb0WqHMQyBwbiOOVklcdlA6FSoHVbwr+wgzTr4loJUA1Pk4hOuf24JjzlkY20N\nKyCQ1i9RyTdxvNcoJ/4dzwsl9KtjZvqLlA6qqEUZY37G/JUw7p0lXH0fku+c8r5KNhxAjc9whh1q\nvhGV/CHxWZjvv/vMqv+FF1dpR6YsSRpVs0zMmyUwEfjsP/gZjr7zAO/ZnJ2PXEZp5Gj3d1n0HjCw\nstz6vSfcv/0BlcKIYnWVidbm4cTPeUug/6jNsXuCJ76EvpHgxaiAXSszLUg8v9NBVAJQHdEMtEnt\n+shkJJpTE70owrbMWcfAXfSx4A0yWrRJtzTKbBF/rsNOepvGXCGglNGTMQjNWdMWEZtdBpsS44AP\n/UQm8QWB4mgTu3dGu2ehWnWsxjmaK8JTO0ukE2Di5Nlc+ShPO3dJFG18ZpDGUKJ3NACjSvrDK0h3\nZkTdPuyFIcbDN3jn9j0AXvv8X0VoHiNfDBOR+vSlMKfdCqmJn/1Zm1DhnDIOB4/aTG3wBOpk1SnF\n+YC43kEOLVBuZ1D7Km4niry0jpDt4VlM4Tb65Iwsw1CP57cuUfeuk6/KRPVjvMcz9C2dVHVOJBGi\nO4xwqovk+mnID1Aci0ejU5Z2rhJZUBiVJgS9S6hJG7ffi97xMuz06FtBTvfvY2ey9CQ39VAIDwIL\ntkmp6SKuXmfafYxrO0GuEyT5E1foWlPKW3MMrYnfnaahHJOqdIlsXeORK4972cPWMIhvdEqZApXO\nfa59+ufJLaX40z/8VwD86ldeg7BAtXVGPSqinE44399n9+0zlp0dBoch5rlzApIbX9VNpV5lv2Ih\nhq9jfOYn+e21P4HMAqp3QKHdoLs7Qwt4GFTvc6KcEfNqWJqbynmRo06PjXWDp54BYcXFfk5hUXGY\nB1zUxia5ZpqY45B5RaXUCYHlQbdKzA/dRIUgs6UUjlOk33EIiyJD20Wxl6cp2SxJl5nUargsAdPv\nxzcY0rc3aT15jLaq0XswxNXVEcU0njseqi8MeLI/Z2Hhwxzs73I18SK+sMbMd06zk8YIpUmuz7Hv\nWPg3dPT0gFvv7PPrv/a3/+OHqP/pn/xvX/vcl/8m5UKDhFYmmEoz7Xfp92WyE4Vh74zehptpdcRQ\nnSK1hgTGcTRJxqDK4aiDfS/Bpc9v0B2rjA4kRu02xisJ5rfCzKoVrOurzMcK/sQS4zdGdK0zqr0Y\n8vIcYxahMHSxqrnQhRHn4pQLmz+B4POxKLkp7xXZemWTh5UmsaQf6T2ZWqyPOTRw2fuUhu+izZNI\n0x72MIRvckhFWyEk1VBTLkqlFuXCEYPwCb/0Nz7Fg6/9Pk7LxPAn2YwXGdeDKP08FgIeyUdL7bLi\nTjFyBrR8EiY9OO/h0n+K4//hA+pnJwD8wkeX0Bp5ZrE41eQqCwMBp9yiUyhR1c+pt/v8X7/3OySv\n7jBMiDQf7jGZHjM+OSMwb5Io9Zh49unMDMZTP4NvfYNzn8XqehrPw8e8ujwjtzlDnaTx5GvIAxO1\nK9AY+NAlyM1XCURk+mKSNVnHlwuSnz5Ady9yMH1IUtli5NiE1Dp2z4dlLbHglhAGEbrLJpIrzJt/\nfoPYMpjNHnq1izsJo1IXS41SbwWwbBt9quKkgyS1KsX+jK7txzdr4dyTCKyF8e6FSPiThKduPC0/\nHl+VUXWKoidpd5pkAmnOK1O+/vDfAnApsU0qNyea9xBdyaAkdxgbdc7v7eN1zpF1kWQ6xv5RG0mW\niC8bvP3jN1n2LlDp57GyM3xmirkSobqQJT6uE3zhQ7zx6A1eW/0IkXGFcdtNI9Ok/tab5IJelIDG\nnfUMv/m7ZU6u5NG9e4R7AoPRBluRGI42YxqYMXL52JJdVNpRGmsVkoshxPmMUMlGUBxmbTdPfrDP\nzgWTbNJC1GM4qsVuuU9t36Y4OUZqTUkbPc6qCX7uK69TOqkS3BGwihpLIQNfLsio0yc77WBGc7Ay\nY2R5SIVkFuVl3G6RZnwdj3vMNGrx3W/9BQBf3PgrFDI1jHmb9pMJhYuwM5cRGj36gyhrzSnysoB3\nrw7b69z48UNa7gIBr0S84aAGK0xVAXUQJrAwI5hYZnz3LUKXoogtNxXLJtJtMP/EpxmIB3hLKqdz\nH2tLGprjpW6eYVzZpFa9wTi8jbXb49LPpfA1PUT0HpXaE6b1MFYmxIJ9yLBtoC74aHgOmIrrCHMd\nqzmAWZr5kxrNwzbF0yKZxDojkig+EX1q0RVOyNVGVOIKVe0SSDLKxRizlB/l8Iy1QY775fvUzkYk\nvU3MlQSxsYw9kRgPT/A4SQZbC9z45jP43Lz8MwROtrgjdohvpAmpG5SmKWr5N/nR4wpCNU1ZG+Bb\ndaO74c//jUS4P8X9koiV+BCXPR6S4RgdrcVCeYblKRH6xOsUHn4Dz+1bJIcjzkJLKK46w6t+mqUe\n/kmcPfc5trlGZ8Ei0I7SbVVRlzdon/ax0212JYnq/T3yzTM6IZlppoO4X4dTNy2jitubIH7SRDmd\nUe6nOJOeclHYpHfeRVtYpHs4QjirU46IDO9qqLKG03ZhTnKcld8l/tc+wvG3CqTUIaY/wBf+83/A\n17++jlF7Si/7HBElQ6QwpLUcwel0MKUJbivLj955pvn82C9fwq2MaOyNedwcoUXmqKOLSBsWds+N\n/9FjalEPS9UBHiGEFl/h9ltDQmtB7JZJ9yE44zbRVp66t8u026Gz30VzLPp5D/t6DwqH7FfOkHp+\nZL9DJuumMQdTULAmEvZ4TNNTAbGBp93H7ewwDA0YBzcZjluE6m6q+gql4j7u80M6yz6ygxbdmA8r\nUiATCpAzbGadKFciAcSuhSTZOEaK0uAWxa6Ha0aU09ER/VKA07t7XJASRLM+hlWbnLTFj08lzh7s\nsTyJkp7X2Dt8zPK2gyrFkD2blM8H1Bplfvz2Mw3ea9s20vCUfCnEt37nDwkvDrk0iuJL7PDVr/4S\nn/4HH+fw7jHeoorsKeME3ci+bU7yE2rSAKPb4fr0Ak9vPUUKJemN+4TrIrPpAptym3IgSKddxyyP\nWI74qPajpI0kxaEI2hBv74zeoMg8EsQeHhLwB3jj6YTltRjWzMEljVjIWQzCbmbdGMFBB337AifW\nHfS1D2GHZqS1HdpjFzN/BTOXYLA/oLJ8iVV3HkVZYFJ9yK1Bj2VPnHEyyOD5y8g3miR35ljDGUs7\nWcaaA6czas4MvyHS6HcZFqNkr0Z5+sY7iB6V+3ef8Gu//pcAon7jn/zW10KJTYKCh7WN6xRufA/V\ntYDmM+hrPebzNVzTcwKmTK/vwpcBRXfQFxQE4MhcZLbcRwiAPCgyGIxIZrKoj+Y4Ypt6zCFbHdE4\n11mXSoytLtFXL9C5dZNWYsBWRGFQEqmPgkzTbryP+vhXVBp7AvqiTCsMysUM3ad7CNkdRpNjokWd\njt/E401RfhKhcLBHtS7TGB5jB10kSm2Gis34iZfFq0v8eL/PSizGrd+8xXJV4viNDhe0DWqqwECq\nMA3kqNluIp48vdZFgu09TF0mqYg0XEEGiSyTg0d4g/8Ve/f/OQA//8nP8W7Wi6dSwkOHcVTE70Ro\neD0oowXErsnFy69h60Omf3yTwTTArDJBf3LEYXvEyhWL2eNjRgurvJB5nj+99YidJQc5VCTk3URM\n69T+CP71G3+AcekFAmqTqc+GyYCKalF63Ca7CL2qTKXbYOxe4c533sb4UATvMIyan1Kt1wlWPfiU\nEIlOk6NVg4BRRPTFKNR+TNyXxtYm+O1LqIqP3rzOYJ4hPYeWU2AnHqGMB9HjMJisEQiXMMdu0hUZ\nI2AROYCZ4GLuctP2OoztNj1PElmLktSnDK05o7MGbk+Nb9x9E4C//eUvMVbLdE7P6ckWkWaPfkYg\nvuEi33Ohb+zQfPtdkvM5lfMOaa3MinMdYfGA5FGYucuialfpdgf4CzazzA7i4Y94+eXPULr7QxxC\nOC90CdbTRC87VIw0x4UpH8r8Iu+vX+Vjy68w/MZN7Pe91Edd6i/2CB+mqHbLWC4vgfacU59Aatpj\nOpIJikG84y59I41oqCw816b/KETfGeLtzVF1HatQZibq5JQJ9XaauS3jUm1O+4fkyhBNTGhHRTrv\n3ac96JN0DHoTH9V7Nwguhhk96SMqDkPxFI+cpDdqYxk99m7UeHD/WWL5q597FcdlopddjF69SrZ8\nRnFhgbWVIbo8wZSaHFXj1DMR7HyBZlwjXmtQO5vAJZj3DeZeAbE/YWkcRl17j9F5EI/lxsxOWTKv\n4xXC+Psd/C0XnaCb3vEdQl0FeSPCaalAdLiEp+LQl/vM52GC3RH6Ygdr7xh9cYmZaXJlfcLozGHg\nCjB19wkfbtCdmfjDA+YLIfpP9yhID1jaXqI6VWkdHOBy5ZjvGMSnLe4cFumIMfKH61j1AvIgxWrC\njabMEKs2E8nFcOoi001Q2bDxTg0C0y7d+QnaMAsX/UzUOje//uy9/cRf+xK29C5O2Y2oNmmVArRa\nQ26fnvMz0R0q201C3i7W3Tils3tshSX6AZXgPICuhVH9NmtdmYYcZWlnjKQEUeQj0rOXcVYv0ykf\n0Cw95fq1C8S7dVo38uh6kkZT4+GbeVJKAE/MRLgyR3zkpZ+cYZd1xAOV8foyM1+cy8U6ds2PfP0C\n5/4S0e+OaSRNjJ94kWplD/3ydZy+gBQeoAZylCsV6B0jTUXEcAPvYEhpN4T9Avzgd77F5/7h52nc\n3iMbWOD86QNCO1s8+YMN0l/8OPUZuIoDJNFiuJzAnkQpjx+TeyeNqUr86P1nZ6m1l/4KzlkLsxkj\nSpOZHEN1uXlyWCesnTAz0jizCapYIe730/UIXM+FCXo89MYS2845HlVB8WoowgrH5pRLH5eYVWKQ\nVIj32/RifqZ5D4ojYIz7vP9gQuDqCl6/Te/pLaa+KvOhTuwwyUNNoeE5ZV6Y46+dIyLfwgAAIABJ\nREFUY6sWU28Zve2mpZ/Tf+pmWely/9wDZptEuYdaDVLo9sDwcih50Md58uU6WW1INC4y0MfoW1dx\nFtep/J+HPGx+jy++mOD77zqE5wL36h+wYnupBDU8qy6efzVIeXTKSjhJB4G4I5GP9vCLCm99/9mw\n8/N//xcomad4AlW2k9cIuyNUVnQS3QqJ7AKxByeM1DympvKdHzxiJfs8Ru8h1X4IbbnLxs5z5G/e\nZCIts9RTCWR9jBwHcbmJe+VV9o5OSYsWg2U3zHKI3QINQ0cvgF+uI/fT9JQMoqjh0232PSn8mat0\nqw0ubgR4ODUJzILo/ij+ThdPOoWRKnPUUfgbv/rLvPfqK1y2E+ihcxKSm4EQYlI0SRoSY7+XoatP\na5TBmx8jujy0ohvMjtu8edQmwjUW7TNa5S5x1aYjzQhqJtLkAn1ZJZPcJ99ts+V/kaYrwo33fsDf\n+7t/CYTlv/Fb//Rrr33mBUoPLXRUUlaLs6UVXJkzQkdRxPg5QS1ORzQJDgKMtCH5Vod+N8DBcQmn\nGKJz3ub00V1WIgZN/QLJoY3xvErxTKEbA6MlEUj5OWgNMQLbFP/t90h91k/MlaMiJfC7ZiSELoIg\nc9wWSYkGNbOKlYmynW6QZ5fD1ntkU5/H3XLIbceQZh60O1Wsj1zA+3TC9AWLD7/6EfyX/TSf5Cn7\nNtnaXKNz0CXur9BoxxFOatQLOi+4XfQWBXyVIVYzhjTvookKRT3FfFRH0/zYVR8Nr4esU0QyRjxI\nfArpWOXg8b8EILZ0mfDmGr1ql254nfGkRlEqcdHvYmrICB4vhiRQbynkEi/THMS4cN1F4jkf7tAa\na0tXUD//FTxjA6nfx18ok3guS/N7+0ipGLKt842n/57P/vY/pyK58Dc0incq3AwoZAJdvKrBux+8\nT2JeZLhlMf6gjm9xB+vwAUJyA59Uxxef421b9KxbTDLP4x/kOXeZdB6/TX/Dz7buxSqt4DNPEXsW\nk2AW1dXDzrZZTS9TdR6iTGSC+hDR9iL1vRhqn1pwynXFy0RSiPiaNIUIbn8Sr6JRV0zGzTHJjkD+\n4S6pbYda/Dl+9P0/AuDST2yjjD0MNy+iRwYMSRJruJlMZWKKSEySGNLGjq0SVm1GbuiEmsynPqIB\nA/vMw0mhgs/lorLkQez38csqT+c9GpqDJBcpdhfg/JjTmg+h40Ne2EHw9DGe3Oe117fY/f4eRmqD\nhJPFCYyxkyPmkybFJzP0lIf6pE3Y8jF8eoxTaGFf66M6KlrJS7s3wDbLXItGkV5x8cM/+jpLry7T\nezREzwoETqYMLIFwaIR/1qZdqdEyg1yYCvgvxZm1zxFef53Gvador0To5YdM1qLMel3k0RI1X53m\n4R08yCyFvXzvjWcw8Mlf/lkOzg+xHyqodoPOqs3s1pR+xaYVTXH27iGH+300TcXz8uuUjwdYgxm6\n/wxpnEJZW6ZZgULnHnGfiTwbMRkvMDz4AHXhGu2DPr3JU+pCiPcevcvKay/y6MltrDUZoatj12Sy\nuRD7sgufe8okIpObhRktq3z/B/dwnbYIbl9k3IW8YBLLTEnUu4yiCpeFMrq9hKtwSOWiysP8HvOF\nF1FapyRiOifnVdTvHDJZzPD8WxuErl5G2vAxkWwW/QXez5/SuVWjG2syWdwgIjukrsWQazPUdQd3\nr0J+OKc1Egh1unxgCey/8czI8J9+7hrt4SL3wxpZTeP8XhljcYrdSzON1ajdcpi1DJzuGF/wKrOt\nFit+N8GwD200p+89x9FXEftP6GbSTI5MFoxl5It7qPMwSSNFIJjhrT95i43XrtKLCtRueBAyTdZ3\ngsQ2C5iNCAXfATmnzKC7TJ0m3XiEa+UKkUmNUcSLkw2x+7s/Yj21zi1vhclcxbldYXS6iDyR0IUD\nditu0ktVSv0O+jiFebXJ5gOTVi6KnAiyNPIQfX6FXmFEYGhiDWye+/DLHBwMSDoZXKGHRKdNGpkk\n8fsTmt0D/CGRXMjFAB/f/4ObnPSfCaR//W/+j0TqD5lOH1PcTyIOpzhmj1O9zdUrF+gNsqy1Z9SC\nPjpxGU1vcLTfZdhskpDmVC4m6NlLhMZDbHedk0gXT1mm6G1y2jzimujHIY7pMRC1e1SJYo4beMoH\nKJLKtcUAPdFDUHHRXK0jHViMOxNm11W2Fl+hU+7Q8U+ZlCTieho5MkVP6WwZCgFvhnpXI7O9z/n+\nKoJcw6MEicUk+p4xXveEvdM1rnhHvPltiVTZw/Jqh6/86/+OP/uDP+BF5pRVNx6pQzQUYHEnghBs\n0v5xkdM//A08MQVdu4yaHvD093t8926JZvl9AC7MblM9jzDx54hurBPrB7AlFx8MJC6kFPKzCBbr\ntM0iL10PofYNrFUFr1Wlb7c5q9uo8R6XlQjHmTmxocws4aXyMMzyaBe110RxiQTDXjz7c+QLPoLD\nCfNZiGpiSHoxiVaLkph1OSuNWR030UdtEq4Ab35wk+T6MoGmC7NoYg4anOVcdDunZMYm5V/5Kt13\n93myFKWHytNJleiwz6R0Qn7QZT4aotdnmI4CyU3ksYtw5C6id4HFAIj6ASGtgZQecP7oR1y4/J/Q\nO2swFdy0FR3z/TGq4WUU9JINNHjjzZt89at/CSDqf/lf//HX3NtNFjJhlLFJbTFM0qsQbtdotxM4\n1oDZVMc/dFErjak8eY8bT32QfZGlwDpmZsjVWAvvqMY88DFUV5mC141xMqdhFAkdPSVpxNkPNUk5\nArLgpRNok8xc5bgfwZZU3v3O7+I1/PiXlzBcAtNYF6Uzp7B/jrcVIva3rqF9IYBvNEDwTfGVRU4+\nKBC6F8WJ1WmPewRSKuJej+rxFFXdYX21Tet9FVuvsfzcOq72kKCusSDr1AyV+LGLUXrIrOdjGG4x\na48I+WTk0S6G6qbjPSIVV5nUAzyYu/isYTCyYty5+c8A+NjLH+dT+UuYP6thNfYJBJLopXOwgoT9\naayiiX4lCaM6vtgJ6UsXMesOc8XPUFSoPzpkVunDuYDMAC2QYVofovZsVgN+9AWRReVFdFnD25hR\ntKbojkOyNebPbr+BEbXwryzjcW0gzZKcjO+S/WiK8miK6HeTmnQYWhEm2X1cShYxc8x4KNPmCVub\ni/hkCZfdQxg1GA/a5BdbSCMHowseTxWns85p7ZTC6RMuByO0pDHz0hw5EcFpnNFS/cSnIqbawRd0\nKI9Eev5zklaaVVWjqZUZRkNMRIn0do5v/tHvA/CRz30Rud1g3gkwy3sxDAePYOMOwrQuMJk8Qmmt\nk7Rt9nUPyWoHV2yDK6/8NPmIiFA8ZPXDr9K7oOGvRmjPXbQsmfiRiSeeQJId2nYbrzqgftogv3tG\nqLbMRipI45v/AnlhCc8jHwNBx/ewTcTlZhwDVRyxuOAjMRQIWE8Yyi5W1iR63jj1tp/m0M/I3sc5\n6uBfidESaixceJluHQKyh6mokO3Z3KvdJagHmblHmIcj5EkKY8FF9VETUSyTFyZo/gHWnS5jj4Rd\nN8msBSiVbjIYxDDPi+iZBRbiGYazED/8D5bzF774SVo/POe1L3yYantIrmETE13EsmPckzDD16/i\nu7qNK2rTy48J3OzA0pSE7zrh2YzT3T0SWhb35DHBeRBNX6cfPSOohWjVGhxW94ktXUZpDdA2Vgnc\nOmHl0mVC9W1Ms0FPSyAoh6jNByjTAN6OTGxdJ+ofU5BUfKyRi5/h9FQkw8V2f53T92/gjBTsxgQz\nm+Xd92cI62usXXsBpfCUTesV5sECGWeHxWKWg8Iuq198ldphg63rL9FzpiwOFGbpEi8/Z5BtpCEo\nY/XDzA722L3/GHXVQ/edczZ2NgmflJlc2sI36/DOD94BYGFjm0OrzxevL9GvidTjMuqjHHFaHHgk\nAr4VrF6UoNvLTvIIWR2QKkeRG0H+X+7e+1nS9DzPu77cOefu031ymJkzYWdm82IBLAKRmARCFKMl\nFW2WLbPEZLtcZQmWSpRtUgxWuVwqmfQPLoskRAIglyRIbMbG2Z0czpycuvt0zvEL/X3+Yeg/gvwf\n3nrret73fq57K90hWnJxq+GQis94cDBhSZIRlQbh0w6HThbTbGG2Trn6lS/xyR9+m4znS3zrtf/A\nZz//DQInW3zySGDzXBdfMEbFfY3B4Zhhx+R8W+N0bKBfFMgHCqi6yubzSZyDKHLO5vnFF7ljNkgw\no+ZtImtRrgQllJhAqlwgM19CcmJI6Q69ps7SYpJBU6YV2GFNlKmMXJQNnY3NMelelFvFP0Ordam4\nNK6dOTTnByxNLXYmOqVpBHt1jNKdcHf7b7saL2URvxDinHdMUI0wlLo08m6ueFZpz8bY5Q8oDrvE\n4qsEuhEsPU8hBWSu8UAvEb8zRvIe0mw3OX6QJTBsI0QvIQZW+fNXf4fNp68jnqqE131MtQIu9lHD\nZbL+JazmgEePDTYSOfZ+EMRnKHiWokTiCa4Ki+yWAnxYep25uUvkoyb3x1vMG9eYamVG9gqt2R7p\nFRfx2AIddxg9EWBlvEPR9CIH/cxsk/RgndCnU8TVeQLxDndv7DG8eZ+l5UvMnn0ZRROQslANrTNt\nHDA7SJIO+gktzKMlXQQGbfYcmdE0T/apJHff+QsAvvEbv8Wl0Aq6O0RIKvPelk02voGo2aRYoBaf\nMlWGCPqAsRWAkyoB6zHznYusrcGo3GDZdYVRWiFTctMxVdq+GRuaw8fBBo1oBmUo4jR0xjMPVnWI\nPtERTqpIvnWUSg2zO6Q1XyNjaNybtbHNEfa4hpS4zHpMYjJyOBRr9AsOkV2bwEMPnZfqVG8fUDVG\nzGs1hOIMUVyiVxV51Krx+fmnURYXCE9lVlZVdKmP7BmjNIp0fWNemXPx4JYNkTGxcZLlJRi7PuaN\nj99hXGzRH/Q495yK4jOI7rqoJ5t89N4dfv1X/h5A1G/9b7/5za9u/hLh7ikV5lkWFJQjD+WJhmvh\nGFmbMlJ9qMUiw6U+yUKMK19ZJaB2aBabrC3aVAJRlO0W7g0D0yeQ7PQYD31o2TnG7SwuUUKoQOPm\nBKP8GNdahurQYjniIPgs1qQFRF+GkejBHlhEnBNasQzenpvK2MvxD+3ySuoFtj7ZwyNG6FaWWHCv\nYD845P6Nf0/hpXXk2BCfKeIZZdmhQjZpEtdNJkmZzuEAUwzSsbPIgSGeih8j7cbQBqj1MVr1hP5c\nh8XUHK64RqXvJWyLyC6ZkidKcEXi4z95l3PBM9648WTC/fUf+TSoIofHDZzQIjnJYjsdI6qCuCuT\njg8Q9SFGxaLkGzP9qIs3k2ViOhypU6KZdQJymM5IJr+TxZ1WCAQr7E06tC7NM3w8oxmI03n/gMlO\nmbCrj0sLo4Wa5LIbpBuLRINtDp05FlpnuAsaR6MG3v0ect+msmGRUzr0WaHZ0Lk5NJiUgvieXmMq\nTGjvlenJNuZURbKTLIg59LyA4NFw2nmGgojmC7PYV9HyBmLHwV1Yo7mrE2qf4bdSlDfDOJUkexGF\n3LTDXNXNpGbhOwtwFnbh2j1FWwvTVXv84E+fZC0+9/WvMJnEiVpdpv4uPtsL1kNqgoCR97OizaFu\nuKiP8kihKr2iiuvaGjeLFSJSnPJAxypNmKudELm6zO6HrxIIh7g9uIV95EMRgnS+fwMh8imWvEek\ngwuI6imdxREbxoz9UQvJHBDRJPyrNU7jZyihIJbHS3Bq0S2EkTZ82IM2UjtDr55k9akIfktFna8h\nJmcIzimhq+fov7tHebZMvzEjHazQv6oQDj+Hz9Ap9erEYxeIxkoIJwVq02301BwLNT/1kpd0fp1e\n8ww9YBKcW6V7t4oRA0OcoQ4n1HtRJs0iH918AgOr8TUSKzDtWxQNm9bhkOCci740Jbp4lZGrz6Ee\n5+D0NnZFRo8V8NkjjJyIORN44fmrnGy38KUMzvJZTI6ZbbsIxubZ6ta5qj1D6ik/vUctfLrBZNOH\ndNonno1SqduMvVWClx6SnFockyG3pvDqzQm7bZtlbY3shXWq9xr4xwm0hTyhyi4qCj51n9Tkec7S\nXlbPX+f04CahWAu1lKURarCcuUhvfAZxiVf+6xcZb/8JlaUI3RMd4extuv4l7HGAh4zpnR7TkwJM\nmn4O5VvMv3IV56GEPD/BviUxmEUJTRuY6Q3e+t6Trcaf/EKMbGqT44cjJjMfj2+c0h+O6dsxLi8d\nYPY15swGoZUxp1MT20rSDZWINt34exrTy2NUVG5+cpNrl/Pc/OATpEKIYeCMwMDGJVRIFERG7Ryb\n6xdRCh3812Mc7H1MarHAIO2nas3hMmWUyi6hxBSzs8Hds3s8k1jGcAq4Jah7jyjXjxmINsO7JzT6\nM1azGbozDTHT4nLwHGpiwN0/K9FPu3D0LP32kMmexvjEop6QyFdGqGqA5OUMTm/C0HfKaSnFKHBI\nNJvBdgrMdcuUwwYuw4ViD5kMjvBYCsZchLR5gbfe+0MAcv/kZ4i8MeBeo8vWUZ0XL6apBBS8IYuA\na4azfg5jXOTgAx0r1qXXtPFGYaRaVA4HuJN+ejg0T4MEvzBCTb2EXzLx6FWe2vwCTtgkmfOwFrYx\n2g1Key6y3mvslQaQTvOd/zhiKbJPauZmu/gOI7mPfyjRtg9oWxKLn79OeFhmctxkVd1ED+8xmK4g\nBW4T3u9BrceZMCG6N6Y2eUDXusCVYZdKMobQ1/G4XfhmQaxJk6L9DnPKi1g/vUbxDjw8O2CWrnJw\nwyJ4NKFs1UlbZV7+jX/JnX/6M0gfp9E9Xk6PRKqlKp994RKvfufJVuO/+O//J947qDKe2mi3Zbov\n2AyNMLG6jmV2eGFZpKGFuDAI4LxwDSNyyD/7l9/k8Y/eol4bUJ4u0pAaTG588CTOkk+iBmzsxiHJ\nokTD20HbkzGy4JtmEfMttKifk1CNjUKeygREJnQIYff75MkyCEVZ7an4syL6w0dU4zIF9zLLYQ9W\nWMAaFFlZ+xIlT4CFMwszepnEZo66KrKed4hkojz9ymfYu3nINHeedLfMA9HDp8ZjbHOb2u6Y2q1t\nPEt1DP8mncEWjHuk/5tvsPHgHzL5aRu/EeFU19GbDlrwIeM7fR7u7/PPf+3X/u5D1P/+e7/7zbXn\nP420YBFKTCiWoujd9wiF5pjG/chNHaO5SPILeU6TYZRmg0++2+byDy1T7/eY62eYWhE2l5fYqZyS\n05YZBPco7Y4QA2NcC6f0ix7UxS4BzUt4zkXsWpquMaDvFZh9OGHP0ok4Ak7lLrudAJOxl0XdIOCf\nETIFklKC+6E2d24ek8pdYPnyRbr2bUZCjYtf2eSR7NDVLDzmJSaFHk7Ai3poUsp5sMwihZZAz5kR\n0sqEFAM9IOMquXHNZMyXYvQ+PkRaX8MxTtHvyfij28h1mXrZjxEIEm8m0FUXgacWefO7T4y+P3Tx\nZ7EML51qn5QvzLtSiYuSwizq48C+x1TZoFo5YSEZRAzESVt+BqMOZsfCNZhQH5Xwq5dIixF6vSoP\n9+tcfGqVrnDC41KbxfPncM8m5MxzqAdjBCHNYqaPNvRhBVy4hyIpK4PgSDQDJh47xUImjbMapTs4\nQtc0Jr51RmIZI6YiiTbqrI/TivD2X75G+tx5hmMfn3v2GiXrBo53wiEemCnM8sfYpSZ6w2QgVEio\n55gGNzFLHdIekfcbAzoUyefXqCZnuD++jWsc51S3EZNDOlQQYjqhaRzVHGPaCu/8bS3C1c1LuI52\nMJ5eptHcIhWM0Z0mCGoOjAM0H5U5nnkJ9PuchrrYK2lE6Zg//s6beMwUucAhLqnJgRHEI02Z6EEK\nXi8QYQk3YqUEhTCKJ0Fx28RXCpKam1FpVhlQQUvFcDfOMMc+1GyVlidOMzZG3R8wrZvUIzrCbRf1\nUZVaJEvN8zG9GQzcp3z2c19Am8jsnIRx1VoculO4w1Nkxcc4PqLbVJlLNAme9zCNbhAzGjSSXoS4\nQXMiEHPiVF4BjyLSsov4bRMjqiB4hySjF/B0HcJpL4rlx6MHGE+r3LjzEQCfXXuFqZjBUMosyzL9\npTSzepGknaXSuo2ZeIrtuQ+Qg7eJTgyib+9xYeFFXHsD7MCMobRD2LY47YRZkQecWX18fg3fQOTC\n1TB7+8d4nAD3P7qPEPOQmC7QbO3w4M8f8fwzeSbBA9z2VaRL82R9U44frVBvSHy2FueNb9/gedcl\n9l0lPOcsfBM/4sJbDKYakdIGsfIKg/wZpb+6jxo6j28AidUhjfttRPMuTjOMaz7N4bd+gP7mfaLR\nNYaNHofzGRyXg3tQpPzqgBVlwNIz59k7+YS6kaPeSSMsCMQ9LrpLXYKDGZNbccrRKR//bVH4L37p\nqwy8Z4hVlWFni2ciAbTVEGkpStQMIOd7eO0mnkCfgXoecewl4TcxFg0aI5FxaEDe8FLwmlgRN+t+\nhz965//iyvnP4Y64GIYlakMDb72CfzWFcXyKk5jhVkGreIn1VMRsmV4rRLHhZ1DM4fh7xFcEmBNQ\n1QPEsUbGm6E+CWA3QAsuoqx4cB4NWP3ydb77D/41euQK1ccyobRDtBrCrHcwxC6Cf4FRKELtbhn1\nGQ/Dhkh6r4xFCG+4ja4bDE8COOEenRsfctqd0svPke2eoQf8zHsl/JsTvGci4V6VVz94Ysj/yd/4\ntwR9LjipUqkcoOSSaK5Fjrouqgd1Ht5r8/kv/CMEZ0qdM+xwmixNto04l7IuPPoqkemAnreO0/Ii\ndxuUH32EOr2B+nQK3/0T/Lip50OkxQWOnBbq/m2i0R+nplaZ/fwmgbkuFzZinOl7zM9v4Nu8iO7z\nEW+dsjUosuqGndtvcHTtlEjtZZ7KuAi05pCvhtECT1EOeXCmRR6+cY+ri1Gmc3k8jR2mZpqtm6/x\nyDsmlqqi9vN8/HDC+c+8jO3doT0NUn/tPSKbHk7tW6RCOayNRSq/+t9y9FaDbqeK3zRxb5SIF1J8\ncut7PLy1BcDTz8WY7QbQ+hMO/QMWfCtkazrdVJmzskTDirLqquFMTSadIU8FX+Jh+gdM0n7+83vv\nERIcNF8A+fo5RuEc83cb7BhNIqE4wuIapmKTmrqRQjpe1xkeT56F0i6z9Wfp9SukB8f0DYuZ2086\nNUB1gzYrs1tvY7jmUPQuXadP/3DA/sBEuTGmuFSFcY/ZXQMr4Wbcf0ji1MbwtVEObfaKR0yKO3z8\n3hs4FLGap5Ap8MaNv+Di9ecYzT1L89hH9KqAas4zlwogTLIMv2Tz4Oc/puU1kE8MjLPHRDwhpv5n\nIQEffXSbX/v1X/27D1G/8du/883rP/4ZWrUMka6fYe01himRNlPCco+urGA0m9gRH/GT+8xKOoHt\nZXLuKN6Ui5m6jdY9Y6c7ZdyfEkuUKZcVQlcuYxUPWVy9jqF4KY9PiRsF+vsuNOkRY/N5gu0TwvMp\nMhmJVr9DKJJETJqsp0/ZsjN0+y1cgTMm2nnanT7Kp+PUGlM+fO+79N/a5+J/tYEaSXK/Xua6mKMR\nbROXakQ6M6qeKvGTNPXWPt5glpCc5/3xAQHZxNdeoK0OiFZBzTqQTKC/dwOeSZO0RKZdgyPLS5cu\nFESMMy/inJsd0cfWq09km6s/9xMkOrdQCsscP/4On/raU5QPxriMGp6JH0crY04NspEIrVYfT/cK\n440KBdFELHvxGXmOdx4ycUUR4p9gZtJ0Du+Tm1/De5ZntO7QuW9jn+7xlOyhloP+NEMpUac19nEp\nLuN6HCcQD7Ew1DkKb6MJUIjFuLk1IB4Okj2bUtVqeIcKFydeUFz0vGMStohH8bA452IsuRhvuznG\nj9+nkur5GOz2acUyzBybrGGCIhKMD5hmw3Tvb6EnRuQuXCOpjPF3FbwJmb2RTMEakUw5jCU355ws\nQ2GMmjtm5pJ58y/eBuClK1fw5z+Fe/I+pryIFrYQzwQe7RwT84QYjj1gOLgDA+qvbdE8+JiY0mdt\nZYGoX+al1VuUShFsaZdOx417UKXnHaEGvKTjBk7QoWNso+XcXOitMPLoWLKHvaaXojfGKzmN++4Y\nw/kWqZqHgOEmH8+i/KMfY/eTewiBFHqmx8QyCPd9pIwwh6ePyehzTPqH7A8dItM0ciHGZFznwso6\n+UQf8cSHnJBIrDxNVHNx/O5tJJ+JqOUInbfY2j9A3QjiEUz8zpjgeIRXzOIf+3n/Zpn8Z67QP3Dw\nOBXcLQ+1goz7Up73v/3kReXlz26y+RmJjAb5K89y9Cd3cHwe6ksp/IEoB2f30XxuLt3dJ/rukOuf\n/irjP6twbPd46n/+Z/Q/PmKgjlCZYtwZoOsh3nz//+Dyp9eR0i+wp++RnXTYCK+QiToEpB79QJ5n\nn17i7pHO0GoTSvvRDkyOdiMUzgu4Bx0GnQ4Xv3iNw1KHZzZXubV9hF06ILgn0ZxXmBSWeJjtMb7b\nZk+dMH/Zj2h4Kbb2oZkj85kX8PdOSUf6vFNpE38+Q0PQCCQLLM5LSJpDvNKky4h5b466bDA/yBI8\nF0aQT8nkFcoHFa4ZAaSOiJCLcpaEW/9/0PcXnuP2BxOa6Qjh2RKu4AJ+U2AltMuuSyM3CDOYJejv\n+4j377DrrnD/L29C8NOkMPCnysxrQY5ESEo2o8yAZ2IbfPxwF08hyODYQDz2k51Lod+/w8QdxO3X\nKB2YaMEW1qrEnCuON6ri3Z6xb9fxGTJxzYCGynQWwW4ecHK6zb37NWJzXWKDNdypEkowyuBgTOFn\nLhM7mWAIHaRUgMHcCKXmY6KPkPNnvPnqDdypHO998D0+f/0c77oj5PMyD9smnmMJ5DRjuUPk3AsY\nOS+ugYUeDBGueugoDm63j5Dp4sSo8PYPnhRe1z/uoF106Ctuwgse5gLnOBJ8zDx9gisxBBHM6i4D\nbw+xFSAkP6BfSrBFGSVaoO63CAkSS+qUhl9GosGFp2IMX/wGw+qUYkeil+kz3I5z+IO3CMsB7AUf\nRkQn4JnwL/7JP2Y/vcTOwylHZwNWnv8KAU3l5L1t4mgoyiq9/gecf/HLeJtdcuRgAAAgAElEQVQZ\n3O6H3BMjmAmHxzfbnIk+7J0t2gUvn7v4GUarIh6pg1byMTqfY4M4eDTqN8sMI0dUe37M6RlDu02u\nGCIQG6K0D0jXcwiTEoagMWgFCQe7TPpjWvMJes0WFb1E8vOf56P/94mX7HPP/hf0DR+1ycc8F7nM\nsVwn0jLIxGwaE4OCXEHxzBAm6zhrLaZNgfeMOLZSJeVNErh6gaqiExvXcYo66obM4PYJUthGboYZ\n2Arp8ICqLbBoOZwZsC98SPpMoXNUosYBveEZC8cWQynKkR0j3goxSy+Tz/kxQxKlhzYxJYUZ28DI\njsn3fKAM2TMN6pU42ahAarOElljFe1UhY7Xotjs4hSTnvH7UsJ9gHM6O3RSkRTrmQwrxMVUhTevd\nbexSA6XgcDiIEIyfkT1eYPD0gFAjhb/XIKToTDQ/N2/e5Nd+9Zf/7kPU//Jbv/3Nc5c+x5prTPns\nNV753DJ+3UEx52iFwvRdIfyFGY+LWyydz0J7SN3apxqzSIpt2iRQLxSImjLONMiwHeHO9x+z8sKQ\nkEvj5MN7NBc8jB99CKMw+298iCfTRY8ksKYxqvQo7e6wtLDEiepFOJkxkBxCrTQz3x4DLYO0JhPL\nS3gDDzj/ooH0WMa7sMHBJ1kko4K/0WMYFbEaLmptH25LIes/R38mEsit4erCRP0Qr2vG0WydmHyC\nS5ni3bCRbvvQhQGriytIIzfjoypTfw7N32E1HOD2nfssnF8grgRI7sV4/cMnev9rP/+LpNNTdt4v\nsfSFJb71x3/J0y8/wwcP9jjbfsSV515ma+seTwcvMj2o4l4JMyp5mfZBiYW43IhTVkcsbLgJCQ1C\n00WCm0m+U71DJqgyV9dobH2fq/UylcUsKZcLy7rNUFiBUxmjesDJ4hmGOSG6ILAQVjnaDtHQarhL\nJwQzCpNciWhRIeab0djLEJzV0Ao+0okornqNo602RauNNEshr6zjtqLYxoB2qoHudMgYPYKhdSaH\nNqGwiPZ4QEuqcv75r/LIOeS0OyIeG7PdUnAJfYzklOGOn7lEhFHtEOV6AKUqMld4im99648A+OqP\nvIzprjByx7FzHtJOH3U5j7RymcZUwMoeo5RsZp4RhVGLZ1JzdJMaHbdA/34R6bEPWWqQSz3DsbxD\nJLaIL+ZDlGbEkhuEQyrhlSt0dR9uZYw1VyfnipKwOsi2xGL0PB4vxLUAXZfJ/cARhtPE84c3cZZj\nRA5FtH6Yi3s+hHQbMdggvHqJY/0eewOdkW7Q2B8ynI4JJJZxBg9xRVPoczkmY4f+hwe4fBMiUZWw\nK4OdsRDvmGjPhlnwb9IdD8ibQUKeAY5cp5uL8uj3b5N/5YvEZgZF8wDF78ZnzQg1HvL9d24C8Pmr\nP85sOUOnodFonZBCoJpUuRw2OOskWHabuOoR1D2Djckqf/5mCev8RfwbM5wtgUPeZaKbZLJJXNEc\nordB2J8lupSndaKxcUWnf7+H5erTfrDLeQd6wyqHTpGB7SXe9XNhXeGD4QHx4j7dZA5nIPH0Qoq0\n20IQTpE3L6LrPcy+SXfuPPP5LBN9i0GvReT6OhsRF43xu3j9q2TcIjHJRjjdZTcSRBH7bPxEipO3\nbjHKLhDJudk2SwT205hKnavPpihGdlB3JU5LKmufu0TJjFHTb7IU26f++jEHSwOSPS+Z8EVeff3J\n98pq4Bwe5VOkxT76NMZUO6XnNJhEAkSTI7rDMK2ETsjbRoh5ke9HmF1xE24e8dCcYQTjJMcq0WyR\nPWXGwkTgJBMkLXtht0bODkFcQbgz4mxTox9OUbtfQU57sZpBpuNn+OBhE0WvMS64WMt6yWWaBKZD\nXHaQiDNBFgTG2QXOFTRU/zn8kQHuuoglVAkHpvgOGxRXPCzKBaSxiHDYYjxTKQ96uNUkmZVN3DtV\nLJ5DX5tivqvjEh2EPQUlNY+TmWLZEYJBh2FDJxR3Y/vKhCcdHh3aNLQA3fiYFbfId//qb03vn1on\nM87TNc5Q7464HW2Tspt84RsCkXffpWvJ+LQMsmjS3q7iLC/jima4FJaZFI+x3tqj6u4xa3twX3Cj\nSUHsI5HDzCKBgzSyAZ2xQ1ydcKbvk86s4j2YEpMbcG6TP/rH/4abH5+wPF1gLJ7gO2rgXRQRhhmm\ncRllcJd3T/aIO6tY/iy1syGxqohvNiZp9nHJDvqqSLTt4tRo8/Cv6ij+JeRBk8bDQ/wRBSPxCL/b\ny9qGn4CeY9ar8dqeQuRKG7Prwr8mMam1UVxTUESisSE+a5lEostYP8VlZvFNXCiKxfuvvvnkvH31\nc9wtfcIXn3+JbrfNuGbRcVUZ+eOkxDiV6QmGZIMniX73IdFElFnAIp0WkFNuRoc666Ee1dkzkHGo\nvu6QCkbR/YuIsQ7CWY+Btc45rUDfeZs/+t4O9SMvB2+1eO7pKGpKIyevMMrJeDlj2goxrm5Tzfah\nVmGnKiI0BYaWgZMUUGbzeFMZZL3PSmaZyHiH8YMJ49UY7stXqHzwFjt/WESL51lb1Yh6HI6LGu5L\nSVbnLyB6RQK6Rt/votfZZ9g9pqg7rPqWcIcqzHwr9BcnZCpe9KyG4DIoWWmS+pC3Hzziv/uVX/q7\nD1G/+Xv/6ptf+6kFhu9uIXivYg5yDHoC1YAbvG06XYNYJoJSPeXgyI3n7A7eq1fwHFsY6jxnfZtQ\nzUNXLdIeRbi+mGVxqctM6mAjEb2QoXdgMZc6T9qVwvpakswwxWitj3jSxZwMEOdUpI+26bWPSBZE\nGr0RI8PNpTkPQtxh6nM4nd2lV2kR+/BZFCOLma8zL0eQg008JZGT1h0KFwssXpuhNQf0/Q47B49R\n/Q3K/hmZvSBrS34mxSmHagRvpsCbP3jM0voanbqDW2/gC81h+yXG7i5ty8/AFaH9cAatAS1JIxf6\na/7qjXsArL0YQBrbSMIZe/dmnItqnFYU9E2H7LVnKU9b9I626K4p9NJe/PohanRAS/eSVEFzdHLa\nAHu1R/+RTdnrZboQonljxOKVKEohynNfv8T/89evkclIDBwbzT3PpGERjRq8d/81Qvl1oqkNOpqJ\nVfIjuh4gpZeIF5Lo9Tx9x8fa4gRXL0ZcdsNSg92HLebdQfYX0oyDTTg0cAId/uA//Gsunyvg3oiQ\nlXUuFHy8+d0hQr5OOtWjPQjjDYgc5y9w670fsJnSWGtX6JnPYvuOyZop+rMZXdGN0hS52eqRtroc\nueNE2m2+8/r3AXDnE6jGBsrClOxQ5V4nw/57XTwXaqwsjJH7q6hSGk2oouZm2M0MujVhdulrtN+w\nya+N8VzycdTycmHxOUpKkcaeSs9jYekTTiYWecHD6PgRfttLv+vGTBX55EaDnlnDX3AxbDzCVUsy\n1NwowoBaN4phuxGGQ9JqkFDyiBtWESHYpBny0bydYkgezcnj3+rScUs87boApzco9SdkLZVR8V06\n9SFD1wjPmY/dx14+Of0YSiKzmErocIf+nTMi7QynzgDxpMy0W6UZKLDXP+Irz67RvPUOnnAK/yGM\nauAau/mbO28DcOVHrxNuZTFnnzCLLOOdL+AWUlRv7OI3unjLa8StEeqLLoyhzIULNgveLtOUhZw0\nWRzM0/fYaLs7mNEGETWDfyoijX10ylssvfQlupMKlphj6A1iDaHaPMAwZ6wlotTzYeTcMt6DDvdC\nEVamI5ShD8dfxNvfZTBMI7uO2SrewXEqeESD9mSXlCdK9NI69Qef8KAGS+4YkVmFvnlKICNxKo6x\nH0jMWKFRNGhLFvWOxNLXX2T6H2/Qsltc9Mn8YLtE7/dPcPtiBJ5OUC63se0Bkh0mftZnmvej9BMQ\nU2nS5Z03n8g2N17+aRLqIeawixYZ4s+rBDsGxwGHefeE9x8/gHoYYTogkE3RvxBGbMTJBAtMFkt0\n+0MeHH/CxIhxoVRk+uk04gMfuruHJxnkLDFmaebmbDXMyplGY9hGnXlxZ7P08haXPCFmidskTI1L\ndoa6VCdSzCHMBPaCIx6P9nCEGKY8wD8cQvGMnb0+s8smi5aJPAkhtQpg2iS8NWLtKaLqgqUs2nSC\nkuwTmFRYeukSZs6HOW2z839/DzlxhahTZuBRuZzN0J5WMaw98kqc64tVgkcebJePA2+PZEfCwGI8\nVnn7rScZvK//6NfoxjpEiaJJArP4EvGuB/EEqulHDNEIbPeoCvssJzMUdAFsH3auTyHxReqcMSg3\nGfQ/wWkZBI7imIkqSxt5fGcZji0fq26w+1Pm0lni8QBbj4aclY/oKEOyqXkEHnAxbqEFV8gsrKG6\n6uiDPYq1FHbM5rb9ff7sN0d86gtPE1hQkOtD5IiMoevcO33MhW4CnzvB8nIeMzzGEgWUZA1VjzPc\nSBPXHFrTBYTrX6f02vtMXHlKYR//MHGAokeJ54Y4a1m6pQhSKMVYDeJqDZHTUTb0BBH2Gcrg+Aq8\n9xdPguVf//JV1mo6vjFUkzrTLRXDa2AE3MzZLjydONOpjUsyyNk2Q7mDbzDAlrPoDQcKM05FgcBp\nEbVmYXsE1p6aUW7uEJ1oTGIhPMJjag+2KLdV8j/5VZ7JbWJeaeGSDEbyCk1/G1MWGdYdVvs+apFV\n1qQup3qEZ7xB5DUT/3TGvb/6z1yazzDOwPbJXRJz0FYTeCJjhic6rT+bsBKOYC8csvDDb3Fww8v+\njS5mvULY5cUaz7HPJ+x9cIAYi3FefYH24iXmxwPu1zvE9TTugQ+/McNyZB58ZLG+KXF0csZGYpXX\nX/tLfv1//HtgLP93v/2/fjPhWsIOhwhaGXqSwzRo4K8mUMuP8KVSnDxo8ux6hLHuwuWFvCJSb1oo\nq+skLBdV64CAOIcvNqQugTZxcHeuUzqXxzvzsywa9FwyraGJUtYI2l0kZ5W0L8D28ADpZI3rzy2w\n4DqHOzOHnZVxZo+Y7Zdwl1fQRQ9Xklki20uMQhPaozH+Zon2lRraqR/5qTjqWQW/N0nnbRFXXKAT\nyBI225j2GqP9Pdwji0c7RbqhBEpWYDYek10LIbfGNEZQnOiMEh10ZuhGlqQ+QxXLxM/HaR6Muf7l\nJPW/cXh768kls3A5SXg5xfZrj8hf2qTRV4gk48zOArSaR+QSPaZlhXORcwQNEdER6TkDdNmN23Sz\nE3zIpede5pOtt4gnPDinjxD8eTqP/hKtHsJKqlS//T3U8GU68RhVdUB6bcbBbpcobU79OVayMPO6\nKZaOcSctio0pwthPUIkwjE2RayVEOQBHIR66esxiBil3CEk3qKoiHs8cyagL1yzEWvQC9fu7NMYt\n/BMfjSMPwXwYaaqhSwJTZYIR0DHf+hb+L3+Kl37hp3nw9A387hn9hkA1KpLbz7EY6cKFLuKFc5x2\nRZ4Ouqkk3ub1b28D8CO/8HXk0BIHbxjo4iOU5U3mlx4hj/t8cs9AnDsgnNbQjGOa4SRaeJO612Fz\n/ceoGMeUZzMEX4SsusFJxCDcmIInhngxxtCoILgVulaPgZWilFfwyBW06oyz+8ckMjMkfYHTWh3s\nFsqVKcpuDJdiE4/OGFc1PJLJ0Iiizvswi+vEfBpdfwTV3GZeFglG0qyboM21MCZjJNFg97tFFn/2\ni3T//DELooJbS9H1j3DrHZruGJmAwBv3bhI8f56BdICpD/FuzjFp5fG+FGNVlJC3HzCevkXAXcA9\nErCuTbHUJm+8/eQl6tovfh27O6Lvl2mctghUHuNMVKKKTm1fY8VTwKbA4rSBWb9Pqv4RE69DdOFl\n7pnbvPPaFk+vhSh7vUidGT94f4SQiFA/uoUz/yKNBw2EuoM3WMJ83GGoxchfu4iihZjIIvF6kT/d\nfRUneIVsqsaRE+bWvV2GoRCjMxXn6gaNgAfPhRC9txvsBlLMF8aUZQeP+D5BO8TN8Q75iz/MrHuL\n5ijLYOowq5coJgzCgsMHtZvE8g4Lmy/hPqjQDs+RaFV5eHBEgST2+RGaFWUaFrHqMy6ci9IbjYmU\nwuRfeZ7Td06JPb/C6DDODz78UwA+9elrpAVQg4sYBRePSwou3ynmbYdg6DLNsEnYmKA6VwhfdtP/\n68cMQzOSwRaGIIGVRnx4xvK5ZV6rm5y16gg7Ij4nT0PuYogj2ictGo0R4bDDdLqKa3aG0U4xkqv0\nDkooMT9jM0ZH6ZApjfgweIa8JXFqaxz88V2Sz1nI0yX0ToeAT8KIjzDHYVRpQnB/xnHQQg0maDe6\n2GtxvEsdXPoJ7vglvMEi8ZjI4+Ix0doUbJWlq1H+4C/+gKVnvkHcPyS6WqCyfULOaxALZrjZmWHE\n55jWH+O403hCMr3mItGyw+t3n3Q1/tAPf4qVlkr/bEAzHWR2EGOaGSEt1Im4ggS1PM5KEvmRQ7lR\nISLo9FsO26U+scUOR38zIhmoE18IImTXEDY9GJ4F+vslAj0JvDskGLN73GYh2+N4v8VK0mE5qBCJ\n+0Bo4rw2ourrs/DAhZiw8bsEVFqktDRiLom3GiV46nB78YcJ8hZK3k95oc/YklhfE9ibKliZCHcC\n+4QsjfCJQXHWItQOkzwvYzZkGpaBr3dEMubj9P0J111uunIQ3duhXwvglPr0pgMSssbYSbMaaxO7\nP6HeaNLsNHlQDuEPiHz45usAfOPCs9zrOuTFJMM7D1CX1jnd6xEeW7SCQ7SZTHRdYRoZUDuLUR7C\nSqjAaO+A3koGQRmRboaRZBnfqEw4YKHaI0rEmT06JS+3ORgLBOIuDnwO7ombRMUkrCgcR4aseg0M\nApxzpzirzWGuDvCMLXohFXfEwhdKUG1aDNQVXvjZc5weFZECW/gyaxTsEYetJrlpG8fv5t/8n/+K\n1MEVhPgx135mCefReQ70FAuLKvuFqzhSh5CT5b1375LOFBBoEo+IXF3KUzyQGM33aGTH9F0SVs2F\nGhOZ865wcCbSXa/z+G8+4Vf/h78HEPU7v/2733w690UwR0zSMuHDHY4HUeRoG+jjmCmSQQ/EZfTh\nkKAZY8e/iDu+zdQQiBtDdAZ02glCbZkFeY9PplPUvRH+lybM3r2HbjdIt/t0wgI0NDxKlrIy5sZf\n/oBZv8mk4dDQxoT8c8zUA1K7IqaskfQr+J71M/1PBxyXppwlZgzOBII5g5FvE/vhhORlN8FkCFGa\nMYqO6LlmyOMo4+kYf8RmPGngCi+R9LcQ/OssPRdm50MBv19DVuo4tspCJ8ZArVPYj2H7FRpGnKTd\nwz1J0vdPcdwK4sCFe+Lw/VtvA/DPv/HLdHffZ3HuIkLrDPGFVZo36iyuidQqI86lItS8a+gfv0Fx\nMs90WGfohPH7HZpSBy8mo4cfsWTmaPZ8+K4/hTXtkVldZZDRqQsy7kGYbvKAfVNiJRdkcNLAkmIo\nvR4zt0Gx+oDA0IM6gJwnxaBTo+hr4nf7kccTxt4wk1EYdeUxITVKtWfTCSvEsjCru9BNh9xQJ0UQ\nNe1CyKwxfyyjKBmcqMy0esZsKUWw2SG3mGSajmMNXHgOD3j0o3ViJzMM9zyhVQdzJ8LhuX3MjBe7\nHWZW2mcxqzNSOzyQn+bet59Mav8gv07UdGP6FLyChxX/kGk5RmSi0076kR42GVk6nvgIR01SCjUJ\n48H7tSzK0S5lycB6lGEQO6ZdrqKJPtzihJO7beKH4HXNmHVMJBfUH97AW9dZi9lEy4/xpwtUvVN8\nC8vEZypOS+DeQZWrz65z40/vMXdJJZt+CfeCzc6Ojn6tgiNl8A+3yGz48RXdfNj7EFezTnEYwF4b\nsmrlSM3PU8iVybXeYxbXGBQSKCcC4YgXcRrCDNrI8RU8ey7Cy5BWBGbNFsHYFEWao1EC1TVGDAyo\nzy4i50/ZUcIEVJm3/voJtP/YCz/OjdsfEpM0EhcL6IKA+b3bCKE2+ktf5qd+6sc5+Ll/ynuV38d3\nYYHGlQUGrhfY0ftIlWN8L/sYTEXmYjFc83meWj3BIwr4r2wwOBqQXkkRUgzuTyWGzjZyQaV5b4vi\ndMZixOBoNY4cX2Pu0EDDZsUQkK5aaHsK4oJA5f33CVzeRHztPaqxJZ7RZxSjKzx9xea10kMeDTWY\nnScbmkc5ajHR67i9WXL0GWyPUS/OsZG+QNhp4tUd3rmxTy5nE5XmUb0ix7hwT2LEryZRpiPODD/1\nsULaN2W3/BjFFcOw3YytBcaywodvPdky+6WvXKPhDpHWGpjSeQxXmVTKj2fiZhJy8cu//F/y+o98\nzGgpwbu/+3vYSxLR9BzKfgQO+xBe49wlg/ajHAW7y0Iix4LnMv6ARnxeIKzkMcQAYSWBLYn0uzNe\n23oPj9UmkUvRSAdZrbRpDjS8tsXUSjHf6fDA6yauBYieC3I5MUe+WsNSFin7z8iKAuOuRssu0x46\nJMcFVLmMV5CYDI/x3jc5C42Z3CtjBiM4iQzLMYn2bhFPViagzbg09zNk/GWaqkxsqCNqRVxtD51Q\niu7RfUZzM2aBNOO2zrjVxhNxURyJ3Ln1BKJeufYZDmhhKG6W50ykz13kqdzzfO93/oRG9Dr+oYhu\nB4iYHcb2Ki6rR81zgUhSwS2tIKkNIgvPMTUFtKGA/qCN5+UsPJxS8zaYPz1jW+7iI85DR0PsedDU\nIzqJefr9XepbW+ym/MjNCY3rAaKiTdUj0WifUpJaaF0VvRwk+JQEuQLrsTkSuzVchom6WMDwaIQ9\nIWLVU/yWh/lmB7+7Q3hdQrIKVCwbU9JwN2YEnooy3B9TTu6gjfP4ZjJhQaETqpOpr9MOBolFWnSn\nMAr4GA4qOO4E1rJOLB7E61rize8/gfb1JZXNz2xSOtxCTIZJZa8RU0y2XF5GRFneyPDqf7rLxWSc\nih1mxTWjNjnEnw8yHXY53pqx1C/jiLvE3RvUWmn6KQnvyMBayHLnb17nU899hR0veG2R1UobwYoy\nvDhm5SDOpO3FGwpyEBixOahSPm4zzW2gRCpoo2XGLpNBL4Tkv4XH1UTTJYSghqp46I4c/AMdjRTf\nff0Wcy8m0C5ewSnNIToZlH6I4niHC6ZBQBMQu0MK6R75z36F7r3vE/tsnLODGGa1R+PqLlEhSuF4\nhs0Qrzgh4x6wV7pJ4DOrlI41zu7e4Jd/5e9BJurf/7vf+ebXfiJKC51s1kdYjuGPhwk7PgbpEvIk\nhGf+DOVBjKnkQ05PEQ9vE83GUUIxpq0pvnCExukWY9FBPGpT327g2RRxalOklIU/7GOCSnKWRpuD\nmWYRWLJZP/8sQqbDy1fneHCrTcB4F7t9h0Z4hYynStulMOxoTM7bzE52SAauotpVHERSxoSZahNo\nLPBG523sPTe+SQZPLId3MsU/ciFW3YS8qyytNWnYCrIQIzwaUc/uoyYU3OMEUatBXdeQJj300xYN\nRWL9mRVCephm30ZzmaC7CUsmuuzijXeffBM89XOfQVPgpClz5otyxRwRjMwhlGXsJZvTzghNUlGv\nXKMwF6XXGJB0NbD6CXrNMRfWkzzaCzLwlEgYSQ76j+l0Z5x0D7DVVeRTgbqrjZlZI/H/cfemvZKk\n6XneFZERkRmZkfueeTLz7KfOqb27uqqru6enezZyuHlIDUlRpAjQlGUaBgVDNBfDBjyALMGwIAIi\nZRA0bVGASIkaD+XhzJDTPeyVPd3Va+2nzr7lyX3PjNxj84fSnyD/wvvhxf3cz3Pdd2mO2fIjF1ww\nHpNa9mCexEmFFmB9TqDVpbygkO33qdcrhF+MUzvoEE2ck7mSob0bYhocQsSDJhhsnzlcDKSpuU2W\n5xqzkzbW5Rjxh16meZP8IEVacDPUlpj2+1SaE4bTOppooih+3LE19L6IVs7DwoDOyE3ELdJM6MT1\nEe+Mg0xafcLBVe40WywUNO78x6eHvl985QXmswUysza6rSHqbYJzjQ4VIs0JhaGGOlri/NjHRx/C\nxdkEazTF+esjhqMOGaNHy7tNZGazNVcIHwUYeXbRTtto3h71+BnupQaf/Z/nhDIZvvJHf8Sjv/8r\nZBfa9LaeoR6YMb0r0vKGGA6q3M69yP3SBPcVGbUZRu89oDySSatDxukCq/v3qbfnROwuHha4teqD\n3AJm4z1ipW32jwT+9VjiD77xz/jv/t63qVxI03JsTqUwS8sqjljAMBKsLPqJ9TWOV/L42zV6eZHT\n0cuks370ASSGHczxVQy1hxR/llBpA9Np8c5bT2mpKy/+BCO7xLNZGc9witTKkX7mOaTLGj/8dp3n\nXv7XnB/ss9c/ZENOoKxOabUUygdvUjq3uOi8SnfuwnVQYyI49K0qfhmOPzkmmr/EwtJ13u3sMTnc\nJyOtY7kTeDKrqN4+ot9P/vqLmEWHiDSlM9U5m2vcjEiEPNcJRKb4wyp+Y4r+0YTnfjTAJ9UyM73O\n8Mxk0tB4JbwBrjH94QwGcUb+M5yiTWEzzzi5SGP7A1p7E+RkhMjmArFamA/afc5QGMcyKKqLxZiL\nanWXiSkRkT2k4jHURpn45TSzsYiSkDkxShQKh7z550+jSF765XVygQGP7BjKfpjHR7vsPfQQWz6k\nqmp8fHOH1AWRs/eGyMMctxM3CGlRXJUHTNx54s8OkEZ+Kg/f5eTqBSRrwpPHJt7JCY3OFKN0RF9P\nkl65zPi8Qid5SObmRZYLFkJ8hMccci6niHUqNJs7TPM+sgs2qY5O1PHjzbWwvOuYyjHJwpSVzRbK\nTMUM+dFMh4kdoiwLpKQ2x/MuhcEK97Iz0p4kOdGFJyTTc9qMeg+xIj7Crtt8No4zaj+h6pQJu4Zk\nU9dxMh4elmxcnx1To0soeAvXexWey+TIeFTK4THeM/jgwTsA/Owv/jSmHqW7nsQ514m6/EwevM0o\nZxLUcximTk0eUpkMIBRGyG4w6JwiVsoo4THjN8f4jCqtvT66y6AxqxAX4ohqiMDxnHQ4T89KEn1u\nTiTqIBgyo5MurTOZdtfF7NoVos6ImBFihRC1roWyWMIfX0HqllC2k4hmBMGbITKWUT1x7Mghif4i\nWm+MrA05m6Y4igoMHywRWFxlZJYZNRapqGnWMkM+OQ1gahqXIjraXka78+AAACAASURBVBv9PEby\nSpeg7qU4GGBOFPxGiGajxdbyDEPWcA2KiIk4as/DpGXwvrFL2zDY+Zv3Afjqiz/B0VqGyvgmDcNk\nUBaIfGGKsNcmeXWT46MaQblJNBJnaO1TrM3pBKbMh0tMmvdQ3D5yK3MauwJtfwJ1uUe44SEhGVSN\nCan1NUa6QTgwpy/5UMJJfvDv/h2ZNQV/Os3MbqHJUCvNEQcW8cwionKXrOijY45wmTPC3fukfRPa\nTxyoaoT9A3z+AkIgjWrZuBZz9EoSNzaWGPZ1Lt+6xHB4hK8bIxoa0JjUmJdK4Frm4JMq1mEfb7aO\nPdXohR3ajT3kRwNmGTe9QI9kO8YsNcGUF1i1ZOaFVUSlzuP/9Da/8Xdhnfe7v/+/fyNy5TLHf3aP\nn/ryBjt3K7Q8NeIvZ6mcOPiCRaqGH93f4rK9QlF/iNDx0VoFz9sB2oabydUk3e/2SFoVVtfjKEsF\n5oqMeMHEtxvA5S1QqQuoJQ+Ce0BLlZlNDIazNsG1FxCCAapH+7hOBEI+Gzkh0e416Y5t4toIf1fn\niXGBXlBiHg8heHQsdUJaitGJ90hOz5F9YD46JhOMYrt7iKJK3+zgC/TZfagQCHnZCK3z0bceIOfB\nu/QS00OdsRzDN9hntaghlZeRftHF6K23GPiyxBaHOPU6th5FMQdoAYm/fOPppCaE2owGz6GoE5Rc\nkPjMZNYZ4LMcsh4Ry1rmkAFhRWVFsulzD0/NYBYPM8nCqHOOJI7IDRR8uoux6aVuzbDCW3gCO5iN\nBpfzMotBF/XehNagy4bgxW2rNAYDnL1j1MULsG1TlsssaSp6XIN4HI/gJ7c4pffJEt55mLrbwe7r\ndLpTdJ+BK5pHHbfw+BboTg7pjY8Y6R6a3ScsOyncThf7sMkwZmCoOpfX3JwcxhCet7GVEV1XFYJV\nCoEgTr1Lpj7gwNfhhfENqmMv49OPCAkp5kEXPUVGeaHMZ7//FNX/sR/9CdyBIkN/jwwVhlmLg6nN\nuqLhfZRkaoYwr81hIkPPorUhYo1G9FfcmL0QxfN9gmKSrH+T2UymrM6Q+lmySzKDqIfRxEV4dwW2\nPk/2f/0fOfqVrxM7VRETfU7radzDPs60witfeobtRyLa4pjutMF4r4pncQ5uD8src1q2n/P7H6Pm\ntkgIDjFzi37cTeXjbXxSmt4zzzL1TvFe/VV6k0v8xj/YYb9bZVv+KqYsEWhGeDzTiQ8c4oE+u3t7\nVJdMMjqMLAlfRMHw2yTxsbOzQ2noRV5vMmyNCI3n9H0HRFWR115/mlj++S//DOGNCaq8yPBsQicT\npG0cEdyZkfPL/HW5TNVfZOW//0XGhp+StI57M4LNRXq9Pt4lKITr9FcjDCYuKvU5mjHH+xOX0A9b\nSP0uudQIOxNmv1ultXNKO7FGuVsh4V1mctqj5Y5QbUxwFuCiMaA+Bk1rsl9/hK8jEUjkcdQej+YN\nutIpOe0248U26/Ek7ZqEJUUYxSQuJUb4nC5jXcO1KOEp7eI3/cQ3gUQA4wPwL4xoSkna/SZG4xBF\nkCi2LLi6iN1LMpC7JN09Zt0Q+sMmlq4h7d4jo3cIqW6++9rT0Mhf+/xvUNUlvEKQve024RhoWoJ/\n+wd/TuHZIPXhiEAwwdKzMiQOEa5eY/f+2yiL0PEFCU10eqdPcKc2iRyfsl2Ks5HU6cSu0+4dM7t8\nm6igUNy/xySmo2USXJf2UcUlpPoA91kGweMjm4AiEgEpBYk+ibFJ68UJWwNw4mO0RwoNd5PYLIPS\n9CL4bdTZAsGUDyXewenEcGW8dKc5tpK7zIZeznxuEt4pvsUoEU+BSa5H/dEYX6ROPJjgSvh5Ptk+\n5XTQZMOXYWmph/gTv4zzUQV5HKQ032E/LBEQx7TVCfHUAm9+/+mwk73+8wRDEsNam8lxhZlVJp3z\n4g0JeOQ2k0aK2NBicXOT8KHJe8238GUlBsFrXL20TnXiJrS4yhkiV2/dZFaZUP/wfbK5I3ZbM+Ru\nj8l4iF11U6loDJY1rKhNKhkh+4KLu995i5cXLqO6BEKNIkW/hDXTqJ1LSB6JfnjOPDKkPtSIRzrs\nf/AtlrMxtP0ZU31MZxblrDjgUnaJNWEC+TOG8oRqW8NrHHFvMueZqEm+HcYXaDOwbOxUlNxAwDAM\nBl4XnnKHwVKCl1bi6HtumD8h3L9CJeFn1/iMRD6ANrlGqVvk6JOna/erX/pp7rcOyXhVkqkwlusT\n+mad55dMmvNzogGJ4EWHoM9Ej7hYjSRYSiwzmz7EztzmH95a42hnQH4+o5+b45hjuh6LUGMNI+2l\nJZvEJ3PcfgHN7hKz5sgvX2Gyk6JnW5AMc37XRrBU4u4Ze45KUpP47NAm+dycSVElvigwL86xJw4l\nxSEf9jDz2XRPZoxzXqqDE5ZmUUzGTLRFpPCIu12Rvjkjf1micd/CvJXH4y5y/9MTRP823vgy2dMp\nrrYHX6qAeBE8E5Pox16MgISkOMTtY+yRQm27guRe4s7rr/M//c9/B0TUP/vnv/uNyz//C1zWIjT6\nPgLuAguBCeYHLjxUqXsF7InN6VmD8thhwWlQX88T7URIvbrG1H6M2k3y7T9usSF/icGWj+jzczLV\nDsMnAWb5Kj6vD1nwYmTdeDtPOAxEUU2FSO2Y4tkJkX6MvmHwkpPAk+0T7du8/XCCsmZiCnnO5yMu\nBzTKtsx684iy0CbfWaBk9ZjZx3THXgyvTGphzr3vHBNauIT7lod20UUoqTDqC/SdGeO9LtHP5znw\nHLPvOWc1LeE9OmPsuKh7wrSu5QhEDhG8fkqRObW/7jNNxXBLRQTVj3CS5LW7TxOkn/vHi1hqnc8v\n/jhJY0TzQ4mI0cOVs5C6XsYX3biOD5FbB4xDIaymwoHpJxusg7dBYbJK/8xgtbDGKGJht6Y8abpZ\nu6HAoMp4kiYTi/JpOYORM5A7YQI9BwGVtCtDOi3yYLiLEbPwtxyUVJaQs8hYOUE+ijEPpmm0O9jK\nhPT9AerQwSu2cMQ4z08T1BWN870H2NIVhCsG9UqQC/lVRH2I4U1Sjeu03E8IVAP0Ls+o+at0vzlA\nDi7j7+0xnpaxY35mShDH02PFa9AuTqirj7nhu84gHiTSNtmqLHB0PODxu0/FwI9/8TmERpyON49H\nEChOUiwD3bZNNZwju+ymNnRRHX1GcKGDIkxYjORYGKyh2CVCuWusZifMrR7pIfQ8IcrzXUatEwLx\nZSLDAO60Si9mke6/zrrj5vzjcx6PFCaHOwQDG+T6KVqySVRso9gnxBqLDDSDZXcKj3PO4XdLWOkY\nmyxh9aeUcDPV60wqJse+EDVlRNZ4gK7dImR2UaQPufyFKG+8eYH2yQ4dzcsln5eNjSC1chm/X2aY\nt8lEBALtBN31I2K6iuvcjxU7QzmbEl+16NYj5LtBxDWDRq+NHRH4m+89paWuf20d7w+HnAcsFmdj\nHGfAyshgL+pHtE12ut/H3J9jh+Mk1AHjrsXeo3s0Hx+x7gwRJQc7k0c53mOuRFlYX6JsLlB7v4o4\ncDO9XOS8NGYhlEbzF+iGt1has/ixS2uY3/8XjH0eghULcXCGxxVFvrqMWRU43Gsy12xWli/jrQwQ\n0xJzUWbZqzAdSQxHYaoHLRbyK7RVh9vGhOKjAVde2ODJ+BGB4tu892mX7Nde5uZCmr1dgbmosDMP\nsRRp405sEhBLXP7cVZidI10dYx/8kODVBSK7ApViG3k5TmQiUo1OMaV19JzBu3/xNwBc+/FFSpUZ\nhpVm0d/gfbeGMPDx6q8/gz5cQmiMEH2HrOZCmLsmLmMPbawxHV4i1Rww6LmYBG6xXaqy6fIgXbOZ\nSeuMP2kQ9NksqR0kf4e0PGWa70DdYp5wY++F0Wd+qimofBAktV4idn2F2l88YvmmRLNxCbWbwHH3\nkeZX6Zhd5EyWUVWimvUSGozpqi4CSpfpaMRobDJN9FEZMRxmEAdl3MM6zYaM4/EQK1dI6GkCWxLh\n7gS7XaDn7BP2XGXzuo2eSvHxvQqHj+4TKSwg33yWiHeVpCrwZAAXTqHa6nLnk6eOyqvx5ymtOEiC\nQTQts+DfJNM4oDTu0L/jpdaHZLtJrdElaUrkCgq50Oc4mZkIe1W++YM36J06rKzU2ZlHWcyUqIyG\nxLduMM4ncEYpgosCakgh7DomktA5rYMeEJFZYHX5C0j9GoeRc2ZuL2rahfPDHZKFK/THDkN3iEC4\nT8Ryk3kly+NvvUHXcwFzuYFSzxH3OAimiDrfpuLOYZhzhichTM3GcGIEm5AIqJjiNgfjOCi7BNte\nav0TzuQsuVSTSUJBmYwQz0SMS2WUxjUsv8Pp6QmLqsp2P4tneUikp/DJB0//t+f8KmknTS4+IGob\niJ02l20NaZLApT6mPF3AsgR6+3FcQ5mDdhnJY+L4l0mUznnw9jFvPHnAhVe+xmB6H7PRZ9xuoNhd\nZqMgEcVmUvRhjc9xp+Nsb1tsFfzUhRiDg8/wTP0kPi+gjE2E5IyEq47VCzKPBhEe9BkunTLZFwg4\nfuKxC/gWNe4HR6AVGGtThoMQyv33mCVDWME8Wdkh3XfhqhskYj6qC10k43MEV3Oo2zHCW88jZX34\nW2OGuSu4FkLIpYd0uxkCdGi7DNSQQ33aJHyyxuKtHrVKk2hG4YdvfMpv/87fgZyoP/gPv/mNUu+f\nwlQn4zulPBnSEVy44wbTDYXAMEPIasJUYysYp6UmCDbd2IUxgYGIKyzyxtsfcO1LVzl+9CZh9y5X\n43mKY532FjijAE4PuqWHpC6Escw0voGEV4rQdEXxRAuI4iHNySL/yx/+CwruS+QXb1B4uY1TXKPW\nC+H0j3G0RQoDP5+dn3JJus35s01UOU0o1EXWkySiTbRAhNyCglFTab8/5WH1/8UfeoEbL/nof+8T\n7JsiWjiJJ9gjMR4xjQ8Q7ucRVIcTaxcp6UYphWm7hwRcE9akBNeSm9i5G6ysu/n2f/5dds/qAPzi\nH/86iVObs48ekVVUqqsJOJsjBFRsU6Vd6RBZl2jXFxlm3cx7GtbgBywlNXw16EfS+KhweGCS15bo\nPivgyadwzU94f/uHRFK3eGbjGR51HhBqqwRxoYfayI0xFamDNHZjbl7A8gcIeb34Z02Gwx6ehTAe\nW+Lc9HFhsI/TWWT9uRCx+Qrj0pBgvkPpJE4i5OWj117nyppEZ2yhjqJUjE/ROx46GwJKzqD+3UPG\noyPuvOXn+ee9BNY0JCFIOC2hihLZis3A5cUXqKHMVWIpHVX2sDc8QfHFiA7H+D7z4drx8F7lLwF4\n9covcSZYCJqXcN/ETum05TghCUar5zRbFh7ZRyIYwvdSnktBN52qhbc0o56O0hJnBKUZI7/DkWtG\nytfl+dtbjKQQ8XOdjhQm1AoSXI0y2X9AwZpyYqbxnfyQWEZnq2gTyImcT+YEfQFmtSbCQEWcnqLV\nujyYrLPgH3DeGyDrJQaKw+KkgBh26Ky5iXTrRMZB3iq1QFOxiTF94zG3Lt3C1Le5rUwwlCeEWjKt\nkw846IlcX8rTeeceh9VTtlIx/Hoe5+A+8eUE/obNhx+VcKJDLqXTDJImc03Dstys9t185+13AHjh\nmZdQ2h082XV0aYjafAYxVmYWHdKJ7HFpa5NWwSR03sVQo3SHBnvNEv4bQUaxDTi2WIusMBH8DCIT\nmk92SHvi9Gen5K4IpEsuqntNdEFG0AMc39nlRqPLuXIfOfYi/YMpux/ZJAppUmGbghKmox8QTagk\n7CzHgyN86wsc3zkjvSHyfrXLxiWNeSRKeCTg2x2TCS6gDGxcmTYH+5+iOV5aX3ieS5EVxhODvf/r\nPbTFLFI8i2ifcfikx9g8ITtbJui6g/toG6oGhvUMG16B467KLJ9GatkErih4zk7ojhuoUZG3/wuq\n/49++hXOZQtOipxedGM2u5iuAWl/mOuuAkfHp1wOyYjvdQjFPLS7R0SNNLJdI3bDy07xBF00WdIC\n6GqWbGlCJtVi4JUhorJ3Z4++lWaoBnHFM0QHIif6Ob2OBzvRwH/qRut/j275IWb6OaYeH7dHz1O2\nTjnzDJnUElSsY7q+BWYnfcpBF2vPpKhtdznURGb3u8zyi0z8FS40coQCHqRWDcXZ4rHZIxEfM6uI\njJU2TSVJWD2i2MsQXwxxVtxD2YzSfE/EmMicu0S23Mts//GfkFI0Tlu77I493F4x8IWCtEYh7nzw\n1Im69WtbXJm58Q3bSO008kKWsm2QTKc59nlZ0R6grhcw5gNauTNSrVU+GO6z88kph/67bF68yNar\nbbTYLTIeG+/knKFtYQzHeM0MZW+Z2HzC+VTHjCwQ9S8xlz7Dq/iZNgxWYiP0js244iIYCzL/MIBQ\n0CGnIAX7rI4E2lKFmRInWt/GDPs5/bhEXFtneNNDTuszFIb00hEWgmMqZR+ZBZvGYMQrcQN3c0Y5\n8BCIEnMSBHte9q94CItzJkKSSFunNjUQS34SiwfYZYGTGIhSGUeM4J31UJU0ORVCq8v84Fvfevpu\nX7iOpzBlKSxRSfU4+rTOjDmnZxqFqBfZThAYTTlJD1ke6cxjERbGScLeGGIuxGfvfsaTTZnCzQjD\n0wFOUsFz02Szr+MzR/TlPgdin3hY4/xJi0TUprfdwC+nGK6lWLQkTiYqiaTJtOHQbQ9Q8w6SJ4Ar\nMcQeDpF9bmrTKv40jEou9LqBOOywLq3T6DRYczyQmrBwmMDnLeERj3CycyZ2DcMvsi7FeOfP/m/E\nZ4MEpAlLThKPMWTmmqEs5zAlk2BCwpxDEj8BQ8Yr2LQtibPdIg1F4slr71BpzvjN3/o7cBP1v/2T\nP/nGf3P7lwmHPsVuTQjkvERDJv1hjpggstveQ0k/A8KIRsLDIJgkWe4QmJrMYjIuwcvKSGW8NOH2\nczc53/331KM5GscKF4I5QrE4gtrGmAfYu7/P0B9BCLfxqxKq3uXUrvGhsYP/eYdgKsNkFMKNjDOO\nUSl2CIsqpd0dlv1XaBbqJF1hCJnMT7yEK2MCmQJS2E290WXohGkFOjgMkC9lyESXUFotyg8PEcwU\nQmyR4VaahDIkcMGLrgQ5nT4hIoYIRySCcpeYIGKpKTBFQqMRBjscV+/z+p/+J1793SVe+8OnlNnt\n+Y/xaHYN0WNj+PaZjeMUllWm/jatnkUmNcc6mXHP7HJRVxlFSvitMsctEc/KGubHTWYXZlxOeSiW\nVIQzi2h+wqA2RZEdrkQVXj864PlhguYYAiE381mCubRHvaWS/HyW+4/vseafcdzrMQtFSGlj7FiY\nMj2Ce0Pql6L4xRF2KcJJpMrgsp9wvUvLMAjXznj1la8ijVuIAch3LGZXX0CsDij3p+TEOjd/7u9x\nok+5flHGaGjIR6DPxqRUh+FYY3fQIiOCOFym6cDjD8bcrxoY56dcTaeQVZmI3Wfz2px//8On9Mrl\nn/kKfnlCuX6GpVn4hyP6zRqzBZX1SpSu0iRgtTEHI6rvB5ifRinaO+SuSMx3VRbNCq1uh5w7TigU\nR267qB14mOXapOZ5hrIPI7uPeT7EPZ/jl1o05BlvHf6QL118mZLUIaIPaO3V8ffmqIMk/QtD6MQ4\n7Rxy47qbqZbC58iE7S2icRHxihtHn/Fwz2LBnWK8pqIV0oTPO0zlOyyfe8j+SJqTD95nfGGGUopT\ndPYx2zKJm37Kr32f1Be+zIonzZPzJxhnDnLWRXfQ5aBk8+wvfQ5BDTPeuoC7VEZoaCj9NsdZk4++\n99QZKOS+jm/5DI8UoXGYJXVxhJa3+fFLP8eR2aQXvYv/SY/V2xdZvPA5SloK06VyxdMht7lBtfs9\nhosxXMaUgrhCKJKjn3dYOK8iV+e0Wx20qEzOFyPQrnM+k4h+ocZ27AB/IU1WWCHz/0XZ/nCPoFDm\n8HwXTyBCdEmkLozQS2NikQwn008pHrVYHl4m6gtQf8fEH3pEa9mNN+DFqJR4tD1EjcURoluon/n4\nbPs+OTEN4auEhAbmbY1ReZtUz0V23cdRz4c1XiJ5IczdnR4ZocDudJfP3Vpl716dZbfIR6cO+pUQ\nX4hs0dId3vovtNSln13EO96iF4iwXkrhF9YIp2Lsz07obhdJXRxhrtzg8YNPwVtkS/0qD/iYWl3l\n/JHEf/Xffp7B3iEtpc4X/9FPcmyZDL06p2UDM6aiGQUurJTI2EkoCwzHLbytVzlz78KZw3rwOrMv\nz7n58q8z1c8ZeiIoZoiTlIW3aTFQTglbGvVOib6mEJVaWBU4RqJLlVRoyuwQ+qchxIKbk4MJsbV1\nPhrd46Y3SVTbotc75klsA6E04lSfI09DTNx7DOUtoh0Bc8lFuTqhefyAUT+Duh7BH0/x2p99n0gh\njVNTaBoNPHODH955B4Cf+dElfFULCRfmhonqVQmMjnjwSKEzHZKPL9HJRdhwH7PUzfHxfI+NhSjB\nYIXIcoTr+jV8lpt5Yh/zpE3Es0HxQMdelem6bDzxGcF+nEhwwvHZjLE1x6yF8Z83KSgJKoqMEdcx\nykdsrvtxvCOO0+uMz0bETAs5M8CzKxNydZAS16nrMabnZwRCHXSXgzOqoETn5O/aNI5PcXJN/CMv\nTeUUoSwwyu3h6i5hR8IUPznHumwgykkCvSApa8h5XiRwPKY50kgG4oTiMzrVNK2wm8WJj+alOJV3\nHpDZWKfWeYf3X78LwD9/91copOccHeawPhugpdbwjde4cEtjNmrRH4QRIz06R2vEChrBucRkts3u\n4SEld4bVJQfNiTLvzHDHI1zqaBS8Od4+dxHY7+FUxghiFmnJxso9R9Zj0g6AZMro1Y9Y2FoBsU6j\n2SI+yaEOQ4g1jUrxGK8rTKh1jdXVRYq7AaotDW7P8SYFNq5eZPZxkaVxlYNcknRJBLlDazZn9n6N\n9ZseZL2JOfewFzH4kc2fxgmMaM01jLlKJpHCcB0SFEQU5nTP/SQtD1N9hBVaQu94OT69TyTZYXn9\nMpdXUrzx4R6/+Rv/w99+EfVv/vD3v3HxVzYIVCdMmZN9YZXeQRD/tI/q7yN1NznpfsRCMI7zySGu\naZRG/JxytI/ycAtvtE/naoRaPcbs0WMu/uMXKRZLeLQYgl9CDR1RPO8yr+1x+atfw75bZ9AqE5cU\nZlqIzLNRsj8Gz279FK3HFW58bY3e+zXGS8v4chpq2oe0lWQcb6I+itAuREgvjRiOe9jxCKftByhH\nNp1mlWROoF20uXYzAdol3t55grF0mRfjtznJFsipRebNIoetGOJ5inDFZN0O0llcw/ysR7k6ZX3r\nJvPyB3jyazSe9BmM/GiDLqPeGFdA4r2/3AfgR9avEXcvkYi4cLkCFEsWqanJ3Y/3WbkqcOx206il\neO5mnh98VKKQh35E5Gr0GeaNOqfKITszPyEtRjSkMDJlislDJGNOJLVAPN6nMWozEy/QO79LLOQn\nGDzHdMVY0iQ6lUfEC3FC0wyxwBQrW6DojGjsbWMYt1iOzBk/spEwqWc8+MUzYmc2f9N4wo0bKcRT\nA3c4S+O8RE/RmK7bhOYzzHiIQbWKnjfpNQ/pTzQ8G37Wq2FGjbusRNawPR7CL1zFqttMsybT2Anq\naI3ONYHViEhkKUSt51AO+5m7H2I0/Xzv7lO7+9lXNigMvJgBndXlJY4sL1lZozUS6PpkJI8P5bRD\nP3CFmDTC6/MxnfoQZQ3lSgvsBepuD61+CwM3cqjDg1EDfdKnIzQRXGOc3S67Zxqy9y76tAjtOMLC\nqxT7MrFCg07yGZxnclimRiWm07ZaZF68SUtX6VaDDB99wo31l9lZaOM23OweBGlPawQXVpn6BU53\n7vDiKM3wYhzbvUBhE4q9KARzxI4CiOkMdiCKL6LgkZsIi1fQhk84s5dR0j0yUwtf/wpC9ICB3me6\nd4Q69dG4M0Awd5DocaxOSVZSvHvnqRh4+eYlVvJruB7fo/m8iFnzst9o8sl/rpDGgzv3Zbw9nTt/\n/BBtPYW77KX3+F1ysSU++7OP2Prp23TulVlZjnJanDBuu7AbxwjTdzEu3mDzxTyStkb3/g7zqIvM\ns3E8QY1J5wql/iYLXQl5JnIj2+b65xXiN69iT10UP23R87aJu76EV7wPiZfpBgfI5gwjYuEbVJkO\nrxEMB+jvaIwqMxbDYw5kL2F3kpEm0+ikGTUMFpItmpcEJqV93NevMO9UiT7RcC268D7Yp+uEsQIO\nVjiOmctiPjzkQt7kr88+5bllF6qiMdSbzHIB3v72U0fl+vrPUbZs0g8fs35jETPQoTNwsdg452Q0\nIWSkGOgD5Mkx/vg1Vm+3CM030MIGwUSG4lt3QIjy/Eae+wdtlOoAv7hEpvYEy99nS/IiOQb7cYMT\ndZsxKgc8ZCv7KgOXnzfr3yVzeplZ2E25p5OjwjzWoG00kNoWnozKshRhNlN49qJAq3ODSdRCa9vk\ntQRPalsEi1W8t5IoxoRjtcity14WSwZzrcDeQQlNKNKo1DmOjAgdezBmYbw9mYu5BqftBLGmgDo/\nQ92Kki4s48x9pGYzFl+NI8yzuAIV/Kkkq84K33n7aSPDL/yTX2XxrkFxGOHQm8DdqtJymUh+m/C4\niaCFEMaHuGsSbStEMBqEscpJb42MoNN1iwR9ZRIDjZC8jyZe52D8ERsuhWFAIVDL4gpYPNg/I+iq\nYdtVctMB5q2bXEpFmTSrtPQWG+kg4t6YViKHebpD6Gqa+L5NqTui2uqh3biEKGgM2ycs59eJPRvh\nSlAkErnO/EBm25/Aa/oJBAS8VR+L8Uv0TJ3R2CAua3hzc3xGnmYhSogi4sCh0t1jvucwT3sQnCrh\n2ZRRRyPibpLQI3TyRYrvHPLiM9dpH2yTfOGrfP9Pn9KgCTXF0QdztqIKvXqLolAlXbP4ym9f5NE3\nW6zmPbTdkBLKlOtuDh0FCQn3bJGB+wHitMBzqQKzaQtvSmMozzCqbZx8FEX2cE9oY1y5THpniH9h\nRK/iZTo7R1hUGMXCDJsW2fUtBnceMArP0RIhTt0iNy6scjDrJuDtaAAAIABJREFU43eGVGs14uqU\nk+FD5MkzDFM+4vfvc/pQ4Mj0shyrYjYcJj4YuVJMxCKPgpskFQUt4yFbbHJeGiGbYZ596QV273zC\nSmyGqCfof/9Nous9BHeERqKN1dvkbv8UITHEt77FZBrgatCFIMC3X/uY3/md3/zbL6L+5b/5P76R\n+dIqkt7CXJ4hlGTUeJOmLuGMTZqSTn4+Q+xuIkc15HELO7mKWrOw0gKi7WFOl6baoNmyMIUeFwp+\n+nOVJVcMfVDFdRRHvnWB6niCx+1CjkbpfQaVD/6G9+//NaIYo/mgxqLbxGgodCUNTa8wjkwZDGQi\n3hGpPdiuP0Qc6agdD3O/n5C3weV0hJIaJxYIk9Im6AkX3lGK7o4XsWGRs+N4BiuM3/kY3+fijPUA\nUXcVj36C05M4rZqYUhs7rHN9tUC/NkYL9ygeugksC4Q3FWaWj0DDIX315/nLb38TgN9+6WdZDlpU\nugEithvFOCcdlIj6phzeN8hLYWKrDoql4erb1OInHHxwjOgOkrE99ANRot0Z+8aQRWdKfCNKpyyT\nn7TQs16kgURA7OGr1bGWkgRHIBRTTMMiJ58e86Wv/xTHRz4a3iKiK8bewxELGxbxza8yr04Q3RXE\niIMlpZlLdRJLK3TMJpuJF3j83iHeXJqHf/ot8pEM6eAS4fICbWtOqX+ELxLGk8nwzp9+l1cy19Al\njWzCwg4vc8f8kFmvi5BVme3tM01K9B4VCOWnJC2DgSeCy5DZXF/l9b/6f1jzLKMfFnnn+Gm31Fee\nX2HP1efW8i0O+mMCfhe1Wptpx8STCCB9WmUhodH22LilE2aNfTrxBeYj8A9HHJ/PScZdSGGZjl6k\nVg5wcdkmtDOn7gwI2H7E2DozY04gsoToCJiGTTOVxOuacul2Cu9Hu9zbPuPGL75C50mD810XfUPn\n0kTGvqESZhHLpVKjhRhOYLR7xKYeBvkZ0TOBC+GLfDTQSYe8hJwBb75zQt5YQjb2mEkJ5vqAmc8g\noUZwN0zUtorunxNXGkj2AvokiG9axxxlaV7tE9MuMNXbHFYecimc4pMzmchilq2EzLf/8mkH3NX0\ny/jDXZpiBl3NcbG5jWD40JMh6ucCb7725+RkldTXf4S3vvkIRa+gRrLU5kWWLoRQQz6sdz4j9dIt\n6gcVpv5jlpeDuMJLtO7reLsNqp8OSa5OqY4voH0lwaD5Q86fBBADYRz9MUalRvrZNB1/j6BvzjCd\nwJbPkeYFtKU2afMy8+od3KlV+qjMnxhEkl4G0piE3yberNAUB0wX3FT+6oRsbIw0DJCxZrhQCQs9\njJhEMxzj/D+e4KoIFG6IBC0RRb7MzPiE5DzFgmzjbDskQzAap8gULqJN5+jvPSJ4OYxOjHe/+7SG\n46Wvv4TneM6Vn9nk4UAk0j4nI86JZMdkoutMvY+RxBCzSJScMsCXvYUtjzAmFktJmY6uEA4dMm3n\nyRQcJKfCe3/1EOtaFrUWQAzXSD/vxuMcY326yCg7olytse7dQHaGbNUMIjeCdKZ+mrsTpNAaV5Iz\nZkOJyaMd1tMpBLeHzGIb/dMk/tAuVrfPXvgMp+ZFNOYM/APGn/bpZ2Js2Us4Vgln4QoN45RO5wHN\nwjV63RjRLFj9BuGbIZbDUUp6kpwo0xZrDLwyTitEWB4Tl1t4tTbSUYPzowZSTMF3MoCti/zgO08b\nGV7dfJGj8hGpjQKTUxM7b5EKRVn3FtACBabBCc76CxjmgOIcZk8EOvIRwe0u7pVVxFqDSFJgbsk0\npwMmeQPN62VsZOj3Aii38yxFQ3iNFcYuE1dKJJEU8VZ9DIoi7pYb3WdSbWTRR2ecHe3gvXaZZK1P\nR9Rw+yOkN3XO2h4WDt1UMxA5aHN8JCH0tuFohCknyGbaOJcKiCOL6mBOJ95FHvuxq33aPTd9s87h\n3oCE7aVp+3GZHfwug241QSJeIV+7RnWjxSgk4Kq7cGdFOrqPeOEqk6EL0ePhSHHz6befrvP+we3n\n8dy8Rmd+SLe/yUb0c7z+8CHK6FP2Om6mJw/YH+3j90XwBn2kXAqGpSCKp+R+8iqzz97AGwgyMy2C\n0w46G2wsyvjqAc7EOurRmNXJKtObNqPiBr7AALseIcEEn2QxjdY5uGsR9wpUEnP0gECgZdMJz4k9\nrqNHXByejwgtWDhLWySjLnKKl97pFPkFh1Zlh/LekHTKYGJlGXTf41/+0V8wrevojTBzxeGBVmAh\nKvDW9kMyEx+aEOU//Ntv8sVpm41Mk/LPbuA0DIavBTgbfEQgbBH2L6PYQfr1x6SWL/G46rB77z3+\n6W/89t9+EfWvfu/3vnH9lzYYumb0zQ42ITz+DvnelKGSZBb3MZ24kBMt9kp9ri+tEzxOICkWmYsN\n2p4g98ZzbmRT2P1TnIaL5qTJeKaT9ok0hQUqHpOEv0TOmdA9EBgOJ3habmZnL/H5vy8w9g3pDdK0\n3Tphn4gkGvgWg0TPztG0PD59zmDipxCKUCtEyUYSeFIz5scJ2rKNv/8YPTwioHhQ9Rz37uywFHSh\nOgsM59vsdv8GobDMY+eQlGATsCO0RgNGPpOCPKPT14iMo+zJItPdd9AWUsw9Q5SJl6OTCR7BYtxs\nI6Se4c3XntZJvPrlV3A5Lj5O3mfo9SE3D4mXtrhWXmKasHClFc67MqP9x6xezOIpe3hh4yUcqYUZ\nsCn0h0zMMONmkdfffsIoGOaiEOYsZKDvDlA0kTFrRJwg62KXekwhW58Qm+jkgiKn94/oP2dRLo8Y\nTftsXnAxO3ejJyZM7u0hCSEaHgOj3MZcH6BaMp3amP75MWJKZcHjIj0NUTvcQ13LICSDnExqvHoj\nQ/FJB0/AYXGvjW/9OSaiRas/Zzxuc+lgmWRwyHiyxOODIdV2jZcLmxR3ShxOJEJCGnegT3PfQrl+\nmYDeInv9Gt/5wdPE8isv/xLXXDPefe2EsdoicJZB10rkqmHSvinJ1RhdQaUlTgi75rT8Mm6ximoN\ncIJBjOgE93yG4QxIDy4hhMq44gEw44jZGZ9WGngUH+rojFg6w8CTx+uy6Ll9XHRp2PfPKQagdtdk\nOO0gBiXEVZVFu0W8sIL5ETTTLqx0l+5JmHB8l0X3IlWnxbw+Y6bfI+aLMPM0iNoOno4fOw2ejSGm\nFOcweU5iBGNZomcazONt+oMlCp4U8jQG5gmDsE4xkqPrbZM7duN1eZBaBqLH4WQlzFpogFNXqMhF\n7rzxlPpZvrWI+0dexH7vLrl1m5gQp5IOkFxLsapOEYIrBKUs/nqMy8kxrUCNJa+Loe5nZgdwe/u4\nMwrTAx9+ZUjFCHC47UUfKwQuOsQC4LqgMfHFKM4UzNYOu19M4P1JgZi0xerHfTw/uckoW0EQEvze\nH/wJvtBFWtVl5oUYzXd7tKTvE9wMMr2m4T0rkwvrmIs5Tj98iO2Ngu4mZfUJtTL4b0SInS9gKgPC\nKz5yV8OcBfrQEGiM+iRtcC94SFph9nQ/YafF2DOkY17AFh6S9k7otXNMImO6ziEnXQMlVODx/Bxd\n8HH/B0+jSG7qAeY/tUKi7OWwXGPtGY32oA8NmDkhNFXBDmr4hjHM2ZByx8OWneCgfopH9xB7Lkvl\nyQWqaT9pb47D4xpreR8Zw6Tv6iGX/Iy7MnsT8Wm2XFAkEogxdFxs+AQ2bl1h0grRH3yGT2mQ3AjR\neaePHBxwwAKDVp7nv/Zl3nzUx2+O+awj4FVK+LU4vomHYThEJgp5b4TBh4/JXHbRYcxZqcfFX/uH\nnN+Fz8cv4r4m8CUpgueLXyHXCNM6abAU7WAmlghWgtRMByG7x/TwMWfuADOPRr4/hcs9Vms+puEQ\n8/ff4N29hwD8wm/9Kv6RwG77LfpnfYLJEKPmjFm9w5NumfGZQswX5r6RJ2EbiFaT9onG7KaDMqmy\nHpmSvP0SYneH47aI/UTFY6Yo+85IuwYMVA+Bt+f00x2m52fUjzssKEn0xSW+/ls/yev/9XfJJnVM\ny81g0yJnZhkUBbJbY4LtCqGQwvhRjGw++f9z995NkuXpdd5z/U3vvass293Vvmd6ZnbsusEuiIVd\nuFWADAlGFEMSCICiRIVCsZAIMsAgBIoMhiSQAYoBRwCEEYA1mDWz43Zce1ddVV0msyq993nz3rxX\nf/R+CeBL/N7znt95n8Pj/A75uw1qPpF8foajBxhllnhED7IgMpwcsKh6iT0pUWmlaMofkclAYPUM\nsdVVQqEEa4kQ/mGD0rhGoBHGXyjQ3vDjGSs0pCiFiYp8YYJaUfCrp5SDLQK3WjQ2fAyf1Ln3veLm\n13/07yEOZoh9NyVfBWko4E34UOOfQ12bIMTS+IYCtFwsR0+oj3q41hfYOzYu6oymCvlzV9jlmHD1\nHGb0Ia6HCkdmm0y9gn19FWdwQi2YYcU9wFvTaEpvUTXdSEoMr7/PZtTHcKAxPayC28VmIEPvxhx7\n4mU1YjFNXmLUn7HmNmmPfUyP7xJz+6h7Y7i7aUIrGwTlEO3KhJTvOX78mWdQr+Q484pOzJ9A7mqM\nm4e4iwu0fpXFhymE6Dl6VogH9VNu3A5iGTJLNYcv2SNk+iDgZqFPCQxmNKV9rOWEm+/c4x//j//T\n33wR9Zu/8S+//H2Xt6g9PqH1pyds5tfQzRTfGe8STOWZSh1ypwE6oko6mcU5nuKYLdxSjb/cG6Be\n95M1gjQrdULLPIYgk0TAp6xi5SycBz1kPYxPC2LdbjG+tkGnL6DbfaLCKaVOk5z/Ij7PAOPGHGFQ\nQKGHc2Ri6KssnBF+u443aHKgJ1lJVKiXx7z3h3fR15OklAJNt4vYgR/NMolUJKLRcyxK9+hfnhHP\nxlGsFDudMhcjdUJ+gcVJFFdWZCa56DRFimtetGYdv+DgOB6IpaA1pOLcYCMRREts0elHCWHzjXee\nFsL+5M9/gv03aly6nkSRBHyB6zxYlJiP9knHNzGdE/pjBym8wsg84bvVWxQK6xy5JXqdOV6PAsoK\n6+EEiUtX8GoSH58+YCvuMJ02qNb8hN0jAppMr7+k6gis5Fdpps+RqDdpZSP4JB+hsIndU2g0umgH\nO6TdXvwtDwNTZNUnYY0hKUcYTSJEkgaTQZRovEe/vcJgVGVvw6RopZhlG5TeesSeMUdJBWndv0Ox\n+AIlbYoyk0jZc3RphRwR7laPsTeKSD6LNVukoTXIpHJInR7dtEnwUYPgnoQnGcJfOY89i/LVD/8Q\ngM94IzQ3vFy4uEWyd4bYp6fMWyFsbcFu0sNIUIn5Ukjle0yLeQrHfqTQjEAqCtYAw+PC2xaZJoOE\nMzWs0wK+VoiuLLDcPINstYmHczTUAepCwD+cMvcpfDQu418pMmg1GWouYpFN0ET0WRhn7MYdGlLq\njbGjHeaxOjHTplnXSS5mNKVTEtUMi+ApC5+X2nSHVMxNt24wULs483VUUSDmLuJMdGSpjCWvkLMn\nHDwycPQQZqHLR6X3mGWukNI0Snu7nHVJSDGbsi9AMjalNs2y0vbRjWbJxSUKFPjzv37qqHz2lR9m\nJetipLhY8Ys8SquESkOU6pJpuMe472WU38U+OiaccTEbz+kvF/R3Z2zlBaJrsHX2OQYzkw+fnPCy\nuILxWp0N1UfeBb3cCvP3AxiBKpHxASe1FOdMgcpfbLFV3KaVDDK932I5aaJ0jjkZD/EoS0rtHt6w\ngLE+xh3JcFZJoj9OEvDnuW+OqLy3R9KzZPW5Aj3rlFbIQ9Ank3BiLAISQrPJQJyxLMmMYiaGa8rF\nShA5nUR3D+nUIR2EWTZOee6QsQ6YbG/SrwVIhWOczB8QSsVIRzWGUz9+e8mqesob33yaUfniP79K\noOxnmDcJmCqedgS74+KJ4mZc7THOhhgfOCj+FrVpnIHiZpr3c/PgDsmNFG++8QThExphJ8Odozpx\n5nxcm1NLHCANvCimiKBniOZMmlqapeGQb/mhs4ejivzOH/4Z6+EEwxU3WdHGGk758P4OsTPfT19v\n4IoHOXj7G+g330eOZsgKIR6VTDzqgqgni5UJ42g2Vhe8P3id47sT4i6bSNyDuy/Su/uQ7Dmb119/\nhhtvfsitWy2iF8J079VYFDY4qQ4w500iVguhrzM3NwgE3cTEDnI2xEZb5p7uZ+ztEyLPt248Rbj8\n4E/9fd6/8RWG79/F9exFBt4QRVPBLmZJZ2Smz57H0boMnpRYhnx4u3vM80Muj23mqkEwGmDxzTaj\ngY0guwl6Zfa9JYJOApYJVGHMWqjLsSqTc5LEhDSVuYQmK7zxxT47kwnblQu4fFWs4ymutTVk1wmT\ngyxKIoy30qWpVvCOvQSyIeb1BFNBoj/qEw3FedKeYvq9WNMekcMQHd2m91yUF7Nd4oVX8frHHC/m\nROotfKrEYa/OM4Ul+sQHOY0SS1bvGrRcI1o+i/DUIHAcYLJe5f7HElL+Kt1UjLg9YDS2uf09EXX2\n9deYVO8yfTCkVE3htU6ILD24xcfcvWcTXlPxawpJ74JGLoagDZF260TXZJbeBNKxwf35LWxFRu+P\nGM48CKqHcN1NTZ4TcG+zGxfJHYTxDmyOglUmHpmIKKP6PYRPZVqjPZwLS85l1nn41ilWfozjWjLr\ntVADGVyNCrmzKstJiFDtGDORoo5D/HRMOWwTjbYQxnGMegVvYIGn2UdO2nQf2vhifTbEMIKWZzU8\nZDx3U/yBqxx0v4bLv0pfbCBnXmOZO2aluILTVxADaySmCw48B/jrh2TDq2glNzcP7vBLv/y34Dvv\nX/76r385F4rz+YufZ1gPIq0GGLslks0MttCj0elTlkPokk1QFDjWWgw6aSx5hn8yx+8vkd4bMm/I\neLygtWdYsyjT4JjJro2WdUgg82i8w1JNMeq0OV+fEF5xaK0GmKspTvarLNcXpGLnOKy8Rdqzhdjc\nJ6pF6G0FCO+vUzMnhKQoK5aHWeMhanZJPBVisnyTvjUlakk0l1MEj0bUY2IuUni6ApP5kLY7wHMX\n6jTUMOp8yWw+x1hOESt9FrEAo4VGejXAYX2OvLokOI+zsEcMbutcKGwyG1mo4Yc43S/xrQ/+TwC+\n5N7gR/UfZFc95l4jw6B+n3hM5UAogRbBr/uZRbxUUvcQZYHoZpjgIEwgbxKrJaiP/HjFEk9uCkR8\nJ1T1MGcDG9QOTUx/FPu0Q+uv9omeSbD0zghXBHoDDfdBBbOQ5Fx6iSvY49hl4zGLPLcdxxfROTk+\npbXuEFNCPE6WyUyiHA1s3LM2I8lklrMYzDMcf/gdPnH5PO2DAp6ixXHKi5xYJb3oEJmKKGaMgTLH\nt6JwNrGBt2xz+s5datUKwQ2B4CyOZN2mzSVihQ7GYZdk6hobrjX270p4rvsJP2rjL0dIPvLyB83f\nBeAzf++XWIZlXARYJMfs9ptoXZ3sdg61I+MclLnffMTqJ1/H00tgcILT8+LuaLhEhamSIyGZ9Foi\no1keSf6AqabiylmMGhrLZZv1WBrFyNPCwZ/3cppO4auUOLsuYbQnhOY2o7GMll+SkkqIMRHR6eAS\n/PjcaSJVkVl/Tu66iVhdQxG6LLUKsuAGy0JWXKRsP4OgQVYK8Wi/jtrfIXPhJSrHZdzRFR7t7eGN\nT5kpJtGoyaCpkXJSTJYn+EY2WlJj2M+jlBoEbA/NlsnVMyaHYw8Z9rl/ZBIWlnz17aeZqE9fXqHl\nUTnzRMUyIoQnfhrjR5y5vsK7ZQffeMG0n0KxTY4H91GmKc5EzjENT0irIez37hM89yyN0zvImxLN\nm4eEjpfMulEGTFkcBwnbH5MYRdnruogEPLzz+IBgfIl6CsVKG70xIiwPkH0pcp9bof4kzrM/nufJ\nnsF1bw+xM+fOYAFqkNmgTe7SJVqHCmtfWGFwa4l4JLKubfL+3ZuYWYlWf4E3INCc9Tl5eYoWXOLY\nBcadEoOSwcokhiHOGd6aES1Ajx4pd4ab7y8oqGD2NKJFH2XjiPZelezMjaxaPNFFbn3zKZfsF167\nQPbclOFOB1dDpLw94OhoiseWWFkzmBxCbVUg0A5TlZs8/toTggczrl+yef9Dh5c+ucl44ebxrUMs\nn4Xg6ZM5P8WSXcQnGXTvjOyGyun+Ep/PwfBJqK4TpKGb/ZbO5U+/RFUrUdjPcV8d4HFP2E6tc5SW\nSdwTaU8FBlqbXvwcW6qFcL6KsxnjbEVmutpmvDclmTgguXKZZsXiXDrIjdkpdlni/odz1LgXxSly\n92iX9umC9TURVfQwGJdoPNjHm0vR5RSvP8NgssS11UBR/RQnQSK+LsvnJmx057i9bsatEW/eeMrX\n+vQrP0LSd0iLJNEXXyNlhOgHJgy7JUbfPsVJ+hA/Mohup+k5ZUa2SkH1oBgbRE2LsdtgEDLoulWo\njBhEIoQML5HlGMXvJ2bUKY8lpNYcb9OPuLR52D4guO0jmNZZ84bQrEd09AzHj0W6usjpeyP0opeZ\nr0WpNKd45ix6NED9QCO6ts840GV9sMUkvU9rr4csX0LWuuyNQyiKwcCZon4kczytcXT7mPFsgiY5\nLLQIhZ/0s+xHee/OmEXjlNVOG9dalKMozIZ1Igsf02iTqStDsO4glBwikxkBYUY4tM4b33hKLP+5\n7/80QW+AVvIi4XCJuZKDVY2weJ6u7wR6ITIDkeGaxlS18OJDER0GUx/zvoVrOKTpX8MtuNAyMzLR\nS7RzLbqPbhP2umhd8pM4MAjbNdpJEXUu4C9PkOtZ1iYWRsQkIURQT2sce9OkQkGY6+QmfvwXRYzh\nGF3TsFZdLB/sUVabFH1zhr0ErkmPiOsYmRDLxiGi0SSR0mlKZ1gVHaKpBZZwkfecEgtToikkGNy8\njztTxp5kcUkpOpkR11xubGOKai5Qhw6OFmQRneO+LVBaTWJlNSbrGe5++2N+5Rd/8W++iPoXv/5v\nvvz62deZOgIv/devYvT7RJsmrWAdhQnZ6TYBjsk+f4X5HYeE38MgIKIZY6KbZcxSGDMLqjVBTsTA\nEJmlW5h1CXfaQ0TyUJkNkBFZenXmZgZf/JTa0o0+6bBseLl4bojQ86OIXSR/CiOlIGoDJl2dRvnr\njASZoTDH/2wKsX3IP/vn/wY1niLsvUjW9Ty9kAt1HsCsNrAFL2/9zh8Ty6/wsGpS8/W5+oLI280p\nWavISKvTG0aZOl1cETeMx3TtBla9jTUJYStLQh2bQKaPmjE4FRfUrD6BZ4qUP7zHjbtPh9q1H/0l\n7q484luDI9KpczgdP5WuybzbofdowMrZEU/6brzHEn49gLuj0ug2MDxBRNWLNRyzhkp4MiO0KpIx\nFcYDD+aGSvJhF/W5VUaBDH11TmwmEL+YpWstmN55QHLLQ5NTRvMOzmgb3bdLxWyy/633iL5WJFva\nZJFTcZ0Crjgb379F7yiAlJxht2MEAnM8xTgf7zzg6uvP4U4FCdybkfb6eWPvAa6UgJKJE1uukLJP\nqR+lCI9bbLyn8fXaH5G7cp4Jc2683+eVH7uM9d4p3avn2HlQJtysE3k1QLTnYuHoGBmTTXeQf/fg\ndwB44do6qxc/ycG0ivlen9AsjhXv8Mabf0FEC9JU6rxU0HizrrLinPKkVWdWsJnbE9wpOO24WVhd\nassodE8InX8RY+cEyyURXe6zNMOcVNyI1QFawcTdHuI51WgpM/J2mg8ftfBFVnBdcDOpd3FqRTqy\nH7vsYW6Z9H02jW6IYDHM4mjOsdDFNGAWTJMZTanfu0fS9Tz6Szrh/RnThZ/ohkK7eA3P+/fxXswS\nW8qcv+Kl3k0R7Jp4LY3omkbrrVsYnmuEtTaP3n1MeFXBXq4xTQpU90xqtRLzUIrEQCQXKSJuSXzl\ne3U5n//Cf0sxEGcw6rPrnpJIeWhVF/TkFKvtY8b6KdspGV92iHfDzTv/99vIqyIFyWGwtHA0nU4i\nQPP9PsrYxre5xbo7QP3CCXZJx1MYMtC8NA5VctszOnqRC74087Yb3/EN9t01FpE+qS2N2kGXG90B\nkpbC3ZeoPq4iXxBRZi+zmrU5WhoMXGFaN0u8cFVF/koJJ2WgDj3oQS+9cBVLFxjNGpTrIy7EvBwd\nmWTsJDOnTeAwhCeokfYvENQCye0gh8M6q+YQw1XA8Q/xLHRyr9R59EEId03iauRZ7pXukbgkodsv\n8503nmYXX/kHn6a5l2fR8HBfENGe2Nh5AcdMcFAdkYzMWJFCeGdNAkIR+bxNX4J//W/vEDwb5az6\nDJvrM6r9HptmiNS6jT3qEypPWF5xkDWBijgi1NjAnrcIbTl4FlnmriFGxkV6EaR5a5ey5edPf+u3\neP21H+NDfcC0f0pwmMI684TLskJrUUVH5OSxQO70EEdKMphDzJKZz+cc3R5jSjP0np94OMibRxU2\nrmcxhRxt45TR3Ev2PLx3NEKPZLGGfqKJGZy6WUQCFH0H6Ccq3c0o280e1dUuJ50uZsRBXhnS6i3I\nLFP8+dtPnagv/NCzTEog+haIkwZL34Lx7owRUxaRGbGlxOCMhmLCpu4jpw8pNxOk0/D2vsM0HsfU\nYlgllVp3yTTTwp1yYZkqUrLPsH0GfAlStsY8nCbll1nxCkQrSzq1AU+WLWKeLuowzKw3IqG3OZO+\nQMTrED6p8OTOI3yOFyMiMoseoe9q3CvdwnItyETBX3TRqqXR40Gm0xJRJ0BMshkUWmixNPHCCtbc\nRnvhPO9/e5d/8bP/Ky/86A9xXJ+zvDykeWyyPyuR3vNzwf8CB3mLilNhcLNJbFtgejVNampjBhYE\nklH+4s++hzi48hOUhg55vci9Zg09ukZWrVNLODwvRXB7fQzDfdqtIGEUhqEYq8Mxc2LEwmXcjslk\nWOf8agahn0Ra8RBoTbh1X8GzkmNlXqXS1Dj0hNlU+ow7DrWQgezsEbXdiIsR+0GJpRRCnrhYojPm\nFOUIrHMmgXme09mQtGdOZfcW69YFJr4AjZBB3yXhJUoXB1714hHGqJJGJAqP6hqU+nznYRO75KIQ\n8WHEbVb8Hk5UBcUssgjeQbQmVINh5MUAMxpHtDz0wxa3stvfAAAgAElEQVTSUGBneIfCPR/xs1lS\n1gHvfutDfumX/hY4Uf/qN/7pl12JBbazYN4z8bXbGJ4FUwJ0fCbRlsT8SgL74xv0vANGIQXB60OZ\nnTIMJgh4ksihNgFfAbun0c33CNcsDGcFv+NCWNxh39aJyH4miPR2y6z5VcaLDdSVLMneiJNEhMCs\nhpjOYzlL5KYfxeNDTEBR0WkaAeKnDxCiRe62VaKvbnAp9wmMYAtzWyFHjX67zjL8IoGsg752ntzf\n+QTSwRPk53Pc7T7mjBXCWVXg0AQNYrM2znyFQdpktQvm2Iu9PSbbi7DIqRzbQTQrRdgZ0XjU4OHa\nDief0Cj/v0833P/+Hz7LX/0fH/G5zWt4TYnBVgVlofLs6hrWJYOUFQUJorkwp8ojNiQvcnYFzRBw\n93w4wpLMYZLqhRnjWoay7cHyHpFyEvTVIc17FS5ejKKmZrz/e+9SduuYOT/DQJk7bQ+33/qYYr7I\nwVjEYzbxaTqBQpHud54QfDHD42+8TUaK0Al7mDw6Ja5X6cgZIpMeHYLc+/ZbBIKrRE+esDvbp+WI\nhP9OgMRPvszeb3yN1XNB+n2LvjHi7No2gqGSfPYs4U/H0Y5VAuYAJb2G/TPn2T04YlA54twFh+pD\nmfiGwKixgzJN0TFkRrrBX974XiHsy3+Xm+UbhMczlhdX8ZodWBQ4ky/gkUSy4RWc4QCfCypSEP3e\nx6DkWQsHMB77kc6eMrLiOLKFq3tKs3yLbDpA7NTN0hNmyIziyE3zvIb71jHz5oBgIYY8OsSjpgil\nNEw7jDptUwyYeEIR5paIX+qAHMAXiZCoPEI2pzwcjMgkdGoznc3ukMxLbt7+g9u4njvPajWNy2vQ\nHcbRkie4qxLqD72E+7SGNdI4rO0wnC+JOT3KW2PCzTi+155DbA7ppLM884If/8CFUPTS2N/jEy+t\nIsVy+MMLBEukpzxkf7/EzQ9uA5C8tEmkO2eaFvG0l8jXMrh9M/yNHW4LA3KSF/vyQ8KFq0QWXlzR\nOJfOFTmyFEKbIXqlIelBEG0i8CRikvUseFR7QmCisH5RRlxs8MHb73F5M8500cQjNhk5IbzuKGo+\nz+n8Ef7JGuWpyFE7TGI1y7nJgrK+4Nq6gX6nxdAfZf5gCIsI01YU1eXQe/wxPb2HFLhMeCrx4ajN\nxiRMcOhHLWYYiBUCrousCz76sxbJ0xhRRWCxXDAvDpi0FMR+GTEBdzwX6dRrbHosyoEAatPDIPeQ\n2nxMzKrjdmTEwVlUJ8Ab7zy9lvqRCy+T0nQOpQGUPQhJHU87geJUKB3OmPtErDM28siF//sDNN/q\n8jx3+Qf/4afIfSiiNB/wpC7z4lYfNJ2mWiNuKoRXZNR7GqXqKZWTGAeVu/TtGV4zh3pUpxl0MBoq\n8pFG76rI2ZmPxLPP0N7p4Q4HeVEGNRIg0pLZF+ZkBBGCLlazXSqdPKlNBX/PoO1bUlxfRfXvMk8N\nOZI1TjpV8rMAk/6ceLZDS3OIL1oMJueIPniXZsAgVxMoz7Ksyneodnos4zJeXwyMPnUgrIuY7R7+\n402q7QL+YJv5kyVf+54Tdfm5n8WMLCiF82RLUbzDJUs1QiSns6XKyMcxDqNtIrrFfN/hfktjMzdj\n4K4TzoRxWhbTmoLRHpGPj9ADMdBCxDobOOs5BvMaWr9BK1DC7Wujzo6oNSUsyc9YUwleS5HZqbN0\nfAxUL17DYOKCYWRB2KsxS34Gr3hKa2nR6eXo+pO8mHKR+/nvQ38kM3BH8Yx1pnaNDRNaJxK9gYU/\nUqNTPiTYEJAmXr5zq0kgXuD8tf+OMxtDAuEQ0/eeEM8FCPs2efnMNp3pX9CceTHC51gfeLh7MMN7\nvM94y8XsSpEPv3qXRzeeokie+74Cqq3Rskukh0umSYVOI0Js2kZWRuxMHBYfPyazoXCvNeLi1M1x\nRCMkNjhVw/Q8KplwltkHDxjmLZRbMvcH97gczRDbTrIYl1ClOGtBEafbppcLkBq1cUVWMPUhk77F\neF4kFByxtExCog9bV+nJCcRyj5FrzBIN/1TFcudo5CfMIhmCB3PSAQtjd8iDx0m2T1VuWU/o1tY4\n7LVJRMe07QLrhQhn3QoVQyUVENlderFGNdKtES61gRm5hr6zxPK0ibZlUBsk22Wc/IhAN8Sg9A6J\n9RCV0zS3PnqfX/lHv/w3X0T969/8zS9/8YefJxSJURaOMbUoNx/7yIZaNLUw03aViHvMuO0hHnCT\ndiK4ly1qyph8boEwbtHQdPwPA4ztIe3vHBOPZEhEsuw2b9I/MogHCwQsP9LMIK7LmIs4fn+JoRhG\nXEzYclIczBaY9phFQMStLFkO5izKC1JigVlwj7Eo0KmGMSyRK/nniFyROFqKpOsuTk/6pKMy3aZM\n163i/viUkdRE3JjgWRyj368xzYfItdqolkw8ZjOpJujla1xQ5jy8Y3DtR15F75wyl/so0wILxcA1\ngmVlir6WQP25HB/91J8y+N02AIV/+HnuN+8jmnHcnhX2zQm2to/c8iH0TjgJLFFncFAXya3Bk3sd\nVtUlvcoYedjFdPXYUMNMmjBvHvHde3/O9XMFdMVHw9YJPB9kPM3RuXmH8z/9U9DvsqwZRGYKemHO\nZOlFjea4fe9tohcvEnqwYOazyV98ntRbE7zuDVpbx6QDWer0qYh+lqc7pNZsBkaTa2KSW8sO117M\nc/TtI06DJmdkN6OvfJVLP5Bk8t0p+ee9HJgmwUdPUEhQee8unbfex8558Asa1qpF+b1jluIGAb/F\nZFKEtWMS2iqNlod39m4T9lm0PRHee/9PAXju6hoe049wXGEyr1J0F7CTPUblBZMNCaNkcHxjBys7\nITeKYG76yc1kdus6y8s9YqMgzrLGhcWcxixJ1qXQ6gUxJ8fULAfHMQh6yqiP60xiBfKrKqW5TXAh\nUkHH3KuQcWzEoMxoYvDuWyNSk33uTwQGKwbhD/Z5f+blpReuMzcNUtEOi4nOoHGAsZLjC//zS6g9\n6L3xHzDOnWfXM+LkYQOxP8FXvcdQ9+HyjXEaYxRPj2E8icxlAh2bmx/vkAv3kfoS1qxG+uIzdLUR\n2tCh5DSZH9aJiVXcZhgp4kNZXOCtt/8MgNd+6Et0zB2uTzLEpgKBZoU/+vYel/+X/wZ7b8TB1jZR\nv5u7//4uIy3FxeIlyvdajOw5U/MRK3aUmjNGy3sov38LbeyieuJF34phdsdMd/aQti9TTgzIOCYV\nM0motkuwXUWox9HlLovcfdz2BuFIgN7jN1n/0R/j3jd/j6UkE5dStPoGTiBMTNCZnHfYzB6jTmP4\npBZdRaIuOcx6u/hyIgu/ja8BVmfEleQmwsiNJoskvRLDwRGTmI9F2osiz9izTjGtAishBe/oBHEO\ni9QjFj2ZeUBl3fZghCyC3R43TqtcXtH50zefIg5e+dxVjh7mccV8iH6Z8FAhrtboxgwKHpXIVQO5\nbBPDwWx2WWZ8+M6fx3OjxCAZoBtNkYyLHDohfM4hrlkPp5LkGAhOZ0imD02MMR9F8HubXJRC9Lfi\nyJLGahuOihajhzOunb+KKsjIEZ38COZGmMnwGPd4h/ZBE1kfIzcjiC0/vpiHTv02D5YxQuMR/kKW\n6a0OBcuPJrpITPwciYd886t/TVJaoLe32dm9ySuBDaSLfvz3g9S0B6Q+FycdcrHcEhgLS8zqjPrc\npOnTOZkZeBYvMgw8wk740GwZQmG+/rWngfyLP/gpgv0lTmTE0p9hIflp+Y5xD2r8P//ukPNX8iTs\nDU4slXSjgbkKvlsP6Pld+MsiI8XPeL1EoV5gJ1LmWStCu1tH20jj2e9hqweEBJFwy8OkksfEIBYP\nIulFTkZtfM9eQfbXMRoBLJfBQtDRWw5Lo8Wi06WeOaLV8uBTJbx7I3rhGQtfgcHBhFrpPm+89wjP\nqoV/POQorXIu5SLnCaMvoogRm0hOYJKIci4VwUgEaE3K3P6Tv6ZoRMkJFunQOuN0n2S5xe7ShS6L\nSGMdu3IP3yenqNE468oey9aEr3x1Qrf69ADkv1j7Emr3EM3l5Wv/+ffwv3aNLZdAYKozcS/wLM8i\naBNO37zH1Vey0FKpywMcT4Cp2EdsOIT8U/qrUc72X8HU58gf76NFiyAesyzHOfEvUbwxBJfDzPDi\nDQeZ925x97sbbEVtxpESo/0Zo+UIQQmRnrqYrfSJL2zQYwSWXU6rLpa5Lv5xgaGrz1L200j5sD+/\nQvqF8ww7+7iss6SmbaYRBcW3wdLbpSMZNMqnRFZtLM+IwNEILeDF7U7zsNYnLXuRXXOGcpLx9JRI\nQKcUNhg/mlNMFxFUiZrToDmKsHvnI/6Hf/y3QET92m/8qy9ff+1V7n7U5HhnhysvfArV3UJspViJ\nCQRrAqY2Z2C4WTufp18yKFcPUfxFTP8U736S2DxMK9xHU2SS23lc8xHTCwr50IhgWKeZGjDQxoiR\nFm19zuKkQ7njwoOAE7HxdJbYfRM97DDuJcnaFo4xZ7gqUddG+AZjAm9aZP+ywq9/9Nssf+oKC+1b\nPHznkGAsxVZcRFwq7H/3XYTkgHg4z7Tcx9AkUoHniGZVBlKWk7JCKGKjHNrM1v3ED6N0RwaNcoTZ\n9g7icok0SFPfqBJuDzEjDXx+L93ZIYWfkdhihbf++EMANl9+llf067jPFKnWH7LeVSkfdwhtSHTU\nDaQ7fS6/WMAwK8wPp/jPnafaBi00wGVeYjCpoV3N09JEglINRZUwXBEW/gx25AjpsYpljwlHPIxq\nFgW3SHPVhdw7In3xBZLCkm54FY8DnfszvvH7f87G+VdZ3qrhU/0sG7toHTc0mtAeEAq5qJNiIdq4\nWut0X4Dxu10OQy6UXIbE9pBEe4kr3+LJzfv4P3eF5amIYzosB36UczAfTvjqfpnV8x1aIZue4iU2\nq3KUWSHshWW7hNMMI+lNQt46cybogxmxH7nGX//e00zU5VdfwW06bDyfJnJkMlgahN0yLvcQsSpT\nTPVQxDV8sxP6hptibh0n6CG9uE+/JSB7AMvL0olgzlT04IBAw6J+pk8xcBmz/BBzeR1Paox67jzT\nDx+yFLwc92s4hotncxs0dm/wuHKfuDvL+etrtLdDOO8fE9pepZtPcj2e4vffvMF4NuPe734V86FB\nynuRoitD72tD4p+6xsF3v4UvGWXhlnk23ES8p/N+d4i8lWBxp8LK1QsIjQndiofZSYmZHkJ0NxDC\nS7xmD9POsvPRHstdL4YQIBW2McQAgaQXOxTA7jmctt/h44+eXkv9wAufZHyrxmu/+iXufvseo6Nd\nxE/5eeevjil84rOEDkUS8uvEPTHSPo3b//T3GG6tUlgpc2Xz5xixYH/3lFrfJJGWGEZShJdDBpKb\n9ELFF1hhojU4NPpYwxTp1RFD7zaGZuCRquS1bVRJoS8W6OyeUDy3zVgoUX6/zeXCdSaBKr3jDheG\nU/aCKid3v4XX2iBiVai3EyTyGU73T1FiYeZKjHzoGF2xwVugqw95iIHdbZD3p9hZHqFFFvj2qxzp\nOstSHWvVjekaEHadxb3mw1w4JDJt9EAPA4XGSEcxHPyLJMOXW3z7Pz8lll/1/iD9a3P83TnaIkSj\nWGfdFhAdEb81ZmknsPIR/B4Pot1G2z9lWO/QGueoTO/Qnw+ZCzUyE5XpfpyW0qNy38af7tNSDeRZ\nhtOVPt1aEyXmELV8jG48wvT16W9qbMjrRO0Ud5tP0FILHFVkaS/wrj6i1ogiNmVMUyVyKUp6FsR0\nifScKDePH/LMf/UiTqjN4X0Qcg7ZWJdqTGUz3eHx9JjPrW8Sv76Nu9okfCHDQfmExXjGetyimNhA\ntr7Jjc4JRu0Ez/0ljscmaE7ot5M4loBwwcK5s8Zm5gRzCkHb4M+//rQu5/rmGaZZifFMJWzdZrJo\n4T+R8Swtkp/7FC1vk87BI2TJgyL20fQU9jxPcmLhcnfRxwHGeoOwu03/yCIWjHESDRA2mpR0Fbuq\nAha7cht9Oufu7QPC6ozpGS9zdYGW1rj5nfsEhQax6QZSakldNSETYuqZcWaoUvSlmGphQrKH6Gob\n1+4TZsI28lwkZBXxqyc0O+c549YZ9rqMhyZNp4Nk2VjKlMVEpVEcEz6sMN50eIkmnvaIksfEnk8I\nHTjsiCkWskjMrGGwwOg20f0KPidBV15DM3PkL73Ie1//j0/nwvWrfOJnf4b5yIu8nSOWdTGWwsiL\nPi4tTf+927TOOnh8UfafHBENrBLq5ym7j9kaOKSKMtXlVdK2Rl0fU+kcsohLTAZjbCeML91B23PA\nUlATBv6BTE+fs3lB4u//2q/S/Oo/YbbvIZmRWdQiGIrD6eyQ+EGLwLU0zbf3mckOsfSQhbzFigH6\nIIS0EIkt2lRuVghPXSh39pkkk3Rtm/OJSxjuHroaxirv4wn5aIbcmO8MSbyQ49lPfopbt/bJKz6m\nnSkoGpNxjezFCEf6HL0OhydTEtsePn4SI+Ze4trbYadzzC//0j/6my+i/u3/9Vtf3n7mJS4XJqQT\nz3NwdMzZzxSo3Nmn8u1HPPPZHFNfmrWFRuNEwZwc4Yq6WYz2GZtbTApzQi6drhAl0pyDS+D44w/I\n9s8yC6gETRGzEaTpnZNtmbQmNktzwcbLXpZ3FiQGVdTVIJzv0Og6TKTHSK4Ix8EOs48E+u0TViUN\n65kk155PERnpfPHMpxECBtp2nN5fnZAtybTDYxzDJupN0/UECEltau40kVqfvScPObMaJOQSKJ+W\nqdQaTAYh1PyYaTbMMNHC40sT8brppZIkrRpK20t7UMQXmrKh+7n7Ro4VfcFXvvW9R+azP0zv0QkR\nZUrMayBfSZNbfwZXyM9UaVFtPiLUWmXQ01n4+wS8KXT9IfJhgfaLbaZDncP9D0j3/AxfuUB2WkAO\nSrQ9bXyBVTzGKW7Ng2JmqOpdSoqLzXkH76U44w8tLv/M61jv1BAXQ/xnirzwyST9ykVMd4c93xIl\n4KK+maAQGeFo76LuWcjPCyjdBSeLOf2dG9grNuXv7POJVyVcB2Pm12N88Qs/T/WftPiDX3mLy75t\nOp4AE93DC/4Ao/EcM5vjG7/9J6SuRDh/JcEDWSI8meOYM0KWm0i4j0vwIKgLprMV8DYIf+MrfHXn\nGIDPbF8hkXLTfbzDspgjUeix/2RGxD1h6e0T8GVIuaPMdZWRr0dn5kGby9hJBf1qFM8yhXgq43GZ\naLMmIUkHycuslkeItgh/5lWWuy1aRyeYcpN0aItJtkawbBA346BXEVzXCLh0uvcWlKMN0idV7PU4\nTqnG+P17vHXnr0k8GyETOUv6+9ZYTtdQpw3u3n6H+XUfzUQW0xfjnOsMlzNlxl2N8hMV4ayO+7FA\nZfA1rNMkg0SGi94oHmOGIx9ydhRjHjxgaGu0SjvY2RBTfULUUhk350TPtCgbRYyHJwRtA+/zz/LG\nHz91omKf/izFgpfyV/4TRgk2f+J1pMqA1FmTTr9GfHAWrb/K7J4H73KVqXpM9MkO8rltvvGfbuFR\n24wUi7wkoZpnYfkYVbIR8zrxRZrT0CHNvpurgk1ga4byfoH+/bcJiwN8hFHHMgeSQ8aKMMuIoDWw\nbgis/vQ2dxplWm8fcy7rIvbSBWazOcqDMtpVmE0clLrF1LvEU1mQ+eRZ+n2bgjvPncMjAlqUqDPA\nibQxF0X8mT2mpypq6iyul18kNtWRXX4mHwxJ5twE1Sg3/+wOhqCST4TpN4oEWDLUwwSPHPzrEwYH\nOd7+4Clfa/tHXuWMDL1wm4TRRlGmSAsbwYrRVSd073ew0i6q3lMitR4l5RJun0hfGBIbbPBB+xFe\nT5ylUWUkBVAcD6nNHmZyG91QaQkV5hUvfm+Ir37lNrMzKX7rt3+TzPqnSGoXySg6ZvsjvGIAOyLD\n3hPsqB/PsAp9lVG4w1b6DLK3w3JcYxku0OrB1fx5/v3/9mt87ie+QHtXoH37PZaxDBc6QaqeGdph\ng9zWRR4f6rgCHebDGPlCDPEohhE6ZjZ5wnwny8IakZC3UbUM3ZUBprZBYTimaYSRuh4+/aUVdm7f\npJCx6XRmfP2bHwHw/T/5LLlZh0XUjasU4+LLL9FWU+Q8DSaTNoVGhMRaD9kaMwobGHYKJfOIppGi\nXoshxlyI8Rn7JyHC0S1Ccg3ZNaK6aHK2u4pRUGkIXlyag9fv4/mVEGJ0zt6uQXN4SCiWIVtRsDav\nMmwM2Bkd4I0KrAwUhIpGs5Zl7BZYHysYqRY9w48nJ3PhxSLzEnTWFoSMMWeEAYIfXF4fpjbB59Pp\naBmmAz/DaZCFaBPt5bn4k0n6H4u0t1PkrRBPJj0qCx/FmYLt79KppxFCFg8/vsMnkp9iqg5we3yM\njBrTao8PvvsU4SJ1TIxEhDJdJiUb70BmJZCkJxSYpN08bA2J+mNclCRGd+YM1iBszZk2oqjiHL0e\nxBgfI5Bn1HV4989u8gPnn6c5cpPwp4gIEjsuDytFDUcy6Mw8WPMS8tzhyc9+npO/+DbNNYvKKIgZ\nbGJ2wsiOB92/xrg6obF5zKoap2bEEHZuM1JsxEUb19hhtJEmXvYTjD3DfhqU5g6WJ4+4Osb6WMNR\n5kSCRTxZg8x+kJo6woydY/yVMjFxSe2SzmZiQjioMOjqZMI2oXCRevkJZyJerCMgM2F9JDG9GmTn\n4x1+8Rf/FtS+/O+/+k+/fLH4ffSXm7h8LdRUkFv/30NiyoIzq2HaJYdKS2DkbaKMBDSvht720xDX\niEYc5NIDqs0ImPsI4Si9WY/IK3k+/IN3cRdFosYqp3Rwrym4Q+eJtRx8ioPP7cJZOmhbG7gGAUwl\nycBdZ+k5g7HqQywLSOkOF9Yv02x5mYdExEAG7ewqVumbhMpH9O/FyBd1mlaeeVxlHpEoBLeIyi2c\nUJ61YJ/ObIBHSPKNG3fIXHsezyxLJDvEZavICxetrz0klltHPKrjOU6yrD9Eaq/yZBZg7nnMQhAo\nf3eIoCTBfY0333m6cfyXn30JYyAxvVNGOFlBii0w759wt9NFNSRsfcokuSQzdrGM+Zk2h8R8cZLP\nTLj1lwrbGzapsI3tn2HUSiAJjJdj+uUl+YTDUHNhPlCoF0ukfFHi5QWNkR/tYY36lh/jrVu4z2wQ\n2Eyye1piFjoLzgPOXM4xK7XxXHmem++8y6hV4uhrezxz6XkOGiW2Cts8+3NRfJUawbUwkdfd+B5G\nkRUbvTng8ZeWVPclcok7eL/4JQ7uvE3/OI/RvUM/04bjAb6XNfLxy7QjEg8+OMaPwjiSZjJR8Lc8\nzANNXHYa+8YjRv0TXviF1/id3316Avzjf/ca9++A6ZqwpcmMTursjOOsXX2GvY/+iGI2hueqi+F4\nFS9JOqIXee0EJjGk+wusg2N2LR8eTgklrlB3NxisD7EHU7qil8rJHn7RzcQbwxx60NwK8mkVV0Bl\n4pjY2pSuriIoPlrxFrPmOtK4Rf7iGYIti+LaFpnic8REjVh4lb2PavjW54RxsbYxJyuusvYLP82N\nP/59Lr5yBeE//gn7uwPGvgDpswp4csDl/5+7N/2RJM/P+z6RcWRE3pH3UVmZdV99TPccPTO7s7uz\nF5crLo/lakXItmTKkCnbAk2RK8IgDHsFA4IFWQRJCQJkSiZN6KBo8d6LOzO7c0/3zPTdXVVdd1Xe\n952RkZkR4RdN0C9twHojxp/wIPCLT/y+z/N8UUN3WApNGJycMHJPiIYyONJdAq1FnJ3r3Dk847m4\ngnuxhTNTUf0iSn2N9kfnBLYkFK9EtWvz3mvfA+Anr30eI5rjXAuSSQrcvH1E8uUAlef+mC9++W/z\n2zcekkyNiZQeM9IE9HaN/UyT7Es/jhzt0hAgIkg0/T6ePOngFqdsJa5zPh0i1ffRSzkuXUohTDRu\nTyWGSgXdrRFezWN4swzoEU+PKMkNFmNe+uU5fTOEGImSugiirzjMRB/jeolacYTxtQ0yhU2mRhtr\n1UfIk2K6HkWpdonKx5x2egSeF6iERjw6vcuq/hyT4wMsv8VAyHMxMWg172P0RQy9y/JwiUTEptLy\nkIhVcJ0L1MtxgvMhurmGJdUQekeMxhLHUxcPbj9tyP9vfuZVuk0bLTBACY+I5oNI6yGmowIV5xnC\nN0T2bu+TN6/giwSYmSZuJULVpeKKDojIUTJdASsoIs4U1q/0qRkNxDrU7t0n79nCUpOQ0fnS1gYx\n7ylf/uX/ma51zHooyX3xDqNDD5PVOcMfTgilUvisMy7Oo/R1P50TlVm+Tjwn0vG4Gd0z0TMDpL7G\ngfOEePYF3Ab8q1t7vPjCFo5xzINehEsvLeG+Z0LqHmnXDqZ4xqA/xtR3CdfH1DIKI5eK3NpiHO6T\neHlALmihOVFC8xjmZIyznqD6wRkXCY2kHiDc6fD7rz0dS/3E5Z8ihJepkkVS67Q6dwiExtRuTliw\nAohqgFZMxa8LzBw/Y18Hv2eV9G6fTqhPdhxmpBokGgkKqQ9Rt79MvNVk4IrjD0m0al00Y8TUauLM\nTSZqnWl3CVvyccmvIj8Y8e74iBezWXYH75NZ8BGRYnBRpD1NYC44yN4HVLx15hcm6Y6JlJ5h1XXO\nmvuYmoC4sEBv1OTcXMdy1xCmXjzVCXVZZLbZIeOCwsUYTbeofmufx5KfREZnGK4iZU2UVR1NjeBv\nl1hN5VGDNvlsgoOMw/rFHKs7523Tz85Xvsbrv/VrAPz6P/+7uLyrpGZDjLBCNttjLkywtAZWMoFQ\nrnA13KbtXudi+5j6u2Wi6gZpzyETZwaeGZ3FIOK4zJ1KkbWMn+m0gSu6CHobMdYhMahxNAkhdoa0\nnDk+TcNpuFAiaaqlc7zVPkuWiDhOEgjv03MNiMd1er0j5EiacUNEmGiErwRJ6YvIfhsnp3Nlsc9E\neJ3B58rsaA2mvhfxKWMGowrh7ACluESx3+KN7/weossAKYpWLbKX+IhasU2wITKXAgwnfsKKTi8S\noV1vkDfzqLLNPJHFGWZxJzRE1zZv3/wOf/8X/hksemoAACAASURBVBKM8/7Z//Eb31y49iVE7ZjD\nfgT/7u/gvZwl2AnhzSU4PdxlNbdIb2SiDcK0qmeEV8b4VJ2ZA7PtVS7u3mMtkkKQTeK+AfIki7Dl\nJdOP04yM2GuU2RhOuEg/wdf3Mxoe07IjBE59ONsSzSdTon6DUeScwrxH1g5QmvXRlxw6Sz/ALgfI\nF7NM1Cjn4wPG3ixuQaC8OOO83if8vET2OEFaOqVWHNN3ZwkeFdlvg24OafQKPP+lv4qrpmD2H9MO\nJbFbEp5FP4uqyds3G1z5+hVum1VmnhQJTwcpNKN8LvO8b8pBqUtWTyLXHvHaw6eH85c/8XOsuWxi\nniHHQ4uO4mbfKFI/VwhuGLgiqySPVPRkCFMGd0/j4/FdJh0BaVlluK/h9U+Y5T/FZLdIM3VO1Bsg\nOA6iaD4KgxKBhTbe0wTj8BnZQpvphguOS1i5JXZmPgbNIeYHHWLuII/P/5QbrQheK8fc12Kk67z6\nk/8Zy599hU7hAQ8PYyz4gkwKBsPX7/LEs09oL8lEvODx//42ndMjWi9c4zd+5dfw+OP4155DfDwg\nM3WIRjSimedZf/Z5gkE3g2Ybs1UksHgVtTugvR3AcaKk5Zt4cgpP9jx04g7jVIbAJ2TOdsO88/pT\nr8UXXrjB1WdWCLgt7joqwXCC8SvP4pNdVL/7FtqXL3H0/SiNZotaoorjaRJ8YtEqduhZKo5Px8wG\nOO+WsWyB/ccdRB0kx2SyMGQxEKHUHuAdCMTkGbFMgmR4AcvTZiTLqIJEujpBXg8QnngwKudcX3mB\neamA4FtEHpXJpXMoCZ2l7mOimThB3Q++PtvCA0LXU+z+L7/CW7uPeLi2Bh+NsFwXKEsBlvRVpNaA\n9UAcU4VwKk/V3OREN7i3+ybrSz6OfEkW/85/i/IzXyczfAG7esboSKW9FCU+G9Fwt7HjMtFxHzsV\n5wd/9HRxcy71BbzGW8THJqdei8VnVhFKr/NzP/H3+PjTH3Dx9hm+dgFVDKAnhhS9Hi5/7gu8ffQB\ni2YX+yzAqB+CYZ1xukT8eIK17GbSThBcjGHPjrHOglQGFzyXWSJ2FmO0OMZkjqvR5CI4Z6RuIJwV\ncKYTIksCx/YDookMhVvnrM4HnDoOUZ+C65rO8ZsTgt45UltASs1pHJyRFH0cjWwWMgaCLVM0ZMIn\nUy5fep6LH5wyvbRMUDQR7REDPUSm2EPXrlD8uI3/xghxt84oNGCbDNJqkkqvSCPq4bnNOTND5d6u\nw/INCXpJ3rv1FD6vr/0Y47lMPN2HeZ4nD8I0lRHxUZqZq8J737rL5dWXmWdOebdZZikpIlwkiEc9\n2MU5giYjJMJofoOBRyG+f0bnPAXjAO7UOrZrSGH/Hvl4hJFWJafMcJplYus/xnxwglEOYOWaDEs+\n2q4iRtRDo9JkagzIBfqEgzqR1Ard01Pcq1ucz/qM41c4GZgo3TZRJ8Hj9Amrm1dZ9Lv5wQOFtWQX\nIwbj4BGbcz/1epCK+xTXgQOXg0jtBNXxAG8/Tt13B6++wNRIowpuWo+rlDIx/NMTWu0ZqfQQxeMQ\navRYEj389vfeeXq+8Xms54LkXAG0xBkP33KjfyrFvdsfktIEhorEMFgnfDKhPvITrsP7d98ivLqD\nbh/Tn3uYxm1qyzM2azo5a8Cpa8rF6x8Sz6cRCjL1mIa/JbH9yetU7C5Nrc/aSQcjf4L7mS9CYYYi\n3mHi9eN3FhlOHOR6ASc2w1ef4dFtZufg6dQxwi5mxSzvNB+xsp7A09ZpPL5LWs+S9hQ4N2CmhjEz\nFq7ZGYlSCDo6ynGJr/7s17jzqENGHuGsLTM7nDIxp4Q/VjAGBQpPfNQSbcr9AVJZYG4nEK7FeOPs\nMXboEvuvfcjpg6c3UV9SN7g5r7OqDkjqA974lo3eraFqA8ZPLgi4RQqtMTNhyHW3jOJ7Fsm+RdEX\nwDob4bnuIvAoy6GTYmWuo+4s4euYBOMPGLtFRFPDGceZRoYEOg7VQJdeMQYxCWU4JezzU08PmPXi\n6P5zvI1tpj4XlYZMIDYkoMRYkEI4YxmxO8IrTBmEQhzdvIW112caShM7blAwLKQHdcyUgS3Y2K40\n9aSP+fSC5I2vE14boUgTyuoZ28EkXiVFYqZy5MRIdvx4N9vM6gqe2ozz3gf883/yIZf/q6vonRbz\ncpWPkmEa773OL/xlgKhf/7Vf/eanLnnIxjY5F95HqqvsWCnq/gTNxhiuhsm4vWiRGXLOj5hO0hrH\nGPeHuGclzKHB9laSI/McVVbQjmPUFS/+QpvjGGTcB4zHC6RX1lmMLHLv9scsvfyjGO/IjHYCFD68\nxfhSlvnDIa7lHHHPlPP2lLWxD7dviTiLnL8dwp8aoEh9ArqF4ZtinAaITuKs+kYMWkMq3jHyLIhH\n8xIa1hj7dYQxqGU/+qVLFKYdXNZH2BcZhpkxm04HeSZzLyyT//CMmRFkLRViGO/SFB3W5gnGrXM6\nGZOoK0AvYZGKtfjWD55ed3/66ldJzdaw1CCu/ARd0wm+nMbbMEhrEQ7vdAhtqpxoBoELmV7uAdvT\nCGM1Rc/pE0albg/wz/0M7SqZ+ALFkxGyGEP1nWL3/YjTGI3aXXKanxpRBvceEtuJMDXCTAYRkmE/\nnS2TqdFmTYwhOV7KoyIFa0K6Wub+kxLNZoF5IEHyFZmarjFshJjKUdr3KqjhNIadYePqGqNrl1Ae\nKUxfXSS8vIB7JYET1DiXDPqmjct3nz3DhTCaMWiNmWdkThsmIVXDnwgQkwfELJWPCgrKaoeUbxut\nPiBBFLOY5s33n0aAP/vpr/Io08cseTFNNxcuF05snfWpgPpRjflkES01pDAuUvzIRnvYJCDbmLmX\nCOdqnHRVtFmRVZfMON0g61pjNguzk1tGn3XpGDOuTGZYc51EzOG4foh5OsdJDpEHee4UzymUHxFL\nRsk6I7KBFUqlAm/dLOCWVZyxj9CqSP/xLk+Gc9IZhUC/hCDeJd8vEf1Cit/9NYEn99b47Np9XEqH\nTWPM3hBe+7N/S4w2B54hayk37daYWqJN3hVkwTfEPXueB84c39/6h7g7Gmr7BxybIkJCJeBpMmdM\nUE/QHTeZ+C4RHJ3x/e8//ah96pW/wuJmhqg/QU+LoQ4LmLsBTqQogb0KsifF6sBieHAb2Q+SW0WJ\nTHiyN8Qc6cykJgZh8PjwZvO4VnOEphKLwpxGbUjr3UPiOxaz3pyD0IxC8DbxiAs5pGIeHqOEMzSO\nGsS2csgLJo+LARYSl5FlPwHPmINjgYy7hHuSptfzspX2cLB/gBLeoXxxk0h+nfPCHWQ9xGSa4+LY\nR8AnYIyD1O/WWIz6SOoT+mMDeaIhbwhMTpoMS2Pk55dYOOhy/oxE8uMptwSVzsWA0OICchhOdyek\nBxMavkPi2jUycTd/9N0/BeDZZ17CnRwxG6uooRyd0RTbHad+WCAlrOJNGuwNFVbXs1T+7S2cCze2\n0sbqxuiHekQSAwZiiWxdw1A1ujMvUXcKJgpKaEZbOiWpbTGeTzGdCcV9A09UJ6MUsZR1FG+d03cC\nRLb6hEIacrXCRNAIb44JrexgWWVi0ToX7k269+6zKl4mqTRRVwS66TKTEz+vPh/izp++hcu1gdx4\njJnYRrR6LA4MTDtGZuQwXRDxJn0sVDLsdZtEQj56LhXXypCX4s8iPKjQdA9I7DiM9oYcdtzc+vdv\nIfimqOU0x9MIGTHH773xNEX7N77+d/BeatGPZ7BKJsNmAu3ZOF/cfhbzvRlm9JTxhUByvEpnaUxt\nZBGZbOFK9anLaSZRm6FtEyp46W/I+Hv3iKYketIa5rRJZ66RCQmkL8M7H9wiqOgsTVxM0hfUW1GE\n6pzZUMIf8WFOx4yLbkRdQ5Nkwvoqfd+ExcESc2mfgnwJJbmFvhAmpEgkhmWScQmvYuK23XTaCfyu\nPaRIm+BEwZwHUZddTDsq175yhZc//zLOr7xB076gU9SZ+FQ+FUgT/HIIJC/+qxcYxBiNuoyWt7GS\nr7JnjdB3x0TsO+Q+4+H9P3gTgF/8l/8DH75xG+GZV+g0DVJeP2ehJ/h8r+JajTGJeIhKJrVRlYC6\nzDAxQ5h6aNjn2J4bVIwRy+4oRbmDx3dAp2lxWfTjCj5mvu/BCo5gGsI7qdMduYj78oRVlZ/8xs9x\nv9rBqvToWxFE3zmNZpRKpoO3beAVFYyowFTUaFgyycgYqR3n3eGIXl9hRzEZMyFQzDFLRTk77aH0\np8ymEsq0R2V+TFCMsBLwIJ12yWoumt0J+fASPjFOZ67TXE0Snd+lbwhMpxpGscjacoSaPSW2s0yo\n26OS0EjPu4TcLj56631+8Ru/9J8+RP3qb/yjb/7kNz5B/60zzh+6WU3v4BEFTHmGLzZkydB578SF\nu23Sqtc4K0yxl6P4hB543ThmGZc7gd+j07Y0xhMw1bcRXw4RNJL01Cy5nIM9OebwHReemEr6wZSa\nR8I9aZEctslOJarZKnlfiMEsQaqiUbccjs7rDAt5QgcyCTpM0l0850EqHYug10Un0MA0Fxn6dYKH\nBuMlcB6c0o37cDwOCjMct0nwkzaN5iMi1SjTKzKHv3MffVPAqaboqSPefxQgn0vxeO9tnlu7ghkv\nUmsYhBNrWEc3UYJBepaOEUryzveepn6+tLbFo0aJxLUYVWvOyaSG1L0gljSJh8aoiwbz0wmCp0Ek\nkMIsDDgKTHCMMRvtJIZwyKwVwFxz8L/3kMncYKAlCIZKFCsBRmGHXtPF9U8+wxsHf8aloIrbtcrH\n7g7+ThDbbuK/EcPzWKNwMkDXsti1Cql+kk8MdxhfihNt2JRth2ypj2c1jHLYwVVtkFFlArrO1Zeu\n4W26aEa2SNYmFC2JXChOPGRjX7T5zd/9Q5bWN3D3y+SSS8QNm93b3yez48WahvCuBin1i8RqQ0ri\nER0jyWYmihyUMQ5MVM8ejXoUR5Z49+2nTe8/9SM/z9Hbbo7EKc9sWQwGQQLDEvG+Qulsn+hPbCCc\nuLnUbuHJbyIEuoi2m3pb4OLOm2xfVqjtygzjayQDbc4nItGKhtiu0DNTyCMXZmuAI1e4X66TXgrw\n+OYugUUv81oRae0qL/53/zVn9w4ZFjWE7iMezTWia3XSUy9NdE5aTRx9wrDmYqZrTCptUqMYo8gW\nu2xj5Qv47p+j2qsETw6wdJvAqcMrSR8tTx6nKeBMwrjSbqa7LdTaY4bDDLJVoSOOsEJeZrsFCnaV\npXWLeWGKK9LCY/uIDS16VhAhp3PYqfHgjafR6U9/chMtK7Bn9InmdbyjTdrGAa7uBe27PeRVlZB5\nC9tjMJktk/h0gNtdB0/Ji1Z4j0Y6QdipkzdTBBb82G2TkBmhtPAuicMWgkvG5QtR9c6RZJ2uKqL5\nRVzvT/E/e4P67QvC/jktx8Y393LmUVjqD2k87OO3BZZe8OC3Ugw+ZdF3RITugH5cICX6CcYcfCMB\nV86L0oqSVYtUmhV2toOETtwI6yOsfpv+SYWerRBJpLCbBmUhQH51A095xmGqge/BBS23l1xmRjk8\nRdAV3AdPCIUlnIifsJrh2BJwzSe89vpTT9R//qVt+msSdZdD/ChKT6yjRZPIdZn5tsHJ8TFr8ygr\nxNnvnhJ56Vk8S1FWgjITew/Lm8G8qGJkAoxLNrpVpLMfwHv9nO+8d0qo6yHmWaVfn3B1bQ29NWec\nczg4CmNdGEhylKRh0VeG+N0rYBlE8h4MNU1k1ud8GmFSKWLNFOSOj9/+99/h2vactj3kunmFqmfA\ntfUgcmdC3h/G3XSxZAtMrQl75THqmkVv3WA81IjWHeaeMoPFVWKnF1QTXaKBIDOfjrLuxvjIojXS\niXx+maBgElnRODw/JmvpdDxhdB98540/BmDbNSSW8yGgMus2UUJlkk2d+kGNi6U7rJgJhiuXOBWa\nLKsKXZeHtfgRsw9VWucf4CuoaCySzHaYZzS8Ypppsc/YKlPdl3G15mTDJuflGOm9Hu3NGecPZRLN\nLs21DTZ8QSRhn14zyqzVZym9Rrh1n9JwibHrAZ5wmwPzAt+RTVYJ45Lb+HZyRDMZjj42KRY0fOEi\nt3sa0yd3GbRCWPENSj6FZFMg1K9gaTodo0jnZ8+pfevbnB8bpFZy+ONTBDNNpmowkN6k+2BARBYh\nlqRenHLWOONT617mVpFl3Y1XOuX733oIwAsrn0DpHxH3BJkOHrE8S2FIJeKORa01INazGDZtxosq\nww/r6EshfLrG44/v8OK1CFZD47y0y9KSTuyJi268TVd2MUqlsBerjK1nCfRFejkfwjSOcFzgT86+\nR2jfYNpoUfBP0NsWDNeYKBV0y8vASLHsAUdYx64NkR2FkdmlPxEQZ49JBaeoWoRJTsRZddNKqVxt\nqZxf1onYHgblKsnxCgn/iN6TGk/MfRqOm3A4wUz0oFcaOEstgk4IuSQRyI+YtS9w7fg5vVdk9KTE\n8naW9EUVo+1HlNukF3J89403+OVf+kvQE/UP/tdf/Sae6wRzCjsRP6PKnFogQkyxaHdlGrEBM9sh\nti0QGjfxBGTCYQHvqIalBBDlK1TLR0w9NsN3JM4zRb70D15kdqNEyzpDHB1S3R0Rc8fxDXw0QkEu\nXF22YhG64V16fZ3MF+JMOgLzvR4VJ4Cv2+e8YeHbWSQQm9HaVFgUHxKf2BzKFTZcbsKZID1Nw0y1\nWHRi+OUaLkacu3UCyhj1/hGHF7eIVdo0Y9uIfpGIJuLRTfyeEcbUIVby0nCuc/mnG5jzIJevLPK9\nf/xbpDMp5LDMTO5Sl3VSkxBNb5ZZcJUP//SpJ+qn/s+fY9AUuXn+HfqGSk5JgzXk6LCEolqkYjqa\nV0GQxiglm37GYdGjoHo3qVa7uAWb5U+n8BhJ2t0+nfEZaswmbic4cfwktSCKf8Tj/rvkhZ/mtN0n\n9pKBb7iNTxdp1CRkT5MnD48xl8YEei1Gdo9FLYwnE6DU2aOyvkBwVsXomOzkc7iPeviENFLPIrf+\nHB+9/5juuo7dkOnVRqS3k0yzHhaGAYY1lSuvrBNwJwkk09w73GM6NBlrFoq2hWs6waXNSfk8NA0X\nbn8Eo9ElJMQpfdhA0cOM7h7hiw/Jhg2+9edjgmeff4mQLKKFVOY+ECsVtMkyonWPtnuDC1FgOvIS\nckCW63giy5xZCsvJCtYLX8ZTlVjOmFSbDayBhOVWUDwTdtGINEuYUx+TZ6NMHR9337vFaCYS+Owr\neDtBumMR91aO5y9fpvcHH+BLNegpadJRUGpx7q3YqIMBFXmXcKHDRURC2jMITXT2JlXuf/uI7Ehi\noDzHnlwmcEnB1fbg6papWiUSIRV/s09aT6CPB2iFCmosiGcQIuiRoR2mqfVxXVhMn6kQ3GvjXYTe\n4ha+qU6p1CSkyCRCMSp3S4SSEd77s6cw8Mm/+9eZ/PAY73NJjv7ggFL1hwSX49hpGXuyRCCYxEnr\neKdZup/y0y/XmDT8tLUu8qVL+IXbzKugBRSq8RpppUxldBMhMKVwUSOS/zxmZkwkFKFTMlgQPLz3\n9odsvxrHccokPZCXwvh0L3d2P2Z8/BFyUsUsROhJEv4Ti4RrQD7n5+S8yMTZwBWpYXc9OL09ppEo\nmmvOrB9D8rQZxUPMDBtGI5abK5TsKa7nVVZiCUyrRX9JpngzQL15l7kvzoIpchJM4xVtcqkM6kxn\n+NDBNZoiBmM0tRDheQ2jdx/N9xKv/XnZ5vNfuUYt5GJ0p8dBvczm4gLdkxZ9j49Vu4enP2esjqnN\nuqQUnUiuyvTDM5SAiiszp2/YCHIIZeynJoxQtW1S1464cy/D9uUgU98C0uiY6GKL1l6Unv8Qo6eT\nVMZoW9Dpl3FcAuHEHCfSwq2oZGwf7eYD5oEa0VaUenYJuddDSm6h+PxcywnkMyL3eiJ69gAfSxxS\nQ3KS+BdMzqUVZsVdJu4XWFbrVO5FCRw7NOdBxvnrLFce0wysETc2GLdrkFV40D7nxcwGPqlDZfcE\nrR1AC52y2X2FYuFDFMUkXsjz3d2nVSR6fJGVrQA7G3mmkRn9gyJHnQojdZn4IIYz6eGfDJhpm5id\nNqrTxeeEmCTiiItr7CQC9OIzKNXpHdlEMn5Mt5dxN8HVcBVL9xFwD1CioDt52pE43qREOBUkVC3T\njnmxnrTpLCwSlE0Kdo+hYpNY6OGcdOh3P8FGvkUr+RnO5A4Jt8ytoQ/VEJhxjlMtM1DiLAdWsXeS\nWLkpqbhJ+XCIddRF8CSxKm2mYwlrqnN7OOH6s5t0PTLmRYzJwW3KlXtE9BcwJnF6dXASaULhDoXR\nKZF6h/uHZaaeKfXhkLtv7wHwnGeNVlZhXc7z8//jPyT9N7+CUE7jlxyk3hCfk8CctjAODWQ9gzNx\niHu9NAc57EYLfUVEGCVxiqDn+oQDIqNmnLirzbwv4Ok36DhzxnvnFBIBiDbZsFUcSWbfX0Q4G7KQ\nT+IXnyBFLzFsTvCseGh3W+BM0No1jO6IFXeHTsSNOB8Rclbou/ro52G6rSjhThmP4MLjvmB4GCab\nHBFs6czEM1SXQDi4RCRkUPl2i3DEIbP0RWyjim9SwXAcGiUvfmmG3YvhCWc4F2ZMPRox1wwjmWIs\nJ1G1Ih+8fZdf/MW/BOm8f/qbv/7NV//aNTq/3yV3yeB4BHroDJcrTm0yI5OXCBQVxth0XRFS6SoP\n6zKdJwq5cIS5NSaQmHJ44aZkpbCdKuNvvIYweI6RuYFyNMdx0jBy0wBU14hQ0kW7rXD8cA+DPN1C\nHE0wONmvsrY2pyp5yS8q+Bo1amcjPIMZYXGFal4kWPFhRn00wkPcVT+DZg92q+xKM2ZGkFwkAV2N\neTqOZ6YgxfqEpzOQHKYrWXz3JszUEbvnburbi9ipKfrggtmRgBya88ILKTSzQbO/SCy0zsjQUJU8\n09GEUarDnT94+qeWCT6ir9RYWPksQd+U+ZGNPLDZtDXMwJxyax+r4cMuF6hsrLAsdzFtAXlWJqC4\nGCk+VlM6tcI56c0lon2dactC91wlKjY5y7pJH7eYNa6yMh8y9RQRz73Ukm4i1CgFh6ScAPYgwsVR\nC18/hJYK8vFrF/hTGpXLIewjhzXVoSG2KbTHTN1xam//IZHNT1OuN0lf6nBop0l29zEWF3juOI1Y\nLTM7neNs9zEUN97BhPLNH+Jem7DYCLC+c4nAw11mIxd420zujcmvaLiORbZW5pTnV5DmJm5PiaYY\nJTNL466v8u0P/3wtwo9+nTtOlefkAZO5TVXOc9nehTKct4tIi3l+7H/6Wb5z/ZMkkx5GD7rMfeek\n2zGCLYmOeYLeVbC3g5i+Lu4HQTqBAtWHZdSrIbyRIeaJRrFbYvvVV6nrMo7P4bQXZtlb5PM/skXp\njQ+5617mRKixnAtSNUKUJ0M28nF6koPgl/GLfoLaiIYUpSN2Ecde7BuX8BAn5nWxfyzz1UiM02if\nZMqL1+Vl70Ag4svRNQ7xRTU6touAMkVIjdCKDm13jYk2xJZbbJCi7gsxLlh4jUXGoybxhTDqeJVx\naICmBUglp3zrj556LX7qk59hMg6SGPqpRmZsfDWLp75Me/I8gtkkILspzmP0/RFu3nyP8u4Ralok\nkgqiHRtsbb6IOHTTSWnQCtM87oC9g7ktsCpfohA4JHO6QW0ssBJRwDUm7hXxqy9jtVUiB1XOq8cU\nm3Pylz6FmvwkW6yx4e8SbM643y+T90/YbemMpCTSySP8VoBA3KDTsfBaUSyriODKE6BKV3UxPYgT\n7Gn00iU8kTjqvkRhUGGWdagZEtdCPsLOAkXlXRLpBfR8DH8vwNRpEKq10XNdzGyQzu03CaxtMuq2\n0YcSj1bn3PvDP98s8NkM4ekqmc1Viu8fo7okun2VrtSjNbLxX4uSX/AwKTRxxzxEJA3/psmhd0RS\n7DI7WsafqHH4oRtvPIgRrhMdmiSkGt72AqWATErqIOka5TEEkFjJ2XCYhukJ87KCcTnNdDqiua+Q\ndxU5cCDpWaXwKIYUsrny6S/wH379T3CFEsjyA4p2j6tXbpCdjuicawSsBN7SDL+8wFn7hO0U9Lur\nLL64wIM3ptjzU4qeCS+G/Vz7L79OpdiiVykS214g9yUXN79zk1BJZr41xHW8SdfjZ1nr4LEzPAwb\nxKMmy5cvcWw63Lr1dAyau3SdlqeCOJrTe2RTlWvMl26gHdm0sg3EssZR9ZRBe5doapWuWybhbyEO\nVOSzEr2FEN3DxwznfV65/jxSeYHjvd8nGs8wi8aYTQTGyQGtRpClUYPTmoxrIULYCnDr3V2UhQVq\n7hiu2QDR1SE4lZlc2eRibx937kW2hANaFZmzwiP6nSahpIvTSo/FYYDOpkqnpyK+oCGVPZz+6R+x\nrWSoSgoxc4hbmeETdbTrMaqNIuv5BO//hz9BiKRwNwzG2RkTbZl13U/Cs01Jf4JgTMnYEwLqFp/4\niR/FXzhnOVklUl7EThm899p9AH7kb22Tn0W4d3Sbn/j087z/m79PYPk63vQI4Ujm5LJITurQ3Nlh\n4rEQ+wWiwpz2WoPISZ+eOSWQS9CXLKSUid5cw2UcYUsydvcStW0PRsuHE/bhiY1ZORK5EFYJLz3t\nhPLMVgkcl5hvbFG9NySuGeitKq6YRdttItsTImGV4+yMVNtiHhuxoHapnosENhIYowL2/jsU6m38\nyav0kiL6jgKRIRdnMtGQn3qgjz5KQiJDLFjj9753QvT6Ct3+IZGQSL91xsyfZTp1Ubq4hz8S4rLP\n5LS7iFoZEff3KAWy3H/zA37pF3/hP32I+tVf+9++6f3xZxArZTqdq6SzMgN3l/ZgSnI5xdgvsDBy\nqKwEsUMSRmuA2KsycnnJdss48z5eycvCtSxpj8w0u0Tw3Q7RhSRWe0g9VcadtnElFGZ+F6qrRMzJ\nMykUMNfjLLRd5OJF1ImJKUzpp9Ik+wZNa0LXCpGOO2S3RpwaMu29ewyToLrH9I5FBLcPTZdRfQZr\n4jpp0aHUFyg+fg1VVUhvqgT1ddL6Ere+zo/kGwAAIABJREFUd0Dp7TuoayucV7vo96uoN17ErxQZ\nfsJLR2iRUdPcPijTjaRxiy0iJ3WmzRZhX5dz30PkL2p89OtPDdJ//6//HCozDg/rLF2X6aVz6JMx\nQ5dEVGrwRO0QimQpCX666T5mNYTLNGmPvXQWpyy5Td68P8FyNCYsU7444dneJzgJ1UkZm0R8ZYSJ\nhmY5CO05sfASx+Yh3YkPPRamUYfrmoQzaLOjmezXx/iXr3L1BR97hoEwKyJnRYTyFGNQR/GKKG0X\nNcfGv7zGpFUhXAsy6h3i3xcI2HPmcgWXM2eUccg8CuEZNGjPm2wH14hGIrhHeU6VKpVSh3E8yEp2\nmdNsm8RZnOYzI+KDLebKkMnxGKPcI/jMEjl0sseL/JvHvwXAT331Ofwhi0MnisYp04M63uUQA3p0\ntRnK5c/g/me/xb/5nX/EzqmCrRVRj7y0dzKYwQaenpe2NkBv+fCLPhTbj630iF8NMBnrRKZehlGV\nrGVwq2mRk2b4ciE25gkiGyY/LT/iv/+DSzz8Jz9N49JPI27G8ak+VOOYutRH2y8zU+ZEV4I0OmlS\nQZkAI06FVSJ2kmagw17rIZ++0iFy43nc0zblqodwrU5BqjEcu4ktZ7AaI6xoCKdZ5XwQ5NhXJbW5\nQLfoZeYP4PPnSKoaT6pDutMxizuXiTLg+4/vMYmGiZU8dLsiP3zvqbH8ma99hdL9O6y++gyjwZzB\nR22WP69Cu84gLiJkpqSbIvfGNWIeN/n8JZKWhLfaxbMtMj5t0PT3CBUmCKduPKsrCO4dtGCImtPE\n/UGJj/sfkkj2mc4DhG2NxiyKR6/iqivMMgrtYoGrW1eZnXeYnz/EHtWR5TjKvM5oo03vPIuSCtGw\nHnAtuIoqN2ilaqRmCdRuh7iWQaPCkX8J5VQhuRLkUDhGj0aZJs4ph0+ptiO4FySch1EyiTH21CGh\njJn7Ftj94/e4lM9xUO0RzxtU7w1wFkOogyVudY/ZGklM7Bne5TRv/V/fAeBzf+1TzJQEHU+Q5xJu\numsyK30vf/T22wgeN6GKRHNusyOkOdGmRDxlum2Z2oMxEeUGnWWLUG1Aeq1PYjQkctLDDIYZZ0NI\n7h5q/QjPoouuk0eqy3j0PlO3iks+wJINpjsLRM7DlOs9UtIMI/wZFF+ZgiGi5YpMZ1cojHd5djFC\n+6RJ4nKI3q4bzYHBlkzo/Tk9730ePJyyvCBgt2YUXGHmtQGl/iFuVxAl5+NlS+HJgsT9f7nPk8YZ\ndiiInury9r+akfWto30iT/O1c6btAEk9yFSJMtPLpIYyAVOjOXYhnVR5Z/ddAP7mz3+BlZoHycoz\nWltAH8TR+j0mSOiBNrbvOmJyQu4yuPGzHIzgbg85PZnz0dk9RqMil5aXCXh2GJdNlC+ucnjTIICb\nk5LDzDkm2osTSan45jpa6AnhQYt2sU9m5VmenLzPhpNiLLlRNyW6lp8b0xBy1kO4+BBSc4IND0PB\nS0D0owWDbBgJiN1k0JuhR3wIFQ+2d0w+exn7Wh6lXKW/YCIelunOpszEEM9svsJQHLC8JlBppJG2\nNUQjTk6b0xdaXAzucvrIImb2cGIB9o8ecvzem6QCE9quEIfjLomTc37w8ASAb/yNV2hIz+HE+hz7\nVgmv7HDFdYG/u4Edfx/JzlBtZ1geFsgZoGVTHN6/TypyGYchqXaK4LzMzOumcyzQ9bcQXQE6Y4G+\n242piuTj54SbSap1m6F7QrIzIHguUdsr4anIPG61QBmy4qni8Yd40jFoKiaL1ip1UURv9NFGXgay\nn6DhprMUoSl6WLu2ybBUYnhjnXFOIigIBM68mDOdcm0dK9+m2hsxjQcJ2DXG0QBtscfa9jYf9i5Q\nax2EH/4x7h99lc5Hh2ixEF5zhulx0+yJaFGJZmEA+QUCusD73/sO3/jGL/+/QpTrPz72/Ed+VItl\nn4iy/GmE1Qh2RkK5FyGX9WKaA8a3O/RmNtqkiNp4QsRQUY0xsUwQaSPFTi5IaAITfBgXNUIPJLQr\nr1J893Wi+TZboWWizWXmTQE3E/Jc4gc/fJvJosH60CCROqA7atL3B9laSbDk1mkt+Igh4IqaVBWV\n7jjAdJ6i6V9Gu1PFM2jhOCLewgGd9++iMaeRdZhFcoS8feI/+TN08s/TVD7J2LPA7SC8+le/wMqr\nMSTZIZFcxPOjKSbTPZrxBkFRIVpcJWyH2ZEG+MQ6gYs6o66fYVigUOrTvdYls6T+hWym0mA9+Tl2\nPruNdRAmVH1CflVEyg55qz8gvBwmKqZxMkHchx1+99tv4r9+Gdu9grSnYbg3uHZ5gCbfwz1r4taT\nPDl+gu+0T1ErER4nkdoLeAlQ3VQ4SETomM9wyY7x2C6wqS5SflDFUhVa3m2+/PwOp2+/zht//F3C\nyoxE0MFsenmsSjxotYgeLLGwlOdzq9cZ3TsilYjgCofxbX0e+cY2PWcFbbqJp+llejpEtcAIGFzz\nDukEStTfKNDSDVIPHLyeGBG/wN4HB/gEhWa8iPAgxL4l0Gucs/rigEsb23xi0OayovC49+Ff6Hbz\n7QnjwpyIUWT4QYvLV16g994h49MM++02kUATf+W7vJK/TDMYYRZfIejYSO9+G33fjzAuM56EKLkG\nNHwn+BkyGKcY1WQEd5H60EK2L6i71riWkbFaMRYeLbFbGHLpa/8Fv/PoPrcWCvw9YNu7gr/6If2b\nT8j4v0Ks6uVUnmKbQ6a2ynPXZMwrLyHqi8SfryNKQaKuFZjuE8+2Mf/FB/jcLxEJ6bwejDMyYtQk\nF/drT3g3mWNU6vB4LchybgmHZyjPiuQnPgKKzNAoYZwdc31ng7Tg4tILXsLPLrHUnRE620fMVui4\n/p/3zbYE4m6Vf/FP/zVljkgsx3Au1rlzVKNfPMBT1qibh/inbs7+3T20y4uIkTqFuZ+9iYl75iG2\nNyVS2oPQjHR5TG7yEOv1dxADJeznzwkkI0R9WUJKh2KsRSw3wvl4gGQYVKMd4vEFOqVD+ub72Jc9\nBFcGXOx/REE9Rut/imaywbytsHKWRh40eOS0mDo70NaQVYfT3SkVn8oVNUg/0kcI1Qi4fYDKvQdH\nSN7neO5zNtFhFmcyRzzV6NtnRLSrTEt7hOOfwUjqZO0Rpr2A/aKfO4cH6GszNCOK2FapSF509+Jf\n6Bbw3+D8rSGp4w5PIgbixw5Nl8rf/vzXeXngpzb0MyoFMDZE2rJFv5cn5k4yFlL4wi2SxhGCJ0z9\nLMtBTaa26mK80UUMTInIQ+Q1C1/dx5XejNjaQ3yZAf7ZA2ouCe/yOq77Y46sJrogcxbqMK7vU7Li\n+GQLJptEAvfwd+JMG24S+SWSCijbDubuHvmLFB1V4Ukxj5WWeBCug7tPYFFncymMqQZxeVpEhn1O\nkgL+jkxSG7Cjw/RoSHEvSSgqsn35Re689S613R5CtMj+0UMaj+8weqLzsKsiLGXYyceQnfFf6FY/\nfo7eM14G2xOGt8vY0zJzR8P75D7diUhE+IiO2eFgT+HAGnJ43OZeaoh/yyHxuQ2i4lVwZEYBmb4P\nVhIaW69s0PCYLF/2Is6D3Jp6uXfa5lHQptER2XevYuZCvFl7DX05ik/XCUcbDI8sYudTyuMq8ZM5\nxZYbsf8szW0fq0tBNv9KlqSW4ihV4rDtJnYyRC2Ukc7ukM62Ob//FsXiPfqTIHI7jysGQqjGQtnk\n2w9ucefBLgf9ZdzxKqlCE4UCFw8e0O7rZCZ+Ip4gjwyLerNNZLiC5bvOyKMxGCyQaIsMf3zrL3Tr\nT3PY8RNM0yFdM0gHILUdpB4+oG1mmAlFdtY8jMsz+oqGfFzEezlJu9RGtgSm1hMOFZlYw8OQBKrt\n4Ffm1EMzNgJBApKGcpzA5IKEco7mcROYLVBYl9gOj3BHAiysulGtLm13ijPHwsMms/GU4ekIf0jE\n9qlI6gBXrIU8NyneHXPj2Wd487UPsG6YTOdNpKqX85rIMBxlYqmEzD2Wats8o8bI3bboTEzah0Ui\nWpZyxeRrL28gSBY/7FYwW2NmkU2srg/NFglEJGIsIXVNNH8ZT72Hbp/idvn/PyHK/y+IEoT/m7b3\nDLbsSs/znn3CPjnneM8999x8OwcA3RgADWAGHEzCBDGJsmSZ4yBKpC1SxeCihbYtyuUxSyWblDjk\niBJJWaVhHM2QwAwyGt0NdA63b04n55z32eec7R8D97DKLnLKLH9/1t7fXqu+qufHrrfW965agl0Q\nhD8WBGFbEIQtQRCeEgTBKQjCm4Ig7H08Ov7S/F8WBGFfEIQdQRBe+mFqTAYTRqUJxo6ErZFG90im\n57WhP9JQvN1BqWTIWLaZ5Dr0Owpp0cfsUxdojIfcyYwo1DVk2xN2vvUu+VSVuvtDhpkJpfAlBuIq\n5eI+afEu8ZGMzWXlRk0g/qSPSxeOodf7aPZUjIsJZGlM0+UhVT/AmS7RlEyg6tKTTRzJZbBucVKn\nwXpqgbsPFJxxO6bnz+N45TyHYoTe/geMx30wCAy0Q+KNA0atIoWhwPRQRircpz72Ud9ZZ5I1sLYc\nY/CGiHTNyb2/kFAifQ77A0x6I6NNHw3ZRO24hrWShoG+xJee/ynef/93HnPrfs/FN792DcOGyGE/\nQ6lt5KYmiMMf4NwJL37xPM3+mFAixHLoBL/yi/+A5vwrPLxSw90tw5UH9D8yIDijaLU7rHaL2F8c\n4qKN+t0W3d0j3G6JSkSFAz2GpsDqmTCFaA+pvELBcAOTLcTSahxrXseOaCQUtBP/8ilGTh33S2OU\ncYWJp8alp79M5ZiN8o0D5LCdE8/GUB2oeffWGySGdcSowlTIIidyBG0aHvzhHyGUbiF1zGy2IihT\nI94XvKgKbayGOrbAAHO/QPT0hGFKQK/3YfRosLkcCF2Z3FGRhx+VkJpLWIUo4Wdij7l5FuYZi368\nJj+BlZcwT/ZwudYgmuWYYY1wYwdzI8nCwhJulYph10zn4jnCJy9gWKrhDbmxBkaER0WMezH63g5n\nHGocbhl/bwFLwkhscpJnfuIEHrOOUysiuYGAT2vh6j/dJVU9x6ZaIbe9TTRxh+mtJZqpNr1uA7c5\nhmXsx26zIiXH7O4MEP78Q/Tnz+Jzn2Tp8xF0YRMe/8tEKiG2Novc+fM9+o0iS5oxX/qVv8eTx5ZI\nKCc5M6piDU0YjyS2KwecdI4RazqckTHOuoHpKIP/2BmkXAaHWcvrf/gWsseJb8bDwpMhNsxu4qrt\nx9ysbR1Ji56//3deYcbgIXtopGTbxLs0gAUTdTGJ1ioS0Dn5r772MquaDmNrgGPHFeaFdTSBbWwm\nO5qlIGK4S3GUZKI34zsVxv/cAq5nV3Acd5MxSWQ7JoYFP4XkAQWVCWPCR/SWka4GOjGFjfqQkDrB\nVlEg7tbTtZ1DcKSJxfU0dW+RcbtI91zMDWJMr+9hmdTZbCrMn65gHvZJt5oI01kGKTv16AEFr8jq\n8Seo3GrRr3vY3JwiRryIQRMLippsIUu4ayX0xCZK5SG1uIvuwSPE93usFIZkA00uqlvsOIpgG1A9\nWn/MrVyTcDxhQ1MvY7w7YbTgw9uqoLNt0ft8n0RIhSowofLRPQxNiWpBT2rcwOPycdRz0dyKoBy0\n0A0sSEGZuMqB5wM39cyAZH2OSMVOxW7jwFbnKKDDl7FQkROoJ3q2yiK5Sg1GJVoWH9e/nWXsHzM5\nmFKtjpgfihx88wb98QbimR72gMTBeo3T8iz9xCq///Z7rLxyiSWPBXmawLNtQI6cYyWn43v37xBq\nNAlbDOgmQ0Z1hcN6joLOwF7SQ1DdQmyMqHo1vPPhbyOiw/j5l1GvzGARpgh9DSV9hbhum3R3A0lx\nYjt97DG3U2enzFgW6Fq1ZJZq1BYiTMM2Cp9cIdTRc2fLzIws4zTKVNbtCLke7beGpHetsGmmMFWz\nd+RCPnzIwqdDlHar/NmfXcP44C7d+/sMVRLno3pm50xY/CUCISe+vescvj3gEwtPIksOdnV30BoU\nREeZrt1NtdbnOmm6bh/pjETqxoDdoyI33tmmPTwkPm1icTg5+XP/LcpTPvynFtl+74DxxbOM236s\nczqGEytG+7OoXTZyiQFWb43N7RyyYxe15MbgXsThd2CcWcI1W2WvFScQh1VjgthEhXSuwaookNH4\naBbX0S8NsTdqj7lt5u/y6EqTTlkmGtlGHGopdj08PXOSsDmKR7bR7t6lFJXZq98lNRWw17r4230K\n5gSV2VkmDZGcRkUsXKfuhaTo4FR2QLa2CVsqHkp1CjoQ+y7m3T6kp01ofA6OQmH6ox5+QxzROEPJ\nGaA9MSIlKhybjREKlnBU60xlLRpJZNw8QTIRoyfH2bmbIyzasN+eEBSCGJseyqVdmq46SSlJJ+Kk\nMX+He1gYnJ/Fp3NBsIvlcA/hIMV3f+MOg5njfOXOFaJ6DWalxWAuhc40xS42qBsekrHLWC0hutY2\nB0cSY/EHov2vir9RO+/y5ctfB95RFOXvX758+XeAFvDLwKaiKD92+fLlEPDJV1999S1BEFaAV4FT\nwH8Cvnn58uXffPXVV5W/qsZv/Pr/8erTZ55BnhRoZTrorSFc5iRF1ZRAsE3h1DKRoYYuC9THGVqH\necRwgl4uheAzMnn/Idr5KPc+fJfzL1/CUHBy8ayRo1tb2FRNYqEI0oGVYtSJ0i4RVzdJJBqkfivF\nyGZClLzo1WZMBh0j7Q5Ts4fu9TqGcwaGxhYub4HRGDo1PfMG2MvJrPn6NLIiYQFW1X0KuX2Mthew\nWCtI8hqDaZqJ1kjX0mC+oyPpHzBUTci/v8M0YkKeZtl9v8rJ8QUc0WX0xjrLESOqKxXkORFju0FA\nbWfgGuH0G9BFZ9g7oabTm2f7te97VP7Wy1+hZWhz66hLJBZEvCiSGhX42s//KoxEtAsQq5hx1DJ4\nd4O002NM3iH6S2PMJ5wYolr0xgG1oshQ9BGcwNDgJhQbU0gk6QbrPNov4irdYzo9JBMSsSop7Hgx\nzHZYlRe4ObjB6LBH0+WiZMwT1RnJaKwYamVsvi59tMxpRW5Kar74KQ97vRFydheb10Lu6A4Pi3uo\nPEvIQoSQoUS7OKYXbfDE33uOXLtJ1X0HbW6AOyZSNETQ6SrkghKrFgs1tRO9OEe776Ws28KUc5Hc\na7FgGuHrLKI7K1PNidj3cnSPEvzJ7r8BYO0nT4IpS6VxgDStkS6aGCglXKMg/e0m2tgAWbagb7ip\nMqa/WkA0DClWJqQyR7jiJsxNN6WeCYtORq3V027DdCzTbuqIa9ro5DJbr13DpHLS0xoZNt7HLIzo\nFwSmThgY1ajeeo3lwxBy8xarzjAa55CC/YDupENg5EM/o8XfNmN3jpiUJcxCgaO3bjFqVpiU01xd\nd7BXvoLJ1UJf7ZJ1qzhIF5GbMgVfjf5ojGaq4CzrkE+YOBrbcKUKsGBknLfhmxG4M2ywp5mlbnDi\ndbhpJWsEjvcoVBWUjpriJMCtK9/3qLyydAKzp4tz5GYv16Q/uo8hp8Xs9RB66MU27bPZdTM/KVE+\nyPDmzX0imjblxDrRybMooonkQQHs88iqLHPBMPlmGYPsZzgWefDHh3itZvSqZaJqB3LwkEWHn8Dy\nDHdvp0laTajkIMKJZQSlS01fRjeZw4gTyaFjv93HZZtymHPgmiYJntVjL5torGoZupo43W7u38+j\nOr1Gv6BGmG3idV4nng7R2cxhPfKgCzjo3FZYvjSDJ5llt3xALWHB060zmRWhb8aSLdGf6yCtnuXA\nakE3P8SxpGVvfYosZDHp7YRFFa+/8f2bBb748jwzIw2D6Fks1gbJZJNx2IRiauPNWrBMM5gdFVKG\neU5pOqRqOayWED2VlWkzhezs4NKvMpwzs2bukx1YCGiaENLS0tlJaTuMqzJuakyni1jtDaRgB2sa\nukoHt2UWfdRIr9alkcuwOJnBe8HD5G6FpacvslkLsCrbUE2KWIZ2FLuWYRHKgyzHNccpqDMYxlHq\nchptQKRWi1LUp4hoDHTmWkTLVkbzHnw1LZl+noR+ib12ivrikOnubZ49+xN89+2P+OSnf4R8aQPb\nJEDJrqcnCNjHDSRtFKfVwWCrglkr8Z33v29XMAXVFAsDtLoa2109T6l1SCUd2vEOtnkjQ68Nv12N\nuxtEaA+RvVNiZ8O4xyMamTSjgB1DX8Z3ahn1Z7/CxjsvMhOwkW/l0al8eEc2Bj4rpvQQa9FJ3iAT\nWwgR0zdQ7AFUshZ1KICSbTMsONEuR7EaCrgGIYztINalPcyKzNi8SsRRoi5paQ+iONV77Bzew5IZ\n0a5W0ITOYOk7sQVbuNY1aMxZxFGRTqaJVW4wE3gec8LCubVTWIQJQ+UWup4KgytBpSJjsQkIW2W6\nnT1qiQQG3ZRRYYRibDFjm0XxmQn7OvzZN79/UfhXP/05lIDEGV8IncOGX3TS6G4wTRnYy9zD31Kx\nrrUzGLsxjBTkaR/LzAnU9iLeshZJb6OnEnl0+22Oz8/THFkwD3Xk5/xM6z2m1iKR+CJS7QCNew2t\nrc7N9Ts4MdPdnrJbv4EqrqLqUOM9rBEIqnAqFhSVAG4L6a6ZIhO8Ux0Npw5NMYfTWsKYbdB1TLHV\nF6horRi8bbqTHi7VAnK7g8bgxdFso1MpyO026OzoG3FutXYwa12INg+Cqgfq6xSv7tIfqUgELvJA\nO8Kd67KVrmDyaLCHvPRvPWLOcYort2/xj3/+5/7/a+cJgmADngH+DYCiKCNFUZrAF4Df+3ja7wGv\nfPz8BeA/KooiKYpyBOwD5//aQjJ4XosRSZrAJ2HtdLA5I9jLA+TpEse2KxiKWlqHt1kp6nDal9Ak\nk8RCfpaJY/9CEKtuk5MXv0zq7Sy1cYP9rppaeZ1WbsDeSKSp7uPQbjFnWyA7bfHgF+9SP3GWQjWH\nvVejksjQ049pVpzIRzKmCx5aTZn42MjYLyB2RribI9L6NgZzEF34SWZNJn7pV/9HyiYPbl0ER3Of\nVlvH4dEW2Xd7NHQVqCVoq2rMCQLTSZRzn50hGDyD3QKjSZA7sbsI9mv0vrdJ+VGWsatB7qhDLeJC\nOi1Q/w9vs1dIYTPN0a568XL6MbZIxs2zX/oKzz7vIeat0b95nZdS8JV/9D+w6jtG75GDaw+u81uX\n3+ABFYTWHuJ7Vxm9V6D0p1cY1boIc6DIVuRanfrKCJMlxYNKHjEl0t9NcMHmwRg6Sdu5iHCvSW97\ni63tCb28wv3sA1QEaSwvUjQNKe8ZKE27WKQs04iGareLzeSgmziGRTPi67/1Pum6wnR2xOFRldyl\nFdaOvQC1DIZyjvt2HxP7gIPBhOu3DkgmTCRmPk83HKdZmDBfyuNNigTHYfr5LAarno1eiVZkgs99\nGteChrihjmSK0DBmqZSGpLr3uBm3sBG+/pjbybEJq/cYUtaM3RvHMlZojoZs6jV4j83RSQ7Y+D//\nFG33EQZ5E+cdgVC1hs2YZubJz1G51+a1/Q8YnJapLS1Qm1WhEbRUG01U7FEaD8h9tMPEF2baaZEs\nJ6l+b5fP7XoYGnbJu0W054J0BRXvWNKYfS7250Sa1j5aQSQYtWCYtVL44CFJeZ9mWocmlaa+7cIt\nTZDEEWLEC8syC/MRTi3HcOpdhHQ6Qp0OdeMAweBn59Yew6aD6njA8K0SsztlLDMJ+nst8sNN6hoz\npxoyi1KK7s3fxXz7Kt7ygHz/OGZmsbZ1GA+/+5hbvWcmxxz/4ut/gN66j8GrpxqMkN0psNd8xANl\nl0DyGgN5gjOo5yl5idu1NqqbL9E2SJRHItXjHuoH75Goy4wL30UcDXHoNdi7EY4/O0ezrcG6OGYY\nf8TRtT3WG9Co3iJ20oiiK2MdaZm6BRrpGh5tjEN9G9Vwk3f3r6G1ukgmN4i5crRnjBitWlJqHaIk\nYT4yYswXiBhmWEtaUbWy6FVb5PrLlAwKFnuAcEyPrBrhCiqUpi3UyxN0SzV6e7t0szXae/eo3i+y\n2dbg3JpgHt/AWL6CfjmGqjZlFKwiuvQE7BPUncRjbiGPBqNdRXf32yRva5kp2iFvRO6r8CgSowUP\nCz2BSKZBXT/EdF6hV2kRt96n12ywd18ir+wzHE0Q8iXG6X00YwP1qyrs7x/h2+lhHTQY1lfRjPfI\nT8eoCmpKY4Xj88eZsVTRTAssBTR88jPnaanVuO4V6RgKvH7rt4kvpWnpy3ieXKXlLJHd1VNd6hFi\nkX27lmlLYGD2M7SDpaDBO3oTkQrWaQaLFGdrRqL/kczAd4BefYy+O0ks7ubp7vOceuGzFDjgby8s\nExfgrODgtM/DcnqM22Mm25UwTip0WkWS+jEl09Jjbt3yOSILTzLgLC/2T1Icz1KTk5gzOjK7IvW7\nD9h6K0W/VGUyO2Fin2G/pqdZ8/Ps3/5pllbVGM8EqSh9bvzvv831/QMcc3EMixdwTYz4bE0aRwr7\nxSFNSwlDfYv3c7fZGpWpF7fR9Uz0P6qiyFb81ja5m2nGPTMVTxvjsIvU89LrD6hX7pGd2pA9EfS6\nHZIFHQ//vImii+MPf57AxdNU7X3ad4bcWpDwD30IKjOmcy9Smf0chmCHYE3NW1eKZPeTbJXmKHeN\npO4d4TgcYU1tYLQLtM8YUAY15oiRax8SIUhPkhBKNXY+ND/mlp3oWXRE4aGO+qMxPZ0GR03FnnSb\nvs5Fsl5nZveQeb2NOIssL58lbrfw8L0C8kKVRLzH2GdkdfFJmmMdfZMNryGLozgkFO1jFvTYMjDu\nWDHXD9lPh3ni2ZcRzHFWf9zMM0966RnmcPVnKNtEMmYJUc5SzDqY5I2YSlUUV4mkImLd/ghJHURW\noqQtWiJtkeIwSTPTYLI7RrtnInvzdY53tXS6JSyEqDSbRAUX3nQfe/MeZ7tjGitRNHN1Qv0pro0R\nC6d8eDzzSOUBJ4x+JhEzIetJ5nJhzAMVI9sMA2GCoJn8MFLob9TOmwUqwL8VBOGeIAjfEATBBPgU\nRSl8PKcI+P7v/wWQ+Uvrsx/n/h/aiSl1AAAgAElEQVQhCMJ/KQjCbUEQbne6Enu6u0w+F6ayV+JR\nukW5baXldiOohzSMdabMM2+6wHguwdjbx2SCirZJs/YOhT2RiibK67+Zx37qEj2Tiep711hwLrL6\nwitoyeIPi/R0Gm7svUfZV8Wf+FH84xHGtWOsi03cageTFjQbd9Bs9hi2VUTzGh7ue3HcdaMLmmG2\nTkivYF1ssHX3NuqlJj/zCz/DT/7UVxkhMch4KB0sYdWCybHPsk5G7D4i47bSSKvoTCpI2yaEYYXx\n3hqrzwdZ/WSQSeEI5yf7yAUZi0Xm+JwPXapPvlvg2IkXEK0zjI+d5mSjQPlb1x4zvKKuk+vkuZPP\nUNTOkVnX87XvXOVZk5rwySeZuXdE2HSKn/3qV1FpxsyMF9m7V8Rcl6iVYryd6fDdb+cpG9WYrVpu\nXc1yvzRLISxhCziQLCnk/2aeyUoIi7iFWj/G2BaZjNN06ge8n7qNes7Eg2/8b/gGO1iiNXr6CiHd\nhElNodc00XjyDNVHU5xSitUTGvzuFtWGlYPOGE0zTXlwi8BAy0Dfwyxl0AxlZqRFGiEf6Z0+h60c\nL1/+MkOfj6zzHaZn9lHGIqV2FFNDRaDnxqLewXKoJltooxI9ZH0ltEMRs02LWudh0K8yjmkecyvX\ne6TeSdILBVCmbkYuK1jNJPQD7B4foUU/L2vncAV6tAcDRiaZe8YJk0+/gL7UpTdrY8mTIFByoL+X\nx33VwcNkB5fHRsi7CCozVZsPi1dHz6nBNRQIf+YZPnxxn2DIQjDfxLAzRn1cBLeT1IINaaBB0k+x\nd6Nouz60WSunjv8o8YIFs2/Mv3/juyR73+NWtYXbMCKghJjttYif9ZE2mOn5jdQfDEhXbOh1RfRT\nLS++chbn4mlCX/gCfYMO4Vib4s4+9YxIROdGXm/Qni7Qye5g1NY486wDtXaI5Xs7DJsVOvZtOirX\nY24WTQ53uM/Mgg9X/xinNBGW9QoXnzQROT/DotHPSD1EFfZTuneaoiqC9oMfJ1sOEJ67xIa6R6gX\nQB+5xDCkp3L8Ap4FNdtVkcq7Nzn4UxGba5ZQ1U16fYGFzziIRaxYvEYq4gC3KNLyy2jzN7GJq4yL\ncY7brBycNXLOe47jixoskycwGI4TSbu5+qHMjelttt5J8mhxQP58EI0xSLZUwagpY8pGOZGrY8o5\naWsmbD+6z0rXxri4SbTcoKPX4hFczDzronxxloYQYeEVNeIpD/VRn+17+9RXRDQf9Wm8buRY6jy2\nvo5i5Tleu/WDNsFuUqBa6zENX8LprlBfBLM2RWPUJOXSYjGbGJ5IYDzpxaexc6bgoieo0e7ryd9r\nEPIu4R2GqN6+Qb22iLLk5ZbbhT5qoL1kpHXShU+1xtAzQDuKU9qdI98U8U5D9O7tsReI4lJNSN68\nzsrMMv7oIfKsm7BnTMQwQ0GYUAsIfPT1OlaDE0toE3XNSWvFiZcQ1VYT9eA9ghY1EzFISvQRn4wZ\nCjP0FYmlPQO2JYEr74bJbD/g6MDMu996g9vC6+zf20G5v0fmzAE39jdR2l1GvEbz6QLuxSyG2Xmq\n5jBas4SvF8BUqj7mtnBhwHjRgFovIqttfOrHPkHAZqYdncG8NGLea+X4M3G0i2FCz54gODtlHJow\ndKV4s75BYeDG2PiInqqBzlViMdHGoL2NfOsN1u0likYnywkzc4sTJJ1MzXWKmf4pZjxP4ZxfRD03\nJBAbYhfsZBouFk+PqLa3YWyj6E9jD7bwrgSYjxroNG1khjtUTU6cYS+uLxoxBwQaBzdRBgeYH/wh\n5lAa//YOO3IaWafHvXOfE4009x8+4rAdJmATWDyr44ykxSzVmY0UCURDiMZ5BkM4X/UhBSNsOFI8\nsbrKdDREbfIiyXZMmuFjbo7Cp7iRDXLmX/08+hNfJm9comEKM3Yt4nccJ+r6Wxhip5lYTeAQkZsN\nrmxd4amFOLtbDvY+1OCzZDCKQ+68/Sbe9TKSI8iRps2o6KWb61ASmzhLDVqNBr7+BxxsJFHXauwN\nbjMxVAm1FCyxLt5ZEUdvTHoSYmjqcuRWKGgiqMcmnC6ZhkpEX36EUCtQ39nB2D5AObrBoreLhQOW\nzllYeS6OdLaNuqBmq76J2aYn3emy486THanA4cWq2iUo2NgN9xlNRVLoKZqOmBwvkjV+RMU6wB3I\nMV4tcKQksfkt5PUyE3n0Qwmhv4mI0gCngX+tKMopoAf80l+eoCiKAvyV7br/t1AU5bcVRTmrKMrZ\nqWHK6o+uUm7v4on3cLutdPtNLE4H9laPUj1B1dmlpc4jZ7UY5Rq7fRvB6YSpJ0zYtozJreGpX3fz\nR6nfJqvc4PcbClfkNlcfvYNVHaakGtPrWZjz27CM5qha2qCBiFph7sRLlOoa/JUk6g+vEv6RLmG7\nj57YJ6BqcfBIi6nSZbw9oZ4UKOcVIj6B3mCIyt3mf/7nv0bfrOfuxgHtR33CjSjPe2cI1BxobGbk\nnBp9MI0sBpD1BiTRj/1LIwxTLbWbGxiDClGHgebogHxaR76nRu8FeyrAMGCgPQyw+0e/Sc53iEN1\n+Jhhq7aFyy7wqVMXWJ6KxFcW+Kc//5+RzYxQPcyiOvMJ5mwG9r5zn5n1NHl1mzXXJRIGN0+ccXLS\nHmUwjhIeOlBpusyeOsvs86Cvidx8+xHTl55n/T/02Li/i3O0iH5hjtDMCp/QWghq3fzYmSVMHxZZ\n+pkXcU2KxKNmtFot2hnwRLr4IjZsb9/GocuzfSRw/5qCSB35iQQWl0QvOSa6+gXmzU50iodF0cdA\n72doUrHo9RKIn+Zbmx2+/rPfIuwJkEjNUT4SaDJEJ8js9G24nCpinRiF5i4O3RCVc4+1VId1ReHp\npSia0TaV0jrz883H3LyJOKtP2IgfnyXVuE44UEYppahU97lTSJPd0dP9R1OExASPbYQ7PosUeJk7\nv/vvOfSPcapOMHFGkYw9jN0HjE/KHFucMt5K0m0OqfSPWIgppJPr5OojfAkV0pxMrxDBmlDzxsMs\nd/e+S7nnwu5WSJi9fOYrz1F990NShl1sSoZMuEx2uk39xVMkB1Ve+JmvMjuI82TIQXOsQFuFIeJh\nUllkeLNIugPLnzvJstDBk/fjyyo8lPskN99F+Yv/xLIXyqU4VllH/ISIKtBn7PUTaAyIiXPIT53F\ncWoBda2NxaHH0lIYd2zMn/rBzkD/gogzb+RTc6dZmL+Abe085VSf+q0dtNc3MPT9XHzunzCv0mKN\nZPFWuvTT3ybWSXPrDZmlgxZdf497G7c4vH1AqpPlwzdVeBxlbNMJg77E8MGYG2UdKtUe7Q8GYHDR\n6gdwj1uERxPcugF3/qSDdg60s35sH4VxrgcwRPvcuX8Nh81K7/aA/UmBi6cnPJ1VEY15KDQPCBad\nbM4WqEW3MMydImbuUqq48cZ7rAgDpqvLyNaP6Oc1HAysDFsPibxwgUE/yVRbpucVUd5UYShB78jH\nNHual+JfwrqyykBXxx7QkLhj5JmpmfCxHxjyhXYLX8yBa7hBq2hn8HCL3RxYrEEcdQ373SOGhwYi\n+Rl2DG5SLgca/ZC3lRKR/+KLuM0d2D1iVVxi9Jnz6JIi4nAD87BPR+9BnwlRtg0YmWP0VVUGgwOs\nzRksL/XQ0iGUaWHaVLMwv4io7GIZBynmb+LQXMTlsjGv9FHub+FxrFO+NkSx/RQ+scOkNKGm38Zu\nXmIjKdItO/FMapgnbQp5P1pPl+bRkGquQKlvwfCEjsATcdT2CS//9BLLoxgaSeSorWV3y4h6t4kn\noebmhyoshxV6Uz0hZQunV0vLYqG/1Of2G28+5rYwHiAl13EO1xEXO/z+N16jUZAR2jZ27kyZ7NoZ\n7NT5oL3Om7/xFu8fyqTXB9xpahn+eRFHMoN6EYziCIYaTgoirUIO/edfwR47yeRwl+R2kYNpgGTa\nxgl1kWG1QfbqB4yvrzNYnzIcKOyMD0nEJ8h7TUz4mKQd1JUA8o6aXtnIxDVl6ZyJoM+DVvBS0epJ\n/rPr3M/eImOp4ZJSGPQ+XK4zROwrCFYfdVWau9MSewMVXi7iOZ0haqiTrgzJuiTUYov1XIk79ds0\nXXnGJ+ZoaoN4SgqWR2Ny3SItIUJueJ8Pb7xD3xt7zE0Oayn7Yvyv1/4tqZtvc6A/5N7ZGH0Edhar\n3F054M39OuPUXfRXFZQPbiJKq1yXIDSdkjaP0DzUMeoF0ZyOUVqqcCDr8XU7NLsNBrF5iu4O45fO\n406o0M86mTVWaNmyuNMnadVP4fI+xFnIoOkVaB22MBxuYasbkFstIp4pmvI8PusckwUj1mUVC742\nJ49fIPvMPIPPrZKcMxOOfpKyK8g4ryO9a8cakqi7plSPzKT7u3S6cVShAekVPatjmKhtzJSaaNUG\nnGqR1WSK6x9cpZ/p0SsJGPNDcm0VoWKL2Ctd5q0G0Ik/lF75m4ioLJBVFOXGx+9/zPdFVUkQhADA\nx2P54+85IPKX1oc/zv2VYdSISKEinbsqVNJFPE8d4VEVmLarmCwWPhFqY5h6CGoFaro07XIY8XYN\nySri60uUIn0m0zatqx/yzNIs436Fxa88yU/8dy8St8qkpkeYxkeoNuzsdgNMNnO8f/A92uM7DHf1\ntHbXiR2XacyPmP/vf4FB3kPtxrtMxBm6AT9GowFDapGT0VP0pyVMIZGRagbZoGHgmuE3f/nfUVer\nmL20RPDJAzZcBe5t9aj/powxncHsyqE6MjLa/ID68ABZu4FbbaAoZoj7vexX3RRaOmzHVOgcNfpy\ng1Y3ABY1LUMPBw9opSo84VvDPf/MY24LHieubJv9fp6DzgNUdg97+SQD+5BKp4Vd3aQ1jXDmGTcW\nzwvo8jfgWJHNxoheQc2aJcSXng0yjh/yzX/3LWySjuKjIsrKMaYXYthzY4r6W/TbB9SGGt77i7fY\nNwgYTissq5L4LFXmZveJbr1O36SQq6Y4/NYNKmUtuwU9ifA80YVFbL4gV29cY36xTsajxnwvi9Zj\nJ2ges+CS6SxpmRVryKUpLUuX3oIdf8SAW9Xk+dMvEnryLA31Fg9CVjryEhqHkZEmwJJLRrczQUqu\nE/EG8UQSVKtjHigaojYNb5dqNKJenOoqu9IPjL7FcYF2yYSpUeG0/SwNiwHXxc/jPf4ktiem+D1e\nRlfWWH8nyJbvEk2VkePaEYvMsaKYUKtvoHVLDDVNnGsv0tjrs5kUcc09h+TQMmePkA44iIZXMS/M\n4HWc5ie/8NPYBXj0RpXT1hqfmi5z8tIljixO1u/e5fbrb+E88yJTZ5ijfQfdtIR36kG7t45st6HS\n5imdGpDExNgmM1jaZ7rTY6LaId2qMFs9ovpekqp3nmxtiKmgYGuN0WrV1IQZjD4LmlSTfHxA5ygP\neyKaaobQiR4zSpf59gny23XyZj+FgAadJYJejmIY/eCUWTA1y0YvTzOmZVi5QmX/AJUthy24RPhc\nAskxR3PjNs1MlhW7B/vkIz61aoCgG9vCmHbwJOkPHzG/tswkFmI+NcO5z3jQiQoxj4pn9A78+ikn\nGmmsTS3epdPU3k1R2b/Nxkc9HkwVWnsyHr+Ix3wM5fVvs+BIEysamT3s4bZ5CbgGWK0bLJW89F7r\nIJx6kRnDWdZ8F7mtO8SpzZLZyzBqtFGlZskpDW5c6XK13WNG6tKXHDROuhg2Dql259n/V0lMygoO\nMcI5y1nUL6/hMKhZ+7Fl5HGdzHcLNPbaxOd87L39NpOZZda7DzBK7zzmNtV4efi2gWkhgH1Jx1Nm\nAzGbGUNxgjioo90wsK5Lcw0JsQAtk5+V4BqxUyGe0PmQPGtIvgBSSIf83hV21nfYKgikrD7smxX6\nag23NiaMiw0aH6b5rW98E0nJ8c4jFYUZM2m7geYZEwe9LrtdgX2lRNMdo24r8aDRQRrasNpmaTpX\n2MxPUB29hr2sMJvyEM6EEQ/TnB+JOHoFSk1AdFKPjSnuBjAKNlLzfnSaDmG9BaVUY2jQMZxE6Opq\nFDwiy91HrNSq2C+ZOJhtIZgctLc8tF6XMMpTvOldbCOJiTjGEP+BXWEqF8huZNBV9FR3t1FPt2hL\n8xhias7ZHAz8KTpzJhaEJ5j97CcxOEu4T+vxJNw4E2MqoRrRphZXx4zPPoJmm2kP5vfuMdOUGfuD\nLHhHxNUF5hbL7E896L0LrB6fpRSLgVFDN2DAbLdRGDiRBloy6giSr0I9+wi5qqZ2kKVzqONos4Wp\nNcBa7GPTD4j952dxxGyYFs6yVUuyWc1y8+Em0zmZRY+RRP84i4k1SqoONuEh3Y0U91MN9PUEYb+R\nkhDk5OknCAVnSIyWCU5KiKojTJLISB/FowlhEu/w5MjBF//rL+NdjD/m1rHkMRdfw/Bnf8HXb/4i\np7UVEg0HBL0srcZx9qa8csFAa8GK+IINz89f4NzpOc4ajjE9bueie47q1IiyVEHnc+LcX6KmHGBd\nTGBasqPV51EfDmnVdsmJZjLTGR5uh7BnOhxptnGXC9SnOkYmBdU4SlXycBjx0ljRE60r5BtpTNV7\nbO7lmZ34eOftfbbasxyNNLg31IRcagZ1LRsHafzJHMnKBJNjhLGTJqJLoDkpc0IXwi5WULlO4+gN\nWdcG6La3icw6OOqOEMtD8r0LnDcfI2xc5kmTCd0TCU5gpb+mkPlOjU75HjR/uP2f/88iSlGUIpAR\nBGHx49QLwCbwbeDvfpz7u3zfRM7H+R8XBEEnCMIsMA/c5K+JwVShWs1jM9nx6aaU11W07HbqTYWH\nHQeVXSM6qcQoMUD2Csy7W5g+OUt2a5+dtJrlgJ5+y8HJ2WVWntQR+BE1P7oyYP29DNUKSP0YA5UF\nnUdEP9rFvfYcn/mpf4y1IdC3phAWHDT2tBxmwiTvH5EvdJmNnSRYMRHa7RFjyJ61xXqryEr8BMZh\nl4qkJlk3MLqT5tf/4ReJl2XG9i6NNRvHvziH+tI8O//ATnYcpfJanU4/wYWXzmHer6PVdcluJFH8\nKqSOGpvTSK42QiWEUM9cxGZs4NOWaKmqGOomWpoQeo2dX7ubIsXLj7k514d4vhnD91EFtRJiOC0g\nP6jhzPuYGKJ02wI6c4GxJYBtJc3wXIJrb3ybeESiHxpTvp3BsLuHv2zjK199lkBlhLnaYjnb5BNz\nRuzSAfHpi5xYiNNZ8+AQhkzKbioNK6XIGtJOmNHoGQ437Cyf+CLGwybHL32aXC/DYn+W4rsjrvzK\n7/Lnf7LJ2udWUQdc9Pc8KMf1NPIdjAYXGpOD6r0bFA1JqBUQDWNK0n8klc6StatxDHawHb5G4yMN\n//Jn/jWZ7Trde0Usy1NS6x12g2lk1yrqXJHc5kM8wWWOHzNinpmgqXR5dHWfjzJeYvIPPAOV8h6j\n0YBsfY/6oE6x4EOvzWNqpFkQ7ChLfsYhgYTfiloZkd//kHTxEM24wcNbb1EWRigHOwwOm1T1OSYW\nM/FLGrL+OhpVjUPUaB/UCRrbeItt9g43+M43fouOuswTZ+1ET8YxOoc8uncN7cO7yNYojWgD2dhh\ndL+OcHaCS/aRYYtDa4nu+i6FgyzRjAP9BT2LXiN9OcB2ReBKOkPCbeL+UE9W3iFayzPIfoTkGxGr\nqzncTNJSlcnmOpgcNuIhG7puHAWJaa/E7a3bNOf9vN3r8y+qAt+88gcowwa97iG6qJFk4wdi4Fol\nw3NTP5GRlpupGsJoG6umyn5zxK40i2U6Zn8xyb6s4Uphk96ale7JBTzmAdPWEUpzG0fiedYP7uBV\nZqjPDjm6N6bZuc5r194ks1wkFFIz6U4pOSdk+yIKQ/rBGM9EnyLQyuOa1+Nzhhl9K4f31Kd5GHdR\nm3uH7DSHZGiyVVyn5l1gtNgk36tRPqww0s7RX3+Cpi7EjEaP49gcskHHoPGQpc/MoTtvwiM56Y1n\nyHtMuLUKLY0LIV+h8rTIpGVm9mGb+/1tJh8k2UzWePM7dwgYVshqYkwsGo62juBpG821NMY5O23r\n6mNuqm0NrkEbtbKNcWuH5DE3kRU9s64EaY8G0RKge9PE8rzMuCAx35HotTycLoTpFA7o5pJUI13K\nkzG7vTLhT57hnBRlPieypIthNQqcOqFlEs5Ret7NO1ffRuMy4WiK7OT9mDIV9tJFNtbV6PYUhn0F\nXaNFZl3BUxrS1xupO7W0hkNWgg0Gxhg7PS1l0w0IpDiwG+j07dhMOixzQ8xSCas0QtHIqNEhDEUo\nPcJ9Yojl+R7GbJu2eQt5rscKItpno9iCDtxjFcPrJqZ9J/b5OqIuzGFGT07VZKCp0inDmU/8YMf4\n0btaPmuL0xb0lKta1Fkf0+nrhM0dnGtBLLNfpJA1YPelSbRy/Ej4OJdeOsZK/xDVoIBGbpJX+Rn4\nqtizZjSSDwtz+J5/GUNpgxkxzb2cQqZmg20FQ0kks/8O1YHAWJNhPMxSWdczHkyQD+8yXBA47jUQ\njjn4J79ip/kJFaO1DG6PB49aZjIQaZ2e4ktaeMJowC7aMNuL/E+/+ibF6Cls7hl26g6uvNWgP0hB\nO8BiW0tbnqCrT4lpnDTHbXrfzqOvG5DyBsamJAfuCnc+uIvUdaMKFZBDj1Abu6R6A97N3eWND+5y\n43c3HnOr625Qlu/jcHZYmT/O7g0DG9J38A/63PvTX0NfuUrmqItKqXIj+V0KBwVKH1wBUaGTqlKd\nPqI9UnBnYyRMA4LmLiuZEfVchmlewK+ewTDvxznxES5ZGGl6zHqL9P0TVh7ZaRtVdO9FGZTDNMQB\nkRNRjB41ilRiGh5jPb6Ec87K/FqQQ0ebiy99ibBLwbtWYMPfQ1MbEpF28XnAaOphi8sIBhdW1Qqu\nbAvv1g6DRJNBdIbR/hERowXxUR+lN6A3TDBzGEE7XEVyClSbdUb1KfeKbY4+KNKTixRu+0lliySD\nLjTiD+eJ+puezrsH/N7ly5f/IaADfgG4BvzS5cuXfxVwAT/36quvDl599dXK5cuXXcA3gJ8EflZR\nlN2/rsbXfud/eVXvrWFVjOhHBnS6OKZABIO8zs7Ou/Snfhw+LeJkQLlqwt52ILkyqA2LBC8uc//B\nIa0rBzRXtGgW+0y/vYsyHGFPmJmWW9iVKd6oDrIapPIdbn8rzZkXY1g6Eo3umKnch8yQ4mIXm2RA\nnjNRStoZKCkCowAbUwOrNiv13JSDmoK6XSbj6vCc9xj9voxdlGm7s6REDaqgFlUbytiYBEeUBRPe\n+fOMzD3e/o1/ydJPPku466avWNnN7OOW24jLy9QmY1TtHvncTTy+AJgnIIXpdMY4ohqk0BKTxhDd\nlyc8/P0/AODvPPfj7Fp3KZg8TPReJLMPCh/SLeoJx0RMBoWxf4rOOOXulouxV4/nxBqjrSNq+S52\nS5iKocvU3aF7MGChakRd6NLdaGMYm9i2dYjoNajxMUmOOCkMEe0ywiMnMUnijs3JtNEhPxMndCGE\nUTIzDW0j1jVYhlNU59z4myZe1DnpjgJs/eEGK78QwPNeltLgHm5DmPvDLodijWe958nqJdqaMZvv\n/QEjOU/ojsCyYYS34qftFng6dpzE3Ii0U0Cb6zO2DrG3Wtys7zJeXuLh69/D7vPQ7FhxhfM05wLU\nIyH0i0HUoxLXX7sPwKUTn0UWjMz17RT0amYqeSbbXRRNlOR2E225jsYn0bT3qOUz6B+l0HRVtB+O\nWHP6sc4OqNpbxE0zyFKHiHcPoS3iHzXQeUFaF2i2C/RnbKiMXcr6BuXdMrXdIbapDTGnBquR6fpD\nLEM/0Y0g034Or8GIbdCkuCsxmG7j1JmZtAPIswKq8oTStIOpb8MqONDKZcKfDmNoJFDODIiYpzh0\nIyayzKywwCRQx9R3MF4rYZuOaZsXmPR7aMdZJA3cbe6zSpiJR8O4YmPUFklMxsyZtZg9dRrFJF3J\njKpW4frd75/6uXT8AixIDIt9Ol4PTmOMiuBi1ljHUTdxp3yHL514jvubW3gVN357HJM1R3Hgx6uu\n0Ms08A7HBE9epFXtkmMLjR4kUweN89Psr3+XWd8J/i/u3izGkvS+8vtF3Bs3Iu6+70vumZVVWVtv\nVc1euHWTIkVRIrVYowWShcFYxhjWMiMMMDCGMGADY4010MzYA2gseDSWZGlkiUOCzbXZJJvsvaor\na8uq3DPvvu83Iu4SEX4oQ/ab9WJA8vsHfMB5+c73P/9zjhw8ozaPsSibXMwFaMxraAONsapwPeen\n320gxzU03cFy/xFnjinDYolJdsYGFxlrIzrVNvH1Nbiv4Eq8R2zND+9PCalp1K0SGXVO7WiP/bfa\nzDML6Jv0n5IwkNCNET4HLGcVUm0LGyeyf5PemcKRpXPx6gzJTpK41ke9epWsdUTxrI6zH0YaWkyz\nOSQVfvT1JyGlq698gvLExdI8RXV9hNrX2NzuMVGiLC9/ls6jXeJXdpg7LYZJBw8HEo3yAXfjUygr\nJNbDqKLJh7UPiWtXsOjja4t0xGMWQwGHWCYZv4NViRCLCXSODZLqOi2zzeaKxd0390h5ZaxcFJ/m\nozxxEBYEAjkPRmiMuz7DHGvE5xEiHhM54ibv1OgKMUzJQHWGWFiPOTXyTIwhoh5A1SyUgMHcnCBP\nDjGXPMiNIfHQKoVslfbUTb7mIDA2IOyn65hhjBVWho+o2gtcfpOkIvDBa7vc+OQz1A4daCGNYrvE\n7o+eJG//57/+PNW5DulLZD72NNLJPcYOg2Bvg4OHPaLGLXpmFNHpxNN2sDANZq8vaIfu4Db9pE6D\ndBQX4uM6fd+QyNY6w4FIpV+kI+rEFktIoXuI3jaOuRfJN8KxGSbT0QiWJM5jEqsrEsbcwWZghrOy\nxmx6htpz8fCNAcZeG4edBDtBPC3TmCaI3J9zv/4Og3ECuf6QcTHE8//w18g2bBranMuBFsGNAAtl\nTtA6oSXFickiLreJ0lFJLE6o+S/TmXYpO1vYnTxyV8O8IKDlNhH0CuGKm6blx1W2KTy9Qmh0gdWN\nId/8zhM36EuXX8HtdREVk62YkFkAACAASURBVOT8E7Zfeo5P/uRTxG9uUP7xQ/SKE2fqMfI9i+Bm\nmmgNFgsdl2TQ60zxdALEn45xq/99vLMAA02jPz3H1+vTmjhoWROE2QC5NaFiT7lgrFEPR4kpMXyX\nDc4EE39yiX4PHO5zQt0im5MdTk6+wfr4Ip12n4Q6o9ZxIpiHePdmlPYPyHQEjLobe+BCWOjcY0Sw\nk2dDdqMEvDS0RxTbQaIhUKV1uh/MkeMK/bMYLnZpZjZJn8jMQoeMmx48jmNSqz7chkSKON2Zm5G5\njDxQSK8HiR4GeO/wfX7zt3/z/9uwTdu2d/+v3aXLtm3/pG3bPdu2O7Ztf8K27XXbtj9p23b3/3H+\nv7Nte9W27U3btr/xN7nDbXp42vMLyF0TM5pBkwZYpduUg3E+svUq65dC2As/gXyCuHOM/nKQkWIy\nLX6Pu4/ukNTHJCLXSZ27OPrLMOngz1A6ewnMi/R9EerTBgd1i6XAEvujFL/6q7+MKla54zNgxUvs\nKY3Jjottj4p1I8mkHGDkl+nt6Azc+6SSPszWgOsFk1VVo5cP88XgcxxU9yBqYuJnPC6QZUF+2GEY\nHOGem+RqEqoyx9vsEe00eelmitkiTNs7wuOccSH6NMO1q/Ru7xJyQpsZl9055o8lhrmr+MImK7k8\nZHx4+22sT51Rcvwvf43b4+VLKCs36W4KhEMDEvUKgu+jeM1jCBWYagksY41H1pR0/jELwUul2+Ag\nl+LiF3K0UycMGmMmiwjByItPfi45gfUdHx2/gFHLMO+YyFadgS0yCouMF+v0EwbvHDTxeWUCokCy\n7ubggyKdsU3uxueIJJ9DakUR73WIxZ4lMnWRiuTY/MQyuX/7kNbiFi/d+Dy+m3PED3d5/nKK763N\nmVQWjN9s8ozrM2zonyX77ArTRZqSd0b1r2zOf/AOcvEC15QEnsUW20s7zD3PkgsGidY0nv7YT7DX\n2GXq7nHU3aBanfAxLczGZQ/ZzyT+GrfyvEOy32Ci7REQ5hw0TcQdiZ58iN894H77iNqZhvjBHG8n\ny9qlpxmcl3BYHRQhgFBOMjov8LWvntPY71KuB5hqI7olAe2OD2/cJpi+RGLfh1A+ZH0UwF0osJMX\nqWwEWKx0OB6cUZvK9CNezOfPaUgKFU2hPFnlSiJIOpbnbJFkbE3Y8sa5lo4RXcvREy0mUYV63YNc\nzpDIOlnVlyhcvMQ4coXkU3PWfukKakBmuDXBNb7EeN0k5HuIf2OPW0IWw/UUz/7ET/PhUovZIsD9\nhJ9AW8ObXeB3W5x3Y2iZGMsemEX0v8Ytlo+gHbhx5TSuO4ac7R3j3T3k/W+cYAXarCau0TGapHxO\nvl36Jm8PfsCDx3eYGl2chY8wVJy0Ex2G792i6zOQOhvcad5Bty4TjgioHZt2okzJ9iE1jom465wE\np4wsD77UlL7Wp6Z7mEs5fPUx9lRnr95na32TxMvPk7v/EgdakWhoB/X5q3SHXaLP7aIukhydDims\nTelkGoQPNqm++T6Omoet/+wi+jSDLAyYnvQYvK2hdZLEQ8scLUT2dm+R9/h57+2HnMh/heW5T+O8\nTkPYp3n/EuPf+3fUa33GizTpvJeaO0C2KzILTP8at3mlyPXEgP3LBzi6Q6bxFQbHBRIK7O1+Fc9n\nfoxz3x7OFTe9Nw5RBvdxESS950P0tfCJA/otPzuRPPPL9wnLdQYvhMlk11h8dsQ8mGZe+CjDpwdw\nYOFUe3xQ+xF0VR7sOdHDJnMzxvIogJmesCYuQ6xPwOniwkUBYyuNxIyjgs6dVSeG5z307ClBzzHe\n5ARnqE40JZJWTnDmNPKGQmvSZp862SvP4cy8QLPhoKNZJBcnSHeX+dxmFlufcd/0M3cadGt5Rr4F\nD7UQ+SWdytEVbrcq/OS//BV6b3UIzKr4eh0yxvP/98Og9YmhE4+dcvxXrzFNfAdvJMzE2SSOztiM\nkmjuk6w7qKkmUlVisB7BcAbREOnncrhkP4GNdcILkfK9OgP1IRHvFOVwzt0HLQJFje1FHivmJuI2\ncQ43qA0V2mocz8SHpVdRjAln8wU9/xRTiTFJryLnFRz+APlxCJetc390wuR0D719my9+PMFLn/Gy\n+dwqz2UCvLQU4+Z1leh4n/tHfabfHrJ4s0m/FGDrcY/mtMF7t3TaqkY5EWPilyiOIRm9yNBlcVtv\nEK3peN6fcnwUYa5dop9tMrO6MDik4bvDZL/617ApawbbjjA5K0Cxp/P4u9/inX/yOo233uDy1Y/A\nx1w42h+hEh0xs1tUzRkdj4ldyOJduYZaiNE9H/ETL14jGJgQ1YosLA/tFSe6y8mFqUVm5TKWVyBR\n9nLr1g+49/5XqSlDzrsRhrYHl3KII36PuKnidasMOjoXlBXqY4nJyRnNuz1mVoVOY464aeJ+7iWE\nlWuol/qcexwMfVEOPhgRyQpMrn2azC/+Co3l6+QuhDlJb3LSOOXqUy6kZBNn7B795Yu45hpepxch\ndYWkT6ElbFBtR1i4FE7CFtFEEZdnl7VgEVdzzsSt4rCFvxEP+ltf+/KlL33pSzdv/gyy1SEz9JJa\nthkuRlBPoxWO0d0DNl56gfu/v0v/6C1mPhehUIp0ysn+hXchECAhX2SmVElUOmiV69gJmWW/gSdk\nEJl1UcZB7I0u8XOL6l4JsVQk/nSau1/rkN4KUY0HMeMXObp1TMKIEyzYOKYzkqkkxXIFdaFzkA1j\n6AoOa8Z0FEIY10maEu2CQlS1CSJx1ighjQesPnWT+VmfoVfHcrSJCy6a4TXCcQ3BmYRTmzN1TnRs\nMI8tKKgR1gZlHqh9QtImVqmPGTlmbMqc/OgWvgt+/Ic+Uo5rvP3l/wTA537ls+wWdeJqnfP3ZiSe\nzRKTfKz5VzF0g7LTgVs2GY/aLNpZ7HAHoV7h+ZtxXvu3hyxdCREXZ4z6A8JdN46wgCk4+cvvdpFE\nDY8Vp2W2CURVrHiKzYbAUB3w7JmDWqyNP5hhLB7invYQ96PMdiwevP6QSWeK+VSdhS3zxjf/gtiN\nIM8+FWPSKXMYUwn4GxyrbY7aBf7gX/wFSTlHuyaieJssbq7i8EQxLYW4EsWIt5FEjfSqi9WPXqES\nEll5sGCcbuIfxBjnJJbvBunFOtjGBlsOCQ2VaL/NvO9E8k8QK0H8j1W+8c0nNRw//2OvssjPqVQU\nCv4xczmMM92n0Rkyj6xy2eWnsyQyXxxiXsjilouYoU38mU0ahVWKZpmLa9usJ4o4lwIsTS9w+OAN\nQjvP4vd30Bd+jg5uI17bwKtKnNdNIkkDwVWgrDxA9Dhx5UUWPg/Lap5ZSMC044SECPen7+AMOJkv\nrzCr3sO5LuDqBREdBl//47/k6sUYzfckkutT7HuPUKMa9+dTzkp+6HSg62Tv4R2aA4Gl5Bb6YkGy\nlWWWbPPQJbEc2aGU28BSWgT2BfpKjHB/iGNJILNwoBWTLP3cNt4HMo+sBc9txvnyV74LwI3PfJqC\nZ4+6scnXdl/jc8sv4IwpiKk87aaI4o+Q3bjIOGyTUMKYQoHU0iskshOsx/dgw0XrwEdke0rqmkwj\nUiUwFQmEl7j75m1SL9xEqep4lmWiHhnHkUrNP+aFZy+z946Dga4gRgQuxBbcdZXI2ye0c2s4lQJH\ne+f0Hj1GG6dIxe+gHs8JBZc5SVxg7VmF8Vs2g5ZJYgZOKch5RyHzMjw4m5PIFpiHlvFpOcSUzCT1\nCAYK6aSJ03TQCMjcfCGFs+nE89BN8mkFOZgmszhlvvMK2nDKxWeS/Pm/e4effS5Kad5ladbhq99+\nEqvxq7/8O7x7XsROLDF1mhTcCs079zm+avO9N22uf2qHf/Zz/w0D6wBXcJmLl64wl6O4knP8Mzdj\n1cd6x+Kd7gRfpY61JSI1egwSLQa7GcxFgr/4n99gU5yz+vkd6txjSZkjpSwmiy6Zp19Emb7LPBYi\nEjKxFxOstTnNdhv/zEmoKaAJVfqVLGt6mYi8TKeSQJ3XqU8vge+cRs3HxNNm9SiK6TkkfNHC5zUo\nls8Zz6bEo9vk7RbFAzcu0UPl8YjF1SD98/vYGRWhK6JbMs8ENmjJE6SAzlX/iKOvvc3DgYSe9rIl\nrdLsDnnn9hMJ+YULIZyFHe7pYeg4qf3Zn+NUtxgKGt3+hFykg5Z/GhONsdCm6SjCXMZdVchYDobz\nKvGFyn7nMbkTAWVlneHxEDMYJtHtYVxZRu9r6IsF3faM85M2oYSb5eGEbsokdimH78EpvZjIir7E\nOJ8gFZF52CwRmAzpzkv4b27RL1VwKhfZjg3pbyj4QjE8wxw/rEt0wmuUJgK7rTvE4ktscBMxMsUj\nzNDDHnyJAFI4iLTmxgwGKU3vMRvF2fzMRxAe7tFv6cQ+5yBW72A7W6gNjbshk5WyhTsZZ3DwiKWd\ndQ6MKrd/9ETSW7u5g33kYmXF4oM3Dhi61nE6E7z2la8jNfoEoi8hJB+yFFpF1t2YjibufB/vO3X6\n5bdwP+/EvcjTOzjlxLNNdlYnuaRgM2LmSBBBpRvok2vkEK/5qahDvvjpVQ40L1ldRC87MO0UkdMZ\nTp+DR0EXZkKgoU0IriTwjCX8io/RXEUS3XhtJ43MFKFaJ+fJclJ8hGe2TPajYcKRMg7LyaO/+o94\nBiHmQQfpe1NcC5uD0QHJgIl8uoY33CN54qQltpGtE0RJofbBiIjTZBjRGVswauRZxKGtDbn1xvu4\nN3w8+PABv/WP/98nUX/rSdS//ud/8CXPa5/l6maYsmQy6lc59QWx5xJDy8Mk4MUanOMZ+5DUj6Ba\nbar3HyEPF1SOUrgeVKlN+ljiKsHICDls4NRbHJ0PcM4tjm0Fl6Lj3G9x7l7m2iefwy+t8u7u+1S1\nZQrLz5Ja2mDUm+N8p0jy0yn6PSeBk9v00xFycYvwLMZUL7Owm6xoWcSnneinx6g5B9K4Q6K2oLvs\nIldN0+/WcehdDioNNsQUiXWNWkgic7+Owz1E0w4YqTb6AB513keJ59n8yBonLoXV/RbnSS+hSp/z\naIdC08VesMG620+9EKfSLfDwtSdy3k+Zayx/qseeFceIu+jd0/B6EgR95ywIMZn16fg1wnMH7Zif\nuKpgJdzot8d4nzFxj6L0RBdNe8K6WqWnrzHuSXSHGtEcnFyYszZaQx/MmTc6DD1DvNE4p3Un7rjN\nefOEhO7D9i3YWjOZnc6IpBUWVoSQx4vlCuNfyXE2m1H+8C7hRJBG74ySY4NsO8ypxyR56VXG6SXy\nAQ85TwRlVMOTNpnrAuKsQUTKMsq4+eH3v4+jrrE52CKQSxAcr3BLOmLStjEGGp5kjrjHZuob4vfA\nVHIxqgmIQZPu4WNy6xO+9uV3ALj63GeIkCfECRPFjxnzYxhuViWFlCNFWdKZzPu4BJl5b0FcTxOM\nXaQqH5L3FnEG40TkKpbDi+lwUV30CU49ZEJuPuyaOM0yHtcy+lhnajhJ5S8xaAcZXhe54HejH8Y4\nk0Y8rd+gIRXpC8s0AiW63h5rm0laThNjvIyQCePz2PgOInhUg51rX0A4EakFJtjfOKcbcOBbTImU\nXbjMGcLwIVM9jBH3Ybt69MZOGp5jpBiYOPAaz+FzLLjzb/4Nn37lFaLjOknnArMzYR4Z0w/50V1d\nhLMytksnE5fp4uP1rz0ZKD/7Sz+NVSlh+QfE/OvMFgvUicCJS2MWukbvoM6Rb8r87l3u/vA2dd8x\n4XEDo+KiHw4yOzpleHmNs1KZDw8fcsN8nkZij3IrzqrPh2/QwZdYsDivMzEXqAEZAnEGj+9xMqhz\nVbnE2rKfni4QKtscTdPshBTuWD0itsXyZR+OZzapvNfGr0YZh9r4zj3MOxMmQQOp3WBsh8lGVA4C\nbUZGikSvjZ7XiHZqTIY6a/oIIgt87hY0LxKfz3AbFXZ7CrmKSkdtUD1Isbk2p3KyTmtwjMdvsnvn\nbX7pN36Vxw9uYaeWqIsWb33jewCsXn2J3NKAb337HW7amwhJGVNdw+wrjIwS+W6bz268yuXVHTa3\nfFTu9Ei4FxhGh+lwwOPSIUV3n4IwZBKOkJn16BluAo/GfOWgQVQYkb0UpOO6SOeegmU+xHQ+i5Up\ncaHRJDSTCCEQ3bhGbNDBdN9j2PdzoSRSuagjjj0EW6uYO11CmkIooNB3dgnO1pEz5ywSBYKDM/yO\nNY6kfSI5CX3mZzK1cPai6AMR58l9vOkUTVvj3t0T5tsST6+FqXlzBN4bYRhTEslL1FMiLrtHPH7C\n0YmKNF5nOR/jZmANZaeCa+Tm628+cehd3fkCWsSF1EwyXRN5KpzA2IkSjyfQZzPOggVcdpPwlRw+\nA+r2DKljMkp3iC/cKDMPj+cGkl9Byqdx/vbH+cvLf0Z4nKSZUjDNKfVeiI2XApzoQcykwHLHxki7\ncNcNNMGP2x3C0zcYLPsIFTWO6xWU7SmztsaF3grWUYnxShy5+JDWeInGtz7g4fsjZqEB8SIIagKp\neoLVrbC33yaY9dAfHdEdOkkNz5iPTA7fn9KOjokcekipARyxPik1RSyQZCYsE9tJ44r5yUgpKrE5\n26LMqJDD8DlZsdNUnFNevnmZP/vfnsjHr67fIBP2Ub3zGnOnhlWHKzdjuK4lsZJ+zu71WZ9uUPVO\nWXZL1ASJ6CKGI7pATeVo7d6mcWYQSV+hED+nbV1GMcuYiwssGzVakoJj4sEI97BHHQ66DczHCWL6\nY+oOByFfE12L0LUahFMq5lgnW7YYru9w7thj+MjDdFXAacfwZ2vsuzx4HEGmQT/yyYJ6NII/PcBz\n3sDVDKBqI+76O2Q+3GUam3BafIitefFaYUYDnZJRJDeH+/KCzBWBB3ctPJe3UB/fZ7gcwj2ds1Bc\nYM+IHh3Qi1vkCll21gR+8N0P+c3f+cd/90nU7/7+//ilp7/4LNFCC6nfoqXJpC8LDGhzET8B3aJ9\ndx/cK6iyl3gkDcEZXT1NRJtwPb1G4zjO1UCTubmB7WhSUmps50QmExs17MEjaJTXI2Sjbu5/+D0C\njT5uPU8qDUbxgId//h1Wn96mFFkhW64SUCvoITf19+ZEknVsR4QjQ8InKvgLE2QjxKIEs7O38Kxf\nYDLzMWgITAIW47NDuu5lpNQ+2aSfw++7KCzJKN445eE59bKXzXySJdWBmg+RmtaYncwJ75/Tc0YR\n8xa9gZNQ348vscHR6BH9DnQHJSzpjL1vPDFL/lf/4O+xuP8hjvgSSnmIazEj6nJS+4Pv4L3uod9c\nsHnZiye0YPjBAy5dcTGezLh7dIrKJuaiSWclS6bmIr5sMvGoTDt7ODd8RNSbCNaYE3+Hse5jNi8h\nznKwJJDpqgw8ZxQ2nqV8/COeznySH97fZRbNcCI+Imwq9DoiveGIxvQx4Z1tqtqUcafHdLpFWpXw\nBlViJRNH2M3WSpqge4x7XWDudpNwKZz1vTiVIqOZj+//1Wusv3qJJW+BCHUcnhT9kyLWlklN3CUt\nysRFB87BAzqJHIN3ZrTFMoGwxfn9Pa7IQ5ZvXOFP/+hbAPz0r32alv8IS3EhtuKMZzb99pxFfIyy\nojMeN7nYSfNz/+1v89bL+/hcNoI84c7BY7aXX2Z2ICL4U8x8HSZCFGUaYBCI4Z+YdBJglIq4PSLT\ncJ8NY4dy5oRNKY7SuU9pJrP9URXp7SnyxRZyJUojcoZtZ3lKjmI9cDC2BTzdMmfjfba7N6g7z/At\nBminXZrJU1Y6c1w5g/ePW6xuJjDEOS1NxBeTsQMQ0wwmsoXPF2Nr4uLsyEAaCXhEjfa7Jqsfv8wi\nrPHB+2fEFgO6qzNO92WeW4kxevSIPnnkrTiDmk3xwdvc2X3yw/35n36FpplmLEhUX7uHoLRZTOFT\nn/+nuL8+Qy63WVEl/Csv8PxHw8THNg7XFUY5Hz2pTcMZIt0c8uJz21jTKfX2OmFrziVNYe4BXyBC\nL5DAa7kJDhcMkgGG0zi6p0P328dkdrL45Bk/GN5j0gV51mUaMpAbERKXoX2uki1P2fzIdbSpgWiL\nPJ4Wafr6mJUSq6sxkqEmnYSJdLtFWS+z4UvRnMeQjAX6gcHg2RyRkwbf+8H73Ph4BElw89i/THbw\nPtN7C6ZKnKBX4P7oDCHgZ+SSEav7NPs6pVs/5OXtL9BzPia8nOGbf/I1AH782kd5r6jz2SubyJdj\nnDWq2JVbOH0znr+wgh3cxCe1iGafoda8w3iYw/aO6Q0jiHaejKEjX2mStyS8+SzevIYQ2EYMSviW\nF/zh7/0+mx//AkLzkLhLIzH6CD5vBEfcxjdbUBUSzBMS3ZMJncBjjGEOTYGmA6yWwaST5Yflr/KM\n5KNa2GG+OcJ8Y4YizbGiaeb7ZdrbWfSpTsy5QA8vMT7aJ+RzsTwo4CgcE9YifPmHtxCNBCufWmUx\nL/HGNw8oeC/yaKIQ+cnrLGcmRNxVYnWJyUzibr+NY+UF7HCLyqmBL3xCabzPmz/YB+Af/oOrVFoL\n1LmbKBXKpxoX1mSGjQLObBfvtEWiOWL15iryXCcmO5h1oyQEHUV3EtQCRFYCBA2DZiyI/fMVZhWD\ni+4wwmSEpyExvRggXtYYyQKiAXaoQ2cG/UWIuVJBsDs0Zn7iA5XmapCldBxTFHH5RzRFDWdGYDWU\nob/tRLQ0Zm4Llz0gtxVFL9UYxB7jU6NMZl7WL+mcCQE25S6C5aEe8iPkBBrKiJlDJnhDIdXt4HBH\nOB/DNNViKZ3iwzfvsNhzITUq6GKWaryA7m+htcrsHfRRhAC708fsfvNDAH7u8z9NV2nwxf/yxxn/\nIMYzP5HgUWAN426c6sggnkvjTzuRuj2a7Sjh/iGuUo8JBuUIuEcJwusOrOGA00mQ1fSCU1MlVZa4\nNbZJuoI0wz0c4wRLmkGZGUlnB3HrOslBl9MwJGsKuTWVO3tTFE1FvDTEPdEIDVS0S1O8WpCJWMc5\nWCHbbdKLaFiiQnNRQt2zmedPudqLIqaDuDbPiTVtzoMGwd4SCWEd11MtLMGNc92HnF+nE03h6Y/w\n3mlxPHz8RM5NOdnxOMFtE/flmNlpll9OoEfd+K/oVJQu735ll9/5nX/6d59E/d7/9N9/6dWPXaAS\ncOD19sm7JSrmgvBMIdaeMxfd6P19Iss7NCjgEvssei7MmUVOmHPqy1Ewu8x7Fdxjk8PeKb6YG+8s\nyEizSUb7tE8ndGwnnZMRHm2Gw5NkGlnFoxwhJ1yobp1mcE7UO8F0zhCQ8XZcRGNJqq0ep/tdwtkd\n/HURQ5nh8ISZLQ5Yye2wd3KMVViwLYYYBtr0m0HcCRfXFAf3b4+R4xPiDQU90SLg3Ub2zhgv5pSk\nNhEtx9BWiZ+v0fUodEIq3moKrblPUReopSA7a7JiLmF3KwQOXbxz/zYAH3lex+W+QCs5JRpT0If7\nODzLuD7xFM4f9tEjEd6lQUt3EzeOeXg0YDjIU0jucOT5gLg7TlboICsq7RmMx016xQoe3YEVmXPv\n/BTTZbJmu/CtLVhsuhjck1BDJQKLDSrvvYn68qe5X3zA1sUL9JjgHYtcyF3k3UffI7C8yZa+Qf2s\nzI0LBby1IZ61Ec6xDzU+ZNabU4g6WfRaJONO3tfewdGU0Vp1EtkUb7z2Fg7B5JMvXuSkaNPtj/A5\nCpyk69imC01YcGFeQIoqNCdRIqaI01HjJLQgnFZJiauYRp+EcpnTPyzxRuWJUTTkSpKOReh3/MTd\nLhqak6xUxJm/hq/WY1FM04gK3P3ChxjdCnbCgRS2ERQLh6tOYzwgHgOj5ac1rhFpT/BZcTRxjEOM\nIHtkCr/zMvVbVYROg5LVo+G0QZ1QfmTyl3/yx2zeiGC2FE6nEjoGa80G36x0EJcCcHtEO23yophD\nWDaZ3DeYnzmwqeJKFfD14cZvfgrdP6I9abM8zxFcbjHXFyQtEdMO8Pi0z6VODL86ZjQpYnhdLKkL\nwkqLUnFGotRBWVmifNxnQ7aoGDqz8RDT5Sc6KjHseVGSKh1/lLvffR2Al579JQqGjiA8IpP5LJub\nLxF1XGP3q++QmTTYc+/hvipSb51R+NkbfPB9J16lSUivMhvrCJIHtQ4MZEaVIWkMhg91er0A49CL\nGEfHqM+GmQ0XyOM2tw8f4omuE3N0EK5egv05xlULkQOO5T2urF/jdL9FolWlWK+yEoty1jmlPm5g\nRhTef9hka9OD25XDkfITr8yR1i+i32tiZUo46mGGUSi0HJg3IOMIozjKtMw2T/+zGXceQ8FK06rM\nMR+7caRtnKcVEtEZKxufxNOtM7sew+PyU7tTIZxxUmbKoNrGuHCZt//DfwTglVdfZrJRYmsu0GnC\n9gZc8PsZODa407jD1eCMwUTk4fwA2Zgiy00iiSBqsEu4VuVo9YREI0DV66J2MsBTS2AaJQ7mC7Lj\nCZ/7tc+z6fNx3IboMy6c9Srd8ZhBRWDwMI3sazFYxNBmLirTEf22jEOdcim8QqV1RNlK8FOXbjDr\nG4zsALHSBKc6xPaVcEbcdBo6V/MmrvYpPV+X1KmCJx6D6ZROTGe7s8VRbMKNmzc47Ybwxw38wyg7\n2XW0LCghF63X30OMKzy4m8EvDvlfv37EJ5avcD7uwrsl7OwYPSDjafV4/e0nXqSrv/H3SDxoszB1\nOs0cF1Ii2eVrmL0HNFo6bv82DkPh7qKHdW+PUtfFUK8TYMjwqMc8XGa4f4a2soyjYxJgivLdA9Iv\nyxRlk2EohzjYZ0qGkNDlkkdF6iRZxFsYnTS5wIyBfw1FKhJZ1JDmbpylM0KhApP9MoluiIE3hqgf\ncXJXRTx9hKKpbN54inXVyzDchXspUqFTikduvP4CW8VjzLSbuXdOKNxD8MYQDtPIoR7jBzodJcZJ\nbY9EwCbVvYRVus2i6cJVb2OGXHiXVWa2SeLUYDxpMJ3dRQv6uPqxX+Zbf/ik1urzv/7rHL9V4d7t\nFu90zkkrcTxWDJQzxpYPcQEeo0mICKd+k2RURR/DKL2NY2BizaJoUZHwEERDpVx/gBgKEBhHiGTD\nVO1biGUfE2mMGTcYUMmUoAAAIABJREFU7bqRgkO0hES5IRIeKsginOhNnit0qY9mOMwew+g6hUCP\n6A9HtD0+LtoOqkf3qRsZrqdirPb6HDpLTDxBLmhT/Ks64XABuzGjmosyM8OIZh2/GkFoOfB5AszU\nOrIh0OsqWFIMZf0KSxs7WCEHgrAg6PdRaZboe5J4Ak2MQw3J4SDQdlAtCRzcOue3/waL5X/rSdTv\n/vN/+aXNT7+I5NJpjLzoI4P+dIgn4cXlnjB2W8zD62R8KTRG9MQxU0cRNZNg7HIh23MCWQ/zTZua\nSyF8I4jfUDlXQiiaRMXpJqQWCG8t2LhfQ3evYIeiuGuP6fv9tB0j4lkVK1ymdHpM0iVhF2FhdVG8\nM8SRSnyrwd3X/j2hTTdvHL9JPudiNPAjI1DeH9EuyQhRFeFYoyM7CKdlSmactAiiO4/oKnPSDSP2\nHpGahxmF0/hPk+xcH/Pe7x7i/dQN/M42i46XyXDEWtbF8Vmd/jtv861vi9z4qSxSxcl4ovLewyey\n1I/9/uf5zmGJ6Wwbow5ye5VEZ0r60R5FZYaxFWbT7Wfu7pB0dpHyy/TkKS2nyNW2SUfJMJNGlO7s\nce1KjlnXi5zcZhaZ0e1lCMdsNjdXOKgXSSVjhLQAgrfNyK0zaoxpSwFYFNmKqFTMCn7JiSpPaDTm\ndCIqOwOL8yUXKWeOaD+KIykRMfJkxCZid4lexKZLEN9gxl6lSW4icfRozPareUpdgReSCcSxwXHS\nT3ioIm046NcaDI4WpNM2++qcfq3CIuHCM9XpCgJnHZP1oYcVz5DXXztjM7nF2blOLJviW7tPJlGf\nfeXjaHs1ZMcUuakxC0UxtB6BRz2KcQeegAOzX6HR6uDo2yRXbeYHKvOaTAQ3AdlH43iK7ouQKLYJ\n3UxS9Zrsvvce6lYUUbOJHNzjR3/6kOAnL+PXLRxnDby6TN5h8uyVT6FrQUKjEIPhgEthB07Nz4Ww\nA+W4CUsKvrQHY1Sm3RTYTmeZPetCVCQSI6hcmTBfrOPuePnRH54SeWnBYiEguLzUAg4Gio2bVQKy\nk3HSxamYwOlRiZSS3CrM2HYlKMkTNu69jysqsatLxAJ+cr4WDXsHOdpguBBAHOC8s8t7D5+UEH/x\n5ufpr1Ww98f8EIuux0HLMyc6aSN7IridZRzRGj5TZ5DZQRrdoWdV0P0SETnJxCdzIePlVvWE3CDM\n8s4al6oOdjdkPvfiS4ybtxj2AqQnI44DMeKxARMrilo5ZivrxTENcta8xXL0VWbtAFpdY3RphNm9\nynLAYGRN0OQsnXCFya0wm5vraH0XwTGEPBKB9VV2v/1lGqKDiGeH/LLJSAqBP8fRf3oTPRlEKi44\nW5UJnl7h8eMW0vMZhH6L1EoFtR1Ad01oFm6gu0/wjNZxdztUj8psuXR8NwrEbQ/CA4vgTSev/9ET\nGfSV8HWe+vvXOBnscV6MEs+K3KslEXpnaKMo/lqeM6OGQ2liTjOMuwt65gPGbQk7PWS5I2E61smN\nHSjPjYikkrRVH8HIGHsuUf2gTPo5kY2Fg/7YyywxptvwoA1P8cVVZFPjUNdYmZXoNTV2ogs65z56\n4pCgHMah60TlBLI/Tit0H8uK0d3ZYqaryG0Rc3nKyjjO5CSBquqUhBRSywvdJcyOl7LQYsNXwDDb\nRK4vMf1gwtgZ4jTQID4cUj5vcXErhzuYp/HhGe0cbLvj3HPruOtVHsUDyAbkZfBGw7z2zXcB+Pnr\nL3AqgWLESC5FONL2GY3GnO2fYG1eJKSPMCWd+rHFhlsiYyw4NnzEphI134KmZ5tyapWTehlDyiCv\nN0m0vZzHR+R8ayjnPar2gM3pmErYom4liTv3sYs9FqKBbY6pd22qpoZ3tEQ/XeTx4x5pLcTIGPJo\nJJHvlThyxEmkM3gV6DDizTvvkpr7WOQ2MPNZeg+LFMIWxwdHDFZlctYElxzmthbEkiYEcwK9foyZ\nG546O2Tp5kv0pxMEQaDlqrKIe1nXZ6SWo4j2Pt0TN56shH81T97h5rC/wOiEuf36XwCwvrPNIh5l\nMzOm5d4nI0TwhDUke5mZKOA1xmRTY4olH3ZXx+vrISkhihUBl69CzKkQrYSobclYiQbByhLGXKfO\nkLRzgKk+y5lrF8m3Sb0UxDJ0dHSk+hZiok27pLAZjZHOh9nrjSE+Q3w8JtE852w0osoKYvMOHZ+M\nlFTxbboRmseczId096HgCpO4uU7+F3+O9154hEkRa3aAt2zRdtuYiRlWNodQayJHBYRHEvutHisv\nXcYhNpipHcr1EIHQnMmJF5cgEbL8GMUTHLk8ncYd+pFlnPU1du9/l3/0W/9/IFH/6l986cW1l7BP\nT1hKuPA5dPqVMDNnH2dvwtBZIDGpIu3M+F7tEWqvh2t+AW/vEaFMFvPRkPH1LkrbSdMVYzGwWAss\nc/jwiEBsRKIXxx5V8PQdHFSDeFZtxLnIUHazLNfpoyNGFXwRUGpjxsolUp0BWqtJ186hxEb4ekGu\nfeFzdGyRxGeeoXm/j1FoYGgjwjWD4blJPqXw5X/1h1y/EqcbShDxdOl7UvSLBsHJhJlHwSvIeNIu\nSrMpar9CfyOEI6QTcVRxjAd4vRKq3GKu5wmoXS5f+gjPby4hZzLc1yec63C0+6T65Weee4GiFiS1\nlmXLyHPk0kk5D7jXlnCnQiSDJZZ/8+9z8twumXmMiOXD6wkgLw44F7wEY8tIQh+X28NYEmh2w3iV\nAbPDJO1Lh/TNMIWpQWq5QLX+iHBb473ejAvuFE3bZsVnMNW94OsSEH1MSmNmsh/FGrPhtdGmSQbB\nc66vhDg7v8vFUYp7t6ooXQ177kOICUzUDsXajK1Wk2EoRnCwINvawtWbUvbXWTXdBIc2M0XBp/uo\nleDqT+R4MHxIpDFh716DVDgMEZPlJZmwHxA9DCdZLl+K0nUHibSdxHxhvnzrywB88dOvEtu0iYRf\noJxUmN2/i+eyybygMLqrM+mI2JkZ/tU0rVKTdCpIZ+xjMJyTHJkotk09Occ5L5JYiXMwsxg9MMjH\nNvFWy5QenWCbzxD7dJ5wR8KrubCkOYo1px5M0jOrBFtVWoJFNNrjSJzSKUdZJAv0jYdsJDZQelW+\n8ydvYl71EtTaWFOROat0R3Fe/6DBH33lf+fg6st8bntALC8S9V1DSF5AKdVpexeYIT8jl4pbrJE6\nHSEk1uj7RzBaIrEaIymMGSojxMka/vaUgS+Kopo43af0SpeR82NspcYzH/0M/8efPsFtlNwhH59z\n4mgjpKa8mrhOwZmn3R0g5QVOdt/mU5/bpo2H3mGHljTAP3WSHExAH/Kg2iPjzoM8gpSF5NTx7Zks\nX3HzF9/+PXYuPsVcNhidu2g7vsJO8BOofBVtEkcWg+y7z9iMrjD39jCOLB7VRzztjnJ+JpDJBnEM\ndUQRHIHnEcpthuEW1uRHeKYTfDEv0UKEWXEPKTxFJ8+Zd0ZslCF0bYx0WiK/OaA5P2A0zFCKrXD4\n1TMyngHPe0x8h27CaZ170hLNhgPPoU3gIlTabi5lHRxPQnhi6yykfeiFyGzN+MofP9mJev6XfpH5\nnk6kPSZ+McTiLI/DLHE2OcHRkXG7DpkLPuK9LCXFZloRyXZEemkJazGhFTNZikB4nsYKhTC1faaW\nB+04gV8+I56P0K2ZuGM9vKEQHXPMajiMLZn0ogLdjsxKJEyrIuJXA8zsAqrZRPdEWFRMAs4t3j97\nnROHhhqNkUvl0OoDPF0T57lAPxJjPFER/RYNspSqC+bqPqlQn948Sdry0XCWEUMTat/8kMj1ZyiK\nByjHLmxiDEM26V/4Bf7rl/4JOx+Viaxs84lXLnC+WyUoZnl+Y8TC5YFdgUrC4N3Xn0yMP/ZffJxJ\nX8UxqjPOi4zzF3E7YBSoECvatFpFwoE0xwdnhK+s0uzWiL/6MhH/GbYUYx5xs5JOsnbZh92PEnWd\n4RcaJNQhpQMXvWGRWDrOeXiAYG7gnjgZpeZElzPo8wQ9O4CSNLieDVNUDrG/36TwmTiHtRQzdxC7\noKAFZYxEmEmwjs+3jaVKXPbarL54jeZgTms84Wz3HZ7KforVG6sk6l7et1RKM52gN4E6d2O6IpDY\nI6YPedcq4phnWJT6XLi8TrV1BMMW7cEB1r7FuWCS2JAJGW5aowPMgzLF8yOW/dv88EdP4hp/6hM/\njxaaMa+J1M9lhKUC42M3my8XOD8rs+yYcupXGDy6TeyFFyjfCZHNl/DOTBTZQGiNcaa9mAd+PJ40\n9nmFQUwiW+2wK+qMfEUioQDz/SKbn75Kf9FjdfNZPFOLtJJGiMj4x8ecFWtYqoqrlyGKn67t4pJc\noCUGCap+7ECfSWeK5MpTNVuYgzwbWRPJUqlbKm9xm+zHBFqXXDjMFxlmgwTP3VSnSca7DSRrjrmS\n5XRyh7e/8j2yfgehPwBnosbOagm1IjGcaNheL3PDZBArcVaqElKvsL6cwWdovP2jN/mtf/Qbf/dJ\n1O//3v/wpR/beJpH9AlE45jNLKlVg4ERJWjbeKNRGtYZcz3BhYtBjnxJXJVd5FaQk9IZyz8bZ36v\nQ1ObI+03CV81qb4+QFkOoUspfAuT3eYJjumEeEwjbaTRFkXw9vk/uXvPZknS80zvSlNZWZXlvT11\n/Dntu6e7x88AGIAASIAEDUiBIrWiuFoptJJ2g6BiGfqgCFBLbWh36STtMoKSgkFIpAiJC4IOC0vO\nDAbj2kz708fb8j6rskxmZWbpQ++fIP/CG8/7vHc89/Xcry5kURSZ0PKMSe2Q/ulzhKIafQd8a2kc\nucHQl8BthtjrjdCmNrKYIHtpE+mwSlFaYs/S8YstvDcWMc86rPgWiWhT/BM/aD0SLZ1h1mHiG9Hz\nbHDQaHLemVHLRencP6MQvoE2W8Q6qjEoNumoIgFvkEErQ9g3JHZBpjNPcvCNR5ixcxzcfwYQXlz6\nPDOjhvVKkvaHD/DHMriJIzxxnWNvANlewvvfb2HnTepvfUA9KKEb+4RKEWamAoMRc8XLbL6LNnJI\nOzqeURDHf8KCN0ZUikG6QfNdHWM9jexLMaqd0BLGpMMa9eaIS4kbSIMU7XQNPV9CnRuElkM4+wPq\nN28Quhtkd1wm71vnB8O7JIPnyBYvMLcPaNoSijoi35URZ36mayMWvSbCJMo9Z58XO+exmhauqrHe\nNJnoNgm/wOljCI3TKDdKBIMp8gUvuFlG2126Xof59JRTTcdreqkdfEDwox6vr/wcv3frfwPg0o+9\nhl+9gvngXXopjVIhTcQI0K4qJDdK5ApR6rcsFmWFaFpk73YHZd1PujmgmfQzqVbYtGJse/YQuz0y\nLZ3J0zYrkSInwimFjTyqqxM4EXjYaaKtpRkcHzKIJ4kGg4SmAQKuSCPQx+/JEyv7WMrqUNvGKCZZ\nWc/zSNC5lLuI4wlj20HEcIv9gY6piahek+F6iODBOuupNgErzvbIwiOMERoDMlcK3Mh8gsPmPmLM\nQz2QoxSeYrs14vM81QUX6VRkEFPpVXzkon16N72E/TPqepRLbxRwdvrEEhkabz/mb2/fAUDqtXj9\nN17CHpS5Zr7CvTt/yP3rB8hv/DwBo4sT3+XDvkkgdh1vt40/JxE7XcYNx1jJyaS8Az581KG4EWBl\nHqHSOyS3vMatezYF3znsVBhjPGPpukJc1BD1JtHpZYxCEHFfRQklEeNFKqZBMh5GVRw67X2WrtlI\n7TypCzZWv8hhz2EecRjsHvPa4ifYGTfAeBHv617G0zKyEcNpfMj+fpesAko3SlB2Ec6vEdGWGftM\nyh8mufLGnG7njOmlFPP0nE7tAtb6hH/3z/8tq59ZoFiKUZmP6Y4mlApx6o0RUiuCV95CDl7mm3/x\nlwB86Y0rmBGDwz0/f/i1r7O6sshs38+Glme66CFbtJl0wmieNpl6Amt1SkvxEvSKaOmLLBsdqo0C\n2sUyg1odu5pC3zojuhzB07c5fyFCTx/iPTvP7vgYpXsJZfQEXc2y3Cow83SYuCNUO8s0l2Pcq7Fv\nzPD3mjjWGf/y93+DH73yRa4tLeBtKpz0Rpx++ylcW+HMOmFdnPCdh+/jj3iZCgG60j7Zto9pQ2ca\nrTGJR5DbBm45zjh8mU5/ztWMSMRX58mxzmCnjXBi8qXf/BL2nSGquMt7394mLiVpLzzFsdZx0n0m\npQydwxEPP3y21fjZX7yJ2ReZFs6TlSwcS0Cb2ti9DHmlRS80xDJV1sMmZ6kY8aAPo6PTqDVQxBmG\nT0L+oMd2+xjZc4CsL9LZPqZWSuNXTLp2Aospk3qJK8lDwjsSjaSKsN9kopmk4hFiPZ0nYwN1ukbK\nabCc32Qw6nF8+z28iWW0wAw3lmQ9tED1bz6kH5uS6Z3SOfRTHXQJil0s7RVOT/YQaLLnbTM5i1BK\nyNRmYxwzRbC3h6HLmNt7FBdTJBUFXQvz3OYSTt0lL6yRVET0iEske56UZXE2GLKkZVE8c6xlP+Vp\ngCc//O6zevulC6xUisStCRYiESuKmuziDQVZHcb4sCFR8AUQhSz+WZsFyUCXisj5VTgcYyzJRJrL\nVANeumfvMw+JTKeLLF6/SFKaEN8b40nPuPkPf4XJgzfpvfs+q8tJBsM9AobEVDpgHIgSyiQRfFNi\nmkww02VwluV4xWF2/wHdtTTpWRh9SSHRzhMMi2RFL820H3EYpmYP8NbGWBOF/cgS7h2DUWKNWOsQ\nf0LizFNhYBUI7b1HxyryH32pSE5voyQtUsUMkR/tUnk0QY/KWGELJxjAM45z7ZV1xpEYZWuIE3rK\n3e/f58tf/tW/+yLqd3/zX33l3C+9zHyny3zq4vX5qBgy2lwi6TdpmA4LSgaHIcNRkKlWQ48bhCMa\nL6avMjpsk8LBI6noUh5/ysVZ0yjYXbSzIUfTXYKhF5h0pmhShpZnirC4SO2gTfKKSXc/Sj5bYFZu\nYsdWsKdjCnaXqtRDNeKEQwoH9keE8yUOTqacPhjA0MRKltCiQeoDg8urM1xrn9TVEo35GI/p4vr9\nyCSpe1XM/iqpYZQVqY4WmlK2/Wyepdl/usNzP/Ec3z34G5LZRUZdD8lyhvF8xDxdIdpJcyzuc2ky\nIHR5yvV/Oucv/vXbALz0+s+w45mhvvsh85hAahhlPDqk76yhxy6zf+wyrHUxwxnUoM7AjLPsSWIp\nMUKNNLFZmPpKk+WmhBqJ0HQTCKEmVT1MwFelo5dpCTkm0STTdpX1+ZxaF3ximrjYYnV2AbF2QmKm\nw9Bl4DVY3dMZpqZYwxG7Hz0iY6YZLwyZvvcBwbKHzXyK4Z7AePGQBiGCR13GMZXgLIn/xMBZTfFw\nf4d4roEeH+FdStAxRui+FJJ6wnRhDdusEYgZVI+9dKxjtIyXVLiIL60xG57iG6extidIS3Pm4xt8\nbvUas+GA//3+HwHwC194DSfmEljLYt/x8PDoAfl0gtq2S6ok09TaBIpLMJapNF20dZNRd07qnIts\njciIMZ6Ut0jFM0zNKNF0CWmxQMfdxrGDpH0jziY+lGsR0qE59kSmXfNw87rAw8MuITmJ5o6w3/QT\nDaSY5meMUkNkdZW99/dpdpJc6lYw5+CLtdgoKbz5wSkXntug7WbIpkZ86cU44VOJ9773Nk96NZSI\nTKvRJaoGUHZrVDo1EsMZqn+f5rhG4kjClII0tQHjRpvhpMJadIuIOOGRVGI2baHVJbqmzGhrRN1b\nR6hEcBdnvP2dZ4/aL/3j/4vwtMdo6YytBxOOriRpfFGl+KWrTHdq5PNrBKMp3A+3EIwSi+sFWs5d\nXP8h1BeoXD7Pikfhg+0+ycGUXiANgwOMYQMxtchxdBtXzuB7p8dj85iYz4f77ohUu4BrTnEnMv1I\nGmt7gJlv0Z93SeZukG6ZjGITph2X7MJr+KMxloYfEnwJUqLE4Z7IfF3Ae9LDGE4Qzlqo6iXk5ycc\ntWNkkgEe/eAeqpUjJNcYTl7mxc9N0fZ7GHMP4uEMQ/OQvbxG+RvHvPjjGyzVS0jDCHpcQWwPEc5O\nsHc7GM9laJzksLUjfvj9ZxPj1//B8ziPE7wt3OKVa59ArksIWYPhxM/qygHOSZ54bkgv0WfqbzDr\n1ihoCwwCEyqnHeRwjMzlDRrbh2QDQdqVFsX/4vOYe/tEFZjWZgwjK8yUd7AsF0+jQTW2SlKp46n0\nICAQPY4yU97HGEpIrRmCFieWlFFD51hJrREqNSidTzFPhplKXawXSsSiJt6tXY47GjFLIlhYYPDR\nEdcuFFGDRcy2TEBNIOEhrA0JZxUmmRnxnk4s30HXwIid42ORZdTphNr0GGv0gNgFP4sXJcSJl+Ws\nh8DAQBoG0VsmCSR++N5bAHxy+RozUWJR9HI26CE0YzDtoC2EUOUj0hMv7exVwvkxwWaXdtRDdNvF\n75lh10WCD1psiz0WS2skw2E8sR7RYoBBL814FmVBEAj4LJbcFM2ZziQRZaiNETsCsX6EaaDCgSoR\nn+fwBg9oqwtYi2HkuYXqg6IVJizs4VOOcdtHmJkIUc8OHjnJk7crrPxsiWatTkhPkwhUGGiXsXwq\nct6POcjizbWYmwHW1nssFRYQSxJTo0RGhvhRh9ujQ1onY477Z8jWKcpgkWPLpJ40eSm/yIkxwOwb\nXN98katfvMLXfucZE+W9eI5YrEBlchvBjSCmXGKJNImAh91uE7vfJRB1mHgHVD1xJq5Jz3tCoN+n\nEfbzeN+ExBHW0Iuy4SceKjETdknoCieyxZOTfVKyjClqdLZ2mOT92IqB1g3SLI6IP+gz6u7TOlVR\ntRlTchzaUdLn52hjUNIhLtmryPMeEzvJSuyE8bFDY2aRCoWJtPuk1wTqmQCLUpauKxKZSXSFeyhn\nCTTPANnNsSjZTNYd3vvz2+QkCSEnoSsaYsfFFysjWnFm8z7YARaUAcZ0jH5HxZOso3cEkl2ZDz68\nz5e//E//7ouo3/4X//NXbqRfxP+ZPPK+l1qohuckQPFyl8f3Zpy76FIzveQzIXa6CgdukktVl3HT\nRIw2aQRkzE6fTjSEmx+R3ZpS8U1w9AAPtw0Say/ilSyG9RMW0wmEkUPXO6FRVljUamj5HIPukGoP\nxGSA0N6Y8fUEK70wtfqAXuCEQi9NNigzOhvy8ctB+q0Rw32bQmCfkOPSvrDAIOQln84RzjXoHgXp\n9/zMwx3GvQhp0WZeOKZ54qE6i5MITGktzMkVItjCgMAVl9bhPVT5PN4N0GJDup0R+/MjYu+nuX/w\nXS6WPsGb7/41H711BsA/+unP0EvNCKcyyFqDWb/NWydtiqsrNKwxMjasB/G3LDo7T1luF6isdMgN\nbYTOnEfmOxSuvcHT7hQ6fsSQn9YoQXp7n9BMxH0pwODuU5YTaQZzlaET5WLUYX01htMKoGgV9uYm\nhiIx7QUI5y06qRKhtg9LbtAZ3uTm5SXWxBjG0KWdl1GnNtnn4jjbW5xGTMS8S44+42oaSzEIe8AI\nZxHXrpPuZ5gftBnNJyTjJvnOGorTAr9NJxAkc9HHzGvT1udUDo6ZZB3Q4zyp25TDDi/wEu2l20Ss\nNF2G/L8ffh2A84VNiGlU79yhv7bMpYUcjwZ1CpFl3nl0l0w4SOzAxyDRoNXxseLpkc6EUPJrJGcR\nys4E58oN8lObPdNLQ3KY64/JuVmE9ITtE5U118ENJDAqYUR2iN1I0ejHSQcjRLJxBsEuzobA3OOn\nGqrjcSSimgfpcoHVVJVudgnH3yPWTjOT/Ngxl26jRW7U5NIrPpIXQzhvq2iFDJfSKvl6kaHZwR+f\nY9pzRkocIWbQf2Lin3uxci4NfYxH8KMqfUK9GaFzYYzDLJPwmFk5QjTRp+gtcVoIkDaG1KwRFzds\n/uLfPWNULvzyf8rh29/hH8R/hK3Od7l8OiF/M0Sz8oCD+i02XS/tiomoqQzosfiT59j9wWO6cojW\n/ADn2x/yJ3/7HvFCgkrf5NIq2J4Kb53YJJ+fUXjaopiXscIynnmMyVAk4y7QUMOMyu8yfCWFfLRP\neTbjkhAjYclke0m2PEO6ikgjOGA2G/H0/WOWfH4yhTieSgg9kQLLYOZEsRplhsEWfWdC400vQZ9N\nxlK49MkA9Q8n3KvazAIGwUmaR4MYRruKuuqn1Mlj+EKUb7Vp7Vtk3QH1hkY3PqUgBOn7J4QnXiKl\nAdWBwYmWZu9vnzF4n1z4McRkCE+uSKYnspHq0W1lOX/5KdtyHt9kH290gjmKINhh0rZC0w7iaXpQ\n+wLdkcx4z0K3+ri+BOl4EHmW5G6nh53Ksl0zWBhaPKnNuBz4FPfsIW9ckLj7Vw0sb4CJ1qVzdYFw\ndkrKkbELaZTQAD1ywjgw41zJ5Gy7wMXsdaIeH2J4xoYeZD44xo68wtSncGrVWYk/T2Zlwq7bZTYb\ns5CcEhx7MVsS3UmY02YAMdbBdVyqkVVUxaZglNn1tRh0g8wkGV8iQsFa5NgYYBdbbKoXmNQPMUtz\n0ldidBuPeP/NhwC8+t9+gals05MWGLZsgr4wvvSAcbdHVl/BTXjxH1js9HskNQ9GReWD9jbFawmU\nTAx1VqKYmBOcpLlluGgvr1J58pTB1ENkpnOaEPDFF9mSXZKdJJY9xh2nyYgGXn3MsDxAXFQIHc+Y\nqEmqLZEHX9vD8+JN7FEQQznFEr30rRWaGKjaCCWYpyQGOWi7ePQC6mBCIKtTjebYGBpU3QqLms1s\n7GPWcMgHBtTbCrXdB5zde0ghqFERopSKaUqFF9H2BvRFl74vhy7GUNV7JA0YV/Y4CPrYf/tvcbUw\np398n3eePLunP3fzZ/BP9jkpr7HprVBLqUhHElJqyLSRx11x6M1ibBAg3Wiir6qE6lE8sTlXVy6j\nmJC4sshwf5eoNman3yatBQmvRBg96eJ5/hpZOYNtHTNuTsk1BBZD52n2XGRX4rg5oFmK8ur5GYFT\ng+6gTXIURLO61J0oyXqXht/AlWr0HuySSCvsRkMkWy3aBQ+2YyNUpyiIJCI6mUSPsO6HypDYjRik\nLuARfsgkOEFmgM5nAAAgAElEQVRvTXhx4ZNEimO2zBS9scnb00Muh36Wdz/sgpAjVRXYj0UICAM6\n7CLf69Fpt8gM8tza/yG/8it/D5io3/7d3/rK5dIF5EmI7GqMZXPCvv+MSNPBUxTonCQZ7Wzhlmb4\n7CZJZwquTrwI1rhATBtTiY0o1gVCPgk94MFjN/E1vZRe8KD0Q2gdCLWaeFdTiL4q4VEApZQll5lh\nTzSqp6ck5l4s0cIOhglaJ+iGTCrQRlkMcG8vQO9dicuvbaKbCrq3z6ZdYU8O0kkFcMsCa2KM2byD\nVA8w8AaZTZIEPAbTcR/fioh8OKMbGREOymR6QYIiyIaIc32V3S2D6ZUq+YqKJY85/sEthOMqJecq\nZc1L6Ooap2cWs6WXufvNZ6vTN17LkSzICI6PsRTCKWhczF7m7b/ZYTPikIgsk70usP7Jz3H0tT8k\n/qofXydHa+xnZOyj5C8xr5ySsFSm6T2W2yajiIbpeBB8Fp2OwGSeJKJ3MApZ5Mqc/vKA5r0uVsLL\neDYhnSqSbAUYB/Y51CX8R4+wS+tUeynKg1uMzl0GXAadOuH2jEO3ixn0Ym9sQDLA2HIomyEyiody\nyk/QNyU/mRCaBbl1vMtQjCEmZhwbCkKpA/k4T753m9SFTeTeE2Ztk3UjilTK4ImGMMY9hLHD8gUv\nViRJ+/H7NLs9wpsjvvHttwB44dM3qe2ZsJBg/P0yS4KXTkGkVT3lM69dwlftQnZCV0lzc6RxkI8Q\nm/XoHRuo4xhnqyO2vvpHFH78Vey9MqmldVavXeHxXhn1nI3PtbHmLplslORkhD5tEQ4ukhgIePUa\nnaMmnqUVhoqLkfGwe6dD4NwqBa/I0bhNaieLXnkHcQqJtS5F4RBV9xOzC6TXBQa+GpKTorc7RpzN\nqEXr0LxHfJhADoUZ1UesqXVUKUU9lEUT/XS3xqSrcxZ/eoHj0xS9epSHt8rEN0r0DvxEl3ao3QVP\nqk2m0aIXg7A5pdJ3eP+t2wCs//iPs/TBDh7/mNhOCsWjE3bX8J/EyL7+PB3Dwn3UJmXFCPhNDOYk\nrRTi8xNC/hWM5BpvfPZFHDFKpiCzplxFN/foZDr0PWEWnIt09pskfDZT/z7L8RKpOCy4Pu4dB1Ff\nu8Id6S1ev5bnbOcjdmtBlOkeqyUv07bCSjxIO7PI5qNHjIct0n/r4e6dCZseL+XFDJufCyLs+Ym0\nfQjxDMcP/oDnfu0TRC+UePyNA27kF5hZOV5IX6NnhEgMTil5MvS8EcK+KdKjUy4n6iwXfBQnG1zz\n5egWi2SuFKndqtHVhkRzKyQDIqFLc979f57lHb3w6heoiG1kUyAdiJJuuMSKdSr6BhHLIBYLIsiL\n+NI6ZmfGXI6i+o+QpAiqNGWaXmBhzyKYV3j4eI5WjPP04E0qxzEiR1MWnD639ycsR8/TLNeJrUhU\n7wDBGEJCZSWYhphFN35GwlslOPczinXJmRKl80GSRwkWIjFqS2UGf95i23WZh9q8/94Jhd4BoeIK\nN56/wZE5JXy0g2cy5o2fvIphdjkbPiG64lK0s+g+BXVSoV+IstoZMdEn9OQFlJlLetJgdinEKg+x\npjLOYZ1I1UGdzqhIMkFJoSTViS0ofOOPnzFRV+cNXnn9ZVJ+D1WxhV8yCO74KUcSjC96iHo7NDSL\naSVIqGCjTKYshtfotmUMR6Kj9QhvDzjJuIwwCKkSkcMCk7hNZJ4lIwYIGQbFYg9/YUjkQEWK1ek3\nE8jPjyhE8mh+m1FkRnTio3lkULrYJ5NXkc6mOOkO2eAcXy/EQkvEibZRe2ncrp89z4ziSzHseA6z\n2iM9jlBZkUlqaxyzz3MpmbORyqKiMyxmWPC5yAYE7SmjQRot3uHet3Y4vhCnJCQojKccemAsZqm6\nDcarEvG+wVJpE7vjx0nFeefdZ3beS596hfjZNhV1n8xGEKGjYtdten0Br/UWETnJ9GiLrjLi8N4O\njXYC2+rh1yyUUZ+zgEjtVh07UiEjyHgDXsSaiu/kmMPphMi0wanPg3Ong6SbPJKmRAMavnkQzazS\nW9dYdmQOj3NUSWF5y4zFMoOTKmMhQs6XI+YRaR4rOK94ibTzhDoiAc2LUsiSssdwvMv7j27RANRh\niGW3jy/tp/LoPm3ngExfZZa+QurumGEqRFlxuSiv4jh1ooMs7z54j8KKjqTnaAcU5v0pF1IimcAq\nTw+rhG7mOK1/xMHuCV/+1b8Hdt5v/pvf+sqPbL5EtdxmFpnSHWtgpxGtEL6al9C5KZ7EEvtqhu27\nKq3f/ybFj+VxzABmUMevh3A7PjxeH5Wpiv9UJ+zfoLY8RemrjJIuHmOEGTxjvn+PiVTn2E5RurlA\n7cMeSDUyxWXibghVf4jhD7A1hKDdQs9EUAcXWT7sENvIMm/s0J54iItDznJTlidzPIJFP5ihowaJ\nHgXxHMvMI6vovl2OElucD11gpgcJLFc5dTTydR+hqyUqyojTSpVFd5n555Yw3hI5fbBDcH4Fx5ck\nIacILcEoCBtulHp8AdItbn39WXP+1H/2UzQHp6gP+0ydMNFggHqnw8dWZ+jaBTL5BoLQp3/rDrHe\nCZ4nIguFQyZNh9YViXRZI5ReQgg8RrQv0rE8ZHoT0pEJuhVA8IeRsy3ilh8xqDCq7XLFu8qwfUBi\nWSV0ojBz21Rlg+q1dZK49OQQ20yI2qe8bezysiKhFWzE+pjhQpfYwnm04X28iQW6TpWI1EVJO7SH\nXVSpR2ZhxklEYxKK4rQ8pE2NkDwk5pvTnPnR9zQyuWWOjx+gql4iCyq1iZ/U2OBQHCE5AVQxRDZT\nxDc5QNfOkxzZzBdjfPMvniWWX3r+x/CqHdLGAkuvbTJ+2sGNu/gthdrOlKk2o9z24++XcTwHuBOD\ncsOPk4RGbUQuJeKPbNLvlQlei6A5NnuVKi9cuMbBhzLByxuEWg6nPoFAJ0yoGUPWJjzYO2D6fJz1\npUsE5xKxUwVv4wx3c4lsLcrOBz3W5gW2aw1ilp/VxJDZ8jrufZduN8uTucjdr76JnogRskOoVpyh\ne0DWnJNckNCzM/R3H+C9fglLlthVQnQjfsynKv6LLnLzhCRj4tURqk/BLZ9imBK+nJ+IZtCsd1ka\nrtDPGwhqEkdJMW9Oee+DZ3be65c+DnkbZXSKknuOc+7PUjs6JXz4GmLh06yrCkrqIXErjaelowRt\nhM0Y7//lQ54Mu4Smc1x/h0F9zMIL13h3t8OWOGTR/DiaOGacsTjq7ZBIhah865h9/xmXTYme3GYU\n85JbmVAbD8gcCoyLSTLCjPAoSE3zYH38POOdbdZnfeZWjvBRBzV2lYDH4nhzSvuhhnesoKV0Hvlq\nxGcy3lWb8r8X2PCnaNYExNmU5/+0yb12g8HGBdzRPYSYxbIDB/Mq/UGC0mevod075Q3H4M6bt+mI\nPfbu3KX7qSWyKYGc85DZrgft+QHf/YNn57ZwKcPlsUwm0iDc92HmYG6JVMUEql1lUIb7eofccZiX\n/+tlJlWLw5EXe94m0lilMd/FvVZkf/cx5697aTzuYPv8vLoJhjdEeWCTyuc591yWeUCnMfCzcOMi\nsaDBegJk1aTVmpMvgzX1cWYNkAdpdK9LpD5B75jcUecY+pRpUUA39pgZCS4tbOKki9S2KyiROc6T\nA4Q1neNGjfEgTLXcQG4maPQcpvou6ixGJ6ug705QlEMOK3Mef+vf8MrHforDokO63aNxHEGf9dEa\nEXSvyYeDMfqwiqyG0Yw80t4Bf/b2IwDSr/4j7h7aCE92yPanWIkMY6VLQXEZ1r1UzwKkmx0KuSl2\nXaLtF9gWqjRmdTaW45Q0DUcRaU4HXIgsE7i4QG5cQRlbeI0zWtExisdB+ajA3c6M/dZDtFGexEYb\nQc9yuLWPYwXQ4h2ajSwJq030Y68i3trF520Rk/0EZ026Vo7h3GFy1qKj92hGIzy41yafiBJWbOZ6\ngX5gh8QwQUE7whvL0ZsamJE0a0EVbZbGI9fZjZRwpgusrXgQOjYNUUN/59/jubFEJV3Hmx4ROcuw\nIo4JLV7BMn3M51X6mQFDdY3b330Glhd+tMEjdcgL534Bw+0R1EPsbaZ4+cYy5j0PdU0AR0Q0HZyC\nxjoD7GWX3AkMdjRWBg2MF1fwzTRWJ2sokRL1x+8SCm2y/MkMrcR1YqMzjPVLtIUCQ0lm6UKClZ9/\nkYNBg1wuxOxYx3Y2yIYd1KKfUmgV/eIl5s0mtjrmqNLGzsqUT/cZdhyc2bepSl0yHjCFJUzbg7dY\nI/ykixx7HnWS4d7skOi4xfLNVdzTTSrlpwwWS4TkQxJGnPTHPsuTk3dZv5IguG5z/sYXmRhHzLU5\n2USQj+42KOQuI6UXmB48QbY07h/t8c++/OW/+yLqd/7X3/3Klc+/gaoPKI+2mW8LLG32sOch+loX\nXybII8fLRb9NaRbGc8NLVpaoff1bELrKINdhpCqk5BCtj77NOJvESrmkGusI8Tn6CdSqZdZf+jhz\nc40/+YZOarqD4Omz6GwQEQMcu7vM7x7TLGbwmglyjosWWCYoxgi4B4zOTTj5SMdzQ6QUyGOqMlM1\nTbf9ECmXJTaZE6w67E5P8YRmdIMhHuyUcUsO9VSEcSKDODghW9kkGT7F3tuj+WGb22/VWboSYfnV\nT3P61RrZxZdZCdSZ1+Y4GQHPOM/Y1+VJ7zaBucDoXIC7//e3AbgQtllZLRF6PUpt3KL3/hif2KMx\nW+KifEiZIzydMaPjBpvnEwxeuc5y6iKHNRVLcnAzSyjaEKOj4BgmgaTI2PAyT/UxgzHSuTjqcYRZ\nt0XRm8GYmXiVAQ1BZhzP0pAk9K7MQs5i9/SA9tmQ4IpErjghPVhlHoshxwUyuhe3ckgoHmVfmlPZ\nSxHKeqm3t2i1wfabbE69CG2Voy2T4e4paizJVBiyp1YYjhVCgojl9ZOQpzw8eoeXF16mHO1i7kUQ\n7TlibEZOnOA0T4nlC0ybdR6fSEwTMtFUlp7R4u3vPBOf/9UXPs0gGWK1G0X2V1H9HXbbdexxn9Qa\nxHshGqkz7LFE0WMTnwZIFEVG3RaJWIi+1SbVsjhy4/g/ekw1YWIKPhqPLJaEYwzdYW5oJKIOhmQy\ndmxm9SMioTz+zIDWmUtf3aJ7f5vyJIyc03j01jbrnhb9ap1av8dzWXju53+Ru39zgOEc0U8EURWF\n/DUNzZjyrbtHmLMeUkImnpGpNJMYn3wVKxdAQccI+jkTn5CzUwx9Qc6JNYpSk5//yj/n9n9zgmyc\nMFy5RtzvRRl1UUMDcmKeymaQUDeJ6LGwrSk1e8KDHz6L1PjSr38RnzVCeOspRjhPbBJGEDMcL/Rp\nRKKUfnkT3zv/JXuRLQ6nQxqFGeFDhYWoSK9QptuzeV2QUIvrnO0P8bKEkNlAGnaQ5QnJeQhvsMfM\nN+YTv/oqkZiDeV/mlnGEkwlQSHqZmSKiZKFJIyarFwkZA4ZdmyPjMXp1jiz3cd+qc+Ce0i5ewRe/\nSX9e4W7lDvHnl5i1hiz581TkCgd/vs/Hbl7HnMlcfSPD2bYJoon3vIy3+4SOWEfv+QkEVWoVidzM\n4if/49d5svV9WrZO8yeTOBdf4vjcx5DnE3bvPeHVQhjx8Ixk3uFP/79neW4/8aM38a42GMaz9ENN\nhgGJIzmANJUJTT08yUqEZhb9YpDKrsrZvEWi2uNQ8pEKL1O17lIdtAjXVzneHVNYbaLkbaRtGcVn\nYTXTBKx9cs8tUn5ni9c+c5kfvPlnBM9SCOsSPcvDduOIYDAGnTjrWQe7VubJB5BV1xEzI2ZOmIDu\nEitc4tFOjYkIF2ML6NYcUY5gLn5E0lXx7Wt4rnlRI1VWvCuE1gXCvlP2w2F2tEO2vhrH3huhhJJo\nSpS8L0KlAiYjBqdxOuIBkVmcfRSm+Q0WD6YEJhKdbhRP9oB4b4M//eGzXLIXfvoLfGzNw8D1MB2F\nSB7XkTourf0G8cEJ8vomJEVct8PYL9BWJJScn4SbQ20F2K0dkTjK0fd6qAca2GcfElQCSNU2+6zg\nTKdE+lPqz89Ziba4nH2BI7lM6D2Zis9itZBhHDcQPR7m3THduJfu2R7zC+s0On5MycGsl4jFJrT6\nc+R0FF8ywEX7JbzDGkFxRtUNkSgojPsuvXkTdVYgLgbp7JWZtQyOHj7EPDniL3/vIaVAh3DNQ22p\nx8gfJbO9y/pnP8WwPkB6apHoqERek5HVLK3GXVbTeR5seQjM1+m3/Nz/D7jCK8//FMr1F8hdvom2\nk8P/Ovifymz+zGUevVsm2hOoZkNIoQLBpMxQUBnNotjRCXhC3N1rsio7lLJr1E/vMaknSZzTcANe\n7u6NWcpbGOUp3gsXKTaHDOwT2sIKgTs6j287zJsio4sRkmqPI6lApF5BNP0kagGadgQ7Z7BxLkRJ\n8aL5ZfySSl0tcmnJoe6c5+nOQ05ONPxLecxelvx5HzurIs8NzuE/t8mdvXcwJjk84SGpSBLfwGG3\nN6AfdNFNH0X1Ossb5/ixVz7NB5/+PKe6QezYpTbROZK3SVZAXRWZ+/N89MM3+We/9mt/90XUb//W\nb33l5vkfIb3uRdRUQskUo1YShi2kXYs9q8prySVcLYoud1hT58jzEGfPrdP+Xoul4jli3jFHu3XC\nL5bIapvozSqjrp9y8Iy52Ce6eR2hp6HPdT752ibp0ISp349pmsx6LWJinKaYQ+lbZFcndNUWotxA\nE0TqJsjDIcKdQwp+hbIh49W6eIdxunQQ9uvYDRV/UCHtWWZN3qTybhf1pQL5kI3fqaKNq8iHRWYh\nL+FlGFfL5DJ5lm7kCDt17v/1LhoesslzNLY+wi25NCUPZnhETPLx3KU5oa0x612Xr7/97Lfun7/6\nC8x7I/7s97/Kz33qF5HiZbraJqvGLt8fHOHtbXLW6xFwfVQ9Ola7y8nQSzAeoKIKpAQ/7cEOq9iY\nsSz18piAWcbImrjbXnTrjAUtQMgTYiK3SAgKHcmHtuTF8KeJbY0YBgU8qyMSyy/hEVIkxgbDWoTK\ncMbHokUst8nkm3WGUQk9tUFw5LC8qmAbAyxpRCKeJlle5GRJ5NYH3+PiqkPbDRGRBpiTCoFCmLka\nYjRuoPZdjOEesf4KY61AW2+wke4zCw1RuxbhhI/DnRGFvsCO1GMsPeX5YJA3/+av+YmfWeFP/uAZ\no/L5n/4ish1i2zgijoab1AhPFPIrYU7NAcV6nKLiI5K0mSo5BrJGM+SyEErjqeso5ojy4gJXnTH1\ncJrgvkp8FMafc6nrMjG5S8QccDJUsFybjO8WCTvAdqZISO9jKw16WxLKa0sMoibC4x3CuTNGq2ny\nQpTUQoLpQGHzH16iu/o1KvUMV9UcyrRPLKHiNAIEbgi8sPQCD3oeFm+odKwe+kmWjKlh94eMEbis\nWpwqiyj9KmorgDT38e1P3SJiJGiGykzEMILPQGsmkCUR0Zcg3qlyJIuMY3Fi7QJydsC733oLgOdf\n/Cf4Zh/QnxXR3EWC6yrCroNfcPnA/hPUhX/LdGsXJTQiJ6cQ/F7oN+ikOnzlP//X+P/4PSpOg+7R\nMXbdx0Sr0Hy7QfHjc+r3q4jnLJzbaRbWgxym6hjv6sQ//wbJUoj7X9tDSGcZHQtcW0vRqMgMZ/dB\nnWL2fXSVEiveMqnnDFZDFvfECMnUF2m6F+lkOlxNaBSDPoRBizYP8U1mXEm+xpFg4Mg+eicygU/G\n6FQnjGlxYtYZmo84v+DFHC2yuVZlK7aIvL/NI1niHeE2neglzH0LbzpIsuQns+enZNbwhG4zvwB/\n+tVnoZFf+sR54plVBscjRtIy5jjLmriLfKoxsbo4Thh1FOTpD77FJz7zKUZbHzESfZxuuXizBqFA\ngpWAQD1gUwz4CRzu411eJOnpIBYh4m8SHKeZGh3mdoLvPHoX2XeNT3zmOo8OfFR2bpG4fh7laZOw\nPEKyEtw/PGXp8wvsHvXRSikW5h6MipftnSeklhK86hS47TlizalTFSXSZhcz5mB2ReZimGSkxiyW\nYK5ohPsLTO1DUkc3WVy2CeQCJHo23U2LqSAzsfNkFZXMtVeIDOccRnQS/hS645JNhPFmSjR8Jqhh\ncvMpf/rms3r70Zcv0P2DP+K0XiOmCYwKV1jzZdHX5/jPv056/y7tsx41v4yUDHL2uEv7m3vknouR\nEnxojQ764iql7Bly1UJru8wmDv74GLcnICoxfP4qZ098eI0ldl2L5xQvJ5kz0v0o1UybYLWGXnXw\nRkN4S1nSkxS20GA1OkDXB4SVNt62jZtUCE/CxApFdHOCMa4SSWfYEB26Ax8e2UN41uK4u41912Vx\nKY4cjMNnkljaFV66IuNqm3TjKpdWXkCf9AmoMQ6Hx0RLQyq+BAOrS6MqMk2OEAnjqVj4Ey6BukXi\n5hHf+/Nniwxf+p3/hf2tERdOT9g6hpM7D6h7HKKjLL2jHzILh5kFFTz9Hr1+HM1nkTE9xPs+jvRD\nQhGJmC/JJNLmiRLnbf19rhZilB88IeiZYVct3rn1NqX1RYJmBXM7xcx3xKB3hJhLkFDPcOOrzMOn\nBFsCgYUYo/MbWKO3OBp2+OzmeZ72Fey2zjvTEFoyx/XsAoIRYlTvECxtklt2SA8GBEpXOZHu4Cun\nOPb+kIgzJunZxLdgMjWiyN5D3qkMeOXcKsqBD+RtDhstvvPuXzL9T/6AR9/7Fouv5tmpHzDsVvj0\nq4u0E32efDjmlede529/8H3+u78PYPnv/st/8ZWP/1gKHI350CVoT6k7DimtwNOnf8Vw3cZwSxiH\nWygdG4MgZ7aXtUCdVkLB7x7Smes0vvsY+fUkkcaYWn/COHtEUS8yHMwJyCpFv4k6ekglquAVk3jT\nQdJelYhWpGbV6JbLKGE/rp5kMlaxxAKh5QGGKTAwjtm88Hne+z/+nKXNILZ9wuBAQA3mGXiSnFtQ\ncM0BGSXMfXnEuNDFHy1iHu6QERbI2ZuMZyNS9pSh3qBZblF4eZ25aXD84JCtpp9z6y9iV9+n/vQB\n4nMW6XaUfMqFoxE7/RnGcEpk7ucbH7wDwMuf+x/JvJ0k8Pw5WlqCXNNAcnrYQY3LGytIXYHCOZmG\nniM8idHvTBl3gghqjMWGjWLsEFVTNDMCkcMyyQshJuExvuMhRz6D/MJVdvVDpp48s2YKWbMZZ5p4\nYyH8/W0eKjpi/4yInOB06BCYDTlpm4SMOb5EHOXIS9dMc+pYDDc2yMeDnAQa9KtP6Xld8hc9iLeT\nSPF9lMAq5wI5hHiUdTtOcLZGf0Glb/nR1QYvJDcY9noE4wqxHPTnIbzpOvaRTD+XYOgKDKsucWVK\n2xdDrjQRIgX0RZWViIdhQ+C7/0EMXPiZ88y3dQLBNFVBIjqYcuCcoclRXCPASKghDIqc2gM+/IsK\n66+cg5NDRHnIbC1FgHP4ZIHjnV1SmkgmCVWlxtB7BiMf09MW3791H8WUWbkp4RHS3PnebdyATkrM\noeox8p4GU2lKtDknrk2Zzq4ya/ZoB/vMnFM8xU/SuLaF88ks9v/wG/xP6SzFqYB31CGpZIldVdnb\ndQgVZWb7HfyWgap6efKoQmIlhGifUu5muORYRJUqg64XW5niW1CpJEXqVgLZPYGKn0zUpT/Ioiz1\nuDevsyYKeC2Fml8kmjZ58+vPJgNb37NZ+8IKgjTGqbyPx5/HWHe4d1JjGLiN/K1tCi8F2DnO09vs\nkzzKYvglBrEcf1L6dZ58Q8e4XSMrXUE9yyH85RGbS68SifuwygHCsTnxFZeD6ojeUY/mlkF/q8Lh\nkY3HbGA7AQLFFNV6l7BcQR1eQrETREo50s0Rl3/iZzFvPWE8WKC36eHqxTwL/ySG9H9+RKgd40xV\nQX+b0VmWQHyDg/ERWjyLmlhjfvqApx+9g7N5wss3wyQyQ/KTGdvTGar3MbVmnvmoR70T5IVfT+D8\n2TJRb5puuUs25SXwnYeEots01hIETJnh9SR/9XvPWLJf/sevoflGDMppqichzO4+cSuGujhkLxPm\nfH/K4UEZ7cpFfN07eKIuEzPHg+5dCmMYrWUZdXpczfoh1ie8HkUa6nQcL9moQPnRNWrLy8y7Ncyk\nyOPaDq+sXkV2FExvF02RsG5J9HwPmRY2aLeOWMup9CcihbTN/8/de/7cmp/1vZ+7rnv13td6ynrq\nfsrudWbP2DNje2wwGAdjwASIDiCCTohCi5QTRTg6RA5IHGJBgJCEA4KIEsC4jsdTPGXP3rN7f3pd\nvZd79XKvdV5syW/PeZEXB35/wle6pO/v+pbLJdo5f+EkB24bczTRqkNM0QFNvcEkbUFXTHgmTtrG\nhFtPHjOS24iBWWjonF5c5nbnNu5bPsblGtLKFKfMGl2ngtBy0ZdaaDMiUqnF3LQHddzDUpIwTcVZ\nbfeor7rwl4b4PU3sSRMdpcJr7zyTQf/pv/oYM5YLZKfDuC1rrC6UaQdhrVJmJOi0JhIt25hgMURs\nnMM5iOM/N0dkYELJ69QnIXIOA1MSmkEVe9NHJzAgk/Fim/ZgFrpkLD5ckhezkcHamuatWwV8AxG7\n2yBolSj2YihhD6OWgt/qZEadUBHhuKsRlYOIjhK2o3kypgmt6j7F7ohs/n061T5DsY/L7QPLESgj\nLILKsusE1Qt1VKuItufHu+Ql30+ilfwEGjC2HtJ88gRXN8nbD8ET9GN/qiL2h9gtZhRLjj5jrHmD\nfMDO1Ehnf36f6fEUX//6szldu/IJgptdpJqGe90HoYvUKwJTH0kgnc6QfXBEz3OJqN9OwzkG3UVg\nekDFHablGmJrSiw6Wuj7FmY/+wKzGRvVZpr8OEa4N4P/XAWHbQ6bY0J7y0VNTmMujFlIiJj9Grb+\nGDl9HUFs4+yOqDs7hA7vIswsYvFaEQ5aZPNFBqpKJBzngizw1HEPLWlFFqt4dTdWuUC146Wk6Sgj\nD6vhECNZpTk0Mx4aaMMiyjTkbqjMryUoeOz4DmsIJhlfuM6q6xLaOSteOc715F1WY+v0LAqlVBw7\nEpOYyJy2y40AACAASURBVCRV4v7eY375F3/xHz6J+q3f/NIXzy8HSOsylu4C3UiK1jCBbLvPCf8q\nXTmKGJSxxAVmtGkkLc24awdrD+dek6FpHUfQRmDYA7uFUCyCue9FH9iY6hwyOqzgjq2Ry2QZDQ9J\nXi8giA76LoFqu46k58j0qixcehU5n8QWy5IK2xAcVaqGgvTITPjyKzzaeIPomRe582iIRRUIn5vD\npocJeZ+S7IZxOFTSQoHmsM1K0Edj/BVM2gyld29Qm5rGSwXRo6HmREan7ZjGA7w2D3WXwoznJHLo\nIVLGS3CShYSHdt+gKFVwSn1cdoXl0Bnuphf44N5fAPDzZ1/CMVtjSIfy+JCcJNAaObFpLoRein63\nj3UzRvukC2kUQhRGzBzb0aU844aXmqmB1XyINkphMkx0Oj2O9ptIvWmml0N09DJDxhhZCf20hGuQ\nZzi0s//mPVoLZxEFhVlbHN9wgVhsgKIHuSiNGLgD+AtuUm4dU2cfj/00vmGPo8p9ZvQJFVsEd1Rg\nvN/D0gsSmV9hnO3gGIXoOfrE92ZIJwRqtSHe2AhpEqU6sNBxdFgOxlEe25hdnFBNt7Cuu6k+LRGP\n6xzaw0SmVMw5JzWfgeybJfzhhMHMeZy3xnzrwTND/menPkouPs26uc9oKYBxtIHm8SPJNYyhCftw\nDFaZ4Aknjk+dYX1plq7fS/NggnuokSlpDPUqSz0J0+qIatlPTOsRrMzRdzvwOkWUCzInLZdZ+9hL\njIQqJxbD/OEXv8qZF+z4BZ3DhAWLZ4i5K6BpLbRoB48mMe2H4myIJVuKh4c6KczwqV8h/NnTSE8/\nQAgmKKz0GT1xkz6sM6sc0fdMY6XHqOrDGgbR0sGV6+POlthtjbCGXAhWK8LEia0k4LcN6bcNxCdt\nGrKZidfM9u37TOIyzY7Ocvwlbu09JVRNkp/Uufvms56oL/3VT2FVXZhsTVxXn6e5mCYw0RklHnJy\n6Tnmz65Qv1Ui5BygpAM88u4Ru7CO58jA2ZxH9YTwXJxhJR5GyAw4GzzFgdRi5keWuf/4LnJQwFpe\nJuBvcNhqMuf30z8/j7NqwqUZVBZ9eA/tjJwNOk0JsdWlG1KQlCxbQonC+7fZzBvkdI35opOMLUny\nJz+kPd7FLqlYPG1Smxb6mheLy0e77WBKGjCZEni09wHzPE9B7ZGIXUWPjbh7I4ElGsVqnSZ2aoFK\nR8MZ6DH6dozxZ7fR31EJlM2IsaeU+jZq1SH69S0KbQ9v/v49DgvPUrRXT/0UqdaEpLNPc6OF5ikg\nnTVjmAqsJU9QtFSZFRa5ffA6DWZ5mrUQe3kJqXGKSUBmOVciFcsR9y8RkDyY1A6Zdp/JoUBLqVNK\ndnCO9vnKnVvEzr/CmXQIe8iCbt+jOKkTsHgJL27g7vu5s1/h7JkF1KaPitOE3B/w8X/+M7z7nW8j\nNXIkcwLxaQub4UPMuxMqsTZOexA9vUXV5OGS20da1vAYA1rdKH/2B3+MU4hTc6aJmVW6nR7Dbp5U\n6Nm5qJjWoHw8w4UXVdI4eXDzFqdmFewzLnrNLt959zp/9Ud/Q+LCCsN+g6g7wVfeeDanP736EW59\n6wG9h10wH/NEj+HYKLNdeMxIWmI08NEPaRxNJAYTJ52IjiG5QXYw3Emym37A7EoMjyuJeZBgoByj\nGSZCrjyGaue47WNeLLJrGiD5Zpm07tAwNbG6g5gjTY7abgIWncGhht00ZtAake8k6dcthPRtmk4P\nYiHIsbuE3eWmbp/g6IiYoiH6EztK5Yilz0xR/GYNn9HD1DEYSi2i1hiVGxMOFI1u+TWqmR49KUWj\nX2ZoeHB/Nkp/s4v/pQs0S3m2agfY5s5RrMlMGk1KSTvzcp9WK0mrkWBqpFN3Rnnr688a8v/Lf/g5\nAt4kJqtKOnVA7dFdKkfXWPRKbNzwYaz7OT9noI01WnmVdqyP636KkstKpNxAPPwaB5d9+NtjtpMZ\npsxVRN1GqfSEiNPEkeTH6RVpPHXj6x5iKmY5ajXxvTiDc79MPadQcolMBh3MyWnM9QHJiyuk3t4j\nMKlgG5vwjGHw9B4Rh5P9Rp254jSObhqTnKE19xHkqkEmlsHKPLXNHiNXjUgzwWCcpReYpu2RqCQl\n9NCAsGTgG1mplrro7hT58TwzLhfHyDiVWwSvqXjOZzHflTl1xUyyksQ7iUBQ4dZX3uRX/82//odP\non77937/ixdfeoGhqtLwTBHeEvH6dEy1eVKdhwyFIP7Tq2itKhPFQqM+RladmJQBRbXDvGJDFHzU\nZTfsWakvlMgMLMwNh0xcAyTFhaNRoxs2Y2knkLx9Er4oHrFLausQ1dvDrsxSHmUwDTwUdQOPz0Gz\nOWA25kYuSbTeep1bDzIEnpvF7laZ9y7SPGqxn8ogzPQQnCFMushu7z42IUd+bEbbseJXoGkLYg47\naCExqGfp7xaxDgwqdT/WUpONlom5qJ1GTmc0njCo13GFTiIsPMDjiVAeZ5GrDnYCSwwezPDh1h8A\nMH/1As7EHO97qxijMrbumE5QplvWmDcFyMgShs8gK2nMH1XxtsL0XBbOmyW2PYcopiJDMUZ2Yw1T\nKslo0c+oDfdTdxgGLOiHfRxTVqxyDGflPl2vGZpmbD/4cRrd+3TUNsGsm0eWBkpSwV4uUhQFTE4n\n/eYDWrXHGMYpJr4NOiYzjjMdBGmA2WnD02rgdJ5hGKyTv/8O7u4Cg0CP5jcqeCsDGvU8geA8JbHF\nQrnBoUNhynbMVuYQv2WOUXpIP2ojVYKB1KLrnWW+qVM3DZgYRWzSFVYCRYqSm8qjh0y1xnx149lP\n7ZOfv4hF0cltJqn2FSqjILTTVLIzTPmq3KmnmB0G2Fg5gevbm3xwfZOX/82/5HpniRlHBGdHwBTv\nILoLNJsOrBpoQwdjl51IrcKdgwE+Z5yie4wpZdCtfpXjr9/k5+7+Jm/vJHFYE4QqParlEyjTVbpp\nM/3ZGBa7E60MjS0z1WGFxcuL5D9MUl0RSfQSDPKH3AvJuLfLVDQdYajhz5owdXI8LjoJ2rq4zEPq\nyShVaxZbwYk3McKTalFW6rTujnHGLHQ6eeqdAKIzj+qewTaTYWb1JJb2BL8mUDvKY3fraIKHmVaM\nb11/JoMGl36QSrVBxz3F1t077H/YJORsUZPncfX2Sd+H9ryJSWpIzjGgJw1JP6wR8yyirlTImVXm\n0jLFWhdHKkyh/T5mVeVpdQe/S6JXMJHNvQM2A6Pao+loIn/oZGxqY4ufwiHUULxDCnY3Ya3OeCgz\nOhDRKhKq2Y67Z2J5yY5wOoq3C1EtgerXsFtaWPI5ihkd93SX5s1tvK48Qgg2Hwxwtw4w0hYsrjix\nC8uUrm9RtsexTaA9P8Uk3eFg0CPqy3Jc8iB+Zg+hLmPZfEJjYMXc0eipLUytFPVOFC1eIeg7yY17\n1wA4e+UT2FI9+p4sYccSS54+E+sYV36NO4X3iJ07y639FOfORxlHrEykac7Ki7RXVCyFNNKLHl4I\nzNLq75M79NKqFqmYVMrbDkauNRYXI1RlG3MeM4bU5lHqQ/703b8mKLhYd0Rp98u47Q42ix1OuiX6\nso2c5ynVdJ3f+Y9fxlL14R3WydlUFIdMzDJE3vNhCuVITtxEagF8nj6BkxNkwYU9G6QTd2PYXeS8\nVYYlmFZWMMlOwq59xLqCNrpC3ytzWDEYe+o4tCiRuRpOpcW+6McbK1FT83j353j1hz/Ok/0Sfm+A\nUvMB71175iX7F1/6JJXNNCmmWFu4wCAxhe9HQ2RvHzLnNHFk6RJJJQmPRQ6yPpKVHWYCQSTRYHnN\nw/aDCrET0yRbcerdLlNiDNVn8CjroWO1YquWOB41OeEd0W7YObxbQ/GniChLyLMyntyIStiOY9xn\nEhix29NYX1tkyjxkYLZiHtToaRO8zT0GWz0aEYl6r0BPrBGftXC6XMI8hkm/QdrqoytZUIw+nQOD\n3YiH6VM6FslNf65CdlDAsx/msKfTz+0y1U+g26w06xkSl88ylkfIisSwbsdXuYeeCFNXe4TqXvp2\nP5V2n+vvPPN8fmFWoim3ufuuzr6aIuNMMB0NYLOIOIcyHcNA2xnw4chgXr9HozPEmEvg07sMbm5S\nPO/nxYZAQwug39mlvuJm42Ed74qPTniKja//PevBsxhqlopfJxDx46wX2A34GZpGjJJdqvlN7OM5\nxisTFMuAo3fvEp5zEAxeId+SqRtDrP55dg/rjNwN6hUXvVUbpfEq24/qTPoG9uYKjtQAzWuQLWap\nB/dwNyQsuolk+RHH7QbrrrPUCpAyKSj2AsJ9FcnnoJLbwWxN4tx1oWsN3qzKnFkOkBpVqI6KOAsK\nRXuVzQ+3+NVf+39P54n/q0nP/+qnd3uk55epr4SYF3sc+VRMIxujZo/ZT15Cf/s75O4/JKicgFKe\n4QEUu2WMnQLOyDQ9h0EDg1Jzm07r7zjhnsZlrtPu1eiaQRKsdObrSG+9TdCm0ttKsXXrPiPBwtyn\nVykxi2LpUC8c0Q53yZcNhtYOjj0buTcb7Is2zIk1PvLxz5EwoF/Z5tr1/8GofMTA3sQ9CBGS0qQ+\n3GbWbyImvEjQ0ca44kNN+gjWfRg5ASWZ46tf/jsc6wv4Fv0El7yMTxhoQTsf7FxHzAYIzOtU/VYC\nCRNi2cGiP0J8coKaNsBR0dlYzn0Ptzn7LHk1xc477xFM29AbYxx5K/O2EY/kFprsJJILcmIrhaYY\nVEfbODxHbA4rTI9FfJUlDMPNpZk2wbmLlGt+rNY2n/iRF3AeFDh7UkXOqcj2HRoLMay9KsW4ld1H\nHxBsR5kr+NmyTjgnBujNmPj7d+8wI7Uxdva4XS7jOR3Daysj+RbAoiAeSDSzPZTdJOpek7ev/Rmj\nnI4WPcft+hGFcRfH55doTiTsZ1tklAHdZBVdXCB8nOHW7X0MmxOPkCGX2CKKGWOzgKqHcGSS7EwC\nqM05CtYlFF+Jh48n5Hbu4o4baPOH38NNbpmoNwzMZ+3YZk34IyqzpgSjBSdFIoRDAj/8WwKm3/km\nqtnNUA9zff8JzhdCWKa2SAtVWhsZcsosCi5C3RpNqYSc1CnaBM5fGPKb//634Gd+jFvHVYy9M/hf\n+aesuz/JRbMDIXlAcmjDGI7YfDuD1VHHfPOY9HGV7ayDprmAsKOSvVfAVQStpFONV/BPR7hY0Zm1\ndhjulTgXU7F8do2vZG9wyT7FoVilnnYyDHdQt8f0/Fv4xgp13cuJ517F8WsuOhioPS/e1h2ciw58\nlS7kDHqZA3otE8XxHOVYjEHPhyWjMJjOfw83ryWHXXajPCniGossxoocbJYRBmnE6RW63iGHdx8S\nujKD+UEJlzeAs1qkPVOjs2fH/niT5pMMB80WdUeeJ5HTdKICplOXKFVsOKvHLF/9LKNyiJlLV3HL\nVynNtbGPPAjDEc2CSOHWiAudA8ZDN9rERSRRx2K2YTOG5MQmB4UB6/U8BA5JF8tIbx9Q+caYzXdH\nTHZaOJszNN0KpkEc450apz+5gOQI4j93inb2Q4yymQMUevdbJKetGJUGJZvAcm5IVp8nSoOCyUXq\nUGLT1CbstKMExyQcCsHLZ3C9KuAw1gjPlr6Hm7VbRXUFCZmXsNsO2bk54l4+wjc2tukpXhqPM1z5\ntBvl7GUEcY0rZ6api2l2/vwWi9FpVhY87A2y1FIlZL1Eo9elV7CwevkE87Ecu859apVNGrNefOUu\nWijEF05dpi946ZcPSE3C5Kt5phM6ragL52CIf2+B52an+PX/+w/JCTK3ds1UR00kT4qa3EGbNnPj\nXgG3kkdxNam8chVFSzDIZLAutUnLT1D6Q04cTvjbP/0b3si9QcefobQssznbpVI+RBXuU3nyXeLW\nNF+9+xcMMwLXt+K8cn6O6x/KPN3zop4dMuNxEzxj4xgRy2jue7j93Z+Xqc6v4L3g52nXQmnoIZ2c\nx3gpwZuHx7RGEyzzXibOIcrVJJeuvMKgoLH97iaCc5qpF+NIzU1EttF6T9jMvcXT+hCTLGGxHCMG\nZXxiBKsvxiTYJ/qSl6WlqxT8GfS/2gH3Ed6nVYx2BXJj5kqQv3GLZDeJeJAmXZzBZlTIdXIQahKo\nWwj544wrc/QyMl/bKHC3LELLiSHqGGE7Sk/AYbNx4rBG8VGf1ETFcmzFUr5I6tLzxD53BUfXhOAZ\nk9B2mBdOk80oPH1rDzEzximmSU06dOs1VgdmZmfKlBdrdDa2vofbX3+ww91KDMl/Cpt8gmB3hKlR\noVLeILO5w1IvizrnZT11k6c2FUEso92q0HHY2F8LEfFF2U7MILLDKDykcj/FycQU1l6deUVlKb5M\nv2YhV5Owd2IUHqb4j//zOvpuH1l4iZ31BGvPnWIwtYproNBVQziNKJNqhPR3/5phewfJZ+PO6BpK\n0I+vu4j/xBTXbxV47kd/Gi1qw782gJCbyYkqzlGFU94V+voCvTMunhYeMdo/4LnIxyjlxgRndQbJ\nB6iGi93mNifVOoFWnvp2FN2WZtchY2k2KBZU2qqDhViIyvAAi+8Kgir8f+Io/7/fRP1fv/2fv/jc\n+hXkvWsIDgdKr4em9VHcBcqdLhYv/Pb/+Xt8JB5mLIg8rO0SCPYxt/KEJ3McFh/Ru7ePxR1kecXF\nviYxVXZQsQ0xt8ZYnFFEMYB1qk+rXyLjGqEF13D2egxaLbrZNlLdj0cbIOYl2nKTlaaVe7UM/k/M\n4g976VUH6C4Dj6mI2gkwP+dEsizhlweISotsO4xlPoB7P4gc9RAYjbB163TEJlIgh3XmNPWajTMr\nL/Kw+E0GHSeV5A7iRERRuvzJb/weL1y9TKrUYmKIFDtVbLckGneuMUksIe+P2Qh8i6pf4egbbwFw\n6czPkPvmG8wFwiStExI+naG5gZ7qs1YVsbUF0k6FXryETpM5u4lJKoLXXGc8FaQU8+GdyCiIGJqb\nVraD22uj1wOLq8+eaRZ7oY/i1hiVe2x3XKgug3WrjHroo+4ek75fwTXfYaJ46FUbjE5oKIMA5dJT\nIh4Hec86s4MKjnyZ2WIPkSjumoORVeDU5Rna6QgFPU9s2cZuQWPOUJmMvTzeqROfKaDry5jtdVo9\ngeA0xHJTNOZsFNN+5Pa7hGaiODw2XEsrhGINco9u45rRIC2xq9/HsxYgLubYs8hc+84zWerkiz9J\n1wmexgJ2N6i7uww6LWrbbVq+KksnIhS+tUF2uIxtysvhfILYrowoDJEsefYtQwoFldzuLUoItEZh\nNHsWRWqQsup8//lFZn99Fc+f/yck4xM4umMe1TzsX/0ugycDTOlHSIk5lM5tPvfyT3HYdpDNPsas\ne/DbfCRvtohHnsdz4MO+PkQtuOmUd+gfaLy8lma0FSAWkmlYFuhmvobNfYF2skUoYEENOZnOJ5mc\nSjA3CqPrHZ6cUjnazKEdJBkPp3m3ext/7TyyptOwOyi2dCYNFzZ/D7QUvb081p6F+FkXg6Mqr11/\nVuL3g9EV9icpFrUY/bzKMDUmtPYylCQ0c4bQ4AQ2q8rBoIBnYiUSc2KVqujlCoGQlfb8iNGlVRzN\nMr2pELmtQ7JSmfCgjGZXkG0KJsGDybnFtLxI6dEtLJ0B0gJsbx1yKtwi03GRmQzoSV4qB/eQwjPs\n1m9geCMo9S5xV5P7SYGieZYZ9zE3rV0SIxGXv0kvMU0pVce3Pkd+IsDKNPZ+Hbu5jFErY5ijdAd9\ntKUJnrkJa84FHr++zamgly4NfGGN/Ac6ldo2FxadDI0AUlwkLat0c13EgxRqxYFzOkZNqPHeG89w\n+9lzlzm+UEDdC2KVc2zIA0aZQw7u9Xn+V54jWz1g0g+x+VYDn7MO5xMU/voJn/oPV6kcvY7wYA91\nI062q5KX+7Qd08g1leVEhoMHZVRXm6DFy8noMTsOkVjORt/m5cqUzoeDOnPFFruGH6om3KEGk5qF\nYvQJxUIOs3mVQKGBabpBqCrhd0NLbFCpjZEMG7NLazwiy+jxAQ+bx9QUga2beYyqG+vCIt2BmZfc\ny7QlH9HQmHbvJCOzlVlXg/p2n1RVY3BqEV8nTmneguo4Ivd+EZMyxWhyj4Bc4nivRn2rwbB1i/qy\nxIPXbgLw6k//OPbsEc1Sh2H4GHGUxP7JKPFSCV/Sw4K5xGMqCPYuc3uriJqVsU3nKKJiuvuAfiOL\n2o1gFga0FStezxSzkoaBhYBgxezOYEwCSAeHHG8esnypT7W1idMbwx7SkPprON0uxvM9RKPO0byd\nmn4EiTBO8RTByEMM+Qyye5FifYwv0MeXW8B5oU9Ec/Lq4qtspA6Q/S4EY0LHKtPf2+fApCMoVUq2\nE7g1AQZNYuFlJNMmbquDWrGB84MMm+M+QqqP16ZzLqTRDRmUfF3WrnyMRa+V4t6A1ihDpKTQVTSu\n3X6Wov0X/+oPUAN+JO0I0RdCNtvxrp3GbktgtjUx6gq12iampoeYVwFrkO985U+Yv/oK/c0a7YUZ\nIr0B+/qA5oGLkZ5EdYXZ0FuoPYiGz5L0H+Jzj5kb2ihPTYjNv8iFH/o+nKUeIZcTR9FGvz3icJSj\n1y5hccoodj8VUcSleaiO2ti8U8QDARgLbBqbCD2Fvduf4r/95j/n4pnPc85nsNF8gjPbQ7lgQd6K\n8N7dDwlfuIgQcxAc2Sl+cEBATuKNTZN/mkftZDmzrjAt+RG8fmrSEiOXgatspeYMIK/OcftrB0R/\n9rP4HzS4ffO7/NKv/iOoOPjSf/zjL77k/DxVj4/pnQZjoYUidzE0G67WIr2BjyvfdwrV8NGa1Jia\nWiH7BP7yv79G/HkvJxyrWOdnaXay9K5bCV6d4qDRx+8KMqk4CNvtHP7F24h2Dcf0NK/90V/y0U9+\nhEZyhDQ9oporYxm4MIkaQ48fsS7T7Jhp+A9RI5cIFrKMyhrSMEtdreEOxdElmPZpVPJ2xOgApZJi\nJmjhbv0IZy1HLuSiXtTo+TNE2wEOkzoJxyoWb5/b99+jVTAxHz3B8ssrPN6r8unPvEIvEuL4ZpNV\na52eTSN4ZopU38sQg4obvOs6Xizc+JtnMsGV56bJByK4nSqry1eRCjLlegjLlEA3t4d55GM8OcJi\n8pMvebG2nGCrsWEvIQ6iiJKAdACPWkd4ZRdWoUbHZ0I+KmCNKthGA8qPBZCC+CU7ptw+1nSEggDD\nhSyuQpSRs83R+3UkNcuZ0BQhZZU9SWPSKLJ910SormA02oiVY3ZtA5xyhHZ8wH4dyt0qE1eT2WCC\nu/c2uDAnMq6baFv3UMcDirYWFkuVweyY8fEGN5/cIfjceYpvd+kWKkSdU9DKMXK3Oe7lsNQ6VAca\nK81lNp0bBDJ2bMUOeq+FybHAO995Rj4DiwlwDKipNqp7OaKfVmjWLbSCGv/l13+T+Z/8fkzXeyhz\nDvYtApbmmLlFhdJel1TQxux4jGSvEwuZsMgSJXeScdrNodxhxqpiJCbo3ZOk3jBQuoc4BQmrccB+\n9oDEuoEys0BfcJDKWGj2jxnfSVKNTeHyBLC13XQ8E2x+iXIrxd7emNpHKsxGPdydhGkPJBR1xNFe\nlKFzD6/zMmIddC2EfWMXs2qmZnSwqQbXCmU024BKacLqcEItHEKZqWORnVQDNgJ+C5OmmYko0PIY\njLQe7gMVUyzGXERAazo4yPZ5/+6zM0M/8pmX8BT6SA4HqqNF8DkQOk3KukhLHJNNpRA7bvSqzswo\nR7IVRr97ndDiOeRijsrITODdOs5+lD2Xg1VGBM94USITmrU0XaeL0VSY5P00xdQeK+svIR3vU/DI\nCPs9YuocQcsRXucFeqO36M1otDazrKycQ3iaZcX3PCklj39mgrka5LgkcCG8TlOq0D5041GyDB0R\nfBY7oc02VqXI+69dJ/LyS5jzGr1p8I096IMOo8mYR3/5iKWXNcRRk5Fmp353hKocEYzNU6sfkwtI\niGYBrd+iIDdx1EqMw04cskhL6PHed56lpS5e/WE6pWncQhK9A4GYjd6cmx84FeTpV5pE2iEe7mdw\nNCv86bUb2GdDxEMaw908HfcujZtOHjYO0FwiqEHGewUyxh4P33lK6ORlov4o9YUso1KIRsGFxXTM\nXLtNOVOh5A0QsVcobfmQPW2qcoxuWsciRnH0Qsh2ket775CYNzMxWRkfNOlUZUSfCf+pGXbf+CZT\n1rM0b28wOZwm/hE34tQV7M0MV0+eo1SEdjhLcmuDGX0Zs/yAtU94eaem0q9ZcZ6J0C2ZeO8Pf5f5\nj1/kD//Zl5j9hRcQWiorJxcpNXp4zAL9qJnLfpmW2+DG3z8z5MdOXSBaHfNQ2cLtcnJpLUHvfpF2\ny0NfzaO4B8SMBFtNg7a5hXQxgpGxEnGrRF84x4OdPLGRRmY0Jri3xzjiZuuJQnt8jLfX58jXxCT0\nacxP0XqiYq83eXJsxSZEebx5yMiuEEwVSWklMgU/faOMxT2PS5ygjzKUWgI8fUjaXEaMLSLJs/iv\n+Ei9XebQ+pTto9tMqU4aExeCxQeHAjNOPzZphLUxT9WWZ7a/w+OjHK7FRRrFA9T9GLMOBT1kxjoM\nIVsXMDsTJC0d5LqCTQljPX5Mew+yax3mzAnGfpnXbrY42n9GPteadY4e9UkftTEXd2l0tuml2vge\n3SbT3GbT7WTJZmVfqRMo2mgGsoyXPoo/ncO5NEGomXHKIFdNRMxO1FMdYvUxrZEZw6sgzNaw9iyY\nazWKQw+RmBmnv8qDe7fwZY8wHCo5c4b0XpFw3IJnJFPf3yA33CLOKSYRmWmTFUkO8ejoiJBrn2BQ\nYkm2crj7No+f7GOzpxg0RnQfV9nMXkczrxNSHuCfCRGwdjjaE7j/39/iys9cpG6p4RvFEDsClfaY\nqjXEFhPqR3tYJl2a97aZrlQQo32ceZ0zMTfXP9wmujbFjTe+xq/8yq/9wydRX/6D3/mi37LAymyX\nUrtD+LRI9U0FOz1EVWLv3TSPuvvkZ104pSH9WYmQRWVlOkwibuGo5qThM1M72kX5Jxdxii4G9hzC\ns13A1gAAIABJREFUwzSqO0JzK4v20gV6Cwq55BbeCz7sbQcr88tc//Au7tAs9XKefkkgpOcpuL0Y\nDjOjk+t0M8eYPAO2nN8m6AyhF1qgzeM3wCKP2Ktu0um7EaZnSJwx0d/apdSUibpkXPtQd8zSCwnI\nUYOurJLpd7ky30aLr2NNKBzU2kycTRKTCMLCHKYaHIbLLC/1MG348GtOxuKYmEVAtQ25myqx9fpD\nAD7xYz/CjMVg924Ku6Qzijh49OAagQUfq1N29kJdIvkIhc4YS/iYfsRgLIsoxiLyfIHD1w4piFbk\nkEpU75ATfTDeQxE16hOVxjs2EpqdUUNHdRewj0c0EhZGNeg/3GRkqrG+ep6ZiIHvlomxzcLu0wzx\nkz32u7DwiUXyYRnrOIn/VIS8AZZ6nEi7jZ6z0z/a4umdLBldJvpCl5htjTvCHgVbBHWYZ5jvQakP\ntggDxxzPTcUZdIp4Az6cSgM7aQ5TQ3Q0DF8HQZrDITTYTQ+5aFkkt3mXwdXn8NgCmJQub7z2XQA+\n9qOfx6ZHUIy72LICdmy0G1s8+tCC5+d/Fp9WZ64wi2nSpBeMYkm9TrhXxG9VqAljioV9TDY3ux0T\n3oSJqOEmV9GRsnZafhfSQRzRZuZPNt/g+53TTBZdzI3aPHUIdKUoO2RxodIwmcgKA6ZOWrndOMQw\nD+mkDjk9v0pqYwOXPOHlj1iwF3RuF2IcpM181Fdksmlh5D8kP5SxAoOyibMv+rhx/waRz5yjuNln\nkCqy5lljLHcxptq0CvPYW9u0BRVJNdOvPMY58JM1nhKoOmgaE2ybFSJzQWzmHpnaNrWNDMK6iXde\nf0ba19ZnSNut6DRwWXW6ldNIvRLNbI4Ts3aOSwPMthhW55hmO4pJ6eLzxWmn+xjWIEGPlVGlh7hw\nQO1Jnp4yRHeIxB/LDK0ObL0Uzew2XkscpqYY1zLUxnYWbRp2tc1hf4gemJAubjMKD4hUvWgJK8WW\nn0iowrVb7zD14kuIOSemdprEuVUGzXsIXTvH2jGHT2q4lwTyb+3iNAWwOGdZPRfEyOfYLSVRSw70\nTg55AGJuhyV/l87Ewu2dPXg6YZgo4HGeoTfYJ1mMc+WEm2jfhb3vo7RRIu5fIW1S0YwOnXSHazef\nbaJe/vmzxHpd8p0gZXY4YaxRiYVI18oMhgqu03Ocji3wjvyIyy+f54TuQYwW2X6/gK08g3WcxxKe\no+ASQJaYcthp2ZucD5zhUek+lZTIB//5rwjafdguDfFFFeJKk5Q5zlK3yuFwhhm7g2FjQq9/QHx5\nBkevQd2lcXjtA5bXziAVXFi8OYqChStTEqVCi5pQJO2Y5vjpEauxdWoXGngqXmThAItnEf3RO4w7\nBn2pjxoqEpgKYZmOsf+dDVxtg9hCj2S2hiN/QHT1+xj45/jX//bfMriTRR/cQ31kQrVViDoW8I7r\n7MiHzNprfPNvtwE4s/Ii68/NIJYXCMoydbHN0k8+R/mNY1xNEbXeoWNEsHtNiNUxA9MRD7fNnJob\nMdl+wKmmlez4mJDqoeDTaIoqWlxgSa4xCU5Q0kGGpi5TT63suA8If/YFnIcWxr4RYb+bsDuKfV1m\nWI7hcSoM1SpsOin2TcRkEY+RZrs/Qj0aE+2K9JU+mcMHYMox2JVYVNYYiHZiWg+3pYdiOqC29xir\nOMWT+TZTh32IObn40kXaxTZBLYIab+PsjEi3NhFzKZqaynhVhG6A6KUGJamLdSFEfbuDnA8TUPOM\nug5+4Bd+kD/7r/8VgJ/4hR/GulYmFtRwD2VmzQ6m5iu8aYwwFBee4IRhU8Lpm6Fav8XNm3We88UY\neSc0x20Uq4ZhdAioKpp1RLliYb/5AS+eeYV+Mc/OXgOvqcZw1s1zH3+e9965QbjbpVKc4DPJDJp+\n3L4W3jkJfXcPZ9tKe0rDY1/h4NExytoqSjdLudDirOygrA7Y+fYxjtBp5JVDnv9CAGvkBfyuPtNL\n4Dm5jnts5YFlk/FWiaopxFWxz8oPaezeqbLiv8rDx9e49OpVRo4q3/fpj1MoGHSHOrpN5+RCFO+U\nDyN9TMkyw/QlC1GThGCvcvs7j/mlX/pHUHHwW7//W188768iXY4z9Am4DwQGL5oI3Inhtl/gZu9P\nOPOLS/zRzMuIP/ISgf19bOk+ju48pbZB2GrjzbfA/ern+J2lbSZ1jU9MexkYacbHK7R9Uzwc/T2N\ntoeScx1EDx27hdI3vkZk+SxKx8rqXAazs4/8RoCj2AW2Il4y1vcROUfyoyF2X/4f5L4s4an8HN1g\nG4otmkErHk0jOAgykFNsbVVpHemETiRoFj04TgXQn+ps1hrkf34WRb3P8W0/heMlFgITrvdvIM+k\nadS7tBITvvbrv8uDy58i2Jhh0MjSSj6ms2jHH8iwb+py9N0+Qv8neXTjTwD4zI/+BM1Kgi8YCfK1\nOfzBCp1LPjJ/+h7Bcx9n9WsBfL0Ilgtj5FactlTEUzSYHJso22G96SXkV1kO+tnds9KVCxBS8Hfq\n+GJeZksdjlQYeBSef2OFgm1IePcxmbqBJmU5Doexv1/CVPYhnbzI0pstonY/22tDZgZWhn2Zc9Ma\n7VSLa2+WOLPgQapYiN8+j2m6zaWRTOj5z1C0iAj7ZYSDAvbZFey32kRMpykLBSJ+iYKjQbBRQtfm\nCFZM9LfyuGNBQulLnG+bEcUezRU/9RIMvn7EC8MTPG50mTt9htC9DqolzTvxKbb+7usArC846eS3\n+NhsAGGniFA1s/96keIPP8f/dnoa7evfQNcmNFlh2tbk9u2nJDxNdHWCmD8m/0GZQUPCckJmrTJP\nqrSLyRahdQTmjkRo5ce5+YVLyJf/D14Vd4m3a3SWFGqlEwScHvwbRZzRMK1HSTr+Hv7iDKctczh6\nXYTLZxg+HZPffBf5oz5mknV6L0cpHm3gzL/PVClKurKH07PMQAjw9pu3WF5aJ1m5h8slUL/Rw7bU\nYdCaoxjcQtw24WuZGU4OaEsyFmsHQ/ASGriR7HlcephA0IbTO6Lna7HzaINxT0A2R5FPhTjs7nH/\n9We3zD73y58nYhFo9+bwliu0ToYY1jxIQT+a1MZaGBGf9lBrVJkOx9FtBuZ+lt6UHV/DTsvXITfq\nwnaeYUDj9KqXyhMPhfYTvMMEHk+c7qDDvmpi9bhGvaqjOaO4TQ5GkkKhqBMaTWPt2NCUMaGlMO0n\ny3iCLe5vq5zS1qkH03QfVmiNY6TKBtGJFbO9T9DmIjITwTmZZWxpUra1SFl7DHfapPxQvF/G75TI\nHcPz81NkByV2fT2GppNMJ2BO8hBdWOdg4xD7QMG8nqactWMLRDl68jYmWwiHI4huyVFsVpg/s8pr\nf/tNAH4i+EmS7SbVdQm3oVEq7KDpbuKDMra4RKN5jYf3x6ytzKCNdBLrW+w/NOGZ3iYfb+Pp9Lmd\ntvDRiYojOIOaLyFG5jlAZCTN4ujkeOn0OlvBNqVKi9mJQHTZhaxAshFEHZixtDOUIg687QBN6yFa\nwUw+MsC+5GDe6cMYVrhxL4jfqjE250gIq+y3BBbLDXLmJi67m1l7nFw/h5BfIP/wJrFAiEeVGuvT\nEZy9XXKpPBcddRorfXKdIGqhgslWYe75j2JpCyjhAkrSwqNdnb2naQazFU5aTjIix6ZeZ6KWUDZ6\nvPHhPgC//P577P47meefC6NHrQxrChmrhf0tG832HXzObSTZhjXqJ71XptFyUw9KXN9+xMg2ZCw5\nmC4tcsvdpLhbwSKD7bMnaDXd9DNW3NYynp6Hx419AsGXOT6UGLl3OMUK1c5TzHv3MPU8DM27jPR5\nshkTdZebBdWFb1HFqlbwepZxz65jVQzuH2RwuJ9t01yqlz/42rt87scukTH6WEmhS95n/XbONMHE\nefprHVpHab79Ro0jk45DWkX76Cv0rn+VO7/3p0iz09hC/4SUGCdZuk9544DBh2WGZh3XbAR/QOau\nXeRhZxemz/DWH/83AH78Mwm8cRfjIqTmO0hGFKs+IjmJEbZ6EOwnmB0P8Q8cOGMzxAUzwtIstXt/\nww/8u88x89ZtymMvQ7FByeRisdnHaE1o+sxEPCtITQdDk4K4F6Nw8B7d0DVqx39D8Q+T5KeWEbQ9\nFoIj6NpwmbromoipohIILBN1iFgMM+nmATEpQcllQWCIKZ0lcbaDq2Vg1j34Ht7lxD/736mkthge\nrZAa7LPas5OdCxHpKRynJ6QnEqefj3PjW/+TxQsX2fy7h5Srd9nOfJ2w1GHKtUDPvUf0aRd9Zo6j\nUpqJvYZo1Oh5x3zweoHs0SG//C//EVQc/Psv/8YXzVaZFz/1czyw6PRdRZyamYzZxNbTAyKv+jFs\nWRwPLlM9fof4gZtYUKZrm8J0fI+jG3uUZx3MfFTk6OqXWfhPr/L+719j0G4xkT/OppHE/hNJRuIy\nibSHycUdMvo2V4bP0c1IHIb8HK7u0yqZ0bI/gPC7V7BOJ3nOIXLBbGWvJZD+zg0yX3qfyye+gCiN\nmD9dxdDzbDlV7OYsxUIMw28w9bFTCLtD9LUyudeeIJ/5IXoLr1CZEcndu8kV86cp24648Rt/BT9t\no3u+Q980g9EwWA5d4IR5hm6kS1A+SXs6Rm3oxujI7G8csuT5NdLXd3iafNZMu/ayF/QxjdsD+s1r\ndH9QoNLxcnohTu3oBtLlRapqk6I5yFHBRz+0w6JsYuSLY570UK1eOsf7WHsDRroN83SdsbeDHJDo\n3bGjCz166wmmzW7qp83E5SSvp4skvvAxtFMXcXokYkknk8k+OeqML3nJld9lR7AyvWxn/2AH89kS\nj/7+uyy84sFvnUPda1PxNLEs7vAkICKfWmFTzTM9DGGfrbB59z5TL8+wsAE9yU67t/f/sPfm346l\nd3nvR9pb0tY8z0fS0ZnPqTo1nRq6u6q63d3uyW63jW1sTHAwEC4XCBdCgGCScH0vmBVMiAmGmNGx\nF2Bjg6futnusnru6uubxzKOko3nW1rClLe37Q/0ByQ9Z6xJWf/6Cd+21h+d99/N9HrAluPr0sxx4\nfIk7LxQJiDNo3hCrLpmS04LbJdFVrdi9YYz2NtYJA5K5hlZX0VWGlB0hjp0K8vRX7kZDPHD8ET7w\nyYepL1dxRA+gt2lYQyZ0C32+/KmfxnW5hDt2P4GTPir7KpI1jXPeSdj0KM1wh4VDErOW+5kd17PV\nqqGrHyK37eaJDwYxjLnYbL7JT7/8bf5yeJrohcuYPqnnyEc+yvlCD8+p92E7uMy2YGTLmGHG9yHC\nY31yjQj5225m9E6021cILGnIm/D9P/8iv/j7P8W7Tw35yu0/4fgRJ1HPURJzXobzMkGtxYprhePd\nk1QX9TiTEi1PiJhBwN9x437EQ8nQQad34/PM0zI5iNs7qEqTztCJKnQwFevoy+PUVQ3JMobXF2W1\nUSc2s4gra+Wlc3dHp588+jDp0oi+mMMUOchwv0C0mUXp9ajUVOTJQ4xsRQbyNKqpSVOXxmQZkEs7\n6YpdOrUWAanFZsXHKDBHvzekK7bZ1/wEw3W0kEBBDeAryChTDlojLy3jAKsosrtXQmgFaLe3MQ4O\nsSX7EJpuyvY1vDsd8FnwTQyo1zsEhQF1o4JdH6akdmjUeqTaehytQwhSkbSi0PUmsNicmKMRbD0b\nvVAXm7eNIAhE7lMwmU7ScdqI9VUaSo1tMcjI2CQ5E2Yv0cPSE+i02kTibfSNSUrNTcZmD2IZeKij\nEjM6eebpu6J97ENnGRld5HYbmAIBTIKLSHWDzhkfOn0Rfx1KZStjUwVMTh21hglH7l3a8V2S3Tla\nqTASG+gNUZbuvYq6MMQsBJi05CjdaXBIlyZxcIy228QJvZlBH1rNMrNJKwG3RsDuJttZQZ/psuls\n4r1poBAWWegI1F12zKspmm+NOGJLEzypR7D4EUctjkgVigUbM/fq8FQayA6J08YszqkR/dvfINNu\nMRsSkC7pMMwf4HhuQMO9zHzPgmJw4PJGqPrS9KU8NmVErNxlOV7CpLSxTvYIjsVx6bvUpwsEUhtQ\nOEbY1ON7b92tfTl8+ItsPpPlZvoqSasRd7TKs69fIxboMy7Nk0uoTKkhtjor+I/cy0ZKZmit86lj\nT1D+h0tMzCZ503yVpf0xclqOxESIeqlCQzIRDCmUrBHse1m2KkF6x8Y5e9DL8rdfBvOAXDqFNXIv\niqWG2zLJuqWI1i+jVxTGphwM1Dz6nRp7tSquUp5S0EeXHAnDAXLpDcyKRMd1hOkPnqWdyxNqbeAY\nwiDXQ+4cQq4XcMklyjubGJ5Y4tTxWb75xSw/MDSJr71OuxWEkz4UwYLoKbAwnUQ39OA29SkMNrCn\nrHTMbdxqnuqGSLq/zvJLd/O1jrsXsU0EGF4fkr6e4tAJlYtdifudSayTbiaNG+z0RAyHSxQyNf7h\ny9+j+fXvk1tI8zMfFbje+zatWgghPiJQdrMXuk3F06PwB5cwnJnAddBAplUk0OuTlxqYWz2+8IUk\nHsN1lgITnJ02Yu91iEyv0/Z6cHUEVuvbmE1XOXziPl56+2UeDiWomYI4RgLefJPuuMbgoB5bxMxa\n6G1MTwzoVg/gLaioioYtaMY0GWNmNKQguJgY38PisVK7fYnYzz2B/2aR5//2T8kWV/jpZz5AfrXN\nxmKVqV0donUL87Qfs9FN43yJ+NgNwtN+xm1unn/mAr/xPzGdp9M07X+98vlfiE6n+6e9wPd4j/d4\nj/d4j/f4Z4emaf/DEb1/8hEH7/Ee7/Ee7/Ee7/Ee/xQR//9ewP8IR3Aab/FenvhImKh2FSmgYIt/\nnOpkjh9c+U8c+fk/oXvJg/ifv0PoYwvUtwW8Lj9Oi4aoXmbjhoFD84u0s2vof2KB9X9MUel3mP1E\njVElhXdtBqMWxbVxk2dVhZnjP8u5m9/m1HE9esFFV/Ay6zextbJPwyExVgtQTu7g0HoE5wcUnhXx\ndLYZLNyLTRlw/fk1lMcCSOsHELQrRAIxLoWNmPU1nFtz+DM5DO4QnsCI3rqKakqjvv7XDH75MyjJ\nJ9n94x3at17j9G89RLm4imFYJK+/l3sORCnm32BsMQYX9FzZv4zviBHdzRH1IxMcz+bYuXWb3/7u\nawD82sO/gtciMnrYQqmRwxT04V0dcMXupa3eZOn9M/RXs6j1OG/+/W8z+5v34/IlWf10CO/fHyS+\naSeQy7BV6hN1tCi5LMybFFa31onrj1CfMrCx3uTh+zzceO4NPvzEWbZrt/jZX/gajkOf4T/83pP4\nC8tcuJ5mGPIytQ79UYW6YkE3ZSFgv8yb1w4Sm68Qdk3w0vVn+NEn72NQPEhnfZtWIMj08TajFyJ8\n/0uf5cPLL/KNP3yWE6dcaHmZEm8SyVSwLCwgLDupJTvsXbWgC99i41sbHP6b30X60ib5sxL3O2xU\nUmmKWorHp4yI4wGW/8MmD/3x7/CXv/XbpH8Q4DntvwDwpX/7a2Q6QcSIitnjINSsUDRLaKs5Kl4X\nlm6H4dIs9rrCIJfDPHTTHRZxHp9hPGTmm3/+LNG5BayGFnIzwbiwQydUx7LjYm+8hkU/h343yG7t\nZcbuOUgyY+TSYMQRc4prVgtzwwWa0jamch9PvI7LdohvfPUVzvzEA4iZNKuSnsnkAa5dO8/BDRvh\n4yO0JhR8Zib8D/DqS1/k6CP30XuzTmq2Rv12j2g/hm3SRs/gZUNaodKo8iHvFO2ck4pLx+7ydzDd\nc4aT2QqqeJLa8Ab+QZBbgds4ry3ScWyRTEzRuJahEm6hOgJYBhr+usq/+8MvAPCv/urTdJxh3ucf\nsfbs88wOHqJ3eEA276G7/jarGY3xeRuxUZE/+9pl/s0f/Cq3uxpL0iyXrt3h+Kd71C85CcVn+P5/\nucVHv/qjXP/KF9CF4oQberLpIYbkSU5P+ihfzVE9HWXtay9y70NuarID59iI2u6AWqCNIWum27Kj\ns7QZVXv4j0oUNrvoj8eprDQ55dZYXmtw5fwtjs76WRh42Ql5mTwxzp239nCTob/fp7on8cRP3s/K\npTSeByu8ecPCfKiGay3Cd579K57648cxCtDUlbCJEdrn19kWZcbsBvYFDwfvO075nWW4vceRk58m\n9+4eCyenublzm1/58r8H4Fd/8quYnDOI9S0unbtCInsdiz/NwZ8+ze1rDc4++BSjYJXU28/hfwCE\nWhJ35IN87xP/FednP8J07hCBT7zF/tMlMoZrzHof5dZEDPflc1gfTvLCV708PDFDRrjFyQ86aby9\nwTubk0QCd0gmkojxHO3v+jH8mI7K+XdZS4n0t2Ic/ubH2fjXv4r5Zz9C6sVXmZT8VFs72C52MJn9\nhB5IkAjF2HllB4swwu6ZoWfN0KgY6B9cpD16h3lhjDeudYn692grB5h2x1HMOXqjOttlgaCxiFk6\nRN9hwdVb4aWruzw2+y/pKjL28iZMTLLdUXFIEj5jhpubOf7iL+8+p3/2r79LdukNEiuH2Z7YRmgK\n6K1dBCXFwWSc597IM2UvYpk8TaeVxtccZ01W0c8EsPa7bL15CYPi4eSHIqiGGsuKHmeqSSh4G9Xt\nodA3Me/yI787yaaUJft3aQ78yFnM4Tr5mypzJ0Zs1SuMaRYsR4Zc3HyNmHQCSyyJOZcm3ari79no\nyY9RXXubHZ2GbFV4X+QU9qSf3XNv4ff7KSQ8LJr1dNI2msf2yJa2sNYOo689y5ztA6TcColluDx8\nC/P8hxhbsXHbfJNpzyyZwmUM71ti/ennOWDVcH78CeztK+T7q5ReDuNymLFNRrBfavDzf/F5AHS6\nX+Szn5/lmW/9EcEbO/zml/+IjLLJh3/5p7jFMS7+3/CjyhcYPHqOF849hGJbZ886TrQ8oDFlwbti\npMKAbqtIV2fAMtUnmvKyaTIRsQwxUCZf8DHnzNFuj7DoQ+yNZIY6O3hNRLJtMqMssXETafR02lY8\nfTsRfZ5dccioM48/XEUu1wnE4myuicQmINO6jViaYWLeRCtzh7q8QD++x9DgQt/VSNZrGGUBWZCQ\nfE0GqoTqGbCDCU+vC+Ywxm0Do2gDR71F3j6iorNg0m7TbSa4OGxxb26d5a9dx/w7P0vqmZukNs79\nT2mUf/KeqN/7sz/73C/9zW+TrLyJv21nc6ZOvmVgcWyBwCOf4q2Xd9h/0cQHPnGatVyNI9MzVMU+\nongVbRjGHxrnungNxyNJdBmR1eYq0YBI0yxwtOrkluyDikje1UbwLrKvb/Hg4wuYagnaQSetRoW9\nd1fRjGHGk32yNhtCYxc1dwS3fkAicpRmS2W02WcjMs+hHzvOVGWGlkMjOHaQgi/H4Y1ZHJoPvWcP\n94kTGDdfQCc6qdfeQllaZfZ3PsjNRoRv3s6TOBzi46eO0W9dxeVq4I7NEJ7Qowx1eBbg8jeeY+d6\ngaXHz6LrS2RkHYVimsEQlHslzj9z1zPw4K+/H8uRID6vl+2SkV43S8cwxvghI4v+o6jnFcLmKKqx\nwYcXl5jLLNARRL76WpED/gnM+RIWox1TpEuppWF0qiibOY4/+WFee+0VotEOs/c+xO61tzl2+n1s\nZl6k2jXh/9kHiP/Y4zQuXKeqN2CrtElOthkl4ySnLXSW8oxLSzQkgcExOz4hSM+Qx11V0YQH2Tdp\nCEqTSEAPN1aZtsa456Sdv33mOT503xmC0QjNZICE7MHHIqkfLFM4akPdNyApPextBwd+4WGyL1QZ\n/+QEUjFD4thpnFKMsGnActlO5/wqoSNhzn/5/+HHv/MMf/qnIxq9u56ohU8+yqA6ZNor0dcp5Has\njOwVtIGMSwyzL9UJdQQq5RGTERuDRpm8acBwZKVhdtEW3BzJCUh9J33vLt6ZSbaVGBPDAYZMEnNV\nwatBwxMk4AtRs+ux1fU05DqqKoBxRChdYaQImBsC77oF5vc0XK4MFE14RRGcfpy7KaSJAEraRE5Q\n6LQOIgcqyIYSdf1BfEKeViaKFLFik9IYp4OMAjBnseCTk4yaLqwHFnAEKjhLAVRdC9foBFnbNSrb\n0wznbXQ7HYRsh7g5QvvUBKJJwjoaYeq7CFhG6C0yL7x8d3T6r37v70hdyRAZmNArXqSPPIHNOMle\nqYzd6Wb2E4+QKUocOruA8fAh3MMARoOHNWubkFVHQDfNsNInpTRwLJwhatzDa6rQfsdJz6CRK/c5\ndMjKCy88jT0xQdvbIJwuUpyNUijpsfUkGqoVc6rF1u0qcy6oVupI5RpTiSCa5iVpchH22tkPCxiz\nN5l78h7s4w2MRhf58pCKDP6pGfrrt4kcn8an76J733H6HQXPpJPYgSQWt8q+N8P0sQBieJr1Yoak\n8xCpGytY504xdtxK2ZLEmmsRwsQ5YwffXBRFszKfm6A77BLTW/jau98D4P9Y+n3e+cq32TN9E994\nD8fPHce6eICjv/kjFHQrrBjaFGwuqkaVqFHiO+trGF9qIc6fwm5zsl5ZR+czsd5uYEwe5sTpk9iF\nHJ28jDsdot8QwWQhERljMMigWQ7iT6Sp5KyU7Tas9gXK0k38KQFzv8mp+49wtRnl0KljtGspgh0v\nEaXNlHeS0czHcUcOE310BqMtQcXYAk+FYOkOTedjOKsDaseCZLcKLFjXUecnmCyHiM3MQEhiOmak\n4B1jSnCSZp+hawIKVVKqjnH7DOGBE71Tpj20InhKbHRLuDYUdAt6zIJIZUzg8g/uftiiv3WMRNuM\n7EsxrGhYD8dhWw/BGmX9PtVmk+pAZDDqkrQeo+VSGA6cNG6t0wq4mbBKuAMeGrdzTBrmqFx4h8XH\nLEwtHiNXAlvNy6jiYUNoIG3fonEsQr4o4RecZOvLDOwCu5khCZ2LZXlAyDZJbjhCLGTY3q/hkC1U\neofZevpVTB8/iF8aMUz6EZyb9McOIbY7rIzriexuslpKsCvmGJ/wItZDWI1Zeq4kxUYPrWNBN93m\nyKkTXK+uYOveoXdAx5W9C5w5dS9J1xwxm5FefAFpOYtyzEqgvYjL3KKSlzm39hKnH/kk3/kIBeMC\nAAAgAElEQVT2twBw6i7xr37j/2TUF5ib95Hq7WBeXKD6HxfJ/Ztf4c++/xNs7fw+q6Id79wEIymE\nKg6goaHFfDi2y4gBDcGm4nLqMdcF9sf1LAxbKEUPRl8HEQ8mUWHPb8It+WkYs6hxL35JRRPcWBxF\ncoKdQFogLHoREjmqzgmi+j5FL7jracr1EW5Jhk6elq7LlGyk0u3T0NXQHHGMVYF+RIe6b8DgyiPn\noxh0doZjHbL7AlqkQtuygK+zh+Y0Y2vaESc9dIoj8lEBJeGhWzYg4KFnPkRweJNYYoFFa4dE7wjD\nmSsU6y1+7ec++7+/sfyrv/yVzz10v59n/vF7DB55CHtDI+DSI1uDrD63wsTYNLFwFU/FTthmoihm\nMLZFimEjogweh4DL7GUza8fNLtalJaTdXbo6FbNcRdn2YjaP441EGRFlzjZgZMwgbNqotIwcCcmY\nds34TwexCTWoakj6acLjEuvfWWP7pbcZs4zTSh5EUiSubp7H2TBg623i6sbpaQasqXVaM24Cig31\nTpt18xrC9gbmxCS++dM88MBvcfljQ4byBU73D9Iyv4jtkowWi1DVvPhvypjrRXK7JXavbeCP3wdS\nGXfPRNvh4N4TY/R0fVIrHW5evBtxcHJuhv1mC3u5RsiRwlEaMR0T6K11EFt9auIQfarOQK9h7Swj\nmyZJ+B/l2LhKrdPE5A3SFC7iCk0wnzfwTulNFqef4s7lN7BrQ3xzx8h9/Vsce2qR+jMX2RZtRBMH\nUPNmPvrgPbz64mvMBObwCztUakPCwSR1X5txxYpyfZO0qOBS9/Dtlwh0FapSgGB0BXO2A34LYqZI\nO+BHZy+iWKrUgyE622l616oo1h7y8Sni9htcPvc27slpHMY8h6NhLIldbCmZndIaATWHCwHSCvn0\nBrLgQW4VibvCtEw7tKNWLF2RVfMOe5fu1iKcfuRT1PRpBHuDWtMDIQPjWoObZpmpGtSKPbRpFa0T\nR9dsUIvraaxWGbeomIzbmNJ1jCMXO34dlnaGXt6NMqrg7mlknDUc1ibyqA9ujV5cIzzsMcw0aImg\nKgYMYQ3kHsVxDU8NPLYWRZ1CwOSg0JNR9TbkEtTTJvbVdardMGYphOhd5YDdwNazaXSqDtW4haPj\nYuXiJuNLMZydIO4ZL4Omn4TDTcuwSb0HwlBCUG/iMR4i7egzM/RiXGzSqhjw2/S0A0bKQgnHnT7l\nYh0dUTIoBMoShrbAcxdeA+Dw6cNE36xgPHMff/etCxj0k0w4jZS6CuSMyCYJ5UqB2zRwGZLkNjY5\nlBhn9+vnmH/4SfYv36FaT6LvdZgayGwU9LiLLsyuHOHZwwxFma29BnMxAdOJCJ13trAkZjD1drHV\ny2zoS+SM4B5Ecc8lCcRWcVf3EKbuJ58qELCu0LGUKTf1VPMy3kNGGlWZhGxlc2uVQHCOSc+I1fo2\nq+efJrTg57N/8oe026sIphSeAXRqXcryHnanGZdiwxmMsHytgisQRRqpvHGuQ7wyQ/BknJsX1jmc\n/ADevV0CLju6qko+sENhb4W/2fgOW3tZADqs8vjfKMSePIn+gJVBzIRu4jQbr95iyvEYV1YGjPs1\nrkvzfOan/19enxjH/H4vZruLL/3J1zjw2ONYLCOEvAFbZY2q4EHUXFgP+elNjrN7/hrtppnbyiUm\nkklq0j6rlyzYtVWUXobyMI3h9oiVmIxhbR/Xjz9Id22XV//7X3PG6kWanGNkOkrzhg7BAIbwgMvn\nGpSzK3z3ap1Sv88X//wFDjxwBL3Dh7ZRYXzcj0HTs5w3gsXDjfwu1kaZXtnHlTfPIQV6NEbgNJSZ\nUxdQXLcRt28w7pJQ4scxe5rUnHakjoB/SSNsTVNeNyKqRt589W7N0E98+pdZfj1Hze6j2dbj3rlO\nsalQH9nwtkKYslV8ibN0lCKNrIounUEWp7nZW2HebaUhO1nf3UJpjjH5kwkapQy3UiYKNRdRc5VS\nIkiplqGRU9HFg4zpfGTefBHh8RhHSiLm+TiyI49esjDThlqwiq4PNb0BYX2S0NIUK9tbPPy+BL6h\njlzTgsNTwV6NY0sV2d25xJVXLmI7m0C3+zZyL4PJNc/W9XPMCQHUoJGm3ELaTbNtm6cn7OG41aZ3\nYoHRng23QU/f4CD9wjcoJZewpnfoxJtI2TG0my9S7/tpiTaip3UMPHrO/e0rAPzGX4PUOIO2u0G3\nWqWgG9BaURn4sySPHKP53Rep9m5z78QhjJM+1owjOoIDh1Yi/06W2FKMXr1Iw+JAbreRG3F8jjq6\nhpmhtUfR4cOKkbos4HKrZNoWQi0//uo6rVYQLSzQUHSEBAW9QaPiDGBT7ShrbcxymbrQwOHQ4Wok\nYGxESUogDkvUIkk8Hej7HEQMRqqjm7TtISK9bWo7ED7SQ3QqyI4Ew7wBhB72XA9Ty4EvFiSlL2LM\n1nG58gwFEyvvXCNuiyB1dXgmO9zzL5bofuPvqH/9MsapQzjqDq4U8vz6L/zK//4i6vPf/Y+fO3n6\nMdppCyc9bWRthpagoNb0+Jwj5GoaQ7tPaX2FhjGA2ynwgZ//MZ75/D8yfkbPbkpl2HUQMFnptXMY\nxQCyXk+w7WC95UQxtTHa27j1JiShQLMVZtTPUKv4UQ/WMdm7bFl9ZKURhp0wnd4EU149td130byT\nhIxjyDqZUciMoVRlrNHHNx9jQ+4xmNQo78gkvOPUpzQya0Osl3P4bHampmbw+QUKjg53fqaOcSNF\nMddGdq/S/1aVYVJHQx0RHNRYi9SpboYRBy3mrccomRoIY2bMHgVhGEJpN+iFJcrbIrcv3Z3CCHmO\ncmAiRPBQDkWJURwE2G62GBSjrOhLSNYMA1lH1rhJo+PHoMrYrSrrjSI+wxpuS4hwPkS5MmJHVyXh\nPs2d8jU8h4Movj6bb6YZeE/QXXfSus+Cxzdk+VKe7KtXKf9gnejYEQT7HrsOH36Thc7yAJRVNu+Y\nub61Rn1fYCwXo1WucCM/BrIfwdql6XDjzZdxCxMMSyPUDSdXRz1OjGQ6+Un6h0TSmRYoeZr5Nrpa\ni0RToifEaUo9DDkrDTmGWKlTdlmZUQXEtomGqY5RUomSp9K30Sx0GWRUVlE5OvYwr/zwKwA88f4H\naazUmAn5GDqgtHMLu+8AsipRFyyIxixiZ8CEZZ87LpHeRYUx5xwmechmP4xfb2DLrCG1alQxoGoO\nzKM9RMcA/bpCwzQPDplmagNbusudbhnH3ohI0I5LLeO2LFG4mcNv6FGw1TBoM+zdKeI8OM9ufw8x\npyLMQknXQiJAvyVhGnXRuY2M8jU8gSGDMRe2ppO6pEOw69GsUWrpARv1NJ78FjdEBa9gZK2sUV4u\nUNlapZI3Mb0hcGu5Q7Wwi86wh69Yo9+3YFfCdKY1XDs5amGFOSGLcrSFp+3g+6/efTlLFRfxsw+j\nFW7iSu3jj1Rx7MpY9ksc/NQpaueXaR4Yw7aukFhKYijXcNdAfGKK3o0V8IdRXSVm5Rm+cemrLNpC\ndJamye3tUVIm6NVz9FJtxvxLjLbWGQwCKLu3sfTnMCHS1B8k0Zcx202YHUWK+T5Du4GaxYw9Y0Ic\nl9jOeAkOvEi6FpY9A/04BJwldJYZ1qlS1Uo8IOlQjy9Ax8kjZ6eRBkkS8QneKqxhD0Sp13qoTZV+\ntYTDGsHX2GK76UW3XuH4B9w0ZBXz9RtgUzE6FV759suQnOD7n/9TOvkh3Q8dJvWmSqZ098T4v73x\nBfYat2jdGUfXsGJpmbjwpa9icC1QHl7k4x+e4/k/fxpv1MSN99+HORZn6d57yazm6B44g24uxGlZ\nob7+QyrOwxj9Fvy6FFSbFLI6qteuYD4s4TCG6Nv6WFJ5tvotRC3FRGcRY8yCLW7DfEHhpZU8uRfs\nnPmpsziDIXqVMldu9nnioSQkOhRrRapdI9ZIgwcf/BnSF27w0ceeonjlEoGDKmsX38bo79PqHiAX\ns2G4ZqWgv8X9thht2UC7ZWPeHKZumqOQq2MWe2T0KuNZAVE/wWVLhm4ly4y+R344IDRSWauscGcl\nR3lPT/xnfpSX/uJuN+ip2cMEfDG+81ff5dH3T6NMHWPz2iWO2ifpnixgMQfRD3skTLMwbmRPimEx\nbVA/b8E+2yUsTPD823scfPI49pVdpE6V27truAMtasY4pq0mYXMBk3YIpzPC9q1NpNOzGL67z9qh\nNrWtIYueWVZr+2h+Eya5wSAdRadaCQo2hg0jOr8fR9LKsryNs16hWwxRra4ijewE7xmn1rYxG1xE\ntNaZNM+hK/VwPnofVzdzmIUout1NtsYCLNrL7Nyq0zR6abVzDAxphk4fy88/z7jnCMFmmX/8xis4\nZ4I0ahWuxXLoBuNMT4DnVoe1PTtX3rwbiltd/RdEoiEGepWL8utUNvaYjITIPlum0qowFpvh7YvP\nM/ZLT1DrqdhutQmUNEYeP1NeO72aTE42IBfaaONGfBYJreuhIu8Q6YsYan3SYZFO20RIzBBKDxmy\njzI9TVq/jqfoo14toBja5GpRYnKOTclEJ6qgykMcDglNTlBq79CzOolJQzwtA1gyjHpm+tU2sq+C\n2aBjUNETMBmwdtxoTditBwkXl8GqI6KImMU45pCB0l6dgNvFSlegLGwite1ED9zHcGDGIFpxlrN0\ntiwEMmGKJ2c4ciKC13MP3/3hy/zWZ/8ZiKj/+gf/6XOOipnE9Ihe38Hx04+xfvkVLI8cQ+1maZRl\nbDkvwkSKrsVFkC7Pr19jbgqqe130CwscCY6ztvM07l6QtqeIyxBgJHgwzqkMaiJy9wgj3RBd1UhK\n2GHiyBR6d5X9jTLBUhRNM2Kv1zDOSgzLNc7/6XUo7xCIKbQDURRLHXlPx6X2LXwTIQb1DKOKEynU\nJdFw437MTuaNWziatzGfnkXfyWMtuqh0DEzFDtJPtUmNS+iGA+Y6UTK3v477/mnm2g+QHvRwahZ0\nSh3F0UMzZIlJBgruBHKuh1/Xp9CzIKl9LHt23r5+t0j32JmfZ9ZvpXrOg31oIdjsohcHqFKdgJhg\nYczEQNdGsvoJmqexBx10brQZFTvczLuJWRpYjQt0zQXcoo/yaJmo30olt0t33UriuIS7m2J8wsDl\nt2V86hCf3YdRLPLObg3nUoj42ALT7WWaigGnfodcqsyYzoo5MEF8ZpHekp+yvsNxScG3qEMkSmhg\noZc1kfIUsJWctPw3sWtutAtpmk8dxndHj+fEGMkTSURJT81ygOqgiGqtEHO0qLoqBFrzyKckgorA\nsODEctjOaKOA2oGOEEMTMzRbNlQ1gpZOM3HPvTzzzbthdE99YhJPQUc2GaL+zi7205O4a25yvYsc\nlpLsixpKuUc3NIV1p0W7XcN50EQ3OyJsrtNLzqIsX8cckdB2MtgTDWRHFFNBYSOlcb36DR469UG6\n2WVEbZYpv5Udi55Srk5TdWPT7qCzOfC2fVzu6nEOrCT8LdKdbRw1A/GDIj6HjcpzeabjblxyEfOY\ngKSqyIYeddlMeFyjX7BQ0buJKhawDTF6UyTTBtoOgWFxREVOYfPkMF3ZwxoaxzAxiRwTCLrbJEIS\ngv8QLp2TZilA3DiibFwjEBzRt1kImL2k3q6zale5/trdOonHfvIjGDwRrv3wComzh+judBl87BjF\njTXci1Nknt7lRHiMkdWPff912j431b6OOg0chQ5ORx2vbEWVc/T0brz5LIkjJjyGJXbq1xnsaRyf\n8SHQIRP1krCl2K21qUQFoq0esYMVBlU9imNIo6JnoNUZxOewp0o4RwKixUTB0CLe7LHnq1LNpxjG\njNRTErW8jKDv4TM3qYT0TKsGikKWbiVGuZ5nSovjHJtmuuakMsrSbTmQcl42vRdoeYJEHSFqrRQ2\neYJ+v4bJG6fdkyilewQMCmN+L0vHx2luazgDVuz3Orj20psA7L7wD3jnf4TcnTpCUmJ/fYjPFMNk\nqNAVg3SWBaaeepLCdhrHpIfK7RH99VtEjh8g/pEmihoiEkiwWq0S19uYMMyzXC4hVd3kxSE1t8Kw\n1MHnkdhUq5SzbUJbTnZf6ROJmVCmwjTWs+woPWbeP0fiwAnUK+9SlZr4ajN4Ay1W1jtYbXZGt2Uq\nZo2DxiZvP/siB55Yop7tMAy7CT5wmkQygnafibgkYCsb6JtcjC0s8sql1xmPHaeg28bWtaDY7OTk\nNcaLMnNeK5VwlP2OBZ0aYiRolFsDQkoQo76O1ejEr4sQfegsF771A5av3Q13XfqDBYb2fWZDQYbJ\nMoNXL3F89hArRQeVfo7hnhOnX0WR57E5Kqw/cxXd2CLJeILCTTOGgYGj8QNku3D5Bz/EMzbN7Wvn\nmR2/B6uSoZ+v0Q4eYGTu0g+OkXRPYSmXwBZGFM3M+BLc2DGg6vfxaA72dQLslylhIi10saYVjp0J\n08yPmCoUSencNDKXcYcFkmEf765c4vDMFqWMg8GtLdY7BlwhC4N33uLk2SVSpRLWkcZKvseYK06/\nV0EdNDDpIOrro6gbWJNhKoVd8oMGH/nRj7JZcBFymqludBm9sEHn8BS7OhP1jdss31wB4MsXb9Hb\nOs22uofLOsdp32GiZ0KMLUzQMIXJtobUahq29RTlhQ8T9vXptre4Xc/hb8TI+/ewebw4BkYSYhBb\nfoTRJdDKu6jrfAwdZsayTeoTBsS+FxkzhnaZXEeHLxigne/T9w5wGyKo3TKVkYovFEavWtHUGopR\nQtp3EPDJYI5j7UkMDWVkzUGnUcPm7CJLXTxVHTbNRN5mwKD1KcTtzFqs5EtemoM61YEP1bnK/sBI\nb20PUTMy5e/RM4Zp++s4i2W0psQg+C7Fm0aMqp7U7DRiZIbOaJmtQZMbl8/zm7/+zyCx/L/95y9+\n7sPvP0HPmSRr9rOdWmN471FK6zX8GzqmxTCS/yYR/Vlymp79vsCCkkfsCDRqJYRcHr3dyqXNVaKP\n1AjWkxgNNnZSMsOtLjfObXPmX/pJr+oxY0V0CdS296nVNRwlByZXDYPRgUMaIGU7FNo3CeuiVPQp\nbPGH8Ay7NL1WRJuOhYGRjVwd471LhPt51Kkp1koyxd1bTEszDCxNIroesjVO2+pk4NbI+91gFxmr\n9XGHeoza+2gLUXwrx7C4e7hHEUbjdZoWH5VmhvDcEfL9AEZFj86ro9Ny4M7kSeW6uIcbvHbj7g73\nY//uKd769uv4Em3sokreVmHXIBMwedAVNDYGOjyeJsNMAHO/xc6mGbPYZMbvJuNpIzWarIxsVHu7\nJGYLiPYge3d0LCVEIooHfbhEVucitzfk6EMKlnqM9uYmAV8QddFDuCbgbjh4Z73JQAqj9ykMCyKu\nuQn0+ipjVCmubqBLjAjp9OTbk1g6aUbmDL2ihE3voTxxnYB7jrWVXY49+n565/6e5ryebGufZCXL\nf//8a0R0WZJGL9vKOKO6jK0XJSumYCWHO1YnOggirOXJLgaZybXZC6kk8yHkpJlAcJ1hpsdey8al\nt58G4AMf+iQjeZeeYcAMMv1KkKBoYaDWMLr0OHN9fPZJqpEdEsYWg8QSurUuw9CQkdOEw1bG2vKT\nsRnwKFmK6iQtOc94O8he7QrHDp9lM2fGaRshmQykhHEOG3YwW8eYNJgYtIcY7ZN0vW3k9W3aB5o0\n9W10GxrzThfDjoVieRLJ3ya/UKG6K+C3atRv5Qko44QeDGO5Y2T/UAnfbodbuxm8YwNy1mmido0M\nQ0Z6H8tffxmPP8zAYEUbjzI92sa1V0dN6OmN6hj6bjRxg+zIiUEPYm1IZXMMBx122ipTVhHvlpEX\nbt0VA48e/wn6556hHRPI76mErUbqV9MY9VbKb/cZWAsY3V5W09dpLcRxbfvYpMloTcbo86D29LQ8\nZgajAEeDk7yQfZ5hVSMr9DFdL2CIR+gu9umGoswqAvl8FFeojfR2i+qkgdJIoqbpMNnL2MwDXF6R\n3v4AX0QjZ7USzLhxih5Wdq9jnjXijx+muRNGJwwJ2mBkHuHsT1Ev+xjae7giIrtX0zz+5IfYahcw\n9/ZJWQ1EBAuxupkVR4Gx3CwGRx7ljYtMnT2NTVLYHFXJ5+EkMWS3G607JHyfjXcvDxl7aA6LzYMy\nusTFl5cBOPaxj9Is6GlPdTgSfR+LEwJJ+0FM4i4WLcooNkLZvMj51/Ms5RUSBDjfuMGDJ4+T+dp5\njt7v48/feAaXdgTRauHmrb/FbjlOX+3Qmd1nTLePafEY1qhMvO3FcTQKByawzZvJOa5zoNEmOT5G\nvxNELDfpUmWrs4FWdGFvgjDj49rKFZy0OHczTfyQkZHbTzwxJJ0fkCh5Mcba+Id+LIEpis01akML\nWm+T2919QgYf6qjBUFlC8xfYC3roFJ/mlMWCvOCks6Un5KjhavUIOms0Sx0En4Xq1hW2sWKoC3RH\neg7cEya9+TpX371z97qdvg9HysfirA1DR2XlLTPxJ6e5cHENQ8lOHyvf/IO/4/iPu6gaukQaXlRV\nx9baeWyLUXZrOYgOmDHaqEcnqMg9jhzzs7En4nDqkExzONU+2/Y+5ncF9h01Yq4hgzGwtJ10HSrj\n7i4ur4Onv/YGSSGCagpjMyY5e2gBc0FBcQ/ZyhYIOuZpX7iI0O+h+WtUZBsL748yNphBExtIvgUC\nMzWs9TKxDyxSfT7H3H1HuHrhDpLSY+KwjVxqDaUwSdjWZejtMjsRxJXVYToTJDnmIZ3aZ7TS58rN\nm9y3FObKoECkuUh8zkpEGeflt34IwNTjX8d/o4Zka5GoW2kcGBHKzuCzm2h6ZGLrLfwmE5XqHmVL\nEKPowePq4Q7Nsd3qEWwmsXVt9FJFCs0Ko7qI4shQsYtMDo3YOkNWY9voNnQkQgVGxS7p8SiOgplA\nOUVL8uBQm6hyEHusT8ykI0MTq9jE4/Qg9lQkW4uW049lr4kc3qWnGZFTHgbGII5Ah/Z6j4Btil59\nj2jRTdbgoCdncIouBqYONlOZgGzCgImRTkUW26TkDlY3RBxOGjc3GSTqCDEnmTstco0+gXsfoJRp\nE5TbREsxCoMMq7e3+Le/+s8gsfyPvvSHn3vsoVkqZQOjw8dJscLk7RG+eB3N2md3v8KkeYadVgqP\nyUjd0WGwUaDQ79JqTTA6OsA9clKbAyVYxd+IUnSsYrkB+7Y+n/nd3+V73/4hDp2GPN5lZ+sOOmMP\nrwbBUAdTxERObyMkTLA/vITQieG1SYSDiwx6m7gjGu7KAmNJCxdHAyzjbhaMLgbeCOpeHsXdI7DV\nZU3uEdMrDBo6BKNKw9qnpGzgq2rUM89xXr3DQU+eacPjuOpBdGN7pNp+BkoBX79GPr2J89QD+NQB\n4kjBaF8lux0mHqggRcc5HLWjPBLgha/e9QzY7zmBfaZDYNrO7Q7o9V7GexHKvn0kt45OJ0ihYEST\nt2mm/cxpFdSQi/X6BM0hTAUcDPyA1c2olcV0R+TIkS6pS1UKqowlrJHI2LHFM8hregrNKjGdjpJL\nh1OQ2N5uEjkzzVS1SVgws20toRfzaKKVoT5JtulFYQXLyoiiZCbfKJGINtnUzTNMiPQdu9CP0CkU\nmT+WRL2yz9CeoSEcxjcaYhFDRD0egr/0afoNPSG9Ea9/EnHKhT0yRX/OSa88pD7q05f8SP09VKdM\n/toutk85kSQ7Q2GOrlvPW2+rZLfunuA9dvZ+cpINmy5JztolVrRRiAWoy2bKyj6iGKeibzHQ2XCk\nnQwiPiriJQY+HYFOiUEpzYZ9hDELbtVDe0bPcZ2Xqq2DfVCikjiK3ing9lrQKQJ6d4pbl1QmtBg3\nek30AT0DkwHb6Do9k52Wqc+kfwKl7iTsGcMgu+nPZtEMJYS0HYfYYssbZ9So4ltI4DIXGflrpF+p\n4I/MIQc71EtGJsQqF3c1bCUd+jELZ8abdEce1EiYaUeaq3UDVpeehhSAnpH9bptEP0bHK2OvCwjC\nKokZL0LBSL9rwd7VGCVNPP/K3d95B7UJgmdO4p6TiNdzFEtGpBkrnpqNVd0eTp+JrK9PONTDUIww\ndLYJmrLYmhozwxgefZeCaYwpXQZVMeAfGUmemGAnvYwQ0ZACh9EZ2oh3WshZleFYBywjXAMVSesR\n7jsouLs4ZnI0d114PQFGujRS2YRWkshMFijUOoydCOCs9BluSrhaTbRYj6HYoyxl6Clu3FoAsz9P\ns50ncjBIbZDD1hPR1D42l5eOnOOGtkesncARyxFyzrG3uUMn5iG/F8Rl9OFuBumYs1gFleABB7dL\nOvSuGlbFSrZ4iaVjh3n6m3fvt8/84kOYfWc4Ovko+eeukpPtDMdUWvsJoroC6WGZ8LqAb86LVZBY\nSeoZGg5hXGshKx3MfQuPnHSw9+Y38Yv3YVk4y0NdiUZYwGlOY7zTwBLyEQ7a2M9uUxpC/9ptpK7E\nx/79r3Bu7694/U/y9E8/BV4fvmwLS1DCkJ9FF76Fps7RbqRwhcLM6RqYHRaqhSKTgwkqldvYOnZ2\nDAPmfBo3Xy0T7O2TllW6KZFTx9wo2WtYTx7iO+c3+bGZcbYuXCQWMSHNtCjqphns3GDf4aDeNaDi\nQfE2qW9XEQI2pHEn7so+VX+DyqUd7jtu4R++e7c77zM/9X9hLOvJvLZDOj0iMjfgysUiQjnPPfcf\nwJATmPh4ksSqnx1kDP5j+Mfy1BUZSXRgqTnxHDKiO7/C1uarJBcP04nPItoFpkMJLuzpaKz08Vka\nDDsVzBGQqya6KwV6rX3EQJymRaBREvAEDiAW82zatphORqhmOgghhUlVw+e305Q3MR09TPSEj15s\nAf9RB4bzK1SNWaLiEJvFS7dqImw088Y7NxDuC9HI2jD/f9y96bMr+Xnf9+kG0EA3Go19B86+3XPu\nvszcOzMURVFDDheRFqWYSqxIRVUqjqQ4ThTZsR2VxZTLlpVyibYjya6kXKqSFFuLJWohNeSI5Axn\nX+9+77lnPwcHB/sONBrdjUbnxXX5rd/4ReTfn/DU7/n9Ps/yfR7PAb3YhPYoQOxoRkRs1xoAACAA\nSURBVDAmo631SLkppjOJdtNC7lss1QyOGzV0v5fP/9efo/OgxkF7yo/+5BU+unuXsFjme69/BEDO\nKJDZVMnmRbqtDmJVpbv3Bvm5ZXzBBQyPRcUYcP36HMP7J3g2Zcr7MvLIQtHvUzIqjOc1NvJTGqMI\n8nqIoUcmHhzDrMs0EkA6UckXZ8yqYU4XUiz2jqgsdbECBURtSsRKYOkuCT3Itmnjnxq4QwV/QCQ6\n8nHs8+EMZ0iORj3YR9d15j0yweg+QlllmtOw/D6SSYupojBIa4y3ZdK4WIM9kr4CZlylrHnxROss\nKusoyjKmUGZ4FkZPqjiDNokzP6u+HMf9Jvm5Zaq7PXKNY7rFLqGHK7zb/IBf/Ns//1cfov6vf/R/\nfjUc/iEeLY6Z3hPJjGfEPScIx0Mals4PLm5hCV5cMY1VNogFckT9UZpVHyRjrIldGo5KbnAOx1ND\nIsxgJ8EgHMKRNA4f/SXq3TLrBYHpsEEwfoObF6/TzXtIeJewPTmcfpPKw7fxnE8xtMcsZBTsSInB\n1KQ4/9c5rZ+wo1ZI21WyThiMIr5Eien0Gp6Sxct/9MtszX2KyUUYOS6TaIJWN8jq2Mc3m39GONMh\nria5LY34zE/9Cu+/+EWm/dtM212GToP68jw/9j//Mg9/7fepK2388x6CHpex1STVXsPIxNn7YMyj\nP/oeD4+fANCahfkbn/8senGdxX2HQCXEXH5A+axJRJSYZ4Z2PYTtNRkG5vDoBq/svMniJ3Wuygp7\ni1mGETCPbOKSgt7tMF2a0ddWyPgyNGoTBHtGdLbGKD/AL3jZnY3QskHG7gD5osyCYVHVRPrlb+MK\nZwTVDKq3SF4L4zE6mJ0Q2soSluhha6XF9EEew7BIOVMENYH38IhE8hz1fJn2ve8wXv1JYmONnBDn\n8YlJsxfgD3/jN7n85Vt4zu5Tb93m2K6RN/zEzgbsTE7IBsuMw1mCoQr7K1k25lQ6r8wQQl6UtoYV\n6JNOnePdV5+qV279tS+jyMdEhSqqFmQgiKxMgzQPd1FTKjnTR8cXYql1hDe2xkn5BP8siGBMiVdc\nPpommcsqrIyDtLMBhBMXwfVSWzxHLB5APuwjDBQCuo/adMy01sFX8OAPhNkIN3jHNbHHGdryApFz\nAlL8Ev62jaINYWJTa1oYSpimb8ZwmiDWC+Gr62y6eQ78dc6ECGev6mSkLHuTKUHNJdkOY6tRysO7\nhNaj5G9v05NmBIsFgsEYgdSU6n4WwTzkMO7QPq1zbWWG7dWQun2irkI5meH47JTxpSlKzU+wn2Ha\ndfnWvW8B8Pf/9q8SHGg0hyPGZojJtEFCCmMOj6me6WgXbuGeNHAnMoHCAMUs4XpT5FMqJ0IXNzFj\nzpumvuUl1u9jXUzzF++9wdbzF+kaN1nO7HL6fhm3ZeGKfubbE6xQimEwSGd6gihdwFsLkHLXOfSb\nWA8PwV0hKuTpWQ1GCYPzmQDdmpf+yKLaKCPdiJMZQXt2n/kOZK66DDw+ZgMJzSzhaB5q2xtU3QqJ\n5DnSIZV3Wk/wmznkwBmx80uwu0M6ssaxWCO+IhI5mCCv6TSH+/jkGD0jzCzSxHdgk+upmIvX8ew3\neeXNp/C5KHyC/FKQ0aBPdGIwXPEQ2B2wJqn4cyb778lEZAnxapjxqIJQqvD5F27SK++y+sIyB6++\nS9sOc+HZLd58tMs1yjwxNuht76PKBYaOSa14SiZwg+l4RKR+icVAg+1LV/jdr/4B2SfnWbl5k4xZ\nIX7YQNWrlB9niW5Y1MZ1sgwZnfUIt89Q1TFBe4vg0ZiZouFJxZn5LTJtF8WMIqTadIQUu0/eJnVr\nmaYuUb3fxjVdnrmp8doHr/Pii8/iDkoMujKdBx78VoCcG2eQqrEizeNMSuRiCyi9NlVfkOzEQ/7c\nRfbL97GqeV5972nmM3/zJ2jcr+NPLHMStxi3fZz71HlCvTTd5iPkZ/0sH/Y4lotcGGj4RB9mf4DZ\nHONbPY/H6SDf28FaFAkEL1PWT/B/4y0SCYdv/7s7FNeChG9eRDyYEk5E6Lw+IZxcxGgHKW7l6Zzd\nxaNL2MIxMavDlY9tEhimccQyrqWTGInY7RauGeBUaqJvmxzXQsTLUyaje5ilAqEblzHuRahNOuiu\ngz6xCd+6TGx7xspVhfHcBeJNAz1ZIDocsD8ckVqcsv26QWdmYosu8+KIE1FECqYQFiXs7S6jTQN/\nxEt3O4mh6zhOlnffeQWAn/2x/41hus30wwnv1t7l1uYmtfvfZ7TfxB3t0dp/iKibWM4ytlNifm6d\nklvi7TdPefHaIpqeQ9s9ZpDT8Fo6FUNHUU2UpowUbuArKdSkBKHUEWLTItHT6Qh5FlpQN0TynTJH\nQg8l00BwWuS1PIFhi1osjSbDuG6R90ax+208cZWw0MAcpUj1a+ybWfJSjLFfI9Hbp+0uURlUMEc9\nAr4QnrCF4YbQZJu+p05RE3COFTpzGqP9BnNiDDvnIVI3icZTOL4nBHz3UM+/yNwkjusdsKqVUaYB\n6kKQ/c5v8T/991/9qw9R/8fXfv2r33/vbX7m5z+D9Pv3UOeCyHMWdnPKMy/9N5CO8NFxD2l6h8/9\no79J+XsfoTkKHfM+/vMD6nqEnnWApn6EGVpHbl8gZ8HBu+8RFbMETu8zt3ABay1OSCoie0sM6mMG\nkwDV/iGT3h2EksP637jI/vSAebFL96yOFYniHDj0nSZS8SIEbbR2jMmqyjv9xwzbaWRfl8BBleL1\nK4gzB2WlwzhyRDYXIhdN8M6DBonMBlo+wql6mU5rjuanf4Hc/n1mhQyPgzIJOwnNIEdH3yJzLUkn\nWMbbVYgmZExTpJuRWKueMKiEGNoh7u0/XaT7U/5f5ffeLfFDt2Dw9hmxxIDHviwTj4h8JlCaT5Ep\ne9ClLrFiE7NWIRxZxTRivHryfYQJ1MpnrEZF0lqX6MClaS6wOm+zX3tENG9xVk4jy6cEqg71opfe\njs7C3DP00Uj1Fe6/08IcPOT+14/xXv0M8dUu0eGQ+0aHuJiheHZMd9Wgq5vUwhKhTho5aBCnQTw2\n477cYzm6yN7ZNrnVr8BM5bjxFpYWInJaR3Yj2OESr339z1HSRbSPr7J+WOBkWkMMOvhi1xAsk7jf\nxmuJzF5uM81fx451SbSyWK2X8doyjyMtHn/r6eP8zI1P0ztxMXph2tMR4VSA/VKQ8WYQ2VUgNQBN\nwDeQGQ5d2n6VLbNHS/ZRVvMknRrJhoGZFmmf1ogGqnSjKziuD8M4QBaitEOHyEER855BxF+kEPCz\nI/QYXgsTqZjMjABT9Qjtu0eIt2fsehpMPziiLNn0ChbSsI+nk6LQcGnGggzjMv5nTHylGIgy+qCM\nL6lyaWOefnTIvdo+i9euEJIHBK/16c0XEW4POdcokImOEe00iWEDdWWVsNJjfT6P+XhKa2ZSdWoo\ncpBJ6h4pxcJ/YpNayNOu+TAuTnn1ladrX15Yi9I/5zDIGKT0GoOIg9d/nqlkkQ05vHf2mNnVMNG5\nFxAfKdS++6d0b9eQ8kFWo2GMmIegXEER59gp7XEYyrDsXqI3TXFgNlCHLpu3spzJh/hGCUw5xNDq\nM58d0XVl+mGDSqSIbhxTfCThxjYZTVpkhBkjLcHUPGVwHMebdzhuVri0dYmo22YkuDjHqwSOLJpi\nB24PkUMjjFqCnWmLUHGTSchBlFRmt4+IbfSJOT7GpzK91ISOpuITp2SEMYnQGHMWx5KqKLMQo0Sc\ndPCUve/XKD7nZ+p00Ip7JOoD/uStDwH4uz//ZSp36/THp8wi0HmjijB1iFgDSqdVNmIGlWYXj+IS\nL4SYDlQ8xxr1J68yNC12SwukM1FEIYlhHZLWrmFsH3JYcLm6meOoMsETT7J39wnp1/q08yqtcxLK\n7Q/Yu6/wsReTSMMRRu8+w2SUSfwJKc6hCmeopPnQ7bG5oDJiC9+yHzWUpHL2mIGcwKKHOVaYDLuc\nRe8zV9tAuJph05FZXlUZ/m6J1S8UiD5ROQocsxa9wYfbB8hBhaHgQVpSmeVUMsU+01kfva0xO+1Q\nUc5YGuYZpDTUFoiOn4BHJr6k8c1vPlXRXt/4OMvaMQPDx1wqiJSP8+DdXW597hpyt0U6KlHX81Sb\nXdxJEKt+SknXyIXn2T84JF4Zcd8ZEXVWyGVATASJSUnO3byJN9Gnc6AxufOIX/+df0z62RsEuyVC\n4RjplRFh3WYcMwhtXEIqldCtIO78Kka9wjQsszTwcW/c5Fgq8sGrPQIpL9FRjAfVQ5LhBoIjoUou\nNQz0ksUsEqFhp+h7JKY+HWybzlmWaP1N9LLCxHeMrBTxZ+JMamFG47fxjOO4Yw/xHhwrGYySDz3u\npd2sQegSwsRgPuZy4vUgPDH4aPvpv3Dl3A0urhqUBJ1zyQhvvXdC8coXsAoJBvlrKCcT6h0PB+/9\nMQvz6/S6Myrvt1j55LMMJ2Uk/5SGpOCZtOk3NZb8Y7x9F6Xtp5JIE8tMMacNWsMomUSS7WicdLCE\nJBXozhR6822maoi4tEavO6A31NB8XnyGiTdaJaolcDy7BPsFjsQ2aj+GMJIQPQm6xQ7+tgfPYB8l\nEKZBm6xo0ZnPkkZD83rwaDsMO/PU3ArTkcMwN8Xxj5ibNDldGRNrtmhp80y6HtyKn0j4Eh1ZY1XV\nsG63ef45l+vKBYzVKn/xcum/jN15v/Yb//qrf+3FL7JpTzkZDwnHFwim00yTEhPR4narjM96mbno\nc/z+L/9bCl8qMKrUOI3P0W4rSHNeJq08tl1g/wnccHz0Ht7jpnqd+esJBDdEv+clHV1EmcmMjCmh\n2YzwqAoDg//nzR6z+E2kXpn1814qLYFpbJMr41VCnjSdtEPd/A71xyX6P9ij3VYJb36c/L33GHzw\nCvLapwjnWiT7J3wo5vnFv/lv+MNbKdQPouhCiY3cFrOSl7CtsaLdRTh4nye+PMNmkmRxHmveYT7S\nRX8Qw6sLpOdzaE6X5uGY+FmIhgqlUpjEjRCe4IA333ga4f6Dr32SxQuLRHxLPJQeYwdsgn6RbtNH\nutgnV4nSDA1o1yWCE4vI+g0mbp3WHS8/sJThYHfErX/w99n5/jdxzCaKN08qVOZM7hPvathuhKml\n0D83YddIks4vsbR2gSNsMq/b7NTrFNsdLl58gdkLKkZQZ9CLsiQsMB8KsdsaMZvlODz+kJQusbCS\npuuFrNDkYVJiWmmjTtKYnhaaP0uy7eOoUme9Bl7NJRJPUwqO+NS5LGv5awSGXQZ9C7+3QU9SMGIR\nQt0hYS1D6WTGaGyyWFym2QPBk6YrVLGKMs72PpeXN/jzP38aqX3s8+tExwoRp0Uj4qNwILOy2MVr\nqxi9B3RmEsZejUZkQiDlkKNJy5+n26hxaVxltHkBrFNmBT8nxwkQ0hSJMq9OcCJDAo02reACo5qJ\n80yERa9O9UGX9eg69UaT4iTM4MIpHn0JN2YR9Q+IFy4SdyJkg0kyIQuvvcogaSMdn5JOBkjEbQ6t\nKEH1MeJRkNklidQkT/PkAGs9SWTXi89nczrtMDxI8sObn0N744BguM73ahEW8iE+7FVpDBVmtR7m\n1hKUO0zXF7G9JolQEVoVznYU5MIyUu2EuaUio4X3+Ms/uAPAz/7BrxK8/CrKHZXO8R79xCLRVoBK\nucpQEoh9wsfUzmNvJxneO+DCZ2+QvGFzvDvGtEd0vH76/S5CvYOxts2stU6l5yMwNSDcppmMshAI\nUr0/JdOtYGXWKEzOGMRcooKPRquFHLA5388x9NhklBPicpHavSryYpjuAMqD91BOoChmGA3qdB5Z\njIQsrriLP7aA15+mfSWKs60windI9i8ydnQSVgh1r8ZAi6MhU1xJUUo0iNsz3ME6M2+TXuaU4298\nE31OZXkao13MYJVFrI/uI8Y3EVaznDVnhKY5vBZ8443XAej04nzxpQ0G+xmWLD+kOqTnPSiGRnm/\nhZ4eI18cs6yGab69jXHOZnDawt38JOWYQPTcEPXwbbyJ8/gvSRydPsRV0qzKTwhtzPH4TourwST1\nBwK+TZdRQEHduc/7xhLPP7eI47zJ3a/9W1I/8z+gVgecNgao6zGEQQpJnbEzvcvyVoG1vQjWIIpT\n22G0CGlriiLq9GbQlXSK/gi7hgSnPST/Ed6FLR5GasyqMWbnFZL9BIf775N+bpOPXjG5sewjuhfA\nHk2Y6EMKlfM0oyKyFWdeLnLozvDZx0izGZ20iufQoCnovPn9p43lL/3CTZakEFVvANc/RDoY8Pyl\nIO93BnSGceyZyWuHr2H2uviUBE3Jw8R6yGTa5txygFMhxQ9dnyApKWpdgay/zuxSltmdHcazDvHw\nMleuy/zYz/00oWCSmOKhaZwxDmvQ6fDQrjNsTgiGlxmHZpjOEUE7SyjSZbq0gDL0Ms0ecmVumXg8\nT31okk61CPWW2SfAKJwl63oZGQZpXxf/1CBdC9CMHKLacTi+QzetMZnNWLb61L0qxUKXtpbhgrhM\nO7jK0rJM3RLQa3uIl/IEek/QYynk0Bk5FVxTomGsc23R4OW/fJox/vJXPkHn1dssX7uG4oPeoMeH\nu0MaPZvUyR56RmZJnhKI6PSsJFeCIdqFKM3BHdKSSL8VJL/kYOsueavHjifEfM6l504Ry03kdpFR\nZoygBQnWJshiiWOvRlNyWWkIjMdt8maR0uQYLWkRMfzUJYtCakxj5qc90tHJ0PUd49fn6CoiHlR8\nCxOCxhTHDVNJBrA0EX04wci4sO8wpoXtr7OzLXJ+y4tvNiOYTFF+ssN8YsLYHJONLNFjH3PcpG+o\n5As5rNIRe80KIS3PVnnEc//73+ML/91XaIpevvVbf8Hf+aX/9O68/99D1D/7jV/56hdvLOIVIrhD\nh+DShMiDBGfDHoG0iTcoEmxqHL+9Q2LrJqGGzWNxRt5WGI2OIbyFbdv4/U8IThcolj/gd37/X/O5\nf/FLfHiyhzM1WCwu8LZ5RGHFYOANUpq6pNOn3CtpfPZWmh/42S9xf3hIq9Jh/pFJQJninywzEVvs\nmFW67vMIvh7FhBe9m2WxUUZUBJxOkjUkjt79CEndIhiUeHzlp1k99qNetdlu7bDoySDkdI7FCv33\ngtgekehWmGzbSyRhU/QEsKsyZnKPoHOdqFbj7CCKVyoyzEFw0qJn6JiRALPwO7zzzacNq88JFk27\nR9d/yFInRGPtWcatCFPlBNObQlu3qIaTFO7IuKsh9s++z9xsjvSWwMlQYNVdYpSPsndyzHxkDmdq\n83AmEq6YiHGZ3d4BS2IC7+aIhhgl3jym3NWJdwSmu7dRt67hCQew50JUTgT6zVX8a14s/R6hR+/j\n6jdpoGCsx0iNfMiTCm3PArW5Bc4/FBjMmzQWRPpTC21XYWh48U9UAhsGgVSQWe+UmNqjNgkwWbtG\n7UWZdEJkMbmEFB2y3G7TC/jRTwakkLAGU9SYjbjWJX27jbKQYHpHJOpbYnVjjd/+90+Hbf74Jz/F\naGPGzs4caW+QcbCLo25Rl13cTpP0XAbvpIIeu0B42qLRjRFzPFgLKazeFHvZRJp5iYvPICeGTMwZ\nQnObqC9C0x8l6omSsS3unTzBmdhMhhO4uYxW0Jn0s+juXbTeBQxfmZkngBUuEHQm7Bh9QotVOqdT\n1M4ptmAxmMTxe/qovQKx9CMC+jqnvhoZvUt7JUpz7OMHzAT77WMSRpbmA52PffklHrUekrzc4Z2+\nw62cgB5vIzSGpLQwwjjKYDjE7gbIdnSMToyZnKI1VOn3+3Tf+WOyl36Q6el7kNjh5a+fPrXbV36U\ns7MBI9fhbttDekmlWWujrJyjU25Sq/ZR0ik84l0uLyjsRcbMthXc5CYZzxlSb5ly0WVxeZXpYhZ/\nNUiiViO2qjMbe4k+m2D3LZg/O2CwlGZ9eZ0jT5nBbAWxeZtOxMMsnkdwDYxDh3AoiiYOsK7G6Bz1\nSft8KLEkaZ9BLFCkquho/jDuLIAe7xBqdtkeQCZ5GV06JS17mVtOolhDZhzRcGXK1TIlj8uCdg6s\nHO0DnXa0hempscgCZ7G/wLgco9HJk2qnGAplyqaG6L1PoteB1hgK88TEFH/6na8D8IWtlzDGuzzz\n7JTR9JBSaIlhOYJ60eFRp0s4HiE+DjKoLjJ/oUDnoY0WTRAId1kK5An3YoyDH/Inv/iHzP/oz3H3\nw2+Si3lohPv4ujE++O7vsrQcYrv2Z6iLL7I4smhGF5iU32PrRoyXgtcx177CMNtAjE3x+hTiHZuD\nfBmPd4nn+hN0X59dyWESjWMHi4iOw8xO0KqcUFi06DwaccWXwrNg4HMX6Jar9BJj5OMRWzeeIZfx\n4z98n+DiS9TrQzTHQ1/z0wm2yNgp+pg0picoVoLEukPNrdOPl4lNIgSHOpa/Scu9iLp0zGt//j4A\nn//pc/TMIt7HbxLaMCjHJfRhHuGwQ7DYolcSyVqw8WwUr2eRpE8jkw3BQgHvVoCiJdE3ciQTbWbj\nAJ6Si+BdxZt6gr+6RmGs48hDrLpF3Z3S7Wgse2FkeImaLkEtgV7xMPa2KY4mRHxexr02QkVjePQB\np502knuBrKpzMDCRBza5tMsdr8vHojIVJuDtEC0cEY6oNBhjXjqH+OCYnlXH/4KPjX4Wwl2ORhvk\n3AatWYLGmy2kXA/aFUblMiV9n62tZwhXwQjIrPsNlHGV6OU20jiIKHjw3GnxnfuvPfXTL/+vDEyd\n4UmbvWYf5fIPcmnaRRnZpC+fZ+3aCuM2yJbGkSCQckNMlxQyWoKYa1KPDeh3o3giQ0auF9GzhFF1\nEXIToqpKN+NhUu2S9sw4UlMIgy5uK4QTqjDrWRDKMBUsZtkQHZ+HyCBJ2u4w6cyhBXRmUYuRpJBs\nu8jamGjLID6dUh4cETJ0FGmKljYxxmkSBgxaYea7MbzhCEZGYKHVQI+vYnUEcuaYoXdMTQ9B7Dzi\nSMDTaKDORMKxGhHR4ZAx9plA7up5Svar3H3tDtcji6zUV/nNt/6Ef/gPf/GvPkT92j/7la9+9gde\nQulOsAWTkBpB3bqK01UZByckqsfsO2XOR5+lM9ymjpetlMPOzM/VyDrH01NSszrLaYnGd9+k8Fye\n7I2P4d0+hd0As8KAdtCkWBHQcZF2ZkRPt3lQmPLx+R+mdKfJsu9dym8/4Quf/CJHgQQeO0nYGLPd\nnHF68idEbqRwv7nPk/kVPq3FuTeyST3Z5trieUYZA7szJaYVsTUBs3eKU6xTakW4lMrx+GSAz/MC\nUnWH9vZDbv7UF/HcDhMIPebYkjk7vI808HBWHyCHfRwflNE1mblJGNme4s0V0DUvC/EsTWfA+3/2\nVHL+s5mfoJp4glIv40u6TJUuZz2BW+k6u8MJCcFP6YMWmXM1yj0ZtRXDmzYINH0owyjrmoW+a2O0\n75A8t4goj7GnFrYOWn8eNxpmmvNSrftpvVUm1R6xHHFpRh3imxcYJBpU5C7dTgQzXsG1LU7uvMvz\nl6MMXJPW4R6vHtURlj0sXg2wUzqh67RYLm7RiT5geuglONCwww6KL0jObdGbFulmHtA2Brg9m+6h\nD2u2z/HUIOQJMWvbWMEzyqM2nQ9L+J0wR+kKfY9AernOOLCJPTVoxpI4JzNM5wDBVfh///gJB2dP\n7fal568iSDPMYZex5uJvDbGiQfJTh57V5vJLP8Ibr7SIJ33ogxYDxyIXkglZsD8bkpmOcUyF09Yh\nEdOmXYNZMo4p9NA6UUoRlzPZZN0I4n1mlXKrTH66wMyOk67fwes6ePEw9QhE3RTq8S7TeJumv0Vm\nGkPyxLiXA3xrDOdr+AJZ+ulTJu0eeXGBmfiE4NDH2I6TC/bZqTxmM7KKldGZy3swSm2E2xK+tSzK\n4Q6HhoLPXcWd2SjKAg8GJkVLR0sMGcsjBvsjxJyL2G+xnLKIXPsJKgffIbm+xsEfPOLtwyoAo1EU\nsbWFaEucu7XC469XKd66SMFXomI18T+TodDfYqGocOJ0WZ+4MIjjigb9wHkWo8dYjQSl9/aJvgFS\nWEHwpBk3K2QLDvqfjRB33mTpi8+gBE0q1R16iU1yEYfZwEVan8dfnSFFgoR872Enwtxv+cglwiDU\nkYp5xMMaHu8UIb5IeXLK8rUltKmIMDM4GuXRNJXcoMrZSAfLYrZfoh+o8M9//d9wbfMy8VtbBPZP\nuDeZsjAXZ+brUdzQaMa8ZBIuunUTqZpmeazRCHTxRf1srTi4TQ+pzSi0Y/ivVTGKHV75naflY2ut\nyo/98BdoVkYcedMMckmOhA7UYlzYmEd5NMZZGRHB4E/feIVLn7tFVwxgfOt7iEQJL7Q4napc/vEX\n6d5uk5JXUGMmvcAtJn6D2YVN9LFOq+RDUVIYfodJ3SHywg3aJzV2yo85rZ1hKzNyRoCJf0JbMnm2\nG0HoOzy5AMVKDGPQJzdKMynWsbse4hGD0/M51KmMR0nhi/Tw+uN0+2WqzSpbaR8EFKw7pzTev004\neRF3axd55iEUWKJ6b5/1rTlKmknoAGRpHcvv0HH2iA00WrENNpw8R1GdlCEzikzIGAYvf+ddAK5+\n6UdIHdocOh7q1RQrWQ2r/xELhTSNoIBempC/tYR8EKEyf0JKiTGpDJmqRxTkAwJjl26kRqXfRz6d\nMRLTBJyPcCUPAW+LdzxjyvttIvoIRxhR3JI5LkfwSl3KNYG402WyUkcud/CnLtM+cpDdY/zulNri\nKqsBL47jMPaXCRx1mclZVMslLAfQBzbz+TIJy8MkEKIeiZIop3EyVQrTZWIvVtFKM/ofnVCebHFu\n4RRRj9KxKuSXI8TicdrUEc9lMEJLKHaPsTBhsWpwvChhyUHaJYGHBzpRVUJaHPGdbz6dHyhef5a5\nczHYvMZQkslqTYLWIhtrSwSvXeTo6C4jc4VRNMJcT6V1AU4/qLKVWeONjknCjJIatXBbcQq5Do3H\nJto5GJdcHN1AbMtoqpeJ2ic5UmjFRxQaOsY4RVLuExiZCJJDV20QMHVC4Tq+4ojmPAAAIABJREFU\n0ZRy0U9oMEM66+IbR5ADU0ZSl8HCAjVHJ+V4kPN5zsoamVGKM+8O+WYMJzZglGyTQMR37GO340cT\nB5glldOCTHYyj1eDhVKKiXLGoL9FtqUw9EZoD3TqzSP+xb/8d9Re/grmZoIr55a5NZdCiaf57b/8\nE/7BL/0XAFH/8v/+la/eyDXoFNY5totojspgXqLBXYSHjxiNZS6kAlg9AfeqS7yxSVkvEcw6GBET\n+SxNPjmj/uZ9rIUs+Y3z7NZkzARY1ph7FRNL8rEYSvP4vTtIH5/jSWBI58EKUW8djzmjV3Uoxoa8\nPTKY98JEDWJU9jgr7CMcrSBvhsmYC3SPTtD8KjElShqXQW4d2w4QnQk4ZhtfPksqEsNbaJL2DBAL\nGVbTQWKjLNpgEWG5wfkf/yxPtu8yqnqwsl0StTi6rLEsxOhHXCYhDcnuo7Z2eJT0YH+vw6KocvLo\nCatxP3/x8tMyweraBZKLU+bXc3jFBdRImcY+FCJ+hso6in+IcnkZXRojzDJkc2PkWp7D010im16O\n/3TIykoXecPHgiLQeaTgelOEigqub4jd1zl83WZ+TeLGZJHJcoB6RUOuK8xf8TM4reH0Zc78M9Rw\nhvT9Gv5YhuHREdHVS5xcWMCXVfBX19FLOZLGiNXMDKcXYH+nx8hXIOe0mElTRh/tYl5aJOh9gmTH\nSIx0rPVFhqaJ4omwmM2z/9Y3CN3Z4/RwwsHJCCeQJz5n4I/nWWsXmCRWUNgh6obouhXchIwYnmPq\nd3h2scSfv/500vvWF69QDOeQQgkiZR1jS2S55WGsudjVCo+nXlYij/G1gmSjCRZzHnonYVQN/LbN\n/Owi0uCMZnuAf3+BbDRAzz5FX55HcsagzthKFDBn+5h7fSTbRzDhJdwxOfWsUihA++Eht2cjpv4g\nwdFDyto66XaGWUTEMC20yBwbxwcEPFGEeou4mmR0CIfrR2SOogiWh04hzGBYIbwNe5ES0e0wg+Mh\nZ9p9Gp0EoWmN/Nxldq1t6g93EHN+fIEKa5LKiQ2R00MkOcTAmyMQbjM7gA87x/TNA26uz7Nb/0ua\nn3yJu3/89L595Zd+F630mNQkzkGvys3VDe5UHvDe7i7xTJ4XEnPM8mXUep/JRyV89pTyCEZpl4WW\njbsYJDFrIqsRrGCd7utvs7QQQu1ZRIox6mYXKXSR1HqEzCzK3dsdTEui1T0lIswTc46ILsXovPl9\ngvYVwnMB9nckUqKX7uEes4CHQWaMdjrPUb7B6jCC2TyhVPGSX1jEyp4h6qvMBVTa4SR2d8befgsp\neIEv/fR57O5jrAOdua3z2J4++2/ts+okuPdoj43nP82oUeDy3Ab94xAH+w84n46w98EjRplNRpbF\n7bN7XHz+PHQ0nLe9vPIfGn3n4w4+zwJieIuJV+esIaK1+4SjHWplkee3tvjut99G28iTdmO4lsXx\nwyc8/5lVjt5tYZRSSNEs4rDPr/3qLxEIhyh8cg5/pICx/xhjYY1nfUusfvwKUiGB1LPxnJeZ1iOs\niwbff3BKVvAQLfjp2jr+kMWKHuTAPWUuu4478uIP+2jOVpmmT3A6Uzxjl4bqAeqMH/ToeRrYvjX6\naQPzeIIaASni4hzLNBfjOM1TUhdjtM99nJG7h9L10ehCTUuw3DexGz7Ci/vsOCGuBhZw6ycsL2Wp\nmw1oRxCHGh0ZKnKOj779DQAuf+KTTCZhlMIRCyoYUwifachKn+YkSUwOEXQcmqkhgbKHsa+JX/Sg\n+Ack+gmedBWiIrhtDT3aoojCIyBt9tiuzpN2XLJBL+6Cl1zmJuc+fQH5sIsV6dI0DwgN18jFsqj+\neYajY1LnE8QTSYaNBMPwKf2miKZVUE8tjNwWbrILES8z/ymFrMFQmNDwT4l0ooRPbNpiipjk42Rm\n4Z/ajN/rcPapOPMDkHpRarkxM38edzLBF7BRZxbBI0iurNAouRipAUdDkcxYRrZLuN4lgrEAW9eD\nJMIz/v1vP/XTiz/5GeyKwLB2hOpRGJ31sT8xo3ziQVAM1JU1xjEJb3CErQ3J6wskwz0e13dpc8qi\nmqCTVZH6TbyWiOEmmSgOciCI6jSpe7P0piK+kEPd6TE78jGeC5Nvj6gXfTQcL4lsHGUnh5wIUzt0\nGHrDhDxNym0De1NmIin4nAjucIyqQDHaxSLOxD9i3NZpL7RQo5c5C9SYWvOkjDLlWAxZqFNcmEfX\naoQTQQZaFSoCaWnMkSMwTkksOANqzSZFX4NZUyP18U/w8gc/ws7uEyqjEW5P4W69x1nhhIMHR/yt\nv/U//tWHqK/90699tRD7r7j5tX/C6/5NkgmdYVSj2dzDlbJkPCqKr8N2I0BDTuOYJ5SPPOTVOCch\nB8m+y9XParz1kZ8XTIewKXB4VEcpXmXzWZfZ6JT1RIwH/h4fuynzwdt3eT56E9ZnxDshrP4OOSXA\ndH0J6SiMPbE4G53gNHJI8xtI/jT+7RJOd8JKwiD1MRlvd4jbajEVJxzIQzIdkVN9h0zfoLUa4YN+\nl3JFQg8nGL9/QsI3QYiWSajL9LfP+L3feY3cepqN5STRqMh+4JRJ+AxZEDnndMmeDLHFDbJ6hZna\npnghRT8wIDGd58++8/SReelHXiLku4QldqjrCfpjH4PAiEy2gFKrMWGJzLHF9lsfccmj4sbadKUx\nbitGSo5gKSUe2GFWMiavNE0KX/oYnsEeO+MmxqFGYnKG9EKA1YhIs5OkcvSYlZUAnmeKVN+6Q90c\nsDZcY2N2wFqrgbwcQBdCqHMy94wAxeiMmG+OTMLhwkaMas8iUelj35xnK+VHbAzZWe6z+jjIvbzA\nOX2ZanOHvHsOz2YAZyBw2O2jOadksjf4zMfWKQ8mKPmXWEwJnL+UZrcUYCZtkax0OO3sEdc0WqMj\nBv1VrG6AtNvm/WqJvZMGTx7vAvCZrR/BZ0YZu2VOh3GKAT/NeYP4+wonHsiHXY5OisTWdML2mJbe\nYBz0Mx1VEUIpxqkxgYwHbyDK40e7eOYn6OYChU6Xw7BO/kRHlXSenCicdo6IrcWw+tskNJVm45Rh\nWye8JKDmxlzwX6e76HD4UZPMvED2uEY5HOX0qM6cx0dHDDML2cRaFfRIjLn+IvWJjW/hiH4pwsFr\nfVa9z+HBpOmeEE26qL55qiEv0tDi7PhtNj7z4xhmF72tEAyrHHeGLMR8jC7N4XZcBF1kK+PHkGyG\n0SSqIeBZ2GC6vk53bZP7/+r3AMjJAu3Dd1h45jInhp+9ZoPzixv84LXrRNUwPDrAaNoECjkqwTbq\nhU/y8ME+0YmXclLkuHqIMlvAq54Rz/o5Khbplau4fpHhzEc4kWV6oBPQddq+EsGNZ1kOyiRGNbS1\nTQ6rEdR7ZWb+yyxeSHOnvo+jT/B5LfSMS7hWJCVVOZYtko9USCgIjs1+s0LE1+TJhxYe5ZjGeEp2\n0mMQ0Mjk/WSEFN7FIf5MDjcs0ix5WPAtcP2yQHUiIfge8uG/OuHCF75E2OfF/p6JJGgEi0mOvWH6\nziFJrpBWL+I5NNlNxAj2m3z3P6jz/t4v/LeMzvaIB4scq3Xm1BmegU5BnWc8eczw+JjB+XX8J49g\n8wqRykNUZ52GnWVgutTPd4iNR4je87jnBFa96wxKI7RCjLvvb7PwEz5ykzv8XvbbGC+X4bkKl8Uu\nt/wRvr8jYpsVRsk8seA8crpNv5bBJ4sosSCNswbeDQtZnlCQzkiJl0E55eHRIWbNAXFK0ZWxF5Mc\nCw+IVrJMihXWVgMoOYX721We27iJf/Eqp/tn7P3Bbbyvhxh0fRCTyE/9RDQ/vaV79DIBiv0xuh+a\nWQvdZzC5d4C6EEROSAxrcVLDx3zvnacZ4y/+3DwLyphJOY7bm+GeHzIwLVrNBN5kCdeIERSqjKo+\nPFoH10lj+ttk6za7qsbANcnFcvSkIOsDi+oy3PyhS5iTLl5FIpMXUbIXcQ4lPjy5R3lwSGRO5LAS\nprh2hUn9Dg/tKqaYQirOkPcmTLozBje6yL00schjWhkPqf5FstEGPWFCstKDUAZLHNJoLJLxDfD1\nJSauj1rmBLccw28fEjwCOZdB9VtokskoVcDnuYdcTpKSLBq6i5WdsuRVOVKbFPozhFGW2GqYVnjA\nzF5kdWmXQcPDHke4B1G+8+2nEHX++mdxkyEuz63w5tkDvvFPf4OTZy8REUzK97wYkXc5N3Xp7uxR\n6PnZkzSi3SDTlMOF3C18yVM8Ay91n4DZM0krHiQpTGxo4yhx2kKFzX6QXm+GN+kln0mSaTXYXVfQ\nag6R+Bi/HMUIefC36ygFmXRPxY3HGIw14iWNwcRH2qkxIYdv6KNieqj0JqiiiZMqINXDpGtdJE8I\nr2nRmptiHNjYy/N0poA0pXVySNhIEZ4TKM800tkJ0eYhpkegNd3jd+78IX/9Z/4x7szgkR2i9OZv\n8Ue//du4RQ9eXcSz7/LBkwf8nb/7v/wnIUr8z049/5mPgEhMGFKiyVRucHTuAoZbZTmY4srYpnBp\nntujPqPWDrOGja1NSXwuhO6JMCvZhKQ4nTOFWKyBdj5CyzCJl02K0pR77x6STp0Dr8NmdMIbX/8W\nVz6dwXlpjoAyxYyCJx6jqS1Sm4QQRDBGIVxvHp96yrJRY31UYtOrUv3gWyzl00TPyTTuVxhcjjJu\nVPAZAkPpEf54kp58hYpuMu5YKEKG6M4OocUN4oUWqbMxX/3nv8jhsMbWT24RMAKc7Z1QfXiHyGM/\nthNCF7MceIJIc3OEtlzEpSyZZ2L87td+k8CHe7zXe/wf7XaS7ZIczHjUvINn9x6RZh05orGva+zK\na4Te7HGkH7MsXmOcSbL/XhvvjQC+Bai4p7TnPYxH77FTPWPVVenc7VDuJbjQKCCq9wg+r2LWwty/\nu0jD/xF5p4DhiNR3b9OVvcwFg+xvdDAWo+wGM/QMkXSyjrbvYSkdwT1RYKqjpGy+W3qTZrvPoRQk\nqN/l4N0H7GltvGcCpYswn7yI0d2jW3yGabDDqDFkT2qR9sepFMJ86+FbPNbv4d7tIbeeIMkXEO7n\n+IT3i1y1+7zV0KnunXE2/8O83VrDaLvktTCi6+PzmRw/On/lP9pNX0zz2D4mHk0Tdw7Z9x6Q2+8h\nJdqIUYViRcGf7zL4qMb4GBzJj2glGTpLNLQyLWGXzonEMOhhfNDCQSMg7+PNjkgN+hwvmpQaMWbZ\neYLGDUxPGF/DIbToZflGlulhnv3OmJr5DB8JJZYjEa5fTDBpmxgZH8+YMRJKHHm+SD4cpr8wQL2l\nMjcL4Ivto0d07NeiVFv7FNOf43w2gOopIkounvSUQTAKu1WshWO6Cyqp/gEZf5elpRyPdypEglGa\npQ7CnQMWjAGR/4+793ySLb/P+z4n9umcc5juyTN3br67d+8GAIu4CxAgCAIkwVCkIVJ2WbSEAmna\npopl0JZsirJIUKToQFtMKlIkCBEg4mIjsOnu7r1708ydHHpmejrnPn26+/Tp9out4lv7paR/4anv\nr+qp7+/5Ph+XwMlGmbaWIhoOci3ppXPnIRV7FtfXun+v20eX/ERSq2y/8U0erx9zuPt96ut5Noxd\n+uUtpg6d3lmRwp1tvDsG7/zFt7gRzWFbGDINjPDqXk7dInnNSWE3iH2ribm4jOq9Rsm7hLdwRD98\nF93ZRjqwk1Du0IjU6ddltu+cMLHv4Y0k0GadHJzcwir0WEsFkRx50qxydvQ8/ZFECBEpvYfY3qUV\ntrF8RebkYQB/qstceIIVVql1Qsx5OyhM0UNNNm6H6L57k/Arm8xXaoz177FV9pM1tonaErz/py5Q\nH5d587X/i85MD0/wJnqpTiKuouzvYms+z2Koh3tBZc0nkbr+2N/rFl6eZzCaQZsrEeh26Z/cQXJI\nGLEWNlJ0LgdZUk18lz9D5ZUNbOoTSN5dzlybKJkWailJV3YwuWDHNeMh8GyWhiHyoz/2PlbWwnxh\n9mdYfmqN569+l3PuHvPpJK/qt3j8p7/A8GKM//rf/TqBxx7nZMOFUB8R6nYo5Qs4WyaSXOXWX28w\nbSv84ETl5ZffRJnqRMM2pLkVRgteJjYPXi1BbjPIzOqIc4uL1O0BXvvKMXfvvsrxXTged2iIYVZX\nVZQlJ5llN5+YieIMVakejJjmY0i6QTMyS7HtIHw0g7zRYjJZpD0YU+u2WYgXsMqDv9fNr3U42L3N\ndGZI43GR6SCCUs2huU0W9zMEEiq1vE5a6uCzVtHbfULhKNt+F0bdYKaqUzg6xqruY41TlIY7vPxb\nf0zBjDMJeTCqIxp9J75zUa5+6ieZCV/m9R9uc+uN/4fA/hne/grXnRlyAYvAA4t+SMQe8SJsOEno\nKmeKC1fUTl3r0ZTXsSbb1EJdiCocVEKEEhNKxQhHdLAlBySkAKXYOzQmY3oXZBIXSnRrXkZ2O536\nfXp9H317Cz2i0AgEiG1pbLTAtw5d9RifNKY9OkCu9XB5j9gta4xrHh6pJSht9P5et6TdzrnJmHb+\nVWyBMis/9iwfT87h1zw89v4uhVKLkzsvYpwmuKM58ZpvI1+0Ea4r5CubHH7rkLjUZyo6MQdTyt4a\nE28XS2swFMfM6RpFbJjOAka7S6eQ5146ibIeoNoz6ew5EIwekb0eWr9La8eFaDooNA1mZuy0pT2i\n/j47Dg3J36IeKiN6xsjJHvaGgXdqko6fYogS0tikrGyQNtyYmQFS/gCnYx8Yc94WodpUsawEU1Wk\nt9ljrz3D0D8g+djTfPaL/4bXb+3zjR+8zcHRXa687xP81K//n/z4TzxNKdOgcUFFUv//eZT/6DdR\n/+Zf/Osvq/4JpX9QJplyM9+XINSjuWfxyMoVbOs+7COBSrTFoDkgetHF6SsTVI8CRYNP/vaHCP1S\ng9bftjHPm/h+UKScvsz0epvSgx2i8hCnX8RWc+EJyUzST1LoVZg5lNi6d4RRO0QLxBkae5SjZdKL\nGp7DClPHiO2DQ5JdkZ3SMfasSnjtIlbsOo2THu5Ci72hyEjRUM0UPV0i9cgssvdt3JEeM0k/8mCI\n72SPo70i7p9fIrd6BX3LTqNbYslqoxYjyHMOYjY7/foCwcgtlqduzgSN22MF13gT22RCePUG3lSa\naF3mO2+9x0j6wud/D8Veo3+/wrJ/Disioz49R/l4Sm7rGPtVJ3b5jMZ8nPJ2h/PnNez5Do50hkD/\nEMnjIrkaYjXxIe79zTd4/GKIBxU73cAJ8twyr39VxxlU8YSHLJ20aK95iegmzaqLmcUKSj/J+dEI\noeHFbhxiTCU6SQFCA+LiKW4d3PoR5f0JS1Kb1alJu32L9gnIqTncgwDhgUpP86NYEmfb+1xIJNHt\nKlLzkIj/GpY+Ihi4jDZQ6Nyc53Rzk2US1E7aaN0CdyYGrXaV0GMBFpWr9Mw2q3UX3iecDJfSbEeL\nmI/0UP7uLb778ACAH//YR7BpU9pbJVyxCGpdQ10NUz2MQ3+A6PbQ7w0YLYRwuAWc+QQVo49ROSDZ\nLKKqB7SOGtgj55gLxwmoJmYkwNgpIeoGCe88WtpiUL5PYHbCJc1C9WaZrI/Jl0+IXpzia3dJyRXU\nQYSmqqH0RtjjSfoTGdlXQ5T6CJZG17fF2ONiZhABzxmWv43u9XDcC/No7Crq4ohS1SDjn9JQQ5Rq\nImk3WCmdtOSkt3sRCy8bDpP65jYLmSxCoIGwN6aVXEa4eMC93UOGT6qIngohpUfWvcSh1KP5Roh/\n+y//HNgDwNrvE/34z9Glh2AlicWnzPimnLxlcWT4cS9NGI5FZiwd2WbH7ZcYiCLuxVmUQomK2CPW\nlRAOjzFjEVpKDK3ZI+jS0YVNrKCXo9t1PJeTmE2Lw3UBff81xGCGRLPMwfYx3nSWVys91PouZuhJ\nVOcE7dYBuq+KcmOZcSBG51Sk45/HbKnIzjjTgo1Kr8rSJEJh30QNycwnprj7U7zpDM5KBZety2D0\nOLGLaXqmnbLpI/9cHmfnlNDcDI2EQnr7LdTOIaGlGON1meor3ybygUuMY1cxDAPVb1AeOUm7qsjN\nY/7m714E4JMf/AVikyA/uPd93M9cYH7gQTyJEFdHGFMvleMKNd1PpKWjrxg8XO8xjcVZut0nMOnQ\ncLYpmUVGTg8XLj9L+OwUM3CXLzz1BX7hiz/Dvbe2qfzRJh946ntsHtmpfHdAa3qBX/7FCE88eYHB\nL+ks5iesfjrEfs1Ot3UfaaSh5gTqXQPfYoT9fBH7qMNifJE9ux/RgkzER/ekRDLlp+fcoWLG6Wsq\n4/tDksoqSlwmdHQRT9qGv7aP6ilzJmRwTnoMDZmCskFtXcSTrZOOwJ37JpmMBtUBHanIwcY+SuQ8\nNscYZWIgtjw4MfjOrfeyPT+3+jFaUTfZoUKnGUUdlmg4WsyNx6xrIrpUQI4oCHNx9oodtBZIio+A\nVcZhizJ7NUkq42KPGMGIhCM4Jr0SJNno0Qn3UO5Xye89wOn3olXeZa+1wCBwykeVJ1BiDk5iEW6+\n8G0i51OMxw6q1giFAX3rkJ7pxz6JIZRztIZjFDVIbimNM1Bi0BlTL45oBjsYpyoLscu81eyQ2vZi\nxgd43V7u/bBI/ngGV2sXQ+jCwI3TMYdyVuR+dZ9wwIXt1E7y0TqTXgQhXcSaTui0Bpx1AwR7NeRa\niulcm75zhbHLzhvPvVfCPHv9p3l3p8lgb4w83WRR2UcUt7HGdU59ATa+8ntc/XwaXynJcKfPynyA\nPVmilz8mOOkTvf4I/YdFXFqXSWiRtOnAsImUK2B4+kQw8RgqU6eTXlPGGwxjG0xR3adYuoq00sZx\nkmDis7BFo0geCz2wTa8tIWMjlB6QP7CTjdUYH+u0XVnMlhuP0ifQCGD3aUjjJkp8QMWpEncFMNM+\nOmM3VGtkXB46kgenEEO2e3EEj3FVPNTNE3wON4HrWXqlACc/TNPPXqC+/yInsSm/+Zv/nMVXv8UH\nv7qEejOE9313uHlrl1/51V/7T/8773/63d/98o2ffATNLKMGVWQlhsMHZknhpKTgXNukNIphhAPQ\n9yCcxnCJTVwrEQY2lciLn+TW/NdotFpMpBj9WJqNfQ3Be4QttURfsDHcr9KfEandmKF6r8HzX/rf\nyXwgQSmkER0aNNsOyjmNxu4pO/cqDJclim03+X0JHwNsShB9qcNROUmzeAdnTKJ8KLO4HKfYPyJZ\njRFcfMi7rQpxb46kvsaW45jG7gbruwl8126Qe/9/wfF2C20A2tExq5+9xlun+yTcbmpFiXDKjiK7\nmbZ9jH27TLsJ9HEZ2TyHJ+KlHemhBHx89+/eO2VV33bQSjcwdo+wZ06RIkGuX3yE7PlZRi9anIgW\nzoSdcuOAvqOC23EeI/gQpSBR92ns3D8kPfRR2esTSY1Y+/wvohd2UO0hSvIJly5dQLFEMmODrk+g\nL0nk9xxkojXY9HLiclO25XHUQOmnOZDB06tgO2lwWrZj0/Y4rWVI+SVO9mucNYbY5Ax2ItQFhdyH\nFKzDIGmHxdnbbSLJFTTbA1562CbwaACvMWVImb1mlfPtRdZdx1x+NIHpFjjVKgQ+0MKx58G4rLHW\nC2KODpi21nE0ZbrKIZt7ZRzrdlYdTt5wtrj//DoA6ccyBNxhzM6EqebDrWv4rz5GxLuDYDopLTiQ\njT4zQhdOo/QnFRIBCbdtRDkXZKHqoe9L8+SNVQ70NrWaTKArE2h42Tw1me7do+8IMpc8pdWUMNp2\nho08Q1+MhRmF+r0TVNsiOxmTiSzRbK2TaLhIuQe48k5aikyh+gbvVAdMXYskjo8YBkvs+OfZeqPB\ngz+6w8rCGiNdR9F9SOEthEQdr+lk6Bpxul4mdm6WrcMymWyTVqCBqy8wZ7dTNYeYfhfvvLzNykeT\n8PY+jkyIZDHKybaOPFRYCfhon+m8/XaBj//WH3Prb957p1+696eQ3aZ/T6DWuYto9MhmvYT9Ok5j\njBFV6TcN/JEI9vMGRsVLyp8Do8Owe0ho7QaR9CGBRBpRyiFpOv2MheTUmDTtuESR+bkk3UQU1wYY\n9gOq/RSJ/Ije9XnsiTSibJIKd2m1bBQP6yj9HuVFBT2WQGhNcOlxFNGG33+G0hbp9D1onilCMItv\neIeqz8kkozM9dXAaiqIcjmn62/i0WVJFO0J+TKFxSDzkZcEmoF37Wc6kQ1LVLSzXHtNhjnVc9I00\nnp98Ane3SP50m/m+ymlJxFdqs3U4oPjVl3mzfATAT//Ez/Pa8/dIfeop/LcrDBQHgalG15Mi7z6C\nYzepUJlNU0CuW3gX5jEkLzbPGcLKPDlvDd/hgNDH/yEfe2KN+64swUEf/dYG3g99isN3tkiem6eC\nn3OfXkF5/ZDwJT+rlsgfPfMrlPeO+enfuMrX/tvf5+37OvPJEM7elKGnyJx3TGk8j9+fQGv3Ceft\n1EYSUz2EJFlEnSYP7rdYSK0yarc4P01yr/YOzWkdrzHLjLPLRC4gyQ2s4ZCJy43HbcfuKDMKLZHM\npZjuKdTzTd5t6gSdMoojSdphQTJBfDhCWk2z92aX3WgCy+3l5ivfBGDx59+PcOjHadZpdstUlDGy\n5WDkFBmNXHiKMhcvLaDcO6Y0ULkYrWOTLITTAWXRy7Q94XBsI9mqIDe9NB88QNAT9K0KNZuLgQKj\npBOf0ON44iA6WCdX1OhJEqfTTXTTYP7xJfR1i0kYgkGN5jhMZjjE4/Ei1kWI3GOAQdLj4f5RiZO7\nXiyljTeRZd6eo+11IJQLtFzgljuoow6lYoxwZkou4Ke7MiXST+C1j6kVZ9D7Ak7ZRSfapTUZUbzn\nwbTVmRxJPNwdE1XmSNo0GrYl5q7kEKwJ0sE+6tEZL91+F4DcM/+I6zmLr/zL/4Z7iwp3v1Um4fbj\ndb8Pq9mmuRPmb/7kBeJX15i4LrJXukd/GMMzN2CkzdIfj1CmKnsuP2pfJ6hWsRottO6EqH/KuixS\n7ehMjTbGJIritRiJZxjNKFPFR98uoOgDWqEhknpMWR4yPYyRmoTpKAa80/JyAAAgAElEQVSTZg1P\nIIvzRKezOI9VbjBjOTkTz/B6/ZiKnYJzgGU4cfaaGPoYtk6QIi3sgzQ7gzKu4h4PDYvoaoDSqEar\nFCSdaTC0uVn5yM8gvlRg5CggtF7mw099kKczfTof3sYR+BbRXw3wv3z9V7nxxJO8tHnCr3zxPwMA\n8b/4/d/+8ifdsxijGeSOxMAhoFWq9KI2EpLEcGTRrh0Q7/jw+T3cFYrYVgZ4LDt/9u2/40+Hv8QH\nn32CNwoHXIs/y53yHXLnZCbhc2icoTXaaE/NMZ/p4erPcu/7u7jCKS7lHsfaO2O6dYx8cUA6u0b6\n/auECyJW2MWTtjLxZJCSzeR0aFEVXDz1O5/lXz9xi/N56FyuUH5tiGeUYW56HzOUwlTTHOxM6Hp0\n7nQeoo2ukznvxxZ1MLj5gKJzykHnXQKXPNgfaEguL5HUkH67gRzVsXkVprTo1jO0HE0U3YFgMylJ\nMpoV49ZrL7B+7z22VO4ffRjfR5KsRNaomGs04nuYOw1ufuVP6dQKuK4VOd2sYdRVFrTLIG0hnvqQ\n1mo490XOGSPueZw88dhlnvvaFl1qyOaIySNebPclesMR7bPncE0dnJZH+DxFnGsqWmlKfVVGKbXJ\nbx4Q19LcvrhN5iSMFglTtzvw+8cIRwY+j5fxpIEYcKOHV1HVKOUrMSKxFg//PI+aFBDaUJ1vc95r\noTeXEfx3SYtJug0BsSXQG9gZKAbZlQlKOocnq3P+iR2e+eg/5tYrpyy1bdyWFeaTTd68lSdxoUxp\nOmbczPCINuToUEBducDNr30dgI9+5mcxO9AQm+Q8fYSowEF+n50DGWFGo0se916PW2+UMBoyto6L\nTvsQnzxHAosz8wIB1eBBOYXhB+1hhZYNooE+k0djuHtTlAWD8ks6ZlhEyizQm6ronhbNwzLJ+Qiv\nb2xieyqJZnpYOI7Qqk0RFYluX2E7s8/40me5cs1HxnsF/5rOYLiGIZi8+fIRF1auYI8HUDUTUdjg\naBxhZKvi6PkoHFskk07cUzhbspEdtDCOA4QrDk7adrKpNjXOcbWvMC722A3M4QlB/WyEsKLxyPkV\ndC5QLNWYGUQRs/8dr3/j3wLw8es55KObDHbPCBKjbG3gklfwJuqU7uiMxQmj/giH2sbdX6GkNOml\nXIwrFpok4bYFGLZOSToX2Xi4S4NNxGCUyYZIqXMf79o8ym6dVsNCCYbpLogEEivMnBPwRw2O790h\nOWNSUWbxaAKjpQzp1SJh3c7QFcVvkyjeb9IRqrSKBlrmMnOrHtpTmeDUQJR6XEznqDWnjKIZZHWC\nW3VRtywi+pjqrQ4O3xGad5XGYppadUK//g69iZvo9SiDT1yl+P27+F0StJvEZRuT0w5aJsDhD7uc\n/5mPUVPaZBzLFGxpbt15j2V2fiaLHotQb6fxztlRSlOK/UMm5hCxtcTYZxBtGvSFPebKAmrTRVDS\n2LRNmU16OdP2GDlvsHnzBaxf+Cn+9rd+k0vnfoyVtadQqnaWml3cvSMWUwPurDt5NDpBHHt4ULWx\nvPhRcv/VF/nLX/4u8zeCuF+ysfPKMdPHMyhanONqhcxAoeu0I9artKQ62niMJ6Pj9SXY9NuZa3oR\n/QWCHoVX8y2ejE4wB+eZigMic1OOW11ahRTdcynYHSNbIi1Hg1R8kcKtBxylW/ibU9JxDx4xxOS0\nT9n5AOHY4kQoo1oGeXeEsNtNxgvPf+e9aojF5Q+iyxY7xTHjfpOl5asIVScT7Tzp+oh26zu0KlP+\nwT/7HMJvbKCIWfLhB0hEyTn8jCY1lv1B9o0S/ckR7egshiHjb3VpDkzikzE7tSrGtMOgPMbyJjFD\nVYThDHI6QbJQRJ3q2G06dYcT29hHsLROYSGCTIVyyE7KEJjofrT586wtioziadR+mfP+cxQVO8Ny\nj0tPaagtg0LvENOVJCGMyAk5ROUIW3WNtgBC34UlnRLN1Cja5lHuDZkVk0x7m6iREPGgE2f8mMOd\nUzxSlFSkT+SxHcx+gZ2sgW9W5sV//x72ZfkzP0GoWKb0Z7/F4ruw+Mwi7rCPNOCWCyB3uHruCd7/\nqfdTrKRRx3VsV0fYDjQa4wOaukba9LJfepugX0ApuDgLT9HcCSzTwl+oIdscDAYqPtuERsiOnK9h\nRIbYBQeL1QIyQ1TLh3qioox6GJofyVkm2A1SGjkQXCJdtUqwJ2OLTehUt/EEcji7Kkq2zrBnpy6H\n4VhhotsoOkScdTu25BFz0zh7+wWumC4KYpWkI0nXbUfbcjBdVOh+X0cqH6MGKthOa3y93mScnODx\nxPB/4bPsCUNOHdf5zqlAq3qfX/3l/+9M1H/0Jup3/+APvxxOzpL9lEb9wYDrloei5sIji5ydNJH7\nXpqjecpuk/lQB0/Jg2c6jz8Q4dEnRlzPfJgdT5CrZS8lLU82lGRq2FDzLWSfhRC6QKs5pHC3g2hW\nONhp418N4pYKmF4ftpkbTMMizUaXaGOAu+nA3ixT9K6yqlq47RdxuXbYe62I8r+ucS4SpXbzNg2v\nwWVBxKxM6UWGHBy0OBdqIbttLFbnqBbaPDL/UY5Ps7Re2aUyd0Rm1MU/mGfsVZi4FDptO+XqHm2v\niwF1mnaLVmJMRhjQdKr0SmNctTPu72xiT05IB7y8/PzrAPz0P/00tqmA02Xj7fUfIL2UJdQbE/jI\nCstP9jh6aQU1sUrcEaA+f0TZs0Z794SUr01t8ICJU2VxJ8eo6ya4ZmNXvM9yNMhffPsmctOBz+PD\nbA2JZ1VckRnaNi9qpY2vYUPoyhiDIrmnr1EdB8me+LFHDrHXTeRYG7+WpWmXSak+Or5Z3B4XNW8M\n4hKK3UmvOMSmyATUELf26qyMxlSmA+xTG+VJD71aI55cRBoVmSzPUhbGOAddbn99GylywPCHbu6+\n+x8QS34qP/w+oVoDb6FG9ulltq0QAeMypcEdLNVHJDvGSY4XvvEXAFx77BP064csme+jmVKxynuU\nunmM2j4Ob5CAbNJz2Zl3+ameE4jdaHC/VCb3eIS3TpsoviGVeyFmH50yZzuhdjLErdZo20TsoQCV\nmsAl8zJj+5CYe57G1MFBfofHrs/x8FaezPAGqY9lyLePWZJSuJI9hq4m8qGNN60tnlj9EfbLX0e9\nJSIqdxCKPY5rGsK2hk1XeebTTyGevIPzZI70s2n6+YccN3uoSZVUtEl7vEg+vo85HpBczlEv3KKW\nM4lraYrjCfZKipBrwsOjV/FducTx9zaxLV3l6N4e29s7PJOUOF2/xat/8W3+/OvfA84A+Mjjj5O3\nS4yaQbxPapgHFVJKiL2oj8M9heXr78PXO0W0BblnBIi17MwtxihLNbSjGhXhIcUHDQZzfuJHFuUH\nm+T8Gmed+3zqk88iFAfonghntTpaTCNy2kFXoGQMabdiyHM9qq+WUC4q2F0FsjcWGJhnOF7qsvTk\nBXb++E3SngnOc1eJO1TC5RMOt0rMudKsV6pkr6cZWm6KjYck52c4feEhoVEPZSfPQPMSXHIg2BVK\nsQCOUp/j1hbB2QBuM0at7ae3eUbWmCAIXcajEPlah/qgiH6sc+3H3djuj6gOB7hGEAoe872X3gv6\nXg9exXPDTrap4TEE9iZdek6DbEhFHPqpNNbxJmLYDiXO5rooepj2pEPsXIRpa8CbgxwfS2Z540//\nnGfXolw6/zmOcnZyfouTTotzH3Vhmyh8Y68CoVlil1qoL5usOwwUdYwj4aa0/hbnVy+gehW6iTzL\nq1f4q79+kWd+1gdNEWezgpCLkBIu486KOEMawY6GbJl4hQYHZQfDLR+Bc3bQfWT1BOb0hINpmdF2\nA5f7FNnjxttzoS0NMW6N0ZUu3mAQ3FlIl0k6thHnAjiGLhyuGQbhEVfcKg+rI64OpkjFXYaeET98\n/r3m7c/+wxyhQBihaaGtPMpofYNoTMdo2hFtRRy564wSGfY+9yK9oUlr1CR4YBIx59mvD4j6JtS2\nmlSFEhdjFzl8d5tEaMSd/RG2WpBueJ7woIhhzpEbjZlQRi0tYQv2YHeE4Ery+ttvclifJTMu4w1Z\nHG1X8Ak9omMPZ5WH2LFjRhzM3K+z17ShdPOM5AxHZ1W00yISLg4ftCm/tcX7z93A7hzTUPxI3Tx1\nUthGJmFbhB+88C5Ne4dBz08kYefcShjZc4xNu4blcmFTdcoEuBILIA8TVGZPKZSrRGPnmfOsUXs1\nz8uvvGeifvbHPsXrD9/F2RtysLWB3jFISAr3H+ww8GXxWwfUtu+QSvwUlcs5TlzHuCsupuIEX/wC\nMwk4KZn4/CO8TZXC0gxh2UVNNpmUWjQV6EUk/C0FMxgh7qnTmwxw+1yMzRaetodDRSYa99LAhjc8\nwhgYuPUhp4KKEFfQJzYywzpWz0vDJUEszuBgSj++hzruMpkqaM0xXcEgLYpEFhL0XU0yhRk2bGNs\nFSfjsB/sATSzhaF7mIYrNE9leuFj5ns7XLp2jWHXwTP/ZJWvff2M8UsFvvhLv0RyvcrRf3iRi6sp\nNve3+dUv/edQtvnb/9uXf2EtTMnjQ+22EJ0iaF58hQJqa4D+xARBP+GRJYWqb5lxd5vDiAP2W6h3\n7jHz1I8QvHMHs2ORGoSYRjwsa3uMOq9Tf2qZYW+X6L0a3iU7ykjHbVNZ3QzguJLEuzMk/ViCrjjC\nLN2nZDSZXfEjKn1yPo36Dx3YujVaM06OhBahsMT80SHt6YSIXWG0FcT/tA+53sbfnWJbXcC5OWTv\n4T3SvxmDepybr97Gmx2wYihMKx6KriNcjIjZAzSc+yT0OWyii5Qjxs3+u5wbzXDU73J6p4VPLWJf\nU3BEVjDyHRKuFb73wt8B0P6LAtcCCQ6mHh7pXuJu4RVaPo3GSzUmTljU5klKd1B6JVQV9FMZz1qG\niR6grcdwk6OerJKfXcXTz9Ot3WcSSnPwgxNWnnJjqV4CiSiu4ybWtIdhJIi2BO7e6/DY4zms1QHV\nV5P0Im2O/A8YSVGsTJAHt++jmEFieoZ3HU0iEQdZT4be6AH93TDS4R5ryzEwzijFZX7U52GyfAXb\n3RFb6TGqoJA+ntKZ8dDrF7B5DZYHQaatEwKBBM5RHMdTXQwjQ1VuI8yPOJ5r0rl4kbprjrleCdk/\nZk6IkupXeZgI8uZz3+Ro/b0N3pNXPkf2Wg+Rh6j392k+dhXZSpMiTmhlhqppMnBnmKZrrNh93Hvj\nAauOHJZQwHBq2LIZfP0jsksj5EEA63gL94Vr1EbgVfuMo0MmRZGHXZO2wyTTvU0vt0DgVonwYwsI\nzRrlnT724ZDAREcwOxQ2ApRoMZuOcabWWRg0aV1w4jyeoeOQyZ31mTR1lq4tc3b6AMsfwes/5MHN\nKi2Pnayrg+Y/T+OBSfQjNQo7JeShi6RWRB3FyI8ViqLEubMUp8YQ50Qn6IzQSjnxJ200lDobz3d5\n+nNpKm8WKWQVlOU0V/6H/5E7//7/AEAMZzkfP89QsbiWjiL4MtSaQay4jnnPRF5LY9R76NKYb/31\nN0gGbFQ6DhydMdLcPKOwl6bmI75eYs9ocvEzz1Jq6MQuP0vpqMzBnT1yRhPp0QAPvvkWnaSDBa+H\njjXBUwqRmIg0jAp+K49/X2Drdp78n7yB9qE1DqsCAdsEa8FN5+5dJnEBKW/Q+EiM/k6RiNnD0ktU\nDnoogsnx1garvhTVchv/NYm2lMJrGnQWPFStCfbxiPGgTkivoc+PoXNCX8zQmYlx7537LHrDSHOz\nBDxRQnaNsVPh7Zf2kK9JhAdlhvljvn/7PgDnnv0cC/qESnREd7iB29bEmoYIuqMcneyQztiRnCnK\n5TOW6wqa0IJmhN2CxIe+9CFKzT1e+KO/4ZI3yXMFjXgghDN+QrsTx2hKtIUeTsMkpX6OjWSF4V92\nGS6LzFyJYY1ltk72yWYuoDsmtDYbfOjTM7xbfZVo8gne/O73ic19lGbjDofHIpnuiFppi3pfoxW0\nKActOnKb7b96yGgugxCuMnBOqcYrdFsBhmKfN775CtrFx5iUIOmP4nbaifbbDI59CPFNepUWS5Mo\nO3dfYxq7QdF1hKc6Qdh2M8bC2amRcYnoNje1h3d4a+M9Nmj6yq+zV3xIc6uPVqqz05whfGOJzbdf\nZsERwzEDwm2T+7YeSucxOoMepQcSvVwbj2Jwq9al3rORXpjj+b88IjYdYzo1br7yMq65WYTm64RT\n7yfwaIbRmYjkE5HmptRLTZq2HtNwk5EvQVx141+aR7eLaDr4rCSVeA6h40S2Qalox77i4OhoyLAv\nYo0h1HHTmwosrsZRwyA5QtSFKEXnmPCZB2shiK4uYe5bjEvvMrmW5YM3omh2P6aQodu9T/n4MjFb\nAdUlsLs7wienaZsmR5EKi/4ljMMcQlwn3x7gtUSe+/Z7Wdm11G8Q+dEK1p1T7h69RcuZZJpcxXV+\nlqgs4W4mqR128Fw0ySUXMDpVoq593N04bWsPTBM120Uc6YRnbVQMA59RRGsKhEQfumFhGgOCGYW2\n7EUzVQJtF12/n6Fdx2OP4qzXOBH7CK0pli2NNiliBGJEGgbdQR2pHSLs9jEZ2tFaA1r1Bj7FSb/c\nJBTIcVY2CbraJNEZ+gLI3RKlzRbWnJ9BSSEblxjIThR/izvP3WNLPSMruojNpxkc9ejXyqzOhjCa\nBxw0VjmYT/HhbJJHxwEyz2SQ2zY+9fv/jj/5sz/kn37pn/ynb6L+1e/9wZcvf/5pgoUTjGoPMRei\nddam+YhKMD5D89tlNoY+hn0HTl2iM7Jw0mfp42nG9QkOT4H6Lpx524RHOY7bRcbhBOJT1zF2+4zK\nMUT3hOpbJ7gcGp1immlYILC9zpF7wrgz5KxzyGzdhzSxs12S8JsZ8moB2eNk7PbR1sq47AvE5QhD\nRxejZDCxfCTUFGKvhx4BxQohN04JZIK8q91C2ugSrESQWi5KhecIum6QliM4FZGC3UFlf4x+ckin\nXCWayzEtybg9FqnQFdoFg6xTYzIXJ2kayEMbHo/OibXHWy/dBeCjP7nC1c9+kLRiUhObDEdnlPUG\nM9kPkp46kOwt3m2nMIKzSLUa2VGDWqWALk9xzs8T1GXe/INXSf/IFUrtRbT+kIM3dnjf5y9CyEFb\naFP4zmu4PnSFsi1K6HaDhq/CuUdmOXpnwKHXgdRqIUY3yEqXiVttbA6NyNiF3RWhOblDXSzTbs7S\nyXcJm21UzUZ55ozpuxvYNT/OEw+ViJOOWWfPnPKIr4wq5Ojt9cldN3CIUYZyEqN/irMWRgiJ6OoB\n+XYff99CDOgI/SSu9iy2VZHdu/t0zxS0XonWsE/EY8efr6MknubNV94L9zz1C+8jux9lZKoguynV\n3GT9D/CoUWrdI0YmpJo1pP0mw/o8rfdfZFxWcEU7FDeOmWxrHFdFJgORdtnJbqaPVY2R37jHcrjJ\ncM9kR2lyxeGhIwtoDpMjo4en36M2llk/PWBg1glVRfYWwpyVzliLBunFJNKWwaQSpbwoIxeG6BdG\nLMhRyl2NaE6iU8+T7xYQJIF33zgm/WQaW7uOPsrSjbZQY2kSe3nOVmexDX3svnaE1xOjFAgy75ap\n3rlNzOVGS3U4VDMY6ojQq5Caepmf0fGnLzPzwSmV7Sonu0vkYhd59ZtfAeBLX/hZTgdDIsU2wlmG\nvbMKuBIkwyZVs8LjcTsnPRVVWmH+ox/AX/MQceuc1foo5QPEociFSz5KtW1Sax6KtQaiaDLo9pkM\ne9hsfcLPxGjvtgl758lWD+m7JtiqNjpSGY/XhSudYyJPqdYWiQc6ZCIX0PNDPEcm7oUApedfx70Q\nxTtyse8aEOkWiZgd6h4vUjVGiQp+K4wWFTiVuwTP5eiOPcw0htS0HOLpLZwhnfX1NmGHimfNT7zn\nodKeoVMqkjBq2FI57IJOY+zC29rl0JbErU+Q5D6aP8NR85Qw+3zv5hEAPzdzjn0NzIGX1rTHorhM\nVRFRJgp+ochBPYl9pk1U8fPAH8czEnDY4yx8OMfLz/0h5eYB18d2TM81lhJx/Lky9za9+IN1XOEL\nFEzojpsMoyojMUroeJ3aZJWwO0G7WiWsDtndLRGaPUdzJknHkDDfOUBrbOG6fp2aI8n1joZfDaK5\nxuz1dXqRRaahPo57Ji989TaBC0+RsblQJhPcXT+tTh1JthFymdiyH+SRXBBnUycfPMbbNshH55jK\nZ7QGUfBDudUj153nwIBOKYmnXGXdqpBQJhjjAa4rGaRGiWZ7iZvr71VDfOgnPku9WuGs0MSUvHz+\n0x+g0GziyKVJOEz237IoB7rIuhdFOmbatvAsZjjb7/Ln/+pFPnHlMerzdjwlBwvPKgyEEbrDz7XL\nV5me6yIqU3zeIcPT+9TEOJceSbJ75iU1HOCQhviys7jXq+iJPjTrjM8U+sM29UELd6lLz4gSsulE\nA13Wv/82Yz1MZi1CsbxD2Jml6DbRHtbYs0vU2m4GvWM0S6bcA3fLzol6iGBp7Ip9MsEge60g3YHK\ncCDi7KWQnx0Q6Pko4mXUa+GVGwhWFs+0jVu9SGHHIO2ReXPnmAdfLXB4+h6e6fryP2fF+V1ObRZX\nJsuktQjjyJCJASXnBFV2U/IE+NrvfIPhZYPy7R7+YRj1koE0UXiw3WNtKjIoptnpj5gdGpyJPvTA\ngLaiM2pZZGNhLKcXv1Xn7KiAc7FOYOhHPwgRj+Q5lGwsjsMoXSel1oBgz8Ke0DnttJl3LeEx2xT1\nQ2TJjpEbo7i8tNpjhIUUHaeHsbfKsL1Iaj5Gu1GiIWeYLI1x9Fv0Jg4SgyyN8BSlJOHNeFg6P4N7\n5KAWr+ETq9hrPiR/hc0ftrn6X/4aD198P1NzQOm0i82X4ZI8paU8zV/97f/Ml3/9v/9P30R95Xf+\n8MsXIxlCMzIPDC9eoY07ZqOd83FUCuHKq3QEAYMOYuQMrTCD4K4SsIcojbo4f/ADnIEMRn5KbcaG\nf1FGOOuBFaawvoEYaBOwi6TERUoqpObmmM2m6GlVDJeDXZuPRY/JD2t1Zs7l6I/HROI2zu6PqJye\nUJvUMYcjTo83CNhm6DywiAs6pt/OyOOhVjlh1FhjqA2pBzuEW2MuzTnA9iRjVUNqvUbGc570msjB\nvRb18AlLs8t0Wh0Edx8lJJJ1KgzSKap3HmDMz5AsntFbEDnthvEMVEZWkLC4wrQl8fLr7139hD4n\n88TSI+wICppsR3XnGGbDTDNDeocHNA49ZM43aNcN7MaEyTRJzJlCKfUIlev47CCPu7SkMcZoTL0y\nwpvscSES5mB7hqA2ZPYxJ6rko/JqF23ehqQH0RqnhONR1MABo8GQrhIicNaj30rT7JeomGu4B10q\ncR2pbBFatWFr1ynutyiF/cyO9vn2OzXci48SqO8yPWkx9J7hNd0Yh3YcwgjxukptU6U5stMrbZGJ\nj5kggKFgq9gIuAZ8o9zBCocZaotk/GPstxUIj4j5xpB2U+30iDhNJgmVgCvBt7/1VQAuPf4pbNIQ\nJD/5ZpvHrvjpCVnutO4z6gRpq9AcmOSc8K6+wWWHxclzNTwPs6iONWZDQTZ/uM+5p6dEl7qojgRH\ng0MSkwDKxEW5NY89HiOctXjnhVe4/MgC0rqBL96nNbYISUGS14Pc2/bwxKxEsCqxV7ew6RYjd5aB\na4xnu8zeMMzyqIZerLBpVRC1GSKqiZhew6MahB1ZTvsazmkUz5yFfX2KdiPHSTuOX67hEVUyUp50\nzsbZepmxw0Xi3HX6JZO4HOWsXSfle5t8PU9pdMaBvcbyo9eZHFhU+160a27eevgDjt94BYDlyA0q\nuy1yixe499Zz+FNZ1uuvcF6L4Z1ZY6tVINLUaObbBLJjOlvv0KBAdiJh79spxG5RsVp0WmE8foXj\nZosFW4hWZ8RQm8cpeZGiPnZP6zzyzBylPZW83gFXhfnzIVAEqhsu3OEavagD10Dl5rZJ2r2GMyRw\ndPsV0sk+M9dtDNYmSIafw/Ua0Tkfw1EFYxpgyTnCHkswOixw8wfHZJb8OC2dYwEONu6yOhtk1Jpy\n8RE/Z0ITyZ1iV5ySrI3ohQY0HDMkdA/D8h7Tvox3OkOve0xgxs1Gcw/beBvtyR7C2OCl7x0C8KFP\nLuMKXSa3oiPrErK9TrBpIvbKCLYYvsiYDk4qd8co3i0cIRv64/Pc2jpl/rEEd40JlqvP1dkZ1MyQ\no6ZJ3hdELvmoRCoELB+xsMU71U0uOyxOo136ho9wfR1X4AynUoWJiWkLU4y2mDws8vQffYTwFx9w\ndrZN4OGEYNbGyD3F2polX5zHs2qnmcjQfnuMbJd5MlmmeEVFlYLITZGKvYLpMWgONRzzJqVbNYxU\njJajwVbHor1+TGA2QEcqoG1FcLjs5EcDXG4nEY9BTzolcu0c44JOeTigeSwhTeuMvQu8fvPb783b\nk58hVuyweO0iCxmdYc/D7GwY852HfOurd0lnXLz2wjozLhfNZo03v99n72GJxZUYP/OZD+O/5qDS\nrTDO+3GpdRqOAClLwL/QJzQ5YuINEMdDIT7DsDZgb+MeYZ+DUMDHOBdm73iCMAHREcE8VggtLDP3\n1HliwwWa959H83QwAj7e+t4DFuYXGY5NNu6t88nzP8Whp8EUH6NaH1nQ8Pt1gpadwkhgQamxb9gY\ns8XBTZFEIIbntMxptwXFNjnXPm1vlbh9lYffeg3Pso/tWpOD1+D6J2Y4OLiNORFpX9Q4evEt6pLI\n2vmPcfOl97BWv/jCp3C+8hqbp1XKjTIzgRD2cZ+J0CSmLdGeTsmdnXBYEPhR2yeoa3+NdU5GEbIc\n1KdcWJRon47A50BUJhSDA1z2GDNqEedWDPuigafWodtQ6XtUnGYIT1mmHRzgr9gQZJ1B2EfBOKVl\nb5EliiAN6PhUxqKJMq3SMrp4RzNM/T30sQ+PvEPpzAE+lfnGQ4r7Ar7+GTZHgl3rAXGfm1FhgBhW\nsXd1tjIezFYBJQe1lMaZGSAoPsnXfu23ubEwZX4tw+ndMf934xDLWcgAACAASURBVJAr/3gf/ZkP\no9vrpI9qbDgm/L/cvfmzZPlZn/nkyXPynNz3fb9r3Xtr6aqu3he1Gu1iJLHIjNhsYyACA+OYAXsG\nYwcKHMaDLcYDzMgYAjwTDBjECCEhYaGl1XtVd3V17ffWrbpr7vueeTLPkmd+qPkn4H/4RnyfeN/P\n+3mCiwXt6w/4Xu86v/ZLfw/Web/2a5///EgUSf/WPyOyu0tbc+Ev97mpl3nMv46VzLCRKOOoZ8kn\n/IjLEoJiUZuOUR6+Rekr32PjFy4wObExja3QnDh4Z2OXvPgYoWmb46Pb2F1hiuEQgiTRGH6b/b0x\nssOFIc9YzBa49BaS6cIRCtNR7yNXjslbflZ9Z1GHBu4VhXjOi9yXsGHSmU6IKh484R61YIKc55hO\nRyWYqLPvv8U4naBe6+KkBJofr+il5RqSCTspCX7qoyH+7SE4AigNnYAny4PeDF88iUOxM46mSCwN\n3PMS7bGJGFmjrV7Dsnq8/sY1AH4w90+ZlJw85jrmzl079kgVly2M+MDD1BXlwoaPXmdGU4mAbNGL\nDlDnIkb/HnZnlnvN27z9pau4f/4fsOK0k3YcYt8do60+RrA6wJ53oI2mzN92oPot9LUgg84uCf8G\nN/UZ7aAdUQdcJi4ljFUvoSSDxJQBXbdGMj+nOl+izlTcx2VG2zVsQYkt0Ydtvs5zP7TD3+4ecyat\n0FOfpJAZYC4gEJox9/S409vnjK+KVfRSvSMTTOYYLnS6+WMiRytEv/9lClMVQxjgaJdo5yWUlhdt\n85S1jp/OUEFrKjRq72LD4LuvPTqd/u9/ZJP9A5X5yItvY4j6wGD9h3ZwilHc/iH5zoR+2kljYCEF\ndzj6TgtFLZPfyZBYDLnpqaHlhyS1U/qOi9S1KnIrhccVJSB7WDj7eIIzQkdTHqo9UqFVfLEw9fMJ\n8jiQrBaumAe9MmFPbCG7PMTqJSaBBX6vj+apl7EhMIvOGcxCzLYKaA9NsrMO7W6H0s0mZ+PrVA+6\n2IpLvK0bvPfgIbHLBazBLcyjOpvtEGGGaPdqKH6Vx7NrFJUEY6GOXVuwTO8TGzgwPDbi53KccceY\n+noo/RZ7967jXZ3Q35VJPLfKe//10QTvxz76S2x4N/AGVFr+MImCj4Te59QfJl6uUNpt498QMNZy\nrB9M0YwWMU+OeyON1IqKN/cExrHF3Aox9ofZnOSZ1N0snCOcoRZzWcV5PMY+NwnHt3h37xbP7KSY\n6CFOOyKlu0uOqneRmk6CzTl1cYO8XqfUd1AszvBcWkdd16nMkjTe7+BToyyPy2iZEEHPGnLOweGh\nheUoM/HFyL8cJXEcwhOEiKXgjk8ZhINkAzo9QaR96iA59SM2daSNMb6BipEasBQ0zMCCsTQnaI4w\nkxn2bGWecsRI71wi2rRwejJ87SuPRLpPbH6IlfMRevY8c2NAx+PDVjboFWdEBxEORl78Lj+RZBl5\nqtAWdQ73y0Q/uM693/8Lns2GCBbuUJ1tcWLvEmhpqPW38S7miNKSCmWa9QTh/hZWYkTzho2ce8RY\niiEaHWrXT1hZCdN0l4j0k9hVL9/+pSb+uQeXMsP1w7/IuO7i8E6f68P/l/4bf8Yb6ne5KAt837ab\nzTSUzz3FmSeSNB6E+POv/u/sxNbYGEQZe6vI77aoa1UuF8DYm3JBjOKYT7ASfuKGiJGRCXtNcNdx\n1VQ8CRmjHSbvhAObxCc+fIG5XaYkDyiUNL55+5EuJxz5JFaxSVab47r4CTq3u3iDLkrjCBtPFNE0\nL/HoRZxPFDlnGUTPbLHzeJSQy+S2HKXXv8uKmEHDhdfvIu5RUaUgkzsL2vMcZwZDJmsJlB5YmRIR\nY04/DXvtBbI1wG/IVIcyplFCfjyEw1vl1u13OLpdRo08yUwXee2dU17+QBi3J0JNHfDZz36O6VGP\nVr3Kw2vHyOIIbaFjr46Z5mbYBReehYXgzLBMqKT1JIK3xdIt0K3OsMY2crmLaLM9tEoQ28tZymMZ\ns3rMB1a9vPHgIaHCJt5EFuV0gbCMsPnYBrGAyTf/8s8ffajaWQpnJO737YTbJlOvxb1WG6dZxBZV\ncN/r8bqzhmqMsOUdnA2u4pxWmIpe7NYQuaPTaAr0Fw5W4wtigxCe6h4PQlnaNKATIjSdQGGI3TWm\nP+6gLx2IUorToY3O1M66coJQFbHZ11gqR4S0OW1bGNO3ZL4o4JwMcfkWDGJzFmM3U93EKPZxWT3G\nLZ1sLkh1XMAh6Ni6FpghlHGDgCgy1VuMS5DlAlogxM5AxkylCXUNHhcbmPEoS1Og+cwW//zX/yPX\nbpywPZzRmPgwy33WFDd2EQbxNvXvDPjFz//s332I+ve/+R8+/+Gf/Ck2XB6+/hu3uLwhsBAcJPxn\n6bY6SEdzSpZKM6ajWAJTycboNM6qzcFB0IFeG5JJnadkWqRCDuJ+g9J1k4NhiWhH46n15xkfLnC/\nvMn81jUcmTwF0QlOlaHNZEt+imsmqO4pa/M+R/sW4rqfUHAMgTGOiJ3esouvLBNK2XHGvXTtU5K5\nFObxDKkm0Qj2cPWP2PdGcQpe7E8/yWvffJ1V82Wm+vs8LVssNuyMhkdkx1FcdjezcovgjsTcmUXs\n6ZTtVS6F17lz7QZ6wIZajiF3BcqBClFBoTr1cFjT2b/xKFi+kQ+x4UhCpE91NsNdPUs8ep0iKtHY\niKveDl0jznLlLXw+H9Q7pDxZJvYhro9ewHPvkNUPPsvDo2NOy2U263aKL36OwZ23mTm9NLIqw7sq\nmUKGLiobtjrF0CoTlwcjeIxSqZKWckjREE35JvnkKteH71FczyOaSVIEmE1tuHur9LYinH7jHtG0\nje1eGGszj+vTGzQ+keTUIWLIOrHBlD05TKR6k2M1gz20Rmu/h3fq5PGdFe7/TYVw0gntIAO1S/6p\nJ1kcHhIf14nN3Zw7qmELLHn/zTrN2+9TfOozHJ1ZZeldYfdfv8K++ajv6BMf/UkmjR7nL0rI9RGG\npBMICrx58y5x1wqntSKrypKmdoKdKB/Y8jMWD7DadZIJD+VEFL+ngFGMYrO8RNwecuaC71YPeX/R\n4dMbT3D33hXmK1HMYBTXbAZbBu6jBbKtyfWexmBbp30MnqqNM4UAVSlPcuAAeYRD05CDZSJbO9z+\n3ntshwQigRUOxjNCvTR6yoV55VtEsmlOb9/GfOYJNmtzdLeKutRQhH3YeAKbt83y6m2Obk2J+i5R\nKle4WnmDyhv32b1fwz8eowqnjGsVBoEdSq9fYyEvSYoz5gcSa3knsvocr3z99wH4zE//U4zuHofD\nHqvxDovAkuVNN9PqXU4iqxS31zh98yGFrAv/eo6T2ZST8j2C2+fwWH3uCXW68lnWpz6U2SnJeJhx\nZoJx2IaeRvtARolFKcoW89MlHk+FRWuE08hhm+qsxQ6xthPEAh36ik4+XqL20IXWt6OfkTkcP8R5\nmsKW0ghW4+iLMlLsDP5EGntsyjt/+C5niwFKTidrxRXSpyJ3siPMygDD0cCyR0Ccc3ygoPS7eILg\nXHTQjQndisFQUBG1BAGXiNUx0N1pposFoZiLREnigWVjZk9xuFvDUHZ47ZuPrswKF19CWpnhHDmw\nH1yjJrlpj0+QPXkyjiazoYnTqeKV3Mh1Gc8nMvR7A6pvHePOiYRtIoGqnZSooTtW0Gw6tqVJHA+9\nWQndbccTkkiFBHS7F3PhJORq40rMad4o4Xd5GJ73kypNOYiBbTsGTRtuh4DhMrjx1VM66hHntlu4\nY3aMp7N8qnAWITBGsh9SO9VxHtt4+Dd3eHLdYuf5x4lF09yoe7H1nRSjIme0c5j9Oa2YxSxqkUwm\nOJ7ZcOkq8U6YtjNIc+mlOBvQFnJ4lBYHwzS6RyXYsMNiH38jxElA5J23XwXgsz/yswR9fdK6l/1O\nD4+6T797F0UUmak91HkSefoW/o5K3xozCRdJdyWqohO9fI9wwGDk8xAxVURpynLRwnd0SPoFF01m\n3NcNRoshvZ6d4NxB9UhjJVWEShC9UcV5XiY/8KIX/fgelvBLl7A8A84/86Pk10SagyN++JMfpuor\nstgb8Qf/5TeIRRzUIjqSaLHy7AbuwgpGNEViuSS84mVYlxmkx2Q10HxDXIKGe9llTh6fuCQQn7Fl\nhZBTT9JRDUKSSPq0we7NEW19zkp6i7FW4r1vn7CIVtFLI1afDHHlP3+VO0ePMnif+/GP82BcZfv8\neZxyFN2dojersJFKkwl7aKzHCe5GKPlPWT3J4xO8HLfHBGJB6jY3Qt/NYEfCn5/gaHo5Lp+QvrTF\ndLogKOhEUk5qSPR9CRaLCYtFEY86Iz72MQ7dx+tNs1hMGKaLRLpjLHmG6HcxHDlQFS+rgQqqJ4bk\ndjEdjkm2ooTDKj1XmERbIeCP0XZLWP0qbnNKMywQVZwcDo9xmybzUhxzPkcYLcm60wgTJ3Laz8M/\n+l8onE+jBueMR6vosyJ//NIP8OqXv0j+2oLixTyv/D9fgXCYqTtAp1vn/vKA//Hnf/HvPkT9zhf/\nw+d/8Wc+zPUvvUvu0wkanQu4ZnGmvTK5jQh7D0+Y2pJcyg5ZLFZQhGMITBlvq2wbEVrhJQVpA/tO\nmgdvHPJAWBCe+nlskqG07QCbwpXedwmIe8TPfJpea4lPrnNwMkYIJlnERbRqmfCRhtCbc2Y1QXwe\n5Ma3uzgjz3L7ygGt+ft4rG1s58PYRk6MwQx/q4/N5uIk1qX07j7bj58lpi6obgZwjtZw3ZVY+Mcc\n/9kdzn/yZ2gdlJnpbhxrZ2lyB79pYJ0YqPU2jFpgqPSUEq6X13Hu1egYNjacHez9HG7XIZOhG099\nwbX7jyDq6R/4NMtwFsd4QFSyKEVK2Jrb2EIGJ+sh0pEacmhCxljgFtNMhQSjmI32fhj/wQN65x7H\n71lBcXhY8+QZhQ3U96rIfi/pXIi94yCif0ZK9+BUHXRdcZalHu/XXsXrXOLMOmneU0n3+tg6Xe55\nj3BJArYji8NBkMTIQ1cSMLweFoKDFWcUaRli9E6Q43f+muhnhogfvsTtv/gGO+e7hA0RiQaG9CQP\nG3vYJk18Sw+XEmdpvjehmAgxM9pk9SBWtk35j77BF774f/DBTIq//MacD/6om5seG4Z4kbw7zkjZ\np2bLkFvIJLbdvPb2ozXo4y+labR1YpfOcjjYx+WSmG+sI7z6kGb6EmuztzmV11G0AEbzBul6l4ni\nI9yfcVi4RLo3wH2pyIqS4PDGHcT7D+mvj/ngmRhP+xPcad1j98RGaD3NiqPF9MnLKMswM/sJ49sq\nsZlBdk/HHJ8hP1owj4sMojMm4wpLaRvZaGNGvIQbAlsrQe4+dKPFawhan9aajPiXV8h8ehv/mSyN\n4zKc87OrJdjwZTCaJ8R/9mf50oe+QDjxA9zfg/pc4XRwi3JToBC7QPH7nqN40UV/lGRttI6ghHFk\nNJ57Ikrz7WMmLTubT57FSjzDf/z1txj3/v/SyA/s0HFEidvvc+y24Sh3iDnWWMQ9ROUmDWcYt9Kl\n1jYRnR2Gr07wn3uO0XiIuNYmeRzD4ZYR/QrL2oDbN25gD+3gco0RbRpC/gz+joPhXSeTkB3/k0l0\nh49ZU6Ivd2hrEU7/9hWS5nlOJxWscJRleIbDklkZBFHNFGLcjzJdYNQa+M7IHFQPabbcRO1BXJsF\nVta2aOoPKB+K9KIgVxe4UzMabp2kbYlamdPTF0RXU3RUhcpoSkgJI/rtBMUBrtiEeUOifODkgjvM\nrdIeJ80hFz92kWDbYGwesWLYmGkjXn3tVQA+9ckLhKduShE3VkfAtmLDaSVZLhxMvBIpV5JQyIW+\nayE91+f1wzxadobou0dkfB9J2mR6tsPRQzd6RMRdX1B0TjGmIpokkOkn0DlhGltnWKqiaQMizRRL\nrlER7OQyEbamAgelIdtxA2Hipvr2Xb70lVcJFArk80eEeZGtzQ3qzizp+gTB78MYd4gvQxz6Gsy9\nM8JdH5ZjiNprMXn4PlJI5P/8wq8SXvsokqjhDcfQrSBe+wLHQGHg77OdcmMbuHApb2ANcsxWO6jt\nLKPZIduyTmAuIKhdfEsXRnOEIed4/Z1H6zz/ZYmsHuZwEMO1dGCF1im7dPr9EbomoKUOWdQtWlIU\np7CKtzXhzbvfA2XIR7//KZbMsVoL/vpbX2bUSzEMK4SkNa6XRYI2k4M7+wiLLTLzGS17F63wFLpe\nZ0uY0BgPkRw+xLiNZclkoiTINHuYjTYH785Ji4dY3iKToy6H+6+SfTrEWel5Aht+YjYbQzWL2JeI\nLtr4gyZHSg27J8ky9AD71T5x11m++G++QO75NRK5NexCneTWKpPKfUzRh7y5x9w1Zb5bZy4JtOo3\nObvjYF5t4R92ufxyhPe+fJvtNYmQkqHvtHHtzUfv7bmLW6yPWvgbIsN+m3hgSNcwWfVkGVgePviZ\nH6Lc7JGZDHi33MZylNjyJiiZDWLDBMGN91EaAsvWkIiWYS4l0JctxKGJ3y0z3LeYLO2s6iECEyfL\nlIZP61KVFPwpja7DjdkTScznlOYOwpkppfmCjaSCU5NRBlF6VQWnf4Y9GKYb7hM4SeD1Vqk1DGyL\nOBNrTDTnBF3CXxtSjqVIuBxU9uyMXCaFjTxe6xBvEyrvXoXgHstClNHCyd0qtCZTds5foH7rL3hy\nJUD8hTg7ZwukPyqTnYdxnxdYD8h8/btv8y9++e+BgPgL/+53Pv+xj1ykMlZxuRN0LQl7IIMjM6J9\nQyQULKBnOnhrYXyFIItbOoP0iNAwwjQU4r0v/t/4LnyATucQ33tNhnOLwmUn7VtlCm6RWWTM09nH\nWMyf4vD4KuN3DUKLCVbSxFDXsQkeFjaNZd/EmEE170KLOtBndYSCRkzu4SeJcjHH9FqH9PaC4MzJ\nnlnmpL3kXNZJd5TgbCDGgc3GrJ5AWHcyuW1xLp5kPgvjNE2cWTsycx7adFZGNgaBCBO6dCJRItE8\nvYRE02hTaCsEl2EcvQqa3c7iqM3A7cEbWbL5E2G+9gePxKY/8RP/hHn3kGaxgTROMDzp4l06mOWW\nnJY0jKvHdMQVau9UaF6/x2iiUBu6WBYEdrZSDIZTlr5bnE9Do15n1RniOvfo/O63if7CB7EG+wSC\naW5O99CSY2RNY+mRCJzxs7zbItLLcPDWfeIbZzHOncUbi7PwPk7oTJSzvgS6aGHz1LEvfcjakAei\ni8l4hdhqi7kWINzJsKzMmLuneF12zqwpLOQQxvA24/UzLPbsyIUsdQlC8Sz2FGiLKVdsR3jmNiqr\nqzz7Qp7pB8/xL3/zt3nr659g0DXZ9vS5b1nkjShq9xB/Wqe29SzX/+xR39Gzz/4wm1mRwwONxGhI\nZbSCPzSidvuEdGaDg+ESn+sO7TnIv3+V000/obyA91Mvsnd0k0C3zaBTZsaY5DmF4mMF1HKY8v0q\n927V6I5KFLdlbC2N9qSJbXIIAQvxTp95S6Fx/xqCGUX3gc/5AMdwFbdkYOFisBygBEwaV3W0Sz32\nHmi8/JECD/dbyOoGweormGefpzW3GKg1drafJ+2wU3nnAN11n6cvfYoXL9sZWvfJfijGY8+uslYM\nMSycJRapMOn0mQ511pdu/PqAk2cWhDx5jDsdloZF9zTOuUIYayXCtf0Q3m/f5OHiXQCyhTSPP/sy\n1bcfEM1EGCx9iFMDwxCougLsxCNEwiK3bz9g8lYFx0cuMgoKFDQ3tl6QRi5AaDJm0e9T3L7IZNFh\nww6OWoOO4KWgRzF6VczoPh5J4qBs0B2oDMZ3yfjPYI3u44hfYCs1xekXCdWTKFIdaSOPkhWYdmr4\ngy2q9hGJVA59P8CGLCAnFgyuH5ELOxmqTcajNHFPD0fLwr+zwO4/Q2w5oedWmB6reBw+5ICXoCrg\nHS9xBex0DZNaPYWAANM6HqPM6SUnGSnL+qab9r0hR5k5k0UIYTqgNuhx/dp7ADz2P32M2sldnL4z\nDEoNsnU3i7UWtvsSazMwpSWlB2PMyIS7nQlMj7DLBVZrGtIFB/H2lP22hfPyJ4juxTDsLdwuJ81Z\nhvbczYZpcOwOkx9Osa7dIvWig0Ytxaa4BYQYN/qcCD6EeASpHuMKE2zhy/yT74uy4gnTPDZIf2Kd\n+cjL4k4JPRJlHPbhX+bxDGxcO+0RGifwGPdJj9ycHu0SlzeRBi3O/tTPMPXVuHa9j+O5BJFWlfuT\nQ2bRLJlVF2LdTl2dM9TihKYVDk9M0sUAC6nG0h2k6Zth1YtUrCaLCLiCc777yqMrs8LzLfpjkXTM\njjs7IS6PGSwc5JwT5kED6UQm/9wmgWiUWLBPjSpWdEois0n8QZllqstJucVGeB0ubBEXQ7SH+yjD\nLs6EgKae4b3bb6E8vsW8NiAkuKgpIcY396her+IyXUzbYZweB5VYHUeszp/+8U0ca/cxC1uM+h0M\np05m00Tsj9C2NjDn91GNPFbsHoZmsMw5EVoWD45vYleXrE5EtPMOJsIRz7x0mUgnxN6bV0h7tjg+\nPUVsn7KIh2l02iylEMapiJo/4TElSygUob1q4c4lsXufIhOzM7skossmtq9c5c3TfQCe/9xzmCuP\ns/eN2wQiRUxZpTcLkc61Gcp+XvnT15gFF3hNkW1XHGVToXtsIyYmGaZqjMYp+tE8oVYbW95Gzd3H\nnEcR3A48oyaVmY2QmWZiazKyn0J1gqFJaHaR4ChCQrHTlhy4aCN5Q8z9bRwHHgZji9rglFYwiD2w\nZEwXT89AkBxUfEd4qmGcUQGHWEYbOzBEHbtrRFUwWE04CJzE8IQWGHcFHg9dwriaZ++FFrGzE+7f\n6CNfzkPPwJML8NJnn2d/+A5KR2Wuzzgfj/PWna8SGXgo2W1YOQnn0sb3vv5tfvlXfvXvPkT97v/2\nm5/fDAX48I/9GF/7uf9M0N3l6ZXLdL/1dWZyhiy3kaI7WA8fcMd/g4IwoeuMIJpXGcdEJqd5YjGL\nTFtgswC6I80yGOTO1aush4sUz4ucVE18lSWVwylnlh5mG1E054il5sGyHzBCxj6soUckxIZOR56x\nKM2xj9fI+T0098o4z19k0r1HN5tgXlepiQvCviL2UpOzL2e5fvsKg0aC9bgd3TbDXGokDRP1CZOO\nu8qdzoCNaITxlS71oIvYwEHFF4XZA1yzHrnJFD0XYNL+E8xBm2biLDbDQs0lcSgzshc/yjt/1OD9\nW4/q/dMhDzbBxAqbbEz93Fl7DEsqolRUCnMX9mkWbT7joxe/n/j2E9RI4550CAp+WpqG0n8D+60q\n6noBo7/GSL6J10ygxPLYkklITLDbjtnZeIKhuSCxHBMu+ti9UsVrS6Jl3Hz8H/4cHa2NeneA3vai\nle4z/16ImWfC4VBDscaEVJOGS0BRNZwvrmEcCBQVP510jcTwAc1KnQsrWWxKh/pun05ghVyjzeTZ\nDOrEwNcbMppdpVpT8BVKhOUCs0tPseWPo89k3HdM3p/+DIt2C9HZI2XzcRTUSDnGhHJF/Ksp5t/q\n8+aVvwTgqfQqjsgWN8p3WPFtMB5XCCdCdJJZatdHrKz3sd9LM3U+5NKP7BDZmlCZ2BEdNgL2MeY0\nhKRYrMoL9ve6RIw15noHG04ydje6t4hTyyF7JJKFI048J1T/00NmSTeRlo92KIQ/ESHlUBgHZwxi\nEtN7Ax6aRwSHSywjjNOhYyqPsfRYCCczsmqYpnCMoL9AzXHIRekMASXCNadOzHjAfklElhMM1qbU\nPv5n+KtzIjY3w6AdcztBPtxgosZwXbQxt4t4rA71qRcx4KMoN2gqNqazMclzH8IaOek33Di/+h2K\nHxd55fojiHrm5/8Njbf26IXHBIJBhkuJSKSB+JyHwjslHnp1Vs+5MBP3uD318/SLH6F5GCA+71Ov\nVvBYU4b9MQttyqQTYTBUuTK6RuTCObLOBbuVQ5xzlUBmDU3ssVBj2LQuc9nkjCNBcs2gpTlQOyM8\nbhe7ikK31ybkjmM80Oj7GgRqErEHJj4hjOpe0h0FmbQaOF64gO41KDftFCYzgskI4xUNrbzDqHrI\noarhW1o0PE5GkzFG1oNHGzCM55HtPdxWGGHjFI99wfHYQz+U5gm3Si2s4+pKaM0Sq8EF6XgIuefB\ntirz2jceXZk9uXIZKeXm3Hyd6UQhctHNYO+YwqZEuxnFVBxkqiWEUJd+dkww+yF6uzUISkTw03D7\n2dLjqJ4CO/4gg6WEGinjWqbJ+0XsPS9NyaJo93AUgsXoAilPjbZrTNepEjPyCJJG0PsYh/sjci8/\nx6j9PWJhF927MY4NGa8q4VOO0f/qfYJrGRqn32HN62W3W2XQn/JU0Ekgtc77qTlSOEbCuWC46Sfw\n1imh0ICzP/Q5Mk03Jw+u8uSFApHJgJni5/68i9sdxi7ZUQWNvNuLKxXCbdo57RucaYsozjb1gJ9A\nxEVtMuPaa4+yZB/7qZd5OvAyG2d3qJ02cMwlElkL0Z9COQTf8D6lhQ1fOEmgYTJw+cmNRabim+x8\nMsV+rUSsYSf3AwUWewan9+5j2z6HRIO/+i9vc3nnZSLnk/hvHdCYhtHffY3zniClnsa5lx/H3vbg\nOn/Ad66/w2ISJqdO2MjtMA9KJCUddzxKPqAQkAS60oT2gwoem0xSkfHagjz/8VWmyy5udcxiPsdt\ntrjfq2DtRjg+rpPM7jIuejn/o2tYboHmvko84kTxirQrIr5xiatvfJ1oSyC1E+fOuI7RTmHOozjN\nL9PPNokcpch+/wTbS32++XuPvKqPbfwgY3NJSBkQ9hSoLFpcfNpPeFHAlstiM0skp366qTzZ6JCZ\nFkRVerQP5pz9x5+hfaKTaD6kpOXoRLoU62uwOCainWLznsPM1BDnTewhP9ZgjJ6wk+imaHgNfLEp\ns/mQuTTHHRaoT8t4DTtBRWWkzfC6E+iCD2M6QTDdGGiM9DDWdEw0N2MytAgO00RDLixtgb+mY6k+\nxGaX7lxnKXWInZe52qjwY1/5DKVfOEK/+wB3OIhLkGkvE6DyCwAAIABJREFUwuysuPjqa/cJJcrE\n0lHm/izq2yW+9Xtf57X37xK/4GT6+ghXWObNa2/yS7/8r/7uQ9Rv/dYXPv/JeJxTocdBa8FTsTD3\n3A1iZ7dRQm3mkzWqR/vELqUZaiKdpJ2M30DwxfDEV6l87XXclhcr6GDhXuf0zSvEZxEubF1i7h3T\nLBYRxzNmy/toQR++qAMpO+Xu0QnCxESILlh5Qqb6IM6GR2AayRDttkg6U3jtAhVHA9xrBCp1SscH\nOLxxfAmZWDtGcDkiIK5yt1tjVjbYcQUQN/qYUhTh8ICdbBD73gSXOce44aWrudDlDjbLSWfe4bmn\nljDxc3vpxuue0PWtc3JgUdzZwKoKdI9sTBiwogZ5MBC4mAnxtW99CYBP/tqP8rBxTKCR4rVrJfLz\nFr3jfV75y68jGjJPPfUiejgDozLlyVtkQiaLjQabtSLB9i2CXpPm/QM8qwnWpw7EihNbuc7YMSKa\nDvJWeY7gCmFMOlhtO4eVEwI3h3jyF5iKMhILfO+9glx2Mg45OKiMsA2iKMMawosKKUeXI7dIsxfB\n47KzcAUo3LlFa2YxDzdw9EXmZ6OEq03GdTuoNpSCn7I0Yia7SVQPGPUNRpEUUjzFXDDJBGSmh368\n8wOWd6HanfM3fRvP5C1mYhxvY8qw4EI73SIzbaDhw5je4OS4x/vvPwqWX3jxUwRnUKt38V2M4jH6\npOxLGldOePfmhLM/9lm8oTqmd4uw94jDnhNvo8u0r2ALWvgX24zHIveCDdJnkojCEit+i8bBjLFr\nQKc95rT/19iez9A+8pGvb5EIB3BtZlnk45zXspQ2ujRGTrybjyHONMzv26SQiSCbCs7QFiuZNLLn\nkKUp0NdL5AOrrDqCOFxj0hGF6lLGH3cyGRwReHGT6sTO5ZfzbOS8eHd+hA//o0tcO+3i9s4Rh2Va\nwRD1Xo7BSMNzss9JeA1DsJO5WKPc1fB0bQzCTsQrMHHa6TbfJpd3YP9HBb75h98G4CdXP0S797c8\n86HnGOypyI19xr44yq7KdP0CmrPJQ6FMzPGQPk8yqtaRd1Vq9hbiXpu8a4FnGaMlGAieITl/kebM\njT52obrWmCdF2v1THAd1JK/MMhoiJg4wVhL0wk6qV1uEUxaRTJybFYW4KNAUDYo2DSEhMhvDoqji\nHktYUT8u95TZUsNvGPQWbpTSHKlb4mH1DSLaA+bOAfLSw1q3wGziYCzF2ExpGPYkJ++VcCgWxcsF\ntLSPG3ffY3ZDxbf1PM7SCH3QJS5usH9rijYz6TdaDCcm90dVFqabx71JvvTfHvW5JZ99mQ96M7zv\nmpCeXqeyNIkPBeZJmch0wsA6YWGuQrbLdvQig/GMr/3Fl/lU9gXqvSSRmoHjpRT+GyWEJw+4xUMC\nrg56Kk1YPeJo2ibtbHMiQtqfQPAeERxYVAtDnizbMHJ1rKlAIxRl45wDqaMRMnQ6gxQB0cCx+QDj\n0MV5Mcmie5XcSwne/a/v4Yt8hP7SxBbOUhuFWHfMeftLr/Pc0y8yl1y0Z5BmRGOp09x9g3rMT9aX\nZaL0GJst9qcBHhvMGbgWSA6TkKLT7wXwmEcMpD5MgqjxLmbSw/z1CutFP9I9ge/cflS2efGnkwxK\nWSZCj0XbS83UUA5kJuaYB0eHoNhxyxOCgyEnyoLWqEZY6iKGIbi2hf63u5SVGHb5lKrmIS3qrGQv\n0G1c5YmtLJ2Ul5WxRuyygmK1GWpxlNUAtnGFVidNxzXDLkf44OYZ4kUXk4GDqDRGyO+w6o3jW01R\n05Ycld8l4vZwJiqjLyXa7hmOjsaVt6pMBxPKdys8+8JjGO0xsUyfvP0A/aVNsh95gua37pKrd5h5\n/OQ6CdSEioiHkK3MuvtjuJ5XCQW3SJ8rcupQyQ01Bs630GcrxE0JyTehcatJsvgSX/m9R7qcz/7q\nj3P0F3tsZKLImQETcUkmuI4mhOkLfaanKvOIg6f7IoO5jnx/wcjy4E6NkdUunpqJZWj4CzVi+3kO\nvKdMhjLJfJG2bQ99voU2HZEJRhFHIoYZpywsiWUaCC2LseYg23bTaY6JpQoEj220hBDBpMBQFBGC\nEwRTITECeyzGoNnkTDCM1QlTizRpJwKEjrwYWyKTQQ+tryDEItRmEsHgKqOojexmnHf/1RXq164y\nDW1gelV09xaPPSnxduU6c82kILrJzc9w5oeewCMZjKcdPvrc87zwG/+SLy3e56f/9N/zx1GRf/7P\n/h5A1L/7T1/8/NkPfD+RiUrB9zR3xAZib4rdqzDe9yFpB5iXE9SdEwyngb1dwG4NWcpJxPh5/uDX\nf4VPfTzItCHg8wtsCilmiTmDcBO1tiDWFhk4e8jDs7i0BsnoiHffzfNMzovujhDKVLh3EiG56kXt\n6Gi9EXP7lG6mg6sSQJOX2N1+bKd+bgyanHs2w5HNwfhERdvwYRe71ManbLs+wiIMwYCH5XxK3FNF\nMaE9E5HNHgWfk1ShhjGxiEfChIp2Do/sSC6LC8UUVaGPOuxzeR6nfG+CFPERTw3Jqir7OEnaj2m1\nhrzxzqsAbF36cRpfep8zgwpP7WyiCE+Sf1bnnO8SXMgxmJ7Q8xzgV002ZmepKyOkyZRGwktdsui3\n1zj78QT22xaq1UBJQqfuZr244I3Xb+HJbbOWj3HvZBf3ochKfEl9e52I3mR+z6KZHdAe24l6Z5gp\nO56RB0eoyplckMm7YY40G2fQES72iZhB3AEFZ9pF1JCJJiW0gI4qPc5KPkZdlJmP3uLsR4rs37Q4\nMmfMg5fZ8IfJBSYM3R6kcomZ04FlGkidDrOMH6825IXigD3BS0gc4u5rRMYqw4BCv9tlIg2JtQok\nP5jg63/+dQCSz3rIPHuRSBho+iB4Fs96ldevTTknpHE910Uc+LHVWrQEk/xUZLCZZNRzw3SEN2Cg\nzofIQpaDV09ojQ4pLXUM1yZJOcRgamN1K0l67UniahabIaDbtpiVDaI3dIRNDX3hYVK9gRr1MW48\nwFXeJ3y05JZk4q+UMNtOppU7HHWGRM/tEA3OeaNdYzzsMe6qLAMahcdz3NNKxMb7LE6b+Ac3uH6y\nTbuU4/Ar97h+9T3ktRTSHCQ81Ix7pO05IvEQ0n6J3cWA4sk6KSJYVYuB10eu7me2HLK02ag406x+\nOM5f/fYjXc6a5CH5yX9Itb+LOtunZffiD8hEQjbqYzdel4/AsM9u3cHl6pScL4C9ZycVNHHYd6hG\nNcIek3Dezrf++hViF1w4tlOYkwYOWxvv+07KLS/Op5bMQwXkoYXDCNK+V6EuVNj2XaZhCUxOLQxO\nWF/VcJ648XimHNoHyNUR8nQdxWgzW0ljVjwEMDmpGfjDCzoOEyGoI61prJ5V0A5Myj4vgfmYjK1C\nomdg+YK0HTLxUBTPYkrj9oj+e1U8rgjZcIa79RKmaad4fs4D45hc3IksrBFNylSaUMxsY3p9eOZu\nvvrdLwPwsR/8HL6agDTbw58r0jp04My4aTPBe5rib/feZS4e8kZ1hG+uUzp1899thnCrDlKrPWRD\nx4jYmM3vEbWJ7P5JGdHpwPONuwxsEU4qM3zPFvnmH1Xpz5skfUkGuMjsLtE2o0yUKcOXP86wXqJz\nsEff64RUjui7b7JfuUHxhRzGSZfaaorDXQcH2S1GlkissIrSmuK6kONSNkWp+h5P/fiL7F5vEBOD\nNIIpHG0Rf1olUV/Bbe5xU3YzXngxbCHipoZ+7GPuk/E3nByXDgiG7fTjEp1ZEmVgZ8PdQ+kXEbbD\nhMwetfqC128/ynx+8rl/QNhoMnw44oJ3Rtq1waR+zCKe4rRk47nH8kTlJfWcD195zNGszEnjlGJw\nhfv7x2TPhtHsUVZtCpkTjdOEm7ZapvRqC9WCakNFLIj0HCOy4csEUj4G+yecf+z7qEyvc27Lg1Oq\nIlqbSIk2u6MTIj47nvaA6kLCO9qnfH9M0i9y/mIcvTFlVs8Q0kyakRm+qsY85cDmcvLHf3IFx5Np\nfHUn2U+egSu3ELsiRnDGnj5hI+3hQXOO2fcRJsbQbaPuMZhdbWG5xtitGkm3hGDoKEMRSTSZREsI\nxxatcJza29/m6puPKjU2zv8A8Y0MrnmZgeInUHExMNv4FgLtskheUQl54xzcHzFxTsgWdBr9KnS6\n+H1puqpM1RdiMnAxCPfIOkXs0gRjNsIb9qGadezzDPbJMeNUnEHIyRoOJtqcnhJD1EdUVkZAmLBY\nRovFSCRkTkY9fB2FoKOH7jRJKV1qyzG6P4fKMXNNwrDn8B3epx7xsbQmODspHNMFzk4dyxSYBxOY\nL1lU9lQc1R6PLVMEbVOaPSfpXJVrp2PyzlWC2RVsM4u33Pf515d/lg+03iL4zn3M4oLsv03htC0p\nf+THefXNb/M//4tf+bsPUf/r7/zu50OsEJQ1dl0Ncl2ZpSPCYOZFcI+xp8+AeIrTPsa0DVn3BLAo\ncvPqG9z6w11+5qeK+CSBTnMCa06ciotZQ8QtJRHjCtOd2wT9ESylgXmSZp5wEE0EmK8/oN5cIk8i\nuGYPCQazqCEFq9FEv7ROWg7RWbQJLzs4AjGkwAhBnbF9/gwaBoo+Rar2qZ/OiDdb+J7ys73jp+cb\nwIrJld/5EomPPsOQLlogRGQyoD91oYRdWGaXWcvBcmHglXtoTZNxJM5a08dxU0DanqM4vMgPQhwH\nZAIzGy1ZxZ4u8tY3H8FA+vnPUtwReTr2IvecOuryLervHXNUv080vYHovIlDWiCZCfaGNU7vC8hm\njLCjhTm0MV8uuCuF0VUdQwng7fZpcA7FLpCYCfQTE4TTBrYdG7nZBlVfkbQIEc1DV+8Rrq3CZoOQ\nkqQ3GdApNLH9X3s8++mXcfps6PlTjPunOIUCofIJcm9ApzykHDnGe9figbdKwlmHxoyQTyLhlDg5\niDN16SytCBFBAm2XzqhCaM/AiJQxH56S307jDc+5ceV9QpZKxRcgZJsSdqS5VxTono7Qw3XcWpPO\nXo9XKvuMjqfcuvNI0PmTZ36OzJaDwNLPrFPFaba5tz8jJi2wMMmtfwJX+ds0aj3C5pwjm0Fy10Xy\nfA+HnsR854jpC8/TVb9DZCNCoeAiUSrilse88/AKl3xb+BJPM++HUHd7XOs7iTQ79PIHJJMafvsS\nfeJnLgwoWjrJWZhOehtFseMcDbHZTLgcRvMmSBoy7V2DiJgE5wLRiNLLeHGYQZzudWa9E0aLIN5w\nh7E6o/e2TnEtTnjwHmY+jmf0kJZdZjDxoApRXMKI5sjEv+Yj5hnSO06z79hF8CRJtyMI4pDw9JSO\nP0yhGOVvtnzs//ajyedn/od/TGk0Ri0PmKZsxMcbhAcedKXLVOlhdbaQM348jy8J9ytYNTeH0TrG\nSQifv4XiHDHvxjiUH7LmuoCQ0zEOZtgO+2i6gyOpz9kLaXTFJDvzoYgOSv0lWviEbM+H3ZAYeS3C\njluo4Rgpbcm05mbmlIm3E5y4H2AE1gn2q1SqSaRZjYUewutXqOYPifQ0HBd2yLryXP7Rj3PlFxJk\n4mnGN1towzLjWID9e11af/w1vJEsotOP317BPRwSC6g43G0kOUV8/SbFQIp+KolwMkKZT6hEPKQy\nCY5KR/iDHfSwyne/9mii8oOpl5j0O/y3V46Q7GMSF6P4QnViNzr8f9y9WbAk6XXf98vKqsqsrH3f\nq+6+9t7T3bNhBsBgGSwEMKJEQZalsETapsIOWgqZpiCHbfhBkmXLomiHaUsmbTPMMEiKAgiCIDAb\nBrP1LL1NL7fvfm/Vvbf2fa/MrMz0wyAm/EaG9SQ+ffnFyYgT8Xv44v+d/Oc5hXMeQtlzpDZfZMG7\nSqLbZqpESQgerAUXtWqJx84qzrc+wAxkufeWi81rV7jsvMRxKMDyLzzN/EKLWf2IX/krz5C7kuLw\nrMlROc3K+Q1u3nyN9afO0a09JDGVMKNO9u98wIqrzcRRR/JfQo89jbF9jLQq4/NLNF59m2EuxIFa\n4EE9STo7RRHr3NZE5uQaQZ8PnUO6g0PSwxnqUhTTuctGPMtSMstk2iHsnuEY64TmDFolG/n1AV7Z\nxzQlYzciDGZ94g6Zs4KFGnaQGyrUhyPitjQ/+JmxfONbqzy4W8F77GfP40MUG9RaPoKawC/8ra+x\n8/672C2JhyOTxVCA4MzEJk/ZjNhZcOf5wi/lufuCRc9ocyCrCJ0QkzOdy9evEw1dxeeuQniN/Mji\n4K6Jb67DmRGltrvLynIGV7+KpYd5r7/L2dkJXkWkJzloBO2EezPunEpcfF5ktmhjLLrYNg/QVA8j\nRcShDPGYa7jDbpr3B1x62mI6u0J45uOtrZcx8z6+8h+vMWwZjD+KIeYjhCY6ZtdJ7RkJRz6FOR6w\ntlrAitiQ1SxTeY9OaxlfyMv0VKYuyCT9F6kc77LwxCVe/sOfAhC7HCCNgmg30W0pHAmJwb6OdMFJ\nZbCLa3rE3UdFtFAXSYtRN2a4Eipur8GdowaD6AaaW2fRbeC2i8iWiqOXIujtUlGjBBptwj0XoiLi\n90rMagfYJiY+hw2H3CTsmdDWJKKTHmJ3hTNzD3vTjdAb0h9nkVpj5KyD046baCtJeFhFCUdIDGp0\nag7a/TNiWQv9dJF6oovbp3EiOEldAe9Gh2Ghha0uMnfjHHvDDrsHFda/tsGffOddbriXqIw66INd\ndh0ZXsh+gSfNLt//44+Y+9WvUn1FYOoL0bPXGZxUuHmwxT/8L37t330R9S/++3/07c98fZNZP0+p\nMsBwRbDCKXLOIrHnokwGdxkvPsG04GdS6iCclmjuH7GevsiNb2RJyFFK7mVGYTvK0MCueSjMOsTm\nO4wCCgMlRVerEH1/QDniZzkfpyvZ0W8NCCynUE9nDKwk3tv7JIQhLoJERyP2D3WyCzaODpxsigM6\nrSjakobDNeG4u4dqLiG293Cvb6C7Q5gPa2z5mjgrp1y4Hue9OybLi8/RPewwaHSY2pZJGDpaUKbr\n7lE6iWCuVFFKMo5Lm/jeGGM3zhhrKbz+DGanhbUexzeekA5PWFRSWF03r7z1fQBSX3qeZ1oij+7+\nAcFLQXyZJ/GEr7L2tINq7QA6HlrTKfOagE1JsG6qTGodfHoQYWJg97ehN2Tdv0HtTCedsxFuHdAK\ngriwjjM0oSQFcPSnzC8GsJ9NcN4sYJ/6SYft3Es0uCg10YUo3mwABRlfesZW46c0Jj3a7wvU/CPa\npweEI16Kvnk04xBTjZKYG+C76Ue1nXG33KHcjTPAIHXRxbBkojYaLGhDSrMBq/PX0YZtBMuLaQ8Q\nIoogRFnNTaj1E4i9AaPhlOFSntBHuxxPC3zGDLPjuMz8sz7ymQ1ymxl+/EcfD4T97MVNBv4sitTg\nuFlBDDrRPB0CF9KkTh345RqNtkJIHFOYtOi0a8w9FYPHA2ZNmfBLCRo/ep/eKE68Fuc0NKY92CdQ\nG5LZeBrPdhZz4KF/UMOh9JiTfEwXW3gUAU9pzHGkSaxvImxuUmh4CDHBW1WYShZWUmUoiAQbEi0R\ngj4vbqvMvUqT6ZEHSzvBG3Dh/aiPeeqk7Klz3umgdA+CUS/1aZ/erpt0bcj0Qgj9+Jhy2IFNcxKa\nb7JfqDGVRBKXY3R2DKQmyIsuEq0hI0+IptKmX+rRXVZp63N4v3GNW/wGAM+c87B46Qi6DuaEMP5p\ngDPJxGm1EesyNrfJxFZhI3iFrBXiQBpiq57HTJ7SresoOR+ecYeO7sNt93J5Q+Wjsw5bxzs8cXmR\nxfkY04VTHF2LsVjAcgYJxy28vTW0iyHqnQHLQ4MHJRuBeA7N5kVoTqkabbzeDg4zRFQbUhXSrF/r\nE+hF6U4lZksPCZbDyJM++ryb5pHFdzZ+woI5IiKFEHEhTU8Z9hKkVxNcWn4W36dd7B/fwn+Spx5f\npnfxMt13BUq2NiPPECU0xj0O0R7OOCqOWW8FCCcUhhGdc04/44nBqz/+2BMVnyUZbD6D/Rk3Ad86\n8ROTauUW/ug64eRnMQslugEY/8k7BFeyzJb8VO/dxS37sHUC9IuPSedWMGWBkXCCZzChUjgitx7l\n7r94i93aTc7JWba236ZSG5G48nkaQYHXf/OfsfjSS1z/9KdoHE+oPyoy0ePEY160agO8i4S8Noqz\nGuKsRU8ymVod5oNXSS3OeOkLf4mo8Bi9us+0YcNcS2KeDclu2jktmJwZGt7MORqTBt3oOmcv3+FU\nyfPw7puIV1dYkBKcnBSwx3JYx3s0Qi7UvRqZgEziVOHI0WDuQhZtMmYgFTBGNg6aEz68/7Gx/BvP\nv8DUdGEF+5w0K8yLK0Q9MaYXVR6/uoc31MOY5PHEBxy/2+Pyxhzf+Z3vkn3iHFe+usz3nv+AcSHG\nm/VTsl0Zm2ry/vYDfMtwNulgGg78Sp8f/NabLMkx9lpH5JUAktNP3SghKEGcGxYDv4sbyMy7llCX\nOihtB0rLJPKEA61WRDgBalOmTQdhdUTFFiHTc7JVOiBQLjG5LGGcwaxuYMU1BlMvXs8azeHrFA8k\nnNEg2uMxnoVVCq4+pVcslHqN5TBIz0Vwjuy0umPUXhwhuE+7FWQvDMI7GrOVMJ5JA7Hj4rU3P57V\n+As//x/QGTWYxpaoHrzJYjvJJDTGqK+hiTpKU0BZzKDIccSQQGfWJVjOc2L5WQkPCItQb83IK2Ua\nxik900XUPMFU7RTlNGpQYzjyMY7aOe43UJw6WmARMTBj+FijFvOSGzsJegV2g2UylRzVnJ1MKkWg\nW0HPimhtOw4L+skTRFeSslGg5kmQ8PXRDYWoPqQ7FLEPOixK17DFW7icSzjbB7Te+wDvnI1UcYin\nYZLxzbh/XCAQ/zz9jQnDgy4rqzf4X/7n1/nrfj9mPMD0tZs4A5f4vbf/hE/HRDIvfQmhu86bH77F\nt37tL8DYl3/yj37921/+y3+D/oJFUFBQqZOd2ZDiTraqDRpbE1Z9UYZ9lUBsiufRlHDIx1jxYzo2\nsHtvkVwK47lwwux7Xl7zbZFjmZErTrVwG5v/0wwaZ3RdGdyRMtKBD9FVYSxGsJ11YclCV22ocpKp\n7qEzbWJkRTwo5GNz6LNtTGONofYKj96/jzAfYv++gmQopH1uhLFA3DimIinknB2qN3WcI5VxMkQy\nasNijiEmrkCQnqRiVi2am0mM8hFe7znqcgBB+JDTfpWkEObiZRObPKA79tM5aGDvFam7JLZHAk3R\ny903PxZRAeen0B0m63mBUnSZdEdnWH+VD28PiBEnYdtAGw0waxZe9z7vTMtsLpzj/UcvYx/YmYav\nEhw4qasKwudCOCsdPGU3/UfvMH02iH7jEv5+AX9pgVrZRmk4Ql8sYm5m2GscE+xNcdmus2XWsFkb\neKwGhbpGVnOQuZ7Gpu8wGEYJdKNYa3ns9TIt08ShuAg+HlB7QUfYj6CubDCvF/jeK+8QuBog9bXL\nhN5+gxPXHH5fBkGQ6XkGNLoBipUHhNZVbOI6o/u7KNHr7B+OsZ0+wJG9hjwn4Rz5ePD4B5SiHZKH\naUzBzkHV5O47H//VmLrxBQTtkLtvbZHohYjau8xGItnwBQqnOlJohHfWI1iPE1eT2JedyB6Lfs3g\nYLmHW3YQEDUYWcyv6ey90eDRuwU2Nn4O7aZCc7aNKT0Gj8kgVwDLga0zQxu2mDmc3H7jGOmazGJ5\nhtx9l/rSPIPDGtOMgXoQJ5mSGdpCBPodVOOMkOxg2rPj+W+zXLB1sP7VD3CvPUXoU3UcjTDbY4Xz\nUoeP2g0MK0bcZ0dbVHAc68j5iwQaH9FwXCFhzjDaMzaEGR5DZ90dJGrp2AZjfGEXXc5Q2zo94zHb\nR7usPedn/ttDfvi/fvw576t/55v4ihFOTZmOq0VQGhAeNWjP8gyTKpI9QP+kSufOMXRX0YYntHoy\nXrcPb1xk6CyTWLiMbO7RbE3JXX8O63CP5W9+hkC3zv27dwiP9vGP83gGFsakRqPbpRk/Q2wlsXug\nMnNzcUFB7XVJGjYeiscoogdVDqGpCYIpi/mxk+3JAQ2vjKHVEQdZhNGMR0MZbyhNLG/gCnlI9aI8\n2C4iShHU6DxiZ5tQTKd+cMwuMdY3fTTiYYROk9MHI8ZPQnAuzmI9xex0RluyaN2RCF6zUNMCjYfv\nI8ae5LgooHg6/OTlj8XAMy/8Cuagw3oeun/4R9i+miPtvMRhfonqpMjNB6ckw338QpKO0EVTdGa9\nIdJ8nmlf4/yNELvvznDGRfynMt7LIUqzPE3nlDX7iMdnSZTlMap9HuP6dQ5OX2bZB8LmRUSXjPrb\ntwlPDnH64wjxAlJrhO/yIufX5rhbFAn2Zri8SaLlY7LmOqb6EGXSpbR1h8nAYlZ0Y7+wgFg5Iq4l\nKZonCHaL5CCP07NL6OgqrVmfZF9gcGbnisPFu3feYyWs05hC19vGn4hjjXucC/rRggqMh4SGE4YP\nNOaWVQ6LZewDL45llbdf+9i7+NLmNcRyEMG/SumVLQI3cnzzv/o0ez94gOqoYCeLc75MqGcwVCEW\nhaeWPgtWj8MfNCn9wS2kyHWGwTGaarF86TK+gsgoUyHkW2Sa8ZKwTLzKGtV1k1XHCEu3sXhBwFNc\nRNIfY1SmpGMuhrUTdnU3YiOAa9zAY7/McNeOt9+nn1Lohd3U397hype+zFmtjD1oMkkJ/PCVRzzr\n22QwF2C/d0YwlkEIukmNiri7c7SdRSrlGf/Xb38HOR4mcyriPi+g7A/REl7aPy3jVcKc+bdptFvY\nzDiLniGip8OgqhIanaFcD/H9t/6Y08cNADJPrpJS5tBLXWR9jLKu4moGmF3rEHSfot85ZOBJEvFA\nfeiCcJBO7Ahb1yKVN9B3nbi8DUrOPJlGAmvRgdg2GORF0j0nCbmDX49TVkYIxhDF3ET1TPBZRUrx\nBXz1BpWwQEx0MmhOsCdNbKcqtaIEmT56OckwE2Cu7mak2nAvuEnOFLw9J7WwD780xln1Y5cb1JcT\nFO8+RFsWmVpD2q0ZC1KeYCLKhydbVM0s5VYHj+bqEnvzAAAgAElEQVTEvRnB3Z2y/tU5bt4usJTe\n4KnNKI3GgNXsBk/82mcJffQA+dlFwt4IltXgtXdu8Wu/+hdARP3zf/Y/fdu1ucRSS4bNILa1NX7y\nxm9gd7nQAiOuLWfZ8vUZVONUPryLuuSkl10Bq4HR36auTLilufl7L/x3vP2tv8OncTHtP0BiSEqI\nMHJNyR1KBNQ9bGtPcmC8z3DBTrQ2pOZUCJ0OoTrDSJjEHQb9ah+KDgQhinIlier20nv4Ef1YnCXO\naK7kufGNy3TvdhkGvSQXdjh794TkE0Gs4kUmc3ZUYYNkUuPAE8aTiZHyGhycDQlX3PRDPaJdi8CS\njboxIzKzo45GKC2BzvwKWm8IZTv1tMX6kws87nVIqzls+pjpw33u7H/csbxVP+GX/8P/mkLNgaf7\nGLvioGTfwB0TCK64qUtNwrJFNpWjUfFzcS7O0HXG8spncEhBem4Px8IWUjRKwL3HqsfDQeRNDgZ9\nhtZXiTs83OsUSG1kkKQT6BUwcgkyW13c2SiBVI567yF9nxfTPkFZWqJ9X+PI0cV064ymKWQljqW1\nyahJOroTGjPEA53O8yESb02oXgsiKCOE+Tyx89+gdJQjpBRxHoyxT9sY6SmxYRJb7ASfKRG2JdFK\nCaq1PiO3g/DShEL9Lk999Qt4dntUhlUCF6MkzK8xC0kEck5Gpp1LaT/f/+OPjb5LsRxP53+RoKuG\nJ9mnlLtKvmGnY3uIvyUgJ6P0qm76Np2jiEosp+Ft+jlTY6wywK2N6BXBMBr0WjLJ53M89+VfZa/d\nwl5zseed8UIzhs8j4fcP6EfdpLxdxhKE6kmMSwoLxpQBHoIrNxi8d4pT8DPNCETVOmrQTcF8jNu8\nQmjRw7blQzATqK/+D7z0rR6u/2yOGV0a4gjb3R62zIx3PuwTdi3jyzrICBqKGqE1G5K6lqf94ITW\nyhBnx0TScrSTJvW7EPYss9X+iNylec5u91BTfojNmCuNUSwD2wUHPJni1X/8MbcvXP088aXzBEpn\nDCc5yiMHzd0DYktLyP0wa6IHuxaiGezRqRdAW0KSdFILGsJMJBS0qFcNThsVsmaat04G6Cc69kiK\nwZGT+aBGeTTCKefoL6UwDAmvMqKmxfD2emxgoB4+wrfmoWJOUDQZsZdFR8eb8BKT3ehDFXUmU608\nJFSMUTY8XL44Y1ctMDmpMHG0SHoSON56A9m/RC8TpWMXSTlOaHgsxF6ESciOb9jHVZzSrDRxxDTm\n1GME7wre0gO0kZ1qJIBje0Yq7mUSnJFtDLhbdnE94sKQRgjyiDd+9HHn7cw//Lt41w/pPviI+aUX\nybljdCIzdPmYtaMO084M062QdDSwejK1apLgynPY3B8Ra4sMehnud/6YSHMNXRzQWciTH1WIOVr0\nbCHi1z3EjuM8dEvovW2WtAG1O2V0a5fUC0vYSh4q41N8kSXGZ32EyZiJIGK3HLjaHWaDOofleyQc\nAlpkiuzUeLPcwxFdxTwdkZ6v0/3Az8HuI4rP53E8sYLP00PfD1Lr2BGjMhNVQE2ESGfK3NnzItPA\nPYuz8Hkv5Y6Ozxhh2w+yq3up7bdoDDz0Sndw2qqUV54kVVNQV9cp7SS4d+djL9m5f/xzTE/sDIvH\nvPiNKximxIM7P8VrFZnZnIjLK7icCn/4r/8fnsqlmFkKv39vl7wgchJKICQXiLubeLUsremERMti\ncN0kb4jU3TOWR2WSDZVTz5iL2iEnkwHjwxKCFsXxKS9TycDqRnHL0HFlGZ4eMzdyIS8v0zFVTscH\nJBcUsoEUL//L14kv58mmL1AcbjHdjhLv2ZE2rhI1ZBpOBwnVJObw09eaeKMWftVOr3rEs/45nnrx\nb+OkRUWVMWsWgeseREPEtSTS9ARw3p2QFCQMh4HNHqbZSBJ3xDEvJjn1vI7XFeD+a4cAXPwbv8z6\n2RHCUEY5l2Rx/hr9yDZf+cLfYm9YQ7bJjAM1HLUApjjAElRslkQyHKT0eptRYorTtDHUlvDNtdFP\nK2heg9ZsjlDVRrXmx7ZgkWyquEfQF6ZMzuqkIn4GWybJVIxIr83pRMHWDmF2FER/iLFsojkr+EdT\nXL4exU6XebvF8Z4NadyjhhfFmhCOZZgZLURRw9IVggsyks2Bq2sg1jR6EZHmRGczk0Q/qxJ0RDmc\nzFCMITEly8PdY74c+zTX/BYHhSn2XhvV52A1E2Nrb4ojFiCcvU6rfI/XX9vhW//l3/0LIKL++a9/\n+1OfukYkneGDmx3y9jLroRjr/9Ecle/sYw8F8Z9GsOlV4v04s2SMSPMAqZMmfX1ActdP1+lh5y99\nk7HcJVJOIC5Eab+2TyuySrAoEHb3OLZBVhRRHCaeXYNixoVzNMA5dtCKh9G6FXytEULMZKZk0Mcl\nkjs9uo9HHGUGfO7rf5NaP4a07MK856MwtGNzSBy8/4DA81dx7mep9iY8kZ1inNWpBwdk6zq2TRvj\nfpHp/QpzsY9Hz5iuIKN6ByPhInPmY9/hIaWPsVdK2Gd99vJhFqrQmXXJyjkGoxOoqeQvuXj5Jx8f\nzv/Jg79G+OU9pjWNzYyPccog4HNyTo7z+J6LuWkEd3DAT+7vsSD5ecfVp7XjI2cfIEWTHDnvETg0\n2d5vkk4JaM/OofX6xNQQ1Z0yK0ub6EdlhHqZWHAJbSjjO3PSVqrMdibIgw6d0Ca6o0Xp9VOcziQr\nT69x7dI59PEOMXsLKZLDW3UwrGyjx1JYpQLmDZHwuI0rpeCYLtLNepELu8juKkl/GWUUphEpkZSv\nkHfZOdVvM+nMqIxdIDhpSl1sYplpUGFQ0kl7IrRmbUqHAivnFar6kH1nk09pfgrbI+xLIerDKTd/\n/CMAXvi5FxEueumnhjgrcSZ6j2zCoP3oAGc0g2XfYtw9wX4+werihNHxCbuil9iqj1rYwzPnv8jx\nwpDBkRen381hO4V27MXzVz1o3RrJ6zY6zjLC+BGyvEko7GVyz0fbfswgkGVpPKRVc3A0mOC9lGYq\nFTmZ66H3NnAHH+OpLCMW+0ysPuacj8V2FF07YemX1rjFgO76EvriVZrf3WM2OUa808WRC6PdgLXa\nDFtwyAfbFdJKAtFzTNR7BfFIQwgraPYTFA/MjdOQstg+aFGMWQh20PUtLiXzWLZzlBMSUnyOwluH\n3P3R+wCc/9K3GKtlbKKX11+5xYVkHvG5OTwtE8HTQvSNkIZ+XDEvqXSIiT/AwFFlKgTxntk47jbx\nLElofYPsU1dQznqojhKZoBtmM/ZrHqaWiBzrM21PGIkqQ3HC6mEYOeJhmxpz86vUWnvEafPo9CGx\nSxLhVAy5dYJDTFMNtQioIzTVRnIjRlcr005F8HZiBM7FSEUdtI4t5GfW6fvtiDYX4YZAz31Gay9J\ndLOH4fTR3SvTUjTiQQVj1Y0jt4RiFem/dg/7JT++oo++84jhgkFmL4OinGMQqhNylrH1bpGev8z3\n/s2PAfjPf/nnefhH/zur3gsoF2IcHx0wOvGRVCSGbifS1CA6dDINyKhTB+5AEVcQ5ss6xzE3cmWf\nSWyZx4U3mX8+gdfrpSJ48KuLJFUN66yDIuaYpHOEpn4Kjgr14zxZp4ZvaZVdZx+/OsU63SeV6uE1\n5yjM/Az2DujI86x4WozjeUYBD2dGhqlokN/LoycExo49xGmAWLZGLOrGfsuBrdvmVMuRNm9xEh0w\nbARZjBu4OKLRWsW/UgPPOsOEj55WIz53mdsPKqy4srTmDdbsHSJqgfDzn2U/dwF3+U1aspt6bIl+\n+ZDHtz+uGH/my2ssxkxONZ3F+Ii8eobWcVAbuFg4d53egzeYjPrMnZvjoK8jeeZYkaZU5r0412Ks\n+IYc3zoicsnOk5fi3L47Qj57n6KuEw2a2GwO+qqTpNal008hnIsykTVsbgn3jsihoZH0QbXVxINJ\nWHVRCw7oe0Wkyn3CTi99VwqpbKfkHrC89Cy7D9/ENnVi6EUsWxrbok4oOmO/1WPJYdFpjTDzAdx9\nP5VEF5fTT2Fjnfd/67vMfTqD2vLjNg2Esoi73OBOuYG7fkIy5QFZZ+pZxNdyMw48oj4UmDOS1A4e\nsPnFZ3j5tz+ufG4+cw1RyvD29iM25q6i/s5vku4O+e4PKvz63/9dvrD4NGd3f0wxOsNlONETU/Ll\nU0LeDRpijWw0ztg7RJ9p9B0uJoZEYFpFCk1x2JoMoxDV+hyJPlwtlZEZwBRdCDMLpxbmpLnNMJom\nO5rC4ghz5CcZnBEXC/TtLjy6n1ZVJ5IYYHekiC40KRoac3YRSbVT1k9Il2zMkn2GzS6jfISg04Ul\nHBFZXMbekPDE2iz4gpyEDQaOBdJLMtIYhuN1RmofaSxAq8+e18njH/0+LjFMQQTXVhVcc4jGCXlT\n4M7RD/nl//Tb/+6LqH/6T//Hb29evM7ukcbMLBO0+ZHsJt2jJvGySiO3ibu8D10/Dm+FcDRPveOi\nR5+WkUZZcRIcCuyeHTJzzhG27eM8dlGLxbGmO/g2VqlsV3HHNMSql0Z8SCZxkYpaxq/kaMkhwsYj\nbIqCKehEM8ucKhYrgQC3TmoY0SPkboDA6RmlqQPdmhD69DqbdjvqeEgsNAcNjbiqkPUcsSt4aI4C\nTP0+Tlx3CB+rBNoxHhT3iKo52hEJeTJGCUa5EFznQ2eHeEmmMFGJX7VzWLBwxFSSpp/TcpGez0k0\nbid6cZ7Xvvc+u4cf9wMJ/f2XyLz1kCdW5rE8Iq6hwMO9Cid5iUyojMcbpVMPk0zmaF/sYZ8MMO06\nPmcRddZACnR5+sXP0tBUpFgO9cM7DEJxPIVNQgM72rkOIYcPj1/mdKtLL9DDH07yWOizGp5DCzk4\n6hW4Ps3hycdJ5ywmxR22HTbUiUihLaHbAwxSJ8x/+YsUx3dpTKZkuyOccz7Ckaexs4/zjpNpFMK9\nJXb+zRlZdxDJlaXV0Cm7WlTrSTZkjeZ4TGBNIS016fcCuNshZK+O3y9x9GqRq+lVeuk+tVv7rLJE\nKr6ONy0S3bxEtOXi+3/yuwD83FcSBOrz2FIys70JweSY4zeO8AFz0SgFRWFin5FTFPQP6hw2nIzT\nFo6pk/7giIHaRnvUxKl4kLUM/8d/84v8/C99C5+jTs4WZv8uiLf26CyvIPVHiJiY2hk90Y87ecTh\nrVOEy8+SMY7YawbIanPYmjpGoEXlVpux005cyCGv9AhtdVE7b3IQt+HOP4PH36b4EzdOt4rhn9Fo\nGKx8+bP0z8skjiMIukiLHHMVkaOsyv7DByyvpxj7JoykCaWGm2HRIJ4W2X3UYm7RT6xWRbPqWO0E\nUVWhK+4zbmSgvsJkPOHOO68BcO4Ln2JuukJmKYA8FWhJMsOjBrmvXqPV3uPxaY+FZZGCIJKf8yC2\nSxzrLmKBOQ7U+4QSGXrDITrLnN7/AJcvi89TYzyN0/DILGBD1QZc9GRpdKP4pg1c1RGKK4YtW2Jc\nMTDMBsIkTHv+CqOtAP5+m1Aoi73pQPWckTIcjPYsFi9vYMwimA6FdPmM/lQmeTlMT3Hg7E3o64sc\nv/J9XFEfhrdEWF7FLg8Y2RO4ChXSL15D3buNf9nP6HCMs+pkWtJwbUQJjxWm0RmaX2etKTHyKWzL\n+6w2mgzsi/hWMzRaLV7/0cf9jo67XZ66dhkzn0BVDfILSWjtUNlrkbdX8QQ97HUKXNgMoObd1IsZ\nfKETvBeuYJ8OkKslbKIPd8RPeGuN4EylOm0z8xYYV53IHgPTbDGsuOk1O1yKdGHzGouOBT7cf5PA\ngyzCWo9ku0HHiqBpLvyjAakb55mcPESdM1FuD6kvCUTkGYpTQYz2iMo5IgcNYlOJgRXGEKOYi34a\nOwVc8+s4kyK57HPcf/9lZsqQtV4eVZxhhUz8VRNPYgX3R3fQZzN6tcekV+1IcT9de5uGXcW2/BzS\n48cowhL3zA9xhd08vSLyp3/w8WXnyV9cYfHGOko1z8O9fcR0joNqhlg+jHq7wcB3kZ13yyiOGEJt\nypUX3IwddjJOjUfv1pm7tEZrp8wUGX/Fg+FrAJ+iHfJCL4w3F0JSHlHuRFl5WmI+c5du+xr5eS+G\n/RRfvsgoMiPmjzNsg8sM4R0lmE46WMd2auIK6UYUKdLEkV/j8c77rClPM1Q7jKYWuXMrVHemnOqn\nXB5v0BxqWBGJoDRDtbcwOhLq0Qh5Z5vVL7yEdidEfTwi/VwYVWrxaALLU4Oo10834URpjtDNMkO3\nhNy206i36UsWff+Qyj2ZBzc/vuzc+Ntf4bBf5NqFZ3nmGZPUvMJgqJK8nia4mMOfGDEwpqx/VkTR\n3IwFL5PZFFvNxdCWxbcQRr7rRk7XGXZr5G0tZkIA4yDOcdVHxqoilpewhZ04hBIt5xjd1SVkk3HE\nm/SCIsnTDnIqymBcJaiHsNeH9EyVcTvGxFSZWhazvB9n10dhp0Y+m8bRcKIHRoTHWVRpQHMUwuYL\nkQo9QaV9hNkZE2i7USZbqJMU3a6FVGkQFGw4dlokrl8kkLRz9v23ubgapFMzcQsCH5Ruolxa5lz+\nab7/L3+XtS+8BKJF1JflX/3OT/kH3/6zjeW2fxuBIwjC3xMEYUsQhEeCIHxHEARZEISQIAivCoKw\n/7M1+P95/1uCIBwIgrArCMIX/3xJTEKyTmquy/M5O9GQRNw+YtLO4pzPEj04wLOpkM/XaQVkmjvH\nLF+Ykcr7We7vMnlbYyz0eaYVJ5U+4XSSpmSV8G5G8HlyLPuTnEyL1KUIQ5tBeBxk3xoT00IED2wI\noyKS5SXbdFBeGDPsWMRHPWxik4gnzMQdZsFcZcs3wq4eoGzZ6b5yl9LsEK+zhMYxeMEeOuGxPGU0\nO2Fw+IBMccrSJII9IOC72mf5WRut6ATl9D6iVmfYLbHfvYm408G2VMeTcFKz7LhCizjKMlVlwHo4\nx9R2wNjhYac/5OqN5U+w3f3NO8iTNEfeCg+3xhz7svSDDi6pIx4/nnGfYzTxLnt6k0PthF7QwmfP\nUVyOsJvfhNEShy9vcTmbJ5nJo94Tcd+yobeLRJ+qkdUkDk97FIcaLqmKcpqklymy3h5zrEd4MDpk\nwbfC8cjL0KfBowqa1WeyP0RN+/Fls0zvfkTi1Evl97YIO32cu/g05fwNXH3QKx8iyX6mGxoOf5QT\n24QnL4fxdM6QO0ekhifoj98jLtxn6jc5d95PTZogB5zEYyoB7wjlnJvaR/skz+UQbwxwSRbl+0Hq\n/mOOUvs8SNXYufsOrzz+/ifc+qOneTts8dT582jKbU4edsivO5ESn8IIRJlvy4SMFMWBzNmVLINA\ngv60TMyfYL5zmcFMQ7Y1cR+9hpze5jPLP4f75iGuuxFm7XssWWWcTyXRE30O13r0W062AyKByDJq\nJUvSu4ZCFyMYZHG8g+k6xraaQaj5eOmvv0RSXedR1aIjxmhvnpEc9/jM4zHuowcUbtmJZkUS/RPq\nxSOWoxs88BjM35PQkwZHyj7L4TGBJzXMkZP20TIjn4Q1jTKbJFmUBORzDqyuF3dmBWtQwiFBWp1n\n5BkyKIrYOjk86w3cjhrLoRc/4XbRXeWg+adUb+4wcExYzfhZ8kyp77/CuCgT6gi89eMK2oMJb791\nn6MjjSVPEGnvTVTRi1uaEU4niOQaWNk04uSIiRbFtwCrapi2MqZtDajYTNyojFMKbt95HsYr8DhB\nel4kXDPQOiaZ26esxU9QLoSx+kcIiwGmBwZ6DaQn1zg+KqAVK+inXQRXgqB+yOCn7xO4fUwqtkbA\nfp/c88tMexqRMz/2wgEtO5hbu2j5JU5ePUPKfIqdD2CWTqBNa/TlGqVuhzc+eshU82NrpjlYy9E2\nSiwcKRD2UPE5GB8naVaGn3D72hNfZ6hIBHdmXDjzc1o+xFNy47cpoLop9EzCS1Fudx5zUh2hLRQp\n7BR58Pg97u28y25ggCblcPk38F+YockG4sTAdJ1jEnOg1FQK0Qi5xCOW3PsIph/rT485rHUIlbM4\nUy5Kd/pI60s4b8vUnAHcxNitbWHIY3zVPpVGn3VdwGwOcXm75JQx48cPUTsLjMPXaYeSNKdhIvR5\nwg3edz5kOEjw5q2XubC4isfycRZU0F1ubGdpMot5uicPkdoyHtHLjcQmNZsHo5zE99CJ5YzRqO1Q\nbQsU+03+/VyS1ckHbFdufsJt8SDCa2/OUPUq8fh1Tko2ZNsO47OHODIh7NI7XLuRJfvMmM1nr3L4\nahWhY6dXiXN17QI/+u1XiERXyWpRHug6zqgDt08mk5OJKyKFN5y0xxfYzE/44Ucv86+/66Mb6NI7\nrNHpOfGdugm+66C83cOw+alUqkgxlfBUYjHo5LknIzSv6fQcDc52hyQPg1iRBlWxRmjex0C/g+CU\nuWYuMUm6CDh9RDxjOhOLdN1g+/4tZn6JtneCfNSmcvoB8SsBPLtjqo8Mnl7tU/cm2bcJPNo2OCn4\nmQghjkolEvYk7uU59PqA+Pw5sldHn3Dz77iIZj7NfBwUY0bv5hbRhb9KxJhnaT5PbfWz3PjcVfKJ\nK3hdFv5BGG0Ywimf4lBKaMMqHbGLbaCT1eL09BRNMUg/XUeZd3LUjFFLTKkOHnGqhNhoujgnBqj1\nLLRjO2J5wqkoMPbYaQ8vI4TG9FaHdHMy7oSLYSiGIgh4iiNOoibGpg9xd8JR8AzBFiHk0Jk8qFJq\nj7FnUhzuvoNNkkjkzjPL2WH9Cm5JoNCyUIICTmq4L/q48/4rVP7wj8h/LsWjH4yRIj5aN9/h6qUn\ncRou/u8/fJnct/8yN9u/wX2jx040RCDk+3NJlP/fIkoQhDTwK8ATlmWdA0Tgm8A/AF63LGsZeP1n\newRB2PhZfBN4EfhNQRDEPzMPbmpbhyyNXFQMnW67TLHlxKmXaLUchOISrg8SnDRazCVTnF9L0j/N\nUNgReHRmo51I0DpysS/uML475WJUZevyHK4qTFev8rD8BoO6TvKJJ5haBvagivTeB8T3PATiOqpW\nZa8hcdtRZGlylUL1EM9AZm9nQvRSnZWJwTQ6YeOwTdRY5d7u2wTqOuNyiNT6FcSQQWg2YcvXxOj4\nOe9141qKYQUUgrUMp6cOyj8NM9/5CuOYygu//AvMglFc80sEOjrhhRGWYbA+6bA0G2Kk+sz1BjhO\nWrTLBTK9TYS6SarWQBr6P+G2/jd/nkc8TbsfYrj3+6wffsgS8/T2u8TDFzm/HKZnXyBeaxMZXSR6\nz2DkmZBWz7G8V0d2iYyTfe5+2KP6e/vkF3NkywGSpoV0tsJAKJFsj/BGZtwvp5n5a4zvy5TtUcSF\nuziCi8x6LWLZ9xl/cJdtqYHDEllpnWDs14ieJQl+3oHNccQkW8QhQXg0waPv0XBrTAcm2/dbuN67\nR/aPb5GcbtOfNRHOZ7Gca4wjDs4KNoTtIQXRRK/Z8diTnJUs+kM3puTGua0i+JN45mR2OidMd7p8\n5kvnmAlZmntV6r/Vxqd1eHJh/hNuUmWIeNJj/90H6IEVfC+eY5a6yqlvgOnYo7E2pFIZopwco9XO\neP5SkiuD87z71qvYXVOG1hQrFmTXJvDe2/sE4hHad48Y77/LtL2MmUoRd2UZdySEGmgbI9ZCfoJz\nfqxIlMPJkJkUJuYQ2Xqs0h8G8Lpd5CQ3je0j9oJnLGWDhB/rlL43QFUXIB8g+k4MT6GBZZV586MM\n+bXzvD8fw9M8ZGCItJplzN5VPhIbtM5EUkaDp3NeugdHOEOnJIuHTN1ernifpO8ckLhfYjgXojiY\n5yym0r57gB4ymYSrtHturFCFu7/9q59wcz4qY/MP6bh28cQVHk13OOoXmdQjLFyAUc5BNBgENLRm\nG23DJHzygFKsQ0ZTqHenONozjD8akkvbGUSGlIwPsR+AYHMSmya4EppDf3wP9ZJIf0fAuDFlQ3ya\nHSY8HMT5bvcUX7+O+blV1KVNxlqXmjPH3mCMZJ+iiTO06btYV9O49TKKQ+Ow7WB7MMQWTPBYtpj0\nbqK3TEYVG55UCNnr5jDaw20GcI38NGoGPvcUW6tH+ql5hAMDX0Qh7J3nwuoiX/3clyhu32F772VK\nt9+DTo5CvEexpzIu1hD6h0STS59wq+y8wcWGnZpY533XG9j0MNOFAa5FG0etIGMxgtwe0OxapJbb\nrO7L+FI2IsU+62sLeMUFssaEUeGQWqNEXzzBl4wwOnxEZ+8he4KfsKvLyw/jnHp8DI595K91EI0h\nStCLaX/IleAFDhwWnvMiof1dfHYHUaefk3YULRwh/1cSPByp8MUKsqEzymjUls9xop3S1rZIVx8w\n3x1T8xmMhhJ6MoF3cp8Naw1nM8kg1eGwWiOYLWPPl+mflJHRqJ/7DHVDx7I/QeftGtHGKSVRYzAQ\nSEwmVORbeH0NDss+am/ucT4R/YTbWf4Go5dLdG9rKGWVs60h2w+OKUzTiIxw6DLm8jGOezN2HtxB\nOGewUxURRmU+Kn3Aua8l0KUZ1TUHy3EZv1umNNzi0Ss36Q8LBMQCvpKP48pzPJv/ea5lbjC5p3Bm\nephJI44qK+xmXdgzy+zq+wxSeSalHdRmk8aynVG1ArW7NB8M6TtC2L+eo6qfcskm0XZnmGpDcjY7\nxyM3gcp7RN0lZOeU0MzCvRFk5BdZnHcTXskz2jhj7nMhbN06fX8JR1CmPchhX/QRCSt4zFPGqoOM\nusZG9mkOen48cpBQcko4CIH7wifcBnm4kK3z2v/5W+QjGSY3vsarZ7vcPtohHuqQu+jgUXuTH/xv\nZ/SqM9LzVZRJG0c2RczrRh31aM2byLJBUdeojwssTGfIWpyoH/KpGoFmAUczgmozqS26qXWnpJU4\nxpqDWMjHspihcqCzHB9yXA0xHV0g3vXSCA6ZH50w807puaNcnghsNtyEzkmstFYY7lrUG2MCyzMW\n14K43T2sWZfg1Mm9To3KYZ+T+zp/+ugOpqxSnp7DdKUw2nWSnVWMWITkBxLKtQ5+55je52c0oks8\n99yL3PjKc2yuLBMyNxCjLUrmY8b6+M+lhcuFOVAAACAASURBVP6tKlGAHXAJgmAHFKAMfB34nZ/F\nfwf4xs+evw78nmVZqmVZx8ABcP3PSqDZFdae/vdQqwbpfpnMzMPEqdMfrdGdaAyOIhS1AuPNJ1GN\nGjuREb1Il+vXdS5+LoZS30OYC5EMZtlQ6vSmAi+mNO6tVOhoOm1lmYVfWKG/f4RQGFOyicgeGYev\ngjnTWI3nWHOquD1zlOU+a2sOqrkCwuUgB4d+TqYJTu1D7LGLOCcWf+3r36RDnIB9zPUvfpXKuwKe\neRubMxf14QHVvpe8bMPb28fcnMNGHE23MzJ1FtMFfvjDP6Db2sdobaEZAezlNHMFP0eZJGc7GomJ\n+/9l7r2DLcnu+75P943dfXPO94X78uS8MxuxiwVAwABJUIyySIsiKYkuiXKZtv+h5CKlIkVKDiqJ\nsiVbsswqiRIjQAILcgFsmt3ZiW/mvZmX073v5hz75m7/QXiWZbNE2CxX+fzTXae+55yqT9Xp/vbv\nd85p9qJeui4/zqUQemCM9zRNvlWhM+d7zm2tY2P4IxVapjrMfop3jyQ8nSKHQoDmwgHNQhG324Lp\n9TnkWRGv/xUahWcUJkMaIRu9+yf0KxaC1h2qdgtKK0V1SWbqEHm/9SGhZw6mXziHlh8TsmaxxvxE\ntBOGFZHWRxXGWzV61iKjZ178rjVStQW0J2lOswr2Zpat3U3IRWg4BpjfymNtldAqdj53YwUxE6Ti\nWyEl6lhiizhSM0RDVqZzIZ6cnDAY7uMOLhH7gf+KhTd/BIfRSLZlxn1YRrREMPXDNMpO1FYBbwpM\nMw7cPoFeoM3sWoXEsyaop6wFbHz8D79Oy/nJZNEqQ+TDGfp6mODaReLlNFZDEaNc48mJGc2ZRL82\nwHduhbLJyjtbdzFeu8TS6z/Ae7sj6u/kcI5vEv+xH8e5dI34xSnj+m9R8+6RbxQwts2UlSl6QSC2\nIDI1lHgybVA82mM08pCctZJ/8h7tgZtrL12lKdo4/qCKGBXY1Y0sefyYbRKuuAlVd/H0rkZxvcde\n7GN8b66iii6unHPi9zi5unGIvxSk2svh359h1nuM81Dlo66NqJIk9XoBbyCCKydRN8wRGhWptO9R\nE1SM5wK4mWEwv0dz4OCFH3yF3HiC8+wN9HIXZXDKZ3/m3HNuda9GpNim5y5Sa5S5KgdYW7yMzd7j\n6VvHnI0EmFyoEzDZWJPcdPfcHAgxjPUWjysN5EGYptZgejaE6b0ipa8VyfxWg0olTWHybZ6aB2Rl\nP1bBQ+uuG0sqzOQ4hGZ8l5nIgFS6zvenIuRvzdOzlHjhS2Fyt+9QFd/B2c7QmNjZ7+VZfzbC8u7H\n7Cz4KYc6JFMT+gYnj7UGq1YL1BapGczMd4c42ybKQgPHKMr8pEfkxSTNRom+1YX9YpLuex/hDzvJ\n2RUs9TqVwyonvjTf/7lXuGT1cWn5KpfeWKU/zuGuG1lIKlRdl3GLiU+ebzaFhvOI87415GkAV/qI\nw50RhrodXENMoTTOl6KIXifh7ISd4hNWorMMzwYx9Sv0i0N6SoPp9QXcKyEcg2uMXSW6JzHEoEQo\nojLMmPAFMuhKDPdQxToYowgykdMRo94QYXiC9k6dghLFvuqjMfgAyeRgxT1gVBfIl9w4VA3n10OU\nxnkG6yLD6mPWXryAFptl175ILlpjccfCqZrD0hHpHlSI91qMzmVZKQS4bOxRXlfwWZJIyxm8pVPU\nQAbj4ZRefxd/MshwViDudjNrMJNsGoh0ZlnTXyJvDCFeu04698l7IXbs5Vo4wfFyHn3mGOt8n+TC\nm/gXQRPMNASNTsVAMdVhlIqQ73iwxOscm8NYukaMm8vYE32MpS776TL1xhRv2MOtMxeot/xMXjXS\ncn6MYVKiuzWlq/fRDC4Wyj2GHTt9b5NW1UvzvTT2/BLCZIzZP8fSy1Z8Rhdv3d9mr1hhdOlV/Ctt\nrLldxl2J+sDN4kmBWPUyDX8Og/SIkWTkgWBDa3vITEZkPzjg89EX2LbukAxMMB57MHnT9OqHtA6m\n9K1pxpYii9NTuiUBs+0WnqDGXqNC8bDAVuGQjGqmLlnovWek2Yw952Zw36d2VOXF1c/ztd98SKHW\nxRU2oxSnWOp2ot/YwaV1qa4tYJrImGvXsM/NUFZPEQx2tlUNQ1XAPX+FlLmG2+cjHRgTb4lIxRqn\nDT+KFCQxrrCWj6MrBlxzboR2m6nopJYxcjIaM6Mcc6ifstSb4DcfYa1O0I4njGICw4lGtydwNDJR\nUvMcOnrUmw+YLBxR8u1QtTvo+j2Un+l4ZTfNqYVli4OaLOGfb3Nj2cNg0sPYu88wf4itcwvXpQCz\nXgmDBHNNJ2+vtzCPryDaXXws9hD72zTLm6iBKdb+EFOxiNnn+a5M0P9rE6Xreg74R0AGKAAtXdf/\nGAjqul74jqwIBL9zHwVO/1QX2e/U/UfLsJaFwAlD/RE1E8i7GS5mNBLzNrTUmJKUwz5SCFIlFbuB\nfl9mvPuIhw91CtlDIi+YcRyccFrL8nSjxZ29A25/uEWgfMDMQonl2RYz1SAlrUrvponqvSz2kM7T\nvpGp1YYh76Iph7H029gHU9LpKX5DCuG+xrx3gHEpwKpa58BqZnS+Sr7SYhLoY763yT//x/+K+Msp\nBs0ELUXEHrpOZyRjnPVxUg/SPz4hVc4jmw7RlKeo+gxOqx+DMqa7YUXqZ4mec9IK5NC7dSI+F8l5\nkZhRp+mD3pZAUc2ztWhlkB4Q7I6fc5v83v+EbJOxeS1Ulmc4vyqhNuws1MuszL/E0OhGbKTRdp9w\n8h/ukG895WXTLWYPixifNtEjNygMRKS5VWbVE6Z6nlrbw2bCwsvuV9lTVLRai+LemI5lhdLGPgem\nWxRGxxhmwMMArdBgYBqQa+yzbZLxrb3CECsx+RIzl9MM1QGa4SyhNy5zNIhg9vVZv2ui52zQ3cxh\nXh2w0xhQGBkpjgIIAwc1d5vemTgbrjyH29/kK3feQXUHCH/KyGSuj019ih5v4ZzJIIWt7Nj6lGtZ\nWo5VxkKFR12BY6tAtL7G5/7xa0h//RZxcfic24l9i4s/qtEbfYviUZqN4ZCT7UPCXYneJYX0g33O\nh64zUEXCThmDGmXr3SKe39tgxT/A/9nPkDWbsd0tkWxrBKULLH7PMlpwlVgmT9PdodzLMro2RyMf\nonWSYEV1UDwq8fFX/hG2kpVLLg9Nwwa+hJ/ZfAuXO0PVXMVGE6+lR00YoVrszLyywMLnz1BIlfG6\nrYwfGulLLtaPCuibFezhCkajC2XWjiU0pp2145h/mS+fqTOwHCO/J1H6/XV2Hp1grL9F4/1NvDt1\nlocjmodFDL279E+TWJNT9u4NmbckaXY1Qs45erzM3T88es5NungN7ZUfQZxeQTcEqIh1xlUThm6L\nK3/5RRpFDa86jzhb4MQzIhY6phY6JtMLEQq7mGoZDN9usdCWEPUhYcuI8yYr0ZgRY0lHaaUJjopo\n/lXG8j7nmxF26id0BynEsYRsHyAaR3itKt2Bm/e/8q9ZeG0f04yIdZQi/OUYnvSYhGMO45k3uHnG\nzs1ACrXUZNVjYcW7jCuQou7swH4T0WqiaJpil7r0DT2eGkponBCY5hFCHrL1p9QFE4PuHdaMcUTF\nycDhwPL+iI3HXWwLMnJPIjuuEukFCbwSwy+HWBXqtMTqc26vf5+RzkMn2eYRkfEcpkoMNaVTNqUw\nBuIMlBjijoR1OMf+Hlyfi7P+BNqdFq2uDWF5QlZ2Yt7NU6j16ApZ6MqcPWtlZe4GbYOXRjiMLM8z\nay2wm4pwfGpDGarkL9pZiM+wh5tjtUk5vsfYn0RO+OnrO0xmdazdNtN4nbC5gytuRdNXKCo+gg4r\nGWMNzXSKKWABq4G2Q6ThXcU8LKB67BwbpniOY5xEOzwbBJgEVMwuO5WBjmk+jqh2CTq8RGMdxrkm\np2MzI1MVYdQho0mcCcyjjybEJ0e4pDMIh/pzbvfVMWlXBF/ey+njKC9ZvURcY4LHFnJBM+GkTqQ3\ng0Vx41g+ZsU54axfY0GuMju/SnNwSsYYRLYJuHQdedDH6lNQ4g1WznWJH45RYlF6cg+ro0c/XyZi\nbrLvkxlb3MyXaxjEMr5EDOusn4GxTDEypNa7yVtHRuZ6Mj6DTNi8gVg+pqF2wF3B5QoSuGCnmTil\nv9tiZW0Btatid1kZDo14yxNM8RjbwRzn597kcbVJq17h4KMmA30NtzPEufoqmkXjQdpOwCThVe4y\n7BlJWKFcqnP9rIbPZid4vISmL6KHPknnOR6NsNxZ5+3tPA3jIalWE+fBPX79X/4Chbe/TbF8ihzW\nSAS9KPNLpIsVMnKMRnWOklhA7GSppY+4f7LPukWnqVqxHFhpeyVEDbxzJtItEZ0gbesTelsyoiox\njJSxVgQkYxuvZKYTVPDVTIxEnbLo5XjVBm43vpadNbMPYbBHY2jE5VcwD1KUX0jhDfg4HY3wpwKI\nlTzStExYc+Oq7iNUc9TSz2iLsxhIsLQUpucwobvmOei8T2ezyuPCDp34mHQEGtFTGj6FxNTEVf82\nN8MRjDtfRXj0v1Dd+zahwjGC2v7z7AnwF0vnufmT6NIsEAEUQRD+8p/W6LquA/qf0fzP6/unBUF4\nIAjCA1GZMrndpysEcefmmK6EeTBvpKdVMGgrZCpm2ooH4dDHxnsfM+7vInrtjNQcDsMZ8pYk9qsJ\n2kmJmZCP1VQIz5kZEvklaukmj7a20C6pyIIPfZxHPz7E0/dh9BRou0TahiIWt4CDWeyKgbmAl2qt\nhbIq0mtPGDR3qcZSxIZbDNJDSuUaw/0MxtQ8EW1E2zNmI6eyVRFIOkeICYmCsYcQNjMetZCtNsrZ\nKXu6QOlRHhtBrCETptkauwYbDypFbG2ZqdImY+zxUaGKVrci901MF7vouo9oOUH4mpHig3c/gSgr\nmJ88ZqCtcsUSYs/jp2trE1o8y2k+jd0vIJ3zMzV6iMghNkp3GV9+xma9gZxUiDPB6nMgjWpUDQ5O\n3QUWkgOCPp2vnnyDg16bWy99ni/8wpe5Ge0w9QlMggY+bQkRrZ1HDk/pL12mPphgno9zJbpBJlPk\nte+18SD7LayWFRbnEsx3U9zuFxkPtqiKKgNrDqfZxFqsR2VoIKA1qKYc9A620Bo6asNMIX2KsCHi\n1ZZYe13B28+xvW1HKjc5qZ7FeJAisHeC3V1mxmqlpptoHE6RGn3atTQp1wzZYIv13z8kFXyBP3rq\nfY7tle/7QTazbyPqoD4poFScBM7EGa8JJJ1nMDfXeLR/n4NaFXnqY9m5SMy5ifM/PUdN17CodnLW\nGu/VOrSe3cUSNVOfW2OmesyDhRq523eJi2E8nXW6YyfVaRMO95k7Y+Mnlj5N/hUvQ5OX440Q5XaD\nZrjJmraCVW0TGyV42hiDBIP1Kr5TN7YvuRmqPvLlixysFsgfbRCMrFFerKAmI/whZupaG4ck8Uht\nM8mUkA4l1JzG6ZrGbCiCGE6TWnBSn9dpBWd5EjJiudDGfvYiem+Kc6MGPgf3Ex/TVDUGoYfElmus\nvfBJ+vjRN3+HTDWPaSJi7/UZjRMcBDpky0aOPtokei3J5OYcon8Fk7uL74KHy8GzvHlxkXO5x5i2\n2wg3FzlxlykFLlM030Kxv4jW0Hj87Jhyf8R+s4fazpC9fY9jcpxvTzG5ZQS7l+KVHnm3QLjWITHS\n+cx//ktU41/A+uQie84Cw0dm3J9aZpQuYU5OqNWqfPB4HeIKclTGuBrh2dY2vuKQRsLP1BRi8WCA\nTWuTbAdYGwc4LShMlseQzzAZBbjx5ZeojL1sNzMcD/M47AqTFQ+NgI5pboZnWpHxURGrplMo7JAt\n5HnsfEZwuPec2+3fcrP8xhweRaLRfUI3kMff9dL27WM9eoYzqPNQrOMoP0WbddGbhrgRm8endrC2\nZpmoGlfjdlbnWuhaEJfPiV/y0AkMeKrrTJ0tmqpKPybRFixEW0PEi2FaviK6OUMr38EXafLCylkC\nd2dopvNkXXOUG0Pq6TCTuB9TQeDUEUfodpjTNZqdIyzuGPWpCWtgyAWLhNisU+samfQ3CE2cXDVd\nohbv8UjcZDo0M74qMvWZefJwHZMap9304TcsMTUYyBU9dKUh147TyHKYUbZFuF/FwICifRe168S8\n0cYXufGc27LvEFekS+DCFIPvhJ2+CbvbSa+p0nq4i7Wb4ujwiGbDxtrmiF57yG41yzggUrZYCRhE\nrDyiL2Rw3HBQDY4x9e6iT8aoZ2rkzG16lSnRSBbLRRWvxUzAVmMka4y6Kh17ArsuY5b2sHzwDWbr\nGpNvTnjn3i4p1UH6YgxnPMmefoLNXYRkjIspD2N/nfrTKeJwROhcis2dHIztJExGSnqDgLnDqSmI\npEdIv7eJqe3B6XYy53qR8w4zRlXDMFfBnvoyIeOYbV8OfRIhudjFs7zE5bMvce/BkLVQD+8VEcli\nxb+29pzb1oUCGzNhevUurtMVSrtttk4LVIBspc/YaCS+EMJdavGkprLbHmMqtqgPitiP+0T6VlLn\nzxGsKzh0O06ty/TsDDZTl1p/jK1dx5XMc+h1YW7awTwkm87StFqo6QV8swp1U4lAxUbdZgKzTmtr\nD/F4woWhRqnk5KQh4DaMObeUY2ofkLcNsJkUCqcWLsdkOuUqnlYf2W2iqNZRA33UiA+70qfUVfko\nt8/TLQHbwhoO6TKxYJhxtMGFi59F1Z2M9T6zQRtXWmNMxgFH2zLTfgm3McGC9EUilfMI8VU05buz\nR3+RdN4bwLGu6xVd18fA7wI3gZIgCGGA71zL39HngPifah/7Tt3/rei6/i90Xb+i6/oVn99G29Bk\naKxRcrZ4bMoQKCTZLm+RHI04+6LCwJWltKjQPBMjpzeRCk6uOzUsJ3tMPshSfX+DgEHkeE7B4rIy\n/9TJcbSArX/CC4sOwoth5qd9Rthw/tALfNDrkzvR2Dh+wrRVxKObKNCng4m2asNYcNBoHNNbDTEz\nFqnubqOLFkZSixgFFiQDmVEBS6vDvCLhi5aJjAKocg3t3h1su2Y600eMz5lJj48ZXV0k6IjS9S+w\no06x7r5MT7bhVoa4xTZpTSc0sBC3ulmsS1RMRibmEseFAqaTA4bmDNH+CqeGwHOG13ovEX2ryRlZ\nJisHcatDTjDxSOsRqk/Z/rjGYLNLp1Rizm/k8hs/hTWzQODCTZyJMI2GCcckzPpBDWtQxzbos5nL\nI+xFUawal5Q+O7/yT3j79x7ysS1I1CvxxVUr2tUR7ewjnu1WiaQfsxAOsxBeYlSIMJOY0sg3sVy6\nwPFWhkJOQX1Nx5A8w3LFRkI3MGue0OhK7NcsHD4w4rU5GRc3mPGsYFx6giNoYC0fwmDpcHVlE+nE\nzTDjJGWbYqoEUeICnepT8t4IwpMQUmWI39RDCao0A8uEVZG+7RkrxQm/8at/n8cPOgyrn6TzqkfH\nhB0wRMAZM4Hsx9KZodYLcPcX/2fUap0z2iJXQj709afs1+9hGNq5X07jW/CjmJ/ROa1zw/NF9rJm\nGuUxNrcF3TJHfGzjYjCAgV2iRwK1fp6XXSEM/jOsb52gin5Sj1rsnpZZsmocZzoIpS7pcB2/NqI/\nmrLkymFP36c6NXM0e5/cH5UwxnVGuac4jhp4X7xA3vOYZttFtZTmws0Q4dR58pM6SnaDhjFPvruH\nOBulXSxQEXb56V/+edJ9gab1LHnjN/GZGgwuh7ALe/iUGqmXrhK5IhEfe5mZf0wrF+JAvU99ufac\nm3cxSvh7ioyqLYbjE8ylPWLlCeEZK1Obn+xX9rC9821+55f+HdqFNcpP6hxUTiiXH5F2zpOITSht\n3COkJlHibl74ITe+WzHa1y5x7VN+HKMA/rzOMAWfWvt+bLUN7p4cMWrksAhznPymhNmicGhMUehm\n+NbPv0fp8StMticEK33aAxFpolObMSNVNdStEkrAjFY04hX8tP5gn6TTyXFwysX+FKdi5Jtbd9kq\nFpioB0xsBURPj4kcRNEb6K4GJw/uMFIOoVsjaliltuWh6/Kg6gLbBZHxyRRDX6UUqWE12wkaBlhj\nU8at8nNuiSWB9x4K7FUCqCuXaCkmzGoL+2mRytUgg+GUa0KEmcEaUnZIxTOk3NqkVoqj9/axEKS5\npbKuS3TEAppYIzsqs/fBPis7eQSDSLJfRxg+olqbUG+pGCoVpvkwfVFCc+t0NBdFp45qFvD5ZNTi\nPkprhaijiF0YIedV5Ls9mh0HZpOTScPF4fgY7TCNu+egPR0SUgRcNLAMfFQCFjZOs5B3cclqY6Vj\nw1BzMJfvcFEEe0vDElIxD8fI0wm1poDfMeSepHB47EI9SpP2+NkLOtlXW9iNMnbdAjsPnnMT1S2G\ntRG+OsSCUYJrOjVZwZO8zGrKTr0yQLjpxPbBHnc2Q4RUlZluivb7TcyFIwbLI7QDA6axA9O+A6cx\niq99nr48wP9bQzzRBD6DRCNtpn/PTeXMLEcRhavTLs6Qn465hbuoI+YWKHlDhK4FcH/KxpkLbtR4\ngwvafTrdMoLuhrib1p09tN0hoUIH8ZLMR29X8XorBN+8QOD8AhsftClXMphdIZSmAWN7iqO3ykh3\n8r/9xh/QyqY5bjZRz0WgIRFvNRENXnzt61i8QbaCa5xMBnSXRd786Vsk3BHcKBgTPcZvPX7ObXb0\nMv/Jwg/yvTMeKsM82mKUF8/c4rM/8EWi5+Zw7/vobdbIPaziKmSw+XOIQ7hiGmFyCCxejCKk9+ll\ntzEoi1R9i6S3vsrBsEHyvIOS+QJDc4Rlc43CRQsBjxFMVrxlhTnNhdDygW2GZz4DyrGEQR+TuiDT\njXVpdAqM/C0iBhsmVI4f26iNwbrVxL47ZVzYpWhM0uuZKBn8dApTAqM4amWF8WkdRfORshc4X5qw\n5q4RuC/QCDxmfX+Kp+pEPz6gM2gwaeqsOoPc7m6hHx7QqQt8K1ujaVhj8ZYfY1Xj4O0ceve7i//8\nRUxUBrghCIIsCIIAvA5sA18Ffvw7mh8H/s+tT18FflgQBIsgCLPAAnDvzx1FUCluPMTmC7C+/5Re\n+BY7BonVwSW2RCPPNupYJSOucRn163fwzC7huRBCvRaifXWW7kKR6fyY0m4AExKiQaXTeoKhPcHy\nxEbr635Kbz1jPKvwgvMGpbt1rn4mwfk3P8/i6gJe/3VGPYUlq0hD7xCKTjFGHUzdEbp3OliMYcRk\ngvWCisORYjLjIK+1cFVFev0G5d0Gy7EgXpPIKCPD1UuYbKe4ZTPSfpfh4gzqnkjpTp7VokLCYEBa\naOCwOzi1y3QyCvRFbC4LuVM7lpkpPuGI8WmPwMwl3IsWUnMz1Ap7fPZHLz7HtlUd0R9/kXvPjpFy\nNSqjXazeJrlRmw9GE9yzFmquDuGIi4P+BINyyNNBjFYxz/5Bmqe99/DUG7xqkii4B7SvrxJ5YUyh\ncI/wlVtobjPKjIPXzi2jDcfUSgrPdqtk1RTVV24QvubBPl1hXZPoPB5yuhxmc+eEx6e7TE5zdEJj\nSlKNr/37Mv/qv/lfGWo+iuUmz9IR4s0Acx6BmyuztPspVmcvIKU0Kq1ZIlUPzfb7hKMSW7qXqtyg\neT/NNNBk0LPgbqioYYHwYIxJSpKvJ5jf8iDtHoISpNweYK1Zub/f59wbL+Pq7TDzU7/wnNt6ewMl\nrxDWV7AlVph2tnhYfEjh6wec/eEXCZ4z0JJaPDku4puZJfGyB1OrzmT3KYnPm/DKTebXh5w0n/BG\n0o486HCnrUJbZax6GcRtpJs+jB4Pa26RJ5UntGYsXAy8yL6vRld2k5RceK6vMmNoIJgjjJpOJpsO\nsqY0R6dn2DuYMpY+xFh2Mp2f4p77LHtVM4NFN9HiBGES4LwnRbFmp/+tOqG6ju2sl5Xrr6IIfQ5P\njdTvVtj5Vg3B8ynWHx1idK5hWMniyi2S/fCQwdff49/8k8fMx9oMModIb5fZbB2Q/vYRXvcYmzHI\n+JuLz7nt/8ZDhrc3mEaLELEgKE4qQR/FoQWLMcvQmMVuMvGjv/hX0H+rQ5ArmCdGPGYfQsjJaSCA\nfSZB3m6EfoXBADrnPTTuPebpgYoYbFAxDgh2dbaevM2J0cTq63423lWZtHpcnbPS+NoJ55JuzphX\n8Dh7nJ8KyKEx7XwQ+WmbVqXA2c+12f7Kr1KN/hucPyRweuEZ9w0iE1Fl0KszV9do22QMpQrnvvAS\nK75PYQz4sBvsTDRQsxLHik5xc0hjTmXuhoVIb4BzTkTXc/iOjjDoXoJjO/aYiT2KrHq89MYOVNsx\n3soRH+98EonSO1b8a36WNYFBeYxDWUEc+yhP+mBJYssds1mrkdYtWB0a0eaEkQbiUomwz4joaNCJ\nnjI/GrMkOpjs1GjfdRNYPctkyYFYttKdr5M6UBCCXsyeCaFUl1ODwMy0iLHpY06yMR1a6Ak7GPxl\n3CvncGlFmrUiVnnKwHKJgiFHDyvbOzIOIcXMoYJ1vkth103D0OPUOIfhohu7NULdKBCVDHhKezSV\nMLdzFewmjSfTIUfykKpSxZI/pVVzo1814ooouMMyAcWM7O9zuBTANOyhd00kHXEM7NGTK2RWlefc\nCrfGrEaMPNJ28Ydi6FoMy9MMumsP2TJiHGmhoOGYXyAUs7E5kkm3nPgTN6jbDTQ2BviWk0xsCuNe\njfffXSfvAbd8g0bks6i5Mv7UKk+aXdYbEnN4mGS9fOUPu1Q/3kFttjEEbdSCU164oHM89mHY7xLz\nijicJWaiL/GlH/ohHPtJHA9NuOducm9/yv5Y5jTf5uanv5fh5gLv/dT/zsfvP8Y22+Xg3iEDdZbE\nKz5mWz42t04YH+b4iZ/+GbqXHQilAfWPJxzkOhQ//IBhxMWqz4I+0HCfysiNPtaDNCe/k+Fv/91f\n41sfVPjvfu1fcrRtf87t13+jSvXkXU7lI7yKhf6wT6ZcYFLzY1tJkL64x0bLyJmXIox8s8hKh4Q2\nRDQuM5BEGlsGAi6J6cXrxOUjzoyOLSGLpwAAIABJREFUmZ87j20wolffIuDMYjcLFIwJAkM/BWGI\nvNSkOWlw0hvScZgZ5wpYNrJoCz0GdgvtIxUEKFscGLJFRHMaU3QZT2RC/64FW8PKnn+L82+EmaY1\nqsMQ8W4fs2hg199gMdrEVpsQt85RszmYrC1i1UTUURE13USznaIpAwYhD8ZRj6LHxfYH7zIruOjO\ny9j6eRyhFLbLXrrm14j8iJ+LN+IMh/8fLyzXdf0u8NvAI2DzO339C+BXgE8LgrDPn0SrfuU7+mfA\nfwC2gG8AP6vr+vTPG2c8snEmEEbtSyx95nNco81Zp0hbeUwyVmEYkjGPTVgbh0wiKdyWMZIworg3\nS6zYIKyCr3oVT2JC2BIhP7Ain1sg6DJQD/sYXumRPYky/MMsWfUeytISOx/naB79NsajKs+SGlve\nPYTWCdaKl1oGTPZHuB1wxmNgWxrgNTXwJkXkaY3G2MXwTAz9ppuzr51jmm4yyPSYmP20FkTMXQ3R\nJzGIOsiZVLSJTjI4ZS4eodneYNQxMZJHCK0hSrGLT2oynZEoHo7RjAYOKiGEwQzJ0DLh7AR9HCSz\nvUVtzUP+w83n3FzCkNBf3eNw/Y8pFLZJhV7C7b1I4pybv/63/yaBVxbwNteZHp7y0rKErTwkdP4B\nvVGQGdOEi+FXqIRzPLho4tyJhLmoM3pf5eyLAWyuAsN2kg8/vs+3n36blN7EqbfpPdTwfviIubII\nTx2kZzSuz/ZwztmIHufo18eo/teY9SeIe2+xev51oq/G+Vt//0s8EsF+yUFwrYtJfkBa71A2beGw\nP6Y1eUr+oYpZ1ph2TrFFk7RaQQJZM4FJDfuaSP7tAsaZLtn2Nh61xcHFDhVfGr95hx2fzjg8x1xR\nIxQ6h3sSxRdbxitFee3TLuqnG8+5+YszyAsvMpYsvP2Lv4L3sE1w+UVWYnGinim1XJ/2QQVJLNDx\nnzIuJsiLfmbCNrTf7zHo6JhrHxCdO+Dyj/8iDw/6zBUz9MawnBQxNIx4rFMycTuHjTShvhFxaGMQ\nzCMcjTlobKFHzdQf7JLJW1A8fk66Ok/rGSYWmTiHXIy3cUx1bDMOSsUQs/sHfH6tTvDUiMcJpqc1\nmodPuZby0DE+Qp/06G7tkzREmcrnidwcsPSiRPgvOXmsbNPKRpBiCoMKWBdHjFMC/fA8y18Isn+c\n4HFzm9arQ/xSFGMqhly2YtmQITr/nNv1v/pzXHC+SrKTQHHoKFINZSqykB3gzk4RJgp9Y4zd7Jjj\n7Qr3d28jtR3czkwQ0yUmtSmtx2kKx19n2M9SNQ9wTVq0/e/Sd3yD5QUb4ReitGbtyDeXiJ3vM7Qs\ncOaWkcxkj4/3swQ/vUx120DPnWEXB8bBDqm4FYeringpg69xHWPmBvaf+i8ZRr7I0/tgf3wG8/6I\n+jublE8btK7NIZr7bBOkpdd4UrrDncI6k4WzDMYOAnad3qzE/HISORRCPTWTDznptbpEH2SxWCXW\nPGPEVouhs4PP4iKXXkAeqwz0OcyVS1x56Y3n3LRUnKa6w8fmpyj5IaVJGv/ZKmu3ljAWVUrrCeYn\nUxYTz2jk5ignO2SKQ1KNIfeBgMnNNC2hGBXa0pD8pQtcOb9PytWC/D7d/jGyriAlzQjWQwqKSP/h\nMnp4F31jGdtsmdONNgZTj0DYSP/QiZqD/JIbl5Ci/CTI3HRK6NoSA68fp1hh2S6DTcVm0JFCDXSL\nSN78BKcxSTecJt7tITWn9NxWClWNV7weFhSdgGmVoMlMVl9gYJjHsGTn2eGYqSnHqc2As5QnEeuy\n5JihKOmkqg+YjCfsFHUkdwVfN/TJPP1owJ3iBrP11xn1j5ArI0rSMzINLxsPK3j6CYwHCYzGEKOz\nE5SQgDg10QpPmTNOcESCDDNdeicFpsqIv/Y3/haKz8T2e0WcphoWYUqlMOaNhQTLkSSO6Slxi4b9\nc2FmF5ZYdC7Qmongl6cMLKvIpWMsZxcpHZTQDpfIVjSOf/cumn2bE93Dml7AdHWOxMoMgkEkq5zS\n8nZ4+ct/iXOXX2Bu/iJv/mc/if+cglwUmCSdXP3SDCsvf4mpTeZq4CzSrXnOfMlEaClO+/pVrD03\nH77/Ie2hk1LjkLf//Uf8nZ//JfoLFrbvvMPrP7bCr//TnyH8c58cffPPfvInMasVDNbzGCIC5mUn\nzT7MrvnZrVuxlV7FWM3hnpiwi09QM17aljo7oyrDjoeB0UCjPcTSSrO5UUOXRAK9Hr2GlelBgOqe\nxtP+BLvlgEI7TVQbIe2H8fn7uJwqY/0Ur9dMKB4hepBAdRcwml2c2XMS97foxbxkeg5qgs5o4kSb\nDTP3po0bUx8P3oHEqM+s2KLstmJFZnbYpNMOYlFSpAMD4vsSumhB9CXJWIoYkEn6ZqgbJaadMm2D\nCyXoZBS9wCgy4QtBN67SDuJxDW1HpvLetxjsOOmEekiW784LGb872Z9ddF3/e8Df+79UD/mTqNSf\npf8HwD/4fzKGLEwRY8sEqxMMBhMVd5XJwIB9uspS2Mrht24juEQqeYmILDNbiTKMb+OslqBnxaG4\nkS9UyJWNGHaeYGWZmtwh0V9ENzXJjPz4kg1kWxwhN2XRVcOcm6PkmeHBsMDS0wqutQXqZ+6htFQS\n815OtsbsnH4Dk7REsWHCfM5OMdvj0bMpgbMT5rN1zAGFb7xbwirnEdbnUK/DorTIrlamKpvQ+1FE\nu07ubomu+JhB2IftqoS7lKGU0dBbIeSoRK9bxHXUppp04BoVcCgTToMuokduWmt5Mk8kbvjsVIZB\nyt5PToxQK/+OUe1FPhNN4Lo2oLD9Ll1HFGNC5p1f/iUe/MNnvPOv3+XvfuYCO4c9JoYILmGeeiBD\nLWqEVouJEmFw+xG1W1eplhpEHC4e7+bx2iwUPXlIXSa+06G5VMM8XEMclxgEXyOsCVxYttLs9/lo\nOMGd2WEwBf3SiyTDj5hmVhlYDtEKOzgqZwlUxsz+nb9C/Z/+PiPvKqejdUztNNOjC9iuVknuGzle\n6hE/7jN1XMLqOKbYvc1iZ4H80IIlYoWBC3erjrfXwb28gH/URD1S6DpaSDkJh93KTihMIt1g/+wW\n0ocjomYLSjrK5gf/43NuxpgX81GHtF7hyz/xPWyP3CyX+wycAgabhTMhK5LLCjYDp8Upbd8+7aiM\nXxY52QFHJER3Nk2g62T4aoXtX9ZJuiTGVwycsVzig8o/x5y5htqdEnYvYp43M86eoI5llCtGXIYY\n1W4JrydKdMZGu6URsOZYfOUq4pafwfVDbt9Oszh7BiZT5NFT3nce4CrNMF6LcVQpEA3Xua0ZiQ8b\n9AdrlLMVbl07y2HjPuOPNCRrjIo2InbBiZAXebR+l6F9yGr7MoYZDwuNMOnKU2aGPracU5wFK0N1\nzDW7FVU5j5gcYM4X8FiuPufWuKdy9NDFW8frvPH91zAnmnTvmaCUpWoxobiyBPciJEYmQt97E6Ei\no6WGxNsyzicNsp4B1qAfg3+CS9OQmwOO/WUE+Q2SOyGGBheVdp/WI53q6SY3Z+bozXaoTC8zPdnh\ncxfe4MGDtzEGKzjuJbAbVsg7axiP+ohYWJ7GyMR7tNoZSpsWDPJL5O+9S+CVeVyxOtEfXmOUblE/\naBFWlyhXHuNzzFLTFcKeILXDA+R8D6/TTa0gMmCEedilKJnwFyWckpnKZ51U2xPiphGm/pDUoY1K\nIoBgrNAIr8H7b1FwnSc2/WQN3sHRO8RrL3NTytKJVXGcxFHNApX1FoOKyqzXgjxpMmiF8Ho0jM0E\n/pkC250gq7Esk+0JFneeXAlOnTOsiJtsFT3EZZmmEsNn65E/kvApDoajMvJ+BcutKfUNB9t+lUtH\nTubO9BCHsDVOYvaNcE0PCLvcHOgFUqEAW0cjtCcy3plNyhMTaqDOMJ0gOQHDokBZKHG+mmCo3IGS\nC9lmoXHWzWoJ6qYjtjWVzj0H7uU22Z6MT63j6VUpGPMs2gM8GzqxHFcxhRxs7/vZyv5bXpG+hJpc\nwjZqYvYbyRZ8NIRPvvmbpTgHb+0R/BvnaFkkNqcbeGdfY6xP8Mc+z3azzc2zEncq64T+aMCBycTC\n5R6dtgOLX2Ckj3HYEhhzTopGH/a7D+mU25SbNv6H//7n+a9/9meZrH9MxxCgnNhlVLKi9hp4zTNM\nIkfk0z4W6ts8Oi5ycXGBVmNES9lF6kTpG/o4lDqDAbiKF6gJGdIGBc9ulobJjjoQIZKhWomS8tYZ\nFhpM1RjhkzynrydQnxQIu4JkEPAENijXdQbtEMP9ZzyrneP4a1tc+OIunv4F0moXb+Ue8fACrs+d\n43tuXaTay/I3/9rP8fX3f5fyH+skJp/EKvYmW+iVAv5VA7lTC5mN2yQNMs+6TcI9GFwyoWyWyEY0\nuiM/loUaHSHFylEXPXJCUTfTb4jM5QcMF2co5dv4Em2sL0VpfeRlTjilO0xQnlpweiUa+jaq1Ygk\nOIiKQ45EBanfYjKdoRQ+YZSJo3aeEfaH6R+pFC0iL8Q8ZNMRys4cQT3MSaWO4zjA2nCLYiiM3Sww\nEjZRUp8iUzWRSGexv+mDTSeqsUztzjG+l5pECnGquoBhcIxBEMjZVwjrCne/+RE3zr5C7f0nvOd8\nh95ojY51A2HfTeU0hE8B4WsBBLvtu/Io/78/sfxXf+3X/tvPfeomuUkffdAHzUou6cLRL1LZqbGY\nsOFpVxndvIJzWqVssFEu5DGbFWqKhUL/Kf2ygJA5oeuS0Xpe8u4sg7id/FQnYC0ybrlQ1REWTxmj\nrqE5BrTbGucu9WnbbSDJzAbWsBYOyakq0XiLsexlovqY+bHvR/3ARjjkxhS1sGb3YEloyLJE0NWl\nrq3gWypiPVToNfokByUsFhtGOcCgOyAmp8EYZdLoY5pbxDSt4Aj48VaquHpZCJk5GUkEXCOkUw91\nQcCtSHQcBXr7CqmLFvbHVpynfXreBne/82PT2U9/Lymlj2LxMXTWaWdPaFj7lNI5TvZMtJ4d83P/\nxQ8TSZzD738VIeImOrxE6e5tLjnPsOvcZGG3RdC7ilQyU27pGGxWzhoUNjIDhMqQuUsTBhaVgV2k\nk/DiH/gZmw4IPmtwYpSZVuvMtHTavi6cTWC1ZlGemFHCKtGGxJFQR917Sv6jKmZ9HXHRTzy8jDip\nYnRIjCIBpImDg9iA8hOZmYUeo2QAYyaL2eXnsVnGJ9rJDnzIoxztl2VaYpiI4KK0E8RoalISLERH\neerpGTxnqhRbAYbaE2J2mTZ+7N4+5pV17ryVBuDyZ8/TnEocHRyin5GxbJ8wbzeg2Z1sPjYiO12U\nJgKjWp9GqYPTP8ZurpGSFrBJ9/k4X2e2KzISZUZmP6bWM6ZCCLe7A7kGCzjpLbqJlPboWoJ0C1WY\nt5HwR1mIJEg/epdgP8mhPsT0dJ3KcIjB46HXO8Aou/nmr7yL98Uz2FtTRElHHMGM4RzyaMSkf4ys\nlZCCQ9quI8TmD+DaTTMwZCi4FKLDInW3A1F1sm3MIpl0lN4aY/8Ro7yJ8JlZTnJ1wu19BqYEmEU6\nepsbQwfVySHTsy6ym11cxh2mVSdf/dV/xq6eAeAL37eCnojx8vWLtG4fsi1VmZOTjD0CSdlD15Xg\n0Odg2G5idOxynGzQLVnBdkpoNkC2uM0ouEK4OqGbiOIWsywUQ4itIUODm5xxiqFmYvnFGdbmzrFv\niNGu3cHWV3h01CE76XHr89ep1Qx0jGWsfTeKrYi6JzIwhMgdVegac1hHBhq2GLMpCbfPhMXRoTMa\n49asWBsSvcIx5rkN/uC3/4BJf8zc2hCPaYRFnzAZSSgrRjrpMXHLkLJdxLthIN8yEVBktjaLOLcP\nqSpNnLEYBj1NwdTDXIqhl8fUxiW03RwvfXGNf/ubvwvA9e+5ieLs0O7OwkCiqeRwLBhw2EN0HUc4\n+wGO5j0UWxPUbgG/tYfZGsYn56jrCo5aiZPBRYxhiUGlR2o+gGqepWY5ZqkTwtrIoTrKFHUXw7EB\nq7uGYprBvXNAeNHO1OTCfLzH7dGAfnqIqdKlpAcYm00EDVUMRQHL5SF9PUMy4qDRtzLfjmFtbFNA\n5FgOEDq28EQ9pWx/id77DRaTPQ7KjzhtdxikbUgmD8bZJuGSC8ZxXO7HfKtt4ILh4v/B3Zt2SZKe\n53lXRsaSkZGZkftWudXWVdVd3T3Ts2MGKwcATQIgKRAWSYuUjj/o2DRN2pIgH3+whGP5A0nrULJ8\njmjKpChK3E2ZJokdGGyDmZ619+7q6tqrct/3iIzIiPCH0Z+A/sP7nnO9z3Pd783QP2MlIuK0Awy7\naTLrHdYjSbTZmN5ijZV+FTeRZGjLXFLqfO2HNwEQV36KZ26sI96t87jmsBV9ntp3v4nXUJlxxPKi\nxTyZRX5bJhAWCYkFTvbnRKV7+FMaF50eod4OobDNadPjj77+5+TXK1x9JszuJz6KPDMZbX6YS7tp\n5raHmPBx1efRKshEZg5Rs4s72SCdsJj5wwQTK/jMFA3/iPF8iNZwuRuVOBo+oNTVcFcmDFZjZOca\nhm/JSmiGaWtMJT9Dn8yGHqefGCKJHq5wQTi5YBxNsZwsaLkGC8Wm1/RR3oZ89BrR1WsEJJcreZnK\n9U8TqLVQEy7hwiZJH6TyFa7qMmrmZfC/x1sPHgBw48anyJwncGWY+pasvfpZjgwfN6ILuvYJrfcO\n0Z+6gX/vHvnnnsJ3soJpNZkuRYLiiFQ7yciYMfNUlO6ARCROoJ+kL/UxUiK27RKR+yQ650QZ0NAK\n5A0PRZURHZPuoYKpugRnKtJIQneaOOkwYsUj2ZNgTSJil+hIPTJJA68v4hvPMdxDrOeKTP0DJo+r\n5Naepnn7HqGcQFObczZKEw8ecua1Sa+X8V1dQYzs86g1Jv7SK6RywB2JZfyCa6kVfth5l6AQIPm4\nTnpjF0JLLOFZDGkPsbhN9pLEe6+/yxf/x1/90a99+fVf/1+/lFspUlZVXOkavU8X6T3+LmGyhIIu\nJ/IpKTOPFvSz9tInOW6/yZltsDiFuNBkGB6wKXs48rOsuWmcXJWoUSF62KB4ScWf3KXAPhMxgjKc\ncXYpiTwDb9WlO9kk/njOrHZIrPUecj+Io1Rp1D2W/qcYpQsET98lWkyQC7fRAyl6pkpJtuDM40zZ\nRmwOMHoW/cIYLyEy9Vx8ERHvyZz80mKa3WbhmqwWKrSaPfKpAhffeBttI4rYEfHl01yNXiYoxZhG\nejg7WyjjEXI7gC2NcfZFgkUTn0/CbE946603APj5j32Kt+8foipZjLBGMdhh2LrBjlhke3PBp77w\nArP7b/GDb9tYCYP5eELTV+daMEZX/gFn/StUFypCsU/9IkzSPUDVJwSKBSZpFWXcQ18W8SfndIbr\n5NwY1rDO+kOP2mWBtBqn6b9H9KkChYiLLdfJN/Jos1NmGyKnM41F9Yzd9gbxy09jnkTx7h3xYDJj\nfj1J7ASEZZeFr8EzuVUsTaWZDmJ07hIvv4InXZDORTmTfLiFJdvnUWY+k8sth9OAQ9nWqK62EMcJ\nWJF57tkyj/6mS1Z8wuogixDJELJteqFdnr++wR/9uy8D8NGP/wwbcwVp/i7+Z56FgY9pUCQQ7eJf\nF+heDJn15ySLYS5GA9TekvQyxYODfcg8w0tXh5wENLIRjYAaIXR0QD9ks9JU2A92Oer4iERFfP0W\nsUqdWHyLztk+D6VT1rs2LaVALDtnpkeJuHm63UOIJlDULNXGHa787TDKZxaI0STi/pS+vUmoFWM6\nOqHvkxGyJbqtDJPDM56KlEjvTKndEQkJAZ6IIQQtQiZySJxt9u/d45IRQU2kWblyA+vsLmuX/XTD\nz7PqDrFCJdK7MYaeitrbZOm/x27Gz2KSRvnqY1b/7i/xlTf+AoBf/LkXGMopHsY8upMzNpJlJhk/\n0dmCZnOMmU2RXRr0tRnuoIgyPOX6bpXhcERr5ieavYT53gVieUl7NMJTRQYJP62TA07HQ57zbTKz\nhzTrXfryhKXhcdWO0zbq5HIl0rsi89tHzJwY0YXF+paC/x2NacXFWIzIFAsEQjHcxAAxtGRrWMN3\nzyMm+WkERZamgbPiIG9mULIpXvrMCgNTw98csiJvEE6HqPar9M5kTjsP8WYeN1ZFzEEVXyxHxNWx\nhT6+T5SoKCKWKKHLMcYPFmSfVakfW4Sj8Mzfepm3br3JW69/IEk/Vf4014YRAhsLjs/8eEEROZVn\nb+8O+U6UjhJB6KrI9hTfdIE1DyLl44jynHBrwWP/JlRfRwnvEFObHO2P8Mea2J6fi1ELV1ky1Z8n\n7Z4QT4K+MDkNrhMayYwjKyStPbqzOZrwDMFLUTKzE/qFKVIiD14Ib03CP9si5aj0/BobTZkTt09X\ng+lQZ5sTAqkNNuVVMrqM2D5llAxSXI+jhiR8mzsUog5POn1Snp/TFYvZeZvD6pKXXvSYnicxHI9+\nxqYwPWUipmncf0A8dg1XiENE5KjZY22RZZ8A7978oDvvv/vFF4nbSSbjLoNSE6MG/kqO6s2vYs/X\nWVcSTDo1+isKRjqJah0zTpkE55tYTg3H8VGWJBo6bBgpErt+wlMBJZzErctE9QGJmceBb0iiM0Lp\nLmnKEvqdDmbUpB3boWpDuDfgYuIR7p+xiNmU5iLZ4IiGvk0p55BNFnGNGXaixMYkybHUJ7qhoD1e\nkE4rHNgdBN1gcejnTvUO5XkWSxL4+qNjRNthtVLBr2YojvbwBIn+Xg/bW6KEn2B0ZcYzCTna4NxO\nsr66Rr3+bY58M5wnEw71ADvJPpc/V+SPf++DrsaPv/BzCBseM2fCwpjglxdsmud0O36mnh8pVyEm\nPEHH5Klf+jhvvv0WnbCP3dIC54kIV1UigQptUSOiLzhvz5gu0hjRLuVjP13Fz9SfR/PnCMSzREc2\ncqiJKqp4pzJubozu6iTiY6y5j7N8Fm3mkBM8JvoceWATmHrkEkNcxSYVsZHOHUwpxlKDuDtmGd7G\nOTzHvxphYfopkUAZGRhksS2TE3+JjYpLTYvjRSMIc4GQlmRcP0eanVJX/WCXyIl+fCER40aKzEDi\nzsUh2tEYdyOGFhzy8Ns/4B9+8R//6EPUv/rXv/6lbGiF0EefxxQCvPfmER9+1iIRSfJOfUihuE2o\nlOZwBD/48h8jKyEi/hiBqZ9RQSa7EcCuXafrqIzLIu1Wnd7JgEJqlQulyvydm2hSkmW4zTisUh4F\n0KchxNiY8/6c3re+QzRVwQlPGC2vsl2R0XNFaso5bvccob9J6NRgMQjhuSZ+WpyqHrPZmJAVwilN\n0GSD6TCB+dYBitghsYij5kMMgm0GpwoR2URstPCuX6frDQhu5IhOB1SlCvPjfYQJ3LbeJzZfQRrv\n49Z0ZF0hagxplWK4Xhg3NYVskDf++jUAfvzz/wPqpMHODYf9toP1fpiluMBbu8J7D4MQlMlefhbp\nygbrHYPOcp1N/5j9xYKDWgB3YZPzG3jlOY5hMNKGLOY68sN7pEIi44jBzHfBshMkla6iZ00aBwEe\ndn7IFf0qYrZNfSkwG89oOH7WrRxdatzTO7QOlvxYeBuaKnpkl8OLU8ZTi1FljBbXeOYzGdwH38CN\ngte2uV19g+nIoNKO4qlXcdv3GNp5BrUBdiCO7uwTCQd4IvaYekO04xSdgI3dzNI3G0SHDk63Qe5y\nhr6+gE6Vuholemaj10Qe5Fy+9x+/AsBLP/4qpukykvykkhbJaJnH/g6BNyfIM51+MkdgdUjCnyIf\nEzETIPaHoG0QirzPk8MkheCImDDiwet5fAU/PiHPcdwgnZ+h9voIH3+OznmYsJ3GXs5pKjH8P+xi\nZhZ0VYnYYZSiPeJw5CIMPa6EXEJxP1dyJV6zz7mez2CfrBKUIixGdfp7Rzy79RlOBD+oGeaLFpFW\njvRzYfbf8oimGsTLHpKjsFxO2L32UfZHb7CVf5pJ0eL4QRDdZ2KEwxx3Na4+OGC+SKBZR3RObqNU\nVvA/nBFwLmEV43gLjd65xNuRp3nw3u8D8MzWR8loNuPQDGsyZNpeEB1VUeUYLaFFsOvQs5ek3T5K\nKsgsFyAs1fE1VYLtFLo4Zmq6ZDQfmh7AOnXZim/xTvcuBe8Vlpt+Ot19stu7bLQ0Av4609w1jG/c\nI/7sNdoXHsmxxzjioSxlJMviUbZPMlEgKcp4fo3DyJhIL00oUGeWqzL/+j5GTOPyjSyNA5PIQCNt\n9hlGdE6WNlfPUiwCHbq2gzoOMlyGEZYDpns+lIzE7pUt3rjTxbSiBG3wBRYEzwzuX4TYdEv0pQaL\nskbz7Ra7L88YLMG2uyTqc775zvsA/OwLn+PMf45eWBCKKeQiLVzNo/WoQ+SyQyLcoRuNI8sWiinS\nzy6ZdTWGQZmBATF9QbaiMDE0erMI8VkTxYriZfLI7QyRfBr/4pyzkzjuuoH/4BpJ6winpRNpXjAN\n6PRW8iTkBUmhw/DcpOAGKAddxo+HnCzjRLMn3HvTwxpUkewwF8M2+dIcfaCjyAOamyr+QA1tHKVx\nuk9WC+FfiXJg3sSZJRmffxdz6WecPcIv+MgEZdRwEEmyiQVqiEqJWUeiJBe56E/wdnIMhzFWJ1Ms\n2SKjbzMI2Ui9t3n9vQ/8xWfXc5wLJt5kQCW8RfyKgOvV+NRPPU2vXMN7kiB/uUho7w02Lgn81j/7\ncz6X/CiPYvtIXKJSSbKYaiziA6ywiT+85JpQJhGIUwuPEXWBQsQlXrWZqzlCeoKWLqBqGo1+h0X9\nlKA24FS3kCc2urPgvCtCwaTtF4jUgxztHWPPQySUbZTSBCuSJOoJRFo21a6GtmwSWMmxCDkI9Qu8\nUpFAy2aqeTy7GUJyykT876MMJ1gUMYI26m4B31qBjDbj1sEp4cKCo3aLojlifGeP+z6XYH1MI9bB\nPGxxaJ8RuX/Ol29+0KmajGyykjhAH8toypxYNE2tFyYWCFD2C5BdMlNCZEyN9y8eYEciSDWTVhuC\n6Slju4J3NsOwzgj0oxTKDu3O5puZAAAgAElEQVT5FCViMUiPIeIjpQ3w5SfUxxcEBJf2MINlmYzi\nUaZymWLgHE+SqS5XUNIQF49ZnmXpqgkUOYiaa9HtrdDwhwgLVeoE8Gf2oRlGahsUc2XOYjYFb0qo\nrXEWSlOOSLTsFre/dYvWGwa5nM7en/wQ44pOxfFjPkphbgaIVSqEmyMK2QwTx2JU20MNrGEVDMTp\nnNwVja2dFPLNI24+fvyfB0T9y9/811/a/eVXMZqbDAZ3GAXOcE8CtJ6MqYR3iA3jtIwjTk9PWEmU\nSSpFBuaYfNmkZFylu+ex1GKMzCa+Zp/iskL0kspQOkYeyYzkyzTF95gYQbaVOIPgnMhwwZ+9UUNP\nuqTnca7HbCLSKsZuipvfep3p8QrMgwSlJGvxJf6AH7/l463jd5EqDq94P86hKUN4n1XXJWBbjA0/\n7loar7igFwuQWOg0fRqe6CCIfva7VZKZHNq8RPh4xsPOlEi0jyAV0eUwhpVBFyUissPYv0QRp4yE\nEfl4H8VME6rPGNcHvPHWB+Pu8HU/hjgj9FqAu6Ma68/8JGNLJ9hMYIkqysDiIihjjWu0W34mGx1q\nTY9BY8jHUmtk8gkursLG3RJB12Vr5zrLM4nxZh7JHhOs+wnkPOLrCtYPC0ip61zMg6xULPohC3FU\nJy2ptBcunm8dSznAUNbJ9YI4N55DMuscaxHccAsTB+XlCcVeifOEyf7dY37wh3/GpUSZqHuVeT+I\nvbpF/nKMac3iPz7+fYp+icmoTWQ04fRhFCMVIHJvgp5IETREhjmdF+I9RDvJccaCsMPBwiI1PCaY\nD/OoPidzo0IzYLP14ov8xe/+3wD89N//LNmOn7ESZoaKPZbx+coYVxpcjJI8X7A4OTQZLyekYhn2\nTYtpLcN6XETqT0lHKnSDEn5L4+HdCZnoJsXJBCmZp95QSc8SaKdt5JKBG+syaMQpb9hIF13qyRE3\nehrV+JxebsxThTyCXCWYiHOMQUM5YNVZ8Lj7HO60RbhlkH3lFSJZi3j3TR4ctFkdpdBfjHHaP8E3\na5F5ZQfhThcnXqTYm/GoepeZapNq+al87hVqF3MSo2PCOZXHioZTV+lIY4blE2QvyGJFYmiVWPFH\nSMY9oj6D8dEFD2LP8Ee2Drd/D4AXrl6iOpqSnklkdnZYHI+Y5WYcdBZsrlfoDAa4UY9ZJEA+4KCM\nSzw+NVk0o+TWzjHkS2T0JHe1C0g6kMxjxH3EWgpLec446eE8ekJ8BgYjiLYZnkTJXh1D7wmSHUAJ\nx1gedZjt+MjIHnpEJ9N08E193JodE/SW+JwAeizK6aMpxnYIWxYRzyC9keSRkKCd7DDfE9jcUujf\nOmSaSpHzthGzKkO1RloSWb1xFTdmYzdBF3R8bpdwzsbPnEFA4bJ3QcM6RwnnCYyjjIQ2XndJOqkg\nDiectEa8c/eDEMjLn3mRSzmBFnPODQkxEsOsBhFnAaJ6npBhMuh45IMJIpaMv1Kj2JGIJ3rI/VV6\nWzKtC5dgVGZ34WMaFekus3hmCCF8ijFuMpeDJFY6eKcLilaae3oDNa5z6sbJxMuY4zG9YQNpt8LB\nsYCUdNB1C3GUI1QWEWsJuNwit1wQvuIS8/zMrDDR5DZm1KN7umQp7FJzxnxj/yu4/+Xnee4jUb76\n9+8QfrrIs0KU928e8ZGP5uhVA+RffZ7U/TVGySaPWxkSxpyUz6FR6qA5NqI9IZdPMlw0mVanRDIy\n7qBJ7Cde5at/+CcArP6ajBgWycspAm6c0ewx/vM47b0WO7aCuBZlWQiTTBnsr9T5xU+WUN04mpql\nNFIZOXPEcZReRiJqjVBqORqRPTq9CIXQCOXWmPvLFZxMk+pwQctusqgaBA/O6ccXKHKcqGOj6lmS\n/ShLFFC6hBIBjqZxHHtE/vKUe7f3iJeazO7GGNceI6gh2I4TT6UILfxMuxPiuSSxZJ9xKEf+Gtx8\nx2O8FFm6XYzFJj5tQSM2o6QoJI5nuK7F+PuHWJZFX4DwUuI8lOPJ3E+lOSJcyRD3wmywgbZ1HdWX\n4svf/mAS9Y9//ZcIOT56YgpHW0OvL1Gfj9N885DwxzfQaj4uaR4DdYj1jQG9F5KIQ5vNHRNllqfT\naNDSAqx7SdSNFiwkpG6AgeORmwp4dgLhRKYbLBOU59SqWYx5iMxKgNCFiLc44qi1SSc05/JsziQh\nMd0L0ZOPiY4lRENEPYaa5CKNmiQUifPgOebkEqLhEs85dGJxiuMBvaM0F9syk/k5gXmSZNRilrtO\n9mUXZ1Li+kdeYGUm8MjYJx5NER6LuL46hrJFyPEh2nma+gAx6yM46DKLjSnVS6jFBsHSKq997QH/\n6Iv/Gazz/rd/8s++9NlPf46TyS0MDdYjQ2IBgczGFWr9M4bqbcbqCH95m/GiTSBa4HrGRyAawnQm\nNFULLzsiJAeJ2xpWcEyjHaCgigx8W6xFDWJBlUuizbFwijBL8u8HKf7bn/tvSN6ucVlKcmvcQUiU\naL3/Nh9/8WVGKy7h9VVW3DQLLUDdFyQ4fpcUeRx/Ab99wmjZpD+BhtvG9O+yUz9BWk1w+29OcJRn\nyF03sbU1yj4BeyqSWosyPWhiPR4jBk0uO32CqQwpJ8zDfo+i2GeZnSN0ophrAXiSYKyE8J6kqfkv\nmPtDpLMC3/zmB07U7rVXSV3ZRRg/YJ57ie3QKZciaYLpCy4WE3qZu1z1x8kHwiiZLqtuma7aZTWl\nEDCb2E6GxlGEcFLBlz+id1wl58VZ3T6l3iziJo5RfJew6k3mapTkVGQjOuLdqsa6p/C7f/6XPHv5\nJcbjDbKDCTXBIHRtnfiqD+uNA5r9KHprn85Zjl1lgn854Ynd587dN3C3V/mFT7/EWH2FzXSAea7P\nXDGZPVRZc0S2lcukV57HNj0ShU/SPjkgdXVJc+nh00ocDR5SHEZ5X6gi5yKYygChnmTVr9KNxTF3\nDKI3l9j1YzYTQS72A3zz9T8D4Pqnfwyx3SZkmChhSLVnCIk6neMUW5dTtKaP2dAdAosJAhYjMYQY\nyVOJRGg4c8gb+M4HqA90wsEBledXYSpzMj8jalsMc22s4xpVIUe800SRoiwjNR4sBkTsl4kHyhx/\n7c9IOhvsmYeEHy/wdec80kb4jm1ywhVgxvWtXe6aHSaLm0zu+4nv5ii1JR73IXBZQ987xrcVJ3Fy\nTOTqFkeP2oRKMJavM9w7ZJzLs/x+g1PbTzZqcHcUY2d9ynBqEuqpPNMOs5B17IkB7hA7l6EyVtBL\nIf70+wbuFR//1W/9DK/9p3u6+vLLbBVfoBCKcz58zLrmY2O5STobYHprwfJSAE9woLeg1pxRDk2Z\n+DVm8RNKbpzqooDcM5DvHTHXNkmafR595Q4raRVNNnGbA9yES+iFEt6FTHZ9g/OTExbza2zoWzQf\nP2QuHxMqpXHaGSIkEEdN6rrA2fduE0uk0YJd5nmHqJsgG+phPUxT7/WxVWAqI83aJCMJIo0p836M\nm/ebXIr5WK5liVlB9G4Lf8bDHN0jF9boLizseYxb8+8TUa6xCPnwTs6R4h7zUIGgvsRrTWkZHbTc\nj1MLLYkvdBZChDff+i4ANz5+jbPBBmuaR++siemUyWltJvkU/t4DZuKS1HJGe+KhygoXfo9FtInj\nL3G2rJM/mlDW0rQnbRbrEuFBGi94B32qsPRbDPUF9iOZlZiC65eYZAOkOk9Q4xuYgkM/IZPRhqiR\nLoWRxkKwmBtDVPMlBqttBMfFFDssTkLYZge9v4k5j2Ks2Ez3Z4ibNt/+YY1IecaHX1bJClmsmE2u\n/j1+9lc/jTf109JT7F6/yl78WX7sxQ/xzd/+Cw77T9iKrhFXdPqJJvTWiIt9Ls7mVLsW26MK05FC\nOzYknZiw9+aIxSfWeeP3/xiAn/5UGGMzTFIL4wucsXizg761zWgp0sirTP0DtoMJjHmPfDBOq9dh\nEoZpyOAiZdPozon1D3HfOsafKxNQHhGdJah6HpHVAJPuBaXohNEojD1psrsM4h4f0L98nXjiCrGW\ngLAm0JFdrF6UcdDHViDKJFpGcS7ItAycaZxlTkYTJwhHAyzriDw7rMRnnNX6FFczdJYpmv0FYuMM\nV5xyODrm8y/u8tA5Ze3KCL3X5GI0AdkmJgbRdJ2hf0BpvoEXMlFXglyRRbKRNtmndJ4qlPEEnXun\nGqN8i9VSn/Gxxzde/w4An/h0jIhvyuS+TOVqEEmJEuwvSG0OWCoRYvE0D+tD6icGkaSLL3CdJFVS\n811MdYbpi7HaOqZWHhIcRVgoM1oqBJIgDB3syIR4cEnVVriEn8j8BGcZQdGPONOXCK6GJMK6qzCJ\nBpCP9+i7U0rRAAFTYCDEiQQcfPYxhVyUpdwjMlgjPhwjXbvMwXxCkSjeTEOOHiOcDFCsGFI4waR6\nRDJ6QcYI4Hl9AuEI4aUNgoU/UkQIiAzMBgFnFevwIaPlFFlJkjR7JBYZViu7WFqd9a3rhPwDvvGX\n7/NrX/y1H32I+o3f+L++9LkvrNJrzshMYSvmYxxJEn40wtRMOuNVcoFdFLfFXJ6xNV2jN3M4q3WZ\nLcZYcQlbnlGxkrQifVRbIjJz6QRVzMU5QuOIXqFI9+SY1x68hq91Db0YIaMv6SSOcG736OWCrLys\nUFUGnLf8WMklCyNEoOXjQtsncfsBfU/HTfSRsiK+YIDzkYsadFiNhvDd9rhvt3HjYV76hV9ALdu4\nj8fM5vtsRuL0+1V40MVS1ggsL5icGSjFLoFCgukgRno7jFCLItQ8Gskh01mNcbpMNqWCquPUbFbs\nCcvTR3zr/h4Av/zff5GIfIpszhnndyg3bN4tJVHOTig5JbpnfnqxIOOkTePhIYFsmfXRCN3KcL/r\nYWhzDGGf+DLCuRymOcmjpab4nsBgXUZZ7JIKnhP0b1B1LtC9BtPlVdrVBtZ/vcIlNUvUXDDeElkc\n23iyQvZ0D0vMwAi2/CmGeQE5mWJla0D37Tqd6xme/5nrbJFBCl1h8PgJg7nH8PicUd5CF0Q8cUD9\nOY1JR8c8tahKdcrZp1g5l1h55gXK2yt0A1GCwTAb6RL71WMCkxJeIYzXP2C8WuT8377N5q88Syvb\nwvaH+cpX3uGseheAG1c+xWoxy8HDU5bJMKeJOAZx/Ocd4msRlPoQxzR4Ulmj1unyjGVRuBAJh4rc\nqr2DejREMZI0Dhrokxjf+f538X1eIydbNOcTblzNsrh/wTQqEFjqCJafnqoxncx5MXSFo5N7RF69\nSiaxwsriBeJXLWamwFX1ZXzxGAmfwFKFi8dH6MsuF0aJQHbE6z+o4gtkSD8r0vrWO4h/+zJbFy7L\nZIqFfsFU3mLib6KFY+RW5iyLMQL5MurDEcvCJtOZzLXyKmd7U2zbRyPokAkesZG+hM+Ms6J0OOke\nkUqlGBydcykYpvLGn/IXH/xgwkc/+QUSxgpurMVI1ZG6LiejMKoc5HHqAdF2iA1ZZMW3QjMmM3Gn\nyOEUYXvAzeMuOwkdtxhm4WQ4uvV7bKxsICkxSmKUWjbMxJpxJfVZeu89ZnP7ae4dtMkG45jJh/T3\nuvSTKuGtIPGuR3tTol57l0VgzJt/+Du8+IU0s3AAfZJAm0VRjhtUjQl7kkL2IsGiDPHgkom0hX3R\nR3ZDFFbXSflO6S4i5G+ItJcXjBIqk/s9wtvXIV+m32szXcz5cHaLoVRDIMtcmhMrb5AMR6i3HIxV\nGakooy8lRG+BNDSZuypv/ie35+9+/jM0fHNkYcBiVMQJmIxX+oyPBmCkiVUc+m0F7Cj9lQ7WUZiM\nukai85hgxc/xoUFvN4I8CxJsWnh+GXNk07kUJ+iTyPVMuiEfst4hrV+h19YxO11KKZ2Zb0Kw2sUb\n5ugcKxxGC7hSn7yUIRMr0R4vCKo2sirjF6I47RaTnEN9skCopGkGogwnj9l+PsXmSZXmgcLY7DNr\nKsyf7HM2F3jnaw/QsxkiO2UO/vK71Pagra3wmU/EeXR4j/efKKxfTnEUuI2YSLBZyFGaK9R3ZqTy\nM/ryjL/+yxnpf+Rg/vt/x627LQDUlz7P8Rtj5JsOvlkML79GuFIkUpjx4S2dnBPE/MkBV674ePut\nEZFAjnf2XPbunJAVw+QLWbKvvspxc0il0KKZjGLHLNJ2m1XnFDfgcPtgTjyeRdnZIbDoMNt6mqTY\nxRnOCK8p5Eki3juiGquzqYfIBDd4XDtk83IAobKJs1MiE/RoVz2U9POIxSjKqsPDuzKTlTGdPZWp\nVeVSZsnIrhA8Msg8u8mDW2+QL6XpmAv0chk7mSYvDzAFnYkxR15GGetNLNWBYpRm36XbXeDLHNDY\nGxIZhXjiQdCB0HyAenXK3/zp2wD81Mp/gVRJc9JP89b99zEbDVoRiZ6l43THiN06/bMlwWSPkL1G\nMqty0gnhH0hY5gnNwJTQMkhJ2WXUbaHPcyz9KqVxi1F+Db3RwdfPUFrVOBh6+PQEyWmLqhulbE9o\no1B0fLRSYXzdNqzHMU2BSSlFqBalL/nI4XBeTBOyRep9k6acJOWf0hU0LqlhRHPBfeEQTxK5lP8I\nfPKnmFgPMc4f4U9UqHROCR8tqO7cRpiaXMg6uuan9YOvYMVX8XVbVD6iY3Q9JF+fXPI6ymWT0hfO\n+Z9+/jcpZls89Yk1fvd33uaLX/wHP/oQ9Zv/5z//UtEJkt4KsR7I4Y5jWG4EzifIHZ1o+YLD4Dk3\nMkWMY5tx6AJlEGGzLKJqLpG5RPfIJhfxMRUHpHWbSz9W4fwWZOUg3g04vrjFc6kcT/3Wr9N76QFr\nEZicNDh+Q2H4ypLF/SPu39ZpaQEkweDpURprsQ9Dm0XLIXI5yCzzNGFpRDF4mUmzQ0QYkx0r3H3U\n5Cv/779g41c/j1u+ROf0eyzdAcw8tjo278wE+kMTWavgM+4QTBcp6wqZv/MqdUOgQwDpdEHAN+BB\nzEYMCpRORezjI2bKJhWe0HGaDMZNyr/4Gf7qP/wlANFnf4HFRYtBwMPX3mOshojuuYztFaRnTlmr\nJug2FqS9+zjTNK3EI3LmGNPRkKMamnuM2lQYp6psyD1GmQBxewnjAWM9wGp4QvUQzuoR0sMOVrCA\nZU5ZLOuEFzkycp2L3CrD9y9YCibCRKCyfoXu8gQ3e4letUmSVdaNBV87P0b+WytcCjxiZd+l2ze5\n+P++wcpRnX6xwFLMkjsOkHi6QiOzIPmDJNH5EZlX/YTdCa37Pka8ixjZonb/22yNXRbyE6RKkohc\nZlvNYjge33rzLpsLgRf+6a/S//03GE/anFCgmBR49+0P1qAfeeWzRHIJms0mBS3NlfEEPWJg7sS4\nmM5hqjGKBZENE2UcJyX42f9ak5oyJo5AcX0DWw3RGTxiXhApbtqEih9j8tXbGOY+nXga3UgST67i\nhhe0Uh5Gs8Za9GnqRo1H1T7Jok1gvuCtXoj65D1WnA261wWirZs0OwNG235wnqE2PyR2/4LwZoxP\nvfAh7p29g5HXiGgWxUyMJzfr5J+N0j+JcdVsMlV8bHoqj7o+ct+asqxVqVpjzF6WY/eUSCGCY88Y\nhY5Jhguo7jrK0qJuvUbzeEI/r2HvPeDrtSbLcID6izd5750fAPALf+9V6qMup+cDLg0XWNvrKEoS\np3MbLeUwfG2fbCzIINEALUXYWEVxHxMJJvG9W2NKgKR0hnnJJHR4wIEUIEqOTiJJgAXaXp1pv4ec\nChHUKkxbh+TGQcIbz2JE21zxJbCKKh3bJHpkYWYyJJYK9rUksfQBd+6miGY1ujmJ48MW3UOPj6VC\nhF6yqD88JFAQ0H02yeKU+TCCqN4ieulDZLQV3HaIoVtDu60yC5QoChrfqb3BdJgnllxjNg3RyV6g\nH7nIIY2HDw4wBYP8io+QLBL2S4i1EWFJZqlPkONhvvO1r31w3j71FNmlSkxeQQ1f4K/68fc2UMs1\nctkk2qHBrFSk155Qmc9RpQWdZR1tlkWSEswJs7m/pLXSotxIYUsC8eQQdTziom+wUc5ysV8jZMdJ\nahOUkE2XAIt+H/GeywPxAdkHp2SeiuAcN9l74x7lz64xGH4f1VVptTeIaG8TkBI4gynm4xHS1i5z\n/KzHFQL2O5Tv51i8UiIkDbB8ArZfJe/s0OgZxN0K+ciSkq+N0Z8Q34qyGtZZdl0u8q/w6i/9JL/7\nd36Fn/78j5N9b8JRyGQmjAntTfCHpvRDKV5RVnhqXSbYWPD1mx88En/p53+Dy1dX2IgmaY+aeCur\nVNv7aOMww3aHvYFG5naQu+8tCFsKc7HLvO9wRQ6xs/ECo4bBYO81rmwH8Xk9plERxQf65DFLq8BB\nXCIr6YyXBvh8VEWVaEclHosSDQt40phH1ox8/CkKoyBnx21KmynkeRcz+BzJdpcHf/0+1WaS7XyR\nfL7HOJml+nBK+/hdFoM4fcGgUAly3u+SG6cZPC0QqnUI+MusVBR8EYPe+y4bOy1E3ypHrTpJJlS0\nBK+/O2b1aR/GHQsxPGftUhpfL0lgIDMKnmGMLEp5jQ6P6Ls2P/zrD9bHP/GLv8z5HR+IBp4WY/16\nASkgcDKts6oEEa4l8NXGxK7Gmboietam3TmklJ4Q9OsIx22G0ir1YYMILp1wmkjugnlfpOsT0JIp\nJqkeiyOTsRUgEHdYzLMImo+OOEPTVCZtHSvUwO9oLOtB0v4WUiTGVJ5ghFSGqQvkjkx7MKAUMTDm\nYbQ1DefxgmjJz2RRRa5tkF2azKMduoMHRF8f0ShEuKYt0WYrvPv6CWujNv7RGt7OBVQHRDcTKLaP\noRvDbIWoqBY+o0MkZFN/6wzJ92HkT2ZYyb/Ie7MOX/833+af/C//9Ecfov7V7/z2l17+ex/l/b95\nQuzyCumwivnVdzjTJewrY0ZKhsLFkt5pm3FwQCbkIhstbk+nxNQ447LMC1ee4/z+AdGBSqOr4ZMk\npIMFdn7BYNmiVNnBfnGV+aaFuZ7FutcjpuS5lJixcMqsJJdclYM4+R6rErhODC/p5+6tN3jhczon\n7RSxfh/NrzA9PsQSBvj7Udq1Y4KZTT7588/x3cdjPjJ3aU8m9B2JcrdH5pPXWJcLOB2P6uAO65nL\npCI2zkIj9tI279y+RegwiGRO6GltMmaSrm9OJnyJSGVBJiwi62NG8SUlO49Xb/Ll7/8QgPKLN3hq\nMGacbbKhlhi3EgjbY9TxfaxYgKGVJVO+g8M2XjiEPYxStE1qQgmxlMWRBVa3bYbnFs3gKiHboL+w\naa6OSHZcPMUjMMrhebfpLlu0bo4Jb2e4YIO1SYthWifx6BQ7ZhG6vI4dGhJST0l7Lq3RgNjMQvcd\nMDZSVJ7NcfyN90gEDYZODm04Yu3zWXLbH2N/v4kiRLlShu5CZpnU0LtHtIQEhumndyCQ2zJIX5MZ\nVk/xSUkOHtbZfe4Kd+7OiU3a9Hw1Hr73NjsvpIj68nQbNVAMeo7C6mqWxZWneftPP3AtXvz0FRKp\nLrXqCYFyiKg558Ae0zrtsFaI81i/Rfl0h0wyhI8HLM4lQtF18rsbvH9/Tj0XRJfhzW6VbCmFVkmT\nClxwvOeh7KYhmMbBotm7Sc/rIC12uLGz5FDxiAZXCJQgvGjjzUuUJRdrOKVSsekbIqLeQ0tvEbJU\nRGOMtBxi+VeJLdc4Ed4i5d/AL1rE9SWOU6Srtqm2w4SMC2ryBW81izjOCReOREmLkjayjF2RgpjC\n79ps+mqUS5tYj0Rmh0Mc6x7tK0uevyrjm0xoS1UOjs8pezkyO6sUNj/CN/7qA7F89/LP4KtaWLMl\nS6fNVm/A/cyQXHrCxSkUKzlkWef+cZW1XhJjWyKLjJ0JMlbnlDPP0VBjPFPO894fn/H//NW3uPZz\nn+GNr/0BofYBXj5KYesKQtnh3t07mMUwLDUSswPu3zpCCOs07A4Jcvg1G0d1mORWsQdj7n/b4IX0\nKjHxEiyCtLuHuPYms5JFqjHFKAdoPTqgGLzBaD2KORozaYcJLWLcP/gWun9BTwAj5bAhBTmOQDne\nJRpKorYfYVzP4rs5ZvFMHGn5iIDzNOnUZeSJgNiao+JyVBKQzxXOVIuo2+a1b34A7a8++znkbBL5\ndM5kbHLhXyNUmTGfplGFKe2JjO6TWJXa7K9WMGMWia7OMN5BmPUxttawxTrG+ZBxNIEZ98iUE9Qd\nC9caEwqILEoBltMhDdEkMZLJajWqJ0+Ypj1m9iaBjSzV3ID82gYf+5Wfwnf417z1J08I3giTE6u0\nBiUKo4fsiwJC+WOoZYfAvkeyc0pobYdhx4dhFrDGHiuqQV9JsVp4GzUVIlMAL1ikk9Rpf99guRmj\naNziexcHJJYK7VaP5z76Mtr8ET6jy16zjSfNqA1znDtdvPMUgQ/BbNhhkRF57a8+SDW++LPraJMs\niXmC89IUeTjDXIpYRod6wMB60mB5/ZzRG1XO5i537s65dqnP07sv84P3/4yr/hhexSCpQs0W0Dsm\n4a6PoW+V/bnHpadtRucRnFWFtW4Iz2ews53knf13aUxjyMMqCUrUzs55GP0gRfcH//y3ee75q5Sf\nX+W+fIhvWOGZfBnp+SJNKY5cf8BORiOu7OK4Ah+KedTPF/iHFfasO6jNMPFcn5TWRhyJRJWriILH\n8UOZ6PNzissQ4nSVbtPlyqqAmFjhb/70yzxf+jgnssnFbISVSCEuKhRLJUbqMdnYJqNmjB9++3sA\n/ORHPkQw4tEfz7l6fcDeoUnSH2Xc1RCTAp0nYcSgxNBM4qo5GoMjhr0kZESiShxrniIZm9ExIlQC\nDr5kG3sQpOMUyWoGQtXEXSaZ5W1i0QCm0ED1TchLOklhQUvqUwzFCA79BMY6Mfsc2Zdg0GzDZEZI\nbzJvb5KJCszWw4ymLbbLYc4fjfDrLmItybig40xrTDJFvnb2VSrqFh3VwtprMnjsx+wM+f2bf8DO\n9UtosavM7THzB21cb4aTMQmrMv6THu2Rn4tCnrK1pK873Kq00WtLbv+bm+T153nn7h3+53/wD3/0\nIep//z/+5Zd+InuN1j4IAksAACAASURBVM23+dkvfoG9H36PvbjK5dImC3tIvrHkJBKhsrFNxPGj\nU+Gdo3N2MzJtbUHn+w7dqkUoYxKoJLF9Cw7eG+MUB0T7Bse3NcZPJbjd2kL+w7u8//0nfOpDKfx1\njy51wvM56/MiHbHLymid2zWTem+JMp2jZmxstjAMH0lTobnW57v/4q+IbOn0x5d46ukI5e0i9dMF\namGAkdORRn7WxTRFpYC6GeTrt1uE1DpR9SqSZiEt6zSFBAM7hfvau0x8PSbBAL5EhKSWwDMa1Lwa\nW/FdJLNH/8Ql1Ilw6oQIzmy+/s4HTpTurFF6UULwRILXP0EhfIeT9xOoRZiJ66yvLjhuxdD0HpHI\nkozdoZr3EKYSaddkf9pCmgYpWzZTtcbKCERvRsTMMByrRGJr6MEGEX8AveHy1qJBd+ojsFCZJ44h\nHqd9OiaaaLJxLiDPVKz+lCeFAuvHUVS1TF/2I0T9fPfxAeFomMDTcfafCDRbXdTz60xuxDj6zts8\nk1NpmYecz86Qhhq3q/dIJNqsrfoJRKdUtR7C200EdUklZP3/3L15j6SJfd/3ec566qnnqfuurqqu\nvnvuY4/Zk9eKIkWaFCUysmxZUZxEjmBIsiwBNmwYIZLIcRALViAFsWzHQCAnhunIsUiRS+5yd7kH\n95qd2Zmeo2f67qqu+76feuqpqvwxr0J6ET/g+/ue9KYR5sEmK+8d4nVr1I/gyvY2qmIw7eVZdB3W\nVi+Rb2QQPLe58/0GJw/eBeBvv3yBoppCdAcZtErMrAiJtUusLxJMrZt4P1hQtcvIBylaSovDgY5l\nj7DrApNgjdWtCU3JIBX0YgdDROUzHv/xO+ib1/DFvAgNN3Whis9I03O2OOdq0OjomFKbur5C0hqz\n73WjKDXycpPIfMB4KhBbTGl0NjB7jyiMoK0tyEk2A1Fn3jhGa+moapuwtoRsejjbrbMa9hCXZ0hb\nz3D/dpPExMVgnOOStGAkjzhqNWnfHvGZ/zZHaOWM77z2b+jfNold6pO9XMMnxQn0LU7PehRGUcTa\nDvFIjW/92j/j9Q9rmIuLvPXG/w7AX3/5V4gsufBkUuTMPlPTzyRSJrOW5dXvPyTzMxc57GjkJANd\n0qnvNSiWHxIwl+kNpyhanVE5xFxc8I9+9xcRbi9R+NpVhichfu4fXqfekXAZZzjvepmuGdTv7rKR\nyiD6Z1gTmDk2s4WLzbUkxUWQ7s27lKkRG2fwhw2OK028WpTE2OFQmLG21sWfSWJGA7iGcZakZbrS\nDouhTN0a4w6kuS8/ZDMcp5qSiM0TCLqJEDMY5R9S7Mms2XMaap/6jsX2pRZl6S5bayaFD3dJqibN\nbpXBeoZJb0G3OEVegcDcolkY8uGHTxavfukbX6Tb0RhpZdqLOGpin1Rtgh3zsGiOsNI9KuUFMX8O\ns7WH7U7i1ksEfB56+366pVO2NidMC2GWojaTYIDRyRx/a8qgP6Hgm6PUgkRiCt1KEl+0xHgcwlZ1\nXK4MqxdPaQwMAngZdmZM9s7QJiHcmz5arih282mOkhLl+xbLHRPfxWWGpT1eisVxuxYcuSA4CFDo\nnxF4yse4V8Wlxxi2dapNhYghc3DgYqHVcFv7BJ9XcX+/RX2vxKP5EfUHJq2XZpy+N6fiPuTSRR1X\n14uT9PGNz63T6+yQSso0yzb2wQnvfPBkMifz7JfRK0PGqTCBUAy5uCCVdSNWoxi6ySzT4V41zmBF\nwHN/wvLSkJHnBunFAyazqxwuw0rLYaeaxOcpoks6dihPciJy1FUYlXxsZU9ozQQCvhpnNYFObUi5\nFSEQaPC91/eZeKKMWbCpz7jdvMMXfvubdGennE3Av7dPa9Yg/KKEb0disncLZ+bB9sXIbemcdXt4\nDRnvpQ2EhMXCEpm5RjTGCrfu5lmKu6iLx/isGqd+gcUbr1LKBGgWU8yZ8GguMGjLXIpe5NVHd9my\nXTz3xVVOTmd0xT2mJ/cJtJL0kzKNwKvc/H8LANit50hfrREyXezuOCgZD3jmjF37DGydSLADtw5p\nnx/SOvNg+10ENZHJuEjhIEr0eog89whHoxwUDmi7VonoI6bhHgsngHcyYW4viOgyRq+HJkbxFeY8\nVvN0qgoxI4fVgb4vjzthMOgaFIJB3CkZn1tB82Roj5rIjSar9TDDjsA8KeAfuZnLFhN9SNOuoc87\nnB0P+fwXfg4xHcFz95BZGta8bpYDF3hp4wXS2QuY2QSqmqCRmZCarWAKbcSAgmUKLJQpq8clekmN\n4bsDPj3cYPf1KkqlS2Znk/v9T/id3/sr4In6n37/D77td7l48epnOPmoTj/mISkK7NguRnoAj9cg\n1wwzXJritHvEp1OWIuc4Ox6wun6RUdegPb7FsnmFoFVhNugwi2bJ/+sfcOnvZrGvpjHjF+nX91j9\n/AtM3mpzNd3G9ndQWmtEr8nc9uSpF5J0GRG94WLNcuhLMtKpn+R2n/BwRGMC+U8ecemll9D8l5gZ\nbTLPSpycvE/ctYtqBYj/4IheTSIWLdK57OXRh/8Plzei9O/0OWjcYpQQOD5xg8+N1zml6++QzviZ\ndWRsVcSqzukW73P52Ry1isTZ4S3mngXjTh3Nv8zE5eOt974HwIWv/DbrSy06woBOrU/7JMy2aTNw\nW0zEDvsFkYmVJzY1yIsJJI9DfndALuFQezDi+Z9d5WHXwTneIZTNclia0A3MoZPAXIZlp8VBQ2M8\nPWLYNwgv5QhcdLGdTTESvVyTvAijAUZwnXJMZdStEUpfZrXtcLd9wlBb0Nza4/ChzWaswVReIvg4\nRbqWJ3c5Qt6nU7hzi8/9/DYPb81Q6gGcYRpjq8zqCynMkptj35Ci08bzWKS2tMTa2QIjmkFMuRHL\nBcqbQUJCi5oaJWANELo2A2WINsmyN3EROn9CqFxg63OH/Og7hwC8/NLPY0jrLE01BvUikXYO80ug\nVrrcq9/D5YWN7QTxq12ivvMISzLh81VcazZ6UkP2pBkKeVLnt4h2BvR2BQrzBa7oVcqNARsuA3W6\nwC27WPEqNBZuZq2PEIw5VjdLo/qAjD9KoWZR/m6Z+N9Y5bxpcFQLYrqbDNf8hO9DINnnUFyiVXxE\n1BoT8wbZn02I6iLl5oD56ISu4sOpSLgPTuH6lKufjVOqt/EuN0hW3WRGGrmvhzhVCoxe3WNonEO/\nkCPTcxjWo5wKRQahPsnZAm8szOgwwnIvTVeoM9b93PqXP2S/8yEAeiFNo9ZA2KuweyZx1Cxy0viE\npdTTGMkQvj2D4MmYotXCm7RRO4+xg2C1DSblMb29Pp5zTVae+RLO8D77798mEmgw7A2pJousCQPK\n9yWawUPCB260k8ektn+B0nGDrXUvnXmHvXf2SIX8yI37VKchnorIuNNRlKmfo9feIpJdooCGvZhy\n1ZVG88SYGwOKZzOO9/+crqqh+vz4bJXolox22EEIRKh395irGXTFS/XkDqNoFFm0GVZOqE4Fcv4w\n1daC9Fc+y17hxzz1zGd5mC+zSHnpNydMH5dRs5DDYRSJ4yfD6z9+Mim6dP1LTGZN0u0xtYQff0lG\nDwSozfeIqQKx0QaRhoW10GhnGrhlF6GDDIWGgaA1mAhJGqpEc+RgjVVihxNk1YHlIgXJj1uasC21\n8Ksehq4AymvvkPujb7P4pMtsBrPuKsGrA/7er/8uld/+hHLllGGpy/z8BVamcY5HIYS7j1i/WCAS\nfRpLOCMaV5mV5twp5ukdP0Re82M7Ip5SlXxZwmy3SPrHaM02VcJka3MqkQ5X6zGUA4fbC5EXrg5I\nGS9gBJsI7gUXttP4QhuohSKxZy4y+YlF16twmhewFw20XQ8dJ8GHt548O3HneTxGiY9e3WU5OKAy\nCVNr9FnZFCiKoDPFM+xxbnyFSq6Ex7vOxtoIo+ci3E1wNBExB10EqYPkH6MNU9Q0A8c9Q0+KCIMm\nWvQc4riJXgBNHrN/6mFLq/HhnQFf236aJY/Nhes59kNlvI5G9KCB2e0jl1RG9RJrmTXuvStQ2n2D\nj9XbPLV+lY9LBfYeH5P2mbQ8cxrvNtGMHq5RiJDcQGuarGYT7Aoh3IMw9mjGPDRhSdoAcY40ceFN\np4lLx1TsNtWP2nz1C9eoaAlOD0QyjSpHfRvD00IlzSOnwaWowqv/4Uk1xO/9na8j9qYQTdMQD1j2\nLiG2R4y7VRr7nzJrbhLYaDI78zHVwKz2iepHBFs6jjFl0dgl61xEcqDSF7k4q6NLOlatg22MCStw\nGvQg5ScYK2E6Zw1qYotFP8I4KDAydLw9gUGvRqdiYvmOMdU26sygEzAYFE4Zd3VSqTYjt5fwwEun\n3iIQWWKyUDFdfaqnNVzlMfKNLTrHHfqHtxkwY1LsYLtHyPtjXh0dYzZHlJ0O+7UT6CjUm1WW5ylG\nHzss0irnKjpz/5TdvR3ueFusL69z/akpsetreNdcfPTpG/y93/29v/wg6o/+6A+/HVh5hdhmiFG4\nzPpIQl+y2Uo9y6H1kKRTY57u07nlgBWgOj+g7Z4z0VuUllJkpAGqT4VIkEMtROuowGbM4kuBdQbG\nDk//yjd5c+tHXJ0uMSreQ9yK8U6+zWbXzfTiPSoLP9UHdVafETGFfQpzi+jTK3SnBsrKDIkQ/aqX\nxf2PkFeuMozmKI330aQ25VObc89uc+GXfovqdwr0xDSpS0M+aFSZKzkspYfvsZf3Py3zwlOfoXnY\nZjviQitKtIJ+dCeEXRIp1dxsai609gd4RJVmYBlP6yHedpKOx8aWnmI53eCkf8SH7z0xEJ577hku\nqRE8AZ1Bv01sZZvROI8sT4lJUzorGsk9kUI6xVpB5GGhiBIYsZS+yF6/QevhmGgmwv3ibXyTCJei\n66hZi+FUZfyf3qect1iTNjlmRmwRon1VZtL20KXEtKJjBRQ6symL/TNScoS8HUCwDqj544QSOvfH\nj+nvqXj8c5KpLKOFg98e8DC4RTdgsXqqENiwWfRcZM73OS73aTtDLikaI2mdXq1KbSmLXpNwSRZp\nfx/FuMAHox5Ld0f0G0PKxy3EszHr8Q53OzXicgzDZfC4eIjYGxM550UR4twpLHHnzSc5s69945sc\nKjOGvTn11gjr+SHt2hSzNuH0wyaZZ76Ap+Ghvuiy6E1xnTymP8qhlfM0/T3E/X1sNY/4dp/F7ISJ\nKuN1zqHfALGyQAwViQo+Ro0Wd87usYis0bRhEIwiGDvIzRyh0YRZzk1rpPCtb36J/QddnNkezjSJ\n6fZS2h2x6AfIdmdMnA5B31PIuow4segLNeojP8mlJP1mg3Euz6hS56MDgy+GLtKNbSLeH1Pd7VDv\n1zBSDxmTxre8xHBxjDDK0Uo+oOuU8MYnHL4Txj0e0Mp4GAYk3v44Ty/i47i/w7Wv/gZv/8WfAPDN\n/+oq2QtenNQI+2mD3AsxLhtzmlcf88NX/x2Doy1Wbrixbs4oeixqvSmNZgdf4iojW2ZXqaK2Y1wl\nhFEec+XRbfZ+Jsn4Ro/N7E+IPHqTqPlLeD0p5FqeZvQS6koVffMyyl2YSm1UzWEgrjKLmoREibOm\ni6F7Qrdjc/XyVYblU1xRiamsYBsmp3t9ZFcVOxRF7HZxZzSkeZRepY2CwrEZJvjCVUIfNZisdWkX\nu6TTDo46ZXI6Q5d8xGRwXV9FK5aJj2fsvX+IJ3GBgWdB70DkZc1GDQ55XGuypMiE6nHmSzFe/fMn\n8vGvfvkCNV8c6g6aOETz+UFuMD3aJkqHogRnGRch3xnyQqZVdXBUCW+kgBBaYdmVh0gSq9ZGPCcy\n91boTjWEcQTd8REbHNBb6pL1RNgfdZGSX+Hx7h7Vdp1poIlmdbCpsPeN71AREoxLCrodZiUQotn4\niC/+97/MSeQHmGaLoS4QqU3xVifsjL2YgSDr8TiCPiHcbjCSlumH+vgTYdq1DK3gMin/EGeyx/1u\ngEhySJ4YcrxGQdzA2Awh2T783hyLg8echAz6NT+t3UdYiykRx8OkqzDMitSan+AWVvng5pNU4zc/\nFycUP4/n3Cox1yYrL8xRx1N+eu8R6fEldqf7ZHsbvHb/PT53VeLpKxbWJE2h7KUnVcjOW8wiWe50\nKywEmYWtUG+VWYroaNU0G9eeo3Bnj91qk2nQ4sxKkOlUqEVVng4/yzv37/D0Ly/TXbSYnwqstCTa\nFy3a1oxKSiDTj1JsHJPadIjJkDh3ntZ+g6O9CRe9GUb6HkJPIjwY0nbLyKrEwu3GlZygeEMIw32U\nWADZinLUnJPOeDhrtkkPfTTLZxhqhIA0IxAVEKIbhH0PyTsdvIKOJut4117A1XXoNu8zGqzzwVtP\nFIovvvQUptfBtit4bQ+tThC/buBy57FiL/J8Ys7jQQD/zGZ5wyHozzJcCBB1mDhRRMPLuFakF2yw\nHQ/TcAxUaUhFX8HbCzJWTpnNx8xTC9w9C1FcoMez9CY14hEfUWGAHA4QDliMSzaz1ShGvc98FsAj\nQ2QaIOGSqARH1OQJk4SfrpAn4V5iOGmjlB02slvU/C66fol4RcNYHtGq2USCq+SCEybrCRxXGMeY\nYNsZ3IafmGrwuDRB93kpzx4xnT5CWk4ji3MQ/Fz83Ct4vR6OgyG6RYvpmcjhwR1+8+//5l9+EPXP\n//CPv31t82W2bA/NoIN50sEvmlz+jS/RzTxkXFujlG9yNnbwj2qoT3+N0bRLN9Jh67hBaxDFjAUR\n7AqurkKlcMTy2tN0L8k0bZn636xwJXqVe4dNFoEmz1YFXLU9OnoYOe5lfyRxTlylWvTTn47w2i48\n9Sn4ykQ6MfKPf0LdWpC69GXMVJRip0jDfYY3bKBpBoMDifs3P6KbnJPWvMSMMW++tQuSgl+8hHeW\nZRitsTSPMTbbNBwX/jWZ3KiI2PFxOG7wbCKKW60gdRNUV9zgRAjGwuTrh6ieFO1gk74UR0Dj/bde\nB+DG//gF1EqS2CxEw5QRyg18szaDyhJ78y7jgy6e2DWy6Tl1VcMMdZmH0hTrJpJriKqUUJoaq1cy\n3N3pEZyLPOopTIdxtq9Y2PISbXmEazOJ3+ki1m36rg5ewUXKm+Ss+ymBS5s0pi6C7SGOrOGMimi+\nSwT8CmHvFuKWwkYF2s4KQbmKpjYZx4IsXj2hdr1PcCpjHQxoBFIke23UXpiQnkJRhwzlLczqnNy6\nG2WRxU+OvrnA3RdJBjTcsz6RS1cZn19hZgk0/GeUbZmJS8SlBEic1tFXJuSnVzjQrnL46r8C4Kno\nJbwbUay2w/JVD5EHAq1FleBL13G5D+iHTMxqi5OITXBe5U4hxCYuioMByKBYJRaMmVp77DoOCUFj\nJmVZOVeksnBw2j60+IhmI47yVBy3R2RzVeKkeofI3hrx9IS2rpBY8uGpeynV7nL69k9xPbNFPGxQ\nZop3OsftFfAGl7HqJ0y9UZrFd7DtNVpeh5w1ou+OEgjF0EaPQekjHor0vRH8YZVeZMHUGpDLOdzW\nLmJ2jhGCERQ9SqLfwzqYEtdTlAmzprQZBL20hSnhcRVdFAhGz7M4E7myofOf/+w7AHzta/8Lw4qP\ngKaTwU1+6Od2q80ff+sX+c1/UmHoWcVeWUMzBVwtlUhMIZty05+JxPs1rNNT1re/wsf7H3Ek/Qfq\n29eonmQZ33xArp1AvPQipwchfnrvx3TvjVDXdcK9Ka2dO9RuRJme1pmf2yZkt+kXF/gEh67ZJBO9\nys6r38PT8uALiajrOYKjHp2UyfrSnGOXSKwRIXItQv5+GefydfQ1lfKH7xKNm+gnfRbTMZ3BgLQW\npFpqMXNcLBs5rJiKZWjw6YjRvMsdl5er8WV6szH+sZ/p5DHjeZoDsc+Wy8TrSdH2TRieHPDme08Y\nldznv45napHJ+igUFgx7DmJARRxUOZ3ruOchtFCZciHKrDlAassY/jDWvI1/3qBsrBDbL2IEdBZV\njQRjBl4Ze5Eg1C4RyE4woine/ot7XFn5GSY7RfzOIyLhLO6BSjXt4vR0hs+5zNBp4X9ksMBNXI7w\nkDyjl4+oGF6eD6/gLPLUhj5KqRmSP4R0+h5jbcr0TEGWPHTiafyjAXf7BZbFAD59j97tMlpqm2b7\nAQm/i/nI4eyhxLmtOO0PPiJk1OiULWqazdfXtrnzgz+nm5ZY3g5R2q1xPbhCp9FGIcSgnebWzpNS\n3L/1f6aIz7fxeYdM5WPev1Wk64xxdhq43Q38h3Nmeg4l3uRzv/IMvUqNfkuhuNPG39IoG14cwSLu\nXcEz0UmnA0RFk1utOdOkxdSecpLcw7frQxQ30P11/OEEJhGGrfdIBEOUx13GNQMjXGKe6RAcari0\nObUDEWddplvps3n+eW4edgnpl1kYDrc/eQ3FmrK5eYmQEOZkqNIsVzl//jyDSgmxrNNLuGEW42z3\nPnpIZ7Y/ZckyaLoFqkafaMBkUDyh5bVZC3mZFQYUxAD6vhvftsB4Z0rJrZKZdnBfuczyaZQ/f//J\nzNBn/u6LNAoFenoEv8vAo9SRGn7UdZOivECeejh9UOT9N45YNkIIzphOakaiOUXwTAk02lRnQ2TV\ni5jNUiofURXnBEIadnGIe22OOO9iySHK1Q5NO0W6ZaNlorhaJVqSTMvWEftluksas8YIsSPTSbdx\nTvvYngnDpThK1YcSmLA2qGP3tvGGRjjMqYoOd7p5gkKQNVcMwXXA6f0uvnAYITtgepTGHo6o1kWC\nNzzYjh9lbjM3TjHMLL1Bmc9tPI9htRndPGYzuEHtmpcHBzMIeTl6CPlHh3zY/yHtm4/4h9/+x38F\nQNQf/K/f/sJnV3D547Q7JVK4qN+4xl9kX4dwlt3lx2RWz9EeHBNeWWZcvMmZsY//UZzjboJFr4MQ\nGHD2sMFRw82Xf87kce1TCp+eMC8Ecbs9PFTcyGcWdnzMuDkhsOqnGa4h1hIMZyfEP/80Xfs2K3aG\nguAgJyXkXajpLezwOp92dwhV/wsCv5/hrW/9IVlRIhd/BqW1QzE5x79jE9MmjONV7ggqfTGHmvUR\nyoywzAprzz1H594+pX4XWcixHJkwGFsUMYisRRk1DxAmA1rZNiHVIJ0WefyTQ7S1NhNsFFeKiWHj\nz1f4yUfvA/Cbf/Lz2J/cQbUCaKW7+DJLHNaHCLUDNvxerPaYsbfBRFaZuvqElAQfvdthLdtmxbSp\nH6osGyH21CLm+jLdTZvacZFh7Qh95RrT3AZdrc2kccrIDWowzjikkFFTiB9/TG+YZvVzU8zGTUT/\nFkuCm1JnykQWqd46JCItCPQ/RW77mE7HeA2HO9oK0qHK8pKLYd4gFujgml+jvagg9x30QQ2PcELn\n+rPsFu/gj6TxKaecCG2sfg1D63Hn3iGCp0Al6addVnEmFUy/Tr05JJTeQErWWK/bJL6YZnbc5ShQ\nRTdD3Pn//m8ANj7/FHNHQTo5oo+KLD7CdmkMuj3svIhtiIyrGlo0ih8/28Ms3i+p+DsWnsE6i7U1\n7Hkda6oRaKwwlDQaaTd6N4Xa7mAsgdgJQuIu7kd+GoP36QgJcqMo9/wf4/HFCGSvkXnmGcq777Lz\n0zKpi9eJrGcZfGhhGC16GQ9CtYwz1FHX53THJpGQhbc5ZxK1MbVlYtfdjL0B4opJxzZJbj3DcHKA\n+Ooh8+Qc29ujE9ng4n6ZZiBD71afnjPHnRigqk0qgzpZt0y1PiCVuYyn6uP0tMOl1Q2YTBE2snzn\n3+Ypnj5h8FJbXdYyMntWH0lokrdFlJTE9W+8xrjk4vPXXsT+cEEr6SEdM5jpUdpL55BPxhhhaNQq\nGDe8hCo2a+eWqE3nZFevo3gGdN3n8A2XMOcLvHMvO/sK1v1d1rYzOKsmQ88SjSMJj7cA2QSBQQWr\nJOOamuTv3UQzlumuR5G3YhhGhJlXQejLKO4ItcMynq0++ztuZpEh0fyMNR28wz123/0Izo2RDopo\n515CGCRIzP0UrClqtk6g7cW3GOL2zZBHfbK+LYIjndNSh0m6RsQJIyR6tJ024VGGptxCwkfTu8cH\nP7oDwH954xrhnsS8rCNcEJg1TASPhDzXcA+8LFJl1MqMxWJAf3OEWp4idbro/hA1v8y8DWe9Gpl5\nimGmiUvOEa808SQFuvMBxfUs7/+7Dzh/4ZeozfdR6g0+HBQRpgrZcoXq2QxGRZQvSWSqMx4tBlgT\ni+h0zMx0YSoRLmz5EFsL3jmoMU4GiLnmYI6pWgq5kYl3ZZm8/SYRs0NttsaLyQmTB00OIm6CoThu\n1xip0qXn9SJEg3Q8KopLYiJKVLoKKz0/PmfM+8UZ0Re/xLos0TyeMrQ79J+ao996n/CVGM7Y5qcf\nPmFUvvrPfo3pd35KuXmMnV/DvHGB7gdtXvnc83RKXQafnRH3hlh0ddrtXZqTVUY9C3Xa4nSwRHpa\nZ2G6CPY0QqqfUfsmR1EfwmRKMj/h7eKnXK5vUDUtxpFjcrUO2isehHyTSO5lZGdMhwVz3Y3ccGH4\nVHrtBcV0H1nvIRYs1vU5w76HeVjH8Z+So0rYyJDb9PDeo330ZI+gx8DWQoxmdaxAhN5qgLQ1Irmo\ncn84Yjt8lXH4HlZsE49vinxrwVn7Ey584RyysMy453Ayr+H0WlgzH/71MUJX5/yGn84Mduwqi0mI\nd975MwC+fGOd9so2wnSC0Y0w6ffp+BrMoufwN5pM3BarPjdSMElSXmd8bY3O3jFdV5zEzGYv3CPc\nucBQmxPMH5DNxXE1FmhKH9Hlp3cyJGYnqA7g/Exi4nYgLSA+VukaDVLtZULNImfzMZu9MbXAnKg2\nIzUOspBUNO8InxjEFOaI/UdMgiYjdYLSmKDWZ8yMFAOngSc2Y2pIaLaDfynMuCMj+TwoQY3FuRix\nNQ9+tUNYhqIUROk3ubBw0QnHqX28h+LLUTscoRXfg60Ig9Q1NjMRlKzC7ZM8v/ULv86t117n7/+D\nvwKeqH/xR7//7V/91reoOC3mh22qcpIj9jjr9sjEx0R3ReT6GJ+cJByS6FVcZEdZVH2JpRiE9QH6\nosIIgVAsxuhYfaZr7gAAIABJREFURZu+yf/xL35E9mefYmn5Iou9NiuTx6iqC7PgJqCKdJQY8kRn\nyZ6Sn9+nNnPjco65splGPl6gJRv0+l7UapNhNEf0SoLdlR8Rv7xK5JV1Tn58xPJSmLlkI3psxMAl\nPMUQcmIZxb9Lzr/EcVMicmbj815E7dcxRR9i0Oa4ayLlC/AFg8ePKnR2W0xDfqyzOWN3jPkwhSYI\nKJ4Ey84Ws5bGknXISQJu/uhJ6sd4/QrVH1TBqyPnI6jOffzTVbxLVzGPTwhLK1ieNImKyKPyQ5qt\nAeEb54g8bnNQFJl6RWrNGV/9+Vc44w6n+S6N/jm2zgVQh1WOP6iRXdvCbr7OoiMS6vsYFnapSX0m\nDkQuLvj0MI+hhvGfS/KT756gWuC/NsXaCBOvRJnlAzSmQTzdMXbnjFx0QHvuoA4NFvYpZ2aI0KSG\n0c1hzcIcqic0flgn6C7x5d/9Xd5/8w00ocu5UQd3VSavjBjXR8QvhYk+8uE/52b//o9Z2XZR8S6j\n9PLgknACXg7yCvLDGjF6hK6/wmv/178E4JWv/y10d5GLz19BO3pMeerBNKP4w0vMGzab5hJjY59x\ncYE4NCl0fcQdgfakwms7FWqPZd76wcdcenmFzrGN6lcxJTeeoBdOSgwWdUreFLOpgGfS5FgMsNLV\nUXsNRkaEnL5Gs35G6W6baV/gilsk6Rkza3WQk3na5RDmKMTBTpnkdYXicYyEt4o9lTATAU6KBa4G\nLtGtOXiSJverMtP7BZzCMU8vf5GRq035cZjc1MYzdOhLHoyoQm1YRVitkJCTlGoelPBFotExWv86\nnz5+m0bdIbIcpFbNk7kmkQoqfPzxp5wdPYlOJyerOJEl3MUR/ZSAU6/ja3vw7z3k5D9+zPiLGXzZ\nIdqDTxD7Dse9MamEB482Yz2xSnLmJxSVOaWHt52mvZNHn/WYezeJ9g1YK2A8sMjf+jNmhQfEPutn\n/cWfQc8lad/qIa+WsfwClY5JMLbJJ+U3yaykEEc+pGCCrNNEH58RPB7yoCRysHOToTLAsCesPpWg\n81Qe5dSDL2MyOe7jiU1ZefY802ga50jgyOqgzw5p90bo3QKdhYJnGMfwVzhoRxHyY8bnMmitHRb1\nGgpR/DOF2ic9OoKMkTZJNkzGjpfWeMTNd548O9nPX8eTmDOKyJSaI9aMBsakizNLYHtLBCoq1YmC\n6JKIeaNovRROJMzoTMTKSQwaJUJSGilhU1Ij6GKd4+QYyRKZaG6yvRRK0iRUOiSUSlPoh0hfFzH1\nAJNJlGBygBx9mnP7Fsd2il6zhh7vUZ9NWDx0MxZaDOwx/+nfv0FyexPZMlBqdUoFiaQ2RHe5cMIB\nWmqS0gc2ltmkN4jSivs527mNs76GpEzoTFUmRo6h3CdkhQiVHqFPwgS7I/bjPQq7DxjpPUyfwI//\n/JDnlhNMvWGSDZGfjh4x6ClszS/yg4+feD7/9s9epTaI0Rr4cfWamFIdn1tlWhYJpC/QtxoY3TZa\nMMWhsY+360VoBWgOXCzLI+arPSS/gVMKcE/fQwq5yFU1Jp0oVqBJKL2Gx9vDpTjoYorQVoB8XURH\n595pCaNepBu7itZ+iBzT+fT+2zz3ws9Qbr/D9GGcSGrGcW2Jql9l6jFZzEro5ShKbIG25oFBnWkh\ny/pTXoyxhc82mTNBqFi45DwubRWPP8Cnu7dxHQdxJiIuOYR3rLJ8JUp1tGC0aKC0G4xD50iUdKwt\nE6/RYDYqcbYYky88INjxEEy7+PEPnmyDrr38FTJDgdGpn/CGG7mlURhOMZf8eNsW1tymea/ISsBN\nS1KwR/s0SjJr6zpdcUBcWqC3R8j9IPXsAF2QqYlBAtKYijEg0YXOeovl0QRrKYchwPBIoZlSCQ+a\n7CdHOK04vaBEoh3HNwvQ74boaTVc7jSdgQu1OQB1yrw0ozvzYy/89P0LDkJhCjfPeM41IuC7wlnx\nfYZTN72OF3t4C8V3iWF5yOL4AG94SC+W4OAHRWKTCkJM46zlQZBtZkkdtxDEL0zY/p2v8dd/8Z+y\nfeMV9t76IbvVTxnMX+Uzz1zh/g9f5zd+63f+8oOof/4H/8O3X7r+VQafHIEu0HXN6HWSlEttPJtL\nDA4es3jWh2WNYDIh6IngW9NojG+T6sdoHRu4fCq5bgpzs8snowm3VzQ2fvk55t9bQltTKX74LtvZ\nOKYjYi+PKLUVRJ9GrVfhVuwBL7RepmGUiTVXmXp0Hu4P0NoRjoYq8lKStDji0HqAenaTSWlKUvUS\nOY4gl8qoPg/99gi3JTGURcSjCnvDBtKpAmaX2dDFkjSkOxOYzSxmjotczOSpf/o3aX23RW56zPxS\nhoDmpjtPYMuwouxx3DCR0gNc/QbF7pCs38LvD/H9v3jSTPvSF5/nmRtphKnOqlfkhzcHeP7GX4N8\nh4HHYK5YZIpnvN3aIXn1JTZfSrJ8c5/hHIpDiaVyldBnFzh37zP81KKirHDllfM0ju6wktTIVwuk\nRrtoqRXiCy+e8xsMWh1a+QjOokYq4se50yV2NcMnf/oua/EN3OciLJvHDA7bNJwyVlglrlt0A3PO\n8gcEwtu0rQXegISNxHInwkPTwVpt0ysI2J98jODJMznt8Klh88nRjKcvr9J8p4PtlunGRDzdC1Qr\nfdymwqRQIr19nRo+MuopBw/jJGULWhqRuY9eYEDYNlDVGd/97n8G4OnPbFO5LxC+PqBfTNKZ9TCD\nGv5FC31coWM7qL0YrcEelwPLjMwZll3DP1WQI1HsG26+8dWv4J9V8cxsXJkNYr4O2a7MgyUQbC+L\ncB1/oUvdtJlOZjgbp7z2j/4Vpe4SW1qHaMVhf1Ej9KjAWLQ5scIcTXYJ1q5QFMfkYl0ymgu96RDf\naDL6JIEYbvKnr71NTl6hsH2FunqP97p5kt0gnSsZjPkp7t4RT9+4wXFvwJHLgxJ6RNilsygpaBsq\n0qkfz7xCxNQJDmUGZY1xs0XYu0rwuTje0xLdms3ZbELmwhZv/HSZ2sETg/Rv/je/D+qYcDtOdCvM\n6pIPXcqhLhza/quI7jOkuYo8DZNvNNBGFtc0L8enDdqJMd54GNPpIDp+3GKPsi9EwhIoqy4e1uqI\nt0ysXBVdDzBfdbiWvUSraVKvlvngYYMXPhtidMeLPBPBOGVYPSN6y4/7coZVNOKrIgftIepyFGfS\nRxzepXG7xbTRo6e1WB59gvUwSSQVpn+vguGkOXuscDEXoz+REZs+NN2Nu32Ev5+h5w4gzYv0VA/S\npMciGiQ11Zg2hszSEUZKFq+RxJK6+M/7CO11GDyVoV6u4B+0efujmwB8/uLXaYaTiIMT9JAH42DG\nffeUlfYUzyLDUBrjpGf0him0QJVStc96r83xIkLOMyLlCzIO53GGYVb6j2mPfegjAXdfwpGm7N4f\nQPMM76UgrVKZTUxamhdVaDLyDOmWJfockl5bwRHaaLJFLuki1bappDIEpCJiyOaCCaF1iwktFC1L\npSMRCzc5aYz59MEtMrEpqnsTVgvoLS/LikAwmuT8cExzksavDtjr/oSLUYVRZUEhXmUrsMn+dhzp\nqErf0YkmX4aZyVJ2QDi9QrsTZR6eIA5NskcGpt/gezef9Gu9cCmKEZsRTUz46PYp2WiAQyuLSynj\nibVxE2A+miLVDvG2c+CsMXn4I6KvPM/epIDZ8KLNXZxsLGjfkvEEVIQVP2K0iEmPwCMdNdDjTJiz\n4q4Q963SKlqoqh/ZZWI3JSZ2DvN5P4F+g1Y1wPpTA4qPk8STI+QdFw8qZ8R7Y6KTAf5IH1GBemSO\nq7fPjV9d5fjxAe2DMY1mn0msx7hmoGUb6MKM+rSL3ZuR9qZxTU3klIIZ6uHTLMpqnVLdxbw9pO/W\nkOtevJ4JvnCBerGAKx5gaWVG+ayJL1dEEs7z5vef3OlnXvpVTFliHNxDui+z0AycdS+5Rpuyp0C0\nIDIojPF7dSKDDkpbRnS3CXhCyNU8Un0dd0LnoFYltPDSGCtYvQ4tS4G6Tj3rQj+IcuaZMTtyqHdt\nfKkiUr9JaBZkMWzhX7dZnPmQ5m3cYTeFnhuPv4Hdn2G5BrhNDT0WxhFMzowQs6MFrngLHrXIJKAa\nWUI7/ZBWcgupCZJ/hM+fYuJ4oLxL9CKcfDRBulsh5BQIenP0HBvXocTCF8RtTTjId5m1Zrzxb6f8\n4l/8d1xeLTFrJXD3apRaUZQHKg9+8hN+55/8g7/8IOp/+5M//PYv/PIrvP3mA+zEiwidYxLhKIHE\nMQu5x+bVTc7ePGYreol0Ms7B4xMKFVhaucJJtEnNaaNMVYrtIcdqkfeO7/LF4BV+7b/+n/n48s+j\nxHRiCRtnt8XRVZjOZCK2Q29eJ+BdJTL18cgvYnRCSN27VESRtJ7AzkyIeSSMsItKt4q6k2fz5efY\nvvgKvPqA/rqbvWqJ9YpGN7mGbFsY8THvfe9tEle/THD1FGti0ug4JFJRjrsOxaZI1fRwYBzw4M13\nyEoKjs8k2JBpezTUzAGuQYOxnmM8bGLKMSqLCOvzQ3rTLYqLET998wmI+jtf/Qx208d8rU9di/Dv\n/+P3cDxNpFUJqVPmzNGwr5jceClN/1GJcrRBnU0S1pSOr8W6BpFOmmFBYbKSQD7NY52cce+Ntxkm\nIgS9ceY+h96aC+XBmHsuhf7ulAtXS7gHOSZLCnltjBVM81TMpNoP0ffcxvpBnXJSwlNfI2W2aXgH\naH0dca3FYa/C+YSfhqfF4qCAaDSolfJEPvYTVPq4lDGd7As8+7OfJTFokewmsLxjnGGFu9U8zjTA\nWvyQtfglPDkT2+cm7IrQOXvAzn6M0LMuJqdTRpEwRBJsd5MMDQ9vv7nLzt4TZuDKV58hGRXoV+f4\nxi66ShNTHvH4YAMrNyEu5agd3sN98SWMoUNWKfDWDw+JXVzB7iWZ63OcxzDgEw7mfi641mmPRlTi\nJpX7Z9ipBv4zBS5bpBcePv5kj3TwM3zJ/zRfvLHFYGWFjODD9Ilko35imxsIYZWv5FaYjgdEfF7s\nOajRLJ2FgFTo87D3EyRfl/mNv8b9scOjyh8QXFTYavqJaBaJcZlUJ8uxoFLe2aXtM7GVBanuFMUb\n4WzhI6xWUWcVVPcFOBtSGhTQLsXQXF2Ophozz302L7noJ3Kc9ym0pmnUuovbt5/M5Xwul6ZUmFGO\nPiAx7FPvxGlFZpwcVDGNAiHlOuOeTCAcYj4Ps5VSGQXmLC1n6UsiN29/l/dfVwinFhyeOXikE7pp\nP7mhQNfI01xUUfBiVUw+m3mRmRGj5bbQhS7xGza//vVv8P1f/AmTRZvQUpJz08vkmRI7njBMVTn+\n4D3SoQ1OTYFNpcgi/CJi183L//jnWF6Z8viDHVLPbFK4pXLDOMdNl8nwSGRkKrj8Ecb9j1jaTFDs\n6zTdGjOzguMLMjx0MDUHf29OPR7AU3YYzxRk95TmJE8wEME4LtCNuZmdnOHZUlBaOm/89Iks9ZkX\ntsHfwNV2WDpY4eCij2S3Tuuij3zAQezlqVdGbMwWeA0v4VAUpVZhGJrTTJxgD4cMBqsI0TklscF4\nKsMggOnRcUcXVI7LnJc3cIQaGb/EHiZedwFjvMCyZNbCFh5NomJ0MOpJTrpHSPMV7FEZj5GEpIn5\nOMaxv89Ov8Rl7yu4pAKRy3WQlpnPF1y+cA33TKJfndHTHVJzh3HjmLNZiIejIsu+AAs/DDshNqwh\nhzE3qd0Q1Z6CnC8zTQ2JZqJcj3rZH4zIBqIEnC5eoUPztErKF0D2ipSMGu+9++ROX/qlK8TGNsHA\neQaqF2OxhTXoY5oWhb08jjGn2w3hCcdQ3DPSUoe3m1W8yQjxE4WZ5aD5LKy8zpo2Ymb64KiCWZ3R\nCYcoB+copQD6dhfVp7AILOgUWvgNm9L+gNmVFO7kHrLzPu/+6Y/InE/SGcQQhj2yrQBV3UMqBMI8\nghiRKOXdTHQ3gYpDpxmiVrXxLPlQQz7yEzfXA3HiaQ+nH9RxCzpiPYcnbmOG45hZkeqpjVYZsB/y\nIN7TSI4Fuj4XhiEinkthT/5/7t6zS7L8vu/71M2Vc+7qrq6Ok2d2ZhebsAkLkAAEwiQhBlOmeGjT\niaJsWRZtWdYRHvjoHIsWKcmkrUOdI9OSTBuMAAiAWIAAFosFdnd2J/f0dO6urpzDrapbdeveun4w\nehPCW/g9+J/v/xsfY5V38HqfwfIkKe038K/DopWg8qjE3ftP+7U+d+Wv0RWmbKRjCLMJda8HZb6g\nHZHJV7xULIdBQCMn+DG9XurDLuVsD38/j7gV5UntIybhGWn/kIDl4SQ5R5IczG6AwtaAttPAPxjg\n5Bxyfgd10MPbC1NWAvhXulSmflrNMV7NRygboRc8Y8ky8OXm+INJLCtMzF9m0OhQG2VYrXUh3ETv\nOBTCcRpLDqF2FVFVCAkTUkMZxQxTH9WIBxRyviFeA1zJEEEzw1TKsfAtUKZu1iNZdlslts5kLv/U\nMvfOdjm1HFZfmyO/LWNdKCMwZZb2krrqcPur7/M//k9//8cARP3WP/3izdSn2TVOuCGaVIcSq8lt\nZvltFp0KxY6Ft6BQGR4ScwucNlRsfw375JzYfIQrlSe+UiY5W2E3qqMiM9v8Jf7unzR5vtDi5sVX\nGf6gysGFGVGPjJwsM7IXnOPlRjLPvF6n1fQyYJfjvQrxzCa9/phByiKUyOPcb5O6NcFp77ORTbJX\nuY/7ZEwjbJOc9qhNAxzuf0j4khurtkJye4w0rJOSnyXsKPhTCx4PRHZ2d5kXXIQTl7C1McsbGTof\nnTIQ45yOn+BEBohnITSlh/wYfCiMYjbxqovTYBFHczGeh/ng+0+HJi98NsZYOmfVmXMgefipV27g\niwfJX7xGZCXJvDDA/+E5B9+9j/+VCOdHEltbbU7utFlJtfCsROh4TWIuFU08wh0MMGtf57P5MK7h\nGn5PC3sosiS10KcLcu4o+a0UrcVlWpExZ5Mg7t4yV69vYT5eENqeof7pbaaf+zShbobkuoBwVmec\nmhE2FAQrz6oGSniNNjliQQ8nQReF7StYr/lwb2fIaC8yFuGHX/lDrMzrOJtelk6W2FNsfJGLXHzO\nS/Gum7r6mIJq0O3J9KvHHMk90mqctG8LpkP81TPODhtE4lAy0+SNEG/tPGWifv0Lf4OznRCXLgkc\nHMyQsjPCngxB2eC8N2TJlpHiIsloDKMpMe6aZDs+KsrzzJdmMHvIhpah5GvQK8oEl1QMn01tv43R\naPBs/gqdtU2coYpx5iV8a510A4oDaEcV0sMGshrCH9QZdabsGjI9TtivmtQJ4m3U0ccanXEV09dD\nyKXI+KdEN+aIq9ush8p86tMvMopqXLF8WJqNcNwGu08mJ7OcDNNRnic4+T5y1MsiJDN397DUEN1m\nl7ydZ3+yy8Zqimk/ii1GMNtDlsQBVZeGsFenks2QuXNA+iU3X/vTrwLwmedeQSj7WWhD7lW6xMIL\nfAd93G4Nee5iOF0h6EyhH6Eh3sY69zIZDrACEpOyGxIjEuk4Kd8yc61BqBJn1FwwC/tZixYIVb1o\nEwE74tBYTrBcGfPlf/kPmFwRiYkTnP/vz2i+/X2Ohxc4n2SxF8dc3lijq1o0hCyWx2FlI81EMug2\nw8QWDrMbOQInU+6+/XUyqy8h70solyVC0nWO3/9Tbl6X+egHJmvPyozMBBN9B4QwEUvB3feQD4ks\nk2c06mFciDCZVmEBwxDoNRG3vM/AyHBcPWHOFo84J/YkRnu+4PZHT0HUJ17/G0y8EVRilFdPyB53\n0MULZEYt7FqDkWeFFWGCFo9ROxxRSU4Z9lMYGzobRY1y1oP2aIwnImFNBTJjkagapx6aoo/OEYcB\nnG2R/ixLIuQglgy6wTq9cpTlVIaTez0CaRXPYYDFokFRieMV5xSkMGbKi/exhW4XSfRsThsZ1Ocz\nDCnhbV6hbHYo6CaG1mVuZBjKBqt+i3bLzTyqEYwnGJkekuM6unuJRSzGNKxh2z6WnCZays3Wco6p\n0WFRa1PWIuQ6e1RbLc4mbRKpS5StAV7Fjz4Ok97L842Dp96eT/3iCxzWWliuJNvZMCYa0dgp84WC\n5+IagdAa9IbMowKjnpc9WeLyS0t07T7OtoIhF+lpEmnboCt4EQItTuoq289foXavgW9tgFtq0HZP\nCfjWsGsqs0GcyCBD6fAx1y2b/jhAtXvE9sqL1DQb+ySFa1Rk6p+ArdKKh0hpLtonOv6VJG6XySB5\nyNwW8Ef7LBkmbsHFqqPTGnfY+fpjnnttk2NBhy2N2WONgH3GrjjEpXgJqkVmAxNjamD7s6iTMyau\nDEenJYJ6gnnOj2LqeAZ1QkEFdyvIvq+Pq1Hm/r0jAD732i9SnU0IzBdMtRqKOEMQRZpmh9GwxzyU\nRlQXrL6Z48yuML8ax0sMQcoSte6SSF/BeCjSkw2ksMOymGPhtplXR/S8EfB4WNYNdGnKfDpnoXrp\nL6Z4FR+evoI7MkGJLGE5PhaLCdNKADkzQDwGs66gd4bMZjJ+1xKhVpVyzs98tYvo8mFPh+TPJ9SX\nV5nXFZwxBHNxjmWRpALWIw/FaZfHH9rkpTRH0zreQovRwxqZuIsfnna58NzrNIwZP/wzBfHvXCZt\n9IguDQhH+4jnOYpKB0UbsmklePjeE/7Of/djIOf989/97S++cuUG8+ox3nQKwR+jE/shl7QMmj6m\nezZkEHZYPneQSz56NxvkmlFCLyxRu9clqgSwxQ72oMg0JJLrbSFEg/zkxQT60TFiCXxpF/7L57T9\nMYb6nNWTBCuhPNWTEQd1H8vODqKZYH59QiScYU4N956DEcoiTrwII4nv/PGXeT6/wdza4oApqxWB\nWXDGti9LrHCFzr0aQULUXHXcpTSVxTElqgSiQUZNL/J+lXhhjWBmTMp4gG+UZBItMtcNwlsrePU0\npVmXqOjHymWp+SP4HZCvgU+LUW976F875+EfP+3t+eR/+k+4fu0C86yKZ3pIYCXHxVsbzMvv8dbb\nh2QeuGmveVn+mVeY3vcwTBUptUS20yq+HROffp370QCu/Se4mrfwjmxMzSCQG/DE7LGIvsAgLXBn\nEiF/8wKR49uUexWaiT3WJ36cbR+htI537GFfaBA+uot47TUSvgZm0GQi6vjRmGpxar0Fz26amPIl\nrL7NSDjCda4gDVyU2yJRc4d2ZYo1HTJZjeKxw1j9Y1LeGkVnTL8hIl3QWZorSLLNhezLGDsi0WSA\nyHaT9l99g/ZzH+fWS6sc/Zs7DF8Nk+kdMT+eYMwDXFzq8KV3/wqAN155nZ1ij+iVIIuwG//+AHGm\nM1KWUEIyUekMZZak7+twMB2gWDNmZS9zb4eTYQVN8hIO2EQmIYpzN6EXNiju3SalG6xfjaFX3Bw3\nvkOv32TD3UYZw81Xwzj/8kvMYjKuUIS63uP0OEZ6tU7ntEcyaGNGvAjWGeqgSzhRQF8U6czcPLw3\nwyzYBKIfZ+Sfo9agfFfgspmjOfZxFo0hyy6isRynIxt8IdJxP2f9IfVanHhGxmx5cMZldMEhnpwR\nCoWZChMkT4bK6W22In7mrgSuucNHB32uZi106wqPqhXu/vth05cvXyIczTL3zlnaDDLzZtBnKqb7\nnHE4Dt4BSjBGXz9l49YlPOMpC69GtK+y+WyQv/qzD7h19Sa7h0co82W0DT/ixGQR7BHJFuj7RqhO\ng6iWojJwcbKo4L94iZ++8TnGX/Oj/1WMibzK6x/7NLnLAv5WlIVdYnTaR7dsLq26aD16iLsCPmVC\n17dCUFxQfeebrL/xHHYjQdETwJlOCRfBfa2GFVkjMEgQFmcMhQWapuIJeNh754zE5RS+RAhRKzE5\nnxOzo/iTbTpPdA72njAS3Sy7AqQiKvFRiS4qK0mFrLeLZYV45/2nd/u5z6xRPQSXEcYSu8xzXpgb\nxJMdrMklLEPAr6U5CElsr3YYjBXG0zr+7iYJ3wnGWYyJWGWqBBEPxsxnOaZbM1yTGbOFRtI5pOZJ\n85ItcG/SJ+MfYdjLiGOBVq7N9YjA6MiPvGEQ8GeRyg0mJybSzThRs8++e49771cJ3QpR/0GbVz4W\n4nAwJFqssjX30AnEWNg+Rsfv08u4SPdlmg2TY1+DueBGHe0xyATRDxqk3CIrrg4BOYwud+Gsjrcc\nhqUVjqeHXLUNIok8S0KLO7tPsKx9hO+fkbomcUEeMo1o/MW7T9N5X/jUX0foJphWZpyODCLFHoPr\n15kvani6Y4rNCdFsh0W1g+gZsSHC3HdGqGmAq0ogqOF66KEszVkNehmrBpdFkYE+Ih6wqd5psRp+\nhaPbTUzXjOMjFywppJDwzX2cPOPj+fgxGesmLWkXzxBkScFezzMOjfCLWaL6Hq7uFN/NGAnLwV/r\n4x1vI3ssXB0Rc+YwVcagejg9G7K9GaC08JNUPey+s8PljQKLZhNLVJh4poiKgmb6yQWHnMwN/CkX\n6WEIUxRJKT16AwUh1UHshhhl7tPpV5F9m7z4zOt8+Y+efhI3Xv3rxNaqJF19BDnMyJDQMwG09zqs\nXx4xqLuIDS0ePjol61li2h6R7815cOddUvI2T+wRm/k0Q3GEc+IwFHpY6gruaBFzZFPQsszFNt3i\nGkurDrNOiuhaH7vlQVUqlIJBtF036diUuRJAw0HoOuD0qWh9RuvLpEcOe24v0WSQzrzOWjsKTQkt\nNkZ9ZhPPSQXV38bTn2CEIhh1ESshgBzDHViwEnPh3XIxGyYJii40l8bxZpqVtQCj+8fIl2+wuOVG\nPPtjnn0xyHkjzfGuwbuT38f8iw/wtw2E+w57epP/5m/9OFQc/O5vffHNK59n2JrSm62wJBdJbCo0\n7koMibAdV5DGfQbGCv2LYbJnE4rBEPru1xCuZ1GGM6SZhu2PY0xzeJd6bE63cUUP6JsuyuY9Us+u\nobUCdAYBVEli3hkwMWWmU4NYpERveJFCSmNes0kNczRWy2RkkdLSlKupddqHf8SK5wb7rlX8+SrZ\nh1WO1T4wIxPAAAAgAElEQVSiS2FnPUBSPMMeB+iZOrOlMB97aY1OI0g1YCJLAYRBgNLkba7lk0z7\nKjm9hTkbEznz0dGCrHXDLGI+rNaCpRWJSmPCyqTJPNzD44xpTWaExSpZxeTbX7kDwEuxGKy3abQD\nqEqP6XhC/ZuH/LCj8/LqBcIv5NAGewi1ODvlR4S7z+JPjHEGFRrOMk1T41ZL5nS1y1paYG+8RCTS\nwzMbcue9I4RbGrtPBtwKhWDeomPoLEUd0jOTu0ciK9YddNuNMBmSNpbYGQXwBXt0TS/esc5sqiGf\nO7T8XtbsBWX5DHNdpHf7A4LtVY6ifUK4ES90kDxbWEodZxLHGD8gcCVJslfi2FCYVmusPq9yUp5R\n8MpUTxsc354xHSkIvi6uYoLNX3kJig843g2iWMe89tplhlOVxTTMw8j3iXle4OtvP40Av/j515Gu\nDvE2RyxulxD9fqrpNo3GlKv9FrrppenYhCtDxjGYlBv8+Z9/SPRjy6wuWUj+EUN7jogAoQlZtULz\nawdYL28TKW7RzRlkmik2o5ex7RKtSJhCIMfJaQVPIMW5KlH0lMnrKkeiRCykcue+xrMXQgxbXgKK\ngjvipTO0WLpylS2fyvhSge5AZXL3Ab2JFzPUYjAUKTQWpJpQ8iSJdE4oT1tciTe407LQHpY5eFSi\nkCxQjnfxjJYg6iI6MNiXWij2hCfnc5Ycm5FYwJqeYx7dwxiLXF6VaUhxit+r8OT0hwD86i//54yH\nAp1iBWO2zmzi4GGIe5Rm4hfIeIPYJyfEtzZwjgxGsz36qsrNn1zmX/32O1yOXaSelXCVdLr+MpHU\nMvXJLifj77Ievsa96hhtJtKX6vh7YSTLxbxuMWfC/bMT3KE5kfgKI/GAxp1zUrpE+ZLFmWfEysRN\nw39EddBhnnDjt9M05vcInVjMVtNYrh4DucNlJcL5gyrzkxK3H+ucHZ2hd95jthHio8YBa8pNrJqN\nfGvG4wcfMrhXpb6RYORVaSdHMFpmsbTP9qVX2FxLMX5ywExqU3nYp2Gb2JUp37nXp9Yucna2D8Cn\nr/4advqUkKeO0Ncg5TA692JVOozSYHYrtJQppiizECTESYeZomClbAIDAUnrMcqn8U1MpPU4eUy6\nuh/B5SOYmjMrrjF2t/GZUwgFWSw64EwQvB6ER3XKbDEt9CkOJcS+SjUg0FdrXNRGWCtpxoMFRkdj\npSAzGYxY/skhRnfO4/kSMWdIaRHFSaWY154Qv/gCASXK+WKfTz0fQmsEERZBpGSAQmrE7FxEO7Mo\ntUTSiQXHDQ1blBFEP5J3SvAA7IsxnjypEjw548pv/W3a0wOMrTUOD97jS//qiMb0EIBnX41x6IvR\nNWrkHJWelqHxoM+8nmERSzAqTljyubFDPuSQm/lijj3oo2YnFP1j4l2FPVeJWDCNb7+B3xfiXFkh\npp9xpi4jaVuokSPKT9psvLSK07QpTMDezvD22w+4aBgcrKuYUxt/b476qRt06iKdhx+SfSFP4kRn\nMWhheizciwJKs8UHnRLDuEYy0aF+GgLbR7kjUDrSefAH3yZ+8zWYl3F7C/jUKwiqgKh3GVoOY/+U\nnDuH3Qjjd42wJkNMwkiuLmzNGHViqJRRm5vYF3ZJeddxu6+QT+gYlQZf/8unn+uf+5Vfxz7uoARd\niFYb1R1BXoRQ+6fMgktEUFmkg1y4LKC3eoxGc05Pmmz87Jtk1D66LeM+KKEoC0aGC39wiDFtsh66\nhCiM8DSa7KtpnLCIb+ImKB3DUZCJqlNZccifjMAZ4NGCtOoT2kEItCIMck0W0xxeT59wMI2mtjg4\nLOLdWifoO0UwgwRrboyFhkdzM+hYCJc2MCIljN0yc2lKduZDiWvQ1+nbWYTgXdxakEeeEddyKerf\na+FcuMRM2keSj5lVVGaEyFpzAnKbj8XfIPlGjujlN1m/6uEH3/6Q3/hxMJb/L//4H35Rez1N11yQ\n9N/gNGrgGqaJpfxY+hQz06NyNMEcD9kq+EGKM3T9kJhxmf54QTC6RFcckpMuo5Z3qOirXLusMxnP\nSA97eM4jRINDXIMJYTVOfFBhpiwjOEOmnRHHM4fshR6p9RGl6DNYvT7JdIqTocIzdYVORkJ6u4YQ\ni7H5XAJzV6FJFykUII7JQFXQLT/iWYe8pOOWXLRP4qS1H7IlWkTdAQbWPiHlBbIfPMHOreGdLOEs\nagSVLXy+Ea1Fm8ruAZLSQ52ksHSoSA2c9grexZBm2Y3llcj4X+XrX3nqUVnXg4wnMr7Tu0RxML5q\nsHDcyI0iudUZt08qpHt53FdFwu4aRldCDTexhRCKdEJ27mf+jM3sfJV6f8bc3WCBH7tgccW+wnjY\norCZxHJUTMnHW//z77G9naZxMGNtGEebJRmOotguD/O8gjYPEO3AWaTKOOLF6haxnADqdEJdi+J6\nMmZ1FqazoqB55gSlDdLDDqSzpL4fpz/1sbTYo2k9w0XdTzznJxyVmZ+JZApJfC0Z0b1EbqwQHZQQ\nN/LUA2UOkGnVF0QDIk7ZT9OtUi6/zePzA0z/Js/lDPqLNN/9zlNZ6kY2RbSuMN+QmA0sEqE0QU3E\nN/XSL4xYuxRGmbd5by+NE3BR5Rqf+lUv/aiAXHVjVufkRjFaN3USqp93/+8jLv/Cz6LuumB0n/OQ\niW8lgyR8hHbheZZ9EbjxPPPbFTqjJp5lk2xtk+56gNWpSKPdxkyOUOxNgsEREc3NWXGAIkYxH8Ik\na2EJLpqD93HsLGpEYdSe8GJO42QwoRT147r/HYYbS4SHSb7/f30fK7bJ5kWZaETloLfg068uM7jz\nAU69hHvhp9gekxJskqh8df8BG0aJWCCH+uomV6x1NNVDVLWZuJL86MOnd7v8hWd4/KffZfMXrtK9\nc5d8JkhEukAxNEIdPSDfcLPvFhi66iQb23ivr9N7+4zagyOWCpfpFoJ4hrsoxRZB8Rp69JBAtcx/\n+Q/+Hh9N7zHZGZP4xE1OTmx8xh4u06TWWrCFl/grWdQVkeBconTHjxJ3kPcf0HeZrFkukoKfcCaK\ny/QiTtaZ6AqzocLs415ihLGWrrBQKigtF2o0ijQN4MQdstkgy/mrsHYZ/bhGeOolYs8glCNq+Ml/\n8jO0GzpyaR/NVkiEM9RHLVbVCvJhgeKSQ6C3jckmt3Jr4PZzQ9OILL3Cux8+HQp/+dYG9XCE/tyH\nT40SnLhZ3hpz3nQRt5O4rCaxzTjCk0PcWTfzcpzlqc3YnuD3TbE7Bt6exny+IFYRsbxlSiOBlNIj\nmZmxaNcINF0ochJB99CuJgnpMt60n6bVZjUVwmkvkUnonDw8ZOivkxHcJKQce+4zrAMXp/MhQe+Y\n+GLO7MZN5qM3iCZtMuIQz8CHuWEzGdqoqs4cuO4tMBuFmUXPmFoF+m4PYr9EtzHB9F2mkDljeDfB\nIFLD3VdYW1epllw8bEk4r5iUAhrxl5/Hc+UzxF97Af1KmP5viFx/9hl+8M2n6bwXfulTrJ70sQWF\nntHDXLXIDbxMCjrj8z6biznNhJ+QXOF0L8zEJxPwtjlv5tgortEKqEQiBUR1xP5unaEvx4o84DA2\nRnK6eCsVLMOgljBIlDUCTQN76xrnPzpmOw0edYXFTpvTQQtHnuHs9Em6/VxctjjU9zAViYC4RFsJ\nkZ5V6EdEXLkCy46I3VS5a1bxWRO20m+Cdk5pvs1Uk2hUavzBP/9/WP9CnuY3vkX66lUM7xT/8ZDx\nYIK5LfPg4SM+/sprPPnzOhcvRpl8uCCb7lMqxdnyJJinYtT0Y0rnNeqODQcJ3v7gqXy8lruEUjAw\n1C7qBHqDPL36iJ7XRVzrUeqmiTkN/t8/qLIWznKsHLKSMZkdTPHYC85DIuLUy3AQIMmCykqeJVHi\nyXCfdNxN26XiGddwFim8tTZNO01Alal5PXiHQcZjF6lIjqpHodNXyczbVDIeFt05qtJn1nLwDlQG\nsyGylCXmPuNMz+INLjiZnuLpzfDkAng1D73+QwrhFL20hj+fpOcZY42ajLx+CMoIdyWG6242U7e4\ne/qEwsazpOxjOmWHcLKPFpcZDXu4EufcvdflpVevYngy7HzrFL/t5nvfeY+/+5s/Bo3l/9vv/rMv\nvuC/zv7DAa++qdA+rMNSF1FdIiw+ZEleEDP9tNsaC03HY6wwSDlczGr0hj0W7SySdp9Kucu/+MN/\nyrMvvYmlj6HpcFQe4c30mW34mZdKxH71Cp1qEXkthddT44AIwbULhI0O7xzYZEWTntzmZOmASXuK\n7jTZtFN0LhQJBSb8V3/rH/ETRzrmTT+h0FWk5S2G7iDrxoQmMsv5NYJHp3SXBaJtF73YRWTzkKYu\ncn0jwMHcwB1ZQeg9ZhpMERnISNaIw5BM3m8Slp9FjvYJ6Cq1cRmx4+BVg0hThfEsR/XeV7jz+DEA\nP/PFf8RMtRlOHeoDLw5xeslNtgJpaqs58sMUx0sdxi4bayyhRT0sBdcYdUWEWIrp2Q/xihFGHgWP\nHCKqLWjVRfriAO3mNoflGWlPgmZmgKtkceM/+Tns8oLkqp9qT8eKeQncdDEoOSjOY4bnRQ5iK1yP\nL3C8dVRXAP+6ws6dHV59JUjbGVI2qqSTXrgdoRMdYDoGK/YqJanNimwwzvgJzzt05Y+o7PeZH0lc\n/KUAH1RFkkkHU2zS7aoMbmzQ6dhMhn3SSh4hUkbyCDQyLs7fPeCl13OsGF48sTaCNsZ338XXHzwt\nP7z5iTdJvSQQPNaonHZRb3gpjjosNAf98YyPvjtmfPEz5FdkeoEZcWuCaokYjSazXgttq0dw2Yd3\nY5lv/M6/ZfVmDmtmoHCfhW8bQk3GxyNkMcS8FWb30T6d+1UCn7+B/lhE2biEutJHjJ/wUVkgkB3j\nMzYorPY4mlWwmyLR5RRTscPRV45YuqCj+dq8+No2m1MPi9O7rAezeCZezosSIfWYfn3IXHcTXh0h\ntG0K3hvoyQg/+L2v8+rffoP6rpuuzyQ5y1PaVJm3xmTNqwx9Imp3wXQjQ9ssEO/1mKQ1EmM/lXf7\nHL6/x/3u05TZtRu/zNrP/QSnZRdbF5fJT094PDvCLcfoFXu4YwFGxpQNe4GYX1C3dHqKw1RboFpx\nViSbxZ7JUXZE+B2LdWmKLxjig8NdksV1yo0eohEhYQ/wB9cJL0/ozS1m0gI1EOEHf/gupr3KvvQA\nc3+Ano6w2OjieiKy2DxjHC9htCcIVxIEL85p/+AO0dUgE3OAT+/xcFcjlBYoBnO4CxdQBYOxu0o7\nuYVSK6EMpxgqhLbGGMqMsTdPXq/hn08IbEcpT0ziG1XMY5vjgxpuc8yGf5mDbhdHGpDxSGh4cGUN\ntMEZb915ygxc/OnPsb5ok5+vMfaaeLpHCM050dgynpSGnjFZ7EZwJh4mlkAw6EHSygS8Nh1TI2Bs\nopkTzEQT19yH31zjQBSJr/sZPfISzS9TN6tM+mXExTKqr05XrXE4S7ISEbDOBQ5ybVZlkaCyIL8Q\nsJf9CEEJ7XjAzne+y+Z6msRznyN8KYl9X2Nx+0P6ege7I+OVBAJ2kOeXBxiuCzjCGKM/oHKo890/\n/AuEVJdP2BIDMUZOqhP0BZg+2WTJthCCNrMjnanbjTpU6WWP8H5CZKW3gWU2md59n+l+l/B/MWE8\naKEno3z0pacps62rzyFfukoqdZEffOs7iKJEPpak5RmRTAoEC2sMPzTw9kZMkz70yoz1NQlFVFFn\nAtPOkLjaYWFmiUsbxAyJ3XmXF67mmJ65kTwwn8TYGEtokgs9W8BbPUCR+rS3snjHCt7XbrES8zMd\neNjwTJm8ahLy+PCOJ8T6a1RcfnzzY8rGNo2OSiB0TsProjnRydqXGK/GmL7b5O27OhdfDOBW24R9\n2zzz2as4JRmzsEIsP0dzLYM7TDzZRW+7eP1TV3m/UeXirYuc6vfZvKGyaMZx/QLUyn3qhPDU3ExW\nfKSvf5JRbZ0ffe/fAvDy538Kf69D0o4w8bmYjYKMA1NS9T5yxGJqhYhsrbGR7uPOtVjuF+jG0mxI\nMjs+i2uGQmksMS00Cflk+pMidTtJYa5RdQ3JeFboD2ymlsRSQKY6FHBLXaLTELUYTNIV+v4xk7Mu\n2+IEzD662SViu1E9JigRAnoQz7yFrAYp4kbw1VAGHRIJGWm+xL67DcUFRC32zTijdw9ZkcbI3QAh\nK0nfciFMiuhZiMcEiu9PWVlbQhQbFO/sEF6eYkWiyIpFv7FH81Djwi/mufHGJs/+m89Q+/0f8fDe\nhxydlPnvf+Pv/YcPon77d37niz//0jaFiykGe24cRyRsdhm54cInX6ddG3B/5w7eKx6oxejLRZRO\nCG04Q8kH8YQOmZpXGQarfLwPmaRG0cgwDfXQ6gbikkK0BAM5jlK6R+8sxOBAY21pg3m5y8xzSnWv\nTyjUg8A21Xe+x5b8BqY8JZa4Sq3XJiVmUWoz/v5nfo0uj1ksNtHFKM5gSK8+QtXPkUZ9nBsantWX\nmR0dUVJNlhIzvOaU9VfyVMYjUjsNJF8DU3yGuE+jpReRklGWyyIuKYXX0TEaQ84u6IRqm6yrKSJ2\nCNkZkiuUmU88vPPR09kXyWcSzjqEx24GFy6SygQoBBf06gNODj9ioAxw3y1y0d5k1jcR0iU8lTrn\nrg7rhQIDY4S7m8Jv9ImsVPAbIUr9U168lqX9foWT0Q63Zlv4Ry7svSmmvGArkKFaFgjnRhTGYWYV\nG/M5jVC7SUm/SfEv6xwe7hJSlhFW17COD4mvJvB6QNejxNJ+PAc2i2UfCb8blwKViQDzFp78EMue\nUKzppNyXkN1RxEtjZj/qMM0EEJwpndM2G9uXaXRG+ANgZHosb7qRT0QGkTTPBt14a3M68wJCdsLt\nkoT9xE0gEOSb/35O4vpLn2ZF3eKw2iRUeJXRwiBsBBmUy1wY57n6yb/G+QdlDKtDdOKC6pT2NE1i\nMsPc8OJS19iU47z9l3/BypVPc/G6C8GTYiqadPIu0mqS/qBLU+lSn3TweVdx1U4Jqct0km12d97n\nGSdJRFdITlukGyv0kwbdu2d4hDxJr58HcpGu1yEYlqnJATJZN5UfCnTMcyaDMA1fmfLOCCeSwIoe\nk6VANlcguF9FiPUwHvRZaa/g+ayCZZTwPm9w9mCBPOlRnbmQnQhSuMfdtz8gs/oxnNUOrrjCYbnE\nNG1RC9Y4aawy247x8KOn/TMv/vQKgW6NVE/hRNxB1sP0dJjf6OLu+Bl53fQOdUbjEHPFhetAxf8x\nGXngJpBqIZy3eb8KzmADT0EkRYi9E4eJFuFjL11DqxQZSl56jk5zv4vXDDMOR1mbh2gGqmx+/Brj\n01OuLmcR9CjOypT2vzPI/rwbz9XniOzcpdS9RManInQSaLk88pMqU98AodUm2KxjXBNZvxkjKQi0\ngwta9EiOAsyvuFhuyBBW0cZjTNVA0ea44g2sJYP4KId4Ycgo+TFq5+DVc1hem5FqsxysMq30cG8G\nqfb2sLM+FgWF73z1KTNwc/0mUz1M07aJTks4xga9YADT26E9HbFqrlAydtFCOdxGC5cRoxdziLZM\nfEsKdWrM7BTLgkl/WWVm7DFoR7EjJ6TrEX6w8x7xS+ukZgv2UgfMoqv4U3HMg118LovuxR6mvES3\nnCYht+iNUgQe1FA33dwdy3ziM1doO3kC9wyOpuCvOEzNEd2kgif/ce7f/y6pXIDiSYrGkwaOEGLa\nPUa8sYJL/gQb6ynunsY4fPIDVqUcWrxNcOBm3yNgiOe4CjO+NR7i+Zk3yPUtblkbjO53OemMEEYl\nfI9P2U9PefbIg+fDI966//R9+8Q//ByL3V3iRwaJn94m6l/jYH+HnP8G/QdHHIx0PvbZj3PYfYQ3\nqOLLezk8brDiDbEUh0EziFJwIbQdWIj4lkQEb4xq1aRu3wflZbh8xKyToh4M4mhlvFmBoBkn6dhM\nFgMWusHxgxJ6po8VDBDtDtjZbZD0B7jnCRBcBCnqGYaDU4Z7D7ixtkqv7LDuieFOz/jeH7/PM16N\nHx38iF/++RsEImBFJZbmIu5YEMuQGItVWns9Jkc1+t0F0qyK1Kvj7jQoin6UmkPbM4NxG/W+Sp46\nGbPH1uolpg9mCKqF0/Tzzjt/CMB/9slnUAQXtUAHxQVd3SEwjuC76sUoGwgeCW+vT+OsRTKQ4mAx\nZVI16Et+5I5JT1qgXpYQmmHsigt9IuJLTQnVvLj0EUJWwTXp4kvFcZ1WSIc6OPIyumMSlvssOjJx\n9wzXDALyFnZCIWP5OB6O0EXQ4kGkQIuziYycMpAaYQxzQMoZYRJnNqwQ1RO4vQ1mukIoOkDMbCLa\nOvaihtK2UGNzesIavv6UDhPWpgt8is6TExe51xcYlRC6r0JCtwnIAa7FFBLeCX8+/FMOX/8jnv1G\nj+Rzfr7x1WN+8zd/8z98EPXP/td/8cXPfPbnOTm6TXvSIhAOscgvI2Q9SEcjuv27GJtpug/7NC2T\nZ7ckBsKYYCOB0AvQW0iwKOGfr2PGvaReCuOJO+w9dpinVGQxi/eCRFQbUCunWZmtEEzWeFQUUPYO\nUOJJPNtx7P0MGhOUiB8bifTFAZ5AEstMYT0csi/XCHj6fKvZZ+3GC4SmDSxvkWzAw1k4SChuoXZ6\naHmZt77/hJZPJ7h8E1dR5OFYRv/uh0wCEr5hjFJ8jOaa0HjGR0ccUH3nAYfrQ2xVZWY5RCSbsLvI\n3vSYcTxEVnB4LCeRky7eeespGLj5xuvEtl5kLXGVRWyI6ETpnJ7Te8ZP7fCA4JsrRJdH3A2YWGYT\nZSwgp1XE6RIRUSc4vci++x1yoQ2OqxKOqZDYCtE20vRTJlLzGDoCiGm85gCjc84svI5n0mLfieAR\nzpjM40ytLmkxiv7kQzyvwtaLb3D0oxFbn7TYk2zUIYzeaiFdiFEfRaDu8OhJjfY4Ts3bR+6/T2CU\nR8x3cd0dU7mmMUhXWbY79JUC3XiT1dicQT3EdH8P7/kx43waX2hB8EkAjTD3z3qs5ne5+/tNRs+u\nkBmfcfpDm5/Yusy5XSJ2K8M3//wtAP7jN77AIuHQqVSYREtIch5bmnGjptF7OU3m868wUZ9wXKsQ\n7UfoXd1D09t4MkGWxTbx8Rr+Gyb2XMIz7rMz8jE7bJO3PPT6BmbtAtdmECtr6PNV8pMpSmKJd7/x\nFeSrFpayTT6g01pL8/hxm9GrYeLGIf1YnnS/zX1RIHtcwtUv8ezL22iOi8rtId3pKcaP7uHMc5Qs\nN1dWXIRsHcKXcDVPqKbiTFwzNm8+zygyQLkAenzB+GSX/IVPohQ1hEmb0DNXSfR6DJwo17aWKQXb\nPBMv8OT9dxl1enzuzb9JsTKgWJrgfs3iwZef3m3jl9zMjNuY15epzydsbi5zPHxCZWeHG89lmHtW\n8Dfvog4cCu5r3A/uEhoJnMgVNrZUigmFuLLEhYsBpM4hSjJK+Xvvsvpcmm/+zX/C5288Q/nxiAsX\nonjqR9RdYxRRoL81Y9g4QRLTFMQVTHcLcXKM3EsxEi1SF69S2fmQL/8fj0l5F1x4+ZO8+9Vj1OAK\nyhYMR1kUl8Sdr+2QlkTKdS/C5ISsraOetSjFBdZnBsceH/OzRwxFjZys0tLbzDSZ6FGAdvmvMGtf\n4/lCnOFihUKjRGHxcXon79ORe8w1i9XQBu+5itzsRZlvxXjrS08N0m984RbGskhK9mMYBlG/i3tW\nhYJnFdfZiN1AhytDEzsN8/MJvvQIqZMjpAzpHSj45Cgl2oRdJu1xD5+aJ0WDfszBSKsE1nyYJR+9\n5RqrxSg7B2e4Ax5WExqnbQh5BALFJlFfH4sgXlcCIWMi2RYcfEB9uMHcqiPfchiPBrjcEmz7ERdd\n5jun5LbixKQrNOqP+Nq7/5q00KVuxHjjM6v01QW999ssvSSz6l+h6llQPeggbpeQFRd5S6V5POOl\nn7/G+PGE8d2/5Nu3W1y+6qJ0r8qmk8UQs9iOgaE1qKhxPnjnKfj8hV/+NLlFhjPhEaPaddKxM4yp\ngFacMr61SedIZqqWGBspRLcfYaGScg3pPTrmxNmnLwo8t32TYdPEJ59Rd9vodYftaRzR2UAMztgK\n+ZmHTBbnGoJtMfKlcdr7HNWWiV6c0Dz2w6LHoufHcS1Tqlg0rRHyyi2CpYfoksNGQeKZrStUQyHa\nYx3/yMNB8YRUIoSyvU1eVfnszxboy16CvTZVx2AUDvPC6xnUqc3YsPFl42jqBJe6Qu65HMuxNSqz\nOVE5irMd5EY8wsP6gE+++Ty7HZH4ZhD/xcucdO4imdv02nt88N7TZYGl/+hlws4Cr2tEX/Jj+nQC\niRjOezpW0CKSjhJMznj0pITP8dF2JiijKWqrgZRWcTCIDSzUkYvJssIYN7GmB5+vwmCap1yHuSrT\nk8ckFA9dKY2gLjACDkG5htkJQDiGHnQI0GcQDFI+bRLbmqAoDo6eJdxp0UvmiDZd1L37rPTjlOY5\nQi4NOxbE5R0RFS0OaTPtuAg7PvRzHV9Ww565GCwtk2rWSS6N8YzDhG8muNNs4vbXORkEWWhRLsws\nStMaqYXFUblFPnqJwk/8Ih8dXGV5MkD79V/hy//uj/kf/tsfAybqH//2//nFW68tsbRQUAc5QlaL\niZSi2+zQdT3CtgoIc4vH03NefOEyH7ka+FpRypkSwZ5F0pLRlDTt9inxxpR7lQah1Y9jiSJpf4TO\nziMGewLaegxzFKMulrEuxikcnFOWISLm8Ry3ebdzSnBm471xmf2dKoO4F+fwLskX12hOppieIX7v\nEv2vHWK9EWHoGuKTsjRDaZrlMv70RTqVFMbdY5LJATHvi9QPPuQgF6A7nHDjlkPBXOdfv/VtCj9z\nifOzIOrQw2a7ybEeIdHWaa2lyIUtZkoEj75ByvbT1nQScYF2u4lRU3j/w7cBWP2vf43N+lu4hkFY\nh6VaC90dYks6YyTLWP5VHu5WuHEjh9xYw1rdpt+E6WMVsb3gVKoipmPMTxcIwz79ayOsmpexYjGR\nRa8EqPIAACAASURBVBT/EM++ySI6ozfOMd6SCUWqeEJelvzQ7RuEpCEzzzGd+ggnF+Do23fIK+tk\nVjS0Uht5MUZV2riiM+SiStBlIW+kGPmKXHGvEFdFGtqQpaUGLiPOqWsOukq+1uKg6SJw3KP/gYeF\nOqNT8VNIu5F8G5Tbu6hqlI0bGqXde0TWZwzvuYlGmkj9IGWXwebSNvvPNbi6vMYHxSc8+NZTWery\ni69hN028GYNZe4XkfEb04IjbisDqwx5/8r9/ie2NZZY3FfRHHxDkRWaCxWoWhtU4SqTHd7+9S1JK\nsCO7EBvH+MMy81YPs14nkwcupUlcXqZTmXBcaTK84UYRgsTiC/aKByz/7Cb+2+9QCCwz89Y4aEXJ\nio9pVIOknnVwD9sEe37KZghHyDGR5mhZH95br9JULRJSB6OUxtzMsxie8xe/9x7Bq35imz7agzyL\ny88wv+Eh2E8zm2o8SV3iCjo/6onkuhaDpTYzRIbBh2wFLmHFZ4TVLInEJQb1czRPkLoy5k8Of4/F\nRz0Akhf8TLwz1u1bZKpd/n/u3vtJkvw87/xkVWVmmSzvXXdXV7vp8X52Zj3MwhAgYWgEgiBFBnU0\nEg86QaeQLk63hwsFSeloRBKnIy8E3gkiCQIgEACBJQGu35nZnZ3Zneme6Zn2rqq6vMuqynKZlffD\n8J8g/4VvxPt9n3jf9/k8383vkDrVQ/GHeOaZRaRyh/IojrURwl1ZIzZ7le5gTLt3QOojCzSEA0Kd\nADaHjOaaZX98hCEZxG0xrqSe4Z31GvvOdfBmcfkXUQtt/KEiFZsNazVKYFKj0GsxEvwkTk6jmxEk\nb5Gjpg/xgY0nP3gSz/Q0dluMo/Zf4p++QLs6QVNFJprGpz+7wGv/rcriaYVRvo1m7rHn0emYf8bL\nf/ISLzw5zfYdEdOfRHq6QWOvSr+SJZ9osfbe+yz83hz23oT6D1q0bS3GqSGhQBKf103dc8Quq1iA\n/PFtujvf5NYrHQCuHj9Oop7GbQyY8qUp+F2kRwFq/SayoDCtORhORZk8tGJf6nAgyXjqAx6JPSxe\nP3WzTaoZYSfbwKNZCCbC9NRtggEvA2+YqUobc0ai8G4Jiz9CwhFCtVjQegPGpheLS8WRiOM5aDM5\nOY89oLNbPKB6uE5n4QIzup31xDwzB1bkTg1XZIlu/YDmuz2y/gHN0GVG6ht0igU+/elP4cvMk+wf\nodZcSI132d3Oo1NAkfw4Oi5CMYPtvofW1gGbiRbdYx8i/6jDsmCwVrFh9/Zpaz0uplKowwzNbInW\nZApxq8DUkcHfPHw8iTo99TnsIZU58zxDbwh7rMdf/tb/Q8CRQVdyhK84aTbK9HdXGaddJFSBUXCI\nfxhCzywSVkwOD3WSFpEbbReMB5w7lqErO/E5nbgX4rQfdij7LAycHuzxHpZDD25hiv4pL4o+yyS+\nj9Bf4vL5EJHpAQz8CCeiPHXiGs22C/tsk0XX87xXWGUidRjZo1iTKcRBmpA8IpuR6HmLUDqiGRiQ\nz+XQ032G1T533txir3KDUxMPmr+PrSLTb3axmvtsqSrf+MOv0t3vELV2Kb3ykO7yNfLb6yRyfrZW\nd2jlalStARrKPDZxh1svP+4LP3f2g8gDK/lEl1HHR7sTwblXR4sa2AIKLbWFQopoKIprMYEzOo0p\nq8xYo0jDGSxBhUZTJGI3qbW2mTYM9ISC6qgRbQ+Q3GOEngNfXESWvfT0TQqqhrUaweupMbAJaLqK\n3prBOmhQ7ZiEfH7aQx802simguaP4GlXaMScoEeJCUVaSg3dDGLXxtgpYp0Y+GNRIlsDDLOLrMcx\nxxr9tIOGmGdS9+JUFRqOA6qbI5IeN+OuwUkpgphQMY+slE4YTEpxytEhe6sNVnbivD96lXt7BYzw\nSdZe/Ru+9MV/BIflv/Mff/vFY2efRZ7vE6w0WFmwEL4HW7kDjs9NsyfWaEt9Mu4nSG7FcUZ9WEwd\njxbBOemRl2QaAxuOYZWddJ8L8wuEXDrX3/9b7OEYrrpCQx6gnPKyNS4yHe/iaCn0ChZCpxM83HiE\nPeLn5IUUlfQu/XaDcxk35u6IjtfHk/MJuu/kEYUNHI0+0UwC+6fPU7n+Pq3UhIW9MeN6DbVRIGz1\ns3vJRR+Fab9MzcgQ1vOsb+Ww2wWc+5A5P4P7cIRVM4mGipQjLkJVjfsJP27nHWIZN04hRtk+geGY\n/VKZZHyZKXzsS11uv/F4EvVvX/x3lJqLhD0lxuo0N+6uMs6pHKZ1Fn3LFPUKXiVNvZSh66yRqhvY\nyncI9INI1wIE3zukkBGwO1s4xwE8skolUmWkltBaOksVB1IyAk7A02dQbNP2hen1HJSUdaKmHy1n\nZdIW6QsivWadT557jtW9PazmmPsNgeWYTH40j8tipbh+yGB+ltPjNvR8aIERE6WPMXahNkM0R3b0\nhIdUb4CLZ8k+7SDcddFcDuKJhpiLubENdereKIngPnVCWPNtyh0Zv+uIYi2ANJslacnh2UqTH9gQ\nW276Z/0U332ZtZs7AHzgkyeQLF42tBwnHC0OkhCzJ0hMbDSnJFKtBmo6xtr+kMvJU1R9YyKuMgYB\n8oMuk8EeW02DpXPHSYsPubc3JpEKUGp1OT5to+lOE7Tm2KnfIRCKMH2qQGVNIjG+R6wYQJtMOP3B\nD/D2S0OstgJybcDIlSHwXAi3qVNd28TwniNx6hS7/TE2Zxd/R0aZ9HBtCOhDkOd8uEQ3oYlJpnmd\nn//2F1D2dpj4JHLiAMnToLxTx7Xbp5C2MS4d0tNlAvUSslfmUPURsjUwLUnqtj5HtzWSUQd3Hu1T\ndN3CHe0xf77Gh3/9/+CH/FcAnnn613lu/jc4LFZ59IZM5Jk0ASGBY2nC2PEVbvzgh8Sf/gVGcpPx\n5SmU2Xsorgi7/QmCnmL+IMphYRV7QMZrahzqd1gvvkRJ2uJ2N0Du/bf44LWPE3U6MNfryHE7/ugC\ntoaDbDwEXQVdCDIV1rh1VMDpbBBMzZEY2dFtAtvrtzl80KC4eY/ZpedxTjrcff02nziWoFiX0CYy\nU4HTHB6Msc0ESFl84PRxApHwjA+7P4Q8CjGfPIsrkOI7mw/QbXYuBmdQUDkd/STFfRcVb5zb1W38\nyxcYHdZYa77NcHGKrmDlyoc+gStuIM/GefWPVwD4ws//eza6dQ72Nmi02oTrsFraxBa2UuvrWNUK\nW/YiQ4+djHWWpmOCv6iSPhFmaLETHudRplwMCw4ash01J5EbFjm8Pc2C4acecRBq2hlNTxC8Jq2j\nHE1rB58/ytKMRkE7iUczsJ/PcP3OBs5cg9mJhv3KaYSWg5KZxdZ5hC0t4Bm6ya3eRDTOMR9t855V\n58GNbzPz4y9gS8Vwlx4hHBq0jQm6MGZYypP9qWdR101cPTuVVBTNXmXgaKIfvE/8/JcoNVUWrbs0\n6+BQTNw2F/5ECimQIL/3NuJCnPXvjhjXvbizm7z67kMAlp47j5BTuG3RifpH1FxupuJPMfuhOdRV\nA2vfYPtRHzmW5OQ4wcDRJ6TaeNs2ppnz0HHm6G4G8FPD6ipC/CSV/TG+qVUO3zvCln/EcCZMpNvA\nXrbhbTRo4sUprtE12xgdDctRAblRpRAA12bkcY9qDLj3agmhdQv1QZxJWufl31/DvuAklLISsySx\nB1s4tRzjjkR9so59cpZuQgH/kL5ukp1J43UfIYw+Ss7rJGovIjviFHxRZnyLqP4mtrJA4jPnmQ4p\nGNmPER+XafWzbE9VmUtKtDtxAq4u4lKG3n//Ord3H7sazy/9FP3FHXzjSzRMg9Fwh0jcRrdpJ7az\nz8jrpNnv4N0/wKJ7yOeKGJY+2p6Vsr9Oo+Ul3G0hBEvoPQcloUer4iZEBmaGtNQOZiuM1GqxqztI\neCpYtRRS+giL7uXI6WYwSIIfBpZ9FOcIwe5H9qr4ZC8uqQObEnZTRZ/U6PeGNHpO/L4+mktgOGii\n2xxoQyvNnIzscVFsFImLNvbs8/QnClPtCeOEH3vliK5HRszMU75dJTNtsmfVGL95iN2l4/LE8fUH\nxOQsj9a2OKY6cRyo3HlziyePP8W7K2/wpS/++j98EfV7X/mjF58+FcOZ8XAUqnHCqtAeQFfoIXVS\nSLqd+HSU3nURM1PHutFmWGuS9kWx2gdUih2cXh9bRhvFlWJ5LFMPDin+xXX42M/Qd9bwRmMsupo0\ndgd4E2l2Oy08mgU9fEjYk4JhlfbugMBQZW5yBeUY2H0aUzYX/XgaaS3ISvkOJ7zniM72yYgu3lEP\nWOocI9iE4LU5AmUX23Gw70/IflikPrqJ1zthqF3itLuGKxElWAjzVm2D2UyKoalz4toZVkq7JFMK\nfsmBdOBDGqapqUckAjIj5wFKM0TeusEw7GCq0OCltx8TfS/2Mgy++RZmZx5/cJ2M4UeeSSBIKnLd\nRk9zYLH0sOdK7IsmZnaTC5efYfPokEnBT/lsg1rBYLlyDEtUZf++nZ4zirWvIItJgmOFWq9ItzUi\nqau4SgKSsEHHukg6fYqBekBfENCwMf2Bp5mKanz9O+s8f+kkxsBNdibAoeSkoUFcdNJbmDDanaDa\nC5iDLrW6j0hDQii6GQs9+gcNloouBHFI0xKjoTo52OiQjU4w1puYjS6j+SGHjw5xmxls7xpM4jqE\nFHwFk+CsjJEv0KpEGGSaBPUWhaEPs2nj4gcv8/0//QYAZz5yDVs0RfEHr3Bi8SQBU0Evj9lohbGq\nG5Q8CrNXp1FlC3olhzzZZ2r2PJv1DsmcD9mXo9BMMCtbqE2GeJlBqhvIs1YSllM4Yw607T0q5lnq\n5V26QYmZfBdjxkr0+IReaYa8fxfDDZJRoDjxcOP+60j3j+OTTMayg5w6w6TWpGXkEHfySME+HZ+f\nga+LEtDR31rj/nCLolSm8yONdW8SZ1zhVnFMtbWH9X6PwVaRg0id+L6EGtBYNiK8dnCL7FkHfaOL\nqA5xj0s4IjpTJ6cZ2XY5lYDBPRdLGZ297R6tzyd5+zuP3y1qP8nEmGOqPML5+XM4Ez5u/dk9HPYL\n3LwVYhg8Q2syh5gdINXz1HIu3J9O8ce/+a/4sOGn5RJoz8uU767h0Ps4Pq7RUgK01KeZTs0RvjbP\ng9vbxH19iukS3tkkXdbptg2O9F1s+AicaDIo7GL4/ZiTMJKks9dZwSmpPBF+Alf0EH12nnZLwVlY\nx33NRaO5RdX6EE9wiUPnDuKhwVjZx20LYTUc9BoJInMXSTYUAicirGyts3HLzdKVa5x2zOAOQ/T4\nae79xU2iyQz25g5NJcBlu42v/un3mPr8R8kWFeYHM+gk6e7NsPl7j1jZfRxAbJddPPfUSZREnfHJ\nNBZNweOZw3IsQ9w9QT8RIOjL0Co7OVCKDHd79GZPEa5V2GwdMDMIgmSlaWmR3ffSD4a44nVTVaxw\nzErgwQi1sYVf6VE1rGQ9EoYjTe+BiaBGGAkS7gsxXl95jw+nKqjDMLV2jESnxWRxzM18gQvjAKpz\nn+JqDmtui/x8AinqxyvcJDCXoH7rNr6ZY7gUg0pQQpU90NrEeuoZJH+J0vtVOu4O8UyKdk7CVgmy\n8IWP8t0bt3mmdJ/oGREj0CYaW2RsCvhbm+zZUqirK1gyEZaUNsFohUHvSd58/7E7L+z4JGIIlMY9\nRMGJx9rHCNSZUkZYPH7swQQLV7NUGyrf/Nr3MesujJCJVEzTbLdRjCy29iq/9/WvYgukmVbd6NV9\nXFNxKr5DNGkB6bDIRNewhDSc5QCN+T7moIOl10UeOOk1ivTrHco2O+2DXXwdjTe0IA7rIZrvPIpe\nJ1fXWbzmo3VUZ76zTEftU3p3Dd8ZK9XBFONOmEI3h6M8JNSN45Wb5LZ72O1uYsUemCrNSQRLa8xs\nyEKv9whPdY7QVReOsUrRWMLjUWkc+Bi5NBz42em5kYUypy6Eqazskv7CWf7mq48P8v/pLz5Be2RQ\nExykWy08ATvOkgv/uEU1GyNZsaD7FSoDB+MpnX4bpvoBSO8xdJ0gHNPoxNw4VD+jfoNwco5Y+gB2\nDYr2IkZwipBso5ZQCOLkqGfDG+0RNBMUNC+zYgmtnWPkFZjV+3gKNoR4hEnJQqmp4HdbUZJVuqMJ\nzqGG37OAR7fSizoJmh2SVRDEBIG4G2Vk5xArxmmdgCvMYXkbMTvC2SxhGTkZeV3EDj0IrQrjU0PG\n3S6dToe+7KflH1Mx+2jtCa6AzsfTP8ObvSOyAx8nJQlXQOD9w3f54r/4R8CJ+v0/+IMXT18IEL7f\nJx67zEN5g/ajBMmsF3smxNrNH/Lpn5lnVL5P+a17VHAw7viYSeisWpO4jQbysQ62goncUvF2G4xs\nXpopC77SAb10jInjkE11GqnwHtbTT5F9sMdo1oc5aRJWj3FbbOLLBJAcc5S7E4ZDkZ1yHmf0OOvv\nHrBl7mM52iTuCdFvCwy0Cq3NLtJ8Gpsnhtk6wjGxIko+WnmVXGNIOGDlsF4nu5ig3O0R6VlxjIaE\nnG30cRSjZ0UrbuGouJCDIvFegl67iepvMTpysKGrWLZlHFEPWavKaDTNQbPJO7cec3vO/sq/Ilbb\nwTnpI5gtrMEOVd2gJY2Rq3788SMmbvC0VeYCFpRxi/X3PVw5c5KJfoRZCSK4RSjc5XDeh0/fo+RS\nmStpeO1lCgGdgSvMsSkrJdsQbWkKNe2iPpSJXBvTudEne9lPTfNhU0U2NlpEEyeQ1tcR533EgnZ6\nYR3yVcaihWjNSk3bIplewkkC+9EAJVTCFTJRqgabaZWuukXd62I6NKZr1altKIhnreQ0g0kqQGV/\nm6gWxj8fp9+D90pruAWVdcsSicw0g/aIbFpEG3tgP4fdVcYcnWH1sMSDNx9/zmePfQKpdsDV6Vnu\nOgMMBI2Jv45kKgzcMWY7Prb9G9itfvqiQLc65N39O1w4dY6ebcDmwwH57R1ap5dZOtbH1gnh8kUQ\nESkXTVKXfUgre0ydCCHdLxPweigcHGJ7L89ur4N5bIAaXGAm2ma7qOAoWRGCSVL3ZlA8Eya4ScwO\n6LjzNIYykdgVeroH93iNScWGGPBw6dMXCW+X0e9beGX7JWKXl7E0fdgyJv5OHFXfwa12WQycxTNd\nJzroYCntMYxeQpTsRNxRQtqQ3IxMZGeCqEgI/RlY3GEmM8VBbpNRxcO3f5ikufPYqv/EvsxCukTm\nI5fYvPV32G+uMvWEn73vPuSFD11l+9EOQeMA926XA+eEhdsJPEy4cPocC5d3idSaRIMyZtmB59wJ\nLHfvIudD7LcCXFCSpHwxPE8sIkQVhBs59P4EyR4gOR9jY79FyqPRb8qogWMotRAD2wG2LRO7nMKy\nV2F7tsXM0gdxa1b8/h26QgDFfhLNEBCDNhqbBnPLQR6U3iEkPkOg2cXii/FytUFiIHP9oMaSkkI5\n0jA7eVzDBtpGg3ZLoxIcE93awvqUhXHPTeXNl9h1Knz8wy/w8N5biEKVj/7vv8ng53bYOngLy3kL\nt7//eC31k//TR4hZUjTWN0lYsgTCAtVum5Gq0bV0MZuPEC1OpsU8larM8kk/ngYc2QRmNJHixE8h\nMMHSN1CGFgI9N8NJFMXcRq3fRdUrTCVFCq4rDFbqqG8KTM1mmQnU0Z17eBxWbr9ym7PLSR4eDDmV\nmGHgrbJaOkXaaxL023FIEuGtAc1yA98zP0bIJyA9/Gve7mwTDpzkdPJ51jZrpLw+3G8+oNIZMp1J\nsLnaxnD1Gb3yDg7Xh/FxiK/lpRJyEzh/hUff/AOWn/8oZWOXs89eYv87D6lfFWms5fA/7cBRqKHu\nV1h0LbJ6VMI0Pdxa/REAiYteooMi2eUX2Hf2ODwo4nS4ONi0E8VBudZBE4Nkhvtc/tVf42RPQBIa\nKO4eyauz7LzzDu6nL/Jjz30GZcpEq7aQ/VNs7L6FY2Sjqwi8t3qDeb+XiStOcUak2y2R0jzIcozy\n7kMapLi+eg+nM0bEZmNjdY2ABhkhSsdrED4sUNyvYs812W44mXQL2DxdUuemEGpWxqMiA5tOxhHk\nsNVGmO9QXg2QdRm0LArbhoJcHyJPxlg7OqVGhkYpjy8pktc9+HbGFAoQcUk4K10ssR61nsr5ZBMl\nOU33ep2ZpSibvh9x46uPg8J/8tJnuXvfQtja4cC0ItuidBprOAJDwuHj9BqHWAI+Yh6JZnOEmNKp\nhAwGjSCuahNNA5skYJRHaAGdUdeF0R5SnEoilmHSdiJ7h4gbGg2bxFga4pi4cJv7FOotKqYDxXQi\n9euERyewTumsC01iHh2totLCT8fiouY0EbQ+rfSEWrODxdHEKg+oEwGXA6u6w46u45mUsTl8jCoG\nc4kxUq+GYh6nIxepjnq0Ij18fRtuuY2RDzI4GcO0WxDQOFs3CXtK1AoxtJQDSfbysL/DgWfCpxYS\nfPfWD/niv/xHgDj4D7/7hy9eO/5Z8s0WTkbkb55AevYszvvbqC4LwZifTi1Id3KfWs8A+zGufXKG\n3uE2PsVCS+wwutUk6A8z6sscLc7R33XyIb+ff/vl3+S5F+IsJX1Y3ywQFwKMRgNK5yWONirY/HNs\nN3aYS/dITLy4Jxr6lIhj2GHiFHH1NeL5ILqoMX2k0Hd3scsRBrEuxY0ghU4b6wk7+7sHJGJh9so1\nMk8mmasMGR/uM2yMKdb2CNgyIAsExh167RFrniOmwxK7I4Fgp4PdYWIGBHa7OXpCkuOqyCDkJ2xY\nqFbK2JsKSkRCtVi48fpjErJ/Zhnb4jSueJ3KjEF4/zzGzABfz0FFg15tlulSBddcEGPcYft2nYzk\nJWA1qTaGtDrvkHaFeFTzYyx4sUUWSHVVurZjWIYjRnGTxeMONjohXEdR1HQZ68RKWvWQP+yQqxVo\n7rcZW2ysvPsOH/vcRRrObXzBJA+LbxC3zNNolqjvjVh6GszOEId3lTd/6zrTU6con8rir9jZsOTJ\npAM49CHKYIZhfMTuWESpOrGdWae2YpA61cRq2NCXgoieGOZBm6r9iNSpOWZ7OrMXvWzXW8jnbbR7\nj6hvvcv1P/srUhcukiwpHAh91v4+2PTyqY+hZBWMbgO7mcDdNtgqW+g43SyU1qlm+6BasPYthCJd\nLLVFKsM+ojHAqDlIak7cC25s/gFGZYrqaA8EHdehhjvbx15McLQDe2UYSE7uUiF75hKapUNyMkE4\n9gS5+33GW1niLQtD8STPLJ+nNyogx0oMdQuusJ2AVmRh6TyV4huM4k6izQCSN0Cj6GTSvMfdapAl\nRxdfcIaT/+zzzExU2q+v0F32Y99fwjhpZfQoxmZAR6k7cZU1woM1aoX7sNOmVt+kXy3SyGm0bteo\n7rcw7oqkrV30I4Pf/E9bLP/Wf2bv8SCKn/on/xxFOs/Kjb8hfmqOF07P446ncQz8vLL5BmIrwYd+\n7TPsbh/xVCZLJ6VgccdQ126y/c9f55f/8rf53ttb2FMR1h8eIismFrePpdkEyRdmeO23v0YyLNGS\nG2TCsxxulFGSXdSRyLQSZjiwsCvV0DslAh9YoP9gQlHNMfENCSQvUrx9HenYLIOKlU1pyKRrZdit\n0GqL2KckFocnqZbWcNcDBGI+bEoFwWLHsnsH67QT/2iET4zT8S8iHj7CmwojlRvI9h6XP9Ph2Kee\n4wfXdzjuWKLW0bk6FePtrfeYDV6jo0xofuKvGfp6mLKXxGDE3750HYDzzzzLo41dMrMXWNk5pDYr\nEq9IGFKLa047d15bY2CMyYpOHm6K+LoKRUuHUcSFOxKj1tWY17uIdgua7sGy5OagVcM07IgTN6JD\noiibeGt9et4pMm4LVn3IWAuzl/Uw0EWWvWOcLiuTkYHT3KTu8pAOjXmvPSLxYJuAaEHxOtgZmAjT\nOnMdk0rH4MqHfoEzSwsMWh3q9n2Gph33hRaeR7cYBa+xn1qhWTDpXrTx/mvfoWMfcUet0PDvcE6T\nGC5conTU4ewTz2D3pBi0HqD0JwyTQQ6ub+E7IXBOiVCaN/DlA0x9/CLf/9Z/A+ADH/kNhuevInot\nSPe2CX/Bjrl6hDxrp/zuCs4pL93NTSYNPyHVRsuiEr7oQOtKGP06DZ+NxGEffWBh/e9WMJ6xILb8\neOlwr5ckng3gzvswsbI1qiKvWPnz3/kysUUXyhbMvnCeUGUL5eplpmIC79+8TuZDHyWmO6nEDCg2\n2I72iKtd1gwvF6a7xJ85TTp0jNJhjclom41egHJhl35qFk99wMGggTg/4mDFJLHkxnijiPaEk3Ip\nxzuvv4GSdNGrgC3sote+ye6wQdTo0Eo46Bl24jYdUcqhFoYMOjU0j8zN7SbU0tx5+e/F50KW2ePT\nTCYNIu444+GASR8GgwQ9KgwHPoqOXVRTZ5yxIOaGVHYaiNEso8p9pmUTI60TFwaM6nHMoI4ijkmi\n4ek7EWacRAydWlshNbVDaBikKE8QKjGGozFexc+wo2ENOnHlW4xqNkTdxK15KM6ILOomevmQcDCJ\npVbFFYviaQ2IShYEOYut1SEYcpLr+sCtEdD6+DwpDv1VPFqaXlPiMNnElgP7RCU4l2JQ0dnSo0w7\nt3CXdPzWDpPyETMfSNF+1KI+BuWRiuZOsFUa0K71qR4q3F1/lX/zv/wjCCD+3/7dl1/86Z+M0B04\n0OUgHptAW9awqWsEUrBRfYD/qI/zxAl6Kw52hq/Ra7ix+04ibOmUpqeYtLbwxmYR7q8SCWSRQn0E\n75Dnf+3nSA8FNv70u6SzSVpuD+JggORSyHRc2BMNwjVwjOp4+8foigb2bptHNQFHwMu+5gVHiWAh\nzEF8gIpAUvHjkdNs9e9xctYg0I8wvP02wWPHiPtC+MpVzHGMw6CbbNKPQxhjcYeJucestExIWJD9\nT9J9vcjCeQumNcOk5+OR0EF02sgoWQ7yOnFJZ2SdMD7eJ2ykwWzRaFm5efOxC2M69gKznj6CpcZ4\n7MUmWWnumth0jdhApui6R6DQplAaEbRdZb+1i8dtsiYYnM1MEbN1GQS9JPxDauMNwm0RrGXqWk2r\nKAAAIABJREFUD9vUMg3iRT/q+29hLddpqiGKozyRwzm0qka9vIKyJzJdkXEsxmkUDol45insukhI\nQeJLFr797iqnwh6MzIBg18WOqbDQSlMYCVy5vEylbkE4a0F2mDgNFbU8IXbGScw+R0oFT6CMITiY\nKo9ROwk0r0HntT0iEQEHGn1bBmvGRzE4Q6M9xvbOXbQbTc5NgTi4iH1uCW+wj9At4b96gde+93UA\n/ulPP4nedTIadVGCEi25i+RscTKsMXKNkSYX8Dp6qIg0TAmr7CToFQn4h3Sbbbz5GkfBCJdGGo6U\ngqfgxeN1cnQAUb3HxNPjoDbk/KINLfWI2EaF7Ts7nPV5qUx/Dr2lw4/G2DM+gk6DgPuAngj9wyKh\nbJx6SWFXb1NuOkh449gKOuP3itS9Kh29h/9hjT1FY9HbJOiKccY3ID/Y5v2VPNqJBbZfkwjPjfDe\najFx1IkXFQQljNXbxS2FkSMfIh7XyconMVwOBOcI1dZmRqrifHgfMfJJ9m0DLn3sPE/9D3/H9/6+\nTmNyANX3gNkXlkgNI7z25iHv3t9l4eIpkscs2AyNSKGDy9ekthfENeNA+tpL7Ny5xXO//8u8+60h\n0laR/VqPqWvPsp830UwLxl6HE4KOYB9x/26eOYfEzvgRzZjBVH/CgSRg75eJzsYYLFqoD6+TudPj\nyDJEUPrE9XNo6gpzpy4wWVdZG76Gq7JMybzHUiZAyBZl4JeojR5wRk5w5hc/wVZhl+HagAYWnj9/\njRv/6XeYXMuwfv1lxLMqnsYSHaWNK1amUztg4LrA5n95n3QXbu05mJo2qTjiOAduMq4YnkiCrcEe\nUXmZVnfASWGBv/j+twB4bv4UocQCrukZOndvIloTzE4puPwaQkXEG4wz9p2gm+4iC1OEk1s4h2Xe\n2sxxPBQjL22Qsit4qzIPRyvYVrZQ3U6mwh5EscqUuEC1bkN3uBFcFVwTG129zqpjhmCuRKTwPqXp\nCar/JKlamwPPNaq9JtZmB/t4RMUdY5ydIaiO6C4L2N+q0QunmFxyYq3YWe96yDnqeHDy8I0yqStJ\nioV5DLNH88BgbO/hnDnH6U8+TyAj4kmNMHQbD8oFarsrSO5ptEGX6sM+/YHBf/jdr/Dcp47TfnXA\nU1c+xoZVp3zfgzu2yaS8zg/ffJzI8OxHPkrn/god7xu8ubbO8doMzYCPSqGM0pijXcjjHvSx+Cs0\n8ipa1M//9Uv/nq4WZPY8WLUk6VNNDG+AM1dcSDUL8dMa0kBGWfCgVxqcf+YqLXWf2VSAo0iFz83/\nODPzT1I8NiTtctJOuPBLDqJVkWMfvwySD1/Qw9iMEJMjTLnmaYZCPHFJpC4bTFuC7N1+BeuyylhW\nYVBBWfDgqw7otJZY+eqfszx7hvy+in9xkcb0kEATXAEPZ0KzNENZFq0txGNz2BshQsYSQ8dJjilt\n6h0L0kRnryvQbPjJRPy0QhZ83ianYkm++63H67xP/8TPYhkK6I42DreFcN5OKxFkJGxi15cIpvyk\nIx6CoQmiMc1wyuSk201wvMNBL8rYdURXTmIVvTjL4PEN0WptClqMQcSBb6yy0+gSPFZC62YwkRj1\nrThooZkVerE6C74F9HyH0fKIvr9DWJxmYjcJlFX6YwceqwKmRlVWCI/6yLKXiqkzKtixZTS26wZB\nU8ZZUFBCSSz1PIJ/QK47RJsKkXq/ScDZx5KeRt8p0w8opLxl+m2JanCBUnCLwK6O0FrkyKxxLHWK\nu04bpjPCqZiMkKnido94WNjhS//iN/7hi6g/+sofvJjMnmC6m6Iz2kSubBGP+7gjTBPX4sjeFi59\nwqBVxwydQB9FmfbI6NE9GuY02mtf4+T5z2EZ38NhO8GoqmP2i9ytq6CYiJqTkHJISegSbZlULWGO\nVkfMpsNs3N6mZERJC4u8bNyifWOHwPnL2DxVxqtHLFoV9GCYUXfIUOzhGBd4+qlFuit9SkobyX4a\nI96gF7tK9yCPzdHkoGswlAdkhTGlPSe5zgYup5X+5CxdvU/bnWBwVMW1lOG1P3kLOeYh5I5Q8w1x\nytD4fg7dX0YTBjhsJgutCDVjQmcoMvSp3HzlMTTyn/3rX8W+X6F51occ7iMIJldPf4CBXmCt0+eY\nWeWO/zSLnllaupWxI4B7s4olphAfVdmOKUhijKNGneLOiJBTJCXMMggFOOMReRiqMbWQZnRWZ3HB\ng1HQOLL3iMUMLB4rUxdnCAbWaDvsREdxquMax55fQmzlaG4UUD0R4sEANfOQVrfIQjdE3x7Flw3x\njW/fIXvZzmxkBnN3yNreLqJTwDo1Tftol0LKIIyN+49Emp51rAsLDGYklueWCVgN7t+3sy28T//W\nu9gmfdIlFftZB2pTwjV7koGxQdMcEEvFEfZNrCmFH730WA48/ROfpVsC3dHHbe0QyDcRBRfN0jRl\nw4E0uUusA612BWniojbw43W2sFbDtK0VpMtBTheatJJx0tNRbuUfoc/JPNrZo6QPcDVn8M52yIeH\naPks/tgC4dNRjIDC6rf+mtZmk/SlKWJGF6sTwrsyJW+HcavNaL+JecXgTHOA4dI4F59lHBriX5hm\nyrbAVHKG5Z+NIYei2OtJxlN53Kdc7MsjGo0FxqbO9765wlNiCCE8Ryruxhx3cDlbOO0eNC2Biorf\nVuW1aoNRM0xI6SJaZGYvNag5l2koErl3y8i2M+T/4x9y6//7HQB+7oNRikoCx0GLwZHESqLL4rSf\ne2/+NVLDynJ0gZurD/AFLuEUx8TWrrN7OMZ16cPc3dcIVQqEzz6FlPRgNApY23ZST83TL3jZD6/A\n6hAlLLCwEGbiiRMU+rR3trC7U2zslHiwtoIR9JI98wSd2TEIHdK9CKZzE93UkAMh4gMLyiiOe7qM\nZzyN2fJz5L1HqhCmZ4vQKa7y8l/9FbJ1h488+xma+T2u77zH8S/+CoV33ubEJ5ZwvWpDNQ5w9FbI\n/+ANUk98jpxtzFsbRcLnZ7GX1hkMB+TfqfKF//VTfON7r7CzMeHU9DEYjZhpH+Nr/+e32FAfH5bP\nXfwlzJSIMn6bpJnFZw65VbVSya1QHu5Ravvp7O1gWZonudLikW2M7BmRPX6W1jsq4lSTmRC8vX5I\nUvagPv0sIW+ZbsuPxaLyftmPSxDpmHcJKwqBcYVyJIPbXccxfIepbBJ7zY7tqIcya2fw5h5yVGao\nLqO7BM47KlRereH1xOnLBcaKzNhucHzpLI9u5HCvvoF/MUNy00k43qNXGGCLJjkYv8bzJ6dJSWdJ\nCptIPRuDHZ0zORlRMllMz3J6t0TFVaT01gZ+Rxz5oy5+9liLgzce8tRPf5Hr2+uEGgGszUekf8LB\n0WqJN995BMC1j2XRZqqEChGmlz3stNtYiyOkTJ1zisLc5RP85Y2b+GwmM2eP0wsKfPSpj2ON2JGc\ndlz1MRUr7LzbxGJvce7iRYziLvfkQ4J5D+Oqid+VRRvf4Y03tphf+AA72iH92ATPfYnJrka+LyFU\nc4yDDuy1AaXNAlurt2lXTcazFSKzHqqNGpVygA+Gs7x+628Q/WOyZxS6D9Oo/QnnXMs07XF+9LUX\n+YUXv8BAiTFrtVNwGWTzMs25KvP2FkXVSdbRp9zo8yBfY3vvRwRqDpwjnZKjTKADISWEtSMy69+l\n7QkQXgyQcEW49bW73Hn0GO66tPhj+G0PMPs+JuUwsnOfvLWD1XkcV2MTIyyw03yEdC9IxaEzKMqU\nmge4rGkCwR0q4ziSt01Al8iNRWwDiEhNqmIfb6tI3pZktiLRMZNI0X18ZZWi7MYlujDdInrVRkMs\nEsTLpB3BWQtiuB8ie2QaVQOzOaavdBn1YoS8R5Qbs5SEHJrbh8+p4t33ITZNAv0a5oU+O5QZC3Zk\nKQOGSr9cJRbz0xVjRJxp2lSYqkWRpuxEHD20okKAAHK0TN+UORtRmKQvoa5qEKsTdYzo5sNIuoV7\n793iS1/6H//hi6gvf+VPXnzW/wLZ44c0VYVeN4zqNHD4FbyRMUsuN0fNDVx7DpyRMQh+Kq4mYmuW\n0ayJdxSlrucQbBkKGw9QL5xFsjnxtJzUjTHWiIBp9lBaGZSUgDA8xkG/yUB0ICzZCA7DSP0Oc94T\nuK8MEfd15q59mHaui9UZBVeTWNKDNeHAUugjFN7G96lLrHz7LTzTPnwLl3F5UpQKB0T3nczOTVhp\nuPAEmzQGHeT0DIHNOrEstJMncLbWsR000YMmV4NBFFFiv1jF5guyWLMgn1OY6YXId/dxGE708wmG\n/Qp+/wzNwh3efnsVgKc/+08YeTpM34TIiVP4HzzkYJSnNhIY130kJPCN3LQVC6QPmdOnqMg2rjx1\nmle++1cErp7G6DUYeSUssSVc7Q6rD17nYu8YeyOY3rfy7R0BxeKn8d23eP+ldQLuLCfSDSqtHLub\nfYbOaUYvlUl90oP2eo12wsdKrkYk6iB06OGomke2nMAMhhBWVnDY8vi9ceZ/4hd5+XaDvqzhnx1T\n6VhwRXUc9yd4PUOY9LCtW0ns5sg/8rK6lqe5swFKB5sljbHXYvkjCtr7Q07NzyE4euiyD9OTZu1m\njUB6nuJDgZqxy9nPBNn647/gxmEJgDPnnkcMy0RiLfKdaRxY6M06GdhNBjsFahvLhGbG5E+PUKsO\nxISfaDDMQHyHpUOdeCfAwAiwJm1jq1nJ2hbpan2OuzyIaYVhXEYZmFT7PRZPqnha99ks/S3//Uu3\nGE99jFM/9+NMX8gi29vkC7dpWA6JrIeJLcYJHM8i3irTTk14OvsUg7sqtXoXR2/Aeq5AeFBG3TEp\n10QM/YDeapcb31iFT38WfeYqlbedPGMb4J9uUbJsEXijxX39kCuODJZkn87rt/DMzFMe95nTQ4gJ\nBw3JhlQrYjnuwmJ1UTs6zh/++Vf40KlLTP18kpd+648A+J//ze/S+IbK9JMX6T5hkBim8XXqZK4e\nZy9ix1Ko4r54Aopb6Lk+3qePkWvuUDks4utM4/SGMINdNh4ekPQ8w45vhHp7l6kT59i6v02vFyMk\n77AnaLg7MzQOO4iL84x2/44KPdKxMBevXEbd3KJtuvHYEsimn24pSMat4RDC7B/leLN2n/PSZQxj\nyHxC5u5hFYvewSdCKGInLi1xPJThnfdeZpAQuDJ3ntadGovZWR6srHE8KPPUx2e58Z0S0uWrVPxh\n+l2R+WWJvR+usvzUxyhs1rn20Wmuf/1V5ICd7JMRZsRZXv36XU57LvLLpPi97cfwww9//gLHI07s\nQxud9/IclKzMZYOcWZ5DVDV83g5Dpc1cK4s8hJGiQQE21yO4FsPMKk5eW7nBB0NztM4s0bixQjjk\noBHZZnlfpHtCovpozJLRpB41GP3FGxz/+KdYFWzItjHmk5fIrx9gBHsooznu7R9wMmajN7CTYEjB\noiPKYbqFVarZBeazMon34Gi0w8htwXopw+DBTarLGWbVBN13btKOeDh7foF8SiK04mPr/93AbhjI\nuQETqcG0x0lJLZLMpll2ncF1RWG7OKL2gwqxeRfl67dRBz787ineeXmT2MdHnEuG2P+RxBtrj8XA\nZ3/p17gp7OM0xwidLo5kFCXuwt8O08t30KRdQjMBHKlZzP07dPwS6bGPW3vfo3uwgXbWoFFskLbZ\n8Vi8bMS/TbXsIu0KoMzZaLcC1AJ79OMhQu4QrVUH+4W7dLtWzPIGtuxJRMsIccGJxeFj95EfJayR\nOHUVv1di55FAO+AnvRVj2Pk+ldb7jB+8gfSRML3jQyxLKW7/7QGdWRUxXSSQeoZEfshWr4+04GFm\n1OSl7e8TObZI+hNVcj/KkT+yseTP4j1mY9n/PEZ6lpnFGF7Vgpwa4Q45uaW+wlzMgxYyqG3WGV64\nxd3af2X3MV6LT/zKT9FT/SSFLltDG8OsSS2nsGgx2Kg5GY46TKsxmrEywsSOFjnA14rgrVkZ6k5q\ndh2v0CFtLnN/0CQUNTHdU/hHKu1AkO7AoJ0WCHu7NDtBpKATa65PLykRkGQslgr+dhY9sU9VqqO7\n7YR8Vh6pYTq9CgkxRdks05e61Ot9ZEkgadeZTARGI1A1G97ZCZWWha4ow1BkTrCR0wScpRqycgrb\neBWLMIUqtHDqVcRKg5EjhrPl5GG5TXi6jcsRpffdDWY+dZH/+1e/yWEmiHOgcPvVXSzdLdZ++CNU\nXeNf/usv/sMXUb/9X/7zi09c+TI7D1fxfbZHKuwjNBXFM/Hw5l8dcPrzHyAqeXA+7BPJZKlW+vz/\n7L3nl13Xeeb5O/ecm3POoXJEoQqBAEgADCIpiiJFBcuyJLectEZ2O7XTWHJquW23ozRu22N7NLZ7\nZLfZlmVZFEWJIgmSIAECRAYKqJzr3ro5p3Pz6Q/4Azwfes20vfj7fD68a6999nrW3u/7POPhFC1J\nxqo3YZuzsJt2optyo3c6caYPMAhZBoYOf/ndDrHTjxH40MN4TUm2Xn+J1uoOE8e1aE0xgkE1SsxF\nP36b1eYIjsk8b+UFei+/QNvjYkulo5taYb+R43Wfi+gjj9BYWmL0c+Pwm3Wqe3cxeIfpZEsMSR3u\nhAOI5hyGkJflTgu5uonN1cEwZebqQYrRoaOUmg2cFAlVO8Sth5BGG4xOHSaduM6WJcBkz8SBv4+h\nWsXil6kVV1GcR3CoF8moRrhy7jUAFsLPEouZ+N3/9DyjPxai+3qODXcDjyMMQoOGEEef0ZG33sI3\n+RjlTBL1fJhv/8HzqH0V+mkrg4CZRr5DsN8lU9XwvukHefVlhbpdj266yTGjmmrlEDPBEP0LZpSH\nLARuhDF/8FFWbt7j0FMfpKW02H67it6ygugf5fEvHKf26jXy4RHsgp3cZIrajprjKjOFxD6lsgvR\n28dmNGNv6mm0s/QS+zTEFu3mLPvJK0RDQ6xhoK4UUIwGnM/Ncjg0Sim+BqowAW2OUs5PUAzT3tii\nNxrEVfKzXGvgMy2hm2xy9dV1xgNDpFauEjOc4KXF+4fzRw/70Wx7iMt9IskcWCUQIoQHAs16n7nH\nThPvnmNoAjqZScwBAUN6jfbnv4ppfIRqxI28WWRvSYfR4sdqkaj2O6huxekH/RTXrpJT6emL69wo\nvUh4/yq/+vsJJgQ9P/Q7n2J4zIRzKU53J8/my1sElvJw0kNQe53sspFKfA9XXsWFTpX8d5sMjAe0\ntWp0lTqlyUW6FQNiLkIxY+ZLf/NrPPnPz/PV3QFHph7ko4YfBs02C44I++cz2OYVJgdOMikRwbBO\ntTyBq6uhs7uJyhahlhDR9hxcFdxslL+Ly3+U3/3CAccf/xgPPjHE1gt/zuVL929UWvZdzjz1MZDq\n7L3eJjYhwGEvNPMkt1KY3AL5gp9wO021XSajDqJZdNK3Kgy5TAQsHVoWiclDUSqv30LfgmM//j6c\n3Rrf+fd/xkjExr5xnHurV9FLeqwPepA7OU48fQqLcYx5ZZLf+PQP48pa8HCWXmyc3huv4pwwYWCM\nASt8K36Tj539MB6ngw1dmjfO32NobgFHwIeqpacgDSiLVZaKLibm5pBLDjp1NfnGOplghthDj1Kd\n9/Kbn/tVfuHeN/jWz3yHf/iTdRjp8uDQYcYf9vDuua9z6t8tsLnSoGPS8cDQBMVCi7W//jZhvQ3J\nssW75u/w+o1VAI7MHKPlKFJejmP5xHO0fG0K3QPqWXAMVPQGKhxFLZK6SWe4iX0wgcHrwxJYYmkx\nzrDzBF3DAeVOCF25T8/eoEKHzp6E67AZrTrCtG2d3mAa4fiA5vl3acw/yjd/5yscfuRRjLV7WNV5\nhoLj9DZaaCdcxN9sMDqpRdTto07t0ba60TtlytUaxcQdAgYvb19oopZA7d8nf8uMZ8xDcbFOyq5n\n8pMf4nM/92c4X3Tjzc9g/bSXIbef//6nXyM4sOAtDcj3+nStU5Q32sRubtDrRAlOfIjLf/N3/PTv\nfpa+XoUyZmXhzFN06m1e+U9/hWsoypvX7/u5zT8xxamghogQYMKhJzBmwzsmUeu9i9quofXcNlGt\nFntxQEYDfbOH+FYX/8etSGEvFoOf0RZsCDeRVA1i0RFCugKDwDhGWaAxfANeLdFQlZgr+WiKNbwz\nE3QaMvWei4G1x/ywhkbGwUG6Qi3zDj1jmN3Eu3hGT2IdKmPpFtnQi0hzt9G9b55//ItL/MAfvZ/R\nSIC/7V5lQR+jVEnhePA0bkuB7fUWuqMdWpdkcm4Jmz9NsBxhcfk215uXGXU/RmM0QKtiRtu9jU8V\noackOLCW2EkkaYlZTB9Ps7FWICzCSv0AfybBE5Fn+Md/ur9uT9mO4H4gTH11FbUri7czQ8XZhqAT\nbzFFfWCik1pDaUnQMNHNSAxHneyX9xBtTgSy2IxTNOtVurk4BiFP2WBFHvTw2SUyrT3UbSf9uIi6\nruAUEnQEGeo9VMk0nVCXlihS6zlxlepUBwopnQvjmopxrY6KsY42YqLe9zOpylJomvF2tZRiPcSt\nEjaLma18lSFBT0+RaPb2SDkjaJo9zKU6Ha2JVCHF6LibzoUsHU2JVL5JvrVAOn4L36NTjB57H1/7\nq69Qrx7l13/n85x8/1c4+QkzI+4W6qCFfGaR6SMBLt+8yy9//vP/oogSFEX5ny58/mciCML/2gW+\nx3u8x3u8x3u8x785FEUR/qVvVP9fFPIe7/Ee7/Ee7/Ee7/FvDen/7wL+JcJhNz/0mz+Pc9FIS71E\n3eajr1EY1pnoGBworyUxPDlKd17DW3/3NtNHnNzb+jueOfIk3/jKOZ76rJ/qSoDm1mkOhYLEA1rW\ni31ee+UaHz6zSr0zT1auECr2OHxUx/69FeRLq8weDVN5ys/VqytMh45QL1RI5CqoFreYeu6n8XQt\n7Bi2GXMm6Cx72ZjJMPPcT7P2W29jbSfRP6rjmy9+k5kf/XF0xkMcul2gunmHgfkSBvEhbnYvIE5q\nEAqjyKkOQ9GPIZvrvPr8i3zmyx9k8b++xXWvl6N1C4P4NbIXjzF2RsP+q9/EPz2NbVLH4MDPzf3r\n2E4PE7Ufot6288e/cRaAX/+pL1Oo7+D/yPex9OZr1OQ2T5+w8af/5xp+xyyVYIWPfnSWV/7bu5ya\nnECaN2MrtInu19nQmlDybxObXmBl5RUsR8dIvW6l5ysw1phh0WPG2dCSar/DiaFpnDYD3WsJMtY2\n3RPvZ3Hvv3N0+BTFC0s8eUbNa5dfplg1cvrps+y98C6q+ZNMhT1cu9VjbDjHZnMSx60ShWPbxFpx\nCosy0tPz+F/Rojr+COXeDf7hn1b5wm8d5dbFAf0xHfWXWgSkZYyn5olnttmK20jlVgn1HsS3kCf5\n8jvYQwLh0c9xJ7ePtLVE+/FncCs6zv3Xczx3PMpWLYNsjFMyF7n4p18D4IvP/kcKvh5HpwMUZju4\nVouc++ZtvMNBcm/c4NSv/zDFl5cpBdQcC2RpBhTamTZzD3+ONy5d43xe4FOCwp3yEkfXFsgPzrD+\nWB6h0eSxwQHtQpyVIwKWnTq5voB3tER07wQXCgWmFSs53xbJ/SKn/BGqtl12twpol3R4PtPg0vYx\n9EN+7IePEf+Vda6/eY5f/9lPEviRLMVz77C3liJ+Mo52MUa/3WPkmQhv/9qLHD38fRhDRZb2N5CO\nHieyOcne6S3Caz6WTSrG9gaU8gVqLj2GDRPuSIVb3Qre0efwBKqk7kjE/FfJVuNYemqMKh9njv84\nH//IL5JW7k/9/OLZH+HEcIzs2DDXyvucMevp7yXQPHWWW/UBqrvfo+Wwc9YrsvSdOrFpDY78NeS9\nHr3HnqPTLeG+PUxM+GfiCx4W7/rIP2rG0rTjamooN3OY827clNArm3jdB+ytP06hO8BzcpkLe3C8\nZqY/M8XuYhLX9x9j/0KB6IN7iIzg2quj6qrR+4PYX/4GcUsTU/+AEVOTVwefwD0ukT6/yNORWS73\n1jiInWZ79zYLrhCiXYV9ys3SuYvoslXOGD5OtvdtpBkXAznLO1k1T3YdtNf3WP34GEPlGfZ6XfYD\nexz/9jKWyBCKe5hrhetMNb381Z99i/PKdQAc0Y9Rkht84Wc/iro/xt1Lz3Pu7SI/+H4viY2LmCaH\n2NEvICTadEMh3I4Edy7dIXZ2BNOBwLWdDqWr/xfWw4/yYz9xgoulNuPrejJPqmi+1GWsoqfjy9IP\nRqn+4+usq6s8+tH3c+VekbNjBhrviujUHU59YBb7s8+RXNrj9jUBfSDJK6+/hVxeQjt3kh99/ziN\nv9tisd9n2NwjF2ojyHZ8wgbb2iCeiyt89e4/8MyP/TU3//Y2c78E1rt63tLe5jNTxzi3k0c6n8I6\nq6OuD+AyG/BXLFTLZcSjZvLPZzGOZjBnW5RMAQqqEV75zvOE7bPEuzXGQ10+9BEvf/if/wqAr/zJ\nr5AqZVF0OnSbOnJdO5rWNh6PSFvqo/cZ0fbUbA4MJC+oGPr5w4wqei7vHXD6uMCLv/dPbHV0PPvZ\nB0j97hZNf5pPfuQHefXaW0zF9Ji3bKhPLNGPm9lwl9G8FqNxdJ1+M4BlA+7efoeP/+Gv89Xf+Xu8\nv/AA4V2FRuk15orjdD1qNLQ5f6DH6yjh8Fopp2vkp1SY1wXOhkbZTfwlrzz+5zgvNhCTFcRHLxAq\nCFhTcTSTMQpWgRu/vc7cfIxL6xv4PmDn9LF/z5H4XV74zhvI748QtZ/lj3/tC3z6zFOMBZt0Xr7L\n9Sc/TuJrLxB78CQnH8lT2n6T698c5W9u359qfHTuJzE9eojj/TR3CKCNC/hPtZhsJNlziPTK0LLo\ncSh7lFaGGHufkdWbd5HCZkLbIQrHWhQ6DawDM501LQ6xTjqzwvDCUfraHtvxAhZXBFvdwb3qIl53\nF3krxMRMn95uCzliYO+ugl2/hG5WB6phCksFrG4FVSVK2pxE0lYQLSZMGRtuuUBteghz5w6OyiGS\nxTuo0xrEM2GKe+CUM9SH9XTzNnTtAtWAhkHKiXbQplnbYjRwhpvNf2RYGqUkyhTtw4SsxBQGAAAg\nAElEQVTXk1i0BSpqDYGhEQZrFhKyTNtkR+3ZZ2B1M2qS+NWf+I//rzTK//I9UX/05f/yxSnnDLqT\nA9r7RhqzNnQ1NW1Jxre9iGZCw8X/tkgqbmHyRIyNDYEnH/0I+1otkV6IlZtdDNKAvWqJ7XSS5gjI\n6TYf+5yTLVWTQVWLeyqALQTT8Qat0Qewuj3IPzjM8pUZZg8H6BYqDDpGgjMWlFMmmoZxstUKWpWW\niqzHps6jznkxaZxsVhSy1TcBiafHT/Ly17/F4z/3CCtXBNL1LjsqIyvdJE/EBijXtnC1JmnEzCjV\nfZozTjqX/xLlpo5iX+JkZxZdJMSTj0TwTwYInNyl1ffCpBWDqo9syvL0UyOYHTpSt67SveTieuLr\nAES1JjSfPsq5L72E1QjCThU5qkXbaNG36ZlzmynpNXzqA6Ns33sb01oP04KdxeybGOu3aPq9dFcU\nnCeOU11fY/qhWcQdNYGQBtdoi8o9FaJexhnrs1+SEJxFSCuMzwbwi0Osr9xDHui5t5pAdUdLrm1l\naniGy69v0Ij62G1WGRok6MhTSCsy/aFN+jk3pr6Bdt9PoxpiP2yie8jFbjlHt9zFVZbIHdSRqy4M\nh/MEzUFWrywhBU7z4HSRgOThNnmOOyUC07M88fQM71z9Wxq9NI55D/nz11l4bpyHTznpDheZODnG\ngyfmiCTsfO/CfbPNL/7fn6Jvq3D+pedxXdfQHM+hux3GNjeJeCJIsRZnx6XFtl7AMXuUv//rK0xN\n/ADX3nyX2kIU92OfJbl8m+3X/g8m3ncKqyHJrYGPCXuFrrVLIlgiWGyiUutoRi2EEmWuCimi3h4u\nuYDOrsXxkJndVh+xKNONOHB4NDRGzpDpebmSc5L5WoGT2lU+88UxzPptbl15HfQZujNH6ZWfRDt1\nkiOu7+PcuU3OnvohtnNZFg15jowcp11z4poNsV1uEM0dxhKqsNtRMTI0QNIdod3aRaqq2O1XaWkU\nJmIWqrevkNnJcFgfoaXWki1f4872GxyNfpjLy/enGn8lqOXkSznejkUxDPpoJCtHWyZW6RHP7KG1\nCEhaFaGCjtlbx4gbyuhHfUzPP4liDCFd1+HbNXE8UOPfqSR63iH6Pj9eg0KnXkd93MNkSyG3fZtm\nRYv+ygH5Nz0My32OHC+SL85RDzkx2BX0ogExs0NBzHHvjgzqNqZymbgoMqaInF718GHvAab0AltG\nO54jJpZvV3moc5rBpJfeYp4DnZFOq0M/2qHS0dJdaRCzikxlqujfdVF/+U0s016ygyDVQQCn7CDu\nCnKn2KLiL6O3DrP5+ipmQUQ0qrhwK86PjEzx+O/9Mn/z5Cf56tb9ZIFffvX9PPDZcYyLSZA3ePZ3\nn+N3fu8LDH7mpxB6fmxaG475Ig/ON7BUfexbdzmrcfDEzCQnnj7Ome/3Ie85Wbn4Dea8xzguuXFJ\nXYb9hxgIJVTeGHN9G2bNHfSjw0SOzdAtmWmo+4zOBzg7rcEZGMW9k2c98XW229e5k10joNUx/nCd\nD4ejaK9fwyOU0TfNWGxmej4XMX8Fu7tKebfCmFcgaWoxaz3E2c9+GNtZsF0o0H/iDMcEP82ymmBU\nJKCz4Rmax6U1omqaKOpEhKke5oEO98IBZx8KIFic1N1GPv6ff4VTT+kZL+wyN2/m8Wc+wKR1lH/6\n7jcAcGrPErDYCPsdDDw2zKd0VL3jGC1azt+4Qmj6YTqCH4crivKggPiNa+wIA3q7A4ZNEe41dRyp\nF9CHT6ITe5x69kM8/+UvcbphgmkrJbcOQ+MQy/d2cWZbLBm7fOTYs2w3C2h0ZoxTPjatwyy1UgQq\nNmoHSS7cMfPQWI57TrDlHVTFPrFoF1dkjk5jGGkrje7sGIPCPOfeeIG3rtvxHTnClGTguCfElNNF\nvqVwc0vNZGeW0PAJVHozBo+JIdFPYdPF7fJV5MfG0PbP0BMnePzTnySqOOh0hhg8PMsJQcF3Zppe\neJiL53ucnVhgkGlybv1+rNXhH3sSpbZJdb6FL9RGCkErsYLDI0HTiMPtwiulGRSsWCa9VA9WkaIx\nfMU6rVAGJdlkqNonlUyjdQh0PE6m9WNcv34Ds1ehXXGhEzSUKkvMTx9mfUXi8FyHhlrPFiWGpsxI\n2gydo23aN2Q8oki3LrO0useI3cikXkEV82HMOOm0JXzBEOnlS1RqESyCk33UxEbDNDeajNgV5IKB\n6rQVc6TNam4VY3UUi9PMmGpAeWDkinCDSefDDEc0bMhBYptalPkaTV0Ut8aFSs6QqWppN6sUG3kM\nUh3W7+GbNfPmi4v84i/+G2gs//KXfv+LY0cfQy1J1DPbqFo9XD0XnvSAjSEtuqKWRriC1CgTt7jw\neQe8c6vDhEuHw6khHNQhiwG0AQ0VUwaNJGATW2xcTxGo6PB7dpmxH8VlrdAbiXKnfMDF69u8dqmJ\nvm/HKpbIxcew60Vy+QzxAwud1bvc6CxickU56LewuJpYewrVQgWG7Sh9PxV6bHdWmNaNc/6FP+fk\nYTM2vZ2a38jQjpqVXRXR73uYyA98EDGXpSskGLpbQXUywnhe4uSDw1SsXUYtPTZurtHYTLGu7CAs\npdhLr+LQSOSbHeo2DdNBD/qghjuXfpPV5P1g00//8c9ReT2HzmPHYq1x1KYnVe7jrZeYc7VoPHQU\n69cv0RI8DBlUCNoMe5U1tLKEIXga94GbltWKJB1QrwdpXLnGTlRDrhhAduzRzdaQPQXy2Qk86rt4\nWrMk1mVudg7IrC5i6Bopadw84I+xJ7WQnVYkW4eqyoP9wEKvu489d4wD0yqi2GSwa0SJJVE3xyj6\nStQsAhMDkeyVDo3NCrMhPdvaJJ2BkdlolXxFJl+TGNLZKFevMlA36R2N0adEeqlIJ9hluajgtmlp\nW6qcPnaWaNVIM76HTBduHXD99fN4RCtStMVL3/weAK2128QsXXTTT6MOR6nquxgeGMFgzZCpTbJ5\np4m96kJRpZD7ZqJPnkUp6Ek2yiBfoF1rc9gaRXtoilrnJou5NIW1Fykc1jHpnCaTLlJ2SyjLA9Lt\nOvXkMGGXg2SuQgczqbaOlTUHC6M68g03c5oZiiELr/6DjMOlw5C8w7TbxZGjdvqLKu7kt9jbyrOr\nm6VWL7JZiVAxl+kdbGGoLdBNXQe9Gml8jpSqjV/dYvfaNt2+gqV5D8txM0pHha03Qlm/wdgxLXjc\nOLoGvPoUm9+7hPR4lBFrAHXYRkbvxhXwUCntoB7Oc/mN+07I+mkPa+EP0hrX4qvk8erUnHduUZHc\nlEs1hsZMNEQ/NlWbm6fVRKx6OrZxrrZFlhtxjCo13SMtDrn7xOsGzlV2cUpV1lO3KaEhv6wgZ+Pk\nDApGtZE7vgq2T45QdBbZs0xSsdrQKjsUJ+awSSpuyTI6u5XvvfISrqgb6ZEAb335VYZOq/mM1snW\noE1G1pLXaFl7cRGbUeaSoQYPmPjLc3/N+Aef5NL2CxgzWhSlyT+/8V1OPPqjnO9cY38qyNuFPcxP\nPUAvNEr7QEbzhIdqV8euqYCXeeJbe9SNy7isx1i6t8Tjxx185+oevz11ggvtKue3bwHwpPcBDhun\n0FqqiKUku4smuj/6aQx6F/7hASazg0y1giopIttTTNSC1CwNKm0BQ99Jxyry51/4ZX7j089hcKro\nOqp4HDashT5j4gjlxm3KhhxunRGV4kRXq1MRD9CNNAgU2ySaDbxrZVLWFcTYMMNJC4YnFlD19tg/\nv8J0oEdQXqCsteLpWxkYRAgLNJIKDl0OX2WY8qDHRDPCqMmBfQqcd7ZZ0ysEWgpWYQ2XXKKlFjF3\nR6l3bzDtCmKqK+SKRZzeJjoxRWTYRmlRz8buHUaGFtD3qux/7xIDp5WBYwinJsXlwrvcfPv+fvvM\nfzhCSRVgQ52g+0ad+l6VblRHtJXhyPA86fpt7PshXtu6xQm3wmqnTLu4QidSJOrX0nfX0Ogm0cr7\nNMcGqKxuvMYRLJFd9vacqEaPcDC1zbR6nmTAjn0sSHc7S8rWw+mXkbbVNNsJxqrgiBzDM6rQFN0c\nsQRxWoOoGMM8GuU7t28gFwVW3U40IQ2VppVYR0Pmjas8+alHOG4XyNtWCCgS1yQNg+QU/sf0yO8s\nkjq1wNtffwGNVyRUtpOw2Vm/sc2ZmBtTL0QcNb4tmde+s0I+/23UWz1WogKrSxXCz4aJ+a28uJpg\nxhrg25fvD87Ely/y2Z/8QTw5PUIrTjTiwDNwIduMSJdbpEwKxr6Kgi7FwVaDWs+PYKgidVsYdUPo\nG0GyEuhcI4QrRdpihU63jlnlZ2Ax4tGZcJXLdOwSlcIlZsJzGBJbCE0Rfc3AzmqRWNiBo92jl7dQ\nKSpgCDNxTIPVpSaet1Apb5DfNmIzSlT1A2zhALIaNKUN1C4zm8lrhNzjbIpdLI0K2V0LgqGCnAxg\nsEjMpFpkTBXK/SCGhhnNZoG19TzjYRdyIEE632BI0qPkM5REGyqnmq5Nh1iqk/WniYpObuzo2Lh1\nkV/6pf/9X7+I+qM/+eMvnnjgCerlFrJnHJXJjqirkwvtYclHEUoiAbUJyRSl21URUw+g4sTgMJDf\ntHK9dR0nFvR1E66wAwEbD86ZcG1KVP1RRq0WbtaLlN5ep9wTkAsDJixBvD47kRERPXoskzZMKhnB\noMcz+xDGpAe7YYB264Be5QCj00uip2EgNhnu+WjTxWnQkVzvM+TUontniU7BTNtYwnDgQu/TofXO\nMVgUaV68wv7rSS5dukzs5CyOuBeTI8D1e3k0qDAtDlga3KNTi9KvNYiNPYBOrUHlV6EdtBH6Aol3\nDojnbvDQ01O89OL9Q+ZJq4+JmROUhMv01noc+pnH2EhvYk+YsD3zWbz7OzQDbWz6AOuJEmq9m36q\nikm201RLtAYS/iEXrZtdtE4wlBU8FidW6y0aXhttlRfT7T6is4r1RhP9pIZyssogpscQd2P+/jGy\nS200DgG9WYXn+BzyrQbaZgq9sUxuXcYYBqO2TWXXy0DlQHJpSObTqPMik+OTlPJq1m5tkXEIWEUt\nHlMEf7WMPuhBXYpjbWvIyDqGHGqktoXNgwaBQyNkt9UMdtuUah20mGhdUthak6n11rH2/Kw0i/i1\nDtr9DodPWqFV5J+/dX8G+JM/90Ps6R/FYahjqlWRxXmcshGGJfb3GyxE3RhVTarMU6pkSW6XGOtJ\n9AIawjU/lbtr5MwZxuUZDGENsn2CWEzN3Jaf1cYeufyArNFO3jCKsdDGPewmLUygWHKs6IIMK34G\nz3jYvFXg5b/9BnWVleuLOUYcCQrrJUZOTBEzhYgNi9xdWeVgqU9nOs2c8WlqQoSHHxqjfEmLTVVn\n0F6keGyYMYubWE9B2XSx07ZgtLrxqoo0vUOwr+BTh+lNiUyHAmTfqmDum/DUDNSO2xiKN3G1tYye\neADrlJdUOkGuDfV3AhjFI7x74/5N1Bd+5NeQzT6s9iqavhlRcSC3B/Tn3MiNFPJuHLoJ9DoPmIrs\nvXIDixRi+dxXcM9NYVN63JF2yN/axWS0ExuJMDs5jEnu0pVczE972VYX0ETHMbvM6EID+sQQ+hXW\n9H4K+3VWy/ew5Q0ojias72OeMTKsP0Z/SE23UcCrdkNdz9ZIib7ioNvaR+nEcJrbOE6fwqNqIrT8\neAo9dDEPh0YC6ItGWmYbhxam2bh8Gcl9BJUlhUlvJzfoUi+q6QRv03ANCMQP6EyrmZRyFAtxRvIq\nStU4OiGMX6ejINcZ+ALUc13e3Lkf+2Kfm8YSfpLCKytoTONQTZO5voNL0bNuTmKq6mjrbGQ7Tcyy\nDpu/R7Bqw6kxc0fTZmRX5qd/4TMs1/uEa1r6cpCWzoWyWKWSXscT9sOwDfVmCG2nh8XiQlbXCBtm\naTW6WD0Caxt5vJoTGFMpxKiAzRPFeu82mc1lrJ4p4oEu5h0zOV+NtLFEQOxTM4IxbaOm3iQX9NJt\nCdy58jyxM2dYvahCbSoSPqgSMPvYKBYwW8fIyzeYdERpHtip9bOcKvfoa04xNKcicZCjk9TgT2kw\nxCqsXVlBjvYxE8bXTZNJq3DIJc5fu3++PXDsExiCKSItLW2Dl9yIA81Aw2pvG311mIxWYXxKTbHg\npZqscXxqhH5QxtD0oL5cwzzUo6NzIGmDuFpZlHd6rOibPPK/HcYpHmLXZGTjTxPE/WliKjOm3QoH\nHRV9fBhrVQamKNWgjorXRyVpQN9pkb/wAo2KhrQnysDS515xnTPBCEs9EXVtHfJu7HkNffseTZvE\nifnjCBUFTUNkY3+R7OotYhMDVr72Av25UxSWEoTqNlpWG+4HFlh66xXmI1o8Oiea7ztG/Z0rlIQk\nAWOTemVAc1AimjchnDpM4d08tdwmwaFpSsuLvH3nvr/WB37rMM7JCoUVNf2wj0KzhZSuUkoIhGYC\nRCNuFMlPQB+gFWwwZNfjTFXImoYw7jSpNU3k6OHM5hAFMzUFoEslXMK7LbIrmSkNkkiWPj7HHBs9\nga1KAr/HS7ksYXZnyHjMFJJ6LPoIHdsanXyftg60SgPR1SdktGBxarFk9FQrMv3tGh4xgzjkRp8Y\nEDWpKK00sbXr1OdGMLS3UOmhv9jEIUWQvRvcyzfoFRsMz43Q66rQep2IrQKukopmH7LdClJOpGTo\nEanU6CsuVJERTO0DbKGHWLr8FvlinJ//2V/61y+ivvz7X/ris9F5+r4a5l4b1UCP5K7hT5uIU6De\nLmHV2KlqdVQSqxi8PYyaCBcvX0eSV3A0x9mX2ow5jWxUdwiKDQxCmoxeYSO9Tyu5w/K7Nxg5/hGu\nrN7G5xtGENpoaOMKeWjt6NCvbLJscmJviBiVFbRCFW3kMOmgGXs7QHKrgDGQpSOINIstGgkjCdGE\no7CK0edlrdDnyESQylKeuwEBlV5kUNOQVhYR7E10/jkiET/DNQVR14XOPu6ahZ5KoTQo4x+bQu2T\nMY+F0aaK9A67MVUUNFkZfWwKk0/FoBSkniry1tX7PlGf+qgTJWOnNhNFXzQxEQnRXmuhCRR5N36N\nSUeAVE2FO7WFfiZAcldhyj+OddJJ2rRC5kAhWdinqOuT2jQiWV2UPG3qJT+KtsvDowvcLW5jG5qm\nJA9winV6Qz2aLxzQndVjYB9PYIpKNYteydCsO2nsZhmZHie7VaUfLdI1eqll64SlAaUj24xnXOTk\nAY0jdhyDLJW96+TtAk7ZQTRqo9jqIqj0ZNsSPZWVYlfAGylSTPhpuMuEyxr2S3cZnp6ndydHKCRz\n/i/OcejhBUyjbUSdiNMiEPFKyEErmes5dBaF6PAJ/u7v7/v2fOLTH2T92svEd/qoQybMO0lW6jsM\nDcKYhhR6W0XMURNVexX3uIjb32KxmsXeu0NgzIVRMdBoFAicOkTu63exBxpYhSOEHw/xvfVLjJet\nFHYOePzQNJFPjjEcHCHRrGL0BPCWzIiWJB71NIltLXPvH2b2yCFOPmggnvRw5gMGQmEnmlwNsdXj\ngBSJErTDJzm+0MCY7OL6kBnh4jItvxO70iPV1tJ1SJglK4JFoO+MI+XzGNQLrOwts70X55iqjz9w\ninwmjb4vURncQOgZcEaiuCUP+bAFeWsZVBWUqwJiQMet8QyOfQs37tyPy3nkThuN1KRS1HBrawWb\nmGV9yInhoITJk8ZuiqEeipFsqFH1JTJ1P41Bk5ZWhc17DHngob+4hfLAYVxSge+efwvfw4e4stVF\nLOwRX9tDSNjxKyrqujiqfpB8Lk+2WmdzaZXAoWGqXRt91QqVThShn2J7VUJv2UDZlrHGLUz+2DTl\n6xr6tQ2cOg3qcT+1QpHWyDhmh4sXr92hn0vR1vuoFQ44cOrIb29Q0UQoi1lOj03TWc9y883ztEwq\npPE+m9/J0LcEaa6sIYdUlJZF3k7cYcRylHRxnYhlkn6kQjOvQ+sfo7TSwGmN892V+//pw+M/ha9a\noOhK0CkaaA826DmjqKPbXP3eHrpnpiCbwDKbo+TX0rutx9J2ofZ0KJh6qAQDW/sp6ut5HJ4hTPES\n/aIB/ZARy/QcRQOYWkVUBwa8Y3Za7mXSmR6G4QjGVBmhXEAe8mAW05S9UYpVC0rrXVZ6IvoZEY00\nyqjgoyeYsNYraMQEitNFPn0NV16FemSU7eUELWuCs56PoWo38ChtbryWp3fYhtsZQ6UrUt+wYBir\nkTaPUdwsMuHx4wqH0CZ32DI2SSg6zN0dqt4AxnqTnm+esdKAeqbE+pCWYbcN+5sDXtq7DMCPPPEc\nVqsN1cBNJ53FVO/QkyVMzUPIipGCuctOM4XJHcK2XaOdyaKxhJD3b7Hlc1HvmAnXqwxUAxQ5QEZZ\nwmN/kNt/s83yQQF/r8deQmDS76Obk7idWoasTLSqoTZqpOHwonq7h6ou8/6ZBbynvehaTTSDGrop\nO6m8j2NuLw19Dqsyji/bJhaTOXH8fVge0rDxVxeo7QoUhQwdZYeM3YizK7NViTEx9hCJ6xXi60nE\n9xkImwSaNyUCYwUM9iFkxcLWP79ObMRHu+fEpzejnx0hMxnjrhDkjXf3eOihIN1SH7HZxjI7ymvf\negWAkP+HmZbcDMoa7N1t/EUzFbUHc93ARusdCnILx2qaW4llxIGW9bye3WSFqXAFCTOdqAbJXsM9\n6iXVKDLa1WOOuFAtOSiGegSTPbRiBZfSp7LTQRJqCAM79rSOnLZBrinjdE0Q28+SEWV81THq9T2a\ngwimeBmzoFA4qOOQcigRP3V9Dpuzi6Brkt/QUhkk0KonkRSB5GQJf6lKvWFC3WxTaBQZHq6TXynR\ncHfxuY2YNlXYogPk22u4JQ/FsglDT0EbV5DsA4JxgVqzQuGggT02oFmeIi+XsM8kuXFuhV/+xS/8\n6xdRf/KHX/pi4MlRWgcmHL1ddIUBBdcQJV2LaCNC22YjSwl7TaByoOAPm6nvqpiaCuPQKXS1A7rx\nMk1Plda9Kr2bNl7fvY1VPIpo0KPyCUyrHqFmrOGNTCDITUyqCklvhXxygNqsxjPewlUcoO71CNlH\n2JKXKFcLCG0blkaK2dEjBA40WEU9hsGAWkDGa7JinhnlYK/PiKPJXr5OxRlkzhjCkgbBrsGojtDW\nJ6jEbXg9ORrrObZFAyqdg8GUgkoqsW/S4l2q81O//XnePDSEtztORbhDerOEcfoRhHwHPXlUVg0m\nrcgrb97vtXj2Rz+H/MZdWuoGWc02F//pTXQtN7awSN8QwGdMQNvH2kBDslwlonTpp3bJGbc5lJPo\nHG4h5DxkzVrm2z1q5iSmQpu22kZwq0rZFsehMdOvp+j5BXqNPl67EZt1mHv7Mua6Hp12iUi0ilY9\nQbqwxniuTmJCxaTuHnppmJxWYSxYpy1rUI+4qe3vMz43wtZ2isx5Nd1KHa31KG6KOMJmWgMVtkwd\ns9Kltr9LbRCkW9mmEunSKdjQaLKYrSFqu3cxNGOIShtDbJZ0p8fJuTFS1y4iCKOs7txE15IIDZlJ\npNLorZO88MJ9EWU1WHlofgH9hI1evMLKIS+7S21Ggjaa9xqopTJWwxhWSxNbL4qkKEjOLWqFCPXC\nTZaNXVyZML1EndwJiea+nureKm7RyXB+BvUxO6qoGmMryd3X75HvGNm+eZFiIoV+xI+SyCDWLXiM\nOSyJAlc338HakLF6m0xaFlBdMVCcWkVzz0RL28HdEvCPTZGoHHAotMBffPsrGBULnYM9+mEb4Ykm\nR4oRchxQlOuozV4sopudzYtMHh1iLhClZOpREPboLq4Q9wjIGS/lAFgocWelwSDbZ98q0VE38GZl\nSi4PM7KGXHqL24v3/Wd+9Sc/yMfiIh/zOCha01iPDOOJOLiyehHd9RS9WTPm3TaKL0u2WsJa1xMe\nstCX0lhGRthqvU1ctGPsDcioe+hsUY4YZ9D7yggDWAhMc5ceBlUHdcFHNdNg8OAw0eQ+saFDzERq\nDHZ0WFw9jrR3KdtjDPUziFNGhLhMbjhE83wcs8NPri5R75jZ2Exy5AE/WXmXG2tNFj40gbA3QJwT\nyNysYIw1qKSrRD1w9bUEWrefdjfP1MIx7AEIhM6SlreYM6iIK2WC7gWE0k30Ri++Ew/gKXdpGquE\nOUxadQWN4OAT1TDHx1v8wTv3s/PsR3uIEQv6YyKWksRQuoe3JLJvnsejaZMsJHANG8lnpxE1CuED\nFaqITFlUY2g4COf77Gg2OO4YRm8psttwELUVaaScdE5IGPLnybR6dGa6qBJbaNUP0erZsG6uk3Hb\naDqDCOvLWGcmyR00qLoW8Q5kbIqOYNtAeVCnu9PCUsmxJ5mRPLt0Oh28oRjLmh7SpgHDYMCRooOs\nI4u26uAvv/l7PGp7Cmcwj6BR8/ZBl70jy3i1XuqVVSKlMMZul2u7HdzHo9yollCo4O4ojDUVNgQL\nYaVFXdXh3XyS0R9wsftuibajz8Wr95+lnn30MEVZRI6vs9ZvoNrOcGjKgK8tobMU6CQkxLUtLH0j\nBU8HRWXFbKlxYJxlJFUHfwdnfcDqbgOdW0NnSE8wbaF+3IkusIdhfQOnvsLo7DxOu0QnVyXgMVCy\njpKJfxdpr4hrUov1YTvL+7dI7O6xs7LGSC1K3dNBdwCyJUNzoGbEYeNts56DVZnyS7dZumtAZ3Xy\n6Od/kwn/E5hUP0H6YB21xkNWL9MIWWlZdTQqN3kmeIZ7XYlASyZRLWEdldiTdwg2J9l466sMjQuY\nxt30CdCSBUJtI/Ojo5RTCWrtdayhAHM2Fc//430RpX/6D3n7q3/A8UdCaLoGmjQxaooMDH048KHU\nykjzIlWjwITPzbBOAY+fas1KXJclZBRQiRaUbAYhWUEpmkiLAgbHHuVeG5fBzFKuhHncxQA9cqeA\nVeqRFDq4olGkTAGnWUVXW6dq9mAZbONhnH53m8zsCPqBDpfBikonYtwzocuXub5TwT8yjJ4BnqrI\nvhDHalTwFKHo0WHU1DGHR/Ga+7Q2LegCWrTFcUxyk0YuQ2tQwrdwjLhml0DNjeKe42sAACAASURB\nVEZVBJsWoypP3DaDpd6gG/JSHEBJjNOrDQiPHOHO+Qv8/H/4hX/9IurL/+VLX3x2dpSus0pKa6Lf\nCmBK9fH2oWFqE6xtIxmyqLRueu4StqyMy6gC3R4OW4dBv4F7toGr7sLYiJJU+1DqAk6rB0cvSqId\nQGvR4pFaOJoiQhLiRpmpppqGqkHIWuXmuT0GkwJm0UqqvctQYByXvUNrVcDkC9Hx1qG2jVwuIZjs\nSCoV/aKdxH4H71gXjfoUmsYWekuCdKqIWmsk3lGwJDu4giZi0gj9dhtMx0kOdXFvObl2/RWsJ4dZ\nPWhh1zS58onHKOpCSOIqZnOA6cc+SSW7iaexTUPsoLe3qEgd3nz5/jPBsed81HzDuO0xlCZEHCp2\n7dt45Em8z/io1VW0d1r4DsVwiAbklQMqYgOnzYVuWM2U/jh3pAS757vYbLuYO8PE7MM4xRKVWTM7\nV2R6ezpKozKSLKO6exdXYIhiyoGv1cTo3Ker81FYlxhktXhPqNhzOxjq9pCKHcp+HyO6DtW8g6Ie\nuGhiKHaKfDXJO4sJxucmcarqZO3L2GdmUJZWEUt1WuIBu6sVTAYd2jEN+U4F941b7PUsDLccWKwC\nal+ApsVFw1Cjuywz5NVz9/o9OsNatCMVfOkcnaoO0RlmfNLE/jff4o21+6aRH/ihaUSPk6G2hc1O\nEfGCSHiwQk1bR28xYzWEyLXT2KUBaiWDutTDmKpQSeShn6OdtKM6CqWilhPiKHJQjWnEjVppsRtZ\nx7dVxzkRpb/VQ9fwkkHFw9M+hnQ1mut2aGgwz4qsFW/RbZuZ8h/GOK6jqQ5RTzVRVFnSyx30DEjE\n61TdJxgXarhDBir3ZESDwkhaj2vOiatfJaQV6RbrLJvSxGtJuhsZjIfUPHjmOXZ3b2J21SlnihST\nXWbCD6LXdRgZazBZsdBNZlCPSwwsYer1VfL/z/doe/1MLvh4p3geq+khrp1/6f66feIYT/tOo9Yb\nKDXSSGM27tw6x9RwEId5EtncQ8xrENRltLiId9YIRB0kW2aiR5z4lAixQRnvETUWaQJDuUw7IFDL\nZKkUd9CMH6d+cJusX429mEYzE+QgnwBFQ6dTYmevxCOfPkS/08E0d5zL1y/gtFjo76fpHD6EIhe5\ntfMOoreG0aDh+OMmiokqwdkYa3kr5nqNSq2JMVPCGwrgMK3R6C2wXs5jG5lgTmNCtAtU1Q1SqNGY\nLUT0Q+T1TRqdGpPRBzmQ7oDBx4Q6RLy6w7GRUySLRcSQHqvNQPF2nNqH+wjzp/jrv/17AB6LPsHh\nxwTEu21UdR2DERtaS5XZrTH2EnHk4REMCRlzoIJLp1AqidQLWsp7qv/B3Xs/yZYe5nnPyadzzt2T\nZ+7cmZt37wbsAhsQSAIgQYuUTcpiMG3SlC2pWDRIWVWuMmxZZZMSSdhFU7Zpy3KVCBdgyRRJQV4s\ndokFNt8c5s7cyTOdc+5zuvv0Oe0frv4J8V/4fvjq/d56vuclEyvQ9QQJdRt04yZdeZVJ9xEjgizo\nBoX9++jOKo6eZGLLuJ0QZjhP2O5jAC+8fInHJwd4EkHa4xqKZ0LqYZi7Rw5X9SuU9VWsUgH8U8JT\nm/3YKX1DYCS+QklXWN/z4lJtXHETS7SxWx6u/tibvHIjR2itimhVeXqksvXzm7i7FlbJR1heYFZu\nIflE0lsNnpbvsVBfYXEjxlnthEZwBY+us1BrE454mHQcDlsV1tLLhIUQ3/vLZ2Hgqy9/hQf97zOV\ndcyFAap/gXF+zIfJDtY4TVCPEfZByTJYmHcYLKoYT09ZsnO4p12sXJbpzpywy4fHrZA79tBxHJ6W\nfsR6YZWgz8QznVCVwswmDiejOZNQlNiSzUJ6iT//r/4Z2V/6BZTjMu//8XeIjUXky242Vq4xcIXQ\nbJPj7kOkXZHZWh7hgcrkoMg8kuSTd56QdF+jq56j/7+/jrFmo8euEdrbQfAnuLD2CrH6PuJKiv7J\nMSvpa+wLI64+d4Pb/Qor5wEed8+x9CBJr4uzsUxGmvPnjTbJqZvH+w95QfMgXXqJKBUWqmX+6fee\nhc/mh/+U//yLv0jZCFCoNFDlMHMjRzYWpEORyyvLiIUhprGAxZyuCe3ihGn9iFdeeYl6z8Y7PWd2\n6GMuzWHVQ0TqU/Sp6G2F4SiOqJtE1AG+lsLZbJXrWxZ73XPCapvUNIak2TwtK4SiDaTQFFXTUJcj\nRO+P2Ws3cBJ9lLqIoyQZWBHWL3oZF7qYcp+pHEOeyXQZY7thEBaouFyEj12Y0yZuWeXUiZEJP2Ua\nHaH4VBRhzHwo0+pYyMMSewthckaMo71DLnoCkNIZNPoEx0HEZg5HGrPsVfjLD37E13/jN//dD1G/\n93vf/MYLN25St0yyIZl0rY2t16mlZbDGjIImhneVgcukVTUIDARmjRbzVTfyeIDNOkKtyKNen64V\nZHGlwdrIJrG4wKB2HzmdILXbYJI8oj9O0oodYv5gn2woijs+R225iL9yk8GpQm9cxgpF0DoBpiUb\nTZszWR7SzR/R3Avi+OJEgj0G/RDBoEhspc/I1Ll/skssmGPlcytIoRjBsYz8mTHjYR13XMJ+eMAw\nl+QsYOE/NtHrJ3SDU7ITG715kXqhis9RsS2FbiiDULUoVDrYvRIFZ8xMjSO6/XQVFx/+xbMB4q8+\nH0Ld+DEOTg4Y5O/RnIj89OLnEV9NEzxtkj9okL2WoPxwTGl4hudsQjzWpd9u0vcEmc8tRCFBZjCH\nYAZvRORc2qc0cmEWl7AXdpDmIWxpDo01lE03jZ6Bv23ifc5Pc7CA3/ohtc6YYXPCWbVNt/eUYHoL\n5XIav5DgvGeTiF1mcX2JmTHng4/eZVftcyF6nVBS46ik4Da6CMUk7osOndIUfX3AqDFCei1FSApj\nznt4jw+Y+fs40hItfYQkJyAL2p6F6RsTiy6wlPWQEOfEByE0a457e53+aJ/8yIPoyvHDj5+tnP/8\nZ/59yl6bVPgqrZ0iS9ERnbCM5F5A2w4jFyrMg3HCSR8DRWE06yArU4TYFinDT/J1jeM7IwSiqOE8\n7qaM3O5RPDsmygadTpG9yseMl2bYZ8eEJl1uPzqjPR0SUgp0V3r0bjlcemWVnHdKSJ6TNl2IT4+Y\nrIx4/1YZfeBidFEn5jZxLRiITowzU2ekjyk8eMTyjy9RLxyREjaxFTeNyRPSx8sEjTrRqIbcuATV\nxwjzLP7xhJknR6FyypUbGkfVOUe7U4aOhjnsc16cEHDvEToxWb26yvzGdVzCjPGdI7pHRzzaf2be\n/tyv/2fMpxb7/Ye8deuYzzy3Ru2+zcj04VrU0OQ6wlzmvGQg+1RWV16mrtm4ZnmUwz5Dt8W9T/aR\n7CizWY2PHhXxOj7cToFh1EUwYBEqK3jDfgbFKsENm6E2phuNE4yn6CfnfJrf4eyBQ2dWQ9dX8SZn\nLK+8iPz4Ka1BklRwnY6l41oQcR8I+EIm5mRKfXZOUG+y9fxVrGqPQWjOysyLsVkgqi2iDgYcaVWm\nQow3/SkIBhjIQQx9wuLoHNZlxsdHeJ0onucXiY5l2jOJg1aB6oMSXa/CzVdfQxJT3Ds2efLgiFu3\n3wMg9NWfZ2PtZZofjBnqYVaP9zH7DYr+IDPzgOXENeKXVVofhxiPTygxYmk7Sq1xn976VWJKjfMS\nuAIO+btuXFkV1zRJIWPw+LRBf1nCLXeR8qcYbgHlqYM8DRMy8zRPekj7Z9xYdOOTsrRODlByAsib\nSKMWrnqbyWKQyOMIoxdlyv4uRm6bkFnCV1GR9QcIpQnBqs7g6nUsw8fIKNIpnPK4J9H4wWOWr61j\n3SuwP7nBOHVCLDgkZU/pmjpHUo5YJ0fNaTPYlNHsINfI0xbrDOwF1ECY0KaANZoS6chM+nPe/fjZ\n/ba2kCQwdWMG3EQfLeNP2dwzLT6zkqLftmn5bITIDOcYKhMD1fJxYWmJfEBlSh3R9mJOLbpbNZZL\nAneVGX2nQlzRaS7P0DwJcpdXUEZlrGGQXLBDvN9ANE2cgpcvfPEa7Q/f5/F+ic+qm7i2FxBmcU6t\nOkk8zDY6GLaOcPN5Tgtvk7yXZjq+SCQY5gs/vYRv5kHFwmyfoox1yu4T9i03Xs9Feju3OOk1SLsj\neIQAfGmBtD3kV37+F9h97cd594f/guf+xjbXUxnEsYQZ7jEZBrixsMn3H35EbGIxSicZ5x+T3r5B\n9d3/hX/9sAnAr/7J3yOT3EBaqXMhdp1BJsBaZgxDFVXWEE5Vjg4eEki78Yk+mgETqdFjlr6AaydP\nS5cQZmN6zQJydB3T8dHRFGaDOdFOB89sQM9nY9b69K752AgOedgSWHc5yOM0iqYza80ZrrWR1Dmt\nzjKtpx1kvYflUpmLFhlaHPmXiDUltOAh40KESeeYYOB5TlPHNDsqlp5CDtgkeir1ow7zsM5UExkF\nDFR9SHy+yscn+2yOYqCtUNIaBDYXsGIjZCzKp2V8l0W6/ipmY8rUCOPMDHzrIrF5msOKzJPD9/it\nv/tX4XfeH3zzG5vXXkExBGzBjT1bQXUHkOtFmltb3IhsgEfDLB7g1mKcenxUvDryKESru4+ZyeB2\ntWnszLkclfj4/buE1p4j2OzT6U/Jl/LEv7hG524Z3+UE8uk5u90KxEWqRol2zSEVjvPg4RmXttYx\nCw9oDjwMAkPcSoR5f4o5mnDjb/vo7xUYH/oJyX7apQMGEw/K+JwV5Tr9xiF/du8TFnwKu6UjQjsJ\n+naJ0aMA+qxEayrQun2Itu0ld0GmMIgSiA9JHZ5SitSRlyUSVobobJfpTMUfqKEWdRaem3NWGKEt\npAjtHfH2B7cA2PyJa2znu6jLNr2TMOGriwQcgeyNN/ngeAfCHty3u3gj+2RPplhODiWooOoKHW2A\n8ms/hrQzIlgdQeUQ/6UpKy++ynCkE24/oZP30/HbXPJP6aXmePtxvvbTl2nsj7GEMlJKxt9bRgl6\nCbV6jMNNpJM0vWGIyb/ZZVozUQYKt88OCR2KFP1NhOkGi89fRVUqzIU5AW2EW9kk7P2IQiVCfCIT\n21xCGppM5E0UbUT0yCS7NSTx4zqFkwhCd8goZ3Nj9QrVfJX5yCKU2YA3t5i3f8jTszy+zTQxVwYn\nKGFEZjjtFO+//8x3dDWzwpe++AY5V5RW+wxrcc6DD3e5NNvGklS23/gspbfeYs9fRN/X8CSaaK0o\nkaiFvL2M1kwQXZWw7/WY5V7CcR5iSzKJtTTVvRouc8z5rQrbto4S2UL1HrD1WpRpO8a820fPplky\nSnxQcGGvljBrApbdppHJUttz0VKKOKoXuZ9gLiVQwxLL6Syf/Ku7rMXHzAITkrEo7NaRMhL6oEFN\nv4i1NuGsMWU8WSE174LuQ4j3QVMxqnskeB7/2MNMOmTY62NF+/Q6GaxyF7JT3Lkosa/+Eofv/TE9\nv8CTu3DlP/oM73373zJRfje3vVEuzuaEwyEKqRjxtQwXN6dMh12UvB/DdBDdAVL2DFdBxcmf0qsO\nsHKQbBWI6HHari5rkQzjkYmjyBjjM1y1CHMnjNcn4O23SETCCIcJZr4IKX+X/ScNxKAX7SyIeGlO\nuRMgMjtnqPTpHQt4cxLikkQmuoUwruBvdym5pnx8qjAd9vEnsyh1k8HBAcGtBDHPAU+VEKNBkuzM\ngy6cEVRkopEmQtaP3O9jB+IM7veptExqxTm9ByWcz3jgaYz7H7+L7onSno5ZuTihW3R48NE7yLEk\ntsdEkAd8+t6zofDXf/IGCbWIR3pMR1KICRqzrIXS8rH8qpdbt56QmRWRgwad1HMEW3XO6zMiviTT\nsy717AnJ5AaGKZOyb6Oe6VjXpsQeaixuRknrIp6BQTd9kcBIwVyOsl+6TVxeJzhRufCVN9jZn+CX\nIiQvX+Z4f49+xI000NGvnBF1ZhgeB8E3QGaDuRfivTO09gXQBCYXL1K/HKX/J9+muy7Sr1q0AyNC\nrjT9votAusH80pcZd8/w12+RTTzHnccz5FyF7LDLNOvB5/XgzJqETHj/uM1GXKM7lyjJXXr+ASuV\nILUEFH/g4t7ps1mrV/7L3+O1F16gOLOoBZL0awJ+OcXScIDr1av4Cu+SutchnvKRDK1QOLzPhj9C\n5/hjBlqVYV1lbUPCNVXodfM4eZlhMIzt0fCHuxT2/TTFXVrhBKHWHkI2w11PEo8BztKUo7wbM5rk\n+k0fHwiPya0kqesZXh6MUYIi1WGARalGtHfGo9uPCaxfYjvVZT3l8FFZ5NKbK5yVjliIVrn3cEgm\nGSYcvcToyTnD/V3275+BlMX7xhVK/8+f0c+l2PkHf5fFz/6HLF6zOXtQZ6pkQRTJtBc5KY853G2w\ndiXB93/3m7z6tTg3vvQFKve/xbKa5f/+0bOm/ZX1l7GRkA58xB2HUqeMuyjTqNSxXG0O7QLGRozC\neYB6s4OR8mME3Xj36lQW5sxKfvpzL5duLqH3BhiuLiIOmlrAkr2YMR3zSKUd6qEJDmrfxNQdfIbK\nwtRkXNunHBqQGAUpVLtEzB7WVS8uMU7HDJJKjhDGLuJhONX6+EwH31occcVh9uQQYbCCb0ki0Kyh\nTXJMAodo8hqaZ8q8EAPcjCsD8vMWn7lxk4OjKt1ohIDUolsdsGL26Na8LGwL9PCwMfWQii0xG56i\nODVad/dpW7fRkTioH/Mbf+tv/7sfor75B//oG1ubP4nPPiC+lmHuGByeN0lG/aidIrVun0a1ynI2\nQ+eRSbup85Ku0ZtDLL1Mon9K4+wCF5dSjNozbK9G1O8j7y+TWp4TGm3gijwhObhAJf89mmT53OWX\ncU0UQkIQX0LkdKrhq5XoDLt4fWskDAcpFKAT7lLr6ExMB0v1kCv4EJYE7MgEjy7TbwxIplYxagbp\nmJeNvounuxUuLl3EY9yje2ShBacUEhPi4gqTFY3AtIUgbpMTK1TCMoHJAr7YDQzzkG5I4oLHzdG5\niUtJ05ub5DsCmbHM8LiB2xF5+9NnTNTP/epX2C9KCC6BljxDbfdQNZX+XEdqnuB1JTDGNvRAr86Q\nM23ygTTV2CrGMErHJ/DB135I9oZD/3kF794ENVCm13bonWnU1QD29CELuX8PRJnu4Sknt+8T3rZ5\n756I2NUQEwZhTWK6VqEvXUdK9blmZ7ACHcbqBv1xgFh6AUwJ43jI1XCTQLhK1BbJxbIoihutPMRY\nqrCsaIwiU5LpLN9vHONVBKqqSHM4QFy0CH7tv0P+j2uMRmXEYgBZFjgWJww8CqNBHnlhiScf3uPm\nRYXTkwiD2UOmD6bonQpz/4z3/vIZo/Lrv/lZwrGbvHP/UwSPl+ppAsEPDbdBKK4xLO2znHiFuz/c\nw//GNZLnGr1rGdzaClLjgL58i9auTe/lONN6FbvaY+o2cfkvINZdSNFV1JiFfzFNT1nE5csxeWox\nsnwsXohg743p+0SCahq958WcdynFYa0xoBUekJWi+OsWgtYkeKmBFlzGd3RC8HOXGe0foSwu0i22\nGQTaBBMJSu4F+vMHdKtV0rmbMBqQ2/ZgFwoc6UHG0hDZFhglehQLHiqjMVfbWSrdU5yOD+3lILmO\nQ8B+nvPOHYypSK9VZyF1kZHV4NO3np3bC7/w88yeDjiyZ+StAoslDdUrMXT1MKQIPbeGOvMxiVY4\n6gzwFRyGepwLERG1o6IZbqQFi0UhzeNqgeyVVVJ9m9DCKiFrijDTQPTS77QZ7Gk0l085+fgu7cKQ\nmWHiac5gO4F7ILBwPKesVUk8XmKujJC/lGLk7hOfz+k7I+p1gz1bRBVsRK3B1ZxKOLtK1XBY3Ehi\nxIOcP5CJxT2IU514TkGXcqgrrzH40CAw7JA7yxNKuZkuDEhOLuG8miOydZHpzhmBN2J8tFvkeStI\nwycTTkcYnk1YWO/Qa6mEXQ3e+/6zx47PvMSF8AZOTCNnTjlUIoyMFmJUYHdnwOs/8xX+ovUIfazj\nUeqYvgHS/pjgdZm0pXOSr+GSc8QyZfQzhaBPYdxJI+iPKYbWmZhzqjHITRtY3TCJxjnt6ZyFxCrH\nlWOe1F1c3OwzKkqcCUeMrSHhSQPDmOJgM8gblPMSbaGP7FWwjtMMIxHkfYv+zSVCxS6F3b8g8lyS\nxamPw8UU/dNTlv0WpdoAIbiCt7mK/MltEpk4ffcExZ0kegBTsUMPGCQEEiOHmndK0gjSDI1It0QS\nowCxSRKxpOFFJhcT+IuPnjXGn71wjYcHn5K5tEin+hQ5GuHahSCSd4Z45x6eVITj2lWiSyKnPomV\nhRZmd4K9KhPwrOO+5sZnjTm/72eY9XJaq3FBPgSjj+NZIhEWSPdz0MmjTIL0Qj5uDKuUzB6ODpob\nSNZIzbeRT8fErySY3iqQ37xAXRIIuQRm3QTFVpnr2gsMWx1Ivs6BVWIlE2J38Jgtw8VRs00h1CKb\nzzBymewdvc+4ofDlf/77xA9+iNS9zSNNRn3Sgnsfc9Su0vn7t3jJX6F57Sq9xwqaPqAT8fFcXGQ6\n00mls1Stc8ofPsYzbzBR53z3h88a45+6+svMUufosp9i6ZhMqElgkqGlyCyNBoRcCZKXXfiaCqGr\nETqf9jC0AItrCWZCl3GowXOdJPXhDpVakL5XIFYoYSQSBLUpE1vH6xWZDH2IkyQJXxVrOmVRzDF1\nYpRcCsmKxjAZYxhosapFmYUMIsUejtIkatgcx4fMByM4U5ECfuRWi6qVIGP3MR0ZKzbClAK0vS5S\ncpjerE6kI7KYUXHEAhP3hGh0i9FBmYSWIr7s4qB/zHbuCoeaQFyN0EvIZNoblPU+ctegJWSZCgq+\niIv50nVcHS8f3fsev/1XQXHwO//TN7/xxuoa7blMt+NGKDvksj4qYQPfyRw5kkahyVm0jpI28AUW\nmI/HNGdB/AdnVJdyyBcsEsx5aJ7SNPK4BR/GfoB5c4hnbYlP9m5h5xZZUDL4HYWS5SBerSEFHfLi\nGO/DBwx9bUKZKEPToXxhgml3me0JJNRV+l6D2AxaLKOPhxQePyHnCUAqxPfv7rB8fc7Hjz4hrUtE\nX7hKz3YYeEQW17Zx0kku9yKosTJt2WFZjXPqL9Lr5Vk019H9Rc5KH/Kq4+XxJzPWCkVCOQejI2LF\njzHEALnACqfCGNxx3v/hM9/Rtc//FGtDifvtIU44SbjspRNM4OOQUTdJJNFGafQwpxrexBFSXMOR\nFSLuCbFJCOl2n9R1EDWb5Xaap7E+QyuBy/FzPNxhIxZiI7yB1QfRdZuZX8Hni9I7HxFxX2Ae8WAK\nJSaBCKm9LvGFKtN5inPLJBR2sTBTCATqpMoyA+EB1z83RStluHNqcuXNBOWPJrTqTxG6JsHwJvbg\nBMGJYojnCKU5q2Uf3iU34tmM+Z8eY/zLIOnzPPWGG3V6giAuMezB0HXC1vIyWqvHFU+aWu+A5prM\njfB1jq0W+74BWuQKH3/3uwAsvLzC+InJRtjkQFcJTse4xwmuZmfMMpcZN6b88z/9NqlFkUeHHdr7\nx8zbByyICwiqhJqO4Wq5SNaGFNoz9KBMfRTBOj5EX3K4/NyEcVXiwUTEP24jWjUmgT6Pbn/CccBP\n1krTcM1xGQKj/gEhaY1B74z8KEzIrBLMrvK48iM2Qq9SuKvSCrmZNh0G3SPez++j5A103SZy3Yd6\nsE6Wp1RdLxL3dOj26mxqGZ62BJrjEZPGGZM7GuHkmJQ/gU8NEf38Arq+T+MwjnxZQj+/Q3ttCW/O\ngy07zAp97o4q6EKYtYurvPOdZ4qDX774k5SvNbHtAdv6Ap7ogNqkwtBxk6g0aSl93N0G/abMC6rC\nKHOVBW+HeW1MwVJwZ0IUTuuI+w6zyCaUTujFk9jTMv7alHFWRmtWcPdmBNQcZ94jbkoxLHGd5JqP\njr/KcmmEcjLGFZVRzByJV3wM3CHE2pRha0x12EBgykbmc+Q7T1lXHIRUnNTEz/K2i+lhn0lH5KhZ\noCuOOX/7HRxjyKtf/+vYn7Q4PCkSch5RPNY58rfwT3u0nGVefnHIfDbk/NYBDi30Uy+a2qARlmif\naOSCElN5hL7gRx270A0/7/7gWaOyffM1RmE3m84qH9Z7pIwqqUmMUWRKvD+m57jwPgkxX5/SFMME\nzhYZbITpl++AmGVa9xFabxNtJ5C6ixwLIZZHBlZphH1tCX2yxzCwQKIAvbiKvRogW4gzrwuMIypC\nCDqjObNaASGusSZ7cY0jVIJz+o7GRjKDGOiix2S0qQtnlCAYqhHvTCi0C6jntxhdiZFTrlOWSqS9\nQZRShb6xxfLEQ18esiluE7QPkTwBWpLFDXK8TxvFXsAZpFjrDTnAzeVkjo87PyI3zTFTx+jLEg92\npwwvVgmcFqhJKu998iMAvvKLF9CK63R9FoFECk/5FNEJUs0X8IoqbaFLaJjHNH14N+9Rb8XQmzqm\n28NW/ArBZoqD3RHzN2LIg7eJS0v0Uy4mvk3M/j6RZpCRr8fOKI+wd4aaEmnnVSo5m/jAoXbeJ6BF\n8Xm9hNIzWk6QTmLKULNwBuecdw/Y23cYzgv0GyeENr/ASDhC7fiZBGwilTzW1QXKe5+SNLaoZLuY\nOw8R4jdYyyYo2XeIZAbMjQQbao5ZzuDkcELf2OVS8hIdr4Lw7bep5lTWViOUdvZptCx2KiH2Godc\nsnsE/9qr9D0vIXHIO9/bBeCFH3uJiL2Aocl4gnFilQ6FpE6sUKHY9WN6inQtP/2ERqKh4bR7xNU4\nM+mM0JlNZCmKZLYZV5J4AyKG2Gaei2DlQ4TLDiFCDFe99JsVMnoUf06nMunSmxSZZmIknj5lLEWJ\nmF4iigc55zDfdXPSG+J4PUwHNonaIi3RwHZXGZdChFcTNDxDJL8XT7eE1ljjPNVitaRypDVJDaL0\nwyOkQZVC0U1KmqCPwtQDLsZOgdGjfZyayekkS+CSgK9pYht+BvV9srUR/g0Pg+Ix42SYWCpCQAji\ndUZ8cPcjvv73/gqEqD/8x7/7jSs315iaXVaCbk7DJoHhAJ/gw4ypqO0RFVyuPwAAIABJREFU5qJK\n/s8+QVgKsFpqon/upwkUzynkUrgzbs7v7TBbkFgcKSx5t1i6OuI8XiUpLOGqFMhdivPJ22+x9jcu\n0idMqGmxNy9inNu46gn86wrpwFWUeoxAtocj1hlLE1K1GY0XTDK30pxOLZJVk8ybQUIjm8NRgM7E\nxN/zMZ2pSIFNlpav0jKbhMwwsbmIE8uS7NRpi00mhSY1Kc3pW9+BQIRaeYJTa9NamaOLMoOL11ne\nWmD9f/gvOP2NR7RiWQblNvGBwY71kFzI4VJ/h3/x4bMXxxd/7efQKxUmQR1vNslCx2Hiq9LwRlCH\nZYQe9AJFjIibhHdCTzPpLwZo6zOsmcblZY3AkcZcLtLzJ4gvr9NsgkeqE0uGCF1fYP+DBi9+YUb3\n3CGszsk3LOxRlOHGjNfTK8i7OmNlQvozEifnF4k8qLHyxhqjpsmR0SQRmlGzDOJBDfNohaX/+gsY\ngzyHjwrEV/pUJiquTJxG4xx/yUfZjHEYVHHvjMnqPio+i1Z/Rr9axPCHUTunNAoSYngRzZvA8t3h\nztMB05MH4PjQLnbZ+URh99Yely8v0CnOCa8vUH67x6Mn7wHw+a/9Ml69wpNBhqFUZVx3WHN7ILhG\nvKZiLfSIpa+SiNQJmF7MpSA9n0ZzrqLRI90dU/I0sEMTlKFGVHDR2xqgeC6yZBi88+13SG+u0Wy1\nGOLHFRuzenWJC1tfRN2ro3mLFGQVvW1wJFqYwROuaRlyWhp30qH41MeFLZvAahTPG34aH/6AnR/d\nJfHyFurlF+l+8Ih4uky648at2ZTKDZoJP9uBFOlLqxTPylRHVaKWj8B0RNc7wgqp6NaA+toFxscm\n0yOR+dSLuRIk5EoTr05RekDapFjrs+W9wYLc5bRV484PngGrX730WUTP88y0AYlAkqFgIe33WJg7\n9G9ssaop1AdNgj4XvtEGQw3kgoxPm6JMUrQzCvGum9SFq5R6J+hSEKVcxC0v0ve4ScUFHhdyFPpj\nlJcU/PE44bDKKGRyaj0lbVxivHmBoLuFuuJnTIPOYMy4OcXwH9CtKKQCG7j7U+ZhF+t6AHd4jUu6\nypOEn//xN/4J68/dZOgcUJ86CE+rRBIvczWoohYCtJ/sM3IO8d0R0SsrXFqqIB66SM8NjKIXPBU+\nenRIMOtmnixgmevExkOiyTm6HKA7hfEsiyCNCG4nePtb/wqAhVeCxBcnmIEBMdtHzTUjMshTWnuZ\ndm+E/s7H7EYd+u4phjRBvx4hoUY5O6yyuSyg2Aryvoy9LnLugqWxyZn3GNEOMfCFqeXGWMMTBMVi\nPpdoPj5kZWmMM3SQBINU1E+jNKRrVVHTWZTkiB3RS8w+JFZeY2QEyAga80CQZiXP8kaUaaeFWRky\nzoVJbW+SNKC1U8CnPUd404fQamP3GxzbAp6lIv2Enw4yj/sPSF3yMDh3iDl9WvIMt2tIM6ziP7bo\nbx2Se7JBTVVJaXMUTxvdH8LXrdOfXeaRvcPurWeeqJ985bOUVwVynRGZMwGPUkLpdRAmJv3xEL+V\nRh66UJfq1HUv4v4CxmYLVYijNz08qO3Q0jREvYo6dROIi3Q/niPFy7hkE6HV5VG1gEeQCfjWCKwo\ntGufoD9+SPiSm6a/h9hr4sqmqP3oLZIrERzTz/HDb/HGcyaNDzJs15t4ZZsb6y8ya52zFE3Ta5s4\n4owDY8h6xGE6dhHVZhQnDbY0PzVHYhTTCZ99wJPRIj7bJDxaI3rZR8tKs7Syhl09YxJMkrnpJbao\ncvRkQPKjW3zH+iyh3/8V5n/9A4yDAOOn32Wa7uJV1vnBn/9bVvbLr1CSLMJWl9zURTfXJjrLo2xE\nCSSCxDKXcMwZNkM6ig9vbMZevUFYn6DIU6R+h0YljZg4IeILkR4bCA0RjTO0TR/GbIzZm7I8znEQ\n2yFZitIeD5A/6TIpefEFEvQ2upStKLVRnfq+iZNymG37yT4OMsoFyN10kNI+isc1ou4NymUTT8sh\nGOhSDy3SWD4jEM5yPBoQHzfJpDWqYp98fsLFJYHTth93sEio5yEZN/n6P/6f2fv8r/Jp4dvU8xWu\nXFpB7DQJ+RxcyQBV240SzzAPWfRHEoOAQn7QYvfuDl//7b8CYPk/+v3f+8ab/8Fn6czXCcZ6iB6B\nx3e7ZD1zcK3Qms+Y56NsJ1aZX7hAv3fI6MEhM2+EWW3IqGszbR3gXXiV7JLFIBHClldplhtcXwwx\n8YR42smzIG7xU1/ZQjiv0ZxVqTydMZmm0ZQSqrqMMNpHd+kEMh3c7iThiYXtV5B6OebSjKA65e5t\nBU9kRGQpyLTrQy30sLMtIgsT5rEAm2Mfw1GbJ7UqMf8E9URGkg0aQ4vjDT99Q+Olv7OM0OijhF/D\nG23S3F9FcWVotN2MNpcYXzrHKAt43HNGMY167hXeXLvIamSNW3/yx3xQfGYs/4Uvvkz3vEPygkym\nIrJjayCrcK6irKZotptUD7YIu/uonihCeJloIkDhB3VuF0Ys2ue0J/sMLgaRQyPGPolBo0P34Q6e\nWpbYOEt004uxNyafqTN2u5g/CiOLVaaVY/6Pb98icK1OcTLm5EEI1+EHDBbdDI57eEsW8WCF7/xv\nb/HcwgtYm4sMPUOM771PP1nEpQdpG20ePWjg3oiyODNoupaYrVYZtOckL1bRsekkiygtP8lkFkue\n4z5qMIr12RBr9Ec6LrfCluImNn8Ok32SQojQWZH6jVeImz4+adxB20mx8bOf5fvf+T8BcM3qlB/O\nkZeD9O/3mGwKTHUPhk9BER8ycifwcZu+N83Y72GW36GfHxB1ovjSUbyRIZUjCzNkY0+HWLEpvcoS\nGVeVvXkL1f8mfn1EeBaiPtslLkpUZgsEKhod5RS1lCVc7+Na6bIsLxIeyjRCfSYpiUArzVF8QP7u\nKUZplY2LKT456BL+/Otcz0aQPj1kc1sgNcxyP7ZARYugTUzSpyKlaIxkt8JDY49YfpnO+oBqVmBl\nYHNj60vMGDC0LOZFH/IXUiSGVQoth8W5wGR2hmcYppSMUDr3Ed48JuzaYOay+eDfvAfAF7dfZJIM\nI8k23XCCZfcMR+1TdcJ4gh66RReaP8qC5cMY+IkftOnaZcLGhFoWBrUurothLK1GTrYYFiMcnJUw\n0l6GTRFGMr7cjAV3hLa7jf9AohbSWXILZAcZ1EWbpO1gj+Y02l12zvdJhFzIgQJnRZuV0Rm9GHj8\nXqTyIafvnqOZGlY/iNmS+PIXLiGMB0jjNB9Xh6xsJMjM+kheP83JiI8UgXQ4hWiJiBkJseFH6ztY\n9TzdoEMvrBBVl0lkImQDXnQiBFMDXJ0gQ3eEK1GZZkMjuHSF4v/+hNuHfwnAV/6TX2VabXJl43nq\nZyL2ZJ/qosR2p0200KYSWyYszZBfDeNfXsb8oI2U8bMyalIy/PgmNsFgjkRe4cSwiWRKVJtNjEwQ\nUfdRlJpcnIwID2JYgTBLjSSC6aK6toBvpEFwTrXt5uKKzPlVL4Pqfex2hYh6nWrmBNfSMudxle5H\n91m6qtDq2EwnMxqraaaPT+hOQ0yUNnYhhrLkQzof0pj0qM9F1qMysVgQn17g6eAx9mCEv+5C+Gtf\nobBbYq1dxjMVUb1JenKT2dAm4Y1jNieYniJW4wrZ9gEucYO2PWAzZvH//eDZ5uDmF34S2/JRs8qU\nyzap6CLdapBy55z0hRBOMICzWEB3L3LwSCO57uK07GZd3SdrZHnn9DaxnIrLspBHq0RnPoLPh3Ep\nd/F8mGSfIAubOhGvjNgskexdxBV4jvPUGufDAAl3jm1pgf3pOX4hSfvGBZz3SojjdZwfCdxwr3Hn\nWoh5wmTveMB4nCIb7hDw+VFWwTw2kTwyjEpUNIfrLpE9J8WWc0KtWGJWa/P6z34BRZaZJMI0ujHm\no6fI3i6h9W2krk1PizC+P8b3gkZ6dJm//y//Dgd/c0D43i4oeb7w4s+hn8bIub7Pn/75DgAvvvB5\nFloOnpiCKoj4nCwltYpUHDP2rOLeP6OYcrFar6MqOVruMorTJ5rcZlp2GDldUpJBc6yhRQTOYkHM\nbgt3ws9MlilOQyQpUqp38C0uM9HOuZ55hXu96wy23Kx6F2nYLsJ+jXi3R2/bReJIRMkPqEoy8cYR\nt4YKS2oSLXSNgXqOO6WSUKbYc5VMckrKu8Lh7RkpuU2gmaXg9jFSwe6ZWIYXMzhhLK4hGWWmsxV+\n/G9e5oWv+bmxmeTSS8+zWqhTawnMpTG2lub4uMrAOyZRiKEpJgsxjfl5i08f3eO3fvvr/+6HqN/9\nnd//xkuXFxiGRLzdOSenBt4rCUbNBu7pnIEtEnfPMZQO9mmM1YiLcaqH+uknxLMJ2p0Gs/Q1vK0q\np6M8nsJT+m2b7jv3SGz46dddJBpdapeqvPoTP8WtLz5l19pit9ohHhapDxymIYWycZnUSpC64iX7\n3BqFvQqNhsmF5RDdjRoh0+CefMj0bpeHey7iWYuEN8JtoU4ytY0SypF58QaH5z3mK+fET+Ce9w47\np232tQhKwoXgKnLBkNDmNsldiW7cje/QzfkrQYxamE23lz+rPGFedji0JYSigdEyEIcuKk8yrP/y\n3+JPv/WHALz+izfZcxLE5ZdoDjXikxIRLYx/UOKl2E0e1Q5wX62jxD/L+pUY3Pwqp++2iGVkbCGE\nq2uw+VKE1bnCfUkmVNxjLDok1Zexl5/ijGLUnXtocYfoyQIuIU8/mWA87tFfzPFizMukMqd0p86F\nS1E+LtdY8dyk5PKSb9aZ+gVefPNr1GIVTvYKSO4+eAp0Zy5iUw9ifsiVay+we95H6aSItpuY0zi5\npEhT01C6PUKSjrgsk0tVGE5nGEKWhFtktvAmdsSD5wCeJob0FA/xWZkX1q9SbA2Jumactl1Iok4q\n4ua495gHf/kM9P0Hv/8r9I4iXH3tIkfv/ohARuClXoRObojk2mDaz1OszFGrMbrNE5Kp53HfeA5F\nNTCOS0ylEJKQJ6Jt4CVLVNIZLs6JFIpEzTW2X7jEeXSA/aBFMPMSRqPMZDomlPWzkgZj3kPfHNJ9\nMiIsJ2jGPSRcEdqdIfaOiddjErdizBbavPtH3+LNtTiJjRep/+CEvFwnUQliOi0uX/FQVGd4uzqx\nVZV59ZC7VphA+mViPhWj/YBZXeH8cYNKu0R0MuVY9yCOWvRLdVS7RsQDkYaHXcmh7jtB2bWwzdvE\nZhFyc5Xpl17m+3/0fwGwunhOwJ+k63eT7DcYnIbpKn0ahweUOMb2Tsl0DcYdP90NE4H7mN4QszB0\nhiMub8m4xgq+kka+3KeW8HL9x1cZd89Rq2UGTgXRp+APDZGOA9iuENMlgXo+Tj9gI3XGWGaQttmg\n1Zzg/9xVrH4AZ6Dx+NM/J3Pjy6iT6/gqeea1AT8z6VBwd3BFU7SHY+aBIZP5AL/mZkN1sJ+6kC8k\nOeyMGDpFcg2HeUPDrVgshU1y+ae0FpYQl04ZuwJ4BY1+ZMbZcYfT0xbq0oDTqpfTXgHh0yPqdPHK\nXr64e5ftJ9/ln1UrAHzmZ3+N/mkLNeCwGAjjK00I+psIbigfhwl+rk1MusZh7BKKvs8n791hmTAX\nX3sdvTrBszMl0LF5cMVPtNSGoM64kKEj67iTYcb7dYTMNlrkBP/ZgLbbjWu5w+xWk3qswnHARWyp\nilycYUh1Zsth0p0rFGo9BnaE9KiL3C0xc8ep6wH+19/6b7mWWELwZHnuOTfxVSjcKRBfkjCSOVx2\nGyswJjrRsLMKhuSl8oFGp+Mmdm3Eql/nUaHC8laCzviUgSET6gUwOm7KWh7LG2WuHHDZ9zWM6m16\n/ij3BZFkxaTeb/PB/QcAXPuxXyLby+MLbmLFvWSCNp6YjnviMMqFqTwY4T9LcbTd5EJ5hV5myJff\n+BxH77/NIFjk4leep/ykRg4bOTTCUmRCZpD+JxEmF3r0N1We9yS4VxWg4VC+WWXoLqA1PXQ0LwuR\nEc1CjUE9gH5hmUilRHnUJ/fqZdRehvu+IomhH6HUJf7yNinVoN8JkrwJtw/v0+vc4ZWfeZFm5YCp\nPKGbuYKY8tMOiHg+8wKOx6JZGTA23fSjJSb5GcX6KbkXJaZ5EUOfs+EMmfSnxMzr4BzyF1cypMMX\n8c/GbP9Ekn/yR3+IstQnaoz47lvPzu1ry7+GYZkYxQbCWhD9qgvpQZt25CKGC0LWDMHVwCV7MG9A\n53yMnprjPzNxAgPGuQz+Th+3kEMV6/REF2thhelpm27Lh+KziZQdZjEVZ7ZP3gkSjQ351+98l621\nIDWfQDgypuyqozbi2CrYCZ15yoNmBkhcG2MVdBoTF97eAXZ2SsYUcUtlakTxaik6eQvPrI6sq9ST\nI3rdXa5YWRKCgdczYrAfJbB7D/21q+S7BzzeqZFK2kS6DmthqJ3q9EZJynKQVO8EOZzB7BQQ3V4G\n7TLD2RzTibHz8EN+8+t/BTxR3/yD3/nGyiuXUTU3tsdCWA/QLMwJu6MIypzhjz5C28oRRqfnOcBO\nBtGCMfRrEr1ZkTvvHDBU3VSMLpO9Fm5PjLnlpbkkkIh8mfUXY5wILpSTKoevz3jq6rNWPiOUk4m4\nU2iDAGLGYT6r0T/v89a7Pdq2Q9xoMha9SDGNetNgLIEgT7n2n36RmFUkpAxQtvNMHp5jVfyEZnOO\nHx1wmrhF79ZTjK0c08k6snKN+GfaJKwFUr0nSJpEdyfA659bw1eXEKUo0qjHVqKENW6w+60/RVzr\n4FGDmP0og8ZT8sMR+4MYOd+M7333WaPyxrU3idQTWMEho9JbKOEL3JmUSMkmn1Z2iW+uMTnokaeA\n/kDkH/7qf89riylq7RFep8iX/psXqcwe8faeiP/pMUbFJmTl6HZ+yP/P3Xs2W5ae53nXWnuvvdZe\nO+d88ulz+nTunp7uGcwMZsAZJhAQwMwiZLKKKlG0i6IoQhZdVslQFWXZJimZMlnyF1ussiSKAAgi\nkMAgEZiZntATOp4+Oe59ds55r+wPrV+Bv/B+et7nvp7rvuhZRBD8GH6LSjPFWNhkOljguL7J9Xge\nczZjMXYVUh2snEz0wgu8dC7KPVUmm7bpS4dUfMtYwwlSWSSiSiQSWUIzhb5bY9LoMgnOkXDqaKpE\ntjKknJhi2fNUAltseF/DEmW83SKJaohBPom/FyG6YzG7OY957OO0d59RqMsV1U/SOEAKyOydSDTC\nMrWTPKbyEcp0jaot8mNzLb76jadA/s/FLrPfe4jLNPDERG6urqKEfAzGCfTdY9xhHV87jrEyYVkO\n4jqTWPQn8NXBcZ4wAxpCHa0PmpCkOh6xEnEYnkIvXuVhf4y5GUSJlUjMokTVNOm+QSPWRGSdRGaO\nUVmmrh/h885gMY46mpC2HHrXzmO76niNAcSuUMitILmjHI3qNI4OcM0MCoMQ3uAGW3sOYeeQgMfk\nS+/9gFguSryUwZwMcdkObafLuWdjRE/CXHj1FpUTiaA+xJpU+bEbL3C/KpIwEwwXakR3jtBy84Q6\ncfLBINvJGPZUwtAf8cOvPAXL/9WNNZbPhmwdBukdT8mFTZojH+VJgueeX8bzSKY16zCMeYnJHXrB\ni0SqbsJBFW88wnGvSuW9I7yGwClVvPkE9eaEYLtLRF2gFR4gNBYZ3PuI5vQYPSlwM18g4hoych5g\nGSu0nG2CHhVxwc2Fug8t4SLiv8GiN4KaCDDa6RLzSxR8XcbhHuXITzJoa3jlGd2OhtGRmV2z8U8d\nEj4ZQ6/jui8ydxSh6RgoMYdxVuVkVGGPBQJuA2EqoUlzjH0qDgHGBQtrp0XDDLDm9iI90TGzXnLe\nVTJqiDPbwZRFvvL46bVUYHmJrDFEcfnxv/8BeuQ8pcEZZv4GC6MDPI8ucM9VI3bRTfR0hEeP8Mwn\nYjz46t8xjabQvG2+9Ob/x6WFFxhcC4PUZWAaLE4GONkc/fldvNsp0r4+1dEikbFI2R+gsLZAcSiy\nOGphdzs0opfwFRLknwQ5C5g43iG3KmmOslXC565ie6sETo55+ROfpvuwRuxinunpFFXxU275CV5Y\npNM8RvGlcJ0VOavF8MUM5FWVr5Y9/ObPZ8metqk9EQjGP4Fr3ODgL76DGjlP7XKMYazNUmSZUKeO\nvCAj9rs8SRsIZoSo7BCP9tiNLnP/7/4bWP7Jl/BGHBwjgxNWiHs92DUXLjOK2JeIL2uIyinD3YuU\n1ty4ok3e/Rdf4Oiv77Awl0D7SoXXv/hF8nOfxVZFLt2YZ0f3Y6TfJvxhF9/ceXpBlXjGhbG6RvOt\nKvFzHyfTbCMKAdQ+iMEMvliVViDDpGgTjKlUq1WETpOYWcHxR0HM4Dy4g5hT+Njtc7z+pEK4c4ph\nJnAbN9j8z3soORO3E8WbXYBmkfjZDgFTYeG6Qy0+wmjGaY5slNQRCwfLCHaIgCgz7TSYhAcMM4tk\nrAH1+01GSwEqb+0TEr/NxQUB8eCQktXkgx8cA/BS/jqumxECfhUjNoc7N+X07AT3zEabTqi1ungj\nIrt6mrnjDrYeYhhaoJeIM/yoQXocYmKPKBbSeGoh5kcOZsvNVJgR1P105wz0yYz81TzGdoOxIjMs\nCyxeXyY/89CtBLCUA1YOI2jrBsP+KcbIT7h8hLeh4dFlkqsy3sEEz7KXht6jZD5iaipIBx6elMt4\nrobxCK2nqE3OZjKa4q0MkVaD9L0JjN4x1/73X6YxzODZfhc75SEru5ECEuWTKYn0AkMGRIwhrZCP\nBa+HmPsCor9L266Q1nRcEZv3337IP/1nPwJx3r/9N//uC5cXPk1e7SClBPyHCyRcbnqxMVFbIrTi\nQuhOkXSRsRDhtCLR7zwmV1xiq+9jLW+Qy8rEi16UmZvQoQc92kQqLyGpRzzeO6Pba9JPpugHXGQ6\nEaR0jpjUIR3OU9YsViIJFLnPfGqBlXMqt6+8SvOvihxo28yJQ6xmgvpI4HxWobfdpSP4CS6ZRBIJ\nOiE/1k1wbBN97pjlToDkxTzDyRyBCxK26WKjpxFabxHeyyPYfk7j5yl95y76pWcYODvM+gP02YDq\nN4tc/ekrPJ9fpbWYImQaZP0eFDQuXqjy4M++zpPWU4Dwp2/+FiVPlYuhHmdHEyaJVQKV92jGkoQU\nm+p+m7B8ieQowb36fV759VuEJwHWb4358M2HPPraNqK2RGbgpnJOZ2IHSEke5EAB9zSJQZFD001A\n7aAoEo1kg43IeaSGF1VocWLukXQ5SOoS9XIXT3eEMruD5jXojhO8GrQ5tgzGQ42rK6uMxAOmwQjd\n0Yz2ThdraYxqCUT9Jo1knHElSXjFBI+KIrlYf9YPGwlK7kOEWphHH/RZSl2g5pjovRHyiUBSFNAS\nx9Q/ipN57jbOdgN9r0E4YnJv30Xs0oA5bJQTjb99/20AbodlXvvX/4i9OyVCyRuY9QF+u09p6EM2\nVOSwSW8QQbYCRF1zFPU6333rGywkg9S8SWZnu/iZoGzMkWkVcUkapieHK27QrIaJt0Xci9s0ZzGS\ncplxu4XbM8Fw2ciDJF/72v+NrF5BlzNsDZrM9TOcajZtHHyiC2XUo9s/pSmuEhg+pvaoxOymSDjo\nITvMo9xIoc33iF27imfcQrIFzhcuMbg/5uB2lwwmcc8SZd8hkdKUeiLNrXMZyttdQht+nLSL5uYA\nty+AS9dRiyJGxEWv0eYgJTNbhiUmFHdmLGXhb7/+dIP3G+l/QGTlFuoSuEdbtGZZ4rfP4xceg/sS\noZUae40uP/nSi5yWuxQCKkq8jvfydR7euYsvGcXviLhTBt1qHyV4gW6ujrB2kzklwsBs4h7OMNa8\nuDNxNDVM/8Fd7h3pZEwJp/oRZ6MgtneG1lWIdCUSVo1xKIkw69Opm0wSAfpNCSGT4mSkM3J5CQge\nFg+OyMRFanIHXEnCSoLy6S5JU6XrbCH5ukwbFcKGhNfR6IgpBrMzlCUJr3/K1BPDL0v03TOUap/k\n5Q3WyKAO6ngX4lhFh5dWQ1jnzrFxeoarL/OfN5++283MJZbnRqRMD2Wfn0TgBFV/nsPGAb70FQ6t\nPituC/9BjU11haX5OmZnwmaty8AXJR1/FW9PohKaIrtsEDo8v3sJcVTnND5P0O3CqQskHYm+v0tq\n1ETTRBxrk743jdTrsZP34c4MMRsNerMouUaNVHsIJNAMm6bHpLszZdacMln3oa5LhA+TmA9DxE6b\npJ6Z0TUMgntnuPwyVkAjNZ0SMVUs703q0w7Bnovjt7/H4i/+Aoe1H7CaeJbMSp5t9wnTrQlrgSET\nbUJAtpk+jjC4WMBsN2iVpuSUGZVJk3C4ypvfeVqXc2ntCtqyh8mBgDLr0JnqPJGPmHM7qD43pr3F\n4CTH3FIVTzDK8o3foB/xcuXnXiKYX2P5x5exb/0E35E+4obrs3QH+0SabyFYY568fo/0z/1PZHYc\nqo6M81GI1VfC6B968TsDjqpv418+T93qEdV0bB3m/QpbtR8QTojIyRVO4+dRQyEWFhxClzbo2x2+\n//98jxd/LYxnuIbHlAnETGq193FPRaIvXMD64tdRMlmini7DiEHj/QTezIC5psBp+y52zYVfOeNb\nX/1fOf+z82xH5rjlvILnvR/wRuyEZ90r2IYH63KX4GmYYWCRTG4ZNrv88MOncV7kV9N8+qdWePRu\nhUPl+1AqI47/jqTnKkPNwROXMJteLP8QYZCkIPYwVB/q6UdoiwUCbpuEfIFmZ0Au+girNmKW87Ho\nm+Hg0GqHkIICbcugqDVJKFk63RGF6xaqmqIun9IvD5HDHgzGqPUEfWEP18BN+qVlygMB6bjF3iRL\nVMqR9nfIRVXcbREtsYK/36XVHRAfxjFWolhPNhnPgpieBNZkijqtsL3/mGB4Ha2zRSEyQ3EvcLQP\n5TenZC8tY/UPSO6NiBki0ZZMIx7D0/qAs5LJ/Nocwc4ytUaVBzt7/N7v/c6PwBD1x3/4hU++tsGQ\nAgdVB/lKGKtpMnC5CJ4c0e53+al//gr3T2okIx0WYhHszhwzj05wnpySAAAgAElEQVRyo4czmkc+\nytJ4PsnzCTd2eI6+Hce65eN04qHwictMyhqOrJCdukgMbJzhDv3pMqFdnRO5yGTbIJ9ZxCpLuGoj\nHn31DaLzEj5boiH6GCVdJCmw16iiZwusagq7w1OUqZv9kyG23qF3OGAjILC75ZCcZLFKI1YUlaD/\nXcx5N77FMPbdLm939tiQLvHooxav/It/QKCt0W3fZTKd8c5XvsxyaMoPdpuMOmGunjfw5EKsT6H3\n3gm5iwrf//AeAJ/7yV+lOHmMoF7mwV6ZbMKP0gvTS0hMHlW58toletoAj2QwP47g9buo9tx4iyPM\nlQLX8j7snkTAruKbmCxFBGKRBLYkUg02OBy6iSUHLLDAUSVKMp3FKbtp+RQqlwSu6j56gRyjzftc\nXG0zLCjkvFFqRwJXn40xUJqM7QM+thFlf6bT3IniK+4QXLyMGHJQmz4e1aMkJg7xpQiHdpN0s8/M\ntcjU1eft4j6dqsXh+wsUx21euZxgdmmK/FhECe0iXB1jDwWYhKknE9Q795gNJYKFEO+8/4QXP75E\ntNuCQy/uGyqvf/MpeDk5LmGuPk/le8d8aO/x3DNJDoZ+MsExR5k23o9kjPNlyoZIbNakKObJpzzU\nxmGipbdZvJhjR46Dz00ykuZxTKG3I3GihkmOHtF1x2gfbBGfu0zKlcC7kaCxnMWjxmmVTgnc/Bix\nuQCyLTIfiVKP64hnEsspH4odxiUO2XI5mI6LqBDmrvs9Xph/ga9/ZZODyRkrEwchWWJUHPPG4+8g\nDoO0/DHCt0bEW34kv8hmDUTZID4MU9uqsLicxeqMONRlrJqNljzC9KSwwwcIVgI0k2T0AivNPZT5\nJJLsZj3rxu27yFf/6ksAvPj8z9L+Vomd1JD46k16mhuPu8/+UOTigky7lMSYD1PrDckJJt6hSdWR\nEBCpihZO/wxvKMF4pLAx52Uip0hME6jdKaPZWxRLY5KeCOVohqg4T9o14Ltv9FjPJeltZCn1DORp\nioveOIR9TMojTndPWIk2CXizRAd1jMaEZOiQ/R2V/I1LTBIW4l6N59aWKX/r27gzORp2n6DkpxbL\nEhearMylqbkMnr/xAkZ2yCxzjvDZIa7FHBe8BuZ0BTk05NHdGfFgg0q3z0Sw8SWqdC03SVXkLDBj\n/84xxyk3K++VuO6e8kdPnioOXvrUf0fEyuAtHeFdi1HZD2CszYhVTjFmXiKxGcfNIc7Uw+xGiJN3\nhtS8aZ4RwuhrCpvah6QXw7zzxR8gJQpotTLpYzdnnhi9lSF6Y0DIrFIT2+Ral5GiMpyWOWt6Of9C\nlPvCGUsfZMlfkAhafvB2sPYTeIIabsHDuGriz9mYSS8R7xy5wwYDJ4A5mHGwuYmuVBkaBoNqkkR8\nSDTvcOyE8bQ9nLmXiM+abHV/SLTdo9EK4XfiZIplhMKIyaGP9u4xx6MuPu8IbylF05DIhRY4kXQK\npog5U8BT4s53d/jbOwdMO20A/vnnfo+BXGYtPUBTJFpFDy/Nq5QmQaZim1q/RUpVcM8cTowc5cO/\nYFbtklvwUi+q3H88Q0k3SJ3P0RBD+Cp9fKaLQ6HD3MI6km+Bbd+YxcYhZ9kA5cEId3GH+KU4/ppB\n/OPzxJsTTExM/5SjPZuLmSha8wzDO8/kzfucW7XotUx232mRCulM1tfR3nuAT4S53AbDusHyuRB2\nQMNTV1i7doO7h/s0BmnGvSlV44ilmkR5weFyYo75cRZHtXh58RNsT77NmmsJj1dg+602kXwaR5lj\n+KxKpNilnTWINCXuOG8QuLDB2196WrD+j3/4x/h/q8tHRoPnCz4U242mfIDVS+EiyJJgIYYGTFsJ\nDGuH9q2LWILErNYk7LV4vGMiZooMRT/5tJt4dp1ELsek7FBJ1hl0gywlqtQHEZbaBnuTIpGIwnTm\nobPlxif4weXCGibpdXWWPBLZ+SUSgTg7LQGxIBMLBqkPihRLe/gSNvJuhLI+wxOQ2PKOiCViKEqU\nSauPUwjjdcZYpsrEPybdjBAPZBnlR7RqCv6ZgZNf4vh7P+DWc1mq/T7CzatMak2qUZWRz02//JBp\ndJnQjQUm9ya03UXWr67y/e9+h3/6+R8BJurf/OEffuHyixfRtzUKwoyA4uBYGqLmAk+C9E/42PvG\nPq5gEL2mc+7CVY7fK6KHVUL+FPppg6HL5lrMRDqZwx4rlF+YJ+hopNQaXWfK0vGEbFPF6zHxBA9I\nNFZx3Dbd9jYb12eclWwy9fuUho9ZUlLI60PMjIdE7gKpsYTlbVP16wxKC1j7DcxEklZDZ+qyCIkR\nYs6Qs3KZefs2SU3mjeOHPP/sOst/b51K6zG1LQ/d3hJ5O4q4dUxiNY+yYnH5Uxsor36PYkhnXJon\nHvDyzK8/h8da5Zw8ouWysNsmDaGJMPdjWFmbH37rewAUXv1JJPOYmCSTkSf4NvyENYmY4ecgKxEa\n6Bx3TJT9Y4ZujVZ9RLZrcGbN6P3gI/r5OcJSE3lkUk/cJPx4l5NADMu7xsJphEkwTFQOsD3oEV7r\n4p02iHvrWHob5YMobtnG7w1xGpUxzRDhOigFCYYePOImg6MghcwGldmYiamwMW2hmQqv199hLb9O\n+tXnSAwrbJbu4/L6SWs7nCgdvKM++3/0hMTIi9AJEU3mSft07OoEe+Rhf1ahK6QJB/3cFw4IzOLE\ns32uHK4zjFXZ75xw4dXbtJt+QmUR+8KIhbzGl7/8NJb69L//f5nfOaBzZcDHEq8yroGaGdDY86E5\nBjXLZOGVH4cvlpks15kbRgmoAwLLInr8BTK1CCF/jVB7nkA4h6ov89ev7/NaJomcWMc36iFfvUVs\nZ8TpsoY8raGehqnujHjiKfKMKlDs6qiVNm41xO4H7zNaCaOMY8ixGuFBHPmxB2OtypoRxOqNMOKQ\nKURYUwJsawbRaBxnLHP5dpqqaBIpB+nck/EVVKadJIFxg1hxjLuwQkM9JqCv0ctqdLohRq5DVo4E\nGjkVb8lLwD3AK47wuQQeBYOca4g0FJu6VsD68IDvfvgDAP7+KyZbvhOG0QjZyBxmf8xOSCPgHlJv\n1hm6e/h2j1g0dLqjDHKjSsnKUKiPGSphKmKNVskg7REZxc7TkovMWg2myiH3H2vcWl+gLHlwdjYR\nozbTJxqx3Dyhi7d4Ww7wy1fWcE4rqJFDCrqHzQf7rEU1RncHHHtt1Lk41UdV5FGAJycVIuoCVjRO\nKgZjAbRCgt1BhcjuAEEOEy0kSKVX6BTrKLtDgsU9bpRy9Kcd3hmZbLgXCFgWDUvmpN4mtXDC8eGM\nRlggERRZSL1IoDWjrboYPhRwL+SY9nWeCC5q0V2+c3cXgIvnf4a+7yGZ0Dx93YVrFiYytnEurtDZ\n26JSCPCcGqer7jPWM3gHPSYbJr7WPP3sKasXb1Ha0tkr+BAmKtm6RCd2hA8/nsCYcl8nf+Ma1QcO\noewJD5sTgrEMvaCFayeGNYni+vgAJWwSjXtpNTSUUAS6M7qWQc1TR14OYh/0kM4PYO46cimG77zE\nqFIiuHyJTLpJZfkEjydGbbSIpzbA3TapClPiV9YY5Hy4dupoX/kGkTkf5z93g9Zxgla8zDX/Ei++\n6uO0ucb0Spb+ms1B241n/JBkcIbc73Hk9TK+8Eus/C+/yM5/+HMAfj57gXfvTXju1hV6P9zGSnSR\nvToD2lSfbCGFlgjPljFXIvCtLxG+cYHwJMa0LJPutfCrBjulKW7fGotWm0nYzbSks9I12d24Svvs\nlOiDL+IM4yx4LbyeAf0zH/akRrCWo5L2cfzlKmoizPwsRDVuYjw0aLoDbIT9hBd0HDlDOJomZk8p\niQIrxin+0JTHbRdmZMLVxVVGls1aNkl5Z4eKW2Rpw8bHAqmSQqMz4vpzK8wvC3Q/GDFcmKOtNBjO\nQuT2JcrBAc2wSE+3uOVfpN23UJ50mV2IkRmImK0O8/5VfJaXb3/9aQz6zR/7FZbSaVz9Kb2xi8H8\nAGtng6y5zsQeYxgzhIWbhOs1rIsRrIcVzkVNZqUcdiJE/vkV6jsiF8w2DSlKzLXH0dEpu7qBHIzj\ncgWpVMvMeRWGETeuQIRGq0OgHmSatYkUJsSLNWwN5l1QUy1Kvn3GZw7BcJN+54zBiYU4t4xtm/i1\nHHuhKeesZYrmEbbbgzywYDKiHVFxjAbDioGZllC1JPseN6VRH+/GHJbTotovs/uDHcIvZ/GKAbLn\nc6jv9KjlmqhtEZd/QDR1FcQzJg8m2IkmesrLyYMDNg8O+fzv/gjEef/+j//dF17K5InNL9Pzuhk9\n0ehIAULuMaVLQWqzCYlxlUm9irfp41AY0+nXkM7JeJQOetshIKpMHRV3uYGwVsEySzzaHrIYyRIe\n6fT9R/haAm1pTETMs+NvMXT1WctEMN+r40oOaTWDxPJxKrrIwO3B1XAIHm3TCfpwV5I49U3SsSzS\n2hlxaZ3v/+UX8abWuCpdYGy6mbt5FeHQhSdjYKnPEHL1ee97R0xHcbyjASG9hyekI/sMDosmrfAy\nyj885nvlOzgn4I3mCF8W+MxvfZ77G1uMMJDlPh3di6rYuAIBCvkqX/vLpx6Vn72ZwjeXx+zJyOke\nLnlArRZAzqVITaeIukzBjuJSFOZDOu6dKHr0jKVZkMbqlMSkS15aYCoMMM/GBJMvMAnlSLUmDLwt\npKBF+eEjBtMRk7MBC5l5ShTIR8KoXgHNbWIooJ/uIu+MMeM+Ku0zAvqAB3dtWBSYTBaI9UyCgS6j\ndoGh0OK68hLR/hYffLVLdOIn6gsTzqSx+ybCIEzq4iUu/KqHrNaj1HOxGBeQhD6eRZMT+YyYSyVw\n3oVuKXRjUzZS16nu+bAHJerjNFfzEfqdPovjGVNMBut+zoXi/Je/+CYAv/3yp6i47vDac5/hwLrP\nqGMz8PgoVtsoR3HqwTbayXsIywu0NYnYOE855zCqD1k2JjzxupnUThnv3aVz+xkq373DT11SOdnv\nUPvoS+RSSbSCj0Cnjxp1kdpvwGsvkRiCnHfjOszT9bvIbfgQ+i7c1iKLPEHsh2nlq5SMMGNzF7u7\nxBtffh9PQafzwCGVy2JvmeSCBiejBN6CSK/Xwq/Do/sfMXFSXMsmCES8bDagp0zwZT18+JffQou7\nSQxt6tRJ+uZpxgTcMZhSw+rYOE03zrxCuGwhescM435G79xlprZ5+/2nbM+ljZdpXHgZd/IGO80B\n+rzF9MwkHm3hxF0kdTdDTSWTlBgLJYJyAlc4hqTucT58DlckT8EtIK8bmPIybJ+QnxNxtCUy5zwE\nohLHEwdJyJNMj3nz9Qprt1IsrJsI2w/pjjeZ6hY90Yf/nQ7NhSQen81Q9dCTz/Bkr7O0fo6UXWHZ\n8RDOT6jLY8xsHvmghVRq0NTGKOtuJrZCKtfn8dDFOSGJb9lDTcpTGfgoaW3CYppZoIEeHBHO+nGf\ns+joSYb+AaGph3j8Iqbt5/HsiI2oRGEjwbQU51K2wK3L15j24vzNW08VB6G/93MkDh8SD0bJemdE\nRBExLmPaT5DEy7irHlSpxrlzQRpOHTvjp/bXe5xGzljLL7GWXWYlZVMIZlkYVQlGO6xfy/HE7xBJ\nTDiq6izKOdRgB2s2ZH5tlem+TOJaCM4+QnVblEcT8jGDA6cFOxKJ2YiakCcYDtIL67j0EOnla1TF\nLFJtk7Y/RDLRpyHluL0mU6JI+x0drSYQlLtkvC3Cszxa9iOM9Abf/NOv8drLAQy/m9XUx7G3y4ze\nnGLv1nG8AyYv/Ayh3/w4k1/fxuu6wmqyz0svyvTKNYJrYY63HQoXx9gfjnn0/addjZ/6hU9Tn9io\nRomzBxI3f+Uy7z7WGbSDaLEhSVFn0PUTaEzwps7z4N77xJ6BgdvElbKxB24ejSYk9Bz3xm8T0kdo\nGYeZ+2UyiRrBaYTxXJLTu3dwlp7BZ1oEOgKjWZh6/wm5wyYtqU9mIc+772whTXV8MRPfRQ+dzTah\nkIHXZWCrbtolg7MHf0bFW6F17RbPKg6n4zH96LOsvXqd3/zN/42bLzkEfT4O7otYZzp3HgwJvdxk\n8cjFw82v07Iy6B4X6WGC8VyX2SRJeBgi1A5juJZhSWTkFpgUa+jLCkqmS0W8QTBkUd6a8s47T71k\nwsm7XP0nOQTvEq5aEXGSwdHmmSSO0MYq9ZZK+6RFVgowKyTwVbeZ2QGaUTDVAM5EYuJvkNLCnJab\nCIMh5XGWxXSTmGuDVb1MSI5g5Az8kzB0y8wiedTMHFK8i3Gnhk+9gid4iEvPkFK7pIMXGWkDJMfG\n0wdfYZ7WuE4mFGdYCFEYmxhtm/XLOaab26QXvIj+DKIjMK4UkZIraFaJZX2MqRywWp3hV67SXYlg\nbiY5H5IZXIwymTZpH1jklmf4jlQMqYkxHmO0h3Q6ApYsE0pYTKfn6cY7HN7d5vO/+6NQ+/Inf/yF\neHqR9KJG6SBOs/eEuDcAqgd1bkirVqLdVJnzrRFMhAnrRzjNDOG5CN3TEWFUvtfZ51KkyL4UxGqd\nEj7141sNILS7dBDwJa8Sky22Nvc5+H6Hzt4TPJv72BdiPD4vc3kpgOKC954ckIlPSPo8FEdVwpJC\n1D0kZicwvBoeEbTaKu54n/7JlKWry0jFE+y588wf++gZIoavB9EEqq9PcFrGlhUKngjCQoJadcpk\nmCRaN0lfWkWo95H9InYpgxw5wHtxg50X/5pev04/OiOBSScTwqd06dAi+lGLb9z9CACv+9MsPe+i\nND2hWnMY1RZQ+n3q3gbDro4VtlgqeOg2h9ihCE7Eg5Vfo+5KMk0PaQcGTBYu020sMd8WcVJTwtg8\nFptkdYs33nnMiz+3gHPewtFsDg/dRASF+8MJP/z2HcxEmMhERKuVceeWya9voI6LeL0BzgkVNLeO\n5zROrKnSaxiE5ma4ToKM3UXkcBz9UgSnOMFde8iZfIWap4xZBzuhMdu/i7i1hHxVJrXUQKnsIwUy\nFE8SzK8k4L0Zids668J1mt95H3HaYWJGCSTH+PQWc/k2T6wA/oRILu1hRxvyxl893ah89paG/sDi\nZOkqg1MfrXCcwqFB0KXg/No1VrRdtt7PERa28fsWiW70cGsGp1sC9bFF3LOOEd2lr66w83cHiK4Z\n84kCZ6d9lj6bQJymsHZMDF+V6mOdoZ6jVKxjBdr4pg2EXpNLGQu5n+IoEOBCoMuBtsjYB81Ti/LD\n/4pZF0nn+4Sun+dkvwqFa3jsfXyWQ/s2pJ0+g0YAZTolpUTwJyQSeRfSZYlScMpM7TJ2zWjdq3P+\nmZ+gv5xjzpeg1eihZCXyH9gUG7sEtRcJe4Nsjjro4SCSNsG2EvRmp6zfvEAqFOarf/t08yk/nPBc\n+hU6GQ/z812irTRnpSPqDYWwk8A0YjTlCTMjTrLRo6dB5ahBvhvjDA+T0/tkXrtAezNCql7EHVI5\nCvmxfQbyQZSGVSUY75ISK8zlc1z3ClhehWk9xrm5GiP9KvqHD/CNBLR1gakaxAlGSYTi+Hohiq1H\nJGtttqcWkVactqfD5CzNy5+Yo1yqUFM86DONwixI2z/G7i6RlkXaTomex8ZjdbDWejjDMB6ngavb\nYu21NL2tPs3OjGO7S4B59GgYdSGNePYY1/0ST+7E0QNRbvjK6MX3OPj93+H9O2+yyRiAT/7MJwmH\nJmTaMn1PEnc9wKnnHvncefqNMb41mcq9Hp7JdWojhY4msqSOGBcH+MoPsJsPeOcL/wnz+TGVwSbm\nuZ8imUqwmpao72QYiKdcXoKTRgvDkqh4giRDCmHBRVGJUF+QSdhh+rEuzqMU7mgKU6igCxrzUpXw\nTKbV38fcg/y1Z3DvPWTn2EvfVLkpPKEhBzgQ2jx7aR0jvIB23GZgL3Bm9KjVa8y/+CLnnlsjMlDQ\nLZ3ZaMLA6WP80m1in1ijkYOeMWDn5l/jdu+QKZ5Sf7PNxAiSaAbojfwcPWijuMskYsvc+dbTeqZP\nvvAaBcWkmnJzlkky9YxZrMUJ+44JzNzEjSClnJ90t07PG0R2e/CkNERBpSSG0BkTGb1Jtuun+c4m\ni0s27rqJkwqgnnnwR2vIhofrl+L0//Y+41SQQKeLORhx+adV3PcMVn/pJY7+8lvEU3nWQzlOdJt0\nYYm4f4rlGmHqL0K3TlW8z+7OR9wK/RL0orSLiyh2iX/0j3+XP71wAVm9iKmLsF7AfmtC4fIymb8f\nJ9ryo2vbSGaC/IsvsGhA7Yd7ZC7fphd1oWp1WtkoE/9Dzto2a6rMQJwxMe4yUi4jT3dp1USa4kc8\nfOMpE3VJ6PF//MeP01fusafrjJUeMTmLu3WK15/BEBRc8TLKMEZ3bx//yjrD4QRvp0vPfx61d0wu\n2GUwDuNaqWPYLshNGHev0BieYug2VbdEvDZi39LpaV3cssWw3WHxdpp77+bYaT0k7liMV8YY43km\nps2420b1rxMJVhl6RtiDFlYoRGzUpaP4ickyviDs94fEWiGqp31Wz01wVzPkCmGEUpt6Lsmlkkla\nduNfiDMKuuiMiyAMSAmrCNstFCnKQT/ISmTIw60uTgCWxSAtx0sk5HCiBYmqZeakKW+//YjP/+6P\nwHXeH/yrP/rCjd/+HKNymdi0zdRjElEjxGJzuN+D4HKSxo1jso5ER5OQBhK6cUg1KpIcT2lrT8gm\nc4QyG4QWWiRyz9DPt4n0XayF59HLQ/atNsrYgzmTCV6ss/qZF1m6uo6azjAcqWztt5iksly/HsV2\nrnCWzrP8zBL6h/tU5DAj24elP8HnzsPFPuHRDI87i38lRaM9Rp0zaYYFlHoXxVaRpWPEWZOTrRZH\n0UXauzPK777JOVtFjqyx9/gJ6Wsig1aHLcXLLCSQCsKTky0kr4e6lGLV8TMJWYwnLgRbZKnmQhFK\nfPWdp2D5537hWfSzISMhhNCJE5DOWFx7nlsLITxnClagTPe4SeKlV9jerTJ3ZRmjWucgeYC1N6TZ\n8uFV+sTbNXzPrYHRY8/0kg2WeKMm8/Jv/TxHrW1cW1mMsxO03JSZxyA8rRBYucz5mIScVukXJkzr\nId5p7PBsZgH9cpbRO0N6H1qklxdQ3DOmUxn/Cxex9BlHksCk26e6c4/Vn8nRzhnsnI1IBXPI4VP6\nHHKtqxJJO0zyWdT2ENf1lwnKIiveLMeZDqvXL7B33KWxuUUtGkCtDpDVANaGn87EZOnKz6DdnxJN\nh+gcKDSDfu5+7ekP9907R7z0B1/hz/e3STo9RGkeHz5O4hLJ04c0FRvr6gqxXgBFdpAkjUA7iqvQ\nJXSlwEQ9IGQsIyQFMpJOutOhm02ztqIwDS6wcjJh091Ed52hKQbRxIC20cCf8NCJ9ZH9F1CmI/bz\nIrvvvYn/6iITU0cr7BEx4Hb4OS5cnGP7tMhK0IV7I8RtK0EnFuZ8yMWwJ5CxUgSTZ4xzcVS3SqO+\niE+aobTheOYitp9kxZchvOAlEteZOAKpjElPhcS9PVK3zuN3WSguAXlBI9AANWrT6QgoCy3GHxrI\njRHm1Q2++cUvA/B//vbvcisc5NsHT1hfOs/qK3Ek95BIJEe53eTckhvFJSK5JohTmaRrmYXeMZlj\nyI536CUTyFOZQaKJSwlQFv3krRJiS8GRRnhqx2SWbqA8ntH7oEp9t0c0kENxDpGzz7GSXEDM9xnn\nZGrlIAu5RS7O6Ui5cxSDHmbHEA+EKGhF8ns5VrNT2tMio8GQyNBBVzz0Qx0EI8807sVlS7StHi5T\nIT6Z0nIsUt4kvvkw4VsJSpUhTcWm5csgBqPEkmlimoeaOCam9XD5PSzPXyF6IUVUO6XzoYdMqsM/\nfOdDvsiUP8MG4BP/5CW0oxFSqkrQilObTdG8F9DCUTJik7tbMoWPNVDGbWJOHH/6EKXl5da1MHLS\nZtPpEE1s8HzoOYolDeHJG+zVvkOxcUguvsxJ2UtjWMY1v4hTUok8OWAUaFPdKZHLtyjIEk/MMtft\nOI2jOrgCSOKQC5GrDAMSbU4YCOBsVZhLJ/ArGiN5hrccJW9O6WkRFqcaVvuEaFqlHXO47HRR5keU\nDzU6zzxH0m9w8MM/55O//3k2GwUyfjcfvKvxb77+FzRtH/2Ow/CtKa90s4S6Fc4FniP4bAChL9CY\n9DE8h4yUZaKlEG9++NSQ/8lf+xX0ZoeErZIL+Ii/skZ5aGMg4JMzbLcPWR2DY8WY+g1EK8/Agjlx\nHimr8WL+IufkJWSxiOvKDebTKfbVPpKnS2DQ5rSzhphoI6pR2qvPMNwfY37KoSb4uG7HeV22yTsT\n2rdciJslIpl1SvEzkgaEujMehSVM3wmS4ic+ESj88jXOnFXCaYOES6XiWuSbuSk3P/U5br94A9+k\nx/B7Z4g3n0HfGRIvTNHcfpZrK+ir1zg73KTY01n/iR+n/d1D4qtXeePoXS6n4rz7lU0y58P0eJet\nHwo8+2M3GReHaMen+DWB0FThzbtPpbif+R//gPG/LFAeuoi41vGdu8yyt0lASOOEJLBVCkOVszkN\nt7fJqJ1h5B4gBhcZFx/ijsQouiTmjAk1S0OSVGyPi2FHIBD1s+bxMjKqNDWLiSeEFnEIzsdZmWQI\nTGKEZAfTguXsCr28xKOjPgtrHbTUHFp7H1HwofnD+PoiWSnMqFohEE7gPt1D13yI1hm9cAh5msXJ\npZFtL/tiCyE0pTUdEJEiPKicsvyZEPFJkda9JrphkczXaPjmUOw+aszFrCYieyVUR0AxLCqSBzOU\nYDSqwEAkncry1p23+b3f+REYov7o3/7JFz678Qq4c6hpN0rfZhgpkN4xyK0tYIsy3/zj77OquEkF\nNCr9IqFcCrUu0QwsM06I+JfOGE2rlM8E7F6FghahlpKwTmJUEkUszcfRw7u8+JN+bv/+b/Hh7Q/x\nBBtYU5PaTCTtqeCaJNm3A+g1gahX5uFfvI79E8+RdK0QWBWpNHrEYxEi/QqTwQrB2GO8szBTxaFz\nYhJOnIK/DAWHvlwgGGoybPdYCqRp+QSWPQvYWQ9BCXr5NDPpv7IAACAASURBVKvimK8Om5zTPMxH\nO8zqUeyITbTbxD0WkdZE8uduEe/3mQ8/QyUu4VNCfO2/MVG/8dlfpBQbcGGUx39FIddSaVeO+Ju3\njrj6vJfBdBWJE07tI4aCzP7ZJq5ghpnWJegvkvHPSCQd/ON1/JEaQyEBehkp/wzZ4QGJQYWH35sR\nlhwiXolEZInYuoAmeljr5vCHE1SHCXqnJpp/l41YgVC+Rvn9FvnbAnqpSTQnIqdkirKHtStZfPVT\ndFVFX9GJeVLobw1QY8u0gm0mrTMaLOMv7jK8MeMoF6TVUwnMeWhr5/i717f47u7fcHPjM3x4eJfh\n//VDPj6/wvGDCavz80ztOIX+DlHLTTPtpzScMOhWmNRFxhk/H/3N0x/uf/hn/5Hq7hEL2Sxu1xhN\n3mXidrDbOzgXL5JtnrHYnRA2FUxRoyJOWd5II/YGSFoDfRAkorTo1vqkvGnG9SmxC9fRe9vUTkwq\nZxqpaYdq2iGpR+n6BHynHYzF68Qf2sh6FtHQOaxMWZqfY3gSYmAWeaZnIcU1jkZPSF6/RbQe53H5\nIVJohROljkszIZGgK9YYDyWOrBgXmx0OzvqszBdRzTCN3DGZuoJSsIm3Y2xPPuLRvRYXc7dR3RL1\n0TaLhascuWa4jCh2SGGvuEk94ydU79PxNQhGCrTHJhWxTrfT5IM7dwH4L/99hj9t1PiXxw6vV+4T\nuTDPqHhMv9tj6SUP4xOD+IUNju/sk4h7KYs90moMYVakFAjTX55jNqwSSSXoWxATO2hxh8X0ecRC\nlnZtTEwYMH1yjpUzD5VknEmjjiYNOfXVeeM/fYs0EuNqhHzaod87Zu/OPms3nqN9/A6JtI7TNQnq\nIdo5g54oULRCWLFlTsUWxZ23ScoFamKUX/6fP0Hr/jEnu1VUKUo/lsJ9WmW3HqTU/Q5/8/UyiY+t\nE9wzkUIFSPjx1mroTYGqvYdq9GjrEeydDpPzUdayc/DBMY1qlz8RBPb+h9f4r2889fYs3vgp1MMl\npFiZZFdG8A/oeDzIxw+xZJVscIDonzKYexZffYcoCnbcwPWgjnt2jYhwjpY8Rzs2Q3ck1oMF3J5b\nCOevEgqukPMVyddGWLrB0dRNKhtnHB5zFjQR6hm8I1CSSTyDExw7Sqiu4yNIWYqS8paQRz1apoe0\nx2Qystmq6Hhau8QmXkzGhNQFnqxm8C3onHrn8T8ReNK3UfNu4qduMicP8EpX8KtDnBevYzXe5758\njoBc5xeXP8bN20mmOzqvrR1jNgy0fQ3XsptiNEhX38SnZBnfF6kLbdo3A2x/49sAvLp8m+FckvZ4\njNNtUDdyTENVktMq5mhKv68QSOqMUkOGvgQ5c0otepHLC2O2fulf860zje4n0mgP/HRzMyT/FG1Q\nINyf4U5HkZwsLm+DwJKIvP8Ri6JBq6+xeNbCm1/FNz3i/+fuvYMtye77vk/fnHO+99377stx5k3c\n2Z2djdhEEgApkTRpkKZVMkVbMlkUSFVR/7goq2SJFi3JRJlOokjCNgGCIACCAIjF5sXOzE4OL4f7\n3rs559y3g//YrQWKpRJY8l/yr6qrf/3rc05Xffr06W+fOuf0xBFhTJ2hYcDpnpbIZ8M0UjUU84ig\n6CDfc1A/3iNJk6EQx6AXGAsRHOU6PbsBVy/At/7v/wVjrEPhVooNt5Z6vYnqKiAW5qlbxzQ6OdJG\nM61JlE5xQm/FjL7R4f6jLT7zXIKTd2Us1zxw+wR3XWXtTJJmUUft8H2WktfwzOcYP6jw1s42AP/g\n536D9O4Yg1uhkKvwzKqDxpZEq2/Glq9iiNYQnB1stmnqByX6gsq01wLDFEHHPCgFJtYwo3kVV6yG\n3ByjTfppZDaxdWqUQyKSy4Gto6L1aNlwx6n2W5Q6NdTMEWXfgFAgiE0poJkaQjBCa7fBlJpAULSU\nBh18YpRTf49yqsyMx4K5XcbhWEZxHzIqrmHUyojuEYLaxShL2CQbtkEbZWwianWT+GmR+64Eza/L\nGMp9LgYFFGWETQSmzIwKDux1iX5Hh2XDQqbuxhvsMzxtc/FMkHLHztDV4eGb7/Gbn//H/+mLqH/x\nu//yt5++fAGz2YnRoTIZ9LGVK9StIaxqiuPBhEtTz+F78TLH8hGH/hIXlhP0zgYxPREh2DQz44vR\nVr04S2NcOifvlbfRb3pIx7pUmj3S+W/x8i8tMujWqT8/wDGbZO/mHiZtArm7xWmnSlIWGJgGSNYC\nuqwBUQhhc/apFlVEMct4UKGmCAhKHEtbwO+aYDt2oAv08AhRmsM6A1+I3oMx+siYEnbubj/GeMWM\nvjGkYLRwcW2Wu80UjpUYD/saZjsm7CMbdA3ULAUuCJc5kA0kZszcfjTEeTJBOajy3fe/zembafrv\nZrnT3gXA/58tojlxYfWaKLRKFAZG4l7Qdc3QTHD7+E85YzhHsOogGHNQNRwQH4pEEvOE9Q1shwr5\nghd53cbojou+VcC8/jyHpbcQmaMYtKBxtmkbDMQu6wh5uqimEW7FyL2WCWuug8lYwHJUxWCSmYpb\n2enYeGMzw8VfvYj0RgXzGYF23Ua6cki1fYza8pMemRiVqhhqApVIHZ3Uw2kfEm3aME378JUWuPPo\nmNIDL96ZMPVmg9qJRMnb45XYy3z1a+/x5HCKZZ9KS29h8VNxeuNTrNNt6o4kUrrH+hNz/MU3v8uq\ny01v0uOl167wpT/4aH2t0LMC3p9/lvrxDbw5A2aLSPf9Mos/rsV534UUM6PVzmF11xlpImDU0TD0\nCez3OHLa8Ugy/UiMvFTCrLXTd0vMr1i5eyThawzx9lQG8T5OfZCJbwahGOa5tVfZHadxLShYe2VG\n2gA5h5bygy1mjFXC8xUMYp3O7Sx+yzOUMmm6tirulWliOzLmwZjwch9dV0sgoCF/UyRoVlFVDV05\ngDInMtDpSJfqDFID8t0WYXsHi34Gje8EFRO69AM+uPGIiMlLdqfMXNjIhGMWjV7ixRlOvQ1GxTOY\ndWNMXh+mbgz99j1upD4aIP3Pbnn5/cY0g08tYr56BcP2Lk0a9CwSR7kagtnDyY6INBozHrZYjyXQ\nWydoLwTRelyERwpla5XGSZ26RmEwHhLQzbCTqrH1YQqP4EHICSyVU5Q9RnAPecrSRevwMNY1eEpZ\nR4wI6E9MyN0jfBMz1ZVZLK4e7qxCWvQiCiI6ixvRK1G2mjBfTIBexTqxIp6dJ+4aEZtbQjg4QNc9\nZbxqoyUMsQUs5PQ9kjMWJGGZgCeOi336+1qyfug3h9jHKjWDQkLjQNTHmFEtDLtaJrk99jMpovMB\nBjoH3fUzFBpe/ureRx87EddFzAtNghUJa9CM9MiD6BZRyOFnjq7dgj/bx9KTeDjy47S3KLtWMJY9\nmAwadhsyhtkI7pNdjGYF9/48qe6IDbuRd04/RCPN0XPUsXsXecIOugU9Zq+NWuUMp/lHTEl+ZJ0J\n6/4Q55kkE9OAE4uEJ9Cj1V9l1MphttvQNObp2SskFjxEiw0mlgbC+kXyxQzDUJte08z8iZlsMEM4\nFGfS6DLSJNAtqrQsOmw7u/QPJGrDHSKPFTrPTJhVoFrZwdauIshJCmqbmDlM88Iy064SYn7Ewf0a\nfbOL9uCYTsPI6f2PliLZmPZi7ZjRSncxzOpZqnfxdRd5/9Y7yDEjy7oAWyMBoxJG75UwhCVMB9to\nCyfonp0mcVUieeDB6FEYikH6bR/UjYwrBQ4mI4LGGoaTANK9B+xr7fSaY3xxK0d5Ga0uSDq3R0Cf\nQBR7tCxhzswPOP2WhFOw0z66S882ZEXfxdFbhsgMqXINwWFgaPETMKjUjRMSwTTNwzrDYQGP4KS8\naEQ0bzCllvDpXPgcfcJrFTbbVS46S0wvBWnuZ/CtqAzvv0tY40Tp6rAY6rS6c/jCTrSySpk67miU\nxqqFxn6fsDHJtz78aPbxteeieJQGBrcDj+OQvd0CnXYTjclFwTTBKNkQxxMKqWMWlmdRwwbqmSbO\n8TJN6Ri31Y+lPMQXfxJOJPA0EG/2WfjpixgzMtqcFV9mTBstRkVGO+un/UEDV6TNW391h2fPr6HW\nOjQUkUwhh8tXImieoZzepm4qMb8+jW6rRG1UxRr10+n1cJZk9l01jBoZMa9BY61hbmsZBPVYzB0q\nmjFGnZVgZ5t3jwXUwQqtnI3vfWeJ7laB174T587an1FKzjCquPBWT8G8gG5mTKMewihU8YsTtFIA\n3bydev0EW6nBg4eH/MZv/KP/9EXUv/zd3/3thH+WUazCuBPB4RURbGHk7IChq0BO1ZMcNSg2rZyo\nYSI6DzrXNK5vnSDdO+Vhy0z/tEHrnSq9UZgj5ZRHXxzg+YkkJcdtVkxRYs/Ock68yJbWyzt3Uiyd\nH+BUrOy3h1yIO5mZex5vTcYtjpBE2H9zn6dfkpFyYAuKmCcenN4hDvsau+3XmdMukXnUoa9PEfIu\n8kBbwGAfE22MiEcCqA03o/I+C1efJ+p+irRJwtg1YBiWKchDFiURJQeueTta3UPqr2d48tJletKE\n7kKd7//FLo/+6Mtce3UFWW9jemadkSNI+Gkj77z/USPz4jkn1sUuSVuA1M6I7XducjrbIWS0MYiN\ncJrmEBvHRH7Cxnvv3cM5f5buyT0MshVR6uCcV3GapkkoOY40Lj716kW2/vxfEdZsEDGf0DPaMdjG\nhIIORtk8k0KdvmLCUQ3y4GvvcWnVjd7p5ygsEmnbeVOqoya1fHYqgO5Q5JHdRtuqZxhzYk1n8Rhs\nGGwmhMkIz7kNdh/+BcnZp3Fk++REP6PEGtZyhu7lHqXOU1RLBQwWhZ1vtDn/S1eICSEGzTrDQY75\nwIjudBQzLsRDkV6nhX1uDo61jFwi4rFErlHHX3bDOTcVY513//SjgeUv/L2fp3Y4RrJ6YOiilnnE\naGqIs7WCYBaxHRpQBR0GExjufohed0JhbKHmMvCUMKBt1BNyBoi5Yzgevc1pKcqMEkDpbmOfXkMb\n62I2zJIrwii8T0h2ULCmmdfpad3fJOvtE07OM8p3edrfxKTXUO+FyAkurGcvUrGVKR/Z8DkMRBxa\nHizEMKedOG1ZtrQeXMUKq2efpOzcx+KYIPTyiA4H/qaLfqPCJc8ynZMipbM+/GUz6U6VQT3DuBhg\n2hmnf76DYWBEdiwh1CY87NUR58c4saN1DIjPLrDlcFPK9rE2N7iV+hoAn37mLC+22rxOiqnIBnVT\nj2Gqj7EzhnYVi8uHV68QRI8wFcHQq3IPA6cPe8gxmfrBHvqJHZN3gFcSGEgVhtkJw84BwXicSOke\nXlcE0S2j+kzMmF0IwRTHuhYaswOL6CN9nCKwsI5xSk8/MoNY0bJ3+ybes+s0yjLRoAuHc4AwE8PY\n81Js1EiX9mhSINof4bzwKU6yu3QePSA3u0Sl28GhDzMj6HHNh9nfqSP2CyiLQxSHC8Uep9W8S0gz\nh88soTYK7IUhMNFx3BxSM9UYGCb4Mj384SBm5xRat5EFr4s/fP0jbq4ffwVrL4gyJxAr6PBdLrGX\ndaI1x0mHLVgO2uhdA4bVZZr6FlOxBKaSgriQITcZ4FxXiO4cEXQuYx8M6FnMiGOwToZolDG23g5C\nH+qaQxr1NIpGYSi8hGe1j6FcZc90gN4xhewzMVbGYLPQkip0en7OaXrsZvUM0iJeoxVPVMP1N0Rm\npu0M5810RhC0jCEp4h4cYx4G8UyMVGgxr7rphssYNS2mKyZKXiOmsIVAJcCu8QOe7V0lG33EYLtP\n3BlBMzbSL/foj6x4u4dIdhO71Qa64BpCdA+ffo1nPv95vv17/xyAp169yvScgZRGptSapjOykhko\nJFxTBC2z7I0+YFGTZ+7yBaqbKVrpG3R3wryz0+LTP/ksykAGkmiiBaZqJhrnq5jlAnuVh+gs15iK\nSrQnMThnZ7WvJeMSObrZ4Nynw+QPsoyHRoTwHmJ8FWPdwWNTi4r2FoboOSLBZfrjOpOde7ztVGnR\nxX8tSvfDHsucUu+WcB8EqfuaWExjVALMhM/h8s7RfpChowuwctWPY1ij7L2NfuY1/myrQfRAJBKM\nYXjYp6ANowgBvvvel4jMXEBnrrIw42W/BKqcYdGWZFIykc/bOZ4s8ujelwAI/9jfQhlb0Pb12GeN\n7N7Io7eHGRdEzM59PNZZdKEwtqSb9KNNlJqIENYjmxXGezrGMyGOmwr9SZFxL09IEPGFRfZujJH0\nI+LhDmaNnowxiN0uMzK3qNezrM5PE3XO0dH2cJactIMm4oIGqRanqykgmLVM9VW0+RCDWBfvIAD4\ncJht5ExDLPo16mMH+nCX5kRHzxPAWzVjNXUwKV1yUg+XvchI2uDAXCSxuoHyWo3ka3EOzxWRRhLB\nopXa/JDiX3XoBy14mmbsQpWwvk3FZGROG0VIK9TnNChHZraONvn85///MLD8f/rCbz+5dg6rNYrY\nH9JtGLD528hWI738Cc7sKfuKlV5nwoY9iaVWpZ+roJiT3BhncRmMaFzzDCoOoj4f6qyH3/onv0ln\n/33iMSdSboKhEOBW7k08vgvYXR7GuTwGq4PQ4xTORIhh7gi9QcOJqqc8qfDaqy/xocmAoQNZQ4bm\n6IhyrceSW8e1zz1NO3UKwybywiz2YJdGu0ika0L2WulURjRnhwh1I7IgUN8/pa9rMT3lJP9+Hd+1\nBI7HLozRCdZNmU65xOqnN2iPJpyod7nzzQ5nXjzPK2ufwa6zoohd2skE0RUXrhT85a3vArC8vM4T\n51+lnMnijirMX1lg+ngWi+BlKFnxiTrcYSff/2DCcPKQmGUe/9QsF56fkL0zQDScx1JXqezW0Dx/\nmdvb32JVs0ApINMV3MSEDMa2lvpeD6PQQztx0hGM6KsTLC0Qg0nqE5WpZpH6lQSegzrzQQ3tShiX\nL8lWKkd0ViTmGHP3oYa58yr5Xgit2CO+U8CbsDAXTxKdFJn9bJzTWxms/jLD227Wpw4JX5ziCV+S\n8NkpxLtvoUvryd56g1fmZrAEnDSKHXpbKVJTWiYWP4mIjVGxSXdaJX2q42DzOutX3VjaOUrRM9z6\ns4/WO/r1S/+IzkiPTb1LbyePISPgvWCidtxDN1VBZzcxWajSbHSoh0oIBROLjS6iXeZobEZIH+Cc\n9Nl44SXsLS3dQIlB85B+0gKjDLuVfbreCQvPr9I+rmORC6y7rBQ6LrziNCZpRGdkI2SXEJtG8p4x\nmrKHzoyCs+FHNHaYHlTprZ+FukTLOmCkLfJgs0znbht3xEA7AcWhQDgXYqyZsKBdIreVRvEpaCIu\n5s76SKW6xMIqRqeNmMWMP+LAt7bP6LEeuWugfvQ97JcCWFM5XBhhUqA80tPulJnVDZhNvMj/s/kV\nGqmP/mX2q//V3+HQZuJRZIH+0lVGuQeMp1v0YwJNWxxvFRLaDj13B+dEQsTHuLLLdGKaQSuDM7BO\nb6oLmGhqfNCzEvAa6XnjmBoNtOZlHIkOigNMxQjvTHZBiWDodvALSfpOBWVYJyaNqWxpGHRaKNYq\nOrNMK5MhHJ3ifvp9dFMhxiMHk3YK0ahlSgs5TQOnTiTTKWEfGHksF9F0akSaCs64kVQ1Q++0jclm\nwEwPz0BkKHnRO0aYei56u/uwMUWtVEVXHtBSOyzZ52n4BDQlG/3lOAdvfUhw4xKFW+/QK2j59uZH\ns6V+4V/8b4wrR8idIlOCzFAUmfGvMHEMCRYkjJEUvXEHyWlg1jgi1dtmMiiRCF2kWz5ENvaZdGSy\noznUYIlUo8f09AyljgxhPWKpjuyOsJGZZuQ3Mcx60Q9KOFpjHCEfb39zm9UpHd1Bi7XxDGXbLQzm\nCLFmjesTIy5Tl0srsxwZm+gbAVaDTnJKg7ZGh9+7TLWeRm4kaYhVpMQiPrRw2mAsifhMIfojM0ah\nQytjZO6smYe6HdYbVsTRgGJ9DodSZ1Q1cyt/n+Q1P20hyHDUJNYK0p1OMl3fJZt3c7A7YuW/XOLb\nv/M/f8Tt6n/OVmwOo17HlZ6WoWtCWS6jGVfQOwNc3niKSXObNzMnGKfXmO9HaVxVWQ04ibr0fFAV\nIdInrwlB3E3wrpuROU9wkEIKniWjmWeAyIYpw91hnmnmib6ywGkB6oMc4lICTXAdiysHYpjOrROe\nuvQL5FM5prfzZKYMJCNefNElzq3LlMp1nJMhQmAZTeWUXsiDX5tEPrYhxQw4ZR/jxST3P3yb0ej7\nqPI29/NaerpziNkM52IXePB+h4jeTzzipbJTxLw2QKy6OHdVQ+/cz7BTvM/obo2F2WtkLBmeTATp\nziUQrijc/KOPRNTf+aVnGKe71KbClA+L/OxTT2MwQTF9BwdxioMDDAMJye5jRdFjMksUTwY47BFK\ni35i1Q6CJKN2LQipRwgGB4Iape13UddoaPZ1OOMCam+Cw6gwFseE3DNYagrfbL6He7zBUEqjQY9v\nykzTasKhK1PXTTE8rvFoUCOpTlGKlTAarAR8NgyKil1TIK8VibfL9Hp+YnGZbLCNpThCFmewt1WE\nuWXyW3dwWhbAlmJj18xA3+CJZ56j7XDRC4wx3vNiW9OyOu1H9JpQ612KqhOv0qc8JWDtSKzYNARc\nHt668R6//vl/+CNFlOZHJRAE4d8JglARBGHrh2IeQRDeEATh8OO9+4fO/WNBEI4EQdgXBOGVH4pf\nEARh8+NzvycIgvCjrg2g040xBVwca1II7iMMjgqepgGnp4TNuUokkmR54uaycYTlnS9hrQb54hff\np4aJNeVVzshxEIZY28fMSkdMPVBJn34dq7tH0G5EqduYmtYQN7yCmjtAzTR5dD9PXRXoznjJd20c\nEqZWMqA89tD6ZoqxPESXNTDwmdCVNjjTepo5fYJ+9JCdP7uOzudFG55HEG3c+JNHaDwJFMGFTmpi\nEkRkRYc8MhPq2pFGbZZyIjsHJ+y3s+x+/wAWqwyrFbqBFNp6CN1zq9w5fZ/6loYX/+4T3PnzHKeB\nEDmHkaxWw0hUGTza5zAif8LtqmMJ+l6O+m6MoyWspi72pIIpsodqaHBqNdNq6/G9Ms3llc9x5/UP\nmBxCsRYk6HZhGxXBYuR4WQfv7eFrSNywtYiOjtHVZfb0MawVM+1egPHkPGlpg6ioxeHVs3buPKZx\niTOmJr3ZIJbcmK49zN0P/BSHXd4uFAkPWjiby4yPRGwmeFxOoNW10Zb6lHVtimWJSmcTyxNLVA70\nXDif4NnzF7n26XXsAy3LG3NY1xxYhpvInGN4vkf8H75MI5xEOh2jtbRJnZ/Gnm8Qdal415epv7hC\n7bqDsXqbHiK9TJ2l5QC6d258wm2nXmNo+Qa9agGMI/ruQ1qvF4hrEiyG56ikCnh6MWZcZc5dmKPp\nXOXx00OUpkJc0yCqW6HT7vD2Vw9oVI6pbTfQBeJYjX6adSMXg1ZWSyOcH35AMiQhGOe45XehDrYQ\nAiLoBSrWFkXNKQF7Af3EyEjfx68VOd2+T7I9i36gp32cBbmA9q0jFO0xjkaPuv4hm9smtHtdjCmF\nQTjIRAwycLUJxg0EdEH2ZIVHm1miwg6PCyNSR1kGjTb7/RK37zjJNoc4C/dg3cNQruFfdWKSGoj1\nIU7dKZeUCAf7XyTi2ONf//5//Qm3A0+f4mdeJarYeed3/ikj94TCyTzJgo2IOMQWUdk6rjPWypTT\nRTpCC48nQrGpENCaKbr9WDNjxHKesabLTNKCyxREW65hSoA2IaC2kxwf97gXSREZOTCbCjT1SfLe\nEdlUip4wx9FUjfpCA5vUwziw4tCbadq82O1enp67hEcdUE6X6I5KaEZDJpKMrWnGNb2CIzpBOMwR\nrZrAuk49YCSXVcn3dFjcdvyhON99/YCg7gLucByT1ce8qc840KC9m8KcCCAvzWKxhmkmjxntZTGd\nl5BEicDiKsWT76NxTVE6e/gJt8b9x1wuHzNnrzFsZQnWQFeo0d0ssZ2/xXvjKe6uhMkOevxlNE9/\n7QKTxDLfTg9wmOyU81YcphcJzFcZG3R4FmKcpl8n5NpjsQPioo2EvcpD+/dppd20pTFWb50RDdSS\nwou/8Bpx+1kCJRf56oSq5imOP0ijGGzM2+yEg3U06R0a2g4B8YTbpzvEnCYikgnDyU1UU4FiYZvp\nAx2e6x9w8FgkNO4y9vqpVgdEJwb2JB+uM0W++aUCtnSIftdCv19C1PVRwsvYIkXmfvNn2Sn0MVXv\no49PcRRLodZqZHV+ov/FOc78zJjdv/+D+qb6Lczc2UVv1PCOxUfBHmEdCcFiQJmUuJe9yZd/7wEJ\npxXtaZHurJ7kthaZBNrkJRy2MT6tn9VEkHirRNPWJuZpk5j9LHJLh6rvIPdvkdqdYDGuowYzqO0A\nDsnIpbXn8SQG9BsVurcHtEf7/Ow/exG1/iFW5ftcX+wzUHd4t3KHhGOfN94YEO3rGQYCPHzra0w/\n+xQuzQ7txjGdlQpZRcEqDLCk7vLyr+R57vwq7uoa0Str2IIhHO7z7P67/5Ozf3uGnuN1RmfSPDB0\nME9toGoFHh/5CefynPWYGIdttEYfkimf8LV/m8L4x4+JfbPwCbdCMYHOpcFRMjJ+ZELUhznsKZSF\nIHJ4lt5Yz6nUYDJu8SA/BlcUxxknh6fvc66dJzuaMPKVmY6K2M/OYJyaYVwZ4Stusm6TcHQCPKxH\nIaOnNRxQUQaUJZH9sIVP+zdodiu4DE4cA5nmloiiNyHa4pwJuNGceZpIdJHSpIS438OSGpErFziV\nJaonPvTZKmPJQFptU9i3YbmjoekcMjbX8c4ayZy2Ma5o8Or0jLZr3AlnkbpNHr2XxXi9jNz10XV1\nCdSTbF6/w2l5D8FWZKQXaNhMmBUjZalH+aTD2JVm0Jf+JhLlR4so4I+AV/9a7LeAt1RVnQfe+vgY\nQRBWgJ8DVj/O8/uCIGg/zvO/Ar8MzH+8/fUy/72mlQ2MRhk8JxN0vaco2czs2VXULTvjiInjsEwh\n7MbkNvDQY6BhqvLS1Q3CLfAOy+z2hgy+dY/IvMrjI50kawAAIABJREFU4R4zgQqPbr9FrzlP6UjA\nfdFP6sNtjKYSQ61K3O9gzmVjaTJhZAmR7faQbt4mJWZwn2+y8lMvMpmUWXXpkFY6WF9uMF6rI8Y1\nVF9foeGbQ7HXaMjfRhwUmJw3YK5tcauZ5zjrh7Qe5+gE3aM7fOELf0CJRW6fmSJsjXD1hWc509Zh\nrmhRRRsTjR7d80EefeE9rnz6HxB6YQnJFOPcRQ2mZh3n4JiOxwDph2QsTWzhH9xO3TW4nv5jLAUn\nzeYprayDPaHNY9WM3pJnrvuYkdmJv3nAzsmQ8z83h0a2cv337rHtnTBwOun07rCWfAZklYY+iNzR\n0y/Mo5r2MWxqMcfGRKxZZtQyNvcjGh344N0tysk0sSt29qxmRJsZt86MY9An6EnjEWo8nZN5vb3J\n1FUX+x8M+JTGxOWdDCNLlaBvmZY8i90tcHA44I0v36DzF6eo39jjxtff5e7vfAlFE+KtP61Q+GaW\nZtmDV5tmVuOn/7hJwOFnP24ip3WilQ7orcXIiRlu/F9fZHlS4tzLASx2H08+8xNUVYF3vz9gI7D7\nCTdVexPzB1HaYRvB1wLo/FcZPeXFGC1TzqlE1g2k0g/44KTO9lf6JLSnJPufwq/VIIkJvlf6BjbX\n0/im+2TtdQTfFeS+FtuBGZdgRBf/CdoOE7vGHqWChF57SqcJHXmBh5YTCkEbdkcJk3OO+4MltFYL\nPbsGf01FN5Xh0dEum3YNi8F95MM4WjtEDp4h5nmaJ/3rWM6F6GVU8o/3aZSbNKoC6Rub6AchTOse\nVg/snFTa7Be0WL0x7HMu+p5FzhjNXJtzMGpPIc6ewzVKYiyGqJ56ya8lCL86i+FIpRgZ4Oitc+t3\nvsPDN97/hJv5e2G+/fVtdsxbhH9umkI+y4rNTjUpkbAZmcgTur0+nWEMvVamVUvTahmw9ru0zydp\n947pdpNIszNYDjRMFBdZfQa3RkLp91BO2jS7R4jRIBafFdNUkK7OQGD5PFKtj2q1IRtLSLUAQ4eZ\n03MSequOatDFufVlxHCN09MGd7eb2Kb7ZAw+nBEbkl3g6o89h6WkcKV9DWVdg3bORX//TcKlHvFz\nekIWOw9uFJHbHVaenqUg9dE1HmK60aGgmSORWKdYzWEsa1hQasx5xxg1YXzRHsvBRdz5PKu/9BSq\nxUNrI4xSXviE28mv/ww2u8jM1JMIU+fR/fxlXvk3v44reJHOiwtMx/Q85fhJAuEQv/bUP2F66Mea\n8CAX3uOdGwoJfxt1+RhhLDIYBtAX93Bo51CFGFthDf5Rj+NHLULqVebPFHninAv2RhRqE+I7h5wv\n6rGdblMy1Cj1DlG2HzIT8bJtMBL2OHA8PMNptM1GbplTvZf1s0HGNWiXDBwb9NAPEwu40CYCON3r\niLM7tBdciCUzrYGeW5ObqP0mZlnLol/ElDNhFOcoWcIYT3dpd08oh0Mcv/OQC0MNyZkIardBw7TA\nlF7HKKjD+NUUatbDU09/7gfPaU+HLqkSbMyjdQoE6VPzCQw7Omx2CzNVA7HldezWICZzjLZHpDAd\nYOTb4o1vfo/zF5YZNo4x/vG/or65Q7Pd5K0bc5w+dHK0X8XZ2sJsMzPQD+kYsxx/2OHmN7/NwNtD\n5xhzVppmRvbjW9nAY5kl950yy1dDzMzNEw3NMht6hWdXryEq07x02Ulp4kXZ75K88iql6wPeezOE\nXmPn6IPbXHzpDKnsdVqNHXTfeRHpscRRZwr7oY29w2Nc6ojP/et/SiLXwyz7efd2gCfOzmIcttFf\n9hK+1qLKYw6ri1yaWmE/1cI7CrDw09No1uK0o+c+4TY0nuDqTfGH//3/wXPf+u/4w+3vEh+1iHrM\n9IuPcag+/AYBcbMBQQtmYUitrDI3u04+EiIsKMxnLDg04BKjiEUrwecWqMp60qURfU0dt1SntOJG\nV5YYHdcYmMxM+kNMAQm1kWIw38Y1ZyEwP4OxMCSyp7CbMzCuHqKMJDyLC6wuPYHZbUGwNYkaxwhR\nlUgiSWHaS6g+IrpmwZ0QkAYzmOQao1SJdrWAbbBEzn2PoUfhck9l1D9FctzFZtMwzOqYG/noLhQY\n2kLYRnEE6Tze0RivqcSktI897qAWBrnQQuYHnRL/IfuRIkpV1feBxl8Lfxb444/9PwZ+8ofiX1ZV\ndayq6glwBFwWBCEMOFRV/VBVVRX44g/l+Q/aUC8zE1rH5FOQrY+xmINIhQyi1chYHuC0LuHR63jk\nkdG0W9Qyt5mabmNOSHiiWs5U7nP5qbMk9WYsWZFRxEtifIWte3cRBhbcD1Q8XAJkzL0EGVEG3ws8\nHCeQdyw0mqeEIleQxAjdnBWrrsHx2ETWkieS76DdmZAXXFjjPk7jbU7SCqPUBPXHp+nEioyKVcqr\nAZ7/zH9DxL5O9kyQ8fGLpF0XuPb3P039co3pDwfkG6fQyJDUzrPdOSJgalKzThHRz9KcX+LP7zyk\nWFahfIInYcLqPaWjDbOoLRGcDDjn6+Jt2T/hFk+EOCP6MS6VGISCFI0+hLGZtZGXSmuOfY2JrC5P\nZRxm7rKVOc8raI0HGD5zCeHAi8XUoWC9xPj0FKPVjbuj4WxcRD8uUJEixAYi9aENwRClUXKxElaw\nWZexX3wKx7HIXqWP5rCIO1+gJ+1S9k+QXEGKoo6d2SafW/s1Tr8usrQ6w+OykWJkAWcjyF5ARBqL\nmCzLxJJOWu4zDDdq1IQJ7rwL00yYu5Mx+vk6wZkhawkJr7vNww9vcE7QIWZyCIUuitRGOVjEOzgh\ns5nBM+un0IDD1w8wvLyEmnRiDVjRr1RInf/BS62a2mTTeZvL41VCxxOuXZH56cgZbDM66pu3mWxq\nEavzXFv4W/RW51GcK5TFHnXdhOutd9kILrHfP+XmzWO+fPMGcZMZz9SEjquIV3UjHWWo1CMs6qNE\n+iu0hDXmj4csnzWwNghQrW7i2CsjViQWN4KYbQHmAmUEQcE6nsM9DT69wp3j83gMfXwJI5YzWgZP\nGFh84SpnQnkWEiMsc2uo+jZ+9z4xq49N/zH+noyyUeW1J+dZc1tY8tRJvzlBcR+T9bQobJkJf1ak\nLLUIe9PM+9pYzlhY2IHmQQLduedp7fwJMy+q6H9thtG99z7h5loX+OxLTqwaJ8KxjsVInIJwStI6\nx6FsZ5zNsfDSNQz1Kl3NMp7ANL5YFzkAuv0BC4IdPBBqg3FuQjcjs3j3BE+zhtthJeM1k4nJ1LsS\npXSRnqeIPnqG7CCDqhqxaZ30XS7qZpVEMUhEdmHwubGdlCl+2CF/e4hpbsKzz13AaArjiEQYe5sY\nziQo3t/kQNPjgWUXVY1g868QffIXEH0rKDcEfA4rzgt9Wg2Fq5deheE2hxMLA5dII9CjWxexWpzk\nDENqco+/emuHw3QLm+cKX/mLt/AtxNn56luYx11mdUaGZ/WfcLtz7XN8eQ+qXQejyZD/9le+ym/9\n4q/S0b2B9OXrdHsezFuPsBwLnPzbb5A63KH0vpkXrz7Ly1NDUt/RIeu0GGs6QvUUWlWPxlMhHYKx\nNk1fP8PizBkG8oBJykL2zbvkZRPz2iaHcpNe+oiioYNZv4HyrB1dYpaeyUr2aAvhYERm7iGDoonW\n+C5LSzZy2RNS7jJGe4GeeUKgd4ylOUZTVtkWu6wGV+kO/WiMacwWC05smKcMSLvTaNQapWUtjtGI\nQNNGcvUKy/U+6VGOp5cXiBmC9DuLSG4vlt4+uU6HxvU9jB4vYfM2He3NT7gVAwqPI26KU/cQTCJu\n44ixGGVFtkJni1KzjPVpK/V+iFHUQKTaItgp4BnZsPpUPjhKY+gLVFzPo0lewTN1Fvdsle+98fuc\n9Rs440win/jwCW38jRZzMTDm3kazu0umW0PZ+R5T6w70mvtEV4dk1tP8yTtfQ4mHqd/ZRXfS5MO0\njZP7fT7YSjNxqDzYu4USkhD7GuY2dKQ3t1heuoTyB2na+iTmwRmG00bKKwlGtiFKH6blCAVzje/e\n+ir97fexBzxcWurStdcob+3g1AQx7C1DxgrGFm3LgPAlM8gj6uUuzcwOBsuDT7hNDfN0hB1+5WeH\n1P7Nb3JGULFfA0/ER8ikR++QGU40lP0NKu0028UAyZGegVNPqzlm0Gmyt+jk4L6IKB1jHons9U+Q\nJD+K3oLW5CJXNRC3GBg/oWfd/wSBSQ19zYoierCsL6BMFKq6ARpLlZZmxEOjgKZ1nTXFQ6DvZ5jf\nZP/6fYpyl/G2j9xxg06wQVWcYD9S6MtmSB/QztfwDCuYvUa6TLOuS7DgGxCYaDkXmuHBSY6QMmYq\nPc/mQZewIqEqW7ibPYLxC/SlPHkpz8CoRR05UOoOtLoJkcIJ2q4Bi8n4N5Eof6OeqH+fBVVVLX7s\nl4Dgx34UyP5QutzHsejH/l+P/0hTewq9dhnVtICzN2EqJRCRF6goVjRtESxl1P4Yr6mM44KKNzHD\nwBWneKCSMksM5rQc2np8aDxFd/UFmrsVtr0nnF2YwtrxcehzYfOJKKYesrlPsqswOT1mlO3ie2FI\nwO3C6DtCK/johTqMNB2SWi2DlgdR78HpNTBnq3D/zgnugZ0NFxz19LTednAu+iQXf+rHWK1qMb33\nFfb/+e9i38xiv+TnidfmEbQdVu4/JiD0uOhYQNEaSds6rKoGam4D3vAC3xBv05rfwxxs4VFHCOMK\n5oGXWr/OUMySb7rYNBjotjTID/c+4Xbzy3coyEmGaVgw2RlvXkeji5CJjVEEmNKaMOLC3CshP37E\n3vFDau4E1oqIW7ZQys8y7lTpdLoEhTCexShyyY3Tk2TjOIzPItMwmhhODhhortM41qI4c8TtVQ51\nMSaGJlJMg0NyMHHMsjb0sKDREfDZ2dzaZWGjjEmXp2/YwuY7pts+pqHoWKgM0AZTmGaCsO0lFG4Q\nsEc5XJ7ivk3kUDLib5WYbw3pPR5STg9p9exoPJBOjui7q3h9LVZcViJPHNFQnSx/KsyBdooHD8vo\nZ6003tzBYUrRkWS2s27st39QNeOWTzG3/DReox6lD+OMmU1jgaas0I9c5UHtEPtin4PTFiG/DZNf\nZUnuIqhLPOVcp1TTYzTKbBduMH9g5L76DcR0GGWgJy16OLY5MbsGyKddvKYm3dYWRQzcf/CIfKjL\np+3ztMxBrJoUqYcZypPHVLf6LD69jt/gxCvo0LsTPBfwUQ/32L7xNpWDXeI1HentFhNRgimRp80S\nU0+K5B9UqV+0sSGdofRBin79GMmlsrB0jcw9Pz/9dz14e3ZEyxO0RAXXmwJ+RwhtLchADtGoVbnb\nGKJQxhuSGMVe4PCmH63o4Cu7P2ic7zVvUvtqmVa5i71wQKZexqZaqRkDCPoq7vCTDPcbFKwm2qFT\nshMnA2Ee8ySLSbFyY+d9GlKdnbRMrpCl4+pSbI+wL/g4HQr4/VlMY5lguETQ7MItdtB1TOikNNWQ\nnsyghuE0h0ffZLTeY/bcKlrdHpN4HH/0mFH4iEZF4cPX77K3fcxKLIkhNcT/RopS0YTutMHJtsy0\nT8Q2yjHKl3A4gkR8WmZKIV6uTGNdmEMWIafpMieF0dnb6Ipd+m438yYzmFSEiQvVpTLdPmU7u43P\nu8LmaRq5YmI876dcqVK8VfqE22xgzGQFao/2ua+GufwTLkR/D8/8OZ5/8adImBqIUyMK5iZK4QYG\nZxm3axdPQ08j4mfxOT83vndAQTRyOlDw+kxMZjSElE0mmg3seg3HRfA9YSPfFTm06QjoW1i1egK2\nDSqik2IxjmcuhTDuE/IbCc/oeNlu5QsffIOk4EXfmMfodbH35m38/iv41VUqOgdevY3KvI176U1k\nW4H2wEBDd4JYTeNI2rB7VNRCiEBeovSkykn3DDN7ZmraCaGNPP1OnwfNEc9YXkX3xl32L0RpG96n\nM8xhLdqYqDZiT3hZMI1QTpbRVn2fcJuyKDhuCEhfb6Dk36Nwv8P+1+/yl/e/Sv3Ehf6iHp3dy/ml\nJL57p1R1GxwPHAzSfSZBheUHA67LEwpRla8fv01GzqLp2Hn2F3+STtjMzkMR3zUn4txLSF4dedM0\nibUXcPk6yHUzqdkw73//Lk6rlu03ZMYf7vLZc0+Re9hkYJaR4ibiz81x6TNPY19eZPR+jheef4Zw\n2klUrmE/eZ+FSJaApYret8ukK9HNPmKcv4e3qcVZyaNID5gddnj8xj5h8zr9pInq/S7Hj3ew7Rkw\nxsLolBPavTS+KTPe3Jii+gDrJIR9NkkgnUPn3uLmn/8Pn3DLyxEsIwOf+8wvs3zlbxPWOdj+5f+d\n8WKFkUlEjnqYmrlMQOMjGo8zjlfRXvAg+aeIqtCZhLE2zISCFfaFEMq0wOiOnTmfi55yQFNKk1g0\nMGrUmWzbKOnGaN1jrJYdcvkSiwYbYXsQXU8m06+yYtdyfH2fpN5JWe2STZ7SNvtQr1gJ9CRmogLP\nX7zAZdmNqesgZpeZmnai9Kc4pYncGlNqJ5kk+pTCOk6LOpY0ATLpCrNrTiqFELv1JkavhulYn+7K\nCtK4i6jsERVD+Hw2hIGJZiZG06RS0OvprSe5XbAwViZ/E4nyHy2iPrGPe5bU/6/l/LAJgvD3BEG4\nKwjCXYkxBZ8BU+WUvt7CSTdLbh3c00ZEi4nBkR7Deh1z2Ypw7gUsP+andeDEoqmwXM5gr8Wx7/Ux\nt510/FC0DzDKawyn9Uz8ZcLdCkfxBqODLobyHkX5LpruEHPzMXr7MqHWAidjAQz36Lx+F/2Tdlrr\nGcwmhd4YjvdE7t1NE8j0ME3rqQsGfA4/ohih9paK7rCHdceK5DMw+z9eIjQzT2v7JtXv3cVd7xLr\nzHM6USi2U/h1x9iHLXprZ5jolylI+ywMZDzbIsZan+qkQf64Tt7Sp5/qIc0ZGFoHiNNjmu5ZslOD\nTxgafTPUCxMa8im7t97i/HPr6Ow92t+XCcw40F5cZWUjBNYoD7M6wj2ZJ6fcJJIqlYAGoybPbLhC\n2NzG6Tsg9fZf4ZtV2d2dUI9lOQ6MmVMkNNMBpqcSlL02xKKOesmI3zBCWw/SDy5zErbgPiiR8ba5\nrdHQvpXiF+cukNkfcJQrUZA15AYe4qYoPmuAFH3EgUD6nQPUJwQM2GgIViK9Gu4zfl47a2V9TcNi\n343iqeKLtvGOtISCs5jv6xBrFVJCAE17noh2Bs1SkrXRZVYdPqbPWjDEzcSkZUw5H2FzgMVYlANb\n7BNuO7Wb+Ax6MqePMLiM5DQtPJIfTblEJHZE4KXn8em9nLz/FdKZtzh5fMy9bI2SdkRRo8N9zsfj\nzfush86z9umXmU1eROd0s5/6f6l701hpsvO+71fV1V29VO/7du/tu2/v/s77zjsbhzNDDklxk0VJ\nNKhQSgTYhhUgkBUgyYcADALHluLISowAhmLD/CBbEAOZosR9m4WzvPPu691v9719e9/36q7uqsoH\nToZCECSEkQ/x+VKnnjoHKPyAg/PHc57zPBrRc10SwQF2q8wTB+y13NiNBAtOlQ3bGvMPV+gN5zm3\nHad3e0owdh+pGGMaClDoy0QWxyAoVMQGb9S+TWDdx3rkqzitU9rh92jfO2ZwtEBN91NeUZFPLUSu\nX2Wce4xmFwl8MsnJKM1P3mjTMWu4blSZ7WyQ70sE2mfEPivjee0G7YQLsePmgBrzDSvdaouyY8Kg\n3WdyS+W110O88nKS3/nSL2JUvvLsErJPImGRmPvUr7AQ8TAeOZnceY9AN0XBMqIYb2Mv6lw4v8aa\nN8doeIQprnDaOSazvsy63uPyaprobIPFMy/DKNikIeuNBJ7OlJh1huWkQ3gYobjbQujoaLEQAdmO\nGZiylpjHNooytUyZ3tM5Oo7R6Ol0ekG8R04e5XJsRLd5yeZBrTbp6ItkQzobzgbxmJfNqINBNkF7\nZuKwF7DNbByXpqjTd7ll9Ch+8COG1V3WnR8jEayiLTvxdE/w2E+Yzob893/w3xB0+3kpdQNDEfB5\nLPTqZWx+BweeKvduF7jttbD/nXc+4vZbr2/ycZuJNbNNZM7CVtZgJbFJ+YMB1YM7WAYxjMN5EuE+\nyuc/hrvQQDoccZyvIB7fhl4Cm2ubWesA19DNiWBD7M6jOp5lY+8B+QctrBcbND+ooC+leG05zPRK\ngIkngbLcI3RdYnXrKTQ8WKpruHdzjO+LZJUtLnz2Oo9GCs75u5zYDdovzaOre7RTj8CVYugdYu06\neH7+ZawZL4v+Hu2bMvJAJV8YUSg9wFhPMVzTcN+ZsLjdwWPmkKQaR2dRMk2RwDMp8g9uMjhnoP7w\nKVFhE2ctxniphGW1xrKxyTenP6ZldbLTVT7idtq4RX/+fcKX3ZxricTGObb/izCRz/0alUGbRrHH\naDBiUH2HqmwhPHvMIK7Sdydx+sYU/BEu912Mhj5eOfGgCRO81lUavSRzURXndhcGdgJeG5I7wMW1\nEKvraY6PJcYzHc9RCJfPQbOisCKITO1pfvzTAlsX19l47RLOmoHt+C1O/t1fkO6YrG9/GvexxN6j\n71P2ikwWrlDKrbHuuUTWvIi8acci29EunONkroQgvkv23kP+zTe+idF2oIxPsIgW4tdN/IMIc4Es\n3bKBvWSQvLpMo3DKrqASHV5BtDmZlXp0nQZmKsLV3/qHH3Fz5QSGK33+8Ld+l/qTO7Sf66D92Rdx\ntoLkGhP8ljMeV/OcnXnp26yohQZmq063cYLkM4hnisTEGqO4TMol0b7dJWg/phyc8UrmVQKtNMKx\niEuZkqt3EK0i070euhHDak456YgUSlNa+R7qwRjzKM7cczH2KhEM+zmUVhPp9BijKMOozs6oye7t\nLLdyXdzKBN+1NezWHBO3wHLkVRrJNEq9THNUZSEu4MxOOetZSU+SHGTDBMIz1qIRlhcXeVht4+pZ\nMBwbzFkFpufO6LVGdLEyXOwwTo0p7Q8QenEuPT/AKhq/lF75DxVR1Q+P6PjwWfvQXgTSf2tc6kNb\n8cP+/9X+f9tM0/xT0zSvmqZ51eG3UykcUrauMajOYTsfwfbAwFavMJR7iEsGVS1A7miC/80Wu+++\nR2ixjRwecrNS4N3CXcbRMM64k3F1gJp0ci3WJzDtMzVDtK+d4vHvo9vDyL55nFYvq+clrIEMjdtZ\ndEuFVZePFU+SzPkXsZ/d4Gd/aTIYjgmWHNgVB5G1K2ReOMdwt07MrzHMFIk4BxwGc+zcKfD45CHt\nJ8fYci2mxiM2JwXS8T6KK4gey/CCzWRjf0Tfc5G6M8rDgw7t+js0zQekIxLxWYrzhouEeQ5djePv\ne1i5tEF0r8DVVIywFkcIJUjM/QJx4WkcU+2zHAohPfM6o9YQRevivxHGVbnJ7rfe4eivdzhpFZDn\nk+w83We/uscHex0yK0l6/UVKYy/ltMEPXQVSKxkapWP0pQK+V+YpyetMPCqpjocj93mk7hLOsItR\nwIfiHaHMi2R6jxmPddy2F/jk3/kCK/YaK89sMVA1QvkCURYI3PaQ9F1hVJ7hC9URbT1aY4Wa2SDn\nh2l1xoPTMwxLjIB/xn7JSvY0TnmrSnIuw1F7nvKlEs7KlIqh0WvOCOdynElj9pp20i2D/f4xuaP3\nMfZ6HL25g3+5yWhexJzzYFucseDyfMTtuc9/jNKBSHN1nYF9HcW7xNOJibu3TUH1stDJIZptfK+v\nM2+9jFeYw9nqszTyEFUUeprM6miEOU7jja4zeeSiWdol/kIEszbl4b0DikqXviYRtBwS6D3C4Q7j\nUWJMhPfYna/zQTmL4N+g6FCIjAZ4FYlR4RbHzSJHTRP73oTxkUC52cK6ojHYWGRgiWO9HqcTyGKr\njWjOFsmPrYzmBtystFn53CI7Zx6cYY1Vj5vGDx8yPIWx5V2kgEk/tILnzM+gvodLTNFye7G0Td5z\n95DXUgiqSFxJYlu3MlYu4kpdIv306CNuf/ZHHxCqZunaV7F/0MY6XmXsbnBQttPyDqnvtQkMfLz2\niTRy3oZnGkZr+en0HuPwqcz5EgzGDu5VymjuArVwhQclndsjqLp20BtW+rKD+3fbFFpThIuXmDl2\nGGaLdPYaTMoDph6RsjuEW3Vxt/WImTHF5TcQggl811N83n8DQTsj553hutNkzpcn6DYo2uO023Ei\n4hh7qEG4bUUznPRteWLGGc7sHherB6ROGsw96FLZ2afpS+C5M6WTchKbWhkF5vj6N76OizDO4ISA\nvIlnkOBzr14Epc3pwzMunDOw3Jlx/eKvfcTt6A0/svEcI/MD1MqA0PUNTN+UcbxO5rPP0z39a3a0\nQ5wFH6PRI0IRie7rM0prAiefvMKjkMn11oTvfuM+k/AalxQDKXtIe/iQZjSKdMVK9FBGmvl4zuel\n+tTPSmWIJVamM+ySm4zYN15i2p2SzL9Dfaagr9hwmhqZpUvMxnG62nkyHZVEr4SiGIyLIJRabO8a\nmLqdPeuEo5kVozdlwR7HEROwNiwEblxmu9wicTyi5+vQ222gehIcuTp4R3s8dTYJPHVRXVCYaiKu\nVIiyY4Qpa2SCW7jHQ4aWNpdDV6kqA8a2X2xX7sxFUvbLdKYGmmLldMFAr3hIBFdYWd4gTRDr6RL2\nyLOgaDSLK1g8GdLbRSa5OTzRXbhQ5XxToivP03pwQsRjZ2U6ozRw4KsE8MtDnu5PEE9T7P7bH1AS\nvVz7xG8ivvUDekoE963HDA/bPJnPYve7WFtZRjiwYy0oFMo5RNVFMOZipvrI3f2XLH35ORznzqNH\nQwzmnAyeV2gl09i9hywrM3zpVc7+oktvIDJb+m2iG6/z0ouvsTZe4sm/HTC9+CJOi4Rdvoe5tsxq\nqogrZOHxT79NbNJh09NjGn6M83TCINyg6+ohDV/F9vgXns+w+5jum4+Y/+/+F/a9eyjaGMdTDX3N\nRmZjmfrbETaHKpuBI9b1IWHDSn3gJzQ9xiOeMmh56IXc6EKcmTFktDKg7Vmnm+8wHIgMDA9ucchg\n7OTKFSv2Vo0eC5i+KQF9jkWfTkLR2Eycx3efrZh8AAAgAElEQVRNQI5YCGleXJk+rdMTRPcqwjOv\ngLLELOQmFY7iSDWZ9Ke0wgPKt55it3gYWnqMK3usuaNMHB5SksnD+ojeS+fpmWlaJ6csBVq0TsKM\n9SPqN0tsKec52z9CkCccNxuMH9tQJypTv8bUk8Q+2uC5CyYTa4FabQ1B++Xk0X+oiPpr4Lc/7P82\n8K2/Zf+yIAiyIAgZfh5AfuvDo7+eIAjPfngr76t/a87/YxNmsOFbJdz5MS5Hjc5shunwM8y0sFmm\neIdZnJYa5uUEoZFE2GVDb4scTkSWrlwk+UqcsbPAgSVHofweSTVBs3fC0OJDHewju1aZ7Ut0GdMy\n+4y0EPW1KJ6Al+DARjlfxQwL9DtHLNzwInWarIRMhrpOzzVGMDTMowG5oUJmO0Dt9IxgPkC2rrKZ\n1nF/zkI7ImJNeGhftyEaVnruFHokwMRXI+j+Jg9HFvYvhZibX0Hyjtk7/RmDmIWt2HX6fZVmdIIr\n6GZm3SW5qtNV2lT6dU46TczxCGxOouUKkYnrI26RlAV5MYSxMI+/n2dQnyCadcy9ItnjJM9e2Wbp\nJSuvzLtIXDFwvBZl95FG4ZsVWrkJ8ZcGhEYLVHdXCBgpfNtFdCmAzXfKwz//IUrnJr29Gh8Ep4Qn\nT4j3R5yKTby2KrNJirZlSGf+KqHwBX4wKvD1r/0pxlhElLM4tDZviSZmqsMw5cSVuIsU8dMWohj2\nCb7rFjY/7sb27oz8cpDFrS1Mz5BhR2DjVYm5RRvOhodRah6mpzhurTCbjCkrKr4VEWN5k4WkhkXt\ncfbklNBhl9q9MfOLC0zlGE9bHlbvD7FUDeQHQQxf7iNuIVsPs+cgsC/jbtpoV7oIkzEnygGxxgn9\n/iLizEKykQK9Q/+ilfVXP8NCUCNq67Bsn+K4fIFGoou8XKV1ehPTITJtDjl5fAcpIhLJ9nk5Mc/e\nMpTnXiLb7PCu9wMml9dZedrHUgliDTzAPVunENEpSX6qrjCBsgf35hi/a8onvvoSo5pE1doitDsl\neBpEbNUxn+7QbHpYfqeAYKsSjMHfufafUvrO3yC0xiwcQN6lUf3Vl1C8OqNyBkVN8vRb73OQq9Ep\n3sX7tEP98Al6dR6bV2F1coxcGdKRqlxyPMPBm99n/4/eJ/gPfnE35HlZI7Msc954jHLBTrkyojho\n0/dKLHRTiJE2SZtKvivS6bQ5sfWxOpo4HS6sgyD+jTS6EidtaWIr2WmMXVxIXkXJBui1okhLbhgF\nULaTnFjrDA2N7OIqCyHoBaw0VY33T0vMhWYM1AaRpoRt2mfrzMRSvEv3aRZbs4Q6kHEcarSXRnQs\nQQaPPHi0Aopk5a0HTym9badXsSKf2DEHPuS0TtKVxKEk8eshOqkGlvkwHBWZpXTKhzq97SWQygyO\nOozbT2g7JXxmAXdkSigi8Zzr87z68q/g3IXMegB38BfHx7bRXWLLh5iuJS7GVM4e2AlVuqwaUWbf\n2MG3dJmtG+vkL7ko1Qt4XVdYzq3gOjW4Hr1KMqNx4uvzlf/2GS6uw+yFOFVlQHI3TbTdZ7kwwJjV\nEL0tRjs24ladO8U4uSc9DF1Gtk4I9rN0nEMcFy4yX/LgP3MxV9hjfOuHbCZVenqFphHEPoKSN4pX\nWmI0V+T9gANHZwWfr0DkQMcWddPu7uIJXCYUHFN+2uLmfJqGM8pM2Ma5kECzt1kdr9PzJnFYDBri\nGEnuIRjznDRMRo4pnaTEveEZs2aQ6iiPoz9hqWsQWP6FGOjvn2AJesm4F3B41olMnke2RKiLFQ49\nPc6mi5Sqb7L/wzdJd10YYxVb9glnjTWsqoLqHPLgL79P+2yX+ZBC5tV5lMoh9dg3eCEVR3XPcdCS\nKLz1DnpmH/vzMoorT25cwvqJXyXzBAq9ABtf/R0uWpJMfJfYN0u8rw+IWtpYQw36TRA9AkelJ4St\nX+br//pnaEIXR1LjejiB4FXodDuEo/MMhiJTWWD5qoePpxcZtrNkuyfY7GOU+cds3IBo7x7VhyNC\n4S9x5+AI1dgiHUvQq9iRPnON0rCNs32B9usJvJMX6BBFC2Tpun+xL1x87UWaizEGzhrD/IRWT0Xr\nmnjy76OODFyXZUrhIGcFAd2xhlCTMc9MpkIKuelD8o4RRzpq1Ip4qqNbY4iNKXavlYE1zPX1BkbH\nwBHyo9SWKcQt+NUzQlk7xnmDmiIw7K1yUith7q5xkBFwzsuYgzSBuRg2upinTbyBCsOpRPZIZDR7\nhqjbgzg4RQr0qXkhKrSwBKNUjBzZvpugf4nh0TFys4E7dIYnYkesDxE2yuzNfORmh7zz4Ba+pTRD\nU+HZy1dQz0msh2LEEOnWb9HxTjg7NHiUPSNn5pnYfhmF8sulOPhz4H1gTRCEgiAIvwv8U+ATgiAc\nAq99+I5pmk+BbwA7wPeB3zNN8/8Mcf+HwL/i58Hmx8D3fpkftOg21LIDfzRBq+fCW64zDuj4mjZS\n4Qpm18/tR0+wDKr8tF6iv5eksTVlc0Xh8PiAsT6PknNjlFQWPQ5OtQLddoRuzotvNYLeGZHV7Uh6\njcvxDD17HaWaJ2gZMnMe4nTZ6B3YODtO8TTb5nH5BCUFmfNBmocVZvYOTkknnhtyWh/hsQ1oVVUu\nvqowrAfwPwpiSQc5tsexnflRqyYd4wGdoMZCqctbf3aE69IFbItpzp7eoqPu88JvxXD7ptiaZxQi\nEu7ClBNjiKYbSD2VcE8hPvbg7T1DfQRO8whJ0hnYfR9x61SzaNEpaw0Vd63DbOTi7NYZF+N+LoTC\nnByWOCzr3G/GmN3VSO6tcz3h5rOfe5F0v0HzvhXbhptzVyb0DjXUdxUW5QUSo3kisRbV4V3GLZXU\no0fsSgIuvc16RyTSVbE4R/j1DL2d7/DW//ynZFLHxOZm+OwSVnHKexaVTXmKnmviwCRYS3P//r9H\nk0roQpJq1cJEE8mNrFwVPRTfep/5jTI+t4PjO6f04haOD1TePPwAlytB1julM7TgqUnYTWCY552H\nb5IZ5pm7MsK4msFzeZPhqMjVjSnhBhwvxRlM+uQrFc57tj7idnqvSj34Lo3FU/KzWxw0T4iXLQi6\nH21lk8yaQcluxRNfolZReJp7mzv7eR44DjnpyuxXfr7yklKVH+1p7HfbtKt9zqc3CH3sWUbHKnOf\nSfKtkzyrrggeXx13N4jrnk5W69OeDWkM3Qzsz6NNeiw3TcJnA6RWi661Q6QioYxz/OgHP8XrSjHr\nrWAGpkiZBCvxOcaxjzG13EO/GCbKKonRhL/45h9zIC2zFG7i9l7gknQOj9An3NRRBTte24gbV1Kk\nzQ7T1MsEdZ3zv/Mqsq1HpprCElkgrvYp3urwJFAiGIzytL3Hnce/cCZHX55RqDYwF15hp1xH3dZw\nphKsjh0cCSpBp5uq10lhWsY/aGPt2RFDTtwxEckyQK+W0TIdWjE34gWNQFAi6fGSfK5LeL1LpRul\nFzjDYags6B3mJIXgoyLlaoTI0E9vGEQ9yVF6+y1uHxtUoybzqXUaDhG3zUS0aMQElbjFTXoNlFIJ\na0Pn2sYaI4eBo/mUL1x4ge70DmrQQnoq0ms26fkT7F1L0glHscgx3KaT+SzoRhtNzrC1uk31L3/K\nWaVCSM6j2wVKtQkPzRFzbYmR7udO5RGOgwdYhxJXC0+58JmPMr/wSLHQttmRVQe58pBNn4C9k2Cy\nMEVARRR85L7576jtdLhfiZMbJ6m6JqQYsC+7iESf4dyrCcq+BTruEoVvu4ltvYy+LiLMfFSUOOr8\nBiFtiYI7Tzd0TCRcYdY9T/7qFv5HVWydFhm3g4rcJn+jQtc1w7Icx9Nosnt2SL+roG32qBwlCZzU\nEaomrkkEvyFx4N5lr+OkmlQYth7Sj6o8NprgkPD6FBK9KuWajGXyLpMYtLpNasYAT8DLxONF8fY4\n31Rpv3+f7atulE4RW7lJIptBmwsxlFzUXB1Gyy7kvcZH3GzRNnr2iH3JRiGkMzYPceUFlLyCNyBT\na9fZ+MINhvYkrtVNSt0HTHUR3aoRCP4Nyvf9nLvy66hrN8h/qoNelhm5CsSHi/z5//A1hsYDzjVK\nrJybQ8zacY8/jru8yGhQJFLXGM3vkrYb1Gp3seTj8OPbnJs5edbsca/Tx9y6TMrdoFMKspS4Stx7\nTHrbwzjgIXas0C4+pHU8YeL0IByGEFtecqES0bCHvd0Tkokgz4suxOmI8PomDT3GqZLG7RTILTRY\nZBVhMqNR11n9uJ3hB7vEgLF2l4Xsbaz6Lgsvb2MVgtz4zPZH3L775A3mz32BvKrR81ixTGM4LrcY\nCTH83jaJjsqcqeJIBjmuZZnMtxiLJrGgDW00ozMWEOp95naHdOMTJKOBGfZiEwR6uT0soxiidYYv\n32Rq6zJ3YhC6kKRgK3Lz7TqBfBPFIePQu1iGh4wefge5mSSUHGMqO0RkDSFgJ9A3qYXCTJcr9EtV\nsrSot0XefqOMuNtltxQh7p1gL7lYCVSoZdIsLKcIqCpzjRmERrjm+yw9FlgNhtlcPYcvtsZ8oUWo\n7ObJ7hMWilYeDR4jpA6QbDK2ikJPsqIIQcLBbWTp/6PActM0/65pmnHTNK2maaZM0/zXpmk2TdN8\n1TTNFdM0XzNNs/W3xv9j0zSXTNNcM03ze3/Lfsc0ze0Pv/3nH8ZS/b82Vddwhd00DT+puTYOR5Ax\nBUrrJTrNIE5B5lNbL5CwrHItto5z00ugZ6Nx18/qVgqXR6ax0OSl5S8Tm7uB57RJxZzQmVapVe4g\nPRDIhNN49Da375/iUnxUqiKTokq1XyN4eYvKJEvkJY22zYEzHuds10L7DYPQRpTVl+cIJt1IVyp0\nD2sMJg5mtgHVooakOLGlFC4krnLRtLJoD6PPixywjHoWZ7y0wcLv/Qbdsyy5t0soz0p4bH4WPZdI\ndoMUG3mWA30MuUGz08ZdUGjmevi3xyQvKfgyXsS+gNbd4Hi/SPWB+hE35ZqGMjuiNi3wgRkmvF1n\nzZOh2oJRxGSyPmCjbSPanGH1xghYhzQGErqQR87qrPecSEMbDj1NQunTfM6BfnhIN5nGqXyWTHCB\naipIZMGPM1PnbvtddkImX2+2+avv/htu3esyjm/x2ucziLkh2x4Xjs4i9lMv0+wYdSGILE4ouxNk\nL/s4vRij3m0QcLa4vhrDdS/MlcUO+cdDLiWvUTyqQ0/D7oqj6QKnngKHP9llz2lBGgUxrzpIbSt0\n4wkE+wqb1hDHsp1KM0zzgc5idY9KfURhr8Oh3OLs1j7NfgvXxhp33/zFYrmd22OmXcElraDuN3hu\nwUJ3MiWoBXE8fEJdnTGvh+joFqznXYQDG4xdOYa9C1Q7l0j5VUr7Pdy6yXLHybOf/TyS5SKn8iNK\n956QOJfhzg805hfWEJUoNTXGyWSX0PY2i0UX3mt2nkmPIHLEtNzl6bITNTBC6gWY2Bw4sibvh1O8\nlLrI8pUFZNsuSqeLok3RHV7csxbi1IOqD2gaKr2Ci5cTn8FmlxnpIyahE6rKffyPZSZGCutamZbp\nom3vYv/0Dfq1YyY3ijQO71C0+RDPuRnu9BHn7YgvhnHefMwkO8WYWmm9e+cjbpMv/T1mq79JTzjF\nIEJHm7BhJHE7JwxtDdTJGNllIWSMGNoyGFIdt2TH0t3CjKfIHU5J5adMZ2HEsRdvvswT6xk3n3rx\nNhc5t2pyMfUKi+uf4dLnnsGyaWHy4jI4BcLJCvPXbYRfiuK7/hwv2DQsjhAz+ZS0181Ze0zYbqO8\nKFN3lengI0cUQWySH48ZtVx0xiFGxRxznmVSN9+lc1TEg4R200AupInJZyQ8U5yRazgTdqxVBc4G\nZBwTrEu/ScKhkO+kqAtwxTYkLi/T7MPeH71LtNPgak/Hqdv5yiyJ+Q/+0UfcUg4PkcYcakXCHgtT\nw6CheMh+5wP0yDlqnj7mwjr+zDWefCtH8cmbOL0T5tZWWLc2mL71LR79uM1aX+CNr73BNHWGp6ex\n33PRC+aY3zvF1elwOJena0rI55MEuyCnRMhX8PgWOEpkGA1yWN/R6ZgRFnpgdxvY4j5GNpPrKzLb\nu1Fir8ZwRJL0OMNdG6JGRJKuJKlijXa7gsWToKfLbKai9LoTznnDKP0xoW0HDvF5fLkoCxMv1caM\nhpCk2KoynU3pSQsUPpvmyZ0D3O4IAT3EIO1Ar1XZYELDTJFyHqLN//pH3PrvVBnuaUyaQ+x3RxTE\nFqfdKrP+e3jfcnFh0sDZ9xE0K6jZEg6hizz1sG4esvtun+pCl7YYQT7XYq39Evb5JY6C54nEr/Pi\nJ38F6d/fo7JXJf75FENHiL3OPnuWKYYawGEN0D93A8evfY7d4pT9ZJbQuoTaCpKbOhkGdMaPdgnk\nXVRji9h7+/QT27wWt5P6WYJ/lv8Jt13L/Oxf/I9Y75q83XpI41k7G9M5shGJyQMP41Yf9cI9XNsD\nhg+GjPNPaPykiGV7hf5xi1qzT3U5wr4WxzF0sONu4VEWGQpNSnsDynkX9R/fpy74eZT7hUvl++Hf\n55/8zbv4M+ssaEtYagE2b27TN6eUqlN22yq7rQLu6BK9Uo5gw4FbGWI5qmDgZbHbYy7YZDpu49WC\nWGQZW/2Y2CiG6ZYYBmao3h4nSpuBQyavDNjbrxNKBIlt2OkIcXqtB5y05qiGNLbF84S1dwnWdIyB\ngqA0GAhFjt1ORM0gON4mdFlmK5GE4SruxFVi2+usnDcpNt3sSgWkwxFLxSiTispR2E5LddByueEo\nRcCS4cnjE3DKeI08E5fIbnRArbODQ67jIoE6TBCopvCcM1moTln1uFBLFbSx9stIlP//Zyz/kz/5\n46+tXf4iAX+HwdMy1VQIybdOZ7RHpKLRLYLZCTFtNBj2H6OM48z7bRzZBbQHWc5ObyE6FuklprRG\nCtOgyFJMItwPYtOCDGYTQhcgdMXCxDVClQY49BmFeJKU0sPMCbjSCyiCwK4f1JrGtdUFjLkutpLE\nXu8Qb+oc/Z9WibwSxVof0q378CoTBopC72adzEac5lGRjqNF05ph1WHSdVQJ2T2Mbk+YP7eOENPo\nVSTMxIxeXcI2EQioaTpTCYpxDOcC06SHqalQ64wo3jzGVWxz2uoS6kwx3DIZOcpfvfNXAHzsuher\nZ4mqbiU0HNObpag6TVyNKN2xgX8wYxwKo3q7+LUQXccYtzzGO3QwEdroWoBISieXfwvcL2LmRfRQ\nCfEwj/+8gOGbMjDdnNWbBB/YqS4GsQg6w1GYs7tdfuNja8w7L1F+/JgL1y9zPPRwdnxAYmmVsaND\nR3BjxNosRiDQl5ELY1zWDPrODpZgGrlaou5dZrQ2xtGqUOu36Zsx7P4COU0kmo2yecGN1k1y1XmA\nZAujj6uY5gWqFoleMkkwJrHsLlEvPoVLa3TzNtKuIOmNeU4bFaILN9BPi8TXU3z/u38JwFf/3m/R\nLdZ49dUYRW1Eb34RPTulqozoOmMYQoijWzuYF+H0/T0slTAL8TjK6hR7xMrMv0UKkb68xKpepD6v\nMHHsYyueY81ZRxvuslQVKZ+f0H50yvmlPmsvf5zHZyV86S7qowiH+imWoYTXP0HpGMwJy/TVp/RW\n1xAaZVrfvs9dRkgP7TRFC6EXIkhPS9QyHiyLA6w7KtmanU7tgKFbRLWpLBUsqJKM3h5hJhawDPqY\nzRlGqEC0MURZukIvd0wy2KNnv4hPrNMuwtzYxubnFiiaaYadx6zGXyInvcfs1IoSl3n7nZ9Xh7cX\nF3l6+BZxxUlIEbl79wyfK8hYEbniXsc+HXH5lcvcPizScU0I2yLU+2dM+x7anhmmOcC76aV5+wQz\nKFPxiPiosIDOJLoAqPS7FWZ6nVmrSe3JEOeZSrTh4VGzSWL+PEb1hBoj7E2NUGweBhKDmM70OMrA\n2kCc26LllYlUZ4R0C53UEtUnbxCQwgwvg1pUke0JdKFJcwapsRXr2pS5T24hTsKUKnu8WdnDaXpR\nl3pkAmP6TZGeo4ZoLKKnLai4aRlzbEXStOtNfJMZUukMYaAhxkJ821rkXywn+Z/u3gbgmdeuYU/3\n8cfL9I8ERk6V0LRHan2bnntMsnTCXmCJ65cirAfcOLpPWA99EWVq5UdPVXymTHQ+RFv5gI39NhGH\nF73vonn0gNSNKJPmjLxqxzAiJMenCCRRlQKdlg3ZaufMaTI/K+LVI+RWNJbv1yj6h4y6G1RiNUSX\nG2dXYd+1h3M84ImkkxivUNWPiO2UOWv0sV+M4k1uoesTnKF13OURetxJoy/TsHTpDEsEvQpmo0k5\n5CDRn9FJNgnW4nT1ENWuwSW3jr9s5cw7wbMSxDVzMaw/5OYHWU7uP+R+oct70bu0f3IMwKf+0W9g\nj8VIdwvIqp9paMyFVpRJsoivV+SxcwXFruGwxfBf65KuXGf7pRXKR8fs3XrIy4FPU403iFr87M7u\n4+8ohAYtjoYetJtvYtayOL7swyjYcBoyztSIRGUBS0ylePc2K+Ump+MZeiCFdzzjRANPuYbWPuHc\nVQUhsYCiBulO7ARrDsy+hXsNFW/qESPRwyvJINej16k+d8RyZB6nHmBglbDfLtCSBMx4mFXTidz2\nosgJfAEXO440vm6NcsjBrBMnthbHsnfITDoHsxnFRpWeV2N+8VPsWMZMLzyH/fQOpt7l3R/8vHbe\nVy7+Idn/9Q3cn9b4wvMfQ200OR028NYMRFUlEPKRWtmie+8Ez5wPumMsNgFXZpvBu+/jvryAteRm\niofaFvSQcAasaGKQUn4fX7uLQ10maXfRCExwmn1Gg03m7DPEqoQ/3qLTj/L6rz1P8YMyUrBC0eqi\n4bYRSdiwFYL03U4221NOnFm2dAVXCdqOOZKLRTSgUBgyOrXQk2+zPYti35jnpJrHPmuTEgRy1j6l\n2x0q/5vG5ON5Vj+WQez3sDtE8socW6c1ErFnGVTd+MN5KIxomVHOL8s0OiJiw4bitXP7nR/xB//1\nf/Uff9mXf/pP/uRrn/vsecxChR27yJVRDLN1QMB7naZrSE0fIWeG1BvvUPj6tzi//hydhgvB8ojK\nJML2f/Z30RjhuaeyICoogk4jW8cMqQwaBo0rAfoDK6Mnx9SjS8TrPXzCKo6zBgeqQjw+ZOy30NeK\neE2ZF15coDqpsHfqxJZo4KlZaat9BlIMpyWCB4OKSyGklpi1ZBbPuVBzM0qbPXpjP5FGA2V7AfFH\n9zmSF0klk+wevYlsT6ELBs5cjWHtGFvHzdim4nS7GelBIuYelUc15oUDNmxhrKEMwvqz2Gkwdnew\nYDBsvc9P7/08zcHzv/pp9H6aVE2iEfQyLEtE3BVyszxNZ5+Z4cFsC3hm+xy5THpCm2Y3RsCrYXN2\nGcw16RhObr77EOdWEP+gj9upYjUFjJnJrDQlYlzAH/PRn5hoPYPwcMz5pS0WiOIqHXF4/BTn0ibv\n37/PHDnMtQWKkycM7H1SYpq5L32B3a9/l32jxdn0gEUhyCCcxLdwjFXUEVtF2o1D3LMLiH4v1rUB\njZ0gbmeNrj2PveUm7PTisNjIIeF5x4I90CUx72btwiqdn2TZEV2440m6Oz5Eh0bI3eO4fIQ/5ef4\new946cvXqX9nnzd3fgrAc/UEwS+e53vffpd190XCLYHT8YRLizq+/gYWeYoctuC6s8vlj28h2aLc\nu3OG4VeIqkNMfUpPyGFx1Hjr7h5uzyWWmqechJ+Q9F5nNBxjKh3ObA2CLj9nB1GmH3QxNkL0zDyB\nmY+p0aJ/0oFoFJtLIRewMHyQZzG9SEgO0nePuB70osU9tFQvgV0XvS0RvaUhmvMkIh5ahswlecR3\nf/YdPp5+nVyih1yNk3XWiR1acG8c4NZkxiTxREXMPYnspIqwk0ZZ0/Co5zgrH6PMBVD2ajyxGgR6\nMwpnDwgsGhztvY+zk+G9pz8XUV90/ib2mwKO1y5TPXnIJz79FSy+XWQB+tY93P0Yx+VjGrURPtWC\nvKzRLzugNcBhF6hmu8Q8VtwLLihGSLUUbEKUvjuN84adQjYCDhHhcZ1YII3kdGHG3SgWC4KzzeYk\nTEWKEq+5aYZcLNX6dOMmPBQYpcbMz5JUn5bpa3sYkSX01hjPnUdI21tMUyPCzQa+aIad0g6qY5kb\n1zZ4Ip6BWWPY03h4+gTbdMpm+hpnxR4Li26GOw76kp15Z5Sa2MBhwtmojju2QuL0Ph7/Jk1rkehQ\nY2/RTdwe5NddCXYzI/76ez+vcXklcJ2g/wIeS4FptsXAHFJNTciXRgSmClX3kKqqcvFL55i44PTt\nYw52H3Dc7TPzt3ANT5HEPN6Ogi9wnQc1k3HCjtGxoDnGuOfWCfVMbNIpPSVErq3gtJ/gmq3gSOyT\nnpOpdj04FTth7ynlfoqwz8dgJqB3TBaEBJ11P8GHQ1xJG51Knv3RIY61GKoewLqfR7OGCFVV7H4L\nTj3PbFLDKzRpd5dIeZ8wri8RlPLUT/t4pSjGFRvzOzqNdYH5vo53pYv/vsLQeYbFu4z3u230QhlP\nx4Hl9RVcKPSCf5/FZ8Ps/Pl3APhPrn2Vk6NDHGaPUlqnaddx2KZY6kn2LprEXDB7nKO8ESBS8nGc\nrjGdwKlWJnLoQQubbOBiOgpiWmXC6h5m2IJPOqaoyASe+QSCzUrL6UHbOSHc38Cb3kWb+eil9nCZ\nSZwOGcXI0UsmWHxvhiVxxsUbAU6PokgnVRpqldybD7FvBcjMNzGSaTreNCHJj2rNUrWLbAX8nL6t\nEdl2Md5y4rx1wM2fZln/lIbhcVCSK/iEAJMTjUuxDIO+yoJfQh49IHHpVfrtB3R7fgr7+5x/5hxS\nKIzatnLJlib0IMcgLhNtOfjhz35eG/R3fz3Pc+drPP/ql3hw+xRDe0RpOGMibjAZO4m0S9w/yLN2\n7hmkvSMs7hCV2YDxzILyggvrTTfq0hRzQSDc6eMYxXHOVGpTE1Mq07XOCAI6VobRFj5ZQhpYqXvP\nGFm9TJU4+z+7w+S5MD6bzkhvEDuIIfq6C3EAACAASURBVOs1Fr/4GbI776NZskwkE0mP4DHcVJZd\nDKpFfKURG9fWMUYtBmENuT/AXlrmvc4Bg7aCPeUjZIywz/qENzL88+/9Y37jhd8gs+6lVzI56hiE\nbTr5cQW3amXPWcBmtxFec1IbdzDHSUjbae7dZWY1ebz7gN//g//yP34R9c/+8I+/9isfX2Aa0lDH\nY2JbDloFlamcp65eQJ448U29rDmdiL9yDd/zq4wvxBkFQiiainPXT8svYUnbccQUOkWdI9sRkiWC\nljHxNzvYeodUbeuMOw7kYYKOq8B4nOWCa4W+y0BvaFg683Q9TUadEgd3HFycCPhsPWyVETOPidTy\ncKbsUbGFWVDhZMFOWHPTC095+/T7JBxufEYdm7FO3qviTEcpT0o02lMi7hX0wh0i0Q0aHRm/L4Qe\nsDB7eMhRbcgsvI9vskyhJ+C+GKXoqMPUizps0HHnkbSLeKJrDE0vb7/zQwB+85UvImkesrMxujxE\nDp8RiViYrycJBpcwXTni7REHExuDZoV4K4i7f49SRsJnTDBrYeyeOJ4bW+j/ew7P8zpFe4rdbo3W\nfBBX8BmeDj+g8EGeRdaRXKu41pcZts9IyWWKaZnEdBl7f5+QzUp5Y5mMxcu6bRVhOY3/fpbcTMVj\njlHrdq64r2B51Yam5gkXVAzPOp2hB91RIZ7L83D/HnOmk7CZJt+RWOxE0eZUClh5dsGFxTZCmcRQ\nhT7vff0NbkmHXP7q32fwoMD9t/+KzMUwY9+YwKVNJoqPkH2J1YUQ5XoB3ePk7bd/XnPwK5/fIPn6\n8+T+PM/Wr9k5PRyjBWQS6xEcXZ2zSJ1FpcPAFeTgkcDK8gjH1Qi0jokbp5yUasR8ft7a7xMb+UlF\nJ+wZmyzNJPThY7Da0CpXsYyilFo9LtzYph3IEu+OCZbg2ARvtoQY8xJVg0wHXVa6CoWxgTRQ8Qc7\ndH0bXLn6GidH9zGMCIHlFgFLBKWj4jzSEf02MoS42R1xPpVmfMlH7OYU30YWSW/TjVrxHLs52PCh\nyocMuj4eDN9jezDH+NkkW9Mkt7Qn2EYtZLtOxLPItFLClxBQzBh7JiwtBZEzMd78zhsAvFh9k99/\nfomH0woXMheYHn2XmyOFnCwz15XZrd5jmkhilAQCfjuzoIh4prJfLeEM9FldEhgXTAoFAaEF2nSK\ne3KCcWSgagJD6y7SrkwzVyf35ISoLcbBzE2pVkI0ZWyKE7clh4ibZRUqG16sZZFhYERYa2KJecjl\nh2w/u0S3eoTnsIv2yjqj1phyvozSCOBanKAt+oiqDSZij5Q3Qr3UpFNwsK3IrPjTdGo9fIEqx3t1\nxqU2Cwkov/cQ/0KA+LzOyVgnWjvlOHeGb/0i6JCvT4lFvSzdCHHhgUbIsc+//OlDAJxzLzD3iQQj\n04FfFHDOnEjBRcJ6Ac9kitD3II3K7Dw6QP9RhXzjhMuv+4m1enTDLVbcl6nPFlCDXXqmm0i5ib3j\nIXPOSUnOEnOGKc0qBEOLuIwiYq/EWLjMID1GFG1kSzEuyWVOxz1KpXU8Cx3GjhgzVxu3t4DNPqRw\nMGOS9uGo9xlY03iTG/jEKslCCmsqhBLsIdskGvk+KY+TysCKpsUwqzVC/TSGvYPVGsdExJoYMLVI\nPOx/QLB7AdMqYdzaw3hunurpkIVwnao9gymNUF+MovTqvF/wsRTJMPbPsfOX/wqAT6y/QsLjQp22\nyM383HCsMZO8DCWTVt5N77jJ1vkkWu1nmGMd23DC/vAAdXgZ2dZkWHNQUWTSsRYVo4g51MlOPAS7\nJso0wsn7PyJwIcii9wJmyoY+O8SaT9Ar1HBvbVO6V2QwDmPUj1kP+GkbI4wb53l8cMi5SI1jn5vO\neJWkz4Wg+jB8EmKlTks/wLcF0rGF1YREtu9g1D9juOxC+fYPEJzbfGL7HJo1jSzIKOEEFb3N7eoQ\nJWyhUXhKrWQluCKyf/8EpenFFxnSEruE/SqObI2VzVW6QYH60w42OUc6YOWbH3qiPve53+PO9Dv0\njseMpFOMoYBR6CKpefyqibHkRNnepDU5RROddBfbrHtTZG8f4mwr8H9w917PsiT2fd+np3umZ6Zn\nenKeOTMnn3Pz3bsBu9hFFgyAtEQwgMEkZZkmi2U9yCYBSrJdJbhUtkRZVJlly7LEoh9oy7asIkEQ\nBEFAiLuLjTefe+/JeXJOPd3T08EP1+9+NfUv/F6+3/qmX2COvz3DIs/lIz8bL1a5uPAxas7J5RSi\nRhAxauN6u0hBD4+fOjQlk/g4iyHLrJbKaCJ0pinEQY+ry68yjN/iwzN40K9RNjvkjtbopResWSBe\ndginw0Q8BWraGZdIKK044nqZ+FTjyDejsogi2Ps4Pgtzo8BSxiKzbPMrfz+O8uoaRt1iz1yQqkj4\nvEGKUz91wSSjxRGTNu6DGUkHwhMHIRvk0nvMNWeTtz58j//iK//fv/P+f0+ifve/+b2vvnb7S0T1\nEPlIkMN3ujyafMh6+SW6Y42C3GfTX2bfcvBPmgzHJt23HnGsa7TNE1asHpenEZTxJS37mOyFiWc1\nSVgPElP9RC9GnHnDZJQhG9EY3koDz70uk+sr+CZtpj2VZ+2nxLfC5I+HzNUghtuj7YY5j88ZyS4Z\nwSEajWFoGVK2y6U6JnZ+yLDkRbirkSjEGLYLZGIFquKUqOHHXBwRii6TmkfJcgRFH8Z4iJAcEk25\nFDf9hIxlgh9NEWmt4BkMqCRBNnV6Zyaj8JTwjdtUz6dkEzIpv0D3+Ji3Hzz/A3f9pS0i3nVGmQVW\nBLJvDWGWouGZYrSeEA1tovp6pFZU3KYCW1Pasw1k14vZz0LikEtznRde2uD9+h6Gs0lu7DIQPAQO\nDWx/mJeVKVo2hhh0iMktZpEQrhkhlwghH2cYBE3M7TTPzqtUyllq93SOfDrjnRbnUYXJaZ/VwIIz\n1Uc6qZA8ydIee3Hu6sgvZeh3Z+RGDp1gjJVraXxJA7txjpVQWLspEdA/ydadq/z43tuoz4IMozvk\nuiG6N5bIGRb/53f+BT/zyZusZ5bpBaLMTzoEak1yhxMO8jPURRVTF0gua/zlnz5f3/7sr3yS9/63\nfd74hdc517pMDhtM8grzToGWIxH2t5HuCTgHFh6/Fzeo42kMccJRjE4Hu7DFdngFIetyreHFq3Tw\nxcZMPaBF4qjTPn1vg81FHCucwjJ6jA/yZGJ97EwCz76MFi2TdFwOfDM2NsBv+YnFo9xvHyF5PgHZ\nMLsf/CHzRJmXlSBRu05tEaVdGtByVbqzXcz9DtXT97GULeSSjlXZRrRMOoEUujDnMhpkeW4g6Gni\n0jqmz2US97Nh7POwJYDowxMbM1nEuRhMyRo2i4RB494FTlJhYyxx0N7n7jvPAPhVweb1xC/wq9cU\n3t3fJ5OOo+b9NL0Wy5KMm8iw1Awx2e4RnwrM/CaWJ8CL4SWsSpyob5P+mcvYPiGYXCefmcCijoqG\nUu2yWFqmJO4QVgaEfW0SpRcQN2p4zCEBI4Y0XzBQSow8AomwD6055Vw8JTUSSYgjqoMUq+FjpoJK\nvuqQqnwEa7qD7l8iuxlHD4c4dQ0CgwSGPqcXyjIeTBkoc65lQkxaM4Jjm/rygHsPZdY24ySUBK1Z\nn1jxCoLm46Rj459NmH74AOnGNvmGj7HdYjL3szYfs3vUYu2eQc0/5l/ffwjA0msvc8WsEI9N2T88\ngxWHVs+HOB5gFjKoKZGx3ya9WEFV01Q+Eef4JIyyJRE9gA/HPjKjIdkE9LoqnbhMeLvHiAny3QT1\ntQTrQoRep4ZtwFF6xIor0ZVlWs6UK5MO7ZbLwN+h6MaRBZNLv06lM6blz1FoLZiYHuzwHkbfJCbH\n6Q9PEIQkuVybjjfKsinTjmlo8yBiIcIoqFDxnHHkCxCxozRyUw4mpxTTZUapArk9GY+ewh1UcZYu\nWJRusHgmkChM+PD0HCFYomK30Zwks3aUSOGY3q0CxbzAe//rHwHwkf/6FxjbGmbFg+MTWQSS2Iv7\niB2Raze9RIUMkt0n7gnjCc45fRzjp37xp6l+7y9wByNeuFMgsy0zfHiCWYgw98ewqg2iRZHLoI1H\nznP0FMxwHclawlCe0urvkHzBprOTIbRxSTuYpzbZwXMIIa+AHjxhvJtB3i+Syikkj/PUkxaznTPS\nqRGjWyYFzYOzIzNO2Tw2hlR/1OTSV2PF+wbL/jE7YpumM8U3bOM4Z+w8zRNqPiY+vEmn+2PSW3+N\naEzlM5/NMvMM2dx4gZNxh9vSFmfjIVErwEVHwLf/kOTN6xy6Y87e/YD7uwcAfPi2ReULX0QPWpQC\nHVoXfYxyFMESWLl6g7asYjy8xGklkMNt3MMIHa9NqpKhKDW4HHRRr77IonOMP1KlI4Yg6aVYdvG0\nqkRlHamms3d5gRCPsLEtkE6FKY0lDqwufvEpQauH7n8J0ZzwvjBhx/gOqfAqpaUYnqmJaIoYsovX\nc4Hn1hVqOzNavjMyqk6vI+Kkh/S+8ww7FyblVnDKIcqFMHIwzsj24dfSNBoFBul1fv3ab7L4jS/x\nufIKBw8+QI4G8DEiHbC4sOp4pxVOuUCzC8y2Q3icA0KFNL33Dnl4vMdvfeW3/+qTqH/yP//+V1+6\nlmTksVmEomTHNcqpaxwfnlO5FSF5dZPSp5fo6gdMfEnCJqx88TOMm/vcKL5Ctw1a9xwlHqao3eI7\nT++SvRpkyV3gVfPsnvXZCGbxLOI87fRZ6qwgvbSB1PZhDoaQqbC8pRITh/xYtAnc32NFvYJdEIi6\nqwjtBHFE9kItlvznNOZdXrBmbE5sbuWWCPvG+DJD5u4Az77JNOIwffbH3Hy9zLgmMZnvEZj5uJi6\nBJcgbno4fSYyOPLRWR6jtBqk10wEQUc3FHpihM1P5mkNVrDmDda3sxzXOpT9OtGexZ/dfQuAte1P\nkbkpsf/9NuujDLZfZfG6l0HXJhKRqWtTLgs6iYFGZ9tDsJ3D2Uxz6+Nx3K6L6AnRW/gY9Y+5dN+n\n4qTxijtU1ThXFkOyxTKxVJl+e0HFyDD07UJunbR7xMOWTSSqcHfwJmHrJeykifv4AF3tkVO2uX1l\nhWjoDL3rpeQv4kY17KnKs+ZbrFsGUlqjPkqQi10wnXoJNDoMTiSkSBynLbN9Y4UxcarRFs533iNv\n5pncaUBMp3Dbixv3k9FcjFiMsPOMldsfJeWESGckrGKQveoh3pjK1ew6je6IXNjl61//IQCf+bXf\nJaU4hHI9Zvt+pmqQm9kNjPYAI7GH1z/C2ysS2PRgJkRm2oT+UGb03n2i1zZZ9os0fVB9vMd4vEcy\nfZNBN0jfbxLTHHK2i3hW4ll0Qlzpsmi38d4wsR5kCcVE+gmJhfAQLSqROhM4XRGx9v2YWYOlmA/V\nZ+HV99gI3eZYv0DpnDGqROhduixCNYI7VRTTRb0ZxVvI05v2+flf/zu0/+B/4SxhUPBuk9cbOPtD\naqllYtMedVEgbXmIbKxgD6JYgz6zgsuGUaK25jCvQ1118XQ7JJfDXCkGMONFEvUJf/Hu83D5f/Wb\nt/n7L1XYNxNEEgZDK0EnGkG26ghDH0N9Rt+4gEkaq+sSzgmMnRxN7yVKMIIuexiJJvmsg+QGEEpT\ntMQ1klKH8XoQ7/iClrpJJDciqbsc7j2CcQBPIYU+36cV8qB3TzB9PsJBP+e1IzLTMKbl0p2tMgs+\nIry0DR0TZ57kODbEDRv4RC/CyRxt1GM14GcxGpHa3OSy+gDqUdZLJSZum1bLYp4O0hdNbC1DqlIk\nrqmIiR56v8N+oUFuvuDW1df4sN1lY8mHaMyZNScUvSKnZxov31jge/8eo+gp/9fT53X9z3/qNST9\nPktShVkkTP5Rj0h8k5Vih9EwTcCNIMfDuB/OMV9qcu9djSv2HFmIcS8ZQDIu8Re9zC43GQdbeKKX\n+A8KhDwxYjGLnH2C1pboZLuIkpdKS6bm8yMc+YlFWmSWo6BCf+BnOagxEpbQj+fE3DxWfcbRLEBq\nU6E40EnvpxhsCEgRmaQ65NyMkCTNcDInbPtY5AbY+zmscoPpyI/fHnCRAdFaQmnH8BgGZY+H+8a7\nOLaLlZ8R7iRBPMYI2jidfWLe2yhGHyHoo7ZwSPuDdLQ6ze+3iNPng+8+t91LwY/QVQTi7TlFbcog\nrjH1pnkWzpMe9amfN4nXcsyLEo1eFG8BBmMdb0dm+6ejOLUS+kKjNwiQt01ikoAkjvidv3fIx//W\nL6NGPomSaKDbKXLR72P1I1RLM9ZHNzDWAwzfnBENqSSmTZxMEP2GzeRr5xjlBcHcbZTeATPRR3gs\noL6sMtRnLEsqF3mTsevicyQSvi5BrY/jZrj6hsTxdIbauQk35/hkgflcxRnG8OU3mY1rTAJdrmzf\nohpvc/nUpO/xYUgBhESUqejBI4ywtAXj1ISBmuXovfd4zVhF/cQ23/6zbwDwn/zh65RsD+l6nWP3\nGuvzCClNwe7oWKaXTFtEk1XytoOe8ZIkz1CcEuhD1x1St/xI/lN8/jJjy6G3Y5OSIgTGA9pTiYwb\npCavE1dTbM4KvDMJMI6Esccifc8hVitM/36L6BtLLC4eow1mxE0Xn09kEnBJpQaIuRWOHZfYQmNi\nThh5FZb7LZreJCu+OP33NLZez2BqDoFBiOlc5tTsIQU9BO0uoegTHKHCm+885crVX+FXf+NzuOI/\n4vGHT1g67jGIRFEDG1iLHklzRFxy6RUShC9g4jcYNLqsbvwMP/zR/82Xv/w7f/VJ1O/+3v/w1Yhg\nkLl6C8WxGRCmqjRYGpWxpT6d2n2O/uRNzEcyxfoa9jWN5oNzCqVt9nf7yKbOyFiQjaZIpZ9SktaZ\n7h+iLSzilQw/+M47pBJ1lEye2JqLHFhw0rlPs9PBnwsiTc6Jhm2OGx6adS+RuIp1LY7aDRCTBOJ3\nLukYD7i+8gVm3hLJkYMsuMyyEhsbP8uZ3+b8HS+Su8bijZf5yE9cIfLCJ3j3zW8hewMslBrDwCtc\n2GnM+oLkpEs4XiIgTMkNYFoL4eYWLJZU+lU/iUIf56zPkSeI2W+wfCaTcGscTGIUCnm+9p3n81t/\n46OfRvDJ6D4vt8NRxq1jhpVlYp5TFuYypXmL6K7BdGmLi70eiWslpPEOwlMZPQqTSYeSHKJzvsDW\nF7jFAMZkC1HaR+ktM8o9Ya/bYrNXx1IXLIc99B72mA6jzGozKj+5TNjQGUwXXA/JCFIcQfIzjDxF\n0Nu0j5L0Hj7BcyPBqN9HXQRxhmVKfi/lX/t1pof7uFKKdjqL40bx9maUNkRSV0qMWnEEr81+f4oW\nLjIZDIjNbGqLKb71FEp7BTEZYi1ZJXieo2e18Gd8vPveMRE9Qrc/Jr98lUd7dVYMgUXJ4lt//FyJ\n+nwxg75Wxi8v87VvPkDEZhBqk3L3UM9lJohIoynRXBrjXRc3mCSsPWGo5Fibhums+SkchXhy75Ib\nkQ2a12RGUodXBgL9WBB54CBtzIjZC8LTZRqnfeQcjIURkVyZSNzH0ZMRAb1EsiRQubSZVxSkhRd5\nOOTJ7iWxicCz1TCVwQhB8RHRNKKZPt6LIL38Mr4NEe9xiPWXImQnOvV3PqBl5CGSITo6ox9J4Y2M\n8I9dkkaYcc/E8dxH70soDS+2b0CmP8O9LmI8cFhJLtPuvYedsOhETEItHyFhnb6g8N3vPc9afPln\n/yn3cgq9c5Mzx8PbO6fEUyBHRDrnfYIZh0L+ZSIhk3qsS3BSIeR5QtjsI6VuEmg2kcjgbAUwDR+G\nZ8S8WsMMF1CentK0b2CGzki3czTXK4i9VbrSiKDXQYjEEfdd/Kk8K4Mwl90dkleKiEM/0TUbbBdN\na6IEJE5OWnhvmdjzIemxTK87oZMMs+HL0o50iFo+2iOZxmKBPysR78dpmUeE/Dk2Swsu+gGuLMdJ\npeZ0jpoc+UXy0STa0EAICnzi5z+D5QTo7Z4SShwTvAzQGC6IbJUp3FqjKIzYKxT4szfvA1D+2Cc5\ndqq8WKrQG/gg2aR/2qWe9BLy9YnuR5h1D0j8RIZh5wx3UqKvePCMXUKpKWqzhO7XMPUMa16ZQMSk\nOWsxdvr4yxGMcx/9zBCqW7QuWtS9FdYLXVK9AEV/npOegYFGOeRHNE0s06DbnJEwLcRXBJKNOmZ4\njOikkaUe8fM+4cAqmtdEtRWsnR6hcoBQ45SuE6SUtVCEDFbrAkkqMLn0E820yYbHpJMG+plCJK/T\ntFXCbZOWz2Qll8DjdTF6PoaTOMbNNP5slXhbQ1aD+Op9Jksi9qXKo4fPbanP/t3/iLC7IKeIjNJ9\nrrXL+KIBEv0Bgf4FrUKU+thlIdTwJ0aYc51CaRNf74K3v3+J8upVImqGcUzALMhI4Qyy36SbepXS\nL/8k9vGQUHSXWxcu+3KZ4myVuHjBmZNkfH9IdmNAV8qjeTvkYnkW+gpmT2aR2MIzeERv+w527DGL\n3i5WYIaaX6d91ySwViXTDpC1AviMZcJukviLMZ789r8jKEhsfvoaPFiQIolHj6Evn9B9PCZX1bn6\n6SgL7mLtqZy7p0xUg3RzwJ7/EQI6i06eaa6JfJjhxpV1/F4DvFXCToqv/7vnJOpLH/tb7A47eLMJ\nHHGOkZCQTg28S0VmoTaFaBQpNKPVS6BWpgz1IUmtzqlZYKp62Rp6MK0wynCKN+QhH7eQ4jOkiYlc\nt7DDDjFxjHtk8zQhkJy0mHoaWN0WmVACJB25kkNsL6gP71GoRLjdXaOUC+KdPcGqFfHaZ6T0S7BW\n0B/28QeiNCsCwzOd/Iu3cAIe6j2Boi9Iw9wjFV9QilxjPpmxUM8JngUYiDpLZ4/wZvJkj77F7oFB\nZH4Tszym99RFXagkZwqdYonDRYfEMEajUMW3cBk/M0i7Ed7be4/f+s//zl99EvXVr/y3X/1rv/jf\ncTl7RCYgEnNdapcCoatZ3NMAWsgl4PHAC6/x2NghJYdIKj4CYx89pYo8EihE40hCk87AIdo/4yzQ\npjT1snPQZ/M1hbvf7iE2RfoeEGY+fK7EhvcmnUAVNaDQ710lsxRlLWtRWL7K2dkeY9kks/UplKCH\niwdTYud+OrVDBtaI/XdtTr53zCQSpn/q4eG/3cX76pywds7OYy9P/tETPnInxvbVOxw+ixHo/ZhY\ndof77+6Suf5pysEzHojnLDp1jFKGQe8p0fMEN//TNzh+e0ZPdAhvbpEa7zPIZxnu77PzpE4sqPP9\n957beV/8D77I/nmP7e0JD4MKU/eM68dz2lIK251Ri+SwJhG8qzopX4D+SYfgwCE883F6UcMNJ1AT\nHs735+TLMEwmSQzmZGWDqqQS6Trkj9LMCmUGgyqd2Cqx7jl+f4Lla37uvj0i61PozG0O+3t4hQhh\nYUJpsMxhT2HJqxG6dYNn7jPCUp5HBx3u/FIM88EZs0mV5Ktr+N7TOJPaLOpjAmGbmKTSpMfCV0Hs\n7iBrIqndKXnRy6jnMtOm3Pzpl+k8PEQfLtCbY7rLMdzjCbaySSbYYb8RIzXxMKudUPl8Cb+R4MCf\n4v2vPW/nhf0X5G99jO++80eEXYfirW0WuzUsZYSQiBFo3yK0MaEmxAhKbS4bu+CK2KKF5IyRhSi1\nlSyvFNL8yQ//DyJTl0ywRL/WJHitRDfehmGIwbrAUBjRX50j7C6xZ56jmCo9y0RsiuhjnXikziMW\nXH99CfHuh2h5gWksQzEUQj5rMIpFiY1k2pUSxqGD39+leaFSUjTEeYN//vv/lktpjn+xwN10CRoK\nx64H3UiiHYpM5AuE4BhrFiW+yBMPd+lH2gQz16DtoabFEKxjZn0fbVVkqscRmDM0NZzjCckNi298\n/bkyEC2tkrAyVNMTGi586mc/yY3tKxwMTjC0U9zZBqI8pd8fo1SHEHUYLHocOVNinjG99oLG/UtW\nohKxgY7gKVBZpKk+MvBXFoSMCSG/l9YsQDxoMejUifbmpLpppLyNrtSJTWWENZP4zCaqbjD3ztGf\nXBKXdFL563QUiKgOrVMf/e4QKbNGqNDCOrdZ5Oe0jy4YyyJLl3O0tsj1kEEr1MXsqkiVAJqZZjE4\nJpN+ibOnJ0TEMF29hhmZ4loJFHFBtdvk0c4zVjNhku1VLrd8pA0v9aM6suJH3l7jvXu7/PjxEwDu\nvP6bfDQxZKLGaE+PiOlZwk4Mf6RE9FymnhtTPQGfqTO0E6wPbTbmft4cX7AWuo7hnRFQmhQTXd51\nVBanu8yRuXPnOvr4JqeTMZ2TJ0z1DuGpRKLcIXRvgpSdMLxyA/XRPvOwh+E8RFsrkMlrjFyHyWRK\nccnPIrJMu9YiYGfx0eM8lcLdnRMLTrFEG7+WYJTtopSCxLoazfgW7RMD2w0SdaYs9DBTpQ5ahLGv\nwky7hyYXQRhRLEaI9pc5mwm4ro8rHVi/UyZU/R7HtQKhTISuWyehRsiqqzi+AO++9TxY/um/+WsU\nqg/ojoJEvSrOfEyt2WIQqxLfuE76cMgg22YrIGFoXiJymUGqydmTIB//L4vMfwTDi7eInOjstH5A\n5d0zduUUecr89S+V+bD0PzHpHTAzFUqFEa3hOaN+ENN1iOdbzKPr+M9sJtMC2UKOM9FAyeZYaF3U\nFZj/oIeltljMr+Mb9NnZk7m9FUEoeTlpb6LFKsgpheaSSyAw48rHXyJEkgNfnd5bD7GdFL7MPnXL\nZDXi5fB6g7NRl2XvDYwVLxXHZtzLUR0PWddS+JQeYcdDZGzilz08OjrnhZxKawjSxM83331+t1/7\n7X+Ieb6H3Vyw6vdTN/eIz94gZ0j0ZyE6/QH1mUbcE+DsREc2HOZ5kw1JQd6z8PpbxEQ/5DOcOzMK\nwQqmZ4DllXAjOTyhCc1nUWbJCHm9ibt2AxIDPM4qutRg3JGxeiYv/PevsfGvNbbuRujv1CnZeU6y\n9zDPHEZZi1y9QmutiR4TOLxbp5IokcOmPp0wb+msRkwGup/Z3hluIUrtYkbtySn5VJlxco5Sh9DQ\nS6o3YFZWEBsiulnCNGWWfQ5eIAySLQAAIABJREFUyYfX8tFoHJDvmwzXcjheg6JVxHNNxQwMeed7\nb/J3v/yVv/ok6l/+8z/4qrz+Gm+8ep17pzUCK0HyappUq0U3rBIIh/HaTbw9mZz3KtPhEY1OBLM7\nID2boZodbm6mMA6PCdyoMBXOSXh8WMsb9B7vErnzGa7LYQZlg3jQ5L3zCZfHlzwzhrzxWpmho6IG\ndG599BqXo6e0+1P2nTPO3nyE3ZlSfxhg72SX23mJbs9DTAhRvrpBdtuPKzcpGArK62WW/VXCzQGR\ntEq71UMSXoDOLuJmksrt11lEuwwFeM0pMu9GSU5N3lr8iOKVv05GCtPJx2k+srmY2fQ4JN+ZYF8e\n0fXM2F6+zhV1Rm81wVt//hzUPvaLX8QvHCEqJeYel/w4yllFJtO2kENBZPeM4ERnbs5w/V6uxiXO\n5zZDpcMryjqXkofWwVOSdgvrNYXXPRHU4RBRjbGxqTCbdzhuzxhEz1EDWcZ//DYr6jJz94KqbhJP\nCGRfDNHqN7GFPt5Xr+B1b6DFnjDoeAhs+pDFJpo/j/3kEOlalvnZgvA8CZk2ze/VSa0uE0q2mKgt\nkuY6D8PPmNcLXFLFmCmUEmkOIjoxY8jRQZbD1ze4v7pAORlytu8SfuwS8oy5DEeoVt9nNZxm2ROi\nvSnjOPfoDtI4/R5zReK9b/w5AP/4X/xTHv3L73D9E3+D4O0otXMHRz3Gn0xRmJTJuCcIyTIJ4xSp\nmkFY71Ke3KaQsgknUnSXTTw7fup8yLWbN3mh8hqdfo2wRyI0S7NwCsTsKvXjVZxgD9uccD2TYnvt\nRTwX94gpIuI0RnDTg9VM0Tx9hxIml/p14uoymjGieXGJ6puzmF2nsKrRN4MIsS6NExXR6xAhze3P\nZxntSvhKWxS8txkmRsw9MtFUjP5b7xPKBai0Q/T9Nv6Cj8WLWc6+rpN7JUCTMa1oGyfSIXjYoy7X\nyGezlAI2qSBUj0wuXS/RnMv3/uy5gvcTr91GPrxkYVkc/7jD579UoRmcIFo+ErbJq19YovPhEe23\ndiG8zjwcJllrkRBeJaUHMHozUtqC9WCZx7su8bjDrnRCSopjLMKoaZnRYsaq7CM2SBAt5zgbOcxz\nXvoNGTm2BeNLfJMy1VyXfr+DEdaJ3S7TFVy8JzUMr8yg6SCEEryybDNxgiRjY8JTFf80gzRbQcmJ\nOJJAubigFRaJBLwsKwKhboq9ts0wGWHiiMyCAl7/jIjpUDdLlCtppounaO0+k5aXVW+E0OurHLzf\nYBxtciu1TnPmY/Bneyh37vDtHz4Htev/8UuUJS+ezDqNv2gSv+MS8Zvc05qohk7AFhkIAuNYDWt1\ngT1TCUVhcNVCqndQ1hSMmcPFroeCeUG9skbyJT+ND6bY4vtM5yly5QWm62conmO61+nnxkz/0qQT\nOSBSEZkIBdxGg3hijKaEaJ4NiKc1eoYHO14lHQ0jTHSYyISYcKpohBIuihZitHSB3ukyCAZY3rxD\noKWx7h+QaYepCUvEb8g42pDIqECm3KBXvyCpzlD8Lot4mpAlEIvXmNsGQydDM/aAVrPCWuoEbzvG\nvNMlu3SD1qN36a/Uufed51my/2zDTzQRxCNNOTaXsIZjBtECdqNHe1DF+UiJZ994xNLqJ6hdnhHN\neTnbGRH4mEJ0qvLed/8cMxFj6UoeaW4hx65xJXOd2JKG9istVpUpkYsMptOmFnMwRx5CbhAzL+AP\n+yjdT+EGm0xCNXQX9JaPzUmL4GKKlLFIWutYJz0UfUK0lGc7UOJ7o8cowmsYbo1465SoNmToQK/R\nIrfw0x8bcDFiNfIy0cAFruBhNl2jFsjgTQmotoHYS+FRz/jxeZWfLLzA+e4xeavK+V4APRxgUAhy\nsV9la27wzsEY+SfyWILK97/1NQCCL7yGPrxLrLyOYI5Yc19mkpkznhxihAYIpom6tkq6aNA6nRB+\nY0aprnB3OiZ0O4uyfg217cWOStTvVTEbO4RLKU66HeTakJCWQUz5SfmnDPLb9HonuG4Ez6hKrhtm\nWV3j3vD7HMX+FdHEdd58z+Zbpy/zwc4muRvfxDQ9rFsephthhGGEii9DZjWEGSozXyzwdc+Qb+bo\nXvYRvVnWl9foBc8pKuuosSbVmUJIKOMLtPAnPAQ0Dw/CIpsrWxjTGWlCtLxBsKpMXB9jK4qYM4gu\nbCQhj9AXkdU+fcfPwx+8x9/7yr8H7bz/8ff+yVdbP3gf+5VNXGXBUJOozUyWPQ7DRQfPxYxsuUzA\n0vjRXpPiyhLmOMN8aYomqixiIYyzJsLtIvuqn2Bwg4myynw4IH8niy46GIUp4kWYiP823mKEZTXN\n4kIidNAkrI/xtKt883tzzmsGj76xx43oC2ykb3MiPGFzK8cbOQ+t6RLFqItZbZFXXNrv9gjlwtQv\nzrFjU8S7ceKRJF5JwDucUFlq8+jHAq9uCxx9q0F8+1MEXlpjHAqx9GqJWMjLlZc/TfCgTndioA7j\nKCsusXCI7LzFeUMntvky2aCIMzhAWY4RD2h8/U+eK1HLa6+T6NTxpmx6LJGqPsMpZ2n1x2ScNl7l\nGsFhl46awCO0URoOsZIMWojzySVOQGbj1U32hn424gtMx+Bo74zp1RVqzzRibo9FbYpnIaIu5jif\nWEcxNAapLsnBlAvVJXac5/LEw4uJLOE9P8LtY/R3YZwXWQ20aR0JbJp51NQUwQiTHLQpVlTe/uFf\nEjN1duUQjhRH09M42pSoG6Yd9BNNS+RyRbrnpxQo0jJPKFhNblYUckoI7dRievqMTD7IZClBcdGk\n6Amj3HgBvXGIfWoQxyUYsDl9UMf2xbj31rcBSOdLSK/dJn5axz3o4woD9MEL3HR0QnEPNSmDki3R\nyS8x7negZfJ0cEEwukXKHhI8ibFI1DhtqNwIhHgc0xD7flbWcqg3EgwXfYyRn2KxxXh0gucBpK4b\n+JQSNYJ0q0Gi5V3mLQ/tzIArhTR2s8Rqqs+zmsVWeMxoHmWyaBEpWlhKlqVuhF6kR0qCSajNomaz\nc2yTtMckY1uMhhPKiQmWsUHa06Dem7PmCbF4pUi32MSw24QuVzBCD7llvcQ81kIfXEHfk8gW8ywl\nZJR8Bs7DCGIK50oEv3uA8HjM2w+eg9pX4i/jy3+E7108QVyFzlQhZ5wybe7zw4MTtH0dPTMm8tp/\nyM5hj1txG6V4A0MwqR9r2P0mvlevoWoPSYeuY3TOMKpNZj6NlReTDLyQqU1wVZfeh48Zr5bpVxsU\nnA7Sskx+bY551iTgmxNNFRAWAfw1l+P9CKlEimpMxJuREUZFvJKGv9bAjaZI7qtMXnewzzUa3gWp\nMVR7DppySakWISalaWVrTOdB+tFzBDuJkD4lWntGrOhjfm4QL7TxbmRo7U3YDXTxrIYYagad+oTi\nZzeglaS/ZuJEU0zuKIyOd3nngw8AuHPzN7j38JxXKhaybiBvyEwOXHQxRj8RRI7obM4yWBkV75Mo\nXj3II+mUm4oHj1DCPfDBzGZkScQ+fwXrW7t4xnO2/AEGCRknkOPxN59w40qCUnabtldi3nEIfxyu\nZrfpdDYo2FPGso9Zekavt0kiNiM9eYFqMU/YY2ApCWYTcAIRToN9NicamuBjvpanexBkksozD3Tx\nPbEZDtrcf3LB0ck+hWiS43mVlF1gkk3Rs05xAmUW9QKRhkytKOMXWgzGE+YBWB8sMe6cYSYWqIPb\nWP4Gx5U5liHgeEQyKYnvfut9AH7+jZ9j90eHaAsRpRSE8BbGQMFVp7wq27Rch6uiB311TjgcZOiT\ncYJTbiZkHn/tQ9yYQsH/MjVvlXkEuo6XmvII33EO61zjcNimdXWB3hfotFp4l4vkvDGC0winRzMm\nlSrh9evEpo/IKj7CCS9Hmkg8WaF+0CBWTJHPKiw2gnT0JS6FU65m1/HsP2FW/S5nNZfoxhxRnNM8\nvcQR32GeCSK2xvRiENIc7vu6mOkK4WCCsq+Lq8l0LiTsfoS8P4A+naHO2rSbAcZunJVbMmpjiCO7\naNEhvtwtksctZHfKt7//vEX7mS9+lIQkEx3M6Ogvs/W5JXbu3kXWDBRbJRaPIzk9mg9brH86iVpL\ncmhGEAYx8uKQk8ddWprL7OEPqXzpcyTyeYxUAI8RIiSd4gplAgWLumwQtRdMTx+SKs6wFZGUZ4le\neQayxdM/f5uXtr/A/PU0byk2X7zycU42PmDJBGkgUdVNrrKgexnAFS3OHrcY5i9Zn1RoD3W8swSj\nioepPCdfjdCY7uP4xiytFTg5v0vJt8RImXDmHbGiwcG7H5LeCDCp2dRz50QiQdxqgaXoBf3dJKmQ\nhhIY8rStowQCdC9CnD75MV/+8r8HwfLf+2f/4Kv/+7/5VZ780VNWS6/g+EXW7lznoqqxsGaEch7e\nNQ6JtdJ4Uh3ktIzY6VK8brNR/AiJ2SFWvEjLo/ODkw/QewXWFJ3ThcjiySUvrcUptgSm+QKf/M2f\n4uIb36Fft/n4dgIxFMCJC1h6hA3Vj2+mkAiEiGVzrC+p3BgncDQTT2eDS+fHpK6W6Y9PmRsGY+OI\nkLzM2FHQmzK3boeY+wWsucrFxTn9jAfBEpEzHqStJeJ/ecm/+Yffo+D3M7jbonkYxg3MaZ50Oewe\n0999gjQLkpx3MMU4V9PwQe2SzaSHi5lCOFOn3mvyw289b0u98svbrG7f5uwkRDrZYhwZkdIM+s4A\noybQnBtEgxI+T4TefIF/tEnT7SDNIhTkEsn0Mh+O21wX3ye6EqGlG/i8AXRxjr+lM9DytPxZdGeI\nvpqlZLZYUSdUdydcBsJsdkeMsqv0hy18yQ4POxYL2yVeUGlcjrCUEaF+iIHQQMss45l3iBsys+Mp\nN9feoFpKc73mwYxf0v38JlLFItVcwvR2cDWondpM0w7yQmZgGXgnA/5850OuKyEsTwjV6yGgaCTP\nLrBvtMmmHRpGFN8gzVNFoB8QGbRTbGwkiVaqfPdPn+8dvXbnBcqrWR7uCUiDS2YrLq8ko/iECA/9\nOqpU5rD2iMZbY8LHb5HwFal8cgW/2GAoqyyCx9RTMrb2lGsbt5mqQWoXDhnByzs776LnVFx5hKBG\nETwW6lRCmw344f5fkq0usZZT6M101nSJYMPiXtDGUWfgimQ+W2R+WmUakPAqEdIZk0JnQb0oMO8r\nKD6NQGNA6AsfJZWscjzu4fQvsZZhLN5mUbxP2Ctw2XKJvuEidRPMvQtsq4CcTZN81MTNRgi5cTYr\nHTp7Cn5/D+9URe/BuC0hS2OyT3RSd9J0Ape89+3nttQXPvW3WRwbKJ9Jkm8P0TuHaKaHUF4hU7jC\ndDHEl1RJvPgaSkvBry9RO5+j2+dI6QUvpE0i5oRxx2VmnBJNF3CCWSKuwdMzDwlFYjgxCKUyTMNZ\nZvtNZtKcyZbLqB5F3Zkwy/sJmmNsZxOP2QCzTz4rEhH7+OYZprZLbmSiiAbvt064anmZFk2yhSgj\nfY4sdRkaQ4K3Q6QbKTxFL6/+0h3uvfkuYWHGKQJrAwez66KG0vRPFS5utsi2NmDQwQjIJIMuud5N\nZqUGGc2LMlFZTC7ZO7xk5/5D7qy/xrHY49F3nxdAvvQPfoeLwV0+8nMf48m3njA/PWTS8jFUIxSi\nXrp+k1nWS3TUIxHs01anXEk2OQ9lqXnmYB7QDYQoB3RadQ1/1E9Xf0RytMnObECvkWb5c8uEF326\nkxQev4yVVCiOE3x4MiW5ADl2gWWNaV2kcDuPWOm6iOtBXPWMiZQgsTdG8wqkhhrd0oxUaotw0OJp\nbRdBskgaCbZrHi5jGdZjMyrtNtN8lLPBY25mZH4sW5iuRPSeTTjeJjT1M1/tQjXAAh3XZ7NsXaW/\neEY8u8QiYaOHIvjjcwrmJjN7SDlZRNoL8c27zydcXv7o32Rpfc5k8wUu2lGinUcEZR++SZALLcbE\nkyO2olM/zyN1JGKjMJklGa05wespolyNYVtRyiEfclbCexyhcSCilPdJLmRmc41DfcZ65BZG0kbc\nP8adZylXPKi6xXI3T79zzvlogVYNM97S+Og4w9nuYxbLMiPn23hyE1RrlUB0h0Ezxa79A1bzIis3\nl/BPDNIvf4oT8QH7bZ3yKx9nbZLEK6TweER0I8zalsrk4RGBRAnNFGkPa1xZy3NZ/RBzKcporqIu\nlzmzvCifFbBnLcy+g6FKROIVAqKK5atxqve49+Y9AD71+c8zG/sIF2O89NEib3/9IT6PQ3i+xCgv\ns7CjdKY9yrdfoH25oDaskW8H8JaOqFZdrl+7jW/LQ+9GBO+sTXenzqHUYW1+zigboBDeYuoZok18\nDAomoZMqNfc2/nCO08A9VCdBIj9ka2uD8Aufx+qKSI0nbK23qbxagaaX2uUF+UyUhr+JPxxASmQp\nZMMkrQnWUoLhdEhxzYPbeorLgEFuTlQMIIRdZrM+xSWFC62A0NSJLmXxKDJGpER/ZiHeiuK8MyXr\n3WSn22Tq30RXBnjdJSZyikK+imd8HW1F5vBHP+C3fuvfg4mD3/tnv//VWzczbL38In/8h/+Kleyn\nCcQF7MEJuqLyVL1KZbHCRfT7rHwySdp+la3P9um3MxwcVpkLAkNqqIMVigRQvBIJa4hwbjLUU4Ri\nGuPHPdzLuzx9/w/IzTbxzePk5BK5WzptN446HlFLpzFDh9zcShMKaaS7Olaxgi3ucu/+DxErGyzL\nRVZ+9meYLkUIllchvcK+rrJ0Z0jcn+KRDS12iXYjeFS44klTVRWaH/wpzUmNn/qlL3BZa7DjzMkE\npjyoOqwNQ5RHcZyla6R9C6YhAyHYxFRtdGPOdjDOZctidv+cWa/Duw8uAIjJq1y/eo2q8T6hyCaD\nxhwz6mezb+BGryKaEjOjiycwRylsM25fYFkRmvMaaqnIufeCpWmNeCDCwHDRRilGrRieJQv36SWq\nUCIy3aPvPSF3HkX9VBMtm2GhpdAFg3p0FXNS4Xb0DOXV2zS6deLRGPHBEG1zTqGTJzhX6AUdUj4N\nWVewzQAjFE73/4KtJOy5q6TiIovmKcGLEWtffJ1GboWqWONKP4pVGlMyZ4RMiWJe4Mr6G1zsucQH\nLbTQMj49ja/S59gyGSavEjKbNPUOpWMH76DBbKlLfBql713n7f9X7v7c3/455gdBKtKCTDnAorvN\nudHBE8+zHkog6Y8wfBYff3FEOH0NTZvx4P03aedUivUo40KetfgWV+IfA3VO2G5wtghgBO8hzbys\n1UKYeYPT0wU3tCzdxDFdr5eb2h1mr7bJKjbhay/TtHxoc5fNbobjsYBsKkSf+likJ+jNDrLPwTNJ\nMp7pHHsbRLUBp+oqbrCEOxB5NKoyer9D5SeyBJRNgr0ps8kC+UzktjeI1i0hbEeIn3mxxQk+q0pi\npGBEQxw3G6iXK0wD+xR86ww9Cm54F3wRMt4ag+SUWCBDcRTka9/9IQA3rldYZFfpmTXy/iKmr8kg\n7GHmptiupAiYIRanIWa2xMbGKn1zRivwiEA7S25jQvKgjCBIEB0SVyKY5QiD/Q7/D3fv+TxLfp33\nfbqne7pnuifn9Mvp5rB3ExaLxSKSIEFCLLLoEkVTconlsuySRJGiXS67DFfRlmjZtChY5aIplvVC\nKsoMIgkGhF0AC2Cx6e7dvfmX4+Q809Mz3T3T0+MXV/8E+S98X5zvOc95zudJZHuEHGiPbZQlH/O6\nzoeDJ2yWruGuRRgNTFJrDvokgTk/od29RC5l48ZrjKI28VqQ83yGYa2C0u7APICZ1JGbPdrqCsGk\nRIsg1QudxVoKYVxk+N4hC00kOetxoZ5ivjvGKewQ6upkViz8UYnZrMnImFOcBbALKuWnj0inEsRz\nrzFrPkLcepFiPk/zbMjxTop5dU5hex2Gc2ZDH/d+9Ez5vP3T17l+vQs1m919H0PXZnS7gBaCWcCh\n5FvQaYSwJyLmqM2SdouAKGPXRsTVOdGkzPQTL+H3FAqOy8MPvstW9hJScYK69hluhyxoTvGFl9Hr\nC3o7DpG+xbB5Hyk5QHFjhDous4WHb3HKdkLnRHiZkVSlaWrAiIURR09W6cUF7MMgktDHdfKkY1l6\np0PCiSgL2SVuiJTlEYvHNbZ2SpT817G+EETR55y/f8Hl20EC3RCDVZ3UaEBIaFOv76D4x3RzCWQn\njC0odL0AhuygPK6iWkmSSz2MU4GT84957+AJAD/9z/5znIMJtibhszza+pyFWGPDUDidhtEWH6Hp\nJezRMXpsTH3eR+E6+8ZTTL+fudYllAqz0CqYVh6hmyKbPWJvV0dQbSb42XCynE2nXJ+ECKV1XL1H\nJdwkcxLkwXN7yMolAkaK2LJFxljhodfGiMzw53TCayvYNR+aW2QumnhLM27FlnBrSQyvhCd7NO9D\nvhPDrq0jz1T2RmFGqQ7bviDGNExgfhf1dIOhex/1lWWixym03jGZHY2TpwqbcgnTqnMpfxmrP2T+\nnT2s4CYr6Rhey+Npq8YX1SjLusIffPsHANz5/E+iXQwZigpNdQfzYYNSJsaw8Ai10ybcriFdvUaj\n8gS7E8fNtRmueVyPvsQwK4E359QeMqk5xMo9FqUg8aHAWA6wJtcoH5cpaXk63gK3GeTctAiuJEkm\nRVLnITrnu0waU2LNDS7WLVS9yVb2KlWvR7BfQ/U5DMpDwl6WDFCrLCM5JvNIh5OHIubDAXklhWAJ\nzFwoukHaup/ePEFpLjBp+5kmHVLDOLJQIVTNY+SyzIMWCVFg9paP+TUVhQrF5E008RDd8DF3Qkjp\nKcNyjNhPrSG0T3n/u+/xT3/1H//1b6J+49f+p69+Kb8JospOYRVfwOFP/ux91NkGUmZIrmPRF8tk\nB8sUnCTn5hE+o0qoUeXxcR0rHiVeCdBv7bOSTdCVSkTibX5YKfNC8Xn62SkDOUY7kWFl7uPQS/I7\nv/sr5Fc2qe/uEY06cHJB+d67TM6bLG0/R7PTY45Du36Xej+M/+qUC2fE+7t7ePfS7P5wn9KSwYFc\nR44NCLUcZgM/5bmEPA2z+MQWeqvFOOESClZY4dOEMmmqkz3Uuc66UOE0XOHayitMZzU6KZ2EuE9D\njqF/cMzy1hWssp/gToaMamAfdqjGw6jlOO/sP5s4/oud59GlBD6rREhvEG/GsewWo+QGam/KJNok\n0d+g6Y8zoM0i0sW/WGGlOEWVdQRfBcHO4LZrPEZjp97Det5idTdE0LIxcxPsiEQ4dItDv4P1yeeI\ntZKIokyqIpGkgZWNMYsusTBOWLoZRGy3mAYFrg/z1GdDuFZgOgpDfEKv7ieTnYLu0LimcnFSojB+\nTHjTI3LiJzIfUn/jiFpol1s3niMZaSI3JeaLHmJ3m714HJ/QxJWSnMvr+EYtspmbTJcsbsU+wcBV\nObo4IDpaoaVHUXx+FCNOfznHxlTjz7/9BwD8nTu/QFCPcmxeUOscsCSK+PJrhHsTWvYx816IheAx\nbBq0z0fol8PEFJd04EWeRhfEzCBnvT0ydYmPHn8Hmgku5WsMyjEGkTFmcoj/fEosGeTbD77PrfRl\nmpM4W6VVFpUTNoIrPDqpsjy1EcZx7nsHrIWmoI2QsgvyI5dGKsiwrDJzbRzPpSCYjMQrMDhkzciR\nuzRg/+KQ5dspvEYBMxtiQYXLZpF7h30GQZ3+xgU5q83BfMjmeEjefQ6rXiOgTZjxkP5mAb2iIi2d\nEukJWPUTAtkhX39nyHIxRN3pUK41eO/9Z+u8X7v1WTYODjFviXQnY+IbW7gJH4GkyDf/t/9A5LXr\ndPfPWcr0wPDjOe8T9sIEfacsLgRCCYnB0waPnTKp20XOj3xMNB/yVGem2Tg+mcAwC4ofnyYyDvWY\nPhZxMyYcLJBVE6U8Z5aIk9mWqb15zKK4wtQ3xhj7cXUf/pBHy68R1YMs4mUMQWJSjdM8eAshm0T2\n1ZlIJu3GKUo8RSXeQxzInHY3QW0QKoXQLZF+c0qsWMIU55CI4gYg7gaQvRnjYIO66Meu7mO1xjyM\nqqx4Hscckh27zKMRqHa5e++Zl+zd2BY/0Qfx2KQziONNe1ySh6jiFV66+hWsqcrS0gx7JUB1V0IN\n9emZI9TAEvdPTKY1PzNDRslU+O55grrbJPzcZ/EUGXVY4fDAYrF8QVDt4Ul+LgfKyKN1PL1Ox7vG\npjCkvylSn4H8PR/R+CofOYcMPugRLy3INXQqvj00O4UWuERe8XMRjLFmSoQaFmapReB4wkmyxtS3\nQjY74snbh3wwPyNoj/nBBws2rnjkNA3VmjA3I/R6afS0y4G5QkI4Imal0L0yLddkzZgxDR2TGs+o\nF5bRu/eRC3MUO8K/+KOvYdvP/oVPbW3yrb6GXS2TGGTQ3HOisSXK5/t86iuXOZ3J3PBy7D+sU8oG\nqbZCdLUZpYVAMNdFKS+zKlXQ15aIGRLH+yaPDpskBI9rq2miYghvo0nMCDA8TTNontNfMSjO/Jws\nr5ErL1PUTmlbMZRAjHGpTsB3DaFZorZvUzUekpWvow1rTFWFLUHh3bcfk89mULICAyGEcLrLVPEx\nbh+yHvVwkksEBQfDuCDUD3Dsd5gMMgTmGleLHuPePdq5CdX2gEu5OBm9z8WZQm5+jOPX8HsBbKnO\nUXiLlPsEd3UE+vMY9oJvvfEsxvaLX76NtwjS+u2PWXRkrv2MSDBq0R9doC6i1Gcii7M5hfx1Tp5+\nSGl5B30vxnB4RnjgRx3ZxEJdGFcJllYQAgHC/jBxfchZYJsSOp1xAsd/QtiL0jFaLN9Q0CY1hq05\nTj7GUlNhgJ+Abx/btnHLx/ilH3H9l16j/V8tMGIO48GUnhWg6MSJqCaBR33sYgJDOMUfT2JU+2zl\n8tQNj+zUICsr9MU4Ye2CQSWEX2yjGCazfAQpJRM1ztFbQ8LhbfxnBueTKOHemIYeoHokIK67FLQW\nejTBdFjBC6zw3l99h1//p//wr38T9Vtf+72vfn7z52km0wTLYZy5iyz1aY3aOFMLreiiOgpzweBp\nvUquB5NOmUlyTq/R4/pKi0ieAAAgAElEQVQix2LQJ7i8RKwQJDOa40bjZFIllOoJ0WCOkHDErJmj\nX8qRuXmdyOqrVGvv88F//CbZrRzeznMEl+psbNzineMLZs6CDx6c0Z/1+cI//yStA5mpsconE5fR\nSiLXcyqNXAmhckHYnyQ9HSOU4nhlkWlY5aC7x+BkxMLrkg5ptOUArX6TZENm7doQw53x4mADdtqk\nAjFKIwtDS5J/PkBUT/G41WbzpQRaw0Ta7dEeRVgk1kknBN54+1lxlsNwUDC5lFqh/H6N0eo6+oaC\nuj+mo3ls7Ptp6i025ykEuQ6NDpdegNnAZDq0CJlthNMWlpJkKbtCa6bQ/nCf8umY9c0ZlYjEykjD\nztmEZyX0m2ucf3OB2qjSDAnEFJeUVMTtHtFPZBm+V+ObX/s95NUblOYGtXSOJd8ZHS2D2VXJaAqn\neRfpcMhyV0Mv6VjWGtZHe3j5NJOFzWzTx42PEoweTzCeNtiVgozzCuKsim768ZTLhDsD4vE+3WWJ\nxuwtnr+9wcl7P2Kv2qHYWEG0LkjNBYYNi9DWnEJ/jrlZ59t/9MwzsGT4Wf2ZBLODMnopSyBSINFw\naeoOiblBPd3HbU/xsteJb87pdWFy1mJqzsismsitKf5MkUs/meFwFEEUx1xMBshaiLpnkOrmGGwG\niRx4vPDSK7TpkhYjjJdqnDYMLMFEkmSimsYTt8z1rVXm0STV6pjtaYQn2xrKQYB5WMcT2niyge3m\n2NQ0zNUsUvkpb93vcDlwnR0RzsIlNB5S300zXJNYippkMi7LiwS9colcYMSurHBt2aKyk6Z/GOTr\nf/ANojGdyy/4Kfs3KbgOjjRgFLmBNI8y8DUJrxcZ353zwdN3AfgffuWn+KHUQ1rKkB7H2dfjKKUZ\nh/UM8Y1tGlXwrU2IHlpEZR/lYxshHoWODu1dhqZIKFugKiSZCGucte+TFiVKoyAkhnTdKEMMfIEk\nvuEBQj8NER9qd0B2J8dkaDLO5dmbVCncXKbjrhFZaCyeQEJz6QcrSAyQp1lisQr1x0nyO6sklTGX\nfiyL1WqgXS6xIjYxjWXk+BhtCG7yJSaDC8LRZfrSKbNQAJ8sURnXCXV17FEEJ9jkw5MHdFoyOVfH\nDlg0ann6WpBSu49tR8mZDuFwECutkVjT+f4fPzOW37j6Fd7/t9/ADsdYLa3Qmi/R9QwieYfH/Xfp\nXQwx9CzG9yto6V3c6iaheJVEc4PE2oR8JkK9dY52/We48+kEm08STC0Xvetjo59gPHqXpaDBUJKx\nGzqB2gBBEEl00lgJnXYkzvqxgT2NsXotxMSqEYlusLKusLyloTQFwskuUmQbv9elJg8Z2UGmrV0U\nc0xi8hpL4TEhe4J3fU7CeYXRepQrWwpm1s+rL72KMe4ztzwen3zEwm+j50okzVNSgsVQW9ArbJEf\n6/g7xzxNjak9LjNfzZC1MjQiJT5+0KC9cpuvfO1rvPF//h8A/MKXfpHL9JivDQhOxjgjP2p0gRFZ\nxty9S9EfZqQ8JqOo1Ns+ZoLJckokcpTkRMkRLAWxtGv81bf/iOAoSn5hsfSpBEG1TKtSJrKaw3m6\njjly8G+dMPxwwZWfWOVRe0FSCLHx3Bzj3SPGh9+j0pSJ+A0KM4+610L0V7j3no+VhAXXr/PhvT+m\n08mQqSuU+wrjokOu7KMW6OPXIziJDMlMjJn8CLe8wE5nuAju8snwBq5eJjV3OX/LwB9MME+VyBYi\nLHYlRCmMZpwj5GMUnD79nTlmrcf1DQ2/5Md5WyKbu2Da1PnW28+Uz2tXvkT1o4f8/dthTot1CmqQ\nx2cm4amG5jfwd7Ok0nka9jk7Sy7NaAInOcSpxZjnj7HHfQxPIHLuUCnLyOM2B6EAZ+8E2NBNRoM5\nw/45ykIjnvExnMfJeh5CV8FNPiOCG+oVYgmZoesncwydmopz7kf8ikKv3KAynrG0fZO4W+Zc0ah2\nw1irKoVUmNxzP8n5vQ+4fcXHA3WAvbDRKwNqYoFA/SkHzg5Jz6bvdVGFAJPUKurjNuPIAj3zCkfN\nPeLOCH1dwJpnGc1N1q+rNIQxI78fRaqTqPmxu095sPeYf/yP/gas8/7l7/6rr0Y3fwwhtM9BtM7i\nB2fcSco8/9plCrIPZxBBH44IRRSK4ypNJURvN0VGuImyusH54x7BFVg+OeB8EeLSgzqtfJLcWYVa\ncEpEyWAPmtRXFXJLMo1egL1OA38oxJUv/WcUX3uRQbKBtBukVVIIZBVe+Ee38ScNpo8jtDsalWCO\nxOn3UJcl0oczeqvHCEc2jNrIHZFOVKVRGpLQhwRGIvFJj/B6gInvJqOOTTo6QmWCb82lZntcTjzP\nxSTIRE8w8fzMQz6EZQfngwkyWXzGgjO1wb3Tp7hJEAtBblgyArt8/e1HAPzXv/oK7cc9ugWDMD5m\naZW1XohFyiFpr9BJQr+aYJx+hKkWGQQ6JOc67bHNxPJRznts6ndodAZk10ZI3QxLl+NYQY+2vEq0\ndUI4GqCktJlpWdyLp6R2ZXqJNsmzDoORglIoYEQy+KI60/M5X/rn/4DHb/4Jg6WXyVLlVM/gsou/\nNmGiBYizRExYcLHZot3MwEqAvM/Bs3UEr0Ll+AqB1xNcPK3hmn4a3/shMWWVbqxA+DWd/GduIF6x\n8M5TWNoDVvN+Dh606IxlwloS1zjnMpvcjzfoLNbJb8+wDZGUsMqf/qcA4pf+/hdY9kOznSWbC6Gc\nl3nMjOyVJFWjw1pdZb61ilct0xSXmO6PSN5aJRabcHdQ50uvvc6/+7e/x1opQfdUwgmH0KsBxKCF\nYLTIzVPYE5extoQwaiGUZ5ynZCY/OqEo+NGCSdJDg3tHF/j1G9Tf+xFuJEhxzeNgkcDnuCRCFfR+\nFduJI8op9HiM2uUZ5+88wLqZ48r6OhO9w6HaIV21iVTb7LoHpEZxDh93eWEtScXOUG9/jDrtEkld\nZi18lcWje7iiwGf/9iVSgavUOyYn5pykGuao1eS400RtN5BGQ6LOiNuvvs4f/skfAvALv/U/0wsn\nCERL/Oikyvnut8ku4lT9Eji7BGcuN02Ro7qIjo+BZlGMeaDMialpupsWWZ9IXzLZWr/GtGER08OQ\nHuKbFFBbZRoJiY7ZZpaJEtZGZDM9stkV+vtBtBWPhLBJLh9hWnOINR2MYxf7joJsBpBaSRimaI3b\nSL2b3HP+CltxCBsOu4+hfrbHrH2ZwdM5o/kRomZjlnWePPiI+dCmICWpxxb4zQJTq0X9YZ95pkHW\n59FVl4j6HPYbHTYLL9Dpi8Sth1y9EsGTFxjNIYmbWaTQJTLhIO67b/DWuw8B+Hs/9TJLP3uD0OmQ\n/DUZsWlx6SzA/OUbqNURo96YS7MDPFJceWWTM8dg2DMwLQOjdYxuyYhZ0Jo+9MFdFh8ZpPr7ZFfj\nGMksQkCFYYNuSIf5Et1rHYy2jjydcOW//Axe1aGaFVHOKtQGIeo3HfLzFlFfisZjyA12OSpnaHYP\n2Iz6GSzixAIjZkaUtOkQbGt83BkiBVxORxPq3Q691gnPawm+/1ikN3xC/f02y6nbyNIKBTVOPNnE\n2FtgjgRS8R71cY2m1CO1opM9X2CtbpN1p5wZGkHfmFa3glArsZIe8I1///sA/PTNTSQ1iVKd0knJ\n7ISzPPjwlE9ZCh21w3CWwjQM1GKAaVSgFPVzch4kEx6Q7cwQYg1OD/ZIRDNszcNUEwv0YwsjW2A6\n9dPI+9h/bxfhyhFKusQ1r0H5dJd+Lo9ka0wkC9PeJJbcxv/JNAE7znArTK6RJv35S3R/9D6l51+D\n7oDbflB8KRovaqxsNXBay7TyItPkCs36e2TWZBTJYTQw8XWC3Ez7WF+9Rr0f5iLgR01NqRRHOMEC\nWqdJVneomTPK63lMo8zFyAehAcnHt/FVHJZfTPJQrDMcRFG0MENjyA/eebbO+/lXPouw6lKcDEgs\ntRkGg6ho2AkBv5tBjfvwRiZe6Qoce7THZSYfjFh2EsyWTNInM6bxJNFSlLneR05KLKsWthJGEDtM\ngzpNT+RKLodTi+IGDcp+AyM2w7ALWBWdy9E53uSEdCuFbC8jLbUYCykK4RgzfcDcvILYrHLSabBB\nimZYZM3N4E8M6Z+8Sy6S5yOvS7EdJaPPOF6NoQUUCrHrhJ09+iWR0SKNf5Ak+3wa40Jnjs1F8xBZ\n8Wg5W4wWUXzJDoslD6lic/7+O8QD6xx2eohRC9Ve4rvffYtf/+//BiAO/pff/l+/ev2zP4Z0NMEJ\nRHn+fMzbYpmMa+AcNkloMkNF5d5vVyindrhKgwedJdxal+TNLE8efZetuUHzscle95Tl11Lc+bmf\npvvwCYM1nXb9CeMw9NwRa0M/ytQifNRG8pc4k6Lo7il+OUDQF8Tb1xmvd5ksbAYdh7AlEfH5Wc1V\nKGlZjOMGQsFCk65RmzYIhOOkV5fxZiprnwpz8cacU9ViXPCxWUhz0pziWD7qkR4BS2TZiDI1TWyz\nRgdYD6kcnX5ANhynNTlnaBxzONeYRlro510C1TU2VlIE6xH2owr9wCo/fPPZhPvjf+cnkJNFjh7s\nUXhlCfUHEyKRMU0uEV88QrJcJokWUVdlkJHYEASmZwOSDY1oSqJ6FCS6IWFNo7QiEZpVB/mSQuPR\nBeHVDPNCF0kWOZpuE04nqXzfT6zRxiiCoE3RN0XKchTj8BG96j75pM20UiPrFuiXMgQvzsmoDnZD\nJrxxA+90SDrbo5ktkOz60II9VlQd4TSMrIdw43H6sSaRJ20ChSw6BXIRj9b6NscX3+X0W9/k+N98\ni9VAkrJcZ9a6j3uikBp4zMs9BEciFL3K+coF0zMZrRjGKeoE3R7V+2N++PEziN8vf+bLVMQgx/UR\nqXwHQcwx3mgwOXSJKzOeTFJkZ4/IexpZL0Tizghtt83ATuMhc2hYvL5+g0qrz0JSCDstfEGXQWJI\nbpjA8Z/R7pSIFyQkXSNQKCOGHAKmn0HVj+WVCcxUQp+4gjvRydzYQZGH7H5ngmcprLsmzfiIXs7P\nYrzCItpASgqMawGWBhY83aPcNFmhhBENEBlJ3Gv1Kd26hdY84dL6ZXxxB/VYJ7gzomLnuHUtwhMM\nrJMGjpqkbnVpnY8Jaedsm0kOB2c0kyLpjTT52RK1Qhxvy8UU8rz1n/hakY00C+cqf/Xvf4fv1I/Z\nuvUypBPs2AOSdZPE6hZuYsAimMfvTAmf1ph0Q6hti5Y6J+GMOTfWGdg+Np8X4HTIxRRSgxD+VY13\nF2csJ2SM/SnPlcKEVI3awTnDtMa4ADNLxK1beIcNaqEzRrEspStjOkYYqbRgnOniTC1eeemT6LrE\n0AixxSoXaR+KnCMlXuKFlwTOUxLypsq4dxP/Tgl5cIK/dJOlwgCvHiKXFonPBEbLQ8RJHDFyFSN+\nwaQhs0OEwvN5OoKB1xhw7kjYTZGlm0X69/o0995Arg5Jtlp849GzoPBf+od/i8yHU8xJH+uiRfZa\ngofW+ySCUUqZJl03gl8MM63VeHq4j6ZeJT6fcTKCgb2MyAHrqxGGrsDsDBLLRT6aPkWZZgiYU2ZZ\nk0e+FvmjBIHbOWa7A6KSj2bUpH7/CdRGiCcCwtI65nyMtnGJSjdCwL9LIDfnYqAiJyS0ksmjBw2u\nh1axOjrjkIG1EMls5Rg33iL8Yp61ZoAnLYeF0mZw9RVi7Qqpa1fQghr6xMBOJul0WqSSKseFFLNC\nkFivw6zjw2q4OP0wM/syi6iKac3JTP3UvB7zaZz4+oyjH9g8evCsvr3y1Z9jaB6wyEYRujZHPYEr\nWwqTlkwwplFf6pGbriLuWgTFDSrDKreXRM7dIvPgMbacJaUcU1SvMJ+NSeRdrE6I2TTJqtijbSts\nXzdYPd5EFqoc3ilQaHW4OLQ4uLfHbDXAknGXUMRick/G2TnDG1R5ev8RH339GBSb9KfSTAMag4VN\noh1BjCeRPYvMXMapCHzx+Ts8fPMjEr4E0+CM9KMRdblF7PqQgz9qYy12WRuOOD9pI8evsxhJjMND\nTOEys8dT1sU5w0mKzVibQVBgPDLQrpSw7p4zLthsBhbIkzlEF3zn288OGT79yz9BD4EkB0jTEh1y\nRINZJtMxU0ukN57STo6J1cM0ekcYksyLhRlxoY8ogRmOMp7qyAdtJpEwiYiANDfRKzFqsw6yKqKE\nYgzrAr4Vg76vwUb8KsNjkVjKRo80kNvnVCcFxrMK0cWIjasFWu1T2icNJokVvA8/RNlZI3hDwoeK\n1b8gY4UZx2Vq8zrKxMfqWKIZEOkYFplwEdl5RHsRpKWWWTSCBI9rbH9GZu/DNo4UQjIlCqqEJXe5\nUbpMP9pmPJkR6Lv4y0/QVya8cMfPUBJpf9Rj3p7y+PQhv/bf/Q0glv9f/+arX/1UKM7aKy+SGoSZ\nrKgcGCa68wLB1xSyn73ET/7Sz3LxGzKSOyJweRNre8D0isVX/pvXeembL2CuB0i/epPc577MRXkZ\nnw39WAWtPqTtRBg1ypRCzzHz+el0OoRkh1LhKsHJBd976y0i2nVWAx6DhswH/XOSho55f0Kp5DGa\nxRi/7dAtP2KsLqg3nxLYCTAY9UjICs44w/XMgsG3a9jjObmcyEYzS306ZBYPoTsurrKK1vRozY/o\nD6dEWePukx9gRqPEWlOMaYpE2qI722EUarHt1FH8ebysR18Po0sTmB0SyRf45p894x29/uOXWZ1l\nqPVLZLYWvP3GxzhXXiVon9JXYsRSCw7tXUaDJpl2l2ioSHchYKxGePRE5876hNoTlXNHYrl/Qjum\nEb20w3jXRRUNAuomm8/dxArFaf25RXhnn6mtEE/UuSWmmIbCdD4MY23PeKGY5+LRQ5alIjO9yLjW\nRyqKGOY2a5MFvtND5qkirWqN4maGQ2cX2QwTrvlw5TGz3AghD9GZjuDL09iI0+40MH4qyNX1AFeH\nWQo350Q+kaZYvuBaKkvwooiwkBl3BLKKTS6yxCJziP/hhHF6h5l9hkCKXKPDkX3GR/eeBcJ+5vKX\nqYVPUIUWqa0chh5Arvbo7ac5b7/DfBTB8QzkZofWnQWBjp9B9goB0UEN+RjtupxFAqjnHaRkiEZX\nIEeTQOISe+M2cjKH2BmQncjMIjEUU6PXWGIiC6wHE5iKgG84pxHs4u/3qdRbyKrAfDEnlDbp7fi4\npsBiz4czaaKYGQZCl0hoitb2UHa+wHzQJDab0DytEdBk5NUt/JVdQtYliiWRh1KWxvFHxLSbDCIm\nl3fucP5hH9O0SIXjzLwAtz51k/37XWJXTerzGD+/+Xny+SAfvPEX5D0/gZGKeP8ebz18pqhol0qs\n3kgTSH0SPX5CSUvjDJ5hSJyZj7wlcVQWyLU6LOLbzBtzllQVoxClmEvTmg5wqxLznQFaOMC8GyCi\n9TAHQ5r5MKvdJJLo4/LrJUbvTvBPHIRWhEIpS3XwhHBXoq2MaEtz5sMMmeB9js7OSRWDmHULWVtG\nCPs57wxhbhEJNWjGgmyHTWT1nFQixih1Ge+jQ/yrq2wHFF5aXea0bjH1j9jyO5ypJtHsMsZuhYtg\nmGvdOI7lJ2koDMZ9yu6E5bREtDzjWNOJlVzWAyW2tyNYVpvh8YirvhyJ6HP80fvPCNKvp28yWfZQ\nkzHE7JzFWYBXS2kO37GIb1gwDdA6cdFjE9ToBu24xXpWIuTz4buuIe3pnEfjlGZ1qsoK4dYhiYSM\n0UsxEXMEg3XqgoAQqDCcZ1BiMRS7zEKdooUd+t830ZaDeD4bX16isj/jMzcWNIZZxHmZPaNCwb9N\nf5YkU4igpU1qQYO4VUIciTysf0j2yhaSXOBJv08kPSQ1K+IkTigYBsm8QK11wVy0CK9ewVd+gJqz\nSFgy81mQmRijMdHR8RMLFVm+o9I/naAXXCIVCXPLJBTWsdpjlq6G+MFfPWuiPi3cxkZBmdlMBnlK\noSGB3gQj6qeHzI4q8VRdMBv3sK+GWOmZzJou9XyaUnvAmVLAOw2QVvY5KsSIn7mUt1IUwgN8apBx\nPM57X3+PeHSF7NoyQqODMCqQ/4TA0/0e3hdjvPBggS+cQM3kUMNNVi+/SD+Qx3c5SPrVSyjfVlhM\n+2yPusjpFKFRkIir0CXB3l6FSDDGcVjGW/cwun30Mx+uOObJ+ZCCb0xvNcw4lSc4jyJNbLbULLOD\nBsmrKSyzTOF6ibP9CVZYpfexhLoU4Gj2kHAiwcH+BMnWaBsvoORFvveXz97txZ+/jWomiRZMfLeT\nPOmE0LMGDTEC4zql5TDKOEJtOEDRZ8TSCwbnUcRrXaKnEUZLQ4p+BetGHDOSxnpcZxjdQjBbuJpC\n59hBmSWY+S5YdpfoXPhIT0cI6RGhrh+l4aO9IpIPtMjc+hx7c4fjswpLL17ieCjj1J+y8lwGtRdA\nsmOEhlVG9Bgk2gjNE4xxDnQJvR/CF4eMGMKZHhDu3uFxY85VZR2n/oTsL34Wp6EykkUSRohefJd+\nOUqo5HIU8NHZf8j2SoSsD2KrEZSNFUKNElIhSebKOi4yDz64xz/59X/y17+J+he/9bWv/vjnX+X9\nyhnepE4nmeMzL3+CLjYflUdcfPAGb7z2NouQS1GIcLKQSDo2RmfMdz+/B8MqnbtDDtszvHOX9z/Y\nR+RD9utZ8tcEsjsKp62nXJqFSe8FaCl9ln3beOFzlHCKV1M3abdNZPUG0esR5j0By98nOlvj3tEZ\n2aLMp67HaOWjpCNZ/OM1rOCAyFEZnxBmfRSnVvZ4uvGQvOTSKc9pXJFo/PGPWH+1SPntB+SCBeTt\nEOGkylgZM/QMlhMuoX6aYcHGVV144FGuPyWYUUlcuJwUhnj1q8zELk/nXRis0dv08d4fPIvh+MqP\n7fDEbBObL7BaPZ5/8QUGD++iqnHSwja9FoirLtH4MnVthjdqoso5cuUgx4sKoYmf0FxCjj/lLC4g\nH50wmvVY2+hRb2wQEA3sRxLexX2iY5iGDWSxR2iuMXmpTL1sE3IbeCmNrRfWOP2Wg291TE/o4zQe\nM4mkWHtBYxiwMZ6UidwqkDQkysd9SuUJJ6dBUoE5ubzKNDDgrD5lYylHPxQh0BGYxnqsP1A5etRj\naydMrdImEsgTDo94s3vCwV6dqNOjtTVByrzOw7M2riwz3Q7SOh6y+ckMqc4xYljniZNg991nnqif\n+7FP0lJjhJd8bHW38Cd9DHdHHIz38RUClLanBBJx8lKYbFwhup1j9LHEbKEwqY/Z755yJ7dDInpB\n31jBMx/TWLkDjk2r0eRlcYdUXKGcH+Gf+ZibE0KexUKr47YuOJwpJNYirM80IE17YRFcU/C1a0zt\nEf54lrSVZpJWcdpByl2JK5kc9+93qPmfoiUdLu+8yIHQZqPg0ZKmbGl+9PwV1oQqZscjEnGRFJ2W\nbiH0hwgnR7x/7y95/XOXqIxELuY/QLx2hbRP4q2jI1Zmt9Gu1nnzzx7y0peznJoX2EID1+fj3fef\nIQ5+9ic/yfGuj7B+yN3v7yInIgSCAZKBHu7EZuKUuZpM4JClOOkw1BZYZh03EGcSjtExhsQujYlJ\nJtHwMk+mD+gEFsSLO5iWgU4Pd6fI4SODeL7HRE9hBSZ0vTyjiy4F3UXx5zAMlU5/zIrqosUS2G2d\nqyEP4eGY4aHItXycwdxG9qnIg3OsYJsxq/QDYwp9iUN7D8EIMcod8/j/+4BTvcbWdAXV32M1tEZ8\n4nLIALUyJnAnRTBt4hXmtO7XEbUwWSdLPR9idiqx7UVRN9aw/WGK7Q2ee2mTn/n6GaXqGb9ZuQtA\nfvs2keScjFnkodTmliOi9Aw6tzzmXY/U0g1GE4jleriTHMH0mEv2c7ScPaz+lFR0CVc44GKxTi5Q\nwwmOUIQE014Q2T3GGU25Jow5Fz10psTNPJVQlHE1i5ToIbY2KCkXBHoLdpFYvuky3p+yFXZwah0u\nKTvIkTEbr/0E33j3LrLq4esIZOwy7rJC2kwjv7zEvPcx7ZiMZYbxxzPoVZV+pcpwptGxLFbXAgSf\nCMSWMsw+WGDrAVwnQyheJtbrERIT5NQRd/fK3NRHDNQMbqlLyrdN6ryM00uyWhrz53/xTDEWXtpg\nVQkz3Ehj2CPC0wHnw2U2UzDLHyLOXqSu3CczXbDozakJecZrIZpfv0v6C+s8/XddlrdzGNoWxvku\ni0iYdqUN5TmFZYHepMzlH/8p8lKddwSdRLSN7e/z1ttN3vyzN/nlT/8tOu80KCZCjCc2i9Cr/P5b\njylal7kmNCkfZAhe7bC1dZuWe8jj6gA0hYPDPW7fWeYoVMH261x1XPLbG3jiBvakzud+8WWGks3i\noyUmmsxsdETo5RnqLM3j6QFmzk9PHrORWOCdNTmPOaj6go21LqaxwpI4pqVYJDMiea3EdOM+VmSN\nH/3hfwTgs//jb3DUvYf9tEhxZQ1vz0erG6XYf0gtYiKLGQK1KEJ5Rqg4xTOmrOVWWCRs5s8vGLpr\nRH0u50/3MRo9UvoqmYzLaK4yYkrBTpKZ63TCLRyjh73qMJkEmfckpI5H72WBwH6f9jiGfG5jtQXi\nyxKl/jLWkYnu83GaKyIJc8r1EfrtKI1JiLTbZzItEdm18d3UqDcucJNDCqbJ02CBZq/C1rLO2UGd\nur/FaiqGU5vRGijMByJIUwq2D/tsyChps1rKEZJO8Y0LPHJlvG4fpWcxPHzM+P0ujhPm4ZP3+JX/\n9m8AbPNf/u+/+dXPf+FFEm2H2aRORIS3Lh6y5Jl0vAZmMomqhwiteyRSEXz6XUKigKp0Sa76WRoW\naE0ChDwPaeqRD9WxhAHTrI9za4fOowuy2jU+9Tlojp4SaA9Ija9x2jlAUJbQe2WCuTITZ0xNlgiq\nEYIHU6YpjS+vmdjmBcJOErfRoqd+zIetLsJkB31lDg9ThMIGzp7JYTzHjv8yh3EJX+2Y9dhnEasy\nK/kQJ74mG4UpxjSAmKqwGGUxMmnM/gn9aJbkOEvxpQCrn34VpSWhyRqZ4QpNVUJZzdE9LLOamzG3\nrvD2N/8DANFojFp+UFwAACAASURBVJubz6O4feZ2mM3oGo9Mg0kzQcfbp/SzCeSLMl7TJCuFMMMW\n6UYAa61CeOSyHL7OD4Q/Zieiofk2CEob6LMFAWPErNhjNGzwcFolZ9SJXtaZD4LQN9lc0tkfhJD9\ncVrzdda8Mv3jCWvLC5zqEtnOjPlKgnw3xnCikF2O0XEHjJ8oGDdsLtwGl0tZLG9E4vodHo4n2NaI\nJS2JODqg5w0wHk+IrWT58OSUK8/bmP0Gs8qI+29WyAS3iXdNZvhIf/Iy28nnGI7apCJdWvlbFO8H\nGAX9+Ice1YSC3NJZJJrcfeMZJ+oLv/hFqg/LJPVVZukQ3sdtKu0j5ttRoi0/WblIo5EluSVQeXNE\nfc/AnzSZ222WI9dJqUHqUZGaOsGMd/BO2+QW+1h6mEU4SsANMh8/wuitEM7V6MtxRHmE5uwghifE\nZy5DU2Aas9CiC/qShDyIYvVc4qs+vHGOphUjGT4iM/HobQwJ+Hqk7BaSeRWhHKSVDDJ7INJtnWN5\nUwqrazRjY1ZjIj+sQ9zW2Q9PkUydnfgFznKCo9M+dz4d4N7ujOJRhMVBlWGjSWbyPK3npnRkl5ev\nRji+e8FtNcCpXmIzOOYbbz5T8K5uvUwq6pHzp3AWeS4VRWJpCWvqMr+QSMTS0NLoxScMSh7+Zh35\nikpjIZOZKrx7/y9Y0S7x5KO72OYqSiSG2ZWIHXbo2hc4C5nA/JzAeYGRNmakLmgdtbgRX+FQ36U9\nCmOe9QgWZYqaRnDFRhrLTBYao3ON2qCKLqXwPZ0i5o/xhSfMD06Y1lbwkhE4qiP6RtDuoOsdelU/\nIXNMSobR1IeeLGIpcORMEM0ys4SELgUZj8GyRlh0QbaRfQpu6QzZ0ZHLffqJPonHDqbgIo8nXP3+\nG/zd3Hf418djAL70+o/jDFV8W+B0bYxelIBqE9ZipIQAtdMzwsoEYeMSruESGxoMpT4N/DjvX2B+\nZkFh6hEcyLh6hpjl58CfYT1Tw8rPUUOruIUuPfNF+lOTYnIBQxffWgNhKpGZzRFWTIIZHZ8Gvl6T\nmOdjJIk0pgU8u85JfULVt4devEPyXoOI5zCay4zOdGobVygtygzTyzz83kM+s7mGrmbwNWUGQQFP\nn5LubJCbLTFN7NK+EBES5wiRNMbMZnr7BQKnNnXNIzwwUaJ5hmOFzpJDrBzluDpgLtZZiSd5G5OH\nbzw7nPnbP//rTPUsGTODLzymvkiTTFQ4bTRYfu5z/OCdfVaXErijKH0lyfViGceyEIpraB0DL+uS\nnwepD8pMOzOeW1zFsh5QC3fI7UYI120etnss7DCRWwXE8QVPH8QQI9u88NrfYz0hsf+nv4vnl5BS\nff7yWxafCqwha6dIQ9j1zsgw4shoICyLrF7eovebf0rx9mVEPYDWrGGl+wxDCj6rysQ5Zjlyk/1H\n36H1eJ2tlE23MKcQ0xkoGqPBHvlJgZQ+R+y3kPvXmQqnpEc+UgkHeXoFcXFEy14i7+UR+0Eat0D/\n3scMF3Pef/NHAMSPfoc/+9cVos8f8OjJOZmOhLszoBcLoY4iNOdtJpaHlfPRFxdsu+tUB138/jn1\npxFSAwl7MKb0eRWpNmM+GXNQnlAqjhkNouQKEt1pg1x+jm76iSZidJUE0aKH1ZHomA1S/jw+34T8\n5zepndYZH1s8lU/wLaVJ3gxy8MM3GNkmLz1/GeO9Bcfv75FILrGSMjDnfog5xPoSAcvHhaiRvGgw\nyU4ZxBJoWo2NcZLToJ+R0yM0mDFTbBSnjuA/J3/1NQ6P7qEZUe7ed/FlNPyPTgkUczjjMIPFlOm1\nDKrucvfDh/zqr/1NMJb/5r/6auLyOtHpEo8rp0grU1ZmV0iOlkh14rRGAx78v2ek1GsEB1sM0gLz\nxoBcY8qKtE3ZDJA7t6hJIer9U3a+GOHoKILr6/JC0o99oPN//z+/T+Fmi4bo8nf/2R9S+we/wKMP\nvsHtdYt3HBGffYVRweL/5+49m2VLz/O8a8XutTrnHHbe++QwARMwmAAQgSAYRYlF0TTLdtE2LbNI\nm3Qo2wXaUkkFgqIolT+YVNmkLIuiwQCBIPJgBhhMOmdOTjun7t05h9Wre3Wv5Q/HvwI/4n3rfu7n\nvq+n+tZX+NzHP8vc2MU6PiR/Icm5//xznBW+jzlP8eIv/AMiepbNKx78WoALn7/AiT/CoejGDkoM\nDhe4MzauQYqx7xj5jk5vJpL0FbgvimR7NuHEGq5ZlUBsjOX4yDojGssuRocxZvMej+/eRl5aZdg2\nmdgGz1kR5tIB3V6OZ9MOf/n1rwHw87/yX9I5EXjm2QTzBwYfVmwuPBcjlisgeFyY7VNUe4upaJK5\nPMdXEWknFkz3l1kINR4No1zPJEk0UhzM+/hCNWjK+DIdhidx/DGHlaHEIDxH6pjEB3MC5y7QOPGx\neDzkyJlDfILejJD8TIG7b1ZR/T608AmKrmMldBzTYv3nL6I1xtQ8FsJEwxlqVMYmL+Rkxp4k4caE\nSnlCN+1nst/Cact4XQKG3KeYqOErvMLwpMHq5RQ+WaKVn6FGX8S5KJK2dVr7NeLXLuOcKPSnD5nL\nTV6+7GEUSdD/boeI1kI3dL7//tPg5flPLqEfbSAVDfxnp1iFJJNRn8VYIC7k8cct1pUhj+QMyvoG\n4d4MJ7vAGx9zb1hjWKkQbY6YeyFzx8cke47hcQprNsbjsnGPHuC/fo1o85STVpZAtESQIvr4I3YG\n6xhphYT7MuZIp32uDqcyRqjLsNnAZ1zH6R7R8bZRy3GsZfD3FGqPhsQzPp75iU0eiyprUgllQ6Tn\nzuCoI/S6yLAm0d+zCQNN08LbHhBYPqPuWefjuU0mTohRQ2LJnPBedkROEqhPVrGTDSIHNn5lytfe\n+4BLyzbj/HP0aw79fo4P3v0WABEpQM+9hZg0WVYinIsus76+yVBIEp2LxDZc1OQTmq1l5HyIeGGJ\nqeAnMU0xlfqURxOCKxIeMY54PUqqkMezX+Zsww9nHaZpjcNdESdtMvZMeWaqMJlp5HIXsb1TCn6H\nXG6J5niO6kvgGnm5cX/EMxdiMNsmvJ2no57iuIMkNT+inWT39Al6WMYfalM4G1GeJxmMO8hqkGds\ng8GmgJjwk3pplcTh+0RdTUZWkGeFPPIiQkCQGVgm5qxPsZlCT2TILpsM7sW5GBqT9npw1zRUfcbU\nsui4xvyvrnNMX3ief/3dp22pX9j6+zTcHgYtg2J4QtyZUY262EFlY5LhcapFpKOy7zol2POAOaCu\ndjHaKRYXDFZuKEyTOfYrbqKBDgeLVVLmhOPDCbLkI3bvQ4xMnrTcY7F7gpBb0JisMvYF8T1ZEHCD\n0pd4OPKQ86/i7p0hTA3qtRzp2G16ipslxYWT86A+0HCyPVLTJD4xROATGfYOWmyk1+iVmkybe/Sv\nPAOzY3xbJZrHMQxPg6R1hpmxOH3QYGNzg71qgGiowoc3t/FVg1Q2I3Q6Haa+AeFQgJLdxP/Ej25r\nhAp1RCQMY0jAHeTtN78LwGKssOI/JKQvMXcKiNFtFrMZ+uQ8rYP3WVeDxAMpppLISqFNtafRHri4\nIDscz0KsSQf4nATDJz6UFTdPrCGZqzIrvU0UVwc70+JK2gfqRcr3yqxdksFnkLB9BC70GO2LpJ+L\nUD4ZUS12GPy7R2ifv4otOXTHM+yMl9WyQzk7YXPXy8zw4nVfQJIzVFo1DsQTNlwa0dmYWmXIxcmA\nPZ+PyZMxIU+V+3YEX0JhWvIRuVthrbhKaf8I3Y7hCyXYc99joghM7SB7j+LI3hqjhEz7VCKmdkhc\ndTh4+xathxs4LS8fbT912v/N4T+m9d9/ms+eg5tfegftxTkeu0HgyMYri1TujAlEuiSmDslgnONV\nN+pgm/ZoQTngkCz4eFIB+9BhFovzwpUofqPFMQbqIowd1PDW+5T1NMwSyCObmn+fnupCratcLhY5\niTZIWlma7/QIyJB4NkTI7cN3pnK3VOW1T32GtbUk92snFICLn3kJpX4XXeozX4px8l6L1U0XrZMW\nheAqR+cF3O4w+VoHQ41w+qSP3zplLZ1mFG7h11QG7RTDjoq55ubimsKThZe8V0Gf9pinRfJtkV6w\ngnfoZy0cQzIcPrz7Pr/5Wz8GxPLf/1d/9MWXXnoFu+PGnZwhSpvEJxMsy0OzOGJVTvPCqhvNrtKI\n6kQ6c/wrNuNAmI9+VKF65OCPB3AFWziKH/ujOdZajXzQRSwQ4MFQ4uVrOjUjQGf6CUZ/8s9oime4\nLi2xkMqkrmWJBA04b/ETn1ritNKh7/GRuLag/rW7/EXwu1hKkT3H5sEHfRwpyeLrT8CVp378mOrZ\nEb6ATGqu4Mn7SGSyPDh5m61xg/lJkTNlwl3zmGfyGf620iQZauG9NKD0qI4SXMJzIcP5RJBRN0i9\n2uBjm2sY9XvEphmk/iElOUiIHoqzoHIs8M7tp0Tf5Ms55EiR9/7DTdJrI86ff569JxYh65iFPSHh\nH/PEsQivXGbWPqUzNumLASrJOhN/CESBkOuAx+EpMaNDLzpiJkYZGBBt13Ash/2DtwmGhvgTL9HB\nw0x2czjbwRjMsAo5rikS8l6Nxp5M+IrGINfm3tGYjDLkB6fbHNcqnDzpcPGFj3Hw+DHqipfpJMJm\nT6F1cYnEXhl3tEqJKOnLEfQ9jVqmTXqs0Rg/pPVmHWkSpdyuUH6ngv7pl7ArJr37JbLqBg21i6jH\nMMUJ1Qcf4HV7CM2yyFurHJ+ecdFfZqc7IeJe5zvvPc0MfC65hiy16BHm7GyCFXhEOquxublOy+wg\nduc0XU3ax24WpX0msQWVUy+TlIF3POF0EuNMOuLZ1Qu0ajXa6TnRZzL4hSpZu4c2u8hRsIpTalF3\n79GbB+FRHysiUa1WuJhfRujfJR41mI1SJNQpytBgONggEaoxzyWIiDYtvYcvlaTSHbH6bJJAbcSD\nhyesSDrvPGzhWC1WAwtUx0tJFZmVWzjtKaWrTXzyTVKBMfOKG58Z44PtBvakBreOOI1LCGPQFpfI\n6DvsSwr4kpy0bH7ujV/ih2c7ZANZ7GqLlLnHt96/A8Bv/NRP4UrYHOx2sawmO46AVKpSm9UZtIOo\nShy5ZmGLPcSzCZOaie56QmNPpWE3oK2Rm+jYsowaTNM2xiTNEorkoGcFipk8Tn8OMYdMU6aT2UIf\nqBwuOgj7D2gNMvQmp3hcSVwRg9NhhRU9h3slTv39Hu6Jl7U1k3HOQtR8uPMWgm6haAvsQIC47MXj\nGSIqU9qdXay2wCBVZMXO0P6jA+SIg2IbDKodgmOBWUQh0XMz6QVRMh7Ku49RtFX6hhdtqc3RPQF/\n2qQ70IhFVDzhLsftAcVbD7j9nUd8c7AHQOwlBf/VNN39bXLZIO3jEIbXS8A9pF0XmBgi2kUf4l6A\nYdANCQW5E0JNdlj0s1SPfoAv6CGwFsBX6iIrASTzkLZHInNYoXUtCj0veyd9wus29pkPwR3G9lUx\nXT66EZGIE0LEQJpMada9DOsz/IKPic9PLBBiqMh0jCorcQ/NMz+hxUN2/CL97R6Z10I43iHGXoNT\n74jNkzG1QRLVpTNINQmW85irZaaBy4RSbuaTLjnPGeZejNDVizRDC678/UtM2++ix4ZUOx7CiSDi\ndE4qYFFRTpCKa0i1InV7zI13noqoX//N/4nHpoJtikx8FdYmQ9qVTQaFU6onNk5xiVKkSmRnwkG8\nTeZIw7YqSKEkbfs+UUVAHXlwX6jjCWpM22ESawe8efhDlMx1Vu1zdBdl2gk3Ys3h/e8tyDhJnjgN\nznfW0c0hp4kcZqqL/24ModOkHzrP1NvG8UbxmSWOjSba8YzL52TuV8uInQFWNsQ8e4Y+GhM1U3Rs\nB295ytSfwZ84wtX34ns+QDoGbdNNzu+hO11nW7MIBy4z8zrUtw/onPq4qFyEZS/1xZjzyhhxV0Na\nlhAKRXY/6KGnlpnll7And7h97+k7/Uzp94htaYzO/BQ+FcLOxoh7LQJL57izCBC1T7BTSeYdA3fW\nwDxxoadStFwmeCLU7pgI0gJ3tAqLEcPRECsg4ozWUNebLB6bWN4FnnAMlSGCFcDXHWLIYYpBkdOg\nC7kyQJmWiRQm7E+DBPRlXJUQp64OBfeEetOFbMoEuj6OohFOu0foHYfSLEp8mqbqbeLuixzE44iZ\nKpUHAvFpkH4xytnuDpVymOK1MAFvj2b9GGHsJT1skwtJnHWGeLNpbDoohTS+5QCn74qMFRcFXx5R\na9LfLzEuXuPtb/8tv/vf/RgEy7/8B1/64s//5DmsjoPWCSGF/bjUQ8I//xL2B99nctTn/tUOjV2J\nbLyDmjxmTJ/he0kSF66SC83oDQdo9/cJRGRs9xNMPYlZP6HZanH8/1R55aefp5PUCY9hu3LKh7du\n0z/e5g9+78/wXNui3dvmzv/1TUL9DAffG/Dn/+pPeCFVRH32c5QqHXKuIPJKnnOiwPbxPvrmEo9v\nl5kLBwxcUeSShCHfQz07YfzgAauCyurPrZH8zFVGzYe8FvgMe60nRAPLqP4c7bdM3vnyn5FzrzPv\nBzH6R5wFJljHbpzDPWYjhcbyGCGooKLhyRYIzBSGs3v88OZT+OE/vPwCVfWE4paHzm0v2VWNH/yw\nRN7jxih0MCca+up5zv7qb5GDS/he2cAY+Rk1XDj7E1azSaSJRUg9wTGCeKZRhkmdcMlkX3Yxz494\n7Y3L+D2XadxtI3ZzlN1t5J0m3q6F/lyY9z64R34zi+Wusjxyc3qiox2ZBKQ1ttJu7McOclvltA9e\nRaCzbWBIKmfi16gPB/zd33yPnJriSTzCye0+x4vvEPxQRsqYVIgTf+5j6N0Znegyq3GHds9DMisj\nuC/g5PfptW3qow7F3Rn21fPcMz4ilcgxqswYjhRc4zS+5Bg5KfHtb34PgDfe+DVUy4UzG2HmLdaM\nFRaBBRVkaqIXDy3MoM6Sb4Su2PSqEuZwSton0KunuZKxsJZVRo0owUKDa4sohqrQNvo43QXTy0N8\nQxfH7hbzaYSXZ25ONsOs+FosnYtycuxjFOnCWEYYOCxED8Jwh2wiTfegyTw+YmkUpi0tiMk9OpJF\ntDpH9vSx426O750RWEoxM+Og2zSmI14NBZEHKSbhe0SdHMP2hNlGmJhrFSts0zmQ0VfyIB7gGa4x\nbE0ZqjbB5+IobYOiYeHUmux7OpQfd0mLKuNFkO35RR68+xRx8NqvnkM1NMbRDFJziKSKJDIuzgyH\nyfAm/pFNP9DEZYrMwn301hGDihv8YXyRHO3sEKmwxaBWRkt7UGZzHMPNtB6h5Vi43XEG3V1WGxoL\nIcDQLyGfLIiuujnoVhATMlZKpdAYMrZljLBAPDinVVHQOmPyF+qo+rO4pxHE0ICbeyeMBnNsK09R\nCjFSQbFUcC+xoWhsO0M+u/WLGHsllGwCIZbng5ZDTwgSFJYQQjLbLj/d1ojUvEFvNcmgusAVneJr\nTEhdiXD44YDG+JSq2Wb7QYnVzeuoSgHp4kX+5oOvAvDq67/G86kC4XAXpbpE4nWJ/QcPMIJuPCkR\nU0gSG7WQBz5aoyekBJ2ef07hY0XCZ2UG1/KUftginA9TG/sI5g5p9VfwFKc03XMidRW3qBAMBZh2\ne/hyEUrGkAvJAYEaeHpjngTceKpNwgUPs7NdRpkkKCb+IJjmBHFHIBCPMjEqXPuZS/RvmbRdMkvn\nJ/g1i+PbA04SFrmJgbi0jtw7I+Er4Os6THwiDTmDR4uga2N2qhpRY536uIsc7+LtT+jrU771P/5b\nts7/LLYzQpuamPMM7cVHxCPPod4asz/rMHdJ3PrRUxF19T+6QOGxQlYY02IJrfyAhWHSd/m4GKoz\nm9QRHg+5Z99HrRVIxIuc7jaJFlwUFwbtxhrNLQNnfg27foQalTEOh1xfeZZ3jw/pjE14YCIslfGk\n1nh49l2iPhHv5grj/S5yMUTH3CHd8lEzDgj9b68x92RQjh4RisVYT5QJ9IJoYoLDbUiHFoT8XiKW\nhm/qYpzPM9ZO0G64iC0taC08TKPn8Ofn1Ot+piUNlytM1DvFdNcJ33jCSa9FaDrAk/Oz0GcU0hZm\nWUYNHWEZUcThCenkee6VR6QuRCnPJKKWl/iql+9/4yls8x/+4j/i8Vs2MWWC1ZsSnPjYO0kgJ3xs\neGPYS0m0wyiR2IS424u4FuCs3sZV19FdDqu+IQNvGluskxgtcaJ2Cflk3PVT6p4Qvvoh4/Q61PeI\ndcKYyQHunoDLU+ZwFCCszOl0yhj6MmrgIuX9UybNW9QuhXD5DqnX8+jqIe2FzlTpkFHP4dmdk/pY\nkJF5iuIOUvCKTH19aPjoPjxCV9KE/X5KVQm5UaIzbLBeuM7ceItppIDvSYS5tMJ4y2S6d49K30bw\nOGyNDLZvNlnSFXwReHi6zbVzz1DtSHStu9y/tcfv/M6PgRP1pT/4gy++tH6Nlq9MddgmfSHCwa6F\nNXwXIaBgxF8iUe9jv+7mwFE5my7IaxK1JZ0Lr77I7f/5D1FiBS5//DJB84Rm7ZC0lGc5v8rc7+Pn\nfvvTvPfWN4nqMk58RnFzBW9H49Qf5CeWfpLLizRqfoXHXz6jtZ0m83yW6+dTdA2RUOeQzN/7aZyA\nTuusRXYUJqobzMQ0okfj7771Hd7Y2MBn9dDECOWkSmgc4DDcZHx7hHeeJbLX5lsPv4LXvUV0zUVl\nsI+auMZ1b47d4zlZp4QdFwi5RcSEhuoV8aau01SLJH0Zyr4FzEt4N3TOpXL8+V8/bee9/rm/h/bg\nkNhzbzD46IhWxsNzn71KrXGIKg3J3VmiWnGzFt7gdrPFzkcP8bwYwkmkGTzqEtKOiWgWgnmFvdgZ\npivJRNtFjqYobI1p1byYcoTkwg0uP66EyUIyqYpuJqE10pezJPxxorEZ5omLQbtNMDrj2DMkbYT5\nytEDXNYc0VvCHLuRrRijwQMujmb4toKkK+tI14M83Kmxd9hFC0258skYTihDUxpwrqPSSAyZDseI\nlXtYBRde1cW078MllVBcGoMbDkK/xyiRxui18Ft5UnOJuTQgTIVhuEZQPcdZr8u7P3gbgC98NoEo\neBisB4l4+7SVBZGeSHTFw3ppwdCfxHhywLSxSmN7h+J1jVEwx6UtH63RnA92xxTGGYL5Y9RpAdEt\nYNUFXGOQo0nKd2/hXaTIW0PmQRiOQqycDrFGEXZHMrNWk/COxmhlwTidxDnp4JnGUZw5vVCPbEuj\nGouQNZvYrOKbtxH0CJWxj3zcSzW1RVHzInd7fDTc49mVIIt5HY/bQay7GKoi3kIfzpIM3R7qszC5\n5QBDzwKnJ2LYSQrL+3gnQcaCB0WXGU5aKFMbj2Sx/sJFbh+btGbniQomN3/0lPR+5Vv3SOc0VhPP\nYy8ts9t4m4J9DSkyxVNyoWYS9A2NudUk28/hWswRcxlcTo9YZoi6IxOhTtT0Ies6+tCmme3j9www\n5hKRRRDTnhJPqZzYXoJ6AuPJDZS8RmPkUJx58RgSUlODoEVv1GR2OkJrz+DFDNWRD6k4pT2sMTY7\nZIITomuXMDSL6XhGoBRDmUURHYmH3grLs0v0dt4le9xDRaJ4TiS3ssxXHt7i5Z/yITbHJMdTYu4h\nnXCaly6eQ0Lnhz/6EzIxhUF7wKkq49OCTKwxeSXBSfmMq7kUgTei/Nm/+XcAFOeb5C8tqJXi+Ad9\n9so91p5xOBqZeLUIc/82RnuLaL+D7kowEsBrh9B34Ma0wyVzTkL301sorKwnkDsC2uYJ5Y5MXK1h\nVooo3i5mQOf48R6LrTzBYZuxuobjD1PxtIibPWzdZt6VMOQZ4lQkqLqpdwR6WgePV6IuSMR9Em99\n45iVvIeIsaCbu8C0tyCiWnjHBqdOlL44pfawzzkRxrFjaGdQrVNCOyEeWBVSIQ9hLcVSOUR7WkGJ\nq+S0GR7PCkuKxtCzx/SRB9FfQtUi1A8XiJdlTPcYbynBe3eethrPF1YJBHM0XSXOJQ3akU3U5DFh\na0x19QK6HkSji89M4VyOc+aaM969y2o6zsmRTP3FJYxODd0LwUWG07MBqZcWHJ1eRM928UU2MT1D\n6C9jG10+Lado7TTJiG56GYGY7OXJREZ/FEB6roincoX1Qhnz6jl6zSFxa8K8ItEQ5qSjGwyNLoe5\nLDVFpF1tcHWYoa2OaFgmvaFDy6MRt3vUWwGs4zbixgjEOca37iHMN/FGJIp5LydLPnr7UWayySLh\nJahW6Csq4jBNL1NheesyzdIpEWWbbNvCt+bj+MmIm+8/3VCcf+YXyeQaVE4t9mQVZa9B4/SEduku\n8UaEG+98nejCwqW6OexHOJdxqI3a+JtuBmKZ45LB+YKDbPhoDTrokp+uIxHzRZiW+8SCKYYzF4Lf\npjmNYMXLhIYJLBnMdYVBp0wuukReLdMzZhSnTSx3guIiwIM7h4TEBLHQGt3RMZcvJSi8/gbf+OAt\nznm8tI5tWtk9WtIGw9IUSx2gzT2EX7hEdeIikJAYCgte/bXXefnXdrA+dYeGL0FzGsUyFeLzMoNp\nhPgrGWZik5Y6wq7Uaa+otM0JIfMqe+Ud/MkimYXGWzfe5nd+98fAifrnv//Pv5h7/nVcTVBWlulO\n9rDGbrKGn6EdpdHaRplKJCWTtOInlYZF1U1MO8/X//ENvvDixxitmOjWPdpDhcI/eIPGok29LqEL\ny/S6NTRriCPVqVtTtFOJZrEDZRk55sXpZRn13byESuAXn2euusmqx5irRVy+XTotnfR3RGLFOD3h\nPuJBiLvyXZ6LBnjjymfYHzZZjM/T0Ay2gn56wgJx7KA9s0l9/09xzD6JrVWmypTKaRfPdMTArjES\nbF68olN4fZloJsbw1jHinVP+8b/8Fxze3iO2usKhc0R93MUp7/CdbZuvnv0dnZslAKbB53j1f/hP\n6P/x/8tRKEZwIuOv9Eg9k6CyUySa9mDff4S0aRN+rUDueMzN33ub9765Q+b5NKmNNPrmz7DyyYvU\nxkEkd4LnxaPO/AAAIABJREFUtBQZxU3t1MfV/pTOcMT4do1S3c/MY9C/K6D4PeR/4hLd/+PLeJ5f\nwvrqLrJ7xqLaQFmasq69wHGjxeWgh+WLL5Cpy8SKCjeH91jxr+M8c0b/K7cJF2VOBzH85/NEdTfe\nnMh13zqcgSYuMTcHFM9f4s0ffJ1ARiPntnHOYsQuxDhotjBPThnNZNZcNnXdj9fukQpVkYMi1YYf\n26kRyDqMzAba2MOb7zzNDPzC9Y8jZ3O49iOk2nFiK1m60Ucs9lXuItA7eIjiUoi/oDEJLFNvmgQ8\nSwzKt0hGU2xMJQ7nXWYZP1FHRax4cLf3aG+V2fnwQ9zPxvEks5zUw2z0VSwGPNEX9EZe/CkRRQ7y\nyD3k2jSGeGLSSFXoa3OakR7+sxQtfwg17mKv55D0mSzqXcpNiYJQodzosZJ3ke3lKLlbXJEbTKTz\nuJMejg+9SJkycZcf3HEWzOmk1uj+8AY/+YUCl6Ueb99/n9C5CVcWz3JYexc5MmfV66GuBhntnTDO\nTOk+OOYXPp6nNekwHSa5/d7/DcCvC/8x87qO/oU1PHWTRFJGWo0jLE6Z1s6I5jXmhwumuQlGRkRf\n6MylKclEmIlfxuXrYtteFkaQULrDsesI/yBJpWcS2jvBFXbhNmtUlRGxYRehNON99xluU8JdqdMh\nRmygMdmwGUsCwZkNU4dTl8CGnKRiPMCkjj++QLY8VLoq7ROBnnCM7taZigbimooVHfCJzc/S/dPv\nsDIyOPWv05RaOI0+zaAbuzFmHizSO43SzrgR6mPa5SEHR+8Smz0kY2YwN14hXisTiSS4tryEq9qg\nJktsXctx9Og+rZHFt9/6/7M9uRVe/MTzSGadoGgTi8+xywNiqSuMb1eZ+gOEvQfcPeqTei5Pfe4Q\nIEbIP6Nyp0Qm9jzetTkB75xHA4X22MNgbrHVCNIFYmqPetvA8crEizqJhwMSL1/h+OaCdqSCUtWZ\nTkaEZj3KqSGRcYZcXMcMjVHcJlPNhz2W8GuH+ANJ0gE3i7ULGGcj+uIY87CPtXOTRfoVlJCOUGqj\nnpikUpuYUg89ZBIZFNhf6rC2liMVn9J41GLlikXFfEhiMuDU0BC8l/HHHuOrFjCkOcHYJerTh3j0\nFYT5R+gNkZWhydfuP80u/sbnX6a1qDE1LEILiWG7hDbTOFpdZzxREP06o6ZDLhbmUb2NNRiRlodk\n/K8zjojMulXO93Koehir/jZ+W8B1FKfVuMXV6FUmrjnLHi/xgoug7uPs5le5+KkiTmLA4sRkmg5h\nUCOfTvBR9TaRcouKnSIw6BJQwP6WhRAqEs10aShdcmYLsdhAtA3CYpn7xQXy4xG5Uhvz4UcEZwHi\nQo49WSMVrtKOiZw/djiO+Rk+sInbM7SXlzm+W2IJ6KlhMpEnVPbCpCoTjjbKBEUfrUcTCuqcpqFQ\nD4fpOh2uiEG+9r2nw/XP/eyvsFBaBDsKbrnMIrBAT0eZC5/HVobkVyJ4LBtbS+OaTPm7v/omz164\nxrgpgOQgLbnx7PhZuA3KTS+ix6Zn53DqPqRyhZO4jLsq4/irdBctkpEitE1KLgthv0c6l0He7jOa\nJRDVNtV2jHQ4w2Fwwlo6Q1c/xRZMrPkuzYaPO+99n+zzQwxxTs6rcPBwyEqrxcilEJ9EWUTCbGy4\n8Rk/xC20CGbWMc+OUH49TnUOSnmJcbFK0Wfgs3x0cwP0bhdZKuJr9JmHdIRwCnkQIKlbyKkkYqnM\nUPLy0a13+W9/98egnfelf/qHX3zhlRfx21magxEbmQwZl5sdn4UtxgjKYfyZCe3WGVOfjCQmGJRE\nGoceghdG9K0m/oZJMPMJ+ucTHN4fYPgSKEEP8nTESOnSPJhjZqJEA2PmfgmXFEa7PUPxdSgG/czM\nGvOcTUDqkpwLMDMoPLfFk8cVwvoqH924h3/VwZYkPAnQKkm8+pR3GhapaQPNXWWeGzE+DuELiAyn\nc/LmFD2RxXEvaNV9SO0QqzOdYtSFKVkEY8/QOaxwevMOk9YZihQnaKVZ/oUX+Mnrr+HyWSh5naSv\nizvu4frCy0svfopv/cXTQ7r/6f/5n3HyJ99Hy19hZFWxKTFJpqk82cOpVJm/ugHinIFkcfNLf8q5\nK9d49tc/y6eubnL8dg91uszunV1OP6qw/8BGqkgs9cOUP6pi9ypMegk6kQXOVh5/TMc7dnPcT6Ac\n3ySYPMW9FsFd7iALRQ5NicWyi1S1wO5ah2itjT8f5FR1E6XJLUPg01evoPqPsXezRIobDCdzkuMV\nhtIj1iZJBG2d3rTDqFYDy43XY2G8+23+qy99gYE4wjuZYLTd1Hu7OHqQnnWGbHjIroooTTfOSGPo\nX6dzIOD3yciTHnX9HJGzOfP8mDe/8R4Ar0YDdM1t/FtxThtdTpuHPFYvshX7GaJRoJOl42zA4zl9\noY0qdZjZh2yZfm6LVc6qM7Z8KvtSjVarh/e1OGZvSPl+BX9yneKZh5noZ2E9Rp1E6FHj4so6Hf8E\n22nTbVYJ+Q2cUIBZcEguFeL+h3usiMtogT7C4ABp4sdzbsjJXhOjHyCUGLFXqRCchahXFU6WD6ju\nTMlaV5hfC1J5y0X2uRHikU21NUIdb6B/dgv5u4d4yfK4so39ZA//67/E6b//Ec3ZGemPvUL59j3s\neJKYJRBVvNQflfHbETqNHusJk9WVC/z1X/5rAP6Ln/8l9rZm7PYt+jGD056PqO1gjhc0vApLmVVm\nFYVeesEL3lfZvnsTYmM6N8f4xwYP7k7wagbidEi7MUPrz2lJYy5FF9QnYSbhCVJLwXalsZUosbxF\n9mgCF5ZYBEese8Ps+7sUhhJyuEZj6uCe+TBmB5gui4AUYNhIsKRanBwc4HKi2GsaU4+NbxRC033U\n754iTecMpnPWx28iOUtoio1gNNnxQaYywxXOsvbLn8AYPaGl9gnPp4QjIhkJKl/rk18L4Q6VCXpd\naN4CpYc/oO2ReDZZxJMpcrb/PlFrxtdvfATA+suvoAsWqSMXosfPSTRBS1zidGYgDXrM0gHUkyDz\noEZRyeH0H5MtJjmo3CO0cZ3mV+o4TRuv2aIjOxSvQabb5dCxaXbdZJQBk0UA69jPpNfEXwzz4F6b\nfKHDoJynXX2EL7PFNDInWU4znk3ZGfQQZxpSzMFsxVHyGpnqDE8wwyw/Z/Z2mWF8wEp3zokxo7C6\nTn86pRipsX90jDQ6I3dFZ18QcMwhVmyGs3DhbQyofmhwt1zBEtJkmwrlwSmdPZvRSzJDJYP45AQn\nA+ZZF48h4yVEvD5EjG/QT2q8+ebTtdTPffxXma+mEJw47n2RedeF1D6lpzSJX7/K8OEx1y5Z3AfO\nKyKX/WGKcp67A5AHTS7rIbaNE6yiiiSEYFJhtyLy4uXrHBq3cA5MNGNBY1fGsoeUPqYhSKv0TnN4\nNTgc7eIczLCySZ6ZG+yOj1gt6AxHtyhIh3S1MElHpTTpYDQc7lVapHMv0Y0l8TYTvJLIY+SW0Va8\nKPEVPlT3OTdL4/XE8cw0+mqXyExlHPIzD/o5ts6ob8947VfOI+yeMZLDrGUmHD5p4L4+JBEKomy7\nWSwdUa1lyQkO2lKVoMvD+MMzvnf36f/2K7/6eSy7yVQt0Kk1UcM204XO5qcucfu927g3VWalEcPr\nPpL9DouMjdb1o0dnVCsjEmUfs7UOfXeIQkLCHuskDANfYkqtaaCeVjCvL4i3lpjLAjYKg/iMjB2j\n3u1htePE0iYjYcQ8aDKzgiiOwFw948Vnn6GmHxOMJIk2PMiRY/JJg05tSqAZ5u72NsFEGKkYItEJ\nMdbD2FcTBG/scla36Hu8ZKZdXOkC7d0S8VyehaeP3KozbM5xryQJ7IxoySZWXGPY7BMQVvBW6zCY\noisa05lIazJCd0+59fgm/81v/RiIqH/xL//ZFy9e/Gm0eQfBmbHoy+izU7xOnOnhPuJKnIgy5CQd\nplSSkHSd+70YP/rf/5BPfjpLqDbF64ljrTXpjOfMWyO2RlNGwzlzTw2nV0PquZk3RQYjKITdGEdt\n0rZIRLdxzCDWTpNWco8CKbz+IGasytA8T+t0hDmdEP78U5q2K5XF1w0iXTSoRiO8Er3McesBtUyR\nSEkiFlWxdRl9LmIenfKkBstvLNO99w798T5T3SIlJDiuBpF9dxmurTDtrqLF/BjBGkeqSTKdoeEW\nSGgzYr1DytUegrhg0DslYKl85ztPHZVnf/k3kP7uLlq6j7p+Hb8dxN06QA1puLwSy0KFj0ZzZvtl\n1q++TPisy83vv8e9793ml/7RdaKrEw4fnPHxV9ZJcofk1M2bN9/nYnaF/qqKVRdp9hwG4RKjb77D\nMJYjefEW0Y87hHo669FLjI+rlGJ1LicEzr/+M8yqLeJZie0dN4tzcYTglFptn+xKggc/aOG6lCYk\nZXno7BApn6eQbaEd5ZmMLIYeiYReYaRP8M8s0q4WdxYzItFnOL61T3qhYmtJdsduroj7mLMNYt45\ndTlGUDkjnJzTnhp4mxNGEYlZ0I2808RIDfA7Rb793acts9jHL3Oy8jKDgY/p5oxKf4lM4Xke3Hib\now9v4qgLEhtwLGVYBAVWrSCOAQtR4fb0iEG/yznvZb76p3/BYn6OfNGLOK0SzPgIDlzc1l0Uqy7C\ncg/pWS8bvWValW068R6zD5qEEBB9XhZFG73iYfbAjZ2PMfJZeGWDklYjLswYsYa7ZbO9uMnEcLGi\nXSB8RSY1SyMOA1y76nDmd3G68yGeeB3jSZNWJM9Q9ZDYuETtR3dxqVH8G14C+/cYfOJlwvsTalUB\n3/kJlfeekH15lWLL4HF7wmyWIx2IsDvb58qBRix2hNu7w59/9akY+M1fSdM6CmK7swTrLsLLQVR1\nQk8aE9e8zCYmsSWFwemAerNEaGvG5pGI3w7j8ToEPcuExh4iywI11WCS8SOn43iVOAt7hDjSGefy\nLKUGjM9KSL0MNX1CKBDELs3w+utI/TSKJLK/P0KK5hi5OwjDZTzCkKCSYbAYMuq0MW2ZmUdhfHaE\nUVXxDl3MM218yzoL04Vxu0og+jF+cFhjc+xl12uRznpRImEOJh52v/YBwuwI91AmovWZtSKEhBQ+\nBjTDS7zzjbeZh/LI/S7DSIb151+k3Grz+O3voiQ9LLw+3vzh05uDUuqTXDSPKbolZmIH9WEfcanN\nlbFAO2RxZZxkZIQZRh8zXlRxSX4UT5hZ4yZee8Yi7GGo7XK6nKR1T8PTekjXcJEsSBjhPqlygIEV\noV3fIbBQkWSJy/EVxJ95HunhO/hzabxCBTH3HOujOkeJGBfGU0xdIizOOWsp2MFHLO60aA09tE4V\neq4JBUUinMgxTC6R9SSwKHHvLxt44n68YhFFFYi0ZPxl6COQk0U+vD8h+9ufofXRe6hRD7Gf2OTG\nzV020ldIzzNk0z06XQ+eqEy3Af6VAEJaQRgeMnJVaHdGfPD+DQByP/sarkUFPaRyKgqsjGd0p3EO\nnRDC2ZzNjRblQxHJHhFZRJmocw5aFv3bf8yX/u1foWkO9e05X/33f8wvbG2y60SYZI9wzVzYqznC\npsJ2tIGwkWP+vR+Rverm4SSB41Vxu46RkhGGH1VYTYxQRnHMrQ6hgYj3gzGKnodlBzvswh1WaSy6\naNoG/sp9+j4H3y2Reuk2hfwywiOBmm6zIW3QH8wIZm4RXV6i1HRBHzaWZkzFBhmfh0FghH5jwaOC\nSqo7RUgvM/r2DRIbr6O1KkznObyGgSsTYfvxEP9xl2m3zNqrV/jKXz4tzrzxq/8147NnOXqrgVcf\noyQ1WNG5HE6iHHyLoS+L05ix5jbpDyRUIYTvQojWkUHQsmjEemgSeF1p6idthtMG0RWFx08gkNXp\niTN80SC+Wp+xOEdKy0RqCXaqDcKFIYbfIl2JI6kqPSVATthl4VU4/dEHHDfu8flv/i1vf+cinlcf\nYMzW6Mphkr4yxtyFo40Ji8tEAkN66RCBvSbq4x5yYMZ8V8AnhnjiCVA7s7CKGeyqh9J0hn/fQMuF\nWcST+P0q3cMp+aRIpSaQU30EM1nmVh+jU2Xk0dja0KlXTR4/uMtv/faPAWzzD3//y1/ML6eQ8zb1\n/hNslx8zt0DdjrFIm8zNOfPPXSHqTuGoPnztHN/4J/+EX/yjXyZd1xDlGqtf/lkevfUe45lNsp6j\nET3ENQzTqbu4cCHMwGPSH0zwB84jFDX8gzKemcadOxOyaYNI2o1bdVGfOCiSQUmfkiwLHI/bOIEq\nORMw53QlnaQxZtpv0RAt+gcntAMW7Xv7CM/4kUczDHNM2JRoLgWIk2SuD+nldDYiGqmVAjdv7bF0\n3WEmJsnviYS8KhWlguIWqNd7aM0Y3lmbv/1gm8ViyErqKnJcI3naoudb8MPvPoX4vffXt4kVdZJZ\nAd/1F6k/vEVlmmC512CirlMe9FhOv8qJ+xSv28Wx2CQeWRBMp3GsDod/00TIGPzwr97m2mf9mDMN\nX/CYj1z3GT3cpW5NUZ4fER0skX45jf+Z58j8wM/gxKY/yvL4xkdI0S6K7acg52if9jhzenz4zR6u\nZ1o0H91h6d6MJfd5usIRim2h9TO8rdwlOFzDOumheRPMI20yF/s0Kw0C0oSPXbzAXmeImXYxL6Xo\ndw9YL7zIxCeyX5EQJw0q98r4N66yL7QJ7SiMogZVZ5Npo82ltTgn+gOCVReRlTQNV5OqEeXWW08n\n3Kv/y18TDFzk/pMfEc8+i382Q2l/gE/TmRVt/GqO6SJCJD5gZdxlvhZAdXSMpRTB1hJR1YPUGpMK\nhYkv1fGtxbHuuvEP5wj+MuGYH4EZhfzzCKUxJ5M24lUZDkKsn08wnW7S8Dhk74fIPrtOKf2AJX+S\ns0mTpLLEOcfitJXADtYgYLC0JxB6bQXNPURynmMyvke9OGBwo8nAnBJZOU9+EceX3iI6K7MIquyf\nNBFiZfYO2qSNexw2RSRPhmO3SSAfRLMv4kpnae4cM2lqaJfTFLIiZ8ESi0QKVzzC1/78A9prCz78\n7g4AP7v0aQqLJNtmj62XcvzVn3+bwrOnCE+mlLwj5GGfijFC8+pocwHXWZKO4EU7E1CzAWpai5Lm\npTWekFOzTM5cLHuTdCtHKN48/Ts9QskV9ktt3KklxsJjnGqURNFAnYJTWyIa7tEu+GC9gDCfUvCl\nEesdOrQ5Nkvkhwo9weF8wY0xWRD1RwlvCmhSDDUgY3YVGs0zsteXadwokVfCHC0NkYUAodCME5bw\nz8Hnf4yqbHKmWji3OoQiXRz9hFIyyQtiEPvaMmHJhzft4mDnLtF8ksH7uxjXNkhd2WB494B3bt0G\n4IUvfBLXWpSY1WS3lqD1WpJkPYAsnDB7bJDqGext75B6NcEXf2ObtWtbRFM1Oj9KUTGHmIERWfsc\ngZhOfK2EqcQYU+VkT2CxaxGNhAk7OyRZIVA4o9YYMzqns/sf3kKWYjQPHhLWC7hnDcqjGS5vCbMy\nZjGocVfRWE32cfU20fJ+Jv8fd2/+5Eh63vl9MpFAJoDEfR9Vhbqrurv67pnhnBzODK+hJFKiJFqU\nVtRq11JoLUtLSvYqtLvBCEthaze0ttaiFWGFLUsb9lK2ZC4lkiNyyLmP7pnpu6vrPlCF+wYSQCKB\nTKR/aP8Ty3/hjXif9/t+n+f5fgpjnB4NpbrFTtuk3m0wslVC7iLG3Bw9T5CLn3iCOw++y8a5BEhu\nDp0CQalMf89Nf7XOst5CkJ7nnlIj+PAh56N+du9t0ko6WLh0kdBiglu7e+SaDqphm0y7R+mkR0NQ\n8asCb791A4CPv/gF2nk3SmsXszJkFBIIaCnWFpxMZ4+JSYvsXG+Ryfhp1JbQnDLSwCYSVKg8N4/7\npX+Jfv4JnrlyifakxJwGx6ZJZLpMaHzCobCNcS+NeWrgn3ETCTzJeKlF+foe+LJ4zAL+wJjhSghP\nR+JUX2Qk1glsXGRPVWgMVaa9EGFzj7geZhjvktZnMaMy7cFDjgMB0v4AdcMkmtzB1gJIvgOUhoPX\nrktYmTEDc0TPDJMZmvjsMIZLx6hVuP+D66wFz9OqHGBeS9Heb+FUZvB4bKYOD56DCmH/Ho5nz9Mf\nBLBHJ7zyg0fi8zcuPuRXvvr7fHw5RFaN0XH6idfLyPodXBUNORGn40lgWcuUDXC4dJpbEmNnkQtR\nBcsbZdBeYzjYRU+NcaeCePY7sKzS13uYeoIZOjSSKex2FG8U2rU67k6V2iTM4zMqVZfJKNpAMC1c\nIz+FQRzXZ2wM0883/5dzvFH6ZQKffI3Fxgh7LOJWRqiqgq8RxIilCB53MSdO3KkRlZGJ67mL+M0Q\n8Sd65N8ZY5lTQp48XVFGbcqYcQ9qIMGDO0UMQyNotgmtxPDEPOjNIQW9RXuSZKJmiRRbjGSRZG6e\nt197lX/+tR8DEfVH//aPvv5PP/lT9JoNTnttrtkCkdwhRvmIfGWbY1eV4Z1NdP9V/p9//SpStsOn\nL6dYM2QG+QLOdZXu/VNKRpGemCQQquOLhKi4PMTrFu2+F2Jtckqcgb2HPoigddxEVrzMXNQonOyT\n31jG73XhCagcZspkhTE9XaK1ssuyI8dOWqDUMZElHW/oAe2RxKxu0M9IxENTrv2Ln2P/f9jBvVzH\nafUpMCU61JlkoF7uMnWvITvTiAeQOm+j7Y4YeHuE5RRF/xaLkp8TPYEPg8DFJINsBPnDEV/80mco\nDAu4axMaV0Loe2Wuv/sIQPyVX/8r1qctDvQmn49/nEqhybjyEdI5L5VOm9mkSTHt5aJrSkd0cs67\nREoIYMW3maRr1Bx3EFsa6c+F6b9yQO3gFNfPX2XyZohrv/EVAs+dI5V6moc7h6goFP+PQ1ozO3R9\nSVaVTSS/k8RYpRRwMtgaY81VUO7KFB23SAxdnPHN80Euyolwh43s8+S3T8jMpzjO+7maU5GTJxi5\nCtNtP7pviDJt44mt89733mIl2yK20ySZszjIh4m0jukJFdRAjq5So9gJkxz2WFkP09EURF+DTn+M\nL2iy1a4j9mexznkxtFuclt0EEbjx9hsAnOtMGMVK/OYLz1O/tYmoVTFODbb1m5xLreB+2Gc4qiIl\ndUxboJnXyRo9tJGF84xO5a4B5724H2wzufAia7NxnGqcncMegUwG804Tb7LIaaPIyWIc9/08rc6I\naKyCEFpkIO+S39xGn5NIRqcc1rL0pT5pLcLffKtIV4/yzjslxE9+DF/iY9y69xFPng8hTo85qPSR\nwyN6nTM4YlGy/ihaZ0SjZ2GYBxRjs9Q6EHWMuPfGa6x98gxKHuKfvspYdCOe3kBUFgh7Dsg3RLy9\nAD3xFCW7wLTdo981yHmCjPsuquEYg797g4f1JgA/cfs9Xk51+e3pDPX923z6ay+y1wliKFCqD5n4\nPSinVaITBcVrsCvUiM04sWsOprqJJcTJRibYtoB+UmBqBXEPCngHYQx7zMy4SMF9G3W3jM+rE41c\nZn90F5dxihD20Rj1aWXCTGotYiUNZyDKSOmgxTxIrQqSHaR7JshgEsdihKREiS73aZoKTklgc+8Y\n06sy5zrDsFTGExWpRMecXU6T7/QR800WX5rjpFKCvkVm2CcUsPERZrNdQ00vUVdFOgWT5auzuCJ+\nqmMfHUcdO+/A7XGQSgwZvTUlIpm88uEjJ+rZ0Mtk/TMo0ykeMYoy3WMahJFXYMGOIcdswhtR/Lln\nuf2fvsUvfeNXCIRMXBsyrWodz7JMXYwiTcscfTBD3zIxtid4A/O4Min0aAxf1E091UWJXsSvH9Me\n5Zm1FESXj3o8RssT42D3PuP9CZHxEvvPx2nnQ+QiXnynUwy7x9oTT+GZHtGIuZDOriNNV8nFVHqq\nRrHkIC45GRxUaKsFVkN+XI4xlWmC9ImLvfwHzHz8car1MuKtMonXjtn4ylf537/x12TTdb609mle\n/dvvU19aQP/B96i3BfzuMIbuIByOcto6IaVm8euz/OD6IyLDkz/zU2R1jYIxy2iuTKQ9jy9So99X\nWVj+OPs7/yfhiYbbeYZ4s0V5sM0k3qXpfY5cd4X1RoXV1RLlwQQxMUvL1STc0Sh27xFfucbJpMtC\npYlr2YviXqCpl7Hse4Q0NwF8WP1ZKpJOfBJl9+FdmJtnOuwj5I8I+N3k7CUEq8zDlg/6blqxOGq1\nS24YJRPScJhBjueHLGpO6k2NYMjBpGRw1yvizblZa/cZ9et0jCwZ75SGGWQabqG3hlz6Lz6H3Y9i\nBOqYIx+h+SGG5qa5bqHaUfaHIspSiHojjuLep7kb4t2PHs2Shb4d4bfet0kuXWInM2K2U8M52uH2\n7PfQ+nOMQ2sIRpOB0WVJsxGHFcptnaeeWOWedoppqnSqmyy4z1L3GkSMKGGnREcfYlRHJAMa7u4y\nJfkB0dYALTuL3O/STK4iWwZCL0Fx3MQ5Vol2BZoek27GiQs/S1e+yPr/+gLmf3mP4h/+az7xxTXk\nGZHA1TL2yQoth0CinqThtJkM2hQmFro3xWxpiwdbO/iW11g6l8R9Y5+64iVsRPBm2lRlB11VZXY/\njD3jxI7U8O75abTbBEN13HqSoeUiKbbo6lXGuWU0V4/r33v1xyPi4H/80298XfrZz+FaFxE7FvrY\nxvP8WcKf/Qxv/FmF7/z1Oyye/QU8MSecyDwby5AKW7hGOkeLGj1xjFLwoKhXcLo2sQoyJy0X0mAb\n/Cq4Swz2ZmlKEm1HirnjLkMvOE+6lOdFtLFOwLlMo1UgNRPAKB1gOc+TV4ZErldozQqsuqokPRKx\nSotRa4Px4w609zSigS5yVUUvTJAupbCqFVqVCYO0SKwTQqo1EEcasaGX+Wez/MPt24SMCD15iiqf\nR2q+z4Hmozso4l/WkD0BOrt1YmIGX3QHcXOTk/aIoMeJGr+GUTJ4551Hl+Wxr3wBz3SLzW/8FYsv\nLpDfGrF8Zp6RPMOVawt8dP8e9qnJ3fcsFtbPMvGYKMI+/phKUrxKKhJn1h+gMZX55X/3Eov/YRGz\nC7msC1+GAAAgAElEQVQv5Mi388i3DNy1BrZQ5qT4gJmoi8PbRcxImLotszIRqQT6JOYzpKMQmyQ5\nSsRYUGAcj+DPXMY1OmCkiZweCHiuzvH63R9xfiPC8UGewtIRnnyMw7d/yNn5BM7BHMM7EvlUh8sv\nvUDG2cF4MCTm0zhdqBIbrLAfO2RZucKKy0dzdIoiOgisxOlFDOJzPiJTgULFhSpZROlSMXTkwRpr\nC15e+e6j4ryRfYyrP+FA/5sthqKCVhvijrY4P1TR+jOYk12WZlcofn8bJT6kO+yQWdM5OoVLIw01\n22UhF6ajXCOvTdmvWoQiHegfoDU6xEUPzaUYoktFLrbQ51wM7ctkTsvcvtMh4/UgeURCh328l4PM\n7vvQPFu0Am8hvPQiK2cTHO0ILDwVwjp9n2T6Y7jOrbG3aePui3jbKiVXl460QLN2E3HoQ4+c4cLz\nAa5/s40U2kK/v8eTT17AY8Y43K2SfHaWfr3EsGdSF93EXcf08xU8FxQChw7e2X/IubMvEJlRKMSi\neNUBqjXBvxblvTcftfN+4cqT/E/BCD+MRnjyco4tJUv11Q9wZ1QkDQiPEUIeGoAhaKinOcYjhdqq\nTcM7Rr+YpXF8gFMt4hiFCcgdiuEwmq/FpFPHHfIhHfmxs3DvUKXTlVjYkGlN44gnCVzhNrFhlGFH\nZ++NW6xfnuNworDantK3+rh8UcxQmni5BtM4cTWL0Y5Svn8Mip9Uu4C0OE91VMArqRhKiIg0ofHO\nMfa6B0me5UAvki4do5sC6VyU3VaN0MIEO3COk4fvcG1tibCoUj8acKt0zLj0Dgl/mtbFGdrbdyiX\nZmnljuhnItx45Q0A5E+l+eSGA2wLVpKcHu4S12UeUKYxSuFNlbGHc5RcNssvPk61YPDwBwbdNxtE\nbIPo1WvkVtwcFAyuKTL2tI3nhVnq1Q6ZC0GkQo3D+ycEXWHe/ujbmHKYVO4qPdNNOTgiMjBZIMSg\nvE94YpOaXST1Wz+D/08cBN+4jz8c5mQ6JpJIUXhvjK3ZeCJ5LFcf4X4eaehASG/Q7OwihVt8/OIz\nsLPFJm2Mv/sO1sUZzlx8Ce10yMbjT9GvevGafbTIhGe+4OapJ7/M//bD/5mNL1/Gc3CHfCnBteVL\n9AO7uJaWqLs8RLXbGOkgJbPNh28/St5+zreCPBtBcZsElTST4l3aV904OmVktcl4EKBz3CaVC1N6\n2uSya4yqeKnYm6z54jSmm5yT1pmZ8RAqlmGvyfjsEivhNv1enIYlUe9mkQMd6sUO8zNJHux+SLNv\nc+n5Z9mfbqJbflZViW4hjHetTy4qksimMVsTRLnHSOkiNOZZyhyzvdcgOefH5RrTtSU6wxiu4AG9\nqk03LWAaa3QyD1D9SVyjAwpyG8M3ZTUww4mhYIW3cDYTuOMjBFvHTE0pV8YozRilJZOuPouxs40a\n94NpEZZrKPsTNJdCWvHwyluPcDlfPvvTxJ78MvuONNXiFj7TT6unEjyKYV+8SH27jUsLcjmUJE+R\nQNYktz5D/Qeb1FMCy5si9XMS8wMvDtUmZGtYYwH7ynnC0xYCMGm0MdNjps4sgntEHZu4pRGfMRAq\nXXyzy1QO+ySybiaDLTyyhijsEAiHcf6zDwj/9RaJ8+8x67vKaX3I9A2d49MjfN0E3rEX0ddFcYsI\nBw5irjHdZR+pEx/S2SmH726iZAx83TZDxY0lDunc6WFVYJQ7IVaE8QMH7Vk/7vUR00CM++KEBXFI\nL+1maFRwtwOo0RHXf/gev/vf/O5//iLqd776O19feeY3kFthHFoL6cRE+ShJc9NinF7h+fMXWAx7\nGWzusfAxD/OeY8yLQUrvvEds7TPUa0OEuQgRxYXHn6ZXP0Hve0mrTvzuBr6xF+RD1Nk8g+48kq9A\nuRtlt3yE2lTZeCLFh2+9xcp8mma3h0exOP7ggJWhSPrl59Hyu2QdM5idOdqnblhQoXyf8CiH35Jx\nu5wYARi9f5upOkNwyUG2oCNEEvRx0JzX6HsWefDmLv7kGTqeKc6CyIxZxbLOIkdkfLaK3k5S2L1P\nqHyImPCy6LjE0UAhKjYYRiV6nhD33jxmd+uR3f3yb88j30+xPnsROzjEnBVJkmTrg3ssLWQIyGuo\nl2Ta94cM5UPKHxzTrjqwL0UJyRM+cBnYwwGN/JDiv8nw93+5Rzt7yt0/e5PGIMBoOiJ//B7nVzxU\nhsvMqFlyqyZr5iwNTwB1Y576iYPjyhB3x6KjS9i9EwZKn/FIJqYEqHdqpMQFWuqUk8N3+fiLn8e+\nq5CaF1g8TdDt7rP+WIbirQWM2Ql5uUI0GaJ70COSTtI2e5yupZDzYVD28JVT3Jm0WEi76O3kCX38\nKcSagS2M6BYsovsxdKGNZKgEE/cYrT/LuFbk9KjC3ZuPzu0f//uf5eG336d35OfByoD10iZ9+WME\nfVHGwSGDWIeIX8Xj6aJlrpB4qNFQU+gDFxPNIDzaoOiwKaZsvFaA/Yd7FPtH+FbPkJEfAUvLlX30\nroIjatK1JFZNJ4e5KU8LWapalUkKXr3ZQrv5LN9573X+0R/8DK7XDhiXcyx/6WcxrA9ZO53CYRE7\n3+DDNw8ZGUdkMucZLt+id6oSNoYo1oCZtTSiIfLhh7cxIkeIpSyzT4UJNKc05RZL11apvtHEHgzw\njnTU0zpDIYeekHEfNtgeuTkTA8FbprpTIpZSCFVEwnKbYFfmO+88osM//fLvs50QkJxBmlmQfGnc\nQZ30sgdfcpXwpo04v45+qGEOR1hXoiSKEDyXwBFfJ3ezSM0xJqoEKGZlWkodt67iPJyQOi2j7Ceo\nntdxLpwluzzHQrrB6nyKxnEcNVKgvynx4N4myaaDzHQO09XFY7nBK2NZUULjPmFLQLzop7h/h/HQ\nQ3e1w6JmU27LdD0F1ssiSTWKISnIjS6We4ArG8XjmsFylZCnQ4xMEp8yoFnvEx1OKQ/SOIQGWXsJ\nNTPiwYNDvL46J2ELxQ9KUKC4c8zYCpB+KY06WqJd3+T2WzcB+NTiy6yoMe507nIy1DkT9XE76kCa\nJlkJLRAM1njloIyYmDCXWKZyXORw+oDUBYHwG0X0mxrbgw5ph59BwGRvsEXbbDJ39x5q0oHUyaC4\n6rTcBdZya3jDUQpSEim6zeBDicAZA6XsYazME06N8CtbXPrjOcQHW3x/J4EyK5KNBxiWTigJLZIO\nH5XkPNJeD13Pow5avPKDB7z42V8kLPS4/g879AdO4ndbrP7BvyDa30O3KnR7UwY3C9h6kLE0wj/v\npF2P8OHNm/zZN/6Sjc88yUtnP8nsZz6BUemj3fwAp7rB4NYHtPUoQtQPTS83rj/Kc/viJ7/GfqNE\nsD+he+8+V778ZYaNDoXgKuNKHrcl0swEKORPsG4W2M+lqQ0zLHTqjNttup2P6Ews9h+auCjRXcjh\nf7PO9pIFpS4LrSajlRjpoYOqucT+zmv4DwcULZXO2CDbdxC5cUT9tkT9SZt0MUUrn2b/dJ+FVQf4\nYVsfMecTaAlD1r4UIqF6GLgz5BcSLEQOGUz86CE348MJqykf0V0Ff3xKxeNm2p3hUnSNo5LA8nwT\naTtBoW3SqQ+ZUwX05pho8DyO8Wu47Ckzbptc+iqnO7fwh0SEaRDFM0sytoO97+O7Nx/Nyn78y19F\n62hYThGx5KQ8KDKbizJgFiWTZtKfkPaK3PLuE69WqU3PoJtNTpwtZCXEUiiHOwCyx0QwWyikqZhT\nxvcadKwjQoKTzLqP6bZGT+uTUGtornPI0wFexcaoJ6kFbrE+WKQz5yBh2ZR8E+KZGKddE3vHgTO4\nS8OzyGg5jNyL0layZBcEvFc3aLZBmfUxdk0JKhFsr0ZVDCFHbETBQWo5AxOBcXVI1d3CL3gwjAWi\n3hbpSIJTz5j+TJmZsoNWpcZ42mfRcKNTxNkJUaoH6AaPiEwyfPDR2/zOV38McqL+5N/991+//PgK\nVvU79A47iMde0i+9yGVVo1KZoNdbrJ0b4fLbeBI5trarqOMO+UU/c7ES7b1F9IrFVseF3HMwsJrM\nqT323W0mUwXRneHtm/dxO58nOexjW35GYgdXRCFXTkB0zCQlEhIVWts3idlLzAUsXIcSiuSlN25w\ntGfhWxEQkj56p9sMdxfg8Q6ZDmiBOj4tzWlcx9+9Sj8kYYTmeKi/jSg5mS9nmbptvHINJVQnKYoM\n5CETMYNT0Kg/fEj4ShZHuokcvop9LgmSDR0XB+EG6iRCS0zgcghcKDd45d4jBtzF3/9VxlsFXvvz\nP+WZFz/PuHTKtCtjbwzZuXHC3Pk13vyjv0T6xDIxc0rQOUFX4ogBL9KJybTswtoW8J5xYdzoMjOo\n0hlcYE7ZIFUwCXhFvPEKg3ocugonvZusrnnJKwkK3gPESJCxtMQkXEKx4gzdCcZBgUxig1l3mlrX\nj8PT4N2bA/DkObuURf/RKcaFE1YmNiXtmIO+SXplgwZ5Yp4lNEsl1+lz2nDgbqfwz49xp2fQPCGU\nXhX36jH+Zg7F1SOY7FOxoOatoNVmSLar6IbOuadmWE5kacsGD/9yh/OXApxzyfyn1x85eHMBD0Yv\nRygrM2N7KLmWeSJaRZwLoDUaxIohKhMfo56AdvgaontKsdrDMEIsSjZbCyHi+3sItSGyo4o7vIol\nKpz+hxretSjHrvssFVfIzinY4xXC92Wm8n00MYvsrlPnLAejWazPXMFx+SKruobwegHLF6I/2IbN\nO+iBBK3hDZLBy6wIdcaKiH2vz1Dcwh8U8YU13OM80p7CB9+6gSPTxyFFiczPs+GK0t626UZdTG0/\njumAsZ1CyDpomzZpZ5+wPENXsfGpIVZzGt1L13j/L97CuzGlcDfBTC6HEpsw/uANvnvvAIAv/fJL\neAMZ6pEM2jhCtX/K8lOLGM0g+fsFLMcmvbaEkKuQ7AdwSQoFdEaCD8/tdzFW4tA8RpiOGIQ9eNpp\njk62CA1lYrkQwuyYdOwcW/W7RIZFBKlL4W6diJClfrhNaHlCahok4O5z1V3ko4rGuuyhHBkwDHpQ\nJg48kzKtsRPnnBftpIlk67QbNezkkLD3DJUH79AIRwlGItRNGWmaRXx6nlb3fTreIY6SQuGwhTyf\npVk3yWSWsTMN/Pkw+WCPxNIy6vaATsJBrjelG52HyRAXHjI5mZCYRZUO8ASv8fq3/wYAZXGJC2dX\nSEk+LslZDrtlHLEow3YcX/0QLRDCq3kIN2ep7Owyru5y3rzEpFlmPMqiJGApW2XcE6jf2efGX3yH\np+ZXafjifOHLX+bB3vtYep3BgodyZ8ikLROT7+Fq5hif6ZHakhj4WlS1LqYQpH69zOy6i4PBKsLh\nDjOOI3b9MwhTD5P4kMpkxAWpRZkoZ73n8GQvoaw62XmwSTLRQxh5KRyekLgcwKiUcQfCWD03A63D\nZCgz293j3UEVT9RLbC2O/+Iqz2z8FCGvh1bdhVh1cE+/TjT4BNH2NqX1ACuKSt/rx/FwzHubj0TU\n+a+8RGA2QOnhDc5+/qe41T1B0sfElR0q6iqWpnAx3qelt/nYc5/g6N1jbFPH4RIxonOsJs/Trjex\n9DHNRJ5wfsy+eEKYc6yP+/Q9KkKry8oZCW9AYjWyiMsVYflnn8DO17EWXcxeilJ19REeROm6t/FX\n9zFVg5iRQG+L1P0JWrtjEoN9WmYdVzdKvyPhvzHg4Pgm3nWFdKuH3zlgVNlBi/sQSgUa3iXmymO6\nHi9K4phds4TTGrKUtag4RSaCl7rapmXWcDm8TNQQmZFJaVLFEewjV90oko6ij9g6bNKIR7n+/ztR\nF5+7REK4yNa7uyzNerCCHtLuDIbWoT/QsZU66cgChVKXrLlOZr5PcadAIrqGz9HCUdPw6hG2tTK6\nbtDu1RCEEMGQwZJnRG9hjVK1Qypn4kueod2bEO3b9CUX1eMg42yHOHOoYpHNNwx6gR6usZN2+Qyq\nHqMtFpgWLZzDAZKySlzs0PbNIZQiuL19HO4ohZ0GSuUhWk6h2TVZ8Foo4zKjnkG3BIPUCFfaZLId\nxv90jnGwRkhqsq/VWBRM3KKD6GyOUxp4QjkcsoVbC9Go9RAyfsTtFoGQxYcfPuBrX/sxYOd945t/\n9vXnfnKMY3KWtHwWZV5j/ihILe1GHlfJpJrEHVcwfS4e/N8/5MILC7SGfZKOFLfEPdLaiEnOomcW\nGcoePG4HjWgGdepmsdxDCLRImTlmVqFotRD6CZLTPc65nIznPXgu9kmWS4wmAbzBEJ5ymTuH89z+\n0U0C51uMjAKhwgjJIePuSejNCRFviXHvHJYLToqQHDYJGGG6SoX+0CI472Jel/F2xzhCBg7L4mgk\nw1gg3ppFLzRRsyGclQ5KYgarUeZAr2M2IdupMzW9TKcD7GKdeNrCNdEZdCaETlp8d/tRe+Wf/HyP\n2NY2BY+XZz/1LGPbyZFRw//YS0xvfUDiy59lKZmm3nVSHbiwWkPUFRcctGhKx8TPBLgzCjMTEGi5\nJjhmvVT/3wNe/HSanbsnOMJB1rIrmGmIZdMET0MkriWwbo649oyCWApz89uvsiAn2TrpkHZJ+KYO\n5PgJ3/v7AfXTv2Uid4nl1vhYMsndt3bJzKYwNJGQx8fNloeV2RTdlkg23mRo+JiOx0jigDuTAIbf\nBe0h4rDGw/v7zL30BOLoAf2+hZaY4LSCyFYUNJF0Q+JUXOD8spe/yx+wd2MHv76JvXCemqwQ2Fji\nlf/rbwG41AtRCoZY3DjDJOZgQ+pzsjplHHTjKudoL9cwNYHEZ3NYbg+ZpzL4jDhFf4OBp8WZjsmu\n7CdmV9BKTdZWDbTRAhm5jXF/SsD/gDuTbSaJZxkPZlEzBRpqjtBxDjGV4HrnNXwZg2BslUBtB7fV\n4rDfYyDkifqK3H4QIHhJx7OtEZoRMBwpOl2ZBbXIPg48lTKDD8e09BCOGRF/9CzRtTCLoQrO/Bzu\nmIlc32agilzJiPhdUQojHXexwYKryeHMDHVTx+NUqTVbbNsDzpUymEIRn5hFSezhcQRxSXmm0zTf\nefORE/WFn/05fiS6iR4eon4sy8Nmnsb1Kr/yX/86u89fpBhYR/TqSOUJgdhZfGqJTNJDubRHdy6K\n5WgiGW4qcRDfGpN63MIxTqAsleiYq9SjKmev2jw86OFttvEYAYbRLFZmk0Y+SkpIMEiYzMhn0bsW\n5TmLaKNLPBhg3MrTOnUTCGnUjC5zypROROaMK0Z7MIPZVchNBWzVxu/rUZdnCPRb4OzQPukilxrY\n0yV0b51wLECs3sLyzqAIJpsVDf/yHNf8CmK8TrNWYuC1GTvmHgWYnoSoTkXk8RIjqcugFUccbvPm\nq4/OLXHpeZ59zEC4WUFIzHPYOiSpeci6NxktxtFHh+jqIgHpDg1FIh6J4IskscpFumkJh5XAOh+i\nG4pwv9Hjrduv8Zu/9M8xkSj0r3N4r4N4Nc5Y83MtEuBEO8Y3EDGOj/AFnuG2oBGKzmImi2S9Fd78\n82/i/ol5/vJfvcEJDwk6X0ZMnpCT3bjuFFECEbxajI4pkrgoclCqI+6XSUVWMKUGg36NhOam9JkY\nYyPKNB0hsNXHDJhEShP6ywEiCyH0vs1rxTrO13qsfXGJwjf/ln5li8q+g7XjJsN2A99TMxy8byJM\nikyyJeJCmx++/cjB+8zCkyhnEvSzOcL7VbKDJp2BSUDo0+26mFo2dfOYS8az7Nfu0xxGSERqdIYq\nudaUw+GIfsiDHW2h7GWIZMJMqxPUBQ+nkouiESP98RB7B0VqJ2FC4gPKZySi902MO+CtHrDb1UnN\nfhLPdI+TiJ/UtQzxuUV23i0RWlHIFqs4IydYlSDYQaaDEcF0Cr2wR1NZJ51yc1y1sOsBXLkgWi/N\nID7HaumYSbpKGIthoQyJZcIRL96ZK8inBZoTDU2aJVMQKVkHaPkyw0QUd6eJP+tnz1Wjb24Q4QHd\nzkWkdYV3vvNoXOHlF6/B8CGZx9KsZ1fZaXRRjAmWQ6ZpHKPH5nD079M3TIZ6i5qoMBLmyOTqjDcl\nBj6T3nqAmNyl6PIwMxNC0EuYPj9Op0hP28TXyjFKORm3hwTnp0y6A7ydAfbMAP0whtDdoaIqXMhK\nhDJBvHaKUarHaNJirdLC45uh3u9xYSMHPpNKv8HZc9eoHG4zbQgkHw9TGfsYSCeUe0Mq97zMJFaR\ngxZK24HV7WKNVIjYqMo1Ks0akW4SKeFgOPTRHUsoUx/tE5kFR5Mdy8fUNMGRwmHdpDPwkJ7J8e71\n9/mdr/72f/4i6t/+qz/++ovZa/R8bsjYxMcu6qEUUMCRkTGNIG+/fp8F15CZF5Y4bbYZSm56RxHW\nZ3J0exbDbp9FzUmzfYQrfhbZ0+RydQ4rAE53EqtroiswEQeUq22iviWiF+Y4du4TOmhTOrHpPpxA\n00UpeZGVjRAv/d4/5rv/cIzPN4d65mmSSob3axNWVpPklSCS4CHvusdMPUDjfIKxI4/3ZAb/JM9h\nI8neYQeXZ0wv0EIeO0jHNOyxi33flNlhH3XkJebqUfI78AemyAM/4+wEqe7lSI0x79Ewwxqh0zBe\n9wjrJE70MTff+v6jH8cv/WIXV9FHaDrH2BvkVEhx90GPq/IRs//sX/Jvfvrz+B5f5u3/+C3mPhHE\nnI0z2Juyup7B4VXY7IKkTul8UMHuRhFdHWz/OtN0mnJwgBqyeVjRcZxoJJxBdjs3wK6S397HaHqZ\nyALeCx3axQCBCw36vRLqIIErkcZv9TnzeA7NMUu7XENxd0lfElF664wjpzgcAosIdLsWx+MaAe8C\nVzKrVDdP0aYmoQWZhLNJ0ZCpF28irobYvv821Tdg5Ewy7iiMZIuQMWFwoNIbdijtFxnWR0TnVJTO\nmOF8jidSCiNd5+4/bPPgwaOtxufPf4kzz0aQlrskSxns1QzejgN55MIzLpI6d5HA0RD7pIMQaFK/\n3sMtpfF7Ozii16B/SpI0/YMmjpCbkOXgVnWPmSsKow2TTjmOb/V51LUkbt8qH/tkFFfZQSNaZrC0\niiuh8tJChNnODCO5TrOo0THLrF15mv2PDnjihSUqlsKoGKJb3+exZ3MQHXCaTTJnpkjKC9QXZD7m\nnyEykGm6R+geG29hzEHgkPF2GH16QFbyUtNi3OmYzOoS7YITYiGi7gGGFMXyjbCEEemSTNFfoC1p\ndIo6SilFpTagM50jfXnEt7/5qE3w2M99hnff6bKVNzh/bY7O0UMSyQTfu/wMO6X7nMukiLojuB0O\n3MEyxa02NEN0alPcssy0YeFJKog9J0/99GPoFZPpdIzh7VNsVVASMYp7BxhuBXMawhdu45tO+PBA\nQ82sMzIMeoEJg+4x/cwqOdlH80ThoaUjTTNIrgMakwnJCFieLIoeIj85IXo4IXleo+rtMLu+jF6P\nEDA+pEMYl24gmx/iTeYwhBpzVgytMaGZCZH0uunWKkyDIUxvm/vtJuq0g22kOWxBJOTHqncIZpMs\nq3N4UyLvfXiLrCLg8kV5/ZVHj9ryyz/J+UGAoa+HJPiQSwbbsxmGapq+UWB8HGf65y2++50jEk9G\nOXPRT1U3kZM6nnCI7NMRRlXo/t3bvPxrj7EQdlILNdjaztNvrBA/P2He8xjdoY7b24TpmKCwiC3E\naVXvYgtOmgmZjd6YSCjM859OEn7+H6FeOYM4Vkif61I6dVJ1WEynICb2cE1MIsEOB/UxXkXkOF7m\n3KKEpVxhULtFIPsUUjjJWC+wqEh85Bvg6CbRHRLdWoFG9DxuX5pRo80v/t5zyG/ucVy8zWrks0yz\nVRp2iuTnwvR3jzDONDknBZkWB6hNP6/cepR39NyvXaHTk8kph3ROkwwnXdoXlmkdypgeC3HSQHIO\nKKIxyeZwVUVymkmgP0crrCPNhug5jpgznqSsnRCa1Qh1zjCM9BgGmjy9scr2u3+Pac5gBMP4wjL6\nHrgUB+JGkXr7MRwrAsndEpVEEufgiHRbxdPSOBGaTGUFp2uVmkvEo3To2Ca1+DLmQZ6WESGpNtg7\n7BAOZBFbTuJGlyFVbI9KRTrCFRYwuw0OrGso7RKNvk1nr8dO8YSIukxc73DaNnCferBdCkncBEY+\n9poxXBGbyb1TEmuXaWV8tMw73Preo+28q1d/lcRiDNVM8nb9VWxzlXynhetwm52tAmuPr+IoDFg5\n68dRsBH2htjZLEc3ioyXLfrRGM6bbQajOEqigz7W0E/dqBM3h1WRcdlLNFRDLGRQDBen4oi5pkTR\nJ2C6I4SiYxSHSbTo5365gxDIIQfyWO/eZSkscixPMapBJmdNfFOBbq+PEJpSf6dMfTuHUX7IRz86\nYSmlUOknmDVg7oKf/GiAZKkMKnkMaYo5HODsSdjJPtakhS8r4bdN8g4/jlqTQv2UjNtJdzqH7R8x\n7vbJLWQp5/skLrqxInN89N1/4Gs/DtiXP/zDP/76ufVf51zMj1no4/IEcPQ+Qhja7N9vMF6QmEXH\nMUiR9zcINmMERxVCj4UQt4aUo1nGXoFkMkDQ08DMhsjui/Q8bQy6lJtNookg7a27OMQMc2KQSvz7\nFO6eEuku8x9/9A4XYz9H8+wS8xcukfJotNtNWu++TntyjDld4PDuLvrGEiv9Kg92X6UW2ODnfu0p\npu895DjeR7npJt6fQVecdKYuQh2J4eyIyJUNBlWRqcuD7ewgeJ24hzqnfYGZBR+VA52Gy4c/MuRh\nYYDDM8/Zs0msVpuxp0/MajAOCOQLAZqb3yOzeIVv/fBRHsh/9dN/SH5PZPfcFXz7Qy5fSCOEe2Qd\nV/nT3/oDrnz5OdbiGa6cu8TosEVYLfJhpUggfImeT8Z6a0Agf0D4Uy+Ttdu41SDz/hrtg3286SEL\n01XWZxeI5ny0J07G9gR31KIWk/FbWeaXvJhVD+571/HP50gLUY5cFsrubQ7xMDNpU/VJnHGL3It5\nkOcWcNVPGBQi+O0eRzkHo5MAMyGR0SSAXt0iu/44ltOkOPUSjSXJnzqZWRRp9bOY7Qi+zAYjj2CD\nfeEAACAASURBVESl0GA+kKZ2oBDpd3EuGjiuDNC9Gnrbz9ynfKyFwvzo+h7OoZPHL3yWb7/yVwB8\n7vmXCabOEOl3aO6YBBbA2vEytcZ8oFoIjdsEQzm6PifNYoVieYf0/BIO6wTPVg3lagozFUTTt2gd\n1xmFVnH4TxDry2zIM2jqEvLtm0jKbeykj717d7jTrDMIqSxqpzhVD3tv95i2WrTFMsLtfS6FXHhW\nF9ELpzRm46QrI5KpLq2tI+SFIK37Fp5wAP+qjKMUYyaap1L20xGH6I4JLrtMuZ9g7OsQ14eEklPa\njgUC0Qndjkxa6bLZvY2j0sC7ECJpKCQScSTDj6PRZZjyEnatEZ3zcuP97+Gbi+PYu0dmFb79N4+K\n8+d6Yby1HSKPzxPWdeTzaeZUlf7oiN3qlJWIiNlvUdNa+MYyhWiUtFSjlPQSy3fop3tMaj2kEnSO\nJzQCDaxCAc1axunIkfFXGR+PcIUzBP0VCoMxPZwsiUuoaHjnBHwljezGOSblHmVlwMQskg9YuCd+\nIvaAZiJFsJ2mttnBu2gS7AchqpPvB3F6NRwpP4VdwJmiMTlgsupBHvuR6220VJLJWKG53sZfDuFZ\nVemJPYInMu6pSChsU+852K8Y5EhRcdkEjSpDy4Wq9LDHQcqnDyk6u7iMFh+8+Ui0r/6Tr/BMOEev\nnGfX9OKzbPzzEU4qDfLHeRYMhbNKh9UXF1lfGHD4XonRtpv60gwh5wwDWaJ97y6DFxSOD9o4Jkdk\n7ct880fHvPjzP4Oz1Uc6lSlbr+NpnGMUOMWuyST6ExYe+zT9gMrVI42RkOGDksbtSp31pSGbxTbO\nPQvDHcM3mkXNtckEDIz7MZILYXrFKAvPmGyNSlx8IcWw1eHNUpNubQ6HWmO+CLYlMBrcwThw43dt\n0dbc+B/z0j2RyDjm8Zzx8ODwBq2Tt7ny0mcZ75kYrhzZUydNR55auEtAvUjJ9tGMx1E6Jj+6/gYA\n//TyM9QHQ8LjKTod7InIUFJQHVUS5TDekZuaM0pYcGM0hsw6QTg3y9YoT9f0k6tEUKcm7ZrNOD4h\nU7GpKzEaiTzhDzJUix9henWCSgi51cOj5Qk2kxRCHmqSyoImMRAjlHtlUhMfISnCie8WDN1MY26C\nTietQQFnb4aMb4ggOyid5hkJSaYBJ3qyhLvUY+3iEnJlk3ZKwxEW8R+UUAUTbfF56sM+i24vGeME\nORFmYJywciZGw6GRCqmElyU84QpnR1cpeEsEcxKokMKLPhxSq3fQXQohM8U7rz5KLP/8L6ygHCR5\noJ9wxprH3X8fd/AMwshkGlwipgQol1uISghLD9DNLjPv3sVpq3jEFG6XG2XBBo/CnD6meihRtKeE\nvVViy0HSCxNqbQVhahBQB/jMDmYkiMcZo3I8YegXkCcB3OkyXTvKxHVEqJ7C7SvRFDfQeh5Ev8q5\ngIxTz6KZm2zftAhmVvGX7iD89By+F3LIhX30gIVitXDtnqDN2IilAEqihNnT8B9FaIhDcrZNxO/l\n/bHFjKXCnS1qzgQh08F0ojO1uiwtxyBfxip7mc1JeFsTzKHIe6+/w+/+3o+BiPqTP/33X3/xpy7S\nNmHvcA/ZV2anpGC54nhyAwI9D0baRAg6sAdJDNtiMKrjLAcIqGkQTuh5NUaHKWxhgGOvQ8jjpdup\n0+2LuOdcCAWV0KcNbrzzgGuzfrY2XZw9/zTTUZZz11bRvAo+1xb7msCd23mG5QayN8AkHkOsewjM\n9vA/LNHxh1DNNL5Uk++/X2BcG5GOPMHx639PfM5NQLIxIh3MhEh2d0R9fowtyHSmWwj9EIJLY1iW\nkCcqI/eYUUVkFC6gGD68ahoxvsVR7ZBBt0HIXEYqR/AHcghWFNWwqKyneOu7fwfAM1/8VW5WW5w7\nu8bh+zcQI5eZmcr8t//dX/CTv/k022+4qS8MSBsF8qdBUl/4NOdGE/bv9oictokqOTLiHO3kgKVu\nhP40yfTSMtOmTMZvcqSIbHfaTHs6DnxosVMCu0EaBwOmgkq18gZXnl9jetWJujOk3gI5FaHRTXFp\n1sHpNEu6VGdLn5J2NuHdG4zPgWus4ZNCSCURLa2w27zP1fAZ9jpF9nYfEpMtVgI+Dhs9fPMNDrpO\nXAakfOH/j7s3/5UlP8/7PtVdXdX7Ur3vffZzz93v3DvLHc6QIjkkJZKiBIcQE0kJDCiGbUUGI8lR\nEiQGkQCGbUgKFMVGACuCLdukZEmgJdPiMkPOdme7+3r20+d09+nT+95VXd1VXZ0frv4K/gvf5cXz\nPu/zPC+oLTLeIE7bOhNjhsd5hOP8q/RLY8J+J6FZhs10nXe/9yEnFZEvfPEb1Jw9dr7/jAf7z8cr\n//BXPo8v6KAXiZFUZNo7QyqzxwiiQV2t4hu8QOf0HrPGKZl4DCG3xSh7wrNHdS4FFcayl2H9gISc\nY25GCXtb5BUX79x5E+QiYXWK7h0wP9S5f1jCKBbxBZJEWg3qh1PQ9zAOpxRnLfJuL1pEoa3qEGsx\nKdUYBzT0mIxRSbLf9TLen2GXI1jLA1KzVSxfHykg0Bf7VN1zViJ26rYozr6fDUeSqqNE4mhOOdMA\nzxbjW7dpbGwRktyosRwbbo1hw8docZ+U5UUO2knoJpXRASl1ikdaIbmWw7Mxojg9z+2/dTV++ZXX\ncF9O4/UH+PjZA6JDD1YFBn4/PeOQc/brnMz6VJoj7LJCYezlfl1jJeiDgchskiCbCjIJxjB9I4xO\nACsh41RDWMsCEUPi2Okgdjbk3smAzeAStp6Hk0CR8+dCHN+yCNhkTvZrlJQR/aM+nmCA0NSP67Vl\nSjtdlhQbXnUMqSC9qYd8PEG/aFAITvA7QszrDmq9XXTNIufO0jlsMKj2UNavEO0e0vLMmRSjxHUV\nu5lAoUQxb0eygjw+uY2yWCZxwcvhtE5hUKcRdzJs9xjn0jhP9zhVZXKhTTK7Nt569pzBW/5UDkV7\nG2saYTI/Q0luInd38Uqw6lyHmzai4mu88+F32Fpeoq2aVPbapB0DOisW/cc9IosYuQtprJMHxAOb\nPFvxc/X3fpdrF+M0/82HPBEeEs5dJs0Ah8/g0N9Hblm4fGHaZZXTqYrpqyKOZYbVTwh/+iuoyTAP\nhzq7XQ3B2ScmTeiNGiRsEU5GFpHwMe8+KKJ8JkjF6GPeDaPvttlQvCQv9Dluj/Hpfoo9AeW4gm65\nqVyLIAkXEF/O8lH7lNGbHzH7ZJ/CKyt0v9skHJ5y8EGXWnZGyqew8A/wOOtMbcvkLYvBSpT3/uL5\nRobXX3uZwWwZfSJSGPrZbd3CG1aIdPxM82UWehR3uEcQjei6yK7eQdZvY2/MWc9CRbGIDIoUoiId\n/YzU9de5e/tjNkYFAskEZfOEDeU1qoEuq7E0PY+ANTzBl5riGIdpp204un02L/YYDkXMVIBWzyJG\ngkHXwjUJE3SdMm0OqEcFZmWJ9asmjjOVcEHBM2ijihLHzhHV7oCZlkI/DuDYHKH2I6Q2lvD1VLaV\nFJm2zq7WhugmZ5bIkivC0VxmUKug2Fw44kVcoyTVZhWhkcLubmLrS6xm5tTEOuYgwu33njfX+S/+\nKno3ALUwqmQjFg5g7s2wrTXpmG2On36CU5LIWRLVJviCMu7mBJeySm2yx9znJ9gc47zop7Jn4t0w\ncGsZ1GSM+k4FsdeiMp2gZqLoXZDCdrSxi7rWw7uUJKkVGSyqdFzrSKrMLCzQNBZI1RRXr55H155g\njNpUNRuuMyh3JdxuJ/H0pwmYNSpOB/kjHbsRoXs6IKK4aQgbBN19nOYUI+8jG4yy45ZI2BoY6oJZ\nMIcwVAgJDpoRGVdAJ6H2cSmbnMon9CYpjIhBzeWhderE4evhno5479F9/vE//ilw5/0/f/AvvvXi\nZSdTxSIoOJhrWdbjAkOqeJcuMTV36C1CtLQe186vMjf2EPQ4dZeEfVXHv7tgZikEXT3OalNWUxoP\n2gbR+Ix2q8PIm8I3HlNU6wgZCXfqDS5cSfLRoR1DFwh3K1T7E8RRkIQ5wTXSWMpMqUZ0VuUMUiHF\n9ZDOIh8iEDSZySIup/35hXUCeBU7kayHnVM7g/kZZm9BWA5yGnGS0Vss6JGordO33CydeXGv9nEu\n1pj5e0wtHdf0HF5zSiN3xsJj46IgYXn8dA8OcSUn9IsdFvYT/u2dD0htbXH7b5O3X/ddQbtylYWn\nALd3cZ1Psv/e2/zab/633L2j8/LVU5zHAyb+TW585SYfPTtlsF8hZ8+wCCskXp2xPetyxZbHecWF\nrTuka2tjeubMJjlcisK02cdtO6XttZg+qLDfO+Hq564jTWsE/GNmri3GThd2YYQn3Kda9TFfqAg2\nN76Jl6NYhYiqoxV8XNn8DFq1xcNKBS20QtRtQwxM8bfXOYkPWJ+78NvOaM+9KK4a7bHK2rKHscOH\n90mdVtnBqxeuIMsSVXFA5MYG0UUMQ46ztSJz8r3bBAs6hw8PEeOvs/nKZ7l954+YBwqsLUV58wfP\nwefNFy9xmItRv3sftbJHu5EnJj7lnapFdn2FjKdB9moeue+iZffiER8TbuSgMuSpaidxUSR/qhBI\npNBTKRaHPQ7KIZbdLvrZApO0l5CQJEmfYBbCywrDepeFmGcRA3NyxPHEwhsMo9hDiAkX5cljEsFN\nmoMQsf4Ksq2Kw23hKU7pRvYhI7JcjnAq38GdWCb6bERTGhC2vcy41ycYqhA4v8psKCLEfYRI4zad\n2IYquitOSNumVD0mIkHMv4wrGKR/YsP9skL54w5WzSL/soEWSTAUZNJKhqCVZH5yxrsfvAPAr/wf\nv06iWael2sl1RHotnaqrhcsaEcyv4U1WEbwi07qLSEbHM/Gh6n2MZBLZNiawFcQmS/Tnc4qPiihM\nmI6DmPIRdtsMXZXxPtPxvOZmQpS8OMLhl7DPojRtLtI+i1N9QHxVpS+lCE0nhC8XaI2KSP4Z/VaV\nhd9AtCXZsSqkeiO8swE4fcyOFrQlN6ZRwumXIDJBmWaQt6JkFIlMTOC056FtjUhZIaqeMps3dDrV\nKKnTFgczhcSWE6c2QRx6SEZjSMEgTa+CeDpjIwEDdwJLPCPebzE//Ih3TkoA/OwX/1ce3q9y/rUM\n26chsm4VM5CkdzZA+MUtDt6v4YhANCwTcm1xJ1EjmY3RdVus3K/iV1v0gwG0RwO8kSwer4RH6tH5\n/m2W1GcIkwmWTaDl6RGvOBjWgoRsCvVwn+EEjNaQ1VCD47gXQy5zdHwdz8YKi60rqD+cYVMNrpo9\n4sksowcVlHidzuqCzvEKUsaN/DHEt8fo3TjN+IC16E1cjQnz5RY9nx2xPkDpT9lRnORX82zG/Nx9\nOKTzwym1RpPVr68TMG/SUU6xLgTxobByLUTvbJ9dv5OVcILafMRIPaJ718G9uz8EIPGpryPbiwSd\ndk5CJo62h5XFEodhF1r/jHF8jUJI43Rq0jo5YT0t4Dq+wmDVQUcb4xbbHO3E6ZoJUn0XTfmAbERk\nKAxpO6d4KwaBV+OUPmghuDUc6hzRjDEzDOydM2rtPbI+B4t+hoo2YCwO2ShXkecirRUH2WmJ++M5\ny+sFnPM6ifAqk2MT8jaaJT/t5JjJocyyYoPYEilpQDXiZTrOksroTEcW8/qUYQSiwxZNn4ORapD3\njRg8CRFzL7DpbWqVCJOFn1PNz/pkTDs1JBfLQjXMbEmnJaxij7i4/dfPwef1L97Eu/2Af/4nv8M3\n3lihdOImk29Tc67ibY/Zcvkws2mC9jCTsJ9mtYcpebBre3QlhaxnTtEp0ixWcKoi3ZRMZupj6VwS\nQ3PTFGQiHjfTIojRIdqxjuzfQjrvIHvS5Ni9SmqkYHO70bUK4VQGvzpifjbl2WwXK7ggNFhBC7vR\npD7xfIdEIkD5h58Q/MYXMN5uUZYXBNxh4l2ZM8WB6agznQbIuFREaxNDXzBwH6MLEdr9IUO7QjA8\nojctY3hcUFkgLQzKXolYKI+teADxLKGJRTfax9U1aF7Ksf2DO/zWb/80aKJ+//e+tfXVF4lWzyg1\nU3i8JpI4pDc7j63SIemKo85iiOMGw2AQpX7C6XRETBli6xrceViBkI4hpLC7R/jTHmyqE9eiRS0h\nEQ1mEZQZdz+u8MrP/wN6D0540jLZxAm+Hm5xTujQgzIfoqzGmGhTdheHvGy8SC+is2UV6PijVD+Y\nYZgDBJvBVDUxMj6WHRZH7SG2tIWw6DFyRllOOHF6HThdQ4yQA29phubxgmGy8DfAbeGqhnCqbo7T\nIDmaNOngCmcw6xZ7D8fE8jlmcSfiT2ZEP73J8bhDYuWzxOw23n37OTOALUHq9c9Svv8n2DN2pvsz\nhmd25s4hzisattM4hWU79twaD//ddxAcATJClLDLjUiFgdhiQ00w1SxunX6fCSpKMY5eM+jIBuZR\nDcstosg+5nqZWMiHspTGxES6XafqsTOujSkEBsxieV4IvkLrpI7+9Ce4lmL44iFs1TYkPfT7Hrbv\n3aJXd5Baf4FcsMvjYRtvJ089NEDyjHAlBFKOJJ2cRWpPRRi4mN+vUFhEcAbCyF8pIIwCPNv+mJ+8\nd4cb6QR+MUiguU9RqsNGmsDrv4Tf7BBJxRjc2cU/U1G0LY7GO9z74BYAy29cZC6tsLh3xIlo51LW\nxVM9ysVsg7G9zWQ3RKfRw3rBjtw1GNZaSAONYSHAqjSkIwmgJ3CLIyaLHi7ZS8vjJvXCJp0HD0m+\nECAqhWgP7BhtE098yHgRZXE8pBAe0bbmXBQU0qtBmpJMrHzGzJPm4kxh4qxx8dwFuqcWF2dJaltz\nJmMf0UWZid/N9DCMezzlk+oQpy1O17hPcTDi8sUvIt6fMZyUsR8ImKaHeueErWUfWr9IJT0gOgnh\ni7ro6yX0eYP2soz27jOSbYOJ00vDnNF9XGTUAX9ORlEi7Ehd7v3NTwB4deUajWiSR08e4El5cPZm\nxPV1vNqCvtdPv+pk6TPnyM1SVAMW7eaCyaoNX2hGezTlrLegf6rhyiQIegb4lQBPHjzl8tUAnb4d\nR82Gea2JQ3OTCC44tCZYnjgRE9zlEvOQiqsWBF1k1eGkEctj1XXGfh8xM8BcD9LfLrK0nERNBhho\nQTzjFv2giGNiMZ6dYGtB/PIynapBRz+kUzSo1w6QXTfotxvk1jJYfS/J5Qmh9iplscd7j89I5/Os\nriYZzFxcunKd4cH79Htt8hERZ2LK1OGgelrC1e+Tjab4VOHT/PFP/gqAc197meWSxvhAIyAcM8zE\nKN+1kDw22re6rEYlTrUy3piBOmrg2XfRS6nYOnbK7QOOs0Eu2rpUiy7WQyPqTw85zihc98p80tHo\n7wh4U+do3XciuY9xXmnRK8WY+pukjmwEMi4C8gUOmgMEfYqYqfI///3/jdpXvomDARGjRzc7JDBN\n4HdWaccjyO1zJLcOaD6TmNUg2BgyXQmzWj1B+5SL43mc8K6C6t1jbCzwx1N0vH6czSaC103p4Zv8\n0qqf3KUow1iL8+4CU4cTeb/Jk+qQ5UKGrttNtCExah6hWUvYFTuKy8U7P3xe3/7RN17lyUcDltZT\n2KQq9tkUIxPHChsEbQ7Ojw45DncJ96foxjVOTwLo8TL+3RC+NZnRqQt72kNSeMBgUsSfSqK6dcyV\nAr6uFzEp0mz5uG5Z7PtHCL0Jk8IIuTjBCm4xGLWobBdJnLuOz9ylM/LRE0a4cknk+YzDaIzFiQeH\ncsB8IdJXO4RY5Zmty2WXnao84eYsjrqYMNlvUk0veHk+5kTtMrRSrBpP2La1kPwz/HEFd99kNA4Q\n5hmReJLZyE3VfcIVvUpja0akMUEv1bElcugjH1OnjuA8QHJE2ChN+ev3np/br3zjs2ztlvnSV3+Z\naWmGbTij6vAhpgYImz06oTC5oUh1+JRk4gKeqz5qpR3GTZXoUgqhWsI5dxOt2kleDTBQV6kNj7BG\nBm5bHcvpYDIzSeXshHt2zgZ+pO4zJs8EOgsNpyEyY0LGM6bkcuKxuehXQrRieyRt6wxrZ0hLMQLt\nMbOIRH+sIvvSrLgjvPXuI9TLC5ZVPx5jRH2thmGf8OV/co359VuYjRSaf8p0MWNh9xBrPCdCAoKK\nIzukV5oSiAisX7tIa/uEpL+JmPCzcPYYL7pMPB6UnoG9P8ORWubBO2/xW//jTwGI+me//8++9dXN\nLRzeLdTBEX5PmG5ZwGG4sBIyC6HMULVIxE0WNj9PO6AHgvQ1H05LJ5r04h9PaWWi6NE+gdMwmlNF\nT0ap1Y/pTCU8m58htbpB8QcVJl6TF8UkOCTK1dukY04OPRYhT4U7xWdMEgU41XCrOtNyG8NvMF6U\n0Yomh8ZDIu4pEXUTp27Q1/sIsSC9Vo3ALIF7LYXLqEDHoFJt4IosY+tNMGZeXJ46trSAoxKnrIt4\nJQ3feB91nMITtwid2PCMHBQuL1O8W2Ld5kcPTYkGUjx6fEwwaZG4fpEffvvbAPx33/y/iG6/hTFQ\nGbfHLFQdxysXUPam1O1TfAUPzZDF6GGY1gq4ww2yNZDmJtFMi8msQDmgkVdPKLliTEcmT975gGFq\nTn7RYZxfRTm6R9HtZyN7jseDGdNiDdcwiOzzE11xIU1KtI5D2J7pfPSkxdWvRSgf7eFSerCVZHFk\nRzOTOGczXH4X5lqc2aKHQ44guMdY+RTRroE6kLGqPfonMwpTLx+dPMD/ygXESZCBzct8OMFqC0yF\nbexLeT6/ssXcswzihB1vB/M/vc/hfgjx8d8gm25qNZPm4Slrn42y+923+NTXf5bv/vl/BOCf/Nw3\nORneZdYKcs694LHwkIDioOA5TyU2p3VW5koYUsubNKd1xmqBeMZOdRhEbCaxlXfw+EK0YzPMsQSJ\nFnkxxXhwhndzCe2+hVDfJnBjnZQxou7NIT3cYeZfI4bMOD5lElxl1vDgdD/Cq68RzqQwsh7O7jwi\n/kacRXGX3nkv/uMRmUyAjnuTs+0irtei2B0OEmdnkHWy5V0lk/FTv2XQcY8ZlWakN2f86AcfEUxO\nyeRf4tZ+B3lsJ+uRyaykyYmv8MFDDVvdgVvs4Lh4HrfTj6Q4ubDu578U3yLRMRj5o/TKD3hw6xEA\nr9ouY/PFKIQUArqd2uCQeaSFsZJlqOiEaKI33fSnPcSJnaWCDYMuysol5sUqcSc4Rya2ghetV+Ng\nb8TnXovw7m3oW2FyYUgEk5h3KgxWsqiWzmmjge7U8EYcTA8NzPNO/CG486xLbDjA5VhCl0zChoeR\nZCd4ucAntRopKYZTa3IaEVmM42SSHfS+iEWYYHxBPTgn6zAJTWSsZS/+iyu0NJ3qQ4FQ5Bmn+iq1\nRw1UxwJisEh0sU9lensTyuYBu/0JjpQf+UIA7a8tDp+Oec3j4or8JZzCixwJJn/zk+8A8PLXf42L\n/glW0Mn4Xgtr5mc93Kc7mpHLN6mOHax37JyceRloPeaXXazYX6E3vo0ndI3lJ3Z69hBOt0i45aU3\nceN4WkUMRJC0BYNsn4UWQ9IfkgpfpVwLMNQ7XIuEaTElVlhi8vA+iXSKc6MI7/3lm/zhNTfRahvf\nQGDn6RnqqcZ1y4kWNXFb67iT2/CuhpQdcSkaQnYHuF3s8yu/+Ys8fnOfxOiQcdBFZ+LjhUGHZ4Us\n51IadWuOu+EmnckyuGFj+ugu/eMU7vIMEiNqcxNP1mB8w8V0v8390j0KoSvkZYXT8Q625gG3bj1+\nfm5f+WU2Lk/R7xRJSlmmMTf+6pS22aA/PuLkoIe4r+APCIwHDc6v2VHbAQaZIBNzQGKWopIH4axK\n07PO6qrK2bMpGWbYPUPavQFONUTZOGEp6GcwNNmyFzB9Mu3oCS+P1hG8BU6Uh1idK0hrdWQxRKSh\n45w6UbIi88Miays+TuYjrOMorYAbwabjtQ2ZHYnEhSB7+oxE1sZ62U9HhjhenN0ytpSIfmJScGm4\nymMO7BMimSGlaYr4dMosoJOYJtmbB5lbfVZWFOrtEoNeH8+1VYIlg66YpCe0mSsGb3/vebOz8cqv\nU3shwrCqoRZS6JMSA+c5xgWwHWjYfBqOZg+tN8MeUbHqMybTJcRzMTSPzvgghcfuxHL2qPcEkm4b\n8riEanrJL9Zp5RNshTXU7Qma2wObM0LrAViDSV/Gv1xjXoqgLhxYkoJj4kVLatifSeRWdeq2PrKQ\nQNB2kJDABrrDQy2X5XrAJBxZQnO7Ofb1mbJFuj2j/9v/HMdb97BduEmpuoq4UiJjtqm7pjhmcSTb\niLHoIOPXEKd9Fm6d7VkUfzcEHo2JtIrYEshO80wPJ/gEL67Qgo/efZ/f+q2fAhD1h//iD751LfYL\naLY5Ykrj7NhNxitgu6hy9M5DIqTRxCgzt5P5gymefAu9XOCaJ0VfHaEuRei2k5jtBVeyMkbAwiGJ\ndM6GOF2bRJJZ7E90Mg/vEAv2yS75KT7dJYWA1q3QePSQVwpX+GjSIH4hjLJ6Hnuzjpm5gOl0YXPV\nEC2DoH+CbIDkvMkgrzNvGKiBGIFmlVxKxjrrUd2bkcmkObVabEoRTp0TOmqDiMtElPIYdhuGu4Ya\nV9FPIZwWGMYbaKUECx84u8eEruQQGgueqh+wqmTR5z0yswABVafu6fPB9567817PLhO7ZFC4dINW\nZ8HCFHn64BPCn3bhLa6y+bM2Kn8RoqSovGBfoJgTNMeI45UKsVoawX7Aov+EaSbC2iSCL2cyntjx\nWkFmq3aiapZKfsS5ukijNkM6Ooafu4TUOGU+kTF8p9QDeXIDO6fxFIl6iq5Y4XwuyaE6RvdYoIic\nHFTpDY8ItZPM1QdMzTkTM4DXrtL/sMHBwZSNl9dY9HzMlupMclkyaTtSvU9reMRCicGgDscio0mT\nyKLDbNVk/2/+nJayQcFhw/ZClgtZEf/LKfSGg6ko4XrpAo9+tEN04uR4Nc3t//Kc7n7jv/8G3fcP\nWf/sVYTTAc0TF7H8efSeHX9xQepKgqd9B73vfJvkpZewOirN3AqXbPt0e/eQzykkc9ep0f07cgAA\nIABJREFUN2pIqoA0WacyeJPcuST221W6Z+A5N8c7GuCaTdBsAsV7TwhemVEZq5wbevEvJwm5mviS\nMo8fFxl1HxDZ2qRRKeG1Crz9aEAuvwGFGIHKGbrkZB7Zx+i18FQySD4/0UiE4uOP8DsDjJ0VyqU6\nc8PAZ5vi3pji8kSxGyo908m60KHdMREWRe4etsh43Swt5Yi8EITJAVN7kEBQ4ai2z2CuEIipjPp2\nrAsr3P/L5+OV3/zWb5DPynw4KGO3Rfj5z64zv7hMe2CnXTJIqh5GDjeaNqYldtEbThQjSLtVpuKJ\noDce4fZaJFdNfHqQo1tdIg4n4Y1VAtMe8kaU7QdNxDWRac1O9ekOId8a/ZND4us5ds8EQgE7P3z7\nMap5ynrmZSaWhaR16Ge8uId1XMEgo3qLjGJjtgiyPJgTz3jBaTLwCogizLQemV4IIbVKPyCjGEkG\nJ3XqzftEEhHERpuIM8VhqofSttNuuhBmU7ohEdkzRBMKLAWh+GTAbNeN0B+RjmaYHrl4oj7gN668\nwiff+6f8oLgPwDc+F2AvLNEvj7j8yheoDiqklsY00nmET4r07RfpRO/xwmdfxWMc4nO8RMa/jQ8H\nsjbn9DMpxPI+NXNOf6PBaLhON94gu3SOeq2JYMko5pCJPYnNdKOoB9gMjWlcY15JEvZtYxNcuM+S\nzIISK5fWWFeSSLEMGw6JlctBJk0fk7U+9RODXt8ipM8RlKsMhhay30Kd91CccX7w44/JLSnca59S\nCAdxGBrh3DrioIrjqYOj4zMirwsM39XRi49h5ToOYUxoeITfY6Laapi9CvNumILm5dW16wxtR2iT\nE+RKi96hl9t7zyNcrr1wlZjeg1gYSzM4ctnplx7wim+dprBJzu1l+tUv0B9sk7HJ2A4UFuac6ELF\n47Iz8GRZVcuUkwsWPj+cDAgOPTSXzgjL64RCGuWzMvmJgEsOUWq0kKc6j/tlbix/gYlSxZq7SdYd\n1HKwMs+gFfcJGXHGV0/YPmwirkdpHuZYqrZxWzU8qxlSgyL1vMxSNU9PqRLbiNI6kiifl3A5yjQ0\njZCQYVGb0faA0HoZb6TNIHYBpTUl1Slw5tYZ2iN01RqJEcz0MHrUwygc5I3sp2g9OWR/yyLmtEj5\nFtg+2OdHD583O1//3/81S/YFkn3CzF1G2lrC7nYhk6ZPmUT8POVWC90WxZ8p0Dgtk7XVcSgJ4r0Z\nn7SPqbcayPYkqVkNh72KP2xHLNo5qKi4enWoB6h4BXwjHU1z4W16GPZchAUJvT3CKdmQZhoxo03s\nUg/hyRh50seWN5kVV4nZBUTBpOX1oRoLwq0Ri4kDI+fG6h0iT8/I9+0kO3PkwAYBzeJH379L5n/4\nNQZ1FY88JCJlCc9lTJ9Af+LHr9SQ9/y0ozLBO07UYRNPxE/V48PfqOHR5xjjMtuBEomAjiPm5Mdv\nv8vv/OZPgSbqd3//d7/1S5/+GvfPGuRzXhaROlWHQn1Sxp94Cfm8SrDqRDxsMrXp2B06LVuL6c4D\nvvf2O2ye8+K4YicX0Dl9XOJp8Rmng2WGqkbEdZ5IQsDo71JI+Kmn13H2WhzePUQY+XCtrjG+kaEz\nG+A576PzF88ocYzUVgicjChq9xnaAoQ1L5YWI5DIIdm7xN0a48d3KaylcNsH1BppTGnMYliisFSg\neWRj6BbQ6goxqc04kyVc0el0BowFheQ0gby2oDEYEva40Iwcq1k/R/MA8hOdjlXh8uw1tM0Awx89\n4SiQQl9vooxlfvzjdwH4u7/7jziypTh5/yFk4fa/+0t+9WtfoTEJcC23QqlaYzg7wqn7GMYfI/Zt\n9Mdu8qLB0WzIfDpk5trEoeo8aY/49v/5Z3zh85/Hr6SwWyGGvhmOukFga0w9IhGOtWkFVIaizGys\nM19sEahPIb1gct9J3/U+jaMRzvNDzJ6EOrtJrLoDzgxJVLKfklldf5HC1nnMioQU9EF4lavX7OzN\nF6SyHe581MIl94nUvFDQmGaj7H3vL7EmQUypSvRcgZ6Y4uTjDuFslICvi88YcvZQ4GTWp3hvQD8y\nIHhYAqmB+vQe840UgS/9HW798b8E4PKLX2DHO2S1t6Bn1LFccUg6yBTsOOdZtKMaZ/YRkdeX8O8p\n1CcLLE8ffOvYUzEcpxZu7xGW/wbOgZ3eUpAzycQcuXhw6z+ytamwsfoFQrKPo0kX+UkFq/A6nlYN\n5eVVuodgOWwYEzceKcTo+A7x61+k9Owj5okoo32Z1y8KbEkWx8UxYkxlcqvPbndAUFghNBliLjRq\nYoOVyyGOpiFsgTo5KYlTG2GtXOJ0e4LPlSSXs7NXcRLNSbQc9+jon+FKRqHU0QktC+z9508oVmWG\n6m0W6pC4FCH0qZcImBGmJ2Nee/0Sf/H/PWdUlhY+6m/vkg9uoSgx3rn1FyiuC5jaDouwjVJlD8EV\nZmKrEZ5OcNh6OFIBrN4URWsRUF8m4k7g6xUQOn3WN6/z8eAxS3KAiDfD8amOt3nIcHGZCxciRAp+\nTvf2ycoF9qsqnkKKZCTMwpriVkTm4x6ZqUXcPaX0xMLhmRLsN5GWthiemrjEbc4qEgeuBunOgm3b\nANkCQ1xGazcoDyssjprMvAr5vsAslSfmNZFHLjbPC3TuDtE2p8j9CU7bkKQ3jHvaplgpsbHpxf1k\nQchmcf7yNaT2CeJplV2rBN//ATdXb/IvH/9t+GH6y8TPEpzaemQSThxbIUZndmpNO4WrC0y/hKcX\nwL90ysNBHq32McF6hDNXiOO+C3k0gKV1bDUL/2BCtq2R+8VP8R/e/iNufuqrZHUbrcO3MZxp5p4h\nO3aTCy8qlE5jvHQuytMnAqXIDKddp2UXkEJNApaL9MoSH926x07lQ64vr3HSGjMYHCL2QpjSkHm8\nRLp/nqNqEf/lJQbhfaRqnGAzQPbSgmapQsHnxZa5ymC8gzdnkJYSnLxdYxF3MurIdCrPiMWy5D//\nKv3tA5LZdeoVP16/k1Jfhw2Z6r0uGmOGyz9D1pjy5p3n9e3LG9c4XcRIaQkWriCu7g7KhZe506kS\nae5hDzloPXxGWLlMp3eMYvfhc9vRbR5cURN9olMe67grTuaODqIVop+QEF028scb7H34iMJND4vu\nlIOYwGoqRy2a4KLV4WQgE/XXGJ1NcQeS2GpVWmoZCleo9cZkywbhyWWEkUJ4tstovk7DpeFuTlj0\nq8QG5+l4dWZyE/8CSnY3rp7J6iBGU0xhbYwJHQ+o9J3E7C5q2hRhEcGYTAklx2hVD8NIj6uSiloo\n4BFV+os44w8eEU3laJgCc63KoFVAmVbZi6e5+9bz9/Yr/+Ya9x3/gL5sRwyv4SqK+JQxvqZJOjph\nNosj+d14ZxpyZ0S3O8OvOnm2/ZTlfJ7JhWW2IhOGawfktSW2gyM6CxedQZWdHz3E/2qauF0lGIvx\n47cecfXFFCe726TOS3gaBqXEjEW7iyUbDBcdck4Zq9mmH48jzFT8a3GsoIfJ6RDZKSKNJQSHg9Jp\niYvnA+gEyQ4m1NI+8oaDxnTMsdPBv/7Td1ldShLMznCEVnEJD/Cuv4LcGNCdBEjHM3zw5sdQLnD/\naYWXriyhvgrx0/dIx3zotjWomqQNk4V9g1Nzxs77d/nt/+mnYAHx//37f/it+NI60XN+DosubDWV\n5aur6KYdZ6QGuoAlRtHz4HZnGfvruBQbsUCA1JfOo7UNhMUuy8oS28Z9PvXCLxBddvBS+iZn81ss\nlzuYlRFWMIScUBh1xhRyUbREi3wozTgyJDpIQfmMws9sUHl3j9RnXuWgd0w+kGEozDB9Bq3MgFmr\nTz9sp9qu4lqRqRfbsIhDekG7Y2Mpd479pzUCFxXm/gX2wQniap6QMaFfaIC4RHLYxy7rnIq7zNU4\ngeQq6rCJUO+APUTV1iVoDfBuXsTTe8i9npdASsFlU+mfi/Pxnz0Xln/+5c8wGX+EY9vAVVfZ2krQ\n7ZyQKKTo1Jv0ei30fhx3qEd0p4dDc6Mk7LhTDuJVhe+8/2N8aQG3z82NcJBrn47wo+2fsJZxo5oO\nljohvL5jmopEej5j6FnFLTixpgHiSz6GfQMt2uTxgYldPiIWz7IePkCdaQSVS7jdPg6OztjKRnnW\neUZ/6MVvTfjxR2XsOw9479aHRC8PeDoOEGqsEHSMWc+vUP3wgNAbEbyaxkx184uvFJjPdwi+/AL6\nfoeE06B7bZnqD7sYczc2KcdiaYTdY0dJGSjhNSLtJsufz9OfnmMsCkQFG2//5+cJ0j9XCPPqazd4\nOHvKWXFIMD5Aj2cxYjVSWgKXoiNGq7z13Y/hUpRMOMX66gbduUXr9g9w5W5QvTOh3drhzdvfZWMW\nIqC48A4sJGMJ+VqUnWqVlqPEuKMQNGT8yzMSV9fx9ap4gw4GkyCp9UvI9RofGUVelJMEx+sc259R\nbdnItmokv/bz7DRuc1iu4IlEiGkaV66dJ7HhxEpOUCIiofwW8mON+t0Wzp8xcN98nUXrh/TnA178\n3NdIrNpYuIPokRLdznkuSy5OlGOGJkzlPl6lRzySRFg5x7ltldmqiy3/ef7szrcJvvAZ+m0v7//V\nfwDgm69+jhc+/xXe9xQ5+vYdfvWXbxKz5Xn75COimRtkojq2gMl4FEKazpmP+vhmbg7DI6J6jPhF\nH4Ig0f1wm+bDKp6hwaEFy1/+PAG5Qk0UyKsbqO0GoktENYooa8uguBGcJjFphuPBGba+HUuVSaUd\nDAMp1MEcm7LDkifGnirgmvbYlfbYyL9CyYK1msmR5CPWCaJfjOA13ZwMh1xJX8bm6PC4OiShWzjT\ndaQbX8N5OOV4xYMg68wFF7bgJV68skp/1MThsjDNTaaTGS8tL3FoU7A9fYQjdpW/urWHkg6xNBM5\njc/47oPna4bWL10nkJ+SKUQR8j7yrSOmR3NqkTK1d7sY8pxLS27uPtgjKtSYywEckyUC4gkdVwJX\nKsLK6QmrN7sc9OdIw1X2Tx7zhVcTPLzXobV3wIWvrmNZ5zClITazzB5NbhQ+xc53/ozcuWUKBYXm\n7QbrryVIOC9RNJ18sv+IXmTK7EmR1A2F3tISgZeKzNwpfMYxmbkHq1BBVMNE5CqGcZnpvMc8fMb6\n8Cqh3Cvs6SYJ8xmuQYjthQebUUWJZwh5/bjPrXAlmmJnuMPRT3ZYv5GlaYvTOdPILM/xLQbE1TSs\nHOGMLJCeONhfPObhnWcA/PLf/Tuc2drIZwNEu4hNNGnWyywsnYo8Jz+R6KysMGg8o78joF9cMKtN\nES9XGS6C+CqnTGMm+RWZ7GCMz5lBWTSwG37U0zGWb4OW6kRY1EnIfeQdN+7UCPeJiBC1cThSaRfy\nhOplXFsZTsMLLHeQbP+Es6UIi7SLeGKBza7i7h4hXVwjpIUx/Rp+Y8xgSad67GCc2OL8/gjB26Oz\nSKA19zGW0kwGAyJKFM9IQhCDRE9qHLoGZHo+ys4Aq4kyoj3M5HaDiazQ3L3NzTecPNRsbGQaTFQn\nksOFKzVEEeL86PvP3XmX3trCW+0Ry2fIj0w8xgij3UX2xHj2BM5tRrAtWrizK3R7XSbzCaF0lEh4\nzvx0hhDqM3GaeAYp6kaFYVUnmm8hbYpcvX6RgOKjb0ZwmLssX3mRcWdKfMVJ96CHtRKg25hg6suk\nXSBuzGjMNBbpIL5BldrkIo6Bhb3cQU6HCLeqOHSFkvcuf/T7f8z5K5dIzMtUJlncvfucKS6e/njM\nf/1PfwPNyDPXHVx09InOZCzRy0FZwMotEDp27u9sE7jgp/AlhZW1CdpZi7P0BkdnDSaig06yxnTQ\nonDuAobeY6dapV7Z45vf/ClILP/df/5739p6I4jmX8YSj5jUeyR9AmK0zFpbhKmH3qSPNupgaEO2\nG7s4vX4Cizr2Ug3bGxPOCVcodm7zuvkq/a6B8bTMD2/9OTfNBZ7JGj3FxApucPG9W/TdOrt2gSvn\nnJw2QuiPjzGEMmXPglXbRfqLMptiHvVsh6iyzqJnspVwwjCPoHYQg32WTu2E41uc1Sto6S7G1Mu8\n6WWEStLrYDaWWApP0Rt2+o4mw2Ebe/ki0+JTOCvh2DBx5r9KaPKEUccGn7xHL57gWipDpHqKspAJ\nRtMUb1WIxqNY7QXOaZanXoH97z3/LNcuhbiqpHl8p8R8XeSs5CX95V8ktfQixvguFe8mk8kpdDu4\nlvsIthX81wc8fX/KW8MnvOb5OkbmOoOnY9r2MSNfmfPpz7N7t8HeUR/lZzYo2peJfb/IwrRhVN24\nzBp+zQklWKgiTcmDOmxT3R9yqXCD2eEpkcZjetdep9qTWA8YvPNol1wuTfvpHeSdOIVNDXNji3NO\nL1urV/CXxzzUb1EaXaGmlnjJcZln3WekNREiHqIhhfiXszz7f8sUri0RiF4gKWd4OLYw5R0CUQtd\nPIfn8A5hOURyZw/z5Ihlx1W+f+/f8zM3r3M2SvHhm38KwK//zv9CRnby5p191s6t4rvwJd4IRPn0\n8uf443/7pyhrEmonhFuKcf7CKpk1iw9/vI2/J/DS536BQe8uO6cn/MO/91s4PjCo6rtMr2U49b7A\ni+kY+x+V+G++9F/RefM9Hv+nP8F9c4Og4CCgucnlP8vgeIdgYJkKP+ai4w0WR2WOFi0y+QSh5AsU\nf3JAXRrx85/9EtsPD/ES472799nyBjkIpTBKEm4lTzK8zsnTdzipjwic26TW1Gi9e4tC7HWOnz7l\n6vpVHFsXObpfRN9pc8mZ4Ci3z+V4lFA4z8JKoDhjuIw6x+82sb/+OUbaEcvBZawB+MdVakKXe99/\nrrWItC/xwntn7Dvg8jxB7tt/jfeDh+hfvMKBR0c97BHL5WiWj5jYgsi6F/fFC8zOHvML3hd48riN\nrAlc+VcxUqV/RXJHo3Qlx9mjD8lpY1z7bSLSjKiYRt3bo93fIh03EcJ28oMZjppOP+MnH3eQc/q5\n4HBws2yQ/oMKswt1juYbJGNzUodNonYvpdMojkaZXGwTV6LEggTORwM6UZGthoHcmSN4wrz4dEC3\nNWdzKjLud1jrTBD22uTf1TBljXpvF3GoYppDusMEFauPXYzTny549cDAuSGjq2OujVr4utf5e4sR\nf//BH/DvR8/r21WfQipyjqNAk9FfHlObDan07CSSIV684aA90wmHCwz2cgxeVBlLm0hDgxGnrJpx\n+naBqerjZPYYb2gFr0uiPJpQTfgxz9wEr6+QLflQJ11CPQu/wyA8i+IsV0m9JHHaXcEZdlMTdM4V\nJUYfLfBmLeLNHVKLDGtDAXFtnaFDJ6tWyKSvEDpuMNSCtAZLRIwMjyWL06LGDY+XUiBOqHXAO9Jd\nsmYSe1XkZMXHhj7k3b0Bl4wxSAKTvSkNucbaMI76tQ6nP7CRiCTJJj10z/Y5suL4DRuGbrJUtaH1\nJAbrRe69+XwMeuXqdQZ+Ea8cYRSqUTdCxFZ0CrkYJ8dNArIfuS9xIeBDck4pqiq+oIhQTKIefYxE\njF55hF138snuFBUfqkNm5HSh5dxEHA1SkT4HwxA28yJm7whVdVKLhojZLbzbKeyhOh7HnMO9Cg5/\nmsBuj46viZW9wPBumZi4gzNygZHVYG8vRHDe4KDvwNwYUmllcFkRZKvMbrRH3pphTdrEeqtE8hOM\ngyA2xwD3lkjD7eZMH7M6tdHeNPCMHTRqBprNwWltzMagwjBmoTfXkZIVpkcq/v+fvTeLtu2+yjt/\na3dr7b7vm7PP2advbt9IumptyZawJUTkYBtwQaBIhYRQELqCUIUglVAYcCCUcQbJoEsgxsZgq7Es\nyWrula50+/Y09/Tn7LP32X3frr322qsebr1TDxlVlId+z/+H+TTHN+b8/t9MOJBKEiOnGWtpyKvv\n3l+77189xTA6TzLYZTB3nnblJh4JrE03O1Yb2+tbtDUnN9Y+JJiYQXAMiR5k8PcbNJxrpPIJOqKZ\nN/on+Fb1HqkHnuHdt19Ev32Hc+ITGAtDKrJMTzDSMoFPu4dst1GPa2RrElGDRElR6LUtnE1GmG53\nKBxEyIRHVG6XENUO8bkjVDvLuCQrB/oCfr2JT8w/h+KuI7ijIK/R26rR+ber/LedFtefOs74jIh1\nuEex4kUYNqiVKsQkG56+idZujerZBXwtP+7GJq3GIZt3c1RG4zQDXsw6K3PDFYLRKvlVF8Z9gXjY\nwPnl6/zCz34P5ER96Q9+58WnH30KS7ZPXidypBWlHp9l99YWxr4fpVknae+wX7pH5HSKuF0lrFUZ\nhkU21+uUzmvoMj6ab+5ykB8RH47IDds89vGThJ2PYtZ5yFcPKRu3uShlyUbH8A7n6G0NuGOHkreI\n7ZGHGA42EB/oYHjnO9SsSUY7fUpn3UzQRDMN0AJB9rZvU9zvEZiOsdZsEQgGCTfsyAMHvqU2FXON\naVeUvVaPjlrBFjYQcw2wiXakbhdzLEymJyDISdRvVvmgeZfTIzc+02OsZKs0yxXcESuWB47zJ7/7\nVyQXFtmsp7F7Lehn7TgyH/LBe7cA+NyTx3l5u8bpkIw/Oc/VtVeIn3iE2MctbFfvYho18BYH2KQW\nBluKse/zI5VjHDbdPHguxN9+45uEfvAULcs6T4ceR3e8RHfHiuspM+aLHnSykcc/HWbgqlKRg5hb\nbfYkgZGtRGdkJei4glNbxGw5jmhb5Nt/9id4zjqZ/Lln8S0e4fJ/22fjm/d48JENcI7xyLOfwfn4\nJAcGAxHJx8ZanoSvxXrvXU5bFnniX86x8dVdPrjyNl2Pl+hxC+pun84DQ17+oz/jkYXj7GhbfHh5\nlakpF24FFkxRlu/cJuI4JPHIDO0bBsrzc8QjdW4EBHRbRhxamm9l18jdXAbArDPSySkcygoL54wE\nOllszgBfe+MSntptmk4j94o6kC8Q0flRKkWcsSbdYoVqq8qh1OHBY0HWl9+ic0yHudHHcfYBVHmD\ne5tr7L7312w0Oih7q9gCEodpF+PH/RSyA3a0BsYzCexekdqVbSqWbabdD3H98DV2/vwlnv+1U3S8\nEXS38wQfi9DP3eZyr4D9nkpk3sMH310jER5SYAePtceNG0UCygjfvIvDl7+BEh9D2bvLeuAuiYc/\nzrX/9a84+4MzaLYgm8srjA99XDvIE3eH6Zka5HPfpbT+AdKYj4njAZROh7U3qkSf8aLrbzO6beG9\n6/fXKyO3G/FEn8pSmIlildzpXeQmbLsiWPw1AgcjMhELtm6DcVcEyTmkmHmDaWHAM+MjvvkL38CX\n0qG79Sq7rBL8gpmphXMsOo1kv9LA9aifycF5sm/tYPPqcUUneXX7HR5djFHXbZDMDXDkDOR1Mvbd\nGvX9Nyi76+zaGsQiBtYLIsf7DoTGFszKmOJhig4njiv7GNDhMrfJdZt0BJFoP0uOGyTHj1Oo3Sak\nOalN16g00vhe/TvUUz6yq3qiShPzfJOtyxUaeyVko5OdDw957JEFXHRJnf9TtsZgwZgmlN3hfD7P\nl47auDYm8ubd+xEHqjqBWT2NkNvE43UjHqpgcpHpJhHSFbRVgfcPqvTsNbrGNqfafYale6zOLDFR\nKVMbtsm0RcqOLLOlSbRqH/M4tPenUYt66vI+tfGbdFwitaqOrt6Iw95E62nU9Xb2RQnH+bexhUts\nGT3k+lZqvjT7HR/b+xE6Qx37uQyWfYFhNUz9MEDJ4WS5l8OY19Nx67AGa2iTdlwbBUa5KWr2dRhG\n6LkUBu0+YrdARx+i4jtAs0Wxq0aKLpXgwQxrPh1OsYqpNYdXFSn3m+QrA6qbVUYM6BST3B2t0GgL\nNMoGlm/fAODsD/8E/qqDVkJHX2sx5+6zvabnYNAnEDchlzs4J1MURBN0HUw74xjdefKmMRLDIvoH\nJggLYxjrA6L0kBVIqB4spT6m7gAp0EAvDUgkw/jiDrYrBsyn9OiLARC9ZC1bLGJmL1fFo5/GERgR\nPMzSOnKCkLhLz2mjLnZo1WA4Dqmii+KjIlYLKLUTxPRr2CUXci2LJRNmf1SgUhuSirrYMFaoBmpQ\nNTGsGejrIDbok+lZ0XsP6Vr92ItWxvVWQr4eXVOCkcPEKO/BYPCzt94mFCihdGTWR5s4DoN89+qb\nACSjNiYTFaZcW9zdbFOjiT8dQuy3KY65ceqd+E500RoBgjtd5GEQZ9dBobuNZ/IykjVOeyKGteUk\ncbTA4Ttf48afHfCbD/0yu1YrUqtDzSZStJuJO0xk7C0ETcCYnsDhr+MqWOgOIihbd/D+sIeOO4tW\nOGRa7yNhSJJuZbBpNlqBIe2RF3PdTV610wjdJPrMEIugxx054IhhjZ9/7SZ/97d/TPmTaT78nT/i\nQblBfWkTTRsQEkX2W8t8uO1Gn7STRyXq28RW0HDQhnkPnn6KaXuPvrvMlGKmbDMSq7WQWk3cnRxv\nrO7xr37xF/5eESVomvbfX/n8d0QQhH/YBX7ER3zER3zER3zE9xyapgl/3xvd/xuFfMRHfMRHfMRH\nfMRHfK9h+P+6gL+P8WiYf/dPf4V3PQrewzKhuELBpsfXn8Sud3Mn/SHagYN6FDz6Q5SendgpL82r\nMlX9RZ45kWL03jQrgwzGxQfpGHpsbL1OeNfKJ3/1BV7ffA3DazYWYy2MsytoahCl6KDueBDFp/Dt\nP/4qz/3IkxzkLhK3/w8MC+tk312nMx+hkm/S9SX41JNtQj4L737xEkefdvD6FZXxpx9gqStxRdPo\n27d50HGG9e9cZzacpOnUs2dw4evWkWc7NA9VhJeuMvlCm95dH0rbSHz8BOlSH2UsjjH7PgedPdze\nCRKRCe6+8XVcn3+CyhUzXcsNnjLaea84BOb5kz/8JQCe/z9/gxl9h9afXmf2c0/jnzeTvVSnLgZZ\nam7xZmOLBg+SWMyTmjgCq1cRB31KQTe2Y8+z+vmv8OSPPUem8D4daYjos7N8XcYSOyDqMKJYm4zU\nODGXlXptD6N5kYquzOBai0EihdRyU9CqRIRb+LSzMJ/HVPaxa40Q2e0wqOQpnHUaoFJ8AAAgAElE\nQVRg2JeJekSs7X0G4Ri7vS6Mj1NrzjP467eZfkhGV45SNHWJSFnMAQuGx58i/WoZ14e/z8SJ59kf\n5snsZ/Ge3cETfZJKfQzH4TbpAysD23XmUk5K2Tpm8eNYnHvs1U/x9nst5BN3cC31OLbs5cu/9UUA\nfu53fxZxZMPSgaGm4hq4aTjzWL0jwukoo8YkLfEv8f3YL/LhWwfo2jukVrepRKbJbF3BsmMh+jP/\njLDXhvWtO3yXWwTMRpLJcYZRM+WrQ6zJNQ7zApOPLJK9WcBQNrLaV5kwWVCtHxCaOGD7HRnD/lGM\nP/E03Y0ax9V1rg6DeH1VBhYLbdmAgdu4vGdJtqKYf+I50v/u3xC/sMH6Y0MsY1P4VgMoQZWyrcXq\nb7/D1E/+As76W3TsUdpFL21tj7i3SH2QwDIepLXeJ7D8bTJHl3i9aWXiPx9y+tktIiEvwumLZL8d\nIPXkFNtUCZXyfOwLf8BU7BEAfvPPv8Vb+ju4d+IkXS46kQY7//ECvnIb39P/CJv4IaW6HkOkzOyz\nz+Ld7VG+KHE7f8jZuTr9+jipH7fwzb/e4cgxBanoIeMLsZS+yoVXmnSGN4l+/EketPv5UO2y+26F\nwAtH8V2RuBs+4GPDR7DpWhR7O6y2vsXCg1/AIdTpRDzsZyaxSbs8tPsc2dBl1IO30YRHOQhcZWd3\ni/nuPKX5HNP1KYTTBrb+WqP+2JDQSznMP2impJ6hdO9vcbXMRHLXUadT+HUTrPgWUa9sMCy0WJgY\no67P0A1/jKlSm3v19xnOLSJVJRrpa0SfGEdc/4DO1OdIruf4id/8DAC//PmTXPkwzWd+5aeoWFWO\nvrLKqChy+PkX+M//eo8/XPk8my/9CFOlIP/xZRe6Tx9l6JhisPM36DtZpixznFucwphc4MrqPqWL\nf87EqaNkHR5ySo4HrA/z5ug/cawYZqU9zUPRAzYsD+BZu0GmNMNw729Y/MV/S+V/+3XmT8zTcQ25\ns+eiGh/w3T+4wG/8xmf4uxd/gyf+1f9I5LQfMfoOjfencH3Cw8t/dJMjlgkclQPS2ikahyVyuR0e\n/MeTGBAZ1FWkcS+7q6s4zlpZv5BA8o3I9g84rfehuSax+BSc+h4O5y6ZN6aoybvICyITrQ7mQJF2\ne4FqWSEuyazr7Xzlt34VgC//xWt87cIHxKwSzz40yXDQYD9cIXCzhTStsF44YPSGDctnDRzeM+PZ\nShFyXGRmcQw532ZHddEbCBjCCu1hH7nawT6wsD08xrStTP6cj9ilGpeqGiH3iPEJjQNbnHHnPga2\nkG7oudx8i27dinHhBF3xaULRCr5em7pZotXr4DGtoL1fYCc3xXH/KaIf99CvR7hw+TqRRxs4tuPs\nB9Mkd7v0U0n660F0fJ07hU/whFNEa2xijrvI7FcwuRXSFQ/jQoegGzz1HJnkBE1xhzN+N7p2m9cP\nmkyPdHTjfbh5j8iZH0RffolrpY/xO7//IgC//sUv0XZGUVO7GPM7SF+9x6l/8iidZoWbfRPtkZ5p\nMcJ+cpbuy7ucvNzDdlREN2+lvL3JXYfK6aGd5ZGfqYkheXES+dIObyhdlh5xIww2mF5PkQ72qV3P\nED5Sw2EU6bar/NBPn+EroZ/nh37/Dd7xdDm1lmD/xv+B8YWjrFZazCVC7B4aqG8JKJvXOGtNUVt4\nnG3lv+A1RVm1WUjNTlCXi3zuoRCXfvp53IsTRFM/RuPr3+KG00rkR19A3HfQ3jTi0UyUevsMgkOm\nkdDtGDBrI26MKSyOkqwW/pL28ecp6gbUb2Q4+uM/yeSqyFv/PM6vf+lH+MLPvPP/SKP8g/dE/d7v\n/PsXPc+dxlHZxB+cYTm7RbRox2hQWe9neUTvwegws9rc5+Off5p+0EaxUMVnc3JKG8MvTqCL6Pgg\nY2HsmIaiDIjOnmAoF6jc2yJ3O8PiI9NUlQLzx58hUpzlys0BLasXe3zEZCtJYdJKqKrR0XmpFRqc\nnAPdgZ7GlI0Ffxmz1Udlz4Fz2kPpwITaE4h1aiwLRZRcmrFNmfZUis1Xv43l5MM4WlXM5jTBczF0\n1Tqr3TscPeUj6ImhFNswNoOtWyAXDCM0FGLNPpJngcBCGJezhiRHiCcjeAZ6jk6FcTqdKCkf5ozA\nhUv3d99nHn+eTjnDrNtP0+fh1tUtLJE+sjFGvuQjohkYjKIshCeo1m7SycnIwiIjsQMDG4fZIqu1\nDmo4iGS0oih9ovYyfo9KNncUn0PCU/fQtpuohD6NKPsIG+0MBxFGS1YshRruVJCR6kbv73IgRyn0\nDkiZQ6wfGrD7rZTEHD5flLF+jqpN4gATLbeCuxdCrTZ5IGXk7pW3Gfv4GO1MA9HqwaWEOchdQXn/\nFQonJ7m2uU/jyGNE/H5suiB5/zj16oDKfoZFr8zQMU29Y0c1JdDtNLjjTBFSIySfOOCRxSRz0x0s\n2V3eemMVgAeeOYG1ZcRgb9Kw6XEFOpgOJMZjpxkdKFgGBi46r2PAjclWISw0yCUWaOjTuBwjbh1u\nMPXoaYRYnra+hjeWorNnYNTK0u2Wyckb+PdV7M89Sem9Hp7WgN1gn1S/yp7QJKH0Cend9DsOGnKH\n8GSSqXqRQ1cLrSSgyw9p5DVMBpVEX0VUU/RaLVj9aTqimT2lgDzlxrc7hmT3oLmzhFs99s0rBFqT\nSCOVG9Ihvr4Vi2jFqtdT78iMSXqahkP6ZReWmVmCpx7myR9Kkr66QfxRL28UBNwPPgjyA/TTTpZ3\n3FxJu7j29jcAeOqH/inOjSa17haDr7+EbTLCx9xVBEsLtxdqvSbWWRvNRprSFT/1wzXqzQzNQo3k\nJFRDKe5d3yYurSD2nFx/bY1C7yaNwVGmZyNYxn3M+MxYT3dYcM+imCw0vvtNGj6Zhw1x/su7L9FS\n7tA7fJdAWqDUP6RTcNPo3mB0YZ+/+PJ/wh7/HBZPC2MqwLCzxp0rl7Dk/cinob+3R90/pDess3nx\nCo8KYzg/PUm/s4VxJUMDlfF+lrmHnmQ8YKY9UIn2b2KUa3TTXQTzDsJ1hdQxD6NYh1amxsh6l5B5\nl63SPs17RQIjDWF3HWle4pWX7n8AmX7ix7j3bpyTnzqDVlijNbqG/rNnqW9sUxv/YY6NtxkMHTTy\nQ676zJgEBb2+xzF1kn7Ug7qgsnc9w6VtiIaWUFN9vvFnq3jqDfyDJlLYzpH2HDnNwbCUYXtXpXU9\njeN0hLEZI85SgN7KAdGff5RqR8bec6GLGdBUC8kXnufomdOEj3t473wRodGgbTvN0NhFveJl4mSY\nTi1A8JlJbK0iwZNPM+Xx0JocIuU8+AiSCWY5GdNTv2Zk4VELppKEZTxB79Zdoo4SsU6AjEtHdreO\n0+RgOMqS6nTZ00/T6vpo1oecmtTo1HVUzXtcPX8TgLloh4VPeyn0i7Qal6mXg9z6k4t4Fk9y+501\nAu0owjOPI1c9eOoBhKU6Se0BKiEnDS1Jx56j6uriuyVi9AUor/bpZLI45wy49D5EPdzLqjhNO8jx\nEVHDkOHVNi6bzPJ3+mSLejz2JqPteVqv7DPpPIWmNYhICv5tG0ahiPuWnlHQjXdFoODU+Npv/TGD\nWodkwsGcwcFG+h2OTZyhrsZQhB7BcTu67RJnP22hnSlScJWJyNNUxQNm9BZG/QrWdpBCqES1INNe\nNNAW3LQY5+adDZLTVl7PVlk4uoRsj9JqN2j/wDiO1SKvv3cdgGcXH0Z1CFSW9SzMz2GMT5O9IyD3\n3GxfXkVriuhSAYTMZZrzTsyPTjLqLJNRGqjxJk7NS3PdQDR4g2jQjHoliy0+xGjxM+vP46gsoUWr\nCIIBq0+kuOPgmG8cxT1Gd6fO1Kd67N1YRYuZ6XtEhEiMGX2MjfU+k/N91OYm+oAJLTROMG5GJ+6S\nbAt4RkVs6Rbxqp3WXT/Ve30cD55B0yYRxQI7EzrmxBTGbozK7b+g4tLhOTGFPJAQptoU7QUWpkRc\nFh8+S41G14zpaBz7sM6glOHYTI+XL/wZkaSC45Gn2Mss8+qND/iVX3vx///G8j/88pdefDYwg7E1\nTs+8i6kwou5wIkoWvEKbtEfDb5ewrffo1UcMlC1CxQItd4Skf8Du8hWu7PWYmQig7oAhs8O0FOam\nLo1Ls2BIabQ3R2gzEh9cKbH27kWqkzCZjHByKsqKIuE21LG0WzQFFW/HTK3jIhA0kqvuYN8Fm86D\ny65wobCHy2eg17Kic46hNfUYyhvUR3YmsNKRG7gaFsInBXareQbfKaEztPFMRsnlNzHnfByUNewT\nPootG+rhIU0xhM1XZDDv495fH2CVk1RN0G4JCNUmF9f2uFnK4Z3ykFwv8a2rHwLwuc9+nMKtLBMf\nP0P6Yo3jR6chkyM2PqCptRj2RbwpkYvfXSH46Qnyb6zhmqmhFxYQ9R0Md4r0prsExS6OjoJDPySf\nTJLpwlEXlA1mmPTgcossv1/Hq4lcLVyhKQeYMubJr+wSiLfZS+ux2g140z2GKS+uPTPF9i41o0zE\n28BsA23Yp6X1MVXrVCoxqs2bjIoimeu3Offcs2xnlxlaPOh9GrroLHJJBoeXJOPYHw9y1uLmtqZi\nDAwJN8YQm138VThwHcMWKjO1EOdrX16lFVE5bhlDO+fFpBziMBmQtTquCwKvXL3fZJaOLULdgEkA\nhyPC9vks4w9+gq1XrrC1eEBJaVEvWwmEDEgmNwOzmd2uiCk4yc5dIyeDEfaLt+gXYsjpdW6fv8j4\nhEorMU9js4ko2OiF2yhXrmAKRXEqIpVSjcxYg4mWk34iyUDnQzccodoM+B1+Koci6qhDsF5mY36I\n4FdIVbJ0j55D/e5lFH+cYWUbWzxIs7lMoK9SjQ8pNDQcmsphvk7nzSbm52Noeh8xXQxvpM09+Qb2\nQQzLrJ1ed8SwYqLvHWKTTaSSbr76X7/FZz/1o1xYvc1nfvynWblcYfXmMpJZx0gZUW3rWfm/b5kt\nHTnNKVMP+0NunPcGKIE8hoaCJmsYNYXpYyZY6xBqplh9PY3o30GRfDglCW8wRmw+QDxznc1Xuthd\nZSouEza7g66zTcAyi+oukP7qNfYPXQTy+whjGsh19KNpdNYCH36wCxsf8PDjCWzJ41jGRyz3BqjX\nKmzl3+fRo08z7RzDUvOwfLBJJO+kkWoT2hrRk9PEm3GktoOQzs+Y3sRLb9/E4K5j3HRg8Fvpe1so\nd+sIoyCtwoBe6zLD9TYZQwyDcwuXTkaQtlnJjbAvDTjoGMjc3EGz6jEfOYujUiY/nsE9aUTfmOA7\nr38TgH/zlb/lsDpAKd1C8lgwTbq5+/odzPGHcUQ6COMihVsvIUYcjAr3sEXH0ZvsdCJZjn/sYaKl\nHtvFmzRubNMdczKTPM7pZgLRZ6Bx7w7VbhSnW6MctpOaWiIWlXDV7YgBFz5PBaMQ4GL5A+KDFMXe\nFvEjSQrFFltbt7BbzLhcEmndECFvZNrvZGfzAPOcmb5vSNl5htr6MgbzOFmLCW2sQ3m/zc5dCVnZ\npBoU8MoBqroyE5YlhjUPhsYhrkaegs1Kz+JC9rVw6toMJSd+oYXP7SdfDaF2NlnyBpG8B4iqiYYp\nzszIxzfPvwbACz8cJZwwU7jpwBK0I0XmoZLDfMyB0SNQPgyiSFnUsszhRheb1uCevsJgq015fkC3\n50E97OGwBtkXd5kVbST9c5QGZfIuB5pex4kxF8OaAV9LpFluUg37SMRA8owxOZpASXiJdiFkPUf/\nwjtY7tYpLoj4UTgQTESqPUqiyOrVq3zi2UfImQeYp0zMzz7E6nIBIWBC2U5Ty7/PQUvhtFMm3rNQ\nuFenoLQpHERRF11M6AsUKm5EZ4iwb0S82uOvzq8yNzZHLWdhPKQnV9JYenqBSkfAoarUSnsMRi6C\nfo3X/+Z11jfLAIz9wPeTMBUROga6kRYTPjMtex9Ju0tAF2TUsTHK5rE5E7TWd1AHUQ484H3ESS27\ni2SNo4vKtJ1R9rL72HUSrcEWRqeJeiuGaZTGbvIRlkW8PhcZ+wZudYyxYIV1/TbD7BjVu9fR6cr4\nhRSleSOVag/d9i167R7RWhLFUqU39KHeuUDznRvkXbBbrRC0HMOacGM0W+mmMowqAZzBEdpoyHhM\npuI5ily6heBPsBAbcGm5S9qawZIzo+myZJtm7OZDcm0XDV2HqqbHbfQRM2vs+isk0zE6+gI1bRbf\n+By3L13g53/ueyBs84v/+xdfPHpyjEbIjprTY7LJCD4Vr9yjUu1gyXmo+7I4z8xiHuzi0XsQRkHE\nZodr22lG5SQDr8bN1T6RSJe+Q6WspRFyKpJFwmWMYbW52Ni6i3xZRklOYlGtlAYaSkdCd/OAA2ed\n5p5AoGPD41QwSHpuFqtMCRrmqhfN7aMdrOOuT9K4V8E2EBjaB4R8LnZMJuYlI2rTSORoiMvvr3P7\n9cuMP/J5OjYNnzmH+Y0SnTUJJdnALswhmEt0Wg3SlQ6hlIquWmd0qLFwyki+eo2CMmQkGnEZ9Njr\nQ7yDHvttsFsSvHH+fk7U0ednsRz6cdQG9OfS1BQ9uYYRlA6Dno2uvUbSHaRt3kPa0GNwOTEMPJQ7\nRWrFHjXbAPtoQNHQoXahisvqYWhwYGvJyP0ZtEGHuuji4ssrdIc5jOE2R3oJUrLGTnlAZKqHcaCj\nKZeQ90fYTugxt/vUujWqwxFejx7HlB7DboHKPRGXJGLoGSiO1ThyYKJmtmMY2mjKAmFHH4vsRBm5\nmB0fsL+3Q7CsYA1OgKnBeqGILtfA6ptku1/klKRQEc1YB3nu1g0MSznGXXbExRT+xVmkynUcjWVM\nbZX4FRPprspb1+7n9nz2xDN0ownmEkNWDnOkXJMY1TR5b535apxcsUdELNIs9xmcm6bSNDBeHKI7\nrJNxHrLSKiMOEoyP1hgFFSTdCZpLMsJWk0GwR3vCiL0q4hyaMNly7PfW0PQpvBYnt3eXYa+HUdNh\nzO2zN7BRFSTcgSHtcArLQMbYOsCc9qJoDrK1CnpTnqyxR19RkDo6jMHjNJsr5Jo9WkUjh1UJh6Dy\n7bdf46n5MYrle5SDNsqFEaa+nWZHwHFOT/amjKDfwarT8NXNZBom5j06BPtrPPJL3883/uu3WE3f\nJpEYx37y04SkEBOaje+cv38u53/6vn/Je81N9v7kOsMTLox9O94qGA196mqQbm+Kths8U+MkvA5U\n0Yu7YeRgT6bmbJBeXWfXPUFQ63G74GUxLuI0uhlTLKjNa+w3kwTEFNWRSL3uReo1EVx97GqZ3Usa\ntoUdlsZP4ggewWiZI+XqEujF2S/mCczMYByM2FCrGPoCFreEnMjjrM5Tmu3h6Kt4HWFkvx5fLcdq\nQyNl0dE1CESMY/SsTYT8NHVnEYMIPrnJTteNNd+H7DKVpUfQBwUCRRMHxi1iPR/9lX3GnSlsM2PY\nRR2DOQPe0Rl0wojmdo4LH96/1XjjtStI/8jCiaXPkYkIRD0WmolP0O1VOa6O0cy9S2W5S0Gxo/fo\nsNeTpKb9iCM9l6+XSITcVO1BXC0F93ubyPfWCD95gnJjD33qGB1LE2ltRMAwoDvcRqrm0Csjqns6\njGKArKFOwGnG6nWTa4Nw80N2NoucnD6FtW1EcnVo7BTRN/VY2m2qDgnVpGO0niDYP8AuaSiHPWTn\ngO03X+XM7CTWsMJ4x4K1s4vNHMI0GkNwj9gd1nA427RXPYySGfxTpxhlGsRsOrzlHjmHgK3iRu/a\nIehxc71fYzzpZzujopSdNIJ6zr/5CgBP/9RztBpzTDEkX5zjuLRD1xilWCyiqTGOThnpDoNI6x20\nSTvDfht7b4aAocdoR2arvI/JGsS6ZMORLWGdGmP9zi7O6IhhrcJEeUh/s0LZ2MCmS1HZb+JL6Nhc\na3BYGtJxFvCZLWS39VhnFCaas+ynz2PL5mm5ZuhXBPzeOprmwdGrU++6cD6a5IR8nLptj15nFffU\nDPt3LxOyn0P1K7z19ZuEog5ufngVx8kEx2Y9yIcGRvURPb8Zb32Ffj7DVidL8Lln0At94v4trEyx\ne+ca1lCYwcsZLAsSLYcNUzGCqZyjqvdy+/L9czmffeRJ7lWazHRUahteupkqJl+Q+v6AiaQT/4kI\nO9ka1qKKZHKiM2fo5Tr4sxqmVoqutI7uQpeZ+CwGMUw+U8BQn0ZzVcEXQWyskSvnWa6tYVJ1uCp9\nrvdBckXxzDgJ1/VUJD9az8Ku2GNk1VDqTkpDEd1YkPz6Ph6tQaBgYBiK4X3uaZoIPBmZpnI4pNY2\noLSMqD5wGjwUBRflXAtpv4/T30AeSXSafg5KXVQ1g7niR1XWyZUNGEsVCn4P5nUj0piD1qEFA9uY\nwn3aBZGdRoOQOYjfG2b15WUarXX+xb/4me8BEfW7v/3iD3ziR+mW85gQ0Qd12NtuDsxNxruw5jOR\n7HUo6gKsbHeIjEJUlSLlmgGDX6FJFGXGxKe+P0EZPf3cJoboOZwTIoeDIJ1WAWN2iHnSjG7Owtbd\nNbodHcmwQNlWgX0vY2YjDmuOu/YuLZwYRzpmYz7qTQXLWJ2OJ41LPsSUNTB2rEmfCQTnFH67RK3V\noBkxYowOUfcciC6RKb8HqbSDR62x7ZAJzi4h6Bs4taPIQw/7G10MxjbjLj9yuoLHqSA5BLaGFYTW\ngAmLh3q8Q1dsUbaP0fCECXYU0Jl55/z9ycALi+eoyEUc8RTGfRu2cpecN4/7noe+S4/DYsXXN6GY\nNWySH0FSsfVdeB1NPDM+iqSwFRQkbQxhygSpKeRRhXYySnZZZXQGuvf8OKcHnG6P4VG6dCd7mINh\nBrpdsk0P7kEIe6uJJeVlcxRk2HRhCuip7/dJJmo002YEJcYo4UK1VdGbjQyUEbb543R3ygTPLrB3\n8C6S4zSlzhZWfwSvprJ5sM8H39mkGBzQtOgp1g+RbSGmsnU0p4NiN46tts3VexV8gQA3z6cxOuJs\nb+1hj28wNWuBQ5H+WoPdyIApOcDffHA/72jp2QfxjJooowGVnIHYpMrOXgtLzoF+wUKqW8Q1mWTz\nxir6lQ9QhjeplDV00RGW7iTz8RAxsws1EUbICISn1gk2QjTna+gKDZotlVgghscwyw0lD5kh5doM\nE/0dxJgBLRgl0nXQHxOppouI5SCTz00TwE1rAKa4l3A4RQkDBr2KrlnGUgoxdtLDaHuNTlnGevYh\njp+w4rSoKOEAPY+V499/jm7bhHHNyF6nzNx4FmfQh5rXMzs5x+i9Ddq2cULyDg0ULIkGBsnDrRsy\n1VWRXqXLYOcI+bwDXVTD1Qtg7ed59fz9iconfuwFOqt36UyOkPZDuJ5sM2zNY5vsELQK6DwwMArE\nugYqNT17szKdtIm5uXsMNu3MOUQs23vYj8Yw9BWqLo0lj56iOoXqdDBq57Hbg0x6qxwOD5A21xG9\nx9jtdvE+accwnCYZThLS6gzFKrdabTwuK3uhBsb3ZPxzNfSePj2HB4tdQ6m6MZxs4erF0HoeCEoo\npTIlAXAGSdaMVI40Mc3NE2JI2HfI3eoVJsamEdpGPEaZWw0L3kfDCNYm0+oxhGSFAeNMdHzkew16\nUgSrUKTtLHG8b0WRa0j7Di6W32Hz5g4A1Vaan0ykefDXfgn9T/XRaXVyuRDypcsIFgVzUU/KEKCv\nu8DR0VkqdhlrO0hzv8X0AwVevfomi9kOosVJ0jLiksFEqGqlM23DclAl5BhScin0BZVaUcXpfwDH\nA0vs1N/EhIy1oscs9rEfDpg5cxSdYkSYipMdFelZLcz1o+zp7hDqirSDAq5ei7uv3+Xo9y1w90Yd\ny2PjCOfX0TxjpExReltVNuQhzbEDBiMfpfpd9nV6uuu3ico9qoEenl4fb+okxrQJrZqjoliwTCn0\nZDdbphImr5uNA4GHwzGKmTSB+TgFScY/0njjzfuTqONL56jmFPTGcar9HDp3CMnmZaW1hbZWJeAX\nMHf6aA4bJmWfin4SJKgNnMTGzQT9Ir1Ogte/+SbBsW2CSoB+uEp6U6ZtCyMKFjSXhXeW3yKxuITN\nusPWto5p6zgNUxGaTTJ3h+gKC4xqUdruFvYHWhSkXZrhOA5HlGrfRXPbwuVSH9FlYdKpctBdpb3i\nYSwcx7DTomTugqPHzH6XemaPSseJ5NERd3q5+TWFVGKMf/3bX2D+C0cZjgIMYjaqMwHkVRm3e4p/\n/7/8HsHHTtEpNDG6VFazEqY9AX/ciHJnH4t3BqXn4MNL9/vbp58+ia+d4L3Mu0x7WxyU9BhsKqG5\nBOvba/TadwjPLBHqNLkljiisj6j0dbR0FhbDAnqTmx1/g4JaoZUVCY83sXrjGMQKbb2Lgtgh2NcI\nbAUJxkIM1usMZmVch3sETAF6Ax82uUxX9OB/+hjf+s0/5dTCCfa33+f08UWy/SZySE8p3aYu1jHV\nPDhaCv5ghAPtNsNLH7I3buLItJd77ywTCIAunGf31W+gS57DOrLhSIQpraj4E2Oowxx6Bxw3mGnL\nRSwHVvTBNOtyGlO5icVlQxLCJKaO088eIgzc1MU7jMsO3nr7b/jl74V13pf/w3940SguEgmJyIdN\neoYOm2kj6vW7DGfGmD10szfU0d7LMG6xs6dYsR60cdEl1LbQGEtSeWsN47BDP13CVp7C7q/RvJgj\nVjWiN7pQ3XnWiwOahSKOIzFSplkEn5XJ0gS4GpQ3M2R6BiySDcegjy6zRbsZQF6w0h2ZUBxlmjsu\nOpkq+/4oSjSAabSMoKujNmQmTVGMFQN1vYRX1ujLOlxHe2x1NBrlLrqahUYAslkXXfMhsYKM7oye\ndsOApNMxaIv0O1a88h6W+YfxO2UmOIddyxGq6VFEmWjHhN6wzuvn7+eoPPMDk5gsfbqHAmXNQVNV\nmXUonJx/mv1mlY2tW1hNGuVDH52xBjb7AJPBRt5cQTNaGKHDPKGibyuUDeOUdjfpKXrKK1VOfSzJ\nwCbgtheIFMNoFpnNOxK6Wp2i2CakQV3WYzTJCGYXBUlHUqfS8h0SWgkyioTMDs4AACAASURBVBxi\nbcaR1BbqrAXzzj6DpIyWFjHrFAojO/XmCq76Nkn9LMGIgc1KjkVdkkvtNY7NHKEtpPF5WxzpTzB/\n0oTyUgvvEw6UgyY1Z4FYeAaH1cp2+zLnIkcwh3r84pcep/DwCivXOvR7d7HVBA6sMjXCvHf+vpfs\nMw/9M0bKBl2jnUEzwZg5gjcwZMMpkbCKrLe2CEyHaDhUxuQ5DmpGfLMdvC03n/wnJnrXS9jEAoOA\ngnS7SrnvRglrWGse1neKqG09bouPvlwhu7WBz2TApGtT0dvpuzUMTR2dsh3hWJhPPb3EK7/6M5xJ\nONl9u4BqGaLIPQyNKgGxQ7MgEjzxSVJRF9k7F8huQCLixl8PcuO1b5Ov5qkZB8SaMm3dSVx+D9k5\nEfPNHVwWJzp7hJ5mpuNaZvbcOPqRgbw3j3X8FL3rLbRekT8//zY+3wR6c4ixUAu3x8uJ3g4r7TaZ\n/JBb1+9PBo4/9wIJY4RYYJuWbQKHXo84UpmLDmnGHqOThZG7hDUzQLGXmKw/gLw1RC/FsUdkyuY4\nO2oZXA7GfCGCZQsXRx1aRQ/5XIlpnYeOvc2BL4gieCkM9VjGjXgllVFvhDybYiAa6atODLUDQiaN\nltFNv9+koy7gOygy9cOfQcrKOKbHKHf3UI0eZvNVrEqZ5siHZWeTt9c3iDWMZMJBxkZ5DA0RsVyk\nsreCP3MKm82GNGtga6/N4qyNfD3BqdGITNmGPbiLUhM4FLps7YPeoFGdKrKQ8dM5CBNQy8jdDsbK\ngA+W7wLw9Z+dJWW08tXwd4k2IvDIo9y6lWbRP4FTsrN17R3u3d3D/YlPkh1sI4oNhl07Pc9dqlU/\nzshD3K4eMnXkHHuDEcfcOVasZY6Mkqh6J4cjI4rQYywh0mu7GBpMOA/rYHcy53YzEqdwuXPcu5Ej\nFVskbR+gF1U8jRg2QcM+JtJdqaMaAtgbTXbXayyklijIdabHvUjZAXmHk1Q8TfVug+KijNscJigs\ncj39PlPdOIpfxSiGqBh79PJdRqeeZD6q0SzdIGu30Bn2sI1MZNrgDVbx7pvv99T9A0yRR9kZlIkW\nhhQUGx9ceBmAX0jO4+5Y2Le00ctVDAUdGBVGFQtiSmRs4Kcfl9DpdQiawNDkI+A9wNj20672cQtr\nXLp+iY/Npsgt9RlJXkYHYdRBjkQsSLFURm/SI9tAZ4JJZ4o71w/Y0fV5cuYk64U+jaSO+dOTVCcn\nUI60sYhW4pEBylIAh3GMrlVlkB2hJtOcsQvkdRqoEvrwDtPxMN1Kg0hgCbGo0pnx4qnb0VwqLiMM\nDVYe/ul/zsVEm4d8euRDO0NPhLzk4shQRDc1idFdoF2v0fQOSS5MIOUTtO58iH96hu1bO3z11W/y\n2MOf5tq9Gutr903SP/DsT6Ab1yG0E4y0ScJOB01fhKGmYLxdQRvaaNtKzIhXmbwTYye3wdkUhD0a\nQ08CU1dHr5fHZNGY6RsRBhYEoUCn5Ca6qFA+iDN0DohZZXqWEJUb8xyNZRmOJWiVoanukLuRxTGy\nkQpLxB57EOONawSOLHHl3gp7L79DMDaOSByXUcLj3qUy7sfkdCPpzBicXi7dvctkDxKf9LF98U2O\nP/gEg8oSRslBp+6grezSsuTxGcLYRB9W1U/H5CNnahIclzFud2mZT+OXhkScQ5ZHQ6yZayjHEoSM\nLfQNOx3DLrvpLP/zz/z9OVH/4EXU737p9158cHGJom6dsw9Psr8+RCjeJu/0EIz5ENw2WqKCKHQZ\nBeNYskXUiRCJno4dcxStnIa5IC1jDe8ojt68z8XrK0zYh6SjEo7GCj3/GZxDleSsBZNkoZ6pITdK\niIECWUHGKASZkARu3Khyr7rKo88/ReD7rdwurCJFVCZ7Huxan26jydhAh9zsIbnsWA6sGOxVGjoN\nd9tL066gKmZ8sSEDhx6nTY/adlFXa+SEBPqVKl00PFMWJMVE2OylsW9GCJjQuSFgsxOxNGgUHPRt\nFrbNTpS+iKPg5zDZxdkq8p0L942X0099hkI7wURKwNAu4ovY6O/r2Cyuo7p6eI1TuF1lREeYvfIQ\nyd4ie6+C3+DEWCyiGO2k234Mapm7N/+SlCWE/WOTTDpzdP0yqZ0GeaMdq2mFgQ5Ur55oqII35GS4\nLmFfjFM1FKiMojAoIVlC2FQ3uHaJYSTra1OQNJyZAZlBgFGwT9/Rw1+dxSz1abV99DrbmIc9XIkx\nvIUuGdMaWgk0wxA1LzPpiDLMpSn7o4ysfRxNkaxpG0M+ydXXv8WEPoLcGeDSy2iRCPX5dRhuMpR0\nZG61KbksLGFE0Qd4+/wbAFhnXRC0Y7MJxHxBLlYvYa228VR12Mth1KaXWqmHseHmhrjME8cf5aDZ\nxDyQ6VdL9DMfkB5oDENDDE0/96TLGJ0Jlh6fRLmt4ZgfYvW60HRdItNjiEMPxc3XOPr0Q/TqNgI6\nN9l4DXmrTLMK//iLT9EduLmw/BpaTkDu7ZJt9dDEFFLPSK70Nqsv5UkujggkUrgXxsltFJg6ehRD\nZ4RYNNGLeohIGYbFAyrVI5z8jIPch/toDiODoI7C7Xu0Wjv0qf5f3L13syQJdt33q8ysLJPlvX2m\nnn+v3XRPj3c7ZncWwBJYLAgRWgoQTYQiFEERDEAiQtQfK4pSgNAKkgASIgiGQFKEXfjFAjM7Ozve\n9Li2z/tX3vvMSlNZ+qM/BfEdbsQ959xzz0G9m6c3rVAb7lAwN4llegQCbXyMiS4BrU/w3Yww3a1x\nc+uMP/3eQy/Zs08tcXjyGmL3KpkNAbc3zZx5zp2Qin97H88sSv3iHNfiJp2TAHrhQ4xlN2l9gjsX\nwXk+YeFxhUUzyp1MmXSzTd63SFuz8S06cUUS9Nv7dLQjHg8F0SZxVBNEyUchlSBSr3Pnky6ZFxXK\n5hBJW0aYNIllXUziBu2FGcfvidj5ffJX3WxsPMn+9+4SnHPRGXWoXkRgU0WPLtKqe4mHe+CO4TZ0\n9hUXHV1jRZnDdh9TKWv4MivEgxqn0ymIq4wdQxIBH45Tm/CjbuiOSW8kiH82ZNZMcby1hzCx2X4w\nZLwU484HD895l57+ceZWYzz28y9w8vt/TL1yiBRcJVhI0rrbRbiUwPVf/wiZiwZDd5PJbR/56A7j\n4gZW2MZlVkiVl6ifdhmNx+QsDZeYJKBO8HkuaKk2crZA5eNjIn6wjo+wEznih0NOznsYcZnWqISr\n7EQteNCqLfwJD/fPWjxzeYtP33oDp6RyeWWOz2xYzLg4b4nEPTZ2LkG96WTTleIjl5+w4MGj+Vho\n6EQ3fQjDTcRIHamTpJcIEExew6uPGYSj1I6rTIQc2VqLRD9GRQ6A0KQQ36JS1dCsVVbWR7SqHRJ6\nnZGUwu3u8PYPHyoqj37ty9T7MVbb4PNP8Xo8rAtDmsIZSsbBSG+h3WvSdSpEI27E4YSeN0Bv2mR+\n0mI8DeAPm9iLAko4jTeUwOg3Cc3FGU2TJLeyxEIJXGc2TsHBxqMejuQOP/HiizSSU+7c7vK9b3+b\n3C9+Hd/gFoNak2Aliu+JNFoaBolnKR73cO108Tgn5DxTrJGEEJjgsiO8++Z7jC2BcCREL9En4fHi\nTTsxHCYroyRq9FFqaxr/3//+G3wxu08+u4CQFbhp9Kj3ndTUJi3bJHxpjq1BmMIrT1Pq95BiGYaS\nzfv3DP7pL/8MRWcNofEJX9zeAyD7yLNcW56n0mwRDHRRJgMq/QYzLMJxJ4P9IgnBwan/Kh73AP/G\nHKW7NmLPT/3OPtFQHu8sQkvKc1HdY9Jwkb3xKKW3P0J8cYte+6+ZC28gPvAy9UL57IDkhka32UX1\nTtC0ELmUSDOr88rf+Qf88LW7DNZ7hC4OyOgi8itPkg4m0ZtfMHaLnJo9IqJJjQucUoqSGCfVMjl1\nRVnOu8gnl7HGEV78xa/xwX/8P5mtKtSrUTLTAHMuN8eRKbnhBO+GSfP0gnmtSSXiZy0kox4F0IYR\nMsG7nNWWSV++CiMHLf8pdmCN7T//Lv/kl/6nvwEg6pd/5Vs/8qXraB4fFTtIThco6n6y7ir+bAjX\nuYPogp92KIK/ZRMxRpgelcmtJvbSgHr5jCUNUo4Jw3AEewqrkRmVhUfwbTtpRZeIO8b0pRHOL6o0\nBAglvSyUQhCaImgu/AGdhiIhecZksnOMGh9xsv0Dpq1LhD43aT9xhCf2PKJapiF7cCWu4j1uYEan\njMQQcsjFfn+P9V6Aca+LmvJyvBcivh7CCiq8f+HgshonMB4TvTIh7hUwND/F/g5RK4Jn4YJH44/R\n7u1x4ixwsXtIsXNE6qBNW4/SFT7H33STuznkT77zcKk9/twjRP1pbNvFUPcjuhysz/so3fmIdm4Z\n17LC4MhDID5B6/XJzIm4DgacdUr86z/6Q1Z+LM2ViI6Vs3gi5CeizOh2HcR7IglWOTzSWd1Yo/bm\nBNWtk8iWsa1V+qbKYatO20qyPAxiRAxcF1F82pD2+R7TBmhZD+F6g6EYxZIsnOkIS6UAxnjGsOMh\n5+yRzaZJBTdxBKscHTU5s2PoVYUbyjyCD9INJ501nYzLgVfRmXWG1AIWwfEYxTJJJNYI/51N9u7U\nuLCnxOZtav4R9KdMTJnMspepGCSQcDO99Ahv/O7D2pdnnvxpYr4CUd2i4+uw4LyBnprwoFVmkoww\nCZ8hqzb9jpM1Y5GTVJ2lpoNzrcWk6KetxIjqGSJXchzTRisFef7K03z2W39N3dUmpQ8IZXxMqtvs\nty7Q2iI3XsrjOGmjh5ocFnUueSc0Ywq9kkW546R9ahB99DpPPPElBs4w5fIUZzpAUJyxHhdJZocc\npmX+5NdOWFxqYToSNNUuZmTM9MUAsd4h+5SJjA3GmgdPX2R7MCR9bR1dO2Aip1FnacKCDc0pY4ZM\nL45YLbjYSD/F/YMRT3/zKqpaYGoGOK9t89SLa0hmkT/8k4ft8N/80f+WTkIi4lkkulQmLiTplafE\neyIPbgks31igVBuTaNZg6wwrdwmfanJAi6BXpTevow08DOVd8qaBdpajL9whp2WZWQ84G1/g81hk\nsxKHx4csryRplEXmrugc9/ZQm3ME/F3uv3tG7toqjq4Xf8fi9Qc1Yg86+M5mRJ+KkNw/xeo7OX//\nPsozaQoBg507ArFIkZP7FZSJhOQf4M52cJ5k0bxjknUvND3o17rMpCyzyQJ6RKE0rBBX8pSkLvOO\nEHqjSGROpF8KIo48HI+dyPMp6r1PCUddOKM+sq4hqZUtXvuLh4rKN6/+OL/6z38due/lmf/xf6Ho\nrzM9fJ/bu+/wyd0z1q4+xXM/dhXjh/cIaG6aZTeGDtGun1BZoxhXMV0qZifE4ldCBLopDPcBwSef\n4vatKvO+Pgdnh1x53EFiIUUlvUVLvcvyZpSTcYOi3ecZ/wJ2qMv+XQfhZ2N88lGTgtogZ6uMq3uY\nnhRFX477symbz2nUghPu/ckOj375MrXDD4kvLhBw7+M1VMrRJJoRwKcpHNtVnBkvnUmcpNwjYLup\nepIES21Mc0DeGOPRp3xBibxfp5uMk6jJNPpFlmNtBrd6lApLdNUwQvU2eWmev3z/oefz6Ze/QT6j\noZdstFSVgJ6i3G6Tctp03W6Sdp66OUE0apzNwIxILNYEUvMTRlqasO6gfXmG1QsT8ehEUTBcEYwH\nKiPLxlkP0rFt4psmXleCot3EG4sQGYqctc55fiPOkz/yt/CcfEp0W2AsWaiBEJ5xl0Y1heqoIv/w\nDv72AM+6QtNRxJMMU75/SjSWJnMtRLzgQYhJzE+W+cg5IFqfozpLcP/4c3YDGfrKp2RT51xZlPhy\nKoe5HCcWWUcMtThof4ZLXSOnj3DnCjTsEZW3eqQLIj1pwGbcYKfTYfctkUsvX+Pd7z6ct6+8+ipn\n213SgQ4d3Ukpsshi/4Sh12SavEygLbNvtxDzYQqPXebee2Oc8QT5aIWIskjVOUD2O1gw+zxo71Mb\nj/EWBaScn1nRQn39BMWYcvHpD/GnFlCHD7j8wqMkZxtsDz8g3fbT8i3TPh3w/p+9y7wusPTMM7gs\nH/etIdMPLXrd+7izOeotiUBb5NIja9SDCYTuHr60TsWyCEfbNPUiA0cEuyHQ3anQmk7JRnNMtSNW\nFzP8xRtvsGEk2ek2ySiLnD9o4ZMlorMNfPkUFw6RuODk470Kc3MG26e3Sa1ucPCX+6zEl/l852N+\n/h/9DSgg/j9+9Ve+lb7yKFc3N1BbKu3BiETIptmcEpCWaMwPKT8wmS+ekt6YQ5+eU2xNUa8H0JxB\naMRohYIMszkKPS+tbIPq3pA54vhFmxQVOtEADjS6cQmHIaFVFvBJY+SQjqOaICQ2iSgzBBlyCZPE\nVgyhIJJy1zkaqWhqizk7x4lp4nAqJOwGzYCLoSUi1bwUNmQGF1H6UYtgqAFaEznsYv+9fdT6hIWs\nn478Ec7ZPOnQhPZgmfGsw2jsZuGZGdWLPtvvvM3i3/s55KETb2iAc7iAu6AgrI1ZTMV5+/UHMN7i\n/U8eKiov/tgmqWKPY1PHF0xx9v4btPPLzMd8jNUeumVCNk1ZN/lSosDB7gAz72T90Ve49thjJOs7\ntE/SCLUhal2jVYyzFMnRHncRvBqGVmLXmGFGYWU9TeP8CD8KyAFGwRk31Tl6A42I0KDm6SMEzlA7\nGkO/hpVYY3hbILrkIDDSiXag646jCxckVZvjtEbR0WAy6VKRUnilMX63zCWli3Vphdu3XsPrHeBz\nTTBHac6mKi6XF0c9ynFDJj5yYjoVeqdHKJc3eXlrif0HPcblPkLKj3h0j5T4PN4NFTW8jO28xpu/\n+xsAPP8zr2DgJdD7nJ2QQsEXZnhwCyHnJnOQoy+GyZjLGO4wxmqH3m4PX9jB2ZmDpac2WQxIVIoq\nvYMwCWb0/JCJVKnoc0zcAjNvBHdHRZlfQW1f4lLcw0ArEipcp33awgwEiA4svCmLXDJAzz5nIPnI\nWhp9ucG1xa/jObdoOJrUgwqOooQW1cjtdIh/9VEamguHrOJs+jCaEvKHZ0iGhzVjndODHrNLy7TT\nHazDCMvRMsZ7Ku5kk6QewXIm6fpP8Cir+AdTgi9cRj06ZdxV6ZzNUavW6MYk5s993Ks6efMvdjk8\nfdhltrV8GUmIkZQeYDaj1M02vnqXT9wPQW179xT3V+NIFR2n/BiW2GcScaLNvPhZpnlcJzLUmQQX\nCFpDTpQuxQOTkTwFBdzlMdWzKunF51DEOKXzCsKczJ2dGglFINGSGU6XMGU3rskQc3KLO7cvmL8u\nEQlJhCST8vCY/vLThHbb6EqKjfUcqjNH6aMS07kgwWUNjzuP3+vDsn14BZWRnKYbOMEeeIkVReSQ\nTluTqX6xTTIdxxEYELjXRzHD9HMGOzU305mXrKNHciPBaf2A8KlAei0MjRCqa55c7XP++IOHZOcX\n/t3/TXmg8uGbEb76zStsf3rA6cG7PL7+NcQnw8xtZXn7z/4tZuEK9/7g+wTCYVJOH8PQBO+aj9v3\nw4RCNu7CPG/96TmBbp1gWOPGk8/RqaocCG702hBvNk/trQFEu0x6Xup7MvsnPV4wt/hCruGbhjgK\nznP7T7oE/RYv3bjGtHJK+fCY8PIckmwTu5aiXHOR7qs8//JTfPbt3yOXnMOMJ+keaxiOBqlzkRNT\n5+qiC7NRJehxk45doLRDTE5KROslgppF12FScdikTIV6rodLyROsSfR8HVZtk/1iAn/YQcovEjy8\nj5gME1ad/PknbwIQeP6XqQRVbMlNqW+h+g2UOT93FAFXr0e51ef6E5vYmoJfDGIIY7rtHKnEkDP1\ngo4vTlJOYPrDdL0OZmcz3H6V1myIfDdOMH6Axx6g3japKgoZR5/g4Rht8DHGx/sYiw4uPi8RTdeZ\nGhLuzzUMqYTRXsJwqXgbQcZimUQ0QaJ8gEtM4mg6sXwO7LwbZ2iPkOFAj9dpnrjxVyq48wa1+gnu\ntQTLOQ8LtpeNbI5hu0dw7YhUWaAlHjIZiMy3OqQLGzibh+hNi+npLqeHXbJL8xztfs7ilWUSE4O0\n5xn+n3/2K0woA/BTr/4c/fLnaK4J2ZiE/vFHHM8COMYLPO52szcaE45EiLdFLh65guK28Sfd1McX\nuPQlSi6beFfiM7FDYpBlacGg1O3TNWtczT1H0OlG2Rwy/+SL1CQ3w3ybaWeFzuw2fnWVWdXLqLJP\nYlYlPJtjshzEG4lR60+xIgbT4g4Liy8xc6eZdEoEzpxoUhzhxiqJgEldnMPx1vfRLw3wT4Y8Mh3z\n6T/7IePodbyXE5z99edoN1bRfQrdw0OsmM4wNUAKrjKTA3ijDk5PLuideUiFK+z3XdxweCmqF/iO\nBJiPU2+5UK6kePc7v8Mv/dO/AUrUr/2rb3/r1cJXKU5KXPF6GKYUlGKJkS9HLuHG1mR6KaCQI+ar\ns1v0Yp2bzC+7qX2yQCKvsKiozDn7OHIeetMgjpNTrLxCbFhm3zmPx3nO4F4an2OBlDkjP9QY+kUk\nRWQYcmLhYr+tku950R0Vintp0Fy01Agef5fwxTqqQ6V1PiFkjRAzV1lWuzCXolnt0pj2WLiygnHv\niEg6x5lrSDKQxmzVkD0jwjORYWwTseYjZY5wjorIpknQo+FRBXwOLzx1nfKffsbR3e8wSC+SaZsc\nNyKUzj2MhyW2XniUV567yf/7278FwNc3fgpxscjJsMuG38X8lUdRuxf01DTJYYBCIMzI3cOeWWSD\nXUQtynv//g0mg322jGPGXYHJnIzHF0fzBUisX8M+reHOTGjfaZGa8+BvnpJJblD/q31SCzIHVRdL\nUwN/ZUp/ZcRYknBpdWbxIIoVxpwKrG6l6Z3LyBk3K1qAWycDwis+VMXG0TZwJ4L4xit0zAYZV47B\naZPCnIdsrsDBwMI2zpilw9QdHuTwV/CLBkl9FT0eIbMJY8eMmdhEkLpocyGETouz8gW+2V1a4TxR\nzwDHWp5yq46S2iDol/l3r7lpfPLbAPzoS3m6ZoaOfEZWXaHdq+LzulhSL1Etf0DQP8O+voj7ioi1\nHyGadCMPPAQTHXTZzey0hT8t0tAE8qsC1sBHN14geX6IGQpheBUyPoHpDNrjIJ3QMSPJR9AQORo2\nOdg7xP/1G4y3q4x7MhEryKq/hhTf5Gx/QP3zt9nOOsg5VSw7gD9Q5nS6SPCyjvPTH5D/yhYeW6XS\n9XNwdsg02aF13mfePUN6aZV0xSA2aCMnwBXf5Kzj5PFrG1S4gyfuwmfH8QtppPUoxns6RnJMJ+PD\nG5WYKQbJ8yzdQZXigxSdswnn3U8A+Np/eZXxqIvlX6Zv60RHMwbuPsHKPLOVEZNICmkURPZpHDln\nWNo+7aaPrVKARMRBeF7H0y0i75yhzadZMR0MazKy7cdw1mmPpwQCV8h24rTWnGSLLszxDEc+jyR2\nmNQrzCnnOKZJHuz9PpPgK9hCHd84j35JJndmYdtLYO1w25DQh2l65oe0u1myTyeIGjKBtsVY9rDh\nyOCVS+RdCUQzyMLYzca6yKnhJuIKcPvinMANGUmO49csGkmRk/o2tcAZqdaEWKqON5uhbN/Dde5m\nkPARxIvX1UE/9SI9Y/PdP3oPgP/wm7/H//oLP4uuOnhXdSP3bcJulaTcYr7h5+ju61xdv8nFzjHB\nvSo9MYw7Nc87R7cwel3m4gWWwxXcbRff/c3f5h/8k2/SPD7n/jDLZGjTEErEEiFWwyJtuUFGn6Ng\nepFEheh4wJ7c4os/+HPi6Sf4g7/8c/7eT6zz7FqI8d0yD/a+Q/jaI+yqMcSQRWTBhUe7wNtf5uDW\nH3D9iSscltxkXYfUFYmzow7yIIwmmIwTOfytOkY2gdc9oqFIDOu3CbqW8c5JdM/GTBcGTCQPumwR\nH4ASlonX/FSFOkkxim8hTa13RPfSAlG3yNjM8Mb7fwHAU+kMqZibZKRFbQQrkk3dlybqmOJqtFBy\nIR7ULAJ7TQIBCaVYB9eUw1sGq1M3aSPBXvwQDlwIVZWyu8TCRGFy1sHSM0S2LzPOHtNgiFfSafbb\nyPIiJZdIaH2A6+QKDkQO3mth+U7InkaRJgKEZihLKS4oMr5fxvRMcCxcYeGmRT+roXjBHRBYvZyg\nvV3iXq3FTOiRPRGY1rtwMGJ204/kuIKsg1kpgbuL8Qd/yemoT6z8DCOji/DAi99zRskTIlrvkEyF\nGAmfcd23TO3CROm6eVA7YuXldfxShAf3H3o+v/74HNpKCKlu0uUSakzjsrqCYJQw58MELg5o5VV6\n5168ZhtzKhL7xjrdSpHTz465vD7EayzRO70gstqgcgKnmkzSlEh+LUO33CHuu8591yGBkolwVCWY\nHvJFMYUrlyAbqLM7kPELTnwrAZp6Bo844eDzNouyQPgxB56ZyrnRZL4SZbw1gf0qUn0b59WvYZ8N\nKdXLXM+9Qmohw3FjTGbJIqa4Ofqrd/F9OYGsdBk4Y5h1C2UiEMKNZSTZkqu0ThUWL28R8fmwF324\nxS7TlR4TXaWddYK1QqbyBdYgzNnJJ/zjf/w3oID42//yX35r48k042YW5+M36FtjojUHWqKOqfXR\nvC5CzSMMkoxGyyzmm0ynKu27KklnldnGjB13if5dJzyRw/fgQy4uBkSvBXGOV3AJHYRRF3E+RGnb\ngIKDk95dllIpXB2LXqJDvdok9bKXk4AXy3cdr+sAY+Bg0KkS21XxXzOIBqM4HDKi2GUk+GgnH8O+\nO6WzXsZbM9jcDDLSHOi7F2Tc64yOBXKXZGKRRbppBY86YjI9wRNfxVjwk3v1y0zul5i8IHC6M8ei\n/z5mO4rXnGHay9RSDrL2gGXLye3XthmnfSwpDn7nO98B4G9feYn3dzSevLTJRfGQeC5Ey+vCbNsE\nwjX6ehtHIY637OWeekaNIuurr5J+boIaDKJ0MugTP5xD/MdeIVI/oR+xqXSqdMMJvOUwHrfIdFTH\nX1jk/brIk4JEy5bIX1vDXS8ybMRJrAVw6XVaih9ZTlO/LxKdCWTD0FkTFAAAIABJREFUfnrjMac7\nZZafLtAf3WPQK9B1Dkhku2hnEXpjjYgscW7GaN69h+VOMhtFqYx1pJZJ5fgQS3JTbnUZ7fk4LVc5\nLJcx+yKuYJLA6QhF9CHpCstGmIlY4cG9GqktH4rrSRI+D+8Wp0gDgaOPfheA/EtfYcuqUcv4GDaL\nyEUPTsFN1RNgfs5FPurjiw/uMBtdUPBdEFxIcjweIqS9oIXQkyLtAcwtaUhpBfuoiC2EqY+COJUK\nUaPAoO/C3FUIB2fEvFOMhpNxO4/XVySeyCC+V8bbPqKsVJlYOqeOBLOUQHr8NhcDiRW/h84sRBwN\nd1RlNA7i71bR7THlxmUqtSBrkxlX8jP6yISNLp6FOFFrjtNSiU4uhahFCfmGiOYi3/3j32TjuZ/G\n0bTpakHGkkrIWeHzhpPI0hoLRpNBN0wQlZkeYBAe4+ps4+h/wU7rIcN9+eWfhcCE2fEOMW8P33mB\nbbFKuBAh2LDpx730Zw0mJ32UqZu5UIaOa4Tec9JWT6lJUXYPhrRCj2JIJU5VheGD+7hi67gKK6xe\nVPHlVjhc7qNXhhjDBKEI+CtBxrqT8TTH1NWm0Xdw/eYLuM+CjAcP8D+hELScOJ8PYNUdBKIqk2SC\n/KhNt+ejfiFxcPImHq8f1eOib0ZIeGzuHWZZjfi5OynTcNzDDuaojMbMvOdYts2Vsof7ISe1B03y\nHYhKIZRWBsG5SqU/oe88wzX5GvfUHo8F41hRnZlySjA7ozIs8PZfPzyv/PMfPsA7vIWQLJFZvEFv\n2CI7qKIu5NGLFjOxwFtvf5+CR0EILPBoYoXdSgX9fy5wpRDBd/8ExiPGjTIr11ZILUbpDEWmCy6i\nzgz2xTGqFmAwm8caDzl2mhhrfjqtBrGVECQnfPXHFgjN4jz61XWmukBnp4QzUKSjPIa+sEypNKBw\nyY/LqRCojJntVIjMbWLqbg53dtjflZi/sohHUtFX/WRCTTTZYlhvM2s32Rv52Qi2KY99OMNR7GYb\nNWaTFRN4PTFCmgtNyWLYhzTDXSrnPsKSjqtdR4zZtGogBlyI7R1+8NFDBe/nfuYKDuGUhjNHVqxz\n6BvhUrIEp0eM7BBer5dUdIbp0jjwTvFOA7gcNtU3viCzGWScmOCr9UhICv3KPeaNIAINxGur1Ltn\nuLxTNEQEZxPlGwU++aMzIo9KTFtDXP4m7xx8gS4miK576GzHWXqmTyQwZZYI4gv5aTXuE99cJnfS\nZZAM0/6iS2uiYNTCdCJL3PnN23iTi9gXBsNPuqwvxOiYBbp1J7GlLH2XgTG+h2EJ3Hr9U158+dcI\nPLeB4zjE4HunuFarVJf9bKZXKbVKOKJLqAcC6S8FOKnssRoOMTZH3EjEmU4f8M77D8nO9StfRjqU\niC05GMYaZN3zxKI6n1YlEhM3pbNthiUI2RaHxRLJ9SHetslh38Hv/t73WXzhBc4HdynXBMIeF5Xj\nfQILBdKaCyXdR5RC6KEik0GOmNWi4wVHLMJkss/T2U229Tor701J3JCZNNuE+wZ39z8n6mgzXYtw\n3PicQsRP5NTNYVZEPjfIPObATkL0jop1s8ev/sK/Jp7/STamLWauLvL8AvpQxB+wkIMeWtYcmdMS\nuv8UJbbK8uUALqnMaLpJL9AgcHiE4A1TKpmkfU5cPhmfFCefWURWW3xyd4f1x9b44O0P+YVf+Pn/\n/EHUv/ntX//WI//dVzk5sLFOegR8M45TLnKjIqaVIlp8QFR14SiIxIdVHKILbzmHds0gJi8xmO0z\nEReRxSo8mBDMWMjZTcKNIdK8xFAJoWkK85SJ+3yIjg4se5BOYOAO4lfbSOs3yOoK/lGW7dIZ026a\n0KaTbHIFx2WVQT1PSJhRDxnInTwTJcaz61vMPRbH7I1ZnIuSTsxotj1MFAWEU3zTGkJaZGZqBMsj\ndCOJGLeINGqETm3eMd9icRqneD9IYnaAnIwxGCq4Wz4cj5lExC41IUgCg5uvblDqlTCHt3jjzQcA\nbD4ZY35zhVsfN5kPxTg6OsSqmzAfJZZwUI7YTLadZGWdnpUmHVomnLpN64M+fmKclV1cUq6jPZJn\nu/kBoT0nhMdMgyssJsMMlCOaYouukKJp7XNDD3K2WKEV7OD47JD+JIUjNuWw3aF5XMXOZpAVA1IB\nJlYZX2VCMCnjSS9Rm9TweEPEvS3yozgXfjeLsSne+Q3WV3OMb28zu6rgUfy0Z35GM4EFd5blpSTn\nyRayt0D11oe8On8F10Qm77dprBoYip/08jmd4oDj8ykZr0wiNuX03QmTmZOTSZN4K8/Kjou3Dv8T\nAF9+/jlUR4xMVyLo9DISJXL5Iu0jg4lDwhleJGiPUSN9HHUH1mNzzEZFtJGB8UkNX1+mLHYYVwf4\nHy1gX8ywl5oMxzFaXwx4/KeWGJ/r2ME6TlvjLCxiTvpEzQatjo9TM8SoZRN6PorHkJn4/PjwIaMy\nO+iz5nQzqwfxhCxaxhhLTOC82EcyUkxmA0Sly4rQ4U7XhTPiYDZM4fhSnsY+KP4Ze409UpfWOe2d\n0RgFsZM7LDozSJUDJh/v0ip+QG+aRJ4OWQzmqSYtip/B0HmI76DEYMvHyuoTFFWdl7/54/zZHz/0\nkqXW10hUBPxrc2w34uiJIWs1m5454/yKxtSRJ/9ZCcWdobYg43H3GNUUQuMKXWme+dFdZuZlYvKE\nWfaIVjeOa5piOXWA1YtiJMJExRop5wXzwirnbpv1WATJd4/WWCVesbl30SVw3QPtJkkhTOCqj+hh\nD9fIwicUGJY8bHclHinJ7M2CqPKALWcfa8Xk7MM3ubyyyfv//gBh5sXWTpCFKbFci0PXFgSeRTQ/\n4cH7UbLP+blXeZeE0yZiJJhlg1ixDBmrzMnWOSmS+KtdXvvBBzx7PU1dkml4q8z86+zuzpH1q3z/\n9b8C4Cf/w6/zn0ZLzCtR5HwYT72JuiDTNpOc6l2c3j6Lz2xwXLVIPBrgOJUlGZrgHxuIjVN6C3Nk\ntSjBYZKlr6zSvDeisKEw7qjcNwzyS+CLrDI6npJSVBoIrKttqqMWhrbPrCcyCXuwDsbM3E3E2l1O\nL1SiK3EcBQ/3BgoL1y38oTVqn9RRA8covSHDpogmBPAGNV7+0k+w29gj2gogxnTsW1W2rq1yrDWQ\nvQlotnHqBexACkdZpO9pMxH85BYi1DHoKCO6oklSXWc8tUCM4co00bUEAcmDFnBg1mykmMFbP3iY\n5/aNr90kEQrgWmlBOEHZPSO7X6NiP40712e0ozPrJ2i4p3hbIm5vDqEpot+IkaiK6BMP41EH+9CD\npNhEXQ6O1vwE0vPcf32X+CMZAvN9zpU0zpDE47KGP5ch6w5RvFxHyV4me30DfV9n/ZE+UbdI4IoA\n4UXG513sbQtd3ULIJRgbd2ieTchuLCOnulxeWiaXbyP3ZoxlicB9E/d8HvFelWH2kEw7y8nFA4qn\n+yykggTy/xDJJ1HbPWe2v89gVKGdvsqKPaR8dELwepSh5sCpqpwHBF7JJzk9PCa28hRH9z8lH17j\ne289nLfHb/5t4ktdjNYi2bSGr5/mSNdwCHUWl1zUZQWn2WSdFJJ8gTnOcTiucfXrL4EtsewtMdmP\novnf54nFx3HHsshhD+1oh9l2n4pQYbSrkZPTWAOLdqdH3wgST+TIblwguyv0xA7vSy1Ut5NeoMnp\n3pjs3/1xVjyXGX6/iDJ4lIo9JXRJRhhfMLE8tNhj1BhihS64/g//Pu+89jpRb5Kh7GfzGy9yOhyS\naLTQBil83Tor/83PYewecFoxyMUClCcOolWJiVVFD+Tpn+8SSo4Yu7oILRFxvMjIN6O1/xmDgYPY\nlTCf/uBdfvEX/waEbX77V/6vb9UjEa5dfoLA2MJ9vY9f26GnrjBKbuPpraA7k4iNKtI1CX1P5ixb\nYdhwU+oMsXPLGNV7pDOXcIs6R9MUfuuY1loaFx5GjQ6WJiEMBrjVCadDL5mggUvv0+xPmC7lkDtj\n3r5jICSdXM64iQejNPUg2o7GI7HraPpnDNsCkpVB6xzQVSvo976g2djH01ApDk+wPjvGd3CIqUQ4\n2+8znE6ZOHMIjgp/eX+XK74g6ZGB1RSYrLi42HUwixhkZY2+4MabTHL0/jG//drvcP3RNK7iGlar\nxkTtorcsXHMBfI8IvPYfHyaWr7+SI5lfZeSJIKZVQmKQ1OIcgZP7JDxBQnoW3AZ1UyXQ9qIFNSLm\nAD2ncuf3L/D0+xyk4+Dv4nE3kKwJ50OLyU6Zqv+MhZ6IYqcZeboodRf1uS6xU51kJ4MRSCNFDPZU\nF1NT49kf/0nEfoPBSCMp2HTFAc3zDm1piWmmRUN1sDiMcORxMrAHZPoZTJ8Dy/DT7di0W1UWbSdd\n28KuT4lmdIZGj5kyIi1UCLmmPL6Upzj5gEDB4Ezt4j2f4EoH2O/EWWkoLF5TMScmNV+KacgkK9lM\nRtssHH9IxXyDTw6LANy8eR1x0UfYGeQ0YTD7aITAMl6/htP2kIk2OJ+NcL5XYjYMEbscQ60E0M8W\nsCNtDiQX0YMxia0gZ3/4AP96COH2mL5XxNuy0CdezKU+seMShRvLpP1HzAwNy9rENQZpoc244yMZ\nyJPzG8TLKbTgHv7RHLpQwz9vcNbvslTqILvO8IR63D02cF9awJ1S8H9aJIhNMygTXugTCHaxy3F0\nwURZiVFt3mY+sUXrtEsh6GDg6zAaBsGWmTyZx2XeJDm4S9vvJxef4J4ssxRq4hr6CHqclGSVL116\nlg+bu3znX53Tbr4LwLX/4hu0rAITxwhBH+F1zDPMBml0ZB6frzByjpAkN6X+HHrIIn5RxuVs0Ule\nYbVVorSQQ5waBNpl4iEPWnvEtZDFmSdIqxhh7ZEkI8vizJngzGew5phwNGpTfuNzvFcLVGMi6+Il\nLqQ24nSDYvQTJMnPRcTPeKJj3univ6LRd3qwQjNOju+SvW6ih5PkunlinjXuhg/xtyp0PR0iT4QI\n3XiClvucghJhiA9vDeorFtlbbbqDKNO1HFI/TMXX5UK4IORwUxhqxMMZuus5nlybx4rXeKQrMgsF\n6TX6LBgGI1Hk7TcfGqTdv/EZwtvHhM0i8kKY0cSDVEgTOZ4xWFOxx24ix0Gyj8Wh3mPo6VB1jSlc\nvszK2EVFBguVVKHDJBfl4HRIKhVnaOq8e2cHSZlD6g5Z/dIcZ/VbpOQqTSPM4tNOjN0kvWiHG84b\nRFJj3PYYU0rjDeSpi2GOHT0yIZNga41e/4LsO2XcYQe1qEw2nsCwRMIlhWpGZMl2cDSdkI5FMRZW\n8IVsavd7BCkgBoP4ZJVpI8VisoLr5g3CB1VOpnWWyaENByhdE2MA6niPS4s6zs8NGjeiHO67ycV6\nkJ5iXZi8+9FDEPV8NkL8xRi6M0w+toDdKRG23KRS51SKAcJJFSk4JeyKIXg9aG4Pmu+C6d0ZRtRJ\nctFJanMDp1nBXLAxuhbB4xGzaICRJbEi1DnZa/HOd7/Pk6OrHPWChM0Rn9zTcfc9RHMC+rt9To0R\ny4pO6GmVsvE83nKATrVMz55nvqDja3npRULocozhyS4jMY7Z8yLoYT53ekkIYcZPu4hVPfQW5glG\ngriGRcxLK+Smj9CVl0jXymieEvWuA83RwaeM8Aou9GgBY2WG40IhMbtgMZul+3YHdzaPOWkwvxKh\n2q2iCy7eeefhV+MTP52mXQ3jtQZM6j3uex8Q6ou0XPM4rVNCyQGCmMSMCkxndfK6gi2kWL56k+Ss\nTqI+4Dyg408PcPhbSFtxlteWuNhT6IdlHNk4LmeE8u4APbhN93CDobjNOgF+eNInORHQ5DzrhoWs\nCbS8SXpdD87b54wEgdJxjaxnyuu3d1mIJchFQPN0CJ8vY2zVKYg5RLnFU0/8XT7+oopqyRRfK5LJ\nxjlSHpAfhyg6JLqfTeFxAXMww6NE0RU/srtHsr5A4HKHCy3HfF6i2Q3ii/vQPRMc+pTO8pTr6ZtI\n4/f56L0jfvF/+KX//EHUv/gX/9u31O0sSX+aM3OHhZmC0PLgWZzinhhczBwM9SZuf4bqQRUhGMfl\nE9nqqUgeWBoFsaIRzKCD5GyMOpzRHgwJeXKY3gkcOEhqFzQ9c8ykEPG5BP2MilSKEgptcvfNHyBk\nF1hKpnC4J3imFruvTbh24ypH26fcHn2IPCtwUFWIpnUMJUrSk0IV+3hCXWSPSUBP4TFMKoGbhMUo\nePxsprOUhCMu2ipXHrlEXlE4dGgMLIWQkcUTtQgWo3RiCeSeF1/WpjaEl35ijVdfeo7+7BB5qmHJ\nTryzNvu9AZnJiL9+/WHEwZWrz2AN/eCvseqcYfaq3PmiTNXQWdl4hpnnhKYRILeRJtisUk1Br9pm\nUX8KcyGB+bhCPh7HjA5ovuPAcHpYPOlSD87IPxhw4I3hC4aI632G3iSex5P0h2G0bIaFhQj3wwqF\n9Blxj8b+UKMxruLf16iPHPSkMpsuD5EbVxifDtCbHZjvsnySoe8ySaS6vPnxF+RXQ0z7MhWrQiy8\nAo76w+9JO4Evu4RarRDwCug3Anx0sc3yxuN4Yk62/Elq8xGsSoSkeYERj9NyeJDWllFmAs5kmMQL\nP8mdb/8VSuEZXnrqp/jd134PgFevPUeUIB7Tordb4dpPJPj+m0WkZQeXXCJ3hCh+2Y9wqYDnssVQ\nDeBZ0JFnPaIrDZK1A+ZzK6j+MONghthpiI67j3/qQ0x1kSv3CHpVdqZV7MAu3S60D8pEM4v0zftI\nxXWW5gOMfRUCFQ/bMZ3ScZktZ54HsTYyJnt1k8XFEHJngR2rhOvcQVcp4PfMqH9QppxsEXXlYOil\nJcbwRS+IdGIMj+4w8zZwDScYeRW7bRKVY6y4QrSvpvFd7GPaF4SyWUbOU5qdJvnchIGZZDirU/XO\nuKYFGNQ+wzxt8d3v/yHQB+DLT/0oz66cMPQVECYzOLeJOvxUN5rIrRzzQoexf555n058e0QlJqNW\noiz5j2jMdHyPv4QyKDIOVql9uoaYd+IMGAymKbIrJrYwYk520g/WWa4vcf+HR0StDtOffonBh20m\n7SZuWWdtliU09JKoS4TTa6Rbu9S7GVqSiLsdIORV8XXaSF9+Dq0YQhqpDJMxmotxYod+enKE6PwT\nLMzyCM0y+Z6Hfcc59ruv41sL8TMzk+B/tcZxXye8fpnceEa7LHDTTOKY5pmOA4jtKZ2ck73mhElN\nQ1Ld7B0FiEwjBC+fgznhjdcfeqL2/+q36MxUnr+hsfNggD31Ee66GV2KoX5wyup6nk7/Ak97n/5S\niWuNID6HgjE8Qv84zOi8wY4i8uSz/z13SnVch0W6sRP6xwaNOx8gm30igSSO0ltgXcfWFJJrBvVJ\niYx/imVeZ2QdURzFGU6iiOYEtq5SOviY55fy5PwW994zWCrtMVx1cORSCK2qzLQmsjIkONUJROr0\n+x4SIRcxUcCnl9hpD0mLdeybMj1nBX0QIugbsm+NuTKbZ39YJ+1LI00rnE3j9FJuBMlAEyKo4xL6\n6hanzU+52tUw3F6quy2Wl1x87/WHJDG28BjuQZaubfPZW9v0O0Nc6oxZz88wfEGmZBJwXsIXKtOv\ndIhU3JxzQf/BAaNXUsxtlBjZ5xzKfeZiSxiXFzHOivivbhLpHWF5ljiZCjyzfI2T4YBX//4We28e\nYeYHJLoBnH7ohH08pYyJPLJI0F5hcHePYt/LdPgZUc1NezBDkTyEnUOCmkW9rWGOq/ikAA3hjP7n\nx6SXVgmdHHM4gTABbM+ATiGA/sFHbEQ3qGdDhBNTvPUUE8uJU3SxFpkQzA4ptTQ8oyhz1pRGV6If\nOMftihFkjJjOop4dk73+Cto7d/jh9qcAfHXz52gvVdHqNYylNEqsgGJdEJVNHEE/9ekmotkiOuxx\nHoggS3G8KZua2MK6K3CaVgk3ciw1PMxsCQYypYMZc4/EiRg+tGmVgGVzdus9oteew6UZTOUJDY8D\nX+ES8u4xi09cw5keMDkKIciHJC8qqOEVnv5bacpOm9jWCzg9KnN5J7oFTblCL+glG3oGZSjg2xc5\n1ocE10VmqpPU5evEfzbDnef/EVeeczMzA+gazAoy2YzNVJ9RvbXDUqzAVDpnEsigNz4nPU0gliyk\n0CH/P3XvGSRZdp5nPjf9Te99ZmV5X11d7cf2zMANBwQwJBiASJGSuAoyJC7JXXElhpaSOBOMoCIE\naKXlUpREacFdigQBaAkzwMKMwQxmpmfaVneXd1lVWem9u2lvZt79gYkGQqEQGOKv/X6d+30nzrnx\n3Ihz3mPuOd6iSDm0xnFcy4rLjFb6Ous3m/z6P/rt//+LqN//kz946dlf/wcEWhu4B2F6Xg1DdYHw\nSKEsWWi6GiyPRvTdalx2B65kE1GUuTUS8JW9dK27yGdt9KKbptAj4c4gvNrGu+jg1h99iaFpHLte\njRApY9EPeS9+QPuhgQl7H3mURzsxiZQaYbD2GaQ0XJpxozq6Q2Vpj7O7N1ic+iRpQY9aHWf3zTew\nNiXmaz5qQQP9lgnzWZiqzY1gaCBPOJBM+8iFPhq7lkGrhMbhpXcoIKssOKQuXcFFvbTF4z83xZ1s\nAbeSoqH0KLTPcIVq1JMxOtEo93+wgb2twjdtoipImI5B7Q3x2mtvAfDpqz9DLDrCU5yh1SvRl9wM\nZg1cXQjx6lmS/vsnWAxzOIcCh502cimJ3LfgVNVo7a2jtc5xyjHzuwpWS4+Wvo6q3MShdzEKlWkK\nNcbMTo4LOS4/tcjhG5s48wPOWg7E0Sm5h2DXgqx4MW/18XqGVK96CXsaODFy2lylYzmlMurjGSSx\nDO0MzQYseT1SCDwZAXnMgpiVaPjThFxhjrdH9AJFxhxDWoh4RzWGExNok7cRlEXcEQX16yqapiQd\nr0xyL49pasDrO21iZTUdi4tMXKBQEInf+yqH99NodscYDp/nzb1/BcBV93VMz8sUWxZ67g7plszF\n0BK372wRuDyLXizRa5so1kV24m2M3TzVnpnSN96GkpFuKIRZZ8WkcxAI9tiOuFkYZYjv5Dlna1EI\nihhVPmLtWd56a49nP/Or7FjN+OQa0us5LFerOKa1dOUh/U4fbU9D/rSKEDXhsHeZ1gQwH9lRC3Vy\n6gGlgZpwJIQ3IZBT67jwgpGIZ4Zrl87xg0aBxxU1B8USjmvLtAw5YtYpju/30bnt+P0KXVeXs8oJ\n7tsVBhojxUwNyRklopVxdQbIwTBFYUS7XiSozyKqTaiyOfKuiwTVL7Bz+sMLiK/8zScwJQTsOht6\nY4mWLLAw7iJx+y4s2TH2FjEPFDaSWazOWabCfdZzB/RiATSnF3Cny1gsA5xJFWWDwpjHjeCaRF3u\nMb88S6J0RP72GYlMl6wpybOeCbqCCeuYzErkMnpTikJNB+fHiasPKPrP0FRT7PiWmJHarCxZ2co2\niFkdtMxBOsY8zXQFcWinO2nEWjtlmNXiiOnRz6TolSVmxBoZYxdzy4lKdYiSrtPyLtHdlym3dgln\nPKRjTS7NrdB73E/7uMB28IDiSQOV7OWpqMytt7f46d/4h5QHCYZSDzFZ4+S+gdv7P/ght8eex5Pa\nZfHcz+O3HNKeWyWXu4OxNU4j3kBdseDyNgl7PIS9TqShzPH31ay//S7ClBnz5BRGt8xdeZ1SXMXT\n/gbFvI5WXMezMzFsFRnpWhY946xatJw+/BZFwUB/205fDJFrqvBoREYRgdEDBxlNAimTI/zUC+R3\nM2wU3ITKe0TOPcHhd3I4BB82n0Kj0CZgNyOqwjQKZRIlDZaFNuaBmlwhgSTIMJhk9xvv4Z91UDoT\naJU6hIZpGoofp6lJ0WAlqz9lxAjDsZ6ItUFAbGJgAalzyox+lVrEgqNdp68/R0Hd5eYbP2zfPvSL\nL/Pq5ndY0c5TapQYmux4cxMo1jLWgZZSUOQkW2GkGiA2jDTH23RPLFz61UU0JhUaa5hkcoJeNsNJ\nqsmkrkSm1qFtHJIR50ncv8+SzUSZEZLRhF1MkfMasPjGSaU7rLcUZnNnpAJtWikXd46g17XTUA5o\nZkdo6yFcqzW0MYXyg+/wpe9ssTa7jO+FRea9Q7CMUN9sURMHGHsKerlIXyORaTewSFo81gjxbptv\n/Ot/SuD5X0QVtTGuqmOpH2IxBSl0AqhDOrSlbXaHFmTpmGB7mr4+B6lThvYgDU0Sf6VHTdvk9Rt3\nAfjMb07TOQ6hmhuiMoVwFjSchtI4iiIH9RxBf5d6fIjDN8NAbhDoeMj267gGAUR/n9SemnAElFYP\nd2+CbrJCq94jp68yo7dDr4zQaWKxPk24WufV129ybX6CUqrMhE3N2NgnGGhM1I4lSuS47J1leu4K\nA3eK6qAF601OM19lr3ELlzqC3W4hnusw39Xh1Jd5uKnQNlcRDoOIzi6ypkzblOWN777Bpakn0c17\nMJ/KHOpzCI5x+ncKlCICfkFHbb/B0KqQNBRQJxeohvv4VBZUCQe9oAFRV+bsdJ/Sig6v+CG+9q0v\n8r/+4598YrnqJ2UQBOELgiAUBEHY+jHf5wRB2BMEYUMQhK8JgmD/sdg/FgThSBCEfUEQPvpj/guC\nIGx+EPsDQRCEn1Q3AMkMC7Fd3tnMIE5XsIcaCAUzNacWTUdk8URPUzdNqTjBsFtFfXmSkmjErOrg\nmpEIBZ+g5rXgq1fwpkZ4jnssX/ZhUWl58p98Att4B9EcRdM3kC4amQovMxcRGCaHuJYD+LxudOFT\ntEITsblBtW8mpTTYv6vi+RfP0Zl/k6W/ccSV8QaXPhZm2aGnPF9CX+4ykfFimxdoBoqYBnVyd3o0\n0wHCIRGhsQ8Omb5ej2E2j2PSwdff28UZ0/LULz/LV77Y4tzli5z5rKhn2oSMEWLjWmZXG+x//yZt\ns5pRzMate0U0phiGhQgL/eNH2GyRGp1Rm5ZpnXLFT8JZYlE/4uZf3EFMDejNzSKrUmx17qPyBJlf\nnOW86wopfQCN6xquShbjUI17NcmEI4a5HqAjmInfe4P7lQFQ7cMZAAAgAElEQVRSwc5r6TTGpUUe\nrB8zlB8jE/awsFJGaARY9bSQA3oERxHRnSCX0pH5yjqqQZ++Mk6730TKagg6bRjnV1B1+8h6LWKs\nS65WoDHhICTq6QgZXGUte9oe4qwZd8mI+SSNV25RG3chS/v0WCJmt2PyTLNpj2MMjOHKRxCjJfQH\nIh8VPchrJYY3Erz36p/S2/0z+iELl37pQ1SuHdLSff4Rt3ZUpl4a0GseYNy1MKaMoxzkWQs/RefV\nJIf3O0yMypjaMlMDC329F+uWkdizL2KMXiHx/QH5gy4Pj1Pkyg6m72dp35tFr5ogKxlBViHVA4za\nPZyeT3L3lW16D49QGwJ0nD4i8g+vU5FyRjJjNgTvNjZbkYbWSLsnkz5Isu9KcWo/j3SaIKR4MOuq\ndJ4XiTgV3rsv8t0dE5/7wvdYJE+xVOVD/hDq186wJEQa7QyaYJRGJUf14YjjN+O4onNsqd2YSyHW\nCs8Sahs5LlgYXrCRmB4idsusWJqM+ktUSgI7Lj8Ohx6vfOcRN3txnBtFC7ndDYpmN61omdZJlo8s\nPImQGKNr36IkH+IId6hY32Znz4h9MEPMrGDVbvGwdoqSjpOwTKIdt2Ez7OBsd9AsB8m1jwim7BRa\nCvaCRPt+nr/cuIlHlLCvt9k7/TaxoQPL4gKVUpO5nkykakIrVZi5sU+m2uQbb7yJfcLInfZDtocn\nmEcqzg9i9Cc0RPN3Sd/zUIxv0W1L+E/GMHjb3GirSB0WkG7dQlUSqLnn0Q7eRXMUp5XQ8c1//7/w\n5l9+h9dfe4fWbpOQt8Hw+w0uPhflY8/5yVp9RCef5d7XXsHhVegfZChXLxMYBR9x++jPmvjDxwM8\ndm0O2heYS7UJB34OjabF5RdsnJv1sxpepLyZIPu5Y0q7Amuii0+sfRpLU42jvI+j2iWcUlgelHhY\nHuIYZDGZdUjnZKoTAtbaEidYOXx4RMMZYtYUQh/y0pSDLNgEMjYvhYMhvitZlJwDjWmKysNbVBpp\nrq24OCunybz7PbzLSWyqNkfZNeSYk2o+REMsYDZOc94WJDKy0NabGFVddAsxFp8xEBDnEExBgj4V\nrlibTHeEdnhI6fYxSiLPUF7F2eoSXW1h09nQaBw8aOQwn6mppfYJdDsc1SWGqhwzov9H/dJBi59a\n/nm221ncU7NMqw0YLxrpjEeQfSEcAxOzYhtfLYA9pCPcMOALZekf1mg27NQyMaqnXeo9kf/rX/0h\nR69vMnzrTYYPMjj3TrgUBbVBzfW5WSJuFembpyx3bGT/+E1kuY/yf79L1uPj3n+WUHpltIKVWlGk\nUdAyNq2j7jnFpDdyuDmgFV7j7332OuqJGEr2Id9aPyX1f2Yo61T4Js7xXlFC7M0w0F1h/tf/Dt1h\nGdu4wMVZiU//zjMc/cl/oLbxDvd7BfRjS5yOOck9fp5m2UrJukSpdUBHgoNmk7MzLSW9m14+hfWh\nn+5OjkDP94ibtLHIZDfB5IGVUOIYqyFOYHOeVrONkLIxKkYJh87R1Tewn3koK2ZK8RGFzA6dvhr/\npIrW+320jT5Fv0LdraCfKhK9rVCpxdEGHsc2fByDZo9kOsnHr4yDTY1n0kmu0SGfjvPq9hZlc5uQ\nFOXWZp2NxLsUNgfETlOonu9wbuoSf9P+s+gsOtonQcKV5+g0PMgHM0z5NDRvlelPJRj0DYxJc/gd\n17gsreKYtGJnjq6/xfBbDWx7HTRXRkzblhCsDk7FAel+nLXhkJ7tBHe5THYiw2Yny+72+4woMhFw\no6yLrD9Q4Q9P/JUkyk+ciXr55ZerwBeAF1966aU/+sAnAP9QUZR/8/LLL68BT7700kuvC4KwALwE\nnAe+AXz55Zdf/jcvvfSS8vLLL38D+PvAbwO/AZRfeumlo5/0gv/bv/4XL33omWkm1wwMt/RIhRo1\nsxYPfbwaN0qghSi2GMQDHOisuM+0PPxWnQlXmG61RD8xQjvqI6sC1K0jOkYXDZ0Ps1qFvTlHdKbN\nab+PUCwSU+tJ2Y2MWWo0ok7SR2cMrQUsCRUmzwoam4VG7hBjYIJiWkVrJGPtKGQyPfSIRAU1GpcV\nozDg1nd3MM5CuSxhLUe5K2uxG4vYLCGaoVOqPTd9rQtdxYWlbsDV1CLOVpHVKs5eXccejXB49j4Y\n7ASVBv4ybBUlyt0tgpHzeNN5Tj0uIiK0E11cJT2m51p8+c9/OOJYXfoQalZI9GxgSxO6MEF124rN\nBSG7EcUyAJ+AQ2ej1hzi63dRldsUPWXSjQOQ1EwvG7HMzyDvlZAMJqwqPYk1D+eNl+kvNHG2PLSF\nSayaPK2xFtP00LW0jKIlhtUcxX4dw3YPyVhCkx3geN5F+74XcjK2QYXupIZYKUO3JNL2QaWkoatL\nYUrocc/rsQ8niVfLWIwuat/Y5tLHr3J+Xk9xLICw0UWqFrBV9TQlE3Z1l3h9xHhBz2u9DZqlPmuu\n6+ibDbJikfm1q/Tada5/OIRn7jKT9QGlzFe5ctnEtV97m//0v9cAmHr246gGE3iGafKCHdMQtIYW\nGXMR94VJvJEyGimFwd7G6KwyHNpoz+6jM+soWxVqpyVGMYXx0HlO8m1iogqv0uCo2kLsG7BaFNy6\nJ5GLCh5ZjS1mwc8c6TEN7q27qPxm9jROmt0QbbPM08EFhjkDI4+LWrqCeaDQk1awOOK4xTYnvSza\nsWW8ug5Tw2kqwS5dTYvppXO4rJN8+/v7uJ5doRW2M/R2EbpDzC07voEFtVwnJYYhlcNqtFPzONGr\nekihNIK9TVbdY+5Ej7lvIekwI6hlkM1ku0mCaoHIzNN8640fbsi//JHrDJbTmKxuzv6PL6JpW2iY\nDBw0bmMWbOTHxvF3JqjKRcSCHv3ASTBgJ630KboraDUGsuEhqe00TtFAxWell0hRGZRY6DnZO/o+\nFZuevnMM/ZyDJ569wOF6mp29TaZm7NgdFxFGD3E3spw81OCwO8gc66ksRZlUWtRdp8TydkIrJroj\nMyebZ4QdWsSBlmzZg99yG70rjDO/QcrbQf9GnJ7Wi756hMfgom3x4ZmDjVYXszJBInhMJGbEZYui\nEqvIfy6Re0aFx7WC2Kiw2auReqVCTJFIaMrMJut0FzV0vCN6xTw3tn44E/WDV+/wocf+IwX3Mnvt\nAfu77+KPnKDfug3DXTpDO6Oale1Sg9G5K9hKabpBkJUa6nyTcjuOe9eCU9XE3cxAaYakvUS/pEct\naPGPlsk6C4xuGth88z2e+Be/Q+bBkLNsAZVqH2kItnqXCXsai6sGUp2JOQHN0IQYsNLM1Rl/ukwq\nYMG9tIIypye8NE09rcWivYe87UFvrVDd3uds9yZd7zwGqY0tOMYw16MzPmJeK5LLirjHi+BcRH+r\ngFqn0F+20kKNz+alnLLQtVehVMTmsdLw1Im1PXTMQ4yVPo6AjTNjnPf+3x/uiXruxU+jEVqM6210\nW2nUWwO++d5tFlwe3vriEaZOl0pXS9JYQXUE5rUylpNNWtEV6jYfXYeJ0YnI8W6dZ55cw3F9Gv+0\njbC2S2vejKttYX7Fh7pkwRc10DkBrzBiwhxDSErofnqVJTp0tGs0Sn6s5hEG04jJjhHBo8PqtJHs\nyIRNAs5enbelEgGVheOKnifGnUSiAcwxCVfaQ8jgpxhSM/ZsAEcnwP7dLL4ZK0X1GcpDB5euLNJr\nnFCVBDJeNZ22j8BxEpAoq4IYDEEsioKho0Hy2mmWQ8RTBzRKDro6L69t7HKY/uE1Q5Mf/jAaUY9q\nlOBQ1KIzWOnSpaAaMBEQcPT81JUDar4w9tQuvV6XjLZAbOCj48uh7unpOqzk2i5UjSJVyU/foMEx\nGlDpqmiXHmB+WoNk8+Gv9RiKTqr9OvNLj2HQpBhZjdiNNc7aFUIf/ywB5yE1V5h2Wkdnsc7wThdb\nV2a9ZcHZ7uBo1OiLCTSKluPOASGnjabHh9rSYa6jINhOEUYNIl4nd3ItTAe7ZFQ+xIYG9bMjZpsx\nSicK/VwSc0dDQN0gfmqlEhxhFPykanaikT7Dbp+mJGGt9RE1esTHQjx49S3+51//tb/+TJSiKG8D\nlf/C96qiKIMPHm8C4Q/SnwS+pChKT1GUE+AIuCwIQgCwKopyU1EUBfhT4FM/qW4AnQXWjzLI3kna\nKwmK0iZCroinP03RbeT+Oz7Sd/N4tSUes2rQj9dYvWDg6xu3SFfqGD86jm8tRtLbQFEpqKsKc7Yj\n6o1ddnJvcXYnQ277LtqgjrwZ8ltv0rMYyJ8mmLSNYe20yaz6aVpH2No97vwgwWlRzXOhMRzuaVQb\nBgLv1eippzgaPUUi40FXXcb+/CQ6VZBGz09xvoLHN8BpG6EoBWqlADa5gVIXwZug7bDQtdeIuCao\nyDD/sRfp1cus9c8TLp8RrE+QNJkZWQo00zrONr6MTSvioUHFniJrbVB+rMRB2vCjb2RVyJ6csHa1\ny8376xx87yGytMewp9AX7ejbAeSRBofcp69kafRhN5pGnzdxfubDOMb7uI9sHHxlA3nQxV2oYTQY\ncQwCqK9eQKeaxGwP0+9XSdZktIdVZPOInq2I1ExQmWzilur0/WWy30pSDAucNzxGcKRDI4wzGIRY\nLus4KEoMHWVse2CV89jyMeSgzO3XdminNzg/P0AwKvhftPHOV044eeMtQq9+k2zxEE/+lF41xbCV\n4VTJEq3mEYMFVluLTPqMjKQ879/cxTSSOPj2AWpvla3dNL5+DnHOyKdmfoWri7/MUv93H3FT61Lo\nKvucyX3UUo2RJY1zMOSK1Um/rmd46GJkf5yDYZ1myo3PXGOiqKZ92sF195SusoehE8E17BGjyT3L\nHr1ZHQuuBt2JHhWHkfSwhlYYoYqcsFff4ECdYPJwg37LSGG0iP/YQ2XrmNDO+/zp730N63gAb2qf\nq8EA/mEUa63DyXqbrOSneuwjnN5H3anxnvl9jOkBRkOdfuUMeT7GM34J/e02mswRg26VksXJKFwA\n2ykVvRXH3inu8fMY7UaErW8zbNxgQTOLpTmD8+0eNcnF4TclRKmHq9uh7ajT3t1nYBC4d/CDR9xu\nfOnPaP9FHF/ez5F/kSW/nZp9B3vDje/4gMj6PfpiC5tcxbwSou3+AVVVldBpHRoCPZcRt/gsz3zY\nybSvw4p4Ed+Tz2ObCoHfznB6AWN3ltVgGet2nMQr73N3f4vUnIb+dpfXX/869U6DG6kONl+fI6WO\nb8aENyDjtpqZ7S7RvaxFf+RncGjG7tQgZcooyi5y9fuop6dwDBy4F2wM85NUzz3J5MhNoD2FPnAB\ncy9PQygzVwsQvKTnCTHMlDDGdMDMc2shbM9USf7zY3aa3+P9GzU6N5JYnCn2NDVaO+/wHcHI/ZMO\noU89xfxPLz7i9ou/8g+QfvsVNi8+zlcSm8QuPsFnf+s3cHziEjXvAvu5PvnZDezPzlFoJ2k/EaVU\nF8g5KgxWtZjOixQCJ5RchzwsF9CrWhg6UZL2Fj7bOVRPWKhm2simIQt/8AvUXznhqJqgq9rH4ukR\n1mfRm454mDay/m6F8lyNe9KQEg1cvhqJCYGzxBQOqwe9UUHVCDH61iGmQJtmOkp3YsBZVUdlbsCB\nc46R3knOrQXNMXdK+5hLRg4PdbhjcSqDAaP6CYn5BsnpWbxHQ84PzzAVG3i7WbzxBoV2lFa2Tvmo\nTVyqku4r6O02hrkU/njgEbdG7xSHXqEX1nLr5JS8d5arL14hnZN4+ueuMHhiDF8H5MMKxlUVtlSL\nUHEZ82taAjdu4rmdIWI6ZvGck6Y8zqLVQXC4TNUdxP4gj3Yw5I34CV+6u0E+kae8HWc70eD/eeOb\nNNdUXNKKpB1znB/X4FBXkaQzmn2Bo3ELRcGERRqhanfRt9sY9WaeGHNC94xnw1H6IwlJ0dOLr1EY\n6HAHTagDVTqeG2S2b9I50VM56DM8MzB3qcTO3QecJvvE3DG0rRq+TJOWtoscGGPBEEUzKoDbht1s\nZMamEJvVYl65TtSrxeO7wvOXnnrEzVLR0gnbqR31sG67KZeMbH+vQTAzCUcG1JoOPfMCy2YtVVOX\n4nIPs6WJRrOFjzqaoQu9IKOILeydNsYTPVpTjXhER0U7gVg9x+7X+4wrSWqr0J0sYDZauPf699jf\nsXPyxjbqIz2RaIxC7w7rBZH45/8zjtk0vT0BdcjAjNPH49oQlvIVZLVM4cxI2SwyaBXIVr1YyxY4\n0/POxhkP97ZoZxU6viLhSSv1iIytGWeptIvxzR0yA4VBTEH4qJpsLIA2cg7bk+fpo0PRK0w69WgK\nfoZuDbqWk/6wT918gvE4iVQp/FUkyk8WUX8F+2XgOx+kQ0Dyx2KpD3yhD9L/pf8nml7jwmAZ0tmW\nqRl8TEesDCoBthUJ01GKNa2Vum2RrLNPlhxxtR1nNMoLa2tMzHroHlaRywoByU65kKKf7jA4HKCx\nzrHqN+NRR9B7rpEfWDDZFBYCYdg20K1LtH0nSKIbm1akeDfOSVmHSvSijcTZk9aRpLdo6lTYn/fj\nsjhI7x2z841N0hmBqbqbordHI3ZG4EYfQ7HLbjlAvZ0ms72FnG9jHHSxN/IIjW2OLKccVvS43UMO\nN1/B4U6xr7uDzjjFsUeBpRwOeQHtUME8pmU94EQ40mGMO5i5NGBcO8vcsu0RN3GzwIxDw+29HVaC\nAdyxEN1FDbspLZa5IcFml0I1SFXdYZisomjraNNTKHaZRqVJUC1TPEowc3GSbNxG1Wei0vCh7lpw\nOQf4oj7s836ejorMz/k55/FhOB7w4M4D0n9+TPFrO1R3dLS1Vp77zSf52KUVXn9QoyhrcMWyhHU7\nbOe20c8uoBzaURaKSJN+VN4E/kKAad8qm80WlbiPRFtkqJ7ENmknXxQ4cI2hhIaUZ3RUox56py60\nOwPyej/3js7IqXWcFjrkhnl856LoSlpOkq9x6fnPMmezYHQOGWv2OR30WD/Y5vu/d+MRt3DCg8ms\nYqqloFYHyd1rk9NV2dZ30csdBGufW8eHPGZYRNFV6RUTZK0OdCE72ogZYbhGOWTEGHUyqsrMtcKc\nzNnJTIrYNSamqx100jvU5s7IG1pENB3OiU0GKxc59tRA2yARyrPsTNBVz/I//daz6D0lrlz/KQpb\nu7RUBaxrZYxrJgqpQ8Z9Whr286Q7PgxnHoraJqqGD4+ixvPwBqcLEk3fDoZCm1THTUfokRfcWEYC\nqrEO0RkNLbWO/MYhl0IG+udnSLODEKqjCBqk+1WCMwLZroqBccDp8RHdtRf4aqmPrHU/4qZ+7GnM\nqBCsWc494eLdm99EL0WwzGioB/qUtlSUwn0Sso1XvvYFCtsCyVaJgLWANjlBVNVFnzyj7IggFgS+\n/KV/S/edJI5Mj+mfeYropTlmPi3SHWhwTp0j4xUJPb5EwDNBUXQx8cQ83okVrruWaJsUFgYlsJ5S\n2+1ymmtRMjdornd4397FpCqzqjyFMCNjaE0xOVphnjSuaoPNigmbbp+B8Zgdu5o6Nr5f+ArlSRH7\nYBm7S0FlNKJVTeE0TyD2LiFmllBWvIiefR7LW9GZsnj7KeI3GgRzLRpyiMB4hFbxO9z7ky+jH/tR\n03f9Z3+L4y/f5PBbD/jM9IexXr3If/yzDTp9O+MLqzjnJQpvWkjd2SBzdx1VIoXUSzA+ZqDTKyHt\nLiNMujG1/agnz3E8aeespGX1iU9Q0EjceOU1wrogU1fBulFH1eoRWrbw3IWrRKse2pV59IqDlXCD\n1ZWnMZ84WC0KjNRu4rsqIvsehlEHNsMKD+6Dottl4C/Q3TpEsJnoudp0vQb0BYWVC+ex6hvoOwOi\nwWWmuzZMdiu+0ZBOdgap5cGXF1E6YYYmO/fNRZIOLdKsGlVUTSm0jMpWQdO2syau4REdDIpOkgMH\nijxDaTR8xG3C02CvM6Jaq+HgSS5eNnF1LoZvKYJ6xYdWpWCcNbH26cc46rt5+36Pu5saPvel36R0\nHOfk8AY6cxPvah/d8i6iVYXkTWBoiYympsgZPIxpRayWNCYxQsgxQ8CsZvr8OO52kE5fRfReFtVO\nCq3lGF9by8xlE4FyClM5z9CowSxaOJRCnHb9FGo2GjoHFasFxTSBdnDKSed9BrtDMkENi6YK3bQP\nc2pEfyxFodtF7ddwb9dLO+xBLwq042X6NQOvbL3H1uAUY6vBwYOvsTzrxmYZpx8Uaee62CoVhqUq\n1p8Oscc3Ma20ftSfVss4BIGpK4tIS1Xc8zFWrocxRypUc0PkqopgukVrWKNjNRAaykSyQTrjk+z1\nTCB+h65J5uqLKpLuGfpTI5TDaSz0icTKVC8NKMzYuX8nRTTXZxCuYwjXGA8ozI8k0DfozfsYyV3K\n5QxBbxjpuSXk7QpmvQO3JcZuP0RJdR/b4xkKU3W63gBKN82xkKMUKWBcSCAvVJl+IogSjeHq11Dd\nN1Kp6Dinu8ZVv5axf/aAuY7A8XqRVPuY+GaT2nqKG+/exWLfw/xggFbU0ckZkPxlvNpZouo6Ds84\n/o6M6qCHwfKj/vS/ZX8tESUIwu8AA+DP/zrl/FfK/RVBEO4KgnC3WiqwYrAwqdPyqWaIkP3jLK02\ncab9HJYm6E8NGIVVONQKroabQSNOtnxAcNSnWQebGrKnSVK2KnZxialQleFEiJCcImu0IHnLBJe7\n+KUidYeBxJmbuiRz9eIq3YSW3AM1saMDIr42lyMVri1KXLSYUWt1qJUlphcucL+9yhvbOSyzl1n5\n7E/RWD2ko4ngy3eZ6WiRfFosnT4ja5o7D1qEnlukaVBj0hdQ611Y6iITPS3W9iHiZgtMatKmi/im\nFjgpVQjUTYTPrNh8QxZN5whL89h373NTmyWTr7C1s4TuyU/w4PWFRwxtTxoZWxGRNqxMLVyi0elg\nqum5Ou1k8xsCKbeKQCGOue/lfGyOnUEfqa/FdvuU3MMT6v0ojr/tQo5vUB5sIXosyEKVyN0R7q33\n0GvvM7j/LU6qt0lUdrhrLdH11LhyNUb05z/F3/jSv6elk1g1Pk4pfoWtWwrh4yH2gB9Jr6FkmsAZ\nmiRf6zBcKrB3Oo1wdsRZU0tHSeJwWZnzm6lF/MzU63RVHay2LorqMUx6M6glHL0r2EsuQjGBcCBG\n+nBE4KdW0LotRAI+uu+BLWbAvjxgfnmS+B/dwD2lobrl5KgUJ957iJI0cPzJX3jETRa1OLTT5Cbn\nMZkVrGNm9NYw6uQYUleDWRfm4vwlNGc2GmkFjfNp5IYWWzOOSlfCapZY1GXor7+K2PgulffTfPdX\n/yk9lZv7h2cUjC1qgTNOKrepZRIYiZBrulh/d4/wbAC/sYA9c0JzdZzR8Ix3tvd56w+3eZC7hW/6\nBTIpmUJ8B3c/wYzLi+7ZMClXBU2litN+jwVphLNTRZ+rk3eY8DeNdOQUZWcBQ/EYV8OOv1JhJxjA\nYbvK7nGNFXmHmaiGxLhMwS9RzsnMtj2MGReJLfupeEcYzvbI9Rv0PEU83jhrLpmf+51fesTt769E\nmRl7jGZzhFC2M/bMGu7gJMf36mwO1fBkkuM/TTOv5DEpE+A6j8kzy7/8yz7PzfSYCneZWGwiKSa+\nffBdQiYDu6UUm4cN3vnNL3GcNwJrnFgWqYQMBGdd6Axtli11HM+4UaQ6uvv7WDtHUJ7HEvJSuamw\nGuqSVAzQuc4YHWL764xVNeS0r9B7tYjWZMZlL9DOXeT02gjzgpWcFWyjLhHXMTXbKR8Vr5G/ZaNq\n0mCaWCT7YINhtU/N2GFbd4Nj1RYzwxFXLv8SNXGBaZORvteKZi7L6arAxLSTu7e/QNB1jUEtgHz0\no3Hm53//KhX7t+mefgGP402yZ1/BeydO6rjP8ZcP0XkXME34MNijhH/ZRcHkYPqTv8CD/WUivmkc\nFy3EwhdoLsyj9swSLQ+Zf8yLJZ8lVSzxzPR1iq0BuXic4VU/afUWWqnHzdtxTho1ShNDKjYdgmGO\n9VoJa32G7a4F81sllHUtRlOCuc0R5sYRVzBQeyuF5qTJMDOGptZk5kadiWYTjzpGtypzsgvjc1c4\ny7xNMLaAng5VyxH98hbzJgMlrYxzyYRmVEUvQKd1jtrBCGMpiMdWxl8xobYb0drTHIYlbNpjml1w\nWcqY3D8ah/uyR2jMcXpu+MiTR6A/JXW8TbNjwHzrDr68BY1mDmNpxPWWhMYwyXEwy//48T9h9cJn\nsH1iHnPAh9jPM993cnivQRU76ZYWtSdGt5ei4gjRDXoxZHfoP1VlaHeyGNXjsxfIDYzkPBZ6Gg0m\nlYdB1ErtKEO13cEfEOllrRwU69RyOU4yOYyRFiFbmUrpFpnEu6R7FYwbCvt6M/G7t9m6raP61vvU\nXSP02hHGhp7+zGVMT06wODbF6uWL9EJVKMT5yIIBt8mJnHnA4rPnaHYa2OQ4ZluNo6iVUqGHbdaJ\nvjXg/FqMygenvAPsevRU82VqK20ChTauwV1a4/t0rU1utB+wNTzitcQDzjbS7FQ3YejinWGK7aM8\nfp2Bs43HmD3RIr2SYdLtwrAmE5zaJNxO4s5X0asFVrwq6t4ZsoMuyp6MbteC7DNR0IDJ7Ka4voun\nZefnPv0xjm6sM7b8GRT7JBpbDJcqQkVdI9GBd27fptgxYK2/jtlmoNXpItT7dItR1HsuuvYWrpyO\nhlJlX5VGo1fIno/yTr7D8MUX2XhuiWzrAU5VAG9wjqdnI6Qo0+9f4uJHztHu1PC4HmIZ2KjI++x4\nhgiaAJ1bTcyqTTSaH4n2/5b9d4soQRD+NvBx4Bc+WKIDSAORH8sW/sCX5kdLfj/u/6+aoih/rCjK\nRUVRLpo1JnTSNRpWkZtDB429A+SEmdJ0m6a8wcBhYNCqEFc50Vl6+EZONIYBe84qyTEvkhXqco5o\noE/AcR+D30VdLdLu9Yhko/SyQ+QziZ4QQKgaEKIj/Fe8xPtN6t4OkXMR6l4P1uI4PVlNwzTFwW07\nE0tqyo0SD9JtXMVTwt0mzUqWdvxdQgd1rOEEUqDLoEMCyeEAACAASURBVDmOTdMCQWCyP+Dq0z0M\nGyaM3gi+pVnEUpXBipN0x0HlSMZ0/SJl4wyWUwl1sobfWWc0m6bdWcJi89O3+1DnROy2GS61TChM\n85V/eY9fGL/K6Z+//YiheW+WQkqiJ9eRtCPMzTFULQfm82amvF18likMXicZO+SbLWIeD0uDFk13\nk2uf0iL2s9x/KHFyqkKjh2ziBJ0njnqlwv1kgsq/OyanTrObOyP/za+x/84rSOkyx4EJRFHNL4uf\nRdM/z/7dh6iacYzdGipDDUtmj0HBgRDNUmqWEC06XEU7ZvUBMfs0034LezY1uXaedLKDVCtQ1EQJ\n3Tdjs7VI1LKcvVlA1hox9ss0bTrU7hOOT454ds7E6D/toskkCWTaOCbNFLUGSsUgdud1zi45Scf1\nnI7usv7V95m+9jE2vDPc2Ln4iNsgrGD2HFHcL5FWbzJpXqYqN7H6TrGnk+z20tzaOGQ/K2AbC6J0\nKvTqbRzj84gHA0b5Cu0tCzvpLrX+FPnrZmaeeRFzpcD5pyI0pHMolTUWkudYUkcoSBn0aolxn4qx\nRIwzj4tDcQlDyULXa8JaNbDwyRBbHZlth4r+RT8xm43V2NMUz2sI7svMDFxMu2aQTsMYjTomjmbp\nxEIYqz2qGgXXeJsr4RfwD0LYXEdktALyvo5pXZ7Zp2zcl484NfTIybNU4ipaOit7+Xf5BgdsNyps\nrt8marBjqJqYsazw0dgSw7SRP/mNf/aI21llSOzxAP7rDj68uMTVj13Bnh7iuazlwlDPSJpjcrXF\nDw6Oefyn/x6Ry7OIZpHz/+RnuHN+yHfvOrj5zQJbn7uBpmLF5Foi4C+w4raTEAScgxqHbyT52Y9M\nUT+D2HCec0sT1Ox+Cv9hl/VdeH9kYWuUYybapqgy0J0N0a82+PC8iyV/jkpMy6EtQFPnwDlYIDB7\nAbmcpCxaKMsd3LkagXcqiNkuat0inarCjHWSTLjEakSFTlhlq/+QTH+a0cIpqsGAK3EN9swEplOF\n/DCJdqJBxzNAp7ayOO3ClQngc3u5FLpE4LhNxKNDp8084va7/8Pf4kn9U0wZPCjGNezNuwhPjfP5\nl/+C7UsXmfpIGM/CGOqQjuz+EoaMh65OQOcRqRegm0rxnf0GvUQTS1mgMzVA3jqioXoHi6pKTlvG\n2ukyNfs0uVsbWDQlogaF+TEvs85pLO81WTxQMbx/yihZpOWvY7WbwO3GHOxhO/PB5JBbBxK1ooxJ\nq8Pjt9AfvIpedUJjcYhqwcD+NSuK1GH+IxaaB7cwZOdRDZLc3N1EJwroI2Ee5nPozRZ0nS66QY5J\nnRZndUC0XyMbG8KpjaJQR9VocybXsFXNCJEhjmCWRCwPtfojbqWZPi6VHe1+EetQQzmeotzUYt/P\nk+lZSeclblfWuVvY5PN/8XVEc4SlsSUqTzo41nWwjmwEn7RjboYwNTWI5hGnRS1FycH7koxOayag\ntjM5rFOcsFKujNNzKOScDu4WdJg062gMVSR3mccuPIlYG1E6OUbrilFuT7HXzeGULBgXjQTVVTTb\nTgyGKK2UEfozHLdkPP4mc8L7TNfn0DdXCZ3MUOlVOH3lNs2VBMQPsd5sUuy0OcrnWAi50C1MEDy3\nxmRRwD7yIlcLJO9UaTQ6FIZWxmUz5XCP8uY2an2UwmmelGv1EbdVWx3RryedXqUesNB8GMV7b8Co\nGWThhYuoHG4ioTRnrjALvafRBWWiUSeRgApV0cnKeRX5c27cYyYq1gzBZIn7miEJTZitySC6UQHL\ndpcrop8bDyTqezoGLi/NRpmD49tEbD6emvbSLztI/P63afarDJsDOk4/M5+4Rjz+kPFcAru6hn2q\nyzl/He1jU/g0i1yMLeEahampcriNApV9GymjwtnAzbDnRj7S4SxKlANjvPMXY2T7QVY+tcwon2bi\nropqOM+S9zpNw4hbD4/pFBtUenAWT1LtuPGrHqfSa5GfmGU0+jCjVu8nCyH+O0WUIAgfA/4R8AlF\nUdo/FnoF+KwgCHpBEMaBaeC2oihZoCEIwtUP/sr7JX648fwnmqzW0htZKB9KpPbXMV5yIznCDOI1\nPBYP44tjPL60QKiRJbdXpXNUoC6XCVj16DpVaokSw9EIIXdEVraSH1kIbVvJd0Ik8idEghN05hao\n0aeTyrEsDqkIFTQL07i1NlwxG4bakNRMkm7JiW5cg3mugSY5QJzRorb3qTX9jHSTxCr3+epphr0x\nJ4m3DlgyfRL/J88ReGIZ71UHg3aPYdqM0FxHl4T7GxqSuQjWzR6ebp/IwmUGezXGm0307Qw10U7P\neZ7UyRg7hQcMvhgn0Bthql0jsO1mSnAxN9Pg916a43f/1qc4/3d/JAYapTM2hCa1do1WRYVuMo6m\no6bYsmBbm+DEp2D3TrHot5NQtPSbRopzFQKuCPfv2+l4nPg7JgpWH6OpC7hGFrriiJplQDeoZuAL\nETtzEIteguurPPnzv8ivfe6LmFb/Ljt3bXzk079FsS2QT7Y4CwxJZgc4Zr0cSkNq/RO6J/PM2do4\n2m3MjT6aZhBVXc+20ctYe4KxlhU/NhxClaC9QtwjUCwKdGMdWtfP8b0fvMehXkIVUvFaq86xx0Wi\nf4L+eQf3Djf4fq9NqwSqdImiTUVucIBm8y5aqcHIfcRjn/kViusi3j/VMvGm5RE3V1Cgrg8wPhFl\nJeygb5exZZuUZBF5QWTRP8Oy2kTU4CbVSNIxhQmO26llChQfbxOeFdidqBMwj+H78CTXo9OMX9cx\nMojoXAGcfheW1QiNYYqdlBndaBV1WGRgg7b8PczDLlGXSHFoYVLwcjLloCOdZ/KsiSF9gMXpoRN6\ngZsHO3hzGtIjD63qu2zmUnjENIOqic7VAqir7JlT+A2TCEmBuw9fQWWdoJ2bZKwsMe3Sc3sURpcR\nEA0xNK01zLKEO6BmYUpFz+5kotkBpcjUpQscyRE6HgPOThQlOULjGrJzV/OIm+OtHDbjGbY9G+/f\neIPtbRi/bmXQc+FYi2Iwu7CtfYKPX/g7tI8bmPIn5DfXsRz08BfnibT6NJaiWJ05As0wBxu3aIUi\npAwO/J0sp0fruO/f5d4f17gQtfJupsVBt0n87ID/j7s3C5Ykva/7flW5VGbt+153X/veXmd6mcFs\nGGCwkhBIigQBmyJNiSJNmzIXMWwx7AhYEQjLoklBgizRpEjLNkQGFygIAsQAM5gNs3RP7923b999\nq7q172tWZWZV+mFkgE8MPor+R3wvmd/TiYwvTv6//zln56V5ZgNZbP4J6vIV6o4xlUMnZ+0uhr40\nuf6QkXgO/f0UHmRG6gGT9Cl5acTBaQllWmfcGePeNXEFDbqNBNHNO0yaNrR2mMNvDsgNF9jqP2aY\nM/B6HnKwFaE6N4ttWaW55mKrPyS24KbjspArSVwpFY92CefigEgEnrj4YYIL1/DZTtmXfyBMfvv6\nAt9pTXHpUz9D7ThLvvcZ9K/p/NI//kXSxy7u/Ycet8wx2Y0hc80+PvUENv+C5Nz3qE1Exh+W+MSP\nrOJx2sh2CkzUOM3MKfWHIVKmG+vWu6j+Adb1fay4wPzMOoNemfXlM7TiFv60yWZAJj/vxz8xiDWX\nsE06SKv7jJ119hJV7MdVEguw72wiBALcetfAsXqVN6oCxlSa0cMGzTc3ePaTyxjvHRHWBsw9aXH7\n7ROki15KWRU6BoYVQPZOCDhSOLUzmJpIuVpFXJkiUMmjTXSciTj1Sp5UM4AtYmLm5/Cc1ohnA9T7\nZ7+PW6l8lVpb5njYZyTAxrtOfCc9lHUbsSUfi2MDuT8i2Zvmc7/yw6hLApWhj7oo4VEsLMtG68YW\ncnuLsrvJxGPHCayKGleyCu9cP6G57MHyL2EGBnjlHaxLMY40EWW1wUb+FCV4jOSdorn7NnFTIKIu\nEWvmyBlVYoILJayzOK7Rc4fIupoc3SsjGnms2CZr0z6O0hpe9S7y6JTJ4Xs4lkE8CvLMT1xmQpyW\nPKAg9Qg+YxAeTXj/WEEx4fHX7mFr1SmoLjZv5riaCWG2dJb0Fg83v4XLTHPBklE9pwzUFlLkB/2L\npm+RYHtCqPkuvniQ8VQXt22JqBogVhKIhJJ4zn6cOceQcazCeFcluB1G3PLTCgco9aCafURF8pN0\nyWxMJXjKWKHhGDN5WCU4SKDswegwz4//l59HPfMMrxffQNa9XHnpY2Q98K7qoBMbcGTr8CEczD24\ny8pQ4P7Lm/hWdN6PH1KWPVTvK7zzFyFOjit8b/M7eHbH+IaPqFd8YE/i6Wuk4i5ml728FF5AGGW5\n+1in7jVpleyU8vuIbTurixlGRptoz4WKgO/OQ6RQnoSggBVlze1l2AuyKzYJNosYsSZ270PgB+fb\nX1d/E4uDPwKuA8s2m+3UZrP9feBfAx7gVZvNdt9ms/0OgGVZm8CfAI+BbwP/jWVZ/19P7BeBf8cH\nw+YH/GCO6q8tS7ZRq2WpdE648sQ82u0g1WYftV+gF6izdeMvGR6YzFx+gtiygBl1o5te1I6AEDog\nPNUhtiQj+L0EjSLhkwPy3jcZljS8V3UaD1oUX32biWaSWV1DdllobZnwvTrSQGT/yEAIOgnLK/iX\nJYy7I8TDMrlOBmHDSWzQJXW9wbxVwpWY5tKlMGplEX84RXu8S/utP+PeV77O/aNDpmfSxBZDLBuz\n5PtJJGUO6/w5+pMTvGMNy3iEWugzUQxakSide+C6o+HaO2Yu6UFev8Dhbhl5fYP91AxtpU6/NkM0\n2yO8Eqdpvfd93HR7HU+1QuTsFKK9R2oSwJNIMurdoz2Amb0cwvYjqts50pqd1IGAWvSzr6a5sDZC\n9kvceKXLUmKG6olE3uFgIA45dZagbCejdTBCawT1PFdSn8LpSPLy26/ypSd/iiWrwXmlSdqc0K7e\nQcg2SV+2aJTaKOkxpjRmuNyla5/CE0xRzxiknxJoXBJwqQoVzxDR3yHXmGB6VMbdBm6vg7PPvkhC\nq7CWa/GSOIfX0qE3YiG4wprLjYmTcsvD1Pw8i8MmgXAfye5AKwUZdsdUrDDD55/hhz75BQ6tIhHb\nt8gO/y+6J49/8MEdOBhtbRLKlajWevT372FmZtB7Q4Rmh5P9A2pxBw+9ZZzDGLgP6D4u0Z5ZZnS8\njutimoVFB+11D/Zyh+xJG7HsIqAFMDcVEk8nCR31kM7OIZ0NcvDt18hfL+DYqOG2XSWxVyYZdjLZ\nOObu7WNWT3qY4W3qwgwHjWP89QD5CTSaKfpGgI6gIZpPo+S8VHovYHM0yW2abHXLTNVUaLTp7Uzw\nRtyk10rUnBNORgIH5cectw8YzVxGPzIIuiaIvSiBjp+N22X88jkGSg911CcwKpISBsTUOKN+n4Ee\no/PnE5L2+e/DdvQFH1sVgde776NN1ei8csKD4oCn51Z5NBEINn0siBW0ukhm6yaFqAezWoRHGrcr\nj6mMj1g6fYdL/mXMq35mP3IZ8+0ic1KLkuxi5LzI/NICmmeHhqNJW2wzHZ4msJkh0Myjm2eJVSxK\n995jy7WFN1GiPd2jXZplbJrYpPdpPb/PhXkN5emr5CoW1Wknl648QWnXZP5pifuWyWYhxvPTGh3/\nFL60jHF5xNSLacILNV4s14gfCJT658kUe0weljks+DCLfXSHm6Y2ZrHjp3fBJDhy4fLonJWCOBU3\n+4+/xtt7b3H9pE337c3v45b/6m8hv/8Vpv/uIvX+PH/nN36VgqtM5OhNrG99g2LlXazma8yMtpm3\nb3K4nGdy9IhbX/8L2somN750h1e/+D3MbYnYRYPO8S7kx4zjHQqjW3SFIb5Bk+5MHD8d+sc9tjaj\nPN69SaN5SCHlYqoo4R45cGVWURY6eJwf2L3kbwh4szYKdRtx8yxPzaZRRyqZC1Fq/RahVhh/OURn\n0cOZT3yG7J/com9rYP/oCt++UyD9iRdwVS7Qj6TYrXpI6VPUjSm62WPSwS0cUTdLkRbD248R5CqH\n0piuoROOXaERXqS6Z7Bdv4849xR1l5e0x/193HouDa1bZSWdYFCIUukMKC+KaN/bx5JcKC8tIPvS\nuNdrHLx1m2hnAIEqkewWLaefUhaquTw7vS0SkUc4WwXyj7aojwf05GPOTAep7eTJlerUsjMUO25y\nNx2oIR9xewZvZomtjpegs8G2Q2QgmQSiBt4PP4lDc9Bd9qLoCg27lynfhIXMPHOhIONzZ1m1P4Hu\nTKFMQf3pBfSftmG6gzTuKexX32boEuke36OnPMC93KF24mYUbKAJe+iVLHORGRzWhEXZxercExzI\nATorQb5egPMf/mGKvlMO5RX+ZKdA6akrlMcPvo9b+e23aAhO+kaY5ESAwYic7EW/XsCJQNe2S9Ad\nwl5eJ+S7RFkd4n7GiTXrpVXskB8XWFmSON0tsHX3kFSpjRjNY8vWcVkCh7YivZUgfUHj4PgVlOwh\nl2w++r0k2SOd9dkEQUeWid2Ju6XSttc56Q/QhkPG+y4aJ4tEtWlmJZPMSo8Ln7R4NhhmwRNmcM1F\nQF0mfiGAELAjr1jMawsIe0H2bn6TZCHHqtdgarSGGo/yqTUXuvMtht/7DunFR+w+yKH5nXTdLS6u\nz2G5NIL2DjtxH+LpHRYPugxmQHJo5Lf7/M08mP5m6rzPW5aVsCxLsiwrbVnW71uWtWBZVsayrAv/\naf3CX9n/Jcuy5i3LWrYs6+W/8vy2ZVnr/+ndf/tXrgD/2hItlcyKh2uLCl/9J/+a77GDw9/ijtpi\nrpaiLLd4e/cvaWztUKWOGuzjmHUw0oZIrRQlXcTXcqMdTBOVAgyXU5TyfhaHAq5iC0PoEW/0kd1R\nKt4iRXWetualqY6wRjL+0RYPW2XuHDyg7dTxXnCyL88zJY9g3od7mMOZKdAfdRAdPRZXn2F6+QFx\nZ59htslee0J4PcpUSqGe7RJzhHjckRFCAYbNR+yeFqkql3jQOMEnJZCGLUJqHMEv0M+c0hS3mFnJ\nMDY6nMpt0r4Jt7Y15hlzaBgklvLcPHPEwWSX1s4PZi2Uaz4yZzIETgvM2ezsHls8PvguAyHGwdG7\n5FsNOjaFTiWBb8nFrr7BwBukpji50bThfUNl5oc96Ec6zyyPiK3ITDtCZLxhnv7kR1j97bMsfFxg\nLi4xyR7zzesH3HtrxC/+7u8RMAJ0ewXW/uEzfPLnXkJKKijVCK25Jnp5QKqbJ72Rp9z34hH69GsS\nVk2j/OYWmZ5GYtjlMDzAJdWpFUVaup2BkmPn33+HK6vXeDQr4f30x2k98GPuySSNBvunB2QPKkS3\nBILOc7jDT1MajvDMCSype3QCNqqnecb6Ebe+/hCptchYTLP4ox1Gwde/j9vA5yObcjJYilPdm6U6\nFMkPSpwNzzFszOOUm5geG9PCMa6egNJfQrSSuErvUHAYmIER8XyTqGFQj6vY/BM8So1Spcq+eQyb\nLR51PRgBi1hII/Qz80yCU+zVXFSjAx6IAmxtEvQOcJ3YaC9OowYH6EILlzpmbLuJasFKoMuK244v\ndIyjMSG+qmImO3QzEvJyDt9sBFmQ6JVabGUW2eiOEYZu6maXGzdvkOyL3HvjD7j+T/8tm7dfR2we\nEBrUkc0aYeEyTmOX1HiVqtUnZZyhtTCDs9HnhR/+GCM1S8S2xzP//PL3cVssL3B0cEzn5S0aR2NK\nZ/rkGtepDXUe/PN3+W72Ia+/MyJ3NCIbLXP7d99goZ5kKJS55pJJDjOITz5H4jkDp3OWmcUAzo+Y\nOE/3WOpniYpvUrFnGZQyLN1rskiLQltn6aefwhWZRrycp02IUXCVT7k+QVEMMziZRTtXRqgcc3PL\nYrYyR2MUw+5y07WV4OiQW3e72JIJWhtZ5tMfYunZDHdGcbqtOFsjJ+7xAX7VxklDYf+xg/ZkCl9o\nn7zkoTrcYd2tEnQ8ohKGOclGoQCtWz1ss0Oa/gLVXhhxrGKz4nziSprVGY1ys/t93P7p/s+yND3h\ntS+9yrnnwrx/6ybTPzXPcmNE/dHvEJQlbJt2Ng9Oee2rBq73UtTP/CiB+c8RffYLrP/EzzB3dQ5t\nKY3Y6SFZB5yWTnnSzOIMDBmdHRGKu3E4T1CaNvaWBZTZKoI9gjTt5oJzxDiaxdlzcjo45WjrhL0j\nG85QlIW0iN/vRI2N8AcaaBtFKt4EVXlExJvCftnObi6LeGBw/bf/gGN3mcR6itoft1FP8xQCOXpd\nHVuhwMJTYBo1nBOZwdBJTXJRa3gY1Cw6T85Rzc/hMhz4JgojdDpqDdu6xsdemKGc30APtPEFfiAS\nnx4XWFZEqlWTW0aJa59ViQck5n/okzQs2GsUWIgoOCqzZM5McVrfxhWrs9xuUbl5xOTGCHPTT6C6\nxMThwyvIBGdcjJZcqF2VklPC49MwfS6CUw68Q1Acx0h9maxHo1GokSn7ObF7aNej6BEbtvko5faQ\nQrtB2vDgn4tx76BM+qoP7ziAIRwjW3sMXacEuxVU7RmSEzu9Bw70DzsorPeQk0Va/QorjiSrj88h\nNrxEzRGdsMzUogdn+AzthQjiKEjWbDByZ5FKFZYbQ5L+EN0djdlgjIVzu/hiGZ4qDVgr/MAnKrH+\nDAWzR9A0eO21B+hCmMh6E/magBUwCZXK9Nv7GOJDhpMsSnOK4r6PuWGCsafC7LGH2mtV0q0WMcGF\n6RxQy60Qi80ReO4y85aMy+vB0P3otiShNY1e+DyJ1TQO74hC9wApO8uZ5Cn2qJOdroiv1kUf14ik\nCgTjUfpzKZrLdnrBKxj38lR3dTLpIPHWJUyXi642RAsZDLe67OS7iOQory0jv7DKicfBhD7dQQtz\n1sf02EHlYZn3Xotz8flnWa4OcRy7eXTbjhmI0Fq/yEJDYfmlafSAzvdebRF+nKRFi96w9TehKP/5\nO5b/1lf+xRfnp6f5/d+7zt/9pat4C2dJCl0crhg15yadrShTZ9MMR2NkMYrHqGIJNip+PzG3i4bL\ng8AGWs9k6HaA6sEpCyRcIXJ2H1NCH9mTYs82xOxIDMZD0l0RQ1axBSd0DhssBuaJBpxkGx26rQMc\nLQlJsKPmhiQSI/YSbkTzGFHo8eZ3v8fK8kdoxWNU2m0W5mbYKYyQnHNIVgvycHo3S/zyeb78xTf4\nyBPTNNclzixdpVDuEtQqnLpszI5HWBkvSsHOqe+UgG0eZ6VNz+ckaiU4cQ+pyyE63TEOb5rzAQdh\nTL7xxgd/HWtnFfSJk8SZC2y/8TJ+n8KqOse4YzLMT1i4GEZTTPYCXvTDU05bYzIBgUrvbeYKOvWL\nEA21qS8uUphzE9y22LrZIaBOc4yN2ts6+e/12ajbGRPA8oQ4sW/TPc2x9FM/T7v6aey1AwotD0K8\nS69UJ+Q3EVw+/LMVbDNnqR4eEx35KcdAKAg4ZYlG20n59Caz00FqASfTESdqR0bVDskLPQS/Svmk\nzqVZDaHuRXFXOVWeJBGyY5MNNKmEIjioBo8RvCs4SiaD6AKquICvuEl4XKdu2ogGLVwdDwNB4Xi/\nx27hHQA+snaBgRQg5KrhbbsQZiIs6i0kt4PGfp6A1489UaF09xghKhLxeTjuWtitc+BsEmlOuO9U\nmQTihI/LyO4sbtNJr+tDUuMMdYtw7C7OsYu+6sDf79OenTCZ9WJlTaxCF8ufQkvEmLKFcEZMSkYN\nm9jEudvCWp2h0/ejnE5oxTyEG2n6sSGmMUIQ6zQO64jmGFfXTd1oYDT8LEy7GWttgvYzaMUgn/y1\nZTLBJfSui7mXruLUl7HVt1FEBx5RZFfcZDXlY2npLPJOkc6lCi6pwf67JY5vHvLw20Wm/KtM/diH\n+PPf/zIAP/Jzn8MndNhLL2Kz9fDlwkxrDvZ3dD729yLMNj109AO6h3/JQExwNXaVTukhQxVaPQO3\nLGI4BgREk7IaItTuc61iciTFsQklrMNV9hMehpMO2XGKp3IyNzuP+cjlz7B9esTCkZ398JhMqMjh\n5jaNwgaizU9gusbl2ZcoazrK2ALDhu20TbvaZeUJLwF9iH8woiPJFIInTN13EZpVUHwVJKeOK7dM\nnQz9vVvUZsuIyTDFZh9nMERGusLbxe8SiRsU9gQ0hx/NaLMeslEtTJOy29ixdbD0FjTXmE8lOKn7\n6SpZHrz3gXfxv/3f/nd+46d3uefvc3ivwII6T8ojc2LT6c258XijnJ9K4rIUQr0dLiylON4fspxJ\noXbdNO4d45/p4bNtUcvbqbRCuOcmtHpzaLEomdwsp8kcHcvAg0a75qayn2XF6Wb3nkFkbpYTT41N\n5wmLSwLlkZf07i4RU6OdSTE8eR/1hU/jTfjZNU6Yk204IzGEsECo3MSx7MUnevA6QsxFPFT3JzyQ\nDhidi7E0drASBk3ScRgaaqxMtSVgG+WJ9n0IRgXmVYZajly/SDIi06mpFMdDznmaRCpd9s0oE1WE\n6hCXMuZbr36gpP2vfvkJDstuVq0m9vASgwOFWjDCTvY+HiFHqODhJDpi4ra48+23mImv0bdZRCSD\nxitBfEMD/8oJDZfKBC+T0yFmcRpP34Vtapdk20Nvt0ImHKOVv4MZmMPbq5EJ+ekpVbxaCEE+ZdJx\nMenI+LNF2loInzOMfwKtpSyd5utUSq+RG+qEJuvokpdgdUC16qfmH6AGPewabQobA8591ouDIE5z\nBbFm0JtzsjN2EhCbOOwGZjWG5POx+8pjxOQ5IuYI100/5U6WgDhk2KgTTsvc/90/Zjnoou1ok6jX\nka0CJ4kRN755F4DPJhZJnn+KvjLEIfmZmw3j2I+Siwh4HxVYeuoTvPe910iuL1IxyszZTdxSDiMp\nUjk5JHY5Qsy7hDnj4fGdO3Q0D3bRQutOsdLZRyKEJ33CwBMhMTDZNgIEB7fhQZnHriwJJcBQCtIt\nhPE7DE7e3WPsjDKeamD0Biz+rI3RGwdINYNGQcMz8jEMRElKMma6iiTHufvoG4jBFFY7i9Zw87hY\nRe60kEZBjM4DIi0HoeCYcj/A+ecXGMktXv7KLsbWYQAAIABJREFUMZfmP43T4US2Z4kuehH7Cup2\njWIiD0ORXAESrRzixSmmbQFun2zxq7/yy3/7Y1/+2f/4v3zxpc99nMuzCRL7CY4U0ANx+h0N+1KE\ntDBGDdvxNLvUDx7RU9eYbmtI8Qltp8Ccq0Wwc5Fac4crL32eUqPBklOh5A2hZxu4PbNYiUPSly4z\nWZxhvdOllStQ9Oc4vJ+lP1qhKd+iK4ZZ6Cno4zb2kIil2Xlve5dEdIJXaNL3Kkx1Z3CuidSKQwLV\nA5rlCJ3gNt6awEDcJjH24A6ojK6msKsBPvONH6f+L7c5uikx5YjScT3iOFdFSVgQXGNwdEyyFaKh\nB7CrJmOXgP94l96aA8ldxV22CCar2Bp2upYTxWnyrZdvAPC5s4s0Iku0u156LQeTC0lGpVPe2z3g\nwx+7iL7dZDIn0Cs6GXbteF64xMykhHMg05KmMe5sUz/uM5vMIL+ygaq58V8ZU3E/5v6r+8hXF5jJ\ntFGUebpSAftuHfnxiCnRw575k+j2EGFNw2lYJNwDTkodWntuLs7NsF+NY7bKJGfSlDsmzbaF2jvG\n5hARHRZTCxdQt9ocFwX8e2MO5nQcaYHakY2ZeIwAecbGLIXxNr5pJ8Khk369g+d8CMXWRTTGOMRZ\nCDbJ2upIDNEevEd4NszWu2XWFhegvkYpUsYvhigkZDbf/i4A1574BOryEeIIfPUmh0WBln8K0+zh\n6B1zc2NIbL7CoOJCXDMx/DFmuy2GByrS/gbxi+exh4P0mzdxhrJUxzNEHCHKpzVaYReMq6jU2C44\n6B6WGAtuFl11gkMfvlabTvcYOT3FaLSPr3+OwtpF3IU6snLAaTnBGV0m0RcpJCb4YgqSJCHZVEpH\nRYxjH915GYfaQ9PjzJQnVI0cerWLmAoi+bw4ok6Odu5j1wT6rglWPYWyaOK0nDyqt5j4kzgTi2xv\n7GI3x8gL89RrFntdJ61sgVJ2F1lp8bjrRPrQh3jnqx+QqFhvjro2obtd5klHGMd5Nz6bA2slzrE1\nYeAfIFcmnAm4EXUvIcmiE9HR+xGEYp/JEzp6ZQXXygJiK83+1h4nIScVq449GMOuNNBCcLh7QGBt\nFsOUWfEFca8GuVu6w+5JhK3b/wcPt4us+zLc3qhw4ekue3sxClMFjPYYUSxzs6aiK2NK+ixxdZpB\nxkd3PM+pfZPkxho1l8XJKI/mlNBHQRIzY049JfRggFUxghLoEjN9TPo+Gtr7zETWkBoOpJkiQjtF\nPGpRGPsJqyd0dkvYdopU3GHUgEjT7KCfljjoBti//0F23jd/50W+fr+A1BJ58vw8b9/r84WffAq9\nUsbwLGLLSuxUhiSNOK3yFpPzdSbjCSszZynvjdBnhnz4w2u8eet1UukkwryfyNCOFj5HfMNOUzVR\n5ASCbpJ3OhG2IgTPajiUMcOSHb2WxZmfYtbbp3ySQ7k0R97aYiL0SQbSLH7k8+R2DjBezdG2KwzU\nJp6+gRSaMOoco6kruGsPiS26yUcybBdyzElhjEoE79iNlNIQ5AjtTp1aTWNu3KdkBmm0e9gdFs5k\nmEFFoptaY3zqoxDtMr9S56jhpq/oxNw6is2P4LQhSCrfefmDrvHzH30CRRhyVE2gKhCyLJyFx2Tt\nDmb6TkprSZJ7LURrmgZ2hKiHltnH1jIh2mS8pBBYW6f/8DrRtVVarTh+xwne5ABz20drVkQJdgnr\nFnebBSJrywQGhzjHNoymxMg9IVZ1k5fsnLX7MRx2NE8OqdSh3Rnjcz9k7nKYZGaOJ9UO9//gPvqz\nlxEGTqLTOcYPQBAkjJrISsCLy9Un0u+TvDSD3ScTO3XhdNeoOtt4hzHq3VkqVp1JLMXv/ZOf5eKP\nPc3E78IKNbAnuwy2h6ydOUNn1sWJqPChwHnuWxFqtiCn/+c9toof+Fq/8JkXuX37LVBnadTGNJMl\nlN5jaiUFz9iO2qxgm0szOKrhq/vBDy1LYGLvEj3WaFga/o9e5U//3b/g7NPP4T51UeiWKP/Zn2O5\nI9T2G9hI0dx9jeNhHmckRqevol5xoJY7OJKLlGwPCKlx5l5wc/v1CotPP4XqgHGlwOY9jcnCIa5A\nErfHjy9cZhxLYRpHFJtudh42GLtD+Dwz+Mdl7DNe4gtePILC1DWN9sAEf5tGrUBa93CcmqYeyeAe\n+ygNq0iaQV9ZYNK+R2tXYGA7ZmT5WRAiOHQXiViX1OI5Hnsm7N+/xS//0j/620+i/s2/+s0vPn8h\nQ9E+QIrE8Xm67DctvnO3TjTToyY1MbfaOD0jTB1Y9CONwhzZbiPKKq3sFfrZMsfmIn5R4/1v3EIO\n1Sl3irhGDXLeIyb2GLrtkNZtB90TA2m5S2i0jNuoEl2bwSHbaE/qhOx9zLCDmj3EaKITCgrIagCt\nGqM3twzFHPqCxuHdMWVHB69jgJWewaO18NmCNPzrGM4QkcQu6mCX9FfPcvC1HMcneZbDAaSTh8wG\nDaycgU1QsKwKvaFCRM5RNWVErchJ1ceFj73ESb6At+0m2x/g86WwOxOQEnjljz9Ih3/p7E8yGsa4\n+KQPpW0RnVSoqyZXvFc5FWw4egpqskukkWE/tUN6Y5vQQhJjbJLfGZDOuPAJAY71Dep7HZojB2Zs\nhLPiYOzZhp6ObuYQvAn8Azdu+4AzT5+haK9T2mszO59kcxAm2NrHmI8j1mQcgRojvURMd5MXTqF4\ngmwXSEx3yRoerNk+MYeNE1schWPSPjueqTDy3oC9eofnUvNUDk54v6czLpgY+pBgRCV6cYbi3RaH\nQpG+GeC4UGQ+3iZXTzJj12hmVbpxA6mYYuYnpmm+9wg1JBBt9ui4VYJmkjfe/I8AXPv8k/hO59H2\ndcwzIbzqKT5Xm4opMCtapMIhlJ5JadGBbzhNRBbANWAsCHjNGDlHnml7GiHf56gnsWS52Bp5KBTf\nx1IU5qVlbu7fQVi4jd01IkIQQxvT9bdxPuxTUBYQ6i40TxopHCC6KnDQqjM0BzhzeySS87ScQc5M\nvOSKdQ6k27SyGsmERq9lR3JtoJz/BNXCEYNoBzHsQXg8IfkxL66Bn0qnjSFVKDc82Gt+tpMnRA5C\nDOQSjZ08q2sxop0Upk9iZTXNwuUGzeMBNrXDytqzeAQB38Xnufipn2QyUnjjz34bgBef+ThXp55k\n/OQB2/YYUttFtNvFP3IR7puQj+HpdPGcT1Ef9YiqBhNxRC+TQK870afcdLzbWL0onuwxY3UT2zBA\nyH5E2h5DmhmybncQrI5JRCzu3mox75XQdguE18IYhsEFl5vP/uQvUBSTzI+PaUzZuTadQaiF8fo6\n1Bsuzk+JiAIkzi8yePSY8cDEGuisJ1YxpENmZQubWiXTnWJ8910CPS+tg2OaLDE3ayPnjBHZiKNm\nNKIZL2I9THmty9ieYjgo8eC9A55QA9zYL9FLX6DmqjDW67i9Lty7AgFfkzn7GV6++ecAvPyXf8q4\nn8I3cVCKTeF4vMGNjRInU2FW9GmiP/85bn37Fvqow+pzOlee+Hu0tjvELsncaTYYd8LsvF3GG+1i\na2SYteCxOk9SyjPqaaiqm4SpU/NnSO7XkQIdZGMebzVKPA69S248yjynNoEky7gqAfwLy6SvnqPV\n2mfnjVco7m4yznfwOxVSRQ+WUmFn2GLuxIsgNrE5LlE9EmkadYR0jVY1hi3jYWHSZ9sSoDbEPemT\nsSYoCR/2goRXbeFVghxVB0Qj80yKfeRqmeSciu9IoeKwseh00X5UoqQl0SP7MEzy1ivfAeDJxR8n\nrIY46Rn4PU36gzCmz4nbqBIMx7GZWUwrhmUbk3g+idM1YmDXmHenCSgawSU3OW2AjBcGXkLVIcV0\nAd/AQdeYULf3CafP0Nh7zLzjHOOH9xjNnMWst1E6fQh2GfnTeAceesI9TiydhDSD18xzeONNzgee\nZb80orIdI1T2o2oRej2RSrVIeRijkWoTSnoYllSEtIKU73DnxEtlMKRf26EnL+DYHTCjrLOhlZhR\n9/ivf+Ua+RdPSXt/lG6jytwZNxclke8ePuD3/+gmL/6rf8Dgep3dexGmf/hFutfzDD1ROJR4kP1A\nuf3kmfMkzl/F0k9ZCSu4ttqMtGnMQBd9yoPeE8juPORD//NP4+x9E+NhBakiILjSjBe9RJxBsrUq\nT4rXUOYFkoIHaVohNhXGStlxrWqkPvMT3HbZCa14EMdNGu1jjMY8E9OH3gkxFYzSboAUstH45mMy\n616cZ2xYtjWOWi4ykwUEq8jQEyKipwmGCzimnsdQCwhalajSZRSz05ENul6FWCZFyoxwOC7Qq0SQ\ngzLTuxOUmTOYD+t4lTSHYgO3PCEsBJAcDU5aJrO6BZYXwWWyPeyhm4eIHqjbwnhPNF67/Qr/w6//\n/yCA+Lf+zW9+8dMvPUf32I1wJU5p6gJJl0QmcpE3v/0NPj79HMNYAFWV8NltCH4ngtLCU5xjZLmQ\njgRSAY1W3EQ+HpH2tqj7ZVSPjdh+GssoUJKqqGabtcVpjGkBvddGLnpInLURHDqR6j1c4xSDsgtf\nU6AebuJwPsWLVz+Botpw2N3U+xvkvGXmQmmS8TCRHY1B8gzRyoCx4KenOvGbd7B2D3mrv40h2tja\nL5EvV0laKeJLA4ZSkX1PnEi6TqU/RS/XIiQlCMXHhNw9/Jee5Uu/8d8Ril6heNrHM10gkhQYnpr8\n5b//U2xHLe7vf3BN8A+++AX2995gfyThGHuwjXUKJTtSq483UGXYgAN7lZGmYSYD2DY0ZlfiRCp9\n+t4cwdaIQ6FC5FhAnl7DP72NURQRbBpPfCFDcU9CdjmYGlbxNE16qwaTLUgZInHXhCnDpNDy450L\n0tdUHGUTOW4xFFI4MxalY4tUyM1wqOEeG5itEA5JonDaxup1iR5LvFMdkU4GaAoGCb3EQbNJyBuj\n4esznUmjZAJ4hQmxqTATZUhmLCMNiqRSQcY3HmFeC2FvykSEFlZzRF+GUk4G1cnuyQCHL0Si5+ck\nFuO9lz+wOjt/4RrBMMjuEfvZASWhxpTjPKeKQm+SZWLCnuLD6xJBkMl4vKgVPw1Pi3ZrSO/BK5zY\nNCJ9cLUVDvQiU6M8PisGmQSWmUcQQuhNJ9OOa3j8UdRqH6fYJqvq+IMpqtaEK+sD7I8GdIJvYKp1\njJaXyWMdS/Uw9kZR3PdpjYuED2Ik4276YhCf4KHYUolUe6zFP8r43n3G7iD+BGz8x9dJ+juYERPD\n1IgxQZuxyFgThLMqordNy5hD9FVwCzakfJN4eMj1Gw+plxP4ZAfNkwKezCKJKQN71GQg3+CNr34w\n9viPfvR/oqyNKJMkGXERHxWRIzrdeIQ9V4xBpY8xK1MXo6y0QpRDMVrhEmuTISEXDBwD0sMV+t0G\n8eiQR2KCmcY2HLcx/Bb1zgXMeI6W2479dMT6aon9vEZlbgrl9l20ygnJ5BOkHW2SHovvCEe8kMqw\nhZ+gFOG3v/QviXozOBamCJ9Rab5dYud4DzHYJ+QcU8m5kJJ1MF2I4ir7qkLPiFGPeZmRdaZS5wk1\n0sh7JbLJLSKZHsqBi1ZigndbYM/T5/m8RdY/hT1QYc3r5wnfBXqvPMB39QIbd8ssRC0mmSXG1gO+\n/dYHHeOf/4Nf4LlPrHDrL76BlCgyGxPYqxQ53gFzPYhV0pg073BtKsBmwY3gz6MEL1OYepaNr72G\nNJNk8bKEw15l0nTQbFtEXW5a+zmCjQH22IC+KhI62OY9y8QjWZjlIT5jyOPBO9Q2bAT6BToPywhG\nBnMK3vm/X2chPuH6vRHB9TGz/QwTtx23pwz+EX0BYh0JQeySPajjDjc5rVQptFqsu5eRbBJnPWV0\nKYlcdKDbd1GDI8ojaNljBFJBCrKfyewUzhpkT+r4jTauj4UROodgNzFHJZSwn+ikhTqY0IkbLDQk\nvvHmGwD8F89cxRRF4p4qFVeImlnGHotzerCBO55AYhpEBzn3AGM7i24LE5AM2uU9mu0MD5tZ3Gc/\nTFwJsjOYYAVsaHte+kqYcnuPUNiLmWuhLToISCKp9Yu0trMcNXTGT4zw6i4GxRyuXhNf1IdHVyiI\ndkZql7XkOoX4HcaiG1Fap2yzYc33mS/XWVjwsttSkY+rfPU/vIxuSrTUA7TKhPFwQqg4wtFeRHRW\nqHoF2k4DR8niI+tucj/3dfTXq3QyfiaDTS7+yJiZn1ji4GMVLnzkl2kvOrEelhBmnXjdGUp3/5Bw\nfAb1jMa7r74GwJWnfxpTPiBgZqiGclSMCvZRgIwzTMVoYO92oJei2NkmvHCO8cIJO8qYdH+CuuGk\nLtaZnvOxVywzCQ8xlSa2qkZB9dJzqTi6IictHf2ejjju0NmeJqJ78Dr2qUg1AqEJroCCffeUbirB\n7GUXvWaZkXcGSYoxTFlYXZk//MqfkVi4im9cpdYLozfepdhZINMfc5TuModEzZgwc2jR7UG1alHe\nGeJ3NJnbXiI7CKOqGoPsiE7iBq3gJQxXnkkEHrZ0UsqQiDmhI8BkGtqTODNJB1kpxtxCm5rZ5v6N\nDX791/7x334S9eV/9uUvvnD5xyjoIrXHj8m0u4RaITaM98h4JihKAKVjJ+btMQ4JqOJZOiennIwn\nxFMmK85Z3j/Okz3YQF0x6Aoj0pYDQ5HYzu3gO3eZSduLc5hBmXMgPk7QkEe0Gl0O99v4PGX2ZAeO\noo7DHUDJtCgcxRjbBe5uP8Zxesy+04l9L4xZKOAbdQgvnqMabDJdmEVzqORtfrz+NpV3y7gvBki2\nziHMu1noD5jSzpC6DMOdMtIwxOBYJJAOERwVMcIpFt0ByopMRx+zs1Hhs5/9IUJhOynDjTbqs0ed\nzT94jcu/usaPrJzj//nWKwC89EOXCMyFsW/18D1jUdx3M63ItIMjApnnMAyD85HzHDmH2KUG/YrF\n3LUPYfbbhIwJRmKAy+dDzWjMB5PMClEOdRv+rsBkM49DaeLLeskNXKykNfyWnbJWZtTxogoJyien\nSLcK6OEAS2dW6NpvgjykOpSpF2uERI2mLGEfO2mPV3HPT5BDE2y6gtTz489IJMMWPt+A49wJ8TMJ\nKu04UwsKnm4Vw6sQ9MzSaDX4wy//KW2bm/VEEq0/wGf6ee4frhDoScS1Aao2YcGu0PDsc8FxnvJb\nD/GPBsx6XJSsOY5kePDdPwLghR95Ed0u4g2H0LQBKSFCP+PB09pkeAQoOpazSbRn4rBkRG1EJzyF\nzeGERhvhiSBGa0xI6ZEP6KT7IXbzZZ58dp2kFaEolOh5m4SGC5BQMO0jYtOzbL3/HgviHJIs4woH\n2Lfu4/Q1EZwihdw6AXRqjlOmkueZ9HYJp84zOoLKlTD+Vo6KMCboqLN/7zrV+JhOR8V/TmS4Y+BZ\nlhjNrzE82KL8/ib9pkW0PKG/FCU8seO2SVgDCU8wjtuvUy+JmLUq7+6N6J/04ckw1V6IUWAC5THD\nSZSK2udM+hxf+53fB+Dz//3PMOgd4L0kUT+wSA4HVNwmzUMnnvwttISAEBkj1jy4E3mqVomF/lkG\nIz+a2mYz2+SsK0O54eDEWWBq2852RObINaAbnSNe3GASfAJpqCOJJnviGH2/QsYHLamFJobJj2XK\nzTFC389o2+TG62+x6olxu/cKS7qdtjnCPw9Gaxmb7RGlzoglbxq1L2DYLZTDWaRajf2KjNF7Ffmj\ni8jWJo2siKdpci93C821j37ThadXxu60IffiHM3n8Qzc1BwJ0v0ibfUJRjENl2Jxry/TNIZMBxXa\na+s0e/eotifcfPcDEtUoFPjVL/8m1U9PGNkWsba2iRghUjGNUqWJp3+X1cw1Bnt7RE2RdwfTnLns\npHl7G2M9zfD0BBsN7PszTJQRp/0Gqd6EoWXnyJQYWxKG2KLndOAyxiwuOCn3PchOg1g0RS3TQLLS\nuKNjDtmntvOQ8FySkm2WJ59bo74lEipHkPQyulugHLlAUAan007/bovW6iyyVMXlduL0naNSkanK\nOWy9INVHu2Q9VdbWphCya7STPbpGD2/Ri3/ex7B5iD7eR1RCiPKItrdHoxgiqtvQp1QcPR+14IR+\np4OvleTYfcqN736QDfq5n/okuFd59LCD9zRHJuPFMB6TlCM0omm0SJ3GZIelbpexdxnZUcONxLf+\n7AGLn/sQS8qHCBpH2IcWUmVAVz7Ba4GgeQn53ShymVZaorU3wFpcwpm9Q1ETWfrkEr36KZY4Qj1K\ncJqAXNaLu18jF9Dw3D7BFbcTIUX37zxDW19A2ZTofusG3hcv0vfJhJUJOWWV88+qTIfnydQ9ZDLP\n0+r16M62iXh0/GXISFU89Si5YYu+1Uc5XuZVa8yqV8RSPUCbuy/ZyFU6rAejiJUcJUlD7NtYEt5E\n2xqyKEUJihW+/uYHs2Sf+/sfpd08Qo1aVO9ZJBJnmHNUUMIWWqFHS+pTDg8xdTfB9JMcv1NibIqY\niRSCdoLutxFqeqjYmzgcTiJxD9frDUrXj3guMSA6CiBoh+heB1HNi5xQWAqvo4U6OLwDFrSzVMJV\nQiK8/u4pNmuA734FnykSsSRCwjFV85jnzj2He+kMtx4UcS2NaeeGePUhRblBUr5EOT8kqHrpL87j\n3ZTJpIMcZvNIYR2xXCYn7rP/9kP6qTqRpIooNonMz+ILjCiP3IxNFc2ho5QKhPpxAsoDfKMJXteE\nYVlCy0d5uPUmv/arv/63n0T91v/6lS8uX/skzVOBK0+vsysf4vavMVtvox4eY5tZoToWeOx1ETQ0\n6p0O/lIEr82J2NHIHykos1EWVQfxwDSq24c8HyDvahANuvl/uXvzXlfSxLzvx2IVt2Jx38lDnn27\n595z916nby+jljQjjTyyR9GSsQ0bSZBISGSPnCgBkoyRwPICGwqQAM4ftiQg1jJjebTM1jPd09PL\n7e7bd+2+Z98PD/edrCKLZLGK+eN+CusrvMDz4nmf94fnGU1EdEFCq5XJKiNkp4rsqKN/1mfjziU6\n1hTBXkI+N/BLIT6p1bl2I4LZ2ELwWoxDBjOHFVSHwOzSLEoijbDtwdYJcZSsIFZlxr0CgUGSqWNE\naEliqlh0PgvQrFaoDzzEe2O6kyJ6KES/esTIIeLsZVBiE7R5GdtxEbvsQ5ckjk4f0bXJSLYBgpLg\nquVksPQiGcvJSbzNe995JpbnX00Q7uTYi0xoP2mQ7nq5CHfwNwO0GyXESIli6Zy5bIrJVCFhqnTy\nNQQrydNage7OPpY0YdE5S8+soppz1Lvv8Gi7Q2hzmfYjjaFnkUzskI4epf3TEqrVZjU05P1/9wOu\naH4eD+uI0x7D5gnN8AqRUZW+PUhSkLC7OrTUWXxeD6XzD/HZXcjeBFKvS1jooHkMJMcLVM8eMta8\nGOEBczGBaU/FqmdJJlaZHPboPqkQco+Rg1VKD45oCSJjD5yXDSrnFqblYLx0QLngoytfJil9jjz1\nUwo7sK1Fce8aeD4r8u7ZjwFYePl5VqwpBY/AsDEm4T2heRIiOEkyGYfpNntkPEEmOdjRBIxgCLvn\ngs7DHerZJJlUDn3bjhhKM+sIEgzB1laRL3zjf6O09wB14CXjdJHsCCi6RqA5pk6Lk7Mh8pVFakoY\ndbfGc5E56gWVsLVKvmwjMTGwBgJuReLR3X3cuT7V9grK5JBha4NpcojVCDI0RiwGcsxLLdoFEzPY\nY5KQuZ29wbTbpZmdRwwso00drL3xPBcXI3wnNjT7Ce2pyGlRJnzJS8p1hnLcYuXOLd775D02hSR5\n24juE41Xv/5V1NPneOmVBf7t7z3T6eu/+Dp0Ttk5PSI2GVAqOrHdXsRReoDnUoCLwzBXxl1cg0/p\nLqg49QxSuIMxbVIUq1yvpakk3KQcj4hWVRz+JfzaFv6lJTYHYTpeD5lQHT1S4eGHJrZSnYFHIume\nZTevkbGiLPcbpNIB8uaEL9++xCuv/SIffP4D3v3WDr70L+C+voF9OKDc+5RZr5f1eS91R5ORK01r\nsEeOJJOql5m5Mb2Mj8DcDWpxlfH1GXRflEF9l1j4Kt6hk5b7Ci37mENR45p7k5FbZK7WZTCJc+Vv\nLfD+7sfEDYPbd34dMXSMPR/iWlwiaF+ken6PTx48G4R9Y/PbbH3DS8KuUWp+hDz9KeEvfEbUmmd4\n9AHjRBrV6eG0NUXzOPC6LBzHFlVvAp++S/mHf8mrX/0SHmNMMO7l7CxP+JqPbjNI32vgGsdY61vE\nhgJDUWFr42eY3UihDAt4pybqOIRsTqnFRWwhD+mFEJf9WU62mngTYXbfO8K/HkBfEBgPEiQcQ5SJ\nD5tWo2kro9QsLM8dNCGDMtjHNengNHsIuSlNlrm9NsPRtMF5dcqs8xLTXpf+xpBe6QzHRR+3NGFB\nD9HNiVAyiHl12l2NUWyGaAWOxybJrhM1OcbZmOX9u8+Sz9TM3ycTamGPjBm6ppgRJ7xzjvDcTdIJ\nN0cHbyE+1kgEY1AzsbUk6qkllnMBYsM2I6OJbBr0OcOcyHgHGpKjSH/BQh/ohEMhensyzooHT2yC\nrWbhCgao9lrE+xECPZ3BzDzRqEGv4SSrhBiKXbpUiWwKyCuvc6qn2Hn3GMfJh8xmw/jXZ5nuTXFM\nxwSCFh0hzXJO4CjgIuJQWF1O4BMG2PMWXnuY/beGeF8IEFoPMeqZlKJhjM452RUPI8GL2amixudw\n63mUVI+SIBIrDhgZEYZyC/toghXSOO/Y+fDes/qbm1e+ipjWiJgi6dgNEmMnTyoi8shA7g2YSD2W\nVQFJniKMgnSrBv2xhWcjTdYOlY9rxKLgnEDJd0plu8jKiz9LbOkFPvqT7zMTnaM87fGC7OCgHiHd\nO6fvHjAaXKFVGzHW9/AKI7rJG8wdbhEw5qisruF9/xCbfUR7qhFTK3SyYezHB2RdAcLPv8RRP49U\nrKM0RwQvu6Gm0DjtUSgeMil9ihF4yr2nj4lkLRaDL2LrOwi/nsHtGlOp25E0J5GhheeNl8l5ZISt\nu8ilZUIbCodIROJuygiEgib14wr57hGI4anYAAAgAElEQVRH+yf8zj/5G2Ci/s//6f/45sqdn2Gw\nHGXmyz4833oXm1rCGthxOkz0SYWNOysoJ12siJ1a1Ym32Se/VEeWPDhmpoyaXXpH55z1RuTH2/j2\nbQy1GbyDOrZJE2/iVbzBYwaLN7kY1AkN/Ry68sghi1E7jUAUOVFg8EKIre+OWXnNSy+WRqseMmef\nYTJUSQldRv0phcEutVGVY58T17iAtz+hFnGQ9dSo+q4x2HWh2h1I6Tbjd02k1EPKikmzOaQoFVm3\nzZKW4xQFD0Kxhq8/pNqe0rLXsQdyDI5Fxj0ntpyCzThhMAhwNRajP2ijDW18+M6zUdi11y4TzV6j\nd7fC888vYa2NKJs27M4+UUFCUG5hkyych01OrCLSyhx6Kcm7VZXQL7+GaSQwrqcx0km6L/4KR9Uq\nK5438MSCODyzCBknYVqMxwnCthx9QSBwJ8ce21z66jwTPcC1O68QtMUZBgLotjGThTlKuoE3beAe\ntkh7AhQDA9IumU7TycSuoKoCPU+ZhOjirbuPWZybgGsVbW+I20xTniZwNA+wS3NgigiuKjPrL5MT\nXbjiUVrNGqV7LjyVJmbfwtksUmmblB+XEDcyDCcCZ0kPznCI8OFTqnNFPB4bb3/6zHy+sfgrjPxx\ngtbn2EWRqmsR2d+kMOwxjEx54bZC3zdFrTuIzMQ4O+4jItHoebi5EuP+3R8Qur1MMlTHMRE47y/g\n2x6TfQWGlTC9kwLppT6EJPR2lPzEjSGFcZfP6c6usD7S8Vu7PO1WWHYruBYsTrwlsoEwRqeGGfKz\nvrLJjWtpmlWVYXlCyBHEantRJYmEV2Dj736Z9+5tI04cHKsqN1ZmebJT5aLoYia8Sk83mPb65Hx9\n6h8dU3RWcGfmcXamxKOnnAgjyt8NEBLOeLA74GrSIOHQ+NKbz2OObGx9913cP+hS/O7f562TZwne\ntcsJXJMOrpiGywySSNoRGnbEM5ELl0IyYhDIdWg4LtNUNQbTLJIqkNccrJ7M8CjowtJlhLUyi6Pn\nMaITdr/z7+gMsvRXriAIVZyTOaoDHe9wQinWZ+3cjTY5JqIsEBq7KEs6rcM8rr6N+3mdT+1t7CMX\nX/raHYb3v4Nb9DEXULHJLoq9DKN2CfWwxJHkQ3noYTgsYMT2aEUv8HguI3fKBBix6XbT3T1m8DM3\nSM8EOA2cIj7OU1oyCT0+w+kROLUPGfRTuHfK9OefsFH1Yo57DNtH9A5drP3DO2iHOttXPYjxF7n7\nrWcJ3n//5d9itP0TFl6UePXln2U+tUTP5admczP90iKiFsR2PKTvUxkeNTGX/QyrO2hCn1zjEZe+\nssDoSEVydigdxUjfcFP9ZELAE8K3uEDacUK+HGK81ubO//j3mG7v89f//E+ZcUS5KJ6TXHMgxZuM\nY2UkPYxXFNA/FwgudTD7fT775C7BL6Tpmmnk8ZCdYYA7q1ke+RywlKOutZj0emR6FqKnTWY+QaSn\nYsZt5KYOBNrkO13m3S4KIxu5fgdzWMezNyST8FIqWUiXmqhDhYndQbemYqp2BE+d4GTEsK8xvCoT\ny/fxyio/ePeZTlMPr1Fe8RAJjIjkamBXCU/X6Ojn9LdsyJMoC2++SEFT0c4VgrYBauec5kGVzz87\nxJybp+Zy0qz2mBTadM0s7pUVRH2KI+hEbNqp0sFc6JCdLLN3/BntSJHZxAxi54yGnEFQwGZOmfMr\n6P4onqaHaDyGnPWQ33Pink65FWzg0sJMfAaCx0k43MHCYnRkMtPXGRS7hIQLOuUq3WGJ4skUp99J\nL6ZRrcZIpi2cgp39lohrOubB/VPklU062wa1coOZxCs0z3Wisxrhvh3hPECnX6O8ryHllqk0JKbm\nKZ88fIZ5/PI//Cqm00vJGyAzEXh88H3CYTsjcYLpzCGftCmsXiXiNpHObOwMdG69NqGad9DpdpiG\nLRIZD6OCk5mxC23gRTPdCPtVMn/nJhzncXUNHG6DsbNAN+FC8Z/i6Jj4FnVqTQ/d/Qql0hmLr8xQ\nG7TJOp1YSoGL6BKeSzamFQOvZwnhg6dIvgxPtSHL3gxu5y4jh4q9H6cWNlmZ7TN7w6LnvkUzPc/a\nS0nWmxZm2kknlyeFhDobxX0yAGVE2+Ej9OSUhfUchbsT1IyOWdwiuuFBdXswTHAO0kx7MeLhGZ48\n/ojf/p1v/Odvon73n/7uNy+9cIrH/YDJD96HJYWQbYrUN3k0SdEJVBC7JYr9HtdWI5SGJfqSRvIs\nQ3EyYT4ZR6notK9mWItEcd1eYijrCF6d/d6YRVsK3a3Q6uThuIBwNKKbmsffqDORYwQr+zjbW5yX\n40QWBfxLfhYDA7b29gk/dZF5eYmqOmTo7SIsd5EFAVc/gtQS6XRE7KM6gtFgbn6FKOcc113E19P8\n0lef46mlkKzD5tffoH0GAe8s57FHxGM6dtsU29hLIy6i2Wt43VFiYYkbP7eOaIlE7X1aPjuB6ZDy\nToETexth0uTe3ccAbES/ghkJE+1fkPYE6dXyHOcl1mYMjIDAOKAy6UpMVhyk99vY+k38zhKrlzfZ\nuv8DfCkDtblOICLS/1EPZU3BZklonikj6YT00Rzf29lFfHGTWMyO3RGBZhv7QQLfeI09wYl2fIHg\nr9A5rhMvC8gzKZTaGF3tMuhPKQgR4iWVECKqz8KvXhC1e0nUBWwhFzOJHEo3xKh7Ti3aYAGTI82J\nvaMwdD7g5S96eKr18XU1npoDEq7bmPI6rETprxSoXE6xejmAEF5AePMSgj5GG88SNgZUPvoxnxop\n/NY5751XyR8cA3D7Z38Oe9aF46xGviuyMJbQ9lQyrBEaFhm2uhhmAiW8DGONbKVOJz1kox8nlugi\nDgOUSyVSg6u0cgbhkpfjgMbw4QH13W12On9Eu7ZAtt9hx2wQqRZo6R3aqgN5bZ5ooYEYEage9lDc\nNi4uNEKra9i7J8S7SaqmH2N0wvHbTxEWh2j7dRKvKEhiHYM+br+L+p+reL6UZevzCivTRU5kL3e/\n/9ek5rKIrQGJuQmn6lOc2XWkqc5QiGCaMpo8oV0fMFPw0nzVxdXML5EKnNDuhWkHfHRnDVQ1QbJ1\nxp6+TfK/DvDD//hdAN6MvUb+qIexGKSrhhBaEvaBm51mj6WlAZ3DNsH4dR7ePee1qyFG9gE17RTt\ng8dU5w1mLoXJOk5xPE1yjolx6QXcv/Y8S89dpnlPIyLW2BlM0Ef7jCMm4/MoztkMlGSCr80zdGgQ\ntdDKDUbyAef1DG9upFBqAxgHuPnibc5GbkLtBI+3Rqxl29jFCX/6vSI/vxGhlChz/26X/+L33+DJ\nuY1IsMu+eYTV1Kif9pkoHuzDGjOeDpV7Ogc9kZtPd/mrHz0guzGD1xMh3J3hjwt/yMvrL1A4OqOz\n5Cbk9nFv+Bay4eFzew7jO7skSxHe/vQPAPit//1n8b//mO88+RhJ9PDDqkRaeQHbxiLj+yqKqlL9\n4SfIf/HnzP32f4k8LSFXnJgr94jMiZTeOWYYusTZVh8vA2zPx5iM8oyKHUrqOflBhWwoihDd5P7/\n9xih0CKmSAyHAzwvu8iX3VhdHzOVHEK9hqAOUTxxRqEUiH28dhsZU8KntdibBpkL+RnOikgnx5yL\nTQblEG67m6io04uE6bkD5M9McpKJ3O4yirjpHPboeEck+xZnmQGBY5WpOU9xbYwHDWqr2BU3w+09\npsJVrogBbJabRtWg5m5xVRojz11l5/ScTz76FIAXv/6rTC9sGAEHcsjBcn7M8MLAPpZwGBL91ARH\nU+bwe58RXxKJjXWsSYjcQCQ1N2F0ICJxiPPETvSXL+HqaiTXQ5jlOhNbGH01yVLfh8MZYOp+jDst\nEuncYtw6oy9ksPJ9NLGOZyAxmTrwhCJ8en7E6Ts7NK8/R2eyg76fBx1cSo2gGOCz+2OMvoOmViQv\nOrHZHMgLbnYfaZiX4oTCEXwmOBsSeUlicV2lGRsSVCOYvT2CznmK6n2uOG6B4xQiLmT9mLJoRzec\nJH2XOPjobdKvuYl0dHxzK9SEEbPeCD9+7xlL9qXXr9OqSnQLY8qOPI5cBimxSaNRQlYHPFY8xDkj\n7NLJPfca3cOPkcxlOvUJwViHSXSVUnObR4UyMZ+XC8XFUlalU1fRTYv59CyyP8KRfMEQD66Ji6G+\nTF8tUx43GYRkss0gncU6oV6GublLVJtldgpjMtpV5l8a09pyMNAdUDToG02kaYRmu0HyzizyaRMl\nNUIZeCmPREZEGTQtfLE9rIsY/Wkal2QyutenMGOgH0msJmPs72q4mnYsnBh6n/zWx7yyMMdJcsCF\n7iHccuLrr6AKKqLjlEo8wsO7P+KffONvAFj+h3/2+9/8zd/ZRJ2+hKgkCQznaPhTuFwjEis6omOV\nzGmfqrlF/0Rj7EqTcObQbRXWY2OKfg9KP4ExPED1x/HoTaI2N8m6RSMyYtQL8saX13BeeBB9PaRc\nn/6ZyCTSwtcwcBguxA0n9oyfwoGDN3/1BYyHbRy9Kpnly7h3azS6OitrU7ZNN+FCiObSiK6eYWnU\nJC8rvHDjNXYPLBzXRnh6RZzePP/hW/c42q/yK//mF6j++Jx+1Y598RxxrBEpuylEPPRGFplMmKaz\nRzjvJtAbYvcO6JluIm4/3tM+7ugQaeygO3sVnz/MBz/4HgA//9zzzAWSPIwFqby/zSS3yqRygjvs\nRzxxMh+IEhj7uLu9y+bPfYVyb4DR1PC6BWZGU1Yyv4j58CMe3H+fwXqHlNHA6EeYup5yIjhomj0S\nrylIhw1qwyatywbH+wbzz7k4NboQtPBFG0SXp4yrLbyuDv1dP64lOFYcRDUdj+agIztxu5z03VWk\n6Syi0mPS9mCsJTg73qF/ZYDz5StkbGFaHpmkMaIWmuCI63z3D5so/iWW78zTyEtMBAePYx4S9hjn\nC4/5B197nQ8zeew4OS1f4G1bVB+UEVw+Ii/GufWcG72yQFz+Cz759NnS+a++sE4OkK0MndoU3e3g\n8oJIM2LQiyikYina+oBaQyNhq9Ob3cR3WmEazXIy1hl1Djh/2GeQm8E5cHIoQjjl5/0f/Xtu//rX\nCGkZEisiraFIN+xmHG8h+1pEcxLdrQbK7ZvsH7vIutN0xh2EdJbgFzbQ3lPJKxaR4ARD6PE0nKL5\n1jGbL60xfXSGOdLA7WPcOuf46QNQLzjaa/Ez/+RLuA+HZNNp3B4Q18ZE5CXmr0WoHQ2x9nU6upNI\nu4oSmOFk2GdV9CH7vfT1AjW1TUWWGSpOyj/cIvPqBoW4m1h/AftFlR/df3Y5v/n1nyNiDGiNxzii\nMqftEu05G9cXYmx3y6xmw5Q+mpKMjNmTm/hVGDBL8E4ENZ/HrgUoHT3lrfs64m94MLQEg/NjTIdC\nONjC2umgr4uk7EkSpSVmY2MMKUX45xfICS4qxR7aQQzNlWO0MUVMD8kVQtSuDDgtFAlfRIlGMtgv\nF7F7Flm9s4A4rOP3J0jMJni3UOb1S2vYSZLQntBzywjVx1QHY3zFHaz4PP3PP0DjDrPJNr61IYGl\nN1kIJmj+1Tnv2XQuv3bKF29uEJDcbNWPmTH7mJKDResK+USZuDbE7E5Q70z55NvfBuDFl5bpvf0t\nPtt7TOp3/hsoSSxcWaaohmh/tkVTaFFVZrj5u79F68FTOIyib9jJuF9AO8+SeW2G8iMf4vUZRJeL\nBx8eciWwSCXQZEPqsjb/FcpKH8ms0cpvMbO4huV+gnMxRu3JAcFOlnmxTTOicDFfZORXkFxeZuUS\nve0u6bCNmLBCJJyA3B799ghbs86wrVMNGvi6I2Ztdvb0MqGTKa2CjtS+YDiaYUs9xBYKM/rpNtOc\ngsMWIui1WFp+mSfWDk5ZRq9kaPpOKJemXE0HEYMSZ7FTooEe/YSDcNuL6DAZV9zUbV0+/eAZS/Zr\nL/46yiWNcXGEqEywdAlNMqhIM0i+IEarjuFfxmUzGEY3GLnj3Hx+iaNpDEU1kDJ1RHGeVMxH3+8F\na8CnD39KV9PI77VYTaQ566goNoF2Z45gP0qFCYZtitWs4Pf5GRfsFE4fUHsEoVmLWcnLON1hUL3E\nnK9BNCcTstc4sVIkZDtTfUrCI5GRJYRb6wSsY8aDDv5LTqKnCpOGDcPTYdKakBArDNwKIWeF7pIH\n32wO7yUnzbMegaSfp++rJHOXCZsR7Me7TMwUyuosP3z7h6zdvkG5PqLkFokGk/SmJ3z0zj0AXvn5\nN2luneFUD0ha6yyspem4K0QNOxc1AdNncWduFvWTPIXZBD/dK/Pc5jxnooXTbufyuM5O2cONRhjb\nfBhvOUSxVWZEBN2s0ZpkKKtbhHZ0+qkw+02DdcOG7VIZy5wylU3ObBovO8KMRh4uhCChaoOzowsG\ni2Xc6oBm64LCYZ6KcYy0lsYfKeLXVulbXh7f3WbemkOZVbHKSSwecFz4jPlqmt3iIc4ZLzNiGudl\nPyXNjlxoMhyv4TAh7BsTUyYcTUoEwyuYj38E2Rq3Nq9yVGxyVNaYjbTxWCH6HpEnH3zM73zjb0AS\n9S//1f/9zdXQ30W2jUn6FpjsyuRevsLG4iKNvSEjf5nHpypew4tdmSegqjR7JUJCH0P2YZgmtcAx\nnsYQl+ahmurQ6FQxHAGuWn3cUZHy7pQLxynbJx6iDYVhVMfWHWJabSxLwjGUUXNxQj2Fp8UmkYU+\nppFk/svP8z//1j/D9XKWUFHFO/ajJfPETmapqAIzisJ4yUSO22g+HRJat2EEJOaWbhAOHNLZeZ/z\n/Q5Sy8Zjo0xwsEJsotGwJJYNESvo5fjBU9ZmFshvlzDtfULx59m5+1P2B0cMriSQH57SeOUNMmKB\nQeeUD3/8MQCvfimANDeDdrbF3LqH2oGJ21YhNp6nk8rw7bs/4vlX1xFb25iFAe9/8j6R2Cor8Qjl\nTz4mH5V5+zv/gt/8p/8tJ6VdNpfGpK7IDHfvk+iOyL25jnVyH83eQZ7IGH/eY/l2HZt4A3u9C+sB\ncpJOr9/GXwpQc/pIKxMOf6ywcstOpdZmNFtmWrPQGOOVnaS0CduFOK5AB/exCzHpZljpcvz2XYJR\nnYuGk3ZSJKc5yYlB8qER+swAtWewMZvksD1Etz0iMj0hOVrg6MtuAoad/UGHW8MrvHV2RPZSmOH4\nKem4n8GDp7yaCeDsi/zlRwcA3PiZ65xMF6jHDmmf93DpExqJAJG2QSLhxTGfxjweMDIqnGkKK909\n3FKC2M0Qc2ENd+gmNy9fRpLKtPwqat5GI2gQX3iVoVjhuO1iJjtDd04keFYmY0sSmd2g28vQDlYQ\n9hwkEkEubF2apVN6nh7eYhUjLhKyr+Dtt9GDYaaTNdYYU0flTHYwvX+BJyTT0de4dTvHQihMYHmG\nTz44w3vZz+DcIHDNiRLaxFGoc3Ii4ChCzxsm6x6jFk2ktSj9cgfzUo10Q8X0xDDKVVgM4vT3WA07\n6Z1d0DRuUk/V0LfP+HT3PgBfe+0600SSmJCk0u2zuRGnvC8hOgzGlQSjrk5HhuvX5mj349gELyPV\nQWa8ROtSjNR+CGfIhue/WmPOXCG1+wRN01kbTTgeZzG8TuJFjcklJ/MZBae0SmFyxvvvnOLyaaxn\nF6jHddZaDbC5WfbHsOLbVI9D1JplFq+X6BR1jrpjBtoQpDM2XvoqsVsp7n7Sw8oNsDeSuHMlipqD\n1aMxVu0Kg8dHJOUgkZgHs++nePEpMX+MWMzLh28J7Lx+k5vXvGz6NWzTDHqrjlHUwSNgG7V4+nDA\nvFuiu+Ngat/Gio8p+sZsfftZL1nx+zv8+v/zb7nXCbF46yU8go33jv8EoXSCX4nSGs9ju32K9MmU\nQ3PC4u0XqR2ptDMWkWkRR2AdYTqkNWoRrtnxpXwMwn3yH7oYLDgJ9wVk+wD1/hGzzjl601PUswQ0\nzli7+SKGLlG56sMshph6q1xuX8ZpnlMKpkj4Flm6nmBXdBHwNyneO2fUNXAd7VKKTVmr+BkvhThR\n8yxngsRdswhymdZkjjHgEquYuQj+cJ9Cy0nAIdFpSCzdlOhW2ojNNJdzA9xCGvdygLpVRa7quCSJ\ntiuNxwRnbcSZQybkqiIpi/zkrWePxFd+ZR4JBVXy0HPlcSk3sBk95KUEE33MNNpECHlwjSyM0ZCl\nyQXpy4s8aj7hZKdNQFKwVqYELyQGgwsW3Zs4HALjmII/a6f8J+9T0Xp88uGnRNtRxMsJlJZM11VB\nCOVwzSSZvfqIWGBKvhDG412kKQ3xt25jW1bJpYMIpSr6yCKCh4tYCjd71MZR3H6Tnf0yOdcA1/wi\n9ZpGdW+P1kyP3skZmbkqLkPB8ugIIzvBlsr+9lPMj1sIXolULEws5+S0+wnJ21l+2j7gqu8S/c4O\nom8Gv7FONVCn+dYh1//OFwnWHHzvR38FwJXXbzCbmzIa3CB8RaXx1CCS8iKZp/hkiXg/RT85xNGS\n8TQKKMMIC9KU8623iY0a7CZFboVnEX01CrUU1fhDhFEKqSfSdSwSap7wyj/+Rczvv4Ohd7CvpmlU\nBoSaa5y2WoT8KWTNyf7Ig1KuMjybMhTqOLJr3FjqcW6FmVgJkhmZ1MjPuTkikXiTdvoB/lqBejeI\nxzNFdCaYiE68sXXa6ohcWsJypBGyIQxPl8BIwOvrINkGKJendLYOGL26ibejItu99NERti7YkKdU\n14OMBSdKf4bOqUahWkJwf8z2wyLf+MbfACbqX/+Lf/bN69fXGSqzdMcn2Gx2/vVv/h6ryxkuDgts\n91oM1RpBu59UMIBvJoZxUsKueBnZQ/TOawjjGM3kKq5Jm6P7O/z8i79Evtqh90Ic7+SY01YBu79N\n2BJJqmW6tg6xchhPzsAYw6kiMG1IRFz3scYjSkKSvY87HB38NV/+jS/xYiyN7Mpi1uyESm3wh+hH\nbNiip/QHXjonI2KJCq6Ah2lnxN6P3kfrbqHkFLJ3opy3SuTaITy+LoXVNpF+hrps0arI3Ejc4MwX\noeE/Zq63yQ/1PaLZHHHRBnt9isEcnvGU8l9+jD8o89MPngGEX//i64ScWdROn1B4lcKgy+bN1zmv\nfka1XOTLy7c52b1P3wqj+laJOzVaxh7Nh7vYRgkcusXcZopKuEAsIuC9G+Tu/TOEkYJXciNXu/yn\nt/6CFVcc3+hlrCsdNr8Wpvn0c4ZCEPsgTHts4J/4EMsir/6vV6g/bDENjhBP6rCaYiInmJNttEst\nXLYxlXQch3pBOxigVTtl4+YXMEsq0s1FHJUI9dIpin0Nr+2MamaG51WBSMJCqT3BattphseI3Q5d\nCZSzLmc/uc/tX7iBry/xR3/wB2zefJVk6RBnw4UeDpHMBhge69jLUf7T58/O7WvP/Szt1QuWnAqR\nUJSjpp25VIOI5aeieemGl3FtLnOLQxxDGbfbotH1sq/W0FSLzt330I/PUbsdRP2ci3yPNT2LEO+j\n9UY44yI3r16h2eiTjzlwqZDvNljsVegZU/SdNqN4HfvFgOjzl/BeiPiOXTw6v0fguRyBtoteuopq\n6QzqXlo9i+z8JoZtQHN0xk1vlK7bxYlQIqCpBC4vsf3WO5wPutwyNIrtFmGHRe94jFc4ZJzSkFwC\nljbFES7SrpTJzbsZjS5Tse8imD2MGSdzFyoFr063VuDKGzd4WCsx+CDBXvEZ6Hv91dcwHRmcepV4\nbo6DrSbTsYPppITP9OORKpTiYfLTI7IXEgW3j4VGi6Ynz7o+z8L6Zb77fpnXX3YjFFc48ezjKpUx\nlRbVrR1uvrlEeN3L1vdPmNlwc+mrXye/uMHUkcTtW+dh9V3mjgX2k3mKU4NceRM5m6Hz+TmLVhup\nm8Wu79E917HZu4g+jf40irjdJnw7w+WAg0hL4WH+I2L5NbquFO5rIwJnn1KJX8Lbd1AbHpOyX0NK\np+icD/G97kAQ1ug0n9LRw8RWqlSnNgTNz8DboChM6BbCdC8lOTtvYvVDlH9yxo1plrfvPes7+r8+\neI//8PkpV8QB6oxM8Z0zYv4QtrUrpNI5Co33SShXkNstOpdlxp+dIM4sIyz5iA7aqEcdhFIRI2qB\nAk09z/n9J7x8JQ63lthrjXEWPicZTDHphZhcGuOO+9DaDVxnHYzAkPE0gufkE2LTEK3SFK/dhaXW\naVcLFIpTgic1fvLxO9y87uO8EmM6NyBeWcYpjegOvWQ9DXbKKn6XndFtGXdAIRMMEF4VaW0XiQY9\nRPFyUBVZSAwRZzxUTnXUQItaNYQRhMHkgImexCtHEboKyuSCes1HOyET1Nr4IgpDW5V3fvBMp9lf\nj5FKpBGSIq1ji/iww1HFT1Lw4ZpTEGtNqIaZBE4pSXViPoPD0wYxd5t3nuyRicwQrok0BAW7UqJl\ndyNZNVqTBOlKhMjzaaThLDcv5zCkDKWTJ/gcAcb+Pi3DR+Peu7T1GWKOADNGhnynRsx0UnMLtNwK\nemeAdTzCVTIIv/Qqx7Y8RkHFOVOmSxPZluH083sMTCfzqkwnBcMnn5G7vMA4L3OqlhFjdlyNEXUU\nbr0QpZyfIN6c4eG9zwkv+ZmxBejvXXA9tUDX9RTLSLMUs9geNUlEQwQjAr26ye5ek88eP6s4+OrC\ni6hqD8Xd5Lg2ITzs0Y/2cNufR9pp0pbOSPkX0RJdktfTnBzryLtvU52LoKPgzEsoTg+a3KFYr+Hy\nztDPPyHoCtGz6ehygC/YJzxNT4m8fYoleqiEXQyyFjN2DylNpSmlsYttFlMyqnWI5F9njhrnshd9\nz43iOaKnR5iLKNRsPXzuBh5PltiSC3NbJjjRGAgNYkszFA/71Ps9+skIC7sBzGMJz7BL+anA3ukh\nzZYPbRonsXPG1OWmZYk4LtoMIrPEpnFsjiQPt32ogTGa3KcbqTCsG9xI2PnwwS7/6B/97n/+Jupf\n/vN/883l5TeQJAm3Bzz4cF2ZJ+ELIghesjcuE2/o+IPzdAtTGvY6nd0h7b5JfGZMI5Bh3JFY8Hmo\nhcvMlSwKk88R9su0jlxI1oCO7r7fnc8AACAASURBVKexPWZzNsE0bGD1JmguGZ8ZoBac4j5poCgj\nTi+GMDaYk0JYrQt0qYPhmtL8sMGu4UQRd+gpCtW+jDOoIlxI+HU34nKP02MfaVuAXuwccZjAvhgj\nEUnS38qSNjRCl1Y5G4y42XMizsr0HQmETBer32A9fgZHCcx4neL7P2VZ7mFITTTTznV1wtHpQ1K3\nLrMSusp//MGfAXBp4w0GKz36coy2y0f8gzOebN2n9dZjFl58k9amghBVOMg/JTuJQCpEdLxEJOvC\ndSNAISwTC1Zx+VawdQIcuIfIwQwLnVPOL/sZdLb4ub/3vxA8HOMVAih+Dzvv64T2nQizU0ondnw9\nkQcXuwQvedh6fIatZyea8vDo0RFKJkZ4WiEvjZgzZqAmMDOq4J7zIY3cVKqHmO4iwqoX9YNd1JiT\nZM7NpDhBk4Z4fFcYRV043VnkD+5T3HSRkS2O6lOWHAHajQHr13LkP93HIfXJLSvMKDbKgwOiX5RJ\nBz0cbJfpxVb47FKdx3/x7Jvg+tW/jdMKkXBo9O4L+OJ9jJaOOxnnoLCDx94lcynKQWlEz7Q4k8dE\niBKwDxm6uswNUvTWljHGTWLhGNpsh1jAzvCgiHe8Riw1YnC8hXY8y5zT5C//7I8Ir/YZ2TdJ203M\nRYGx4cGWW8J8nMe/JDEN2UhUZrFsTdpanlGjTTARZSQIdCWR3Oo6o8IhTreNSmSBLirRJx76ppf1\nQgvnb3+B+cuzNPQdlmpD6g4Bb9+OQ9dQVUg53IiBU077RdLqKv7wJsXKEzw5CYcp47ueYNAzodBl\nLRZlp6dy777C3Xf/GIwCAL/6lV/jvPWEwGUnj997n+ilK9QrDi7rJvFEE1HRyJh+GsMig9RV2tbn\nTAUYGjrWACq1RzSf/oiEso1SquA9tlBsMXYlEf1elYumhPNiyGiSp/1JlLt3voZ3QUE0PYT9NXId\nAznpR5lCOhChwYCcvc1ntc8wUguUJAf1Jz9kErRTdkcJuWQS4wOamp9C6QBv16AgH+IueehmDvCq\nKslki9NhhsXslO1pCAMJ1/o8WX8Pt7iIp+0heTPOJw/+lEsrFaSmhKcV5SDfp9wUEPJDUmtO5uo2\nUj6Nqd+GkHayEzxk/91noO9X/offpPqRTnw5yGfv/Zj55104bDYmpztEbRayJ0s2McuDx3eJpwxC\n+jEpW59w0aRVGDJYbFHxxQmNdJpNkxkxxviKnxXJi/tRm+HxESnPa5xLF+yeHpINLBMOTTh92oDN\na8Q34Kz7mPLASaIp0et3qXZGKM7L7HcrJNQhzcVryJ42CfcVKKrMOQ0Mq07yhStMvfuQzRAwFpj6\nwHah0Om0afsmVJoS7sYh/bkoCdcKc6kF6l4Xvj2V03ydgNllPJ9g+djEI3oRkjK9tk7EN8S34MRm\ndDGxU+oUGU2CBDsJ3vrw+wD84n+XQClv4PS10McByg0vk2abuYzG9ukJF9ELHvzJAy5vJrj4sYkw\nGjIOeTFPLXy3XqY3KbEQT3I+eILQc+ML+rEGKXwLHUb3njJRdOJxme6ZSNrdZhI3GI3HjCIqs/0I\njYDAC+ExPS2OfLWOy7Q46DXIuc/w3h8wqtgYnp/i+OILZFI5Oj/9IcuLdkbVRWKSC89qHComalBk\nFPeSwodtwY488NBN+1G6Jk6fG4dLolvoUHbGiMou5ucXEN4r40ophHxB+k+K6GtzyNt+AmEHF3WJ\nTCHPMBFlVvUTWKgg7hZ47+mz2Ze//Q/WwWagSTnacfB2/QTHMSrmfVRTpNAWiVoRsHL86e/9exz2\nfeY23sDMglE3iDmynCg2poJG9cERLsmGexduvfklQhcWM0qDtlvFN3Hjl5foNETWXoghNh30B01G\n4Q7GQGE2ZOPj/BHLxhewBaq0XHMEohM8zjKd5JScc8LUlUZod3BEJfx2k3H0DpP+KWVfkwUjilrf\nwhxbyAMPrqmbfiJNekbEPYqiTwwGjQ63L8+QDaY5X40S0hyYzhN88yFmjABHmT3cwwGDpQlCLUKu\n50KJO0ldn+OvPjyicZjnH/+NSKL+39//5m/85hxWP477oEW156Rxvk3x+IAoM/TUPO80S8zldGzz\nG6wnDOzOEdr1KLI5QTgd0k10aJ+DMBbQjE2EW/NotlOCaxJxM8FCAnybGR5/rvLC5svsju0IB6d4\nozZkNUTfPqWt+ji+aGF3jgn73JRWl/Hvj8kthLF7M2ixQ2J1kPQo3UQQe8uONPbTTE4xzp3Ewh00\nRwv7hcC1gM6Gx82nByI8fUoz4CNS9VKiTDpYY28+QGcvxnOxBJOzuxjjHSTRw8ZakLGVwQzJWP4R\nm4MYF+4RClFyfhU3x3zrrWd/33/r5S8QGEbo9xzMtR6TD7gIrLrJzjhop+N43lMJj/IsZV+hJl6Q\n9IVJJi2MW/McnhbJnG3RHlxiPCri+myI+3ONa/MeunYBz+MxamIT+UKloXkxrQG93gWWMOJz5QmC\nYeKvVtFnQtjMLGpUZ9TTUbxOlm9dwtg5p2nXkKYLBEctmtKEuKtKoTkiHMygaz1G8QSpsMwHf9Fn\nLaKSHMfo3NcIpeyMQ052P7lL2QwSW9bp6B7SxxrT0wrv/PGPeWnpOTxui/OyG9eMjpWDwPkR4cgi\nYyvHhRWhVzjHFbnCQfEJ2cVNPvizvwbgpVdvIK6PCVZEjqUu2fg6rmaVhqFzdZzCKBq092r4HQY7\nTYGbL0WxImEkw6R54cYeCOMendDxLhDcNsk5nmdwKqCE+1iTIb2nj6k+FpgGorhPJFxRjezLv0xn\nqjHSaqxaCTw9F81pCaYCYbFGOCDwwUkX5+KAhj7CkVmgXDvGGqaJxX1kgg3sT7xUxiqZSwLx92W0\nZJf2yIadc7a+dZfUgkznPY2+F6qjIJ2AgCrHyZCgOZpFU06JeKE7F8GomnTvGwgNA+3qPj67jP3s\nhI5hUAvYmSlG8S1PSNc+Yu+iCcAvrdyilVpksj1BVxVke5KFgYUetNGJ2dGKLqxEFc8whWCr4XjU\nJ+6DSmIVSUhjpsPIvTKNdz/jYiHFxqJFSWpz0SyzFKgx7SlUk2Nq906wXl5imI9gD0uMJTs9XcSj\nSQyK5/iHMbxtgU6si3E1RtVhsqkqjIZ17NEAetCFuK+R7QVwBtYp7t+jahWY1XrEGk6kqyu4DhVE\nv0q1aZAJBbA73bg8I26vJJHLTerHQ4Z1J621OI++923il5NEmhFcXQVdHDAemoihPikzzlCp4rxl\nMHaCGRgyDfmZH4r89CfPAOnEscbSWpzcq2ts399lcnxC7qLDcBJEPTsn7T3mbL9OfHUZ35mDOTON\nuyBgb9dpKDV67QmO/piBGsThbdHZHpCbmTIRBWpnLaT5DdR5ldRwgi/uomVIyIH/n7s3f5Ylzevz\nnqysXGvf9zr7ds/dt957usfM1oBgWGUb2xKE7RAOWxJjpHDYgYYIBwIUCGwiZIVlEBAIAYLBeJgZ\nZrp7Znq6p5e733vucvZT55yqU/temZW1ZfqHyz8B/8Ibb7z5vG9+vs8nQ8u4TT/ip3c0gNGMxdga\nJxOV+MBgFNEZym1qQy+yJ8dSEAQniRJIU0w+YcoccqzFAyGBYC8TPob2po9wz0K0a/QmOjfPZ+jW\nWqj6IonhDHPWwjLbxJUR2xWHuGeMOY6RESKYiTbCqMF8OEz5bItmL0/tpEDNJaH5LFR1mWnTIRrQ\n+fp3ng8yfOFnb6Jg0xzopOwa29/6Iy782CvcfPNFFHWKtN/j+g+8iuGXSTVHjBvHVGfHTNQwZwvL\naJbOWWeMHy/qIER5dEi6PGR0pnAS2kf9OEgyd0YmKFOSRDaZR7wyZW6apO9ts+LXsSo5ztw9Bi24\nX3pILGUTzf4AvlAKsx5AEQ3E4BhhdA+50WT/4AhJP2aczGCcNMld2KTlU0n5KpgDg3YrSUFssBjx\no8+FGET8jKsVpsoUKeXQbfU5u1cktRylVbCYuduMd5rE/BLHySah2gHhaAi1pmC4LYaal+behJm3\nxwcf3wXg8hs/TnQhw6OxhdRsEYkJOIbArG8hHRgkzCD+JQdXOo2wZhG8/BYNPiLsC+GR1nAbZzAn\n4n+okAi+Srczz8uvpigLAsezR+jEGNthhFmHWvWM7grsmouMZwP8vRGDgYbLDCGrZdaSl3j3wUfM\nK3n8nRYDscOdbpPYaI4To4Z+PUNLtPEf9eh5J4jWM1xilEzsAlX5CZ6SQGXgYSzvo2giM0asdjR6\nvmcc+eqEmzKdvsAktM2DOwMurMkM7orI6yK4pszt6dRPFCYnHizVjS7sUVf9tOoK6uUf58Pf//f8\n0r/4O/AS9cu/+KUvf3buJ/FpM8oLfjJ2kYriY3k1R8/2Mg0X8Ljy9PQAWkei/LjDfus+3cIDzi0t\nI4o1+qEFEiMf4ljjluchUiXEzfQcyolEsTiicBuk77sY9y2OnQy//2vvs/ZfrNAynmDFdZxhEeGz\n11iSFOJLKzTHZWLHNQ5LVbrjRfKxDuatFuP0jOLjMR7RRvOryBEL9aRHYNTCPalRe3eT0d27FHLr\nNNQasS0X4lqQ8SMP733LooXCA64gvOtmGPSQ3npKv5TluJHFO4jz8MSPfVDFc+wiGklxXD+iNHJg\nKc4EhbHR4xvfeX44X/vCT2OM+yQEL2fHpyRyWZSzHPVqjP7iiIjToGTYBAN5ulMvxWITY1BEr/qZ\nVCqcFRc5tzwgb/pxXHX6N9MgVQj15qh5DEZHU5SsHyuoUzUdIk4fTciwYcxopBYZDCOEA1EC0T6W\nt8vY1tDjM+7dOkC4rOJoYVSPxZ5whtf2s11tkFgMUR56sBomygiQRiwk4zzD5ObqKv6FNA9PHxL0\n5IjGwqSqFu9+1MEVHTGzp0zCGoubr+IzijQ6PezlHuq6wpX0awTSc+ztn9AQReIeA9E1oxVvc0lf\nIHd9l7/4N38TvPzRz+P0kuw3j1B0g+NymI5qclm4wrP4GfrCIkJ1j7qksHe6z/u/e8L8xUs8m1TI\nOWUco4ssOniLe5iywK3xIT1lj9DqEp1mlMzkiMyrLzFoFTntPkBLZCguhum5V4lNT/H6h/QeFbnw\n8wJu3xD3vSm9c+sMOvskzgZYT+/g0RWePLhDvxthMt/H2x1xUDlAswMkgjmeTQvkRBWX4sKKaPjT\nSR4dVolIl3HicH45SdAqYQ6n+Kwuo8pDIlkXO+44yW0X7UqbF2YJnrjaJE76yE90plYHwV7E74nQ\nDGR55cKbvPvJCacHzwuv11+4wZJQI+WboGVyVCtdGqkD/O4NjgafoE5D+LwL2LUo8rMGRv0RO+k+\n5p6fjdV55Acf4vNCKabyA+kYp20JM+UibSWpelc43d3D3Qrw6uU3uF8E57UEl8VHuO0iWS2Pd7fD\ng7MtojeX2P7oPntHAw7KNX44uEHD/RDxko/irpu5xoTGq6uMdnvEQwe0Jymmdw+YndukH6wxq9oc\neEeMGscotoMcvIi6PMfJ1ggp5OV7j8YUil2a2Qjto8fkEn44KOB4vQxFiZygMv/KEK1q01wuEp1k\nWdg2sOUogZnMVX2eg7rA999/3gH3pZ//CV6Nejh890/QR+vI6grzVyNkZYfZsMnJrT4hXxHJyJIw\nhtw/LrJ2vc9USNByKvgmEzK+BJXmfUInfS785DqFskT37bvEg8v4414K29t4en7MXIJozovTq9A2\nBszkPqNJhkgkwah0xpInjW+ooc/PCEU2uHu6zdpKjP2HfWavRmm07mMN/ZwUm3iD83hrMmG3Q2e4\nzWj/KXJyFXenC2aK0eMD4q4m/YU+3e6QalREPwggDo44HQRQB3t4XSLNq2G8+3scjTScI5V0wkec\nOqR8rMfPITsdJsMJCZdIQzvje+88Vxz8xKsvs90bMdcMcBjKo4rzZC69RGn/Ll7TYL80pGnAQjPI\nQF4i//ICqm9ATVvmjWSZ1ekiO3uPyF6JUB0OWV6ZYo4dwpsm9YIL/1UbtSlihDzMzeJ8vfQhQfc6\noX6ZHXOEiwCnxTrDbJ2IDbFyjl5sglUT2d8/QundJ3EVpp4p1Sdu/OkZ1WGKoJRDPCsRS84wCx2G\nZpP5/CvsD6Zk/Bt0HupIukZlGiMppNGCKkq7Qb/gI56VGYwn6ONjQq4+pco8C4tBKkIJSfLirXsY\n5TPUT06ZzHuIlwSGuQmR4JBvffNvsoufu8qYBIkcTJw8/XCT4LZI2HZw91s0tVWqikO7dsbazau0\nKt9n0T/PTMgwFXv4U3NMvatklyfUp4958ZULOPtPsA7bnDhepgmI1w3S8ZugVznYa/PyyzfoFp7Q\nigxYdmscOmUWMvM8mBW48HKCUsPEaNdZyeXxq16CrQhOwMdQN5k9PSTtCtAYbEN+naePj9GlEUG3\nl7o2wNtXyF88RzTqxhZ9lM92qRspZtEhAS1KjS7DcRVXyktMmiB0PQjWhI93tykmk3SNLdzLU9Z6\nLYRwmJJbhtIdeu0R3bM9fuF//B/+9kPUv/vt/+vLr59/kUqqSueTY6T0OUSzQysyZOw0cMyrxEZt\nXMMwC74+mkuimVjgwo1lZjv7HPmCjIxdjuR9Bm2H6OsrXP7ggMLX/oRe0INcm5DczFMvuJi/CMvh\nFVZ/cJNHkx7Vw7uIUTdu4uR6fcZeAWmYoBux8Xot4smXWU9C62GRXspH72CezJUEoZlOXSmT74+w\n5Xk89SaC9zKxfp/guRuo5ccsmBpPjw4RfXFOdm+z9vlN5FWNi6KPK1mBydOPqLXnkDUNVwJcQhDV\nsrk8t4HLq6F4TUbhIWo/TsDTwjFSeFce8bU/ewbAp1/6HOOTKeVFEUUYkA6Y1FunlANDVpUojU4N\n12iInnAzLI7oH/8Hzt38IsPVMS4jylL/gJppYQkm2sEUvVSkMFO4YzTwL/04vsMDRkmJ8v4Z0jCE\nxz3E8k05VGTU209YvBLHmQxpPW3j7m2iSHtE7QzDRodRMYEka3RVBeNJAN/AYj67xvFWHZ8/z0ww\ncMJgSiMWxABH3T1qgTSn7TGroQhnRaiXd6j4TW4EkxRnXVBhIsUIRgRmK1G67QmdFYdM0cPZ7Rmz\n4485mSbIxFRKbbA2HFbJ0xAaBFoH/OWfP1+3Vz/3ExjeFtNYkfzZBvlEhZAvj1BqMwg4aEU3Y0ti\n6l1iRY7ySiLMo+KI6Js3Gd8fYKxUGJkzEvEIYW2ZSuKAuXqau9+5y8YFC1M4T3n/GW5Z4kjdRhBf\nY7S+waA0YPTslIkzYSScMKgpjKtBbNFDnT7qoyOsOQ++yAb6ug8tHGNhPYh2FsbbAcku07OLhEJu\nHKeMIwU4NaNYLoPJ0oCl0ymDzRXWBYUj6THyZEYn32fkktCuxxgf9NBe/Qwt4yG5RBr/zpRgQuG2\nUWcu6cP2X2G6NCPaLcKeyZbW49b3+vTOnsPn5ls/w3wixqzR4ZPHTxHWNS4JcZoVi+WxxlIywrR8\nwkOeIs6rjIUIwmyFF4MpugWLlR+7wHHhm0jaDYJKhkFCx+PO4XJ5EBc0EqqHRtSFormRcgOmpwZu\nQyOZtdntm1jJCqvBPFajiC95mfR5lfxTheLFMLkbn2eu4KeTrdP1eohXdDaX4nSPuhiRMtVAj3jX\nYGnOT/lon6yUICCO0JOr+M+t0rv1NtrMRb99wIlRR3ZFyCcUEmIX2acTUwWOKrfo2T4EuUpMjDAK\n+FH7bSK5VaRODVtaR9HDdHplrGif9772PNvzRj5N55f/JYWFDEe36wRvujnarhJTPDjSCvJ5i0pH\nJRR0MMI+UvE285kUtw9OmShXCCs28qhL3ZcnfCPNyfeHCI9s4lEFLWhz7Iyx1zaJjIYE/UUapQPe\nebhHanMTZdjDpUwJCwtMLgaxzWO2HQXVbDG432TjRgZLlbBcBdKeJAGrgHB2ymruKhXnNr5oCl/d\nw2PjAbIQYckfZiYco7o6NHojXKtxBt8vMr4+h/TMQE9mqRxuE51fpTF0SOSDVNwO3rGBVBeYzdvI\nlkjHCqO1J/T37zJuBxmnZEZNgXqsyZ1vPL8kvv7yf8NACnJc6aB3eozmM0jffgepobN10sC7GKJR\nL4Cc4LhjIAh+Pv7rR2y+NiGqvIZ31sA5a7Pf85FO9ahF/NihFtXIZfafPEXzG2ydatRcMlZ4Dr3d\nwlyJ02i2cUktHMfH6fEOqwMdxRuHVImwqhKvTwl5xqhzQe4PoyxZUVwZnbEWQlJDBDz7bAU3CDfc\nCB0wzifY+f3fY6uwz9rNCwiWiJ6BnNdmUoGIUUWMyJwNZcbTKXGnidS/SU2Ok5TPGGgSA3EVc8ci\n7Okh+yQmPRVHFxk7PpIhg0pX5/3vfheAZP4cmcyIUlNjrX+LgArOU6gPHNStEp35PIlVL8att/n4\nvV2mCwK9yQUmSY3CyQjXZBe1atDpGfg7Qe7tf4OSP4I8qWHNW5wPbiDQoxUXaQ0UBJ+b4KiJhMBA\nFij0DEKjAJUzF6HlJRqlEd5wnlGgSb6/xnhWZaz0ebbVIZyQsftDfDmDVh08LZ3YC2FszzMOtjX6\nuXniHhvbnuL4pjwYichqCGmhQiipYkRkLsQ1JudTeJoBprqGp+iDlIIvNcbdHROf5shf38RxBTBP\nigTjIl6vSvTD93hcqvCP/8k/+dsPUb/+m7/15aXXL+IuLxLttFi7OEdn72NGS+epFytENz1MonP4\nXBYz00W91aUr7LD3YZHVT6WJjzuE0qvM1Rzm6zbl7zaJnjshNL+Br7mB71oCeTpFKHwbK7dOpDRF\nGbS56n2RHjGO9BNCfRMpkMJpP0IpyfjrNr/7+7d54fxF/uDX/5r0p/Lk3RrbgQKSqOCVTnEmKh13\nFCtQh5kbWTAZLW3w5//Hb2F86hwvf3GNirbND1xN4z9vkZrLoVUrNJoy3qMnDKtu5DmH5KxLIarT\nrUv0vQWSl3XuPk0SXx+ALTPI1olHdcZak6HX5N0/fm5C/vzlMB2tgCezRKwjMGgkGK2EcRpD8q4Z\n4YSLk0GOsK+DOS7jFl5hOCgzLLrxyD2OO31SjkOl5qW0YOF+MUYw8AXERA797ncJelVsOUBtNCA9\n8+E1OkhBH7OWQzI6wzM2qXeb6IaJKcq0rAmKlWG6BFZlSjTt0B1ZRDxnjHItoj6b01GZ6PoSYf+A\nyaMzJo6C7lMJGh60ikqy2MAQHRRvEf/Mhep4semy+No6khnCVhy89oCDShNrkiFEDLE9xaUf8F75\nlHOZKzS1KY5YZSF7jvx2EWc1QP3Pbb7z6DkM3PjRq3gfFvFzBalVw3HWuNPeJuoWUfoRRj4XVWWH\n2Ok87swModHHX36G7dM4qR5hEkA6VfnWs7sEPruAXh7TDzUJZF/BthVwH6O1FsjPHzN5ksV+2U+6\nsUVg2GAxNY/mVmkcSiRiLyK5DIxuFVdgitepMlYCqGaK4SRHbGWVre8aCK4wrX6dwWjKesWhLc+w\nC3F8colxoIdLcAh753i4U2DTn2LU6yKeCfiNNHKoSaTTBSXGXmGPWDGO76RNJxTjLDbGbXTh8gap\nWZRxboo9SWLc8XL31u9g798hUnKz09l5vt9eeQ1fqc3YSZO9YCBNL1J2PSUzydENRBkkh1RDLtyj\nJP7sIgtyAH0yobTqI+Lv8d5/+DqtF3O8FFGoZbuEglG8oo0rGGeodwkpPnyFCs+cDZIVg7kFnaAp\nIpQ8bAwbVBs94htNmgcX6bSfEN2do/BiEaOa4On/9222dIHcE5FkAj7+6HvM/2d+KgMb3Vriwvwa\nineD7dMG4cU4A3+WaLpPa5wg5Kvjl9u47HXcU5FotEE8InLcD3MxnyB9/RLmzGGox4k8btLoiYhj\nD223i6DcZFJI8vj4hJhs0A8fM5wM0YNJvvn/Pg/6/st3f4HAZ7wcXn2dijVi50/fZcU3Rr95jVl2\nkd3TPucli6LiZlLs43XCCF4Pwfk6o2iP5umU8xtXqAcCtJ6VMFNJ8udHnEhhrPCI0N6EiRIkYvj4\nftskMXsBdV1k6UBhlFxiiIa14WCXBZTTCOnFE9w7bqR8mMNKl7o4RPeliVWK7HWH6Pt5UksT3Lsz\nIqab0XGHwPIG+X6JVkFDTMx4emqTWF7AeTKlkksQ78LAGXJUM7l84RJCv0Q1HCLt9BGmcY7NNl7D\nYhJQ0aJ9PEqD06iMFTyPY40YChHaYom5zgLvfPB8kOHajVcIp+bIy1O+99EJmqPRnfTJvJCkFUwh\nGT2slRDuloB3eUgkkOT8eg7hkUAga6D6BCxJxfVkG+FzSYLmHFXFw3ivgCWFWY57OJF1FiIX0OSH\nVGYKC+cV/AVIOmm6wxrnkyl6doT0JYOTyTnaZhJ95HCs+IjZS9ipLkW3ji/movrhPmVrjOJdRnJN\ncZWa7Iw+IuYKkPihPLroofRgB3+vzcCpEJvmGbt26Pskbt/eQ1w4z7m+yl3TwRrGUVM7mLMgTU+K\nkWAiRNpIszRHfgHhQpBSa4/QdEanKpKcVfj6h8/rci5FN3l9I0DPJ5OsDZh1Oxy5xqTUFq43F5gs\nJSneKbL/NMAXP53jsv06w3feJ+V1o7VKSAXYEweoQpLxZYN59w2SQRFnM4u+F8F6cITZaNIzTCy7\nyfjURF0YUD+TUbYdjFkPWRywHBCwdgxidpCk9wjBWGLPuEUrGSfh9OjpLhLZPN3uMT7fBrrex+qu\n4p2d4lEUDg5PyLSjnET6eH1Bijt3WRhpzIVreDs5mkWH2I6GUQ+hPyhSm4iY7Srt6RRrpNK1LVyR\nFHO0KfsKqONDDucFtIMgQqPAxStpvvLn7/OLv/S//R2AqF/6lS/PZV8m6DrG9cOvMtmecG/vFHvf\nR+1gRLs/5PPXF9mZNJgahxw2JWKZLIG4n6OtJr2FKkkpxV9/0OecK4641kUTl1F8CaahBmfyGrWH\nJRLpZRqNe2i9Fmd1BzXh5+HRiLzexe7E6XYbyJF5ZnocA51rV9apWB0+e+kNeqUDDkWH4kcOo3GP\nmBpAqQXwy1P8apiCt0U4Pd+hzgAAIABJREFUGeXZ/Y8Zfv4zRJfeIumo7IQ/Qg52cQ0WKZyMaVRn\nrKaaHPeitBsmmaUZ7rbGwo0r/Ns//Rr51Shrl1I0v/k2e77zpBdl5AOZf/udD1D0V1jYavGNT57/\n+77yqSRr8S+gtZtMBmPUKw3ufuuA8PUFHt77kEpLJnNepz7wI3VVuusSce+EWuEIXchi2SN81hJW\nwiJ2+RKGc4NCt0jAtDHLBc46NtKsjjSVUJUx+/4q46FNwukzy8ocjLKsyDEeH+2zeimE70THmuyQ\nHS0RCmwjTd24NxfRRwl6sxHezir9lkxE6KMMBnTSI5b7QaYLZc5ueYl+QWK2FmQYdhG2ZowEC692\nEUVuIk0jTA+e4crmUNQUq3NZJu4ekyOLmmYj9zoElWvMlhpwVmJNCxMLROgkJwyelKjfCvDRyXPT\n+2tv/j2CszZjocHm9auM6u8RidpYlTH3Zg/xq0FMr4mRqLI46VCpFKjtPaH15BD3516l1g2wGjhF\nWm+RKnnZeecJguscUjJDo95Ak87jVVsYxCiOdBJSn6V4BEV2U264ybpanDoD0v4cB0aNhDyk67OZ\nNs/T1XTicoJoyE3tyQ72TOL8koOS1XFGbnyvjZAnyyx/9mV0M0Hhky2Cq31muQhW22RRv0BfspHT\n9xhkBExZpWeMkOMXsB62aHs0OvUYevYAqVzkMJ8h693CsKeo0yK+RIrFF/xYj0M8vGey8A9/kHvv\nPw/6LvzgG5Q9NkYySqWxQ9BSsQ+CzGUPEfNzTI1dRkOZvHVK11Vipl5hYrkw6XFaizCTLZRn77OQ\nvMCT3VPkRZ2AUOfju3sseNK0treQTk2UtTh9I0RyYUB9X6Iffcr+uQgD/RRhL0KvrRC42ufM3wYx\nwqjfwTQdNs1NFM+QUitBOC2x+6TOlfQ8Wi7KceaEyP4Q10qaYc1PzKqzX5VIn44YySp77whM8gUC\nExG/qiMOolzNZtkdS4yenFBqelEH20jueQxRYLqkEXZHqLfjyLMaD7wS7YqEqyqij0OoWYevf+W7\nAHj++X/J09EGe0+20CU/3gWRC5/+Ao/fvs20NeDV//oGf7x7n7XJdR5bT3lxfpGdAxAvBxELUSw1\nRUM2kId9kv4wy5MYt24/xed3s5mfY7qaIHQsUfQLBF7IoidrXNUusPWffgeXbxVxGMEsPqUviKSj\nM27tbjEYOuRCKzx7eo9LGyF8zQaqGiQmDvE5x+w4M+Iy1MMeJGdCkAZnniguY4IxclgzprQiEw6P\nC9zI+zi1eyhRjbWmg+luUhyZ+OU5KlMTO6XilDtIYZmoNkGbLjCbdKifzFCZIpkmclpmoTdAMz38\n1d9MNb74Mz9Le/eESvmA6zdjRHshSK/SaiiIEZvVrIeZy0VldoZkajgVP6bWxu+a0DgzkR5UKHTu\n0YlNUVpB5oIGo46PpEcnt9jjL/5jgZ+6OEc2Oc+e2ceZDHjw1S52XqcwrbE8lXFP2gzWWjjmBqP6\nCLe7ylkIsr0Oz+ITRD3EpU4RsenBcCqsLQWwqmME+wCPHCQYvYbHCXBa0/F100TENIOuxZrHT7Pc\nRaJK9+JLGKMAWXPG48YpoeyEAB5OqhUUWyduiARWHDbsMK45hYTkwzPpc/RwxLBWxdYdBlaL7/9N\nzdD1X/z32HfP8AzAG7IZ54d4uzEMOYoSmOeFn/tJHjfu8MJKhnJ7gOOqkbwSoz87ot41Ec9GuL1n\naL0AdWNGIuiwfWdAf/AMta7hik2paG2+uX2fzKzFxGPiEdJMvD2mwxbu+jkOpmd0NJvxph+7qdPo\nagRCGv62RTfSolaMEheS3FxboPX4PuOayrSxypynjikK2I9zvPgP3mI/6hAsnDA8DBPOXqHTOKMu\nRNG6DeKXXawuvs5h8TaxsUM236ciziO/WSHnMSiJIKge7EiLhBGgtV8lYS9BtYkletltz3h6esqX\nfuGf/u2HqN/8v//1l2/89BKXLi/SqMLcF9f4uPEEcZBh+bNvMNypIHlP8Iz7DGUv3cMdXnzrHN3B\nGGvru7SGP4pk9AnOJxF9HTR3BsdlMPRLWDWdmtzj6Owu/91vvcy93/7n/MbbH/GPfu4lDu58wPlr\nl3j/cZmQprEwL+DWImitIeFwnahhU5NG9LIaTt9B6aYYyAM256MENJXjtE2/bSLqAw7lEY2pHyOy\nTsc94Ov/5l+gLwy5cO3vs7t7gutWj9NYiIxfxy67ccwOF9bT+KY6nWURXk2SHDlMc258kS7itMFs\nGKB9JBMqjwnHL3PtlVd5+M197u6+D8ArP/rDtFNzHO08YZDqoTxeIPXiItFyleTKHLNSmux5kfKd\nbebDq8ghlfGjGLonwqlssJE4h/IjWcxsn1tbBU5OHmF/YjLMNPGJKo7koT9Oknb18Zs23sQKUbnD\nrCdy7M+z2tml59HpzE0Yu9NMow6aYDELuenMQnTcCt3eGWbhmKDZZ24zjdbo8KSvISTTeNzgiQZ5\n8sBk4dIyYt/Ds3erjEQf3eMpW+0xnhWTyCRNY9xh97FJhDJgIjfcNPwKuE0uax5m+pjDfpt1wUCw\n3TgZL75BlEF/l9KRgVC5zocnfwbAuU+dR0jGOXOdMT8fxDP/Ezg+iw8+vM0L69foPOrQirW4pmRY\nOH+Twq0hjXOb6GKfrjpE8GjMJhZX6puYW1Xeq55w9TUPNSvC2uAIaWLizRXoeWe4zCgu/xIXsl7q\nww6OBdF6n1LDQoxGkI0hYlciHLDxv9RgU19mrJ1ytHOCHojxld/6ZV54+VXk1ox515Dkay/Qrli0\nGh2mQQ0i5yjaR6S7HoZ3bMyVAG1BJuhXcKaw1E+w4/TJFrucmUNWNTfWD6eZaCYefxRpOsDTdTO1\ne8xSUeYmJ9zePSUvSdTfPMdyaJ33vvlHAFy/+QbzrRnpylMiwQy1eJS8y6HSy9KWv0vqcQsjNqa2\n3WN+8Rrxsy6KFwLjDZKLFRY2z1E3VArpIr3tNkorTfqky3F1hJkqo/s0wn2Dpx/fRgn6cVoO5sku\n+nqawVd2uZjbYGCrtBfDuJNd/FKGye0xstdByk0xBpCtHpK8HmRxnMBKrzLMOuyXtii9e4B4qcm+\nZeLLKlwIgXv+Ci9tXOLJX3+F2qxNVp0nFjDpROeQTYk/Of0YmQit9hH9ehPGQ8xAm4ssoesjVMOH\nM5pxLE5pPN5HXQ5RH0wRcyNEd4J3v/ocBj7+9T+jmfop1gmx+LllhsXzjA+nnCzqbMyu0rYGhDLn\ncLZKzC38EJ/UtlnxZjkQ3ORiGnZ9G5e+hueZC8+1AY+3JDbSFZy8h6c7bQ7uVVl+3cO2pBAstPCe\nVSnWj3jz51+hVmvRDXcYbDVw91Vs06DrTUFeYBgMcnX90/TkMke9AL6nHVyrQ3quecLBHmchiVq7\nh5n205CTZLUsZ6qMN6zjXpSp6AqRORuvPCKkBEmPs8wWbQaKD48UoNfsERAlOppExPQgjRxqpzoh\nq8MTccZq0ofVrZKY6IhpB6Vi0lcF3v7gudz1H/6DLMbUYlYKkFlu4dfcCL0qMyPAsLmFMwxQ6T3g\n2uQcZhVCviP4pMtorsr6J0+5u/URa59+g9Jjg6gWxCs2OBrbBKYl7FISf2AfT36FRKxG9Z4HZU7h\nWiRKYb9NZnlC2fTQlI/xSxmaJxq15AlpLcvQKRM2FukZj4iISToZlXC1ycksQXDiY7oZI8g8k6SL\nVslBb4McPKIbHuHv+knEDjlSpuS6f0X3i3+fRSOAvBBha7eF5IeN3GWyn7tCQhzSsXQamS6u/HXa\n+1MqUxfv/ck7+KUZTmCKf/kttJUMlScaD7aed4PO/ciPI4YaDM9apDZuMD62KKVSTCNdRp064fuP\nmTPCFBdGxPa8POooJGNxXD/+I7RiUVJJgyedKMrOKfrlQ3wRnVbRIZQJ8tHZQzbGbtpDF5cSKaKZ\nEf1cgOnCAnpXZWR5yDsxsufPEU2IdHs+BPEpE72M2S5Q6EvMbIPYYB7PbEi9UePBaZPkNZH8UOfY\nBMXy0MmdcrbXIBT2URYSjFK7RIYqbbuO3g5hxKc0OhNG5S5t74j8WpDH2zb90TOCp33EaA5PsYHL\nUFFTJpPEJlYgzNjbxDTWMZUmc0md79+6z5f+6d8B2eZv//q//vILmz9ATxrx2D1mbJ2wNJgS/4ks\nf/Grv8ubbyxxt7jC5kSgL3XxXQjQ+MtnaMslxOhLDLvHLA4go4i0ugEkW+ZsnKQe6dA8Nbi10yX4\nYpr1eIH862nkT7+C0aoyqXoRHIdrC4uc+RdoV0TUsylhZchBbURHk1lq6UR2hng9NlF9Rn39EEFp\nUBiZeI0Ww0CSekvj3FqIva0KmzEFbcfHKxfH0LqAebaHR4yDs8pEPGWiuvF1fXjnVLYeN1h4Q+PB\n6Sckdy22eYCixuhPw5g9gQvCAEMvMq24CAZ3mO29TeC/VXnnd5/LNi9oG2xeF/hw+y43WhHK6SBn\nzjNGhkK55CL86TzcrdOYLWAvn1AZ+tmPRghPeky9Ef7e//Jj/Cf184QuR0C9QXiW4MJNgWVnnU57\nH9U/ISXMqI9kMgsmp1IExZlQq2bJVvexQn5mZgp3M4VNiU41RnhSR0zFaMmnTL1NcmGNUMlNbzAm\nbKUwOxPiCz2m7mNUQ+b+0TZZ7wYaBxhlF+3LNpdHFu6JydplP3VdxNmbgavKYjJM3SOheCZoPg+u\ncput7X2qUZnrG3N0yhZuB8SoxEz2onae8uyvG/imOs9iIbYfPpfRfebVi4Q6M5xyAp+Z5OOThyx5\nBWaXrjKdpChX7/PyzVfodGoMd+Eov0+uCyFnylJSwtrew+6NMFJZXCEDGib71gn9VoPk9SCTVApX\npYW756IV3iBZLVPZLdD74AGLqxe497RFLBSnmdaJDk6RG0MCVy8Sas1z/N43CfQE6rkkY6fBy5tv\nUthvU9zZYu3mSzwaHONxd+hOTMZdi+UVL9bht+nlq8jigOjyK5jTQzp/VaRo6fjtCv2wTiehMLBD\nlNqPqX/k5eIrGwSPT+idS+DCzUAX8bYH7A0kwiWLRkBjudXj1DPj7jvPYeC/eusyk1yK5HSeh2IF\nfzRI+rjDvfiQdCWBsB7DMVLYnTSnPgN5pUHreMq00YPEPtbI5LxeR3iSphL2ECrfZ3jtdTqREc7T\nIYmYwElgTNLI4EqrWAORgqaiVqPMfCPmohb7Q1jNx/GJARr1M7SbEsYZDIseFot3KW2IDKU1evY2\nR0cqyc6MQWCNl1w/hOyEWV5/nSf3h4QDL+LqdHnwdolxMsR0QWOUcmFOLxHcMPEH1xn2ZUZFg4Tp\nIpUTGLS9nFYLLL31MvQk2rEmnonCQDqlPwvg1bOowi6hfZ1+2seH33j+Ufu1Z3/K+cHH7D09YHQn\nzGu/+gLWH7/PwlduUZ3u4ZXXWXwzwHe2TIaxGmueCbtmDY/so18PErV7FKdFPGqT4z99QCIcoWcm\niXnTjGZBFi73cNttJi2BYPeI7iRA/ahP0uww6c6IdrpUtR4ul0omPyM9jlIfd9CbPpRqmbO+STaU\nRk26aCSW6TozrOMYsUQcX31KKDhAk9LIkRmaYFIcullcD2D06/j3xgieRZzOhNNsF6dwhM8WmRaL\nDN1d1IyLIU3UtptUt4M/7uZZf0x+bZV6q4pheImt+ij1BRpaiLR3xF+9/V0A3tpYoOVcZP2qi9t3\nFexCj/ZAIRmqkJ+l6PS2iI78NKNFJqM+5j2Tqn+PSSHAg4jK3B/8Gt99PObpf/yA/MqMvORCGDqU\neiaeTZATae6826BbLpDSUijKmEN/m0CqgyTY5D41wjkd4C9NGW+Y6NUw2dEhna0IU3+BqE/H1/Sh\nN0z6ehtd7yM2dA69z3AbLdrBClE9jZMv0nd18c1G2B6BYbPGyz99g7u/d0Tq0z9K7cEJGa2OqerM\nPEN6WoXi4WP8SpbrP/cFets9LudTFKNVmnvv4fvUFUoft/CkFBy/xqLcoWTc4cFHz1+iPht8Bck0\nOJQbUJ8heENE1A5nkxaTe7tMFy+hqF6i4whTsYR9Pks6IPDsky5V04vgDXJedThY8LOqbRK5nOT2\nvT6xXp+MEiCmTJguK8jnLvDVD2YE1lXk9Tk2/DZdOYzcqRMRIuzWd5HVMldeWCMZvkKtWmUlpaKe\njujPOyTdObyXQwSzAtG6n31zilq1OauViT4L05sTcW+ESa8JjO4NwRji9YNGlF6kwLnOEqNun26k\nQ6juoaq4uebZQNxM4vFlGIsii4IPw/AgGBaNR7skJlnGSyHKVoepnOTBu9/nf/5nv/C3H6J+5V/9\nxpc3cjcZJ0XCm0G89jHBe7sI2wZLlz5DYG2B28eHzKckPFID1ycjjJfSpGZevEcKgbGGDw9nsSH2\nLE0i3KQ7LiN3V2nqoN/IM9y5xz1J5bUrKxydPiVeWyfykoY0rbFjKHiGUWaNErISBO2IbNCkoWcY\naAUE34hWcExloGOdeQmecyOoa8xHNlkS2lw4l+buHTeXF3wMuirT9C4uIYXsmeIkTdJnHaqeNKnj\nDhNXjkF3RCk4QNF9PB476KEA7vks0V4IIS1jd2ZIkoJLnJFuj7GDKUoVPxNtwtJA4yvf/ACA//x/\nv0Rl2+JLv/J/8ujb75O67kP8ngclpgACSsvCHTXIOgEsTSO9skbQ62LbPEZ4XKf933/EuXwUY6/A\nzsBPWkgQzMlgjWBUZCLa+KpDGqaPiC9EUu0x7elM2kVCoQAFq0d0yUez30OVOrimTSx9jpHTJ17L\ngztM3X1KsB3EVCRiTp09uQPhDRqTEf6yQT6xTuf0hMGwhGdzDZdb4o4wILVRx3w44yXfmKnfQ6nu\nYEVs8kWNwcY8I7OAEJDR5vIEKNOv2wwzAZZuXKW9+xRJ7nP/YZXR+w5W9AXyy2t874PnXWa+1U8R\n3FjA8M7wF0oM12PUGs+IuDV65Y9YXb1ENznGKnd41Crw0vIyxwdDPOMxk5/J8/T+Po/3P+L8UhbB\nDHH50+tceO0iguHmd/7XP+TY7ycSCBBMXiI81gn79/BmLAb+NKdmEaVSxNp4g+VzDq6ZxaOJjTjR\n2Tp6RDqxxJ7iQbCCeMMmrrkx9solvOdTSMW3EXaGtEJ+TFcCzRhy+Ie/iWvtJfy1C4ykEHXXEI8y\nIytJZJUOhy2RgBCksz8mme4RXB0wN5Y4+vgTzhY3WA16OD2tElJ7iP3zSNkWZjFHwCtTNsOc5xJf\ne/8PAPjUhYuEhl4eTz/BF3kVQxghuaukum6q/jG3v/c9wteytGIp5msTKn90B2Npkeh+ibO/3McI\nzdP2g6JKiB4/YX+eoqUgjS3iSguvNWAudB4nKDJXc7DFJglHYuCViWx22P1Q5NLSVYT2M7rxBJP9\nPsOUidJxkXRvU274iQdMbOGYcilOVZ5yccWNUkhiTyxcAQ2/vc8Ts8LR0zJHH93FRwOXeowv7mfB\nyiA5j/na9x7TcAKI7WPazjM0tcuw08DjDuJbzqEfWyRzLWabX8QyhvSHcWZWDPfRx4xLfeYubLAa\ndvjzrz43lr+gnNDYLZL7f474zE+dx/3SKflPyaTHJ5wlfLQch7Q3Ckc7GFaI7d0BSVcZbThj5nYh\nTRu4l6aY0whLLy3SdfoYRg8hoLK3v0NDd5FsB5E7IbqRPq5jG89miANMkuoyd0dTlp6JuJUQft+E\nitJlXowj58I0whZGOYxg3qM8sHHPmgTDbRz3CGvgZtr3U4qdMh73OBkN8W7N8IV6VLEx7hSRXOcp\nlErUGxOSUZVOI4N3UKY56zOIBsi5I8yECO3SGcL5JdSuSMAzhtMmaaZ4PTEOtD4ZRPy1FkKjz9dv\nPc8unvuZf0Tt2z1aCiRcCiNtgezaFL1q0DdnTC/l0Owa7qkLLQmpgYLHpxJbyzP/8g3+8nvbVL5V\n5pVInOlUQX45hWA6uIUxtWaCFdEkm9gk7okzoIGVNrEP9pj3LlJVNJ79s68yfiGN6OgUjypsnR4R\nWc1h227GgwCjhIB4qhPKVNh3jxgbLlQnhKrZjFNJ/LeO6aSHBGpzlKcKyUSeSEOkHjdoNTPUpHWy\n9SOOHj4h6JGJLNocd7xoJx7Unknn9vvUBqccPbhP++kArdZnun+b5Op5pGUVvyNz0bSxLZGSVuX+\nOw8AWHv9Jmomy6rpwgr16AbyhAoO0YsRQq4pnaaA2z7FKnrotPusX/TS0UNItS2emjOaZYNcCTKB\nA/IjkQe/16D2LZvdzje4ku0h6mtoodcwNBEjlCfuatG29vj6Nwssdv30LkyJKi52jRr2YR1t5uH4\nWZNOwyDkNWk11xieHdJzm1ilBp1BhFYozNCuUd57F9VtM1zwEfZraLZBzaXRbHWwJgGyQZXDag3Z\n5bBdadFU+wz38yytZzjp1hACD2nsRAn7u7QehDkJCFiVEsqkyBCB40SFaFtkCHg6Mg/37/Glf/w/\n/e2HqH/567/xZfmtz3M+1KbVUunu9vE3bSQhQXHQZuA64vMhEf01k5ZcYTbrM+/W6FgDzmZpNMb4\nF6D6IMD8xQmTvk3D28cbdjBLJVaEKMEb86zd9vHxQQXxeJ5ZTkBK9Ci/pyI82SPnn+D5zA3a37+H\na9XPmXuGr1chOhCRWmnSiS4Z/YCqbZDtjomqDVwlm/bAzZ3jHS5dW0M9PUA2u0ynKrGdx7hCIXxa\ngrNbFtcvuRAiObqzHRKOTWr5Gmlni27D5I9+9au8+bLOrBMlUG+QakawtSmFvkhsksTTHtCfOyRi\nr0O1x1/deg5RP/bWz+KuR2gX91Fwcf+eysJiiPEyJAs60mqfYRkKjQqrkzG27kHmCcmGi7K/ytG/\n+0PWXjOQh3FW4w6nrgCBp2ccj9YxT6dk/AKldIawfYbLa2L1YgzNGYp3SnESIKpYjEslmM0Y5HKk\nAh1sZqjuAdK4TqfmIW3mqDoD4qP/n7v3bJ4sv+77Pt19Y/ftnOM/x8k7O7OLDVhkIpkJIkEKIiVT\nqpKrqLKKtChbTyzYT1wuFVUumVLRlspFSZRkWqAM0CBAgkiLxe7O7MzOTp7559A5x9t9+6b2g+Gr\nwFs4der3+57zPedzagykddxMnfC5xih5hDAG37VrZK0zzqwihc04w6bN2Hqf53/6LpnAS0yOfHis\nOO32iGgmxskYcvVTat4ZQmCbB998TnKpyM//3VeIHM356N0DLqeTzPfa2Akf1abL7PrH6Tg3ePr+\n/wLAy69+DFVqs9oP8KwkUHp0gDe5ysCQUHpNOpkEKUFCetRh4cvw9MlDtgM5ZuoMRV0l77xG9jMZ\nQsc1PAWb+smUWushs/0BX/iNmyhRmY2XN/jgP94j3TpmKKvUpxIrygrHtb/EsBxKq0F673/I/UAE\n+2BC8RNZzLRJcBKnMqiTUL30xyl8DYFkch9/xI81rvD4iUk8miFcP4emgB0E9Zc+h9GXkPxdnj15\nTPJKkWC8zuhowHgpj9S+j7B+ASWUolOdUNra5fxJjeuWji5HUbUyA88SEfOAYjaGXhlDIUuiZdAK\nRPnJT/4TACuf/l3814e4jsKaUiRzPqNljtDTC2p3q/zSf/95Yu/FKPRqLBLrZK8vEfEauNpHZH79\nb9OwJZaiYY7dMltjGyFjYQSO2OqPCU4C9EQPPhQmwQVO/xm5m6/xbL/NRSdIXQ5TvNzmcTeDzwzy\nWDok5m1RsFzOxilUt8zSZT+LzAreIz+JhYsxfcZor4yQKRFcHaLnBrRPHM4rh1wXLYQNjeFKAL2Z\nJSxmePb4e2Q+/TeIng8JlhesKMv0jSBKboGxs8IiNyNpjjjwnnIhGGB0r81QHrLy+sfYWFSoDRPs\n/NxLfOor/4Dvx77Gu3/4LQA+/Xs/ouc5YmsljnH/EUdyhaZPZDzK4wv0cMw3+MBqMjx+m5d3cygH\nYwLlMcF8gcNZnZ0vxrh7/5D11TWaz5+zFNxEGur4+h6U3QCmGGdg6uRCcyL4GQYGyEGTz63s8oN+\nl5nxmNTGJvngEQcZhdIzBVcyiQplTL1JNBfEFBVcn0WikOHoyYSUuYJv75DD2TEv5z/O/ttjoit9\nPGKYcFgloo+REi7RoIxPbuHUXKRQDHGwR7VlsZE3iY4EzAsucl+HRJRc5Rm9WJqQf0jPV6DSbeNR\nW2iqF08jQSSWoFlq8KNvv1jVf/P1LzOOhtGPRuQ2smS3XIynZzz3eBAyXkpBUCdTmqM1tgYL9hHw\nlRLU5BXceYCljg+/d4Aq5vBFO+QTK1Qi58S9DouUycLQMMsy4UyPVuWIyIqE3Y9x4dVlxu88QH0z\ngxq+gd8akJsvceyVyKZ6aA4ISgTdZ+BtB6mEJnjnV1B7bXqFOHq4w2bHwlMQ8CYk1JFIIO3Sadi4\n3j62tMRZucybxasY7UMso0Vzr4N+fYoqLhAXHYQzEWsrxGAWJRPW8JhBMptReqUdkpMegeMO6SsJ\n9j7s0FjxE3uQ4icfvegYf+3ir6H4zpnKEvrTA7zJFYJeCTmdY983Q67VOV9NEY5ruJ4Ohn2Kevdt\n+uZjPrWyxlkjTCpeIaxH6cfWMcwP0P7258hbfvylLEI2RLOl8fy0Tcj9Fl/89V3uPTjj0nODjc0B\nn27Y3F+bMXtcRFQmtGUNVYkxG3rRwjmEtTnlSpVIpsjT4yfkQhLMq6wIA1zrMtv5DaahfWaSjC6o\nFNseksMmbV2mp7YpBeLEpDGBYJx4K82VjSEn2QDxVoNGPYkZNNEIMJsdY2YmbEb7TKQijh5mSarB\nZExvVsM573FQPuZ3/uHPwHbeH/zx7399e3OK++4BydMqW9k4t9+NYYfDzBSRaSdE49xkJdpj0PKx\nGZSpzNOcDQ2cYYisY6LPCvT1PlHRxOIUUZJZ9ARWe0UqoedkziYkt1/CGnWox2p8ZvWTjN7vIBUq\nTFIaxl4BQ69RvBTidqPJxaCOY8cR7S6x7ISjbpJOJE+/o1FMRKkrYfzWGKtbJR0P83Axo4ZBdClH\nIOTng4OPyIQ9+LxwKIkPAAAgAElEQVReqtkJ8/AC35nNTPThlOJ0Rw/wZXYpCNtsf3KZw4MBatCP\nbUWZv+SncbdNJOPhYO7nqP+cG6UtTsdl8Lv84K/PvuxsrSFLJnXdZvOqQGRtjeGgglfq05ZVRF0m\n5DZZDEPcb9QZT3q46in5nR4TX5ySkGb04yT753163/6IrjYhfyVEWD8jcqFN/6zJ8mTIwpWoj9vQ\nzRBRLZR+mpYIs96AlC0SX54S2Z/i9br0zzTKlp/AbISmLZgFk/iFJr3BCv5pn9qkhxPewKfqJIYi\njjLlkR4lKrdZW3qZ/be/z1vbI9KZL5AszXHlIPtShYxiEswFGPsNljQLPDM67/6A3WtfoHH0Nu9U\nR9ieLmtLGvNBF2cqcjaacPWf/D1uV7uUtzu0v/nvAfjKV75IZNqlNfKyHqojjS/i33ZZhFTG92d4\nLuZp9atYloWcX6CuFBDaY44kEbvhpSYLbPsUqmtBDN8quXgKyxtgxbDonHeJNEs4aglh8CH2tTCW\nbDL0FlGuGVS/10fYTiOnNKyl18k1NZL+Id5OG3Uwptn3oq3PGY4XkNbR6GH43sSjdlAmc/RnDoqb\nZaR6SSdlAp4z+qqDoIeIBCVSMQ/zapL5jzt0EwPEtko+uEUrPISWjRMZEpyMwQxzZNZJnbaQO8uE\ns1V6pJH0HCtv3sR58GP+/P0G0uoN7r79bwH46m/8CqF9i2dzGW98wsm0Qblrc2UrTcr0Y49dPqz5\niK7IfHBoEkjMUIPH3MdB6gWx3QmtSZRV2yG4gIUwZObZJNIXOFnqERXS2PoyY9cHOR++yXMKL23j\nCVco+Tx8dGxjpzt0KxbKaohYOYHoeOmZGlspiXEkhacRpJybUirFkGoKBMEJP+R2vYM5FllLOawm\nljE3NjAqQzbT66yGX2MWecYw3SOnrFEL55AVh6eKwFpKpfHjMeHNFEnzBKca4eHhPcT6JUZuj/pz\nFWXqQRkeIBTH2OMo9+pfY9N6zJ/9pxfFzuP33iDsTfP5Txc5tBasXRvz5IHFH/5/d1hpQsJ/g8jw\nA2LhDNKjH7M2G/DDow/w726xpCVpnNxn+eO/Srn+EZKwTnl0H78gcqJ4GKUiLBkWvoGBbedwPAq6\nPCaeuIR7LvN0+pxk4gKDqIhxq8PluE0NlV4gib+lEikU8Tsuuq+Of54iMntC8jSAL/Dic74wntOP\ny/g9bRbWNpnpKUqkR81rEWmGaWehfNeisJmmF4mij1wSqzkW0SbT4mUaR0PsYIbcaQ1j+SLzRoWh\nP4jphgmEkvgTAQa+II1hkIA7YDhN8tMfvxADH9/eJh8cYF2OMjioE9hro+dC5E0PUb/Ag7qfk26Z\nzdAcz842mnCCUzslfmEVjDmSfMI4liKxMmBRU4itGhyYDgvrOtF9D+GcjnI4Q1qICC0PxayX0WOb\nfiBKve7AKEvUPaOt+jB9E+LpLIIVwTajzAcjxKyXvJIkPqhQsyb0BiOWjBChsxG3ngyxxYuIpovl\nMwkaHVaTGwx9Dn3Xol8VcMIeLlk2XuEhARZE/Oc44Qu0znVCE5lIys/+A51Q65ypz4thHGJoOtNb\nsOh5cLIi85MwxYthjs/uce/DF8Tyj33i4xyXB2TyItqSyt6Py/hzbaonPgIJgZZHJnP7GXUnw0z2\n0h2r1FwPOamAKOzxzf/9h6Q3tzHHIlLihNhMJiPbBC7NGFvrmPe9lPMtXvvkJ+gODjiYrXNh2mP3\n7yTp/cEZwzsyoeIO0/wBISPNQjtD9y/YduZ4whGSkyibcRvVDjFaDeI1NHx2mp6bRvZEOe4NSdpT\nwmEfhrdIY3+AlDpHdnpUQkOmHR8xN0AiGaN1NMN34QLWYx8ddcpaqsXipIFq2UyEEMl2FGth0xu4\nnGt3mIsXeKmUwu6X6EwEDo4f8ru/8zMgov6nf/B7X//C0i6vfOYKlekl2gdj6P2Y/KUtxoE4G8ky\nY1+C6XkAwRozHMQhNMZqWawm14jMnnJQiPFKNsvzJ6c8ndW5vJ5hUq8hzU3SKwGevz/GGThM00Fu\nuCXOZ3fptQRsn0hYU0l1WsxCDp2pQfZalNHEZK4saOth9owmw+Ep64UkOyUFT79LfRpEmwdwQxN8\n3iTTA5uC0MZ/GsWcT0ne3MKe9tFbPmYzlXjHpJkIk55UCShFQrUE1laYaDLI+LhF0buAjTihTZHG\nnoOY9iFVR9jVKtntICf9KYLPYGOY47/ceTFr8Wl/AO3CdZLWAuOoReXsAYlYHlHNMes1iCfyPHpW\nYyNzgcRGgoHYJdO9RNwG52wZ6Q2Fvl/j9dQVGvElAmqHkBXjND3mLFPlvPkArbhGo9Zl7Ekgh+JM\nXZtupo+/UGDNn2ZmzKhMDPqDFqV0isFCIZKvMRwEkOQSzUgZ2UmwbEwh56Hkv4gV99F8d4/kxcsc\ntR9j2ENyE4XSdQ+TWIyEsYr/tsGjkxWM7QgXbQX64OTqBEybMyyK1XWKrxYZeUTaKya+5j7W7DXy\ncgrnnkvz9AS1nKTk6eKff4PB8JSTt19AIy/91tcYKDlWx1ATwsjGCcNGFzWtwXGUecBCDT0jkUvQ\nL4v0j+cs/BLZ9gjPtTX84Tb1YYKIaNCTmmgnAZLDGB5xhGmGGe3kWYTmJAw/RtVHRZDZjk6xm1uE\nPSPIh9mdx2Dh0ovqLIUTqFdLfPTne5QCOnHJQ82ncnWRwBPKsLxWRullaY4bHJkpYi8tk35QI7kS\n4eFEYTHKsrNkM5wUqNtDYhmJVkBD8JyR2FmnsiYh6VEU7wTNkSExZeBpMpEzBIMDBtEIltYmOJY4\nfzIhWazRedeDfvFN5M+Z3PmjF2eGgu5V5lselOpPGMl5wgGTtYLE7J1DzteKhD/s0vIK+GSd7YtQ\nn/mRjmXUzDJVVUeOz1ky25x1mkwnYcyoByoLwqKHw1mR7d6YaSxFvD+A4QB5JiLqS3iOTPpCnNng\nEatuEVf2oDgt5mqE4HzIsl/Elpexwx3GzQ4Z35hKNUK1NSVob3LaW3AzPcKbyJLzmUy6aSa9MXUt\nzTieYBg7hodzpmwTm/mYiA66R6W4GmQnFWb1SoTF/WPm8VcJ9kYc+S2O9qdYvg95KVQguHbOWLyC\n1hQ5M5o0j04wjRTv/eB7AHz19/8ul9M+Nq6kGA5m3P6JiSnEkLMbXBQv8M7pA6LLfl5LXOP59/ZQ\nf13navQmasDLWTXMS9vXaH7vu8iJXVLhHqqxzvxmGuXwFuNqm6h0SDtuYg0HpNajCJrA/Nii/Owp\nxiWJ1PMoEaWLGGhzovnxTMaEdgPUj+r46yPOhSGLwwR+o0fHv8tUkah5ZrgNB3l3CfOBy0oxQ/98\nD6OQoJF2cQYOfXsdO3lKEYmUFKbms0i6Eulin7GxieWoJLDxH5QZ+VW8A4W2FCetNIm2VRpiBzvq\nEh70WCiH5IMOdb/M+3/xwgb9xZ/7W5xOmqhNh2TYT2xrzP6ZRl4qE11O0y89wzgf0Vf9nB+2aLUC\nOMGXiccPKUQuULWq7Gp+zEQcY36IdyEQezJHCU8xxB6Htyy6PkgUYlR7HppRP1VhgNjXsedJ9Kyf\nQKGGrCSJzE6RqgK10IgrJZnmuUCwucDVjhjLeVa0CJFClFlhAYkRKW8BxasTjFSInvVYFNLUyhL+\npIWk+wheSLA0qsGXNpiLIRoMcMISrr5NsutjlpboPD5BvbrF1PET3Mlx+/b7LKU/xVAtk7y0QuXc\nhz7foznR8A4dPrz/AlL6m3//N3l2YJAXFLyRVyHQZRoxSQkqdhqGez3aXRgHxix1yzi2iJ6YMhc8\nnBX8/I3/9nXe+WGPC/EogeiIXk7AzKbR90wa3SNmp2Ww2+jeBitXfpHunbvcSK3w0Y/+mBsX/2uq\nEYmBovF87xFJ+RRPIEC1OyTti1GfTxgOBELCkOfCgP4tD1rjIyzLRXysUxJn6BvLmP0iuWSfomOx\nc9XPN058dO6ds7uW4+5HUyg6jI80zqMHbIs5tHif4zM/QiyMz4FxIUXsdIBTqqCMfSjpIYPTPMXC\nmOEkgke1CKtL3L7/I/7Rz4KI+pf/6l9//cbFL1FNlXD2bmPsanz3j/4LX76oEVN2mJ2LrA4TjMNl\nNoYuGCa9LZuBf4eYfkAtkSJ4HqQRP8WQs6QnSbqXA9i3PXijXVKyl/5Kmny/hU8/47Fwjt53CBy3\nUIRdRlkvkdw1bh31sNYiFFtZmNoEtVUq97/LZnILd6Hjc/t896d7eDe8rMltGp4YGlE8UpsYDrGF\nymnQTyoo0jiNcOf7p7x804cZVcBaYcaMmOUluu2lOdJRTu/z//zpLQIXdlkM2piTALN6i7CtMTp/\nArUS2Tc9rHslnvi2GXqesnAd3n7/xWD5p35+g0nyddS5wqM1m91+FlEYE2eL/cMn0Akj7vhZKD1O\nDy22rm/SOS7j2wjjLZk0PvRx+Ogcxy2wuVYnt/FFysczgr4g5rM8/tJ1gloAvxjEn0xzaTOBJs85\n8bSInfuoB1v0piGKqsRMXqGdKoO7IFjWiIcVKmmd2FgkMG7in+apSzWy3jSHw0c83ntIPJdjfNDA\npyzhCyTpBlJsuX3OntdphgTS8yp2I03j8AO2v5Cm0ZzglVdJDivcPqiTeNVk2ZflG3/yHbZufInK\nRwdcfSnL9BD6/gbuvEdv0mC5k+Tu5EeUHw5exG33Ou5cJhhrs3o9SV/3cpAeE6trSMUqCzFEKJui\n+d5HbLu71JMW0dETNOEac0FHO5UINhWGIYfQYYtqEZTpkLYs4dR+hBJfRlVGfDioML7ziFXdRvYv\nkdiwibyUJRsuklpe40d/+p+Zx0QWh2Wqts4nL7/OsTlH3Tsjl0zRPW1weNREK2R49wffpfjWy5gd\nm+2Kja4NGBguGTdBcPGEpyEVj3zCsrtCbn5KuzohG/XhzHyIYoTo0zody09hZFBvjCmFfKxkP8Wo\nahGehemLLo0Tg7du5vnBh2PudA6JJS1uZl/lz/7D/wnA9t/KIw9nmOoaQ+pc7CwQjWXMUJtQYwpq\nmrjicBbx0u6esxBtmlEI9aZk+jvUJT87sR71SZ++YuNT+2Q8XmbSlBXPgLvrBTTL4kCMMvQIrKYC\nPA7ECQYPqMbmeNZfx3ZvY/Qlet0WGWXMQL7Ku/UavYMH5FZ2oCcTC1bRd704JwmKyYe4q2G6jTwp\n5wil4iF+tU3Tt8Z2MMDxnk7w0XscXZlyZZohnG/zzjffQ876CTwc86x+RlAdUnjr83ikfR5qCbaD\ny1xaGqOEfdScIou+n+nJOclog7mlc1BpUfT6eOfWi07Ur/7m36T6p9/BZ86ohrz0rSzx0jqbFzx8\n6Y04+ns2wU6d1msatplDu5qhO51hP0rSuAmVjyrMFz2knSxCL0bfesRmr4au5FguXWEcyrPpJNBi\n58zGfsyne3Q4IvBaFrFsY0h+5uqAWO8qqtai7ZSIVVVcI4WaTHLQnpDziSial4YcoaAEsCdliv4w\nJ8UUJdOhleohRSSCwxZG9AJOvcui34BnadKfSTB4NMRHm1DEx/1ui0ijiD6/z0zNo8b6zMQoU/cY\nQaujx5cYt8cY8xnbgQ2MZ2UG0evYapO5M+D9v3wB27xx9Q3WP7eF6w7QrRlWbZds9oh2ZAOPDiG/\niXbxDZxTD7moQtq3hu3WcVWX/fmMUneJ/WydvnNKshLFk9EYTxcIZwbB4goHoz7yaEy3/BGxSxtk\nAh2MB36WkgFOWwbpRIWex8Y/lLHHcwRrk6WlFYR6j0XCy0Lqc/J+g67fYmEnmEdbOF2NHnNSoyyG\n3Cag+3jc87F3cM6GnId+l86Rl2BRh0WJ/viI2cSLPzIgIIdpWgpmWMETbrEeuczaWgFtRWAm9rjh\nvUZk2GAptYHuBsmvqnTfs5gOJ6zm4Ifvvci3N67kEDIhSDbRVINZxUu/PyVfLWPXurSmDpHwGhsb\nMt7sFnOvn01pStXq0Tx7QjeSZSWyw/H3/gypl2Kmi7QtA2nSx50sEY8HMf2QfB7lDJudi9f5sPmI\n3Qu/xvv3/g2JlesETk4phELMYp/HXBxi9BoYvg7D27fJBHvIYZHTMw/R1xJcWQnxwHRZXEij5k36\nT12yyfu44wRdXwDfwotfHZJNZBjF3kTxtFC9O8iFIUXLZHB0jxNFJdQ8IBX3I7ZsrJ08tXqD8ZmD\nR5bR2160rELvUGO5b9A4HJBLpXj3/R/xu7/3M4A4+Jf/7J9//dpnt9CooAwvkC9eYHP78xxaBRaV\nDk3HRJW7HC7ncQSHcNLF8x8PuRER2JdsArKKqRxyPGrx5uuXOK620bQoLALEL86wnvrJXc8zcj6k\nYlzC8o2JWjnafo1ETiDkBDh83qeY9BFc2DzXJjzRT3CHCoVIDCeeYriZZWU3TCH7JrIVRp7UEasa\nPs1hIYm0ZkOSxmWkgo9How/4/v91i1/5natI5RUURySu1BEWS7jZOUfPxgzEGrZfYvWVXaTGnPnp\njINyk63gddQNB5Q2nqjLyBIwIjNijQEzTeQNT44/+cmLCvcrv/xrqFaGQ/GQrcGQu+UjnPUl5PMx\ni+CMWmROoRlixBwrpxJ+JjE9vY/p9dHslNiMOUxKc5JuCFXw8u1vfQf16g57px8SCUdx41NCrVNm\n8Sxqp4Mb6pPccnHUJTpaBcG1kQMLTkkjxyykQ4NsLsVZ+SmJ5TlaPUV8FsceTjkSAnjlEIsbQ/zu\nlPn2W4wbD/FGVrmqpLhbe4egYZDEw6whII6KRMJBclqV+aUV7h3cQ9MLeFtN5rkbhMUedjnKufcB\nka3LhE6f4LdEjswEo96M8MUsajrD7EijvByldT7h7OgYgCuXP0ZOmTCZB/jg1hFr4iXC2ohmsIDu\nxvHPxoSHJdzMjEdlg62swySyhFVQUOwVPH2JTuAjBERmwQDrnQzPhwamH2b3Drj8KYXWsZ+EPcET\nibL7c2G+/7RCeFSn9uM6zWmb02qDlYvX+fG/+w9svXWD0d4SzzpDNqURZ+UTKt4mpcWQdOpV8sUZ\nU6VM46CA4Z8RtoKcYrIsdHk6GrPoZyA75FohTf1bj4kHMmT8DWTzMsKFLB/8+Q9ZstOkk6Cvp/DL\nExY+lbkawOce4OsL+AyNZe855yEP1XtNtORV3tgWGJ75+d73X8xEffGrX8dpHiFMasijS3iXTYS+\ngRHQ0J0czdEYe+Cg5CoY/StEJxY+dQlJNBBkmXl5n1kAQopJYSKRV3RO2gmm6pyTsMZNYxtFXFA/\nehevb0BEsBmXj0lmBGJlBaN+wLm1YDmfJRLKMTluIgTTxJhQUJZwDg7pRFPEO2Gsho4T6NDf3MRz\n+hKrzdvMkzZCyo9TLjLM3WNv1CWfF2jV40TVq/iUOiNlhdBExzdXsFJPkSWRiWWgPjrA0Syitk57\nIeGMM2SlCS3ZoCQ4PLChJU2IUMI3vEcmvcL3f/KCS/bDb/y//Def/XuUDR2vp4c3aRJdd6g+/L/x\nPv0mAdnC/urH8ZSvY+gmG69d4b1n9whtbbHlOeTRY53g1QwbHoXZ+DnVYYqwGUebrdJoVYkkFwyd\nPqp1BTna4GkMdpIX6FWHFJYihHwLqsE0TsCDXAsxsZpI2hTVnlPNnZHwJJG6HgJbaUJHVYZzA78v\ngqCM6DSa5Ddd3LMJYsSLZIYRn+1hutvEih5SYYfmU4MkE/YSQ0ZOka2eRk8wyY4CmM2n9FozVpZV\nxo0CRiJOoNJEdrIse2NUQ1OGF/L49p4y6oFnJHLr1osi8atfSdI9GGMuNJwjL9c+pSE2bGpSn741\nYDgJE7KD4HRx+iJaaMzhwOXswQHFhUQn0mDhiZA40DlXFTqzMm5njrHiIZyNMG/UUJfy7FzOsz8L\nM/IL9OwK8+IKBW+L0K5G7TtjXr4IT8Y6TypDgvkx/aDE4fN3KYR3iG8WiagL8rafoGbR3W8yz8wI\nhkI0xmXGZwYJZZPN6zKSKSBJKpFCFF0ccS7YqI0GsjPEGEaoN9axhj3CwyDEbfwNg8b5Ew6eT1mc\nnLNY62OuXSe6FWVuiRCwCaYUPOczit5Vvv3hN1+8b1/+PPl0iRNrRGy6Tmw2J6ytUnVsdl/OUetW\nCazGcWYepFiXohogspnDI2UIbn6MLbfEQXNB+gsbxA463LEPkf0xtNqIrE+CgoYnFGD/xAXNoPm8\nwdXcEuYFL+lXv8jxpMJh1YN2cY3902dktn+OsaogSwJvhGUmlkOzGEYcJLnmuUTdEXF7PS4uO0TO\nSyQS7xGdNmmF8qQrA6xkmNPJlN1Ymsq4jye5YCfoZywPOOwkiKVFVFfFk5wQ7sgczzIkQi62mcDd\nUQgGIBGaI8U05rtFeuenzF+9jKhU+cmP3uMf/+OfgQPE//z3/+nXP/uptyhXdomlNJ4dPaOTOuSy\nbHHXsckXbRIFF01OYfgcyq0M4a0shLz0hz4keYYoBYi1cwxmI7SRiO0KYJk4HYWqqlPTK1SP+6y+\nYjMdS1zNx9DUIdXmOXUCNNQQalDGTa8zWdhs5lNsigZOwsAQZIJuDf1wTizYozyaUJkukff2OJ+D\n0TBICRZOZMre2OLBhza5V3RWgy5/+J1vU4hcYJDS8dlFxvMaBbtAWB7hmYeYPdNoLCpE/DtkYwu8\n0ee0ZwajSYZgRESZG0jVMHekOrn4KgXV4U/+4oWd98uffYt6+TlGwMBz5CP1yzfR/nKfb936kMXL\ny7y2ukYgn2YYWkI1O0TDEkM9RJB1UlqTp6cyUrnG2rpDRw6x/cqYyZME6cSEKwuDeTXHbLjAZ8JK\ncpc5JveftIhOetinGTQnwDjhQ3IlVv1TAkKCqjvAtxyj8TRCMOWla1m4KZtEpIkYNwn2Ixy4CsKs\ny+zdA8SRSTAfRlta4aRnsvA51OgRLoRY9OMMlhd4G1PyAZuZmkQUO5jlFrFMlEh8gXCywTirIo5D\nrBV2SH5ik+XGlPtHU6TlEu/lqyw+/WU+9T/+E7731/m2fe2TRFNTTCnOhfYAAQvTCOIGK6hjEEc6\ns1EV0SmhTsLMLYHQ7Izw2iqdx3ewoyFW8l3GjQecpB4SR+Zsb0IsNaM7mLH8mbfwzmWeTR9x2a9S\nz7isXF6i3giR9yQhEGBV9NAUm8gnB4S2iqjJLoGFjXXpMuOKQUhSsVs5atYYV7aZHwzwbwcZIuIT\nIcACN7AgqfSxiyLekc60KRK5lMCKX6C/FqPXGPH03Xt87PLH8MhlfHUDb8DGzOYZnweJBfboni7T\n20mg1SfsfspF7PXo1sOkijd5p2Px+GmC06d/DMDn/85vsZ7W6DczbFyPw1giEvUyGWmkL+uMnDFd\nw2RrHic8AP3qnMzBM4SCwd5HxyjpAW53gscKcVCLoHqzjK0elhbBfpohnB4xtO7TnF5GWiRRT0cg\nlRDiaRp9l8ezKZdOapyFNjDGjygUd5DsMqrqITozOfCJJCMqRqaMk7rJXB9Te6KzUGeMCiWmni5x\nT5R7B88ZlZ9TbzRQAmt4q1Pu3X2bTL+JM9CJjxxGwj4RfU5SNNCP6sw2o9i3e0Ru/gL+3kfEhCCd\niRdjGEMbH9CYDVheVbGbUTY3d6lOZ7z3zgsR9T98/bdxxAXOrR8S1qO4T9ssilew7ogY3iLPfQ7p\njU9x+t532P6VEuUHbabqMsphmeOyyU5qGeOkgxTocSwvSJxpHORU4tstZF0lYg7pV0NoZoSBucLa\nVGAabjFNrdO3FFLYBNAwMhGUscjU1Ym+dB3PSZNGUOPqLMRpskrtqII3u0EydYwxneFb9WO3vFQk\nEbfVJr1Yx582sWtpatoj5KyHZh/asotSDBLoLaE7hzhDP66ogHBKdCnBxN2kQYWJCdvpIM48zDS6\nj5GxUNs+/MNjwukkBSVCOO7hO3/5Im6/8tuv05DG7J8coH18l/KsimTXmBSvkC7HiFzyMOw2sDMu\nqQurDBwPpbmOvisx9Qm0pR40RzRqp+RGJyjOLrGdLH4tRf+9ewQWMn4hy13xDL+TID0SeHYgsBRP\nUw6maIbzrJTnvHs6QNm4wtPbH+BPbzC8e5er//RLKI0jTqwO1iSMlgFdiRIxHEKOj/6kj2musqoK\nlOUJbROUkMEg3ObkTEXzV+nd8tMZnmCoBfJyAMMJkOy1WF0d4fbmmFETOR4jVu0QLBbwT2xicgVl\nWMQ23iU8WSNaGjCyK8SzM771Vy/i9tan30Tfs8ipJv3WgqZlUop1KKoqreqYhSDTvf8QbTfKIuRj\ntOxlbe111OmM2uM2noUPNbaE2vUzy01JvXSDdaPFidMmoIfotgdYFSgcnZO35vjyYzzP+tx9+9sY\noRQJc4HvQp757R55Vad8bPKH/+Yxv/KN/5ng7z3mJC8QdeLYepEDtc610RNmb15gKIkUcmMmLYWc\neszTezKikqam75EW54z297kW1zj/0Et03uDMk+MzuSJ3yiIrqS7zRyKtnB/l0ozZMwux3yctDxBr\nQfYfHjJe9uM/EgilYozcO0juhPvvnvLf/Sx0ov7ZH/yvX9/duIK7VuTp6T12SiZrrQS3+nU0dYNo\ncIRs7eLKc5rzAcnGIRR0VMfFcH20E2GiXT+yO0W0FcR2mZYUJm4POevsEY9tYe/fIqyESF+a0jnM\nsHrhnMPnDpvqKzxsLJD0Nv6MwMl7/5lYRmXxxMQRPehDcBZeql2FWbTD+rSAMs3RrTXoOxoZYYJw\nKUvUn2ZcGHI6npBfjVCMRgh0t1A/naAUnBM1/QSPntCewDjpQKeLpifxvlwiNptgfjJL+6dNOiOL\n9aqH4E6fvpDC8Oscdb28FpPwvRJBl+/wF3999uVmVuS4seDqWo71L73C/tsHeK6kufTKKveePUfU\nJYbuU45/IuOMm6ytr6CfBbGmT9FbtwkrPSJ/8yLlxi0UZRkj6MM8q3BRy9L4qExChJHTImkkMNoP\nqFlzNiUPt//qLpqyxkS9xWZsgFec4wn46I9VGm6VzWQCZeDQmA/R1DSl+RJuVeLcnOEcPWQ9/xL2\nQMJenrNc8G1R6QYAACAASURBVNOZjjHNIQklQ3s8Zu7T0VbXcZwOo6MqpZTN+UoIYd6j020yyKwT\nxaJcOUVdmtKpz5C9bbJKlQhJni28vLSRpPCbH2P8bp/BpIvxyu/y4Y9fIA5eu/4aspijNDphuFVg\nUl/w4N6IpY0N5NKEpljE69HRuxPERABTHhItZ0ldHiHcjjP1jYmFVhDLc2JGEmeWJzmM08DP5d0Z\nj35wgqiEyC9ncGM5PB2RcuMe3qUVPN0q+nxB35vg+ksR3DvvEL34OsajNqO0Tsmzjm9/SsPfJRU+\nwqc59CZzzq0+N1auwdMFWWWM2p5Q0+M43TbK/CUa4UOmizEx5TKPjypMkwKebh/3+V2WvvYZZk8W\nDNclJF+Wbr9K3pDwDDwEvXX8JQ8LLMy9Hu9PYuwEd5Cu+Hhyt87Hr1/i7b96Yef9/c/8NvN7PTRZ\nZ4yPVHWfZzEZtRsnJhyR80nowx7WkkHETeAZdXDC64yO08Qz5wRj2xjxHAnhgJ4coxc4YzckYGou\nW20Xj17jubKEUHnOtmgwkOv0iyq+xhRbFdgRkjwIGQw6MitekfJZHnt3jdizCsPMLonojLPWBDuV\nxN90ySo9tPA2OXmA64ni45hhN04wYjBPxsibGxxVzpl3glxcajPpFLmyPKMWkdgQIujRAo5cQVls\noos9ev0c67F7zGIeDs8dooNzFlnoxEz0ukv4sMVADGCseEim83zvmy+28z7+X30ZJXEb4VBmPjDh\nzTzDdgD/yghfz6UtSiyVigzDQ5KeIlNhyNh9gHNnCqUEbsJHOBIgmtwkPSmQT7WoimG0mo0ezPLw\nwQhdKHEmPcF5/z7+l7eo7/tR+l5W3CF3jvt4+zITz5Rq5ZxCwE9cDnB6vuBysMEoU0B1ZVKRPp6m\ngrxocZJZY9UTJjCfYZhesuECo24Lnz5iUVggZ7eoPRYw0yZFO4GlKYzCh6RVBbc4JOT30O47dAQd\npwNOYMKma1NrdDGUKJpp4BzHUQoNPAkRRerRKnvpB7z89K/FwBd+7QaTWInQVCAotpDkFKemRvHA\nz2GkTHBfQNcuknx2TrTlwrBM9XDO6HmHlOFlLRLHttO44XXc4C7bF6tYbQWx5UUPJzgRxhQUm/nQ\nz/4P3mbrcz/P0YN7FK/coOu2yHlatGMDlH6A9UWSdCCFKSzI72zj3r3LpBVETEfx+hOI5QlT2Y+m\nDXmcVTCsIJLPZpYs4E5MQtsug6rE+uoq6bjDQX1OgXMMMU3AjhD0LDNOzZCcNsNFFoEh6jRFbNBh\nVFwQnajEAgsMX5KOfothNcfZdI/T8wrrEY333Qd89P19AC69+TUuX5PxBwOEAyZ3/+o2iUWa1ijJ\nGTabES+p3QiT/DIly4/+fJVeq0ftns2sOaY3P2V04qNlHeLoNqWkxkAM405VRoPHyPINUvEKA2eZ\n1WiG/nKEjNIjJ6/imapY3SZ6v0lS0hBkF6s8Zen1Nzh76yFiKkaxqWErFs50hcC0QqPzhJuZKImB\nhjWqcCY26CxNUMUp5E1k1UUZbjDzLhBWYwTtMsenXWJahG5lQuzGKk3Di6xB3JCwn5VproloGIyW\n5rh2BF82gT9g4MQMopbK0iiP2NV45+F7/KPf+xmAbf5v/+qPvv7Wa5+gs8iQFZ8Ree7HyWQJkmYw\nbDNRVAZth+5pjaeTt1n/4ue5/dNHGGIBddxnpEWRGwb7AxGxeofMF9bwl4PMGx0uXbqC1A+S3bbw\nmRrhVZP+PEn/Bx0enY9o9HVeKs5YtgdMlRAXCwop2Y/HDDCcVVjKrhOqeIh6Y6gP/SxGOrc+OuKz\nv5xjX7cxvTHevPBJju7d4mTRYOmoR+vklMAbDhuhl3CpMar4ELsSliYh5GTmlSjNlSLJ2HMkN823\n/+KYnVdDBBdeAmqRYSRIxYmRn7ukXY30tsvpip8vvZxmxYrwf/zrvwDgq7/1qyjBa4TWF7z9bpOE\n0yaw+xIhpQR1ByEaZPB8yBtvbCIvRMLdQ2LpEPPMkMJrGQ7qA4K5POPnQfKhIQeNDAlmvHt4n9SX\nrvK8dYcLv/GLDDCIjcN0wlPGrLMWUsmurtBNF7CmOoHBgJHhR/AoxOUMrVaUjlIh2w3gpUONEd3g\nGVpeIhJTaZ/0OT6tsaRuE39rE/1xmahvjVG9y3ZUoKYGGd26w9UrJXRLx53PcBZNFuICvzdHpTUh\nFB9SNDROF0kuXl6mWR7wvXfeZf2TW0TCIrX1pxQ/VKn17mIetgndPOLWN16Q3q///JfBB301Tt9T\nYXU5gVKRMNMqhjQi2LCIlXoIYpKmB+LOCVapR/mBhX4pj+t9Sln3kPAPUF2LugpiScfzsE46d5O6\nPEZayWC5Lc4bYSaGgH1SZ9IfI63liJtzplMJqyPgCwZRFja1jodzNcS6J8Xp/ASldcbQB0tCgUa/\nxpvXPkGj4eAskhgzC48vgrHosr5yjYlWpzGUEaQJgtZm1QzTnyy4KWaRaz7O7GNmmSIxsY9PsKk/\n03jWPWLJiNLUj5jP8pjZc0z1JtdTITa/cIXH/7bF+tTP07ff42nzJwBc/IdfpZSx8KXaTOYCT73H\neA48+JeqnI8u4clMiWcKiJ4RJ+oY9CVamXMiURPN7CExR+33cLUt8t5jOs5NrD2VcQaa4xjdYI0L\n0zJBcY3pioBWDxJQ86QCGYaCD3O9i9EpsJJOoqoO81SC7PvfJbJ5lT3jGL+nz3LQQm3HeD91l7Hu\nRd05JxLL4H3aJpX5GFb2lLEapujN4DVOSI9KqEUfhKPo0QVif4K9nmJWUTC2ByS8l+mm2hT2lomm\nfZjjHH3nlISZwL/hUB9vshY6p7SxzHDeQ+vHmC1rbDU1/vQHL+yVRmGVX/jKL+BzG3SCBRLK69QX\nx5T7e4R9JVbf+iWOm0fkfFvUFjbekwM8zTFiIEnGe8L0p1VmZz3saAivIGIsiQy/84iUk0H2dtm+\n7GM4PuFaooSmCVT0LsF+h+iFOvVZgORBGW1qMdXnzJ+foK9KuKUJsVGLesxhOrPJmwYVX5RMR+X8\ngkW85zCiQ90OIkoQtstIQoeZeoP+sY0b6yFWm3gXHtR0l/ThmFbZgzxOEzSnBJ0gesAhpht4Cmtk\nxB7dwjZmxCLYlxlNJ2gehdNpkqFmIFVjJKIdOmcy7995kW+fKL7CtBQgF0tQ0dOoiTkZSSYcWWLY\nmjOPbWMJFcbHCprkR47pGB4wP7S5nH8VZaayb8QIT3r4liz8wTmxgkt9qhFRBqRGXtz0mGHZ5LXV\nBOfpAT3zmFW9QeHCBtaTOectAy1dwruzzDf+xXfY+GwJyRgx9ScYx4r4JyO8XQ1VcphG6oxLJfwT\ng9T5hHXFy970PoLfy8a8gKZKuIlz9s0egbBLc3/O7pdfwhlLxP5/7t6zWbb8vs57evdOvXv37pxP\n9+kT7z03zb2TZzBDDAaRIgkGQCQlUWK5irKrKFfZlCDaL8wq2JZFF60yTZEu2URZqnJRgRJImiIi\nAQIcAJPvzM333JNDn8457ti7/WL0JYRP8V+/9X/WWv0qhY0Ai4Mw01kffdJHGXY498rElionqxpj\nP0kGhT1XJDkdYfl9ihsRbps28QeXeef+R1uNf//nv4hTkGm/930cO8Ct8gbmaopLReh0P8RLFmC8\npP2gQ/NoxDjdIKVH6Dw8YLr7DuGazSuFq6T6U9r6CnWhQ1eLEM78EPv5a3S9x6RXPsHZ6QmDpUUg\nm0M6b/N4eIrYfYKaSDOny1U8VG9BOJTEPZ3x/of/msiVj7NMZxiO62S6uyQu61S0V+jGkky1EF/5\n+gMihk42fpPFqobTvErg6pi8tOD08CF7lko8tEJvFCAeHCBrNqdvaUSft3ElH73Z5lAPs9lYEIxH\nOD4Y0p1YJMJZ8lKK/kkIN3eGI0Z5Mjpi78kDvvQPf/M/fxH12//Db305k1ijOO8ilaOEmjqGOKEb\nWUVfDSGENULBBkF3QKSos14bwUyiW6rhykW0rsNkOWBu9ckHdcxpjkeTR7gbOfbbNe69XyXzwtP0\nelOWow1WCwd0FBfNFGkf13n6egGCOVzLwDI8tE6Dh3WDaGVCoz0jOu9gmSFym03C5TVmsRqPzk4p\nDKKEnDqHiznOqUBi1ib4aR29pRBMWTQixyxqDc7UOaeNI9TNawykDBtTjVHvnFZyhUsxhfSNGdO3\nTPbNOs986vO0vQkVwceahzjrBnAjIw7PCxx9J8Qb//I2984+GppMPp9l4QuIQp6NixGZnTJWtcl5\nZ8T1nEa3nyK/dAhnfe4/eRvuz5D1Pqaho081krktsuYFwZLL5KRITq/SD66QCvnUJz65y0+z/77H\n9VWDRnXM3e6cuDfHemYd+/4BUiqJ2G8RSm9h9rNktoect6ZMDYl1s0smWuBU1JCyfWb+Gqfth7ST\nM2TxKsX8nHuP71D/qx6vfWGF42UXfwERLUmj5ZHNRpipKiymLDWHYHrGcKRRG53wua0rmKcK+0aM\n2UOPyfwDyn/jU6THJR784b/ijbt/yeee+y/ov1UjHRmS2imQfesxX3v/PgC/+smPE3AihObvoSav\nMR0e0Z6LuOsLAm4KP9YmvjA4DilokxF2OEfmdEbQKpDJpNgbmyyjE3pOiNlEIugnEccu4WSeYLJH\nIi8Qm89wPYPIMIoug+/FuPH6TazFEX13jBaaoshTvGmFYS/IuJIkpwQ5rgTZmllonwhx6fInCEs1\nxtmbjE8PqWcynN55jLF9ipY2SWfLjNIy0aVGJS4y3ZnAnRbKSx+j0BwjbZzT68aods946Zee4eTe\nLmHbJnE5QyZp08updMQJquwSaOroF0MW2yUWtw948oNjrp5EsJUz3m591Nuz9YLB8bsDJuEIQ+2E\nbD9DW9pHczNshUb0zuLMvAExR0fei6CEThHbIsPRGuMYRLwJgbRE7yyJGR8xOfRQI2fomkBlaFHH\nwsk4jOITzOMG7eVTRP0li0IXc9rEUkWWnT5Wc4bcVjGVO5zTIfaciH9/zmquz1+3bKyAw8eyNrP6\nDvGwytFcwd/oIEZB7EdpdZZkikOC4zTty23G8z3W4zZL6ylyJQtlNqeW32TrAi5EC2EwR2nNMe0G\nw04Ds7zONLNDO3BIljrZ8DMc3Vtwdl7nyWCIErCJH2f4xoOPGvJ//6t3+IPfuo7+2k8hazZnFzVC\nmy/SOjzkyk99FmXwDg++9haF9DbakyrK+Jxx12crpdKbaGRe2CL7VJ4PqaIKcfDb1AYtQsE2gXkQ\nKzQj37RoOkHmchBPWBC55pPa16jLLjl9Ri0Vo2w5BPMml+cQ1W/x9ve/TcuS0ccpiispApEWoWkE\nzx4zD1skI0nGUoCZ1Ed7GMKVooyLDqWZgiOcEVFl+psVuF+F0g3GSxk+ppGJrWGJAdqCQcpV6eGR\nqPsIfRV1oDIQRQpGjMZCpRK4R7SbQZyGOC3KbBdGfP1r7wBw65Uv0OpYyBcgOgpK+gXO3nibqBqk\nc98hnOqQrXZRDYfD4jpaf8Dw3dskf+UXaM6GiDQ4GraQl2ECz8mMnvksUuectDejXoOI5BA2Q+i9\nJVKmj9RK8XOf/ByPGw+gM0Ru9zhqjnh5I0EgWyQ7tNFiDrMHKqmQBrlz0vMAo0gBYXHGuBsidHpK\nZ1aiLNkcyGOcxAbB6QhfBr/Soln1KF5YCNKUjaufodZsIk66OEaPelth8qRK1L3OaXqBsGqQ2ZQY\nqRsIx0tUd8bZhk3RntJLPsWCDeSLBs2/eJsH3/lTatgfvQufW2N2LOJWKrSaPQLbKaJv3UWJaRQT\nJtlAm7PdBHG9S8WKo1TWiD6ycXMu1jsHVFMu15+/ycR+iPEzS6LTPlo1TCb9CvLQoPjQoTk0yYQs\n+mkXZA+h3uHPGudkpCDzgoQtmWSzL/P9d+6zWRZIiBpP/cRrXIx6eDRxxkOGxipLeU5v5EHLoTKV\nOPrTc2JCjoVf4X4zw3bUolv5JHMjjRWT6E2C5FazCKMqRmQNXdliOnjEVF7B1ZOYsRIFo0tnJBJ2\nZYaxMKn1VdQDl9mWh6ceETM9zqcTgqrJ3p0z/tE//DFoLP+D//P3vvyJX3mG9++GuZyzuXsI460k\nhZyJdHEXdxgl74YYaDLJpU0kUCB4Kwr3sgirKstZl1h0havujH1NQmCBKpe5GSzj+nm24jO8ZQSE\nBfttgUavh9CukLXGxLQEcy2NNr3AcibMEipWwkIa+qR6CTqPHlB6/hZBwQfXoLnnYToJFu4KRsnG\nCSvEBJFMeI628zL3/vhdsqnnkOoLuscDIt7zVNRV9u6dYaRshKqBqc/JG2n08BnvHPWILSC1k0cM\nFLHmDziZ2BjhFrWEx6q4z/gCVnmPaFPGegHe/+5HUdafrbxCOpolVRC4ZzY5blsQC+KpAmW3zL/7\nn/4Bl3YSWE0fPZdAviJQL1oUhCDdqktkWWMsbGAGIliBOY0nc5Y3FUJKjE1BR0x7RE2JY0mkHppQ\nCa9SSRt0Tvv4SgRaFjUlQOC4zXDUJzPI0W8MCNomxXiCNx99iJeKoHTydGMtfvKnNhG7LRR7yKkk\n8qnLGdS0gZm4xk3Fo9kDJilK9gWWlMNpu/SubzALR7B9G9ELsa2VWJzsMlopkKuYrFyC+WmW7uGY\nccpG2N6hkNngXvWE9FKh0Vlw9y/OmN855t3hCQAvf/HTGEcNAptXOXlrj8zK8zT6h4QLXYo7Kxjf\ndolt6YxObeTTIWNpl0bzDDFwTMOykVdnXLZKtDbmVHo2fk2nrOksF3cwtQRmXiRSFWCoMpNFlKVD\n0LxP40JmJ51gNm0S3FDpPQxTiRbYG1dJzi6xqDgES/uUchA8W6dbP6Ff1OlZLuGIj6j2GJ9MaTpP\nWBvf5MxtIkym9MoeUXR41EYwF8wKFcajAYGFRW++5JoX4XbVJLgeYzyLkO4JHOZ6xGsqqfYKxZjO\ncC7S3yjip0Qe//GIzUiXi2set37t7/LV//B/AfCJp77A6jCJfQbtYIqr7SnW+pywco3WowbeFY9S\nwGEgtZjnZ4xtid76nHwXAqtBmu01zmchXpBbeMMtQpcFNmaXaOtJRHVOPCriSjrD7ojUEraCY6ZX\nt7Cb91lEclgW6PEZsZVNtHSfSWwFL2MSOAZ93KK3tUNEXJBZ9AjEUkRXksRPA6yHpxycOqxZApa3\nii9E8IJd7PkcR2xyKSmwHIcpJxtYwjo9LcBGz+eJ4FGUCwhvPYIXZGRLojaNsR1K8OhtCbmoIQ6T\nOK0xC3OCmEoSvR7Gj2/TcyfcfvcjdnHGf8P602tsbC2RJJ2xOua97/8bPvaFXyS2u8u9r5/xkz+1\nwvR0hJI+RDleIZDucJETyOsyx9EsSTvM/HaDrVtJZrZLJFkmndDQNys4ioapRZCiUMtKzOrnlIdR\n7p+OuKXkeTCakZeCdIogRnK0PYf1ZYr6LMNOeEk+BqOIyIPvz0hsLJCGERxti8DeQ9pSBMXeIFI2\nMYNrJIcNDhWZeD+CkLFYmCZjYszyQ1Jqk+XphKpqYnp11iwbX+pBbYmzvUCqT7hIBdia9JGGLsG8\nSmARohZvUYyv0Bj2sDsWP3rzo3TeL73+MyTx+OZX3kEYWgxzHqvJDA/etAnYJyj5DazRAjml4tw+\nIVh0MdavEA8uiU0HMBMZZ2TiAROvI3Jwb5eeHiLXMBldDKiYFSIbMdx+nW64jFXwEbph7CcRnNwM\nRbYIkaG0UkGtT6gN7qHNZeYXe8RnU/xojok7YWXW4aIaR7IWhLMLlloSPTym1rDIKAbGpI90VSby\ndh9plCKcKbEQYsgnDsNsFkONc/y4T8EVUK4VmZ7+FcmtMtNJiDeePMTRbcoZn3HyMTFXZlCfoQUE\njNkR9xoWa7mblP/ez/Hmt/8CgE89/xq5hYwfPefsLjj1c9TVHPsPRshphf7LRUazNsZRj/D6FYKh\nNzgvPiJRh9Ktq5iaSyQg8M4HDczRmKv+JYZuh9vfOyE9TvBefEYq8oBBtEmg4aDaFrlXK+iBBdPN\nywgDl8d33mU1nqQ3ySCpPu+/1Ua3ZlxXofD3P8H4vbuMJxZ9ERKBJeVZkGXrEYmrMjvXN0mYS5b6\nmPmdd1DmBsFHAmvrQWq1OIFUEK2iU59fIDy6x/bnX6LdEwmMz8kwQ5VE8oEz2l2JddPGjIGQWmLH\nhiTHWwwHC/RklLgg8tZb7/ObX/oxAMv/yf/4218Oh67z+nNXcFsN9JUC6uII3xvwg+9NCAkplq5N\nZyEy6JgIzTDicshQj7HR6NPPLsiPWnQqSaRGjGd+/jO4JwvuantciWxQPexjRT1yn1vwaPcJnhck\n7UrMn06SiVoIywB+z8Q3+9iaTPI8QiK5iR/38FSfcNJHfqAT/7lN/AqsZppkAjUCF0tWNAvZaZIY\nBjgZPyFWKDKIhVH7SZb5FLe2bmBNBdwbJun0jNDAJ9k9ZuksGQbixC9kvIDA8qmbaHuH9LsR1ssx\nWif3cP7vr3Ol9AK+VWf+/hOSWw6XJ/Anb38AwPWdX2ZS6jGQQ+TlNcLLKKstGdcWcGItKG5yvJKl\nXB6jRjWETQex2ibma9QSEZKegDSViSlLws0hjhuhnM0y69eIpRW6H6ZRSKNTQ2/FscUxRmpGTuhj\njVUESSNTm9ANKMTTEjPHoFTyUSfHOJJD6fXPE9g9wMxp3Cyf4t2/YOgazO01dqJJ+gcQvRbn6K8P\ncAoi7Xaa9UyV8CKDpV8g9QTqzT65YobQbodZzMcdGwzjCsPjJL1yHK3uMrEvCM8TPLjzPpm1PMGo\ninB/wth8G2M9zo11n3HI5M0HewBUfupzlJZ9xlsmk2EA/Dp92UZRkpRqAsfajMd//Cbmh7sIl8DR\n8+RmJfKv/jQB0SRd0/HKU/INi5Gdwxh7uOkZohhiUk4Rd11mzQ7vH/bJZbPIa1v0Gx22og6JwDkL\nfRWl46DoKoddmfVFm14wQTglEtp9m4v3zlm2gljo9GyP8twk7E6wC5tobo3XE9tEX0lhH1eoqRE2\nrCDeyZiwW+XEiqHkNlhkBZonFluFHvddgWx+gsqHBM+GRJ4qU2rLjEIjnM6Qx4tzNi4vCJgC5mTJ\ny89X+IbbZR4ok165ztf/9HcBuPyTaWKzBaGIiioF6HQ9EnmD9XaL5QYknlhUpVVKzRAxp0JnKFAW\nt6gZddymhRoK8byvstedECw7FAY6CyQeL95gtjtnlCvgD+oU0gV68z7NaxmGhydk6gYnzRaCPiVz\nMeGs2UWpSehRC+d0i3F+QKkUxuhptDMLZsMt9GSR2b1TwlfCnHzrDrHnLrFYegTaIkbyexxObaz8\nDlFvxmolyu7JNa7Ew/jZBPbhHuMrQS7tFajKFqmXr6AoAe6MHa4mC2g5ld5yTqU9R4h6BMs6bkKi\nslQJZRKsH+u44gk/fOujUtx//uv/FN20GLc7uA/ukfBavFb+LHef/AmTxwIvb29yqCusekcsjwPY\n1/Y4SK2zfrnK0UAlJkXhqENkPqdTuUSweQ/DGTANhOncVpmfOaAccNYQkBydEC4J4XkuvVBEXI+h\nxE1Cp1kifpiRISA7Oer6mMj1Ir3eiFzJY3mh4wSXDEcdTo4g55wzzOiEExkSfot+a0hYi3IoD0j3\nPFpSgqIfp2o1qIy2sc+aWPFV9LFORXGRljGUgcpwHiQmJBn2zjBCWWJxlVY5Q3M4I54yCY8DBNQN\n5kdtIusqOTfE19/4aID4ixt/k0fTIJ99/Sp2UsY+ruPsHeHsvkfaC5G9soqbDTE4DbO9NaEl53EN\nlZk+ZxGGia6zLS+J7djIWwECyxaJNwdUmwK9P99j7Zef4vakRSKrsVzkaflBmA050WukFlmWsxQ9\nxrTFOEa4jhIe4IXLTK4FoLjGZOwRK4YZ9yYsSxNi+Q0iYpalajLQXbT3a8zWDJyDLtPygpC2gZoI\nMW74aG4QPzBjHnAJz+oMkksMJ0rykkrgchGyEnvf7aIbUEo4fPD1Hs888xKdxSnUOiTlKYOQyVM7\nl1AXIhXN58++/Q0APv/xX2cxc3AORxSNHIIQ53gthaMEiJ4kGOoulStrrMR03js+IqYZbMZu8Cgq\ngVcnWHMZbW3jXRqR3n6eRW2IHY6jZ+qsmD4rqsx51MczBcrbaQxDZdb0qQ9g3VBZ/VSW1fo6Sa1A\n4MMPWU7TLNMPiUslRjMR5eFb6D+5TViL43TnPOwtcMSryDeukvuFz3Bv7zF6dEoycYJ5SSfcnNIJ\nvEdyb0hQf0QwqzO1LLKDJBfMCOSvERXfYjSqoespmvUl9jDFxV98k2RlwbIwQjlyCUUEhskZZSGG\nSR0zGefBdz7kH/3jHwMn6it/+C++/IUvfo5RqoHdinG8e5fYmoTtxHl6dYW1tMLCmUPB4lrKx14x\nWWg+Wm6Cs1glt1Uhh0LPSSH1NB7JTdLLAbocxq8+obc9IL59k9NpHm8Mn5ZuoSbGFByBWQckDUQj\nSHcRQySGHR4S1gLcH5xQyhZw5gJ+uEr/0YzW6SliM8q+2YCszWJZ5HgYISgM8GWJlUmYyljCl6El\nuvQPDnn77E06vSOeCifRimChI+wFyCUnjJUS5qJFcX9J6JkMA2GI1X7C1mMP/ZNpAoaCFMuhhm5i\nCKu4wip//tbXAPjFj6+zfj3CPFkkLcxZDHvMjDmFskYolOV4IZB3BQRHxYolYJyiLT9A0+KMJm1S\nMY3T5i69/ohlPMCd5pJEQCYQ1wjNN0ktOvS0MVZzHTG9T84KsXd/j0R4TOu9NqIWRn3uJsVffJmk\n4dOpNTmYvEewfB3feZ6Bd0ZqLrHMZHnn2/+RaP51LHFAHp1WPUREXsOOBwkef0gklCGbuWBIAvI6\nU69PTfRQlSxHdwO8+Hc8hh8esBUp0hvuUnnBRflRB2GrQtc/5pVbFULBPlvyJlI8w+olm0Vuh6u5\nAYW+QT9ywHd/eArAT7/6Gs7SoThKYIqbPD5rM38yp1DQcBYRCtf7GFGB5z//Or2cTux+mfa6xCCs\nMjnw1byVPQAAIABJREFUaWz1UPwU0u0aqrxKXQ2QW87oJqso+iozq07AUpiWBkTUEu3TDhumx8JN\nME80UM4t5MTr9NoWRalKydmm6S6YBTPMwx38ZYX26A6JaJ6U22SMzJ2aTF6aIz5zC/vOBfXNDLHh\nhFz2mIG1IGy5nDkF8oso1Rt5VhtDAu6IrHYZp+Xjd3Lo2U0+8GaUeys8Ec7ZSd/kYP4QuQhLZ8BK\nX8c8f4Pkxz/DZBjjkTjlmE9x9BGCx9/+hU8zbSmY2V0mZot1xSCRWdBuztiNqmRLK+Q6Xc4qBWbT\nPoWVIr3DMeHElBXpKnEvxO1KA1GRKA8HnIdWUYKHuDmBQkAgsF7BmUmUgxU+/PAOhhkmb26S29KR\nvRGXUwKm3MSQDMRAn4zrYK8s0OcOw1GRyXkQd5ggr7qMGBLsL2hJWeTMFRouOBcLoqtHjMNLNhYB\nYr1VsJcEdZF0sMVjucCDNx4QFnTCCRthpcNJt8Xq89uc/2CIU4oyzHQ4fzTjacPkIC1jxhwm6QXF\n2YBgc0DIijH3VVKVBV//+keMSmReQC2coJxNOei1GcknTM/DPF3R8MIW/qLLMhJGH4VpXrdZxiqk\nkwlSyw0a5Q2ynQB+Zs67Hx5wNZLHS6+g7kuciR2YnmIGs8TbfVrjPNtpn8h4A1XqsTswSR5K7LYd\nZN+gI44I+wajzJTLzjVCJ0MenQ1YS2TpagbhRJTFVOGZ7SWx4DoX54/R7DCLwYBVI8b4UptWVaEy\nDaDkBqg9ncwkjy3M8PI6K1oXvTVDjifwRZezSQM/6TCwVKSVBCuaQ7AhYlVH5C4NOeglaCtjir1z\nrEyBgm5ja3O+9Y2P2MVfefancQo+i4BDRBihS3leefUzxEs7NI0n3H5rwme/sMP3/uxtgpefgidP\nCMfXWN2QKC015q06g02DvuZjuwsyhx5f+YP/j+RilZ//zZe488ZtwnKEYHKBv5zRG0so6zO46KGl\nDKyZRblSIujXGAlh+maEjOiRnndhnkRJuUw7A5RxnHlwg5C5hx+eMDkV0dwYwtMeVnWBezPPRl9m\n7lcZHRkc2i1G/oxJysIXZqjuJeJjgSh1JugE42t484ck1jUcMUKCCC8+W0S5OcU8TfDVrz5ivfQs\nKTnCQGxwOvoOk0SKH37jP7Fkm8/TDV0Q1iqMrxgkLsUZzVUybp3hwALDIhZUOd8dkf30FR6drJMo\nVJHeOse+McKIQcbPEFVO2HJDLIwwas3FlgIE2hlWk3PWwm3eebtGxF6gjz2mGx16u+fIygB/YnG6\niOL/hEbzLMfVGwa1vkr81Zfh8beRMit0DyIUoxa21eFrv/O/8tIntrnonHF6vk9uIRAMjuhYm0QX\nBQ6PH7P37jHOZ2xk4VkKSglbyCD2bcqVOYff+o8899zHMFszpF6QVL5JR9ogHQqzsv08gUmKznDB\nzLLZvrAYWR7BfAV7YnP/R+//eIio3/6d3/3yC6+vM3jDJxSZoBYT+IrGbDrl3e+/wdoLn2Uo11jf\n1BjYGn7bIOLKBAc65uyCodsj1pdRwqskhAGjTg3JKKHMD+nGfOKST94M4QbmhKc+Y7eOuzojNlgQ\nLNcItgK0QwJbGyOsUBBnYHERTpM9jZCVe1ilLO24xbKosHAXhJ8boY+zpOM5As6IoWiR2MpiHvRp\n+jHUG1HGZoejusfYD5N+OseOGmQp5umstMmdRfFSbRZqlHLwLq6loKwq9D74LqY6QZBkpusyczeK\nuhtnLli0kwrLvsQPzr/LoydPAHj1772O0JFIp5Y0OnFc2UY/bPKkH+aonCYonJCwe8RrDgSfMKiq\npKwVBn6dTD+JF9LoN+JUbkiM3rxgLB4yKK7hN23ayyG5ukY1Agn7AQOli+122EolsesDuvmraB/G\nuOgsuXj4gN7xY9Jyn9cKf5vWyCXdm9J2p3STITJ7F6yvfIxIuI64qlKOWBgFgfrb+7z//i7lnY8j\nml0OXJUVK0NNa5M/TDDuyhRCEyKpEN/6t0+IVwwOH93nlRuf4/BYofW4w0W3zuEHAxaOjLGSIxha\nEDf7nPQusIQg7sCl88w+ymfbfPP3GgB8cvsa3ZxHKB0lMK9CqcSVlWuM9RH96gGOvc14L4huiIjH\nPsGYgBH2cT0BR3NIVjVS8pxaqsww2MZIGPQCJnpKo2+voyojuqMU8WgBdx4imG2TlyeMojY9P4tR\nTlC8ESd97z6P+m0WXopWBDyzSy68JGw8xzKZpzJ9xFEoTjGWY/3KxxgfNskGEyhag9r3ZPx0C9vJ\ncBkfrz7GjfgsNI1UymNhh+F4jljtsKxcMNee4orSIf6mzcllD8VKEw3ew4g/xez2nKU/xTbSBC+X\nmP/giN4tDUEZ0yn8GRd//E8B+Mznv0h/ucBLhJmYV1iJNRFiQ6TS0+gnTxCmVxm0lnhBiM515EUd\n93WPWCPCPDuhEb5g42COYxs4CQMt2MENrZBTDczlkkQzQMcUkA/rZD6uoIrrWKMOx0qYlvcuejlN\naqqAcR1nYfB4GoNTm6E5RBrkqW+eISckUs0QkjZDCCdZOUujnn+At0jil3YpPFEI5HY47QUxlwpq\nMcx5okkRi8mDGIWySyyUYV8b4MdMdhaXqHtjBO2A9NGM2FjD3KoyXdwi359SVz2iA5H4+wlOi0Ps\nnTkJM8DEjvOd73507Pz7P/x16v4POTXSuI0lifwS7WMeu4MliegqPXOMsdbFzj1DYLxJyOsixHa4\nN+1yszHkgVil3MuwajrU9lzCqSP8lRXSjGleF7luLXmcvk6laFOTR5gXp/T7QcqxBt9uvMknA5t4\nsUf0kykUvcvZqcPKls47Xg/hO48ZF32k0pRQMMOaZvPAiVDbr7ISV4iqOlpaYoqH9IFI8MaIhJNn\nhkhUn9P1dIZre5TEFLP6lPrCR04kOe4GUTMjFkaZXDtIdzal7XbILj3UnMG06sJAoCiG8NUwQ8+k\nLwhYrsMPv/NRaeRP/pMvcPxol1EwwOrGBqeBPubkAcw7LNcqFK4Wsc5aLF/eYOO0zqh8hbg/oXMQ\n4ol2wf1Jh9E9gfaHU7K9dQ6ezPivvvgbhDYnMBGICDOyLz/H6PgCoZXBuDQgHoSAbZGqZBm2J+ii\nSs2doTQvECJpinKHtmYjZkScqI12JiNHhowCMrmcy0VzgWlEWPZnXM/tMG3ozNsdGi2VcVpiNZoh\nOjRpDKq0HqbYCPQp2WW2fjnN92bvU1mLsY+A/F6Du9MzkpkVvvJb/w/B0jXskxATp0BlVSRzPMP9\nmdc5/N3vkvjY6+y/9QG7D3cBWH/hJa5upBl4F1xVNhDMNl4XoosA8uiCzI2nad0dMrVgdqgS/myU\ng8U1vvUvv8VL0RWUmMhpMkCrqiMQ4fvf/kvW+jvc6Z/hVSfM1gWSr65Rjl5hcS1Mx7HIHsmk0je4\n+lQSaxqnJ/oETuY8lUzi5s7pjRtcU1Z5LyDTdm2WkRGNeoydrED617ZxxweE7noohk/X1Ci/8tNE\n7LvURo9Q/Dn95IIt/xP4jo637hLf6+BmYsSsJfrSwjY0xOoPUFMTwv6zGN0pB7EQIclC3s+SKg9I\nKjInzipka4zFMI17VY5OH/Kl3/jSf/4i6vd/93/+8vqLWzQrSfKihBFaQbJ0ApeirN5YxZ4uWU2k\nmX4wpdOe0DeS5IUWdVfDGC155/ZdCtmbtJ0Oh6e7hItFIjuHHDxykbsCMb+DuDIkKuhkFhL2NEsi\nX2TgnPFm7Zyap9IIDUgfXGWYt0leFJgm+uQtj5O1OMvDGpXhiD3ZIlj1KUQn9E8dNl+8wpM9Ba/r\nsOpHoKzgzOaccsyatEZOlYkZOVZeyhF6Eqbv/RB/UEC+1MKcRpDNHh1jFS+qcxJcUpmE8OYKaiBL\nuNPBCI05zTyDFA9iTicMYjKOCvff/gi8vP65pxlIEgUvgf9ulciNNJeu3iBo25yczllkTVZPDTpr\nTQRDxdYEyhmJhR3FE0zqe2Em+pxw4BKD1gnDQolXLz3Hj779ddYEB2c1i2Qe0JAn5PYUHq4sGV7f\nx42kCWaeJfbfvo7zlE/cqfH4wz9iPfI3uUiJxPUwy8EhwWsbJLsOkh+neK1FtT/m+IcTBkdtjocp\nLt18DtP8AF9vIukFwlvrHD98RCq8QkiABSdI2nUa3TmljTlUirhnc5YhHaXZxL/5ItvqMUNlg42M\nCoFTpLlK895D8sEk8acSxLfKVIo/j6H9LP/2f/8KAFeu/RJqtEG+3mU5WqccnfNue4YoRVgNQy7R\n4SLkoXgipw/f5ijZZyv1DItGHz+4T9G2ON8Pktiyca0QoXGIjDdEejaDOwgwsCVm7iOikso8csG6\nt8GuuM400yMgupi1FUKug+002Ck5TAJDHr91zJWrCpwX0JQ2vjHAPq/jJpOMSiku9hpIS4XRXONi\n4eEo58TiIk/6JifNGmo5QhSHumWgVmJYMQvzA5fWsz7SRYTZvsle6xtEPrmOaI+JR1IMt+u45++i\nh19hz3+CMLxFMBKiZo9Y+gfc0iKE4vd5748+sqJe3LpCZUWkLaeppA+RVDhZhOk+mnMp4rEXPEa9\nUSEbO2TRndJYSTGfZFjGZRaz+xjDNeSiy/wkSqlnsC/PCXhhvGMVMvsEJio9Z8n6VgrXjfFk9iGa\nn6C0YRH1FxDZZhZU6Ql9Vg2b9iLK+LBJNJ4mL56Tnb2IKJ0TC7gcKbAdsZgFxjzJbGIk72PPk2h+\nnseTJqFBFX/kkvJNwvJTBG5POYhloKsQsvZw1q9Su51kFF8ynXss5DWkaBTfeoATex1Rfxu5cI25\neYDptmkuRQqTAoGDBY1jEacz4EcP/hqA/+3//UW2/vwao58JMSk6BGrXsNtJBlKJaNpATocJmi+B\n2WdX8fAOq0wH+4TUMhfde1yOyshhn8YsD4sqVJLM9BMCvkveVJhnFIZyjUrV5PC8yisvvUY8/oDb\n0yDXbhqYwjmsVYhMLRb7UYRX47j1RyjtKAXhgqQdp6mG8cImrfaURD+AUpmQWAswcEZMWmnCSgt5\n08TtJHHnHonWgElggnjZYEKMkeRhOlPWIisMJYmyHWAQSWF4J8iTFEPjlLB9Ba10wW4wSAwfb90g\n3GpzrvjkJiLaZEQ3FOXdv/oeAGsPHnCy8yrRpEv1UZDUrSJ+22MciKM7IpWJQnt0hm0NWU4lJHXB\nWFPxwjOYhUgPIXezQiVZwh5O2YiEsFZPiJ8ckHw5RF0M4bhDxuqUhNQgslWg/nhIsOQz6Q1wgzYp\nN0pRrtFMiswGEL60jeMPyQnbKNUxbaGNHrzJcHSCni8T1Rx8NGJ6jGOpSmY6w8tMuHY5TmoocjjK\noqV6pDbWkFITuk2V4EtJ/sbPbvKu++85Hw8o2V3maZnP/9efZm5qXM0OCakplGCWnj6hrGp0136I\nGOqyp5QJBSM8V9rgG3/5dQBe/tx/yTw5YFmPUa1/yCzkQjpEPJJFcX0Oei00Z5eqHSA1SOAPbV67\nFaB/K8KuJWInkgSiE1YvIsSTPeKqQH12wuazeVhboZi/Rd3e4c3/8GdcdzYI3V4j7Cjc/9aMqLCB\nmbGJpLcIFeO0JgGG/iHiBxnqwzae1EaaBBDjFmLcYkQI59Ai4uXovxDGuzvkxp0VvGmDk1KEg2kD\nf3gDb1pnlJSZ71+w09e53Z9y2ajgL+dI20XqxwekYyMSv/oFIsMlT1q7qOvP81zZYFZ7xHlvwfmT\nE8pGB8s1WCvLjDsp7t/7Eb/5pR8DEfV//LPf/vLW5RdZa9iEJQO7NKYWDRC6L9PuekhBl5proYyS\nJK6IpEfH7DdOie68ziPxLq/pn0UMdvlRbYCavYQhW+jzNYTO+6S1IQNrk7Gn0MrNaNgu4WKLtx6D\noZwQjoZ4IZZnR9GxxBQlqc8w4JHJXGJuJEjZu2R6EapEuCptUQ0OCAYUWkqMWSOJ9KxHZehyutKg\nc9hh5I7x+z5aeh1LtGHTRDw4orq/z7XNn8DVJU4PsySNDs3yi4x+9B6hZYhcY84sXKJRsIhVbeor\nIWLTayyTA9zqAUntJwhrUcYNiw8/+Ghb6pMv77AYNrD220TjYXb7I6a7f0029TxvVy+4ZGSIDQ6Y\nFiasnBqk3QsmgRwnpzXG0QS1g/eJRjNczkCzJ1CJZGgen3H5hWfIpZ5nuZzg9iKkCjnU6xOSeYWc\n/xI717d5fDZmeu9txG9+j/WKxs3XrnC+UDGEONOUTXccRDk4J6ZEEO0xtf1DkpcvQeMOqdI2k8WQ\nodUhVXqG4iSGNG0hT9uE9DiO/TbOSpLT3TnzcBM0i7VEkqg4w6nliBUviE11wsoCbTlh1QhjOj28\nfoZY9BTf8bEbDodLHzGe4Ef/ZsBFLcs73/lIRF3/bJ61nkqrkCU4OIMLg6spBZQ5RjRGsKcyadgo\n4gnvfveYfPpFksUJQsPB6qeZJitsXJtyeKYSma/irO8R9rOYc5mpc04RC8sKkgxdJZfY4MbPX2fU\nb1I6UJhIVdzJiP2mhaAOGTYL6KtZVG+G1Y8yXmsz8YqkJ3OajTP++9//VzzcfJWa0CHl6VhCHG2h\noCoH1IwV/H6CZ1FRfYE7oRmiMeXZl55jNoniqPeJnw+QekHUl7OUyqtMnxQ5nE7oCSOkgUpcj2Iu\n9qmYOwRTNqt6jgPqTP96RKTdInT9Wd74o68C8LeevoWzsUZU8qgRRO1UaVgO1+RVhiON1ZCB5x1x\n1FfoJNPERwNi8y5pPYNp9lGmYcIXCXaDA5aSiWhFcE0b+4UlzpGGYZmQGHNxOKO1suQ5Y0m1q6FL\nIsrphAtHJLrMk8PFrBaYpJY8WwqxG1BoFwWK3SjCusiykSG0lJHiGsfnNqtxk9PzMXmhw1HQIBw0\niQd0po7CeJKlaI84E4IEL5XwH9dJRKPsJT4gI+uIHCA8arFeGFG3m2QUk+3jCXE1g3zbRzFC9A9M\nSiWd0eSUaS2NfEOjcPWMb37to1Tj/xL4E+6s3OWpv/sLtM4m7DsmlgMpuYhrRPAfDNBtD9UycecB\nrsRy9JYtNpoWhr1C8/wcnBmR3BTHdQlk8ix2eywXBtIgwrSk8lQjieUuyNx4msODJ6jejK1LGZp7\nMyQ5QigQoC300fUE0VqX83oRTbhLoQRyaYvUhkSn42OreTxhBK7AtCMgLDyaE5dlaQtppiMmPZIC\n3A+ZrGQ3CJ0G8Is9IqEsE3dMqhPjLDAj6XRpuU0W48sEgvdZT1xD0Q+oNQwCsQD0FjidFpMtH395\nBd1ZMCxpFAc9vv2fBtZf+Tuf5Oarl3F2KoTFHgL7pJLrnByfITdNqptjpGCA+EqVXMhCdk3k8wGh\nixlpWWNqh2mcHWKdRIlsOZwxQ7v/Af4rBYK9Gup0TnUIWmjAwlVwLiKMYocEA2BPg6x0g1SdLv2g\ny8JYUqwWGQr3CUxKDLtVUsUNhnGfiNonGMoxs88YBiPEhiO6rkzAyKLZM2jGWZ757Ad1UnEJLTQk\n7pe49LJBurxg96zKf/fWH3Iuhgjv+JS0IsZizMHJAEO+TaK3yf1Cl95sQDwXpBjqMr+2JHu6wdpW\nAz+U5X70uzz4k4+cqF998WP0DBupHKbx7gEJI4z4IMix1GJhllCNC5LDDMqDBZvyCs1lnXmxSAYZ\n4YdVLG1OqS8TFxM0V3IED3ZpZJ7nWiwP7DOfzBAIsBOI0C106F/NoRUHaKUCNf2YuVhkOrwg0BoR\n7DzENKOMVxNcL/Wpig12NjbJR8vMqw02LqmY2Sq9uki81SVq5zCjSVDzpAohxuoCSdTJazWGXY3g\nMIURDqMY95lIW8jjCw5HIQLpLInZNWrd29TtRwRffoVgSKQqBsjMS/RThziZHO3jBctpl3xfxdww\nefTmA37jSz8G33n//Pd+58sf+7kIJXGV3ct3OF4OGPUKZHjA1ZUrzBdZMp7Dj9p/Sc9eYBaXjNo+\nlcomve6CQXZMuZlk/+wMddFC0w3SLzwkfW/IaUQgJ+XwIlOGzQ7SeMyiVkOSJ5zd7bF2+RUGgzod\nSwRlH+IrhB6keUyL4uQQRZO5KzeYffMOoytlthyFe70PeWU9x9Jtkey6vP24inEqMg65CPf6vPve\nIWZYpTRbcuEuiMx8HrbPSGzkUQ5bEBaZSxqxWQ07GWCpR5FTYcRlnWzAQTPzLMoyriJwwRGz3jrZ\nVyP483NeHs/5d+98dKk9/8qvkb2I4Ny6xlHgHEMqMRWHaJrPfFWnpXlsyxpxBbRhjFqsxczJISoK\nlfAEsWDgIpEwZO7OD1iLqLREHSHsEVwIDENTepKDZ4SJzpdMBkUuLtqE114nU69y1rlPdm0bb9ik\ncV4iZjdwpSCKech8scApTwiNNKoVgVRyiR+S6cQKdKZzhFaKtDhFLC0Jzi28lUsc9CWkk32kconB\n2KEiFNmwJIxVh9mewcKosXvuMz92mZUN+p0Gphjg7Xf3ePnZLYTVMvYDg72dBaH0HKm8w7/4W1/l\nU9l/QPh+hu+d/zMAnr32El05RyHVpNtfJXBpSiMyJN4Ic3TzJqPxChEzSjqSpnjdIenIFHNj6uE5\n5UAcO3CMK24z694mGTIInCWpGsD4EXPB5kLOk6hKzMcndM/OaO7+kEQqgZjJk9VndM8MhLGOnhSx\nnRB9t4+b0qkkQ8TCBbzJI/R0Hyn/LA//8a/Q+9cHzKwwUVlGKRhYnOH1FbaIkYmNmI9kqo8HpHcU\nll6O9NZV9v7gCZ2LE/RSGSsWZ8OP/f/cvXezJFl63vfLrKysrMry3tyq603f7tvd09Pj3RrsLrAW\nABckQBGQgiQiJJAQAQkhBCkTGyE6EZBDBIKkQgoJoIIECIJaAOvdzOzMzkzPTE/3tLt9/a1b3pus\nyqqsdPqjPwXwDU6cOOfEc973eX8P704PsRWbDddB2FWIhBxSVwI0vH4efr/Ms8+kaXpNvIdNHi5q\nHA5M3qm/y/D2OQCff+U3Oa3LOEsjMh/nWTSXWLajBJZD/Kh1m+A1l7yUwYmuIHc01iZdci9FaTU8\n9E4MwqJKwC9w9LjM6nIId0emfPwhG0mbij/H2sxFqZukPrXM4JFMKdWkU3wOsdzBVvPEonVqnRmr\nS0t8GDrl0tkxZTVPSh4TEfuESKEdz1GibWyvi3PoJ7GVwz8ZkdibEm2HGMgOdLfxb7ZRMuvkUh7c\n2gGdaQ7Lfhd3bYfOaIx3FmUzFCQgKoz7FqlhAU96iBPZ5tSK0myd0IrJzPNrKAuTzsUMr3cLI18l\n7tgoYpxvf/+JJ0qQ1/iVymM++uP/yM+s+zA9Gp4ZuPcm5BU/gd0h0dk5j1sdgkqUdMNlv/OAxLyI\nHrIoRLwMxpdx4n5ieYNsJYd01cvCsqnHdNTDMOeLC9rTAYLtYeoVKGwEGZ5beJ55BWYRDq0RET1O\n1NsB00F4r0UxlsTKSAipZZyZhTr3opkB1twBnq5LuX9GLpfAdFPQH+B6UwyVIWPZhx0SaQ/qII5I\nVsKUPT7UcJ2LTo8dV8aehUkuBUm1Dxm6G/jkI+oXc6L+DOO6TNynY5qw0s5gSw3qkTDpzpTznMgH\n33ni7Xnllz5PerdPNp6k2Q6Q6JbpDuZMxCbdYZx1f5C2RyVe7XI8nmMHYzhRP64Wpmu8S6sTI5qT\neUowOKp2WM/1qKc/w+iGRTIdwXJCJLIap5pLSQ3S6roEhCrGXGJzkaWSSOB3TULxJaLVGM1gG28x\ngmWds+SX8BtBxhGLysiDKzymfeojrsvENBllN4uYGeM56+CkU+jhAJXG2zwVL2GMqhy1NEL3oky1\nM0qBPNGf/gzxjIlv/hxZYYKWzJLenjIlz2TwMevL22Q9I3ZshQEF3vjGA7JFmdOjNBm3gac25Cdv\nPgLgtV/4mxA4RhBcVG8WxYrCTQP3oo3u2Mi6w8Sx8OaXGaoTZq6ONy/iNl0EbwglFsZNdzAjMrc/\neIMV9XnWHHhT6rOYTZhpAlciKb596y6ZjRJi7QDsLM1OFWUthO2e8nwmxM4nf4pB3CJ7ZZlPhnfx\nPxch89GEB5Meu+IGnXqOvqPDiQ85uEQ7phEeKywMi2R+n+lpEE0zuPyzGwx0kXhIIDwuEFHg7bda\nZFL36cTWuLERofkTjcizPc60Ivo9mRe3NHrfvsuV0jXO7Bq9WIaVaY5ZWmF0NiCyeAaZDHfuv84/\n+K1/8JdfRP3L3//HX3v1C1nwC7TvNHGb6xiHN/Ar+5QPbhFKi0Q6NRZrGSRRx8mqZEPbaM4dIh4P\nSX2GT05z7ZVrpLJb7Fs16j+y8TyfZmnkMl3OcjWUYdQTCBsGY2WP7MmQciOLnvOzovgIGzOk4yhd\nMU88VSEYd3nYPCdj5ckEd4nlfTRaYaKKSmRd4qLRwozGMUPw+OF9gs+G2U1uYO6u8eVPvEzasYg+\nF0Jue2kWw/gaQdSRTl3cJBU6ZhEq0aNCLrjOTGyi90sUtAmLdpqRKiFH5rCqQCeJaJexjSieo4+I\nTav8yUdPiOWfvqaytrvFIqtDc8h4GES0xxTnSV77u6/R8a4zK0sEYiXuRJpME1Him6eEBD9ed8I4\nUCMdLCFaF4wCS8iRBCmvQcA7xlnMqH9ooO7ESIYM3PhTmMsiaTOJXb5L1vGAd4YQLhI7bCMEA1yM\nbJpHY7K5NNGJg6+vU7kBueGCtieOPugxb8YpZlv4UkWU4wmNpTRJhtgnpyRyG3RnDqNUkJtGCDul\nsRBDHOzXENJBHJ+PmzeSqJ+5RsxoM9M1hLUwz67/FMGVPLXG+wjzGB4lhVn3IubiLHnnCP0+91qf\n5aD35Lzd/MVf5roQYLDmJ1s3KRXi7J8cs1+J0N+/zU5ORo84LJJejrCZHg1pPQhTmE7oyx6anQVu\nQqBcO0ANZOh32qRaFmlBIhOOIod9NA1QSyaBjkjbUYgMAwyvhDit2sipCZF0AhkFbzSMOVAYSFWi\n+iU8swWiGiEsulT3O7x2o4hS8qCFLkimLdJamHZDJ+TJkvCd8SAQQ6neI/10nIAe4q36CSltTkL7\nlGQvAAAgAElEQVRv8uqXPsf+Q4OYPKezKCC5CcYf2VhrW2wsfCgnEQa+JsF3FswvRchc1HFmWcqx\nBE8NTYTEU/y8eoXvvPuknfelF/OwE2D0UZ2WECOQN2g4B5yeFogEyyzXblJORWkpOgvtjMl6mt6H\nDlFxhGXIdC7FqSDwVKmI3mgxVA2EgYe6XycYHXJWiWMQpp20mDV06vIWN1wXoSsQinXozHbxqwXa\nnmOMh0VSnwpR+VBAcS2ahxFisQh3W4fEXtqhsX+X0GYUT6LOuJNGH40wzZuEml4K11NEFhG0wQNO\nW20kaYVuUUG0NpGOvgcv7pG9eICvuM6kZtJJ5dGaBg25RVwzCU2iaLIfb9Fm6aJMOZ4l4kmgB95h\nUdPYkTbwTFT+4r0n7ZW93/h1xOMlgs1v404O+Tt//+8z/HGDZlinEL9L8/aMsDAlno/xqLHA2+8R\nfeYSawmV+qHEvk9mMC4TcUR80hL7whHl4z6eWga/MkMzaqSClwlbCTIFkeHxiLAcoJkvkW4/oHVc\nIcw6ee85B45DfKDjDWxjrS4IbKzRGO7zuBpG8ixI+iccLbpMZ14EeY6eSGCj4c9CIFAmqWwyr1Qp\nDKb4dJmJPcWYBElmWsRGIDo5AkEftaSXll5FSq9i+j0MJQ2SLlnFhzLv0e9bqIUcmj+OL2qz3J1R\nnYkkeipvvP8EDfHlTy1htsK0mg1C8Y/pnA7JFG3M1ha5K2vM62VErccodo2rW1F8VoD5VGfUaBAu\nRXAUmbzTYkAHX2LB+ChHZb2HrKeZlW1Crg6BOEFXw/L4GN/vElGf5qxuE5WTGPU5heSC03GM2YqC\nlEgSnfkpBGK8eRFET1l4F2XCZRkp4fBC9CkiXoNhccD4sUarbNPWO4iDMd5YHn/AQ0eZM+5lSWT6\nGIEYSiTAqWiQa5yz/NxNFgsvi0sGc7nL9L0mZneN1MYqj2uPKbqX+fP/800myQRX5yqC+hKH//ZP\nOdAtvA91Prp4Qix/7vl1vFoBaSYRMC0mAQ+TmUk+nSMtx1hdLtCUxtiPeyjqkCgZFhcKTc3LdE/m\n+ac+x/f/72+wK8ZZUkOs721w67xDKtViqVlgvlxmVDkn8+rL9B48RLu0xKj3IXkxRXRgMlck3h/d\noTaQ6TU1ynfucrd3Tv2NdeT6ER+/H2DjpT0UoU0nmETVGgSVALPjMCW9ybv7RyT9TxFV2wiFAZlL\nq7zxh3+AWS/h232COEikxsx1l7Wch9pDD3q+jmIFyS80ppsRpLtnHMxPiNVN5maE5aSfxsWcy6+t\n8eqv/zzf+os/IOms85OTb/Jf/9ZfAWL5P/vN//Zr/qM4j1pfZFF4lZJviZVCj3rLZNOrMXDvUk47\npEo+ItFX2Ml6+MH+I8zyKiuOgTXxEryQGcbu0lhYGO/O2L0yIPDgOj1sPK0pPzofo1oDIpcukxip\n3G40qVT/DP8H++y8dJ1pKsrpSKGkCNiLGM2IRM9n4I1JvHn3NsENg+BCp7865MisEPAsERMcqBnM\nPF2WMl/lbHqPyUTBVPrMM3MSThXNXZB4t4rrn5IKxnGiLmExQEQ+xxsvcTGoMzqBUsgm6Ao89oRA\nslhND+kcpelVb9G9U2G+2OeP/vXXcYcfc3fgAvDa3ldRPBWc6Cr10RJ5n4hHkninJmI9OIO+hiDq\n9OQ54eoqA92m9k2b7kmY4/aIcaPF9kgm6vOiHDpEgwvmFx0mPomZYSOsRnjhuS9yaTXJ907aHN9p\n88y8RWsWoysnkHxD3Haf0V4G2bNg7LZ5Jr1Hr31OMZym7y/Tv5ckNQsRZAiddfzKlMJqAq2v4hT6\nOI8N/Lk4o06OibhPurRDa/82wWgQ516PauuErmZj6d+i8+43CWZeQVEE9PMmduEm8UwK60znwfiQ\n6UUeXuphPfQTuibjPxPo67fRVk/o33id0x8/GdX/zKfWiNs5XLVNy8ii9HTiRhL3ikX+XpOoP43T\nFXhcn+A7OiaYu4IZL2EpFkbI5GYpScUZM6h5uL69RiS7z8pimYelKAHHi7KUQxb8RMpDZtcSaOcm\n+fAaNXnEcjSC0mhxv9UgODBwYyNynjxCfcTJTCcSHKJ6ayymBSbHj0ilRToNg/bES8dfwj/WORhP\nWFoKISWWGUzmyN02WSnD9OVtmqde9Ft3MU2H1uyY0DRCO+4lImYIO8dckZfwlU9xrhcYVsBjWQRa\naQKZCMaphZWtozQsgusq61KQQ/Fjbr19F4AvvPg0/cSMcWiDFwoydreJIkVZDc7QRg7qYEBPtFAe\nlcj2/SytyIwWNj5/kKOqxHVvG0f04/hP0IurROp9UqiI8wK9QYf4aMrG0wMe3L5A3dpj5+QAZ1mh\n3JwSSq0QaTQJdgYYGT+bqyreYwtnY0J3NkF5NcS6b4K0tyB06KW8lWfarbK4o2DNmrRnI2KpOSMT\n5itzFmUdpZ5m8+k07mGFXiBBLneKLlwi75zRWAowo8RSqsLqbVjEz/D7n8FY8aEF5uTyOtl2m4tS\njhdHMZLtAUJxjW1jiYtdC6X9Ht+69eSzk1mIpGsJ/uDffY2rn/4FRjWd/coDLueSqO4JSv4Oh8Pr\nGAdniG6cyfIK3ZMZZ73bpG/uInpHeKQ0qB7CqSmJSA7Jb7EjROmX6/i8W9C6g7NnEney6K6FLXmY\n+jw0BZVILEDErDGo5lju6pyFl2gXwuQ24UGtizobkj/rMZ0XiPgNPF2BFcUlt6Hg6fsJuipyXcbr\nnWKNA/Q8LqpniYYCwmzGYnMJpVJFnir0ih1aVoK0T2PgFvH1R0yHKqIhkA+u0T0zUVMBkmYerzSk\nnmwSdhfsy3myHj9O4Ig333jSBs1c+SJyP8CgP2DFjtAfL9H/qIucNemac/q+GNu5MO+/9TbjuURq\nGMOXzKF6/dQlD8t9hcFSEWWk0lmMyGzIDPsVFvUEPZ9B+VRkw5hQiwb4+HGZaDRD6vIm8rKHUX1B\n/tqUlpFH6TXwalPkRpeRbDLt1/AtK4SaFeK9NhVXJW5f5gSL8alJ30oT7ltEzDjpoEE9lKDy1kdE\ndmySQpJoeopaG2F5a0xvj4kmt5jtXWXoSniPyywpBSxhBY/go7Bl4ZlM8B1YJDb32Pv0s5wv3iMb\n2CWVt4g+nURMRsiXfoY33vhjAH75F36Var2C8LSC+tjGSQTJqjnMdpvWJEKwfAfPIkw0FaBr6aQj\nafrrJyxv69jlIJnLAVTbRzwzY99NYhYCXM8sCA+KvOvcxx6n0YmyolWIPbdC8CTEneMudvYIGT8F\nV0Ja2iEmLsCaEzsp8qyzh+XT0KwETD+gtKUwfXRGLXhBdGBg+VdJZrsoyx5CbLJ4Zguj9X1EbYxw\nVyf0cz9Da3kNoWujnjcQZxo5dYNwP8A7vbeZ9feJhLfw+fv0pwt0MUhq8hqjuYRX+xiv6GGRKWMc\ngnt8G1nxYb32Eu/86Z/w2//wN/7yi6jf+59+92tX/+YvcenT66xqLmHXjxuQKNk242aacadHkjRF\nZ4mB9DoNc5fr0wlbq1Eumj587hh9U0Cu+qhLAbbCVerCTcSsw6q1YGpqSKpCYC/EoiczGnkQghNe\nTq+QWV+lVeji2AYbPZsDJ4a5ecGjhzV2ilksaUwmuYTv8TLLuQzTYI31owzqZQvdGeGoXhrNHa7F\nIhwcXTB/94Jg4Sl6wTnTskFstc3EWGbgm1HKhDE8QXSfSj9mMKlV2UyGScu7+EZe6gEd2Y6yGr9g\nIK4gejwoUYfNbInp5VVyX3qNUvIqP373iWfg0ldeYKStsyWrhMuP8cR96OllnlvuUK0FCCoPWCRS\nPJfLU24ck9VVrge3UNQhpqOy9qnPYmd1JoqffqrF/GQZX3GbLc8m7Y/fxHg6zvkjgYe3P+Tw7ogf\n/OvfIh9JoSRiDLt32aqtczbuUygo+Oc6cs/LqTjHdAIY/jCmNaOYFLDO+lT1AQXV4HxLpeskKQzm\n+Loibz58yFNXr+EJlxmNFOblD1kjgy33MAJZNj/hspFZ4tH9IJ/+lU8hmALTQZOP9wOUpvt88M4I\nRa8yOdons7WM1g+TLwiILZ3G+B6Sb5kVcYrz1jt8VH0iBtZeeYbidEJoKcFh/wFez5hcMEN4JlJd\njNjZWEORu2T0NotUiblUIx0UmFUhJsbozCd4enP0SI5WMsxqZo/mSZNsTGHysEflvIqsdjlbnCMc\npEjuiFz0D/nBH32H3UKUsP85lOdvoD7n8OP/93WSp1OKP5WlevYhD9UAp7dtkrkwbe8OkbJBnxHV\n2gPymwWSRYO7tRrOIIx3+TH+Xox0ak7V8LApiViyxYNHDVbCAbZTfiw3yZrnlFB2TsG84NxMEltM\nMJuHNB+fsfGlKe65i89uEigWqCgqHLi4W3v88bd+yO3aR4zOuwB86rNfpbsf4fk1l4Wgc+HxMT9T\n2XrxObRQg6q9zlYkRmTxmPP8DPVdP2qvycmdHte9LveXRdrlBoJ+hYHUx+5OySYydFdGuE6BXWWJ\njwNxNl2JguCl6S0SfHwL40oW7biFu12jaQRYpNtc3I5gIpIYSdRyS6jnAebBABcfBlikBfSqxvYD\nhdCLc06HXqKiiJnoEvKFCdp1FiETJ5DhzsGHZJ5fpe33M6rYXEufUgmFyDevIooLvAsV3ROhsyKx\n8AvEG4+YrL5E9F6AnmdKPLXH8YMpk3QPv1lHjE8JFQJwJ8O37j3xLv7u7/4ace1triZtfupzn+fs\n/ceUsYmHw3he/SrHjQlePUphD3704JSXr93Aco8pWgH0ap1oJEdoNKKXskjfczh+uM9aQGG46sMX\nWEC2wsiIY2WWqdUXFBIX+M0sae+cdKCFcjxkkJSQQzaMG0iJMLvFXR44+6RO20jNILVwgWing1no\n4K2nuQj1SUSXiQh9tGQCITKhpWskV2eMNANhdUFaSdC2B5RMhdlojrS2gn3qp5SM0PCcg9rBckXW\nsxbBeZtxK466ecypN8RYVrBwCGpDRkERQZhgxCVUO8nr338SFf5z618huBolZngRfRJ+K4aT2WFt\nM8J7f/xnSCENMb/D9cIWo/iEeFxGEQP0qiaXClnkiA3n5wjba2z6VRRPgKTaJ2xlGU1N/Jn7wB5K\nPIt33iG9FqDhF0hWYgzdLtaZhNYYsb21QTLmofVBCy0tEp7YKN4h3iOwAusk+qd4Sk8xTNoIfgcn\n0icnCtzvvM/aah5hbcKzwnNo3hbrRPjOTxboL6xSfrPF5l9bw62KhLI6o8c68WSf0WMfhE7w23nK\nwkPklswH1QlzIYWY8DA7mkKvQDsWIFn28qh/hysFhW9+58m+ffVnP4ExrDHdb9Gd9tldC9F6nGS6\nckRMHFOLpPG2H2ElgxjOBvlLEcyjKtHQgtn9JrVOGWu6zmFkQdpVGd+v0WprKFejrAcvYUw1eucQ\nSkwZNYNYoTGFz16h+shgV9rAP6oS64wJGQ7CIEl3UUG80aTb6rERH3A/uoxUiqGLayRyTcyByMQE\nb0dFO+swC4E4HFGMrtC59QBvQMezkiVRWkXX3iOkRGlIDqJaYPuVErYosqLF0QsqicEKs5FGu6+x\nG42jle/Qlr1cfuEZ5o0oF9kZvonJonDOv/29/xGPlOA3fv0//8svov6X3//Dr+0+//foLwwSVpOh\ne445D5N+rDG7XiZvZRgLc05cnb1nXsZ45z0se534zGYUm7IpeRnmlhiJdYrTHsqeymDhsFAS3PzV\nTzM8Frn8n3ya+cWCiN9i5DSJX5Fpai4fvHuHQGaNK/U0TWOKxzdF6K9RvL5N+MMe463n8b75Pkdy\nFN+8TkIUaKZFRqcTst1Vcu4ENw1X93KU6wE2C7ucqQHE2IDAwiHQzDJPBxFmRRb1CVm5j3b3LmnB\norzYZK67uJdi+GYu/VSR8bzD+b/5IdpuAnNwTsbK0p8FidQW3MjmGPQn/PidJwGdL3x+m+W8n+99\nfIvIyqvMjQatj49p9/ykdhL0sh6segWEAt58hJFxyhu3q2z4Y1y6GUK9L7M1VmhNpiy1U/gEmbh5\nTkcxqNWaPPtPf4e7r34fX7+GE60R8Smsh8NsbzyHR/+Qk5DDJD2ncHuBZ1VkeB6jJ52QnEl4fSJO\nwMOWb0HCbxG/5OXAN0Vxwvi1KXVPhGA+TkmaUnc6NHpp9tYi2MkNRDNOOzMjXGlzLqR58IHGxnqc\npp2kVIOpkCBV9TJb1dnzpNgKLmB5m4jsp6qMEYMWCd+MQiTFanIVN3/MwXdGPBwcAfDss58nNc3i\n1UyC7jYNX43KsI+9W+RqJMJk2uYieUR02UNcs1AWQc5iKTIlkZOjCiGvl4zoJSqBfO+I/jPLeNa6\nTA7D1FICK8E49sDA8Y3JeXUGuRnLySV8Uhm9uEIr5mVmf4j9/Q+If+YS/+qfvMXypy8j6SmC2Rxe\nf4l4yGAoTGj5EwSZYAXSFJNB/GKadihPctbGihTQz6ekYyOmEw+TmkN+b4XwmYGTvI5lD2jFfaRT\nFnp7hQPqvPn2PspCYPmLIolnQridMPFEHK19nT/54e8Tv75B7sY2p6M7rG3s8tOeT/LdD5/El3zx\nMy8SyXp4ND1Gdtdp7/eY7BQZ6zVWKx5iCYPq/QfUMymuVV0exgbkZYuYqvDd+iHXi8/RTGRYj9xj\nCQ21mMafKaDUwvRMg8DSGW5KxhiNmaYnFA2JxchDT18g50QCTQk7u4o6KHE17mVxPUWnLKAPNDYX\nc0YtL6s7Gufv9ck8pTHs+vAMGwjFdRLdOIG6xDBToRsAlDieXgIrHaFyv0MqabHtUXB6BbTCCr7D\nOUbCg886JuKLYyY0BPcccT9PznE48E8ImVHaPoVNXxlDUqhkBKSNZUKPZgyyOj/8wZN7agwj/LOb\nWbSpF//Vp3j8vY8gXeJRMsmndtbozJfxuCKtmZ+9aynqNT9W0Y+320MWwigRHdF08LezSOYR6UKJ\nfdNAH8rExQyDIyhJKfzj2zSWTCRDpuEcU/XI9J0w01gY/a4PMwizS6uoXYnb/tsUujJNBIL5OIHj\nC1aySyzkJXpRky3Jz/uzUwKGgrcfoR+VCFsuTl0DTSCZCCKN5oRVg0mjjZst4NREAuthGiMTfy3C\nXNfwNUzc8RAnsko4HESUB4y0CfFQkFTTh2oLMMszUmS2Rxajepcfv//kk/jca79OjAnneoCeNmVS\nv8Oka2PkRPa+skzOWiGsizy8V2HWc2nGI4ztM6bLRbydFrqsktrYhrKBL9qlMamxtFmiPa3iV4cU\n4ru4uoT+wUNIq2RGASL1JIOVLpovinJmIiUzDBMVGvMEP/zmu+xaYUbRGevmEuFMBs3pwAd55Fyd\n4u4uQ0cmr0fIXLY5GqR46gvXSQY8vCE2sVUvEU+J+PgQsRXgsnvAe+/fZevGCubsgsDxgEnlEUJ/\nyPIkzEieYM8FvOlrBEdz1q/FqNRa1Komr9wsIJWyxMJjgvEUI9vijW8/aYNufXEXTTRZ+OPExCJh\nI8hQmjDrwYY7w5Nf0JhcIRQMka/anCy67M8WbEWqxNQxp4901uwgylKGSaJD/NTG8il4/C7mnQsu\nguDXR1S0CYH+Pra7StSJYr1UonVrxnjcxczE6fnHnB7eZzKLYCkRrM0Zs4NzDrsfkQmrvPnWD9iO\nLlHp1ZmFljifvsHULZHfCXB+WuVgfkIhe4VTdUoxvCDhtvHpEcy5wv17ZyihJtLRgq4R4W63RnGy\nTDUnck3eoD5vMnImuFsZrugi3d6IeTKOb7xPJ1rHk1nimZVdXv/6D/jtf/QP//KLqN/9vX/6tb/2\nBZla+Ri1rTKURdYPPPzZew8JboawFzlaGzLZWpT56Jh6MUtxPuHCtllVJrSjXWJzgeBQwC36mYZf\nwKi28S9g/PEZPp/Ew5/co97psF3KoaaizKdxPGqT3E4Af9BGnQ0RhSJ9/yHe5RS9H7Swcz6i8iNc\nVyYtnuDdfIqg3WCmXyenjGlGDEZGhsTGK5h/5uFf/qt/w+Yvfw510GTnK9fpNB+TC+zhhBs49ghD\nTaEZEdqCTY4kul0nZ63j0Zs0zmvkjCmZUJrol7ZxEyOeLlzBDJxjmTKm3MTvC1O8cov/8EdPpjB+\n7sVfI2KlSRsp6u3b6PS48tPX2DS6dKQm6jhOpN1nNFJQ/GHcb9zjy//DL3L2zW9y1hFoHmp4Mha9\nS8+S8B2hJxQmZxIDdYR/oCL8ahtVTkJ4yBXVgxTKYK7FeOcnf4GiLuHfvkZgccjCu05kOcSJUWXw\nQEMKyaysxbCSc5p3gzyazvHMS/TVPj1fCWkhMZ+N8Dw6piwOCE5VMp427zzSUb0SsjlFGEaxloIo\nZQ/2rp+BphGQplQWGs+u5jgPyMSsU6KpBL0bATJKAKmQp/7mXcY5nb/9X/xzfvjf/afojQ5WqEFz\nM8uDHzzJHPxb13cYbEWpdDwE8yF8HQnbltmQbD5qRigmwvTGbdwfVpB1kfv1LkFBYuNSHt3rIWXG\nOV8Psr7octbJcu/9fWqzA1ajAaZJifFIoFjMYZ30ibgBavNtloUgpsfDUriIMG+Q0GtMtDyXN27Q\n7PQIxQOcz3VeLDgo4VWynX18MwdDmCKJPpSojWV0CbX6eIQtotEg7VmLKwmHQHQbNxBDH4Etfcir\nf+MLfBSaMpUcwq83CNzwE8wGOGtE2fjZLIW8zEfTEN6ZRGfi472DIQ/G93lptUBuvcjkw/fx2A0S\n+Ri7xQb/7utPYoY+//d+hUc/fJe5e4MLM8xbb32bv1FcpaKoiEUvVntBMrWF9timJpbJpvwoExFx\nOUB0NUZlIrKdrvDg/T6NdACvFOdQmVAa2IRNm0U6jf7BEI+wQ1v2YAkz3nrYZ+MrT2N3qyiNLr3c\nlMjth1zMR2imhTb/Dp/ceAnT3cKzZuOvnjML+Ck+LJIqyVyk8yhWGS0+IRXqY3kScBih2X9M7PIa\nK506k2ybQGYdoy0S3rBgus/JoE2h9RGi5sHw5ZkZD2kcfhprK83ZapdwbUE2V8dzIlPJLBEKhmlc\nVFk/HzPML4iXw3zj3SeVqNfPHvBm6A9xP+Fn0AtxN+EjJ2yRW+oTJcHD8iGroSTaB3dYy+rUwgqT\njsjpbMCgp6CFfeS9NcLTKeerIsq0iClFURJrtLOHWPU24rqHR20BQjLCwEeilcdniMx9WdbEDumt\nTVryKdqFTWDZQq95aXtGxKoG8gaExDTnsko8MYJBksXcYikEbvgSjztnRLQ5mi9CwlCIPL2MOK9g\n6zM6My+ReJyKkiYS9SH3Onh859S8GrumQn3JwM0kcSIdJoaM/8JAnbnYbZluNoTHo+JPPCY/jGBO\nRMil+eH3n5C3v3LtOsNQnKg6p46CIWURQi7qLExYimO0niQrWAWFYCnF5eoMYRhkLhyyEpcRDwPc\nVx1q4Y9plkVKr9wgNpxSbi+xG0txkalj6gqu3mYY3UPwBzGX2oT9GU7OKtz8RBFpPicUvsKSHePF\npRhWZBNv8iop35i75358ixnm3OUjzWLamVCUNaSlCePMNjcyKwxuvcu//9NjxOYpgjtHTxeILen4\nTC/5V6ZcvHufdPYTjGstBFFnlgsSSAeYa+BuWqjBF6m++yH66jUCxhgmQ3xbWcJ2ndO3+3R7A7pH\nKsHpiNdvPSG9X3n111DPGmyLV5ms9am55+g5nbmlYagx5pMWSjCMGRvQ1UzCX75JYSDR9Idw3m4y\nbF1jOeggj/uEoxFmMT+1yAkb1Tl3vC2uXiRpeXQKwTUyWhBhJYPlKyO/08fY0sne/CS6M0BdmERD\nfRTZgoSf1eUuxtom5mmW+J5BWg6RTS7T189YTXhwzlfotB6yIgXIF9fpDBz2YjM84SDB6pyukGNk\nO6ysD3jkmGTNCLmgj0UiSDRgcup3SMcMWq6HVdHPdizEhRmkmbMJ6EUOL36Ex5/AavjxL2QiUpJ3\n3n6H3/pv/goEEP+vv/O/f22tcBX/2udpWxo3UmFEdwnpWpdUb0g7H+V6T6GdBK12QbyWQSpk6HpP\n0botosFVKn2bhZnDfzHHFqeMbRNFO+HjgcWifkJ4J8mtr/+I+qhObOGi+Id4ywJdq49/EaOrKmSS\nJbzeLKFuFLHkYzwScetV7GUv8bMY7kJHTM0QvU30kc1Ej2Mmx+Tv6fTHR/yTL/73jIs6zhWXk0e3\n+FToOud32wzDDpo9we67WME2rhREExP4+wnk2BClZdNazrG8mWLqT+PunxCzlnDsKUftEa4Yxhwm\nCQcWGM0J3/jhRwDc/OlXoNIn5DXoB6pcubRO7/4MezJgbu4iziwcFdypwEZgn2QkzuvfesDOZZfV\n11aR4nBPOWFq2Ag39ii/8zaZjRTD1hTTaFFcfg3XvkOwEuU00qJPjo2l67i3x1zbzTJpjWmqCcYX\nfZxVhXDVy2CzSym6QzbrQWpYGGOH09pHHMZLXLVT7P9I4JmihsuC8/KCsGQR/9KzTCsCO0oXnzfL\nLOxjlHSxZ0mE+JOJnGB8i1IpwmpIYpgqETTmVAcadqdO5eEprWaEXlvjxrUrtM6DvH31WeyTEf1Y\njk4zxXVb4rs/elIZWH71lzES4MOh7XvEYnWFzFjjfb3GzvIm05CL2rbx7u5ysBiQagqkviISnq5z\n0h2QSAwIqWMWHhel7eXyUoqVL68g3A4w1/p46joHqoA0UJG3TKZ3hrA54bmlPTzzGDXrjHRfQdAn\n9IJPk+5U8FZqbF5ZkJCe4cD8Ov6WjrPm4muAP12mf6Jx+J0ag1wdI9BGvbKLf3GOON6g3DjBkwmi\nuFW65ir5lIs6O6d+16L0G3+Lx/XHzCNBlqt9eq6EG/FQcKeo3ih3jg5o3mvw8y8l0J/WaA9qTLIn\nBLXLrOSuoZWe58//n/8LgI2/+w8prKbYyDqEENguNHhQs7gcbTCX4pz+6CHhQIFuVyfz4hr2wqDv\nT6OE65h6GkdQmYemlMQgifMxVmyEfr6EdyfCyVBgaXRKRixSXhcpHJ9x2q2gPiXS00zoWVQrl70A\nACAASURBVNRX4qwtSkxyNvFrN3n1c09x9x/9C8qKifwzN9hMp5ic9MltLLhI9GgXBdRHIC483NjL\n0XJ1WPQwvRqr8XVab7/F/mhAKvIs4jDAofKAUGuVmlEjb2W4ddFgNW4hLMJk/AKTYpN2zMH3uILX\nVVgXd6jc3MDc36djaaz7Ffq5FMPDFBHxnG+/84TnVn8aMs9eJ5l5mfvlE2YTh1zCy/Fhk1udFn4h\nS6D6IcbmlNggzEQLsfLVp6g+PuezqQyRRIJHwRwe1WTaE5j6M5R8RwjpLpYnj0we90RnJ3UDMeEw\nm7nEV1eRNC8rlsxPDo9RV33U2h1iYw9KX0XK6uxuBEmM0vTlHMliBceQOL5/wPKyStg35kFbQMx6\nuKQOkcIB5v4FtmNTOxWpu1GWrRw+3wWLuY3eMsmlLVzDT99x2O2uMIzFEcZBSiMNIeqhehGkJCQY\nFRqoYpGp5EfwnSBNlrAmNUTfhNjI4M/feUIs/8Jff4GDMawsuQwXFxTCa2SCMwKZPheTHqYtcF6R\niLpD+l6D0L6fUXxILrTDSWfIsFDD7J+xV9tktp7C++O3aSY3SRRPmE5b9CtFvGcfUloKMzM2ifvh\n4NYB9iRGqHqO0VexrDTehYYUsHlUApw2ytUwFTXGsnfKyErxYCpTVM6J/VQSbfA6ylGIR9MPmTw+\nxklNuBFwcUIJVCmBnAjhm+b4SH9EOPgi7ZmE5N+it5ckItuM1BihbIhzF/yZFHZLIL1Z4qhVwSP3\niZsKavcYKWTTP/YjbTVQK2V2no/xH/7iydT2f/ZakYVZQi+ckjU1dCVBxFDJm2FCukP3pIiaAuFj\nC22RJx/2kJQatAMLfGaJJbpYksnUsrECA4RgmqSp4k1NKbjrnG/UcRtJopfH6PE0DgJK+Yx2KMzd\nf9/FXVrl2ufiBIMTFH2M13uVSCbDxUMPWavFIrsOtwRCswO0eIFOYMyyGcR1pnRWpqyGn6eTqBLs\nWHx48ZA4OTKOH7y3WQsr/Pkfj3jpMyVC0nXeahuoWZl4o4NVnBKfTsjrITzBAL6VMZ5ZFDEyJ1u1\nqecFQvUUVnxBZKwy89fZ/+CI//KvQgDx//yP//nXPvkrv8o73/2PXHtxBemDBvINm//vT/+cq790\nnZwYRyuLeNwFlzee46B2Ssg4IZdP0NfWUKptOltpcsEJI69JPxMmOBjRC0XxKhXIBAlPA0Se/hy+\n0BHb6yuIsoB3rlGPxZjrM5b0BJaqYbTrOFfaCE0LkxrVssvnfvPvsLa0TGszS30cZtQPYwQ1/FGV\nFd2hnwhQUOZ8762vE8gkKHo7lA5DJH56C7/Wp5OYELkbQCzMefVSnoi2hCs1iEozFo6A461RnbfQ\njBnWxzO6tQ9IFWV6msOOsM1I9cF8ytSCSdDgze8+eZy/8tLLpAigb7lE4jeZPHSQM2XkRZb98RCf\nWWVycM5mdEG5rBNdDWDkn8KR51TunWFiExVzFCdVKvuP8Ssx9jwe2taUybe6dJ6VuG0aOM/sEdUa\nmKrI8PEBG88FMZ9+GvPEJdj8iPyWQ6GW4wyNuJRidRTBs6RTOXMIXN5i++VNLC3KolflqqQw6I9J\nj7zsfUIhuurn5F6TK1dXqET9hB0f5vyAdVfH6MuENxIEBnMuP7PNrQ+rdHqvYxlhupsTEscBgskI\nPWkNX66BkotR++b7JJIauqsz21bYMT1McxlOHle59/6TisrPfPYFjGCbFWGGf+FHbHsJYpJeXyfg\neKjVe6grUe6dltk2d/F+sozjCzIUUqT0BsPZBEGbEO2NGV27ids6YOfGHu8vzih5o+jJIbLjZdc/\noj6XcbhDuJGjPziil7/AsW2CzS2GbpTJM9cp9Os0pTcpHxto5wKF2QTDlGhfjKipUyrNKVevrLH3\ntz/B53/+Fxm/5zLXTxGTLzA7eZ/AdIvB/ilqpsfDcxurUeWid44+Mxkdn1JKbeA5lOnshEjP9rHK\nLktxBbkos7K5iS0fsZYRiIl+TnrLqCEQxAJ2aINOVuXN/+MJX+vll7+MYMikxR4RNYT5ZotZccQk\nt8TWxlUuvtuk9IlLFLQoVnhGOVgn60L1bMa77/dJxw8IpuMohsyFHGXaieGEqkSGLRJnHux4lPny\nMdRHrPp26U18+Le22Xg/xEU2xdLDKYNul430NSpzg4rS4Pwc3JMZbqlN66BD2G+zP02z2i2S883Y\nW76MJ6PxF9/7CDVhcKHtcf16lIePBaRPrHI9XiCid/AGRogPRbyXTwmNJ9yrdIkFF3z/D77JjZse\nxsXnEc7T5CIuclRiiwj76gHhRwYBScI7DjOTh5wdfYxihRj4O9x6+0nG5c+99tfJvZTicfWY1hwi\nXqjGPTw1y9Dpe3jp5Qx27QGadkhpZYvaOI7gCOxIPm4/mjCeNFkV2tRyPvxKlMy2zsd3LDBzxC/e\nRHQNBuqMgTzi4sCDumszOLVR3XMMLcDeU9eJHgwIe2zizSDetExy2qH22IMaVwmuBcDw0VksiOUu\n410ccoxAbAqmZ0bfFlncKhPxrhCI1kl4NESfS2V8gST6aExTbGc7PDIDlCoxRsEOk6SXXE8iPDvi\nfmoFoTUmoHtopjSG0gQj5mU609kIzZn0c9QKFeKRJfbnYd7/8XcB2Py161wytmmM2nhNkZM7ZZzB\ngI3NIvPmArkbJSnPqPbb2JqIctiGSxIpXUOtuiTdCMNxk7E3zsKe088rhGZl7MdR+lNIKk1kPY0z\nyzANWOgBmWAmR2Li0H2+xMNGlVi2ja52KJ8dEI+aGHMLoVxGdiwqKYeUG6Jq9knvJdmZOpQ/OqMh\nJEhP6/hmEZxCBHd9QSjV54ffaJC4BgvNQhJW8IfGxG/J9K4pFEIhZrk5Vr1B379CfLeH/rCLtuLD\n65FRv/tNxGtZoq0O+9MC85hD2IkjOCo5qcLMDPPNN56gIT7z2WeerO/Ci1uwmQ89OEaAC0ViJeYl\n2g7i888QnBytQplAtEKeNKIkMagbDIPL6Eab6VSkXFKwm3G80S7nwwArAQnjPI5ZMFjzLHPW/JBg\nUiYflImZQRraIZNilPA0TaD9iNhYoCXOOfP4kcrHDDsWV164xjTbJJN8hrg5YdjwUbUyDOZeYrMU\nxisO/mqXuT/FcjZBN5qg7bex9DDem9dQ96skf/u/wjs6RD45Zj7TGagNntnOsBhbeKQQDyd3mJ8k\nOO1/gN7X0c0hnWaL5OoCwQ4zlYJYKYu7b93nN3/zr4Cx/H/7F7/ztWeLL6BLOkrHS8Aa/f/cvWfT\nLOl93vfrme7p6Z6c8zPz5HDOeU7cnLGLRSJBURRISxTIEi2bfiG7GMt2ucoFVlmlMm1RomhZKskl\n0bDNBIogQSx2sQtg8549OZ8nx8k593RP98z4xdGXIL/C/eK+r/91X//fxe5EYXGaZfvRp5TaUL8g\nI7cFxs0tJhOV4VTALsfIYHFihtDdPdyjPpVRiEy7idKdUO1UceqbiLMiim2AKz4iptnYtR3imsq0\nDSc9u4lSkQi7OiR9UX7w5zdIJJ9C0rxo6Q6LawrH36lw3bqHPhOwTfu4a3UcPifKdEre48E+Xacj\nCSyGBG7Pttn5uMz+8oSAVuRUG6CbY+xNB1Fbl4OpSU8eIxkzVJ+OqI85mQSJxTZxj8J4pIdEnnqd\n00oKfdwnd0WhUivT84LLMyV34uIvrz7hz/zCz7/M56ddavmrGG4HmjllbCqgBejlOtjefYeIp0ra\nc47hxMYg5mBuNuZx0043HEQ6ZxCWEhy6m3htdhwrm/DpVZaePoNDiqBNUoS/uknjR7cYXPgyYh46\nxQovnHuVR6cPcEWmzGSR9MYZTtUGzVvHBENXSMS6uA57bPlcsFOjXBwi7VhYa+DwpFDOe0mFnchD\ng442oT0Y0ItN8TlXGH9YZqvXo1VXmfgLJIJpdvUB0qBOOnRIUmlzLDWZ7axxdEGgFvYzUw0Ul5te\nCRaSK7RdLTS5xUZyjWv3m5hBD5H4Klf/+o8BuPDqNxi3hxh2i6ZmofectNx5xFML+3BAz6XhPbBY\nmQXp6yahSJvJmoh57GbQ9HCkCthCUyKGB++ZAIbDzqrmQ6jpFPpJlMM9anhxTQJMmj2ivjM4gjrd\ngYbKU3RoM9V09Pk5Yge7NF/QyJSfYn3hadyJFPLLKep7GpXrO/zcN38VXfJz+FGV/P4D7t3RsTVq\ntH/0Q8abAdwhL4OWxPJXdUYt0LIQaqWxmxYO+4zATGU5NOLB6VVW/HYcjQz7bRXdajJJ+Wj82+8T\n9i0gbrgp9GSUgAfnwA2mF2V4RPYgyF+89/8CcDn3dQSzhrcicu1Hf47eGhFLRZmUQb3UQJ8MEGpN\n7nq7zC1EKfcqNH1OPBkB3SbxtZf/PicVB0ZVZpo5ICelCdV0puEF6qUHuKchdtqnON57gOtsjvbg\nHiuhFKfeW4yGfebOhgj5Vyme9zP8/A7D2lu45xaYO+vAO6oTi4o0qjWefe1LzM6k+E8f/xnthWfp\nF4947fx5yvoxcaHIj3dLpBxFxtsTDvUmt374AZolkDz7EtV3PsFxLsFlLUTbN+I5XwBf5OvcbVzD\nOHYxzQTJyWFcTief/rsP0VsyDukBwkYcZ/2IDekywcszap9vc+Pxk3qmf/I//SINbcYHD24hiFN8\nqRC2ep3Wn/8Rqdf6KH4Hrb17eJYS5PejqDaB6sNjSsUBsfUWoewKWknHP2wRi1+i+fiUxdUJrVaB\nFiKNVh3TDLKmxJDTFuY+iJExoWYfd1amnD/mqDNiJjY5Gk1QZB+yN4Qy6mFPh7lneogOfJyO89gO\nWsQzGWK6m3FHQsjEiY06DEwncizEMDRiOowwGrpxd/uEg1EafRG142bOa6cdAm1aYeLsE4xE2G+2\nkJIBrMmQUSSBR9exhinSE4v4yGQnrxO0hWi6kwy7pwSCfj54+wlS46fOr2IqEyaiiV7rM5UCrD7t\nRz8SMPQIgcURY9cIfQi2egZtOUJrMiJXkKhbxwyfamDsBxgNxyjNAoa5RsM4InEuhWr16BWanM5M\nbNEmfjmJs9lE79SoRhuEJSeL3ijmyKSrhrl85UW2du4z7xGwZfZp7IYJjHucepokzAqxuSDtmobD\n6OKaOyVmn8cKqZjN27SGqwSUA7L2AA1lRKPTQYl5KH23hxkZ4fHPEYtJSNMauUCI41GDlNNB87iN\np9dnLTFBK7dIOj20P6vy0j9apfWX1/nKP3mTB3/8h4RTCzx660+4VukC8OaZ1+mtGVjpJRbzDhqa\nTtJhp1uuo+kOQuEKmj1BO9FlqdTDoQ05jsTxPTwkOqjjsHbJqCmkDQu5Y9B3xFn3u4n23ewD6ZyH\ncOiEktjgjLGMIVmEjibYiUNyinMc5pmvTqneFdjRj1Fu9HAUcsReGDEvRWhfbSPaTcxRlJrDhVf3\noAQ67PceEFqcIjnP4HkYZeBvYFbP4FRnODtexMEIx+wDGicmt//gO5x9ehVRGVHXc3gabaJKhEGx\niGs1w8HjPVbOrGIvj9EjCaKxLEnJy6QexegbDEYzngokeOf9z/jNvw2cqP/1X/7Bt17feJbwgk6t\nHEHEz8C/jRqIk5tTCaluJuoCCbudrqPGUbPPytzTvP/xbeJrGfrqMUrvDG6hwnCaZE7X2Fd6dPpF\npJ6L0EqIaSVE5/N93H0v0/jLeNQqU9NBY8/EpsosJkJ0uymY+bF52yyd9XJw4uSodpcFf51iLYBz\ntgU2ibSewozMU9ovs5ALExGcHDa6xGUn83KKmMdOTbxLNvwMSqtCwhFFGA/wWzBuBQk1oTloYYVi\nGL0qfS3GUNshc3ED7dDNzev3CGzGOO8XGdwuYWvGqOwUmdWn+IIDvv+fib5ffe08s1OB9DOvE9FE\n1tMLjF1DYoKCde8R0S9uMv+Pv0ndtUZ1VqFmW8CuFSnYZ8zGEJQ9RE0f43GGwMqMm9c+wS54OPjo\nAHVYoVoc8dn3P8XXmuFJiCRTBiFBpd6PQjhEa6uJ6TMZ9ia0fnALMWlncnGJRrdIzhtl4jrh4/cP\nEVbd2IFG1U6q28Wev05mMKA2O2B59TxmpoNVlMjKbTxJG1F/GisaoF7IM5m4MEZdku4oktzhbvsm\nsb/70/RsfmR3luc9LqxpCav1EG94RqNTxnsS4Ox8lu7nB2jePuqdIuXu0zy68R8A+Ptf+QIe/xBx\nMI8YGpNrJ/AvBJl76hIHGFyQznGaOWI4dbM3qxKLzhhpG3TzbpLCIdrEzcyyM/NFCY46+CYpfvze\nv6MedOMVG6TUAO6IzmQzCA03orBPZSQhTb04V1TmtjU03YXLbdGSZtx+9xZ6IM5ww8fopIv9oZNI\n2k3qgp+t93/MhcsRutEAmWSa7NRL1V/hi7+ywvf/pIA94mI2AZ89javlp1wKI/vr9DsKoU0/R0IE\nhz6kL41x2U8xPGMsl4VzCFJSwfbwPrOVFGJiGZd2SPVhGPVQojbU6Dp1EoMm3/3oiWh/8bdjZIcR\nFO+II1sTtdJg8vrTqBGVo+tdxE0Xo4XzLDgKHFWanH3mFc6GcsxCNj790TVWI2ssp6f0vTpqaZOg\no4rjrEy4OOLtT29x99Yd3lx6hqli55O3bnDpF19EqPpR0lmUdoTcxibOUJhH718nZlqMSy38ngA7\nuzJhXxNnLsa8K8L9Gx/hnnXQXHay9X0etZLIgQ6XLr1OWwH3TCXlX6AYG3JuaBD84jJv/fGnrIsz\n4i89S9KdYzdUxeV9hkFKRfR4iNrChMd7KP4MtQ/vUjm5Q/z5DGfCz3AwcxERoSPO44k2aZktopE0\n7/3oPxfCfuNnaTMg5lKIi0H2qhU2/W6mm1FE9RX0967jEIKcfeEXOfqgyCQeYN1yEL8AiYdVcukk\no46K2TukMzvFay/hL0bB2SOcNUg6k8zi6xyWRrjlErGhgNvb4LBpQ1fsmLLF8rIPWUoyiwxpBWU2\nUiGq/QanwSSxhhNf/DOyB+t0/BpBb4XSjsYsE2JiPaBU9LLkT9DIjkntS5y4KjhVnfl4iIZ1jNLs\nUEmI1BFJDtp0pwmMeo0wA2ZxO4Nah4V4DL0xxTeSGEp9ZkMnoi9KL2owGx4hyk5CwSmhSZm33r4O\nwJd/e532ezbSEYXxmptM32J/O4+a1Di3+RT1o4fo1SjxdJDZuoNIIUlu7GbqL7FyLkVnJKMt24n1\np8S8OjZ1jC/xFUp6nrEwpLvoxVUscayZROVlhvUTzKGd5bGEZdooTOz4Zz6M0zt8enOLhVmQx/fv\ncfyfbrIoSGjnxuhI9AMSi+M0/dMqgXkfVTHKnC+AIXUZnX8F+WiXUUAkYV+kG5SYqyeZji8w+I5G\nejrCHRrRM02G2Tqj9SKdk9s47mcZl3VGHRuuqIFcEGlnNsjHGvTNBMKjR+hnFrj5wzL5c0+TCZ3n\n/WtPguWv/ewXcZphpG4XZdonr3eIxW0YC1FG9x3ofYmxc0yqXedgLkW73yE0VHGdcdF9MYKvX6Ca\na9MLXMB16uCYKVakQW+2Qy/wkI5jD1FIYH8k02l0aHg7JNIbCONjynkf0bZIRyqj5iSc+zN6rhGn\nkRH2ohP3c+f4q9+/xVxMYmDouJ0RYkKHk4jEivYp4+kUR6nKwwMNV3FIQAyj9GuYczX2rp2QUCLo\nritcflpm12ZhP+zimm6hiDbMZpH+coDabonHtQYrSoC8OUJ02JlLCnQmJl3FIGZrIEtlOrrO7Uc3\n+Y1f+9tQ+/K//f63zl05R1N3ka7W+bR/g/5gkWi7wNLiCkraRf3+Iz7fvcebV76OX7SY6R+zceUM\npaMjvEYMKeShZxRwTqG46WfQ3EI2LtMf5VkRdXy2JtNOklLEpN/e4ez5BJHjE9pzXpanZQbDVZqd\nAaZcoBuFqBrHqu9w6508qmMCDh2C54gqYwayG2XykIZWwzhRWLqQpPj4DtNOi0HSS/JMEO1+nQ/L\nnzFxnMdhaBwZVQLhFX704QOIFollzmGr7zGTssRsPeLnN7nRPsbRPOLsxlkqpdtIJZlmQcO6EiS0\n6MYwx/inbt769Mmj9tIXf4aFs/Psmttk/EtMnE1sTYVbo0e0d0/wb3yJO9eg2x2iyRMGfYNj14BN\nv0UsN8Y28FMTRRb8RYKjAOOf1FlaUHF/5VWE5RXSZ+M4IossajKi7ZDte3U2/osVtnUXEfET6qM2\nKd0iaIqYZ6aE+y+iyse4EXis75LRVOKJpwgODLpeBYE4mSUL92YCI1zHET+lVPARPOgwE3XyJ0GK\nmHh7PXqhMgFjFafxGDWVplq7x/F2gGxonepf7SOXLFY612iaaS6FUwiTBp52hpHqZrzWYlDdR9Uv\nkbbXSSxFOLxzwKP9J5moc199gUohgiK6CKTCTIt7jGr71Np2xoUtiu46ofaUitomjcFgVyY1n2BS\nuYtst/DYLEaCiGsAct/PDj0G9gD7f/kOL/+9b7KUGVHSIiz2yxxvH5KvD4h4orhWBfRRDV9ySrfq\nZxKekYlDBIVmqU50tw++KNp6n0IwiFZL4JeHJGYr3G8ZBJ0y9xwqo3GX/R/opJZUPEsZWqcuVub7\ndA+LNC/tEJ2OsVc0RCFCUo/ijDhZjjrRd8qUxSBByUXfkUCqy+TDKre/+wHumBdbeYAnM+b+8JSe\nXMJxc4HQNMVbd/8CgG+ceQ4z7CX48TZGN47S15k4h3gGi+xpd0k9tcriYZhBKkbtoY3Mwj7HtRal\nG3VefMag11vlX//u/4097cbnSvP5Jz/B7/RR2+kgfv0MyVWVVEwlHb/IG194k5v9GcJGh/p2k4xX\n4KM77yDpO1ilKWJuTGq4TtiocpC24SjLeOsFbj5u01iIEbHbcd085iAdobS1x7zXQWdHR/68S+rV\nC9hqY0SWeByuoH7uI7aW5NnVczxq5hnITlrYifQX6IhhJm4nI0Fmvxth8VdW8bpaGIMgmfSrXN+u\nQXLMolnk1K8yMgtknE9j0uG9dz4A4B+oMvPn6lRPgzA9Zk5I4dbsTBwCEU1luikzTr/M/e09poka\ns6NDIolljvOHyGEvA6vL/TZYIR/1zhChp+D3LdFwOMlVwjTFDEVFJRvYxetdw+MPMlLdZNQQk6SE\ny4jjDLiZetwsTTeIKjV++PhzxPYSds8QW/sDVNFDd65OdJzEPA5jjAY4Rwbh7hqHkQqBQZHxCDri\nEK9kMPF5GB4PaAfcdC0vOatNR7Lj6ybpzNXxdWwoqh1RV2mEdRz9Kbb6kFqijRXUGRZaWP0K84M0\nqh4C1Y6tn6AgmVz94ZNze/Urv4qxLaO168iiD7PRZ7qxTkCdsFU/oNpdwTJ6DJUeHs8qombhnmvx\nuLXD1tIcnLhxdCbYvCKOsYuWWccTsDCVeeRDidLMZG5ulRwiERXmMs9gqxcIFFJYnS6OkYU+PEHo\nnTL/C19ilt/h3/zHn/D8l18jdjaLS9SwcnHE+nPEyjYe2AaooSAuKYjS8SAv56g8uoHvC68y7bsR\nJR9tycftnfvYF7/AzLmPLbZHv+rCziFCA6zdMd6VJM07pxxWTgmsTlFSFbxrV3BVAsCIgLMOVpqh\nmkT0DVEcAULkefeTJ8P1T1/+ewj+MQG9SdWlsriyQqU0ZL5bZ5IZsLCYQ3E3aBVytLUSSl/CYesj\nCQEe/eEjLv7q1zCGbrrtHk2nROpol3EnwqC1i7KdZkOSseyXsdHH5jDRCy1Ebwp7V6QcGqGdJhkU\nHxNOmFhNGWs4xBVSmTYM6rGHnNtYY3pokVhNsHfjPlNzyFhOYY/YMZsBFkSB0cxiIiyheU0iQ4tk\nUOXIVkOsigSXZMrYGR6McdqO8T7SYC5DK+OmlewQCask+x4478YVWEVINpiPrlMp1QmuXKI2bGG0\nTPqFAo+LVX7j1379b76I+r3//V99643Nr1CN71EpGXT9fbwrUyQE8m0HvlIFwyWx8IyfakNnawoT\nRCqqgapIEJrHdXiNxw9reF5dQR428e9GkBZ1Dk8PmEhR3MoGSmrAUIjyr+9s8cvf+nVG9hO89Rl9\n8Qz2OYuedow7EEXvJGlI99nMfhkjYDIf1NGEGFlvkMixixPFS6O5S+rZpzi6+h4H1T7WM5fpWxIR\n7ZSRM0PBYZAcNQg72/RsGdrOAWb+lNWzZyDiQzgEz7nnIG+js12jpZXotUp0QpAdDdk6SGM6ROae\nfYqoW+GwW8Bm9LASN3n/nSer+i9fTFGfjklaZzBL19izgjibdnpHTYzlIc//l3+HBzccFHSNcytd\nIr4G4ZmIOXPQP/Rjc9rQpzO0wxqTtQAzz5RyP4L86Qhff0S5CznNpH86puoxWRUEplUP64EubSVH\nP19j45lFBrUg/bFM5PyIamvC8GSK7jEZ2pbJyk6GchnhcQlNcaC84iH70vPsbNXQhi6khwPyIZVa\necRUV1CSp0ycXo5vDrGlYS15icrDz6i5ZyQiOs26h6W1KGJ5ipEMUjt8RPKMjHbco+LwMHJI+Fp1\nnPhozqrU+yaVocyF5CJvf/aXAPzChTcJ+w2mniJeMQbdLlpuiq9cpR3SyMbDFMwcL6ou7g1dJCcV\nXCMZ+yjK0OckqoZZWJQRiHFg5PF77EyyTpTUl9jaOqD+sMN2+zp9uwdFXiTjm1Kby2HfBkH2snM/\nj7zUROk4sR056XSmKEWRx+pjYr45xFAQ/6CJc+Snvqww2i/ikI4YiBtMylXi8SG0bJz5+rOMHn0O\n8zZck2Ua4SquHTfzXzpH06jhnMqYky0OsZACfXaLETJii0a/h99jQ4raiKWTlFsCmb6X6UKMO/ff\nJzw+i9B8ROzFTbpuB5+8/+Tctg6ziHfzJL8W40SNEXK6uG30EOaTnEupVJxLJLq7dJwdwqEBsy0P\n7fFN4lqVgXMVdWihRmQsbxh/ROKFZxV8PZXGvI3oA4tWv41snMUzXaQQK3D/3/7PBNeXGfY1Nn/q\nZYR7n6C3l+g+NSYwC7C4MKC+6SOVr3Bu6RWGZpSjn3yAbawwts0zDaoUbhpYyg72uH23qgAAIABJ\nREFUlYvkP2kjBQWk2yMe7R+CTeZppYvgGDNY93Dc0lid9UnE3YSHMaSAxqynMM5A9iDERB5xJjZk\n7xOdVsaOEA2x0qgwjvs42tGZbMqInQRht4fOGD744ZMtsy/98i8z+/QDZobEjpQgIzv5LFBiKRXF\nvjjHSVGncnyDwvd6LLtGTBYWuF2+waV4hsLJjLLdi8NZJTjp4lZDOBIb5BuPSaccNOQ6QVcAe69F\nY9KDsRunp4A6ClA9LNNweggOoFg7oNLTkMtFSrsSk2yM9NBBs17BmcxhFcrUw+dB2kWu9Bj4c1Sy\nVQTPBK03JZgL0hs0sbeT2FMa1VOJtg7rQofxsAfhOSaGF4erQX9nhs+WwGZz0Gs7CLmSVJQK/UaU\n7EBGbAokpCiWFaY02cbl6ONNqBz5ZvjNPB/88IkT9c1feBXlwM7kk1O84SDJmY6u5pk+VBgmFpnr\n1LHWHEzySYSpiaPwIY+KBi/80tdpCgrzfgeTSBBntYc+HnK4KxHIhVDGbqaLBjIiMU+IYs1LLBpm\n9+iYXVNADY4x4jbKC+DeGONPblJb3UUzn0daDbHcWaAhyqhLKqFuAo+aptfWmTeLtJUKNi2MbXaM\nreRg5UWB4e0AUmvCntbE3N3n9ZUX8A3dOM0BkhYhGM/TM2ws2MY4AwI7ewapVBRZWSLmB6Ql2qd2\nemKdyVhEPM1yIIa4gsiJUGRVTUPvHu9cfQJ3XXntq4hGkQf0WZXsNI40xktOjvtOrHKaYe+InieN\nq3OfCVEUj0Z4Fma/aeBzRDg+LKH6N1AGUO8O6Vw5R+/qp8yl54ja1zmyQvjSEWb3T9iZWvRNO2Gj\nw8RqMFoMcjzbYtc5ZLV5mdrMpOtUsbowi4+ZE/00e0FG4RI2c8CGq0+ztY0pxHG7fDhHC8wWZUJG\nmGn4EVHdSX1wiBBIoNhVPrqzzUxR6X68z5lfWkLuqpTNPK5+jKB9DI7zhI5lSscC6Z6LAgLqwwkF\njxdHvY5qnjKzK+CKEerX+ez2Q37rf/jv/+aLqH/+B//iWz/34lMkkmf4kbnN1asfs3hxkVh5mZQR\npXP+HEpDw9TjZLIJPO48f/H2x3zV9yyFiYftt79H9OIXOPPCIrlel14vQVDRKU67zIWiGP4AzeYO\nJdXirtBnPvMqxx/fJu5J07jVQJZn7Dm75FoBxqbCygsqo4ETXI8QbnfRXc8Re3qTkdfCcN3Gfewl\ne/E8Nyq3sDxLjGxjqnd2Ofu1b9Dy93DO2jiPerjFZSyxwLQwptA9JfClbzAfDvPRB9s4AiUeFHvY\ns8/iyHzGg2SMtWSD3FKKAh20pIhzIcvtG3t0hBtsPxwTO5cmt/40f/3t7wKQWspxcjwgFnRTFAVs\nzhGRFT9yv8pqRmDjC6/S/surOLwR/NlncY1PMeoHjMd2nIjYzQOMcZVhI0M/1SXx0OTq0YS1N+20\nxQjdno2I5EIL7ZBNp3BunuHw7b9g560W/YhFSPczdQsct98nHPKxs73NnHoGwdHhS198hcrebQ4b\nQ9ySE8Mms3cisDaxeLA15s7jByz1U4RXgxSnBoousXopRkkf4fEuoJk2Vtw9DruP6U7mODsO4smE\nMZqniPEo9u6AanlEUJ6SL50wlOcYOSo4+hUCoxii6UWId1kXRIoBgdOtCXe2njh4L7/6Gq2OieyW\nGBw3KcgeFpMOjk51fMKEtN2DFopQMHQWnWNularEw/N09RHjXJvSTzTssQqNrgen3Ycp7BHBh5MY\n/bCNRriKIHyBxBUb4kELITQg5zJx1UdsDW7zVGyJk2kPrS4RWFmgoxfpNTr4GeF41UAqVBmVbfRt\nGmK9jb59hP3cKzhmY+zpGtHhCtPxAQU+57Q4xDfcQGgVGRk1xu55+te2CJQckF3i5OMy1mweRyiH\nr30PY+KmkUgQkVXMIwdHpRILUQkxPmAUiBD/VKM803FvXKFczZO8mOD97zwRUd+4cIXoL4hIup9A\nVmFh5mEwkqhrLbqtR+SEPPveDkZRxpHP40gPmFplKkdTLtn7nOxUOPn8/2T5rEHTMabfdGGGINEL\nYM8JzHdSjK/UMP1HeGwJltYWefDuQ3p37zNbXqQ2bPCTkx7PzU1RenP4ogncJ30Ou0t4a3kG7jGp\n+JRbt5wInR0ig/Ncv/7HjKcxsoIbb/aUTlFDuRLCFnSwcGHKeF6ltu3BYZ+y0gwiCCEcC1l2Op+h\nz4WJ2HoYip0cM86+WuB4awDGCZdcMWrInEsMEG0ihm7j3tufkDv/POb2AfOZdb77vf8PgPX4zxJe\nm6P77Hk692DylRwXHWGudx5De8JPfvAT0qrBlXSWUUwl6fZxPr7Euzc+QogqnHt5CavaYhBTabRj\nrCwc0JwpzEspNEui9HjKIKyQnAhoFjSOGtiLbYyQTEbOE944Q7N+Qr/vp+cSiS9LBHc8HK4eonZC\njAICDjGGXBcZt11oSoKsV0NveJEFOzm7ixO1T3q6iMMxojvz4NRExHGcgdjBqULCSlIa7pN1xGiY\nXqLyMROrQctto0eVObx4HC5O5AmhUIJjZ5V4eobPO6aqZ9GdZUS5Q0538L13nzgqX37jBXrDKLv3\nH5H+mSjDnQ6zmEqpYWHX9nk8PSLetJP16GhjEykbwQoIXB3pbORlbMMQXpeEIigEdgNM8WOzTxnF\nJWaNHSJhi9lBFz08wFOXsfVOmSg62tBEEos4hjqhlQTJuklxlmdcM7iUPsvDgEjA36V6OE/CM2DS\ntKB1wkneTzofwBE10DwhhhON4V2JhHPAj+t3KH36mLg3TEAI0erm6Q6LrMWWOegf43IEOLRUputX\nUDMardMYttgQuTohP86SDngw92ak5500Rna89jadpJtBpcimlOSoqfPBrSeLM7/89WeplE0yCORn\nU4bpDp6DJab9IqORjs2t4um12dbsLHjTKHqH1kYOtTZiFG0yfaDTmClc+odLOO8L7A/fJZdQMSJn\nMTNu5qagBUVqlg1JdOA6dOK5ZFAPBbDl+yRiPRKeC6jrIYbNEamIi2RboX68Ryq7iuJ0MMCNWBgz\nOrtBwNXAKvnplSRCIRNZtrDHLAwxhpiWGHR9+NIKo/MmLyzkmKkqttWLNPGxMogxVloITmh5Q3xy\n7RPWz15hNjvguNMgIcqIoTr+sZ2jSpRq9hjtQCJ+VOawZOeovsOv//Zv/80XUf/HP/0X3zqzucmE\nBnafn+efn2fucJnh2KJ5foReEzns7BKNB3D6nBw+bvHSG1/ibus2PtPAcz5LxnvA/pZB+ewqXvmY\n/HCIT1RpxA2eD4+41b+KOzuP16YSty9R+rhGNSozJ8tUhjaWhyF2Bg8xJS8PjIessMDWf7xF7tUN\nHOoEj6nS23lEqLJBLzulZtvHN0jhs3SOrTHJ9UusyROmt0wERvRXBHaq+4jSAvFcgG4zQ/nmLVKi\nj9ArIWzuORaqHmyzR2RyfRw2Fa3vwtMOI3Vj/Nn/+O95+Rc3mbomLE2fpugUOLw+Zi6W5r3vPQlI\n//bv/Lc8vDpBenkCLRtyUiM1neP25A77365x8Ed/SPDNVc5eDnI40Cj96JC+w868z4ezp9A3TYo7\nYXJrTZy3T2jPurjfMHnwbw5Rn98h4QvRdTTotTzILYvGgwav/8qbuEchZrpBazCjf6/GuUybSiqH\n91DA6fVycu0zmsUhnbGCEBmTS8xxWBoiPbWA4Svidog84wvQvJyi16sytdaZY8L1B6cEZKhNi3iG\nLrRgH0feju73EkhU6elZbJVtjNAGI59JOpuiIAUoletI0REJaYnpqYTktdHrT4hKOU68Bhd0Bff5\nHd75/n0AfuqrZxFMgcTqGtb4EJtiIyyE0F3gag2pRJLM1zrUu49pHpmEB2Ha/VMCqkXCtkBtajJQ\nIzgNE/14i6DfgnEUubxLcFAhkk6REPrExZfoRQ+4/uEPGE0vo8gtIu0xB7YYAZcdb8IgXnIjdXZY\nWE1zGnORrCfRs31atgS2m7cJrSxgXxBYapcIVgxckzAVfY+5p+L4boiYQwkpDVG5gq8Zwwrp2Ko+\nmpKDenlEPn/MStZkJufoWh2cnmWswT6zagV1pYtcXaY5OKJ8OmU9oDIYS/SrPU6kBCvtdbR2lauf\nPyEhf+Efr2HWs5ibbZ5tPc042GIq+CiUK9gPTglffIb+HQeaV8cfmdH79BMGWz6aUhNzLc4raz6E\nr36V5kmW9rU+47VLhMQG+0YMI2/h6Nuw0i1Ovv0hBcFP4DiPND9BPf8qaUUkVG3TtBtEa10uvbSI\ntrPLO/dPaLQ+p3fRzbAcxruwzlLaT6MXp6R+xNmnXiRwwcn5qU7HlWHsXMQf9HHSucvhX9SRKh3M\nlR7O5j43ggaVoBNZA1fFT+8ICpUTvHeHnEzeY/CBEwdFfvS9B8y9kWB2MsC676U3uY0tKjJyeln6\nh8/SS69yzzji7p8/GXZ+9f/6FW5/e4v4mSk++5AORUaTFouFILVWm+xGhKSs40jHOb2+Rz+cxRkE\nVY0S9aYxd+1YJzcwxusoGYv9Cryafo0jccy0uYdfaKJVu6jeAt5iFyHyDLanpzgMG0c9J9vbN7D6\nNryDY5LKBbrGfcJxD32xiSi6mQsksOl7ZPxhHI4RTduQUfUhzYANVU9g850iNF2cRu0ISo3gcRcj\nO8Hf9dNVQ8z36uTlMZaxiODeJj0KkO8b2DfO0GjUOWemqYxPUDSLVNaD/fQRvWkcn+Wn2YqwvGrD\n6A1IKKvsTwt8+s4TJ8ruWSSbUugGpyieM4z6fvrBEJlMnYY/x7gtsLkq0gwFaU9m3HzvEUJ6jY1W\ni05ZxGPuMKJD+1YBqTLAWrCDp4Mbk4goIddtaMtOhFabsbeB4lxFLHbpqh2iSxEaWhtHpcfRwpjc\ncIlewsHk5D4XV+dJjR3Y3F16jg6n/RNqeR+i1iCRDpMMe5mYPfL1Y6TcGpO4g1df3KR7OsA/ncds\nHnL18ANWFp5mdNmDblX4vX/2+3ztjTMsjePYJ37sxh6+7T7u4DyT8WOiniz7rWvM2xY5tW4SfeEc\n/U6f2ayJPZcgtOrnr77zBIqbWVnHNptnkO2zWAuSzC5SKxQJWBbmmkJ2oqO6oyT1IR2XwI7TZLMc\no3NOZWPkR5M0uusRtg8OUJ4LcVFQMPOnBJxxBHuBtqvK3FGJY8cxi2EHdesUIRmn3apxwUzy/uCI\nTec6jZqTpKSxL5WJWQJm1otN9zKt7TEdD3g0UAnTQFlPMNfT6fvyyGqOP/3ou7T1AFm7ydasi1s0\nGM7yeB7F2e/tYBqnyK0ki7ITu7pHY5rBO++nv9Nh4cUUnUODfkpkLZ+iMDcg2hJ55J+Q8U1pjXRm\nJRP7SyMSSpurj4r85q//LUAc/C+/97vf+spv/R1uGx8iN+B5f5Cjjht9OMNdquPUNISzy9zfaXHo\nKBHYWOHjt26RSWzSmFkQndCuzpj3jHnwpyf4vn4ZuaegWz1CukbXeoHUmZcwa3lEl0KnX0U/qbKR\n8jOef41+93OCX1zG8UaKXEVnUChQ3deI/1dv4rFN2Ck62Dr8ASHnmxgbOkmhwWGxSa8vcSHk5Q8+\n/Pc0RipaecaDj/sIhp31gR9rFGGqlNk67rH89DrZhacIn/EzPZ2jM94jko+Q+GKC9t6Aw8gYz9BC\nZUhPmLJw6WskpmXu71Uw5vb5u+EsrsiEW//qI7abTzhR585fZH3Ni3jbQI11KfRHzI4Mgu7LvP7z\nP4V7fsiDt+uU7HYMF7i7UdLSJkehMfXdEUwrmKsSHoeGcyQjJ5/FPZzjzV/aYLwV4qTZIGSsk3pm\nyG5zguulAB/9zvcIbFxCS0Q4PxKYrnnxj+vY9Sb1RZjZ3ZjrSYxTlfkXEkymaXQ6uFx9Dr/zGdlx\nEn9EYDRxYyv4uXH7ASso1BfP4ouE6TiHzPVibPcs1kwPss1EGxoEQiZ9fwZt5mEymeF2SQx6Eq7K\nEFvAAS0dWQ0SXtQwWwqtUIfhqIupyHR9EzzLM37w7SeX85sv/QreiUy5nqdU9BNLTRgPLcTUWcx7\nj5G6Q4Yhk25LYKTZ8D47ZM7jptdwYIVVfNYu+VqX1XSKpndA2NjEN5I5mOtzfOghlbXhsrUxw14m\n4yBHXZWUV2MYWsMyLNIXVby9JaJBmbJDQcmCNnVQrlikogJ60SDsUQgoy6RlJ6fGHt07ArJRQnNF\nUAJTPIdt9nMJOsMBiZZMbOkCld0TxGiMWMpNzdJI2A0i9iSlSZnIvAfvqYxbeojfEcS54SO8M6Mb\ncBEbBMkkB2hN8LlDbKRS+OaatP1+fGOFjz77KwB+65f/ETVzgkOzYVhNBnYJufWAilOnMExxZfMZ\nqgfHnDvrRcl7ONKgdbaNP6iQ8l2g1N9lIT/ClSpw0LEj3/oE60BD1ctMwjKNYoOP3/suyWcWSSNR\nij5m5H+Z7PSYfsDAWReY/3KM8fFNxLZItR1mU4hTND4geH+Ishgh0VUI+iQ6qQdEqyobV0RCkoVz\nW6NQLvBcAk7yPazqjNyCibGxwIbqJvDiWY7e69BpF1DkMjt3S9yy/Yh0f4Y7voUxPkf4NZV2/z7b\nfY3CaJ8lNc2W48f0Cm2UlEhDFHnw/3yPRUeJ8uPrPLz6CIBr3z9m9s0lAtfsWGcaiM0gamGHU+8C\nmtQnIexREs7S1vZwpjwsTkSkWhexCYeTCQGfRmdJJHW/y+5RjdfPb9CsnnJ1b5c5e5pOKopHV5kU\nTxguzFNW2uhNBy7dhY8OflJ0PQrRmZPeUg2HoCApTQaDCD1d5/TgAcN2FiPdZNIbsyoa2OcXmVoC\nzkQLHtRpTZwoHgep3QAVl41OfoQ3eESmFaZgi0DAIOcfcNp1EsokqMVKeKsxxLZKTz4hrco0zTGW\nq48tPyVkUznqj0kuj3mkHxMpRNiyFFZHXd768IkT9V//1kUEcUrxyIPlCqAGDUSpgyIEaBhXcdl8\n7E6ajJU0wamAEO7zXGCVx5MRen+XkFtnvFVBv3qDaiKGaocTl4HeDKC7wtjkEVpgwLiRwJNsYh47\neevuEWdXRYaSnbGq4autoVknhIYagaMyQtfCsTojPJY40coIJwphWeLw8bsIvji2SZvjqslDTKxq\nAXUawiNDff8xtlkdvBM6g1NeefXniXvqWGaQuWmdrbv3ef25eTonDY49i2QI088oVHau4VvzIxUq\nHN5rElsK8dn+O2RzISZTGDQPccoNHvz1PW5tPwbgyrM/g7Rex2fpGA4v5rGF3bPHoOMnmvdTG8mY\nrSptu0zAOyB//R69sJMLDnAv+fHsn+IdG7jGNpizYb8XJL3eRb9+je6yiGunwa2igjEaMDlpgtlB\nKjkwWx7KmQOe9T5D3VtDdwSZUaZt11HKPgytRa1doOjO8ELER6UOh8kaXvMyg/URyiMn1eHHLF18\ng3G9TNfrwma0ubiWwRYa0ksuMWeboRUnaKsK7qiHz6+X8HRlhJ6OOxNiNpiyHxjgHrlJDQucSkMc\nsxRyo45vlMOI2nFVh3jiFwnlt/jo8QG/8Rt/C2Cb//R3/9m33shpFLouXsjE0Uca3uMh2ZMUgnaG\nqe0x1bzI8Dmd8OqIcx+OWXbFWbAOmJt0cdfr2JUVymWdl31JHG0D/1yb0ewqIekyvpsmtbtbKNc7\nDOUZzvrPYNs9T/iP7jHvqpP6tV/kxp3vU/rTf444MlHHMMn10T7o0W51iIy2cD/ywW6JyPFZrNQ6\nL20mGKgznv1vLrMSENh4bBBVPHhbWcL7UV4YN4jMTyn2ayylnPRcFWzqMa1vR7j17iHPV+aJjKZY\nJw0+WrlBZ2FCyJ7CVR4QTl6hUykhz1yc9Wv0Rjls6gPSnRobZxJ898MnAek3f+YfIHmC6LkZnQd5\nwpMAlseLLArU8w/xCpeIxE75/u+8xWbZQWsmEZtbpmntcnEuw9JaANvDXfrDGN6NCPWDb/PMz73J\n1U9vYGo7VPsCtcEYZeJEnChImpde0ULOuhhvQzRlx9NWiOQy4PTg2Gpx8+0/wRlc5NxFB6NP+7SO\n7uPuC1y+vEz44irFnX0w42h3S+C8wrXtd8hln8Xql2kXx8QWN4ikYxhaCO3uPpx0mJOrzC+/ydHB\ne8SjTqzpMeOeHdPmwi9UkORFvNoxqmmgj2SGCw4Ws3FEj4DrXp9WdwlnZ593f/ykO+8rP32FcjSP\n2HDT9bqw+xt4lBQ+e5664cHoqMRWFxkbAxILETYCKQoDUOQ48WiIgXOGdyJz0HqM1Xbi7NiZ+POI\ndj/2pIclhxNjd4KacFN9ZIPdPTaXGjgeNGm1J2ys+nCRpX/3ADEwxXT6EKQo27vHxP09XIl5bA2L\no+mUoD2Apk8YT1XagR6e+SQnP9xG9QUwg2fpdHY4UhRcoQynjg5CwodkRjkfibFTKZBcXSBWHvBY\nVOgqQ0I1i2lQxO/PUTcbJD1t5Ox5om4/vf4hzuzz+ONlbvykzguXVjiayFz78XcAePnlV6iaD1l7\nZpFJO8Jxfcrxn71HxytwYTlNy23n3e/+B1586qeZ8zkZS3XOuaNUAgEaD48wagqrl15mLfUMRZ+I\nEF4j5O+ihK9glzO4vWN864ucm4tRX9Sp/1hipZJAcjdx2tPcv3OAvlMlKr9Ab00g5zB573SAGFzA\na4VxZwtcubKEw9mgN4gQjTXoF0wMK0XTL+Bx1BgUdWz+M6SMI3YcEqGawmhhhKvpJdDNYFP38To3\nyM6F6Fzv8uYbUTqer9Hv1jkTjhBrzFFZ6yG+P6Do2EZU5xjOr5FLBGn+6ACfVyXmu0huts7bHz/5\nBv353/hVvvlSjoP/7jeZv/gNxsEITn+CyCSONyKh2ELMJWI4bVE8hzLOYJOHN5sc/P/svWfQLOlV\n5/nLqsqqrMry3r/eXW/a3b5t1S2v1nQLeWZBGmYWMQJpQSMEBCxaJhggMMFoRxJ+BEKAhNQC5Fpt\nbvdtd7tvX//e977e1Vve+6xKU7UfmlEQuxMhPkzszhL9i8gv58nMOHEinoiTT+T/f9QqCzE3m+du\nMDWG0kDikQ8fYXOzzautlzhhGRNKV5FHFaqWLGLkBP5FmfAO+O6MEaxZqPoDWAMWkm0f4VGA+s4G\ng9EYY+Y24u0siaSLaAgmQwM6W0EaVQlnos+yfkDxoolU1083oBCxTOFxldgo6pjiA+ySTt0EY1XE\nbZhpNe0UWw2iVjNSdQO1M4naL+JZUmHYAyGKyZoiX4/gtlRR4kmUUYWao4FciMJcg2lnDYtN4lvf\ne13VuPQn76P6vJlGL4PHnSJpUzFUCyW3imNvF1dvTEKWCbhUslWBSZoUdzQOmy3Y5weIIR9+bYn6\niRHJ024MRxSvo01zx4L5xJCAEkA7yOJ3TuJlRDU+x5Qg8GpWJ3gElr+7gcOSI1+fYW25gGV9h8bi\nPH5Jxl9soPda2GJHaGUH1F7dwXL2J/BLWyy4jyBbdDxTR6m6s+TNCv4DN7uWODZtzMHIhU8O41VF\nzI4+mztDpPljjI/5KFQ0jthjOBM5GqUuO3WdtMOg5pnAyLzAWHAS6I/pmNz4rXPsZJuYiwM8P+rn\n+a+8CsD9Z87gC0mExhbcbRtVVUGZdjLR6dC7LYYWHOIO6UxHfORaSaYnrYTdVmplK/XNS9QaHXre\nBYZJnReyedSjDzF6OYcwAYIYAFOX9CCM3TaPfQ761gSGyUPUYcNUMxinTHT3JVwTHqzRN3Nr3SCp\nF/FqBhJxlLU1dJuCYBrQa8lYfG7iup9m6yIeLEiKQdDlpRv0EOjKBJ1VzKIJt+TGvDdm3VUiZfVh\nE1PoPgc3fu87xB/1E715laqjzOLYRsk1w9UtJ5P5AY75TUKu+9gYrzNGYdfhxGGLI28OeK20wid/\n5lP//2+ifuN//0+f9ZRHSJqNyRmJiFGnYOjYAxLD1Aon5E2G0x3E9TypG/+AXB8yhZ3WlJn2fTl8\nShdr101K3UKXezQO/S2Hzj2L0mpTvmAhutpi51yR4d7LVOMDMq+NWLz5ORp0iY1vcW70HRKxs8w3\n+0zfrhKcgqAwQjzUxzJZJbF0QNJ8jUC5jfsphYhygUpxmYz1L8l+9/dof+EVYq4JDt01z5IQYfTO\nc7hndQTpCRo3DSq1vyd3cJ7Ut65yeK+EkrQi376KNjFk03yBiu8pzswtEM0YTLcaJHYrHAwK2HxB\n2gGDheQyIW2dpi2A/Eqfb6y+buJ3ePYwU5hpPleiH04gKiMKXRcOf53BjkTdUaJYLRB4W5LI7Ap3\nh6Z58nf/mFN3vpdnnuohjCSsR6eZPRzg6W+ew77s59n8M5iO2dg8/wweNcwRWcCey1JUi/SSdc7O\nBcj+w99yctIg2ylzaSBwUG6jNhUmQ3GOtudon6qy1nfhmh+jek/i2t/kxXKXzWaZ+eMyV772FSaW\nvNx6+YBXLv4ZC+YpRkaQQPh1Oaq6lUXeN5H1TOF97C00H+/z1B//Dsff81NcfOE1Ovt+IkfjuIQh\nTauVtWuv0R3GcS/G2Y80kHUdqhLlmzlMBhQyORJjje+9dhWA+bvuZtiSCY3a2EJt6DqomxRG+7BR\nukS5WefOt76Vxt4NKsMCO406bh2Uxjr6NpQliVFTYb/W4eziIgcuBSYNHLsd7GYLhttgJ1nC7Jik\nl6+QfW2NIz8dYmV7RGujg37fGVzlCrvuGt6UQvPyNerhXZK6ldaMG+dGg7LdTC+zzV2PJGkc9Ij5\nd9G6ZtIWM7uWHJsHVW47cYrKl1ZJv8vGxto2/ryEf7FM+ZLGfr7NVi5LILDD2reKjB+IM8pdw9Ns\n0HZPIs47sb6whn7vEpb6TVa0MiVPD0Mesjso8/I3XyHy2Fu5+dyfs3nj9TFDUXcAv8VPrbVKIxAk\neuMW5rkQk4FDLDzoRBJijBOTWEJtuskAo7MTZJ7qs2vsMZ9sYllcZBQbUbfYsYtN7OXz/NcX/czP\njVCevEUyHeV0ssdN68OYxQS+RpuDcA9/7e3Y4kGswXkmj89QMcVImjO0Ji0bj8pjAAAgAElEQVQY\nHTdabxv7vSNstRShfpBhJ8DXn3mVCTGI/MgiZ1N2FsOz+E8vsPtShUu5b2A75uS+OZlxbJqYS0Qr\n7/LK0OABu51VW57dwTrJN53hjMODMqexmKgQTwhkPDoT2iSq7sWYmeMO21GOTrdwDwRSc3b2ZmX0\n1RcYNP08f/X1sS8n3j7HlU98lrd8/hOYE2ZsoQVyT61hHkxQUBp0S12yPQ+xXB7/6SDjsgvz/Q1M\niZP0vE3SEwJ2zyyOwxFefuZZAlOHsFh0kO1o22F6HQ9+QSVrHqIrAYZqnUHTRjHSor2xgz3UwjRw\nUlzYRZc9eKUYQmaTSyULLlmiJ0UZVidpJ1xMqA7sE0USlRCOCTduQ8RUC1NeMpPXK6RUP8Oom3QP\nuloHt9ePY0JDCDmJV8tIFheGw0KQBK1Eh55opyk0ENoDBpJINH3AntuCsD/EGzKhtHs4bAIyceqy\nhWa9yvPnXj8xft8DP0ZktY00m8YUm2bKX6F5TCFWXaE9I+MJLTKuxdDtNUZaF08hgP/MJKph0NFc\nbDx/g+VgEGlpFk/DQV5NYAt0eO1vv0ZkZEVeGuGN3UbOM6JxuU8geEDRqBOLHSZsM+EYnqQ68nLb\nIRFZWKQ3sGNtzlBXMyj9GfpnDjO4rPHc73+Sh3/llzD5GuCfguGQnieNVe3gtA8JZUI4pBFqtE5s\n2opg9iB2HTw/LLEUF6lPzBArt2hWKgi9NLK5R3vNSUcyc8JnYEnaaYpTdIQpHvrQJCsrAd7z2Xci\nJ0S2aBP8qMQ3P/JXlMsdAO7/4DuIt6usFAzqHRvVyj5DOkhlH3udPhN6GA2JXFkn6WqT2S3gS6js\naTkaa/vc2MozcdJOpRki6g+wK1oZtm2s/cUTmKcOMYj0ufRqBrt/krWMFY9xC1s6QcLnZOSuod20\nY9Fe4uLzr9JixD33nObSrevYWzW6Ey7mAyo7JOnKVmaTMqoa5s6ffi/1/6Ty9Z/9P3jo/Ue5cl4i\nGJygt6uw4s7Q2BjRHOxQbslo2wI97zZ5zYs86eNM0MmrF59j4fAZxq4iSdnBsiYxO+eirIhEt1q4\nFi10OyKd1RZqVySQ0Ikfm+W7j3+TT3/6F35oEyWMx+P/8Z3P/0AEQfifO8E3eIM3eIM3eIM3+BfH\neDwWftg9pv83EnmDN3iDN3iDN3iDN/iXhuX/6wR+GAmPl8/8/C9T1LZZCSxhMrkJvLiH65gXQxzi\ncF1G200z9hwgr80QnLWxef1xPvnFr/E3X3qOcqaL+ZBKa9BmoSvgKlgZn41wLaNjudzmSCRKZW8f\ns6oz9+sjrv5phmHMh24RCHRO4/KWCbthOWPh1IHIprtA9aiD6eyQ9WmNw1oWx3YUtdZizpbi2nsN\nDvafxXTrp7HJGwRrKbTRBs2jIK2YCFFBWPIhNiMkCzk0+5jtfJ3No/cy8jdY++qzvNU7xdxkgIuR\nNgvWDrm2is08wqke4UAfMRo5mOwMsJ5yoHpCmJrXsUxt8Sdv/jqv/uPJ4s8899dYv/BFTt5/O9cD\nNpyZLtnvWjBN7rKox9DcdgK/+Bm+/5u/hWIeY3r8CT705Kf56i/d5NRvfhTT+csUD/qc9MtomzuU\n2mZyMw0s4pBh2Utq0oYrOWBQPsagE+fo+NtYpzt0Fu7lb//kJj/6hU/jWX2aWx//Hs1QmuR8g1Ut\nSbfnxRmfJqXdZDVwDXfsMJ71RdZLf49/b4NHf/pjfH15Fcoddl+Ge+6aQ/HskyyaWO7vYtXmcE2b\niVlziMMEw3aZ77RMpB1LhPovYjvpYabzEN/JX+H2xySsT7YZnTyDkA8iRhxceu7veNOxRa6wjfTM\nZdzqaSzNMJ986eMAvH3vMo9MnuY/CA5++yufZ84qM+pc4sRHf4GfP/0YcxNn6U0LtDo3CEgPMH+3\nl29+M8vs4Rbuh2b58N2PMvve3+V21zHOJvJcv3mdQGCSr//Zb/GvL15g43eWkYJB/tUH/AiVMcbx\nJFf+ZoXKiSjj889x+jM/zp1qlO888zI3Ln8LTyfE7vevkfjEBPNzP8IousvXvv4KYuV7hBsjcvf9\nBl8+fTev1TaxyXGsL5pZvNPDcvZZNnUbSiHH7cdv59sfOkK/83f86B8+jv0gxN6Un8k7JM594auI\nHi/u6L8h6XmVX/nU7/Oe62O2/uqrOMob3HHvPJYnvkrlkR/j0KiB6fJlAnM+PvdTf8NPfPDLfOKv\n7wLg37/vc5TCU7gCOebCp+iNrpMYuilc3mZ+9hhbnn2az25hXTKzcP9DnL9Z5oweZSUt0n/6HNpp\nGydb/wuF3nP0mn0awU0a1SjzC33CsTdRs7bQBwEcMYmTs6fRVq+w+tKLDI7JuMxtvndzArFVIds8\n4MNHfpRwdcD3X/w9Tr0zwGojy22xBznIeKm2FexXdWYe26TfeRvb4wFHx+d56ZHfQYnu8665PvLX\nq7S+vMCv/cO/4l2PHSL56KfZH/wVw36RUweHedF+gY7yVX7OdTuu2QdwvlPjyT9d5nbLGdZ3NN7x\n72J87Re/xvTPvwOv8zR//cUVCu2L/OyP3M7K5T62rp9f+fxPA3Dm6ov8/oGMYv0i+3uX2L1wiOCP\nHqG91qRrixBuHefci3/Ozst/wY//2u/yvY9/ip/65l1U8u9mo32CoK5zSWkROb7CwbUMqdIOY+1u\nQnO3o5QGBMUjzJafojh9kda0hf6FFjYpjtdmpi9ZUUs6BXcbXzKBJqcJrHcwxYeIbRlxOCITrROx\nTuPSKvSGIoVcnSPRMLWMRp48MzNzZGSZuZ0DMiY/lvAe+65Z5tUG5m4Ba22Cg0SRYXGSkAesg1XU\nsYgWCuDYj5CfbxDf6TL2TVJ01Ijt9DAlozhbKrvOAt7iBHpwG6NjRzQm+OXf+hgAH/y3nyH04L1E\nr2XQFSdDZwMl7UffqjGM5PB1oN20Ix9t0s5NYBh7OBQDmxTAFPJhKwqE7A0MxxhXpUPLbiPj0piq\npGi59og1I+TTY5qbXSJTEZp5C2nnGpViGMHRJDJ3mLbyGnji+HQry+YSMzkrBYtBzGfB2vShlIIU\n5y/jEBfolrMkonFqyx18gRjjwC6uqhe1PqAkSIRTO6zmFjiyMEAZNRlrATrlAl6Lk1yiy+RoQK0S\noxuRkJdLFBd73L7nYV9IUYkaRA/GDL37SF6DutlOsh1AlfdpmaIMxg4+94lPAfBHv/Pn3MquME4N\nWarHMJcUDhwSuTkIWd2Ucpu4dsMciaQYmHvsihXMbohZ9zFyC4ydGcq1KBMjB1VxiDlSYmQ+juHQ\naa/1mHZusuc7xalxl2p1mzJ+BsMms/NR8sUWDlMCRalhjtTx5lMMbBJy3UBddLGtXudo5TiK3mBs\ntaPG9yntQzAZo9s0kK0qgkOj5dBJWQ22r3Twp8Z0YicYXC1iSTWYLznYGweQlFtEjrjpHgTxWYr0\nfT7MUgxTf5Ny04cYG9KqFpG8LkadMR5njPKGFTE0QAvbcfUVvvSff/uf1aP8T/9P1Of/+Iuf9YSO\nc1Oa4I6KyNhTwnBbOe2vs7Kxi39sZm7KRT94L0nTiI5qxSb48Fb8FJrXKDjc2AQLYZtOY12nJrax\njBap568z3y3ijkUpmf2EhT6tVoW23URp/QgTZpWRqU16RmNw0YHD46RvuLDGHfiaGzjMS7irZUq5\nFLV6E/Q6g7CNS84TNHojXGaYchxHdBtkp00EuhHsupnBKR+9dhNTpUfFnCLgLlFsGJjedQf6yleY\nsMXpTfkxBdxo2RHSkVPkRwZKwUPUMFMTRfSUh0BwgFJsMDzokbc5OTLy0HrzHVz+zut+IG9bvBvP\nbQ5C9QT9Vh9JspE64aCXFQkN8lwwejww60TFy6nbXYjv8zNYuQFClmglynZX4sF0nYpVYH0QwDpl\nQXplBVPvFJbDLeYjYxSgULuFKiWwj/0YUpuecpSDrMqtn3kS17E6TuskB8MKmjaNdzhg/pBC6NUc\nW+oNJtJe0lsphntWHG8uMdOtsbOfJZzeJfipTxD+bYOOVSC+V2SYi6PfNYclcMApTmJz+7j6yk2k\nwRHOnJqmEpAYtS5x5yNxmm+G576/iT0rI3/qELVnX0GKu9k//z3ufPR2tnIVypcGaNN1MhY3qmfM\nheuvTznfnkhjmTjOz33sLkZrMt+79le4BDfDd1dgwiAYjXFhbxchXMdn9xOoHkEK7+AsVemGFC68\ns8vh5JDNco0zfY3b4wNCM1Yee8+DZL78R/g8Hc7OGHSuDHj+qSdYuNniLT/pwrNxg3em72FJTGE1\n/xL2r/0Bjy2eoL064qM/Nc0UJqxrz2LNZnhz8B7e9/4HSA0cpJ59nGF1QNS+jfn6TTTrRX79338A\nj/kQj31QQo+ucOXSKt6PREj+1U1uS6f5g+9f5aRPYW1zAmVgYa6cI+WZ5xMfeZgP3Hcna7+1xLi7\nzGzMwZn4ESbOvolhLcPyS0/j0OcpXr6K6+EFJt91P9/+6hcA+OAf/2sOT2QYx1SiEQudb25R8Dto\nW3ZZL28R9h2woXqYl2pc/OQfMfmOO3GEMowzm9yxECAgJ1nOnsNUy7H0gIh78TS3OUyUb60wVDuE\nPAWKww53jLe49bidTE2hNbeOvryCPrZxLLqJWHyN226pRIXvIIxbTD0aZqwtcnbxKM5uiFavjlFX\n6D2YZdY2ixgd0klf5swHkxw78iWE97+Ip/ItItYrFJ++yuHPTOGqeokJO9g0B9WdGgtnLcz5LXw8\n+j5aoUUaEQeZx2UGtpN0xVmKtT6lVRsloYGveoygSWYjf5mlI6c599df4z0PLVIrl3n61df36Tse\n+wiFb3yVYjlPtvEA0pwd53aPmG+e/KQZ8+1H6ZUuc/zR/xXBqvG2h24nuufn20/fILUQxy23GGzu\nkviRN2O7bRquCgTDBWydizzZfwL3o++GYA97KITDsCFHIzitfpTIBINwA0vSzPHo3dRMDQYroGtu\nrKk84mDMa1t1nGYrcjwK6hp15zxuW4icHZS+gCdooiN0COasKFMKRtfPyOclXd3CNnBTOcgysE8y\nrLexdCswFcGxFcAT6ZLdb2ALeuhmBBIBEVthi5zgItJW6CkG26rKuJtAnxwhSlFcJgmMJk8///o+\nfc9PLuJpVBA9OlV3jdlSm76nRXu4i8/lRNacLN17CKlcZ85rI+J3IIbjKGoZec/PUDhANQxyZgmT\n7qGvtZkauCDqYt/kpNrPYB+KqJEwVe86R0cieHU2RkGkfhBrpE1ms0VISrGdaSA6/cRyHeq1FO1U\nEJOji0XaRulPEaus0XP7afY7tGplUmEX1maf62U/pkUFU6mEv3mYgNqkYvbgUbOse1X66gw9rU1i\nHEPNajgqVQaKD9u8nfa2jeB8DGEnT8q3T3EiwoJgoqgIzI8Nbu656YdDRDec6PqAl154/R+8+bm7\nmTe6KD4Za0FibxggcCZJc2UL89jAVPYzP13lZkAgQZFWJEC6BnYpRjc0pjyu0bcMEZZUBiYRe9aG\nK9Rgt2tiSs5SjMSZ2dykOA7gcruR3RVMchqluI8taWWnYSLgHWKuh2knMtTrQWrHRbRdHXPUjVlR\nGKaa5FZuos6dxB+0YrJpRLb2wemim9mjH+gQ2EjTk3Ri4hTF9QGnkkNcIwtbfYWU6YBiaBpvzoJJ\nlunLcRSbjV5+TBmZqNdNI6MR11tY/BHkWp+uKuBw52ibakQ8AfTNPK+urvIffvZfgGP5r/36r372\n7N0WREuUll3Gub9F12JGyxkI3ijufo/KtsKw32e80aawZON6ts7SopO9jkpajRDrtTFtmgnPmVk6\nOcH4+j7uSZ29oJWeZpBYEFm2vILf/TBu9unKCj1Tm/htt/HSuQL6oSaquk2zayIWCXCrXUMaesi5\nDggNu6xXS9R7DpS4g4XZNCm/hjwUEA0Qeh08hTI+V59ysITzepm91jTuRTPV0A7OlhetnWQ6cp3q\nnkir58EjWZAGEXpjM51Wlr5kAXuYgEvH0ykz3OzTnoRCVsNBhnxnlptKjJ0rZvaWXx/Q+fAHT9Ir\nRsndfAV9zoPfYqY+UDFtB9h+xwyhV7u0VYPlJ1s4GxkcNZFGKoj5HhOu1/L0TAqb2TrVnRaecAPx\nyRfZP2PG5YqijCwUpDCHK/M0nj/P/Ek7m1Uwmy9R33IQ1PeY1kQszT4TC3Eud7NMZZx4fC7azT3M\nD51AKajM6ifZnte4VPwKD4QXaVfcNF5y8adPv0bo9xukx06qeRF1sYlXWMRlrzKtzfCsq4h2AIn0\nNFtTGsnsFrbxPsmZO7HsjPji557H9/ADxKYPsP/nK3T8GqrmRBJbrG+XicYOo4728CizHD3Upm7P\n8/Kzr6vzhEs5fvV9d5NpnaDBDQrZHIIzxVrzAIt8DM07QF4ucsh3AtukF1W7TmavgmsqhK+ishSf\n5HpnjX6+zbXMLnZ5hsNikriYQlK7HChlIukllFyZu6QJNoYGxq0K1w62McVGFJ9ZY/sfPs8d77if\n65vXONIq09gTWW3JGKUNphJ3YwvDaH8Nv+c0smOC7K3rbLfN6NYBIcnEHe//AGeXbsNmr7B2xUvK\n5OfEKT9hj4hjpGE113jumspDs4ssGQ1WozZcZwJsX32erslL0dZhe6NKdMbKitilprQ5dnqW3Hev\n4kmYeWZjm6OTZ3m59pdsnH9dOv2xe8OgVDG/2sU6suB6SGSqEcUphfHFYW05S+RND7JAA+Gsl3gk\nTaO0jFssU+/scWPLzEN3zbPvzBNzS/R3Wgy0Eem7H8TW3caebfDi00/wnb/8C97+H38ZBybSq/uk\n02d47a/PcS/H8URMFKM+1KEdb9CNmBoSd1Ror+lsKWUkaZV+fZeLj3+RYqeHP2UlPGnQvGpi/b7f\n5xsf+i2GcQ/B6GH67xtxTAhQF13MHTVz6//8I972Cx9lNqMQPy7z3Mv7JE7PUGg2WF/pMHs8gnW5\nwPhEhS//9u/w9rPvoymNyVzaYEJKcPJID7vS59pqHfn0HZz79uvWEPeutuk8eoyU7GFj9BTFXBCX\nV2Fs7zMeg2/rGqOiwshlJ38rQ63TI/nJ93PCpNPtVCgUcnh9SV768yc4oVipRbaomevMB46hHD2J\nfCXDszey9MsObGMTy+YA5prC9n4Fyy0LXS2DMiwxMo5z+2mDym6Nrs+NMhwyocZwiPs4ygatFY2k\nV2Rn9QaKL0Q3M6Au9+iuFWjHzdRkE+KgTslkxhJpkO2C4nLhrwvgtiNM2/Hle5SNPdzyFPWSDebM\nDE0yUt+JqAvICAyDYToRP2b/mEigTwIPztIGhsdLJ7PL+UuvAXA0UWPRdpxa2cdhyWDdHmF6dkxu\nQ6CbWcOwTtM82MNezGP2WBEcOqZcnqrdTWTDgf32Dq7qCC0eope1Ehh0aE/G6Nq2UMoikbkUo4Mm\n7USAQ7s9hskR6zmR+biFzljGlJHoGCbkgEIraSdQLaKNepRFH4OBwsBSZGAcIWaM2G9phL0hpI7I\n2LAQlILcKHuYT67i6kRRHCm2fNvYvX5KpjyB4QTeXJtIRMI/qLOaFZm0iGzaR5g6On4zRMU6drOF\njV4dQxNJ6z12ChP4tX36qopilRACdiJekVGhzrMXX1dt/5s7HmEzWEfrCnQSEZzKBkR2SbQlfI4y\npuk+TUIcr/jp6jaUgI1xHjbcDYzLdmS5RdRiwtyaICWuIQeTbIo5/PYu8R0B0eVhXfSTdmyQzShU\nwg6sJifloZNQw4LbC61gB5Ok0tzvI8dSzOrX8aFTGhVoJgXaPY35iAN5rYN9KsxofQV9MYrLZEW0\n+YlbErQ8CpI4ILMtk1gaUjdX8eYMOoMJ3OEu5YaXVjpDJZvCEYNBoUNLF0hRI9vqMjFjY+hr0Wrq\nFKR5IgcODpwjDO80/eqYlmRj48p5PvWz/wLMNv/jZ37ps4/8zNuwCFbyTYUj6WPYnA28ng5kCugu\nKzMpN52qiXFExdQKMqEJpIUIjc4OTbkMuQReT4YKcZxSnau+Fk7/HI68mcygSEz30aztI/d1es0e\n/lGasClJ/WaVwB1OzJYeavEEyhLs7xSIptPsRXewBaNMWhdYevN9tDwyfpOPQw+f4cYTLzFu29jy\nypjGGlV3CbM3SW3ZTGJ+Ao+7TkbR8VUMxq0C1dtD1CdP4rtsMJ7zMAzVyWWbmBI2Ti5CpSMiNnew\nazHUXBPtrIwvYzBGoVzz4rN3CEwfxtO7wKuvvC5lPf3ue7CYNDrpJvnvCCx6PWjZbQ6CCU7e8xba\njT6u5CIB7/OYR3G0SB+9PmIxa+OyKYdeDpIO5lk0nUa3FakuRAjaPFQNmSMWF4LlCq9dUTjiDNCb\nimFefQbn/WmsXivuchWtGeJm2Yy9VkUpeGidHmLKbeNJL1HK5fGnR7yycp1GXWDBKaJKd5Ef14l8\n5EEe7DupBBRUdYdUu4EnG6RskZhUaqwPu3i9ftyJBnuvmXDUclQOaRxcrOOebFEsh0noQxKdFjbx\nTlzCPpI6zWZEJ2lq0in7MGpdAhY7hYpEvtPH01vg/MXvAfDzf/wZbl3fY9K3xzDlRzzQcI26mC1O\nJpcexppZp7apUz8b5w6ribXrNQRbnLhjgvLONvvlIZNJC/fcdYjyN28ykQoTXtTRzKv0rna58xMf\nZeVck4PqS7zr4QWqmgmnViEqxxhXB+jKOQRTkM1xk+lggr2Ck+KhW6QtuwyVWSZjZYSRm5W/26Ot\nbdPstZkYbRObOM7MQGTcqXL0Q0fJ7vwDO7dkLvTWODnMUMntsbbyIqpzkWD2DtrhAzrrBq575hn3\ninTyN1mUHYS7CwxqA+769Z9k58WLmFpVzDtuNge76MM6xWCClEmilhMY1ydZu/X6F+6RhcfYuWXi\n1dbLWCJh9IMxVW2dr5yrcu+PH6dt7uHfbKIIKRKxCLud64R0N9WRC9ddIsHeiGa7zNd/40t4LUlK\n4V16L1to5i4zM5jEFXeSnI8QPRwmXA9gVvpEp51cuT7g7rMT2CkyM38Kue8kONFlPWfFkuuwdsGO\neH+MxXiZUMrK/HyU1P33sTgeEIz28a4bjJoukm0/R959FO+wA04rCx07O7kLHDl+D6X8DQ7d/yZu\nbdxA9rQor1Xop0PsvNxk4PQhVntMmhZ49pWnODZzgnvvf5igq0C1mKVbbxFV6rw8yPPQ5HtAHJCp\nj7n44usmpfODSWYnRhRCEYK3zpAt75I4LpNpjrBXBTS1TfLoSYoDCz61jNXkx+ka0d3dRZAXmDKm\naadlDr76ZVz2HZKdBVSPF8fkAodKMiWjj2yI6D2DDYsbeU9i8ewstmkbul/B6Myh20xMCqt0qjFk\noYIuetBqFeqpPmOfzHpfR3V2ERxuEnM2ilvbBNNuJmWBuDNMe+xhYuDC0F0EpRz5NRvzXh9iT2Ig\n12h1s8QkM0ZVIqx7yWMgeIrodhcpFWTbDtSjOJJVzJkBxdCA9K0uA7mJo1sh19QYS3XCVg/fPv8C\nAPc8+k6Ugyyjk1GKjjgzZZFbWYnTRyrU5UlirRKiR6YqR/ArCvVOglxLIYmEX7Sw5ixj147ht+aR\nW0H2T/WobluZNY2pDIqE6wMGgSnUgYKLAmr3MOF4jrWmiJ0yzeA+9qqMMePDUdyDYIqqaYBVkTGw\nEFJHSGEXbm2PQDfJBhmERImRaYlSc0DEuU035KPcVmg4CkgHEQbtClazm3B4SKNSQ/UHsO/2kA4F\naEguHJERfZNMIN7BVBiy4mxxWDqEozjCNOXDGrxJzzJFwOWi5Y/gHZeRzZu0hmNeeOECAIm3PIDX\n0IhXHLRsVtD7WBM2RM8Q6/6IgjQmuudlRbLQ9ucJVwzypiqBqomwFMYdFfHLbdSSQXHeDNeqeMOH\nca576MzUKRXD2HqgmQy6io9QLMyoKjBt6ZDzDWiPuliNOdwlg8DRKM7MJje7Y/qhMXTMBMsKHauT\nQBZKwRC0MihqguKBlVa6hHfsxWLOUlAdtGwDpo0aWrCFZprhIN5leuglY1Zwpe0EKgb2lkyjYwG7\nhai4iqC6MU+PaN4IYfc68FVK6K0hDc8O07Yk8eYuar2Pw2Lj6vJVPvUvYXbef/3SX3w2lbyDO2YW\nkWoVVmxX6Zs6dHYPE7t/Dq3RQ73U5MhdEoPdHja3mZZ9gB4Bt2vInjWC12fDU7UQ0fYo1UJ0ImOk\nRp2md4+uz8/AY9DXZWwhESlQp6G4qSVNpPt9mOrgb9gw+mZCkoxlvoLUg5of3BkLRUFm6+VLyEaV\nuE/m2h8+jSlxGm2s4O9kSSs23K4R6+UqkRk3htZA6NoZV0rk7T3c6iQmn4W0KYd1ZYA+zlPvRnG5\n7fjEEUo+ztZuBbMzghEtsL7bw5/dgbiX5sBgFCki91JMHkvgLtf57j8ed//E+z/CXr6KZTBg6oHb\ncRQGbNns3GbxY+9q7MbWSE64uLy1Q8J8jC2LSGjCRWskMrkbpzg3wmeXWfdm8TXjtLYyWLxBzI4g\nHpuCUI+ijwfcyGV58M1vYtVppvabu2yGA4QXPex772RQL5Kvh5kPt9CHXcY2idFYxHlrG0k3M88p\nhKk24qqb9AdEzv/peeYeXuLGrQpe2YrVl0AztyiH+wiNIdmYmzsnZbTnL2ANqAgNO7ZjaWIbNTKG\nxHBuAr3txNkWGS058fWGyE2BUdJAXoeexUdnZxd13sFwJDAjZlFPaSz1Fnj8hW8AcPrtv8jEyrP0\nvE0SvXk61hGbUgm5kGYulefVip1osMKD7TjdUg65p9IMujHnuwhn57DqZe5biPOHF76G7Fng6MkQ\nW2ULws0q0mKC+UkvjZ0GHV+J5pUZguFJ1IiGM1KlXLBzz8emWH7BTa1cxrt4inptFb2i0DbvMXko\nQDp4N+tPfAf7tANVmMLtjON6R5jCC3+GfKbJWLiX9f/yBwxOJRlZd7FXPHgTEkfvPMH6K+eZUs7Q\nmy7RsSawJP0kaDPqthA0P6FxnGFPJLsbZFgqc/D9P+Pkz76XUusayXRNMK4AACAASURBVJtjJuan\nuLq+i20qivvQUQ75ipw79xwA0ssFQh9O0tyKM6lqjFxlVHOSk/cGGQg14sU+A1+EoaFQDVSZ7nmp\nuwZgvUV1pU5IMFMQDPr5Ce64z4+zZ8Eji6jjFNvssN+8ScLrRc7JlAK3cFTt7AshXrz+FNNzPsqa\nzPrjV3HZbXjUDiVfB6EVxRzdxlTdpKTI1C72WHvyGWRHnPq909RLESw2L77kHhPh43j3mvQPzVNt\nqtQLVeKuGUqxPv5tjbFljNgc0CSByRWiWJboeReQMpdoSxWyeQvRvEbf8GOz7yKGZ2i6CsS2BZpe\nF7SWKFSGJBoz7HvbXHrh9Sbqwx85S2nUZD50mOJMn7FyDXOjQ6+ZZHi9QyjRJnO9S9rSRShKnHj/\nEfqb11GuzaOYVmnF46hbNWrGLh/53x6h2PWCc0i3WyYR72M7nES3D9C0KEv1AIfu81O/9AqhI7fh\nGpZx92qMQj3qTBBu9uiEejiqk9Qn0sR1E+FslHL+gFNRE/a6h4OmnZEWxFnOIEfa1LYUqrYo4ZaZ\nZtVBMzNCnk9DzUautEff4uDYOEUZM+W4zngk4xUcdDsm+jEP3souXdcc2VqJrmqnIbYYeqJ0PAJq\n04e1W8VuBHB3JjG0Kt+98LrZ5lv/7XvYePzvcIbPErV3EYwaSjTM/q6O7cBLZM5OoR1gad7Hpr+N\nuF/CbZTopQw67Tl8IztBf4HdjE7dUBh2g/ind8l14hz2mNiyi5ikPOlaFTXkpt6VGfbzHArMk21J\nhPMG8vEBnZsKNd1NQtjHqU/RT48Imuu0DixMeDt0JINWUMW9C4Y0h7fSIRHfp+8Y4NxPIssF2pKD\nw2IWedpHZGSgtxOYZyxUNoIYqQ6eapnAyEmz16QbqcJYRnLOo+z2KCT9uKwulIMG3fIC8qhFLyRi\n3etQ6coMK35MUogXzr8+q/FD7z0FQztiPEVVlWmHMwiSwjink23JzMcH5J12DnvHVPZVmgMVtREl\n7W6yZc9StrdwDGepT4WwbZZpRnxYazJS9ID9lsZcssG2N4LUc2OJWQgN2qx7hrjHZYaWCVa+1yJy\nQsai7KAPnLjUMV6vF1/JjaHLaLMxjmRLSGISBzlMcppuu4rPNYW2OaBt0vFZ09iUEtaAhmiN0OxH\nsI86TLfK6D4Vx9hCwT5GHdqZ6neoTMjEi+tUNYHGghep1yfhzmOrpdlPVBiEg6jNIX1VJBuxko6Z\nGWYiXLx1jk//3A/3ifqh6jxBEP5MEISyIAg3/ztrnxIEYSwIQvCfxH5REIQtQRDWBUF46z+JnxYE\nYfkf1z4nCMIPlQ4CmESJZL3FM6svsOPxENoLo2v3EWKT9oVNQls+mm9doNyUGbmhGTbwqQmMtTGV\neoJAQyCEgNa3onsHeJeG2Gs98s0xVnGKeb1C2NKmstEk5hzT996GnuoyczAiI6q09sfstZu0bU72\nsvsUb0TINAuI3TIddwuaFmZSPo4NkrTqQfQZA/PwPG25gYckF4IGVwsSCTlITBPYXW7S1PK07xhj\nbyls6xYcO02WDyZYS9cZeQ+RdhW5LWQhZvjwDEtMpCs4/WVC2Sl8rklYeDtudcRwpOO22FFHVmzA\n2CX+oG7NfR1Ds+DCRbt2i6bVySwuDnSBJ3fOoVwC/cUOR0s2LoVWiZ2/gaUehpdG9OI+fFIS93KF\nu8p34eg2sEsuJJObeydNrNZKODWRncEljnkOke8UaK+Vsb73Ns42Yzz5X66gjp/mLafvRFoSuHLD\nQbAZpmSxknbF8UXmsR320TIa2EUHxvQBrf4M98yleflvv4qv3sI+paFeNxPUUsyvp+hrDUztITde\nUKlOnaCWdaPYrMTyRXqtIIG3LBK42kONjzny4RhSoE5x7gY370zRnDlO2W3BUzWYPHkaUzWFVB+j\neyBW01nPFn9QN+fumCdUE/32HezdFsGcEomn3k37aIKVrpuF3Rpm351s+pp0dZnsghtzqk4hYRDc\nvkTIDpkbbT4w9zZOjvxUOuuo9SH+uIM7T03xjSdeZa+1hs/pQbar9Lov0ruywfjWc5x8SOTp14bU\nZ/vYxSH5tYv4jizw8nUDffY4W/u7aNllXMYi/XaEZFSk92oZm+LmvY98hLvP79G0P8my6wTaC1Co\n+EjYaghGnlulMYmj7yVX2Ma87SMZUXlAriGFiujNHpIpT8knc8FW5dylfS5d2+Lu6YfI/EUHfVjG\nEirSMqp8cE7kvgemefDtM/zdL1/9Qd3u+tW7mJ5OM/OeRXYUC/nqUaxNFftqnUDlVYq6lX69RXBq\ng3ChQyHYhqkYKecHEKOHuSVPMWt388CPmRB9DSr2BI2xSmhCwjnW8Gj3oPSdOH0Cpv1FBHObF5++\nxINLP8Fm3knX5sR27H60245RWvDhCi2ydERHFnx4ctM023ZmZwO8+2fej7p2wNEXg9zTX8AZtpPZ\nmeapKy8T/sWPoWTmmJfn2Fgb0OnfJHx5k20tRT3Zpj+l0xMVtksq6XUTpwYbOLNF7A0X81IF6T0C\ni+kWctPC3lf36S67sN5/CmutiW0iR0i8Tvv+Hsfmwj+oW3Y7xcDXpcU2pRfWSc09xLbjJDHlJlZX\njdYlM/GTUTaeW+eGsMrVv69wkAtwMbbLstTmoNBi99JL3Pvxj7P2ratYTdvUWlHkAzs54zh/+fkv\nEanrnDjZYOFHxtSUMmIijCtX4VrewrA7S+m8k1q/xsjpQBlN4jh1gENt4fZZGMbruD1B1kc6W6Ib\nbcGK/6iCyR9BN7uwTLg4IW6wPevCPbmOkJ4g5l0nOqoSjTmxWj2gC9iaBRwrPXqtGrJnh9CShru7\nQ6MxQ3e4x1y6iMNkYAotYR30SGsNTH4LavgYzaUmt9I1LLP/RAeVkxmHPozYUDH0Gs2iG7ojbJYh\nyTfplMQgRmmfteU8yesRNEVlq5ki19MoRgvk/TVGvSDqoIsvZidhsuDVRiRNW1ztRwiaR0Qddqy+\nRdrZAHJtF7d9jkKxwompGpU5Bz5hkimPhGm2j1adZDhskbyqMzTDYsrPvlqHepJYxUn2RIxAt8B4\nQSa7Pce+OMmOdRuvQybZbbLcPcHOQRAl4mIsXCe71scjlOjpPjocZ78rYLVPE70+R6g4hV0bIc62\nsC1vMzJaVGcFTFOX8CZD2K7vIDf9nKxr2MIDNH/5B2Wrt4/hctlZEQ8YCBlStSLdq2lMdTdS2sGw\nZyHa6ZMvBFjUnMzNVZg/sUnXZWMiFCQinKBv1HE1hwQGh0j4BYbSGsa+hrsssrx5isS+geHcRS3t\nIWtlrI0Cgi3I9MYKd9wVIjzu0XOG6BeaDMZlHEYIfdzF5vHj6Le5FnGzF1C5ak7SXr3MpM3FjLHB\nYElD7jWp2wX6gRZVdZ6mW6I32MMra9SKJnRDIZ/x4Lg1JDGwshUwk96uMzJP0o04makGMWejGC6J\nG0GD/voUzv0xoViS6KSGbV1luNzB4s5gVc3/nBbln2Vx8CXgbf/3oCAIKeAtQOafxA4BHwQO/+Mz\nXxAE4b9l8kXg3wFz/3j9P97530OtdRnX5/GsW1kIiNQdYybHm7gNB76Yk/asA3NLQnHoNGaWiHai\nEL5K/qSFgrWH2QHt7U3EmIm+4adxkMBa8GOeD1LoqURai3isVh49FmCnHSJS2MHr8DKK9enZyxwu\nxwhWY6RzORrjPn6/xKJoxX0zxvH8CSRvi4vfv8atUI2W7XkWBBN+5zGm10R6gzxeTw33dIGtkcKl\n/SzT7zhOXkyR1IYMnQGOnsqyOq1yLKRQach4jSAD13FeMNupFC3kzBJtk8Q0R3HEdUxeM0ZznZyg\nk/LNIeUSWFz5/4uW94yVLcsO875zKuecw62bc3j3pe7XuXu6OUnkDDmkhjQpWTZFy7RhwzDgH4Jh\nG5Bl0SAMARbgII44w6EYJFEzHA45qafTe2+6X794w7v53rp1b+Wcq05VnVPHPzh4PSAkcyjY69fe\na+2DvfHhHJy119p7MWy3KVxOPON25K4QP3dj1d7AeOhhWzimMi+i6ENcvTYHXTOF2Dm6KT+f6Y0Z\nRB9ik95mz6/jpNghephBvxjg8PyIZHOWuHaBeF0hLY2o9M0oapk1/xLBhIhl24MBuPabn+HRbJW1\naTum/DLfb9xnyannxZ/RcyzYCNvsVJOPaAdbVLd6GKbGCN0uT0omepcfc/3Lt7gurHM31aM3DjLI\naDnxTJGJOMGgQXVrqc3XaTuTFHUD5m55eCQ4eGo5I3zawuruMVDKnN0/RKg8ISBFufzaI9p//ANs\ngRkEixFXrsDcQIPZbiWlnafVW8KzmHrG7c6jO8zGvkDA16L7w9sEawbau9vMeY38/N97BU0ig8/R\noRXwk25oefr+D+m8k0OnzdJzz3BeC5P31mhsd1gOSlQrm8zY8xQmVrlb7JG9/5gFdwBzdo7jiXs0\nDW16iyOu/PbnePvifVwtF9r+gAfndjSyHXVQY/bv6vnuD97j+de/ROFyiHVVh6c/5vHjYwJXRIxn\nWg6LQb4duMHu2E/AE0J3VUtMtYCljdu5QO1cJj+Ikaqd83gii7kco6OfwV5epba7T6n7HNlihdbx\nPqu/fJObP+fDGHUzp5FY6V3FEAsR07l56dc/jXi/R+adr3Pr6vEzbtnFJO3ZOrriiODNZabDImHL\nGGUEl6451LML6mkztsM5Lj1rKLtu9s96ZD6sYk5PMLQE6Bz3WXrOjUNVmdFcsLJpxXKxT+CKB214\nQKy3yFEyQKlpQBi+xpx/wKLvjBvCOQP9CVbXKZ3kuwgXs3TyfW6XdcwsxfFvxPEbVbS5GY6+78N6\n8xfZP7eg2DpcflzFXj4n0F3n67//f/B+9vfISxnmPjtDOxHl0rWNK17gtG9HV1vGvldjPO4h+NNo\ncw7GrmmsBPCOp3CX4+ydtXhgFjC/Ms9oaoFtb5nKjIHIkzzWpQj17QOU5ugZt6mYjp0/KDAaWrCo\nLtKjODcsAWzO1/Atx7E8H+P2tz5Ar5dYvBLFZ+9yrrWy6LPiaS3itZURYkZaJ4dYr71OvuUnelrC\n7h1Tf3jEWzNvcbz9mI/vHbF/0kG3/ZRsd8B2ukq0qcegG6GZF3hh+ibaYh9rM8NxJoArb+EyLZGR\nYmzYPFiLm7hrp4RFJ+60DlVvJ3NsRG3WMTqtzOl3EPCytjDGorgYj1qEAibcviZje5OO+TkmXToi\nbis6vRkpb0Ffd+FbrjDRlGkrDrwhD5GWjL9bxWBWUZstauZjFK2MW1ulk/zEidIFyohLYc4bT7H1\ngqQn95mSLigIdS7f6SPdf4I7MGQ6EMXhnCRy40UCt8Y4LdeZ85gI62aRbWZmF8dU22Xs4wzWmgfR\ntoGg1aC9LCNWTAy6l4g+OyPTFDWhTkHvppSXmU8VOTzaA68eR3OI3Vuib1fAKBI09mh181gIIXX6\npAIjTMkRRcMk9ryEaTHN/FMNxp6ZriWE3FxlbC4gT2eoNmykDTM4lDYhx4iY1KPpeICob6GkCvT0\nTdq9AWW9FoNhhnmDisUrMFXw4yr4uUSLPeFBCUukTAoes0yg2H/Gzd/r8t6PCiwYHFwVJAaYiEfq\n2BesWNxdhpeLaAxBHP4SJ0KXjNZBY5igmTGgGU2ifXifoFElJQuIk9uI/RFj75iLgR9twIiTPKf1\nLSS7SMgapKRz4wis00vpyES8SKMOY8MASdCh6loUfT7OrTKjSzfajoiiTbHaHBC0j4kLPcQbG6iS\njQ/1eq7TwTUzQ/A4Rz3vJja+wHekMmF3kU0G6LiXGB0vELpyjt+kI1m5YDbY5MSmIxnPECy4Sbfa\neGMiTXma9dM0ZqNCwFRhcKaiuzQgm/tYx2PK4QYj008V5/nrnShVVW8DtX+H6Z8C/x3wk8Uwfw74\nY1VVB6qqngOnwA1BEEKAXVXVe+pfVvf8OvCFn2aBg3aWafE2rdkAk9I8rtI0rc4k41CFrMGMtdlg\nfHDBxbiHrVjgQsySqswTfSpjqRzDkYJmZoais8phK47W94Tj7gWxvSqLhTFisMLxjxpUIzG81nO6\nlhiRsRmDNYrO62LHV2f15jzO1wK8bDdQ0+9x6RPQzno5iyeZulSIvKZjTtOlfWCmY7lBPi2xPZsj\nGXbhPNUSzzqwO+tM3noO+d/m8U81ObyrIBR9KJUNpo4EWkKGSUGkFZAppSr4Tlu4X3Ej6PWsKSMK\nuQaKvclC2IV06cfbTdCvHyEabehsdRj9CId37xNw4xBbK+9CbQtDucLnJ8MUfpBCKWQo9kosxhyY\n92zoizH2j0u4/6sXGL0xyVRXy5pVy5lPxHFow2qQsAV3KSXSGMwRit9L89mugNXop5NsoDWnSCnn\nCNYC2Y+fEkhbGBhcrNvNLKbtaD/W8MPzA2Yjj0nX81hffIN+sYVu3o5uGKOLiZfXIxw3khz+8SFG\n+xBXQEI5rJP16wmeNKkcPMV8fIGvcsSiy42ys8K0M0Hhh+doOsdMzd5EPB+zZzZh/e4J3aaeD37P\nzIw/hJqS8ceu0FV6lLIpMpEGo26RM3sNebhNPa7Ba7I+w3bjlpYrN3sIxjZ6dRb/WoRrr8SpfHzJ\nV3/j24z8YVrONuzsUZtVWbg2ifjSDA5lgm5igL/T5fg8yngqQGHWw6rzNrlmjdbFDk93M0Qjn0Vc\nuM543sm4ruGiIGLZV3nwLzTYqtcQBjvYCwG+9Mt+9OpTDtR9NG54c/Z1vl8e8yB4TE4HnSUF1ZFD\nNkOqNeKxnGEga/iU7SoF+10CnT59ZUQs8AKl0xqlXJqgbGP2y7/Iqugg4DlHA6T7Z/j9nyWur6Gm\nnLz3YQ5Xaov0P/otzCYLg1wRzyhO7qGV7dwBT77bRRR2yd/toX3jxWfcdBfzdJNJ9KUOkv2UoUdH\nxu3Dup7jwdeK9PJTeC1jaqcykYMTpFab8W0RZbmJ9IaXyfYe4pUJkltZTMbrmMKTdHtmTJ4wxnaA\nTq1PpvNv8AXO0Vq7DEb3uRoOUbKO8f+Dt5gSHGwdXZIaBih1UhS/V0BvKpJ710gWlWhdpDSVxSGV\n0WSKrBj3aKabDC+OsOo3MVgFXgyt8KvPfQaX3sjmSplAMIKSfpFxTWDpjoB1+wmd1VVWdFYUIUwy\n+oR+3IrL4ucxenIXAsNrk/gNHsyWPdTk+6xsW3jltU1SNxN85Ttv45/UoJRPnnGLxBb4wpuziPUx\nZpoEbU8Y93pYDaCkXFwKbuKvvsLKa68TMUQYagMs9Iu07CaWr8QQ7+X4wi+v4m17eXxSZGPSiIid\ncSqNWO4hrDjwLc/z4t+ep/T4gnJCz7TaxWzto7Hp+Pbb5wz7yzTuXpCzeImFXLQe3EV7XcagOWRF\nLfCgp6HprdMPeBj1UpjMQUqUmPE4aS9uMoqtY7BcweNYpjOq0tNYOXCqXFZ0GGsROnYTA7nDvujm\nTF+jNxxhGNWQp9xUzDKyM0hXajPI61GtTcxChB5adLYKgbM+tbSWwEGfrvsTZ6A0cjDdaOEcjrg8\nzTPdc5J154l6NJjW/Sj2RXSGJTKjNu1skt72PbQPndj7F1QyBo6bLQbFCnsdB6LQozwH/UALbbFM\n1KpSnwhQLZTRNOfh8pAJX4dgL4yl1KNdSYAqYJ2zkFcdJCQT2cshRlcHJdZFHmiQpBn0Up2hqOLT\nyOhbVUIWhVrkAioOLlZzqMsBcqKWplxmXa1BtkdDP8Lnlcm5lugEvQwDHmatswytNlq+EUNPl/pI\nRXP6GJtaJSUZEZ56eKKVOU7EqB/ss9+o4upXGSwqnB5rKKmf/Oa/cXuftVUt5w4NSdVG3/YCabNK\nIVehtZegkzgl3RJpDmpobUMcskrDc05YsNG2HzF2RcmmBmyUd9G2ukitKv5Mm6Hhko7Gj7RSYCWQ\nINiLopnMYKu3GaS2MF6totN1EOxlavfG2NUGbV8Aj1dCUbY4X1Jw2h+hG6yz44pxOgS7VaLVOqfY\nExEtHXYfB9G1CrAuMuuzotuVMLhqNFUTsmaf1rhM3yUjZSfQTLZR48s8HLWxTmWZbSrYDSq68JCU\nWWWof4gy76UjDVEDYZzLWoxxLQnDCMFjYeU4BmP5p3FR/sOKbQqC8HNAVlXV7b9iigDpn+hnfqyL\n/Lj9V/V/rRgdPvTjIv2v/zmKmMIZdtJzlCifTjOzn0Oljc45wFLsYMhIMDSwbJVwT9TxXbxJZ95J\nKS9wlq3Sdh+RvJjmhat2BgGZzEmIZH6W2TkvnfQp3RMf1maDS6HNtrTDNf0E+b7Ik7Njjq1uTuI+\nVh0WBuU5LJcSvowJsVNlc8LH7WYB0bhEs/uAmek0SktD+GmO0FCkEPERPp8luJXHPu8lvCsSN3qI\n+wTEixQ6j4f96gSNzw/IS0N8NifKSOb08IyONwnuMB23BmnPgbx3gexN0V/ax7ggg/mUWirEzvt6\nauflZ9yuH++ylE5QuSGT7+X5UbeB8RfjNFt5Ls+7HAhV7OsWOktOql+e4cE/kyh/cxrj512MZ0Mk\nskHuyWl6qo2RYkSnnaU2fJfFQIeLxQp7DS3LkxOcJB04nDb0px4su9+g4TJif9jAq7xLpVenJJyy\naAsy3d9gveLg6He/R7njw6oMKZiaWBsyX/8naV5Y/DQ74TM0Li9v2HsYxjKOWoGKWkeeUAisr6Bt\nuLnY3mG8qnAuHtNb9GHwWNh75z1yvQIb6QKVTRuKS6RjWmKUuMLS3zfT0LvR1hW4GcXZ9JHzpojI\nQxIWL+5dA/eTz7LR/PBRkHfvPGG34UXwN9EuNml1hshrJtrLI44+bqA88NC5YUZsDznUuHjz1gsY\nBQvn3+1zGtNjrp+Qk/YYpjo8ekdmfukGpVECn7+El3M8MQty/jEeIcLmxpDop57n8WM/qjLB44wL\nceYApdymp5f5/Oc+RbxpQK/MIAh1woZFKlqJy1KNJdMq/ViAQfmMTrUBdS+pEqwHrnOaqjAxY0aN\nXsK0xJzLwVnpIWarmbrRSC8oUzdVGHbHmOMzdHQyGkOe2PSrjD1VFl1+JMspY0eFyvQuq3MdGqKX\ny8Mt3ntcpj4yYo1uPOMWr4dIP0rw5s9HGeW1NPbOqO9/TE6a4kbQi0V5D/+VEc6lDuWwDXMgzdx1\nC76zKubvv01WuuQf/9d/gGZnhb32gDu3NTQrFg4nF9G0vViuBlD+1go5XYtmrY1d0XCn9SIPTk2c\n/HEFRRvlc3/XxvVYg8FghLAyQD+KUzNbkC4f8G4zT/fpCY2ZFNWn71DfTLCz84iAQ4cYOCRb2uak\nW6M7iGFwlfkwBc0VPeHnAmjn5sh4ZMZXogyTPyA/W6HlsiKEX8fbnCSf6WJcvKS7PIWXGoaiiu44\nw7zGhUWBs0qDrrbEK2/8xzx+skvX+fAZt0ODiVF1Ebs+QTYsIhY8zK1qcQRsHK0N6Q9rmEZ5Low9\nHnVb0FdIrkQpFRe4//U7GD43wc7bErYVkYBRYLtmpLwUoSGa0E5Z2DupommaOf9TmaWbXtZNZiJz\nMQw9LWelJLe+fJWgpYyazVD9xntoFB9rb3yWumlIXU3w0GjGPpnE0c1jDOsojEwUF0x4R1005ia2\nR02aHzzh/KTM09NThIs6ddlK16kwtpbQOkacvL2LNlDBZbUjH6mcFofIrQrWD+sUHww4kjJUugly\n+h0yxgxF4Rh32YtgC2JcMLJitjM0LWHSuZ9xu1J1ozVoKF/ewP2zU/R2nQyORgwIo0hJRPMZ1f4R\nnkd7HFqGHPRcVAKn5Pe6jHvnLJSKGGwxnF0tUe0s6pZAKZtA5yphrp0wtsTQe2xUhEcIVjfnTpmU\nbUDfXcER69K1r1JtJQieyozbQzxLCSyCnkJTAbOJ6rhEQe+kJoBe0dI0+8g3ZWxPZskb/WiSMyjp\nDJphCtFaYku7xFi2M91rk3ksEHU+5fhwH6P+hItjDfpChoWQH//YxLT7BK3BgV4dE59sc7qURecZ\nY9s+YVExQXSerrZNqOljTRWYjBmfcbv6shn9ukD0KEW/D7bQE1zqHKp2Aovlkrgugjh1gTczxBxK\noLRF1ltGWDlFlDxodW2M0SEdwySHvTlMeQ2i+wrT8Vt0hhUGu8v0PWF61kuSHyqch02YrEaaxx1G\n2RF+zRoTV+LoiiNmlAKmqg2hOEvQCPJ4Eeu5AdJ6Ins59GkN03YvQ7+B5YxCyJQn220yyuS4SGq5\n3HQgCeAx65AEH5OqHdl2TM0Mcr6DN5/BOp5E3NPRsQ4pxSyIPRnx4hyPepWjuoppscJ57wxvykKj\neU6DRWpYkaYGGOSfrozm39iJEgTBDPxD4H/4mz77N5jjNwRBeCgIwsOyPOR+YB2N1YBZa6RhyHEj\n3aK+IXHk99OxxtE44vSS86QdIpGRBfM4RvF2D92SxIsDC/aCTKw5xVKrjd3cxzSMYk/68M1VCIv7\nzJjmiUcdOG4InGEnpLOwWg5QbnawiXnCsoj73hEbZ34GD7vYYmlyeiORySNK8V3OJBMur5/xRJaR\n08xhfhYp3SM/Y6XusjPJGe32iMO+EVm4ZL/WRI0GqDjbaONjpJqHw/Q+nZqKWz7EWLpEmWowE3Rh\nKBs4HPdZNJ+TdWVQl5t4r01geGKg9NDAdHwO3+IB8y4P5vnwM4Yp4xx2zSzzR36ia7P0Ux2cBS+C\n1Ya0B+F6jYtKioCjR/3OIZ+/9RKjRIWZ+jamh1/DGXdhv+qkatvGtJdEt5Un7zByFFqj+xSmSw0M\njgjKmp0/Pfw68zoT1paJyEc5Rkt6HncTGJ1+Bj6BeKHKjnPIZbtFa9bB1EqBLWVAftQgbZrhlV8X\n+ZN397jywn/O2PAxlZcm0S7ZSPhcqP01bMKQTq2JUxFppYc47UNquT7lo4eEVBfX5oLodH704iZr\nhjcJbq6w8N8EKf3ud6h9qCPhzTFXukusb0cal7H1biLT4MIfQ6+7RJxQnnF783PTWLV9FntNPEEo\n/d/fptzrEGv3iYZMJG4E+HjWgL42TafWIWKaZ++rf0TP2CeyjgwDJgAAIABJREFUqMNx1GYw1cag\n8WC2LXHtP/kV3ktbmBkWKHevYl9PUHtwgsXlZ2bezPhyk1L6R8wsHOJu15FKLSRkypUARJzwtadc\nFo1Mh6s07n7Asv4GkwWw1wZY3TUa0gF6k5GY4iMTyaN00zidCtErMS7ic1yeB6i0VpA35vj833kL\nf9KLondQats52NFgiOj4cGGf85YbSb/B9S9N4biZ4Pj6Mhf3ZzkryuhyOpJtB75hl5OhHrs6RW3K\nRfsnNmrf/F+foq/Feft/q6J3JIjODFFDz9HfPUe8FsD0/Ft4tXH6Dh3+D7t4U2MGZ1mSa0H6M/M4\nLFP8/V9YR3NFZfozJtw3u5SHTayP79AaNNANFMonZn7pn/zPXF8J0JgIEA08xjoc8PjiksuOjcpH\nRezuPu5omZf/o1tYOn1MKxX6hUWu6x0MfBOI0TlGm37+5J9/hc3rN8ktTnHANNY5F929HlvnP+Cs\nHcW98Sn6v3ebUcWD7cE76J1dmLKgRj7D4HECtdtg2Nnhic2B4dfeoFXXEtBvMzrpIeosVA8d2FQV\nXWSHi7YEaT3PbaxwZfaLDAtzz7itfcrNk/vfQBeqE70UEJMjLtsmKuM04YbEsKMg5lpc9KBzaifp\nrOJ4sIXY/y6Bl1bJn7jp2Ku89/AUg+qhdXaAQfNNdH4dsrmNmClQDg2xGxRW/BG2fvCYhlrA+zN1\nov4xmeJt+nonk//TZ4h86QWqRxnaf3JI6ftl5mzrJKLzSPIcgnYOV9GB16aQ/laBlmUObVKlZEsj\neRTCgwtWohaSIweuXBpHLUogn6DZ7aG/fo2+xkMtf0oo5sDVmML9QhjNWpvlqIG50QzeQRYzMWyD\nmwxdEbqlU8b7MrWjKQwKlMljrH/ynTZDVZL9ApGpFvW7fXTRAPLgKt3iY6JHXYadIFNDicKtEati\njilHC1MwjH1ey0JAT3W6SUbeol+p4gxWGLvCONtmeqdazIUx5J/Q78foGKZoqQ1M2TTu6in+aoix\ntYwhdIgzf8zZwj55V5te8gxhB6xdL+edEJNCFtvQixA3cJxrENJm8A9ECoKGuWYDLLtEGlamarPM\n6acxDTT4VCuX2RauWQPSYIP5mJaWVqYyUaTkNXM6anJZypMcWqm0gpS1LSoX04z1BjwjE2G/jrzb\nTSirQS8GqbPFkVhBo5WecVue2kTcFxG7Cv5OkdiljWbjBKvHSN3X4amzg6tRJxfwMKyoDMci7bMB\nHnuUQDeFybCKvqbDqZoxXeSoTI45y+bYUgeMVR+YdjAdnaI7EvBsrGOWRLJZL5GWiagrzrnlhEO1\ni81vo9uQaVbKaJ0pXMM8dlsZ2abSOn3MQXySclChN2rSsrbpGKZo2mcxtXW0FS2yy8yKJkKGFjqx\nyIw5z4ntGKk/xaiZQhOM4LF1aNcz+DxuhEsNsb2n+M+cBLqzHJVOCTVNuORpXMI0xXqeodZPq3pJ\nI24gX8ogq5+8b/9v8h8SiZoGJoFtQRBSQBR4LAhCEMgCsZ8YG/2xLvvj9l/V/ztFVdV/rqrqNVVV\nr7lcBrQpLzdtXyDNkMSwTVOSCUtNnMMOtnEaydXF/lKZoCNGrZUFcwu7M0IzX+BHj1uErlbRPZ9F\n4ia1nsSx3KFlPsV02SPatbOTr1K99OLfj7L4ip0LpclZxMypVya2dJ1UyEnVHGA47GJYc9HeGuPM\nwYlswTMxj+wz0C8lWNYIBEQDnkYJ26KP+bSedLNOvjDDhDmFyXfGSA4SnvegyftJPJWp5FfpKgo+\nTZVFQcewN0dWG2WYm8RxLJMIDjBna4wbQ4zeIGj05JNZnKqRftTKtmwmVFvCvObCG24/YyiMTxn4\nzjmWIFu1MKcMEL63C9frLL+pQ1xug3OR4bmGL8Xe4E5K4Bv/17fIapdwVRM4tFuoTwJMljexrQdw\nf9GB1mogVt3FM7NKy5LkfPc+E6cSnw79Aj5nHs3i6/zQ/AFZ/4BO0Y3T2CUs2hkrcRrbOczXDERe\nNFJ7aMF4YmfFMcJ2kWPuS6/wXKvJzjcf8kcfRlDOFLb+7RGmGRvj4ADrh3qCcwrNdgHzskj9wxI3\n15fR9D1oG22QIb42idXm5qxSxHGvxqtJLz3NAc/9rMig3ORx1MNoXGFUVkhbf8S8ZoGlApgMJZzt\nT7gl7Edc0W5i9A8ZnaWwVF5m0tFjUDIxPlEo7eaZCbU4KWzB6gLasZ+xZYqwXYt4JiN4XEw23mI9\nYqca6LPbyFF//88QNAozXgNiW0JIKhg0oC0NEG01bMM5ki0fF40Yk+YgY8nHMhI270s87Y4QWkXS\nl02uGq9z0DlgenMG3+QEZXWGAC4SATOX2TrOipZMw8n7mkUqSoQlbRlMNdwfPaX7x7/Dnd077Bn+\nJYI5gln14+/p+FjoMHkYQyd7udtVeDp8H+XokuzDDnnfFs5bizwuppirZAht3kD053DGRZ7vtCkX\n3nvG7a1Xl/CEu7ifq9BLnXPZDaFKXRavvI6vIGPOGniUf4Su4Ef41VdxX/0i1tVppvs3efP5t1iK\nvEhufZLvflDmq7/1mEVrkOkQjMJBmq1tfJc15lSZ/V//H5HyXdo5lej8JBsBHZWOik2wUQvM84NH\nOpqXbdbbRlYjZTR5hUruHbZHU1hD6xSfhrEYPfztz7zKQeNdJvJaFvINfBYjcVHhltuNXRsjohTQ\nrq7SUrbR6H8GdbxENunGZS2zdXHOcNAh5niVdcMR/e/fxtUIoKS1uKc8PM7cZTxfpBsP0lQSzGZr\neJxz3H20y9bQhMUafMbt/3znD5HGeWx0mbzipC6k6QxPqAfOmbw+wcSLLfQhB1MGAaNfJTGqYFEX\n6WeNMB7S7xZpiwqTcodC9QneKQPxi02idg12Y5+rt7xYn0I6befsT0eMZuJU/00ZzTdyDNdt2CcC\nqCcd7n3jnIHiRiOUUD9tRvnD76KTioSEp3zwZ1+j0bggO1XHPmxz7SWBUaRK+gUHn3/hOmOjGblT\n427pfRq5c066eZYMJRpzaVT8XG/0WO26CVhmGTk6mO1w1pun1VlB1DaQbF1yURuS2qVHE6knoF82\nYZ9voAkdkxY9lH1VTtufnCUbKV0W/WB0niLMemhtBJlwjbClBbYSIyyXh2R6fYx9FUO8T0E7zbXQ\nMlZZz8VxDflASyKvEpu4wlYDguUdygu7XMy26UWNJGQtE4kGGocXyRfGaJtBp49SD3do9Qc0TvpM\nWhQ6nTlEbZTi2gbp2Vl8IwMT9gxK34PbdIht65ilwBQGi5sLXxUlpqIORvTCGpKTEkqvh6wzYZRk\n/DaReZMfW/cC6/AJ++5J8vshNL0O4UoZcd+BfmITmzjAHTvB1VrBmjjEhRZfVaVnbNORTsjX+9Qc\nYxqXEQZGF4+ZecZt7+g9aqpMOaRgTETpaQWsLGF6+hR72YUzWSWgzBNT80hNGaMlTtmi5Xg3y7C1\nyHh4id1X41B8wtz8PGOjF51+BaNQIhBqsbboITi7hOCf53y/jjq0cSVSIzXbpzKlxz024jaXqR/W\nMU0t0FBlpq16jl1BWmMje9p9XDN6prstCGipWDs4DSkUXQ5saUaxPnmrDqf7MQftHorLy8mplmp7\nGnPHiTFRQHZPoDQ09O0iXt00F+oFsn7EttYPM0mGpj7O0hzDRApDpUoYAV3Iil1nxul2E9/JEY3F\nEDT/PzlRqqruqqrqV1U1oapqgr9MzW2qqloA/gz4siAIBkEQJvnLA+T3VVXNAy1BEJ778a28vwN8\n66eZb9gTGFtbnASPcLZzFJsCZ71ZxqcK2l6Wrb4BMWVBvTAjaXRY4xMUtV56hgrjSJ8lyyG7Zw48\ndR+jWYHotRDWqgOd/jXc110MrX06/T2s5kv05hof/0EP416XVZeAR3aRPm2S4gBVMfH08A7jQztG\nv0I43GDnss7DXAQ5O8GoquOw5+ZMH2UkdtloxrGvClgbbQbtPbpCBINWjzJWkNIVRP8Tsh6RfP8E\nqdvD17yJtqllJnaMdz7FQk3iePoUsdBmNmHBMpimkvyYtnYCl9dFZtPG6tDApK7Bnl4g3Tvm/don\n/qunpKHhS6DYC6AZI+sdDFbiDO87iDQTbHzx87SSA25/7at8323k1sjA4o1fo3Unjf8XXqC5/hpl\n3YBKQE9uxcP+KSgmgWPhJi7xAqHZJrqRQAr56QceUJ50YwwOeWVpiCloo+sqM0jLSFsdcssarFo9\n4RM79dM+QmQBoz/IzkdWmi4793/t9zkarKGzWnh+6SoT/k38X3qe++lDdJFL5EmB3b9I0A7HiEh+\nvPYEW99NY7tiRh8QmdicYbDh4Y/Ojzj5YZKsRUtxWMarmWdSnqGseoj3RlxYm0gvzxDLSigJB3rz\nEYKygSIPnnGT2wqnKyraWhRNN0Z7MYr7wyiaCS0a9RJr6Cbt0xOuzb/GRLVMT3OPyqXI/r4W/UCP\nbbqNzw3VOzLS0QMST8cszE9gi3qo1QsIxjrydAul5yPTAYfYZTA5Ju6NMvdCEstGlhlLgLTXi6Hz\nhFZ5QGS0QL9g5sRt5O7bH/EXB7c5k8/RtI+QinpGLQmj10QBHZf+CI5yjoBXpbAXxN4TwOPD//lX\nmAivk79TZHD7dzg7fkhgycst51uY5sxIVwb8xj+a5eVMlNJwmuvXPo06dKJxmplTBOSonrHWwMbZ\nHKO0hO4lB7Jr/Rk30yt1FOr0+/NMLKwx1YTAOMf+B99BtmRIrbgQi02K0hmDozzl7BnBrRGawTdI\nfeWbtE8HxMd61jej/MziL/HxsYYPDjME3SYiN6OIwQH3fvdtMo0mHiWMf1jlouLlaDTkZ2ObuI6e\n0n5ipnAw5KXP/gq/94cp/uX3wbnuQLn6WSacWqTtGuNak5hwkzN9kGnlOoZimbp2SL41SbU2S6Xt\nwnPZQz6xEYy8wel4mYovQ9fspFi6y9nJOW9c9TBtMHN2UsRwd0xolGTC3sZhlfjgyXusufxor12h\nF1mhXrWQ0UMn3CL48AyXw8Reo/OMW9h6jX/w21/F7K+x9+ddZiYFXCUB08FNPvrRR4h5O5aWg3qv\nxOp4RCpnRuk6cVeMNPIO5rpV5FoLOa+laRujHhlpas2kevOYxm+RqCtEpntc87Y4L5a5an2NwFyQ\n6s0g5pxEvNNDuOqjp3cxPDsgMw7iTAn80j98me7WFvsfa/ni33sFg66GVB9x1jVxvFCg/lEN2ip3\neyd4vTWUzVlu3lrFklhn5lUDR0ZoyCXM6Yfkp/To7EMG5i56VYcmBMHBIZX6h5ykzLSHKcapHO1W\nmHqqjX6koq1pKVV9uJoi0WifQHWCWfsnaffF7DFn83GSpjfxGFoMjVpaITPOL97C3dbi/uItppaj\nhLKTfGzwI4Tr7N/PU8sbCQf1TM4FeWxzktUcsOEc0Jqz4UsbwWJnlA1z4jOxs5+nm3xCPG2iWxpj\nN+dZLrdQ1SHW6Cw9jYRQ1GPu+BgVikwrTaSJFsVzHWd6LZmBlrp9gYv2NqZMDZfdzZT2KVKowPyB\ngPZ8il6oT7fUxOJuUtcm6UzWadn0mHQC9vQpa1KWNa0Hi/06deMei0oGU2iGbg96uiEVwc5454Q9\nIUu3ZMbTXsHscaGIQ4QpM2Kvjb7WesbNZdViG/bw7oGp2wD3DJ7KPcrX14n42tTyXVrlMKfqDOaV\nCkrvKcO4gGgJshMRacd7dJ1R1rxeijUNbsXAwFLFZGwgST2yyRY/Gn9AZ6/HjK2MNFAY7gjoGmFy\npSEGKUwvX8MTNjJ+UGDNtUjnIM60uc7pToNEyYZ/QoPH2UE4y6PfX0FXmKU0siCrdhSbA48vjuup\nCc3ZPisDG6HNKaS+iWDAh092s0SVcdlLxTiJs68y5xbQK2YmLRKyLkhfukRjq+Nq6TAIfZ5eyGis\nacqymZBrSE7wojnqMZZ/8rj3v19+mhIHfwR8BMwLgpARBOE//feNVVV1D/jXwD7wPeC/UNVnMbHf\nBL7CXx42PwO++9MsUIfCzPN+0sEid+sCHq+biXkrKjGikRe5OTdBo7XNo3vvcHK7gMY/TaOTpWhM\nIfZ7bLn9OKJJcm4o7eYovF9DjaVptve5DJmpveGlb1Z48FCkWney7reCJYjBGKQqVVHLCjcuNygb\nTzH8rTdxuYfM51L03QIT9XmGxjxN65gltYCvmyJKGa86zxN1G+VQYjpsxzYxQ8svcTDW09CJDBJz\nDKRZfPYQAY2LRX+KG+qIXCnBOx+VEWWRnOjDduan4V6naDSCReWGz0/yrMHI20Q4UTCumJEaGerH\nLtrKNe793s4zbjthA/69NvPJBsNQk6pHJOAwsTq5w9OJGlvvtKjkj+h+TmX54Q/YMerY6Ap0y3Xu\n3GviMmV4UcySa5bJlUJ4y1kK5RBhzQ7FQYSy3kXvUMXWDZA6tlISl9nuu5n7z/4Zqytt5j0lHozO\n+TgcxvntCzqBKbTGOgHZQ9itRbWcI/uGrNst8KqPyWadjUCSjw7f5YPaDxCkAfOWKYb3TnFPGJhY\n7IBWZq97ieCcYNFaxKsd4pa9PClVSd8+YDbi5qX/5SXy7z9lGH4ZvcvJ0ckhen+H9nAe/Z06c90m\no00zyb0OTw5cmBMNsH1yC0MKWGicnnLSGuPXJ+gNLtlT8wQZ4F4MY/c0mdZ7yX/8hNr4ElEOMT0r\nYsyXkTtlWt900B81uUjrcdYMNDRZNOYbuGw6IsYBenmEQfZyerbF6fmYeyMrSuJlDo5PqOUbuGKv\n4Y2YiZQ+opdtkRumsK4NKIngN+wTiC3y6tyrxA0RnL4AmkwU3dWbRJd1+J73Y3HpuPnmz5A6jZCq\n7pMauekmSuRTGjJbY8Yrc8x95nX00QDZ0gkHT2o4lub46L//Clv/9E/o5Y1UOw8pxFQiG6sEz9KY\nlWnyjRlMg8ccGLtc/9xLfPytAddXJ59xq+lhw+Cj2jlEvzOi4Cmh1cUxvniFiwci2TsPcYnX0OXq\nNMaXGHwdmMrQPwiy126SHB6yEHKg6bswN09Z88LS3GfotS3cueshVZ9k4QtfJv6yn3o/T2l2mW6+\nieXSTCFcZGAxE/RmeOlXIzzZ3qVvq7D58152tjrMBMyMXTK19hm+fg9pBvTqmP5b0xinlkieKNwK\nuVm8PiDb3KdVvY/uYsDRD79DfKjn4jiPTV8gklvA65nCWIujOR7ywsU50kKBsO0KSsvJ3UqBaMhH\n2WKlMwhR1dXJeC9Rxy7sGQMV8QJz5x02b34SlA/sBzjc/jbCxiyRmzvUtVoOZRvSII9v6Sb2wQjD\n8gSz/SkGe8eERib8+QKj+Tarmhy7TRcRg4tzsx+5s4kkNql668yaBkjmJoeVGaYCv8jOqIvB8wj1\n7DHlUZ+pqkw2O81x1YC7eozTKTMQEpQuWpSLRf7isMZoTcPGG6tcFBZgfY2GvolUSxG6X+XasErp\nTpEnXz0mkzRhK7cof9gnMVHAol0j50sy2t+hOyGS00s0jDJRB1jzHazuHuJBFNdCFNeUilQTWV2b\nR9L1mbxRJe7K0OxbCTaLyLJC6okJgyBTt+4+47YVivH8wjwvXevSn7Mh5U947/7HJB84EacWyHvy\n9PJJmj4Xnm0zoZwGu/cYadbIvm0eu9FB0NjBKAXo6GapDPsEPQphychoVcvUeQJhxcqU2sc+lcWY\n0JOz6NgN9jGWrlK1nmJoreNwpmi5D9B4Leg1KYScHofiY32ij6pdJCSasKjTiKsQ3UpROFMZyyMq\nyhRrugGCJFGNlKk3unhHE4xPmwTGY0r+abTyFQR9mAtjlGGoxpwuyKkcw6yp0zLPodF18fQm0Y43\nMHX6uKMtRhtj5MA2ZjXHtGLA4haY7dWfcauk8th9Hs6uBMi4Kxw+aHAYUGnUq5zVXSwbRFr6bfyd\nLP27ZkK+ML5shEqzgrh/ik6Ik6pbqJXdSMIxT3oehl4TsncR0THD0N/BX3uRwKaCq9RiLO/RCToQ\nGhU61CkaRFr1OBpEtHNjOmKDpnOLc2WCpuige9VMe9ykVhfxmR3YZ9KIhixzphxuXQvh2E9HLVKb\n7ONedHOsG2Mr54gF99Bn2xx1ChQ7CtX+BY6UQkdnRiyoBN0RCAQ5T0m0gnFalh77biMVyYvZokWj\nMeK2GEi69fStPY4ibnTG/4+cKFVVf1lV1ZCqqjpVVaOqqv6Lv2JPqKpa+Yn+P1ZVdVpV1XlVVb/7\nE/qHqqqu/Nj2X/74lt5fKy3LmG/eLzMTMHFjokPHl0LX6TBGJtXcp9PvkgitY4q+TGTWycar1+gM\nDvlW/y+IzsC+WUNfs4x00SB0zcn8dB61GcQs+vEIeaoflalH9PgaEuncfXCcYbWdc9w8JuS3YDaW\nqM430I5DKHvniGuzpNbnODPmMIh5LB4L1idtlCsj6gMd7ooW1Z/G2dyk6POgzMgoVT1YVVZdLpyt\nPnG5jVNTodMuk7BuU69HOIg8YH7CwMvX30KUFpBix5jLHep1M4a3h9R8eR5caohdh37Gzzh3zvDU\nw3h+gddf8DM4eszcjU92HF4lTP2qm7QmwHR7GvGjEYWGgK7j58rjPp3UMfbYLLHzJZRlM+Zsn33d\nO/RtPq5cayJnWwy1dq6Mh2yen6IR/MxLp+QkH11di9kbZoobNZL9JE8zFux1G4UjPX/y2z+kfP4y\n8fXPMe2I8ue/86+48BjpmQZU+kU0YZXTdhefzUViwsa2WGBt4ia1FSulbye5Xu3h1G5gT7YZVysk\nolbqRSuGrkJeVfAvvIaa/B4Hrjkk3TU6koGOJs1YX8C8YeLB//5tdNcT/NkPfosdr8A4vsi5RUBw\ndulN3uSw7KDauoFVOcTlWub2URuz+ZP0ipqxMO8PMjPy0HM0mZH6+GZkSu4MuydwkcvB6wncgRHy\n1UmS790hOTCh102j0U/AUp7z7+/gXcxgiU9iMjfR+87oaQQc6ixf/9M05Ykg3rc22PyVRcwvmfA9\nusvi53RY9TaUe/cwFYzUNtfYUxxUy0HqXT2Tn5qnO1xn0tTgR0/6lO7VcXuuYH0pSuWoTzq7x/Bc\nx1f+2y8yfvcuGFLUlV3C2TzG4gZ7mm1Wf0VmcjOCNJjCrhUYzEu413VoU4f85otT3JBuYrb1sdlE\nUrd3SXhFrB0Rvz5GV86R3c4S8mk4eZDm059dZ7uZesbNf+ijLreYmElgbd8nkRpTMGcwZNu4Xgiy\nMTGmYlFpr79MTy1yWjHSTxupxIp0w210JRPJjxR0mQxSqcFRRsbY3sdnt3JQfp+nO1X6gR4dzRQG\npU8kl0a5SKKtyFikHIo1w+UGDD7SUShriXadmNJtQiYdXtM2M3IdYd1PcyHHQe9jst+5zfn9vyDV\nP+P11x3c+84uP/rDE9am3cjLTobWExyzMzwYfoDLvYq6P8ZmNDJ61MfODqWlCsWEH9QIo2aXgW+X\n9Zk4zsAqAwESNjveYhbP0yhBTYn2sMRCREdNjWMwfRKJmtEb+Ogsx+VgjPTGmEJVZdWhotEEsXTK\n9LsmJnYzNMJnCN4wrak2mk9dYFfN9LQBTMEAejXIxJSBTraAI7qB2z4ieZnCX0ixarPy7tH38YTL\nWNFQuzXG86adJ7UpJE+JiHmExexCLkpYPt/C//oVTMsB3px+kWr8VR5vt5gyDXFbhgipIMvudayj\nNbyhAM/f8BO65eDPfv8O9adZApsezvMGnhwdEdj8NOLNX6A49DK1mObBu++xf+frHKfKtLQRZm+O\nSJ/1kf8f7t78d5Izv+97dXV39d1dfd/d3/7e51zkzPDmLpdc7SUtZa1X1JE4MoLEigTbspRAMJxg\nEyCObAQOoNiWIku2hcTYRFqvVss9qdXyGJIzw+HMcI7vffd9313dVV1dlR8mkH5LjPwQKHr+hDdQ\n9bzr8zz1eqkZ1twX8JqdZL0CtQcxaoM1ytER4fA8R30nEX8f96YH0/Qv/0Uqbr9I9eMedwoKllIC\nqxzGVAuxunCCqx1irIoM/Q4+eXyD2MoIeytPqeYl87iArXLAjkWBSRdd8GA8PEbsr2NuBAn7s0jb\nGpLSIlnNUQ0s0j9JYeEI7WCE3eqg5NqnWbST18zkSm6SRY21SZOPj1dwpb3453c4PdQQew18/n0G\nXTPWnTRl94jexXkmQgQ5KDJcdbJ77qA7kgisGnTOBGyuNcYjCUXr4u/U2I35mR5tY3PWMVxOcoFd\neiaVhXyB4bGTok8jtFUj7fGxWwPpfoVwcYWCYx5HbYbgnNAybH+Rm/TZEPuGjU13DuHsOuJLFvya\nG2+hRSrioX5hi5JdxZ5TmPn6mKYxqsMuqx4Ta09d4yR/RKLi53w6JDCZctm6jyB6EUvbmJQSbvFZ\nNoUw7VaJ/ZiPlWAG3fqI0LyKXbTiKzzEFdKYdUaYPa+wq3bQJInx0T7LFzVyYyexzjzllEElnaK8\nHWVUM6FE5xDECJK3T6obwO0XcQIes4laPEBLyCAH+lwSodtcwr4URGbA1P6YppLmoNzkvOdgwSOQ\nKTQQbCnMdRuz6AGzkU63rlEp72C658U+J7OiTNCV/zBO1F95Yvn//C/+2dd+4YUYYnODcqeLcxxA\nMeyErzv54t//Tdqbf5epzcZsNuRBosYf/PsOdbFN8GedfMr7NPNlgcpwgtkRIZx/yFnGR6BfZjZ2\n4fSZKSd1dv9on8VnLrD0po29tEITP1o0itAqErkQx1f0MueyE18QmJ0ecHJix1Nv0bW5WPZ7kHQT\nk4CDttOPJejCdNqiFS8ytltQf3xGaMlEY6xw56MT4ssXMCn3iQQkNi9cIOhYJu8q0v93tzlWDQy5\nxdlIY3im0Vroo7S7VOoK6YsJJi4fnb4Fa65LzG0hVZAYlioEOhNufeO3sJzss/d/MWg23/hJ7EUd\nwgHK+TKOLSeR/pDWSGCQWubHHz/gJ1fnkH0dXn31lwmcvcP5YoB4rEsvGCPRf8T7gg+RMJ6EGSUx\npDT1wZyJ62KSvU96LKY82PQg0XKDYbOP6/gAk71GcD7P8Z1xAAAgAElEQVRH45t/wud+6ws813RR\nClrxG5eoZ/2kZ1WSaoDD04/QfC0Wygbd6oCtoY+RXEb4yYtIByesCC602pj7R3mSUgj1pSTz4iJn\nxUeEpzbwKcQtJrbdUwSvFf9IxfGFU9bUEn/aqvNpbZXH7SjdiA4nEgtKh6rjLsmFF2mUD1BnJtTU\nKYm2j6xm5Zvv/hCAX/jZn6GxN2UYndA66FNuS4THJirJOnrHyZzXCgUHs+YjzHYf5l98jYq2yPjB\nuyzHYlSUDoVEjoDFz0fnXUa2MaaiFVnwU/+Mk0huhc+9PM/jN48we87o1OwcusYkS03USZtxa8Zx\nyk/KHqS8lyf7mpuk4WTU3iOhu3BHnyZwXWJpeQnZ32PntIXiusn1y1/AVerz4U/8TUyxAW1blZUH\nTqLZBYyZCffxlMsrn+Wff/13KA+HNJpppFqV5Owx/Udl6n0PcvN91K3XmIkBgpYZ+MJIUZW9Xh9r\ncIhsi9PebrL0epDBJwfY6wbvvvceAFtX1hBXk5zcaTG3lsJiNMi115m5zAizI8oSZIUAKU+XwMjK\nbvEExRUmN/biceiM/QZmZ5nrghOr7uT8LM+iw2BPsLC2cYFB6zHOyiLDvp/4FQvySKX25g3WfuZp\nJlszdN88Z/vHGPoWEWGPFBP6HicpyyGGx0fDfIZZkgm0zZzHZry8tEzqDPbnawizLYqHR6xeCzHW\nRSzmJn7HAs5Zl/5OFuFllUfOUzbEGJXaDwmnLuHLBij67IwnJpqGnQeHe0RXTJzcdyDqTVLZKwzu\naXRzA7x1GzFTj2LcxWorRvnuLd5+8ARH8pW/8zyamqR22Oap2N+i2h8wU85IWkxosojVtE/FEyBb\njHKiyNgdEeKSGdljZWavI1l85MMmYiboei2cOgdw34P+XAanaOE7e28RbZlQvG6Wos8xHqnsT71M\nhg3C2pSxMo/PW2HQlnHObDz/62+gvNrj1PkJxg7MkjIO65B2aQ7lcgTh4xGu+AnWqs5uw8WlF7eA\nOeQf3UGSnqUTqOAcR+iUd+j1g8QtduT+JTJijSWzk/LEgu6scfK+E8VuZtWnM7abqcq3iQ/cdB1l\ngikN9aCFEnFgtcp46z0aozR6rMN7332ifZm7n6dZEHEndcR3Woxd+/zqf/cq7d06Ln1I0Z5GH3u5\nkl1hv3SIEPSzKvowGQ4a6wr+dwKUAlWu+kIcjpqspQ0OPQGkApwbJ5yqcQI+M7XhFFPcTrARZbhS\nJvjQh9XZYWGwjrplRuuKnIw7iKEwcqOO1T+gU47jkEc0lhVqvSUWhqf052UaUxs+Z5qY2cnYXsF7\nYsXQjkjPIgiKht9WA++Mc0OArouqa0C2d0I3uIR42MJtjaAXHByPNdquLHNhC8P+DO2wTY8W/mSa\nUSaJuyHiyk8YmFrI4Qyiqcs7P3qS2yuXvsq4ZkKt7pHTw0iBDmIsgFe207eNsB1KSGFwlwY4llLI\np0dYPOs4hQJiJ0hsXsM8FRl1FIJhD5rsZDgyCBs+8lWRD259C809IjicEEiZqTlk3EKGfFUlMOjQ\njq8Qzrcwh15ioO7hl0WM+TTeaAPtsQWtNWPQt7HBAtVGHtVSZGl9iXInjyo7aBk64UCfQVmn7nIT\n2GtisjbpqzGmWoW8vI5oKmNkXYztA6TTObohB6LDQWq2g5gQKAfdTKt9wiWJxLhLI2bQ73hY9MiI\nQQ2po3JU9LO3f5tf+41/8P9/7ct/80//h6+dtraIfT7N2fmQufkIO91TKBxy63O/hM+yi0WfUBeP\nODxv8pnFazx3+RWe2e+xo/Rx77UJqmbCa01mfhudBxLnHoklF8iDPuf3d3lt7jWoedCyNRYVB0GL\nDW//lNaOHWE0ZNfZR+roFFznbJedGPPnGI0U8RUVo7NIIlPmYGbD+4nCUBEQpmZ0zYZdn1FdUdEq\nOfqOLk9vRel+8JiltXkKhsjpnx1wevJNIvuriGkLQuYCWW+G9qrKoj5h6JrSj2VJr1l5+KCHKHao\nzkpEY09UMjuTx+Tv6Fgcpzza8fE3/v4/5M23vgXAkniZTZeTc+ETNsQ0Xp8ZLaDT9IBt2GOeGThe\nxGRp8+jOH3D5K5/nX//eH/OStIrpZoTDAweZ3gz/ZB6fptHoBwlZdSKf6Nytj5nND6j1DhCVJdLh\nPOtbKTyWCKaLYfbcTlIhGw9vbJOMLeCxyoQSOq3DewQXo/S1OvNeL+7DCHIuTn28y5gYynqY4GCX\nK68/ReG0hycawCYNcbd8nDQniMd55pNRzpwWfGqdfLtH4YdDNl6/gFMs8Z+8/Iucv9pmKfUC6oqZ\n2Cc9Bl2VWK6KOHsKW73Osn2dD08/Ib4ewL6v0M9kqY3y3LzxAQAXf+XniIwC1NrHWAMGgqEjm+YZ\nWCv0ajlin9KZ7t2hYhaJKwIDpYln7QJn4l1ujjNMFJVnnnsKc9xFKilx8ad+ktNiAd1xieiJzPYI\n2m9+TH3wmK2NdU57NwmPvezsWbAPJwwcl2kc3CFmjdLUDnF2XQwOi+yeNpmoduKLAiHTkOKNO0y6\ndrbVb7Mu5ajtjuk2RiynnbTyXrxjL6hWJGuSrjNI89v7iCGNcXCV4uBjxOEDPuW9ylnHz06twrVX\ng5TkC7h7E0T3I2KCnUJogkdrIHsTqKMQmW6Fim2KvVLAt/Ap3n9wwP7DJ67G6099Gkd4gGgRsRg+\nKkaDfWuBXHyd/e6IkDVBc7CDMarxqL2Hy+kj009TSOk4OnX8uQVMjQD+53M8lG8SeXado0kTQ7GR\n63SxSSH0mcqND7/Jyi/8Ip23f8TqxrPsxAym2xZaeYWUvInYP8HmDtGICoyfukDk6Yts//s38Sxc\nZFDsEEtm8e91KFgVvKMisitGu6ow3rQgY3DcfI+AOcePfzAl9l//EoGDIc6VLKJsY9HtxB8Poeke\nSuca8ZoVXQpyfPtPeelKBEvChulhA3/ShWEucaDbiYyO6ZktCN4Mfr3HkRPqgxx37z3RvnzhjU/T\n/vpd0psZapUyetHg7MYu81c+xf17e6ykF6gfn1P0CTj8FqbCgL6RYxDo025UOQKuB5cZ+GWGsguf\nLLGeWqXfO2By3sW/4CMQ9GMuizScYOsFcPQNRmaY02b058Atm7BKFlYWtthLvYWMgT3gJyxZaMoH\ntHSDyn4D67DHMy8ss/twhns2peKRGKHhMxRiUYPDP/53hK6l6D5WwCazISVoNoMM6go+8YxjMcov\nf+2neP8H9xC//iGtq35CFStKf4y+9BJapgr4sXfdNGQ72WAGe6dH3jkkkpjSa1T44O0nlPzP/cOn\nubR6FSPmYxZ+gHavRmcUYWIGuWjFFRqhdu8jtobYEmZo9jDCK5RFN9NCC6JLJBf6iOi4K2FKEzsn\npT7SloZLsSClXUyaI9yZJkmhj1KyMWqn6FvLCMIyxYUR2Vt2iiHQrCIuRxBbwkP/NIwv20V2TJGa\nMeImlX60QaMlEku46CoKlT07qzY/Z7YC3YBOJzFiSpee3cGsItAXdaZihaWAm4PSiJTFTcmw0rAW\nsYRtyIJKTpEZdiS6uQ66z4ktMEDMj3CqBg6PHTlgwzM3wV05oSXBh9+/BcCXM1tENkVKsR7NqgdH\nV6CLwKzfQVITtB1DZsIQ6yxN97iLe8FEWLIiFmLsZ0yYtwfkZyYU7RNmziitjplF4wjda0KKBYk/\nm8anmql3nPjETYwjA9ll5dJmgJLLjdviI+wdMI0HuPvORzhXHFiFCJUf1xhYV2mlDBY2YjzOHzFV\ndXLRJQaOJupjnbbbjFWfUQtLTB0VItUsYrzL2bYX0dkiNkjSrhRYXDJTPqiRHMmcTZJIJhmHZma4\nHsM56lC1dkkIJhoBqBsdkvIKDg44lYJ0rFa8bhseS5QPb/6AX/+v/hoIiH/3X/ze167+pxIvfyGC\n9tY55ZnEuqPAwBKibTNjC7UYDdwIgx4Hp2NWIxUq5o/Y+f4EKbdGvZckJA0onsXQJ0HmVz2M3EM8\n9jP2Oz5Mpnl8ugmmIwp6Ay3qxtlzYFtZpmtu0nfEUQ86hKYh6vhYnzpIhPoYZo2O4iHVHVNsjDH1\nzPjXFyi7jrCG+9Tcy4yHbZ592sHA0sA2mGEqzFPLxskGY0wf1pjpSYQ5F27PmBEODCOKSatgP3Wh\nbLmYNO1EduwcHFRIz4+oTN2MGhN0V4pmcQOPamJh2qdfd6NbF1i69ip/8p3fBeCnXvkM7TknWdFJ\nbNzm5o6VhDQjdRbE7Vmhawvx+OYfcPVzb9BWdxi0a6yG4wz0Os6lCWWLG/9yBE9b42zJQs+1jTgw\nM87pRJMuSprOix4LFe8ZWlDCOJiyvd5gVxwx229i9HXm5Cmji0mGFRMO7Qzf1SB9LYtj8ojDug2l\nVUaV5vDn/LTFXeZGKpZAgg8+BmNBIXgQxRg16WQ3MFxmLr6S4952iXQ0yKni4cyUQAuY8I1PIX2F\ne79yQu1WDZsMJGw4YiItl4Z2EmUy9zHp6kUeDm4jJZNwL4hwucK8pjOwTXj/z54IOr989TnGsx6y\ndIIwcDOuj6nlxgRDBv6Wn5EpyOHtDhcdaZIvv8wnh0fE7W9hv+JnrXmCzZ2kxzGbF1d5WKziebiP\no3KEJ2/Due3i8uoZJv8Sm2kXRyYTp+8XaO6csv5iEJvqRfPoONs30DYjXBouEJfOeev7eb74019k\n9TUHtX/1iCN3DzUYJmSMyJ916EsrrKy12QuPSY9ECvZdukYPu7XHOLRF6Rv/hqA6wbBs8Su//bc5\n+Px/jyfVwty9gsVdwwiPEPsX2D/9IdZNC71qhsE8uM5cjGcm3KqOTZEg1iG4sMqkF+Wdap3FpSm3\n3npSPq9/9RUmmomEtcO5NiQR2UDPjejdcpIIRJCnReazEu75Z+m/D5LWZOaVUAd9dFMWlD4F0ynG\nrgtppkL5DD0/Ipc145gGOe/bETYF7IQIZf0Mgh4mKQ/2yS1OQwHW2nksFxt8JN9lVZSwd1T8kwkn\nxz3MRhJFb6O35pg6hvz40W0SBQfCwjrBa06apg7BfRnbrMLS85/GVM2jfj6OT6gghzpUhyWKj5qU\npzJCp0JkKYt5SUIuNdjvDFi88hKtkyruiYxkc3McW8GYCjhrx8zGXrCZGROm19eYLmrocw3ufOvJ\npvadb77Lzz+/gpSy06z1mPiGlLpDVlI5IhGBWmfK0LXPZKCC7uIhH3H1N79Ea38Xf00nGNaoVu3o\n9QBIbZaiJn7///hDLtqWiS3FaHSGtHpxcoaFrqvHU6thGgmdwv5tVtOXObj1A+K5CyxF53j4rd/n\n0dkxfZ9BMB5n6OgjGz28vjUcWhFRtFI43iMk1/j2je9x9auvUH9oYOnMOBdzzF/KYPUKBFvgijVR\nujIe3YV3w6A/WiJWyfDo6F2CGT/JrRB+6SK9tBN7zERUO8N2b0zFXUYJ+dhY6NM7MaOYBti9Edx6\njXwd7t68B0C2dsyX/vYXOd2+T+l7jyi+WyQwH+YgfIIp6kTujkjUk3QVifGgjdPsRd5S8E73mGRU\nhHyNsDbDUbfjvjDAaevTrUyQFDeGfYzuGDByFAn3V+l2ZYY+A7ldwJZYRNRV1LMa3mthWoEK5kGZ\niLnGTGnRSoyw5APYpmWKPRs9w0zS42dgsjDZd0N/gvfiOR55gj/oJdIcwXSDSNCK9dxHJVjE6jET\naNoINsO44irFrpOpYWUj0kcu6GCJMkg56BZN5GYCCZOHo5MuU6edmjuMeG5GsGmcD50E9RROZ5i3\nfvAdAF589nXC3Sp252WSlhG1sA3L2RB7E2otsCcNoiMf5v4R0cUcx8M6plad3dCMpzsahaSCSTvD\n7A8iCQYuV4e75gYm+RqzwzGOgxZdvx9nWiQXD2IS87RaSao7ZZL1ICXrfUyTDfLDLi/5FnB6Pcwe\n3ia9OMMy38RnlXn0dp6nIgvE51uop1Z8yhF9a5z50AxH10kqVKUsW+i76ozH8+RcB0wSErpfYtlh\nw382JZCWqVcFZhsiy442U63K2Sd5htZVVi0SpXOdlNmNZznA6LCDvLFF4HyIKhZoaDDf6fDB3kN+\n7T/AnfdXvkT98z/8l19LNVzU2m5GY4VAepHBAxvKUhKtvQ+SwHjfiyPVY7LtQEvaWPJsEHHXMNcK\neGQX9YUR4amfgV1lJ/8Av8uHU/RR6YbRknZm816qH6n0k3b0TgPLqo27N28z71umlC8gGDECnkP6\nqoTTMyTf8mLb7pI1W+mUqtSfBklOcqSX2epMiYdGWLQ6Gz0X04IfvbfIxKXQXoozP55gHXWoKBYC\nwwqjUY560EUn4McvqdQ6cRL2QyCJPLLiiY+Rek2megTp+QlB1yrTHRXnnJOOekZbyNEI9Uh5zQzn\nY7z9rf8VgJ/79GfxlJqoSpYjE/g2Shzn2/hedfHBrTex2uaJZ3woxfsEcn5sl2N8JHT59j87IhO1\ns/rKEpPdOo/Fh8RKfQYTlUHEzPTcS2xSI3bWYmiPYjtdZDc4RHQpOP2XqTXarM9fZVz3Er0s0vrh\nfVp3g0w2zHRVif0b56y3sjT0IZNyl/DURrldJCXEaSxmOR3v4Ol2IKgwUU/oLi2g9WvEJYVv3H0f\nKZdk+wePGU0TvLh5yqXPmak1D9AcKwwenjFJDHA1V5GsU2a2LFv3BBIJg1TOwZ/sPuArP/0q9sIJ\npheXOP/6baqrAXyovPfDJ5ua6/UrdMd5sqY4rkqJg/CQS14/sraFU/BTPcjjsbmR1nSsyikuuU7l\nZMLl2XMcHKoIK1YuXjA4zx/TeLfHjtZEnHkJx0TisSl3bkhEA1nuTRukw2YWvdcJX2tTfJymN3Dg\nnC/jHAcJlafISQ9iKsXVr67y/v03aZ/16QdFMukgas1Hzdzk+pdfpPnuIdGLb+Cr9jndPifm2KC8\nf8pEtVA6Uthwm3lZeZlHH/8pD/7xr/KLv/EF1AboPRV3pstiPoG2WsYxuEw4UGcW92PN22kdF/FH\n+4yNOGFLE/Ogglk1s2c/wNHJsb6xwve/8UcAfOmFpyhvu7HnRhRPAphGJsTzAP7kMZZklJA7yeQ8\nwINZgUxmhua4wHR5gqDV8WWzTCZw6XII1XaCaBJxpyS64zCUejxy7+EshNh0Q18RmR3eRpaDuJc2\n6FjaPB8M0Pbl+fjmA56JJghbBR683SHomjIZTwlmL1Nz9pkzX8L6+grdhw2Sn/JhWVzCdn9Gy2Jj\nv9AilLrAwc4+hhBhJlto3LlP6siDeX/CtV9dpfLtW9hSU45aGtK2xmiliV4+p/LgI9alOQaLXmRz\nj7p1QrQZwqUWILiEuW7Bvn6GHHBwcqPDqv8qP/7BNwH46f/iHxPuWiie9Ylk/ExMItOl1wguZugJ\nBazmOD7XJdbjl9GVDocHCtWdOp4HxwgX1nC012nJH+NEw1QRCQhDVpOrPEj1OBo1kJwXKeuPsGXC\npDolPviX36I7npHbMDO/FSLmDGA636bz6COcNifxpwKgOAl0dfLmPK6Cm+5He8x6OjYtxlwuS7Va\nYUEz4bHN480KdMUC0U6XwIqK9cjJ8uuXeVgo4C6JyM4aaWWV0NUsfzaw4bKm6IxuMBitE3TlEYYz\nRlMT00dOTnp9svk0WqGPXopgXAkytRjYHR6aoyZGTOLW956U9p/+o0/RVpqET3WmgU2SV9fwxjaw\n1FTG4SPiD5zcTx9QmpwTn2WoxApY91uYaxqCukk9DAFdobHX4kFJwT2yID8dxCQ1KJTa5AwnlW6I\n6ZxKyORmZhdRl0NoEzOWQZtOOohbt6NP3MxXm9QGIs2MiEWGJY/KbjCDS7QhtUeojgHhhhtz1k48\nLTAei9RDdTyGikIGxdrAxpgTIUyqI9J1qITMCUpTK0LUx3L/FGnOhloKULDZEbU642GRC54JpaaP\ns+SYddnDSDQzF2sxaNrAXGVJalMs9VCtBd57+w4AL/7CV8hH3MyqE8zTMr6qjbFkxrY2RPF6aUkD\nKqdFMh4773QcWGMRvFUXXlMZuaAi+yeMKla8vgnJyZBKYIo7+gz9Y4m282P82TDZgYwnXabXnNBu\nurHGJtiDIho6trMOZ50yF6cdrC4zY2HGWX0dzd3GXfWif7RNLjXPw003mfKMilKksdFnSgyrpcZx\nLIhrT8QdsmHalenUgoTDbQa1GucHp5hCEY49bqp2iZljik8H5TxDRRyRW8uCChpzuIUJhfgBqTsj\nxqkhVtFH0FYkIM6B7sCcknn3z+/xG7/x12AS9Y/+wde+9nOv/wqeVQdup4LPBIln/VhKU0Rzi54S\n5Mr8NdxjGHce8+mAj+ZmhqHZxswzJTHO4yxbOZ0b4wg1yQp+enIVuyrgEuYw9D6RXZ3pYp3w4Jj6\ngpuE3YTTnWTUPibrtaE/48I2s2N1mphOTpjPCRjNBE27g+B6hGKrTT8l0N0bk86maXWd5O/rjJ4R\nEUcO8qaHhGQ3iWKVsN3Po0Iei9hj2PZidbVwCDIr430U8wB6U44TNdRJjJz/AWUFNq4aWNsjlE4G\nrdYiFC4xtmkM8z4sRQ1P1Mq0PmTFWeBbf/7kJXNl4zl82XlOZtvYpRILJic+bYqyY8b57DKWH/yY\nuSsuiF1klGoi/DDN2X6U1dUkxuaEICNaH7yNFH4JYRgm9ZKXxGSe2vAhLbOJZiBK4aRD+DMRNqoK\n7XqIffEmtnGOzfIAoT1FULo0EifkWwNMaotjIY/a38U/GdKNCMzPXUDv23HbbUybQ2ZNN+Zpm4QR\nIG9yk9DcnDZdGAErnkqbYOYKuYMThnMxbKsDxm0fsUCP0IGP9LiH13Udz2GEnbunzFwKtrEHi36b\neipBZ9rE30iwJw6RihUm02MS114gEnQxvnnMe/efwPf/3htvsDcSGATq/OnNQ4TyAYEXLrCxfA15\n511qWht7xIFF6HFktXKyVyeprTGxhbD0TJg8cWKmGodGiWr5lIR/hiMW5bnEU7xfHuFwn3Bu3MPW\naOLtOXHE4hz3BYbKAd1gAWd4k/7YQicRRYzY6O1MaKstaj0vdiWLsfwUS+cj9MMdDi1uzNYu6qpB\n5Ef3GNqGyMaYWXrGnDDHtf9sjg9ubjOpnrIz38Kf9mJsdGl+9Ofce7xDKH6JSXHGiXTKQvvJ0Uz1\nrEhIVEh2rcjBKXc/rhBcHONxG5gTcSyKhd6BRMLawbLW4K2vvwvAcy+uMIzbqJQVnk52sUcczIYa\n3cQMfVzi6KhA1qLSSDeI7powT1QssSjheovT45uIl+LsfyITSqjYLFFcfj/yeRXXwjJRi45RmXHk\nGrOiWjHFDY4cJmLNPiYtQfH2CXTg0k9fpjaQqB03cS0koG0nq8coffCQBd+Ejz98n9rv3MXjCmC7\nGqRyPmC/VuelpTVWPhvD1LhH2JVhYSwTbkBwskyt/GeYNnPs/9YNJpkYC6tRRN1JJBti0ighbCjM\nDdMkIzboOeh5n2NVKVBUVeKLFg5ODslcgfbbE9KJNaItF8b4MX9+68kx6Bd/9Sv4Hpzg/4kkrfo5\nuqCyJHVIODV2dhUWfQHanlO0bSszd4hNh4o7myRU8nH39CGLLzkJmm3s7H1ILBmh2FUxhQSe/ewa\n7nGQobJNdecMS1NieElHut/m1X/1Nzj+t+/R+JMWxfoRaiJIUVllNbNCrVNFmG3htzTpeFxIwwHm\nWIKwM4Paa+N2H9OOm4hLLzCZVRjuV5n5fUg5L4NahtnZY5yJGE2vG3P4Ag7tnEvrS/zo1o95yUhh\n3qwwtGRZXhoyObDTO+uCqUomcwGbx8cjilz9pTfwH92ncL9KK9tGDaaY5NsIlxrc+t+ePKc/+/Nf\n4UrwCgWbhH5ioWRWyH3mKRr7HSIJ8EhxvAEf5YaDOXcQXyJHoVghdfEiI9WNrS/RV9v0JAfZ9SSj\nikzzzhmCz2A1e4m+t0KkHUDyxTm69wHhNQPhTENsmQgKPmyGA6NWZ5I8xR0wyJfmuTQxsNi9nBUr\nSKKAX46ijlyoYQPBW8Qo2zjFjtOiEJRVbE0/jnGD0jhOsjohEJ5wNvGw1HThNs+wDqaE4zpyo4VZ\ncrKX8HKhIiKKTlzpDkOLC/+0RycWo90bMW63CI4ddNMCGWsEedzEPJwyHM348M4TSv6Xry+T1nuc\nqGNyW0GsIY1Aw0573GE8ChB3TjB5u5C4jDQukjZryOMao/Ec1tSM6fEYPDoLMxvHQgDdfZl+oYZ7\nrLMYtDBZGTJunyPHIgQGY8p2lVsfH3F1a45By0RTOWXLMNP65AgjucXY2GUS8qEnQyxMZYSYzsy1\nTnHvIfqwQ3LLhtfmw3VDpuVJMJyaSCa92I+tKIKJ1XCJDgkE+5SljUWahgmfwwCpwdXIdWpHB3jj\nHSzHPbyNFFNNY+LV6B0+RhkmaPsCWJNJZoaOUB+gDJuoeYWy38XjW/f4L/86TKJ+55/8L1+79PSz\nzNoDGjsdJK+FYaNPtd7CtrrGQmCBh4Nz6DbpzUqIqSA7N5pYgwHWJk302fO0lmxkZJFQEB5oTbzD\nDM6ZwMSlkzvQ6PtOCHlSnA5rKP4oKWuT2UGA7MYlrGcTBnqIC2ELp+UKfXuIrW4EY75FuyXQH9vw\nzXwEHuQxJgabawKFjJuoNiY683LuKnJ4p0Xqt3+exx9+H58vyWDfoF+x011xYo2kWYg5OE7PMzas\n+IITbBUBMeRA3jGYk6fMRBG1aseUKxPWYggnIaZjGbvhYuzfR3ebuJb2kM71+cM/fvLF8dWf26Qi\nj3F47HTHIrXDKKMlB8owhaCa2XzpGrIuoAfDWN+9jnbWR0gPUQNd6reP2FgLUTwRGVS6OC46aZ3P\nsDfBnRrgaopYbGNi8zOK/T5TxYYrU6f3HZXnfmrKH773Ppc/2yH+Hy3T/QOJKDqt2PNMgkFWUwVa\n0xWSvQj6aZNz25j+ig9xWYejM7xSiNraHNreEfNrGxS1Eus1E73VObR371PxJhkddlkO2XFndOpn\nF/Cc9IiEUxive9j5vROWXmxx708fk1m00pV1ytP3dUUAACAASURBVOt96lUH8WAYX6hP8+6M3iTC\npfkMZ//2e4Q3nub77zy5WJ557Ze47I9heU8kOk7z+dgiithA/W6JxpydhcgEoWbhpDHE7xHwC1YC\nT6tYWh9SVVyIUog7t3/AM5MA169/jpO3j/HVE+wVvk+oaWJ6zUYYjeF5GWv6abYnHzMn2glfiBF8\ncR3zaZ0Xtxy0dxTM6oSZHMV8LGCd7xJ2eIns1Gn0BsQuz7OsS5zYdUx1M4n4RdSBm7ZcJGJbxb5m\n4Uc3D3je7qDPFrXtfSYLF+l/p8gNcxT7RTvW4x63Km8xsJgRQz6coTQlkxmP4GAgTCExZn05hU1L\nYSpZiT2V5s7xPUo9B0uX3JTqMjd/+D4A6U/9LKGQQOejQ7yXLtDaztNckGg8KJGzxzB7bRwX+2y2\nAjTsCjVNxem1UpK9bF2yMi6k8YQkbOkQt26dMTkbEkhomLxRHI46ss2DZ9iiYZcQ/EOe15a5//CM\n6fkhr/23P0vJE8T5vWNMz2ywGH8KxRQAWaPeOiX26isctzSi12dorleIrA2ovpNnzeli98YNXDi4\nVTtk3esjHlig0nzEoUdgEtRYEDTCgo+uJUrCLfL4OzrtiBt3VuHNdwvML/0M9ijsOirYFjcoTY4R\nmlHSjjK3h27WNI1t1YS27GTvwx2efSNA8b0uN7aflKjlv/Myo9/9Y4S2Da/PRGD+MpG0SjOXwvNW\ni5Fpj6gjTESwUjeGnHZL3L/5mH42xqdX1jl46xjJM8fcIMlx2IqqVwjkMmiFKjvf3GblhZfIzkVo\nRYPYGmlUV5N424rmiFLaKBFxJ3CEI0z8ApLmQI3pGI02PfeYeEdHda0xsjcwe3y4JTem4QlieY12\nTsFtEjmNB7GoAcJDH7JVxrvi4OaDPl65TeHsE7yLORzHZapKk5EvQ71ygueFS3ju1vBIfmLOII9L\nNQxdw9Cr+GpezK1vUy5biPljyCxT+egdLkdfwyNb+cH3/gyAfe8a1kiQK8uLpLIxjj4+pL90ifRz\nPh5999tMIgu05CmD92+z9cUrdBDwJl/kVLKin1QRfXkS6SDSkYmBqcO5XCT6k0+TVRyIx052gn4E\neQe90sGSuohPHiK6ZbShh/Npndz4iIlmwzdW0EYOgolzSqMEo8oR6XAYh9+Oen5M01VnpTGhqkUI\nmgJY9SpTu8TEITBsKhwMgqxlj2knTex3U7hDAqOQwrjbpz7XRjiROd9cQGKI+6DJKNVCnjXoObJY\nWgbROTPee+f0dIOU5KA7jTL2yEx8VkLNEgerElthP9/+7hMw7qev/edYHD1oS4x6LYptM6KrQGEi\nIgUm9Ecg9tx0O2OkbhM15GDiy+FKlLH3XZwvdnDVZ9T6Szi2NLzBDvowRihQxBQH+b4bw2Ogv+vC\nI7UItlXax33slizxeh/x2UVqjT7tWAJ7TmZgTJkpbjLSkP2dPELgeVpKFa+5TcBtpju4wF7+iKyq\nIoyi5Jwxiid7HH6ySyBrUPf30O02StVVSqMpqbMxdteMgDKk2dhDHlixx6NkA2tMlh4yE7x4kJn5\n7CyanVg8dXoVnbl6kx2ioPmZ//IzUDnl4c1H/Nqv/9r/Y4n6f+XO+/9yzRwyWEz0sl6y63E0OljP\nB8gJEB/2+fG738V3NqQShpoWptJyk9qIsuC2oZlanDrusXBf43imcffRDEd3kWlkRjqQI9220Lx8\ngpAYMExqmBUrUsvFieIkveng4dkndObSOC1dPjg9oOedYKlXqQZHDBp91kZmAudVMuYB5c1lfCsS\n5cMW0xsyu4UW37h/gH0vRiIASfsZX4q7iSeSVANOuGrmstuKd1ThrTv7mN+rUO4VMI414hk/vrAF\nv8XEyaaDWtmOzx+kE4qgBEW0TI+5kA1XooDf4ic7lDCCPvLhz/xFbqXdFbCY0JsDPFoV+wthgmdl\nLFKf/M7b3Nku4Dr0881/8gdUvhRlOKohHIlsnYnEdY2Ed8hTLzyPNxLHK5gR4k4GL1m5U+/DRRP1\nign1uINw7qchWhlZI0yO7+GrmjBuWlB2Fxn+3kOuDoeMLtYIL+hI9Qb+wacIt4YE7A8pPm9mMjEx\ns1Sw3c+Q9LowKxqNmwcsrq9RLVVZmEk44la8eZWksAiNI7RgnUNdY/BJG7cLSp/RaG4KvPfdHvG4\ni6ErxFkYZOcRIW+DizvXWLP4iQwVXO+7GL2cYazs8t6bX+ep//hvYRTP/iI3b1Qh0Dvh+VejrG/Y\n2E6n6Ng/iz5wYBq6aPYD+LI5FhxtpJKLpAS+nRXU7grjc4XutE1w5auMTQ5O926Ruh5EfeaQZUPl\n0JtHuN3CH1pk4flnWHV6EW42mJyDNvMj/+9Dhso+re+7GM68VD724TPJDOMtLPdqNB/DeUTFlBsx\nxcSHhsbSoMX8TY3e9CaW1pjNiA/DZqBXtpmL+tATK6hygfXFDdREFeeLE17/5QsE0qsYm16uv/IM\ntZIVq9VLdHnG1jCE325Gez6ANByxV6sjb3/ITOywd8+gU40RSzvpamkih5m/yG05Uie0B+tPLZEa\nOLEtL5DqOHk6c4W7wxJubcgg2qNmUig4FvDlQhzUDayWE242nLTyQ2wnE/qP94hm7aQCOie9CdVy\nnZHVjnhQwGwPkmk4kG9POREOybqdaPMR/vj3HuA12yipFhx798kXOug/vsk0ecIoOcfsgx7JuML8\nQCQhv8UwkiER93JmynPpjVdoO62kQtc568fZ3u2RzPxNXk4KeExRzu0p3PEKX1ryotYHDI7e4mL3\nId/6kz2++iu/SMTfoXwq41asiB9VuaYPaYYfUbdYWa2cYw4usxqPE6kscOmpK+QfREjF/9Ln7njs\n5qW/+5vknt/keH/M/jt3qbSHeJ52o8X6aHYvB0adUryBraoxmG+wvLRJQLrIkSuALDlJh310xlVG\nj0sYcpXk0R7ikZnotev8va+8zuwjM+PqKfZ7f87Mp3Nuk3DKK2ROslicCxzu+0mIGkWzG6uWQFmL\nIIVlRlknzZ6Z3HRMom1HLLYwTBm6i3GisSQnww6jsxKCV2S/c4Pjg112CZKYkxDMM+zuEMG5ZfIj\nOyH/T9B1nFO91EKcKkwiVzg9mqAslvnUs9cJDe3YnYv4U0MqghPBZ2EamBAOd5mb+wJvjjsY+l+6\n8z6/YcFz28fdezucfvwRixcj2Lsfc7ZbIjx4ltWEgs+aQPhclFhwldy5n775FMe9Kt45M4n8Mo2u\nTjegMTjt4U8nEb/1MTWLCc08RbhRRIpeZ7ARB2lER3Aj7LowZyQiIZGHW37s6MwUN7LmQ25fpxM+\nx7wURZ+OyFdbFE0OMimDXY9ExOMhPx6jWDpExBKu7T6RxQnuxVMOB35CpUVWlAnDgoK7f4wy9iLn\nNeo5kchJheFpDI9lSOxkmWxshjKrUZ9v0DO72Z6bJ2TPMrM5CAv7xPNDZqMW07CZeDfLxKj9RW69\nLpQHZhyzGW7LjOVImGNrkmvmMZ1mF+FMJhQfk1x1IK2uEGLC8LCMT3FSH3dZlQOceDskr3qoKCuc\n9tOYUuBzX0BphVA7tzGOwdfs0q/NcKQyzNIKRuOY85CVVL5DKjMDp06308VUdZDpF/A2+/jnw1hD\nDxiZxjTTT1GYv05pcMyivER9mkK7HGPmLNK8XePTz6wysC2hDCwY9jlsy4d48ZG/qFIITlAUE/7i\nEoLqoVudUCqPOVA3mdZbVCZ5ht4AR94OWPqsLvi57Z1yIWPGo+W5e/wIr2pDMf6SkP9/t/7KT6J+\n+3/6H7/22nNZHFkHnv1jdsU0yqaLrRMrQ2+Y9YiLoCRg3OsxMYa4zE6s8wPKuwoB8SJWkxc13Ub0\nDGl7umTUAEpDR5m26UwMRNcIV2WE1Cig6V3GKTdbQg7LTovuRoZg7z6diY/uQoQ5uY/JFUCdBVmr\nehks7dDOJpEqNUodO4YShBcClE5hIixyZrUwLB6zsdZl9MZDjEQQ8yCEoBawjcA10akd5Qkv+PBd\nMaFOsngEB4p6SPO4xua1y4wGZfS+jmayY961k9cFvNMulrM+wViA+pGDyVyJUM2Lc3qBb7z5+wA8\n++U4mf46JY9K0JajaX6E1e0hJlgwRZ5CcAxp2w3sLwlk82eYNRenczvIlQSL9jHlS5sojzx0Gtuk\nFi1st21omoOoXcXe89J1NAmKF5nvH9NpRVGkGolNCe0gQuilOGbXlLYrhd00o5wQiC9fwnyyjWhJ\nMfC3CbV8ZFKbDPUw/pbMw2GHqNmLe8OFOmrQ7TsYjc3MWWPcNNvIlovcyQWIRkoEFT/L8Q3Gq2mW\nnUEa76g8LkyIrb7ANKRSEcdsTPP4mlcx7B6a0jmSKcqPjAMuXJmi73pojMe88LmX2a8dkDnL8I3H\nTy5efuUf/QzdvMK9201sbieOpEjT+X9y957NkuTXnd6TVZVlsrKyvPfXdt/b5raZHoOZAWYADIZm\ndgkSy+CuGKS4Ie0uI5aSloSkkF5IkAm9IiFSohRULLmSgrsSuYQEkgABzGIGg8F409Pudvf1prz3\nlVlZmZWlF40vIXyFE/9/xC/Oec5zuhTXQ2ile0gziZSrRdOwE1td0AvuMHXWOO7YiK4f0fHPySQu\n4St7GfarxEU7bFxCzUeITUW4kad6PsEjHHL//RIbX0qiT5fs3fkJW9tFUh89TTWewtU/4tmfl9nt\nD3F4c0jrToo7XubnQ8Krm9j6M06GJs1hj+j6CqeCl+W4xV33MU8vc/QqIhRCuOw1WlUXs0Gd6+Y6\nna0Us0fvUaSI53iOXPYTvJBjM1Slf0dFTI2IXezz5//1MZefTTOphAjuyEiLHlWbjbFPxVmOkG6c\nMP2Cwo//n+8B8HT0N6nKsGlmuTsZ0OruMerrdMM9VicJWprAPL+NvveIZX6EWVZRIiYUQ+TmLkru\nMQNZpXxg4SBCShQx121MG3N6DR85VxJbIs/8VGWZbrFUFKzeGT1pQf/OIcHAGp2eQPN0gL0iE7zi\n4vT2mILXTnY7xbf+/HXcN8JIeNkqCHh919h92KbzwYiR0WRY6nHh0iYL65iK8BDd/xwD5RxLbSHa\nnmXU28VwGrzymy+idiVe/6s/Y9sToIqHS196msPv38OW0RmOg+jpDKF7hyzDq+grUSp33yL4lEL1\nIEb/3gFXt67zl288OdhQXP3Pmda/y4u/9QsIiRSrK3bkJAz/ucbyfpNebcYyE+LBvz3GvCrw6s89\nTX2ponjrBEt+CDsZP7rNUekz1teu4rlW5fDePoVbQb7w1CVeK7zMIFImIMaQMnMisyt4gmUmrRG9\nKDjCETJ6FTPsRRg5OZmMWJvNGXVCtJ0STu8es90ELofIuXuEocnIkonYXqI7FvQOPyCxssHE5efz\nN/Lk5iU+a9RoDyW2XsrROTMYNg+4goUaO2anleeNu1UOT39C5tazpLp9fvLmt1juFFm0z5mYF8jm\nRUZCioWlUR5ECdm67BRSxK+s81f/6l8C8B/+2j9Hv3vEwXjKzJXF0wwQ7YzJbK6zyCx5MOuTXQrs\nUORRe8nZ0V0SiS7s93nm5teYR4c8/riORwqQ9o1Q0y6WwU2CYpXh0iKZDlE/0eguZqx1B8iDJNVC\njcgiTGB6RGCQY1ocYBt6mW8GSB86qOsCDkGma++xUCW21i3KCx9ipI7tyEX6uh33mYzsC3CsxlAW\noLUjqAkX066AVnSQU2w4xQCqr0Q8fQmPeEqiqTJ1eDmyT+jZBvimVxHmHcLOPN22SKgr4bLv4h3a\n6dpGzGNrxM/reKxNWrUTJkmDd/7uyYTi8q8+i9CbE8+nsRSBx6Mm6xUv02wSw+VjLdllVxHo7CoI\nmRCSTcHdcTFRRHrdKUoXvD2oX93m0qSN6+wu3laLcd3PgaURUG14gxZTaQVnvkxPvIQ1DWJaMlsX\nFmgVk4GWINKr4N2+yWRoJyo7GGVkbOd9jJaduFRHIMzi1ENgekQ1EGF5dYPOwRHLe6esv7hBRWtj\nUwRQglj9GSFJIRAMog3zDO5q2IptZqcSJKukGzqnbov1UYyhv8xi6iaY2SKuDbBPvCyVJZNmD6c9\njD1q4Z26MJcmH3/wIV//T38GmKg/+P1vfiOW9zBUZZz2IuFpg54QoT2zE7jS5+xgjt+KYNLBCEQo\nOt009CGpjTn2URnR2+WkkqLdesxlawtnX8QQPbTyQxzlGI5lHf1Aoh12Mw6v4e626ScFdIdE90Bg\nblsyLAQI1nVU08617cssu2ccLgcsT9Lk4jMW6STZVIxwOsfR+/eR1+24xU9ZDa2y9vSSOw9i6PsO\nQs+8gFnViLo6OB+7GNQNCEdQzSiK44i+I8Z84CQixlDiMc4H5yT7Pcp5EPQAjSstPIks40cdfDcz\n7Btz5IiLjl7HbiQQs2m+861/BcBXd75AN2gjUutw7pXZnHQYVC2W6PSTFltil2NXEmPXjnjdR1vY\nY7v7LOY1P58+8nBl/Xn2zbc5707ZSvpwfGghN48YhyWCH0cwwm0ubO7wo8YBqeyQTNCi3y6gbuhE\n1FVG11xYrTGSV6G+ViDaOMSMhql3OqydVujoddoxi4Vq0hTc/Fx4xKdyh04vxqbTyaHSJmYc0l9q\nbE7d/PBgTtxXJkgGbdChZ90iu1rjTz/ZZRbpclmd4GyWUAcN1m0WHv8dHNdeoWX5CNeylK2PSfmL\nlKqn+AeHqIEo+jKCIYoc5Cd89L0nK+f56/8xGcWDZjymWY0hDM55+aKP2x/V8dYUassTnOEYws6Q\npDdA52xMp9wk/1yCe2fvcnF6g7t7p/hf9tO2BVHfPWQ0miHYFea/7CEmn2PtmbTKJuZFneF7Fq/8\nfJCDj+8z8acxjApTxU5meZuF5CarB/j4rEkxP+ColkAyG1j5FRqjXeLxMkvv05Qqd+hWLRbmhBvO\nLR77F1xcy9DqNxE+GKCs+vGqOg7DTUtY8MVXfoe/OL9PuHSItZ5j4p7RCNhYCgK6LUj9fYvUep55\nPE6cKnRsqIjkfQKz/SrxWABtsEc2dIW//d4TQDp9dRuxkASfjjZcEJGWCAUR21DEzPYQDtYxhB7x\nzBKhto4lF5HnOo5HYcTGMcW0k3JPxOHtsBFTaVpZPIER81kB+/gxDcXH3DKxXRqR7Uc4mk4JFQMI\neoIVocWgss/CHsCbjuJvFOgqQ5LZG9iHUw765zx/dQ3vNE06L3D32IMw+pBkNsjKxMKQ80guk8pe\nDTbSCF4nyUoVJZvmpObB3Z3SvOxDkpLUzx8T6Hj5ygvbLPUQpz/8C5KRIJ/M3RTCcR51DhCn9xB3\ndgiLdm7/3W082auUPt0nuWXnF6OXaVW+w998sgvAl597ltglEeNRmQ/+jz/mTi2IGOkh35nSvmgx\nK3mRiy4m5TIlHqNP3GzgQ4rLvPPjU5r7Pa69dAtlU8TVdWGbSwQTAcRFgPpH94lecbM3TyIdu+mb\nOuq4gZS3czYL4QvNEM6HzBQ/hstgvKhQMGBgDLFVLBzZGPKxEyVzB6sfxuN1YfkF1OyCI/UQD2es\nyCvYBZlM1sbwcZX37u4SCgd5KnqDyrSGdT4mmpQ5P9vnavJz9HYW9F8/4oKcJee3UbWPkMx1HMMm\nA8dV4ukGXXlIRPBwKkWwd09IdDvovp8Q4JC/+tYTtue1/8bJBXyoosb4/TmJUIRqLM5oOOWpjSus\nt8qUpnUWHg3j0Vs8c0vH7J8zLGlUMkmsnEDte/eR1qcQczN4S0dzLOiMPWxOFcbKlHHVgWNbxH1q\nMJFqzCwL11jACE2YqVOEWgjnVgkXMifdY1JroMkRZK+dlVGTY8nDxBS5UPFieYecnCyIXZjRUdoU\nFj3sLQ/qlRpKe8pw0cN+PqMpKvhtLkJGnNa+hjCzo66nGTYq6Jt5KCcYJx/jayg0NZ3VSZfGGoyn\nRcayDXWhkaZDK15AdbeRV/osjBXe/v6TMej13/gHIBmcP24gzKNM1uN49AOa4ygbky77dgebR0uC\ntghWE84rh+TSMaxZj8l8gTsJ7Xie4qxD/76TSbtJ3itR2zoiU1IRFhEGrm0Cz48RhgZ9dw7LMyYY\n30cuz9HlLjFvkE7RTrQzxzFsU3XGSLpM6gMXwo5Fz8qynC2Zrs4IFbfplg1ClQcUXW4ioQh9xU3L\nnqcTr+KbLTEjWSIOFa2r4rTdZ724pPOhm1hgQUPz4dM8LHx5FHcJ71ETfcuH9djN8viIaq9HPzVl\nc7HgcBAkOuwzODlj+FSexz96n9/9vZ8BJuqbf/Q/feOrF5/FZxNZTvxUIxOi3QZRJYpt3sJQQ7gc\ndtqxBOJsgGg3cDp0hlaIciCO3+MgMdTpiDpaMsfZfELObFButFl1utBCC1I5O5JfJtrW8PjGxBtu\ndO8Cf0REN7z4R7sEYys4PGX2uw/R5w6cTj9GoMvyqM9w2Ea1gsgjDw9bPUgF2fzCC0xcdc7/9G95\n96Mm/+R3X2DSrOLWk9TPZ9jqARzrDtrNMj7BQ2TNRXWvhbKTwLNsMpoOIOVlOg2it5PE5RLTR33U\nkY+svUyrEMdh7uPZ8+HwhQibQXzLJd/+wZNtqdXf/CVCbRvngwZPp64w8Y2YhCckUjLp/pz2eoHC\nR5C4qWMTIY7EvGjDOzjDSKq03ngbWa3z3NNrfFiNUZ4fIwYu4fbWOcv7aB7FMWMVzOMAxkQkKl9n\nbDdwNQySMRvVb9/BkDTeeaQTL6c4P5jg/uycbLFBoz9mnt5ArmUIJXtISxvvnZtcDSsUO0uaOfCe\nBPGnc8ixFG83T3khaEMYRQmFOxwPHFxJnLG3fw8t62fnbhmXuMBMpmg+dKGuf4zv2MUiobFrzDEc\nMsl+CZ/fR0Rucmq/TtYewPygiZ6UKdocfO8HfwfAa197ClU8ZHz+Bjv/aIULt26wV7+DfVWk2wsi\nTp0wyeBfnCONPAhZnbk9zknzETe7W4wuO9jsRtAe3CHm3+DAPSa9EsCx5ya57ND9KIq/68WMxkkM\nuyxWQ/QTEmuZBOWHsPH5Pi1/BM0lcFyKYCuAKcKsaCLvGsiBPLaJhqflplErYNuqcNVxg7F/yoWb\nNj7tlLmurPDYNuTo+GME2UXIEyXwOMiscELA7JL79Wf4/qe75JQMoeU+5qRIvK/hr0aozGak0iJC\n2qBRFRCyLvzbW6iJHJ59k8FkSczWQYmvMrpm54f/+knd/sV3/zNyrilR3wpyIEhn5iHt1HEIMpkL\nPorrXryJCJJXpnchTFS8j1j18M6DvyHy6g6PP1N4/y9e5/KrRTKta3xY+ZigGiFi9XA78/SlNqaq\nk4qn6CyX+JynLLUEauNDVorPokxDBKQoCb+HgXWEYNpxCRq9dQvt7pKwx6R7/xHDkhOlUMBd72Bb\nOhCkCNrSg9npEnnOh3Gvi7kMESlJnC+PkfsL4vY4bueSkRc8A52RW8aVmDM6b5O/Gqf/4zBR2c9w\nRWKRkbh29Uustrp89OFbRJ+VSGMQNgqkTIlPhm8Sl1f563eeAPlrX/gNbob7GIKX180Fq8UFcVsO\nISAhtnzIRTeFz2K4ti4xy0N2koNhjPeOZmwk7Vh5DaFTYnyqUPPGsC2PED5TuDdXqbkMMpFNxmOJ\nYcBEHgzgZoLm2Ml4eUyi5GBh2ImkJ7R7JmY3StA5ZODys4wuGJojtGAYd82OWV5Syrc57+uMDgWe\nSquIxc8hjt14Ui2+/S+PELZ6FC8WmHrTtBNLHKdeQpEjpB91iKZfIPmKzu6/PiUrgpgv4eh56N71\nsFQgNM8xv9XnzFbE0xOpCWOuD0KMp27avRKLUpYf/tm/Y3/cBuBlKY1VSLGcpLHvj9GdFu400Nlj\ncrJPz3DRro/xaGF8VoOaLcli4ePCihtD8VJueEg026wJMyqDOO5IC3nNQeA4xvApG6NJl8S8Tay/\nimKKmJERwegCb2vIQ6+HnGlRSSXRDhN4h2NGsTGULsJEoOc7ZtbJshaMEe4ZlLtzhu4M4ewZ5oGb\nsDWmSpixPUzCp1Aq+clpOeScjn+howRtdN12kmk7Z+4ThMMwQSFHOFZC1KdEBD+juQ/V2SRsRRFb\nLWKZJsY8xYq7xcgVRjBkNM8pylmUwHjE9957H4B/+tUMw6gT+zTBzHvGxlzjQJwTmKi4hBAOT59l\n2Elv6Ga5eozb6DLWuhAdUA96Gd0xWNRuE45HGEe8OPsZmn6NjA2WjgrKy3Ye7ns5S4awfznHsn8P\n+6iBB5Flbx1/wE0jc4m1SYp5QKe/bTI4nqLl11ksHTgfBynmymieLDlXkun5mO1rNu6yxwU9zsgf\nwes7R1QDhCMjBBRSpps7zTbOQIygz8L1cQr3M0Ga+h5if4BaDDAeuVnMKuhb20wrbay4QUBzwM4V\ndMcY1+mUmDzEPhdJ5AQ0X47bb73J7/3u138GQtR/9UffuPTaP4T2OeHQBFEymQt2xtkpRTVKyG7H\nt1TQDuosjSGpdJCu6EXtTljpe6n6+tScSTKjNtNen4LfS8eCVrBJKpkDxQvnARz2Mb6Ei9sfjBGc\nIktJYmk0cRBBfZjFkR3RcKyhmnYM/5S61UdUvMxDDvblbUxHh3oeLigRzNabdN7zsFb7IXvxGc/c\nukHlrghbX8Xaf5tkwEBZVnF5YwibMQzfQxZBD/o0jUseUepIuNfGOHctsospUjjMh3suzOSCxdTE\netGG3leZLj3ERy66usTIvYusFvje298C4LXsb+D2HjGKXySz2uTkbExuusqn8y65bpbjH71HbPMW\nc1R8lQg/mR4gfFyj1DnG75XZ+uIGuuJmth+gYXW5fFxiFrAh9g3cqo9LiybV4y6ezQAbahh1cMQs\n7GQ+sdgrGYSf1igrbX4lvIqYbTIfrrDM2fA+LmNmn+bk+JDly2ukmkc4GZFxOWlmZCqRJtWjGcFW\niUptn1B0jDe+Ts8nsLI5ZfpCjotrPu591KMzsfFrl1K8r4l4BBfn9gb5y08zTG3w7u37SPqvM2ma\n7ERE3uvdJ+oMM9X8jEoq4cQQ10WB1HTCBD/fyAAAIABJREFU49IJH/50e+XGV3+LSe+cZ0Mb9B8+\nYtqd4i7JzG5rrDskDNnGKFpn3M/TLyi4zAizwwHzpJ+R1sfl2mTaOyQYgl0tSV5scH4HLl/1MJ1v\nUvvuPsPnQ6xNBe61HCyWbpbbPswPnGRMmU92PazkYmiZVdKTc05ZkBJEXOqUoa2O+1Rm4tApSH2G\nSQ8bYprP3jzjZjjCxD5kRUgzHvswj+8geAMo9jTxgYv9zUPmhxHWY59nz/gIj01GkyZEHVOanjCG\neg85GKLvPaApQFCzk5nk8XrbNPZaGG+rFH0tyvYZZ7H7eJ96mtffcnL23t8C8MufX8V+6ODsbo2j\n4X1oeIj5Tf7sv/gfiRZfoTYwOWi00N0QXTxmYaZZEeIk5iaObS9f/S9/myv31pg96HOv0+Apv0Ul\nLBPqxSjHBaKLLB5U6r0zEiEb+mBE+0gi8Nwz9IXHHExaRJYCwY+qeOIGg5ibFa8P+dQkmQ6hyhoJ\n+QKfTJp41ztIngTz00e0kutkUxUCqzYGiwS2xghbfUkj48emdJlKdoK+MfunPTLTMebWDkt7nXnd\nTWZTxxcWUctO9kczDt5p88KzQQTzIafvv0/xepisaGeCh/hZndZsDIUIc4efN9580hn4wi99lcW4\nijaZo7XSrGVDtOUVInsTStk4QUZYzgSPXB0K3VUiqo5gPyVQNDFtToSjHpFolIk/x7oB7emE5LYI\n2RcQRCd7w48Q6mVSLhVPtsC87UQ5aRKwhxkKMrO5QGWo4RYXxHox7qpHMPfiDHsITfMo3TazYIve\ndgZttiS4HeeKEcO/HubBd0u0g3t4ZwLVoUh2CHNRQznsMpg4WbHdQzhe4XDLxyI85p3WIWNzzlA6\nJ6TlmI4HjK4k2EzJOKUJ3nOF1e5DdocGlqogDwxsxQXB+BYe55iGx8ej/SeyzZdfew1XOYtLPGXq\nd2I+9CO4BLzKgH2vRXDUoSbauBDbYF9o4VC9hHQ/40qbgV3B7kxzUupjZLsUM3GkRJ5eL4DbGDA+\nOiA7v4Am9kGSGK1UacwWKI4gZ8EAPqNGo+nF5fIy6ZtkVqdU5ym8ugeHMsdsu5mv94if1dgvZLBs\nEuGZhjFUmAsOXOECXWNCOjmjbq8THi6phptAi1DPxd26hJVa4ilr5KNJrOYjtG0v5VkSm2QinU7o\nbdiIekIcNWRkpcmxM4nSs1GOisSd4Pe2MN0Gnp6buRjm373z5L195Zefp3YawkhoZIcuzjxdXB4F\nw5kkJZQZNnzIQZmBvY9/d4b3eoKlXWJgdFngIK0l2Nr2MZ2b9I+8ZOQaZdHJpDRnFO9StIoMrSM4\nlPF/JjMqTViGVMzggkxdwrW24E7pXRauIQfVETNnCOOOQOeTexitPZLpJO7+jMlwSqCzQLafoLkP\n2XQ56S1STDQJu+JCmO/Ra/kZmXZ6DLkx0ZB0C315TNuWJbqcoI4VzOKCjiFhxjUSwRy+0ZhkxEHY\nWsXyLqkrM9z7PvSFj4AR4qjQoXKk04s6OXzrI77+9Z+BEPU//Ld/8I3XfuMmB52H2KQVhp0UDjGA\nvzdiOjVRDItGJomtbUMXu9jbQfyCG7cYxh1Y4Bo4qJ/2SMXXSQVE7p/MiUtz1vSbzIUq3cqI02mL\nyFhhWojjsctEpxpzaxuf5cNox3BFYGhOcOlz4l0B90qc+XIF4VRlJm+jjHTOtV0iIfBW7+I8DGNz\nuQmsbCAXn8feTbKzLTM8eYxZP2Q/oRJeZjCzJQb36xwfJIiOdVZTbs47E+zJBla7SaSm8JlsURvV\nyazmGUgdbM4WHp5i8V4bRd7GtzhBFvLEEiPMWJ7X/+ZJJ+rChgvvdphZo0ep7eRaSKKmB8lR4qBk\nR1zZRJ38GH+/QCvVYku0kUoYjD1xtI9PaB91EAYOyg8+Jb+1SXPFz8KpcUFeEJy56PuGeNJOZo0T\nll2LgWKQnAy586BBWKyjjgbciIwotXX2HxxTKDwmNIxj3iiins5ZfyrN4LBEbGKwp93kXB9ilX1s\neXUcw8skTS9G1s2g7MdhHbEQfPgXdTpVheaqRVlIkE8n+LP3P+Ql7xbZpJtlMkd7fM4rG7eonvyI\nYXuddONjbNMAXleJc7cHTD8r0gSnPuSs4KTa97NtpvjOB0/Ynpv/7ItcPl0y9go8vuMmsJqjf6AS\n0uZ8MJpihDt4lTyj9QBzo8GIOsGTHMvBY6Y/rHGz8zRa8ZR4MI8RyWOaGwi+KS2PiOf9j0hev0Jx\nMeX+Z28hxCRWn9eJu5Ys3SbqQKJyX+UwobM9d9BuuxkthkgHx3z77jGbO2FsYgqXnOc902CqQ//4\nDRKXVinVmyQWMolZhofVx4ScSWzhY5QTi8CLfsTZKsZQQYvtY6kCuWmQZDbOnuEmvTfmeDzmbKDj\ntueoDfu0WxoFewE8MxY/KbIX+gEx0yD46ym2Mi/x8CSO+dYn7B0/kZT+4C/f5UKhi1nQERsGmV6K\n/saMf/zb/z22UY98skHw4B66OCW5mGP2y5yGqhQlJ12zzPmLNY4P7yO7JKL9HKxB09alXR+gyXMc\n3TmH9cekfRms2YjoWoi7R8fcyK4yORmQV2T23BXWX3Txkz/vcT2b5NPyQ4JpO66QG29jwuutD7lx\neZPOqMcyFce5WMem9RnNQiwe9uk8tpCvpBl2Xax6vLjiSZLJFIM7GnLpPUI7aYZVi0xfx6nYMEYW\n50c67lyYsAnD0ZilluR6cYvhyTF2xUX5bp9xMMhcKVIKtuhWEzivabz7Vz8G4Hf+yW/Rb54jFxJU\n7vZprozZqekcP92FzgEHnzVZxC+gV+bkPudkJEh0PXUWZZHYoxIFT4f5zSssywuaNwosWwNePzrl\nsp6i0x+zNnOSscU5n7VIihlul95mYPOxuuFiZKsRMiFtRahuyIx6OtFIiGXER3Y6wIXE6EoSz7GH\n+eNTtKseEAzY0Hl8eE4hayLJT8MLz/Dc5D6TvSZu3+dAtrBPvLASZb7ixbPvxCkFCHFG2L5NIFBg\nOU1x+VYc1ebDfV9EDMWRVgSGJY164QDLsNCzIu37j7BWenhim4wTOnd/+OR8yfNf+Q8YiSr28zTL\nTJMHr/8JvvgXMT1B+pUqbdclPMqAo9u3Wd8SsbJ2hMcFxtMx+rGDQrHBxO+m6C0wr58y7MxxROqk\nToIs1nP0okuc3RhtYYbD5yMmFThd1NA8Dhx1DaMYZHVRI5LTaTwKYBv4SFxYMu/WsZkOsgORR0MT\negMSa0Nkh4Q67BH2DrFV7cR0C2EQQ60FsRIDbP0FWvsK6vKI5UoWsTnBMT/GNGc4x1uM6o/x2lQE\ndcEi7Gbo9FCwRBb9Q9yJTVLHZfoZgbWuyaEwQp5qlDwp2h6dQr/Fd95/wkStpLaQe27SgoUR7pM6\nCuCuN9HFHtHBkkl+jaV7ykAV6ZpZaqbATKsS77hw+h0415agRSgl44QEG0HLTWVQJ9wP4Nhv4wxs\n4VDiDB99jMtQiV3uYY3sCLMQYaFHv+LFKzkYVUSS3hAjQSQ9O8P//M/TFw081iM63SwxM8DJfEF0\ny0K9F6ApLFiwIJEeMzyyYTpKxAIqXYcXxyLMvdvHaLEYWteHKtWZZbpIU4WLV9Y5PhFR1EPCqo7t\noo3DkoDg03Ccy1S1Af5JieVqFG9WRbOvc9HrpOgq89b7B/zez4Li4H/5gz/6xtVYkGBiC48cIG7u\nY/jAPQ5Q6obwxWY4Qxb+gwMMXwB7MEDAa7HvH6FHvDh08KcCOMY+2gOJp3JOOj7YrxwxSO1w2d8l\n7HBy4pxhb7gYSbuERgW81TN8rj7ClQCn5i5BERRbGXEcZcYZoSMnSnGEqtmYJIdYmo+s6UJ3mEhj\nDft1O6VqBEVY8v5PRlx5dQPP3h7JXAhlrDMdRPE08wQ3ZySvT3CbTvZkH8V5HZvjInJFQHbkMfUA\nSa+AUJXJuyMEW2H8gRnOVpb+QmBkVKhlBnjO2lxyh/i/Xn8yXvnV65/j+NGAoEvllZde4M+//zay\nFSb8wstYAZWcx4tTGCKaU4z79xlefo6TqcymssolMYU9nae7MePVF1/hvLlgaxQhE3Nz1Hfj8CdZ\nGme4PAtyiRUeRk/JGG7qcp1tVeHYYzD6qMvFi9uMq9dxvnKBmc3OVClzfJZm01Fm7DAJN2Ic+lSW\nvVM8226Eeoh+6JB4w+Bh3k5wJYxPEykHhqQNP5/pd4g+iDNcRHHIZWKhJDfiFxjJBa5+4RZ/8sd/\nQK7wK/yzr32e83+6xdhW5cLNFxHcUzLrMsVxkrJ7TF4fMxpZ7B+dIDuvUj7e5/bjJ7LNZ1/8GkW/\nwvhAx7a0MfGJ3PD2mK5HMDImiUqEiJVgIDSQGhV2Kkm01SCpicXq2nXM1TkO+5hv/V2ZgbrPzpfT\nTCUfG8bHpIIvc7d/jNTw4RIVvD83Q/Td4Hw3wPz0HJeY5NpzCiFtyKyyJHcryyK7wDHzsBpbx719\nAVoi4mSX1t4DpqMZxZSd4XyBr21w64sv89n0HuqwSdIVY3ZUR1hNozkd+FsO1ECV/lv3aZ+n0SNT\nYuMYdsnPoThFJIpLfUhFq/OLcoq4e5Pl6Ay77qEpfsLaV15FtXtQ40Uc7/VwaQ5+fPaQ9sldAH7/\nm79NILWKz/wi86xFOu3G/8hHs3uCc9zg3KOS818kOBCxZgq9swq+3C0a7+jYaiss/XY2XW26NY1u\ntocytEMwQOFyEvPhEG3u4eWNHR7sHxMOeajZg1wMuDmq9unlxsSnTs56bQ5nVTauZ9ifDDG7Bsmr\nMbpHGtK1Ggn5MhOHQcEKYy5ckEuwMpyj1j/Eu63gzYUpBiqs7Kxyon5GdNznO2++wdaVKKOcF2sm\n8th1j/lmmGYizGAUoHhtE1M/IRhUiO4siXXu8uFbf43/165T+q4PIXWRWgtu5XtM/26fCy8VWZ5X\n+dFP5Yd/f7xDK9giFpHYP2hiC8vM0zJqV6ZjH6OctQinc8SdIRpvHBC76qfyVhXHtRexhww+uV/n\n+S8rvPkDk/xVkb5QZTMfZYaMPdclLhkMXXOe3V7lzr7FlaFEQ2mRcCTwjWIMoiLiwIUPk7GhUshe\nxl+bMRsuOXENMcoedLOF1wmpsETz9ABtsYlQC+OmizGR0AcjJrtjcq/mMeUmxiTM1AoSNEoooyiV\ntQl+bcTASiBnbSyDfWKSm4rqxZh/gH3kxP5oznu2NxiPM1g+Jz6Pgt+lM1nkSXviJI0WRfcq3/7e\ntwG4+czL+NJOHrS7aDYHq4VfpJ88Qz7ps7F+DVWr4FNWiCTcVHQHTznzNB0uZmmBUGtIK79JauLi\nvaM7RK5LbKVjfPL9MotrBpbaxLWUOT0dcSlqon1iYMp1tGqRdM+OkehinnZw2C5R6nTIrQ+Qek3U\ngEjdH0Bq1ZkX5uSKQXzdAbOFB8PtwIWX+UTj3JLo+lP4zTERqc144kBaJDH8pxhBg0uoVHCRjszY\nm2l0lwJbpoVdS1NRK6ysJBH7fiZmBaQRibKDZnRJrjZkGCiSCfpR9Rm6WyRfEpmlkvzw9ScKl1++\n9DShmJ9hsMpQLNLX64wVB8l2groaw4y4CE7ajMtLWNG5kgiSmEeoihpat4ChzqjpM0LDObq/wZFq\nEVzYiX5OoRlaYXFeQ1aHuIo7jP1TCiMXGb+TYVeicZSi0z9A2nGRu3CTQbBFMRLn8OEIJRWhoO7i\ndFzA+cs7WK4R2ZSNQaWEy3PAQpkxPfURbQxIBdYRju6jVpIEAzr50Jy2sEqr1KaQ3cBnGzA2thlN\nWrS1AUnhlHzgEt3FhLPZAncqTXLeB0Uk4Ywx2fKSPAlRO7PhocFoMGJ0aYVP//rtnw2w/L/7w29+\nY/O5W8ynG4i+MntGkX7tDCWtkxppdEJ+0oMVhmaU+JYb91Gf89CQrjEnh4R7UsMXTqF0+xRTpxyX\nC/RndRLKM3gPqtxvOzGkJYG9DoTWmOw/IvIFO/PONWo7I6y2A7Fe4kydEpyFyfycgvfMTWzLx1K3\nyLfqiItLTE/6FOMz1M9iREJNdPVpdNUitOjgudAkVW0yF+2MbSV808sceI8YX/RSbQv4jmwgyeQG\nI/qRNYKuEjZXEj0yoNJ2ks2HmMVPaTvsTO1HrPvnTMMWfudnLH1OCm6dllOA7mO+/+4jAIL/6CJX\nn1shPY3w8WmFaDhGa/CQaacH+59g6CsU4tsMHCHU9Syts0OU4ZyKSyRZOSYcDSPd1eifiPiva/Rb\nNYaaxZgpHa+TxonC+ueSvPvHh+gRFUl5lguajJHwoFjX6OVVVswwJ7M5rlCQje4UdeBlMRtRt+t4\nDYmQR6K36qLysciVK1EatT2urdxkVxDZXHZwaRaG8pDGwyl+2c3USBOWk3znDz/kknVGd24xvNtn\nvOyzVP4tf//ms1hCnT9Mxtj+8tdp//AOsVaA+qpCq6bjuTrA1bPzMLzAXbiMZxCkoE/JXnDz3Td+\nBMCvfu4a7z/u05w8IraSZ+jyoMhtJEvGbatyOmqxmhzSKgUIywZW55jb3TKJnA+yFqYjyEH1Hs++\n9AXiKzbe7PZJ396llPNy7FphI+bnLveZhh1IlkH433+J7uq38BUFbPUj3FOF6VAgmy1QVT9mqXcI\nijZYWWXTPSVQP6TeWsXxnMHzA5PTratsTCTMiI1GtUZrZuFcyVFZdhnbEmQvqTjvGhjjHtpiSk01\nGZsOkgkvmqCguuzEXT6s6R2Uu11C9iB+d4QzY5/Irh3zpTE+w0vr7JTspoV5fMLh1IdyOUAg7+T2\nd38KrG68yvDCNur+Y9qPDNzTCi4pgNHXEGQ3WjVPVz9CTETZ99awS9dQ375Hd2EnfHkfseXAcdog\nuJEmao1ZPBhSdmqMjW3Ozne5cW2T3fKQTZ/KqA0bup2ZT6Eu9HnxV3Y4ZkhMqbPSXdK5nMBZKXL/\nzi42u4+cnKXvtFEeOnDba/RGI94tv0G8rOLaXNBbpJgaaWbRHr2SxW6rzLTjQTFm7PxH/5BxZYFt\nFsAhqew4tnn4Tp1txYU3PGD65ohEOEblYMq9Rzb8GwKB+HWOKn7amQlpocoFKcleNcjO33uJw5mX\n7/2wRv34iSeq+Not/vKb3+S3v/2X/O3/+QH58indaQRpxUkqP+Xqxi+wnD3g4O232HrhFn1BIj9x\n8mDwHg7GbHRNHlR8rCRq7D7w4WmrxJpuotSolLv4e0ms/JKHuw5i22C4PWinHYxCFmlexqEEaese\n5M4eNV8RM3PMYcvBNLmkeBrkyjNBWosWk2aZVtzCJz2DzTFnO+Qg7Juy8/kLVHtnTG6/j33rS0SH\nYU6yHpwznX5Gou2JkbDKnBs5pMCE45MxCVuBs90awfYdDh84mLpnRH0eYnofV1FBri2g1yIlGKRS\nHdRogO4sy7Sh8qN3vgNA4covMSwfcT0B9paLraCTk0WKxcUu8+kEf2JJfbmH4HOy+mBIeaHT65wS\nDeosFg5mzhU888+YSj02PTXOH8ssciE8nSyr3hm18QlbgWvsqSNmNyMERh7S9gbnpkQw6yQTiiIq\nC1wnGaRQi6qeo2Oz4Wud0N+IE1gu8D1W2N+eklmEsAdEnPYWupgnE1MIaCoC+1jFCA5vCr/4mNHc\nyTK3zUhQWNJh2dWYsc2Kt0N1eIGGrUEkZKNRMegmHGyeh6joOpNUF1vdzcKfYBLZxz9yMLHA9AnE\nah76UoAfv/mkbq++dAubf0ZocpVk+JjRiYroC9ONOdACfdZ1FwOpin7YR95OM7f1mU9FivSwNQ9Z\nGir2xpyUHGToVVj4J6yqOdpGjHhphBCZUjoZw3JCWuiwUK9h9JsIwxGZ8AjzZor+LITvqI2tOqJT\n9+IpNon7Wxj7IQ5dY9xHLmS5wiQWJhYIMfYUUcni21KQ1gvo0zPsgTaZLQeT/3dO0+2m7Upz038P\ndeBkdjVKdO8DnNIKoQ0/B7sRPGE7DW2fqRBl9aDJqXuOZOsRWx9iDkzadpVx0stMULkiXUMPGLz/\n5od8/V/8J///D1H/85/+/jfCRoH1z0mcj0IkfQGeCtiRDAkhW6Xe9rHr8ZCLfoY8SPBppYJmS7Oi\nNKgtJQwpiO1eH7XgY9p3YFhHBBQHZcWBGpiTnSmwZxLeMXCE/LgGbc6GKvEvvMzsuzr2qIhgBYhm\nZXyKhHo8YpQyENp+tE6JoOdpTgNnvPyVp7j3/XPWk2lKrgrVgBuPa8AsEmYrpPOovaA0bjGfuJjH\nE/S0c1bnbqyCnZYWwBV2Um7CrDNn5i8QHu6jelZxJRrs3TkiNEjiS55iX1zmYDmjPrGRnCmMvVNm\nup+wVGSvd5HPPnjyWV6O73D07ila5Ixo/BaGZeF3r7K4FmNtfJlQbMyZBMbd9+gGIljaCEWLs5ha\nxOQwZ/oCqd/HTI5YujR6pzIBQ8HwyoguAS3lZj77hM0XUmy3XKizCUJ8DWs+wu5bUBASCL0xMfsq\nzehDXKcDWjY3bmcedVplRR8zl33Yug3kHRPpeIhfvIFxvst8bcT8tIeQzpJcl4kE/VQOZIabPuxa\nl0Ksy6XANt2oE/3DE65s2TFLTuylYz58NONzt0I0/uZtgl/6KjFxhj724B2P2VfjbIz6DGcbOAY9\nLoxKNC87cZ5M+d5HT0zv2Ve/Rn13l521Z9iIZFiOS6jWjPayg3pWwNPP40yWOFJcZHtLyitFoos+\nx7qdiN/FXPLx4M093PMVHKGLbPVH6FspyqdpEIbguI234sQnw9ZNBePLM04Vjf5pBKnXwHHJxsVC\nnm+/sYvDkSftyHA2esB0t8J02eft+2MSr1wgp8XoqiOiQppIqoK8KHE+X6E3OSEQkIlrc2KyE/PR\nMfLKFdzmlHm7QtfuxPIpSJEh87rEzNblmVevIbx7n3LQyTOBCFIrxfHJMfGXw8ymcFr1IkhOMpkw\n81ONyeEYvzeKWrzNx//3E0blF//ev4cyG5DdLLJsjlEcCWzNA4aZMKm4xVw3ScSS7P7gI4oXgxgH\nqwSSbbYXGdSAj+XqhLhiEHAlGYz8HEshLgdVpNMu+a9/kaM3SkTEPRRxh/NoH63gpjaTeHpzSfsv\nBkwUg+6+REpcokfy2G7f4dqzFxFbHWybFrWWgeIJ0PHE2B65edyXCG3GMVputLQDOT1i2vUQlecM\nlDhZs4KVi2LsHiMLAxR/EDOtUb1vYsZn3Hm7yYXVLC5fkJH1EN9TKZxn5/jzC6o+O07HgnTAQd8e\nwz42GX36AS/9zq/zb/54l6e+eJUPX/8LAP7BF3+BSDDGeGhgT7dpzOeI634M+xBxM8Pk9vcpVxzE\nb1zC1W7x0QzcDpNOSWPi9eGMbvJv/vf/lV/MXOXje/8b/fIccnW8SoHwcptz94jFvQlKsUNczDAK\nHRGb9RnqGqcLGD9qEFnucVYoUBA8hAYd3G2LRaBLcJxhMJ7Ttls4JZBsK7jdXZoHfWbOAcaqwsmf\nvMN6eIWA7wKNocFUtNClEsWlk4g+YabtIRz6uexscWZ34cvLTFpt1KyE2z3C0ZLIrydwomKGg1gn\nLWYXgyT1HGXHCO776PpLGKdxpPQub/70PNMr/zhDupWmZC/jSEcQDJn5C9fwFWb4AoeES+ukL5q4\nDmw8PFrifO0SqdMupeklxh4fsbmGtWkSGhewXGvIUo1JJcrEtotguck6t0Cr0xJFUuUmds2Jw2ag\nGTO6yxFTQ6JfmtAKnyNMZVKRCcPzKHIkRVaccTieIORnOCoizZGHlG3MpLQk2rVYZJfYW10OthbY\nBwItbUjfHSPVSiMsZrQWY0zFjtICR7hNVc6Q94rksx5OJY2EXWFlOGTfM8QdCpDX7CwCSfyJBtoj\nD97RFEcmTKw74MwxxjFz8ON3f8pEffU1JgcuOgE7ftGg5tokFnUyrRlkdQ8HCR+u+ZRQ0oM8m2G1\nLMbjE5zZAmr8/+PuvZ8kyc/zzk9WZVaWy8ryvtq76ZketzvrF5YAeCRBBwRB8ihK5BmGjkdScaTM\nSXcMBI8hReh4ks6GFOcUZ+IogScQNACIBcFdLnax43emp3vad1V3ee+yKrOyMvN+mPsnyP/h/X7j\neZ73eZ43hF2PEvihNxhYx7gXAvhIUM/2WW5pBMJtGr0dsskZc8WNM0lx7owwXTNChSATNUkPG2HQ\nQvXIyN4ZF1kv+cMpY3WAufM6vfke8+ke8lwm8706/ZCCdlTm8DtFUsYyuzUDztOsffZlxq+6kK5t\ncVZvU7//DrFrb5Kb7uFPRpjsSdQ3qyw/NJAmp1zstVlwbzA+thgNBoxqXuzd54ymbjp9A7s3RLFl\nvD6Rfc0AM8TeB9/iP/vrYCz/p//qH3+1GXtC/Oin8CklXPsf887hfY4fd7nXHTEefcxnfGG0YpSW\n8AwlPccZ7+H138EXUIjaDQK+Id3IIvGKSDOVZzlZwK5ImI0DpsEy1muLLBsZRO0pZeUar33xCnG/\nyO7DdwiqBvGCix/0ywyKMvNBi6Shczwa4A/cojicEJiN6LQf4HPW2VVaDBbmuCIKjfATCtER8kAg\n7pqyld1iNkgyMbtE+wOagSharcLbL1/H/fxd/Nkd6lUPxqyDrxtieSQgZzSyukEj7aGqaph6AHGa\npDA4wFlos3TmI7VlkNhMc7FX4f7dvwTg1375byNc/wlSjofl2yrvfruE93qU9t02JJo8PX2OeW5R\n+KwPoRViQeoy7qt4EiWsmU4q3kebhjBnEyKZCprso1etI1shXI1dxI6DN+YQmobYj7tx1/d5VPCS\nyyWIVjp4Z10eJCO4jg9xFB3xWhr34YiAL4YopjhL1+lYU64EVKJdhWmrRM9fwcivM67OiKRsKpIP\nJSpgzeIEKrvYblh8Cskffov5l3UKvtewfC6OahaXuTzpI5t4dMbkdEZ/S0F8NERZUwlfHvK0rLN+\nI0zNPGfheoJ6f4TLMyMz3+CwXOEHT14oA1/63Gfx5g0C2zc4eNZk69Nr+GMDBj2Dmdkit9DGMQVK\n9hzN78Fv9Fh4RUUYDBlbE7S5jOgzFycQAAAgAElEQVT02VmSeFjrM6BM0BNgPdVgeFIjVPHSW1VY\nCESQ3RMqgzZlM8qKPqMpZLm652UQ8+JyufFezZK4luJBaZ9Edw2pMcedVllpFRmMT4iueZn3BkRd\nHgbHKiGxR2oYxaPIxAtJGncPqH9hi/YHzzFaaWoYfOHNnyU91PEch2lMwF5r8dzx4/VWWNQ2uFQt\ngoMAuZ+acPGRyTzmYdbTuX3LQKskuHysI1efUhl38GwWuPtv3wXgzRtXqIUc5H0BOWaBWEH3qgzM\nBr1YHqmqEwwdMrre53TuB2tAMyThOEnazpDwfAMhWObA0ojVZARLQfHWOI9bBJ9oXE6CSP4Bys0U\n3c4MT3HAaiCMHmlgDItoniTLiQr64BqpUZnMl34Es/0xvvwdaq42SwmTC9eMX/jSbdp/fkHh0wYH\n35Vo3HbzykDGfKyTiniZ6018SZNhQyLjF+kpCSLVDv1knFT4ZYYP/198UQVbkPGE1uloD0mF12jR\nYu99yIdMBgMBn+PDHd0gZLQxxmNW/EGe/+EZgfwFV+wcf/z+C+/iL731N9i6EyOCxem5TWHFJDLR\nKYwkAh4vp2czhCwEfCmedGYE109pjv20btTYcodoBur89Cu3uPYLv8hrX/oprONTLGFCLGpwoIrg\nmzDOSrQrAop0wXSq41IlYt4wW6aInc9hnj1nMbPKYfGMfY+CWTBROhuYayfUwi3UPReG6scbdDM7\nKLOwEgBbgb0z1tfyHJccHskBhOmEafySjaKP/dYTwvaEoRYiIvWZZmXynQlLgVWC6TbGMxt/LIUU\nH+EfCjyPxhh4ZqiqglF1sBOX+EdxqptzBsUZCXWIUUvw/r3vAvC//Z019iSTwLlOaprivHeGp3XJ\nzatvcj6yCFTPmWU2eHbwhHBO4dpKivZoAcM3IWDPkSeHRMwtZnKQS71L+mKK6S8gDzvEeiscL9ZI\neV0o0hG2tEb5WhNNX2EgOijTLJ5IAG1ok5osshB287hcwQqlidl1hh4fq405tfYKSS2A5Z8jdgNw\nc8rlQCUY9NMIDVjdS6GtplhQmhQnEcTYPhktRaB3im8cIa54mdsxFkeHTGcWs0AbuR9FUM5QzTWc\ngIuZGadW8ZBa3KfRWEO64uVyqJKNRxipE1ynPtobGne/+cJL9iM/+bMUvSfM12KYZp9wY4Q57yN2\nskRCMp1uiYWam3bOwB8bEb2Q0bMGofMBTjBCdxqi2qgR3daZf2gjxytM/AmS4oxxe464ZGMaBbSC\nn0m+ydZcJhIaEYkPGXkFeic9QlvLBDsBDsclXAs6zVaHzNoStR/U2XICzByH+Uab7OZNjE4TtxAn\nfluikfBimj4+Ohe594dPaVaekn7jUwwUFZ82RxhquNcjOOMxFbfN7cRLnNwvYSu3cBwB8U6ZYU1D\nV0W6TgDXZhIppJFJqhhuD8Llc6SNTzPVW6wtR/iLb77Pb/3mr//VB1G/9y9/+6u3exKf+pVfYXNh\nAbNaZzLbwvz868Te+DQbqWsErTh1X5H8ksLHvQjhhTT1tosF3WaybVCyZfL1IsexGgvWOo+sewzG\nA15NLqL2Rix0ZA5b55z1FK7UDnGGfZolnZTlo7O5jBTqge1DUGboAZt0usBMDBDzDMmtuXFPZnjG\nOcrrBlc//zLzdyrMwx7oyqTiSWq1BL1wiHjNT8WaMRgKxBIRvO0hOcdE9JoY7RTn6ozcdISV1fH2\n+kivJ9BHQYZLBgu1HGp1gG8pj3/awonkiHRVBKGGIbnYPevx8o3/kK//wf8AwKtvRKj8X3/A4lde\n4/iPhqyuxZBMDyurE+T4AumjHu1Xw+iDZfKxIlNrTmfJQjyzKXltXJdJ6gOBjBNm5k3Scg+JvbnF\nQUdk62oZ81WZDTFIz2rRII834sP93SSi5KKsFlHCPlK7FsONGPGuF+lCJXdL5GzkwzPb56XtW0TL\nIy7qFaIDDz3CFD6xjFdzMVDbjPLriLKB510vRyNIudbo9Lv4NoJMk2Pmz9pMn+pMN/ukcqvsfu8Y\ny5vDdMsEzDnjowjh5RHzVpwfDA946wsik8YEw52g2ayyks8wVTo8+OCYXGaZ7334gqm99Cu/wkBb\nwrl4iHV8wSiTxxgWEDSDVGrM3aLNQFlEmM5YUJZQV0N86y/3yQsybmObUNJPOG/hum9yM+qlkE+S\nCq/wWBhA10WsUUZLx5BdMwLCMnuWTUo4odQJcCXqpd1zYTFj8yUXh1//U/SugBpPY7vCuO02Pu0S\nT8giZ73B2GWguXW6907R3Xn66oCVaIJ5U8S+/z2sQo5Ys8s8XCfYLZB4KURHrjKs9Jh6n6Gm0nRC\nApM/f8qrP3aV+vM6KTnL8NoZ7/6vFwyDLrLeKZ7lOeJBBD3k50K/R1ZZp9aski4k+MtvvgDt+bfe\nxhU1qY0khk2b2HUJn1nlMJgmOAbT1tGlMd/9+DHX1tbJ21fxT/0w1Sh4o7jW5hwONVRxi6RLQRu3\n2Z80uerdRoqMiMlBmn4V33mbbDJDp9KgHxaoyssouworqsTZME6DfQRji5ZfYe9DFf9II1wLISfD\nuL/1iAcPThELbUz3DV7Z1Kk9fcRe+YjkFxI8v9TYivpxWldIRk3G4ozDeonoIAPnR3SauyzdyBFo\nL9O/GHFa/Ij1n/p1hNYpfi2NqNQI+dMUNZPtWBnPcYTAkhvhok9JmrKQdhFZvcahp8hH3/lzAN76\n8h3G8x5iIYH/2ZS1KxqJbgo5FaDXCOFyXceTmRE4kvDl22TSftxOjlzIjyffIygt49ZiSPIltQc2\nnd6I2VKYuZ1i2tsnOFql3ZMIbYUZGhZGaZ+IFkangq3OSYcHONkQynSCW3FQH/fYmK9wkj7gow/r\nXJc/ySRYIVCL08wPSSSgYg1ZNG3uPisysxTSMZtzp8Trxoz6Ex/hzXVmPpnwOEls00aNrmHu6Uxi\nXs6OjuF4k6u3cqy/uonQDVJvT1hMDpGnKma0yTBikG7oVKNexMclriwF8I0UVLnNNz94QXYufrDP\n8o99htlKHE8+wKgs4PHZOKUB57V7SL0kA8tCTmVZ9hocfHSCZp0T1GUC0zrdwEsUxQoScWKtAb2X\n8ow97+FOBenpfXz2jPOwzYI3iCrOsfvL+JoVVkQDMdsk0Zngn3WRVmWqqhvTWuRKr46QTFI+HzDw\nygQTfSyPiB6p4hd8XFaahClw0S+y3F+gfr2IYvdwehNiRp94PE9FqBD2Z7EbcQ5Gl1hSANoR1FiP\n0uWIiC4QERMI5hlncZVRw4WSHKG7R0jzKHVjSHAyZBjpMzqWcSfyFGrwzR+8+N++9Kk7iPIGbq1K\ntrlIyfCS1xeIbVd4VhmihpYIayoRO0rHP+TY7uML50j4ZJ6eeOltSmRnHlyhObLpYeokyV8YdHoW\nw6hFKKoxnM0ZFI/ZrPswkzN0z4DS3iI9r4HelCi43TRXz1CtHmEjxjis45nGELs9pEUPxsoy104i\nnNdGSIEBp0xIR0MMBIn14G0mr7bIpVSWxjnO7p+wMXlC8srrKO0AJMbEWjEi4zaXHhlP3svCtRPC\nS3NcxnMSQYeFUoXMF1Yxldeptg4JhoPM8y2c6lX8xxVqExGP28ODH7zHb/3mb/zVB1H/+J//66/+\nR2//J7QP7iLtDdC9Prbf/Dy/86tf4M6nX2Lh+JRhpE8wkef22yu0DA9abZ/m2QXqFaicpNnxbHAY\nizKaaGTHQ+amSFSu4VrzsZIMctScMvc2qY4HmDOVR6MgjU6P8JqL5p338JWeEPYso7Y05PQirYMj\nPHoKUzCYjy7RY12+P+oQx+Ki+i52eoHhwyaB7BVSRpt7H+xyK1tg2pHIuKIE1AZTo0hbjLMsODSi\nazS7BrFBh9BSmojuY+LUcStZUqs1Ui2VFmMuZYmZ3CBEkGl9htk/IxqZUzty87zylFtegX/73ReP\n5e/97m+Q3fkZTqt9Yu1jzitn6Ne2qDc0zFoDf8yHpyRCZB/v+Tq9uERCtcmVMsR24rQuLpCiMubL\nIq5sjxXDwnU6Rw7JyAdd/GqCh0UXrlINnyCBs8a8dcr8Vh9Gc0oXJua2i9ijCo+UDuNpklT5nO7C\nlI1cDGN4Qo9lpoVVpsqAnCdLr3qEa15jZSxgthfwRSWK4j3CUpoaF6yZLtRfyvH8TxxS9T/lfuKU\n82c2S7dDTKYtTr75IS8flil9yuFq0ka+kkIoxgmtnHF6uUD6fMRkYU7K7uPzyHz40YhQJsUb6wq/\n/8ffAmDjky+zYB2i2MvUo+dMTryYi1Hs6T7J+Ccptxp4vUmuFFYxZ3BYOyLbylFZW2GceMIVT5t5\n2aSuaMjLC6w25vy7+0+56nhIyi4m3TWuzEYserbYDVWR6wq1PYG0E8CXymO39ohkB/SDDZxonL3d\nFuGdlwnPnmEHF/DipzoNMo8OKZ95CKQ0KqklCD7BHbiNkzmlI0y4dG3xpFcj53IoL0fZHNaZxHIw\n1/GMd3H6N5BSMWreKNPFM4LOTS6FBJPSM8yhm2GyTdblItASeesLP8Se2UKpzYhdBvFcmfGSep0P\nHZln774oKf30nTsUXHEmUh//YB/REtD8t1jr2ZRnQVxBkalTwMnK3OqoFEsz5ISfUbSH1ItQXtPx\n71ZJhz0ciUMcO0tsOMOp2pSTH5B9LUX7PZt+ekhi/5ILVxS5ruP3tKkHw/TVOavVh8SUbfI9P+Wo\nzid+IsZfHPTRAlNCF276UYkV/woLKyucPHnOLLTIs7s90r+ww/QkTMJwmA+nxG9OefjogsgQTGGL\niTyjbgmsfeIO/bMpwmzGUsyDf/smB6Uh4SORod+h51QILvpZiMwIKHlKZpNoaAGfLuGfWxjNNMdN\nG00TeXzvRRr0y3e+gnvTxqkU2friCoqYwVDztI8fo4oZ/N1dMo009diA8sdTFPWTLJWG4Fsmer9C\na2ARGxW492CXYWdANOrCnMWxhCkrQ5XwNElQNlGiJiE5yjS0Q6zgo/xRkLI0Z+woBM0cH7y/x8qr\nBcITH4dnB2RthavXNnDW+zz6xjlbIR3ZiTA8gcTVADW3iTWpsixeJVpQyCs6R/KAfPqcuRFhHp0R\nL6hcmhaVZ5fIswi+gE6qE0SP9wh6be7+i29w5hKxqeHxblCSTzG8Aa7PvFy6VxCTMtGeyGkwRUGb\nMZczfOv9bwPwP3/jcxzeDyF7P4f97D6VBYmNYQQ9sc3ZoEEuqXPx8AItaEN/AY/fw3LQz7BvkfuZ\nN5mWWpgrIpQb2J/LMN6rsJp5E9klMJkmWMpn8WhpyscBesMuPqONO9okKnlplNc4S0kIyIQHAy5b\nIG4o5DQvzwM9nHSS0HSCYLURximMRZ24mSSvjLETTRSPRECuIB6LqPYa5lxnXt/ieaNDfNnAc76E\nK/eAoSISVQRCsRB1NQz+Hp6RiXsxTddloRXn3Jy78OXmJGsTfNM8rdExuUieUKSGLnnQtR5myM17\n33sB2q9s36Kf1lg8S9AIN1h0ajRzEar7M/xSngXnknL4gsvEGU7lJnEWCMsgd2zGloEuCkh1HX06\nZtpsse720fCFuWAOZyp2o4LICClkIegTSvqMxVmItFXHN5OYv7rAqC1hiTPGTgLXkYHXGRAzTWax\nCAN/jKR2zvhIJbY6RyoOWZuLNKzHqB0vjfUqG40S2/oZeiCEGrtAX4LoYYTOyKJyZCBe7eGtdYh3\nFIacsxbKkBz6OBrqJP1LTFZMwj54XqmS+bBFJhrAdoUQFqsovhH2sE3GH+HP37nP3/9Hfw2UqP/q\nv/9vv+oxs1SEIWVzwIVLph+v83f+y79N+aNTpLSA1M7RPq/Qie9Ta1ww8KnIV/1cCy4ii12qjsN4\nVoP4mLP2kHysgCPJSEdu5ihMoyJ1M4fbOyIfXyFrjwiHJxxWq9R//ed4Hv7vuPXmrzNoT4kUVqkM\nXCRUFX/KpLpos+h3UTmfkslOiSshhAOZdbmDNZtSDWhEJzF2cmmKgSaXvSqdeg7RLaLHL2k3Frgy\nLJEOBhFW2zzstRnHOzSEIQn9ksaRn7vjEoO4H1fRjaaEqFw8xzP3IMkCgpND/PHPolwuo8z3+foH\nL/qO5OMNdsc9boa7HGpB0gmI6HG68UN2stewrQ74QnSDIwR/itiTS7r1dYS4QWl0wZbLpnc9T8l+\nzqazyPmHEA3k2JsNiU7m+DNJLg4cbEVAkxyMYp9P/bhJeTfNKz/+Oc5cVXzFM/xX3mRpkGRuSpzr\nBtf9AncdlYXwBq3SCelGA7d7htu+RJplOPMtEOwY9H1B7EkR31Ql+NEJiytByprCFV+Is3vvE7vZ\nIFFQWLw/IPTmIreFDO61GfczDXYatwn2oKrESaX8DM1z9OQWstvDs4vHONm3OT6xQIMf/Rkf/8de\nh4O/eCF3v/l3f431/WOSrTkxVxBPT+LzPznhj//3ryNLDvnNJNuZJZ4cHyJVXVSnA7zREHfCNUa6\nl0plg8tWCWWc4dbWDb4/KtFuK6QcD3NLxpMc417to1ljPu5pKKddcq8Z7JZqbK83kQNzDmIxRvMO\nw02HXDLLdx5WkOotFhMRkhsWg1CCyeMWkqDQCDpcXW1gvHuBsnSLVmNG5HKGV/WjI6EFXFxrugjf\nUti/DJAalfBGbyIWuhjaCma0jPLKdR5//1ts/OQShqdO5cDLyjUJZSJRWPZz/shg1mxTXVhh9vxd\nVlNX+ECv8KnUOl//zou01C/8zA7zyyCefo/pZoZCxOFcNtDDUcZOG+sgycZKgGRQo+hWmctz1oZx\nLhJNglGDrGuM0tvk0ZmNorbJqhresEbPs0Gs56V1dkJ21EWOb5DIKwjtInErwURdZ3P6HOXmmHo+\nSnBmED0/w9ZUxvMJJ82vcWWe5f7DJ9z56avUzyxGlyaXoTjXxw0sxaIVeIlozkV7bpFM++i0Jdrt\nKOmCQt//lJyWwFi00FxFOscjOooHb9Li6Qcf4l4e01ZUNOkSZWkR60yBfITedILLLtBqmXjW6pjC\nCDHRIV6YM3NGfPjeCwXvK7/1azz9vx+RubpKe9DgSUPh8cNTBDvKYmKOGg1yZtikO230QoFF75js\n9JLS4yKZOy8T88YZCzPqus61L2aJVPsIaRVyAcZCA1Iy43gQt0tnV6+Rv0hCIIQaCKH6/UQlL6uv\n3KZyfsKOX0TyiYjLabyTp7z7p/f4rX/2O/ybP/2AZDxCOO9Djtm4ygWE0QmSepVrqsTR9+5zHgmQ\nnN1iEhERywPOLRNX0WQYS6Fc3+Eo1SY4GNGIKBiqiZGyUBM6mZWXaHdHdCw3W8c2oXaUy4jBqidE\nwuvHzCYwD/qEC0Fa1THvPnhxSPft6Oc5cbZZCtQYDwqE43mq6SZHQhBf9zmLuoG1ncTTlIhPG+yP\nDvD2BFrndbyZMO3KESknSbPgxe6XmUclLkYTjPgZvuEUZ5Jm4jSIKF22l8NoPYGqqSDOpwQ3vASH\n5zR7UUbeKVumih2q4Pf28ToWETlNtNZG0zOMFkyEJxPSmyPqx260iEmsv84kOqYcSWKYFq15CEw3\ngeiUcgOCggvDnBIIzUhcmjQ7U1Jdmb4yxjYWkPpniHUXaV+Ciy2J1GGP+3KE/HKfqGcTf09m3+yD\nJ4m3V6MZ1Xj4nXsv5u1vfoX0ZZxusI08CdJrdbCCAUypiRASaQd9ZOIW4kmIfLqHd9ylm5EYT8cQ\nbjF0BiyoCqOxh2urOS48TcRmG58wJrHaI//5T9B8PGMwbnF9J009ESay1KTjSjNezCFqJbR+mEDv\nAjwW3YyP5XEeTxAC/Slqt8CJXaDVmNEng/bdKK31Ge5WiW7Eg+dxHf04Q3/hlIgjMIz4WOyc0HA/\nwDUKEo53ydqv8JFRJBNZxe3vUxcHGIUY7miK02KYUT6Jax6k8f9cEv65ZYKpFQIDGTmQYH4o0gt3\n6VyccffBLv/oq//grz6I+p3f/epXr9zx84W3fpJyJcKdq3NEV4pOqU9ickpLjSCiUZ0V6X9wSaTq\nJqQscjMuEuguUTyXiAwFXOkS8Xs+MpErdB4/pkOcnD3A6EQo3B7TGw+QxnOqjT6SW+Gt3/493o1/\nyCd/4yXk2R8iJp7BYQQteEJwHiB/zc/giUbSumTYj/CyssPp3MAzDrPhTXHy0TnGRo6N4gJV4RG+\nawUCdyXcyWcEslPyloKVT7EztBnlvRQXu5gPl5kvxWk/jnPbSlLyTZlvpdkOJHE6HQIlm3FAoLjb\n59qrFkN7i7MnT7m+dh2ndkjFM+e9918YL3/5H34GTd7AVw3SjggvOpaGfbZlDx83nrG9sIHePaFV\n75DNbWBUvajre0TiY0a6TsjJMpI9XLn1Kv19jcGyRKVyQSrlwV8fcdouEQ0EWF4fM+kJbPWWeX4z\nTsZ3wrtPLkiLMrm2SOkySOJqi1k/hOCxsYMjcFeR7unUb8ahOya2FcQTXEObXxIZOcz9SwQHB1TV\nIWtXXoVcn0wtwCgWxvn3Pov1FxPsmkA2+EX+6/dbbH7xx6jkVcS7HiJhL+FMmifeOsFYHLM9InLs\nYqKoCG2bwswh2OzQcTtsvW7T//MQzoWXe7svFJWf+NVfIN2dcdTu4QokGE5G9CyVD4wisphDjHmQ\n3m/g01RWsn1mepz4nsE07yexuEN++BEPSiFeKYx4oot4nSZTSUeyzhjKY4LBZfwBlUvrkjkKQlWg\nV16grH5AsLVDPp/D88EZ2rVP8OGjf8225yqJcJ7eUQN1a0pY3cJbbFO5anB21kGvFYlIr6EFl5kl\nL0iZDu1wkEfuh8T0HlnnJSKr12gpE4xpj2guBiUfh04XzXYRc+/SKH+E2IkTOvawmZwhBDIIj0XE\nZJy2FMQnHjLPQrdmkFvdxOzVic0tXOIqf/SXXwMgk/0Koddl+k2JxkGV4DyHU/SzJQVJRhqY7jDa\nNR3nyS7JhIHZWiI8KzJ2BLQbaeQL0Hw+HP+Q3NzL0LxkOPKhClmmb4e4+2iClpGwBiG08RPaMT/u\nRZVEf0LbZ1KW3KSHPtyjBjXTppG3iGlZcssXqEqBXi5GwnJR6pyRvJ6FtRDn7TKuXoVf++ovsfud\nPyTiH1I7HZEddemOawzcJoaYYaxm8A01YnIUQw6wEM6hjYtMhRvEYgK37QXCeYeknsGj6LgTJtFS\nieccEun5GQ+mOHMfzXYf10xEvCHw3tdegPY7X/5PSU4+4ONQC/9skePDE1byOeaeUxruMI77CQvu\nm1S3ktzaUag+0KgFhoSyafzjOWE5wKh3l7yqs/eeRCgboDqbE57MaZe62N0sQr6HrxRDalyihaJY\nqT6DSZ2squD36/z+H9/jjR9aoxdNYT0zOU1pWN44S+kMH3ztHXzDEIufCNCaG3ifa7S2k8SsCpu+\nAnsLKYT6M8zXlln0LiAddRgbEZKtjykGVnDKMpHXl/Fsari7Q4TQA4aR25S+r3EnluVZYE68G2Al\nOqDc79NS++gXFeaKC0edoo0tMnqPsEdkv73P/ce7AFw3Hey3BKROjqBrROt0gse/jisA3rgNl3Wu\nXv8EJfuYlCuLp79I8iWVzespelKQu197n9myj3k+zDA44PplCrAR6xLl8xnexTKppo25EOF8lEWM\n2cRiAWpzjUh/wvOOw80FEWWYpXWtSaGsM4qsYhyZSL4ituAQW1nA1TxGFbZoOyKpoE29PsQ/tDkT\nAwRqbvyxKpNKjoFHY5wbEvOb1DEwIiLdowzO9RxjVMZGgAQh6uIB0/w2MTVL2zSYi2VGrTnB+CJT\nY4ql+rGEZ+ildQrjCy7dM5J+L++986LP7fUfvoNdr+DdETBMP5Idw02X4HCJwJqP0Eyhs2sy9Wo4\nsknUWKIyjxKMm8TqWQx/hJ7LjZq8ZGDZXB4YjFWH5cgKp9UpgwclFnd0AuMILS2IXtPpuTNE9mZo\n7THm4gpKV8IJiKQ1lUTcje/GFu+/u0cksUTL5yXjP8HWekyOzrFTc9TUxwQEh9TFHYydzxDPLGHe\nMqg6AqHD5xTXk4xLAbyNKEWjTnpxDdVqotoZBrjwiTKiWWBy7qYzecA11wbPnt7lc7dTrDgG5xWB\nE6fK+lwkuODGl4pSz/g4+tZ7/P3f/u2/+iDqn/yrf/HVv/Ubt9H7MvNwHHnsJ1w7RxSCzBcKbHh1\nxnfPcIWSrK3dIqXZXPhdnH6nTtdvsCL3mVkujMiIcSJPBJsCCRiNcPVtZi4Xs/YEYZAit3SdvZUl\n/uAPP2TV82VuN54xef/nqFc77OiXPC/pFHpzjPGUvaEXZyQTD8oIgWWOi3tsByIkzmvkQw5GQObg\neYnA7QwDvUXBvMrhvIQx8+E4E2ZSnO5wxNg/R1IsOuUBfVcft5jEmz6mpwi49Cz98xOs/pxOM0P8\n1hKuzhHpV5d59KjP5rJMKqfz+J17dNJLuANBPvjei3XecvxHuZkZcW6WiMbD6Gqb4TyBv+lnZMyI\nzRI0pm6S4hZDTpDGfjLDBMOiH5d7ha4i4eyJaN4ztFAEzTHRIxXmege9EWYhvUBkS8A/UjiY+0i/\nsYJV+oijoyucf9Dk5XyacCDH/vyb5PlRRpKLldsl9joCSStJRy2jm14WJ02eVG8Silkc10LkLRXE\nDzFELxPzCvR2EQNjnMB1Pi562Al0EDJuZDPM8dNnbEd2SHzOxfS0h+KvE34cwnFP2QkHKD8T0dct\nBoaM56TKdD7kwh9g/rbJ2tDGN08TySo8+f599i5e9B398OtZhs0VHvzJMxYiMULxJsblBq++kkc+\nlfHuNRgISyTWGlgzlVG9jeAv0VHcbAlVmjMFdXBIO3yVLUvmo909tBmsmFFmqzMmZ6ccijmo2cRn\nE4IRDeV0zuuvbVK52yLmM5mFTab+AMv2ChNVIu7xEc6EKHu8nD2oY1wP4uuFCG73CaSCxFpTnG2N\n7DiP95mb6LKJ0RTJzt+me+Mp7v4IvzvKqT6lN/qYaSJAemAz2Zhx2RWQ5XWWhgK+9pRyI4AcquEe\npJmHhpgDCIZEpOdR4jOLkr5v6YUAACAASURBVFTk2muf4OEftfBfn/Bn332xJvjEj6yzHLExvS2E\n9A7ZrActN8LjP2NgywQDYSpdm9aZB+84TtBpYQZ0gk6BaLNCreenYHqIlevshTx4ltfQn7eppcLI\nOGwMOkQ3brKgnOALCUhaCCe5ij90hru0g+gXoWIzs1NIgzZRstRGpziuEY3iBuGYj2Fvkbhxjs9z\nlTP9hNfjBmpgnQf//Bt4wxBaCaI/6uNbzyIlAuTVNH6fG81dRqjGKUxM4nmHoSZQMU8JS1lu/9gq\nz+9+xKyTxz0ScHoDBoM6zydJImSRZtBT4twwElQkg7CiUZd63P+jF6nGG9tfIZK5zqOTr+NMF2lH\nvofowJX4EkomQ/UDiVhykbvPv43ubjMfA0aUqX+M5iriXl7FOPQyDo9YfjnH+eND1rZBPxySur6D\nO66hFmtMAiAVFkjHdNKiQ6Prpyf6UNNz1IkDlxpn1XP84RkvBT5Je1IltKBT1cYEP/VDNL77ZyyK\nBWbbDnxsoI6z4GkiTtMc6kXWQmlcuhtX1CJSDtF1gnjtIU+6A5bHNSLtMff/ROPGYoKTBw1urexg\nNgfMGgK5aZDzqUZkJYhTjfDpf3+Liw9lauYJVdtDamGdu2UvUT3I9x+9mLdVO8/5jTeZr5n4uj7i\n21MurSbr3Q7mQYtbP/wT/PmzM25Ecxhnp/RzWWrnxwy1MllrzM7Om6gr27ya3GH/3wyZDefc+myE\nYVlgWrBYlEV0zWIw9LDqDnFotCjINUbFBPWrDqKQYWJaDC0PWihIpzrGXxc5j0A6NUNWx5Q6l7ik\nq4RXPkZ95uZY8iH6wwyvhAlUZozWJ+SnKWL5Jk7eTWLfRWCcwHEuQPRgeXS8lwMKhRqiL0Vp9AwX\nK6wXq0xSGpLjI1LtYkWuEBmV0FpTAu0y/X6IZMCH6epQiEp4L1b51oMXdoW3l77IIJan/DF4DZF6\nskjGl2UWqRNwpszLfqKZMzKGj/OMQGiYJOEd8eDuU1ybbrJaGY93ztTcRkZlOTYnFheYJA0mJyOy\n2QChkMSgnCcSPaEWXyfn6mHHl5lO67SLZYTQDNsIE7JsjqU9eNgjV7BoL3kJz2rUtTK5+YReQSdt\nRbA2ABSePurSn2QYhgbUF9YR5TH2dI038kOG9Wu4oh8TSd/hif8xeSlDZV1iOjTpuDQiYpJO+4Ar\ngSzahUPidpWA18elJVB7rJHJu0n90BLRZAHL56M7afLgO7v85//wr4ES9bu/9998df2tX2Zp1CTW\nDdDM3GfS89D1yISnIl0rwmQzznrVjRXyIMwDpOQ+7UCHl+MhnE6HXt2Lnl1i0BYZe2ywq6ghi0nY\nQgh56V0N88Yv/Sz/y/k52dMhP//jUTKpKaOeSiPYZ3N+gJna5o1chuKtEDHJxNNTKXir1IZR5vWP\nqCbj6OU2nbiP6qWFYiUZT33EyxZpNUbm1gKTE42gcklXu8GoMyTh7dISNISeQVO1cJtbpDnHJ1sU\nj1SqzhlLqhf3LEjc5bD1to0vvEXPXcT9jsOf7e6z2hlTiYRYWpmhVv2889GL9MrNKzfxb5pE5w2G\nYx21GyH0vIgn8Qr9uEJ32GAp1eT4YELau8ZE9KOlDzkiQzchkD85wk7L9JR9YhzSCpyxE7yNeDSk\ntzIgneqTzgc5LTqsl6ucuyAiLaLbDayDPXJCi2LOIdKJwi2VVn2XiDZmeDBl/FKc2F6DxUyM3khB\nX3+GNFwgK+pg9SitvkJ4eM7R+S7rPZvh80tO5iHSNQ+H/QmjOFz5G2GSwSmKuIsuTSm0G7S/UWT6\nVoDgwZT2RMC50sY99zFQ20Rkg+6Kwo3EFPFhn3LoJlFhiOheYhhvcO8vXzC1O7/5q8SOK0SuNOjM\nFxDNCiOnhJoaIto9zPgS7bZFSD6iOomRXLXR5U+iVOu4pgaEdwjrQfolN3HvhNByn4BvEWXbovLh\nlIXEIoVOg3LPZHVTJdwFf3BEY3KVuP8C255CYptgV2Ca7+M/F5kNBuTyEewzAyV6hFxLsLU4wulY\ntE0df98gOcww7DjojTqKrBP0ZohlvSzbQ0YrC9wvN4mcRAkkFGKBNpfTCNc2Nph5bfTwBmNHJHkl\ngbc+57XPXMWtthEnLprR58RjFvWIzeBwn8ArLzEd9TByHtTAgG9/+/sAvP3ya5iZOMLQRz7oZzCa\n0t6LshWaUR8V6Iv7yMVjhMUx65kYw3IVeWeN4qGMtz8jWXjG07GX9OaQFbeMFdQwmnW2317l5LhH\nR7cQeuA0kwzcLrJTE2de5PCkiJ81pvaAtCPQ7ATRXoF+1odv1+DZ5gChXietpLHMCtoNmLuPmB5U\nmPl8jFod5JfDhP0rVIoSrpkEax3cFwU0o4kTHTF52MQv91GyGU5KffzDGYPpNpORRbXvoqAadPzP\nibViDBMiU9cFy0k/884hntsxhIaAJAgsGW6O7B6tqsXeR48A+NxilrWXSxQ9HqofHPIT/8V/TOlU\nZSKc0N9xkIQxutZnIyczmoUZazb6HZvhvQZRf5DmvQc4r9oUnAStw4/JL2wwPTSopEfYdR/dxJje\nPM9paMJLWgSjcobKBl2fxYLP4VjoMhvrjO9r9CYCzlKeSOoZnXtj4vFtBmmDSt+NnIozixuMW0Fi\n8x6hgIvL5RuY2hO87TCdZo3BK0tULx/j2ZoQC/twTv1shD3oHg+jSYbVO3lEoU1hI8tgekl7w40w\ni+J2+vg9QZz0BV5FpXuvj9+aEI8rGB0PH7X3SXi3yf7I23zn//wfAfjKr/40Q3kJ86TEjcQOTT1I\nbmThXTaZxQv8ye+fkVp/jenj79ETFrmZ76AdzJmNXQidQy4Mh1TrfZz3fewaj/nkZ96inp8SOr9H\nMmSwfz5h0QoRS+TY1U5QrTq75zXkWBa/MaI1g7XIIpG0m9rTE2KJGJWlLimPj/6ei3ZKwSPl6Xc1\nrPYCUtjAyaQI9Ot03BLr3gm2ItCqdIjV0jh9g4tMhGHbJDY3CCyu4LJ9RLp+2oqJr1RiZbLBdEum\n5Jti1ptIdoTKaoSl5j4H6xk8yRCxSI9zOYMpXVBdgWjToBwP8eH/T65/9MuvYcrnpDc1hkmRwMSh\n1AyzsjjA7Hs5jTZxGn4CBTcLewZdVedCjDIeDxAGGUin6Sky/nobd8zEPkxRDZgkygqX7jQjapxf\nhjG1czptHXkvgyrnMY67rAVHzLe9qLsXKO4p4mIMz3kPPv8pSicDsvaAXtEg7NcYJZdYCl2h7R1Q\ntly8vnmd0w+fceMf/C6nQo1rGx7KX9O46R4y8OZIq7tEfAHMtoSiGricKM/+XR9vqEzODCIs7TCd\nJdCkj6k1B6yvvs7jdpnYwRnDcJTgOMxTKUvl7DGD1gyLKkcfHPGbf/fv/dUHUf/0X/5PX/35L3+G\n/kKe/UoP73tNQmRQlBqXLonFUYPYZIrr8ykirTEj3WF3IrOaFynrFvJanBO3h8nFQ0KLLebuGJFj\nH0Kmg7JvMVHHKMmbfOPkmLw2x74456d/7G/RLu3hkR3W7pcYhFYpTavIpzMuZjqTko+tzRYuy8Kd\nLiEtxPHoQdRlL81ynOQ1id3qlPmqhmuaR7zWoDoJ4g2NMB2JkTlE1jUK24tUHAehFWQ6VNCkOerc\nxu1IVLxnhOM5hO6EjlaBmEXraw+IRL2MZ+f8sz/7A37xN/8D3tjJofpeYzxwCJgC3/7Bi7XUrU//\nPOJ1N3q1RiH9Bp5AD9dMontNoHBWQ0q6kCwJjzQi2U8hjj6k6n2NZXeTZtRHaqLTTLeJ515nfJDD\n7jTI6S6Cq2/SmA0ILujMNS+tLpwelGDqUJzqXA0OaBgKK3ON1syFtu4jnl3Bd1lCaHro3Ehwxxuk\nclCjfTNFvaxyq5Li/fk53uwiFw03y2tuKg2DW9suPNIdButv4DdLHJpnLIWWGXnHHOhFrsphtP09\nzBsCF+9MCY5uUC4fUsitIieHJHpRBKVJ0klTrchE4yZSLY0RX8bXLTG8HPDOn9VZ+NIG3//aixtw\nv/iJz/Pe8ybXrmzhG4mcSM+ItmVms2XicgTt5DlWvEunLbERXEUOqQiuMwbNI0RfBsuZkVPnCDEJ\nhAyVkIIT8lIttkhJSWpygKZUY9WtYNljuqkUidU1DrU6naFCxJcmcxmgs3DKVMwSCeSoD7PM3r8g\ndsfm6EmFRFyipwSoHDTJ42EUc9NUFGbs40uFcIgjFUZMgxGsapD+uE63NkKMqESOzxk7Io4vy6w7\nZ0mX6B5+zE1hi+g7bi73ihxGK9T9Ft7OGHkSwKiqDNsGLmWKaalYjoVoeBFVh3f+9IVH5Qt/8w4p\nzw6nJ2B4XJjWCelhhl6mRnPgwu9NsFeZUCjEkMwEg+Us03oRJTngYJhEScgsnpwRNIJojp9i1eHg\nqR9jJ0Qo2WWqBhE9Q/pjF1ZzCWWlyP/H3Xv/Spbm532fU+ecqjqncs51c+jbt+NMT0/P7szO5shl\n5pIWYYCSYMASaVgrAbQFy15LoGwLlCzasCWBpizQpuCVKVO7XHE5GybvzPTO9HS89/bNoXJOp6pO\n1Un+oflPkP/Ci+8LfN7nfZ7vQ82NLdkgDRB9ftIRCy3cx9E0UmUXR2IbX2IbubZC1DehEHbRayQJ\nV0dMrDDB9TDlD6uoyir94zaxpE07+JipvsE0JBMbhVH8YZqjOWY0TMfnxpxEaLlF0qpFwPHjGc6Z\nDPdYtC6hD0q4nBlTtUi3ojBzhYiM0pzSZFY+wngxTfiuDvl17r75TBn41a/+KhlnzkiYM84YeJvX\nGbx1jOPdRuufEZTD4EypDhRmmom9LKN3e2zKSzTkMZPwOp7TKmKyRzJynaYlM3TPCYW2UEQXTbtK\nVesR0gRMrULdztDKXxBt2ASGEmbahTmIIk10Ys0tMimHyskxvpaLpc9tMBzY5Bwf3kmbUFcntjBg\n5FPwt4qEMzLOsYUTlKgZ51Tu7XM1cYOY0OdkxySiNAi8co3gXoL7yhO+/fs/YhJ9HuOshJL/ORIn\nO0RDU6qjJpHCAMuEsDeLFJXw+mYchV3MJi3C0hJaakYuPOC1P/r3AHz9ty7hn2+jGx4G7UM0M0U9\n/jGNdgE12yK3tIa+EaYZDTJ98y0qa3HSLhHfxi3cK0vMj+4xH86Yr/pZCl6hW25w4hEZXbiIj2t0\nqgaTgIAVjDKVL3Dnn2f8FK4tjZAnN5HEA0ZPXVRm9yl6Vzmc77GgLGPWdUJJDUVOYFkiS9Epvr7O\nSc9g7mmgtrOkuge45wlsS8DtNPC5xvT9GWRnguO46BoKw34dR5ig56bM2jOSCyonCT/dszPkyQZX\nrGe+Wv/JiPblKdFhG+M0gVIL4XBC2+fgmaeRzAlyx8Obd5/d05e+8Q3SWhZpmMTz5BAztoJtnuFy\nrdFxzVGmEYy+C9nVRdCS+DNNWocRNrMWw5aHdGLGeAQTo8tEFemLVVwTk74ik3U6FGQHRY6RHM1Q\nVlV8Gz0uql4S8gR96BAJaexqz+PJaGRCFrv9IvGP3kXzxZjLfRwMQg2wahLrG34GyzH6ngyDdJOr\n64u89cHvYy1voQ6qRNofMMkE6foXsc0j5rrK+ZKb3nGC5CxP+OtbLLHOxczPo7t3CS8cUHswYuM3\nrnOw9wG5oRdjdQvZv899w2D58qeQ51DrDdCdIvt3P/6rkc77g//in33rl39OI3H9G/QfntJwJRA2\nJHKFZc6THaReFbWfYOe9c2YxD63MOcuWC29niGtJ5kTKkPXPyCoKk1KfsVdnXpjj2DJPs2mUVpgD\nRWLv8TmLJ3Ve/rVb/Pj//tfYUpz63MPl5DoxWcPMr+PZUGi7Xax7E0zrH9KzDFz3gzTqM0LiGKfk\no2R48J11EQN1AnYM36aMZ7lAMCzSfjhFlwJ4zqskClHksU48adEIJcj6bXLyBfn081g7j7lsblMY\n9ekaOS5pfir1BtmYnw+HQ1RJ5eV//imi0XMOPhCZhbsMuxUCZxVe23n2TfD1v3sd57UdIrMFLtpJ\nPHtnRF8pUE2mmX10gF406NYTiCUVLDeDzTxjs8TGKIN/1KAiwBXN4mg4RrHLJBc20Uyodd7nipzC\nbLeoSTfoz+dYaZntzOepmhppycDHGpHtBnoizLbvU7z3+ilFO4hQOGW1fpmD2iF2ROCaZ5PprIx1\nNc7qTCdTO+TCncFs1HEMD1VbZhb24gs7nO7/hEQ8QjNiYZxFybzno/rgBG8+QXGS5YnWxS5NybQ1\nDt0m0cAqs1SCi90qLatN0gqiHlTBbRLUFPZdE7TiIpG1KXvvdDl+/Mzou3XnF3h+uU/zpyMmoSF5\n+SY7QT8vXIdUzsUuMkq1Qljy4VpJoCnH7B+0kMJDAgtBnB68N9ZYiGxjigPU8Rij5WU8X2FdnbAg\n7WCYywTiPQqrV+kHzvnww2N87iKKcUawM6X+qkTnqM14Wsd9I0VHz+ELhmn1gkS9KqHtyziCG9eJ\nhP9SFGVVoPvjMigCwgtF4qYLsQ5a/wEP1QHWWYRaaJeEP8DezpCVzFUm7TaRoMRhQmNjJYjcNHGF\no4RuBYkpBeSZgsdU2Re89Nx9NrQRyXgK6WTMuQsKi16qP+nx/qNnS0qzz7/MfHWRQPshekhEb6dR\nNw7p9FVaisKlpsVJZYKjBplFe2yYM9onC9jhNoWZTVtJk1dl3quc4A1fRxqcYCwqzDtV3J0YpCF5\n2MSWlzGv36flLaD32gTnIltf+Qba6R6v7eqIVhw9P8cIeYn0fGzfyNEUmzz8w3/P2somxfCcimUy\nyEZIdm3a1hhlfczMlojlVhmctPEvRMmfaZzE+8T3z1ksrnOuOyQbBkFmtA6fkrVUuimVFb/DE+0Q\n86xD17+B2+iixQqkRkfEMzMOohCRBzgUiU4GlOc9NjYy/NmfPqtn+oWbv0jVmlIsXuPieyOm2iFL\nfytPfeqQeeygqzUaepxpVSalSOiDLr7gNYK9C+xxlHFyQq6rMddlrNQy+LNYgT7n3QbhnIVnLvB8\n2kPEGGF7/BiJBuLbH+N+Mc18EuD8uM/l8CaG94DlJS8V5YK2LnD1c79Ix1tl/w/fof9zL+Hx1Xjv\n/RHB5Tyl6ZSrl1X+5Pt/QDIQoRsYUJE1Xt58Cc2oUjN0ioUis/WbdF5/j1lMJ+a1ONx5wov/aYHc\n1gt03/02w3U/5g/PsINp/Ccy6fQAd7PGrJ+n6hKYlUokYipp08u6NuJHf/g7PC1pAHx1U0JIbOF0\nOoxnRQRxn3UcEi+EOX69S6c7JaPYiN6f4npugY4hE14b4TsI0Y2OSWg5BDtO0j+kcX/OR6UTFjNR\nkoFdnrYjSNsKIft5jur3iGrP4zcfki1u8NQ4oTE+QgzkiA9kWoMB3eUUd+Z5OqrOuD5AnSwS5RF2\nUoOPLfZXBLbGA8TYBo5vQFAPUlU0qjGb9fIGlVya1ETkrFDH1+7iWYuwYXmISyE8wwrTnINbXaAh\naCxHfCQaJ9Q9U2bdcxL5EZJ8g6BpY5kSk80OubKNrxhBnc/w1dYYbM9493vPGhn+2he3ME5gmOtR\nIYLuCRPLmXS7ErGgi7FSwhQSBFMtbCvCo5mXwu0VanYXtC66OSIeDpIOyPQckc2DHBmPzeHHx6ih\nTUpKEl/GR0eqI45tdMUHXgchl2Ig1ZDPFoh81k1zV0WX2vTcHRbkAscn99iyZLzqFQbeFLLQ4Omg\nid8HMa/E/u4+1wI3WbqzwHYAqsMd/L05465E5FKeztMBpiESv+izunKL7sxErXyXnfkYOjbJoknf\nlyeWuMLwgz2cnETYTHLR6ZEsfJFlt5s/+hs/IBDp0Ej3SeymeHh4l9/+e38F0nn/4+//7rc+sfIV\nAt45Tzt3uRpPMWo8hkafqLBApJNGWTkhyQ0Mu0Mz5iGT6OF2CjyaLoL8MaHdCL2YguxxsOw1Irt+\nYkGV8VIftWyjhcbEvJtExmc8+A8PyG8XmcgzvBM/j+ZN6rMzTo4jNJKH2PsBSvMPaR1HGHnChFcM\nGm4NX2iZjnJBWPSxNXMQY69i/bnOzMqy/+G72PstvPFdQnkVITjB6o45Nmc0agJK36BYP6ETWkaf\nnlIMLzDwQSkGC9c7CNoqxStF2uoIfekmf/rGB8T0SxgPq0jHM8biAHugYB1OefsvvD0vXbpJd7TI\neDPIqH4f/VOQTYyp7YlwOU3tnXOCssM4rpATzjgRJswOKqRWPLj8DYTQKuZqD8PysegeUCmrBCUf\nc6XH7sEMQ9gg76/Qfhhksz7F2Tria7efZ3rqRwzcp2R/lpvrAd75EeiZuyS8fYymRF8bMlq6RMi2\neTioIobj6K0SjtHm5MLhRsLDYWdI+kac1blDy3fEyExgxQdszqM8mTdZmmoEUZHyNvNXrjN9oDPu\nrSMUNPa0Iau9CMfup4yCdZbFAL5ojrO5gXcrjf8sTD+WIDr1M6CD4q3wgus233//jwH40te/hKfu\noF+uMvWuIt/r0yz9KZHpBidmD10QmLBIL+YQml1QdTzk91z4hcu0TANtJcLCTp/hsoV6NqUUMel1\n/NxKlWnqI6Spl4gZR8/HafZbPNnp4YnHWctZtO0SqeIVpmaYfGNIbknG+ChCdH7KzJBJhXv4XE0+\neuuAeCFJKtZF66sM3hYRgzr39w5YVmac7K9hLEZw2QaJagzPlhdlTWBWOaSw+nkofYQT7dCxDNZH\nCfz7IualPppL4iR2n6Zc5sH5OfNwD++sSagn4sq4aAtJZE+UZmWOLz3g+MmMnYNne3uuhDYpvBii\nPOiSDUGOIbazzNzxoDRmtN1TFjvLXFo8QZDnTPoOa4sedmoB0s/PaZ0+ICRd4sOnb3D1yiIdzcuV\nrTmVuowSWsY+eoy+GOLpx2+RTyRZJ8LjP3yDSOYmE2ePqMuDt6ezkQuQ0Ac0exP2qgNEuUv8zzQu\nPx9HycZ4MJ6i7PpBCNIQZHS9hWFeI+akGKsfsy6lkC2dvckAy+0l0TDYVSVCrSFTj0w4KkE8wjQ5\nQZBtTt2LPPcJL6dnOqv5Ib0VL+nTBsNIhuBxhAQtlKdRVM8cSbSYKUt0503ee/0tAP7mr9+ievc1\nVv/R3+Dp//dHDAN5tPGQxbqMZy2K8dYR7rhBMBZnGDTZGAbJqDOa/iRTV4uVtkTp+jrz4JSOOoW+\nzalHQm4raNUWncM95naGk6mbJWsZOm14tMPy2h1kScP0jNhvGyy6h+yO96DtsHBlE/2RyV6pgXhD\nRW9bqPIe0ahAx/GROdPo9+EFUozCKUR5zmWXn4O5gc9eAlkjNMkSHR5Q9aUII6KqJle+mGf2Thlt\n9IRs+NPExrs8bU14Yekadfsek1MR2R1DutEmFs8QTEkc18/RNJ2BFuDWyyv8x9eezVu0UycUtanl\nBe68+mmub7jwt8a4DxMcTn/E7UVoNg6JXJyR6bRo/HCI52qa6eM90FRMIUSzf0pocZl0IsY4YLD4\nM8/RdPU4b+yyKt0mtB7G9XGXxK05F1U/tn2AW9hmoz+gq8i4RgNSqRhFQ+LRuMnMNEmEpyCIBIUi\nu4KGtOBD6mRozgL4jMcMImukijM6TZHllgSeKb7+AOwuycaEmNvNRdBNZpLgUfUx8myDRdvmcclD\nsRakIWh0gkt4fAGURYlqO01w3uVipBLonyOPN+h6kpjzY1zDPMOAQrje44fvP5u35778ZU7VAU7N\nxVbRxjzw0LH8+LQd/GaOQF1mklXouOp0L9Ist6aoskawn8C1FsVoTXAGI3qpNnpvhrEoYYRzpBY7\nWOqQzHhEotJmsh0h59dxkmA+leiGLTz9Dp6NMPpPpqSy54j9BIXlZUTXmElFRvnyJ4mnW0xLI/YW\nh1Tvy/RdAQZP3qVwFKR8UMPnjjMbZsl7TPSzGLOtNMPvvo4ZlUktTDBDbponDZqBJqo/hcCEWTeG\nsuGQ6M2pt3b44//nB6ib19E6HTyvLpPcPeLxvSa/9moG83aIpdKQTETl9bsf8V/99l8BiPrdf/x/\nfitye4uJFaN66hAPwXSeIVhv4WpFMD0NRr0lzECN7ryN197G1H3MjR0Cfjf1M5koGiHLYamzgTET\nkIINajxl7VM/z2nzAaOKm+LiBi7/BEW4x3I4QkdyI44bNN0yMUdmHgvhafeQoiHWOiliwQi+qcOH\nlshLi1cJRY5QieJTm9hmkJo2J7dwTj4DdiaG/2WZx99pI01XUXIWgeQKqlFBGG/jc0bYiwmc0Dmx\nYRrlyQ6TbpO5x0W5VSaU6uETA+RXl2m/M+bmS6scT9wER13K/jBLgQmxlSgftiLs77wJwC9EbjK5\nnGBZuE+1F2DTe5nTRoNJskrRUfDnjvG5L+FtH3O05UdhkcVeip3ZnIBqkhjWGak5Jl0dX0UmvzLk\naUDD0hyKXgglAiTrfrRUHY+rwXEnSb1xwGBY5jToYqIJhEsxRsUzLnkq+IXnsWMCZbpsh9KEuyXC\nMw1juEZS9NLwLRBcSmLVx8RCScwzjYvmPpubn4DhgNlFlMCVMbPTOg+rDSK5LPfe63El4eBRlrEH\na5wvxNn8apHuvacEF9ZZ0bKUu3v4wxLGQKboS2M5M2qNU2JrBmonydjdI3Vzie/9u28D8MVPvMq5\nZjAPbBCpX9Bxl4gmVISUB10fYC76EeY9NiI2uBdZ0KeUL60ScASsRxOWVwxqMRvXzhgt2UeJewj6\nPeyXdylMclSSQXyrGYTjNo+rA0yfhtfr0GpWCF+/gv9izqh3hmuUIvzbd2i8/yPGrSjWHTcbzSYP\nVMhablp6m8MPzikoCrlPWoxsyNx6nqQRJ5CqoO/1GJsexKiXWdbD4MGH1P0BXvBeRRudUHISXDGn\nnLliRENtXnt7j/QXXsKaVWkdKSjUWUglsLphLpkXRLd9OBORxtkh8U0XYU8KIevnvR898+DduvMq\nTqpAsKmTGusc74aJb/jQhzE8qx0SQoZJssOkFiQcm1AP+Wg+dYiGyrRrBwRHfgq+IEYkwOrVVfar\nRxh+kZXpbXwjC3s5s3LUGQAAIABJREFUSmuyy3Oaj6m7yOy0RPblCKM1kf7YR618RuRGluNKh+i4\ng2yus7xo4x220FNZmsMFEusCkzMXnkyf3LjHUMwTUkTW4qfsuAzGfRvPogvvaZewATHDwIl78AkK\njeiUUMdASyfpDdvkA1m6boPViki/M0AeGcRCQYKtPBfDBot9N2cbTSwnQtds0R+sEMk8ZuwL0hHO\nuP/DZ4rx+ovfIGPMmO6W6SwtUGgVWYh5sT97DfvkPaLxJPX2EDXtInMqEFjwUR0IqGGNhNakVFgm\nrs0YlFeI+toEIhOcWgC/IzA5fIPPbF0lunwH9aKGMT2muwK/+D/9Lh+9c0SiJ6BHJMLHI8x1k/iN\nNbylIUK/CdkRsw9nZJZnCGsKOe0O506J0J4bTRpxyRnh9y5jNQUWpwLtUInY5CrZwhHNkcajThd/\n3iKWXMe/LJL+5B3euTdmduFw7eoa7R+WaFvw3PY6e0czunaU7GqIytRBXrvMrNXD/SBIfmsZoXeE\nImfQdpq8sfPMS/bN/+xLeP7sTZyNAPHuCT7xBY7e+g4/6b7Hev4lcskC046bsksj37rE5JMGqekN\nnNUI7YmKldxD3SsRFy5xVvWQXWmxr2n0h+dErSsgP89J/ZDQSoedswt8YR9JUUTtOZwJDtnFJVA6\nmEMfwYSBfyxRNBcY+2I4hsOhcEJyOsYexRn3d1haj+N1TehIHoSPHQJKhKPCgHZugijlaCWixGcp\ndCvCpOnBsqcM4lmS2oxSQScZ6yCKKsGIgK5NccdquB0L0xckPDLRTAdJdrAFifbqAaqzSCl5jBWM\nYFfivPPhM7vCF1dvExlbuBNhzp0WpmNj6iViRYmB02PWGWDbKqmWRFzysxexGbRcpELQbusUPUnO\nvbAQDKCcLHORnOCxZuhmjlR/RDhq0JYX8Ox0kRIS0vGccGRKUgyghesMH4OV7DGRZKJ08HlG7Bz0\nEKvHJJ/PEGILW7fZKuTJXA1ju5ssHqX46Dtv4tXdNCYW0cYhr//AZCC2WBUzmG4f6aTBR2/LLJ23\n8H3uc7z/0y43pAn1qkr0CwrnjwyK4wnpNYexcIfq6RMShRuY+wIL7m30fAvXUoxr3TLl+VM095QH\nT475e9/8O3/5Iep3/uF/961P33iF/sl9fDgIkTpZw8JJ5hC6Ms34mFqvTmIuUc0lCfc0pMSAemOF\nw70zlFoVa+sSl50aJ5kB4fIM6TNzznYiBMQuk1aIK/4x9lOZoVMFT5aFaIS5KOFulVAsjWYQvCEZ\nxl7ojzHmOULhMeO+yoJP57DmI31tg+X0Aq1mhcdHTe7f/w7FlRi1aZdbozIfV9P8eP0Sv3xVoGZX\n6BDGY83J5gxSkSwhb5DZLM14PsAVe54dvUViVQbxk3QCOuK5TTqeQvH5OGrbKKk2Yz3BDeuCU0+G\nzfCLxLI2P/yz7wGw/qWv4Z8/InORZhitM2h6MGYGqltA7M1Y96yxL9bQDvNEV2Xm/iqZgYdk5ox+\nrIBp2AgtH67IHvXMbdoPTnBnAzg9jcDsJg3axEtBTtpTrr7iA32V83yO4YWfB28/4JXEIpGl7yPI\nXnQ5xUwesTeYISVjqJVj6vECpbMGsjtDTpXwD3dQTB1hNmeec3GetVFmcfwNnQvPkOXrKfb6ARa8\nXm6qSZLpCI4eJ+auUQ/vsZgyOXqnw9dejqA1B0RtL0ZA4/IvfYo337hHeAxSKEVzPmSwHsM7PGNg\nlfF6N9g9mPLg/WffK6++8Aki8jUOhCPEQoHk4QmHwRt4Z2NCmQ0WGGKZMX70MEc6n+Zg7yHTUQt5\natHcsOn380waIWZhBcGfwtttMzBNlgcJziWDwFdCdN99B89yB32yzTCt8pztofTGMZ6MjGoUGGAj\nXrK46FVR2gMixybVhS6NucFNT5BYcBv6M6LrDqo24ydmDH98GUdzKA3v4bQgmxSIOXOaUQ+B7h7+\nrMWGeIey/wjlsEsqleXeoUVsmKK/mGLJe8G8esKNaIGJqBJ2+6BbYjJ0Ebu8RlXdZDoaw46BEUhT\nt4sctuDgg2fz9nOf2OaS9xaJrQCGoqO5mlSyLUrWXcZHCriSoJ3QbJYphEQiuznEaITX73nIizaJ\ntRXkzRHJop/B22NiW0+gD+qqwqPSxwQ7Xoq5DHrewh9VkZwSr9+t06/s8JkvPkdjUodSiPGjJuMV\nB0nyIW+7SckFSgfn3PjlAvtvwnDbJiNJPBmpCF2T9STUajYrjg+1P2HFt4E0EJlmUpwYEaRmnGFK\nZ6McwvQE0SYV0GckOyf4x1mO/AqGekb5/DHjUI7KtEvc8tCLFzB0k4Ieo+MeEy9YyJU4tq6g9Nq8\nc/cZDHz9xudoFQx8vSZZ74xHGx4iJw6Ln38Z450GyzmTmekhdqpz7k/jPa2guCXqe31qzoTE3Es0\noZGNCcz3BojKlK31FCN/nYWLPO+e/QQj7qMST+NbvozXzlN+5yFXr3Upn8d5cv8B/ldBrwbRQxIl\n5xIVs0ZuvsXjiEKqqZH78udB0TD/pIx31Y1vHOIsF6VV76O+0Ef2JenUBGyhiyn3cQ82iC6N2H2/\nQz5fwr3Wpf7f/zuyK348Yp5xq80oGsDIa6hmgZAvSjHr4c0n9/BpGcoDP/m4Ql82UcIJOu05qD7S\naw7f+4sgwzde/ifcKJi88V2L5n2NwosWHfca/kyaarnMP/8H/5RPXVtE8MvYMy/L2Q2sgz5CxE1X\nneI7XuRc00i6TUwpjPqKzYYQJqBZ7AVXWb8VY3xcZmxPSYrXKa5kccoHGKkYxqKX2BMfzE8Ijjdx\nr3rwVyZUQ25kdYCqBdjM5vGgUXdiTD0O2n4LZSHNdFxGFxXmup+h1eCyK0pIdIgMj+l16tQ9U7xK\nGeZDCqE0ovuCXlwhVRMR5m2qfYe52ECKJKHfR+uNGGebBNURrswyrfMzosEC7qCGx1nBNCzcTp23\n33qmRF164VMULo0YjfJoEuQGKpPklMl4HcUzoGiBPG/RCUHbv4KSs8kNK9hijaQ942nIR6A6ZOQe\nMYqGSe/PsbMd2k8vMG+t0K40KJhRvMqYc7+KkQ5gdKqMJgUSLYfasEtiwcPIvc10POfMq3MzmqOf\nkUjpMqNUC0O3mf7UonVh0Wp0iPie4+ZfWyEQduhGV7h8O8jyLTfm4hJ6Uab9032OxSHGaI6xvITa\nG4PHy/HHXgZUwI5zzZfgMHKCmHqZl6+4yC0sYOXC2GmJ4mYfs5uA6j3uizNKjptZJM7Jh7t887/8\nKwBR//Lf/Otv/ewXn6MZ6LLYCVCZSyxkEpSnGsNiEykRQf3ggkbBy4qo47ZGDKtLNEWdpDTCvnIZ\nQ9Fpt90E/Hncmp8PpjbTeZXnt4P4PxZwrbWZHQmo430yOYcnDT+Ot8eJ6maNCH3RxdDqE6laOPEZ\nBnVKuHEN50TUIGZ8wuT9OhclP87tGAfiGi8uFslsLOPqDvj27/1LvvQLf58fPX2XnLuLdrLJcNoh\n3RtzJGgkSgHG4gkXuoByFuAw0qH/2oDaQpSEP4VqaQxrKrOsxv2aQbytYao6imgSrWSxnRYv3uzh\nuYjy7R9+B4DbX76NN+RjWPThXytg99Zxh3SKZ1EqKZWa6z6xrRiz8w/Z6CyQtse4jDBaZMast4BH\nbUKtTDIQxlurYYf9tGs2yWGezK1DJCSORJ1AWEIcuIhpEYqFCo+rFnc+GyMkDukPvdiDGA13l1Q1\nQf/BGdNUhjNBZ9ycMh+6WVcV+sEpfVFh76KLuLTBvOzC9eSA0NcWOZroZAcpTs/vstnz0IlEULUp\nkseLmJ7ATQ0n6yY5jbOUGvC0bzCutkm+IvGgXuHeu02KaobmDR9pIUY9JGLf3We8mmTeXqW8+4B4\nxOGD9595ogrLn6U6vIe3PeLGlTBef5bRQZfmWgSxZWLLC4yuf4GZ8RjLmDOxYrhf2EaXbSTFYC7r\nrKphhOZ9/GWb8qUNrLEP2u9w+9VlGm8fIIenWN51orkozkdPGLnDbL/oJ72xzoNHM0ZDHelamO47\nT9iKXsY5K5EMSGjTOKNclEFvTju+D6M0Ve8qi2mTWK2Pa+5iWXQxWo6hG+fYZQlZmJKyRe4beZKr\nq4T0HhUZaEXZTz7hsqeILyFy0ayhp700uicEV6/QPmgiqCpGVqboDZNpN2idnDPqDzGlAmb1hBsF\ngR+8+Sz1s/6lLxPpNThw91EmAUYnHXzzOFolj9ypkoy8iLk4Je1KMJ8qDAspQic/ZWUxTWatQFnZ\nxe5t4Bs1iAlZhHCBpl3n3qmMnbJJCG1q7YcIb+yy9Mkv0HFCSC+vcTMa4bCaZ7jvUPG46Vkhriw/\nTzu8R/CJi4Mzg2TmGu2jAQP7iGvxBaZtDUO2sOclwsIyzkKE++IehcRNNFeX1ys/Rh/7WXQPGM4g\nn55xr+NHTbWYu3Vy3k2q5pT4NE7KfU6/52KjcAVZrhAK6YTHU9yZHpa/gKuqkfB7GY5SzLpzRnKb\nXMbm+z96tvzww9qcX/m8n52xm9XwddRJlZkm8OD1e1y6Hqd0IiJ2HF5r/4CrNxfo7kgk5Qbp5DLe\nNogXA/YsjfZBmNzzPgK+EHOtRKerYWVKPLXXWbkTJyH0CZRMhuM3KT/qYfVs9F6X5c8+x3wcZhhO\nI5y5EBKncNxAyAbJ1Ps0ui065aesemWEdpTmtE0qkiEmWDw9f8xYCzI6cSjFy+ye9dkobnI68hGM\nG1jKkN6FRH/SwKWucCgW8NllRNXDKOvGM0wjTWfUk1WcaoF4sEspI7OmNTiOeQmau/gMN11pyO3r\nCdr3K3z/g2fn9ifvSvyD/+Z/x7/tISytUpVmqF//FZwzB6mtcO1nspBRaKazpBMhDkSZkTvH5Z7M\nvO6FyCPcK1NirjFddlgTvIiPpvzJmxes3VlhKxLmaNjjlt9DIzen2ukR6RXYn5+yOnyOWrFDeNLi\nIm3h7HWp+ut0Qw5mQ8KJN1DmPg5OL0jmTVyzBYpk2fVX2bJNZO8QNSgxCucQ7RYzn5dyqMCCWcOf\nceM789MKL+LRTpnZ6/i6Y0LZBGWjSdLwMw6sc8m3R7XhsBowEYbXmJfqNIM5orkOF/IMXz1E03/M\ntuPiwuPip3/+JgBffeUV+nGJWH/AuJYjb1SpKzliPMUQ1hnFpiiGm3YwTyB1jLprMA81UbUo58ER\nrlGEVWFCkAgT84xgs093pCMnJAoq+PYVHDc0F1aZPhoQkaEVcZhlJJaXnkOYlug2TDr+A6YDmVza\ny8W0THNSx+OvU3og0NJ8jINt1qU4zktRakQoLm1xZAwpRNoMHn2MKHeINmzu7r5LKPIqGUMnnZiS\n3irwQb2H3GoRT/a59IkQdrWOYCyST0+QEwG0UxkqA9zUuZROEoxkqLVlalGB/GyGKkTQ9S329+7y\nzd/6rb/8EPWPf+cffusTL60SPXIxUCYEWy4a8SqOHqcvBlB3Rvg/v43f/YTj8xXil1rMgh30hShJ\nZYmEx0cockhQ0CkZLfxFP2btXWorCv6Kl48C5yjSVVLMGGsCk4zIWiLMDgZSWCQ7WePU0ckEU4RC\nMqlWi2Zyg+2UhCbv4QRlco5GkyHTcY/60EfrLIATPCJ2KrKRD/HwTYvkbQ9f/vrPcn74mKvrIVzN\nKMqkjxhU2VM6DAdpArMuUmRMfB7DmsRxeUwiV2Teqe6wsqgzGBqs+yyszgzf5DHJoBvfQCLWW6Si\nRLnUmPD77z6rk3juyh0Mu81zQy+HWhBXSmT47mMuVJml5RcQj/xcsqMUn3sJXT5idwyPlChGYEb6\niYuYnsf8hMh+x8PxcY71UITZFViJxvnJx6ekpy9gzsbYsynNQhXr/n0aww3SxTGBUJvyQQf/5idp\nhCJccVz0XwQ/EsPUMbFHQTJyFP/t6+yzTzYNs76MNyax2B5wIBmshBZoDwxcPplxdcRiaki12Scr\nhjH8KsHYItXxPutXblH901MEV43zaI9wz40/sYA4d1NEJnpZ4yycY0FLoPruIdwt47+zxvhpg2T1\nQ4q/81lOL7o8+vGz5Yd////4GmtfucV8TWY1m8JxZ8m44/SlCpnZBtWdEyLeCrYl88N/8q/461+7\nw/bNKNb9GtLSOsOuSCFk0E65ceKgqFl8vUcs+peeQZ8gYHQ2sK/fJHq0z0mgzMpGHl83wNNHXfzT\nNqF0i2hwFXplBsoYdT9Nv2Egzxrc/o2/S8UcE+mvMk+7iUljzMohetKLENDo2Fk2XMtw2Ifbl6n2\nApz2goRXJvhbLhxrSKy2QGX9MZv5FUaNISlvkpMdD8t+B3FQIGi3iLlHCO4N5q02RDSOy3WSHoNK\nME3EGDML6AQiUX7442c1HNuXfp5zuUXBk8T4eEr4ziq1lkFxfk5nPYO33eSKaLDTKOERBug9P1K0\ngDB2owQrqOEIkZ02bZ+X1Rcd2pEgo06Y8UcT8rqXWGCdjU+/Su43/zblvRNUwWTWCiKcR7i31+Pg\n3i6/9it+NjKLtI1ThDOHZj5OMt5A8w1RTqbot9ZxT2fMeyOK0wTDRJ6g54SBM8BdW0CcC1i2TDYw\nJSNdQVQMLvIXBCsK0bTI+cGIsOHgeGTCCx0uxgH8uQTlocTAL7BADiHa5+jcJGKs4p13sToXSMk8\nwfxTFNNANQI0ugu8++EzBe9Lv/4iz1k2oz/7c9a/8DL9MiCUye34EYqb1Kd7nCQkYlYY1yDDyvVt\nOJiyX94jkLO4mPm4odg8evgOl7/yJUbdY3StjOp4mfWbdN/+gKGTJXPuZ5rcw5pt4Y6EGalh1tf9\ndOkx6QSZi8dcXozxzh+/xi8sfxn78Rk78w55L2RHIn2vwkQo4ZbclJMelEmPSD6ObiYwCwbyTy1y\nn85w/Vd/hsi9Kq3aOUZHxD99TKBwGdRVYkM/LvmUXnnEWkLCHzM4DQSYOhZh14zAPMBoZmFFFZYH\nPQ6dMNrpmPVUmtnEoPvRjB8/fRZkeOEP/iYHrx9zMQzw/Z3/l6elLVrvfoD2msjib97i4f7rrOvX\n8OcdUgER/0il1SnjXmxSmtqkszrLoRcp7RpY9hPCHpuZL82VyBnf/q/f5s6dLS5qT1B8EuOzFNFJ\nn2FMxR+4TFvbwzU7JZC8hGfQJb7kwnikM1zpkzPnJDQPZquH8twmTcti2DsmnEniHjvUIyLh7pzR\nZIIcU/FUqzRbeXKeHbrNZY6cOkLAYWlkMzREYkYQ/+o+NW+RhVGJ01kISRpgmmP6tSgDc5FgziBa\nFVDHYypjgcwohjQOEwg5WE90RE+Ct15/lga99ZmfRRxHaQ/jXIqcsydKrHsNBo11vNoYTVXJ9Qw6\nnSa6sAbrE9TyAMG1gKIkEeMiamaCXh0jhC8RXHAzDC0x90KwG+PEe4FjuegX0lRdHxEtLTFomMRK\nXcTEiMPuU0KxFXRjheVRgmm5gv0fnrL91Rx+XUZzxVnVHDxWH80rEY80mZllHu8P+cnd+xQXfxb7\n8UcUPUkOGy4++cpNHt87xz0d8u7+BI+nw6uv/BKH8zZSe8D1z1wnMMiTvZ3ljbdPsLwpgloLI6HS\n7nWZ1I7Zee0R7x2XmOkThgdHiNcuk1zyc+97b/DNb/4VSOf9i//lX3zr0qXPMFFE5oKX9uU+4xkM\nPIsE3Sn6vX18VQn3NMxsK0VFGnJnbQNX7ynVpovziwMmvSmyeYdcLM/hcZ/lTT/l/Skr0hJt9QmJ\nmESyOqd9cMjCnW1KZyKWs4dLv44z7+KenmB5DHKuDr5xioFPx/+0hBbbJNWUOR/MeTTpUhrokGky\n9R+TUzIU/vOv4BDkytdWOH80oG32qL3foriQxNTOeSoX8KohiI9JnhzSCRdodHr4ViScSpVoTKYW\nGhNzJ7FOdRRVp2Q7CB2FgDdM3tngvD3E2OyTK1sIl9z8X999BlGf/sUVinaQPVeL/PkAz9xL5AUZ\nryZycK/BsuaiEdfw+OJ0n2rEV2T6ukzhCLy3PHw4GzCozIl6KngWOvgWFOqPOsR9NhE9zp51hl6q\nEvnkFWYXJtNMAcF3iBw5wZau0m73OTwwWZRa1M5i6Cho/l3yNy/TdARMOYI0jbBunrEzH3JZWEcJ\nC2j1INGX4FCUkHM1xB9cEHxZYWH/GmPbRdhJ09m9zygehfY6B487TAsyO02HQStL0VVmWplhPTym\nWbhAv1/kSkIG8SOaLZG0O0DfHDIZhbn5nzzP6D/u0Ck3uX/vmSE/ej6kcVfgSumY+W6ZylEdczDG\nFmVmU4Pz3pDLhWuUD3Q+mffhSgb4ycFbBAMxHk4nxMo7jOZNhv0RMT1IUVLYcKnsuDsY7TSDYIzD\n4wEN14DVBEQ21hg/qjMP1TmttZGvXkdwSyizA65sv0LoYx0p6zC2TNR+nBP9PUhNGB1O8dpjpn0X\nPbfAtdU82oHI/aMfkriax3Nzjc4DDY9p43OaqFUJl+5w0QqgBtr09SjeRQgN2kyjKfTwx9iDBVIJ\nAZeTR4l0MKUyuqGQEkdoeormOEtupcP8cZjcio8HVp5Hbz6LnK9Gvbz0agDrfoh52odL7LOUSaF4\nUnBWYn07wpuvD8lGF3HHYsgXLsqCQfCKh+GBitKPM31lRvmkwn/7m/8bL916hZ2um89t3uYL/+iv\n89H6Ike1OPffeYdDFSJBGP50zKlWQc2ZfO7ac/iPOri1Qzgf0Qlb5DWFqSdP3DOmHZMpKmlKAxFB\n6XE2LuFZimNZKS6cGmt+lYvoOUbaw8g3wJ2Y0WkU2Tqd01GT1CIaHmvCsm0zmEyojjMsJMHslYgN\nxyiqi3lDZ97LIi0O8bYGnEg5JkIUV94Pj2ach7rIwwzh4owf/Og1AIYfNVla+wy9q1PCgw2OGy5I\nBalpfbI/72W63mE6N2jNQ/z46b+lc3qE4FrAuiKS9i0w9g5xK32u33iFkXxOs3FONvxLKIsFnLLI\nN//of0b7jYd4xm4st8pYrxK3RARviIoxITSb0ur5kMc17lZ2+dSXP0ezec55QKX4XJxxMkxp7mIl\nHaJXc+hHdEYITKcBHNFmKTTE1UuTvCkiHA35zr/5Y4ybUwRfArmQxaq3GF9awBnEGZkacsBCkTcI\nhCX6yoRwVycyuGCwFEKZtknkJ9SPJmQzQZTQnIc/PWP8YgT7tSkfyH0OnjxTon7vu/8Dpf91j5po\nM0+Gyd2Q+WJxlVb+RaRLIH9QYcuZ8uF7NTTPHvPwMt1zB18iTrwmcHbRI3ChkrhVI+xk0eYa/aMA\njXmWO6kwRy6FB/IjXJMMvvwODx4d07Eu2Di2iQ4M7A0f03YajyxSehCgLVZZw8tIvUWnXSLqTVHZ\nrVBQo/iFIOd9h3wrSr5b46w9pMs209ERgZyA5W8S1fPQaaDnVUaeZeY+CcV1hhyYs+doRGoyFXXG\npmowrySYuQ1Wggu0vXuIU42LoYeQoeO9bKL3JWqrGpmDDHOlTtAT489f/4vH9a+/grdbY2neQ9Ay\nDD0lpITC1GoxnURId0HOepgsFAmKbSa9GPHQlIjcYNJV0ByRGWMG8yL57hOmVgZ3p4u/3cfOxlhq\nd7A9Eu7TIMLxMWR15FgaMaXj74+pqg43wovE9jXOtlJYcoozuY4vu07BnNJJdDFGBi6fh2qmS7gj\n4+5LxK54+Wpym1DtQ1Zzy4w+G0a7N8HnCpJJ9JmpETRV5JPuLHf7e1x2/GwGQpzsenmwt8fcHGMt\nd0kkgxRPFeSLCcFehqZ+SLtQQvFcIOQqBPCxOXb4t//qmJm7zt/523/rLz9E/e4//b1v/UzkMkJr\nSr04IraTY62QwX3hkIiOyMyX6dyYY8026ZivsXmyzHHPYTxooxZTGEOTqKJg9zRkUSK0fMFHTzRu\neGPYqs4kaOA9jGJemmLVuhj5OO4zh8mSn8tdqBX6KDM/geAVTgMC1eaUyXAABT+Op0tjouJK+9B9\nKyQLFtc/e5ng9oSP2xEWP/21/5+7936WLD3v+z4ndffpnHP3zWnCnZmd2byLXSwCASIRJGRSskjT\npXJR5aIl0WJJJZVUBVtluyRRZdoWRZeLtmjLpCySIiQkYgEQi90FNszuzM7M3rk59b2dczh9Tnef\n0P5h+E9Q/8Jb7/vW5/t9nuf78KPrX2B8ecozn3qR9zSIV3Z5bIZZj+cx2o+YS1UiFR9yfp3EwEPX\nqPOiqnI4k+HaMhF7RFJeQC23qHmz3JRsmgMvctxmVKpTu9ZnannRfSHqO11+eP9JHsjPvvZFPOEV\nhodjamtbyLMWT92S6e8eY64t478BkY1Nwh8/xg5NMUMaPjPBeWpMrB5hzWhRm1aIBZ5GySgYb6rk\nJkmM5RKSPqc+snn59hW6H/ap2zuoqoY0eZXbV30MHs+IRX2sxPpMLk5o34gyt0tsVv2Udg9JVqOk\nQ34miTpBD/jbeVqDc+K+E1oNiYXUAv1zF2oohCOPEFsRqvVHZD+5QS32kNxSinh8jrtZZ+IJc3B+\nn/o7HqSaTGX0mPn2MsNpn5D7GXqzId3pkImYQRE8jGUPykWCmDxhz9vi5P6Ar37xDv/uj544A3/r\nF36OyGCJB32DydU8gQ9qVGtuEnSwUglSWZszscHycIhvGiZ7EeOgPSBbdGE6M5J5P1OXTa40ZzxX\niCQidM+btK0RH3UHzK8kCWQlbgvgCy5wuNvHPwpRdsvclgqoKYN2RyAw92HMFBqzPtbhDCV2RkdM\nsUyBkezloPYe0fABjtxj4hry4P/4BvLTKZ65NkcKTtDfHuD+hI/Oe12KvhytVJKTSounn+pwkh7w\nrFskfGjRHgYxLQntJEhasqiodQKtGadtF/a2D2dHZUqc0HiKGXChSn0GxTHmYEJoU+atbzyBga+8\n8p+TXZkhGW6MZIWgZtOcyqQXQiirz3JxEqNY6LGYjNLPDilJfZp6jbA3yWnYy1BtsvzVX8VvjVn7\nzPO0RjcJdD9AP6hT+se/yjAZYDGqIV1qqFaQeslG0xXMyyZXXrhBrP8xnaib7qlK0E4ReukFGDaJ\nKmd4m24qwywlXzbjAAAgAElEQVTq3n3KPgG3NMMpT7gyk5j5hyStEMq4iXUO0+MxLmOdheVlKpcl\nTGoUpjFSQ52KKuJ3fFzYIisRi8DAwOsrUnJ5cGSJZuMY702TvD1gPE0hmCLu6QmpyRxPSCO5tIqh\nPybQCfKdvwjF/dt/+/dYecrh/I2P2XMbDBSRG8NNNr7g8PBhlYuZl7rp4oWcC49SZCkcYbY+42Zw\nRKUeJbhwgTNbY7Ts5/0/eJ1KY5GCM8L05GgYO7z1/P/H8eMKacGLfDVA6EBiXLCxJ3UC8xblHrjl\nAR19RCFn49h5kt00g0iP8fga1xYmRIthjKYPQzFJx3wMGiFuPyeTjT7FqRViNZTDtByGopsFTwrH\n+wxqzSBjJjm5YSJOYxS8ArLXwDvKoqQ7yIczLkMyysGAVrSH98hEdMeQeza1Tol2dIJLnvDMs3eQ\nZ1mawzn+lSgf/IWj8jP/+t9T+PLPUfj1OXavye3UNnueRVr3S4xq75Ko3Ud4TmdcXGVpL8S5YpMc\njjl4+FOi8WVaosJwpUfUdlPSRjg3tlEGddKuKNLWDeZGj5P+kIVohlhjSn4ly5qeIpad0jcTBEdB\nPnLeRGyMmBVU/PIGyVkMOXqB2V3Gzkpk+qecbRjM+zbCuEfU6+cyMGUWkLnqS5GehZkNgrR8BSLe\nFtO+SCvnsDhKUHX3QEwjXej0HJW5ZTNwDLqxORlvkbna4yjSxF8O0B0EUV0WQkrHXXMRFyJIYYm+\nUKLnShGJzPned5+8008+9yU0NUOg02e0KRAa5DG8NrJgEpOGdBe9VIQuRnnKUl3hVLTpli+Rij7U\nlpuOLDCfmYiahrcQp9WxkfQuroU8fl+HipSg3anjz0G9myMTTKAE+pTNCbLsxWxMcHknmO4qsfs1\n5ICDtZXDHVYI+ru4dQ/HVh85lMLvhNBcIr6GSd46QOxZVF9XqEl9En/8CG1cwdhe4WLq8Imf+TmU\nTomfHJ+wHEtxsnPGwZlO8baLcDhE7cLkmWmOnd/7Pt2IFymQRtfG/PSuRXhljXwsz2tPrbD8hQDG\n/h/yxh//hLns5zf+U8iJ+u1/+s++fvvOJ55saq6F8G62mA2yXLjnWKEQrZMDQu4IA+eIVH+OJ6qT\nWL3JzHuK3fRjplU8M4eMnUCantJvzQne8tHuLeJtu+l54mzILo4n77IUfpqTbBprYJMd++nIY+o0\nUQURV6+KZ64xSGdIjc4Zv7SB+ydeLhebBMczJPWcmCJx52sv4PrdOdVfLnGa/DTPhfeIamVwWUhR\nP8OAn2hvRqOxxzOrT+MezRilM1QCPcKjS0YBEXc+inNeY9kI8dAJcLJ7hHU7R+xegFl6wDBZR9EE\n0iEVRc6jtwc4mxZH9wUe7T2BqDufvoGr6mH0WpMFJ0HoCO5NJZ7dfJGKb4fyGyKmBSMRfv/f7pPU\nWsSCbgp9N4HcjA/7PeKrN4j3uxy3PCTXEzQLGt4PdT4whtx+4QaHw2O8BYgqEbyxGxQzUSo7DowF\nqkmd7iTI5jhMxZbws8KF7SYuO/SE69QW4PLtB7gXPGSzUQLhAYaWpb7Zo3nuwZ06x0iaLBwISLaJ\ndGMBo9kgOx/w9jfv8iDsxoj8lPWVXYr9OG55iacTDcKzNHTGhJQg0ztBjLLDatpHKzAl8qBLK19g\nFCljx9Zp7YwJBlOMPxb58YMnSu35Fz+Ps61gxj1E3zvl8nN+PIcqVX3A5soUNXINHn6MPOuQjLk4\nH4OnodPLF6A1J94UiG0WsCwXW88s8mbtiMzaU3iKGfyzCcVHIpGuTN1jUxlVcHUcjjL7bM0W0MQz\nascqm68tMBl7kU50us6IzUQK4SiNL3ZJrTdBzk5ILdqcP3xEJLzFJJLl+stZRq0rRM6itGcR+r4+\n/b0pK3EXY7vDyL3L4wcP8YauMLYNlLMJg0yMfkkl6pKYPm2RiaQZzIeIQQ9YConaEd5gElEY00ir\nrJY09mwBp9zipc+sU3l9wlsfPcmf+ZvPL+Gah3HCUc7ellCvB5FrHnTjDJdvG7n2fZRIkjNnjNGC\n6NQhsh5j3QZXrIxZE7H2Z5TdAsajE/zGAR51m8gdlWr1nIW6wLiUxpJS1OXHLEzifGolRG4q4DV2\nkbN+zqsgzs7pXZXwCQZHnmN8tRgEpnhDbSZaELEwIhj2sLBU5P6+wzRsI7gMao6biGlCrkPaL2M3\nvQitHYygDyXhZay2kEUVv2niS/ipmUN8gh/Z38A7P8WKJRi7fBhihkFbQPXKzNJjJoMwcq6J0V/D\nDup0tCGhzS2++x+eLG6eL71KNDGkaVvMrDi3t/1UfSaX9Q6qMMPsnSPQom87LIurfPIffpHuf/0x\npv9prm7I1CM20kePePB+j2d//ufoeDuMzofYV+ckexGmxojVhefQuhf0UgLN5gg9GkUczcgrfjzN\nCNMoZFoTlKc+g2dnB2M7g6J/jNiRqQ5Mtl/4FEcXRxztW4ykMXlL4kGry+Vdk8LwPU5tE6vaIVyw\nEPoWmntCXHU49Pnw1yOMBn0kLUZAnBPKdZBaF3TDYeYBF/6RQmdfI5xOE2jU8NlJVnOLtO05L3/u\nZXb6bjh+zDSnk5QDvPH6kwGQ/+If/nWGzjFu701WbZGjjyII5S6d5utkr7pwZ5/hwUiDywbBL/qR\nLjs40k0k5Yhg2iacXyYcSdCqH+J1rrIpn5ArfpKRXeM8NkEKXaPXWmYj1+HyxTyvZTfQzx4xDqap\nLY1RdI1A8hqrawHs4JBpucbewCCXTyLlJCTZohyZMbPXMPojUpMEzlxBNeNkpQSOr8rDvInUa+JP\nOUQ+0pjf2CB4rDFvnqMOUhRHTUxPAnEpSDRs0vGu4XZMqp0gY2+P1NAioKikxQix9QqlbhIz2qLd\ncsHMwPIPcdVgkEjzzneeTOf9wp3PYnYM3PEe0/IU76RONxzAPRax4360+gUxU0MI57AmAWIxD56Y\nSlzvcj7KklqeMPf50CYe/L0WVf8Md85i3Gkguz24ygp+R6ejr1FIGUijIxqxNOuVKNb2BNMdIyi2\nSNluLr0qLe2YTTOHtDjmpO2mWAkRWLtNd7eEr5MgobyLoi5hleZUz0r0tAuU5S3qGYlA5gXsl30s\nL4b4f775OtpFk1BQQb4440Xfa7z4Nz/N/lGdvdr7LBQWOLKOmc1UxppD2DMgL3T50Xc+wng+yWK/\nw47lMP9xDesZP1/8cpZv/PE+/+Af/qO//BD1z//Xf/b1Fzc3aI67dIYt0kaSevaYay4oev0MT/34\nV0SsoE7QZVK/jOAWmkTvj8mtLOM+qZBU+/TGFj55HdM1ZLsXwrBrGPRZHHVZlDNMziSEa1li9RmG\n1aUl6KjZDfo2pINjAoYXxSsijZJE5EVO987IZZK4hAnW1CBXk3F8HsIvfsijlw6Jf3OAGpbZeHED\nu9ujHyrg1A9QD0Wu+to0NmPUHtbJbM1RphFqj/ok4mHkpRXCmp/u5JJxRCDUmLKSGRMMSLRsARGD\nnJbiWJSwk6fEfH7aiCTGdR6XMxzvPVEcn3v1l4jbKsf7CtGhQjJUoZTyMp9O4I5I0X4El2PCTRVv\nAQ7deYxdGycWRFLc1Bt1loIGwdACenhE5T/WeekVi9rAZGupgDGfcnlXwj8RKbnaRJfWcb93imTu\n8UgPsixmiH7OSyVWR9vzstZsEN7s0ZRfxr7ewX6skw+HiIbDNO8e4BEWubsvst6Nk7g9Q+rruIZT\njqUBWqjLyEpzfT3DxfAIcRRn9VaS2+kcWmCVTCSCPfISzeVJbQr0ZYdms8qSYDKKVNk7X2R9ekpj\nw8e8JJBQFZS2w6angCvYYkWM8O/fffLJfPb5m3Rru/gfRMjdEBmJKyzcgVlGoXFhYbnOmPpE5pNL\netIm8Y0uD91NNiYz9FtJBmaD9cwW23eucbd7j/SHderGezw+1pGiddqCh+ZCEHkYxKX1kHQXKwGJ\nR02H6+dNin/rOp27dSZigt3IOXPlCpfSAeFMhPq6Se3CRVDwQS3AjjLls5/6CmI3iVkqo9eqeF+R\n6BheRLVH8bRLf30V1d2k0FfIBsPYbo3tT93EeH/M6EqY4rKXg8O7yOcJ+htNpi0f2aUDzOMQamaD\nU6lN0RPl2ISqtw6IuNfvcPC73yL9Kzf4wR89gc+v/PpfRY5fxbl3geOU0N41qcU+RGuHmPb2OF84\nZezVeD69hHLVg9I+Ybp4nfa5wcP/8z6ucQfFfUao6WLIIYGdFhnvCOm9Gpmn8uw9HuHNVtFyDa4c\nitjNEVeeLqANTcxkD21HJWaN0RMbpFdWODAeY0lJlqxlxs0S5jyMJGVZnckcGW5mmEQ3PIwUP0Gj\nSVwo0kkGCNNHbE9RwyWO9TBedRXfvISnITN1xRn5NQLqBGvuYzLtUJZztC8nyIEm6nmBtK7A9IxO\neA4VNzN1gMtJo7T2aTkRZj6JWq3Gh2896e25+sznSV8ZUj3eZSPoI6esIfofYt4Po4xtrj/1EkFL\nJf9mCremMv/ZGvX7Jr3ZiB8e9ImPFfqbeRI3wjQHu6w0NvAud5H3WzhimkSygTDLMVTTaGc6XStA\noiWTG8RoKzOCdo9ZXGMxuMHkA43ZlQHCo3MmVyMEpyAHJlyen/PMVpTzj3aRnC3saxbbqoXul4lm\nTRKVczxOmqA+xln1ou6d8053TgyNZY5xrDT+ZAnH6iJcquhjhZi7h1WpcPHuBZtfWkFz3Fi9Fm9U\nm6w8lefqlz7Dd/7wp9iXNTKhEUpnyMw+4M0f7wDwrF/A97Uv4Rz/MRvhPLuDM0axEkupm5S6Z1A7\nxnIVCXug8niCeEvGPh8z37hDq2OhDJq0kyOinh7e8oyGOOBRWyM4aRPJTnGdupD0Xdj8FNevbnPh\nPKT1rob87Jje6AYJdUJzr8llNo3wZhtz6RruUJ+Yuw/CkO6jKksbAcTGhJY0wDNO0I0KDLUWk4gL\nz4XFgh7GGKRpdOtMRImkEKIRjSB4NMBFbUWiHbfJXU4J+hzkyTnxZpT4WKU9a5OW5gQ7YyrinImy\nQFHyUgsNmeV0DCGEeyCTL4Br1uOHrz/p+dz+6y+xHO0wlS1s1SAiwDzhonciIy1myMx6XA6v0uaY\nJWNKz5clO7/PeSeEMpmiNGZ0Ui7yQo+e4iNqC1iNIOZCgZEvi+4uEZnK5JZh2AjhLI+IJlbY6x0T\ncjIoTh9zKBIyt9Ayl3hnXpLRpzCWRS4fXLLh30TfOcEY6fQTBsFhkTklZiGdyW0fi1dv89iUQYC3\n9veo3q/z/k/rrPo2kIppVotrtOwFEhfQDJ5hzETYjHLSuMdxZcqqx8WdDR/zzSFNsljxPFtfuca1\nX9wkE3mBBW+QSjNGs+Hi/r0D/v5v/iewO+9/+Re/+/Xi157DLQxYDcQpe8P4BgMOdS99occgvo+h\nZbEcm1RojqerMJ0s0lnooT+2aYYCdKcyLr2A7t5D82yhVqP4hAozr8bUE2QqyDyqVVhMbmBWmmST\neUpViaTjJdE+pOJJk1MLTMs9Om4/h90Jtzdd1MUpttElpMbZNzUksY0z7LDeikFSwDVz8+D8fURP\ngYOLxxQNB3ERJkoR11RnumDTNB08mgdrzY3Wv0Q51YnHTlEqVzkT9xH1DHpfYia4SCtlDFGmt6gg\n1M/wLIFdyxNbHRJ79SV2/s2/4qRcBeCXbj3PQfYc/3qGow/eYLH4NMGQl+nDHlduZmkEvoDstuCl\nVTJCAu+NKbeyFrvNfax4j/WayDwa4bDeYV2Vcalhpj6RkaUhDlKI6RmK/5RRdMJ6d4rTCJAwCjyI\nmAi5MLOmjHVcJnfjOoHRCba6QO/dGWL5x/jFAglrDn4Ht6yQ6uQoD++z9kySI4+HwL33CQRdXNIn\ntvwSjjXheqHPg77IpmgwFLYwhC6Lz65TSbxA7yc2sckO++EwwlznbOjhtj5GVyT60XUIXjJoSvha\nYc5GR2wMAvgjF4xSEvGQiDU/5Zs/eg+AX/7S55HWIgyZU5KKeDYOmNRFDt/7IbdW80yXMxy3a0zi\nq9xUFSb9LFozQc0vcLtvsW+UGXY6XB6dMBncIn5NY7/qxRUeMNQt1lIKi64pNEpYOYP4pY7X40fw\nquipZRrNRzzUHK4PQmTLCorcoDAMsx/uk3KChOpNLiYejHmAL//iVzn8g31i23nefP2HeFeiTPUV\nQvsfI7QtJLXIwqhOUwvSD65hR/uUfVO+9J/9LD997ocsj5PIvgjZrkZ5OMJywiylc5y9PyO6UMdr\nDxEqIzzuOcv9MGmlzsztx129IK48jctV4/UfPIGBa2efpzS6YHJzA3E7wkufv8PQUkk+XUedzrF7\nNgU1RrnrZXj3e3zru/8W4V6X5WCctVdW8XQmhLYWKUpdrIqCO3mT4SBEZBzm/cffZWW9D1zl5lDC\nDG7gXpDpNo45TAuEHzfZqU0xX1ojLfkR4zXydQWzUaeTgXnPi672iU0lDmchwsPHxD0u5KMx41iC\n2STMvG8TmHYJGxqHVpKxkGWx6KF05sfSHPDPqTsxAq06tq5RLOjMvWv0fQpXZB92WEXqu9CKYwz/\nmOzFmOnqMgltTF9LE8slCSZLtA6DbHgVvvfmE8f4F37zVdY+TDPytdj9wCT6skni7Hnacolv3/0Q\n9VoS6zRI7s4NdN1iL1ECdRXFVSDNR9DqEuq5MLsmYcmkIXdxxAg7msOafUrN76J/HkTqG4wFk4U5\nGAkJ2zxj4ncRWLzBJQqJUgVXJMVgEKIv6rinRXaapyxOvLhmXe4ejgn7RRyfB2lBRN91E0+MiO6P\nGLnjDE8ew0RgbKVxeTIkpDJ+r840u8K9P/t9wvM4VtJHrVpGsMeUimlG8jIWEQZ7h7iDIQKZReLp\nMG1d5vjeGerkkmhOo9kb81Tez8MP6tzbPQRAfz+Dy1Nk7QU3s1KExs45lT8x0dJ+nn7uJXbGZ6wQ\nZb4t8/L8aWqVLiFPi6BusLxm06m4SOlxqlONpLMCnTKKxyKfjHDa8sHOI04mA9759jvsvX6fWCpO\n5GCXD+4H6Pzzb5H/mo9s/JN4wh1m0QVc7TmuksFILNIu+ZEiPnz9Dt35mFzkGkNHY1WdECmWSJay\nPHzKwh9qMZn3kIoLyDp0ehMibZNI/ILDxJiAuYQ+7jGcW0x8dUbHIcxFBb/gxRPSaIR9zJ007Xyf\nZU8Ld7hBeLJE46xDYq4hDOZUvH0WJzG+/aMn9+3G6gZJIUwntYFR8XGZ8yFOkyScCnNLxZ9ok/AP\nCFS36N3MIpUvmeUzeOwWI2+YccKPdD7A01oiLBiUpCG5aQOx2SdgQrWuENmcIz6As00Pyb06xjSF\ne5qlkGhhP8jgxDpUa0dMTyMMtD4f9gy2zlvIVxJ0ui5q132My+fUNJmqXEb2XyO67SE+kzEnFluJ\nNMZSjuRiHt8rJs/+N68S+PId3Dv7HOmnPJXxcl+osrmcwzZsTis7rAynfOorCa55blB7yiLZk5mN\nuri2wV/xcfbnGqmmjytXBM7vXxLyfpZ7P/02v/Gbv/mXH6J++1/8z1//lV/9KoY+Q06HMaU2+plK\nNx0meTyi17SJDfrMghNOH7fQvSlG1i7e/lWsUJV8XkGfKLhCOm7NIlqRaN4uUZmoGHqelGgTSlSY\n1q9hlcacnD3EecWPPilxx1EZh8es2BH6Z012EgI+l8C1O2EeaSUW7Bg7P3mEvDwlcB6i9l6QgT5g\n4t6iMlyg3j9l5POztrhMX6gjBDK06hJr1wz6XoPCTKBatbDabdTrLpZrS0jGBDMQxhJC5EpdFD90\n5hFmgkpgzUcUgWYgSqJRxyyoHE8/Ym31r7Hw1M/yV8tv8L/xLwFIvvp5bggejJ0LPK8scz73QLBJ\n6/QAZxajh5fSeER0913KJ2HqzRaOr83BPR/ProVodZN4ZANPPQZpDbU74rwfJr8VQ6jWeDyyuGVF\nmI/AO4igZjzc23kTRV/gSu+IsxUvi50KpWyanW/exbdwm4nQQglOmC17MFnAbwY4ibkQu2fk1nP8\n+M06a+teDFNhFE+xupQnvnuA1dTRL3Ms1C3aBzaKv4186qX8zFeQa+9j/+ARh0sGoreENyajzoqo\ndQ1PtMVC6w7JpRT1don20M9zsRhNX53xU9fwvVnjhwdjzE2Nd797D4BXv/plFuYjjJ6G73GV+amN\n4g+ytnod0mPe/8mElC5hRGtkP+3w+g/+HFXJ48pY9H9a49ZLEQbdcybvhTmSTzGsJDfdAsP2KkrF\nYizECQgm3U6HhH8VIVDDriaw4kEylofDwIiIFiGcnBFem+I6KTNZiaOFDUypQ/yKwtQME/QpHLz3\nIYFbTVS5wUAb4AmlUOp+2s4x0dtbuP0Gp1abcF3DDHeYGn02xVeofe0IzSPSrtgs91tU5xLba0nS\nA43KUCF5Q2DeXqATbaDVN1CWFAxBQHCZnDNBHYA3EqEW1Xjnz55A1NvN79PufwpXboRfPOFP/u83\nyWVjePYjVI6yBK0YFXb46P4HfGYrxc/+/t/A/HkIfOE6PcOhNWnSHkpMLgSufc2DqR8iJVcIrwrM\n+x5i+ev8q3/8j7jy8jqXdpUrYZU9j44x2GVx7RpW0GSx5+d808HYcdNojElc71D9ozHKVh5hBrqp\n0PQckvZfR7ED0HODc0gqkaY9H6GlxkwmIkpAwG1o6JeQ2dBR0lWk1ohWzGFjIjIohJkqEr6yj+C0\nSkmIMLFb9JMWvosYarpDX5ojGwO06RIJ+xglICNUlxjIfSQ03nj7HQB+9bO/yXDyPVK/8iliFyNK\nZoCYNMEl5ohGw3j3TZaWJ+S0Aqa7ist0EGs6k0afmTam1GoRjroYubqczf0Idoyp30Oiccny2ioj\nJ8JoOmSc2sd2p1kWJ1xM9vEzZCaFuMhrREddFPUGJ7EBm5bBwgsrjMZVomc5iLowPC5W/DMK3s9y\n8af/LwXvVRaWfTjDEOaCQmoep7htcFxXKb62wr7txS0lqPtcDP7N22wkXciri2TNDPWETt5zB9eo\ng3KxjzJPkluOEPd1OHMZ1PQ2NwJ9MjRodm1S0Q0EvUbNyLEmJ/j23SeOyq+dfJfgn/4uYXeSk7GP\n3u81+eov/TrRmc7+5pT5/ptsfOYOyrRDMKSi5q5ydNFlPAwy9ucYJTr4pwbx2BIVYUYqGcY8WqQm\nmYzaZRTXLXzP+NmexAiLFj55havRAIVnozytHlD2fJFju0ygr2AKl4RGR3iz4FmLEkpN8IZESv0+\nnsA6A3OPybmBy9ti37/JOFwldRLhbOBBzk+JTqoI7jj9YJOFQpNadxPVmiLXL0gHDQrSKpFQA082\ng6vUhE6QliqA5WLRGiG7Paj9FXq2xLE85kolT9dKoagCYdmF2z/ku997IhKf++qLqFOJ0Pk5l+sj\nNkpzBsMJozWb8ImP46GXCj2q0xob3ktEXcSf7OA+nuAeZhl3ymyki+zPPkRyJ2DZi3MRIJKEIzmJ\nak4gJBJcVclUpxg5Dx4ElPyIy/IePbWCWl9F8TdZ83aJB8MU3Dn6WZNSacC6OqS+u0uo7yO1HEM0\nQzRFA6seoj53c8W/xEDVcNcFXJNdbDlG+vgI68MTJFeIzUCO1jDJcuoRdUfgWU+a4UaKASXW1gq0\npgMuLIF5s4ooWTjX8tjvJ/i4rRLNaGRTK3z8Tp306yY/6r3F3/17/+1ffoj6J//kn349cWtAN7aB\nebBLcDLkxqfzBNxR1JqFujGmIfgZz6+xFhyjLUk4AR+m2CB541msyzqdikbTqbGUDaEFgnguFARV\nZu98wNMLVTLr6wxCQXrdBgvFdRKB6xTGM1qyhTR3cd4yiCdSSLEmOm4a73fYEHK0GgNMbDbOV5h7\nVGa3TdavrPL+wZxATmTjk2tMpD3y0i00IcFkeE7MPWHqhmozj6ttIaQk8oaAKF6nbx0wEOuMViH6\n4YTjoM7zL0WJ2AqTwQVWLIXpOyFcEOkJQd6r5WhVkkzrWZT/8b9i0jzl3x3+EQB/45NrlKZpfPE5\nuXGcleEFblNkZeEZDjsOb/zW/84nNxexlCjrc5uFGzlOdweo/TJ9uYDqmXB6YhG6KeLToCdGCOkD\nymUYhGMwV+lM6wyjGVJOk8hEJuDzUltqkp0U8es9WE0RuD8i6vUS31xF1WtsFFL0d9yYrjGdUYdV\nX4BL+ZKEmqBRP8R3OWWQLJAph9HKfUrTOFZWYa4M6K0qxAthrIhO7TLC9orNd/6vD7mctnhN9THo\nLbGa3UK/vsXrD3a42XLRiatULw4QEy2eDi6xE/QQLcaYtE8RQxIvBtY5UoPc+96TMuj2UpEH7+l4\ndJHMQgA55WW8aCI/yDDuS2jLQYaygtDucN1+BT23jOU1yMymVAYKC3diJLpxhMyIoWfE6khi1jCI\nKBrishf/FWjdC9EVNYKpMJfTArZnQH9llYb9DsVuAMH3Mf6WBynj8HGgy8NTFdHlIPR9XE5M5q0w\n/v4ZE73GzBPB6GyzuT5GrI+xZmES4QQxv5uLrkH0Qw9mfE7Phiu5CCVTRHTuMywbKIbGdDVPSo3w\nyGXRjaSZTI+YDNwMm5B+NklYn+Ie7zEWriFURKS4SdvJY7VOWPOk+NYbfw7An3T+NS9/4q9gTOuE\nPKu0qwLR19aIxpLUPzaZ3bjHmpPhzi+9xkUhgPilPWbiBvregGjMwiO+QChyRDm+QfYXN/mT/+5j\n/JEE8vaYln+bcvWM6NVldvYT5MU8+/Ypicgi2eACOw+GoPmoXw0R3d2hulDDvZxiMEjhfylAMqAy\n7obJB6vI/k8Qmp/TkI5wXOvM1DBTYYCZkRGPNAqGHz2bwe+ykQSRi06d4tDNKSJuzwZtvYaRKGLs\nCYyo0Z5myHctxjOJYrFAdGRzOZizOI/QG+ssmxIX2S7Bhg9zdoRlrpIU23z3p+8CYPsWCMXLuIU0\nprCIZ95ASQZw5hKxSJeWEaDvuBkdljmqnhDwWES3PfhHJhFdYd6A80iSvNvk+E2TfNxHQG+RkIsI\nvigXai4tRz8AACAASURBVI9EMszmtS8wOH2HdPE5shfnVOVbTFaiCNqIZCdH+9oei/ombxp1xOmU\nkOVCCvvY2asQmvpIxWzO7n2TV/6Hv8M7b/+IRsBPpTahWnNIB2O8tbfD6vUcSmCOXvMh6xoBeYj0\ntI+wo9BIp7AHoBgi7fqYuehjZnTpPpUiKGXR7RG+aAA7sM78UQntxhYedwenekTZHcd3USO2GeU/\nfv9JaOTmZz/m9O6ErB7lyss57j26y9y9ybknzsbiIe/fE7i/f59IJ8Vx5wHF5TSJWo/eqpex5iZ+\nEUQcH3FU6hIYr3Lw6AHzVA5RE5lvqsi+EAPFheVqMNdVIvY9ZskJ7qGN5cwpbZgYlRDjZJ/rcg4n\ns860YxDDpHo0IDLT6LQk4kKEYQa88wV0OUm6VSbjWcYbsIiE9xDOAwQnFo1MEJ+dpDrwoAl90sFF\nkoEYA3HKcdMgIjucuR0KwwlSsU4nqrLVHjDOShyVp/j6E+yRgE8Fb8DHdPSIqZHBmg6IeRN8+wdP\nBhl++Sufxj+TkGI+4gONM9cmi6qPrhkmGDgkH9ZI9TMM5hKFteucjUYMK3Hkmy4qLhdmwCZ5eslw\nfRtbcWG+/whZlWktzVCOW6y4MpxcTlgV/HT8dTxTnXH3ktH7OommCZEoWdnAp8kc6SJCt0rHV+Ws\no7OSe4rjqoA1VGin61yfrTBISWQW82ynNGRxRLOd4yfdQ8bdOn55jJcxVmvCKiPCdpw9TlGuxvD3\n5gw+/jGHviqJ+h6t741JtBcY9U30lhspcMzUZbEuX6GldSCY5wvFO7z85XW2Pkrz8fItjmvf4O//\ng7/3lx+ifut3fufrv7j8OaauC6Sph8LXVAanGfa9HbSIgd1YIe8tc96q0Q+5Ge7NSfliuPYvuexV\nUbQ5ImNuxKMYcoGRMaJX0/G+MCN2VCGQ9rPzvoJzdEG0EOWgOUYYOUwv9tiNFTlqw+rVGI3pPbp9\nN1l9xJAQU/w4Vo8bW3c49h2Q3RwQnoqUswo3s1kKnl2U5SLDd2ekfC3mu6es3vEhdUVqVYW0oLGg\nbjKPqkzUJF4eMPKHSLUdLnxevKEhy+szLqoe0qUgjUCD0JGEZniIXQ6IuKKooTjVusKlp8S2tMzO\nR/+Sd48PAFh77ssUC0EUs4yUmuPxrLFXKhNNDBgOFlgozLgR9CPHlwhkdX5idCmEPIzWbuMc9jib\nBVn45HUugvukL9L0pSPU0AjXsI8T2mDRdUwv0SE7OMIKfIrHjsQ8GaF1mKSa1umaGZZuLfHxt2u4\nU3nKmQtyZyuU8RKxu/z0zUtSN89QJzXS/Rhn1RLBrSuktTCzT2g0Skeot9eI1ttc7k+w7DzbnRCV\nh31SxSlmL0CkL6C5HWIrK3DSJrWVRqsNCEk2Saq4oxqikObSmeLMVCa5BQSjxaaicjiRkNVlrNoO\ns8KMd7/1ROF+5dc+z3xjkbG4wChWIndTRftJleyqSGveIGztk3KnsRZu0B/vEG7EGHoMAt1d7FAB\neXmToeeCzXiWcSvDiVvEp50wTi2j6A2mgw4jo0FOsWn4ZabhOBtXIpQ/OEfVRZIkiNd0KrLIypUc\ntffmFNI5gg8bhAo5zMEFqVCYM3XKekaks7uBOLrL3oHIrZ+/Q0KrMnPKdC9AKcRwJ6dE21m8axKD\n9gaq9JiJssDY9FA2vRQdkeyiQHNwgMsTIjlxYwsiabOGdJpl+RU/H+3qaOV3mHumGL4QMY9E0J6i\nDef86O6TkNKfubXFw/Fd1HmSUMBhVU7hNzWavWNC0Tnp4oj5Rxofde+TOfBydBnCvDC4fmOZZmPA\nPVlHWgyzdd5g5+KYghHimc8laJYDmJctnn81ScpOsvBagjOhi8+1xFTew3ecwpc7JzGWGb2aptoY\n4wr0mLbXCZ8PGI3qeMNZxH6bxC0XqYjEB+dHbCxtMHWdIYxr1I0pznmB4pZGZZbF6tnEBm6GzozY\nfIXA+oSE46US7VBQRGIDgVGqjL/phliQSGdMJOgg+D20xpBOSLTPwti5Ns3QEO+lH7MwRAq4sFs9\nfLF1vvvGk2nQr/36ryG9NSeztEP5vR5Lz6+hf95LwtVDO4ySfNYiP/Axmmj4V/NM9CwY97k3v0eg\nqSF/OYl76CI0SxG9amIn4uhOlbAtgS4RNfqUfBXWEgLDpoTmG+EPF9lIDokFi/RrIrpnjv/FOJ3J\nByjtLEmfwmgq43KGVB++TmQ5hRP28DPSJo3yRxzbXkJjk+LKOmppl73GXWLKiwz6I+SOhK0NSazP\n+eDuiC23FyU3J9Ge0zx7jLMUx3cD6kc9srlbrLp7dJoy8jDFRCnhC2v0pQRKv4botogVP0HzJMHK\n81EubRdv/dn3AfjSH36a239lzpuqgk+u4NJVkjevcan8GG9NRAu4MS8O6S62eGY7g2KtU7+4R29v\ngD9osxZUGWUsbiYD9JQk0StgeFWG6jnBaZ/y+Ttc6fp5/rktzFvrzHsiulajPHHRb3Z483UDbSFJ\nbj7j/fEZ+Us4XpqTdFWwAxkOfCLhSY/NF2UuyjmExjm2E6IwL2NrDuNJDcm7woVo0s5B4oFDSL8g\nlmnTGysM6ZCQvQRmEayeiqX1iNej7Cx7iXdhKBYw+jbniQm3zBwta07CE2VilpmkvWimxpoeQ01k\nqPQGvP3Ok3Lel7/4aYb2BLeRQDA8zAINvDE/0sQiPelTufSjBRPoooks2DBWSHl1aoc9Eh6LadYm\nyhVSRWhqu4SFDPozJp27I5678xwToUQ/EKY27iJ5mpzVrmJaMuo4ym7OgMA60zUfEU+cbmQVazlA\nrKKQDBaJb02p6BCNF1HOo3SiPuKpJJZegZaB1hY52bnPsJphIx3CPJox2EswHCcIB/xU7Bnetk02\n7yZ8+qe0D95lVt5BKM24iKRptWNIgoXfCBKaGczEOF1pgnUmcOh+gO4EuXJlnfbza8hf3aLy9n/g\n7/7G3/nLD1G/81u//fXMjSJG08TtCPzR//RTdl+6glsH0YHloYfqismyf0pZlllJG4R0m5lyA1em\ni3UaZyvfQXF8DMwG7w97HN3/gMsHFZY+eY0H8gJXf/415vdOyOY/Yiw8xkh2qY4XCDPBG0yinr1L\nUCviDKtIzgae2Rgtdcq0NqXjnTCfRLn9Qop+q03j/iMipspYHMIEIjfTNA6bSC+aDMRFQtEiQjFD\neajhmJd4x1Gq0pCg1EMZrNJN7jPAIm5JnHcWWY152VF1gsKcwVRmTTJpX3Uxuwyx2xNYyqg8Lyaw\nenPWHRffuPcXiuPOL3MRqJOv5XhQ6mF7HfxzF9VTAy2tM28JhOM57h/sMrq1Rf34ER0zz3R6xqpo\ncy3yId7AMcX4q0xbHTohN/ZekJVQkanWY+jIaGcrxJ6+zYd/8Pv4XQNm29s8M7zL8cmQ9JoDvh7B\nYw/ZV9ZQHk7Zcfq8tXtA8YZAwLnOpOsmM3UzWgqQWIPuWZBGVED8wCT4fIj2Wx/jkkOsfKKIqzqi\ndKUG8xr9rsxSLMh3jT8nsfYJlItTGkEP6XmWh/kGxiRB8tvnBJeWGQYcZDXClreAc/9tCrEsH777\nMS8vPMPbD77D9naaqR7gx99/cm4f2h1Cn5N5blvEShkcvxtEzMUgmqTf7vOg6icUkNleyHHe10lF\netiTAK25QC6sMDtpcHT+IerUQYxukUmMKT89wx0pMK8oyOseOI1QW0lw05tnJIlEHv+EnCtBNxCi\n2zvkMudCWNFpXniYF2w85TElwY/bCaGUHfzmFfI5H/FEgOq5wmj7EuXYS/f+PTqRq4wDFnPXnI6v\nBhcVtEKGiCbTVj8iPklxtpwifq5Ap4Q7GMI6sHjwcZeV//4LlCtHuAYmsuRiJgpUmw2y/iChwlP4\ngwqNSw195GGQMhmnV7j7Z08S8jORVZy3ZaahPfylHifyY0L6iIvdFkHhBgYtrKXPMupOkb0mds+H\n86yLy0qPYTqI/cYBW9sVTh4/pOBN8c7duxRuLeMW2gzby3zjB9/h6eIV8j+3wPRbNsfiIfWPRfoO\nZCYzrEwYq7wL4TCh0hrpUYuB3CefC1FuZ1E5Z4zC/uUpSb9DybGJnGTQT49IXHmW2KzKvGVxZndY\njgTAgpkeQc+dU/H10Et5Vvf6nGtxvJJFUJIYrZq4dmy8gpvj9TYJPcR5uYsyj6J7dbKaRjpgU5nm\niY5n2EoAYdmBzpwfvP3EwXvmv/wlzo/e5NnMDVb+Wo7Rjz/i8CxCYr7KcbRMyHTRiYbR9B7DVS+D\niYSOj/ZikHPVRja2oAVC4JRZPIRbyhFFZRxy07BlJFUiHZI43isSahuU5Ar1jzp03pzgzrqIOn1G\nxShWqYX/YETEvsJgv0rBHjNdyXP0xgfEVB/hZJLDgUbizg3GrhiN3gV7ZwPmC37CqylmwzJGYImZ\nGsH77Ar196cMwzV8xWVazR5RWWEx8BzlgxGpGxv/P3dv3ixJfl7nPVmVWUvWvq+3lrvfvre7b0/3\nLD0LgJnhADMAAW7gIioAUwwpbAUk01xMijQVmpBESRbDIdmWYQUlSnKYlg3ZpCASwIAAZjCYfbqn\n9+67r7Xva2ZVZVVmpf9ofQnoQ/ze94n3nN856LMTwoLBwJIk7jVhuktDiSMKfnz7BkZIxXZ8mWrl\nDuHXPkV3x8JMOuX97z2ufVlr/BqKOiGidbHMRdZiG7zzZ3vYcs9TCq2y5DKpGXYWFrK0326x06hw\n4bmnadsWcDeqmOdt1ICG22Nh2rZydKSg9k5ItXWmbgtRy6dQF5pMh+C4qdLwP8SfzLNoXUCRJnhH\nYz4T3MCIxfCNQ4gXRRYmR5x+a8KH997ms3KQwPKU3T2BrtElY89hWy7jHIZ4FI8ieLo4d4sI8yiG\n4iC4do47uMwDKcWKy0tkMuXo3ELcP2HPrrOU9DHAilf2MOwWSYZkiooFR3HOZMHEoVmZDxxUBg6i\nszN89igVc0inUyARcvGXbz+GqNWn1hCrNsohDWfdoL+kUtZVZs0QRqxDJDBlbDSRq2HKmgdztcVA\nDqI0NIamhZDqZ9A4hprJupCj5uqzdDvI8oV1uuInDMcB2t5TfAEHsYZEaB6gaz9i9QUfnnkIfzTF\nuFfFvb3NeFDgagB2fSMcp3HalRJq18LytRilsyHhyg7pK1n0wxF/8ec7TAoBVt0S82SA5cSQgsNA\n2Gww81SwdrM0umPc4xLuQYbaS1N8uzLRwBHOv7pOopml7YJMyUbT36WhmFS/e0Lnkw6KzWAl/dPY\nL1/iwtXPoYkNVqdjfvgf/oS/8/u/++MPUf/0n/+L13/vV/8tp+cCvaMxz3zlCn/8q7+N52KUQPAi\ns+MCVdXCoOLlhfgyralJox9nI3SApaQR9Cm4nFE8Lp3q5RwunifhCJLd/jyhaJpMepOYZ8wLX/sV\nPvjtHEs/qfCNP94llcywqhlEvH2E1gKRtQATUeZ4aGWUHhJ7ECbmy5AMG9iqBTp3KkhxmYwnhppK\nMblncFDKEc4NUKZNcrM4JjJHJ/eZzIo4wiMqxyKNYAlRFvA/nFH1ZRgPNFKRGefiJv3KEWt+k2JH\nZtJYIBjb5WwhgjVrR+nuYq01mbvb1IQpz2woJAYC/8c7jxOkt39lCUUNoLpm9JfmXKooHMe82IYj\nsn433nCeUfEQe2CTwNxk7ohQPezyhfUJNcOg5m6zdCyjCxUU74T4LESoP+BmWmRxNmGEA3/klJ4K\n17Nr9OYF/O926G3mMWIq/dQihRtvs3XFReHcT3qjhzjSibt17NZL2H1dRoEpCfsY4+M+kqJQkjXE\nvh150cVsEidod9K1+Ak1j3nga9Nq2NmeqKQyFzE9OkpAItPc4eTBPivaEv6si9LQiqm1yQ/ttMIl\nhr0FotJtPuYYcWBDiMZZicncOS2wEbnAgzMRT3LI2995LBP83Jd/gY3/+jXU355RemjFfahgT15j\n32gypES4vYLlYh3PxpPI7x9zZtewjSesu1IMChMcosSweE7MkcXp9jKdTVl1OwlaDXy1Ou2hl4EI\no9uHLD81JruQ5Lg+xOp2MhdFLEEv/vdnuOMWIu0J6tqMZrFB4opMpz3iWiREq3+M3IIjKUI6XkLV\nRTYvXEQPSQScTYxyklGsQ/pUpaSlSSZkSn2J+FRgkAOtFsQhtbF5xshpaAo2kttTPA8eEJJdMA7h\ncoAWM3DvFynOPaDOcQfrJGJeAuMRHVcXadbjw+8/9vY877rOMGtBdE1w2XqExDDncxEhEcTublKv\nBZCbfeK5NHojTlVuk7f0cS9KXL19RPughM+yyviqQXimUk/kyXs0tPs9Zlqd69eXOLYYFP9iyH70\nJls/88vUflBCWTCRI33iDgG95Ed3+wjNGsxDVSKeLLt6FYvkZyk+oaMPCVanzBPXmVrP6BoVYo40\ngbSEUm3hMF04pjKKs0zIlWV4tIOcXsXarqPYdfoONzmpzblNhlkIQzIIjgxcuQ7jyQUG42PCYQ+R\n2hgxp3FmiaPP+swlF1OhRbu+zELYwrBR4Icf3gTgF3/605x0OsROB7ivbHJ+KuBvVGkPdhg6JJLe\nIO09L5M1D9XiA7xCnUTaihC6ilcfU9s5IbjUxzWfoI2sePc6HA6KhKUlylKFhckyp02ZcGZOOuJg\nZI7J+l3EZJ1aYMzUzDIYNJmOV+l5plgnp4h9kbKksrUsENlYxeEMM82LuF0tbu+ecNCpspC/RrC9\nR0/wYwZnOIYrBHIWsAwZGjXkbIPr11eYvL3PE4trNGwW9NMd5NwaocEpk+kyZZefYBmsjh6C7EU+\nGlMONFDcEml1hkW00Ah5WO4WieYbOCxOvvMXj+Hzted+HusDKw7dTr8Mk7DG8aUcU6nD5kCjL8vc\nmy2Q7WnUn5NY1L1kY1GG/kOuXdyibrNTEmJccVgRntzG1GakpjZGK+uYAYFx93Evoy/QZ7ZkMHmU\nIKZpTK0azmYM2VPHn8jh9dk4aL6BXx5y8tBH3N9mYfE60lqK7l0fVU+V55fXuVe7wfI4xUipk3G3\n8ATSdAca2sUF/Kf7WKRNTpxWpiUNT9nE9A+I+N3UNIPRsEw4rDOfhgjuH2HL+BCP29gHCgubNmpS\nAseZFf/yiFbCx2zgZmxCN+7G05OZmTPe/uDxfPvKF38K21Chpa+T8NmZD+OohTZOa4So4KbeazKP\nuRhaKngyISxdDc89kUnAyZq7gzbVUZfHKBUnLf2MjL5Ed0nBmKno53MKlgDhGwrJyBqiPmY6rxHt\nqDzsmISSE2YUCfmusV9+n4WByA2nm/hwxo6tSKCdJXUpSXVvhC2zTzW+zJQ+1ZSdhUIJa9TG0sUO\nfU8D0eXDbMaw9WWmtQyjXpO8+1UK4YucfXiTX/2932Lnt/8COR0nKn4NcWDDsNkoxKbsH7QQl/ws\nZbJsv/Yc9/5DFfePzrAuWvk/v/s7EMpx8kdvUai9x9/5u6//+EPU//aH/+L1lTedLOVdfFz/Tzz1\nuRe59oyMZZ7AJ0YxxBEJW4RgrM/kBsR1nfxihdulDhfX8+zebdIVbHgjDiQ1hAQ4swMe3RWw2hs4\nszOSL3yOdzRIPPo6wpXP49YvEzos4erECZt5TmYPGA0V2rYos5wfY2JHWrISnhW5ZfPhezlHtamg\nmSOk5iGG38F4btKKFlm1L+AaWhnJPhKCB12zUhgNCAXiRPU8wWiJjBTnZslkU6kQiG/SPLaTCbWp\nNZuU3YtYigN64x3iHj+e8xrpZ19BKalEp22yDisWVwh/5ZQffPghN46OAfiFV6+gjDP4qmB2vOz2\nFOJaj5A1wMmoD/V96ptRng0vslMpMerPSK5LaCM/ykfHZDbWGTQUqqM2upiiZDSJqQL1ZoSuV2dp\nYME391DRejStXi49t8mJ16AknyIpVq6mdPh3dfol2HohRGP8b5Bd5zgLedT8hN5pg+RRmVqigSjJ\n2ESFjUtPI4pe2tUCw7v3COXCzFsGVLwMFqc82TJQPc+gXq3RO1cwpAFtQ8b/qUu8+Lc86MP7lPs+\nhPIC1fW7qIUuxx8X6S7l0W6fkl94Aq01QrDOiGXrHLR01tcNYu0k33z7sbxSOVgj9IdRRu/uMZmM\neHZrhah5gLBn5eheg8Bim+BSBt/NPpPJlIKzhO4cERgNWN9wsHfvnJmZwz6E/kKfTiXMedmgUx9g\nyedo3rNj0y1kV2TETp+9uwYL6xGqBSgf3GTTk8ERm6GUA+gOmRRparUpWkdiJs2IzpOoCyPUyikO\nvYSn58IZiNAct2mednCE3KguG8sulYHLgmzzERqZWOkymdtxZ5xU3A16RStGN4ZbPCXaziJ6LuFs\nnrOLAqtXaCkKgfmYSTuOdVtH9u1yVszRcDmZWSA6dzK45+GjB4+X2lf+xzSeJQNL1Y7S9hLcVIk3\nl7BJp2RTK6itIN3VGtZCF2e0ha07RS76ce7ewPQHCH5ujVtnD8nJeT76vkY+/SKdR99lcekyVnY5\nsGskT9xUPWNaZ25ctVswEVmNZ6kX5rx/9y2yr2zjmlXQbC7sB2FqksrQ52flzE/NVyQ2sDCbLRFS\nynTaSWLBVUZJhaPCmIBbxSqN6fhiLAcm7Fc/YJ7aIhE/5egkx3YggDpxUJvMiFs0Mu4e56UOsfg6\nHbFGoNdCNNcJ2XsIhoFyYiEVOaMzSWMIc4LuHFq/gCQGGNgGvP/Dx0bf8DOvwKlE0J9ArClEvM9z\nUu6hW5cI+pcZNh6yLzWxOnv0JiNYXMAzaqHpefJuGWMxREq8SL/VQbG48c1PSYZcNDUXF6NZPtFq\nOCYdhN6YgtDFZtrZeOUZ2ocTGnkrQlsioozRu3dYLeSp+wMsBBbwVs9ovxDjo5NDbNMxusNDsBqi\nFrHxanSR9u1zXv5Hv8S3//X/TSS2jpaZcPJP/hXS9RcYffw9XNkYts4anpnAYWVKf6ixmHdh1kvU\n/WF8hQI+wpwFRySEKcNpE29LQERGtdZx9dbxLk5JJ5MMUzFKZzLzwh5vffAYPqOf+00Gp28SoYBg\nu0Mwu8QF94QdZ4qHt+qcSArb+Zf50usv8/t//gpx/xT1DKZKgeZ4wvjOD0hGk/R+9An3Ts9YHx8j\nb8yJLAs4z11sLSu0YzEiM4Xw5BIerwkND5P6GGVjRK9dZxj3UhK8rF5wc1DaIxD1kylKtIIDZsII\nd6BNNmBDLe8hRTaZ1sa0pAn20JzhJ0kaXgfBrkhk7kGY6QwjQ5LjKkMjTSQy4CTcw6uruMQ8512D\nkVXDJmawWNvsayJW5zrn/RHyoIXkVXGe1Ii2rYj5AqWGl+Sgwmiq4J34+MGtx+909cUvoRAj06uh\nmVaayUPcrQiji0fYKxKBRISa28bwqIPQySLbDFJLbSLOBp3WIqnlFm1TwLSo2AQPlpFBQw6zYVEZ\nRM/ZNBP02hJD/z6qX0JzlpF8WRaWZd7eK/DBN/fY8NiJDq00sxU6ppPgnRaVh30GDpVResDJUY/L\n6afRSl3c1TaeJ/OU7ldYdSpMlucIKZ2WKhMKjIhbQ0S2T5g8OqJme5rr9TGJ8AqVv1lh0O1z2r1E\nfukqRrRNxTokFLTz0td+il7jLiYODqNlsssC622R6UcpTk7+I+b5nN/5cpE3T47423/77/34Q9Qf\n/OO/9/pPP/NFdlcrvPAzVxneLmMEoN2vsGKRwe9jPqrR0vzYpTmi4MWsjSAcxlX1M/W4mdnO0aoC\nJWWG/dzKjmalcu8W4405w++XaP373+aH3/wM7x8cYP9TF6PFGepdGb9njMMqURccWEJTzqd91lsn\nSNMIQXed1ukSUc3Gj+5/j/jiE6z15ti0i4i+OTVFZVRKIFzXqZ0GmY97nFqPUYdT8ok581aMkuOY\nwdiGpobJjLr4tmQ+OqgTs8QYJIesTRU6QpPgBYmlvp2JPKNYXEMa3OT2yT5z8QpxsY8qWkktepi9\nt8Kb548LYeM/+wSLlT51/ZjYgkBy2MK/6UHRvVh8F/CrKaLrHu7c2CPcPSC0HCY5CXCv0MNcXGZk\nseEMTlEtOqGHcy5Z/bSSEoau4DDmzIdVTv12LiRiuM87fPDoFheCceTjIZG4D//BEHtmA8G2wkFC\nYq6vkU4+zaHY58pGFpvq5HSzTFKwsXuicBia4ly4RH3QZNmuErvup367TFxQaGzbiJWHPBCqtCWJ\n0ETn0HuE7+0w0pGFxc+v4f1kh50P36GfD9AbBFnMP4VgzyJdarI1WkKYeTEsJ2jTOdpinElBIvCE\nA+MkztH4Yz784A4A//s/+l1u3sqTWvCi7HbI+V3cdJeoThXkZAd/aJNwd51OUGfXWmX9PE790ZjA\n0ibTtgfN2UDxO7EcKQRcQUYjAV1yMFacZK0yJfcOyciUhuMc9yiP0+fEXoCm2MJmuYS10qGWmCE+\nrdLfd9PI2nG36pilCsKCj0FJ4XLCzgMxh+5oUi10WPLa0UQ/80AHa2sBlWM6/Rlj+zIqA+aTAP7M\nFF8gyr29c3KFJt2wle0+DJDwBBeJBQ2KZQurfSdvH36bz3zxNW5OZyjje2hFG5I7T1Rp4Z4ouNZk\njndcJBNT3nzncdhmcvwqz7z4Is2Jh5DXxcH7LjbDSTqmh9OHVRLDHQw5gmqOaDDlSd8zkB4i1UNU\nBjIesYyr+DwjZwIzn0IpfcL8yiX2bhg4UwLy0YzGVCS7qZOeefhYO8LIezk5L6M4/ITncWbGOfl8\nmvZsB5vqQ5cTOLUK4/yQS24rhx/FCS/buH9ewb/YJWTOMNoaUZcb0TlHDSxgHJxxMGqwmruIRW2h\n25K4ugf0Bk6E6AlpucfEPuORy8dq9mmqwQlOTnGwiDkpYzl3cHdlRMAvU6uYSMkmDj3GZFjAZfMj\neWa4JJnvf+/xUrv2xM+x8PABllAYz0RnmDnFW0sRiWoEd/sIjhmRLzxF5sDPsrXMeOYimUtSv7+L\nfW7HVVSRwyP602usxTvktrfoPvoOi0GFhzYbC/V9bik9hoZCWjOwLARw3hjwwTffYd0rE74qM2me\n7cZRJwAAIABJREFUINoj6IbGwsTByZMlWuUzShdHLDevoepzFsQZpyERQakw88l03TAvuHDb98ji\nYXFrjZ/4xRcIe91MqjO8B0dY3QKKbULDuotg3eTE7OLot6Gm01wWkTQv6qNHWMwhAdlP2+uD6JSk\nowuilVpjin9QYdY28bTvM3XGeeudx7LUJf9PYN1uUjnoMR57cNdjnFssrCQsXPNUWXQtM37nHuPL\nKovR5/nMc8/TjawS0PO06lOU5GUCfi/dXICnfcvs9wdsr+eodFpQqUA1wP09lZo3w7jdoDcUuPvJ\nMSsZAbHnJf3Sk5QrpwxLOoWbMxr1Ak8H+ygbYyquJwiUNQ6UBGcnO2iWS2xt59EHt9DKMvulJPpl\nB0nXAdFBlJu9GtNsi9DYx6znxGvfpSMbzO+s03BFSRllwmaXvk8mVZpQM8fI/gjJiEyjXiVKB9G3\ngrnqYOQUmAt5evYq8iCG6WtjzSf44XcfKxTXnl3BG48x7fZpBUSsZ2681inZE4N6zMtAspDdKxKP\n56mEi9hDE1zlEKfdCL55i7kkInoXcQ4W0QpD9FU7SxMLNkucyq6F3JZAe3cX+fmrKCWTq04Hmt/P\npLeGb1nj8gsx7LKEaS/Tq0xJSBNC1y9ivXQNoTVhxS2xJUdpOB8wkteJRhx0T3WWOkNG1+2kpAy6\nvkaMS7QG+6w9k8NbSeOdv0lAXMLnEzmZd+mEHPzOr32N175wnbNYAKdhxzjfxWHusv+oS5s9xPOL\neOQpbr+AGozRWTVwX9vg8kUR7v9rfviJya/97n8Bl6iv/6v/6/Uv/lcrKG9/RMuuMYrMCIUT3Lnl\n5+mlCNYKkJiw4JshTqDe61GLO1ke+agPH9KdVvE6FhhKU+qfBLDmILfuo+AM8eoTm7zx3k3c8w43\n3vhnJDtrhLe9bDRVgj0V0ZvCW3tEIO3jbqyBtaczt+SJr5UYV1K48/uMRnY8Mw/9+QgzVkLrDzkJ\nW3AON8hVuww9YTLhfeL9MVLXZGBukn82yf27BS6tbBEfq8xaFuYzBW9/hGO+RdyqU/SOkasBgj6D\nyDROcdDEbjU5b9lx+Ks8+eI1hh0/DqlNeOSEC8+QiLj4xhvfAODTWy+jSCqy7ykkyYOdMLVSBIty\nyKPOMU8sxnnQ2WVod6KN+5SiZ1xQ9tg5tZD6qTVKFY2NxBXOyx2WPz1A6ytoRwtMEnas2yZuu4ni\nlQh2JGZXZErBJi5hmdngQ+zZZ/A87Wd3r0038whvYUzGukIBE2/P5H7NR9zWxjXt461dZEkMsbGV\nQy5YKLYOGPQWWZFKtB0X8c461LsKlm6cVBq0SI/pro1lSWZYO8T29AvcL9cQjxMEYxHE3hzl6ado\nfVTEI/RwzIM4Zi2aFzp4DpewrE5Z0Ht0rD0i1SQH0TlC0+CjG4+9FksvXOUn/TIN4T4zj4kj7Ea+\nu4YtqSHdd2INRCiZPdrGKauqn1FLZSSBGHER84ZoTxtMtQmhTJRK2cTc6iPsPWTtCYmxlGNxXMRo\nTonZ03TXRYIHCkbSzvy4QXd8l8vbT1Hud0k64yjjh5gWB073gGEkRWYg0rOeMfYtEB5Nmdhn+FIi\nrWqYlmYSjCbJeE/wTMeE/VlUu4rluEF89ZCprDMeFXH6PZzt9fHMnFRXDPKjHmZSp3a/SGg5jaG3\n8GgXedjV2PzyNtOpl8HDB8i6jZKSZRq0YRmZTEWDTi3IJ7ceX/Au/8wvcv5wygpN3KoFecnGg/Zd\nFgotPNkAyDP8U4OiP85lw6Dls2GGcmixOg3Vg24bQNBNwgcJ0UbXN2SqzdFbApI5JOa3Uj6zkRZ0\nAkGdlD1KKK9iDHM4micE82nu3+3iHdaZl8M4gjVaDjfeg0NM8QL9voYv4eLce4Qj7qHXX6bbdrIQ\nrFHsh3Afn6DlFDyuOblwBFtdRBpOKdqdDJthvKMmHX8EVQZ/MU2pWmXBHsOoNPAMYLfiZ24EaMz3\nES1+uuYUYRZleRhF95WIzVQKgQExRxZtCm9+//FS+8mvfJWcWedEPEMeG2S3V7HaS+yXWkhu0DJz\nSu82OS7tks9t0RIe0tgTuRTOMTtUyU8nDHZnCL46WsuH3rGy9uwirgU3w/sjMEQGLhdXL20Q+6v/\nHY1/87+w9bWLtKJ2Bo4tLAenzM79jJ+dMsnaqFiGmOMW7nQI140gf/nDb+AJZtDzdtZsIp7BAHul\nh2wNkfn8NmfHTaw1B1bd5PjOW2hlJw1dIB4J8P69c7byLuaPhsx8GlqjQdSawGW4afsHTBvnJCeL\nBC5IWKZD/IMW3WmY1ooL61EXdWOI/ziCI39O0Z7HVhjx1q3HstRzl19m1rLx6dU0jrSKuVQlLNRp\nNu/j9y4QuCfQWY4x0d/mOVeUj85FFn/vVYy5hV3RhaXZI/rZy3zv1ptMAm1c6zEO6jaUoyrrr3r4\n0z9rYum9g7w6ZXvxOfQg+CMZxh4nFkeT4rs6pDdI2IZMHUMuS9u8/8Nd1JYbIZ0k5FunH7/N4sUc\ntr0TQgGVQf8KQVuT5TUfMUuBciXF1NtEniVYUhMchYZ09Q5aahtRadF2e3hCUtEjCY6PIwQ9GkZu\nTknKsaKrjIpgrE1IBfOYqsisWSdgwHG/z9bYjz9iQet08cka3/3B4yiSz2//PA5fF0EKkKOCX9Sx\nztt0nW56nRD++BkVzzrTRBhfzaRlG+HwJOgYIyaGgKvpoIqTedLFdMFNvWXnrNjA+3QHDlscKA70\nwArzegVNDjNzJJBUhZo7hLdcZb/X4vwtLxEBItunxNUVhvY2Uq2NuJTEFbTTNR6Qi1xlfKhia9YI\nffOYmHsJISdy4ktiPe9y1ikxNyNUb3WRL+WwOUU65VtUdv+cR+8d8XP/7Ne5G6hw90/e4sJWnHTn\nA+rOz9EUihRu+ll8bhOba4ar2ePkXpHDfg0pnCfZ+ZjDwxu4xGf4sHzKr//G//DjD1F/9x/+4etr\nlz/L2LmIyz7hqD+gV/Ti3D8n+JTBRw8PCdtnuNU4qu2Eyb4dea1FKd4mplnhYpDZ0Is9Y8UhO5mn\nTCqqTPDYie47ILOS59VfsuErgHmrw5Yry4JYpWO4yPmcnEs9HljPWGv6WN30MjkvYGnAStLB2aEf\n8XoRtTtkKTCiYX+CvuMEaTdB4kodWXvAeijPSc+LWbNyZDiZj0TOVI2QJvNR5T22tIs05zJmuUrz\nUoqAprBvKxBwpRktW8jUEjRdXlyRKcZhE3kq0837QAnRdTdQI35KoyFe+yKH54e886PHw/mrf+ML\njD/poC8nON95SLVySNE/Y8vu4MrlT3FoC2I1PEiJAPG4n41wgyPPCvVGi5XocywNy5y/e0DzmWUC\nB3n8XhfHKwa5SpuT+xUCERuxcoReoEbhyM416SrVPdhMXuawvcehoJBOhIltDhFHTv7ygcZLf2WL\n4h+/Ry+Uo9zp09iRWXu+h21ipT9TeFB0kpUMLBtW7t4/JDB0MAyPiKlLpEIzDgiS9C5RC+xi0Oes\npBP6wueo3pkixx/guf4yf/L3/im4HXRv1RGu1HgltwxHBnEJLCs5mq09WiMVa+4ptDOTkesRSWWT\nH3z8OLH8JWmKMy4yCpUI3BjzYFpm83KcjtZmYnGzYg9gFx/SLYSZTmSc/gmz5ARrfYAg1bC0YVfI\nMRNSJJYmtFNB3J+6ymI6RaPx/yJXfMiRHHVpiN4bo7YinAxULC4ntiUDVZmzsm2nd7cFkQn5upX6\nMIBQW6DTPEe47MNagkLnjI2UG7UeRpMO8CSmnBo9DN/zTDWVs9aAhFXEmTTwzhZozqMMNQcW7wyX\nexGH7uXq3ENoPYVxNqDcNBmEGphnMU6iD1mMwknrhKQ4xhmeI7fDTA7rbDzh46DgIzrpw3aFD/78\nsSfqcy9leTKew/nss5TOmggiWEYC5UU7TqVLQ1ilYNZZG4GiJrjT6PHM0nOcdE8wBA9io8nUtNHW\nnVQFL05tSrTtJfBiDOejInHPE2SiEQpuhcmDFv78Jg9uCYTX6/QnEt5gAvtyhtwXrqFPdhH8A9JN\nG4GnbDjKcxorGcxkE0c9QOKowyTbYeJx4wo4CVPAmC5wKujEo6sI8zaP2l0CkzRyQCL/pAW7tY5a\nmrHgE5g5x/hHArYng9TbOokAuKQag/mIhckFglIEtTbEmvbizehYT3QEQSbkMbHdN2kEvbz3g8fw\nuexbx/OywY0/+HeEfvqLeI5OORLTeMIdTIeD0xJ82h7AFbLT6jvwuUMkbXW67Tpy5JTj3Qq29UV6\npzfRYxoTh0K37Kd3ajK338bl9pOSZeSxD2na48Odd/FYJkzUID5jn7kvwklPIDXuIndsqC0fPb2E\nL3mBQfsErz1LOJPgwrFOxznAM1hGtXrp+3dQ33hEzDbGdCns2320OydUQiO2swKH8zyhpMSgU8O/\n9gyH+hHr9iX0iMxe2447HUZRVWZxiXG8S6nvIJuAHlbmswEuNcgsFGQkVnGPpoSGdmy+Kt/+0eM8\nty/9/d+i8C+/j76pIplXmf77Y8xn3SS0MOKjCkeaH8edb2E6FtiPejiIVfi5DZGzW4cY0R5XUk7E\n8w7uwxHj8ItcHS6jzg6ZxDeJHjnxy0dEA35i0evMjDqTvRi5/DFnowAhWwcjDcNOmb6xxKcWg0z0\nBqtPXcaz/Wmy9hCnJwVWMGgKc0xPHOu4Ry05purNURseMGAVa6yD4RuiV9w00/v4RxG8zTTtTpEN\nq4dx2EG9XEFp9wisFHDuO7DM6yx0ZvTFCf6widiT0KUatWoVJejHPx1heGU8jQozjx1vdkhVgXf/\nc5jwqz+5SKAQRvOKOBstzhPrzKYRYpMuXocL6gncggWbPmCgNkm0QgxjBZR+nCVfEae2zih2gyXF\nhaMzohEZk3JPMGSd82oTsxUhvBmhY5hkxRgVt063EcEnF3Cf9mlOPER6dWJLDRSLBX0gMopYMbxW\nukUPoZFA9Xs9FMlC1KpgOiwUnvBSdw2w6CKmso8aC2E2MySu2ZkPTJpDgcMqJOxPY/o8pDdfo3lZ\n59rGS3xqy8m04WV2uk7T6GIr9nBhZ/0lD75OA30SIxLRMcoX6RS+hzZTSP23K7ifXOSDN27yG1/7\nnR9/iPpf/6f/+fVXv3KF2P4pE38WweLH5gnTMfewDDJ45ucMbdeQAyN6Qy+BVA2lKTA1M3jqA2x9\nJzXnlGizj9hJUBpZkPJ9HHKYv/nrf4NP/skvYRbfQm/4KJhDHKlnGE0VEoMAc8+HnNtlViw2DgSN\nsS+Jy+8nobt4y+vE4zBxFFTCMZlH9yWcjkWC8xnT1BCrA9pnGfR0H6PrY6i12HwqS6hzRNzWpiG6\nuLK9Qa2m0mnvsJJawSUGudk6wr3wJKdHBXznQUJSG0OpsBaUKA4X8OUm6FMfwnjESKiRbccJt5v4\nl5pI516+897jbqnY5Z/gCz//Re7+p2/y5JfXKegqXmWdZmbCCytX+OZ3vo3XbhKvPuLGGx9gW1ul\n9pHE5meeI1a5zYnhpGdIxKZpqs0m9XSJ6a0Mfmefdecizb5Kfw5Dq0beG0U1VHbCVbT2MVZhFU+7\nTHHawqL7UW9NOb3dZe3SIY7V55gd6EQvB5kJbXxCm/dbu6x2criugnQq0yqe8MoXtjnsNFiKJHGF\nRrjSKvsNB6WP7vOSeR0hnCGztci6aXD/7ls8KvWY2Oy8/PJrqCmJxfwlwmqVwKjB3vEAN3FGoojR\ncOBZijK5cZdKNIi4HsZyeJd3Pnk8nF/7B79BrFHFMt1GtQe5kndifziiN5JYz29QVaf0PTOyYQHZ\n3ceIX2PSt1HVZEYXwoiX1rA6szyd2MWxlCGo30R775zsYp5ZZ8pYFaglDGrtGBlVQvO2iWQbRM+i\nZC87aOkuvK4a02mHfj9KMGgnWutiWy1jzV+ke/MII2thUXdjuwZnD3dYXXiWSGaCrdahWNtFyyuk\nbBXqchrFGaQw6BIYDDg76BM0BTpWkeeX53TFKgfNMTa8DCN2POU27cUw/rM2anCRxR0fbaFJwmuj\nalHxp5tULS2uL9qoNM6QC/DDGx8D8OoTYRwXA9yrDDGrZyhim9nMS0ToYbds4PXYcGFHHmdQhSmm\n9wHBcQNvJs/+/Q+ZJn34FBkzoRIWYUGKs2uvMFQecVLTkLwn1AswmVQZXbiCTTslHrGgaG0W7EFO\nMNgO2Bl1/IiNBulElvnYhWca4uPiARG3j0zXztkQQqkxo/YWqW6JR90zeoMs+ddWGJ1FcU4EGpUZ\n2ekQq22RA2WHwc4jnEkHA7dOQXvcRaisrxIfd5FKbvYaFiIeBw6XymyhR4EGOcVB8Ek7hXtNNGmA\nLbxA8STCudljZRLkOx89hva7bj9fcq0SvfAM54LOaJ4g+dKc3U/OSTl8NLQW1bsKy1GJeMCCkU5R\nvnmKp99lbx7HIwXwfnBG7FKGUTfHVDnFq4g4Ig3ccy9nt6p05jr29IjebYU3vvUJ5meWsOZSxKsp\nzksOVmdDqj439umEnekOwXEctauwZLFBbo0rvQFHbtj9QRUxoUL1jPGdPnPbJWbZAYXzACveMLJq\nQxxfo9HukPaE6dR82O/WCfgWqMo20p0Eldltxtt5clEbgdkxQmtOzGewMFmm6hwxlPtMfTkkYZ+w\nOibu2mIkQTNSR3fGePM/fwD55a89QbP1DNf1JAWblfivrCG+Z0MaPYf0ypSymGN5282tYo1wYobt\n2++RUE7wKj3+6Dd+nz/70ztsBD5D4Ete7B2B/mERwanSOG2S2C5z5EmijS3MAyohUyIqdHjz4Izo\npgdtbMGzMSJ/dIHhixI+i0qtO+C4fMa8+SM6lSYVl4WU30d3Z0g2YmM6njJsO5nbT5C0BbJahWE7\ngbO5gHrhGO+Om7gNyuk9stktSvVTusaYlGJlwT1D84C7JzLW/PS2xtR7QcSUj9qRC6WjENhKYXGN\ncQwCOMoFGhsOQjUJpZ6l1G/xyc3H7/TTv/x5hK4fa1TlTFpkMmojzG3YViqcdGUCvWOiK1GspTpy\ndgGpbMeeGiI5z/A0ohw+KHFxJiHpZc6dA1zNOS2XQsTrIFIOoF2bYS2cYo7DJLNV2kc6M2uF4Ecf\nUrviRNoPgjzHf+Uqrc4AW1di6PUR2/fTT97guLRMKjzgzs4DbF6FsREl4rLhds4oJc6YVx1Y7vyA\n6pvvk9zYICZNSBLh4WkTi2bQX3Dz3uFbOE+OiT0bofNBk/crd5hgw3ltwtiYETjfIeMVaPmWMbMd\nbLct7M9aBCJDlv/KZyn/P4/oHqTZeXCb3/y13/zxh6g/+Of/8nXf3T38SzKdcRAtDMFhEbe+jj8S\nRNeCWPUqtnKaSB7Mkc5ZwUUwlGAenNKwNVjRogjGhAPXBFdgyFpURS0/YvDa79A7Uslqefy+NNVA\ngXRxSs87ojoKIa9KWB9KeNcCdN1Oyo5T1LkD2i7EyUMS1gC9hSHnM4F0dItM9xGa5kPwTggXBdxr\nKcRDK25BwBJucb/bpZPusvtA48prDs6+dYSyMMIY2inZg8jd95j1A8hqA3tYYliu08u36ZTdnFmG\nzMw72PwK2YUkt2/N2JZEiI8g7+BcWcclW3jjO98E4AsvbHHzrI+8sow4sBOZTDl+tEt8JcQnbzRY\nesFDdDLhvpzmObrUzGscvz/AJR1Bd0b3/2uynC1zMJsS5l28kxfwmi7slxQKriym4x5uNYUux7AF\nA1Tqt9leidI4Fuh++CZpI4efp9GubWN2TZauTtjLhqk7GmwWZ2iSlbZrF/8dk610nEZmGe1wxHCh\nybqU4d3bGukLOvdHPQZkKe8YZE/tSFY/g/AEs1vB6u/z/Fc/z/2vNrgyjmHanISqVvbeO+TLP9Vh\n3prQHvs5mjUYx3TipsB8bcxpAzwDlaW1EL1TFTOb4IM3Hodt/rW//mXK39bRJZWAW2G8b6HaPWTz\n1ac5bww5ODphdWmRh14nVWcI656LXn+HmTtJzF6mfuOI0dku4eaUGzc+JlgKQ9Dkwa4Fm0PF4XTh\nqkpI5hxH2MLofEDrZIL1KQeNkR332M/pvfsYW1708jKYp0izZSrCIvZyCyXlITPzU2rcxww+RTiV\noFgc0+/3SMRE7OJlcsdO7K0JowOTkXvI5foWTodMNndGT8yy5p9TFyPYTooMzDEO64i2Dtb+kPrE\nyeXLHjpnOyzqcQoWAa98GfGsR806xh6Qce3bKZ2U8Cw6eOutGwB86auvMCqPyJVyjPoOEnM/Ns8J\nrYifhdAS+5199NiERCZGJzmDWgw1OkIzcowGZdITBVNPEXK3qOgR3PZDav0gXl+AxFWF9985JvP8\nRSIemBVO6TgT2JteFNmHL5PFUpjzwckHhN021ESc+bfLLL4S5Qd3b7N1+RKjYYfeEBYlH3NrD8tg\nxGw5g7sRx+pIIs3exVUZMXV6iRo2rK6rSGIR3d6h2/XiCm+gNRyIMuS1NJaxSac3oGtUSI9alFUb\nuWQAaj7mFpm4I8N95wG6fYwvtIqnbCKOwR+I4l4p8K1vvQ3AP/yPv47yjRoWvcae3cImScLDEHrY\npB12EewJBDbg4EYGWa7gnsz44Qe75F5+nsP7H5JKL+Ga+pj05zhP3Fz5xSuo15aY7Hsw3D0MW5Ks\ns8aoLWCZdnni5U18Ng9Wm0k8Y2COHjC1zRC9DizdBHk5xsB/yuWBi+6igbfqpd5xUxUUAp4oaW+M\n4ooFd0SjYknhenKDxo0Gs0iHcdLLuG1Hycj4QiUyni6tlAiaC0wf7pyHrjtOXoPqcA9N8NFSgjin\nYfoBk7neIDYJ4m25mDZN6tYgkl3hXDEIzbKcPnLyye03AHj2lz+FfphAv7hOyGnFLkkEliRS4TQf\n7s/JByu8+N88w+DbIqvbLjafvkD6Ug6PqvALgouLv/XXUKwma89+FkN3ouZqlFoqZ0cGZrtG0jcm\nPXGT7z3NvZvvsxcS8RmgKk0u5ARuflSjK1rIKhrq+Tm1UIpsv4ZvL4E/NMHq9XNqK3Mp7KQ2qHPY\nNgkOO4wGMkyGxGc+9np1/B0JM9gmnY2xH67jVJ/AYTzAZXhoRXTS51n23FbsJQvu0ADLooFaWsIi\nnuPwlhj0IwRSHbS2l6FawN/t0o9fYtwZ4MuPYQ5N1zKfvP0Y2l+4+Bmai250UyJfbDG2Doi4i7j6\nDvpaEinp5aBepO70kjWmnPmGGKaAaJnRbttoC1Vir6bRzTq24wQlj53Vbo/jTouARca/26KYSZO0\nitwqWbiUGRGqdFASV0lEBCobWR7ttHn6v/9FfDsynfgEj9OC1LNjVqYM3H1GD+5y8bNXcXXncDFI\ntDWhlp+zmDJYlm4TCAv4tuZYBi0GhSohOYOUL+Iw79HZXOEbf//ruC9+isumC2XwiAvPf5XTo39L\np3FOfunzJNcXSTy5ze7H75MYjbhvV3HtlTBeeZnvfvsdgk9fw3JhnerX/4i/9fp/AZ6oP/z6119f\n2vwZkp9aQHdA1LGDIihkPA7Urk4mPeNgLLGQGGHZHTIPaRjSCpZIAd9cJ2tm2DursB65iizOiebj\n9BsVzJDE+akVe8BN9Xt3mbUNVGHC1DJnnNjGUr6Hw9vBG/Ezt3e4e9TmQtFEE9uYWRWb/QrDnk7I\nJWK1hxkqJpZGkMxBD3e+TX13yuKSSWnnPv58mtOZC3HmIzz1IU+DlIpnRLcv4G/PmAzBnezQHYdY\nvj5D2B2yuKTgU9t8rzLEN89y/R/8LMHgMtppmNv6Ab6FGhYpTqIs0taA/gix7+Iv330MUX/981+i\nwRHPe1e5M20iCA1WnW5q9gGSdIJzT8MbNYjtzDGf9dJSc3z37XfJeDX8YSt+7x5KZA3piTnjN0zu\nl29xLbvIzHeOv16kPM1hF6uUQyEO6u+y6nCh1qKIvgbjVRua7ToBp0G+d8rSU2PUfpUVoUH39nOc\n+azYpzXmXSf27SbepoemDNZJGyHix4z30Csysq/Msv0plJkVh8VA+owftT7i7PwmId9VzGqR/es/\n4tOXXuROy8HSok75zVOe/dk+hytW7G+fc+felEbbTXy6RT3ZxHVahaROKvsS++X36UlerJqbG289\nLtK9/JXPkRrV+c69M9T/n7s3f5bsPO/7Pmfp7Zw+ve/b7bvPvXf2wTIEQIAASILgKjKUFEWxpSjR\n4lgWbZWjcsnlKsqObFfZkmxZlpUoihNXmKhkiZIocQFAENsAGGAwM5iZO8udu3X37X3fTi/nnO7O\nD+N/Qv4X3qr3eT/v8/0+3ycQJjOaUJCrCEIM0ejzzCkbw4Wfmd1kpe1DXJ+gOgXOzUJc795iJ/4k\n3qSHxPQ0UkugbwVp9HUMV5B05xSae4/qcA1rfAWfX2A26uCITnH1IyiiSW3aJZBYRxBDLJZOiNaW\nuKUt8Jo5Au0qs/GAhW1Iepakbh1iW3FRuXeTZf95BnqVyH6YvaUxCyR2ByUiHhUbcw5tY0ING67t\nJvWRQmlUx7R5mc5M5JJCfgEeWxLvsEh5K4vHY8Ns9vC1RTrVKme+8ik+fvc62UMH9zebbMhL9JoZ\n3r726NzWP/szuH0iB/YRXqeMb6NB3ysR762SC4/ZyM8odf3EnOAbjBg0ZvhNE9vLDrRbfRZiAJ85\np5Vr4VyI1DIBNl0JQoECgz2YO1UUSWaghLhozcn5bMx8ORqyRmyyYLgjEiwGWD57hkrDwH3+LNL4\nDg7Vz/DBTVheQ9JBmBxwY7+NI3lEq3OJ1E6QcUsnVyyxHgsx9FYZHjcoNS3mgSTxkcDUv07ScQyu\nJsO8g1FMZT41MLslMkODqbZDSNKYWifYxm5m52TGZR25J4EWwj1v0dRnxEdzqpdkykc2PnjnEQzs\nrF5mrqjM2zcRvZvMV/sMX3Th2dDJ3ewR7gfpbU55+z98n3PPv8xMb6Kd+QK27gCnLlG3EtjcFXqn\nAixMi6WXdth75XUsu4uxOMHRGZAOaogtjdphlYFoozFP8cwzZ7n9xh6b83Pke17kMyp14QEn057S\nAAAgAElEQVRtLcNK3M+xzUdWjGBNbqJLIYK9JomtEZ2Jjdh0wGh2mYQrx8C9TuSCzLBuR75b4/R6\nEX9bR5ZKWA0PWiRCpzbGKZaY1MrkT+6TMBJQ8+F01eh7vSh2kKQyUmFOr+vAuz2iftjDHfFRGwno\n4yDxwD6OmYM3rjwy5P/aj30emz5iYrmQui028hGSn3uJVz+8wkH+FR7W/PQ/e4tycZ3q7hVsnTGj\nup3h3EB7/rPcfr+FLeAhEOpzZxbHOhaRVC+fDyXx1N1cKe0iCgZuT5SV2CaubpupJND76Jjxux2y\nazuE4xGGNhfv3bnGy1sKB1oKTiSa6RQh1yE+aZmT6w0y4TMkw1PMsY4R32HUaRObB9B3JihFEJ1e\n1HqZeMWHq2UhuH0s8h2GJ3OsTQ1PosTsZE5zPYZvN41gNrEpKk7Ziemck7a18AtLLPQeB4EQI9PF\nRB+SNsccJVMosxlXXnt0T1/8/DbLukwnV6UWUaDlZdGZ0UhmMIwe/YbAWixC228j7FwQUlvsiQF8\n/T7hoITsM7CdAO1tZLNOI+xjNh0TVdZwTHwchEbsNMfokQq6uEzGCNCRR4xsC5KRCcZMQ1yZUfjW\niIpeZ9A0YDKmPVmgDvNscIGQbYmFx2Kka5zqqaz+wnM8fOOHDN+Hdvgc/Vs9LPsyVydO/uAP/l9s\nVgj5whm6M517376PbSrwf/zoN/h30r/H+cIy91+/ytbSZ1CWfFTbIyIpkXalit6aYlTTtE/u0XMu\nseaysRxz42pfQLI+x/X73+NXf+UX/uZD1D/9jX/yzU99/jKTm2MyWoWcsMRAsYih0w83MQojxn4H\nzu6UiqLgV+2oxpR8PkxkIHCsjgmmZ1zf3cXmE5jU/FQLPTwRibmiEjq6QzShcM+3wbjfR4mLnLUH\nWdQqLBxp9ltznKEka7SRUgkaTi+R0oLEtE9waJGrdlCOXDgDJomZxAPBwO4IY8NFN2Rw0osQ68o0\nEh02Wl460znhkEVasxMom+y75iyPDdxFO0p4TFBcZmSYWJFV7of8/O3lZ6goR7Tv1ujbHORNF7b7\nbZxCBtdiziTdQ84VMFIDPE2T773/qN397Ppl7DE71sfHdIMeAs5txG6XFbeXQXUHcawQWO6hesfk\nxz7SF6YkY5dYmoRZvlBFa06xLoSxZkmsiIZNEemNZ8S1NY7UNis1H6pvB61xl9psFbIqg32dWMbD\nrDxGOz3nXvMVHHIVXYwQunODwslFHAURdWOCZhfQm4d0368yfmqFyN0DHD0DI6aiX28TSkTR/CLX\nP/oYf1/ANWzizYPkmBC7vE4q0eFeJ0tgLlH74EPWvQWq/iKex51ErHNsrAW46bATPreDnNwmu2kQ\nmYcp5EXWvV2uvHWV5RfTnB7orMh+/uzVR0Xm17/+01TvhHBlp8gRB4uYi3nVIt6xYUw71Po5VHsd\n0nbW1tdpfudbxB/T6AlF1l1P4vANEaQShwOJRVWHtAtZauAf+DAjBZztATF7hcby80j5PKWZHzOe\nQe8OmXmjxKe3kdQkQesO5lRAmJRoSgaJnAspLmEkJNqBFImZg7xrgFxI4a016cXXsRk5cqMw9kUH\n1wGs+zW81hLlWpNTaRcCc2qDEe4jE3dqnabzCMMKk9cBwUEsXqZpiKjmGKEq05zXGeSahNUYe8p9\n/HYfelZgXJwh54ZoCZHX/su01JK6TlYLE16yYVgnVNo2JGGO8+4Mp95gUldxiBVMXxVbx0bP3WPo\n9ODWjtmtFFHrFUqODIlIEi0rU5zXWJg5rIKXcrqHvnvAjnaJUV5j1nEynRyjRC6SbPexTRoM35Vp\nJJw4du5zdGuK/Y6d1954n+WhA0JpPDY3unIfh+JgsbXFxuBL2KIaD+pvckkfsfuD17j8659i+vo+\n5qoNU8vjDkfx1srIpyXmOYn2PACnvKwOulj4mQ1D5OzHTNYdqKMcus2Ha1PG5vARwImxWyHYh/lA\nI6CJtE/rOAtH1I/t3Lz9aKrx49db/Pc/eZrq93aRnn6JiCeK2XuXH11rEd60sQq0BDtrlzaZyybm\n6S2Mh/vkpStkNtepT3IExnVGIT9B34LcO9dBNGhNnfQqHmz2Gb1IEMtup10Rudk+ILPVQ/6gTc5o\nsuxYQXXc4fZRmSfVEPNbbVSbwpgBxthJr32G/ek1Nk5foKoolEZxPE4LyTOg6VSZ9abEDvq4N5xM\nCxKa4MaXTlBTNIbjE9pmilXpLmJlHfxxzja8jL1FnFaXlkNjyTlCboyo+MM0O3YmqRHBDxUmO0MG\ncze+WpWhM4Jpy9K3DvngrUfrcg6+8xqRk7fxOFf4sPAxrqaNV2/9Ph6PjfOhBaok02w52BL8iHsL\nqqNdSoUAPsCsvsnrd0x8n3Qgx3uMHhxT0yu8U3+b4pvvUjMFfGd9JKZjaobGZHePaFyj5otyKjhi\n/BM7uAYai06e7JMpHjRuEVI89Acqx7Yeai9CrGHH6Ml41+BY2Ee9LSD4FFb9dVQty13lgE0xRFWI\nkz3Joycd3B5lqDNiWdJ5EAiyNV8gDQ/RCxk0m4xfXcBoiC+hMmgq+HoOGsJD3IEs7U6TqmuB3E6z\nLsPQqCL0NKJzmVz+mOs3Hsl5n1m7RG6yTH/qIhHJ4U3YiUSSTEoiWtZiHvKhHz4g5K5TmyVpt8co\nzRCzhIkfmHmiNF0DbOtObjWiuO338AxVBk0XVbXD6PYJjkQYY9JjIGgoAT/ybMY0IuA5aRCy4miL\nAOPJPe7eO2HeG6FJCrPGGG2xxe3aHgVPlc2VC+R3FLrynKt3DgmGokSSl0itONGypzEbeebONJ+4\ncBrFt4m6foGIvkJuT8T/UonRP1vBdWSn2SzjmMV47icdfPddHdk2Yk0z6N4VSaZV0qEuk/PrnL8Y\n5/b9Ihcf/yqlewI/+PV/hqhU+Hu/+kt/8yHqX/6b3/rm//iTlxHMqwxYIrYIEK9AsTslbXhIZHxM\n9SAuWx+7mUUfthDMKeGNPvPJkOlkgdxO0rel8Nod6NU2WXuYWavNOd2OEYvRait4fFdo9QIk1Al1\nKcKR2UHxVQk3p3g8FfblZfRiibBfx4VJSV+hF5cZlBaEloIMpV0mnSqpZQNfwc6Hpxt4ShEq/Qa2\nU5tI3TINR4+SdYj/YZeTWYBYJsT0XpmGp8YKM4L+AJOBEzddHuQWdGd92udEOmt3ST8T5a3vXcUX\nCzFtDEhKHkpCEU2LM+sYnIwGNLyP89Ebfw7ACxfOMe5vMBjscnnrE9RmA8aHUxqpJ9Fq38GVthgE\nV3BIbqLFId1ZkUtfWcfs1fnjv5bpcJXHn3qamTLGZ6vjldZYaRtcud0E1wxHf0zTM6VmiSQugHto\nI9OdoxRdxGUb+eKC6FM9fvx//hUKP/sufO4rNP0mk+4uk//4x6TPrGAOA2wt+Zm0gjgdHk62zyHl\n94gHN7AOc5S7NZTLL+AOtam3F4SdG7QyPWrXunz0owP0kUp8xyT7pA1r04s3fI5DqUSn0OODV44J\nPkyiJ7yU8kNK/Wt45DB2bcZteUQ2FWdQ2cf38Akm0z7fvfoosTzxCxcRvnuX6JbBg5yLoDYh1B8w\nTmY5PLrFY7417koQq0gUX+/hayboFbu4+x6aqkyvbaP+sMW5sIvj6R1cmxKpygqdrQ4TEWLbCw4y\nj5G+ucth3UlwOUy/r+MLZXAeVthrubATYn5xmUW9Tl7IcLYoUYrNafV9hAULRU0w8nZpPyiz6lti\ndHqOdhLDYSq05I845bsEjBlbEeyTAsGtKbeEII2qEzVlJ3LKgzzrPfqAuFzsTMesCSsEHNDPuFGG\nIpFUH3Ek01uOkXYITE78LJYsQnIPw1oh5VW4ethi986jR+3LXzzHkb3GejSOmNdYWF3klokVe5xG\nxMXCiODxD7jzWolArI/pXEfQZgwmQ0K9s9h8CnFlilPTaIT3CNy24RxtU3eL0AgSWC7hMrIsjB4V\n6S5rlkB53GQSNBllL7M/bKJFBRLnHmcmS0zbh2xbBYSImzA+bJEwwVNPYpuHqQ0U5NEVRm/dZnUU\nJ++2ULxeJpNjPtLXSZ1YRIMywekyN3SF0GKBM2zQ6blBCYBg0b9zCzkVJdIQCLR7LJoRFtnzdBsR\nWr0Cw/0jHtjKBO0xvAEV/BW0Q5N71QYrO4/zo9e+DcB/94d/QMc+5bb+Fv5amrG3hDt/Cl9epuOK\nMOlpBDsxAuMqIY+P0rf/mulLFxkMPaRaDqqrY0JIZFcvMOwI2M0BNlcQaQHWxGC8MuPUc19jOLMw\np6AlQyw/sCG59kl5X+ZWuEjWvUH74ICWnCIWlalO5mwrffSqnW74iJqgsts8QfJHeTGaIGeIqC4n\ndqeOtzdjaOlUv/1XXPrCi7z5zqtUS15Cowm6y0O4X6A+9uFa1LH6bRaZMcWZidQ1mKSCDMsGwrod\nx3BGSBljTRI4FwbuiJ1mP0531uCyMacwtJMcivzww0edqC/9lMA/eOx/oNnZ4MG3f5/9+piILcyy\nrY5wOkH36Bixdo+TcQP98Sd4QQ2wHY9QHI8wu27qEY0LX3uJDz4o42noCFORJbePzIt/G771QwxP\nEEV7gZ2YxZXKLdxqFlfGSSacoTDMEQ7ZuB6cY15rkU58BUelR95jQ/zgAzS/A1PwYnigJYfYagyp\n76zQFAJM22OGUxXB28TWX8Vw5ShFpsQMFyO3A0/siIoPluYZ9npOzPU+tkkQ1XtMWfUhSjGUQpeJ\nX6QjT2jHkzhL+8yMMQGvHdNQ6E2GhDclOrMBESLY5xVe/+AjAL7+uV9kmshxJtJDPPFhKl0eNqt4\nqON3+gm6VAqmi5V5lFyrwqYWQXPk6DQlFCGJRxeRj0WsYg5/2kFGSeFUPLQDBUIphTXXMrvmlPOm\nSMhhMO7rGP4WM8PPoNLn5O4DFntVxrKKd1tB6iYJb0VZnelMhS7hpSXmYYHFaZWw0cWfzjAZSTyo\nmxy9cxulE6cW75I2Po/3hcfxh5c4GbdRo2MWVp2Mf0pr0+TeNwx++c9fxsyJPHn6Eu07VW6X20zr\nFi5NJdxv0VjofFSGVCeMM1/Dt5Hmyv/yHWoPy/z0j6/x3utX+Xvf/OW/+RD12//897/5zAsvMpwn\nSfUniP4+8iUf8/siFT3PnuccVVsbmTqF0pRFOkV2xcHJ/QVldxvNE8WpiMidW4xlBU/MTWVxTESw\nI5kaajZHuR+g1dOZOAbYzDNkO9eYODeZiRqD3gjfzIM8PCG49AmEgwGFnoszF4dUeyqBOLimbcbG\nKjVLw9owKM13SY4CWNYEK61hNvoEplBX3DzecTM7JWF6JtjzQY7Phjkj2bgriwxWV3D2P+ZGzEXb\nspjV/IxODjjrP0U3V2XlSMIqayRSJqF8h4Fjjtsw6ThtZOwiF5UAf/LqXwEQPPsyn/5qllsPG0zP\nL9MuFwk9ZUO//ibL6W2OD73YFj10TxPXrTDNicYPdluMkwKbL2v4n3mS6qt27p5IRBwOZrsu1KSB\nbzWDt2XhvbigVJcQzy6zcdSl2j3BcA9xbTiY7E1QPBXs7ii31De40/RSGK7w0pl1fMV7TF70INcy\nCCt9HghrpNamWOMq87tHjDaXGd9vc7wyJJh+jPbhbbqHPSKpLDkH+MsK9tUx0cdX6XfrhOZDRr0W\nPofAwe0jwlef5W13Ecf9CPrRPexdL2q8ia3nwO9X0e9M0RI94gcLPMJzuBI3mbhifP9Hj+SVS1/8\nBtqswW9/50/5+7/1K4yvzXHZi5SENFuXTtNvHdBwBwgWEli9KnY1RMQxo+wY4ag4CVZ28Xw+QzO2\nxPLUhXOu0m5CcDEnItZoHcfwVuuMVRdQxxttMxxPcASLzJMGmh4gET/G2bBo2ZIsje5TGnoI9Z2o\nKQ1/PEilVCPYO0JzJTlq1Eh7PYwzCs3BjMjjU44LVQKuGJOIiBk1MB94kG1HZJYj9IUkVXFG66FI\nBgN6XmaRCZXegmCnwUbCw83cQ2wnHRbJLPNBkuLgNou+h2Csz7y/SrVbYajWOO928723/8vuvKd+\nhrSgk4vr2Go9qtKCZl0kUNhn7tVY6NeZkUEMLLHsydBrh5iFg7gVyDVush22cWxto/ZttGwC+84a\n4sJiq9WlHk7gaC6oi0Xc/SGTpJ/bng5PrG5yElkhUr1PaCiSOf0ZmlffxDh4m9UIdE4v4zLDjGx3\nmeUMhNUXudPpo9x+i0Jryjhox3piwlc//wLDHy5wOhcYyxqFXhkp2ubBvEY0GEPpHyPZVxk/yLFj\nd1AP5ZCyWaINF63SCaWiDdvzM/pHexizBqIpM5V1doRN6kIZloLYBzYaozHu7SCDVoz33v5TAL78\ntRdJlruEKiO46EAIO5Bw4G0ZuOQPqHd0YoUaFbef2sxO6DkN+a0HBIJJCp0F2SWVGBL5d28y9qsc\njtx0xmM8sxTCooyv2+fu3itQiOGLVQiZI6TIQwbHOoMtC1txzKsPPuSc00U07KTRjuPXqxzcbuD6\n3BqLwAopy45+UoLpkHpPA+8tZvdnuCJtCr0Z24YX4cXzXPt4j7PJVZRwgIrcZt5uINrT+BNj9m1z\nwg4/pXmcuOmlGK6xYtYwumk8wh4yflr2Aaap4XKWqdvXCM0aTIc2hhs1Bkc91rwtvvPuIxj45b/+\nI17b7eO8DIPtBGnnHPmn1tEvBFkNaLR/WCL0wufIRe4wrS4IzmKc7H3MuGXQHA451/XQb81IT/P8\n2W0ZafRt5ulL1Fp7bKaewBOOM89OOallWZ22cF1WGByp3P1X3yKxFaR3sIZfFZnrIiHVRfHCjNEN\nUEMy+lgh7FCJrEnYH5xgqBaGpDIpHLJIS3TzJ5wep/G2PPT0KiuaQsPZIVnqM0h4oB9hYMok/Sa2\nhopnVEHuBlBrbXx9FVNs0YmHifqPGApzFGFGpGHQDmfoSg+xYiHcfQ+yYVBRG9Q9Tq7/8NEU7Ze+\neoaK5qRcFhlPU6haBbfNwh8OU3NMGN/sklzzIwt7mP0oh7EO7qrFfDbnSMmTdvbwBCLkJyLqMIJ3\ntUrdkGjM7Cj9BGG3D72TpzeUGMcS6LKFr9inYhvhiG7Q9U3IprcJJkVODxXGfj87mwUsl498X2Uz\n5aMqzfnLP/8hzh/1KNytE/N7SVVlbP7rpO5Au5One+CmVTPRGh0Cp+Ko79U58rkpF05ImSKGPOGj\n8XdZnsQp9K/SlRXE3hYXgybvFCUOZz3ORc6hPHxI6+SAc2dfZnSvSaso4Hmhw9pXvsJfvvPH/MNv\n/FewO++b//v/9s0NZ4CMZnDd0PEKW0S8PT4qHhFyeWhMffyn/Q9IRb5KQAuTTS/hbJnQbeIdbaMX\nrmAINg5bAuc2wyysMYVgF6op5vEhlu0Ey12FnkB3uMazFwP09Qo+wY5dHDAf23BHDVLBCJVOhVYg\ngdpdEJpJxCchGqM9Aotl9I1bTCZBFjEb/eKUgLDKjdbHBINeqg0nsiqz12wTZEBZ1kgLU2SnF9lh\nZxBqMfDPafw5NJ/fJpFbsKgcItpkYuEM+tEBy50nmATAP8iRXrUzaJk0/FNimRT+ZT+BYhnTH+bP\nv/tIlvqxf/QFTqr7GH4FqTYiKTWo3PSSvOSicL+GsV1h4oizentAMxUkPMqwkoDUoEpACjD4qzlD\n7x3iXY3mosaabYjD26Qzuo8ndpFergzxCAhj1jojxqsO6vvrVDwGshsaXg95S+HqSOeZrIelIvzh\n/3cH/y9/Ele5wXDvgLtlP2aijNAeEPNt0xA8dI5k2GqhLhIwN7AvZjiDAseuGdujOWXvAXphDU90\nzuhI5PD4FYzLZ1l56mmK79tp1d9DWlV4PrRC5ukE9dl1tJaTmP8hxYEPRZxjH9qw2j2s0QGmnmTh\nEHnl7UeLTZ/4wsv0FZknahLX362RDjjQOiVqtgHKQMKtq0wjCzJDDw+9MULdj6mmQ2hn3eg7XkLi\nmwx9c2a7HWwrdjqRGEedPULPNJEcXhqWn8VwSnd0gq5m8ApeXG07eVuWgNKjZipYzjb9poegZqNl\n1XF04yhPmUzUHu2DIUq8z+TQR89nEQr1sTVkikf7SL0+wrqf6dxk3msxMWfYS0VEdQsjI+JSOvjG\nFtMDAXEGvroDy92lmHez4rAY9R0s9ABauEVZjqJORaLDNnpLZefSBHvPy83WjHOrGmVhykL18fYP\nHoW7rvpXqO24yYxC7C+qRAdxPLM+h54529MQxkoXYTNJ3Heb90sf0LcswqaXUqXK2Vgaq+pEnAgc\nHR+wMu5zUmmiWwI21csnXtjg3b/4PvGVKOHJFKHko9Uz2D+WSLTHSM0og0yEZrdBtnzIPHIe23TE\naW+YiTUgpH+Cu6c/xUQZ0H3zLYReDV8/z6XANp30nIOmisvWZKrLVJu7DLq38STjFEsS06pKX4lj\nuo+Q50HesN7B0GegR2goC7RQCPcnfCzMOQFtiVl4lXFzH0dVxUp58fg8+IpuKskwtmmPRfQy82vv\n8O7uow7eykvPwvUHTHfsGPte1q0FNm1CfWmfUC3B4+IWA5ebrNJg6lxg9eckpQCKvMAdH5D7cBc0\niaKwIOTvQqPAtmNB+0wPQTLxd7OYyhg5UaPqSLPhi7EaPc/I/4Djw1NIqRXWZJOm2uRuo8unfyKB\ntnSBD8d12kKUyxOBum/MViKEOZzhCvs4799CXnrAvRt9/HKJ4swg1rOjeNKYzinKSCErzJlbbhLh\nIq2+nbHkINzwYe+2aC27Wes0mAkBzFSBwNTHRBfQE2tkSg9QWwssOUi+PSKyGaBfV5lpDix5wVtv\nPco7yv7Odzj61/+aB/fu855u53b7mB//1d/khQufJf/E3+KFf/op6oUrGKN1tgpFxHaI3Xu7POUJ\nka82uK7XuJAMYtpquCMBxHmGynsPCc17tLdPoazssPhoQfT8gOh/+yW2Nr7C4ODnuPDrazxofJ8B\nAfyiTjq7yfvDFvNuieymB799BaVXpBfL4aoLSLMOssNH3mUnrkn4xDnJuB+zM6N4pkzXFaRh+bC3\nMng2ckilZTLKAUVdpF46xkaUhaeG6B4h6Ap7WzPGYwVPfUg3NMeTH6A2ohxsevG2ZyS1BGKpzySV\nQ9BseNUVApaTH77yqL5d/vIFgncnZIdeCt42kbqI6NpCEMu0cyHShsnDtEZdmrLii9HAhlFt01nf\nRnNAbc8iuqjjHc4w41VsH46Z+sOILgN13sZWHtMLr+AMDRlGCshOnYIg4O7PmOc9OE8vEagdk/NX\ncQ7T1Jwiw3qZRqzL1kqWD1Nn6Ox9RHDLx9Nf2ETFwflrv4L+x6/ze29VaBwecOnOhM69EV8vd+lF\nNSqv3UV9xofWnrF6No7WvMzS42E+/PYPSXrjHOTGvLX3l3zpUyGMi0PC79pZutvlWMhx608GnG1c\n5I3WH3PwrV3c8RZl/zK3/efZ/dF3+cd//+/8zYeo3/vd3/6mmTyNN7NBf6yij3tUjh3k9SZP/fzP\ncuHZU4hffJpnxzrj2h61QYv6wxsEnVsI/goD70We9LQRLtkwb/q42ZyQ7Ag4148RJ07uH1dxKzJ4\nl/DN/CS0ELdEg8DUhX1Y4FCbshyPcE2zoyQUNuUUi1iPwdDJe/IHkPTgEyTE+ZwFQzR7m5WRg31X\nmG0xQCEQQQubJGkyP/Az2PIQW83gtSscKiL+RYF8cc6kbYf1DpmTMp1Oi8BjZ9n2rBIij+5NUTbu\n40gK9BoLiqadthrE4XRRKOqMCiV83WXKc50fvfXIa5E+8wJP5kQ6lRxB72la6oBTSZG7H+1zfulp\naDcJFrLkdkzkWZX2nRtojwmMrnkIbHdxzCy6Y4XJgzsEaxvc655Qj8WpL5ZxmjOURJOF6KQhSkzy\nJ0znG2jBAmo1SMJs8NH+gLDPZFNfw6lZ6OkFgaUAH/7VXb74jz/Nw4cWMXHMKTQG6MQiHtqlBUnb\nFca9FaTKPVgL0/faUB7ssTZXaHVC+JNhPJ0OuemA5W0HdVsPuZRFuqZRysp8JhBA5Sa1bJvpVKZY\ntHFu9Tz7DQfxeZnQpsJUdSOnnDA3aUW2qCgDPnrtEQz8zMWncTTq6E6VXErnjDvD2O4i1ErSXNxn\nHM+SdTqpOPZZlr0MHBpp9yq5yR7D6xY7P/HjfPBnP2An8UUO9/vEj48p1wz8bjfVxQJ3p4uvnaW3\nJOCcCliWn1o8gXd0E498iUHtDnJBoiYZsOzCJdpInPPSvtsjqK+zb/qZtgtozS7amW0ClkCp6WQ7\nnOVQnrEjg8cMMZc7uI7CyM4V7Ot5wnWoP/Ayz8xweOz4B/sQV3BqdZynLCYeC3WocrJlR5oKCIsp\nw7CFe9ylt1xCqaXIN03OnK/ivCnRauioLjtv/uiRvPK1r7xAXLARiHspyB3WxCgn/jJnlp6nUhpQ\nS7uYGTJiOMDw5kMs92nM5TCnfCpa4YCB04a1dw9pUyWYGWEmznHB40DyJ2k/6HDWmeBB/JDg4knu\nLeUgP0KMd7m0M+HuUp/oaEDX9gHVaovlcIpxERrvfEx0+TKNUz3Ee28zPCjjXw1i9Ftkn3cys4ss\nxgZaS8D8WCfx7CalfAjXXMR99izuMkyiIbaSx7inIS6cXaYx1die92lHYmwZNfR8HtNpoyEKtGxT\nYvYDmmaCFV1B8ljgs5hMfAQqDeqjCc6Cjv3Ly7zxJ49k93/5b38O480F9a6OFnQQv5TB7JzCuGnj\nSMozSC5w7D3gxkmOJbdMLmfilFzUtNvYmg4m8wxaN48phZi1bcjuOH1ZY1AK4nH7KKTdPBnLIg88\nDCWNuNXhYW5OvuND2xaRQzLDjyaMPS6EpptFLU/encP7hAf1w30eKl0m12ZI59cZ5lpkohUWt/ts\nZ5b4+Ma73H3lVR6/dJ4Px/sIyxq5vQIur0XJmBI3HOx6wiw5LfpeiAhRpIBKqGJSki0KRoTMwMa8\nJWD3jikcO6gEB4STdoqlIJbPYDQTSYhtot4a4tzN66+/A4D3t36PH3O6cM9U/uHXvhaVvVcAACAA\nSURBVMBnLj3P+IPb/NzwcaTlOMd6i8LdD2m0Zrzfu0023WNF26K4aiA5wiwnBNzPvkBc7TFIT9FK\nHyO6T7HIizRLd1DLhxT1fcxuiI++9wHHe3+XrieJNOzS+Xaf7bCIpAWZF4K4vbskq8vc7g2JiC2q\nbSehyQaiOqHazdKR+mQkiUpXJyUNuTMcM5QzxPs6xZMKF+dOTpwFxqoTXQ9x4k0ScKoYfSfiap5+\n4AyqlcbnLOOyBfHU5lRXSugdhaEywKlDLJJFrStY0WN8XR27oWAV/aj1A2qanfdefROAn8w+S+VM\nlPxsyiyQQFdLjGtTWoaCmzJGfAPX0ZygKWEaJ8ieMa5amLBgYSvX8S+SdDM+JO8YR8FLdW2Z+MTG\nSSDHmhAl38kz3HAwyuk4TRuBeZa+PsEYbZJazRGp1WkvJfDjodS7gc0u4nQrhIYJStExm5aMeKfE\nZkijs/893D/6C153j/ipd36T4NqzrAfP8yfed5g4u2Q+EeLy2pMEv2awX4xRGOd5IhtCSM0Jejzo\nUp71zPO0bSLPnH0c3p8x/KjH+//XIa/m9nAfixQb7/DOuEW4vU1K26Ddu8/LnzyDNujz4C/e5hv/\nNch5/+p3f/ebXzv9DBtSlfdvDOn4Kzy2kiUndVkLWeRzNS4rH1KVbrF/0mWlnCAS0HGcdWJ32xEM\nBwvFwt7z0p7lCItRZpbJbltiSbYISln2ozrbNplRZ4ZH8hAcglHto4WmBPU4/USbkdRjft3N3Oai\nfFdm6m+zLIZRxABGc0rIv47pmOCvzqgoMwZ5iav394kc6US8cZzRMNa4S8gaMTlSuO28x7TcIFrz\nkJEv07l/g0HfJB1bYVQVuaSKzIYn7BNl2T4ksljlJL/PcHmOWbdoNkzcSTfuVonpiUl/28ako/De\n+49g4DNf+XG68WO0Uy8Rnn6AMQqhDjusn1J5sDdETQeorcBc95JdqxL61EvckIc8vKfQ6Po49bXP\nMrlzzJv/6RW2X1qlLsVJOfeINEIEzGPaskRyNUX3dQsHI6ZJA99ujcaZBSkhiDwqEs4aDK4/ZCkS\n5YP/88/YPLuDkpX43l9+zI9FX+L9xRGV+/ewlR0IJ2OiqSSHH92H6AVqC40NQcDxsI/dZsNwbSBI\nIr2qzny1ibZ3gt0MsxRLMhi0iH7jCW7+89/B1t5F0rrEE/8Nu43bZIcqZvKIqMtk0lvBG/VSyYeY\ndm6iSmFsSpGp087V7z+CT/9n/yfq7mUcUoS4TSDQCdCMDahYPYzQHGE1y8dXDxkGY2R8MY7dZSoa\nbDeqeM4r1KtxlJt1IturLIfsjF1pHvucl961E5RdPw6/BIEmM1+A7GjEYXqMrfcBsvoYgbrIcGrD\n43HhdCjofQGTCP36XSYxjYO2waJyxNglYYuZKPUuLd1EWRewmQ58/RHN3gD3OE4qncS5uElpJcHk\nrpOc1MASfLhPqgT6RY6XVnDOB6g1g+HcwWgyoSLGaOvXODeT8U0clPoKE/cQI3eagec2YvwU+mBA\nPeIlMFLI+73cePVRLtmTT/00DX+L2cKH42MfsbnMOOJn/0EP5zmNwNxkau4SmcYRK14GQoIVfU7Q\n44XVObsOCaXvYBaR6esdilfvsrU8R6jYGLhL9MNljm/ZscfspAMTJqsi3vB57Mteym/ep/07/x7/\nxQRntr7AeF7hQdXNOJOiqZZJhLrItyTcg4dsetbwYWMxL1H++ikWRg/dUUGUzjApjAk328xiAbzW\ngkrdzXKoxo1mhnNntxi47zJ9/ypCPYqPAuXbDjJrTyM+IWDkDVztGX6Xh8AI1Pw+tXMzxtUYkUUZ\nM1ah197Gd0pCuXmDVz58FA1x6em/S6w5RQuOeXjrJqeeewJtw8ux1GMzCu75CkYyjpJcUJIabEpB\nKstuqEr44xFE6kyWFezeCHJkRqg7x9YrY6xYpCcSG889zZVvvUbIK2C43LjuXmNRGnL/nTdYbJ9m\nNTul14+z7FFpDVWu3P2Q1NpljLtdPP4Yw90qjz22RXfvPdz5HIZPpjyr08l3OR6U+crzf4uj2Ro7\n4W1y71moSxquoRstZNDU55wfTil2DJTVUxQmDfzigEW6h99coLki9NIlvLIdRssY5j5rgyV6qSmh\nxYzkfIAo9/D1Rtg9WQ6qMtfeewTtLz7+fcrFPfTVW/TqDYZ/8mcUf/cdHNVPs/Ltp2gm/x98jQzF\nkys8v75F4b5O8pnHEC2ZTGaL/dtN7PIuH358zCdOfZqTbJLiyS4rn8ni3rnN5fGM4PYatg8e4oyl\nec4rcynh5L0bV0gEVO4twlRmVwlrNfK1DIdaj/PyGi7PNpHHFqAEGA79LJ+dojsC+BxeIisROrkx\nytjE7Fc5iXo5N8ow9rXwawNM15OMjiecNY6o5r1gOdhuVdEjYbyLPj1jRLffQRIFstEFlf6AWSOA\nGgjSE6o0Uk7MRYOBPKc032FMhX5qFbnp5d13HoW7vvz8JeaGhWOiojuazPsKRtjGWrWL33EaIf6Q\naVWktRygpTswGgp9r4kS9eLNF+g7TtEYN/BUIpwse5iKJvZZmY5zQmfhxu1IIogQFb2Mk26mXZ0l\nd5i5YLLje5zbdhfuaovySYGNdS/XbufILl2g7XSCZ4X9d29S/88FAvsaxsUt7I/9PPmmxsqTX0TS\nvszBLz3HJ49aVH7t00SXX+FB8Y+YLO3gD7hZ+Avs1uuESxrxNQf5zpxW75hPrSyRy424/lv/meXT\nXyesyDz5y1GCz18i+PNr7Hzuy9wTJa4+vMnDxTXWv+5BevFfcP0qfOMXf+1vPkT9i//1t78Zfvo8\nrp5O5sf8nBmGiQcUikaNxutjto00N/be56zjHN1ii6GnSyB1FrPZ5MbhMRH1ENfyBSbvP2S6eQ6X\nus+xfcDS3EVjI4svE8I16KELAh3Bj3N1QpsJcrtPOxDBSgw5eGiwOU0SGQxpTO6y7c3SF2ExqGLp\nPQZjAfepBpJXJH9cZnQry5Y6YDOe4sxnVhAdE5yZbVrVJuJYYLTaYlAXiNhHLIluvF4LyS8SO4wz\ndWu029dYu+jkZBhmGpcQ7u3hdq+hBKDtrZEsBlk+FSLKjFlolZnHjrOTRgiOuPLDRwbpZ5/7OySP\nZwzq9/AVBWTTRnnhgrxMNWbBaErY2cI9dxF1C3g3fFivFZjpMosvdbhTe5cnP/kcnq5Iy9lmo5vE\n/7SDrjWh71vm7Haa+lt1CqOHaE/GUF5pUFw+Q1aa03//Y4JL2/jrK5x6cZPK4V2Ul8+TnRcZ40e8\n06Bvt3N+7TlMM8wi2cBx4RL5Sp5PPvYMkj1PqXufTnKd0+4hk6mPaa3BYNFHtnnxaA5W5ud4v3WL\nlD/AvOJEHY6JZi+T+Vknt5Fwzk6ztvI8hqvMTM7i7YNo2nBPFuSDU6JKHI8l4xv2cdUm/ODDR/LK\np5/6EhvbNSRhiGI2kIs9dj5pclx3YkxXqTfvEFUdGA8r3J0HiOv3EQcT5vQY2U7h/bhGXvVx5/j7\n1IxNBvka9yrXCXuWUJ7KMDMKuBoe3OoJo1oN56SPpp9hIsXoLvaZlPrYrBDdrTGziotQpMV0ohLp\n23Ad9/F4RVRLRfMPkadLZD2bWF07c6dArWJDW9hwSAs67kO6pkBrdkh26sESnASUPJXgnKg/hVPO\n0TQsIlMXC/sppkMDl7dD6DhI5Yk19mcLUoYTcx5HGYjEl2OovS6apBJQS7TGElu6h7++8qg4P/7i\neZZ9HpSWTCVZwGsouBd5hvbTZMIeaq0ms5qb6FKXSX5K0AwypoUaO+HwqEO4K9GxHDiUAL1iGZcg\nguEjkTB4+69/SGvg4PE1DdtxiVxlwfPZl7nz1i32/rTH9vOPcemXvsipyAXu/9EbzMJePvVTn6Rx\n8yrBaIWjN0pU+31SWwHefHCDU+ubPCwMEWXIXfOjuDIk/UUMwU1oZmckKJjrXTxGkTFzMsYm1nzE\nlT/8txCIkWiItB3PojyeYr4hM+vcwpE3KPjspHQH9x/Mib1gx5UP0zs1hOkIZaigxY5RGxKk3Xz/\nlUcwcP5rX+WCs8t//L9/g7Wln0AX3yf0oYnnlJ+HxQG9WYWVdZFZb5uBptIdqYhqBSPmplsE36zJ\nxJ5lYkhsnwQZuJwMUilwBUjbRZqvVeg4pszScaLFPkXLzyKtEFcDuBZtJv3LuM8+IPfQxWZ6xGFT\nRL1VYvviaUZmn6VFjOs3voNflFj/1CZWbUy9OOV+7S1Wdi7gnCj4w3FOrBtsLSbE7CpDQWA+cNFO\nH2EEvIjksfcWJOZdjifQ70hUElNGZpO47TRDyU6jvsC7GeeEDj63TF4e0fF5iWkOnCwjDFoM1/q8\n95ePvD2/+G8ETv6wglIs8Jv/7j3efvsBL33tHzH4gg31GxbaC2eIDy4wj7RZrKcJOLJYe4d05iZt\nuYkRUtlZjtMV56TXn2R4VMSaWPyTf/ANhG/v4N18yIP3PkJeOYN/00KI1ih2BXKDPTaWVSShQ8Jx\nhoOIRkZysGN3U+seU9roMPzISyqyRLU3pKfqTObrtK/3uF98j5RcprJuJ3gpxvLJjPuChTcU48jd\nJdkCh3SMtTGjYuuzknEy9fjIdY7J6AHkfpiTNYOQ7Of4xMTe9+GJBfGMnNiFCkq5TNudQq8lEH0D\nlFYXXUyi1Kdc+eiRzeOJM08wZR3HRCRtl0i6NRq6hmtT4aB6Qm28hMutESnaiC3NaJuHZCwbXa+C\noyPRUXKE2nZUdcbM3WA6dRBvO2kUByz+f+7eu0uS9L7OfDIi0kZkpPeVmeVdd3VXm+nxFjMgPDGC\naAQakTyUyLNakuIuVlpqpSUOjyjtUiQALVfk0aGoJXRIiEYEDexgCIxDj2lvy1dlVaX3mZHeRMT+\n0fwS5Jd4z33v797njjT0GZVazWBiGdIUj1ir+dnyGugnVvTeHvHVAO10CqcmUBRDBHsQDJTwNs5y\n3L+H9vAhm04LpRUv2vpTzFyYp3/7LsqHXuQ3PvxvOP7Ca1yjx2dfSPBg2OPyz3+G6/9RwHLyLl7F\nw6SpUMoeYLinPHH5aZr7GbLtJO1SmbkPzRGRD9DFLpYNATlikFx6jKpVYKu9zu7V7/Kj//yPcF4v\n8Z0vXqU/sPILv/T3gFj+H77wxc9/7EdepdKrM9E8dPMP+L3f/338+ibWOQeztRqtbBQ2nRxdqxAn\nwbBfRjrjIjJM0QilqN+9zjC2StV1k4R5Bq3cRUp08IlT8gciit2HWLSSkJpIs+v4CyP6fonZSZbJ\ncQyXCqauUzzO4VjYQHNmWdYkMKdU8l0qiKzZNhBujBgE5lkxLNSVGYaCA8dphvEgj5FrEg2IOHxL\njAI9gqcWGvNhXJUykmXIbk3BjNSwRZwsLITYsloIz7bQT11EZSeZyTaiqDDKipieESf9IbnBlKTD\nzx9///cYNSN8+8ExneNHQ7prcy+z9IRA5KiOFvPh3xwxHLtoBjQWrRbM5gIzzilmIYpRb1M0Vd6T\nUqy6W9j27YR3u4gzNQZOAYEDmksRWtdGiGdjnLbrHDQ6lFodnrjwBPphEe8FN3ZrlcNdJ7NLOu3m\nIX0JHm6FWA0F2Ck0GI00PHE7/YRJ5I138C3rpDejxHc8tDJXeZBrIwZsWO1ZPMaTrJkPua90mDZ1\nYjMWwoE2xnRAJBQlLx7ytGuF03tlegsisuUeucs+HvxVi/OSE00s43OacMOJS9XY3c9TNxM05iSS\ndNDHWY7DPsQP2hzF4fr3H80iLP/wswR6JYZ7Gsm5Fa4mJ0zmr5DuWCgcFKBuw00A51kLemuM2wvm\nNMfCRoCH+2E08x5+LcCqlKQc6aM+l2RuAg+MLK6Gk2y/Sknp0pfPYGtb6RTWWV5xU4neR63aWF6H\nXk1AatuxL7So3p4SekzibmaHqLlBY7ZNz1DoFj0sXjJoiGNGZKlO7MTHGfTQhOFARhtbUJfc5HZE\nlLGHqtPN2KWTDg0xxSA5tw13o4eWGFOR/YjFfVzuMcO5AJH7MqXSTYIhG9JpAU96DCORiVrmyBPD\nMzGodGK0Hbd4981HpPeNFz7L9CBDIaYS9biRT0QmkzED4wiHDRwHFZZWFIrNGMFyl1FKRh7PklE1\nnEcTbPMmIdcC5dE2TYsEsQi06gwvD5m61jAXx7jr5+DjT/DHv3+CWw8Snkg88VKc8/YlWn95RDGa\nJFnaJycHOWi9ibm6xCS7Q2UCAZcfa/UiCbeXa5YbnEu68PVX6Ctt/N0VcgU7TiXHHW8ZtzlCiTUJ\n6UN2m7Po6S4Hb32HJf9F3JEF+pEVms06Pds1aB2yNKNwfMONOjEw3S5icZnqpINq7TAqp5iMTQrB\nWWxAIJ1lt3TMe28+ACC0togjnOXxC5+iVL6KZ2EO+ZUz/PRHfpJn1n8Vi3SWSkchMB8jNWgxiY8R\ni15MT4VApUk5ESHay+GYsdOttAhF3fiHdSRR5qSpY7XVsDvDWPwuCmKLWNeFKraYNg0aZxcpfPOP\nEbwmM8t2rn3tAdELKit9k6YnjXV0gprokJQT7EZktt/NINpDqPNVZl75CTo9PygqN49uMqnO0HEk\n6PX3sFkgGm6C6yytaQ3BryNa2jT7LlZcE0ZhkV49jqvipGfcIeUaI9sbOB0FbE2NVmvMghJjWOgy\nbYRRhvsM3CMsgzRvvP6oAPIL//rHqWW6NEUHD00Lf/TrV5n8yS61YIeVK1HevZeh973/xvyHX+Tg\n2msk2i6kSzGijSztcRrLN79JpqKT1l3k89u4j8A2sHP1xS3ub/4lZ0p/wyTkxyJfwqN4uGkUmSwM\nyeYiZDIactOgtCHS392m3goQ6xXILsyj9qq0nHXcSYluaUrJ2mbVIeP9eJyVs5vs3xzgNY+R227u\n2RSczT7W5QryNQGnMqDZTSL3A4QHdfrFDk6PA+tpHHO+R8VfZXYaImcVUMtTmkKWhD+CZA6x2etY\nJgv0lCAL/n2m7QaOwJh4K0rYLvL1q48KRy985iVmLE6q/SneqcHUYqKGy2QnEsxYOV8/xhfSeChM\nidUs+P0BMo0icWcIXexQb8+zcKnOwWkCi2+K4s/hCNqQa3YsioS7NcYyHSDGJGbLaQ4cVRL2HoOG\nA2nNQWF4RHK3TSXWYsZyjGdop1ddYLBpYMu8w+rys+y791DVLqreZNDIY9GsCFdv8vH/42myxS/x\n0Q0b8dAVMnmVYbnG4b9+C0k5jyW8QOU7b5Jf1TGsM/zNa68TXVpFOOwhCoeQbyIKVXrGkNDmEHnu\nLGZ7yNbvPuRffvGzRH/kD/jep3+PX/pPv0z8h3+TP/gNg89//t/83RdR//5Lv/35Z5JzhCwDuqNt\nfIaDC5c+S9TiIiA6GcUKOGpjSpsCxpsOWuE8lY4Klh4+exe70mda9lJrHRPJzqKs1MFl4i7VcDsi\nHF9vEhy62ZHB1dVIXVjh+PCEZqKDlA9Q8/iRlTxMN3lMWaXj3sKRX+Sh1GQ4DRMwR1x80knRVifW\n7iEPnByHRGqv3Wd0poEmavRGBrLHTTU1T387w0jIo4+teBoifXuOoEXEsM0w07Zw19GhmZ1AV+Lk\nQYi6uEdISDK2x7HMTzAHCmOPSqyeZyMQoTeccnaU5sd+9Tm++L/+NL/G/w3A2SsfJur2cMPoMUo5\ncN5Js1u6z9nzJuVuilxQ5HjPJLw5okyZfjeAsg89p0CkLmO8cAezd49Eb46TbBocBppfxXz9u5zx\nPkOreh8TO77gFKPToZrqYX/rkFHcSyzoxTPrY1K0U3EYDJR9hPDTrNsTuOat7J/sMnQ8SXhsodFo\nsPBylNHUheJbp7i9jUOZY+A6pl6FWYdAuKcz0dKMuhK7ywqumyOsMxp6XaeszKA+G8a/NUS7EkU3\nJlisF+nsqGQMC4GJk3H8BNt7LdKOKXU7SA9v0zNkpJ4DIZbGMuvk+3/9iFj+0uO/QGh0TLQ3w877\nb+IdgadhoWvVGBszaMk2nqKLkWXCmtgA55hGPMVgbQ7/vS7StIbP1Ml1PEy6OcTTGq1on7C8SEDM\ncDo0SO0tkO73uVV14XzaYOi0ka+Pqekiy0zp+hpMGyPUDy8xzOUxvAIXOk+x1cwT9/RIVFXOpGxs\nFfO4/FZyhVnm+wJaTMDhsuEcipQjY6x5ndTSGic5Oy5HleFJEWdPp9Pow9BNaBrDX+8w2fNQ1RTm\nvH7iSpj9bIbuaorWXofQ2SRHJQ/+tSy5pkwSO7WDJurQTSUFt771qJ33qcBTNB9T0W1VZk/7WNw9\nBkofe9vLybGFunedwsERz70SZ2c7SEmW2Kkc0S95uHx2iTfeP8W/ZMWszTK8c8Lc/D2sniDDipPb\n14u8HPoMh4EWla8csvjZF5kcfo/IKwlqR13+y6/8Lv7npgSsYdyLCcIlhRIRoo0i+8duHn96g92O\nxJmAl+FyF/+RkzxJfE4TsfIQe8BFtXJIMwbSJMVuT0A9stGua8xENbTjBk+EX2Sw4mHYTWJMBizN\nDGmVWvQDs2jfK2M+HSPmHWHVm4wDdmrtI9xEafVU4mOVnkdDUUI4j7eZ0Vb5i/cf8bXi4Zd4ci3I\ng9wu9ogP7cjOwamdX/6FP6JxP8lx6YSQ10f44pTDgsDIeYhs7+E9lUm6RaqaBXU0wnRbyd/ewnSH\nqM8r6JkhRYtGoJdj0Ovh9uUQ6yFOfU60fh1502BufpHrtTwfm/sEoqPCM5/6CeofTAg9rSCe3mU4\nDnCnK2EMh5yc3ufpJxZZ2Vjj7q0qiVqU2sEdrJMQkfPnmE52EMsHLC6uMRlXuD8OMmsr0c3ppCZe\naoJMoy4z6RWwZdswauGvdikh0YhH0bMBMrKFhl7HiC4h1vq4fKd4pxqH1nVi3QmOqcI333rkqHzs\nV17FkssQX73M9z+2yfjVL7Oy8LOUznSpLDkR9zoI4RnKfoWCNmU6NUjZgtw+EIkbBobgIF/JEp16\nKMbmmHTHzD3pIBY/j+N6luq6QGFhlcTYT9NpxXYaxrt8jvaf/RGsqixH5kkfOQm+OEfaU+S+W8Qc\nnlKmwEJRYFwdEAhfJWZE2D45YrpdoG7GmPfXwCKwJyicP/ahzZrY5RX0eo6830XCYaWUqDKYyAzW\nggzzY8KLKprZZn6Q4Kg2Riy3cHpMhvIqLjED0Tp7mhfHQMFw3ccw/ETGFuzKBPpDCjadd9762+zi\npz7FqH/CcNjEnMQZ+npUR270co9YwM2xasF3qhObeCnqedwWF+J8j/zUTiMnYp+10tYnCLESnXwa\n9zDCieQgMj2lJhoMHAOmpFDsfcqUSRp9sk0R2W0hNjmmJabANAlvqew1gihb75OPGhSbxyTcixg+\nG6NqFZ85RRx4OGhOuPTMHP32lPdvFbBe9nDlwy9y7f2v4juKsPfbf4XLEkB49aPIrSLdkEzUrmJK\nHZa6QcLudYqDLea6E5SAxtQzj3uhhr4x4OjrDWybVu5+8b+T1f8vnNduUnnQxc5FXC/+J659ZYnP\n/Yu/B5mo3/yd/+fzTyYuUEnP4yxMSa6m2BfuMUQjkhEIak52jC7T+x4Gyz1CUXDnUwyUHLGhjbLp\nw2fz0xFypESNtjNNYNJkFHQihx2UK070mUMSnjSxYZpi+hglr2MRFaZ9ibBHoNXysDSn06v1qO2N\nGM/VkH/wIxxbt8A0ETJtBocRSv4NRqMqE2uLkm3Mmpig6/GTngZRxBRHnZvMiCHK2yc03ToOQ6CU\ntzBwBZF9bZwrc4ijKkJFoTEjcNEjoVS7aNEKHV8DpdGHsJNmR8OqxejOJfjgg1vMUGD4IMPWZ7b4\ni9ffBOCjP/8qSUNDjQ0oHujsTZtcml8id9rGWmmy2qlw39glmRtz5ezjNBSZ0HYOl81AipXZP7Yx\nyOqUH9iYv9LAkd+g1D0lvRIhJ1ipHGXZvLKCpdRASw/wvj2HdjmIJ1Nmq+lDHmYxrjzNpDsi6C9g\n3TnmWizE7XydJ59XCbx0hZM/us1JvIe9pHFSVpE6DrjcJtyyEq/WmNgXyDVcuM45GfYO6DhDrEtR\nULpAHEHqknc1mL55i66lRqhq8vakxEszlzgNjpAK21R8QSY3DlCWh0yeWWC636GeFhCHEt45jYkY\noF064Nrbj2B0l370JQKSjlWWGRVDhJ53cHL1OpN1K9OswjPeBrJDRqjZ6FlzHFsWWHeGKecdTDMV\nGm4XI1uDRFJAXVWRjqyIQhOf0801i4OzQ4W2M01DqhG3JwknBY6y76D3Bigdjc76IpZsAF98F40A\nSkdnNHYRCXcwvFO8po+KKIJxiqwmOWkU6XULjAQHlpyAtXNMS3CQbMq0ghKGeEC/asMzkFhPzXKg\nDPBa/ZRCfQL5AhOnhW67g5lI0JjXcezdJXzWQ3/ip+9ukDALjG1BhmUX6shJz61jM05weRKopzm+\n+7fZnpef/RgDdYNxvogpBmjEhgSafo63LARjMvv1a6yed9MpL2NmavitIuq5LpL1CMUi8NbdI5Jn\nL7HoniKslsg1rJRUDfv6BQaODKF4iuggQnregXd+QnLWwqnm4mBni6d+6hUyR7uEIwZ3qlb+6o0d\nXgoHeTOzS3g1wOStE1a8sxRVkU5BIOaqUbHoNLPH2P1XUJxltEEJr2IhtBbi/CSNdDZBORlk2aVQ\nz4wZGy6MThfLQodJvUJjqiJiEDieorhj+IUOHX0bX1TFGYiQu+ah2+ii2Ktkk3BWUyi/s0PfLmOs\njvn2Nx61zH781X9HU80TtERpZY/w6mkcFzQcWpzYh59kKMgUsmNaBxL1uIl6305TGNAXI4z0PBNj\nHrucJFJ109E10udMjIIBHZGObmc6IzG53yL4vIdmsUtMVpC6AeI+icqJyKXNGNe/+k201HPsTLZR\ndQmx70CzxOjEZ3AOMqw7JezhdVqSTs/SQp1xIul21KBCz18iYPSxDdewnJmh63IzboWwJlzIlg61\n4SKRnpMDn8yMXGbkOweyiN+Soi5L+EwJ804BTxCCnS7BgMpB5oh+ZIQ8jSFW9Hqj2wAAIABJREFU\nhvg9Tg6iEG+3+et3HsGEvT/9s1Rvn+VTv/BjzMS+i0yYgNCl7qsTe3uCMN9iTZ1lnDtFGEQpTzW+\n+Vs3+cQTa5zIMzSTFpxnwoSWutwu1VgMeknOwI3Dt7DkBbSjI+KRF4k86+H4vQZ5v8Skf4B9Psxy\nSiR37Q519x6Nip/M9T2Ov3WLiOkEdZFA2IV47OeND26zPJ0SDfup1CMUKhWCzjiqw0ZM8tOcmyJM\n92jumdh6NqRBAb0RRvLsEnYGUG7ZiPkFdoY6sVIHo1okO+gwWoojB8YIZgszN8BacaCpQ+YTQeRG\nj1ZlwqkqMDxYotZv0F+bcP1r3wfgxVd/gELTz9AtwcyUiNVF7jSPd+TAEgDfgylWDGpuE4fox9DB\nmPRojppcTFoJ25oYwwHdYx0x1acnGQhVEXvMx6A9RHCvE2g0yTt9LLt0thQbgr1PsFTF7l2jbD9F\nPYzRj+7hN5ucxoPYRYF0PInL/xiRYIjBB6fYkx5iaons7TzfeLdO8vI6FtcB3/vJL9Or7uCt5BmH\nlhGeeJFp1E7mRGUc9BGUT0lFL6I2VGLpx6k3dtl6vwyzPZJCAl/MhyPyCuV0l4T7Ckovy9qTdn7o\nd36deC/CUbtC7PI5yv91leuVN/kXn/vc330R9aXf+s3PP3YuhNXhRSjr+M9eofzaEIs/z7hUZqgM\nGF46T4sTUhU7wzWJwbwPW8WPY0agf1LGsCg4m14Gwx5Bo40ydVFyONl6LUd4LYBXh4PGQ+Yv63Qs\nFxH2DmkKMsFCkXtjC07HPZqnfoTv7aFNCxyP/fTsDnzFArpynoacpReSsGR1lp5Qmb6/RVuZ8MrP\n/iTto4cU7S66Wgk5JVC7a2BZbXHWucqx1c3G1MlYLXHiiOC7tYV9aRWx2iQelymIp/hSq+g1FW2k\n0xAdDJsCkz0bw3abdm3CnFUiJ2m0RykqwQDv/a3dfeb8R1B2Xieo6rRjL5FOTCCXpe+QMIIOisUR\nFzeSlDWV8vSU2DBAwT/E2XPyYFzlSfsSbW2B7t0K2sVVjLCL8nSIOMqSryUYTrdZDG7QOVBonN5G\n/aSJrRVFo4PXJyNGROT2Ht6Bg518g95jXjRLgTkpRMDu48G32oTCoHQCuAsFJq42Ze+UQTGEnQpj\nyznqthJd0Y3hKxJoeOmUrBijXTStR1OTmfF1iAYvsOWSqNZU1FiKeK3DfEXDGN/G1n8Ma6CPNLiD\na/Y8owOFar9IqD6kU/URWExjaxcZz53l6l88msv5xR/6LK0HMnn/e1ilBof4eeXyKtnxBZq9O5CN\n0hIrVDp1Vm0RhNkJE1PCdEyxZI/wdEOMJzpWj4sZX4DjSoGmFsJ6fIRHOY9T22fgrzLwB1h2Ghy2\n93F3fUimFdnupbQzJeRy0J1qGCOVkEfEejCiJw+pZQc4A31qQpVIzoulWaUoGIiSh8VBC/xDXMEh\ng7rG3qhPuJmhEDzHehf6Spax38HKbJL+7j1KtQFSWyLgneNoIc/GaILsdlMb9ag0rYyKTVbVLjnL\nOhtGn5rFTUcasqrrFHJ9RuEpUkjnjW8/OoOmL1sIxQTaeY1I3IN3msXj3cQsjxkGTa68eJ57+Smy\nV0aJKpzsfp1WeJbTfR3BPiI8uwGRLIZZx2KGsctj2uMVGltWnotcoWzqnLTuEnB4ObjeRwdSmx4q\nhyVi2FAXl+jXJVZ0Bd+yFV/BhpoM4E12kKbzlGfKdIIaZsNPcnGZTiFH83jMoNzA7vgI7bpCsJkg\nV89wOIbid19j2SPwja+3+MHP/jB3/vxrXHzlCoev3Sf+6aeo1G6yGZvlqlXEmq2zXXqT4cbHGTUC\ndDMPSF/cYCpOyVvGJLtQ9DZYkRUczz9OYecW77z96OwuvvI0F0seMnqTJU+SXvMtRrrBw06SjlEm\naY9zeOcGNhkuWhRUj5ee4GHDJmO2XcTteVyqTls/wSOHqPV6KPE0OSNHSIR64RT9jEjxu1mG8zKT\nq28iiE6sXhcOtU7JHyGX22E6pzO4WWOlL9LLPWTgieN2dAkMKyjhs5iWJuG6Fb2g4Ryc42TwGrZM\nmk5inehoh/c/uM2KU0O/LRIIT7FZh+SKYHN4sap95OopxnAOq1MnOICCXCEpLzAYTfCEZ+guRhmM\nwzgHE9aWF9FuOVldcnCjU2TkdSEWfGTieW5869FnJ7SwyvyHw5QvHCIxJv4RO5ZQiLnyCg/c77FY\n0cgN7/GdN/6SJ5/8BwieOFuv/zWC7xkiaS+tBxnuW3rcqF7nn33i57iXyVD68nUcrit4fOcQF1sw\nkIm4+tx8aZ+H4wAZ9w3WXUuc/vEbPPODr+AymzisKWSLjaVEkOXIMt32lL7FxfvVbZ798A8gDno4\nzUU8Qp+qZYdGKoEmCPiOshzlDWa9ScZxB8PJhJiiMlGrOKshPA6TB04Jl7GHLo0Z9FRcix2UVorw\n+JjCUZJeSkTv5ah63Xh7SabTGjX/ENVqIy0FCQhZSlhZds7w7df+dvblifOkGj2CfR2tn6DbOsSf\nHCP4TaKHQWxpmQczfVSzT2jcJismicQqlBQBpS7woGzD0xUI2SeUBStnnBOCtizHTYkl75SeZUBp\nWMATSZKrn+LLT5DrMVx+K4eTFpsWCSUNYe8GoirgGLjI3X7AIHwGv0shk8/wQJ2w4rPgdSsY1TKO\n+1Eibw/JXm2y/pnLOM0Aicf/MULfh01ZJrvtov0DZZ4KzlHpXWdQ6HJHz/OEfZXT0YjTd19DOjeL\n+tIa9fQZjkdZ8u8u4Chn6YVG/OC5dbpPvcl39u/QfSvL9qSLoHyd/UaDz/3zf/V3X0T9xhf+4+fX\n1WVa7lPs0S52zwZm7Bry3OOM0laiUhKzZSFuUQnFXXjMMemGSd55h+xdkeSMQK7exkwtkTxb4bZV\nRGh0GZTsiDE3rgMFTa7yAzEnz//TX6T3v2Q4fXNIPLTCwdkyUdbobL9Pz7fGY6lNJhdXmdoWMBdy\nDBbX6Rh9PC0XjsMM1tAI8UijeWYDr54hv1Wk663j6OsEhyLDnIVIqs/IGaYXkOjevk/Su0BMDpPL\nlFGfm2GQvUknUqXST5Eud9gvaBDpMiO5cc8oJOqXuXJepO5YQE1qrD61yPp6n+NSitDyBt/98/8P\ngI9/6OfxzPo4CskU2tdJv+dg+NyA2eWXYEfHIzrJeUYkWwM6U5P8JE9LC+BFw5aystsaEw14cM+G\n8HRajJwJnAUr0e4JKjkStnXEGYXxfAvFuYC55wOnGzctqHcwayoHoyjFe2/jdUVw+iZ0hVVcRSuT\nwQChfUrw0gpDR4+Z2ccYbD9gMKcRuWNwuBLA2q8iXw6yqjcY5ufI7N9FVeI412VUPciM30L1zj0O\nwgpuw0as+D4Oh85BZsB83cquJUjv9l8RdOroKwFs2SilXo5FR5ze+UVioxH9e9d44Ioib93m3Vt3\nAFj55D+hM/iAZiaJ5B/S2b3N4see47t/+GespiJIdZNWr4w646On9ghXZ7GMTTzDHNttJ9YNK+6C\nyUS20jw8JrQZJ3DSQV+QGUX8VMtjbOEAYl/B3D+kY3XhsbrxG31sI5FEskPdbGKMrMz17fREG9ut\nE8SwFbs9gaYJjMUGNvUy2UUvvYYDn1MlIs9C0I1TlmA0QZwaNJaXGIwbLM47yOyFOPUUUU9FjmZM\n5p1eXP4xHitYfVYMp0Ipu8XQfYVFb4uKtUZYSuKeHGOz1hgbJcz5dU7Kt5jaNpEKTuIOO99441GR\nYSP9iyTjc5TmA0wbOdojk5kn1zn4QERdF7h6/C7PbjzF5EaNxrW7XHzyWZZW5jjnVRC9UybHpxS/\n/x20YZiP/uJzdN+1snYhyNA8pClEkbMZyFfYbQisSSbjUoOqMeKZxy9Qim/RGnuJkGSobtM2jnC5\nrNjOLuOmRU3oI1kNoscTKhMHW/f/B2fOXeGo4yOgajTVbaQJ9EM+OhWVSwmDmcsX0d7usf7hCm/8\n9kOkD8Vp1w5xaHVCwU9Rrh0zGVgI+3wUnArd9iEb/UUQNZwb62iNhwxDlzBPhmS8HvQdg7TPwrU/\nvYcZfZwPrj4S7fpNH68kW1z4aIjWyRb1E4OpewPVM2HGO4bFBNVtjfiKSmUgYx+JuBtTun4rloGL\nnJzjyBJg+/4xT//Ip7l7U8Oe8iBs2RhiYHinRA2V5OJZ5gIqDtsQr9Og7nXSKk3xjELcNNu8GH6B\n/t4RNd3D/YsjhpMq9sw27lqNvD4GwyCY1HjwVpVYrIol/gSWdpNwxwLDdeyzCmG3jeNAkLijg9Ic\nI491hlsnNJZzWOKLiK0mM4N9+qoNUwzTKrtIDn14Q1Nad2/TlNwMxRKuRI+SaCHQs3F0ssfyshUl\nMGS40+K9928BsHlumVg3T2L2HtuN9zEvzZD/xin54ju46m0qo/uozjQXQhYOsw+IzFvZ/rMMolfC\n011Af24Z5WTKcxsrGMoYrd9i6dI5SqdZpKdX2HTPUjr4gANhwursPkWzzUv+5xB6B2wXGrj8Ddpj\nP/uFNoNmDIc3hutDNtTF83icOsvymM7tYwarF7D0++yLdobtDusjCUe+gSc6Qgn7KJ4G6XAHqz9D\nxDGLy7DT0weU7RuowkMaHRtq34Y4P0f1ugdP8pCjWIBl6wEdfZZ1cUI/0kBwjSmcKATaBmFjxL2S\njZ7RxTYK0o+pvPPNR5moF1d+nGZaJhOps2DpYw7AGxKo7CscJ6YkrSPESYSOtYFUmCUa7SKYTvR7\nKaqdBothhdNxD9twwHQypNXzYIRmmJYFyr4OSj6AOWsnvHuEI7mAU07ik22UzT5hDAS7QvkwQLW/\nR1au4baMGFt86KaFhKvNne4EXzTIUI9ja9nZbntJPRbA8ZSCHI1yLasy7pq0rDLhtRVKngGNhfeZ\nv+lgzXkb034Oe3ZKv7SH+nSKwMDB/sFV1Du7jHwLOBJBlJGHoGzwu98+Qtw8S/YLX4MzAtMnf5pX\nf+1LxH56hoWn7vHffv2QX/37MED8m//2S59Xz4Vo70958pkLnJbeJmbr0zuxYj/a4balhmxxUSn3\n6DWqnLZlrKUMvRyM1Dr9kownMKJUm+DZVnEsGDiaPqQJLC+lMNwjnKUODetZ7v/ULb76Z3+Ow2Zy\nadPByd0AsZUR5vkELkuCjv8hta0Cu8cmebGDr13ncG9K73aJs/PneelTL/I/9u8gOUbUtCRr8ohx\nX8AbNNAHM3RCVY7EIJa7An6xxYbtMpNOG31+n9F4nr49RXUyIlvtITZFwgthYkoVPE9wb/c+9kIP\nU9xDck6Iijkc6gztnMlr//0eloN9xrLEB29/G4DFZQ+D96pc2uzSjFxAdDxguOXh8Hqduec6nBoN\n/I1V7B4bYqeDaOr4wn4y8jucvHVE+tURftPKtetZrBeTnBV0KokeB9si5XCZl3/uAq998SH2eB/f\nxIsWzmMbjFANDzupIxKtBepBG/MbATY31zh1TlHmL+Lp3GRga2AdPE3K8T6+9gXK1fu0Rh76pQma\nuMUZ3yWm61YC338H07rB/XaLjaUwfvmY5kkDx0aE24VtjsOXECdFpvkOA5ef6Yab5R+6yK1vfQfP\nT1xgebqCbWmdULfKaGjimtEwihPmOwqj1C6txQjS/SLjYw/Xjh85Ko9/4jyewQBLpI5TXMYWtDLe\nUXjp5XVOr91mEBwwb12gZRMxFkRUT5vDhoNpz0bF1WXRGcMwugTORxn1fUwHNVp+CXVLR057cRg5\nTN0kWtij5fYwbeoozR7yTIyuUyZbVknJVuLiEiWfQa84IDII4nKFUX1Z2jGNC/YQ1RtFQt4GIWPE\nwCfh7RSYdn30vC76tRz9wGP41Ryr6XNs1SwE0hW82RlsNgutlouInEOr+6k4ojSsOpbTNpaVdbR6\nnqaUwhVt0+iHkFSD0SCIZHOgSyrprEl3WKDlk1k5L/LVP30E8QvvWJnErJwVImjvvsW+s8djzmfY\nyR4hRjVc4lnCUZFmzCR4YQOpVefm/bcpFZuMoyPs+gbRV89xuZlm63vXUPQmhd4EMbHKez//62ws\nPUVgJcYQFU1+iFML0X7PQtfV49oHecJxG7GgDanZwWaJc2TTKL6+x+kHBp1AAKu1gTlJ0Uv5WLrw\nMq56Fr9VoK6ahJKPoXqHuDtO0pE897KniLertC96aQx1BEln4ZJKbqqibpwh0eix9sJ5vnVwwIXA\nmEDbTnxllpo4g3fQ5/DuFr2KQLwg8PgvP0t9u83M/AEfDEwiKx9mpNzi2uuPsmRXXvhRkv/QjXNX\npF120t76PvPjRaZqmGmxir2scvTmVyjaFULOLma9w0rSoHTrAGwCuV4abXjC/JNnKHxti/Prj7Nb\neUDCCDE4uoftSTfB0yQLTy1z/Y0PGLZjVLNdmm/tE4/akJfG2OpWvNE66//4owgHp4wLUwYHBwRc\nSebOLzEpntJ1KJTvObC5ZxmmAtDtsTg7od1tUQk3kUQ7J5MOqycnNLtuSu4sje6A1Etxij0Xg+8d\nMBuP0ulYyTt8uKZZPOYhGbmJXbLDggPJF8RVH7GT01jeDNENt1lwiZwcR+gIEtZTC1fvPmrnrUT6\n/OQ/TeM5Ejisn6GxtcPiy5/krT/8Co/LCaI/9I/wHURZf/4HGU28eG99jyeuRCjFw8z0j1mwtLCd\n3yTsyVHQbAwFFefwiAflVehf5f5kwv5bV9m8+AST39vheeNFdIuXXFAiupTmQjPMoXSRK7rJyJFA\n1dpkykEuPLVEKZPFEvXzztX7OKaLpB0NGqaGbybNICkx7dc4rNQo2yvYMnm6WoPV5Rg5bcIg2GBQ\n1rBN79IKrpDUJjjVHo5IjPasTGCaR25ICFUr46DISDxl2Ioz1xdxexMUayc0llcYmzJOR4Bl1wnC\nxOA7bzzK4P3w5YuIszZSzS4jwYpRszAIx5jYFfzuY0TnHEppgFydUBc0Jo4kg1oXe9xgMI5gkUpM\nQhLjmsCKz04nPsSrd2lPm3jaHsK2IrbiAqerDlwTlYZli65WwHQHCfaHNOsOxKSBPdTGW9pk3N5B\n2i7isobpzYgMTIlmdoLH38XbaaMNBaapHE1/Gk/YYP0zn8Qa75Eww1TdMt3vPCCh9NgMJBj4RZwj\nlXp2h+DCCqWag9asHcfMmMlYoWTukRialB7eQF6e4/D1Y37sH77MyNyicM/K9S/9F2596xblL2ew\nfWlIVu7xz/63vweIg//3P//nz6986Je4RANPysVIr6ONzzD0+BnpHoxkhLS3i+RzUVfDzM8FaVh1\nxMUzzJfc2HwKOY+V9YjC8aqTzo08wmDI6cTBqHFE4MQknpY5NsfYag28514kZk/y2jDDYK9K5ps5\nYqc9atYx20fvc+bslMFjHZ6PTNlcWWVqTNl/8BpPf+gTfPUb38NlX2TZlBi7ikzGIt6Bi4pW51jJ\n0ivGSfs7WPtuPI4ed9QiusNNvR3lzONB7h+9TWCUZbriIagkOajk8V74ONe//AHBlWWUqEH6JMA0\naEGMuOF4m1angFAbMPfsEu70Mq//1Z8C8H++9vOcZKx0TJXhbgfJYiV82SSNB6Pf4+jtJtWFMiF7\nlNypSqP5NepyhKefPI81vcDJDYmGy8dHn11k0Ojz9s1rzNcbRFxlrJU4x3tenv6IRKUyTy2p0X+3\nzmBWplLbpTt0MfEH6bS36TQGuPf7fOk/6Cy87KHwgQXpoIXf8X1eu2WiqD0OJ0fMzi4SFWIcrbax\nd6OYR6dInWWOz9m4UJxyfSrgTwTpT/xMmw2iXidD6ZD7x1PmNy8SPD3ENgxR/OD73KGNcn2ZY/8u\n1HtcGy1w79YOlmqDniIz8RxzWr5CcD3ObKyHuRDjjW8+EgM/98l/QlaukXnvCGXow9vL03T7UdU+\nxnQeoxvhVJcwPAaLY5lstsaoOUHwimxMFYgo9Hbq9CM6noZKr7+P1+IjONcko9VIKRe5qlcJyAaV\nvopTLiC6LtGbD9GuCjC6Q9xiRdvZwj4XoHFawOoRESgx3Q8yH5inltlHfDrIg3c6LId96FUP08AI\njzNCZvv7pOaeY396iljp0hhPmM8ck+8PcSRi1BC5MBrTaCjIgSlW3UZNaONZW8F3WKdZH7LYG+Cc\nmSN4cIglI1OxDSg3E8yOCtyaC5GQWyR6faZWkW9849Hj/C/f/DyxRRtqoIRk8bASDfN+oUM0oWKq\nXaIeK6fZmxT2r2G7fY+iITLJbfHWH3yZVzY+gzFwgXSPO9snHOhlIq4+nT+5Q+z5JV74uR+nc+P3\nOb6xxSBWx2VxErArLJ5NYHl8hXHhGLs0w1QoYc9GkZQuirlK0m3D/NBlZPsJj4cUjICDvNjh3le3\niPqhNZlFXuxgfXCXdqPB/Ye3CMg6a+vLWNML2EYZ/GWJJg+xi3Ec+jwDxyGWwy6aXqaX8zFy73OS\nqzLqmLgihxyIVpIhJ2fXJFrLdfb+4jrqspP339/maXmBybXXcQ913rh9HYCf+dyvcPMvv8Hm5RlO\nTyb41yKE0yqCr4VwPKW6KHDp059m/84hT8ZXKOeP0byXUK0KjraGTIdJ104skcInOejbb5G7IyGu\ndQldegKtXUA2NPwtByWtR10dMtGdJGfPI85bWevOsfVymq2DXW5/7suYP/Y4z24+j1SD/iDBvnCf\nd/+mT2LFw8psnKaQ5+1v3yB93sZJqYRyeQ7/1pCg1CFZmeEo1abR1XCEJdqajHzSJb1yhpQ7iu6o\ncHK3xMyig45kkNS8WBtVDrGhHIiU6ybOYZCFWQutSoDWvVOGYhz/horUHFOrdrhx99E5b3e3wdA5\nYu7C8/QiJV6MvMTtg+8wv/aPqL/7GrFRGfnTCxz23qC1dR91tsU7r9+jdePr3Ln5AcpFH+eX4hip\nNHsnXWyJMP2un6dm29jUJM3+e/zir/wM3/6L7/Hnf/ltPvqZF3iQ1qhsp5DUa0yUBXqH3yV8cRmt\nnMW74mLOGHPtD7+A+LGP83D7Ps+tnGcQn+AKGCwsnKf6IEtTtOIIyViGq6grEdJGCmsjQHvOjkfq\nMmXEbGQedezEKQawdjrkbBb8Byq93hC5m2Q4yeO1rZEJHDC3LZKYusj4O1T6fmbOtHFuT0iaTXQp\njDbNcVL1c+PGI8c49dhTCKaNg7JMatTFYcyy39CQmx1GqTDaHYOh7YRMNEGw6kVIQ14+ZqzpTD0l\n5gYS7dKYoWKlrDtZKtvJO6Lo9glSwgDNgqx4KUt2xuMsqmsG9CZpjwd9z0HWNaVfKRJqR2gIE1Sg\n6opgvxBgWOoj+kdEyz7qiMyoRbwv+Dm+2cI42cY1G8ZQGpS3dLLOA8rvfAf/Z+yks13c+EkoBUb7\nWQYumaZ/Dm/RRzd+QDJ0Carg1UtUKlmKbx4yXRkQcSzwOz/7M7y6+QJLn/hhvC9+lPUnP4LztEkx\nu8Wht8b/9D//yt99EfXvf+t3Pv/Jxz/FQ3ceURzRO1pmLCgITReKPCXZ66GbKmN/ms1xkdypjXXB\nQlUqMXU5iExnKXpOCOamKCUrq8EMu90mCwthFnfn2CufIsRg+STM5kUr//t//be8oTzNjPV55u01\n1uMyPvwEmnVW5zWMWAV95CF18pBa28kLo1WeEeo0H5q8pa5z2vyAteQqCYeJpe5GPquhWBxUS0mU\noZvEwMTjEtmz9lhrWpgP2fGEbRT6TpYmYczoBtqJlUWng3cGU+zfkohd8TES7xGtyAjeIameD/n+\nAb0bt6g1AryVCTL4kyaZC5fZfvPLAFQL27wQinDsjpCcvYQuB8h/9xoto8xccIN8bBalXWcknMER\nciMrKrEdka/equDvnTKvnOfic1461xpMJhLVZh9T02k+9QpmpELUBDZnsN7ZYb47SzdygHNfxmj7\nWUlKLFU9OAoRXLYTMpdGnF9b4qWIleCwRSNmJ60GWfY76IojLrz0A9QLApI/iJTxUArqeCpltJUQ\nrr2HDFxezEaZsjZFf8wDukT0ng/f7BzrTR/Dscb+oUBhp8JjL3m4pDngYp/H11/B4xnwQjrK5ke9\nJJc2sV3wI6++ynryNkuWEPotlb2vXOf9yqNz3qUPf4p4w0o2PSY6bnM6XkP11Tm420S6NE93/5D5\n834GhoGjv0/N7sUcWOk5q0x0HXtfpTfrwB30oRWKtOwDBNNOo+9iVQqyd9RAXfIi10doEw+Ke0h/\ndYxjYsO3dRcjoeDXFIzQOtVZNyHBgZD101yv4mymGEzvkYwsUi10mXPpZLt93HIeqz1MMznGa+nR\naZuY8SgpbYiZEJl4BnAjRV0vI14UOa07mUantDU/emNIIDXAme1y06YRb6To22DUgEHaJGhvYBTW\nCMoP6Vq9RNQpdnPAgdVBRU5y/Wt/DYBw9au8W/o6f3P1A0L+S+gTgcqggdu4hXFS48bJ68zOR7i8\ntoAohMje+iL2SJOf+rV/wL1vDxhegcNva0idMfe/co0r0Qjun3yC/s5tzgsaxRszbMlRnv1Xz7HZ\nAeWoi+qRyf51GWl/i+efX8IYH3JrdIzoWMVy4/9v786DJC/rO46/v31OH9PT1xw9970nyy4s64Lr\nroAigrpogmKCR0xMtCqWiVRZGFJGy8QqITGWMYlGDVFE8AKENYtANgi7ugc7y54zs3PfZ/dM3z19\nPfmjmzBDSVm7ssyw/byqftXP7/l1Vz3Pp/r49u/oDhGpd5Fb6CKdDmL2Zjg4BJHnBwlsttA0InT3\ndmPu+jnGdVfgNM+Tyg6zfYMV0/uuwfniKYb77IjvCVzZG/C4qsj5TdjGRjBZq8nHsgwyzGbvOoZ7\ns1QbDzBkhw9e1UjeBeaYlRcf/iXRtilaDVvxz4V5cbSbTX90B7G6CM8+VjhB+sr7vk/0m7sx39JE\nfnSK1lQ1xwZ6cIX8SJOHkXic+qyDucd/RvP7OzHkAgScIZ7tPorJZWHzFS5CVQae+ca/YGlsp94E\nza1u6tJncKUnGYy1sz65xJPpLGXWcmymLZRl6vH1DFApLmiCpWo3Q4/4zO7SAAAOfklEQVQf44Wn\n93HHlvUMPHOQFmMKZ16YGreyYdcOwvEWzgfncCw1ogw51gW8eDubcDw9glQY+M0ZA4ktlTS48nSK\nmZHjJ3Du2sVUapLgxFnGFyxUXxPAbprAPC4E/G1kXYskTC488SUW/WmWnHmak6cY8Xsw24xkDPXg\nD+MeyeG+ysD0wEFeOD4CwHvVYZ77gx+St8Qp22yien0Hjj1v5eygjXSmnBvu+wAy/SJjx8twba7h\nZtsWPnLnh1jw/IJdk1kOJnbQY7mCUGqB6XOjZPvzeKuriJ8fwdGZJD4VoOvHR2jd+TZu/8JtxMNB\noocHie7JELjxWmo7/Fzjt/LFW/6SW3d7iI4skD7RQ6IvSKy1hVqHndikiXD/C0QqNpMNHcXituLa\n1kZbd4Cj0ePkM+OEuxQJe5jWpiwzCSPuUBhL2M6ZQCfWTA+5BT/hQC1+V54xazn1mWP029rJ1cSp\nTU3R22HEqVrx4sUzb2OkaoKYyw92Nyn3KA6XE2d5ngPFXyz/0A1/iL3Zgj1oIu/OM5grx2EZJmlr\nxjI+QLLSTkswQ3W+jJHcErX+WQyp9ZgYwh+qpMcdoTqZg9ZaOlUVMUcIicYwhvyksmGMgSqsE+fx\nxzPU+hTZbBn+UT+zIcWsN0qdyUm5z8Ci30gzeUzmBqbqQ7Q4FEPBCMZsPccPPUvr+u145szMy3kS\n5n7qr7QS7YowELWydPw5amweRo0ROvqjnJx4Cnt7LdnselxzKUb63ezevYdF6whTVW4cUSveaAUj\n5NlZtkC+Ygv9Y914bryS7pNpfvxEP/JfVSQznRzYd5rkTJA3fWsrzzx+mE9/6jIoou798pe+EIzM\n8BefvY3eA98isOlavDLPfHOK5OIwDvsCSy1GstNGzszmMAzP4siH8eaNhBOzjDXGCcTDpKUa01UZ\nnEEvra3rmBqtpexcjvUdVSxkqnnwoR/QVt3Jhx99lKF3fpW3dJbReuYgS2934nD3M3lFDnvUSNLZ\nwgbzIrl1FQTnG8i3tlC9mKC81cZDfj8ff2sHVbZhRoeX8BiCnDU2MO/yscHdw1yFAaMthc3Zgznp\nIJiuYTEzS2TJTcKcI9o3jWHTaRpUmpC4+eRd13P+q8/TuqeeHYk+BqbX0VaWZrwtSEByTMRbaNha\nzwf+7e94+N5aKtqnOddV+Kb2J9ffgbWukswTx8h6wtSfNXA8t4grPoF745XkI1kq6sL4no8SjvQR\nUlejNtno8FWSVYqZRC8VRy04rprHZBUqg01Ig5e2/CRlfdWEKysIPXkEd42PbGKJDc5aTuPDGT9B\nra2BUZ+DGmOECV+GZGo9jz25j61lVbhrRpG0helQnBeyg9jSm+g+fJbc/Aze6jG6Ewmso7/AvvM6\ngpkh6idbmWlXmBaXsAUbaVQJzp9apLO+AZvqYWh0DrM9QMeuGPNVKXq+9iDpq5upumYrc8dP47NM\ncvZ8nOnpbvKDIxjzo0wGjzDep6g84mQslWNuLsaxicKPbb7pej9+MyTma/CEhzF5FFLmR1UvsdmW\nJnQugsMxREUddCWM2HsnqU54qMoYKVtfjop147J1MpMLYqg3E4/aqJw6RaDOy+FzB9m67TqGo8NU\nl1Vgm7JQYXSStCRwD0YxUIW0jVJeW8F0cpqlmRGic7NgmsBtjBFuLiOVNSOzC7jLsgxmKsgYwB8L\nkO/M4TgdJOa1YMwkaMxOM1HlZymfwncuQsTnozUyjdXYQizZjW2kGk/rIvZUjrFsCmWw01hZgzkU\nZr4jhDs2jdcVgbiR3gUPLU020uk048EcviE7aYzkPIMc2Ve4Ou/PP/E+PHveze32a6nrCDGiYrQ3\n5PG1z1Jp6yRQsZH1G/JM1s5grYDQjXbiTTvYf/d+2rItZLZew02+OpaiNrZ87L1Yq4RTvzrK9ME6\nsplOEm/ZxtSGFPu/8G2Mu2uYnwSxruOHh0Zp2TjE/C1LOI5WMmYz07ajkn1PPsD++3/EroYdZL1J\nYs5mttf78PjT5DJdbG+9jqWrF8Fpp2fWS+2t6/Fay/jeT76P7fQCZ86mqXi7m3W5Vmzr1xE1zxIv\n6+Mtu9qYmEgR//U52q1tWK1pAlcLuDeSHBui5+Aw8wfGSY4GSd5cTZnLRnVnO5m+DI517Ri8ASYX\nxzj234XDeWd+dC93bB7gtr+/ncgve4j/ZABTaIDglVUEbAks5Va8e6/mK/d8CUPShP09Tny0Y0hN\nMHb+WTLnfsXWT+3BHK6hZoOT/JIJ03SQ0d88hcl+O8rVS89AmsYtuykbceNwejFEJjk9fISKdWEq\naur5/LM/Y1trlDc12alrvQk5PkvybdfhuyKL19/J/qHn2eR3UL7kom2PlfZsAxL/NZU+Iy6rn9x4\nmJC/BmPoLLEdDVjKHaQ63FSe6aHcG8CXmieUaOLZB54ieUUlDpeRrIqgghXYttdgsdnxLZrwZKOo\ntKI8lmAxkqCxqoFadw2mRQ/BZ07QutHNvmcKJ+T3/ushvry/n6e/vBfbMRepg1uYfnCQ3idbsHXU\nMX6slkc+81Oc14MpO4Mk3AzOjGA4dpKZ2+J8+/4TOM9tIG5QZHY52NVZRe9JYdv7r+HR06eYPDrE\nO67dgNc/y4GPP4TTWYV02Ri/X3jyMSMPPz9PxSfrSf3DIaKBd2MOxpENfo6kT3Btey2PPDqPvX6M\nxuadnJk5SJvRQa8xh/Oxk0Q2KJy9LjzEyOxswOKv5/TJCcpsi8wvVjJen8AxKURVHEfQw6R1kSXj\nKBss1ZzP52kMldOfC2Iva8eVn8RYVsdIdABvMk7NvI0F1zTJkBlrvwF/ZhFJNvPUwcI/C2z94G7y\np8fw14dJWWLYFiwok6KuZZaleDXp5AimLWYcCUi2mcFQzWw2iH8yxrCxiS2pBH1JHw1TGSzmQaZt\nbbhmJkg5A1hiERKRKFm3YA01MxSeQ+w+zLkJZGEaoznNRNxKdZ2byb44Bk8D6VgX+eQi4aE42xqa\nSJW7qa1tQB2KEIkF8Tgq2b2ribz1FIZMBfP2X7Bxeycz/3Qf138oQNeph7j1pu346hxk0j4G41Oo\nQ8KhXz/A3HYLrc515DuiJKfnafTU4t0aIdf0BL7YFvri81Tc6WHAGGfT13fzXE+GuTc3UXZnGNPb\n/5auRh93feKu31lEiVLqta98XkMiEgV6V3sca4gfmF/tQawhOo+VdB4r6TxW0nmspPNYSefxsial\nVOXvupPp9RjJ76lXKbV9tQexVojICzqPl+k8VtJ5rKTzWEnnsZLOYyWdx4UzrPYANE3TNE3T3oh0\nEaVpmqZpmnYR3ghF1H+s9gDWGJ3HSjqPlXQeK+k8VtJ5rKTzWEnncYHW/InlmqZpmqZpa9EbYU+U\npmmapmnamqOLKE3TNE3TtIuwZosoEblZRHpFpF9E7l7t8bweRKRBRP5XRM6JyFkR+XSx3ysiT4tI\nX/HWs+wxnytm1Csi71i90V86ImIUkRMisq+4XrJ5iIhbRH4qIj0i0i0i15Z4Hn9dfK2cEZGHRKSs\nlPIQkf8UkVkRObOs74LnLyJXi8jp4ravi4i83nN5LbxKHvcVXy+nRORREXEv21ZyeSzbdpeIKBHx\nL+u7rPO4JJRSa24BjMAA0ApYgJPAxtUe1+sw7wBwVbFdDpwHNgL3AncX++8GvlJsbyxmYwVaipkZ\nV3selyCXzwA/BPYV10s2D+B7wJ8V2xbAXap5AHXAEGArrv8Y+Ggp5QHsBq4Czizru+D5A0eBnYAA\n+4F3rvbcXsM8bgJMxfZXSj2PYn8D8EtgBPCXSh6XYlmre6J2AP1KqUGlVBp4GNi7ymO65JRSU0qp\nrmI7CnRT+KDYS+HDk+LtbcX2XuBhpdSSUmoI6KeQ3WVDROqBW4HvLOsuyTxEpILCm+J3AZRSaaXU\nIiWaR5EJsImICbADk5RQHkqp54DQK7ovaP4iEgBcSqnDqvCJ+f1lj3lD+W15KKWeUkpli6uHgfpi\nuyTzKPpn4LPA8ivLLvs8LoW1WkTVAWPL1seLfSVDRJqBbcARoFopNVXcNA1UF9ulkNPXKLzY88v6\nSjWPFmAOuL94ePM7IuKgRPNQSk0A/wiMAlNAWCn1FCWaxzIXOv+6YvuV/Zejj1HYkwIlmoeI7AUm\nlFInX7GpJPP4fa3VIqqkiYgT+BnwV0qpyPJtxW8CJfG7FCLyLmBWKXX81e5TSnlQ2OtyFfDvSqlt\nQJzC4Zr/V0p5FM/12UuhuKwFHCJy5/L7lFIev02pz385EbkHyAIPrvZYVouI2IG/AT6/2mO5XKzV\nImqCwjHbl9QX+y57ImKmUEA9qJR6pNg9U9ylSvF2tth/uef0ZuA9IjJM4ZDuDSLyA0o3j3FgXCl1\npLj+UwpFVanm8TZgSCk1p5TKAI8A11G6ebzkQuc/wcuHuJb3XzZE5KPAu4A/LhaWUJp5tFH40nGy\n+L5aD3SJSA2lmcfvba0WUceADhFpERELcAfw+CqP6ZIrXvHwXaBbKfXVZZseBz5SbH8E+Pmy/jtE\nxCoiLUAHhRMALwtKqc8ppeqVUs0UngMHlFJ3Urp5TANjIrKu2HUjcI4SzYPCYbydImIvvnZupHAe\nYanm8ZILmn/x0F9ERHYWc/zwsse84YnIzRROCXiPUiqxbFPJ5aGUOq2UqlJKNRffV8cpXMw0TQnm\n8ZpY7TPbX20BbqFwddoAcM9qj+d1mvMuCrveTwEvFpdbAB/wP0Af8AzgXfaYe4oZ9XIZXzEBvJWX\nr84r2TyArcALxefIY4CnxPP4ItADnAEeoHBlUcnkATxE4XywDIUPxD+9mPkD24sZDgDfoPhvFm+0\n5VXy6Kdwrs9L76nfLOU8XrF9mOLVeaWQx6VY9N++aJqmaZqmXYS1ejhP0zRN0zRtTdNFlKZpmqZp\n2kXQRZSmaZqmadpF0EWUpmmapmnaRdBFlKZpmqZp2kXQRZSmaZqmadpF0EWUpmmapmnaRfg/GkjH\nlufU8kgAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "layer = layer_dict['block5_conv1'] # 512 filters in total\n", + "stitched_filters = generate_stiched_filters(layer, 64)\n", + "plt.figure(figsize=(10,10))\n", + "plt.imshow(stitched_filters)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.5.3" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/5. HyperParameter Tuning and Transfer Learning/5.1 HyperParameter Tuning.ipynb b/5. HyperParameter Tuning and Transfer Learning/5.1 HyperParameter Tuning.ipynb new file mode 100644 index 0000000..c5912f8 --- /dev/null +++ b/5. HyperParameter Tuning and Transfer Learning/5.1 HyperParameter Tuning.ipynb @@ -0,0 +1,548 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# HyperParameter Tuning" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### `keras.wrappers.scikit_learn`\n", + "\n", + "Example adapted from: [https://github.com/fchollet/keras/blob/master/examples/mnist_sklearn_wrapper.py]()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Problem: \n", + "Builds simple CNN models on MNIST and uses sklearn's GridSearchCV to find best model" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "np.random.seed(1337) # for reproducibility" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Using TensorFlow backend.\n" + ] + } + ], + "source": [ + "from keras.datasets import mnist\n", + "from keras.models import Sequential\n", + "from keras.layers import Dense, Dropout, Activation, Flatten\n", + "from keras.layers import Conv2D, MaxPooling2D\n", + "from keras.utils import np_utils\n", + "from keras.wrappers.scikit_learn import KerasClassifier\n", + "from keras import backend as K" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from sklearn.model_selection import GridSearchCV" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Data Preparation" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "nb_classes = 10\n", + "\n", + "# input image dimensions\n", + "img_rows, img_cols = 28, 28" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# load training data and do basic data normalization\n", + "(X_train, y_train), (X_test, y_test) = mnist.load_data()\n", + "\n", + "if K.image_dim_ordering() == 'th':\n", + " X_train = X_train.reshape(X_train.shape[0], 1, img_rows, img_cols)\n", + " X_test = X_test.reshape(X_test.shape[0], 1, img_rows, img_cols)\n", + " input_shape = (1, img_rows, img_cols)\n", + "else:\n", + " X_train = X_train.reshape(X_train.shape[0], img_rows, img_cols, 1)\n", + " X_test = X_test.reshape(X_test.shape[0], img_rows, img_cols, 1)\n", + " input_shape = (img_rows, img_cols, 1)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "X_train = X_train.astype('float32')\n", + "X_test = X_test.astype('float32')\n", + "X_train /= 255\n", + "X_test /= 255\n", + "\n", + "# convert class vectors to binary class matrices\n", + "y_train = np_utils.to_categorical(y_train, nb_classes)\n", + "y_test = np_utils.to_categorical(y_test, nb_classes)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Build Model" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "def make_model(dense_layer_sizes, filters, kernel_size, pool_size):\n", + " '''Creates model comprised of 2 convolutional layers followed by dense layers\n", + "\n", + " dense_layer_sizes: List of layer sizes. This list has one number for each layer\n", + " nb_filters: Number of convolutional filters in each convolutional layer\n", + " nb_conv: Convolutional kernel size\n", + " nb_pool: Size of pooling area for max pooling\n", + " '''\n", + "\n", + " model = Sequential()\n", + "\n", + " model.add(Conv2D(filters, (kernel_size, kernel_size),\n", + " padding='valid', input_shape=input_shape))\n", + " model.add(Activation('relu'))\n", + " model.add(Conv2D(filters, (kernel_size, kernel_size)))\n", + " model.add(Activation('relu'))\n", + " model.add(MaxPooling2D(pool_size=(pool_size, pool_size)))\n", + " model.add(Dropout(0.25))\n", + "\n", + " model.add(Flatten())\n", + " for layer_size in dense_layer_sizes:\n", + " model.add(Dense(layer_size))\n", + " model.add(Activation('relu'))\n", + " model.add(Dropout(0.5))\n", + " model.add(Dense(nb_classes))\n", + " model.add(Activation('softmax'))\n", + "\n", + " model.compile(loss='categorical_crossentropy',\n", + " optimizer='adadelta',\n", + " metrics=['accuracy'])\n", + "\n", + " return model" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "dense_size_candidates = [[32], [64], [32, 32], [64, 64]]\n", + "my_classifier = KerasClassifier(make_model, batch_size=32)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## GridSearch HyperParameters" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/3\n", + "40000/40000 [==============================] - ETA: 0s - loss: 0.8971 - acc: 0.694 - 10s - loss: 0.8961 - acc: 0.6953 \n", + "Epoch 2/3\n", + "40000/40000 [==============================] - 9s - loss: 0.5362 - acc: 0.8299 \n", + "Epoch 3/3\n", + "40000/40000 [==============================] - 10s - loss: 0.4425 - acc: 0.8594 \n", + "39552/40000 [============================>.] - ETA: 0sEpoch 1/3\n", + "40000/40000 [==============================] - 11s - loss: 0.7593 - acc: 0.7543 \n", + "Epoch 2/3\n", + "40000/40000 [==============================] - 10s - loss: 0.4489 - acc: 0.8597 \n", + "Epoch 3/3\n", + "40000/40000 [==============================] - 10s - loss: 0.3841 - acc: 0.8814 \n", + "39648/40000 [============================>.] - ETA: 0sEpoch 1/3\n", + "40000/40000 [==============================] - 10s - loss: 0.9089 - acc: 0.6946 \n", + "Epoch 2/3\n", + "40000/40000 [==============================] - 9s - loss: 0.5560 - acc: 0.8228 \n", + "Epoch 3/3\n", + "40000/40000 [==============================] - 10s - loss: 0.4597 - acc: 0.8556 \n", + "39680/40000 [============================>.] - ETA: 0sEpoch 1/6\n", + "40000/40000 [==============================] - 11s - loss: 0.8415 - acc: 0.7162 \n", + "Epoch 2/6\n", + "40000/40000 [==============================] - 10s - loss: 0.4929 - acc: 0.8423 \n", + "Epoch 3/6\n", + "40000/40000 [==============================] - 9s - loss: 0.4172 - acc: 0.8703 \n", + "Epoch 4/6\n", + "40000/40000 [==============================] - 10s - loss: 0.3819 - acc: 0.8812 \n", + "Epoch 5/6\n", + "40000/40000 [==============================] - 10s - loss: 0.3491 - acc: 0.8919 \n", + "Epoch 6/6\n", + "40000/40000 [==============================] - 10s - loss: 0.3284 - acc: 0.8985 \n", + "39680/40000 [============================>.] - ETA: 0sEpoch 1/6\n", + "40000/40000 [==============================] - 11s - loss: 0.7950 - acc: 0.7349 \n", + "Epoch 2/6\n", + "40000/40000 [==============================] - 10s - loss: 0.4913 - acc: 0.8428 \n", + "Epoch 3/6\n", + "40000/40000 [==============================] - 10s - loss: 0.4081 - acc: 0.8709 \n", + "Epoch 4/6\n", + "40000/40000 [==============================] - 10s - loss: 0.3613 - acc: 0.8870 \n", + "Epoch 5/6\n", + "40000/40000 [==============================] - 10s - loss: 0.3293 - acc: 0.8968 \n", + "Epoch 6/6\n", + "40000/40000 [==============================] - 10s - loss: 0.3024 - acc: 0.9058 \n", + "39936/40000 [============================>.] - ETA: 0sEpoch 1/6\n", + "40000/40000 [==============================] - 11s - loss: 0.9822 - acc: 0.6735 \n", + "Epoch 2/6\n", + "40000/40000 [==============================] - 10s - loss: 0.6270 - acc: 0.8009 \n", + "Epoch 3/6\n", + "40000/40000 [==============================] - 9s - loss: 0.5045 - acc: 0.8409 \n", + "Epoch 4/6\n", + "40000/40000 [==============================] - 10s - loss: 0.4396 - acc: 0.8599 \n", + "Epoch 5/6\n", + "40000/40000 [==============================] - 10s - loss: 0.3978 - acc: 0.8775 \n", + "Epoch 6/6\n", + "40000/40000 [==============================] - 10s - loss: 0.3605 - acc: 0.8871 \n", + "39872/40000 [============================>.] - ETA: 0sEpoch 1/3\n", + "40000/40000 [==============================] - 11s - loss: 0.6851 - acc: 0.7777 \n", + "Epoch 2/3\n", + "40000/40000 [==============================] - 10s - loss: 0.3989 - acc: 0.8776 \n", + "Epoch 3/3\n", + "40000/40000 [==============================] - 10s - loss: 0.3225 - acc: 0.9021 \n", + "39552/40000 [============================>.] - ETA: 0sEpoch 1/3\n", + "40000/40000 [==============================] - 11s - loss: 0.5846 - acc: 0.8164 \n", + "Epoch 2/3\n", + "40000/40000 [==============================] - 10s - loss: 0.3243 - acc: 0.9053 \n", + "Epoch 3/3\n", + "40000/40000 [==============================] - 10s - loss: 0.2697 - acc: 0.9213 \n", + "39680/40000 [============================>.] - ETA: 0sEpoch 1/3\n", + "40000/40000 [==============================] - 11s - loss: 0.6339 - acc: 0.8017 \n", + "Epoch 2/3\n", + "40000/40000 [==============================] - 10s - loss: 0.3417 - acc: 0.8975 \n", + "Epoch 3/3\n", + "40000/40000 [==============================] - 10s - loss: 0.2783 - acc: 0.9184 \n", + "39648/40000 [============================>.] - ETA: 0sEpoch 1/6\n", + "40000/40000 [==============================] - 11s - loss: 0.6652 - acc: 0.7854 \n", + "Epoch 2/6\n", + "40000/40000 [==============================] - 10s - loss: 0.3693 - acc: 0.8911 \n", + "Epoch 3/6\n", + "40000/40000 [==============================] - 10s - loss: 0.2923 - acc: 0.9130 \n", + "Epoch 4/6\n", + "40000/40000 [==============================] - 10s - loss: 0.2479 - acc: 0.9274 \n", + "Epoch 5/6\n", + "40000/40000 [==============================] - 10s - loss: 0.2176 - acc: 0.9360 \n", + "Epoch 6/6\n", + "40000/40000 [==============================] - 10s - loss: 0.1994 - acc: 0.9416 \n", + "39616/40000 [============================>.] - ETA: 0sEpoch 1/6\n", + "40000/40000 [==============================] - 11s - loss: 0.6463 - acc: 0.7952 \n", + "Epoch 2/6\n", + "40000/40000 [==============================] - 10s - loss: 0.3648 - acc: 0.8898 \n", + "Epoch 3/6\n", + "40000/40000 [==============================] - 10s - loss: 0.2880 - acc: 0.9154 \n", + "Epoch 4/6\n", + "40000/40000 [==============================] - 10s - loss: 0.2497 - acc: 0.9249 \n", + "Epoch 5/6\n", + "40000/40000 [==============================] - 10s - loss: 0.2154 - acc: 0.9357 \n", + "Epoch 6/6\n", + "40000/40000 [==============================] - 10s - loss: 0.1946 - acc: 0.9417 \n", + "39584/40000 [============================>.] - ETA: 0sEpoch 1/6\n", + "40000/40000 [==============================] - 11s - loss: 0.6212 - acc: 0.8012 \n", + "Epoch 2/6\n", + "40000/40000 [==============================] - 10s - loss: 0.3341 - acc: 0.9008 \n", + "Epoch 3/6\n", + "40000/40000 [==============================] - 10s - loss: 0.2706 - acc: 0.9195 \n", + "Epoch 4/6\n", + "40000/40000 [==============================] - 10s - loss: 0.2343 - acc: 0.9307 \n", + "Epoch 5/6\n", + "40000/40000 [==============================] - 10s - loss: 0.2109 - acc: 0.9383 \n", + "Epoch 6/6\n", + "40000/40000 [==============================] - 10s - loss: 0.1961 - acc: 0.9420 \n", + "39648/40000 [============================>.] - ETA: 0sEpoch 1/3\n", + "40000/40000 [==============================] - 12s - loss: 0.9322 - acc: 0.6835 \n", + "Epoch 2/3\n", + "40000/40000 [==============================] - 10s - loss: 0.5578 - acc: 0.8202 \n", + "Epoch 3/3\n", + "40000/40000 [==============================] - 11s - loss: 0.4651 - acc: 0.8518 \n", + "40000/40000 [==============================] - 4s \n", + "Epoch 1/3\n", + "40000/40000 [==============================] - 11s - loss: 0.7615 - acc: 0.7467 \n", + "Epoch 2/3\n", + "40000/40000 [==============================] - 10s - loss: 0.4369 - acc: 0.8634 \n", + "Epoch 3/3\n", + "40000/40000 [==============================] - 10s - loss: 0.3646 - acc: 0.8865 \n", + "39904/40000 [============================>.] - ETA: 0sEpoch 1/3\n", + "40000/40000 [==============================] - 12s - loss: 0.7744 - acc: 0.7471 \n", + "Epoch 2/3\n", + "40000/40000 [==============================] - 11s - loss: 0.4294 - acc: 0.8674 \n", + "Epoch 3/3\n", + "40000/40000 [==============================] - 11s - loss: 0.3620 - acc: 0.8873 \n", + "39968/40000 [============================>.] - ETA: 0sEpoch 1/6\n", + "40000/40000 [==============================] - 12s - loss: 0.8007 - acc: 0.7354 \n", + "Epoch 2/6\n", + "40000/40000 [==============================] - 10s - loss: 0.4769 - acc: 0.8499 \n", + "Epoch 3/6\n", + "40000/40000 [==============================] - 11s - loss: 0.4020 - acc: 0.8743 \n", + "Epoch 4/6\n", + "40000/40000 [==============================] - 11s - loss: 0.3551 - acc: 0.8905 \n", + "Epoch 5/6\n", + "40000/40000 [==============================] - 11s - loss: 0.3256 - acc: 0.8993 \n", + "Epoch 6/6\n", + "40000/40000 [==============================] - 11s - loss: 0.3005 - acc: 0.9067 \n", + "39520/40000 [============================>.] - ETA: 0sEpoch 1/6\n", + "40000/40000 [==============================] - 12s - loss: 0.8505 - acc: 0.7123 \n", + "Epoch 2/6\n", + "40000/40000 [==============================] - 10s - loss: 0.5156 - acc: 0.8321 \n", + "Epoch 3/6\n", + "40000/40000 [==============================] - 11s - loss: 0.4208 - acc: 0.8660 \n", + "Epoch 4/6\n", + "40000/40000 [==============================] - 11s - loss: 0.3614 - acc: 0.8854 \n", + "Epoch 5/6\n", + "40000/40000 [==============================] - 11s - loss: 0.3258 - acc: 0.8980 \n", + "Epoch 6/6\n", + "40000/40000 [==============================] - 11s - loss: 0.3044 - acc: 0.9046 \n", + "39936/40000 [============================>.] - ETA: 0sEpoch 1/6\n", + "40000/40000 [==============================] - 12s - loss: 0.7670 - acc: 0.7494 \n", + "Epoch 2/6\n", + "40000/40000 [==============================] - 11s - loss: 0.4593 - acc: 0.8574 \n", + "Epoch 3/6\n", + "40000/40000 [==============================] - ETA: 0s - loss: 0.3896 - acc: 0.880 - 11s - loss: 0.3898 - acc: 0.8799 \n", + "Epoch 4/6\n", + "40000/40000 [==============================] - 10s - loss: 0.3514 - acc: 0.8907 \n", + "Epoch 5/6\n", + "40000/40000 [==============================] - 10s - loss: 0.3124 - acc: 0.9020 \n", + "Epoch 6/6\n", + "40000/40000 [==============================] - 11s - loss: 0.2981 - acc: 0.9097 \n", + "39680/40000 [============================>.] - ETA: 0sEpoch 1/3\n", + "40000/40000 [==============================] - 12s - loss: 0.5547 - acc: 0.8239 \n", + "Epoch 2/3\n", + "40000/40000 [==============================] - 11s - loss: 0.2752 - acc: 0.9204 \n", + "Epoch 3/3\n", + "40000/40000 [==============================] - 11s - loss: 0.2183 - acc: 0.9359 \n", + "39520/40000 [============================>.] - ETA: 0sEpoch 1/3\n", + "40000/40000 [==============================] - 12s - loss: 0.5718 - acc: 0.8172 \n", + "Epoch 2/3\n", + "40000/40000 [==============================] - 11s - loss: 0.3141 - acc: 0.9054 \n", + "Epoch 3/3\n", + "40000/40000 [==============================] - 11s - loss: 0.2536 - acc: 0.9247 \n", + "39680/40000 [============================>.] - ETA: 0sEpoch 1/3\n", + "40000/40000 [==============================] - 12s - loss: 0.5111 - acc: 0.8399 \n", + "Epoch 2/3\n", + "40000/40000 [==============================] - 11s - loss: 0.2469 - acc: 0.9270 \n", + "Epoch 3/3\n", + "40000/40000 [==============================] - 11s - loss: 0.1992 - acc: 0.9422 \n", + "20000/20000 [==============================] - 2s \n", + "40000/40000 [==============================] - 4s \n", + "Epoch 1/6\n", + "40000/40000 [==============================] - 12s - loss: 0.6041 - acc: 0.8066 \n", + "Epoch 2/6\n", + "40000/40000 [==============================] - 11s - loss: 0.2951 - acc: 0.9132 \n", + "Epoch 3/6\n", + "40000/40000 [==============================] - 11s - loss: 0.2343 - acc: 0.9315 \n", + "Epoch 4/6\n", + "40000/40000 [==============================] - 11s - loss: 0.1995 - acc: 0.9418 \n", + "Epoch 5/6\n", + "40000/40000 [==============================] - 11s - loss: 0.1779 - acc: 0.9487 \n", + "Epoch 6/6\n", + "40000/40000 [==============================] - 11s - loss: 0.1612 - acc: 0.9540 \n", + "39680/40000 [============================>.] - ETA: 0sEpoch 1/6\n", + "40000/40000 [==============================] - 12s - loss: 0.6137 - acc: 0.8069 \n", + "Epoch 2/6\n", + "40000/40000 [==============================] - 11s - loss: 0.3075 - acc: 0.9096 \n", + "Epoch 3/6\n", + "40000/40000 [==============================] - 11s - loss: 0.2309 - acc: 0.9325 \n", + "Epoch 4/6\n", + "40000/40000 [==============================] - 11s - loss: 0.1935 - acc: 0.9443 \n", + "Epoch 5/6\n", + "40000/40000 [==============================] - 11s - loss: 0.1679 - acc: 0.9518 \n", + "Epoch 6/6\n", + "40000/40000 [==============================] - 11s - loss: 0.1576 - acc: 0.9551 \n", + "39680/40000 [============================>.] - ETA: 0sEpoch 1/6\n", + "40000/40000 [==============================] - 12s - loss: 0.5143 - acc: 0.8400 \n", + "Epoch 2/6\n", + "40000/40000 [==============================] - 11s - loss: 0.2743 - acc: 0.9205 \n", + "Epoch 3/6\n", + "40000/40000 [==============================] - 11s - loss: 0.2248 - acc: 0.9350 \n", + "Epoch 4/6\n", + "40000/40000 [==============================] - 11s - loss: 0.1964 - acc: 0.9428 \n", + "Epoch 5/6\n", + "40000/40000 [==============================] - 11s - loss: 0.1736 - acc: 0.9496 \n", + "Epoch 6/6\n", + "40000/40000 [==============================] - 11s - loss: 0.1643 - acc: 0.9521 \n", + "39840/40000 [============================>.] - ETA: 0sEpoch 1/6\n", + "60000/60000 [==============================] - 18s - loss: 0.4674 - acc: 0.8567 \n", + "Epoch 2/6\n", + "60000/60000 [==============================] - 16s - loss: 0.2417 - acc: 0.9293 \n", + "Epoch 3/6\n", + "60000/60000 [==============================] - 16s - loss: 0.1966 - acc: 0.9428 \n", + "Epoch 4/6\n", + "60000/60000 [==============================] - 17s - loss: 0.1695 - acc: 0.9519 \n", + "Epoch 5/6\n", + "60000/60000 [==============================] - 16s - loss: 0.1504 - acc: 0.9571 \n", + "Epoch 6/6\n", + "60000/60000 [==============================] - 15s - loss: 0.1393 - acc: 0.9597 \n" + ] + }, + { + "data": { + "text/plain": [ + "GridSearchCV(cv=None, error_score='raise',\n", + " estimator=,\n", + " fit_params={}, iid=True, n_jobs=1,\n", + " param_grid={'filters': [8], 'pool_size': [2], 'epochs': [3, 6], 'dense_layer_sizes': [[32], [64], [32, 32], [64, 64]], 'kernel_size': [3]},\n", + " pre_dispatch='2*n_jobs', refit=True, return_train_score=True,\n", + " scoring='neg_log_loss', verbose=0)" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "validator = GridSearchCV(my_classifier,\n", + " param_grid={'dense_layer_sizes': dense_size_candidates,\n", + " # nb_epoch is avail for tuning even when not\n", + " # an argument to model building function\n", + " 'epochs': [3, 6],\n", + " 'filters': [8],\n", + " 'kernel_size': [3],\n", + " 'pool_size': [2]},\n", + " scoring='neg_log_loss',\n", + " n_jobs=1)\n", + "validator.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The parameters of the best model are: \n", + "{'filters': 8, 'pool_size': 2, 'epochs': 6, 'dense_layer_sizes': [64, 64], 'kernel_size': 3}\n", + " 9920/10000 [============================>.] - ETA: 0sloss : 0.0577878101223\n", + "acc : 0.9822\n" + ] + } + ], + "source": [ + "print('The parameters of the best model are: ')\n", + "print(validator.best_params_)\n", + "\n", + "# validator.best_estimator_ returns sklearn-wrapped version of best model.\n", + "# validator.best_estimator_.model returns the (unwrapped) keras model\n", + "best_model = validator.best_estimator_.model\n", + "metric_names = best_model.metrics_names\n", + "metric_values = best_model.evaluate(X_test, y_test)\n", + "for metric, value in zip(metric_names, metric_values):\n", + " print(metric, ': ', value)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# There's more:\n", + "\n", + "The `GridSearchCV` model in scikit-learn performs a complete search, considering **all** the possible combinations of Hyper-parameters we want to optimise.\n", + "\n", + "If we want to apply for an optmised and bounded search in the hyper-parameter space, I strongly suggest to take a look at:\n", + "\n", + "* `Keras + hyperopt == hyperas`: [http://maxpumperla.github.io/hyperas/](http://maxpumperla.github.io/hyperas/)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.5.3" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/2.4 Transfer Learning & Fine-Tuning.ipynb b/5. HyperParameter Tuning and Transfer Learning/5.3 Transfer Learning & Fine-Tuning.ipynb similarity index 100% rename from 2.4 Transfer Learning & Fine-Tuning.ipynb rename to 5. HyperParameter Tuning and Transfer Learning/5.3 Transfer Learning & Fine-Tuning.ipynb diff --git a/5. HyperParameter Tuning and Transfer Learning/5.3.1 Keras and TF Integration.ipynb b/5. HyperParameter Tuning and Transfer Learning/5.3.1 Keras and TF Integration.ipynb new file mode 100644 index 0000000..a70d512 --- /dev/null +++ b/5. HyperParameter Tuning and Transfer Learning/5.3.1 Keras and TF Integration.ipynb @@ -0,0 +1,761 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Tight Integration" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "import tensorflow as tf" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'1.1.0'" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "tf.__version__" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from tensorflow.contrib import keras" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Tensorboard Integration" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Using TensorFlow backend.\n" + ] + } + ], + "source": [ + "from keras.datasets import cifar100\n", + "\n", + "(X_train, Y_train), (X_test, Y_test) = cifar100.load_data(label_mode='fine')" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from keras import backend as K\n", + "\n", + "img_rows, img_cols = 32, 32\n", + "\n", + "if K.image_data_format() == 'channels_first':\n", + " shape_ord = (3, img_rows, img_cols)\n", + "else: # channel_last\n", + " shape_ord = (img_rows, img_cols, 3)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(32, 32, 3)" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "shape_ord" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(50000, 32, 32, 3)" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X_train.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "nb_classes = len(np.unique(Y_train))" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from keras.applications import vgg16\n", + "from keras.layers import Input" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "input_1 (InputLayer) (None, 32, 32, 3) 0 \n", + "_________________________________________________________________\n", + "block1_conv1 (Conv2D) (None, 32, 32, 64) 1792 \n", + "_________________________________________________________________\n", + "block1_conv2 (Conv2D) (None, 32, 32, 64) 36928 \n", + "_________________________________________________________________\n", + "block1_pool (MaxPooling2D) (None, 16, 16, 64) 0 \n", + "_________________________________________________________________\n", + "block2_conv1 (Conv2D) (None, 16, 16, 128) 73856 \n", + "_________________________________________________________________\n", + "block2_conv2 (Conv2D) (None, 16, 16, 128) 147584 \n", + "_________________________________________________________________\n", + "block2_pool (MaxPooling2D) (None, 8, 8, 128) 0 \n", + "_________________________________________________________________\n", + "block3_conv1 (Conv2D) (None, 8, 8, 256) 295168 \n", + "_________________________________________________________________\n", + "block3_conv2 (Conv2D) (None, 8, 8, 256) 590080 \n", + "_________________________________________________________________\n", + "block3_conv3 (Conv2D) (None, 8, 8, 256) 590080 \n", + "_________________________________________________________________\n", + "block3_pool (MaxPooling2D) (None, 4, 4, 256) 0 \n", + "_________________________________________________________________\n", + "block4_conv1 (Conv2D) (None, 4, 4, 512) 1180160 \n", + "_________________________________________________________________\n", + "block4_conv2 (Conv2D) (None, 4, 4, 512) 2359808 \n", + "_________________________________________________________________\n", + "block4_conv3 (Conv2D) (None, 4, 4, 512) 2359808 \n", + "_________________________________________________________________\n", + "block4_pool (MaxPooling2D) (None, 2, 2, 512) 0 \n", + "_________________________________________________________________\n", + "block5_conv1 (Conv2D) (None, 2, 2, 512) 2359808 \n", + "_________________________________________________________________\n", + "block5_conv2 (Conv2D) (None, 2, 2, 512) 2359808 \n", + "_________________________________________________________________\n", + "block5_conv3 (Conv2D) (None, 2, 2, 512) 2359808 \n", + "_________________________________________________________________\n", + "block5_pool (MaxPooling2D) (None, 1, 1, 512) 0 \n", + "=================================================================\n", + "Total params: 14,714,688\n", + "Trainable params: 14,714,688\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n" + ] + } + ], + "source": [ + "vgg16_model = vgg16.VGG16(weights='imagenet', include_top=False, \n", + " input_tensor=Input(shape_ord))\n", + "vgg16_model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "for layer in vgg16_model.layers:\n", + " layer.trainable = False # freeze layer" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from keras.layers.core import Dense, Dropout, Flatten\n", + "from keras.layers.normalization import BatchNormalization" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "x = Flatten(input_shape=vgg16_model.output.shape)(vgg16_model.output)\n", + "x = Dense(4096, activation='relu', name='ft_fc1')(x)\n", + "x = Dropout(0.5)(x)\n", + "x = BatchNormalization()(x)\n", + "predictions = Dense(nb_classes, activation = 'softmax')(x)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from keras.models import Model" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "#create graph of your new model\n", + "model = Model(inputs=vgg16_model.input, outputs=predictions)\n", + "\n", + "#compile the model\n", + "model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "input_1 (InputLayer) (None, 32, 32, 3) 0 \n", + "_________________________________________________________________\n", + "block1_conv1 (Conv2D) (None, 32, 32, 64) 1792 \n", + "_________________________________________________________________\n", + "block1_conv2 (Conv2D) (None, 32, 32, 64) 36928 \n", + "_________________________________________________________________\n", + "block1_pool (MaxPooling2D) (None, 16, 16, 64) 0 \n", + "_________________________________________________________________\n", + "block2_conv1 (Conv2D) (None, 16, 16, 128) 73856 \n", + "_________________________________________________________________\n", + "block2_conv2 (Conv2D) (None, 16, 16, 128) 147584 \n", + "_________________________________________________________________\n", + "block2_pool (MaxPooling2D) (None, 8, 8, 128) 0 \n", + "_________________________________________________________________\n", + "block3_conv1 (Conv2D) (None, 8, 8, 256) 295168 \n", + "_________________________________________________________________\n", + "block3_conv2 (Conv2D) (None, 8, 8, 256) 590080 \n", + "_________________________________________________________________\n", + "block3_conv3 (Conv2D) (None, 8, 8, 256) 590080 \n", + "_________________________________________________________________\n", + "block3_pool (MaxPooling2D) (None, 4, 4, 256) 0 \n", + "_________________________________________________________________\n", + "block4_conv1 (Conv2D) (None, 4, 4, 512) 1180160 \n", + "_________________________________________________________________\n", + "block4_conv2 (Conv2D) (None, 4, 4, 512) 2359808 \n", + "_________________________________________________________________\n", + "block4_conv3 (Conv2D) (None, 4, 4, 512) 2359808 \n", + "_________________________________________________________________\n", + "block4_pool (MaxPooling2D) (None, 2, 2, 512) 0 \n", + "_________________________________________________________________\n", + "block5_conv1 (Conv2D) (None, 2, 2, 512) 2359808 \n", + "_________________________________________________________________\n", + "block5_conv2 (Conv2D) (None, 2, 2, 512) 2359808 \n", + "_________________________________________________________________\n", + "block5_conv3 (Conv2D) (None, 2, 2, 512) 2359808 \n", + "_________________________________________________________________\n", + "block5_pool (MaxPooling2D) (None, 1, 1, 512) 0 \n", + "_________________________________________________________________\n", + "flatten_1 (Flatten) (None, 512) 0 \n", + "_________________________________________________________________\n", + "ft_fc1 (Dense) (None, 4096) 2101248 \n", + "_________________________________________________________________\n", + "dropout_1 (Dropout) (None, 4096) 0 \n", + "_________________________________________________________________\n", + "batch_normalization_1 (Batch (None, 4096) 16384 \n", + "_________________________________________________________________\n", + "dense_1 (Dense) (None, 100) 409700 \n", + "=================================================================\n", + "Total params: 17,242,020\n", + "Trainable params: 2,519,140\n", + "Non-trainable params: 14,722,880\n", + "_________________________________________________________________\n" + ] + } + ], + "source": [ + "model.summary()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### `TensorBoard` Callback" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from keras.callbacks import TensorBoard" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "```python\n", + "\n", + "# Arguments\n", + " log_dir: the path of the directory where to save the log\n", + " files to be parsed by TensorBoard.\n", + " histogram_freq: frequency (in epochs) at which to compute activation\n", + " and weight histograms for the layers of the model. If set to 0,\n", + " histograms won't be computed. Validation data (or split) must be\n", + " specified for histogram visualizations.\n", + " write_graph: whether to visualize the graph in TensorBoard.\n", + " The log file can become quite large when\n", + " write_graph is set to True.\n", + " write_grads: whether to visualize gradient histograms in TensorBoard.\n", + " `histogram_freq` must be greater than 0.\n", + " write_images: whether to write model weights to visualize as\n", + " image in TensorBoard.\n", + " embeddings_freq: frequency (in epochs) at which selected embedding\n", + " layers will be saved.\n", + " embeddings_layer_names: a list of names of layers to keep eye on. If\n", + " None or empty list all the embedding layer will be watched.\n", + " embeddings_metadata: a dictionary which maps layer name to a file name\n", + " in which metadata for this embedding layer is saved. \n", + "```\n", + "\n", + "See the [details](https://www.tensorflow.org/how_tos/embedding_viz/#metadata_optional)\n", + "about metadata files format. In case if the same metadata file is used for all embedding layers, string can be passed." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(50000, 1)" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "## one-hot Encoding of labels (1 to 100 classes)\n", + "from keras.utils import np_utils\n", + "Y_train.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "Y_train = np_utils.to_categorical(Y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(50000, 100)" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Y_train.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "INFO:tensorflow:Summary name block1_conv1/kernel:0 is illegal; using block1_conv1/kernel_0 instead.\n", + "INFO:tensorflow:Summary name block1_conv1/bias:0 is illegal; using block1_conv1/bias_0 instead.\n", + "INFO:tensorflow:Summary name block1_conv2/kernel:0 is illegal; using block1_conv2/kernel_0 instead.\n", + "INFO:tensorflow:Summary name block1_conv2/bias:0 is illegal; using block1_conv2/bias_0 instead.\n", + "INFO:tensorflow:Summary name block2_conv1/kernel:0 is illegal; using block2_conv1/kernel_0 instead.\n", + "INFO:tensorflow:Summary name block2_conv1/bias:0 is illegal; using block2_conv1/bias_0 instead.\n", + "INFO:tensorflow:Summary name block2_conv2/kernel:0 is illegal; using block2_conv2/kernel_0 instead.\n", + "INFO:tensorflow:Summary name block2_conv2/bias:0 is illegal; using block2_conv2/bias_0 instead.\n", + "INFO:tensorflow:Summary name block3_conv1/kernel:0 is illegal; using block3_conv1/kernel_0 instead.\n", + "INFO:tensorflow:Summary name block3_conv1/bias:0 is illegal; using block3_conv1/bias_0 instead.\n", + "INFO:tensorflow:Summary name block3_conv2/kernel:0 is illegal; using block3_conv2/kernel_0 instead.\n", + "INFO:tensorflow:Summary name block3_conv2/bias:0 is illegal; using block3_conv2/bias_0 instead.\n", + "INFO:tensorflow:Summary name block3_conv3/kernel:0 is illegal; using block3_conv3/kernel_0 instead.\n", + "INFO:tensorflow:Summary name block3_conv3/bias:0 is illegal; using block3_conv3/bias_0 instead.\n", + "INFO:tensorflow:Summary name block4_conv1/kernel:0 is illegal; using block4_conv1/kernel_0 instead.\n", + "INFO:tensorflow:Summary name block4_conv1/bias:0 is illegal; using block4_conv1/bias_0 instead.\n", + "INFO:tensorflow:Summary name block4_conv2/kernel:0 is illegal; using block4_conv2/kernel_0 instead.\n", + "INFO:tensorflow:Summary name block4_conv2/bias:0 is illegal; using block4_conv2/bias_0 instead.\n", + "INFO:tensorflow:Summary name block4_conv3/kernel:0 is illegal; using block4_conv3/kernel_0 instead.\n", + "INFO:tensorflow:Summary name block4_conv3/bias:0 is illegal; using block4_conv3/bias_0 instead.\n", + "INFO:tensorflow:Summary name block5_conv1/kernel:0 is illegal; using block5_conv1/kernel_0 instead.\n", + "INFO:tensorflow:Summary name block5_conv1/bias:0 is illegal; using block5_conv1/bias_0 instead.\n", + "INFO:tensorflow:Summary name block5_conv2/kernel:0 is illegal; using block5_conv2/kernel_0 instead.\n", + "INFO:tensorflow:Summary name block5_conv2/bias:0 is illegal; using block5_conv2/bias_0 instead.\n", + "INFO:tensorflow:Summary name block5_conv3/kernel:0 is illegal; using block5_conv3/kernel_0 instead.\n", + "INFO:tensorflow:Summary name block5_conv3/bias:0 is illegal; using block5_conv3/bias_0 instead.\n", + "INFO:tensorflow:Summary name ft_fc1/kernel:0 is illegal; using ft_fc1/kernel_0 instead.\n", + "INFO:tensorflow:Summary name ft_fc1/bias:0 is illegal; using ft_fc1/bias_0 instead.\n", + "INFO:tensorflow:Summary name batch_normalization_1/gamma:0 is illegal; using batch_normalization_1/gamma_0 instead.\n", + "INFO:tensorflow:Summary name batch_normalization_1/beta:0 is illegal; using batch_normalization_1/beta_0 instead.\n", + "INFO:tensorflow:Summary name batch_normalization_1/moving_mean:0 is illegal; using batch_normalization_1/moving_mean_0 instead.\n", + "INFO:tensorflow:Summary name batch_normalization_1/moving_variance:0 is illegal; using batch_normalization_1/moving_variance_0 instead.\n", + "INFO:tensorflow:Summary name dense_1/kernel:0 is illegal; using dense_1/kernel_0 instead.\n", + "INFO:tensorflow:Summary name dense_1/bias:0 is illegal; using dense_1/bias_0 instead.\n", + "Epoch 1/20\n", + "781/781 [==============================] - 49s - loss: 0.0161 - acc: 0.9974 \n", + "Epoch 2/20\n", + "781/781 [==============================] - 48s - loss: 1.1923e-07 - acc: 1.0000 \n", + "Epoch 3/20\n", + "781/781 [==============================] - 47s - loss: 1.1922e-07 - acc: 1.0000 - ETA:\n", + "Epoch 4/20\n", + "781/781 [==============================] - 47s - loss: 1.1922e-07 - acc: 1.0000 \n", + "Epoch 5/20\n", + "781/781 [==============================] - 48s - loss: 1.1922e-07 - acc: 1.0000 \n", + "Epoch 6/20\n", + "781/781 [==============================] - 48s - loss: 1.1921e-07 - acc: 1.0000 \n", + "Epoch 7/20\n", + "781/781 [==============================] - 47s - loss: 1.1921e-07 - acc: 1.0000 \n", + "Epoch 8/20\n", + "781/781 [==============================] - 48s - loss: 1.1922e-07 - acc: 1.0000 \n", + "Epoch 9/20\n", + "781/781 [==============================] - 48s - loss: 1.1921e-07 - acc: 1.0000 \n", + "Epoch 10/20\n", + "781/781 [==============================] - 47s - loss: 1.1921e-07 - acc: 1.0000 - ET\n", + "Epoch 11/20\n", + "781/781 [==============================] - 48s - loss: 1.1921e-07 - acc: 1.0000 \n", + "Epoch 12/20\n", + "781/781 [==============================] - 47s - loss: 1.1921e-07 - acc: 1.0000 \n", + "Epoch 13/20\n", + "781/781 [==============================] - 47s - loss: 1.1921e-07 - acc: 1.0000 \n", + "Epoch 14/20\n", + "781/781 [==============================] - 48s - loss: 1.1921e-07 - acc: 1.0000 \n", + "Epoch 15/20\n", + "781/781 [==============================] - 46s - loss: 1.1921e-07 - acc: 1.0000 - ETA: 0s - loss: 1.1921e-07 - acc:\n", + "Epoch 16/20\n", + "781/781 [==============================] - 47s - loss: 1.1921e-07 - acc: 1.0000 \n", + "Epoch 17/20\n", + "781/781 [==============================] - ETA: 0s - loss: 1.1921e-07 - acc: 1.000 - 47s - loss: 1.1921e-07 - acc: 1.0000 \n", + "Epoch 18/20\n", + "781/781 [==============================] - 47s - loss: 1.1921e-07 - acc: 1.0000 \n", + "Epoch 19/20\n", + "781/781 [==============================] - 47s - loss: 1.1921e-07 - acc: 1.0000 \n", + "Epoch 20/20\n", + "781/781 [==============================] - 47s - loss: 1.1921e-07 - acc: 1.0000 \n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "def generate_batches(X, Y, batch_size=128):\n", + " \"\"\"\"\"\"\n", + " # Iterations has to go indefinitely\n", + " start = 0\n", + " while True:\n", + " yield (X[start:start+batch_size], Y[start:start+batch_size])\n", + " start=batch_size\n", + "\n", + "batch_size = 64\n", + "steps_per_epoch = np.floor(X_train.shape[0] / batch_size)\n", + "model.fit_generator(generate_batches(X_train, Y_train, batch_size=batch_size),\n", + " steps_per_epoch=steps_per_epoch, epochs=20, verbose=1, \n", + " callbacks=[TensorBoard(log_dir='./tf_logs', histogram_freq=10, \n", + " write_graph=True, write_images=True, \n", + " embeddings_freq=10, \n", + " embeddings_layer_names=['block1_conv2', \n", + " 'block5_conv1', \n", + " 'ft_fc1'], \n", + " embeddings_metadata=None)])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Runing Tensorboard" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "%%bash\n", + "python -m tensorflow.tensorboard --logdir=./tf_logs" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### `tf.Queue` integration with `Keras`" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Source**: [https://gist.github.com/Dref360/43e20eda5eb5834b61bc06a4c1855b29](https://gist.github.com/Dref360/43e20eda5eb5834b61bc06a4c1855b29)" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Using TensorFlow backend.\n" + ] + } + ], + "source": [ + "import operator\n", + "import threading\n", + "from functools import reduce\n", + "\n", + "import keras\n", + "import keras.backend as K\n", + "from keras.engine import Model\n", + "import numpy as np\n", + "import tensorflow as tf\n", + "import time\n", + "from keras.layers import Conv2D\n", + "from tqdm import tqdm" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "def prod(factors):\n", + " return reduce(operator.mul, factors, 1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "TRAINING = True\n", + "with K.get_session() as sess:\n", + " shp = [10, 200, 200, 3]\n", + " shp1 = [10, 7, 7, 80]\n", + " inp = K.placeholder(shp)\n", + " inp1 = K.placeholder(shp1)\n", + " queue = tf.FIFOQueue(20, [tf.float32, tf.float32], [shp, shp1])\n", + " x1, y1 = queue.dequeue()\n", + " enqueue = queue.enqueue([inp, inp1])\n", + " model = keras.applications.ResNet50(False, \"imagenet\", x1, shp[1:])\n", + " for i in range(3):\n", + " model.layers.pop()\n", + " model.layers[-1].outbound_nodes = []\n", + " model.outputs = [model.layers[-1].output]\n", + " output = model.outputs[0] # 7x7\n", + " # Reduce filter size to avoid OOM\n", + " output = Conv2D(32, (1, 1), padding=\"same\", activation='relu')(output)\n", + " output3 = Conv2D(5 * (4 + 11 + 1), (1, 1), padding=\"same\", activation='relu')(\n", + " output) # YOLO output B (4 + nb_class +1)\n", + " cost = tf.reduce_sum(tf.abs(output3 - y1))\n", + " optimizer = tf.train.RMSPropOptimizer(0.001).minimize(cost)\n", + " sess.run(tf.global_variables_initializer())\n", + "\n", + "\n", + " def get_input():\n", + " # Super long processing I/O bla bla bla\n", + " return np.arange(prod(shp)).reshape(shp).astype(np.float32), np.arange(prod(shp1)).reshape(shp1).astype(\n", + " np.float32)\n", + "\n", + "\n", + " def generate(coord, enqueue_op):\n", + " while not coord.should_stop():\n", + " inp_feed, inp1_feed = get_input()\n", + " sess.run(enqueue_op, feed_dict={inp: inp_feed, inp1: inp1_feed})\n", + "\n", + "\n", + " start = time.time()\n", + " for i in tqdm(range(10)): # EPOCH\n", + " for j in range(30): # Batch\n", + " x,y = get_input()\n", + " optimizer_, s = sess.run([optimizer, queue.size()], \n", + " feed_dict={x1:x,y1:y, K.learning_phase(): int(TRAINING)})\n", + " print(\"Took : \", time.time() - start)\n", + "\n", + "\n", + " coordinator = tf.train.Coordinator()\n", + " threads = [threading.Thread(target=generate, args=(coordinator, enqueue)) for i in range(10)]\n", + " for t in threads:\n", + " t.start()\n", + " start = time.time()\n", + " for i in tqdm(range(10)): # EPOCH\n", + " for j in range(30): # Batch\n", + " optimizer_, s = sess.run([optimizer, queue.size()], \n", + " feed_dict={K.learning_phase(): int(TRAINING)})\n", + " print(\"Took : \", time.time() - start)\n", + "\n", + " def clear_queue(queue, threads):\n", + " while any([t.is_alive() for t in threads]):\n", + " _, s = sess.run([queue.dequeue(), queue.size()])\n", + " print(s)\n", + "\n", + "\n", + " coordinator.request_stop()\n", + " clear_queue(queue, threads)\n", + "\n", + " coordinator.join(threads)\n", + " print(\"DONE Queue\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.5.3" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/6. AutoEncoders and Embeddings/6.1. AutoEncoders and Embeddings.ipynb b/6. AutoEncoders and Embeddings/6.1. AutoEncoders and Embeddings.ipynb new file mode 100644 index 0000000..1b07566 --- /dev/null +++ b/6. AutoEncoders and Embeddings/6.1. AutoEncoders and Embeddings.ipynb @@ -0,0 +1,797 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Unsupervised learning" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### AutoEncoders " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "An autoencoder, is an artificial neural network used for learning efficient codings. \n", + "\n", + "The aim of an autoencoder is to learn a representation (encoding) for a set of data, typically for the purpose of dimensionality reduction. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Unsupervised learning is a type of machine learning algorithm used to draw inferences from datasets consisting of input data without labeled responses. The most common unsupervised learning method is cluster analysis, which is used for exploratory data analysis to find hidden patterns or grouping in data." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Reference\n", + "\n", + "Based on [https://blog.keras.io/building-autoencoders-in-keras.html](https://blog.keras.io/building-autoencoders-in-keras.html)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Introducing _Keras Functional API_" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The Keras functional API is the way to go for defining complex models, such as multi-output models, directed acyclic graphs, or models with shared layers." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "All the Functional API relies on the fact that each `keras.Layer` object is a _callable_ object!\n", + "\n", + "See [8.2 Multi-Modal Networks](../8. Extra/8.2 Multi-Modal Networks.ipynb) for further details." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Using TensorFlow backend.\n" + ] + } + ], + "source": [ + "from keras.layers import Input, Dense\n", + "from keras.models import Model\n", + "\n", + "from keras.datasets import mnist\n", + "\n", + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# this is the size of our encoded representations\n", + "encoding_dim = 32 # 32 floats -> compression of factor 24.5, assuming the input is 784 floats\n", + "\n", + "# this is our input placeholder\n", + "input_img = Input(shape=(784,))\n", + "# \"encoded\" is the encoded representation of the input\n", + "encoded = Dense(encoding_dim, activation='relu')(input_img)\n", + "\n", + "# \"decoded\" is the lossy reconstruction of the input\n", + "decoded = Dense(784, activation='sigmoid')(encoded)\n", + "\n", + "# this model maps an input to its reconstruction\n", + "autoencoder = Model(input_img, decoded)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# this model maps an input to its encoded representation\n", + "encoder = Model(input_img, encoded)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# create a placeholder for an encoded (32-dimensional) input\n", + "encoded_input = Input(shape=(encoding_dim,))\n", + "# retrieve the last layer of the autoencoder model\n", + "decoder_layer = autoencoder.layers[-1]\n", + "# create the decoder model\n", + "decoder = Model(encoded_input, decoder_layer(encoded_input))" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy')" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": true, + "scrolled": false + }, + "outputs": [], + "source": [ + "(x_train, _), (x_test, _) = mnist.load_data()\n", + "\n", + "x_train = x_train.astype('float32') / 255.\n", + "x_test = x_test.astype('float32') / 255.\n", + "x_train = x_train.reshape((len(x_train), np.prod(x_train.shape[1:])))\n", + "x_test = x_test.reshape((len(x_test), np.prod(x_test.shape[1:])))" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Train on 60000 samples, validate on 10000 samples\n", + "Epoch 1/50\n", + "60000/60000 [==============================] - 1s - loss: 0.3830 - val_loss: 0.2731\n", + "Epoch 2/50\n", + "60000/60000 [==============================] - 1s - loss: 0.2664 - val_loss: 0.2561\n", + "Epoch 3/50\n", + "60000/60000 [==============================] - 1s - loss: 0.2463 - val_loss: 0.2336\n", + "Epoch 4/50\n", + "60000/60000 [==============================] - 1s - loss: 0.2258 - val_loss: 0.2156\n", + "Epoch 5/50\n", + "60000/60000 [==============================] - 1s - loss: 0.2105 - val_loss: 0.2030\n", + "Epoch 6/50\n", + "60000/60000 [==============================] - 1s - loss: 0.1997 - val_loss: 0.1936\n", + "Epoch 7/50\n", + "60000/60000 [==============================] - 1s - loss: 0.1914 - val_loss: 0.1863\n", + "Epoch 8/50\n", + "60000/60000 [==============================] - 1s - loss: 0.1846 - val_loss: 0.1800\n", + "Epoch 9/50\n", + "60000/60000 [==============================] - 1s - loss: 0.1789 - val_loss: 0.1749\n", + "Epoch 10/50\n", + "60000/60000 [==============================] - 1s - loss: 0.1740 - val_loss: 0.1702\n", + "Epoch 11/50\n", + "60000/60000 [==============================] - 1s - loss: 0.1697 - val_loss: 0.1660\n", + "Epoch 12/50\n", + "60000/60000 [==============================] - 1s - loss: 0.1657 - val_loss: 0.1622\n", + "Epoch 13/50\n", + "60000/60000 [==============================] - 1s - loss: 0.1620 - val_loss: 0.1587\n", + "Epoch 14/50\n", + "60000/60000 [==============================] - 1s - loss: 0.1586 - val_loss: 0.1554\n", + "Epoch 15/50\n", + "60000/60000 [==============================] - 1s - loss: 0.1554 - val_loss: 0.1524\n", + "Epoch 16/50\n", + "60000/60000 [==============================] - 1s - loss: 0.1525 - val_loss: 0.1495\n", + "Epoch 17/50\n", + "60000/60000 [==============================] - 1s - loss: 0.1497 - val_loss: 0.1468\n", + "Epoch 18/50\n", + "60000/60000 [==============================] - 1s - loss: 0.1470 - val_loss: 0.1441\n", + "Epoch 19/50\n", + "60000/60000 [==============================] - 1s - loss: 0.1444 - val_loss: 0.1415\n", + "Epoch 20/50\n", + "60000/60000 [==============================] - 1s - loss: 0.1419 - val_loss: 0.1391\n", + "Epoch 21/50\n", + "60000/60000 [==============================] - 1s - loss: 0.1395 - val_loss: 0.1367\n", + "Epoch 22/50\n", + "60000/60000 [==============================] - 1s - loss: 0.1371 - val_loss: 0.1345\n", + "Epoch 23/50\n", + "60000/60000 [==============================] - 1s - loss: 0.1349 - val_loss: 0.1323ss: 0.13\n", + "Epoch 24/50\n", + "60000/60000 [==============================] - 1s - loss: 0.1328 - val_loss: 0.1302\n", + "Epoch 25/50\n", + "60000/60000 [==============================] - 1s - loss: 0.1308 - val_loss: 0.1283\n", + "Epoch 26/50\n", + "60000/60000 [==============================] - 1s - loss: 0.1289 - val_loss: 0.1264\n", + "Epoch 27/50\n", + "60000/60000 [==============================] - 1s - loss: 0.1271 - val_loss: 0.1247\n", + "Epoch 28/50\n", + "60000/60000 [==============================] - 1s - loss: 0.1254 - val_loss: 0.1230\n", + "Epoch 29/50\n", + "60000/60000 [==============================] - 1s - loss: 0.1238 - val_loss: 0.1215\n", + "Epoch 30/50\n", + "60000/60000 [==============================] - 1s - loss: 0.1223 - val_loss: 0.1200\n", + "Epoch 31/50\n", + "60000/60000 [==============================] - 1s - loss: 0.1208 - val_loss: 0.1186\n", + "Epoch 32/50\n", + "60000/60000 [==============================] - 1s - loss: 0.1195 - val_loss: 0.1172\n", + "Epoch 33/50\n", + "60000/60000 [==============================] - 1s - loss: 0.1182 - val_loss: 0.1160\n", + "Epoch 34/50\n", + "60000/60000 [==============================] - 1s - loss: 0.1170 - val_loss: 0.1149\n", + "Epoch 35/50\n", + "60000/60000 [==============================] - 1s - loss: 0.1158 - val_loss: 0.1137\n", + "Epoch 36/50\n", + "60000/60000 [==============================] - 1s - loss: 0.1148 - val_loss: 0.1127\n", + "Epoch 37/50\n", + "60000/60000 [==============================] - 1s - loss: 0.1138 - val_loss: 0.1117\n", + "Epoch 38/50\n", + "60000/60000 [==============================] - 1s - loss: 0.1129 - val_loss: 0.1109\n", + "Epoch 39/50\n", + "60000/60000 [==============================] - 1s - loss: 0.1120 - val_loss: 0.1100\n", + "Epoch 40/50\n", + "60000/60000 [==============================] - 1s - loss: 0.1112 - val_loss: 0.1093\n", + "Epoch 41/50\n", + "60000/60000 [==============================] - 1s - loss: 0.1105 - val_loss: 0.1085\n", + "Epoch 42/50\n", + "60000/60000 [==============================] - 1s - loss: 0.1098 - val_loss: 0.1079\n", + "Epoch 43/50\n", + "60000/60000 [==============================] - 1s - loss: 0.1092 - val_loss: 0.1072\n", + "Epoch 44/50\n", + "60000/60000 [==============================] - 1s - loss: 0.1086 - val_loss: 0.1066\n", + "Epoch 45/50\n", + "60000/60000 [==============================] - 1s - loss: 0.1080 - val_loss: 0.1061\n", + "Epoch 46/50\n", + "60000/60000 [==============================] - 1s - loss: 0.1074 - val_loss: 0.1056\n", + "Epoch 47/50\n", + "60000/60000 [==============================] - 1s - loss: 0.1069 - val_loss: 0.1051\n", + "Epoch 48/50\n", + "60000/60000 [==============================] - 1s - loss: 0.1065 - val_loss: 0.1046\n", + "Epoch 49/50\n", + "60000/60000 [==============================] - 1s - loss: 0.1060 - val_loss: 0.1042\n", + "Epoch 50/50\n", + "60000/60000 [==============================] - 1s - loss: 0.1056 - val_loss: 0.1037\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#note: x_train, x_train :) \n", + "autoencoder.fit(x_train, x_train,\n", + " epochs=50,\n", + " batch_size=256,\n", + " shuffle=True,\n", + " validation_data=(x_test, x_test))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Testing the Autoencoder " + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from matplotlib import pyplot as plt\n", + "\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABHEAAADqCAYAAAAlBtnSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xe8FNX9//GDHSwoCKJRUMGOglJEA3ZFwF4iir0l35hY\noqi/xKixJI+HvWvU2BUrFkCxi6KioojSBQVEuiCKYr+/P/Lwk/f5eGeYu+zuvbP7ev71Gc9hd+7M\nntnZ8XzOp1FNTU0AAAAAAABAw7Zcfe8AAAAAAAAAlo6HOAAAAAAAADnAQxwAAAAAAIAc4CEOAAAA\nAABADvAQBwAAAAAAIAd4iAMAAAAAAJADPMQBAAAAAADIAR7iAAAAAAAA5AAPcQAAAAAAAHJghbp0\nbtSoUU2pdgTpampqGhXjdTiH9Wp+TU1Ni2K8EOex/jAWKwJjsQIwFisCY7ECMBYrAmOxAjAWK0Km\nschMHKB8ptX3DgAIITAWgYaCsQg0DIxFoGHINBZ5iAMAAAAAAJADPMQBAAAAAADIAR7iAAAAAAAA\n5AAPcQAAAAAAAHKAhzgAAAAAAAA5wEMcAAAAAACAHOAhDgAAAAAAQA7wEAcAAAAAACAHVqjvHUB1\nOuussyxu3Lhx1LbNNttYfMghhyS+xs0332zxm2++GbXde++9y7qLAAAAAAA0KMzEAQAAAAAAyAEe\n4gAAAAAAAOQAD3EAAAAAAABygDVxUDYPPfSQxWlr3aiff/45se33v/+9xXvssUfUNmzYMIunT5+e\ndRdRzzbddNNoe8KECRafdtppFl9//fVl26dqtuqqq1p8+eWXW6xjL4QQ3n33XYsPPfTQqG3atGkl\n2jsAAID6sdZaa1ncunXrTP/G3xOdccYZFo8ZM8biSZMmRf1Gjx5dyC6igjETBwAAAAAAIAd4iAMA\nAAAAAJADpFOhZDR9KoTsKVSaQvPss89avPHGG0f99t13X4vbtm0btfXr18/if/3rX5neF/Vv2223\njbY1nW7GjBnl3p2qt+6661p80kknWezTHDt16mTxPvvsE7XdeOONJdo7qO22287igQMHRm0bbrhh\nyd53r732irbHjx9v8aefflqy98XS6XdkCCE89dRTFv/pT3+y+JZbbon6/fTTT6XdsQrUsmVLix9+\n+GGL33jjjajfrbfeavHUqVNLvl+/aNq0abS90047WTx06FCLf/jhh7LtE5AHffr0sXi//faL2nbZ\nZReL27Vrl+n1fJpUmzZtLF555ZUT/93yyy+f6fVRPZiJAwAAAAAAkAM8xAEAAAAAAMgB0qlQVJ07\nd7b4wAMPTOw3duxYi/30xPnz51u8ePFii1daaaWo34gRIyzu0KFD1Na8efOMe4yGpGPHjtH2119/\nbfHjjz9e7t2pOi1atIi277777nraE9RVz549LU6bkl1sPmXn+OOPt7hv375l2w/8l3733XTTTYn9\nbrjhBovvuOOOqG3JkiXF37EKo1VpQojvaTR1ac6cOVG/+kqh0gqCIcTXek2HnTx5cul3LGfWWGON\naFtT9Nu3b2+xr5JKalrDpsswnHLKKRZr6ngIITRu3NjiRo0aLfP7+iqsQKGYiQMAAAAAAJADPMQB\nAAAAAADIAR7iAAAAAAAA5EC9ronjS05rHuLMmTOjtm+//dbi+++/3+LZs2dH/cjnrV9aktjnjmrO\nuK7fMGvWrEyvfeaZZ0bbW265ZWLfIUOGZHpN1D/NKdeytyGEcO+995Z7d6rOqaeeavEBBxwQtXXt\n2rXOr6ela0MIYbnl/vf/CkaPHm3xq6++WufXRmyFFf73Fd67d+962Qe/1sZf/vIXi1ddddWoTde4\nQmno+Ft//fUT+w0YMMBivb9CsrXXXtvihx56KGpr1qyZxboW0Z///OfS71iC8847z+KNNtooavv9\n739vMffNv9avXz+LL7300qhtgw02qPXf+LVzPv/88+LvGIpGr4+nnXZaSd9rwoQJFutvIRSPlnjX\na3UI8RqtWhY+hBB+/vlni2+55RaLX3/99ahfQ7xOMhMHAAAAAAAgB3iIAwAAAAAAkAP1mk512WWX\nRdsbbrhhpn+n00C/+uqrqK2c09RmzJhhsf9bRo4cWbb9aEgGDRpksU5tCyE+VwsWLKjza/tytSuu\nuGKdXwMNz+abb26xT7/wU9ZRfFdffbXFOq20UAcddFDi9rRp0yw+7LDDon4+LQdLt+uuu1q8ww47\nWOy/j0rJl1rWNNcmTZpEbaRTFZ8vJ/+3v/0t07/TVNWampqi7lOl2m677Sz2U/LVRRddVIa9+bWt\nttoq2tYU9Mcffzxq47v11zS95pprrrG4efPmUb+k8XL99ddH25oeXsg9L7LxqTOaGqUpMUOHDo36\nfffddxYvWrTIYv89pfelzz33XNQ2ZswYi9966y2LR40aFfVbsmRJ4usjO11+IYR4jOm9pv9MZLX9\n9ttb/OOPP0ZtEydOtHj48OFRm37mvv/++4LeuxDMxAEAAAAAAMgBHuIAAAAAAADkAA9xAAAAAAAA\ncqBe18TRkuIhhLDNNttYPH78+Khtiy22sDgtL7lbt24Wf/rppxYnlQSsjebBzZs3z2Itn+1Nnz49\n2q7WNXGUrn9RqP79+1u86aabJvbTXNTattFwnX322Rb7zwzjqDSefvppi7UEeKG0lOrixYujtjZt\n2lisZW7ffvvtqN/yyy+/zPtR6Xw+uJaJnjJlisX//Oc/y7ZP+++/f9neC7+29dZbR9udOnVK7Kv3\nNs8880zJ9qlStGzZMto++OCDE/uecMIJFut9Y6npOjgvvPBCYj+/Jo5fTxIhnHXWWRZryfis/Dpv\ne++9t8W+TLmun1PONTQqRdo6NR06dLBYS0t7I0aMsFh/V06dOjXq17p1a4t1LdQQirOOIH5Nnwec\ncsopFvsxtsYaa9T67z/77LNo+7XXXrP4k08+idr0N4iuzdi1a9eon14TevfuHbWNHj3aYi1TXmrM\nxAEAAAAAAMgBHuIAAAAAAADkQL2mU7344oup28qXhvuFL2/asWNHi3VaVJcuXTLv17fffmvxpEmT\nLPYpXjq1SqeyY9nss88+FmupzpVWWinqN3fuXIv/3//7f1HbN998U6K9w7LacMMNo+3OnTtbrOMt\nBEoxFsvOO+8cbW+22WYW63TgrFOD/XRRnc6spTpDCGG33XazOK388f/93/9ZfPPNN2faj2pz3nnn\nRds6pVyn7vuUtmLT7z7/2WJ6eXmlpfh4Pu0A6a688spo+8gjj7RY7y9DCOGRRx4pyz55PXr0sHid\nddaJ2u666y6L77vvvnLtUm5oqm8IIRx33HG19vvggw+i7Tlz5li8xx57JL5+06ZNLdZUrRBCuP/+\n+y2ePXv20ne2yvn7/wceeMBiTZ8KIU4nTksxVD6FSvnlMlB8//73v6NtTYNLKxeuzw0+/PBDi//6\n179G/fR3vbfjjjtarPehd9xxR9RPny/oNSCEEG688UaLH3vsMYtLnVrLTBwAAAAAAIAc4CEOAAAA\nAABADtRrOlUxLFy4MNp++eWXa+2XlqqVRqcq+9Qtnbr10EMPFfT6+DVNr/FTKJUe82HDhpV0n1A8\nPv1ClbOqR6XTtLUHH3wwakubnqq0WphOEf3HP/4R9UtLX9TXOPnkky1u0aJF1O+yyy6zeJVVVona\nbrjhBot/+OGHpe12RTnkkEMs9hURJk+ebHE5K7lpWpxPn3rllVcs/uKLL8q1S1Vrp512SmzzVW/S\n0hnxazU1NdG2ftZnzpwZtZWywlDjxo2jbU0V+OMf/2ix39/jjz++ZPtUCTQ9IoQQVl99dYu1mo2/\nZ9Hvp8MPP9xin8LRtm1bi1u1ahW1Pfnkkxb36tXL4gULFmTa92qw2mqrWeyXTNBlF+bPnx+1XXHF\nFRaztELD4e/rtCrUiSeeGLU1atTIYv1d4FPtL7/8cosLXX6hefPmFmuV1AsvvDDqp8u6+FTM+sJM\nHAAAAAAAgBzgIQ4AAAAAAEAO8BAHAAAAAAAgB3K/Jk4ptGzZ0uKbbrrJ4uWWi595aflr8lgL98QT\nT0Tbe+21V6397rnnnmjbl9tFPmy99daJbbouCpbNCiv87/KedQ0cv7ZU3759LfZ551npmjj/+te/\nLL7qqquifk2aNLHYfw6eeuopi6dMmVLQfuTVoYcearEeoxDi76dS0zWW+vXrZ/FPP/0U9bvkkkss\nrrb1i8pFS6Jq7Pk1At5///2S7VO16dOnT7St5dt1LSi/hkNWug7LLrvsErV169at1n/z6KOPFvRe\n1WrllVeOtnVNoauvvjrx32m54jvvvNNivVaHEMLGG2+c+Bq6Vksp11PKswMOOMDic889N2rTst89\nevSI2hYtWlTaHUNB/HWsf//+FusaOCGE8Nlnn1msa9O+/fbbBb23rnWzwQYbRG362/Lpp5+22K+D\nq/z+3nvvvRaXcy1AZuIAAAAAAADkAA9xAAAAAAAAcoB0qlqccsopFmsZXF/OfOLEiWXbp0qz7rrr\nWuyng+sUV03h0Gn6IYSwePHiEu0dik2nfx933HFR26hRoyx+/vnny7ZP+C8tTe1L0haaQpVE06I0\nJSeEELp06VLU98qrpk2bRttJqRMhFJ6qUQgtD6/peePHj4/6vfzyy2Xbp2qVdayU8/NRia699tpo\ne9ddd7V4vfXWi9q01LtOtd9vv/0Kem99DV86XH388ccW+xLXSKflwT1Nl/Mp/0k6d+6c+b1HjBhh\nMfeytUtLFdX7xhkzZpRjd7CMNKUphF+nYqsff/zR4u23397iQw45JOq3+eab1/rvlyxZEm1vscUW\ntcYhxPe566yzTuI+qTlz5kTb9ZVGzkwcAAAAAACAHOAhDgAAAAAAQA6QThVC+O1vfxtt+1XQf6Er\npYcQwpgxY0q2T5Xuscces7h58+aJ/e677z6Lq60qTSXZY489LG7WrFnUNnToUIu16gOKx1fWUzpV\ntdQ0RcDvU9o+XnjhhRYfddRRRd+vhsRXTPnNb35j8YABA8q9O6Zt27a1/ne+B8svLW2jGJWR8F/v\nvvtutL3NNttY3LFjx6ht7733tlirrsybNy/qd/fdd2d6b612Mnr06MR+b7zxhsXcI9WNv55q6pum\nLPqUDa2weeCBB1rsq9noWPRtJ510ksV6rseNG5dp36uBT51ROt4uuOCCqO3JJ5+0mIp8DcdLL70U\nbWvqtf5GCCGE1q1bW3zddddZnJZaqulZPnUrTVIK1c8//xxtP/744xafeuqpUdusWbMyv18xMRMH\nAAAAAAAgB3iIAwAAAAAAkAM8xAEAAAAAAMgB1sQJIfTu3TvaXnHFFS1+8cUXLX7zzTfLtk+VSPON\nt9tuu8R+r7zyisU+1xX51KFDB4t9Tuujjz5a7t2pCn/4wx8s9rm99WXfffe1eNttt43adB/9/uqa\nOJXuq6++irY1p1/X5AghXl9qwYIFRd2Pli1bRttJ6xMMHz68qO+L2nXv3t3iI444IrHfokWLLKb0\nbnEtXLjQYl3PwW+fc845y/xeG2+8scW6llgI8TXhrLPOWub3qlYvvPBCtK1jR9e98evUJK3L4V/v\nlFNOsXjw4MFR2yabbGKxrq+h39vVrkWLFhb7ewJdO+7888+P2s477zyLb7nlFou1rHsI8borkydP\ntnjs2LGJ+7TVVltF2/q7kOttOl/2W9eTWnPNNaM2XZtW1639/PPPo37Tp0+3WD8T+psjhBC6du1a\n5/299dZbo+2//vWvFut6V/WJmTgAAAAAAAA5wEMcAAAAAACAHKjadKrGjRtbrKXqQgjh+++/t1jT\neX744YfS71gF8aXDdSqapqx5OlV48eLFxd8xlEWrVq0s7tGjh8UTJ06M+mnZPhSPpi6Vk06BDiGE\nLbfc0mK9BqTxZXmr6drrpxxr2eCDDz44ahsyZIjFV111VZ3fq3379tG2pnBsuOGGUVtSCkFDSdWr\ndPp9utxyyf//7fnnny/H7qDENEXEjz1N1/LXSmTnU1B/97vfWaxp3k2bNk18jeuvv95in0b37bff\nWjxw4MCoTdNFevbsaXHbtm2jftVcNv6KK66w+C9/+Uvmf6fXxz/+8Y+1xsWi40+Xgujbt2/R36uS\n+fQkHR+FuOeee6LttHQqTWHXz9ldd90V9dMS5g0FM3EAAAAAAABygIc4AAAAAAAAOcBDHAAAAAAA\ngByo2jVx+vfvb7EvdTt06FCL33jjjbLtU6U588wzo+0uXbrU2u+JJ56ItikrXhmOPfZYi7Vc8TPP\nPFMPe4Ny+dvf/hZta5nVNFOnTrX4mGOOidq0jGS10euhLzXcp08fiwcMGFDn154/f360rWtvrL32\n2plew+eNozSSSrz7tQT+/e9/l2N3UGSHHnpotH300UdbrGs2hPDrMrsoDi0RruPtiCOOiPrpmNO1\ni3QNHO/iiy+OtrfYYguL99tvv1pfL4RffxdWE10X5aGHHoraHnjgAYtXWCH+KbvBBhtYnLZ+WDHo\nGoD6mdEy5yGEcMkll5R0PxDC2WefbXFd1iT6wx/+YHEh91H1iZk4AAAAAAAAOcBDHAAAAAAAgByo\nmnQqnXYeQgh///vfLf7yyy+jtosuuqgs+1TpspYE/NOf/hRtU1a8MrRp06bW/75w4cIy7wlK7emn\nn7Z4s802K+g1xo0bZ/Hw4cOXeZ8qxYQJEyzWErghhNCxY0eL27VrV+fX1jK63t133x1t9+vXr9Z+\nviQ6imP99dePtn1Kxy9mzJgRbY8cObJk+4TS6dWrV2Lb4MGDo+333nuv1LtT9TS1SuNC+eukpgdp\nOtWuu+4a9WvWrJnFviR6pdOSzv66tummmyb+u913393iFVdc0eILL7ww6pe0xEOhNN25U6dORX1t\n1O7EE0+0WFPYfIqdGjt2bLQ9cODA4u9YmTATBwAAAAAAIAd4iAMAAAAAAJADFZ1O1bx5c4uvu+66\nqG355Ze3WFMBQghhxIgRpd0xRHS6aAgh/PDDD3V+jUWLFiW+hk6nbNq0aeJrrLnmmtF21nQwnfJ5\nzjnnRG3ffPNNpteoRPvss0+t/33QoEFl3pPqpFN70yo0pE3jv/XWWy1eb731Evvp6//8889ZdzGy\n7777FvTvqtn7779fa1wMH3/8caZ+7du3j7bHjBlT1P2oVjvuuGO0nTSGfXVH5JO/Dn/99dcWX3nl\nleXeHZTYww8/bLGmUx122GFRP11ugKUesnnxxRdr/e+afhxCnE71448/WnznnXdG/W677TaLTz/9\n9KgtKc0VpdG1a9doW6+Nq622WuK/02U6tBpVCCF89913Rdq78mMmDgAAAAAAQA7wEAcAAAAAACAH\neIgDAAAAAACQAxW3Jo6udTN06FCLN9poo6jflClTLNZy4yi/Dz74YJlf45FHHom2Z82aZfE666xj\nsc83LrbZs2dH25deemlJ368h6d69e7TdqlWretoThBDCzTffbPFll12W2E/L16atZ5N1rZus/W65\n5ZZM/VA/dE2l2rZ/wRo4paFr+nnz58+3+Nprry3H7qAEdG0GvU8JIYS5c+daTEnxyqPfk/r9vP/+\n+0f9LrjgAosffPDBqG3SpEkl2rvK9Nxzz0Xben+uJalPOumkqF+7du0s3mWXXTK914wZMwrYQyyN\nXztx9dVXr7WfrikWQrzu1Ouvv178HasnzMQBAAAAAADIAR7iAAAAAAAA5EDFpVO1bdvW4k6dOiX2\n0/LRmlqF4vGl2/000WI69NBDC/p3WlYwLQ3kqaeesnjkyJGJ/V577bWC9qMSHHjggdG2pjaOGjXK\n4ldffbVs+1TNBg4caHH//v2jthYtWpTsfefNmxdtjx8/3uKTTz7ZYk15RMNTU1OTuo3S6tmzZ2Lb\n9OnTLV60aFE5dgcloOlUfnwNGTIk8d9pCsFaa61lsX4ukB/vv/++xeeff37Udvnll1v8z3/+M2o7\n6qijLF6yZEmJ9q5y6L1ICHGZ99/97neJ/27XXXdNbPvpp58s1jF77rnnFrKLqIVe784+++xM/+b+\n+++Ptl955ZVi7lKDwUwcAAAAAACAHOAhDgAAAAAAQA7wEAcAAAAAACAHcr8mTps2baJtX0LuF35N\nCC2ri9I46KCDom3NZVxxxRUzvcZWW21lcV3Kg99xxx0WT506NbHfY489ZvGECRMyvz7+q0mTJhb3\n7t07sd+jjz5qseYQo3SmTZtmcd++faO2Aw44wOLTTjutqO+rZTtDCOHGG28s6uujPFZZZZXENtZf\nKA39XtT1/bxvv/3W4h9++KGk+4T6od+T/fr1i9rOOOMMi8eOHWvxMcccU/odQ0ndc8890fbvf/97\ni/099UUXXWTxBx98UNodqwD+e+v000+3eLXVVrO4c+fOUb+WLVta7H9P3HvvvRZfeOGFRdhLhBCf\nj3Hjxlmc9ttRx4Ce20rGTBwAAAAAAIAc4CEOAAAAAABADuQ+nUpL1oYQQuvWrWvtN2zYsGibcqnl\nd9llly3Tvz/iiCOKtCcoFp3Kv3DhwqhNy7Jfe+21Zdsn/Jov667bmoLqr6f77ruvxXo+b7311qhf\no0aNLNapr8iv4447Ltr+4osvLL744ovLvTtV4eeff7Z45MiRUVv79u0tnjx5ctn2CfXjxBNPtPiE\nE06I2v7zn/9YzFisLPPmzYu299hjD4t9Ks8555xjsU+5w9LNmTPHYr3X0dLtIYTQrVs3i//xj39E\nbXPnzi3R3lW33XbbzeL111/f4rTf7ppmqinHlYyZOAAAAAAAADnAQxwAAAAAAIAcaFSXtKJGjRo1\niByk7t27W/z0009HbbqiteratWu07acqN3Q1NTWNlt5r6RrKOaxS79bU1HReerel4zzWH8ZiRWAs\nLsWgQYOi7auuusril19+udy7U6tKHovrrbdetH3JJZdY/O6771pcAdXfqnYs6r2sVhoKIU55vfnm\nm6M2TV3+/vvvS7R3dVPJY7Gh8NV3d9hhB4u33357i5chpblqx2IlqYSxOHr0aIu33nrrxH6XX365\nxZpeWAEyjUVm4gAAAAAAAOQAD3EAAAAAAABygIc4AAAAAAAAOZDLEuM9evSwOGkNnBBCmDJlisWL\nFy8u6T4BAFAptOQqym/mzJnR9vHHH19Pe4JSGT58uMVaUheozSGHHBJt67oh7dq1s3gZ1sQBGoRm\nzZpZ3KjR/5b48SXdr7nmmrLtU0PETBwAAAAAAIAc4CEOAAAAAABADuQynSqNTi/cfffdLV6wYEF9\n7A4AAAAAFOzLL7+MtjfaaKN62hOgtK666qpa44svvjjqN2vWrLLtU0PETBwAAAAAAIAc4CEOAAAA\nAABADvAQBwAAAAAAIAca1dTUZO/cqFH2ziiqmpqaRkvvtXScw3r1bk1NTedivBDnsf4wFisCY7EC\nMBYrAmOxAjAWKwJjsQIwFitCprHITBwAAAAAAIAc4CEOAAAAAABADtS1xPj8EMK0UuwIUrUp4mtx\nDusP5zH/OIeVgfOYf5zDysB5zD/OYWXgPOYf57AyZDqPdVoTBwAAAAAAAPWDdCoAAAAAAIAc4CEO\nAAAAAABADvAQBwAAAAAAIAd4iAMAAAAAAJADPMQBAAAAAADIAR7iAAAAAAAA5AAPcQAAAAAAAHKA\nhzgAAAAAAAA5wEMcAAAAAACAHOAhDgAAAAAAQA7wEAcAAAAAACAHeIgDAAAAAACQAzzEAQAAAAAA\nyAEe4gAAAAAAAOQAD3EAAAAAAABygIc4AAAAAAAAOcBDHAAAAAAAgBzgIQ4AAAAAAEAO8BAHAAAA\nAAAgB3iIAwAAAAAAkAM8xAEAAAAAAMgBHuIAAAAAAADkwAp16dyoUaOaUu0I0tXU1DQqxutwDuvV\n/JqamhbFeCHOY/1hLFYExmIFYCxWBMZiBWAsVgTGYgVgLFaETGORmThA+Uyr7x0AEEJgLAINBWMR\naBgYi0DDkGks1mkmDgAAqEyNGiX/D7yaGv6nHAAAQEPATBwAAAAAAIAc4CEOAAAAAABADvAQBwAA\nAAAAIAdYEwf1Qtde8OswJK29kNbP/5u011fLLbdcYr8ffvgh8d9VMz1O5VwnI+08pvVL+5wAlUI/\n93pdCyGEn3/+2eK0McD4AACguOrrvhmVjZk4AAAAAAAAOcBDHAAAAAAAgBwgnQrLxKeu6HaTJk2i\ntj59+lj82WefWdylS5eo36qrrmrxrFmzLNaUgBBCWGGF/31833333ahNX3/FFVe0eMGCBVG/5Zdf\n3uJvvvkmavMpCUn7UYnSUpfS0jZU0pTRtKmk/vX03Olx9/0KSX1jSmvdFJICubQ2LJ1+1tOuPXqc\nf/rpp5LuEwAA1W6VVVaxeL311rO4devWUb+PPvrI4rlz50Zt+r3Odzfqgpk4AAAAAAAAOcBDHAAA\nAAAAgBzgIQ4AAAAAAEAOsCYO6kzXounYsWPUtueee1qs+aEhhNCrVy+LW7ZsafHKK68c9UtaZ+X7\n77+Ptr/44guLP/zww6jt9ttvt/idd96x2K/P8fXXXye2VfpaHnqcCy3RnvUY6WdmrbXWito222wz\ni9u2bRu1aX7wuHHjLJ42bVrU78svv6z134SQvI5IMf6uSqDrQvmxqHnde++9t8Vp52no0KFR27Bh\nwyz+9ttvLa6mY7w0aZ/FtHVwdAzreWzcuHHU78cff7RYr6N+rKSN+6S1sNL23b9+0ro9dVljKe+K\n8bfqa+h5DyEew02bNo3a9Dqs359LliyJ+unnxavkc7Ms9DzoOhlpx1LXciv1Wntp69dVwzp/pVLq\n0tGF3IsxRotL12bs1KlT1HbRRRdZvMUWW1jsr8tvvfWWxffcc0/U9txzz1msv0mApWEmDgAAAAAA\nQA7wEAcAAAAAACAHcpNOlTaNMAlTCotHj3+LFi0s3mCDDaJ+Oo14k002idp0mrf2SysXnRSHEE87\n9FMQZ8+ebfHChQst/u6776J+1TaNuBjjqJBxpcfZ//s11ljD4s033zxq0zSpjz/+2GL/WaBEY90k\npcbo2A4hhH79+ll8wAEHJPZbsGCBxXPmzInahg8fbjHX5NqlHRc9V5oOE0IIq666qsVrr722xaut\ntlrU76vOb3iBAAAgAElEQVSvvrJ4/vz5FvvrYRrdD72W+9QtnUb+zTffRG2ayqXvnZZykhdpaRVp\n191lTcfwnwlNddQxG0KcXvXCCy9Y/Nprr0X99Bpabd+RafRa6VNPt9xyS4vbt29vsS8n/P7771us\nKW1+LGZNj9HPz0orrRS1rbnmmhavvvrqUduiRYss1nHpx6yOzUq/fieNU3+Pqtc4HR9+rBQydvw+\n6Dn1nzl9fb0n8ksPVPp5K7YmTZpE29dee63FRx55ZNSm5yTtWt67d2+L/ZICem87fvx4i/29LPe2\n8JiJAwAAAAAAkAM8xAEAAAAAAMiBsqdTJU3jDyGeFqzpNp5OKfPTy3TqZzGmBKetDF9Nq8HrlE49\nrp988knUb9NNN7XYT9/VlCddqX3q1KlRv8GDB1v82WefWdy5c+eo3/bbb2/x4sWLozb9bOk000o/\nT3WRdiwKbUui489P19bKKFoFIIR4irlOS0+rppJ1/9Kq73iV9rnRv0ePuY6pEELo27evxVqpyl+7\nNSWue/fuUdsjjzxisV4vmBr8P1krxfnUGa0A2KFDB4t9etKoUaNqfS//vajv7duSKiL5FA697vsK\nHfod4Kf8512h1x39d4WkVvl+Wj3l2GOPjdqS0pi1gmMIlV8hJe1an1TxLYQQNt54Y4tPO+20qK1b\nt24W63XuoYceivpphT4dp/6amvS58DSdw6ew77DDDhb7FMuJEydarPdgmtoRQn5SlZPGTl2qwWnf\ntKUBtCqrpnxrJcYQ4lT+Qu8h0n5naHqkpsz6639DPm/1Sc+33sPoPUsIIey2224W+2tCltf2/65Z\ns2ZRW5cuXSz+6KOPLK6ENONSy5oCqfdO/p5Fr3Fp1TvTxmJ9LfnCTBwAAAAAAIAc4CEOAAAAAABA\nDvAQBwAAAAAAIAdKsiaOz0XTNRe0JHXLli2jfprbq+UaQ4jzTrWcrV8L5fPPP6+1zee2aV6yX4dD\nS7X+5je/qXX/Qghh8uTJFk+ZMiVq07U8subgeg2ptKfmCeqx0zzSEOLz9N5770Vto0ePtvjJJ5+0\nWPOGQ4jPlZ4bv8bOTjvtZPH6668ftWmOqZb01H2vRoXkYBaS65n2vn4san6qL+2oY3jevHkW+xLj\nxcgt1dfwec+Vlpus51SvyZdffnnUT8dV2nodmm+s6zCEEMLVV19t8aWXXmrx2LFjo366DkdDuvYV\nS6Frqun36TrrrBO1HXTQQRbrmkV+jRNdL0HHVF1K4ur+63jQdRn8fsyYMSNq03NcaetMZVWMtfWS\n1rQKIYRevXpZ7L8X9fzq/YxfA6fSz43/+/R6r8dzww03jPqdeuqpFu+3335Rm57XQYMGWayl3EOI\nS3sn/Xu/nTYu9ftUx14I8Rpn8+fPj9omTZpksd63pa0DUZf1ZUot7b4k69pS/reK3mMef/zxFvfv\n3z/qp6Xb9dg9+OCDUT/9vtPfJiEkn1O/v3o+/H2P3s/qGj7+Nartu1XHc9rnd9VVV7VY71P0t0UI\n8efEr+Wm36d6Pvw9pK7vOWDAgKht6NChFuv5qfTrcJqk9Wj9uoCNGze2WEu377777lG/o48+2mL/\nvThnzhyLn332WYv1vIQQX0P9d6b+5tdx6n9zFvv8MhMHAAAAAAAgB3iIAwAAAAAAkAMlSafS6U0h\nhLDFFltYrNMQfcqUbmsaUwjxdLa0NCkt3abTYv20SZ3S5Kc56pQsLSnpX+OZZ56x+Morr4zapk2b\nVus+VkIZY50qplNyQ4inCj///PNR2/Tp0y3OWl5Wj9cJJ5wQtel0OZ9WV8opiQ1pSnGpFGOqchKf\nlqilkf24f/PNNy3W0uSFTgnOmhpWiVOOlV6jb7rpJos1tSqE5OPlr7tJKZAhxOVYr7nmGotfffXV\nqN8999xjsb+u5LUcddKUYL+t4yhtiv+uu+4ate27774W67TdRx99NOqnKatZUwPTxra2+ZTazp07\nW+zHupYvzjrG8ni99fvsz2kxX98ffx1vfuq5fndryp1OBa8G/nzo8dTr17rrrhv101LT/pqkZbof\neOABi326eNLnPu0eNe0zr+PZp9toepVP79AUAr0H9tf2rGld5ZZW4jfrEgZ+fGgp6XPPPddiv/RD\n0ut17949ajvxxBMtHjhwYNSmn5e077ek8schxOde09L9NT4P18y60uPuS3ZrusysWbMs9qktrVq1\nsliPkd5rhhB/b5122mlR24gRI2rdP/0dGUJ8XfHXhKTy8JV43pL470z9POvvAk0RDSGErl27Wty+\nfXuL27VrF/Vr3ry5xX7c63MJjbfddtuo35IlSyz2vzlfe+01i4cPH26xf76g57oYmIkDAAAAAACQ\nAzzEAQAAAAAAyAEe4gAAAAAAAORA0dbE0RwzLdvmae6i5qiFEOfzatm+EOJcNC0x7tff0dfXXHGf\nN655aj7vUHMSdR99fv9vf/tbi3U9hxDi9V+yasj5j7pvep70vIQQl133+ac+1zqJ5kbqmg977rln\n1E9zJrV8Xwjxejx+H/FfWde9SeuXNW9f8/F1nakQQujZs6fF/pqQlqufVdZ1cHRNgoY8Fgvh11vQ\nvG4tp5l2rHTc+3xgPTf+vfRYrrfeehYfdthhUb+2bdtafPHFF0dt48aNq3U/KuU86THz+dq6DoeW\nyfRtY8aMsVhz+ENIXnOnLmu0aV/NG/fX5W7dulms6xGEkHy9KHR9i4Yk6/pHfm0SHTsaZy2NvN12\n20Vtun6H3w+9rxo2bJjFDWmtk3Lwf6+eEz1mfi2UtHUz3nrrLYtnzJiR+F4q6/ds2vjQe+C99947\n6qf3rBMmTIja9J5J11pJK3FdaZo0aRJtH3rooRbrbwZ/DnUNKV2/Te9/Qwhhxx13tLhLly5R2223\n3WaxrqfhSxenXSd1W++383LNXBZt2rSx+KijjoradM2Zhx9+2GK/ppCuC6XnY/DgwVG/t99+2+K0\n7zTlzyN+Ta+7/jd63759LT7wwAMt1nWMQojvl/S33hdffBH10/Lg/to9d+7cWl9vm222ifrp7xO/\n7pR+J3/wwQcW6/OKELL/HsmKmTgAAAAAAAA5wEMcAAAAAACAHChJiXE//VKn3mvpbV96K236mU6P\n02mDPp1KS5FtuOGGifs0atSoWl87hLjksU7Z22ijjaJ+Oi3Kl3ZMms6YNh0yL3T6oD9nWaeDp9l0\n000tvvHGGy32U181Ze2MM86I2nTqcNp04KxT29KmtKal4eTl/PrjoNMc/fT/QlIitLyipu+EEJ9v\nP/VQy3AWY8p/1inreTlvWfk0tVNPPdVin76j9Fr73nvvWfzSSy9F/TS9RktihxCnPWrZR722hhCX\nijz88MOjtmuvvdbi2bNnW5yn85RWZlrb/LTiXr16Wbz55ptHbTomsk75ThqXvs1fN1dZZRWL99hj\nD4v79esX9dNUA//dmpa2ofJ0XmuTdj1NO+Zp6anaT8fU/vvvH/Xz35Pqww8/tNh/RgpRlxSghiRt\nv1dbbTWLW7RoEbU1bdrUYn/d1NKx+renvZd+FvzrpZWd1mvEmWeeafHOO+8c9dM0AT33IcTftWn3\nbXlJbcy6b/r36LkOIR5XixYtsthfxwYMGGDx66+/brEva6zprz4NRNOJx44da3Fd0nCS7ln8Z64h\nn7es/H3F3/72N4s7duwYtd19990Wa1qN/52mY0xTYDQ1OYQ4TSfrfWjWNMpKl5ZKrPeNeh0LIYQj\njzzSYv1O80tnaCri008/bfGUKVOifjqe/bnRz5aOWb3PCSG+B/LLhei1dt68eRb78Vzs1GVm4gAA\nAAAAAOQAD3EAAAAAAAByoGjpVDpdT6dThxBPJ9J+M2fOTOznpyplnYb9ySefWPzuu+8m7lPa62mb\nrmitqVr+vXSqVl3kZapqEj/lvpC/wU+TfOihhyxea621LPZVpq644gqLtTJECPHK4VmrhmTdd98v\nT5U9ko6FT/VIm/6vYyntmCVV0OjRo0fUT6eG+zQdnTpZ7PGRNuU4j2PR07/vhBNOiNrWXnvtWv+N\nn8J/7733WnzTTTdZ7KeX67R0nXIaQlyt8Nhjj7VY011DiFMVtKpHCCEMGjTIYp222tDTF3Xs+HGk\n1w2tIuO/Z3SquE73DyGurvHII49Y7K+VSdWpfIWFtOOnKXknnniixf6zNH78eIs1fTqE7NXs8vi9\nmPY9o8c8rXpb1tfX78VOnTpF/TQtx99H/ec//7E4LV2nEqVVZdM2HWM+DVWvbT6VX9OCdUzoGA0h\n/m7V19dzGkKcNurTui677DKLNQ1VU7pCCOGBBx6w+I033oja9LORdVw2ZEnXjLTURq1mG0L8m0SP\nl6b1hxCnpul3n09n0+84/72oqSRpqbbVTI+LVj0MIT7W/vfdO++8Y7F+x6XdL+h3pj8fWVOjCv0N\nUWnpVUnfhf6auc8++1js07K1MqA+G/C/Ea666iqL9VrrU+eUP7/6G1QrIqelJvt74JEjR1qsS8gU\n4zdyGq4cAAAAAAAAOcBDHAAAAAAAgBzgIQ4AAAAAAEAOFG1NHM378vmDmqf7zTffWOzztTWHzefq\nF1LWTV8vLRfS5yNqjqvmrfoc8pdfftlin/ectcR4HhVjDRhdH+KQQw6J2vT461pDWkI3hBCGDBmS\nuE9J6734dSn0fPjcxTytdZNV1s+f5o3741DIcdFxpGsHhBDnjz711FNRW9J6WmnS8ouTyvmGUHl5\n6ZqDf9RRR0Vten71WqtjKoQQzjrrLIv12p22tlTafuh6Kb40sq7l4dfLWXfddWvddz9mGxo9tn5f\nNT9c23zZW10rw39m9Zo4evToxH4q7bta+fGw0UYbWayldH3ZUF3H6qOPPkp87zT63g39HP8iqYx7\nCPG1y+fqJ63ZkLaWx2abbWZx69atE9/r448/jtpeeOGFWve3GBr6vY3+vf6zrdv6d+h6XiHE9w9+\nfYfu3btbrGtG+fX6dM0rHUfrr79+1E/L1Pbu3Ttqa9OmjcX6d/l7JF1f0K/bWAnr4Kisf4Oew403\n3jhq02uNHju9toYQr5+i9zMHHHBA1E/XPPLXMR331bY+VVY6Lnv27Bm16T3lrFmzojYtK571Oqef\nn7pcGyth7JSSnkNd+y+EEHbYYQeLdU1ET38H6D1kCPHzhbR7Bf0+9euwnnPOORbrePbfwTpO/XVd\n1+DV7/hS/46srF8tAAAAAAAAFYqHOAAAAAAAADlQtHQqpdPuQ4inJOl0JJ8ypVOhCp2iljWNSffJ\np9gcffTRFutU9rSpyX6KdCWm4iwrnUq3/fbbW7zbbrtF/XTar06dGzhwYNRPp0x6SelUmrIRQvwZ\n9Ocs6bOUNlU+r/zflDbVOqktrWzrJptsYrFOgw0hhMmTJ1ucVio+TdYUqqRSyyHkf8z6Y6DpL61a\ntYra9G+dPn26xX/5y1+ifjpVNe1cq7Tx4NNOk/hpsTotPU/jTY+zLw+uf4d+B/myt5q28eWXX0Zt\nzz//vMWFTMlP+17040NLnWtqz4wZM6J+1113ncU6Dbou8j4WvbRp3kl/qx9j+vnp06ePxT7lR8vt\n3n777VHbggULLC50HCWN/Tx9L/pjrmNHU2XGjBkT9evQoYPFPo1Qt3v16mXx3nvvHfXT8uN6TtNS\nVH2JcX2vzz//3OKbb7456jd37lyLi10muSFLu47peNHUthDiksJ67Pwx0dSPgw8+2GL9zg0hPk/+\nd5FaY401LJ4/f37UVsh1PU9jMY3+ZvC/05T/LaBLdeThs5313iovko6zpo+GEKeF+nGqr6HXSb22\nhhBfr8eNG2exv1fS1Mn+/ftHbTvuuKPF+jnzvz/0GcDgwYOjNh2n5UyPZCYOAAAAAABADvAQBwAA\nAAAAIAdKkk7lp4Pp1LakKgAhFDaFOuvUM99P02p0KlUIcSUXnc7n03m0CodPp1INdQpfqfnpxnvt\ntZfFp59+usV+Suvs2bMt1uomuvp3COlT1PVzlpTOF0L2KcZp/70hV3lIm1abthp/MdLMNA1EV6H3\n0ybfeecdi30FjazvlVZZqpIrxSl/DDRN0acR6hRUTX/xVR6Kcey0r34m/FhMa9M0rLxWEfPXK/1u\n0fOjU/pDiFPa/HmcOXPmMu1TWpUef10+6KCDLNZr+9ChQ6N+WsnFn8es4znv0q6ZaZUylT83WqFt\np512Suyn9yVaQTOE5PTUYhz/Srme6jHSe5EQQhg5cqTFU6ZMidrWW289i/V+0Feb0zZNsfGVWzQF\n2R9bTZl7+umna90//17VlE6l0tKp1llnnahN09bat29v8QYbbBD10/Ren96h9HvWp5ZqWt2BBx5o\n8f333x/10+/ktPRyPYf+3jvt+tOQaRqNryikY8CnWun50jHsf6fpMdPvVq2oGUI8dnxaXNblBYpR\nXTVP5+4XOv78sZs4caLFW265ZdSm94N6fnv06BH169Kli8W6NICvfq2pjv7eJqlaq08Vv/POOy3W\n3y0hxGO9nOcpn3fDAAAAAAAAVYaHOAAAAAAAADnAQxwAAAAAAIAcKMmaOGk534WuH6J5gkmxf33l\nc0S1pN/JJ58ctWm+67Rp0yx+5ZVXon6LFy+2OG19lmql5dlDiEu3a/6jz5N8++23LdZ1iDTfMYRf\n5zwq/RwU4zOXtg6H5muWs7RcFml/r/59ha7hkHaMWrZsafGee+5psS+Jq+seaZ5z2v7WZQ2HpHW4\n8phfnMbnhWtJaP+3aknOsWPHWpy1pHsaf270WqvrDPg1IPQa6kuGzps3z+K8nkNfYlw/lzr+tGRw\nCHGpTD92tt56a4snTZpksT9+SaXONe/ct5155plRm36e9Fy9+uqrUT/9Xiz0/OTpvNYm67o3afw9\nix5/XS/F99PvSV0fpy6yXmvT/q68nkP9DpowYULUpveD/u/TMaHXUV0rwb++XgM7deoU9TvvvPMs\n9td2PcdXXHGFxVpC3u+T399KXgcn63eEv2/XdVdOOOEEi/29jf47vYb6NZS0JLFf70/X5TjkkEMs\n9uu23HXXXRYvXLgwatO/TffR/115OtdJ156pU6dG/XRc+XWnTj31VIt1LU1/LWvWrJnF22yzjcX+\n3kR/kwwaNChq0+9d3Sf/+0SvCVmvmw39XGWhn0v/+X3iiScs1vLgIcQlwTfddFOLde2xEJLXgmrd\nunXUT3+P+O9MvT/SdXDOOeecqN+wYcMs9r9Vsp7fYmMmDgAAAAAAQA7wEAcAAAAAACAHSpJO5RVS\nptZPe0sqBefTQJLSqfx0SC1LpnEI8XRwne7lp9YWI/Wg0ug0tUMPPTRq23777S3WtABN5wghLrGo\nZTz9tORCSmbW5TOnf4umGVTDeU87tkl8usi2225r8VZbbWWxP4/jx4+3uBTHNun8V0IpR/0bfFnM\ntm3bWuyn42d5vRDi62balGxt8++l5ZD3228/i/0UaD33fuq0Xgf8dPO88J9t3day4p9++mnUT9MN\nW7VqFbX17t3b4m7dulmsKVghxMdMp9rrdP8Q4uvywQcfHLVp2oDuuy+dW8i1o5pSPdLo361piCGE\n0LdvX4s17cMfb72e6r1M2nul3W9VYsqUp3+HpkRrGmcI8XHx16FCUrj1+urvg/T1/bVDU/v12ujT\nuavh3NUm7fOr1yufdqrHT5cD8OlJc+bMsfiNN96w+OWXX476ffDBB4n7+Pe//93izp07W7z33ntH\n/YYOHWrxV199FbUlpXCkpX81dPp36FILvqTzHnvsYbEvGb3DDjtYvPPOO1vs7zn0XkWPmR9vW2yx\nhcVaDj6EOEVIz9Vtt90W9dNS8Wnno9LGpR5Lfz3VcTR8+PDE10j6LRZCCE2bNrW4e/fuFv/5z3+O\n+um9kz+/mgZ59tlnW+xT5/Sa3FB+PzATBwAAAAAAIAd4iAMAAAAAAJADPMQBAAAAAADIgbKviZM1\nV8znm+m/03y2tNLI+hq+NOsRRxxhsS839uKLL1p8++23W+zzUSstd7EYND/xsMMOi9o0x1jzkh9+\n+OGoX1LJaX+uC1k3IS33338OWrRoUWs/XzrQr/GSF8X+/Pq1UHStKT22kydPjvppica0XOFilL2t\nZLquit/2x0vXFdPrqf73EJLXn/H9tCRnhw4dorYLLrjAYi0P6fP2Nf/d5yJr2e1KOb9Juf++TK3m\n2ftr1DrrrGOxltTccssto356zXrzzTct9mtoaMlVXXclhOQxV4rzkbZ2VaWc/9ro37rmmmtGbbqu\nmPLfP88884zF/vwu6z6FEH8PV8p1OGkdp7T7y2KUkVf+urnddttZ7O85Hn/8cYv1/OfpmJeLPya6\nTtTgwYOjNl1PSq+nft0vXYdIv5t8iXe9rvvvTF0DRMe2/x7X9V4++eSTqC1p7SV/H9WQPxdZf+tN\nnDgx6nfrrbdavPvuu0dtXbt2tXjddde12J8Dfe+0daz0d03z5s2jto022sjidu3aWTx//vzE/c3T\nGkXLSs9hoZ9LvQ/110Idm7qeoL9/0d+Sc+fOjdouu+wyi4cMGVLrv2momIkDAAAAAACQAzzEAQAA\nAAAAyIGypFMVImtpxKzlG7UUawgh7Lnnnhb7aXpXXHGFxTNmzLC4kNKplc6nRGipRC1xHEJcGk6n\nAKdNWdPX96kEyp8bfS9t86+h/fz+6rbux6hRo6J+Ws5Xp89WG18SV6eD6zRKX3bTT0HOohgpFpU2\nnn3pRb+dRNPexo0bF7XpZ1unImtqZAghHH744RafeOKJUZtON9bX8Mf/vffes9hPc9fptA15arin\nn9O0qcTaz6ftvvXWWxbrdP8Q4pQbPc6+FLmWQZ0wYYLFPnVLp+4fc8wxUZumJOu++7KtxZan872s\n9HOgqYchxFP69bM0bdq0qN/bb79tcdZ0cy/tmCf9u0q5nhaS/l8oHVPnn39+1LbKKqtYrOk7IYQw\nevRoiyvluBdT2udcv0v0/t5vp91vJr2+T1/UcerLGr/++usWH3zwwRZrulcI8bU77TtEY7/v/r0b\nkrQxpn+vP1d6jzBixIioTe/dd9ttN4s7duwY9dN7Vv0uXXvttaN++h2X9rnQ8dy+ffuoTVPO/eek\nWr7jSvF3brDBBhbfcMMNFrdp0ybq98UXX1h87733Rm3333+/xXlbHoOZOAAAAAAAADnAQxwAAAAA\nAIAcaLDpVGmyTvXV6eW6+nQI8TS6Rx55JGobM2aMxdW0ingh/FRVnWro0zm0r64cfvzxxyf200pV\nvlqHrlLu90OnP2oFF7/yv06v9BVdpk6davGwYcMs9lMt58yZExoSTf0q9VRrPd+6Mn8IIWyzzTYW\n65gdOXJk1E+n+madbpn2dxVjyqZPE2yoU9b1b9UqGSGE8OGHH1rsz41O7e3Tp4/FPrVRp563bNnS\n4uOOOy7qp2362iEkV4CYOXNm1O/ss8+2WNO4QsjvdONCPs/+WqbTe/1U33nz5lmsaTW+UpyOsbSK\nf/r6WqUxhBCOPPJIi/Vz4a/Lek1oyNP4GyK97vh0Kj2umrb7wgsvRP00PTVrWnox5KmKWNq+Zt1v\n/x2RtXqb9tO0Dz/9X/+dH4vVnLZdV/746z191vt7f671Oy5rxTJ/rdUqna+99prFvvqOfhemvX7a\ne+WV/k2+UqYeF5+CrN+Fb7zxhsW+spSOOf0doilYIfx6qYAs/Hd1WhoWstOU7xDiVDr9beY/L9rv\n5ptvjtr85ydPmIkDAAAAAACQAzzEAQAAAAAAyAEe4gAAAAAAAORALtfEUT4PWXMXtWyYzy/X9RgG\nDhwYtbEOTuF0XQ6/roXmo2qp4R133DHqp6WplV9fQdd28DnL2ldzU3UtHr/tc1g1N1nLPKblWDcE\npV6LQMdc48aNLT7wwAOjfrpWhubw6zpHIRQ/f7vQ0rkqjznl/vOrpYZ33XXXqE3XsOnWrZvFnTp1\nivrpuNJ1ANLWg/DHWMfi9OnTLe7fv3/UT9fwaWhjqhjS1sZIO35p9Djp9cqXMNXPc9rr67maOHFi\n1KafL31fX2Jc1+NJK4lbrfz1Sbe1rHSHDh2ifnpu9FwPGTIksV855enclmJfdc0LfX0/BrTf5ptv\nbrFfQ1Dvb/Ra7l8/7fsuTZ7OV6lkXV/Tf9/pOdR+fk25pNfz763rL/p7D/1c6H1zCPFnq9rOZ9oa\nQEnrHvl1Ulq1amWx/kb067zpe/nrq77mp59+arGurVrbv0N2eo/x8ssvR2265qnSkuIhhHDJJZdY\nPHv27Kgtz2OHmTgAAAAAAAA5wEMcAAAAAACAHGiw6VRpU891aqOmc4QQwmmnnWbxtttua7Gfbnfd\ndddZPHfu3GXb2Srmj6umymjZxBDiKYprrbWWxX6KqJ+e/wv/mdD39vuhUxf1vTxN8xk3blzU9uyz\nz1qsqQWLFy9O3I9K5KcB6/nSKahdunSJ+uk0YD22fipjORWatpIHfrrugAEDLN55552jtp49e1q8\n6qqrWuzLg2elx9KXa3z++ectvuCCCyyeNGlS1M9Pda40WdMeilGq2V+Tsr6Gjm3/bzRVYNGiRRb7\nz51+hnxaV1JJ3Eobi3Whx1ynhrdv3z7qp8f1448/tljL6YZQ3ccyq2KMsbS00aRUyRDi892jRw+L\n01LC/T1MkyZNLNbUurRxX85y8/Ut7fgXkormy0PrudLrYtb0rBDi+6M5c+Yk/jtNC/HX2kosK55V\nIanx/h5Dx2Lr1q1r/TchxGNs3rx5Uds777xj8YQJEyx+5ZVXon5pqXb4Nf2+O/vssy3eeOONE/+N\nps5dfvnlUdvYsWMtrqTrHTNxAAAAAAAAcoCHOAAAAAAAADnAQxwAAAAAAIAcaLBr4qTRXNKtt946\najviiCMs1hzU999/P+p39913W1yJ5WyXVaE547pezIUXXhi1aWm4gw8+2GJfUlzLrGrusT9PmmPq\n10bSvprD6stb67o9L730UtSmZej1vXQdnRAaXunAYud7puVy65o4mjccQggzZsyweOjQoRbPnz8/\n6uAFaC4AAAcBSURBVFeM9Qiy5ran5cNXWk75ggULLP7jH/8YtZ155pkWH3PMMRa3aNEi6qfjT4+X\nP1ZTpkyp9bVDCOGFF16wWD8jlZSXvKz0OPtjW2gJ4bq+bwghNG/e3OLOnTtHbXru0tbhaNasmcV+\nHYCk0q/V9B3sz6d+37Vr187ipk2bRv30e2bhwoUW1+daC2nX00of31nXmPHrqay99toWd+3a1eIV\nV1wx6qdjYscdd4zadH0HLU/t1yPTexU/xip5fbg0/pqnkj7P/h5Pt/X6l3Zf4j8Her51jbEvv/wy\n6qfruKStC1mJiv3d54+frsunv08233zzqN8nn3xi8VtvvRW1aSnxWbNmWezvc6u5HHwWfly2bNnS\n4t69e1ucdt8+evRoi6+//vqoX6XeYzATBwAAAAAAIAd4iAMAAAAAAJADZUmnKmTaZlpZxlatWlnc\nt2/fqJ9OwdIpx7fffnvUT6cvonD+fOrUz08//TRqu++++2qNPZ12qlNOddp5CCFsueWWFvsp5bof\nmlbipxtrCVxfDlen9+nf2dDSp9IUOsU9bRqrTl/UYztkyJCon56vJ554wmKfjpZVMabuV9M0Vv1b\nfVnM8847z+IbbrjB4k6dOkX9dtppJ4u1FPmTTz4Z9Rs+fLjFmlLp96OapU2117a06f5ZXz/tvTTW\n79UQ0tMj9do5ffp0i/11U6/Z/m/R67Je56spTSDt2rXmmmta7I//3LlzLdYUGn/8C7nfyvrZrMtr\nNGRZS0EX42/y51vLyGvKnB8rWmJX73lDiD8nej+S9lnw6Ty+3HIlSbueZi0/nrV8d9bPUloJeR3r\nPu1Dr9F5GmPFUOy/159HvX89//zzLdbfkSHE50pTpvxr6pjy40v7VVvqaRI9Dj6dVFOLV199dYvT\nvhdPPvnkxH6Vipk4AAAAAAAAOcBDHAAAAAAAgBwoe3UqnVLop3LrdE+tgBNCCL/5zW8s7tOnj8U9\ne/ZMfK/Zs2dbrKuQh1DdVRWyKMYxKPQ1dOqixkuWLIn6vf766xanpf9U8/ks9G9P+3c6ZVvHlaZY\nhJB87vx04VJXp0p6/Wr+XOi50SpiGofw67QpFE8haSpZp/+nSRsrmoL84YcfRm2aBjlt2jSLtXJH\nCPEUdZ9CoPuo14FKTp/y/N+q075fffVVi7/++uuon94vjRo1ymI93iHU73d3pSnFvaF+f06YMCHx\nvfS8Dho0KGp77733LNalAXw6lX7WCk3TzDt/v6HHwaeY6XZaNZuka7I/h/pePl1Ex7O+l6aOLG0/\nqrXCWLHofZCm5fj082Lg/Pz6GqS/8zXNNIQQ9tprL4v1OqbnKYQQBg8ebLFWSa2W412dV3UAAAAA\nAICc4SEOAAAAAABADvAQBwAAAAAAIAfKsiZOUm6aXxNHt9daa62orUOHDhb36tXL4jXWWCPqpzmt\nmtfoc1U1F8/nEReSS8e6OvWL471s6rLWhm5nLalY6jUvOP+oBsUYR/oauiZACCHMnDnT4ieeeCJq\na9GihcX6Xa156CHEJebT1q7y710t/DHRNS/0nuXFF1+M+un1VY8d177SKfTYpq2TomsdDRgwwGK/\nDuSIESMs/vTTT6M2vz7gL9L2N21tlWqi17+046Xrd5Tic9CkSZNa98nfR+naSP76X01riZUT19TS\n8MdVx9iaa64ZtW2yySYW6/fdxx9/HPW7++67LdZ1+6oFM3EAAAAAAABygIc4AAAAAAAAOVD2EuM6\nncqnMWUtfapTSb/66quo3xdffGGxlkHVMp5eWhnUNIWUdwXyIG0sKv3cM7UXKEx9fZf499Lv5Pnz\n50dtWtoz7fs0qYx4be+H+JjotHGfVoHyKPVnVFPm3nzzTYvnzJkT9fvuu+/Ktk/VqpzpZ5pGF0II\nkyZNsljHvb+P4ncGKoX//Opv+cmTJ0dtp59+usW6bIov/67p2/6ZQjVgJg4AAAAAAEAO8BAHAAAA\nAAAgB3iIAwAAAAAAkANlXxNH+RKjuu3zR6dOnWrx888/b/Hqq68e9Usq1effK+v6HeSgohrU5XOu\nfYtRhhPAstN1rNJKe+uY9Wtf6feiX2+OtRlKg2NZeZLWOQohHle6tpRfA4nPRf6l/c6g5DuqnV7j\n/G9+v43aMRMHAAAAAAAgB3iIAwAAAAAAkAN1TaeaH0KYttReJabTELWkeAVrU8TXahDnsEpV3Hms\nwrLiFXcOq1TFnce09Iu0st85VnHnsEpV9HlMG5cVVBK3os9hFeE85h/nsDJkOo+NyLsFAAAAAABo\n+EinAgAAAAAAyAEe4gAAAAAAAOQAD3EAAAAAAABygIc4AAAAAAAAOcBDHAAAAAAAgBzgIQ4AAAAA\nAEAO8BAHAAAAAAAgB3iIAwAAAAAAkAM8xAEAAAAAAMiB/w9Cm5q7xXh5YQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "encoded_imgs = encoder.predict(x_test)\n", + "decoded_imgs = decoder.predict(encoded_imgs)\n", + "\n", + "n = 10 \n", + "plt.figure(figsize=(20, 4))\n", + "for i in range(n):\n", + " # original\n", + " ax = plt.subplot(2, n, i + 1)\n", + " plt.imshow(x_test[i].reshape(28, 28))\n", + " plt.gray()\n", + " ax.get_xaxis().set_visible(False)\n", + " ax.get_yaxis().set_visible(False)\n", + "\n", + " # reconstruction\n", + " ax = plt.subplot(2, n, i + 1 + n)\n", + " plt.imshow(decoded_imgs[i].reshape(28, 28))\n", + " plt.gray()\n", + " ax.get_xaxis().set_visible(False)\n", + " ax.get_yaxis().set_visible(False)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Sample generation with Autoencoder " + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABHEAAABzCAYAAAAfb55ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztneuzZVdVt8fpc+kmF+MNNSIRCLl3SOeeAAkJwUgiFCgU\nSBVW+cV/yC98tgo/KIXcogWSkDu5XzohVyABUVSighjSl3P67PfD+66ZZz6n17JP793lu63f82md\nXmuvPdecY4w51+7xG3NlNptVCCGEEEIIIYQQQvj/mz3/0w0IIYQQQgghhBBCCP89+REnhBBCCCGE\nEEIIYQnIjzghhBBCCCGEEEIIS0B+xAkhhBBCCCGEEEJYAvIjTgghhBBCCCGEEMISkB9xQgghhBBC\nCCGEEJaA/IgTQgghhBBCCCGEsATkR5wQQgghhBBCCCGEJSA/4oQQQgghhBBCCCEsAWu7unhtbba+\nvl5VVZubm9254d+rqo4ePTp6j42NjXa8srLSnTt27Nhxj6c+d/jw4e66t7zlLe14Npu1Y7d3be3N\nR/d38dp9+/Yd9zO+zufYxqnnYl/xGauqVldX2zWbm5t9Z50ke/funZ1xxhnHbcvwfcc7x+fhMce9\nqu/zI0eOjLaDz+rv2rt3bztmH9teeI//+q//6s7xnqeffno79jgdOnRo9P58tj179oxe94tf/KId\n8/mrevt57bXX/m02m721FsDGxsZsuLf9jd/JtlX1z8Hx5vH/u//oPfiM7E+P9y//8i+34zfeeKMd\n22Z4j6lxPO2009qxx2Bra2v0/nxmtn17e3v0u3i/qqozzzyzqqpef/31Onz48EJ8cX19fTb0s+MT\nx8Mxjs9OX7Ft8xlsl2QqFrId7C/2qa+jT1X1zzbli1Pxgjbt/iBso22aHDp0aGG+uHfv3tkw7/jZ\nx2JZVd/XvM72y2eyzfrvsX9n/419xng8aEO8n9vL57QfeY4bmJqD7euD3Rw6dKiOHj26EF98y1ve\nMjvrrLOqaudzc03xs5/9rDs3NW6E5xgLq3o75bM6rjP+8Zy/dyp2MJYPz1vVj6c/N+XrtCXb91TM\n4T1+8pOfLMwXOY5uN9vnc4Tt9jM4Zp0I9jeO19S8xfbaP8Y+R3v05+xH/HvK3zhWXgsMdvPzn/+8\n3njjjYX44tra2szPcby22LY5NmM2WtU/n+MT7zG1VuB1Y2v9qn487Pfsc8YY2ybv6TltbM3u6/ic\nU8/8+uuvn5I1qv2I7fM5t2+Aa4eq/nl9D/Yt5xzPz4x7U+PIPnJcpm2wHW4vPzcVU2kntIuqnTGW\nDHFgkWvUvXv3zobnmIofnjPH4uuU/U75M2OcYxD7iG3ajd9zbPi9jkNTazFeOzXWtBHbGa/96U9/\nekK+uKsZaX19vd7xjndUVdVPfvKT7txv//Zvt+NXX3119B5vf/vb27EXDlwg+WWOn6NTvvjii911\nF110UTtmZ/34xz/urvvVX/3Vdvz666935370ox+14/PPP78dv/WtfX/+4z/+Yzv+rd/6re4cDeHn\nP/95O/Yi8B/+4R/a8e/8zu8ct43f+c53alGcccYZ9fu///s72lXVv3S7nexzPtvb3va27jo6x/e/\n//3RdvBzbsd5553XjjluXuSwv+67777uHNt/9dVXt+Pf+I3f6K575plnRu9Pm576Me+JJ55oxw5E\nF154YTv+3Oc+98NaEPv27aurrrqqqnobqqq6+OKL2/HDDz/cnePE8ku/9EvtmP5Q1Y/PI4880p1j\n8Pr1X//1dvzd7363u+6jH/1oO3766afbsX2F97j33nu7cxzHyy67rB07djAecdx8Le3TE/pPf/rT\ndvxv//Zv3blbbrmlqqq++tWv1qLY2Nio/fv3V1XVP/3TP3Xnhh+NqnbGONrpu9/97nZM/63q+84L\nD04ejGuOu8MPvlV9f/GFsqrqV37lV9oxx7qq6rXXXmvHHMNf+7Vf666bmjf4nC+//HI79gTJWGKb\n5nxw8ODBhfniW97ylrrpppuqqurZZ5/tzr3zne9sxx5jtvVd73pXO7Z/cIHkFwHOXVP/ucF5jIsg\n9x//tj/TZni/s88+u7vun//5n9vxf/zHf3Tn6JscD88B//Iv/9KOHW9/8zd/s6qqHnzwwVoUZ511\nVn32s5+tqqpXXnmlO/ee97ynHX/5y1/uznHcGDO9OONz2z/oY5xnf/jD3kQ5jzHme05jHHj++ee7\nc4899lg7vv3229sx56mqPuYwFlX1cwjjiu176oWDc8+f//mfL8wXOY7sV7fPz8Tx4jP5GeibfhGg\n//HlxLZNW/j3f//34967qupf//VfR+/B+Y6f49qpqp8D7Ed86WDf+MWFfeW1wCWXXFJVVX/xF39R\ni2Lv3r3dGobwh0fPi5xPaF+e+zh/Ms5UvRlb/Dm/I9Dnpn7kGt6XqqoOHjzYneN7xqWXXtqO/eI+\n9sNrVe+L//mf/9mOvRbgHOyYzPn/3nvvXega9dprr62qnb5C37SPcR3GtSbjX1Vv274H/YNx+YUX\nXuiuY9yj/9rfaFsct6p+fqbNDM8+wPdF+xjtlfPDsD4coL36h6shDtxxxx21KE4//fS29vWam37k\ntQLXh1xTOO7yuX0Prt+4xnAMYh9N/Qc245/X94x/HGv6b1U/vl6L8VrO3X5mrs283qbvf+ELXzgh\nX9zVjzgbGxutof4VikHCL/ZcnE/98saXuRtuuKE7x5d5dtbv/u7vdtfxxZ6GxAmxqp9I7ZQ0BE7u\n7nAGQwde33PALxZ8MfJEMZybWgztlj179nSOQ2jYDh7f+9732jGDx0svvdRdd+DAgXb8qU99qjvH\nxTH7clgIHO/+XNT6xZHOduutt3bn6GBXXnnlcZ+jql+gcxJ0Ozix2Cm5iPKPm54wF8XGxkazfQcT\nLvAvuOCC7twPfvCDdswXELebE+QnPvGJ7hx/tLriiiva8R/90R911zFG8H7nnHNOdx0XEe5bQpv0\nD5sM8v4fAwbosf/98nc7vg0v5/7hZx5WVlbaBOcfiBkb2cdVvc/xOvfJdddd1475I3hVb+scm3PP\nPbe7jhPw2P9uVfWLX79Ujo29X5a5sPM9+OMIYzxfgqr6+Oof7qcyA+Zh7969zRfdHtqLF+BcENAW\nvcDgQv3666/vzvGHcvq6X2C5aOT9HVPZf7Z1Lkw47zpu0jb4Y09Vb7uMqf4hiP7ndcLw9yLHc2Vl\npS3yOIdV9THTvkgb46LRfcc54uMf/3h3jj+00089B9MXOfe5f3idX4Y539EevYDmOs3/y8rFO+3d\n//HD7/IL7KmaF2ezWYtT/lGJL7ZTWXpTcY6xx37KH5pp53xBr+rt/n3ve1879hjwfrZ1jgl/QPdL\nKv9T87nnnuvOMcbyWTyOvL/7Y7D5E83uOxFms1l76Xcco4/ZtmmLHEP/J9eNN97Yjv0fCYy1XMPb\n7+nftCX/WMH2cr1VVXX55Ze3Y/qi+5/3tN9wrcM2+cf5qUwc/1i8KNbX19u6xnMx33W8/ueP8+wj\nxzmOHd8dq8YzfYb/+BzgvMs1huct2oXfb9kunrO/cW61v9Be2Xb/yMh51zF1WE9MKWF2y549e3b4\n4AD9g/9ZVdX3Ccfatsd+YCys6n834Dv5pz/96e46rmH4Xul5iz/i+D96Gde5Fvd6biyZoar/rYBz\npH8L4FrAP4yN/W4wRWrihBBCCCGEEEIIISwB+REnhBBCCCGEEEIIYQnIjzghhBBCCCGEEEIIS8Cu\nauIcOnSoFYKd0hRPFc5iwSjr6Kbqk1BXTP2ai9FSe0ktnrWv1CW7yBR1b9QX+jrWj3B/sGDWo48+\n2o6teaN21fq4QetnXd48bGxsNN2ma4JwnKY0ztR2+rmpO7cmkTpTjpu1hSwARr2j62Sw/a43MbZb\nzgc+8IHuOhYRs/ZzrDjVAw880F3HOgZj9RtOBYMe2nUtWPOItaqqek0t9dquq3Pbbbe1Y9dq+tjH\nPnbc73IxT9ot/ddFNMcK9fq7WbfHNbNYG8RaeRavpt78zjvv7K6jP9tPh5iwSO3/1tZWq0XgGhpT\nMY79x/F1DQ3qs6eKsPFZXROH5+jPjoUcG9dNYB0cnvM4MXa7yDvjCu12akcDF3fkd9sv5mFzc7MV\n87Xmm/UkHKPG6it5XmRdC8dK1gzgXOK6U+xbarL9XcR15GgbHG/XI2DdMdeB4Bw3VfieNZY4H1S9\nOf6ON/Nw+PDh1m7PA1NzNLX1HBvbL+Oua6lwTmIdF893YwURHU+5dnKBTv7NwrDuS/q665SxDzj2\nrkXGfnPNI9d6WBSrq6vNz6bqyLhgJQtAc+wcN6fqDfGZxuoOVvXjyLWh/Yh2P1UYluttt4nt/9CH\nPtSd41zGmOC5j7HetjbE0UXWp+IYTu3M6BqV7CP6on2Wf3v9yr7kus7X0YcZ1xm3qvox9XqYaxHW\nh3ONGM533Bigqq+9xJoiLvrOtYBrbC7y/YKwPpVjGceHNRar+vcQjqnf4Xidd4LieNFO3A7GW463\n1ze0C9dY4j05Hi5UzrUs33Wr+jHgd9vGaUO2hccff7yqFjsvbm1ttbZxLeO/p9ZT7Fe/S7iPCGMZ\n10qe07iu49zndTPv4XppXM9w/eK4S3+esjnO965PxXa5T73WORGSiRNCCCGEEEIIIYSwBORHnBBC\nCCGEEEIIIYQlYFdyqtXV1Zb+423wmB7ndHqm8jFVzGm6lIU43ZUpVGOpZ24HU6uc7sn0cqe+sv2+\nP2GamFOJmbLJ1DlvEXvPPfe0Y6eODv3hdKx5OHToUNv6zttKMy3Q38m0+2uuuaYdO/2L6WFOneMY\nUs5mORDbxX50/0xtR005AceJqalVfeqq0/t5D9qS05K/8Y1vtGM/i7eOXhRvvPFGPfXUU1W1Mz2W\naX72o7GU8s985jPddU5FJGNb6dlm+Df7xenaHGOnL9IXuWW205spaxikLQPcHpTbFn7yk5/srvvi\nF7943PtVvZlib4nJPKyvr7d0Um5jXNVL+SwLYso2Y6v7hFJQ2wjTXxnjprb+Zfq95a70bafIsl2U\nKngrTMqGvO0ppWKMHZa38XP2PdqZt2Ofh83NzdafluJwrrIvct5h6rDjGu9pORXHgePo8eF3sd/d\nz/Rt2wzbRX/2PEJ/8/hQXsV47rg5pIZX7ZyDzzvvvKrauUX9POzdu7eNj9O16fNeK9CmuAZwqjX9\nymsFpnaz/92vjI2UydheeA/7IvuZ5/xd7HP6W1W/TqCdWUpy7733jp67+eab2/EXvvCFWiTDWs/t\npo+9/PLL3TlKsznvW3JO2+BcUjW+NbClZJTfsJ/t25TZeZ01Juv1/EnpO2UCVf28wvGx/IiSL8tR\nhntMlVc4GQYbtuxuas3H52GcueCCC7rr+HweX8Y8xwHC9QG/l/1d1fu6JRzsS8o0PIaMOV478dyY\nnKOqXxM5nvJar0PmYXV1tfWH12R8Xkvo2Z+c+2x7lqIQxluuOWynfK8Zi8P+22tDQrvzOyfjim2B\ncfnAgQPt2ONNCayfZShX4bg0D+vr6y02WHZHX/FY8Bx9zOsj9qv9lDF6qmwD1xEcm6l53PHTsXfs\n3/lO6/Ur4wpt2Os+yvEsqee79cMPP3zcNplk4oQQQgghhBBCCCEsAfkRJ4QQQgghhBBCCGEJyI84\nIYQQQgghhBBCCEvArmriHD16tGkmvR0idZbW3lKnRl2yNX2sf+Gt1ajbpGbU+nJqzL773e+2Y2sQ\nWRPCOne2i7pG16agLn2qFgr1d9bzUf/47LPPduesjV0E29vbrd0ewyuvvLIdf+UrX+nOUddHbeQL\nL7zQXcdtAF1TgdpI6jbd/3xuHltXT504695U9XZAW7Kuk99tPTP1/tRiW2vJ72atpaqdW5Quiq2t\nrVbHwP1HW3zyySe7cxzjq6++uh1720TWCrKP0Z/pYx5v9ju1vfYj2r31o2NbxXsMqHv2Vs6s+8E2\nWtv8h3/4h+34rrvu6s4NWthFbjF++PDhpnF2n7Bexbe//e3uHLd5ZVy0Fpr26+05+bfrAhD2OetJ\nOY4xTtrmGdetIx5rr32R96f+2tp/tsv1i1wnZlFsbW21+cQ1G6iD/9znPted+9M//dN2fOmll7Zj\n1yehP7suADXm9DfXD2NtCY6j61gxftlmWNeANfE8t7IPrJXntbQTxw72x2OPPdadG+zcW/bOw+uv\nv14PPfRQVe2cZ9jnrqVy2223tWPWwXFtqalacfwc/cNjw+s4vo7/HGtr7vk5jq9roLEWgG2OdkZ/\nc725q666qh273zymi2Jzc7P5vWMU44HniJtuuqkdc77zfM6+cCyjPfM611VgPLSPEW5X7FoSXF/y\n2DZDH7Fd89xUDQfOea5RM6zBFrlWPXr0aLuv4ylrmNjHeO3YuqGqf1bXauG8y2d1fTWOG+vSuRYW\na695vcH5iLbq+MD473XuWP0rjzXrGnkMF1kHhxw5cqStD+0r9D9/P+uG0o+85huLm1X9vMs+4r9X\n9VvFT9XfpA25xhXnQs7d3nabPux4y/mPds335ar+OZ9//vnunN/nFsHhw4fbGLrN9Hn3P22dduk4\nxrnEsXaofVfVr1H9nDzH/nftJ47TVL1Wxg7PaYw/jk20acZ4r4Hoz54H/a51IiQTJ4QQQgghhBBC\nCGEJyI84IYQQQgghhBBCCEvAruRUe/bsaalLTp9iqhW3yarqpRlMG7M0gWlvTlljWh3TQL2dObcd\nZZqjt3tjSpbT1ym54XVOlWSamPuD6XhjaZ5V/TM7jXVIMzyZFKsxVldXW0qbUwb5PZRsVPWphkzH\nnJI9OLWX6cYcN6fi8m+mWnq7PW5N6HYwbZKppU4957biTs9nyh3T6pwSyBQ7p7s+8sgjdSrY2Nho\n9uJUdW5pb5nOtdde245p504znUr95PjQny2BpJ0M29r781V9nzm9nDbKmMA+r+rHzlvLUvLFmOPt\nd2lD7Keqqvvvv7+qdso+5mVItWeqZ1U/bhzPqj5NlP1jf2N6p2MXZUhMFXY8pQ/Qfx072JeUtrld\nPOeYzOfys4xtpe15gnbrNO1FbklNVlZWWlx3Ci9Tqim9qept2L5D6H/eEpzzIv3Nqftj24rbt+kD\nnqsouRxLHa7qY6Wfi9/HOcVyBaY3M6266s20a9vIPKyurrZ52tJo+oolOvQrzp++B33MadiMeYxd\n5557bnfd2DrAEmHG8qkt6Wkjl112WXcd46nT3A8ePNiOGQ8dk9kHtgNLXBbF6urqjjl+4PLLL2/H\nlFFU9f3C+cn+wTWIZSl8XsZHjwH7lr7imMp463mREgJ/jrDfp7bMpoTDMYySDtv/8LlFbjG+trbW\n4pAlse9///vbsWW7nDM5t1h+QR/z+ohjzzmNW0f7c3x/cHxm3LUdMHbzXcXrF97T8i/aJ+c7r1G5\nxnL8sS8sirW1tWa3jiH0Aa+ZOXb0S/cf10xTElj6h2Mov4tx1DGVc5xjF22G84Hfb+l/lvN4LTTg\nEhucMy1zHeLe2HbZJwPjqf2N8d7t55qVbfY6l3bvuM33Ycdhwv6nvVgKRez3lmYOeB3Fz1mSS1/n\n+Nq/2B9+7/KcciIkEyeEEEIIIYQQQghhCciPOCGEEEIIIYQQQghLwK7lVEPKk3ekYBq2dwxhKihT\n+ZyaSQmP02+ZrsV0NqfIc7ckfpdTz5jWZakB052YLuwq00zjsoSAqWdMBXNqFVNX+b1VO1MzF8HK\nykprj1O3mIbnlDy2m2PtNHj2l8eG6W1Me7NMimmIbIdTEMcqy1f1qbC8h9Mpec9hp6AB2hxT/ZxW\neP7557djpyJP7T4xL4P/ONWXqdZ+XtowU/mcNsjP3XPPPd05jh13onvwwQe76zjeTHe1/IJp6E4D\nHtupwKmX9Hum+xuOncebadc333xzd27wlUVLcgZbdzoq+8jxaWxXAO8yxf6a2jmMvkPpWVUvBxrb\nHadqOg2U6fi0Cae5M4XZchS2lzIaSyBpF5aj+NkWBWXGTsPmbnC2e8bRqR0M6W9+Bu5Qwb74u7/7\nu+463pMpwY5lYzGvqrcT7oTm2Mu51an7tuUB7sRT1cdUpxwPtrfItPGNjY2W1u85esq2Ga/oE24z\nJQNO3aY979+/vx07HZx9xzWFd4hkXHP8546EPEdpctX0jjW0EY69ZSC0uQ984APdua9//euj95+H\nPXv2tNjhcaOPOd6yL2jbjkP0RcsluFvmmOTVUB7j2MHPWXJCv6IN2hen5LZjO9FN+RV3HKt6U+60\nSDnV9vZ2m9e8vmSbHScZr3jOMYhjb19k/3E+9RqV7eD7iNcetBHLDW+//fZ2zHWOZW98Fu9UyXmR\nMcG2yWehrLBqZ/xYFJubm2394HITtEVLW2iLtF/bGJ/XsjuOMf3D5Q24exi/y7u1ct1s6RalqPwu\nr/2feeaZdux1C32f/WFf5P1d8mJ4Jx+TZp0MKysrrQ1TpQQ8NoybHHvPM/TNqbIavM67fvG3CL4z\nP/XUU911XJd43cP4Sl+h3Kuqnyemdh7mGFoKRn/2eshyyRMhmTghhBBCCCGEEEIIS0B+xAkhhBBC\nCCGEEEJYAvIjTgghhBBCCCGEEMISsCtR+crKStOEWctFDbu3ex7bCs51b7hVn7Xc1CtSe+2t6wg1\nfNaosx3c/riqr/NBXaP1xqz9Y00gn5lbpVmfy++y1m+sXsY8bG1tNV23ax5Qi3vRRReNtpPjZD0r\n+9xb8XErbPaP9aHsc36X+5h24JoK1DJy3FyXgt9tHSyhTtLjwXbYzrw99KLY2tpq3+s6Mvz7lltu\n6c5RA86+tR6V/cI6AFVV9957bzumXVgze+DAgXZMO7nuuuu666wxJrwn22G9MTXg1kfTr6gxtn3y\nu+66667u3FDzamqrw92ysrLS7NF2SQ22fYy1FxgXfQ8+t2t20WYZh11Hgn1C3fbUVsuOY6ypRO2x\nNd28h8eQ7aWt2hdpt67bNrb18LxsbW3t2DpzgHHDdadYz4ZzpseA17nfWaOJPuCaCKyPxBoI3iZz\nqpYH4wX72ffgs7iuC9vP8XdsZ+0f1wUYtOh+xnk4evRoi//2cdqs4zt98YILLmjHrp/HGhDW2dOe\n2T+ux8LrnnjiiXbMeFzVx2SPIfv1T/7kT9qx5xA+J+tGVPVx02siwvF5+umnu3OukbEoDh061Nrr\neMhxveSSS7pzrINDX3GNAtZBcI0+PhPHznMray5xPGhLbr/rh/FZaHeu08Dxd60VxibGV48p68G4\nRs1g54usT7W9vd361nbCmPHBD36wO8c5g/OCn5vzk9csvJbP5NjNmPfNb36zHTNGVvU24rU/fY7+\n5ncf1vl44IEHunOcdxhjbJv0RZ/jd7uu4TzMZrNm+7Zf9oVrBbGWCWtbun4R/cNrSM47tCHXNuL8\nyXnWPkA78XfxHH3K8wjfkfku5DbS7jzf0z7ZN1U748wi2N7ebjHEbeEa/IorrujOcU3JtafXSbyn\n12dc73Mt598NuJ5hv3p7dsZGvz8wrvHdl7HVbfLcwFjLNZzXR/Q/x9OTGcNk4oQQQgghhBBCCCEs\nAfkRJ4QQQgghhBBCCGEJ2LWcakgRcyo808+cWsmUIaaMMr2sqk/5c6oY05+mpBNMtbr22mvb8dln\nn91dxxRIp3gxDY7P5S0gmXZleRlTynn/qa3Ofe6hhx6qqp1pbPOwd+/eJu+i3KWqT/N1vzKdjelx\nToFjKrfT3Zmqz1RSy++YikzbcTolUyadxkqZHb/X6cYcU6f+MyWXqXIea6aKWob2l3/5l3UqOP30\n09t2sfY3Srh8juNKe6Pkr6pP17fdM+WP/uHUQ25H+gd/8AfH/d6qqrvvvrsdWxbH+7PfH3300e46\n+rclBEz/57Ftl6mw7o8vfelLVbXTRuZhdXW1SaWcVsnn9pbHTEXmOUumKFGZkmsxld7XMf2Y4+br\naCO2l7EtQy2FZcy3P49t9+rYwVhp2co3vvGNOhWcdtppbZtRxpqqqne9613t2P3C+MjYZv9gXzjN\nm6m6lDhZKsg0bLbJKd9sh/1obIt5pvu7jd72nqn7tDtLBqe2iv+bv/mbqlrsvHjmmWfWzTffXFU7\nn4fp8pYKcqw4t3hu5VhbVsFxY3x27KYkienalg0+/PDD7djbSjNO0i8tseB4WN7BMaQPW5LF9vuZ\np7arnYd9+/a1tallu7QXr/lobxxjxxfOfR4f9tPYetXtYLzw/ab6j2tn+vP3v//90Xt47cPvppxj\nysbHpD6WxM/DxsZGK1XANXxVH8e8pT1jF/vYMY7vCI4hnDO5rnNMZn8x3nmNyjZaUsRrx2TLVX0s\n9xjyHrRNr234vmZ5x6naYnzfvn3NTi0ToV16LUdbpz1bysqxcjyhz3GNZP+gdIu2YDundMbrf66l\nGANtW4wllufxWvaVv4vvRpbsDmtnz9vzsLGx0dp66aWXduc8txOOIdfMU+s1z2P0U/qR+4Tjy894\nDcTfHhyvuPU57cw+yzWq35E5NlNjwLW+JdOO8ydCMnFCCCGEEEIIIYQQloD8iBNCCCGEEEIIIYSw\nBORHnBBCCCGEEEIIIYQlYFc1cbjdmLdZoy7X9QyoV7RumozVafD9qYu1Xv4Tn/hEO6ZW1Xq7sS3d\nqnr9KLVzvo46ctfwoVaV2kHX1KB22trUQTvnLWfn4dChQ/XMM89U1U5t7Fjtiqpey8jPeYtfaoet\nO6fej5pdbzFIzSB129SvVlV7juO1l9uivvjii+14SpdsnST1mjy2Ppp1B7yFoZ9tUfzsZz+rr3zl\nK1VV9cd//MfdOWrAvb3mmB7T2+VRW8ptUKt6zS5rJww1egbYrosvvrgde0vcr33ta+3Y/UdtMnXO\n+/fv766j3tV1IDh21JR7HGkbrmNw3nnnVdVi9eNbW1stVjqe0i69pSJhTJrS/tsOqCfnsX2WcZd+\n7zjOPnYNH27LyDZa20wbdF0AxlrarXXnbJfrEzC+2c7m4fDhwy3G3HTTTd25qVoR7Av6kXXj1Ha7\ntgD9gLZtPTj7hedsW7QT+xG/m9/l+kj83FDbYoD+zDnAW4yzvtOw9ffAUK+Kdbvm5ac//Wl98Ytf\nrKqq973UEo9TAAAgAElEQVTvfd05zu2evznvcAy9VuB1jrWEvuIxZLziesbbMLP/3Q76ANdlrqFB\n/3CdJ9oI1za2W7bLfup1w6I4evRomwtca+NDH/pQO3aM4vh4jUD4HF5zsC9Y88K1I+j3P/jBD9qx\n4xU/53Fk37KGk59rqsbSmK15+11+Fz9T9eZaeWqr+d1y5MiRtlWwa2Ux3jm2jtWv9JzG2OX4x7p+\nHEPWGazq1+TsL8fCqdpPjGt33XVXO/ZzPfLII6Pt5XhwzeK4y3O2W9fSWxS/+MUv6rHHHquqnTVU\n+a7n2i5jNeBct2uqhg3r4fF5bQuM7Rwr1yphvLIf0Rbof67Jx/XOsJ4c4FbnfE+yPXGsGDt4T2+t\nPQ9vvPFGHTx4sKr6+FnVx0m/r/NZ2Xeu6cS44zUqz3F97HmG9sOxcTylD3jtSR/m2LuWLvvccX3s\nPd3zJ/vD7+C24xMhmTghhBBCCCGEEEIIS0B+xAkhhBBCCCGEEEJYAnYlp1pdXW1pt07zYmozt+uq\nGk8Pm0rJZxp/VZ/Kzc95a97LL7+8HTOVlPIaf86pVdxemGli3lKMqVWWU/GZmZLllMD777+/HVuG\nNqSeWdoxD6eddlpdeeWVVbUzdYvpnU5v5zM4xZUw3XwqPY5psd6WmxK5++6777j39v3dJqZQMgXV\n22dy7C1HoY1MpY3TNu0Xi9wGl5x55pn1/ve/f8f3V/Vb0TqtlqmHTCF0miPTO7ltfFWfqkwJlbdN\nZPr/X/3VX7Vj2nxV1eOPP96Op1IlKROw7fKc0xeH7Z+rehuyhIDpl36WYWvKRW6lum/fviYz83NT\nLuGUTsaDqdjAtFA/K5+Dab/e4pDpnowPTuWlb7tN9B22w5ImjqH7eUyK6bRnpzoTx7RFwW2N/ezc\ngtnxhSnCnNMs8+M9nX5Lu2Hscf+xn7jVumVr7CP7AP2KfmnZD8fH7eXcyv5wbGdauuVCw7WLjK1n\nnXVWfeQjHzluWyhX4dbOhnOQ0/YZWzwv0g9oE15T0LZ5D0s2GC/Y31VV11xzzXGv8/qIvu65gdJY\nYpkGx9B2cKokHKeddlqL95ZpMGZZ6sC2085tC0yF9xxEH+Ox5UlcR/K7nJ7Ped3rRs7xtE/Lbeib\nnhdpT/R7SyNo15bBDdLARW4Zf9ZZZ9Xtt99eVTullJTGu185HowZXlezvzyGfD7aiOdP9jN9fWqb\neM9VHNOHHnqoxmB8cOygX3H+9DzE9YR9z3P5ojj99NPb+tBytDvvvLMdW4rHOY3P4fmbtu11C6Ut\njF9eKzNGcBz9bsq/7Uf8HNvoUh+c7yxV5rW0C8dUlpDw2n54Zt97Hs4444x673vfW1U7bYrPbf8g\njGuOE5wXLX/ieubAgQPtmJLHqn6NxXvY7+mLXlO//e1vb8dc90z5s+eGMQmf1yn8nNdpU/04RjJx\nQgghhBBCCCGEEJaA/IgTQgghhBBCCCGEsATseneqITXNuz0NEp2qnWmDTj8b8D2YJuVUJabcMeXI\naXRMsaN0xlIo3s/pWZdcckk7/upXv9qOnXrOND3Lv1h9nCmbvgfPje1AsMidHPbu3dtS9/x9bBtT\n1Kr6lDCmBTpVjPIkp34yTZIpf06xG6QrVf1OHkOV9OPhtFhWTqcdWDpHO7MdMGWWY+30fqY/OuXQ\ndrcoNjY26pxzzqmqnSmX9AnKoqrGpUXegYrPy52fhu8+3nVMU66quuOOO9ox00C9OxXTEL2LwZDK\n6Xt4BxHarlN32f6plFbGLaarV70ZqxaZNn7s2LGWkurU8GFsq3ammbINU6nu7FdLM/h9tF/vnEO/\n4rElFkxTdkxmeipTXC09ZBq/5RfsA/qY78H22xftJ4tidXW1pWV7rpuK70wz5uecYsu51TsgUHpF\nu/A4cq5lXPY8S9+xRJU2effdd7djy8R4f48jfY7j4ZR6Sgic7j/EVMfhedje3m594XmLMclxkmnw\nnGfcr7RFSkKqet9h/zjG0X7Yr5ZiUpLFeF9VddVVV7Vj7t5kX6GdMdW8qvdhzqeeW5lubxkDZdKL\nZDabte/yd9KeHfsZRxgPbQu0We8ExfjLucTSjDGpt+MT2+j1mG1owH7EMbEv8lrKQJzSPzYHVL0Z\nlxcpbdza2mrzudvMneO4HjC0Z0sbp3bvZEzmdzsmM75Ore/tm4T35PhOSXItEfT3DdjmOKbuj6kd\ng+eBMdU7y/J9yRJA+ilt1Osgrmm8HqEvcQcvX0efZdy0RHhqh2HaE4+9HpvazZjt5fg7hvG9ctj5\na2CICW77PBw5cqS9j1mCSmmx+5Xxzz5GOPZeH3Ftw/WqS6hw3UN/cyxk+y0p9Pv7gMtv8B3H8x2f\nk8/vdwbG2pdeeqk7dzLvi8nECSGEEEIIIYQQQlgC8iNOCCGEEEIIIYQQwhKQH3FCCCGEEEIIIYQQ\nloBd1cSpelPnZ50bdZXWzY7VE/EWad7akFAzyJoL1DuyfVX9tn3WG1NX521DqX9km7zdIZ/Z2rYr\nrriiHVPj6NoX1PC5T0/Flri/+MUvWr9YW3jddde1Y2vG+Tc1odZCPvfcc8e9rqrXCVL/aE0s9fjc\n+tQaU+qDrX+kVnhqWziOobXC1GSy7a75Qb2xa1F429BF8cYbbzRNuDWX3PbbemfqZVl3wtvxPfjg\ng+3YfUadLr/b9Xeo5Wa/vPOd7+yuY50Ga1OpO6Vm2fUwaAuutcWaLHwW+xfH6lvf+lZ3bvAV1ySZ\nB2r/zc0339yOvb0sNeP0HdcwoV1622rWPmFtB8fuF154oR0///zzXdsJfWyqLgzba7/nPV3rZmy7\nV8cEap2feOKJ7pzrCSyKQ4cOtRpKjg2f/OQn27HrWoxt8ev+o2/6HryWduJ5kZ/jsetHXX755e14\nqoYG5y1/F/3I8wj9mW13TQ1q/+0jgy7dtSPm4ciRI/W9732vqnbWgGE7fY7tZs0G1yV4+eWX2zHj\nblXvm7Rfx92xWi3W99MG3f9cE91///3t2L7Img2+B+cXjo3nT67vOJ9U7aybuCiOHDnS6haxtmFV\n1f79+9ux11psD2uVeG7l2Ll+wdSWx4RrSvbtVG0S14ugLYzVVKrq5wTXcKDtcuxsC/R11wEa+mqR\nvri5udnmWfcj53bW6Krq+5926bFmjTzHOI4317buV44hv9fre8ZM34PPMlVrb2rLe85pY3Urq/r5\nxTXGvL44FXitxTpjjI1VvR/QFj1WU2s5jjmfz9exb+kfti22iWsi359+6n7lmmaqFhNrofm9lb7u\nZxl8fZHvjayD6zU3533HFsZQ2qLXjbR7xz+ODb+b74RVvR/RZ/1+y/v5u/i5J598sh17bcPn8jsn\n52HGU69luWadqpdzoiQTJ4QQQgghhBBCCGEJyI84IYQQQgghhBBCCEvAruRUKysrLSXJ6WBMiXvH\nO97RnWNqI6UUlp4w/clpTJQxMCXLaYP8HFPRLGthGjnlFlVVDzzwQDtm6tyQbj3ANNNLL720O8cU\nL6ZTOaWS6alOzx361Clo87CystLSwCyF4vNx69Sqvv8pZ/Dz8JylMUwjY6qhUwbZDqYncqvdqj7l\n21IS3pOpfq+++mp3HdOoL7roou4cx43HTm1mSpz7wynmi2SwC2/9R1+8+OKLu3PsC/oEUwir+n45\n++yzu3NM26X9+tkpL+D27Z/+9Ke76yincurhs88+247pp9yGvqr3RcsjmfrM9jpVm+13XBmeZZG+\nOJvNmu04HZ3PZ3uj33I8ne7K9FFv3c44zGd1Kj0lSewvy0WYnsqx9v25RbNjPJ/TW3Dyb9qV02Jp\nm05NndqSdh5ms1mLbZaJ0P8txaH8kH5q22Os9DlKA9ifthlKqPhdN954Y3cdfdFwm1j6gdPGmfbu\n2MRz/JxTk6e2QR/mySkJwm6htNE2xXl5Si7BY9sa7cB+yueY2p6d25tynnXM5P0dk7m2YVq6t1Dm\n3GBfZFxh3PIYMk55/XUyW6meCBxHry8phfIcwXmBsc22zXWF1y2MnVMSFY43ZRuWxbFvLXNlHKCv\ne37imPgc4yjvMTb3Ve20heFzbt88HDt2rPWl5bKUljq2MPaz7+zPlKvwuKqP31yHei5h2QCOp0tE\n0DftA/QjtsPvVhwby3y4LqevezwYL9xvlEkvEkpx7Cv0Ra/d2S8cf48B5fWOX+wzxl73H7/71ltv\nbcfuI77Pee3DOMp+99qf8cjt4DNzXcBxq+pju/106FPPL/PANar7mGsPv+txrcjY6lIHfD6vgRl3\n7rrrrnbsOMbP8X6Uz1b18dmSdfoRv9e+yHjq+3NtwDZ5LuA5z/EHDx6s3ZJMnBBCCCGEEEIIIYQl\nID/ihBBCCCGEEEIIISwBu5JTzWazlqrl1FmmijHNrapPXWKKrVP+XHWasKI608i8KxRTrZhaZVkJ\nU5y8+wXTv5gq6WfmPbxrDdvINECnulEO4V17hhREP+M8HDt2rKWIeZzYD1NpfHxup2tP7cowJqFy\n2iHT0pimZ8kar7OE7/HHH2/HHBv3MdMaLRti2htTB532N7V7gL9vUezZs6f1tXd2YXqs03tpw0xt\ndIoix9uyBco2OP7e4Yp9y51CnEo6JrOr6uU3HANLdlyJnjCNkjZuX2Qape83pNA6RX8e1tbWWhq1\n0zbZlgMHDnTnmIpMP7KtjckeqsZ372AfV/Xxmqnh3o2AqaVOrWVaOmO+4+mUTHMsBdUp6uwb2zTt\nbmquORnGdmeZ2hmDEsCpFGjuiujdYThejIe0n6o+XZ++aNks08stPeVuRsNuXFU74ybnPqd88/5T\nuzRwxyZLHgY7n9rNcrfs3bu3zSGWJ1HaaPnZt7/97XZs6QdhbHSc5N/sB0uyaCNjkoOqXvJiySLH\nlLHMUh7ew3IUznG0e8dGjj13G6uqeu211+pUsLGx0fzckghKhn1ubL3mGEJJgedd9gXHxL7N+MV+\ndgxhm7yuGJMlWrYyFbN5LecDPxe/y+vcRe5KNbC2ttZ2XbLUht/vuMNn4LhZWsp5x+coWWQ/2F7H\nfMDzFm3Jcv2xXXvsbxwn9zdjI2U4LpXAecNre/r+ycg5xtje3m7+4hhFOeU111zTneN8R3mb7Xdq\nZzf6HGX4Xi9QPvyZz3ymHdsH7rnnnnbs2ME5mPbk2Es/9TqLczdty3ORd0gmw1rfZT/mYXV1tfm/\n1xSMXV4v81r2uUuX0C5YOqGqf+fn3GKf5Xffcsst7dhrD9q53zNoL4wxLi/A3xGmdmGd2mWK77u2\naa7HuMaaIpk4IYQQQgghhBBCCEtAfsQJIYQQQgghhBBCWALyI04IIYQQQgghhBDCErCrmjjEmi/W\nqLDebNC3VvV6M29XSD24NYnU0lErN7W9JrGWlPo16/SoAWbbrYFjHRbr9tkHrD1jPSrrl1j3POjl\nrLOdh9XV1XZf168Zq11U1ev4qN+07pB96XtQ20td41RdHeplr7vuuu461k3w1q9jGkrXHuFY20ao\nx6Zt+jrewxpu1z9YFKxP5e9k7Q/bLPuFutypLaNdO4maYOpdpzSzrJPi9tIHbDPUedM/GAOqel90\nbQbGBF7nbW6pWbeueNBmL9oXh352zKRG3nVQGPNYo8H3YFsdF1k/gDW3uKV4Ve+z3CLbuvDLLrus\nHVsfzdpLfBb7Ees32R4J/dnzEOO69ca2u0Wxurra7u0YznjjOY1td1sJx5j1WXxP9pntlPPTBz7w\ngXbsmjicn1lfqKrXaNM/XNPsk5/8ZDv2/MD+YWxyTQPGW2/DOdRXWeTWuGtra81uXQeFcczfyfoa\njKeOY3zuqdoOrAHmuYNzHH3MtbDYXs/x7Gfajv2IW3DbbjmmfH6ulYxrikzVMJuH9fX1VivF9WH4\nTF4HsF84pzlm8Drfn/B5vTbks0+tP2gzvgfHle213U1t0cyaUowdXqPSH8bqek3VgNgtKysr7Zm8\nfqHtTa3pOUd4rqL/2bb5rPRnrxVYK4P38zqU4+RYyz7jWL/wwgvddawL4/Hlc9KubJusSTW1xlok\nrG3kmmdcU3rdSPtjXRn74lRtPNoGfd1+dMMNNxz3nGvW0J89V3G9TZ9y/Siun7ymo52zVp5hjHUt\n16GPp2qz7Za1tbX2nuXn4bzv+M6xYv/72abiDtfxXItMbSf/4osvtmPXkiSux0hb4nzsuZr+7No8\nvJb259pIHEOv506mxlgycUIIIYQQQgghhBCWgPyIE0IIIYQQQgghhLAE7EpOtb6+3lITnULN9DOn\nyjKdiqloTuuj5MIyKabjMV3YW4AxrYupkd6emulUToFnat6tt97ajp3Ox9Qq35+peewr9w3Ty5xK\nNaSTORVxHo4dO9ZkF966/Oqrr27HTo9lSupY6nFVn+5qG2GaH23iiiuu6K5jSiq/1/3PvvN2s9yK\nj2npTp+l/XhrZNoIn8up2LyHtwB06t+iOHr0aJMUOV2PWwh7HJl6z5RbpuxW9f00tXU1fczbmVO6\nRJ91CiG36XVqLdNOuUWg0yE5Bk7rZxsp7XHfsB8dVwZfWfR4Dqmb7Kuq/vmmUuSd0knoE5Rp+B6U\nxvi56cNsk9NimUrq9vL+U9tqczxscxxDPpdjJm16Ss65SGazWbu32zO27XBVv0Uux9H3YMqx50Wm\nVHPOoXSkqpcK0rctPXzkkUfa8cMPP9ydo9+yvfZFjiMlr1V92jJlA+4b+r3TuIft4T2+87C5udnm\nCbeZsdHtHJMIO7ZwnrTskWPKud7bfo+leTOdv6qfn90O3oM24vjD1H+npdP/ON9Zwkc78xpmaqvc\nedjc3Gz24nUd116WmfFa9t+U5NwwnvHZLSmkDdHOLZ9jPzutn7GDbXLsoE3aX/hslCJ5fcP47RII\nQ/stQZyHzc3NNk/bTj784Q+3Y899XDdyrei2cZ63bJfzHX3bMY62zj73OHFNaTvg59gOX0dbspSH\n/s17+JkZc7zWW+T7BZnNZu3etkvantvz4x//uB1zveB3DY6/+4z9QptlXKvqY++YXLiql9G6v+jP\nHG8+h/G7DG2NY+V4c6ok4WNsbm6256Akr2rneBCuk/kO5/dfyqQcr2kj/Jx9gPPkWEyr6n3b6yiO\nIUvD+H2R3+UyLIz/fH7Pi3w/8Xj6Xe5ESCZOCCGEEEIIIYQQwhKQH3FCCCGEEEIIIYQQloD8iBNC\nCCGEEEIIIYSwBOyqJs7Ro0frhz/84f/9oPSo/NuaQer9qEu78MILu+tYU8P1NahTpy7NtVCeffbZ\ndkxtr7WQ1PN5C1Pe31sGEm+rNnaOetpXX321u45bJV955ZXduUGXuchtjdfX11tfTo2Ttb3Ud7J/\nrE+kxs86WNZvuPjii0fvQT0rj61jZD0HjntV1VNPPdWOWQfF22WP6Rirevuhnvzd7353dx11jNaN\nfvOb36xTwfr6ehuHqW1krY2mv3C8rR/dv39/O57a/pjbvlsjyn7hFp1uE/92zQlqonnsehG0ZWtr\nqbul/toxgVpV13wZxvFktgAc49ixYy0euk4G60S5TxhDqdn1dYyZ1tpyvFlfwRpgPi99x1pe1i1x\nLSzaGfvVfs/22k9Zv2ustlZV/1weQ9cAOxVYw06b8lzFPuMzeQz4TL4/6+Dcdttt7dhxiHbP+c5t\nYi0A16Jhf3KsXA+O8dE+xjo4Y1vsVvVz5nve857u3CK3Fh9YWVlp7XFbuBaxbbMWw9RcwroAjrX0\nv6uuuqodu1YE6w6y71gDrar3ddfCYv0cxmvfg3brrV+HNWBVb6uOCWPtrZqupzAvw3rJdbVoUx4D\n+hH7z2sOXjcVe6bmTH6O6yquWar6uOk6b6xdxljp752ql8N1JW3XNaF4nWvDDGuPRW4xvr6+3p7J\nfcyxcVtoi3wf8TzAvz0vsl9pz66dw+/iuLP2WFXvY173ML56u2jC+7uOHNvFMXDcZT96rPgOski2\nt7ebDfsdi33hZ+LYsQ6b+491vOzPhO9wjmVcl3J94FpxfG/zlvVsB+/vGMdY4vUen41253c0ztd+\nfx5sd6pO4m5ZW1tr/sK4X9Xbuu2XdWU4NvY39onftWnDU78NjNXotF2xL32O8zjjn+2KY+qYMFZ/\nzHbLuG4bcU3KEyGZOCGEEEIIIYQQQghLQH7ECSGEEEIIIYQQQlgCdpV3tbW11bZBdOoT04edgsoU\nZKZ+ejthphd6y0vek8dOWz733HOPe87pa9za0dvTMaWJqaRMpa3qU8OcnsX785xlIGzXqdrqj2xt\nbbWUvKmt1ae2fOXYu818Hqf1MaWSYz+1TTD72FI0nnPaLVP/mM5me2FarLezZDo70+Mef/zx7jra\nhVORncp7KrAkgn1hm6WPTW3ZPWWz7DNe5y1S2Z/DtsBVO+2OtnXZZZd15+h/lB04LZZp6ZTPVfVj\nR5t0qiQlkLbrIT3UfT0Ps9ms9Z/TTNlmy+WYAkypif2N9/QYcgzG7LyqlzxxrJ955pnuOt5jKvWc\nqchOi2Vc93bgbBe/y3GdsdtziGP0otja2mrxzDY1tQ027Z6pyfYPzp+OJ3z+KdkVt1llHH3ssce6\n65577rl2bDkPbY3bU99www3ddfRZb7PK1H2Oh22GsYSp2VVv2vlUCv1u2d7ebv3utnCcLFd55ZVX\n2jHHxvGJc5Dtkn9ff/317diyOs7P9A/PffQBr8XGpAWOu7QX+xhj4FSKOttvmcmpkMRV/V+pyLDO\ncGq650LCeZHrQfsbbcNzBD9HKYBthj5Af3OfcIxtM1xn0Ndtd/RFy1c533EN5nmE8w/n4Kqd88Ci\nGNpgH6CszP3KuEnJkN9VptbZ7FfGXX8Xx4b9ZV/hWsQyprF3BK/FGDvcH/xuXuf5k7ZpP+C22JRA\nzsv29nbzQc9HY2vIql7Sy7HzewLt1zJXrpH4LsN/r+r9g+8MXuNzLWU5FWME5XNe39C/bSd8NvaN\n/Z5tdJmNoT8s35mH2WzW2uM2c33g9yquexh37EccG69zKSvj5zzvj23l7rEm9jHGNX6v5U58Tvcz\n7Zjj6XUU7cDzy8mMXTJxQgghhBBCCCGEEJaA/IgTQgghhBBCCCGEsATsSk61Z8+elhr11re+tTvH\n3Ya8CwjTpJji5FQlprQ6zZtpR5RmmJdffrkdM+2NVc6r+vQ478LBqt9MbeO9q/rUKu66UdWndjLl\n0alfTDP07gSniiGFjTsQVfUpie4TpjUypc+p3Ex7c+onUw2ZCum+G9u1xd/FlDjvjEH75Oeczkc7\ncNotU6eZwmfJFNvB9PqqxcpvzNAmpzgzldFpjty1hn7qlD8+r2WP3EGF/uwdwh599NF2PFZBvqrf\nzeaWW27pzjGdlGnoL774Yncd/crplvRFtsP2yRT4u+66qzs39Okid6eazWatL6699truHNPGPYa0\nbe4+4x0gmN5pG2Gfs+/8fOw7tsPpy5Rf2JYOHDjQjjk2Tp9lyrdtjj7G73Z7mbJuecKpkquur6+3\nucaxgc/oHRwoYbEEkHAc3S+UODGF3lKShx56qB0zrt19993ddYyPTLOvqvrgBz/Yjmmflozxuy1R\n5TxMW/BagLLrJ598sjs39Iclv/Owvb3d7Ju2XNXHDKeUs52c0yxnoP06DZ47/PG7pmR19BXvkklJ\njXcM/MhHPtKOp6TPtBHLHfg3fcr2zTnZa0LHtEVx5MiRFhMZd/ydXt9Qssc52xIYSlHcZ+xrXuf+\nY1xiOyxHpi96dyrGGc5bls/Rr2x3fDbuWuY1C218bB3tuXQejh492uKGY9CYBKyqX7/Rd+yLHJsx\n2XRVv96wvdA/+L3uO8Z1x7ix3cGmJLiWgYxJaC2d4/3ti16zLorV1dVmt15/0Ka86xH7iWNgSRbH\nwL5I3+Ea1ffgeHFu9fzJ9wSvLylV5/d6hyvGH9sd/Yex3ePNtZ/XN6dijcodxqZkfl7L0YbZl/YP\n9rnnBMYnyvwcT/m8U/IsXud4ymv5vY5rbKPX24zfnKsdf2gv/k3BctgTIZk4IYQQQgghhBBCCEtA\nfsQJIYQQQgghhBBCWALyI04IIYQQQgghhBDCErCrmjhVb+rKrH++77773ryp9InUZ1Lv53uwdol1\nkqyzQC2aa6FQT/n000+3Y+vSxraxc3v5LNbisR6Fn4V6V97f25dSZ+htPoftGxe97d+gV/zRj340\n2hZrase2Q2Q/VvW1i7zFHrW47Dtr/7ltJXX71tVym1tvE0/NOPW31htT6+p6RayNMLVtLvWUrgfC\n+kpf+cpX6lRgrTt1pq4BxP7kOfsbNfK+B7W+rGdkHTHr1rCN73vf+7rr3vve9x73e6t6m6TfW/tP\nzbq362ZtrCnNMvX21j0P8WPReuNhPB588MHu3OWXX96OrSNmPGF8sh/RF+3r9A/qiL39KDXp1Pfb\n39jHrlXCcaPm1xprxjnXh+B4sI22OcZ51wPhXPHXf/3XtSg2NzebLTm+0xddC4q6bPaF6y9QX+2a\nLBwf+rD9g7UsGLM9VmyTa4pcccUV7Zjj4ToZDzzwwHHbV9XbKO3CtX4YL6xtv/TSS6uq3yp9XtbW\n1nasAwYY762ldz8P2A6os5/aTp1t8FgzrnG94XmR85ZjIWtCsI/tz7QRt5f1HFijwdcR3581uRbJ\n2tpai22OIZdcckk79tautCX6qedzjiPrQFb19kw7cc0/jgn9wfMsa91cc8013TnWUOM4en7iesf1\nHfi5sS2zq/r1nmsEvfOd76yqnbVG5mF1dbX1he/L2G9/pZ/SLx2D2A+u7cm5ln3nNRZjMu1lattz\nz62M+XwWz2n8Lo+N/x5w7KD/ud9O1RbjVW/a43PPPdf9O5/d9eD4/Bx/r9cY5zyPMRZxHD0GnHc4\nf071n/2I30U7cd1AvkN53Nh+xnOv/dgfroU2xL0xmzgZ9uzZ02Kg6/2xzVPbbdMvPQ+MxaCqvr84\nHn7/4nhwfL2+5BrV8zbXM/RZ34M1cVzvj59j/Hf9TvaB++1k6vwlEyeEEEIIIYQQQghhCciPOCGE\nELFLBvAAABSzSURBVEIIIYQQQghLwK7yrrglrqVF3ArYKZ1MQWL6lLdZo5zKaZtM85vawpSpgWyH\n5SK8v9NumR7O7cCcEsj2WqbDdF1e59Rw8q1vfav7e0itcsrVPKyvrzeZgdP9KOFwyhpTwNhfll0x\nTe3xxx/vzjGdjXIqjw37kqmKTl+mPIKpx1V9GjRTz52eyBRBbwHJVMspmQbT+WxLTAlcNMP3+plu\nuummduzUyrGtvm+88cbuOo6jx4dp4/Q/bzFOm6Ev0g6q+jhgfyaUmfi7eH+nYHPsOD5OpWZKpSUt\nwzM7Ls3DxsZGkxw6hZoyPKcRj20rOpWa6e0b6fu0c8taLCsboESxqo93lipwvKe2rucYTm2zSnt0\n+jr/dhrrlNxjHs4444wmEXRq+NVXX92Op7ap5bzo/iOWxXH8OUcyvlb1sZLyAsdUylwoV63qx44+\nRdlyVe9jnPt8D48/oeTkO9/5TndusGuvQebh6NGjrV8sN/jEJz7Rjh0LGV8ZMy1xoi963qVdcO3h\nuM7Ubs5Bg6RlgCnl9nv6GNtrSRyvc3vpY7Rh+xfnYErsqnZu474oVlZW2rxjqf1UPOQ4cktiPzvX\ng5bYMIWe6f+WtPFvrp8GmeDA9ddf3445p1eNx1RLDHnOsZzzLud0rxkYi1024ODBgzuumZdjx461\nPnLfUY7reZ7nOGd6K2DO4ZZa0a9ov7SJqn7+41hbfscYZQkH3wX4LJbrWNIxdn/6rN/BGK+9JrV0\naFHs3bu3zjvvvKraOY7k3HPP7f7m3EWbdT+w/7x+YnwZW+v4HvyuKbmT53FKTzmOti36iKVDQz9V\n9es4z3G0Zcem4V1mbM12MmxtbTXZltvMsgh+lx/zCdsl+9lSIvozbdbPx/USbcnlPBivHa84d/E5\nvX7hvGGb5rqB6zTb0pSE7GTiaDJxQgghhBBCCCGEEJaA/IgTQgghhBBCCCGEsATkR5wQQgghhBBC\nCCGEJWBXNXFYw8Hw373tNPVsU1po6uqsBWStAeoOXQuF2lXWdbF+kPd3nRpuFUZt29QWjd66jt9H\nDbnrHbBv3MahLsZUnZDdsnfv3lY36O///u+7c+xj1+Fg21jzYEpbbq0t78++tLaQWnZqRffv399d\nx62prX/n9nscG9c0oSbd+kfq31k7x3ZAe/FW0WP+Mi/r6+ut7sKjjz7anaPu17pc+h81xlPbN7rO\nB8efdRu8PSVtgXUbrF/mWFl7zntSt+rvoh7VulJqcjke9kW248knn+zODbbmLRLnYWVlpfWR28I+\nsm2zNhefzTWd2A/2RcYU2rY1uqyBwD72dpP0MdcFoJ0xxltbTlua2iqXunD3DeO6beRUbWs8m82a\nbVqvzX73FvCs9cL+pBa8qo83rntE/2bf2p9pGxwP1xRirQfXTqBt0FeGuhgDnCv8LBwftoOxvKrq\nrrvuaseuaTH44CK3Ut23b1+bb22X9Lepumkce9cIYN/ZDh5++OF2fM4557Rj11whrOfl/uF3eU0x\nVuvG8wSv8xgSjqdjGMfHfuqaQYtiY2OjrQmfeOKJ7hz7zDGKfcaY55p/rInkGkBj9Qy8FTBtiDHJ\ntfYuu+yydjy1PbXr8BHHczJWn9HfxfW2a+4MW53ThufltNNOq6uuuqqqdsYW1kuxXbLmDOcSx8Kp\nGjCMeYy1rsdCW+L3uu4N15COtVz3TtW9Yf97PGnH7A/HDvqp/cJ2tyi2trZaf3oNeckll7Rjx8Ox\nmn+G7x62ZcYeviP6OteYG4P1Wuz3nB84jl7L0mZcd40xnLW1aD9V4/NN1ZtxZWre2C1ra2utPe47\nxjvPM7RLtsdt4zzj9yr6C2vdeA1Eu+d1nhc5r/v3BcZottFtmnq/5XhwPefv4rrU/nwy74vJxAkh\nhBBCCCGEEEJYAvIjTgghhBBCCCGEEMISsKt85K2trZa66dRZbiftLeOYdsQULKdDMnXV22tSXkCZ\nlNNimWrF73XaEtPenCLNc0ydc6oTU8Gcdst7MnVuKkXd6ZZDivMit1I9cuRIS0n91Kc+1Z1j6qrT\n+JgaOLbVbFXfD5bNcDyYMuhtbjmm3PZ8SLEdoP1cdNFF3TmmiDJl0inPtDP3P21paqtOXuftXp2m\nvij27NnT7PTP/uzPunNMT7WPjaUNTm3v520Zmb7Nc06VHEvlfuGFF7q/me7suML0ZMrd7G9sk+2J\n0gbKxDw2fBZuDV1V9dJLL1XVdHr6bllZWWnpwpZp8VktG6E0gdc5TlAa4zEcS1N2PKWf8tjyCKbg\nO42V8ZptdFos+8BbmL/yyivtmJLIZ555pruO9jLIRgcsO1wUx44da7HOcmHGe9sO5wjKFJh2XdWn\nMfseTGNm6q/Hl33Gvp2KZU4bH5Mo2O+n5AVkbNvzqr5vbJP3339/Ve1Mw5+HlZWVFk9vvvnm7hy/\nx3GH9kxfdNsoH7K8hjbCcaKUuKr3K17nNYVTwAnHjXIO+zPne68FOJ9y3hhi5AAlE5QGVVXdc889\no21cFO9///tHz9mmuFbhOa9DaZf2RabrU+rhuZXrQdqTJWYcE69baHf00ykZjW3yHe94Rztm7LVM\ngOPt8gXPP/98Ve2U1c/DsWPHmi/ZFxnvLPviPMM1vPuf63ZL6DmGXIv4uRlDGZ9dGoB25Xmc9+Tn\nfN2UvG9sneCxph3TL6t6idoiWV9fb+vwKemr379os4yVliBxDDxXcUxo25a5ck1Dm/G7C21oar7j\n/Pm2t72tu45zred4jiPbPvW+6HhxKt4XZ7PZjnXaAPvc7xlj23lbJs9+8LzF/mPf+T2N0iWOhaWf\njB0eX/oV51bPi3xmr/XYRvaZpWa0R8bgqqrHHnusdksycUIIIYQQQgghhBCWgPyIE0IIIYQQQggh\nhLAE7EpOtbKy0lLfnKLIdECn7jO1iqm5TtNiGqsrpvOeTHdySiv/ZiqU0+j4Xa66PbUzDGG6pdPX\n2V6mefqZKS1xG4e0R6dfz8PRo0dbdWyn6PK5P/zhD3fnmGLLY+/kwXs4dY5pfky/dWozJVRMKfdY\nUN7GPq7qd99huqar5PP+TvkcSxf827/92+46jqlTHC0tWRSHDh1qVfGdNsjUzM9+9rPdOfY1j53K\nyBRepx5SOskx9Tgy3ZDnpqSN3mmDfzP10PegjM0SET4b7fX73/9+d5131SND6vYid8Q5dOhQPfvs\ns1W1007Yr9dff/3oPSgd824ITKl2bKHN0Be9SwZ9jmPo63gPp+M7ZX3AEjKmnXoXOTKVvj62K2BV\nL+l44IEHRu+/W7a2tpq/DPKC47XhYx/7WHeOcf2GG25ox94xg/7n+YPPz/GxD1B6MOaXVX3M9jw+\ntpuK4/LUTn60Q84/llNRPmdfv+mmm6qq6mtf+1otisOHD9eLL764o11VfQziOFX1/cAYZJvn3147\nMe5wrvLuahwrttG+zfWW1w7sZ46br2NauudW+hjXc9y5qapaf1b180lV1ZVXXtmOv/zlL9eieOON\nN9rOgo4vjKm33HJLd46p++xnxxD6h6UOHOOpnVY5PrRt+yLjueVK9Cvak+dP+rrlHbwHbcHrCX63\n57/hnovctXFra6s9u32R6zdLUsZ2+LPUhv1luSfHg/HO6zqOFecqr5U41p6faSOUBlluTtmVpRkc\nD0qDfA9+zlJl/s0dE+fl0KFDTe489U7oMgmcqzhnu2/Zf14/cez4Ob/rMS7Rhh2jaSd+16ON8r3V\n11EOZgkZ5+upXVj5XZ7jT4UvHjt2rPWl2/z000+3Y5eR4LMytljmx7+95qMvsi8dJ9knXDt5TqMP\nOCaPtcPzON/5vbahVJnvpl7bMJ7aRliK5kTXqMnECSGEEEIIIYQQQlgC8iNOCCGEEEIIIYQQwhKQ\nH3FCCCGEEEIIIYQQloBdFXjY3t5u9Q68zRq3eLYek1pVaktdn4RaSGvWeA/WtbAujZrlCy64oB1b\nU0x9nLWF1MdR22a9MWs/uP4L9XjUIt95553ddVNblg39Y837PMxms3Y/axCp/3744Ye7c9ScUv94\nzjnndNe9/PLL7di1DKgnpL7SelbqENmvrJNQ1Y+ptwKlLpT2Yg007cx6WWo5WevCGmvaj3WYrg+y\nKI4dO9Zs2Fsv0o8+//nPd+duvfXWdkz9pf1jTBte1fcT+926cY4d/dd2QbuzBpW6d9YgsGaZY+W6\nIaxbQb3/E088UWNQX171pu7Wfj4PKysrzU5de4H1f6yp5fgy/rleAfvBOmluqcjaQNY98zq2yfp0\n9qt1vhw36vutk6cvTm3HzXpXvm6sRkDVqfNF4hjObc69rTJtlp+zbpz94nmXcwv91LGdY8A6Sq4r\nQb+y3fEcdemeqzlf2RYYLxhH77777u46fs718YZ5YNHbGg9tc80I+pvnIMZC+odredB+PVfRDmjb\nXttwHrvwwgvbsWtt8P72MbaLPmx/Zns93zFGs42eJ9gub6Xqtd+i4PrG2zHTJ9xnjI/0Ca8N+TnX\nZmDsYZ+5VtBYrQfXaGO88hqJcy3v5/hNez3//PO7c1wLDXWEqnaOI2siebv5Yfw9H8/DkSNHWuzx\nmoJj6K2xucbgut3xiX+73bw/44DnDvoY+9FjSN+2zTGusDaLYyZrZtmP6M8cw6mt5h2bXNdyUays\nrLT+9BqVuBYh57SpuMlntM3S92m/nhe5Xmcsc8ybqh/Jc5z7vFbkuHqdwGehLfhdmvdwXcIhhi9y\nXtze3m73s126HwjXMPRLt411ZPw8jKcce481fZj3ty9yrvZ7INfKrKvjtQDfA+2LtBnWg5t6f/cc\n5Xn4REgmTgghhBBCCCGEEMISkB9xQgghhBBCCCGEEJaAXcmpVldXW4o6UwGr+hQkpgRX9WlR3/72\nt9uxtzxk6pxTt5hmxJROt4MpVEzTm5KLWGrAtFNKLizTYKqtU/2YQnXw4MF2zC2tq6oeffTRduzU\n5yFteZHpcbPZrKX5Oc2LfeLvZGogn5upclV9WqDHhnK0AwcOtOMpqQclWE5PZKqh0xOZxsoUSm+H\nyxQ4y+V4fz6zZStMk73xxhtHzy2aoR1Oj2W6odNqmdrNlEem51f1/mapD+1k//797dgp3xw79plT\nsplSaXnH2Lbi7lfahrezZUxgern9mf3o1PNhq0x/Zh7W1taa/1gWxFjgZ6UUge10Kj1TmB2TmR7O\ncXLqOa9jWrJ9lu31dpO0Cz6L/Y0+NiYtrerjlmMMt2X0uUWOHZnNZi1ecmvbqt72vFUz+5r96bRi\njqNjNrcg5Xas9nvaBlOJHb85V1199dXdOX6Ox7ZP+pG3YR7bDpTyh6o+TrlPh3gxlc69W/bt29fk\n15bQsM2WU3GuYtyZkqn5WXnPSy+9dLSNtBfaktcNTOV2yjd9gvPElCzd6zTGKkoxLrnkku66Bx98\nsB1bdv3444/XqWDPnj1N3uBUdcYQp9pTIka5of1jSnrC/uSc6bmE95haLxHKUP1djK9+Zs67jql3\n3HFHO3bcJ5QUeI4ZbH6RMuP19fXW71NrD0vX2ZeMT5bQ0E+npA4cjym5GNdRll8wxnkMHaMHLPWg\nb7773e/uzn3pS19qx7QDS3KJ4+ki4yjZ2toatQ+2YUo2ylhMaXJVH+fcZ5x3aPf237H4bRkfy294\nHDlfj82RVdNlA3iONuOxYqxnnKp6cx6xvc/D2tpaWx/aVzgvPvvss905zjscX7dtbA1U1fc515SO\ncbwH7d5zMOdZ+ynnOLbDawHe03Jaxgi2w++LnIfcDtvFiZBMnBBCCCGEEEIIIYQlID/ihBBCCCGE\nEEIIISwB+REnhBBCCCGEEEIIYQnYVU2c2WzWaohM1ZixdpGaMOrqXBOBdXCshaW+kFuFDbUqBqy9\nPt7n3X7XIHj66aePe87ac+or3V7q9Kjv99bdrKHiWh6DrnOR2zcS14igztq1Y6hppSbR2luOvTXy\nHHteZy0ktYvUPVtPSW0q66pU9X3J+3ML9KpeR2yN9ZVXXtmOWcvJ2/793u/9XjvmFnRVO7X3i2Jt\nba3Vp/K2dPybtYeq+hon9EvbJXENm4985CPt+PLLL2/HrhdBf6E9WR9Nbe9UXSLe76WXXuquo785\nNl100UXtmDr05557rruOvmhbOBXMZrMWN10Th7Y+taUlNbuua8B7DvU+Bqi9pR3Yn3kP6oat3WVN\nJW+py3ZRa+64RvuxP1Mbzu3MqR+vqvrwhz/cjlnfpWqxtcXI6urqqG6cMdX10Pgc9DHXV6Nu2vVJ\nPvrRj7ZjPp/7jzGQtR68lSrnT/cf/ZZ24S0/udWtdfu0E/qzNfW33357O3b9lOHZpupZ7JaVlZXW\nR/Y3rh38PGNbDTvGcb7z1u0f//jH2zHjk9vBdQntwNp/1jJynGT8p095DqZ/006r+tjE5/z85z/f\nXXfTTTe1Y8+LJ6P9PxE2NzdbjSbPi3xeryVY3+Hee+9tx54/ab++P8eB8dbrS9ZqpP147cr46PUY\nbZ+1Ixw7OMd9/etf786xVgjtwvfgM3t+Hnx4kfXGZrNZu5/X3Fx7OnaxHzjnuI4P3x+mal5wPHwd\na1nyfh4nvtPYxzi+PHbtNPrYV7/61dH2cmy87mSNEs/xp2qts7Ky0tYWrgvC9yXHOfY11/H2N46/\na4nxnpzvXIeIdk/bck1W2hBrCFb19XfYRvs95zjb5LCWr+p9yfM4a1A+9dRT3bnBThZZ44hj6JjN\n+W5su3Mfe66ijzm2uPbQgPufts5+9Xd57ia0T853rulH+/Hak+svnnM85fuIn5kx7ERJJk4IIYQQ\nQgghhBDCEpAfcUIIIYQQQgghhBCWgJXdSHVWVlZeq6of/rcXhkXzu7PZ7K3//WX/PRnD/1EyjstP\nxvB/BxnH5Sdj+L+DjOPykzH830HGcfnJGP7v4ITGcVc/4oQQQgghhBBCCCGE/xkipwohhBBCCCGE\nEEJYAvIjTgghhBBCCCGEEMISkB9xQgghhBBCCCGEEJaA/IgTQgghhBBCCCGEsATkR5wQQgghhBBC\nCCGEJSA/4oQQQgghhBBCCCEsAfkRJ4QQQgghhBBCCGEJyI84IYQQQgghhBBCCEtAfsQJIYQQQggh\nhBBCWAL+D9JO4AB1op+tAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "encoded_imgs = np.random.rand(10,32)\n", + "decoded_imgs = decoder.predict(encoded_imgs)\n", + "\n", + "n = 10 \n", + "plt.figure(figsize=(20, 4))\n", + "for i in range(n):\n", + " # generation\n", + " ax = plt.subplot(2, n, i + 1 + n)\n", + " plt.imshow(decoded_imgs[i].reshape(28, 28))\n", + " plt.gray()\n", + " ax.get_xaxis().set_visible(False)\n", + " ax.get_yaxis().set_visible(False)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "\n", + "## Convolutional AutoEncoder" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Since our inputs are images, it makes sense to use convolutional neural networks (`convnets`) as encoders and decoders. \n", + "\n", + "In practical settings, autoencoders applied to images are always convolutional autoencoders --they simply perform much better.\n", + "\n", + "The encoder will consist in a stack of `Conv2D` and `MaxPooling2D` layers (max pooling being used for spatial down-sampling), while the decoder will consist in a stack of `Conv2D` and `UpSampling2D` layers.\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from keras.layers import Input, Dense, Conv2D, MaxPooling2D, UpSampling2D\n", + "from keras.models import Model\n", + "from keras import backend as K\n", + "\n", + "input_img = Input(shape=(28, 28, 1)) # adapt this if using `channels_first` image data format\n", + "\n", + "x = Conv2D(16, (3, 3), activation='relu', padding='same')(input_img)\n", + "x = MaxPooling2D((2, 2), padding='same')(x)\n", + "x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)\n", + "x = MaxPooling2D((2, 2), padding='same')(x)\n", + "x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)\n", + "encoded = MaxPooling2D((2, 2), padding='same')(x)\n", + "\n", + "# at this point the representation is (4, 4, 8) i.e. 128-dimensional\n", + "\n", + "x = Conv2D(8, (3, 3), activation='relu', padding='same')(encoded)\n", + "x = UpSampling2D((2, 2))(x)\n", + "x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)\n", + "x = UpSampling2D((2, 2))(x)\n", + "x = Conv2D(16, (3, 3), activation='relu')(x)\n", + "x = UpSampling2D((2, 2))(x)\n", + "decoded = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(x)\n", + "\n", + "conv_autoencoder = Model(input_img, decoded)\n", + "conv_autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy')" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from keras import backend as K\n", + "\n", + "if K.image_data_format() == 'channels_last':\n", + " shape_ord = (28, 28, 1)\n", + "else:\n", + " shape_ord = (1, 28, 28)\n", + " \n", + "(x_train, _), (x_test, _) = mnist.load_data()\n", + "\n", + "x_train = x_train.astype('float32') / 255.\n", + "x_test = x_test.astype('float32') / 255.\n", + "\n", + "x_train = np.reshape(x_train, ((x_train.shape[0],) + shape_ord)) \n", + "x_test = np.reshape(x_test, ((x_test.shape[0],) + shape_ord)) " + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(60000, 28, 28, 1)" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x_train.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from keras.callbacks import TensorBoard" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "collapsed": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Train on 60000 samples, validate on 10000 samples\n", + "Epoch 1/50\n", + "60000/60000 [==============================] - 8s - loss: 0.2327 - val_loss: 0.1740\n", + "Epoch 2/50\n", + "60000/60000 [==============================] - 7s - loss: 0.1645 - val_loss: 0.1551\n", + "Epoch 3/50\n", + "60000/60000 [==============================] - 7s - loss: 0.1501 - val_loss: 0.1442\n", + "Epoch 4/50\n", + "60000/60000 [==============================] - 7s - loss: 0.1404 - val_loss: 0.1375\n", + "Epoch 5/50\n", + "60000/60000 [==============================] - 7s - loss: 0.1342 - val_loss: 0.1316\n", + "Epoch 6/50\n", + "60000/60000 [==============================] - 7s - loss: 0.1300 - val_loss: 0.1298\n", + "Epoch 7/50\n", + "60000/60000 [==============================] - 7s - loss: 0.1272 - val_loss: 0.1301\n", + "Epoch 8/50\n", + "60000/60000 [==============================] - 7s - loss: 0.1243 - val_loss: 0.1221\n", + "Epoch 9/50\n", + "60000/60000 [==============================] - 7s - loss: 0.1222 - val_loss: 0.1196\n", + "Epoch 10/50\n", + "60000/60000 [==============================] - 7s - loss: 0.1207 - val_loss: 0.1184\n", + "Epoch 11/50\n", + "60000/60000 [==============================] - 7s - loss: 0.1188 - val_loss: 0.1162\n", + "Epoch 12/50\n", + "60000/60000 [==============================] - 7s - loss: 0.1175 - val_loss: 0.1160\n", + "Epoch 13/50\n", + "60000/60000 [==============================] - 7s - loss: 0.1167 - val_loss: 0.1164\n", + "Epoch 14/50\n", + "60000/60000 [==============================] - 7s - loss: 0.1154 - val_loss: 0.1160\n", + "Epoch 15/50\n", + "60000/60000 [==============================] - 7s - loss: 0.1145 - val_loss: 0.1159\n", + "Epoch 16/50\n", + "60000/60000 [==============================] - 7s - loss: 0.1132 - val_loss: 0.1110\n", + "Epoch 17/50\n", + "60000/60000 [==============================] - 7s - loss: 0.1127 - val_loss: 0.1108\n", + "Epoch 18/50\n", + "60000/60000 [==============================] - 7s - loss: 0.1118 - val_loss: 0.1099\n", + "Epoch 19/50\n", + "60000/60000 [==============================] - 7s - loss: 0.1113 - val_loss: 0.1106\n", + "Epoch 20/50\n", + "60000/60000 [==============================] - 7s - loss: 0.1108 - val_loss: 0.1120\n", + "Epoch 21/50\n", + "60000/60000 [==============================] - 7s - loss: 0.1104 - val_loss: 0.1064\n", + "Epoch 22/50\n", + "60000/60000 [==============================] - 7s - loss: 0.1094 - val_loss: 0.1075\n", + "Epoch 23/50\n", + "60000/60000 [==============================] - 7s - loss: 0.1088 - val_loss: 0.1088\n", + "Epoch 24/50\n", + "60000/60000 [==============================] - 7s - loss: 0.1085 - val_loss: 0.1071\n", + "Epoch 25/50\n", + "60000/60000 [==============================] - 7s - loss: 0.1081 - val_loss: 0.1060\n", + "Epoch 26/50\n", + "60000/60000 [==============================] - 7s - loss: 0.1075 - val_loss: 0.1062\n", + "Epoch 27/50\n", + "60000/60000 [==============================] - 7s - loss: 0.1074 - val_loss: 0.1062\n", + "Epoch 28/50\n", + "60000/60000 [==============================] - 7s - loss: 0.1065 - val_loss: 0.1045\n", + "Epoch 29/50\n", + "60000/60000 [==============================] - 7s - loss: 0.1062 - val_loss: 0.1043\n", + "Epoch 30/50\n", + "60000/60000 [==============================] - 7s - loss: 0.1057 - val_loss: 0.1038\n", + "Epoch 31/50\n", + "60000/60000 [==============================] - 7s - loss: 0.1053 - val_loss: 0.1040\n", + "Epoch 32/50\n", + "60000/60000 [==============================] - 7s - loss: 0.1048 - val_loss: 0.1041\n", + "Epoch 33/50\n", + "60000/60000 [==============================] - 7s - loss: 0.1045 - val_loss: 0.1057\n", + "Epoch 34/50\n", + "60000/60000 [==============================] - 7s - loss: 0.1041 - val_loss: 0.1026\n", + "Epoch 35/50\n", + "60000/60000 [==============================] - 7s - loss: 0.1041 - val_loss: 0.1042\n", + "Epoch 36/50\n", + "60000/60000 [==============================] - 7s - loss: 0.1035 - val_loss: 0.1053\n", + "Epoch 37/50\n", + "60000/60000 [==============================] - 7s - loss: 0.1032 - val_loss: 0.1006\n", + "Epoch 38/50\n", + "60000/60000 [==============================] - 7s - loss: 0.1030 - val_loss: 0.1011\n", + "Epoch 39/50\n", + "60000/60000 [==============================] - 7s - loss: 0.1028 - val_loss: 0.1013\n", + "Epoch 40/50\n", + "60000/60000 [==============================] - 7s - loss: 0.1027 - val_loss: 0.1018\n", + "Epoch 41/50\n", + "60000/60000 [==============================] - 7s - loss: 0.1025 - val_loss: 0.1019\n", + "Epoch 42/50\n", + "60000/60000 [==============================] - 7s - loss: 0.1024 - val_loss: 0.1025\n", + "Epoch 43/50\n", + "60000/60000 [==============================] - 7s - loss: 0.1020 - val_loss: 0.1015\n", + "Epoch 44/50\n", + "60000/60000 [==============================] - 7s - loss: 0.1020 - val_loss: 0.1018\n", + "Epoch 45/50\n", + "60000/60000 [==============================] - 7s - loss: 0.1015 - val_loss: 0.1011\n", + "Epoch 46/50\n", + "60000/60000 [==============================] - 7s - loss: 0.1013 - val_loss: 0.0999\n", + "Epoch 47/50\n", + "60000/60000 [==============================] - 7s - loss: 0.1010 - val_loss: 0.0995\n", + "Epoch 48/50\n", + "60000/60000 [==============================] - 7s - loss: 0.1008 - val_loss: 0.0996\n", + "Epoch 49/50\n", + "60000/60000 [==============================] - 7s - loss: 0.1008 - val_loss: 0.0990\n", + "Epoch 50/50\n", + "60000/60000 [==============================] - 7s - loss: 0.1006 - val_loss: 0.0995\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "batch_size=128\n", + "steps_per_epoch = np.int(np.floor(x_train.shape[0] / batch_size))\n", + "conv_autoencoder.fit(x_train, x_train, epochs=50, batch_size=128,\n", + " shuffle=True, validation_data=(x_test, x_test),\n", + " callbacks=[TensorBoard(log_dir='./tf_autoencoder_logs')])" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABHEAAADqCAYAAAAlBtnSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm81dP+x/F1kKKUSqM0S6WkUSGKrpSZSqRrCpdcc+Ga\nkgy3Ltcs7k9uJZWhkNJFMkXXrau5pFJJg+aBIpzfHx4+971WZ+92pz2c796v51/vr7XOPt/Od3+/\n+7u/1metvPz8fAcAAAAAAICibZ9M7wAAAAAAAAB2j4c4AAAAAAAAEcBDHAAAAAAAgAjgIQ4AAAAA\nAEAE8BAHAAAAAAAgAniIAwAAAAAAEAE8xAEAAAAAAIgAHuIAAAAAAABEAA9xAAAAAAAAImC/Pemc\nl5eXn6odQXz5+fl5yXgdjmFGrcvPz6+QjBfiOGYO52JW4FzMApyLWYFzMQtwLmYFzsUswLmYFRI6\nFxmJA6TPskzvAADnHOciUFRwLgJFA+ciUDQkdC7yEAcAAAAAACACeIgDAAAAAAAQATzEAQAAAAAA\niAAe4gAAAAAAAEQAD3EAAAAAAAAigIc4AAAAAAAAEcBDHAAAAAAAgAjgIQ4AAAAAAEAE7JfpHUBu\nuuWWWywfcMABXttRRx1luUuXLjFf45lnnrH82WefeW3Dhw/f210EAAAAAKBIYSQOAAAAAABABPAQ\nBwAAAAAAIAJ4iAMAAAAAABABzImDtBk9erTleHPdqF9//TVm21VXXWW5Q4cOXtuHH35oefny5Ynu\nIjKsXr163vaCBQssX3/99ZafeOKJtO1TLitZsqTlQYMGWdZzzznnpk+fbrlr165e27Jly1K0dwAA\nAJlRtmxZy9WrV0/oZ8J7ohtvvNHynDlzLC9cuNDrN3PmzMLsIrIYI3EAAAAAAAAigIc4AAAAAAAA\nEUA5FVJGy6ecS7yESkto/vWvf1muXbu21++MM86wXKdOHa+tR48elh988MGEfi8yr2nTpt62ltOt\nWLEi3buT86pUqWL5iiuusByWOTZv3tzy6aef7rU99dRTKdo7qGbNmlkeM2aM11azZs2U/d5TTjnF\n254/f77lb775JmW/F7unn5HOOffmm29avvbaay0PHjzY6/fLL7+kdseyUMWKFS2//PLLlj/99FOv\n33PPPWd56dKlKd+v35UpU8bbPuGEEyxPnDjR8s6dO9O2T0AUnHbaaZbPPPNMr61du3aW69atm9Dr\nhWVSNWrUsFy8ePGYP7fvvvsm9PrIHYzEAQAAAAAAiAAe4gAAAAAAAEQA5VRIqhYtWlg+55xzYvab\nO3eu5XB44rp16yxv27bN8v777+/1mzp1quUmTZp4beXLl09wj1GUHH300d72999/b3ns2LHp3p2c\nU6FCBW976NChGdoT7KmOHTtajjckO9nCkp3LLrvMcvfu3dO2H/iNfvY9/fTTMfs9+eSTlocMGeK1\nbd++Pfk7lmV0VRrn/HsaLV1as2aN1y9TJVS6gqBz/rVey2EXLVqU+h2LmNKlS3vbWqLfqFEjy+Eq\nqZSmFW06DUPv3r0ta+m4c84dcMABlvPy8vb694arsAKFxUgcAAAAAACACOAhDgAAAAAAQATwEAcA\nAAAAACACMjonTrjktNYhrly50mvbsWOH5REjRlhevXq114963szSJYnD2lGtGdf5G1atWpXQa998\n883edsOGDWP2HT9+fEKviczTmnJd9tY554YPH57u3ck51113neWzzz7ba2vVqtUev54uXeucc/vs\n87//VzBz5kzLH3300R6/Nnz77fe/j/DOnTtnZB/CuTZuuukmyyVLlvTadI4rpIaef9WqVYvZb+TI\nkZb1/gqxHXLIIZZHjx7ttZUrV86yzkX05z//OfU7FsOdd95puVatWl7bVVddZZn75l316NHD8v33\n3++1HXbYYQX+TDh3zvr165O/Y0gavT5ef/31Kf1dCxYssKzfhZA8usS7Xqud8+do1WXhnXPu119/\ntTx48GDLU6ZM8foVxeskI3EAAAAAAAAigIc4AAAAAAAAEZDRcqqBAwd62zVr1kzo53QY6NatW722\ndA5TW7FiheXw3zJt2rS07UdRMm7cOMs6tM05/1ht2LBhj187XK62WLFie/waKHrq169vOSy/CIes\nI/n+/ve/W9ZhpYV17rnnxtxetmyZ5fPPP9/rF5blYPfat29vuU2bNpbDz6NUCpda1jLXAw880Guj\nnCr5wuXk77jjjoR+TktV8/Pzk7pP2apZs2aWwyH5qn///mnYm10deeSR3raWoI8dO9Zr47N1V1pe\n8+ijj1ouX7681y/W+fLEE09421oeXph7XiQmLJ3R0igtiZk4caLX78cff7S8efNmy+HnlN6XvvPO\nO17bnDlzLP/73/+2/MUXX3j9tm/fHvP1kTidfsE5/xzTe83wPZGoY445xvLPP//stX355ZeWP/nk\nE69N33M//fRToX53YTASBwAAAAAAIAJ4iAMAAAAAABABPMQBAAAAAACIgIzOiaNLijvn3FFHHWV5\n/vz5XluDBg0sx6tLbt26teVvvvnGcqwlAQuidXBr1661rMtnh5YvX+5t5+qcOErnvyisPn36WK5X\nr17MflqLWtA2iq6+fftaDt8znEepMWHCBMu6BHhh6VKq27Zt89pq1KhhWZe5/fzzz71+++67717v\nR7YL68F1mejFixdbfuCBB9K2T2eddVbafhd21bhxY2+7efPmMfvqvc3bb7+dsn3KFhUrVvS2zzvv\nvJh9L7/8cst635hqOg/Oe++9F7NfOCdOOJ8knLvlllss65LxiQrneTv11FMth8uU6/w56ZxDI1vE\nm6emSZMmlnVp6dDUqVMt6/fKpUuXev2qV69uWedCdS458whiV/o8oHfv3pbDc6x06dIF/vy3337r\nbX/88ceWv/76a69Nv4Po3IytWrXy+uk1oXPnzl7bzJkzLesy5anGSBwAAAAAAIAI4CEOAAAAAABA\nBGS0nGrSpElxt1W4NNzvwuVNjz76aMs6LKply5YJ79eOHTssL1y40HJY4qVDq3QoO/bO6aefblmX\n6tx///29ft99953l22+/3Wv74YcfUrR32Fs1a9b0tlu0aGFZzzfnWIoxWU488URv+4gjjrCsw4ET\nHRocDhfV4cy6VKdzzp100kmW4y1/fPXVV1t+5plnEtqPXHPnnXd62zqkXIfuhyVtyaaffeF7i+Hl\n6RWvxCcUlh0gvocfftjbvuiiiyzr/aVzzr3yyitp2adQ27ZtLVeqVMlr++c//2n5xRdfTNcuRYaW\n+jrn3KWXXlpgv1mzZnnba9assdyhQ4eYr1+mTBnLWqrlnHMjRoywvHr16t3vbI4L7/9feukly1o+\n5ZxfThyvxFCFJVQqnC4Dyffss89621oGF2+5cH1uMHv2bMt/+ctfvH76vT507LHHWtb70CFDhnj9\n9PmCXgOcc+6pp56y/Nprr1lOdWktI3EAAAAAAAAigIc4AAAAAAAAEZDRcqpk2Lhxo7c9efLkAvvF\nK9WKR4cqh6VbOnRr9OjRhXp97ErLa8IhlEr/5h9++GFK9wnJE5ZfqHSu6pHttGxt1KhRXlu84alK\nVwvTIaL33nuv1y9e+aK+xpVXXmm5QoUKXr+BAwdaLlGihNf25JNPWt65c+fudjurdOnSxXK4IsKi\nRYssp3MlNy2LC8unPvjgA8ubNm1K1y7lrBNOOCFmW7jqTbxyRuwqPz/f29b3+sqVK722VK4wdMAB\nB3jbWipwzTXXWA7397LLLkvZPmUDLY9wzrmDDjrIsq5mE96z6OfTBRdcYDks4ahTp47lypUre21v\nvPGG5U6dOlnesGFDQvueC0qVKmU5nDJBp11Yt26d1/a3v/3NMlMrFB3hfZ2uCtWrVy+vLS8vz7J+\nLwhL7QcNGmS5sNMvlC9f3rKuktqvXz+vn07rEpZiZgojcQAAAAAAACKAhzgAAAAAAAARwEMcAAAA\nAACACIj8nDipULFiRctPP/205X328Z956fLX1LEW3uuvv+5tn3LKKQX2GzZsmLcdLreLaGjcuHHM\nNp0XBXtnv/3+d3lPdA6ccG6p7t27Ww7rzhOlc+I8+OCDlh955BGv34EHHmg5fB+8+eablhcvXlyo\n/Yiqrl27Wta/kXP+51Oq6RxLPXr0sPzLL794/QYMGGA51+YvShddElVzKJwjYMaMGSnbp1xz2mmn\nedu6fLvOBRXO4ZAonYelXbt2Xlvr1q0L/JlXX321UL8rVxUvXtzb1jmF/v73v8f8OV2u+IUXXrCs\n12rnnKtdu3bM19C5WlI5n1KUnX322ZZvu+02r02X/W7btq3Xtnnz5tTuGAolvI716dPHss6B45xz\n3377rWWdm/bzzz8v1O/WuW4OO+wwr02/W06YMMFyOA+uCvd3+PDhltM5FyAjcQAAAAAAACKAhzgA\nAAAAAAARQDlVAXr37m1Zl8ENlzP/8ssv07ZP2aZKlSqWw+HgOsRVSzh0mL5zzm3bti1Fe4dk0+Hf\nl156qdf2xRdfWH733XfTtk/4jS5NHS5JW9gSqli0LEpLcpxzrmXLlkn9XVFVpkwZbztW6YRzhS/V\nKAxdHl7L8+bPn+/1mzx5ctr2KVcleq6k8/2RjR577DFvu3379parVq3qtelS7zrU/swzzyzU79bX\nCJcOV0uWLLEcLnGN+HR58JCWy4Ul/7G0aNEi4d89depUy9zLFixeqajeN65YsSIdu4O9pCVNzu1a\niq1+/vlny8ccc4zlLl26eP3q169f4M9v377d227QoEGB2Tn/PrdSpUox90mtWbPG285UGTkjcQAA\nAAAAACKAhzgAAAAAAAARQDmVc+64447ztsNZ0H+nM6U759ycOXNStk/Z7rXXXrNcvnz5mP1efPFF\ny7m2Kk026dChg+Vy5cp5bRMnTrSsqz4gecKV9ZQOVU01LREI9ynePvbr189yz549k75fRUm4Ysqh\nhx5qeeTIkeneHVOnTp0C/zufg+kXr2wjGSsj4TfTp0/3to866ijLRx99tNd26qmnWtZVV9auXev1\nGzp0aEK/W1c7mTlzZsx+n376qWXukfZMeD3V0jctWQxLNnSFzXPOOcdyuJqNnoth2xVXXGFZj/W8\nefMS2vdcEJbOKD3f7rnnHq/tjTfesMyKfEXH+++/721r6bV+R3DOuerVq1t+/PHHLccrLdXyrLB0\nK55YJVS//vqrtz127FjL1113nde2atWqhH9fMjESBwAAAAAAIAJ4iAMAAAAAABABPMQBAAAAAACI\nAObEcc517tzZ2y5WrJjlSZMmWf7ss8/Stk/ZSOuNmzVrFrPfBx98YDmsdUU0NWnSxHJY0/rqq6+m\ne3dywp/+9CfLYW1vppxxxhmWmzZt6rXpPob7q3PiZLutW7d621rTr3NyOOfPL7Vhw4ak7kfFihW9\n7VjzE3zyySdJ/b0o2PHHH2/5wgsvjNlv8+bNlll6N7k2btxoWedzCLdvvfXWvf5dtWvXtqxziTnn\nXxNuueWWvf5dueq9997ztvXc0XlvwnlqYs3LEb5e7969Lb/11lte2+GHH25Z59fQz+1cV6FCBcvh\nPYHOHXf33Xd7bXfeeaflwYMHW9Zl3Z3z511ZtGiR5blz58bcpyOPPNLb1u+FXG/jC5f91vmkDj74\nYK9N56bVeWvXr1/v9Vu+fLllfU/odw7nnGvVqtUe7+9zzz3nbf/lL3+xrPNdZRIjcQAAAAAAACKA\nhzgAAAAAAAARkLPlVAcccIBlXarOOed++ukny1rOs3PnztTvWBYJlw7XoWhashbSocLbtm1L/o4h\nLSpXrmy5bdu2lr/88kuvny7bh+TR0qV00iHQzjnXsGFDy3oNiCdcljeXrr3hkGNdNvi8887z2saP\nH2/5kUce2ePf1ahRI29bSzhq1qzptcUqISgqpXrZTj9P99kn9v9/e/fdd9OxO0gxLREJzz0t1wqv\nlUhcWILarVs3y1rmXaZMmZiv8cQTT1gOy+h27NhhecyYMV6blot07NjRcp06dbx+ubxs/N/+9jfL\nN910U8I/p9fHa665psCcLHr+6VQQ3bt3T/rvymZheZKeH4UxbNgwbzteOZWWsOv77J///KfXT5cw\nLyoYiQMAAAAAABABPMQBAAAAAACIAB7iAAAAAAAAREDOzonTp08fy+FStxMnTrT86aefpm2fss3N\nN9/sbbds2bLAfq+//rq3zbLi2eGSSy6xrMsVv/322xnYG6TLHXfc4W3rMqvxLF261PLFF1/steky\nkrlGr4fhUsOnnXaa5ZEjR+7xa69bt87b1rk3DjnkkIReI6wbR2rEWuI9nEvg2WefTcfuIMm6du3q\nbf/xj3+0rHM2OLfrMrtIDl0iXM+3Cy+80Oun55zOXaRz4ITuu+8+b7tBgwaWzzzzzAJfz7ldPwtz\nic6LMnr0aK/tpZdesrzffv5X2cMOO8xyvPnDkkHnANT3jC5z7pxzAwYMSOl+wLm+ffta3pM5if70\npz9ZLsx9VCYxEgcAAAAAACACeIgDAAAAAAAQATlTTqXDzp1z7q677rK8ZcsWr61///5p2adsl+iS\ngNdee623zbLi2aFGjRoF/veNGzemeU+QahMmTLB8xBFHFOo15s2bZ/mTTz7Z633KFgsWLLCsS+A6\n59zRRx9tuW7dunv82rqMbmjo0KHedo8ePQrsFy6JjuSoVq2atx2WdPxuxYoV3va0adNStk9InU6d\nOsVse+utt7zt//73v6nenZynpVWaCyu8Tmp5kJZTtW/f3utXrlw5y+GS6NlOl3QOr2v16tWL+XMn\nn3yy5WLFilnu16+f1y/WFA+FpeXOzZs3T+pro2C9evWyrCVsYYmdmjt3rrc9ZsyY5O9YmjASBwAA\nAAAAIAJ4iAMAAAAAABABWV1OVb58ecuPP/6417bvvvta1lIA55ybOnVqancMHh0u6pxzO3fu3OPX\n2Lx5c8zX0OGUZcqUifkaBx98sLedaDmYDvm89dZbvbYffvghodfIRqeffnqB/33cuHFp3pPcpEN7\n463QEG8Y/3PPPWe5atWqMfvp6//666+J7qLnjDPOKNTP5bIZM2YUmJNhyZIlCfVr1KiRtz1nzpyk\n7keuOvbYY73tWOdwuLojoim8Dn///feWH3744XTvDlLs5ZdftqzlVOeff77XT6cbYKqHxEyaNKnA\n/67lx8755VQ///yz5RdeeMHr949//MPyDTfc4LXFKnNFarRq1crb1mtjqVKlYv6cTtOhq1E559yP\nP/6YpL1LP0biAAAAAAAARAAPcQAAAAAAACKAhzgAAAAAAAARkHVz4uhcNxMnTrRcq1Ytr9/ixYst\n63LjSL9Zs2bt9Wu88sor3vaqVassV6pUyXJYb5xsq1ev9rbvv//+lP6+ouT444/3titXrpyhPYFz\nzj3zzDOWBw4cGLOfLl8bbz6bROe6SbTf4MGDE+qHzNA5lQra/h1z4KSGzukXWrduneXHHnssHbuD\nFNC5GfQ+xTnnvvvuO8ssKZ599HNSP5/POussr98999xjedSoUV7bwoULU7R32emdd97xtvX+XJek\nvuKKK7x+devWtdyuXbuEfteKFSsKsYfYnXDuxIMOOqjAfjqnmHP+vFNTpkxJ/o5lCCNxAAAAAAAA\nIoCHOAAAAAAAABGQdeVUderUsdy8efOY/XT5aC2tQvKES7eHw0STqWvXroX6OV1WMF4ZyJtvvml5\n2rRpMft9/PHHhdqPbHDOOed421ra+MUXX1j+6KOP0rZPuWzMmDGW+/Tp47VVqFAhZb937dq13vb8\n+fMtX3nllZa15BFFT35+ftxtpFbHjh1jti1fvtzy5s2b07E7SAEtpwrPr/Hjx8f8OS0hKFu2rGV9\nXyA6ZsyYYfnuu+/22gYNGmT5gQce8Np69uxpefv27Snau+yh9yLO+cu8d+vWLebPtW/fPmbbL7/8\nYlnP2dtuu60wu4gC6PWub9++Cf3MiBEjvO0PPvggmbtUZDASBwAAAAAAIAJ4iAMAAAAAABABPMQB\nAAAAAACIgMjPiVOjRg1vO1xC7nfhnBC6rC5S49xzz/W2tZaxWLFiCb3GkUceaXlPlgcfMmSI5aVL\nl8bs99prr1lesGBBwq+P3xx44IGWO3fuHLPfq6++allriJE6y5Yts9y9e3ev7eyzz7Z8/fXXJ/X3\n6rKdzjn31FNPJfX1kR4lSpSI2cb8C6mhn4s6v19ox44dlnfu3JnSfUJm6Odkjx49vLYbb7zR8ty5\ncy1ffPHFqd8xpNSwYcO87auuuspyeE/dv39/y7NmzUrtjmWB8HPrhhtusFyqVCnLLVq08PpVrFjR\ncvh9Yvjw4Zb79euXhL2Ec/7xmDdvnuV43x31HNBjm80YiQMAAAAAABABPMQBAAAAAACIgMiXU+mS\ntc45V7169QL7ffjhh942y6Wm38CBA/fq5y+88MIk7QmSRYfyb9y40WvTZdkfe+yxtO0TdhUu667b\nWoIaXk/POOMMy3o8n3vuOa9fXl6eZR36iui69NJLve1NmzZZvu+++9K9Oznh119/tTxt2jSvrVGj\nRpYXLVqUtn1CZvTq1cvy5Zdf7rU9//zzljkXs8vatWu97Q4dOlgOS3luvfVWy2HJHXZvzZo1lvVe\nR5dud8651q1bW7733nu9tu+++y5Fe5fbTjrpJMvVqlWzHO+7u5aZaslxNmMkDgAAAAAAQATwEAcA\nAAAAACAC8vakrCgvL69I1CAdf/zxlidMmOC16YzWqlWrVt52OFS5qMvPz8/bfa/dKyrHMEdNz8/P\nb7H7brvHccwczsWswLm4G+PGjfO2H3nkEcuTJ09O9+4UKJvPxapVq3rbAwYMsDx9+nTLWbD6W86e\ni3ovqysNOeeXvD7zzDNem5Yu//TTTynauz2TzediURGuvtumTRvLxxxzjOW9KGnO2XMxm2TDuThz\n5kzLjRs3jtlv0KBBlrW8MAskdC4yEgcAAAAAACACeIgDAAAAAAAQATzEAQAAAAAAiIBILjHetm1b\ny7HmwHHOucWLF1vetm1bSvcJAIBsoUuuIv1WrlzpbV922WUZ2hOkyieffGJZl9QFCtKlSxdvW+cN\nqVu3ruW9mBMHKBLKlStnOS/vf1P8hEu6P/roo2nbp6KIkTgAAAAAAAARwEMcAAAAAACACIhkOVU8\nOrzw5JNPtrxhw4ZM7A4AAAAAFNqWLVu87Vq1amVoT4DUeuSRRwrM9913n9dv1apVadunooiROAAA\nAAAAABHAQxwAAAAAAIAI4CEOAAAAAABABOTl5+cn3jkvL/HOSKr8/Py83ffaPY5hRk3Pz89vkYwX\n4jhmDudiVuBczAKci1mBczELcC5mBc7FLMC5mBUSOhcZiQMAAAAAABABPMQBAAAAAACIgD1dYnyd\nc25ZKnYEcdVI4mtxDDOH4xh9HMPswHGMPo5hduA4Rh/HMDtwHKOPY5gdEjqOezQnDgAAAAAAADKD\ncioAAAAAAIAI4CEOAAAAAABABPAQBwAAAAAAIAJ4iAMAAAAAABABPMQBAAAAAACIAB7iAAAAAAAA\nRAAPcQAAAAAAACKAhzgAAAAAAAARwEMcAAAAAACACOAhDgAAAAAAQATwEAcAAAAAACACeIgDAAAA\nAAAQATzEAQAAAAAAiAAe4gAAAAAAAEQAD3EAAAAAAAAigIc4AAAAAAAAEcBDHAAAAAAAgAjgIQ4A\nAAAAAEAE8BAHAAAAAAAgAniIAwAAAAAAEAE8xAEAAAAAAIgAHuIAAAAAAABEwH570jkvLy8/VTuC\n+PLz8/OS8Tocw4xal5+fXyEZL8RxzBzOxazAuZgFOBezAudiFuBczAqci1mAczErJHQuMhIHSJ9l\nmd4BAM45zkWgqOBcBIoGzkWgaEjoXOQhDgAAAAAAQATwEAcAAAAAACACeIgDAAAAAAAQATzEAQAA\nAAAAiIA9Wp0K2Bv77FPwM8Pwv++33//elmXKlInZb9u2bQVm55zLz2dSdQAAAABAdmEkDgAAAAAA\nQATwEAcAAAAAACACKKdCUuXl5VkuVaqU19akSRPLjRs3tlyrVi2vX+XKlS3Xr1/fcsmSJb1+a9as\nsXzXXXd5bVOmTNmT3UYRpe8hLbPbtGlTJnYHAAAAADKKkTgAAAAAAAARwEMcAAAAAACACOAhDgAA\nAAAAQAQwJw72is6B45xz5cqVs3zbbbd5bX/84x8th/PlqF9//dWyzoOi2Tnn6tWrZ3nUqFFem86/\ns2HDhpi/C0VL2bJlve2hQ4daXrhwoeVbb73V6/fLL7+kdsdyVLFixSyfeeaZlvv27ev1W7JkieWL\nLrrIa+PYpMc++/zv/8nsu+++XtvOnTvTvTsogooXL245Pz/f8k8//ZSJ3QGArBR+N9LP5wMPPNBr\n0+9N+tkdfnfZtm2b5Z9//jkp+4loYyQOAAAAAABABPAQBwAAAAAAIAIop8JeCYcM6pLg559/vtem\nJVT6c+vXr/f6rVq1yrIOLSxTpozXT4cghsMT27RpY3n8+PGx/wHIOD3GYZnOcccdZ3np0qWWtRQA\nyaPlU845N2DAAMt//vOfLZcoUcLr17BhQ8sNGjTw2ubMmZPMXYTQ62itWrUst2/f3us3btw4y3q9\nDUvdOK+yS+vWrb3twYMHW160aJHl8LOaEsjd0/II5/xr4P7772/566+/9vpt3rzZspaOp4Jez+vU\nqeO1aXn64sWLLW/fvj2l+xRF4X0u18nsE57PsZQsWdLbrlGjhuWTTz7Z8rHHHuv10+9G1apVi/ma\nek1Yvny512/s2LGWH3jgAa9tx44dzjnKrHINI3EAAAAAAAAigIc4AAAAAAAAEZD2ciodlhgOX9Oy\ninC4og4x08ywxqJFh+LqcG3nnFu2bJllnXV98uTJXr+vvvrKsh7rFi1aeP26detmuUKFCl4bQwqj\nQ4eShkNQf/zxR8uTJk2ynOph6Lmqdu3a3nb37t0ta4lAeH7pdfjKK6/02m655RbLrIKTXPoZ2qhR\nI8sXX3yx109LOD766CPLP/zwg9cv3nmlv0tLWcuXL+/1+/777y1rmYZzXJfTQa+njzzyiNd2+OGH\nW96yZYsaqLgaAAAdoUlEQVTlcDUzyqkKpvevRx11lNfWr18/y88++6zl+fPne/0Kc88alvOE27/T\na7Rzzt1www2Wr7jiCq9t5cqVlvVeKpfLqfTvqitltm3b1uun18KpU6daXr16tdeP7ydFS/id87DD\nDrPcq1cvy5UqVfL66VQOOlWDc/5UDnrtDX+Xbodt+r7Te96wn5ZHxnt9xBfr+hmKwvnLUQcAAAAA\nAIgAHuIAAAAAAABEAA9xAAAAAAAAIiDtc+JUqVLF8tVXX+21XXjhhZbDOvu1a9da1vlUZs6c6fWb\nMGGC5SlTpljetGmT168wNd/xlhnM1Tk6wn/37NmzLV900UVem9Zs6t9S51Bwzq8JLV68uOXSpUt7\n/apWrWo5XPaPmv7o0OUWda4N5/zzW+fEQfIcdNBBlgcOHOi16VxTeq7/vpzl7/R87tSpk9emc2O9\n9NJLltetW1fIPcbvtEZe5wzTOn3nnKtYsaJlPd/CY6CfreH8NXqN1c/qLl26eP30+n3uued6beGc\nEdh74X3J6aefbrlBgwZem34Gz5071zKfl4k54ogjLA8fPtxrK1WqlOWtW7daDucBK8w8C/F+Jta8\nWM45d91111nW67xz/rw9nJe/0Xlw7r//fsvhNe7ggw+2rMtA9+/f3+v34osvWuYcy4wSJUpYDuex\neuihhyzruaPncvga4fV2586dlvW+aM2aNV4/nZcu/C6zatUqy19//bXlTz/91Oun89mF92C/3wvo\n/uQC/Y6oy71rds6/Lw0/F3UOJL13euKJJ7x+Q4YMsVxU5g5jJA4AAAAAAEAE8BAHAAAAAAAgAtJe\nTqXDv2vWrOm1aXmMDpFyzh/KrcOkwuGjp556qmVd0joc2haWV8XaRx1WF28InA69dC72MtnZTofy\n6d8nFG85PB2uqEOAjz/+eK+fvifCIcv/+c9/dr+zyIjw2J9yyimWw6Udn3/+ecth2R0KT69rOkS0\nY8eOXj+9Fmp5TThkV5co1p9xzl+687TTTrMcLkWuw9KjsLRjUVCnTh3LzZo1s6zlx875pYjffPON\nZS19cs4f8h8eA73G6ueblmo551+Xq1ev7rVRtpF84dD/a6+91nJ4z6JLyuvQ/Fy6R9kTWkbhnH+f\nV7t2ba9Nzzldvj0Vf1s9NzXrPbRz/v3TvHnzvDYtFcjV621YGqNlU+edd57lsMxb72H0+nfrrbfG\n7KelxM7teu1F8uj3wq5du1pu2rSp169WrVqW9Z4mPB/03nPp0qVem5ZVjhkzxvKKFSti7l9YWheW\nLsfaj3h+/3zOlnNZz00tcerevbvX75prrrGsx3O//fzHG+F2rDY9Z++55x6vn75/nn76aa9Nr69h\nqVsqMRIHAAAAAAAgAniIAwAAAAAAEAE8xAEAAAAAAIiAtM+Jo/Me3HfffV7bd999ZzlcHkzr47R+\nLawl1Nq5MmXKWD788MO9flqzHNY9a924ztER1v5rTWu4VOvtt99eYL9cEq82U2tCdT4N5/w67ksu\nucTy2Wef7fXT98GsWbO8Nl3iE0XL/vvv721ffPHFlg844ACv7c0337ScLbW+mRD+zbU+X+fBCeuG\n9Tzdtm2b5XDOFZ3/KrzeaZ3yMcccY3nUqFFevwsuuMCyzmfmHMf+d+H5cf7551vWOuzHH3/c6xdr\njrY9+btqX/08Dudd0fcMy8in3mGHHeZt161b13I4/5jO5/D2229b5vwqWI8ePbxtnb8tnPtL5+HT\nv3Mq/rZ6XOvVq2c5XBJX+/Xs2dNrKypL5GaSzt/lnHMnnniiZT2+GzZs8PrpNU7bwuvzXXfdZTm8\nzx02bJjlcE5H7J7eq4Rzo1533XWW9XtlOC+RHuMWLVpY1nPKOf/cDs8xPf6ZXEY+6tfw8NzROal0\nrqnw807p84Dw3kPnAgznyNVnBTrXmS4L75xzLVu2tKzzHznn3NixYy3rea/3zanASBwAAAAAAIAI\n4CEOAAAAAABABKS9nEqHfC1cuNBr69Onj+VwGLBu61DucIiilg3o8Kywn25XqFDBa9Ph/zfffLPl\nQw891Ounw9LD8oJMDquLmrDUo0mTJpbPOeccy+Eyj7rsX//+/b02lkwtusJzUYXLN8Zbph6J07Ib\n5/yyAD3/wmHdn3/+ueVnn33WcjgcVY9TOET9wgsvtHzGGWdY1uusc87169fPsi4b6Zxf4ppr9LPv\npJNO8to6dOhgedy4cZbnzJnj9StsCVWs/dBlW8Nh0LNnz7Ycvk+QfFpC7pxzxYsXtxzeh7z77ruW\nKTkumJZp6PvcOb/0PvzbTp8+3XKsJYMLK/zM1GH9Q4cOtRyW/P/73/+2vGTJkqTuUzaoVq2at12/\nfn3Les1ctGiR109LJLSMtWbNml4/3dYSC+ecmzZtmuUZM2YkvtM5RD9ztOTFOX+p6caNG3ttOm3H\nq6++ajn8nlaqVCnLWnY1adIkr5+e2+vXr/fa+K5RePqd7o033vDa9HugfqaFf3+9xun9qp5fzjn3\n7bffWg6PmX631xJavR4451zVqlUth/e5RxxxhGV9r1JOBQAAAAAAAB7iAAAAAAAAREHay6ni0SFO\nhR2ipsPuw5mlY9FhVs75w047depkWYdLOeevoPLKK694bZRTxaezwuts4M45d/nll1tu0KCB5XBI\n8ejRoy2/9957yd5FpIgeU+f8IeDvvPOO15arK7slg54vN954o9em559ea2fOnOn169Wrl2UtdQvL\nBbREJyyPPPjggy03bNjQcrNmzbx+ukpWWP41fPjwmL872+nf7Mknn/TatFzptddesxx+9iVj5Qot\n29GVPMLr8uTJky1rqQGSR8sMunTp4rXp6o5heaSWRHKPUjC9Noar9el5tHPnTq9NP6u07CrRcyA8\nR/U6GpaLvPzyy5a1JCgsX9TVPXPtuhmLnjtNmzb12vSzcOXKlZa//vprr9/ixYstr1ixwrJeF51z\nrkqVKpb1c9A559q1a2dZP3ejvsrQ3tLpMnSVqPCzTz93Xn/9da9NV6EKy2+UrmCkJVjhMeDcSQ4t\ni3LOubfeesuyrlzqXOzVn8PVwUaOHGlZ73vC7w76fglLwPXeRq/X4UpYYUmf0vdIOr+3MBIHAAAA\nAAAgAniIAwAAAAAAEAE8xAEAAAAAAIiAIjUnTrIlWlsa1obrti6BFtY265wsWk+5J787l2ita9my\nZS337NnT63fqqada1rpwrT12zrnnnnvOMnOnFG06t8BNN93ktWk96sSJE702lm8sPJ0bI1zOW69P\nWjN+++23e/10LoBwfo1YwnNRl33UpTvD+Qh0uc9rr73Wa9N5VnQusmy8zuqcHM45d9VVV1kO5+gY\nNGiQZZ3LLRk1/Hq9ds656tWrW9ZzNlxC84UXXrDMvCupUaFCBcu6JKpzfu1/uKy0zmuFgumcKeF8\nGtu3b7ccfjbVqFHDss77NnfuXK+f3tPosQqvZSeffLLl2267zWvTuRp0P/Tcc27X+1L4f/M2bdp4\nbfqZqXSuTef85Yt1fpzw/dK6dWvLlStX9tr0Pvf555+3vHXr1pj7ngv0/NM5nXTJaef8e8V//etf\nXpseh0TvIfmsSr3y5ct72zrPbHi/oUu+6z3k22+/7fXbsmWLZT3W4dyMOk+Zfn4659xpp51muUOH\nDpb1+3+4j+E1Qe9R03kOMxIHAAAAAAAgAniIAwAAAAAAEAFZXU4Vjw6LCoddnXDCCZZ1OOSGDRu8\nfrrsbaKlBrlMh7E2b97csg5lc84fqq/Lv//1r3/1+s2aNSvZu4gU0WVQ27Zt67XpcMiPPvoobfuU\n7XT4djhUWEtgRowYYVmHrTq36zK6iQjLAr7//nvLM2bMsBwOOS1ZsqTlqlWrJvz62SZcivbEE0+0\nrEOMnXNu9uzZlpM9HDwc3qxDkNeuXWt53rx5Xr+vvvoqqfuB3+jxuOiiiywfcsghXj+9FwmX5eU+\nZfd0mHx4z6Fl4Foy5Zx/r6jncDj8X+83tXREh/s759wFF1xguWbNml6bnuv6mTlgwACvH+XIu9KS\n1Dp16nhtuvSwfs6ESxLrMTz00EMth2Ua+tkXlskeffTRlrWEY+zYsfH/AVlOzwldYjz8PNLvCfrd\nInwNPY7Zfu9Q1IX3KAsXLrR85JFHem16r6PH/thjj/X66bVR7xvD5cG1lCs877VUT0sqw/ecns+f\nffaZ16bL2rPEOAAAAAAAADw8xAEAAAAAAIiAnCmnCodF6ZDK+vXre21du3a1rMP0Ro0a5fVbs2ZN\nMncx64R/cx32dtlll1kOywd0RYUhQ4ZYfvPNN71+hSn1QProuaOrDWlplXN+Cc/GjRtTv2M5Qlfe\nCIcbaznMmDFjLIcz7idj+LEO6d+0aZPl8PzVa3J47QhXQMpm4YoIlSpVshz+HbQEQ49xYVen0mHo\nVapU8dr0mq39PvjgA68f1+XU0PKB6667znJYhqPn2JQpU7w2ygl2T/9GX3zxhdfWrVs3y506dfLa\ndDUpLbHRVYic869zeuzCElJduSUs+dfrwODBgy3r6lnYPV0R0TnnihcvbllLIsIyEP05LVEMy9d0\nOzz39JhqKUmul1Pp30zL2MJzQEutzjvvPK9NvzfouRKWuejnpP7e8Dhy3UyO8P5SVxgLyw0XLFhg\nWUucWrRo4fXTY6jfMcP7Fy2nCs97vQ7rsdbPUuf8c7N///5eW1jqni6MxAEAAAAAAIgAHuIAAAAA\nAABEAA9xAAAAAAAAIiBn5sQJaX25Lu/nnHMtW7a0rEtcP/bYY14/lm+ML6xh1b9r6dKlLS9dutTr\n949//MPyhAkTLIfzpcSrN0bm6XKsHTt2tBzOmfHEE09YTufSfNlG5ylxzrmTTjrJcjgnjtbvLlu2\nzHIyrmnx5h9r3LixZZ03IuynSzk6l1tzPYTz2cRb6laXH1+5cqXlzZs3e/203lyPcfi+0OWqe/Xq\n5bW1a9euwP3VOczC/UXyNG3a1LLOmxT+vefMmWN5/vz5qd+xLBb+bXWOhJEjR3ptOl+Czm8TznWj\n55Gev+H1UOdnCedk+e9//2tZlzDn3Ns9vcfQv6Nz/vyY+vcP59do1qyZZX1PlCxZ0utXpkwZy/r5\n5pz/ea3LJof3zTrnTq7Re4nws0qXkO7evbvXtmHDBst6L/HVV195/fTYbd261XL4XUPPq/Bc3LFj\nh2W+E8anf2PnnBs4cKDl0aNHe206b42eH3qP4px/b6PX2vCc1blXw3tU9c0331jWueecc27SpEmW\nw/l9MoWROAAAAAAAABHAQxwAAAAAAIAIyJlyqnAoXoMGDSxfddVVXpsOibz33nstb9myJUV7l510\naVznnGvSpIllLedYtWqV1++TTz6xrEMhWfavaAuHKP7hD3+wrEMbdXlr55x79913LXNMCy8crq3n\nX1jC9uWXX1rW4cDJEL4PtEygd+/elsNh4zpM+eOPP/bakr2PRdm6deu8bR2CXLFiRa/t6quvtqzl\nqp999lnM19fXC4c316pVy3KXLl28Nl2ic/369Za1HA/JE96z6BLvOoQ8LL8bMWKE5Vw6bzJN/9ZL\nliyxHJaLa0mHXvPC67cefy3/d865cePGWQ5LTxGf3kc+8MADXpuW1+g0C+F1V78jLFy40LIe97At\n/LzTkkhdQvmoo47y+mnJVy6U6+i/UUsFdRl25/xStQoVKnht3bp1s6x/9xUrVnj9tLQuXtmVvn54\nL6XfV6ZNm2Y5LGnWn+M+9zdaJq9Lijvn30fOmDHDcnge6bnYp08fy2H5t5YvhiVx+r4455xzLM+e\nPdvrVxTPP0biAAAAAAAARAAPcQAAAAAAACKAhzgAAAAAAAARkNVz4mgN3BFHHOG1/fWvf7Vco0YN\nr2348OGWX3zxRcvUMe6e1nVfccUVXpsuM601iOPHj/f66Rw5WrPK379oC+dw0OWk9ThOnDjR66fz\na6DwwjkVdDnqcOl2nb8hPG4q3lKMsX53eD194YUXLDds2NByuCS61pAPHTrUawtrmLNZOMfFsGHD\nLF9wwQVem86lcOqpp1pu27at109r/HUJTV2WPHw9nXfFudhzfqxZs6aAfwX2VjgPis7LoLX54fVz\nzJgxlvnMzLxwHgWdE07nrmrUqJHXT+9Zw2Wm33nnnZivj8SF8/Pdf//9lvVz6+KLL/b66d9c5/II\nr9163V20aJHXpssm6+fbRRdd5PXTeXVyYV5OvWY988wzlsO51zp37mw5/H6ny8PrnHw6r5tz/jVW\nj2mbNm28fro8td5XOedcjx49LOuxeuyxx7x+77//vuXwfoxzeFf6PtB538I54HRb3wfh/YueY+H8\nO2eeeaZlfZ9F4fOTkTgAAAAAAAARwEMcAAAAAACACMi6ciod/l+5cmXLffv29frpkP9wiesBAwZY\n/uGHH5K9i1lNhyeed955XpsuMx1v2T8dOpzOYYZheYdiuOPulShRwtuONVz4vffe8/rlUqlMKoXl\nF9WqVbOsZTLO+aVuupTq2LFjvX66LKaes+Hv0iHFusyjc/7yrHp9Dq+tWjaky3bmmnC4sA7Lnjdv\nntd24oknWtalNkO6JPHy5csth2UaOmw8XOpWX3/btm2Ww6HhSI6qVat621qKqNdMXYLYOec2btyY\n2h3DXol1LxEeb71WhmWP4TaSQ6+9el/61FNPef20zEKvoWH5hX5mzp8/32vTz7/WrVtbPvnkk71+\nkydPtqzXceey/75U/7avv/6616bTMOhy7c451759e8u9e/eO2U/vWfXYh8uIa7l4WLZetmxZyw0a\nNLB8wgkneP2mT59ued26dV5bth/HVNLrppbBhdME6Pf8sCw9aiVUipE4AAAAAAAAEcBDHAAAAAAA\ngAjIunIqHerWqlUry82aNfP66UobDz30kNcWzoKOxB1yyCGWa9as6bXp0EUtx+jWrZvXb8aMGZZ1\ntv/CDnPTYcm1a9f22rQM5PDDD/fadNWPxYsXW541a5bX79NPP7UcDsPMJXXr1vW29fjrEP8vvvjC\n6xe14YtFVVhOU6ZMGcvhigpamnHjjTdaDkvbNm3aZLldu3aWw5VUdOhwvLIeXV3j6aef9tq0jDWX\nz6OQ/s3Clfy07EzPo1KlSnn9vv32W8thuZbSFR2mTJnitelQcR3mHu/1sGf0s0rvX5zzSyK3b99u\nWVejco7jESV6voXXTS23CVd01HJGpIaWuIQliones+gxnDNnTsx+WhJSp04dr00/q7W0yjn/fZBr\nJTl6jxCukPjyyy9bnjZtmuWuXbt6/XRFR/3MjFciHJbphNMI/E5Lk53zp2vgnrfwwr/ro48+arl0\n6dKWw1LxSy+91HJYlh7l48FIHAAAAAAAgAjgIQ4AAAAAAEAE8BAHAAAAAAAgAiI/J064LHSlSpUs\nn3XWWQX+d+f8eVfeeOMNry3K9XGZtmHDBsurV6/22nRZd1168fLLL/f6HX/88Zbff/99y+EcDV99\n9ZXlcMljrS9v2bKl5VtuucXrp/WsYa2rzi2gNbJTp071+ul8Ezp3Tigb31d6/umcKc75yznq+4I5\nG1JDl1B0zp/bK1wuWufL0eXGw3lq9PjGO1d0O3yf67xWQ4YMsfzggw96/cIlx7ErncvNudi1+zqf\nl3O7znUUix678HdpvbkuG1+8eHGvH8ex8HROHP3ccs6f10rnSQo/Z1G06THWeeTCe1S9RwrPX21j\n/rDUS8a9W3jfo0uOv/TSS5bDz2qdZ1I/q51zbvbs2Za3bt1qORvvNfeEzg+0ZMkSy/p9wjn/Gluv\nXj3L4Tw3Ol9OeO+j57N+9k2aNMnrp/fAiX4e4zd6PJ5//nmvrWPHjpb1fjWcu/Tzzz+3nE3nByNx\nAAAAAAAAIoCHOAAAAAAAABEQ+XKqcCnVnj17Wm7fvr3lcMjxlVdeaTlcPhCFp0sS65JuzjnXv39/\ny7pcbbj88ZFHHmlZl/2++uqrY/5eHdLonD/kUdvCfjosXcs+nPOXcdWyhQULFnj9dAhlvP3IxmHP\n+u8799xzvTZdEleXwtRhv0iecElFLW+bPn2616bLv+syt1pm5dyu7+dYdHhqeD3VclW9BvA+2Hux\nhgUXdri2Dkc+7rjjvDYtWS1fvrzl8PrN52nh6d//D3/4g9emf+fvvvvO8jfffOP1y6ah4tlIr6la\nirjffv7tuF4fw/JI/bnwvgXRoPeUOlXAfffd5/XTe+DTTz/da1u7dq1lvcfiGvA/WlqlJebO+fdM\n+l1S74mc2/XcVPpZO2rUKMsTJkzw+sVbthy70uvktddea7lz585eP70W6tQWl1xyidcvW+83GYkD\nAAAAAAAQATzEAQAAAAAAiAAe4gAAAAAAAERAJOfE0fpEXV7MOeduuOEGy1orp0vbOufXziE1Pvzw\nQ29bj1XlypUtt2nTxut34oknWtZ6YF3W1jl/XoawhlWPvc5tE84f8Nlnn1meO3eu16b1s/pzX3/9\ntddPX1/rb53L/tpkrVsN/606V9DkyZMt67xJSJ3NmzdbPuaYY7y2119/3XL9+vUt6zxGzvnXWp2v\nI1wuVZc3v+OOO2L+Lq3bR9EWzrGktf96vMN+KDy9nobzMOicarp8aviZhujQeY70nsU5/3iHcz+G\n9zuINr2G/uc///HamjdvbrlTp05em36PWb58ueUdO3Ykexezwpo1a7zthx56yHKtWrUs6/xvzjl3\n8MEHW9b7Wuec+/jjjy3fc889lrnX2TvVq1e33KdPH8vh56J+/7r88sstz58/P4V7V3QwEgcAAAAA\nACACeIgDAAAAAAAQAZEspypbtqzlvn37em2HHHKI5dmzZ1t+/vnnvX5hOQBST4d4Ll26tMDsnHMj\nR460rMPLtZzDOX9IcbyyJR2WHJY7pVq2l1NpiYWWTDnn3FdffWX5hRdesEz5RfqFS9R26NDBspYl\ntm3b1uun5YxVqlSxrOeoc85NmzbNcriUZrafA9lEr4+6jLVz/rmuZajZunRnJujfeObMmV6b/p1f\neuklyywxHV16TxTe3+h1WUtqnHPujTfesLxu3TrL+v5BNIWfn02bNrVcr149r+3KK6+0rEtahyX/\nfAb/Jvw7zJkzx3LPnj0tly5d2uunpY4LFy702jZu3GiZ75WFp9/1nHPu3nvvtVyuXDnL4Xe4MWPG\nWJ40aZLlXHnPMxIHAAAAAAAgAniIAwAAAAAAEAGRLKfSoaUNGzb02nRI6pdffml5w4YNXr9cGWoV\ndXqcwqHCDB3OPD0GDz/8sNemZVOaOfcyT4dsr1y50vLo0aMzsTsoInSo8t133+216WoP//d//2c5\nHP6PwtO//5133um16QopeiwYwh8teoyHDRtmuUSJEl6/SpUqWX788ce9Nl2RjPug7BKWp44YMcJy\n7dq1vbbx48db1vJX7rESo9fOsEwK6RWuCHb22Wdb1hWpwvNDy65y8VrISBwAAAAAAIAI4CEOAAAA\nAABABPAQBwAAAAAAIAIiOSdOzZo1Y7Zt27bN8ltvvWWZZY2B1GKpYSB7rF692tvWeTlysfY83RYs\nWOBt6xKszHmRHdavX2/5oYceitmP4507wmurLif/+eefe21r1661vH379tTuGJBC+++/f8xtnUdM\nlxR3zrklS5akdseKOEbiAAAAAAAARAAPcQAAAAAAACIgkuVUEydOtNyyZUuvbceOHZYnTJhgmeHf\nAAAUDp+hmUVJTXbj+KIgOhXEsmXLMrgnQOps2bLF2x40aJDl5cuXWx42bJjXT0utchEjcQAAAAAA\nACKAhzgAAAAAAAARwEMcAAAAAACACMjbkzrcvLy8IlG0e9BBB1kuVqyY16b1cVpjF/W6ufz8/Lzd\n99q9onIMc9T0/Pz8Fsl4IY5j5nAuZgXOxSzAuZgVOBezAOdiVuBczAJRPBfz8vJibkf9+3shJXQu\nMhIHAAAAAAAgAniIAwAAAAAAEAF7usT4Oudcxte427p1a6Z3Id1qJPG1isQxzFEcx+jjGGYHjmP0\ncQyzA8cx+jiG2YHjGH2RPIbh1C57MtVLlkroOO7RnDgAAAAAAADIDMqpAAAAAAAAIoCHOAAAAAAA\nABHAQxwAAAAAAIAI4CEOAAAAAABABPAQBwAAAAAAIAJ4iAMAAAAAABABPMQBAAAAAACIAB7iAAAA\nAAAARAAPcQAAAAAAACLg/wGZkjnP2RPswwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "decoded_imgs = conv_autoencoder.predict(x_test)\n", + "\n", + "n = 10\n", + "plt.figure(figsize=(20, 4))\n", + "for i in range(n):\n", + " # display original\n", + " ax = plt.subplot(2, n, i+1)\n", + " plt.imshow(x_test[i].reshape(28, 28))\n", + " plt.gray()\n", + " ax.get_xaxis().set_visible(False)\n", + " ax.get_yaxis().set_visible(False)\n", + "\n", + " # display reconstruction\n", + " ax = plt.subplot(2, n, i + n + 1)\n", + " plt.imshow(decoded_imgs[i].reshape(28, 28))\n", + " plt.gray()\n", + " ax.get_xaxis().set_visible(False)\n", + " ax.get_yaxis().set_visible(False)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We coudl also have a look at the `128-`dimensional encoded middle representation" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABEkAAAHICAYAAACyMbSXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt22mw5HV99v+rT59zZj0zzMoiA0QGRMoFFRcC7igalxAr\niSYmRk0laiQxeWDK0kqZxSpzuyalpkw0WlFHLLUiMSoiIC6ogIMCCowOM87A7PuZ5ezL/cD/P49S\nOp/vLSRtv16P+13flj6/X3df03bm5+cDAAAA0O8G/qefAAAAAMD/BkYSAAAAgBhJAAAAAJIYSQAA\nAACSGEkAAAAAkhhJAAAAAJIYSQAAAACSGEkAAAAAkhhJAAAAAJIkg6UHDw7ODw0NlQ+ZmJgoN91u\nt9wkyezsbFM3Pz/faQp7TKfTme906v9T5+fnH4Rn8wt3YH5+fs3/9JN4KAwMDMwPDpYu32YzMzNN\nXevfTL9ciwMDA/Mt97nW1+Mh1jfXYqfTmR8YqP97w9zc3IPwbH6xXIu/eP8Pn1Faj3Qt/hyuxf89\nut1u02ebqampB+HZ/ML1zbXYek9tuRYf6uu3n67Flu/8LZ9RW98XW53sa1i6Ew0NDWX9+vXlJ/PD\nH/6w3CxbtqzcJMnhw4ebun7R6XTS8kffI29A2/+nn8BDZXBwMGvXri13LW8mrddUyzjaT7rdblat\nWlXu9u7d+yA8m1+4vrkWBwYGsnTp0nJ39OjRB+HZ0KLb7Wb16tUPyVmt99PJycnWI12LP8eJEyfK\nzUP9ob5fDA4O5owzzih327fX/8xbh8eWf2j8/87rm2ux2+1mxYoV5a7lPue99MExNDSUdevWlbv9\n+/eXm9HR0XLzUPB/twEAAACIkQQAAAAgiZEEAAAAIImRBAAAACCJkQQAAAAgiZEEAAAAIImRBAAA\nACCJkQQAAAAgiZEEAAAAIImRBAAAACCJkQQAAAAgiZEEAAAAIEkyWHlwp9PJwEB9V3nnO99Zbj7w\ngQ+UmyS5/PLLy80NN9zQdFYvOv300/Oa17ym3O3Zs6fcnHvuueUmST72sY81dXfddVdT14tmZ2cz\nOjpa7hYtWlRunvzkJ5ebJE33io0bNzad1YsGBwezYsWKcvfe97633Bw8eLDcJMlnP/vZpu7rX/96\nU9eLhoeHs27dunL32te+ttwcO3as3CTJ29/+9nJz4sSJprN60dzcXNP/3oULF5abpzzlKeUm+ek9\nv8XNN9/c1PWilStX5iUveUm5u/TSS8vNRz7ykXKTJNu3by83u3btajqrn7zlLW8pN7t3724661Of\n+lRT10/31E6nkwULFpS7lveqnTt3lpuk7bNU63twL5qbm8v4+Hi5+8QnPlFurrnmmnKT/PSeX1X5\njumXJAAAAAAxkgAAAAAkMZIAAAAAJDGSAAAAACQxkgAAAAAkMZIAAAAAJDGSAAAAACQxkgAAAAAk\nMZIAAAAAJDGSAAAAACQxkgAAAAAkMZIAAAAAJEkGKw9etGhRHv3oR5cPufXWW8vN3r17y02SbN++\nvdxMTk42ndWLTpw4ke9973vlbtu2beVm4cKF5SZJjhw50tT1k7m5uUxMTJS748ePl5vdu3eXmyTp\ndDrlZmpqqumsXjQ1NZUdO3aUu+985zvlZsGCBeUmSR544IGmrp/Mzc1lfHy83B09erTctLyXJj+9\n71fNzc01ndWLWl/DY8eOlZs9e/aUG07O1NRU7r///nJ3wQUXlJuf/OQn5SZpe/2np6ebzupFs7Oz\nGR0dLXcHDx4sN/fdd1+5Sdrup/2m2+1m+fLl5a7lu8aPf/zjcpO0fUbtJ7Ozs03fx77yla+Um3vv\nvbfcJMnatWvLTeU7v1+SAAAAAMRIAgAAAJDESAIAAACQxEgCAAAAkMRIAgAAAJDESAIAAACQxEgC\nAAAAkMRIAgAAAJDESAIAAACQxEgCAAAAkMRIAgAAAJDESAIAAACQxEgCAAAAkCQZrDy40+lkeHi4\nfMiNN95Ybqanp8tNktx7773lZmJioumsXjQ1NZVt27aVu06nU26++tWvlpskGRoaaur6zczMzENy\nzpYtW5q6lStXlpvZ2dmms3pRt9vNihUryt13v/vdctNy306SgQE7+s8zNzeXEydOlLsvfelL5ea+\n++4rN0mybNmycnPs2LGms3rVQ3U/bX0NV61a9Qt+Jr985ufnm95DWj43Llq0qNwkyeLFi8tNP12L\nAwMDTf9tr7/++nKzd+/ecpMkIyMjTV2/vY5Llixp6qruuOOOcpMkCxYsKDct34V61cKFC/OIRzyi\n3LV8xzx06FC5SZI777yz3IyPj5/0Y30CBgAAAIiRBAAAACCJkQQAAAAgiZEEAAAAIImRBAAAACCJ\nkQQAAAAgiZEEAAAAIImRBAAAACCJkQQAAAAgiZEEAAAAIImRBAAAACCJkQQAAAAgSTJYeXC3283S\npUvLh/z1X/91ufmrv/qrcpMk+/fvb+r6xeLFi/O4xz2u3O3cubPcrF69utwkydVXX93U9ZOBgYEs\nWrSo3A0NDZWbI0eOlJvEtXgy5ufny80TnvCEh6RJkquuuqqp4+d7+ctfXm5ar6m3vvWtTV2/aL2f\ndjqdcnP8+PFykyT79u1r6vrJ7OxsRkdHy93LXvaycnPTTTeVm6T9/bSftFxXl156abm58cYby02S\n7Nixo6nrJ9PT03nggQfK3ZVXXllunvzkJ5ebJHnBC17Q1PWLmZmZHDhwoNz95V/+Zbn56Ec/Wm6S\nZM+ePeVmYmLipB/rlyQAAAAAMZIAAAAAJDGSAAAAACQxkgAAAAAkMZIAAAAAJDGSAAAAACQxkgAA\nAAAkMZIAAAAAJDGSAAAAACQxkgAAAAAkMZIAAAAAJDGSAAAAACQxkgAAAAAkSQYrD96/f38+9KEP\nlQ+57LLLys3k5GS5SZJnP/vZ5ea2225rOqsXTU1NZefOneVubGys3Jx66qnlJkkuvvjipm7jxo1N\nXS+am5vLiRMnHpKz1qxZ09SNjIyUmx07djSd1Ys6nU663W65a/nv+qMf/ajcJMmv/uqvNnU33HBD\nU9eLZmZmsnfv3nL31a9+tdxMT0+XmyRZvnx5uTl+/HjTWb2o9X46MFD/d6Zzzjmn3Py/2LZt20N6\n3v+kqampbN26tdxde+215WZ4eLjcJMmSJUvKzfj4eNNZvaj1WhwcLH2dSZI86lGPKjfJT78LtWj9\nXtOLpqens3v37nL3d3/3d+XmwgsvLDdJ22fbw4cPN53Vi6anp7Nv375yt3nz5nKzdOnScpMkr3rV\nq8rNhg0bTvqxfkkCAAAAECMJAAAAQBIjCQAAAEASIwkAAABAEiMJAAAAQBIjCQAAAEASIwkAAABA\nEiMJAAAAQBIjCQAAAEASIwkAAABAEiMJAAAAQBIjCQAAAEASIwkAAABAkmSw8uD5+flMTU2VD5me\nni4369atKzdJMjQ0VG46nU7TWb1oamoq27dvL3ePfexjy80PfvCDcpMkS5cuber4+U455ZRyc+65\n5zadtXz58nJz4MCBprN6VbfbLTc33HBDuRkZGSk3SbJw4cKmrp8sXLgw55xzTrm7//77y83w8HC5\nSfrrPe6htGrVqnJz5plnNp3V8tkmSbZt29bU9aJOp9N0z7rzzjvLTetn1NHR0XLT8rm7V3U6nSxY\nsKDcbdq0qdwsW7as3CTJwIB/X/55BgYGsnjx4nK3a9eucjMxMVFukmTJkiXlpuX67VUDAwNN1+KX\nv/zlcnP++eeXmyTZunVruZmcnDzpx7rSAQAAAGIkAQAAAEhiJAEAAABIYiQBAAAASGIkAQAAAEhi\nJAEAAABIYiQBAAAASGIkAQAAAEhiJAEAAABIYiQBAAAASGIkAQAAAEhiJAEAAABIkgxWHnzWWWfl\nTW96U/mQT33qU+Xm0Y9+dLlJkpGRkXIzPDzcdFYvOuWUU/KiF72o3C1atKjcnHrqqeUmSf72b/+2\nqesnCxYsyNlnn13uzjrrrHKzZs2acpMkd955Z7mZmppqOqsXLVu2LJdffnm5e+QjH1luDh8+XG6S\n5IMf/GBT10+WLVuW5z73ueXuggsuKDef/OQny02SLF++vNyMjY01ndWLhoeHc8YZZ5S7lnvwsmXL\nyk2SbN68uanrJ2eddVbe8Y53lLtdu3aVmw0bNpSb5Kfv3VWdTqfprF60YsWK/NZv/Va5W79+fbl5\n3/veV26S9s9E999/f1PXi1avXp2Xv/zl5a7l/vjFL36x3CTJ+Ph4uZmbm2s6qxedcsopeeELX1ju\nWpqNGzeWmySZmJgoN91u96Qf65ckAAAAADGSAAAAACQxkgAAAAAkMZIAAAAAJDGSAAAAACQxkgAA\nAAAkMZIAAAAAJDGSAAAAACQxkgAAAAAkMZIAAAAAJDGSAAAAACQxkgAAAAAkMZIAAAAAJEkGKw+e\nmZnJgQMHyofs2rWr3Bw6dKjcJMkPf/jDpq5fzM3NZWJiotx95zvfKTdDQ0PlJkn279/f1PWTubm5\nHDt2rNzdcMMN5ea0004rN0myZ8+epq5fTE9PZ+fOneXurrvuKjct13yS7Nu3r6nrNwMD9X9v2LBh\nQ7npdrvlJkm2b9/e1PGzff3rXy83Z555ZtNZO3bsaOr6ybFjx3LzzTeXu3vuuafc3HLLLeWGn6/b\n7WZkZKTcfeELXyg3hw8fLjdJ+/eTfjI+Pt70fazl82brPXXjxo1NXb+Yn5/P1NRUufvsZz9bbrZs\n2VJukrbv/JOTkyf9WL8kAQAAAIiRBAAAACCJkQQAAAAgiZEEAAAAIImRBAAAACCJkQQAAAAgiZEE\nAAAAIImRBAAAACCJkQQAAAAgiZEEAAAAIImRBAAAACCJkQQAAAAgSTJYefCxY8dy0003lQ/5i7/4\ni3Lz6Ec/utwkya5du8rNm9/85qazetGSJUvypCc9qdy9/OUvLzef+cxnyk2SzMzMNHXf+ta3mrpe\ndPrpp+dNb3pTuWu5rn70ox+VmyS5++67y82GDRuazupFq1atyitf+cpyNzw8XG6uv/76cpMka9eu\nbeq+8pWvNHW9aG5uLmNjY+XujW98Y7n59re/XW6S5Nxzzy03n//855vO6kUrV67M7/zO75S7l73s\nZeXm9ttvLzdJsmnTpqbuHe94R1PXi5YuXZpLL7203I2MjJSb5z73ueUmSe67775y89nPfrbprF7U\nej99z3veU24++tGPlpsk+fSnP93U7dy5s6nrRUNDQ02fH1reFz/+8Y+XmyRN94o77rij6axe1O12\nc8opp5S7P/mTPyk3X/va18pNktxzzz3lpnI/9UsSAAAAgBhJAAAAAJIYSQAAAACSGEkAAAAAkhhJ\nAAAAAJIYSQAAAACSGEkAAAAAkhhJAAAAAJIYSQAAAACSGEkAAAAAkhhJAAAAAJIYSQAAAACSGEkA\nAAAAkiSDpQcPDubUU08tH/Kwhz2s3IyOjpabJNm4cWO5OXHiRNNZvajT6WRgoL6NtTSPf/zjy02S\nHD58uKn71re+1dT1osnJyWzbtq3cXXjhheVmzZo15SZJNm/eXG4mJyebzupFk5OT2bJlS7lbvHhx\nuXnxi19cbpJkw4YNTV0/6XQ6GRoaKndjY2Pl5rLLLis3SfLe97633ExNTTWd1YtmZmayb9++crdn\nz55yMz8/X26S5M4772zq+sno6Gi+8IUvlLs/+7M/Kzct13ySXH/99eWmn94XZ2ZmcujQoXLXcj+9\n6KKLyk2S/Md//EdT10+63W6WLVtW7r785S+Xm6c97WnlJkm++tWvlpvW+3cvmp2dzbFjx8rdyMhI\nuXnlK19ZbpLk9a9/fbmZm5s76cf6JQkAAABAjCQAAAAASYwkAAAAAEmMJAAAAABJjCQAAAAASYwk\nAAAAAEmMJAAAAABJjCQAAAAASYwkAAAAAEmMJAAAAABJjCQAAAAASYwkAAAAAEmMJAAAAABJksHK\ng88888y8853vLB/yL//yL+Xm8ssvLzdJsm/fvnIzMzPTdFYvmpuby8TERLnbvn17ufm93/u9cpMk\nH/7wh5u6fnL8+PF8/etfL3fnnntuuXnCE55QbpLk2LFj5WZ2drbprF60aNGiPOYxjyl3IyMj5eay\nyy4rN0ny9re/vanrJ9PT09m1a1e5e/SjH11u/vmf/7ncJMk999xTbsbHx5vO6kXT09NNnx1a/htd\ncskl5SZJPvrRjzZ1/WTx4sW56KKLyl3Lffiaa64pN0mybdu2cjM1NdV0Vi9avXp1XvWqV5W7NWvW\nlJsPfOAD5Sb56f2Cn29goP7v8G984xvLzcaNG8tNknQ6naauXyxdujSXXnppuVuxYkW52blzZ7lJ\nksnJyXIzNzd30o/1SxIAAACAGEkAAAAAkhhJAAAAAJIYSQAAAACSGEkAAAAAkhhJAAAAAJIYSQAA\nAACSGEkAAAAAkhhJAAAAAJIYSQAAAACSGEkAAAAAkhhJAAAAAJIkg5UH7927N+95z3vKh7ztbW8r\nN1u2bCk3rWd9//vfbzqrFy1ZsiRPetKTyt2RI0fKzf79+8tNkhw7dqyp6yeLFy/O4x//+HJ3xRVX\nlJuzzz673CTJYx/72HJz7733Np3Vi7rdbkZGRsrd+vXry82uXbvKTZKcdtppTV0/WbBgQc4999xy\nt2PHjnLzile8otwkyfXXX19uWu75vWrhwoU5//zzy92zn/3scrN06dJykyRXXnllU3fzzTc3db1o\nYGAgixcvLnfdbrfcPO1pTys3SfLc5z633HzqU59qOqsXTUxMZNOmTeXuiU98Yrl55StfWW6S5OMf\n/3hT10+Gh4dz5plnlruWv/UXvvCF5SZJ1q1bV27uu+++prN60djYWG6//fZy99rXvrbc7Nu3r9wk\nyVVXXVVu7rjjjpN+rF+SAAAAAMRIAgAAAJDESAIAAACQxEgCAAAAkMRIAgAAAJDESAIAAACQxEgC\nAAAAkMRIAgAAAJDESAIAAACQxEgCAAAAkMRIAgAAAJDESAIAAACQxEgCAAAAkCQZrDz40KFDufrq\nq8uHnH/++eVmy5Yt5SZJHvnIR5abo0ePNp3Vi44dO5abbrqp3HW73XIzOTlZbpLkiiuuaOq+973v\nNXW9aHR0NNdee225m56eLjeDg6XbxH/Zv39/uZmammo6qxcdOnQon/zkJ8vd6173unJz1llnlZsk\nufzyy5u6lveJXnXgwIF8+MMfLneLFi0qN894xjPKTZI8/vGPLzct12+vOnr0aG644YZyd+GFF5ab\n0dHRcpMkP/rRj5q6frJ79+687W1vK3cXX3xxubnrrrvKTZIcPny43MzMzDSd1Yv27NmTd7zjHeXu\n6U9/erlpuQcnycqVK5u6Q4cONXW9qPV98RWveEW52bx5c7lJkvPOO6/cfPvb3246qxcdOXIk11xz\nTblr+Yx60UUXlZsk+epXv1puxsfHT/qxfkkCAAAAECMJAAAAQBIjCQAAAEASIwkAAABAEiMJAAAA\nQBIjCQAAAEASIwkAAABAEiMJAAAAQBIjCQAAAEASIwkAAABAEiMJAAAAQBIjCQAAAECSZLDy4AUL\nFuThD394+ZDh4eFy86xnPavcJMndd99dbmZnZ5vO6kWzs7MZHR0td+ecc065+fa3v11ukuSBBx5o\n6vrJwoULc8EFF5S7lut3/fr15SZJvvOd75SblntFr5qens6+ffvK3f79+8vN97///XKTJF/72tea\nun5y2mmn5aqrrip3L3zhC8vNN7/5zXLDz9fpdDI4WPo4lCTZtWtXuWl5L02Se+65p6nrJ6tXr84f\n/uEflruWzxytn1Na3uMGBvrn3zMXLVqUxzzmMeXu5ptvLjedTqfcJMn555/f1N1yyy1NXS8aGhrK\nwx72sHI3MjJSbj7zmc+UmyTZvn17uZmammo6qxd1Op0MDQ2Vu7vuuqvctLyXtnbT09Mn/dj+ufMC\nAAAA/AxGEgAAAIAYSQAAAACSGEkAAAAAkhhJAAAAAJIYSQAAAACSGEkAAAAAkhhJAAAAAJIYSQAA\nAACSGEkAAAAAkhhJAAAAAJIYSQAAAACSGEkAAAAAkiSDlQevXbs2V111VfmQH/zgB+Vm/fr15SZJ\ntm7dWm4mJyebzupVg4Ollz1J8uMf/7jcHD9+vNwkySc+8Ymmrp+cfvrpefOb31zuxsbGHoRn89/7\nyle+Um6OHj36IDyT/51OOeWUvPjFLy53N9xww4PwbP57H//4xx+ys3pZt9stN9ddd125+cY3vlFu\nkuSee+4pNydOnGg6qxedddZZed/73lfu9uzZU25mZ2fLTZJ87Wtfa+r6yczMTA4dOlTuJiYmys3o\n6Gi5SZLvfOc75ab1s1QvWrVqVV7xileUu3vvvbfc/NM//VO5SZLh4eGmrp+ccsopedGLXlTutm3b\nVm6GhobKTZLcdNNN5ebYsWNNZ/WiM844I295y1vK3eHDh8vN7t27y02SfOYznyk3lefnlyQAAAAA\nMZIAAAAAJDGSAAAAACQxkgAAAAAkMZIAAAAAJDGSAAAAACQxkgAAAAAkMZIAAAAAJDGSAAAAACQx\nkgAAAAAkMZIAAAAAJDGSAAAAACRJBisPPn78eL7xjW+UD3nc4x5Xbt71rneVmyS58847y83o6GjT\nWb1obm4uY2Nj5e72228vN7Ozs+WGkzM5OZmtW7eWu1tvvbXcTExMlJsk2b59e7mZmppqOqsXTU5O\nZsuWLeWu5fq97rrryg0nZ3JyMps3b27qqk455ZRykyQHDhwoNzMzM01n9aLWa/GWW24pN/v37y83\nSft9uJ9MT09n586d5e5jH/tYuVm2bFm5SZJdu3aVm+np6aazetGRI0fyuc99rtxdcMEF5eZ3f/d3\ny02SvPvd727q+smJEyfy3e9+t9zddddd5eb5z39+uUmSffv2NXX9YmxsrOn1OP3008tNyzlJ8sAD\nD5SbyvcMvyQBAAAAiJEEAAAAIImRBAAAACCJkQQAAAAgiZEEAAAAIImRBAAAACCJkQQAAAAgiZEE\nAAAAIImRBAAAACCJkQQAAAAgiZEEAAAAIImRBAAAACCJkQQAAAAgSTJYefDk5GS2bt1aPuRZz3pW\nuXnSk55UbpLkP//zP5u6fnH06NFcf/315e748ePl5pGPfGS5SZLVq1c3dQcOHGjqetH8/HympqbK\n3SmnnFJu3v3ud5ebJJmdnS03c3NzTWf1ovHx8fzgBz8odxdddFG5ef3rX19ukuRP//RPm7p+MjMz\nk0OHDpW7ZzzjGeXm7rvvLjdJcsEFF5Sblr/NXjU9PZ39+/eXu4c//OHl5l//9V/LTfLTz1/8bN1u\nt+k97gUveEG5+exnP1tukmR4eLjcdDqdprN60eTkZH7yk5+Uux07dpSbCy+8sNwkyVVXXdXUvf/9\n72/qetHw8HDOOuuscnfkyJFys23btnLDzzc7O5vR0dFy97jHPa7cXHvtteUmSU6cOFFuKt8z/JIE\nAAAAIEYSAAAAgCRGEgAAAIAkRhIAAACAJEYSAAAAgCRGEgAAAIAkRhIAAACAJEYSAAAAgCRGEgAA\nAIAkRhIAAACAJEYSAAAAgCRGEgAAAIAkRhIAAACAJMlg5cEDAwNZsmRJ+ZArrrii3GzevLncJMnL\nXvaycnPdddc1ndWLVqxYkZe85CXlbsuWLeXmvPPOKzdJ0u12m7pPf/rTTV0v6na7WblyZbmbm5sr\nN3/0R39UbpJk27Zt5ebmm29uOqsXDQ4OZs2aNeXuec97Xrm56667yk2SPOc5z2nqrr/++qauF3U6\nnQwM1P+94VGPelS5mZ6eLjdJsnXr1nLTeh/uRQMDA1m4cGG5W7p0abl5xSteUW6SZP/+/U3d5z73\nuaauFw0ODmbVqlXlbv369eWm5XNtkpx//vnlZsOGDU1n9aLW++nrXve6cjMxMVFukuTaa69t6vrJ\n/Px8pqamyt1Tn/rUcjM8PFxukuTEiRPl5pZbbmk6qxfNzMw0ve9ccMEF5ealL31puUmSoaGhcrNx\n48aTfqxfkgAAAADESAIAAACQxEgCAAAAkMRIAgAAAJDESAIAAACQxEgCAAAAkMRIAgAAAJDESAIA\nAACQxEgCAAAAkMRIAgAAAJDESAIAAACQxEgCAAAAkCQZrDz4jDPOyFvf+tbyITfddFO5WbRoUblJ\nkuHh4XIzMNA/W1G3283IyEi5a3k9XvrSl5abJPniF7/Y1PWb+fn5crN27dpy85jHPKbcJMk999xT\nbubm5prO6kUrVqzIb/zGb5S70dHRcnPmmWeWmyQZHx9v6vrJ4sWL8/jHP77czczMlJtzzjmn3CTJ\n2NhYuemna3FwcDCrV68ud6eddlq5abl+k+Tf//3fm7p+MjU1lfvvv7/ctVyLT3va08pNknz6058u\nNy3Xb69au3Zt3vCGN5S78847r9y0vO5J8r73va+p6ydDQ0M5/fTTy92v//qvl5vdu3eXmyS59tpr\ny00/vS+edtppeeMb31juWj5v3nnnneXmodA/6wAAAADAz2AkAQAAAIiRBAAAACCJkQQAAAAgiZEE\nAAAAIImRBAAAACCJkQQAAAAgiZEEAAAAIImRBAAAACCJkQQAAAAgiZEEAAAAIImRBAAAACCJkQQA\nAAAgSTJYefDevXvzj//4j+VDPvKRj5Sb2267rdwkyTXXXFNuJicnm87qRd1uNytXrix3T3nKU8rN\n7t27y02SHDhwoKnrJ91uN8uXL39IzvrkJz/Z1H3jG98oN7Ozs01n9aKZmZkcPny43L3whS8sN9u3\nby83nJzZ2dkcPXq03C1cuLDcXH755eUmSe6+++5ys3Xr1qazetHw8HDOPvvscrdq1apy84UvfKHc\nJMmmTZuaun6yYMGCnH/++eXurLPOKjf79+8vN0myfv36cnPvvfc2ndWL9u7dm/e+973l7lvf+la5\naf2s+fu///tN3e23397U9aLly5fn+c9/frlr+bz58pe/vNwkafoM3e12m87qRWNjY/ne975X7p71\nrGeVm8suu6zcJMnf//3fl5vKd36/JAEAAACIkQQAAAAgiZEEAAAAIImRBAAAACCJkQQAAAAgiZEE\nAAAAIImVXW73AAAQx0lEQVSRBAAAACCJkQQAAAAgiZEEAAAAIImRBAAAACCJkQQAAAAgiZEEAAAA\nIEkyWHnwoUOH8slPfrJ8yMMf/vBys3nz5nKTJI94xCPKzT333NN0Vi86ePBg/u3f/q3cnX322eXm\nyJEj5SZJnvCEJzR1d999d1PXi7Zu3ZqXvexl5e6Zz3xmuRkZGSk3SfLbv/3b5ea6665rOqsXHThw\nIB/60IfK3fnnn19uxsbGyk2SPPWpT23qbr755qauFx08eDCf+MQnyt3MzEy5ueGGG8pN0nZvHB8f\nbzqrF23ZsiW/+Zu/We5e/epXl5uhoaFykyQveMELmroPf/jDTV0v2r9/fz7wgQ+UuwULFpSbw4cP\nl5sk6XQ6TV2/GB8fzw9/+MNy9653vavcrF69utwkyU033dTU9ZPdu3fn7W9/e7lr+Yx64MCBcpMk\nj3nMY8rNbbfd1nRWL9q1a1fe+ta3lrvnPe955ablHpwkV155Zbn51Kc+ddKP9UsSAAAAgBhJAAAA\nAJIYSQAAAACSGEkAAAAAkhhJAAAAAJIYSQAAAACSGEkAAAAAkhhJAAAAAJIYSQAAAACSGEkAAAAA\nkhhJAAAAAJIYSQAAAACSGEkAAAAAkiSDlQcvXrw4F110UfmQZz3rWeXmkksuKTdJ8sUvfrHcDAz0\nz1a0ZMmSPPGJTyx3p59+ernZunVruUmSY8eONXX95Jxzzsm73vWucvfIRz6y3LS+Hn/zN39TbmZn\nZ5vO6kULFy7MBRdcUO6uvvrqctNy/SbJjTfe2NT1k6VLl+bSSy8td09+8pPLzfHjx8tNkmzbtq3c\n9NP74qmnnpo3vOEN5e7pT396udmzZ0+5SZIPfvCDTV0/Wbx4cZ7whCeUu3Xr1j0kTZLceuut5aaf\nrsXly5fn8ssvL3dHjhwpN3v37i03yU+fIz9bp9PJ8PBwufvRj35Ubu69995ykySbNm0qNydOnGg6\nqxctXbq06bv4rl27ys3c3Fy5SZLbbrut3FRew/658wIAAAD8DEYSAAAAgBhJAAAAAJIYSQAAAACS\nGEkAAAAAkhhJAAAAAJIYSQAAAACSGEkAAAAAkhhJAAAAAJIYSQAAAACSGEkAAAAAkhhJAAAAAJIY\nSQAAAACSJIOVB69YsSIveclLyofs3r273Pz5n/95uUmSTqdTbg4fPtx0Vi86fvx4vv3tb5e7jRs3\nlptXv/rV5SZJPve5zzV1/WRsbCx33HFHuXv3u99dbu6///5ykyTDw8PlZmJioumsXjQ9PZ19+/aV\nu8HB0m07SbJ169ZykyS33XZbU9dPFi9enMc97nHlruV955Zbbik3SbJhw4ZyMzMz03RWL5qdnc3R\no0fL3Wte85pys23btnKTJMuWLWvq+smqVavyyle+stwdOHCg3PzDP/xDuUnS9HfWT59RZ2Zmmv73\nbt++vdxs2rSp3CT99Xq0WrhwYdavX1/urr766nLzzGc+s9wkyXXXXdfU9YulS5fmsssuK3ct1+If\n//Efl5skWblyZbmpfM/wSxIAAACAGEkAAAAAkhhJAAAAAJIYSQAAAACSGEkAAAAAkhhJAAAAAJIY\nSQAAAACSGEkAAAAAkhhJAAAAAJIYSQAAAACSGEkAAAAAkhhJAAAAAJIkg5UHj42NZePGjeVDJiYm\nys309HS5SZJDhw6Vm5mZmaazetH4+Hh++MMflrvly5eXm8OHD5cbTs6xY8dy4403lrt77rmn3MzP\nz5ebJDlx4kS5ab3ue9H4+Hh+8IMflLsrr7yy3Fx33XXlJkkGBtp29Lm5uaauF01PT2fPnj3lbufO\nneWm5f03SRYsWFBu+uk1PHr0aL7yla+Uu5bPG7Ozs+Umaft76TcTExPZtGlTuWu5P7a+L05OTpab\nfroWx8fHc8cdd5S7tWvXlptf+7VfKzdJcsMNNzR1/WRsbCzf//73y93u3bvLTcs5SdLtdstN6/27\nF504cSK33XZbuXva055WbhYtWlRukp++d1dVXkO/JAEAAACIkQQAAAAgiZEEAAAAIImRBAAAACCJ\nkQQAAAAgiZEEAAAAIImRBAAAACCJkQQAAAAgiZEEAAAAIImRBAAAACCJkQQAAAAgiZEEAAAAIImR\nBAAAACBJ0pmfnz/pBy9ZsmT+wgsvLB+yadOmcjM3N1dukmTNmjXlZvfu3ZmcnOw0Hdhjut3u/OLF\ni8vdqaeeWm5Wr15dbpLkvvvua+oOHjx4+/z8/MVNcY8ZGBiYHxoaKndLlixpOavcJMny5cvLzY4d\nO/rmWly4cOH8OeecU+6mp6fLzdatW8tNkqxYsaKpO3z4cN9ci4sWLWp6HVveF1t1u91yMzs7m/n5\n+b64FoeGhuZXrlxZ7g4ePFhuRkZGyk2SLFu2rKm7//77++ZaXLp06fyjHvWocnfrrbeWm9bXo+Wz\n7djYWGZnZ/viWhwcHJxv+W/b8tlmamqq3CTJvn37mrokfXMtLly4cH7dunXlrvKd9P+3d+/ecpMk\nnU79kjpx4kTfXIut3/m3bdtWbsbHx8tN0vY9Y//+/Zmamjqp19AvSQAAAABiJAEAAABIYiQBAAAA\nSGIkAQAAAEhiJAEAAABIYiQBAAAASGIkAQAAAEhiJAEAAABIYiQBAAAASGIkAQAAAEhiJAEAAABI\nYiQBAAAASJIMVh48OTmZ++67r3zIU5/61HKzf//+cpMkGzdubOr6xdzcXMbHx8vd9PR0uRkZGSk3\nSXLeeec1dQcPHmzqelGn08ngYOnyTZIsX7683Gzbtq3cJP31erSYnp7Ojh07yt2LX/zicvOIRzyi\n3CTJHXfc0dT1k6mpqTzwwAPl7jnPeU65OXbsWLlJkiNHjpSb1uu+F7W+L5555pnlZvv27eUmaXsN\n+83s7GxGR0fL3fOe97xyc//995ebJDlw4EC5mZiYaDqrF83Ozjb9rU9NTZWbF7zgBeUmSYaGhpq6\nDRs2NHW9aGhoKGeccUa5W7lyZdNZLcbGxsrN5ORk01m9aGZmpum7+BVXXFFuWt8Xb7755qbuZPkl\nCQAAAECMJAAAAABJjCQAAAAASYwkAAAAAEmMJAAAAABJjCQAAAAASYwkAAAAAEmMJAAAAABJjCQA\nAAAASYwkAAAAAEmMJAAAAABJjCQAAAAASYwkAAAAAEmSwcqDFyxYkPXr15cPmZiYKDd79uwpN0my\nZMmScjM+Pt50Vq/qdDrlZvHixeXmiiuuKDdJcvXVVzd1/aTb7Wb58uXl7ujRow/Cs/nvuRZ/tm63\nmxUrVpS7ubm5ctNyD06SycnJpq6fDA8PZ926deVudHT0IWmS5Pjx4+Vmdna26axeNDAwkEWLFpW7\n6enpctPy/puk6fklydjYWFPXi4aHh3P22WeXu5b73N69e8tN8tP7Pj/b/Px8uVmzZk25ufjii8tN\nknz+859v6vrJkiVL8pSnPKXcffrTn34Qns1/r+Xe2PL5q1ctWbIkl1xySblbtWpVubnlllvKTZIs\nXLiw3FTu935JAgAAABAjCQAAAEASIwkAAABAEiMJAAAAQBIjCQAAAEASIwkAAABAEiMJAAAAQBIj\nCQAAAEASIwkAAABAEiMJAAAAQBIjCQAAAEASIwkAAABAEiMJAAAAQJJksPLgqampbN++vXzIxRdf\nXG5aTU9Pl5v5+fkH4Zn87zQ0NJTVq1eXu3379pWbdevWlZsk+clPftLU9ZPBwcGsWbOm3B05cqTc\nLF68uNwkbX8z/XQtzs7O5ujRo+WupZmbmys3STI2NtbU9ZPZ2dkcP378ITmr0+k0dbt27So3/XQt\nDg4OZu3ateXu8OHD5eb0008vN0myf//+pq6fDA4ONn2+aflc2/L+mySbNm1q6vpFt9vN0qVLy93E\nxES5ufbaa8tNkixfvryp6ydLly7NJZdcUu7uvPPOcrNly5ZykySHDh0qN62fpXrRsWPHcuONN5a7\nK6+8sty0ft6YnZ1t6k6WX5IAAAAAxEgCAAAAkMRIAgAAAJDESAIAAACQxEgCAAAAkMRIAgAAAJDE\nSAIAAACQxEgCAAAAkMRIAgAAAJDESAIAAACQxEgCAAAAkMRIAgAAAJAkGaw8eHZ2NkePHi0fsnr1\n6nJz3nnnlZskOXLkSLmZmZlpOqsXzczM5NChQ+VuaGio3Lz//e8vN0myfPnypu7w4cNNXS+amZnJ\ngQMHyt3IyEi52b59e7lJ2v5m+ula7HQ66XQ65W7ZsmXl5rTTTis3Sftrv23btqauV83NzZWb888/\nv9ycOHGi3CTJ8PBwudm8eXPTWb1oamoq999/f7k744wzys0DDzxQbpK2+2mSTE9PN3W96NChQ9mw\nYUO5e8YznlFuBgdLH5//y6mnnlpuDh482HRWL5qdnW26z61YsaLcrFq1qtwk/fV6tNqzZ0/+z//5\nP+Wu5TNq6+s4Pz9fbnbs2NF0Vi+anZ3N6OhouWv5HH/hhReWmyTZvXt3uak8P78kAQAAAIiRBAAA\nACCJkQQAAAAgiZEEAAAAIImRBAAAACCJkQQAAAAgiZEEAAAAIImRBAAAACCJkQQAAAAgiZEEAAAA\nIImRBAAAACCJkQQAAAAgiZEEAAAAIEkyWHnwyMhILrnkkvIhZ555Zrm55ppryk2SdLvdctPpdJrO\n6kWdTieDg6WXPUmamoc//OHlJkmOHz/e1PWTgYGBLF68uNz95Cc/KTet18fQ0FC5mZiYaDqrF3W7\n3SxfvrzcrVy5stzs3r273CTJzp07m7p+smzZsjznOc8pd8PDw+Xm+uuvLzdJcvDgwXIzOTnZdFYv\nWrBgQX7lV36l3D3wwAPlZnp6utwkycKFC5u6fnLqqafmD/7gD8pdy+fGj33sY+UmSebn55u6fjEw\nMNB0bxwYqP+b76pVq8pNkixatKip6ydDQ0M57bTTyt3o6Gi5af3O8FDev3vRkiVLctFFF5W7lu/8\n3/zmN8tN8uB/5/dLEgAAAIAYSQAAAACSGEkAAAAAkhhJAAAAAJIYSQAAAACSGEkAAAAAkhhJAAAA\nAJIYSQAAAACSGEkAAAAAkhhJAAAAAJIYSQAAAACSGEkAAAAAkiSDlQfPzs7myJEj5UOuv/76crN0\n6dJykyTLly8vN9u2bWs6qxd1u92sXLmy3K1du7bcHDx4sNwkyR133NHU9ZNut9v0t75u3bqms1os\nXLiw3GzevLnprF7U6XQyPDxc7r7//e+Xm40bN5abJFmyZElTNzo62tT1ohMnTuT2228vd0ePHi03\ns7Oz5SZJRkZGys3ExETTWb1qfn6+3KxevbrcLFu2rNwkbffTpO3vrFeNjo7mS1/6UrmbmZkpN4OD\npY/P/6XlntpP99PBwcGm66rlvfTuu+8uN0ly6623NnX9ZHp6Onv27Cl3d911V7k566yzyk3S9j2z\nn67FpO3zf8t3/gMHDpSbJDn11FPLzY4dO076sX5JAgAAABAjCQAAAEASIwkAAABAEiMJAAAAQBIj\nCQAAAEASIwkAAABAEiMJAAAAQBIjCQAAAEASIwkAAABAEiMJAAAAQBIjCQAAAEASIwkAAABAEiMJ\nAAAAQJKkMz8/f/IP7nT2J9n+4D2d/zFnz8/Pr/mffhIPhV/i1zDxOv4y8Br+cvA69j6v4S8Hr2Pv\n8xr+cvA69j6vYe876dewNJIAAAAA/LLyf7cBAAAAiJEEAAAAIImRBAAAACCJkQQAAAAgiZEEAAAA\nIImRBAAAACCJkQQAAAAgiZEEAAAAIImRBAAAACBJ8n8BcO3n9bqa6AcAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "conv_encoder = Model(input_img, encoded)\n", + "encoded_imgs = conv_encoder.predict(x_test)\n", + "\n", + "n = 10\n", + "plt.figure(figsize=(20, 8))\n", + "for i in range(n):\n", + " ax = plt.subplot(1, n, i+1)\n", + " plt.imshow(encoded_imgs[i].reshape(4, 4 * 8).T)\n", + " plt.gray()\n", + " ax.get_xaxis().set_visible(False)\n", + " ax.get_yaxis().set_visible(False)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pretraining encoders " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "One of the powerful tools of auto-encoders is using the encoder to generate meaningful representation from the feature vectors." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# Use the encoder to pretrain a classifier " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Using pre-trained word embeddings in a Keras model\n", + "\n", + "**Reference:** [https://blog.keras.io/using-pre-trained-word-embeddings-in-a-keras-model.html]()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.5.3" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/6. AutoEncoders and Embeddings/6.2 NLP and Deep Learning.ipynb b/6. AutoEncoders and Embeddings/6.2 NLP and Deep Learning.ipynb new file mode 100644 index 0000000..3b70702 --- /dev/null +++ b/6. AutoEncoders and Embeddings/6.2 NLP and Deep Learning.ipynb @@ -0,0 +1,1898 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Natural Language Processing using Artificial Neural Networks" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "> “In God we trust. All others must bring data.” – W. Edwards Deming, statistician" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Word Embeddings\n", + "\n", + "### What?\n", + "Convert words to vectors in a high dimensional space. Each dimension denotes an aspect like gender, type of object / word.\n", + "\n", + "\"Word embeddings\" are a family of natural language processing techniques aiming at mapping semantic meaning into a geometric space. This is done by associating a numeric vector to every word in a dictionary, such that the distance (e.g. L2 distance or more commonly cosine distance) between any two vectors would capture part of the semantic relationship between the two associated words. The geometric space formed by these vectors is called an embedding space.\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Why?\n", + "By converting words to vectors we build relations between words. More similar the words in a dimension, more closer their scores are.\n", + "\n", + "### Example\n", + "_W(green) = (1.2, 0.98, 0.05, ...)_\n", + "\n", + "_W(red) = (1.1, 0.2, 0.5, ...)_\n", + "\n", + "Here the vector values of _green_ and _red_ are very similar in one dimension because they both are colours. The value for second dimension is very different because red might be depicting something negative in the training data while green is used for positiveness.\n", + "\n", + "By vectorizing we are indirectly building different kind of relations between words." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example of `word2vec` using gensim" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Using gpu device 0: GeForce GTX 760 (CNMeM is enabled with initial size: 90.0% of memory, cuDNN 4007)\n" + ] + } + ], + "source": [ + "from gensim.models import word2vec\n", + "from gensim.models.word2vec import Word2Vec" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Reading blog post from data directory" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "import os\n", + "import pickle" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "DATA_DIRECTORY = os.path.join(os.path.abspath(os.path.curdir), '..', \n", + " 'data', 'word_embeddings')" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "male_posts = []\n", + "female_post = []" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "with open(os.path.join(DATA_DIRECTORY,\"male_blog_list.txt\"),\"rb\") as male_file:\n", + " male_posts= pickle.load(male_file)\n", + " \n", + "with open(os.path.join(DATA_DIRECTORY,\"female_blog_list.txt\"),\"rb\") as female_file:\n", + " female_posts = pickle.load(female_file)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2252\n", + "2611\n" + ] + } + ], + "source": [ + "print(len(female_posts))\n", + "print(len(male_posts))" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "filtered_male_posts = list(filter(lambda p: len(p) > 0, male_posts))\n", + "filtered_female_posts = list(filter(lambda p: len(p) > 0, female_posts))\n", + "posts = filtered_female_posts + filtered_male_posts" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2247 2595 4842\n" + ] + } + ], + "source": [ + "print(len(filtered_female_posts), len(filtered_male_posts), len(posts))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Word2Vec" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "w2v = Word2Vec(size=200, min_count=1)\n", + "w2v.build_vocab(map(lambda x: x.split(), posts[:100]), )" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "{'see.': ,\n", + " 'never.': ,\n", + " 'driving': ,\n", + " 'buddy': ,\n", + " 'DEFENSE': ,\n", + " 'interval': ,\n", + " 'Right': ,\n", + " 'minds,': ,\n", + " 'earth.': ,\n", + " 'pleasure': ,\n", + " 'school,': ,\n", + " 'someone': ,\n", + " 'dangit...': ,\n", + " 'one!': ,\n", + " 'hard.': ,\n", + " 'programs,': ,\n", + " 'SEEEENNNIIIOOORS!!!': ,\n", + " 'two)': ,\n", + " \"o'\": ,\n", + " '--': ,\n", + " 'this-actually': ,\n", + " 'swimming.': ,\n", + " 'people.': ,\n", + " 'turn': ,\n", + " 'happened': ,\n", + " 'clothing:': ,\n", + " 'it!': ,\n", + " 'church': ,\n", + " 'boring.': ,\n", + " 'freaky': ,\n", + " 'Democrats,': ,\n", + " '*kick': ,\n", + " '\"It': ,\n", + " 'wet': ,\n", + " 'snooze': ,\n", + " 'points': ,\n", + " 'Sen.': ,\n", + " 'although': ,\n", + " 'Charlotte': ,\n", + " 'lil...but': ,\n", + " 'oneo': ,\n", + " 'course;': ,\n", + " 'Bring': ,\n", + " '(compared': ,\n", + " 'ugh.': ,\n", + " 'sit': ,\n", + " 'dipped?': ,\n", + " 'based': ,\n", + " 'A.I.': ,\n", + " 'breathing.': ,\n", + " 'multi-millionaire': ,\n", + " 'groups': ,\n", + " 'on': ,\n", + " 'animals),': ,\n", + " 'Manners?': ,\n", + " 'you?]:': ,\n", + " 'redistribute': ,\n", + " 'omg.': ,\n", + " 'dance?:': ,\n", + " 'Canada)': ,\n", + " 'came': ,\n", + " 'poof': ,\n", + " 'brownies.': ,\n", + " 'Not': ,\n", + " 'spaces': ,\n", + " 'destroy': ,\n", + " 'maybe.': ,\n", + " 'Industrial': ,\n", + " 'boring': ,\n", + " 'is:': ,\n", + " 'question.': ,\n", + " 'long-lasting': ,\n", + " 'sun': ,\n", + " 'CrAp*': ,\n", + " 'irresistable': ,\n", + " 'dont...i': ,\n", + " 'loss.': ,\n", + " 'easy': ,\n", + " 'wanna': ,\n", + " 'Gaviota': ,\n", + " 'nose': ,\n", + " 'slept': ,\n", + " 'hahahahah': ,\n", + " 'halloween': ,\n", + " 'shes': ,\n", + " 'realize': ,\n", + " 'twice': ,\n", + " 'lift': ,\n", + " 'china,': ,\n", + " 'Standard.)': ,\n", + " 'worried': ,\n", + " 'Opposite': ,\n", + " 'chin.': ,\n", + " 'Garden': ,\n", + " 'guy': ,\n", + " 'remmeber': ,\n", + " 'fence,': ,\n", + " 'apologizing': ,\n", + " 'next.': ,\n", + " 'MATTERS': ,\n", + " 'rugs': ,\n", + " 'her...': ,\n", + " 'energy,': ,\n", + " 'recorded,': ,\n", + " 'pepsi.': ,\n", + " 'r': ,\n", + " '13': ,\n", + " 'at:': ,\n", + " 'cheaper': ,\n", + " 'children!': ,\n", + " 'tree': ,\n", + " 'met': ,\n", + " 'one,': ,\n", + " 'rejected?': ,\n", + " 'Marianne’s': ,\n", + " 'Icenhower': ,\n", + " 'day!': ,\n", + " 'leaving': ,\n", + " '2110': ,\n", + " 'kiss:': ,\n", + " 'nearest': ,\n", + " 'aimlessly': ,\n", + " 'sprint': ,\n", + " 'kids!)': ,\n", + " 'canteen': ,\n", + " 'weekend!': ,\n", + " 'him': ,\n", + " 'scariest': ,\n", + " 'this?': ,\n", + " '\"choosing': ,\n", + " 'Talk': ,\n", + " 'weeks': ,\n", + " \"You'll\": ,\n", + " 'goodnight': ,\n", + " 'skiing.': ,\n", + " 'KeEp': ,\n", + " 'week': ,\n", + " 'norwegian': ,\n", + " 'HAND:': ,\n", + " 'fact,': ,\n", + " 'thanksgiving': ,\n", + " 'me..argh...': ,\n", + " 'she': ,\n", + " 'Tree': ,\n", + " 'combat.': ,\n", + " 'mitosis': ,\n", + " 'offered': ,\n", + " 'no..': ,\n", + " '(there': ,\n", + " 'aspirations': ,\n", + " 'page': ,\n", + " 'Least': ,\n", + " 'each': ,\n", + " 'ride...': ,\n", + " 'doesn’t': ,\n", + " 'FUCK': ,\n", + " 'gona': ,\n", + " 'window': ,\n", + " 'end': ,\n", + " 'expected': ,\n", + " 'well.': ,\n", + " 'called': ,\n", + " \"needn't\": ,\n", + " 'doesnt': ,\n", + " 'venturing': ,\n", + " 'alex': ,\n", + " 'here:': ,\n", + " 'ewWw': ,\n", + " 'pole?': ,\n", + " 'melody,': ,\n", + " 'motivated': ,\n", + " 'Well,': ,\n", + " 'says:': ,\n", + " 'worm': ,\n", + " '[some': ,\n", + " 'name': ,\n", + " 'Leave\"': ,\n", + " '4th': ,\n", + " \"It's...\": ,\n", + " 'problem??': ,\n", + " 'remember': ,\n", + " 'o': ,\n", + " 'letters.': ,\n", + " 'jean': ,\n", + " 'thing.': ,\n", + " 'friend?]:': ,\n", + " 'am!': ,\n", + " 'side...': ,\n", + " 'Yet': ,\n", + " 'easier': ,\n", + " 'babies': ,\n", + " 'You?': ,\n", + " 'wedding:': ,\n", + " '2.)': ,\n", + " 'first...then': ,\n", + " 'LA:': ,\n", + " 'but,)': ,\n", + " 'not,': ,\n", + " 'possession': ,\n", + " 'its': ,\n", + " 'stop': ,\n", + " 'Thanks': ,\n", + " 'durin': ,\n", + " 'rings': ,\n", + " 'Specifics': ,\n", + " 'http://www.kingsofchaos.com/recruit.php?uniqid=jm8bja2z': ,\n", + " 'lace': ,\n", + " 'pretended': ,\n", + " 'clothes': ,\n", + " 'wong': ,\n", + " '38': ,\n", + " 'country.': ,\n", + " 'criticism': ,\n", + " 'NATIONAL': ,\n", + " \"that's\": ,\n", + " 'conclusively': ,\n", + " 'cartoons,': ,\n", + " 'chest/lungs': ,\n", + " 'whilst': ,\n", + " \"I'm,\": ,\n", + " 'Tata.': ,\n", + " 'mix': ,\n", + " 'popularity': ,\n", + " 'park)': ,\n", + " '(trampled': ,\n", + " 'reminded': ,\n", + " 'says.': ,\n", + " 'repetition,': ,\n", + " 'Size?': ,\n", + " \"hm...i'm\": ,\n", + " 'interesting,': ,\n", + " 'exams': ,\n", + " 'crusts.': ,\n", + " 'filling': ,\n", + " 'gets': ,\n", + " 'his': ,\n", + " 'Friday,': ,\n", + " 'f': ,\n", + " 'too!': ,\n", + " 'Made': ,\n", + " 'accidentally': ,\n", + " '\"New': ,\n", + " 'COURSE.': ,\n", + " '[please': ,\n", + " 'this...': ,\n", + " 'soon': ,\n", + " 'worry': ,\n", + " 'Job]:': ,\n", + " 'deal': ,\n", + " 'pounding': ,\n", + " '[Are': ,\n", + " 'begin': ,\n", + " 'isolated': ,\n", + " 'anyways': ,\n", + " 'garbage': ,\n", + " 'awww': ,\n", + " 'intelligence': ,\n", + " 'being': ,\n", + " 'married?]:': ,\n", + " 'omg': ,\n", + " '...': ,\n", + " 'highlight': ,\n", + " 'to': ,\n", + " 'AHH': ,\n", + " 'OVER!!!!!!!!!': ,\n", + " 'Cried': ,\n", + " 'SAYING?!?!?': ,\n", + " 'olivia.': ,\n", + " \"she'll\": ,\n", + " 'community,': ,\n", + " 'cold.': ,\n", + " 'not': ,\n", + " 'transcripts': ,\n", + " 'promises...i': ,\n", + " 'totem': ,\n", + " 'naked,': ,\n", + " 'hate': ,\n", + " 'gas': ,\n", + " 'beat': ,\n", + " 'Jungle': ,\n", + " 'band': ,\n", + " 'ought': ,\n", + " 'ishouldnt': ,\n", + " 'funni': ,\n", + " 'camera': ,\n", + " \"Mom's\": ,\n", + " 'invitations': ,\n", + " 'sheets,': ,\n", + " 'sony': ,\n", + " 'Could': ,\n", + " '\"goodness\"': ,\n", + " 'commentators': ,\n", + " 'learned': ,\n", + " 'quit': ,\n", + " \"mother's\": ,\n", + " 'Hussein,': ,\n", + " 'Funny,': ,\n", + " 'Actually': ,\n", + " 'upsetting.': ,\n", + " 'ring!)': ,\n", + " 'material': ,\n", + " '…': ,\n", + " 'kind': ,\n", + " 'Moon\"': ,\n", + " 'james,': ,\n", + " 'regardless': ,\n", + " 'WATCHED': ,\n", + " 'possibly': ,\n", + " 'Make': ,\n", + " 'airplanes,': ,\n", + " 'Exaggerated,': ,\n", + " 'head,': ,\n", + " 'graceful': ,\n", + " 'but': ,\n", + " 'low': ,\n", + " 'it!!!': ,\n", + " 'usual)': ,\n", + " 'doing?:': ,\n", + " \"wat's\": ,\n", + " 'disadvantages': ,\n", + " 'breaks': ,\n", + " 'partner,': ,\n", + " 'totally': ,\n", + " 'break?!': ,\n", + " 'remember,': ,\n", + " 'nose.': ,\n", + " '...gets': ,\n", + " 'circles': ,\n", + " 'list?': ,\n", + " 'babble.': ,\n", + " 'Those': ,\n", + " 'hers,': ,\n", + " 'Kucinich).': ,\n", + " 'toxic,': ,\n", + " 'mates.': ,\n", + " 'rock!': ,\n", + " 'birthday': ,\n", + " 'okay-': ,\n", + " 'Twenty-six': ,\n", + " 'Molly': ,\n", + " 'everyone.i': ,\n", + " 'brought': ,\n", + " 'rusty.': ,\n", + " \"Let's\": ,\n", + " 'soon?': ,\n", + " '19.': ,\n", + " 'shuffle': ,\n", + " \"you're\": ,\n", + " 'somehow?': ,\n", + " 'naked?]:': ,\n", + " '...i': ,\n", + " 'friend': ,\n", + " 'away;': ,\n", + " 'tending': ,\n", + " 'creates': ,\n", + " 'certitude,': ,\n", + " 'job...some': ,\n", + " 'room.': ,\n", + " '...will': ,\n", + " 'mincing': ,\n", + " 'dog/cat/bird/fish,': ,\n", + " 'way,': ,\n", + " 'nvm...': ,\n", + " 'illness,': ,\n", + " 'good.': ,\n", + " 'bother??': ,\n", + " 'curse': ,\n", + " \"daughter's\": ,\n", + " '(albeit,': ,\n", + " 'okay.': ,\n", + " 'boxers': ,\n", + " 'Calculus,': ,\n", + " 'MEAN': ,\n", + " 'rosie.': ,\n", + " 'hard': ,\n", + " 'life...think': ,\n", + " 'takes': ,\n", + " 'pretty.': ,\n", + " 'award': ,\n", + " 'their': ,\n", + " 'plainly.': ,\n", + " 'noone': ,\n", + " 'say...no': ,\n", + " 'thats': ,\n", + " 'learning': ,\n", + " 'sleep': ,\n", + " 'against': ,\n", + " 'rubbish': ,\n", + " 'years,': ,\n", + " 'theatre)': ,\n", + " '[Kissed': ,\n", + " 'love?': ,\n", + " 'Forgetting': ,\n", + " 'Whoever': ,\n", + " 'bacon': ,\n", + " 'wishing': ,\n", + " 'fantastic.': ,\n", + " 'rosalie...': ,\n", + " 'souned': ,\n", + " 'bulbous': ,\n", + " 'in-depth': ,\n", + " 'proof': ,\n", + " 'however,': ,\n", + " 'at': ,\n", + " \"you'll\": ,\n", + " 'Will': ,\n", + " 'Chotky': ,\n", + " 'o0o!': ,\n", + " 'overnight,': ,\n", + " '6.': ,\n", + " 'expensive': ,\n", + " 'employers': ,\n", + " 'especially': ,\n", + " 'lives,': ,\n", + " 'dumb': ,\n", + " 'EVERYONE!!!': ,\n", + " 'mind,': ,\n", + " 'terms': ,\n", + " 'deception': ,\n", + " 'glad.': ,\n", + " '20:': ,\n", + " 'disappeared!!!!!!!!': ,\n", + " 'candy:': ,\n", + " 'PRODUCTIVE!!': ,\n", + " 'Goals': ,\n", + " 'like,': ,\n", + " 'Carter': ,\n", + " 'So': ,\n", + " '5:': ,\n", + " 'stalled.': ,\n", + " 'fewer': ,\n", + " 'lies': ,\n", + " 'faces': ,\n", + " 'im': ,\n", + " 'kina': ,\n", + " 'Each': ,\n", + " 'know...even': ,\n", + " 'thrown': ,\n", + " \"can't\": ,\n", + " 'close-minded.': ,\n", + " 'aint': ,\n", + " 'the': ,\n", + " 'Ikea': ,\n", + " 'trying': ,\n", + " 'Coulter': ,\n", + " 'cleaner,': ,\n", + " 'Mix]\"': ,\n", + " 'surface,': ,\n", + " 'mean,': ,\n", + " 'Graham),': ,\n", + " 'Congress,': ,\n", + " 'animals': ,\n", + " 'small': ,\n", + " 'steps.': ,\n", + " '[relationship]': ,\n", + " '[Wanted': ,\n", + " 'finals...too': ,\n", + " 'definitely.': ,\n", + " 'I:': ,\n", + " 'what...even': ,\n", + " '......': ,\n", + " 'lies).': ,\n", + " 'longer': ,\n", + " 'animals.': ,\n", + " 'mindless': ,\n", + " 'disappear….': ,\n", + " 'places': ,\n", + " 'sheets.': ,\n", + " 'here.': ,\n", + " 'both,': ,\n", + " 'xela': ,\n", + " 'creeping': ,\n", + " 'dressy': ,\n", + " 'melting': ,\n", + " '30': ,\n", + " 'Questions': ,\n", + " 'indicates': ,\n", + " 'guess': ,\n", + " '37': ,\n", + " 'strong,': ,\n", + " \"I'd\": ,\n", + " 'Band': ,\n", + " 'portly.': ,\n", + " 'dere': ,\n", + " 'weeee': ,\n", + " 'reason': ,\n", + " 'az': ,\n", + " 'pond..': ,\n", + " 'anyway).': ,\n", + " 'adventurous': ,\n", + " 'supply': ,\n", + " 'Bored': ,\n", + " 'black': ,\n", + " 'cambridge?': ,\n", + " 'noise': ,\n", + " 'Winnipeg.': ,\n", + " 'There': ,\n", + " 'chat': ,\n", + " 'HERE': ,\n", + " 'choose': ,\n", + " 'morality,': ,\n", + " 'favors': ,\n", + " '[If': ,\n", + " 'nvm,': ,\n", + " 'tragedy': ,\n", + " 'japanese': ,\n", + " 'invite': ,\n", + " 'way.': ,\n", + " 'HAPPY': ,\n", + " 'fierce': ,\n", + " 'fools': ,\n", + " 'goes': ,\n", + " 'wafers': ,\n", + " ':-D': ,\n", + " 'feathers': ,\n", + " 'still...': ,\n", + " 'selene': ,\n", + " 'dinner\"': ,\n", + " 'EVERY': ,\n", + " '(2)': ,\n", + " 'hormones': ,\n", + " 'singing': ,\n", + " 'carry': ,\n", + " 'bestfriend': ,\n", + " 'AmeriCorps': ,\n", + " 'tuesday': ,\n", + " 'plants.': ,\n", + " 'Presidential': ,\n", + " 'dunno...i': ,\n", + " '[few': ,\n", + " 'exercise.': ,\n", + " 'WITH': ,\n", + " 'Figueroa': ,\n", + " 'softens': ,\n", + " 'true.': ,\n", + " 'ballpark': ,\n", + " 'sleep,': ,\n", + " 'names.': ,\n", + " 'you’re': ,\n", + " 'price': ,\n", + " 'pig': ,\n", + " 'time:': ,\n", + " 'Colella': ,\n", + " 'gift': ,\n", + " 'american': ,\n", + " 'poopie': ,\n", + " 'floor': ,\n", + " 'talked': ,\n", + " 'age': ,\n", + " 'sad.': ,\n", + " 'usually': ,\n", + " \"i'd\": ,\n", + " 'New]:': ,\n", + " 'out,': ,\n", + " 'Secondly,': ,\n", + " 'kicked': ,\n", + " 'stuff': ,\n", + " 'essences': ,\n", + " 'live': ,\n", + " 'aditi.': ,\n", + " 'prepare,': ,\n", + " 'Ave': ,\n", + " 'Given': ,\n", + " 'C\"': ,\n", + " 'touching': ,\n", + " 'Jeep),': ,\n", + " 'Los': ,\n", + " 'wide.': ,\n", + " 'though.': ,\n", + " 'sometime,': ,\n", + " 'had.': ,\n", + " 'dreams': ,\n", + " 'jobs': ,\n", + " 'bike': ,\n", + " 'waterfall': ,\n", + " 'uhh....': ,\n", + " 'strenuous': ,\n", + " 'overly-perky': ,\n", + " '....that': ,\n", + " 'fraud': ,\n", + " 'ahaha': ,\n", + " 'New': ,\n", + " 'shopping': ,\n", + " 'extra': ,\n", + " 'use.': ,\n", + " 'running--while': ,\n", + " \"won't\": ,\n", + " 'no:': ,\n", + " 'verb,': ,\n", + " 'punch': ,\n", + " 'tamar.': ,\n", + " 'summer': ,\n", + " 'got': ,\n", + " 'breath,': ,\n", + " 'answer': ,\n", + " 'selves': ,\n", + " 'everthing': ,\n", + " 'nap,': ,\n", + " 'CBC': ,\n", + " 'argument': ,\n", + " 'if': ,\n", + " 'sorts': ,\n", + " 'fields,': ,\n", + " 'canning': ,\n", + " 'worry..': ,\n", + " 'curtains!': ,\n", + " 'why…': ,\n", + " 'fainting': ,\n", + " 'ONLY': ,\n", + " 'no-one': ,\n", + " 'floating': ,\n", + " 'messy,': ,\n", + " 'third': ,\n", + " 'stood,': ,\n", + " 'fishing?': ,\n", + " 'shall': ,\n", + " 'everything': ,\n", + " 'dog': ,\n", + " 'semester!': ,\n", + " 'hurts': ,\n", + " 'blab': ,\n", + " 'Cyan425:': ,\n", + " 'kid': ,\n", + " 'Rumsfeld': ,\n", + " 'be:': ,\n", + " 'character': ,\n", + " 'too;': ,\n", + " 'cheese.': ,\n", + " 'showin': ,\n", + " 'DiFranco.': ,\n", + " 'weeks.': ,\n", + " 'authorized': ,\n", + " 'Or': ,\n", + " 'easier.': ,\n", + " 'deserve': ,\n", + " 'reads': ,\n", + " 'beautiful': ,\n", + " 'avril': ,\n", + " 'days.': ,\n", + " '\"can': ,\n", + " 'player:': ,\n", + " 'american??': ,\n", + " 'Michelle': ,\n", + " 'confusing,': ,\n", + " 'YoUr': ,\n", + " 'away...': ,\n", + " 'handed': ,\n", + " 'casual': ,\n", + " 'colorful': ,\n", + " 'lives.': ,\n", + " 'selfishness...busying': ,\n", + " 'shakes': ,\n", + " 'workouts.': ,\n", + " 'upon': ,\n", + " 'BACK': ,\n", + " 'Radio': ,\n", + " '\"Truly,': ,\n", + " 'lord': ,\n", + " 'Opening': ,\n", + " 'counts?': ,\n", + " 'sorry?': ,\n", + " 'His': ,\n", + " 'article': ,\n", + " '(Dear': ,\n", + " 'FAITH': ,\n", + " 'Girl**': ,\n", + " 'school': ,\n", + " 'hheeh.': ,\n", + " 'done,': ,\n", + " 'foot': ,\n", + " 'change...ppl': ,\n", + " 'lungs': ,\n", + " \"didn't\": ,\n", + " ']': ,\n", + " 'summer.': ,\n", + " 'side,': ,\n", + " 'this': ,\n", + " 'step': ,\n", + " 'sloth': ,\n", + " 'essences,': ,\n", + " 'spice': ,\n", + " 'Interesting:': ,\n", + " 'survive': ,\n", + " 'intelligence\"': ,\n", + " 'cliff': ,\n", + " 'dragging': ,\n", + " 'Worst': ,\n", + " '\"L\"': ,\n", + " 'columnists': ,\n", + " 'shopping.': ,\n", + " 'have...satisfied': ,\n", + " 'lie.': ,\n", + " 'flying': ,\n", + " 'perhaps': ,\n", + " 'myself..': ,\n", + " 'thing.)': ,\n", + " 'shattered': ,\n", + " 'ACL': ,\n", + " 'dressed,': ,\n", + " 'someone...and': ,\n", + " 'Random': ,\n", + " 'painful': ,\n", + " 'Florida?]:': ,\n", + " 'Gulf': ,\n", + " 'stupid': ,\n", + " 'kneecap': ,\n", + " '26th': ,\n", + " 'recently': ,\n", + " 'Eye': ,\n", + " 'Insecure:': ,\n", + " 'Organized:': ,\n", + " 'school...*sigh*': ,\n", + " 'shoulders': ,\n", + " 'MoO': ,\n", + " 'following': ,\n", + " 'on,': ,\n", + " 'pollution,': ,\n", + " 'rosalie': ,\n", + " 'law': ,\n", + " 'norway,': ,\n", + " 'have]': ,\n", + " '...cheers': ,\n", + " 'DrAmA': ,\n", + " 'searching': ,\n", + " 'people!': ,\n", + " 'fun!': ,\n", + " 'Yellowcard': ,\n", + " 'terminally': ,\n", + " 'right.': ,\n", + " 'feet': ,\n", + " 'person.': ,\n", + " \"they're\": ,\n", + " 'Opposition': ,\n", + " \"veterans'\": ,\n", + " 'Quiz': ,\n", + " 'lying,': ,\n", + " '7.': ,\n", + " 'mention': ,\n", + " 'weirdest': ,\n", + " '\"Stay': ,\n", + " 'rear': ,\n", + " 'clairol': ,\n", + " 'nvm': ,\n", + " 'minute': ,\n", + " 'getting': ,\n", + " 'prefer': ,\n", + " 'open': ,\n", + " 'feeble': ,\n", + " 'October': ,\n", + " 'LIKE': ,\n", + " 'do': ,\n", + " 'amount': ,\n", + " 'gerbils': ,\n", + " 'nasty': ,\n", + " 'Responsible:': ,\n", + " 'America.': ,\n", + " '\"I\\'d': ,\n", + " 'game': ,\n", + " 'behind\"': ,\n", + " 'Free': ,\n", + " '6:30.': ,\n", + " 'doom,': ,\n", + " 'family,': ,\n", + " 'odd': ,\n", + " 'bio': ,\n", + " 'going...': ,\n", + " 'post-its,': ,\n", + " 'teachers': ,\n", + " 'Time': ,\n", + " '11:10': ,\n", + " 'orchestra...': ,\n", + " 'jacket': ,\n", + " 'Talkative:': ,\n", + " 'left-middle': ,\n", + " 'radical': ,\n", + " 'forever.': ,\n", + " 'Guess': ,\n", + " 'them,': ,\n", + " 'normal,': ,\n", + " \"lavigne's\": ,\n", + " 'places.': ,\n", + " 'laugh': ,\n", + " 'vik': ,\n", + " 'yet...or': ,\n", + " 'night..': ,\n", + " 'states': ,\n", + " 'done)': ,\n", + " 'excuses': ,\n", + " 'treason.': ,\n", + " 'Gold': ,\n", + " 'words?': ,\n", + " 'fall': ,\n", + " 'online': ,\n", + " 'lips,': ,\n", + " 'PLEAAAASSSSSSEEEEEEE': ,\n", + " 'God': ,\n", + " 'b/c': ,\n", + " 'worst': ,\n", + " 'cancelling': ,\n", + " 'by': ,\n", + " 'BS': ,\n", + " 'bugs': ,\n", + " 'succumb': ,\n", + " 'baby...': ,\n", + " 'seems': ,\n", + " 'color(s):': ,\n", + " 'Washington-based': ,\n", + " 'support': ,\n", + " 'never)': ,\n", + " 'afternoon': ,\n", + " 'sprints.': ,\n", + " 'tank': ,\n", + " 'center': ,\n", + " 'repetition': ,\n", + " 'loneliness': ,\n", + " '\"Fast': ,\n", + " 'UNDERWORLD': ,\n", + " '(hmm,': ,\n", + " 'shoes.': ,\n", + " '(chocolate': ,\n", + " 'THE': ,\n", + " 'bakin': ,\n", + " 'those': ,\n", + " 'post...my': ,\n", + " 'about.': ,\n", + " 'helped': ,\n", + " 'hit': ,\n", + " 'unlike': ,\n", + " 'comments,': ,\n", + " 'yellow.': ,\n", + " 'youll': ,\n", + " 'Finally': ,\n", + " 'David': ,\n", + " 'cover': ,\n", + " 'Colin': ,\n", + " 'complain': ,\n", + " 'sometime': ,\n", + " 'shore,': ,\n", + " 'be?]:': ,\n", + " 'lee': ,\n", + " 'Lonely': ,\n", + " 'starred': ,\n", + " 'sumtin': ,\n", + " 'tints?': ,\n", + " 'homework': ,\n", + " 'towers': ,\n", + " 'saddest': ,\n", + " 'Garden,': ,\n", + " 'green,': ,\n", + " 'you:': ,\n", + " 'sex?': ,\n", + " 'black,': ,\n", + " 'feasible,': ,\n", + " 'YOU...': ,\n", + " 'trouble?': ,\n", + " 'me...appreciative': ,\n", + " 'learner': ,\n", + " 'hours': ,\n", + " 'feast': ,\n", + " 'again!': ,\n", + " 'tip': ,\n", + " 'You...': ,\n", + " 'KNOW': ,\n", + " 'purple': ,\n", + " 'Dreams': ,\n", + " 'here': ,\n", + " 'accused': ,\n", + " 'since': ,\n", + " 'HATE': ,\n", + " 'walk': ,\n", + " 'outta': ,\n", + " 'yet,': ,\n", + " \"other...we're\": ,\n", + " 'look': ,\n", + " ':-/': ,\n", + " 'yet': ,\n", + " 'background': ,\n", + " 'is.': ,\n", + " 'now...': ,\n", + " 'grow': ,\n", + " 'dough': ,\n", + " 'government,': ,\n", + " 'okie...that': ,\n", + " 'plan': ,\n", + " 'ummm...': ,\n", + " 'king....': ,\n", + " 'Marianne': ,\n", + " 'until': ,\n", + " 'mashed': ,\n", + " 'rain': ,\n", + " 'freshman': ,\n", + " 'calls': ,\n", + " \"us...we're\": ,\n", + " 'Soviet': ,\n", + " 'gears,': ,\n", + " 'knife': ,\n", + " 'Floods,': ,\n", + " '(and': ,\n", + " 'America': ,\n", + " 'shi,': ,\n", + " 'considering': ,\n", + " 'committed': ,\n", + " 'situation,': ,\n", + " 'stole': ,\n", + " 'brushing': ,\n", + " 'happily': ,\n", + " 'hand': ,\n", + " 'problem': ,\n", + " 'us': ,\n", + " 'color': ,\n", + " 'barely': ,\n", + " '2:': ,\n", + " 'repetition.': ,\n", + " 'ready': ,\n", + " 'everynight,': ,\n", + " 'brownies': ,\n", + " 'freaked': ,\n", + " 'medium.': ,\n", + " 'IS': ,\n", + " 'helps': ,\n", + " 'sophie?': ,\n", + " '\"Trust': ,\n", + " 'Now,': ,\n", + " 'tact': ,\n", + " 'needs': ,\n", + " 'uniter,': ,\n", + " 'He': ,\n", + " 'family)': ,\n", + " 'again...or': ,\n", + " 'hearts': ,\n", + " 'react': ,\n", + " 'Flogging': ,\n", + " 'running,': ,\n", + " 'razors': ,\n", + " 'rarely': ,\n", + " 'daunted:': ,\n", + " 'very': ,\n", + " 'around': ,\n", + " 'except': ,\n", + " 'war,\"': ,\n", + " 'become': ,\n", + " 'know,,,': ,\n", + " 'asleep': ,\n", + " 'sad...that': ,\n", + " 'of,': ,\n", + " 'week,': ,\n", + " 'SATs...fuun...sux...but': ,\n", + " '...[should': ,\n", + " 'dropped': ,\n", + " 'sure,': ,\n", + " 'cool.': ,\n", + " 'jetlag': ,\n", + " 'fit.': ,\n", + " 'Arrogant:': ,\n", + " 'now?]:': ,\n", + " 'objectives': ,\n", + " 'me...they': ,\n", + " 'call': ,\n", + " 'Today': ,\n", + " 'checking': ,\n", + " 'tried': ,\n", + " 'old,': ,\n", + " 'glasses': ,\n", + " 'bill': ,\n", + " 'fourth,': ,\n", + " 'better': ,\n", + " 'ground': ,\n", + " 'More': ,\n", + " 'gameroom': ,\n", + " 'above': ,\n", + " 'eventful.': ,\n", + " 'happen': ,\n", + " 'Lazy': ,\n", + " 'license': ,\n", + " 'bleating': ,\n", + " 'start.': ,\n", + " 'will': ,\n", + " '?': ,\n", + " 'napping': ,\n", + " 'Better?': ,\n", + " 'linoleum': ,\n", + " 'SOMETHING!': ,\n", + " 'sophie': ,\n", + " 'reacts,': ,\n", + " 'Car\"': ,\n", + " 'extinct.': ,\n", + " 'knowin': ,\n", + " 'looks': ,\n", + " 'alex!': ,\n", + " 'analyze': ,\n", + " 'internet': ,\n", + " 'am,': ,\n", + " \"I'll\": ,\n", + " 'go:': ,\n", + " 'hardest': ,\n", + " 'bed:': ,\n", + " 'tower!!': ,\n", + " '(analyze': ,\n", + " 'Rice': ,\n", + " 'bravest': ,\n", + " ...}" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "w2v.vocab" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.082851942583535218" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "w2v.similarity('I', 'My')" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "I've tried starting blog after blog and it just never feels right. Then I read today that it feels strange to most people, but the more you do it the better it gets (hmm, sounds suspiciously like something else!) so I decided to give it another try. My husband bought me a notepad at urlLink McNally (the best bookstore in Western Canada) with that title and a picture of a 50s housewife grinning desperately. Each page has something funny like \"New curtains! Hurrah!\". For some reason it struck me as absolutely hilarious and has stuck in my head ever since. What were those women thinking?\n" + ] + }, + { + "data": { + "text/plain": [ + "0.037229111896779618" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "print(posts[5])\n", + "w2v.similarity('ring', 'husband')" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.11547398696865138" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "w2v.similarity('ring', 'housewife')" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "-0.14627530812290576" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "w2v.similarity('women', 'housewife') # Diversity friendly" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Doc2Vec\n", + "\n", + "The same technique of word2vec is extrapolated to documents. Here, we do everything done in word2vec + we vectorize the documents too" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# 0 for male, 1 for female\n", + "y_posts = np.concatenate((np.zeros(len(filtered_male_posts)),\n", + " np.ones(len(filtered_female_posts))))" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "4842" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(y_posts)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Convolutional Neural Networks for Sentence Classification" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Train convolutional network for sentiment analysis. \n", + "\n", + "Based on\n", + "\"Convolutional Neural Networks for Sentence Classification\" by Yoon Kim\n", + "http://arxiv.org/pdf/1408.5882v2.pdf\n", + "\n", + "For 'CNN-non-static' gets to 82.1% after 61 epochs with following settings:\n", + "embedding_dim = 20 \n", + "filter_sizes = (3, 4)\n", + "num_filters = 3\n", + "dropout_prob = (0.7, 0.8)\n", + "hidden_dims = 100\n", + "\n", + "For 'CNN-rand' gets to 78-79% after 7-8 epochs with following settings:\n", + "embedding_dim = 20 \n", + "filter_sizes = (3, 4)\n", + "num_filters = 150\n", + "dropout_prob = (0.25, 0.5)\n", + "hidden_dims = 150\n", + "\n", + "For 'CNN-static' gets to 75.4% after 7 epochs with following settings:\n", + "embedding_dim = 100 \n", + "filter_sizes = (3, 4)\n", + "num_filters = 150\n", + "dropout_prob = (0.25, 0.5)\n", + "hidden_dims = 150\n", + "\n", + "* it turns out that such a small data set as \"Movie reviews with one\n", + "sentence per review\" (Pang and Lee, 2005) requires much smaller network\n", + "than the one introduced in the original article:\n", + "- embedding dimension is only 20 (instead of 300; 'CNN-static' still requires ~100)\n", + "- 2 filter sizes (instead of 3)\n", + "- higher dropout probabilities and\n", + "- 3 filters per filter size is enough for 'CNN-non-static' (instead of 100)\n", + "- embedding initialization does not require prebuilt Google Word2Vec data.\n", + "Training Word2Vec on the same \"Movie reviews\" data set is enough to \n", + "achieve performance reported in the article (81.6%)\n", + "\n", + "** Another distinct difference is slidind MaxPooling window of length=2\n", + "instead of MaxPooling over whole feature map as in the article" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Using gpu device 0: GeForce GTX 760 (CNMeM is enabled with initial size: 90.0% of memory, cuDNN 4007)\n", + "Using Theano backend.\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "import word_embedding\n", + "from word2vec import train_word2vec\n", + "\n", + "from keras.models import Sequential, Model\n", + "from keras.layers import (Activation, Dense, Dropout, Embedding, \n", + " Flatten, Input, \n", + " Conv1D, MaxPooling1D)\n", + "from keras.layers.merge import Concatenate\n", + "\n", + "np.random.seed(2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Parameters\n", + "\n", + "Model Variations. See Kim Yoon's Convolutional Neural Networks for \n", + "Sentence Classification, Section 3 for detail." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Model variation is CNN-rand\n" + ] + } + ], + "source": [ + "model_variation = 'CNN-rand' # CNN-rand | CNN-non-static | CNN-static\n", + "print('Model variation is %s' % model_variation)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# Model Hyperparameters\n", + "sequence_length = 56\n", + "embedding_dim = 20 \n", + "filter_sizes = (3, 4)\n", + "num_filters = 150\n", + "dropout_prob = (0.25, 0.5)\n", + "hidden_dims = 150" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# Training parameters\n", + "batch_size = 32\n", + "num_epochs = 100\n", + "val_split = 0.1" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# Word2Vec parameters, see train_word2vec\n", + "min_word_count = 1 # Minimum word count \n", + "context = 10 # Context window size " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Data Preparation " + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loading data...\n" + ] + } + ], + "source": [ + "# Load data\n", + "print(\"Loading data...\")\n", + "x, y, vocabulary, vocabulary_inv = word_embedding.load_data()\n", + "\n", + "if model_variation=='CNN-non-static' or model_variation=='CNN-static':\n", + " embedding_weights = train_word2vec(x, vocabulary_inv, \n", + " embedding_dim, min_word_count, \n", + " context)\n", + " if model_variation=='CNN-static':\n", + " x = embedding_weights[0][x]\n", + "elif model_variation=='CNN-rand':\n", + " embedding_weights = None\n", + "else:\n", + " raise ValueError('Unknown model variation') " + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# Shuffle data\n", + "shuffle_indices = np.random.permutation(np.arange(len(y)))\n", + "x_shuffled = x[shuffle_indices]\n", + "y_shuffled = y[shuffle_indices].argmax(axis=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Vocabulary Size: 18765\n" + ] + } + ], + "source": [ + "print(\"Vocabulary Size: {:d}\".format(len(vocabulary)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Building CNN Model" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "graph_in = Input(shape=(sequence_length, embedding_dim))\n", + "convs = []\n", + "for fsz in filter_sizes:\n", + " conv = Conv1D(filters=num_filters,\n", + " filter_length=fsz,\n", + " padding='valid',\n", + " activation='relu',\n", + " strides=1)(graph_in)\n", + " pool = MaxPooling1D(pool_length=2)(conv)\n", + " flatten = Flatten()(pool)\n", + " convs.append(flatten)\n", + " \n", + "if len(filter_sizes)>1:\n", + " out = Concatenate()(convs)\n", + "else:\n", + " out = convs[0]\n", + "\n", + "graph = Model(input=graph_in, output=out)\n", + "\n", + "# main sequential model\n", + "model = Sequential()\n", + "if not model_variation=='CNN-static':\n", + " model.add(Embedding(len(vocabulary), embedding_dim, input_length=sequence_length,\n", + " weights=embedding_weights))\n", + "model.add(Dropout(dropout_prob[0], input_shape=(sequence_length, embedding_dim)))\n", + "model.add(graph)\n", + "model.add(Dense(hidden_dims))\n", + "model.add(Dropout(dropout_prob[1]))\n", + "model.add(Activation('relu'))\n", + "model.add(Dense(1))\n", + "model.add(Activation('sigmoid'))" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Train on 9595 samples, validate on 1067 samples\n", + "Epoch 1/100\n", + "1s - loss: 0.6516 - acc: 0.6005 - val_loss: 0.5692 - val_acc: 0.7151\n", + "Epoch 2/100\n", + "1s - loss: 0.4556 - acc: 0.7896 - val_loss: 0.5154 - val_acc: 0.7573\n", + "Epoch 3/100\n", + "1s - loss: 0.3556 - acc: 0.8532 - val_loss: 0.5050 - val_acc: 0.7816\n", + "Epoch 4/100\n", + "1s - loss: 0.2978 - acc: 0.8779 - val_loss: 0.5335 - val_acc: 0.7901\n", + "Epoch 5/100\n", + "1s - loss: 0.2599 - acc: 0.8972 - val_loss: 0.5592 - val_acc: 0.7769\n", + "Epoch 6/100\n", + "1s - loss: 0.2248 - acc: 0.9112 - val_loss: 0.5559 - val_acc: 0.7685\n", + "Epoch 7/100\n", + "1s - loss: 0.1994 - acc: 0.9219 - val_loss: 0.5760 - val_acc: 0.7704\n", + "Epoch 8/100\n", + "1s - loss: 0.1801 - acc: 0.9326 - val_loss: 0.6014 - val_acc: 0.7788\n", + "Epoch 9/100\n", + "1s - loss: 0.1472 - acc: 0.9449 - val_loss: 0.6637 - val_acc: 0.7751\n", + "Epoch 10/100\n", + "1s - loss: 0.1269 - acc: 0.9537 - val_loss: 0.7281 - val_acc: 0.7563\n", + "Epoch 11/100\n", + "1s - loss: 0.1123 - acc: 0.9592 - val_loss: 0.7452 - val_acc: 0.7788\n", + "Epoch 12/100\n", + "1s - loss: 0.0897 - acc: 0.9658 - val_loss: 0.8504 - val_acc: 0.7591\n", + "Epoch 13/100\n", + "1s - loss: 0.0811 - acc: 0.9723 - val_loss: 0.8935 - val_acc: 0.7573\n", + "Epoch 14/100\n", + "1s - loss: 0.0651 - acc: 0.9764 - val_loss: 0.8738 - val_acc: 0.7685\n", + "Epoch 15/100\n", + "1s - loss: 0.0540 - acc: 0.9809 - val_loss: 0.9407 - val_acc: 0.7648\n", + "Epoch 16/100\n", + "1s - loss: 0.0408 - acc: 0.9857 - val_loss: 1.1880 - val_acc: 0.7638\n", + "Epoch 17/100\n", + "1s - loss: 0.0341 - acc: 0.9886 - val_loss: 1.2878 - val_acc: 0.7638\n", + "Epoch 18/100\n", + "1s - loss: 0.0306 - acc: 0.9901 - val_loss: 1.4448 - val_acc: 0.7573\n", + "Epoch 19/100\n", + "1s - loss: 0.0276 - acc: 0.9917 - val_loss: 1.5300 - val_acc: 0.7591\n", + "Epoch 20/100\n", + "1s - loss: 0.0249 - acc: 0.9917 - val_loss: 1.4825 - val_acc: 0.7666\n", + "Epoch 21/100\n", + "1s - loss: 0.0220 - acc: 0.9937 - val_loss: 1.4357 - val_acc: 0.7601\n", + "Epoch 22/100\n", + "1s - loss: 0.0188 - acc: 0.9945 - val_loss: 1.4081 - val_acc: 0.7657\n", + "Epoch 23/100\n", + "1s - loss: 0.0182 - acc: 0.9954 - val_loss: 1.7145 - val_acc: 0.7610\n", + "Epoch 24/100\n", + "1s - loss: 0.0129 - acc: 0.9964 - val_loss: 1.7047 - val_acc: 0.7704\n", + "Epoch 25/100\n", + "1s - loss: 0.0064 - acc: 0.9981 - val_loss: 1.9119 - val_acc: 0.7629\n", + "Epoch 26/100\n", + "1s - loss: 0.0108 - acc: 0.9969 - val_loss: 1.8306 - val_acc: 0.7704\n", + "Epoch 27/100\n", + "1s - loss: 0.0105 - acc: 0.9973 - val_loss: 1.9624 - val_acc: 0.7619\n", + "Epoch 28/100\n", + "1s - loss: 0.0112 - acc: 0.9973 - val_loss: 1.8552 - val_acc: 0.7694\n", + "Epoch 29/100\n", + "1s - loss: 0.0110 - acc: 0.9968 - val_loss: 1.8585 - val_acc: 0.7657\n", + "Epoch 30/100\n", + "1s - loss: 0.0071 - acc: 0.9983 - val_loss: 2.0571 - val_acc: 0.7694\n", + "Epoch 31/100\n", + "1s - loss: 0.0089 - acc: 0.9975 - val_loss: 2.0361 - val_acc: 0.7629\n", + "Epoch 32/100\n", + "1s - loss: 0.0074 - acc: 0.9978 - val_loss: 2.0010 - val_acc: 0.7648\n", + "Epoch 33/100\n", + "1s - loss: 0.0074 - acc: 0.9981 - val_loss: 2.0995 - val_acc: 0.7498\n", + "Epoch 34/100\n", + "1s - loss: 0.0125 - acc: 0.9971 - val_loss: 2.2003 - val_acc: 0.7610\n", + "Epoch 35/100\n", + "1s - loss: 0.0074 - acc: 0.9981 - val_loss: 2.1526 - val_acc: 0.7582\n", + "Epoch 36/100\n", + "1s - loss: 0.0068 - acc: 0.9984 - val_loss: 2.1754 - val_acc: 0.7648\n", + "Epoch 37/100\n", + "1s - loss: 0.0065 - acc: 0.9979 - val_loss: 2.0810 - val_acc: 0.7498\n", + "Epoch 38/100\n", + "1s - loss: 0.0078 - acc: 0.9980 - val_loss: 2.3443 - val_acc: 0.7460\n", + "Epoch 39/100\n", + "1s - loss: 0.0038 - acc: 0.9991 - val_loss: 2.1696 - val_acc: 0.7629\n", + "Epoch 40/100\n", + "1s - loss: 0.0062 - acc: 0.9985 - val_loss: 2.2752 - val_acc: 0.7545\n", + "Epoch 41/100\n", + "1s - loss: 0.0044 - acc: 0.9985 - val_loss: 2.3457 - val_acc: 0.7535\n", + "Epoch 42/100\n", + "1s - loss: 0.0066 - acc: 0.9985 - val_loss: 2.1172 - val_acc: 0.7629\n", + "Epoch 43/100\n", + "1s - loss: 0.0052 - acc: 0.9987 - val_loss: 2.3550 - val_acc: 0.7619\n", + "Epoch 44/100\n", + "1s - loss: 0.0024 - acc: 0.9993 - val_loss: 2.3832 - val_acc: 0.7610\n", + "Epoch 45/100\n", + "1s - loss: 0.0042 - acc: 0.9989 - val_loss: 2.4242 - val_acc: 0.7648\n", + "Epoch 46/100\n", + "1s - loss: 0.0048 - acc: 0.9990 - val_loss: 2.4529 - val_acc: 0.7563\n", + "Epoch 47/100\n", + "1s - loss: 0.0036 - acc: 0.9994 - val_loss: 2.8412 - val_acc: 0.7282\n", + "Epoch 48/100\n", + "1s - loss: 0.0037 - acc: 0.9991 - val_loss: 2.4515 - val_acc: 0.7619\n", + "Epoch 49/100\n", + "1s - loss: 0.0031 - acc: 0.9991 - val_loss: 2.4849 - val_acc: 0.7676\n", + "Epoch 50/100\n", + "1s - loss: 0.0078 - acc: 0.9990 - val_loss: 2.5083 - val_acc: 0.7563\n", + "Epoch 51/100\n", + "1s - loss: 0.0105 - acc: 0.9981 - val_loss: 2.3538 - val_acc: 0.7601\n", + "Epoch 52/100\n", + "1s - loss: 0.0076 - acc: 0.9986 - val_loss: 2.4405 - val_acc: 0.7685\n", + "Epoch 53/100\n", + "1s - loss: 0.0043 - acc: 0.9991 - val_loss: 2.5753 - val_acc: 0.7591\n", + "Epoch 54/100\n", + "1s - loss: 0.0044 - acc: 0.9989 - val_loss: 2.5550 - val_acc: 0.7582\n", + "Epoch 55/100\n", + "1s - loss: 0.0034 - acc: 0.9994 - val_loss: 2.6361 - val_acc: 0.7591\n", + "Epoch 56/100\n", + "1s - loss: 0.0041 - acc: 0.9994 - val_loss: 2.6753 - val_acc: 0.7563\n", + "Epoch 57/100\n", + "1s - loss: 0.0042 - acc: 0.9990 - val_loss: 2.6464 - val_acc: 0.7601\n", + "Epoch 58/100\n", + "1s - loss: 0.0037 - acc: 0.9992 - val_loss: 2.6616 - val_acc: 0.7582\n", + "Epoch 59/100\n", + "1s - loss: 0.0060 - acc: 0.9990 - val_loss: 2.6052 - val_acc: 0.7619\n", + "Epoch 60/100\n", + "1s - loss: 0.0051 - acc: 0.9990 - val_loss: 2.7033 - val_acc: 0.7498\n", + "Epoch 61/100\n", + "1s - loss: 0.0034 - acc: 0.9994 - val_loss: 2.7142 - val_acc: 0.7526\n", + "Epoch 62/100\n", + "1s - loss: 0.0047 - acc: 0.9994 - val_loss: 2.7656 - val_acc: 0.7591\n", + "Epoch 63/100\n", + "1s - loss: 0.0083 - acc: 0.9990 - val_loss: 2.7971 - val_acc: 0.7526\n", + "Epoch 64/100\n", + "1s - loss: 0.0046 - acc: 0.9992 - val_loss: 2.6585 - val_acc: 0.7545\n", + "Epoch 65/100\n", + "1s - loss: 0.0062 - acc: 0.9989 - val_loss: 2.6194 - val_acc: 0.7535\n", + "Epoch 66/100\n", + "1s - loss: 0.0062 - acc: 0.9993 - val_loss: 2.6255 - val_acc: 0.7694\n", + "Epoch 67/100\n", + "1s - loss: 0.0036 - acc: 0.9990 - val_loss: 2.6384 - val_acc: 0.7582\n", + "Epoch 68/100\n", + "1s - loss: 0.0066 - acc: 0.9991 - val_loss: 2.6743 - val_acc: 0.7648\n", + "Epoch 69/100\n", + "1s - loss: 0.0030 - acc: 0.9995 - val_loss: 2.8236 - val_acc: 0.7535\n", + "Epoch 70/100\n", + "1s - loss: 0.0048 - acc: 0.9993 - val_loss: 2.7829 - val_acc: 0.7610\n", + "Epoch 71/100\n", + "1s - loss: 0.0062 - acc: 0.9990 - val_loss: 2.6402 - val_acc: 0.7573\n", + "Epoch 72/100\n", + "1s - loss: 0.0037 - acc: 0.9992 - val_loss: 2.9089 - val_acc: 0.7526\n", + "Epoch 73/100\n", + "1s - loss: 0.0069 - acc: 0.9985 - val_loss: 2.7071 - val_acc: 0.7535\n", + "Epoch 74/100\n", + "1s - loss: 0.0033 - acc: 0.9995 - val_loss: 2.6727 - val_acc: 0.7601\n", + "Epoch 75/100\n", + "1s - loss: 0.0069 - acc: 0.9990 - val_loss: 2.6967 - val_acc: 0.7601\n", + "Epoch 76/100\n", + "1s - loss: 0.0089 - acc: 0.9989 - val_loss: 2.7479 - val_acc: 0.7666\n", + "Epoch 77/100\n", + "1s - loss: 0.0046 - acc: 0.9994 - val_loss: 2.7192 - val_acc: 0.7629\n", + "Epoch 78/100\n", + "1s - loss: 0.0069 - acc: 0.9989 - val_loss: 2.7173 - val_acc: 0.7629\n", + "Epoch 79/100\n", + "1s - loss: 8.6550e-04 - acc: 0.9998 - val_loss: 2.7283 - val_acc: 0.7601\n", + "Epoch 80/100\n", + "1s - loss: 0.0011 - acc: 0.9995 - val_loss: 2.8405 - val_acc: 0.7629\n", + "Epoch 81/100\n", + "1s - loss: 0.0040 - acc: 0.9994 - val_loss: 2.8725 - val_acc: 0.7619\n", + "Epoch 82/100\n", + "1s - loss: 0.0055 - acc: 0.9992 - val_loss: 2.8490 - val_acc: 0.7601\n", + "Epoch 83/100\n", + "1s - loss: 0.0059 - acc: 0.9989 - val_loss: 2.7838 - val_acc: 0.7545\n", + "Epoch 84/100\n", + "1s - loss: 0.0054 - acc: 0.9994 - val_loss: 2.8706 - val_acc: 0.7526\n", + "Epoch 85/100\n", + "1s - loss: 0.0060 - acc: 0.9992 - val_loss: 2.9374 - val_acc: 0.7516\n", + "Epoch 86/100\n", + "1s - loss: 0.0087 - acc: 0.9982 - val_loss: 2.7966 - val_acc: 0.7573\n", + "Epoch 87/100\n", + "1s - loss: 0.0084 - acc: 0.9991 - val_loss: 2.8620 - val_acc: 0.7619\n", + "Epoch 88/100\n", + "1s - loss: 0.0053 - acc: 0.9990 - val_loss: 2.8450 - val_acc: 0.7601\n", + "Epoch 89/100\n", + "1s - loss: 0.0054 - acc: 0.9990 - val_loss: 2.8303 - val_acc: 0.7629\n", + "Epoch 90/100\n", + "1s - loss: 0.0073 - acc: 0.9991 - val_loss: 2.8474 - val_acc: 0.7657\n", + "Epoch 91/100\n", + "1s - loss: 0.0037 - acc: 0.9994 - val_loss: 3.0151 - val_acc: 0.7432\n", + "Epoch 92/100\n", + "1s - loss: 0.0017 - acc: 0.9999 - val_loss: 2.9555 - val_acc: 0.7582\n", + "Epoch 93/100\n", + "1s - loss: 0.0080 - acc: 0.9991 - val_loss: 2.9178 - val_acc: 0.7554\n", + "Epoch 94/100\n", + "1s - loss: 0.0078 - acc: 0.9991 - val_loss: 2.8724 - val_acc: 0.7582\n", + "Epoch 95/100\n", + "1s - loss: 0.0012 - acc: 0.9997 - val_loss: 2.9582 - val_acc: 0.7545\n", + "Epoch 96/100\n", + "1s - loss: 0.0058 - acc: 0.9989 - val_loss: 2.8944 - val_acc: 0.7479\n", + "Epoch 97/100\n", + "1s - loss: 0.0094 - acc: 0.9985 - val_loss: 2.7146 - val_acc: 0.7516\n", + "Epoch 98/100\n", + "1s - loss: 0.0044 - acc: 0.9993 - val_loss: 2.9052 - val_acc: 0.7498\n", + "Epoch 99/100\n", + "1s - loss: 0.0030 - acc: 0.9995 - val_loss: 3.1474 - val_acc: 0.7470\n", + "Epoch 100/100\n", + "1s - loss: 0.0051 - acc: 0.9990 - val_loss: 3.1746 - val_acc: 0.7451\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model.compile(loss='binary_crossentropy', optimizer='rmsprop', \n", + " metrics=['accuracy'])\n", + "\n", + "# Training model\n", + "# ==================================================\n", + "model.fit(x_shuffled, y_shuffled, batch_size=batch_size,\n", + " nb_epoch=num_epochs, validation_split=val_split, verbose=2)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "# Another Example\n", + "\n", + "Using Keras + [**GloVe**](http://nlp.stanford.edu/projects/glove/) - **Global Vectors for Word Representation**" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.5.3" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/word2vec.py b/6. AutoEncoders and Embeddings/word2vec.py similarity index 100% rename from word2vec.py rename to 6. AutoEncoders and Embeddings/word2vec.py diff --git a/word_embedding.py b/6. AutoEncoders and Embeddings/word_embedding.py similarity index 100% rename from word_embedding.py rename to 6. AutoEncoders and Embeddings/word_embedding.py diff --git a/7. Recurrent Neural Networks/7.1 RNN and LSTM.ipynb b/7. Recurrent Neural Networks/7.1 RNN and LSTM.ipynb new file mode 100644 index 0000000..fbe7a46 --- /dev/null +++ b/7. Recurrent Neural Networks/7.1 RNN and LSTM.ipynb @@ -0,0 +1,993 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Recurrent Neural networks\n", + "=====" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### RNN " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A recurrent neural network (RNN) is a class of artificial neural network where connections between units form a directed cycle. This creates an internal state of the network which allows it to exhibit dynamic temporal behavior." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "```python\n", + "keras.layers.recurrent.SimpleRNN(units, activation='tanh', use_bias=True, \n", + " kernel_initializer='glorot_uniform', \n", + " recurrent_initializer='orthogonal', \n", + " bias_initializer='zeros', \n", + " kernel_regularizer=None, \n", + " recurrent_regularizer=None, \n", + " bias_regularizer=None, \n", + " activity_regularizer=None, \n", + " kernel_constraint=None, recurrent_constraint=None, \n", + " bias_constraint=None, dropout=0.0, recurrent_dropout=0.0)\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Arguments:\n", + "\n", + "
    \n", + "
  • units: Positive integer, dimensionality of the output space.
  • \n", + "
  • activation: Activation function to use\n", + " (see activations).\n", + " If you pass None, no activation is applied\n", + " (ie. \"linear\" activation: a(x) = x).
  • \n", + "
  • use_bias: Boolean, whether the layer uses a bias vector.
  • \n", + "
  • kernel_initializer: Initializer for the kernel weights matrix,\n", + " used for the linear transformation of the inputs.\n", + " (see initializers).
  • \n", + "
  • recurrent_initializer: Initializer for the recurrent_kernel\n", + " weights matrix,\n", + " used for the linear transformation of the recurrent state.\n", + " (see initializers).
  • \n", + "
  • bias_initializer: Initializer for the bias vector\n", + " (see initializers).
  • \n", + "
  • kernel_regularizer: Regularizer function applied to\n", + " the kernel weights matrix\n", + " (see regularizer).
  • \n", + "
  • recurrent_regularizer: Regularizer function applied to\n", + " the recurrent_kernel weights matrix\n", + " (see regularizer).
  • \n", + "
  • bias_regularizer: Regularizer function applied to the bias vector\n", + " (see regularizer).
  • \n", + "
  • activity_regularizer: Regularizer function applied to\n", + " the output of the layer (its \"activation\").\n", + " (see regularizer).
  • \n", + "
  • kernel_constraint: Constraint function applied to\n", + " the kernel weights matrix\n", + " (see constraints).
  • \n", + "
  • recurrent_constraint: Constraint function applied to\n", + " the recurrent_kernel weights matrix\n", + " (see constraints).
  • \n", + "
  • bias_constraint: Constraint function applied to the bias vector\n", + " (see constraints).
  • \n", + "
  • dropout: Float between 0 and 1.\n", + " Fraction of the units to drop for\n", + " the linear transformation of the inputs.
  • \n", + "
  • recurrent_dropout: Float between 0 and 1.\n", + " Fraction of the units to drop for\n", + " the linear transformation of the recurrent state.
  • \n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Backprop Through time " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Contrary to feed-forward neural networks, the RNN is characterized by the ability of encoding longer past information, thus very suitable for sequential models. The BPTT extends the ordinary BP algorithm to suit the recurrent neural\n", + "architecture." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "scrolled": true + }, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Reference**: [Backpropagation through Time](http://ir.hit.edu.cn/~jguo/docs/notes/bptt.pdf)" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Using TensorFlow backend.\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import theano\n", + "import theano.tensor as T\n", + "import keras \n", + "\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "from sklearn.preprocessing import LabelEncoder\n", + "from sklearn.preprocessing import StandardScaler\n", + "from sklearn.model_selection import train_test_split\n", + "# -- Keras Import\n", + "from keras.models import Sequential\n", + "from keras.layers import Dense, Activation\n", + "from keras.preprocessing import image\n", + "\n", + "from keras.datasets import imdb\n", + "from keras.datasets import mnist\n", + "\n", + "from keras.models import Sequential\n", + "from keras.layers import Dense, Dropout, Activation, Flatten\n", + "from keras.layers import Conv2D, MaxPooling2D\n", + "\n", + "from keras.utils import np_utils\n", + "from keras.preprocessing import sequence\n", + "from keras.layers.embeddings import Embedding\n", + "from keras.layers.recurrent import LSTM, GRU, SimpleRNN\n", + "\n", + "from keras.layers import Activation, TimeDistributed, RepeatVector\n", + "from keras.callbacks import EarlyStopping, ModelCheckpoint" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## IMDB sentiment classification task" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This is a dataset for binary sentiment classification containing substantially more data than previous benchmark datasets. \n", + "\n", + "IMDB provided a set of 25,000 highly polar movie reviews for training, and 25,000 for testing. \n", + "\n", + "There is additional unlabeled data for use as well. Raw text and already processed bag of words formats are provided. \n", + "\n", + "http://ai.stanford.edu/~amaas/data/sentiment/" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Data Preparation - IMDB" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loading data...\n", + "Downloading data from https://s3.amazonaws.com/text-datasets/imdb.npz\n", + "25000 train sequences\n", + "25000 test sequences\n", + "Example:\n", + "[ [1, 14, 22, 16, 43, 530, 973, 1622, 1385, 65, 458, 4468, 66, 3941, 4, 173, 36, 256, 5, 25, 100, 43, 838, 112, 50, 670, 2, 9, 35, 480, 284, 5, 150, 4, 172, 112, 167, 2, 336, 385, 39, 4, 172, 4536, 1111, 17, 546, 38, 13, 447, 4, 192, 50, 16, 6, 147, 2025, 19, 14, 22, 4, 1920, 4613, 469, 4, 22, 71, 87, 12, 16, 43, 530, 38, 76, 15, 13, 1247, 4, 22, 17, 515, 17, 12, 16, 626, 18, 19193, 5, 62, 386, 12, 8, 316, 8, 106, 5, 4, 2223, 5244, 16, 480, 66, 3785, 33, 4, 130, 12, 16, 38, 619, 5, 25, 124, 51, 36, 135, 48, 25, 1415, 33, 6, 22, 12, 215, 28, 77, 52, 5, 14, 407, 16, 82, 10311, 8, 4, 107, 117, 5952, 15, 256, 4, 2, 7, 3766, 5, 723, 36, 71, 43, 530, 476, 26, 400, 317, 46, 7, 4, 12118, 1029, 13, 104, 88, 4, 381, 15, 297, 98, 32, 2071, 56, 26, 141, 6, 194, 7486, 18, 4, 226, 22, 21, 134, 476, 26, 480, 5, 144, 30, 5535, 18, 51, 36, 28, 224, 92, 25, 104, 4, 226, 65, 16, 38, 1334, 88, 12, 16, 283, 5, 16, 4472, 113, 103, 32, 15, 16, 5345, 19, 178, 32]]\n", + "Pad sequences (samples x time)\n", + "X_train shape: (25000, 100)\n", + "X_test shape: (25000, 100)\n" + ] + } + ], + "source": [ + "max_features = 20000\n", + "maxlen = 100 # cut texts after this number of words (among top max_features most common words)\n", + "batch_size = 32\n", + "\n", + "print(\"Loading data...\")\n", + "(X_train, y_train), (X_test, y_test) = imdb.load_data(num_words=max_features)\n", + "print(len(X_train), 'train sequences')\n", + "print(len(X_test), 'test sequences')\n", + "\n", + "print('Example:')\n", + "print(X_train[:1])\n", + "\n", + "print(\"Pad sequences (samples x time)\")\n", + "X_train = sequence.pad_sequences(X_train, maxlen=maxlen)\n", + "X_test = sequence.pad_sequences(X_test, maxlen=maxlen)\n", + "print('X_train shape:', X_train.shape)\n", + "print('X_test shape:', X_test.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Model building " + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Build model...\n", + "Train...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/valerio/anaconda3/envs/deep-learning-pydatait-tutorial/lib/python3.5/site-packages/keras/backend/tensorflow_backend.py:2094: UserWarning: Expected no kwargs, you passed 1\n", + "kwargs passed to function are ignored with Tensorflow backend\n", + " warnings.warn('\\n'.join(msg))\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Train on 25000 samples, validate on 25000 samples\n", + "Epoch 1/1\n", + "25000/25000 [==============================] - 104s - loss: 0.7329 - val_loss: 0.6832\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "print('Build model...')\n", + "model = Sequential()\n", + "model.add(Embedding(max_features, 128, input_length=maxlen))\n", + "model.add(SimpleRNN(128)) \n", + "model.add(Dropout(0.5))\n", + "model.add(Dense(1))\n", + "model.add(Activation('sigmoid'))\n", + "\n", + "# try using different optimizers and different optimizer configs\n", + "model.compile(loss='binary_crossentropy', optimizer='adam')\n", + "\n", + "print(\"Train...\")\n", + "model.fit(X_train, y_train, batch_size=batch_size, epochs=1, \n", + " validation_data=(X_test, y_test))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### LSTM " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A LSTM network is an artificial neural network that contains LSTM blocks instead of, or in addition to, regular network units. A LSTM block may be described as a \"smart\" network unit that can remember a value for an arbitrary length of time. \n", + "\n", + "Unlike traditional RNNs, an Long short-term memory network is well-suited to learn from experience to classify, process and predict time series when there are very long time lags of unknown size between important events." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "scrolled": true + }, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "```python\n", + "keras.layers.recurrent.LSTM(units, activation='tanh', recurrent_activation='hard_sigmoid', use_bias=True, \n", + " kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', \n", + " bias_initializer='zeros', unit_forget_bias=True, kernel_regularizer=None, \n", + " recurrent_regularizer=None, bias_regularizer=None, activity_regularizer=None, \n", + " kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, \n", + " dropout=0.0, recurrent_dropout=0.0)\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Arguments\n", + "\n", + "
    \n", + "
  • units: Positive integer, dimensionality of the output space.
  • \n", + "
  • activation: Activation function to use\n", + " If you pass None, no activation is applied\n", + " (ie. \"linear\" activation: a(x) = x).
  • \n", + "
  • recurrent_activation: Activation function to use\n", + " for the recurrent step.
  • \n", + "
  • use_bias: Boolean, whether the layer uses a bias vector.
  • \n", + "
  • kernel_initializer: Initializer for the kernel weights matrix,\n", + " used for the linear transformation of the inputs.
  • \n", + "
  • recurrent_initializer: Initializer for the recurrent_kernel\n", + " weights matrix,\n", + " used for the linear transformation of the recurrent state.
  • \n", + "
  • bias_initializer: Initializer for the bias vector.
  • \n", + "
  • unit_forget_bias: Boolean.\n", + " If True, add 1 to the bias of the forget gate at initialization.\n", + " Setting it to true will also force bias_initializer=\"zeros\".\n", + " This is recommended in Jozefowicz et al.
  • \n", + "
  • kernel_regularizer: Regularizer function applied to\n", + " the kernel weights matrix.
  • \n", + "
  • recurrent_regularizer: Regularizer function applied to\n", + " the recurrent_kernel weights matrix.
  • \n", + "
  • bias_regularizer: Regularizer function applied to the bias vector.
  • \n", + "
  • activity_regularizer: Regularizer function applied to\n", + " the output of the layer (its \"activation\").
  • \n", + "
  • kernel_constraint: Constraint function applied to\n", + " the kernel weights matrix.
  • \n", + "
  • recurrent_constraint: Constraint function applied to\n", + " the recurrent_kernel weights matrix.
  • \n", + "
  • bias_constraint: Constraint function applied to the bias vector.
  • \n", + "
  • dropout: Float between 0 and 1.\n", + " Fraction of the units to drop for\n", + " the linear transformation of the inputs.
  • \n", + "
  • recurrent_dropout: Float between 0 and 1.\n", + " Fraction of the units to drop for\n", + " the linear transformation of the recurrent state.
  • \n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### GRU " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Gated recurrent units are a gating mechanism in recurrent neural networks. \n", + "\n", + "Much similar to the LSTMs, they have fewer parameters than LSTM, as they lack an output gate.\n", + "\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "```python\n", + "keras.layers.recurrent.GRU(units, activation='tanh', recurrent_activation='hard_sigmoid', use_bias=True, \n", + " kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', \n", + " bias_initializer='zeros', kernel_regularizer=None, recurrent_regularizer=None, \n", + " bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, \n", + " recurrent_constraint=None, bias_constraint=None, \n", + " dropout=0.0, recurrent_dropout=0.0)\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Your Turn! - Hands on Rnn" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "print('Build model...')\n", + "model = Sequential()\n", + "model.add(Embedding(max_features, 128, input_length=maxlen))\n", + "\n", + "# !!! Play with those! try and get better results!\n", + "#model.add(SimpleRNN(128)) \n", + "#model.add(GRU(128)) \n", + "#model.add(LSTM(128)) \n", + "\n", + "model.add(Dropout(0.5))\n", + "model.add(Dense(1))\n", + "model.add(Activation('sigmoid'))\n", + "\n", + "# try using different optimizers and different optimizer configs\n", + "model.compile(loss='binary_crossentropy', optimizer='adam')\n", + "\n", + "print(\"Train...\")\n", + "model.fit(X_train, y_train, batch_size=batch_size, \n", + " epochs=4, validation_data=(X_test, y_test))\n", + "score, acc = model.evaluate(X_test, y_test, batch_size=batch_size)\n", + "print('Test score:', score)\n", + "print('Test accuracy:', acc)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Convolutional LSTM\n", + "\n", + "> This section demonstrates the use of a **Convolutional LSTM network**.\n", + "\n", + "> This network is used to predict the next frame of an artificially\n", + "generated movie which contains moving squares.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Artificial Data Generation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Generate movies with `3` to `7` moving squares inside.\n", + "\n", + "The squares are of shape $1 \\times 1$ or $2 \\times 2$ pixels, which move linearly over time.\n", + "\n", + "For convenience we first create movies with bigger width and height (`80x80`) \n", + "and at the end we select a $40 \\times 40$ window." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# Artificial Data Generation\n", + "def generate_movies(n_samples=1200, n_frames=15):\n", + " row = 80\n", + " col = 80\n", + " noisy_movies = np.zeros((n_samples, n_frames, row, col, 1), dtype=np.float)\n", + " shifted_movies = np.zeros((n_samples, n_frames, row, col, 1),\n", + " dtype=np.float)\n", + "\n", + " for i in range(n_samples):\n", + " # Add 3 to 7 moving squares\n", + " n = np.random.randint(3, 8)\n", + "\n", + " for j in range(n):\n", + " # Initial position\n", + " xstart = np.random.randint(20, 60)\n", + " ystart = np.random.randint(20, 60)\n", + " # Direction of motion\n", + " directionx = np.random.randint(0, 3) - 1\n", + " directiony = np.random.randint(0, 3) - 1\n", + "\n", + " # Size of the square\n", + " w = np.random.randint(2, 4)\n", + "\n", + " for t in range(n_frames):\n", + " x_shift = xstart + directionx * t\n", + " y_shift = ystart + directiony * t\n", + " noisy_movies[i, t, x_shift - w: x_shift + w,\n", + " y_shift - w: y_shift + w, 0] += 1\n", + "\n", + " # Make it more robust by adding noise.\n", + " # The idea is that if during inference,\n", + " # the value of the pixel is not exactly one,\n", + " # we need to train the network to be robust and still\n", + " # consider it as a pixel belonging to a square.\n", + " if np.random.randint(0, 2):\n", + " noise_f = (-1)**np.random.randint(0, 2)\n", + " noisy_movies[i, t,\n", + " x_shift - w - 1: x_shift + w + 1,\n", + " y_shift - w - 1: y_shift + w + 1,\n", + " 0] += noise_f * 0.1\n", + "\n", + " # Shift the ground truth by 1\n", + " x_shift = xstart + directionx * (t + 1)\n", + " y_shift = ystart + directiony * (t + 1)\n", + " shifted_movies[i, t, x_shift - w: x_shift + w,\n", + " y_shift - w: y_shift + w, 0] += 1\n", + "\n", + " # Cut to a 40x40 window\n", + " noisy_movies = noisy_movies[::, ::, 20:60, 20:60, ::]\n", + " shifted_movies = shifted_movies[::, ::, 20:60, 20:60, ::]\n", + " noisy_movies[noisy_movies >= 1] = 1\n", + " shifted_movies[shifted_movies >= 1] = 1\n", + " return noisy_movies, shifted_movies" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Model" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Using TensorFlow backend.\n" + ] + } + ], + "source": [ + "from keras.models import Sequential\n", + "from keras.layers.convolutional import Conv3D\n", + "from keras.layers.convolutional_recurrent import ConvLSTM2D\n", + "from keras.layers.normalization import BatchNormalization\n", + "import numpy as np\n", + "from matplotlib import pyplot as plt\n", + "\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We create a layer which take as input movies of shape `(n_frames, width, height, channels)` and returns a movie\n", + "of identical shape." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "seq = Sequential()\n", + "seq.add(ConvLSTM2D(filters=40, kernel_size=(3, 3),\n", + " input_shape=(None, 40, 40, 1),\n", + " padding='same', return_sequences=True))\n", + "seq.add(BatchNormalization())\n", + "\n", + "seq.add(ConvLSTM2D(filters=40, kernel_size=(3, 3),\n", + " padding='same', return_sequences=True))\n", + "seq.add(BatchNormalization())\n", + "\n", + "seq.add(ConvLSTM2D(filters=40, kernel_size=(3, 3),\n", + " padding='same', return_sequences=True))\n", + "seq.add(BatchNormalization())\n", + "\n", + "seq.add(ConvLSTM2D(filters=40, kernel_size=(3, 3),\n", + " padding='same', return_sequences=True))\n", + "seq.add(BatchNormalization())\n", + "\n", + "seq.add(Conv3D(filters=1, kernel_size=(3, 3, 3),\n", + " activation='sigmoid',\n", + " padding='same', data_format='channels_last'))\n", + "seq.compile(loss='binary_crossentropy', optimizer='adadelta')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Train the Network\n", + "\n", + "#### Beware: This takes time (~3 mins per epoch on my hardware)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Train on 950 samples, validate on 50 samples\n", + "Epoch 1/50\n", + "950/950 [==============================] - 180s - loss: 0.3293 - val_loss: 0.6113\n", + "Epoch 2/50\n", + "950/950 [==============================] - 181s - loss: 0.0629 - val_loss: 0.4206\n", + "Epoch 3/50\n", + "950/950 [==============================] - 180s - loss: 0.0187 - val_loss: 0.2585\n", + "Epoch 4/50\n", + "950/950 [==============================] - 180s - loss: 0.0062 - val_loss: 0.2087\n", + "Epoch 5/50\n", + "950/950 [==============================] - 179s - loss: 0.0134 - val_loss: 0.1884\n", + "Epoch 6/50\n", + "950/950 [==============================] - 180s - loss: 0.0024 - val_loss: 0.1025\n", + "Epoch 7/50\n", + "950/950 [==============================] - 179s - loss: 0.0013 - val_loss: 0.0079\n", + "Epoch 8/50\n", + "950/950 [==============================] - 180s - loss: 8.1664e-04 - val_loss: 7.7649e-04\n", + "Epoch 9/50\n", + "950/950 [==============================] - 180s - loss: 5.9629e-04 - val_loss: 4.9810e-04\n", + "Epoch 10/50\n", + "950/950 [==============================] - 180s - loss: 4.8772e-04 - val_loss: 4.5704e-04\n", + "Epoch 11/50\n", + "950/950 [==============================] - 179s - loss: 4.1252e-04 - val_loss: 3.7326e-04\n", + "Epoch 12/50\n", + "950/950 [==============================] - 180s - loss: 3.6413e-04 - val_loss: 3.3256e-04\n", + "Epoch 13/50\n", + "950/950 [==============================] - 179s - loss: 3.2918e-04 - val_loss: 2.8421e-04\n", + "Epoch 14/50\n", + "950/950 [==============================] - 179s - loss: 2.9520e-04 - val_loss: 2.8827e-04\n", + "Epoch 15/50\n", + "950/950 [==============================] - 179s - loss: 2.7647e-04 - val_loss: 2.5144e-04\n", + "Epoch 16/50\n", + "950/950 [==============================] - 181s - loss: 2.5863e-04 - val_loss: 2.5015e-04\n", + "Epoch 17/50\n", + "950/950 [==============================] - 180s - loss: 2.4067e-04 - val_loss: 2.2645e-04\n", + "Epoch 18/50\n", + "950/950 [==============================] - 180s - loss: 2.2378e-04 - val_loss: 2.1206e-04\n", + "Epoch 19/50\n", + "950/950 [==============================] - 179s - loss: 2.1416e-04 - val_loss: 2.0406e-04\n", + "Epoch 20/50\n", + "950/950 [==============================] - 179s - loss: 2.0244e-04 - val_loss: 1.9820e-04\n", + "Epoch 21/50\n", + " 20/950 [..............................] - ETA: 170s - loss: 1.8054e-04" + ] + }, + { + "ename": "KeyboardInterrupt", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mnoisy_movies\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mshifted_movies\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgenerate_movies\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mn_samples\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1200\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m seq.fit(noisy_movies[:1000], shifted_movies[:1000], batch_size=10,\n\u001b[0;32m----> 4\u001b[0;31m epochs=50, validation_split=0.05)\n\u001b[0m", + "\u001b[0;32m/home/valerio/anaconda3/lib/python3.5/site-packages/keras/models.py\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, **kwargs)\u001b[0m\n\u001b[1;32m 854\u001b[0m \u001b[0mclass_weight\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mclass_weight\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 855\u001b[0m \u001b[0msample_weight\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msample_weight\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 856\u001b[0;31m initial_epoch=initial_epoch)\n\u001b[0m\u001b[1;32m 857\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 858\u001b[0m def evaluate(self, x, y, batch_size=32, verbose=1,\n", + "\u001b[0;32m/home/valerio/anaconda3/lib/python3.5/site-packages/keras/engine/training.py\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, **kwargs)\u001b[0m\n\u001b[1;32m 1496\u001b[0m \u001b[0mval_f\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mval_f\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mval_ins\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mval_ins\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mshuffle\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mshuffle\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1497\u001b[0m \u001b[0mcallback_metrics\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcallback_metrics\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1498\u001b[0;31m initial_epoch=initial_epoch)\n\u001b[0m\u001b[1;32m 1499\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1500\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mevaluate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatch_size\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m32\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mverbose\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msample_weight\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/home/valerio/anaconda3/lib/python3.5/site-packages/keras/engine/training.py\u001b[0m in \u001b[0;36m_fit_loop\u001b[0;34m(self, f, ins, out_labels, batch_size, epochs, verbose, callbacks, val_f, val_ins, shuffle, callback_metrics, initial_epoch)\u001b[0m\n\u001b[1;32m 1150\u001b[0m \u001b[0mbatch_logs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'size'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbatch_ids\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1151\u001b[0m \u001b[0mcallbacks\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mon_batch_begin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbatch_index\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatch_logs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1152\u001b[0;31m \u001b[0mouts\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mins_batch\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1153\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mouts\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlist\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1154\u001b[0m \u001b[0mouts\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mouts\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/home/valerio/anaconda3/lib/python3.5/site-packages/keras/backend/tensorflow_backend.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, inputs)\u001b[0m\n\u001b[1;32m 2227\u001b[0m \u001b[0msession\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mget_session\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2228\u001b[0m updated = session.run(self.outputs + [self.updates_op],\n\u001b[0;32m-> 2229\u001b[0;31m feed_dict=feed_dict)\n\u001b[0m\u001b[1;32m 2230\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mupdated\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moutputs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2231\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/home/valerio/anaconda3/lib/python3.5/site-packages/tensorflow/python/client/session.py\u001b[0m in \u001b[0;36mrun\u001b[0;34m(self, fetches, feed_dict, options, run_metadata)\u001b[0m\n\u001b[1;32m 776\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 777\u001b[0m result = self._run(None, fetches, feed_dict, options_ptr,\n\u001b[0;32m--> 778\u001b[0;31m run_metadata_ptr)\n\u001b[0m\u001b[1;32m 779\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mrun_metadata\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 780\u001b[0m \u001b[0mproto_data\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtf_session\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mTF_GetBuffer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrun_metadata_ptr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/home/valerio/anaconda3/lib/python3.5/site-packages/tensorflow/python/client/session.py\u001b[0m in \u001b[0;36m_run\u001b[0;34m(self, handle, fetches, feed_dict, options, run_metadata)\u001b[0m\n\u001b[1;32m 980\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mfinal_fetches\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0mfinal_targets\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 981\u001b[0m results = self._do_run(handle, final_targets, final_fetches,\n\u001b[0;32m--> 982\u001b[0;31m feed_dict_string, options, run_metadata)\n\u001b[0m\u001b[1;32m 983\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 984\u001b[0m \u001b[0mresults\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/home/valerio/anaconda3/lib/python3.5/site-packages/tensorflow/python/client/session.py\u001b[0m in \u001b[0;36m_do_run\u001b[0;34m(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)\u001b[0m\n\u001b[1;32m 1030\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mhandle\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1031\u001b[0m return self._do_call(_run_fn, self._session, feed_dict, fetch_list,\n\u001b[0;32m-> 1032\u001b[0;31m target_list, options, run_metadata)\n\u001b[0m\u001b[1;32m 1033\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1034\u001b[0m return self._do_call(_prun_fn, self._session, handle, feed_dict,\n", + "\u001b[0;32m/home/valerio/anaconda3/lib/python3.5/site-packages/tensorflow/python/client/session.py\u001b[0m in \u001b[0;36m_do_call\u001b[0;34m(self, fn, *args)\u001b[0m\n\u001b[1;32m 1037\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_do_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfn\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1038\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1039\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1040\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0merrors\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mOpError\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1041\u001b[0m \u001b[0mmessage\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcompat\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mas_text\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0me\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmessage\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/home/valerio/anaconda3/lib/python3.5/site-packages/tensorflow/python/client/session.py\u001b[0m in \u001b[0;36m_run_fn\u001b[0;34m(session, feed_dict, fetch_list, target_list, options, run_metadata)\u001b[0m\n\u001b[1;32m 1019\u001b[0m return tf_session.TF_Run(session, options,\n\u001b[1;32m 1020\u001b[0m \u001b[0mfeed_dict\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfetch_list\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtarget_list\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1021\u001b[0;31m status, run_metadata)\n\u001b[0m\u001b[1;32m 1022\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1023\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_prun_fn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msession\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mhandle\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfeed_dict\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfetch_list\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mKeyboardInterrupt\u001b[0m: " + ] + } + ], + "source": [ + "# Train the network\n", + "noisy_movies, shifted_movies = generate_movies(n_samples=1200)\n", + "seq.fit(noisy_movies[:1000], shifted_movies[:1000], batch_size=10,\n", + " epochs=20, validation_split=0.05)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Test the Network" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# Testing the network on one movie\n", + "# feed it with the first 7 positions and then\n", + "# predict the new positions\n", + "which = 1004\n", + "track = noisy_movies[which][:7, ::, ::, ::]\n", + "\n", + "for j in range(16):\n", + " new_pos = seq.predict(track[np.newaxis, ::, ::, ::, ::])\n", + " new = new_pos[::, -1, ::, ::, ::]\n", + " track = np.concatenate((track, new), axis=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAEgCAYAAACQH/YaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3WtsXPd55/Hfw+GQw6tI6kqJuku+15ZTxRfZybpJ03Vt\nrJO0qDfZNnCxKZwFukGK7YsNukCb7qtg0aS7LxYBnMaIGyT1uk2CeJs0qWPYazu+yrYsyZKsKxWS\n4kUS7xySQ848+2KGNCkOySH/c6HI7wcgODxzef5nyHn4m3P+54y5uwAAALA8ZaUeAAAAwPWMMAUA\nABCAMAUAABCAMAUAABCAMAUAABCAMAUAABCAMAUAABCAMAUAABCAMAUAABCgPOTOZvagpP8lKSLp\n79z96wvdviJS5VXl60JKArjODCa6r7j7xlKPI5ul9DD6F7D25Nq/lh2mzCwi6X9L+pSkdklvmdmz\n7n5ivvtUla/ToW1/uNySAK5DP7/wzYulHkM2S+1h9C9g7cm1f4Xs5rtL0ll3P+/uCUlPS/p0wOMB\nQDHRwwDkRUiY2iapbcbP7Zlls5jZ42Z22MwOJ5LxgHIAkFeL9jD6F4BcFHwCurs/4e4H3f1gRaS6\n0OUAIG/oXwByERKmOiRtn/FzS2YZAFwP6GEA8iIkTL0lab+Z7TazCkmfk/RsfoYFAAVHDwOQF8s+\nms/dJ83sP0v6hdKHFT/p7u/nbWQAUED0MAD5EnSeKXf/maSf5WksBdE+9L6OX/mFbtvwb9VSd2vB\n6hy9/HNdGj6hj7d8UdXRlXcumvjEgF5q/4621t6i2zc+WOrhACvC9dDDVouro216q+sftbfhHu1v\nPFTq4SzLmb5Xda7/dX10yx9ofdX2xe+ANSMoTBXSzy98U5L04O7/UpDHf7Ht7yRJD2z/k4I8/mLe\n6HxGfWPtBVu/lWA1NE8g1MhEn349+J76xto1OjmgydSEysuiqo42qrFym5prb9K6ys2lHuaKU6w3\nwqWuidVhxYapfNlcs08Nlc2qLK8p9VBKKlZeq/u3/bHKyypKPRRgTXB3net/XWf7X5fkqq/YpC01\nNypaFtOkJzSUuKKLg0fUOvi2bl7/Ce2sP1DqIQNYplUfpqJllYpWVJZ6GCVXZhHVVjSVehjAmpEO\nUq8pFqnTHZseUmNszmn4NJ6M6+LAO5pMjZdghADy5boKUzPn/exruFen+17R1dGLSvqEaqMbtK/x\nXm2q3jPrPtdutp3a9TRlaneipFnzibpHzqpr5LQGxrs0nhyWJNVEm7S19hbtrL9TZha0DtnqN8Za\ndHfzo5I+3A15/7Yv6Ezfa+qOn9X45LD2NNyl/Y2HNDY5rPahY7oyelHxyX5NJMdUEalSU6xFexvu\nUW3F+nmfu2vnTCVTE2odfFddIx8oPtEnyVRbsUE76+/U1tqbsq7HlXirLg4e0cB4pyZSCVVGqlRf\nuVk76g9oQ9XO6TlkUvqfyrn+16fvO3O+Qcon1Trwji4Nn1R8ckCmMtVXbNSO+gNqrr1x3nXY23C3\nzvT9Sr2jbUqkRvXRLX+g032vaGC8c955axcGDuuD3pd0Y9PHtXvdwQV/T0CI+ES/zvW/IVNEv7nl\ns6qr2JD1dpWRat3QdL9Snpq1/MM5mP9Rl+MX1DZ0TPHJPq2rbJ7uEe6utqGjah86rpGJXkmumuh6\ntdTdpu11t8/qUYvNmcw27WDmbvrN1ft0pu9X6hu/pJQnta5ys25o/JgaY1vnPNZ4ckSne1/R5fgF\nTfq4aqJN2lX/EcXK63N+/qbGI0nHr/xCx6/8Yvq6qdf3zPlL48lhXRx8V8OJq4pGqvTA9j9ZdJrB\ntVM9cqk5U9fIaV3of0tDE1cVsYjWV+3STU0fV6y8Luf1xOpxXYWpKWOTg3r90g9UFV2nrbW3aCI1\npq6RD/RO90/00S2/r/VVO+a9b1V5vfY23KOLg+9KknbW3zl9XX3FpunLp/telmSZXYS1mkyN6+pY\nm071vqjB8W7dvul3lzX2aFml9jbco47hExqbHNTehntmjG32i9U9qTc7/0kTqTFtqNqpcqtQdeY2\nfWPtOj/wltbHtmtL9X5FyqKKT/Sra+SMeuLndXfz51Rfufhny04kx/RW1z9pMNGj+opN2lZ3m+Su\nK6OtOnr5ZxpOXNUNTffNus9UE4tYVJur9ylWXqex5LD6xy7p0vBJbajaqc3V+yRJl4ZPqDHWoqZY\ny4z1TDfVlCf1VteP1DfWrppok3bU36FUalJdI2f03uWfaihxWTc03T9nzKMTA3rt0g9UE21Uc+3N\nSvmkyssqtKPuDh0b71T70LGs92sbOqYyi2hbLXMhUFgdw+/LlVJzzU3zBqmZyiz7WWpOXn1RfeMd\n2li1Wxurd8v0YUA6evlf1DlySrFInVrqbpNk6o6f1Ymrz6tvrEN3bHooL+syON6tCwOH1VDZrJba\n2zSWHFLXyBm91fWPOrT1C7O2eCeSo3r90tManRxQY+U2NcS2ajw5ovev/lIbqnblXHNb7a2KllWq\nJ35Om6r3qq7iw14WLZu9p6F14G1dHbuojVV71FS/fdlb+ZZSs23ovenbNVa1aGCsS10jH2gocVn3\nbfsjldl1+a8VAa7L33jvWLv2NdyrfY33Ti9rrrlJb3f/SBcGDi8Ypqqj67S/8ZA6MltN5psY/Zub\nP6vqaMOsZe6uY1d+oUvDJ7Rj7IAaYs1LHns0EtP+xkPqHWvX2OTgghOzx5Mjqo2u113Nj6q8LDrr\nuqaqHfrEjv80Zw7U4PhlvdH5tE73vayDW35v0fGc7H1Rg4ke3dD4Me1p+Oj08mRqUu/2/ETnB97Q\nlpr9qq9MB80r8Vad639dVeXrdHfzo3PehY1NDklKz1UrL6vUpeETaoq1ZF3PCwNvq2+sXRuqdukj\nmz8z/Q9lb+O9eu3SD3R+4E1trN4z591v33iH9qy7a05gqo2u16neF9Ux/L72NR6a9Q/q6mib4hN9\naq65SRWRqkWfFyBE39glSQo+4msw0a1DW/9ozlaRS8On1DlySvUVmzL9Id0H9jfepzc7n1HnyClt\nHN6trbU3B9WXpMujF+ZMyP714FGduPpLXRx8V7du+OT08tN9r2h0ckA76z+im9c/ML18Z/0BvX7p\n6ZxrTtVKB5Z9C04G7x37te5p/vx0j1qupdS8HG/VvVv/w6zA9V7PT9U58oG6R87N2aqO1a/gHydT\nCLHyeu1tuHvWso3VuxSL1GlgvCsvNa4NUpJkZtNbsq6MtualzmJubPo3c4KUlN49kG0yeX3lRjVV\nbVfvWJtSnlzwsRPJUXUOn1R9xeZZQUqSImXluqHx45KkzpFT08svDh6RpHk3Zy9lE3fH0PHMYz0w\nK/hURqq1L/P7bR86Nud+FZFq7Wu8Z87ySFm5ttXdqvHkiHriZ2dd1zZ0VJK0ve72nMcHLNd4ckSS\nVBmpnXNdfGJAZ/penfXVOvBO1sfZve6jWXdZT712bmi8f1YfKC+L6samj0mS2jO3CdVQuXVOsGip\nu1Wmsln9NuVJdQ6fVMQqZr3RlaR1lVvUPM+UgVAtdbcHB6ml2ll/56wglR7Hb0hS3v4H4fpyXW6Z\nqq/YKMuyWTxWXqf+8c681EgkR3Vh4LAuxy9odHJASZ+Ydf1YZh5VIZVZZMFdBD3x82obPKrBRLcS\nyVG5Zs+7SCRHFSuf28ynDIx3yeUypXfdXcsz8ziGE73Ty6ae36Vsss9mMpVQfLJflZHarBPjm2Lp\nrYuDiZ4519VVbJx3M/qOujvUOvC22gaPaUvNDZLSz0NP/Kxqok1qqmrJej+gWEYnB2fNIZTSbxB3\nrfvInNuuq9yS9THSrwtTU5YtX42xFpks62tnObKdtqHMIqqIVGsiNTa9bGSiV0mfVGPltjm7xSSp\nKbZ9eh5lPs33HBVStudk6o3kzOcEa8d1GabKs7xQJWUClgc//kRyTK9d+oFGJwe0rnKLttbeomhZ\nTGamydS4Lg6+u+hWn3yoKKued6J768A7OtX7oqJllVpftVOx8jpFLL0Fqyd+TkOJy4uOcepFP5Do\n1kCie97bJT0xfXkyNa5oWUyRLFvLlmJqXkNlJPspK6aWZ5v/MN99pPQWxQ1Vu3RltFXxiX5VRxvU\nMfy+Up5kqxSKpjJSo5GJ3uktVDOtr9o+PdE75Sn9a+v/XPBxspl6HZZZZM51ZVamaKRKiWR8maOf\nbaF+6zP67WQq3Sfm+0DoygJ9UHShHnch2Z4Ty+zo8Tz8D8L157oMU4XWPnxco5MDWY8C6Ru7ND15\nveDmCVIpT+ls/2uqjNTo3q1/OGfrU65b56YawrXzGxa7z0RqVMnURFCgmqqdyPLPRvpwN8l8jXwh\nO+ru0JXRVrUNHdONTR+bMfH8lmWPF1iKxthW9Y616erorzOTw/Mr/TocU8qTcwJVylOaSI7Oeu1M\nvSnza44anJKPUzNM7W6cL8SN5ynczZW9T05N1nfPHm4mU+PL6i9ANtflnKl8MJk0T2OJT/RLkrbU\n7J9z3dShs3mpr/mb20ImkqOaTI2robJ5TpCaTCU0OJ7b5v305nFT31hHzrUbKtOT7nOZM/bhVrW5\nzay8LH1k4lhyWCMTfXOu7x1rkzT7CMtcbazeo1ikTh1D7+tKvFXxib70yRIjsSU/FrAc22rTc4q6\nRs5oOHE174+ffl141tdu31i7PHOS0CnRsvTf/lhyaM7tJ1PjWV+DS1UTbVLEyjWYuKyJLOFs6jWd\nqw+PXFx6j5SkaCQdlLKt88hEX9YAGVoTa9eaDVMVZTElMltYrjV16H7v6OzgNDjeo/P9b+anfuaI\nstHJuS/0xe9brYiVayDRM71pXUpPAD159QVNpEZzepzKSLW21t6kwUS3zva9njXYxSf6FZ8YmP55\n6izNp3pfmj5yb6aZyyrKFl7HbZl37B/0vjSrdiI5Oj2nZDnv6s1M2+tvVyIV17Er/yqJiecorupo\ng/Y23C1XUoe7fzx9dN+1ln0Yf2ZC+Onel2f1sGRqQqd7X5Y0+7VTXlahmmiT+scuzQp37imduvr/\nlPLJZY1jpjKLqLn2ZiU9obN9r826bmC8S53Dp+a5Z3YVmTc/y+mRUjrclVuFeuLnZm0VS6YmdPLq\nCwWpibVrze7ma6raoYFEtw53/0hNsRaVKaK6yo3aVL1XW2tv0YWBwzrZ+6J6x9pUHW1QfKJfPfHz\n2lyzX10jH4TXj+1Q18hpvdvzrDZW7VbEyhUrr9e2usV3RZmZdtTfqQsDb+lXHX+vTdV7lfKUesfa\nNJEcU1Nse87vAm9Z/wmNTPTrbP+rmXNCbVNFpFrjyRGNJK5qINGtOzY+NH1E0YbqXdrbcLfO9b+h\nl9uf0uaavYpF6pRIxtU33qF1lc3TJwWsiTaqMlKrzuEPVKYyxcrrZUqfHLUqWq/d6w7qSrxVPfFz\n+lXH97SxereSqQl1jZxRIhXX7nUHs541OhctdbfpbN/rGk8Oqza6IevJBYFC2ttwj1yuc/1v6I3O\np1VfsVnrKrekP04mNabRyUFdHfu1JKlpiX/nW2tvVk/8nLpGTuuVjqe0KXNet574OY1ODmhLzY1z\nTouwe91BHb/yr3q982ltqblBZRZR72ibXCnVVWzUUOJy8Drf0Hi/ro7+WhcH39HgePf0eaa6Rj7Q\nxurd6omfy/mxGiq3KmLlujjwjiaSo9Pzx3asuzPrBPdrlVlEO9fdqXP9b+jVju9pc/U+uVxXRi8q\nFqnNOh8ttCbWrjUbpvY23KPJ1Lh64ufVP3ZJLtfW2lu0qXqvYuW1urv53+uDvpfVN9ahK6Otqok2\n6ZYNn9T62I68hKntdbdpbHJQnSMf6MLAYblSaoy15BSmpPT5ZCoi1WofOqa2oaMqL6vUhthO7W+8\nT2f65x6ZN5/yskrd3fyo2oaOqnP4lLpHzijpSVVGqlUdbdBNTQ9ofdXOObUbKpt1cfBdXY6f12Rq\ncvoM6DPnJZmV6SObH9EHvS+ra+S0JjMT2Rti21QVrVeZRXRwy++rdfBtdQ6f0sXBd2UqU13FRt1U\n/8C8Z1/PRWWkRhurd6knfk7b69kqheIzM+1vPKTmmpvUNnRUvWNt6hw5pWTmg46ryhu0ve4Oba29\neVkfdHzHxofVFGtR+9D706f+qI02adf6T2hH3R1zbp/eUuVqHXhHHUMnFI1UalP1Xt3QeL/e7fm/\noasrKb3F/Z7mz+l03yvqiZ/XQKIr3TvX/7aqyuuXFKaikZgObPp3Otv/ujqGT0wfUd1ce3POwWZf\nwyFFLKq2oWNqGzqmykiNmmtv1L6Ge/Vyx1MFqYm1yeabnFcI6yq3+KFtf1i0evjQcKJXr3R8Vy11\nv6HbNnyq1MMpOHfXS+1PKpEc0W/t+BITTUvo5xe++ba7X/ef30P/AtaeXPvXmp0ztdbEMxNMY5G1\n8blRXSOnNTo5oK21txCkAAAFtWZ3860VQ4nLujR8UpeGT0kyba7ZV+ohFdT5/jc1kRpT29AxRSyq\nPQ13lXpIAIBVjjC1yg2M9+ji4BHVRpt064bfzulDV69np/tekalMtRXrdWPTx6ePzAQAoFAIU6tc\nS92tC35g52ozdWZpAACKhTlTAAAAAQhTAAAAAQhTAAAAAQhTAAAAAYImoJtZq6QhSUlJk6vhxHwo\nrp+++myph5DVw4ceKfUQUAT0MISgf2FKPo7m+y13v5KHxwGAUqCHAQjCbj4AAIAAoWHKJf3SzN42\ns8ez3cDMHjezw2Z2OJGMB5YDgLxasIfRvwDkInQ33/3u3mFmmyQ9Z2an3P2lmTdw9yckPSGlPyg0\nsB4A5NOCPYz+BSAXQVum3L0j871H0o8l8UFoAK4b9DAA+bDsMGVmNWZWN3VZ0u9IOp6vgQFAIdHD\nAORLyG6+zZJ+bGZTj/MDd/95XkYFAIVHDwOQF8sOU+5+XtIdeRwLABQNPQxAvnBqBAAAgACEKQAA\ngACEKQAAgACEKQAAgACEKQAAgACEKQAAgACEKQAAgACEKQAAgACEKQAAgACEKQAAgACEKQAAgACE\nKQAAgACEKQAAgACEKQAAgACEKQAAgACEKQAAgACEKQAAgACEKQAAgACEKQAAgACEKQAAgACEKQAA\ngACEKQAAgACLhikze9LMeszs+IxlTWb2nJmdyXxvLOwwAWB56GEACi2XLVPflfTgNcu+Kul5d98v\n6fnMzwCwEn1X9DAABbRomHL3lyT1XrP405Keylx+StJn8jwuAMgLehiAQlvunKnN7t6ZudwlaXOe\nxgMAxUAPA5A3wRPQ3d0l+XzXm9njZnbYzA4nkvHQcgCQVwv1MPoXgFwsN0x1m1mzJGW+98x3Q3d/\nwt0PuvvBikj1MssBQF7l1MPoXwBysdww9aykxzKXH5P0k/wMBwCKgh4GIG/KF7uBmf2DpAckbTCz\ndkl/Jenrkp4xsy9Kuijp0UIOEqvXw4ceKfUQsMrRw1Ao9C9MWTRMufvn57nqk3keCwDkHT0MQKFx\nBnQAAIAAhCkAAIAAhCkAAIAAhCkAAIAAhCkAAIAAhCkAAIAAhCkAAIAAhCkAAIAAhCkAAIAAhCkA\nAIAAhCkAAIAAhCkAAIAAhCkAAIAAhCkAAIAAhCkAAIAAhCkAAIAAhCkAAIAAhCkAAIAAhCkAAIAA\nhCkAAIAAhCkAAIAAhCkAAIAAhCkAAIAAi4YpM3vSzHrM7PiMZV8zsw4zO5L5eqiwwwSA5aGHASi0\nXLZMfVfSg1mW/627H8h8/Sy/wwKAvPmu6GEACmjRMOXuL0nqLcJYACDv6GEACi1kztSXzexoZhN6\n43w3MrPHzeywmR1OJOMB5QAgrxbtYfQvALlYbpj6lqQ9kg5I6pT0jflu6O5PuPtBdz9YEaleZjkA\nyKucehj9C0AulhWm3L3b3ZPunpL0bUl35XdYAFA49DAA+bSsMGVmzTN+/Kyk4/PdFgBWGnoYgHwq\nX+wGZvYPkh6QtMHM2iX9laQHzOyAJJfUKulLBRwjsKL89NVnSz2ErB4+9Eiph7Ai0cOAD9G/CmPR\nMOXun8+y+DsFGAsA5B09DEChcQZ0AACAAIQpAACAAIQpAACAAIQpAACAAItOQF9NEi1NpR5C3lS0\n8+kYwFpC/wJWLrZMAQAABCBMAQAABCBMAQAABCBMAQAABCBMAQAABFhTR/PN57lnvlvqIWT1qUf/\nuNRDALDC0b+A0mPLFAAAQADCFAAAQADCFAAAQADCFAAAQADCFAAAQADCFAAAQADCFAAAQADCFAAA\nQADCFAAAQADCFAAAQADCFAAAQADCFAAAQIBFw5SZbTezF8zshJm9b2ZfySxvMrPnzOxM5ntj4YcL\nALmjfwEohly2TE1K+nN3v0XSPZL+1MxukfRVSc+7+35Jz2d+BoCVhP4FoOAWDVPu3unu72QuD0k6\nKWmbpE9Leipzs6ckfaZQgwSA5aB/ASiG8qXc2Mx2SbpT0huSNrt7Z+aqLkmb57nP45Iel6RYpG65\n4wSAIPQvAIWS8wR0M6uV9ENJf+bugzOvc3eX5Nnu5+5PuPtBdz9YEakOGiwALAf9C0Ah5RSmzCyq\ndCP6vrv/KLO428yaM9c3S+opzBABYPnoXwAKLZej+UzSdySddPdvzrjqWUmPZS4/Jukn+R8eACwf\n/QtAMeQyZ+o+SV+QdMzMjmSW/YWkr0t6xsy+KOmipEcLM0QAWDb6F4CCWzRMufsrkmyeqz+Z3+EA\nQP7QvwAUA2dABwAACECYAgAACECYAgAACECYAgAACLCkM6ADkB4+9EiphwAAy0L/Kgy2TAEAAAQg\nTAEAAAQgTAEAAAQgTAEAAAQgTAEAAARYU0fzVbT3lnoIS3K9jRdA4Vxv/eB6Gy8Qgi1TAAAAAQhT\nAAAAAQhTAAAAAQhTAAAAAQhTAAAAAQhTAAAAAQhTAAAAAQhTAAAAAQhTAAAAAQhTAAAAAQhTAAAA\nARYNU2a23cxeMLMTZva+mX0ls/xrZtZhZkcyXw8VfrgAkDv6F4BiyOWDjicl/bm7v2NmdZLeNrPn\nMtf9rbv/TeGGl1+Trb/OuvxXY6kijyQ3841Xksp37SjiSIDrFv2rROhfWEsWDVPu3impM3N5yMxO\nStpW6IEBQCj6F4BiWNKcKTPbJelOSW9kFn3ZzI6a2ZNm1pjnsQFA3tC/ABRKzmHKzGol/VDSn7n7\noKRvSdoj6YDS7/y+Mc/9Hjezw2Z2OJGM52HIALA09C8AhZRTmDKzqNKN6Pvu/iNJcvdud0+6e0rS\ntyXdle2+7v6Eux9094MVkep8jRsAckL/AlBouRzNZ5K+I+mku39zxvLmGTf7rKTj+R8eACwf/QtA\nMeRyNN99kr4g6ZiZHcks+wtJnzezA5JcUqukLxVkhACwfPQvAAWXy9F8r0iyLFf9LP/DAYD8oX8B\nKAbOgA4AABCAMAUAABCAMAUAABCAMAUAABAgl6P5VqSfvvrsku8z32dY3RfLX6ZcqZ+TBWDloH8B\nqwtbpgAAAAIQpgAAAAIQpgAAAAIQpgAAAAIQpgAAAAIQpgAAAAIQpgAAAAIQpgAAAAIQpgAAAAIQ\npgAAAAIQpgAAAAIQpgAAAAIQpgAAAAIQpgAAAAIQpgAAAAIQpgAAAAIQpgAAAAIQpgAAAAKUL3YD\nM4tJeklSZeb2/+Tuf2VmTZL+j6RdklolPerufYUbauH8aiyVt8f673s+suT7/OX5d5a0XJLuix1Z\nUo2HDz2ypNsDqwH9a2noX8Dy5LJlalzSJ9z9DkkHJD1oZvdI+qqk5919v6TnMz8DwEpC/wJQcIuG\nKU8bzvwYzXy5pE9Leiqz/ClJnynICAFgmehfAIohpzlTZhYxsyOSeiQ95+5vSNrs7p2Zm3RJ2lyg\nMQLAstG/ABRaTmHK3ZPufkBSi6S7zOy2a653pd/tzWFmj5vZYTM7nEjGgwcMAEtB/wJQaEs6ms/d\n+yW9IOlBSd1m1ixJme8989znCXc/6O4HKyLVoeMFgGWhfwEolEXDlJltNLOGzOUqSZ+SdErSs5Ie\ny9zsMUk/KdQgAWA56F8AimHRUyNIapb0lJlFlA5fz7j7P5vZa5KeMbMvSroo6dECjjMv7osV/rRa\n5bt2LPk+Sz1MGEDO6F9LQP8ClmfRMOXuRyXdmWX5VUmfLMSgACAf6F8AioEzoAMAAAQgTAEAAAQg\nTAEAAAQgTAEAAAQgTAEAAAQgTAEAAAQgTAEAAAQgTAEAAAQgTAEAAAQgTAEAAAQgTAEAAATI5YOO\nV6SHDz1S6iEAwLLQv4DVhS1TAAAAAQhTAAAAAQhTAAAAAQhTAAAAAQhTAAAAAa7bo/lWE47sAXC9\non8BbJkCAAAIQpgCAAAIQJgCAAAIQJgCAAAIQJgCAAAIsGiYMrOYmb1pZu+Z2ftm9teZ5V8zsw4z\nO5L5eqjwwwWA3NG/ABRDLqdGGJf0CXcfNrOopFfM7F8y1/2tu/9N4YYHAEHoXwAKbtEw5e4uaTjz\nYzTz5YUcFADkA/0LQDHkNGfKzCJmdkRSj6Tn3P2NzFVfNrOjZvakmTXOc9/HzeywmR1OJON5GjYA\n5Ib+BaDQcgpT7p509wOSWiTdZWa3SfqWpD2SDkjqlPSNee77hLsfdPeDFZHqPA0bAHJD/wJQaEs6\nms/d+yW9IOlBd+/ONKmUpG9LuqsQAwSAfKB/ASiUXI7m22hmDZnLVZI+JemUmTXPuNlnJR0vzBAB\nYHnoXwCKIZej+ZolPWVmEaXD1zPu/s9m9j0zO6D0ZM5WSV8q3DABYFnoXwAKLpej+Y5KujPL8i8U\nZEQAkCf0LwDFwBnQAQAAAhCmAAAAAhCmAAAAAhCmAAAAAhCmAAAAAhCmAAAAAhCmAAAAAhCmAAAA\nAhCmAAAAAhCmAAAAAhCmAAAAAhCmAAAAAhCmAAAAAhCmAAAAAhCmAAAAAhCmAAAAAhCmAAAAAhCm\nAAAAAhCmAAAAAhCmAAAAAhCmAAAAAhCmAAAAAhCmAAAAApi7F6+Y2WVJFzM/bpB0pWjF51rL9dfy\nupe6/lpc953uvrHINfOO/kX9FVB7rddfsf2rqGFqVmGzw+5+sCTF13j9tbzupa6/ltd9NSn180h9\nXsNrsX47AaGjAAAEOElEQVSp130h7OYDAAAIQJgCAAAIUMow9UQJa6/1+mt53Utdfy2v+2pS6ueR\n+muz9lqvX+p1n1fJ5kwBAACsBuzmAwAACFCSMGVmD5rZB2Z21sy+WuTarWZ2zMyOmNnhItR70sx6\nzOz4jGVNZvacmZ3JfG8scv2vmVlH5jk4YmYPFaj2djN7wcxOmNn7ZvaVzPKirP8C9Yu1/jEze9PM\n3svU/+vM8oKv/wK1i7Luq1kp+1em/prpYaXsX5laJetha7l/LVJ/Rfawou/mM7OIpNOSPiWpXdJb\nkj7v7ieKVL9V0kF3L8q5Kszs45KGJf29u9+WWfY/JPW6+9czzbjR3f9rEet/TdKwu/9NIWrOqN0s\nqdnd3zGzOklvS/qMpD9WEdZ/gfqPqjjrb5Jq3H3YzKKSXpH0FUm/pwKv/wK1H1QR1n21KnX/yoyh\nVWukh5Wyf2VqlayHreX+tUj9FdnDSrFl6i5JZ939vLsnJD0t6dMlGEdRuPtLknqvWfxpSU9lLj+l\n9AukmPWLwt073f2dzOUhSSclbVOR1n+B+kXhacOZH6OZL1cR1n+B2gizpvqXVNoeVsr+lalfsh62\nlvvXIvVXpFKEqW2S2mb83K4i/oEo/cv4pZm9bWaPF7HuTJvdvTNzuUvS5hKM4ctmdjSzGb1guxmn\nmNkuSXdKekMlWP9r6ktFWn8zi5jZEUk9kp5z96Kt/zy1pSL/7leZUvcviR4mleBvuJQ9bC32rwXq\nSyuwh63FCej3u/sBSb8r6U8zm5FLxtP7WYudtr8laY+kA5I6JX2jkMXMrFbSDyX9mbsPzryuGOuf\npX7R1t/dk5m/txZJd5nZbddcX7D1n6d2UX/3KIi13sOK/jdcyh62VvvXAvVXZA8rRZjqkLR9xs8t\nmWVF4e4dme89kn6s9Gb7YuvO7A+f2i/eU8zi7t6d+SNNSfq2CvgcZPZ1/1DS9939R5nFRVv/bPWL\nuf5T3L1f0gtK7+8v6u9/Zu1SrPsqU9L+JdHDiv03XMoeRv+aW3+l9rBShKm3JO03s91mViHpc5Ke\nLUZhM6vJTOSTmdVI+h1Jxxe+V0E8K+mxzOXHJP2kmMWnXggZn1WBnoPMBMLvSDrp7t+ccVVR1n++\n+kVc/41m1pC5XKX0pOVTKsL6z1e7WOu+ipWsf0n0MKl4r99MrZL1sLXcvxaqv2J7mLsX/UvSQ0of\nEXNO0n8rYt09kt7LfL1fjNqS/kHpTZETSs+v+KKk9ZKel3RG0i8lNRW5/vckHZN0VOkXRnOBat+v\n9Cbgo5KOZL4eKtb6L1C/WOt/u6R3M3WOS/rLzPKCr/8CtYuy7qv5q1T9K1N7TfWwUvavTP2S9bC1\n3L8Wqb8iexhnQAcAAAiwFiegAwAA5A1hCgAAIABhCgAAIABhCgAAIABhCgAAIABhCgAAIABhCgAA\nIABhCgAAIMD/B5e1KlbuCk5JAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAEgCAYAAACQH/YaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3WtsXPd55/Hfw+HwToqkrpSou+R7bdlVfFGcrJs0XdfZ\nzaXdepNtAxeb1lmgG6TYvtggC7RpXgWLJt19sQjgNEbcIKnhNgnibdKkjmGv7fgSy7ItyZKsK2WK\n4kUS7xySQ848+2IOaVIckiP+5yJpvh+A4PDM5fmfIefhb875nzPm7gIAAMDKVJR6AAAAANcywhQA\nAEAAwhQAAEAAwhQAAEAAwhQAAEAAwhQAAEAAwhQAAEAAwhQAAEAAwhQAAECAypA7m9mDkv63pJik\nv3P3ry91+6pYrddWrgopCeAaM5zsvejua0s9jmyupIfRv4Dyk2v/WnGYMrOYpP8j6WOSzkl63cye\ndvcji92ntnKV9m36w5WWBHAN+vmZb54t9RiyudIeRv8Cyk+u/StkN9/dkk66+2l3T0p6UtInAx4P\nAIqJHgYgL0LC1CZJnXN+Phctm8fMHjWz/Wa2P5lKBJQDgLxatofRvwDkouAT0N39MXff6+57q2J1\nhS4HAHlD/wKQi5Aw1SVp85yf26NlAHAtoIcByIuQMPW6pN1mtt3MqiR9RtLT+RkWABQcPQxAXqz4\naD53nzaz/yrpF8ocVvy4u7+Tt5EBQAHRwwDkS9B5ptz9Z5J+lqexFMS5kXd0+OIvdNuaf6v2xlsL\nVufghZ/r/OgRfbj986qLX33noklMDemFc9/RxoZbdPvaB0s9HOCqcC30sOvFpfFOvd7zj9rZfK92\nt+wr9XBW5MTAyzo1+Ko+sOEPtLp28/J3QNkIClOF9PMz35QkPbj9vxXk8Z/v/DtJ0gOb/6Qgj7+c\n17qf0sDEuYKt39XgemieQKixqQG9N/y2BibOaXx6SNPpKVVWxFUXb1FL9Sa1NdykVdXrSz3Mq06x\n3giXuiauD1dtmMqX9fW71FzdpurK+lIPpaRqKht0/6Y/VmVFVamHApQFd9epwVd1cvBVSa6mqnXa\nUH+j4hU1mvakRpIXdXb4LXUMv6GbV39EW5v2lHrIAFboug9T8YpqxauqSz2MkquwmBqqWks9DKBs\nZILUK6qJNeqOdQ+ppWbBafg0mUro7NABTacnSzBCAPlyTYWpufN+djXfp+MDL+nS+FmlfEoN8TXa\n1XKf1tXtmHefyzfbzux6mjGzO1HSvPlEvWMn1TN2XEOTPZpMjUqS6uOt2thwi7Y23SkzC1qHbPVb\natp1T9vDkt7fDXn/ps/pxMAr6k2c1OT0qHY0363dLfs0MT2qcyOHdHH8rBLTg5pKTagqVqvWmnbt\nbL5XDVWrF33uLp8zlUpPqWP4TfWMvavE1IAkU0PVGm1tulMbG27Kuh4XEx06O/yWhia7NZVOqjpW\nq6bq9drStEdrarfOziGTMv9UTg2+OnvfufMN0j6tjqEDOj96VInpIZkq1FS1Vlua9qit4cZF12Fn\n8z06MfAr9Y93Kpke1wc2/IGOD7ykocnuReetnRnar3f7X9CNrR/W9lV7l/w9ASESU4M6NfiaTDH9\n5oZPq7FqTdbbVcfqdEPr/Up7et7y9+dg/mddSJxR58ghJaYHtKq6bbZHuLs6Rw7q3MhhjU31S3LV\nx1ervfE2bW68fV6PWm7OZLZpB3N306+v26UTA7/SwOR5pT2lVdXrdUPLh9RSs3HBY02mxnS8/yVd\nSJzRtE+qPt6qbU13qaayKefnb2Y8knT44i90+OIvZq+beX3Pnb80mRrV2eE3NZq8pHisVg9s/pNl\npxlcPtUjl5pz9Ywd15nB1zUydUkxi2l17Tbd1Pph1VQ25ryeuH5cU2FqxsT0sF49/wPVxldpY8Mt\nmkpPqGfsXR3o/Yk+sOH3tbp2y6L3ra1s0s7me3V2+E1J0tamO2eva6paN3v5+MCLkizaRdig6fSk\nLk106lj/8xqe7NXt6353RWOPV1RrZ/O96ho9oonpYe1svnfO2Oa/WN1T+nX3P2kqPaE1tVtVaVWq\ni24zMHFOp4de1+qazdpQt1uxirgSU4PqGTuhvsRp3dP2GTVVL//ZslOpCb3e808aTvapqWqdNjXe\nJrnr4niHDl74mUaTl3RD6wfn3WemicUsrvV1u1RT2aiJ1KgGJ87r/OhRrandqvV1uyRJ50ePqKWm\nXa017XPWM9NU057S6z0/0sDEOdXHW7Wl6Q6l09PqGTuhty/8VCPJC7qh9f4FYx6fGtIr53+g+niL\n2hpuVtqnVVlRpS2Nd+jQZLfOjRzKer/OkUOqsJg2NTAXAoXVNfqOXGm11d+0aJCaq8Kyn6Xm6KXn\nNTDZpbW127W2brtM7wekgxf+Rd1jx1QTa1R7422STL2Jkzpy6VkNTHTpjnUP5WVdhid7dWZov5qr\n29TecJsmUiPqGTuh13v+Ufs2fm7eFu9kalyvnn9S49NDaqnepOaajZpMjemdS7/UmtptOdfc1HCr\n4hXV6kuc0rq6nWqser+XxSvm72noGHpDlybOam3tDrU2bV7xVr4rqdk58vbs7Vpq2zU00aOesXc1\nkrygD276I1XYNfmvFQGuyd94/8Q57Wq+T7ta7ptd1lZ/k97o/ZHODO1fMkzVxVdpd8s+dUVbTRab\nGP2b6z+tunjzvGXurkMXf6Hzo0e0ZWKPmmvarnjs8ViNdrfsU//EOU1MDy85MXsyNaaG+Grd3faw\nKivi865rrd2ij2z5LwvmQA1PXtBr3U/q+MCL2rvh95Ydz9H+5zWc7NMNLR/SjuYPzC5Ppaf1Zt9P\ndHroNW2o362m6kzQvJjo0KnBV1VbuUr3tD284F3YxPSIpMxctcqKap0fPaLWmvas63lm6A0NTJzT\nmtptumv9p2b/oexsuU+vnP+BTg/9Wmvrdix49zsw2aUdq+5eEJga4qt1rP95dY2+o10t++b9g7o0\n3qnE1IDa6m9SVax22ecFCDEwcV6Sgo/4Gk72at/GP1qwVeT86DF1jx1TU9W6qD9k+sDulg/q191P\nqXvsmNaObtfGhpuD6kvShfEzCyZkvzd8UEcu/VJnh9/UrWs+Orv8+MBLGp8e0tamu3Tz6gdml29t\n2qNXzz+Zc82ZWpnAsmvJyeD9E+/p3rbPzvaolbqSmhcSHbpv43+aF7je7vupusfeVe/YqQVb1XH9\nK/jHyRRCTWWTdjbfM2/Z2rptqok1amiyJy81Lg9SkmRms1uyLo535KXOcm5s/TcLgpSU2T2QbTJ5\nU/VatdZuVv9Ep9KeWvKxk6lxdY8eVVPV+nlBSpJiFZW6oeXDkqTusWOzy88OvyVJi27OvpJN3F0j\nh6PHemBe8KmO1WlX9Ps9N3Jowf2qYnXa1XLvguWxikptarxVk6kx9SVOzruuc+SgJGlz4+05jw9Y\nqcnUmCSpOtaw4LrE1JBODLw876tj6EDWx9m+6gNZd1nPvHZuaLl/Xh+orIjrxtYPSZLORbcJ1Vy9\ncUGwaG+8VaaKef027Sl1jx5VzKrmvdGVpFXVG9S2yJSBUO2NtwcHqSu1tenOeUEqM47fkKS8/Q/C\nteWa3DLVVLVWlmWzeE1lowYnu/NSI5ka15mh/bqQOKPx6SGlfGre9RPRPKpCqrDYkrsI+hKn1Tl8\nUMPJXiVT43LNn3eRTI2rpnJhM58xNNkjl8uU2XV3OY/mcYwm+2eXzTy/V7LJPpvpdFKJ6UFVxxqy\nToxvrclsXRxO9i24rrFq7aKb0bc03qGOoTfUOXxIG+pvkJR5HvoSJ1Ufb1VrbXvW+wHFMj49PG8O\noZR5g7ht1V0LbruqekPWx8i8LkytWbZ8tdS0y2RZXzsrke20DRUWU1WsTlPpidllY1P9Svm0Wqo3\nLdgtJkmtNZtn51Hm02LPUSFle05m3kjOfU5QPq7JMFWZ5YUqKQpYHvz4U6kJvXL+BxqfHtKq6g3a\n2HCL4hU1MjNNpyd1dvjNZbf65ENVRd2iE907hg7oWP/zildUa3XtVtVUNipmmS1YfYlTGkleWHaM\nMy/6oWSvhpK9i94u5cnZy9PpScUrahTLsrXsSszMa6iOZT9lxczybPMfFruPlNmiuKZ2my6Odygx\nNai6eLO6Rt9R2lNslULRVMfqNTbVP7uFaq7VtZtnJ3qnPa1/7fhfSz5ONjOvwwqLLbiuwioUj9Uq\nmUqscPTzLdVvfU6/nU5n+sRiHwhdXaAPii7U4y4l23Ni0Y4ez8P/IFx7rskwVWjnRg9rfHoo61Eg\nAxPnZyevF9wiQSrtaZ0cfEXVsXrdt/EPF2x9ynXr3ExDuHx+w3L3mUqPK5WeCgpUM7WTWf7ZSO/v\nJlmskS9lS+Mdujjeoc6RQ7qx9UNzJp7fsuLxAleipWaj+ic6dWn8vWhyeH5lXocTSntqQaBKe1pT\nqfF5r52ZN2V+2VGDM/JxaoaZ3Y2LhbjJPIW7hbL3yZnJ+u7Zw810enJF/QXI5pqcM5UPJpMWaSyJ\nqUFJ0ob63Quumzl0Ni/1tXhzW8pUalzT6Uk1V7ctCFLT6aSGJ3PbvJ/ZPG4amOjKuXZzdWbSfS5z\nxt7fqrawmVVWZI5MnEiNamxqYMH1/ROdkuYfYZmrtXU7VBNrVNfIO7qY6FBiaiBzssRYzRU/FrAS\nmxoyc4p6xk5oNHkp74+feV141tfuwMQ5eXSS0Bnxiszf/kRqZMHtp9OTWV+DV6o+3qqYVWo4eUFT\nWcLZzGs6V+8fuXjlPVKS4rFMUMq2zmNTA1kDZGhNlK+yDVNVFTVKRltYLjdz6H7/+PzgNDzZp9OD\nv85P/eiIsvHphS/05e9bp5hVaijZN7tpXcpMAD166TlNpcdzepzqWJ02Ntyk4WSvTg68mjXYJaYG\nlZgamv155izNx/pfmD1yb665y6oqll7HTdE79nf7X5hXO5kan51TspJ39WamzU23K5lO6NDFf5XE\nxHMUV128WTub75Erpf29P549uu9yKz6MP5oQfrz/xXk9LJWe0vH+FyXNf+1UVlSpPt6qwYnz88Kd\ne1rHLv0/pX16ReOYq8Jiamu4WSlP6uTAK/OuG5rsUffosUXumV1V9OZnJT1SyoS7SqtSX+LUvK1i\nqfSUjl56riA1Ub7Kdjdfa+0WDSV7tb/3R2qtaVeFYmqsXqt1dTu1seEWnRnar6P9z6t/olN18WYl\npgbVlzit9fW71TP2bnj9mi3qGTuuN/ue1tra7YpZpWoqm7SpcfldUWamLU136szQ6/pV199rXd1O\npT2t/olOTaUm1FqzOed3gbes/ojGpgZ1cvDl6JxQm1QVq9NkakxjyUsaSvbqjrUPzR5RtKZum3Y2\n36NTg6/pxXNPaH39TtXEGpVMJTQw2aVV1W2zJwWsj7eoOtag7tF3VaEK1VQ2yZQ5OWptvEnbV+3V\nxUSH+hKn9Kuu72lt3Xal0lPqGTuhZDqh7av2Zj1rdC7aG2/TyYFXNZkaVUN8TdaTCwKFtLP5Xrlc\npwZf02vdT6qpar1WVW/IfJxMekLj08O6NPGeJKn1Cv/ONzbcrL7EKfWMHddLXU9oXXRet77EKY1P\nD2lD/Y0LTouwfdVeHb74r3q1+0ltqL9BFRZT/3inXGk1Vq3VSPJC8Drf0HK/Lo2/p7PDBzQ82Tt7\nnqmesXe1tm67+hKncn6s5uqNilmlzg4d0FRqfHb+2JZVd2ad4H65Cotp66o7dWrwNb3c9T2tr9sl\nl+vi+FnVxBqyzkcLrYnyVbZhamfzvZpOT6ovcVqDE+flcm1suEXr6naqprJB97T9R7078KIGJrp0\ncbxD9fFW3bLmo1pdsyUvYWpz422amB5W99i7OjO0X660WmracwpTUuZ8MlWxOp0bOaTOkYOqrKjW\nmpqt2t3yQZ0YXHhk3mIqK6p1T9vD6hw5qO7RY+odO6GUp1Qdq1NdvFk3tT6g1bVbF9Rurm7T2eE3\ndSFxWtPp6dkzoM+dl2RWobvWf0Lv9r+onrHjmo4msjfXbFJtvEkVFtPeDb+vjuE31D16TGeH35Sp\nQo1Va3VT0wOLnn09F9Wxeq2t26a+xCltbmKrFIrPzLS7ZZ/a6m9S58hB9U90qnvsmFLRBx3XVjZr\nc+Md2thw84o+6PiOtR9Xa027zo28M3vqj4Z4q7at/oi2NN6x4PaZLVWujqED6ho5onisWuvqduqG\nlvv1Zt//DV1dSZkt7ve2fUbHB15SX+K0hpI9md65+rdVW9l0RWEqHqvRnnX/XicHX1XX6JHZI6rb\nGm7OOdjsat6nmMXVOXJInSOHVB2rV1vDjdrVfJ9e7HqiIDVRnmyxyXmFsKp6g+/b9IdFq4f3jSb7\n9VLXd9Xe+Bu6bc3HSj2cgnN3vXDucSVTY/qtLV9gomkJ/fzMN99w92v+83voX0D5ybV/le2cqXKT\niCaY1sTK43OjesaOa3x6SBsbbiFIAQAKqmx385WLkeQFnR89qvOjxySZ1tfvKvWQ5pnueC+vj9fh\nxzSlpLp0RjHFtHWkXdOj+a2xmMpti3+MEYDrT777VynRv8IQpq5zQ5N9Ojv8lhrirbp1zW/n9KGr\n17KTOiyTqV5N2q3bVWPFP6EfAKC8EKauc+2Nty75gZ3Xm9+2/1DqIQAAygxzpgAAAAIQpgAAAAIQ\npgAAAAIQpgAAAAIETUA3sw5JI5JSkqavhxPz4erxl6cPlHoIWX1tx12lHgLyhB6GQqF/lZd8HM33\nW+5+MQ+PAwClQA8DEITdfAAAAAFCw5RL+qWZvWFmj2a7gZk9amb7zWx/MpUILAcAebVkD6N/AchF\n6G6++929y8zWSXrGzI65+wtzb+Duj0l6TMp8UGhgPQDIpyV7GP0LQC6Ctky5e1f0vU/SjyXdnY9B\nAUAx0MMA5MOKw5SZ1ZtZ48xlSb8j6XC+BgYAhUQPA5AvIbv51kv6sZnNPM4P3P3neRkVABQePQxA\nXqw4TLn7aUl35HEsAFA09DAA+cKpEQAAAAIQpgAAAAIQpgAAAAIQpgAAAAIQpgAAAAIQpgAAAAIQ\npgAAAAIQpgAAAAIQpgAAAAIQpgAAAAIQpgAAAAIQpgAAAAIQpgAAAAIQpgAAAAIQpgAAAAIQpgAA\nAAIQpgAAAAIQpgAAAAIQpgAAAAIQpgAAAAIQpgAAAAIQpgAAAAIsG6bM7HEz6zOzw3OWtZrZM2Z2\nIvreUthhAsDK0MMAFFouW6a+K+nBy5Z9WdKz7r5b0rPRzwBwNfqu6GEACmjZMOXuL0jqv2zxJyU9\nEV1+QtKn8jwuAMgLehiAQlvpnKn17t4dXe6RtD5P4wGAYqCHAcib4Ano7u6SfLHrzexRM9tvZvuT\nqURoOQDIq6V6GP0LQC5WGqZ6zaxNkqLvfYvd0N0fc/e97r63Kla3wnIAkFc59TD6F4BcrDRMPS3p\nkejyI5J+kp/hAEBR0MMA5E3lcjcws3+Q9ICkNWZ2TtJfSfq6pKfM7POSzkp6uJCDRHn62o67Sj0E\nXAfoYSgF+ld5WTZMuftnF7nqo3keCwDkHT0MQKFxBnQAAIAAhCkAAIAAhCkAAIAAhCkAAIAAy05A\nBwqpctuWUg8BAFaE/oUZbJkCAAAIQJgCAAAIQJgCAAAIQJgCAAAIQJgCAAAIQJgCAAAIQJgCAAAI\nQJgCAAAIQJgCAAAIQJgCAAAIQJgCAAAIQJgCAAAIwAcdA1douuO9Ug8hb/igVqC80L8Kgy1TAAAA\nAQhTAAAAAQhTAAAAAQhTAAAAAQhTAAAAAZY9ms/MHpf07yT1uftt0bKvSvpTSReim33F3X9WqEEC\n14K/PH2g1EPI6ms77ir1EEqKHgYsj/4VJpctU9+V9GCW5X/r7nuiL5oQgKvVd0UPA1BAy4Ypd39B\nUn8RxgIAeUcPA1BoIXOmvmhmB83scTNrWexGZvaome03s/3JVCKgHADk1bI9jP4FIBcrDVPfkrRD\n0h5J3ZK+sdgN3f0xd9/r7nurYnUrLAcAeZVTD6N/AcjFisKUu/e6e8rd05K+Lenu/A4LAAqHHgYg\nn1YUpsysbc6Pn5Z0OD/DAYDCo4cByKdcTo3wD5IekLTGzM5J+itJD5jZHkkuqUPSFwo4RgBYMXoY\ngEJbNky5+2ezLP5OAcYCAHlHDwNQaJwBHQAAIABhCgAAIABhCgAAIABhCgAAIABhCgAAIABhCgAA\nIABhCgAAIABhCgAAIABhCgAAIABhCgAAIMCyHydTDn768tOlHkJWH9/3iVIPAcBVjv4FlB5bpgAA\nAAIQpgAAAAIQpgAAAAIQpgAAAAIQpgAAAAIQpgAAAAIQpgAAAAIQpgAAAAIQpgAAAAIQpgAAAAIQ\npgAAAAIQpgAAAAIsG6bMbLOZPWdmR8zsHTP7UrS81cyeMbMT0feWwg8XAHJH/wJQDLlsmZqW9Bfu\nfoukeyX9mZndIunLkp51992Sno1+BoCrCf0LQMEtG6bcvdvdD0SXRyQdlbRJ0iclPRHd7AlJnyrU\nIAFgJehfAIqh8kpubGbbJN0p6TVJ6929O7qqR9L6Re7zqKRHJakm1rjScQJAEPoXgELJeQK6mTVI\n+qGkP3f34bnXubtL8mz3c/fH3H2vu++titUFDRYAVoL+BaCQcgpTZhZXphF9391/FC3uNbO26Po2\nSX2FGSIArBz9C0ChLbubz8xM0nckHXX3b8656mlJj0j6evT9JwUZIXCN+NqOu0o9BFyG/gXkhv4V\nJpc5Ux+U9DlJh8zsrWjZV5RpQk+Z2eclnZX0cGGGCAArRv8CUHDLhil3f0mSLXL1R/M7HADIH/oX\ngGLgDOgAAAABCFMAAAABCFMAAAABCFMAAAABrugM6ACkym1bSj0EAFgR+ldhsGUKAAAgAGEKAAAg\nAGEKAAAgAGEKAAAgAGEKAAAgAGEKAAAgAGEKAAAgAGEKAAAgAGEKAAAgAGEKAAAgAGEKAAAgAGEK\nAAAgAGEKAAAgAGEKAAAgAGEKAAAgAGEKAAAgAGEKAAAgwLJhysw2m9lzZnbEzN4xsy9Fy79qZl1m\n9lb09VDhhwsAuaN/ASiGyhxuMy3pL9z9gJk1SnrDzJ6Jrvtbd/+bwg0PAILQvwAU3LJhyt27JXVH\nl0fM7KikTYUeGACEon8BKIYrmjNlZtsk3SnptWjRF83soJk9bmYteR4bAOQN/QtAoeQcpsysQdIP\nJf25uw9L+pakHZL2KPPO7xuL3O9RM9tvZvuTqUQehgwAV4b+BaCQcgpTZhZXphF9391/JEnu3uvu\nKXdPS/q2pLuz3dfdH3P3ve6+typWl69xA0BO6F8ACi2Xo/lM0nckHXX3b85Z3jbnZp+WdDj/wwOA\nlaN/ASiGXI7m+6Ckz0k6ZGZvRcu+IumzZrZHkkvqkPSFgowQAFaO/gWg4HI5mu8lSZblqp/lfzgA\nkD/0LwDFwBnQAQAAAhCmAAAAAhCmAAAAAhCmAAAAAhCmAAAAAhCmAAAAAhCmAAAAAhCmAAAAAhCm\nAAAAAhCmAAAAAhCmAAAAAuTyQcfXlJ++/HSphwAAK0L/Aq5NbJkCAAAIQJgCAAAIQJgCAAAIQJgC\nAAAIQJgCAAAIcN0dzXe1+vi+T5R6CACwIvQvYGlsmQIAAAhAmAIAAAhAmAIAAAhAmAIAAAhAmAIA\nAAiwbJgysxoz+7WZvW1m75jZX0fLW83sGTM7EX1vKfxwASB39C8AxZDLlqlJSR9x9zsk7ZH0oJnd\nK+nLkp51992Sno1+BoCrCf0LQMEtG6Y8YzT6MR59uaRPSnoiWv6EpE8VZIQAsEL0LwDFkNOcKTOL\nmdlbkvokPePur0la7+7d0U16JK0v0BgBYMXoXwAKLacw5e4pd98jqV3S3WZ222XXuzLv9hYws0fN\nbL+Z7U+mEsEDBoArQf8CUGhXdDSfuw9Kek7Sg5J6zaxNkqLvfYvc5zF33+vue6tidaHjBYAVoX8B\nKJRcjuZba2bN0eVaSR+TdEzS05IeiW72iKSfFGqQALAS9C8AxZDLBx23SXrCzGLKhK+n3P2fzewV\nSU+Z2eclnZX0cAHHec376ctPF6UOH0gKzEP/ygP6F7C0ZcOUux+UdGeW5ZckfbQQgwKAfKB/ASgG\nzoAOAAAQgDAFAAAQgDAFAAAQgDAFAAAQgDAFAAAQgDAFAAAQgDAFAAAQgDAFAAAQgDAFAAAQgDAF\nAAAQgDAFAAAQgDAFAAAQgDAFAAAQgDAFAAAQgDAFAAAQgDAFAAAQgDAFAAAQoLLUA8i3j+/7RKmH\nkNVPX3661EMAcJWjfwHXJrZMAQAABCBMAQAABCBMAQAABCBMAQAABCBMAQAABFj2aD4zq5H0gqTq\n6Pb/5O5/ZWZflfSnki5EN/2Ku/+sUAO91l2tR+kA1zP6V37Qv4Cl5XJqhElJH3H3UTOLS3rJzP4l\nuu5v3f1vCjc8AAhC/wJQcMuGKXd3SaPRj/Hoyws5KADIB/oXgGLIac6UmcXM7C1JfZKecffXoqu+\naGYHzexxM2tZ5L6Pmtl+M9ufTCXyNGwAyA39C0Ch5RSm3D3l7nsktUu628xuk/QtSTsk7ZHULekb\ni9z3MXff6+57q2J1eRo2AOSG/gWg0K7oaD53H5T0nKQH3b03alJpSd+WdHchBggA+UD/AlAoy4Yp\nM1trZs3R5VpJH5N0zMza5tzs05IOF2aIALAy9C8AxZDL0Xxtkp4ws5gy4espd/9nM/ueme1RZjJn\nh6QvFG6YALAi9C8ABZfL0XwHJd2ZZfnnCjIiAMgT+heAYuAM6AAAAAEIUwAAAAEIUwAAAAEIUwAA\nAAEIUwAAAAEIUwAAAAEIUwAAAAEIUwAAAAEIUwAAAAEIUwAAAAEIUwAAAAEIUwAAAAEIUwAAAAEI\nUwAAAAEIUwAAAAEIUwAAAAEIUwAAAAEIUwAAAAEIUwAAAAEIUwAAAAEIUwAAAAEIUwAAAAEIUwAA\nAAHM3YtXzOyCpLPRj2skXSxa8YXKuX45r3up65fjum9197VFrpl39C/qXwW1y73+Vdu/ihqm5hU2\n2+/ue0tSvMzrl/O6l7p+Oa/79aTUzyP1eQ2XY/1Sr/tS2M0HAAAQgDAFAAAQoJRh6rES1i73+uW8\n7qWuX87PIMKoAAAEE0lEQVTrfj0p9fNI/fKsXe71S73uiyrZnCkAAIDrAbv5AAAAApQkTJnZg2b2\nrpmdNLMvF7l2h5kdMrO3zGx/Eeo9bmZ9ZnZ4zrJWM3vGzE5E31uKXP+rZtYVPQdvmdlDBaq92cye\nM7MjZvaOmX0pWl6U9V+ifrHWv8bMfm1mb0f1/zpaXvD1X6J2Udb9elbK/hXVL5seVsr+FdUqWQ8r\n5/61TP2rsocVfTefmcUkHZf0MUnnJL0u6bPufqRI9Tsk7XX3opyrwsw+LGlU0t+7+23Rsv8pqd/d\nvx414xZ3/+9FrP9VSaPu/jeFqDmndpukNnc/YGaNkt6Q9ClJf6wirP8S9R9WcdbfJNW7+6iZxSW9\nJOlLkn5PBV7/JWo/qCKs+/Wq1P0rGkOHyqSHlbJ/RbVK1sPKuX8tU/+q7GGl2DJ1t6ST7n7a3ZOS\nnpT0yRKMoyjc/QVJ/Zct/qSkJ6LLTyjzAilm/aJw9253PxBdHpF0VNImFWn9l6hfFJ4xGv0Yj75c\nRVj/JWojTFn1L6m0PayU/SuqX7IeVs79a5n6V6VShKlNkjrn/HxORfwDUeaX8Usze8PMHi1i3bnW\nu3t3dLlH0voSjOGLZnYw2oxesN2MM8xsm6Q7Jb2mEqz/ZfWlIq2/mcXM7C1JfZKecfeirf8itaUi\n/+6vM6XuXxI9TCrB33Ape1g59q8l6ktXYQ8rxwno97v7Hkm/K+nPos3IJeOZ/azFTtvfkrRD0h5J\n3ZK+UchiZtYg6YeS/tzdh+deV4z1z1K/aOvv7qno761d0t1mdttl1xds/RepXdTfPQqi3HtY0f+G\nS9nDyrV/LVH/quxhpQhTXZI2z/m5PVpWFO7eFX3vk/RjZTbbF1tvtD98Zr94XzGLu3tv9EealvRt\nFfA5iPZ1/1DS9939R9Hioq1/tvrFXP8Z7j4o6Tll9vcX9fc/t3Yp1v06U9L+JdHDiv03XMoeRv9a\nWP9q7WGlCFOvS9ptZtvNrErSZyQ9XYzCZlYfTeSTmdVL+h1Jh5e+V0E8LemR6PIjkn5SzOIzL4TI\np1Wg5yCaQPgdSUfd/ZtzrirK+i9Wv4jrv9bMmqPLtcpMWj6mIqz/YrWLte7XsZL1L4keJhXv9RvV\nKlkPK+f+tVT9q7aHuXvRvyQ9pMwRMack/Y8i1t0h6e3o651i1Jb0D8psipxSZn7F5yWtlvSspBOS\nfimptcj1vyfpkKSDyrww2gpU+35lNgEflPRW9PVQsdZ/ifrFWv/bJb0Z1Tks6S+j5QVf/yVqF2Xd\nr+evUvWvqHZZ9bBS9q+ofsl6WDn3r2XqX5U9jDOgAwAABCjHCegAAAB5Q5gCAAAIQJgCAAAIQJgC\nAAAIQJgCAAAIQJgCAAAIQJgCAAAIQJgCAAAI8P8BrnENK3chxyoAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAEgCAYAAACQH/YaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3WlsXfd55/Hvw50USZGUZInarSV2HDWRXcV2HDfjbLXr\nAlm6eBoUgQtkxhmgE7SYvpigA6RpXgyCQZOiLwYBnEkQt2jaySQpYrRpXCdjj+PEcSzbiiVbsiVr\nsSRKomTu+/afF7yiSZMUKZ67iOL3AxC899xz7/85V+SjH8/5n3MjpYQkSZKWpqzUBUiSJC1nhilJ\nkqQMDFOSJEkZGKYkSZIyMExJkiRlYJiSJEnKwDAlSZKUgWFKkiQpA8OUJElSBhVZnhwR9wF/A5QD\n/yul9OUrrV9VXptqK1ZnGVLSMtMzcuFSSmldqeuYy9X0sKqoTjWsKlptkkqvl85F9a8lh6mIKAf+\nJ/BR4AzwXEQ8mlJ6Zb7n1Fas5q5Nf7jUISUtQz868dVTpa5hLlfbw2pYxR3x4WKWKKnEfpy+u6j+\nleUw3+3AsZTS8ZTSCPCPwMczvJ4kFZM9TFJeZAlTm4DT0+6fyS2bISIeioj9EbF/ZHwgw3CSlFcL\n9rDp/WuU4aIWJ2n5KPgE9JTSwymlfSmlfVXldYUeTpLyZnr/qqS61OVIukZlCVNngS3T7m/OLZOk\n5cAeJikvsoSp54DdEXFjRFQBfwA8mp+yJKng7GGS8mLJZ/OllMYi4j8DjzF5WvE3U0ov560ySSog\ne5ikfMl0namU0g+BH+aploI40/syhy49xp6197K54V0FG+eliz+ire8VPrD5M9RVXnvX0hoY7eap\nM99gY/0tvHvdfaUuR7omLIcedr3oSO28wFPcyDvZGYXrxYX0enqZExzmNj5AS9xQ6nJ0DckUpgrp\nRye+CsB9N/6Xgrz+k6f/FwD3bPkPBXn9hTx77jt0Dp0p2PZdC94cPM1z5/8PO5vuZHfzXaUuRyqJ\n/tTLWY7TyUUG6WecMcqpoI56mljLBrbSGM2lLvOa05ZO8gr7uYV9bIzt1+2Yuj5cs2EqX9av2kVT\ndSvVFSv7ysU1FfXcvemPqCirKnUp0oqQUuIEhznO5DVAG2hiPVuopIpxxuili9O8zhsc5aa0ly2x\nq8QVS1qq6z5MVZZVU1nlKc1lUU59VUupy5BWjMtBqppafo07aIq1s9YZSUO8wVHGGC1BhZLyZVmF\nqenzfnY1vY/XOp/mzcFTjKdR6ivXsqv5fdxQt2PGc94+Z+ryoafLLh9OBGbMJ7rQf4zz/a/RPXye\n4fE+AFZVtrCx/ha2Nd5KRGTahrnGb67ZzB2tDwBvHYa8e9OnOdr5DBcGjjE81seOptvZ3XwXQ2N9\nnOk9yKXBUwyMdTE6PkRVeS0tNZvZ2XQn9VVr5n3v3j5nanxilJM9L3K+/1UGRjuBoL5qLdsab2Vj\n/c1zbselgZOc6jlA9/A5RidGqC6vpbF6PVsb97K2dtvUHDKA17t+wetdv5h67ns3/D5raifPSJ9I\nY5zsfoG2vsMMjHUTlNFYtY6tjXtprb9p3m3Y2XQHRzt/RsfgaUYmBnnvht/ntc6n6R4+N++8tRPd\n+3m14yluavkAN67ed8V/JymLgdTHCQ4TlHErd1Mfc8+jrIoadvFrTKSJGctfTs9xjlPcxX1c4jxt\nnGCAXhppYV/cA0zu+TrLcdo4ST89JKCeRjaynU3smNGjBlM/P+NfaWUb74r3zqpjf3qSLi7xkfi9\nqWXT5zjdwCaOcYhu3mSCCRppZhd75gyIw2mI1znEJc4xxih1NLCV3dSw+OsMXq4H4BX280raP/XY\n+/ktamPVjPlLI0yG0n56qKSau+P+BedoPZ0mp8rdHfcveszpLqQznOJV+uihjDLWsJ7dvIeaqF30\ndur6sazC1GVDYz38ou3b1FauZmP9LYxODHG+/1VeuPAD3rvhd1lTu3Xe59ZWNLKz6U5O9bwIwLbG\nW6cea6x6a0Lha50/BSJ3iLCesYlh3hw6zZGOJ+kZvsC7b/itJdVeWVbNzqY7Odv3CkNjPexsunNa\nbTMbbkrj/PLcdxmdGGJt7TYqooq63DqdQ2c43v0ca2q2sKFuN+VllQyMdnG+/yjtA8e5o/UPaKxe\n+LNlR8eHeO78d+kZaaex6gY2NeyBlLg0eJKXLv6QvpE3eUfL+2c852jnz3m96xeURyXr63ZRU9HA\n0HgfXUNttPUdZm3tNtbXTR6yaOt7heaazbTUbJ62nY0ATKRxnjv/fTqHzrCqsoWtje9hYmKM8/1H\n+dXFf6F35CLvaLl7Vs2Do9080/ZtVlU201r/TibSGBVlVWxteA8Hh89xpvfgnM873XuQsihnU/3y\nnPyq5eMcJ0kkNrB53iA1XVnMfZWa1/gVXVxiLRtYwwaCtwLSy/yS85ymmlo2ciMAF2njCC/SxSX2\ncEdetqWXTk7xGqtpYSPbGWKQds7wAk9xR/ooq6Jhat2RNMx+nmCQfppYQxNrGWaII7xAC+sXPeZG\ntlNJFRdpYx0bqeet97CCyhnrvsFROrjAWlpp5oYl7+W7mjHPcJxLtLGWjTSzjm46uMAZeunmzvQR\nyqJ8STVo+VqWYapj6Ay7mt7Hrub3TS1rXXUzz1/4Pie6918xTNVVrmZ3812cze01mW9i9K+v/yR1\nlU0zlqWUOHjpMdr6XmHr0F6aalqvuvbK8hp2N99Fx9AZhsZ6rjgxe3i8n/rKNdze+gAVZTN/mVtq\nt/Khrf9p1hyonuGLPHvuH3mt86fs2/A7C9ZzuONJekbaeUfzb7Cj6a2/WMcnxnix/Qcc736WDat2\n01g9GTQvDZzk9a5fUFuxmjtaH6CmomHG6w2N9QKTc9Uqyqpp63uFlprNc27nie7n6Rw6w9ra7dy2\n/hNT/6HsbH4fz7R9m+Pdv2Rd3Q6aazbOeF7n8Fl2rL59VmCqr1zDkY4nOdv3Mrua75rxH9Sbg6cZ\nGO2kddXNVJX7l6MKq4s3AWgm2xlfvXRyBx+ZtVfkfHqD85ymgSZ+nXuoiMlWvivtYT//j/OcZm1q\nZUPM3wsX6xLnZ03IPpOOc4QXOM1Rbua2qeWvc4hB+tnCLm6KvVPLt6SdPMcTix5zY2yHxFSwudJk\n8A7a2ccHM0/iv5ox3+Q8t/PhGUH5YHqWC5zmIm2sn3EtWK0EBf84mUKoqWhkZ9PMv7rW1W2npryB\n7uHzeRnj7UEKICKm9mRdGjyZl3EWclPLv5sVpACqy+vmnEzeWL2OltotdAydZiKNX/G1R8YHOdd3\nmMaq9TOCFEB5WQXvaP4AAOf6j0wtP9VzAICbWz4wK0gBcy6bz9neQ7nXumdG8Kkur2NX7t/3TO/B\nWc+rKq9jV/Ods5aXl1WwqeFdDI/30z5wbMZjp3tfAmBLw7sXXZ+0VCMMAVDN7OA+mPp5Pb084+uN\ndHTO19nGTbOCFEAbJwHYxZ6pIAVQHhXsZg8AZzmRdTMAWM2aWcFiI9sJgm46p5ZNpAnO8QblVLCT\nmXt/G6OFDWQPdnPZxI1FPxtyC7tm7XHclNs72E1HUWvRtWFZ7plqrFpHzLFbvKaiga7hc3kZY2R8\nkBPd+7k4cILBsW7G08xdx0O5eVSFVBblNFTNnpNwWfvAcU73vETPyAVGxgdJzJx3MTI+SE1F/bzP\n7x4+TyIRTB66e7uUm8fRN/JWc7j8/q6t3X4VWzLb2MQIA2NdVJfXzzkxvqVmsvH2jLTPeqyhah1l\nMfeP7taG93Cy+3lO9xxkw6p3AJPvQ/vAMVZVttBSu3nO50nFMkg/Jzg8Y1kNdWxl96x1G5n7pJFe\nuoC593w1sY4gptbJqpHZQaUsyqhKNYwxMrVsgF4mGKeJtVTE7D8Am1nHOU7lpabpVs/zHhXSXO/J\n5TlhnkywMi3LMFVRNvfZeZMBK2V+/dHxIZ5p+zaDY92srt7AxvpbqCyrISIYmxjmVM+LC+71yYeq\nsrp5J7qf7H6BIx1PUllWzZrabdRUNFCea2DtA6/TO3JxwRpHJyb/eu4euUD3yIV51xtPbzXMsYlh\nKstqKJ9jb9nVGJsYBqC6fO5LVlxefnm9uR6bS11lE2trt3Np8CQDo13UVTZxtu9lJtK4e6VUNFXU\n0E8vwwzOeqwlbuAjTE70nkgT/F++P+/rVFMz5/IxRqmkas65VmVRRmWqYoTZvztL8fb5QpcFQZrW\nby+HiKp5PhC6ap5tyapQr3slc70nl+ezpTz8H6TlZ1mGqUI703eIwbHuOS822TnUNjV5veDmCVIT\naYJjXc9QXb6K9238w1l7nxa7d+5yKN3WeBvvXHPPop8zOjHI+MRopkB1eeyR8f45Hx/OLZ8vOF/J\n1ob3cGnwJKd7D3JTy29Mm3h+y5Lrla5GE2vo5CKdtE8d/smnCioZZYSJNDErUE2kCUYZmfEf/kL/\n0edjb8rl8eYLcZcPfRbLYrZ5vqAoXa1lOWcqH4KAt52OfNnA6OTu8Q2rZu927xw6k7/xeetQ2tUY\nHR9kbGKYpurWWUFqbGKEnuHZh8bmsrp6AxB0Dp1d9NhN1ZOT7hczZ+ytvWqzm1lF2eSZiUPjffSP\nds56vGPoNDDzDMvFWle3g5ryBs72vsylgZMMjHayYdVNVJYX/y9YrUytuTlFFzhLf+rJ++s3MDmn\ns4uLsx7r4hKJNLUOvBV0hhiYtf5YGmWA7NMW6migjHJ66WIszQ5nnXPUeiVZ9/RUMjmndK69gwOp\nb84A6d4lLdWKDVNVZTWM5PawvN3lU/c7BmcGp57hdo53/TI/4+fOKBvMnf12dc+tozwq6B5pZ2zi\nrUNwE2mcw28+wejE7OYxl+ryOjbW30zPyAWOdf5izmA3MNrFwGj31P1tjZNn6BzpeGrqzL3ppi+r\nKrvyNm5qmJwo+2rHUzPGHhkfnLou1ebcOlcjItjS+G5GJgY4eOnfACeeq7jqop4beSeJCV7kabrS\npTnXy3IaP8AxDjGexqaWj6cxjnEwt85be8QqopI6GujmTfqmhbuUEq/xKybIPm2hLMpoZSvjjPE6\nMz8vuid1cJ43rur1LoehuQLgYtTRQDkVXKSNkfTWXrHxNM6rHCjImFq5VuxhvpbarXSPXGD/he/T\nUrOZMsppqF7HDXU72Vh/Cye693O440k6hk5TV9nEwGgX7QPHWb9qN+f7X80+fs1Wzve/xovtj7Ku\n9kbKo4KaikY2NSx8KCoi2Np4Kye6n+NnZ/+WG+p2MpEm6Bg6zej4EC01W6b27CzkljUfon+0i2Nd\nP89dE2oTVeV1DI/30z/yJt0jF3jPuvunLoK5tm47O5vu4PWuZ/npmUdYv2onNeUNjIwP0Dl8ltXV\nrVMXBV1V2Ux1eT3n+l6ljDJqKhoJJi+OWlvZyI2r93Fp4CTtA6/zs7N/x7q6GxmfGOV8/1FGJga4\ncfU+mms2Len93dywh2Odv2B4vI/6yrWzLq8gFdpkmJr8SJn9PElDamY1zVRQxRijDNFPB5N7kZuY\n/0STuWyIrVxMbVzgDM/wb6xLGwmCi7QxSD/r2Uzr2y6LsI13cJjn2c8TrE+TPa+DdhKJelbTR/c8\noy3eTvbQQTunOUZv6py6ztQFTrOGDVxi8ScIrWYNZZTzBkcZTSNTc6O2smvOCe5vVxZlbE27OcFh\nnuXHrEubSCQ6uEA1NXPOR8s6plauFRumdjbdydjEMO0Dx+kaaiOR2Fh/CzfU7aSmop47Wv89r3b+\nlM6hs1waPMmqyhZuWfth1tRszUuY2tKwh6GxHs71v8qJ7v0kJmiu2byoMAWwu/n9VJXXcab3IKd7\nX6KirJq1NdvY3fx+jnbNPjNvPhVl1dzR+gCne1/iXN8RLvQfZTyNU11eR11lEze33MOa2m2zxm6q\nbuVUz4tcHDjO2MTY1BXQp89LiijjtvUf49WOn3K+/zXGchPZm2o2UVvZSFmUs2/D73Ky53nO9R3h\nVM+LBGU0VK3j5sZ75r36+mJUl69iXd122gdeZ0uje6VUfBHBTt7FhrSVM7xOJxc5z+kZH3S8iR20\nsm1Jp/bv4Q6aWEcbJ6cug7CKBm5iL5vZOWv9TXEjpMmLXLZxikoqWcdGdrKHl3gm8/YCVEU1+9IH\nOcYhLtFGD53U0cDN3EYNdVcVpiqjinen93GCVzjHScZze89a2brouU47uIVyyjnLCc5ynCpq2MAW\ndnALz/BvBRlTK1OkVLxjw6urN6S7Nv1h0cbTW/pGOnj67LfY3PBr7Fn70VKXU3ApJZ46801Gxvv5\n4NbPLmkiu/LjRye++nxKadl/fk9jtKQ74sOlLkNSEf04fXdR/WvFzplaaQZyk7xryhd/Uc3l7Hz/\nawyOdbOx/haDlCSpoFbsYb6VonfkIm19h2nrOwIE61ftKnVJizZ28uomrAKcTEcYZYSznKCccrb1\nbmas7+pfJ58qthfmys+SpGuDYeo61z3czqmeA9RXtvCutR+54hXVrwfHOEQQrKKR3bybmlj8J9VL\nkrQUhqnr3OaGd7G54V0Lr3id+Ej8XqlLkCStMM6ZkiRJysAwJUmSlIFhSpIkKQPDlCRJUgaZJqBH\nxEmgFxgHxq6HC/Pp2veF4y+UuoQ5fWnHbaUuQVfJHqZie6xt7s8FLLV7N+4tdQnLWj7O5vtgSvN8\niqckXfvsYZIy8TCfJElSBlnDVAJ+HBHPR8RDc60QEQ9FxP6I2D8yPpBxOEnKqyv2sOn9a5ThEpQn\naTnIepjv7pTS2Yi4AXg8Io6klJ6avkJK6WHgYZj8oOOM40lSPl2xh03vX43RYv+SNKdMe6ZSSmdz\n39uBfwJuz0dRklQM9jBJ+bDkMBURqyKi4fJt4DeBQ/kqTJIKyR4mKV+yHOZbD/xTRFx+nW+nlH6U\nl6okqfDsYZLyYslhKqV0HHhPHmuRpKKxh0nKFy+NIEmSlIFhSpIkKQPDlCRJUgaGKUmSpAwMU5Ik\nSRkYpiRJkjIwTEmSJGVgmJIkScrAMCVJkpSBYUqSJCkDw5QkSVIGhilJkqQMDFOSJEkZGKYkSZIy\nMExJkiRlYJiSJEnKwDAlSZKUgWFKkiQpA8OUJElSBoYpSZKkDAxTkiRJGRimJEmSMlgwTEXENyOi\nPSIOTVvWEhGPR8TR3PfmwpYpSUtjD5NUaIvZM/Ut4L63Lfs88JOU0m7gJ7n7knQt+hb2MEkFtGCY\nSik9BXS8bfHHgUdytx8BPpHnuiQpL+xhkgptqXOm1qeUzuVunwfW56keSSoGe5ikvMk8AT2llIA0\n3+MR8VBE7I+I/SPjA1mHk6S8ulIPm96/RhkucmWSloulhqkLEdEKkPvePt+KKaWHU0r7Ukr7qsrr\nljicJOXVonrY9P5VSXVRC5S0fCw1TD0KPJi7/SDwg/yUI0lFYQ+TlDcVC60QEf8A3AOsjYgzwF8A\nXwa+ExGfAU4BDxSySGm6L+24rdQlaBmxh+lacu/GvaUuQQWwYJhKKX1qnoc+nOdaJCnv7GGSCs0r\noEuSJGVgmJIkScrAMCVJkpSBYUqSJCmDBSegS6VSsX1rqUuQJGlB7pmSJEnKwDAlSZKUgWFKkiQp\nA8OUJElSBoYpSZKkDAxTkiRJGRimJEmSMjBMSZIkZWCYkiRJysAwJUmSlIFhSpIkKQPDlCRJUgZ+\n0LFUYP/y80dLXcK8fvuuj5W6BEnXsMfaDpS6hHndu3FvqUuY4p4pSZKkDAxTkiRJGRimJEmSMjBM\nSZIkZWCYkiRJymDBMBUR34yI9og4NG3ZFyPibEQcyH3dX9gyJWlp7GGSCm0xe6a+Bdw3x/K/Tint\nzX39ML9lSVLefAt7mKQCWjBMpZSeAjqKUIsk5Z09TFKhZZkz9bmIeCm3C715vpUi4qGI2B8R+0fG\nBzIMJ0l5tWAPm96/Rhkudn2SlomlhqmvATuAvcA54CvzrZhSejiltC+ltK+qvG6Jw0lSXi2qh03v\nX5VUF7M+ScvIksJUSulCSmk8pTQBfB24Pb9lSVLh2MMk5dOSwlREtE67+0ng0HzrStK1xh4mKZ8W\n/KDjiPgH4B5gbUScAf4CuCci9gIJOAl8toA1StKS2cMkFdqCYSql9Kk5Fn+jALVIUt7ZwyQVmldA\nlyRJysAwJUmSlIFhSpIkKQPDlCRJUgaGKUmSpAwMU5IkSRkYpiRJkjIwTEmSJGVgmJIkScrAMCVJ\nkpTBgh8nsxL8y88fLXUJc/rtuz5W6hIkXeMeaztQ6hLmdO/GvaUuQSoa90xJkiRlYJiSJEnKwDAl\nSZKUgWFKkiQpA8OUJElSBoYpSZKkDAxTkiRJGRimJEmSMjBMSZIkZWCYkiRJysAwJUmSlIFhSpIk\nKYMFP+g4IrYAfwusBxLwcErpbyKiBfjfwHbgJPBASqmzcKVKy5MfWF069i8pGz+wenEWs2dqDPiz\nlNItwJ3AH0fELcDngZ+klHYDP8ndl6Rrif1LUsEtGKZSSudSSi/kbvcCh4FNwMeBR3KrPQJ8olBF\nStJS2L8kFcOCh/mmi4jtwK3As8D6lNK53EPnmdyNPtdzHgIeAqgpb1hqnZKUSeb+RV3hi5S0LC16\nAnpE1APfA/40pdQz/bGUUmJyPsIsKaWHU0r7Ukr7qsptRpKKLx/9q5LqIlQqaTlaVJiKiEomG9Hf\np5S+n1t8ISJac4+3Au2FKVGSls7+JanQFgxTERHAN4DDKaWvTnvoUeDB3O0HgR/kvzxJWjr7l6Ri\nWMycqfcDnwYORsSB3LI/B74MfCciPgOcAh4oTImStGT2L0kFt2CYSik9DcQ8D384v+VIUv7YvyQV\ng1dAlyRJysAwJUmSlIFhSpIkKQPDlCRJUgaGKUmSpAwMU5IkSRkYpiRJkjIwTEmSJGVgmJIkScrA\nMCVJkpSBYUqSJCkDw5QkSVIGhilJkqQMDFOSJEkZGKYkSZIyMExJkiRlYJiSJEnKwDAlSZKUgWFK\nkiQpA8OUJElSBoYpSZKkDAxTkiRJGSwYpiJiS0Q8ERGvRMTLEfEnueVfjIizEXEg93V/4cuVpMWz\nf0kqhopFrDMG/FlK6YWIaACej4jHc4/9dUrprwpXniRlYv+SVHALhqmU0jngXO52b0QcBjYVujBJ\nysr+JakYrmrOVERsB24Fns0t+lxEvBQR34yI5jzXJkl5Y/+SVCiLDlMRUQ98D/jTlFIP8DVgB7CX\nyb/8vjLP8x6KiP0RsX9kfCAPJUvS1clH/xpluGj1SlpeFhWmIqKSyUb09yml7wOklC6klMZTShPA\n14Hb53puSunhlNK+lNK+qvK6fNUtSYuSr/5VSXXxipa0rCzmbL4AvgEcTil9ddry1mmrfRI4lP/y\nJGnp7F+SimExZ/O9H/g0cDAiDuSW/TnwqYjYCyTgJPDZglQoSUtn/5JUcIs5m+9pIOZ46If5L0eS\n8sf+JakYvAK6JElSBoYpSZKkDAxTkiRJGRimJEmSMjBMSZIkZWCYkiRJysAwJUmSlIFhSpIkKQPD\nlCRJUgaGKUmSpAwMU5IkSRks5oOOl5Wxk29c9XPu3bi3AJVkV7G91BVIutZdq/1LWkncMyVJkpSB\nYUqSJCkDw5QkSVIGhilJkqQMDFOSJEkZXHdn813JF46/UOoS5vSlHbeVugRJ17jH2g6UuoQ5eTah\n5J4pSZKkTAxTkiRJGRimJEmSMjBMSZIkZWCYkiRJymDBMBURNRHxy4j4VUS8HBF/mVveEhGPR8TR\n3PfmwpcrSYtn/5JUDIvZMzUMfCil9B5gL3BfRNwJfB74SUppN/CT3H1JupbYvyQV3IJhKk3qy92t\nzH0l4OPAI7nljwCfKEiFkrRE9i9JxbCoOVMRUR4RB4B24PGU0rPA+pTSudwq54H1BapRkpbM/iWp\n0BYVplJK4ymlvcBm4PaI2PO2xxOTf+3NEhEPRcT+iNg/Mj6QuWBJuhr56l+jDBehWknL0VWdzZdS\n6gKeAO4DLkREK0Due/s8z3k4pbQvpbSvqrwua72StCRZ+1cl1cUrVtKyspiz+dZFRFPudi3wUeAI\n8CjwYG61B4EfFKpISVoK+5ekYljMBx23Ao9ERDmT4es7KaV/johngO9ExGeAU8ADBaxTkpbC/iWp\n4BYMUymll4Bb51j+JvDhQhQlSflg/5JUDF4BXZIkKQPDlCRJUgaGKUmSpAwMU5IkSRks5mw+XYX3\n11x9Pv3C8Rfmea0D8z7nt+/62FWPI0n59ljb/H1qPvdu3FuASqTScc+UJElSBoYpSZKkDAxTkiRJ\nGRimJEmSMjBMSZIkZWCYkiRJysAwJUmSlIFhSpIkKQPDlCRJUgaGKUmSpAwMU5IkSRkYpiRJkjIw\nTEmSJGVgmJIkScrAMCVJkpSBYUqSJCkDw5QkSVIGhilJkqQMKhZaISJqgKeA6tz6300p/UVEfBH4\nj8DF3Kp/nlL6YaEKzYcv7bit4GN84fgLBR9D0uJcT/3r3o17Cz7GY20HCj6GdD1aMEwBw8CHUkp9\nEVEJPB0R/5p77K9TSn9VuPIkKRP7l6SCWzBMpZQS0Je7W5n7SoUsSpLywf4lqRgWNWcqIsoj4gDQ\nDjyeUno299DnIuKliPhmRDTP89yHImJ/ROwfGR/IU9mStDj56l+jDBetZknLy6LCVEppPKW0F9gM\n3B4Re4CvATuAvcA54CvzPPfhlNK+lNK+qvK6PJUtSYuTr/5VSXXRapa0vFzV2XwppS7gCeC+lNKF\nXJOaAL4O3F6IAiUpH+xfkgplwTAVEesioil3uxb4KHAkIlqnrfZJ4FBhSpSkpbF/SSqGxZzN1wo8\nEhHlTIav76SU/jki/i4i9jI5mfMk8NnClbl4Fdu3lnT8//6h0o4vaYZl1b9KrRiXX5CuR4s5m+8l\n4NY5ln+6IBVJUp7YvyQVg1dAlyRJysAwJUmSlIFhSpIkKQPDlCRJUgaGKUmSpAwMU5IkSRkYpiRJ\nkjIwTEmSJGVgmJIkScrAMCVJkpSBYUqSJCkDw5QkSVIGhilJkqQMDFOSJEkZGKYkSZIyMExJkiRl\nYJiSJEnKwDAlSZKUgWFKkiQpA8OUJElSBoYpSZKkDAxTkiRJGRimJEmSMoiUUvEGi7gInMrdXQtc\nKtrgs60EVEqvAAAEfUlEQVTk8Vfytpd6/JW47dtSSuuKPGbe2b8c/xoYe6WPf832r6KGqRkDR+xP\nKe0ryeArfPyVvO2lHn8lb/v1pNTvo+P7O7wSxy/1tl+Jh/kkSZIyMExJkiRlUMow9XAJx17p46/k\nbS/1+Ct5268npX4fHX9ljr3Sxy/1ts+rZHOmJEmSrgce5pMkScqgJGEqIu6LiFcj4lhEfL7IY5+M\niIMRcSAi9hdhvG9GRHtEHJq2rCUiHo+Io7nvzUUe/4sRcTb3HhyIiPsLNPaWiHgiIl6JiJcj4k9y\ny4uy/VcYv1jbXxMRv4yIX+XG/8vc8oJv/xXGLsq2X89K2b9y46+YHlbK/pUbq2Q9bCX3rwXGvyZ7\nWNEP80VEOfAa8FHgDPAc8KmU0itFGv8ksC+lVJRrVUTEB4A+4G9TSntyy/4H0JFS+nKuGTenlP5r\nEcf/ItCXUvqrQow5bexWoDWl9EJENADPA58A/ogibP8Vxn+A4mx/AKtSSn0RUQk8DfwJ8DsUePuv\nMPZ9FGHbr1el7l+5Gk6yQnpYKftXbqyS9bCV3L8WGP+a7GGl2DN1O3AspXQ8pTQC/CPw8RLUURQp\npaeAjrct/jjwSO72I0z+ghRz/KJIKZ1LKb2Qu90LHAY2UaTtv8L4RZEm9eXuVua+EkXY/iuMrWxW\nVP+C0vawUvav3Pgl62EruX8tMP41qRRhahNwetr9MxTxB4TJf4wfR8TzEfFQEcedbn1K6Vzu9nlg\nfQlq+FxEvJTbjV6ww4yXRcR24FbgWUqw/W8bH4q0/RFRHhEHgHbg8ZRS0bZ/nrGhyP/215lS9y+w\nh0EJfoZL2cNWYv+6wvhwDfawlTgB/e6U0l7gt4A/zu1GLpk0eZy12Gn7a8AOYC9wDvhKIQeLiHrg\ne8CfppR6pj9WjO2fY/yibX9KaTz387YZuD0i9rzt8YJt/zxjF/XfXgWx0ntY0X+GS9nDVmr/usL4\n12QPK0WYOgtsmXZ/c25ZUaSUzua+twP/xORu+2K7kDsefvm4eHsxB08pXcj9kE4AX6eA70HuWPf3\ngL9PKX0/t7ho2z/X+MXc/stSSl3AE0we7y/qv//0sUux7deZkvYvsIcV+2e4lD3M/jV7/Gu1h5Ui\nTD0H7I6IGyOiCvgD4NFiDBwRq3IT+YiIVcBvAoeu/KyCeBR4MHf7QeAHxRz88i9Czicp0HuQm0D4\nDeBwSumr0x4qyvbPN34Rt39dRDTlbtcyOWn5CEXY/vnGLta2X8dK1r/AHgbF+/3NjVWyHraS+9eV\nxr9me1hKqehfwP1MnhHzOvDfijjuDuBXua+XizE28A9M7oocZXJ+xWeANcBPgKPAj4GWIo//d8BB\n4CUmfzFaCzT23UzuAn4JOJD7ur9Y23+F8Yu1/e8GXsyNcwj4Qm55wbf/CmMXZduv569S9a/c2Cuq\nh5Wyf+XGL1kPW8n9a4Hxr8ke5hXQJUmSMliJE9AlSZLyxjAlSZKUgWFKkiQpA8OUJElSBoYpSZKk\nDAxTkiRJGRimJEmSMjBMSZIkZfD/Aa42VyM8JXJiAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAEgCAYAAACQH/YaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3WlsXfd55/Hvw50USZGUZInarSV2HDWWU8V2HDfjbI3r\nAFm6eBoUgQtk4AzQCVpMX0zQAdq0r4JBk6IvBgGcJohbNG0zSYoYTRo3ydjjOHEcy7ZiyZZs7ZZE\nSZTMfd/+84JXNGmSIsVzF1H8fgBC95577v0/55J89OM5/3NupJSQJEnS0pSVugBJkqTlzDAlSZKU\ngWFKkiQpA8OUJElSBoYpSZKkDAxTkiRJGRimJEmSMjBMSZIkZWCYkiRJyqAiy5Mj4n7gb4Fy4O9S\nSl+82vpV5bWptmJ1liElLTM9Ixcvp5TWlbqOuVxLD6uK6lTDqqLVJqn0eulcVP9acpiKiHLgfwMf\nBs4Cz0XEYymlV+Z7Tm3Fau7Z9AdLHVLSMvTDk18+Xeoa5nKtPayGVdwVHyxmiZJK7Mfp24vqX1kO\n890JHEspnUgpjQD/DHw8w+tJUjHZwyTlRZYwtQk4M+3+2dyyGSLi4YjYHxH7R8YHMgwnSXm1YA+b\n3r9GGS5qcZKWj4JPQE8pPZJS2pdS2ldVXlfo4SQpb6b3r0qqS12OpOtUljB1Dtgy7f7m3DJJWg7s\nYZLyIkuYeg7YHRE3R0QV8PvAY/kpS5IKzh4mKS+WfDZfSmksIv4b8DiTpxV/PaX0ct4qk6QCsodJ\nypdM15lKKf0A+EGeaimIs70vc+jy4+xZ+xE2N7yjYOO8dOmHtPW9wvs2f4a6yuvvWloDo908dfZr\nbKy/jXeuu7/U5UjXheXQw24UHamdF3iKm3k7O6NwvbiQjqeXOclh3sX7aImbSl2OriOZwlQh/fDk\nlwG4/+b/XpDXf/LM3wFw35b/UpDXX8iz579F59DZgm3f9eCNwTM8d+H/sLPpbnY331PqcqSS6E+9\nnOMEnVxikH7GGaOcCuqop4m1bGArjdFc6jKvO23pFK+wn9vYx8bYfsOOqRvDdRum8mX9ql00VbdS\nXbGyr1xcU1HPvZv+kIqyqlKXIq0IKSVOcpgTTF4DtIEm1rOFSqoYZ4xeujjDcV7nKLekvWyJXSWu\nWNJS3fBhqrKsmsoqT2kui3Lqq1pKXYa0YlwJUtXU8mvcRVOsnbXOSBridY4yxmgJKpSUL8sqTE2f\n97Or6T281vk0bwyeZjyNUl+5ll3N7+Gmuh0znvPWOVNXDj1dceVwIjBjPtHF/mNc6H+N7uELDI/3\nAbCqsoWN9bexrfEOIiLTNsw1fnPNZu5qfRB48zDkvZs+zdHOZ7g4cIzhsT52NN3J7uZ7GBrr42zv\nQS4PnmZgrIvR8SGqymtpqdnMzqa7qa9aM+9799Y5U+MTo5zqeZEL/a8yMNoJBPVVa9nWeAcb62+d\nczsuD5zidM8BuofPMzoxQnV5LY3V69nauJe1tdum5pABHO/6Bce7fjH13Hdv+D3W1E6ekT6RxjjV\n/QJtfYcZGOsmKKOxah1bG/fSWn/LvNuws+kujnb+jI7BM4xMDPLuDb/Ha51P0z18ft55aye79/Nq\nx1Pc0vI+bl6976rfJymLgdTHSQ4TlHEH91Ifc8+jrIoadvFrTKSJGctfTs9xntPcw/1c5gJtnGSA\nXhppYV/cB0zu+TrHCdo4RT89JKCeRjaynU3smNGjBlM/P+PfaWUb74h3z6pjf3qSLi7zofjdqWXT\n5zjdxCaOcYhu3mCCCRppZhd75gyIw2mI4xziMucZY5Q6GtjKbmpY/HUGr9QD8Ar7eSXtn3rsvfwW\ntbFqxvylESZDaT89VFLNvfHAgnO0nk6TU+XujQcWPeZ0F9NZTvMqffRQRhlrWM9ubqcmahe9nbpx\nLKswdcXQWA+/aPsmtZWr2Vh/G6MTQ1zof5UXLn6Pd2/4HdbUbp33ubUVjexsupvTPS8CsK3xjqnH\nGqvenFD4WudPgcgdIqxnbGKYN4bOcKTjSXqGL/LOm35rSbVXllWzs+luzvW9wtBYDzub7p5W28yG\nm9I4vzz/bUYnhlhbu42KqKIut07n0FlOdD/HmpotbKjbTXlZJQOjXVzoP0r7wAnuav19GqsX/mzZ\n0fEhnrvwbXpG2mmsuolNDXsgJS4PnuKlSz+gb+QN3tby3hnPOdr5c453/YLyqGR93S5qKhoYGu+j\na6iNtr7DrK3dxvq6yUMWbX2v0FyzmZaazdO2sxGAiTTOcxe+S+fQWVZVtrC18XYmJsa40H+UX136\nPr0jl3hby72zah4c7eaZtm+yqrKZ1vq3M5HGqCirYmvD7RwcPs/Z3oNzPu9M70HKopxN9ctz8quW\nj/OcIpHYwOZ5g9R0ZTH3VWpe41d0cZm1bGANGwjeDEgv80sucIZqatnIzQBcoo0jvEgXl9nDXXnZ\nll46Oc1rrKaFjWxniEHaOcsLPMVd6cOsioapdUfSMPt5gkH6aWINTaxlmCGO8AItrF/0mBvZTiVV\nXKKNdWyknjffwwoqZ6z7Okfp4CJraaWZm5a8l+9axjzLCS7Txlo20sw6uungImfppZu704coi/Il\n1aDla1mGqY6hs+xqeg+7mt8ztax11a08f/G7nOzef9UwVVe5mt3N93Aut9dkvonRv77+k9RVNs1Y\nllLi4OXHaet7ha1De2mqab3m2ivLa9jdfA8dQ2cZGuu56sTs4fF+6ivXcGfrg1SUzfxlbqndyge2\n/tdZc6B6hi/x7Pl/5rXOn7Jvw28vWM/hjifpGWnnbc2/wY6mN/9iHZ8Y48X273Gi+1k2rNpNY/Vk\n0Lw8cIrjXb+gtmI1d7U+SE1Fw4zXGxrrBSbnqlWUVdPW9wotNZvn3M6T3c/TOXSWtbXbedf6T0z9\nh7Kz+T080/ZNTnT/knV1O2iu2TjjeZ3D59ix+s5Zgam+cg1HOp7kXN/L7Gq+Z8Z/UG8MnmFgtJPW\nVbdSVe5fjiqsLt4AoJlsZ3z10sldfGjWXpEL6XUucIYGmvh17qMiJlv5rrSH/fw/LnCGtamVDTF/\nL1ysy1yYNSH7bDrBEV7gDEe5lXdNLT/OIQbpZwu7uCX2Ti3fknbyHE8sesyNsR0SU8HmapPBO2hn\nH+/PPIn/WsZ8gwvcyQdnBOWD6VkucoZLtLF+xrVgtRIU/ONkCqGmopGdTTP/6lpXt52a8ga6hy/k\nZYy3BimAiJjak3V58FRexlnILS3/aVaQAqgur5tzMnlj9TpaarfQMXSGiTR+1dceGR/kfN9hGqvW\nzwhSAOVlFbyt+X0AnO8/MrX8dM8BAG5ted+sIAXMuWw+53oP5V7rvhnBp7q8jl257+/Z3oOznldV\nXseu5rtnLS8vq2BTwzsYHu+nfeDYjMfO9L4EwJaGdy66PmmpRhgCoJrZwX0w9XM8vTzj6/V0dM7X\n2cYts4IUQBunANjFnqkgBVAeFexmDwDnOJl1MwBYzZpZwWIj2wmCbjqnlk2kCc7zOuVUsJOZe38b\no4UNZA92c9nEzUU/G3ILu2btcdyU2zvYTUdRa9H1YVnumWqsWkfMsVu8pqKBruHzeRljZHyQk937\nuTRwksGxbsbTzF3HQ7l5VIVUFuU0VM2ek3BF+8AJzvS8RM/IRUbGB0nMnHcxMj5ITUX9vM/vHr5A\nIhFMHrp7q5Sbx9E38mZzuPL+rq3dfg1bMtvYxAgDY11Ul9fPOTG+pWay8faMtM96rKFqHWUx94/u\n1obbOdX9PGd6DrJh1duAyfehfeAYqypbaKndPOfzpGIZpJ+THJ6xrIY6trJ71rqNzH3SSC9dwNx7\nvppYRxBT62TVyOygUhZlVKUaxhiZWjZALxOM08RaKmL2H4DNrOM8p/NS03Sr53mPCmmu9+TKnDBP\nJliZlmWYqiib++y8yYCVMr/+6PgQz7R9k8GxblZXb2Bj/W1UltUQEYxNDHO658UF9/rkQ1VZ3bwT\n3U91v8CRjiepLKtmTe02aioaKM81sPaB4/SOXFqwxtGJyb+eu0cu0j1ycd71xtObDXNsYpjKshrK\n59hbdi3GJoYBqC6f+5IVV5ZfWW+ux+ZSV9nE2trtXB48xcBoF3WVTZzre5mJNO5eKRVNFTX008sw\ng7Mea4mb+BCTE70n0gT/l+/O+zrV1My5fIxRKqmac65VWZRRmaoYYfbvzlK8db7QFUGQpvXbKyGi\nap4PhK6aZ1uyKtTrXs1c78mV+WwpD/8HaflZlmGq0M72HWJwrHvOi012DrVNTV4vuHmC1ESa4FjX\nM1SXr+I9G/9g1t6nxe6duxJKtzW+i7evuW/RzxmdGGR8YjRToLoy9sh4/5yPD+eWzxecr2Zrw+1c\nHjzFmd6D3NLyG9Mmnt+25Hqla9HEGjq5RCftU4d/8qmCSkYZYSJNzApUE2mCUUZm/Ie/0H/0+dib\ncmW8+ULclUOfxbKYbZ4vKErXalnOmcqHIOAtpyNfMTA6uXt8w6rZu907h87mb3zePJR2LUbHBxmb\nGKapunVWkBqbGKFnePahsbmsrt4ABJ1D5xY9dlP15KT7xcwZe3Ov2uxmVlE2eWbi0Hgf/aOdsx7v\nGDoDzDzDcrHW1e2gpryBc70vc3ngFAOjnWxYdQuV5cX/C1YrU2tuTtFFztGfevL++g1Mzuns4tKs\nx7q4TCJNrQNvBp0hBmatP5ZGGSD7tIU6GiijnF66GEuzw1nnHLVeTdY9PZVMzimda+/gQOqbM0C6\nd0lLtWLDVFVZDSO5PSxvdeXU/Y7BmcGpZ7idE12/zM/4uTPKBnNnv13bc+sojwq6R9oZm3jzENxE\nGufwG08wOjG7ecyluryOjfW30jNykWOdv5gz2A2MdjEw2j11f1vj5Bk6Rzqemjpzb7rpy6rKrr6N\nmxomJ8q+2vHUjLFHxgenrku1ObfOtYgItjS+k5GJAQ5e/g/Aiecqrrqo52beTmKCF3marnR5zvWy\nnMYPcIxDjKexqeXjaYxjHMyt8+YesYqopI4GunmDvmnhLqXEa/yKCbJPWyiLMlrZyjhjHGfm50X3\npA4u8Po1vd6VMDRXAFyMOhoop4JLtDGS3twrNp7GeZUDBRlTK9eKPczXUruV7pGL7L/4XVpqNlNG\nOQ3V67ipbicb62/jZPd+Dnc8ScfQGeoqmxgY7aJ94ATrV+3mQv+r2cev2cqF/td4sf0x1tXeTHlU\nUFPRyKaGhQ9FRQRbG+/gZPdz/Ozc33NT3U4m0gQdQ2cYHR+ipWbL1J6dhdy25gP0j3ZxrOvnuWtC\nbaKqvI7h8X76R96ge+Qit697YOoimGvrtrOz6S6Odz3LT88+yvpVO6kpb2BkfIDO4XOsrm6duijo\nqspmqsvrOd/3KmWUUVPRSDB5cdTaykZuXr2PywOnaB84zs/O/QPr6m5mfGKUC/1HGZkY4ObV+2iu\n2bSk93dzwx6Odf6C4fE+6ivXzrq8glRok2Fq8iNl9vMkDamZ1TRTQRVjjDJEPx1M7kVuYv4TTeay\nIbZyKbVxkbM8w3+wLm0kCC7RxiD9rGczrW+5LMI23sZhnmc/T7A+Tfa8DtpJJOpZTR/d84y2eDvZ\nQwftnOEYvalz6jpTFznDGjZwmcWfILSaNZRRzuscZTSNTM2N2squOSe4v1VZlLE17eYkh3mWH7Mu\nbSKR6OAi1dTMOR8t65hauVZsmNrZdDdjE8O0D5yga6iNRGJj/W3cVLeTmop67mr9z7za+VM6h85x\nefAUqypbuG3tB1lTszUvYWpLwx6Gxno43/8qJ7v3k5iguWbzosIUwO7m91JVXsfZ3oOc6X2JirJq\n1tZsY3fzeznaNfvMvPlUlFVzV+uDnOl9ifN9R7jYf5TxNE51eR11lU3c2nIfa2q3zRq7qbqV0z0v\ncmngBGMTY1NXQJ8+LymijHet/xivdvyUC/2vMZabyN5Us4naykbKopx9G36HUz3Pc77vCKd7XiQo\no6FqHbc23jfv1dcXo7p8FevqttM+cJwtje6VUvFFBDt5BxvSVs5ynE4ucYEzMz7oeBM7aGXbkk7t\n38NdNLGONk5NXQZhFQ3cwl42s3PW+pviZkiTF7ls4zSVVLKOjexkDy/xTObtBaiKaval93OMQ1ym\njR46qaOBW3kXNdRdU5iqjCremd7DSV7hPKcYz+09a2Xrouc67eA2yinnHCc5xwmqqGEDW9jBbTzD\nfxRkTK1MkVLxjg2vrt6Q7tn0B0UbT2/qG+ng6XPfYHPDr7Fn7YdLXU7BpZR46uzXGRnv5/1bP7uk\niezKjx+e/PLzKaVl//k9jdGS7ooPlroMSUX04/TtRfWvFTtnaqUZyE3yrilf/EU1l7ML/a8xONbN\nxvrbDFKSpIJasYf5VorekUu09R2mre8IEKxftavUJWU2dmr+iayn0hFGGeEcJymnnG29mxnru7aJ\nr8VUsb0wV4WWJBWPYeoG1z3czumeA9RXtvCOtR+66hXVbwTHOEQQrKKR3byTmlj8J9VLkrQUhqkb\n3OaGd7C54R0Lr3iD+FD8bqlLkCStMM6ZkiRJysAwJUmSlIFhSpIkKQPDlCRJUgaZJqBHxCmgFxgH\nxm6EC/Np+frzEy+UuoQ5/dWOd5W6BM3DHqbrxeNtc39eYKl9ZOPeUpewLOTjbL73pzTPp3hK0vXP\nHiYpEw/zSZIkZZA1TCXgxxHxfEQ8PNcKEfFwROyPiP0j4wMZh5OkvLpqD5vev0YZLkF5kpaDrIf5\n7k0pnYuIm4AfRcSRlNJT01dIKT0CPAKTH3SccTxJyqer9rDp/asxWuxfkuaUac9USulc7t924F+B\nO/NRlCQVgz1MUj4sOUxFxKqIaLhyG/hN4FC+CpOkQrKHScqXLIf51gP/GhFXXuebKaUf5qUqSSo8\ne5ikvFhymEopnQBuz2MtklQ09jBJ+eKlESRJkjIwTEmSJGVgmJIkScrAMCVJkpSBYUqSJCkDw5Qk\nSVIGhilJkqQMDFOSJEkZGKYkSZIyMExJkiRlYJiSJEnKwDAlSZKUgWFKkiQpA8OUJElSBoYpSZKk\nDAxTkiRJGRimJEmSMjBMSZIkZWCYkiRJysAwJUmSlIFhSpIkKQPDlCRJUgYLhqmI+HpEtEfEoWnL\nWiLiRxFxNPdvc2HLlKSlsYdJKrTF7Jn6BnD/W5Z9HvhJSmk38JPcfUm6Hn0De5ikAlowTKWUngI6\n3rL448CjuduPAp/Ic12SlBf2MEmFttQ5U+tTSudzty8A6/NUjyQVgz1MUt5knoCeUkpAmu/xiHg4\nIvZHxP6R8YGsw0lSXl2th03vX6MMF7kyScvFUsPUxYhoBcj92z7fiimlR1JK+1JK+6rK65Y4nCTl\n1aJ62PT+VUl1UQuUtHwsNUw9BjyUu/0Q8L38lCNJRWEPk5Q3FQutEBH/BNwHrI2Is8BfAF8EvhUR\nnwFOAw8WskhpMf5qx7tKXYKuQ/YwLQcf2bi31CUogwXDVErpU/M89ME81yJJeWcPk1RoXgFdkiQp\nA8OUJElSBoYpSZKkDAxTkiRJGSw4AV263lRs31rqEiRJmuKeKUmSpAwMU5IkSRkYpiRJkjIwTEmS\nJGVgmJIkScrAMCVJkpSBl0aQSuj7P3+s1CXM6aP3fKzUJUi6zj3edqDUJcypFB8a7Z4pSZKkDAxT\nkiRJGRimJEmSMjBMSZIkZWCYkiRJysAwJUmSlIFhSpIkKQPDlCRJUgaGKUmSpAwMU5IkSRkYpiRJ\nkjJYMExFxNcjoj0iDk1b9oWIOBcRB3JfDxS2TElaGnuYpEJbzJ6pbwD3z7H8b1JKe3NfP8hvWZKU\nN9/AHiapgBYMUymlp4COItQiSXlnD5NUaFnmTH0uIl7K7UJvnm+liHg4IvZHxP6R8YEMw0lSXi3Y\nw6b3r1GGi12fpGViqWHqK8AOYC9wHvjSfCumlB5JKe1LKe2rKq9b4nCSlFeL6mHT+1cl1cWsT9Iy\nsqQwlVK6mFIaTylNAF8F7sxvWZJUOPYwSfm0pDAVEa3T7n4SODTfupJ0vbGHScqnioVWiIh/Au4D\n1kbEWeAvgPsiYi+QgFPAZwtYoyQtmT1MUqEtGKZSSp+aY/HXClCLJOWdPUxSoXkFdEmSpAwMU5Ik\nSRkYpiRJkjIwTEmSJGVgmJIkScrAMCVJkpSBYUqSJCkDw5QkSVIGhilJkqQMDFOSJEkZLPhxMivB\n93/+WKlLmNNH7/lYqUuQdJ17vO1AqUuY00c27i11CVLRuGdKkiQpA8OUJElSBoYpSZKkDAxTkiRJ\nGRimJEmSMjBMSZIkZeClEaQS8vIXkpYrL3/xJvdMSZIkZWCYkiRJysAwJUmSlIFhSpIkKQPDlCRJ\nUgYLns0XEVuAvwfWAwl4JKX0txHRAvwLsB04BTyYUuosXKnZjWxuKXUJ1+Rq9Vad7ShiJdLydCP1\nL0nXr8XsmRoD/jSldBtwN/BHEXEb8HngJyml3cBPcvcl6Xpi/5JUcAuGqZTS+ZTSC7nbvcBhYBPw\nceDR3GqPAp8oVJGStBT2L0nFcE0X7YyI7cAdwLPA+pTS+dxDF5jcjT7Xcx4GHgaoKW9Yap2SlEnm\n/kVd4YuUtCwtegJ6RNQD3wH+JKXUM/2xlFJicj7CLCmlR1JK+1JK+6rKbUaSii8f/auS6iJUKmk5\nWlSYiohKJhvRP6aUvptbfDEiWnOPtwLthSlRkpbO/iWp0BYMUxERwNeAwymlL0976DHgodzth4Dv\n5b88SVo6+5ekYljMnKn3Ap8GDkbEgdyyPwO+CHwrIj4DnAYeLEyJkrRk9i9JBbdgmEopPQ3EPA9/\nML/lSFL+2L8kFYNXQJckScrAMCVJkpSBYUqSJCkDw5QkSVIGhilJkqQMDFOSJEkZGKYkSZIyMExJ\nkiRlYJiSJEnKwDAlSZKUgWFKkiQpA8OUJElSBoYpSZKkDAxTkiRJGRimJEmSMjBMSZIkZWCYkiRJ\nysAwJUmSlIFhSpIkKQPDlCRJUgaGKUmSpAwMU5IkSRksGKYiYktEPBERr0TEyxHxx7nlX4iIcxFx\nIPf1QOHLlaTFs39JKoaKRawzBvxpSumFiGgAno+IH+Ue+5uU0l8XrjxJysT+JangFgxTKaXzwPnc\n7d6IOAxsKnRhkpSV/UtSMVzTnKmI2A7cATybW/S5iHgpIr4eEc15rk2S8sb+JalQFh2mIqIe+A7w\nJymlHuArwA5gL5N/+X1pnuc9HBH7I2L/yPhAHkqWpGuTj/41ynDR6pW0vCwqTEVEJZON6B9TSt8F\nSCldTCmNp5QmgK8Cd8713JTSIymlfSmlfVXldfmqW5IWJV/9q5Lq4hUtaVlZzNl8AXwNOJxS+vK0\n5a3TVvskcCj/5UnS0tm/JBXDYs7mey/waeBgRBzILfsz4FMRsRdIwCngswWpUJKWzv4lqeAWczbf\n00DM8dAP8l+OJOWP/UtSMXgFdEmSpAwMU5IkSRkYpiRJkjIwTEmSJGWwmLP5bngffvAPS12CJC3J\nRzbuLXUJ0ornnilJkqQMDFOSJEkZGKYkSZIyMExJkiRlYJiSJEnKwDAlSZKUwYq6NELV2Y5SlyBJ\nkm4w7pmSJEnKwDAlSZKUgWFKkiQpA8OUJElSBoYpSZKkDAxTkiRJGRimJEmSMjBMSZIkZWCYkiRJ\nysAwJUmSlIFhSpIkKYMFP5svImqAp4Dq3PrfTin9RUS0AP8CbAdOAQ+mlDoLV2rhfP/nj5W6hDl9\n9J6PlboEaVlbCf3r8bYDpS5hTh/ZuLfUJUhFs5g9U8PAB1JKtwN7gfsj4m7g88BPUkq7gZ/k7kvS\n9cT+JangFgxTaVJf7m5l7isBHwcezS1/FPhEQSqUpCWyf0kqhkXNmYqI8og4ALQDP0opPQusTymd\nz61yAVhfoBolacnsX5IKbVFhKqU0nlLaC2wG7oyIPW95PDH5194sEfFwROyPiP0j4wOZC5aka5Gv\n/jXKcBGqlbQcXdPZfCmlLuAJ4H7gYkS0AuT+bZ/nOY+klPallPZVlddlrVeSliRr/6qkunjFSlpW\nFgxTEbEuIppyt2uBDwNHgMeAh3KrPQR8r1BFStJS2L8kFcOCl0YAWoFHI6KcyfD1rZTSv0XEM8C3\nIuIzwGngwQLWKUlLYf+SVHALhqmU0kvAHXMsfwP4YCGKkqR8sH9JKgavgC5JkpSBYUqSJCkDw5Qk\nSVIGhilJkqQMDFOSJEkZGKYkSZIyMExJkiRlYJiSJEnKwDAlSZKUgWFKkiQpA8OUJElSBoYpSZKk\nDAxTkiRJGRimJEmSMjBMSZIkZWCYkiRJysAwJUmSlIFhSpIkKQPDlCRJUgaGKUmSpAwMU5IkSRkY\npiRJkjIwTEmSJGWwYJiKiJqI+GVE/CoiXo6Iv8wt/0JEnIuIA7mvBwpfriQtnv1LUjFULGKdYeAD\nKaW+iKgEno6If8899jcppb8uXHmSlIn9S1LBLRimUkoJ6Mvdrcx9pUIWJUn5YP+SVAyLmjMVEeUR\ncQBoB36UUno299DnIuKliPh6RDTP89yHI2J/ROwfGR/IU9mStDj56l+jDBetZknLy6LCVEppPKW0\nF9gM3BkRe4CvADuAvcB54EvzPPeRlNK+lNK+qvK6PJUtSYuTr/5VSXXRapa0vFzT2XwppS7gCeD+\nlNLFXJOaAL4K3FmIAiUpH+xfkgplMWfzrYuIptztWuDDwJGIaJ222ieBQ4UpUZKWxv4lqRgWczZf\nK/BoRJQzGb6+lVL6t4j4h4jYy+RkzlPAZwtXZmF99J6PXfNzvv/zxwpQiaQ8u+H710c27r3m5zze\ndqAAlUgr12LO5nsJuGOO5Z8uSEWSlCf2L0nF4BXQJUmSMjBMSZIkZWCYkiRJysAwJUmSlMFizubT\nHJZyBqAkXQ+WcgagpPm5Z0qSJCkDw5QkSVIGhilJkqQMDFOSJEkZGKYkSZIyMExJkiRlYJiSJEnK\nwDAlSZKUgWFKkiQpA8OUJElSBoYpSZKkDAxTkiRJGRimJEmSMjBMSZIkZWCYkiRJysAwJUmSlIFh\nSpIkKQPDlCRJUgaRUireYBGXgNO5u2uBy0UbfLaVPP5K3vZSj78St31bSmldkcfMO/uX418HY6/0\n8a/b/lV+ZyoLAAAEXElEQVTUMDVj4Ij9KaV9JRl8hY+/kre91OOv5G2/kZT6fXR8f4dX4vil3var\n8TCfJElSBoYpSZKkDEoZph4p4dgrffyVvO2lHn8lb/uNpNTvo+OvzLFX+vil3vZ5lWzOlCRJ0o3A\nw3ySJEkZlCRMRcT9EfFqRByLiM8XeexTEXEwIg5ExP4ijPf1iGiPiEPTlrVExI8i4mju3+Yij/+F\niDiXew8ORMQDBRp7S0Q8ERGvRMTLEfHHueVF2f6rjF+s7a+JiF9GxK9y4/9lbnnBt/8qYxdl229k\npexfufFXTA8rZf/KjVWyHraS+9cC41+XPazoh/kiohx4DfgwcBZ4DvhUSumVIo1/CtiXUirKtSoi\n4n1AH/D3KaU9uWX/C+hIKX0x14ybU0r/o4jjfwHoSyn9dSHGnDZ2K9CaUnohIhqA54FPAH9IEbb/\nKuM/SHG2P4BVKaW+iKgEngb+GPhtCrz9Vxn7foqw7TeqUvevXA2nWCE9rJT9KzdWyXrYSu5fC4x/\nXfawUuyZuhM4llI6kVIaAf4Z+HgJ6iiKlNJTQMdbFn8ceDR3+1Emf0GKOX5RpJTOp5ReyN3uBQ4D\nmyjS9l9l/KJIk/pydytzX4kibP9VxlY2K6p/QWl7WCn7V278kvWwldy/Fhj/ulSKMLUJODPt/lmK\n+APC5DfjxxHxfEQ8XMRxp1ufUjqfu30BWF+CGj4XES/ldqMX7DDjFRGxHbgDeJYSbP9bxocibX9E\nlEfEAaAd+FFKqWjbP8/YUOTv/Q2m1P0L7GFQgp/hUvawldi/rjI+XIc9bCVOQL83pbQX+C3gj3K7\nkUsmTR5nLXba/gqwA9gLnAe+VMjBIqIe+A7wJymlnumPFWP75xi/aNufUhrP/bxtBu6MiD1vebxg\n2z/P2EX93qsgVnoPK/rPcCl72ErtX1cZ/7rsYaUIU+eALdPub84tK4qU0rncv+3AvzK5277YLuaO\nh185Lt5ezMFTShdzP6QTwFcp4HuQO9b9HeAfU0rfzS0u2vbPNX4xt/+KlFIX8ASTx/uL+v2fPnYp\ntv0GU9L+BfawYv8Ml7KH2b9mj3+99rBShKnngN0RcXNEVAG/DzxWjIEjYlVuIh8RsQr4TeDQ1Z9V\nEI8BD+VuPwR8r5iDX/lFyPkkBXoPchMIvwYcTil9edpDRdn++cYv4vavi4im3O1aJictH6EI2z/f\n2MXa9htYyfoX2MOgeL+/ubFK1sNWcv+62vjXbQ9LKRX9C3iAyTNijgP/s4jj7gB+lft6uRhjA//E\n5K7IUSbnV3wGWAP8BDgK/BhoKfL4/wAcBF5i8hejtUBj38vkLuCXgAO5rweKtf1XGb9Y2/9O4MXc\nOIeAP88tL/j2X2Xsomz7jfxVqv6VG3tF9bBS9q/c+CXrYSu5fy0w/nXZw7wCuiRJUgYrcQK6JElS\n3himJEmSMjBMSZIkZWCYkiRJysAwJUmSlIFhSpIkKQPDlCRJUgaGKUmSpAz+P5+RVLkSrf6hAAAA\nAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAEgCAYAAACQH/YaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlwXed53/Hvg50AFwAkSILgTtHWFpmSWcmuVUXyJsVd\nHLmtp+40Vht3lLSpJ2k7bTPtTGz3r0wny2QyaaZK4lrOpG49iZ14MnYUyZajyJZlURIlUaQsUtwB\nkCAJgABBYn/7By4hgLhYiHMXgvh+ZjC8OOfc+z4Hy8MfznnPuZFSQpIkSYtTUe4CJEmSljLDlCRJ\nUgaGKUmSpAwMU5IkSRkYpiRJkjIwTEmSJGVgmJIkScrAMCVJkpSBYUqSJCmDqixPjohHgN8BKoE/\nTCn9+lzb11Q3pLraxixDSlpi+gc6zqeUWspdRz7X08NqojbV0VCy2iSVXz89C+pfiw5TEVEJ/B7w\nMeA08FJEfCuldHC259TVNnLfXb+42CElLUHPvPBrJ8pdQz7X28PqaOC++EgpS5RUZs+kP11Q/8py\nmu9e4EhK6WhKaRj4v8AnM7yeJJWSPUxSQWQJU23AqSmfn84tmyYiHo+IfRGxb2RkIMNwklRQ8/aw\naf2LoZIWJ2npKPoE9JTSEymlvSmlvdXVzjeQtHRM61/UlrscSTeoLGGqHdgy5fPNuWWStBTYwyQV\nRJYw9RKwOyJ2REQN8M+AbxWmLEkqOnuYpIJY9NV8KaXRiPh3wFNMXFb85ZTSmwWrTJKKyB4mqVAy\n3WcqpfRt4NsFqqUoOrpe5eA73+T2XY+yaf3dRRvnzSPfoPPcfj50979nRV1T0cZZrCuDPfzg1d+m\ntWUPd9zyqXKXI90QlkIPu1l0py5e4Tl2cBu74o5yl7Mo76Q3OcYh7uEBmmN9ucvRDSRTmCqmZ174\nNQA++sH/XpTXf/6V3wLg/nv+Q1Fefz773vwyvX3Hi7Z/N4Lui8d45eD/ZsfmB9m15cPlLkcqi4HU\nTztH6eEcVxhgjFEqqaKelTSyjo1sZXXceH+AlVtHOs5B9nE7e9kU22/aMXVzuGHDVKGsb76NNas2\nU1u9qtyllFVtzWo+uOfzVFXWlbsUaVlIKXGMQxxl4h6gq2hkA1uopoYxRumnl1O8w0kO8960hy1x\nS5krlrRYN32Yqqqqo6rKAFFRUUnDihvyHT2km9LVIFXLCn6K+2iMdTO2GU6DnOQwo4yUoUJJhbKk\nwtTUeT87Nz/EkZNP033xKGNjwzTUr2fnlodoaXrvtOdcO2fq6qmnq66eTgSmzSfq6j5E14U36bvU\nzuBwHwANK9bR2nI3WzbeS8TiLoS8ug/5xm9cvZ29d/w88O5pyA/c9W85evpZuroPMTTcx/a2B9i1\n5cMMDffRfvZlLlw8wpXBHkZGr1BdVU/T6u3s2PzTrKxfn3fcfHOmxsaGOXnmR5w9f4DLgxcIgpX1\n69nS+gE2rrsr735c6D3CqTM/4mJ/O6Njg9RUN7CqYRNbNt7H2sZdk3PIAI6d/j7HTn9/8rn33P6v\naF6zA4Dx8VFOdv6QznOvc2Woh4gKVtVvYMvGD7Bh3Z2z7sP2tgc4eup7dF88xsjoZe65/V/yzsmn\nuXipnQ/d/St5562d6PgBh088xe5tH2fbpvvn/D5JWVxOlzjGIYIK7uZ+VsaavNvVRB238FOMp/Fp\ny99ML9HJCf4uj3CeM3RwjMv0s5pm9saDwMSRr3aO0sFxBugjAStZzSa208ZOImLy9a6kAX7Ad2hl\nG3fE35lRx770fXo5z0fjn0wumzrHaT1tHOEAF7nAOOOspolbuDNvQBxKg7zDAc7TySgj1LOKreym\njvoFf/2u1gNwkH0cTPsm132In2FFNEybvzTMRCgdoI9qark/PjHvHK3n08RUufvjEwsec6qz6TQn\n+AmX6KOCCtaygd28j7pYseD91M1jSYWpqwaHevnxG0+woq6JjS3vY3T0CmfPH+C1t/4P99z+GM1r\nds763BW1jezY/CCnOn8EwJbWD0yuW9XQOvn4yImniQhWr9xMS80qRseG6Ll4lLePf5u+S+3cufsf\nL6r2qqo6dmx+kM5z+xkc6mXH5gen1DY9AIyPj/Hywa8wOnqFtWt2UVlZO7lNT98Jjnc8T9Pq7axv\nvp3KyhouD16gq/sg53t+wt47/zWrGjbOW8/I6BVeOfgV+gc6WdXQyqb190BKXOg9woHDf8qly13c\nsvWj057zzqnvcez096msqKGl+TbqalczNNzPxf5TnDn/Gmsbd9HSfBsAnef207h6O02rt0/Zz8bc\n/o3yyqGv0tt3nPoV69iy4V7Gxkfo6n6TNw5/nf7Lndyy9WMzar4y2M1LbzxB/Yq1bGy5i/HxEaoq\na2nbeC8Xj3yD9q6XZ9QM0H52HxVRRWtL8S5EkAA6OU4isZHNswapqSpm+ePsbV6jl/OsYyNr2Ujw\nbkB6kx9zhlPUsoJNTPxxco4O3uJVejnPndxXkH3pp4cTvM0amtnEdga5QheneYXnuC99jIZ4dwrF\ncBpiH89yhQEaWUsj6xhikLd4hWY2LHjMTWynmhrO0UELm1jJu1/DKqqnbXuSw3RzlnW00sT6RR/l\nu54xT3OU83Swjk000cJFujnLafq5yAfSR6mIykXVoKVrSYapnr7j7Nz8EDu3PDS5bOO6n+LVQ3/M\niY4fzB2m6prYteXDk0dNZpsYvee2f0F9XfO0ZSmNc/CdP6fz3H62bLyXNau25H3uXKqrVrBry4fp\n6TvO4FDvnBOzh0f6WVnfwt47fp7Kyppp65rX7OCBvf+Zqsrpd2XuHzjDvgN/yJGTf83dt3123nre\nPv4d+gcmQsv2tr83uXxsfITX3/oax9v/lg1r75gMmhd6j3Ds9PdZUdvE++/4HHW1q6e93uDQRWBi\nrlpVZR2d5/bTtHp73v080flDevuOs7ZxN++79Z9PNqCdWx7kx288wfH2v2Vd03tpXLV12vN6+0+y\nve3vzQhaDfUtHD7+V3R0vcLOLQ9Na2jdF49xefACG9fdRY134leR9XIBgCayXfHVTw/38dEZR0XO\npJOc4RSraOT9PEhVTLTyW9Kd7ONvOMMp1qVWNsbWfC97Xc5zZsaE7NPpKG/xCqc4zK3cM7n8HQ5w\nhQG2cAvvjT2Ty7ekXbzEswsec1Nsh8RksJlrMng3XezlocyT+K9nzAuc4V4+Mi0ov5Fe5CynOEcH\nG7j+/xu0tBX97WSKoa62kR2bf3rasrWNu6mrWUPfpcLcwPjaIAUQUcGWjRNHsi70HinIOPPZve2R\nGUEKoKZ65YwgBbCqYSNNa3bQc/E44+Njc7728Mhlzpx7ndUNm6YFKYDKimpu2fZxIHHm/OuTy0+d\n+VGurodnBCmAutr5/wq/qqPrFSB4z/ZHpgWfmuqV7Gib+P62n315xvNqqleyc/NDM5ZXVlSzqeVu\nhkcuca77rWnr2s9OHLJv27B3wfVJizXMIAC1zDzlcyUN8E56c9rHyXQ47+ts470zghRAB8cBuIU7\nJ4MUQGVUsZuJ0+PtHMu6GwCsYe2MYLGJ7QTBRXoml42ncTo5SSVV7GL6abXV0cxGsge7fNrYUfKr\nIbdwy4wjjm25o4MX6S5pLboxLMkjU6vqN+ads1Rbu4aL/afyPOP6DY9c5kTH81zoPcyVwR7Gxoen\nrR8a7i/IOHOpiCpW1s9+aPx8z084ffYl+i51MDJ6mXTNvIuR0cvU1sx+FWPfpXYS40DwzqnvzVh/\n9fUGrpybXHax/zQQrG3cfX07c43RsSGuDHZTW7M678T4q0cX+wc6Z6xbWb+Bior8P7ptG/8OJzp/\nSPvZfWxYO9HQh0cGONd9iIYVLdNON0rlcIUBjnFo2rI66tnKzN+p1cz8ow6gn14g/5GvRloIYnKb\nrFYzM6hURAU1qY5R3u2Ll+lnnDEaWUdVVM94ThMtdHKiIDVNtWaWr1Ex5fuaXJ0T5sUEy9OSDFOz\nXZ03EbBS5tcfGb3CS2/8L64M9bB6ZRutLe+jqmoFERWMjg5y6syPGE+jmceZT011w7RJpFOd7HyB\nt49/h6rKFaxt3EVdzRoqKica2Lnut7h0+Qzj43PXODJ6GYC+gXb6BmY/ojc29m7DHB0bpLqqjsrK\nmc3yeoyO5v5yr16Zd31NzcrJ8a41V0Csr2tmbeMuLvS+w+XBburrmuk8t5/xNOpRKZVMDXUM0M8Q\nV2asa471fJSJid7jaZzv8Y1ZX6eW/L1ulBGqqck716oiKqhONQwztMjqp7t2vtBVQZCm9NurIaJm\nljeErpllX7Iq1uvOJd/X5Op8tlSA/4O09CzJMFVsHV0vc2WoJ+/NJnv7T06e6iq6WYLUeBrj6Kln\nqaleyX13/ZsZ4WKhR+euhtKtrR/kPdt/ZmHPqaxjZPQKY2MjmQLV1bGHRi7lXT88fGlyvOu1ecO9\nXOg9QvvZfeze9vEpE8/3zP9kqQAaWUsP5+iha/L0TyFVUc0Iw4yn8RmBajyNM8LwtP/w5/uPvhBH\nU66ON1uIu3rqs1QWss+zBUXpei3JOVOFEMSM02JXXR6cOOe9oXnm5bS9fccLNj4waw1zGRm5zOjY\nIGtWbZ0RpEbHhvKeGstnzco2IOjtW/ih9zWrNgOJC73553hMNXlULc1sZlWVtayobWZouJ/LVy7M\nWN/dNzHfY+oVlgu1ruk91NWsofPcq1zoPcLlwQtsWHcn1VVesqzSaM3NKTpLOwOpr+Cvv4qJK2J7\nOTdjXS/nSaTJbeDdoDPI5Rnbj6YRLpP/j5rrUc8qKqikn15G08xw1pOn1rlkPdJTzcRc03xHBy+n\nS3kDpEeXtFjLNkxVV9UzMnKZsbGZv1BXL92/+h/6VX0DnRxr/9vCjF89cX796tVv16OmuoGKimr6\nBzoYHXv3r8Dx8THePvadydN387/OSjauu4u+gQ6Onv5+3mB3ebCbK4PvTjK9OgH/8ImnGBya+Z/E\n1GXVVbl9HM6/jxPvlZg4fOKpaWMPjwxM3peqbf09eZ87l4gK2jbsZXhkgIPv/PnE63iKTyVUHyvZ\nwW0kxnmV5+lN5/Nul+UyfoAjHGBsypSDsTTKEd7IbfPuEbGqqKaeVVzkApemhLuUEm/zGuPMfbHK\nQlREBa1sZYxR3mH6+0X3pW7OcPK6Xu9qGMoXABeinlVUUsU5OhhO7x4VG0tj/IT9RRlTy9eyPc3X\nvGYnfQPtvHroqzSt3k5UVLKqfiMtzbfS2rKHEx0/4O3j36Gn7xj1dWu5PHiB8z1vs775Ns5eOFCQ\n8bsuvMlrP/ka65reQ0VFFStqGxd0Kiqigq0bP8Dxjr/lR6/9Hi1Nt5LSGN19xxgdvULT6h309C3s\nSp5bd/x9rgxe4Oip73Hm3GsTR7uqVzI00s/A5XP0DbRz5+5/OnkTzLWNt7Cj7ac51v43vPDa79LS\ndCt1tWsYHrlEb99J1qzaPHlT0IYV66itWc2Z828QUUFdLqS2tuxhRW0j2zZ9iAu9hznX8xY/eu1/\nsq5pN2NjE/eZGh4ZYNum+2lcvW1RX99N69/P0dPfZ2i4j5X1G2bcXkEqtokwNfGWMvv4PqtSE2to\noooaRhlhkAG66QKgkZk3v5zLxtjKudTBWU7zAn9NS9pEEJyjgysMsIHNtF5zW4RtvIdDvMw+nmVD\n2kwFlXTTRSKxkjVc4vr/sLvWLu6kmy5OcYT+1DN5n6mznGItGznPwo6aw8RVhBVUcpLDjKThyblR\nW7kl7wT3a1VEBVvTbo5xiBd5hpbURiLRzVlqqcs7Hy3rmFq+lm2Y2rH5pxkZG+R8z0+42H6KxDit\nLXtoab6V2prVvP+Oz3Hk5NP09p3kQu8RGlas49Yd/4DmNTsLEqba1r+fwaFezp4/wImO50lpnMbV\n2xc8r2fn1g9TXV1PR9crtJ/dR1VVHc1rdrFr60c4mufKvNlUVdXx/jt+nvazL3Pm/Ot0dR9kfHyU\nmuqV1Nc1857tj9C8Zte05+za+hHWrNrCqc4fcb7nbcbGh6mpbmB1Q9u0+iMquOu9n+HIib/m7IU3\ncxPZE42rtrGitpGKiiruvv0xTnb8kDPn3+BU54tEVLCyYSPv2f4zs959fSFqa1ayrvE9nOs55FEp\nlUVEsIs72Ji2cpp36OEcZzg17Y2O29hJK9sWdWn/ndxHIy10cHzyNggNrOK97GEzu2Zs3xY7IE3c\n5LKDE1RTTQub2MWdvM4LmfcXoCZq2Zse4ggHOE8HffRQzypu5R7qqL+uMFUdNdyVPsgxDtLJccZy\nR89a2brguU47uZ1KKmnnGO0cpYY6NrKFndzOC/x1UcbU8hQpz3yWYlm9si3dd9cvlmw8vWvgyjle\n2P+7tK3fy227/lG5yym6lMb54au/w9DIJR54/3/y/RnL6JkXfu3llNKST7SrozndFx8pdxmSSuiZ\n9KcL6l/Lds7UcnN1kndtnhtt3oy6LhzkylAPrS17DFKSpKJatqf5lov+gTOcOf967i7mwfrce+bd\nrI63P8fI6BXaz75MZUUNO665s7skSYVmmLrJ9Q90curMixNzvnb+wznvqH4zOHLyGSIqaVjRwu5t\nH5+c9C5JUrEYpm5ym9bfnbsFwfLw0Q/+93KXIElaZpwzJUmSlIFhSpIkKQPDlCRJUgaGKUmSpAwy\nTUCPiONAPzAGjN4MN+bTzempb3y13CXk9fCnPlvuEpY1e5iWgqc68r+XYLk9vGlh79ixHBTiar6H\nUprlXTwl6cZnD5OUiaf5JEmSMsgaphLwTES8HBGP59sgIh6PiH0RsW9kZCDjcJJUUHP2sGn9i6Ey\nlCdpKch6mu/+lFJ7RKwHno6It1JKz03dIKX0BPAETLzRccbxJKmQ5uxh0/pXNNu/JOWV6chUSqk9\n928X8E3g3kIUJUmlYA+TVAiLDlMR0RARq64+Bj4OHChUYZJUTPYwSYWS5TTfBuCbEXH1df5PSumv\nClKVJBWfPUxSQSw6TKWUjgLvK2AtklQy9jBJheKtESRJkjIwTEmSJGVgmJIkScrAMCVJkpSBYUqS\nJCkDw5QkSVIGhilJkqQMDFOSJEkZGKYkSZIyMExJkiRlYJiSJEnKwDAlSZKUgWFKkiQpA8OUJElS\nBoYpSZKkDAxTkiRJGRimJEmSMjBMSZIkZWCYkiRJysAwJUmSlIFhSpIkKQPDlCRJUgbzhqmI+HJE\ndEXEgSnLmiPi6Yg4nPu3qbhlStLi2MMkFdtCjkx9BXjkmmW/Cnw3pbQb+G7uc0m6EX0Fe5ikIpo3\nTKWUngO6r1n8SeDJ3OMngZ8tcF2SVBD2MEnFttg5UxtSSp25x2eADQWqR5JKwR4mqWAyT0BPKSUg\nzbY+Ih6PiH0RsW9kZCDrcJJUUHP1sGn9i6ESVyZpqVhsmDobEa0AuX+7ZtswpfRESmlvSmlvdXXD\nIoeTpIJaUA+b1r+oLWmBkpaOxYapbwGP5R4/BvxFYcqRpJKwh0kqmKr5NoiIrwEPAusi4jTwBeDX\nga9HxOeAE8Cni1mklNXDn/psuUvIq6r92nnRS9doW3O5S8jLHqal7uFNe8pdguYxb5hKKX1mllUf\nKXAtklRw9jBJxeYd0CVJkjIwTEmSJGVgmJIkScrAMCVJkpTBvBPQJZXeF577ZrlLyOtLDzxa7hIk\n3eCe6thf7hLyKuZVkR6ZkiRJysAwJUmSlIFhSpIkKQPDlCRJUgaGKUmSpAwMU5IkSRkYpiRJkjIw\nTEmSJGVgmJIkScrAMCVJkpSBYUqSJCkDw5QkSVIGhilJkqQMDFOSJEkZGKYkSZIyMExJkiRlYJiS\nJEnKwDAlSZKUwbxhKiK+HBFdEXFgyrIvRkR7ROzPfXyiuGVK0uLYwyQV20KOTH0FeCTP8t9OKe3J\nfXy7sGVJUsF8BXuYpCKaN0yllJ4DuktQiyQVnD1MUrFlmTP1+Yh4PXcIvWm2jSLi8YjYFxH7RkYG\nMgwnSQU1bw+b1r8YKnV9kpaIxYap3wd2AnuATuA3Z9swpfRESmlvSmlvdXXDIoeTpIJaUA+b1r+o\nLWV9kpaQRYWplNLZlNJYSmkc+APg3sKWJUnFYw+TVEiLClMR0Trl00eBA7NtK0k3GnuYpEKqmm+D\niPga8CCwLiJOA18AHoyIPUACjgO/UMQaJWnR7GGSim3eMJVS+kyexX9UhFokqeDsYZKKzTugS5Ik\nZWCYkiRJysAwJUmSlIFhSpIkKQPDlCRJUgaGKUmSpAwMU5IkSRkYpiRJkjIwTEmSJGVgmJIkScpg\n3reTWQ6e+sZXy11CXg9/6rPlLkFl8qUHHi13CVoinurYX+4S8np4055yl6AyWY7fe49MSZIkZWCY\nkiRJysAwJUmSlIFhSpIkKQPDlCRJUgaGKUmSpAy8NYJURqNtzeUuQZKUkUemJEmSMjBMSZIkZWCY\nkiRJysAwJUmSlIFhSpIkKYN5w1REbImIZyPiYES8GRG/nFveHBFPR8Th3L9NxS9XkhbO/iWpFBZy\nZGoU+I8ppduBDwC/FBG3A78KfDeltBv4bu5zSbqR2L8kFd28YSql1JlSeiX3uB84BLQBnwSezG32\nJPCzxSpSkhbD/iWpFK7rpp0RsR24G3gR2JBS6sytOgNsmOU5jwOPA9TVrFlsnZKUSeb+RX3xi5S0\nJC14AnpErAT+DPiVlFLf1HUppQSkfM9LKT2RUtqbUtpbXd2QqVhJWoyC9C9qS1CppKVoQWEqIqqZ\naER/klL6Rm7x2Yhoza1vBbqKU6IkLZ79S1KxLeRqvgD+CDiUUvqtKau+BTyWe/wY8BeFL0+SFs/+\nJakUFjJn6kPAzwFvRMT+3LL/Cvw68PWI+BxwAvh0cUqUpEWzf0kqunnDVErpeSBmWf2RwpYjSYVj\n/5JUCt4BXZIkKQPDlCRJUgaGKUmSpAwMU5IkSRkYpiRJkjIwTEmSJGVgmJIkScrAMCVJkpSBYUqS\nJCkDw5QkSVIGhilJkqQMDFOSJEkZGKYkSZIyMExJkiRlYJiSJEnKwDAlSZKUgWFKkiQpA8OUJElS\nBoYpSZKkDAxTkiRJGRimJEmSMjBMSZIkZTBvmIqILRHxbEQcjIg3I+KXc8u/GBHtEbE/9/GJ4pcr\nSQtn/5JUClUL2GYU+I8ppVciYhXwckQ8nVv32yml3yheeZKUif1LUtHNG6ZSSp1AZ+5xf0QcAtqK\nXZgkZWX/klQK1zVnKiK2A3cDL+YWfT4iXo+IL0dEU4Frk6SCsX9JKpYFh6mIWAn8GfArKaU+4PeB\nncAeJv7y+81Znvd4ROyLiH0jIwMFKFmSrk9B+hdDJatX0tKyoDAVEdVMNKI/SSl9AyCldDalNJZS\nGgf+ALg333NTSk+klPamlPZWVzcUqm5JWpCC9S9qS1e0pCVlIVfzBfBHwKGU0m9NWd46ZbNHgQOF\nL0+SFs/+JakUFnI134eAnwPeiIj9uWX/FfhMROwBEnAc+IWiVFgCD3/qs+UuQVJx3Pz9a9Oecpcg\nLXsLuZrveSDyrPp24cuRpMKxf0kqBe+ALkmSlIFhSpIkKQPDlCRJUgaGKUmSpAwMU5IkSRkYpiRJ\nkjIwTEmSJGVgmJIkScrAMCVJkpSBYUqSJCkDw5QkSVIGhilJkqQMDFOSJEkZGKYkSZIyMExJkiRl\nYJiSJEnKwDAlSZKUgWFKkiQpA8OUJElSBoYpSZKkDAxTkiRJGRimJEmSMjBMSZIkZVA13wYRUQc8\nB9Tmtv/TlNIXIqIZ+H/AduA48OmUUk/xSi2eqvbucpdQMKNtzeUuQbphLIf+Jan8FnJkagj4cErp\nfcAe4JGI+ADwq8B3U0q7ge/mPpekG4n9S1LRzRum0oRLuU+rcx8J+CTwZG75k8DPFqVCSVok+5ek\nUljQnKmIqIyI/UAX8HRK6UVgQ0qpM7fJGWBDkWqUpEWzf0kqtgWFqZTSWEppD7AZuDci7rxmfWLi\nr70ZIuLxiNgXEftGRgYyFyxJ16Ng/YuhElQraSm6rqv5Ukq9wLPAI8DZiGgFyP3bNctznkgp7U0p\n7a2ubsharyQtSub+RW3pipW0pMwbpiKiJSIac49XAB8D3gK+BTyW2+wx4C+KVaQkLYb9S1IpzHtr\nBKAVeDIiKpkIX19PKf1lRLwAfD0iPgecAD5dxDrL4gvPfbPcJczqSw88Wu4SpKVg2favpzr2l7uE\nWT28aU+5S5AKat4wlVJ6Hbg7z/ILwEeKUZQkFYL9S1IpeAd0SZKkDAxTkiRJGRimJEmSMjBMSZIk\nZWCYkiRJysAwJUmSlIFhSpIkKQPDlCRJUgaGKUmSpAwMU5IkSRkYpiRJkjJYyBsd3/RGT53Ou/zF\ny7eUuJLp7qs/UtbxJUnS/DwyJUmSlIFhSpIkKQPDlCRJUgaGKUmSpAwMU5IkSRl4Nd8cPt90oiTj\n/G7PtpKMI0mSCs8jU5IkSRkYpiRJkjIwTEmSJGVgmJIkScrAMCVJkpTBvGEqIuoi4scR8VpEvBkR\nX8ot/2JEtEfE/tzHJ4pfriQtnP1LUiks5NYIQ8CHU0qXIqIaeD4ivpNb99sppd8oXnmSlIn9S1LR\nzRumUkoJuJT7tDr3kYpZlCQVgv1LUiksaM5URFRGxH6gC3g6pfRibtXnI+L1iPhyRDTN8tzHI2Jf\nROwbGRkoUNmStDAF618MlaxmSUvLgsJUSmkspbQH2AzcGxF3Ar8P7AT2AJ3Ab87y3CdSSntTSnur\nqxsKVLYkLUzB+he1JatZ0tJyXVfzpZR6gWeBR1JKZ3NNahz4A+DeYhQoSYVg/5JULAu5mq8lIhpz\nj1cAHwPeiojWKZs9ChwoTomStDj2L0mlsJCr+VqBJyOikonw9fWU0l9GxB9HxB4mJnMeB36heGVK\n0qLYvyQV3UKu5nsduDvP8p8rSkWSVCD2L0ml4B3QJUmSMjBMSZIkZWCYkiRJysAwJUmSlMFCruZb\ntn63Z1tJxvnLO/LefJm/2vJoScaXpMV6eNOecpcglZ1HpiRJkjIwTEmSJGVgmJIkScrAMCVJkpSB\nYUqSJCkDr+YDqrZszrv8rx7Jv7zw4+dfPtrWXJLxJd18vMpOKh2PTEmSJGVgmJIkScrAMCVJkpSB\nYUqSJCnVlPi7AAAExElEQVQDw5QkSVIGhilJkqQMvDUC3oJAkiQtnkemJEmSMjBMSZIkZWCYkiRJ\nysAwJUmSlIFhSpIkKYNIKZVusIhzwIncp+uA8yUbfKblPP5y3vdyj78c931bSqmlxGMWnP3L8W+A\nsZf7+Dds/yppmJo2cMS+lNLesgy+zMdfzvte7vGX877fTMr9dXR8f4eX4/jl3ve5eJpPkiQpA8OU\nJElSBuUMU0+UcezlPv5y3vdyj7+c9/1mUu6vo+Mvz7GX+/jl3vdZlW3OlCRJ0s3A03ySJEkZlCVM\nRcQjEfGTiDgSEb9a4rGPR8QbEbE/IvaVYLwvR0RXRByYsqw5Ip6OiMO5f5tKPP4XI6I99zXYHxGf\nKNLYWyLi2Yg4GBFvRsQv55aXZP/nGL9U+18XET+OiNdy438pt7zo+z/H2CXZ95tZOftXbvxl08PK\n2b9yY5Wthy3n/jXP+DdkDyv5ab6IqATeBj4GnAZeAj6TUjpYovGPA3tTSiW5V0VEPABcAr6aUroz\nt+x/AN0ppV/PNeOmlNJ/KeH4XwQupZR+oxhjThm7FWhNKb0SEauAl4GfBf4lJdj/Ocb/NKXZ/wAa\nUkqXIqIaeB74ZeBTFHn/5xj7EUqw7zercvevXA3HWSY9rJz9KzdW2XrYcu5f84x/Q/awchyZuhc4\nklI6mlIaBv4v8Mky1FESKaXngO5rFn8SeDL3+EkmfkFKOX5JpJQ6U0qv5B73A4eANkq0/3OMXxJp\nwqXcp9W5j0QJ9n+OsZXNsupfUN4eVs7+lRu/bD1sOfeveca/IZUjTLUBp6Z8fpoS/oAw8c14JiJe\njojHSzjuVBtSSp25x2eADWWo4fMR8XruMHrRTjNeFRHbgbuBFynD/l8zPpRo/yOiMiL2A13A0yml\nku3/LGNDib/3N5ly9y+wh0EZfobL2cOWY/+aY3y4AXvYcpyAfn9KaQ/wM8Av5Q4jl02aOM9a6rT9\n+8BOYA/QCfxmMQeLiJXAnwG/klLqm7quFPufZ/yS7X9KaSz387YZuDci7rxmfdH2f5axS/q9V1Es\n9x5W8p/hcvaw5dq/5hj/huxh5QhT7cCWKZ9vzi0riZRSe+7fLuCbTBy2L7WzufPhV8+Ld5Vy8JTS\n2dwP6TjwBxTxa5A71/1nwJ+klL6RW1yy/c83fin3/6qUUi/wLBPn+0v6/Z86djn2/SZT1v4F9rBS\n/wyXs4fZv2aOf6P2sHKEqZeA3RGxIyJqgH8GfKsUA0dEQ24iHxHRAHwcODD3s4riW8BjucePAX9R\nysGv/iLkPEqRvga5CYR/BBxKKf3WlFUl2f/Zxi/h/rdERGPu8QomJi2/RQn2f7axS7XvN7Gy9S+w\nh0Hpfn9zY5Wthy3n/jXX+DdsD0splfwD+AQTV8S8A/y3Eo67E3gt9/FmKcYGvsbEocgRJuZXfA5Y\nC3wXOAw8AzSXePw/Bt4AXmfiF6O1SGPfz8Qh4NeB/bmPT5Rq/+cYv1T7fxfwam6cA8Cv5ZYXff/n\nGLsk+34zf5Srf+XGXlY9rJz9Kzd+2XrYcu5f84x/Q/Yw74AuSZKUwXKcgC5JklQwhilJkqQMDFOS\nJEkZGKYkSZIyMExJkiRlYJiSJEnKwDAlSZKUgWFKkiQpg/8P7bRW2xGneooAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAEgCAYAAACQH/YaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3WlsXfd55/Hvw50USZGUZInarSV2HDWWU8V2HDfjLG5c\nB8jSTj0NisABMuMM0AlStC8m6ABt2lfBoEkxLwYB3CaIWzQtMkmKGE0a18nY4zhxHMu2YsmWbe2W\nREmUzH3f/vOCVzRpkiLFcxdR/H4Agveee+79P+eKfPTjOf9zbqSUkCRJ0tKUlboASZKk5cwwJUmS\nlIFhSpIkKQPDlCRJUgaGKUmSpAwMU5IkSRkYpiRJkjIwTEmSJGVgmJIkScqgIsuTI+I+4H8B5cDf\npZS+cqX1q8prU23F6ixDSlpmekYuXEoprSt1HXO5mh5WFdWphlVFq01S6fXSuaj+teQwFRHlwP8G\n7gXOAM9FxKMppVfme05txWru2vSHSx1S0jL04xNfO1XqGuZytT2shlXcER8uZomSSuwn6buL6l9Z\nDvPdDhxNKR1PKY0A/wx8IsPrSVIx2cMk5UWWMLUJOD3t/pncshki4qGI2B8R+0fGBzIMJ0l5tWAP\nm96/RhkuanGSlo+CT0BPKT2cUtqXUtpXVV5X6OEkKW+m969KqktdjqRrVJYwdRbYMu3+5twySVoO\n7GGS8iJLmHoO2B0RN0ZEFfAHwKP5KUuSCs4eJikvlnw2X0ppLCL+G/AYk6cVfzOl9HLeKpOkArKH\nScqXTNeZSin9CPhRnmopiDO9L3Po0mPsWftRNje8q2DjvHTxx7T1vcIHNn+Ouspr71paA6PdPHXm\nG2ysv4V3r7uv1OVI14Tl0MOuFx2pnRd4iht5JzujcL24kI6llznBYd7DB2iJG0pdjq4hmcJUIf34\nxNcAuO/GPynI6z95+u8AuGfLfy7I6y/k2XPfoXPoTMG271rw5uBpnjv/f9jZdCe7m+8qdTlSSfSn\nXs5ynE4uMkg/44xRTgV11NPEWjawlcZoLnWZ15y2dJJX2M8t7GNjbL9ux9T14ZoNU/myftUumqpb\nqa5Y2Vcurqmo5+5Nn6WirKrUpUgrQkqJExzmOJPXAG2gifVsoZIqxhmjly5Oc4w3OMJNaS9bYleJ\nK5a0VNd9mKosq6ayylOay6Kc+qqWUpchrRiXg1Q1tfwGd9AUa2etM5KGeIMjjDFaggol5cuyClPT\n5/3sanofr3c+zZuDpxhPo9RXrmVX8/u4oW7HjOe8fc7U5UNPl10+nAjMmE90of8o5/tfp3v4PMPj\nfQCsqmxhY/0tbGu8jYjItA1zjd9cs5k7Wh8A3joMefemz3Ck8xkuDBxleKyPHU23s7v5LobG+jjT\ne5BLg6cYGOtidHyIqvJaWmo2s7PpTuqr1sz73r19ztT4xCgne17kfP9rDIx2AkF91Vq2Nd7Gxvqb\n59yOSwMnOdVzgO7hc4xOjFBdXktj9Xq2Nu5lbe22qTlkAMe6fsmxrl9OPfe9G36fNbWTZ6RPpDFO\ndr9AW99hBsa6CcporFrH1sa9tNbfNO827Gy6gyOdP6dj8DQjE4O8d8Pv83rn03QPn5t33tqJ7v28\n1vEUN7V8gBtX77viv5OUxUDq4wSHCcq4jbupj7nnUVZFDbv4DSbSxIzlL6fnOMcp7uI+LnGeNk4w\nQC+NtLAv7gEm93yd5ThtnKSfHhJQTyMb2c4mdszoUYOpn5/zb7SyjXfFe2fVsT89SReX+Ej8x6ll\n0+c43cAmjnKIbt5kggkaaWYXe+YMiMNpiGMc4hLnGGOUOhrYym5qWPx1Bi/XA/AK+3kl7Z967P38\nDrWxasb8pREmQ2k/PVRSzd1x/4JztJ5Ok1Pl7o77Fz3mdBfSGU7xGn30UEYZa1jPbm6lJmoXvZ26\nfiyrMHXZ0FgPv2z7NrWVq9lYfwujE0Oc73+NFy78gPdu+D3W1G6d97m1FY3sbLqTUz0vArCt8bap\nxxqr3ppQ+Hrnz4DIHSKsZ2ximDeHTvNqx5P0DF/g3Tf8zpJqryyrZmfTnZzte4WhsR52Nt05rbaZ\nDTelcX517ruMTgyxtnYbFVFFXW6dzqEzHO9+jjU1W9hQt5vyskoGRrs433+E9oHj3NH6BzRWL/zZ\nsqPjQzx3/rv0jLTTWHUDmxr2QEpcGjzJSxd/RN/Im7yj5f0znnOk8xcc6/ol5VHJ+rpd1FQ0MDTe\nR9dQG219h1lbu431dZOHLNr6XqG5ZjMtNZunbWcjABNpnOfOf5/OoTOsqmxha+OtTEyMcb7/CL++\n+EN6Ry7yjpa7Z9U8ONrNM23fZlVlM63172QijVFRVsXWhls5OHyOM70H53ze6d6DlEU5m+qX5+RX\nLR/nOEkisYHN8wap6cpi7qvUvM6v6eISa9nAGjYQvBWQXuZXnOc01dSykRsBuEgbr/IiXVxiD3fk\nZVt66eQUr7OaFjaynSEGaecML/AUd6R7WRUNU+uOpGH28wSD9NPEGppYyzBDvMoLtLB+0WNuZDuV\nVHGRNtaxkXreeg8rqJyx7hscoYMLrKWVZm5Y8l6+qxnzDMe5RBtr2Ugz6+imgwucoZdu7kwfoSzK\nl1SDlq9lGaY6hs6wq+l97Gp+39Sy1lU38/yF73Oie/8Vw1Rd5Wp2N9/F2dxek/kmRv/m+k9RV9k0\nY1lKiYOXHqOt7xW2Du2lqab1qmuvLK9hd/NddAydYWis54oTs4fH+6mvXMPtrQ9QUTbzl7mldisf\n2vpfZ82B6hm+yLPn/pnXO3/Gvg2/u2A9hzuepGeknXc0/xY7mt76i3V8YowX23/A8e5n2bBqN43V\nk0Hz0sBJjnX9ktqK1dzR+gA1FQ0zXm9orBeYnKtWUVZNW98rtNRsnnM7T3Q/T+fQGdbWbuc96z85\n9R/Kzub38Uzbtzne/SvW1e2guWbjjOd1Dp9lx+rbZwWm+so1vNrxJGf7XmZX810z/oN6c/A0A6Od\ntK66mapy/3JUYXXxJgDNZDvjq5dO7uAjs/aKnE9vcJ7TNNDEb3IPFTHZynelPezn/3Ge06xNrWyI\n+XvhYl3i/KwJ2WfScV7lBU5zhJt5z9TyYxxikH62sIubYu/U8i1pJ8/xxKLH3BjbITEVbK40GbyD\ndvbxwcyT+K9mzDc5z+18eEZQPpie5QKnuUgb62dcC1YrQcE/TqYQaioa2dk086+udXXbqSlvoHv4\nfF7GeHuQAoiIqT1ZlwZP5mWchdzU8h9mBSmA6vK6OSeTN1avo6V2Cx1Dp5lI41d87ZHxQc71Haax\nav2MIAVQXlbBO5o/AMC5/lenlp/qOQDAzS0fmBWkgDmXzeds76Hca90zI/hUl9exK/fve6b34Kzn\nVZXXsav5zlnLy8sq2NTwLobH+2kfODrjsdO9LwGwpeHdi65PWqoRhgCoZnZwH0z9HEsvz/h6Ix2Z\n83W2cdOsIAXQxkkAdrFnKkgBlEcFu9kDwFlOZN0MAFazZlaw2Mh2gqCbzqllE2mCc7xBORXsZObe\n38ZoYQPZg91cNnFj0c+G3MKuWXscN+X2DnbTUdRadG1YlnumGqvWEXPsFq+paKBr+FxexhgZH+RE\n934uDpxgcKyb8TRz1/FQbh5VIZVFOQ1Vs+ckXNY+cJzTPS/RM3KBkfFBEjPnXYyMD1JTUT/v87uH\nz5NIBJOH7t4u5eZx9I281Rwuv79ra7dfxZbMNjYxwsBYF9Xl9XNOjG+pmWy8PSPtsx5rqFpHWcz9\no7u14VZOdj/P6Z6DbFj1DmDyfWgfOMqqyhZaajfP+TypWAbp5wSHZyyroY6t7J61biNznzTSSxcw\n956vJtYRxNQ6WTUyO6iURRlVqYYxRqaWDdDLBOM0sZaKmP0HYDPrOMepvNQ03ep53qNCmus9uTwn\nzJMJVqZlGaYqyuY+O28yYKXMrz86PsQzbd9mcKyb1dUb2Fh/C5VlNUQEYxPDnOp5ccG9PvlQVVY3\n70T3k90v8GrHk1SWVbOmdhs1FQ2U5xpY+8AxekcuLljj6MTkX8/dIxfoHrkw73rj6a2GOTYxTGVZ\nDeVz7C27GmMTwwBUl899yYrLyy+vN9djc6mrbGJt7XYuDZ5kYLSLusomzva9zEQad6+UiqaKGvrp\nZZjBWY+1xA18hMmJ3hNpgv/L9+d9nWpq5lw+xiiVVM0516osyqhMVYww+3dnKd4+X+iyIEjT+u3l\nEFE1zwdCV82zLVkV6nWvZK735PJ8tpSH/4O0/CzLMFVoZ/oOMTjWPefFJjuH2qYmrxfcPEFqIk1w\ntOsZqstX8b6Nfzhr79Ni985dDqXbGt/DO9fcs+jnjE4MMj4xmilQXR57ZLx/zseHc8vnC85XsrXh\nVi4NnuR070FuavmtaRPPb1lyvdLVaGINnVykk/apwz/5VEElo4wwkSZmBaqJNMEoIzP+w1/oP/p8\n7E25PN58Ie7yoc9iWcw2zxcUpau1LOdM5UMQ8LbTkS8bGJ3cPb5h1ezd7p1DZ/I3Pm8dSrsao+OD\njE0M01TdOitIjU2M0DM8+9DYXFZXbwCCzqGzix67qXpy0v1i5oy9tVdtdjOrKJs8M3FovI/+0c5Z\nj3cMnQZmnmG5WOvqdlBT3sDZ3pe5NHCSgdFONqy6icry4v8Fq5WpNTen6AJn6U89eX/9BibndHZx\ncdZjXVwikabWgbeCzhADs9YfS6MMkH3aQh0NlFFOL12MpdnhrHOOWq8k656eSibnlM61d3Ag9c0Z\nIN27pKVasWGqqqyGkdwelre7fOp+x+DM4NQz3M7xrl/lZ/zcGWWDubPfru65dZRHBd0j7YxNvHUI\nbiKNc/jNJxidmN085lJdXsfG+pvpGbnA0c5fzhnsBka7GBjtnrq/rXHyDJ1XO56aOnNvuunLqsqu\nvI2bGiYnyr7W8dSMsUfGB6euS7U5t87ViAi2NL6bkYkBDl76d8CJ5yquuqjnRt5JYoIXeZqudGnO\n9bKcxg9wlEOMp7Gp5eNpjKMczK3z1h6xiqikjga6eZO+aeEupcTr/JoJsk9bKIsyWtnKOGMcY+bn\nRfekDs7zxlW93uUwNFcAXIw6Giingou0MZLe2is2nsZ5jQMFGVMr14o9zNdSu5XukQvsv/B9Wmo2\nU0Y5DdXruKFuJxvrb+FE934OdzxJx9Bp6iqbGBjton3gOOtX7eZ8/2vZx6/Zyvn+13mx/VHW1d5I\neVRQU9HIpoaFD0VFBFsbb+NE93P8/Ozfc0PdTibSBB1DpxkdH6KlZsvUnp2F3LLmQ/SPdnG06xe5\na0Jtoqq8juHxfvpH3qR75AK3rrt/6iKYa+u2s7PpDo51PcvPzjzC+lU7qSlvYGR8gM7hs6yubp26\nKOiqymaqy+s51/caZZRRU9FIMHlx1NrKRm5cvY9LAydpHzjGz8/+A+vqbmR8YpTz/UcYmRjgxtX7\naK7ZtKT3d3PDHo52/pLh8T7qK9fOuryCVGiTYWryI2X28yQNqZnVNFNBFWOMMkQ/HUzuRW5i/hNN\n5rIhtnIxtXGBMzzDv7MubSQILtLGIP2sZzOtb7sswjbewWGeZz9PsD5N9rwO2kkk6llNH93zjLZ4\nO9lDB+2c5ii9qXPqOlMXOM0aNnCJxZ8gtJo1lFHOGxxhNI1MzY3ayq45J7i/XVmUsTXt5gSHeZaf\nsC5tIpHo4ALV1Mw5Hy3rmFq5VmyY2tl0J2MTw7QPHKdrqI1EYmP9LdxQt5OainruaP1PvNb5MzqH\nznJp8CSrKlu4Ze2HWVOzNS9hakvDHobGejjX/xonuveTmKC5ZvOiwhTA7ub3U1Vex5neg5zufYmK\nsmrW1mxjd/P7OdI1+8y8+VSUVXNH6wOc7n2Jc32vcqH/CONpnOryOuoqm7i55R7W1G6bNXZTdSun\nel7k4sBxxibGpq6APn1eUkQZ71n/cV7r+Bnn+19nLDeRvalmE7WVjZRFOfs2/B4ne57nXN+rnOp5\nkaCMhqp13Nx4z7xXX1+M6vJVrKvbTvvAMbY0uldKxRcR7ORdbEhbOcMxOrnIeU7P+KDjTeyglW1L\nOrV/D3fQxDraODl1GYRVNHATe9nMzlnrb4obIU1e5LKNU1RSyTo2spM9vMQzmbcXoCqq2Zc+yFEO\ncYk2euikjgZu5j3UUHdVYaoyqnh3eh8neIVznGQ8t/esla2Lnuu0g1sop5yznOAsx6mihg1sYQe3\n8Az/XpAxtTJFSsU7Nry6ekO6a9MfFm08vaVvpIOnz36LzQ2/wZ6195a6nIJLKfHUmW8yMt7PB7d+\nfkkT2ZUfPz7xtedTSsv+83saoyXdER8udRmSiugn6buL6l8rds7USjOQm+RdU774i2ouZ+f7X2dw\nrJuN9bcYpCRJBbViD/OtFL0jF2nrO0xb36tAsH7VrlKXVFDHu37F6MQQp3sPUh6V7Gi6HYCRzcW/\nsF+hVJ3xCsuSdC0xTF3nuofbOdVzgPrKFt619iNXvKL69eD1zqcJyqivWsNNLR+YOjNTkqRCMUxd\n5zY3vIvNDe9aeMXrxH03/kmpS5AkrTDOmZIkScrAMCVJkpSBYUqSJCkDw5QkSVIGmSagR8RJoBcY\nB8auhwvzaWV5/DvfKnUJc7r3gc+WuoQVwR6m5eyxtrk/Y7DUPrpxb6lLKLp8nM33wZTm+RRPSbr2\n2cMkZeJhPkmSpAyyhqkE/CQino+Ih+ZaISIeioj9EbF/ZHwg43CSlFdX7GHT+9cowyUoT9JykPUw\n390ppbMRcQPweES8mlJ6avoKKaWHgYdh8oOOM44nSfl0xR42vX81Rov9S9KcMu2ZSimdzX1vB/4F\nuD0fRUlSMdjDJOXDksNURKyKiIbLt4HfBg7lqzBJKiR7mKR8yXKYbz3wLxFx+XW+nVL6cV6qkqTC\ns4dJyoslh6mU0nHg1jzWIklFYw+TlC9eGkGSJCkDw5QkSVIGhilJkqQMDFOSJEkZGKYkSZIyMExJ\nkiRlYJiSJEnKwDAlSZKUgWFKkiQpA8OUJElSBoYpSZKkDAxTkiRJGRimJEmSMjBMSZIkZWCYkiRJ\nysAwJUmSlIFhSpIkKQPDlCRJUgaGKUmSpAwMU5IkSRkYpiRJkjIwTEmSJGWwYJiKiG9GRHtEHJq2\nrCUiHo+II7nvzYUtU5KWxh4mqdAWs2fqW8B9b1v2JeCnKaXdwE9z9yXpWvQt7GGSCmjBMJVSegro\neNviTwCP5G4/Anwyz3VJUl7YwyQV2lLnTK1PKZ3L3T4PrM9TPZJUDPYwSXmTeQJ6SikBab7HI+Kh\niNgfEftHxgeyDidJeXWlHja9f40yXOTKJC0XSw1TFyKiFSD3vX2+FVNKD6eU9qWU9lWV1y1xOEnK\nq0X1sOn9q5LqohYoaflYaph6FHgwd/tB4Af5KUeSisIeJilvKhZaISL+CbgHWBsRZ4C/AL4CfCci\nPgecAh4oZJFSodz7wGdLXcJV++EvHi11CXP62F0fL3UJc7KH6Xr10Y17S13CVXus7UCpS5hT1vdy\nwTCVUvr0PA99ONPIklQE9jBJheYV0CVJkjIwTEmSJGVgmJIkScrAMCVJkpTBghPQpetB1Zm3f5qI\nJEn54Z4pSZKkDAxTkiRJGRimJEmSMjBMSZIkZWCYkiRJysAwJUmSlIFhSpIkKQPDlCRJUgaGKUmS\npAwMU5IkSRkYpiRJkjIwTEmSJGVgmJIkScrAMCVJkpSBYUqSJCkDw5QkSVIGhilJkqQMDFOSJEkZ\nLBimIuKbEdEeEYemLftyRJyNiAO5r/sLW6YkLY09TFKhLWbP1LeA++ZY/jcppb25rx/ltyxJyptv\nYQ+TVEALhqmU0lNARxFqkaS8s4dJKrQsc6a+EBEv5XahN8+3UkQ8FBH7I2L/yPhAhuEkKa8W7GHT\n+9cow8WuT9IysdQw9XVgB7AXOAd8db4VU0oPp5T2pZT2VZXXLXE4ScqrRfWw6f2rkupi1idpGVlS\nmEopXUgpjaeUJoC/BW7Pb1mSVDj2MEn5tKQwFRGt0+5+Cjg037qSdK2xh0nKp4qFVoiIfwLuAdZG\nxBngL4B7ImIvkICTwOcLWKMkLZk9TFKhLRimUkqfnmPxNwpQiyTlnT1MUqF5BXRJkqQMDFOSJEkZ\nGKYkSZIyMExJkiRlsOAEdEnXlo/d9fFSlyBJS/LRjXtLXUJBuGdKkiQpA8OUJElSBoYpSZKkDAxT\nkiRJGRimJEmSMlhRZ/ONnXxjzuV/fvyFIleyOH+14z3zPlaxfWsRK5F0rXqs7UCpS5jT9XrWljQX\n90xJkiRlYJiSJEnKwDAlSZKUgWFKkiQpA8OUJElSBoYpSZKkDFbUpRHm8/4aM6UkSVoaU4QkSVIG\nhilJkqQMDFOSJEkZGKYkSZIyMExJkiRlsGCYiogtEfFERLwSES9HxBdzy1si4vGIOJL73lz4ciVp\n8exfkophMXumxoA/TSndAtwJ/FFE3AJ8CfhpSmk38NPcfUm6lti/JBXcgmEqpXQupfRC7nYvcBjY\nBHwCeCS32iPAJwtVpCQthf1LUjFc1UU7I2I7cBvwLLA+pXQu99B5YP08z3kIeAigprxhqXVKUiaZ\n+xd1hS9S0rK06AnoEVEPfA/445RSz/THUkoJSHM9L6X0cEppX0ppX1W5zUhS8eWjf1VSXYRKJS1H\niwpTEVHJZCP6x5TS93OLL0REa+7xVqC9MCVK0tLZvyQV2mLO5gvgG8DhlNLXpj30KPBg7vaDwA/y\nX54kLZ39S1IxLGbO1PuBzwAHI+JAbtmfAV8BvhMRnwNOAQ8UpkRJWjL7l6SCWzBMpZSeBmKehz+c\n33IkKX/sX5KKwSugS5IkZWCYkiRJysAwJUmSlIFhSpIkKQPDlCRJUgaGKUmSpAwMU5IkSRkYpiRJ\nkjIwTEmSJGVgmJIkScrAMCVJkpSBYUqSJCkDw5QkSVIGhilJkqQMDFOSJEkZGKYkSZIyqCh1AdeC\nnw9NlLoESZK0TLlnSpIkKQPDlCRJUgaGKUmSpAwMU5IkSRkYpiRJkjJYMExFxJaIeCIiXomIlyPi\ni7nlX46IsxFxIPd1f+HLlaTFs39JKobFXBphDPjTlNILEdEAPB8Rj+ce+5uU0l8Xrrzi+Ksd7yl1\nCZIK47rvXx/duLfUJUgr3oJhKqV0DjiXu90bEYeBTYUuTJKysn9JKoarmjMVEduB24Bnc4u+EBEv\nRcQ3I6I5z7VJUt7YvyQVyqLDVETUA98D/jil1AN8HdgB7GXyL7+vzvO8hyJif0TsHxkfyEPJknR1\n8tG/RhkuWr2SlpdFhamIqGSyEf1jSun7ACmlCyml8ZTSBPC3wO1zPTel9HBKaV9KaV9VeV2+6pak\nRclX/6qkunhFS1pWFnM2XwDfAA6nlL42bXnrtNU+BRzKf3mStHT2L0nFsJiz+d4PfAY4GBEHcsv+\nDPh0ROwFEnAS+HxBKsyjiu1bS12CpOK6bvqXpGvXYs7mexqIOR76Uf7LkaT8sX9JKgavgC5JkpSB\nYUqSJCkDw5QkSVIGhilJkqQMDFOSJEkZGKYkSZIyMExJkiRlYJiSJEnKwDAlSZKUgWFKkiQpA8OU\nJElSBoYpSZKkDAxTkiRJGRimJEmSMjBMSZIkZWCYkiRJysAwJUmSlIFhSpIkKQPDlCRJUgaGKUmS\npAwMU5IkSRkYpiRJkjIwTEmSJGWwYJiKiJqI+FVE/DoiXo6Iv8wtb4mIxyPiSO57c+HLlaTFs39J\nKobF7JkaBj6UUroV2AvcFxF3Al8CfppS2g38NHdfkq4l9i9JBbdgmEqT+nJ3K3NfCfgE8Ehu+SPA\nJwtSoSQtkf1LUjEsas5URJRHxAGgHXg8pfQssD6ldC63ynlgfYFqlKQls39JKrRFhamU0nhKaS+w\nGbg9Iva87fHE5F97s0TEQxGxPyL2j4wPZC5Ykq5GvvrXKMNFqFbScnRVZ/OllLqAJ4D7gAsR0QqQ\n+94+z3MeTintSyntqyqvy1qvJC1J1v5VSXXxipW0rCzmbL51EdGUu10L3Au8CjwKPJhb7UHgB4Uq\nUpKWwv4lqRgqFrFOK/BIRJQzGb6+k1L614h4BvhORHwOOAU8UMA6JWkp7F+SCm7BMJVSegm4bY7l\nbwIfLkRRkpQP9i9JxeAV0CVJkjIwTEmSJGVgmJIkScrAMCVJkpTBYs7m0xx++ItHS13CnD5218dL\nXYKka9xjbQdKXcKcPrpxb6lLkJbEPVOSJEkZGKYkSZIyMExJkiRlYJiSJEnKwDAlSZKUgWFKkiQp\nA8OUJElSBoYpSZKkDAxTkiRJGRimJEmSMjBMSZIkZWCYkiRJysAwJUmSlIFhSpIkKQPDlCRJUgaG\nKUmSpAwMU5IkSRkYpiRJkjKoWGiFiKgBngKqc+t/N6X0FxHxZeC/ABdzq/5ZSulHhSq0kH74i0dL\nXYKkAlgJ/euxtgOlLkFa8RYMU8Aw8KGUUl9EVAJPR8S/5R77m5TSXxeuPEnKxP4lqeAWDFMppQT0\n5e5W5r5SIYuSpHywf0kqhkXNmYqI8og4ALQDj6eUns099IWIeCkivhkRzfM896GI2B8R+0fGB/JU\ntiQtTr761yjDRatZ0vKyqDCVUhpPKe0FNgO3R8Qe4OvADmAvcA746jzPfTiltC+ltK+qvC5PZUvS\n4uSrf1VSXbSaJS0vV3U2X0qpC3gCuC+ldCHXpCaAvwVuL0SBkpQP9i9JhbJgmIqIdRHRlLtdC9wL\nvBoRrdNW+xRwqDAlStLS2L8kFcNizuZrBR6JiHImw9d3Ukr/GhH/EBF7mZzMeRL4fOHKlKQlsX9J\nKrjFnM33EnDbHMs/U5CKJClP7F+SisEroEuSJGVgmJIkScrAMCVJkpSBYUqSJCkDw5QkSVIGhilJ\nkqQMDFOSJEkZGKYkSZIyMExJkiRlYJiSJEnKYDGfzac8+NhdHy91CZK0JB/duLfUJUjXNPdMSZIk\nZWCYkiRJysAwJUmSlIFhSpIkKQPDlCRJUgaGKUmSpAy8NAJetkDS8uVlC6TSc8+UJElSBoYpSZKk\nDAxTkiRJGRimJEmSMjBMSZIkZRAppeINFnEROJW7uxa4VLTBZ1vJ46/kbS/1+Ctx27ellNYVecy8\ns385/jUKzCJuAAAEZElEQVQw9kof/5rtX0UNUzMGjtifUtpXksFX+PgredtLPf5K3vbrSanfR8f3\nd3gljl/qbb8SD/NJkiRlYJiSJEnKoJRh6uESjr3Sx1/J217q8Vfytl9PSv0+Ov7KHHulj1/qbZ9X\nyeZMSZIkXQ88zCdJkpRBScJURNwXEa9FxNGI+FKRxz4ZEQcj4kBE7C/CeN+MiPaIODRtWUtEPB4R\nR3Lfm4s8/pcj4mzuPTgQEfcXaOwtEfFERLwSES9HxBdzy4uy/VcYv1jbXxMRv4qIX+fG/8vc8oJv\n/xXGLsq2X89K2b9y46+YHlbK/pUbq2Q9bCX3rwXGvyZ7WNEP80VEOfA6cC9wBngO+HRK6ZUijX8S\n2JdSKsq1KiLiA0Af8PcppT25Zf8T6EgpfSXXjJtTSv+9iON/GehLKf11IcacNnYr0JpSeiEiGoDn\ngU8Cn6UI23+F8R+gONsfwKqUUl9EVAJPA18EfpcCb/8Vxr6PImz79arU/StXw0lWSA8rZf/KjVWy\nHraS+9cC41+TPawUe6ZuB46mlI6nlEaAfwY+UYI6iiKl9BTQ8bbFnwAeyd1+hMlfkGKOXxQppXMp\npRdyt3uBw8AmirT9Vxi/KNKkvtzdytxXogjbf4Wxlc2K6l9Q2h5Wyv6VG79kPWwl968Fxr8mlSJM\nbQJOT7t/hiL+gDD5j/GTiHg+Ih4q4rjTrU8pncvdPg+sL0ENX4iIl3K70Qt2mPGyiNgO3AY8Swm2\n/23jQ5G2PyLKI+IA0A48nlIq2vbPMzYU+d/+OlPq/gX2MCjBz3Ape9hK7F9XGB+uwR62Eieg351S\n2gv8DvBHud3IJZMmj7MWO21/HdgB7AXOAV8t5GARUQ98D/jjlFLP9MeKsf1zjF+07U8pjed+3jYD\nt0fEnrc9XrDtn2fsov7bqyBWeg8r+s9wKXvYSu1fVxj/muxhpQhTZ4Et0+5vzi0ripTS2dz3duBf\nmNxtX2wXcsfDLx8Xby/m4CmlC7kf0gngbynge5A71v094B9TSt/PLS7a9s81fjG3/7KUUhfwBJPH\n+4v67z997FJs+3WmpP0L7GHF/hkuZQ+zf80e/1rtYaUIU88BuyPixoioAv4AeLQYA0fEqtxEPiJi\nFfDbwKErP6sgHgUezN1+EPhBMQe//IuQ8ykK9B7kJhB+AzicUvratIeKsv3zjV/E7V8XEU2527VM\nTlp+lSJs/3xjF2vbr2Ml619gD4Pi/f7mxipZD1vJ/etK41+zPSylVPQv4H4mz4g5BvyPIo67A/h1\n7uvlYowN/BOTuyJHmZxf8TlgDfBT4AjwE6ClyOP/A3AQeInJX4zWAo19N5O7gF8CDuS+7i/W9l9h\n/GJt/7uBF3PjHAL+PLe84Nt/hbGLsu3X81ep+ldu7BXVw0rZv3Ljl6yHreT+tcD412QP8wrokiRJ\nGazECeiSJEl5Y5iSJEnKwDAlSZKUgWFKkiQpA8OUJElSBoYpSZKkDAxTkiRJGRimJEmSMvj/ewtH\ncKaWmLUAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAEgCAYAAACQH/YaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3WlsXfd55/Hvw50USZGUZInarSV2HDWWU8V2HDfjLG5c\nd5ClnXoaFIEDZOAM0AlStC8m6ADT9F0waFLMi0EAtwniFk07mSRFjCaN62TscZw4tmVbsWTLtnZL\noiRK5r5v/3nBK5o0SZHiuYsofj8AwXvPPff+n3NFPvrxnP85N1JKSJIkaWnKSl2AJEnScmaYkiRJ\nysAwJUmSlIFhSpIkKQPDlCRJUgaGKUmSpAwMU5IkSRkYpiRJkjIwTEmSJGVQkeXJEXEf8D+BcuBv\nU0pfvdL6VeW1qbZidZYhJS0zPSMXLqWU1pW6jrlcTQ+riupUw6qi1Sap9HrpXFT/WnKYiohy4H8B\n9wJngOcj4tGU0qvzPae2YjV3bfqjpQ4paRn6yYmvnyp1DXO52h5WwyruiI8Ws0RJJfbT9L1F9a8s\nh/luB46mlI6nlEaAfwI+meH1JKmY7GGS8iJLmNoEnJ52/0xu2QwR8VBE7I+I/SPjAxmGk6S8WrCH\nTe9fowwXtThJy0fBJ6CnlB5OKe1LKe2rKq8r9HCSlDfT+1cl1aUuR9I1KkuYOgtsmXZ/c26ZJC0H\n9jBJeZElTD0P7I6IGyOiCvhD4NH8lCVJBWcPk5QXSz6bL6U0FhH/BXiMydOKv5VSeiVvlUlSAdnD\nJOVLputMpZR+DPw4T7UUxJneVzh06TH2rP04mxveU7BxXr74E9r6XuVDmz9PXeW1dy2tgdFunjrz\nTTbW38J7191X6nKka8Jy6GHXi47Uzos8xY28m51RuF5cSMfSK5zgMO/jQ7TEDaUuR9eQTGGqkH5y\n4usA3Hfjnxbk9Z88/bcA3LPlPxXk9Rfy7Lnv0jl0pmDbdy14a/A0z5//P+xsupPdzXeVuhypJPpT\nL2c5TicXGaSfccYop4I66mliLRvYSmM0l7rMa05bOsmr7OcW9rExtl+3Y+r6cM2GqXxZv2oXTdWt\nVFes7CsX11TUc/emz1FRVlXqUqQVIaXECQ5znMlrgDbQxHq2UEkV44zRSxenOcabHOGmtJctsavE\nFUtaqus+TFWWVVNZ5SnNZVFOfVVLqcuQVozLQaqaWn6DO2iKtbPWGUlDvMkRxhgtQYWS8mVZhanp\n8352NX2ANzqf5q3BU4ynUeor17Kr+QPcULdjxnPeOWfq8qGnyy4fTgRmzCe60H+U8/1v0D18nuHx\nPgBWVbawsf4WtjXeRkRk2oa5xm+u2cwdrQ8Abx+GvHvTZznS+QwXBo4yPNbHjqbb2d18F0NjfZzp\nPcilwVMMjHUxOj5EVXktLTWb2dl0J/VVa+Z97945Z2p8YpSTPS9xvv91BkY7gaC+ai3bGm9jY/3N\nc27HpYGTnOo5QPfwOUYnRqgur6Wxej1bG/eytnbb1BwygGNdv+JY16+mnvv+DX/AmtrJM9In0hgn\nu1+kre8wA2PdBGU0Vq1ja+NeWutvmncbdjbdwZHOX9AxeJqRiUHev+EPeKPzabqHz807b+1E935e\n73iKm1o+xI2r913x30nKYiD1cYLDBGXcxt3Ux9zzKKuihl38BhNpYsbyV9LznOMUd3EflzhPGycY\noJdGWtgX9wCTe77Ocpw2TtJPDwmop5GNbGcTO2b0qMHUzy/4V1rZxnvi/bPq2J+epItLfCz+w9Sy\n6XOcbmATRzlEN28xwQSNNLOLPXMGxOE0xDEOcYlzjDFKHQ1sZTc1LP46g5frAXiV/bya9k899kF+\nh9pYNWP+0giTobSfHiqp5u64f8E5Wk+nyalyd8f9ix5zugvpDKd4nT56KKOMNaxnN7dSE7WL3k5d\nP5ZVmLpsaKyHX7V9h9rK1Wysv4XRiSHO97/Oixd+yPs3/D5rarfO+9zaikZ2Nt3JqZ6XANjWeNvU\nY41Vb08ofKPz50DkDhHWMzYxzFtDp3mt40l6hi/w3ht+Z0m1V5ZVs7PpTs72vcrQWA87m+6cVtvM\nhpvSOM+d+x6jE0Osrd1GRVRRl1unc+gMx7ufZ03NFjbU7aa8rJKB0S7O9x+hfeA4d7T+IY3VC3+2\n7Oj4EM+f/x49I+00Vt3ApoY9kBKXBk/y8sUf0zfyFu9q+eCM5xzp/CXHun5FeVSyvm4XNRUNDI33\n0TXURlvfYdbWbmN93eQhi7a+V2mu2UxLzeZp29kIwEQa5/nzP6Bz6AyrKlvY2ngrExNjnO8/wq8v\n/ojekYu8q+XuWTUPjnbzTNt3WFXZTGv9u5lIY1SUVbG14VYODp/jTO/BOZ93uvcgZVHOpvrlOflV\ny8c5TpJIbGDzvEFqurKY+yo1b/BrurjEWjawhg0EbwekV3iO85ymmlo2ciMAF2njNV6ii0vs4Y68\nbEsvnZziDVbTwka2M8Qg7ZzhRZ7ijnQvq6Jhat2RNMx+nmCQfppYQxNrGWaI13iRFtYvesyNbKeS\nKi7Sxjo2Us/b72EFlTPWfZMjdHCBtbTSzA1L3st3NWOe4TiXaGMtG2lmHd10cIEz9NLNneljlEX5\nkmrQ8rUsw1TH0Bl2NX2AXc0fmFrWuupmXrjwA050779imKqrXM3u5rs4m9trMt/E6N9c/2nqKptm\nLEspcfDSY7T1vcrWob001bRede2V5TXsbr6LjqEzDI31XHFi9vB4P/WVa7i99QEqymb+MrfUbuUj\nW//zrDlQPcMXefbcP/FG58/Zt+H3FqzncMeT9Iy0867m32JH09t/sY5PjPFS+w853v0sG1btprF6\nMmheGjjJsa5fUVuxmjtaH6CmomHG6w2N9QKTc9Uqyqpp63uVlprNc27nie4X6Bw6w9ra7bxv/aem\n/kPZ2fwBnmn7Dse7n2Nd3Q6aazbOeF7n8Fl2rL59VmCqr1zDax1PcrbvFXY13zXjP6i3Bk8zMNpJ\n66qbqSr3L0cVVhdvAdBMtjO+eunkDj42a6/I+fQm5zlNA038JvdQEZOtfFfaw37+H+c5zdrUyoaY\nvxcu1iXOz5qQfSYd5zVe5DRHuJn3TS0/xiEG6WcLu7gp9k4t35J28jxPLHrMjbEdElPB5kqTwTto\nZx8fzjyJ/2rGfIvz3M5HZwTlg+lZLnCai7Sxfsa1YLUSFPzjZAqhpqKRnU0z/+paV7edmvIGuofP\n52WMdwYpgIiY2pN1afBkXsZZyE0t/25WkAKoLq+bczJ5Y/U6Wmq30DF0mok0fsXXHhkf5FzfYRqr\n1s8IUgDlZRW8q/lDAJzrf21q+ameAwDc3PKhWUEKmHPZfM72Hsq91j0zgk91eR27cv++Z3oPznpe\nVXkdu5rvnLW8vKyCTQ3vYXi8n/aBozMeO937MgBbGt676PqkpRphCIBqZgf3wdTPsfTKjK8305E5\nX2cbN80KUgBtnARgF3umghRAeVSwmz0AnOVE1s0AYDVrZgWLjWwnCLrpnFo2kSY4x5uUU8FOZu79\nbYwWNpA92M1lEzcW/WzILeyatcdxU27vYDcdRa1F14ZluWeqsWodMcdu8ZqKBrqGz+VljJHxQU50\n7+fiwAkGx7oZTzN3HQ/l5lEVUlmU01A1e07CZe0Dxznd8zI9IxcYGR8kMXPexcj4IDUV9fM+v3v4\nPIlEMHno7p1Sbh5H38jbzeHy+7u2dvtVbMlsYxMjDIx1UV1eP+fE+JaaycbbM9I+67GGqnWUxdw/\nulsbbuVk9wuc7jnIhlXvAibfh/aBo6yqbKGldvOcz5OKZZB+TnB4xrIa6tjK7lnrNjL3SSO9dAFz\n7/lqYh1BTK2TVSOzg0pZlFGVahhjZGrZAL1MME4Ta6mI2X8ANrOOc5zKS03TrZ7nPSqkud6Ty3PC\nPJlgZVqWYaqibO6z8yYDVsr8+qPjQzzT9h0Gx7pZXb2BjfW3UFlWQ0QwNjHMqZ6XFtzrkw9VZXXz\nTnQ/2f0ir3U8SWVZNWtqt1FT0UB5roG1Dxyjd+TigjWOTkz+9dw9coHukQvzrjee3m6YYxPDVJbV\nUD7H3rKrMTYxDEB1+dyXrLi8/PJ6cz02l7rKJtbWbufS4EkGRruoq2zibN8rTKRx90qpaKqooZ9e\nhhmc9VhL3MDHmJzoPZEm+L/8YN7XqaZmzuVjjFJJ1ZxzrcqijMpUxQizf3eW4p3zhS4LgjSt314O\nEVXzfCB01TzbklWhXvdK5npPLs9nS3n4P0jLz7IMU4V2pu8Qg2Pdc15ssnOobWryesHNE6Qm0gRH\nu56hunwVH9j4R7P2Pi1279zlULqt8X28e809i37O6MQg4xOjmQLV5bFHxvvnfHw4t3y+4HwlWxtu\n5dLgSU73HuSmlt+aNvH8liXXK12NJtbQyUU6aZ86/JNPFVQyyggTaWJWoJpIE4wyMuM//IX+o8/H\n3pTL480X4i4f+iyWxWzzfEFRulrLcs5UPgQB7zgd+bKB0cnd4xtWzd7t3jl0Jn/j8/ahtKsxOj7I\n2MQwTdWts4LU2MQIPcOzD43NZXX1BiDoHDq76LGbqicn3S9mztjbe9VmN7OKsskzE4fG++gf7Zz1\neMfQaWDmGZaLta5uBzXlDZztfYVLAycZGO1kw6qbqCwv/l+wWplac3OKLnCW/tST99dvYHJOZxcX\nZz3WxSUSaWodeDvoDDEwa/2xNMoA2act1NFAGeX00sVYmh3OOueo9Uqy7umpZHJO6Vx7BwdS35wB\n0r1LWqoVG6aqymoYye1heafLp+53DM4MTj3D7Rzvei4/4+fOKBvMnf12dc+tozwq6B5pZ2zi7UNw\nE2mcw289wejE7OYxl+ryOjbW30zPyAWOdv5qzmA3MNrFwGj31P1tjZNn6LzW8dTUmXvTTV9WVXbl\nbdzUMDlR9vWOp2aMPTI+OHVdqs25da5GRLCl8b2MTAxw8NK/AU48V3HVRT038m4SE7zE03SlS3Ou\nl+U0foCjHGI8jU0tH09jHOVgbp2394hVRCV1NNDNW/RNC3cpJd7g10yQfdpCWZTRylbGGeMYMz8v\nuid1cJ43r+r1LoehuQLgYtTRQDkVXKSNkfT2XrHxNM7rHCjImFq5VuxhvpbarXSPXGD/hR/QUrOZ\nMsppqF7HDXU72Vh/Cye693O440k6hk5TV9nEwGgX7QPHWb9qN+f7X88+fs1Wzve/wUvtj7Ku9kbK\no4KaikY2NSx8KCoi2Np4Gye6n+cXZ/+OG+p2MpEm6Bg6zej4EC01W6b27CzkljUfoX+0i6Ndv8xd\nE2oTVeV1DI/30z/yFt0jF7h13f1TF8FcW7ednU13cKzrWX5+5hHWr9pJTXkDI+MDdA6fZXV169RF\nQVdVNlNdXs+5vtcpo4yaikaCyYuj1lY2cuPqfVwaOEn7wDF+cfbvWVd3I+MTo5zvP8LIxAA3rt5H\nc82mJb2/mxv2cLTzVwyP91FfuXbW5RWkQpsMU5MfKbOfJ2lIzaymmQqqGGOUIfrpYHIvchPzn2gy\nlw2xlYupjQuc4Rn+jXVpI0FwkTYG6Wc9m2l9x2URtvEuDvMC+3mC9Wmy53XQTiJRz2r66J5ntMXb\nyR46aOc0R+lNnVPXmbrAadawgUss/gSh1ayhjHLe5AijaWRqbtRWds05wf2dyqKMrWk3JzjMs/yU\ndWkTiUQHF6imZs75aFnH1Mq1YsPUzqY7GZsYpn3gOF1DbSQSG+tv4Ya6ndRU1HNH63/k9c6f0zl0\nlkuDJ1lV2cItaz/KmpqteQlTWxr2MDTWw7n+1znRvZ/EBM01mxcVpgB2N3+QqvI6zvQe5HTvy1SU\nVbO2Zhu7mz/Ika7ZZ+bNp6KsmjtaH+B078uc63uNC/1HGE/jVJfXUVfZxM0t97CmdtussZuqWznV\n8xIXB44zNjE2dQX06fOSIsp43/pP8HrHzznf/wZjuYnsTTWbqK1spCzK2bfh9znZ8wLn+l7jVM9L\nBGU0VK3j5sZ75r36+mJUl69iXd122geOsaXRvVIqvohgJ+9hQ9rKGY7RyUXOc3rGBx1vYgetbFvS\nqf17uIMm1tHGyanLIKyigZvYy2Z2zlp/U9wIafIil22copJK1rGRnezhZZ7JvL0AVVHNvvRhjnKI\nS7TRQyd1NHAz76OGuqsKU5VRxXvTBzjBq5zjJOO5vWetbF30XKcd3EI55ZzlBGc5ThU1bGALO7iF\nZ/i3goyplSlSKt6x4dXVG9Jdm/6oaOPpbX0jHTx99ttsbvgN9qy9t9TlFFxKiafOfIuR8X4+vPUL\nS5rIrvz4yYmvv5BSWvaf39MYLemO+Gipy5BURD9N31tU/1qxc6ZWmoHcJO+a8sVfVHM5O9//BoNj\n3Wysv8UgJUkqqBV7mG+l6B25SFvfYdr6XgOC9at2lbqkgjre9RyjE0Oc7j1IeVSyo+n2UpckSbrO\nGaauc93D7ZzqOUB9ZQvvWfuxK15R/XrwRufTBGXUV63hppYPTZ2ZKUlSoRimrnObG97D5ob3LLzi\ndeK+G/+01CVIklYY50xJkiRlYJiSJEnKwDAlSZKUgWFKkiQpg0wT0CPiJNALjANj18OF+SSAH/3y\n0VKXMK/fvesTpS7humEP0/Xosba5P3vwWvDxjXtLXUJB5ONsvg+nNM+neErStc8eJikTD/NJkiRl\nkDVMJeCnEfFCRDw01woR8VBE7I+I/SPjAxmHk6S8umIPm96/RhkuQXmSloOsh/nuTimdjYgbgMcj\n4rWU0lPTV0gpPQw8DJMfdJxxPEnKpyv2sOn9qzFa7F+S5pRpz1RK6Wzuezvwz4AfhCZp2bCHScqH\nJYepiFgVEQ2XbwO/DRzKV2GSVEj2MEn5kuUw33rgnyPi8ut8J6X0k7xUJUmFZw+TlBdLDlMppePA\nrXmsRZKKxh4mKV+8NIIkSVIGhilJkqQMDFOSJEkZGKYkSZIyMExJkiRlYJiSJEnKwDAlSZKUgWFK\nkiQpA8OUJElSBoYpSZKkDAxTkiRJGRimJEmSMjBMSZIkZWCYkiRJysAwJUmSlIFhSpIkKQPDlCRJ\nUgaGKUmSpAwMU5IkSRkYpiRJkjIwTEmSJGVgmJIkScqgYqEVIuJbwL8H2lNKe3LLWoD/DWwHTgIP\npJQ6C1empIX86JePlrqEOZW3lnZ8e5h07Xus7UCpS5jTYvvXYvZMfRu47x3Lvgz8LKW0G/hZ7r4k\nXYu+jT1MUgEtGKZSSk8BHe9Y/EngkdztR4BP5bkuScoLe5ikQlvqnKn1KaVzudvngfV5qkeSisEe\nJilvMk9ATyklIM33eEQ8FBH7I2L/yPhA1uEkKa+u1MOm969RhotcmaTlYqlh6kJEtALkvrfPt2JK\n6eGU0r6U0r6q8rolDidJebWoHja9f1VSXdQCJS0fSw1TjwIP5m4/CPwwP+VIUlHYwyTlzWIujfCP\nwD3A2og4A/wF8FXguxHxeeAU8EAhi5SK7Xfv+kSpS1Ce2MO00nx8495Sl7DiLBimUkqfmeehj+a5\nFknKO3uYpELzCuiSJEkZGKYkSZIyMExJkiRlYJiSJEnKwDAlSZKUgWFKkiQpA8OUJElSBoYpSZKk\nDAxTkiRJGRimJEmSMjBMSZIkZWCYkiRJysAwJUmSlIFhSpIkKQPDlCRJUgaGKUmSpAwMU5IkSRkY\npiRJkjIwTEmSJGVgmJIkScrAMCVJkpSBYUqSJCkDw5QkSVIGC4apiPhWRLRHxKFpy74SEWcj4kDu\n6/7ClilJS2MPk1Roi9kz9W3gvjmW/3VKaW/u68f5LUuS8ubb2MMkFdCCYSql9BTQUYRaJCnv7GGS\nCi3LnKkvRsTLuV3ozfOtFBEPRcT+iNg/Mj6QYThJyqsFe9j0/jXKcLHrk7RMLDVMfQPYAewFzgFf\nm2/FlNLDKaV9KaV9VeV1SxxOkvJqUT1sev+qpLqY9UlaRpYUplJKF1JK4ymlCeBvgNvzW5YkFY49\nTFI+LSlMRUTrtLufBg7Nt64kXWvsYZLyqWKhFSLiH4F7gLURcQb4C+CeiNgLJOAk8IUC1ihpEX73\nrk+UuoR5fL2ko9vDpGvfxzfuLXUJ8zi6qLUWDFMppc/MsfibV1uOJJWCPUxSoXkFdEmSpAwMU5Ik\nSRkYpiRJkjIwTEmSJGWw4AT068nYyTdLXULeVGzfWuoSJEkS7pmSJEnKxDAlSZKUgWFKkiQpA8OU\nJElSBoYpSZKkDFbU2XzzeaztQKlLmNO1+1lFkq4V9i+p9NwzJUmSlIFhSpIkKQPDlCRJUgaGKUmS\npAwMU5IkSRkYpiRJkjIwTEmSJGVgmJIkScrAMCVJkpSBYUqSJCkDw5QkSVIGhilJkqQMFgxTEbEl\nIp6IiFcj4pWI+FJueUtEPB4RR3LfmwtfriQtnv1LUjEsZs/UGPBnKaVbgDuBP46IW4AvAz9LKe0G\nfpa7L0nXEvuXpIJbMEyllM6llF7M3e4FDgObgE8Cj+RWewT4VKGKlKSlsH9JKoaKq1k5IrYDtwHP\nAutTSudyD50H1s/znIeAhwBqyhuWWqckZZK5f1FX+CIlLUuLnoAeEfXA94E/SSn1TH8spZSANNfz\nUkoPp5T2pZT2VZXbjCQVXz76VyXVRahU0nK0qDAVEZVMNqJ/SCn9ILf4QkS05h5vBdoLU6IkLZ39\nS1KhLeZsvgC+CRxOKX192kOPAg/mbj8I/DD/5UnS0tm/JBXDYuZMfRD4LHAwIg7klv058FXguxHx\neeAU8EBhSpSkJbN/SSq4BcNUSulpIOZ5+KP5LUeS8sf+JakYvAK6JElSBoYpSZKkDAxTkiRJGRim\nJEmSMjBMSZIkZWCYkiRJysAwJUmSlIFhSpIkKQPDlCRJUgaGKUmSpAwMU5IkSRkYpiRJkjIwTEmS\nJGVgmJIkScrAMCVJkpSBYUqSJCmDilIXcC34+Ma9pS5BkpbE/iWVnnumJEmSMjBMSZIkZWCYkiRJ\nysAwJUmSlIFhSpIkKYMFw1REbImIJyLi1Yh4JSK+lFv+lYg4GxEHcl/3F75cSVo8+5ekYljMpRHG\ngD9LKb0YEQ3ACxHxeO6xv04p/VXhysuviu1bS12CpOK6bvqXpGvXgmEqpXQOOJe73RsRh4FNhS5M\nkrKyf0kqhquaMxUR24HbgGdzi74YES9HxLciojnPtUlS3ti/JBXKosNURNQD3wf+JKXUA3wD2AHs\nZfIvv6/N87yHImJ/ROwfGR/IQ8mSdHXy0b9GGS5avZKWl0WFqYioZLIR/UNK6QcAKaULKaXxlNIE\n8DfA7XM9N6X0cEppX0ppX1V5Xb7qlqRFyVf/qqS6eEVLWlYWczZfAN8EDqeUvj5teeu01T4NHMp/\neZK0dPYvScWwmLP5Pgh8FjgYEQdyy/4c+ExE7AUScBL4QkEqlKSls39JKrjFnM33NBBzPPTj/Jcj\nSflj/5JUDF4BXZIkKQPDlCRJUgaGKUmSpAwMU5IkSRkYpiRJkjIwTEmSJGVgmJIkScrAMCVJkpSB\nYUqSJCkDw5QkSVIGhilJkqQMDFOSJEkZGKYkSZIyMExJkiRlYJiSJEnKwDAlSZKUgWFKkiQpA8OU\nJElSBoYpSZKkDAxTkiRJGRimJEmSMjBMSZIkZWCYkiRJymDBMBURNRHxXET8OiJeiYi/zC1viYjH\nI+JI7ntz4cuVpMWzf0kqhsXsmRoGPpJSuhXYC9wXEXcCXwZ+llLaDfwsd1+SriX2L0kFt2CYSpP6\ncncrc18J+CTwSG75I8CnClKhJC2R/UtSMSxqzlRElEfEAaAdeDyl9CywPqV0LrfKeWB9gWqUpCWz\nf0kqtEWFqZTSeEppL7AZuD0i9rzj8cTkX3uzRMRDEbE/IvaPjA9kLliSrka++tcow0WoVtJydFVn\n86WUuoAngPuACxHRCpD73j7Pcx5OKe1LKe2rKq/LWq8kLUnW/lVJdfGKlbSsLOZsvnUR0ZS7XQvc\nC7wGPAo8mFvtQeCHhSpSkpbC/iWpGCoWsU4r8EhElDMZvr6bUvqXiHgG+G5EfB44BTxQwDolaSns\nX5IKbsEwlVJ6GbhtjuVvAR8tRFGSlA/2L0nF4BXQJUmSMjBMSZIkZWCYkiRJysAwJUmSlMFizubT\nHEY2t5S6hLypOtNR6hIkSVq23DMlSZKUgWFKkiQpA8OUJElSBoYpSZKkDAxTkiRJGRimJEmSMvDS\nCHn2+He/XeoS5nTvA58rdQmSrnGPtR0odQlz+vjGvaUuQboi90xJkiRlYJiSJEnKwDAlSZKUgWFK\nkiQpA8OUJElSBoYpSZKkDAxTkiRJGRimJEmSMjBMSZIkZWCYkiRJysAwJUmSlMGCYSoiaiLiuYj4\ndUS8EhF/mVv+lYg4GxEHcl/3F75cSVo8+5ekYljMBx0PAx9JKfVFRCXwdET8a+6xv04p/VXhypOk\nTOxfkgpuwTCVUkpAX+5uZe4rFbIoScoH+5ekYljUnKmIKI+IA0A78HhK6dncQ1+MiJcj4lsR0TzP\ncx+KiP0RsX9kfCBPZUvS4uSrf40yXLSaJS0viwpTKaXxlNJeYDNwe0TsAb4B7AD2AueAr83z3IdT\nSvtSSvuqyuvyVLYkLU6++lcl1UWrWdLyclVn86WUuoAngPtSShdyTWoC+Bvg9kIUKEn5YP+SVCiL\nOZtvXUQ05W7XAvcCr0VE67TVPg0cKkyJkrQ09i9JxbCYs/lagUciopzJ8PXdlNK/RMTfR8ReJidz\nngS+ULgy8+NHv3y01CVIKq7rpn891nag1CVImsdizuZ7GbhtjuWfLUhFkpQn9i9JxeAV0CVJkjIw\nTEmSJGVgmJIkScrAMCVJkpSBYUqSJCkDw5QkSVIGhilJkqQMDFOSJEkZGKYkSZIyMExJkiRlYJiS\nJEnKwDAlSZKUgWFKkiQpA8OUJElSBoYpSZKkDAxTkiRJGRimJEmSMqgodQHXm3sf+FypS5CkJfn4\nxr2lLkFaltwzJUmSlIFhSpIkKQPDlCRJUgaGKUmSpAwMU5IkSRlESql4g0VcBE7l7q4FLhVt8NlW\n8vgredtLPf5K3PZtKaV1RR4z7+xfjn8NjL3Sx79m+1dRw9SMgSP2p5T2lWTwFT7+St72Uo+/krf9\nelLq99HaQvAUAAAEPklEQVTx/R1eieOXetuvxMN8kiRJGRimJEmSMihlmHq4hGOv9PFX8raXevyV\nvO3Xk1K/j46/Msde6eOXetvnVbI5U5IkSdcDD/NJkiRlUJIwFRH3RcTrEXE0Ir5c5LFPRsTBiDgQ\nEfuLMN63IqI9Ig5NW9YSEY9HxJHc9+Yij/+ViDibew8ORMT9BRp7S0Q8ERGvRsQrEfGl3PKibP8V\nxi/W9tdExHMR8evc+H+ZW17w7b/C2EXZ9utZKftXbvwV08NK2b9yY5Wsh63k/rXA+NdkDyv6Yb6I\nKAfeAO4FzgDPA59JKb1apPFPAvtSSkW5VkVEfAjoA/4upbQnt+x/AB0ppa/mmnFzSum/FnH8rwB9\nKaW/KsSY08ZuBVpTSi9GRAPwAvAp4HMUYfuvMP4DFGf7A1iVUuqLiErgaeBLwO9R4O2/wtj3UYRt\nv16Vun/lajjJCulhpexfubFK1sNWcv9aYPxrsoeVYs/U7cDRlNLxlNII8E/AJ0tQR1GklJ4COt6x\n+JPAI7nbjzD5C1LM8YsipXQupfRi7nYvcBjYRJG2/wrjF0Wa1Je7W5n7ShRh+68wtrJZUf0LStvD\nStm/cuOXrIet5P61wPjXpFKEqU3A6Wn3z1DEHxAm/zF+GhEvRMRDRRx3uvUppXO52+eB9SWo4YsR\n8XJuN3rBDjNeFhHbgduAZynB9r9jfCjS9kdEeUQcANqBx1NKRdv+ecaGIv/bX2dK3b/AHgYl+Bku\nZQ9bif3rCuPDNdjDVuIE9LtTSnuB3wH+OLcbuWTS5HHWYqftbwA7gL3AOeBrhRwsIuqB7wN/klLq\nmf5YMbZ/jvGLtv0ppfHcz9tm4PaI2POOxwu2/fOMXdR/exXESu9hRf8ZLmUPW6n96wrjX5M9rBRh\n6iywZdr9zbllRZFSOpv73g78M5O77YvtQu54+OXj4u3FHDyldCH3QzoB/A0FfA9yx7q/D/xDSukH\nucVF2/65xi/m9l+WUuoCnmDyeH9R//2nj12Kbb/OlLR/gT2s2D/Dpexh9q/Z41+rPawUYep5YHdE\n3BgRVcAfAo8WY+CIWJWbyEdErAJ+Gzh05WcVxKPAg7nbDwI/LObgl38Rcj5Ngd6D3ATCbwKHU0pf\nn/ZQUbZ/vvGLuP3rIqIpd7uWyUnLr1GE7Z9v7GJt+3WsZP0L7GFQvN/f3Fgl62EruX9dafxrtoel\nlIr+BdzP5Bkxx4D/VsRxdwC/zn29UoyxgX9kclfkKJPzKz4PrAF+BhwBfgq0FHn8vwcOAi8z+YvR\nWqCx72ZyF/DLwIHc1/3F2v4rjF+s7X8v8FJunEPAf88tL/j2X2Hsomz79fxVqv6VG3tF9bBS9q/c\n+CXrYSu5fy0w/jXZw7wCuiRJUgYrcQK6JElS3himJEmSMjBMSZIkZWCYkiRJysAwJUmSlIFhSpIk\nKQPDlCRJUgaGKUmSpAz+P33YRCX/1sneAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAEgCAYAAACQH/YaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYXFWZx/Hf251OZ9/Ivq+sAQI0YdfILjMILuAwirgN\nOiLiKA4OoqCjo6KoDDI8AxIFR1H2xQEhhEiIZiAdCCEbZKHJ0kk6oROyJ91d7/zRlaXT91ZX1b11\nq9P1/TxPPV197nLOra5+++1T95xj7i4AAADkp6zYDQAAADiUkUwBAABEQDIFAAAQAckUAABABCRT\nAAAAEZBMAQAAREAyBQAAEAHJFAAAQAQkUwAAABF0inKwmV0o6XZJ5ZJ+5e4/yrR/Z6v0LuoepUoA\nxWQZtoUsprBVmza6+4CCtCeiXGIY8QsoPdnGr7yTKTMrl3SnpPMkrZY0x8yedPdFYcd0UXedYufk\nWyWAIrNO4SHDm5oCy59PPfROodoTRa4xjPgFlJ7n/eGs4leUj/kmS1rm7ivcfY+kP0i6JML5ACBJ\nxDAAsYiSTA2TtOqA71eny1ows6vNrNrMqhu0O0J1ABCrNmMY8QtANgp+A7q73+3uVe5eVaHKQlcH\nALEhfgHIRpRkao2kEQd8PzxdBgCHAmIYgFhEGc03R9IEMxuj5gD0D5L+MdMBVlmp8tHjWpU3LV0R\noRlAmsXY0eqp+M51KAp5Lb2xMfyQis7BG/bE0aCCyDmGAUCQvJMpd280sy9LelbNw4qnuvvC2FoG\nAAVEDAMQl0j/yrv70+5+uLuPc/cfxNWo9m7QqAGa1vSgvjH1Sy3KvzH1S5rW9KAGjSrMlDrHvf9o\nTWt6UFd+57KCnB8oNaUaw4qh3uv0vD+s5YdwvrrcF+p5f1j1XlfspqCdiTRpZyFNa3qwxfdNTSlt\n27RNK+av1DNTp2vGA38tUssKZ9CoAfqfFXfqufv+op989r+K3ZyC+On0m3X8lGN0XvnlxW4KkIjt\nvlVrtEKbtEE7tV1NalS5OqmbeqiP+muwRqqX9S12M9udWq/RIlXraFVpqI3usHWiY2i3ydRe93/3\nIUlSp4pyjThymE7/UJVOOHuiDj9pnP77+vuL3LqW7r3x9/rDjx/XxjX1BTn/m68s02eP/qre27i1\nIOcHEB9319tarBVqngO0p/pokEaoQp3VpEZt1Wat0nKt1FId4ZM0wsYXucUA8tXuk6nffu+hFt+f\ncPZE/ejZm/SR6y7S43c8o/XvbChSy1qrX7dZ9es2F+z8u3fu0ao3awt2fgDx2ZtIVaqrjtUp6mP9\nW+2zx3dppZaqUQ1FaCGAuLT7ZOpgr72wQKuW1GrU0cN1xMnjtP6dDS0+Hvv9Dx/Tp7/3cR0/5Rj1\n7t9T3zj3e5r/Yvo/w77dddn1H9IZl5ysQaMHqnFPo96qXq4//uQJzZ02v1VdXXt00aduuVzvv+w0\n9e7fU+tqNujpe57XX5+YE9i2b0z9ks6/aoo+OfaaVkneESeP08e+drEmnnGkevXvqa3121SzYKWe\nvvcFzXxotq78zmX61M3N90Kdf9UUnX/VlH3H/uSzd+q5+17Uce8/Wre9cIvu/+5DrZLMYeMH6xM3\nfVQnnH2seg/opS0bt+jV6W/od99/RGuWrWux7966vn72Lerdv6cuv/4SjZ44Qnt2NWjutNf139ff\nr3drN7U4ZvCYgfqHGy7VpA9MVP9h/bR75x69u6ZeC//2pqbe9IC21m/L7gcIlIAdvk1va7FMZTpB\nZ6qH9Q7cr7N10Xgdq9RBo0cX+hyt1Ts6XRdqo9apVm9rh7aql/qpyqZIau75WqMVqlWNtmuLXFIP\n9dJQjdYwjZXZ/oUUd/p2/VXPaIhG6Rg7uVU7qv0v2qyNOtc+tq+s3uv0qmZqjI7SQA3TMi3Qe3pX\nKaXUS301XhMDE8TdvkvLtUAbtVaNalA39dRITVAXdcv69dvbHklapGot8up9287QB9XVumu5L9Tb\nWqwT9T7tUXNSul1bVKFKnWkXtWj/ODumVR2z/GlJ0pl2UdZ1Hmi9r9Y7elPbtEVlKtNhGqQJOl5d\nrGvW14mOI9FkyvfsVmpFjst0eevVU/fGCD9o25Cxg3TH7B9o9Vtr9cLvZ6mya2ft2LJTkjRwZH/9\n9IVbNGTMQM2fuUhznn1dXbpX6tS/O1H/8fSN+sU/36NnfjV937kqOnfSrdO+oyMnj9fyeTV64fez\n1L1PN33ipo/quPcfndMlfPDz5+i6Oz+vpqaU/u+paq1Zuk59BvbS4SeN04e+eL5mPjRbr7+4UI/e\n3k0fue7vtHxeTYuEbfm8moznP7xqnG597tvq2rOLZj81VysXrdaII4fqnE+cpdM/dLL+9fx/11vV\ny1sd96F/vkCnXXySZj81V/NnLtKRk8frAx8/Q+OOG6UvnvivatjTPAy+3+A+uvPlH6pbr6565ZnX\nNOvRl9W5S4UGjxmocz55lp6488+JJlNWXh68Iaw8k5D15DyVYWxGEtMmZJrmIc76w+oJq8PCVzou\nO3xM8IYFObapA1irGrlcgzU8NJE6UFnIz+Etva7N2qj+GqzDNFh2wErTC/WK1mmVKtVVQ9X82m9Q\nrZboNW3WRk3UKbFcy1Zt0jt6S73VT0M1Wru0U3VarVc1U6f4eepuPfftu8d3q1oztFPb1UeHqY/6\na7d2aYleVT8NyrrOoRqtCnXWBtVqgIaqh/a/hp1U0WLflVqqeq1Xfw1RXw3Mu5cvlzpXa4U2qlb9\nNVR9NUDvqV7rtVpb9Z5O9XNVZnnEIhzSDrmeqRPOOVbDjxiqVCqlN+e0TBCOPesoPfDDxzT1pgda\nHfevv75Gg0b11w/+8Rf6yx//tq+8e+9uuu2FW3TNLz6j2U9Wa3Pde5Kkj33tYh05ebxeevRl/fvl\nP9uXuP3xx4/rzjk/zrq9I48apq/88nPavmWnvvb+7+idRatbbO8/rJ8kaf6Li7S+ZkNzMvV6Taue\np0xu+M016t67m3545X/qhd/P2lf+/stP000P/ItuuO/L+vzEr7VKPqsuOF7XnPJvqlmwf0WNf/uf\nr+jsK87UaZecrJkPzZYknfXRU9XrsJ76r6/+Wo/d8UyLc3TpVqlUqsTnZAIOslnvSpL6amCk82zV\nJp2ic1v1iqzzlVqnVeqpPjpJU9TJmkP5eJ+oar2odVql/j5Eg21kpPolaaPWtbohe7Wv0BK9qlVa\nqiN14r7y5VqgndquERqvI2zSvvIRPk5zNCPrOofaaMm1L7HJdDN4vepUpQ9Evok/lzrf1TpN1jkt\nEuU3/GWt1yptUK0GtZgLFqWg4MvJRHXlzZfpypsv02e+f4W+/eDX9cNnvqWysjI9evvTqlu5scW+\n9es2ByYhY48bpeOnHKNZj77cIpGSpO3v7dB9331QlV0766yP7P9P7oJPT1FTU0r33PA/LZKQdTUb\n9PhBCUUmF3/xfHWq6KTfff+RVomUpMg3qx9z+hEaedRwLfzbmy0SKUl68cHZeuOlxRp55DBNPPPI\nVsc+fsczLRIpSXo63Tt35Mmtb4bdvav17Iu7duzWnl3c7wEcaI92SZIq1fojn52+Xct9YYvHSl8a\neJ5ROqJVIiVJtaqRJI3XxH2JlCSVWydN0ERJ0hq9HfUyJEm9dVirxGKoRstkek/7bwdIeUprtVLl\n6qRxavmxWi/rp8GKntgFGaYxiY+GHKHxrXoch6V7B99TYQYgoX1r9z1Tn7q5eQh9KpXSts079MZL\ni/XnqS9o+kGJgyStmF+z76OpAx192uGSmnuhguZo6jOgl6TmXiSp+V6pYROGqG7lRq1dsb7V/q+/\nuFBSdnM9HXXKBEnSnD+/ltX+uRp/QvMv8LwZwZ+lzJuxQMeedZTGTxqtN15a3GLbW3Nbzzy/YVVz\ngtqj7/4APvupan32B1fo2js+p6rzJ6n6uXla+Nc3A5NDAJnt1Ha9rZa/i13UTSM1odW+vdQv8Bxb\n1TzQJajnq48GyGT79omql1onKmVWps7eRY0HTG+/Q1uVUpP6qL86WUWrY/pqgNYqx9s8stA75DUq\npKDXZO89YQwmKE3tPpk6rywkaQm4d6N+3XuBu/bq10OSdNJ5x+uk844Pratrjy6SmpMuSdq0PjgY\nbcphxF6PPs1JSaGmS9jb1vq1wW3aO7qwe5/W/91u27y9VVlTY/NHduXl+zst61Zu1LWn3qgrb75M\nJ18waV8PXt3KjXrotqf0+C+z76kDSkFnddF2bdVu7Wy1rZ8N1LlqvtE75Sm9oEdDz1OpLoHljWpQ\nhToH3mtVZmWq8M7ao915tr6lg+8X2stkcu3vtd+bRHQOWRC6c8i1RFWo82YS9JrsvZ/twNcEpaPd\nJ1M5CbhZXWr+KE+S7rzu11n94d+7f99BfQK39x0cXB5kb8LSf1i/gkxrsK+tIW3qly7fu1++Vi5Z\nox9c8QuVlZdp3PGjdOI5x+mSL1+oa27/jHbt2KU/T83+fgigo+ujw7RJG7RJdfs+/olTJ1WoQXuU\n8lSrhCrlKTVoT4s/+G39oY+jN2VvfWFJ3N6PPpOSzTWHJYpArpJNplzyVMAbOyQJynwub/3cg8+1\n+P/ekiQde+aRevyOp9s89c6tO7Vm6VoNHjtIQ8YMbPVR3/F7R/MdXN/ep+77yhe/vFRHnDxeJ184\nSauWZF6QPtXYPLKsrKws+DXZV7b//Mtee3t/mwKOOX5K870Ly15d0fL4g9rZqo6Q1zLV2KSlc1do\n6dwVWvi3Jfr5zH/X6R86WX++94XmHcJGe6XPdf3ZtwRvDxJyrtDFdjMswpuzsvDROGXdQoZ45/E+\n9obgNntDQqsDe/BoxlAZRvOpjntF9hqi0arRm1qvNRrjW9TdesV6/p7qo3rVabM2tBolt1kb5XL1\n1P5/sPYmDbvU+p+qRm/QDkUfjdtNPVWmcm3VZjV6Q6uP+jYptzkBo/b0VKh54e2g3sEdvi0wmaJ3\nCflq9zegx+GtuSs0f+YinfGRU3TBZz4QuM/oiSP33TslSc/+ZobKy8v0+R99ssV8LYNHD9Sl116U\ndd1P3fWcGhsa9YmbPqaRRw1vtX3vaD5J2rppu1KplAaObD13S5iFf12ilUvW6NizjtJZHz21xbaz\nPnqqjnvf0Vr1Zq0WzFqS9TkPNuHEserWq3UCsbfnbveO7P/wDxk7SCOOGKryTgwdRsfVzXpojI6S\nK6XXNEubfWPgflGG8UvSMi1Qk+9PyJu8Ucv0Rnqf/T1inaxC3dRT7+ldbfMt+8rdXW/pdaWUY1Id\noMzKNEQj1aRGLVfL9fe2eL3WaWVO59ubDAUlgNnopp4qVydtUK32+P5esSZv0puaV5A6Ubo61sd8\nGfzwE7frJ9Nv1vX3fkkfvvYiLX5lqbZv3q7+ww7T2ONGacyxI/WV027U5g3Ngebh257S6ZdM1vs+\ndqrumnurqp+bp+59uuv9l52mN2Yu1umXtJ74LsjKxav1n9f8StfddbXuevVWzX5ijtYsW6deh/XQ\n4VXjtWPLDn3jnO9KknZt36UlLy/TxLOO1Dd/+xWtXlqrVFNKs5+s1ttvhAein3z6l/rRc9/Wt/7w\nL5r9xBytenONhh8+VKdfOlnbt+zQrVfd0WpahFyce+X79HdXn6cFs5Zo7Yp12rppu4aOHaRTL67S\nnl179Ojt/5v1uW59/jsaPHqgPjnmS+1q9nogbs3JVPOSMtX6i3p6X/VWX3VSZzWqQbu0XfVqXjC3\nj7L/B0qSBttIbfBarddqzdZzGuBDZTJtUK12arsGabiGHDQtwigdrsWaq2rN0CAfrjKVq151crl6\nqLe2Kfie01yM00TVq06rtExbfdO+eabWa5UO02Bt1Nqsz9Vbh6lM5VqppWrwPfvujRqp8YE3uB+s\nzMo00ifobS3Wy3peA3yYXK56rVelugTejxa1TpSukkmmNq6p15eqbtCl135QZ37kVJ3zj2eprLxM\n9es2a+Wi1Xr8l8+0SFga9jTqhvO+pytvuVxTLj9dH/7KRVpXs0G//8EjmvXYK1knU5L0zK+mq2bB\nKl329Yt13JRjdPqlk7Vl45bmRZvvnd5i3x9/6g598WdX6eQLJ+kDV5yhsrIybVxdnzGZWvLKMn15\n8r/pE9/6qE4491idevFJem/jVs14YJZ+9/1HtPqtaPdqzXhglioqK3T0aYdrwkljVdm1szauqddf\n/vBXPfyzp1SzcFXbJwFKjJlpnI7RYB+p1VquTdqgdVrVYqHjYRqrIRqV19D+iTpFfTRAtarZNw1C\nd/XUEZqk4RrXav9hNkby5kkua/WOKlShARqqcZqo+Zod+XolqbNVqso/oGVaoI2q1RZtUjf11JE6\nUV3ULadkqsI66zg/TW9rkdaqRk3p3rMhGpn1vU5jdbTKVa41eltrtEKd1UWDNUJjdbRm67mC1InS\nZFF6LHLVy/r5KeXnt96Qit7FjHaijXuminauXGW6Z6pryOihQ/GeqVxluGeqvH9w78qzdXfNdfeq\nQjUpKb2sn59i5xS7GQAS9Lw/nFX8Kol7pgAAAAqlfXzMl2mEUII9Z4hBMXuNMq1Zl2u7MvSW+p7g\nm4bLerSey0uS1Cn812zXSaMDy7v+7c3w+kPWE0xtbz1vWJKsnP/NAJQmoh8AAEAEJFMAAAARkEwB\nAABEQDIFAAAQAckUAABABCRTAAAAEUSaGsHMaiRtldQkqTHvifmY/qB9yjRlRTGFTYFgGf43CFnQ\nt2nKicHlXcIn7Zwx9Z7wemKyIxU+aeeT2wcFlv/6iFGFak6HFVsMAw4Rz9YGr0tYbBcMnVTsJkQS\nxzxTH3APWcUTANo/YhiASPiYDwAAIIKoyZRLet7M5prZ1UE7mNnVZlZtZtUN2h2xOgCIVcYYRvwC\nkI2oH/Od6e5rzGygpGlmtsTdZx64g7vfLeluqXmh0Ij1AUCcMsYw4heAbETqmXL3NemvdZIekzQ5\njkYBQBKIYQDikHfPlJl1l1Tm7lvTz8+X9L3YWobiCxtlWexRfplG7eWo/MXXAss7daqIrY58VFr4\nr+a53VYHlv9axR3N54fYqFxiGIC4RPmYb5Ckx6z5D2snSb939z/H0ioAKDxiGIBY5J1MufsKScfH\n2BYASAwxDEBcmBoBAAAgApIpAACACEimAAAAIohjORkgUVYWPJrQm4LX38t4rpBRe2VjRmQ46pWc\n68lVeYYRi10sfN3Agss0Yi91aI3mA4C40DMFAAAQAckUAABABCRTAAAAEZBMAQAAREAyBQAAEAHJ\nFAAAQARMjYDcZRoen8AiyKFTIGRaANmDjynr1yd4/05FnH6gDU3KcQqCfH4m+Sxy3diYez0A0AHQ\nMwUAABAByRQAAEAEJFMAAAARkEwBAABEQDIFAAAQAaP50HGkcl/oOLX5vcByHzUoamsiaQgZfShJ\nvcu6BpbvfHZMYPn0iQ+HnqtMwaPzUiEjBreldoeeK0z/4TkfAgCSpGdr5xW1/vIh2e1HzxQAAEAE\nJFMAAAARkEwBAABEQDIFAAAQAckUAABABG2O5jOzqZL+XlKdu09Ml/WT9EdJoyXVSLrc3TcVrpno\nsDKtpxd6SPAINM9jbThvCD6mfPmanM8Vp+tqzwjdduuQvwSW73pgcGB5xX/kvs5g2BF9y7vlfK5i\nI4YBKLRs/pL9RtKFB5V9U9J0d58gaXr6ewBoj34jYhiAAmozmXL3mZLqDyq+RNJ96ef3Sbo05nYB\nQCyIYQAKLd97pga5+9r083WSijvDIQDkhhgGIDaRb0B3d5dCpkuWZGZXm1m1mVU3KPfZkwGgkDLF\nMOIXgGzkm0ytN7MhkpT+Whe2o7vf7e5V7l5Voco8qwOAWGUVw4hfALKRbzL1pKSr0s+vkvREPM0B\ngEQQwwDEJpupER6QNEVSfzNbLelmST+S9KCZfU7SO5IuL2QjcQjxkE98LXg6A3kq9yoaQz9Vzl3I\n4shN7x58v/J+F46sCiy3ypCei7DXRFLDKUcGlpfPeDX0mIunfTywfMCLtaHHlDJiGLDfBUMnFbsJ\nHVKbyZS7XxGy6ZyY2wIAsSOGASg0ZkAHAACIgGQKAAAgApIpAACACEimAAAAImjzBnTkKGzUWiYZ\nRnt1GHFeY9hrnGnR5FxHDWZorzcFjwDUnobAYqsI/zXrPO/twPKQGiRJXS7ZEHxMWLsAAAVFzxQA\nAEAEJFMAAAARkEwBAABEQDIFAAAQAckUAABABCRTAAAAEbSPqREyTSeQ65D6fKYmiKvufI/JR+jC\nwYfYNAsx/rysLNO5ykOKg8u9oTH8VCHTLHhj8NQI3rAn9FSWx3QGYVMzlA8ckPO5AADR0TMFAAAQ\nAckUAABABCRTAAAAEZBMAQAAREAyBQAAEEH7GM0Xp3xGs8U5AjDOUXb5tOtQG+UXY7tCFyDOJOyY\nOH9emX6OMba5ae263M8FAIiMnikAAIAISKYAAAAiIJkCAACIgGQKAAAgApIpAACACNoczWdmUyX9\nvaQ6d5+YLrtF0j9J2pDe7UZ3f7rN2ix4/TTPY0BTXiPdch2hVRaynpsUuj6bLCQ/zXSRoaPAMuS6\nqZDzxTky8VBT7HURQ35emdYM9FTubfbGDOsGBrjouHNCt638/BGB5dsPD15P8KdnPhh6rhnvHRWy\nZVnoMUmINYYBSNQFQycVuQXZxa9seqZ+I+nCgPKfu/uk9IMgBKC9+o2IYQAKqM1kyt1nSqpPoC0A\nEDtiGIBCi3LP1LVmNt/MpppZ37CdzOxqM6s2s+oG3x2hOgCIVZsxrEX8EvELQLB8k6m7JI2VNEnS\nWkm3he3o7ne7e5W7V1VYZZ7VAUCssophLeKXiF8AguWVTLn7endvcveUpHskTY63WQBQOMQwAHHK\nK5kysyEHfPthSQviaQ4AFB4xDECcspka4QFJUyT1N7PVkm6WNMXMJklySTWSvlDANhZe2BQEYdMP\nSOHTJoRNmZBP/florwsaJ6HY00KE/OzzmvojRqmt20K39aoJbvPIh98NLL+34oLwerp0zq1hCSmJ\nGAagqNpMptz9ioDiewvQFgCIHTEMQKExAzoAAEAEJFMAAAARkEwBAABEQDIFAAAQQZs3oCcinxFo\nMY5aK+sSPBlfalf4jMdWEfzSWafg8uXfOi70XGNvnhtY7g3Bi80iRKb3RLFH+oVJYPSl7w5/H/f8\nw/8Fluc1ALG9vsYd3LO184rdhEDFX6AWSA49UwAAABGQTAEAAERAMgUAABAByRQAAEAEJFMAAAAR\ntI/RfAmNAirr1i2w/E9vvRRYXh7nmnn6a/imTwcXZxwNk+trVspr9knh15/Eey/u1z6szXFeYx5t\n7jR4UPCG2tyrB4BDCT1TAAAAEZBMAQAAREAyBQAAEAHJFAAAQAQkUwAAABGQTAEAAETQPqZGyCTG\n4d7Wo3tgebxTIORu/p5dwRsyXWMxh/qXurD3i6eSqT/XaQviXAA6w/7er3fwBqZGANDB0TMFAAAQ\nAckUAABABCRTAAAAEZBMAQAAREAyBQAAEEGbo/nMbISk+yUNkuSS7nb3282sn6Q/ShotqUbS5e6+\nqXBNPUgeC7E21W0oQEOiO6aic/CGTKMMvakwjUH+Qn9eGUb5JbEAdZwjPDO9J3fvia+emLTb+AWg\nQ8mmZ6pR0tfd/WhJp0q6xsyOlvRNSdPdfYKk6envAaA9IX4BKLg2kyl3X+vur6afb5W0WNIwSZdI\nui+9232SLi1UIwEgH8QvAEnIadJOMxst6QRJL0sa5O5r05vWqbkbPeiYqyVdLUld1C3fdgJAJMQv\nAIWS9Q3oZtZD0iOSvuruWw7c5u6u5vsRWnH3u929yt2rKqwyUmMBIB+xxC8RvwAEyyqZMrMKNQei\n37n7o+ni9WY2JL19iKS6wjQRAPJH/AJQaG0mU2Zmku6VtNjdf3bApiclXZV+fpWkJ+JvnppHIgU9\nct3fTFZeHvhor6zMQh+IiXvwI+MxqRwfIXUkMZIv0zVmeoT9HmW4TmtsCnwUU9HjF4CSkM09U2dI\nulLSG2Y2L112o6QfSXrQzD4n6R1JlxemiQCQN+IXgIJrM5ly91mSwrpCzom3OQAQH+IXgCQwAzoA\nAEAEJFMAAAARkEwBAABEQDIFAAAQQU4zoBdFjMPHvbExsLzJgxeiLc+0qGuMGhUyfDxT/WHTQyQ1\n3L6jK5XXMc5FkJsyLOgMAB0YPVMAAAARkEwBAABEQDIFAAAQAckUAABABCRTAAAAEbT/0Xy5ymMU\n1sXnfjywvGFgj9BjmiqDF0jutLUhsHzrmK6h5+o3c1VguTesCT0GHVyco+ySkmI0H4DSRM8UAABA\nBCRTAAAAEZBMAQAAREAyBQAAEAHJFAAAQATJjuZzyVOFXfPMOoVfUtjafKmlbweWly8Nr6fzgP6B\n5U0b6wPLe88JH+nUlNAagDiExLk2YFIjA5tC1phEQV0wdFKxmwCUPP6KAwAAREAyBQAAEAHJFAAA\nQAQkUwAAABGQTAEAAETQZjJlZiPMbIaZLTKzhWZ2Xbr8FjNbY2bz0o+LCt9cAMge8QtAErKZGqFR\n0tfd/VUz6ylprplNS2/7ubv/NOvaTLKy1sO0PdOI6hyHdecz9YKHDenOMDy9ce26nOtJRNjrFedQ\nexxaDsVpFuITX/wCgBBtJlPuvlbS2vTzrWa2WNKwQjcMAKIifgFIQk73TJnZaEknSHo5XXStmc03\ns6lm1jfmtgFAbIhfAAol62TKzHpIekTSV919i6S7JI2VNEnN//ndFnLc1WZWbWbVDb47hiYDQG5i\niV8ifgEIllUyZWYVag5Ev3P3RyXJ3de7e5O7pyTdI2ly0LHufre7V7l7VYVVxtVuAMhKbPFLxC8A\nwbIZzWeS7pW02N1/dkD5kAN2+7CkBfE3DwDyR/wCkIRsRvOdIelKSW+Y2bx02Y2SrjCzSZJcUo2k\nL7R5pgQWOkYeGAGIjiu++AUAIbIZzTdLUtBf26fjbw4AxIf4BSAJzIAOAAAQAckUAABABCRTAAAA\nEZBMAQAARJDNaL74mMnKy1sVe0OGxfnCRppZjHlgKYxay2dNNUb5AQDQJnqmAAAAIiCZAgAAiIBk\nCgAAIAK3CcXfAAAK1ElEQVSSKQAAgAhIpgAAACIgmQIAAIgg2akR4uSpYreg4wib6iCf6RQAACgx\n9EwBAABEQDIFAAAQAckUAABABCRTAAAAEZBMAQAARJDwaD5nFF5cch1px+LEAAAUBD1TAAAAEZBM\nAQAAREAyBQAAEAHJFAAAQAQkUwAAABG0mUyZWRcze8XMXjezhWb23XR5PzObZmZL01/7Fr65JcYs\nw6Msx0emc4U8gEMc8QtAErLpmdot6Wx3P17SJEkXmtmpkr4pabq7T5A0Pf09ALQnxC8ABddmMuXN\ntqW/rUg/XNIlku5Ll98n6dKCtBAA8kT8ApCErO6ZMrNyM5snqU7SNHd/WdIgd1+b3mWdpEEFaiMA\n5I34BaDQskqm3L3J3SdJGi5psplNPGi7q/m/vVbM7Gozqzaz6gbfHbnBAJCL2OKXiF8AguU0ms/d\nN0uaIelCSevNbIgkpb/WhRxzt7tXuXtVhVVGbS8A5CVy/BLxC0CwbEbzDTCzPunnXSWdJ2mJpCcl\nXZXe7SpJTxSqkQCQD+IXgCRks9DxEEn3mVm5mpOvB939T2Y2W9KDZvY5Se9IurztU6WH9BfLobY4\ncMb6QxaMDjsm07UX+zqBwokxfgFAsDaTKXefL+mEgPJ3JZ1TiEYBQByIXwCSwAzoAAAAEZBMAQAA\nREAyBQAAEAHJFAAAQATZjOZrn/IZtRYmbIShN2U4JqSesHaVlYefqiL4x2AZrmX5za3uqZUkjXp6\nV2B5Rd3W0HM1vbksdBsAAMiMnikAAIAISKYAAAAiIJkCAACIgGQKAAAgApIpAACACEimAAAAIkh2\nagR3eVPAdAN5TWcQfIyVh09BEDYFgjc25F5/jIsDe0NjYHnZYf1Cj2noGzxtw+qzuwaW7xoV/roc\n/tmQDblO/wAAQAmiZwoAACACkikAAIAISKYAAAAiIJkCAACIgGQKAAAggva/0HGOCxp7KsNIs9Se\nGBqUWXn/wwLLn54/veB1Z7ItFbwAsiR91E4L3sCoPQCSnq2dV+wmhLpg6KRiNwGgZwoAACAKkikA\nAIAISKYAAAAiIJkCAACIgGQKAAAggjZH85lZF0kzJVWm93/Y3W82s1sk/ZOkDeldb3T3pwvV0NYN\nC84DU6cfG3pI59X1geVNq2sDy70xeM08Sdr0vxMCy6cdf3/IEcFr5iWlq3Uuav0oAfmssVlg7TZ+\nAehQspkaYbeks919m5lVSJplZs+kt/3c3X9auOYBQCTELwAF12Yy5e4uaVv624r0gwmIALR7xC8A\nScjqnikzKzezeZLqJE1z95fTm641s/lmNtXM+oYce7WZVZtZdYN2x9RsAMgO8QtAoWWVTLl7k7tP\nkjRc0mQzmyjpLkljJU2StFbSbSHH3u3uVe5eVaHKmJoNANkhfgEotJxG87n7ZkkzJF3o7uvTQSol\n6R5JkwvRQACIA/ELQKG0mUyZ2QAz65N+3lXSeZKWmNmQA3b7sKQFhWkiAOSH+AUgCdmM5hsi6T4z\nK1dz8vWgu//JzH5rZpPUfDNnjaQvFK6Z2dv97fdCtzXdNjCwfPUPA2+X0ITrNwSWS9Lu5wYEln/1\nsPMDy3898qXQc8WpyVOB5Tu98Is84xAUNp1BPotcl5dHa0thHFLxC8ChKZvRfPMlnRBQfmVBWgQA\nMSF+AUgCM6ADAABEQDIFAAAQAckUAABABCRTAAAAEWQzmi9eQaPN8hk5FDJq7box00MPGfffwaPz\nJlWGTMY3J+dWFV15yALQTfm8xuj4cn1fZNq/Ivlw0tE8WzsvkXouGDopkXqAUkHPFAAAQAQkUwAA\nABGQTAEAAERAMgUAABAByRQAAEAEiQ6/MTOVBYycS+3alcfJgvPAEytrQw8ZU9Ej93o6iJd39Qrd\nZiFrqnlTU6Gak52wkWNh68mVimKOzMzw2qd6dk2wIQDQftAzBQAAEAHJFAAAQAQkUwAAABGQTAEA\nAERAMgUAABAByRQAAEAEiU6N4O75TYMQwEIWVb1h1SWhx9wz+k+B5b3Lch/SXde0PbA8LDutD16X\nWZI0qlPnwPJKq8ixVdK2VPDr+4WXPhd6zBF6Ped6ElHqUyCEifN1CZliRKncp8Ww2uCFxAGgo6Nn\nCgAAIAKSKQAAgAhIpgAAACIgmQIAAIiAZAoAACAC8wQXTTWzDZLeSX/bX9LGxCpvrZTrL+VrL3b9\npXjto9x9QMJ1xo74Rf3toO5Sr7/dxq9Ek6kWFZtVu3tVUSov8fpL+dqLXX8pX3tHUuzXkfr5HS7F\n+ot97ZnwMR8AAEAEJFMAAAARFDOZuruIdZd6/aV87cWuv5SvvSMp9utI/aVZd6nXX+xrD1W0e6YA\nAAA6Aj7mAwAAiKAoyZSZXWhmb5rZMjP7ZsJ115jZG2Y2z8yqE6hvqpnVmdmCA8r6mdk0M1ua/to3\n4fpvMbM16ddgnpldVKC6R5jZDDNbZGYLzey6dHki15+h/qSuv4uZvWJmr6fr/266vODXn6HuRK69\nIytm/ErXXzIxrJjxK11X0WJYKcevNupvlzEs8Y/5zKxc0luSzpO0WtIcSVe4+6KE6q+RVOXuicxV\nYWbvk7RN0v3uPjFddqukenf/UToY93X3GxKs/xZJ29z9p4Wo84C6h0ga4u6vmllPSXMlXSrp00rg\n+jPUf7mSuX6T1N3dt5lZhaRZkq6T9BEV+Poz1H2hErj2jqrY8SvdhhqVSAwrZvxK11W0GFbK8auN\n+ttlDCtGz9RkScvcfYW775H0B0mXFKEdiXD3mZLqDyq+RNJ96ef3qfkXJMn6E+Hua9391fTzrZIW\nSxqmhK4/Q/2J8Gbb0t9WpB+uBK4/Q92IpqTil1TcGFbM+JWuv2gxrJTjVxv1t0vFSKaGSVp1wPer\nleAbRM0/jOfNbK6ZXZ1gvQca5O5r08/XSRpUhDZca2bz093oBfuYcS8zGy3pBEkvqwjXf1D9UkLX\nb2blZjZPUp2kae6e2PWH1C0l/LPvYIodvyRimFSE93AxY1gpxq8M9UvtMIaV4g3oZ7r7JEkflHRN\nuhu5aLz5c9aks+27JI2VNEnSWkm3FbIyM+sh6RFJX3X3LQduS+L6A+pP7PrdvSn9fhsuabKZTTxo\ne8GuP6TuRH/2KIhSj2GJv4eLGcNKNX5lqL9dxrBiJFNrJI044Pvh6bJEuPua9Nc6SY+puds+aevT\nn4fv/Vy8LsnK3X19+k2aknSPCvgapD/rfkTS79z90XRxYtcfVH+S17+Xu2+WNEPNn/cn+vM/sO5i\nXHsHU9T4JRHDkn4PFzOGEb9a199eY1gxkqk5kiaY2Rgz6yzpHyQ9mUTFZtY9fSOfzKy7pPMlLch8\nVEE8Kemq9POrJD2RZOV7fxHSPqwCvQbpGwjvlbTY3X92wKZErj+s/gSvf4CZ9Uk/76rmm5aXKIHr\nD6s7qWvvwIoWvyRimJTc72+6rqLFsFKOX5nqb7cxzN0Tf0i6SM0jYpZL+laC9Y6V9Hr6sTCJuiU9\noOauyAY131/xOUmHSZouaamk5yX1S7j+30p6Q9J8Nf9iDClQ3WequQt4vqR56cdFSV1/hvqTuv7j\nJL2WrmeBpO+kywt+/RnqTuTaO/KjWPErXXdJxbBixq90/UWLYaUcv9qov13GMGZABwAAiKAUb0AH\nAACIDckUAABABCRTAAAAEZBMAQAAREAyBQAAEAHJFAAAQAQkUwAAABGQTAEAAETw/xcqq5eF4o/T\nAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAEgCAYAAACQH/YaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcnVV9+PHPmclkT0hCQjYISQh7gCAh7IoiglgbXKCl\nStFq6UKRtmq1boDWqlS0llJePxAqWkUBEVxANlGKjcAAIYQkkBBC9o0kZF9m7vn9MTchk3meO/fe\n5y6Tmc/79ZpXZs6zfM9zZ+ab7zz3OeeEGCOSJEkqT0O9OyBJkrQ/s5iSJEnKwGJKkiQpA4spSZKk\nDCymJEmSMrCYkiRJysBiSpIkKQOLKUmSpAwspiRJkjLoleXgEML5wHeARuC7McavF9q/d+gT+zIg\nS0hJ+5lNrF8bYxxR734kKSWHmb+knqfY/FV2MRVCaARuBM4FlgJPhxB+HmOck3ZMXwZwSjin3JCS\n6q2hMX1bzCU2P5K767Uq9SaTUnOY+UvqeR6JdxeVv7K8zTcNWBBjXBhj3An8GJie4XySVEvmMEkV\nkaWYGgss2evrpfm2dkIIl4cQmkMIzbvYkSGcJFVUpznM/CWpGFV/AD3GeHOMcWqMcWoTfaodTpIq\nxvwlqRhZiqllwCF7fX1wvk2S9gfmMEkVkWU039PA4SGECbQloD8F/qzQAaF3E71GHdyhvWVpgfwV\nY8rJQtEd7fRcPUE5r9f+JtRopo+UB617hFxr6qbQKyWddN2Xq+QcJklJyi6mYowtIYS/Ax6kbVjx\nbTHGFyvWM0mqInOYpErJ9Kd8jPH+GOMRMcbDYoxfrVSnurqRh47g4dxdfPq2K9q1f/q2K3g4dxcj\nD63OlDrHv+0YHs7dxaVXX1SV80s9TU/NYfWwLq7mkXg3r+zH9eor8UUeiXezLq6ud1fUxWSatLOa\nHm69s93Xra05Nq/fzMJZi3ng1kd57Me/r1PPqmfkoSP4n1f/i4e+91v+7S9urHd3quKbj17NCWcf\ny7mNF9e7K1JNbImbWMZC1rOGbWyhlRYa6UV/BjKE4YxiHIPD0Hp3s8tZHhcxh2aOYSpjwvhuG1Pd\nQ5ctpnb7/rVtRVWvpl4ccuQYTp9+Mie+YzJHTD2M//ep79e5d+3d+rkf8uNv/Iy1y9ZV5fwvPbWA\nvzj6Kt5Yu6kq55dUOTFGXmUuC2mbA3QQQxjJITTRm1Za2MQGlvAKi5nPkXEKh4RJde6xpHJ1+WLq\nB9fe1e7rE98xma8/9EXef9UF3HvDA6x6bU2detbRupUbWLdyQ9XOv2PbTpa8tLxq55dUObsLqT70\n4zhOYUgY3mGfnXE7i5lPC7vq0ENJldLli6l9Pfeb2SyZt5xDjzmYI08+jFWvrWl7e2zhjTx0+2/5\n0dd+xke+/CeccPaxHDB8EJ9+55eZ9bv8X4ZDB3LRp/+YM6afzMjxB9Gys4WXm1/hJ9fdyzMPz+oQ\nq9/Avvz5tX/C2y46jQOGD2LlojXcf8sj/P7epxL79unbruBdHzmbD0/42w5F3pEnT+KD//heJp95\nFIOHD2LTus0semEx99/6KI/fNYNLr76IP7+67a2vd33kbN71kbP3HPtvH227tuPfdgzXP3Yt37/2\nzg5F5thJo/jQFz7IieccxwEjBrNx7UaefeQFfvgvd7Nswcp2+176pYv486sv4pPvuIYDhg/i4k9N\nZ/zkQ9i5fRfPPPw8/+9T3+f15evbHTNqwkH86WcuZMrbJzN87DB2bNvJ68vW8eL/vcRtX7iDTes2\nF/cNlHqArXEzrzKXQAMnciYDwwGJ+/UOfZnEceT2GSH6YnyaFbzG6ZzPWlaynFfZyiYGM4yp4Wyg\n7c7XMhaynEVsYSMRGMhgxjCesUwk7DWCd1vcwu95gNEcyrHh5A79aI6/ZQNreWf44J62dXE1z/I4\nEziagxjLAmbzBq+TI8dghjKJyYkF4o64nVeYzVpW0MIu+jOIcRxOX/oX/frt7g/AHJqZE5v3bDuD\nd9MvDOCV+CKvMpe38FZ20laUbmEjTfThzHBBu/4fFo7tEOOJeD8AZ4YLio65t1VxKa/xEpvZSAMN\nHMhIDucE+oZ+RV+nuo+aFlNx1y5aV6zsfMdO7M4RcZ+pDkZPHMkNM77K0pdX8JsfPUGffr3ZunEb\nAAeNG843f3MNoyccxKzH5/D0g8/Td0AfTn3PW/jXBz7Pv//NLTzw3Uf3nKupdy+ue+Rqjpo2iVdm\nLuI3P3qCAUP686EvfIDj33ZMviO0n3Jg96chtGt/98fP4aobP05ra44//KKZZfNXMuSgwRxx0mH8\n8d+cx+N3/4HnfzeHe77zK95/1Xt4ZeYifn/f03uOf+X5Rfucs/35j5h6GNc99EX6DerLjF88w+I5\nSznkqDGc8+GzOH36yfzTu77Cy82vdHgd//hvzuO0957EjF88w6zH53DUtEm8/U/O4LDjD+Wv3/JP\n7NrZAsCwUUO48cmv0X9wP5564DmeuOdJevdtYtSEgzjnw2dx342/rmkxFRpT1odLa6fAsP2U6TLi\nrpbUc8X02QFSDqjw3AC1mAIirc8FpthoOHxC8obU1Tq7rxUsIhIZxcGphdTeGlK+py/zPBtYy3BG\ncSCjCLz5+r/IU6xkCX3oxxjaXvs1LGcez7GBtUzmlIpcyybW8xovcwDDGMN4trON1SzlWR7nlHgu\nA8KgPfvujDto5jG2sYUhHMgQhrOD7czjWYYxsuiYYxhPE71Zw3JGMIaBvPka9qKp3b6Lmc86VjGc\n0QzloLLv8pUScykLWctyhjOGoYzgDdaxiqVs4g1Oje+kIRRYw1Ld0n53Z+rEc47j4CPHkMvleOnp\n9gXCcWcdzR1f+xm3feGODsf9039fwchDh/PVP/t3fvuT/9vTPuCA/lz/m2u44t8/yoyfN7Nh9RsA\nfPAf38tR0ybxv/c8yVcu/taewu0n37iXG5/+RtH9HXf0WD7xnx9jy8Zt/OPbvsRrc5a22z587DAA\nZv1uDqsWrWkrpp5fxA++fFfS6RJ95ntXMOCA/nzt0v/gNz96Yk/72y4+jS/c8Q985va/4+OT/7FD\n8Tn1vBO44pR/ZtHsN1fU+Of/+QTvuORMTpt+Mo/fNQOAsz5wKoMPHMR//f1/87MbHmh3jr79+5DL\ndd2JhKR62MDrAAzloEzn2cR6TuGdHe6KrIyLWckSBjGEkzibXqEtlU+Kk2nmd6xkCcPjaEaFcZni\nA6xlZYcHspfGhczjWZYwn6N4y572V5jNNrZwCJM4MkzZ035IPIyneazomGPCeIjsKWwKPQy+jtVM\n5e2ZH+IvJebrrGQa57QrlF+IT7KKJaxhOSPbzQWrnqBGsxyW79KrL+LSqy/io/9yCV+885N87YHP\n09DQwD3fuZ/Vi9e223fdyg2JRcjE4w/lhLOP5Yl7nmxXSAFseWMrt197J3369eas97/5l9x5Hzmb\n1tYct3zmf9oVISsXreHefQqKQt771++iV1MvfvgvP+1QSAGZH1Y/9vQjGXf0wbz4fy+1K6QAfnfn\nDF7437mMO2osk888qsOx997wQLtCCuD+/N25o07u+DDsju07O7Rt37qDndt93kPa2062A9CHjm/5\nbItbeCW+2O5jcZyfeJ5DObJDIQWwnEUATGLynkIKoDH04nAmA7CMV7NeBgAHcGCHwmIM4wkE3uDN\nxwFyMccKFtNILw6j/dtqg8MwRpG9sEsylgk1Hw15CJM63HEcm787+AbVGYCkrq3L35na/RxRLpdj\n84atvPC/c/n1bb/h0X0KB4CFsxbteWtqb8ecdgTQdhfq0i91nKNpyIjBQNtdJGh7Vmrs4aNZvXgt\nKxau6rD/8797EShurqejTzkcgKd//VxR+5dq0oltv8AzH5uduH3mY7M57qyjmTRlPC/879x2215+\nZmGH/dcsaStQBw59M4HP+EUzf/HVS7jyho8x9V1TaH5oJi/+/qXE4lBSYdvYwqu0/13sS3/GcXiH\nfQczLPEcm2gb6JJ052sIIwiEPftkNZiOhUpDaKB37EsLb/6BtZVN5GhlCMPpFZo6HDOUEazgtYr0\naW8HpLxG1ZT0mux+JszBBD1Tly+mzm1IKVoSnt1Yt/KNxF0HDxsIwEnnnsBJ556QGqvfwL5AW9EF\nsH5VcjJaX8KIvYFD2oqSak2XsLuv61Yk92n36MIBQzr+dbt5w5YOba0tbW/ZNTa+edNy9eK1XHnq\n57j06os4+bwpe+7grV68lruu/wX3/mfxd+qknqA3fdnCJnawrcO2YeEg3knbg965mOM33JN6nj70\nTWxvYRdN9E581qohNNAUe7OTHWX2vr19nxfaLRCIvHnXfncR0TtlQejeKdeSVbXOW0jSa7L7eba9\nXxP1HF2+mCpJysPEW97YCsCNV/13Uf/x795/6MghiduHjkpuT7K7YBk+dlhVpjXY09eUPg3Lt+/e\nr1yL5y3jq5f8Ow2NDRx2wqG85Zzjmf5353PFdz7K9q3b+fVtxT8PIXV3QziQ9axhPav3vP1TSb1o\nYhc7ycVch4IqF3PsYme7//A7+4++EndTdsdLK+J2v/VZK8Vcc1qhKJWqtsVUhNiaMBSqnAWI9z5m\n9+cx+Vxz//AyAMedeRT33nB/p6fetmkby+avYNTEkYyecFCHt/pO2D2ab994uz+NcU/73Cfnc+TJ\nkzj5/CksmVd4QfpcS9tr09DQkPya7Gl78/wLnnv1zT4lHHPC2W3PLix4dmH74/fpZ4cYKa9lrqWV\n+c++yvxnX+XFGS/x7d99mdOnTyu6mPrUOdemXFOClJFjiT9DAC0FRuDtqMxf6QA0JI/UaRhQ/NDv\nPXYl/ycWW9Mf6o+7Oj67VjOFFsxe/Xrt+tHFjWY8i3iJVSxjQtzIgDC4oucfxBDWsZoNrOkwSm4D\na4lEBvHmH1i7i4btdPyjqiXuYivZR+P2ZxANNLKJDbTEXR3e6ltPaXMCZr3T00RvgMS7g1vj5sRi\nyrtLKleXfwC9El5+ZiGzHp/DGe8/hfM++vbEfcZPHrfn2SmAB7/3GI2NDXz86x9uN1/LqPEHceGV\nFxQd+xc3PUTLrhY+9IUPMu7ogzts3z2aD2DT+i3kcjkOGtdx7pY0L/5+HovnLeO4s47mrA+c2m7b\nWR84lePfegxLXlrO7CfmFX3OfR3+lon0H9yxUBg6su0BzB1biy9URk8cySFHjqGxl0OH1X31DwOZ\nwNFEcjzHE2yIaxP3yzKMH2ABs2mNb/4R0RpbWMAL+X3evCPWKzTRn0G8wetsjhv3tMcYeZnnyVHq\nfB8dNYQGRjOOVlp4hfbr722M61jJ4pLOt7sYSioAi9GfQTTSizUsZ2d8865Ya2zlJWZWJaZ6ru71\nNl8BX/vQd/i3R6/mU7f+Le+78gLmPjWfLRu2MHzsgUw8/lAmHDeOT5z2OTasaUs0d1//C06fPo23\nfvBUbnrmOpofmsmAIQN420Wn8cLjczl9eseJ75IsnruU/7jiu1x10+Xc9Ox1zLjvaZYtWMngAwdy\nxNRJbN24lU/n79Zs37KdeU8uYPJZR/HZH3yCpfOXk2vNMePnzbz6Qnoi+reP/Cdff+iLfP7H/8CM\n+55myUvLOPiIMZx+4TS2bNzKdZfd0GFahFK889K38p7Lz2X2E/NYsXAlm9ZvYcxhozj1j05i5/ad\n3POdXxV9ruse/iKjxh/Ehyde0aVmr5cqra2YaltSppnfMigO5QCG0ovetLCL7WxhHW0L5g6h+D+g\nAEaFcayJy1nFUmbwECPiGAKBNSxnG1sYycGM3mdahEM5grk8QzOPMTIeTAONrGM1kchADmAzyc+c\nluIwJrOO1SxhAZvi+j3zTK1iCQcyirWsKPpcB3AgDTSymPnsijv3PBs1jkmJD7jvqyE0MC4ezqvM\n5UkeYUQcSySyjlX0oW/i82hZY6rn6jHF1Npl6/jbqZ/hwivfzZnvP5Vz/uwsGhobWLdyA4vnLOXe\n/3ygXcGya2cLnzn3y1x6zcWcffHpvO8TF7By0Rp+9NWf8sTPniq6mAJ44LuPsmj2Ei765Hs5/uxj\nOf3CaWxcu3HPos17+8af38Bff+syTj5/Cm+/5AwaGhpYu3RdwWJq3lML+Ltp/8yHPv8BTnzncZz6\n3pN4Y+0mHrvjCX74Lz9l6cvZntV67I4naOrTxDGnHcHhJ02kT7/erF22jt/+5Pfc/a1fsujFJZ2f\nROphQggcxrGMiuNYyiusZw0rWdJuoeOxTGQ0h5Y1tH8ypzCEESxn0Z5pEAYwiCOZwsEc1mH/sWEC\nxLZJLpfzGk00MYIxHMZkZjEj8/UC9A59mBrfzgJms5blbGQ9/RnEUbyFvvQvqZhqCr05Pp7Gq8xh\nBYtozd89G824op91msgxNNLIMl5lGQvpTV9GcQgTOYYZPFSVmOqZQpY7FqUaHIbFUxre2XFDDfug\nCij03EypynhmqqxzVZLPTCVqHJZcEDy49uZnYoxTq9WlWhkchsVTwjn17oakGnok3l1U/uoRz0xJ\nkiRVS+3f5ktcg6rAciTetep6avU9SYuTdneknDtm5VxLLuVh3ZRRhmFAxzm+9khZMzB3ZPpyFOG5\nl5LbU64/t71GQ9JT7thJUnfnnSlJkqQMLKYkSZIysJiSJEnKwGJKkiQpA4spSZKkDCymJEmSMsg0\nNUIIYRGwCWgFWrrDxHwqQiUn7ayVxCk5gJg8ncGqT5yeeqrGHcnTKTxz9U0ld6scm3PJUx3cvOGY\nxPYHJ1dwkd1CU0nEAlOcdFHmMKnNg8uT1yust/PGTKl3F4pSiXmm3h5jyiqektT1mcMkZeLbfJIk\nSRlkLaYi8EgI4ZkQwuVJO4QQLg8hNIcQmnexI2M4SaqogjnM/CWpGFnf5jszxrgshHAQ8HAIYV6M\n8fG9d4gx3gzcDG0LhWaMJ0mVVDCHmb8kFSPTnakY47L8v6uBnwHTKtEpSaoFc5ikSij7zlQIYQDQ\nEGPclP/8XcCXK9YzqdRFiAuNMixxpNnIG2akh+ndO3nD1SWFKFtTSF5QePqgWYntD3JmNbvzptb9\nazSfOUxSpWR5m28k8LP8SvW9gB/FGH9dkV5JUvWZwyRVRNnFVIxxIXBCBfsiSTVjDpNUKU6NIEmS\nlIHFlCRJUgYWU5IkSRlUYjkZ9TSFRtlVct2+Us+Vtv4eQC55Db7UUzUmj5gDaBwzqqRzVVqf0JTY\nPrKxtGsE0l/jUkdSArGlpfT4ktQNeGdKkiQpA4spSZKkDCymJEmSMrCYkiRJysBiSpIkKQOLKUmS\npAycGkH1VcYQ/PRzFZgaoMQpAFIXMwbYtr2ETtXOwIa+ie2HP90n9ZjvjElf0DlJC+mv8faYPDXC\nsLElhZCkojy4fGbVYzSOLm4/70xJkiRlYDElSZKUgcWUJElSBhZTkiRJGVhMSZIkZeBoPlVW2ui8\ntNF0hRYzruhIv9LOFXfuTN/YlLzQcK3sShm12BSSF2f+7d0npZ6r8aonS4rdWODvr7QFmCWpu/PO\nlCRJUgYWU5IkSRlYTEmSJGVgMSVJkpSBxZQkSVIGnY7mCyHcBvwRsDrGODnfNgz4CTAeWARcHGNc\nX71uqkcqNNIvSQVH/8Vc+rni5i0Vi1OOq5afkdj+X2P/kNi+dUyumt3p8sxhkqqtmDtT3wPO36ft\ns8CjMcbDgUfzX0tSV/Q9zGGSqqjTYirG+Diwbp/m6cDt+c9vBy6scL8kqSLMYZKqrdxnpkbGGFfk\nP18JjKxQfySpFsxhkiom8wPoMcYIpD5gEkK4PITQHEJo3sWOrOEkqaIK5TDzl6RilFtMrQohjAbI\n/7s6bccY480xxqkxxqlN9CkznCRVVFE5zPwlqRjlFlM/By7Lf34ZcF9luiNJNWEOk1QxxUyNcAdw\nNjA8hLAUuBr4OnBnCOFjwGvAxdXspLqBUhdALudclZRLXkwYoHV98gj68w5OXlC4oV/f1HPFlpbE\n9gW3HZN6zKTLXkhs/9W85DhH/evC1HNxUfqm7sIcJnXuvDFT6t2F/VqnxVSM8ZKUTedUuC+SVHHm\nMEnV5gzokiRJGVhMSZIkZWAxJUmSlIHFlCRJUgadPoDeo5Uz0qwctRid1lWVc+1lfF9CY2Ny+Nb0\nUXupSu1zoRgp2w7/xrbUQ3IpIwBvuOgDie0Ng9PPJUnKzjtTkiRJGVhMSZIkZWAxJUmSlIHFlCRJ\nUgYWU5IkSRlYTEmSJGXQ/aZGqOR0Bl15yoK06+zKfS5Vqd/LUOBvg5RtoXfylAnk0l/H2LIr5Zjk\naQ5y20uffiHOnl/6MTPnJLaXMfmDJKkE3pmSJEnKwGJKkiQpA4spSZKkDCymJEmSMrCYkiRJyqD7\njeYrJG2kWyVHAJZzrnL6lTpyLVdajK6s5D6nXDsQW9K3VSZ2haWMDCyojD5PeODjie2vvvu7JZ9r\nV3TcoKTaOW/MlBpEWVDUXt6ZkiRJysBiSpIkKQOLKUmSpAwspiRJkjKwmJIkScqg09F8IYTbgD8C\nVscYJ+fbrgH+EliT3+1zMcb7q9XJlI5VP0ZDyrptADFldFjaKLu0/QvECQ3p1xhbSxw5Vej1qvfI\ntUqp1XVUdPRnGT8vFbzOoc1Nie2t5yfHbyyw/uGrLdsr0qdK67I5TFK3Ucydqe8B5ye0fzvGOCX/\nYRKS1FV9D3OYpCrqtJiKMT4OrKtBXySp4sxhkqotyzNTV4YQZoUQbgshDE3bKYRweQihOYTQvIsd\nGcJJUkV1msPMX5KKUW4xdRMwEZgCrACuT9sxxnhzjHFqjHFqE33KDCdJFVVUDjN/SSpGWcVUjHFV\njLE1xpgDbgGmVbZbklQ95jBJlVRWMRVCGL3Xl+8DZlemO5JUfeYwSZVUzNQIdwBnA8NDCEuBq4Gz\nQwhTgAgsAv6qin2svrTh3oUWmy00bUKFxFyBIfDdZTqDSqrFdBnlKPS9qvPiwCNumpHY/p7vnprY\nvvPtx6eeq99Lq1K2fLvUblVUd89hDy6fWe8uJKrNIrRS19BpMRVjvCSh+dYq9EWSKs4cJqnanAFd\nkiQpA4spSZKkDCymJEmSMrCYkiRJyqDTB9C7rAqOZgtNyS9D3FlosdnkbQ39+iW2L7jmhNRTTfrS\nc4ntue1dc+HYLqucn4muOgKwVgtTp8SJu3Ymtjc91Jx6qtam3hXpkiTtb7wzJUmSlIHFlCRJUgYW\nU5IkSRlYTEmSJGVgMSVJkpRBbUfzBQgNHUcPFVyeLG1UUxkjmkLKaKNfLUxen6yQxrT1/FL9X/qm\nDyc3l7W2VQVfL9VRrb5fFYzTeNDw5A1LKxZCkrok70xJkiRlYDElSZKUgcWUJElSBhZTkiRJGVhM\nSZIkZWAxJUmSlEHXX+g4beh2GQvUpi1oXPo0B+laUxZALhTjjdy2isWXSlLqVBoNjamnyh04OHmD\nUyNI6ua8MyVJkpSBxZQkSVIGFlOSJEkZWExJkiRlYDElSZKUQaej+UIIhwDfB0YCEbg5xvidEMIw\n4CfAeGARcHGMcX3Bk0WIuQotrFrGAq25rVsrE7uAckYGHtDQL3lDoRGLLlxcGeWMFk37HqeM5Owp\nGjZW//erVBXNX5KUopj/+VuAT8YYjwFOBa4IIRwDfBZ4NMZ4OPBo/mtJ6krMX5KqrtNiKsa4Isb4\nbP7zTcBcYCwwHbg9v9vtwIXV6qQklcP8JakWSpq0M4QwHjgReBIYGWNckd+0krbb6EnHXA5cDtCX\n/uX2U5IyMX9JqpaiH/AJIQwEfgr8fYxx497bYoyRtucROogx3hxjnBpjnNpEn0ydlaRymL8kVVNR\nxVQIoYm2RPTDGOM9+eZVIYTR+e2jgdXV6aIklc/8JanaOi2mQggBuBWYG2P81l6bfg5clv/8MuC+\nynePtlFVSR+l7l/GWn61siu2Jn4QGtI/Kmk/e73qLuaSP7qTtJ+JtGuPOWhN+ajrZdQ5f0nqEYp5\nZuoM4FLghRDCzHzb54CvA3eGED4GvAZcXJ0uSlLZzF+Sqq7TYirG+ASQdpvinMp2R5Iqx/wlqRac\nAV2SJCkDiylJkqQMLKYkSZIysJiSJEnKoKQZ0DMLEBo6PgsaWwscU+qCvmUsAPyeM6Ynn2rjpvQw\n23cktoem5Jf09fcek3qu4b9fkbwhtyj1mFTlLIDsoskd7Y+vSb2ns8h1s+khJKlI3pmSJEnKwGJK\nkiQpA4spSZKkDCymJEmSMrCYkiRJyqC2o/kixFyVR0kVGtGUMkKrdcmy5N1bWtLD9Ep+6XJbtiS2\nD/mfP6Seq7VXU+o2qYN6j9pLUej3RZK6M+9MSZIkZWAxJUmSlIHFlCRJUgYWU5IkSRlYTEmSJGVQ\n29F8lVTBEU3ljEIq+ZgCa73FXTtLjq8erNR1A8v5XUmLUehc1R6pq0TnjZlS7y5IPZ53piRJkjKw\nmJIkScrAYkqSJCkDiylJkqQMLKYkSZIy6LSYCiEcEkJ4LIQwJ4TwYgjhqnz7NSGEZSGEmfmPC6rf\nXUkqnvlLUi0UMzVCC/DJGOOzIYRBwDMhhIfz274dY/xm9bpXhlCgPoyttevH/iRtuHupQ/DVNfXs\n7+P+lb8k7Zc6LaZijCuAFfnPN4UQ5gJjq90xScrK/CWpFkp6ZiqEMB44EXgy33RlCGFWCOG2EMLQ\nCvdNkirG/CWpWooupkIIA4GfAn8fY9wI3ARMBKbQ9pff9SnHXR5CaA4hNO9iRwW6LEmlMX9Jqqai\niqkQQhNtieiHMcZ7AGKMq2KMrTHGHHALMC3p2BjjzTHGqTHGqU30qVS/Jako5i9J1VbMaL4A3ArM\njTF+a6/20Xvt9j5gduW7J0nlM39JqoViRvOdAVwKvBBCmJlv+xxwSQhhChCBRcBfVaWHpS7SGnNV\n6cZ+o4ILQEvdQH3zl6QeoZjRfE8ASf9D31/57khS5Zi/JNWCM6BLkiRlYDElSZKUgcWUJElSBhZT\nkiRJGRQzmq9yAoSGjs+CxpYy1g5raCz9GNfmK41r9kmS1CnvTEmSJGVgMSVJkpSBxZQkSVIGFlOS\nJEkZWExJkiRlYDElSZKUQW2nRihH6vD8lAWNw35YH7o4sSRJ+639sPKQJEnqOiymJEmSMrCYkiRJ\nysBiSpLefhr9AAAKwUlEQVQkKQOLKUmSpAxqO5ovQsxVeZHctFF+XVk5CweXOgKwUAxHE0qSVDbv\nTEmSJGVgMSVJkpSBxZQkSVIGFlOSJEkZWExJkiRl0GkxFULoG0J4KoTwfAjhxRDCtfn2YSGEh0MI\n8/P/Dq1+d7VHjMkfkvYwf0mqhWLuTO0A3hFjPAGYApwfQjgV+CzwaIzxcODR/NeS1JWYvyRVXafF\nVGyzOf9lU/4jAtOB2/PttwMXVqWHklQm85ekWijqmakQQmMIYSawGng4xvgkMDLGuCK/y0pgZJX6\nKEllM39JqraiiqkYY2uMcQpwMDAthDB5n+2Rtr/2OgghXB5CaA4hNO9iR+YOS1IpzF+Sqq2k0Xwx\nxg3AY8D5wKoQwmiA/L+rU465OcY4NcY4tYk+WfsrSWUxf0mqlmJG840IIQzJf94POBeYB/wcuCy/\n22XAfdXqpCSVw/wlqRaKWeh4NHB7CKGRtuLrzhjjL0MIM4A7QwgfA14DLq5iP4tXyekBCi0AXO9p\nCFL6Fnr3TmyPO3dWszdSV7V/5S9J+6VOi6kY4yzgxIT214FzqtEpSaoE85ekWnAGdEmSpAwspiRJ\nkjKwmJIkScrAYkqSJCmDYkbzVU6A0NBxFFrMlXGueo+m66JCr+RvadyRPuFg6jEtLRXpkyRJ3Zl3\npiRJkjKwmJIkScrAYkqSJCkDiylJkqQMLKYkSZIysJiSJEnKoLZTI0SIuQpNaVBoEeLU+CXGrvf0\nCw2N6Zv69U1s7/dA/8T2Zbccn3quxp3J1znozicLdC5FvV8zSZJqzDtTkiRJGVhMSZIkZWAxJUmS\nlIHFlCRJUgYWU5IkSRnUdjRfOVJGh6UtzlvwVGkjCXOtye2FRgymjVpLG4GXFqPAMUmLQu8Jf9T4\nxPZbJ9yS2L7kK+l188qWQYnt1985OSW4I/YkSdrNO1OSJEkZWExJkiRlYDElSZKUgcWUJElSBhZT\nkiRJGXQ6JC6E0Bd4HOiT3//uGOPVIYRrgL8E1uR3/VyM8f6yelHGqLmGIQcktufe2JQepiGXHCK5\nubxRaw+PTmz+5VH3pR7SFNLX4EvXnNKevDbf0AIhjm7anth+fYk9krqamuSvHu7B5TPr3YVE542Z\nUu8uqAcpZn6BHcA7YoybQwhNwBMhhAfy274dY/xm9bonSZmYvyRVXafFVIwxApvzXzblP5xoSFKX\nZ/6SVAtFPTMVQmgMIcwEVgMPxxifzG+6MoQwK4RwWwhhaMqxl4cQmkMIzbvYUaFuS1JxzF+Sqq2o\nYirG2BpjnAIcDEwLIUwGbgImAlOAFaQ8YhNjvDnGODXGOLWJPhXqtiQVx/wlqdpKGs0XY9wAPAac\nH2NclU9SOeAWYFo1OihJlWD+klQtnRZTIYQRIYQh+c/7AecC80IIew9bex8wuzpdlKTymL8k1UIx\no/lGA7eHEBppK77ujDH+MoTwgxDCFNoe5lwE/FVVepgybULD3b0T2w/pnz4HwHVjfpfYfsnk8xPb\nX73q2NRzHXfuS4ntd078ZcoR5Ux/UDmtqfM/QI6UbS5o3P2lTUtSxvc+9Krvz3iK+uYvST1CMaP5\nZgEnJrRfWpUeSVKFmL8k1YIzoEuSJGVgMSVJkpSBxZQkSVIGFlOSJEkZFDOar7JyraXtnzLaaGBT\n8mzEk/qvTj3VwJA86d6Sv0wetTdgafqIpi2XDkxsv/FXhyS2f3TwK6nn6t+QPDKxknbEltRts3Z2\nyVFYqoVSR+0V2r+vk1pK6pm8MyVJkpSBxZQkSVIGFlOSJEkZWExJkiRlYDElSZKUQU1H84UQaOjb\nt0N7bvv29INSRg99ceyvEtsnFFgfrDEkj5p74R/+Kz1+mq+UekD1R+wVUmjE4NG9tyVvaEh5LUsd\nkanuI20tPyD2czRfsR5cPrPqMc4bM6XqMSS18c6UJElSBhZTkiRJGVhMSZIkZWAxJUmSlIHFlCRJ\nUgYWU5IkSRnUdGqEGGPhaRAShF7JXXx4y9GJ7dMHzk4914SU6QFaY66kPgE0hsrVobWIvyPuSt32\nk02HJbaHhuRh8DGmD4/Xfibt56ic6S/WrM/WF0naT3lnSpIkKQOLKUmSpAwspiRJkjKwmJIkScrA\nYkqSJCmDEFMWEq5KsBDWAK/lvxwOrK1Z8I56cvyefO31jt8Tr/3QGOOIGsesOPOX8btA7J4ev8vm\nr5oWU+0Ch9AcY5xal+A9PH5PvvZ6x+/J196d1Pt1NL6/wz0xfr2vvRDf5pMkScrAYkqSJCmDehZT\nN9cxdk+P35Ovvd7xe/K1dyf1fh2N3zNj9/T49b72VHV7ZkqSJKk78G0+SZKkDOpSTIUQzg8hvBRC\nWBBC+GyNYy8KIbwQQpgZQmiuQbzbQgirQwiz92obFkJ4OIQwP//v0BrHvyaEsCz/GswMIVxQpdiH\nhBAeCyHMCSG8GEK4Kt9ek+svEL9W1983hPBUCOH5fPxr8+1Vv/4CsWty7d1ZPfNXPn6PyWH1zF/5\nWHXLYT05f3USv0vmsJq/zRdCaAReBs4FlgJPA5fEGOfUKP4iYGqMsSZzVYQQ3gpsBr4fY5ycb7sO\nWBdj/Ho+GQ+NMX6mhvGvATbHGL9ZjZh7xR4NjI4xPhtCGAQ8A1wIfIQaXH+B+BdTm+sPwIAY4+YQ\nQhPwBHAV8H6qfP0FYp9PDa69u6p3/sr3YRE9JIfVM3/lY9Uth/Xk/NVJ/C6Zw+pxZ2oasCDGuDDG\nuBP4MTC9Dv2oiRjj48C6fZqnA7fnP7+dtl+QWsaviRjjihjjs/nPNwFzgbHU6PoLxK+J2GZz/sum\n/EekBtdfILay6VH5C+qbw+qZv/Lx65bDenL+6iR+l1SPYmossGSvr5dSwx8Q2r4Zj4QQngkhXF7D\nuHsbGWNckf98JTCyDn24MoQwK38bvWpvM+4WQhgPnAg8SR2uf5/4UKPrDyE0hhBmAquBh2OMNbv+\nlNhQ4+99N1Pv/AXmMKjDz3A9c1hPzF8F4kMXzGE98QH0M2OMU4B3A1fkbyPXTWx7n7XW1fZNwERg\nCrACuL6awUIIA4GfAn8fY9y497ZaXH9C/Jpdf4yxNf/zdjAwLYQweZ/tVbv+lNg1/d6rKnp6Dqv5\nz3A9c1hPzV8F4nfJHFaPYmoZcMheXx+cb6uJGOOy/L+rgZ/Rdtu+1lbl3w/f/b746loGjzGuyv+Q\n5oBbqOJrkH+v+6fAD2OM9+Sba3b9SfFref27xRg3AI/R9n5/Tb//e8eux7V3M3XNX2AOq/XPcD1z\nmPmrY/yumsPqUUw9DRweQpgQQugN/Cnw81oEDiEMyD/IRwhhAPAuYHbho6ri58Bl+c8vA+6rZfDd\nvwh576NKr0H+AcJbgbkxxm/ttakm158Wv4bXPyKEMCT/eT/aHlqeRw2uPy12ra69G6tb/gJzGNTu\n9zcfq245rCfnr0Lxu2wOizHW/AO4gLYRMa8An69h3InA8/mPF2sRG7iDtluRu2h7vuJjwIHAo8B8\n4BFgWI3j/wB4AZhF2y/G6CrFPpO2W8CzgJn5jwtqdf0F4tfq+o8HnsvHmQ18Kd9e9esvELsm196d\nP+qVv/Kxe1QOq2f+ysevWw7ryfmrk/hdMoc5A7okSVIGPfEBdEmSpIqxmJIkScrAYkqSJCkDiylJ\nkqQMLKYkSZIysJiSJEnKwGJKkiQpA4spSZKkDP4/mJyC87jwdE8AAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAEgCAYAAACQH/YaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XecXWWd+PHPM5NJT0hCQhrpoRogQAhdQUQQS0AFRWXB\nsqwrIq4N14ZY1ooNld+isKKrKE3AXZBmFGEjMGAIaZAQQnozCWmkzMzz+2NuymTOubl3zi2Tmc/7\n9ZpX7jynfJ9z7sw33zn3PM8JMUYkSZLUNjXV7oAkSdL+zGJKkiQpA4spSZKkDCymJEmSMrCYkiRJ\nysBiSpIkKQOLKUmSpAwspiRJkjKwmJIkScqgS5aNQwjnAj8EaoGfxxi/mW/9rqFb7E6vLCEl7Wc2\nsm5NjHFQtfuRpJgcZv6SOp9C81ebi6kQQi3wE+BsYAnwVAjh3hjj7LRtutOLE8NZbQ0pqdpqatOX\nNTUmNj8c73i5TL3JpNgcZv6SOp9C81eWj/kmA/NjjAtijNuB3wJTMuxPkirJHCapJLIUU8OBxXt8\nvyTX1kII4fIQQn0IoX4H2zKEk6SS2mcOM39JKkTZb0CPMd4YY5wUY5xUR7dyh5OkkjF/SSpElmJq\nKTBij+8PzrVJ0v7AHCapJLKM5nsKOCSEMIbmBPRu4D35Ngh1XegycHCr9oaVq9I3ijFlZ6G49VU6\naee+PQsVmAUkNpU/RrWl3GQOpN+cnmeTKis6h0lSkjYXUzHGhhDCR4EHaB5WfHOMcVbJeiZJZWQO\nk1Qqmf5cjzHeF2M8NMY4Lsb49VJ1qr0bPGoQDzXdzqdvvqJF+6dvvoKHmm5n8KjyTKlz9OuO5KGm\n27nkmgvLsn+ps+msOawa1sZVPBzv4MX9uF59Mc7i4XgHa2OeT1PUKWWatLOcHmq8rcX3jY1NbFq3\niQUzFnH/TY8w9bePV6ln5TN41CD++6Wf8uAv/sx3PvCTanenLL77yDUcc8ZrOLv2omp3RaqIzXEj\nS1nAOlbzKptppIFautCT3vRjIEMYSd/Qv9rdbHeWxYXMpp4jmcSwMLrDxlTH0G6LqZ1+eW1zUdWl\nrgsjDhvGKVNO4NjXT+DQSeP4z0/9ssq9a+mmz/2a337r96xZurYs+3/+yfl84IireGXNxrLsX1Lp\nxBh5iTksoHkO0D70YzAjqKMrjTSwkfUs5kUWMY/D4kRGhPFV7rGktmr3xdSvrr29xffHvn4C33zw\ni7z9qvO4+/r7Wfny6ir1rLW1K9azdsX6su1/26vbWfz8srLtX1Lp7CykutGDoziRfmFgq3W2x60s\nYh4N7KhCDyWVSrsvpvb29z/NZPHcZYw68mAOO2EcK19e3fzx2IKf8OAtf+Y3/3EXl33l3Rxz5ms4\nYGAfPn3Wtcz4S+4vw/69ufDTb+PUKScwePRBNGxv4IX6F/ndt+/m6YdmtIrVo3d3/unad/G6C0/m\ngIF9WLFwNff97GEev/vJxL59+uYreONlZ/C+MR9pVeQddsJ43vmJtzLhtMPpO7APG9duYuFzi7jv\npkd49PZpXHLNhfzTNc0ffb3xsjN442Vn7Nr2O+9vPrajX3ck1029ll9ee1urInP4+CG89wvv5Niz\njuKAQX3ZsGYDzzz8HL/+2h0snb+ixbo7Y33yzGs4YGBfLvr0FEZPGMH2rTt4+sFn+c9P/ZJ/LGt5\ndW3ImIN492cvYOKZExg4fADbXt3OP5auZdb/Pc/NX7iVjWs3FfYGSp3AlriJl5hDoIZjOY3e4YDE\n9bqG7oznKJr2Ggk6Kz7Fcl7mFM5lDStYxktsYSN9GcCkcAbQfOVrKQtYxkI2s4EI9KYvwxjNcMYS\n9hh1+2rczOPcz1BG8ZpwQqt+1Mc/s541vCG8c1fb2riKZ3iUMRzBQQxnPjN5hX/QRBN96c94JiQW\niNviVl5kJmtYTgM76EkfRnII3elZ8Pnb2R+A2dQzO9bvWnYqb6JH6MWLcRYvMYfjeC3baS5KN7OB\nOrpxWjivRf/Hhde0ivFYvA+A08J5Bcfc08q4hJd5nk1soIYaDmQwh3AM3UOPgo9THUdFi6m4o4GG\nVWsy72dnjoh7TYMwdOxgrv/bf7DkheX86TeP0a1HV7Zs3AohcNDIgXz3T19m6JiDmPHobJ564Fm6\n9+rGSW8+jv+4//P84F9/xv0/f2TXvuq6duHbD1/D4ZPH8+L0hfzpN4/Rq19P3vuFd3D0647MdYSW\n0wTsfBlCi/Y3fegsrvrJh2hsbOJvf6hn6bwV9DuoL4ceP463/es5PHrH33j2L7O564f/y9uvejMv\nTl/I4/c8tWv7F59duNc+W+7/0Enj+PaDX6RHn+5M+8PTLJq9hBGHD+Os953OKVNO4DNv/Cov1L+4\n5xkE4G0fOZeT33o80/7wNDMenc3hk8dz5rtPZdwxo/jwcZ9hx/YGAAYM6cdPnvwmPfv24Mn7/85j\ndz1B1+51DBlzEGe973Tu+ckfdxdTaVMQlHLagJQYoS79xzl0KfJHPc8UG3FHQ3J7W6YAaMt5KXKa\nh1CTPpVFbEo5zrR+5ZkWo/aQMckL5qZu0mEtZyGRyBAOTi2k9lST8p6+wLOsZw0DGcKBDCGw+/zP\n4klWsJhu9GAYzed+NcuYy99ZzxomcGJJjmUj63iZFziAAQxjNFt5lVUs4Rke5cR4Nr1Cn13rbo/b\nqGcqr7KZfhxIPwayja3M5RkG0HpanDTDGE0dXVnNMgYxjN7sPoddqGux7iLmsZaVDGQo/TmozVf5\niom5hAWsYRkDGUZ/BvEKa1nJEjbyCifFN1AT8jzDUh3Sfndl6tizjuLgw4bR1NTE80+92GLZUacf\nwa3f+D03f+HWVtt95r+uYPCogXz9PT/gz7/7v13tvQ7oyXV/+jJX/OD9TLu3nvWrXgHgnZ94K4dP\nHs9f73qCr170vV2F2+++dTc/eepbBfd35BHD+diPP8jmDa/yidd9iZdnL2mxfODwAQDM+MtsVi5c\n3VxMPbuQX33l9qTdJbr6F1fQ64CefOOSH/Gn3zy2q/11F53MF279N66+5aN8aMInWhWfk845hitO\n/HcWztz9RI1//++P8fqLT+PkKSfw6O3TADj9HSfR98A+/PTj/8Xvr7+/xT669+xGU1MnmF9JKsJ6\n/gFAfw7KtJ+NrONE3tDqqsiKuIgVLKYP/TieM+gSmlP5+DiBev7CChYzMA5lSBiZKT7AGla0uiF7\nSVzAXJ5hMfM4nON2tb/ITF5lMyMYz2Fh4q72EXEcTzG14JjDwmiI7Cps8t0MvpZVTOLMzDfxFxPz\nH6xgMme1KJSfi0+wksWsZhmDW8wFq86gAjMZZnPJNRdyyTUX8v6vXcwXb/sk37j/89TU1HDXD+9j\n1aKWV7nWrlifWISMPXoUx5zxGh6764kWhRTA5le2cMu1t9GtR1dOf/vuv+TOuewMGhub+NnV/92i\nCFmxcDV371VQ5PPWD7+RLnVd+PXX7mxVSAGZb1Z/zSmHMfKIg5n1f8+3KKQA/nLbNJ776xxGHj6c\nCacd3mrbu6+/v0UhBXBf7urc4Se0vhl229btrdq2btnG9q3e7yHtaTtbAehG6498Xo2beTHOavG1\nKM5L3M8oDmtVSAEsYyEA45mwq5ACqA1dOIQJACzlpayHAcABHNiqsBjGaAKBV1i3q60pNrGcRdTS\nhXG0/FitbxjAELIXdkmGM6bioyFHML7VFcfhuauDr1CeAUhq39r9lamd9xE1NTWxaf0WnvvrHP54\n8594ZK/CAWDBjIW7Ppra05EnHwo0X4W65Eut52jqN6gv0HwVCZrvlRp+yFBWLVrD8gUrW63/7F9m\nAYXN9XTEiYcA8NQf/17Q+sUaf2zzL/D0qTMTl0+fOpOjTj+C8RNH89xf57RY9sLTC1qtv3pxc4Ha\nu//uBD7tD/V84OsXc+X1H2TSGydS/+B0Zj3+fGJxKCm/V9nMS7T8XexOT0ZySKt1+zIgcR8baR7o\nknTlqx+DCIRd62TVl9aFSk2ooWvsTgO7/8DawkaaaKQfA+kS6lpt059BLOflkvRpTweknKNySjon\nO+8JczBB59Tui6mza1KKloR7N9aueCVx1b4DegNw/NnHcPzZx6TG6tG7O9BcdAGsW5mcjNYVMWKv\nd7/moqRc0yXs7Ova5cl92jm6sFe/1n/dblq/uVVbY0PzR3a1tbsvWq5atIYrT/ocl1xzISecM3HX\nFbxVi9Zw+3V/4O4fF36lTuoMutKdzWxkG6+2WjYgHMQbaL7Ruyk28SfuSt1PN7ontjewgzq6Jt5r\nVRNqqItd2c62Nva+pb3vF9opEIjsvmq/s4jomvJA6K4px5JVufabT9I52Xk/257nRJ1Huy+mipJy\n0/DmV7YA8JOr/qug//h3rt9/cL/E5f2HJLcn2VmwDBw+oCzTGuzqa0qfBuTad67XVovmLuXrF/+A\nmtoaxh0ziuPOOpopHz2XK374frZu2cofby78fgipo+vHgaxjNetYtevjn1LqQh072E5TbGpVUDXF\nJnawvcV/+Pv6j74UV1N2xksr4nZ+9FkphRxzWqEoFavyxVSpRnXtWTjtfB1JLKjm/O0FAI467XDu\nvv6+fe761Y2vsnTecoaMHczQMQe1+qjvmJ2j+faOt/NljLva5zwxj8NOGM8J505k8dz8D6Rvamge\nDlZTU5NcGO5q273/+X9/aXefErY55ozmexfmP7Og5fZ79bNVjJRz2dTQyLxnXmLeMy8xa9rzfP8v\nX+GUKZN3F1P7eH8/dda1eZcXJCVG3N76nq5dy7aV5q/0vFIe9FvTI89fzo3JQwD3HixQ0DYNKaMM\nSzk+IN9Drle2nznfqm0oo1nI86xkKWPiBnqFviXdfx/6sZZVrGd1q1Fy61lDJNKH3X9g7SwattL6\nj6qGuIMtZJ/apCd9qKGWjaynIe5o9VHfOor7+ch6paeOrgCJVwe3xE2JxZRXl9RW7f4G9FJ44ekF\nzHh0Nqe+/UTOef+ZieuMnjBy171TAA/8Yiq1tTV86JvvazFfy5DRB3H+lecVHPsPNzxIw44G3vuF\ndzLyiINbLd85mg9g47rNNDU1cdDI1nO3pJn1+FwWzV3KUacfwenvOKnFstPfcRJHv/ZIFj+/jJmP\ntX18+iHHjaVn39ZzxPQf3HwD5rYthRcqQ8cOZsRhw6jt4tBhdVw9Q2/GcASRJv7OY6yPyVPCZBnG\nDzCfmTTG3UV0Y2xgPs/l1tl9RaxLqKMnfXiFf7ApbtjVHmPkBZ6libbM69FSTahhKCNppIEXafn8\nvQ1xLStYVNT+dhZDSQVgIXrSh1q6sJplbI+7r4o1xkaeZ3pZYqrz6lgf8+Xxjff+kO88cg2fuukj\nXHDlecx5ch6b129m4PADGXv0KMYcNZKPnfw51q9uTjR3XPcHTpkymde+8yRuePrb1D84nV79evG6\nC0/muUfncMqU1hPfJVk0Zwk/uuLnXHXD5dzwzLeZds9TLJ2/gr4H9ubQSePZsmELn85drdm6eStz\nn5jPhNMP57O/+hhL5i2jqbGJaffW89Jz6YnoO5f9mG8++EU+/9t/Y9o9T7H4+aUcfOgwTjl/Mps3\nbOHbl16f/0rHPrzhktfy5svPZuZjc1m+YAUb121m2LghnPSW49m+dTt3/fB/C97Xtx/6IkNGH8T7\nxl7Rrmavl0qtuZhqfqRMPX+mT+zPAfSnC11pYAdb2cxamh+Y24/C/4ACGBJGsjouYyVLmMaDDIrD\nCARWs4xX2cxgDmboXtMijOJQ5vA09UxlcDyYGmpZyyoikd4cwCaS7zktxjgmsJZVLGY+G+O6XfNM\nrWQxBzKENSwveF8HcCA11LKIeeyI23fdGzWS8Yk3uO+tJtQwMh7CS8zhCR5mUBxOJLKWlXSje+L9\naFljqvPqNMXUmqVr+cikqzn/yjdx2ttP4qz3nE5NbQ1rV6xn0ewl3P3j+1sULDu2N3D12V/hki9f\nxBkXncIFHzuPFQtX85uv38ljv3+y4GIK4P6fP8LCmYu58JNv5egzXsMp509mw5oNux7avKdv/dP1\nfPh7l3LCuRM58+JTqampYc2StXmLqblPzuejk/+d937+HRz7hqM46a3H88qajUy99TF+/bU7WfJC\ntnu1pt76GHXd6jjy5EM55PixdOvRlTVL1/Ln3z3OHd/7HxbOWrzvnUidTAiBcbyGIXEkS3iRdaxm\nBYtbPOh4OGMZyqg2De2fwIn0YxDLWLhrGoRe9OEwJnIw41qtPzyMgdg8yeUyXqaOOgYxjHFMYAbT\nMh8vQNfQjUnxTOYzkzUsYwPr6EkfDuc4utOzqGKqLnTl6HgyLzGb5SykMXf1bCgjC77XaSxHUkst\nS3mJpSygK90ZwgjGciTTeLAsMdU5hSxXLIrVNwyIJ9a8obiNKtg/FSjffTPtVSV+jtrpPVMllW8G\n9AOS7wt6YN1NT8cYJ5WrS5XSNwyIJ4azqt0NSRX0cLyjoPzVKe6ZkiRJKpfKf8yX9Ayqkg43Utnt\nj1cL066olPJYmlJu4k25kgQQeqQ8FDXfVaZRw5P3NX9hYnu+q1xFj3LcH997SSozr0xJkiRlYDEl\nSZKUgcWUJElSBhZTkiRJGVhMSZIkZWAxJUmSlEGmqRFCCAuBjUAj0NARJuZTAdoyaWfakPpS7quU\n8fPEWPSlU5J3lTIDwuwrfpqvZyWzrjH5eWLvX3BB6javvm5l6rJixcb9b4oTc5iU3wPLkp9j2B6c\nM2xitbuwSynmmTozxpSneEpS+2cOk5SJH/NJkiRlkLWYisDDIYSnQwiXJ60QQrg8hFAfQqjfQZGz\nLUtSeeXNYeYvSYXI+jHfaTHGpSGEg4CHQghzY4yP7rlCjPFG4EZoflBoxniSVEp5c5j5S1IhMl2Z\nijEuzf27Cvg9MLkUnZKkSjCHSSqFNl+ZCiH0AmpijBtzr98IfKVkPVP71ZbRdJUatVds/DbEGPnV\nackhunZN3uCKokO0Se+abont142+M3Wbj3BayeLH7dtLtq9KMIdJKpUsH/MNBn4fmv+T6gL8Jsb4\nx5L0SpLKzxwmqSTaXEzFGBcAx5SwL5JUMeYwSaXi1AiSJEkZWExJkiRlYDElSZKUQSkeJyPt1pZR\ne8Xuq5Sj/NoiJP8NUtPvgAp3pKW6UJvYPq6ud+o2r39uc2L7JwbMTWyvIf393RYbEtv7DE/dRJJK\nrpTPE6wdWth6XpmSJEnKwGJKkiQpA4spSZKkDCymJEmSMrCYkiRJysBiSpIkKQOnRlBppU1bUO0H\nHZdwX6Eu5ddm27aSxaiU3y44PrH96gPnFb2vniHlQc+S1MF5ZUqSJCkDiylJkqQMLKYkSZIysJiS\nJEnKwGJKkiQpA0fzScVqbExu71LdX6c527ckth/RtWfqNv966KPl6o4kdRpemZIkScrAYkqSJCkD\niylJkqQMLKYkSZIysJiSJEnKYJ/Dj0IINwNvAVbFGCfk2gYAvwNGAwuBi2KM68rXTXVKxT7Pr5TP\n8ssXpik5Tty0uSLx00z524cT21947S9Tt/n1Z96S2H75f95Ykj61B+YwSeVWyJWpXwDn7tX2WeCR\nGOMhwCO57yWpPfoF5jBJZbTPYirG+Ciwdq/mKcAtude3AOeXuF+SVBLmMEnl1tZ7pgbHGJfnXq8A\nBpeoP5JUCeYwSSWT+Qb0GGMEUm9WCSFcHkKoDyHU72Bb1nCSVFL5cpj5S1Ih2lpMrQwhDAXI/bsq\nbcUY440xxkkxxkl1dGtjOEkqqYJymPlLUiHaWkzdC1yae30pcE9puiNJFWEOk1QyhUyNcCtwBjAw\nhLAEuAb4JnBbCOGDwMvAReXspDqAtGkLip3+IN++KqUp+UHHTVuT2885+PjUXW09L3lZz4dnpG7z\n+vrVie3jPjA/sX3TC1tT99Vlc8pDmzsQc5jUducMm1jtLuwX9llMxRgvTll0Von7IkklZw6TVG7O\ngC5JkpSBxZQkSVIGFlOSJEkZWExJkiRlsM8b0Du1tow0K6Vqj1qrhFIeY1ver5Dy90RsKn5fKccS\namtTN+nx0LOJ7U3bt6duM/X8o5O32fJSYvs73nl56r7qnn4udZkkqTBemZIkScrAYkqSJCkDiylJ\nkqQMLKYkSZIysJiSJEnKwGJKkiQpg443NUIppzNoy7D9tPilnuagUnGqqdj3Mm2aAyDUJO8rdEn+\nFYiN6VMjxIYdRXUr7kif5qAtGucnT4GQ6m/pD02ONenTNkjS/qi0D2dOfoD83rwyJUmSlIHFlCRJ\nUgYWU5IkSRlYTEmSJGVgMSVJkpRBxxvNl0/aSLdKPNA4X4y29Ct15FrKKLT9cZRf0X3OMwKvMaW9\nKSVGU8oGHUzaQ5gbUx70XJtnxKQkdVZmRkmSpAwspiRJkjKwmJIkScrAYkqSJCkDiylJkqQM9jma\nL4RwM/AWYFWMcUKu7cvAPwOrc6t9LsZ4X7k6WTX5nluWMtopdZRd2vp54qSNtILinw/XptGE+5u2\nHEfaML+OJN97n/LMwkUNWxLbx9T1Tt3VjnZ6Ljt6Dntg2fRqdyFRaZ+PJrVvhVyZ+gVwbkL792OM\nE3Nf+2USktQp/AJzmKQy2mcxFWN8FFhbgb5IUsmZwySVW5Z7pq4MIcwIIdwcQuiftlII4fIQQn0I\noX4H2zKEk6SS2mcOM39JKkRbi6kbgLHARGA5cF3aijHGG2OMk2KMk+ro1sZwklRSBeUw85ekQrSp\nmIoxrowxNsYYm4CfAZNL2y1JKh9zmKRSalMxFUIYuse3FwAzS9MdSSo/c5ikUipkaoRbgTOAgSGE\nJcA1wBkhhIlABBYC/1LGPqZ1rPwx8j3sttj4eR4QG1KGp+edTqGjTGdQKWnvVykffr0fvidx+/bE\n9ks/9onE9quv+2Xqvj79iw+kLEneV6W02xwmqcPYZzEVY7w4ofmmMvRFkkrOHCap3JwBXZIkKQOL\nKUmSpAwspiRJkjKwmJIkScpgnzegt1slHDmV9kDh2JhnNF/qKLDk5iVXn5i6qxHfezo5xDZnXC6Z\n/XCkXcnkO/aUUYs97n0qsf1H9xyeuquRXZ5MbH8+PbokdQhemZIkScrAYkqSJCkDiylJkqQMLKYk\nSZIysJiSJEnKoP2P5iv2mWr51CSP2vvfl5NHIeVTm+dZe8mSR+wBcGVy8znDJhYZg9KeLxVnfzz3\nJexb7YjhyQsWlCyEJLVLXpmSJEnKwGJKkiQpA4spSZKkDCymJEmSMrCYkiRJysBiSpIkKYP2PzVC\nCYdu13Tvlthe/DQHpdUYm5IXpA21h/Y93L6jS/t5SXsfO5KU6UUAYpf0ZZLUkXllSpIkKQOLKUmS\npAwspiRJkjKwmJIkScrAYkqSJCmDfY7mCyGMAH4JDAYicGOM8YchhAHA74DRwELgohjjuvJ1Nbum\nLVuq3YXi5BtlGBsr1w9l055HZebrW7G72rq9ZPsqlY6UvyS1X4VcmWoAPhljPBI4CbgihHAk8Fng\nkRjjIcAjue8lqT0xf0kqu30WUzHG5THGZ3KvNwJzgOHAFOCW3Gq3AOeXq5OS1BbmL0mVUNSknSGE\n0cCxwBPA4Bjj8tyiFTRfRk/a5nLgcoDu9GxrPyUpE/OXpHIp+Ab0EEJv4E7g4zHGDXsuizFGmu9H\naCXGeGOMcVKMcVIdyTOQS1I5mb8klVNBxVQIoY7mRPTrGONdueaVIYShueVDgVXl6aIktZ35S1K5\nFTKaLwA3AXNijN/bY9G9wKXAN3P/3lOWHqaNNirhKKjzzn5X0ds0zpmfvCDl+Wwb33Vi6r76P74k\neUFTSns+bTkvFTjHHcr+9gy+Eo7Yy3vsTe3vvFQ9f0nqFAq5Z+pU4BLguRDC9Fzb52hOQreFED4I\nvAxcVJ4uSlKbmb8kld0+i6kY42NA2p+2Z5W2O5JUOuYvSZXgDOiSJEkZWExJkiRlYDElSZKUgcWU\nJElSBkXNgF4VFRie3zj7heJj19QWtU2f3z2RuquGfA80rgSnQGhtfzwnpZwCoQ1iQ0NV40tStXhl\nSpIkKQOLKUmSpAwspiRJkjKwmJIkScrAYkqSJCmD9j+arxIP4W3LvpoaSxcjFrmvfNpyvnzQ8f6l\nyqP2UjWW8OdYkvYjXpmSJEnKwGJKkiQpA4spSZKkDCymJEmSMrCYkiRJyqD9j+ZLG1HWlhFNnWF0\nWmc4RiWrxO9Kvn35s1cV5wybWO0uSJ2eV6YkSZIysJiSJEnKwGJKkiQpA4spSZKkDCymJEmSMthn\nMRVCGBFCmBpCmB1CmBVCuCrX/uUQwtIQwvTc13nl764kFc78JakSCpkaoQH4ZIzxmRBCH+DpEMJD\nuWXfjzF+t3zdU6pih7s7bL3jKPa97NzvvflLUtnts5iKMS4HludebwwhzAGGl7tjkpSV+UtSJRR1\nz1QIYTRwLPBErunKEMKMEMLNIYT+Je6bJJWM+UtSuRRcTIUQegN3Ah+PMW4AbgDGAhNp/svvupTt\nLg8h1IcQ6newrQRdlqTimL8klVNBxVQIoY7mRPTrGONdADHGlTHGxhhjE/AzYHLStjHGG2OMk2KM\nk+roVqp+S1JBzF+Syq2Q0XwBuAmYE2P83h7tQ/dY7QJgZum7J0ltZ/6SVAmFjOY7FbgEeC6EMD3X\n9jng4hDCRCACC4F/KShibCq+l8quLQ+7lfZ/pc1fkpSgkNF8jwFJ/xPfV/ruSFLpmL8kVYIzoEuS\nJGVgMSVJkpSBxZQkSVIGFlOSJEkZFDKar7RCQv2Wb4Rf2ii0pP0AoSZ91FpsaMjXs/1L2vPWamrb\nsK+U85927jv3s94kSWrBK1OSJEkZWExJkiRlYDElSZKUgcWUJElSBhZTkiRJGVhMSZIkZVD5qRGS\n5BtqX+QDemPTfjhs34cQS5K03/LKlCRJUgYWU5IkSRlYTEmSJGVgMSVJkpSBxZQkSVIGlR/Nl++h\nxqXYT8oDkDuNtPNSwhGTkiRpt05eeUiSJGVjMSVJkpSBxZQkSVIGFlOSJEkZWExJkiRlsM9iKoTQ\nPYTwZAjh2RDCrBDCtbn2ASGEh0II83L/9i9LD0NN8lea2JT+1V7FWP4vqROqev6S1CkUcmVqG/D6\nGOMxwETUIwaiAAAKTUlEQVTg3BDCScBngUdijIcAj+S+l6T2xPwlqez2WUzFZpty39blviIwBbgl\n134LcH5ZeihJbWT+klQJBd0zFUKoDSFMB1YBD8UYnwAGxxiX51ZZAQwuUx8lqc3MX5LKraBiKsbY\nGGOcCBwMTA4hTNhreaT5r71WQgiXhxDqQwj1O9iWucOSVAzzl6RyK2o0X4xxPTAVOBdYGUIYCpD7\nd1XKNjfGGCfFGCfV0S1rfyWpTcxfksqlkNF8g0II/XKvewBnA3OBe4FLc6tdCtxTrk5KUluYvyRV\nQiEPOh4K3BJCqKW5+Lotxvg/IYRpwG0hhA8CLwMXFRQxaVqD2Ji+frFTGjgNQPHSzpkPQNb+r7T5\nS5IS7LOYijHOAI5NaP8HcFY5OiVJpWD+klQJzoAuSZKUgcWUJElSBhZTkiRJGVhMSZIkZVDIaL72\nqbOP2qupTW5PGf1Ye+CA1F01rvlHKXokSVKn5JUpSZKkDCymJEmSMrCYkiRJysBiSpIkKQOLKUmS\npAwspiRJkjKo/NQIxT64OE3aQ3irPWVCpfpV5Hl86YZhqcvGfCS5pg7duyW2NyxeUlRsSZI6Mq9M\nSZIkZWAxJUmSlIHFlCRJUgYWU5IkSRlYTEmSJGXQPh50nDYCDiCkjDSrSd4mNjam76sSI/3SYuQ7\nxjaoPWhQYvvS94xPbJ9z6k9T93XTo0MS2x9ae2Ri+7pT99E5SZI6Ea9MSZIkZWAxJUmSlIHFlCRJ\nUgYWU5IkSRlYTEmSJGWwz9F8IYTuwKNAt9z6d8QYrwkhfBn4Z2B1btXPxRjva1MvUkbsAdQOOjCx\nfc5XRyW2v+GY2an7WvqBg5MXrFqb2Ny4enViOwA1tYnNtWNHJrYvO29o6q4GXz8tPU6KLZOSj//x\nT34vZYvuqfu6rO+yxPb39V2c2P42TsjbN6m9qEj+ktTpFTI1wjbg9THGTSGEOuCxEML9uWXfjzF+\nt3zdk6RMzF+Sym6fxVSMMQKbct/W5b4qMGGTJGVj/pJUCQXdMxVCqA0hTAdWAQ/FGJ/ILboyhDAj\nhHBzCKF/yraXhxDqQwj1O9hWom5LUmHMX5LKraBiKsbYGGOcCBwMTA4hTABuAMYCE4HlwHUp294Y\nY5wUY5xUR7cSdVuSCmP+klRuRY3mizGuB6YC58YYV+aSVBPwM2ByOTooSaVg/pJULvsspkIIg0II\n/XKvewBnA3NDCHsOT7sAmFmeLkpS25i/JFVCIaP5hgK3hBBqaS6+bosx/k8I4VchhIk038y5EPiX\ncnRw5c/7Jba/cNz/S2yvC8lTFgCc/aO3JrZ3efPGovtV27d3YvuH738gsf1tvbak7+yzRYcH/p7S\nnj4FQpralKkpmirxYGhVV9oDuNvw3oe6uoydKYuq5q/O7IFl06vdhUTnDJtY7S6oAypkNN8M4NiE\n9kvK0iNJKhHzl6RKcAZ0SZKkDCymJEmSMrCYkiRJysBiSpIkKYNCRvOVVuIooabU1S8YNSOxvYaU\nUUh5/PHwexLbL3nkrMT2V96V/JBlgCkPJY+myztqr51qjMnnf1OTMz53CGkj9qD4UXv51u9R/EhS\nSeoIvDIlSZKUgcWUJElSBhZTkiRJGVhMSZIkZWAxJUmSlEFlR/OFQKjr2qo57tieuslre89NbE97\nnlw+adv8ZszUxPbTTkp/XNfzW5YnLzhgWdH9qra089K3JmV0Vk368w9paixBj1RSpXzGYp6RgbGu\n8oODJak98MqUJElSBhZTkiRJGVhMSZIkZWAxJUmSlIHFlCRJUgYWU5IkSRlUdixzjMSGHa3b8wy1\nf2LLuMT2E7slT5nQLdS1qWtJpv7wp6nL6kKe6QEqIO3hxGnyTSWxqWlrYvvLDclD6kNt+rGnDsIv\nsr+qkLSfi7a8X2vXZ+tLB/TAsullj3HOsIlljyEpP69MSZIkZWAxJUmSlIHFlCRJUgYWU5IkSRlY\nTEmSJGUQYikfgrqvYCGsBl7OfTsQWFOx4K115vid+dirHb8zHvuoGOOgCscsOfOX8dtB7M4ev93m\nr4oWUy0Ch1AfY5xUleCdPH5nPvZqx+/Mx96RVPs8Gt/f4c4Yv9rHno8f80mSJGVgMSVJkpRBNYup\nG6sYu7PH78zHXu34nfnYO5Jqn0fjd87YnT1+tY89VdXumZIkSeoI/JhPkiQpg6oUUyGEc0MIz4cQ\n5ocQPlvh2AtDCM+FEKaHEOorEO/mEMKqEMLMPdoGhBAeCiHMy/3bv8LxvxxCWJo7B9NDCOeVKfaI\nEMLUEMLsEMKsEMJVufaKHH+e+JU6/u4hhCdDCM/m4l+bay/78eeJXZFj78iqmb9y8TtNDqtm/srF\nqloO68z5ax/x22UOq/jHfCGEWuAF4GxgCfAUcHGMcXaF4i8EJsUYKzJXRQjhtcAm4Jcxxgm5tm8D\na2OM38wl4/4xxqsrGP/LwKYY43fLEXOP2EOBoTHGZ0IIfYCngfOBy6jA8eeJfxGVOf4A9Ioxbgoh\n1AGPAVcBb6fMx58n9rlU4Ng7qmrnr1wfFtJJclg181cuVtVyWGfOX/uI3y5zWDWuTE0G5scYF8QY\ntwO/BaZUoR8VEWN8FFi7V/MU4Jbc61to/gWpZPyKiDEujzE+k3u9EZgDDKdCx58nfkXEZpty39bl\nviIVOP48sZVNp8pfUN0cVs38lYtftRzWmfPXPuK3S9UopoYDi/f4fgkV/AGh+c14OITwdAjh8grG\n3dPgGOPy3OsVwOAq9OHKEMKM3GX0sn3MuFMIYTRwLPAEVTj+veJDhY4/hFAbQpgOrAIeijFW7PhT\nYkOF3/sOptr5C8xhUIWf4WrmsM6Yv/LEh3aYwzrjDeinxRgnAm8CrshdRq6a2Pw5a6Wr7RuAscBE\nYDlwXTmDhRB6A3cCH48xbthzWSWOPyF+xY4/xtiY+3k7GJgcQpiw1/KyHX9K7Iq+9yqLzp7DKv4z\nXM0c1lnzV5747TKHVaOYWgqM2OP7g3NtFRFjXJr7dxXwe5ov21faytzn4Ts/F19VyeAxxpW5H9Im\n4GeU8RzkPuu+E/h1jPGuXHPFjj8pfiWPf6cY43pgKs2f91f0/d8zdjWOvYOpav4Cc1ilf4armcPM\nX63jt9ccVo1i6ingkBDCmBBCV+DdwL2VCBxC6JW7kY8QQi/gjcDM/FuVxb3ApbnXlwL3VDL4zl+E\nnAso0znI3UB4EzAnxvi9PRZV5PjT4lfw+AeFEPrlXveg+abluVTg+NNiV+rYO7Cq5S8wh0Hlfn9z\nsaqWwzpz/soXv93msBhjxb+A82geEfMi8PkKxh0LPJv7mlWJ2MCtNF+K3EHz/RUfBA4EHgHmAQ8D\nAyoc/1fAc8AMmn8xhpYp9mk0XwKeAUzPfZ1XqePPE79Sx3808PdcnJnAl3LtZT/+PLErcuwd+ata\n+SsXu1PlsGrmr1z8quWwzpy/9hG/XeYwZ0CXJEnKoDPegC5JklQyFlOSJEkZWExJkiRlYDElSZKU\ngcWUJElSBhZTkiRJGVhMSZIkZWAxJUmSlMH/B6XcdjcePqnnAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAEgCAYAAACQH/YaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYXFWZ+PHv6U5nT0hCQjYIIYQ9QJAQdgGRRRwEFxg3\nBhwdnIHB3R+OOiIuo+I+qMyAoOgIioiIIyirIk4EGgwhIQGSELJvJCH70l3n90dXh3T63urqurV0\nur+f5+kn1ecu59zb3W/eOnXPOSHGiCRJkkpTV+sGSJIk7clMpiRJkjIwmZIkScrAZEqSJCkDkylJ\nkqQMTKYkSZIyMJmSJEnKwGRKkiQpA5MpSZKkDHplOTiEcC7wXaAe+GGM8auF9u8d+sS+DMhSpaQ9\nzAbWro4xjqh1O5J0JoYZv6Sep9j4VXIyFUKoB74PnAUsBp4MIdwTY3wu7Zi+DOD4cGapVUqqtRDS\nt6UsTfVgvPPlCrUmk87GMOOX1PMUG7+yfMw3FZgbY5wfY9wO/By4IMP5JKmajGGSyiJLMjUWWLTL\n94vzZW2EEC4PITSGEBp3sC1DdZJUVh3GMOOXpGJU/AH0GOONMcYpMcYpDfSpdHWSVDbGL0nFyJJM\nLQH22+X7ffNlkrQnMIZJKosso/meBA4KIRxASwB6J/DuQgeEXvXUD927XXnzK2vSD0p5qDX1Qdi0\n/ZWu0EPF3UWo4SwgMVe7usut0N9XXX1yeXNlmlIGnY5hkpSk5GQqxtgUQvhX4A+0DCu+JcY4q2wt\nk6QKMoZJKpdMb9djjPfGGA+OMR4YY/xyuRrV1Y3cfwQP5H7JJ2+5sk35J2+5kgdyv2Tk/pWZUueo\n0w7ngdwvueSaiypyfqmn6akxrBbWxJU8GO9k3h6cr86Ls3gw3smauLLWTVEXk2nSzkp6oPmONt83\nN+fYuHYj82cs5L6bH+KRn/+lRi2rnJH7j+B/XvoB9//4j3z9H79f6+ZUxDceuoajTz+Cs+ovrnVT\npKrYFDewhPmsZRVb2EQzTdTTi/4MZAjDGcU4BoehtW5ml7M0LuA5GjmcKYwJ47ttneoeumwy1eon\n17YkVb0aerHfIWM46YLjOOYNkzh4yoH89yd+UuPWtXXzp3/Gz7/2a1YvKfAMWAbPPzGXfzzsw7y6\nekNFzi+pfGKMvMRs5tMyB+gghjCS/WigN800sYF1LGIeC3mRQ+Jk9gsTa9xiSaXq8snUT6/9ZZvv\nj3nDJL56/7/ztg+fx93X38eKl1fVqGXtrVm+jjXL11Xs/Nu2bGfR80srdn5J5dOaSPWhH0dyPEPC\n8Hb7bI9bWciLNLGjBi2UVC5dPpna3d8ensmiOUvZ//B9OeS4A1nx8qqWj8fmf5/7b/0jt/3HXVz2\nhXdy9BlHsNfwQXzyzGuZ8af8O8OhA7nok2/h5AuOY+T4fWja3sQLjfP4xXV389QDM9rV1W9gX/7h\n2r/ntItOZK/hg1i+YBX33vQgf7n7icS2ffKWKzn7stN57wFXtEvyDjluIu/42PlMOuVQBg8fxIY1\nG1nw7ELuvfkhHv3lNC655iL+4ZqWj77Ovux0zr7s9J3Hfv19Ldd21GmH881HruUn197RLskcO3EU\n7/nsOzjmzCPZa8Rg1q9ez9MPPsvPvnQnS+Yub7Nva10fP+Ma9ho+mIs/eQHjJ+3H9q07eOqBZ/jv\nT/yEV5aubXPMqAP24Z1XX8jkMyYxfOwwtm3ZzitL1jDr/57nls/ezoY1G4v7AUo9wOa4kZeYTaCO\nYziFgWGvxP16h75M5Ehyu434nBWfZBkvcxLnsprlLOUlNrOBwQxjSjgdaOn5WsJ8lrKATawnAgMZ\nzBjGM5YJhF1G6W6Jm/gL9zGa/TkiHNeuHY3xj6xjNW8M79hZtiau5Gke5QAOYx/GMpeZvMor5Mgx\nmKFMZFJigrgtbmUeM1nNMprYQX8GMY6D6Ev/ou9fa3sAnqOR52Ljzm0n8yb6hQHMi7N4idm8jtez\nnZakdBPraaAPp4Tz2rT/wHBEuzoei/cCcEo4r+g6d7UiLuZlnmcj66mjjr0ZyUEcTd/Qr+jrVPdR\n1WQqNjXTvCZ7z01rjIi7DdMePWEk1//1P1j8wjIevu0x+vTrzeYNWyEE9hk3nG88/HlGH7APM/48\nmyfvn0Hf/n044c3H8B/3fYbv/MtN3PfDh3aeq6F3L6578BoOnTqRedMX8PBtjzFgSH/e89m3c9Rp\nh+cbQttpBVpfhtCm/E0fOJMPf/8DNDfn+OtvG1ny4nKG7DOYg489kLf8yzk8eudfeeZPz3HXd3/H\n2z78ZuZNX8BffvPkznPMm7GwZdh569DzUNdmGPrBUyZw3R8+S79BfZn226dY+Nxi9jt0DGe+91RO\nuuA4/t/ZX+SFxnm73kEA3nLFuZx4/rFM++1TzPjzbA6dOpEz/v5kDjxqPP987NXs2N4EwLBRQ/j+\n41+h/+B+PHHfdB779RP07tPAqANGcOZ7T+U3P/gDG9ZuLvxDK+f0ACnTHIS69CkeQq+UX/W6zo/B\niM0pY/1TymOtpwYoMC1E2j1LvcYC02jUH7h/8oYXUg/ptpaxgEhkFPumJlK7qkv5Gb3AM6xjNcMZ\nxd6MIvDa/Z/FEyxnEX3oxxgOAGAVS5nD31jHaiZxfFmuZQNreZkX2IthjGE8W9nCShbzNI9yfDyL\nAWHQzn23x2008ghb2MQQ9mYIw9nGVubwNMMYWXSdYxhPA71ZxVJGMIaBvHYPe9HQZt+FvMgaVjCc\n0Qxln5J7+TpT52Lms5qlDGcMQxnBq6xhBYvZwKucEN9IXUiZJkTd1h7XM3XMmUey7yFjyOVyPP/k\nvDbbjjz1MG7/yq+55bO3tzvu//3oSkbuP5wvv/u7/PGOaTvLB+zVn28+9Dmu/M77mHZPI+tWvgrA\nOz52PodOncif73qcL178rZ2J2y++djfff/JrRbd33GFj+dD33s+m9Vv42Gmf4+XnFrfZPnzsMABm\n/Ok5VixY1ZJMPbOAn37hl0XPjXT1j65kwF79+col1/PwbX/eWX7axSfy2ds/ytW3/isfmPSxdsnn\nlHOO5srj/40Fs16bp/DffnoVb3jXyZz4lik8eudfATj17cczeO9B/OCjt/Lr6+9rc46+/fuQy3Wj\neZSkMljHKwAMZZ9M59nAWo7nje16RZbHhSxnEYMYwrGcTq/QEsonxkk08ieWs4jhcTSjwrhM9QOs\nZnm7B7IXx/nM4WkW8SKH8rqd5fOYyRY2sR8TOSRM3lm+XzyQJ3mk6DrHhPEQ2ZnYFHoYfA0rmcIZ\nmR/i70ydr7CcqZzZJlF+Nj7OChaxiqWMbDMXrHqCGs5kWJxLrrmIS665iPd96V38+x0f5yv3fYa6\nujru+u69rFy4us2+a5ava0lCdjPhqP05+vQjeOyuJ9okUgCbXt3MrdfeQZ9+vTn1ba+9kzvnstNp\nbs5x09X/0yYJWb5gFXfvllAUcv4/n02vhl787Eu/apdIAZkfVj/ipIMZd9hYZk17gYdvbzvC8U93\nTOPZP89m3KFjmXTKoe2Ovfv6+1gwc1GbsntvbumdO3Rq+4dht23Z3q5s6+ZtbN/q8x7SrrazFYA+\ntP/IZ0vcxLw4q83Xwvhi4nn255B2iRTAUhYAMJFJOxMpgPrQi4OYBMASXsp6GQDsxd7tEosxjCcQ\neJXXHgfIxRzLWEg9vTiQth+rDQ7DGEX2xC7JWA6o+mjI/ZjYrsdxbL538FUqMwBJXVuX75lqfY4o\nl8uxcd1mnv3zbH5/y8M8dNtj7fadP2PBzo+mdnX4iQcDLb1Ql3zuHe22Dxne0k097rCWNU77DezL\n2INGs3LhapbNX9Fu/2f+NAsobq6nw44/CIAnf/+3ovbvrInHtPwBT39kZuL26Y/M5MhTD2Pi5PE8\n++fZbba98NT8dvuvWtTyjnrgkNcC+LTfPsU/fumdXHX9+5hy9lE03j+DWf/3fGJyKKmwLWziJdr+\nLfalP+M4qN2+gxmWeI4NtDwukdTzNYQRBMLOfbIaTPtEpS7U0Tv2pYnX3mBtZgM5mhnCcHqFhnbH\nDGUEy3i5LG3a1V4p96iSku5J6zNhDibombp8MnVWXUrSkvDsxprlrybuOnjYQACOPesojj3rqNS6\n+g3sC7QkXQBrVyQHo7WdGLHXmpRUarqE1rauWZbcptbRhQOGtH93u3HdpnZlzU0tH9nV17/Wably\n4WquOvEzXPK5izjunKN39uCtXLiaX37rf7n7e7/PdhFSN9ObvmxiA9vY0m7bsLAPb6TlTV0u5niY\nu1LP04e+ieVN7KCB3onPWtWFOhpib7azrcTWt7X780KtAoHIa732rUlE75QFoXunXEtWlTpvIUn3\npPV5tl3viXqOLp9MdUrKumGbXm15OPr7H/lx8n/8uz0c3br/0JFDEs83dFRyeZLWhGX42GEVmdZg\nZ1tT2jQsX966X6kWzlnKl9/9Xerq6zjw6P153ZlHcsGV53Dldy5j66Zt/P5HxT8PIXV3Q9ibtaxi\nLSt3fvxTTr1oYAfbycVcu4QqF3PsYHub//A7+o++HL0prfWlJXGtH31WSzHXnJYoSp1V/WQqaVRX\nKYsT73pM6+uYfK7Zf20ZTnTkyYdw93/+rsNTb9mwhSUvLmPUhJGMPmCfdh/1Hd06mm/3+lpfxriz\nfPbjL3LIcRM57tzJLJpTeEH6XFPLCKq6urr8OXYbUZXLfx9zO1/Pfbrlo7qjX3/Ya9t3bevpR7y2\n3862tt6v2L6enXXExPPlcs282DiXFxvnMusvs/n2o1/kpLccy+9vfrBlhw4WTf7EmdcW3F6UlJGB\nhUbNpY5Oq8bC2AXuSV2f5HfxsbnAQ/1p159LuZaEn2MHpypJXLK84516iNGMZwHPs4IlHBDXMyAM\nLuv5BzGENaxkHavajZJbx2oikUG89garNWnYSvs3VU1xB5vJPrVJfwZRRz0bWEdT3NHuo761dG5O\nwKw9PQ30BkjsHdwcNyYmU/YuqVRd/gH0cnjhqfnMePQ5Tn7b8ZzzvjMS9xk/aRxDRrwW8P7w40eo\nr6/jA199b5v5WkaN34cLrzqv6Lp/e8P9NO1o4j2ffQfjDtu33fbW0XwAG9ZuIpfLsc+49nO3pJn1\nlzksnLOEI089jFPffkKbbae+/QSOev3hLHp+KTMfm1P0OXd30Osm0H9w+zliWnvutm1u/2B6mtET\nRrLfIWOo7+XQYXVf/cNADuAwIjn+xmOsi6sT98syjB9gLjNpjq89J9ocm5jLs/l9XusR6xUa6M8g\nXuUVNsb1O8tjjLzAM+TIPn9HXahjNONopol5tF1/b31cw3IWdup8rclQUgJYjP4Mop5erGIp2+Nr\nvWLNsZnnmV6ROtVzda+P+Qr4ynu+y9cfuoZP3HwFb73qPGY/8SKb1m1i+Ni9mXDU/hxw5Dg+dOKn\nWbeqJdDc+c3fctIFU3n9O07ghqeuo/H+6QwYMoDTLjqRZx+dzUkXtJ/4LsnC2Yv5zyt/yIdvuJwb\nnr6Oab95kiVzlzN474EcPGUim9dv5pP53pqtm7Yy5/G5TDr1UD710w+x+MWl5JpzTLunkZeeTQ9E\nX7/se3z1/n/nMz//KNN+8ySLnl/CvgeP4aQLp7Jp/Wauu/T6dtMidMYbL3k9b778LGY+Nodl85ez\nYe0mxkwYyQnnT2H71u3c9d2Oe/taXffAvzNq/D68d8KVXWr2eqncWpKpliVlGvkjg+JQ9mIovehN\nEzvYyibW0LJg7hCKfwMFMCqMY1VcygoWM437GRHHEAisYilb2MRI9mX0btMi7M/BzOYpGnmEkXFf\n6qhnDSuJRAayFxtJfua0Mw5kEmtYySLmsiGu3TnP1AoWsTejWM2yos+1F3tTRz0LeZEdcfvOZ6PG\nMTHxAffd1YU6xsWDeInZPM6DjIhjiUTWsII+9E18Hi1rneq5ekwytXrJGq6YcjUXXvUmTnnbCZz5\n7lOpq69jzfJ1LHxuMXd/7742CcuO7U1cfdYXuOTzF3P6xSfx1g+dx/IFq7jty7/isV8/UXQyBXDf\nDx9iwcxFXPTx8znq9CM46cKprF+9fueizbv62j9czz9/61KOO3cyZ7zrZOrq6li9eE3BZGrOE3P5\n16n/xns+83aOeeORnHD+sby6egOP3P4YP/vSr1j8QrZntR65/TEa+jRw+IkHc9CxE+jTrzerl6zh\njz//C3d+67csmLWo45NIPUwIgQM5glFxHIuZx1pWsZxFbRY6HssERrN/SUP7J3E8QxjBUhbsnAZh\nAIM4hMnsy4Ht9h8bDoDYMsnlUl6mgQZGMIYDmcQMprXbvxS9Qx+mxDOYy0xWs5T1rKU/gziU19GX\n/p1KphpCb46KJ/ISz7GMBTTne89GM67oZ50mcDj11LOEl1jCfHrTl1HsxwQOZxr3V6RO9UwhS49F\nZw0Ow+LxdW9sv6GKbVCFdfDMVJfTw5+ZKqe6/snLhdy/6SdPxRinVKURFTQ4DIvHhzNr3QxJVfRg\nvLOo+NUjnpmSJEmqlK7xMV+h3gx7rfYs/rzaK3RPUtYGDPUFHtBPGZlYN25sYnlufvpEiWXtzXJZ\nIUk9lD1TkiRJGZhMSZIkZWAyJUmSlIHJlCRJUgYmU5IkSRmYTEmSJGWQaWqEEMICYAPQDDR1h4n5\nVIRSJuZMmx6gnOcqpxKm61hx1UmJ5dv3Sj/Vc1f8oDOtKsnK5k2p20785ccTyyd+7K+dric2NXW8\nUxdjDJNK94elyWsc1to5YyZXvc5yzDN1Rowpq3hKUtdnDJOUiR/zSZIkZZA1mYrAgyGEp0IIlyft\nEEK4PITQGEJo3MG2jNVJUlkVjGHGL0nFyPox3ykxxiUhhH2AB0IIc2KMj+66Q4zxRuBGaFkoNGN9\nklROBWOY8UtSMTL1TMUYl+T/XQn8GphajkZJUjUYwySVQ8k9UyGEAUBdjHFD/vXZwBfK1jJ1XaWM\npuuqo/bKWPfI6/8vsTz06ZN+0BWdrqbT9qkfkLpt3jv/K7H8/rc0JJaf1m9z6rmaU+7ZoOT1l2vO\nGCb1LKWMPqwfXdx+WT7mGwn8OrT8J9kLuC3G+PsM55OkajKGSSqLkpOpGON84OgytkWSqsYYJqlc\nnBpBkiQpA5MpSZKkDEymJEmSMijHcjKSIHXEYt3gwVVuSHav67MusbxPSB8ZSAkDNiWpO7BnSpIk\nKQOTKUmSpAxMpiRJkjIwmZIkScrAZEqSJCkDkylJkqQMnBpBKpeQ/N4kbtpU5YZkN7SuX62bIEl7\nDHumJEmSMjCZkiRJysBkSpIkKQOTKUmSpAxMpiRJkjJwNJ+qI8bk8pTFgfdIMZdYHHo3VLkhbf18\nw9DUbe8ctDax/OPLpyaWf2d0Y1naJEndiT1TkiRJGZhMSZIkZWAyJUmSlIHJlCRJUgYmU5IkSRl0\nOJovhHAL8HfAyhjjpHzZMOAXwHhgAXBxjDF5WJAEpY3aSzsmbWRgF5XbtCV1W3PKCMD6lHX+Sjnm\n09Pelnqud559c2L53A0jkg8YnXqqLssYJqnSiumZ+jFw7m5lnwIeijEeBDyU/16SuqIfYwyTVEEd\nJlMxxkeBNbsVXwDcmn99K3BhmdslSWVhDJNUaaU+MzUyxrgs/3o5MLJM7ZGkajCGSSqbzA+gxxgj\nkPoQSwjh8hBCYwihcQfbslYnSWVVKIYZvyQVo9RkakUIYTRA/t+VaTvGGG+MMU6JMU5poE+J1UlS\nWRUVw4xfkopRajJ1D3Bp/vWlwG/K0xxJqgpjmKSyKWZqhNuB04HhIYTFwDXAV4E7QgjvB14GLq5k\nI9UN9IiFjpOvMe7YnnrIm/dPXlD4+etfl3rMwVc+lVj+/jlzE8sPuix5f4DZCzYnljef92ryAclV\ndGnGMKkyzhkzudZN6DI6TKZijO9K2XRmmdsiSWVnDJNUac6ALkmSlIHJlCRJUgYmU5IkSRmYTEmS\nJGXQ4QPoPVpXHmm2hy32m6qc11Gtn1dnRyYWuMbY3JxYfshVT6cfk0s+5tYzT005YnHquT560QcT\ny+sHp04dJ0l7pNJGHxY3hNmeKUmSpAxMpiRJkjIwmZIkScrAZEqSJCkDkylJkqQMTKYkSZIy6H5T\nI5RzeHwpw/ZLGB5fkmrV0xWlXXvo/HuDUF/f6WNi046UDSXc+7TFkZuaOn2qpkXpUyCkCbPmJZZv\nP/aQTp9Lknoqe6YkSZIyMJmSJEnKwGRKkiQpA5MpSZKkDEymJEmSMuh+o/kK6ewCteVUqI5S2pU6\nci3XuTr2RGnXEpMXAAZS72XqITHlPhaqfw8Ut29PLH/5igLXry7lD0un17oJiUpbVFbaM9kzJUmS\nlIHJlCRJUgYmU5IkSRmYTEmSJGVgMiVJkpRBh6P5Qgi3AH8HrIwxTsqXfR74J2BVfrdPxxjvrVQj\nKy5tdFZdgXXb0kZ7pY2yKzQ6LKWeUJc+mi82Fxi5lniyEkYTdieljADsAULv3onlZ0+cU+WWVE6P\niGGSaqqYnqkfA+cmlH87xjg5/2UQktRV/RhjmKQK6jCZijE+CqypQlskqeyMYZIqLcszU1eFEGaE\nEG4JIQxN2ymEcHkIoTGE0LiDbRmqk6Sy6jCGGb8kFaPUZOoGYAIwGVgGfDNtxxjjjTHGKTHGKQ30\nKbE6SSqromKY8UtSMUpKpmKMK2KMzTHGHHATMLW8zZKkyjGGSSqnkpKpEMLoXb59KzCzPM2RpMoz\nhkkqp2KmRrgdOB0YHkJYDFwDnB5CmAxEYAHwwQq2Ma1hlT9XrvML53Z6yoQCYq7AlAWdnc6gGos5\ndyflvF9deOqJ3ObNieUP331SYnnzFdNSz7U2t6UsbSq3LhvDJHUbHSZTMcZ3JRTfXIG2SFLZGcMk\nVZozoEuSJGVgMiVJkpSByZQkSVIGJlOSJEkZdPgAelWUMtqpnCOkUhcnLjCaL63+lFFgr7wvfRqb\nET/7W2J5buvW9Po7qwuPKNvjlLKYdVeV8vs6/vuzEstPnXtF6qniZatStnyts62SpD2KPVOSJEkZ\nmExJkiRlYDIlSZKUgcmUJElSBiZTkiRJGXSN0XyF1kEr4yi00Cv5cn+/sLFsdaRLHrEHwBeTi88Z\nM7nz1aSuGehoPiVI+b1oXvdqYvmgOx5PPdXGXPqIVUnqzuyZkiRJysBkSpIkKQOTKUmSpAxMpiRJ\nkjIwmZIkScrAZEqSJCmD6k+NkLRIbDkXiC0wzULMVX56gOaUa6lPWxwXeDW3pVLNkapmr0dfqnUT\nJKkm7JmSJEnKwGRKkiQpA5MpSZKkDEymJEmSMjCZkiRJyqDD0XwhhP2AnwAjgQjcGGP8bghhGPAL\nYDywALg4xri2wxrLOXIv8fwFRuzF5sTi8w4/LbE8DB2Sfqp16xPLcxs2JJbXDR2aeq7c2rTb1pR6\nTCoXNO56qrSQd0n1d/pcBd5/VWG0bGeVPX5JUoJieqaagI/HGA8HTgCuDCEcDnwKeCjGeBDwUP57\nSepKjF+SKq7DZCrGuCzG+HT+9QZgNjAWuAC4Nb/brcCFlWqkJJXC+CWpGjo1aWcIYTxwDPA4MDLG\nuCy/aTkt3ehJx1wOXA7Ql/6ltlOSMjF+SaqUoh9ADyEMBH4FfCTG2OaBoRhjpOV5hHZijDfGGKfE\nGKc00CdTYyWpFMYvSZVUVDIVQmigJRD9LMZ4V754RQhhdH77aGBlZZooSaUzfkmqtGJG8wXgZmB2\njPFbu2y6B7gU+Gr+399UpIVpI5HSRkGVMHKqef3G5P3TyiF9VGJaHatWpZ+rrj59WzV09h73dNVY\nS7KUe1/OUXtpKj0at8xqHr8k9QjFPDN1MnAJ8GwIYXq+7NO0BKE7QgjvB14GLq5MEyWpZMYvSRXX\nYTIVY3wMSHvLe2Z5myNJ5WP8klQNzoAuSZKUgcmUJElSBiZTkiRJGZhMSZIkZdCpGdBrorNDxEsZ\nUp5LXgC5ampdv1MgtOc96bymEhbmlqRuwJ4pSZKkDEymJEmSMjCZkiRJysBkSpIkKQOTKUmSpAyq\nP5ovJORve9jiqd2OCx3vWaqxoHEpmms8KlWSasSeKUmSpAxMpiRJkjIwmZIkScrAZEqSJCkDkylJ\nkqQMqj+ar1wj9xyBJkmcM2ZyrZsg9Xj2TEmSJGVgMiVJkpSByZQkSVIGJlOSJEkZmExJkiRl0GEy\nFULYL4TwSAjhuRDCrBDCh/Plnw8hLAkhTM9/nVf55kpS8YxfkqqhmKkRmoCPxxifDiEMAp4KITyQ\n3/btGOM3Kte8EhRaBLY7TZvQVRe7VeXV8vd4z/u927Pil6Q9UofJVIxxGbAs/3pDCGE2MLbSDZOk\nrIxfkqqhU89MhRDGA8cAj+eLrgohzAgh3BJCGFrmtklS2Ri/JFVK0clUCGEg8CvgIzHG9cANwARg\nMi3v/L6ZctzlIYTGEELjDraVocmS1DnGL0mVVFQyFUJooCUQ/SzGeBdAjHFFjLE5xpgDbgKmJh0b\nY7wxxjglxjilgT7larckFcX4JanSihnNF4Cbgdkxxm/tUj56l93eCswsf/MkqXTGL0nVUMxovpOB\nS4BnQwjT82WfBt4VQpgMRGAB8MGKtFCSSmf8klRxxYzmewxIGg99b/mbI0nlY/ySVA3OgC5JkpSB\nyZQkSVIGJlOSJEkZmExJkiRlUMxovtpKWwssJOeBob4+9VRxx/ZytKhrSFufrS79+tPPlUsuT7v3\n3WmNQ0mSMrJnSpIkKQOTKUmSpAxMpiRJkjIwmZIkScrAZEqSJCkDkylJkqQMusbUCIWG2qcNz+9O\nSrlGpyeQJKlLsGdKkiQpA5MpSZKkDEymJEmSMjCZkiRJysBkSpIkKYOuMZqvnNIW7e1uUhchTrn+\nnj5iUpKkCrFnSpIkKQOTKUmSpAxMpiRJkjIwmZIkScrAZEqSJCmDDkfzhRD6Ao8CffL73xljvCaE\nMAz4BTAeWABcHGNcW/YWhpR8L2XUWmwuewvKo9wj5sq5Nl/auRzlpz1czeOXpB6hmJ6pbcAbYoxH\nA5OBc0MIJwCfAh6KMR4EPJT/XpK6EuOXpIrrMJmKLTbmv23If0XgAuDWfPmtwIUVaaEklcj4Jaka\ninpmKoTYBXKVAAAJ+ElEQVRQH0KYDqwEHogxPg6MjDEuy++yHBhZoTZKUsmMX5IqrahkKsbYHGOc\nDOwLTA0hTNpte6Tl3V47IYTLQwiNIYTGHWzL3GBJ6gzjl6RK69RovhjjOuAR4FxgRQhhNED+35Up\nx9wYY5wSY5zSQJ+s7ZWkkhi/JFVKh8lUCGFECGFI/nU/4CxgDnAPcGl+t0uB31SqkZJUCuOXpGoo\nZqHj0cCtIYR6WpKvO2KM/xtCmAbcEUJ4P/AycHFFWthdFi4u51QG1VLKlAl74nWqO6tt/JLUI3SY\nTMUYZwDHJJS/ApxZiUZJUjkYvyRVgzOgS5IkZWAyJUmSlIHJlCRJUgYmU5IkSRkUM5qvthwdVnGh\nV/KvQWxqSj7An4kkSTvZMyVJkpSByZQkSVIGJlOSJEkZmExJkiRlYDIlSZKUgcmUJElSBl1jaoRC\nC+d2Vg8fth8aeieWx+bm1GOe/6/JieWHXT0/+VxbtqaeK7d5c4HWSZLU/dgzJUmSlIHJlCRJUgYm\nU5IkSRmYTEmSJGVgMiVJkpRBlxjNF3onj0ADqB87OrF88fljEstHPrkp/VzPzE0sz21KP2aPU5c8\nMnLu145LPeSl8/4rsfx3p/dNLL96xttTzzX2bbMKNE6SpO7HnilJkqQMTKYkSZIyMJmSJEnKwGRK\nkiQpA5MpSZKkDDoczRdC6As8CvTJ739njPGaEMLngX8CVuV3/XSM8d5SGpE2Yg9g2Xf6JJY3Hnt9\nYvn1aw9KPddt3z4nsXzvm6cVaF0XlbKe4dxbDk8sf+H0HxQ4WXJOfXa/5FGOp0z9YeqZLubEAvVI\n1VWN+CVJxUyNsA14Q4xxYwihAXgshHBfftu3Y4zfqFzzJCkT45ekiuswmYoxRmBj/tuG/FesZKMk\nqRyMX5KqoahnpkII9SGE6cBK4IEY4+P5TVeFEGaEEG4JIQxNOfbyEEJjCKFxB9vK1GxJKo7xS1Kl\nFZVMxRibY4yTgX2BqSGEScANwARgMrAM+GbKsTfGGKfEGKc0kPz8kyRVivFLUqV1ajRfjHEd8Ahw\nboxxRT5I5YCbgKmVaKAklYPxS1KldJhMhRBGhBCG5F/3A84C5oQQdh2C91ZgZmWaKEmlMX5JqoZi\nRvONBm4NIdTTknzdEWP83xDCT0MIk2l5mHMB8MGiagzt87cD71iSuvvvxjyZsqU+sfRjw+annutj\nX7whsfyAYy9PLD/0xo2J5QC5Z2Ynt2r48JQDmlPP1fzKmtRtaUKvhsTyh09NnjKiPgzsdB0NIfke\n9yd9YWp1cwl/vzv1Tv6drLHyxi9JSlDMaL4ZwDEJ5ZdUpEWSVCbGL0nV4AzokiRJGZhMSZIkZWAy\nJUmSlIHJlCRJUgbFjOYrr4RRbXUpi/ZWS68NyaPWbrrnxtRj3nfJVYnl9952c2J5faFRUGXV+VF7\nnbUt7qh4HUDqYs5EVwPplEJ/X2n3MvXe59KrGTggecOq5GL1XH9YOr3WTUh0zpjJtW6C9lD2TEmS\nJGVgMiVJkpSByZQkSVIGJlOSJEkZmExJkiRlUNXRfKGujrp+/duVP7s2ZT07aFlZq8JevCR5zb5C\nI+MeuP1HKVu6f37aLxRYm6+cI/ActVce5bz3pYwMlKRurvv/zy9JklRBJlOSJEkZmExJkiRlYDIl\nSZKUgcmUJElSBiZTkiRJGVR1aoQYc8Tt29uVz39hVOoxmw9tvz9A/7oCw/M7aW3z5sTyhgKLE7/c\nlDwM/Ije/crSpq5gR2y/KDXAwqYtqceEXg2J5bE5+VwFFVhUV2WS9jtewr2Pr67P2BhJ2jPZMyVJ\nkpSByZQkSVIGJlOSJEkZmExJkiRlYDIlSZKUQYhVXJw0hLAKeDn/7XBgddUqb68n19+Tr73W9ffE\na98/xjiiynWWnfHL+rtA3T29/i4bv6qaTLWpOITGGOOUmlTew+vvydde6/p78rV3J7W+j9bv33BP\nrL/W116IH/NJkiRlYDIlSZKUQS2TqRtrWHdPr78nX3ut6+/J196d1Po+Wn/PrLun11/ra09Vs2em\nJEmSugM/5pMkScqgJslUCOHcEMLzIYS5IYRPVbnuBSGEZ0MI00MIjVWo75YQwsoQwsxdyoaFEB4I\nIbyY/3dolev/fAhhSf4eTA8hnFehuvcLITwSQnguhDArhPDhfHlVrr9A/dW6/r4hhCdCCM/k6782\nX17x6y9Qd1WuvTurZfzK199jYlgt41e+rprFsJ4cvzqov0vGsKp/zBdCqAdeAM4CFgNPAu+KMT5X\npfoXAFNijFWZqyKE8HpgI/CTGOOkfNl1wJoY41fzwXhojPHqKtb/eWBjjPEblahzl7pHA6NjjE+H\nEAYBTwEXApdRhesvUP/FVOf6AzAgxrgxhNAAPAZ8GHgbFb7+AnWfSxWuvbuqdfzKt2EBPSSG1TJ+\n5euqWQzryfGrg/q7ZAyrRc/UVGBujHF+jHE78HPgghq0oypijI8Ca3YrvgC4Nf/6Vlr+QKpZf1XE\nGJfFGJ/Ov94AzAbGUqXrL1B/VcQWG/PfNuS/IlW4/gJ1K5seFb+gtjGslvErX3/NYlhPjl8d1N8l\n1SKZGgss2uX7xVTxF4SWH8aDIYSnQgiXV7HeXY2MMS7Lv14OjKxBG64KIczId6NX7GPGViGE8cAx\nwOPU4Pp3qx+qdP0hhPoQwnRgJfBAjLFq159SN1T5Z9/N1Dp+gTEMavA7XMsY1hPjV4H6oQvGsJ74\nAPopMcbJwJuAK/PdyDUTWz5nrXa2fQMwAZgMLAO+WcnKQggDgV8BH4kxrt91WzWuP6H+ql1/jLE5\n//u2LzA1hDBpt+0Vu/6Uuqv6s1dF9PQYVvXf4VrGsJ4avwrU3yVjWC2SqSXAfrt8v2++rCpijEvy\n/64Efk1Lt321rch/Ht76ufjKalYeY1yR/yXNATdRwXuQ/6z7V8DPYox35Yurdv1J9Vfz+lvFGNcB\nj9DyeX9Vf/671l2La+9mahq/wBhW7d/hWsYw41f7+rtqDKtFMvUkcFAI4YAQQm/gncA91ag4hDAg\n/yAfIYQBwNnAzMJHVcQ9wKX515cCv6lm5a1/CHlvpUL3IP8A4c3A7Bjjt3bZVJXrT6u/itc/IoQw\nJP+6Hy0PLc+hCtefVne1rr0bq1n8AmMYVO/vN19XzWJYT45fhervsjEsxlj1L+A8WkbEzAM+U8V6\nJwDP5L9mVaNu4HZauiJ30PJ8xfuBvYGHgBeBB4FhVa7/p8CzwAxa/jBGV6juU2jpAp4BTM9/nVet\n6y9Qf7Wu/yjgb/l6ZgKfy5dX/PoL1F2Va+/OX7WKX/m6e1QMq2X8ytdfsxjWk+NXB/V3yRjmDOiS\nJEkZ9MQH0CVJksrGZEqSJCkDkylJkqQMTKYkSZIyMJmSJEnKwGRKkiQpA5MpSZKkDEymJEmSMvj/\notM7dNPOycMAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAEgCAYAAACQH/YaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYHVWZ+PHv6U5n38mekIQQ9gBBQtgFQQQZFURhRAdx\nG3RkGBzFkR8goCODgyujyAwKIzIsIoKAA8qqGCYCCYSQkABJaLJvZN97Ob8/+mbpdFX37a67dNLf\nz/P0k+5Ty3vq3u43762qcyrEGJEkSVLbVJS7A5IkSXsyiylJkqQMLKYkSZIysJiSJEnKwGJKkiQp\nA4spSZKkDCymJEmSMrCYkiRJysBiSpIkKYNOWTYOIZwF3AxUAr+IMX63ufU7hy6xKz2yhJS0h1nP\n6pUxxoHl7keS1uQw85fU8eSbv9pcTIUQKoFbgDOAhcBLIYRHYoyvp23TlR4cG05va0hJe6Cn4gPv\nlLsPSVqbw8xfUseTb/7KcplvIjAnxjgvxrgNuA84J8P+JKmUzGGSCiJLMTUcWLDLzwtzbY2EEC4J\nIUwJIUypYWuGcJJUUC3mMPOXpHwU/Qb0GONtMcYJMcYJVXQpdjhJKhjzl6R8ZCmmFgH77vLziFyb\nJO0JzGGSCiLLaL6XgANCCPvRkIA+AXyyuQ1CZSWVvfs0aa9buy59oxhTdhby7qhEKOMsILG+fLHb\nKu31qq9rZpuUv8mUP+F2oNU5TJKStLmYijHWhhD+EfgjDcOK74gxzixYzySpiMxhkgol08f1GONj\nMcYDY4z7xxhvKFSn2rvBowbyZN39fP2OLzdq//odX+bJuvsZPKo4U+occcqhPFl3Pxdde35R9i91\nNB01h5XDqricp+IDzN2D69W5cSZPxQdYFZeXuytqZzJN2llMT9bd3+jnurp6NqzewLzp83n89qd5\n9r7ny9Sz4hk8aiD/M+8WnrjzT3zvcz8rd3eK4vtPX8eRpx7GGZUXlLsrUklsjOtZxDxWs4LNbKSO\nWirpRHd60pcBDGEkvUO/cnez3Vkcq3mdKRzKBIaF0XttTO0d2m0xtd2vvtVQVHWq6sS+Bw3jhHOO\n4ajTxnHghP35ryt+VebeNXb7Vfdw37//jpWLVhVl/2+8OIfPHfoV1q5cX5T9SyqcGCNvM4t5NMwB\n2ou+DGZfquhMHbWsZw0LmMt83uKgOJ59w9gy91hSW7X7Yuqub/2m0c9HnTaO7z7xTc67/Gx+95PH\nWfbOijL1rKlVS9ewaumaou1/6+ZtLHhjcdH2L6lwthdSXejG4RxL3zCgyTrb4hbm8xa11JShh5IK\npd0XU7t75ZkZLJi9mFGHjuCgY/Zn2TsrGl0eu+fGh/jMt/+WI089jD4DevH193+b6X/OfTLs14Pz\nr/gIJ55zDINHD6J2Wy1vTpnLr7/3MFOfnN4kVreeXfn09RdwyvnH02dAL5ZWr+Cxnz/F8w+/lNi3\nr9/xZT5w8an83ZhLmxR5Bx2zPx//6ocZd+LB9B7Qi/WrNlA9Yz6P3f4Mz/1mMhddez6fvq7hXqgP\nXHwqH7j41B3bfu9zt/DEnX/miFMO5QfPXM+vvvUb7vp24yJz+NghfOqaj3HUaYfTZ2Bv1q1cx8tP\nv8bd3/kti+YsbbTu9lhfO+16+gzoxQVXnMPocfuybUsNU598lf+64le8u3h1o22G7DeIT3zjXMa/\nbxwDhvdn6+ZtvLtoFTP/7w3uuOZe1q/akN8bKHUAm+IG3mYWgQqO4iR6hqajmAE6h66M5XDqdxvx\nOTO+xBLe4QTOYiVLWczbbGI9venPhHAq0HDmaxHzWEw1G1lHBHrSm2GMZjhjCLuMrtwcN/I8jzOU\nURwWjmnSjynxT6xhJe8PH9/Rtiou52WeYz8OYRDDmcMM1vIu9dTTm36MZVxigbg1bmEuM1jJEmqp\noTu9GMkBdKV73q/f9v4AvM4UXo9Tdiw7kQ/SLfRgbpzJ28ziPbyXbTQUpRtZRxVdOCmc3aj/+4fD\nmsSYFB8D4KRwdt4xd7UsLuQd3mAD66iggn0YzAEcSdfQLe/j1N6jpMVUrKtrfhqEPG3PEXG3aROG\njhnMTybfwMI3l/DMPZPo0q0zm9ZtBmDQyAF8/5nrGbrfIKb/ZRYvPTGdrt27cNzfHMW/PXYVP/6H\nX/D47c/s2FdV507c9NS1HHzMWOZOq+aZe5+nR5/ufOqaj3HEKdv/MMNuQ8hzHQsVjdo/+PnTuPyW\nz1NXV89fH53KojlL6TuwNwcePYaP/MOZPPfAC7z63CwevPkxzrv8bOZOq+b5R3b+Ic99dX7jfYbG\ncQ+cMIab/ngN3Xp1ZfKjU5k/axH7HjSM0z91Mid85Bj+5czv8OaUeU1ewI/8w5kc/+GjmfzoVKb/\nZRYHTxzL+/72RPY/YjRfOvob1GyrBaD/kL7c8sKNdO/djRcfn8akh16kc5cqhuw3kNP/7mQe/tkf\nWb96U/NvWimmB2hm+oNQWZm8oKKAU2zUJU8bEJuZTSB16o9Cam4akbTXLO39amZfnYYNTV6wMD38\n3moJ1UQiQxiRWkjtqiLlfXiTV1nDSgYwhH0YQmDn6z+TF1nKArrQjWHsB8AKFjObV1jDSsZxbEGO\nZT2reYc36UN/hjGaLWxmOQt5mec4Np5Bj9Brx7rb4lam8Cyb2Uhf9qEvA9jKFmbzMv0ZnHfMYYym\nis6sYDEDGUZPdr6GnahqtO583mIVyxjAUPoxqM1n+VoTcyHzWMliBjCMfgxkLatYxkLWs5bj4vup\nCCn5RnutPe7M1FGnH86Ig4ZRX1/PGy/NbbTs8JMP4d4bH+KOa+5tst2//PelDB41gBs+eTN/un/y\njvYefbrzg6ev5dIff4bJj05lzfK1AHz8qx/i4GPG8pcHX+Bf//bHOwq3X9/0MLe8eGPe/R15yHD+\n6aefY+O6zXz11Ot55/XG/7MMGN4fgOl/fp1l1SsaiqlX3+Gubz+Qd4xv/Pel9OjTnRsv+gnP3Lvz\nxvxTzj+ea+69nG/88lK+cPgVTYrPCWceyaXHXU31jJ1P1Ph/d13GaReeyPEfmcBzD/wVgJM/diy9\n9+nFz/75Th76yeON9tG1exfq6/fAeZSkIlrDuwD0Y1Cm/axnNcfy/iZnRZbG+SxlAb3oy9GcSqfQ\nkMrHxnFM4c8sZQED4lCGhJGZ4gOsZGmTG7IXxnnM5mUW8BYH854d7XOZwWY2si9jOSiM39G+b9yf\nl3g275jDwmiI7ChsmrsZfBXLmcD7Mt/E35qY77KUiZzeqFB+Lb7AMhawgsUMbjQXrDqCMs5kmJ+L\nrjufi647n89+50K+ef/XuPHxq6moqODBmx9j+fyVjdZdtXRNk8tfAGOOGMWRpx7GpAdfbFRIAWxc\nu4k7v/UbunTrzMnnTdzRfubFp1BXV8/Pr7ynURGytHoFv/vpH/Lu/4e/eAadqjpx9w0PNimkgMw3\nqx92woGMPGQ4Mye/2aiQAvjzbybz2qTZjDx4OONOOqjJtr/76R8aFVIAj93+NAAHT2x6M+zWzdua\ntG3ZtJVtW7zfQ9rVNrYA0IWml3w2x43MjTMbfc2PbyXuZxQHNSmkABZTDcBYxu0opAAqQycOYBwA\ni3g762EA0Id9mhQWwxhNILCWnbcD1Md6ljCfSjqxP40vq/UO/RlC9sIuyXD2K/loyH0Z2+SM4/Dc\n2cG1FGcAktq3dn9m6tPXNQyhr6+vZ8OaTbz2l1n84Y5nePqeSU3WnTe9eselqV0devyBQMNZqIuu\n/XiT5X0HNJymHnlwwzNOu/XsyvADhrJ8/kqWzFvWZP1Xc/dg5eOQYw8A4KU/TMt7m9YYe1TDH/C0\nZ2ckLp/27AwOP+lgxo7fj9f+MrvRskaX/nJWLGj4RN2z784EPvnRqXzuO5/gsp98lgkfOIIpT0xn\n5v+9kVgcSmreZjbyNrMatXWlOyM5oMm6vemfuI/1NAx0STrz1ZeBBMKOdbLqTdNCpSJU0Dl2pZad\nH7A2sZ566ujLADqFqibb9GMgS3inIH3aVZ+U16iYkl6T7feEOZigY2r3xdQZFSkTVCbcu7Fq6drE\nVXv37wnA0WccwdFnHJEaq1vPrkBD0QWwelny/la3YsRez74N+yrWdAnb+7pqSXKftrf36Nv05s8N\na5ve51RX23DJrrJy50nL5fNXctnxV3PRtedzzJlHcvJ5x+5o/80Pf9+qM3VSR9CZrmxkPVvZ3GRZ\n/zCI99Pwoa4+1vMMD6bupwtdE9trqaGKzon3WlWECqpiZ7axtY29b2z3+4W2CwTiLs8K2l5EdE55\nIHTnlGPJqlj7bU7Sa7L9frbYjp+fpOJp98VUq6TczLsxVzTc8pVf5vUf//b1+w1OvnG035C+eXdp\nw5qGfQ0Y3r8o0xrs6GtKn/oP7dtovbaaP3sxN3zyZioqK9j/yFG85/TDOefSM7n0x59hy8at/OG/\n878fQtrb9WUfVrOC1SzfcfmnkDpRRQ3bqI/1TQqq+lhPDdsa/Yff0n/0hTibsj1eWhG3/dJnqeRz\nzGmFotRapS+mCjV6adf9bP8+Ju9/1l/fBODwEw/id//xvy3uevO6jSx6awlDxgxm6OgBTS71Hfne\ng3fG3fXBr9tj19ftaJ/1wpscdMz+HHPmESyY1fj+pN3V1zQktIqKkPxA2e1tsX7H93Nenpfr0yGJ\n2xx5yqEN602d23j73frZNEZM3F99fR1vTZnDW1PmMPP5WfzouX/lhI8czR9uf6phhRYeQH3F6d9q\ndnkmzYwYjLUpy0oxmq4NQqf0P82YMmowfYNmjrHZoYatU7fMR2xsN5TRVPMGy1jEfnEdPULvgu6/\nF31ZxXLWsKLJKLk1rCQS6cXOD1jbi4YtNP1QVRtr2ET2qU2604sKKlnPGmpjTZNLfatp3ZyAWc/0\nVNEZIPHs4Ka4IbGY8uyS2qrd34BeCG9Oncf0517nxPOO5czPvi9xndHjRtJ34M6E98dfPktlZQVf\n+O7fNZqvZcjoQZx72dl5x3701ieoranlU9d8nJGHjGiyfPtoPoD1qzdSX1/PoJFN525JM/P52cyf\nvYjDTz6Ekz92XKNlJ3/sOI5476EseGMxMybNTtlDyw54zxi69256mbDf4IZkvXVT0xvT0wwdM5h9\nDxpGZSeHDmvv1T30ZD8OIVLPK0xiTVyZuF6WYfwAc5hBXdx5n2hdrGUOr+XW2XlGrFOooju9WMu7\nbIg7p6eJMfImr1JP9qK6IlQwlJHUUctcGj9/b11cxVLmt2p/24uhpAIwH93pRSWdWMFitsWdZ8Xq\nYh1vkHwPa9aY6rj2rst8zbjxUzfzvaev44rbv8xHLzubWS++xcY1GxkwfB/GHDGK/Q4fyT8dfxVr\nVjQkmgd+8CgnnDOR9378OG6dehNTnphGj749OOX843ntuVmccE7Tie+SzJ+1kP+49Bdcfusl3Pry\nTUx++CUWzVlK7316cuCEsWxat4mv587WbNm4hdkvzGHcyQdz5V3/xMK3FlNfV8/kR6bw9mvpieh7\nn/kp333im1x93z8z+eGXWPDGIkYcOIwTzp3IxnWbuOninzSZFqE13n/Re/mbS85gxqTZLJm3lPWr\nNzJszGCO+/AEtm3ZxoM3t3y2b7ubnvwmQ0YPSpzYVNqbNBRTDY+UmcKf6BX70Yd+dKIztdSwhY2s\nouFsXl/y/wAFMCSMZEVczDIWMpknGBiHEQisYDGb2chgRjB0t2kRRnEgs5jKFJ5lcBxBBZWsYjmR\nSE/6sIHke0RbY3/GsYrlLGAO6+PqHfNMLWMB+zCElSzJe1992IcKKpnPW9TEbTvujRrJ2MQb3HdX\nESoYGQ/gbWbxAk8xMA4nElnFMrrQNfF+tKwx1XF1mGJq5aJVfHnCNzj3sg9y0nnHcfonT6aisoJV\nS9cw//WF/O6njzcqWGq21fKNM77NRddfwKkXnMBH/+lsllav4J4bfsukh17Mu5gCePwXT1M9YwHn\nf+3DHHHqYZxw7kTWrVy346HNu/r3T/+EL/3wYo45azzvu/BEKioqWLlwVbPF1OwX5/CPE/8fn7r6\nYxz1/sM57sNHs3blep69dxJ3f+e3LHwz271az947iaouVRx6/IEccPQYunTrzMpFq/jTfc/zwA8f\npXpm85cvpY4ohMD+HMaQOJKFzGU1K1jKgkYPOh7OGIYyqk1D+8dxLH0ZyGKqd0yD0INeHMR4RrB/\nk/WHh/0gNkxyuZh3qKKKgQxjf8YxnclN1m+LzqELE+L7mMMMVrKYdaymO704mPfQle6tKqaqQmeO\niMfzNq+zhGrqcmfPhjIy73udxnAolVSyiLdZxDw605Uh7MsYDmUyTxQlpjqmkOWMRWv1Dv3jseH0\nksVTGbRwz1S709HvmSqgtD4/WXPf1BjjhJJ0oojMX1LH81R8IK/81SHumZIkSSqW0l/mSzpz0U7P\nDqgNfC+LLnRKvtwQa1NuZq5o5mb/pFGjbRTrfe8ldUyemZIkScrAYkqSJCkDiylJkqQMLKYkSZIy\nsJiSJEnKwGJKkiQpg0xTI4QQqoH1QB1QuzdMzKcSa8skn3vY9AvhqMNSl707PvkBuC/dcGuxutNI\nXcrDoStD8uest2vSH4jboyL5vRza9JGU7YY5TCq8Py5OfvZhuZ05bHzqsrQ+Vw7Nb9+FmGfqfTGm\nPMVTkto/c5ikTLzMJ0mSlEHWYioCT4UQpoYQLklaIYRwSQhhSghhSg1bM4aTpIJqNoeZvyTlI+tl\nvpNijItCCIOAJ0MIs2OMz+26QozxNuA2aHhQaMZ4klRIzeYw85ekfGQ6MxVjXJT7dznwEDCxEJ2S\npFIwh0kqhDafmQoh9AAqYozrc99/APh2wXom7WGj9tLEV2amLtvntZQ/wRuK1JndpI3aSzOyU/eC\n7avczGGSCiXLZb7BwEOhYWh7J+CeGOMfCtIrSSo+c5ikgmhzMRVjnAccWcC+SFLJmMMkFcqedV5e\nkiSpnbGYkiRJysBiSpIkKYNCPE5GallbnsHXAVT07FHuLrTKnjZiT5JKwcwoSZKUgcWUJElSBhZT\nkiRJGVhMSZIkZWAxJUmSlIHFlCRJUgZOjSAVW0Vl6qL6zVtK2JHstsaa1GVdQlUJeyJJ7YdnpiRJ\nkjKwmJIkScrAYkqSJCkDiylJkqQMLKYkSZIycDSfSiPGcvegfGJ96qKKUSNSlrxQnL7spibWJbZX\nheQRiHXNvY8+y1pSB+WZKUmSpAwspiRJkjKwmJIkScrAYkqSJCkDiylJkqQMWhzNF0K4A/gQsDzG\nOC7X1h/4NTAaqAYuiDGuLl43tccIJRjStaeNDGyuv0tXJDa35Rl4b9dsSGzfr6pn6r4m/ttlie2v\nXP2z5PVf/GzqvmYcd3fqsnIyh0kqtnzOTP0SOGu3tiuBp2OMBwBP536WpPbol5jDJBVRi8VUjPE5\nYNVuzecAd+a+vxM4t8D9kqSCMIdJKra23jM1OMa4JPf9UmBwgfojSaVgDpNUMJlvQI8xRiD1ppAQ\nwiUhhCkhhCk1bM0aTpIKqrkcZv6SlI+2FlPLQghDAXL/Lk9bMcZ4W4xxQoxxQhVd2hhOkgoqrxxm\n/pKUj7YWU48AF+e+vxh4uDDdkaSSMIdJKph8pka4FzgVGBBCWAhcB3wXuD+E8HngHeCCYnZSe5DW\nTlvQlqkU0rbZ06ZMAOrWrUtsP2fU8anbHPjX5ON/88Tkz0ZXvv5S6r4G3fJ/ie01VyU/AHnkF1NP\nQsOr6YvKyRwmldaZw8aXuwutlt7nOXlt32IxFWO8MGXR6XlFkKQyModJKjZnQJckScrAYkqSJCkD\niylJkqQMLKYkSZIyaPEGdLVSIR/0uweOTmu1Qh5je33tm+tXSpxYW5u6yRsTK5MX1Cc/HPmmo05K\nj0/yaMKTrvzHxPa+K/+auqeamDwCUJL2dp6ZkiRJysBiSpIkKQOLKUmSpAwspiRJkjKwmJIkScrA\nYkqSJCmD9jE1QhuGjrdpX63VluHxpZrOYC962G+rFfI9DimfJ5oLEetT2lNe+0K/J/Wtm4Ig7WHK\nzen2bvLUDBXduqVu49QI5fHHxdPK3YVEe+LDbqW28syUJElSBhZTkiRJGVhMSZIkZWAxJUmSlIHF\nlCRJUgbtYzRfIUc7tWVfhRwdVippo9Bo5UizPVEp3uO0EXttjb+HWfCB5Icpf/rGNanbdAntI51I\nUql5ZkqSJCkDiylJkqQMLKYkSZIysJiSJEnKwGJKkiQpgxaH34QQ7gA+BCyPMY7LtV0P/D2wIrfa\nVTHGx4rVyVZpy3P+0trLPcovdcQezY82U1Op773Pk0ty2vGvJbZfN/D1ZrZqn5/N9rgcJmmPk0/2\n+yVwVkL7j2KM43NfJiFJ7dUvMYdJKqIWi6kY43PAqhL0RZIKzhwmqdiynJe/LIQwPYRwRwihX9pK\nIYRLQghTQghTatiaIZwkFVSLOcz8JSkfbS2mbgXGAOOBJcAP0laMMd4WY5wQY5xQRZc2hpOkgsor\nh5m/JOWjTcVUjHFZjLEuxlgP/ByYWNhuSVLxmMMkFVKbiqkQwtBdfvwoMKMw3ZGk4jOHSSqkfKZG\nuBc4FRgQQlgIXAecGkIYD0SgGvhiEftYfGlTIDT3QNvWblOR/ODYNmvtw3bbMmVER1bIaTH2wNf3\nqZmHJLbXjfhLiXuSXYfIYZLKqsViKsZ4YULz7UXoiyQVnDlMUrG1z1n2JEmS9hAWU5IkSRlYTEmS\nJGVgMSVJkpRBizegF1yxRza1Yf+hU1XyrmprWh8/ZdTe/GuOTd1kv/+Ymdhet2Zt6+On2QNHlLVb\naQ+g3osePn3ov65IbJ848BOp29w27n+K1R1Jatc8MyVJkpSBxZQkSVIGFlOSJEkZWExJkiRlYDEl\nSZKUQelH8yU986xUI81Snrf2v9V/TWyvJ71fVSF51F5NrEtZf2rqvmq+mLzNh4YfnbqNVEy1b7+T\n2D7gnPRnTH7hS19JWfLVAvRIktovz0xJkiRlYDElSZKUgcWUJElSBhZTkiRJGVhMSZIkZWAxJUmS\nlEHpp0ZIkjJlAVDYaRNS9vWRk89LbF9+ytDUXe1zz8vJIbZuTWyvP2l86r4qnn81ZYkPJ1Y708zD\nnIf+z4zE9unF6osktROemZIkScrAYkqSJCkDiylJkqQMLKYkSZIysJiSJEnKoMXRfCGEfYFfAYNp\nGF52W4zx5hBCf+DXwGigGrggxri6eF0tntp51Ynt/VPaASr69klsr9u2LXn9SdPSO9DcaEa1P82M\naEtUqtGqbYlfQLG2tiRxWqMj5C9J5ZfPmala4GsxxkOB44BLQwiHAlcCT8cYDwCezv0sSe2J+UtS\n0bVYTMUYl8QYX859vx6YBQwHzgHuzK12J3BusTopSW1h/pJUCq2atDOEMBo4CngBGBxjXJJbtJSG\n0+hJ21wCXALQle5t7ackZWL+klQsed+AHkLoCfwW+EqMcd2uy2KMkZTpumOMt8UYJ8QYJ1TRJVNn\nJaktzF+SiimvYiqEUEVDIro7xvhgrnlZCGFobvlQYHlxuihJbWf+klRs+YzmC8DtwKwY4w93WfQI\ncDHw3dy/D7e5F6UY0VRgdWvWFm5n5T7+tNFe5e5XR1DI177co0IrK8sbP0FJ8pekDi+fe6ZOBC4C\nXgshbB/ffxUNSej+EMLngXeAC4rTRUlqM/OXpKJrsZiKMU4C0j7ynl7Y7khS4Zi/JJWCM6BLkiRl\nYDElSZKUgcWUJElSBhZTkiRJGbRqBnTtpZwCoSlfk9arb+UDoCVpL+GZKUmSpAwspiRJkjKwmJIk\nScrAYkqSJCkDiylJkqQMHM0nH3S8pyn3A43T+PsiqYPyzJQkSVIGFlOSJEkZWExJkiRlYDElSZKU\ngcWUJElSBqUfzeeIn/JoryPAVDhpf1u+93u1M4eNL3cXpA7PM1OSJEkZWExJkiRlYDElSZKUgcWU\nJElSBhZTkiRJGbRYTIUQ9g0hPBtCeD2EMDOEcHmu/foQwqIQwrTc19nF764k5c/8JakU8pkaoRb4\nWozx5RBCL2BqCOHJ3LIfxRi/36qIrR2m3drh3h196gWHwe/9Wvs73pa/ib3n96iw+UuSErRYTMUY\nlwBLct+vDyHMAoYXu2OSlJX5S1IptOqeqRDCaOAo4IVc02UhhOkhhDtCCP0K3DdJKhjzl6RiybuY\nCiH0BH4LfCXGuA64FRgDjKfhk98PUra7JIQwJYQwpYatBeiyJLWO+UtSMeVVTIUQqmhIRHfHGB8E\niDEuizHWxRjrgZ8DE5O2jTHeFmOcEGOcUEWXQvVbkvJi/pJUbPmM5gvA7cCsGOMPd2kfustqHwVm\nFL57ktR25i9JpZDPaL4TgYuA10II03JtVwEXhhDGAxGoBr6YV8SkkUWFHDnU3L46+kg/qeMpbP6S\npAT5jOabBCRVKI8VvjuSVDjmL0ml4AzokiRJGVhMSZIkZWAxJUmSlIHFlCRJUgb5jOYrr7TReSG5\nDgyVlam7ijXbCtGj9i3ldWlWrE/Zl88/lCSpJZ6ZkiRJysBiSpIkKQOLKUmSpAwspiRJkjKwmJIk\nScrAYkqSJCmD9jE1QnND7VOG54eKAj4cWZIkqY08MyVJkpSBxZQkSVIGFlOSJEkZWExJkiRlYDEl\nSZKUQfsYzVcq7fXBvWn9aou0hxa3YcSkJElqmWemJEmSMrCYkiRJysBiSpIkKQOLKUmSpAwspiRJ\nkjJosZgKIXQNIbwYQng1hDAzhPCtXHv/EMKTIYS3cv/2K353d4r1Mfmrri71ixiTv/YmbTnGjvC6\nqENqr/lL0t4lnzNTW4HTYoxHAuOBs0IIxwFXAk/HGA8Ans79LEntiflLUtG1WEzFBhtyP1blviJw\nDnBnrv1O4Nyi9FCS2sj8JakU8rpnKoRQGUKYBiwHnowxvgAMjjEuya2yFBhcpD5KUpuZvyQVW17F\nVIyxLsY4HhgBTAwhjNtteaTh014TIYRLQghTQghTatiaucOS1BrmL0nF1qrRfDHGNcCzwFnAshDC\nUIDcv8tTtrktxjghxjihii5Z+ytJbWL+klQs+YzmGxhC6Jv7vhtwBjAbeAS4OLfaxcDDxeqkJLWF\n+UtSKeTQ3sb0AAAJeElEQVTzoOOhwJ0hhEoaiq/7Y4y/DyFMBu4PIXweeAe4oCg9TB2i34YH+rZX\n7bXP7bVfUv7Km78kdQgtFlMxxunAUQnt7wKnF6NTklQI5i9JpeAM6JIkSRlYTEmSJGVgMSVJkpSB\nxZQkSVIG+Yzma58caVZ0oVPyr0esrS1xTyRJar88MyVJkpSBxZQkSVIGFlOSJEkZWExJkiRlYDEl\nSZKUgcWUJElSBu1jaoQQ0pc5BULxpbz+b/zn+MT2Q776Zuqu6jdvSWyPNdta3y9JkvYAnpmSJEnK\nwGJKkiQpA4spSZKkDCymJEmSMrCYkiRJyqD0o/kqKpt2YvjQ1NXnXzgysX3TsPrE9liRPvrvoH95\nNbG9fkvyCLQ9UsrIvFWPHpC6yc8PuyuxfXyXVxLbl5+5MXVf5828KLG9x1nzUreRJGlP5pkpSZKk\nDCymJEmSMrCYkiRJysBiSpIkKQOLKUmSpAxaHM0XQugKPAd0ya3/QIzxuhDC9cDfAytyq14VY3ys\n2X11rqLTkKYj95bc0iN1m0nv+UFiexVNRwUC/NvKo1P39b9fODmxfeArmxLbw/PTUvfVbqU8y/Cb\nB/0+dZPxXbq0KsQ+Fd1Slz0x7r7E9o8ysVUxpEIoZP6SpDT5TI2wFTgtxrghhFAFTAohPJ5b9qMY\n4/eL1z1JysT8JanoWiymYowR2JD7sSr3lT6ZkyS1E+YvSaWQ1z1TIYTKEMI0YDnwZIzxhdyiy0II\n00MId4QQ+qVse0kIYUoIYcq2us0F6rYk5adQ+auGrSXrs6Q9S17FVIyxLsY4HhgBTAwhjANuBcYA\n44ElQOLNTTHG22KME2KMEzpXpt9rI0nFUKj8VUXr7i2U1HG0ajRfjHEN8CxwVoxxWS5J1QM/B+8w\nltR+mb8kFUuLxVQIYWAIoW/u+27AGcDsEMKuw/I+CswoThclqW3MX5JKIZ/RfEOBO0MIlTQUX/fH\nGH8fQrgrhDCehps5q4EvtrSjulGBNT/t3KT9hcPvSd2mKrTu0uB3Br2WuuzKK19KbF9VX5vY/qXT\nkh/aC1A3tzp5QcrUBKXy7heOT2z/YPepzWyVPM1E6tohvQZPm7JCe5i03+OEB5VvFzqV/rnpeShY\n/pKkNPmM5psOHJXQnl5pSFI7YP6SVArOgC5JkpSBxZQkSVIGFlOSJEkZWExJkiRlUNLhNzVbO7G4\nekCT9tWHbUndZlBl+kOQW6tnRdeU9uT1b3vmrtR9nXr/FYntY69+JbG9oltybIC6dRtSl6WpHDMy\nsf13134vsb0q9Gx1jLaop74kcdQKIaQvSxu1l7ZNTH9/Q4/uyQvWpoeXpL2BZ6YkSZIysJiSJEnK\nwGJKkiQpA4spSZKkDCymJEmSMijpaL4xfVbwqzN/2qR9QW1V6jaDyviotxGd0kfAzfnkfyYv+GSR\nOtNE2rP2SjNqL02ntGfzpY4OK++zDDuEEr3Gsd6RnMrmj4unlbsLic4cNr7cXVA755kpSZKkDCym\nJEmSMrCYkiRJysBiSpIkKQOLKUmSpAwspiRJkjIo6dQIb68cxEV3fKVJe5cJq1K3eXHC3YntVaGM\ncyZ0cHXNPOy2unZTYnvolDz9RayrSw/UTBwVSEj5PJX22qetD8QNGwvQIUna83hmSpIkKQOLKUmS\npAwspiRJkjKwmJIkScrAYkqSJCmDEEv4oNkQwgrgndyPA4CVJQveVEeO35GPvdzxO+Kxj4oxDixx\nzIIzfxm/HcTu6PHbbf4qaTHVKHAIU2KME8oSvIPH78jHXu74HfnY9yblfh2N799wR4xf7mNvjpf5\nJEmSMrCYkiRJyqCcxdRtZYzd0eN35GMvd/yOfOx7k3K/jsbvmLE7evxyH3uqst0zJUmStDfwMp8k\nSVIGZSmmQghnhRDeCCHMCSFcWeLY1SGE10II00IIU0oQ744QwvIQwoxd2vqHEJ4MIbyV+7dfieNf\nH0JYlHsNpoUQzi5S7H1DCM+GEF4PIcwMIVyeay/J8TcTv1TH3zWE8GII4dVc/G/l2ot+/M3ELsmx\n783Kmb9y8TtMDitn/srFKlsO68j5q4X47TKHlfwyXwihEngTOANYCLwEXBhjfL1E8auBCTHGksxV\nEUJ4L7AB+FWMcVyu7SZgVYzxu7lk3C/G+I0Sxr8e2BBj/H4xYu4SeygwNMb4cgihFzAVOBf4DCU4\n/mbiX0Bpjj8APWKMG0IIVcAk4HLgPIp8/M3EPosSHPveqtz5K9eHajpIDitn/srFKlsO68j5q4X4\n7TKHlePM1ERgToxxXoxxG3AfcE4Z+lESMcbngFW7NZ8D3Jn7/k4a/kBKGb8kYoxLYowv575fD8wC\nhlOi428mfknEBhtyP1blviIlOP5mYiubDpW/oLw5rJz5Kxe/bDmsI+evFuK3S+UopoYDC3b5eSEl\n/AWh4c14KoQwNYRwSQnj7mpwjHFJ7vulwOAy9OGyEML03Gn0ol1m3C6EMBo4CniBMhz/bvGhRMcf\nQqgMIUwDlgNPxhhLdvwpsaHE7/1eptz5C8xhUIbf4XLmsI6Yv5qJD+0wh3XEG9BPijGOBz4IXJo7\njVw2seE6a6mr7VuBMcB4YAnwg2IGCyH0BH4LfCXGuG7XZaU4/oT4JTv+GGNd7vdtBDAxhDBut+VF\nO/6U2CV971UUHT2Hlfx3uJw5rKPmr2bit8scVo5iahGw7y4/j8i1lUSMcVHu3+XAQzScti+1Zbnr\n4duviy8vZfAY47LcL2k98HOK+BrkrnX/Frg7xvhgrrlkx58Uv5THv12McQ3wLA3X+0v6/u8auxzH\nvpcpa/4Cc1ipf4fLmcPMX03jt9ccVo5i6iXggBDCfiGEzsAngEdKETiE0CN3Ix8hhB7AB4AZzW9V\nFI8AF+e+vxh4uJTBt/8h5HyUIr0GuRsIbwdmxRh/uMuikhx/WvwSHv/AEELf3PfdaLhpeTYlOP60\n2KU69r1Y2fIXmMOgdH+/uVhly2EdOX81F7/d5rAYY8m/gLNpGBEzF7i6hHHHAK/mvmaWIjZwLw2n\nImtouL/i88A+wNPAW8BTQP8Sx78LeA2YTsMfxtAixT6JhlPA04Fpua+zS3X8zcQv1fEfAbySizMD\nuDbXXvTjbyZ2SY59b/4qV/7Kxe5QOayc+SsXv2w5rCPnrxbit8sc5gzokiRJGXTEG9AlSZIKxmJK\nkiQpA4spSZKkDCymJEmSMrCYkiRJysBiSpIkKQOLKUmSpAwspiRJkjL4/3QYJBEpyUCQAAAAAElF\nTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAEgCAYAAACQH/YaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYXFWZ+PHv6U5nT0hC9pAQSNgDBAlhlyVsMqOgCCMy\niI7+cBxEnFFHBxfA0VFRHBl1eARFcQFlk2UGFAgRDINAgyFkgZCEkH0jCdmX7j6/P7oS0ul7O9V9\na+nu+n6ep55UnbuccyvVb7996pxzQ4wRSZIktU1VuRsgSZLUkZlMSZIkZWAyJUmSlIHJlCRJUgYm\nU5IkSRmYTEmSJGVgMiVJkpSByZQkSVIGJlOSJEkZdMlycAjhPOBmoBr4aYzx2y3t3zV0i93plaVK\nSR3MBtaujjEOKnc7krQmhhm/pMqTb/xqczIVQqgGfgycDSwGXgghPBRjnJV2THd6cXyY1NYqJXVA\nT8R73yx3G5K0NoYZv6TKk2/8yvI130RgboxxfoxxO/Bb4IIM55OkUjKGSSqILMnUCGDRbq8X58qa\nCCFcGUKoDSHU7mBbhuokqaD2GsOMX5LyUfQB6DHGW2OME2KME2roVuzqJKlgjF+S8pElmVoCjNzt\n9X65MknqCIxhkgoiy2y+F4CDQggH0BiAPgR8uKUDQlUVVT16Nitv2Lw5QzNaIYTk8hhLU38hpV2L\nOodyfybb8rOSekz25hRJq2OYJCVpczIVY6wLIXwa+CON04pvjzHOLFjLJKmIjGGSCiXTmKkY4yMx\nxoNjjGNijN8sVKPauyH7D+Lxhnv4wu1XNSn/wu1X8XjDPQzZvzhL6hx12uE83nAPl193cVHOL1Wa\nSo1h5bAmruSJeC/zOnC+Oi/O5Il4L2viynI3Re1MpkU7i+nxhnuavK6vb2Dj2o3Mn76QR382mSl3\nTS1Ty4pnyP6D+PUb/81jv/gT3/2HH5e7OUXxvcnXcfTpR3B29SXlbopUEpviBpYwn7WsYgubqKeO\narrQk970YyBDGUXf0L/czWx3lsYFzKKWw5nA8DC609apzqHdJlM7/fKGuwHoUtOFkYcM56QLjuOY\nM8dx8IQx/ORzd5S5dU397Nrf8Nvv/J7VS9YU5fyvPT+XfzjsGt5evaEo55dUODFG3mA282lcA7QP\n/RjCSGroSj11bGAdi5jHQl7nkDiekWFsmVssqa3afTL1qxua9lAdc+Y4vv3YV/nANefzwH89woo3\nV5WpZc2tWb6ONcvXFe3827ZsZ9FrSxtfOABdatd2JlLd6MGRHE+/MLDZPtvjVhbyOnXsKEMLJRVK\nu0+m9vTXJ2ew6NWl7H/4fhxy3BhWvLmqyddjd37rfj769Q9x9BlHsM/APnxh0g1Mfyr3l2H/Xlz8\n+fdx8gXHMWT0YOq21zGndh6/u/EBXnx8erO6evTuzkdu+DtOu/hE9hnYh+ULVvHIbU/wzAPPJ7bt\nC7dfxTkfPZ2/P+CfmiV5hxw3lg/+y3sZd8qh9B3Yhw1rNrLglYU88rPJPH3Ps1x+3cV85LrGr77O\n+ejpnPPR03cd+92P/ZjH7vgTR512ODdNuYFf3nA3v/r6vU3OP2LsUC77ykUcc+aR7DOoL+tXr+el\nya/wm2/cx5K5y5vse/nXLuYj113M5868nn0G9uGSz1/A6HEj2b51By8+/jI/+fwveWvp2ibHDD1g\nMB/64oWMP2McA0cMYNuW7by1ZA0z/+81bv/KXWxYszG//0CpAmyOG3mD2QSqOIZT6B32Sdyva+jO\nWI6kITY0KZ8ZX2AZb3IS57Ga5SzlDTazgb4MYEI4HWjs+VrCfJaygE2sJwK96ctwRjOCAwm7/cG1\nJW7iGR5lGPtzRDiuWTtq459Yx2rOCh/cVbYmruQlnuYADmMwI5jLDN7mLRpooC/9Gcu4xARxW9zK\nPGawmmXUsYOe9GEUB9Gd5jO50+xsD8AsapkVa3dtO5n30CP0Yl6cyRvM5l28m+00JqWbWE8N3Tgl\nnN+k/WPCEc3qmBofAeCUcH7ede5uRVzMm7zGRtZTRRX7MoSDOJruoUfe16nOo6TJVGxoKMgyCDtj\nRNz5IlcwbMwQfviX/2DxnGU8eedUuvXoyuYNWyEEBo8ayPeevJ5hBwxm+tOzeOGPL9O9VzdO+Jt3\n8R+PfpkffOo2Hv3p5F111HTtwo1PXMehE8cyb9oCnrxzKr369eSyr1zEUacdnmsITXuIdj7drU0A\n7/nEJK758Seor2/gLw/XsuT15fQb3JeDjx3D+z51Lk/f+xdefmoW99/8v3zgmr9h3rQFPPPgC7uO\nn/fygj3O2bRX6uAJY7jxsa/So093nn34RRbOWszIQ4cz6bJTOel9x/Gv5/w7c2rnNXsf3/epcznx\nvcfy7MMvMv3pWRw6cSxn/N3JjDlqf/7xXf/Kju11AAwY2o8fP/ctevbtwfOP/pWp9z9H1+41DD1g\nMJP+/lQe/PEfipNMtXZ5gJZ660Lr5lqEqtb3/MWGlPbu8Yuy6bZ2um5AG9pV1SPll8imjG3pgJax\ngEhkKPulJlK7q0r5fM7hZdaxmoEMZV+GEnb72Z/J8yxnEd3owXAOAGAVS3mVv7KO1Yzj+IJcywbW\n8iZz2IcBDGc0W9nCShbzEk9zfDybXqHPrn23x23UMoUtbKIf+9KPgWxjK6/yEgMYknedwxlNDV1Z\nxVIGMZzevPMedqGmyb4LeZ01rGAgw+jP4Db38rWmzsXMZzVLGchw+jOIt1nDChazgbc5IZ5FVahu\nUxvUcXW4nqljJh3JfocMp6GhgddeaJogHHnqYdz1rd9z+1fuanbcv/78KobsP5BvfvgH/Ol3/7er\nvNc+Pbnpyeu56gcf49mHalm38m0APvgv7+XQiWP58/3P8e+XfJ+Y++Xyu+88wI9f+E7e7R112Ag+\n86OPs2n9Fv7ltK/x5qzFTbYPHDEAgOlPzWLFglWNydTLC/jV1+9JOl2iL/7iKnrt05NvXf5fPHnn\nOwPzT7vkRL5y1z/zxTs+zSfG/cuua9hpwrlHc9Xx/8aCGe/cUePffv0Zzrz0FE684DievudZAE69\n6AT67tuH//7sz/n9Dx9tco7uPbvR0NBCsiBVoHW8BUB/Bmc6zwbWcjxnNesVWR4XspxF9KEfx3I6\nXUJjKB8bx1HLUyxnEQPjMIaGUZnqB1jN8mYDshfH+bzKSyzidQ7lXbvK5zGDLWxiJGM5JIzfVT4y\njuEFpuRd5/AwGiK7EpuWBoOvYSUTOCPzIP7W1PkWy5nIpCaJ8ivxOVawiFUsZUiTtWBVCYp+O5ms\nLr/uYi6/7mI+9o1L+erdn+Nbj36Zqqoq7r/5EVYuXN1k3zXL1yUmIQcetT9Hn34EU+9/rkkiBbDp\n7c3cccPddOvRlVM/8M5fcud+9HTq6xu47Yu/bpKELF+wigf2SCha8t5/PIcuNV34zTfua5ZIAZkH\nqx9x0iGMOmw/Zv7fa00SKYCn7n6WV/48m1GHjmDcKYc2O/aBHz7aJJECeCTXO3focc0Hw27bur1Z\n2dbN29i+1fEe0u62sxWAbjTvrdsSNzEvzmzyWBhfTzzP/hzSLJECWMoCAMYyblciBVAdunAQ4wBY\nwhtZLwOAfdi3WWIxnNEEAm/zznCAhtjAMhZSTRfG0PRrtb5hAEPJntglGcEBJZ8NOZKxzXocR+R6\nB9+mOBOQ1L61+56pneOIGhoa2LhuM6/8eTZ/uP1JJt/ZfGmE+dMX7PpqaneHn3gw0NgLdfnXmq/R\n1G9QX6CxFwkax0qNOGgYKxeuZtn8Fc32f/mpmUB+az0ddvxBALzwh7/mtX9rjT2m8Qd42pQZidun\nTZnBkacextjxo3nlz7ObbJvz4vxm+69a1Jig9u7/TgB/9uFa/uGbl3L1Dz/OhHPGU/vYNGY+81pi\nciipZVvYxBs0/VnsTk9GcVCzffsyIPEcG2ic6JLU89WPQQTCrn2y6kvzRKUqVNE1dqeOd/7A2swG\nGqinHwPpEmqaHdOfQSzjzYK0aXf7pLxHxZT0nuwcE+ZkgsrU7pOps6tSkpaE8TFrlr+duGvfAb0B\nOPbsozn27KNT6+rRuzvQmHQBrF2RHIzWtmLGXu9+jUlJsZZL2NnWNcuS27RzdmGvfs3/ut24rvlg\nlvq6xq/sqqvf6bRcuXA1V59wLZdfdzHHnTt+Vw/eyoWrueemh3ngR/n31EmVoCvd2cQGtrGl2bYB\nYTBn0TjQuyE28CT3p56nG90Ty+vYQQ1dE8daVYUqamJXtrOtja1vas/xQjsFAnG3ewXtTCK6ptwQ\numvKtWRVrPO2JOk92TmeLbbj+yepeNp9MtUqKYNmN73dOOj9x9f8PK9f/Dv37z+kX+L2/kOTy5Ps\nTFgGjhjwzrIGBbSrrSltGpAr37lfWy18dQnfvPQHVFVXMebo/XnXpKO44NPncdXNH2Pr5q384fb8\nx0NInV0/9mUtq1jLyl1f/xRSF2rYwXYaYkOzhKohNrCD7U1+4e/tF30helN21peWxO386rNU8rnm\ntERRaq12P2YqVYxNH9A4vW/P8hiZ/Zc5ABx5yqGJ2/d8bNmwhSWvL2PfEQMYdsDgZtuP3jmbr1l9\nzds2+7nGsRDHnTd+r/U21NUDUFVVlb7fzopzr+f+tXFcxNGnHZ64/9GnN45dmPvS/N3OEZu1M9/3\nsqGuntdfnM/vbnyA//jwDwA46X3H5fW+EiOfP/P6xt7GfPYvpIb6Vj1iXV2rH6nnK9U1llnD5s2J\nj0o0LDemaAVL2BTXF/z8fWj8I2kdzdfZW8dqInHXPvBOorOV5v8fdXEHm8k+G7cnfaiimg2soy42\nT87WJrS1JVl7emroCpDYO7g5bkxMIO1dUlt13GSqFea8OJ/pT8/i5A8cz7kfOyNxn9HjRu0aOwXw\nx19Mobq6ik98+++brNcydPRgLrz6/LzrfviWx6jbUcdlX/kgow7br9n2nbP5ADas3URDQwODRzVf\nuyXNzGdeZeGrSzjy1MM49aITmmw79aITOOrdh7PotaXMmPpq3ufc00HvOpCefZuvEbOz527b5uYD\n09MMO3AIIw8ZTnUXpw6r8+oZenMAhxFp4K9MZV1cnbhflmn8AHOZQX18Z5xofaxjLq/k9nmnR6xL\nqKEnfXibt9i4W3IXY2QOL9NAfZvasbuqUMUwRlFPHfNoev+99XENy1nYqvPtTIaSEsB89KQP1XRh\nFUvZHt/pFauP9bzGtKLUqcrVub7ma8G3LruZ706+js//7J94/9XnM/v519m0bhMDR+zLgUftzwFH\njuIzJ17LulWNgebemx7mpAsm8u4PnsAtL95I7WPT6NWvF6ddfCKvPD2bky5ovvBdkoWzF/NfV/2U\na265klteupFnH3yBJXOX03ff3hw8YSyb12/mC5NuAGDrpq28+txcxp16KF/61WdY/PpSGuobePah\nWt54JT0QffejP+Lbj32VL//2n3n2wRdY9NoS9jt4OCddOJFN6zdz4xU/bLYsQmucdfm7+Zsrz2bG\n1FdZNn85G9ZuYviBQzjhvRPYvnU799/8v3mf68YnvsbQ0YMTFzaVOpPGZKrxljK1/Ik+sT/70J8u\ndKWOHWxlE2tovGFuP/L/AwpgaBjFqriUFSzmWR5jUBxOILCKpWxhE0PYj2F7LIuwPwczmxepZQpD\n4n5UUc0aVhKJ9GYfNpI85rQ1xjCONaxkEXPZENfuWmdqBYvYl6GsZlne59qHfamimoW8zo64fdfY\nqFGMTRzgvqeqUMWoeBBvMJvneIJBcQSRyBpW0I3uiePRstapylUxydTqJWv4pwlf5MKr38MpHziB\nSR8+larqKtYsX8fCWYt54EePNklYdmyv44tnf53Lr7+E0y85ifd/5nyWL1jFnd+8j6m/fz7vZArg\n0Z9OZsGMRVz8ufdy1OlHcNKFE1m/ev2umzbv7jsf+SH/+P0rOO688Zxx6clUVVWxevGaFpOpV5+f\ny6cn/huXffkijjnrSE5477G8vXoDU+6aym++cR+L52QbqzXlrqnUdKvh8BMP5qBjD6Rbj66sXrKG\nP/32Ge79/sMsmLlo7yeRKkwIgTEcwdA4isXMYy2rWM6iJjc6HsGBDGP/Nk3tH8fx9GMQS1mwaxmE\nXvThEMazH2Oa7T8iHACxcZHLpbxJDTUMYjhjGMd0ns18vQBdQzcmxDOYywxWs5T1rKUnfTiUd9Gd\nnq1KpmpCV46KJ/IGs1jGAupzvWfDGJX3WKcDOZxqqlnCGyxhPl3pzlBGciCH8yyPFaVOVaaQpcei\ntfqGAfH4MKlk9anCtLQCeicbn9SRPBHvfTHGOKHc7cjK+CVVnnzjV0WMmZIkSSqWivmaTxWgUnqf\nqlIG76fdA7CF+xJWH9Z8pXuAi+59KrH8I32XpJ7rjbrkqe+HFWfha0lqN+yZkiRJysBkSpIkKQOT\nKUmSpAxMpiRJkjIwmZIkScrAZEqSJCmDTEsjhBAWABuAeqCuMyzMpxJraaHNNJ1oCYTqfvsklsfR\nI1KPefSROwvYghdbuX/6PRUPrumVrSllYAyTSuuPS5Pvi1hu5w4fn+n4QqwzdUaMKXfxlKT2zxgm\nKRO/5pMkScogazIVgSdCCC+GEK5M2iGEcGUIoTaEULuDbRmrk6SCajGGGb8k5SPr13ynxBiXhBAG\nA4+HEF6NMT69+w4xxluBW6HxRqEZ65OkQmoxhhm/JOUjU89UjHFJ7t+VwO+BiYVolCSVgjFMUiG0\nuWcqhNALqIoxbsg9Pwf4esFaJnWiWXtp6te9nbxhWkq5CsYYJqlQsnzNNwT4fWic2t4FuDPG+IeC\ntEqSis8YJqkg2pxMxRjnA0cXsC2SVDLGMEmF4tIIkiRJGZhMSZIkZWAyJUmSlEEhbicj7V1b7sFX\nwdLu2SdJan/smZIkScrAZEqSJCkDkylJkqQMTKYkSZIyMJmSJEnKwGRKkiQpA5dGkMopZcmIhk1b\nStyQ7JbVbSx3EySpLOyZkiRJysBkSpIkKQOTKUmSpAxMpiRJkjIwmZIkScrA2XwqjRjL3YIOpXrw\nwNRt9bEh+ZiQ/LfRM1uT9wc4uXvyMX/Y3C2x/Lye21LPdcpTV6ds+XLqMZLUGdgzJUmSlIHJlCRJ\nUgYmU5IkSRmYTEmSJGVgMiVJkpTBXmfzhRBuB/4WWBljHJcrGwD8DhgNLAAuiTGuLV4z1WGk3Guu\noDrTzMCUa4k9kmfTAWyLdYnlPUPXxPJ/X/De1HP94dD/TSy/+egJieXnvf5M6rnGfmRaYvmC1CNK\nwxgmqdjy6Zn6BXDeHmVfAibHGA8CJudeS1J79AuMYZKKaK/JVIzxaWDNHsUXAHfknt8BXFjgdklS\nQRjDJBVbW8dMDYkxLss9Xw4MKVB7JKkUjGGSCibzAPQYYwRSB7GEEK4MIdSGEGp3kL56siSVQ0sx\nzPglKR9tTaZWhBCGAeT+XZm2Y4zx1hjjhBjjhBrSB9VKUgnlFcOMX5Ly0dZk6iHgitzzK4AHC9Mc\nSSoJY5ikgslnaYS7gNOBgSGExcB1wLeBu0MIHwfeBC4pZiPVgXSmZQvKqH7uG6nbPjDm1MTyr786\nNbE8Tlqaeq4PTz0jsbxhU/IqAUc8e1nqufaLM1O3lZMxTGo/zh0+vtxNKIq9JlMxxktTNk0qcFsk\nqeCMYZKKzRXQJUmSMjCZkiRJysBkSpIkKQOTKUmSpAz2OgBd6tTSbszcjmclxm3Ji0d+7eCTUw7Y\nnnqutZO2tKruUZfNS93W0KozqVD+uDT5BtPl1llnbUlJ7JmSJEnKwGRKkiQpA5MpSZKkDEymJEmS\nMjCZkiRJysBkSpIkKYPOtzRC2lT3tmjH0+NVZC19jtrp5yLuSF8CIVVV6/6e2vbucanbah6rbX39\nktQJ2DMlSZKUgcmUJElSBiZTkiRJGZhMSZIkZWAyJUmSlEHnm83XTmdaFVwHvEFvh1Ih72PcUZdY\n3uXA0Ynlj/z81tRz/e17Ppy84eXWtkqSOhZ7piRJkjIwmZIkScrAZEqSJCkDkylJkqQMTKYkSZIy\n2OtsvhDC7cDfAitjjONyZdcD/w9Yldvt2hjjI8VqZLvU2nsAtmV2WFvuD+csv9ap9PclNiQWf3Py\n7xLLq0O31FPd/j8/TSzfb2Trm1VIxjBJxZZPz9QvgPMSyv8zxjg+9zAISWqvfoExTFIR7TWZijE+\nDawpQVskqeCMYZKKLcuYqatDCNNDCLeHEPqn7RRCuDKEUBtCqN3BtgzVSVJB7TWGGb8k5aOtydQt\nwIHAeGAZcFPajjHGW2OME2KME2pIH28hSSWUVwwzfknKR5uSqRjjihhjfYyxAbgNmFjYZklS8RjD\nJBVSm5KpEMKw3V6+H5hRmOZIUvEZwyQVUj5LI9wFnA4MDCEsBq4DTg8hjAcisAD4ZBHb2DqFXE6g\ngEKXFt7qkJzTxrodra+oLddY6csDtFYnWn4iNiS3eWxN669lWJfeWZtTFB0uhknqcPaaTMUYL00o\n/lkR2iJJBWcMk1RsroAuSZKUgcmUJElSBiZTkiRJGZhMSZIkZbDXAegdTltmVJV7FlZVCWaHlfsa\nO5qWZj+mzL6E5JsGt+v3PuVGx9cuPzWx/KZhf0k91Y5YX5AmSVJHY8+UJElSBiZTkiRJGZhMSZIk\nZWAyJUmSlIHJlCRJUgadbzZfG6TdNy/W1RWsjhbPVcB6VAIpM+A6pJSZhnNOSC4/9/QrU0910vee\nT9mysLWtkqQOxZ4pSZKkDEymJEmSMjCZkiRJysBkSpIkKQOTKUmSpAxMpiRJkjJwaQQg1qfcoLWl\nm92255vXShmlLeVRM/ml1GNemjSoWM2RpHbNnilJkqQMTKYkSZIyMJmSJEnKwGRKkiQpA5MpSZKk\nDPY6my+EMBL4JTAEiMCtMcabQwgDgN8Bo4EFwCUxxrXFa2oROTNPe2rpM5E2y7O9fo5ampWaJu1a\nWrjG+rVvt76eIquI+CWp7PLpmaoDPhdjPBw4AbgqhHA48CVgcozxIGBy7rUktSfGL0lFt9dkKsa4\nLMb4Uu75BmA2MAK4ALgjt9sdwIXFaqQktYXxS1IptGrRzhDCaOAY4DlgSIxxWW7Tchq70ZOOuRK4\nEqA7PdvaTknKxPglqVjyHoAeQugN3Ad8Nsa4fvdtMcZI43iEZmKMt8YYJ8QYJ9TQLVNjJaktjF+S\niimvZCqEUENjIPpNjPH+XPGKEMKw3PZhwMriNFGS2s74JanY9ppMhRAC8DNgdozx+7ttegi4Ivf8\nCuDBwjdPJRFC8qOSpb0nLb0vbXkf2+t739L1pzxCTZfER3kvw/glqfjyiXQnA5cDr4QQpuXKrgW+\nDdwdQvg48CZwSXGaKEltZvySVHR7TaZijFOBtD+VJxW2OZJUOMYvSaXgCuiSJEkZmExJkiRlYDIl\nSZKUgcmUJElSBuWdt6z2ob3eoLecSvWe+N5LUodnz5QkSVIGJlOSJEkZmExJkiRlYDIlSZKUgcmU\nJElSBs7mkzqLct8gucGZiZIqkz1TkiRJGZhMSZIkZWAyJUmSlIHJlCRJUgYmU5IkSRk4m0/qLAp5\nn79yzwxU3s4dPr7cTZAqnj1TkiRJGZhMSZIkZWAyJUmSlIHJlCRJUgYmU5IkSRnsNZkKIYwMIUwJ\nIcwKIcwMIVyTK78+hLAkhDAt9zi/+M2VpPwZvySVQj5LI9QBn4sxvhRC6AO8GEJ4PLftP2OM3yte\n81qQNnW7kNPDJXV07TN+SepU9ppMxRiXActyzzeEEGYDI4rdMEnKyvglqRRaNWYqhDAaOAZ4Lld0\ndQhhegjh9hBC/wK3TZIKxvglqVjyTqZCCL2B+4DPxhjXA7cABwLjafzL76aU464MIdSGEGp3sK0A\nTZak1jF+SSqmvJKpEEINjYHoNzHG+wFijCtijPUxxgbgNmBi0rExxltjjBNijBNq6FaodktSXoxf\nkootn9l8AfgZMDvG+P3dyoftttv7gRmFb54ktZ3xS1Ip5DOb72TgcuCVEMK0XNm1wKUhhPFABBYA\nnyxKC1urpRu0VsJMv0LeoLYS3i91dh0rfknqkPKZzTcVSPoN/UjhmyNJhWP8klQKroAuSZKUgcmU\nJElSBiZTkiRJGZhMSZIkZZDPbL72KbQhD4z1hW9HZ+b9DyVJ2it7piRJkjIwmZIkScrAZEqSJCkD\nkylJkqQMTKYkSZIyMJmSJEnKoMMujRCqkqftxwan7UuSpNKxZ0qSJCkDkylJkqQMTKYkSZIyMJmS\nJEnKwGRKkiQpgw47my9N2iw/gNhQwoa0N96cWJKkorBnSpIkKQOTKUmSpAxMpiRJkjIwmZIkScrA\nZEqSJCmDvSZTIYTuIYTnQwgvhxBmhhBuyJUPCCE8HkJ4Pfdv/+I39x2xvr7Vj04lhORHjMkPqQK1\n1/glqXPJp2dqG3BmjPFoYDxwXgjhBOBLwOQY40HA5NxrSWpPjF+Sim6vyVRstDH3sib3iMAFwB25\n8juAC4vSQklqI+OXpFLIa8xUCKE6hDANWAk8HmN8DhgSY1yW22U5MKRIbZSkNjN+SSq2vJKpGGN9\njHE8sB8wMYQwbo/tkca/9poJIVwZQqgNIdTuYFvmBktSaxi/JBVbq2bzxRjXAVOA84AVIYRhALl/\nV6Ycc2uMcUKMcUIN3bK2V5LaxPglqVjymc03KITQL/e8B3A28CrwEHBFbrcrgAeL1UhJagvjl6RS\nyOdGx8OAO0II1TQmX3fHGP8nhPAscHcI4ePAm8AlRWxnc5U+3b/Sr1/KT/uMX5I6lb0mUzHG6cAx\nCeVvAZOK0ShJKgTjl6RScAV0SZKkDEymJEmSMjCZkiRJysBkSpIkKQOTKUmSpAxMpiRJkjIwmZIk\nScrAZEqSJCkDkylJkqQMTKYkSZIyMJmSJEnKIJ8bHRdfCOnb0m7om3ZMpd8AuKX3MkWXIYMTy+vf\nWptYvvWso1PP1WPKK4nlsa6uVeWSJHUU9kxJkiRlYDIlSZKUgcmUJElSBiZTkiRJGZhMSZIkZVDa\n2XwBQpfmVVYPHZJ6yMIf7pNYvn//5Jlm27+cfq6q52cllscd21OP6WiqunVLLF9zyTGpx0z91o8S\ny3fE+sQUqX1OAAAIb0lEQVTynlXPp55rbf3mxPI71h+eWP7oEf1Sz6V2qNJny0pSAnumJEmSMjCZ\nkiRJysBkSpIkKQOTKUmSpAxMpiRJkjLY62y+EEJ34GmgW27/e2OM14UQrgf+H7Aqt+u1McZHWjrX\njsG9WHr5xGblB184J/WYu0f+NLF8W6xOLL/s3f+ceq4DvrlvYnn9NckzyuKseannaq8zABu2bUss\n73fFotRjakLye5lW3pL+1T0Ty6/ql/xePsqxra5DZdSGez+WUyHjlySlyWdphG3AmTHGjSGEGmBq\nCOHR3Lb/jDF+r3jNk6RMjF+Sim6vyVSMMQIbcy9rcg8Xm5HU7hm/JJVCXmOmQgjVIYRpwErg8Rjj\nc7lNV4cQpocQbg8h9E859soQQm0IobZ+86YCNVuS8lOo+LWD5K/QJSmvZCrGWB9jHA/sB0wMIYwD\nbgEOBMYDy4CbUo69NcY4IcY4obpnrwI1W5LyU6j4VUPy3QUkqVWz+WKM64ApwHkxxhW5INUA3AY0\nH1kuSe2E8UtSsew1mQohDAoh9Ms97wGcDbwaQhi2227vB2YUp4mS1DbGL0mlkM9svmHAHSGEahqT\nr7tjjP8TQvhVCGE8jYM5FwCf3NuJxg5ezv2fubFZ+Zia3i0clTzVPs3Mq/+7VfsD3H1P8s2Ub/3k\nRanHVE95qdX1lETKjWgXrS3vDYWr6FhT6ite2g2NW1gaIVS3y2XrCha/JClNPrP5pgPHJJRfXpQW\nSVKBGL8klUK7/FNSkiSpozCZkiRJysBkSpIkKQOTKUmSpAzymc1XMFtiDTO3D25WPqZmcymb0cwl\nvd9OLH//r29LPeaCcWclltevW5d8QNrsqLZKmVU157bkGwfPOfEnLZys9Tc0bq0G7+DRsbThhsah\ne8qillsytkWS2jl7piRJkjIwmZIkScrAZEqSJCkDkylJkqQMTKYkSZIyKOlsvj5VdZzW461m5Zsb\n0meT9azqWswmtagmpLfrsy9MTSz/0k2fSCwf9JPn0ytqqE8ur0qvv7pv8v0Mnzv35sTyHbEm9Vwt\nXWehpN6br6VZY4WeAan8teG9j/UNRWiIJLV/9kxJkiRlYDIlSZKUgcmUJElSBiZTkiRJGZhMSZIk\nZWAyJUmSlEFJl0aYtWEQxz79qWblt5/wi9Rj3t29iA3K4IweWxPLX/rqLYnlG7+cvD9At5C8bEHq\ncgJAdUjLg3ulHlMK9TF5evycHcnXH7qkL9kQ61OWjEipQyWQ+rmDuH17CRuiSvLHpdPK3YRE5w4f\nX+4mqJ2wZ0qSJCkDkylJkqQMTKYkSZIyMJmSJEnKwGRKkiQpgxBLeDPZEMIq4M3cy4HA6pJV3lwl\n11/J117u+ivx2vePMQ4qcZ0FZ/yy/nZQd6XX327jV0mTqSYVh1AbY5xQlsorvP5KvvZy11/J196Z\nlPt9tH5/hiux/nJfe0v8mk+SJCkDkylJkqQMyplM3VrGuiu9/kq+9nLXX8nX3pmU+320/sqsu9Lr\nL/e1pyrbmClJkqTOwK/5JEmSMihLMhVCOC+E8FoIYW4I4UslrntBCOGVEMK0EEJtCeq7PYSwMoQw\nY7eyASGEx0MIr+f+7V/i+q8PISzJvQfTQgjnF6nukSGEKSGEWSGEmSGEa3LlJbn+Fuov1fV3DyE8\nH0J4OVf/Dbnyol9/C3WX5No7s3LGr1z9FRPDyhm/cnWVLYZVcvzaS/3tMoaV/Gu+EEI1MAc4G1gM\nvABcGmOcVaL6FwATYowlWasihPBuYCPwyxjjuFzZjcCaGOO3c8G4f4zxiyWs/3pgY4zxe8Woc7e6\nhwHDYowvhRD6AC8CFwIfpQTX30L9l1Ca6w9ArxjjxhBCDTAVuAb4AEW+/hbqPo8SXHtnVe74lWvD\nAiokhpUzfuXqKlsMq+T4tZf622UMK0fP1ERgboxxfoxxO/Bb4IIytKMkYoxPA2v2KL4AuCP3/A4a\nf0BKWX9JxBiXxRhfyj3fAMwGRlCi62+h/pKIjTbmXtbkHpESXH8LdSubiopfUN4YVs74lau/bDGs\nkuPXXupvl8qRTI0AFu32ejEl/IDQ+J/xRAjhxRDClSWsd3dDYozLcs+XA0PK0IarQwjTc93oRfua\ncacQwmjgGOA5ynD9e9QPJbr+EEJ1CGEasBJ4PMZYsutPqRtK/H/fyZQ7foExDMrwGS5nDKvE+NVC\n/dAOY1glDkA/JcY4HngPcFWuG7lsYuP3rKXOtm8BDgTGA8uAm4pZWQihN3Af8NkY4/rdt5Xi+hPq\nL9n1xxjrc5+3/YCJIYRxe2wv2vWn1F3S/3sVRaXHsJJ/hssZwyo1frVQf7uMYeVIppYAI3d7vV+u\nrCRijEty/64Efk9jt32prch9H77ze/GVpaw8xrgi9yFtAG6jiO9B7rvu+4DfxBjvzxWX7PqT6i/l\n9e8UY1wHTKHx+/6S/v/vXnc5rr2TKWv8AmNYqT/D5Yxhxq/m9bfXGFaOZOoF4KAQwgEhhK7Ah4CH\nSlFxCKFXbiAfIYRewDnAjJaPKoqHgCtyz68AHixl5Tt/EHLeT5Heg9wAwp8Bs2OM399tU0muP63+\nEl7/oBBCv9zzHjQOWn6VElx/Wt2luvZOrGzxC4xhULqf31xdZYthlRy/Wqq/3cawGGPJH8D5NM6I\nmQd8uYT1Hgi8nHvMLEXdwF00dkXuoHF8xceBfYHJwOvAE8CAEtf/K+AVYDqNPxjDilT3KTR2AU8H\npuUe55fq+luov1TXfxTw11w9M4Cv5cqLfv0t1F2Sa+/Mj3LFr1zdFRXDyhm/cvWXLYZVcvzaS/3t\nMoa5ArokSVIGlTgAXZIkqWBMpiRJkjIwmZIkScrAZEqSJCkDkylJkqQMTKYkSZIyMJmSJEnKwGRK\nkiQpg/8PuVCKyVZBTwgAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAEgCAYAAACQH/YaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8XXWd//HXJ2m677R0o6WUshcoWMoiIMgiMqOgAiOj\nDK6og4ijw7jADOC4MCj6w42fbCMqomwCMz+QtYooAgELtLTQUkr3jbZ035Lv74/clobcm97k3CVt\nXs/HI48k37N8vydNPn3fc8/3nEgpIUmSpPapqfYAJEmSdmaGKUmSpAwMU5IkSRkYpiRJkjIwTEmS\nJGVgmJIkScrAMCVJkpSBYUqSJCkDw5QkSVIGXbJsHBGnAdcCtcCNKaWrWlu/a3RL3emVpUtJO5nV\nrFiWUhpc7XHk05YaZv2SOp9i61e7w1RE1AI/AU4B5gHPRMR9KaWXCm3TnV4cGSe1t0tJO6FH0p2v\nV3sM+bS1hlm/pM6n2PqV5W2+icDMlNKslNIm4DfAGRn2J0mVZA2TVBJZwtQIYO5238/LtTUTERdE\nRH1E1G9mY4buJKmkdljDrF+SilH2C9BTStenlCaklCbU0a3c3UlSyVi/JBUjS5iaD4zc7vs9cm2S\ntDOwhkkqiSxh6hlgn4jYKyK6Ah8G7ttxj7UtPySp8tpXwyTpbdo9my+ltCUiPg88SNO04ptTSlNL\nNjJJKiNrmKRSyXTNVErp/pTSvimlvVNK3yrVoDq6IXsO5uHGO7jk5gubtV9y84U83HgHQ/Yszy11\nDnnXgTzceAfnXX52WfYvdTadtYZVw/K0hEfSnby6E+fVV9NUHkl3sjwtqfZQ1MFkumlnOT3ceEez\n7xsaGlmzYg2zXpjDAzc9yqTbnqjSyMpnyJ6D+dVrP+Whn/+B737iJ9UeTll877ErOPSEgzilxkCo\nzmFtWs18ZrGCpaxnLQ1soZYu9KQ3/RnEUEbRNwZUe5gdzoI0m5eo50AmMDxG77J9atfQYcPUVr+4\n8nYAutR1YeR+wznmjCM47N3j2HfC3vzsy7dUeXTN3fT1W/nNf/2OZfOXl2X/Lz89k08ccDFvLltd\nlv1LKp2UEq8xjVk03QO0D/0Zwkjq6EoDW1jNSubyKnOYwX5pPCNjbJVHLKm9OnyY+uWVzc9QHfbu\ncVz10L/zwYtP554f3s/i15dWaWQtLV+0kuWLVpZt/xvXb2LuywvKtn9JpbM1SHWjBwdzJP1jUIt1\nNqUNzGEGW9hchRFKKpUOH6be7m+PTWHu9AXseeAe7HfE3ix+fWmzt8d+/Z27+dg3PsyhJx5Ev0F9\nuOSkK3nhj7lXhgN6c/Yl7+edZxzBkNG7s2XTFl6pf5XfXn0Pzz78Qou+evTuzj9d+Q+86+yj6Teo\nD4tmL+X+Gx7hz/c8nXdsl9x8Iad+7AQ+utc/twh5+x0xlrO+9D7GHbs/fQf1YfXyNcx+cQ733/Qo\nj9/xJOddfjb/dPk5AJz6sRM49WMnbNv2ux//CQ/d8gcOedeBXDPpSn5x5e0tQuaIsUP5yGVncdhJ\nB9NvcF9WLVvFc4+8yK3fvJP5Mxc1W3drX18+8XL6DerLOZecwehxI9m0YTPPPvQ8P/vXX/DGguZn\n14butTsf/uoHGH/iOAaNGMjG9Zt4Y/5ypv5lOjdfehurl68p7h9Q6gTWpTW8xjSCGg7jWHpHv7zr\ndY3ujOVgGlNjs/ap6RkW8jrHcBrLWMQCXmMdq+nLQCbECUDTma/5zGIBs1nLKhLQm74MZzQjGENE\nbNvf+rSWP/MAw9iTg+KIFuOoT39gJcs4Oc7a1rY8LeE5HmcvDmB3RjCTKbzJGzTSSF8GMJZxeQPi\nxrSBV5nCMhayhc30pA+j2Ifu9Cz657d1PAAvUc9LqX7bsnfyXnpEL15NU3mNaRzO8WyiKZSuZRV1\ndOPYOL3Z+PeOg1r08US6H4Bj4/Si+9ze4jSP13mZNayihhp2Ywj7cCjdo0fRx6ldR+XDVGND5l1s\nrREpNW8ftvcQfvTXbzPvlYU89us/0a1HV9atWg/A7qMG8b1JVzJsr9154fGXeObByXTv1Z2j/u5w\nvv3Apfyfz17PAzc+um1fdV27cPUjl7P/xLG8Onk2j/36T/Tq34uPXPYhDjn+wDaN972fOomLf/pp\nGhoa+et99cyfuZD+u/dj33fszfs/9x4ev+NJnv/DVO7u///44MV/x6uTZ/Pne98KbK9Ont3q/ved\nsDdXP/wf9OjTnSfvq2fOtHmM3G8EJ330OI454wj+7ZRv8Er9qy22e//n3sPR75/Ak/fV88LjL7H/\nxLGc+OF3svehe/LZwy5h86YtAAwc2p+fPH0VPfv24On7/8YTd/+Vrt27MnT07pz00eO598e/N0x1\nFtv9B91iUdeu+RdsKNNYOrCFzCaRGMoeBYPU9moi/1ygV3ielSxjEEPZjaEEb/38p/I0i5hLN3ow\nnL0AWMoCpvM3VrKMcRxZkmNZzQpe5xX6MZDhjGYD61nCPJ7jcY5Mp9Ar+mxbd1PaSD2TWM9a+rMb\n/RnERjYwnecYyJCi+xzOaOroylIWMJjh9Oatn2EX6pqtO4cZLGcxgxjGAHZv91m+tvQ5j1ksYwGD\nGM4ABvMmy1nMPFbzJkelk6kJb/nT2ex0Z6YOO+lg9thvOI2Njbz8zMxmyw4+7gBu+87d3HzpbS22\n+7eff54hew7iW+f+gD/89i/b2nv168k1k67kwms/wZP31bNyyZsAnPXl97H/xLH86a6/8p/nfJ+U\nS26/veoeflL/X0WPd9QBe/CFn3yKtavW86Xj/53XX5rXbPmgEQMBeOGPL7F49tJtYertZ55a85Vb\nPk+vfj35zkev5bFfv3Vh/rvOOYbLfvMvfOUXF/Gpg/5l2zFsNeG08Vw48WvMnjJnW9vXfnUx7/7H\nYzn6jCN4/I4nATjurKPou1sffvrF/+Z3P7y/2T669+xGY+PbUq3Uya3kDQAGsHum/axmBUdycouz\nIovSHBYxlz705x2cQJdoKuVj0zjq+SOLmMugNIyhMSpT/wDLWNTigux5aRbTeY65zGB/Dt/W/ipT\nWM9aRjKW/WL8tvaRaW+eYVLRfQ6P0ZDYFmxauxh8OUuYwImZL+JvS59vsIiJnNQsKL+YnmIxc1nK\nAoY0uxesOoOyP04mq/MuP5vzLj+bj3/zXP799i/znQcupaamhruvvZ8lc5Y1W3f5opV5Q8iYQ/bk\n0BMO4om7nmoWpADWvrmOW674Ld16dOW4D731Su49HzuRhoZGbvjKr5qFkEWzl3DPj5oHita873On\n0qWuC7d+884WQQrIfLH6Qcfsx6gD9mDqX15uFqQA/nj7X3jxT9MYtf8Ixh27f4tt7/nRA82CFMD9\nNz4CwP4TW14Mu3H9phZtG9ZtZNOGlu1SZ7YpdzquGy3f8lmf1vJqmtrsY06akXc/e7JfiyAFsIDZ\nAIxl3LYgBVAbXdiHcQDM57WshwFAP3ZrESyGM5ogeJMV29oaUyMLmUMtXdib5m+r9Y2BDCV7sMtn\nBHtVfDbkSMa2OOM4Ind28E3KMwFJHVuHPzO19TqixsZG1qxcx4t/msbvb36MR2/9U4t1Zz0/e9tb\nU9s78Oh9gaazUPnu0dR/cF+g6SwSNF0rNWKfYSyZs4yFsxa3WP/5P0yFy4sb/wFH7gPAMw/8rbgN\n2mjs4U1/wJMnTcm7fPKkKRx83AGMPWwvXvzTtGbL8r31t3Ru0yvq3gN6b2t78r56PvGtf+SiH3+S\nCaceSv1DzzP1z9PzhkNJrVvPWl6j+d9id3oyin1arNuXgXn3sZqmiS75znz1ZzBBbFsnq760DCo1\nUUPX1J0tvPVCah2raaSB/gyiS9S12GYAg1nI6yUZ0/b6FfgZlVO+n8nWa8KcTNA5dfgw1Zb7ERWa\nSdd3t6b39N9x6qG849RDC27fo1d3oCl0AaxYnH9/K9owY693/6ZXleW6XcLWsS5fuCLv8q3tvfq3\nvPhzzcq1LdoatjRd01Zb89ZJyyVzlnHRkV/jvMvP4YjTxnPch47a1n7HNfdxz48eyHYQ0i6mK91Z\ny2o2sr7FsoGxOyfTdKF3Y2rkMe4uuJ9udM/bvoXN1NE177VWNVFDXerKJja2c/TNvf16oa2CIPHW\nWfutIaJrgQdCdy1wLFmVa7+tyfcz2Xo92/Y/E3UeHT5MtUmB3+G1b64D4CcX31zUf/xb1x8wpH/e\n5QOG5m/PZ2tgGTRiYFlua7BtrAXGNHDYgGbrtdec6fP51rk/oKa2hr0PHc3hJx/MGZ9/Lxde+wk2\nrN3I729+LNP+pV1Jf3ZjBUtZwZJtb/+UUhfq2MwmGlNji0DVmBrZzKZm/+Hv6D/6UpxN2dpfoRC3\nqcIzEYo55kJBUWqrXStMFTDtr68AcPCxBxQVptav2cD8GQsZOmYIw8YMafFW36EntJxmW7Dvp2aw\n3xFjOeK9h+0wTDU2NE2Prqkt/lK2mX+b3TSmd+Uf09axznyuNNdPNDY0MuO5Wcx4bhZT//IyP3j8\nPznmjCOKDlP/+u4rSjIOlUih2XlHHpy3+du33VhwV90j/0zdQ/Zs86h2esMYzWxeZjHz2Sutolf0\nLen++9Cf5SxhJUtbzJJbyTISiT689QJra2jYQMsXVVvSZtaRfTZuT/pQQy2rWcmWtLnFW30raNs9\nAbOe6amjaXZpvrOD69KavGHKs0tqrw5/AXopvPLsLF54/CXe+cEjec/HT8y7zuhxo7ZdOwXw4M8n\nUVtbw6eu+miz+7UMHb07Z150etF9/891D7Fl8xY+ctlZ267J2t7W2XwAq1espbGxkd1Htbx3SyFT\n/zydOdPnc/BxB2x7+22r4z50FIccfyBzX17AlCemF73Pt9vn8DH07NvybcKtZ+42riv+AvRhY4Yw\ncr/h1HZx6rB2XT2jN3txAIlG/sYTrEzL8q6XZRo/wEym0JDeuk60IW1hJi/m1nnrjFiXqKMnfXiT\nN1iTVm1rTynxCs/TSPZb1tREDcMYRQNbeJXmz99blZaziDkFtsxvaxjKFwCL0ZM+1NKFpSxgU3rr\nrFhDauBlJpelT3VeneLMFMB3PnIt3330cv71pn/mAxedzrSnZ7B25VoGjdiNMYfsyV4Hj+ILR3+d\nlUubCs2d1/wPx5wxkePPOorrnr2a+ocm06t/L9519tG8+Pg0jjmj5Y3v8pkzbR4/vPBGLr7uAq57\n7mqevPcZ5s9cRN/derPvhLGsW7WOS066EoANazcw/amZjDtuf776yy8wb8YCGhsaefK+el57sXAh\n+u7HfsxVD/07l/7mX3jy3meY+/J89th3OMecOZG1q9Zx9fk/anFbhLY4+bzj+bsLTmHKE9NZOGsR\nq1esZfiYIRz1vgls2rCJu6/9f0Xv6+pH/oOho3fPe2NTaVfSFKaaHilTzx/okwbQjwF0oStb2MwG\n1rKcpgfm9qf4F1AAQ2MUS9MCFjOPJ3mIwWk4QbCUBaxnLUPYg2Fvuy3CnuzLNJ6lnkkMSXtQQy3L\nWUIi0Zt+rOHNzMe8N+NYzhLmMpPVacW2+0wtZi67MZRlLCx6X/3YjRpqmcMMNqdN266NGsXYvBe4\nv11N1DAq7cNrTOMpHmFwGkEisZzFdKN73uvRsvapzqvThKll85fzzxO+wpkXvZdjP3gUJ/3jcdTU\n1rB80UrmvDSPe378QLPAsnnTFr5yyjc474pzOOGcY/jAF05n0eyl/Ppbd/HE754uOkwBPHDjo8ye\nMpezv/w+DjnhII45cyKrlq3a9tDm7f3XP/2Iz37/fI44bTwnnvtOampqWDZveathavrTM/n8xK/x\nkUs/xGEnH8xR73sHby5bzaTbnuDWb97FvFeyXas16bYnqOtWx4FH78s+7xhDtx5dWTZ/OX/4zZ+5\n8/v/w+ypczPtX9oVRQR7cxBD0yjm8SorWMoi5jZ70PEIxjCMPds1tX8cR9KfwSxg9rbbIPSiD/sx\nnj3Yu8X6I2IvSE03uVzA69RRx2CGszfjeIEnMx8vQNfoxoR0IjOZwjIWsIoV9KQP+3M43enZpjBV\nF105JB3Na7zEQmbTkDt7NoxRRV/rNIYDqaWW+bzGfGbRle4MZSRjOJAneagsfapziixnLNqqbwxM\nR8ZJFetP0g5U5Jqp+c+mlCa0eWwdjPVL6nweSXcWVb86xTVTkiRJ5dJp3uaTlEeBZ8KN/mH+O3KP\n6dLyprhb9a2p/P1+JKkj8MyUJElSBoYpSZKkDAxTkiRJGRimJEmSMjBMSZIkZWCYkiRJyiDTrREi\nYjawGmgAtuwKN+aTOoLoUvhPM7p2zdv+wMy/5G1vSI0F91Vb4NYIhbV8RuPOzBomdQwPLsj/vMRq\nqx1W3HqluM/UiSkVeIqnJHV81jBJmfg2nyRJUgZZw1QCHomIZyPignwrRMQFEVEfEfWb2ZixO0kq\nqVZrmPVLUjGyvs13bEppfkTsDjwcEdNTSo9vv0JK6Xrgemh6UGjG/iSplFqtYdYvScXIdGYqpTQ/\n93kJ8DtgYikGJUmVYA2TVArtPjMVEb2AmpTS6tzXpwLfKNnIpE4sbSn8QOFCywrN2mttxl57ttlV\nWMMklUqWt/mGAL+LiK37+XVK6fclGZUklZ81TFJJtDtMpZRmAYeWcCySVDHWMEmlsuufy5ckSSoj\nw5QkSVIGhilJkqQMSvE4GUkVVNMz//Px2jMDrzPM2pOkcrOSSpIkZWCYkiRJysAwJUmSlIFhSpIk\nKQPDlCRJUgaGKUmSpAy8NYK0k2ncsDFv+8a0OW97t6gruK9lDWvztg+q7ZW3vdCDkcHbLEjqvKx+\nkiRJGRimJEmSMjBMSZIkZWCYkiRJysAwJUmSlIGz+aSOKKLgotoB/fK2z9y8JW/7QV0Lz+b7h/O/\nkLf90V/dlLf9vWd9vOC+Hrjzvwsuk6RdmWemJEmSMjBMSZIkZWCYkiRJysAwJUmSlIFhSpIkKYMd\nzuaLiJuBvweWpJTG5doGAr8FRgOzgXNSSivKN0ztNFqZhZZXSuUZx86utZ/L0MF5mz8z/SN52584\n5O6Cu6p7/Pk2DSueLLz+DW+OLLBkVpv6KDVrmKRyK+bM1M+B097W9lXg0ZTSPsCjue8lqSP6OdYw\nSWW0wzCVUnocWP625jOAW3Jf3wKcWeJxSVJJWMMklVt7r5kaklJamPt6ETCkROORpEqwhkkqmcwX\noKeUElDwAo+IuCAi6iOifjMbs3YnSSXVWg2zfkkqRnvD1OKIGAaQ+7yk0IoppetTShNSShPq6NbO\n7iSppIqqYdYvScVob5i6Dzg/9/X5wL2lGY4kVYQ1TFLJFHNrhNuAE4BBETEPuBy4Crg9Ij4JvA6c\nU85BaifirQ7KrmHqy3nbe51em7f9k385tuC+0pY1eduPu/Azedt78lTBfd133H4Flvyx4DaVsKvX\nsAcXTK72EPJ6z/Dx1R6CdiId9/dlZlFr7TBMpZTOLbDopLYMR5KqwRomqdy8A7okSVIGhilJkqQM\nDFOSJEkZGKYkSZIy2OEF6JJ2Eo0NeZsXvLuxzbvqec/Tbe9+Vf6ZgZK0q/PMlCRJUgaGKUmSpAwM\nU5IkSRkYpiRJkjIwTEmSJGVgmJIkScrAWyMARORv96G92gU0rlvX9o2iwOuslP/2CwDUFPg7kqRd\nnGemJEmSMjBMSZIkZWCYkiRJysAwJUmSlIFhSpIkKQNn84Gz9qS3qR28W972xuUrC27z2mWH519w\n2a2lGJIkdViemZIkScrAMCVJkpSBYUqSJCkDw5QkSVIGhilJkqQMdjibLyJuBv4eWJJSGpdruwL4\nNLA0t9rXU0r3l2uQagOfM6gSWH7KmLztf736/xbc5s3GP+ZtH3hZSYbUbtYwSeVWzJmpnwOn5Wn/\nQUppfO7DIiSpo/o51jBJZbTDMJVSehxYXoGxSFLJWcMklVuWa6YuiogXIuLmiBhQaKWIuCAi6iOi\nfjMbM3QnSSW1wxpm/ZJUjPaGqeuAMcB4YCFwTaEVU0rXp5QmpJQm1NGtnd1JUkkVVcOsX5KK0a4w\nlVJanFJqSCk1AjcAE0s7LEkqH2uYpFJqV5iKiGHbffsBYEpphiNJ5WcNk1RKxdwa4TbgBGBQRMwD\nLgdOiIjxQAJmA58p4xhVCoVumQDeNqETq+nZM297a7dAKKRfTY+swykLa5ikctthmEopnZun+aYy\njEWSSs4aJqncvAO6JElSBoYpSZKkDAxTkiRJGRimJEmSMtjhBejayTgzT22QNm8p2b4aUmPJ9qXi\nvWf4+GoPQer0PDMlSZKUgWFKkiQpA8OUJElSBoYpSZKkDAxTkiRJGTibT+rE0pbNedsnXP65vO23\nXPr9gvvqU9NQkjGpbR5cMLnaQ8jLWYbqTDwzJUmSlIFhSpIkKQPDlCRJUgaGKUmSpAwMU5IkSRkY\npiRJkjLw1ghSZ1bgwdi73fBk3vYv3XhMwV3V7jawwJKftXVUkrRT8cyUJElSBoYpSZKkDAxTkiRJ\nGRimJEmSMjBMSZIkZbDDMBURIyNiUkS8FBFTI+LiXPvAiHg4ImbkPg8o/3AlVVVKBT8alr2R96Oa\nrF+SKqGYM1NbgC+nlA4EjgIujIgDga8Cj6aU9gEezX0vSR2J9UtS2e0wTKWUFqaUnst9vRqYBowA\nzgBuya12C3BmuQYpSe1h/ZJUCW26aWdEjAYOA54ChqSUFuYWLQKGFNjmAuACgO70bO84JSkT65ek\ncin6AvSI6A3cBXwxpbRq+2UppQTkvZVySun6lNKElNKEOrplGqwktYf1S1I5FRWmIqKOpkJ0a0rp\n7lzz4ogYlls+DFhSniFKUvtZvySVWzGz+QK4CZiWUvr+dovuA87PfX0+cG/phydppxGR/6OqQ7J+\nSSq/Yq6ZeidwHvBiREzOtX0duAq4PSI+CbwOnFOeIUpSu1m/JJXdDsNUSukJoNDLy5NKOxxJKh3r\nl6RK8A7okiRJGRimJEmSMjBMSZIkZWCYkiRJyqBNd0CX1Mm1dquD8LWZpM7J6idJkpSBYUqSJCkD\nw5QkSVIGhilJkqQMDFOSJEkZOJtPUkvteUBxaiz9OCRpJ+CZKUmSpAwMU5IkSRkYpiRJkjIwTEmS\nJGVgmJIkScrA2XySWkqp7du0ZwagMnvP8PHVHoLU6XlmSpIkKQPDlCRJUgaGKUmSpAwMU5IkSRkY\npiRJkjLYYZiKiJERMSkiXoqIqRFxca79ioiYHxGTcx+nl3+4klQ865ekSijm1ghbgC+nlJ6LiD7A\nsxHxcG7ZD1JK3yvf8CQpE+uXpLLbYZhKKS0EFua+Xh0R04AR5R6YJGVl/ZJUCW26ZioiRgOHAU/l\nmi6KiBci4uaIGFDisUlSyVi/JJVL0WEqInoDdwFfTCmtAq4DxgDjaXrld02B7S6IiPqIqN/MxhIM\nWZLaxvolqZyKClMRUUdTIbo1pXQ3QEppcUqpIaXUCNwATMy3bUrp+pTShJTShDq6lWrcklQU65ek\ncitmNl8ANwHTUkrf36592HarfQCYUvrhSVL7Wb8kVUIxs/neCZwHvBgRk3NtXwfOjYjxQAJmA58p\nywglqf2sX5LKrpjZfE8A+R4Hf3/phyNJpWP9klQJ3gFdkiQpA8OUJElSBoYpSZKkDAxTkiRJGRQz\nm0+7ush3fS6QUmXHIUnSTsgzU5IkSRkYpiRJkjIwTEmSJGVgmJIkScrAMCVJkpSBYUqSJCmDnffW\nCE7nLx1/ZpIktZtnpiRJkjIwTEmSJGVgmJIkScrAMCVJkpSBYUqSJCmDnXc2nzPQJElSB+CZKUmS\npAwMU5IkSRkYpiRJkjIwTEmSJGVgmJIkScpgh2EqIrpHxNMR8XxETI2IK3PtAyPi4YiYkfs8oPzD\nlaTiWb8kVUIxZ6Y2Au9OKR0KjAdOi4ijgK8Cj6aU9gEezX0vSR2J9UtS2e0wTKUma3Lf1uU+EnAG\ncEuu/RbgzLKMUJLayfolqRKKumYqImojYjKwBHg4pfQUMCSltDC3yiJgSJnGKEntZv2SVG5FhamU\nUkNKaTywBzAxIsa9bXmi6dVeCxFxQUTUR0T9ZjZmHrAktYX1S1K5tWk2X0ppJTAJOA1YHBHDAHKf\nlxTY5vqU0oSU0oQ6umUdryS1i/VLUrkUM5tvcET0z33dAzgFmA7cB5yfW+184N5yDVKS2sP6JakS\ninnQ8TDgloiopSl83Z5S+t+IeBK4PSI+CbwOnFPGcUpSe1i/JJXdDsNUSukF4LA87W8AJ5VjUJJU\nCtYvSZXgHdAlSZIyMExJkiRlYJiSJEnKwDAlSZKUgWFKkiQpA8OUJElSBoYpSZKkDAxTkiRJGRim\nJEmSMjBMSZIkZWCYkiRJyqCYBx2rs4rI355S4U265P+VSo35t4m6wr+CaePGwmOTJKmD8MyUJElS\nBoYpSZKkDAxTkiRJGRimJEmSMjBMSZIkZVD52Xx5ZojV9O5deP29R+bfzez5edsb164vuKu0eVPr\nY9uF1fTpU3DZ6/+9Z97254++JW97I40F99Ut6vK2r2hYl7d9ZWPhfX12z2MLLpMkqaPwzJQkSVIG\nhilJkqQMDFOSJEkZGKYkSZIyMExJkiRlsMPZfBHRHXgc6JZb/86U0uURcQXwaWBpbtWvp5Tub21f\nWwb3YtmHjmrRfu+l3y24zbcXn5y3/U+/PTxve9dVhZ8bN/T+OXnb05o1edsbVr5ZcF87m5q+hWfz\nPX3UjXnb66J7gS1q29z/gNqeedv71hSezacqasdzGTuiUtYvSSqkmFsjbATenVJaExF1wBMR8UBu\n2Q9SSt8r3/AkKRPrl6Sy22GYSiklYOupm7rcx8718lRSp2T9klQJRV0zFRG1ETEZWAI8nFJ6Krfo\nooh4ISJujogBBba9ICLqI6J+y/q1JRq2JBWnVPVrMxsrNmZJO5eiwlRKqSGlNB7YA5gYEeOA64Ax\nwHhgIXBNgW2vTylNSClN6NKjV4mGLUnFKVX9qqNbxcYsaefSptl8KaWVwCTgtJTS4lyRagRuACaW\nY4CSVArWL0nlssMwFRGDI6J/7usewCnA9IgYtt1qHwCmlGeIktQ+1i9JlVDMbL5hwC0RUUtT+Lo9\npfS/EfFN96pqAAAGbklEQVTLiBhP08Wcs4HP7GhHY4cuynsbhD26FH7Q8U9H/DX/gi8VaG/FQ/+W\n/yG835j5vrztfT64ueC+Gtflf3BvR/W9P99ZcFmPgrdAKL/a8FZnHVKhWyAUumUCQMf8tyxZ/ZKk\nQoqZzfcCcFie9vPKMiJJKhHrl6RK6JAvJSVJknYWhilJkqQMDFOSJEkZGKYkSZIyKGY2X8msTV15\nasPwFu179F5Vkf5P7Zl/dt5JB+ef6TbhE58vuK/df/pU/gWNDW0eVyWMqcs/kxGqO6OuIfmg451K\nKw86ji4FHoDdMf8kJKlkPDMlSZKUgWFKkiQpA8OUJElSBoYpSZKkDAxTkiRJGVR0Nl/fms2c3HNx\nniU9KjmMFgrNZvvr164tuM3hJ34sb/vID8/I2542b2rzuFpV4Blpc24fl7e9W0wubf/S2zkzU1In\n5ZkpSZKkDAxTkiRJGRimJEmSMjBMSZIkZWCYkiRJysAwJUmSlEFFb42wZEtPfrT8sBbtlw2aXslh\nFK0LBR7cCjx4xM/ytn+69uS87Sn/M5ZL7isHP5i3vbUHClfiQceF+p++eWPBbaJL/l/P1OCTc6um\nld+V1Fj4IciStCvzzJQkSVIGhilJkqQMDFOSJEkZGKYkSZIyMExJkiRlEClVbgZORCwFXs99OwhY\nVrHOW+rM/XfmY692/53x2PdMKQ2ucJ8lZ/2y/w7Qd2fvv8PWr4qGqWYdR9SnlCZUpfNO3n9nPvZq\n99+Zj31XUu2fo/37N9wZ+6/2sbfGt/kkSZIyMExJkiRlUM0wdX0V++7s/XfmY692/5352Hcl1f45\n2n/n7Luz91/tYy+oatdMSZIk7Qp8m0+SJCmDqoSpiDgtIl6OiJkR8dUK9z07Il6MiMkRUV+B/m6O\niCURMWW7toER8XBEzMh9HlDh/q+IiPm5n8HkiDi9TH2PjIhJEfFSREyNiItz7RU5/lb6r9Txd4+I\npyPi+Vz/V+bay378rfRdkWPflVWzfuX67zQ1rJr1K9dX1WpYZ65fO+i/Q9awir/NFxG1wCvAKcA8\n4Bng3JTSSxXqfzYwIaVUkXtVRMTxwBrgFymlcbm2q4HlKaWrcsV4QErpKxXs/wpgTUrpe+Xoc7u+\nhwHDUkrPRUQf4FngTOBjVOD4W+n/HCpz/AH0SimtiYg64AngYuCDlPn4W+n7NCpw7Luqatev3Bhm\n00lqWDXrV66vqtWwzly/dtB/h6xh1TgzNRGYmVKalVLaBPwGOKMK46iIlNLjwPK3NZ8B3JL7+haa\n/kAq2X9FpJQWppSey329GpgGjKBCx99K/xWRmqzJfVuX+0hU4Phb6VvZdKr6BdWtYdWsX7n+q1bD\nOnP92kH/HVI1wtQIYO5238+jgr8gNP1jPBIRz0bEBRXsd3tDUkoLc18vAoZUYQwXRcQLudPoZXub\ncauIGA0cBjxFFY7/bf1DhY4/ImojYjKwBHg4pVSx4y/QN1T4334XU+36BdYwqMLvcDVrWGesX630\nDx2whnXGC9CPTSmNB94LXJg7jVw1qel91kqn7euAMcB4YCFwTTk7i4jewF3AF1NKq7ZfVonjz9N/\nxY4/pdSQ+33bA5gYEePetrxsx1+g74r+26ssOnsNq/jvcDVrWGetX6303yFrWDXC1Hxg5Hbf75Fr\nq4iU0vzc5yXA72g6bV9pi3Pvh299X3xJJTtPKS3O/ZI2AjdQxp9B7r3uu4BbU0p355ordvz5+q/k\n8W+VUloJTKLp/f6K/vtv33c1jn0XU9X6BdawSv8OV7OGWb9a9t9Ra1g1wtQzwD4RsVdEdAU+DNxX\niY4jolfuQj4iohdwKjCl9a3K4j7g/NzX5wP3VrLzrX8IOR+gTD+D3AWENwHTUkrf325RRY6/UP8V\nPP7BEdE/93UPmi5ank4Fjr9Q35U69l1Y1eoXWMOgcn+/ub6qVsM6c/1qrf8OW8NSShX/AE6naUbM\nq8ClFex3DPB87mNqJfoGbqPpVORmmq6v+CSwG/AoMAN4BBhY4f5/CbwIvEDTH8awMvV9LE2ngF8A\nJuc+Tq/U8bfSf6WO/xDgb7l+pgD/kWsv+/G30ndFjn1X/qhW/cr13alqWDXrV67/qtWwzly/dtB/\nh6xh3gFdkiQpg854AbokSVLJGKYkSZIyMExJkiRlYJiSJEnKwDAlSZKUgWFKkiQpA8OUJElSBoYp\nSZKkDP4/4JbfO0xlN0QAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAEgCAYAAACQH/YaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYXGWZ9/Hv3Z1OQjaSkJA9hBD2AAmGsAgIIoi4AIq8\nMsrguDCjiKjI6z6AoyMuyIvKMIOSARWRRQScAWUximgEGgghIQFCCNk3kpB9637eP7oS0nRVp7pP\nLU36+7muvlL9nHPqfk6lc+fXp845FSklJEmS1D411Z6AJEnSm5lhSpIkKQPDlCRJUgaGKUmSpAwM\nU5IkSRkYpiRJkjIwTEmSJGVgmJIkScrAMCVJkpRBlywbR8TpwLVALfCzlNJVra3fNbql7vTMUlLS\nm8xaVq1IKQ2s9jzyaUsPs39JnU+x/avdYSoiaoHrgFOBBcATEXFvSum5Qtt0pydHxyntLSnpTeih\ndOcr1Z5DPm3tYfYvqfMptn9leZtvIjA7pTQnpbQF+DVwZobnk6RKsodJKoksYWoYMH+n7xfkxpqJ\niAsjoj4i6reyOUM5SSqpXfYw+5ekYpT9BPSU0g0ppQkppQl1dCt3OUkqGfuXpGJkCVMLgRE7fT88\nNyZJbwb2MEklkSVMPQHsHxH7RkRX4EPAvaWZliSVnT1MUkm0+2q+lNK2iPgM8AeaLiuelFKaUbKZ\nSVIZ2cMklUqmc6ZSSvellA5IKe2XUvp2qSbV0Q3aZyAPNt7BZZMuajZ+2aSLeLDxDgbtU55b6hz+\ntkN4sPEOzr/8g2V5fqmz6aw9rBpWpmU8lO7kpTdxXn0pzeChdCcr07JqT0UdTKabdpbTg413NPu+\noaGRdavWMWfaPO6/8WEm3/polWZWPoP2GcgvX/4PHrjpT3z/Y9dVezpl8YM/XsERJx3KqTUGQnUO\n69NaFjKHVSxnI+tpYBu1dKEHvejLAAYzkj7Rr9rT7HAWpbk8Rz2HMIGhMWq3randQ4cNU9v9/Mrb\nAehS14URBw7luDOPYvzbx3LAhP34r0tvrvLsmrvxq7fw6+/+lhULV5bl+Z9/fDYfO/gSXluxtizP\nL6l0Ukq8zEzm0HQP0N70ZRAjqKMrDWxjLauZz0vM40UOTOMYEWOqPGNJ7dXhw9Qvrmx+hGr828dy\n1QPf4P2XnMHdP7qPpa8sr9LMWlq5ZDUrl6wu2/Nv3riF+c8vKtvzSyqd7UGqG3twGEfTNwa0WGdL\n2sQ8XmQbW6swQ0ml0uHD1Bs9/cfpzJ+1iH0OGc6BR+3H0leWN3t77FffuYuPfvNDHHHyoew5oDeX\nnXIl0/6c+82wXy8+eNn7eOuZRzFo1N5s27KNF+pf4rbv3c2TD05rUWuPXt35xyv/D2/74LHsOaA3\nS+Yu576fPsRf734879wum3QRp330JD6y76dbhLwDjxrDOV94L2OPP4g+A3qzduU65j47j/tufJhH\n7pjC+Zd/kH+8/FwATvvoSZz20ZN2bPv9f7qOB27+E4e/7RCunnwlP7/y9hYhc9iYwXz46+cw/pTD\n2HNgH9asWMNTDz3LLd+6k4WzlzRbd3utS0++nD0H9OHcy85k1NgRbNm0lScfeIb/+uLPeXVR86Nr\ng/fdmw99+WzGnTyWAcP6s3njFl5duJIZf5vFpK/dytqV64r7C5Q6gQ1pHS8zk6CG8RxPr9gz73pd\noztjOIzG1NhsfEZ6gsW8wnGczgqWsIiX2cBa+tCfCXES0HTkayFzWMRc1rOGBPSiD0MZxTBGExE7\nnm9jWs9fuZ8h7MOhcVSLedSnP7GaFbwjztkxtjIt4ykeYV8OZm+GMZvpvMarNNJIH/oxhrF5A+Lm\ntImXmM4KFrONrfSgNyPZn+70KPr12z4fgOeo57lUv2PZW3kXe0RPXkozeJmZHMmJbKEplK5nDXV0\n4/g4o9n894tDW9R4NN0HwPFxRtE1d7Y0LeAVnmcda6ihhr0YxP4cQffYo+j91O7jTRemALb3iJSa\njw/ZbxA//vu/s+CFxfzxV3+h2x5d2bBmIwB7jxzADyZfyZB992baI8/xxB+m0r1nd45595H8+/1f\n4//9yw3c/7OHdzxXXdcufO+hyzlo4hhemjqXP/7qL/Ts25MPf/0DHH7iIW2a77s+cQqX/McnaWho\n5O/31rNw9mL67r0nB7xlP973qXfyyB1TeOZPM7ir7//y/kvezUtT5/LXe14PbC9Nndvq8x8wYT++\n9+C/skfv7ky5t555Mxcw4sBhnPKREzjuzKP4v6d+kxfqX2qx3fs+9U6Ofd8Eptxbz7RHnuOgiWM4\n+UNvZb8j9uFfxl/G1i3bAOg/uC/XPX4VPfrsweP3Pc2jd/2drt27MnjU3pzykRO55ye/N0x1ErN/\nMb7gsikn/STv+JDh5ZpNx7WYuSQSgxleMEjtrCbyXwv0As+wmhUMYDB7MZjg9YA0g8dZwny6sQdD\n2ReA5SxiFk+zmhWM5eiS7MtaVvEKL7An/RnKKDaxkWUs4Cke4eh0Kj2j9451t6TN1DOZjaynL3vR\nlwFsZhOzeIr+DCq65lBGUUdXlrOIgQylF6+/hl2oa7buPF5kJUsZwBD6sXe7j/K1peYC5rCCRQxg\nKP0YyGusZCkLWMtrHJPeQU3UtmsOevN604Wp8accxvADh9LY2MjzT8xutuywEw7m1u/cxaSv3dpi\nu/9702cYtM8Avn3eNfzptr/tGO+5Zw+unnwlF137MabcW8/qZa8BcM6l7+WgiWP4y2/+zr+d+0NS\nLrnddtXdXFf/3aLnO/Lg4Xz2uk+wfs1GvnDiN3jluQXNlg8Y1h+AaX9+jqVzl+8IU2888tSaL938\nGXru2YPvfORa/vir10/Mf9u5x/H1X3+eL/38Yj5x6Od37MN2E04fx0UTv8Lc6fN2jH3ll5fw9n84\nnmPPPIpH7pgCwAnnHEOfvXrzH5/7b377o/uaPUf3Ht1obHxDqpU6udW8CkA/9s70PGtZxdG8o8VR\nkSVpHkuYT2/68hZOoks0tfIxaSz1/JklzGdAGsLgGJmpPsAKlrQ4IXtBmsMsnmI+L3IQR+4Yf4np\nbGQ9IxjDgTFux/iItB9PMLnomkNjFCR2BJvWTgZfyTImcHLmk/jbUvNVljCRU5oF5WfTYyxlPstZ\nxKBm94JVZ1D2j5PJ6vzLP8j5l3+Qf/rWeXzj9kv5zv1fo6amhruuvY9l81Y0W3flktV5Q8jow/fh\niJMO5dHfPNYsSAGsf20DN19xG9326MoJH3j9N7l3fvRkGhoa+emXftkshCyZu4y7f9w8ULTmvZ86\njS51XbjlW3e2CFJA5pPVDz3uQEYePJwZf3u+WZAC+PPtf+PZv8xk5EHDGHv8QS22vfvH9zcLUgD3\n/ewhAA6a2PJk2M0bt7QY27RhM1s2tRyXOrMtbAKgGy3f8tmY1vNSmtHsa156Me/z7MOBLYIUwCLm\nAjCGsTuCFEBtdGF/xgKwkJez7gYAe7JXi2AxlFEEwWus2jHWmBpZzDxq6cJ+NH9brU/0ZzDZg10+\nw9i34ldDjmBMiyOOw3JHB1+jPBcgqWPr8Eemtp9H1NjYyLrVG3j2LzP5/aQ/8vAtf2mx7pxn5u54\na2pnhxx7ANB0FCrfPZr6DuwDNB1FgqZzpYbtP4Rl81aweM7SFus/86cZcHlx8z/46P0BeOL+p4vb\noI3GHNn0D3jq5Ol5l0+dPJ3DTjiYMeP35dm/zGy2LN9bf8vnN/1G3atfrx1jU+6t52Pf/gcu/snH\nmXDaEdQ/8Awz/jorbziU1LqNrOdlmv9b7E4PRrJ/i3X70D/vc6yl6UKXfEe++jKQIHask1UfWgaV\nmqiha+rONl7/RWoDa2mkgb4MoEvUtdimHwNZzCslmdPO9izwGpVTvtdk+zlhXkzQOXX4MNWW+xEV\nupKuz15N7+m/5bQjeMtpRxTcfo+e3YGm0AWwamn+51vVhiv2evVt+q2yXLdL2D7XlYtX5V2+fbxn\n35Ynf65bvb7FWMO2BgBqa14/aLls3gouPvornH/5uRx1+jhO+MAxO8bvuPpe7v7x/dl2QtrNdKU7\n61nLZja2WNY/9uYdNJ3o3Zga+SN3FXyebnTPO76NrdTRNe+5VjVRQ13qyhY2t3P2zb3xfKHtgiDx\n+lH77SGia4EPhO5aYF+yKtfztibfa7L9fLadXxN1Hh0+TLVJgZ/h9a9tAOC6SyYV9R//9vX7Deqb\nd3m/wfnH89keWAYM61+W2xrsmGuBOfUf0q/Zeu01b9ZCvn3eNdTU1rDfEaM48h2HceZn3sVF136M\nTes38/tJf8z0/NLupC97sYrlrGLZjrd/SqkLdWxlC42psUWgakyNbGVLs//wd/UffSmOpmyvVyjE\nbX/rs1KK2edCQVFqq90rTBUw8+8vAHDY8QcXFaY2rtvEwhcXM3j0IIaMHtTirb4jTmp5mW3B2o+9\nyIFHjeGod43fZZhqbGi6PLqmtvhT2WY/PbdpTm/LP6ftc539VGnOn2hsaOTFp+bw4lNzmPG357nm\nkX/juDOPKjpMffHtV5RkHiqv1ecfm3f8hbcXvjN/bZ5zezqrIYxiLs+zlIXsm9bQM/qU9Pl705eV\nLGM1y1tcJbeaFSQSvXn9F6ztoWETLX+p2pa2soHsV+P2oDc11LKW1WxLW1u81beKtt0TMOuRnjq6\nAuQ9Orghrcsbpjy6pPbq8Cegl8ILT85h2iPP8db3H807/+nkvOuMGjtyx7lTAH+4aTK1tTV84qqP\nNLtfy+BRe3PWxWcUXft31z/Atq3b+PDXz9lxTtbOtl/NB7B21XoaGxvZe2TLe7cUMuOvs5g3ayGH\nnXDwjrfftjvhA8dw+ImHMP/5RUx/dFbRz/lG+x85mh59Wr5NuP3I3eYNxZ+APmT0IEYcOJTaLl46\nrN1Xj+jFvhxMopGneZTVaUXe9bJcxg8wm+k0pNfPE21I25jNs7l1Xj8i1iXq6EFvXuNV1qU1O8ZT\nSrzAMzTS0K557KwmahjCSBrYxks0//y9NWklS5hXYMv8toehfAGwGD3oTS1dWM4itqTXj4o1pAae\nZ2pZaqrz6hRHpgC+8+Fr+f7Dl/PFGz/N2RefwczHX2T96vUMGLYXow/fh30PG8lnj/0qq5c3NZo7\nr/4dx505kRPPOYbrn/we9Q9MpWffnrztg8fy7CMzOe7Mlje+y2fezAX86KKfccn1F3L9U99jyj1P\nsHD2Evrs1YsDJoxhw5oNXHbKlQBsWr+JWY/NZuwJB/HlX3yWBS8uorGhkSn31vPys4Ub0fc/+hOu\neuAbfO3Xn2fKPU8w//mFDD9gKMedNZH1azbwvQt+3OK2CG3xjvNP5N0Xnsr0R2exeM4S1q5az9DR\ngzjmvRPYsmkLd137v0U/1/ce+lcGj9o7741Npd1JU5hq+kiZev5E79SPPelHF7qyja1sYj0rafrA\n3L4U/wsUwOAYyfK0iKUsYAoPMDANJQiWs4iNrGcQwxnyhtsi7MMBzORJ6pnMoDScGmpZyTISiV7s\nyTpey7zP+zGWlSxjPrNZm1btuM/UUuazF4NZweKin2tP9qKGWubxIlvTlh3nRo1kTN4T3N+oJmoY\nmfbnZWbyGA8xMA0jkVjJUrrRPe/5aFlrqvPqNGFqxcKVfHrClzjr4ndx/PuP4ZR/OIGa2hpWLlnN\nvOcWcPdP7m8WWLZu2caXTv0m519xLiedexxnf/YMlsxdzq++/Rse/e3jRYcpgPt/9jBzp8/ng5e+\nl8NPOpTjzprImhVrdnxo886++48/5l9+eAFHnT6Ok897KzU1NaxYsLLVMDXr8dl8ZuJX+PDXPsD4\ndxzGMe99C6+tWMvkWx/llm/9hgUvZDtXa/Ktj1LXrY5Djj2A/d8ymm57dGXFwpX86dd/5c4f/o65\nM+Znen5pdxQR7MehDE4jWcBLrGI5S5jf7IOOhzGaIezTrkv7x3I0fRnIIubuuA1CT3pzIOMYzn4t\n1h8W+0JqusnlIl6hjjoGMpT9GMs0pmTeX4Cu0Y0J6WRmM50VLGINq+hBbw7iSLrTo01hqi66cng6\nlpd5jsXMpSF39GwII4s+12k0h1BLLQt5mYXMoSvdGcwIRnMIU3igLDXVOUWWIxZt1Sf6p6PjlIrV\nk9Q+hc6Z+ttVrZ0zlf+sgdohs59MKU0oycSqyP4ldT4PpTuL6l+d4pwpSZKkcuk0b/NJKt6mvSLv\n+MZU+GKDXlH5+/1IUkfgkSlJkqQMDFOSJEkZGKYkSZIyMExJkiRlYJiSJEnKwDAlSZKUQaZbI0TE\nXGAt0ABs2x1uzCe9adXk/7zD++Y/UXCTxgIf6FoX+T+7jDwfwfFmZg+TOrY/LCrUiyqjdkhx65Xi\nPlMnp1TgUzwlqeOzh0nKxLf5JEmSMsgaphLwUEQ8GREX5lshIi6MiPqIqN/K5ozlJKmkWu1h9i9J\nxcj6Nt/xKaWFEbE38GBEzEopPbLzCimlG4AboOmDQjPWk6RSarWH2b8kFSPTkamU0sLcn8uA3wIT\nSzEpSaoEe5ikUmj3kamI6AnUpJTW5h6fBnyzZDOT1DaNDXmH16XCb0/tWbNHycpvTfnrd1T2MEml\nkuVtvkHAbyNi+/P8KqX0+5LMSpLKzx4mqSTaHaZSSnOAI0o4F0mqGHuYpFLx1giSJEkZGKYkSZIy\nMExJkiRlUIqPk5HUAURd17zjpbxirzUb0paK1JGkjsYjU5IkSRkYpiRJkjIwTEmSJGVgmJIkScrA\nMCVJkpSBYUqSJCkDb40g7SbStq15x/f93ScLbvPye3+ad/yMt70/7/h9f76r4HO941+/UGDJpQW3\nkaTdgUemJEmSMjBMSZIkZWCYkiRJysAwJUmSlIFhSpIkKQOv5pN2F5H/d6MDPvVUwU0a3tOYf/zF\nOW0u3/+//97mbSRpd+CRKUmSpAwMU5IkSRkYpiRJkjIwTEmSJGVgmJIkScpgl1fzRcQk4D3AspTS\n2NxYf+A2YBQwFzg3pbSqfNOUtCtRW5t3PG3dUnCbVxs3tqnGUV//VMFl/dOUNj1XpezuPewPi6ZW\newp5vXPouGpPQaqYYo5M3QSc/oaxLwMPp5T2Bx7OfS9JHdFN2MMkldEuw1RK6RFg5RuGzwRuzj2+\nGTirxPOSpJKwh0kqt/aeMzUopbQ493gJMKhE85GkSrCHSSqZzCegp5QSkAotj4gLI6I+Iuq3sjlr\nOUkqqdZ6mP1LUjHaG6aWRsQQgNyfywqtmFK6IaU0IaU0oY5u7SwnSSVVVA+zf0kqRnvD1L3ABbnH\nFwD3lGY6klQR9jBJJVPMrRFuBU4CBkTEAuBy4Crg9oj4OPAKcG45Jylp11q7BUIh5+9zYoElDXlH\n+0/qmLc/aI09THrzqv4tNmYXtdYuw1RK6bwCi05py3QkqRrsYZLKzTugS5IkZWCYkiRJysAwJUmS\nlIFhSpIkKYNdnoAuaTfWmP+qPUlS8TwyJUmSlIFhSpIkKQPDlCRJUgaGKUmSpAwMU5IkSRkYpiRJ\nkjIwTEmSJGVgmJIkScrAMCVJkpSBYUqSJCkDw5QkSVIGhilJkqQM/KBjSaVRU5t/3M9SlrSb88iU\nJElSBoYpSZKkDAxTkiRJGRimJEmSMjBMSZIkZbDLq/kiYhLwHmBZSmlsbuwK4JPA8txqX00p3Veu\nSUrqGObfObbgshE/KPC72ZQyTaZI9jBJ5VbMkambgNPzjF+TUhqX+7IJSeqobsIeJqmMdhmmUkqP\nACsrMBdJKjl7mKRyy3LO1MURMS0iJkVEv0IrRcSFEVEfEfVb2ZyhnCSV1C57mP1LUjHaG6auB0YD\n44DFwNWFVkwp3ZBSmpBSmlBHt3aWk6SSKqqH2b8kFaNdYSqltDSl1JBSagR+Ckws7bQkqXzsYZJK\nqV1hKiKG7PTt2cD00kxHksrPHiaplIq5NcKtwEnAgIhYAFwOnBQR44AEzAX+uYxzlFRhyz91bN7x\n5467vuA2L9y2Pu/4wSNLMqV229172DuHjqv2FKROb5dhKqV0Xp7hG8swF0kqOXuYpHLzDuiSJEkZ\nGKYkSZIyMExJkiRlYJiSJEnKYJcnoEvqfJ76RuGr9go5oK5nGWYiSR2fR6YkSZIyMExJkiRlYJiS\nJEnKwDAlSZKUgWFKkiQpA6/mk9TC7zd0yzt+eo/NBbdpSI3lmo5a8YdFU6s9hbz8zEB1Jh6ZkiRJ\nysAwJUmSlIFhSpIkKQPDlCRJUgaGKUmSpAwMU5IkSRl4a4TWRBRellLl5iFV2LVjx+cd//yXjyy4\nzXc/fFOZZiNJHZtHpiRJkjIwTEmSJGVgmJIkScrAMCVJkpSBYUqSJCmDXV7NFxEjgJ8Dg4AE3JBS\nujYi+gO3AaOAucC5KaVV5ZtqFXjFnjqpxk2b8o6PvOJvBbe57ooDCiyZVoIZtU+n7l+SKqaYI1Pb\ngEtTSocAxwAXRcQhwJeBh1NK+wMP576XpI7E/iWp7HYZplJKi1NKT+UerwVmAsOAM4Gbc6vdDJxV\nrklKUnvYvyRVQptu2hkRo4DxwGPAoJTS4tyiJTQdRs+3zYXAhQDd6dHeeUpSJvYvSeVS9AnoEdEL\n+A3wuZTSmp2XpZQSTecjtJBSuiGlNCGlNKGObpkmK0ntYf+SVE5FhamIqKOpEd2SUrorN7w0Iobk\nlg8BlpVnipLUfvYvSeW2yzAVEQHcCMxMKf1wp0X3AhfkHl8A3FP66UlS+9m/JFVCMedMvRU4H3g2\nIqbmxr4KXAXcHhEfB14Bzi3PFCWp3exfkspul2EqpfQoEAUWn1La6UhS6di/JFWCd0CXJEnKwDAl\nSZKUgWFKkiQpA8OUJElSBoYpSZKkDAxTkiRJGRimJEmSMjBMSZIkZWCYkiRJysAwJUmSlIFhSpIk\nKQPDlCRJUgaGKUmSpAwMU5IkSRkYpiRJkjIwTEmSJGXQpdoTkCS13zuHjqv2FKROzyNTkiRJGRim\nJEmSMjBMSZIkZWCYkiRJysAwJUmSlMEuw1REjIiIyRHxXETMiIhLcuNXRMTCiJia+zqj/NOVpOLZ\nvyRVQjG3RtgGXJpSeioiegNPRsSDuWXXpJR+UL7pSVIm9i9JZbfLMJVSWgwszj1eGxEzgWHlnpgk\nZWX/klQJbTpnKiJGAeOBx3JDF0fEtIiYFBH9Sjw3SSoZ+5ekcik6TEVEL+A3wOdSSmuA64HRwDia\nfvO7usB2F0ZEfUTUb2VzCaYsSW1j/5JUTkWFqYioo6kR3ZJSugsgpbQ0pdSQUmoEfgpMzLdtSumG\nlNKElNKEOrqVat6SVBT7l6RyK+ZqvgBuBGamlH640/iQnVY7G5he+ulJUvvZvyRVQjFX870VOB94\nNiKm5sa+CpwXEeOABMwF/rksM5Sk9rN/SSq7Yq7mexSIPIvuK/10JKl07F+SKsE7oEuSJGVgmJIk\nScrAMCVJkpSBYUqSJCkDw5QkSVIGhilJkqQMDFOSJEkZGKYkSZIyMExJkiRlYJiSJEnKwDAlSZKU\ngWFKkiQpA8OUJElSBoYpSZKkDAxTkiRJGRimJEmSMjBMSZIkZWCYkiRJysAwJUmSlIFhSpIkKQPD\nlCRJUgaGKUmSpAwMU5IkSRnsMkxFRPeIeDwinomIGRFxZW68f0Q8GBEv5v7sV/7pSlLx7F+SKqGY\nI1ObgbenlI4AxgGnR8QxwJeBh1NK+wMP576XpI7E/iWp7HYZplKTdblv63JfCTgTuDk3fjNwVllm\nKEntZP+SVAlFnTMVEbURMRVYBjyYUnoMGJRSWpxbZQkwqExzlKR2s39JKreiwlRKqSGlNA4YDkyM\niLFvWJ5o+m2vhYi4MCLqI6J+K5szT1iS2sL+Janc2nQ1X0ppNTAZOB1YGhFDAHJ/LiuwzQ0ppQkp\npQl1dMs6X0lqF/uXpHIp5mq+gRHRN/d4D+BUYBZwL3BBbrULgHvKNUlJag/7l6RK6FLEOkOAmyOi\nlqbwdXtK6X8iYgpwe0R8HHgFOLeM85Sk9rB/SSq7XYaplNI0YHye8VeBU8oxKUkqBfuXpErwDuiS\nJEkZGKYkSZIyMExJkiRlYJiSJEnKwDAlSZKUgWFKkiQpA8OUJElSBoYpSZKkDAxTkiRJGRimJEmS\nMjBMSZIkZVDMBx1LVVHTvXve8cZNmyo8E0mSCvPIlCRJUgaGKUmSpAwMU5IkSRkYpiRJkjIwTEmS\nJGVQ+av5ampbjjU2VHwanU5EwUW1AwbkHb+u/rd5x0d26dHm8rWRP7dvTlsLbtOQUt7xs4dPbHN9\nSZLKxSNTkiRJGRimJEmSMjBMSZIkZWCYkiRJysAwJUmSlMEur+aLiO7AI0C33Pp3ppQuj4grgE8C\ny3OrfjWldF9rz7VtQE9ePbvllVgDf/l0wW38HLby+88nC12116vstbtFXcFlDTSWvb52b6XsX5JU\nSDG3RtgMvD2ltC4i6oBHI+L+3LJrUko/KN/0JCkT+5eksttlmEopJWBd7tu63Ff+GwBJUgdi/5JU\nCUWdMxURtRExFVgGPJhSeiy36OKImBYRkyKiX4FtL4yI+oio37ZpfYmmLUnFKVX/2srmis1Z0ptL\nUWEqpdSQUhoHDAcmRsRY4HpgNDAOWAxcXWDbG1JKE1JKE7p071miaUtScUrVv+roVrE5S3pzadPV\nfCml1cBk4PSU0tJck2oEfgr4GR+SOiz7l6Ry2WWYioiBEdE393gP4FRgVkQM2Wm1s4Hp5ZmiJLWP\n/UtSJRRzNd8Q4OaIqKUpfN2eUvqfiPhFRIyj6WTOucA/7+qJ9hmyjP/62rUtxt/yza5tmjTAgm3r\n8o6f85UvFtxmzaj82XHEdx7LO05q5dL8Ah/C21F1GbR3wWUDatr++ldCoQ9HltqgZP1Lkgop5mq+\nacD4POPnl2VGklQi9i9JleCv/pIkSRkYpiRJkjIwTEmSJGVgmJIkScqgmKv5Sliskf41W/IsafvV\nZMMLfAjv37//n21+rqmfyH9n4wt+9PmC2wy+5m9trlMJ0SX/X+lt9fcU3KZHTfdyTUeSpN2eR6Yk\nSZIyMExJkiRlYJiSJEnKwDAlSZKUgWFKkiQpg4pezQfQyqfdVc24bt3yjv/bp28quM1Xun807/iI\n7z+edzwxx+u4AAAFG0lEQVRt29bWabVLamioSB1JktTEI1OSJEkZGKYkSZIyMExJkiRlYJiSJEnK\nwDAlSZKUgWFKkiQpg4reGqEG6BGVrFichpT/hg3v7rGu4Da/fs/MvOOrrsn/kpb81giR/4Vc/IVj\nC2wwpbT1K2Dmlg35FxTYd1Iq32QkSSrAI1OSJEkZGKYkSZIyMExJkiRlYJiSJEnKwDAlSZKUQaQK\nXgEVEcuBV3LfDgBWVKx4S525fmfe92rX74z7vk9KaWCFa5ac/cv6HaB2Z6/fYftXRcNUs8IR9Sml\nCVUp3snrd+Z9r3b9zrzvu5Nqv47W999wZ6xf7X1vjW/zSZIkZWCYkiRJyqCaYeqGKtbu7PU7875X\nu35n3vfdSbVfR+t3ztqdvX61972gqp0zJUmStDvwbT5JkqQMqhKmIuL0iHg+ImZHxJcrXHtuRDwb\nEVMjor4C9SZFxLKImL7TWP+IeDAiXsz92a/C9a+IiIW512BqRJxRptojImJyRDwXETMi4pLceEX2\nv5X6ldr/7hHxeEQ8k6t/ZW687PvfSu2K7PvurJr9K1e/0/SwavavXK2q9bDO3L92Ub9D9rCKv80X\nEbXAC8CpwALgCeC8lNJzFao/F5iQUqrIvSoi4kRgHfDzlNLY3Nj3gJUppatyzbhfSulLFax/BbAu\npfSDctTcqfYQYEhK6amI6A08CZwFfJQK7H8r9c+lMvsfQM+U0rqIqAMeBS4B3k+Z97+V2qdTgX3f\nXVW7f+XmMJdO0sOq2b9ytarWwzpz/9pF/Q7Zw6pxZGoiMDulNCeltAX4NXBmFeZRESmlR4CVbxg+\nE7g59/hmmv6BVLJ+RaSUFqeUnso9XgvMBIZRof1vpX5FpCbrct/W5b4SFdj/Vmorm07Vv6C6Paya\n/StXv2o9rDP3r13U75CqEaaGAfN3+n4BFfwBoekv46GIeDIiLqxg3Z0NSiktzj1eAgyqwhwujohp\nucPoZXubcbuIGAWMBx6jCvv/hvpQof2PiNqImAosAx5MKVVs/wvUhgr/3e9mqt2/wB4GVfgZrmYP\n64z9q5X60AF7WGc8Af34lNI44F3ARbnDyFWTmt5nrXTavh4YDYwDFgNXl7NYRPQCfgN8LqW0Zudl\nldj/PPUrtv8ppYbcz9twYGJEjH3D8rLtf4HaFf27V1l09h5W8Z/havawztq/WqnfIXtYNcLUQmDE\nTt8Pz41VREppYe7PZcBvaTpsX2lLc++Hb39ffFkli6eUluZ+SBuBn1LG1yD3XvdvgFtSSnflhiu2\n//nqV3L/t0sprQYm0/R+f0X//neuXY19381UtX+BPazSP8PV7GH2r5b1O2oPq0aYegLYPyL2jYiu\nwIeAeytROCJ65k7kIyJ6AqcB01vfqizuBS7IPb4AuKeSxbf/Q8g5mzK9BrkTCG8EZqaUfrjToors\nf6H6Fdz/gRHRN/d4D5pOWp5FBfa/UO1K7fturGr9C+xhULl/v7laVethnbl/tVa/w/awlFLFv4Az\naLoi5iXgaxWsOxp4Jvc1oxK1gVtpOhS5labzKz4O7AU8DLwIPAT0r3D9XwDPAtNo+ocxpEy1j6fp\nEPA0YGru64xK7X8r9Su1/4cDT+fqTAf+NTde9v1vpXZF9n13/qpW/8rV7lQ9rJr9K1e/aj2sM/ev\nXdTvkD3MO6BLkiRl0BlPQJckSSoZw5QkSVIGhilJkqQMDFOSJEkZGKYkSZIyMExJkiRlYJiSJEnK\nwDAlSZKUwf8HD4NxRaiqXe8AAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# And then compare the predictions\n", + "# to the ground truth\n", + "track2 = noisy_movies[which][::, ::, ::, ::]\n", + "for i in range(15):\n", + " fig = plt.figure(figsize=(10, 5))\n", + "\n", + " ax = fig.add_subplot(121)\n", + "\n", + " if i >= 7:\n", + " ax.text(1, 3, 'Predictions !', fontsize=20, color='w')\n", + " else:\n", + " ax.text(1, 3, 'Inital trajectory', fontsize=20)\n", + "\n", + " toplot = track[i, ::, ::, 0]\n", + "\n", + " plt.imshow(toplot)\n", + " ax = fig.add_subplot(122)\n", + " plt.text(1, 3, 'Ground truth', fontsize=20)\n", + "\n", + " toplot = track2[i, ::, ::, 0]\n", + " if i >= 2:\n", + " toplot = shifted_movies[which][i - 1, ::, ::, 0]\n", + "\n", + " plt.imshow(toplot)\n", + " plt.savefig('imgs/convlstm/%i_animate.png' % (i + 1))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.5.3" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/additional materials/3.3 LSTM for Sentence Generation.ipynb b/7. Recurrent Neural Networks/7.2 LSTM for Sentence Generation.ipynb similarity index 100% rename from additional materials/3.3 LSTM for Sentence Generation.ipynb rename to 7. Recurrent Neural Networks/7.2 LSTM for Sentence Generation.ipynb diff --git a/8. Extra/8.1 Custom Layer.ipynb b/8. Extra/8.1 Custom Layer.ipynb new file mode 100644 index 0000000..939da70 --- /dev/null +++ b/8. Extra/8.1 Custom Layer.ipynb @@ -0,0 +1,302 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Custom Keras Layer" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Idea:\n", + "\n", + "We build a custom activation layer called **Antirectifier**,\n", + "which modifies the shape of the tensor that passes through it.\n", + "\n", + "We need to specify two methods: `get_output_shape_for` and `call`.\n", + "\n", + "Note that the same result can also be achieved via a `Lambda` layer (`keras.layer.core.Lambda`)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "```python\n", + "\n", + "keras.layers.core.Lambda(function, output_shape=None, arguments=None)\n", + "\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Because our custom layer is written with primitives from the Keras backend (`K`), our code can run both on TensorFlow and Theano." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Using TensorFlow backend.\n" + ] + } + ], + "source": [ + "from keras.models import Sequential\n", + "from keras.layers import Dense, Dropout, Layer, Activation\n", + "from keras.datasets import mnist\n", + "from keras import backend as K\n", + "from keras.utils import np_utils" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## AntiRectifier Layer" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "class Antirectifier(Layer):\n", + " '''This is the combination of a sample-wise\n", + " L2 normalization with the concatenation of the\n", + " positive part of the input with the negative part\n", + " of the input. The result is a tensor of samples that are\n", + " twice as large as the input samples.\n", + "\n", + " It can be used in place of a ReLU.\n", + "\n", + " # Input shape\n", + " 2D tensor of shape (samples, n)\n", + "\n", + " # Output shape\n", + " 2D tensor of shape (samples, 2*n)\n", + "\n", + " # Theoretical justification\n", + " When applying ReLU, assuming that the distribution\n", + " of the previous output is approximately centered around 0.,\n", + " you are discarding half of your input. This is inefficient.\n", + "\n", + " Antirectifier allows to return all-positive outputs like ReLU,\n", + " without discarding any data.\n", + "\n", + " Tests on MNIST show that Antirectifier allows to train networks\n", + " with twice less parameters yet with comparable\n", + " classification accuracy as an equivalent ReLU-based network.\n", + " '''\n", + "\n", + " def compute_output_shape(self, input_shape):\n", + " shape = list(input_shape)\n", + " assert len(shape) == 2 # only valid for 2D tensors\n", + " shape[-1] *= 2\n", + " return tuple(shape)\n", + "\n", + " def call(self, inputs):\n", + " inputs -= K.mean(inputs, axis=1, keepdims=True)\n", + " inputs = K.l2_normalize(inputs, axis=1)\n", + " pos = K.relu(inputs)\n", + " neg = K.relu(-inputs)\n", + " return K.concatenate([pos, neg], axis=1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Parametrs and Settings" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# global parameters\n", + "batch_size = 128\n", + "nb_classes = 10\n", + "nb_epoch = 10" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Data Preparation" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "60000 train samples\n", + "10000 test samples\n" + ] + } + ], + "source": [ + "# the data, shuffled and split between train and test sets\n", + "(X_train, y_train), (X_test, y_test) = mnist.load_data()\n", + "\n", + "X_train = X_train.reshape(60000, 784)\n", + "X_test = X_test.reshape(10000, 784)\n", + "X_train = X_train.astype('float32')\n", + "X_test = X_test.astype('float32')\n", + "X_train /= 255\n", + "X_test /= 255\n", + "print(X_train.shape[0], 'train samples')\n", + "print(X_test.shape[0], 'test samples')\n", + "\n", + "# convert class vectors to binary class matrices\n", + "Y_train = np_utils.to_categorical(y_train, nb_classes)\n", + "Y_test = np_utils.to_categorical(y_test, nb_classes)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Model with Custom Layer" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Train on 60000 samples, validate on 10000 samples\n", + "Epoch 1/10\n", + "60000/60000 [==============================] - 4s - loss: 0.6029 - acc: 0.9154 - val_loss: 0.1556 - val_acc: 0.9612\n", + "Epoch 2/10\n", + "60000/60000 [==============================] - 3s - loss: 0.1252 - acc: 0.9662 - val_loss: 0.0990 - val_acc: 0.9714\n", + "Epoch 3/10\n", + "60000/60000 [==============================] - 3s - loss: 0.0813 - acc: 0.9766 - val_loss: 0.0796 - val_acc: 0.9758\n", + "Epoch 4/10\n", + "60000/60000 [==============================] - 3s - loss: 0.0634 - acc: 0.9810 - val_loss: 0.0783 - val_acc: 0.9747\n", + "Epoch 5/10\n", + "60000/60000 [==============================] - 3s - loss: 0.0513 - acc: 0.9847 - val_loss: 0.0685 - val_acc: 0.9792\n", + "Epoch 6/10\n", + "60000/60000 [==============================] - 3s - loss: 0.0428 - acc: 0.9867 - val_loss: 0.0669 - val_acc: 0.9792\n", + "Epoch 7/10\n", + "60000/60000 [==============================] - 3s - loss: 0.0381 - acc: 0.9885 - val_loss: 0.0668 - val_acc: 0.9799\n", + "Epoch 8/10\n", + "60000/60000 [==============================] - 3s - loss: 0.0314 - acc: 0.9903 - val_loss: 0.0672 - val_acc: 0.9790\n", + "Epoch 9/10\n", + "60000/60000 [==============================] - 3s - loss: 0.0276 - acc: 0.9913 - val_loss: 0.0616 - val_acc: 0.9817\n", + "Epoch 10/10\n", + "60000/60000 [==============================] - 3s - loss: 0.0238 - acc: 0.9926 - val_loss: 0.0608 - val_acc: 0.9825\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# build the model\n", + "model = Sequential()\n", + "model.add(Dense(256, input_shape=(784,)))\n", + "model.add(Antirectifier())\n", + "model.add(Dropout(0.1))\n", + "model.add(Dense(256))\n", + "model.add(Antirectifier())\n", + "model.add(Dropout(0.1))\n", + "model.add(Dense(10))\n", + "model.add(Activation('softmax'))\n", + "\n", + "# compile the model\n", + "model.compile(loss='categorical_crossentropy',\n", + " optimizer='rmsprop',\n", + " metrics=['accuracy'])\n", + "\n", + "# train the model\n", + "model.fit(X_train, Y_train,\n", + " batch_size=batch_size, epochs=nb_epoch,\n", + " verbose=1, validation_data=(X_test, Y_test))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Excercise" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Compare with an equivalent network that is **2x bigger** (in terms of Dense layers) + **ReLU**)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "## your code here" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.5.3" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/8. Extra/8.2 Multi-Modal Networks.ipynb b/8. Extra/8.2 Multi-Modal Networks.ipynb new file mode 100644 index 0000000..941104c --- /dev/null +++ b/8. Extra/8.2 Multi-Modal Networks.ipynb @@ -0,0 +1,414 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Keras Functional API" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Recall: All models (layers) are callables" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "```python\n", + "from keras.layers import Input, Dense\n", + "from keras.models import Model\n", + "\n", + "# this returns a tensor\n", + "inputs = Input(shape=(784,))\n", + "\n", + "# a layer instance is callable on a tensor, and returns a tensor\n", + "x = Dense(64, activation='relu')(inputs)\n", + "x = Dense(64, activation='relu')(x)\n", + "predictions = Dense(10, activation='softmax')(x)\n", + "\n", + "# this creates a model that includes\n", + "# the Input layer and three Dense layers\n", + "model = Model(inputs=inputs, outputs=predictions)\n", + "model.compile(optimizer='rmsprop',\n", + " loss='categorical_crossentropy',\n", + " metrics=['accuracy'])\n", + "model.fit(data, labels) # starts training\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Multi-Input Networks" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Keras Merge Layer" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here's a good use case for the functional API: models with multiple inputs and outputs. \n", + "\n", + "The functional API makes it easy to manipulate a large number of intertwined datastreams.\n", + "\n", + "Let's consider the following model. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "```python\n", + "from keras.layers import Dense, Input\n", + "from keras.models import Model\n", + "from keras.layers.merge import concatenate\n", + "\n", + "left_input = Input(shape=(784, ), name='left_input')\n", + "left_branch = Dense(32, input_dim=784, name='left_branch')(left_input)\n", + "\n", + "right_input = Input(shape=(784,), name='right_input')\n", + "right_branch = Dense(32, input_dim=784, name='right_branch')(right_input)\n", + "\n", + "x = concatenate([left_branch, right_branch])\n", + "predictions = Dense(10, activation='softmax', name='main_output')(x)\n", + "\n", + "model = Model(inputs=[left_input, right_input], outputs=predictions)\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Resulting Model will look like the following network:" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Such a two-branch model can then be trained via e.g.:" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "```python\n", + "model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])\n", + "model.fit([input_data_1, input_data_2], targets) # we pass one data array per model input\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Try yourself" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Step 1: Get Data - MNIST" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# let's load MNIST data as we did in the exercise on MNIST with FC Nets" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# %load ../solutions/sol_821.py" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Step 2: Create the Multi-Input Network" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "## try yourself\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "## `evaluate` the model on test data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Keras supports different Merge strategies:\n", + "\n", + "* `add`: element-wise sum\n", + "* `concatenate`: tensor concatenation. You can specify the concatenation axis via the argument concat_axis.\n", + "* `multiply`: element-wise multiplication\n", + "* `average`: tensor average\n", + "* `maximum`: element-wise maximum of the inputs.\n", + "* `dot`: dot product. You can specify which axes to reduce along via the argument dot_axes. You can also specify applying any normalisation. In that case, the output of the dot product is the cosine proximity between the two samples." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can also pass a function as the mode argument, allowing for arbitrary transformations:" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "```python\n", + "merged = Merge([left_branch, right_branch], mode=lambda x: x[0] - x[1])\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Even more interesting\n", + "\n", + "Here's a good use case for the functional API: models with multiple inputs and outputs. \n", + "\n", + "The functional API makes it easy to manipulate a large number of intertwined datastreams.\n", + "\n", + "Let's consider the following model (from: [https://keras.io/getting-started/functional-api-guide/](https://keras.io/getting-started/functional-api-guide/) )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Problem and Data\n", + "\n", + "We seek to predict how many retweets and likes a news headline will receive on Twitter. \n", + "\n", + "The main input to the model will be the headline itself, as a sequence of words, but to spice things up, our model will also have an auxiliary input, receiving extra data such as the time of day when the headline was posted, etc. \n", + "\n", + "The model will also be supervised via two loss functions. \n", + "\n", + "Using the main loss function earlier in a model is a good regularization mechanism for deep models.\n", + "\n", + "" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Using TensorFlow backend.\n" + ] + } + ], + "source": [ + "from keras.layers import Input, Embedding, LSTM, Dense\n", + "from keras.models import Model\n", + "\n", + "# Headline input: meant to receive sequences of 100 integers, between 1 and 10000.\n", + "# Note that we can name any layer by passing it a \"name\" argument.\n", + "main_input = Input(shape=(100,), dtype='int32', name='main_input')\n", + "\n", + "# This embedding layer will encode the input sequence\n", + "# into a sequence of dense 512-dimensional vectors.\n", + "x = Embedding(output_dim=512, input_dim=10000, input_length=100)(main_input)\n", + "\n", + "# A LSTM will transform the vector sequence into a single vector,\n", + "# containing information about the entire sequence\n", + "lstm_out = LSTM(32)(x)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here we insert the auxiliary loss, allowing the LSTM and Embedding layer to be trained smoothly even though the main loss will be much higher in the model." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "auxiliary_output = Dense(1, activation='sigmoid', name='aux_output')(lstm_out)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "At this point, we feed into the model our auxiliary input data by concatenating it with the LSTM output:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from keras.layers import concatenate\n", + "\n", + "auxiliary_input = Input(shape=(5,), name='aux_input')\n", + "x = concatenate([lstm_out, auxiliary_input])\n", + "\n", + "# We stack a deep densely-connected network on top\n", + "x = Dense(64, activation='relu')(x)\n", + "x = Dense(64, activation='relu')(x)\n", + "x = Dense(64, activation='relu')(x)\n", + "\n", + "# And finally we add the main logistic regression layer\n", + "main_output = Dense(1, activation='sigmoid', name='main_output')(x)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Model Definition" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "model = Model(inputs=[main_input, auxiliary_input], outputs=[main_output, auxiliary_output])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We compile the model and assign a weight of 0.2 to the auxiliary loss. \n", + "\n", + "To specify different **loss_weights or loss** for each different output, you can use a list or a dictionary. Here we pass a single loss as the loss argument, so the same loss will be used on all outputs." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Note: \n", + "Since our inputs and outputs are named (we passed them a \"name\" argument), \n", + "We can compile&fit the model via:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "model.compile(optimizer='rmsprop',\n", + " loss={'main_output': 'binary_crossentropy', 'aux_output': 'binary_crossentropy'},\n", + " loss_weights={'main_output': 1., 'aux_output': 0.2})" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "```python\n", + "\n", + "# And trained it via:\n", + "model.fit({'main_input': headline_data, 'aux_input': additional_data},\n", + " {'main_output': labels, 'aux_output': labels},\n", + " epochs=50, batch_size=32)\n", + "```" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.5.3" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/4. Conclusions.ipynb b/Conclusions.ipynb similarity index 100% rename from 4. Conclusions.ipynb rename to Conclusions.ipynb diff --git a/Extra Additional Materials.ipynb b/Extra Additional Materials.ipynb deleted file mode 100644 index a6a6984..0000000 --- a/Extra Additional Materials.ipynb +++ /dev/null @@ -1,51 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Reference to Notebooks in the Additional Materials Section" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "- [Perceptron and Adaline Implementation](./additional materials/1.1.1 Perceptron and Adaline.ipynb)\n", - "\n", - "- [MLP and MNIST](./additional materials/1.1.2 MLP and MNIST.ipynb)\n", - "\n", - "- [Quick Theano Tutorial](./additional materials/1.5.1 Introduction - Theano.ipynb)\n", - "\n", - "- [LSTM for Sentence Generation](./additional materials/3.3 LSTM for Sentence Generation.ipynb)\n", - "\n", - "- [Custom Layers in Keras](./additional materials/5.1 Custom Layer.ipynb)\n", - "\n", - "- [Multi-Modal Networks](./additional materials/5.2 Multi-Modal Networks.ipynb)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.5.3" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/additional materials/5.1 Custom Layer.ipynb b/additional materials/5.1 Custom Layer.ipynb deleted file mode 100644 index 825c05b..0000000 --- a/additional materials/5.1 Custom Layer.ipynb +++ /dev/null @@ -1,370 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Custom Keras Layer" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Idea:\n", - "\n", - "We build a custom activation layer called **Antirectifier**,\n", - "which modifies the shape of the tensor that passes through it.\n", - "\n", - "We need to specify two methods: `get_output_shape_for` and `call`.\n", - "\n", - "Note that the same result can also be achieved via a `Lambda` layer (`keras.layer.core.Lambda`)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "```python\n", - "\n", - "keras.layers.core.Lambda(function, output_shape=None, arguments=None)\n", - "\n", - "```" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Because our custom layer is written with primitives from the Keras backend (`K`), our code can run both on TensorFlow and Theano." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Using Theano backend.\n", - "Using gpu device 0: GeForce GTX 760 (CNMeM is enabled with initial size: 90.0% of memory, cuDNN 5110)\n", - "/home/valerio/anaconda3/envs/deep-learning/lib/python3.5/site-packages/theano/sandbox/cuda/__init__.py:600: UserWarning: Your cuDNN version is more recent than the one Theano officially supports. If you see any problems, try updating Theano or downgrading cuDNN to version 5.\n", - " warnings.warn(warn)\n" - ] - } - ], - "source": [ - "from keras.models import Sequential\n", - "from keras.layers import Dense, Dropout, Layer, Activation\n", - "from keras.datasets import mnist\n", - "from keras import backend as K\n", - "from keras.utils import np_utils" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## AntiRectifier Layer" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "class Antirectifier(Layer):\n", - " '''This is the combination of a sample-wise\n", - " L2 normalization with the concatenation of the\n", - " positive part of the input with the negative part\n", - " of the input. The result is a tensor of samples that are\n", - " twice as large as the input samples.\n", - "\n", - " It can be used in place of a ReLU.\n", - "\n", - " # Input shape\n", - " 2D tensor of shape (samples, n)\n", - "\n", - " # Output shape\n", - " 2D tensor of shape (samples, 2*n)\n", - "\n", - " # Theoretical justification\n", - " When applying ReLU, assuming that the distribution\n", - " of the previous output is approximately centered around 0.,\n", - " you are discarding half of your input. This is inefficient.\n", - "\n", - " Antirectifier allows to return all-positive outputs like ReLU,\n", - " without discarding any data.\n", - "\n", - " Tests on MNIST show that Antirectifier allows to train networks\n", - " with twice less parameters yet with comparable\n", - " classification accuracy as an equivalent ReLU-based network.\n", - " '''\n", - "\n", - " def get_output_shape_for(self, input_shape):\n", - " shape = list(input_shape)\n", - " assert len(shape) == 2 # only valid for 2D tensors\n", - " shape[-1] *= 2\n", - " return tuple(shape)\n", - "\n", - " def call(self, x, mask=None):\n", - " x -= K.mean(x, axis=1, keepdims=True)\n", - " x = K.l2_normalize(x, axis=1)\n", - " pos = K.relu(x)\n", - " neg = K.relu(-x)\n", - " return K.concatenate([pos, neg], axis=1)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Parametrs and Settings" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "# global parameters\n", - "batch_size = 128\n", - "nb_classes = 10\n", - "nb_epoch = 40" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Data Preparation" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "60000 train samples\n", - "10000 test samples\n" - ] - } - ], - "source": [ - "# the data, shuffled and split between train and test sets\n", - "(X_train, y_train), (X_test, y_test) = mnist.load_data()\n", - "\n", - "X_train = X_train.reshape(60000, 784)\n", - "X_test = X_test.reshape(10000, 784)\n", - "X_train = X_train.astype('float32')\n", - "X_test = X_test.astype('float32')\n", - "X_train /= 255\n", - "X_test /= 255\n", - "print(X_train.shape[0], 'train samples')\n", - "print(X_test.shape[0], 'test samples')\n", - "\n", - "# convert class vectors to binary class matrices\n", - "Y_train = np_utils.to_categorical(y_train, nb_classes)\n", - "Y_test = np_utils.to_categorical(y_test, nb_classes)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Model with Custom Layer" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "collapsed": false, - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Train on 60000 samples, validate on 10000 samples\n", - "Epoch 1/40\n", - "60000/60000 [==============================] - 1s - loss: 0.6011 - acc: 0.9140 - val_loss: 0.1505 - val_acc: 0.9613\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\n", - "Epoch 2/40\n", - "60000/60000 [==============================] - 0s - loss: 0.1260 - acc: 0.9656 - val_loss: 0.0982 - val_acc: 0.9703\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\n", - "Epoch 3/40\n", - "60000/60000 [==============================] - 0s - loss: 0.0831 - acc: 0.9763 - val_loss: 0.0782 - val_acc: 0.9747\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\n", - "Epoch 4/40\n", - "60000/60000 [==============================] - 0s - loss: 0.0636 - acc: 0.9813 - val_loss: 0.0827 - val_acc: 0.9741\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\n", - "Epoch 5/40\n", - "60000/60000 [==============================] - 0s - loss: 0.0511 - acc: 0.9841 - val_loss: 0.0724 - val_acc: 0.9758\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\n", - "Epoch 6/40\n", - "60000/60000 [==============================] - 0s - loss: 0.0429 - acc: 0.9866 - val_loss: 0.0667 - val_acc: 0.9788\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\n", - "Epoch 7/40\n", - "60000/60000 [==============================] - 0s - loss: 0.0366 - acc: 0.9883 - val_loss: 0.0715 - val_acc: 0.9792\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\n", - "Epoch 8/40\n", - "60000/60000 [==============================] - 0s - loss: 0.0315 - acc: 0.9904 - val_loss: 0.0809 - val_acc: 0.9771\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\n", - "Epoch 9/40\n", - "60000/60000 [==============================] - 0s - loss: 0.0282 - acc: 0.9913 - val_loss: 0.0706 - val_acc: 0.9803\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\n", - "Epoch 10/40\n", - "60000/60000 [==============================] - 0s - loss: 0.0236 - acc: 0.9925 - val_loss: 0.0687 - val_acc: 0.9803\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\n", - "Epoch 11/40\n", - "60000/60000 [==============================] - 0s - loss: 0.0215 - acc: 0.9931 - val_loss: 0.0670 - val_acc: 0.9795\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\n", - "Epoch 12/40\n", - "60000/60000 [==============================] - 0s - loss: 0.0195 - acc: 0.9938 - val_loss: 0.0704 - val_acc: 0.9811\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\n", - "Epoch 13/40\n", - "60000/60000 [==============================] - 0s - loss: 0.0181 - acc: 0.9941 - val_loss: 0.0667 - val_acc: 0.9820\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\n", - "Epoch 14/40\n", - "60000/60000 [==============================] - 0s - loss: 0.0149 - acc: 0.9955 - val_loss: 0.0687 - val_acc: 0.9823\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\n", - "Epoch 15/40\n", - "60000/60000 [==============================] - 1s - loss: 0.0146 - acc: 0.9959 - val_loss: 0.0723 - val_acc: 0.9799\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\n", - "Epoch 16/40\n", - "60000/60000 [==============================] - 0s - loss: 0.0137 - acc: 0.9958 - val_loss: 0.0795 - val_acc: 0.9799\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\n", - "Epoch 17/40\n", - "60000/60000 [==============================] - 1s - loss: 0.0130 - acc: 0.9957 - val_loss: 0.0697 - val_acc: 0.9826\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\n", - "Epoch 18/40\n", - "60000/60000 [==============================] - 1s - loss: 0.0113 - acc: 0.9965 - val_loss: 0.0688 - val_acc: 0.9823\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\n", - "Epoch 19/40\n", - "60000/60000 [==============================] - 0s - loss: 0.0107 - acc: 0.9963 - val_loss: 0.0737 - val_acc: 0.9819\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\n", - "Epoch 20/40\n", - "60000/60000 [==============================] - 0s - loss: 0.0103 - acc: 0.9967 - val_loss: 0.0746 - val_acc: 0.9812\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\n", - "Epoch 21/40\n", - "60000/60000 [==============================] - 0s - loss: 0.0094 - acc: 0.9968 - val_loss: 0.0727 - val_acc: 0.9811\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\n", - "Epoch 22/40\n", - "60000/60000 [==============================] - 1s - loss: 0.0084 - acc: 0.9972 - val_loss: 0.0805 - val_acc: 0.9820\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\n", - "Epoch 23/40\n", - "60000/60000 [==============================] - 0s - loss: 0.0088 - acc: 0.9971 - val_loss: 0.0809 - val_acc: 0.9809\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\n", - "Epoch 24/40\n", - "60000/60000 [==============================] - 1s - loss: 0.0075 - acc: 0.9974 - val_loss: 0.0773 - val_acc: 0.9817\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\n", - "Epoch 25/40\n", - "60000/60000 [==============================] - 0s - loss: 0.0078 - acc: 0.9975 - val_loss: 0.0758 - val_acc: 0.9817\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\n", - "Epoch 26/40\n", - "60000/60000 [==============================] - 1s - loss: 0.0074 - acc: 0.9976 - val_loss: 0.0751 - val_acc: 0.9816\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\n", - "Epoch 27/40\n", - "60000/60000 [==============================] - 0s - loss: 0.0076 - acc: 0.9975 - val_loss: 0.0785 - val_acc: 0.9809\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\n", - "Epoch 28/40\n", - "60000/60000 [==============================] - 0s - loss: 0.0067 - acc: 0.9978 - val_loss: 0.0782 - val_acc: 0.9816\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\n", - "Epoch 29/40\n", - "60000/60000 [==============================] - 1s - loss: 0.0070 - acc: 0.9976 - val_loss: 0.0834 - val_acc: 0.9808\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\n", - "Epoch 30/40\n", - "60000/60000 [==============================] - 1s - loss: 0.0055 - acc: 0.9983 - val_loss: 0.0775 - val_acc: 0.9817\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\n", - "Epoch 31/40\n", - "60000/60000 [==============================] - 0s - loss: 0.0056 - acc: 0.9982 - val_loss: 0.0930 - val_acc: 0.9814\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\n", - "Epoch 32/40\n", - "60000/60000 [==============================] - 1s - loss: 0.0056 - acc: 0.9981 - val_loss: 0.0886 - val_acc: 0.9812\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\n", - "Epoch 33/40\n", - "60000/60000 [==============================] - 1s - loss: 0.0057 - acc: 0.9982 - val_loss: 0.0778 - val_acc: 0.9812\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\n", - "Epoch 34/40\n", - "60000/60000 [==============================] - 1s - loss: 0.0047 - acc: 0.9984 - val_loss: 0.0839 - val_acc: 0.9824\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\n", - "Epoch 35/40\n", - "60000/60000 [==============================] - 0s - loss: 0.0049 - acc: 0.9984 - val_loss: 0.0900 - val_acc: 0.9809\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\n", - "Epoch 36/40\n", - "60000/60000 [==============================] - 1s - loss: 0.0046 - acc: 0.9984 - val_loss: 0.0851 - val_acc: 0.9816\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\n", - "Epoch 37/40\n", - "60000/60000 [==============================] - 0s - loss: 0.0053 - acc: 0.9985 - val_loss: 0.0932 - val_acc: 0.9801\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\n", - "Epoch 38/40\n", - "60000/60000 [==============================] - 0s - loss: 0.0049 - acc: 0.9983 - val_loss: 0.0917 - val_acc: 0.9804\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\n", - "Epoch 39/40\n", - "60000/60000 [==============================] - 0s - loss: 0.0044 - acc: 0.9984 - val_loss: 0.0931 - val_acc: 0.9816\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\n", - "Epoch 40/40\n", - "60000/60000 [==============================] - 0s - loss: 0.0047 - acc: 0.9986 - val_loss: 0.0874 - val_acc: 0.9820\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\n" - ] - }, - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# build the model\n", - "model = Sequential()\n", - "model.add(Dense(256, input_shape=(784,)))\n", - "model.add(Antirectifier())\n", - "model.add(Dropout(0.1))\n", - "model.add(Dense(256))\n", - "model.add(Antirectifier())\n", - "model.add(Dropout(0.1))\n", - "model.add(Dense(10))\n", - "model.add(Activation('softmax'))\n", - "\n", - "# compile the model\n", - "model.compile(loss='categorical_crossentropy',\n", - " optimizer='rmsprop',\n", - " metrics=['accuracy'])\n", - "\n", - "# train the model\n", - "model.fit(X_train, Y_train,\n", - " batch_size=batch_size, nb_epoch=nb_epoch,\n", - " verbose=1, validation_data=(X_test, Y_test))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Excercise" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Compare with an equivalent network that is **2x bigger** (in terms of Dense layers) + **ReLU**)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "## your code here" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.5.3" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/additional materials/5.2 Multi-Modal Networks.ipynb b/additional materials/5.2 Multi-Modal Networks.ipynb deleted file mode 100644 index f5b04cb..0000000 --- a/additional materials/5.2 Multi-Modal Networks.ipynb +++ /dev/null @@ -1,234 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Quick Intro to Keras Functional API" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Preamble: All models (layers) are callables" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "```python\n", - "from keras.layers import Input, Dense\n", - "from keras.models import Model\n", - "\n", - "# this returns a tensor\n", - "inputs = Input(shape=(784,))\n", - "\n", - "# a layer instance is callable on a tensor, and returns a tensor\n", - "x = Dense(64, activation='relu')(inputs)\n", - "x = Dense(64, activation='relu')(x)\n", - "predictions = Dense(10, activation='softmax')(x)\n", - "\n", - "# this creates a model that includes\n", - "# the Input layer and three Dense layers\n", - "model = Model(input=inputs, output=predictions)\n", - "model.compile(optimizer='rmsprop',\n", - " loss='categorical_crossentropy',\n", - " metrics=['accuracy'])\n", - "model.fit(data, labels) # starts training\n", - "```" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Multi-Input Networks" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Keras Merge Layer" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Here's a good use case for the functional API: models with multiple inputs and outputs. \n", - "\n", - "The functional API makes it easy to manipulate a large number of intertwined datastreams.\n", - "\n", - "Let's consider the following model. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "```python\n", - "from keras.layers import Dense, Input\n", - "from keras.models import Model\n", - "from keras.layers.merge import concatenate\n", - "\n", - "left_input = Input(shape=(784, ), name='left_input')\n", - "left_branch = Dense(32, input_dim=784, name='left_branch')(left_input)\n", - "\n", - "right_input = Input(shape=(784,), name='right_input')\n", - "right_branch = Dense(32, input_dim=784, name='right_branch')(right_input)\n", - "\n", - "x = concatenate([left_branch, right_branch])\n", - "predictions = Dense(10, activation='softmax', name='main_output')(x)\n", - "\n", - "model = Model(inputs=[left_input, right_input], outputs=predictions)\n", - "```" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Resulting Model will look like the following network:" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Such a two-branch model can then be trained via e.g.:" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "```python\n", - "model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])\n", - "model.fit([input_data_1, input_data_2], targets) # we pass one data array per model input\n", - "```" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Try yourself" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Step 1: Get Data - MNIST" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "# let's load MNIST data as we did in the exercise on MNIST with FC Nets" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# %load ../solutions/sol_52.py" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Step 2: Create the Multi-Input Network" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "## try yourself\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "## `evaluate` the model on test data" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Keras supports different Merge strategies:\n", - "\n", - "* `add`: element-wise sum\n", - "* `concatenate`: tensor concatenation. You can specify the concatenation axis via the argument concat_axis.\n", - "* `multiply`: element-wise multiplication\n", - "* `average`: tensor average\n", - "* `maximum`: element-wise maximum of the inputs.\n", - "* `dot`: dot product. You can specify which axes to reduce along via the argument dot_axes. You can also specify applying any normalisation. In that case, the output of the dot product is the cosine proximity between the two samples." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "You can also pass a function as the mode argument, allowing for arbitrary transformations:" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "```python\n", - "merged = Merge([left_branch, right_branch], mode=lambda x: x[0] - x[1])\n", - "```" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.5.3" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/solutions/sol_221_2.py b/solutions/sol_221_2.py deleted file mode 100644 index 2fee89c..0000000 --- a/solutions/sol_221_2.py +++ /dev/null @@ -1,16 +0,0 @@ -from keras.callbacks import EarlyStopping - -early_stop = EarlyStopping(monitor='val_loss', patience=4, verbose=1) - -model = Sequential() -model.add(Dense(512, activation='relu', input_shape=(784,))) -model.add(Dropout(0.2)) -model.add(Dense(512, activation='relu')) -model.add(Dropout(0.2)) -model.add(Dense(10, activation='softmax')) - -model.compile(loss='categorical_crossentropy', optimizer=SGD(), - metrics=['accuracy']) - -model.fit(X_train, Y_train, validation_data = (X_test, Y_test), epochs=100, - batch_size=128, verbose=True, callbacks=[early_stop]) \ No newline at end of file diff --git a/solutions/sol_2311.py b/solutions/sol_2311.py new file mode 100644 index 0000000..e957570 --- /dev/null +++ b/solutions/sol_2311.py @@ -0,0 +1,2 @@ +y = w * x + b +loss = K.mean(K.square(y-target)) \ No newline at end of file diff --git a/solutions/sol_2312.py b/solutions/sol_2312.py new file mode 100644 index 0000000..70ad4a6 --- /dev/null +++ b/solutions/sol_2312.py @@ -0,0 +1,2 @@ +grads = K.gradients(loss, [w,b]) +updates = [(w, w-lr*grads[0]), (b, b-lr*grads[1])] \ No newline at end of file diff --git a/solutions/sol_2313.py b/solutions/sol_2313.py new file mode 100644 index 0000000..181d8e2 --- /dev/null +++ b/solutions/sol_2313.py @@ -0,0 +1,5 @@ +plt.plot(range(len(loss_history)), loss_history, 'o', label='Linear Regression Training phase') +plt.ylabel('cost') +plt.xlabel('epoch') +plt.legend() +plt.show() \ No newline at end of file diff --git a/solutions/sol_221_1.py b/solutions/sol_312.py similarity index 100% rename from solutions/sol_221_1.py rename to solutions/sol_312.py diff --git a/solutions/sol_321.py b/solutions/sol_321.py new file mode 100644 index 0000000..d136902 --- /dev/null +++ b/solutions/sol_321.py @@ -0,0 +1,11 @@ +from keras.models import Sequential +from keras.layers.core import Dense, Dropout +from keras.optimizers import SGD + +model = Sequential() +model.add(Dense(512, activation='relu', input_shape=(784,))) +model.add(Dense(512, activation='relu')) +model.add(Dense(nb_classes, activation='softmax')) + +model.compile(loss='categorical_crossentropy', optimizer=SGD(), + metrics=['accuracy']) \ No newline at end of file diff --git a/solutions/sol_52.py b/solutions/sol_821.py similarity index 100% rename from solutions/sol_52.py rename to solutions/sol_821.py