-
Notifications
You must be signed in to change notification settings - Fork 2
/
model.py
executable file
·323 lines (291 loc) · 16.6 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
import torch
import random
import numpy as np
from config import Config
from reader import Reader
from reader import pad_sequences
from network import get_network
from network import cuda_
from metric import Evaluator
from torch.optim import Adam
from torch.autograd import Variable
import argparse, time, os
import logging
class Model:
def __init__(self, cfg):
self.reader = Reader(cfg)
self.m = get_network(cfg, self.reader.vocab)
self.EV = Evaluator # evaluator class
if cfg.cuda:
self.m = self.m.cuda()
self.base_epoch = -1
self.cfg = cfg
def _convert_batch(self, py_batch):
kw_ret = {}
x = None
gt_y = None
if self.cfg.network == 'classification':
state_vector = py_batch['state_vector']#list of array (batch_size, 1, vector_size)
batch_size = len(state_vector)
np_x = np.stack(state_vector, axis=0)#(batch_size, 1, vector_size)
np_x = np.squeeze(np_x, axis=1)#(batch_size, vector_size)
np_gt_y = np.zeros((batch_size, self.cfg.output_size), dtype=float)#(batch_size, output_size)
for batch_id, idx_list in enumerate(py_batch['act_slot_idx_list']):
for idx in idx_list:
np_gt_y[batch_id, idx] = 1.
x = cuda_(Variable(torch.from_numpy(np_x).float()), self.cfg)
gt_y = cuda_(Variable(torch.from_numpy(np_gt_y).float()), self.cfg)
elif 'seq2seq' in self.cfg.network:
user_np = pad_sequences(py_batch['user_act_seq'], self.cfg.user_max_ts, padding='post', truncating='post').transpose((1, 0))
last_agent_np = pad_sequences(py_batch['last_agent_act_seq'], self.cfg.agent_max_ts, padding='post', truncating='post').transpose((1, 0))
current_slot_np = pad_sequences(py_batch['current_slot_seq'], self.cfg.current_slot_max_ts, padding='post', truncating='post').transpose((1, 0)) # (seqlen, batchsize)
agent_np = pad_sequences(py_batch['agent_act_seq'], self.cfg.agent_max_ts, padding='post', truncating='post').transpose((1, 0))
user_len = np.array(py_batch['user_len'])
last_agent_len = np.array(py_batch['last_agent_len'])
current_slot_len = np.array(py_batch['current_slot_len'])
agent_len = np.array(py_batch['agent_len'])
kb_turn_np = np.array(py_batch['kb_turn_vector']).transpose(1, 0, 2)
kw_ret['user_np'] = user_np #seqlen, batchsize
kw_ret['last_agent_np'] = last_agent_np#seqlen, batchsize
kw_ret['current_slot_np'] = current_slot_np#seqlen, batchsize
kw_ret['agent_np'] = agent_np#seqlen, batchsize
kw_ret['user_len'] = user_len#batchsize
kw_ret['last_agent_len'] = last_agent_len#batchsize
kw_ret['current_slot_len'] = current_slot_len#batchsize
kw_ret['agent_len'] = agent_len#batchsize
kw_ret['kb_turn'] = cuda_(Variable(torch.from_numpy(kb_turn_np).float()), self.cfg)#1, batch_size, kb_turn_size
kw_ret['last_agent'] = cuda_(Variable(torch.from_numpy(last_agent_np).long()), self.cfg)#seqlen, batchsize
kw_ret['current_slot'] = cuda_(Variable(torch.from_numpy(current_slot_np).long()), self.cfg)#seqlen, batchsize
x = cuda_(Variable(torch.from_numpy(user_np).long()), self.cfg)#seqlen, batchsize
gt_y = cuda_(Variable(torch.from_numpy(agent_np).long()), self.cfg)#seqlen, batchsize
elif 'cas' in self.cfg.network:
user_np = pad_sequences(py_batch['user_act_seq'], self.cfg.user_max_ts, padding='post', truncating='post').transpose((1, 0))
last_agent_np = pad_sequences(py_batch['last_agent_act_seq'], self.cfg.agent_max_ts, padding='post', truncating='post').transpose((1, 0))
current_slot_np = pad_sequences(py_batch['current_slot_seq'], self.cfg.current_slot_max_ts, padding='post', truncating='post').transpose((1, 0)) # (seqlen, batchsize)
current_user_request_np = pad_sequences(py_batch['current_user_request_seq'], self.cfg.current_singleslot_max_ts, padding='post', truncating='post').transpose((1, 0)) # (seqlen, batchsize)
current_user_inform_np = pad_sequences(py_batch['current_user_inform_seq'], self.cfg.current_singleslot_max_ts, padding='post', truncating='post').transpose((1, 0)) # (seqlen, batchsize)
current_agent_request_np = pad_sequences(py_batch['current_agent_request_seq'], self.cfg.current_singleslot_max_ts, padding='post', truncating='post').transpose((1, 0)) # (seqlen, batchsize)
current_agent_propose_np = pad_sequences(py_batch['current_agent_propose_seq'], self.cfg.current_singleslot_max_ts, padding='post', truncating='post').transpose((1, 0)) # (seqlen, batchsize)
user_len = np.array(py_batch['user_len'])
last_agent_len = np.array(py_batch['last_agent_len'])
current_slot_len = np.array(py_batch['current_slot_len'])
current_user_request_len = np.array(py_batch['current_user_request_len'])
current_user_inform_len = np.array(py_batch['current_user_inform_len'])
current_agent_request_len = np.array(py_batch['current_agent_request_len'])
current_agent_propose_len = np.array(py_batch['current_agent_propose_len'])
kb_turn_np = np.array(py_batch['kb_turn_vector']).transpose(1, 0, 2)
cas_continue_np = np.concatenate(py_batch['cas_continue'], axis=1)#seqlen, batchsize, continuesize
cas_act_np = np.concatenate(py_batch['cas_act'], axis=1)#seqlen, batchsize, actsize
cas_slot_np = np.concatenate(py_batch['cas_slot'], axis=1)#seqlen, batchsize, slotsize
cas_continue_go_np = np.concatenate(py_batch['cas_continue_go'], axis=1)
cas_act_go_np = np.concatenate(py_batch['cas_act_go'], axis=1)
cas_slot_go_np = np.concatenate(py_batch['cas_slot_go'], axis=1)
cas_continue_list_np = np.array(py_batch['cas_continue_list']).transpose((1, 0)) # seqlen, batchsize
cas_act_list_np = np.array(py_batch['cas_act_list']).transpose((1, 0))#seqlen, batchsize
kw_ret['user_len'] = user_len#batchsize
kw_ret['last_agent_len'] = last_agent_len#batchsize
kw_ret['current_slot_len'] = current_slot_len#batchsize
kw_ret['current_user_request_len'] = current_user_request_len # batchsize
kw_ret['current_user_inform_len'] = current_user_inform_len # batchsize
kw_ret['current_agent_request_len'] = current_agent_request_len # batchsize
kw_ret['current_agent_propose_len'] = current_agent_propose_len # batchsize
kw_ret['kb_turn'] = cuda_(Variable(torch.from_numpy(kb_turn_np).float()), self.cfg)#1, batch_size, kb_turn_size
kw_ret['last_agent'] = cuda_(Variable(torch.from_numpy(last_agent_np).long()), self.cfg)#seqlen, batchsize
kw_ret['current_slot'] = cuda_(Variable(torch.from_numpy(current_slot_np).long()), self.cfg)#seqlen, batchsize
kw_ret['current_user_request'] = cuda_(Variable(torch.from_numpy(current_user_request_np).long()), self.cfg)
kw_ret['current_user_inform'] = cuda_(Variable(torch.from_numpy(current_user_inform_np).long()), self.cfg)
kw_ret['current_agent_request'] = cuda_(Variable(torch.from_numpy(current_agent_request_np).long()), self.cfg)
kw_ret['current_agent_propose'] = cuda_(Variable(torch.from_numpy(current_agent_propose_np).long()), self.cfg)
kw_ret['continue_go'] = cuda_(Variable(torch.from_numpy(cas_continue_go_np).float()), self.cfg)
kw_ret['act_go'] = cuda_(Variable(torch.from_numpy(cas_act_go_np).float()), self.cfg)
kw_ret['slot_go'] = cuda_(Variable(torch.from_numpy(cas_slot_go_np).float()), self.cfg)
kw_ret['cas_act'] = cuda_(Variable(torch.from_numpy(cas_act_np).float()), self.cfg)
kw_ret['cas_continue'] = cuda_(Variable(torch.from_numpy(cas_continue_np).float()), self.cfg)
cas_continue_list = cuda_(Variable(torch.from_numpy(cas_continue_list_np).long()), self.cfg)
cas_act_list = cuda_(Variable(torch.from_numpy(cas_act_list_np).long()), self.cfg)
cas_slot = cuda_(Variable(torch.from_numpy(cas_slot_np).float()), self.cfg)
x = cuda_(Variable(torch.from_numpy(user_np).long()), self.cfg)#seqlen, batchsize
gt_y = (cas_continue_list, cas_act_list, cas_slot)
else:
assert()
return x, gt_y, kw_ret
def train(self):
lr = self.cfg.lr
prev_min_loss = np.inf
prev_max_metrics = 0.
early_stop_count = self.cfg.early_stop_count
train_time = 0
for epoch in range(self.cfg.epoch_num):
sw = time.time()
if epoch <= self.base_epoch:
continue
sup_loss = 0
sup_cnt = 0
data_iterator = self.reader.mini_batch_iterator('train')
optim = Adam(lr=lr, params=filter(lambda x: x.requires_grad, self.m.parameters()), weight_decay=1e-5)
for iter_num, dial_batch in enumerate(data_iterator):
for turn_num, turn_batch in enumerate(dial_batch):
if self.cfg.truncated:
logging.debug('iter %d turn %d' % (iter_num, turn_num))
optim.zero_grad()
x, gt_y, kw_ret = self._convert_batch(turn_batch)
if 'cas' in self.cfg.network:
loss, continue_loss, act_loss, slot_loss = self.m(x=x, gt_y=gt_y, mode='train', **kw_ret)
else:
loss = self.m(x=x, gt_y=gt_y, mode='train', **kw_ret)
loss.backward(retain_graph=turn_num != len(dial_batch) - 1)
grad = torch.nn.utils.clip_grad_norm_(self.m.parameters(), self.cfg.grad_clip_norm)
optim.step()
sup_loss += loss.item()
sup_cnt += 1
if 'cas' in self.cfg.network:
logging.debug('loss:{} continue_loss:{} act_loss:{} slot_loss:{} grad:{}'.format(loss.item(),\
continue_loss.item(),\
act_loss.item(),\
slot_loss.item(),\
grad))
else:
logging.debug('loss:{} grad:{}'.format(loss.item(), grad))
epoch_sup_loss = sup_loss / (sup_cnt + 1e-8)
train_time += time.time() - sw
logging.info('Traning time: {}'.format(train_time))
logging.info('avg training loss in epoch %d sup:%f' % (epoch, epoch_sup_loss))
valid_sup_loss, valid_unsup_loss = self.validate()
logging.info('validation loss in epoch %d sup:%f unsup:%f' % (epoch, valid_sup_loss, valid_unsup_loss))
logging.info('time for epoch %d: %f' % (epoch, time.time() - sw))
valid_loss = valid_sup_loss + valid_unsup_loss
metrics = self.eval(data='dev')
valid_metrics = metrics[-1]
logging.info('valid metric %f ' %(valid_metrics))
#if valid_loss <= prev_min_loss:
if valid_metrics >= prev_max_metrics:
self.save_model(epoch)
#prev_min_loss = valid_loss
prev_max_metrics = valid_metrics
early_stop_count = self.cfg.early_stop_count
else:
early_stop_count -= 1
lr *= self.cfg.lr_decay
if not early_stop_count:
break
logging.info('early stop countdown %d, learning rate %f' % (early_stop_count, lr))
def run_metrics(self, data='test'):
if os.path.exists(self.cfg.result_path):
self.m.eval()
ev = self.EV(self.cfg)
res = ev.run_metrics()
self.m.train()
else:
self.eval(data='test')
return res
def eval(self, data='test'):
self.m.eval()
self.reader.result_file = None
data_iterator = self.reader.mini_batch_iterator(data)
mode = 'test'
for batch_num, dial_batch in enumerate(data_iterator):
for turn_num, turn_batch in enumerate(dial_batch):
x, gt_y, kw_ret = self._convert_batch(turn_batch)
pred_y = self.m(x=x, gt_y=gt_y, mode=mode, **kw_ret)
self.reader.wrap_result(turn_batch, pred_y)
if self.reader.result_file != None:
self.reader.result_file.close()
ev = self.EV(self.cfg)
res = ev.run_metrics()
self.m.train()
return res
def validate(self, data='dev'):
self.m.eval()
data_iterator = self.reader.mini_batch_iterator(data)
sup_loss, unsup_loss = 0, 0
sup_cnt, unsup_cnt = 0, 0
for dial_batch in data_iterator:
for turn_num, turn_batch in enumerate(dial_batch):
x, gt_y, kw_ret = self._convert_batch(turn_batch)
if 'cas' in self.cfg.network:
loss, continue_loss, act_loss, slot_loss = self.m(x=x, gt_y=gt_y, mode='train', **kw_ret)
else:
loss = self.m(x=x, gt_y=gt_y, mode='train', **kw_ret)
sup_loss += loss.item()
sup_cnt += 1
if 'cas' in self.cfg.network:
logging.debug('loss:{} continue_loss:{} act_loss:{} slot_loss:{}'.format(loss.item(),
continue_loss.item(),
act_loss.item(),
slot_loss.item()))
else:
logging.debug('loss:{}'.format(loss.item()))
sup_loss /= (sup_cnt + 1e-8)
unsup_loss /= (unsup_cnt + 1e-8)
self.m.train()
return sup_loss, unsup_loss
def save_model(self, epoch, path=None):
if not path:
path = self.cfg.model_path
all_state = {'lstd': self.m.state_dict(),
'config': self.cfg.__dict__,
'epoch': epoch}
torch.save(all_state, path)
def load_model(self, path=None):
if not path:
path = self.cfg.model_path
all_state = torch.load(path)
self.m.load_state_dict(all_state['lstd'])
self.base_epoch = all_state.get('epoch', 0)
def freeze_module(self, module):
for param in module.parameters():
param.requires_grad = False
def unfreeze_module(self, module):
for param in module.parameters():
param.requires_grad = True
def count_params(self):
module_parameters = filter(lambda p: p.requires_grad, self.m.parameters())
param_cnt = sum([np.prod(p.size()) for p in module_parameters if p.requires_grad == True])
print('total trainable params: %d' % param_cnt)
print(self.m)
def main():
parser = argparse.ArgumentParser()
parser.add_argument('-domain')
parser.add_argument('-network')
parser.add_argument('-mode')
parser.add_argument('-cfg', nargs='*')
args = parser.parse_args()
cfg = Config(args.domain)
cfg.init_handler(args.network)
if args.cfg:
for pair in args.cfg:
k, v = tuple(pair.split('='))
dtype = type(getattr(cfg, k))
if dtype == type(None):
raise ValueError()
if dtype is bool:
v = False if v == 'False' else True
else:
v = dtype(v)
setattr(cfg, k, v)
logging.debug(str(cfg))
if cfg.cuda:
torch.cuda.set_device(cfg.cuda_device)
logging.debug('Device: {}'.format(torch.cuda.current_device()))
cfg.mode = args.mode
torch.manual_seed(cfg.seed)
torch.cuda.manual_seed(cfg.seed)
random.seed(cfg.seed)
np.random.seed(cfg.seed)
m = Model(cfg)
m.count_params()
if args.mode == 'train':#train the model from scratch
m.train()
m.load_model()
m.eval(data='test')
elif args.mode == 'adjust':#continue to train the model
m.load_model()
m.train()
elif args.mode == 'test':#test the model, save the result
m.load_model()
m.eval(data='test')
elif args.mode == 'eval':#evaluation the testing result
m.load_model()
m.run_metrics(data='test')
if __name__ == '__main__':
main()