forked from Xiangyaojun/xyj_tf_faster_rcnn_cpu
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_net.py
95 lines (88 loc) · 3.69 KB
/
train_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# -*- coding: utf-8 -*-
# @Time : 2017/10/25 0025 11:10
# @Author : xiangyaojun
# @Email : maisca1920@163.com
# @File : train_net.py
from lib.model.train_val import get_training_roidb, train_net
from lib.model.config import cfg_from_list, cfg_from_file, get_output_dir, get_output_tb_dir, cfg
from lib.datasets.factory import get_imdb
from lib.nets.resnet_v1 import resnetv1
from lib.nets.vgg16 import vgg16
from lib.nets.mobilenet_v1 import mobilenetv1
import lib.datasets.imdb as datasets_imdb
import os
import pprint
import argparse
def combined_roidb(imdb_names):
"""
Combine multiple roidbs
"""
def get_roidb(imdb_name):
imdb = get_imdb(imdb_name)
print('Loaded dataset `{:s}` for training'.format(imdb.name))
imdb.set_proposal_method(cfg.TRAIN.PROPOSAL_METHOD)
print('Set proposal method: {:s}'.format(cfg.TRAIN.PROPOSAL_METHOD))
roidb = get_training_roidb(imdb)
return roidb
roidbs = [get_roidb(s) for s in imdb_names.split('+')]
roidb = roidbs[0]
if len(roidbs) > 1:
for r in roidbs[1:]:
roidb.extend(r)
tmp = get_imdb(imdb_names.split('+')[1])
imdb = datasets_imdb.imdb(imdb_names, tmp.classes)
else:
imdb = get_imdb(imdb_names)
return imdb, roidb
def parse_args():
parser = argparse.ArgumentParser(description='Train a Fast R-CNN network')
parser.add_argument('--net', dest='network_name', default="vgg16", help='The network of name: vgg16, res50, res101, res152, mobile')
parser.add_argument('--train', dest='train_dataset_name', default="voc_2013_train", help='training data set of name')
parser.add_argument('--val', dest='val_dataset_name', default="voc_2013_train", help='validation data set of name')
parser.add_argument('--iters', dest='max_iters',
help='number of iterations to train',
default=70000, type=int)
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
arg_net = args.network_name
train_datset_name = args.train_dataset_name # 测试数据集名称
val_dataset_name = args.val_dataset_name # 验证数据集名称
set_cfgs = ['ANCHOR_SCALES', '[8,16,32]', 'ANCHOR_RATIOS', '[0.5,1,2]', 'TRAIN.STEPSIZE', '[50000]',]
project_path = os.path.abspath('.')
pre_train_weight = project_path+"/data/pre_train_weight/"+arg_net+".ckpt"
cfg_from_file(project_path+"/experiments/cfgs/"+arg_net+".yml")#载入参数配置
cfg_from_list(set_cfgs)#修改参数配置
print('Using config:')
pprint.pprint(cfg)
# roidb:所有训练图片的gt_boxes
# imdb:训练数据集的相关信息:包括类别列表,所有的图片名称的索引,数据集名称等等
imdb, roidb = combined_roidb("gridsum_car_train")
print(roidb[0]['boxes'])
print(roidb[0])
print('{:d} roidb entries'.format(len(roidb)))
# output directory where the models are saved
output_dir = get_output_dir(imdb, "")
print('Output will be saved to `{:s}`'.format(output_dir))
# tensorboard directory where the summaries are saved during training
tb_dir = get_output_tb_dir(imdb, "")
# 同样的方法载入val数据集
print('TensorFlow summaries will be saved to `{:s}`'.format(tb_dir))
_, valroidb = combined_roidb("gridsum_car_train")
print('{:d} validation roidb entries'.format(len(valroidb)))
if arg_net == 'vgg16':
net = vgg16()
elif arg_net == 'res50':
net = resnetv1(num_layers=50)
elif arg_net == 'res101':
net = resnetv1(num_layers=101)
elif arg_net == 'res152':
net = resnetv1(num_layers=152)
elif arg_net == 'mobile':
net = mobilenetv1()
else:
raise NotImplementedError
train_net(net, imdb, roidb, valroidb, output_dir, tb_dir,
pretrained_model=pre_train_weight,
max_iters=args.max_iters)