-
Notifications
You must be signed in to change notification settings - Fork 1
/
tf_neuralrenderer.py
executable file
·292 lines (259 loc) · 12.4 KB
/
tf_neuralrenderer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
"""
Reference: https://github.com/hiroharu-kato/neural_renderer
https://github.com/akanazawa/cmr/blob/master/nnutils/nmr.py
https://www.tensorflow.org/extend/adding_an_op
"""
import tensorflow as tf
import chainer
import time
import scipy.misc
import neural_renderer
import numpy as np
import skimage
from tensorflow.python.framework import ops
import obj
def orthographic_proj_withz(X, cam, offset_z=0.):
"""
X: B x N x 3
cam: B x 8: [sc, tx, ty, tz, quaternions]
Orth preserving the z.
"""
batch_size = cam.get_shape()[0]
quat = cam[:, -4:]
quat = tf.expand_dims(quat, 1)
X_rot = rotate_vector_by_quaternion(quat, X)
scale = tf.reshape(cam[:, 0], shape = (-1, 1, 1))
trans = tf.reshape(cam[:, 1:4], shape = (batch_size, 1, -1))
proj = scale * X_rot
proj_xyz = proj + trans
# proj_xy = proj[:, :, :2] + trans
# proj_z = proj[:, :, 2, None] + offset_z
return proj_xyz#tf.concat([proj_xy, proj_z], 2)
def rotate_vector_by_quaternion(q, v, q_ndims=None, v_ndims=None):
"""
Reference: https://github.com/PhilJd/tf-quaternion/blob/master/tfquaternion/tfquaternion.py
Rotate a vector (or tensor with last dimension of 3) by q.
This function computes v' = q * v * conjugate(q) but faster.
Fast version can be found here:
https://blog.molecular-matters.com/2013/05/24/a-faster-quaternion-vector-multiplication/
Args:
q: A `Quaternion` or `tf.Tensor` with shape (..., 4)
v: A `tf.Tensor` with shape (..., 3)
q_ndims: The number of dimensions of q. Only necessary to specify if
the shape of q is unknown.
v_ndims: The number of dimensions of v. Only necessary to specify if
the shape of v is unknown.
Returns: A `tf.Tensor` with the broadcasted shape of v and q.
"""
v = tf.convert_to_tensor(v)
# normalize
norm = tf.sqrt(tf.reduce_sum(tf.square(q), axis=-1, keep_dims=True))
q = tf.divide(q, norm)
# tf.sqrt(self.norm(keepdims))
# q = q.normalized()
w = q[..., 0]
q_xyz = q[..., 1:]
if q_xyz.shape.ndims is not None:
q_ndims = q_xyz.shape.ndims
if v.shape.ndims is not None:
v_ndims = v.shape.ndims
for _ in range(v_ndims - q_ndims):
q_xyz = tf.expand_dims(q_xyz, axis=0)
for _ in range(q_ndims - v_ndims):
v = tf.expand_dims(v, axis=0) + tf.zeros_like(q_xyz)
q_xyz += tf.zeros_like(v)
v += tf.zeros_like(q_xyz)
t = 2 * tf.cross(q_xyz, v)
return v + tf.expand_dims(w, axis=-1) * t + tf.cross(q_xyz, t)
########################################################################
############ Wrapper class for the chainer Neural Renderer #############
##### All functions must only use numpy arrays as inputs/outputs #######
########################################################################
class NMR(object):
def __init__(self, renderer, img_size=256):
# setup renderer
# renderer = neural_renderer.Renderer()
# self.renderer = renderer
self.renderer = renderer
# self.renderer.image_size = img_size
self.renderer.perspective = True
# Set a default camera to be at (0, 0, -2.732)
self.renderer.eye = (0, 0.3, -1.5)#[0, 1., -5.]#[2.732, 0.5, -2.732]#neural_renderer.get_points_from_angles(2, 15, -90)#[6, 10, -14]#[2.732, 0, -2.732]#[0, 0, -2.732]#
# self.renderer.eye = [0, 0, -2.732]#
# self.renderer.light_direction = [0, 1, -1]
self.renderer.light_intensity_directional = 0.2
self.renderer.background_color = [1.,1.,1.]
# self.renderer.light_intensity_ambient = 0.5
# self.renderer.light_intensity_directional = 0.5
def to_gpu(self, device=0):
# self.renderer.to_gpu(device)
self.cuda_device = device
def forward_mask(self, verts, nverts, tris, ntris):#verts, nverts, tris, ntris):
''' Renders masks.
Args:
verts: B X MaxNverts X 3 numpy array
nverts: B X 1 numpy array
tris: B X MaxNtris X 3 numpy array
ntris: B X 1 numpy array
Returns:
masks: B X 256 X 256 numpy array
'''
# for i in range(len(nverts)):
# print vertices.shape, faces.shape
batch_size = len(nverts)
masks = np.zeros([batch_size, self.renderer.image_size, self.renderer.image_size], dtype=np.float32)
self.masks = []
self.verts_mask = []
self.nverts = nverts
self.nverts_mask = nverts
# print(self.nverts)#, verts.shape, ntris, tris.shape)
for ib in range(batch_size):
tris_chainer = chainer.Variable(chainer.cuda.to_gpu(tris[[ib],:ntris[ib, 0], ...], self.cuda_device))
verts_chainer = chainer.Variable(chainer.cuda.to_gpu(verts[[ib],:nverts[ib, 0], ...], self.cuda_device))
mask = self.renderer.render_silhouettes(verts_chainer, tris_chainer)
self.masks += [mask]
self.verts_mask += [verts_chainer]
masks[ib,:,:] = mask.data.get()
return masks
def backward_mask(self, grad_masks):
''' Compute gradient of vertices given mask gradients.
Args:
grad_masks: B X 256 X 256 numpy array
Returns:
grad_vertices: B X N X 3 numpy array
'''
batch_size = len(grad_masks)
verts_grad = np.zeros(self.verts_size, dtype=np.float32)
# print ('batch', batch_size, len(self.verts_mask), len(self.masks))
for ib in range(batch_size):
mask = self.masks[ib]
mask.grad = chainer.cuda.to_gpu(grad_masks[[ib],:,:], self.cuda_device)
mask.backward()
# print (self.verts_mask[ib].shape, self.nverts[ib])
verts_grad[ib,:self.nverts[ib,0],:] = self.verts_mask[ib].grad.get()
# print np.sum(verts_grad)
return verts_grad
def forward_img(self, verts, nverts, tris, ntris, textures):
''' Renders masks.
Args:
verts: B X MaxNverts X 3 numpy array
nverts: B X 1 numpy array
tris: B X MaxNtris X 3 numpy array
ntris: B X 1 numpy array
textures: B X F X T X T X T X 3 numpy array
Returns:
images: B X 3 x 256 X 256 numpy array
'''
# print 'vertices', vertices.shape
# print 'faces', faces.shape
# print 'textures', textures.shape
time1 = time2 = time3 = 0.
batch_size = len(nverts)
images = np.zeros([batch_size, 3, self.renderer.image_size, self.renderer.image_size], dtype=np.float32)
self.images = []
self.verts_img = []
self.textures = []
self.nverts = nverts
self.ntris = ntris
ticc = time.time()
for ib in range(batch_size):
# print 'ib', ib
# print tris[[ib],:ntris[ib, 0], ...].shape, verts[[ib],:nverts[ib, 0], ...].shape, textures[[ib],:ntris[ib, 0], ...].shape
# print tris[[ib],:ntris[ib, 0], ...]
tic = time.time()
tris_chainer = chainer.Variable(chainer.cuda.to_gpu(tris[[ib],:ntris[ib, 0], ...], self.cuda_device))
verts_chainer = chainer.Variable(chainer.cuda.to_gpu(verts[[ib],:nverts[ib, 0], ...], self.cuda_device))
textures_chainer = chainer.Variable(chainer.cuda.to_gpu(textures[[ib],:ntris[ib, 0], ...], self.cuda_device))
time1 += (time.time() - tic)
tic = time.time()
image = self.renderer.render(verts_chainer, tris_chainer, textures_chainer)
time2 += (time.time() - tic)
tic = time.time()
self.images += [image]
self.verts_img += [verts_chainer]
self.textures += [textures_chainer]
images[ib,:,:] = image.data.get()
time3 += (time.time() - tic)
print (time.time() - ticc,)
return images
def backward_img(self, grad_images):
''' Compute gradient of vertices given image gradients.
Args:
grad_images: B X 3? X 256 X 256 numpy array
Returns:
grad_vertices: B X N X 3 numpy array
grad_textures: B X F X T X T X T X 3 numpy array
'''
batch_size = len(grad_images)
verts_grad = np.zeros(self.verts_size, dtype=np.float32)
# print 'verts_grad', verts_grad.shape
textures_grad = np.zeros(self.textures_size, dtype=np.float32)
# print ('batch', batch_size, len(self.verts_img), len(self.images))
for ib in range(batch_size):
image = self.images[ib]
image.grad = chainer.cuda.to_gpu(grad_images[[ib],...], self.cuda_device)
image.backward()
verts_grad[ib,:self.nverts[ib,0],:] = self.verts_img[ib].grad.get()
textures_grad[ib,:self.ntris[ib,0],:] = self.textures[ib].grad.get()
# self.images.grad = chainer.cuda.to_gpu(grad_images, self.cuda_device)
# self.images.backward()
return verts_grad, textures_grad#self.vertices.grad.get(), self.textures.grad.get()
def neural_renderer_mask(self, verts, nverts, tris, ntris, name=None, stateful=True):
with ops.name_scope(name, "NeuralRenderer") as name:
rnd_name = 'NeuralRendererGrad' + str(np.random.randint(0, 1E+8))
tf.RegisterGradient(rnd_name)(self._neural_renderer_mask_grad) # see _MySquareGrad for grad example
g = tf.get_default_graph()
self.to_gpu()
self.verts_size = verts.shape
with g.gradient_override_map({"PyFunc": rnd_name, "PyFuncStateless": rnd_name}):
mask = tf.py_func(self.forward_mask,
[verts, nverts, tris, ntris],
[tf.float32],
stateful=stateful,
name=name)[0]
mask.set_shape([verts.shape[0], self.renderer.image_size, self.renderer.image_size])
return mask
def _neural_renderer_mask_grad(self, op, grad_mask):
tmp_grad_name = 'NeuralRendererGradPyFunc'+ str(np.random.randint(low=0,high=1e+8))
g = tf.get_default_graph()
with g.gradient_override_map({"PyFunc": tmp_grad_name, "PyFuncStateless": tmp_grad_name}):
grad_verts = tf.py_func(self.backward_mask,
[grad_mask],
[tf.float32],
stateful=True,
name=tmp_grad_name)[0]
grad_verts.set_shape(self.verts_size)
return [grad_verts, None, None, None]
def neural_renderer_texture(self, verts, nverts, tris, ntris, textures, name=None, stateful=True):
with ops.name_scope(name, "NeuralRendererTexture") as name:
rnd_name = 'NeuralRendererTextureGrad' + str(np.random.randint(0, 1E+8))
tf.RegisterGradient(rnd_name)(self._neural_renderer_texture_grad) # see _MySquareGrad for grad example
g = tf.get_default_graph()
self.to_gpu()
self.verts_size = verts.shape
self.textures_size = textures.shape
with g.gradient_override_map({"PyFunc": rnd_name, "PyFuncStateless": rnd_name}):
img = tf.py_func(self.forward_img,
[verts, nverts, tris, ntris, textures],
[tf.float32],
stateful=stateful,
name=name)[0]
img.set_shape([verts.shape[0], 3, self.renderer.image_size, self.renderer.image_size])
return img
def _neural_renderer_texture_grad(self, op, grad_img):
tmp_grad_name = 'NeuralRendererTextureGradPyFunc'+ str(np.random.randint(low=0,high=1e+8))
# print ('grad_img', grad_img.get_shape())
g = tf.get_default_graph()
with g.gradient_override_map({"PyFunc": tmp_grad_name, "PyFuncStateless": tmp_grad_name}):
grad_verts, grad_texture = tf.py_func(self.backward_img,
[grad_img],
[tf.float32, tf.float32],
stateful=True,
name=tmp_grad_name)
grad_verts.set_shape(self.verts_size)
grad_texture.set_shape(self.textures_size)
# print ('grad_verts', grad_verts.get_shape(), 'grad_texture', grad_texture.get_shape())
return [grad_verts, None, None, None, grad_texture]
if __name__ == '__main__':
## unitests
pass