this repo attemps to reproduce Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks(CycleGAN) use gluon reimplementation
- download dataset (my sample is samll set apple <-> orange(each domain have 45 images))
you can download complete dataset from this link dataset website
- train
- inference ( weighting is trained by complete apple2orange dataset)
mxnet 1.1.0
Image to image translation : learn the mapping between an input image and an output image using a training set of aligned image pair.However for many tasks, paired training data will not be available.
present an approach for learning translate an image from a source domain X to a target domain Y in the absence of paired examples.
The network consists of:
c7s1-32,d64,d128,R128,R128,R128,
R128,R128,R128,R128,R128,R128,u64,u32,c7s1-3
class Generator_256(gluon.nn.HybridBlock):
def __init__(self):
super(Generator_256, self).__init__()
self.net = nn.HybridSequential()
with self.net.name_scope():
self.net.add(
nn.ReflectionPad2D(3),
nn.Conv2D(32, kernel_size=7, strides=1),
nn.InstanceNorm(),
nn.Activation('relu'), #c7s1-32
conv_inst_relu(64),
conv_inst_relu(128),
)
for _ in range(9):
self.net.add(
ResBlock(128)
)
self.net.add(
upconv_inst_relu(64),
upconv_inst_relu(32),
nn.ReflectionPad2D(3),
nn.Conv2D(3,kernel_size=7,strides=1),
nn.Activation('sigmoid')
)
def hybrid_forward(self, F, x):
return self.net(x)
use kernel size = 3
class Discriminator(gluon.nn.HybridBlock):
def __init__(self):
super(Discriminator, self).__init__()
self.net = nn.HybridSequential()
with self.net.name_scope():
self.net.add(
nn.Conv2D(64, kernel_size=3,strides=2,padding=1),
nn.LeakyReLU(0.2),
nn.Conv2D(128, kernel_size=3,strides=2,padding=1),
nn.InstanceNorm(),
nn.LeakyReLU(0.2),
nn.Conv2D(256, kernel_size=3,strides=2,padding=1),
nn.InstanceNorm(),
nn.LeakyReLU(0.2),
nn.Conv2D(512, kernel_size=3,strides=2,padding=1),
nn.InstanceNorm(),
nn.LeakyReLU(0.2),
nn.Conv2D(1,kernel_size=1,strides=1),
)
def hybrid_forward(self, F, x):
return self.net(x)
train Discriminator
- Da aims to distinguish between translated samples G(B) and real smaples A
with autograd.record(): # train A
real_A = D_A(A) # distinguish real image A
fake_BA = G_BA(B) #generate fake A image from B
fake_A = D_A(fake_BA)# distinguish fake image
real_label = nd.ones_like(real_A,ctx=ctx)
fake_label = nd.zeros_like(fake_A,ctx=ctx)
errA_real = L2_loss(real_A, real_label)
errA_fake = L2_loss(fake_A, fake_label)
errDA = (errA_real + errA_fake) * 0.5
errDA.backward()
DA_trainer.step(A.shape[0])
train generate
- generate fake_B from domain A
- generate reconstruct A from fake B
- calculate cycle consistency loss(recA,A) (lamda =10)
- use fake_B image fool disciminator B
with autograd.record():
fake_AB = G_AB(A)
fake_A = G_BA(fake_AB)
cycA_loss = cyc_loss(fake_A,A)
fake_B = D_B(fake_AB)
errG_AB = L2_loss(fake_B,real_label) + lamba * cycA_loss
errG_AB.backward()
GAB_trainer.step(A.shape[0])
Orange2apple
https://github.com/junyanz/CycleGAN thanks author propose this new method
and thanks gluon, mxnet team give us this wonderful tool, we can reimplement project very quickly thanks