Skip to content

Commit e8bfb67

Browse files
committed
refactor(Probability/Kernel/CondCdf): mv ofReal_cinfi (#10044)
Co-authored-by: Moritz Firsching <firsching@google.com>
1 parent d5277c9 commit e8bfb67

File tree

2 files changed

+14
-15
lines changed

2 files changed

+14
-15
lines changed

Mathlib/Probability/Kernel/CondCdf.lean

Lines changed: 0 additions & 15 deletions
Original file line numberDiff line numberDiff line change
@@ -108,21 +108,6 @@ theorem tendsto_of_antitone {ι α : Type*} [Preorder ι] [TopologicalSpace α]
108108
@tendsto_of_monotone ι αᵒᵈ _ _ _ _ _ h_mono
109109
#align tendsto_of_antitone tendsto_of_antitone
110110

111-
-- todo: move to data/real/ennreal
112-
theorem ENNReal.ofReal_cinfi (f : α → ℝ) [Nonempty α] :
113-
ENNReal.ofReal (⨅ i, f i) = ⨅ i, ENNReal.ofReal (f i) := by
114-
by_cases hf : BddBelow (range f)
115-
· exact
116-
Monotone.map_ciInf_of_continuousAt ENNReal.continuous_ofReal.continuousAt
117-
(fun i j hij => ENNReal.ofReal_le_ofReal hij) hf
118-
· symm
119-
rw [Real.iInf_of_not_bddBelow hf, ENNReal.ofReal_zero, ← ENNReal.bot_eq_zero, iInf_eq_bot]
120-
obtain ⟨y, hy_mem, hy_neg⟩ := not_bddBelow_iff.mp hf 0
121-
obtain ⟨i, rfl⟩ := mem_range.mpr hy_mem
122-
refine' fun x hx => ⟨i, _⟩
123-
rwa [ENNReal.ofReal_of_nonpos hy_neg.le]
124-
#align ennreal.of_real_cinfi ENNReal.ofReal_cinfi
125-
126111
-- todo: move to measure_theory/measurable_space
127112
/-- Monotone convergence for an infimum over a directed family and indexed by a countable type -/
128113
theorem lintegral_iInf_directed_of_measurable {mα : MeasurableSpace α} [Countable β]

Mathlib/Topology/Instances/ENNReal.lean

Lines changed: 14 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -708,6 +708,20 @@ theorem exists_lt_add_of_lt_add {x y z : ℝ≥0∞} (h : x < y + z) (hy : y ≠
708708
exact ⟨y', z', hy', hz', hx⟩
709709
#align ennreal.exists_lt_add_of_lt_add ENNReal.exists_lt_add_of_lt_add
710710

711+
theorem ofReal_cinfi (f : α → ℝ) [Nonempty α] :
712+
ENNReal.ofReal (⨅ i, f i) = ⨅ i, ENNReal.ofReal (f i) := by
713+
by_cases hf : BddBelow (range f)
714+
· exact
715+
Monotone.map_ciInf_of_continuousAt ENNReal.continuous_ofReal.continuousAt
716+
(fun i j hij => ENNReal.ofReal_le_ofReal hij) hf
717+
· symm
718+
rw [Real.iInf_of_not_bddBelow hf, ENNReal.ofReal_zero, ← ENNReal.bot_eq_zero, iInf_eq_bot]
719+
obtain ⟨y, hy_mem, hy_neg⟩ := not_bddBelow_iff.mp hf 0
720+
obtain ⟨i, rfl⟩ := mem_range.mpr hy_mem
721+
refine' fun x hx => ⟨i, _⟩
722+
rwa [ENNReal.ofReal_of_nonpos hy_neg.le]
723+
#align ennreal.of_real_cinfi ENNReal.ofReal_cinfi
724+
711725
end TopologicalSpace
712726

713727
section Liminf

0 commit comments

Comments
 (0)