@@ -29,7 +29,7 @@ vertical line if its projection onto the x-axis contains `0`.
2929
3030We define a random variable `N : Ω → ℝ` that is `1` if the needle crosses a vertical line, and `0`
3131otherwise. This is defined as `fun ω => Set.indicator (needleProjX l (B ω).1 (B ω).2) 1 0`.
32- f
32+
3333As in many references, the problem is split into two cases, `l ≤ d` (`buffon_short`), and `d ≤ l`
3434(`buffon_long`). For both cases, we show that
3535```
@@ -225,7 +225,7 @@ lemma buffon_integral :
225225 simp_rw [MeasureTheory.IntegrableOn, Measure.volume_eq_prod, ← Measure.prod_restrict,
226226 integrable_needleCrossesIndicator d l hd]
227227
228- rw [Measure.volume_eq_prod, MeasureTheory.set_integral_prod _ this,
228+ rw [Measure.volume_eq_prod, MeasureTheory.setIntegral_prod _ this,
229229 MeasureTheory.integral_integral_swap ?integrable]
230230
231231 case integrable => simp_rw [Function.uncurry_def, Prod.mk.eta,
@@ -247,7 +247,7 @@ lemma buffon_integral :
247247 · rw [if_pos h, if_pos (this.mp h)]
248248 · rw [if_neg h, if_neg (this.not.mp h)]
249249
250- simp_rw [indicator_eq, MeasureTheory.set_integral_indicator measurableSet_Icc, Pi.one_apply]
250+ simp_rw [indicator_eq, MeasureTheory.setIntegral_indicator measurableSet_Icc, Pi.one_apply]
251251
252252/--
253253 From `buffon_integral`, in both the short and the long case, we have
@@ -273,7 +273,7 @@ lemma short_needle_inter_eq (h : l ≤ d) (θ : ℝ) :
273273-/
274274theorem buffon_short (h : l ≤ d) : ℙ[N l B] = (2 * l) * (d * π)⁻¹ := by
275275 simp_rw [buffon_integral d l hd B hBₘ hB, short_needle_inter_eq d l hl h _,
276- MeasureTheory.set_integral_const , Real.volume_Icc, smul_eq_mul, mul_one, mul_comm (d * π)⁻¹ _,
276+ MeasureTheory.setIntegral_const , Real.volume_Icc, smul_eq_mul, mul_one, mul_comm (d * π)⁻¹ _,
277277 mul_eq_mul_right_iff]
278278
279279 apply Or.inl
@@ -284,7 +284,7 @@ theorem buffon_short (h : l ≤ d) : ℙ[N l B] = (2 * l) * (d * π)⁻¹ := by
284284 mul_nonneg (Real.sin_nonneg_of_mem_Icc hθ) hl.le
285285 simp_rw [ENNReal.toReal_ofReal_eq_iff, MeasureTheory.ae_of_all _ this]
286286
287- simp_rw [MeasureTheory.set_integral_congr_ae measurableSet_Icc this,
287+ simp_rw [MeasureTheory.setIntegral_congr_ae measurableSet_Icc this,
288288 ← smul_eq_mul, integral_smul_const, smul_eq_mul, mul_comm, mul_eq_mul_left_iff,
289289 MeasureTheory.integral_Icc_eq_integral_Ioc, ← intervalIntegral.integral_of_le Real.pi_pos.le,
290290 integral_sin, Real.cos_zero, Real.cos_pi, sub_neg_eq_add, one_add_one_eq_two, true_or]
@@ -377,7 +377,7 @@ theorem buffon_long (h : d ≤ l) :
377377 · rw [min_eq_right (not_le.mp h).le]; exact mul_nonneg (Real.sin_nonneg_of_mem_Icc hθ) hl.le
378378 simp_rw [ENNReal.toReal_ofReal_eq_iff, MeasureTheory.ae_of_all _ this]
379379
380- rw [MeasureTheory.set_integral_congr_ae measurableSet_Icc this,
380+ rw [MeasureTheory.setIntegral_congr_ae measurableSet_Icc this,
381381 MeasureTheory.integral_Icc_eq_integral_Ioc,
382382 ← intervalIntegral.integral_of_le Real.pi_pos.le, integral_min_eq_two_mul,
383383 ← intervalIntegral.integral_add_adjacent_intervals
0 commit comments