@@ -659,15 +659,9 @@ theorem integral_sin_pow_aux :
659659 _ = C + (↑n + 1 ) * ∫ x in a..b, sin x ^ n - sin x ^ (n + 2 ) := by
660660 simp [cos_sq', sub_mul, ← pow_add, add_comm]
661661 _ = (C + (↑n + 1 ) * ∫ x in a..b, sin x ^ n) - (↑n + 1 ) * ∫ x in a..b, sin x ^ (n + 2 ) := by
662- rw [integral_sub, mul_sub, add_sub_assoc] <;> apply Continuous.intervalIntegrable
663- -- Porting note: was `... <;> continuity`
664- · exact continuous_sin_pow n
665- · exact continuous_sin_pow (n + 2 )
666- all_goals apply Continuous.intervalIntegrable
667- -- Porting note: was `... <;> continuity`
668- · have : Continuous fun x ↦ ↑(n + 1 ) * cos x := by continuity
669- exact this.mul (continuous_sin_pow n)
670- · exact continuous_sin
662+ rw [integral_sub, mul_sub, add_sub_assoc] <;>
663+ apply Continuous.intervalIntegrable <;> continuity
664+ all_goals apply Continuous.intervalIntegrable; continuity
671665#align integral_sin_pow_aux integral_sin_pow_aux
672666
673667/-- The reduction formula for the integral of `sin x ^ n` for any natural `n ≥ 2`. -/
@@ -772,8 +766,7 @@ theorem integral_cos_sq : ∫ x in a..b, cos x ^ 2 = (cos b * sin b - cos a * si
772766/-- Simplification of the integral of `sin x ^ m * cos x ^ n`, case `n` is odd. -/
773767theorem integral_sin_pow_mul_cos_pow_odd (m n : ℕ) :
774768 (∫ x in a..b, sin x ^ m * cos x ^ (2 * n + 1 )) = ∫ u in sin a..sin b, u^m * (↑1 - u ^ 2 ) ^ n :=
775- have hc : Continuous fun u : ℝ => u ^ m * (↑1 - u ^ 2 ) ^ n := -- Porting note: was `by continuity`
776- (continuous_pow m).mul ((continuous_const.sub (continuous_pow 2 )).pow n)
769+ have hc : Continuous fun u : ℝ => u ^ m * (↑1 - u ^ 2 ) ^ n := by continuity
777770 calc
778771 (∫ x in a..b, sin x ^ m * cos x ^ (2 * n + 1 )) =
779772 ∫ x in a..b, sin x ^ m * (↑1 - sin x ^ 2 ) ^ n * cos x := by
@@ -809,8 +802,7 @@ theorem integral_cos_pow_three :
809802/-- Simplification of the integral of `sin x ^ m * cos x ^ n`, case `m` is odd. -/
810803theorem integral_sin_pow_odd_mul_cos_pow (m n : ℕ) :
811804 (∫ x in a..b, sin x ^ (2 * m + 1 ) * cos x ^ n) = ∫ u in cos b..cos a, u^n * (↑1 - u ^ 2 ) ^ m :=
812- have hc : Continuous fun u : ℝ => u ^ n * (↑1 - u ^ 2 ) ^ m := -- Porting note: was `by continuity`
813- (continuous_pow n).mul ((continuous_const.sub (continuous_pow 2 )).pow m)
805+ have hc : Continuous fun u : ℝ => u ^ n * (↑1 - u ^ 2 ) ^ m := by continuity
814806 calc
815807 (∫ x in a..b, sin x ^ (2 * m + 1 ) * cos x ^ n) =
816808 -∫ x in b..a, sin x ^ (2 * m + 1 ) * cos x ^ n :=
0 commit comments