@@ -4,7 +4,6 @@ Released under Apache 2.0 license as described in the file LICENSE.
44Authors: Yaël Dillies, Bhavik Mehta
55-/
66import Mathlib.Algebra.Algebra.Basic
7- import Mathlib.Algebra.BigOperators.Order
87import Mathlib.Algebra.Order.Nonneg.Field
98import Mathlib.Algebra.Order.Nonneg.Floor
109
@@ -248,49 +247,6 @@ theorem coe_indicator (s : Set α) (f : α → ℚ≥0) (a : α) :
248247theorem coe_pow (q : ℚ≥0 ) (n : ℕ) : (↑(q ^ n) : ℚ) = (q : ℚ) ^ n :=
249248 coeHom.map_pow _ _
250249#align nnrat.coe_pow NNRat.coe_pow
251-
252- @[norm_cast]
253- theorem coe_list_sum (l : List ℚ≥0 ) : (l.sum : ℚ) = (l.map (↑)).sum :=
254- coeHom.map_list_sum _
255- #align nnrat.coe_list_sum NNRat.coe_list_sum
256-
257- @[norm_cast]
258- theorem coe_list_prod (l : List ℚ≥0 ) : (l.prod : ℚ) = (l.map (↑)).prod :=
259- coeHom.map_list_prod _
260- #align nnrat.coe_list_prod NNRat.coe_list_prod
261-
262- @[norm_cast]
263- theorem coe_multiset_sum (s : Multiset ℚ≥0 ) : (s.sum : ℚ) = (s.map (↑)).sum :=
264- coeHom.map_multiset_sum _
265- #align nnrat.coe_multiset_sum NNRat.coe_multiset_sum
266-
267- @[norm_cast]
268- theorem coe_multiset_prod (s : Multiset ℚ≥0 ) : (s.prod : ℚ) = (s.map (↑)).prod :=
269- coeHom.map_multiset_prod _
270- #align nnrat.coe_multiset_prod NNRat.coe_multiset_prod
271-
272- @[norm_cast]
273- theorem coe_sum {s : Finset α} {f : α → ℚ≥0 } : ↑(∑ a in s, f a) = ∑ a in s, (f a : ℚ) :=
274- coeHom.map_sum _ _
275- #align nnrat.coe_sum NNRat.coe_sum
276-
277- theorem toNNRat_sum_of_nonneg {s : Finset α} {f : α → ℚ} (hf : ∀ a, a ∈ s → 0 ≤ f a) :
278- (∑ a in s, f a).toNNRat = ∑ a in s, (f a).toNNRat := by
279- rw [← coe_inj, coe_sum, Rat.coe_toNNRat _ (Finset.sum_nonneg hf)]
280- exact Finset.sum_congr rfl fun x hxs ↦ by rw [Rat.coe_toNNRat _ (hf x hxs)]
281- #align nnrat.to_nnrat_sum_of_nonneg NNRat.toNNRat_sum_of_nonneg
282-
283- @[norm_cast]
284- theorem coe_prod {s : Finset α} {f : α → ℚ≥0 } : ↑(∏ a in s, f a) = ∏ a in s, (f a : ℚ) :=
285- coeHom.map_prod _ _
286- #align nnrat.coe_prod NNRat.coe_prod
287-
288- theorem toNNRat_prod_of_nonneg {s : Finset α} {f : α → ℚ} (hf : ∀ a ∈ s, 0 ≤ f a) :
289- (∏ a in s, f a).toNNRat = ∏ a in s, (f a).toNNRat := by
290- rw [← coe_inj, coe_prod, Rat.coe_toNNRat _ (Finset.prod_nonneg hf)]
291- exact Finset.prod_congr rfl fun x hxs ↦ by rw [Rat.coe_toNNRat _ (hf x hxs)]
292- #align nnrat.to_nnrat_prod_of_nonneg NNRat.toNNRat_prod_of_nonneg
293-
294250@[norm_cast]
295251theorem nsmul_coe (q : ℚ≥0 ) (n : ℕ) : ↑(n • q) = n • (q : ℚ) :=
296252 coeHom.toAddMonoidHom.map_nsmul _ _
0 commit comments