Skip to content

Latest commit

 

History

History
executable file
·
50 lines (41 loc) · 1.66 KB

bayes-gplvm-intro.md

File metadata and controls

executable file
·
50 lines (41 loc) · 1.66 KB

\ifndef{bayesGplvmIntro} \define{bayesGplvmIntro} \editme

\newslide{Selecting Data Dimensionality}

  • GP-LVM Provides probabilistic non-linear dimensionality reduction.
  • How to select the dimensionality?
  • Need to estimate marginal likelihood.
  • In standard GP-LVM it increases with increasing $\latentDim$.

\newslide{Integrate Mapping Function and Latent Variables}

\columns{Bayesian GP-LVM

  • Start with a standard GP-LVM.
  • Apply standard latent variable approach:
    • Define Gaussian prior over \emph{latent space}, $\latentMatrix$.

    • Integrate out \emph{latent variables}.

    • Unfortunately integration is intractable. }{ \only<1->{\begin{tikzpicture}

      % Define nodes
      \node[obs]                               (Y) {$\dataMatrix$};
      \node[latent, above=of Y] (X) {$\latentMatrix$};
      \node[const, right=1cm of Y]            (sigma) {$\dataStd^2$};
      
      % Connect the nodes
      \edge {X,sigma} {Y} ; %
      
      % Plates
      % \plate {YX} {(Y)} {$i=1\dots\numData$} ;
      % \plate {} {(W)(Y)(YX.north west)(YX.south west)} {$j=1\dots\dataDim$} ;
      

      \end{tikzpicture} } \aligncenter{ {\scriptsize \only<1->{[ p\left(\dataMatrix|\latentMatrix\right)=\prod_{j=1}^{\dataDim}\gaussianDist{\dataVector_{:,j}}{\zerosVector}{\kernelMatrix} ] }\only<3->{[ p\left(\latentMatrix\right)=\prod_{j=1}^{\latentDim}\gaussianDist{\latentVector_{:,j}}{\zerosVector}{\alpha_i^{-2}\eye} ] }\only<4->{[ p\left(\dataMatrix|\boldsymbol{\alpha}\right)= ?? ] } }} }{40%}{60%} \endif