|
| 1 | +## Hyperparameters |
| 2 | + |
| 3 | +Hyperparameters used to obtain the `preTrained` networks are listed below : |
| 4 | + |
| 5 | +### RoboschoolWalker2d-v1 |
| 6 | + |
| 7 | +``` |
| 8 | +####### initialize environment hyperparameters ###### |
| 9 | + |
| 10 | +env_name = "RoboschoolWalker2d-v1" |
| 11 | + |
| 12 | +has_continuous_action_space = True |
| 13 | + |
| 14 | +max_ep_len = 1000 # max timesteps in one episode |
| 15 | +max_training_timesteps = int(3e6) # break training loop if timeteps > max_training_timesteps |
| 16 | + |
| 17 | +print_freq = max_ep_len * 10 # print avg reward in the interval (in num timesteps) |
| 18 | +log_freq = max_ep_len * 2 # log avg reward in the interval (in num timesteps) |
| 19 | +save_model_freq = int(1e5) # save model frequency (in num timesteps) |
| 20 | + |
| 21 | +action_std = 0.6 # starting std for action distribution (Multivariate Normal) |
| 22 | +action_std_decay_rate = 0.05 # linearly decay action_std (action_std = action_std - action_std_decay_rate) |
| 23 | +min_action_std = 0.1 # minimum action_std (stop decay after action_std <= min_action_std) |
| 24 | +action_std_decay_freq = int(2.5e5) # action_std decay frequency (in num timesteps) |
| 25 | + |
| 26 | +##################################################### |
| 27 | + |
| 28 | + |
| 29 | +## Note : print/log frequencies should be > than max_ep_len |
| 30 | + |
| 31 | + |
| 32 | +################ PPO hyperparameters ################ |
| 33 | + |
| 34 | +update_timestep = max_ep_len * 4 # update policy every n timesteps |
| 35 | +K_epochs = 80 # update policy for K epochs in one PPO update |
| 36 | + |
| 37 | +eps_clip = 0.2 # clip parameter for PPO |
| 38 | +gamma = 0.99 # discount factor |
| 39 | + |
| 40 | +lr_actor = 0.0003 # learning rate for actor network |
| 41 | +lr_critic = 0.001 # learning rate for critic network |
| 42 | + |
| 43 | +random_seed = 0 # set random seed if required (0 = no random seed) |
| 44 | + |
| 45 | +##################################################### |
| 46 | +``` |
| 47 | + |
| 48 | + |
| 49 | +### BipedalWalker-v2 |
| 50 | + |
| 51 | +``` |
| 52 | +####### initialize environment hyperparameters ###### |
| 53 | + |
| 54 | +env_name = "BipedalWalker-v2" |
| 55 | + |
| 56 | +has_continuous_action_space = True |
| 57 | + |
| 58 | +max_ep_len = 1500 # max timesteps in one episode |
| 59 | +max_training_timesteps = int(3e6) # break training loop if timeteps > max_training_timesteps |
| 60 | + |
| 61 | +print_freq = max_ep_len * 4 # print avg reward in the interval (in num timesteps) |
| 62 | +log_freq = max_ep_len * 2 # log avg reward in the interval (in num timesteps) |
| 63 | +save_model_freq = int(1e5) # save model frequency (in num timesteps) |
| 64 | + |
| 65 | +action_std = 0.6 # starting std for action distribution (Multivariate Normal) |
| 66 | +action_std_decay_rate = 0.05 # linearly decay action_std (action_std = action_std - action_std_decay_rate) |
| 67 | +min_action_std = 0.1 # minimum action_std (stop decay after action_std <= min_action_std) |
| 68 | +action_std_decay_freq = int(2.5e5) # action_std decay frequency (in num timesteps) |
| 69 | + |
| 70 | +##################################################### |
| 71 | + |
| 72 | + |
| 73 | +## Note : print/log frequencies should be > than max_ep_len |
| 74 | + |
| 75 | + |
| 76 | +################ PPO hyperparameters ################ |
| 77 | + |
| 78 | +update_timestep = max_ep_len * 4 # update policy every n timesteps |
| 79 | +K_epochs = 80 # update policy for K epochs in one PPO update |
| 80 | + |
| 81 | +eps_clip = 0.2 # clip parameter for PPO |
| 82 | +gamma = 0.99 # discount factor |
| 83 | + |
| 84 | +lr_actor = 0.0003 # learning rate for actor network |
| 85 | +lr_critic = 0.001 # learning rate for critic network |
| 86 | + |
| 87 | +random_seed = 0 # set random seed if required (0 = no random seed) |
| 88 | + |
| 89 | +##################################################### |
| 90 | +``` |
| 91 | + |
| 92 | + |
| 93 | +### Cartpole-v1 |
| 94 | + |
| 95 | +``` |
| 96 | +####### initialize environment hyperparameters ###### |
| 97 | + |
| 98 | +env_name = "CartPole-v1" |
| 99 | +has_continuous_action_space = False |
| 100 | + |
| 101 | +max_ep_len = 400 # max timesteps in one episode |
| 102 | +max_training_timesteps = int(1e5) # break training loop if timeteps > max_training_timesteps |
| 103 | + |
| 104 | +print_freq = max_ep_len * 4 # print avg reward in the interval (in num timesteps) |
| 105 | +log_freq = max_ep_len * 2 # log avg reward in the interval (in num timesteps) |
| 106 | +save_model_freq = int(2e4) # save model frequency (in num timesteps) |
| 107 | + |
| 108 | +action_std = None |
| 109 | + |
| 110 | + |
| 111 | +##################################################### |
| 112 | + |
| 113 | + |
| 114 | +## Note : print/log frequencies should be > than max_ep_len |
| 115 | + |
| 116 | + |
| 117 | +################ PPO hyperparameters ################ |
| 118 | + |
| 119 | + |
| 120 | +update_timestep = max_ep_len * 4 # update policy every n timesteps |
| 121 | +K_epochs = 40 # update policy for K epochs |
| 122 | +eps_clip = 0.2 # clip parameter for PPO |
| 123 | +gamma = 0.99 # discount factor |
| 124 | + |
| 125 | +lr_actor = 0.0003 # learning rate for actor network |
| 126 | +lr_critic = 0.001 # learning rate for critic network |
| 127 | + |
| 128 | +random_seed = 0 # set random seed if required (0 = no random seed) |
| 129 | + |
| 130 | +##################################################### |
| 131 | +``` |
| 132 | + |
| 133 | + |
| 134 | +### LunarLander-v2 |
| 135 | + |
| 136 | +``` |
| 137 | +####### initialize environment hyperparameters ###### |
| 138 | + |
| 139 | +env_name = "LunarLander-v2" |
| 140 | +has_continuous_action_space = False |
| 141 | + |
| 142 | +max_ep_len = 300 # max timesteps in one episode |
| 143 | +max_training_timesteps = int(1e6) # break training loop if timeteps > max_training_timesteps |
| 144 | + |
| 145 | +print_freq = max_ep_len * 8 # print avg reward in the interval (in num timesteps) |
| 146 | +log_freq = max_ep_len * 2 # log avg reward in the interval (in num timesteps) |
| 147 | +save_model_freq = int(5e4) # save model frequency (in num timesteps) |
| 148 | + |
| 149 | +action_std = None |
| 150 | + |
| 151 | + |
| 152 | +##################################################### |
| 153 | + |
| 154 | + |
| 155 | +## Note : print/log frequencies should be > than max_ep_len |
| 156 | + |
| 157 | + |
| 158 | +################ PPO hyperparameters ################ |
| 159 | + |
| 160 | +update_timestep = max_ep_len * 3 # update policy every n timesteps |
| 161 | +K_epochs = 30 # update policy for K epochs |
| 162 | +eps_clip = 0.2 # clip parameter for PPO |
| 163 | +gamma = 0.99 # discount factor |
| 164 | + |
| 165 | +lr_actor = 0.0003 # learning rate for actor network |
| 166 | +lr_critic = 0.001 # learning rate for critic network |
| 167 | + |
| 168 | +random_seed = 0 # set random seed if required (0 = no random seed) |
| 169 | + |
| 170 | +##################################################### |
| 171 | +``` |
| 172 | + |
| 173 | + |
| 174 | + |
| 175 | + |
| 176 | + |
0 commit comments