\ifndef{largerGraphIntro} \define{largerGraphIntro} \editme
\newslide{Parametric but Non-parametric} \slides{
- Augment with a vector of inducing variables,
$\inducingVector$ . - Form a variational lower bound on true likelihood.
- Bound factorizes given inducing variables.
- Inducing variables appear in bound similar to parameters in a parametric model.
- But number of inducing variables can be changed at run time. }
\newslide{Inducing Variable Approximations}
- Date back to \small{@Williams:nystrom00; @Smola:sparsegp00; @Csato:sparse02; @Seeger:fast03; @Snelson:pseudo05}. See \small{@Quinonero:unifying05; @Thang:unifying17} for reviews.
- We follow variational perspective of \small{@Titsias:variational09}.
- This is an augmented variable method, followed by a collapsed variational approximation \small{@King:klcorrection06; @Hensman:fast12}.
\newslide{Augmented Variable Model: Not Wrong but Useful?}
\columns{
\only<1-2>{Augment standard model with a set of
]}
}{
\begin{center}
\begin{tikzpicture}
% Define nodes
\draw<1-4> node[obs] (y) {$\dataVector$};
\draw<4> node[latent, above=of y] (f) {$\mappingFunctionVector$};
\draw<5-> node[obs] (y) {$\dataScalar_i$};
\draw<5-> node[latent, above=of y] (f) {$\mappingFunction_i$};
\draw<2> node[latent, above=of y] (u) {$\inducingVector$};
\draw<3> node[latent, above left=of y] (u) {$\inducingVector$};
\draw<3> node[latent, above right=of y] (ustar) {$\inducingVector^\ast$};
\draw<4-6> node[latent, above=of f] (u) {$\inducingVector$};
\draw<4-7> node[latent, above right=of f, draw=gray] (ustar) {\color{gray}$\inducingVector^\ast$};
\draw<7-> node[const, above=of f] (u) {$\inducingVector$};
% Connect the nodes
\draw<2-3> [->] (u) to (y);%
\draw<3> [->] (ustar) to (y);%
\draw<3> [-] (ustar) to (u);%
\draw<4-> [-, draw=gray] (ustar) to (u);%
\draw<4-> [->, draw=gray,color=gray] (ustar) to (f);%
\draw<4-> [->] (f) to (y);%
\draw<4-> [->] (u) to (f);%
\only<5->{\plate[inner sep=10pt] {fy} {(f)(y)} {$i=1\dots\numData$} ;}
\end{tikzpicture}
\end{center}
}{60%}{40%}
\endif