forked from pjreddie/darknet
-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathwriting.c
144 lines (128 loc) · 4.3 KB
/
writing.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
#include "darknet.h"
void train_writing(char *cfgfile, char *weightfile)
{
char *backup_directory = "/home/pjreddie/backup/";
srand(time(0));
float avg_loss = -1;
char *base = basecfg(cfgfile);
printf("%s\n", base);
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
int imgs = net.batch*net.subdivisions;
list *plist = get_paths("figures.list");
char **paths = (char **)list_to_array(plist);
clock_t time;
int N = plist->size;
printf("N: %d\n", N);
image out = get_network_image(net);
data train, buffer;
load_args args = {0};
args.w = net.w;
args.h = net.h;
args.out_w = out.w;
args.out_h = out.h;
args.paths = paths;
args.n = imgs;
args.m = N;
args.d = &buffer;
args.type = WRITING_DATA;
pthread_t load_thread = load_data_in_thread(args);
int epoch = (*net.seen)/N;
while(get_current_batch(net) < net.max_batches || net.max_batches == 0){
time=clock();
pthread_join(load_thread, 0);
train = buffer;
load_thread = load_data_in_thread(args);
printf("Loaded %lf seconds\n",sec(clock()-time));
time=clock();
float loss = train_network(net, train);
/*
image pred = float_to_image(64, 64, 1, out);
print_image(pred);
*/
/*
image im = float_to_image(256, 256, 3, train.X.vals[0]);
image lab = float_to_image(64, 64, 1, train.y.vals[0]);
image pred = float_to_image(64, 64, 1, out);
show_image(im, "image");
show_image(lab, "label");
print_image(lab);
show_image(pred, "pred");
cvWaitKey(0);
*/
if(avg_loss == -1) avg_loss = loss;
avg_loss = avg_loss*.9 + loss*.1;
printf("%ld, %.3f: %f, %f avg, %f rate, %lf seconds, %ld images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen);
free_data(train);
if(get_current_batch(net)%100 == 0){
char buff[256];
sprintf(buff, "%s/%s_batch_%ld.weights", backup_directory, base, get_current_batch(net));
save_weights(net, buff);
}
if(*net.seen/N > epoch){
epoch = *net.seen/N;
char buff[256];
sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch);
save_weights(net, buff);
}
}
}
void test_writing(char *cfgfile, char *weightfile, char *filename)
{
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
set_batch_network(&net, 1);
srand(2222222);
clock_t time;
char buff[256];
char *input = buff;
while(1){
if(filename){
strncpy(input, filename, 256);
}else{
printf("Enter Image Path: ");
fflush(stdout);
input = fgets(input, 256, stdin);
if(!input) return;
strtok(input, "\n");
}
image im = load_image_color(input, 0, 0);
resize_network(&net, im.w, im.h);
printf("%d %d %d\n", im.h, im.w, im.c);
float *X = im.data;
time=clock();
network_predict(net, X);
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
image pred = get_network_image(net);
image upsampled = resize_image(pred, im.w, im.h);
image thresh = threshold_image(upsampled, .5);
pred = thresh;
show_image(pred, "prediction");
show_image(im, "orig");
#ifdef OPENCV
cvWaitKey(0);
cvDestroyAllWindows();
#endif
free_image(upsampled);
free_image(thresh);
free_image(im);
if (filename) break;
}
}
void run_writing(int argc, char **argv)
{
if(argc < 4){
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
return;
}
char *cfg = argv[3];
char *weights = (argc > 4) ? argv[4] : 0;
char *filename = (argc > 5) ? argv[5] : 0;
if(0==strcmp(argv[2], "train")) train_writing(cfg, weights);
else if(0==strcmp(argv[2], "test")) test_writing(cfg, weights, filename);
}