-
Notifications
You must be signed in to change notification settings - Fork 0
/
nn.py
45 lines (39 loc) · 1.66 KB
/
nn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import numpy as np
class NeuralNetwork:
def __init__(self, layer_sizes):
"""
Neural Network initialization.
Given layer_sizes as an input, you have to design a Fully Connected Neural Network architecture here.
:param layer_sizes: A list containing neuron numbers in each layers. For example [3, 10, 2] means that there are
3 neurons in the input layer, 10 neurons in the hidden layer, and 2 neurons in the output layer.
"""
# TODO (Implement FCNNs architecture here)
self.in_size = layer_sizes[0]
self.w1 = np.random.standard_normal((layer_sizes[1], layer_sizes[0]))
self.w2 = np.random.standard_normal((layer_sizes[2], layer_sizes[1]))
self.b1 = np.zeros((layer_sizes[1], 1))
self.b2 = np.zeros((layer_sizes[2], 1))
def activation(self, x):
"""
The activation function of our neural network, e.g., Sigmoid, ReLU.
:param x: Vector of a layer in our network.
:return: Vector after applying activation function.
"""
# TODO (Implement activation function here)
# sigmoid
s = 1 / (1 + np.exp(-x))
# r = np.maximum(x, 0)
return s
def forward(self, x):
"""
Receives input vector as a parameter and calculates the output vector based on weights and biases.
:param x: Input vector which is a numpy array.
:return: Output vector
"""
# TODO (Implement forward function here)
x = x.reshape((self.in_size, 1))
z1 = self.w1 @ x + self.b1
a1 = self.activation(z1)
z2 = self.w2 @ a1 + self.b2
a2 = self.activation(z2)
return a2