-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtrain_ribosome_loading.py
358 lines (301 loc) · 11.2 KB
/
train_ribosome_loading.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
import torch
import torch.nn.functional as F
import torch.nn as nn
from torch.optim import Adam
from torch.optim.lr_scheduler import LinearLR
import lightning.pytorch as pl
from lightning.pytorch.loggers.wandb import WandbLogger
from lightning.pytorch.callbacks.lr_monitor import LearningRateMonitor
from lightning.pytorch.callbacks import ModelCheckpoint
from lightning.pytorch.strategies import DDPStrategy
from torchmetrics.regression import R2Score
import argparse
from pathlib import Path
from rinalmo.config import model_config
from rinalmo.model.model import RiNALMo
from rinalmo.data.alphabet import Alphabet
from rinalmo.data.downstream.ribosome_loading.datamodule import RibosomeLoadingDataModule
from rinalmo.model.downstream import RibosomeLoadingPredictionHead
from rinalmo.utils.scaler import StandardScaler
from rinalmo.utils.finetune_callback import GradualUnfreezing
class RibosomeLoadingPredictionWrapper(pl.LightningModule):
def __init__(
self,
lm_config: str = "giga",
head_embed_dim: int = 32,
head_num_blocks: int = 6,
lr: float = 1e-3,
):
super().__init__()
self.save_hyperparameters()
self.scaler = StandardScaler()
self.lm = RiNALMo(model_config(lm_config))
self.pred_head = RibosomeLoadingPredictionHead(
c_in=self.lm.config['model']['transformer'].embed_dim,
embed_dim=head_embed_dim,
num_blocks=head_num_blocks
)
self.loss = nn.MSELoss()
self.r2_metric = R2Score()
self.lr = lr
self.pad_idx = self.lm.config['model']['embedding'].padding_idx
def load_pretrained_lm_weights(self, pretrained_weights_path):
self.lm.load_state_dict(torch.load(pretrained_weights_path))
def forward(self, tokens):
x = self.lm(tokens)["representation"]
# Nullify padding token representations
pad_mask = tokens.eq(self.pad_idx)
x[pad_mask, :] = 0.0
pred = self.pred_head(x, pad_mask)
return pred
def fit_scaler(self, batch):
_, rl = batch
self.scaler.partial_fit(rl)
def _common_step(self, batch, batch_idx, log_prefix: str):
seq_encoded, rl_target = batch
preds = self(seq_encoded)
scaled_rl_target = self.scaler.transform(rl_target)
loss = self.loss(preds, scaled_rl_target)
preds = self.scaler.inverse_transform(preds).clamp(min=0.0) # "Unscale" predictions
mse = F.mse_loss(preds, rl_target)
mae = F.l1_loss(preds, rl_target)
self.r2_metric.update(preds, rl_target)
log = {
f'{log_prefix}/loss': loss,
f'{log_prefix}/mse': mse,
f'{log_prefix}/mae': mae,
}
self.log_dict(log, sync_dist=True)
return loss
def _eval_step(self, batch, batch_idx, log_prefix):
return self._common_step(batch, batch_idx, log_prefix=log_prefix)
def _on_eval_epoch_start(self):
# Reset metric calculator
self.r2_metric.reset()
def _on_eval_epoch_end(self, log_prefix: str):
# Log and reset metric calculator
if not self.trainer.sanity_checking:
self.log(f"{log_prefix}/r2", self.r2_metric.compute(), sync_dist=True)
self.r2_metric.reset()
def training_step(self, batch, batch_idx):
if self.current_epoch == 0:
return self.fit_scaler(batch)
return self._common_step(batch, batch_idx, log_prefix="train")
def validation_step(self, batch, batch_idx):
return self._eval_step(batch, batch_idx, log_prefix="val")
def on_validation_epoch_start(self):
return self._on_eval_epoch_start()
def on_validation_epoch_end(self):
return self._on_eval_epoch_end("val")
def test_step(self, batch, batch_idx):
return self._eval_step(batch, batch_idx, log_prefix="test")
def on_test_epoch_start(self):
return self._on_eval_epoch_start()
def on_test_epoch_end(self):
return self._on_eval_epoch_end("test")
def configure_optimizers(self):
optimizer = Adam(filter(lambda p: p.requires_grad, self.parameters()), lr=self.lr)
scheduler = LinearLR(optimizer, start_factor=1.0, end_factor=0.1, total_iters=5000) # TODO: Currently hardcoded!
return {
"optimizer": optimizer,
"lr_scheduler": {
"scheduler": scheduler,
"interval": "step",
}
}
def main(args):
if args.seed:
pl.seed_everything(args.seed)
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
# Model
model = RibosomeLoadingPredictionWrapper(
lm_config=args.lm_config,
head_embed_dim=args.embed_dim,
head_num_blocks=args.num_blocks,
lr=args.lr,
)
if args.pretrained_rinalmo_weights:
model.load_pretrained_lm_weights(args.pretrained_rinalmo_weights)
if args.init_params:
model.load_state_dict(torch.load(args.init_params))
# Datamodule
alphabet = Alphabet()
datamodule = RibosomeLoadingDataModule(
data_root=args.data_dir,
alphabet=alphabet,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_memory,
skip_data_preparation=not args.prepare_data,
)
# Set up callbacks and loggers
callbacks = []
loggers = []
if args.wandb:
wandb_logger = WandbLogger(
name=args.wandb_experiment_name,
save_dir=args.output_dir,
project=args.wandb_project,
entity=args.wandb_entity,
save_code=True,
)
loggers.append(wandb_logger)
if args.checkpoint_every_epoch:
epoch_ckpt_callback = ModelCheckpoint(
dirpath=args.output_dir,
filename='mrl-epoch_ckpt-{epoch}-{step}',
every_n_epochs=1,
save_top_k=-1
)
callbacks.append(epoch_ckpt_callback)
if loggers:
lr_monitor = LearningRateMonitor(logging_interval="step")
callbacks.append(lr_monitor)
# Training
strategy='auto'
if args.devices != 'auto' and ("," in args.devices or (int(args.devices) > 1 and int(args.devices) != -1)):
strategy = DDPStrategy(find_unused_parameters=True)
if args.ft_schedule:
ft_callback = GradualUnfreezing(
unfreeze_schedule_path=args.ft_schedule,
)
callbacks.append(ft_callback)
trainer = pl.Trainer(
accelerator=args.accelerator,
devices=args.devices,
max_steps=args.max_steps,
max_epochs=args.max_epochs,
gradient_clip_val=args.gradient_clip_val,
precision=args.precision,
default_root_dir=args.output_dir,
log_every_n_steps=args.log_every_n_steps,
strategy=strategy,
logger=loggers,
callbacks=callbacks,
)
if not args.test_only:
trainer.fit(model=model, datamodule=datamodule)
trainer.test(model=model, datamodule=datamodule)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"data_dir", type=str, default=None,
help="Directory with all the training and evaluation data"
)
parser.add_argument(
"--init_params", type=str, default=None,
help="""
Path to the '.pt' file containing model weights that will be used
as the starting point for the training (or evaluation)
"""
)
parser.add_argument(
"--output_dir", type=str, default=None,
help="Directory for all the output files (checkpoints, logs, temporary files, etc.)"
)
parser.add_argument(
"--seed", type=int, default=None,
help="Random seed"
)
parser.add_argument(
"--checkpoint_every_epoch", action="store_true", default=False,
help="Whether to checkpoint at the end of every training epoch"
)
parser.add_argument(
"--test_only", action="store_true", default=False,
help="""
Skip the training and only run the evaluation on the test set
(make sure to set '--ckpt_path' if you are using this option)
"""
)
# Model
parser.add_argument(
"--lm_config", type=str, default="giga",
help="Language model configuration"
)
parser.add_argument(
"--pretrained_rinalmo_weights", type=str, default=None,
help="Path to the pretrained RiNALMo model weights"
)
parser.add_argument(
"--embed_dim", type=int, default=32,
help="Prediction head embedding dimensionality"
)
parser.add_argument(
"--num_blocks", type=int, default=6,
help="Number of transformer blocks in prediction head"
)
# W&B
parser.add_argument(
"--wandb", action="store_true", default=False,
help="Whether to log metrics to Weights & Biases"
)
parser.add_argument(
"--wandb_experiment_name", type=str, default=None,
help="Name of the current experiment. Used for wandb logging"
)
parser.add_argument(
"--wandb_project", type=str, default=None,
help="Name of the wandb project to which this run will belong"
)
parser.add_argument(
"--wandb_entity", type=str, default=None,
help="Wandb username or team name to which runs are attributed"
)
parser.add_argument(
"--log_every_n_steps", type=int, default=50,
help="How often to log within steps"
)
# Data
parser.add_argument(
"--prepare_data", action="store_true", default=False,
help="Whether to download training and evaluation data"
)
parser.add_argument(
"--batch_size", type=int, default=1,
help="How many samples per batch to load"
)
parser.add_argument(
"--num_workers", type=int, default=0,
help="How many subprocesses to use for data loading"
)
parser.add_argument(
"--pin_memory", action="store_true", default=False,
help=" If activated, the data loader will copy Tensors into device/CUDA pinned memory before returning them"
)
# Training
parser.add_argument(
"--ft_schedule", type=str, default=None,
help="Path to the fine-tuning schedule file"
)
parser.add_argument(
"--lr", type=float, default=1e-4,
help="Learning rate"
)
parser.add_argument(
"--accelerator", type=str, default='auto',
help="Supports passing different accelerator types (“cpu”, “gpu”, “tpu”, “ipu”, “hpu”, “mps”, “auto”)"
)
parser.add_argument(
"--devices", type=str, default='auto',
help="The devices to use for training"
)
parser.add_argument(
"--max_steps", type=int, default=-1,
help="Stop training after this number of steps"
)
parser.add_argument(
"--max_epochs", type=int, default=-1,
help=" Stop training once this number of epochs is reached"
)
parser.add_argument(
"--gradient_clip_val", type=float, default=None,
help="The value at which to clip gradients"
)
parser.add_argument(
"--precision", type=str, default='16-mixed',
help="Double precision, full precision, 16bit mixed precision or bfloat16 mixed precision"
)
args = parser.parse_args()
main(args)