-
Notifications
You must be signed in to change notification settings - Fork 56
/
Copy pathplot.py
361 lines (318 loc) · 12.8 KB
/
plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
import matplotlib.pyplot as plt
import numpy as np
import os
import matplotlib.cm as cm
from cycler import cycler
plt.style.use("seaborn")
EVALS_NAME = ["lfw", "cfp_fp", "agedb_30", "IJBB", "IJBC"]
EVALS_LINE_STYLE = ["-", "--", "-.", ":"]
MAX_COLORS = 10
Scale = 1
Default_legend_font_size = 8
Default_text_font_size = 9
Default_figure_base_size = 8
# COLORS = cm.rainbow(np.linspace(0, 1, MAX_COLORS))
SPLIT_LINES = {}
try:
import seaborn as sns
sns.set(style="darkgrid")
COLORS = sns.color_palette("deep", n_colors=MAX_COLORS)
except:
pass
def set_colors(max_color, palette="deep"):
print("Available palette names: deep, muted, bright, pastel, dark, colorblind, rainbow")
global MAX_COLORS
global COLORS
MAX_COLORS = max_color
if palette == "rainbow":
COLORS = cm.rainbow(np.linspace(0, 1, MAX_COLORS))
else:
COLORS = sns.color_palette(palette, n_colors=MAX_COLORS)
def set_scale(scale):
global Scale, Default_text_font_size, Default_legend_font_size, Default_figure_base_size
if Scale != scale:
import matplotlib as mpl
Scale, scale = scale, scale / Scale
mpl.rcParams["axes.titlesize"] *= scale
mpl.rcParams["axes.labelsize"] *= scale
mpl.rcParams["axes.labelpad"] *= scale
mpl.rcParams["legend.fontsize"] *= scale
mpl.rcParams["font.size"] *= scale
mpl.rcParams["axes.linewidth"] *= scale
mpl.rcParams["lines.linewidth"] *= scale
mpl.rcParams["grid.linewidth"] *= scale
mpl.rcParams["lines.markersize"] *= scale
mpl.rcParams["xtick.labelsize"] *= scale
mpl.rcParams["ytick.labelsize"] *= scale
mpl.rcParams["ytick.major.pad"] *= scale
mpl.rcParams["xtick.major.pad"] *= scale
Default_text_font_size *= scale
Default_legend_font_size *= scale
Default_figure_base_size *= scale
def peak_scatter(ax, array, peak_method, color="r", init_epoch=0, limit_max=1e9, limit_min=0):
start = init_epoch + 1
for ii in array:
pp = len(ii) - peak_method(ii[::-1]) - 1
# Skip scatter if it's 0
if ii[pp] != 0:
y_pos = ii[pp - 1] if np.isnan(ii[pp]) and pp != 0 else ii[pp]
y_pos = y_pos if y_pos < limit_max else limit_max
y_pos = y_pos if y_pos > limit_min else limit_min
ax.scatter(pp + start, y_pos, color=color, marker="v")
ax.text(
pp + start,
y_pos,
"Nan" if np.isnan(ii[pp]) else "{:.4f}".format(ii[pp]),
va="bottom",
ha="right",
fontsize=Default_text_font_size,
rotation=-30,
)
start += len(ii)
def arrays_plot(ax, arrays, color=None, label=None, init_epoch=0, pre_value=0, linestyle="-", limit_max=1e9, limit_min=0):
tt = []
for ii in arrays:
tt += ii
if pre_value != 0 and init_epoch == 0:
tt[0] = pre_value
xx = list(range(init_epoch + 1, init_epoch + len(tt) + 1))
if pre_value != 0 and init_epoch != 0:
tt = [pre_value] + tt
xx = list(range(init_epoch, init_epoch + len(tt)))
else:
xx = list(range(init_epoch + 1, init_epoch + len(tt) + 1))
# Replace 0 values with their previous element
for id, ii in enumerate(tt):
if (ii == 0 or np.isnan(ii)) and id != 0:
tt[id] = tt[id - 1]
if ii > limit_max:
tt[id] = limit_max
if ii < limit_min:
tt[id] = limit_min
ax.plot(xx, tt, label=label, color=color, linestyle=linestyle)
xticks = list(range(xx[-1]))[:: xx[-1] // 16 + 1]
# print(xticks, ax.get_xticks())
if len(xticks) > 1 and xticks[1] > ax.get_xticks()[1]:
# print("Update xticks")
ax.set_xticks(xticks)
def hist_plot(
loss_lists,
accuracy_lists,
customs_dict,
loss_names=None,
save=None,
axes=None,
init_epoch=0,
pre_item={},
fig_label=None,
eval_split=True,
limit_loss_max=1e9,
):
global SPLIT_LINES
if axes is None:
if eval_split:
fig, axes = plt.subplots(2, 3, sharex=False, figsize=(3 * Default_figure_base_size, 2 * Default_figure_base_size))
axes = axes.flatten()
else:
fig, axes = plt.subplots(1, 3, sharex=False, figsize=(3 * Default_figure_base_size, 1 * Default_figure_base_size))
for ax in axes:
ax.set_prop_cycle(cycler("color", COLORS))
SPLIT_LINES = {}
else:
fig = axes[0].figure
# Empty titles
for ax in axes:
ax.set_title("")
eval_split = True if len(axes) == 6 else False
axes = axes.tolist()
if len(loss_lists) != 0:
arrays_plot(
axes[0],
loss_lists,
label=fig_label,
init_epoch=init_epoch,
pre_value=pre_item.get("loss", 0),
limit_max=limit_loss_max,
)
peak_scatter(axes[0], loss_lists, np.argmin, init_epoch=init_epoch, limit_max=limit_loss_max)
# if axes[0].get_ylim()[0] < 0:
# axes[0].set_ylim(0)
axes[0].set_title("loss")
if fig_label:
axes[0].legend(loc="upper right", fontsize=Default_legend_font_size)
cur_color = axes[0].lines[-1].get_color()
if len(accuracy_lists) != 0:
arrays_plot(
axes[1],
accuracy_lists,
color=cur_color,
label=fig_label,
init_epoch=init_epoch,
pre_value=pre_item.get("accuracy", 0),
)
peak_scatter(axes[1], accuracy_lists, np.argmax, init_epoch=init_epoch)
axes[1].set_title("accuracy")
if fig_label:
axes[1].legend(loc="lower right", fontsize=Default_legend_font_size)
other_customs = [ii for ii in customs_dict if ii not in EVALS_NAME]
if len(other_customs) != 0:
if len(axes) == 3:
axes.append(axes[0].twinx())
if len(axes) == 4:
axes[-1].set_title(axes[0].get_title())
axes[0].set_title("")
if eval_split:
# Plot two rows, 2 x 3
other_custom_ax = 2
eval_ax_start, eval_ax = 3, 3
eval_ax_step = 1
else:
# Plot one row, 1 x 3
other_custom_ax = 3
eval_ax_start, eval_ax = 2, 2
eval_ax_step = 0
# Keep the same color, but different from line styles.
eval_id, other_custom_id = 0, 0
for kk, vv in customs_dict.items():
if kk in EVALS_NAME:
ax = axes[eval_ax]
title = kk if len(ax.get_title()) == 0 else ax.get_title() + ", " + kk
ax.set_title(title)
linestyle = EVALS_LINE_STYLE[eval_id]
eval_id += 0 if eval_split and eval_ax != 5 else 1
eval_ax = min(eval_ax + eval_ax_step, 5)
else:
ax = axes[other_custom_ax]
title = kk if len(ax.get_title()) == 0 else ax.get_title() + ", " + kk
ax.set_title(title)
linestyle = EVALS_LINE_STYLE[other_custom_id + 0 if eval_split else 1]
other_custom_id += 1
label = kk + " - " + fig_label if fig_label else kk
arrays_plot(ax, vv, color=cur_color, label=label, init_epoch=init_epoch, pre_value=pre_item.get(kk, 0), linestyle=linestyle)
peak_scatter(ax, vv, np.argmax, init_epoch=init_epoch)
# eval_ax = eval_ax if eval_split else eval_ax + 1
for ii in range(eval_ax_start, eval_ax + 1):
axes[ii].legend(loc="lower left", fontsize=Default_legend_font_size)
if len(axes) > 3 and other_custom_id > 0:
axes[other_custom_ax].legend(loc="lower right", fontsize=Default_legend_font_size)
# cur_color = "k" if len(axes[0].lines) == 1 else axes[0].lines[-1].get_color()
for ax_id, ax in enumerate(axes):
ymin, ymax = ax.get_ylim()
mm = (ymax - ymin) * 0.05
start = init_epoch + 1
for loss_id, loss in enumerate(loss_lists):
# ax.plot([start, start], [ymin + mm, ymax - mm], color="k", linestyle="--")
split_lines = ax.plot([start, start], [ymin + mm, ymax - mm], color=cur_color, linestyle="--")
if loss_names is not None and len(loss_names) > loss_id:
nn = loss_names[loss_id]
# ax.text(start + len(loss) * 0.05, np.mean(ax.get_ylim()), nn, va="top", rotation=-90, fontweight="roman", c=cur_color)
# ax.text(start + len(loss) * 0.05, ymax - mm * 4, nn, va="top", rotation=-90, fontweight="roman", c=cur_color)
ax.text(start + len(loss) * 0.05, ymin + mm * 4, nn, va="bottom", rotation=-90, fontweight="roman", c=cur_color)
split_line_id = "{}_{}".format(ax_id, start)
if split_line_id in SPLIT_LINES:
SPLIT_LINES[split_line_id].remove()
SPLIT_LINES[split_line_id] = split_lines[0]
start += len(loss)
fig.tight_layout()
if save != None and len(save) != 0:
fig.savefig(save)
last_item = {kk: vv[-1][-1] for kk, vv in customs_dict.items()}
if len(loss_lists) != 0:
last_item["loss"] = loss_lists[-1][-1]
if len(accuracy_lists) != 0:
last_item["accuracy"] = accuracy_lists[-1][-1]
return np.array(axes), last_item
def hist_plot_split(
history,
epochs=[100],
names=None,
customs=EVALS_NAME[:3] + ["lr"],
save=None,
axes=None,
init_epoch=0,
pre_item={},
fig_label=None,
eval_split=True,
limit_loss_max=1e9,
skip_epochs=0,
):
splits = [[int(sum(epochs[:id])), int(sum(epochs[:id])) + ii] for id, ii in enumerate(epochs)]
if skip_epochs != 0:
splits = [[ss, ee] for ss, ee in splits if ee > skip_epochs - init_epoch]
splits[0][0] = max(splits[0][0], skip_epochs - init_epoch)
if names is not None and len(names) != 0:
names = names[-len(splits) :]
if init_epoch < skip_epochs:
init_epoch = skip_epochs
split_func = lambda aa: [aa[ii:jj] for ii, jj in splits if ii < len(aa)]
if isinstance(history, str):
history = [history]
if isinstance(history, list):
import json
hh = {}
for pp in history:
with open(pp, "r") as ff:
aa = json.load(ff)
for kk, vv in aa.items():
hh.setdefault(kk, []).extend(vv)
if save != None and len(save) == 0:
save = os.path.splitext(pp)[0] + ".svg"
else:
hh = history.copy()
loss_lists = split_func(hh.pop("loss"))
if "accuracy" in hh:
accuracy_lists = split_func(hh.pop("accuracy"))
elif "logits_accuracy" in hh:
accuracy_lists = split_func(hh.pop("logits_accuracy"))
else:
accuracy_lists = []
if len(customs) != 0:
customs_dict = {kk: split_func(hh[kk]) for kk in customs if kk in hh}
else:
# hh.pop("lr")
customs_dict = {kk: split_func(vv) for kk, vv in hh.items() if kk in EVALS_NAME}
if fig_label is None and isinstance(history[-1], str):
fig_label = os.path.splitext(os.path.basename(history[-1]))[0]
return hist_plot(
loss_lists,
accuracy_lists,
customs_dict,
names,
save,
axes,
init_epoch,
pre_item,
fig_label,
eval_split=eval_split,
limit_loss_max=limit_loss_max,
)
def choose_accuracy(aa, skip_name_len=0, sort_metric=False, metric_key="agedb_30", key_picks=EVALS_NAME):
import json
import pandas as pd
# key_picks = ['lfw', 'cfp_fp', 'agedb_30']
dd_metric_max, dd_all_max, dd_sum_max, dd_latest = {}, {}, {}, {}
metric_key = metric_key if metric_key in key_picks else key_picks[-1] # Pick -1 item if metric_key not in key_picks
for pp in aa:
with open(pp, "r") as ff:
hh = json.load(ff)
nn = os.path.splitext(os.path.basename(pp))[0][skip_name_len:]
metric_arg_max = np.argmax(hh[metric_key])
dd_metric_max[nn] = {kk: hh[kk][metric_arg_max] for kk in key_picks if kk in hh}
dd_metric_max[nn]["epoch"] = int(metric_arg_max)
dd_all_max[nn] = {kk: "%.4f, %2d" % (max(hh[kk]), np.argmax(hh[kk])) for kk in key_picks if kk in hh}
# dd_all_max[nn] = {kk: max(hh[kk]) for kk in key_picks}
# dd_all_max[nn].update({kk + "_epoch": np.argmax(hh[kk]) for kk in key_picks})
sum_arg_max = np.argmax(np.sum([hh[kk] for kk in key_picks if kk in hh], axis=0))
dd_sum_max[nn] = {kk: hh[kk][sum_arg_max] for kk in key_picks if kk in hh}
dd_sum_max[nn]["epoch"] = int(sum_arg_max)
dd_latest[nn] = {kk: hh[kk][-1] for kk in key_picks if kk in hh}
dd_latest[nn]["epoch"] = len(hh[metric_key])
names = [metric_key + " max", "all max", "sum max", "latest"]
for nn, dd in zip(names, [dd_metric_max, dd_all_max, dd_sum_max, dd_latest]):
print()
print(">>>>", nn, ":")
# print(pd.DataFrame(dd).T.to_markdown())
rr = pd.DataFrame(dd).T
rr = rr.sort_values(metric_key) if sort_metric else rr
print(rr.to_markdown())
return dd_metric_max, dd_all_max, dd_sum_max