Skip to content

add evaluate.py #40

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
64 changes: 64 additions & 0 deletions evaluate.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,64 @@
import h5py
import scipy.io as sio
import PIL.Image as Image
import numpy as np
import os
import glob
import torchvision.transforms.functional as F
from image import *
from model import CSRNet
import torch
import time


from torchvision import datasets, transforms
transform=transforms.Compose([transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225])])


data_path='models/shanghaiTech_Crowd_Counting_Dataset/part_A_final/test_data/images/'
img_paths = glob.glob(os.path.join(data_path, '*.jpg'))


if torch.cuda.is_available():
use_cuda = True
else:
use_cuda = False


model = CSRNet(load_weights=True)

if use_cuda:
model = model.cuda()
checkpoint = torch.load('models/partBmodel_best.pth.tar')
else:
checkpoint = torch.load('models/partBmodel_best.pth.tar', map_location='cpu')
model.load_state_dict(checkpoint['state_dict'])


mae = 0
for i in xrange(len(img_paths)):
t1 = time.time()

if use_cuda:
img = transform(Image.open(img_paths[i]).convert('RGB')).cuda()
else:
img = transform(Image.open(img_paths[i]).convert('RGB'))

file_name = img_paths[i].replace('.jpg','.mat').replace('images','ground_truth')
gt_file_name = os.path.join(os.path.dirname(file_name), 'GT_' + os.path.basename(file_name))

gt_file = sio.loadmat(gt_file_name)
#print(gt_file)
#print(len(gt_file['image_info'][0][0][0][0][0]))
#print(gt_file['image_info'][0][0][0][0][1][0][0])
groundtruth = gt_file['image_info'][0][0][0][0][1][0][0]

output = model(img.unsqueeze(0))
t2 = time.time()
print(t2-t1)
print('{} -- {} : {}'.format(img_paths[i], output.detach().cpu().sum().numpy(), groundtruth))
mae += abs(output.detach().cpu().sum().numpy()-np.sum(groundtruth))
#print i,mae
print mae/len(img_paths)