Skip to content

Latest commit

 

History

History
289 lines (229 loc) · 10.2 KB

0122.买卖股票的最佳时机II.md

File metadata and controls

289 lines (229 loc) · 10.2 KB

欢迎大家参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!

122.买卖股票的最佳时机II

力扣题目链接

给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1: 输入: [7,1,5,3,6,4] 输出: 7 解释: 在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4。随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6-3 = 3 。

示例 2: 输入: [1,2,3,4,5] 输出: 4 解释: 在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。

示例 3: 输入: [7,6,4,3,1] 输出: 0 解释: 在这种情况下, 没有交易完成, 所以最大利润为 0。

提示:

  • 1 <= prices.length <= 3 * 10 ^ 4
  • 0 <= prices[i] <= 10 ^ 4

思路

本题首先要清楚两点:

  • 只有一只股票!
  • 当前只有买股票或者买股票的操作

想获得利润至少要两天为一个交易单元。

贪心算法

这道题目可能我们只会想,选一个低的买入,在选个高的卖,在选一个低的买入.....循环反复。

如果想到其实最终利润是可以分解的,那么本题就很容易了!

如果分解呢?

假如第0天买入,第3天卖出,那么利润为:prices[3] - prices[0]。

相当于(prices[3] - prices[2]) + (prices[2] - prices[1]) + (prices[1] - prices[0])。

此时就是把利润分解为每天为单位的维度,而不是从0天到第3天整体去考虑!

那么根据prices可以得到每天的利润序列:(prices[i] - prices[i - 1]).....(prices[1] - prices[0])。

如图:

122.买卖股票的最佳时机II

一些同学陷入:第一天怎么就没有利润呢,第一天到底算不算的困惑中。

第一天当然没有利润,至少要第二天才会有利润,所以利润的序列比股票序列少一天!

从图中可以发现,其实我们需要收集每天的正利润就可以,收集正利润的区间,就是股票买卖的区间,而我们只需要关注最终利润,不需要记录区间

那么只收集正利润就是贪心所贪的地方!

局部最优:收集每天的正利润,全局最优:求得最大利润

局部最优可以推出全局最优,找不出反例,试一试贪心!

对应C++代码如下:

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int result = 0;
        for (int i = 1; i < prices.size(); i++) {
            result += max(prices[i] - prices[i - 1], 0);
        }
        return result;
    }
};
  • 时间复杂度O(n)
  • 空间复杂度O(1)

动态规划

动态规划将在下一个系列详细讲解,本题解先给出我的C++代码(带详细注释),感兴趣的同学可以自己先学习一下。

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        // dp[i][1]第i天持有的最多现金
        // dp[i][0]第i天持有股票后的最多现金
        int n = prices.size();
        vector<vector<int>> dp(n, vector<int>(2, 0));
        dp[0][0] -= prices[0]; // 持股票
        for (int i = 1; i < n; i++) {
            // 第i天持股票所剩最多现金 = max(第i-1天持股票所剩现金, 第i-1天持现金-买第i天的股票)
            dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
            // 第i天持有最多现金 = max(第i-1天持有的最多现金,第i-1天持有股票的最多现金+第i天卖出股票)
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i]);
        }
        return max(dp[n - 1][0], dp[n - 1][1]);
    }
};
  • 时间复杂度O(n)
  • 空间复杂度O(n)

总结

股票问题其实是一个系列的,属于动态规划的范畴,因为目前在讲解贪心系列,所以股票问题会在之后的动态规划系列中详细讲解。

可以看出有时候,贪心往往比动态规划更巧妙,更好用,所以别小看了贪心算法

本题中理解利润拆分是关键点! 不要整块的去看,而是把整体利润拆为每天的利润。

一旦想到这里了,很自然就会想到贪心了,即:只收集每天的正利润,最后稳稳的就是最大利润了。

其他语言版本

Java

// 贪心思路
class Solution {
    public int maxProfit(int[] prices) {
        int result = 0;
        for (int i = 1; i < prices.length; i++) {
            result += Math.max(prices[i] - prices[i - 1], 0);
        }
        return result;
    }
}
class Solution { // 动态规划
    public int maxProfit(int[] prices) {
        // [天数][是否持有股票]
        int[][] dp = new int[prices.length][2];

        // bad case
        dp[0][0] = 0;
        dp[0][1] = -prices[0];

        for (int i = 1; i < prices.length; i++) {
            // dp公式
            dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] + prices[i]);
            dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] - prices[i]);
        }

        return dp[prices.length - 1][0];
    }
}

Python

class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        result = 0
        for i in range(1, len(prices)):
            result += max(prices[i] - prices[i - 1], 0)
        return result

python动态规划

class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        length = len(prices)
        dp = [[0] * 2 for _ in range(length)]
        dp[0][0] = -prices[0]
        dp[0][1] = 0
        for i in range(1, length):
            dp[i][0] = max(dp[i-1][0], dp[i-1][1] - prices[i]) #注意这里是和121. 买卖股票的最佳时机唯一不同的地方
            dp[i][1] = max(dp[i-1][1], dp[i-1][0] + prices[i])
        return dp[-1][1]

Go

//贪心算法
func maxProfit(prices []int) int {
    var sum int
    for i := 1; i < len(prices); i++ {
        // 累加每次大于0的交易
        if prices[i]-prices[i-1] > 0 {
            sum += prices[i]-prices[i-1]
        }
    }
    return sum
}
//确定售卖点
func maxProfit(prices []int) int {
    var result,buy int
    prices=append(prices,0)//在price末尾加个0,防止price一直递增
    /**
    思路:检查后一个元素是否大于当前元素,如果小于,则表明这是一个售卖点,当前元素的值减去购买时候的值
            如果不小于,说明后面有更好的售卖点,
    **/
    for i:=0;i<len(prices)-1;i++{
        if prices[i]>prices[i+1]{
            result+=prices[i]-prices[buy]
            buy=i+1
        }else if prices[buy]>prices[i]{//更改最低购买点
            buy=i
        }
    }
    return result
}

Javascript

贪心

var maxProfit = function(prices) {
    let result = 0
    for(let i = 1; i < prices.length; i++) {
        result += Math.max(prices[i] - prices[i - 1], 0)
    }
    return result
};

动态规划

const maxProfit = (prices) => {
    let dp = Array.from(Array(prices.length), () => Array(2).fill(0));
    // dp[i][0] 表示第i天持有股票所得现金。
    // dp[i][1] 表示第i天不持有股票所得最多现金
    dp[0][0] = 0 - prices[0];
    dp[0][1] = 0;
    for(let i = 1; i < prices.length; i++) {
        // 如果第i天持有股票即dp[i][0], 那么可以由两个状态推出来
        // 第i-1天就持有股票,那么就保持现状,所得现金就是昨天持有股票的所得现金 即:dp[i - 1][0]
        // 第i天买入股票,所得现金就是昨天不持有股票的所得现金减去 今天的股票价格 即:dp[i - 1][1] - prices[i]
        dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1] - prices[i]);
        
        // 在来看看如果第i天不持有股票即dp[i][1]的情况, 依然可以由两个状态推出来
        // 第i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:dp[i - 1][1]
        // 第i天卖出股票,所得现金就是按照今天股票佳价格卖出后所得现金即:prices[i] + dp[i - 1][0]
        dp[i][1] = Math.max(dp[i-1][1], dp[i-1][0] + prices[i]);
    }

    return dp[prices.length -1][0];
};

C

int maxProfit(int* prices, int pricesSize){
    int result = 0;
    int i;
    //从第二个元素开始遍历数组,与之前的元素进行比较
    for(i = 1; i < pricesSize; ++i) {
        //若该元素比前面元素大,则说明有利润。代表买入
        if(prices[i] > prices[i-1])
            result+= prices[i]-prices[i-1];
    }
    return result;
}