forked from cubiq/ComfyUI_InstantID
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathInstantID.py
578 lines (481 loc) · 25.4 KB
/
InstantID.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
import torch
import os
import comfy.utils
import folder_paths
import numpy as np
import math
import cv2
import PIL.Image
from comfy.ldm.modules.attention import optimized_attention
from .resampler import Resampler
from insightface.app import FaceAnalysis
import torchvision.transforms.v2 as T
import torch.nn.functional as F
MODELS_DIR = os.path.join(folder_paths.models_dir, "instantid")
if "instantid" not in folder_paths.folder_names_and_paths:
current_paths = [MODELS_DIR]
else:
current_paths, _ = folder_paths.folder_names_and_paths["instantid"]
folder_paths.folder_names_and_paths["instantid"] = (current_paths, folder_paths.supported_pt_extensions)
INSIGHTFACE_DIR = os.path.join(folder_paths.models_dir, "insightface")
def draw_kps(image_pil, kps, color_list=[(255,0,0), (0,255,0), (0,0,255), (255,255,0), (255,0,255)]):
stickwidth = 4
limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]])
kps = np.array(kps)
h, w, _ = image_pil.shape
out_img = np.zeros([h, w, 3])
for i in range(len(limbSeq)):
index = limbSeq[i]
color = color_list[index[0]]
x = kps[index][:, 0]
y = kps[index][:, 1]
length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5
angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1]))
polygon = cv2.ellipse2Poly((int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color)
out_img = (out_img * 0.6).astype(np.uint8)
for idx_kp, kp in enumerate(kps):
color = color_list[idx_kp]
x, y = kp
out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1)
out_img_pil = PIL.Image.fromarray(out_img.astype(np.uint8))
return out_img_pil
# All this mess to keep compatibility with IPAdapter, it will be helpful in case we want AnimateDiff to work with InstantID
class CrossAttentionPatch:
# forward for patching
def __init__(self, weight, ipadapter, number, cond, uncond, weight_type="original", mask=None, sigma_start=0.0, sigma_end=1.0, unfold_batch=False):
self.weights = [weight]
self.ipadapters = [ipadapter]
self.conds = [cond]
self.unconds = [uncond]
self.number = number
self.weight_type = [weight_type]
self.masks = [mask]
self.sigma_start = [sigma_start]
self.sigma_end = [sigma_end]
self.unfold_batch = [unfold_batch]
self.k_key = str(self.number*2+1) + "_to_k_ip"
self.v_key = str(self.number*2+1) + "_to_v_ip"
def set_new_condition(self, weight, ipadapter, number, cond, uncond, weight_type="original", mask=None, sigma_start=0.0, sigma_end=1.0, unfold_batch=False):
self.weights.append(weight)
self.ipadapters.append(ipadapter)
self.conds.append(cond)
self.unconds.append(uncond)
self.masks.append(mask)
self.weight_type.append(weight_type)
self.sigma_start.append(sigma_start)
self.sigma_end.append(sigma_end)
self.unfold_batch.append(unfold_batch)
def __call__(self, n, context_attn2, value_attn2, extra_options):
org_dtype = n.dtype
cond_or_uncond = extra_options["cond_or_uncond"]
sigma = extra_options["sigmas"][0] if 'sigmas' in extra_options else None
sigma = sigma.item() if sigma is not None else 999999999.9
# extra options for AnimateDiff
ad_params = extra_options['ad_params'] if "ad_params" in extra_options else None
q = n
k = context_attn2
v = value_attn2
b = q.shape[0]
qs = q.shape[1]
batch_prompt = b // len(cond_or_uncond)
out = optimized_attention(q, k, v, extra_options["n_heads"])
_, _, lh, lw = extra_options["original_shape"]
for weight, cond, uncond, ipadapter, mask, weight_type, sigma_start, sigma_end, unfold_batch in zip(self.weights, self.conds, self.unconds, self.ipadapters, self.masks, self.weight_type, self.sigma_start, self.sigma_end, self.unfold_batch):
if sigma > sigma_start or sigma < sigma_end:
continue
if unfold_batch and cond.shape[0] > 1:
# Check AnimateDiff context window
if ad_params is not None and ad_params["sub_idxs"] is not None:
# if images length matches or exceeds full_length get sub_idx images
if cond.shape[0] >= ad_params["full_length"]:
cond = torch.Tensor(cond[ad_params["sub_idxs"]])
uncond = torch.Tensor(uncond[ad_params["sub_idxs"]])
# otherwise, need to do more to get proper sub_idxs masks
else:
# check if images length matches full_length - if not, make it match
if cond.shape[0] < ad_params["full_length"]:
cond = torch.cat((cond, cond[-1:].repeat((ad_params["full_length"]-cond.shape[0], 1, 1))), dim=0)
uncond = torch.cat((uncond, uncond[-1:].repeat((ad_params["full_length"]-uncond.shape[0], 1, 1))), dim=0)
# if we have too many remove the excess (should not happen, but just in case)
if cond.shape[0] > ad_params["full_length"]:
cond = cond[:ad_params["full_length"]]
uncond = uncond[:ad_params["full_length"]]
cond = cond[ad_params["sub_idxs"]]
uncond = uncond[ad_params["sub_idxs"]]
# if we don't have enough reference images repeat the last one until we reach the right size
if cond.shape[0] < batch_prompt:
cond = torch.cat((cond, cond[-1:].repeat((batch_prompt-cond.shape[0], 1, 1))), dim=0)
uncond = torch.cat((uncond, uncond[-1:].repeat((batch_prompt-uncond.shape[0], 1, 1))), dim=0)
# if we have too many remove the exceeding
elif cond.shape[0] > batch_prompt:
cond = cond[:batch_prompt]
uncond = uncond[:batch_prompt]
k_cond = ipadapter.ip_layers.to_kvs[self.k_key](cond)
k_uncond = ipadapter.ip_layers.to_kvs[self.k_key](uncond)
v_cond = ipadapter.ip_layers.to_kvs[self.v_key](cond)
v_uncond = ipadapter.ip_layers.to_kvs[self.v_key](uncond)
else:
k_cond = ipadapter.ip_layers.to_kvs[self.k_key](cond).repeat(batch_prompt, 1, 1)
k_uncond = ipadapter.ip_layers.to_kvs[self.k_key](uncond).repeat(batch_prompt, 1, 1)
v_cond = ipadapter.ip_layers.to_kvs[self.v_key](cond).repeat(batch_prompt, 1, 1)
v_uncond = ipadapter.ip_layers.to_kvs[self.v_key](uncond).repeat(batch_prompt, 1, 1)
if weight_type.startswith("linear"):
ip_k = torch.cat([(k_cond, k_uncond)[i] for i in cond_or_uncond], dim=0) * weight
ip_v = torch.cat([(v_cond, v_uncond)[i] for i in cond_or_uncond], dim=0) * weight
else:
ip_k = torch.cat([(k_cond, k_uncond)[i] for i in cond_or_uncond], dim=0)
ip_v = torch.cat([(v_cond, v_uncond)[i] for i in cond_or_uncond], dim=0)
if weight_type.startswith("channel"):
# code by Lvmin Zhang at Stanford University as also seen on Fooocus IPAdapter implementation
ip_v_mean = torch.mean(ip_v, dim=1, keepdim=True)
ip_v_offset = ip_v - ip_v_mean
_, _, C = ip_k.shape
channel_penalty = float(C) / 1280.0
W = weight * channel_penalty
ip_k = ip_k * W
ip_v = ip_v_offset + ip_v_mean * W
out_ip = optimized_attention(q, ip_k, ip_v, extra_options["n_heads"])
if weight_type.startswith("original"):
out_ip = out_ip * weight
if mask is not None:
# TODO: needs checking
mask_h = lh / math.sqrt(lh * lw / qs)
mask_h = int(mask_h) + int((qs % int(mask_h)) != 0)
mask_w = qs // mask_h
# check if using AnimateDiff and sliding context window
if (mask.shape[0] > 1 and ad_params is not None and ad_params["sub_idxs"] is not None):
# if mask length matches or exceeds full_length, just get sub_idx masks, resize, and continue
if mask.shape[0] >= ad_params["full_length"]:
mask_downsample = torch.Tensor(mask[ad_params["sub_idxs"]])
mask_downsample = F.interpolate(mask_downsample.unsqueeze(1), size=(mask_h, mask_w), mode="bicubic").squeeze(1)
# otherwise, need to do more to get proper sub_idxs masks
else:
# resize to needed attention size (to save on memory)
mask_downsample = F.interpolate(mask.unsqueeze(1), size=(mask_h, mask_w), mode="bicubic").squeeze(1)
# check if mask length matches full_length - if not, make it match
if mask_downsample.shape[0] < ad_params["full_length"]:
mask_downsample = torch.cat((mask_downsample, mask_downsample[-1:].repeat((ad_params["full_length"]-mask_downsample.shape[0], 1, 1))), dim=0)
# if we have too many remove the excess (should not happen, but just in case)
if mask_downsample.shape[0] > ad_params["full_length"]:
mask_downsample = mask_downsample[:ad_params["full_length"]]
# now, select sub_idxs masks
mask_downsample = mask_downsample[ad_params["sub_idxs"]]
# otherwise, perform usual mask interpolation
else:
mask_downsample = F.interpolate(mask.unsqueeze(1), size=(mask_h, mask_w), mode="bicubic").squeeze(1)
# if we don't have enough masks repeat the last one until we reach the right size
if mask_downsample.shape[0] < batch_prompt:
mask_downsample = torch.cat((mask_downsample, mask_downsample[-1:, :, :].repeat((batch_prompt-mask_downsample.shape[0], 1, 1))), dim=0)
# if we have too many remove the exceeding
elif mask_downsample.shape[0] > batch_prompt:
mask_downsample = mask_downsample[:batch_prompt, :, :]
# repeat the masks
mask_downsample = mask_downsample.repeat(len(cond_or_uncond), 1, 1)
mask_downsample = mask_downsample.view(mask_downsample.shape[0], -1, 1).repeat(1, 1, out.shape[2])
out_ip = out_ip * mask_downsample
out = out + out_ip
return out.to(dtype=org_dtype)
class InstantID(torch.nn.Module):
def __init__(self, instantid_model, cross_attention_dim=1280, output_cross_attention_dim=1024, clip_embeddings_dim=512, clip_extra_context_tokens=16):
super().__init__()
self.clip_embeddings_dim = clip_embeddings_dim
self.cross_attention_dim = cross_attention_dim
self.output_cross_attention_dim = output_cross_attention_dim
self.clip_extra_context_tokens = clip_extra_context_tokens
self.image_proj_model = self.init_proj()
self.image_proj_model.load_state_dict(instantid_model["image_proj"])
self.ip_layers = To_KV(instantid_model["ip_adapter"])
def init_proj(self):
image_proj_model = Resampler(
dim=self.cross_attention_dim,
depth=4,
dim_head=64,
heads=20,
num_queries=self.clip_extra_context_tokens,
embedding_dim=self.clip_embeddings_dim,
output_dim=self.output_cross_attention_dim,
ff_mult=4
)
return image_proj_model
@torch.inference_mode()
def get_image_embeds(self, clip_embed, clip_embed_zeroed):
#image_prompt_embeds = clip_embed.clone().detach()
image_prompt_embeds = self.image_proj_model(clip_embed)
#uncond_image_prompt_embeds = clip_embed_zeroed.clone().detach()
uncond_image_prompt_embeds = self.image_proj_model(clip_embed_zeroed)
return image_prompt_embeds, uncond_image_prompt_embeds
class ImageProjModel(torch.nn.Module):
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4):
super().__init__()
self.cross_attention_dim = cross_attention_dim
self.clip_extra_context_tokens = clip_extra_context_tokens
self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim)
self.norm = torch.nn.LayerNorm(cross_attention_dim)
def forward(self, image_embeds):
embeds = image_embeds
clip_extra_context_tokens = self.proj(embeds).reshape(-1, self.clip_extra_context_tokens, self.cross_attention_dim)
clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
return clip_extra_context_tokens
class To_KV(torch.nn.Module):
def __init__(self, state_dict):
super().__init__()
self.to_kvs = torch.nn.ModuleDict()
for key, value in state_dict.items():
k = key.replace(".weight", "").replace(".", "_")
self.to_kvs[k] = torch.nn.Linear(value.shape[1], value.shape[0], bias=False)
self.to_kvs[k].weight.data = value
def _set_model_patch_replace(model, patch_kwargs, key):
to = model.model_options["transformer_options"]
if "patches_replace" not in to:
to["patches_replace"] = {}
if "attn2" not in to["patches_replace"]:
to["patches_replace"]["attn2"] = {}
if key not in to["patches_replace"]["attn2"]:
to["patches_replace"]["attn2"][key] = CrossAttentionPatch(**patch_kwargs)
else:
to["patches_replace"]["attn2"][key].set_new_condition(**patch_kwargs)
class InstantIDModelLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": { "instantid_file": (folder_paths.get_filename_list("instantid"), )}}
RETURN_TYPES = ("INSTANTID",)
FUNCTION = "load_model"
CATEGORY = "InstantID"
def load_model(self, instantid_file):
ckpt_path = folder_paths.get_full_path("instantid", instantid_file)
model = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
if ckpt_path.lower().endswith(".safetensors"):
st_model = {"image_proj": {}, "ip_adapter": {}}
for key in model.keys():
if key.startswith("image_proj."):
st_model["image_proj"][key.replace("image_proj.", "")] = model[key]
elif key.startswith("ip_adapter."):
st_model["ip_adapter"][key.replace("ip_adapter.", "")] = model[key]
model = st_model
return (model,)
def tensorToNP(image):
out = torch.clamp(255. * image.detach().cpu(), 0, 255).to(torch.uint8)
out = out[..., [2, 1, 0]]
out = out.numpy()
return out
def extractFeatures(insightface, image, extract_kps=False):
face_img = tensorToNP(image)
out = []
insightface.det_model.input_size = (640,640) # reset the detection size
for i in range(face_img.shape[0]):
for size in [(size, size) for size in range(640, 128, -64)]:
insightface.det_model.input_size = size # TODO: hacky but seems to be working
face = insightface.get(face_img[i])
if face:
face = sorted(face, key=lambda x:(x['bbox'][2]-x['bbox'][0])*x['bbox'][3]-x['bbox'][1])[-1]
if extract_kps:
out.append(draw_kps(face_img[i], face['kps']))
else:
out.append(torch.from_numpy(face['embedding']).unsqueeze(0))
if 640 not in size:
print(f"\033[33mINFO: InsightFace detection resolution lowered to {size}.\033[0m")
break
if out:
if extract_kps:
out = torch.stack(T.ToTensor()(out), dim=0).permute([0,2,3,1])
else:
out = torch.stack(out, dim=0)
else:
out = None
return out
class InstantIDFaceAnalysis:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"provider": (["CPU", "CUDA", "ROCM"], ),
},
}
RETURN_TYPES = ("FACEANALYSIS",)
FUNCTION = "load_insight_face"
CATEGORY = "InstantID"
def load_insight_face(self, provider):
model = FaceAnalysis(name="antelopev2", root=INSIGHTFACE_DIR, providers=[provider + 'ExecutionProvider',]) # buffalo_l
model.prepare(ctx_id=0, det_size=(640, 640))
return (model,)
class FaceKeypointsPreprocessor:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"faceanalysis": ("FACEANALYSIS", ),
"image": ("IMAGE", ),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "preprocess_image"
CATEGORY = "InstantID"
def preprocess_image(self, faceanalysis, image):
face_kps = extractFeatures(faceanalysis, image, extract_kps=True)
if face_kps is None:
face_kps = torch.zeros_like(image)
print(f"\033[33mWARNING: no face detected, unable to extract the keypoints!\033[0m")
#raise Exception('Face Keypoints Image: No face detected.')
return (face_kps,)
class ApplyInstantID:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"instantid": ("INSTANTID", ),
"insightface": ("FACEANALYSIS", ),
"control_net": ("CONTROL_NET", ),
"image": ("IMAGE", ),
"model": ("MODEL", ),
"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"weight": ("FLOAT", {"default": .8, "min": 0.0, "max": 5.0, "step": 0.01, }),
"start_at": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001, }),
"end_at": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001, }),
},
"optional": {
"image_kps": ("IMAGE",),
"mask": ("MASK",),
}
}
RETURN_TYPES = ("MODEL", "CONDITIONING", "CONDITIONING",)
RETURN_NAMES = ("MODEL", "POSITIVE", "NEGATIVE", )
FUNCTION = "apply_instantid"
CATEGORY = "InstantID"
def apply_instantid(self, instantid, insightface, control_net, image, model, positive, negative, start_at, end_at, weight=.8, ip_weight=None, cn_strength=None, image_kps=None, mask=None):
self.dtype = torch.float16 if comfy.model_management.should_use_fp16() else torch.float32
self.device = comfy.model_management.get_torch_device()
ip_weight = weight if ip_weight is None else ip_weight
cn_strength = weight if cn_strength is None else cn_strength
output_cross_attention_dim = instantid["ip_adapter"]["1.to_k_ip.weight"].shape[1]
is_sdxl = output_cross_attention_dim == 2048
cross_attention_dim = 1280
clip_extra_context_tokens = 16
face_embed = extractFeatures(insightface, image)
if face_embed is None:
raise Exception('Reference Image: No face detected.')
face_kps = extractFeatures(insightface, image_kps[0].unsqueeze(0) if image_kps is not None else image[0].unsqueeze(0), extract_kps=True)
if face_kps is None:
face_kps = torch.zeros_like(image) if image_kps is None else image_kps
print(f"\033[33mWARNING: No face detected in the keypoints image!\033[0m")
clip_embed = face_embed
# InstantID works better with averaged embeds (TODO: needs testing)
if clip_embed.shape[0] > 1:
clip_embed = torch.mean(clip_embed, dim=0).unsqueeze(0)
clip_embed_zeroed = torch.zeros_like(clip_embed)
clip_embeddings_dim = face_embed.shape[-1]
# 1: patch the attention
self.instantid = InstantID(
instantid,
cross_attention_dim=cross_attention_dim,
output_cross_attention_dim=output_cross_attention_dim,
clip_embeddings_dim=clip_embeddings_dim,
clip_extra_context_tokens=clip_extra_context_tokens,
)
self.instantid.to(self.device, dtype=self.dtype)
image_prompt_embeds, uncond_image_prompt_embeds = self.instantid.get_image_embeds(clip_embed.to(self.device, dtype=self.dtype), clip_embed_zeroed.to(self.device, dtype=self.dtype))
image_prompt_embeds = image_prompt_embeds.to(self.device, dtype=self.dtype)
uncond_image_prompt_embeds = uncond_image_prompt_embeds.to(self.device, dtype=self.dtype)
work_model = model.clone()
sigma_start = work_model.model.model_sampling.percent_to_sigma(start_at)
sigma_end = work_model.model.model_sampling.percent_to_sigma(end_at)
if mask is not None:
mask = mask.to(self.device)
patch_kwargs = {
"number": 0,
"weight": ip_weight,
"ipadapter": self.instantid,
"cond": image_prompt_embeds,
"uncond": uncond_image_prompt_embeds,
"mask": mask,
"sigma_start": sigma_start,
"sigma_end": sigma_end,
"weight_type": "original",
}
if not is_sdxl:
for id in [1,2,4,5,7,8]: # id of input_blocks that have cross attention
_set_model_patch_replace(work_model, patch_kwargs, ("input", id))
patch_kwargs["number"] += 1
for id in [3,4,5,6,7,8,9,10,11]: # id of output_blocks that have cross attention
_set_model_patch_replace(work_model, patch_kwargs, ("output", id))
patch_kwargs["number"] += 1
_set_model_patch_replace(work_model, patch_kwargs, ("middle", 0))
else:
for id in [4,5,7,8]: # id of input_blocks that have cross attention
block_indices = range(2) if id in [4, 5] else range(10) # transformer_depth
for index in block_indices:
_set_model_patch_replace(work_model, patch_kwargs, ("input", id, index))
patch_kwargs["number"] += 1
for id in range(6): # id of output_blocks that have cross attention
block_indices = range(2) if id in [3, 4, 5] else range(10) # transformer_depth
for index in block_indices:
_set_model_patch_replace(work_model, patch_kwargs, ("output", id, index))
patch_kwargs["number"] += 1
for index in range(10):
_set_model_patch_replace(work_model, patch_kwargs, ("middle", 0, index))
patch_kwargs["number"] += 1
# 2: do the ControlNet
if mask is not None and len(mask.shape) < 3:
mask = mask.unsqueeze(0)
cnets = {}
cond_uncond = []
for conditioning in [positive, negative]:
c = []
is_cond = True
for t in conditioning:
d = t[1].copy()
prev_cnet = d.get('control', None)
if prev_cnet in cnets:
c_net = cnets[prev_cnet]
else:
c_net = control_net.copy().set_cond_hint(face_kps.movedim(-1,1), cn_strength, (start_at, end_at))
c_net.set_previous_controlnet(prev_cnet)
cnets[prev_cnet] = c_net
d['control'] = c_net
d['control_apply_to_uncond'] = False
d['cross_attn_controlnet'] = image_prompt_embeds.to(comfy.model_management.intermediate_device()) if is_cond else uncond_image_prompt_embeds.to(comfy.model_management.intermediate_device())
if mask is not None and is_cond:
d['mask'] = mask
d['set_area_to_bounds'] = False
n = [t[0], d]
c.append(n)
is_cond = True
cond_uncond.append(c)
return(work_model, cond_uncond[0], cond_uncond[1], )
class ApplyInstantIDAdvanced(ApplyInstantID):
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"instantid": ("INSTANTID", ),
"insightface": ("FACEANALYSIS", ),
"control_net": ("CONTROL_NET", ),
"image": ("IMAGE", ),
"model": ("MODEL", ),
"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"ip_weight": ("FLOAT", {"default": .8, "min": 0.0, "max": 3.0, "step": 0.01, }),
"cn_strength": ("FLOAT", {"default": .8, "min": 0.0, "max": 10.0, "step": 0.01, }),
"start_at": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001, }),
"end_at": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001, }),
},
"optional": {
"image_kps": ("IMAGE",),
"mask": ("MASK",),
}
}
NODE_CLASS_MAPPINGS = {
"InstantIDModelLoader": InstantIDModelLoader,
"InstantIDFaceAnalysis": InstantIDFaceAnalysis,
"ApplyInstantID": ApplyInstantID,
"ApplyInstantIDAdvanced": ApplyInstantIDAdvanced,
"FaceKeypointsPreprocessor": FaceKeypointsPreprocessor,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"InstantIDModelLoader": "Load InstantID Model",
"InstantIDFaceAnalysis": "InstantID Face Analysis",
"ApplyInstantID": "Apply InstantID",
"ApplyInstantIDAdvanced": "Apply InstantID Advanced",
"FaceKeypointsPreprocessor": "Face Keypoints Preprocessor",
}