-
Notifications
You must be signed in to change notification settings - Fork 187
/
Copy pathtrain.py
203 lines (160 loc) · 8.33 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import argparse
import time
import datetime
import torch_ac
import tensorboardX
import sys
import utils
from utils import device
from model import ACModel
# Parse arguments
parser = argparse.ArgumentParser()
# General parameters
parser.add_argument("--algo", required=True,
help="algorithm to use: a2c | ppo (REQUIRED)")
parser.add_argument("--env", required=True,
help="name of the environment to train on (REQUIRED)")
parser.add_argument("--model", default=None,
help="name of the model (default: {ENV}_{ALGO}_{TIME})")
parser.add_argument("--seed", type=int, default=1,
help="random seed (default: 1)")
parser.add_argument("--log-interval", type=int, default=1,
help="number of updates between two logs (default: 1)")
parser.add_argument("--save-interval", type=int, default=10,
help="number of updates between two saves (default: 10, 0 means no saving)")
parser.add_argument("--procs", type=int, default=16,
help="number of processes (default: 16)")
parser.add_argument("--frames", type=int, default=10**7,
help="number of frames of training (default: 1e7)")
# Parameters for main algorithm
parser.add_argument("--epochs", type=int, default=4,
help="number of epochs for PPO (default: 4)")
parser.add_argument("--batch-size", type=int, default=256,
help="batch size for PPO (default: 256)")
parser.add_argument("--frames-per-proc", type=int, default=None,
help="number of frames per process before update (default: 5 for A2C and 128 for PPO)")
parser.add_argument("--discount", type=float, default=0.99,
help="discount factor (default: 0.99)")
parser.add_argument("--lr", type=float, default=0.001,
help="learning rate (default: 0.001)")
parser.add_argument("--gae-lambda", type=float, default=0.95,
help="lambda coefficient in GAE formula (default: 0.95, 1 means no gae)")
parser.add_argument("--entropy-coef", type=float, default=0.01,
help="entropy term coefficient (default: 0.01)")
parser.add_argument("--value-loss-coef", type=float, default=0.5,
help="value loss term coefficient (default: 0.5)")
parser.add_argument("--max-grad-norm", type=float, default=0.5,
help="maximum norm of gradient (default: 0.5)")
parser.add_argument("--optim-eps", type=float, default=1e-8,
help="Adam and RMSprop optimizer epsilon (default: 1e-8)")
parser.add_argument("--optim-alpha", type=float, default=0.99,
help="RMSprop optimizer alpha (default: 0.99)")
parser.add_argument("--clip-eps", type=float, default=0.2,
help="clipping epsilon for PPO (default: 0.2)")
parser.add_argument("--recurrence", type=int, default=1,
help="number of time-steps gradient is backpropagated (default: 1). If > 1, a LSTM is added to the model to have memory.")
parser.add_argument("--text", action="store_true", default=False,
help="add a GRU to the model to handle text input")
if __name__ == "__main__":
args = parser.parse_args()
args.mem = args.recurrence > 1
# Set run dir
date = datetime.datetime.now().strftime("%y-%m-%d-%H-%M-%S")
default_model_name = f"{args.env}_{args.algo}_seed{args.seed}_{date}"
model_name = args.model or default_model_name
model_dir = utils.get_model_dir(model_name)
# Load loggers and Tensorboard writer
txt_logger = utils.get_txt_logger(model_dir)
csv_file, csv_logger = utils.get_csv_logger(model_dir)
tb_writer = tensorboardX.SummaryWriter(model_dir)
# Log command and all script arguments
txt_logger.info("{}\n".format(" ".join(sys.argv)))
txt_logger.info("{}\n".format(args))
# Set seed for all randomness sources
utils.seed(args.seed)
# Set device
txt_logger.info(f"Device: {device}\n")
# Load environments
envs = []
for i in range(args.procs):
envs.append(utils.make_env(args.env, args.seed + 10000 * i))
txt_logger.info("Environments loaded\n")
# Load training status
try:
status = utils.get_status(model_dir)
except OSError:
status = {"num_frames": 0, "update": 0}
txt_logger.info("Training status loaded\n")
# Load observations preprocessor
obs_space, preprocess_obss = utils.get_obss_preprocessor(envs[0].observation_space)
if "vocab" in status:
preprocess_obss.vocab.load_vocab(status["vocab"])
txt_logger.info("Observations preprocessor loaded")
# Load model
acmodel = ACModel(obs_space, envs[0].action_space, args.mem, args.text)
if "model_state" in status:
acmodel.load_state_dict(status["model_state"])
acmodel.to(device)
txt_logger.info("Model loaded\n")
txt_logger.info("{}\n".format(acmodel))
# Load algo
if args.algo == "a2c":
algo = torch_ac.A2CAlgo(envs, acmodel, device, args.frames_per_proc, args.discount, args.lr, args.gae_lambda,
args.entropy_coef, args.value_loss_coef, args.max_grad_norm, args.recurrence,
args.optim_alpha, args.optim_eps, preprocess_obss)
elif args.algo == "ppo":
algo = torch_ac.PPOAlgo(envs, acmodel, device, args.frames_per_proc, args.discount, args.lr, args.gae_lambda,
args.entropy_coef, args.value_loss_coef, args.max_grad_norm, args.recurrence,
args.optim_eps, args.clip_eps, args.epochs, args.batch_size, preprocess_obss)
else:
raise ValueError("Incorrect algorithm name: {}".format(args.algo))
if "optimizer_state" in status:
algo.optimizer.load_state_dict(status["optimizer_state"])
txt_logger.info("Optimizer loaded\n")
# Train model
num_frames = status["num_frames"]
update = status["update"]
start_time = time.time()
while num_frames < args.frames:
# Update model parameters
update_start_time = time.time()
exps, logs1 = algo.collect_experiences()
logs2 = algo.update_parameters(exps)
logs = {**logs1, **logs2}
update_end_time = time.time()
num_frames += logs["num_frames"]
update += 1
# Print logs
if update % args.log_interval == 0:
fps = logs["num_frames"] / (update_end_time - update_start_time)
duration = int(time.time() - start_time)
return_per_episode = utils.synthesize(logs["return_per_episode"])
rreturn_per_episode = utils.synthesize(logs["reshaped_return_per_episode"])
num_frames_per_episode = utils.synthesize(logs["num_frames_per_episode"])
header = ["update", "frames", "FPS", "duration"]
data = [update, num_frames, fps, duration]
header += ["rreturn_" + key for key in rreturn_per_episode.keys()]
data += rreturn_per_episode.values()
header += ["num_frames_" + key for key in num_frames_per_episode.keys()]
data += num_frames_per_episode.values()
header += ["entropy", "value", "policy_loss", "value_loss", "grad_norm"]
data += [logs["entropy"], logs["value"], logs["policy_loss"], logs["value_loss"], logs["grad_norm"]]
txt_logger.info(
"U {} | F {:06} | FPS {:04.0f} | D {} | rR:μσmM {:.2f} {:.2f} {:.2f} {:.2f} | F:μσmM {:.1f} {:.1f} {} {} | H {:.3f} | V {:.3f} | pL {:.3f} | vL {:.3f} | ∇ {:.3f}"
.format(*data))
header += ["return_" + key for key in return_per_episode.keys()]
data += return_per_episode.values()
if status["num_frames"] == 0:
csv_logger.writerow(header)
csv_logger.writerow(data)
csv_file.flush()
for field, value in zip(header, data):
tb_writer.add_scalar(field, value, num_frames)
# Save status
if args.save_interval > 0 and update % args.save_interval == 0:
status = {"num_frames": num_frames, "update": update,
"model_state": acmodel.state_dict(), "optimizer_state": algo.optimizer.state_dict()}
if hasattr(preprocess_obss, "vocab"):
status["vocab"] = preprocess_obss.vocab.vocab
utils.save_status(status, model_dir)
txt_logger.info("Status saved")