Skip to content

Commit 4d247c1

Browse files
authored
Merge pull request Azure#437 from rastala/master
pytorch with mlflow
2 parents 26ecf25 + f6682f6 commit 4d247c1

File tree

3 files changed

+635
-3
lines changed

3 files changed

+635
-3
lines changed

how-to-use-azureml/using-mlflow/README.md

Lines changed: 4 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -4,8 +4,9 @@
44

55
Try out the sample notebooks:
66

7-
* [Use MLflow with Azure Machine Learning for local training run](./train-local/train-local.ipynb)
8-
* [Use MLflow with Azure Machine Learning for remote training run](./train-remote/train-remote.ipynb)
9-
* [Deploy Model as Azure Machine Learning web service using MLflow](./deploy-model/deploy-model.ipynb)
7+
* [Use MLflow with Azure Machine Learning for Local Training Run](./train-local/train-local.ipynb)
8+
* [Use MLflow with Azure Machine Learning for Remote Training Run](./train-remote/train-remote.ipynb)
9+
* [Deploy Model as Azure Machine Learning Web Service using MLflow](./deploy-model/deploy-model.ipynb)
10+
* [Train and Deploy PyTorch Image Classifier](./train-deploy-pytorch/train-deploy-pytorch.ipynb)
1011

1112
![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/using-mlflow/README..png)
Lines changed: 150 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,150 @@
1+
# Copyright (c) 2017, PyTorch Team
2+
# All rights reserved
3+
# Licensed under BSD 3-Clause License.
4+
5+
# This example is based on PyTorch MNIST example:
6+
# https://github.com/pytorch/examples/blob/master/mnist/main.py
7+
8+
import mlflow
9+
import mlflow.pytorch
10+
from mlflow.utils.environment import _mlflow_conda_env
11+
import warnings
12+
import cloudpickle
13+
import torch
14+
import torch.nn as nn
15+
import torch.nn.functional as F
16+
import torch.optim as optim
17+
import torchvision
18+
from torchvision import datasets, transforms
19+
20+
21+
class Net(nn.Module):
22+
def __init__(self):
23+
super(Net, self).__init__()
24+
self.conv1 = nn.Conv2d(1, 20, 5, 1)
25+
self.conv2 = nn.Conv2d(20, 50, 5, 1)
26+
self.fc1 = nn.Linear(4 * 4 * 50, 500)
27+
self.fc2 = nn.Linear(500, 10)
28+
29+
def forward(self, x):
30+
# Added the view for reshaping score requests
31+
x = x.view(-1, 1, 28, 28)
32+
x = F.relu(self.conv1(x))
33+
x = F.max_pool2d(x, 2, 2)
34+
x = F.relu(self.conv2(x))
35+
x = F.max_pool2d(x, 2, 2)
36+
x = x.view(-1, 4 * 4 * 50)
37+
x = F.relu(self.fc1(x))
38+
x = self.fc2(x)
39+
return F.log_softmax(x, dim=1)
40+
41+
42+
def train(args, model, device, train_loader, optimizer, epoch):
43+
model.train()
44+
for batch_idx, (data, target) in enumerate(train_loader):
45+
data, target = data.to(device), target.to(device)
46+
optimizer.zero_grad()
47+
output = model(data)
48+
loss = F.nll_loss(output, target)
49+
loss.backward()
50+
optimizer.step()
51+
if batch_idx % args.log_interval == 0:
52+
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
53+
epoch, batch_idx * len(data), len(train_loader.dataset),
54+
100. * batch_idx / len(train_loader), loss.item()))
55+
# Use MLflow logging
56+
mlflow.log_metric("epoch_loss", loss.item())
57+
58+
59+
def test(args, model, device, test_loader):
60+
model.eval()
61+
test_loss = 0
62+
correct = 0
63+
with torch.no_grad():
64+
for data, target in test_loader:
65+
data, target = data.to(device), target.to(device)
66+
output = model(data)
67+
# sum up batch loss
68+
test_loss += F.nll_loss(output, target, reduction="sum").item()
69+
# get the index of the max log-probability
70+
pred = output.argmax(dim=1, keepdim=True)
71+
correct += pred.eq(target.view_as(pred)).sum().item()
72+
73+
test_loss /= len(test_loader.dataset)
74+
print("\n")
75+
print("Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n".format(
76+
test_loss, correct, len(test_loader.dataset),
77+
100. * correct / len(test_loader.dataset)))
78+
# Use MLflow logging
79+
mlflow.log_metric("average_loss", test_loss)
80+
81+
82+
class Args(object):
83+
pass
84+
85+
86+
# Training settings
87+
args = Args()
88+
setattr(args, 'batch_size', 64)
89+
setattr(args, 'test_batch_size', 1000)
90+
setattr(args, 'epochs', 3) # Higher number for better convergence
91+
setattr(args, 'lr', 0.01)
92+
setattr(args, 'momentum', 0.5)
93+
setattr(args, 'no_cuda', True)
94+
setattr(args, 'seed', 1)
95+
setattr(args, 'log_interval', 10)
96+
setattr(args, 'save_model', True)
97+
98+
use_cuda = not args.no_cuda and torch.cuda.is_available()
99+
100+
torch.manual_seed(args.seed)
101+
102+
device = torch.device("cuda" if use_cuda else "cpu")
103+
104+
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
105+
train_loader = torch.utils.data.DataLoader(
106+
datasets.MNIST('../data', train=True, download=True,
107+
transform=transforms.Compose([
108+
transforms.ToTensor(),
109+
transforms.Normalize((0.1307,), (0.3081,))
110+
])),
111+
batch_size=args.batch_size, shuffle=True, **kwargs)
112+
test_loader = torch.utils.data.DataLoader(
113+
datasets.MNIST(
114+
'../data',
115+
train=False,
116+
transform=transforms.Compose([
117+
transforms.ToTensor(),
118+
transforms.Normalize((0.1307,), (0.3081,))])),
119+
batch_size=args.test_batch_size, shuffle=True, **kwargs)
120+
121+
122+
def driver():
123+
warnings.filterwarnings("ignore")
124+
# Dependencies for deploying the model
125+
pytorch_index = "https://download.pytorch.org/whl/"
126+
pytorch_version = "cpu/torch-1.1.0-cp36-cp36m-linux_x86_64.whl"
127+
deps = [
128+
"cloudpickle=={}".format(cloudpickle.__version__),
129+
pytorch_index + pytorch_version,
130+
"torchvision=={}".format(torchvision.__version__),
131+
"Pillow=={}".format("6.0.0")
132+
]
133+
with mlflow.start_run() as run:
134+
model = Net().to(device)
135+
optimizer = optim.SGD(
136+
model.parameters(),
137+
lr=args.lr,
138+
momentum=args.momentum)
139+
for epoch in range(1, args.epochs + 1):
140+
train(args, model, device, train_loader, optimizer, epoch)
141+
test(args, model, device, test_loader)
142+
# Log model to run history using MLflow
143+
if args.save_model:
144+
model_env = _mlflow_conda_env(additional_pip_deps=deps)
145+
mlflow.pytorch.log_model(model, "model", conda_env=model_env)
146+
return run
147+
148+
149+
if __name__ == "__main__":
150+
driver()

0 commit comments

Comments
 (0)